DOCUMENT RESUME

, ED 146 701	S EA 010 107
TITLE	Solar Heating and Cooling of Residential Buildings: Sizing, Installation and Operation of Systems.
INSTITUTION	Colorado State Univ., Ft. Collins. Solar Emergy Applications Lab.
SPONS AGENCX PUB DATE	Department of Commerce, Washington, D.C. Oct 77
NOTE AVAILABIE FROM	591p.; For a related document, see EA 010 108 Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Stock No. 003-011-00085-2; \$7.00)
EDRS PRICE	MF-\$1.16 HC-\$31.47 Plus Postage.
DESCRIPTORS	Air Conditioning; Building Improvement; *Building Systems; Climate Control; Cost Effectiveness; .*Curriculum; *Educational Programs; Energy
• • • • • • • • • • • • • • • • • • •	Conservation; Heating; *Housing Industry; Illustrations; Life Cycle Costing Mechanical
• •	Equipment: *Performance Specifications: *Solar Radiation: Standards: Storage: Worksheets

ABSTRACT

This training course and a companion course titled "Design of Systems for Solar Heating and Cooling of Residential Buildings," are designed to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic shot water heating for residential buildings. Each course, 'organized in 22 modules, provides 44 hours of instruction. The modularized structure of the training courses provides considerable latitude in organization and presentation, . especially with regard to the time period over which the course could be presented. Included in each course are directed periods for computational practice, inspection of working systems, and "hands-on" experience with models. Course standards and needs were developed by interacting with architects, engineers, builders, contractors, and installers of heating; ventilating, and air conditioning systems in residential buildings. From the standards and needs, objectives for the course were developed and the curricular materials prepared. (Author/MLF)

Dccuments acquired by ERIC include many informal unpublished
materials not available from other sources. ERIC makes every effort
to obtain the best copy available. Nevertheless, items of marginal
reproducibility are often encountered and this affects the quality
of the microfiche and hardcopy reproductions ERIC makes available
via the ERIC Document Reproduction Service (EDRS). EDRS is not
responsible for the quality of the original document. Reproductions
supplied by EDRS are the best that can be made from the original.

US DEPARTMENT OF HEALTH, EDUCATION & WELFARE NATIONAL INSTITUTE OF EDUCATION

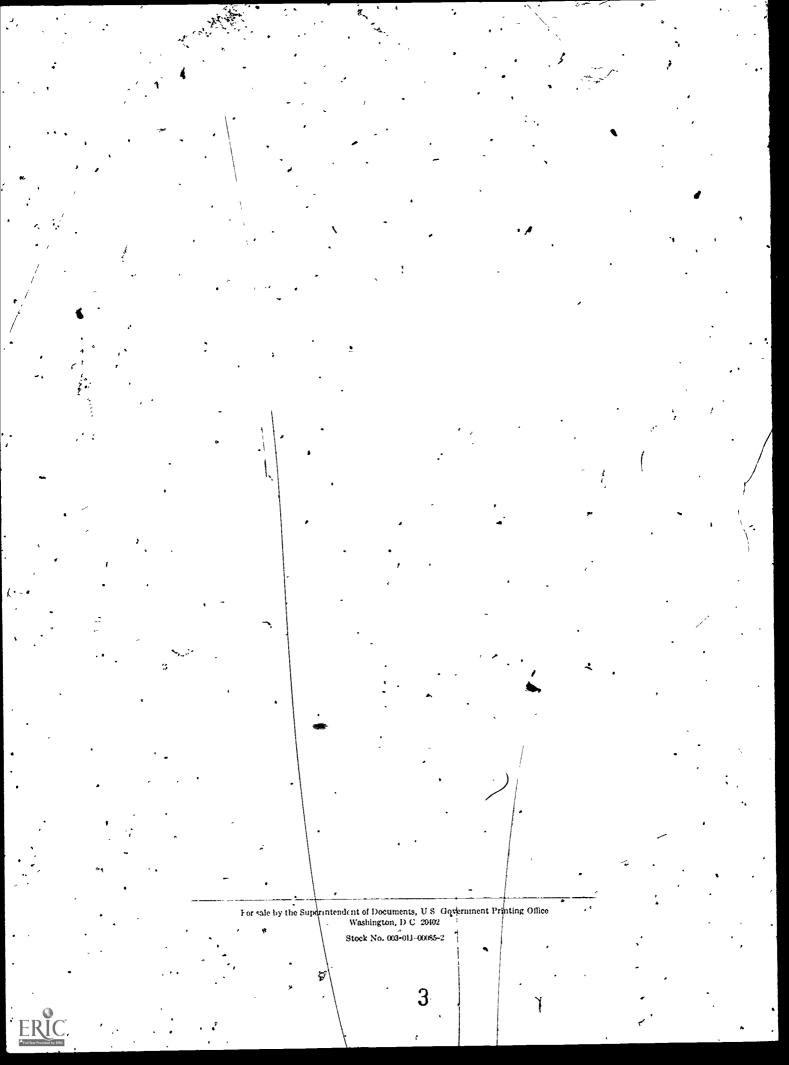
THIS DOCUMENT HAS BEEN REPRO-DUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGIN. AJING IT POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRE-SENT OFFICIAL NATIONAL INSTITUTE OF EDUCATION POSITION OR POLICY

SOLAR HEATING AND COOLING OF RESIDENTIAL BUILDINGS SIZING, INSTALLATION AND OPERATION OF SYSTEMS

ED14670

201

ERIC


Prepared by SOLAR ENERGY APPLICATIONS LABORATORY COLORADO STATE UNIVERSITY

U.S. Department of Commerce Juanita M. Kreps, Secretary

Robert T Hall, Assistant Secretary for Economic Development

OCTOBER 1977

SOLAR ENERGY APPLICATION'S LABORATORY COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO January 1977

PREFACE

The primary purpose of this training course is to develop the capability of practitioners in the Home Building industry to Size, Install and Operate Solar Weating and Cooling Systems for Residential Buildings. The goal is to have this course implemented nationwide to train practitioners in the requestive skills to integrate solar energy systems into residential buildings.

Recent estimates indicate that a substantial amount of domestic space and water heating in the United States will be accomplished by solar energy in the near future. However, significant implementation can only be achieved if substantial capabilities are created among the professions and trades in the building industry to install solar systems.

This training course, and a companion course titled Design of Systems for Solar Heating and Cooling of Residential Buildings, are courses to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic hot water heating for residential buildings. The modularized structure of the training courses provides considerable latitude in organization and presentation, especially with regard to the time period over which the course could be presented. At Colorado State University, the course is presented in five continuous adays, but a longer period of time utilizing evening hours could be used just as effectively. The structure also provides for verification that participants have achieved anticipated levels of understanding. At CSU, validation is' in the form of daily evaluations by the participants especially with regard to material content and methods of presentation. The instructors interact and respond to the evaluations and alter their methods of presentation to meet the needs of particular groups of trainees.

COURSE DEVELOPMENT

This training course was developed by the staff of the Solar Energy Applications Laboratory and vocational education specialists at Colorado State University in cooperation with the NAHB Research Foundation, Inc., Rockville, Maryland. A national advisory committee was established to provide advice and general guidance to the project staff regarding direction and content of the training courses. The committee members are from various sectors. of the home-building industry, and also teachers, architects, engineers and representatives from governmental agencies.

In determining curricylum content, a rigorous procedure was followed to develop counse standards and needs by interacting with architects, engineers, builders, contractors and installers of heating, ventilating and air conditioning systems in residential buildings. From the standards and needs, objectives for the course were developed and the curricular materials were then prepared.

ABOUT THE AUTHORS

This manual for the training course was prepared with the cooperative efforts of many people under the organizational efforts of Dan S. Ward. The program for development of both the Design and the Installation courses was directed by Susumu Karaki with George O. G. Lof as senior advisor. The authors of this manual have, individually and collectively, considerable experience in the design, installation, operation and maintenance of solar systems for space heating and cooling and domestic hot water heating. A short biographical sketch of the authors and their contributions to the manual are hereafter described.

Dan S. Ward -- Dr: Ward joined the staff of the Solar Energy Applications Laboratory at Colorado State University in 1973 and presently serves as Assistant Director of the Eaboratory as well as Assistant Professor of Civil Engineering and Physics. Since 1973 he has conducted research in solar heating and cooling systems, and has taught courses in solar energy applications:

Dan Ward has considerable experience with solar heating and cooling systems including supervision of design, construction and installation of the solar systems in three Solar Houses at Colorado State University. He is chairman of the ASTM subcommittee on development of standards for testing solar energy systems, and has published many papers and written several reports on heating and cooling systems.

Prior to joining the CSU faculty, he was a home building contractor in -Houston, Texas, and this experience in addition to his knowledge of solar systems has proved to be very valuable, especially with regard to this training course.

Besides organizing and directing the development of this training course, Dr. Ward also had principal responsibility for the preparation of the following modules of the manual: Module 3, Introduction to Solar Heating and Cooling Systems; Module 12, Operations Laboratory; Module.19, Scheduling of Solar Installations; Module 22, Future Prospects for Solar Heating and Cooling Systems.

Susumu Karaki -- Dr. Karaki has been a member of the faculty at Colorado State University for the past 19 years. He is Associate Director of the Solar Energy Applications Laboratory and Professor of Civil Engineering. Being involved in solar energy research since 1973, he has directed a number of research projects in solar energy utilization. Susumu Karaki has served on several committees of the International Solar Energy Society, and has been a member of U.S. teams for international information exchange on solar energy utilization.

In addition to directing the activity for development of the two training courses, Dr. Karaki was principally responsible for: Module 2, Course Orientation; Module 9, Solar Cooling Systems; Module 15, System Economics; Module 16, Solar Sizing Calculations.

ĉ

<u>George O.G. LÖf</u> -- Dr. LÖf has specialized in solar energy utilization for over thirty years and pioneered in the development of solar heating and cooling systems. As Director of the Solar Energy Applications Laboratory, he is responsible for the considerable progress made in development of solar systems at Colorado State University and elsewhere. His accomplishments have earned him worldwide recognition and among his many awards is the Lyndon Baines Johnson award for outstanding service to mankind.

George Löf served as chairman) of the advisory committee that guided the development of these practical courses and was senior advisor to the staff. Additionally, he prepared the following modules: Module 7, Service Hot Water Systems; Module /21, Buyer's Guide.

<u>Charles C. Smith</u> -- Mr. Smith's background experience includes design and installation of a variety of solar heating and cooling systems for various sized buildings. He was involved in the design, installation, and operation -of the liquid heating solar system in CSU Solar House I, air-heating solar system for a school building, a small scale residential-greenhouse combination structure, and a heating system for a fish hatchery. The variety of solar systems with which he has been associated includes those for agricultural uses and food processing applications.

Charles Smith was principally responsible for the preparation of the following modules in this manual: Module 6, Thermal Storage Subsystems; Module 8, Solar Space Heating Systems; Module 10, Solar Heating and Cooling Systems; Module 18, Retrofit Considerations. Additionally, he participated significantly in preparing Module 7, Service Hot Water Systems; Module 11, Control Subsystems.

Michael Z. Lowenstein -- Dr. Lowenstein is Professor of Chemistry at Adams State College in Alamosa, Colorado and has specialized in energy education. He serves as consultant, to the Energy Research and Development Administration in the public information program on energy in the State of Colorado. During his sabbatical leave from Adams State College, he served for one year at Colorado State University and participated in the preparation of this training manual. Mike Lowenstein's principal contributions are: Module 1, Energy Problem; Module 4, Solar Radiation; Module 17, Cost Effectiveness of Energy Conservation; Module 20, Constraints and Incentives.

<u>C. Byron Winn</u> -- Dr. Winn is Professor of Mechanical Engineering and has been actively involved in solar heating and cooling systems since 1973. He has designed and installed both liquid and air-heating solar systems in seven residences, and thereby has gained considerable practical experience.

Byron Winn organized and directed the development of a training course for Design of Systems for Solar Heating and Cooling of Residential Buildings, which is a companion course to this one. His principal contributions to this manual are: Module 11, Control Subsystems and Module 12, Operations Laboratory.

<u>Milton E: Larson</u> -- For the past 25 years, Dr. Larson has been engaged in , educational work, with technical-education and trade and industrial education as the focus of activity. He is Professor of Vocational Education at Colorado

f

State University and has served as head teacher-trainer for technical education in the Department of Vocational Education for the last eleven years.

Milton Larson, along with Dr. Valentine, provided expert advice to the staff in developing the training course and this manual.

Ivan E. Valentine --- Dr. Valentine, along with Dr. Larson, served the staff who prepared this manual as a vocational education specialist. He has considerable experience in curriculum development in all areas of technical education and has, additionally, practical experience as a consulting engineer, and also as a heating and plumbing contractor.

Ivan Valentine's extensive experience in vocational technical education contributed significantly to the development of this practical training course and manual.

NAHB RESEARCH FOUNDATION, INC.

The NAHB Research Foundation through Ralph J. Johnson, Staff Vice President and Director, and H.W. Anderson contributed considerably to the development of the training course and this manual. Mr. Johnson, in particular, carries with him over 30 years experience in housing and home-building research. The NAHB Research Foundation has been involved with the use of solar energy in housing for nearly twenty years and participated in the development of many standards for housing and home building.

The staff participated directly in the preparation of Module 19, Scheduling of Solar Installations, and Module 20, Constraints and Incentives.

ADVISORY COMMITTEE MEMBERS

George O.G. Löf, Chairman, Colorado State University, Fort Collins, Colorado James Boulware, Mission Viejo Company, Mission Viejo, California Carl Bruechert, Frank A. Player Company, Atlanta, Georgia Joseph Cuba, ASHRAE, New York, New York John Duffie, University of Wisconsin, Madison, Wisconsin Glenn Fatzinger, Department of Commerce, Washington, D.C. Ralph Johnson, NAHB Research Foundation, Inc., Rockville, Maryland Robert Mills', SMACNA, Washington, D.C. David Moore, Department of Housing and Urban Development, Washington, D.C. Fred Rink, Swanson, Rink and Associates, Denver, Colorado Harold Young, Energy Research and Development Administration, Washington, D.C.

ACKHOWLEDGMENTS

The development of this training course and Manual was made possible with the financial assistance of the Economic Development Administration, Department of Commerce, and Colorado State University. Financial assistance for the video taping was provided by the Department of Housing and Urban Development. Glenn Fatzinger of the Department of Commerce (EDA) was project monitor during the development of both this training course and the one for Design of Systems.

The staff is especially indebted to Wendy Asa and Kathi McKenna for preparing and organizing the manuscripts for this manual. Their patience and service are truly appreciated.

ADDITIONAL ACKNOWLEDGMENTS

The following tables and charts were obtained from the Climatic Atlas of the United States, U.S. Department of Commerce, Environmental Science. Services Administration, Environmental Data Service, June 1968:

Table 4-4, Mean Daily Solar Radiation (from page 70)
 Figures 4-8 through 4-19, Mean Daily Solar Radiation Maps
 (from pages 69 and 70)

Table 13-2, Data Values for Heating Load Computations (from page 36).

In addition, Table 13-1, Values of R, U, and 1/k for structural materials, is condensed from Targer tables contained in Chapter 21, ASHRAE Handbook of Fundamentals, 1972, ASHRAE, New York,

NOTICE

This manual was prepared as an account of work sponsored in part by the United States Government. Neither the United States nor the United States Department of Commerce, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. SIZING, INSTALLATION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS.

TABLE OF CONTENTS FOR THE MANUAL

vii

MODULE 1. ENERGY PF	ROBLEM	, • • ·
INTRODUCTION -	······································	1-1
OBJECTIVE	≥ • · · · · · · · · · · · · · · · · · ·	. 1-1
THE ENERGY PROBLEM ,		. 1-2
GROWTH OF DEMAND	• • • •	. 1-3
UNITED STATES ENERGY PROBLEM		1-5
THE ENERGY FUTURE		1 -6 .€.
SUMMARY	· · · · · · ·	. 1-16
REFERENCES		. 1-19 `

1.

	۰. ،		<u>M</u>	DULE_2	. <u>cou</u>	RSE (DRIEN	TATIO	<u>N</u>	•	~ `	· •	•			
	INTRO	ODUCTION	··· ·	F	•	••	• 1	•••	•	•	•.	• 7	· ·	2-1	•	
		PURPOSE			•	•	•	••	•) • •	1	2-1 .		•
		SCOPE	• `•	•		1 1	, , ,	•		•	•	•	•	2-1	• • • ~	,
	ORGA	NIZATION OF	THIS CO	ourse '	•	•	•	•	 •	•	• >	•	•'	2-2	۰.	
	Synoi	PSIS OF COU	RSE CON	TENT		•	e	•	• ,	<u>}</u>	•	٩	•	2-4	; 4	
•	·.	TOUR OF SO	LAR HOU	SES	;	• .	•	•,	•	۳. •	•	·• 、	' •	2-4		
4	•	• MODULE J.	ENERGY	PROBLE	EM	•	•	•	•	•	•	•	۲ •	2-5		
	• . '	, . MODULE 2.	COURSE	, ORIEN	rat i on	•	•*	4.	•	•	•	•	•	2 - 5 [°]		
	· .	MODULE 3.	INTROD	UCTION	TO SOL	AR HE	ATIŅO	AND	COOL I	ING S	YSTEMS	•	•	2-6		
	•	MQDULE 4.	SOLAR	RADIAT	ION	*	, ,	• ',	•	•	5 • 7	•	:	2-7 _. ,		f
	-	: MODULE 5.	FLUID	HEATIN	g solai	r cól	LECTO)RS	•	•	•	•	•	2-7	3	
	; t	MODULE 6.		L STOR			•	•	•	•	• , •	•	• •	2- 8		
	Ż	MODULE 7.	_					•		•	• •	•	•	2-9 -	•	
	•	MODULE 8.7					•	•	•		•	•	•	; 2-9	1	
			JOL HI							•	• ^			• `•	· · ·	

MODUL	Ε	-2°	(continued)

viii

- MODULE 9. SOLAR SPACE COOLING SYSTEMS.	2-10 `
MODULE 10. SOLAR HEATING AND COOLING SYSTEMS.	2-10
MODULE 11. SOLAR SYSTEM CONTROLS	2-11
MODULE 12. OPERATIONS LABORATORY	2-11
MODULE 13. HEATING LOAD CALCULATIONS	2-12
MODULE 14. SOLAR SYSTEM SIZING	2-12
MODULE 15. SYSTEM ECONOMICS	2-13
MODULE 16. SOLAR SYSTEM SIZING CALCULATIONS BY TRAINEES	2-13
MODULE 17. COST-EFFECTIVENESS OF ENERGY CONSERVATION	²⁻¹³
MODULE 18. RETROFIT CONSIDERATIONS	2-14
MODULE 19. SCHEDULING OF SQLAR, INSTALLATIONS	2-14
MODULE 20. CONSTRAINTS AND / INCENTIVES	2-14
MODULE 21. BUYER'S GUIDE	2 5 15
MODULE 22. FUTURE PROSPECTS FOR SOLAR HEATING AND COOLING SYSTEMS	2-15
	\ ~
MODULE 3. INTRODUCTION TO SOLAR HEATING AND COOLING SYSTEMS	۱
INTRODUCT HON	3-1
OBJÉCTIVE	-3-1
SOLAR HEATING AND COOR ING SYSTEMS	3-1 '
SOLAR COLLEGTORS	3-5
THERMAL STORAGE UNITS	3-10
OPERATING MODES - AIR SYSTEMS	.] 4]]]
OPERATING MODES LIQUID. SYSTEMS -	3-14
SPACE HEATING AND COOLING - DISTRIBUTION	3-18
AUXILIARY UNITS	. 3-19
AUTOMATIC CONTROLS	3721

j

ERIC ALUITEXX PROVIDE ENC.

• • •	•	• •	. •.	ı					•	• • •
	MODULE	<u>4:</u>	SOLA	R RADI	ATION	<u> </u>		C ^{ar}	•	•
INTRODUCTION	•	•	.•	ر ، • ,	•	. >	•	• • • •	•	4-1 Fil
OBJECTIVE	. 1	• .	• *	• `		۰.	•	1.	**	4-1 (**
SOLAR RADIATION	• *	• ,	. •	•	•	•	•	٠. ·	•	4-2
UNITS	•	•	•	•	•	.	. •	••••	•	4-2
SOLAR INTENSITY	、. .	•		•	_	• '	•	. `.		4-3
THE SOLAR SPECTR	UMĂ .	••••	:	•	•		•	• •	۰.	4-3
ENERGY REACHING	ÉÁRTH .		•		•	` ` ,	.`	• • •	• .	4-4
COLLECTOR TILT .	•		•	• ,	*	•	•	•••	•	4-8
COLLECTOR ORIENTATION		•		۰.	•	`•	۰.	, '.	•	á - 10 ∽
DETERMINATION OF DUE	SOUTH	•	•	•	• '	. 🖣	} .	/ .	•	. 4-11 · *
SOLAR DATA FOR SYSTEM	DESIGN	•4	<i>,</i> •			• •		. • .	•	4-12

ć

ix

MODULE 5. FLUID HEATING SOLAR COLLECTORS	ь. Ц.
INTRODUCTION	5-1 '
OBJECTIVE	5-1
BASIC PRINCIPLES	5-1
SOLAR SWIMMING POOL HEATERS	. 5-2
FLAT-PLÁTE LIQUID-HEATING SOLAR COLLECTORS	5-3
TRANSPARENT COVERS	5-5
ABSORBER PLATE	5-6
BLACK ABSORBER COATING	· 5-8
CORROSION .	5-9
LIQUIDS	5-11
FLAT-PLATE AIR-HEATING SOLAR' COLLECTORS	-5-16
SOLAR COLLECTOR EFFICIENCY	5-17
STEADY-STATE COLLECTOR EFFICIENCY	5-17
DAILY COLLECTOR EFFICIENCY	5-21
1,1,4	

11

•,

.

MODULE'S (continued

.5-22

5-23

6-4

6-4

6-5

6-6

6-6

· 6-10_

6-12

^{';}6-13

6-13

6215

6-16

7-1

7-2

7-2

7-5

. 6-8

STAGNATION TEMPÈRATURE

MODULE 6. THERMAL STORAGE SUBSYSTEMS

•

INTRODUCTION OBJECTIVE METHODS OF HEAT STORAGE LATENT HEAT STORAGE

SENSIBLE HEAT STORAGE SOLAR HEAT STORAGE SIZE HEAT LOSS FROM STORAGE LOCATION OF SOLAR HEAT STORAGE. WATER HEAT STORAGE

PRINCIPLES OF WATER STORAGE TANK OPERATION WATER TANK INSTALLATION WATER STORAGE TANK MATERIALS PEBBLE-BED STORAGE PEBBLE-BED INSTALLATION PEBBLE-BED CONTAINERS ROCKS FOR THE PEBBLE-BED

MODULE 7. SERVICE HDT WATER SYSTEMS INTRODUCTION OBJECTIVE TYPES AND CHARACTERISTICS OF SOLAR HOT WATER HEATERS

DIRECT HEATING, THERMOSIPHON CIRCULATING TYPE.

DIRECT HEATING, PUMP CIRCULATION TYPES .

RIC

xi xi	•
	•
MODULE 7 (continued)	·
DIRECT HEATING, PUMP CIRCULATION, DRAINABLE MYPES	. 7-6
CIRCULATING TYPE, INDIRECT HEATING	. 7-10
NON-CIRCULATING TYPE	. 7-13
AUXILIARY HEAT	. '7-1 ₁ 3'
LOCATION OF COLLECTORS	7–15
TEMPERATURE STRATIFICATION IN SOLAR HOT WATER TANK	. 7–1'6
TEMPERATURE CONTROL LIMIT.	. 7-1°6
PERFORMANCE OF TYPICAL SYSTEMS	. 7-20 ·
GENERAL REQUIREMENTS	, 7-20 [°]
QUANTITATIVE PERFORMANCE	
COSTS.	. 7-29
	♠.

ţ

		, , ,	MODUL	.E 8.	. <u>.</u> SOL	<u>AR</u> H	EATIN	<u>s s'yş</u>	<u>TEŇS</u> .			•	, -	
	INTRODUCTION	المر	•	•	•• . ′	•	•	• .	\$.	•	•.	• • ~	٠.	8-1 .
	OBJECTIVE .	• • •	•	•	. 🛰	, • •	•	•		•	、•	•	•,-	8-1
	SOLAR SPACE HE	AT ING	SYȘTE	EMS	•	, . 	•	•		4	ç •	}	•	8-2
•	SOLARAIŘ	HEAT	ING SY	rștem	•	•	• • [•]	•		•	*. ' *	, (u	•	8-4
	· LIQUID HE	ATING	SOLA	r sys	TEMS'	•	, , , , , , , , , , , , , , , , , , ,	•	•	• .	. .	- م	•	8411
	HEAT> EXCHANGER	<u>s.</u>		<u>,</u>	· 7	•	• -	• .	•	¢۴° •	•	; 	•	8-14
	AUXILIARY HEAT) 'Ing ui	,TIV	•		,	• •	• 、	• • •	7	•		• •	8-16*
	AIR HEATING CO	ILS	•	•	•	۰.	,	•	•	•	• . :		•	8-17
	HEAT PUMPS	, - , •,	3 3 • 5	• •	• .	~	``````````````````````````````````````	G.	•	· •	۰ ۱	•		8-18
`,	SOLAR ASSISTED	HEAT	PUMPS	S • .	•	•	•	•	•		•	1	•	8-20

	M	ODULE	9.:_	SOLAR	SPACE	C00I	LING	SYSTE	<u>MS</u>	•			
	"	۰.		· •		~ .	•		r.				م
INTRODUCTION	•		• •	••	•	• *	•	. , • ; •	•	• 。		.•	9-1
ÓBJECTIVET.	• •	,F.	•	•	•	• :		•	· • ',	`••	•	•	9-1

1

. 、•

5.

13,

		+
	MODULE 9 (continued)	, ,
•	CATEGORIES OF SPACE COOLING METHODS.	9-,1
	DEFINITION OF TERMS ,	9-2 ·
)	REFRIGERATION SYSTEMS	9-2
'	ABSORPTION REFRIGERATION	9–3
	HEAT PUMP	9-6
	SOLAR RANKINE-CYCLE ENGINE	9-6
	EVAPORATIVE COOLING	9-8
	EVAPORATIVE COOLING THROUGH ROCK BED	9-8
	TRIETHYLENE GLYCOL OPEN CYCLE DESICCANT SYSTEM	9–10
	RADIATIVE COOLING	9-12 .
	REFERENCES	9-15 *
	MODULE 10: SOLAR HEATING AND COOLING SYSTEMS	• •
	INTRODUCTION	10-1
8	OBJECTIVE	10-1,
	SOLAR HEATING AND ABSORPTION COOLING SYSTEM	10-1
	SYSTEM COMPONENTS	10-2
	OPERATING CHARACTERISTICS.	10-4
•	INSTALLATION CONSIDERATIONS	10-13 🧃
	SOLAR HEATING AND EVAPORATIVE COOLING SYSTEM	10-14 • ~ `
	SYSTEM COMPONENTS	10-14
	OPERATING CHARACTERISTICS.	10-16
	* INSTALLATION CONSIDERATIONS	10-18

xii

:

ERIC

- ·

MODULE 11. SOLAR SYSTEM CONTROLS

INTRODU <u>C</u> TION	_		11-1
OBJECTIVE .	•	•	11-1
CONTROL FUNCTIONS	•		11-1
A BASIC CONTROL STRATEGY	-	•	11-1
INSTALLATION OF CONTROL SYSTEM HARDWARE		•	11-7
THERMOSTAT.	•		11-8
TEMPERATURE SENSORS	•	•	11-9
CONTROL PANELS	•	•	11-12
TYPICAL CONTROL SUBSYSTEM.	و.	•	11-12
CONTROL LOGIC, AIR SYSTEM.	•	•	11-12.
CONTROL ACTUATORS	•	•	11-15
AUXILIARY HEAT CONTROL	•	•	11-16
CONTROL SYSTEM CHECK-OUT	•	•	<u>11-16</u>
REFERENCES.	•	•	11-16
		•	ſ
MODULE 12. OPERATIONS LABORATORY.			
		•	
INTRODUCTION	•	•	12-1
OBJECTIVE	•	•	12-1
INSTRUCTIONS	•	•	·1/2-1
OPERATIONS LABORATORY EVENTS		•	12-2
MODEL ASSEMBLY	•	.•	12-2
SYSTEM INSPECTIONS	•	•	12-6
YSTEM CHECK-OUTS	.•	•	12-6 [!]
EXAMPLE DATA FROM A LIQUID-HEATING SOLAR SYSTEM FOR HEATING AND COOLING A RESIDENTIAL BUILDING	•	·	12-11

15

ERIC

MODULE 12 (continued)

1

].

xiv

EVANDLE DATA FOON AN ATD REATING ON AD SYSTEM FOD REATING	
EXAMPLE DATA FROM AN AIR-HEATING SOLAB SYSTEM FOR HEATING A RESIDENTIAL BUILDING	. 12-22
BLANK CHECK LIST FORMS	12-26
MODULE 13. HEATING LOAD CALCULATIONS	
INTRODUCTION -	. 13-1 -
OBJECTIVE	. 13-1
HEAT LOAD FACTORS	. 13-1
	· 13~1
RESISTANCE TO HEAT FLOW (R) AND COEFFICIENT OF HEAT TRANSMISSION (U)	· 13-2 · `
HEAT LOSS RATE	- 13 - 2 -
CONCRETE SLABS ON GRADE	. 13-5
BASEMENTS	. 13-5
DUCT HEAT LOSS	. 13-6
INFILTRATIÓN HEAT LOSS	. 13-6
SPACE HEATING LOAD	. 13-6
DOMESTIC HOT WATER HEATING LOAD	. 13-7
EXAMPLES	
EXAMPLE 13-1	. 13-8
EXAMPLE 13-2	· . 13-8 1
PROBLEMS	. 13-14
PROBLEM 13-1	<
WORKSHEET TA-1	13-16 -
REFERENCES.	. 13-16
BLANK WORKSHEET FORMS	13-28
	-j ,
	1

16

ERIC Full face Provident Part of the

	х ^{22.}
XV ,	•
MODULE 14. SOLAR SYSTEM SIZING	
OBJECTIVE	14=1
RULES OF THUMB	14-2
FRACTION OF THE ANNUAL HEATING LOAD CARRIED BY A SOL HEATING SYSTEM	AR
EFFECT OF HEAT EXCHANGERS	14-6
• EFFECT OF COLLECTOR TILT	
- EFFECT OF ORIENTATION	
WORKSHEET TA-2	
EXAMPLE	
SOLAR SYSTEM SIZING	
WORKSHEET TA-3	
REFERENCES	
BLANK WORKSHEET FORMS	, , , , , , , , , , , , , , , , , , , ,
MODULE 15. SYSTEM ECONOMICS	
·INTRODUCTION	
OBJECTIVE	15-1
ENERGY COSTS	
INFLATION RATES.	、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、
SOLAR SYSTEM COSTS	
MORTGAGE PAYMENTS	
PROPERTY TAX, INSURANCE AND CREDIT ON INCOME TAXES	•
OPERATING COSTS	
MAINTENANCE COSTS .	
LIFE CYCLE COST ANALYSIS	
WORKSHEET LCA-1	
WORKSHEET LÇA-2	
WORKSHEET LCA-3	
ũ	
· ·	*

Full Text Provided by ERIC

R

		- 1 1
xvi /s.	•	,
MODULE 15 (continued)		• •
EXAMPLE	· `•	15-21
BLANK WORKSHEET FORMS		15-24
	•	
MODULE 16. SOLAR SYSTEM SIZING CALCULATIONS BY TRAINEES	•	•
INTRODUCTION	•	16-1
OBJECTIVE	•.	16-1
SYSTEM SIZING PROBLEM	•	16-2
WORKSHEET TA-1	-	16-4
WORKSHEET TA-2	•	16-6 :
WORKSHEET LCA-1 (Collector Area 400-ft ²).		16-7
WORKSHEET LCA-2 (Collector Area 400 ft ²).	```.	16-8
WORKSHEET LCA-1 (Collector Area 500 ft^2).		16-9
WORKSHEET LCA-2 (Collector Area 500 ft ²).		16-10 .
WORKSHEET LCA-1 (Collector Area 600 ft ²).		16-11
WORKSHEET LCA-2 (Collector Area 600-ft ²).	. ,	16-12
.WORKSHEET LCA-3, Economic Summary	•	, . 16 -1 3
WORKSHEET TA-3, Solar System Size	•	16-14
/ BLANK WORKSHEET FORMS	` •	16-15
	*	· ·
MODULE 17. COST EFFECTIVENESS OF ENERGY CONSERVATION	•	
INTRODUCTION	·.	17-1
OBJECTIVE		17-1
ENERGY CONSERVATION MEASURES		17-2
OVERALL HOUSE DESIGN	• •	17-2
WINDOWS AND DOORS	,] .	12-2
WALL CONSTRUCTION AND INSULATION	· · ·	17-8
FLOOR INSULATION	• •	17-3
	•	

MODULE 17 (continued)

xvii

⇒17-4[°]

17-4

17-4

17-9

17-9

]7-11

17-13

17-13

18-1

18-1

18-1

18**-1**

18-2

18-2

CEILING INSULATION INFILTRATION, REDUCTION EFFECTIVENESS OF ENERGY CONSERVATION MEASURES REDUCTION IN HEAT LOSS RATES ENERGY CONSERVATION COST AND SAVINGS. ENERGY CONSERVATION AND SOLAR SYSTEMS NO REDUCTION IN COLLECTOR AREA

MODULE 18. RETROFIT CONSIDERATIONS INTRODUCTION OBJECTIVE GENERAL CONSIDERATIONS INSULATING EXISTING BUILDINGS TREES AND LANDSCAPE DOMESTIC HOT WATER SYSTEM

SPACE HEATING COLLECTOR LOCATION ADAPTATION TO EXISTING HEATING EQUIPMENT

MODULE 19. SCHEDULING OF SOLAR INSTALLATIONS INTRODUCTION OBJECTIVE CONSTRUCTION SCHEDULE FOR A TYPICAL HOME WITH AN AIR-HEATING SOLAR SYSTEM PART 1, ROCK-BED STORAGE PART 2, COLLECTOR SUPPORTS PART 3, INSTALLATION OF COLLECTORS, PIPING, AND CONTROL PANEL 19-1 19-1 19-1 19-1 19-1 19-1 19-3

	xv;†pi	
•	MODULE 19.(continued) PART 4, INSULATION	19-5
••••••	PART 5, PREHEAT TANK INSTALLATION	
	PART. 6, FINISH THE HEATING SYSTEM AND FINAL INSPECTION STRUCTION SCHEDULE FOR A TYPICAL HOME WITH A CAL LIQUID-HEATING SOLAR SYSTEM	
	PART 1, WATER STORAGE TANK	
- 	PART 2, COLLECTOR SUPPORTS PART 3, COLLECTOR INSTALLATION AND PIPING	
•	PART 4, INSULATION AND AUXILIARY BOILER . PART 5, PREHEAT TANK AND CONTROL WIRING .	. 19-10
•	-	

, ,	MODULE .20.	<u>CONSTRAINT</u>	S AND INCENTIV	/ <u>ES</u> '5.	-
INTRODUCTION .		•••	•	•••••••	· · 20-1
OBJECTIVE	• •	· · · · · · ·	•	· · · · · · ·	20-1
LACK OF UNDERSTA	NDING .	• •	• • •	••••	. 20-1
INSTITUTIONAL CO	NSTRAINTS	• ••.	•	· · · ·	20-2
LEGAL .	` • > •	• • •	•	· · · · · · ·	20-2
FINANCIAL .	• •	*••••	•	· • • • • • • • • • •	. 20-5
INSURANCE .	• • •	, • • •	• • • •	• • • •	. 20-5 ·
INCENTIVES .	••••••	· · · · ·	• • •	• • • • •	20-5
REFERENCES	• • • • • • • • • • • • • • • • • • •	• • •	· · · ·	••••	20-6

Э,

	· .		,				-						· ·
•	•	· •	MOE	<u>)ULE 21</u>	, BUY	ER'S (GUIDE	-	, · ·,				
IN	TRODUCTION	• • •	`. • • • •	•	. •	•	•	.,•	•	•	, •1	•	21-1
OB	JECTIVE .	• •	•	• •	•	•	• ^	•	. 1 7	•	•	٥ •	21-2
AV	AILABILITY O	F SYST	ems an	ID COMP	ONENTS	•	, · · ·	•	•	•	•	•	21-2
	COLLECTOR	S	. 17	•	•••	. •	· •	•	•	• ,	•	•	21-2
	CONTROL	•	•••••	•	. •	20	•		•	•	•. •.	•	21-3
	,	, <u>,</u> t	•	•	• '			/	•		•		•

MODULE 21 (continued)	. (*	· ·
HEAT STORAGE	4		. 21-4
COMPLETE SYSTEMS	•	• •	. 21-5,
EQUIPMENT PERFORMANCE DATA		•	. 21-6
SELECTION OF COMPONENTS AND SYSTEMS		., .	. 21-7
SELECTION OF SYSTEMS	•	• , •	21-8
QUALITY OF MATERIALS AND WORKMANSHIP		,	. 21-8
SELECTION OF COLLECTOR	•		21-9
COMPARISON OF SYSTEM TYPES	•,	· · · .	. 21-11
ADVANTAGES OF LIQUID SYSTEMS	シ.	• •	21-11
DISADVANTAGES OF LIQUID SYSTEMS		• •	21-12
ADVANTAGES OF AIR SYSTEMS	<u>ن</u> ا	*	. 21-]4
DISADVANTAGES OF AIR SYSTEMS		·	. 21-14
SYSTEM PERFORMANCE .	• •	3	. 21-15
COST OF HEAT DELIVERED	·•	• • •	. @ 21-16
CRITERIA AND STANDARDS	•	• •	. 21-18
WARRANTIES	<i>_</i> .	· · · ·	21-20
			, ,
	٠	•	4
MODULE 22. FUTURE PROSPECTS FOR SOLAR HEATING AN	D COOL	ING SYSTEMS	,
INTRODUCTION	y , •	· · ·	. 22-1
OBJECTIVE	. •	• • • •	. 22-1
SOLAR COLLECTORS	· ·	• •	. `22-2
SELECTIVE SURFACES	•	• ` .`	. 22-2
EVACUATED TUBE COLLECTORS.			. 22-3
CONCENTRATING COLLECTORS	`•	`••••	. 22-5
THERMAL STORAGE	÷	, 	. 22-7 .
HEAT EXCHANGER	•	• • •	22-9
SYSTEMS	٠	3	. 22-10
	•	- • •	. 22-10

xix

TRAINING COURSE IN THE PRACTICAL ASPECTS OF SIZING, INSTALLATION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS

RESIDENTIAL BUILDINGS

MODULE

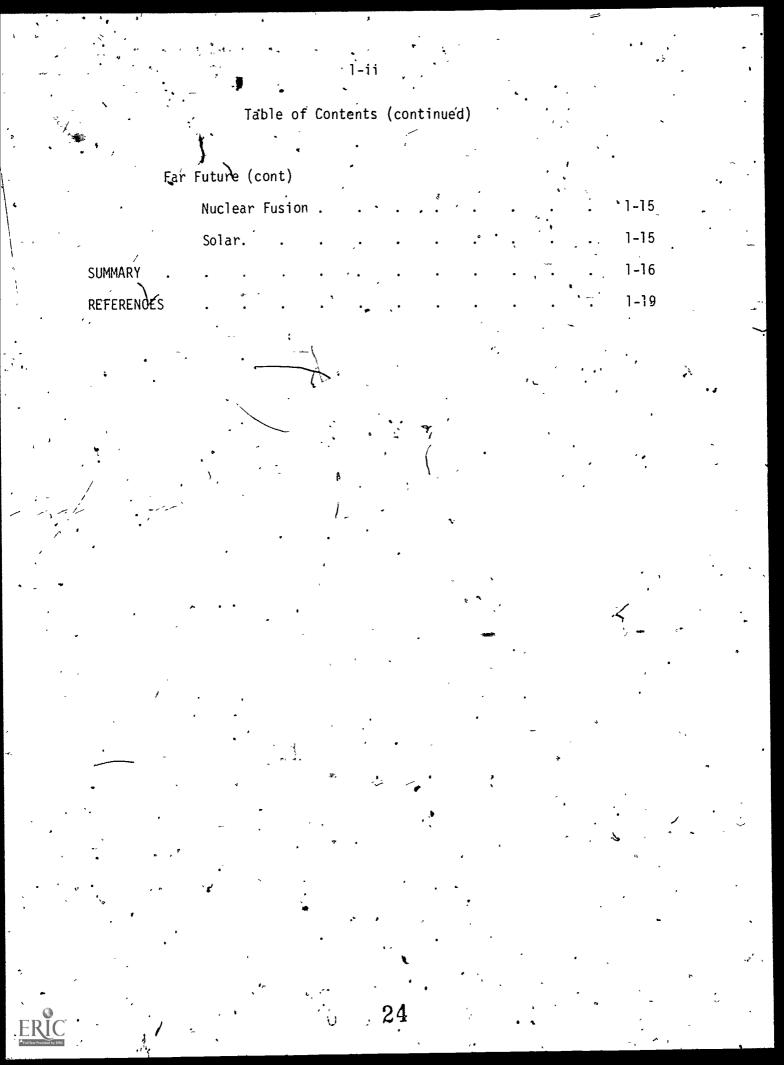
ENERGY PROBLEM

1

FOR

SOLAR ENERGY APPLICATIONS LABORATORY COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

. 22_{."}


TABLE OF CONTENTS

1-i

1							•
LIST. OF FIGURES	•	•	•	• •	• •	•	l-iii
LIST OF TABLES	•	•	•	•	• ,	•	l-iii
GLOSSARY OF TERMS	•	* •	•		•	•	l-iv
· · · · · · · · · · · · · · · · · · ·		ʻ •	•				
INTRODUCTION.	. •	•	•	•	•	•	1-1
OBJECTIVE	•	، •	•	•	• •	•	1-1 <u>.</u>
THE ENERGY PROBLEM	•	•	•	•	•	•	1-2
GROWTH OF DEMAND	•	•	• .	•	•	•	1-2
UNITED STATES ENERGY PROBLEM	•	•	•	• •	•	•	1-5
THE ENERGY FUTURE	•	•	. 4	•	•	•	, 1-6
The Near Future		•	•	•	•	•	1-6
. Demand Decrease	•	÷	•	-	•	•	1-6
. Supply Increases .	•	•	•	•	•	•	1-8
- Fossil Fuels	• •	•	. *	•	•	•	1-8
~ Coal	•	, •	•	•	•	•	1-8
, Petroleum	う.	•	•	•	•	•	1-9
Natural Gàs	•	••	•	•	•	•	1-9
Nuclear Fission.	•	•	•	•	•	•	1-11
Fuel Supply .	•	•,	•		•.		1-11
Safety .	-		•	•			1-12 -
. Waste Disposal .	· •	•					1-12
Hydroelectric .	•			5 12		• •	1–13
Summary, Near Future.			•	÷.	· 		1-13 '
Far Future.					• ,	• */*	1-13
Wind .		•	•	•	•	•	.]-14
Geothermal.	•	•	·•	•••	•	•, *	
	•	•	• •	•	• • •	•	1–14

۲;

ERIC

		•
LIST	0F	FIGURES

]-iii⊧

Figure	Page
1-1	Growth Modes - Linear and Exponential 1-3
1-2 ,	Growth of World Population
1-3	Exponential Processes Related to Energy
1-4	Cycle of World Coal Production
1 -5	Cycle of World Oil Production
1-6	U.S. Natural Gas Reserves.

LIST OF TABLES

lable	, · · ·	••	,		<u>Page</u>	
] _] .	Energy Efficiency of Transportation	•		•	1-7	
1-2	Present and # uture Energy Sources .	•	• •	•	1-17 [′]	•*•
1-3	Energy Saving Suggestions (Elementary	Schoo1	Children)	•	1-18	

۰,

25

¥

GLOSSARY OF TERMS, A nuclear fission reactor which converts the breeder' reactor 99'3 per cent of natural uranium that can't be used for reactor fuel-into plutonium, which can be used for reactor fuel. A form of hydrogen in which each atom is twice deuterium as héavy as a normal hydrogen atom. The time required for the size of a quantity doubling time to double under exponential growth: Give by the equation: Double time = 70, years/% growth. An increasing growth - the type of growth that exponential growth occurs when the size of the growth depends on the size of the quantity growing. The period from the year 2000 on. farsterm future fossil fuels Coal, petroleum, natural gas. Literally "Earth heat". geothermal The use of the energy of falling water to spin hydroelectric a turbine to produce electricity. Straight line growth - the type of growth that linear growth occurs when the growth is by a constant amount each year. The next 10.- 30 years, through the year 2000. near-term future The splitting of an atom of uranium or nuclear fission plutonium to form two lighter atoms and release a large amount of energy in the form of heat. The reaction that occurs in the sun. Two atoms nuclear fusion of deuterium are joined together to form a single atom of helium. A large amount of energy is released in the form of heat. Moving one passenger one mile. passenger mile . The operation of one reactor for one year. reactor-year Referring to the sun. solar Moving one ton one mile. ton mile The movement of air over the surface of the wind earth. Caused by heating of the surface by the sun.

INTRODUCTION

There are many people today who realize that there is a serious energy problem in the United States. Much has been written and said about the energy situation, but it is still difficult to understand why, after years of plentiful and cheap energy, there should suddenly seem to be a smaller amount of energy available, and only at higher prices. The issue is confused by various puthorities and organizations issuing contradictory reports as to the magnitude of the problem. In this module the current energy situation is examined from a historical view point and with a look into the future.

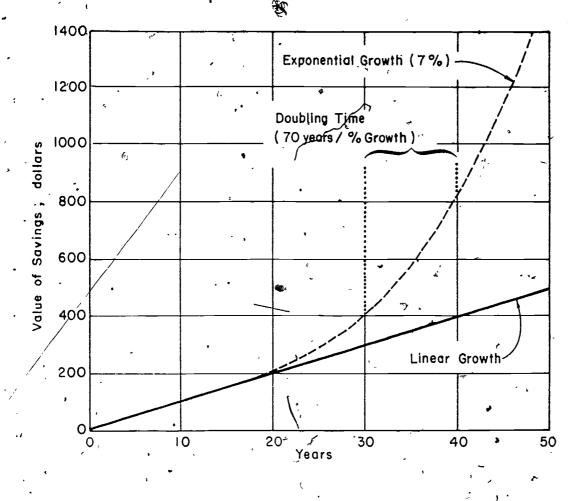
OBJECTIVE

The objective of the trainee is to understand the energy problem so that utilization of solar energy on a national scale can be kept in proper perspective. At the end of this module the trainee should be able to:

- Identify the concept of exponential, growth,
 Recognize the problems associated with trying to
 - meet increasing demands with limited resources,
 - Realize the part that conservation can play in meeting future energy needs,
 - 4. Describe the potential and limitations of:
 - a. 🏷 🕈 ossil fuels 🕯
 - Geothermal Anergy

. Hydroelectric energy

. Solar energy


THE ENERGY PROBLEM

Energy, like commodities, is expected to follow the laws of supply and demand. If demand exceeds supply there will be a shortage. In most situations a shortage will result in a price increase; the prospects of higher profits will prompt more production; the supply will increase to meet the demand. The energy situation, however, differs from the normal situation in several ways. Regulations on the price of energy often require that it be sold at a cost below the real market value. Rather than encouraging increased supplies, such price regulations tend to reduce the interest of producers to increase the supply. And even when a supply increase is desirable, there are natural and unnatural limit beyond which the supply cannot be increased, no matter what the price. Finally, the demand for energy seems to be increasing rapidly and without limit. The combination of these factors, operating outside the laws of supply and demand, is what makes the energy problem so serious.

GROWTH-OF DEMAND

There are two basic ways in which a quantity can grow; linearly or exponentially. These growth modes are illustrated in Figure-1-1 using as an example two misers who are saving money.

The solid line represents a miser who saved ten dollars a year by stuffing it under the mattress of his bed. Every ten years he stashes away \$100, so that when twenty years have passed, he has \$200; thirty years, \$300; etc. The money stashed away is an example of "linear growth",

1-3

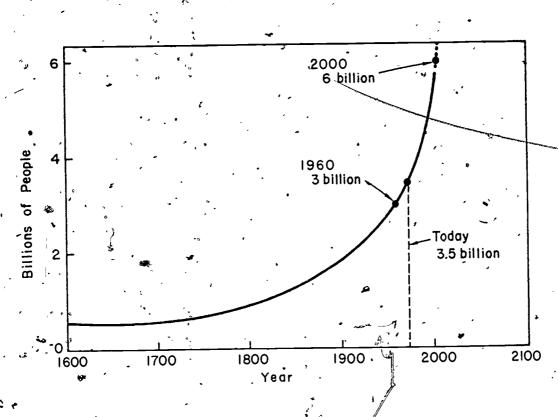
Figure 1-1. Growth Modes - Linear and Exponential

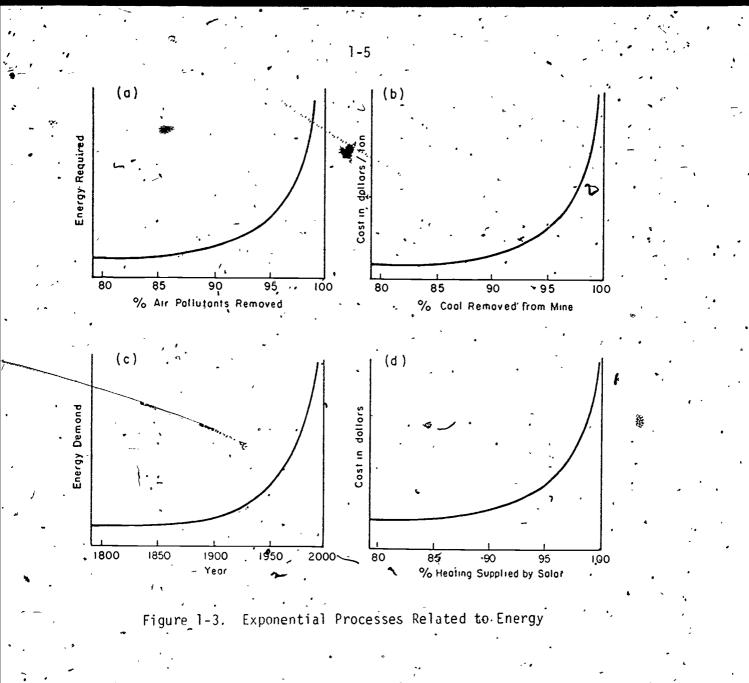
in which the growth is by a constant amount each year. The dashed line represents a miser who decides after ten years to take his \$100 out of the bed and to invest it in a savings account at seven per cent interest. At the end of twenty years the account is worth \$200; in thirty years, \$400; in forty years; \$800; without any deposit beyond the original \$100. Money invested at interest is an example of "exponential growth" in which the size of the growth depends on the size of the quantity that is growing. Shown in the figure is the "doubling time", the time required for the size of the growth rate:

29

FRĬC

Many natural processes exhibit exponential growth. The energy situation is directly influenced by the world population, which is growing exponentially as shown in Figure 1-2.




Figure 1-2. Growth of World Population

According to current trends, the population of the world will reach six billion by the year 2000 - almost twice the current population. (At the present growth rate of two and one-half per cent, the doubling time for population is 28 years.) If energy demand increased along with population, twice as much energy would be needed by 2000. In fact, energy demand is growing faster than population and the need to triple the world energy supply is anticipated.

Figure 1-3 (a through d) illustrates some other exponential processes that affect the energy situation.

 $\mathbf{30}$

1-4

UNITED STATES ENERGY PROBLEM

The worldwide energy situation has particular impact on the United States, since we have always been large users of energy. (Our high standard of living can be linked directly to high energy use.) The economic boom of the 1960's resulted in a high level of surplus income, most of which was spent on energy -consuming luxuries. Second cars, motor homes, snowmobiles, speedboats - all became a way of life for United States citizens. All used large amounts of energy, both in the manufacturing

process and for operation. The demand for leisure time resulted in major changes in industry and agriculture with a decrease in tedious labor at the expense of increase in the use of energy.

1-6

The advent of the "environmental movement", also in the 1960's, had a very significant effect on the energy situation. The actual implementation of pollution controls on industry required the expenditure of large amounts of energy (Figure 1-3-a). At the same time that energy demands were increasing, restrictions were placed on the supply of energy. Nuclear power plants were delayed; coal power plants were restricted; off-shore drilling for oil was halted; the Alaskan pipeline was delayed; and supply started to fall short of demand. The oil embargo widened the gap between supply and demand and since that time we have become increasingly aware of the fact that not only is energy going to become more scarce, it is going to cost more - probably a good deal more.

THE ENERGY FUTURE

Two periods can be identified in the future. The first is the "near future", a period of twenty to thirty years up to the year 2000. The second is the "far future", starting at 2000 and continuing on for an undetermined time. The solutions to the energy problem are different for these two periods and each period must be examined separately.

The Near Future

The near future must be characterized both by an increase in energy the supply and a decrease in demand.

<u>Demand Decrease</u> - Since the largest factor causing increased demand is the growing population, a world-wide plan for population control will be required. Unless the exponential growth of population can be halted,

energy supply will continue to lag behind demand. Demand, can also be decreased by conservation measures. Recycling has the potential to save, renergy as does the redesign of consumer goods to emphasize long life and repairability, Appliances and automobiles can be designed to use energy more efficiently. (The conservation of energy in homebuilding is discussed in Module 17). Some alterations of life style can produce energy savings. As an example, a shift in federal policy from building airports to support of railroads would result in a large increase in the efficiency of freight transportation (Table 1-1). There is, however, a limit to the amount of energy that_can, be saved by conservation measures without major changes in life style that may not be acceptable, and conservation alone cannot eliminate the gap between energy supply and demand. Conservation can extend the period before the energy situation becomes critical, thus providing more time for the development of new technology.

ENERGY EFFICIENCY	FOR PASSENGER TRANSPORT BTU PER PASSENGER MILE	ENERGY EFFICIENCY FOR FREIGHT TRANSPORT
ITEM	URBAN INTERCITY	ITEM BTU PER TON MILE
BTCYCLE WALKING BUSES RAILROADS AUTOMOBILES AIRPLANES	200 300 3700 . 1600 2900 8100 . 3400 8400	PIPELINE450RAILROAD670WATERWAY680TRUCK:3,800AIRPLANE42,000

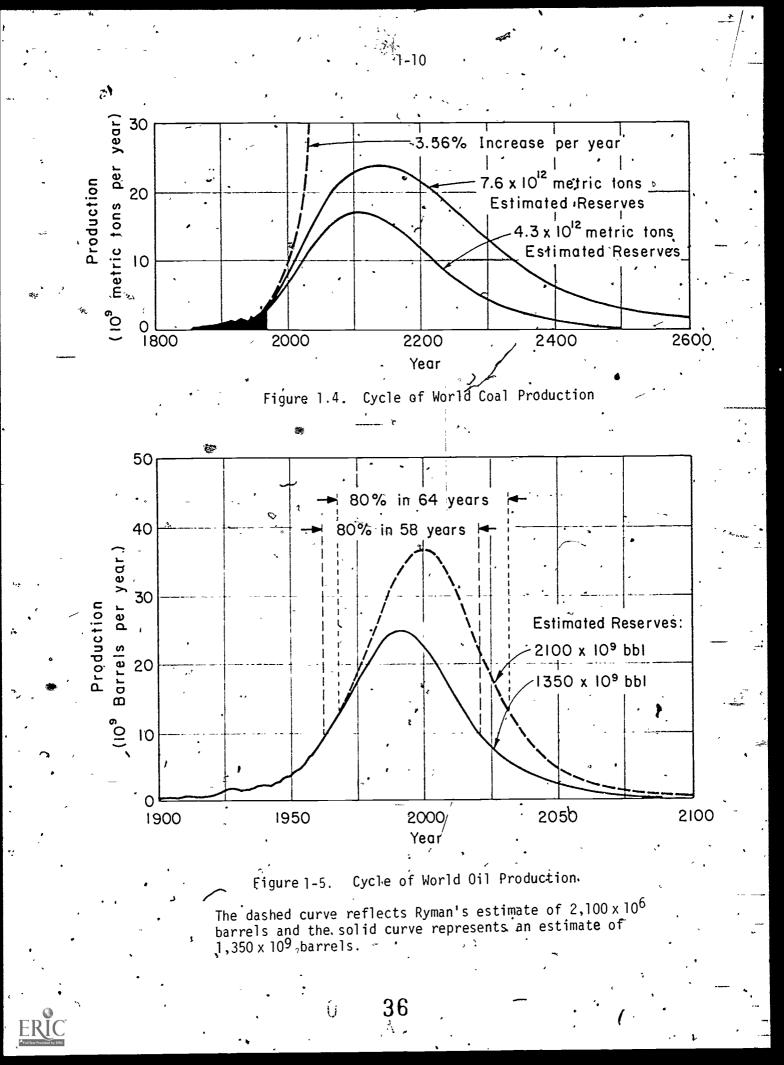
Table 1-1. Energy Efficiency of Transportation

33

• <u>Supply Increases</u> - In the near future the major portion of our energy supply must come from known and developed technologies. It has traditionally taken twenty to thirty years from the development of a new technology to its commercial application and there is no evidence that this time period can be significantly shortened. For the next twenty-five years the energy supply must come from fossil fuels, hydroelectric dams, and nuclear reactors. It is useful to examine the potentials of each of these energy supplies.

<u>Fossil Fuels</u> - The fossil fuels consist of coal, oil, and natural gas. These are found in the earth at depths ranging from less than a hundred feet to several miles. Fossil fuels have been formed from animal and vegetable matter deposited between ten and a hundred million years ago. While the processes that formed these fuels are still going on today, as far as mankind is concerned, once the present supplies are used up, there will be no more fossil fuels. In addition to the problem of limited supply, the use of fossil fuels is complicated by environmental problems, both in the extraction and burning of the fuel.

<u>Coal</u> - Large, low sulfur coal fields in the United States are found in the Western states - Wyoming, Montana, and Colorado. Many of these fields are found near the surface and are suitable for strip mining. The strip mining of these coal deposits is meeting opposition from many citizens of the states involved. The primary concern of the citizens is the environmental impact of strip mining. There has been some success in . Eastern states with the restoration of stripped land to beneficial use. However, in the water-short West, restoration is still in the experimental stage. Until this matter is resolved, resistance to strip mining will continue.


For deep mining to provide large amounts of coal in the future, new methods of mining must be developed that are not dependent on a large labor force. (There seem to be few people who are willing to become coal miners.) A large increase in the number of mining engineers will be required. There is also the problem of coal supply. While the United States has large amounts of coal, the supply is not infinite (Figure 1-4), and the cost of extracting coal goes up rapidly as the supply is exhausted (Figure 1-3-b). When all the facts are considered, the production of large amounts of coal is not a simple task.

1-9

Petroleum - Any consideration of oil as an energy source raises the question of the impact on the economy of large payments for foreign oil and the environmental dangers posed by large scale offshore drilling. There is also a great deal of controversy over the amount of oil that is available on earth. While the major oil companies claim that supplies are dwindling, others say that the lack of reserves has come about because the oil companies are not looking very hard for oil. However, whether oil will run out in fifty or two hundred years, there is no question that oil cannot be regarded as a long-term future energy supply (Figure 1-5).

<u>Natural Gas</u> - While there is also controversy over the available amount of natural gas, there is general agreement that it is the most limited of the fossil fuels. United States reserves have been decreasing steadily for the last ten years and natural gas shortages have already been experienced in some areas of the country. The more optimistic estimates suggest that natural gas will be essentially gone within thirty years; pessimists say ten years. Natural gas is certainly not a long-term future energy source (Figure 1-6).

ンゴン

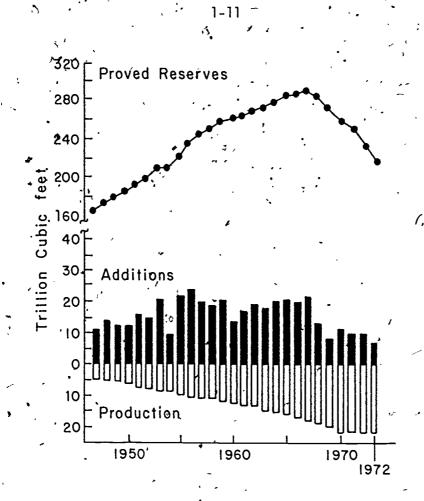


Figure 1-6. U.S. Natural Gas Reserves (Excluding Alaska)

<u>Nuclear Fission</u> - The potential for the supply of electrical energy from nuclear fission has already been well demonstrated. At present about nine percent of our national electrical energy demands is satisfied by nuclear energy. It is anticipated that, by 1985, nuclear reactors will be producing almost twenty percent of our electrical energy and, by 2000; fifty percent. This anticipated growth of nuclear generation raises some serious woulds and fears in the minds of the public which must be answered if the industry is indeed to grow as expected.

<u>Fuel Supply</u> - Present reactors can use only about 0.7 percent of natural uranium as fuel. Current uranium reserves can be expected to supply present and future reactors past the year 2000. By the time these reserves are depleted, the breeder reactor, which converts the remaining

FRIC

37

99.3 percent of the unusable uranium into a useful fuel, plutonium, should be on line. The breeder reactor promises a nuclear fuel far into the future, perhaps as much as a thousand years.

Safety - The nuclear power industry has a remarkable safety record. To date there has not been a single injury or death attributable to radiation in a commercial power plant. The industry has accumulated 175 reactor-years of operation and the U.S. Navy has 1300 reactor-years of operation, all without a single accident.

Despite this impressive safety record, there is a segment of the public that is demanding a halt in the construction of new reactors and a shutdown of those already operating because they are "unsafe" A horrible scenario 'is envisioned by the critics of nuclear power in which a reactor explodes, nuclear material is scattered through the air, and millions die. In fact, there have been some serious accidents at nuclear power plants and in every case the multiple-redundant safety systems shut down the reactor with no human injury and no leakage of radioactive materials. An exhaustive study of nuclear technology was completed in 1975, known as the "Rasmussen Report" after the scientist in charge of the study. The conclusion of the study is that the probability of being killed by a nuclear reactor accident is lower than the probability of being struck by a meteorite -- about one chance th In contrast, the probability of being killed in an auto-300,000,000. mobile accident is about one chance in 4,000.

<u>Waste Disposal</u> - Nuclear power plants produce small quantities of highly radioactive waste that will require long-term storage. A technique has been developed to convert this waste into a solid lass-like material that can be easily stored. At present, the site for long-term • storage has not been selected, but by the time appreciable amounts of

38.

RIC

wastes accumulate, twelve to fifteen years from now, it is expected that a satisfactory storage site will be available.

<u>Hydroelectric</u> - Hydroelectric power has traditionally been thought of as a "clean" form of energy in that it causes no emissions. However, it is not without environmental effect. The creation of a large lake out of what was previously a free-flowing river causes environmental changes resulting in the death of some species and the growth of others. There is also evidence that the creation of large lakes can cause climatic variations over wide areas. The "wild rivers" legislation has been passed to protect some rivers and the public is increasingly opposed to large hydroelectric projects. Even if we ignore these considerations, the potential contribution of hydroelectric power in the United States is small. If every possible river were dammed, less than four percent of our estimated electrical needs in the year 2000 would be met.

<u>Summary, Near Future</u> - In the next ten to thirty years our energy will have to come from known technology. The fossil fuels (primarily coal), nuclear, and hydroelectric are currently available. All of these technologies are in use today and are safe and reliable. We cannot afford to ignore or prohibit any one of the three without serious consequence to production of goods and services. Conservation of energy will serve to reduce the anticipated shortages of energy and provide a little more time for the development of long-term energy technology.

Far Future

Energy for long-term use will come from technologies which are now being developed or perfected. The breeder reactor has been previously mentioned as a means of extending nuclear fission into the future. Several other technologies will now be mentioned. While this list is not all-inclusive, it illustrates the kinds of energy sources that are being considered.

<u>Wind</u> - Wind energy is one of the oldest forms of energy used by man, having been used since biblical times for moving ships and since the fifteenth century for powering machinery. For certain isolated locations, where conventional electrical energy is unavailable, wind power is already being used. However, the feasibility of generating significant amounts of energy for national needs has not been demonstrated. To generate one megawatt requires a windmill about 180 feet in diameter on a 200 foot tower, with an average wind velocity of 30 miles per hour. Thousands of towers would be needed to replace one coal generating plant. Recently a large-scale demonstration wind generator has been built but the technology is still several years from being perfected. While wind may be utilized in some portions of the country, it is unlikely to be significant in meeting our needs in the near future.

Geothermal - Geothermal power generation utilizes the heat of the earth to produce steam to run turbines. Theoretically, the extent of geothermal energy is unlimited. However, practically, there are limitations to its use. Geothermal steam produces several environmental effects. If dry steam is obtained, a rare occurrence, problems come from noxious. gasses that are found with the steam. Hot geothermal water is extremely salty, containing.as much as twenty percent dissolved salts (ocean water contains about three and one-half percent). The disposal of this water is a problem, since it is much too salty to be dumped into streams. The water can be reinjected into the earth where cool, but this requires using some of the energy that was generated. In some areas pumping out large quantities of water has caused the land to sink. Finally, useful geothermal energy is found only in a few locations. The geysers steam field near San Francisco, California is the only large developed geothermal site in the United States. It's capacity of 400 megawatts is less than ten

percent of the area's energy needs. Because of the many problems encountered geothermal energy must still be classified as in the "development" stage. <u>Nuclear Fusion</u> - Nuclear fusion is the reaction that occurs in the sun and involves the joining of two atoms of heavy hydrogen (deuterium) to form an atom of helium. When this occurs, at a temperature of over ten million degrees, a large amount of energy is released. The problem is controlling and containing this reaction to make it occur slowly enough so that useful energy in be obtained. To date, efforts to carry out a controlled nuclear fusion reaction in the laboratory have been unsuccessful. The problems are significant and it is possible that nuclear fusion may never be successfully utilized. If experiments do succeed (some are predicting success within ten years), the generation of useful energy will still be many years in the future.

<u>Solar</u> - Solar energy represents a potentially large energy source. One-half of one percent of the land area in the United States receives enough radiation to supply all the energy we need in the year 2000. Technically it is possible to utilize solar energy to generate electricity, heat homes, and produce steam. The major problem is that solar energy is diffuse and is received on the earth's surface at low intensity. A 100 megawate solar thermal power plant requires over a million square feet (23 acres) of collectors. The technological design of such a power plant is now being investigated and the next few years should result in determination of the feasibility of large-scale solar electricity generation.

-Organized efforts on the use of solar energy for home heating have been going on since the 1940's. However, it is only recently, with the sudden increases in the cost of fossil fuels, that large scale efforts have been made toward developing this technology. In some areas where fuel costs are high, solar heating can compete successfully today. As fug prices rise and the fechnomogy improves, solar heating will play an increasingly larger part in meeting future energy needs.

A reasonable goal by the year 2000 is for one-third of new construction and one-third of old construction to be fitted with solar heating systems. One must be cautiously optimistic about solar heating since, if this goal is met, the energy supplied by solar heating would be only about ... five percent of the national energy used.

SUMMARY -

Table 1-2 is a summary of some future energy choices and their likely impact. It must be observed that our choice seems not to be "which resource should be developed"; but rather now can we develop <u>all</u> our resources and encourage conservation to avoid serious energy shortages? Table 1-3 contains energy saving suggestions by elementary school children. If each of us exerts a maximum effort, we may be able to come up with suggestions at least as good as these.

Table 1-2 Present and Future Energy Sources

1-17

Energy Source	Development Status and Prospects for Future Use
FOSSIL FUELS Petroleum	Now widely used. Supplies limited - possibly exhausted in 30 - 40 years
Natural gas	Now widely used. Supplies limited - possibly exhausted in 10 - 20 years
Coal	Now widely used. Some difficulty in extracting - possibly exhausted in 300 - 500 years
HYDROELĖCTRIC	Now in use. Number of sites for future develop- ment is limited
SOLAR	Now in limited use. Needs further technological development. Practicality somewhat dependent on geography, weather patterns, etc.
NUCLEAR	
Conventional fission reactors	Now in limited use. Low-cost fuel supply possibly exhausted in 30-40 years. Waste disposal problems
Fast breeder reactors	Now in late stages of development. Greatly extends potential fuel supply of fission reactors. Wasté disposal problems
Fusion reactors	Feasibility still to be proven. Fuel supply
GEOTHERMAL	Now in very limited use. Number of suitable sites for future development is limited
WIND .	Now in very limited use. Needs further teannological development. Number of suitable sites for future development is limited
2	

4-3

- ERIC

Table 1-3

Energy Saving Suggestions (Elementary School Children)

1. Find out if oil has another name besides petroleum and look for it under that name Lower people's body temperature to 68°F 2. Dip everything that's made in stuff that glows in the dark 3. Make it a rule that there has to be at least two people in every big bed that uses an electric blanket 4. Put more hot sauce in the food 5. 6`•` Don't have so many days of school ì. Don't stay in more than one room at a time

REFERENCES

1-19

"Scientific American", September, 1971. Entire issue on energy. "Science", April, 1974. Entire issue on energy. "Popular Science", Various issues for the last three years.

ERIC

COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

46

ERIC

SOLAR ENERGY APPLICATIONS LABORATORY .

. COURSE ORIENTATION

MODULE 2

SIZING, INSTALLATION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS.

FOR

RESIDENTIAL BUILDINGS

TRAINING COURSE IN

THE PRACTICAL ASPECTS OF

	TABLE OF CONTENTS	, , [,]
LIST OF FIGURES		. 2-ii
· · ·	1	•
INTRODUCTION .	• • • • • • • • • •	. 2-1
PURPOSE .	• • • • • • • • • • •	. 2-] .
SCOPE	· · · · · · · · · · · · · · · · · · ·	. 2-1
ORGANIZATION OF	THIS COURSE	. 2-2
SYNOPSIS OF COUR	RSE CONTENT	, 2-4
TOUR OF SOL	LAR HOUSE	. 2-4
MODULE 1.	ENERGY PROBLEM	2-5
MODULE 2.	COURSE ORIENTATION	. 2-5
MODULE 3.	INTRODUCTION TO SOLAR HEATING AND COOLING SYSTEMS .	· 2-6 · ·
MODULE 4	SOLAR RADIATION	. 2-7
MODULE 5.	FLUID HEATING SOLAR COLLECTORS	. 2-7
MODULE 6.	THERMAL STORAGE SUBSYSTEMS	. 2-8
MODULE 7.	SERVICE HOT WATER SYSTEMS	. 2-9-
MODULE 8.	SOLAR HEATING SYSTEMS	. 2-9
MODULE 9.	SOLAR SPACE COOLING SYSTEMS	·. 2-10
MODULE 10.	SOLAR HEATING AND COOLING SYSTEMS	. 2-10
. MODULE~11.	SOLAR SYSTEM CONTROLS	. 2-11
MODULE 12.	OPERATIONS LABORATORY	2-11
MODULE 13.	HEATING LOAD CALCULATIONS	., 2-12
MODULE 14.	SOLAR SYSTEM SIZING	. 2-12
MODULE 15.	SYSTEM EÇONOMICS	. 2-13
MODULE 16.	SOLAR SYSTEM SIZING CALCULATIONS BY TRAINEES	. 2-13
MODULE 17.	COST EFFECTIVENESS OF ENERGY CONSERVATION .	. 2-13
MODULE 18.	RETROFIT CONSIDERATIONS	. 2-14
MODULE 19.	SCHEDULING OF SOLAR INSTALLATIONS	2-14

5

2-i .

47

ERIC AFull Taxt Provided by ERIC

2-ii Table of Contents (continued) 2-14 MODULE 204 CONSTRAINTS AND INCENTIVES MODULE 21. BUYER'S GUIDE.) 2-15 MODULE 22. FUTURE PROSPECTS FOR SOLAR HEATING AND COOLING SYSTEMS . 2-15 ñ LIST OF FIGURES Page Figure 2-1 Course Schedule 2 - 348

INTRODUCTION

2 - 1

The Solar Energy Application's Laboratory at Colorado State University in cooperation with the NAHB Research Foundation, Inc., of Rockville, Maryland, has developed two practical training courses for the design, installation and operation of solar systems to heat and cool residential buildings. One course is entitled DESIGN OF SYSTEMS and the second course is SIZING, INSTALLATION, AND OPERATION OF SYSTEMS. (

Over a period of one week, each course provides 44 hours of instruction, including directed periods for computational practice, inspection of working systems, and "hands-on" experience with models. The courses provide the trainees with practical methods for designing solar systems and important principles which will lead to successful installation and long-term operation of solar energy systems.

PURPOSE

The purpose of this module is to explain the objectives and outline the events for the week-long course for Sizing, Installation, and Operation of Systems. The sequence of topics and the chronology of events are discussed, as well as administrative matters pertaining to the conduct of the course.

SCOPE

This course on Sizing, Installation and Operation of solar systems concerns only residential solar systems. Primary emphasis is placed on heating systems because those solar systems are economical in many regions of the country. Solar cooling systems are not extensively discussed, as they are not as yet economically viable although they are technically feasible. Integrated solar heating and cooling systems are included in this manual as they are practical in areas where solar heating systems can be justified and the cooling components are added to the solar heating system.

The systems discussed in this manual are strictly for residential applications, although the basic principles apply to any solar heating and cooling system. When solar systems are designed for office, commercial or industrial buildings, the users are advised that there may be constraints and other considerations that may necessitate changes in system design characteristics and installation procedures from those discussed in this manual.

ORGANIZATION OF THIS COURSE

The course organization, as shown in Figure 2-1, is arranged in a progressive manner. The trainees will first be introduced to various solar heating and cooling systems, via tours of houses equipped with operational systems, and then a general discussion of the types of currently practical solar systems is planned. Basic characteristics of solar radiation are subsequently explained to establish a working basis for the determination of available solar energy which can be utilized by a solar system. The various components of solar heating and cooling systems and solar water heating systems are then described, followed by methods of integration primarily into new buildings, although the same methods apply to existing buildings.

50

Γ	SUNDAY	HONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
ŗ	· · ·	MODULE 2 (45 min) Course Orientation	OPEN DISCUSSION (30 min)	OPEN DISCUSSION (60 min)	OPEN DISCUSSION (30 min)	OPEN DISCUSSION (30 min)
		MODULE 3 (75 min) Introduction to Solar H&C Systems	MODULE 6 (90 min) Thermal Storage Subsystems	MODULE 10 (60 min) Solar Heating and Cooling Systems	MODULE 13 (90 min) Heating Load Calcula- tions	MODULE 17 (90 min) Cost Effectiveness (Energy Conservation
ŗ		COFFEE (30 min)	COFFEE (30 min)	COFFEE (30 min)	COFFEE (30 min)	COFFEE (30 min)
		MODULE 4 (90 min) Solar Radiation	MODULE 7 (90 min) Service Hot Water Systems	MODULE 11 (45 min) Control Subsystems	MODULE 14 (60 min) Solar System Sizing	MODULE 18 (45 min) Retrofit Considera- tions
	ı.	· · ·	، ۲۰	MODULE 12 (45 min) Operations Laboratory	MODULE 15 (30 min) System Economics	HODULE 19 (45 min) Scheduling of Solar Installations
₀॑		·LUNCH (60 min)	LUNCH (60 min)	LUNCH (60 min) '	LUNCH (60 min)	LUNCH (60 min)
٥		MODULE 4 cont (60 min) Solar Radiation	MODULE 8 (120 min) Solar Heating Systems	MODULE 12.cont (240 min) Operations Laboratory	MODULE 15 cont (30 min) System Economics	MODULE 20 (60 min) Constraints and Incentives
0	REGISTRATION Solar House Tours	MODULE 5 (60 min) Fluid-Heating Solar Collectors	•		MODULE 16 (90 min) ⁻ Solar System Sizing Calculations	MODULE 21 (60 min) Buyer's Guide
οÌ		COFFEE (30 min)	COFFEE (30 min)		COFFEE (30 min)	COFFEE (30 min)
-	-	MODULE 5 cont (90 min) Fluid-Heating Solar Collectors	MODULE 8 cont (30 min) Solar Heating Systems		MODULE 16 cont (90 min) Solar System Sizing Calculations	Final Discussion and Critique (90 m
	,		HODULE 9-(60 min) Solar Space Cooling Systems -	° • •	<u> </u>	
ю		ADJOURN	ADJOURN	ADJOURN _	ADJOURN -	ADJOURN
30	RECEPTION AND DINNER			,		AWARDS DINNER
	MODULE 1 (30 min) Energy Problem	-	*			HODULE 22 Future Prospects f Solar H&C Systems

Figure 2-1. Course Schedule

. Opportunity to review the instructional sessions is provided each morning, during which time the participants are encouraged to ask questions to clarify problem areas. Wednesday afternoon is a laboratory period to allow trainees to gain some experience with operating systems and to assemble air and liquid heating model solar systems. General check lists are provided to enable systematic checks of completed systems so that problem areas can be identified. Participants will be allowed to inspect the CSU solar houses thoroughly. The following full day, Thursday, is devoted to the technical and economical sizing of solar systems. Heating load calculations are included because the size and economical cost decisions for a solar facility are dependent upon the annual heating load for the building. Other important considerations which should be assessed in regard to retrofit Installations, scheduling of work, component sizing and core of instrumentation are discussed on Friday.

Daily evaluations of each module are requested of each participant in this course. The evaluations will assist the instructors in assessing material comprehension and conducting the course effectively.

SYNOPSIS OF COURSE CONTENT

TOUR OF SOLAR HOUSES

A pre-course tour of solar houses in the local area will provide the trainees with the opportunity to see different styles of homes and practical types of solar systems. The solar systems are briefly described and performance of the systems are detailed when such information is available. The duration of the tour is 3 hours.

2-5

MODULE 1. ENERGY PROBLEM

The objective in this module is to bring into perspective the problem of meeting the projected energy demand in the United States with known supplies of fossil fuels. The future availability of energy depends upon reduction of per capita use through effective conservation practices as well as increases in production of coal, oil, and conventional energy forms. Effective conservation necessarily entails the development of alternative sources of energy such as solar, geothermal, wind, and nuclear fusion. An effective balance between supply and demand can be maintained if development of alternative sources is actively pursued. The substance of the presentation is included in this manual.

MODULE 2. COURSE ORIENTATION

This module is employed to explain the objectives and purpose of the course and to outline the sequence of events during the course. All the modules in this course are briefly presented. While participants are encouraged to ask questions during the presentation of the modules, for , some modules it may be more effective if questions are held until the presentation has been completed. The instructor will indicate his preference in handling questions.

The objectives of the course are to develop capabilities in trainees

, Choose the type of solar heating and/or cooling system suitable for the particular building and location;

Select the size of the solar system that will provide an economical fraction of the annual heating requirement; Install solar systems to operate effectively over a range of load conditions;

Identify dial lies in operation of systems and maintain the systems so that they will operate as trouble-free as possible;

Explain the technical details of operation and economic value of solar systems.

Daily evaluations will be made by the trainees regarding the material, organization, and methods of presentation for each module. The evaluations will assist the instructors to conduct an effective training course.

MODULE 3. " INTRODUCTION TO SQLAR HEATING AND COOLING SYSTEMS

The purpose of this module is to describe the basic arrangements of components for solar heating and cooling systems and to explain the operating principles of different systems. The differences between active and passive systems and hydronic and air systems are explained. The function of controls and the interfacing requirements of the different components are described:

Many graphics are used in the text to illustrate differences between flat plate and concentrating collectors, direct and diffuse radiation, and air-heating and water-heating solar systems. In integration of a hot water heating unit into a space heating and cooling system is described. The strategy, at the present stage in solar energy system development, is to use a mix of solar and conventional energy. The rationale for this strategy is discussed in the module.

灜

MODULE 4. SCLAR RADIATION .

Inowledge of the nature of solar radiation, its distribution in time and variability with weather is of fundamental importance in the design of solar heating and cooling systems. An explanation for the decrease in solar radiation through the earth's atmosphere, as well as the seasonal, monthly, daily and hourly variations in the amount of solar radiation available are given in this module. Two systems of measurement units are presented, with factors for converting from one system to another, in order to fully utilize data sources which record solar energy availability. The basic data are given in the form of radiation maps which are used for sizing solar systems in later modules.

MODULE 5. FLUID HEATING SOLAR COLLECTORS

The solar collector is the principal component in a solar system, and this module describes design and operational characteristics of the presently available practical collectors for residential applications. Design considerations which affect the collector performance are dimensions of the collector, number of glass covers, absorber plate construction, and absorber coatings. They are also related to efficiency of solar heat recovery, operating temperature desired, average outdoor temperature and power requirements. The cost-effectiveness of a collector depends upon many factors, particularly durability, and this module explains preventive maintenance procedures. In liquid-heating collectors, the concern for corrosion of the absorber tubes, pipes and storage tank is certainly greater than for air-heating collectors. Freeze protection by the addition of ethylene glycol; boiling protection within the system by the use of vents, erosion protection by removal of particulates, and removal of free ions by use of ion getters are discussed.

Graphical presentations of collector efficiencies are made to compare the performances of different liquid collectors but comparison of liquid and air-heating collectors must made on the basis of system. performance. Finally, considerations for assembly of collector modules into an array are presented.

MODULE 6. THERMAL STORAGE SUBSYSTEMS

For solar systems to provide a major fraction of the annual heating requirements for a residential building, thermal heat storage units are needed to store excess energy collected during the day to provide the building heating load during the night. This module explains the different methods for sensible and latent heat storage. Latent heat storage, or phase-change methods, are not yet practical for residential applications.

Principles for selection of storage media, sizing the storage on the basis of collector area, scheduling of unit installation, and operating strategy are discussed. Water storage tanks are recommended for liquid-heating solar systems, and requirements for the structural integrity of the tank are enumerated. Pebble-bed heat storage units are recommended for air-heating solar systems, and container descriptions and installation and operation methods are presented.

51

2-8.

MODULE 7. SERVICE HOT WATER SYSTEMS

A solar hot water heater can be used in domestic service water systems in many ways. There are two major types of solar water heaters, circulating and non-circulating, with several design variations of each type. Circulating heaters are likely to be the more widely used type in the United States due to freezing considerations. In its simplest form, a solar water heater consists of a flat-plate water-heating collector and an insulated storage tank positioned at a higher level than the collector. These components, connected to the cold water main and the hot water service piping in the dwelling, can provide most of the hot water requirements in a sunny climate.

Detailed descriptions of many types of solar water heaters are given in the module, coupled with schematic drawings for installation. Procedures for sizing the solar collectors are outlined and examples are worked out. Although costs at present are highly variable, estimates for typical size water heaters are presented.

MODULE 8. SOLAR HEATING SYSTEMS

FRIC

Basic arrangements of liquid- and air-heating solar systems are described in detail for effective space heating with a solar system. The different modes of solar system operation are explained as well as the function of auxiliary heating units in the systems. Both liquid- and air-heating collection systems are described as to materials, components, and construction.

Domestic hot water heating systems can be integrated into both air and liquid collection loops and the interfacing methodology is presented.

53

Integration of heat pumps into a solar system is explained but there is insufficient evidence as yet to determine whether heat pumps sold be used as auxiliary units in the system or be operated as a solar assisted heating unit for the building.

MODULE Q. SOLAR SPACE COOLING SYSTEMS.

There is presently only one type of space cooling unit with performance data for residential buildings and that is an absorption refrigeration machine. Evaporative cooling, and radiative cooling methods have been explored but neither use solar energy, and are limited in application to specific regions of the country.

Of many possible refrigeration systems available, only absorption systems appear to be economically feasible in the near-term and the lithium-bromide-water unit is currently the only commercially available unit. Absorption refrigeration utilizing a lithium-bromide-water cycle employing a cooling tower is explained, as well as the operating principles for lithium-bromide absorption chillers. Heat pumps in both the heating, and cooling modes are described, as well as a solar Rankine-cycle engine which operates with solar energy.

An evaporative cooler and a triethylene glycol open-cycle desiccant system which cools air by dehumidification can be integrated into an airheating solar system. A possible radiative cooling system is also discussed.

MOSULE 10, SOLAR HEATING AND COOLING SYSTEMS

A space cooling system in conjunction with a liquid-heating solar heating system is described. The cooling unit is a lithium-bromidewater absorption refrigeration machine and requires additional

59

components such as a cooling tower, chilled water storage tanks, pumps and associate piping, values, and controls.

For use in arid or semi-arid regions of the country where evaporative cooling may be employed, an evaporator cooling unit added to an airheating solar system is described. The rock bed storage unit is used for cool storage.

MODULE 11. SOLAR.SYSTEM CONTROLS

The purpose of controls in a solar system is to maximize the use of solar energy in the heating and/or cooling system. Solar system controls are automatic so that the occupant of a building need only be concerned with setting a thermostat. The controls consist of relays which switch electric valves and pumps in the liquid system or blowers and dampers in the air system, in respose to temperatures or temperature differences. Recommendations are provided for thermostat types and other temperature sensors and focations.

The control logic for a hydronic system with temperature sensor settings is reviewed as to the sequence of events in both the heating and cooling demand modes. The control logic for an air system with an evaporative cooler and domestic hot water heating system is also indicated. To incorporate auxiliary heat control into a solar system, the pump or, blower must be actuated from a control center rather than_directly by the thermostat.

MODULE 12. OPERATIONS LABORATORY

The operations laboratory, scheduled for the midpornt in the course, will provide the trainees with some hands-on experience with models and operating solar systems. Useful check lists are provided to identify areas where problems may be occurring. Readings are given in sample check lists and the trainees are to determine if the system is operating as desired. When readings indicate a malfunction within the system, the trainees are to determine the source of the problem and corrective procedures.

MODULE 13. HEATING LOAD CALCULATIONS

Although determining the building heating load is a standard procedure in the HVAC industry, many procedures are simplified and approximate, because to size a furnace more detailed procedures are not justified. However, with solar systems, the approximate procedures can lead to large system costs because heating loads for buildings are generally overestimated. For the purpose of sizing solar systems, more detailed heating load calculations are recommended and the reward will be an economical solar system.

MODULE 14. SOLAR SYSTEM SIZING

Solar systems are sized to provide a major fraction of the total annual heating load. A simple procedure based on average conditions for "typical" air and hydronic systems is presented to calculate collector area. From the collector area determined, the sizes of other components are established. Rules of thumb are given to guide the user in sizing the entire system from a given collector area.

Alternatively, the fraction of annual heating load supplied by the solar system can be calculated for an arbitrarily sized collector area. The worksheets provided in the module organize the calculations.

MODULE 15. SYSTEM ECONOMICS

The economics of solar heating systems depends upon the first cost of systems, conventional energy costs, inflation rates, mortgage payments, property tax, insurance, credits on income tax, perating and maintenance costs. A method of life cycle cost analysis is described in the module to compare solar with non-solar systems. When the cumulative savings with the solar system is positive over the lifetime of the system, the solar system is economically viable. The largest cumulative savings among various sized collector systems is the one that; is optimum for the particular installation.

2 - 13

MODULE 16. SOLAR SYSTEM SIZING CALCULATIONS BY TRAINEES,

The participants are provided the opportunity to size a complete system. Considerable freedom is given in choosing the example problem for practice calculation, with encouragement given to choose a system for the participant's home location.

MODULE 17. COST EFFECTIVENESS OF ENERGY CONSERVATION

Energy conservation is one of the first considerations in building designs. Reduction of window area in a house consistent with sensible natural lighting is an effective energy conserving design. Thicker insulation in the walls and ceiling, particularly for new buildings, is a cost-effective energy conservation measure. Storm windows and doors, or double-pane windows will help to reduce heat losses, and reduction of heat losses will result in a smaller overall system size, and lower first cost.

MODULE 18. RETROFIT CONSIDERATIONS

Retrofit installations of solar systems is a growing concern in areas where home heating costs, using electricity, propane or fuel oils, are becoming larger each year. The costs of retrofit installations are in general larger than installations for new buildings because structural support for the collectors is an added system cost. In homes where electricity is used for heating and electricity cost is high, solar systems, should be considered. Whether a solar system is economically viable to install in an existing house depends upon a great many factors, and each installation will require careful physical and economic appraisal.

J₂₋₁₄

MODULE 19. SCHEDULING OF SOLAR INSTALLATIONS

The scheduling of sequential and concurrent activities in installing solar systems_in new buildings depends <u>upon</u> the type of system. Although critical path methods (CPM) are not generally needed for single home construction, a CPM is used to discuss the scheduling of both liquid and air-heating solar systems.

MODULE 20. CONSTRAINTS AND INCENTIVES

In addition to general lack of understanding of the technical and economic aspects of solar heating and cooling systems, which is a serious constraint to more wide-spread use of solar systems, there are several other constraints. Because of the newness in applying solar energy to space heating and cooling, equipment manufacturers are venturing slowly into the industry. There is lack of system performance standards and certification and generally lack of information on durability and marketability. These and other factors are however rapidly changing. Because there is general lack of information, the financial institutions are viewing the solar industry with caution. There are however some governmental incentives being created in many states in suppressing property taxes on solar systems, and providing credit on income taxes. The federal government is accelerating efforts in research and development of better systems and demonstrating many different systems in all sectors of the country. The factors are highly variable and changing rapidly so that the information in this module will likely be outdated very quickly.

MODULE 21. BUYER'S GUIDE

In order that intelligent selection of equipment can be made, knowledge of standards, equipment warranties, performance evaluation data, building codes and their relation to solar equipment and related topics is necessary. If evaluations have been performed, their results need to be available to the supplier and user. The kinds of data required for such appraisal must be understood. The advantages and disadvantages of the main system types for a specific application are particularly important. Knowledge of the types of hardware available, their cost, and compatibility with other components in the system is essential. In addition, their involvement in building codes, and such items as safety and durability are additional guides for equipment evaluation and selection.

MODULE _____ FUTURE, ROSPECTS FOR SOLAR HEATING AND COOLING SYSTEMS

are undergoing research, development and testing. Some are also being demonstrated. Collectors are the largest single cost item for solar systems and much effort is being devoted to develop more efficient and at the same time less expensive collectors. Among the many prospects, there are at least four different types of evacuated tube collectors that are being tested. Concentrating collectors are also under development.

In addition to collectors, heat storage units, particularly latent heat storage materials, are being tested. A direct contact liquidto-liquid heat exchanger and storage unit as well as methods to enhance temperature stratification in storage are being researched.

Redesign of heat pumps for heating using solar assistance has been initiated by at least one manufacturer, and solar cooling units utilizing high temperature heat from improved collectors, as well as absorber chillers using different fluids are undergoing development. Whether any or all of the new solar components will become practical depends upon many factors. Solar equipment installers should be aware of the development effort, and hopefully, much of the system developments will be directed to practical applications.

TRAINING COURSE IN

THE PRACTICAL ASPECTS OF

SIZING, INSTALLATION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS

FOR

RESIDENTIAL BUILDINGS

MODULE 3

INTRODUCTION TO SOLAR HEATING AND COOLING SYSTEMS

SOLAR ENERGY APPLICATIONS LABORATORY

COLORADO STATE UNIVERSITY

56

5

ERĬC

TABLE OF CONTENTS

		•
	LIST OF FIGURES	3-ij
		. ~
•	INTRODUCTION	3-1
,	OBJECTIVE	3-7
	SOLAR HEATING AND COOLING SYSTEMS	3-1:
	SOLAR COLLECTORS	3-5
	THERMAL STORAGE UNITS	3-10
	OPERATING MODES - AIR SYSTEMS	3-1]
	OPERATING MODES - LIQUID SYSTEMS	3-14
	SPACE HEATING AND COOLING - DISTRIBUTION.	3-18 [°]
	AUXILIARY UNITS.	3-19
,	AUTOMATIC CONTROLS	[,] 3-21

67

1.

.33

3-i

LIST OF FIGURES

	Figure			Page	
• • _,•	3-1	Schematic Drawing of a Solar Heating and Cooling System .	•	, 3-3	· .
• •	3-2	Schematic Arrangement of a Domestic Hot Water (DHW) Subsystem	-	3-5	• •
	3-3	Solar Collector Schemațic (Liquid) .		3-6	
ć .	3-4	Solar Air Heating Collector	. •	* 3 7 6 ·	
,	3-5	Solar Concentrating Eollectors	•	3-8	, •
e	3-6	Direct and Diffuse Radiation on a Solar Concentrator	•	3 - 9	, ,
	3-7	Solar Air Heating System	•	3- † 1	
	3-8	Heating from Collector	•	3-13	• 1
	3-9	Storing Heat from Collector		3-13	
	3-10	Heating from Storage.	•	3-14	
	3-11 ,	Solar Heating of Domestic Hot Water.	•	, 3-15 ·	4
	- 3-12	Solar Collector 'Subsystem Schematic (Liquid System)	•	3-16	
Ϋ́.	3-13	Collector Loop with Heat Exchanger	•	3-17	۲
	3-2]4 °	Collector Loop with Make-Up Water Supply.		3-18	•
	3-15	Solar Heat to Distribution System		, 3-19	,
	L• 3-16-a	Typical Liquid System Use of Auxiliary 🔺 🔒 🚬	•7	3-20	• •
	°3-16-b	Typical Air System Use of Auxiliary.	•	3-21	
	3-17	Typical Solar Hot Water Control System".	•	~ 3-22	•
	~			-	4

6ર્ડે

ERIC

/3-ii

INTRODUCTION .

1-5

The purpose of this module is to identify the types of solar freating and cooling systems that are available and in current use, and to explain the basic function of the systems and their key components. Different types of solar heating and/or cooling systems, such as active and passive systems, and air and liquid systems are explained. In addition, variations in control methods and very of interfacing the elements of a complete system are described.

• OBJECTIVE 🖌

At the end of this module, the trainee should be able to:
1. Recognize the features which distinguish active and passive solar heating systems,
2. Identify the principal characteristics of air-heating and

liquid-heating solar heating and cooling systems, Identify and describe the basic function of key components of a solar heating and cooling system,

Describe the expected performance of different types of solar systems, and

5.- Recognize advantages and deadvantages of different designs of components and systems.

SOLAR HEATING AND COOLING SYSTEMS

A solar heating and/or cooling system can be defined as any system which utilizes solar energy to heat and/or cool a building, although a distinction is often made between "active" and "passive" systems. A passive system can be defined as the ing no moving parts, although it may involve natural circulation of ruid to the heated space. A south-facing window or a skylight which transmits sunlight can be considered a passive system if it admits more pergy than it loses as heat. Another type of passive system may involve movable insulation material which reduces heat loss from solar absorber surfaces when there is to sunshine. In contrast to a passive system, an active system involves hardware to collect solar energy, store heat, and distribute the heat to the rooms in a building.

Passive systems are not included in this course because there is very little known about the design and performance of such systems. The emphasis in this course is on active solar systems which provide controlled collection and distribution of solar here. Active systems can be integrated directly into conventional HVAC systems in buildings.

Figure 3-1 is a schematic drawing of an active solar heating and cooling system, representative of those available today. The key elements are a solar collector, a here storage unit, an auxiliary furnace, a heat-transfer circuit (pumps, blowers, etc.), a method of delivering beat to the house, and a cooling machine for space cooling. In addition, many solar systems include facilities for providing solar heat to the domestic hot water system.

Operationally, the solar collector intercepts solar radiation, converts it to heat and; utilizing some heat-transfer fluid, transfers the collected energy to a thermal storage unit (or, in some cases, directly to the heating load). The thermal storage unit is an essential element because it provides for the use of solar generated heat to be available during periods of low solar radiation and at night. In general, the solar collector and thermal storage unit can operate independently of

71

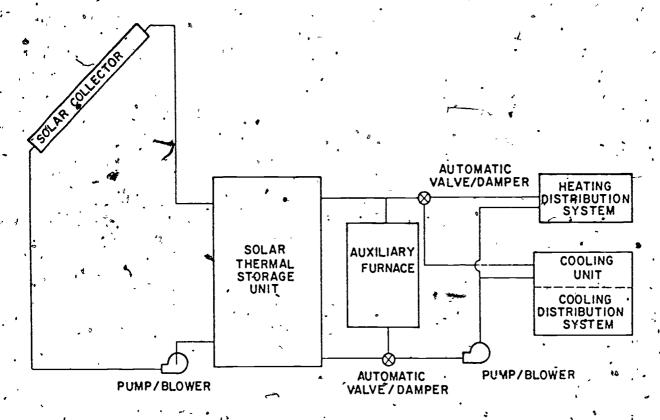
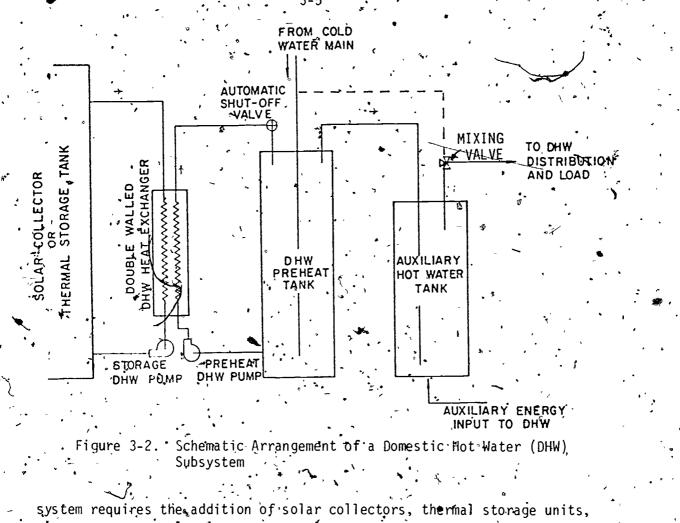


Figure 3-1. Schematic Drawing of a Solar Heating and Cooling System

any heating or cooling requirement, and can be collecting and storing. solar energy whenever there is sufficient incident solar radiation. An auximiary furnace is required as a back up to the heating/cooling system for periods of the year when the solar collector/thermal storage subsystem is unable to meet the heating/cooling demands. While the solar collector could be sized large enough to provide the full heating load throughout the year, this is not as economical as an auxiliary assisted System. It is preferable to have an auxiliary furnace or boiler capable of meeting the full heating/cooling demand (at design conditions) and use this auxiliary during periods of high heating/cooling demands and low solar availability.

Heat delivery to the building can be accomplished in several ways. In an air system the solar heated air can be taken/directly from either

ERĨC.

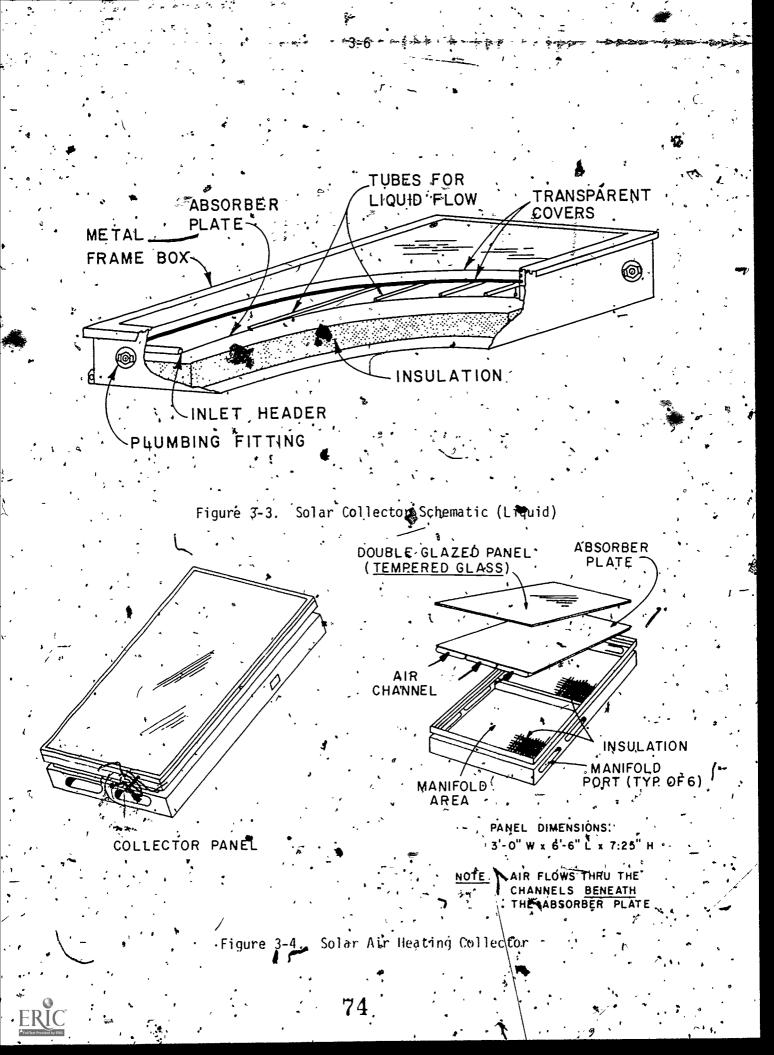

the solar collector or the thermal storage unit and delivered to the building by utilizing a blower and duct distribution. In a liquid system a liquid-to air heat exchanger can be used to provide heat to a central air distribution system, or the liquid can be piped directly to the heated space, where separate fan coil units can be used to heat *f* the building.

3 A 4 7 5

A number of different methods can be used for cooling. These include absorption cooling units (both lithium-bromide and ammonia-water systems), Rankine cycle vapor-compression, and others. (However, only the lithium-bromide absorption unit is commercially available and it has been used only in experimental installations.) Alternatively, a heat pump might be utilized as a conventional cooling unit (powered by electricity) and used as the auxiliary for the solar space heating system.

Figure 3-2 is a typical schematic drawing showing the arrangement of components for utilizing solar heat in a domestic hot water system (DHW). Solar energy from a collector or a thermal storage unit is used to preheat the domestic hot water available from the cold water main. As hot water is used in the building, the preheated water replaces the hot water taken out of the auxiliary hot water tank. Conventional fuels such as gas or electricity are used to boost the temperature of the preheated water to the desired temperature (e.g., 140°F), and/or to maintain the temperature of the water remaining in the auxiliary tank at the desired temperature. During the summer a solar thermal storage unit provided as part of the heating and cooling system can normally meet one hundred percent of the domestic hot water load.

In addition to the components of conventional heating and/or cooling systems normally required to meet the heating and cooling loads, a solar


DHW preheat tanks, some additional plumbing/sheet metal work, and more extensive control-systems. The emphasis of this course will be to provide the details of these additions to the conventional systems and the interfaces between the solar subsystem and the conventional HVAC components. Of the additional solar components, the most important is the solar collec-

SOLAR COLLECTORS

tor

FRIC

A solar collector is a device to convert incident solar radration to useful energy, usually in the form of heated air or heated liquid. Figures 3-3 and 3-4 show examples of liquid-type and air-type solar collectors used in solar heating and cooling systems.

Each collector consists of an absorber plate (commonly a blackened metal surface) which absorbs the incident solar radiation and converts . the solar energy to heat. The heat in the absorber plate is transferred to an appropriate heat transfer fluid which passes through the absorber plate and delivers the heat to another part of the system. In the process of collecting energy, the heated absorber plate will tend to lose héat to the surroundings. The solar collector components other than the absorber plate are therefore designed to reduce these neat losses from the collector.

3-7

Heat may be lost from the absorber plate by radiation, conduction, and/or convection. Insulation beneath the absorber and the transparent overs above reduce the heat loss from all three methods. Glass covers, for example, are opaque to the the fall radiation emitted from the absorber plate and also reduce convection losses due to air movement across the absorber. The air space between the absorber plate and cover acts to reduce conduction losses between these two components.

The collectors in Figure 2-3 and 3-4 are flat-plate solar collectors and represent commercially available types. They are called flat-plate collectors to distinguish them from concentrating collectors, which gather solar radiation over a large aperture area and focus the radiation onto a smaller absorber area. Two examples of concentrating solar collectors of the reflecting type are shown in Figure 3-5, and a transmitting lens type is shown in Module 22, Figure 22-3. The purpose of a concentrating collector is to obtain fluid at a bigher temperature than possible in a flat-plate type, even though the quantity of heat gained is nearly the same as for a flat-plate collector with the same aperture area. A technical disadvantage of a concentrating solar, collector is that

an service a new con-

ERIC

3-8

Figure 3-5. Solar Concentrating Collectors

resulting from reflections from the earth and sky, cannot be focused (see Figure 3-6). In addition, the concentrating solar collector must track the sun throughout the day for greatest effectiveness. The expense of construction, operation, and maintenance of a rotating, tracking collector is usually much too high for the use of this form of solar energy collector in solar heating and/or cooling systems.

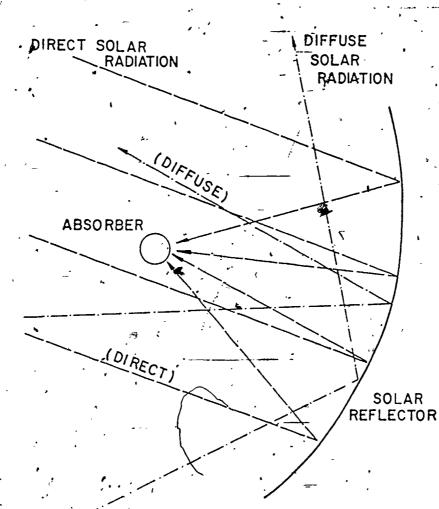
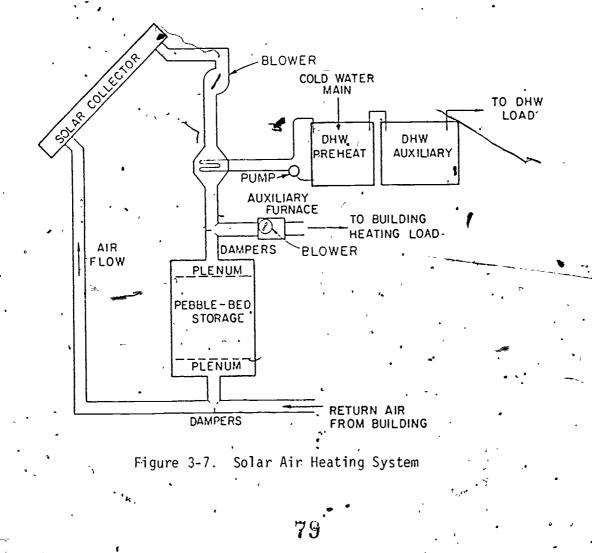


Figure 3-6. - Direct and Diffuse Radiation on a Solar Concentrator A rather distinct type of flat-plate collector, described in Module 22, comprises a glass tube surrounding a flat or cylindrical absorbing surface. As shown in Figures 22-1 and 22-2, a high vacuum inside the tube minimizes heat losses from these collectors. There is no concentration of radiation in this type, but delivery temperatures may be considerably higher than usually obtained in typical flat collectors.

THERMAL STORAGE, UNITS

Because of variations in solar radiation and atmospheric temperature and the resulting non-correspondence between available solar heating and heating load demand, some form of energy storage is required. This energy storage requirement is most economically provided for by some form of thermal storage, i.e., storage of heat (or cool) for heating and cooling systems. The types of thermal storage units which might be utilized are quite extensive; but, because of simplicity, and economy, most commercial solar systems utilize either hot water storage for the liquid system or pebble-bed storage for air systems.


It is technically possible to store heat in scrap metal, eutectic salts, waxes, ceramic bricks, etc. Scrap metal or bricks store sensible heat and could be used in place of a pebble-bed unit. Generally, however, rocks are the least expensive material. Chemical storage using several types of chemical compounds and waxes can store heat by using the latent heat of phase changes between a solid and liquid, rather than sensible heat storage, such as raising the temperature of water. Because the heat required to melt a solid and subsequently delivered when the molten material resolidifies is considerably greater than the heat involved in changing the temperature of an equal mass of water or rocks fifty degrees or so, a phase-change heat storage unit can be much smaller than the other types. However, because of technical difficulties and economic disadvantages, phase-change storage materials are not reedy for practical

3-10 •

use in solar heating and cooling systems. For our purposes we will concentrate on hot water and pebble-bed thermal storage units.

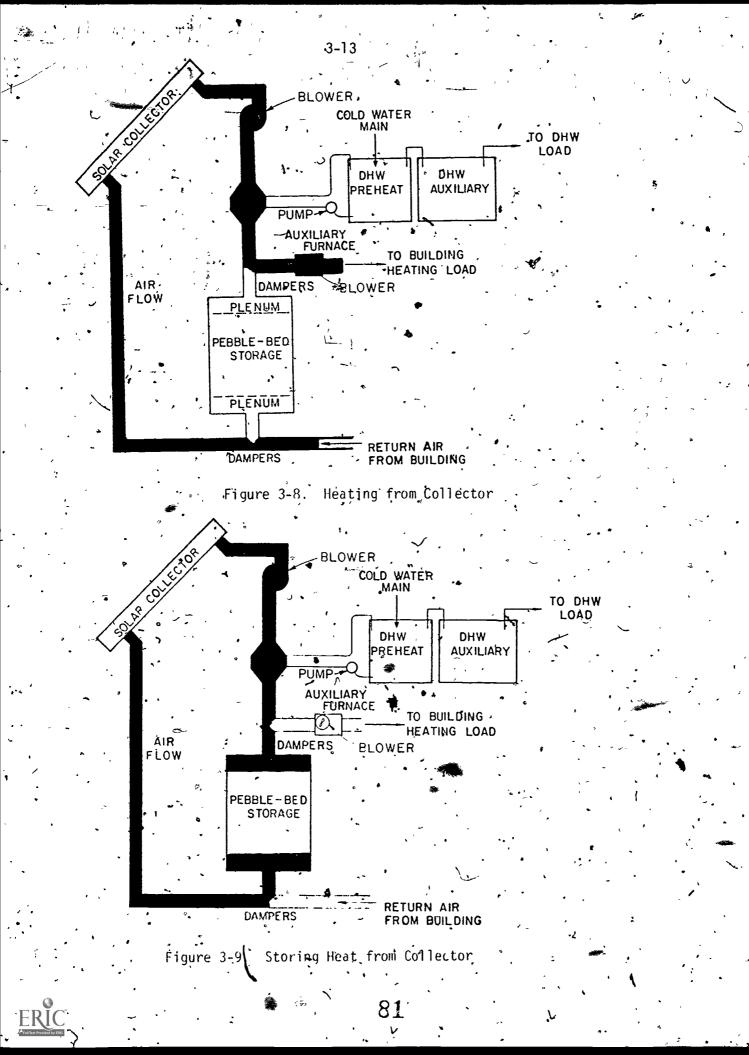
OPERATING MODES - AIR SYSTEMS

The collection and storage of solar-generated heat can be accomplished in a variety of ways. An example of a solar heating system is shown in Figure 3-7. The components of this typical unit include: (1) a fixed solar air-heating collector have a flat absorber and heat exchanger plate; (2) a pebble-bed heat storage unit to and from which heat is transferred by circulating air through the bed; (3) a control unit which includes the sensors and control logic necessary to automatically maintain comfort conditions at all times; (4) an air handling

3-11

الم الم

module comprising automatic dampers, filters, and blower(s); (5) a solar hot water heater consisting of an air-to-water heat exchanger and a preheat storage tank connected to an auxiliary hot water heater; and (6) an auxiliary heating unit (usually a warm-air furnace) to provide one hundred percent back-up space heating when storage temperatures are insufficient to meet demands or when the solar system is not operating.


IIII

In the air heating system the collector absorbs solar radiation and converts it to heated air for space heating. Circulation is from the solar system to the building in the same manner as in most modern warm air heating systems. Air is circulated from one end of the collector to the other, its temperature normally rising from 70 degrees to 130 to 150 degrees during the mid-part of the day. The building is heated directly from the collector whenever heating is needed during sunny periods, as shown in Figure 3-8. Cool air from the building is returned to the collector for reheating.

The heat storage unit utilizes the heat exchange and heat storage characteristics of dry pebbles, the most practical storage medium for use with air heating collectors. When heat is not needed in the building, solar heated air is routed through the storage unit as in Figure 3-9, thereby heating the pebbles; the cool air, usually at 70°F, returns to the collector for reheating. Temperature stratification in the storage unit assures maximum heat recovery from the solar air collector. In the evening and night-time hours, heat is delivered to the rooms by circulating air from the building through the pebble-bed, as in Figure 3-10. Because of temperature stratification in the storage unit, this mode provides heat to the rooms at the highest available temperature. The system automatically provides auxiliary heating from fuel or electricity when solar heat is not available from either the collector or storage.

8(

FRIC

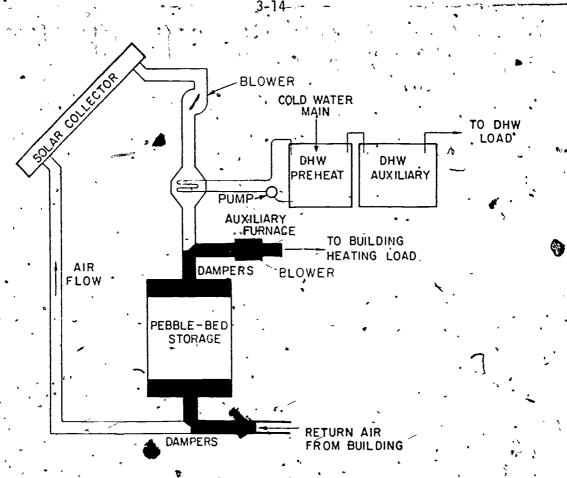
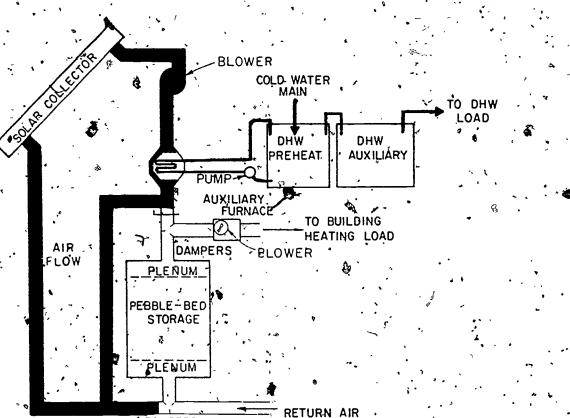


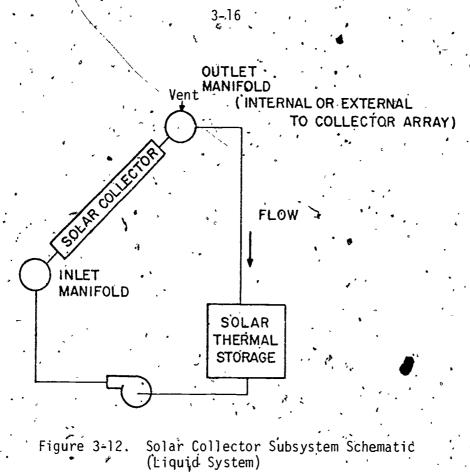
Figure 3-10. Heating from Storage


Domestic hot water can be made available by inserting a hot water heat exchanger in the hot air duct from the collectors (Figure 3-11). Thus solar energy can provide preheated water whenever the collector

is in operation..

At the present time, no cooling equipment is commer dially available .

OPERATING MODES - LIQUID SYSTEMS


The connection between the solar collector and the thermal storage unit may be more complicated in a liquid system than in an air system. The complication is due to factors such as corrosion, freezing, and the

DAMPERS , FROM BUILDING

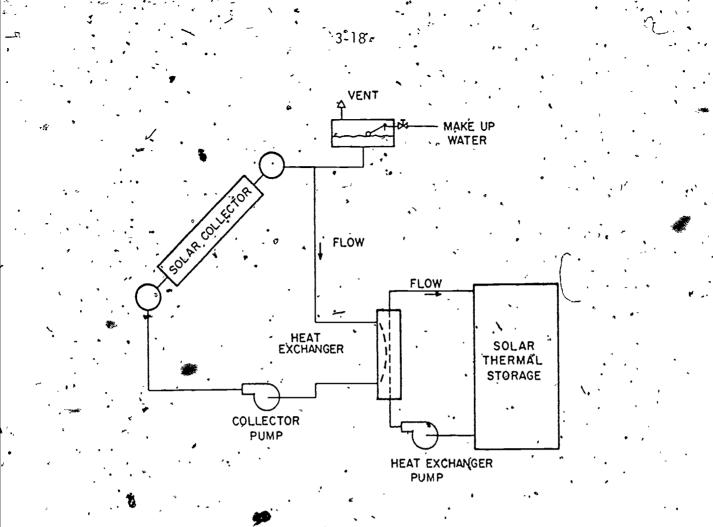
Figure 3-11. Solar Heating of Domestic Hot Water

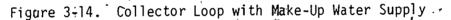
use of different fluids in different loops. In nearly all practical liquid systems, heat is stored as hot water in a well-insulated tank. If water is used in the solar collectors in a cold climate, some freeze protection method must be used. The most direct method is to allow the collector to drain into the storage tank whenever the pump turns off. One version of this method is shown in Figure 3-12, where water is the storage medium as well. When the solar intensity is sufficient for heat collection, a pump circulates water through the collectors and the thermal storage unit. When the pump shuts off, the water in the collector drain into the storage tank. A vent is provided at the top of the collector so that air can enter the collector tubes as water drains out.



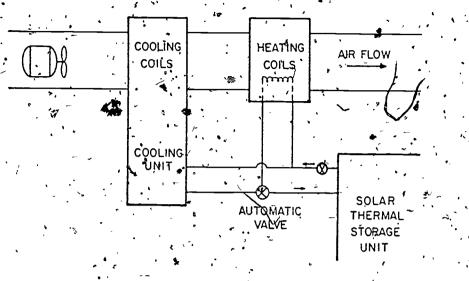
13 2

Figure 3-13 shows an alternate method wherein ethylene glycol (antifreeze) is used with water in the collector loop. To avoid the cost of a large quantity of glycol in the storage liquid (approximately 250 gallons or more of antifreeze), a heat exchanger is inserted between the collector and storage tank. An additional pump is usually required, depending on the location and type of heat exchanger.


The advantage of this design is that there is no risk of freezing. (and damage) from improper collector draining or venting; nor from corrosion caused by the alternating exposure of the collector tubes to water and air. The possibilities of corrosion and freezing (in Figure 3-12) can thus be compared with the cost penalty of the exchanger, pump, and additional piping for the design in Figure 3-13. A more significant factor is the "driving temperature" across the


heat exchanger. Typically the collector fluid operates 10 to Julegrees

[°]Figure 3-13. Collector Loop with Heat Exchanger


hotter than storage. This higher temperature results in a decrease in collector efficiency. These factors will be discussed in more detail in the section on solar collectors. Another important consideration involving the system in Figure 3-13 is the effect of a power failure. In this event, circulation ceases and, usually in a few minutes, the collector fluid begins to boil. A pressure relief mechanism should always be included in the system so that overpressure will not occur and the steam can escape. The problem occurs when the power returns and there is insufficient fluid in the collector leop to prime the pump and achieve circulation. Figure 3-14 is designed to partially alleviate this problem by providing make-up water (either from a tank or directly from the water supply), but loss of antifreeze may require manual addition.

SPACE HEATING AND COOLING - DISTRIBUTION -

Distribution of solar heated and cooled air in a building can be the same as in any other commercial heating/cooling system. In "hydronic" types, water can be piped from storage to coils imbedded in floors or ceilings (radiant heating) or to "radiators" or fan-coil units in individual rooms. The operating temperature requirements of baseboard hot water heating are usually too high for use with a solar system, unless dual baseboard circuits are provided, one for the solar heated water and one for conventional heating. But most solar heating systems employ central forced air distribution. Hot water from the solar storage tank is piped to a heating coil (Figure 3-15) in which circulating air picks

3.

Figure 3-15. Solar Heat to Distribution System

up the heat for delivery to the rooms. For cooling, hot water from the solar storage tank can be piped to an air conditioner, where it provides the energy to operate a lithium bromide absorption cooling unit. An evaporator coil in the air duct cools and dehumidifies the circulating air.

Besides heating and cooling the house, solar energy may be used to provide most of the domestic hot water needs (Figure 3-2). Water from a cold water main enters the preheat tank from which it is circulated through a heat exchanger, where it is heated by hot water from the solar storage tank. When a hot water faucet is opened, water from the preheat tank enters a conventional gas or electric hot water heater where the water temperature can be increased (if needed) before passing to the distribution piping.

AUXILIARY UNITS

During cloudy periods and in Midwinter, the solar system may not be able to meet all of the heating or cooling needs of the building. With a :

liquid system, a conventional not water boiler may be provided to supply part or all of the heating or cooling requirements during these periods. If the temperature in the solar storage tank drops below a preset point (e.g., 100°F for heating, 170°F for cooling), the auxiliary boiler automatically supplies hot water to the heating coils or the air conditioning unit.

A warm air furnace may be used for supplying auxiliary heat (not usable for cooling), if the building is provided with a warm air heating system. This form of auxiliary heat is nearly always used with air collectors and pebble storage, and is often the choice when liquid collectors and liquid-to-air heat exchanges are employed. The furnace may also be replaced by an air-to-air heat, sump in air systems.

'In a solar heating and cooling system, the auxiliary unit supplies energy for both the beating and cooling functions, and operates as a "replacement"; if solar heat is unavailable (either from the collector or from storage), the auxiliary delivers heat for the entire load. Heating or cooling is accomplished either with solar or auxiliary energy (Figure 3-16-a). An alternative is to use the auxiliary to "boost" the temperature of the solar heated fluid (air or water) as in Figure 3-16-b. This arrangement is ideal for an air distribution system but should not be used in a water loop.

		AUTOMATIC VALVE/DAMPER TO HEATING/
		COOLING LOAD
	·SOUAR HEAT	
•	T.	AUXILIARY ENERGY INPUT
•	OR (COLLECTOR)	FURNACE (GAS, ELECTRICITY, etc.)
•	- A- (RETURN
•		PUMP

. Figure 3-16-a. Typical Liquid System Use of Auxiliary

3-20

ENERGY INPUT (GAS, ELECTRICITY, etc.)

3-21

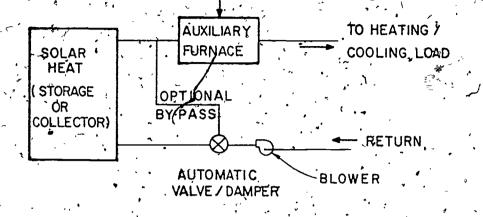
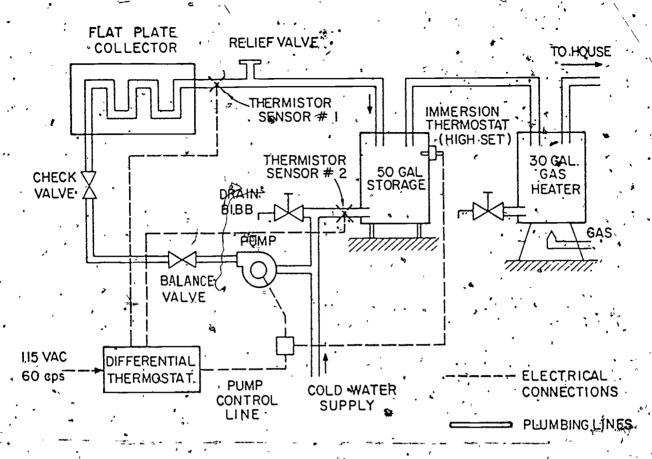



Figure 3-16-b. Typical Air System Use of Auxiliary

AUTOMATIC CONTROLS

To control the temperature in a conventionally heated home; the homeowner needs only to set the thermostat. The same is true for a well designed solar heating and/or cooling system. However, the controls for solar heating and cooling are necessarily more complex than in a conventional system, because they must control collector and storage pumps or blowers and automatic valves or dampers in addition to the usual functions. An example of a solar control schematic for a domestic hot water system is shown in figure 3-17.

The differential thermostat senses the difference in temperature at collector outlet and the storage tank. When this difference is more than a few degrees; the circulating pump is operated. The high set thermostat prevents too high a temperature in the preheat tank by interrupting power to the collector pump. A pressure relief value proticts the system from excessive pressure, which might otherwise develop if there is no circulation through the collector during a sunny period.

3-22

Figure 3-17. Typical Solar Hot Water Control System

Numerous controllers for solar space heating systems are commercially available, and many varieties of control circuits and methods are being used. Design of control systems requires directions from the manufacturers of the control components and experience in their proper integration and adjustment. TRAINING COURSE IN THE PRACTICAL ASPECTS OF

SIZING, INSTALLATION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS FOR

RESIDENTIAL BUILDINGS

MODULE \ 4

SOLAR RADIATION

SOLAR ENERGY APPLICATIONS LABORATORY COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

TABLE OF GONTENTS

92

4-ii.

4-iij

4-iv

4-1

4-1

4-2

4-2

4-3

4-3

4-4

4-5

4-7

4-7

4-8

4-10

4-1:1

4-12

4-i

LIST OF FIGURES.

INTRODUCTION OBJECTIVE SOLAR RADIATION. UNITS. SOLAR INTENSITY. THE SOLAR SPECTRUM ENERGY REACHING EARTH Monthly Variations Daily Variations Hourly Variations COLLECTOR TILT COLLECTOR ORIENTATION DETERMINATION OF DUE SOUTH SOLAR DATA FOR SYSTEM DESIGN

÷.,

4-ii

Figure	Page
4-1	Atmospheric Effects on Solar Radiation Reaching Earth
4-2	Energy Intercepted by a Unit-Width Horizontal Surface
. 4-3	Monthly Variation of Average Daily Radiation on a
4-4	Hourly Record of Clear Day Radiation on a Horizontal Surface at Fort Collins, Colorado
4-5	Effect of Tilting the Collector on Energy Intercepted . 4-9
4-6	Variation of the Angle of Incoming Radiation with Season <u>and</u> Collector Tilt to Maximize Winter Collection in Fort Collins, Colorado
4-7	Shadow Diagram on a Horizontal Surface Showing the Rassage of the Sun Across the Sky and the Determination of Due South
. 4-8	Mean Daily Solar Radiation (Langleys), January 4-14
4-9	Mean Daily Solar Radiation (Langleys), February
4-10	Mean Daily Solar Radiation (Langleys); March 🥜 4-15 🕷 🔹
4-11	Mean Daily Solar Radiation (Langleys), April
4-12	Mean Daily Solar Radiation (Langleys), May
4-13	Mean Daily Solar Radjation (Langleys), June
4-14	Mean Daily Solar Radiation (Landleys), July
4-15	. Mean Daily Solar Radiation (Langleys), August
4-16	Mean Daily Solar Radiation (Langleys), September 4-18
4-17	Mean Daily Solar Radiation (Langleys), October
4- 18	Mean Daily Sola Radiation (Langleys), November
· 4-19	Mean Daily Solar Radiation (Langleys), December 4-19
4-20	Average Daily Solar Radiation (Btu/ft ²), Menth of January 4-20

;

LIST OF TABLES

4-iii

Table4-1Energy Units4-2Energy Conversion Factors4-3Monthly Variations in Energy on a Horizontal
Surface, Selected Cities4-4Mean Daily Solar, Radiation (Langleys)

Page 4-2 4-3 . 4-6 . 4-13

• -

. . .

GLOSSARY OF TERMS

4-iv

south from the equator

The half of the Earth north of the equator

A layer in the upper atmosphere comprised

Light of high energy, abbreviated "UV"

primarily of the gas ozome (0_3)

ight of intermediate energy

95

See "direct radiation" beam radiation British Thermal Unit - the heat required to Btu. raise one pound of water one degree Fahrenheit The heat required to raise one gram of water calorie one degree Centigrade Radiation that has been scattered in passing diffuse radiation through the atmosphere Radiation that has not been scattered in direct radiation passing through the atmosphere Light of low energy, abbreviated "IR" infrared light The solar radiation that reaches earth insolation The distance, measured in degrees, north and

northern hemisphere

ozone layer

latitude

ultraviolet light

visible light

INTRODUCTION

Solar energy starts, of course, with the sun. The sun is a huge nuclear fusion reactor located at an average distance of 93 million miles from earth. It has a surface temperature of about 10,800°F, and gives off energy continuously in the form of radiation. The use of the energy which reaches earth for heating and cooling is what this course is all about. In this module you will learn about the way the energy given off by the sun is altered before it reaches the earth and the amount of energy that reaches earth.

OBJECTIVE

The objective of the trainee will be to recognize the factors which affect the availability of solar radiation at the earth's surface. At the end of this module the trainee should be able to: 1. Recognize the effect on energy reaching a collector due to clouds, dust and atmospheric pollutants, shading (trees, buildings, etc.), collector orientation, and collector tilt.

Differentiate between beam and diffuse radiation Recognize the various units used to measure solar energy • Given conversion factors, convert solar radiation from

one set of units to another 5. Recognizé the magnitude of solar radiation available 6. Describe seasonal variations in solar radiation 7. Describe daily variations in solar radiation 8. Locate sources of solar data

9. , Select the data needed for planning a solar system.

SOLAR RADIATION

UNITS

The intensity of solar energy is found expressed in several different 'units. In this course only one unit will be used, Btu/ft². However, you may often find other units when looking for solar data, so it is worthwhile to learn to recognize these units and to be able to convert from one unit 'to another. Units commonly found are listed in Table 4-1.

Table	4-1.	
Energy	Units	

-Abbreviation	· Unit
Energy Density	
Btù/ft ²	Ruitich Thomas Units non source fast
•	British Thermal Units per square foot
KJ/m ²	Kilojoules per square meter
Langley (cal/cm ²) -	calories per square centimeter.
• • •	
Power	· · · · · · · · · · · · · · · · · · ·
Btu/ft ² .hr	British Thermal Units per square foot per hour
KU/m ² ·hr	Kilojoules per square meter per hour
Langley/min	calories per square centimeter per minute
/w/m ²	Watts per square meter

Table 4-2 gives conversion factors from one set of units to another. An example will show the use of this table. The Climatic Atlas of the United States lists the annual average daily solar radiation for Boulder, Colorado as 367 Langleys per day. To convert this to Btu/ft², multiply by the conversion factor from Table 4-2 for Langleys to Btu/ft², 3.69:

(Btu/ft² daƴ)

367 Langleys/day)

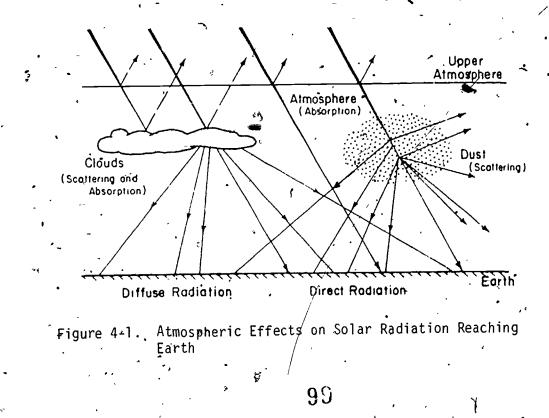
.Table 4-2

Energy Conversion Factors

`To Convert into Btu/ft ²	To Convert into Btu/ft ² .hr						
<u>Multiply</u> <u>By</u> .	Multiply By						
Langleys 3.69	Langleys/min 221						
KJ/m ² .088	KJ/m ² .hr .088						
-	W/m ² 316						

SOLAR INTENSITY

The intensity of the sun's energy output varies with distance from the sun. At the average earth-sun distance, the intensity of solar energy has been determined to be 1.940 Langleys/min, or 428 Btu/ft².hr with a variability of about three percent. The value of 428 Btu/ft².hr is called the "solar constant". Due to the earth's elliptical orbit around the sun, the distance from the earth to the sun changes during the year so that the energy reaching the outer atmosphere of the earth varies from 410 to 440 Btu/ft².hr. While there is some variability in the amount of solar energy that reaches the outer atmosphere around earth, there are very large variations in the amount of solar energy available at a particular location on the earth's surface. The surface radiation is what is of interest to us, and the radiation intensity will vary considerably with latitude, season of the year, and local weather conditions.

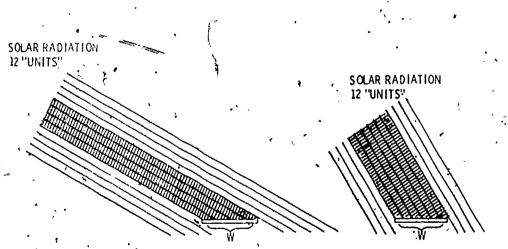

THE SOLAR SPECTRUM

The radiation from the sun can be separated into three major energy regions. The high frequency energy in the radiation spectrum is labeled "ultraviolet" or "UV" and is detected by the human body in terms of its effect - primarily sunburn. The medium frequency energy radiation band

in the solar spectrum is the visible band. The low frequency radiation band is the "infrared" or "IR" region. The greatest concentration of solar energy is in the visible band, and solar collectors must be designed to intercept this portion of the solar spectrum.

ENERGY REACHING EARTH ·

The energy reaching earth is reduced from the "outer space" intensity. There are a number of processes that occur in the atmosphere that cause this reduction. Some of the energy is reflected back into outer space by the top of the atmometer, much as light is reflected from a mirror. Still more is reflected from the tops of clouds. As much as 30 percent of the incoming radiation is reflected in this manner. A portion of the radiation is absorbed by checmical compounds in the atmosphere. The ozone layer absorbs much of the ultraviolet radiation, and carbon dioxide, oxygen, and water vapor also absorb radiation. Some of the radiation is scattered by, dust and clouds. The various processes serving to reduce the solar energy reaching the earth are illustrated in Nigure 4-1.



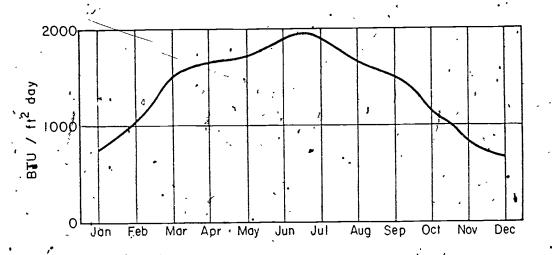
4-4

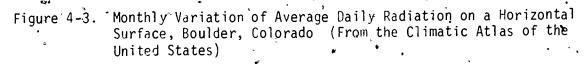
Radiation is classified as "direct radiation" if it has not been scattered on passing through the atmosphere, and "diffuse radiation" if it has been scattered. On a "clear" day most of the energy reaches earth as direct radiation, but on a cloudy overcast day, a large portion or all of it may be diffuse.

Monthly Variations

Solar energy on a horizontal surface at any location on earth, if averaged over a month, shows a month-to-month variation. This is due both to seasonal changes in weather, which affect the cloud cover, and the changing angular relationship between the sun and the surface. In the winter the sun is lower in the sky than in the summer, and the resultant larger angle between the sun and a horizontal surface reduces the amount of radiation intercepted by the surface, as shown in Figure 4-2. Figure 4-2-a shows the energy intercepted by a unit width horizontal surface when the sun is at a low angle. In Figure 4-2-b, the sun is shown at a higher angle and a larger amount of energy is intercepted.

(a) LOW SUN ANGLE, WINTER (b) HIGH SUN ANGLE, 4 "RADIATION UNITS" INTERCEPTED SUMMER 6 "RADIATION UNITS" INTERCEPTED


Figure 4-2. Energy Intercepted by a Unit-Width Horizontal Surface


[() ⁽

4-5

The monthly variation in solar radiation incident on a horizontal surface is shown in Figure 4-3 for Boulder, Colorado, in Btu/ft^2 day.

4-6

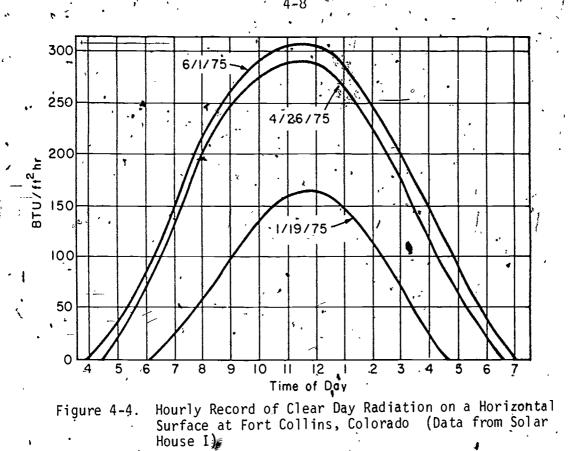
The monthly variations in energy on a horizontal surface are shown in Table 4-3 for selected cities in the United States.

Table 4-3

Monthly Variations in Energy on a Horizontal Surface Selected Cities, (U.S.) (Btu/ft².day)

· 、						
Ç' City	December	March	June	September		
Chicago, Illinois	· 280 ·	835	1 <u>6</u> 85	1152		
Tucson, Arizona	1122	1987	·2572	2098		
Washington, D.C.	, 6 11	,1266	1818	1.380		
Miami, Florida	<u>,</u> 1163	1 6 00	1958	ាតាទ្ធ 🕬		
Fairbanks, Alaska	22,	784	1855	. 662 .		
Los Angeles, Càlifornia	.887	1730	2193	1851		
			<u> </u>			

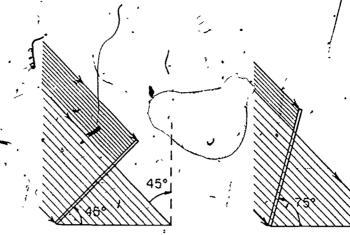
1.01


Daily Variations

The radiation reaching a horizontal surface varies from day to day, mostly due to atmospheric phenomena. Clouds, dust, and pollution can result in changes in the radiation received. Daily variations affect the performance of a solar system but the system can be designed on the basis of average conditions. For a heating system design, the <u>average</u> daily value for the coldest month (usually January) is of particular.

Hourly Variations

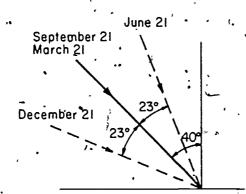
Hourly variations in available solar energy at a given location are due to the earth's rotation. Early morning sun is at a very low angle and the solar rays must pass through a large thickness of atmosphere. The intensity of the energy received is therefore low. The hourly peak in radiation occurs at noon, when the sun is at the highest angle and is passing through the minimum thickness of the atmosphere. Spince winter days are shorter than summer days, the period during which solar energy can be collected varies with season.

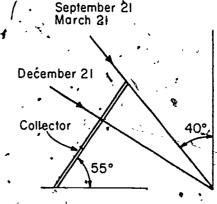

The solar intensity on a horizontal surface, measured in Fort Collins, Colorado is shown in Figure 4-4. The smooth curves indicate that these data were obtained on clear days. The presence of clouds would result in breaks in the curves. Note the higher intensity and. longer period of measurable radiation during a summer month as opposed to a winter month.

COLLECTOR TILT

Discussion so far has concerned only the radiation on a horizontal surface. In fact, when designing a solar collector, it is advantageous to tilt the collector so that it is perpendicular to the sun's rays. Figure 4-5 illustrates the increase in energy intercepted when a collector is tilted from the horizontal. Note that the optimum tilt angle places the collector at the same angle as the incoming radiation, Figure 4.5(b). When the collector is tilted to an angle greater or smaller than the angle of the incoming radiation the additional energy intercepted is reduced, Figure 4-5(c).

The maximum energy would be intercepted if the collector were to track the sun across the sky. This would mean both following the sun as it moved from east to west during the day and changing the collector tilt to match the season. Tracking collectors are available, but are not as yet practical for use in residential solar heating systems.




(a) Collector Tilt Angle O° (b) Collector Tilt Angle 45° (c) Collector Tilt Angle 75° Radiation Intercepted by a Horizontal Collector Additional Radiation Intercepted by Tilting Collector

45°

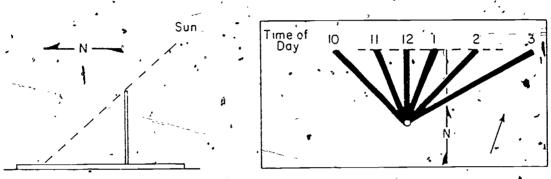
Figure 4-5. Effect of Tilting the Collector on Energy Intercepted

A compromise is to tilt the collector so that it is roughly perpendicular to the sun's rays at the time that maximum collection is desired. The best angle for a given location depends on the time of year, since . the sun moves across the sky at a lower angle in the winter than in the summer. For heating purposes, maximum collection is desired during the coldest part of the heating season. During this season, from about October until March, the sun's angle varies from 5 degrees to 23 degrees below a line drawn at an angle from the perpendicular equal to the latitude of the location (Figure 4-6-a). To maximize collection during the heating season a good compromise is to tilt the collector at an angle of about latitude plus 15 degrees. In Fort Collins, latitude 40 degrees, the collector should be tilted at about 55 degrees for maximum collection during the heating season. This is illustrated in Figure 4-6-b.

(a) December 21, Sun 23° below Lat. Angle from Perpendicular (b) Cottector Tilted at Latitude June 21, Sun 23° above Lat. Angle from Perpendicular +15° Maximizes Winter September 21 and March 21, Sun at Lat. Angle from Collection.

4-10

Figure 4-6.. (a) Variation of the Angle of Incoming Radiation with Season (b) Collector Tilt to Maximize Winter Collection, in Fort Collins, Calorado (Latitude 40°N)


In the northern hemisphere the collector should be tilted to the south; the opposite is true in the southern hemisphere. To maximize summer collection the collector can be tilted to latitude minus 15 degrees. If both summer and winter collection are desired, a good compromise is to tilt the collector to an angle equal to the latitude.

COLLECTOR ORIENTATION

Since the maximum intensity of direct radiation occurs at noon when the sun is due south (northern hemisphere), the direction of tilt for a collector should be directly south. If this is impossible due to building considerations, a variation of 15 degrees east or west of_due south can be tolerated without serious effect on the total energy collected.

An orientation 15 degrees east of south will advance the time of peak collection one hour; an orientation 15 degrees west of south will delay the peak one hour. In some cases a designer can take advantage of the change in peak collection. If, for example, the collection location is partially shaded in the later afternoon, facing the collectors east of south would increase the morning collection.

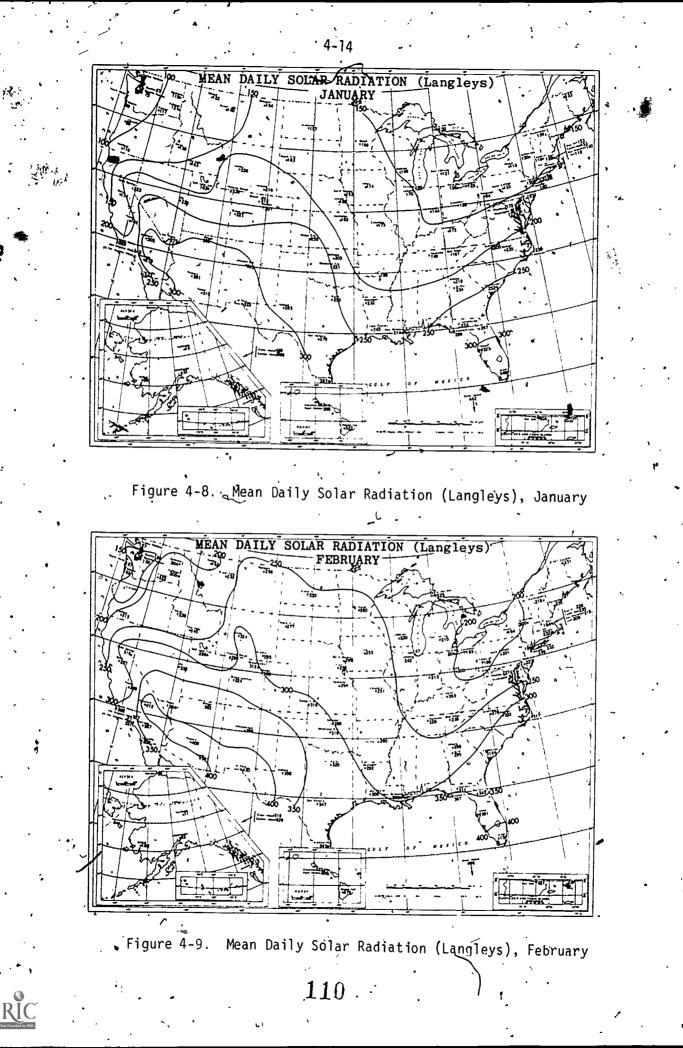
4-11

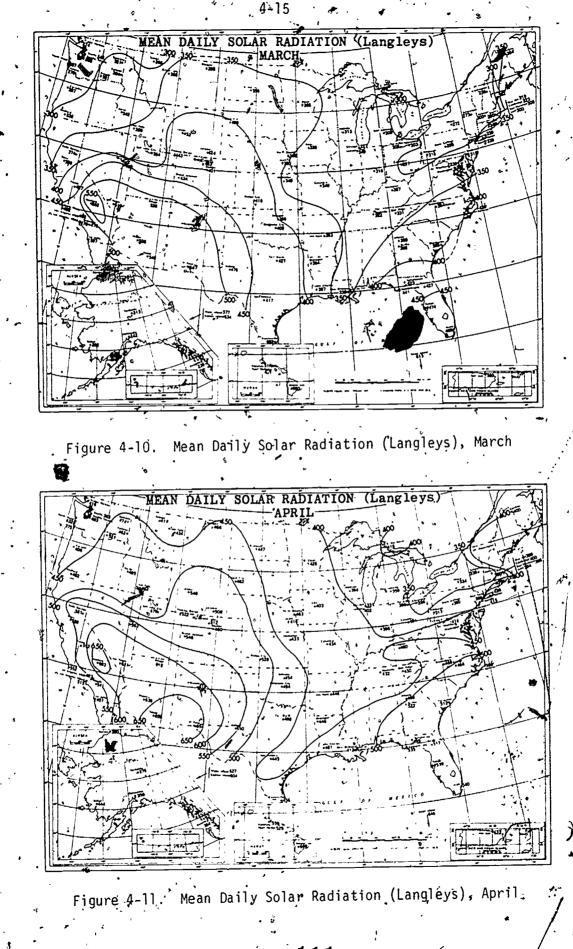
(a) Equipment Set-up (b) Resultant Sun-track Diagram Magnetic North Shown

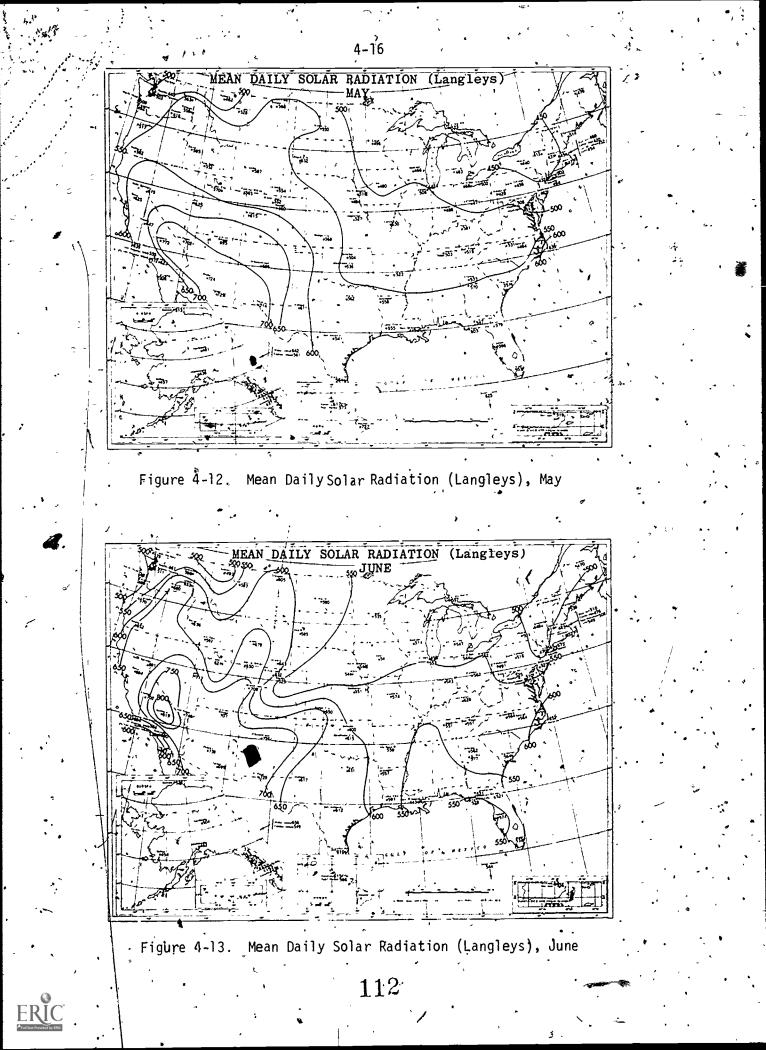
Figure 4-7. Shadow Diagram on a Horizontal Surface Showing the Passage of the Sun Across the Sky and the Determination of Due South, March 23, 1976, Fort Collins, Colorado

DETERMINATION OF DUE SOUTH

The effect of the passage of the sun across the sky during the day is shown in Figure 4-7. Such a shadow diagram can be used to determine due south for collector orientation. A line joining the tips of the shadows lies due east-west. By drawing a perpendicular to this line the northsouth line is determined. Note the deviation of true north from magnetic north as determined with a compass.


SOLAR DATA FOR SYSTEM DESIGN


4-12


Solar heating and cooling systems can be sized on the basis of monthly average daily radiation on a horizontal surface. Tabular values are listed for each month in Table 4-4, for many cities in the United States. The yearly average daily radiation for the cities is also included in the table. Because the data for specific locations are limited, and estimates for adjacent areas are necessary, it is convenient to arrange a graphical presentation of the distributions of the monthly average daily radiation iso-intensity lines on a map of the United States, as shown in , Figures 4-8 through 4-19. The values given in Table 4-4 and Figures 4-8 through 4-19 are in Langleys. For later use in this course, the map of Figure 4-8 has been redrawn, for continental U.S., with units of Btu per square foot in Figure 4-20.

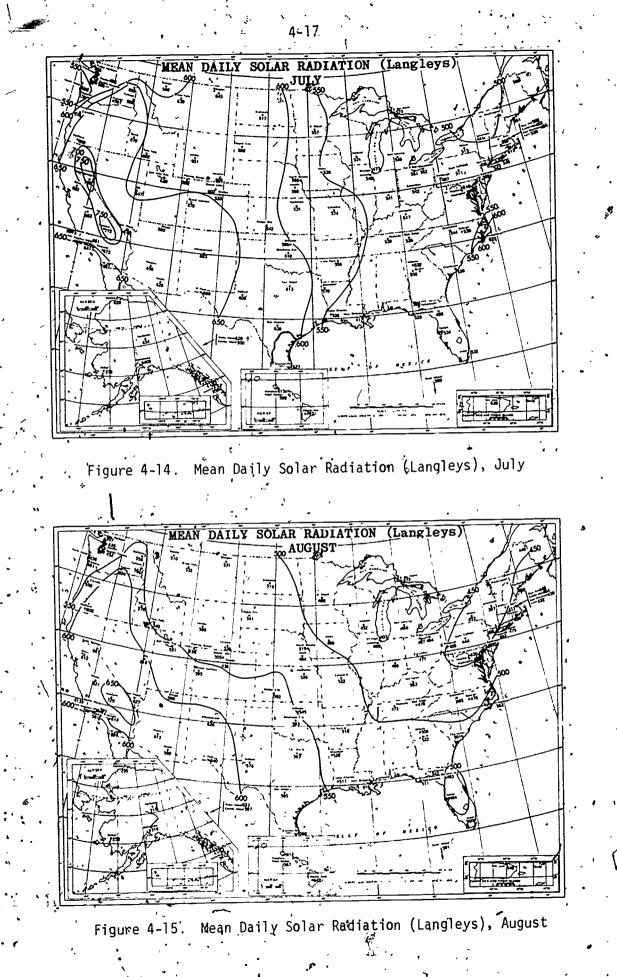
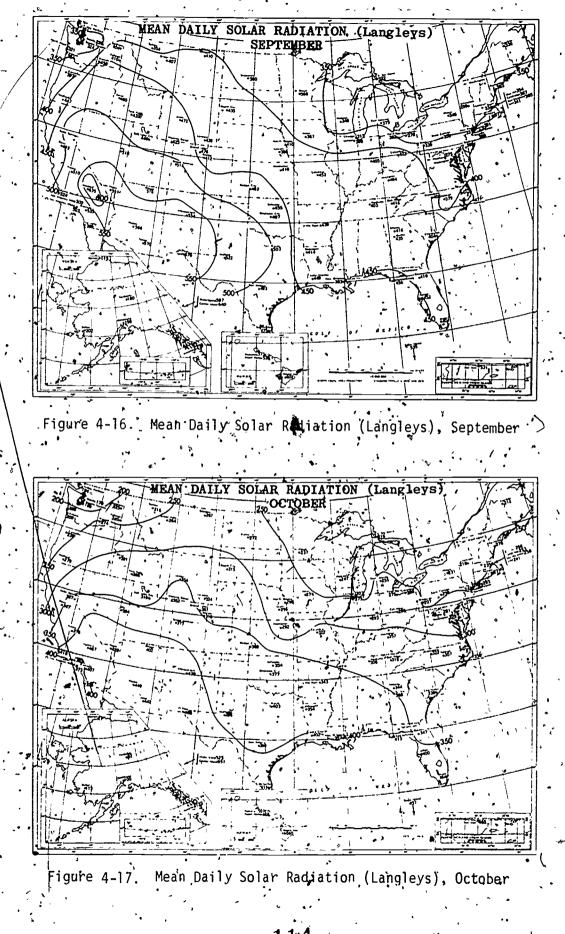
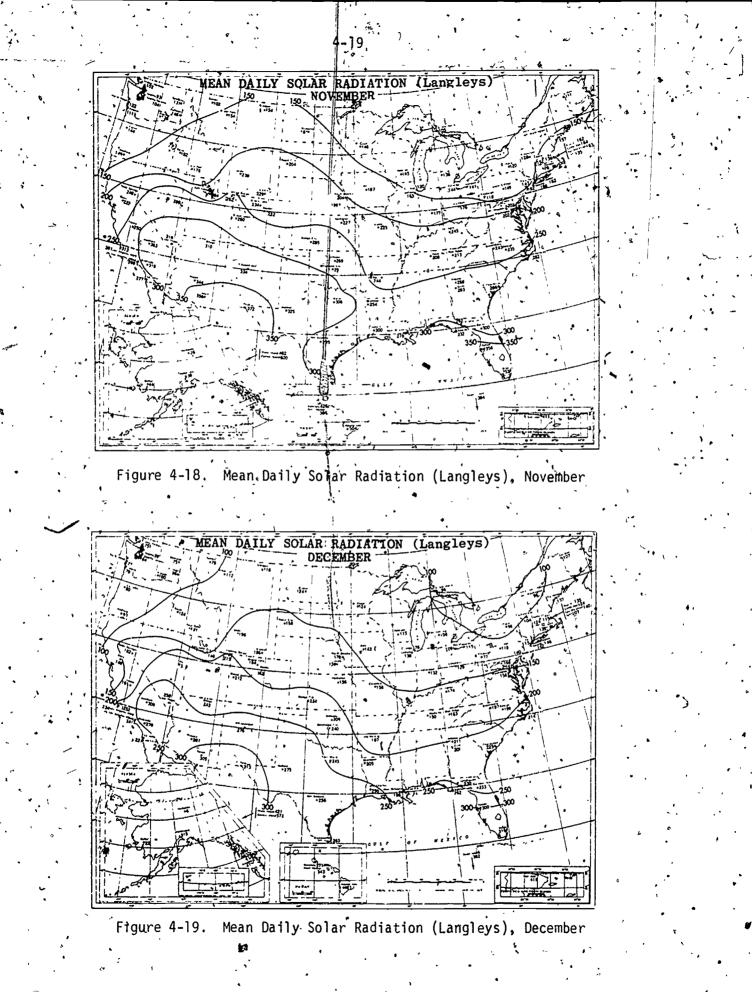
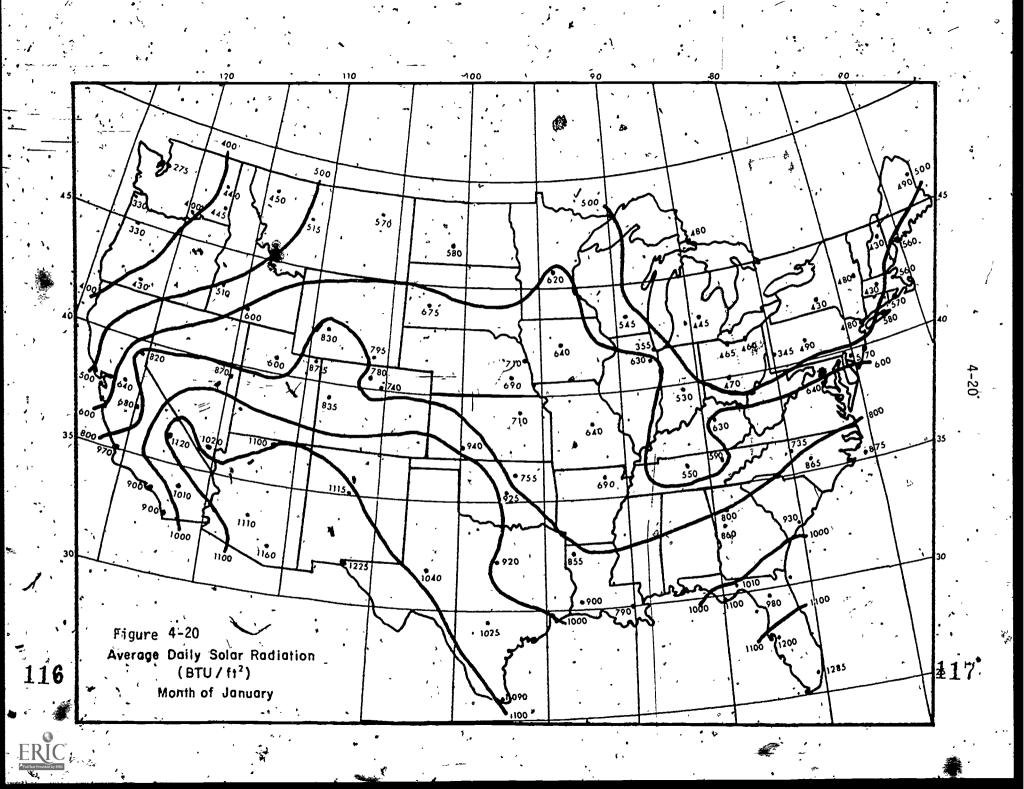

•	í e	· · · · ·						•			<u> </u>	
· · · · · · · · · · · · · · · · · · ·		MONTE	L, '			HONTHS						
	STATE AND STATIONS			STATE AND STATIONS	JAN	FE8 MAR	APR MA	JUN JUL	AUG SEP	OCT INO	V DEG A	nn' 1
		IN TES MARWAPR HAY JUN JIL AUG SEP OCT NOV DEC Ann 1		MONTANA, Glasgow	154	258 385	466 56	3 605 645	531 410	262 15	4 116 3	881
	ALASKA, Annette •	53 115° 236 364 437 438 438 341 258 1224 59 41, 243		· Great Falls	140	232 366	474 452	2 1603 1619	1532 407	264*115	4 1112 13	66 1
	Barrow	* 38 180 +380 513 528 429 255 115 41 * 206 28 173 292 444 457 454 376 252 202 115 44 22 233		Summit -	122	1162 1260	1 414 146	493 560	1510 164	- 216 LED.	2 1 76 13	12 1
-	Sethel Batrbanks	23 173 292 444 457 454 376 252 202 115 44 22 233 5 1 213 376 451 504 434 317 180 32 26 6 224	, i	NEBRASKA, Lincoln	188	259 350	416 49	544 563	519 410	298 +20	4 170 3	79
	hatanyska 🛶	32 242 356 436 462 409 314 198 100 28 15 224		Vorth Orwaa VEVADA, Ely	2.76	220 460	1 665 723	7713 647	- <u>618 518</u>	1 103 9 28	9 7718 14	69
5	'ARIZONA. Page	2. 3.2 526 618 695 707 580 596 516 402 310 243 498		Las Vegas	277	1204 1610	1621 70	2. 748 675	627 551	429 31	8 258 5	09
-	Phoenix	3/1 +03 526 638 724 739 658 613 566 449 344 281 520 5 311 540 655 729 699 626 588 570 442 356 305 538		MEN JERSEY, Seabrook	157	227 318	403 48	2 527 509	455 ; 385	278 19	2 140 3	3.3
	ARKANSAS, LITTLE Rock	11 161 353 446 522 569 566 518 439 343 244 187 1365		MEW HAMPSHIRE, Nt. Washington (NEW MEXICO, Albuquerque	202	218 238	عما فدما	5 726 683	626 354	438 33	4 276 5	512
	CALIFORNIA, Davis	1 1 7=7 310 528 525 694 682 612 493 747 222 + 148 431		NEW YORK, Ithaca	114	104 127	378 84	17501 515	1453 1346	1281 11Z	0 1 96 13	30Z
1	Fresno	24 . 3 127 552 647 202 682 621 510 376 259 4161 450	• `	. New York Central Park	1 7 0	500 100C	7 2050 1/2	2 1 / 7/1 / 60	1120 111	242 (14	1 115 12	YK 1
•	Inyokern (Chiña Lake)	243 302 307 457 506 487 497 464 389 300 277 221 380		Sayville	160	249 33	415 49	4 569 543 3 448 441	462 385	289 18	8 1104 2	982
	LaJolla Los'Angeles WBAS	243 31 470 515 572 596 641 581 503 373 289 244 463	•	Schenectady Upton	163	212 11	1. 1428 511	2 573 943	475 391	293 18	2 146	355
	- Los Angeles "WBO"	1227 377 336 483 555 584 651 581 500 367 281 234 436		and the loss of the	200	1.2.16 1.201	ACO IC 2	1 7267 7577	100 106	1 322 1 24	7 1 197 1	585 1
\sim	Riverside	275 257 073 541 623 680 673 618 535 407 819 270 483		- Hatteras c	238	317 42		5 652 625	562 471	358 28	20214	43
`	Santa Maria * Soda Springs	24, 345 492 552 635 694 660 613 524 419 313 252 481 23 315 374 551 615 6914 760 681 510 357 248 182 459		Dalaadh	235	302	466 49	4 564 535	516 300	272 36	124	369
-	LOLORADO, Boulder	[21:1 "67 40' 460 460 525 520 499 412 310 222" 182 367	ſ.	NORTH DAKOTA, Bismarck 🔍 🕻	125	: 183 : 30	3 286 50	2 562 562	494 278	289,14	i ;ii⊃ je	135
	- Grand Junction	1 - 374 434 546 676 708 676 595 514 373 269 212 456		Columbus	172	200 29	7 30 47	1 : 562 - 542	477 422	286 1/	6 129 1	340
	Grand, Lake (Granby)	27 3 223 512 552 632 600 505 476 261 234 184 447 (*2 265 344 411 551 494 536 446 375 239 211 666 356	1	Put-in-Bay	1 26	204 120	2 1 786 <u>i 46</u>	8 544 561 6 615 610	487 1 382	275 14	4 109	332
	+ D C , Wasnington (C.O.) American University	152 231 322 398 46 20 510 496 440 364 278 192 141 333	Ι.	-OKEAHOMA, Oklahoma City	201	1 200 200		A 1400 1506	1 545 1 455	1 354 1 26		4በ5 1
	Stiver Hill	177 247 342 438 513 555 511 457 391 293 202 156 357	1.1	Astoria	90	162 27	1 375 49	2 1469 1539	461 354	209.11	F 1, 18 []	30]
	FLORIDA, Apalachicola Belle Isle	272 367 441 535 603 578 529 511 456 413 332 262 444		115	00	1 + 120	7 1 407 151	7 570 1676		1235119	4 00 .	•
	Belle Isle	257 343 427 517 157 521 488 461 400 366 313 221 57 257 343 427 517 579 521 438 483 418 347 300 235 4		and and		11/0 201		2 652 698		1 202 111	81 77 (2802
	Gainesville Hidmi Airport	1237 343 427 517 1-579 521 488 463 460 347 203 235 4 123 115 389 540 553 532 532 515 440 324 353 316 451		State College	122	201 29	5 1 317 - 42	6 518 511	444 358	256 14	19 118	318
•	Tallahassee	2 2 311 423 499 547 521 502 542 * * * 292 230		RHODE ISLAND, Newport	155	232 33	4 405 47	6 518 511 7 527 51	455 377	271 ,17	6 139	339
	Tampa	27 39 374 539 596 574 534 494 452 400 356 300 453		SOUTH CAROLINA, Charleston	252	314 38	8 512 5	1 564 520 2 585 590	501 404	338 28	36 225	404
•	GEOPGIA, Atlanta	23 27 280 1439 533 562 502 508 415 341 26° 211 396 23 275 335 522 570 577 556 522 435 368 283 201 413	1	SOUTH DAKOTA, Rabid City	183	277 40	2 482 53	3 551 530	473 40	3 308 20	08 150	355
	HAWAIIHonotulu	363 422 516 559 617 615 615 512 573 507 426 31 516 522 = 5 520 689 727 7 • 703 642 602 560 504 481	· ·	TENNESSEE. Nashville Oak Ridge	161	239 33	1 450 . 51	8 551 526	478 41	5 318 21	13 103	364
L.	Mauna Loa Obs 🧋 🕻	522' - 5 520 689 727 7 . 703 642 602 560 504 481		TEXAS, Brownsville -	20.5	' 241 ' AO	2 1 456 ' 56	4 610 62	7 ' 568 479	5 ' 411 ! 29	96 ' 263 I I	442 1
	- Pearl Harbor	353 - 0 427 529 573 566 598 597 539 466 386 343 484 122 225 343 485 565 636 670 576 460 301 482 124 395	4	· El Paso	333	430 54	7 654 7	4 729 660 2 651 61	640 570	460 3	72 313	530
	IDAHO. Boise Two Falls	1'63 740 355 462 552 592 602 540" 432 286 176 131 378	i i	Fort Worth Hidlard	250	1 360 / 47	6 5 5 5 1 6	1 \$ 61 7 602	§ 574 527	1 340 1 31	23 273 1	400
	ILLINDIS, Chicago (3)	1 se 127 - 27 - 331 - 424 - 458 - 473 403 - 313 - 207 + 120 + 76 · 273	ł.	San Antonio								
	Lenont	1	1	IJTAH, Flaming Gorge	238	298 44	3 522 50	612 - 63 5 650 59 0 621 62	538 42	5 352 20	52 215	425
	INDIANA, Indianapolis	24 213 716 1395 488 543 541 499 405 293 147 132 5 		Salt Lake City	163	256 35	4 4/9:5 0 11/1 1	0 621 62), 551, 447)	5 281 20	02 168	350
	IOWA, Ares KANSA Dodge City	145 . 6 213 528 568 650 642 592 493 389 285 234 447	10	VIRGINIA, Mt Weather		167 25	7 187 5	18 525 51 19 487 48	436, 32	205 1	22 77	
	Manhattan	1 12 264 345 433 527 551 531 526 410 292 227 156 371		Friday Harbone								320
•	KENTLCKY, Lexington	253 357 489 581 528 617 563 494 357 245 174 411 245 205 397 481 555 591 526 511 449 402 300 250 412	•	Friday Harbon - Prosser	1 1 7 7	' 227° 15	1 521 6	6 690 70	7 604 45	5.244.1	36 HINU	
	LOUISIANA, Lake Chaples	245 26 397 481 555 591 526 511 449 402 300 250 412 - 537 335 7412 419 443 417 416 383 357 278 198 347	1. * -	Pullman Unitesty of Washington	121	205 30	5 364 A	8 653 69 15 461 49	5 435 29	9 170	93 59	272
	New Orleans - Shreveport	37 232 394 446 558 557 578 528 414 354 254 205 400	1	Seattle-Tacona .	-	110 4 20		12 611 56	: 1 AS2 + 12	1 188. li	04 1 64 1	300
	MAINE, Caribour	3 231 64 400 476 470 508 448 336 212 111 107 316	· _	Sookane WISCONSIN, Madison		A #204 22	1 . 474 1 5	53 596 466	5°556 49	247 1	311 /5;	361
	Portland	12 235 352 409 514 539 561 488; 383. 278, 157 137 359 56 300 431 514	1	WISCONSIN, Madison	143	220 31	3 394 4	6 514 53 7 678 65	585	54 7	45 115 39 196 1	441
	MASSACHUSETTS, Amherst	135 727 3 369 469 510 502 449 354 266 162 135 324	1	AYOMING. Lander	216	290 42	44' 608 : 5	54 643 60	5 636 -43	8 . 524 . 2		
	Boston	1 23 124 230, 350 445 483 486 481 3347 235 36 115 30	` ´	INLAND STATIONS		1 1		•	•		1 1	
	Cambridge	153 235 323 400 420 476 482 464 367 253 164 124 322 47 219 305 385 452 508 495 436 365 258 163 8140 322	11	Canton Island	588	,626 6	4 604 5	51 540 55 19 536 63	n 597 64 n 540 57	U 551 6 1 460 9	11:411	597
	East Wareham	1^{-3} 2^{19} 3^{10} 3^{10} 3^{10} 452 5^{100} 4^{10} 4^{10} 4^{10} 4^{10} 3^{10} 2^{10} 103 8140 105 102		San Juan XP R • Swan Island *	125	481 58	5 1 646 1 6	19 530 63 25 544 58	8 591 53	5 457 1 3	04 382	526
	Lyrn MICHIGAN, East Lansing .	777 357 383 547 540 466 373 255 136 108 311	1	Wake Irland	39	518 . 57	7 62 6	25 544 - 58 47 856 62	9 623, 5P	7 525 4	82 421	560.
	Sault Ste Marie	1 22 22 216 416 523 557 573 472 322 216 105 961 332			¥-#-4				•			•
	MINNESOTA, St Cloud	25 263 263 426 434 535 557 486 365 237 146 124 348 251 251 23 434 530 574 574 522 453 322 2251 158 380		NOTES Denotes only one year of	data	for the	month	no means co	mpufed		•	
	MISSOUPI, Columbis (C.O.) University of Missouri	1.6. 243 324 423 501 560: 583 509 417 324 177 146, 365		No data for the month (p	r int	complete -	daga ™or t	he year)	· .	~ `		,
	U University or missouri		· •	• # Rarrow is in darkness du	ring	the wint	er months					
	- · · ·		`	 Madison data fter 1957 n Priverside data prior to 	Ot u! Marr?	500 000 1 1 1452 no	p exposure t used - 3	nstrumenta	, discrepan	cies		
										•	•	
	•			Langley is the unit used to den		voe gra≞.	caronie pe	yquare ce				
	● , , , , ,			•		-				•	4	

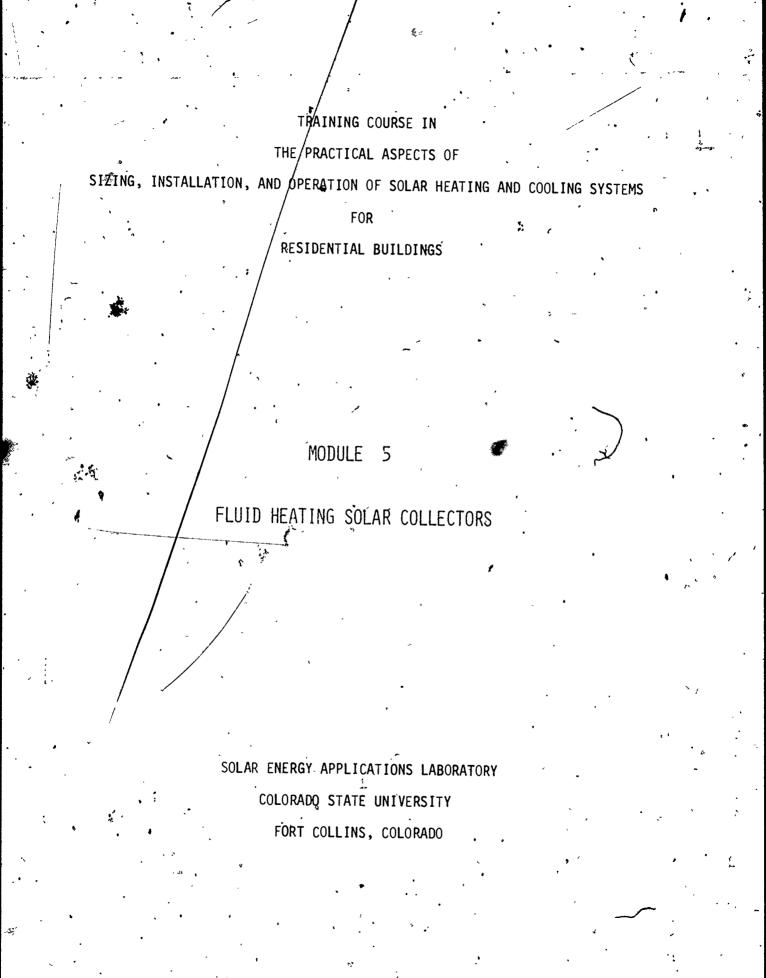
Table 4-4, Mean Daily Solar Radiation (Langleys)



113


1.




.4-18

114

FRIC

118

.

	TABLE.0	F CONTE	NTS			· ·
					, 2	- •
LIST OF FIGURES.	• •	· · ·	•			5-ii
LIST OF TABLES	• •	•	•	•	• • • •	. 5-ii *
· · · · ·	,		•	۵		•
INTRODUCTION		•	•	•	••••	. (5-1
OBJECTIVE		¥.	• _	•		5-1
BASIC PRINCIPLES	• • •	•	. •	· .`	*	. 5-1
SOLAR SWIMMING POOL HEATERS	• •			•		5-2
FLAT-PLATE LIQUID-HEATING SO	LAR COLLE	CTORS		·		. 5-3
TRANSPARENT COVERS .	•••	к. к •	•	•		. 5-5
ABSORBER PLATE .	•••	•	(.	•,		. 5-6
Material .		۰	`.		•	. 5-6 .
Pressure Drop Thro	∖ ugh the A	bsorbei	r Plat	e	•	5-6
BLACK ABSORBER COATING	• •	•	•	•	•	. 5-8
CORROSION	• •		<i>.</i>	•		. 5-9
LIQUIDS • . • .			•	•		. 5-11
· FLAT-PLATE AIR-HEATING SOLAR	- COLLECTO	RS.				. 5-16
SOLAR COLLECTOR EFFICIENCY		•	1.1			. 5-17
STEADY-STATE COLLECTOR E	FFICIENC	Y	•		· · ·	. 5-17
DAILY COLLECTOR EFFICIEN		·· •	•	• ' •	•	
۰ - ۲	·····	•	•	• •	•	. 5-21
STAGNATION TEMPERATURE	• •	••	•	•	•	- 5-22
COLLECTOR ARRAY.	• •	٠		• * •	•	. 5-23
	, , ,		,			

`5-

Ξ

LIST OF FIGURES

5-11

Figure		•	•	Page .
5-1	Solar Collector Cross-Section	•	•	5-4
5-2	Solar Collector Module	•	 、•	5-5 🌋
`5- ₇ 3	CSU Solar Collector Absorber Plate Dimensions.	4,	•	5-7
5-4 (Definition Sketch for Fluid Flow Distribution, A Solar Collector Array	•	•	5-8
5 - 5 🔪 🦯	Installation of Protective Measures in a Solar Collector Loop	•	-	5-12
5-6	Cross-Section of an Air Heating Solar Collector	•	•	5-16
5-7	Solar Collector Efficiency 🔭	•	•	5-18
5-8	Typical Arrangement of Internally Manifolded Collector Modules in an Array	ه • د	, ,	5-23

LIST OF TABLES

Table		•	Page
• 5-1-	Galvanic Series of Metals and Alloys in Aqueous Solutions	· · · ·	5-9
5-2	Composition of a Suggested Corrosion Inhibitor Additive	, • •	5-11
5-3 i	Concentration of Ethylene Glycol Required for Freeze Protection	·	5-13
5-4	Cost of Two Heat Transfer Liquids	• •	5-15
^{~~} 5 <u>-</u> 5	Some Physical Properties of Dowtherm J and Therminol 55	- <u>-</u> · ·	5-15
5-6	Description of Solar Collectors Plotted in Figure 5-7.	· · ·	5 - 19
5-7	Mean Daily Collector Efficiencies for Each Mor of the Year	nth · · ·	5-22
			• •

120

INTRODUCTION

The purpose of this module is to identify and explain those principles which influence the design, operation, and installation of solar collectors and to indicate items that may require maintenance.

OBJECTIVE⁻

At the end of this module, the trainee should be able to:

- 1. Identify and describe the functions of the individual components of a solar collector,
- 2. Compare the performance between various
- Describe methods of preventing corrosion and freezing of collectors,

Describe the function of various fluids in collectors,
 Recognize effect of system design changes on collector
 Seperformance,

6. Install a typical solar collector array,

Explain the factors contributing to solar collector durability.

BASIC.PRINCIPLES

A solar collector is a means of intercepting incident solar radiation, converting this radiation to heat, and delivering useful energy to the building. A collector consists of an absorber plate (commonly a black metal surface) which absorbs the incident solar radiation and converts this solar energy to heat. A portion of this heat is trans-**. ferred to a fluid and then transported to another part of the system. In the process of collecting energy and transferring the heat, the absorber plate will lose some of the heat to its surroundings, so other components of the solar collector are provided to reduce the heat losses.

Heat is lost from the absorber plate by radiation, convection, and conduction. Insulation beneath the absorber reduces the heat loss through the back of the collector, and the transparent covers reduce the heat losses from the "front" of the collector. A glass cover, which is opaque to the thermal radiation emitted by the plate, will reduce convection losses to the outside air because the air space between the absorber plate and cover restricts convective air motion.

The useful energy from a solar collector is transferred to a fluid and delivered directly to the building or to storage, where it can be used at a later time. The two principal types of fluid heating solar collectors are liquid-heating solar collectors and air-heating solar collectors. Liquid heating collectors normally use water or a solution of water and ethylene glycol (antifreeze), but numerous other liquids can be used.

Flat-plate solar collectors absorb both direct and diffuse solar radiation. This-is an important aspect of collectors, especially in areas where a large proportion of solar radiation is in the form of diffuse or reflected radiation.

SOLAR SWIMMING POOL HEATERS.

A solar collector should be designed to provide heat at the required temperature. For example, to heat swimming pools, collectors may deliver heat at a very low temperature and, consequently, require simple and inexpensive designs.

Perhaps the simplest method of heating swimming pools with solar energy is to cover the water surface with a large, thin, transparent (to solar radiation) plastic sheet. The cover will reduce heat loss due to evaporation, as well as heat losses by other forms and can be expected to increase the pool temperature by 12 to 20°F above mean ambient temperature (a summer average of about 15°F).

More conventional flat-plate collectors, available for heating swimming pools, usually consist only of a black plastic absorber. Usually these simple collectors do not utilize any transparent covers_at all, since the plastic is not capable of withstanding the high temperatures that would be experienced under no flow conditions. While the fluid temperatures achieved by these collectors are low, they are adequate for swimming pool heating. The efficiency of a simple flat-plate collector is low, but the installed cost of the collector is also low, so that the cost-effectiveness, in terms of Btu per dollar, is reasonably high.

FLAT-PLATE LIQUID-HEATING SOLAR COLLECTORS

The cross-section of a practical flat-plate liquid-heating solar collector with a tube-in-plate absorber is shown in Figure 5-1. The drawing shows a collector mounted on roof sheathing, but the collector could be mounted directly on the roof trusses and a sheathing is not needed if the insulation can be supported.

The spacing between the glass cover and absorber is about one inch, with another inch between the lower cover glass and the top cover glass.

5**-**,3

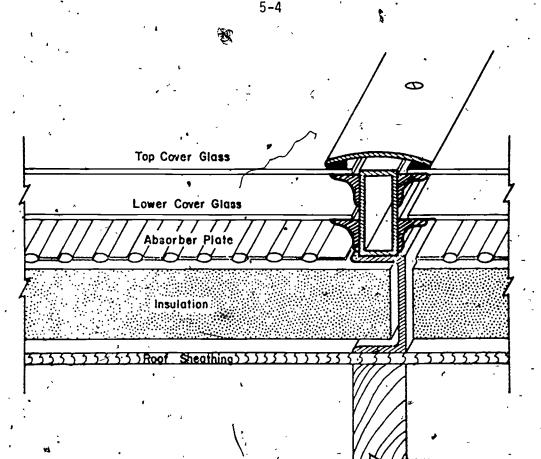
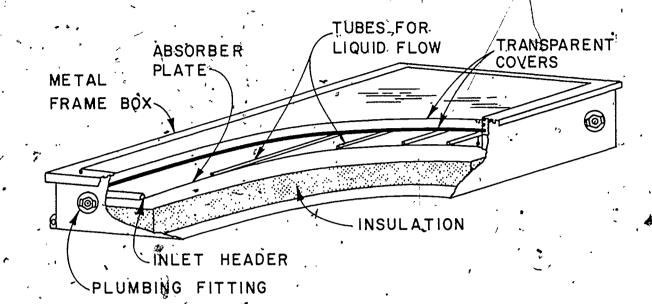



Figure 5-1. Solar Collector Cross-Section

Two to four inches of insulation would be appropriate. A composite insulation consisting of one inch of unbonded glass fiber mat on 1.5 inches of Fesco-Foam $^{\textcircled{R}}$ insulation would be suitable, with the glass fiber adjacent to the absorber plate to withstand a possible high temperature.

A collector which can be fabricated at the factory is shown in Figure 5-2. The unit is installed as a module in an array of collectors. A factory-assembled collector is typically about 3 feet by 6 feet, although there is considerable variation in sizes. The depth of the collector is about seven inches.

5-5

్,

Figure 5-2. Solar Collector Module

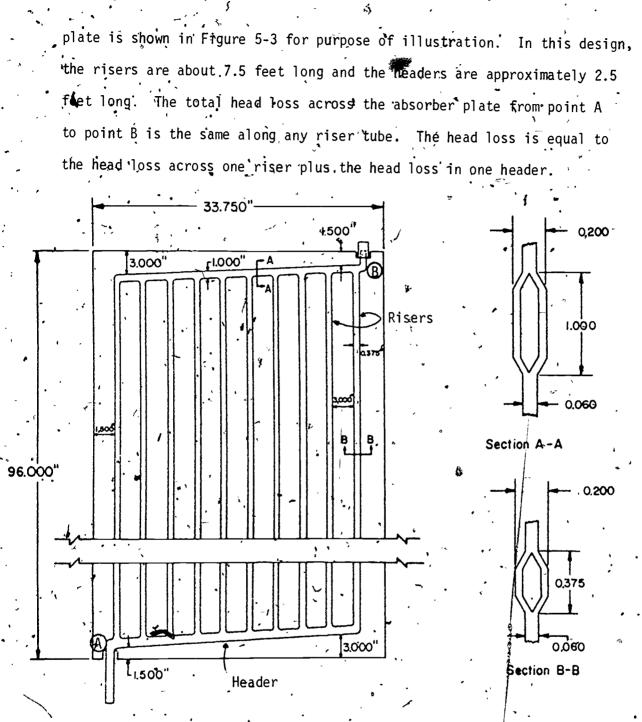
TRANSPARENT COVERS

The physical and optical stability of thin transparent plastic films and sheets under ultraviolet radiation and also at the high temperatures that are developed in solar collectors is not well established. Tedlar and polycarbonate sheets have been used, but glass is commonly used for solar collectors. The optimum number of glass covers depends on collector design, the fluid temperature desired; and the outdoor air temperature. For flat-plate collectors in systems that are used only for winter heating, one glass cover is suitable, where average winter air temperature is greater than about 45°F. Two glass covers should be used for collectors in colder climates.

While there is some questions of glass breakage from wind and hail storms, use of tempered glass and small collector widths will reduce risks of glass breakage.

ABSORBER PLÁTE

<u>Material</u> 🐲


Metal is the best material For absorber plates. In liquid-heating collectors, the tubes must be thermally bonded to the absorber plates to conduct the heat from the plate to the tube wall. The thermal contact between the tube and the absorber plate is satisfactory with tube-in-sheet absorber plates. The cost of an 1100 alloy aluminum Roll Bond R is about one dollar per square foot.

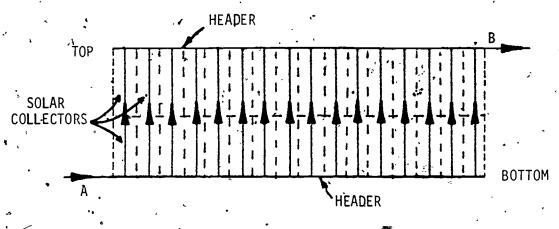
A major difficulty in the use of aluminum is the possibility of corrosion of the tube walls. While corrosion can be effectively limited by additives in the heat transfer fluid, it is not totally inhibited. Copper or steel absorber plates are also used quite extensively, but copper tubes are expensive and steel plates are heavy. Some absorber plates consist of copper tubes bonded to a less expensive metal plate.

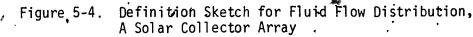
Pressure Drop Through the Absorber Plate

The pressure drop through the tubes of an absorber plate is a function of the flow rate through the tubes. The flow rate, in turn, is selected on the basis of a desired temperature increase in the heat transfer liquid from the inlet to the outlet. The flow rate will vary, with the temperature in the fluid because the viscosity of the liquid varies with temperature. A temperature rise across the collector of about 15°F with peak insolation is a reasonable design basis. The flow rate through the tube to achieve the temperature rise is about 0.02 gallons per minute for each square foot of collector.

'It is important to achieve a finite pressure drop along the tubes attached to the absorber plate (or in the plate) to assure satisfactory flow distribution among all the tubes. A practically-sized absorber

5-7


Figure 5-3. CSU Solar Collector Absorber Plate Dimensions


It has been experimentally determined that satisfactory flow distribution in a solar collector is achieved when the head loss along one header is jess than one-tenth of the total head loss from A to B. Likewise, when solar collector arrays are arranged, it is important that the flows

be equal through all the collectors. The headers, shown in Figure 5-4, should be sized so that the head loss along one header is about one-tenth the total head loss from points A to B.

5-8

BLACK ABSORBER COATING .

There are many types of paints to coat absorber surfaces. An acceptable black absorber coating, suitable for air and liquid collectors is a 3M brand Nextel[®] Black Velvet Coating. A Nextel[®] primer is recommended before the coating is applied. One gallon of the paint (also the primer) covers about 200 square feet of absorber surface area. The solar reflectance of this coating is less than two percent. Because all paints contain some amount of binders, the painted surfaces should be heat treated at about 300°F for about 3 to 4 hours. Pre-heating.will prevent off-gassing from the absorber coating and condensation of volatile components on the lower cover glass. The condensation of solar radiation through the glass.

Black paints are inexpensive and relatively easy to apply, but there are some disadvantages. While there is high absorptivity of the solar

radiation with a black paint, there is also high emissivity. High emissivity results in high radiation heat loss from the absorber. There are special black selective surface materials which result in high absorptance of solar radiation and low emittance of thermal-radiation. Selective surfaces convert a large fraction of solar radiation to heat and suppress radiation heat loss so that more useful heat is delivered from the collector when compared to one with a black painted surface. Various selective surfaces are being developed by many collector manufacturers and in the next few years some are likely to be used for flat-plate collectors.

519

CORROSION

Table 5-1 lists a galvanic series of metals and alloys in aqueous solutions. In the list, the metals at the top are easily corroded, while-those at the bottom are not easily corroded in an aqueous solution.

Table 5-1

Galvanic Series of Metals and Alloys in Aqueous Solutions

				•	
Easily Corroded	•		´•	Magneśium Zinc	
5		Ł		Aluminum Steel or Iron	
. 1	•		j.	Cast Iron . Lead	
	-	•		Tin	
	۰ •			Brass .	·
				Copper	
,				Bronze	•
,	•			Chromium-Iron Silver	
Difficult			,	Graphite	
to Corrode				Gold Platinum	

Magnesium is sometimes used for sacrificial anodes to protect zinc, iron, brass, copper, and bronze but this must not be done if aluminum pipes or absorbers are used in a water system.

Electrolytes, other than hardness and alkalinity, promote corrosion. The presence of calcium, bicarbonate, metaphosphate, and monohydrogen phosphate ions assists in corrosion control. The presence of silica, organic color, and borax is beneficial. Factors which aid corrosion of metals in aqueous solutions are dissolved oxygen, acids, sulfides, tin, copper, cobalt, nickel, and lead as well as the presence of magnesium (in aluminum systems), chloride, sulfate, nitrate, carbonate, and hydroxide ions. Water circulated through solar collectors should not be permitted to become acidic because corrosion is more rapid in acidic water solutions than in neutral or slightly basic solutions. The water should be drained if it becomes acidic.

Corrosion is minimized when the dissolved oxygen concentration is zero. The free oxygen in an air-tight system collector loop will be lost as some corrosion takes place on the pipes in the system.

A corrosion inhibitor that could be added to the water in the collector loop is presented in Table 5-2. The recommended concentration in water is 1.5 percent by weight, giving a pH of between 7.5 and 8.0. The inhibitor cost is about 60 cents per pound, and with the suggested mix, the cost is about \$70 per 1000 gallons of water.

Automotive grade ethylene glycol solutions also contain corrosion , inhibitors. If the composition of the corrosion inhibitor is not given, further information should be sought. One should be especially careful with aluminum tubes and pipes. In general, a 30 percent concentration of automotive grade antifreeze which contains corrosion inhibitors is needed to obtain sufficient protection against rust and corrosion.

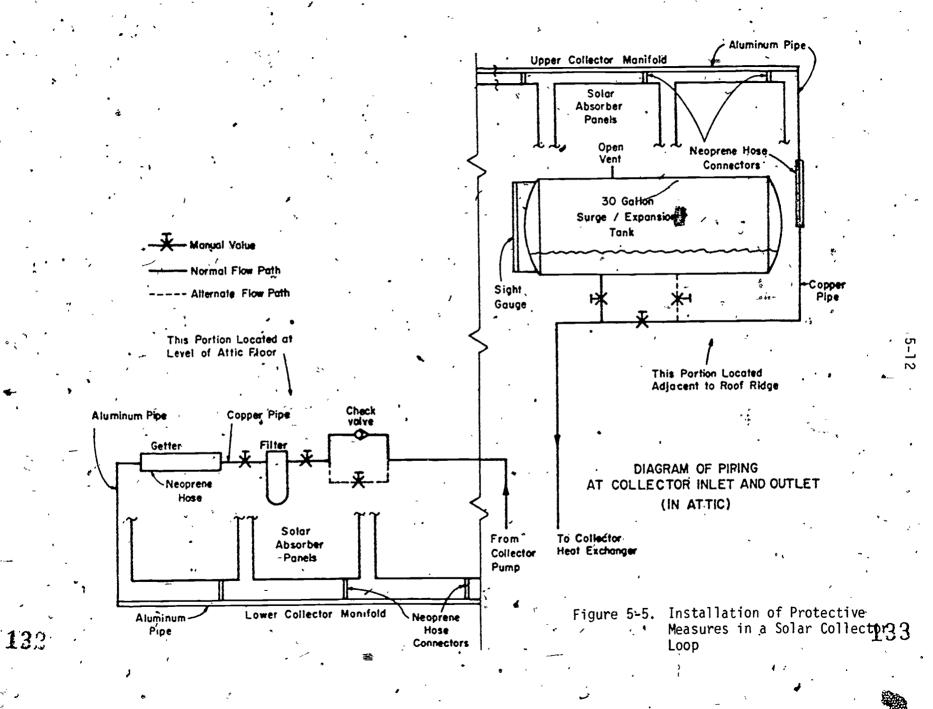
1:30

• 5-10

Table 5-2

Composition of a Suggested Corrosion Inhibitor Additive

- Concentration	• Optimum Percent by Weight
Mercaptobenzothiazole (technical grade, 92% min)	15.1
Sodium borate decahydrate Na ₂ B ₄ 0 ₇ · 10 H ₂ 0 <u>(b</u> orax)	. 75.7
Anhydrous disodium phosphate Na ₂ HPO ₄	9.2 ,
4 ex	100.0


1

Removal of small particles by filtration will reduce erosion of the small tubes in the absorber of the collector. A filter which will remove particles greater than 50 microns is satisfactory, but the pressure drop across the filter may be too large if the flow velocity is high. Fifty micron filters may be used initially in the system, and later a change to about 350 micron size may be made.

Heavy metal ions (such as copper and iron) can react with aluminum by displacement of the aluminum and deposition of the other metal. To minimize such ion exchange, an ion getter can be used. An ion getter with an aluminum window screen placed in the pipeline has been used satisfactorily. Various protection devices in a collector loop are shown in Figure 5-5. A filter, ion getter, and non-metallic hoses connecting pipes of different materials are shown in the figure.

LIQUIDS

Experience indicates that an ethylene glycol concentration of 10 to 20 percent is adequate to prevent pipe and tubing from bursting when

exposed to temperatures well below the freezing point of the mixture. If the liquid in the system is static and flow at low temperatures is not required, it is unnecessary to use glycol concentrations as high as indicated in freezing point tables. However, it is important that the pipes leading to a collector are protected from freezing so that flow is always possible. Otherwise, the liquid in the collector may boil even in midwinter and, if the pipes are frozen; the tubes in the absorber could burst from excessive pressure.

Adequate freeze protection for a water collector can be obtained with antifreeze concentrations that are less than those required in an automobile radiator, as the purpose of the antifreeze is to prevent damage to the collector, but not to prevent the formation of ice crystals. In Table 5-3, the temperatures and percent ethylene glycol concentration in water (by volume) have proven to result in a slushy condition which, while very dense, does not result in damage to the tubes. If the corrosion inhibitor additive in the antifreeze is to be utilized, the minimum concentration should be about 30 percent.

Table 5-3

Concentration of Ethylene Glycol Required for * Freeze Protection

Percent Ethylene Glycol by Volume in Water	Minimum Temperature for Freeze Protection, °F*	
0	, 32	
5	26	
10 🖌 .	16	
15	2	
· 20 ُ	-18	

134

5-13

Thermal decomposition of ethylene glycol takes place at about 329°F. The rate of thermal decomposition is very low in this temperature range and, unless significantly higher temperatures are encountered, thermal decomposition of the antifreeze additive will not be a problem. A maximum temperature of 300°F is suggested in the absence of dissolved oxygen in the solution, and lower temperatures are recommended to extend the service life of the liquid solution.

In the presence of air, ethylene glýcol degrades more readily than without air. A portion of the degradation product results in an acidic solution which promotes corrosion. If simultaneous exposure to oxygen and elevated temperatures of the ethylene glycol solution cannot.be avoided, then the temperatures must be moderated. The allowable maximum temperature depends upon the degree of aeration and the desired service life of the solution. A temperature of 250°F may be acceptable when the only source of air is a vent or vacuum breaker line. Anti-oxidants are helpful in some applications. Ethylene glycol concentrations greater than 60 percent by weight are not used because the minimum ireezing point is achieved at 60 percent.

The price of two other heat transfer liquids are given in Table 5-4 Dowtherm J is currently being used in the Phoenix solar heated house in Colorado Springs, Colorado. Therminol 55 is used in high temperature solar collectors. Some of the physical properties of the two liquids are given in Table 5-5.

Dowtherm J is non-corrosive toward all metals or alloys commonly used in solar systems, such as steel, copper, aluminum, and stainless steel alloys.

Oxidation is a problem when heat transfer fluids at high tempera-

•	• .	
	Priće pe	r Gallon
Quantity and Container Size	Dowtherm J	Therminol 55
5 gallon cans		, 16 :10 · - ,
ן drum* 🖇 א 💊	4 4.60	2.90
5 drums	4.10	2.90 👧
1-`9 drums		2.90
20 drum	3.99	(
10 - 59 C ums	· · · · · ·	2:60
60 drums or more		÷ 2.20
4,000 gallon tankatruck	· 3,77	
40,000 pounds of more		1,50
*55 gallon drums (each conta	ins, 400 pounds of	f Therminol 55)

Table 5-4

Cost of Two Heat Transfer Liquids

Table 5-5

Some Physical Properties of Dowtherm J. and Therminol 55

	•	*
Property	Dowtherm J	Therminol 55
Operating temperatore range, °F	-100 to 575	5' to' 600,
Pour point, PF:		-40
Boiling point, °F	358	• 635
Flash potnt, °F	145	355
Fire point, °F.	155	. 410
Auto ignition temperature, °F :	806 -	• 675 .
		B*1

can <u>cause</u> the fluid viscosity to increase and insoluble material to be formed. The insolubles will decrease the heat transfer rate at the tube walls, increase film temperatures, and accelerate thermal degradation of the tube walls.

136

5-15

Dowtherm J is resistant to both thermal degradation and oxidation. To prevent oxidation in open systems, the temperature of Dowtherm J liquid should not exceed 300°F.

FLAT-PLATE AIR-HEATING SOLAR COLLECTORS

"A cross-section of a typical air-heating solar collector is shown in Figure 5-6. The conversion of solar radiation to heat is exactly the same as for liquid-heating collectors. Because air is used as the heat transfer medium, the air passage is a duct, instead of tubes in liquid collectors, and the top surface of the st forms the absorber plate.

 Top Cover Glass

 I.lower Cover Glass

 Black Absorber Surface 1
 1/2" to 3/4"

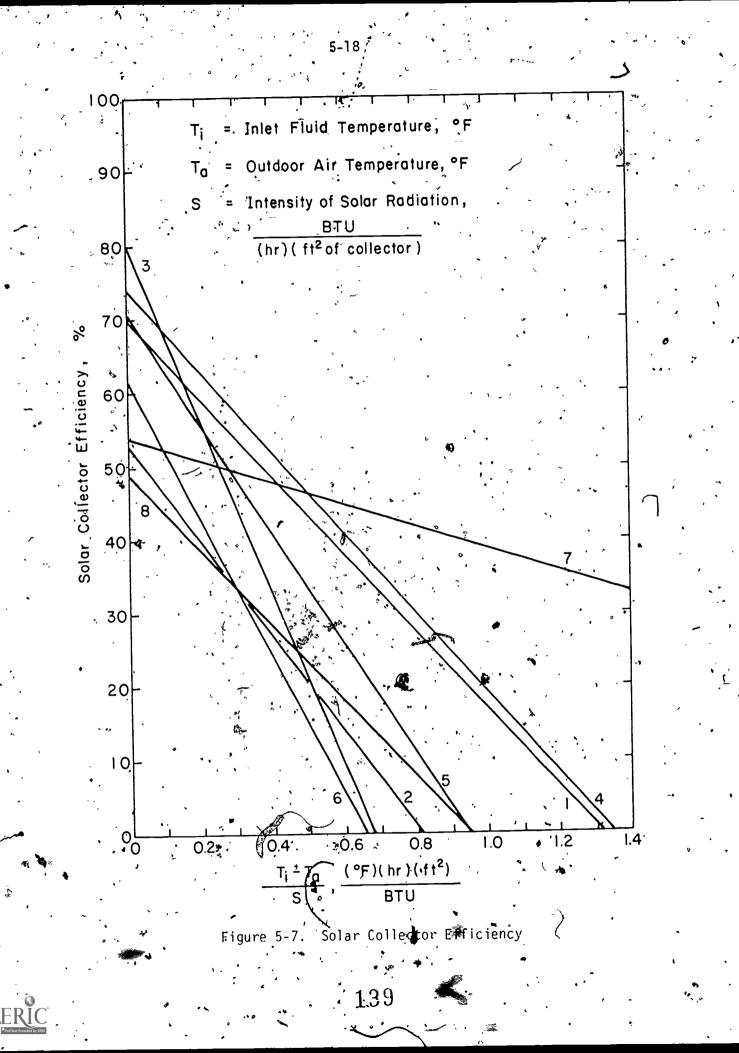
 Air Duct (Flow normal to plane of the paper)
 3/8" to 1/2"

 INSULATION
 2" to 4"

Figure 5-6. Cross-Section of an Air Heating Solar Collector

ERIC

'Air-heating solar collectors are less efficient than liquid-heating solar collectors at high fluid temperatures. 'However, the efficiency of the total solar system is comparable with liquid systems.


Air-heating collectors have a number of advantages compared with liquid-heating collectors. There are no problems with freezing in the collector or overheating the air. Corrosion problems are also minimized. Galvanized ducts do not require corrosion protection but insulation is required. A system disadvantage is that a larger storage volume is needed but an advantage is that stratification of temperature in storage permits air collectors to operate at best efficiency throughout the day.

The long-term durability of solar collectors is still unknown. However, there is one air system using glass plate absorbers in the collector which has operated continuously since 1957. It is generally expected that solar air heating collectors will have a long "Nifetime" of use, although more data from operating systems are needed before conclusive statements can be made.

SOLAR COLLECTOR EFFICIENCY

STEADY-STATE COLLECTOR EFFICIENCY

Solar collector efficiency is the fraction of the solar energy intercepted by the collector that is converted to heat and delivered to the • building. Factors which influence solar collector efficiency include absorber surface coating, number and type of transparent covers, fluid flow distribution through the collector, fluid temperature, outdoor air temperature, and the intensity of solar radiation on the collector glass area. The collector efficiencies for several different solar collectors are shown in Figure 5-7 and the selected collectors are described in Table 5-6.

Description	of	Solar	Collectors	Plotted	ín	Figure	5 - 7
-------------	----	-------	------------	---------	----	--------	--------------

Table 5-6

Absorber Number Har			Absorber	Transpar	ent Covers	Stagnation
Material	from Figure 5-7	Manufacturer and Remarks	Surface Coating	Number	Material	Temperature °F*
Aluminum.	<u>↓</u>	NASA/Honeywell	black nickel	2	glas s ·	466
Aluminum ,	2	MSFC	black nickel	2	Tedlar	313
Aluminum	3	NASA/Honeywell	black paint	1	glass	• . 274
Aluminum -	4	NASA/Honeywell (mylar honeycomb)	black paint	. 2.	glass	475
Aluminum	5.	NASA/Honeywell	black paint	2 -	glass .	355
Aluminum	× 6 🛲	PPG	b ∦ ack paint	. 2	gla ss ,	- 268 ,
Glass ′	**7	Owens (evacuated tube)	selective · surface	· 1	glass	1,150
`Steel	8	Solaron (data furnished by manufacturer)Heat transfer fluid is air	black paint	2	glass .	، 355 -

* Values are calculated assuming that incident solar radiation, S, is 300 Btu/(ft²)(hr) and that ambient temperature, T_a, is 70°F.

140

** With the exception of solar collectors number 7 and 8, the absorber plates are tubes-in-plate.

5-19

The efficiencies of solar collectors are often expressed as a function of inlet fluid temperature and ambient air temperatures. While use of inlet fluid temperature in the efficiency curves presented by manufacturers is acceptable for liquid heating collectors, it.is not a useful variable to express the efficiency changes for air-heating collectors. This is because the inlet temperature to an air-heating collector in a system is always near room temperature, while the inlet fluid temperature for a liquid-heating collector varies considerably during the day. The comparison of liquid-heating collectors can be based on efficiency curves similar to Figure 5-7, but comparisons 🕰 liquid- and air-heating collectors are more difficult. Unfortunately, no easy method has been determined to compare the performance characteristics of air-and liquid-heating collectors, but a' recent study of two similarly sized systems on comparable houses at the same location and during the same time periods shows that the air-heating system collected more useful energy than did the liguid system. The reader is cautioned, however, that more data are needed before definitive conclusions about collector and system performance can be made.

The efficiency of an air-heating solar collector increases with air flow rate, but large air flow rates require large blowers and large electricity consumption in proportion to the solar energy collected. A recommended air flow rate for air collectors is about 2 cfm per square foot of collector.

For liquid-heating solar collectors, the liquid (water-ethylene glycol mixture) flow rate should be between 0.6 and 1.2 gallons per hour per square foot of solar collector area. Only a small gain in energy collection, hence collector efficiency, is realized by circulating more than

5-20.

1.2 gal/(hr)(ft²). On the other hand, when less than 0.6 gal/(hr)(ft²) is circulated, the efficiency is significantly reduced.

5-21

DAILY COLLECTOR EFFICIENCY

The efficiencies shown on Figure 5-7 are not appropriate for longterm collector efficiency, such as daily efficiency, because the fluid and ambient temperatures as well as the solar radiation continuously change during the day. The efficiencies shown on Figure 5-7 are for steady-state conditions and, while they are useful for comparing different collectors (one fluid type), they are not directly useful to determine the quantity of energy collected by a system during the day. An average daily efficiency of collectors in a system is more useful for that purpose.

The daily efficiencies of the collectors for CSU Solar House I is shown in Table 5-7, for each month of the year. The second column in the table 1 sts the efficiencies based on total measured solar radiation. The fourth column lists the efficiencies based on solar radiation on the collector during the periods when the collectors delivered useful energy. During the year the average daily efficiency varies from 15 to 25 percent, depending on the solar and climatic conditions and the operation of the system. The higher temperatures of storage water required for operating the cooling system during the summer lowered the collector efficiency when compared to winter conditions.

• While average daily collector efficiency is dependent upon many design factors of the system, a daily efficiency from 25 to 35 percent can be expected with most collectors now available commercially. Because the collector is a very important component of a solar system, and the

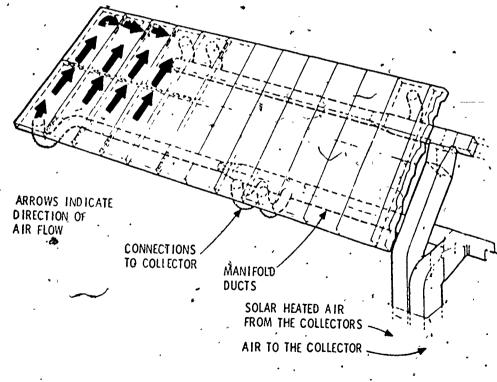
~ Table 5-7

Mean Daily Collector Efficiencies for Each Month of the Year.

	7 0 /	<u> </u>	· · · · · · · · · · · · · · · · · · ·
	Average Daily Efficiency Based , on Solar Radiation	Average S (MJ∕day)	Average Daily Efficiency Based on When the Collectors Delivered Useful Energy
September	22.5	1106-	31.5
October	• 21.2	84 9	. 20.4
November	19.6	780 🔭	عم 31
December	• 23.8	967	* 33.3
January	24.6	999	. 33.0
February	24.6	1274	, 36. . 9
March.	18.g	- 1395 🔹	34.5
April	15.2	. 1513	. 32.3
May	15.0	1217	35.9
June	14.5	1375	34.3
July	15.6	1474	22.9
August	15.0	1429	27:2

performance of the entire solar system is the important factor in system economics, individuals are discouraged from making their own collector unless the person has considerable experience and knowledge about solar collectors.

STAGNATION TEMPERATURE


An important factor in collector performance is the capability to withstand the highest temperature achieved in the collector when there is no fluid flow and the solar energy is a maximum. The highest temperature is the stagnation temperature, which could develop when there is electrical power failure and the pump or blower stops, and most certainly during installation when there is no fluid (in liquid heating collectors) in the collector. Stagnation temperatures listed in Table 5-6 are very high, particularly for the evacuated tube collector.

5-23

COLLECTOR ARRAY

Most of the previous sections concerned collector modules and, in general, several modules are required in a solar system to provide the energy to meet the heating and cooling heeds. Collector modules may be assembled in a number of different ways to form an array of collectors, and one possible arrangement for liquid collectors is shown on Figure 5-4.

A recommended arrangement for an air-heating collector array with internal as well as external manifolding is shown in Figure 5-8. Variations to the scheme shown are, of course, possible. A very important

gure 5-8. Typical Arrangement of Internally Manifolded Collector Modules in an Array factor in any scheme is to be sure that joints in the duct system do not leak.

Å

Collector arrays, for both liquid and air heating systems, should be leak tested during assembly if possible. While leaks in liquid systems are easy to detect, leaks in air systems are not as readily determined. Care during installation of collectors, with joints in pipes and ducts, is advised. The cost of labor for careful assembly is a small fraction of the cost of labor for disassembly and making repairs.

Joints in piping, particularly from the headers to the collector modules, may be made with flexible hoses. Because neoprene or rubber hoses will require replacement periodically, sufficient thought should be given to facilitate the replacement. Other piping connections and valve locations should be given similar consideration. Connections from the headers to the absorber plates of the collectors cannot be rigid coupling because there is considerable expansion and contraction of the absorber plates and the headers during the day as the collectors are heated and cooled.

146

5-24

TRAINING COURSE IN

THE PRACTICAL ASPECTS OF

SIZING, INSTALLATION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS

RESIDENTIAL BUILDINGS

FOR

MODULE 6

THERMAL STORAGE SUBSYSTEMS

SOLAR ENERGY APPLICATIONS LABORATORY . COLORADO STATE UNIVERSITY

FORT COLLINS; COLORADO

TABLE OF CONTENTS LIST OF FIGURES. 6-ii LIST OF TABLES . 6-ji INTRODUCTION . 6-1 OBJECTIVĖ . 6-1 METHODS OF HEAT STORAGE 6-1 LATENT HEAT STORAGE . 6-2 SENSIBLE HEAT STORAGE 6-4 SOLAR HEAT STORAGE SIZE ... 6-4. HEAT LOSS FROM STORAGE 6-5 LOCATION OF SOLAR HEAT STORAGE 6-6 WATER HEAT STOR GE 6-6 • PRINCIPLES OF WATER STORAGE TANK OPERATION 6-8 WATER TANK INSTALLATION 6-10 WATER STORAGE TANK MATERIALS 6-12 Concrete Tanks . 6-12 Fiberglass Tanks 6-12 • Glass-Lined or Galvanized Steel Tanks 6-12 PEBBLE-BED STORAGE 6-13 PEBBLE-BED INSTALLATION ·6-13 PEBBLE-BED CONTAINERS 6-15 ROCKS FOR THE PEBBLE-BED 6-16

6-i

1.5

LIST OF FIGURES

6-ii

<u>Figure</u>		۱ <i>،</i>		:		•		Page	
6-1	Operation of a Water Heat Sto	rage	Tank	`.•	•	- · · · ·		:6-9	,
、	- Bottom Insulation and Support Water Storage Tanks	-Scho	emé, fo	or (•	•	• •	6-11	ć
6-3	. Bulk Head Type Connection.	•	•	•	•	•	•	6-11	•
6-4 '	Pebble-Bed Heat Storage Unit	ŕ	•,	•	1	~ ·	, •••	6-14	•
6-5	Horizontal Flow Pebble-Bed	•	•	•	•	,	¥	6-15	

LIST OF TABLES

	Table	e,	•			.•	•	Page
•	6-1	, #	Latent Heat Storage Materials	•	•	• •`	· &	6-3
	6- 2		Heat Capacity Values		•		•	6-4
	6-′3		• Maximum Critical Temperature	and	Maximum			
	-	v	Allowable Tank Pressure .	•	· • *	• •	1	6-9

INTRODUCTION

Heat storage is necessary for solar heating, cooling, and service hot water heating installations. While there is some heat storage in the structure and contents of a building, it is not an appreciable fraction of required storage. Practical methods of heat storage and basic guidelines for siging are presented in this module.

OBJECTIVE

The objective is to describe different heat forage media and provide guidelines for sizing the storage unit for specific requirements. The subobjectives for the trainees are to be able to:

1. Select a thermal storage unit for a particular type

of solar system. 2. Size and locate the thermal storage unit, 3. Schedule and install the thermal storage unit in the system,

4. Rećognize potential maintenance features of thermal

METHODS OF HEAT STORAGE

buildings in the forms of latent heat, sensible heat, and combination

LATENT HEAT STORAGE

Latent heat can be stored by melting a solid, such as wax, into a Tiquid. The stored heat is released when the temperature drops and the heat which is released is supplied to the conditionerspace. If a suitable material is used, solar heat at temperatures provided by collectors can be used to melt a solid and to store the heat during the day, d then be made to release the heat when the liquid reverts back to Solid form. A very small temperature difference is sufficient to. 'change the phase from solid to liquid or liquid to solid. The use of ice to cool an "ice box" and to cool liquids illustrates the 'use of latent heat for cooling.

There are also two principal advantages to latent heat storage. Because very large quantities of heat can be stored and released per pound of material, it takes less volume to store the heat required by the System. A latent heat storage unit using paraffin or wax would require about one-fourth as much volume as a water tank to store an. equivalent amount of heat. A second advantage is that the temperature remains nearly constant during phase changes. A constant operating temperature for hot storage or cold storage is particularly advantageous for operating a chiller.

There are, however, some disadvantages with latent heat storage units. Many known latent heat materials with latent heat storage and must be replaced. As of the time of this writing, suitable materials are also expensive when compared to water or pebble bed storage units. More time is needed for development of practical latent heat storage units:

Taple 6-1 is a listing of some available latent heat storage materials

Table 6-1

6-3

Latent Heat Storage Materials

oj.

'

æ.

8

·- Ø.			•
Name	Melting point		fFusion
nallie	°F	Btu/1b	'Btu/cu ft
Hydrated Inorganic Salts Sodium chromate Manganese nitrate Ortho Phosphoric acid. Lithium nitrate Calcium chloride Glauber Salt Disodium phosphate Manganous nitrate Zipc nitrate Calcium nitrate Thiosulfate (Hypo) Nickelous nitrate Cobaltous nitrate	67.8 79.4 84.8 85.8 86.4 90.4 94.2 95.8 97.2 95.8 97.2 95.6 97.2 08.6 19.4 134.0 134.7	78.4 60.4 61.6 127 73.2 102.3 121.0 50.4 56.1 61.1 40.7 65.6 54.4	7400 6570 7010 18200 7570 9320 11550 6240 7180 6900 4710 8330 8300
Cadmium nitrate Sulfur trioxide Magnesium nitrate Hýdrazine hýdrochloride Magnesium chloride Anhydrous Inorganic Salts	* 139.1 144.0 182.2 198.8 244.0	45.7 137 68.8 95.7 72.7	∕6950 16750 9380 7700 9000
Arsenic tribromide Meta Phosphoric Acid Phosphoric acid Antimony trichloride Antimony tribromide Aluminum bromide Ammonium acid sulfate Potassium thiocyanate	.89.4 1 08. 5 158 164 205.5 208.3 291 337 350	16.0 46.2 67.4 24.0 16.6 18.2 53.5 27.4 48	
Waxes and Organic Solids Anthracine Anthraquinone Naphthaline Naphthol Bees wax Stearic acid (tallow) Amorphous paraffin wax	205 545 176 203 143 169 166	45.2 67.8 64.9 70.0 76.2 85.4 99.0	3480 6030 4620 5280 4500 4500 4900

SENSIBLE HEAT STORAGE

Sensible heat is stored when the temperature of a storage medium increases. Water and pebbles are the most common materials used for sensible heat storage because they are low in cost and readily available. Any thermally and chemically stable solid or liquid may be used if the costs are justifiable.

The amount of heat required to raise the temperature of one pound of matter one degree is the heat capacity of the material. Heat capacities for common materials are listed in Table 6-2, and the terms of both mass and volume.

. Table	6-2
---------	-----

Heat Capacity Values

Matèrial	Heat Capacity		
	Btu/lp ^{ro} F	. [/] Btu/ft ³ ,°F	
Wood	0.6	45	
Steel	• ••••	·54 -	
0.75 to 1.5 inch rock	0.2	20	
Water	1.0	62	

It will be noted that water has three times the heat capacity as compared to rock for the same volume. This means that a peoble-bed storage unit would be three times larger than a water tank to store the same amount of heat.

SOLAR TAT STORAGE SIZE

Precise heat storage sizing is not required for solar systems, but there is an economical size for a given installation. A very large volume of storage does not result in providing more solar heat to the

building enclosure as compared to an adequately sized unit. Thus a disproportionately large storage capacity relative to a fixed collector area is not useful.

A solar system that is to provide a major fraction of the annual "heating load for a building should provide for overnight heating from the solar energy collected during a normal winter day. If the previous day was cloudy, then the system will depend upon the aux liary unit to provide heating. A large solar collector area which provides more heat than is needed by the building will have excess heat that can be stored in a large storage volume. Such a system could store enough heat for use over several days if there is no sunshine. The cost of the system increases, however, because of the larger collector area and storage volume. The most practical size to consider is a solar system that will provide for 20 to 30 hours of heating during normal winter days. The recommended size of storage relative to collector area is one to two gallons of water for a liquid system, one-half to one cubic foot of pebbles per square foot of collector area for an air system. A solar system for a residential building with 500 square feet of collectors should have a storage unit with about 700 gallons of water capacity, or 300 cubic feet of pebbles. The installed cost of such a storage unit would range from \$500 to \$1,000.

HEAT LOSS FROM STORAGE

If the heat storage unit is placed inside the building enclosure, the heat loss from the unit.will be to the building interior. In the heating season the heat is effectively utilized, but in the summer the heat loss from storage will add to the cooling load. By placing the storage unit within a vented and insulated room, use of the heat loss from storage can be effectively controlled during winter and summer.

LOCATION OF SOLAR HEAT STORAGE

Solar heat storage units may be located above of below grade and ...either inside the heated building or outdoors. It is recommended that the storage unit be placed within the building enclosure whenever possible and close to other solar equipment. An indoor storage location has the advantage that it is protected from moisture and cold, and the heat loss from the storage unit will assist in heating the building in winter. The disadvantages of locating the heat storage unit indoors are that heat loss to the building adds to the cooling load during the summer and a finite amount of relatively expensive space must be provided.

When a storage unit is placed underground, the insulation must be of a kind which will not absorb moisture. Materials such as neoprene foam or styrofoam could be suitable. The tank should be placed below the. frost line unless a concrete lined pit is provided for the tank, pumps, and other equipment. The pumps which circulate the storage water should be placed at a level to prevent vapor locking at the impellers.

WATER HEAT STORAGE

Water should be used for heat storage if a liquid is used as the heat transport medium in the solar collectors. If an antifreeze solution is needed in the collectors, it is advisable to separate the fluid circulation loops with a heat exchanger between the collector and storage loops. If freezing is not of concern, water from storage may be circulated through the collectors without a heat exchanger and the storage water is pumped directly to the heating colls on the absorption cooling

unit.

Four conditions must be avoided when using water for heat storage.

1. Freezing, in cold climates

in the system *i*

2. Boiling, with resultant build, up of pressure

3. Corrosion of the storage tanks and pipes

I. Leakage

They are:

Because it is prohibitively expensive to provide enough antifreeze in a water storage tank to protect against freezing, it is recommended that the water storage tank be placed inside the building or underground below the frost line. A storage tank inside the building is preferable to one underground. Heat loss from underground tanks is not recoverable for useful purposes. Also repairs, if necessary, are easier on indoor tanks. Boiling can occur in the storage tank and provisions should be made to prevent damage to the system or to the contents of the building. While it is an uncommon occurrence for well-designed systems during the heating season, frequent boiling may be expected during the summer if the heat is not used to operate a chiller. The steam that is produced can be easily vented outside the building to prevent pressure build-up in the tank and to "dump" the heat from the system. A pipe from the top of the tank to the outdoors with a low pressure relief valve is sufficient. For a nonpressurized system, a pressure relief valve **i**s not required, but a float controlled valve to provide make-up water in the storage tank should be provided. Frequent boiling of storage water will cause build-up of mineral deposits with consequences in corrosion unless water softeners are used.

A high temperature shut-off control on the collector pump may be used with some collectors to avoid boiling. Many collectors, however,

156

-

are not designed to withstand the high temperatures which result from no flow for an extended period; thus the practice of stopping circulation is dependent upon the type of collector that is selected.

6-8

Corrosion is a potential problem whenever water is contained in a metal tank and the probability of corrosion greatly increases with temperature. Fiberglass lining to protect against corrosion and water softeners will increase the life of the tank but add costs to the system.

Corrosion often occurs at the pipe connections to the tank. If dissimilar metals are used, galvanic corrosion will result. Therefore, neoprene rubber hoses should be used to connect copper pipes to steel. tank fittings.

Water leakage must be prevented because it can damage tank insulation and other materials near the tank. Because there is difficulty in locating a leak after insulation is applied, the tank should be leak tested with all fittings in place before insulation is applied.

PRINCIPLES OF WATER STORAGE TANK OPERATION

Useful heat is stored between a minimum threshold temperature and a maximum critical temperature, which is usually the boiling point. The minimum temperature is the lowest useful temperature that can provide heat to the load. For space cooling this is about 180°F; for space heating, 90°F; and for service water heating, 60°F. The maximum critical temperature is the boiling point for a vented tank and could be a higher temperature for a pressurized tank. The pressures that will build up in the tank at various temperatures above boiling are listed in Table 6-2. If the maximum allowable pressure in the tank is 30 psi, for example, the maximum allowable storage tank temperature is 274°F.

Storage Tank Pressure (psi)		Pressure	Maximum Temperature (°F)
ŧ,	0		212
• '	10		2 3 9
*	20		259
	´ 30	•	. 274
•	40	-	287 • .
	50	•	<u> </u>

Maximum Critical Temperature and Maximum
 Allowable Tank Pressure

Table 6-3

The top of the storage tank will generally be hotter than the bottom, and the magnitude of the temperature difference is a function of tank height and diameter. Any temperature stratification achieved is useful because the lowest temperature possible is pumped to the collector, which improves the performance of the collectors, and the highest temperature available is delivered to the heating coils to heat the house. This arrangement is illustrated in Figure 6-1.

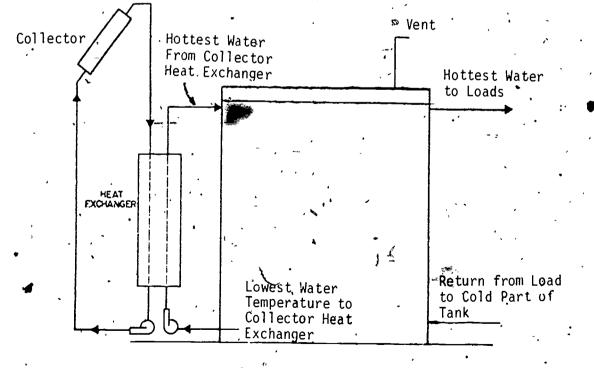


Figure 6-1. Operation of a Water Heat Storage Tank

158

~

WATER TANK INSTALLATION

Storage units are normally the first of the solar components placed in the building during construction. Because of their size, it is advantageous to install the tanks before the building is enclosed. Exterior buried storage units may be installed after the building is erected and, economically, the excavation and concrete work for the storage unit should be scheduled with the building foundation work. Water storage tanks should be movable from the building because of the possibility of future replacement. If a large access for the stark is not possible in the building design, several smaller tanks may be nested together, or the tank may be of a type that can be assembled and disassembled.

The storage tank should be well/insulated (R-20 or better) on all surfaces, including the bottom. The bottom is more difficult to insulate because it must withstand the filled tank load (about 70 pounds per square foot for each foot of depth, i.e., 420 pounds per square foot for a six foot tall tank). Also, the insulation should preferably be moisture-resistant or provided with ventilation air spaces, as shown in Figure 6-2, which illustrate's a practical tank bottom insulation arrangement. The side and top insulation, which may be fiberglass wool or foam insulation, may be installed later along with other equipment. The pipe connections should be provided with the tank. Leak testing of all tank connections is/advisable before insulation is applied. Not only are leaks difficult to detect after being covered with insulation. the heat loss through we't insulation is so large that it is equivalent. Finsulation Standard plumbing precautions should be exercised by acing shut-off valves at strategic locations to isolate the tank, heat exchanger, pumps, and other appurtenances. Drain connections should be provided with a valve and hose connection. Neoprene (high temperature)

<u>59</u>

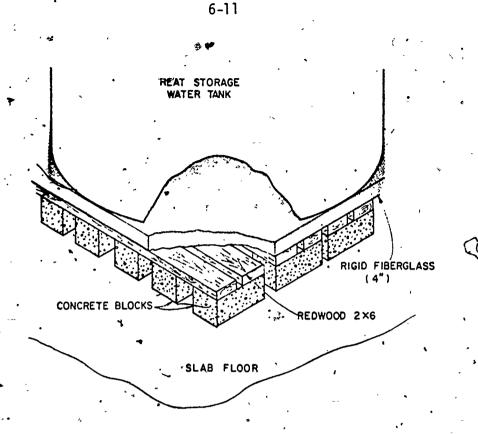
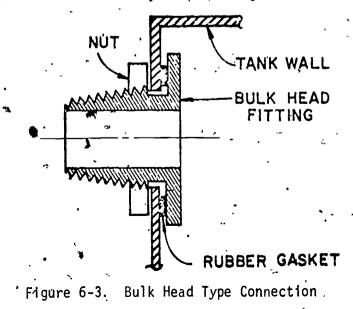



Figure 6-2. Bottom Insulation and Support Scheme for Water Storage Tanks

rubber hose connection between the tank and the piping is advised to prevent strain at the tank connection and to protect against corrosion where dissimilar metals are used. A bulk head fitting, as illustrated in Figure 6-3, is an alternative way of providing connections to the tank.

160

÷.,

6-12 ·

WATER STORAGE TANK MATERIALS

Water storage tanks may be made of concrete, fiberglass, or steel. The costs of these three tanks are nearly equal, at about one dollar per gallon of capacity, including the insulation.-

Concrete Tanks

Concrete tanks are durable but difficult to install. Some prefabricated units, such as septic tanks and large diameter pipes, may be assembled and used as water storage tanks or they may be cast in place.

Although conductivity of heat through concrete is less than through, metals, concrete tanks should be insulated to reduce heat loss. A high temperature sealant on the interior surface or a watertight liner is recommended to prevent seepage of water through the tank.

Fiberglass Tanks

Fiberglass tanks are corrosion resistant, but have limitations with regard to temperature. Although some fiberglass will withstand temperatures over 212°F, many commonly fabricated tanks will not tolerate temperatures above 160°F. At high temperatures, the bonding resins in the fiberglass soften and the material begins to flow.

Glass-Lined or Galvanized Steel Tanks

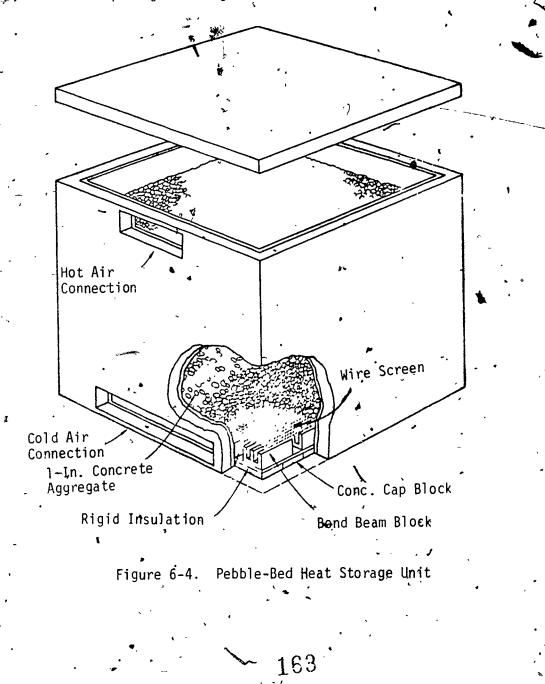
Steel tanks are readily available and suitable for water storage. Glass-lined or galvanized steel tanks, while costing more, may be used effectively to reduce the rate of corrosion inside the tank.

PEBBLE-BED STORAGE

6-13

Solar heated air is passed directly through the pebble-bed from top to bottom. As the air passes through the pebbles, heat is transferred from the air to the rocks so that the rock temperature rises. The cool air which leaves the bottom of the pebble-bed is returned to the collectors to be reheated. The top of the pebble-bed will be warmer than the bottom because of hot air supply from the collectors. After sundown and discontinuance of air circulation, the pebble-bed will maintain this temperature stratification because heat conduction through the bed from one pebble to another is small.

The stored heat is delivered to the building by circulating room air through the pebble-bed in the direction opposite that of the storing cycle, that is, from the bottom toward the top of the pebble-bed. As the cool air flows through the spaces between the pebbles, it is heated and the warm air is recirculated to the rooms. The bottom of the pebblebed is always at the lowest temperature, usually room temperature, and because the coldest air is delivered to the collectors, the collectors operate at maximum efficiency.


The hot end, or collector supply end, of the pebble-bed is preferably at the top to prevent heat loss to the floor. If the layout requires the hot end at the bottom, two inches of rigid fiberglass board should be placed under the unit to reduce heat loss to the floor.

PEBBLE-BED INSTALLATION

A maximum depth of about six feet of pebbles is recommended for acceptable floor loading and air pressure loss. The pressure drop also depends upon size and uniformity of the pebbles At a typical air

velocity of about 20 feet per minute through five feet of 0.75 to 1.5 inch gravel, the pressure drop will be about 0.3 inch water gauge.

As shown in Figure 6-4, the pebbles are supported on a wire screen, such as "expanded metal", which in turn is supported on bond beam blocks for maximum free area to air flow in the lower plenum. Coverage of the bottom by the supporting blocks should be about 50 percent for lightweight screen support. If a heavy mesh woven or welded wire screen is used, the block spacing can be greater.

Sci

6,-14

Although horizontal bow has occasionally been used in pebble-beds, heat exchange effectiveness has been lower than in vertical flow beds. By channelling of air flow across the top of the bed, because of the tendency for warm air to flow through the upper part and cool air through the bottom, the effectiveness of stratification is impaired. If a horizontal arrangement cannot be avoided, vertical baffles should be provided to prevent a "short circuit" when the rock settles. This arrangement is illustrated in Figure 6

Screen

6-15

Figure 6-5. Horizontal Flow Pebble-Bed

PEBBLE-BED CONTAINERS

Screen

Pebble-beds may be contained in pood frame boxes, concrete block walls, or cylindrical steel bins. Wood frame boxes can be built in place where access is limited. Steel wire or tie rôds should be placed across the box to prevent the sides from bulging under the pressure of the pebbles. Framing should be of construction grade 2x4's on one foot centers. One-half inch plywood can be used on both sides of the 2x4 studs and the space filled with three and one-half inch fiberglass roll insulation.

Steel bins make find ient pebble-bed containers. They can be assembled by bolting curved sections togéther on the job site. A durable caulking compound must be used at the joints to prevent air leakage. Two-inch foam insulation should be cut into segments and placed around the outside of the bin.

6-16

Concrete block may also be used for the pebble bed walls. Steel reinforcement rods three-eighths inch (3/8") in diameter should be placed across the bed every two to three feet to support the walls. Two-inch rigid fiberglass insulating board should be used to line the inside of the block walls.

A concrete bin is relatively economical when constructed with basement walls. Two additional walls in one corner of the basement level, with suitable openings, form the rock bin. Rigid insulation on the inside or outside can be added to reduce thermal losses. After filling, an insulated cover on a 2x4 frame can then be installed.

ROCKS FOR THE PEBBLE-BED

Any type of rock suitable for concrete aggregate can be used in the pebble-bed. Size uniformity is important in order to provide proper air flow through the pebble bed and graded gravel should not be used. One-inch concrete aggregate is screened so that the sizes cary from 0.75 to 1.5 inches and the aggregate is suitable for the pebble-bed. The pebbles should be free of fines, and concrete aggregate is normally acceptable. The bed should be filled by using a chute so that fracturing will be minimized and damage to the walls and bottom of the unit will be avoided.

TRAINING COURSE IN THE PRACTICAL' ASPECTS OF . SIZING, INSTALLATION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS FOR RESIDENTIAL BUILDINGS MODULE 7 SERVICE HOT WATER SYSTEMS .

新聞) ~ おうこ

(编辑) 注意语)-

二海 :

ERIC

SOLAR ENERGY APPLICATIONS LABORATORY COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

TABLE OF CONTENTS

7-ii

7-ii

7-i

LIST OF FIGURES 🖌 🔬 🕅 LIŜŢ OF TABLES

INTRODUCTION 7-1 OBJECTIVE 7-] TYPES AND CHARACTERISTICS OF SOLAR HOT WATER. HEATERS 7-2 DIRECT HEATING, THERMOSIPHON CIRCULATING TYPE. 7-2 DIRECT HEATING, PUMP CIRCULATION JYPES . 7-5 DIRECT HEATING, PUMP CIRCULATION, DRAINABLE TYPES . . 7-6 ۰**۴** CIRCULATING TYPE, INDIRECT HEATING . 7-10 Liquid Transfer Media 7-10 Solar Collection in Heated Air 7-12 NON-CIRCULATING TYPE **3**-13 AUXILIARY HEAT 7-13 LOCATION OF COLLECTORS 7-15 TEMPERATURE STRATIFICATION IN SOLAR HOT WATER TANK. 7-16-TEMPERATURE CONTROL LIMIT. 7-16 PERFORMANCE OF TYPICAL SYSTEMS. ,7-20 GENERAL REQUIREMENTS. 7-20 QUANTITATIVE PERFORMANCE . 7.22 Sizing the Collectors . 7-25 .Sizing Examples. 7-27 7-29

COSTS .

ERĬĊ

·1674

LIST OF FIGURES

7-11

•	• Figure	Page
· •	7-1	Direct Heating Thermosiphon Circulation Type of Solar Water Heater
	7-2	Direct Heating, Pump Circulation Type of Solar Water Heater 7-5
· .	, 7-3 , '	Solar Water Heater with Freeze Protection by Automatic Collector Drainage
	· · 74	Unpressurized Vented Solar Water Heater System 7-9
••	7-5 ,	Dual Liquid Solar Hot Water Heater
	7-6	Solar Hot Water Heater with Air Collectors
•	:7-7	Direct Solar Water Heating with Mixing Valve
•	7-8	Absorber and Tank Temperatures for Thermosiphon- Flow During a Typical Day
	7-9	Fraction of Annual Load Supplied by Solar as a Function of January Conditions for Hot Water Heaters 7-26
•	7-10	Average Daily Solar Radiation (Btu/ft ²), Month of January
9	° ™ • •	LIST OF TABLES -
, ,	<u>Table</u>	Page
*	7-1	Daily Means for Twelve Consecutive Months of Operation of Solar Water Heaters at Various
.]		Localities 7-23.
· · ·	7-2	Solar Water Heater Performance in Melbourne, Australia . 7-24
	ă A	

INTRODUCT ION

≩≁ 7-1

The oldest and simplest domestic use of solar energy is for heating water. Solar hot water heaters were used in the United States at least 75 years ago, first in southern California and later in southern Florida. Although the use of solar water heaters in these regions declined during the last 40 years, use in Australia, Israel, and Japan has risen rapidly, particularly in the last 15 years.

In its simplest rem, a solar water heater comprises a flat-plate water heating collector and an insulated storage tank positioned at a higher level than the collector. These components, connected to the cold water main and the hot water service piping in the dwelling, provide most of the hot water requirements in a sunny climate. Nearly all of the solar hot water systems used in the United States have been of this type.

,OBJECTIVE:

The objective is to choose a particular arrangement suitable for a given location, size the system for a given collector type and hot water requirement, install the system, and be confident of satisfactory operation. From the contents of this module the trainee should be able

Identify the types of domestic hot water systems

Select a domestic hot water system for a particular

169

_ Integrate a domestic hot water system into a space

heating system, 🛔 🍠

available,

Install and put into operation a domestic hot water system,
 Maintain a domestic hot water system.

7-2

TYPES AND CHARACTERISTICS OF SOLAR HOT WATER HEATERS

Most of the solar water heaters that have been experimentally and commercially used can be placed in two main groups:

Circulating types, involving the supply of solar heat to a fluid circulating through a collector and storage of hot water in a separate tank

2. Non-circulating types, involving the use of water

containers that serve both as solar collector and

we circulating group may be divided into the following types and sub-types:

Direct heating, single-fluid types in which the water

is heated directly in the collector, by:

a. Thermosiphon circulation between collector and storage

b) Pumped circulation between collector and storage
Indirect heating, dual-fluid types in which a nonfreezing medium is circulated through the collector
for subsequent heat exchange with water, when:
'a. Heat transfer medium is a non-freezing liquid
b. Heat transfer medium is air.

DIRECT HEATING, THERMOSIPHON CIRCULATING TYPE

storage.

The most common type of solar water heater, used almost exclusively in non-freezing citmates, is shown in Figure 7-1. The collector, usually

Figure 7-1. Direct Heating Thermosiphon Circulation Type of Solar

Collector

Water Heater

Cold

1Ì

Storage

Tank

single glazed, may vary in size from about 30 square feet to 80 square feet, whereas the insulated storage tank is commonly in the range of 40 to 80 gallons capacity. The hot water requirements of a family of four. persons can usually be met by a system in the middle of this size range, in a sunny climate. Operation at supply line pressure can be provided if the system is so designed. With a float valve in the storage tank or in an elevated head tank, unpressurized operation can be utilized if the system is not designed for pressure. In the latter case, gravity flow from the hot water tank to hot water faucets would have to be accepted, or an automatic pump would have to be provided in the hot water line to supply pressure service. Plumbing systems and fixtures in the United States normally require the pressurized system.

Location of the tank higher than the top of the collector permits circulation of water from the bottom of the tank through the collector and back to the top of the tank. The density difference between cold and hot water produces the circulating flow. Temperature stratification in the storage tank permits operation of the collector under most favorable conditions, water at the lowest available temperature being supplied to the collector and the highest available temperature being provided to service. Circulation occurs only when solar energy is being received, so the system is self-controlling. The higher the radiation level, the greater the heating and the more rapid the circulating rate will be.' In a typical collector under a full sun, a temperature of 15°F to 20°F is commonly realized in a single pass through the collector.

To prevent reserve circulation and cooling of stored water when no solar energy is being received, the bottom of the tank should be located above the top header of the collector. If the collector is on a house roof, the tank may also be on the roof or in the attic space beneath a sloping roof.

Although seldom used in cold climates, the thermosiphon type of solar water heater (storage tank above collector), can be protected from freezing by draining the collector. To avoid draining the storage tank also, thermostatically actuated valves in the lines between collector and storage tank must close when freezing threatens, a collector drain valve must open, and a collector vent valve must-also open. The collector will then drain, and air will enter the collector tubes. Water in the storage tank, either inside the heated space or sufficiently well insulated to avoid freezing, does not enter the collector during the period when

sub-freezing temperatures threaten. Resumption of operation requires closure of the drain and vent valves and opening of the valves in the circulating line. The possibility of control failure or valve malfunction makes this complex system unattractive in freezing climates.

DIRECT HEATING, PUMP CIRCULATION TYPES-

If placement of the storage tank above the collector is inconvenient or impossible, the tark may be located below the collector and a small pump used for circulating water between collector and storage tank. This arrangement is usually more practical than the thermosiphon type in the United States, because the collector would often be located on the roof with a storage tank in the basement. Instead of thermosiphon circulation when the sun shines, a temperature sensor actuates a small pump which circulates water through the collector-storage loop. A schematic arrangement is shown in Figure 7-2. To obtain maximum utilization of solar energy,

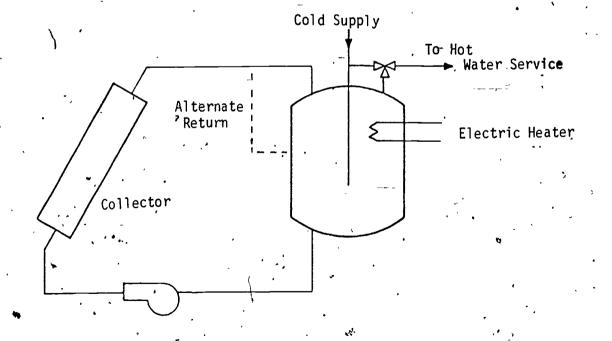
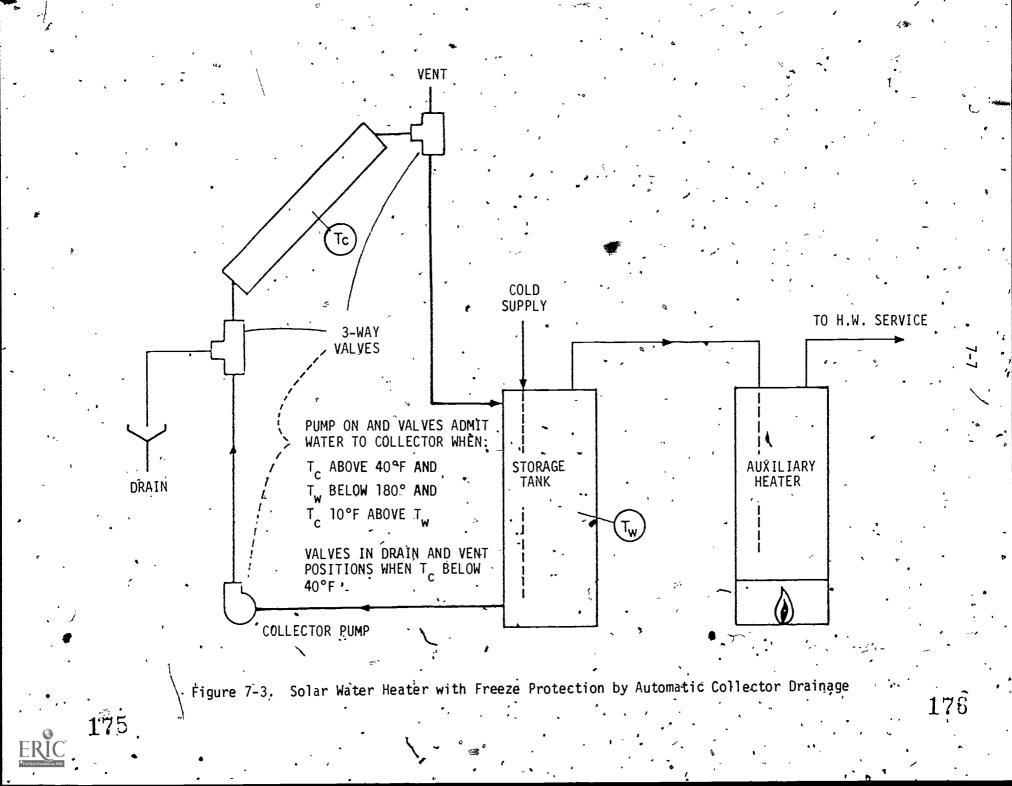


Figure 7-2. Direct Heating, Pump Circulation Type of Solar Water Reater

control is based on the difference in water temperature at collector outlet and bottom of storage tank. Whenever this difference exceeds a preset number of degrees, say 10°F, the pump motor is actuated. The sensor at the collector outlet must be located close enough to the collector so that it is affected by collector temperature even when the pump is not running. Similarly, the sensor in the storage tank should, be located in or near the bottom outlet from which the collector is supplied. When the temperature difference falls below the preset value, the pump is shut off and circulation ceases. To prevent reverse thermosiphon circulation and consequent water cooling when no solar energy is being received, a check valve should be located in the circulation line.


If hot water use is not sufficient to maintain storage tank temperature at normal levels (as during several days of non-use), boiling may occur in the collector. If a check valve or pressure-reducing valve prohibits back flow from the storage tank into the main, a relief valve must be provided in the collector-storage loop. The relief valve will permit the escape of steam and prevent damage to the system.

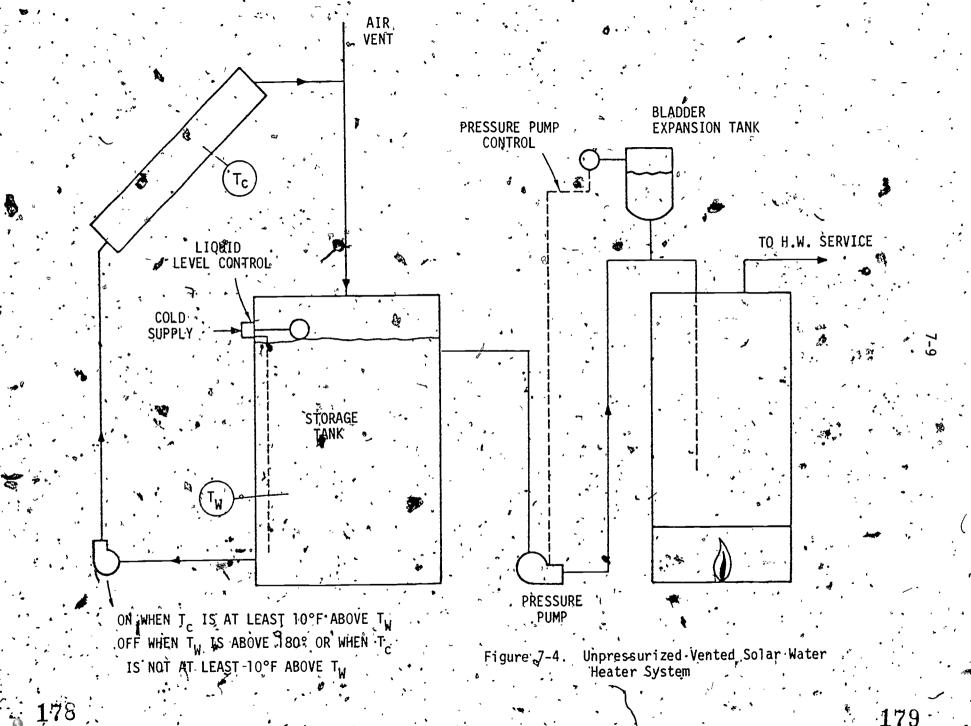
DIRECT HEATING, PUMP CIRCULATION, DRAINABLE TYPES

If the solar water heater described above is used in a cold climate, it may be protected from freeze damage by draining the collector when sub-freezing temperatures are encountered. Several methods can be used. Their common requirement, however, is reliability, even when electric power may not be available. One method is shown in Figure 7-3.

Drainage of the collector in freezing weather can be accomplished by automatic valves which provide water outflow to a drain (sewer) and the inflow of air to the collector. The control system can be arranged so that whenever the circulating pump is not in operation, these two

7-6

valves are open. To assure maximum reliability, the valves should be mechanically driven to the drain position (by springs or other means), rather than electrically, so that in the event of a power failure, the collector can automatically drain.

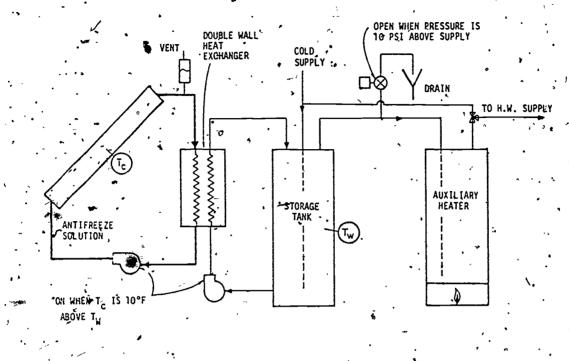

The drainage system shown in Figure 7-3 is actuated by the tempera ture sensor, T_c , in the collector. When the sensor indicates a possibility of freezing, it can open the drainage and vent valves, thereby providing protection. The temperature sensor can be of the vapor pressure type, with capillary tube connections to mechanical valve actuators, or of the electrical type where the valves are held open by electrical means, automatically closing either when electrical failure occurs, or at low temperatures.

Another possibility for drawage of the collector is based on use of a non-pressurized collector and storage assembly as shown in Figure, 7-4. A float valve in the storage tank controls the admission of cold water to the tank, and a pump in the hot water distribution system can furnish the necessary service pressure. With this design, the solar collector drains into the storage tank whenever the pump is not operating, as air enters the collector through a vent.

Start-up of any of the vented collector systems must permit the displacement of air from the collector. In either the line-pressure system or the unpressurized system, the entry of water into the collector (from the shut-off value or pump) forces air from the collector tubes as long as the vent remains open. The vent value design can be of a type which automatically passes air but shuts off wben water reaches it.

1.77

- 7**.-**8



CIRCULATING TYPE, INDIRECT HEATING

As can be inferred from the above discussions of needs and means for collector drainage in freezing climates, costs and hazards are involved with those systems. The drainage requirement can be eleminated by the use of a non-freezing heat transfer medium in the solar collector, and a heat exchanger (inside the building) for transfer of heat from the solar heat collecting medium to the service water. The collector need never be drained, and there is no risk of freezing and damage. Corrosion rate in the wet collector tubes is also decreased when intermittent admission of oxygen is not required.

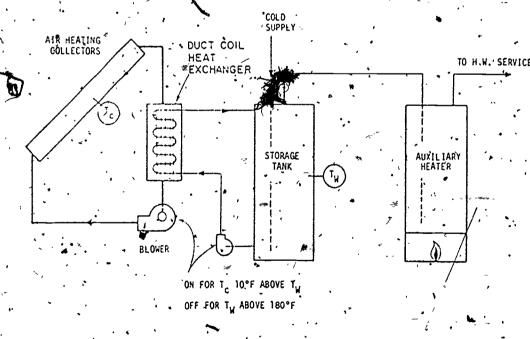
Liquid Transfer Media

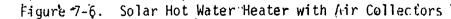
Figure 7-5 illustrates a method for solar water heating with a liquid heat transfer medium in the solar collector. The most commonly used liquid is a solution of ethylene glycol (which is common automobile radiator antifreeze) in water. A pump circulates this unpressurized solution, as in the direct water heating system, and delivers the liquid 'to and through a liquid-to-liquid heat exchanger. Simultaneously, another pump circulates domestic water from the storage tank through the exchanger, back to storage. The control system is essentially the same as that in the design employing water in the collector directly. If the heat exchanger is located below the bottom of the storage tank, and if the pipe sizes and heat exchanger design are adequate, thermosiphon circulation of water through the heat exchanger can be used. small expansion tank needs to be provided in the collector loop, pref erably near the high point of the system, with a vent to the atmosphere. To meet most code requirements, the heat exchanger must be of a design such that rupture or corrosion' failure will not permit flow from

7-17

Figure 7-5. Dual Liquid Solar Hot Water Heater `

the collector loop into the domestic water, even if pressure on the water side of the exchanger drops below that on the antifreeze side. A conventional tube-and-shell exchanger would therefore not usually be acceptable. Similarly, a coil inside the storage tank, through which the collector fluid is circulated, would not be satisfactory. Parallel tubes with metal bonds between them, so that perforation of one tube could not result in liquid entry into the other tube, would be a suitable design. A finned tube air-to-liquid heat exchanger could also be used by circulating the two liquids through alternate rows of tubes, heat transfer being by conduction through the fins.


Although aqueous solutions of ethylene glycol and propylene glycol appear to be most practical for solar energy collection, organic liquids


such as Dowtherm J and Therminol 55 may be employed. Price and viscosity are drawbacks, but chemical stability and assurance against boiling are advantages over the antifreeze mixtures.

Solar Collection in Heated Air

.^{*}.⁷-12

In a manner similar to that described immediately above, solar energy can be employed in an air heating collector with subsequent transfer to domestic water in an air-to-water neat exchanger. Figure 7-6 illustrates a method for employing this concept. A solar air heater is supplied with air from a blower, the air is heated by passage through the collector, and the hot air is then cooled in the heat exchanger through which domestic water from a storage tank is either being pumped or is circulating by thermosiphon action. Air from the heat exchanger is recirculated to the collector. Differential temperature control (between collector and storage) is employed as in the other systems described: Advantages of the air

heat transfer medium are the absence of corrosion in the collector loop, freedom from liquid leakage; and freedom from boiling and loss of collector fluid. Disadvantages are the larger conduit between collector and heat exchanger, higher power consumption for circulation, and slightly larger collector surface requirements.

NON-CIRCULATING TYPE

Although probably of little potential interest in the United States, a type of solar water heater extensively used in Japan involves heat collection and water storage in the same unit. The most common type comprises a set of black plastic tubes about six inches in diameter and several' feet long in a glass-covered box. Sually mounted in a tilted position, the tubes are filled each morning with water in which solar heat is collected throughout the day. The filling can be accomplished by a float-controlled valve and a small supply tank. Late in the day, heated water can be drained from the tubes for household use. In typical Japanese installations, non-pressurized hot water service is thus provided. Heat loss from the system is sufficiently high at night that hot water is usually not available until several hours after sunrise.

AUXILIARY HEAT

A dependable supply of hot water requires the availability of auxiliary heat for supplementing the solar source. The numerous methods of providing auxiliary heat vary in cost and effectiveness. A general or inciple for maximizing solar supply and minimizing auxiliary user is the avoidance of direct or indirect auxiliary heat input to the fluid entering the solar collector. If auxiliary heat is added to the solar hot water storage tank, so that the temperature of the liquid supplied to the collector is increased above that which only the solar system would provide, efficiency is reduced because of higher heat losses from the collector. Thus, auxiliary heat should be added at a point beyond (downstream from) the solar collector storage system. Figures 7-3 and 7-4 show a conventional gas-fired hot water heater being supplied with hot water from the solar tank (whenever a hot water tap is opened). Any deficiency in temperature is made up by fuel in the thermostatted conventional heater. Alternatively, a "fast response", in-line heater can be employed. It is evident that auxiliary heat supply in these designs cannot adversely affect the operation of the solar system.

-14

Another way in which auxiliary heat can be used without reducing solar cellection efficiency is by electric resistance heaters in the upper portion of the solar storage tank, as shown in Figure 7-2. , Temperature stratifica tion in the tank, accomplished by bringing cold water from the main into the bottom and by circulating through the collector from the bottom of the tank to the upper portion of the tank, thereby prevents auxiliary heat from increasing the temperature of the water supplied to the gollector. Water returning from the collector may be brought into the tank well below the level of the resistance heater (as shown by the dashed line), so that the hot supply is always available at the thermostatted temperature. In, effect, the two tanks shown in Figures 7-3 and 7-4 are combined into one, with temperature stratification providing a separation. The total amount of storage is, of course, reduced unless the one tank is increased in size If relatively high temperature water is desired, there may be an undesirable influence of auxiliary supply on collector efficiency because of some mixing in the tank.

1.84

Although the description of the above systems refers to direct circulation of water through the collector, the same factors apply to the systems involving heat exchange with antifreeze solutions or air circulating through the collector. In all cases, auxiliary heat should be supplied downstream from the solar storage tank, regardless of whether the water itself is circulated through the collector or whether heat is exchanged between the domestric water and a solar heat transfer fluid.

LOCATION OF COLLECTORS

If the slope and orientation of a roof is suitable, the most economical location for a solar collector in a residential water heating system is on the south-facing portion of the roof. The cost of a structure to support the collector is thereby eliminated, and pipe or duct connections to the conventional hot water system are usually convenient. In new dwellings, most installations can be expected on the house roof. Even in retrofitting existing dwellings with solar water heaters, a suitableroof location can usually be provided.

If the mounting of collectors on the roof is impractical, for any of several reasons, a separate structure adjacent to the house may be used. A sloping platform supported on a suitable foundation can be the base for the collector. Pumps, storage tank, and heat exchanger, if used, can be located inside the dwelling. Effective insulation on ducts and piping must be provided, however, so that cold weather operation will not be handicapped by excessive heat losses. In cold climates, collectors in which water is directly heated must be located so that drainage of the collector and exterior piping can be dependably and effectively accomplished.

TEMPERATURE STRATIFICATION IN SOLAR HOT WATER TANK

'As in a conventional hot water heater, the temperature in the upper part of a solar hot water tank will normally be considerably higher than at the bottom. 'The lower density of hot water permits this stratification, provided that turbulence at inlet and outlet connections is not excessive. The supply of relatively cold water from the bottom of the tank to the collector permits the collector to operate at its highest possible efficiency under the prevailing ambient conditions. With a circulation rate such that a temperature rise through the collector of 15°F to 20°F occurs, the lower part of the storage tank is furnished to the collector for maximum effectiveness. If not much hot water is withdrawn from the tank during a sunny day, the late afternoon temperature at the bottom of an 80 gallon tank connected to a 40- to 50-square foot collector may be well above 100°F -- even approaching the temperature in the top of the tank. Collection efficiency thus varies throughout the day, depending not only on solar availability but also on the temperature of water supplied to the collector from the tank bottom.

TEMPERATURE CONTROL LIMIT

In addition to the differential temperature control desirable in most solar water heating systems (which sense temperature difference between collector and storage), protection against excessive water temperature may be necessary. Several possible methods can be used. In nearly all types of systems, whether direct heating of the potable water or indirect, heating through a heat exchanger, a thermostatically controlled mixing valve can be used to provide constant temperature water for household use.

Figure 7-7 illustrates one method by which this type of temperature control can be accomplished. Cold water is admitted to the hot water line immediately downstream from the auxiliary heater in sufficient proportion to secure the desired preset temperature. The solar hot water tank is allowed to reach any temperature attainable, and the auxiliary heater furnishes additional energy only when the auxiliary. tank temperature drops below the thermostat set point. Maximum solar..... heat delivery is thus achieved, and no solar heat needs to be discarded except that which might sometimes be delivered when the main storage (preheat) tank is at the boiling point. Any additional solar heat collected under that condition would be dumped through a pressure relief valve, steam escaping to the surroundings. Figure 7-5 shows an optional second mixing valve for control of delivery temperature by admitting regulated amounts of solar heated water into the flow from the auxiliary heater.

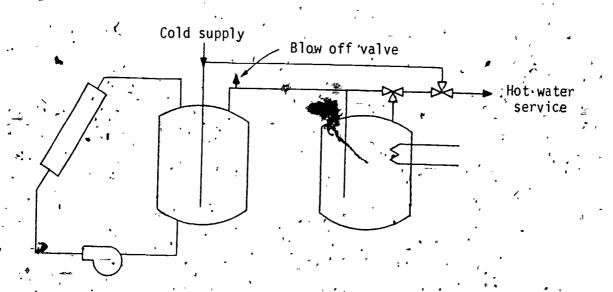


Figure 7-7. Direct Solar Water Heating with Mixing Valve

1.27

A steam vent from the solar hot water system involving a dual liquid design, with heat exchange, should normally be in the hot water loop rather than the collector loop. Loss of collector fluid by vaporization is thereby avoided. It is necessary, however, in this design, that the collector tubes and associated piping be capable of withstanding pressure at least as high as developed when the steam vent valve in the storage loop is actuated. If, for example, the blow-off valve in the storage circuit is set for 50 psi, and if the collector loop containing 50 percent ethylene glycol normally operates at a temperature 20°F above the storage tank temperature, pressure in the collector loop would also be about 50 psi when the 'storage tank vent is actuated. (Approximate equality of pressure is due to similarity between boiling point elevation and temperature difference in the heat exchanger.)

An alternative to the high pressure collector capability described above is available in the form of an organic heat transfer fluid having a high boiling point. Downtherm J or Therminol 55 have boiling points above 300°F, so if one of these fluids is used, the development of pressure in the collector Loop would not occur, even when the storage system is venting steam at 50 psi. This option appears considerably more practical than the pressurized collector tequired with aqueous systems if the dual-liquid design is utilized.

Still another option for high-temperature protection is available if the collector is used as a heater for a high-boiling organic liquid or for air. To prevent the storage tank from reaching a temperature higher than desired, a limiting thermostat in that tank can be used simply to discontinue circulation of the heat transfer fluid (organic liquid or air) through the collector and heat exchanger. No additional heat is therefore dissipated in the form of collector heat loss. The collector temperature

7-18

rises substantially, frequently above 300°F, but if properly designed, the collector suffers no damage. This system is probably the safest and most dependable of those herein described. With a reliable limit switch, in the storage tank, there can be no dangerous pressure developments anywhere in the system. In addition, there is no loss of water (in the form of steam) even when there is no use of hot-water for long periods.

If the hot water/cold water mixing valve downstream from the auxiliary heater is not_used, a temperature limit control in the solar storage tank can be set at the maximum desired temperature of service hot water. Water, therefore, cannot be delivered at any temperature higher than the set point in the solar storage tank or the set point in the auxiliary heater, whichever is higher. Less solar storage capability would be involved in this design, however, because the solar storage tank is prevented from achieving higher temperatures, even when solar energy is available.

vin a direct type of solar water heater operating at service pressure, with potable water circulating through the collector, a venting value is provided near the top of the collector. It would have to be set for release at a pressure several pounds higher than the maximum in the service supply, so the collector storage system must withstand pressure usually above 50 psi. Occasional water loss through venting of steam would be expected.

If a non-pressurized direct type of solar water heater is used, with a float value in the storage tank, the pressure relief value can be set to operate at a pressure only slightly above atmospheric. Alternatively, the collector or storage tank may be continuously vented. Oversupply or under-use of solar heated water results in boiling and venting of the storage tank.

129

7-19

PERFORMANCE OF TYPICAL SYSTEMS

GENERAL REQUIREMENTS

A typical family of four persons requires, in the United States, about 80 gallons of hot water per day. At a customary supply temperature of about 140°F, the amount of heat required if the cold inlet is at 60° F is about 50,000 Btu per day.

There is a wide variation in the solar availability from region to region and from season to season in a partricular location. There are also the short-term radiation fluctuations due to cloudiness and the day-night cycle.

Seasonal variations in solar availability result in a 200 to 400 percent difference in the solar heat supply to a hot water system. In the winter, for example, an average recovery of 40 percent of 1200 Btu of solar energy per square foot of sloping surface would require approximately 100 square feet of collector for the 50,000 Btu average daily requirement. Such a design would provide essentially all of the hot water needs on an average winter.day, but would fall short on days of less than average sunshine. By contrast, a 50-percent recovery of an average summer radiant supply of 2000 Btu per square foot would involve the need for only 50 square feet of collector for satisfying the average hot water requirements.

It is evident that if a 50-square-foot collector were installed, it could supply the major part, perhaps nearly all, of the summer hot water requirements, but it could supply less than half the winter needs. If, on the other hand, a 100-square-foot collector were employed in order. that winter needs could be more nearly met, the system would be oversized for summer operation and excess solar heat would have to be wasted. In such circumstances, if an aqueous collection medium were used, boiling of

19.

the system would occur and collector or storage venting of steam would have to be provided.

The more important disadvantage of the oversized collector (for summer Operation) is the economic penalty associated with investment in a collector which is not fully utilized. Although the cost of the 100-square-foot collector would be approximately double that of the 50square-foot unit, its annual useful heat derivery would be considerably less than double. It would, of course, deliver about twice as much heat in the winter season, when nearly all of it could be used, but in the other seasons, particularly in summer, heat overflow would occur: The net effect of these factors is a lower economic return, per unit of investment, by the larger system. Stated another way, more Btu per dollar of investment (hence cheaper solar heat) can be delivered by the smaller system.

As a conclusion to the above example, practical design of solar water heaters should be based on desired hot water output in the sunniest months rather than at some other time of year. If based on <u>average</u> daily radiation in the sunniest months, the unit will be slightly oversized and a small amount of heat will be wasted on days of maximum solar input. And quite naturally, on partly cloudy days during the season, some auxiliary heat must be provided. In the month of lowest average solar energy delivery, typically one-half to one-third as much solar heated water can be supplied, or actually the same quantity of water but with a temperature increase above inlet only one-half to one-third as high. Thus, fuel requirements for increasing the temperature of solar heated water to the desired (thermostatted) level could involve one-half to two-thirds of the total energy needed for hot water heating in a midwinter month.

QUANTITATIVE PERFORMANCE

Although hundreds of thousands of solar water heaters have been used in the United States and abroad, quantitative performance data are extremely limited. In households where no auxiliary heat was used, the solar system probably supplied hot water most of the time, but failed during bad weather. If booster heat was used, hot water was always available, but the relative contributions of solar and auxiliary were seldom measured.

7-22

In a few research laboratories, particularly in Australia, some analytical studies of solar water heater performance, confirmed in part by experimental measurements, have been performed. More recently, analytical studies at the University of Wisconsin have been carried out. Table 7-1; based on an Australian study, shows the performance of a double-glazed, ✓ ,45-square-foot solar water heater in several₄ regions of the country. Variable solar energy and ambient temperature throughout the year result in 1.4 to 2.5 times as much solar heat supply to water in summer than in. Climatic differences produced a solar heat percentage ranging winter. from 60 percent to 81 percent of the annual total hot water requirements. Table 7-2 shows monthly performance of the same system, in Melbourne, Australia, with average collection éfficiency varying between 29 and 40 percent of incident radiation. Variation in inlet, outlet, and ambient temperature in a typical thermosiphon type of solar water heater is shown in Figure 7-8.

In a simulation study at the University of Wistonsin, hot water usage was programmed for a hypothetical residential user. The resultsshow only slight variation in solar heat utilization at several use schedules and indicate only minor influence of torage temperature stratification on collector efficiency.

Table 7-1

Daily Means for Twelve Consecutive Months of Operation of Solar Water Heaters at Various Localities

Location	,Adelaide	Brisbane*	Çanberra	Deniliquin	Geelong	Melbourne	'Sydney	,
Hot water discharge ** (gallons, US)	54.2	54.5	51.4	50.9	50.4	54.6	53.9	
Elegtrical energy consumed (kWh)	3.5	, 2 . 5	3.4	\$ 2.5	3.8	4.6	4.4	. ,
Cold water temperature (°C)	17.7.	/ 21.6	12.7	16.8	15.9	·16.1	16.6	
Hot water temperature (°C)	~ 58.9	56.4	58.4	60.3	58.7	57.4	57.7	
nergy required to heat water (kWh)	9.8 ·	8.4	10.3	9.7	. 9.5	9.9	•9.8	
leat loss from storage tank (kWh)	2.24	1.9	2.5	2.5	2.2	. 1.9 -	1.9	
Fotal energy consumed (kWh)	12.0	10.3	12.8	12.2	11.7	11.8	11.7	;
Solar energy contributed (kWh)	8.5 ·	7.8	9.4	· 9.7 ·	7.9	7.2	7.3	1
Solar energy contributed (%) 7	71.0	76.0	73.0	* 81.0	67.0 °	61.0	62.0	
Solar contribution best month (%)	99.0	94.0	98.0	100.0	_ 92.0	95,0	70.0	
Solar contribution worst month (%)	47.0	⁻ 5 7.0	43.0	57.0	45.0	38.0	51.0	· [·]
Ratio best to worst .	2.1	1.6	.2.3		2.0	2.5	1.4	

* Hail screens suspended above the absorbers. No correction made for reduction of absorbing area.

** Water discharged at 6:00 a.m. daily

193

Double-glazed, flat-black, 45 square foot solar collector tilted toward equator at latitude angle plus 2.5 degrees. Storage 84 gallons (US). Thermosiphon circulation. Electric auxiliary heat.

Table 7-2 Solar Water Heater Performance in Melbourne, Australia

	•	· •			•	
Month	Mean Insolation on Absorber	Mean Daily Supplementary Energy	Mean Da Solar En Contribu	ergy	System Efficiency	
	Btu/ft ² day	* kWh	Percent	k₩h	Percent	
January	1630	2.2	75	8.9		. 1
February	2220	0.5	95	9:5	. 32 *	,
March	1690	. 2.5	74	7.4-	. 33	
April .	_ 12 4 0	5.2	52	5.6	34	
May	1290	6.2	47	5.5	32	
June	1220	7.7	39	4.9	30 -	
July	1290 ·	8.1	38	5.0	29	
August	- 1530 [,]	6.1	50	6.1	30	
September	1600	4.9	• 59	7.1	3 <u>3</u>	K
October	1860	3.9	67	.7.9	32	Ĺ
November	· 1880 · ·	3.7 -	68	7.9	32	
December	1790 • .	3.5	. 72	9.0	-38	
Year	1610	· 4.6 .	· 61	*7.2	` 35•	

ERIC

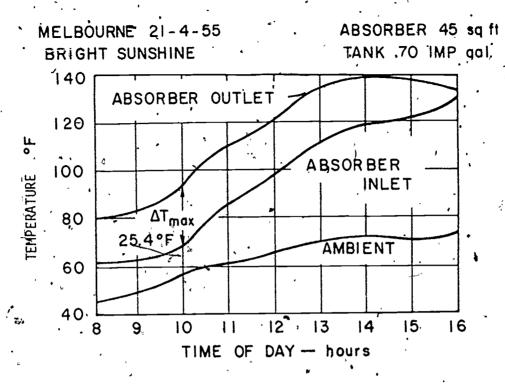
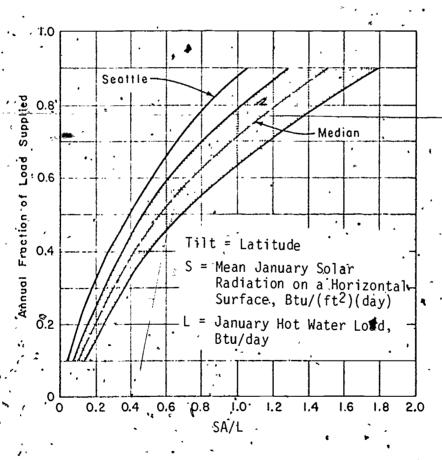
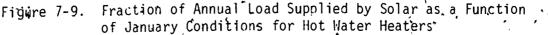


Figure 7-8. Absorber and Tank Temperatures for Thermosiphon Flow During a Typical Day


In summary, the normal output of well-designed solar water heating systems can be roughly estimated by assuming approximately 40 percent solar collection efficiency. Average monthly solar radiation multiplied by collector area and 40 percent delivery efficiency can provide a rough measure of daily or monthly Btu delivery. The total Btu requirements for the hot water supply, based on the volume used and the temperature increase set, then serve the basis for computation of percentage contribution from solar and the portion required to be supplied by fuel or electricity.


The curves shown in Figure 7-9 may be used to estimate the solar collector size required for hot water service in residential buildings having typical hot water systems. The system is assumed to be pumped liquid type,

7-25 ′́.

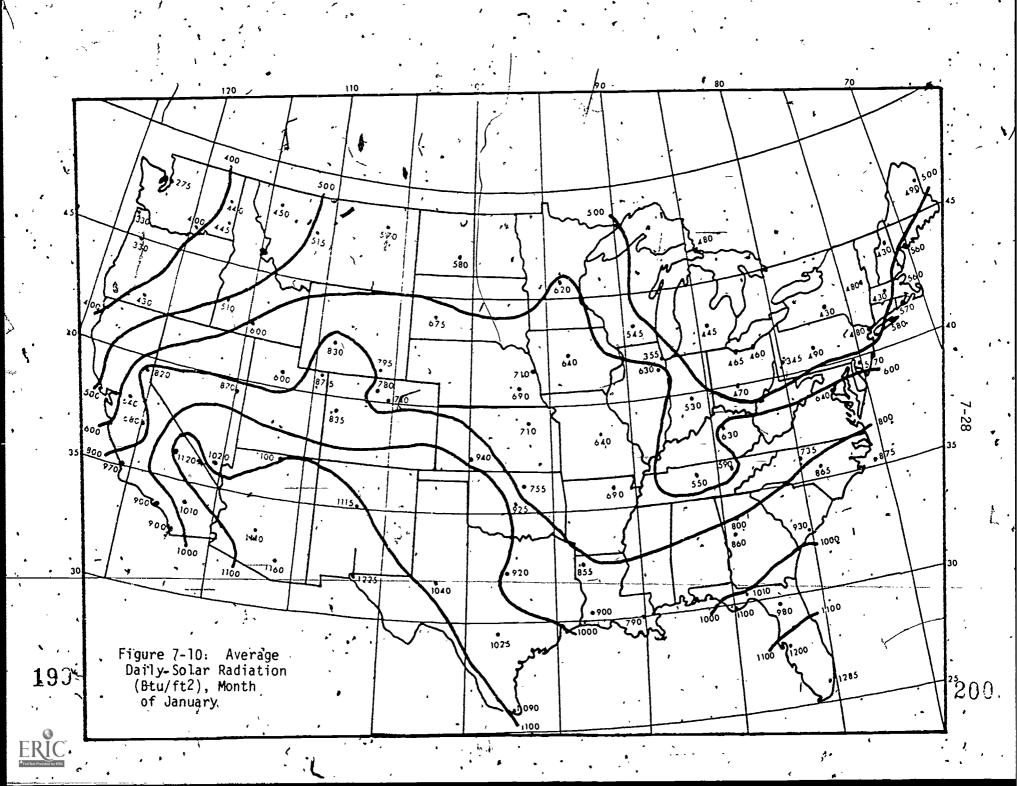
with liquid-to-liquid heat, exchange, delivering hot water to scheduled residential uses from 6:00 a.m. until midnight. The shaded band represents results of computer calculations for eleven different locations in the United States. The cities included in the study are Boulder, Colorado; Albuquerque, New Mexico; Madison, Wisconsin; Boston, Massachusetts; Oak Ridge, Temessee; Albany, New York; Manhattan, Kansas; Gainesville, Florida; Santa María, California; St. Cloud, Minnesota; and Washington, D.C. The separate curve above the shaded band is the result for Seattle, Washington, and is distinctly different from other areas of the country. The hot water loads used in the computations range from 50 gallons per day (gpd) to 2000. gpd. The sizing curves are approximate and should not be expected to yield results closer than 10 percent of actual value.

7-26

The vertical axis shows the fraction of the annual water heating load supplied by solar. The horizontal axis shows values of the parameters, SA/L, which involves the average daily January radiation on a horizontal surface, S; the required collector area, A, to supply a certain percentage of the daily hot water load, L. The January average daily total radiation at locations in the United States can be estimated from the radiation map in Figure 7-10. Values on the map are given in $Btu/(ft^2)(day)$. The curves are not applicable for values of f greater, than 0.9.

It should be remembered that the service hot water load will be nearly constant throughout the year while the solar energy collected will vary from season to season. A system sized for January, with collectors tilted at the latitude angle, will deliver high temperature water and may even cause boiling in the summer. On the other hand, a system sized to meet the load in July will not provide all of the load in the winter months. Orientation of the collector can partially overcome month-tomonth fluctuations in radiation and temperature.

Sizing Examples


January is:

Example 7-1. Determine the approximate size of collector needed to provide hot water for a family of four in a residential building in Kansas City, Missouri.

Solution: The average daily service hot water load in

L = 80 gallons/day x 8.34 pounds/gallon x l Btu/(lb)(°F) x (140°F - 50°F) = 60,048 Btu/day

The desired service water temperature is 40° F and the temperature of the cold water from the main is 50° F. The total average solar radiation, S,

available in January, from Figure 7-10, is 680 Btu per square foot per day.' For a water system to provide 60 percent of the annual load, from Figure 7-9, SA/L is about 0.8. Therefore: 'A = 0.8 x, LÆ = (0.8 x 60048)/680 = 70.6 square feet. If 3-by-8-foot collector modules are available, 2.9 units would be required. Three collector units should therefore be used. Example 7-2. Determine the size of collector needed to provide hot water for a family of four in Albuquerque, New Mexico. Solution: The monthly load will be approximately the same as in, Example 7-1: L = 60,048 Btu/dayFrom Figure 7-10, $S = 1115 Btu/(ft^2)(day)$. For a system to provide 60 percent of the annual load, Figure $7_{\overline{x}}9$ shows that is approximately 0.8. The collector area required is: SA/L $A = (0.8 \times 60048)/1115 = 43.1$ Using 3 by 6 foot collector modules, 2.4 units would be required for this system; either two or three modules should be used. If two modules are used, the system would be expected to provide less than 60 percent of the annual load. C0STS The cost of installing a solar water heater (exclusive of the hard-

7-29

ware) may range from about \$300 for a system with a roof-mounted collector to over \$1000 for a collector mounted on a stand adjacent to a house. In a recent procurement of several types of solar water heaters for ground mounting next to existing houses, an electric utility company spent \$1500 to \$2000 for each system, including hardware, and totally installed.

Non-freezing collectors of about 50 square feet, 80 gallon water tanks, pumps, fans, and controls were included.

A solar collector manufacturer has announced the availability of a solar water heater "package" having a metail price of \$999. The package consists of a 40 square foot drainable collector, an 80 gallon storage tank, pumps, and controls. Installation and hook-up to the conventional system are not included.

As designs are standardized and manufacturing volume increases, it may be anticipated that the total installed cost of an average-sized ' residential solar water heating system will be less than \$1000. Assuming a collector area of about 50 square feet and a reasonably sunny climate, this unit should be able to deliver at least 250,028 Btu per/square foot of collector per year, for a total of 12.5 million Btu annually. With an average daily requirement for 50,000 Btu of heat for hot water, the 18 million Btu annually required could be two-thirds solar. If electric heat at five cents per kilowaft-hour (about \$14 per million Bty) is being. replaced, an annual electric saving of about \$175 is achieved. A \$1000 solar water heater could thus pay for itself from electric savings in about six years. Or, if conventionally financed at 8-percent interes't, an annual cost of interest plus principal of, say, 12 percent, or \$120 per year, would be less than the electric savings by something over \$50 per This favorable economic comparison for solar water heaters is applicable now in many parts of the country and should prevail very . . generally in the next few years.

TRAINING COURSE IN. THE PRACTICAL ASPECTS OF. SIZING, INSTALLATION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS FOR RESIDENTIAL BUILDINGS

MODULE 8

SOLAR HEATING SYSTEMS

SOLAR ENERGY APPLICATION'S LABORATORY COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

203

TABLE OF CONTENTS

8-ji

8-iit

8-1

8-1

8-2

8-4

8-4

8-8

•<u>8</u>-9

8-11

8-13

8-14

8-16

8-17

8-18

8-20

LIST OF FIGURES. LIST OF TABLES INTRODUCTION OBJECTIVE ... SOLAR SPACE HEATING SYSTEMS SOLAR AIR HEATING SYSTEM Doubl'e Blower Design. Single Blower Design Solar Air System Materials, Components, and Installation LIQUID HEATING SOLAR SYSTEM Solar Water System Materials, Components, and Installation HEAT EXCHANGERS . AUXILIARY HEATING UNIT AIR HEATING COILS ". HEAT PUMPS. SOLAR ASSISTED HEAT PUMPS.

20.1

LIST OF FIGURES

-	Figure	;	•,	Page
*	8-1	Basic Arrangements for Solar Space Heating System	ıs	8-2*
-	8-2	Water System Arrangement for Solar Space Heating	•	β-3
, , , , , , , , , , , , , , , , , , ,	8-3	Air System for Solar Space Heating with Auxiliary Furnace	••••	. 8-3 · ·
•	8-4	Liquid System for Solar Space Heating with Auxiliary Boiler	· ·	8-4
 *	8-5	Heating Building Directly from Collectors	•	8-5
1	8-6	Storing Heat from Collectors	• •	8-6
•	8-7 ·	Heating Building From Storage Unit (Also Heating from Auxiliary)	ار م	8-6
• ب	.8-8 -	Service Hot Water Heating (Summer Operation) .	• • •	8-7
•	8-9-	Single Blower System.	• •	8-8
•	*8-10 ,	Water Type Solar Space Heating System	••••••	∽ 8-12 J
2 •	8 ,1 1 .	Single-Pass Counterflow Heat Exchanger (Collector Heat Exchanger at 115,500 Btu/Hr and Storage Temperature of 160°F).	· · · ·	8-15
-, 8	8-12	Heat Pump in Heating Mode	•	8-19
•	8=13	Heat Pump in Cooling Mode	· · ·	8-19
,	8-14	Simplified Diagram of a Solar Assisted Heat . Pump System Series Arrangement	•••	8-21
•	8-15 •	Solar Heating System with Air-to-Air Heat Pump Auxiliary (Heating Building from Storage with Heat Pump Supplementary Supply)	• '-`•	8-21
			•	f v
<i>-</i> .	-		,	

2

ERIC.

8-ii

LIST OF TABLES

.t. ...

ERIC

. 8-iii

8-1 ·	·Two; Wower,			•		· · · ·	•	8-5
^{**} 8-2	Conditions Water Heati	of Pumps ng System	and Valve s	s for Sola	n ` •			* 8-1 3
·8-3	Recommended	Pipe Dia	meters fo	or Various	Flow R	ates .	•	8-14
		· · · · · · · · · · · · · · · · · · ·	• •	•			* •	
۔ ٠. س	· · ·			•	•	, ŧ	•	:
, • •		• • •	¥	• , . _ *	•	•	*	•.
•	/ . ¥	· · · ·		ب ما م ب ب	•		``````````````````````````````````````	•
•		۰. ۱	<i>,</i> •		•	· · ·	• ,	•

INTRODUCTION

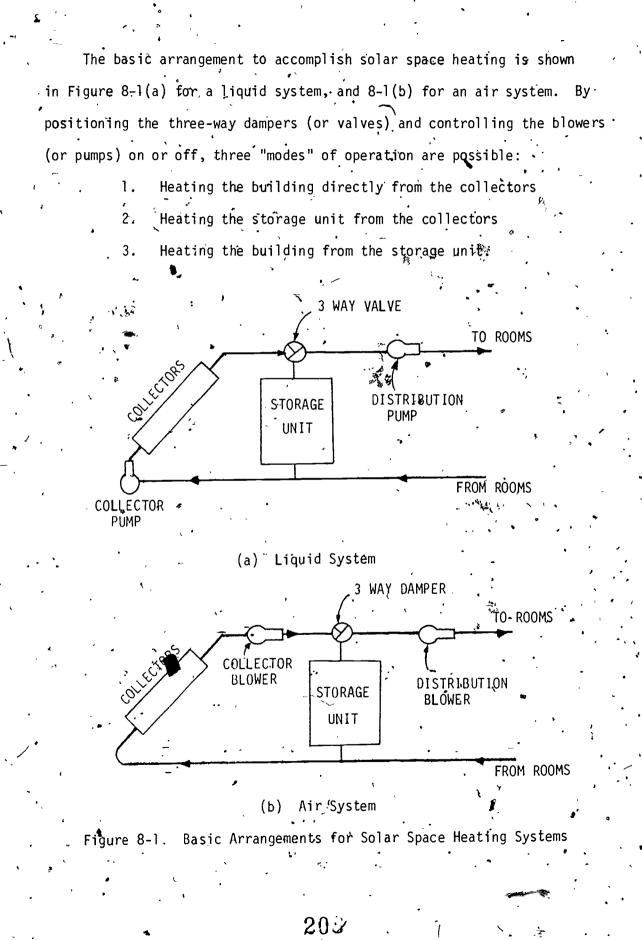
Solar heat from the collectors and the heating demand for a building are not usually in balance. Consequently, mechanical equipment is required for proper comfort control. The central component of the solar system is the heat storage unit. The heat storage unit receives heat from the collectors when the solar heat exceeds the heating load and delivers heat to the rooms when the heating load exceeds the solar heat available from the collectors. When solar heat has been depleted from storage, the auxiliary boiler or furnace supplies the to meet the heating load. The system should be easy to operate, require little maintenance, and provide the comfort level demanded by the occupants in the building.

OBJECTIVE

The objective of the trainee is to be able to choose, install, operate, and maintain, a solar space heating system. At the end of this module the trainee should be able to:

1.

2.


3.

system,

Differentiate between air and liquid systems, Select and specify the components of a solar heating

Discuss the use of an auxiliary energy source, Describe the different modes of operation of a solar space heating system,

SOLAR SPACE HEATING SYSTEMS

.8-2

In a water system the collection and distribution circuits may each be connected to the water storage tank and the three-way, valves may be eliminated (Figure 8-2). The three modes are obtained by on and off control of the two pumps.

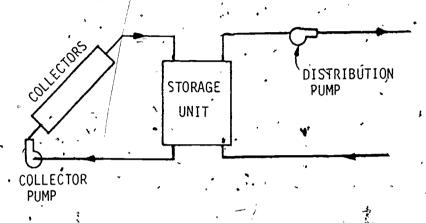
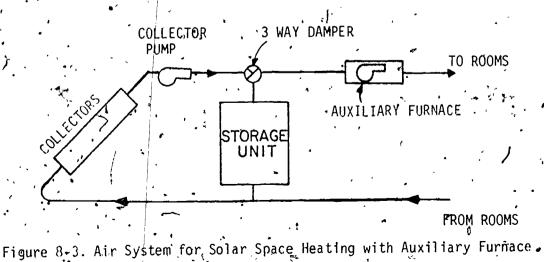



Figure 8-2. Water System Arrangement for Solar Space Heating

Since there are periods when neither the collectors nor the storage unit can meet the demand for heat, an auxiliary heater (fuel or electric) having the capacity to carry the maximum heating load is required. Solar and auxiliary heat may be supplied to the building by the same heat distribution system. The air heating solar system may use a conventional warm-air furnace directly in the hot air supply duct, as shown in Figure 8-3. Fuel is supplied to the auxiliary unit only when solar heat is insufficient ito maintain the desired room temperature.

209.

In the liquid system a hot water boiler (fuel or electric) is used, preferably locating the boiler in a by-pass circuit as shown in Figure 8-4. The boiler by-pass is used to prevent heating the storage with auxiliary energy. Heat from the auxiliary boiler should not be supplied to the storage tank because it is wasteful use of energy.

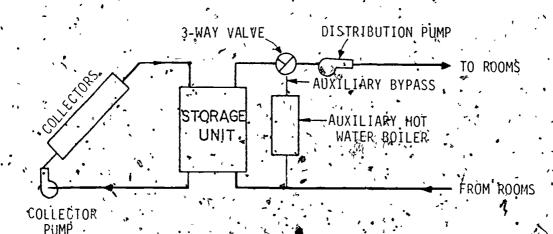
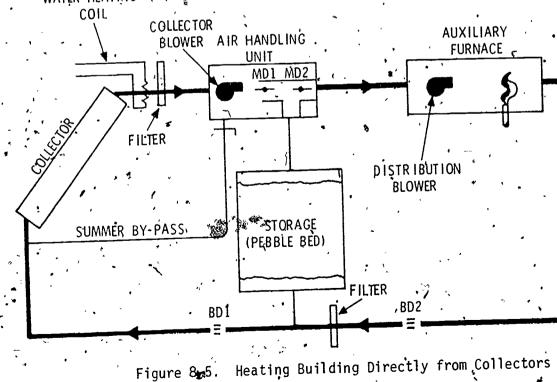
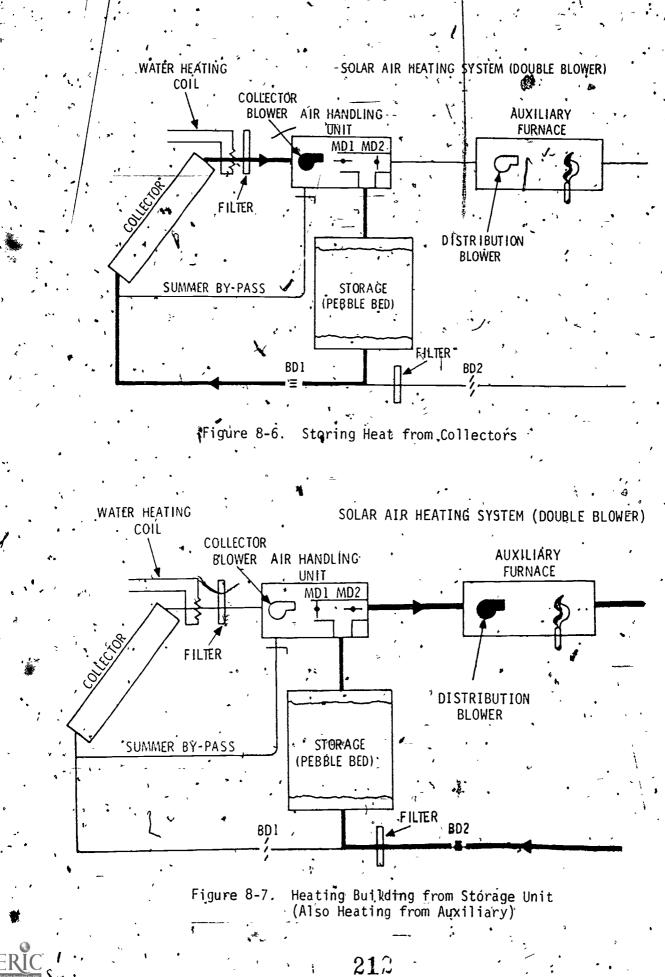


Figure 8-4. Liquid System for Solar Space Heating with Auxiliary Boiler

SOLAR AIR HEATING SYSTEM

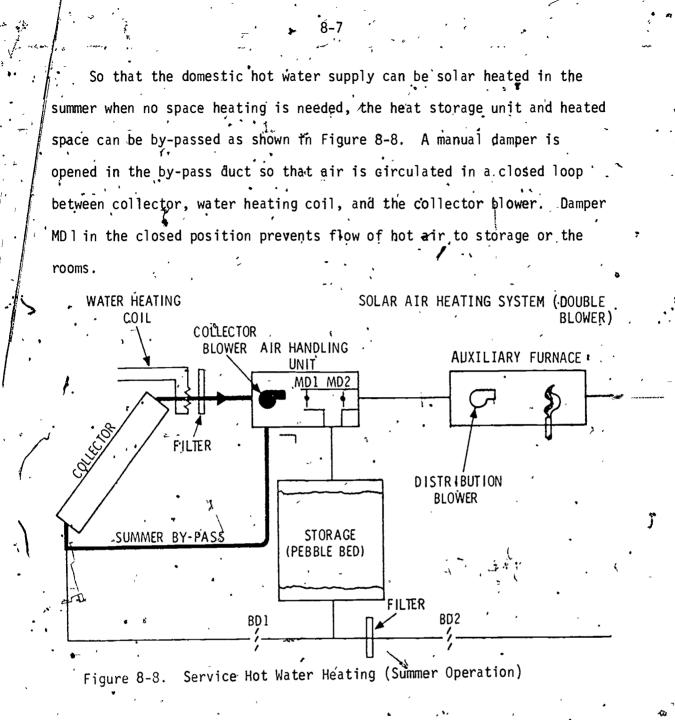
Double Blower Design


The schematic design of a two-blower air-type solar system shown in Figure 8-3 comprises four principal components; solar collector, heat storage unit, air handler, and auxiliary heater. By combining the blower and dampers in an "air handler", installation and operation of the system can be simplified. The operation of such a system in its several modes is listed in Table 8-1, and shown in Figures 8-5, 8-6, and 8-7. In the table and figures, MD denotes motorized damper and BD a back draft damper.


21Ú·

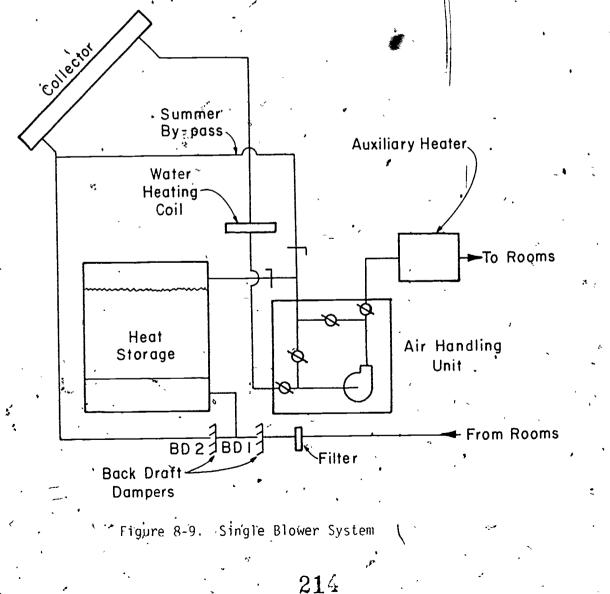
		·	•	•		•
Mode	MDI	MD 2	· BD1 '	. BD 2 ,	Collector Blower	Distribution Blower
Room.Heating from Collector (Figure 8-5)	Open.	0pen	Opeņ	Open	- On	o o o o o
Heating Storage (Figure 8-6) Room Heating from Storage (Eigure 8-7)	Open Closed ″	Closed Open	Open Closed	Closed	Off	Off On
Heating from Auxiliary (Figure 8-7)	Closed	Open	Clòsed (auxili	Open ary _. on)	Off	0n

Table 8-1.; Two-Blower, Air-Type Selar System Operation


WATER HEATING . SOLAR AIR HEATING SYSTEM (DOUBLE BLOWER)

.* 8-6

· .



Most commercially available warm-air furnaces for residential use contain a blower for circulation of warm air through the building via the distribution ducts. In a typical all-air solar installation, the furnace blower is used in the normal manner for distributing warm air, supplied either from the collectors or from storage. The solar system blower operates only when air is circulated through the collector.

21(

<u>Single Blower Design</u>

Another damper arrangement does not require the furnace blower, so only the solar system blower is needed. Four motorized dampers are required (rather than two), but only two actuators are needed. This system type is shown in Figure 8-9, with the blower and motorized dampers in an "air handler" cabinet. Although the cost of a blower and motor can be saved by this design, two additional dampers are required, the controls are pore complicated, air flow rates in the several modes are less adjustable, and the "saved" blower and motor are usually integral parts of the auxiliary furnace.

RIC

Solar Air System Materials, Components, and Installation

Important operating considerations in the air type system are blower power requirements and air leakage. A well-designed air system has approximately equal pressure loss through the collectors and pebble-bed, typically about 0.3 inch water gauge in each unit. With ducting and filters, the total system pressure can approach one inch of water. The total pressure in an air type solar system is about twice that usually encountered in a conventional forced air distribution system, so additional blower-power isrequired. Typical requirement in a conventional system is one-half to three-fourths horsepower for a 1500 cfm system. The blowers also operate for longer periods than in the conventional system because of their use both for solar heat collection and for heat distribution. A one-inch water gauge pressure loss is about the maximum acceptable from the standpoint of blower power cost.

Leakage of air in ducts, collectors, and storage is of greater concern in a solar heating system than in a conventional system because the pressure is higher, there is more ducting, the system operates for longer periods, and there may be more ducting through unheated space. The ducts should therefore be made with taped or sealed joints and tightly fitted dampers. The ducts may be of fiberglass board or insulated sheet metal. Insulation is needed to reduce heat loss through the duct walls, particularly in unheated spaces such as attics. At least one inch of fiberglass with a rating of R-4 is recommended for duct insulation.

It is especially important with a solar air system that a well scheduled installation be made. More space and access must be provided in the building for ducting than for pipes in a liquid system. Ductwork and component assembly can be done at the same time that the distribution ducts and furnace are installed in a typical construction schedule.

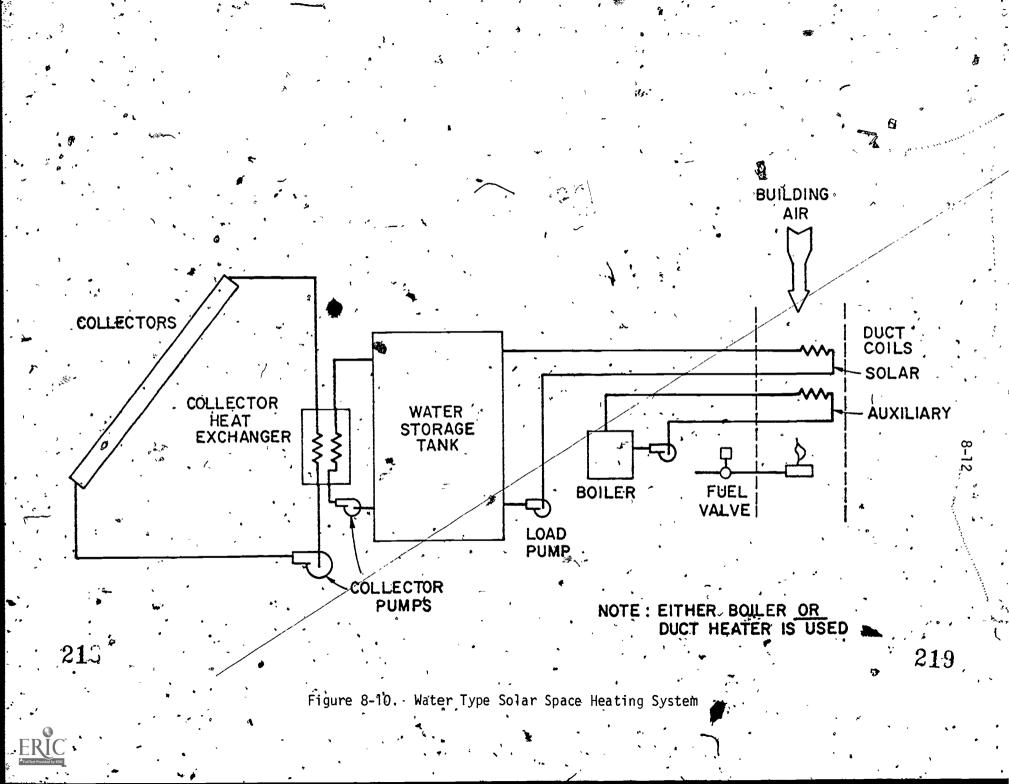
There must be provision for construction and installation space and for full access to the space for systems and components.

If fiberglass ductboard is used for the air duct, it should not be in locations where it can be damaged by moving objects or occupants. Joints " should be well sealed with tapes or mastics recommended by the industry. Duct bends should be provided with turning vanes to reduce losses. Ducts should be sized for air velocities between 700 and 1000 feet per minute.

Blowers, dampers, and auxiliary heaters may be provided by a single solar system supplier or they may be purchased separately. If separately purchased, blowers should be forward-curved squirrel cage type and beltdriven at 900 to 1700 rpm. Direct coupled blowers with motors in the air stream may have shorter service life because of motor operation in hightemperature air. Flexible connections between blowers and ducts are recommended.

Louver-type dampers with live silicon rubber seals are recommended for positive shut off and smooth stroking. Damper drive motors should be located on the outside of ducts and direct coupled to the damper shaft or through linkages. Damper pairs may be operated by the same drive motor such that one is closed when the other is open. Damper motors are available which operate on low voltage (24 volt) and have spring returns.

Back draft dampers, used in ducts to prevent reverse flow, may be of the flexible flat type or shutter type. They must be mounted to provide a positive seal against reverse air flow.


To prevent fouling and increased pressure loss in the pebble-bed, filters should be installed in the air streams entering both ends of the storage unit. The filters should be changed or cleaned every few weeks during the first several months of operation to remove the initial dust in the system and building.

Provision for supply of domestic hot water can be easily made in the air system by the use of an air-to-water, heat exchanger in the hot air duct between the collector and blower. The heat exchanger coil is a finned type, with one or two rows of tubes. A small pump circulates water from the bottom of an insulated tank (usually about 80-gallon capacity), through the coil, and back to the top of the tank. The cold water enters the solar-heated tank and warm water flows to a conventional automatic water heater whenever a hot water faucet is opened in the building. A duct by pass as shown in Figure 8-7 (page 8-6) permits operation of the service hot water coil in the summer without heating the pebble-bed. A thermostatic mixing valve can be installed in the line connected to the service hot water tank from the cold water main to prevent delivery of scalding hot water.

The complete solar heating installation will require heating and sheet metal workers to install collectors, ducts, dampers, and the conventional system, electricians to wire blowers and dampers, plumbers to connect the domestic water heating system, and carpenters or masonry workers to construct the pebble-bed container. Consequently, the general contractor and the solar system contractor should coordinate their activities so that each task is accomplished at the most appropriate and convenient stage during construction. Quality installation is an important requirement to obtain a high performance air heating solar system.

LIQUID HEATING SOLAR SYSTEM

A schematic diagram of a complete liquid-heating solar system for solar space heating using water as the heat transport and storage fluid is shown in Figure 8-10. The system is comprised of solar collectors, storage tank, auxiliary boiler, and pumps, valves, and heat exchangers.

The collector heat exchanger is used for systems in freezing climates to separate the antifreeze in the collector loop from the storage tank water. The heat exchanger may be a counterflow tube-in-shell type.

A central heat distribution system with a single heat exchanger coil or multiple fan coil units in different zones in the building may be used to heat the rooms. Radiant or baseboard convection heating is an alternative method for heat delivery but for satisfactory performance, higher temperatures are required than for forced air heat exchangers. The higher temperature is a disadvantage to system operation with flat-plate collectors. The auxiliary heater may be either a boiler or an air duct furnace.

The operating modes and states of the pumps, blower, and auxiliary heater are shown in Table 8-2. The locations of the components are shown on Figure 8-10.

> Table 8-2. Conditions of Pumps and Valves for, Solar Water, Heating Systems

	•				<u> </u>
د د	Mode	Collecto Pumps		Auxiliary Heater	∫Distribution Blower
<u>ر</u> -	Heating Storage	on co			
	Heating from Storage		· on	.₀off,	on
	Heating from Auxiliary	· · ·	On or off	🖉 on	.on

Solar Water System Materials, Components, and Installation

Piping may consist of either copper or high temperature (CPVC) plastic pipe and all pipes should be insulated with appropriate material such as neoprene foam at least one-half inch in thickness. Care should be taken to allow thermal expansion of the pipes, and long pipe lengths should provide more freedom for expansion than short lengths. Pipes should be sized so that water velocity does not exceed five feet per second.

8-13

In Table 8-3, recommended pipe diameters are indicated for flow rates in gallons per minute.

Minute	FPS	100 feet PSI
2	· 3.36	6.58
4	4.22	· · · 7.42
8	4.81	6.60
15.	5.57	6.36
2,5 <i>,</i>	5.37	4.22
-	4 8 15	4.22 8 4.81 15 5.57

Table 8-3. Recommended Pipe Diameters for Various <

Circulating pumps should be centrifugal type, coupled directly to motors with rotating speeds between 700 and 1700 rpm. Centrifugal pumps are recommended because the pumping pressure is limited and if valves fail to open, or the pipeline becomes clogged, there is no danger of developing excessive pressures which could burst pipes. With known flow rate and system head, pumps may be selected from stock items in catalogs, or made to specifications by pump manufacturers. Impellers of stock item pumps may be trimmed to meet the specifications. Centrifugal pumps should be located so that priming is not necessary, which could be a particular problem in a vented system or where a storage tank is underground. The pumps should be provided with at least five feet of head on the suction side.

HEAT EXCHANGERS

A heat exchanger must be provided to transfer the heat from the collector fluid to storage if the collector and storage fluids are in different loops. Because of the low temperatures from flat-plate solar collectors, the temperature difference across heat exchangers should be small. The temperature differential in a heat exchanger is minimized in two ways: by providing a large surface area for neat transfer in the exchanger and by maintaining high flow rates through the exchanger. Tube-in-shell fleat exchangers are simple, efficient, and readily available. They consist of single or multiple tubes enclosed within an outer jacket. One fluid passes through the tubes while the other fluid passes outside the tubes. Large heat transfer surface can be achieved in compact arrangements.

The performance characteristics of a single-pass counterflow heat exchanger are illustrated in Figure 8-11. It can be seen from the temperature profiles along the exchanger that the temperature difference between fluids is reasonably small along the length of the heat exchanger.

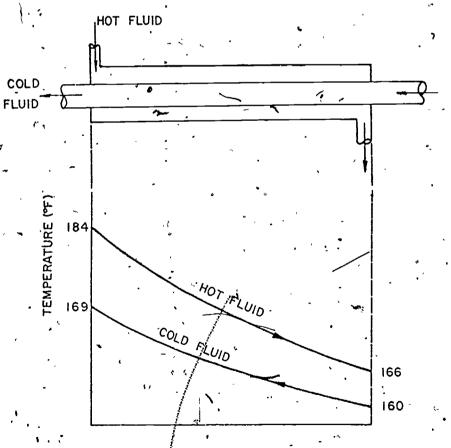


Figure 8-11.

Single-Pass Counterflow Heat Exchanger (Collector Heat Exchanger at 115,500 Btu/Hr and Storage Temperature of 160°F)

The manufacturer's guide can easily be followed in selecting the size of a heat exchanger. If appropriate information is difficult to acquire, the manufacturer's representative should be consulted for assistance and/or advice. The information necessary for heat exchanger sizing and fluid flow rate determination are the temperature of the fluids entering the exchanger and the Btu per hour heat transfer rate desired.

High fluid velocities and flow rates achieve high heat exchanger efficiency at the expense of pumping power. The high flow rate, however, minimizes thermal stratification in the storage tank because of mixing. However, achieving efficiency in heat exchange from the collectors to storage and from storage to the loads is more important to overall system performance than establishing stratification in the storage tank.

AUXILIARY HEATING UNIT

The auxiliary heating unit may be a hot water boiler, forced air furnace, or electric heat pump. If a hot water boiler is used, water may be distributed to individual room heating units. This allows the same heat distribution line to be used for solar and auxiliary heated water. It is advisable to install the auxiliary boiler in a by-pass line around the storage unit as shown in Figure 8-4 (page 8-4)/ This arrangement prevents heating water in storage with auxiliary energy. Because the boiler is used only occasionally in the solar system, it is preferable to operate a cold boiler, which maintains low temperature until auxiliary heat is required. This prevents heat loss to the boiler flue and also heat load to the building from a high temperature boiler.

8-16-

AIR HEATING COILS

8-17-

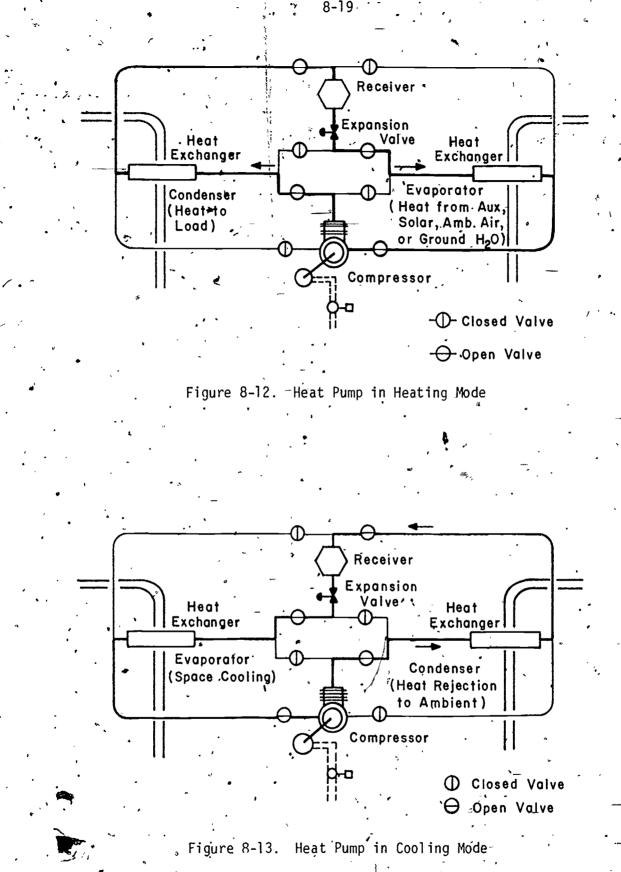
The room air may be heated by finned duct coils in a central air distribution system, fan coil units in different zones in the building, or by baseboard radiant heating units. The temperature of the heated water used in each type of heating unit is important. Radiant heating systems require higher water temperatures than duct or fan coil systems to heat the rooms effectively.

The temperature in a solar storage tank which is heated by flat-plate solar collectors will range between 100° and 160°F in the winter, 'Baseboard or radiant heating equipment is normally designed for water temperatures at 180° to 220°F. Therefore, the baseboard or radiant heating systems are not recommended for use in heating a building with a solar system which incorporates flat-plate collectors.

Because of space limitations or other reasons, fan coil units may be preferred over duct coils to heat room air. The units should be sized to provide a required rate of heating with water temperature of about 140°F. Duct heating coils may be used with a central forced air system. These units are commercially available and consist of multiple rows of finned tubes. Air velocity across these coils should be at least 500 feet per minute. Manufacturers of heating units will provide the proper size for given water temperatures and design heat rate requirements of the unit. Separate duct heating coils for solar heated water and for auxiliary boiler heated water may be considered in /a central air distribution system. Two separate coils will permit heat to be extracted from storage until the water temperature is practically at room ftemperature, while the auxiliary heat will be used as necessary to deliver the rate of heat required to maintain the comfort conditions in the mooms. This arrangement necessitates a second pump, air heating coil, and additional piping connections. If two

coils are used, the solar heated coil should be the first-coil in the direction of air flow, followed by the auxiliary coil. If a duct furnace is used for auxiliary heating, the solar air heating coil should be installed ahead of the furnace or at the return air connection to the furnace. The solar coil will then heat the coldest air.

8-18


In a solar system, a single pump may be used to circulate water through two different circuits. For example, the solar heated water is directed to a heating coil in winter and to an air conditioning unit in summer. Switching the fluid circuits is accomplished by a three-way valve. Various types of three-way valves are available and are suitable for use. However, if there is a leak through the valve, the system performance can be affected adversely, so that properly seating valves should be selected and tested early during the start-up operations.

HEAT PUMPS

A heat pump uses electrical or chemical energy to extract heat from a low temperature source and deliver the heat to a higher temperature sink. The process is identical to a refrigeration cycle and the same machine that is used as a heat pump in winter may be used as a refrigeration air conditioner in summer. The switching between heating and cooling may be done internally to the machine by reversing the evaporator and condenser units, or externally by reversing the exchange circuits on the evaporator and condenser side of the machine.

Heat pumps are classified according to the heat source and the fluid to which heat is delivered. There are three types of heat pumps: (1) air-to-air, (2) water-to-air, and (3) water-to-water. Schematic diagrams of a heat pump operating as a heater and as a cooler are shown in Figures 8-12 and 8-13, respectively.

ERIC

SOLAR ASSISTED HEAT PUMPS

8-20

The concept of a solar-assisted heat pump is to supply a higher temperature heat source than outdoor ambient air to the heat pump from solar collectors or storage. Typically, solar heated air or water could be 40° to 110°F above the ambient air or water temperature. Because the fluid temperature delivered from the collectors is low, greater efficiency is expected from the solar system as compared to a solar system using direct heating methods, which typically requires 150°F water temperatures above ambient. A solar heat pump system is appropriate in extremely cold, windy, or cloudy areas where flat-plate collectors could be used effectively to collect solar energy at temperatures sufficient for a heat pump.

Heat is usually stored for the low temperature side of the heat pump because it results in better system efficiency and smaller size unit than if storage is provided in the "hot side". A possible system is illustrated in Figure 8-14. Solar air heating collectors with a pebble-bed storage unit or liquid heating collectors with water or phase change storage may be used along with any of the three types of heat pumps available commercially.

There is not yet a clear indication of what heat pump arrangement is going to prove best. With an air system, it appears that the heat pump can be most advantageously used if operated simply as the auxiliary furnace to raise the temperature of the circulating air from the pebble-bed to the rooms. The system is illustrated in Figure 8-15, where outdoor air is used as the source. In the liquid system, whether the heat pump should be used in a similar fashion, or whether the source should be the solar storage tank, is not yet clear. At this time, an engineer and the heat pump manufacturer should be consulted to assist in the design of a solar heat pump combination.

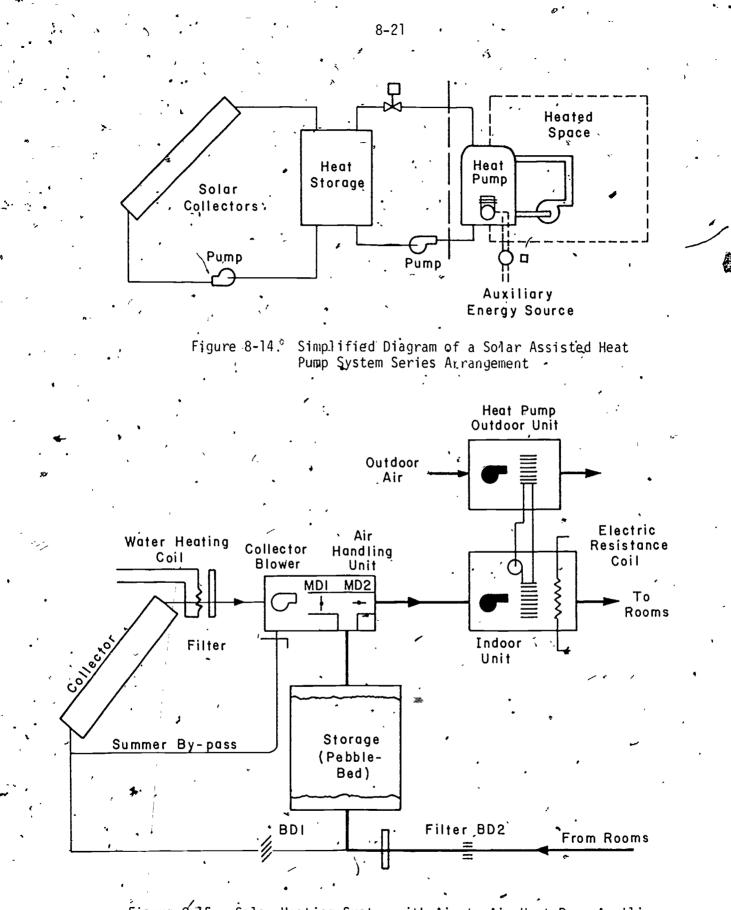


Figure 8-15.

Solar Heating System with Air-to-Air Heat Pump Auxiliary (Heating Building from Storage with Heat Pump Supplementary Supply) TRAINING COURSE IN

THE PRACTICAL ASPECTS OF

SIZING, INSTALLATION; AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS

FOR RESIDENTIAL BUILDINGS

MODULE 9

SOLAR SPACE COOLING SYSTEMS

SOLAR ENERGY APPLICATIONS LABORATORY COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO TABLE OF CONTENTS

//

N

.

ERIC

9-i

							•					-
-	LIST OF FIGURES.	، مر مسم •	•	•	•	•	•	.*	•	, f	9-ij	
	GLOSSARY OF TERMS	• •	•	•	•	• /	•	•	•	•	9-iii	, ,
,	· , ,	•	•	,	· "				N.			
•	INTRODUCTION .	• •	. •	• •	• *	•	•:	• ; •	•	•	9-1	<u>,</u>
•	OBJECTIVE	• • • • •	• •	•	• _	•	• .	•	•	•	9-1	بعظم ا
	CATEGORIES OF SPACE	COOLING	METHODS	5.	•	•	•	•	•	•	9-1	-
	DEFINITION OF TERMS	.• •	°•	•	•). •	• .	• .	• Ø	•	9-2	. (
	REFRIGERATION SYSTE	MS.	•	•	•	•	• '	•	•	•	9-2	Ň
	ABSORPTION REF	RIGERATIC	DN .	•	• •	•	•	•	•	•	9-3	• .
	Temperatu	re Restri	ctions	•	•	•	•	•	•	•	9-5	•
	-Types of	Lithium-E	Bromide	-Absoi	rptior	n Chil	lers	•	•	•	9-5	•
	HEAT PUMP	· · ·	•	· ·	••	•*,	• •	•	:	•	9-6	
	SOLAR RANKINE-	CYCLE ENG	GINE	•	•	•	•	· 、	•	•	9-6	 1
	EVAPORATIVE COOLING	• •		. ۱	.•	·· •	• `	•	N• 3	•	9-8	.*
- A.	- EVAPORATIVE CO	<u>Q</u> LING THE	ROUGH RO	OCK BI	ED .	`` `	•	• '	•	•	9-8	- +
¥.	- TRIETHYLENE GL	YCOL_OPE	N CYCLE	DESI	CCANT	SYSTE	EM	•	x ^t •	•	9-10	د ۲ -
•	RADIATIVE COOLING	•	•	•	•	• ′	•	•	•	• "	9-12 ¹	
	REFERENCES .	• •	•	• ,	•	•	•	•	•	• -1	9-15	

LIST OF FIGURES

•	Figure		Page									
	9-1	Absorption Air Conditioner Schematic Drawing										
	9-2	Rankine-Cycle Vapor Compression System										
۰ ۱	9-3 ·	Evaporative Cooling with Rock Bed Storage										
	9-4	Schematic of Triethylene Glycol (Liquid Desiccant) Open Cycle Air Conditioning System										
	9-5	Radiative Cooling System	9-14									
	, , ,		b ,									
•	я. 											

-231

Full Taxt Provided by ERIC

9-ii

GLOSSARY OF TERMS

9-iji

A liquid which combines chemically with a refrigerant absorbent-Ratio of heat removal rate to heat supply rate coefficient 🔺 of performance

Working fluid in a refrigeration system : _refrjgerant -

•

ton of refrigeration. Heat removal at a rate of 12,000 Btu per hour

INTRODUCTION

The withdrawal of heat from the air within a building enclosure which results in a temperature lower than that of the natural surroundings is termed space cooling or refrigeration. The methods using solar energy are of particular interest in this module.

OBJECTIVE

The objective of this module is to develop understanding of the principles of solar space cooling systems. In order to test whether this objective is met by the trainee, as primum level of accomplishment, the trainee should be able to: 1. List the different cooling methods and 2. Describe the operation of cooling systems.

* CATEGORIES OF SPACE COOLING METHODS

There are three categories of space cooling methods for residential buildings. They are

Refrigeration

. Evaporative cooling

3. Radiative cooling

Stlatenergy is directly useful only in refrigeration methods. Evaporative cooling and radiative cooling are indirectly related to solar energy in that they are dependent on climatic factors. The discussion in this module concerns principally refrigeration methods Evaporative and radiative cooling are also briefly mentioned.

DEFINITION OF TERMS

The capacity of a refrigeration machine to cool room air is customarily referred in <u>tons of refrigeration</u>. A ton of refrigeration is the removal of heat at a rate of 12,000 Btu per hour. Another often used term in connection with refrigeration equipment is coefficient of performance, COP. The COP expresses the effectiveness of a refrigeration cooling system as the ratio of useful refrigeration effect to met-energy supplied to the machine. The COP is determined by the simple equation below:

COP = <u>Heat energy removed</u> Energy supplied from external sources

The COP of a mechanical vapor-compression refrigeration machine is characteristically about two and can be as high as four. The COP of a lithium-bromide-water absorption refrigeration machine is about 0.8 and more often operates in the range from 0.6 to 0.7. A COP less than 1.0 means there is more energy supplied to the machine than heat energy removed from the room air. From the cooling capacity and COP the energy consumption rate by the machine to produce the cooling effect can be determined by dividing the heat removal rate by the COP. For example, with a 3-ton absorption air chiller, having a heat removal rate of 36,000 Btu per hour, and a COP of 0.6, the quantity of heat needed at the generator is 60,000 Btu per hour ($36,000 \div 0.6$).

REFRIGERATION SYSTEMS

Refrigeration systems accomplish cooling by removing heat from the air as it comes in contact with a cold refrigerated surface. Conventional vapor-compression systems using electric motors are potentially

9-2

convertible to systems with solar heat driven motors, and absorption refrigeration systems using gas fuel heat are potentially convertible to systems using solar heat. Of many possible systems, only the absorption systems are now available and are potentially economical in the near-term (next five years). Of the various types of absorption machines possible, the lithium-bromide-water unit is currently (1976) the only type which is commercially available for residential space cooling applications.

ABSORPTION REFRIGERATION

An absorption refrigeration machine uses heat energy to provide cooling. When a liquid mixture of refrigerant and absorbent is heated, the refrigerant is driven out of solution. The refrigerant flows from the generator through a condenser, expansion valve, and evaporator, then into an absorber, where it recombines with the absorbent. In a lithiumbromide-water absorption machine, water is the refrigerant and lithium bromide is the absorbent. An absorbent is a liquid which combines chemically with the refrigerant at low temperatures but will separate from the refrigerant at high temperatures. In the combination process, heat absorbed by the refrigerant is released.

The operating principle of a lithium bromide absorption cycle is explained with the aid of Figure 9-1. The cycle begins when water in the liquid mixture in the generator is boiled off and superheated with solar energy at temperatures between 170° and 210°F. Superheating of water is made possible by having very low pressure in the system. The superheated water vapor leaving the generator enters the condenser, where it is cooled to about 100°F by the cooling water from an outdoor cooling tower. The vapor condenses to a liquid and is then revaporized through

9-3

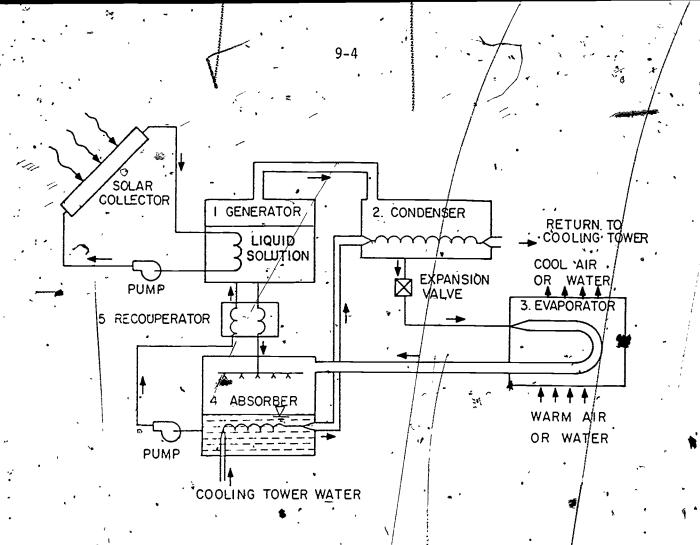


Figure 9-1. Absorption Air Conditioner -- Schematic Drawing

an expansion valve which cools the vapon-liquid mixtures to a temperature of 40°F in the evaporator coils. The heat in the air or water which is brought in contact with the evaporator is removed by the cool refrigerant. The refrigerant then passes to the absorber where it recombines with the concentrated lithium-bromide solution from the generator at a temperature of about 100°F. In this recombination process, heat is released, and the heat is removed by the cooling water from the cooling tower. The dilute solution of lithium-bromide and water in the absorber flows by. gravity, or is pumped, back to the generator and the cycle is repeated. The recouperator in the diagram is a heat exchanger which preheats the dilute solution as it flows from the absorber to the generator and at

the same time cools the hot concentrated solution which flows from the generator to the absorber.

Temperature Restrictions

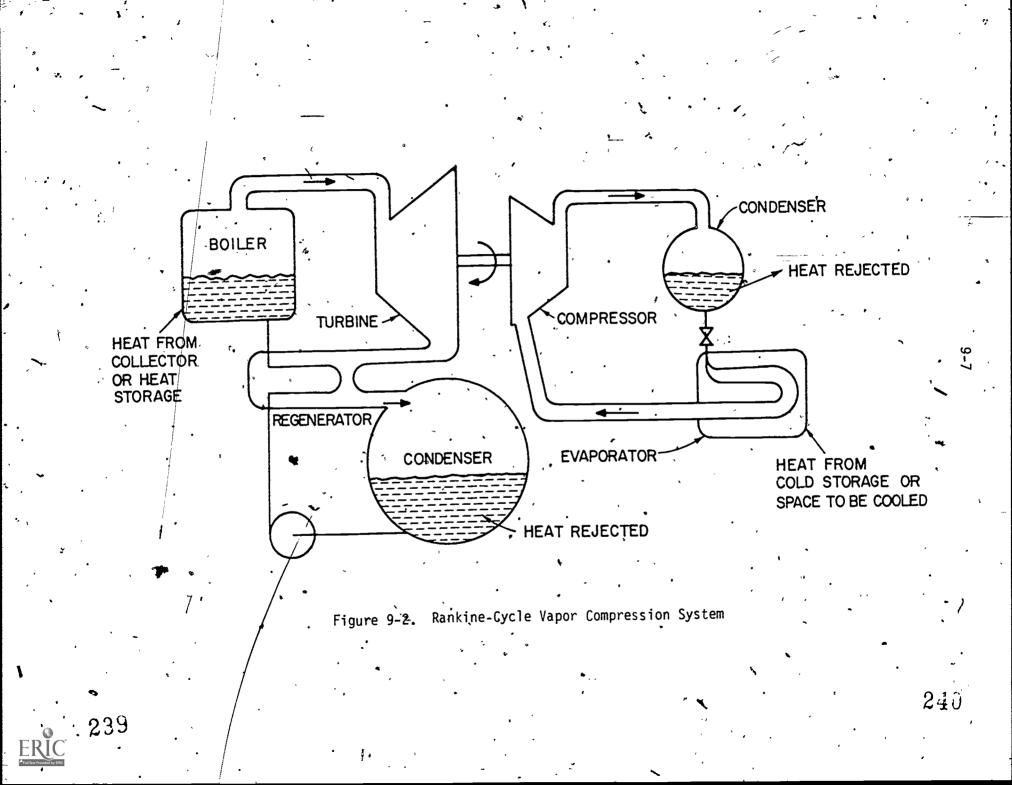
The operating temperature range of the hot water supplied to the generator of a solar-operated lithium-bromide-water absorption refrigeration machine is restricted from about 170°F to 210°F. The heat input to the generator must be sufficiently high to boil the refrigerant (water) from the solution in the generator. The temperature must be at least 170°F. The upper temperature is normally limited to 210°F because the hot water to the generator in a solar system is provided from storage and the temperature in storage will be less than the temperature of the concentrated lithium-bromide solution which flows from the generator to the absorber through the recouperator. If the temperature is too low in the recouperator, and the concentration of the lithiumbromidĕ-water solution is high, the lithium-bromide will solidify in the outlet tube leading from the recouperator to the absorber and eventually in the generator as the water continues to be boiled off and the concentration of lithium-bromide increases. Provided the temperature in the generator is between 170°F and 210°F, the unit will operate satisfactorily

Types of Lithium-Bromide-Absorption Chillers

- There are two types of lithium-bromide-water absorption chillers. One type cools air directly at the evaporator coils and the other type cools water which contacts the evaporator coils. With an air chiller, room air can be circulated directly past the evaporator coils. The second type, requires a fan coil unit with room air being cooled through the fan coil unit.

With a water chiller, the chilled water can also be stored, which enables a system to operate continuously over a longer period, which in turn is beneficial to the system COP, and the chilled water used together with direct cooling can provide for a large peak cooling load when needed. An air chiller does not provide for a convenient means of cool storage and thus the unit will cycle on when space cooling is needed and will shut off when it is not needed. When frequent cycling occurs, the COP of the cooling system will be very low. Continuous operation of the cooling system will maintain a high COP.

HEAT PUMP


A heat pump can be used as either a space heating or cooling unit. As a cooling unit, the device absorbs the heat from inside a building and rejects it to the outside air. The principles of operation are described in Module 8.

SOLAR RANKINE-CYCLE ENGINE

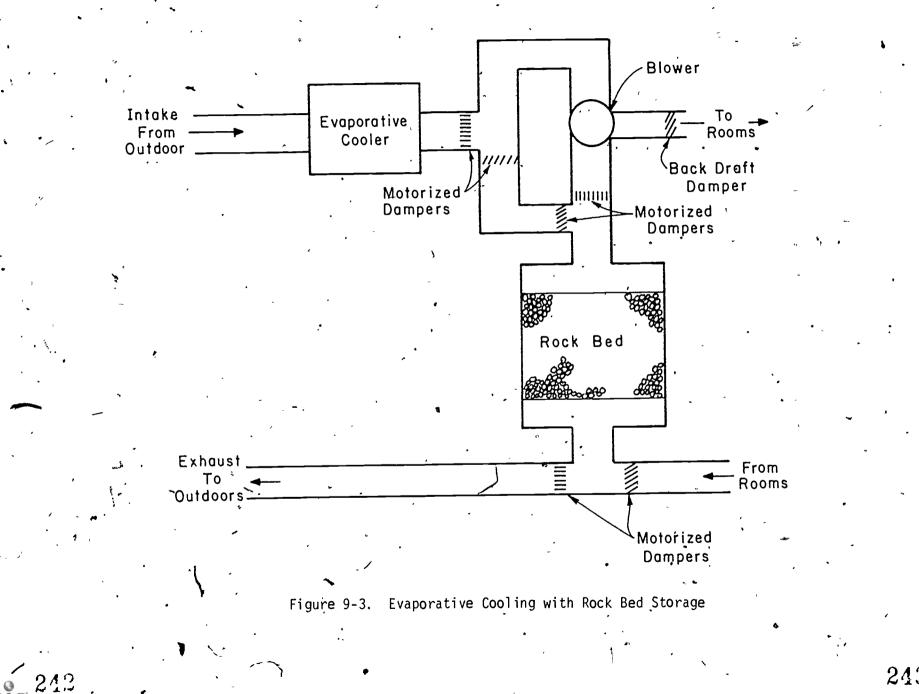
Instead of driving the compressor of a vapor-compression refrigeration machine with an electric motor, an alternative source of power for the compressor is a solar-powered engine. Solar heat can be used vaporize an organic fluid to drive a turbine. The turbine is coupled to a compressor of the refrigeration machine, as shown in a schematic drawing of a simplified system in Figure 9-2.

Heat is supplied to the boiler by a solar collector. The fluid in the boiler is vaporized and the vapor drives the blades of the turbine. The rotating shaft of the turbine then drives a compressor for the vapor-compression refrigeration machine which produces the desired cooling effect. The vapor from the turbine is changed to a

9-6 :

liquid in the condenser and is pumped back to the boiler. The regenerator is a heat exchanger to recover some of the heat from the vapor ejected from the turbine. This machine is still in the experimental and developmental stages and is not yet available as an operational unit.

9-8.

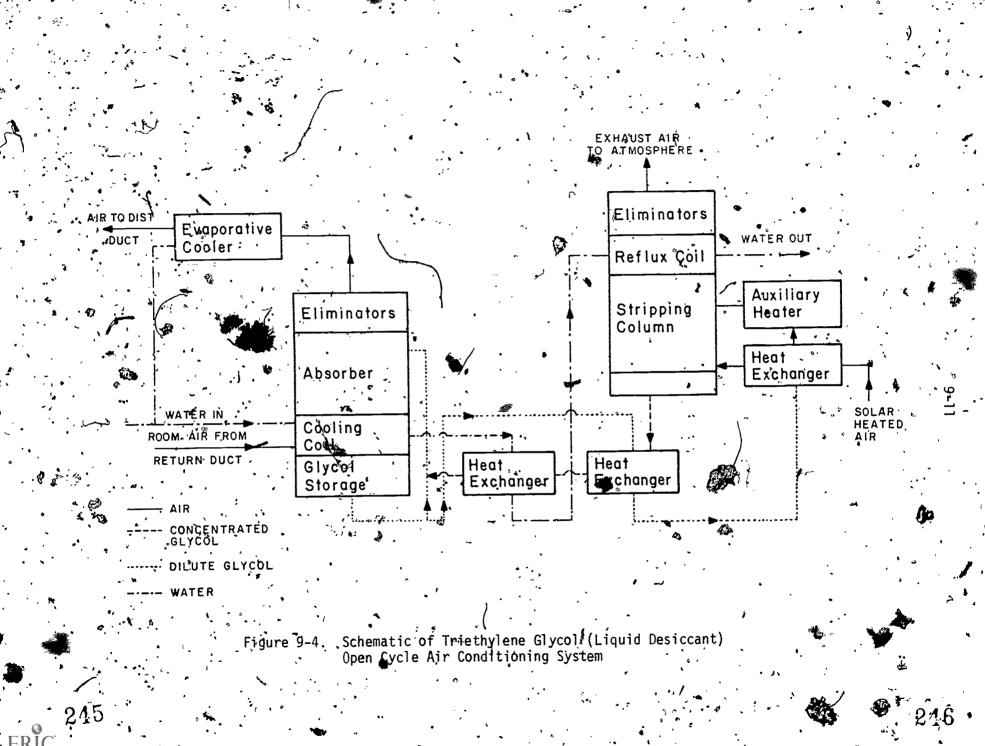

EVAPORATIVE COOLING

EVAPORATIVE COOLING THROUGH ROCK BED

A simple evaporator cooler can be used to*cool warm air by passing the air through an air washer. Depending upon the velocity of air and wet-bulb temperature, warm air may be evaporatively cooled to a desireddry-bulb temperature. As an example, outside air at 100°F dry-bulb temperature and 70°F wet-bulb temperature (relative humidity 22 percent) can be cooled by an air washer to about 77°F. However, the relative humidity would be an uncomfortable 71 percent. Strictly speaking, evaporative cooling is not a solar system. However, because the rock bed, of an air heating solar system can be used for storing "cool" in the summer-time, an evaporative cooling unit may be considered along with an air heating solar system.

An evaporative cooler coupled with a rock-bed storage unit is shown in Figure 9-3. Night air is evaporatively cooled and circulated through the rock bed to cool down the pebbles in the storage unit. During the day, warm air from the building can be cooled by passing the air through the cool pebble-bed. The dampers in the ducts are positioned to direct the circulation of air appropriately. When cooling is no longer achievable through the rock bed, the outdoor air can be cooled directly and delivered to the rooms. Evaporative cooling is practical only for

arid and semi-arid regions where the relative humidity and night-time temperatures are normally low.


TRIETHYLENE GLYCOL OPEN CYCLE DESICCANT SYSTEM

A system which provides cooling by dehumidification of the air.is shown schematically in Figure 9-4. It is an open cycle system. Moist room air is dehumidified and cooled by triethylene glycol as the air flows through the absorber. The dehumidifed air passes through eliminators to remove the liquid glycol from the air and is further evaporatively cooled and redistributed to the rooms. The liquid desiccant which passes through the absorber picks up moisture from the building air and becomes diluted. This dilute triethylene glycol solution is regenerated to a concentrated form by using solar heat to remove the water and is 'returned' to the absorber and recycled. At the stripping column the liquid mixture is sprayed into a stream of solar heated air. The heated air picks up the moisture from the glycol spray and is exhausted to the atmosphere. Liquid glycol droplets which are carried with the air stream are removed by the eliminators. If there is insufficient solar heat, then an auxiliary heater is used to heat the air stream. The triethylene glycol from the bottom of the stripping column returns to the absorber through heat exchangers to recover heat.

A wide range of solar heated air temperatures is possible to operate this system, from 84°F to 180°F. The higher the temperature, however, the higher will be the COP of the machine.

A liquid desiccant open-cycle system in large sizes, using conventional heat sources, is commercially available. Except for an experimental unit which was studied 25 years ago, this type of system has not been actively considered for residential space cooling systems.

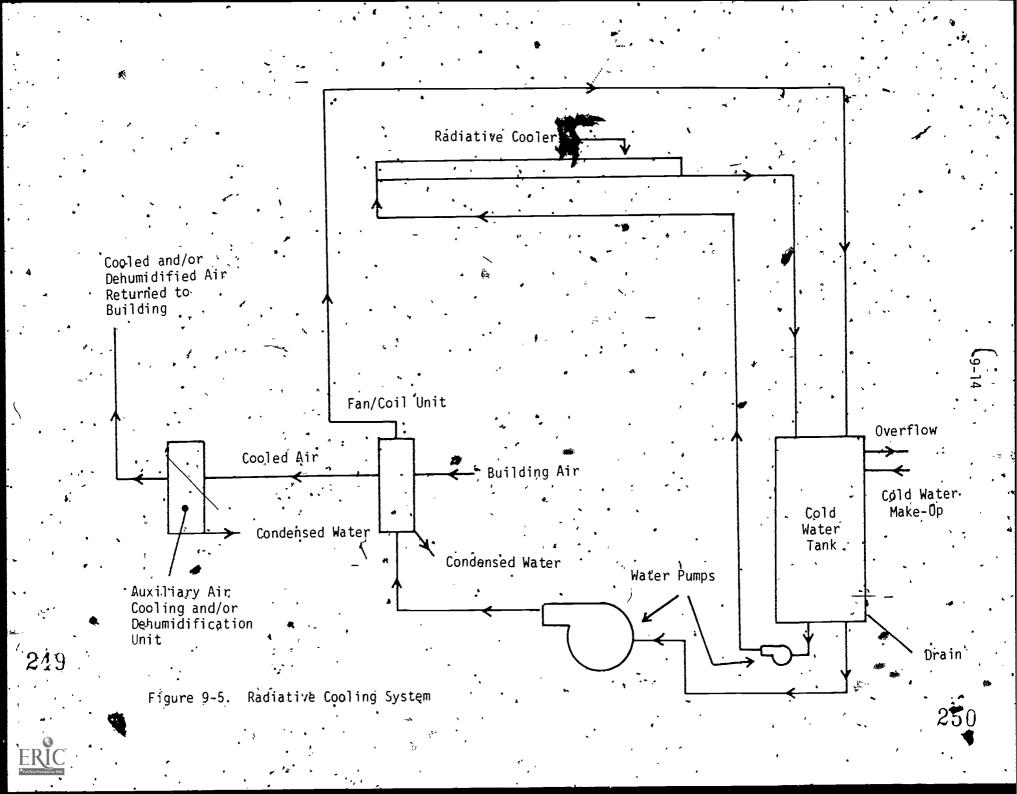
9**-"1**0

RADIATIVE COOLING

The use of a flat-plate collector to cool water or air by night radiation in the cooling season has been suggested as a possible way to cool a building. In principle, radiation from the absorber surface of a flat-plate collector to the cold night sky could cool the absorber surface and hence also the water or air circulating through the collector. The difficulty with this method is that a good collector is a poor radiator, therefore, using the same collector while collects solar heat for the heating season to cool air or water in cooling season is not practical.

There are two solar houses, one in California and the other in Arizona, that utilize evaporative cooling and night-time radiation to regulate the temperature rise in residential buildings. The buildings have a shallow water pond on the roof with sectionalized retracting insulating covers over the pond. The covers are retracted at night to cool the pond by evaporation and radiation to the night sky. The covers are closed during the day to prevent solar heating of the pond. The cool pond absorbs the heat from the rooms below to keep the building space cool.

During the winter the shallow ponds are used for heating the building. The insulating covers are retracted during sunny days to collect solar heat in the pond and closed at night to prevent excessive heat loss from the pond. The stored heat in the pond then radiates uniformly into the living space below. At special locations in the country, this type of heating and cooling system is effective. However, in freezing climates, there are obvious difficulties when the outdoor temperature is very low.

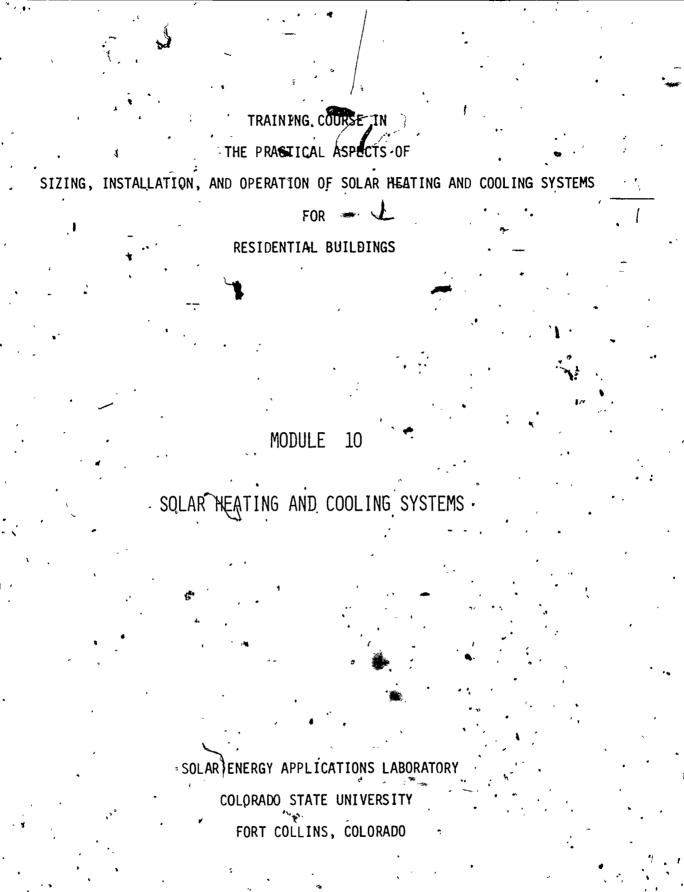

9-12

A variation of the system is shown in Figure 9-5. Water in the radiative cooler on the room of the house is cooled by evaporation and radiation. When the cold water in the storage tank can be cooled, the water is circulated to the radiative cooler. The radiative cooler, which is a water pond, will usually be dry during the day because when the pump is shut off, the water automatically drains into the cold water tank. An open cycle system such as this is subject to accumulation of debris and frequent cleaning will be necessary. Also, because the system will collect rainfall, an overflow must be provided to the storage tank, and in off-seasons, the melting snow should be suitably by-passed from the tank.

The building is cooled by circulating the cold water through a fan coil unit. When the temperature of the water at the bottom of the cold water tank is too high for efficient operation, the fan/coil unit and circulation pump are shut off.

Because of the continuous evaporation from the shallow roof pond, frequent addition of make-up water is necessary. Unless the water is drained and exchanged frequently, the salinity of the water will increase.

Draining of the shallow roof pond can be accomplished during the cooler seasons of the year when building air cooling and/or dehumidification is not required. Because the temperature of rain water would be close to the wet-bulb temperature of the air, in most instances, rain would assist in the cooling effort. Snow and/or melting snow should cause no problems during the winter, provided that the pipe draining the roof pond is large enough and the storage tank is protected from freezing.


REFERENCES

9-15

American Society of Heating, Refrigerating, and Air Conditioning Engineers, ASHRAE Handbook of Fundamentals, ASHRAE, Inc., New York, 1972.

Barber, R.E., "Solar Air Conditioning System's Using Rankine Power Cycles -

Design and Test Results of Prototype Three-Ton Unit", Proceedings, Institute of Environmental Sciences Annual Meeting, Los Angeles, California, April 1975. Bliss, R.W., Jr, "The Performance of an Experimental System Using Solar Energy for Heating, and Night Radiation for Cooling a Building", Proceedings, United Nations Conference on New Sources of Energy, Volume 5, pp/ 148-158, Rome, 1964? Chung, R., Duffie, J.A., and Lof, G.O.G., "A Study of a Solar Air Conditioner, Mechanical Engineering, Volume 85, Number 8, pp. 31-35, August 1963. Close, D.J., et, al., "Design and Performance of a Thermal Storage Air Conditioning System", Institute of Engineering Australia - Mechanical. and Chemical Engineering Transcriptions, Volume MC 4, Number 1, pp. 45-'5**4; May 1968**.) Duffie, J.A. and Beckman, W.A., Solar Energy Thermal Processes, J. Wiley and Sons, Inc., New York, 1974. Hay, H.R., and Yellott, J.I:, "A Naturally Air-Conditioned Building" Mechanical Engineering, Volume 92, pp. 19-25, January 1970. Johnston, R.C.R., "Regenerative Evaporative Air Conditioning with Dehumidification, AIRAH Transactions, Volume 21, Number 2, pp. 29-34, February' 1967. Threlkeld, J.L., Thermal Environmental Engineering, Second Edition, Prentice-Hall, Inc., New Jersey, 1970. Ward, D.S., Weiss, T.A., and Löf, G.O.G., "Preliminary Performance of CSU Solar House I Heating and Cooling System", International Solar Energy Society Congress and Exposition, Los'Angeles, California, July 1975. Wilbur, P.J. and Mitchell, C.E., "Solar Absorption Air Conditioning _ Alternatives", Solar Energy, Volume 17, pp. 193-199, 1975.

TABLE OF CONTENTS)

10/-i

		•			1	<u>منب</u>					
	LIST OF FIGURES	· •	• •	•	e.	•	• •	•	• •		10-ii
	¥		÷			•	•			-	
		• •	•	•		۲	•	•	• ••	,	10 -1
د	OBJECTIVE .	• •	••	•	• . •	•	•	••••			10-1
,	SOLAR HEATING A	ND ABSORI	TION C	OOL IN	G·SYST	EM .	٠.	. •	• •		10-1 1
	SYSTEM COM	PONENTS	•	•		•	•	•	; .	•	10-2
	OPERÀTING	CHARACTEI	RISTICS	•	• •	•	 	•	•••••••••••••••••••••••••••••••••••••••	í 、	10-4
	• Colle	ction Sul	osystem	•				•	•••		10-4 '
	Heati	ng Subsys	stem	۰.		· · ·		• •			10-5
	Servi	ce Water	Heatin	g Sub	system	•	•	•			10-7 -
	Ç´ Cooli	ng Subsy:	stem	•	: , ,.	•	•	•	••••	٠	10-10
	INSTALLAŢI	ON CONSI	DERATIO	ŅS,	•,•	•	•.		•. •	•	10-13
	SOLAR HEATING A	ND EVAPO	RATIVE	C00L I	NG SYS	TEM .	•	•	• •		10-14
	SYSTEM COM	PONENTS	•	. `	• • " •	•	• •,,	• • ` .	• •		10-14
	OPERATING	CHARACTE	RISTICS	•		•	a.	•	• •	,-	10-16
	Colle	ction Su	bsystem		\$, •	•	•	•	• •		10-16
	• 💍 Heati	ng Suþsy	stem	•	• •	•	• •	•			10-17
	• Servi	ce Water	Heatin	ig S u b	system	. •,	•	•		•	10-17
	Ccoli	ng Subsy	stem	•	•••	•	•	٠	• •		10-18
	INSTALLATI	ON CONSI	DERATIO	NS	• •	, •	•	•	• •		10,18
			•		•						•

ER Full Text Provid Å.

LIST OF FIGURES

• • 10-ii •

83

,	Figure		Page	
*	10-1	Solar Heating and Cooling System	10-,3	
2	10-2	Alternative Summer-Time Arrangement for Solar Heating Service Hot Water.	10 -9	- #
	10-3	Alternative Cooling Subsystem with Two Cooling Coils .	10 -12	•
•	10-4	Schematic of an Air Heating System with Evaporative Cooling .	10-15	

Full

INTRODUCTION -

A solar space cooling system combined with a solar space heating system provides the opportunity to utilize the collectors and storage units during the entire year. In areas mere both heating and cooling are needed in residential buildings, a combined system may soon become practical.

In a previous module, a space heating and cooling scheme using a shallow water pond on the roof of a building was described. Such a system has been shown to be workable in selected regions of the country where winter-time temperatures are mild. The difficulty in colder regions of the country is principally with freezing.

The arrangement and operation of solar cooling systems coupled to solar space and service water heating systems are discussed in this . module. In arid and semi-arid regions, an evaporative cooling unit coupled with an air-heating solar system is a possible means to provide limited space cooling capability.

•OBJECTIVE

The objective of the trainee in this module is to recognize the components and interfaces needed for a combined solar heating and cooling system and understanding of the operating characteristics of the system.

SQLAR HEATING AND AUSORPTION COOLING SYSTEM

A lithium-bromide-water absorption system is the only solar cooling unit described in this section. The trainee should be aware, however,

10-1

that research is currently being conducted with other cooling units, such as an ammonia-water absorption system, and Rankine-cycle solar driven engines coupled to a vapor compression cooling machine. With further developments, such systems may become practical in the future.

SYSTEM COMPONENTS

A lithium-bromide absorption-unit combined with a solar heating system is drawn schematically in Figure 10-1. The main components of the system that are common to both heating and cooling functions are the following:

^{*}1. Solar collectors

2. Storage tank

3. Auxiliary boiler

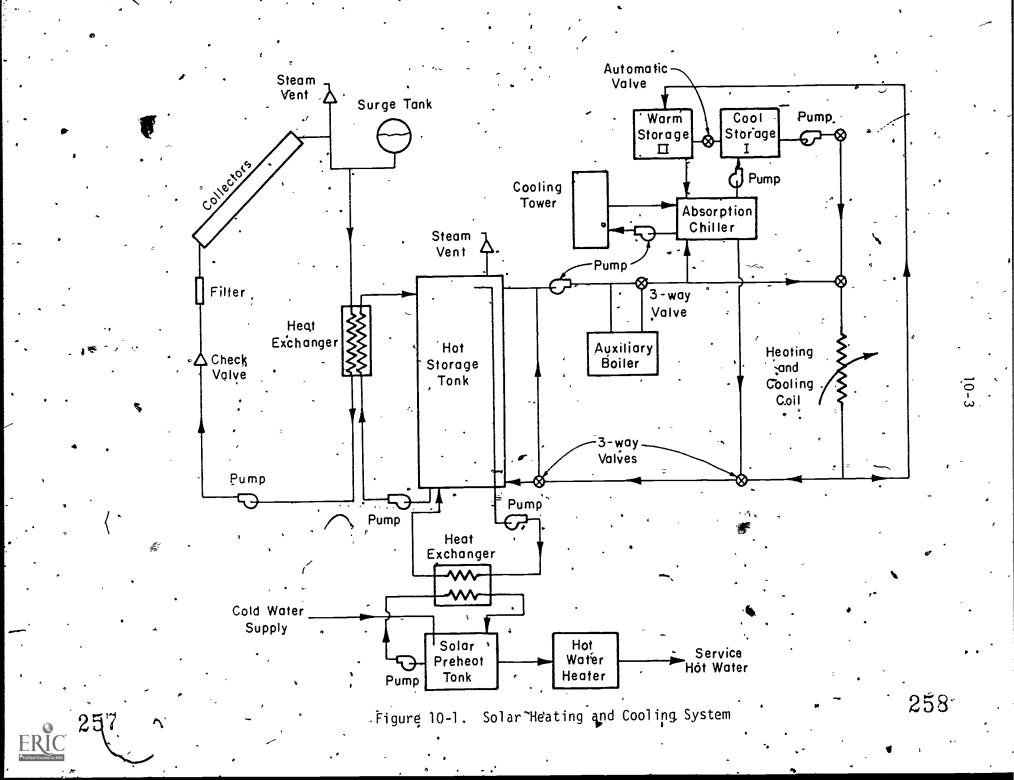
4. Duct coil and distribution ducts.

The additional components required for the solar cooling are:

1. Absorption chiller

2. Two cool storage tanks

3. Cooling tower .


4. Circulation pumps.

The collectors are sized to provide the major fraction of the total annual heating load in the building. The collectors will then provide a substantial portion of the hot water necessary to operate the absorption chiller during the cooling season, provided that the collectors can deliver heat at temperatures necessary to operate the absorption chiller and can do so at reasonable efficiencies.

The storage tank should be sized in relationship to the collector area selected, and should not be less than 1.5 gallons, nor greater than

ERIC

.256

2.5 gallons per square foot of collector an small storage tank size in relationship to collector area may cause frequent boiling in the collectors and in storage during the summer months, and in a larger storage tank, the water may not be hot enough to enable efficient operation of the absorption chiller. With a small storage tank, heat is wasted in steam when boiling occurs and a larger amount of auxiliary energy will be required to operate the chiller as compared to a properly sized storage tank. Similarly, with a larger storage tank, the auxiliary boiler may be required more frequently because the storage tank temperature cannot be raised to the desired operating range of the absorption chiller.

10-4

The auxiliary booler is used to provide heat when the temperature of the water in the storage tank is not sufficient either to heat the rooms to maintain the desired comfort conditions or to drive the absorption chiller unit. The boiler should be adjuster to deliver about 150°F water during the heating season to the heating coils, and about 190°F water during the summer to the absorption chiller.

The service water heating components will operate throughout/the year without adjustment. Because the water temperatures in the heat exchange loops will be high, pumps and valves that can withstand high operating temperatures should be selected.

OPERATING CHARACTERISTICS

Collection Subsystem

The solar heat collection subsystem in the system shown schematically in Figure 10-1 will operate whenever the liquid temperature in the collector is greater than the storage tank water temperature by a preset amount, say 20°F, and the circulation pumps will shut off when the collectors. cannot deliver heat at a tent rature greater than the water in the storage tank. Because the is a heat exchanger in the heat collection loop, the temperature differential for shut off will be about 5°F. The heat exchanger is used to separate the collector fluid from the storage fluid and antifreeze can be added to the collector fluid.

10-5

During the heating season, the temperature range the storage tank will be from about 90°F to 150°F, and with 1000 gallons of water, there will be 500,400 Btu of heat available in storage. During the cooling season, the useful range of water temperature in the storage tank will be from 180°F to 210°F, and, again, in 1000 gallons of water, 250,000 Btu of useful heat can be stored to drive the absorption unit. Although the absorption chiller cannot be operated with water temperature less than 180°F in the storage tank, the ervice water heating system an extract the heat usefully.

Heating Subsystem

The water from the upper part of the storage tank is pumped through the heating coils and returned to the bottom of the storage tank. The heating coil can be in the main duct in a central heating system or separate fan coil units may be used in different zones of the building. There will be longer pipes and more valves required for a factoril heating unit than are needed for a coil in the central distribution system. When the temperature of the water in storage is not sufficient to

deliver heat at a rate sufficient to maintain the comfort level in the rooms, the auxiliary boiler engages automatically to deliver hot water to the heating coils. It is recommended to arrange the piping so that when the auxiliary boiler is on, the return water from the coils by passes the storage tank. The storage water temperature will be low when the

-26(

auxiliary boiler is delivering hot water and the return water temperature from the heating coil will be higher than the storage tank temperature. By-passing the storage tank will prevent heating the large volume of, water in the storage tank with auxiliary energy.

The thermostat in the building is the sensor which drives the heating system. A dual contact unit is required for the system shown in Figure 10-1. As the room cools, the first contact will engage the circulation system from the storage tank and, if the room temperature continues to fall, the second contact will engage the auxiliary boiler. When the room temperature rises to an adequate level, the heating cycle is shut off.

Let it be assumed that the design heating load for the house is " 50,000 Btu/hr with a design outdoor temperature of OPF, and the average, heating degree-day in January is 35 degree-days. The heating load for the day would then be determined by:

or

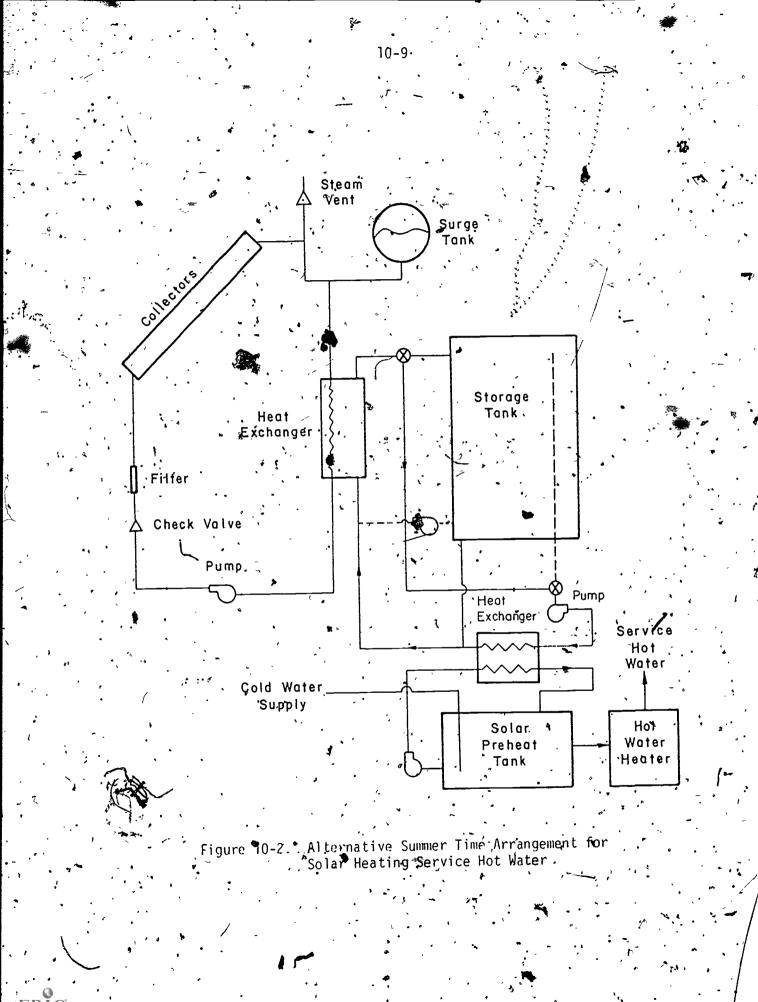
(24 <u>hours</u>)(<u>Design heating load</u>)(degree-day)

 $(24 \frac{hours}{day})(\frac{50,000 Btu}{68-0 hr})(35^{\circ}F-day) = 617,650 Btu/day$

With the water temperature range in a 1200 gallon storage tank of 95° F to 140°F, there will be enough here stored (450,360 Btu) to supply about three-fourths of the heat that is needed during the day, or about 18 hours. Thus the solar collector area should be sized so that with six hours of solar heat collection during the day, there will be about 18 hours of heat delivery from storage to the building through the evening hours and during the might until solar energy can be collected again the following day.

When the average ambient air temperature is less than that assumed in the foregoing computations, more heat will be required to heat the bilding than can be delivered from the solar system, but there will also be days with higher average temperature and the solar system can deliver more heat than is needed to maintain the comfort level in the house. When averaged over a beating season, the solar system should provide between 60 and 80 percent of the space heating needs.

Service Water Heating Subsystem


Hot water from the top of storage is pumped to a double-walled heat exchanger and returned to the bottom of the storage tank. Simultaneously, the water from the solar preheat tank is circulated through the heat exchanger and back to the top of the preheat tank. The system operates whenever the temperature of water in the storage tank is greater than the water temperature in the preheat tank by a preset amount, and shuts off when useful heat cannot be delivered from storage to the preheat tank, or the preheat tank temperature has reached a limiting high temperature, say 140°F.

During the heating season, the water temperature in the storage tank will be frequently less than 140°F; thus an auxiliary hot water heater is necessary to assure delivery of hot service water. The solar heat is thus used to preheat the cold water from the water main before entering the hot water heater. During the summer, the water temperature in the storage tank will be generally greater than 180°F; thus the preheat tank can be kept at) igh temperature with only infrequent necessity for auxiliary heating.

Suppose that an average daily use of service water in the household is 75 gallons per day. Also assume that the water temperature from the

main is about 60°F and desired water temperature at delivery is 140°F. .The daily quantity of heat necessary to raise the temperature of the service water from 60° to 140°F will be about 50,000 Btu. Delivery of 50,000 Btu from storage to the service water heating system will cause a drop in storage water temperature of 6°F (assuming no heat is delivered from the collectors to storage in the interim period). If the storage tank tem-) perature is less than [40°F, the useful heat delivered sto the service water heating system will be less than that indicated above, and the auxiliary heating unit will be required to maintain the desired water temperature in the hot water heater. In the summer-time there will be enough heat in the solar heated tank to supply the heat necessary for the service hot water. An alternate arrangement to supply solar heat to the service water heating subsystem in the summer period is shown in Figure 10-2. Because it is desired to maintain the temperature of the water in the storage tank above 180°F for the purpose of operating the absorption cooler, the solar collection system will not operate unless the collectors can'deliver. water temperatures greater than, say: 190° to 200°F. Thus the collector system will not begin to operate until late morning and will shut off early in the afternoon. The arrangement shown in Figure 10-2 will utilize the solar collectors for service water heating early in the morning and also late in the afternoon because the maximum service hot water temperature required is only about 140°F. The use of the collectors in this manner will reduce the quantity of heat withdrawn from the storage tank for service water-heating. The arrangement will be less useful in the winter months because the water temperature hanges in the storage and preheat tanks are about the same, so that if solar heat is deliverable to the preheat tank, it will also be deliverable to the storage tank.

.

. 264

Cooling Subsystem

The water from the top of the hot storage tank is pumped through the generator of the absorption chiller and is returned to the bottom of the storage tank as shown, in Figure 10-1. The three-way valves are positioned to prevent hot water-passage through the coils and by-passing the storage tank. When the temperature of the water in the storage tank is insufficient to operate the chiller (the minimum operating temperature in the generator is about 170°F), the auxiliary boiler is used, the three-way valve directs the flow to by-pass the return water around the storage tank.

As the circulation pump for hot water is started, the circulation pump for the cooling tower also starts. After a period of about ten minutes when the evaporator coils are cooled, the circulation pump for the chilled water storage is started. There are two interconnected cool water storage tanks. This arrangement provides for a measure of stratification because the temperature of water in storage tank I will be colder than the water temperature in storage tank II.

When cooling is needed in the building, the coldest water from storage tank I is delivered to the cooling coils in the duct, or to the fan coil units, and warm water returns to storage tank II. The warm water from tank II returns to the absorption chiller to be recooled. When cooling is not required in the building, the warm water in storage tank II is chilled and stored in tank I, and the chiller continues to operate until tank I is fully charged with cold water. As cooling is needed in the house, the chilled water circulation pump delivers the cold water to the cooling coils and returns warm water to storage tank II. This circulation will continue as long as cooling is required and there is sufficient cool water in storage. When the cool water in storage tank I reaches a pre-set level (approximately one-third full) the absorption chiller will restart and deliver cold water to storage tank I and to the load and continue to operate until storage tank I has been recharged.

10-11

In the cooling system arrangement, the absorption chiller will operate continuously over longer periods of time after starting, which is beneficial to the overall coefficient of performance (COP) of the system. Intermittent cycling of the absorption chiller may reduce the effective COP from 0.7 to, say, 0.3 because heat is wasted during each start and stop cycle.

An alternative arrangement of a cooling subsystem is shown in Figure 10-3, where two cooling coils are used and the cold water in storage can be used simultaneously with cold water from the absorption chiller to meet a heavy peak cooling load. When cold storage tank I has been charged with cold water, and the heat removal rate from room air is not sufficient by either the chiller or circulation of the stored cold water alone to maintain comfort conditions, the cooling capability of both the absorption chiller and cold storage can be combined. The arrangement shown, while potentially useful; has not been tested and performance data are not available to indicate the advantages and operating difficult is of the system.

The heat delivery rate to a nominal 3-ton absorption chiller with a COP of about 0.7 is 51,400 Btu/hr (36,000 : 0.7). If the difference in water temperature between the entrance and exit to the generator is 10°F, the flow rate through the generator must be about 10 gpm. The heat removal rate from the absorption chimer required is 87,400 Btu/hr (51,400 Btu/hr from the generator plus 36,000 Btu/hr at the evaporator). If the cooling water from the tower is at a temperature near 75°F, and

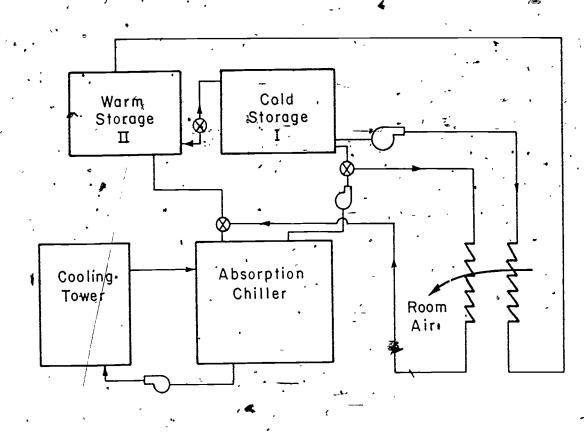


Figure 10-3. Alternative Cooling Subsystem with Two Cooling Coils

the water temperature is delivered at about 90°F, the circulation rate to the cooling tower should be about 12 gpm. Assume that the hot storage tank contains water at 210°F and the system will operate until the temperature drops to 180°F; then there is enough heat in 1000 gallons of water storage to operate the chiller for about five hours.

The quantity of water in cool storage should be sufficient to prevent frequent cycling of the chiller. If two 250-gallon cold storage tanks are used, about 2.5 hours of continuous operation of the chiller is needed to chill the water in cold storage from about 65°F to 45°F. With chilled water storage, solar collectors to operate the system during

267

10-12

the day and 1000 gallons of hot water storage, the cooling system can operate continuously from mid-morning until late evening hours.

·---- 10**-**13

4 : 5 \$ \$

141

INSTALLATION CONSIDERATIONS

1.001

The heating and cooling system should be assembled so as to minimizer piping lengths from the storage tank to the heating coil, storage tank to the service water heating subsystem, and from the storage tank to the absorption chiller. The shorter the pipe lengths, the less will be the heat losses and pumping head. To minimize operating costs, the pump heads, hence power requirements, should be as small as possible.

The pipes should be well-insulated to minimize heat losses and heat gains and the hot and cold storage tank should also be well-insulated. Despite well-insulated surfaces, there will be heat flow into the building enclosure from the solar equipment. During the heating season, the heat losses from the equipment will be distributed into the building, but during the heating season the heat losses will add to the cooling load. It is recommended therefore that the solar equipment be assembled in a single room which can be vented outdoors during the cooling season and indoors during the heating season.

Equipment such as pumps and valves which require maintenance should be located so that they are easily accessible. The absorption chiller , will require at least annual maintenance and should be located with sufficient room around the unit to facilitate maintenance.

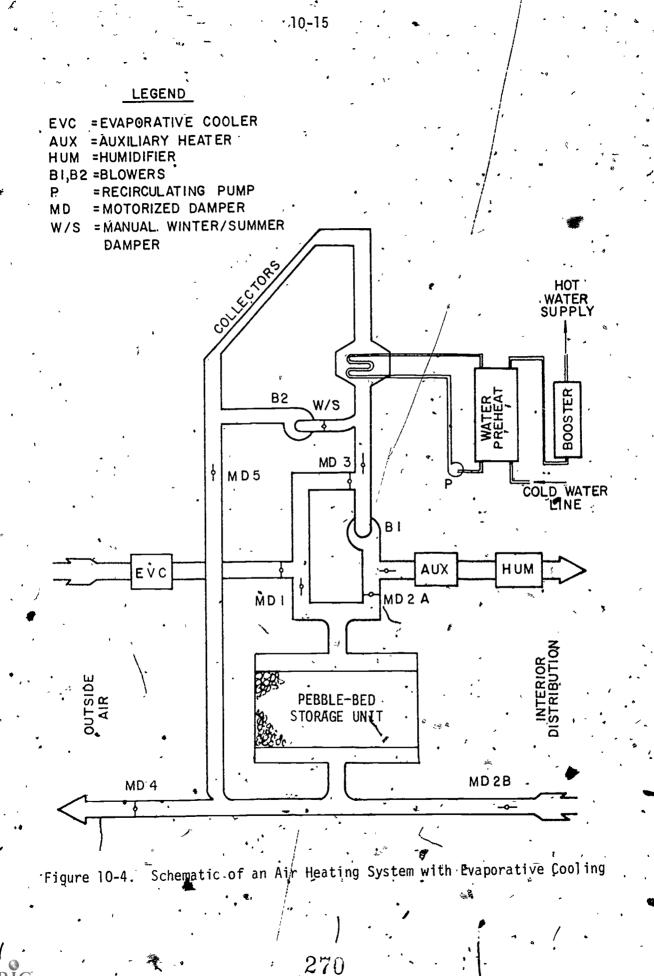
Centrifugal pumps are recommended in the heating and cooling system because they are pressure-limited. Should the automatic valves become inoperative, or lines become clogged for some reason, the pressure created by the pump will not be excessive so as to rupture the pipes

The pumps should be located to cause self-priming and with sufficient head at the suction side to prevent vapor locking in the pump chamber.

10-14

Care should be exercised during assembly of pipes, joints, and valves and leak tests should be performed before insulation is applied. With reasonable care during assembly, much time and cost can be avoided in repairing leaks

SOLAR HEATING AND EVAPORATIVE COOLING SYSTEM


A solar air heating system with rock bed storage and an evaporative. cooling unit is described in this section. Although heat can be stored in materials other than rocks, pebble-bed storage is preferred because rocks are inexpensive and readily available. The rock bed used for heat storage is also used for cool storage.

SYSTEM COMPONENTS

A schematic diagnam of an air heating and nocturnal cooling system is shown in Figure 10-4. The cooling subsystem does not depend upon solar energy, but utilizes the rock bed for storage of cooling capability during the night.

As with the liquid heating solar system with absorption cooling, the collectors and storage volume are sized to meet the heating needs. A rock bed storage unit will normally be sized for 50 to 100 pounds (0.5 to 1.0 cubic foot) of rock for each square foot of collector, and constructed with sufficient depth to assure thermal-stratification.

The direction of air flow through a rock bed is normally vertical for best operation. During the heat storage cycle, heated air is usually

delivered to the top of the gravel bed, and discharged at the bottom. In a distance of two to three feet in the direction of air travel, all of the heat in the air is transferred to the rocks. To provide for adequate heat storage during the day, the depth of the rock bed should be about five to six feet.

'A single blower in the system shown in Figure 10-4 is used both to heat and cool the building. To enable service water heating during the summer months, a second blower is needed to circulate hot air through the collectors and the air-water heat exchanger.

The auxiliary heater in the system is used to supplement the solar heat or to carry the full load when solar heat is not available. The humidifier is used during the heating season to condition the air delivered to the rooms.

OPERATING CHARACTERISTICS

Collection Subsystem

The solar collectors heat the air circulated by a blower and the hot air is forced through the pebble bed, usually from the top toward the bottom. As the hot air passes through the pebble-bed, the heat is given up to the rocks and the air exits from storage at room temperature. The bottom of storage is never less than room temperature because during the heat delivery cycle, the room air flows from the bottom toward the top. The cool air returns to the collector to be reheated. With an air flow rate of 2 cfm per square foot of collector, the air temperature rise will be 4.5 to 5.0° F for each foot of travel through the collector. Thus with a 16 foot length of air travel through the 'collector, the temperature rise is 70° to 80°F. The quantity of heat

10-16

stored in a pebble-bed is about two-thirds of full capacity because of the stratification. With 20 tons of rock, and 70°F temperature rise, about 375,000 Btu is stored. Fully charged, about 560,000 Btu can be stored in 20 tons of rock.

Heating Subsystem

stopped.

An air heating solar system can be arranged to heat the rooms ' directly from the collectors without passing through storage. To heat the rooms from storage, the air flows from the cold toward the hot end and the hottest air available from storage is delivered to the rooms: When the heat in storage is insufficient to maintain comfort conditions in the building, the auxiliary heater adds to the solar heat. Because the room air is always circulated through storage, all the available 'heat in the storage wit is utilized.

Service Water Heating Subsystem

The service water is preheated by solar heated air through an air-to-water heat exchanger placed in the hot air duct from the collectors. The pump which circulates the water is controlled by a differential thermostat, When the air temperature from the collector is greater than, the water temperature by, say, 20°F, water is circulated through the heat exchanger and heat is extracted from the air and transferred to the water. If the water temperature reaches about 140°F, or the air temperature is less than 5°F warmer than the water-temperature, the pump is

With a water circulation rate of 1 gpm, and temperature rise of 10°F in the water, the rate of heat extraction from the air is about 5,000 Btu/hr. Thus, when the solar collector is delivering 70,500 Btu/hr, the heat flow rate remaining in the air is 65,500 Btu/hr.

Cooling Subsystem

The evaporator cooler in the system of Figure 10-4 is used to cool the rock bed storage during cool night-time hours. During the day when cooling is required in the building, the room air is drawn through the cool storage bed and the cooled air is distributed back to the rooms.

10-18

If the rock bed can be cooled to 55°F during the night, and the building air is to be maintained at 75°F during the day, the cooling rate provided with 200 cfm air circulation rate is about 25,000 Btu/hr, or 2.1 tons: The cooling capacity stored in the rock bed with 20 tons of rock is about 110,000 Btu. At a cooling rate of 2.1 tons, there are about 4.5 hours of cooling capability from the cool pebble-bed.

The evaporator cooler is sized by the air flow rate, and temperature of the cooled air depends upon the outdoor dry-and wet-bulb air temperatures. With low humidity of the outdoor air, the evaporator cooler can. be used during the day to cool the room air. The cooled air temperature, however, will not be as low as at night.

INSTALLATION CONSIDERATIONS

The air heating system will occupy three times as much floor space as a liquid heating and cooling system and requires careful planning to minimize wasted floor space. The dampers and blowers can be arranged in a compact air handler unit and the ducts to the collectors, storage, and the rooms connected to appropriate ports in the air handler. Care should be exercised in assembling the storage unit and the ducts to prevent air leakage. The joints in the storage box should be caulled and the duct joints should be taped or hard casted. Air leakage from ducts within the conditioned space is not lost, but constitutes. The blower should be arranged so that the air pressure through the collector is subatmospheric. Any air leak in the collector array will cause cold air to be drawn into the collectors, which would be mixed with the heated air. A quantity of air equal to the inflow leak will be discharged outside from the conditioned space. If the air through the collector is under pressure and there is a leak in the collector array while the quantity of air would be drawn into the conditioned space. While the quantity of air leakage may be the same in both cases, the quantity of heat lost is greater for the latter because hot air, at say 140°F, is wasted from the system. In the former arrangement, room air at 70°F is wasted to the outdoors. While no leak is desirable, the former arrangement loses less heat from the system than the latter.

10-19

The duct leading to the evaporative cooler and discharging outdoors chould be positively closed during the heating season. All air dampers leak some amount and cold air drawn into the system through the cooling ducts will reduce the air temperature in the system. Likewise, a slide damper should be inserted in the by-pass duct and for summer-time-service water heating. TRAINING COURSE IN

THE PRACTICAL ASPECTS OF

SIZING, INSTALLATION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS

FOR RESIDENTIAL BUILDINGS

MÕDULE Ì1

SOLAR SYSTEM CONTROLS

SOLAR ENERGY APPLICATIONS LABORATORY COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

TABLE OF CONTENTS

11-[.]

	•
• LIST OF FIGURES.	
INTRODUCTION	
ÓBJECTĪVE	11-1
CONTROL FUNCTIONS	
BASIC CONTROL STRATEGY	
Ratio of Temperature Difference	
Freezing Protection	
Two-Speed Pump	
INSTALLATION OF CONTROL SYSTEM HARDWARE	
THERMOSTAT.	
TEMPERATURE SENSORS	· · · · · · · · · · · · · · · · · · ·
Týpe .	
Location	
CONTROL PANELS	
TYPICAL CONTROL SUBSYSTEM.	
EONTROL ACTUATORS	
AUXILIARY HEAT CONTROL	์
CONTROL SYSTEM CHECK-OUT	
REFERENCES.	
	· · · · · · · · · · · · · · · · · · ·

• •	*		۰.
TOFI	0F	FIGURES	•
E L S F	04	Trankin	

11**-**11

Figure	Page
11-1 Block Diagram Representation of a Control System	. [∼] . :11-2
11-2 Schematic Representation of a Typical Liquid System	. 11-3
11-3 Typical Temperature Profiles	··· '],] -4 ···
11-4 Typical Circuitry for a Differential Thermostat	, 11-5 ·
11-5 Pictorial Representation of Hysteresis in the Differential Thermostat	
11-6 . Silicon Transistor Circuit	·,. `11-10 ·
11-7	11-13

•

- AFul

INTRODUCTION

The only adjustable control for the solar heating and cooling system by the building occupant is the thermostat in the building. However, there are many important controls in solar systems that automatically control the pumps and blowers, valves and dampers, and the auxiliary heaters to collect and deliver the heat. The operation and installation principles of the various sensors needed for control are discussed in this module.

The objective of the trainee is to understand the function, mechanics, and installation of control systems. At the end of this module the trainee should be able to:

OBJEĆTIVE

Identify control functions,
 Describe and diagram a control method,
 Recognize control methods and hardware,

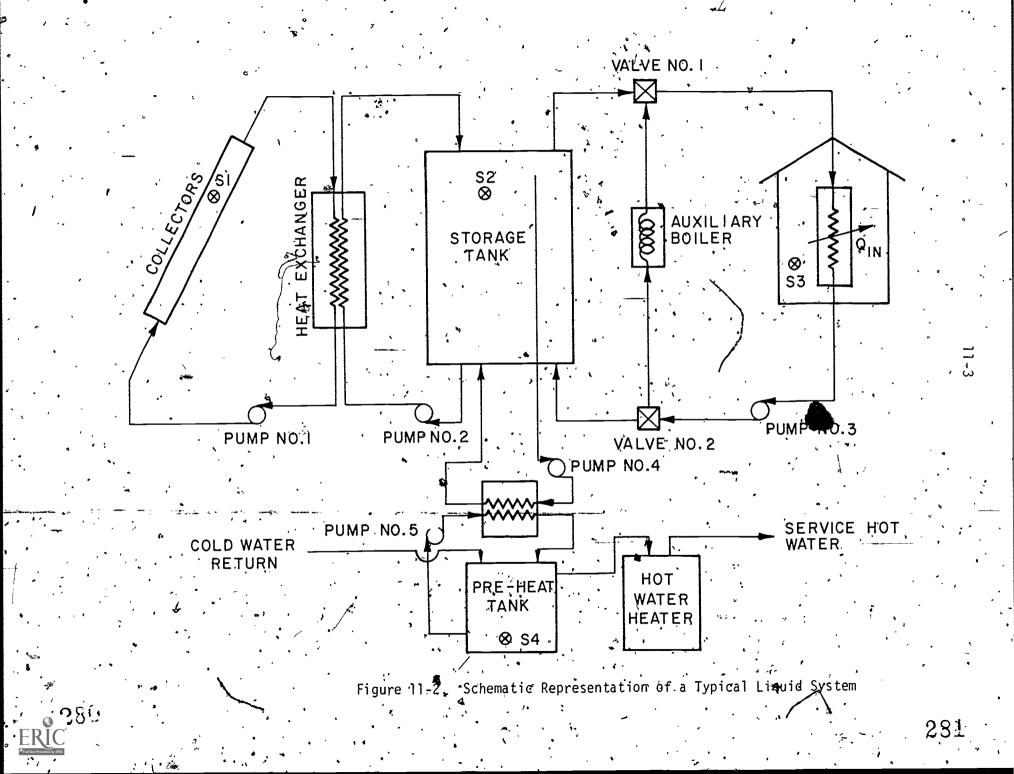
. Specify control components,

5.. Install and maintain control systems.

CONTROL FUNCTIONS

BASIC CONTROL STRATEGY

The basic function of the controller in a solar system is to collect as much useful heat as possible and to deliver it when required to meet the demands of the building. The overall efficiency of the total system can be strongly influenced by the controller.


A block diagram of a controller is shown in Figure 11. The three basic components of the controller are the sensor subsystem, the comparator

			· · · · · · · · · · · · · · · · · · ·	·
Sensor	Comparator		Qutput	
Subsystem	 Subsystem	` :	,Devices	<i>₹</i>

Figure 11-1. Block Diagram Representation of a Control System

subsystem, and the output subsystem. The function of the sensor subsystem' is to measure temperatures and send this information to the comparator subsystem. The comparator subsystem makes the decisions regarding the control of output devices, such as the turning on and off of blowers and pumps and the opening and closing of valves and dampers.

At the present time most commercially available control systems are of the "on-off" type. That is, a pump or blower is either off or on at full capacity. The decision to turn the device on or off is based on temperature differences. For example, consider the schematic representation of a solar system (hydronic type) shown in Figure 11-2. The tempera ture sensors are indicated by S1, S2, S3, and S4. S1 measures the temperature of the fluid at the collector (or the temperature of the absorber plate, depending on the type of mounting), S2 measures the temperature of the water in storage, S3 measures the room temperature in the building (there could be several room temperature sensors), and S4 measures the temperature of the water in the preheat tank for service hot water. We shall consider how SI and S2 are typically used in an "on-off" controller to control the collector pumps, shown as Pump Number 1 and Pump' Number 2 in Figure 1|1-2. Suppose that the temperature variation throughout a typical day is as shown in Figure 11-3. The solid dur shows the storage temperature as sensed by S2. As illustrated in Figure 11-3, the collector temperature will begin to rise in the morning and

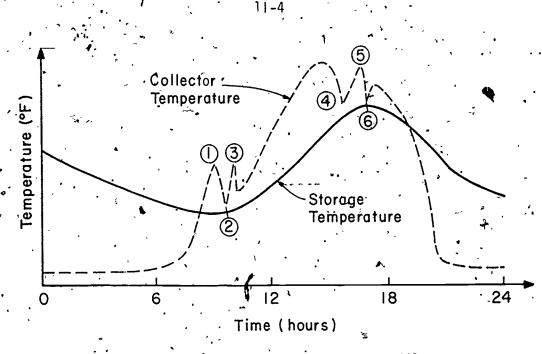


Figure 11-3. Typical Temperature Profiles

will exceed the storage temperature at some point. When the collector temperature exceeds the storage temperature by some preset amount, ΔT_{ON} , typically about 20°F, the cellector/storage pumps will be turned on by the controller. This is indicated by point 1 in Figure 11-3. This will cause a surge of cooler fluid to circulate through the collectors, thereby lowering the collector temperature, as shown in the figure. the decrease in collector temperature is great enough to cause the difference between the collector and torage temperatures to drop below another preset value, ΔT_{OFF} , typically about 3°F, the collector/storage pumps will be turned off, as indicated by point 2 in the figure. The temperature of the collector will again increase rather rapidly to point "3 at which time the collector/storage pumps will again be turned on. The amount of cycling of this type should be minimized in order to reduce wear on the pumps, pump motors, and retay contacts (if relays are used). If there is sufficient solar insolation, the collector temperature will . continue to increase as illustrated in the figure, and the pumps will

remain on until late in the afternoon. When the temperature differential has decreased again to ΔT_{OFF} , the collector/storage pumps will be turned off. This is represented by point 4 on the figure. This will cause the collector temperature to again increase due to the "no-flow" condition. If the temperature differential reaches ΔT_{ON} , the pumps will again be turned on (point 5 in the figure). This will lead to cooling of the collectors (point 6). The collector temperature will start to increase, but if the increase is not large enough, the pumps will remain off.

The sensors that are used in the sensor subsystem are typically thermistors, thermocouples, or transistors. The sensors that are provided with the controller should be used, since the controller is usually calibrated for a particular sensor. This is particularly true if thermistors are used, since the voltage output of the thermistor is a nonlinear function of temperature. Typical circuitry for a single function differential thermostat (controller) is shown in Figure 11-4

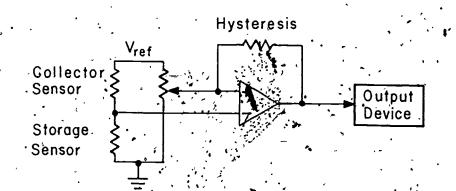
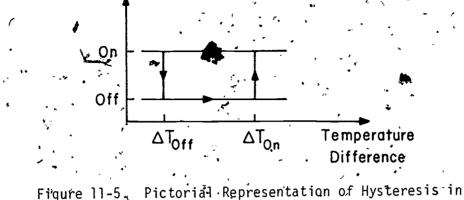



Figure 11-4. Typical mircuitry for a Differential Thermostat The hysteresis is represented pictorially in Figure 11-5 and is realized physically by the feedback resistance shown in Figure 11-4.

1-1-6

Figure 11-5. Pictorial Representation of Hysteresis the Differential Thermostat

As shown in Figure 11-5; as the temperature difference increases and eventually reaches the value of ΔT_{ON} , the signal to the output device is such that the device is turned on. If the temperature difference decreases to the point where it is equal to ΔT_{OFF} , the OFF signal will be sent to the output device.

Ratio of Temperature Difference

If the temperature sensor for the collector is located where the sensor is rapidly cooled by the transport fluid, the result can be that the collector pumps will cycle on and off repeatedly. This cycling can also occur if the difference between the temperature to start and to stop the system is not properly selected. The ratio between the on to off temperature differences should be approximately five to seven. In the example given in the preceding paragraphs, the starting temperature difference was 20°F and the stopping temperature difference was 3°F. The ratio is slightly less than seven. A larger value for this ratio will reduce the total energy collected by the system, while a value smaller than five could cause cycling.

Freezing Protection

Some controllers are designed to incorporate an aquastat to compare the temperature of the transport medium with some preset temperature

such as the freezing temperature of water. If the temperature of the fluid in the collector approaches this preset temperature, the pumps are automatically started to circulate the fluid or to heat the fluid from storage in order to prevent freezing. This is not a recommended protec-... tion measure against freezing, because if there is a power failure during cold weather, the pumps will not operate and the collectors can freeze It is preferred to use an antifréeze solution in the collector loop.

Two-Speed Pump

A two-speed pump may be considered as a possible way to regulate the temperature rise in the collector to improve collection efficiency. By changing to a slower flow rate during periods of low solar insolation, the system will collect heat at useful temperatures, whereas with a high flow rate, the temperature of the fluid at the collector outlet would be low and the control would stop the collector pump. When the solar radiation intensity is high, the flow rate can be increased. The fluid temperature would be reduced because of greater flow, and the collector.will operate more efficiently.

INSTALLATION OF CONTROL SYSTEM HARDWARE

The solar system controls consist of power relays which switch electric valves and pumps in the Fiquid system, or blowers and dampers in the air system, and auxiliary heating units in both systems, in response to temperatures or temperature differences. Controls for solar systems fundamentally serve the same functions as in conventional HVAC systems; however, there are more control functions in solar systems and also there are "interlocks" which prevent undesirable or hazardous sequences of operation. Axsolar system supplier should provide the required control hardware, or at least specify it, along with explicit wiring instructions. Building a control system at the site should be avoided unless experience in this practice is available.

THERMOSTAT

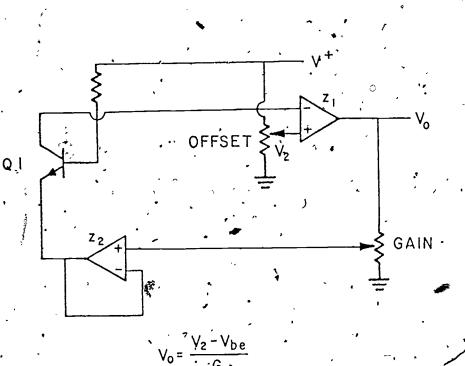
FRIC

A two-stage heat, indoor thermostat is recommended for residential solar heating systems; and a two-stage heat, one-stage cool type is recommended for solar heating and cooling systems. Variations will feature on ", "off", or "automatic" fan control to circulate the room air, and "heat", "cool", or "automatic" switches from heating to cooling or vice-versa to meet the meed.

When cooling is required, the single-stage cooling provides indoor space temperature control. There is a deadband, which is a small range in temperature between start and stop signals given to the controller, which in turn controls the cooling system. The deadband for most thermostats is about 5°F. The feating operation is a bit more complex. Upon, demand for heat, the first stage calls for the solar system to provide heat. If the building heat loss is greater than the solar system can provide, the temperature in the building will continue to drop to stage two and the auxiliary system will be called upon to provide heat. The auxiliary system can provide sufficient heat for the building by itself or inf combination with the solar system to raise the temperature in the room to the upper temperature limit of stage one, which stops the heating system. The upper temperature deadband is nominally about 2°F.

The thermostat is the only control with which the occupant needs to be concerned. Once the occupant sets the winter comfort control level to, say, 68°F and the summer comfort level to say 75°F (or other

suitable temperatures), no further adjustment or temperature selection is needed for any other control in the heating and/or cooling system. The thermostat should be installed following standard installation procedures. Instructions are normally supplied with the thermostat. Obviously, the thermostat should be located at a position such that the temperature at its point of location is representative of the average temperature within the enclosure.


1129

TEMPERATURE-SENSORS.

Type 🔒

There are many types of temperature sensors that can be used in the control subsystem, such as thermocouples, thermistors, silicon transistors, bimetallic elements, and liquid or vapor expansion units. Liquid or vapor expansion units are seldom used because other temperature sensors are more durable and dependable. Thermocouples are frequently used for temperature measurement. However, they are not often used in controls because the voltage output is low, in the millivolt range, and without amplification the voltage is insufficient to be used in controls.

Thermistors and silicon transistors are used in the control subsystem because the voltage outputs from these sensors are in the 0 - 10 volt range and are high enough to serve the control functions. The voltage outputs from thermistors are nonlinear, and calibration circuitry must be provided for the nonlinearity. The voltage outputs from silicon transistors are linear in the normal operating temperature range of solar heating and cooling systems, and provide for simpler circuitry to control the system. A schematic diagram of the silicon transistor temperature sensor is shown in Figure 11-6.

11-10

Figure 17-6. Silicon Transistor Circuit

Location

The locations of temperature sensors are not particularly critical, but there are some preferred locations. Temperature sensors are required to measure the air or liquid temperature as it exits from the collector, in the solar storage tank, or rock bed, and in the preheat mater tank. The sensor in the conditioned space is the thermostat.

The sensor which measures the fluid temperature at the collector outlet can be located in the manifold which collects the fluid from the total array of collectors. It is preferred that the sensor be in contact with the fluid, but it is acceptable for the sensor to be in contact with the pipe, provided there is good thermal contact of the sensor with the pipe. If the sensor is attached to the outside of the outlet pipe, the sensor should be well insulated so that it does not lose the heat to the surroundings and register a low temperature. It is important to locate

ટર્ટ્ટ

the sensor near the outlet so that it can register the fluid temperature when the sun is heating the collector but the fluid is not circulating. Sensors in the outlet manifold will register the increase in temperature, but the sensor located far from the manifold will not, and useful energy cannot then be collected. Wherever the sensor is located, the characteristics should be checked out when the system is put into operation.

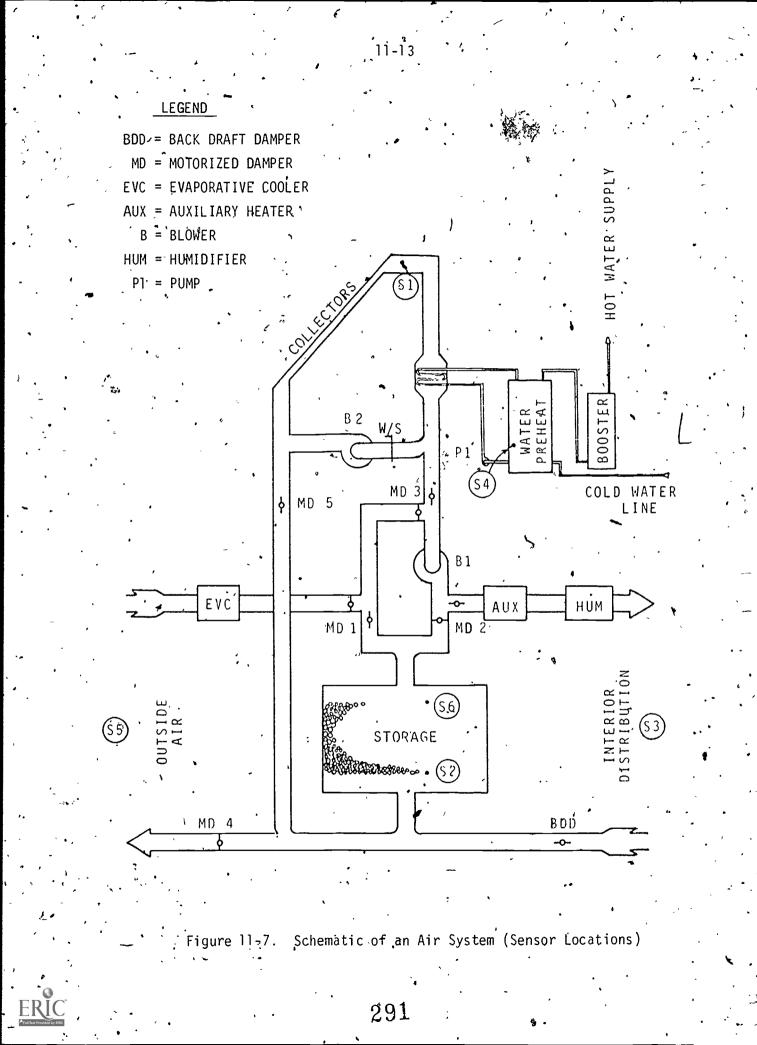
The sensor in the storage tank should be located near the bottom third inside the tank. When there is no fluid circulation, the temperature at the top of the tank will be slightly higher than the bottom, but while the fluid is in circulation, the fluid in the tank is usually well mixed and the temperature will be uniform.

The location of the sensor in the preheat tank should be near the top one-third of the tank. If it were located near the bottom, the temperature at the top could be several degrees hotter. Also, when hot water is used in the household, cold water enters the preheat tank near the bottom. While the preheat tank would be thermally mixed when the pump is started, frequent cycling could result from the sensor registering locally cold water temperature. For an air system, the cycling is not particularly harmful because only one pump for the preheat cycle is involved. However, for the hydronic system, two pumps will be put into operation, and frequent cycling can be wasteful of electric energy. In both air and liquid systems, more heat would be lost than necessary from the pipes and heat exchangers because of frequent cycling.

The sensor in the pebble-bed should be located at the bottom (or outlet) end of storage. When heat is being stored, the bottom (or outlet) end of storage will determine if storage is "full".

11-11

CONTROL PANELS


Usually a central control panel is convenient to consolidate the circuits and relays that provide the control functions. The panel would house the relays and provide for some adjustment of the temperature limits. It is best to acquire a control panel from the solar equipment manufacturer as a prewired unit to serve the system. All that needs to be done with a prewired control panel is to connect the thermostat and other temperature sensors, motor, auxiliary unit, and the valves and damper controls to the proper terminals in the control panel. The manufacturer will provide the necessary instructions to make the connections. The power for the control panel will usually be household 115-volt, single-phase A.C. line power.

TYPICAL CONTROL SUBSYSTEM

CONTROL LOGIC, AIR SYSTEM

A sketch showing the sensor locations for an air heating solar system with a domestic hot water preheater and an evaporative cooler is shown in Figure 11-7. The temperature sensor, S1, is located in the duct at the top of the collector. It should be located at the top to register the temperature of the air as it is heated by the collector, which rises to the upper end of the collector even when the blower is not running. The temperature sensor S2 is located at the bottom of the rock-bed storage.

When the temperature at S1 is greater than at S2 by a preset amount, blower B1 is started and heat is delivered through storage. The temperature at sensor S2 will usually be the prevailing room air temperature because, during the previous night, the storage would have been used and room air enters the storage at the bottom.

When the thermostat S3 places a demand for heat, the dampers MD2, and BDD respond and direct the flow into the room, provided that S1 is greater than the first-stage temperature setting of S3 by a preset amount. If the temperature in the room is not increased by the solar heat provided by the collectors directly to the rooms, the second-stage contact is made at S3. This could occur when solar energy is not available during the day and, of course, at night. The dampers MD3 and MD5 are actuated, the flow from the room is directed through storage, and the auxiliary furnace is then started. The damper MD5, is closed to offer more resistance along the reverse path through the collectors. The air circulates from the room, through storage, past the open damper MD1, and then through the auxiliary heater.

.11-14

To provide heat to the service preheat water tank, the temperature at S4 is compared with S1. If S1 is greater than S4 by a preset amount, pump P1 is started and water is circulated through the cross-flow heat exchanger, unless S4 is greater than the temperature limiter which overrides the S1-S4 command to prevent overheating the water. There is a prior over-ride command on pump P1, which is that the blower B1 must be on. When the temperature difference S1-S4 drops to the lower preset temperature difference, pump P1 stops.

The control logic described above for the air system serves to heat the house and provide for storage of heat. The preset lower temperature between S1, S2, and S4 can be the same as for the hydronic system. To cool the rock bed during the night, a temperature sensor, S5, is needed outside the building. This sensor can be located at the inlet end of the duct leading to the evaporator cooler. When the temperature difference S2-S5 is less than a preset amount, outdoor air is drawn through the evaporator cooler and circulated through storage. The temperature

During the day, the cool stage at thermostat \$3 demands cooling. Blower Bl and the dampers are turned to circulate the room air through storage, provided the temperature difference \$3-\$6 is greater than a preset amount. The air circulation stops when the rooms cool and the contact at \$3 is open.

For direct evaporative cooling of the rooms, an additional control circuitry is used which compares temperature difference S3-S6 to a preset value. That is, when cooling is no longer being provided from storage, direct evaporative cooling is provided by outside air through the EVC. Although room air could be circulated through the EVC for further cooling, it is not recommended because the humidity in the building can increase to an uncomfortable level.

CONTROL ACTUATORS

The pumps, blowers, valves, and dampers are referred to as the control actuators and produce the desired mechanical operation in response to the electrical control signals. Pumps and blowers are wired through manual switches from the control panel. The switch normally remains on and is a safety feature required in some electrical codes. The switches are to be placed near the motors and not at the control panel.

29:

AUXILIARY HEAT CONTROL

11-16

The controls on a conventional boiler or forced air furnace must be changed for solar auxiliary purposes to be actuated in conjunction with the pumps and blowers in the solar system. The second stage thermostat is the main control to activate an auxiliary heater.

CONTROL SYSTEM CHECK-OUT

It is well to check the control system with a "dry" run through the full sequence of modes. The thermostat set points can usually be altered to fake the desired modes. This will assure that the system will. "work" when it is first put into operation. Adjustments to the control system should be considered to effect the highest performance possible from the system. - These adjustments include the setting of temperature different tials and deadbands.

REFERENCES

 Peltzman, E.S., "Differential Thermostats for Solar Energy Systems" Rho Sigma, Inc., 15150 Raymer Street, Van Nuys, CA 91405.

294 -

TRAINING COURSE IN THE PRACTICAL ASPECTS OF SIZING, INSTALLATION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS

FOR .

RESIDENTIAL BUILDINGS:

MODULE 12

OPERATIONS LABORATORY

SOLAR ENERGY APPLICATIONS LABORATORY COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

J	ABLE	.0F	CONTENTS	

. **-i**

· · · · ·	•	•	•		· · ·	• • •
LIST OF FIGURES.	· · · · · · · · · · · · · · · · · · ·	· · · ·	• • • •		••• 12-ii	
LIST OF TABLES .	9	s, • •	•	• • • •	. 12-ii	· · ·
· · · · ·		• •	•		•	• •
INTRODUCTION .	· · · · · ·	• •	a'		. 12-1	
OBJECTIVE	,	* * • •		• • • •	12-1	
INSTRUCTIONS .	• • • •	• • •	۲ ۲	· · · ·	12-1	-
OPERATIONS LABORAT	ORY EVENTS	• • • •	. • •	`••••	1 12-2	
	Y		• •		. 12-2	
Liquid S	ystem Component	, 5	•	• •	. 12-3 ,	•
. Assembly	and Test	• •	• •	•••	. 12-3	
. Air Syst	em Components	• •	• •	s ` • • * •	12-5	,
Assembly	and Test :	•) •`	•••	\$°.	. 12-6	
SYSTEM INSPEC	TIONS	• • •	• •	• •	. 12-6	· ·
SYSTEM CHECK	iouts	: •	· · · · · · · · · · · · · · · · · · ·	· • •	. 12-6	· · · · · · · · · · · · · · · · · · ·
EXAMPLE DATA FROM HEATING AND COOLIN	A LIQUID-HEATIN IG A RESIDENTIAL	G SOLAR S BUILDING	STEM FOR	. * .	. 12/11	κ, ·
EXAMPLE DATA FROM HEATING A RESIDENT	AN AIR-HEATING	SOLAR SYS	TEM FOR	• • •	. 12-22	÷.
BLANK CHECK LIST	FORMS	• •	• • *•	*	12-26	e
	τ.»	• •	• .	· .	۰ ۲	
		• •		*		
-			<u>)</u>			Ĩ.
i a de la companya de	۰ .).		· # *	· •
• • •		• •		· · · ·	• •	,
· · · · · ·	•	Ş		•		
		,			, ,	• •
- 	(٠	•		۵ ۲
	•	•	e ()			,

• 12-ii

•

۱,

4

27

LIST OF FIGURES

)

• <u>Figure</u>		e i i i	Page
. 12-1	Schematic Diagram of the Hydronic Solar System Model	n	12-4
12-2	Grundfos Pump UPS-20-42 [*] Full Flow Performance		12-5
12-3	Schematic Diagram of the Air Solar System Mode	el	12-7,
12-4	Control Logic Diagram	۰ ۰	12-7 · , .
12-5	Wiring Diagram for Model Air System		×12-8 ́.
. 12-6	Terminal Strip Connections		12-8
12-7	Modes of Operation	· • , • .	12-9

LIST OF TABLES

,	Table	•	•	¥	. У		Page	, e
	12-1 g	Operations Labora	tory Schedule	٠ •	· • •	•. •	·12-2 · · ·	
1	12-2	System Check List	(Liquid), Exam	plel.	•	. • .	12-12	••
4	12-3	- System Check-List	(Liquid), Exam	ple 2		•	12-14	
	12-4	System Check List	(Liquid), Exam	ple 3 .	• •	••	12-16	• •
•	12-5	System Check List	(Liquid), Exam	ple 4	• •		12-18	•
	<u>`12-6</u>	System Check List	(Liquid); ÆRam	ple 5, .	• • • •	۰.	12-20	•
	12-7	System Check List	(Air), Example	1. «.	•••	· ·	12-23	·
•	12-8	System Check List	(Air), Example	2.		· • •	12-24	
•	12-9	System Check List	(Air), Example	3. * .) 11 - 12 - 14 - 14 - 14 - 14 - 14 - 14 -	٠	12-25	
,	. • !	۰ ۱					7	•

ER

INTRODUCTION

The operations laboratory is an opportunity for the trainees to gain . greater familiarity with hydronic and air solar systems and also for "hands on" experience with movels, of solar systems. The solar heating and cooling systems of the four CSU Solar Houses are to be examined in detail, measurements taken, and performance characteristics determined. The disassembled models of the solar systems are to be assembled by the trainees using the knowledge they have gained in the course:

OBJECTIVE

At the end of this module the trainee should be able to:

2. Obtain measurements from operating systems to understand the performance characteristics of solar hydronic and air systems.

INSTRUCTIONS -

Four hours are devoted to this laboratory period. The class of trainees will be divided into four groups and each will be assigned an instructor for the entire period.

Group 1.- Group I will be formed by trainees who are interested in assembling the model hydronic system. The model system consists of collectors, storage, pumps and valves, controls, and a load. The model is to be assembled using the knowledge gained in the training course with

minimal assistance from the instructor. The assembled system will be inspected by the instructor and improper assembly will receive comment. <u>Group 2</u> - Group 2 will be formed by trainees who are interested in assembling the model air system. The model consists of collectors, ducts, dampers, and a blower. A control unit is provided. The system is to be made operational and the completed assembly will be inspected. <u>Groups 3 and 4</u> - Groups 3 and 4 will include the balance of the class of trainees. The two groups will study the details of the system solar systems and obtain measurements. The experience gained from this exercise will develop a better understanding of system operating characteristics. A schedule for the four groups during the laboratory period is presented in Table 12-1.

12-2...

Table 12-1

Öperations Laboratory Schedule 🔔

Event		Grou	up	•
Event	1	2	3.	-4
Model Assembly of Liduid System	1 :00.	• 1:00		•
Inspection of Solar House III	3:00	4:00	F. 1	()
Inspection of Solar House IV	4:00•	3:00		•
Check Out of Solar House I			1: <u>0</u> 0'	3:00
Check Out of Solar House II		<u> </u>	3:00	1:00

OPERATIONS LABORATORY EVENTS

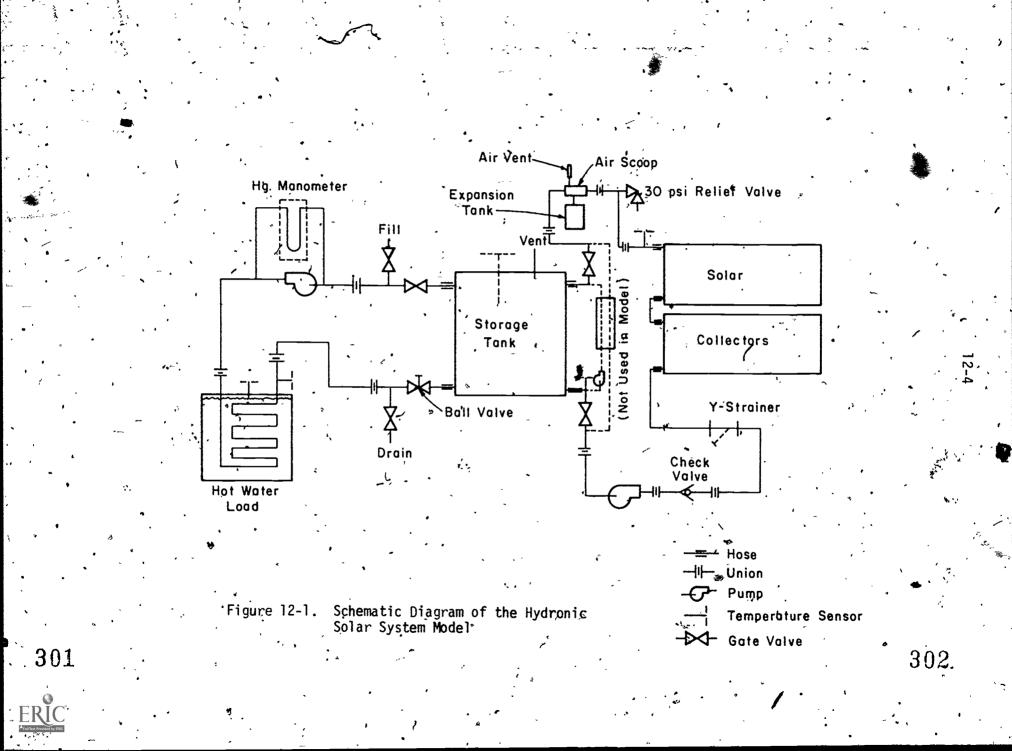
MODEL ASSEMBLY

An essential aspect of developing experience in the installation of solar heating and cooling systems is to assemble solar systems.

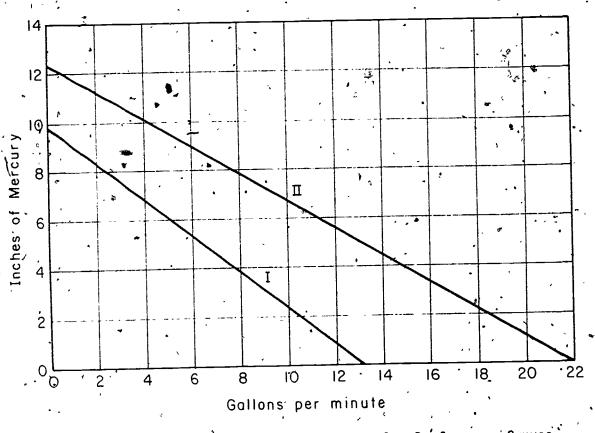
Although they are models of larger systems and only a few collectors are used, the experience of assembling the models will prove useful. The trainees should organize as a team and work together to complete the project.

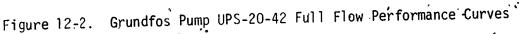
The emphasis in the exercises is placed on locating the solar components in a proper arrangement to form a complete system. Flexible ducts and pipes are used for convenience in this model. The instructor will be available for questions, but the trainees should perform the assembly of all parts. After assembly, the instructor wir provide comments and discuss alternative arrangements.

Liquid System Components


The components of the model liquid-heating solar system include:

- 1. Two solar collector modules
 - Collector support structure
- 3. Hot water storage tank
- 4. Two pumps
- 5. Simulated load
- 6. Valves, piping, and controls.


Assembly and Test


A schematic diagram of the model is shown in Figure 12-1. The trainees should study the diagram before beginning assembly of the model. It is possible that an alternative arrangement may be desired by participants in the group. Detailed instructions for assembly are not provided; rather the participants should decide the order of assembly.

After the model has been assembled, the system should be operated and the performance of the collector determined. For this purpose, temperatures should be measured at appropriate locations. The flow

rates through the collector pump can be determined by measuring the difference in pressure across the pump and referring to the discharge rating curve shown in Figure 12-2. The pumps have different capacity curves, depending upon pump speed. The solar radiation measured at one of the Solar Houses should be obtained for use in determining the collector performance.

Air System Components

The components of the model air-heating solar system include:

- 1. Two solar collector modules
- 2. Collector support structure
- 3. Pebble-bed storage unit
- 4. Blowers, dampers, and flexible ducting .

303

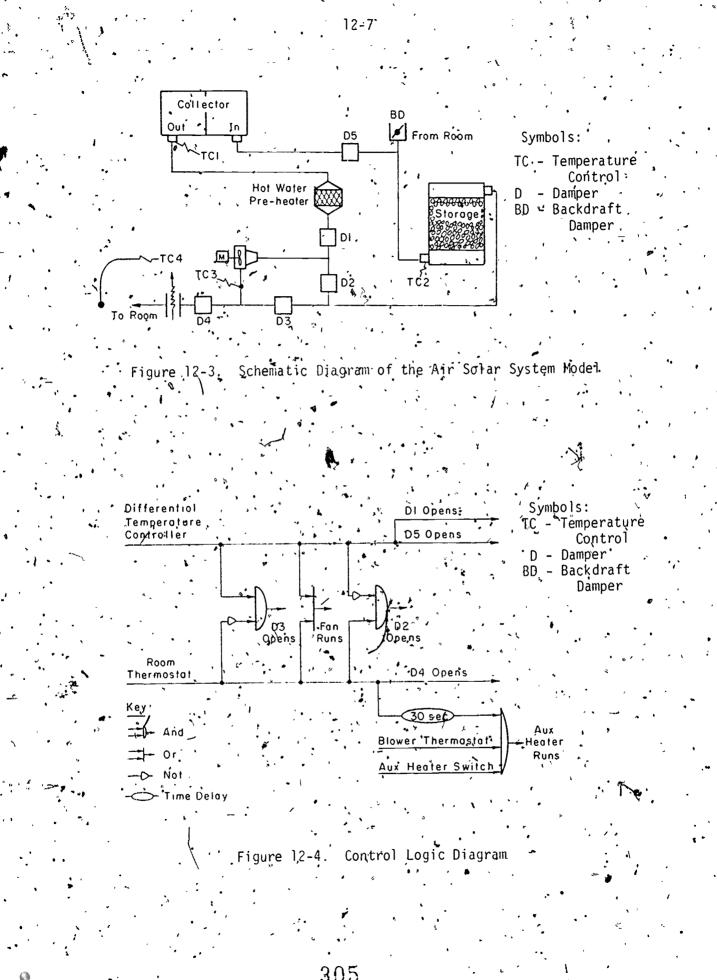
12-5

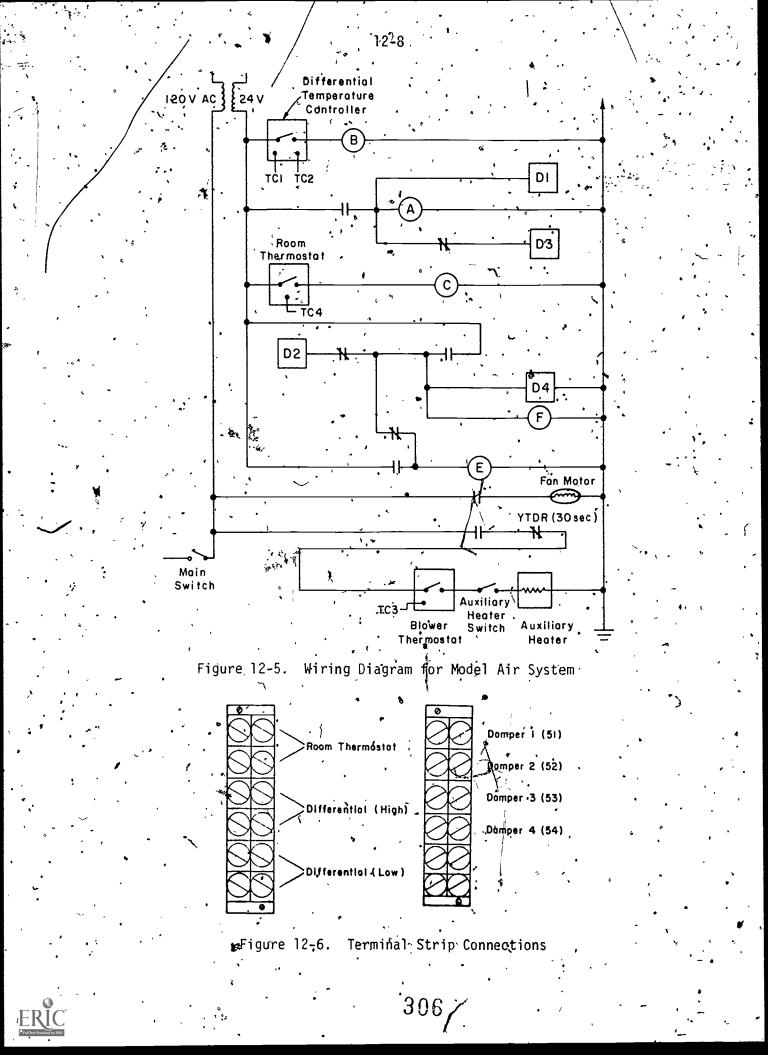
5. Controls

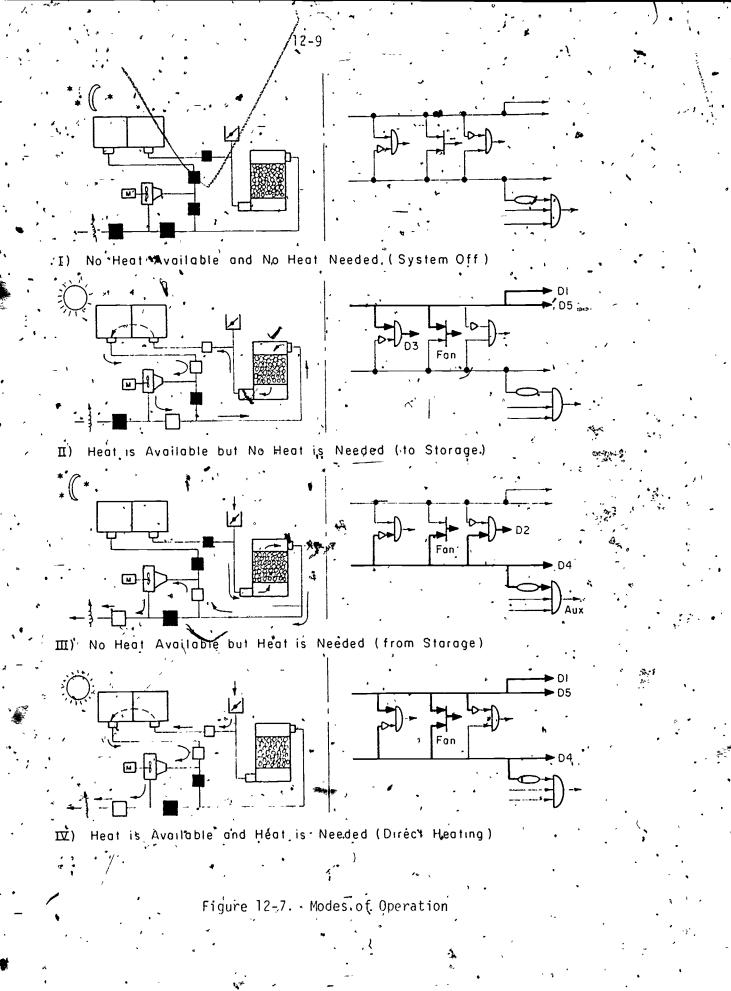
6. Simulated auxiliary furnace. Assembly and Test

The recommended assembly of the air solar system model is shown schematically in Figure 12-3, and the control Togic is shown in Figure 12-4. After assembling the components of the model, the system should be made operational. For this purpose, a wiring diagram for the model system is shown in Figure 12-5, and the terminal strip connections are shown in Figure 12-6. Four modes of operation are indicated in Figure 12-7.

|2**-**6°


The system should be tested and the performance of the collectors determined by measuring temperatures at appropriate locations. The flow rate for the blower will be provided by the instructor and the solar radiation can be obtained from the pyranometer readings on one of the solar houses.


SYSTEM INSPECTIONS


The trainees will be given approximately a 30-minute briefing of the solar systems in the houses and detailed locations of temperature sensors that are used for control and monitoring purposes. A detailed inspection of the system should be conducted by the trainees. Each should become fully familiar with the arrangements of different components of the systems.

SYSTEM CHECK-OUTS

Following the installation of any solar system or during a service (call, it is recommended that the system be checked for proper performance.

307.

If abnormal situations arise, the nature of the difficulty should be identified and the problem corrected.

An appropriate check list should be used to evaluate the performance of a solar system. The particular forms provided in this module will be discussed by the instructor. After the explanations, the trainees will endeavor to obtain a set of readings. Examples of a number of different data sets leading to different difficulties are provided. These examples will be discussed and the troubles will be identified.

308

12-10

EXAMPLE DATA 🛛 🖋

ġ.

- ERĬC

)

FOR HEATING AND COOLING A Table 12-2. System Check List (Liquid), Example 1

Readings Remarks COLLECTOR LOOP .1. Inlet temperature to collector 196°F 2. Outlet temperature from collector 198°F . 91 3. Collector temperature to heat exchanger/storage 197°F 4. Collector temperature from heat exchanger/storage 196°F 5. Collector loop flow rate 16.1 gpm 6. Condition of collector a. Broken glass? none b. Dirt accumulation? slight *7. Surge tank level low THERMAL STORAGE UNITS 1. Storage tank temperature (top) 17.6°F 2. Storage tank temperature (middle) 176°F 3. Storage tank temperature (bottóm) 172°F 4. Storage tank temperature (below tank). 146°F *5. Cool storage supply to cooling unit -Cooling Off *6. Cool storage return from cooling unit HEATING/COOLING LOAD 1. Storage/collector temperature to load 94°F 2. Storage/collector temperature from load 88°F 3. Load flow rate 0.5 gpm 4. Solar/auxiliary valve position solar 5. Heating/cooling valve position heating 6. Return air temperature 70°F Supply air temperature 70°F *As appropriate to the particular system-design 311 310

Table 12-2. System Check List (Liquid System), Example 1 (continued)

· •

•		Readings	Řemarks 6	1 P
G	COOLING 1. Cooling tower flow rate	· · · · · · · · · · · · · · · · · · ·		
, , ,				
	, DOMESTIC HOT WATER (DHW)	·		•
x -	1. DHW preheat temperature 2. DHW auxiliary tank temperature	<u>128°F</u> 142°F	,,,,,,, _	
r *	 3. DHW cold water main temperature (gas) 4. Storage to preheat temperature 	<u>, 64°F</u> <u>176°F</u>	<u> </u>	
· - •	 Storage from preheat temperature Total water flow cumulative 	<u>174°F</u>		•
, • •	THERMOSTAT SETTINGS			
· ,`	House: Heating 68°F Coolir Storage tank: Heating 100°F Coolir Auxiliary; Boiler <u>150°F</u> Hot Wat	ng <u>170°F</u>	· · · · · · · · · · · · · · · · · · ·	۰ ۲
······································	SYSTEM LINE UP FOR APPROPRIATE MODE	······································		
•	Remarks:	· · · · · · · · · · · · · · · · · · ·		
•	hu [*] • 1	` ``	· · · · · · · · · · · · · · · · · · ·	••••
••••	÷			، ^ب ر (
<u>م</u> ر . •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	,,,,,,	•
	<pre>* *As appropriate to the particular sys</pre>	stem design		,
r' 312	AS appropriate to the particular sys		313.	
ERIC				ч

Table 12-3. System Check List (Liquid), Example 2

Readings Remarks COLLECTOR LOOP 1. Inlet temperature to collector 208°F 2. Outlet temperature from collector 212°F 3. Collector temperature to heat exchanger/storage 212°F 4. Collector temperature from heat exchanger/storage 208°F 5. Collector loop flow rate 17.3 gpm 6. Condition of collector a. Broken glass? Panel #2 - 1 lower glass b. Dirt accumulation? slight *7. Surge tank level low THERMAL STORAGE UNITS 1. Storage tank 'temperature (top) 209°F 2. Storage tank temperature (middle) 209°F 3. Storage tank temperature (bottom) 209°F 4. Storage tank temperature (below tank) 180°F *5. Cool storage supply to cooling unit 209°F *6. Cool storage return from cooling unit 207°F HEATING/COOLING LOAD 1. Storage/collector temperature to load 209°F 2. Storage/collector temperature from load 207°F 3. Load flow rate 0.2 gpm 4. Solar/auxiliary valve position solar 5. Heating/cooling valve position cooling ~ Return air temperature . 82°F 7. Supply air temperature 83°F *As appropriate to the particular system design 315

	· · · ·	·	Readings,		Remarks	· · ·	•
COOLING		· \	• •	ب • • •	1 1	•	\$
 Cooling tower flow Cooling tower supp Cooling tower retuing 	ly temperature rn temperature		<u>10.6 gpm</u> <u>72°F</u> <u>73°F</u> 70°F		· _ · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	— — — .
 Évaporator`tempera Condenser temperat Vacuum (pressure) Air flow across ev 	aporator		<u>72°F</u> · <u>1550 cfm</u>				
*8. Liquid filow across		• \	·			<u>,</u>	•
DOMESTIC HOT WATER (DH 1. DHW preheat temper 2. DHW auxiliary tank	ature	• , }	<u>135°F</u>	· · · ·	· . · ·	· 	······································
 DHW (Co.)d water mai Storage to preheat Storage from prehe Total water flow c 	n temperature temperature at temperature	۰. دو به ۲	60°F / 209°F / 204°F /			· · · · · · · · · · · · · · · · · · ·	
THERMOSTAT SETTINGS			· / ·	<u> </u>	•	· · · · ·	· .
House: Storage tank:	Heating <u>68°F</u> Heating <u>100°F</u> Boiler <u>200°F</u>	Cooling Cooling Hot Water	72°F 70°F 140°F		,	• •	•
SYSTEM LINE UP FOR APP	ROPRIATE MODE	,		4 ×	•	•	
Remarks:		· ·		· · · · ·	-	• •	,
	· ·	`		· · ·	,		
	.	··· 	•	,	· · · · ·	• • •	· *
· · · · · · · · · · · · · · · · · · ·				• · · ·	· · ·		,`
. *As appropr	iate to the parti	icular system	design		,	· · · · · · · · · · · · · · · · · · ·	`
	•	· · ·			4		

v

4

: :-

Table 12-4. System Check List (Liquid), Example 3

COLLECTOR LOOP	. Readings	Remarks	•
 Inlet temperature to collector Outlet temperature from collector Collector temperature to heat exchanger/stor Collector temperature from heat exchanger/stor Collector loop flow rate Condition of collector Broken glass? Dirt accumulation? Surge tank level 	Orage <u>142°F</u> 12.6 gpm		•
THERMAL STORAGE UNITS 1. Storage tank temperature (top) 2. Storage tank temperature (middle) 3. Storage tank temperature (bottom) 4. Storage tank temperature (below tank) *5. Cool storage supply to cooling unit *6. Cool storage return from cooling unit	<u>153°F</u> <u>153°F</u> <u>152°F</u> <u>112°F</u> <u>NA</u> NA		12-16
HEATING/COOLING LOAD 1. Storage/collector temperature to load 2. Storage/collector temperature from load 3. Load flow rate 4. Solar/auxiliary valve position 5. Heating/cooling valve position 6. Return air temperature 7. Supply air temperature	<u>152°F</u> <u>141°F</u> <u>10.3 gpm</u> <u>Auxil</u> <u>Cooling</u> <u>76°F</u> 70°F		-

3

*As.appropriate to the particular system design

318 ERIC

. 319

		•		•		-					
· • •	•	-			• *	Readi	ngs	• • •	Remarks		
	COOL ING	د	- ' '	•	• - • • •	•	• •	<	9	• • /	
#1	• 2. Cool 3. Cool 4. Evap	ing tower r orator temp	upply tembe eturn tempe erature	rature rature	, -	<u>10.1'gp</u> m <u>69°F</u> <u>78°F</u> <u>48°F</u>	·	, 			, ,
• •	• •6. Vacu *7Air					<u>75°F</u> <u>1550 cfm</u> 	· · · · ·	·			````````````````````````````````
-	DOMESTIC	HOT WATER	(DHW)		• • • •	e		· · ·			., -
ź	2. DHW * 3. DHW	auxiliary t cold water	peràture [*] ank tempera main temper leat tempera	ture ature	•	132°F 140°F 	`	x ₃ / s / x ₃ / s / x ₁ s ¹	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	5. Stor	age from pr	eheat tempera w cumulativ	rature	. , `	<u>142°F</u>				· ·	
• • • • • • • • • • • • • • • • • • • •	House: Storag	AT SETTINGS e tank: ary:	Heating Heating Boiler	100°F	Cooling Cooling Hot Water	180°F	. .	- `` • ``			
	SYSTEM 1	INE UP FOR	APPROPRIATE	MODE].)			∕ ⊾			
<i>∕</i> ''	Remarks	•	•	, , ,	• •	,	•	•utes. * • ∽ • ↓			
• ,	· .	.*	e,		· · · ·	r			······		· _
1	,					, <u> </u>	· · · · ·	•	·	<u> </u>	•
	· · · · · · · · · · · · · · · · · · ·		· ·				`````````````````````````````````	\	· · ·	<u> </u>	<u>* </u>
~ ,	,	<u> </u>	·		·.				·		—— j
	ن ۲	*As ann	ropriate to	the partic	ular syste	m design	• ,	- Alt	-	- -	~ ~ ~ 1

Table 12-4. System Check List (Liquid System), Example 3 (continued)

Table 12-5. System Check List (Liquid), Example 4

• •	κ .	~	
÷	- Readings	Remarks	
OLLECTOR LOOP	۶		,
 Inlet temperature to collector Outlet temperature from collector Collector temperature to heat exchanger/storage 	<u>195°F</u> 203°F 202°F		•
4. Collector temperature from heat exchanger/stora		N.P. C. S. C.	·····
 Collector loop flow rate Condition of collector 	17.3 gpm		
a. Broken glass? none		· · · · · · · · · · · · · · · · · · ·	<u> </u>
<pre>b. Dirt accumulation?slight *7. Surge tank level *</pre>			
		· · · ·	0
HERMAL STORAGE UNITS	•	• • • *	
 Storage tank temperature (top) Storage tank temperature (middle) Storage tank temperature (bottom) 	201°F 200°F 198°F		
 4. Storage tank temperature (below tank) * ' ¹/₅ *5. Cool storage supply to cooling unit * *6. Cool storage return from cooling unit 	<u>156°F</u>	•	-A c
EATING/COOLING LOAD	*		· · · ·
1. Storage/collector temperature to load	200°F	-	• •
2. Storage/collector temperature from load	<u>191°F</u> 11.2 gpm		
<pre>1. Load flow rate 4. Solar/auxiliary valve position ⁶ ⁶ ⁶ ⁶ ⁶ ⁶ ⁶ ⁶ ⁶ ⁶</pre>	solar	· · · · · · · · · · · · · · · · · · ·	<u> </u>
5. Heating/cooling valve position	cooling 74°F		
7. Supply air temperature	<u>- 68°F</u>	· · · · · · · · · · · · · · · · · · ·	
	-	* * *	

<u>ح</u> ج

1

FullText

12-18

,	· ,		Readings	/ Remarks	
• 、	COOL ING		,	•	3
	 Cooling tower flow Cooling tower sup Cooling tower retuined Evaporator temperator 	ply temperature 🦌 🧤	10.3 gpm 72°F 79°F 42°F		· ····································
۰ ,	5. Condenser tempera 5. Condenser tempera 5. Vaçuum (pressure) *7. Air flow across e *8. Liquid flow across	ture vaporator	$\frac{42 \text{ F}}{76^{\circ}\text{F}}$		·
	DOMESTIC HOT WATER (D	HW)			,
4 9 - R	 DHW preheat tempe DHW -auxiliary tan DHW cold water ma Storage to prehea 	k temperature in temperature	<u>140°F</u> <u>140°F</u> <u>65°F</u>		
3a 4 -	5. Storage from preh 6. Total water flow	eat temperature	<u>86°F</u> <u>91°F</u>	<u>~ , </u>	
,	THERMOSTAT SETTINGS	¥			• .
	House: Storage tank: _/ Auxiliary:				- ÷ ·
	SYSTEM LINE UP FOR AP	PROPRIATE MODE			• •• •
• •	Remarks:	· · · · · · · · · ·	- *) · · · · ·		• •
	· · · · · · · · · · · · · · · · · · ·			-	
• 5		·	•	· · · · · · · · · · · · · · · · · · ·	^
		· · · · · · · · · · · · · · · · · · ·	. 1	· · · · · · · · · · · · · · · · · · ·	
	· *As appron	riate to the particular sys	tem design		<u> </u>
	24		· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,	325

Table 12-5. System Check List (Liquid System), Example 4 (confinued)

12-19

Table 12-6. System Check List (Liquid), Example 5

Readings

·170°F

16.2 gpm

low

175°F 175°F

172°F

140°E

174°F

<u>.173°</u>F

10.3 com

solar

cooling

<u>. √76°</u>I

76°

178°F

Remarks

COLLECTOR LOOP

- 1. Inlet temperature to collector 2. Outlet temperature from collector
- 3. Collector, temperature to heat exchanger/storage 176°F 4. Collector temperature from heat exchanger/storage 171°F
- 5. Corrector loop flow rate 6. Correction of collector
- a. Broken glass? <u>2 panels (lower glass)</u> slight
- b. Dirt accumulation? *7. Surge tank level

THERMAL STORAGE IN ITS

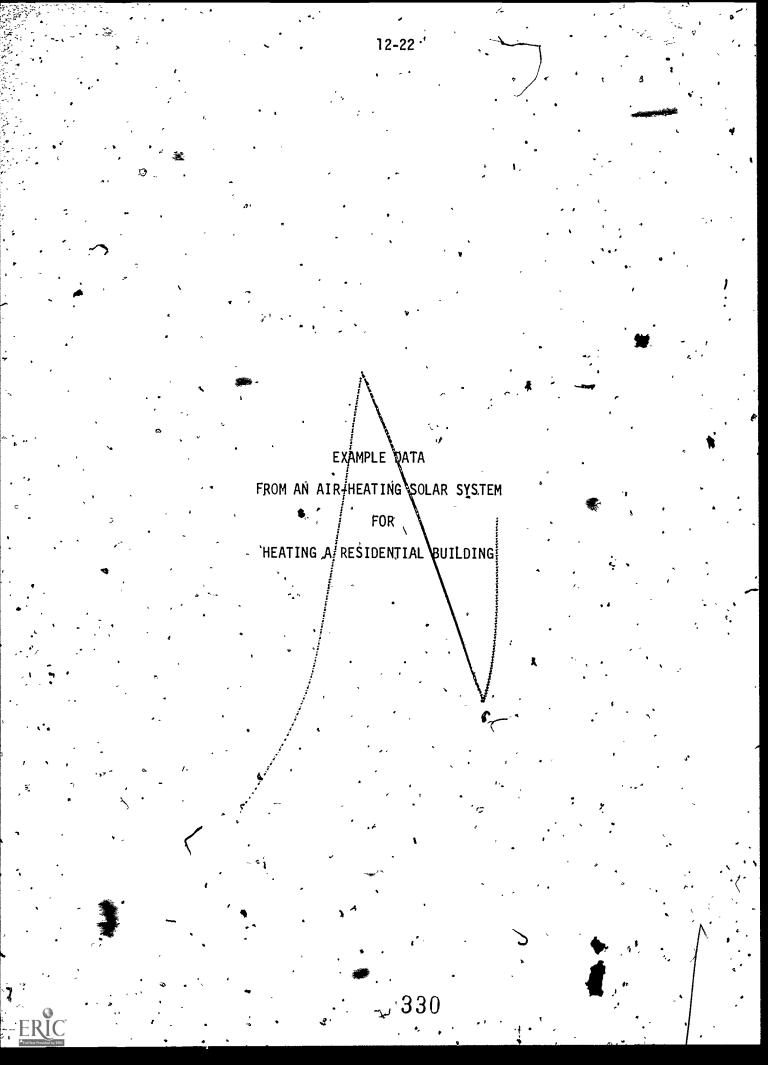
- 1. Storage tank temperature (top) 2. Storage tank temperature (middle)
- 3. Storage tank temperature (bottom) 4. Storage tank temperature (below tank)
- *5. Cool storage supply to cooling unit *6. Cool storage return from cooling unit

HEATING/COOLING LOAD

- 1. Storage/collector temperature to load 2. Storage/collector temperature from load
- 3. Load flow rate
- 4. Solar/auxilia valve position 5. Heating/cooling valve position
- 6. Return "air temperature"
- 7_ Supply air temperature
- *As appropriate to the particular system design

.*	🛷 🛛 Table 12-6. Syst	em Check List (Liqu		·	•	•
			Readings	Ren	narks .	
COOLING	* ,	·			• •	• *
2. ℃00 3. ℃00 4. Eva 5. Con	ling tower flow rate ling tower supply temperatur ling tower return temperatur porator temperature denser temperature	e.	10.6 gpm → 80°F 82°F 67°F 82°F	• 		· · ·
- → *7. Air	uúm (pressure) flow across evaporator uid flow across chiller	1	.600 cfm		•	
DOMESTI	C HOT WATER (DHW) -	•	•	•	• •	۰۰ ، ۲۰ و. ۱۰۰۰ و.
2. DHW 3. DHW 4. Sto 5. Sto	preheat temperature auxiliary tank temperature cold water main temperature rage to preheat temperature rage from preheat temperatur al water flow cumulative		136°F 140°F 70°F 135°F 128°F			2-21
, House	ge tank: Heating 100°	F Cooling 17	D°F 0°F 0°F			•
SYSTEM	LINE UP FOR APPROPRIATE MODE	È î î	, · · ·	•	¹	· ·
Remark	s: •	•	*`` * * * ``	· · · · ·	(<i>)</i>	39
		• • • •				· ·
· • • • • •		,,,,,,,				
• / • · · · ·			· · · · ·			• •
328	*As appropriate to the p	particular system de	sign			 329 ^{``}
	٩	۵ ۱	•		· ·	•

13.4


:.

D

٢.

."

h.

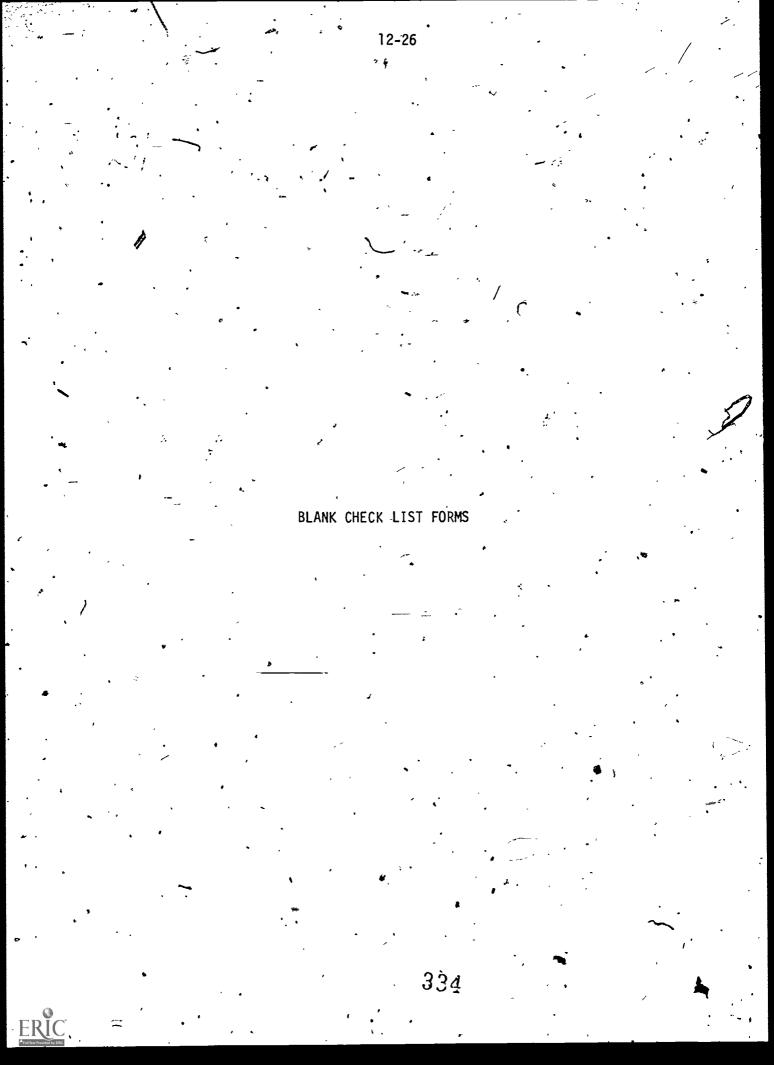
•	' •				2	-	
. Table	12-7.	System Chec	< List	(Ajr),	Example	1	

· · · · · · · · · · · ·	· · · ·	
	Readings	Remarks
COLLECTOR LOOP	· · ·	
1. Inlet temperature to collector	. 76°F	
2. Outlet temperature from collector	151°F	
3. Air temp. before heat exchanger	. 137°F	
4. Air temp. after heat exchanger	129°F	
5. Collector loop air flow rate	1510 cfm	
6. Conditions of collector	4	
a. Broken glass? <u>Panel</u> #1, cover	•	· · · · · · · · · · · · · · · · · · ·
b. Dirt accumulation? None	,	
THERMAL STORAGE UNITS	•	1-
1. Inlet temperature	125°F	· · · · · · · · · · · · · · · · · · ·
2. Storage unit temperature (top)	124°F	i
3. Storage unit temperature (middle)	<u>122°F</u> .	<u></u>
4. Storage unit temperature (bottom)	<u>81°F</u>	· · · · · ·
5. Outlet temperature	78°F	
HEATING/COOLING LOAD	126°F	
1. Room air supply temperature	<u> </u>	
-2. Room air return temperature		
3. Air flew rate to rooms	1510 cfm	
DOMESTIC HOT WATER (DHW)	•	
1. DHW preheat temperature	. 132°F .	· · · · · · · · · · · · · · · · · · ·
2. DHW auxiliary tank temp. setting	142°F	· · · · · · · · · · · · · · · · · · ·
3. DHW cold water main temperature	70°F	•
4. Air/liquid exchanger to preheat temp	136°F	3
5. Air/liquid exchanger from preheat temp	130°F	· · · · · · · · · · · · · · · · · · ·
6. Water flow rate through heat exchanger		
· ·	¢ ,	•
THERMOSTAT SETTINGS		• • •
House: Heating 72°F		
Storage Unit: Heating <u>100°F</u>		-
• Auxiliary: Boiler <u>160°F</u>	Hot Waté	r <u>140°F</u>
** · · · · · · · · · · · · · · · · · ·	•	
33	1	• • •

ERIC

12-23

• •


12-24

· · · · · · · · · · · · · · · · · · ·	Readings	Remarks	•
· · · · ·	° v	Kellid (KO	•
COLLECTOR LOOP		•	
1. Inlet temperature to collector	<u>75°F</u>	¹	-
2. Outlet temperature from collector	<u>175°.F</u>	· · · · · · · · · · · · · · · · · · ·	
3. Air temp. before heat exchanger	<u>163°F</u>		••*
4. Air temp. after heat exchanger	<u>147°F</u>		[`]
5. Collector loop air flow rate	7 <u>80 cfm</u>		^
6. Conditions of collector /	•	۲ ۱	"
.a. Broken glass?None			-
b. Dirt accumulation? <u>Slight</u>	j ·		-
	$1 \times c$. *
THERMAL STORAGE UNITS	144°F		
1. Inlet temperature	1		-
2. Storage unit temperature (top)	<u>143°</u> F	· · · ·	- ,
3. Storage unit temperature (middle)	<u>79°F</u>	· 	-
4. Storage unit temperature (bottom)	76°F		-, -
5. Outlet temperature		•	
HEATING/COOLING LOAD			
1. Room air supply temperature	off -		
2. Room air return temperature	off	· · /	-
· · · · · · · · · · · · · · · · · · ·	off		
3. Air flow rate to rooms			_
DOMESTIC HOT WATER (DHW)	۰.	•	•
1. DHW preheat temperature ·/	<u>96°F</u>	;	
2. DHW auxiliary tank temp. setting	144°F		
3. DHW cold water main temperature	62°F .	· · ·	
4. Air/liquid exchanger to preheat temp	133°F	٠ •	
5. Air/liquid exchanger from preheat tem			r
6. Water flow rate through heat exchanger		·	 _
· · · · ·			·
THERMOSTAT SETTINGS	•	and the second s	
House: Heating70°F		• • •	١
Storage Unit: Heating <u>100°F</u>	· · · · ·		
Auxiliary: Boiler <u>150°F</u>	. Hot Wate	r <u>140°F</u> · .	•
••••••••••••••••••••••••••••••••••••••	- 4		
		•	• ,
•	332		' -

ERIC

Table 12-9. System Check List (Air), Example 3

		`
	Readings	Remarks,
COLLECTOR LOOP	3	,
. 1. Inlet temperature to collector	41°F	•.
2. Outlet temperature from collector	40°F	ſ
3. Air temp. before heat exchanger	52°F	· · · · · · · · · · · · · · · · · · ·
4. Air temp. after heat exchañger	51°F	- , , , , , , , , , , , , , , , , , , ,
5. Collector loop air flow rate		
6. Conditions of collector	· · · · · · · · · · · · · · · · · · ·	• • •
a. Broken glass? Night .		.'
b. Dirt accumulation? Night	` •	· · · · · · · · · · · · · · · · · · ·
THERMAL STÒRAGE UNITS	· ·	
1. Inlet temperature	1 50 87	х з г
· ·	<u>153°F</u>	
2. Storage unit temperature (top)	<u>151°F ·</u>	
3. Storage unit temperature ¶middle)	148°F	· · · · · · · · · · · · · · · · · · ·
4. Storage unit temperature (bottom)	<u>83°F</u> '80'°F	, , , , , , , , , , , , , , , , , , , ,
5. Outlet temperature	00 ° F	
HEATING/COOLING LOAD	· · · ·	,
1. Room ai 🏞 supply temperature	150°F	•
2. Room air return temperature	68°F.	· · · ·
3. Air flow rate to rooms	1430 cfm	· · · · ·
.		· · ·
DOMESTIC HOT WATER (DHW)		· · · ·
l₅DHW preheat temperature	<u>126°F</u> .	
2. DHW auxiliary tank temp. setting	<u>142°F</u> ,	<u> </u>
3. DHW cold water main temperature	<u>63°</u> F	
Air/liquid exchanger to preheat temp	76°F	<u> </u>
5. Air/liquid exchanger from preheat temp	75°F	
6. Water flow rate through heat exchanger	*	
	·	• • •
THERMOSTAT SETTINGS House: Heating 68°F	•	
Storage Unit: Heating <u>100°F</u>		
Auxiliary: Boiler 150°F	. Hot Wate	r <u>145°F</u>
	~	· ·
· · · · · · · · · · · · · · · · · · ·	, _	· · · ·
•		· · · · · · · · · · · · · · · · · · ·

Operations System Check List

N 2

7

(Liquid System)

(4

÷

۰.

	Readings	Remarks
COLLECTOR LOOP	• ; *	· · · · · · · · · · · · · · · · · · ·
 Inlet temperature to collector Outlet temperature from collector Collector temperature to heat exchanger/storage Collector temperature from heat exchanger/storage Collector loop flow rate Condition of collector a. Broken glass? b. Dirt accumulation? *7. Surge tank level 		
THERMAL STORAGE UNITS	,	•
 1. Storage tank temperature (top) 2. Storage tank temperature (middle) 3. Storage tank temperature (bottom) 4. Storage tank temperature (below tank) *5. Cool storage supply to cooling unit *6. Cool storage return from cooling unit 		· · · · · · · · · · · · · · · · · · ·
HEATING/COOLING LOAD	-	• - •
 Storage/collector temperature to load Storage/collector temperature from load Load flow rate Solar/auxiliary valve position Heating/cooling valve position Return air temperature Supply air temperature 	· · · · · · · · · · · · · · · · · · ·	, ,
*As appropriate to the particular system design .	• *	•

Operations System Check tist (continuéd)

۵

		Readings	Remarks
COOLING		•	
 Cooling tower flow rate Cooling tower supply temperature Cooling tower return temperature 	۹. ۲		·
 Evaporator temperature Condenser temperature Vacuum (pressure) Air flow across evaporator *8. Liquid flow across chiller 	•1		· · · · · · · · · · · · · · · · · · ·
DOMESTIC HOT WATER (DHW)		• ; •	
 DHW preheat temperature DHW auxiliary tank temperature DHW cold water main temperature Storage to preheat temperature Storage from preheat temperature Total water flow cumulative 	•		· · · · · · · · · · · · · · · · · · ·
THERMOSTAT SETTINGS		́ · · х	· · · · · · · · · · · · · · · · · · ·
House: Heating Storage tank: Heating Auxiliary: Boiler	Cooling Cooling Hot Water	·	•
SYSTEM LINE UP FOR APPROPRIATE MODE		•	•
Remarks:	``	• ,	•
		,	·
	\		· · · · · · · · · · · · · · · · · · ·

337 ERIC

لەر _كىتچر

 $\left(\right)$

.

\$

Operations System Check List (Air System)

Ϋ.

A.

••		- N		2
۲	•	Readings	Remarks	• •
		, ,	• •	
,	COLLECTOR LOOP	• •	· · · · · · · · · · · · · · · · · · ·	•
- *	1. Inlet temperature to collector		1	•
	2. Outlet temperature from collector		<u> </u>	-
	3. Air temp. before heat exchanger	,	,	•
Ð.	4. Air temp. after heat exchanger	',		
يد ر	5. Collector loop air flow rate			۲
	6. Conditions of collector	'-		1
	a. Broken glass?			- '
	b. Dirt accumulation?			
, ~ ,	THERMAL STORAGE UNITS	•	t ,	. ~
	1. Inlet temperature		_	
÷	2. Storage unit temperature (top)	¢		*
	3. Storage unit temperature (middle)	~		· '
• .	4. Storage unit temperature (bottom)	-,, -	· ·	· · ·
	5. Outlet temperature	· · · · · ·		
,	· · · · · · · · · · · · · · · · · · ·	• 7		•
	HEATING/COOLING LOAD	N	• ·	*
	1. Room air supply temperature	_ ` `.		• • •
ø.	. 2.*Room air return temperature	, 	^	· · ·
	3. Air flow rate to rooms	•		بتني
	PONECTIC HOT MATER (RUM)	•		`. *
-	DOMESTIC HOT WATER (DHW)			. K.
	DHW preheat temperature2. DHW auxiliary tank temp. setting	· ·		(**) (**)
	3. DHW cold water main temperature	£		***
	4. Air/liquid exchanger to preheat temp		·	(e
÷	5. Air/liquid exchanger from preheat temp		\	• •
•	 6. Water flow rate through heat exchanger 	•	•	• *
	o. Water flow fate through heat exchange	<u>#</u>	· · · · ·	• *
	THERMOSTAT SETTINGS	•		t
,	House: Heating	· ·	1	•
	Storage Unit: Heating	ý — · ·	- 742 · · ·	*,
	Auxiltary: Boiler	Hot Wate	er	•
			· · · · ·	-
. '		•		•
		•		•

339

.

Operations System Check List (Liquid System) Remarks COLLECTOR LOOP 1. Inlet temperature to collector 2. Outlet temperature from collector 3. Collector temperature to heat exchanger/storage 4. Collector temperature from heat exchanger/storage 5. Collector loop flow rate 6, stondition of collector , **k** 🦾 .a. Broken glass?' b. Mint accumulation? 7. Surge Klevel THERMAL STORAGE UNITS 1. Storage tank temperature (top) 2. Storage tank temperature (middle) 3. Storage tank temperature (bottom) 4. Storage tank temperature (below tank) *5. Cool storage: supply to cooling unit *6. Cool storage return from cooling unit HEATING/GOÓLING LOAD 1. Storage/collector temperature to load 2. Storage/collector temperature from load 3. Load flow rate 4. Solar/auxiliary valve position 5. Heating/cooling valve position 6. Return air tempenature 🔹 7. Supply air temperature *

*As appropriate to the particular system design

Operations System Check List (continued)

07.

ER

	Readings	Remarks
COOLING 1. Cooling tower flow rate	• •	· _ · _ ·
 Cooling tower supply temperature Cooling tower return temperature 	*	
• 4. Evaporator temperature • 5. Condenser temperature		
6. Vacuum (pressure) *7. Air flow across evaporator *8. Liquid flow across chiller		
DOMESTIC HOT WATER (DHW)	₩	
 DHW preheat temperature DHW auxiliary tank temperature 	·;	· · · · · · · · · · · · · · · · · · ·
 DHW cold water main temperature Storage to preheat temperature Storage from preheat temperature 6. Total water flow cumulative 		
THERMOSTAT SETTINGS	•	
House:		
SYSTEM LINE UP FOR APPROPRIATE MODE		
Remarks:		
		·····
*As appropriate:to the particular syste		•

· · · · · ·	Readings .	Remarks	<u>ب</u>
COLLECTOR LOOP			\
1. Inlet temperature to collector .		77	
2. Outlet temperature from collector			
3. Air temp. before heat exchanger			
4. Air temp. after heat exchanger	· · ·	**	•
5. Collector loop air flow rate	 ``		• • •
6. Conditions of collector	· · · · ·	• - •	•
a. Broken glaśs?	· ·		• •
b. Dirt accumulation?	• • •		•
		······	
THERMAL STORAGE UNITS		• a	ø :
l. Inlet temperature	&	<u> </u>	. ,
-2. Storage unit temperature (top)	، ، ، یک		
3. Storage unit temperature (middle)			۵ ۲
4. Storage unit temperature (bottom)	//		
5. Outlet temperature : •••	· · · · ·	· · · · · · · · · · · · · · · · · · ·	
	• • •		-
HEATING/COOLING LOAD	•		• •
1. Room air supply temperature			•
2. Room air return temperature		, <u> </u>	
3. Air flow rate to rooms	<u> </u>		•
DOMESTIC HOT WATER (DHW)			
1. DHW preheat temperature	• •	1	
2. DHW auxiliary tank temp. setting	· · ·	n 'Y '	
di. DHW cold water main temperature	· · ·		• • •
4. Air/liquid exchanger to preheat temp.		· · · · · · · · · · · · · · · · · · ·	•
5. Air/liquid exchanger from preheat temp	•/ .	•*	•
6. Water flow rate through heat exchanger			· •
	 	· , · ,	
THERMOSTAT SETTINGS.	• • *	÷	•••
House: Heating		7 ⁻ 2 • • • • • • • • • • • • • • • • • • •	
Storage Unit: Heating			
Auxiliary: Boiler	+Hot Water	· · · · · · · · · · · · · · · · · · ·	i
	•	•	, .
*	·) ' '		•
• • • • • • • • • • • • • • • • • • •	344		

Operations System Check List (Air System)

TRAINING COURSE IN THE PRACTICAL ASPECTS OF SIZING, INSTALLATION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS

"RESIDENTIAL BUILDINGS*

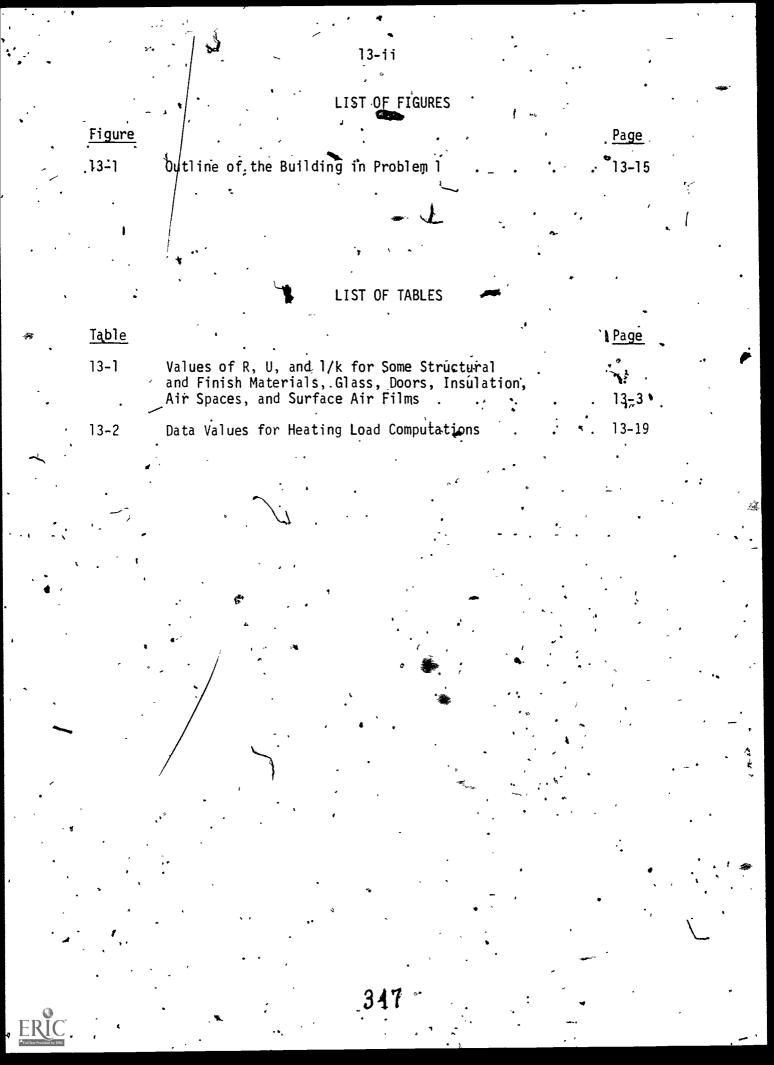
FOR

MODULE 13

HEATING LOAD CALCULATIONS F.

SOLAR ENERGY APPLICATIONS LABORATORY COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

TABLE OF CONTENTS


			•	• •
LIST OF FIGURES.	• • • •		• •	. 13-11
LIST OF TABLES .	• • ¹ • • • •	•	•.•.	. 13-ii
GLOSSARY .	• 1 • • •	,	 • · •	. 13 -ii i
•		سر.	. •	, ,
INTRODUCTION .	£*-	••••••	• • • *	. 13-1
OBJECTIVE	• • •	• • •	• •	. 13-1
HEAT LOAD FACTORS	• • •	• • •	• •	. 13-1
RESISTANCE TO HEAT	FLOW (R) AND (OFFFICIENT	,	· **
OF HEAT TRANSMISSIO		· · · · · · · · ·	• •	. 13-2
HEAT LOSS RATE	· · · · / · · ·		• •	. 13-2
CONCRETE SLABS ON	GRADE		•• ,•	. 13-5
BASEMENTS	•	• ~ ~ • •	• •	13-5
DUCT HEAT LOSS	·· · · · · · · · ·	* < * <	•	. 13-6
INFILTRATION HEAT	LOSS		```	. 13-6
. SPACE HEATING LOAD	• ,• •		•••	. 13-6 .
DOMESTIC HOT WATER HEAT	ING LOAD	· · · ·	• / •	13-7
EXAMPLES			• •	13-8
EXAMPLE 13-1		• • •	N	. [°] 13-8
EXAMPLE 13-2 .	• • • •	·		13-8
. PROBLEMS .	• • •	•		. 13-14
PROBLEM 13-1	· · · · ·	1	• • •	. 13-14
WORKSHEET TA-1 .	· · ·		, , , , , , , , , , , , , , , , , , , ,	.' 13-16
REFERENCES.	•	· · ·		. 13-16
• 11	, • • •	• • •	• •	
BLANK WORKSHEET FÖRMS	• • •	• • •	, • • •	13-28

13-1

316'

ERIC

: **8**,

	- 13-iii
•	GLOSSARY
•	
Design Temperature -	Lowest temperature encountered in the locality
Degree Days (DD) -	The temperature_difference between a reference temperature, 65°F, and the average of the high and low temperature during a day (°F-days)
• • • • • •	Example:
· • •	high temperature = 30°F
•	low temperature = -10°F
	average temperature $\frac{30 + (-10)}{2} = 10^{\circ}F$
· · · · · · · · · · · · · · · · · · ·	Degree Days = $65 - 10 = 55^{\circ}F$ -days
Design Temperature Difference (DTD)	 The difference between the indoor design temperature and the outdoor design temperature used to calculate heat losses from buildings The heat loss rate (Btu/hr) from a building based
Design Heat Loss	upon the Design Temperature Difference
Space Heating Load	 Design Heat Loss Rate divided by the Design Temperature Difference and the quotient multiplied by 24 hours (Btu/DD)
x	
Average Heating Load	Since Heating Load multiplied by Degree Days for the day, month, or year (Btu)
· ·	• • • •
, , , , ,	
• `	
· · · · · · · · · · · · · · · · · · ·	•
· · ·	-1 · · · · · · · · · · · · · · · · · · ·
·	
V~ .s	
•	

ſ

¢

. **~**"

348

There has not been much need in the past to make detailed heat load calculations for residential buildings because the HVAC contractor "knew", from his_experience, the size of furnace that a particular building would require in a given area. Furnaces have been characteristically oversized for residential buildings.

13-

INTRODUCTIO

Heating loads for buildings with solar systems should be calculated because the size of the solar system, and estimate of the fraction of the annual heating load which a solar system can supply, depends upon the annual heating load of the building. Furthermore, the determination of the economic viability of a solar system is dependent upon the size of the solar system and the annual heating load.

OBJECTIVE

The objective of the trainee is to be able to calculate the design heat load (maximum Btu per hour requirement), average heating loads for January, and the average annual heating load for a particular building.

HEAT LOAD FACTORS.

The heat loss from a building is calculated on the basis of the wall and ceiling areas of the building, the heat loss coefficients for here transmission through the walls and ceiling, the difference between the indoor and outdoor temperature, and the infiltration of cold air into the building.

RESISTANCE TO HEAT FLOW (R) AND COEFFICIENT. OF HEAT TRANSMISSION (U)

Walues of the resistance to heat flow, R, and the coefficient of heat transmission, U, vary considerably for different materials. The resistance, R, has units of $(hr)(ft^2)({}^{\circ}F$ temperature difference)/Btu and is the reciprocal of heat conductance, C. For a given material and thickness,

R = 1/C

where C is the conductance in $Btu/(hr)(ft^2)(°F)$. The thermal conductivity, k, is the rate of heat conduction through a unit area of surface for a unit thickness of material. The units of k in this manual are $(Btu)(in.)/(hr)(ft^2)(°F)$. If k is known, the resistance may be calculated from

 $R = (1/k) \times (thickness of the material),$ Values of R are additive, and the coefficient of heat transmission, U, is the reciprocal of the sum of the R values:

 $U = \frac{1}{R_1 + R_2 + R_3 + \dots} = \frac{1}{\Sigma R} - \frac{Btu}{(hr)(ft_2)({}^\circ F \text{ temperature difference})}$

Some values of R, U, and 1/k are given in Table 13-1.

HEAT LOSS RATE

is:

The rate of heat loss, h, in Btu/hr through a surface of area, A, with a temperature difference across the two sides of the surface of ΔT ,

[13-1]

h = UA at ----

where A is in square feet and

∆T is in degrees Fahrenheit

13-2

Table 13-1

13⁷3

Values of R, U, and 1/k for Some Structural and Finish Materials, Glass, Doors, Insulation, Air Spaces, and Surface Air Films +

Materials	1/k	, R	- U
 Wood bevel siding, .5 x 8, lapped, Wood siding shingles, 16" x 7.5" exposure Asbestos-cement shingles Stucco Building paper 1/2"nail-base insulation board sheathing Insulation board sheathing, regular density Plywood 1/4" hardboard 	0.20 2.63 1.24	0.81 0.87 0.21 0.06 1.14 0.18	· · ·
Softwood board	1.25	}	
Concrete blocks, 3 oval cores <u>Cinder</u> 4" thick Aggregate 12" thick <u>8" thick</u> <u>Sand and gravel aggregate, 8" thick</u> Lightweight aggregate, 8" thick		1.11 1.89 1.72 1.11 2.00	
Concrete blacks, 2 rectangular cores	•		
Sand and gravel aggregate, 8" thick Lightweight aggregate, 8" thick	,	1.04	
Common brick Face brick Sand-and-gravel concrete Gypsumboard (plasterboard) .5" lightweight-aggregate gypsum plaster 25/32" hardwood finish flooring Asphalt, linoleum, vinyl, or rubber floor tile Carpet and fibrous pad Carpet and foam rubber pad Asphalt roof shingles Wood roof shingles 3/8" built-up roof Basement floor below grade	0.20 0.11 0.08 0.90	0.32 0.68 0.05 2.08 1.23 0.44 0.94 0.33	•
Glass Single Double 1/4" air space 1/2" air space Triple 1/4" air spaces 1/2" air spaces Storm windows (1-4" air space)			1.13 9.65 0.58 0.47 0.36 0.56

[†] From ASHRAE Handbook of Fundamentals

- <u>ERIC</u>

	Table 13-1 (continue)	-	<u> </u>		
<u>Soli</u> d Wood Slab D	oor U Values:		∕Sto rm loor	Storm Wood	
	00"_thick		0,64	0.30	
	25" thick	<u></u>	0.55	0.28	
	50" thick .'		0.49		0.33
	20 ⁿ thick		0.43		0.29
	·····		1/k	R-	U.
Insulation:	•		17.		
· 0"	thick 0-2.75" thick		3.58	0	
- 2.	0 - 3.5" thick	· ·	3.58	11	· ·
	5 - 3.625" thick	<u> </u>	3.58	13	
5	25 - 6.5" thick		3.58	19	
5.	0 - 7.0" thick		3.58	22	
			r		<u> </u>
(other than concr value). If heatin ducts or pipes ar lation is necessa ments, use 1/3 of 1/3 of the calcul vented crawlspace use 1/2 of the ap the calculated U spaces or other of yalue given or th approximate U val	ues for ceiling, walls, and ete slabs) with given insulat g unit is in the basement and re uninsulated, no floor loss ry. For floors over unheated the <u>approximate</u> U value give ated U value. For floors over s with insulated crawlspace w proximate U value given or 1 value. For floors over vented pen spaces, use the <u>approxima</u> ne calculated U value. Use of ues given here for a given R alt in a higher heat load that case.	tion (R calcu- base- en or run- walls, /2 of dcraw dcraw the value	-	0 7 11 13 19 22 22	0.28* 0.11 0.08 0.07 0.05 0.045
	oors: Use linear feet of expo dge in place of A:h = U (lin. ft ' x 24" insulation				0.21
╞╴┤╴	'x 12" insulation	·	f	1	0.46
. No	insulation		<u> </u>		0.81
· · ····	Non-reflective		+	0.87	<u> </u>
Air Heat Flo	Reflective, 1 surface	e**	+	2.23	+ -
Spaces Heat Flow		*	· · ·	1.01	
(3-4") Vor Horiza		e**	1	3.50	1
	t Flow Non-reflective			0.61	
k				10 01	
Heat		,		0.61	
Surfàce Heat	Jp Reflective *	,	· ·	1.32	
Surfàce Heat Air Heat			· ·		
Surface Heat Air Heat Films Do Heat	Jp Reflective t Flow Non-reflective own Reflective t Flow Through vertical sur	face,		1.32	
Surfàce Air Films Heat Horiz	Jp Reflective t Flow Non-reflective Dwn Reflective	face,		1.32 0.92 4.55	· · · · · · · · · · · · · · · · · · ·

Table 13-1 (continued)⁺

13-4

reflective surface increases the thermal resistance values of an air space only 4 to 7%. + From ASHRAE Handbook of Fundamentals

52

The temperature difference that is used to calculate the heat loss rate is the difference between the room temperature, T_R , and the design outdoor temperature, T_c :

[13-2]

▲[13-3]

13-5

$$\Delta T = T_R - T_o$$

The room temperature is nominally 70 degrees and the design outdoor temperatures are listed in Table 13-2 for many cities in the United & States. Also listed on the table are monthly and total annual heating degree days, which will be utilized in the heating load calculations. Table 13-2 is located at the end of this module for the convenience of the user.

CONCRETE SLABS ON GRADE

The heat loss rate from concrete slab on grade is calculated on , the basis of exposed edge length rather than on floor area. The heat loss rate is:

h = U (linear feet of exposed slab area) **Δ**T

where ΔT is the difference between indoor and average outdoor temperature in degrees Fahrenheit. The U values are listed in Table 13-1.

BASEMENTS

FRIC

Basement floors below grade have a heat.loss rate of about $\frac{1 \text{ Btu/hr}}{\text{ft}^2 \text{ of floor area}}$. In Table 13-1, for basement walls below grade, $ft^2 \text{ of floor area}$. U = 0.06 Btu/(hr)(ft²)(°F). The temperature difference is the indoor temperature minus the ground temperature, and the ground temperature is often assumed to be the same as ground water temperature and, in most regions, can be assumed to be about 45°F in winter.

13-6

DUCT HEAT LOSS

When a duct is installed within the insulated envelope, there is no heat loss from the building. If the ducts are located in crawlspace or outside the building envelope, about 10 percent of the heat carried by the duct will be ost.

INFILTRATION HEAT LOSS

The cold air that enters a building through open doors, windows and cracks around doors and windows constitutes a heat loss because the cold air displaces the warm room air and the cold air must be heated to room air temperature. The infutration heat loss rate can be computed from:

• h ≥ 0.018 V (∆T)

where V is the volume flow rate, cubic feet of cold air per hour and ΔT is the difference in indoor and outdoor air temperatures. The volume flow is the air change rate per hour. For normal residential buildings, the air change rate per ages about once per hour for all rooms located above grade.

[13-4]

SPACE HEATING LOAD

The sum of the heat transmission losses through the building enclosure and the infiltration losses is the design hourly heat loss rate for the building. The space heating load for a building,

13-7 based on heating degree de (DD), is calculated from the design heat loss rate as follows: Design Heat Loss Rate X 24 = Space heating load, Btu/DD [13-5] Design Temperature The monthly and annual heating loads are then calculated using the heating degree-day values.in Table-13-2 as: Heating Load (Btu) = $\frac{Btu}{DD} \tilde{X}$ (heating degree-days) [13-6] As an example, assume that a building has a heat requirement of 16,000 The January heating degree-days is 1000, and the annual heating Btu/DD. degree-days is 5000. The heat.required in January is: 16,000 Btu X 1000 DD = 16 m Btu 🧐 and the annual heat requirement, is: \therefore 16,000 $\frac{Btu}{DD}$ X 5000 DD = 80 m Btu per year. DOMESTIC HOT WATER HEATING BOAD The amount of hot water used in residential building is about 20 gallons per person per day and the heat required to raise the temperature of the incoming water from about 40°F in winter to 140°F can be computed from: $H_w(\frac{Btu}{day}) = (No. of occupants) \times 20 \frac{gallons}{(person)(day)}$ (1^b)(°F) X (140 - 40°F) X 8.34 $\frac{1b}{aa}$ $H_{W} = (No. of occupants) X 16,680 \frac{Btu}{(person)(day)^{3}}$ or

EXAMPLES

13-8

EXAMPLE 13-1

In this example, calculations are made to determine the U value of an exterior wall. The 1/k, R, and U values are given in Table 13-1.

			R value			
	Thickness inches	1/k•	Uninsula- ted	Insula ted		
Outside surface air film (15mph)			0.17	* 0.17		
Wood bevel siding,-1/2 x 8, lapped			0.81	.0 <mark>.8</mark> 1		
Ins.bd.sheathing, reg. density	.5 *	2:63	1.32	132		
Air space	3.5	-	1:01	. •		
Insulation.	3.5	ĺ.	0.00	11 •		
Gypsumboard	.5	<u>.</u> 0.90	0.45 *.	0.45		
Inside surface air film			0.68	0.68		
. Totals (Σ)			4.44	14.43		

For the uninsulated wall, $U = 1/\Sigma R = 1/4.44 = 0.23 \text{ Btu/(hr)(ft}^2)(\circ F)$, which is lower than the <u>approximate</u> value of 0.28 given in Table 13-1. For the insulated wall, $U = 1/\Sigma R = 1/14.34 = 0.07 \text{ Btu/(hr)(ft}^2)(\circ F)$, which compares to the value of 0.08 given in Table 13-1. Variations can occur with the materials used in the wall.

EXAMPLE 13-2

FRÍC

Calculate the January heating load (L, Btu/month), and the annual heating load (H, million Btu) for the following home:

Location: Albuquerque, New Mexico
 Indoor Design Temperature: 70°F
 Ceiling Height: 8'-0"

House Construction:

Exterior Walls

4" common brick

1/2" plywood
2 x 4 studs
R-11 insulation

1/2" plasterboard

Floor construction over vented crawlspace:

25/32" hardwood finish flooring

. building paper

1" plywood sub-floor. atr space

R-li insulation (applied to underside of joists) . Windows: Storm windows

Exterior: 1-1/2" solid core door

Ceiling construction with vented attic space above:. 1/2" plasterboard

R-19 insulation

House is 51' x 27', and has one wood exterior door 3! x 6'-8"and one double glass wood frame sliding patio door with 1/4" air space, 7' x 6'-8".

The windows are as follows:

-Number ,	Size
4	<u>6' x 4</u> '
· · 3 🖉 ·	3' x 5'
2 🖉	. 2' x 5' 🛶
. 1	2' x 3'
1	**• 51 y 81

The ducts are not installed within the insulation envelope.

Solution

FRI

Compute the U values for the various building sections as follows:

	<u></u>		· · · · · · · · · · · · · · · · · · ·		
Exterior Wall	, c •		Thickness inches]∕k ′	R
Outside surface air fi	1m y (1 '5	mph)	_ ·		0.17
Common brick	•		<u>.</u> 4	0.20	Q. 80
Plywood	-	:	.5	1,24	0.62
R-11 insulation	N	· · · •		- ·	1]
Plasterboard	÷ ,	• •		0.90	0.45
Inside surface air fil	m	•		· ·	0.68
	Total	(Σ)		_	13.7
T. with the	• ,	;		*	*

U = 1/∑R = 1/13.72 - 0.07 Btu/(hr)(ft²)(°F)•

		<u> </u>	
Floor	Thickness inches	Jike	.R
Inside surface air film	- - •	· \ ·	0 .92
Hardwood finish flooring	25/32		0 6 8
Building paper	•	1	0,06
Plywood sub-floor	- 1	1,24	1:24
Air space	0~, Ø	· ·	1,01
R-11 insulation		••	
Outside surface air film			0.47
	· · · · · · · · · · · · · · · · · · ·	·	15.08
L/	•		1 e

13-10

 $U = \bar{1}/\Sigma R = 1/15.08 = 0.07 \text{ Btu/(hr)(ft^2)(°F)}$

بالأفاعة وسراقة	° •	•	<u></u>	· · · · · · · · · · · · · · · · · · ·
Ceiling		Thickness inches	1/k	R
Insidé, surface air fil	m		6	0.61
Plasterboard		.5	0. 9	0.45
R-19 insulation			*	19 ·
Outer surface air film				0 . 1,7
· · · · · · · · · · · · · · · · · · ·	otal ,(Σ)	• • • • • •	I	20.23

 $J_{2} = J/\Sigma R = 1/20.23 = 0.05 \text{ Btu}/(hr)(ft^2)(°F)$

The winter design outdoor temperature for Albuquerque, New Mexico, is given in Table 13-2 as 14°F. With the room temperature set at 70°F; $\Delta T = T_{B} - T_{0}^{*} = 70 - 14 = 56°F$. The values of U for this house are

summarized below:

U. Btu/(hr)(ft²)(^bF) Exterior wall Windows Floor Ceiling Exterior door (1-1/2" solid core) Double glass sliding 0.65

ERI

The heat loss calculations and the domestic hot water load can be systematized by using worksheets TA-1. The heating loads for the house of example 1 are worked out on the worksheets shown on the following pages. Additional worksheet blanks are included at the end of this module for the convenience of the user. It is suggested that extra copies be made for office use from the blank copies that are provided.

13-1

	, , ,	***
	13-12	Worksheet TA-1
		Sheet <u>1</u> of <u>2</u> .
	Building Heat Load Calculations	· · ·
> Job Exam	ple 13-2 Number of (Decupants 4
Computed by		,,,,,,,
Location Albuque	rque N.M. Latitude.	<u>35 N.</u>
in the second	3	、 <i>·</i> · · · ·
- Indoor temperature,	······································	
		*
		·
<pre>> Design degree-day, oc</pre>		•
Building Dimensions:		9
		·
t		
Congrete Floor Slab:	Exposed perimeter Oft	1
	•	1248 ft 2
	•	1248 ft 2
Exterior Wall Area:	· 8 x (51+27) x 2 =	· · · · · · · · · · · · · · · · · · ·
	$\frac{8 \times (51+27) \times 2}{4 \times (6 \times 4) + 3 \times (3 \times 5) + 2 \times (3 \times 5)}$ $\frac{4 \times (2 \times 3) + 1 \times (5 \times 8)}{4 \times (5 \times 8)}$	(2×5) = 207 ft ²
Exterior Wall Area: Window Area:	$\frac{8 \times (51+27) \times 2}{4 \times (6 \times 4) + 3 \times (3 \times 5) + 2 \times (3 \times $	$\frac{(2\times 5)}{207} = \frac{207}{4} + \frac{2}{20}$
Exterior Wall Area:	$\frac{8 \times (51+27) \times 2}{4 \times (6 \times 4) + 3 \times (3 \times 5) + 2 \times (3 \times $	$\frac{(2\times 5)}{2} = \frac{207}{4} + \frac{1}{2}$ $\frac{1}{2} = \frac{20}{47} + \frac{1}{4}$
Exterior Wall Area: Window Area: Door Area: Net Exterior Wall	$\frac{8 \times (51+27) \times 2}{4 \times (6 \times 4) + 3 \times (3 \times 5) + 2 \times (3 \times $	$\frac{(2\times 5)}{207} = \frac{207}{4} + \frac{2}{20}$
Exterior Wall Area: Window Area: Door Area:	$\frac{8 \times (51+27) \times 2}{4 \times (6 \times 4) + 3 \times (3 \times 5) + 2 \times (3 \times $	$\frac{(2\times 5)}{2} = 207 \text{ ft}^{2}$ $\frac{7}{2} = 20 \text{ ft}^{2}$ $\frac{7}{2} = 47 \text{ ft}^{2}$ $\frac{774 \text{ ft}^{2}}{2}$
Exterior Wall Area: Window Area: Door Area: Net Exterior Wall	$\frac{8 \times (51+27) \times 2}{4 \times (6 \times 4) + 3 \times (3 \times 5) + 2 \times (3 \times $	$\frac{(2\times 5)}{2} = \frac{207}{4} + \frac{1}{2}$ $\frac{1}{2} = \frac{20}{47} + \frac{1}{4}$
Window Area: Woor Area: Net Exterior Wall Area:	$\frac{8 \times (51+27) \times 2}{4 \times (6 \times 4) + 3 \times (3 \times 5) + 2 \times (6 \times 4) + 3 \times (3 \times 5) + 2 \times (6 \times 4)}{4 + 1 \times (2 \times 3) + 1 \times (5 \times 8)}$ $\frac{1000 \text{ Door} 3 \times 6^{-8} \text{ Patio Door} 7 \times 5^{-8} \text{ Patio Door} 7 \times 5^{-8$	$\begin{array}{r} (2\times 5) \\ \hline = 207 \\ H^2 \\ \hline = 20 \\ H^2 \\ \hline = 47 \\ H^2 \\ \hline = 974 \\ H^2 \\ \hline = 1377 \\ H^2 \end{array}$
Window Area: Woor Area: Net Exterior Wall Area:	Sheet 1 of 2 Buildingy Heat Load Calculations Buildingy Heat Load Calculations Number of Occupants 4 Date Jan 13, 1927 Latitude 35 N Latitude 35 N L	$\begin{array}{r} (2\times 5) \\ \hline = 207 \\ H^2 \\ \hline = 20 \\ H^2 \\ \hline = 47 \\ H^2 \\ \hline = 974 \\ H^2 \\ \hline = 1377 \\ H^2 \end{array}$
Exterior Wall Area: Window Area: Door Area: Net Exterior Wall Area: Ceiling Area:	$\frac{8 \times (51+27) \times 2}{4 \times (6 \times 4) + 3 \times (3 \times 5) + 2 \times (3 \times $	$\begin{array}{r} (2\times 5) \\ \hline = 207 \\ H^2 \\ \hline = 20 \\ H^2 \\ \hline = 47 \\ H^2 \\ \hline = 974 \\ H^2 \\ \hline = 1377 \\ H^2 \end{array}$
Exterior Wall Area: Window Area: Door Area: Net Exterior Wall Area: Ceiling Area:	$\frac{8 \times (51+27) \times 2}{4 \times (6 \times 4) + 3 \times (3 \times 5) + 2 \times (3 \times $	$\begin{array}{r} (2\times 5) \\ \hline = 207 ft^{2} \\ \hline = 20 ft^{2} \\ \hline = 47 ft^{2} \\ \hline = 974 ft^{2} \\ \hline = 1377 ft^{2} \end{array}$
Exterior Wall Area: Window Area: Door Area: Net Exterior Wall Area: Ceiling Area:	$\frac{8 \times (51+27) \times 2}{4 \times (6 \times 4) + 3 \times (3 \times 5) + 2 \times (3 \times $	$\begin{array}{r} (2\times 5) \\ \hline = 207 ft^{2} \\ \hline = 20 ft^{2} \\ \hline = 47 ft^{2} \\ \hline = 974 ft^{2} \\ \hline = 1377 ft^{2} \end{array}$
Exterior Wall Area: Window Area: Door Area: Net Exterior Wall Area: Ceiling Area: Floor, Area: Basement Wall Area:	$\frac{8 \times (51+27) \times 2}{4 \times (6 \times 4) + 3 \times (3 \times 5) + 2 \times (3 \times $	$\begin{array}{r} (2\times 5) \\ \hline = 207 \\ H^2 \\ \hline = 20 \\ H^2 \\ \hline = 47 \\ H^2 \\ \hline = 974 \\ H^2 \\ \hline = 1377 \\ H^2 \end{array}$

2

From Fable 13-2

Worksheet TA-1 , Sheet <u>2</u> of <u>2</u>

, • • ·	•	, • ;		_	
	• •	U Btu (hr)(ft ²)(⁰ F)	A -	ΔΤ΄ ^Ο F (T _R - T ₀)	h = UA ∆T [,] Btu/hr •
Exterior Wa	lls (net)	. 0.07 -	974	56	3820.
Basement	Above grade			•	·
Walls	Below grade			. *	
Windows	Single 🔶				
and ,	Double	0.65.	47	56	1710
Sliding Patio 🐨 🠨	Triple				
Doors	Storm •	0.56	207	.56	6~190.
Exterior S	lab Doors	0.49	20	56	550
Floors	Over Crawlspace	0.07 *	1377	56	54.00
	Concrete Slab on Grade			<u></u>	
	Basement		<u> </u>		-
Ceiling `	·	0.05	1377	56	3860
Subtotal (v	valls, windows, doors, f				21,830
Infiltratio	on: (0.018) x 37 x 51 x 8 f	[•] t ³ × 5 6 [°] F		. «	11,100
	f suptotal (if ducts not		envelope)	2180
Design Heat		, ,		•	35,110
Design Heat Deşign	ting Load: Btu/DD Heating Load (Btu/hr) X	(24 hr/Design	TD)	,	15,050
	ating Load: m Btu)) X (January DD)		•		14.0
Annua] Heat (Btu/DI	ting Load: m Btu D) X (Aminual DD)	1		е 	. 65.4
* ΔT = T _R - 4	5°	. ·	-	- ,	
• • •	. DOMESTIC ⁰HOT	· · · · · · · · · · · · · · · · · · ·	<u> </u>	· .	•
	of occupants X 16;680 B		<u>lele, 7</u>	10 1.	.
January			· 2.1	<u> </u>	
Annual	Load (m Bty) (January	load x 12)	24.8		U Angle
· . · ·	4		, ,	•	
·* \/		5 · (**			·

13-13 ,

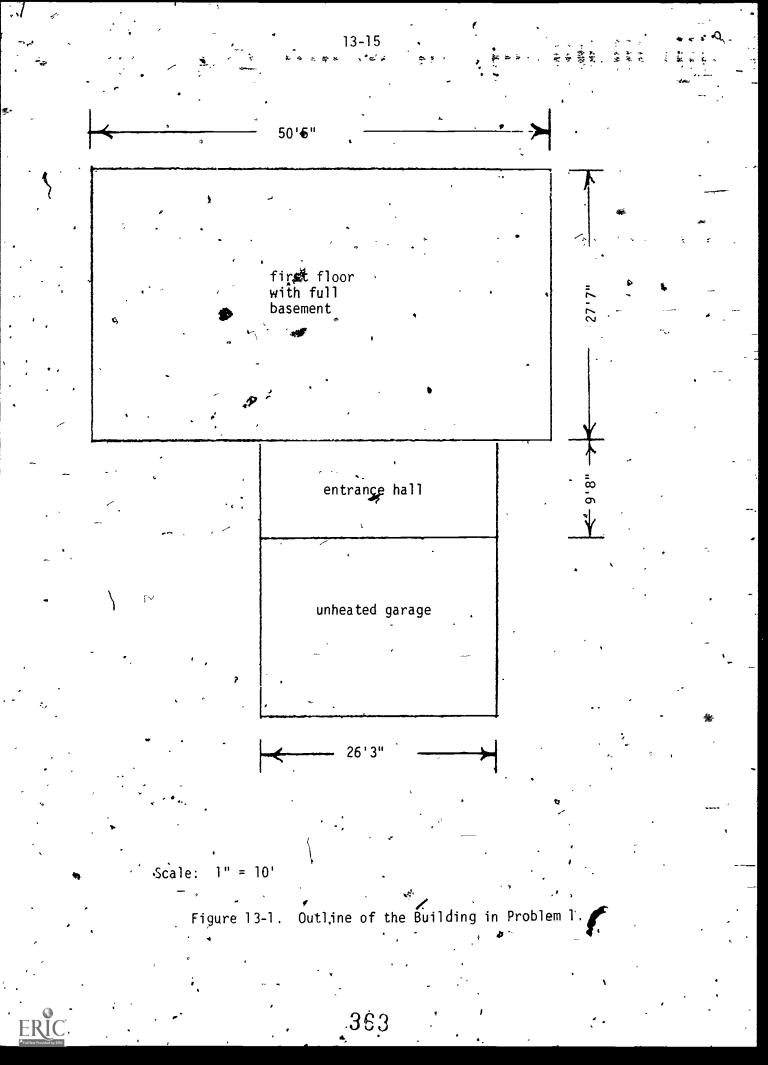
FRIC

361

PROBLEMS

13-14

PROBLEM 13-1 .


For the home plan shown in Figure 13-1, calculate the Jahuary and annual heating poads. Assume that an internal temperature of 68°F is to be maintained. The home is located in Fort Collins, Colorado, where the design winter outdoor air temperature is -9°F. The three-bedroom home will be occupied by four people. The first floor ceiling height is 97 inches, the entrance hall ceiling height is -111 inches, and the basement ceiling height is 92 inches. The entire basement is below grade and is heated. The entrance hall has a concrete slab floor with no perimeter insulation. All ducts are within the building envelope. Basement walls are 7.5-inch thick concrete.

All exterior doors are in the hall. Their sizes are given in the following table:

· · · · · · · · · · · · · · · · · · ·	•		<u> </u>
Door	•	Thickness	Size
Front door		1.5"	81" x 65"
2 doors between entrançe hall garage (each)	and	1.5"	80" x 29"
2 sliding patio doors (metal f one single glass and one dou glass (.25" air space) each	rame) ble	Ŧ	80" x 35.5"
gruss (.25 utt spuce) cuen			<u> </u>

The house contains the following windows, which are all storm windows except as specified:

ــــــــــــــــــــــــــــــــــــــ		. 1
Window	. Si <u>ze</u>	.8
Entrance hall (single glass) Kitchen window 2 dining room windows, each 2 living room (.25" air space) double glazed (not storm windows), each 2 living room picture windows, each 4 bedroom windows, each 6 basement windows, each	16" x 57" 32" x 35" 32" x 43" 13" x 61" 47" x 53" 32" x 4 <u>3</u> " 21" x 32"	

The ceiling consists of 1/2-inch plasterboard and insulating batts 5-1/4" thick. The exterior wall consists of 1/2" plasterboard, 3-1/2" batt insulation, and 1/4" hardboard siding. The January heating degreedays for Fort Collins is 1,250 (°F)(days) and the annual degree-days is 6,300 (°F)(days). This home is heated with natural gas.

13-16

Answers:

The January heating load is 20.8 m Btu and the annual heating load.

WORKSHEET TA-1

Extra worksheets TA-1 are provided with this module for solving problem 13-1 of the preceding section. The forms may also be used in general practice.

REFERENCES

- Load Calculation Guide (1 and 2 Family Dwellings) for Heating and Air Conditioning, Better Heating and Cooling Bureau, Sheet Metal and Air Conditioning Contractor's National Association, Inc. -(SMACNA), 8224 Old Courthouse Road, Tyson's Corner, Vienna, Virginia, 1975.
- 2. Loan Calculation for Residential Winter and Summer Air Conditioning manual J, National Environmental Systems Contractors Association (NESCA), 1501 Wilson Boulevard, Arlington, Virginia, Fourth Edition, Second Printing, 1975.

 Insulation Manual, NAHB (National Association of Home Builders) Research Foundation, Inc., P.O. Box 1627, Rockville, Maryland, September 1971.

·	Worksheet TA-1 Sheet <u>1</u> of <u>2</u>	
Building Heat Load Cal	culations	
Job Solution for Popp 13-1	Number of Occupants 4	
¥ .		
•	F a state of the s	
	F e	
	· · · ·	
	in Chiling Mainthe 8 Ser (25) Hall	
Above Grade: Length 30.4 ft Width 27.6	ft Leiling Height 0 ft $(7, <3)$ Hall	
• • • • • • • • • • • • • • • • • • • •		
· ·		
Exterior Wall Area: *8 × (50. 4 + 27.6) × 2 -	- (26.25×8) + -	
$(9.25 \times 9.67 \times 2) + Ga$	arage = Hall (9.25 x26.25) = 1460 ft	
Window Area: $(1 \times 2.67 \times 2.92) + (2 \times 10^{-1})$	2.67 × 3.58) +	
	2.67×3.53)+ 6(1.75×267) Basement.	
	Ret (117.261)22	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Net Exterior Wall <u>1036 F 1797 C45 - 1</u> Area:		
Coiling Area: . (504×27.6) + 1967×		
	1832	
• Floor Area: On Slab 46 ft	Exposed edge	
	12 - 28 1169 A2	
	· · · · · · · · · · · · · · · · · · ·	
Heating Deeped Dayset January 1250 °F	dave 👘	
Annual <u></u> I-		
	💒 😽 - 👘 -	
•* From Table 13-2		
ERIC SA	Sheet 1 of 2Building Heat Load CalculationsJob Solution for Prob. 13-1Number of Occupants 4Computed byDate Jan 13: 1977Location Fort Collins, Colo.Latitude .404° NIndoor temperature, TR, 68 °FDesign itemperature difference 77 °FDesign temperature difference 77 °FDesign degree-day, 65 - To, 72 °FBuilding Dimensions:Above Grade: Length 50.4 ft Width 27.6 ft Ceiling Height 8 ft (9.25) HarBelow Grade: Length 70.4 ft Width ft Depth 7.67 ftConcrete Floor Slab: Exposed perimeter ftExterior Wall Area: $8 \times (50.4 + 27.6) \times 2 - (26.25 \times 1) + (2 \times 3.92 \times 1) + (2 \times 2.67 \times 3.58) + (2 \times 3.92 \times 1) + (2 \times 2.67 \times 3.58) + (1.75 \times 1.47) Fasement.Door Area: (1 \times 2.67 \times 2.92) + (2 \times 2.67 \times 3.58) + (1.75 \times 1.47) Fasement.Door Area: (6.75 \times 5.96)On Slab 416 H Exposed edgeBasement Wall Area:(So 4 \times 2.6) \times 2.422 Patto (6.167 \times 2.427) Fasement.Door Area: (50.4 \times 2.6) \times 2.422 Patto (6.167 \times 2.427) Fasement.Door Area: (50.4 \times 2.6) \times 2.422 Patto (6.167 \times 2.427) Fasement.Door Area: (50.4 \times 2.6) \times 2.422 \times 3.58 + (1.445 \times 4.441)Patto (50.4 \times 2.647 \times 2.422) Patto (6.167 \times 2.427) Fasement.Door Area: (50.4 \times 2.64) \times 2.422 \times 3.58 \times 4.441)Date of the exposed edgeBasement Wall Area: $	

.365

ý

ERIC

9

Worksheet TA-1 Sheet <u>2</u> of <u>2</u>

· ·		• •		3	. ,
	· · · · · ·	U Btu (hr)(ft ²)(⁰ F)	' A _ ·	· ΔΤ ^Ο Γ · (Τ _R - Τ _Ω)	h = UA ∆T Btu/hr-
Exterior Wa	11s (net) 1.	.08	1214	77	7478
Basement	Above grade	•	,¥		<u>\$</u>
Walls .	Below grade	06	1109	23 *	1613.
Windows	Single .	1.13	-26	77	2262
and	Dóuble	. 0.65	31	.77	1551
Sliding Patio∙	Triple			•	
Doors	Storm .	0.56	128	77 .	5519
Exterior SI	ab Doors	-0.49	69	_77_	·2603
Floors	Over Crawlspace 🚬 🔹	· · · · · · · · · · · · · · · · · · ·			A .
	Concrete Slab on Grade	0.81	46	44	1639 -
• ¹	.Basement	.02.	1440	23	1987
Ceiling	· · ·	.05	1645	77	6333
Subtotal (w	valls, windows, doors, f	loors, ceiling)	•	3
Infiltratio	on: (0.018) x+4.25 ×26.25	ťť ³ x <u>'77</u> °F		• •	18.790
Duct = 10., c	of subtoctal (if. ducts not	in insulation	envelope)	• <u> </u>
Design Heat	ting Load: .Btu/hr	· · · · · · · · · · · · · · · · · · ·	а		49.775
Design.Hea _Design	ting Load: Btu/DD Heating Load (Btu/hr) X	(24 hr/Design	TR.		15,514
	ating Load: m Btu D) X (January DD)			2	.19.4
Annual Hea (Btu/D	ting Load: m Btu D) X (Annual DD)	*	6	,	97.7
$\star \Delta T = T_R - 4$	DOMESTIC HOT	WATER LOAD	·· · · · ·		· · · · · · · · · · · · · · · · · · ·
Number	of occupants X 16,680 [66,7	20	, •
	y Load (m Btu) (Btu/day		2.1	e	
Annual	Load (m Btu) (January]oad x 12)	24.8	<u> </u>	• لر •
, <u>```</u>	· · ·				· /

366

r

										_					
、 /	NORM	1al to	, TAL I	IEATIN	IG DEC	GREÈ	DAYS (Base	65 ⁰).		•	<u> </u>		Desʻign	T ₀ F
TATE AND STATION	JULY-	AUG	SEPT	0СТ	NOV	DEC	JAN	FEB	- MAR	APR	MAY	JUNE		WIN. [†]	SUMM
A: Birmingham	0	₹0	6	93	363	555	592	462	[*] 363	108	^ 9	Õ	2551	19	• • 97
luntsville	·0	[*] • 0	` '12 [']	127	426	663	694	557	434	138	19	0	- 3070	13	97
Mobile .	. 0	0	0	22	213	357	415	300	* 211	42	· 0	. 0	1560	- 26	95
Nontgomery	·`.0	Q	0	68	330	527	543	417	316	9 0	0 · ۵	0	·2291	22	98
ASKA: Anchorage	245	291	516	930	1284	1572	• 1631	1316	1293	879	592	315	10864	-25	73
Annette	• 242	208	.327	567	738	899	949	837	843	648	490	2 1	7069	5	
Barrow -	803	840	1035		1971	2362	·2517	2332	2468	1944	1445	957	20174	-45	58
Barter Ls.	735	<u>775</u>	987-	1482	1944	2337	2536	2369	•247 <u>7</u> .	1923	1373	924	19862	· ·	. ,
Bethel	31,8	394	612	1042	1434	1866	1903	1590	1655	1173	806	402	13196	ł	•
Cold Bay .	474	425	525	772			1153			951	791	591	9880	ł	-0
Cordova	366	391	522	781		1221				864	660	444	976 ⁴	ŀ., ,.	
Fairbanks	171	332	• 642	1203		2254			1739	1068	555	222	14279	-53	82
Juneau _ '	301	338		725			1237			810	601	381	9075	- 7.	75
King Salmon	313	322	483 513				1600			96Ô	673	408	11343	<u>در</u>	<u>۲</u>
Kotzebue /	381	446	723						2080			636	J6105	2	1
McGrath	208	.338	633	1184			2294			1122	648	258	14283	· •.	133
Nome	481	496							1770	1314	930	573	14171	-32	66
Saint Paul	605	539	612	862			1228			1098	936	726	11199		{
Shemyja	577	475	501	784			1045	958		885	837	696	9687	1 .	1.
Yakutat •	338	347	474	716			1169		1042	840	632	435	\$9092 /		! '
		1 0			•	۰.		•	•		ŀ.	(·		8	
TZ: Flagstaff 、	. \$6	68	201	558		1073		991	.911	.651	437	180	7152		84
Phoenix	- 0	0 1	0	`.22	234	·415	474	[•] 328	217	75	0 I	• 0	1765	31	108
Prescott	0	0	27	245	. 579	797	865	711	× 605	360	158	· 15	4362	1. 15	96
Tucson	0	↓ 0	· 0		231	406		344	• 242	·75 291	6	0	1800	29	105
winslow,	0	0	6	245	711			77Q	601		96	0	4782	9	97
Yuma	, ,	• <u>Q</u>	.0	0	143	• 319	363	228	130	29	0	10	1217	37	111
K: Fort Smith	i ó	0	12	127	450	704	781	596	456	144	22	0	3292	.154	101
Little Rock	Ŏ			· 127	465	716		-577	4 34		h 🚓 9	0	3219	19 22	99
Texarkana	,0		Ō	* 78	- 345	561	626	468	350	105	1 o	0	2533	22	99
		11 *	اہر ، ا	•			1	,			1. 10	1 '		31	103
LIF: Bakersfield	0	0		37	282	502	546	. 364	· 267	105	* 19		·2122	1 31	103
Bishop	0			248	576	797	'874	666	-539	306	143	• 36	4227	·	
Blue Canyon, 👩	, 34			` 347	579	766.		. 781	791	582	397	195	5507	1	1
Burbank	<u></u> +•, 0	0	••••6	• 43	- 177	301	366	· 277	239	138	81	18	1646	36	97
	1	<u> </u>	<u> </u>		L		ە	L	أحديركم	<u>t</u>	L	Ľ,	J		۰ ۱ . – – –
rom Climatic Atlas	C - L	h a 11.	****			C D-	~ ~ ~ ~	-n + -	F Com	nn w n h	6.0014		CANU	ldm !!!	000 1

Table 13-2. Data Values for Heating Load Computations*

*From Climatic Atlas of the United States, U.S. Department of Commerce, Env. Sci. Serv. Adm. June 1968 tFrom Table 1, Chapter #3, ASHRAE Handbook of Fundamentals 1972 (99% of time warmer than this temperature) IFrom Table 1, Chapter 33, ASHRAE Handbook of Fundamentals 1972 (1% of time dry bulb temperature is greater)

13-19

	, NOR		DTAL H	IEATIN	IG DEC	GREE D	DAYS (Base	65 ⁰)				,	Design	T ₀ F
STATE AND STATION	JULY	AUG	SEPT.	0CŢ	NOV	DEC	JAN	FĘB	MAR	AP,R	MAÝ.	JUNE	ANNUAL	WIN.	SUMM:
CALIF: Eureka Fresno Long Beach- Los Angeles	270 270 0 0 28	257 0, •*0 22	258 0. 12 42	329 78 - 40 78	414 339 156 180	499 558 288 291	546 586 375 372	470 406 297 302	505 319 267 288	438 150 168 219	372 56 90 158	285 0 18 81	4643 2492 1711 2061	32 28 36 42 *	67 101 87 94
<pre>Mt. Shasta Oakland Point Arguello Red Bluff</pre>	25 53 202 ,0	34 50 • 186 0	123 45 162 0	406 127 205 - 53	696 309 291 318	902 481 400 555	983 527 474 - 605	.784* .400° .392 .428	738 353 403 341	525 -255 339 168	. 347 180 298 . 47	159 90 243 0	5722 2870 3595	35	85
Sacramento Sandberg San Diego San Francisco Santa Catalina	0 * 0 6 81 16	0 0 78 0	12 30 15 60 9	81 202 37 143 50	363 480 123 306 165	577 691 251 462 279	614 778 313 508 353	442 -661 249 395 308	360 620 202 363 326	216 426 123 279 249	102 -264 84 214 192	6 57 36 126 105	2773 4209 1439 3015 . 2052	30 42 42	100 86 80
Santa Maria COLO: Alamosa Colorado Springs Denver Grand Junction Pueblo	99 65 9 6 0	93 99 25 9 25	96 279 132 .~117 30 *.54	146: 639 456 428 ,313 326		391 1420 1032 1035 1113	459 1476 1128	370 1162 938 938 907 871	363 1020 893 · 887 729 772	282 696 582 558 387 429	233 440 319 288 146 174	165 168 84 66 21 15	2967, 8529- 6423 6283 5641 5462	32 -17 - 1 - 2 8 - 5	85 84 90 92 96 •96
CONN: Bridgeport Hartford New Haven	, 0 , 0	0	. 66 99 . 87.	307 372 347	615 711 648	-986 1119	1079 1209	966 1061 991	853 899 871	-510 495 -543	208 ⁻ 177 245	27 ·24 - 45	5617 6172	4 4 5	90 90 88
DEL: Wilmington	0	0	51	27Q	588.	927	98Ì0	874	735	.387	ة112	* 5	4930,	12	93
FLA: Apalachicola Daytona Beach Fort Myers, Jacksonville Key West Lakeland Miami Beach Orlando Pensacola			, 00000 , 00000 , 00000	<pre>> 16</pre>	~153 € 75 24 144 ' 0 ~ 57 0 72 195	319 211 109 310 28 164 40 198 353	347 248 146 332 40 195 56 220 400	260 190 101 246 31 146 .36 165 277	180 140 62 . 174 . 99 . 99 . 99 . 99 . 105 183	33 15 0 21, 0 0 0 6 - 36		* 000000 000000	1308 • 879 442 1239 108 661 141 766 1463	32 38 29 55 35 45 33 29	94 94 96 90 95 91 96 92
Tallahassee	- 0 ⁻	-0 -0	0		195 198	353 360		277 286 	183 202	• 30 36	0.	0	1485	29	92

-16

369 ERIC 13-20

۔ ۲

· · · · · · · · · · · · · · · · · · ·			*		- , , , , , , , , , , , , , , , , , , ,	·		<u> </u>		•	_		<u> </u>	т ,	
	NORM	IÀL T	DTAL /	IÈATIN	IG DEC	GŘEE	DĄYS (Base	65 ⁰)		, •	-,	_	Desigr	
STATE AND STATION	JULY	AUG	SEPT	ОСТ	NÓV	DEG	JAN	FEB	MAR	APR	MAY	JUNE	ANNUAL	WIN.	SUMM.
FLA: Tạmpa West Palm Beạch	:0 0	Ó, 0	0 7 0	, ∿0	60 • 6	171 65	202 87	148 64	102 31	0 ⊸0	.0, • 0	0 0	683 253	· 36 40	92 92
GA: Athens Atlanta Augusta Columbus Macon Rome Savannah Thomasville	000000000		12 18 0 0 24* 0 0	115 127 78 87 71 * 161 47 25	408 414 333 833 297 474. 246 198	632 552 543 502 701 437 366	642 639 549 552 505 710 437 394	529 529 445 434 '403 577 .353 305	431 437 350 338 295 468 254 208	141 168 90 96 63 177 45 33	*22 25 0 0 34 0 0	0 0 0 0 0	2929 2983 2397 2383 2136 3326 1819 1529	17 18 20- 23 23 16. 24	96 95 98 98 98 98 97 96
IDAHO: Boise Idaho Falls 46W Idaho Falls 42NW Lewiston Pocatello	0 16 16 0 0	0 34 40 0 0	132 270 282 123 172		1056 1107 756	1370 1432	1600 1063	854 1249 1291 815 1058	722、 1085 1107. .694 905	438 `651 657 426 555	245 391 388 239 319	81 192 192 90• 141	5809 [°] 8475 8760 [•] 5542 7033	4 . 6 - 8	96
ILL: Cairo Chicago Moline Peonia Rockford Springfield	0 0 0 0 6	0 9 6 9 0	36 81 • 99 ≰ 87 114 • 72	164 326 335 326 400 291	774 75 837	1181 1113 1221	1314 1218	680 1044 1100 1025 1137 935	539 890 918 849 961 769,	195 480 450 426 516 354	47 211 189 183 236 136	0 48 39 33 ~ 60 ~ 18	3821 6155 6408 6025 6830 5429	- 3, - 7 - 2 - 7, - 1	94 94 94 92 95
IND: Evânsville Fort Wayne Indianapolis South, Bend	0 0 0 0	0 9 0 6	-66 105 90 111	220 3,78 316 372	723	1051	955 1178 1113 1221	767 1028 949 1070	.620 890 809 933	237 471 432 525	68 189 177 239	0 39 39 60	24435 6205 5099 6439	6. 0. - 2.	96 93 93 92
IOWA: Burlington Des Moines Dubuque Sioux City Waterloo	0 0 12. 0 124	0 9 (09 .19	· 93 99 156 108 138	322 363 450 369 428	837 906 867	1231 1287 1240	1398 1420	1198	•859 967 1026 989 1023	426 489 546 483 531	177 211 260 214 229	33 39 78 39 54	6114 6808 7376 6951 7320	- 4 - 7 -11 -10 -12	95 95 92 96 91
	**			4	· · · ·	•		• •	\$		- -	r T	·.		

÷.

.372

•/

· 13-21

`````	<u>مــــــــــــــــــــــــــــــــــــ</u>		TĄL H											Design		•
STATE AND STATION	JULY	_`AUG"	SEPT	0CT	NOV	, DE C	JAN	₩FEB	MAR	APR.	MAY	JUNE	ANNUAĻ,	WIN.	SUMM.	. ·
KANSAS: Concordia Dodge City Goodland Topeka Wichita		• 0 0 6 • 0 • 0	57 33 . 81 57 33	276 251 381 270 -229	705 666 810 2672 618	939 1073 980	1163 1051 1166 1122 1023-	840	781, 719 884 722 645	372 354 507 330 270	149 124 236 124 87	18 • 9 42 • 12 6	5479 4986 6141 5182 4620	, 3 - 2 3 5	99 99 99 99 102	•
KY: Covington Lexington Louisville	- 0 0 // 0	0 0 0	75 54 `54	291 239 248	669 609 609	983 902 -890	1035 946 930	818	756 685 682	390 325 √315	•149 105 105	24 0 [.] . 9	5265 46837 4660	, 3 6 8	93 94 96	,
LA: Alexandria Baton Rouge Burrwood Lake Charles New Orleans Shreveport		0 0 0 0 0 0	0 0 0 0 0	56 31 0 19 19 47	273 216 96 210 192 297	431 369 214 341 322 477	471, 409 298 381 363 •552	294 218 274 258	260 208 171 195 192 304	69 33 27 39 39 81	· 0 0 0 0 0 0	.0 0 0	1921 1560 1024 1459 1385 2184	25 25 29 32 22	97 96 95 93 99	9 4
MAINE: Caribou . Portland *		115 \$53	336 195	6.82 508	•	1215	1339	1470 1182	1042	858 675	468 372	183 111	9767 7511	-18	85 88	•
MD: Baltimore Frederick	0 0	0	48 66	, 264 307	585 624		936 •995		67 <del>9</del> 741	~327 <i>*</i> 384	90 127	0 · 12	4654 5087	16 7	. 94 . 94	
MASS: Blue Hill Obsy Boston Nantucket Pittsfield Worcester	0 0 -12 25 6	22 9 22 59 34	108 60 93 219 147	381 316 332 524 450	603 - 573 .831	983 89,6 1231	1088 992 1339	1053 972 -941 1196 1123	846 896 1063	579 513 621 660 612	267 208 384 326 304	69 36 129 105 7.8	6368 5634 -5891 7578 6969	6 1 1	91 • 86. 89	•
MICH: Alpena Detroit (City) Escanaba Flint Grand Rapids Lansing	68 0 59 16 9	105- 0 -87 40 28 22	273 87 243 159 135 138	580 360 539 465 434 431	738 924 843 804 813	1088 1293 1212 1147 1163	1181 1445 1330 1259 1262	1299 1058 1296 1198 1134 1142	936 1203 1066 .1011 1011	777 522 777 639 549 579	446 220 456 319 279 273		8906 6232 8481 7377 6894 6909	- 5, - 7 - 1 2	87 92 82 89 91 89	
Marquette Muskegon Sault Ste, Marie	59 12 96	81 28	.240 120	₂ 527 400 580	936 7,62	1268 1088	14 <b>4</b> 1 1209	1268 1100 1380	1187 995	771 594 910	⁻ 468 310 477	177 78 201	8393 6696 9048	- 12	88 87 83	ישי <b>ר</b> י (

\$

.

15

1

ç

<u>.</u>

100

•		2				/ :										
_			LE	<u></u>		•			<u>,</u> .					••		
	•	· NORM	AL TO	DTAL H	EATIN	IG DEG	REE C	AYS (	Base	65 ⁰ )			· ·		Desigr	
	STATE AND STATION	JULY	ÁIJG	SEPT	0CT	NON	DEC	JAN	FEB	MAR	APR	MAÝ	JUNĘ,	ANNUAL	WIN.	SUMM.
	MINN: Duluth Internat'l Falls Minneapolis 'Rochester Saint Cloud	71 71 22 25 28	109 112 31 34 47	330 363 189 186 225	701 505	1236 1014 1005	1724 -1454 1438 1500		1621 1380 1366 1445	1414 1166 1150 1221	840 828 621 630 - 666	490 443 288 301 326	198` 174 81 93 105	. 10000 10606 8382 8295 8879	-19 -29 -14 -17 -20	85 86 92 90 90
	MISS: Jackson Meridian Vicksburg	0 0 0	0 0 0		65 81 53	-315 339 279	502 518 462	546 543 5 <u>1</u> 2	.414 417 384	310 310 282	87 81 69	0 0 0	) 0 0 0	2239 2289 2041	21 20 23	98 97 • 97
	MO: Columbia Kansas St. Joseph St. Lõuis Springfield	0 0 0 0 0	0 0 6 0	60 60	251 220 285 251 223	651 612 708 627 600	967 905 1039 936 877		874 818 949 848 781	716 682 769 704 660	324 294 348 312 291	121 109 133 (121- 105	12 0 15 15 6	5046 4711 5484 4900 4561	2 .4 - 1 7 5	97 100 97 96 97
	-MONT: Billings Glasgow Great Falls Havre Helena Kalispell Miles City Missoula	6 31 28 31 50 - 6 34	15 47 53 53 59 99 6 74	258 306 294 321 174		1065 1002 1020	1466 1169 1367 1265 1240 1296	1349 1584 1438 1401	1154 1364 1170 1134 1252	1181 1042 1029	- 570 648 642 657 651 639 579 621	285 335 384 338 381 397 276 391	102 150 186 162 195 207 99 219	7750 8700 8129 8191 7723 8125	$ \begin{array}{c} -10 \\ -25 \\ -20 \\ -22 \\ -17 \\ -7 \\ -19 \\ -7 \\ \end{array} $	94 91 91 90 88 97 92
•	NEBR: _Grand Island Lincoln Norfolk North Platte Omaha Scottsbluff 'Valentine		.0 6 12	75 111 123 105 138		873 /885 /828	1166 1175 1128	1237 1414 1271			462 402 498 519 465 552 579	211 171 233 248 208 285 288	45 30 48 57 42 75 84	6530 5864 6979 6684 6612 6673 7425	- 6 - 4 -11 - 6 - 5 - 8	98 100 97 97 97 97 96
•	NEV: Elko Ely Las Vegas Reno Winnemucca	9 28 0 43 0	34 43 0 87	234 -0 204	490	939 387 801	617 1026	1 <u>308</u> 688	1036 1075 487 823 916	977 335 729	621 672 -111 510 573	409 456 6 357 363	192 225 0 189 153	¹ 2709 6332	-13 - 6 23 12 - 1	94 90• 108 94 97

13-23

376

**.**...

( **37**5 ERIC *:*:

·[	··· ·	NOR	AL TO	DTAL <u>F</u>	ĻEÀT I I	IG DE	GREE 'I	DAYS (	Base	65 ⁰ )		• • •	, •	•	Design	I ₀ ^o F
S	TATE AND STATION	JULY	AUG	SĘPT	ОСТ	NOV	DEC	JAN	FEB	MAR	<b>A</b> R	MAY	JUNE	ANNUAL	WIN.	SUMM.
N	H: Concord Mt. Wash. Obsy. •	6 493	50` 536•	177 720	505 1057		1240 1742	1 <i>3</i> 58 1820			636 1260	298 930	75 603	7383 13817,	-11	91
N.	J: Atlantic City Newark Trenton	0 0 - 0	; (0 (0) (0)	39 30 [•] 57	251 248 264	549. 573 576	880 921 924	936° 983' 989	848 876 885.	741 729 753	420 381 399	133 118 121	15 0 12	4812 4859 4980	14 · 11 12	91 94 92
Ņ	M: Albūquerque Clayton Raton Roswell Silver City	· 0 0 9 0	0 6 28 0 0	12 66 126 18 6	229 [.] 310 431 202 183	642 699 825 573 525	868	930 986 1116 840 791	703 812 904	595 747 834 481 581	288 429 543 201 261	81 183 301 31 87	0 -21 63 0 0.	4348 5158 6228 3793 3705	14 - 2 16 - 14	96 92 101 95
Ň	Y: Albany Binghamton (AP) Binghamton (PO) Buffalo Central Park JF Kennedy Intl. LaGyardia Rochester Schenectady Syracuse	0 22 0 19 0 0 0 9	19 65 28 37 0 0 31 22 28	138 201 141 141 30 36 27 126 123 132	440 471 406 233 248 223 * 415 422 415	810 732 777 540 564 528 747 756	-902 933 · 887	1277 1190 1256 986 1029 973 1234 1283	[°] 885 935 879	`760 815 750	564 645 543 645 408 480 414 597 543 570	239 313 229 329 118 167 124 279 211 248	45 99 45 78 12 . 6 48 30 45	6875 7286 6451 7062 4871 5219 •4811 *6748 *6650 6756	1 - 2 - 5 11. 17 12 2 - 5 - 2	91 91 90 94 91 93 91 90, 90
N	C: Asheville Cape Hatteras Charlotte Greensboro Raleigh Wilmington Winston Salem °			-48 0 33 21 0 21	245 78 124 192 .164 74 171	555 273 438 513 \$513 450 291 483	775 521 691 778 716 521 .747	784 580 691 784 725 546 753	683 518 582 672 616 462 . 652	592 440 481 552 487 357 524	273 177 156 234 180 96 207	87; 25 22 47 34 34	0 0 0 0 0 0 0	4042 2612 3191 3805 3393 2347 3595	13 18 14 16 23 14	91 96 94 95 94 94
Ņ	DAK: Bismarck Devils Lake Fargo Williston	34 40 28 31	28 53 37 43	222 273 219 261	642 574	1191 I107	1634 1569	1708 1872 1789 1758	1 <b>9</b> 79 1520	1345 1262	645 [,] 753 690 [,] 681	329 381 332 357	117 138 99 141	8851 9901 9226 9243	-24 -23 -22 -21	95 93 92 94
1		, ,			\$ <b>\$</b>			·			·,	;	• .			· · · · · · · · · · · · · · · · · · ·

4

1.

377 ERIC

378

13-24

	NORM	IAL TO	DTAL H	EATIN	G DEG	GREE _	DAYS (	Base	65 ⁰ )	/ -	• •	•	• 	Design	ι Τ _ο .F
STATE AND STATION	JULY	ÁIJĠ	SEPT	OCT	NOV	DEC	JAN,	БЕВ	MAR	APR	MAY	JUNE	ANNUAL	WIN.	sum:
OHIO: Akron Cincinnati Cleveland Columbus Dayton Mansfield	0 0 9 0 9	9 0 25 6 22 ,	96 54 105 84 78 -114	381 248 384 347 310 397 313	612 738 714 696 768	1039 1045 1110	970 1159 1088 1097	1016 .837 1047 949 955 1042 991	871 701 915 809 -809 924 868	.489 336 552 426 429 543 495	202 118 :260 171 167 245 198	- 39 9 66 27 30 60 36	6037 4806 6351 5660 5622 6403 5796	1 8 2 2 0. 1 4	89 94 91. 92 92 91 91
Sandusky Toledo - Youngstown	• 0 0- •6	6 16 19	66 117 .120	406 412	792 771	1138 <i>-</i> 1104	1200 1169	1056 1047	924 921.	543 540	242 248	60 60	6494 6417		°92 89
OKLA: Oklahoma.City Tulsa	•0 0	0 0 _130	:15 18 ,210	164 158 375	498 522 561	766 787 679	868 -893 <b>*</b> 753	664 683 622	527 539 636	. 189 213 480	, 34 47 363	0 , 0 231	3725 3860 5186	11 12 27	100 102 79
OREG:/ Astoria Burns Eugene Meacham Medford Pendleton Portland Roseburg Salem Sexton Summit	146 12 34 84 0 0 25 22 37 .81	,130 37 34 124 0 28 .16 31 81	210 129 288 .78 111 114 105 111 171	515 366 580 372 350 335 329 338 443	867 585 918 678 711 597 567 594 666	1113 719 1091 871 884 735 713 729 874	1246 803 1209 918 1017 825 766 822 958-	988 627 1005 697. 773 644 608 647 647 809	856 589 983 642 617 586 570 611 818	570 426 726 432 396 396 405 417 609	366 279 527 242 205 245 267 273 465	177 135 339 78 ³ •63 105 123 144 279	6957 4726 7874 5008 5127 4635 4491 4754 6524	22 21 [°] 3• 26 25 21	91 98 97 91 93 92 • 92
PA: Allentown Erie Harrisburg Philadelphia Pittsburgh Reading Scranton Williamsport	0 0 0 0 0 0 0	0 25 0 9 0 19	90 102 63. 60 105 .54 132 111	353 391 298 291 375 257 434 375	714 648 621 726 597. 762	992 [.] 964 1063, •939 1104	1169 1045 1014	1002 1081 907 890 1002 885 1028 1028	735 893 856	471. 585 396 390 480 372 498 468	167 288 124 115 195 105 195 177	24 60 12 12 39 0 33 24	5810 6451 5251 5101 5987 4945 6254 5934	, 3 7 9 .11 7 6 2 1-	92 88 92 93 93 92 92 89 92
RI: Block Island Providence		16, 16	78 96	307 372		. 902 1023	1020 ⁻ 1110	955 988	877- 868	612 534	344 236	99 51	5804 59 <b>/1</b>	.6	89

**3**79

r'{~~~ ~~~~~

ERIC Pattor Port

**3**80

Ŭ

,®



SC:       Charleston       0       0       0       59       282       471       487       389       291       54       0       0       20,33       26       95         Columbia       0       0       0       84       345       577       570       470       357       81       0       0       2484       20       98         Florence       0       0       0       78       315       552       552       459       347       84       0       0       2387       21       96         Greenville       0       0       0       112       387       636       648       535       484       120       12       0       2884       19       95       3074       18       95       3074       18       95       3074       18       95       3074       18       95       3074       18       95       3074       18       95       3074       18       95       3074       18       95       3074       18       95       3074       18       95       3074       18       95       3074       18       95       3074       18       95       3074 <th< th=""><th>· · · · · · · · · · · · · · · · · · ·</th><th>NORM</th><th>IAL TO</th><th>DTAL H</th><th>EATIN</th><th>IG DEC</th><th>GREE D</th><th>DAYS (</th><th>Base</th><th>65⁰)</th><th></th><th></th><th>· •</th><th>,</th><th>Design</th><th></th></th<>	· · · · · · · · · · · · · · · · · · ·	NORM	IAL TO	DTAL H	EATIN	IG DEC	GREE D	DAYS (	Base	65 ⁰ )			· •	,	Design	
bb.       chai result       col       col<       col       col<	STATE AND STATION	JULY	. AUG	SEPT	0CT_	NOV	DEC	JAN	FEB	MÁR	APR	MAY-	JUNE	ANNUAL	WIN.	SUMM.
Rapid City Sioux Falls'       22       12       165       481       897       1172       1333       1145       1051       615       326       126       7345       -9       96- 96- 97         Sioux Falls'       19       25       168       462       972       1361       1544       1285       1082       573       270       78       7839       -14       -95         TENN: -Bristol'       0       0       51       236       573       828       828       700       598       261       68       0       4143       11       92         Knoxville       0       0       30       171       489       725       732       613       493       198       43       0       3494       13       .95         Memphis       0       0       18       130       447       698       729       585       456       147       22       0       3232       17       98         Nashville       0       0       39       192       531       772       778       664       552       256       0       3817       101         Amarillo       0       0       31       225	·Florence Greenville	0 0 0	0 0 0	0 0 - 0	84 78 112	345 315 387	577 552 636	570 552 648	470 459 535	357 347 484	81 84 •120	0 0 12 25	、 () () ()	2484 - 2387 2884 3074	20 21 19 18	98 96 95 95
Inclumentation       Inclu		22,	. 12	· 165	481	897	1172	1333	1.145	1051	615	326	126	7345	- 9.	96
TEXAS: Abilene       0       0       0       0       99       366       586       642       470       347       114       6       0       2624.       17       101         Amarillo       0       0       18       205       570       797       877       664       546       252       56       0       3985       8       98         Austin       0       0       0       31       225       388       468       325       223       51       0       0       1711       25       101         Brownsville       0       0       0       66       149       205       106       74       0       0       0       600       36       94         Corpus Christi       0       0       0       62       321       524       601       440       319       90       6       0       2363       19       101         El Paso       0       0       0       65       324       536       614       448       319       99       0       0       2405       20       102         Galveston       0       0       0       138       270	Knoxville Memphis	0 0 0 0	0 0 , 0 , 0	18 30 18 30	143 171 130 158	468 •489 447 • 495	698 725 698 732	722 732 729 778	577 613 585 644	453 493 456 .512	150 198 147 189	25 43 22 40	• 0• 0 0 . 0	3254 3494 3232 3578 3817	15 13 17	97 95 98 97
	Austin Brownsville Corpus Christi Dallas El Paso Fort Worth Galveston Houston Laredo Lubbock Midland Port Arthur San Angelo San Antonio. Victoria Waco			18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	205 31 0 62 84 65 0 6 0 174 87 22 68 31 6 43	570 225 66 120 321 414 138 183 105 513 381 207 318 207 150 270	797 388 149 220 524 648 536 270 307 217 744 592 329 536 363 270 456	877 468 205 291 601 685 614 350 384 267 800 651 384 567 428 344 536	664 325 106 174 440 445 448 258 288 134 613 468 274 412 286 230 • 389	546 223 74 109 319 319 189 192 74 484 322 192 288 195 152 270	252 51 0 90 105 99 30 36 0 201 90 39 66 - 39 21 - 66	56- 0 0 6 0 0 0 0 31 0 0 31 0 0 0 0 0 0 0 0		$\begin{array}{c} 3985\\ 1711\\ 600\\ 914\\ 2363\\ 2700\\ 2405\\ 1235\\ 1396\\ 797\\ 3578\\ 2591\\ 1447\\ 2255\\ 1549\\ 1173\\ 2030\\ \end{array}$	8 25 36 32 19 21 20 32 29 32 11 19 29 20 25 28 21	98 101 94 95 101 100 102 91 96 103 99 100 94 101 99 98

.,

1.5

 $\mathcal{Q} \mathcal{Q}$ 

13-26

:--

	,			,			/		_•							<u>t</u>	
4	¥	NORM	AL T	DTAL H	IEATIN	IG DE	GREE	DAYS (	Base	65 ⁰ )		•*			Design	T ₀ [°] F	
STAT	E AND STĂTIOŅ	JULY	AÚG	SEPT	OCI	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUNE .	ANNUAL	WIN.	SUMM.	
	: Milford lt Lake City ndover	- 0' 0 0	0 0 0	99 81 48	443• 419 372	849	1141 1082 1091	1252 1172 1178	988 910 902	822 763 729	519 459 408	279 233 177	87 84 51	6497 6052 4778	-5	97 ,	- ·
VT:	Burlington	28	65	207	539	891	1349	1513	1333	1187	<b>a</b> 714	353	90	8269	-12	88	
No Ric Roa	Cape Henry nchburg rfolk chmond anoke sh. Nat'l AP	0 0 0 0 0 0	0 0 0 0 0	0 • 51 0 36 51 33	112 223 136 214 229 217	360 540 408 495 549 519	645 822 698 784 825 834	694 849 738 815 834 -871	633 731 655 703 722 762	536 605 533 546 614 626	246 267 •216 219 261 288	53 78 37 53 65 74	0 0 0 0 0	3279 4166 3421 3865 4150 4224	15 20 14 15	94 94 96 94	, ,
- Spi Sei - Spi Sti Ta Wa	: 0.lympia attle attle Boeing attle Tacoma okane ampede Pass toosh Island lla Walla kima	68 50 34 56 9 273 295 0 0	71 47 40 62 25 291 279 0 12	198 129 147 162 168 393 306 87 144	422 329 384 391 493 701 406 310 450	1008 534 681	629 843 1039		675 599 655 678 980 1075 613 745 868	645 577 608 657 834 1085 645 589 713	450 396 411 474 531 855 525 342 435	307 242 242 295 288 654 431 . 177 220	177 99 159 135 483 333 45 69	5236 4424 4838 5145 6655 9283 5719 4805 5941	. 21 23 20 - 2 12 6	85, 82 85 93 93 98 94	•
E1 Hu	A: Charleston kins ntington rkersburg	0 9- 0 0	0 25 0 • 0	63 135 163 60	254 400 257 264	591 729 585 606	865 .992 856 905	*880 1008 880 942	770 896 764 826	648 791 636 691	.330 444 294 339	96 198 99 115	9 .48 12 6	4476 5675 4446 4754	9 1 10 8	92 87 95 93	T
Ма	Green Bay Crosse dison lwaukee	28 12 25 43	• 50 •19 • 40 47	174 •153 174 174	484 437 474 471	924 930	1339 1330	1494 1,504 1473 1376	1277 1274	1070 1113	654 540 618 642	335 245 310 372	99 • 69 102 135	8029 7589 7863 7635	-12 -12 9 -~6	88 .90 92 90	
Ch La	Cas <del>p</del> er neyenne nder neridan	6 19 6 25	16 31 19 31	192 210 204 219	524 543 555, 538	924	1101	1290 1228 1417 1- <b>\$</b> 55	1056	1011 10 <b>1</b> 7	657 672 654 642	381 381 381 366	129 102 153 150	7410 7278 7870 7683	-11 - 6 -16 -12	92 89 92 95	
	~ 		<u> </u>	<b></b>	2		[			Ľ			<u> </u>	,	- <u> </u> `-		- 384

8

7

38.3

Full Text Provided by EBIC.

`,

13-27

BLA

# BLANK WORKSHEET FORMS

.

· · · ·

325

**Q** ·

Worksheet TA-1 Sheet <u>1</u> of <u>2</u>

Z

 $\dot{\gamma}$ 

Building Heat Load Calculations

Computed by	1	Date	_
Location		Latitude	· · · — 、
Indoor temperature, T _R ,	°F	• • •	、 <i>·</i>
Design winter outdoor temperature, To	•F		
Design temperature difference	°F	* * * * *	
Design degree-day, 65 - [‡] o,	^,F	· · ·	-
· · · · · · · · · · · · · · · · · · ·	1	· , • 、	
Building Dimensions:		Cailing Whight	£+
Above Grade: Lengthft Width		、	ft ·
Below Grade: Lengthft Width_			
Concrete Floor Slab: Exposed perimeter_	<u> </u>		```````````````````````````````````````
Exterior Wall Area:	-		· · ·
	-	*	o •
Window Area:	,	•	` .
Door Area: 2			` 
· · · · · · · · · · · · · · · · · · ·		<u> </u>	
Net Exterior Wall		· · · · · · · · · · · · · · · · · · ·	
Ârẹa:			
Ceiling Area:	, 	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·		•	<u> </u>
Floor Area		· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·		· · · · ·	•
Basement Wall Area:			<u>.</u>
· · · · · · · · · · · · · · · · · · ·	<u> </u>		
21 · · · · · · · · · · · · · · · · · · ·	0		· · ·
Heating Degree-Days:* January	• F-da <u>`</u>	<b>x</b>	•
Annual	°F-da	(,	
· · ·			
	¢	*	•
		······································	A
**From Table 13-2		````````````	· · · · · · · · · · · · · · · · · · ·
	•		
	•	ب ب ب ب	, <b>"</b>
	20	86-	•

Worksheet TA-1 Sheet <u>2</u> of <u>2</u> 74

٠

<u>۲</u>.

•	• • •	•		•	
•	, , ,	U <u>B⊄tù</u> (hr)(ft²)( ⁰ F)	A	ΔΤ ^Ο F (T _R - , T _O )	h <del>=</del> UA ∆T Btu/hr
Exterior Wal	1s (net)			,	
Basement	Above grade				1.
Walls	Below grade	. ,		*	£° 1
Windows	Single			5	
and '	Double	4	۰.		,
Sliding. Patio	Triple	۰ · ·	· · ·		
Doors	'Storm •		-	Ň	
Exterior St	ab Doors	· ,			
·Floors	Over Crawlspace				. •
e e e	Concrete Slab on Grade	•			·
, 4	Basement •				
Ceiling					× •
Subtotal (wa	alls windows, doors, f	loors, ceiling)	4	•*	
Infiltratio	n: (0.018) xf	t ³ x°F			•
Duct = 10% of	subtotal (if duc'ts not	in insulation e	envelope	) .	,
Design Heat	ing Load: Btu/hr	- -		,	
Design Heat Design H	ing Load: .Btu/DD Heating Load (Btu/hr) X	(24 hr/Design	TD) ,	•	
	ting Load: m Btu ) X (January DD)	· ·		•	
Annual Heat (Btu/DD	ing Load: m Btu ) X (Annual DD)		•		
$\star \Delta T = T_R - 45$	0	•	£	*	- i
	DOMESTIC HOT	WATER LOAD		•••,	•
Number	of occupants X 16,680 B		<u>`</u>		, ,
January					·
Annual	Load (m Btu) (January	10ad x 12)	. '		•
· · ·	K	3.5.1	:	) •.	•



1

Worksheet TA-1 Sheet 1 of Building Heat Load Calculations Number of Occupants Job Date Computed by Latitude Location ۰F -Indoor temperature, ^TR, °F Design winter outdoor temperature, To.__ °F Design temperature difference _____ *°F Design degree-day, 65 - To,____ **Building Dimensions:** Above Grade: Length____ft ___Width____ft Ceiling Height_ oft .,**†** ft Below Grade: Length Width Depth Concrete Floor Slab: Exposed perimeter____ft Exterior Wall Area: . . ٠. Window Area: S 8 4 Ċ Door Area: - · Net Exterior Wall • . • Area: Ceiling Area: 81 Floor Area: Basement Wall Area: 🧹 -____°F-days , Heating Degree-Days:* January ____ °F-days Annual

* From Table 13-2



Worksheet TA-1 Sheet 2 of 2

3 . 4	• • • • • • •		. <b>1</b>	•		•
	• • • • • • • • • • • • • • • • • • •	$\frac{U}{Btu}$	· A ·	$\Delta T \cdot OF$ $(T_R - T_R)$	h = UA ∆T Btu/hr	
Exterior Wa	alls (net)				•• •	-
Basement	Above grade	1 .	•	F		
Walls	Below'grade	•		*	• .	·].
Windows	Single	· · · ·	*	, <del>-</del>	•	
and ····• Sliding	Double	*	· ·	¥		
Patio .,	Triple 🤲		• ,	· • •		
Doors	Storm					_],
Exterior S	lab Doors		•••	•	1	
Floors	Over Crawlspace	·····	· · ·	•	· · ·	
	Concrete Slab on Grade	•	· · ·	·	• •	-1
· .	Basement	,				-۱.
Ceiling	·		<b>*</b>			
Subtotal (v	ialls, windows, doors, f	loors, ceiling)	ل <del>نہ</del> ۔۔۔۔ل	•		÷  -
Infiltratio	on: (0,018) xf	t ³ x °F	,	•	•	
.Duct = 10 0	f subtotal (if ducts not	in, insulation e	envelope)			
Design fieat	ing Load: Btu/hr .		•	*		- ,
\ .			- 1	. •	· · ·	
Design Heat Design	ing Load: Btu/DD Heating Load (Btu/hr) X	(24 hr/Design	TD)		, , , , , ,	
	iting Load: m Btu )) X (January DD)	: .			*	- · · ·
Annual Heat (Btu/DC	ing Load: m'Btu . )) X (Annual DD)	1	·,,	× .	•	
$\star \Delta T = T_R - 4$	5 [°]	· ·	~			•••• •
. •	DOMESTIC HOT	WÅTER LOAD			•	-
.Number	of occupants X 16 (680 B	tu/day ·	·,			
· January	Load (m Btu) (Btu/day)	x 31 x 10-6			, ·	
	Load (m Btu) (January				~ •	
·	· · ·		<u> </u>			

.

۰,

TRAINING COURSE IN THE PRACTICAL ASPECTS OF

SIZING, INSTALLATION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS

RESIDENTIAL BUILDINGS

MODULE

OLAB SYSTEM SLZING

14

FOR.

SOLAR ENERGY APPLICATIONS LABORATORY COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

LIST OF TABLES

BLANK WORKSHEET FORMS

INTRODUCTION OBJECTIVE RULES OF THUMB FRACTION OF THE ANNUAL HEATING LOAD CARRIED BY A SOLAR HEATING SYSTEM EFFECT OF HEAT EXCHANGERS EFFECT OF COLLECTOR TILT EFFECT OF ORIENTATION WORKSHEET TA-2

14

14-ii

14-ii

14-1

14-1

14-2

14-3

14-6

14-7

14-7

14-9

14-17.

Page

14-4

14-7

14-8

Page

14-ii

Figure.

- 14-1 Fraction of Annual Heating boad Furnished by a Solar Heating System.
- 14-2 Effect of Solar Collector Tilt-on Annual Heating Performance
- 14-3 Effect of Solar Collector Orientation on Annual Heating Performance

LIST OF TABLES ==

Table

. 14-1 . Rules of Thumb for Sizing.

# INTRODUCTION

Solar heating systems are sized to provide a desired fraction of the total heating load of the building. The desired fraction of heating load can be chosen arbitrarily, or determined from economic analysis, so that the annual heating cost of the solar-auxiliary system is minimized. The collector area is the main quantity to be determined and, from the collector area, the storage size is selected. The size of the auxiliary furnace is based upon the design heating load and cost each heat delivery rate. The appurtenant pumps, blowers, and heat exchangers depend primarily upon the collector size and heat delivery rate.

There are various methods for determining the fraction of annual heating load supplied by solar systems, varying from detailed computer programs to rules of thumb. The method described in this module is an approximate method to size solar collectors for both liquid and airheating systems. After many computer-based designs, experiments, and several years of practical experience, several rules of thumb have been suggested. The rules of thumb are to be used as general guidelines, and manufacturers of components and solar systems may have more detailed information and specific recommendations.

## OBJECTIVE

This module is directed to sizing of solar heating systems for residential buildings. From this module the trainee should be able to determine the approximate fraction of the annual heating load which a solar heating system will deliver to a given building.

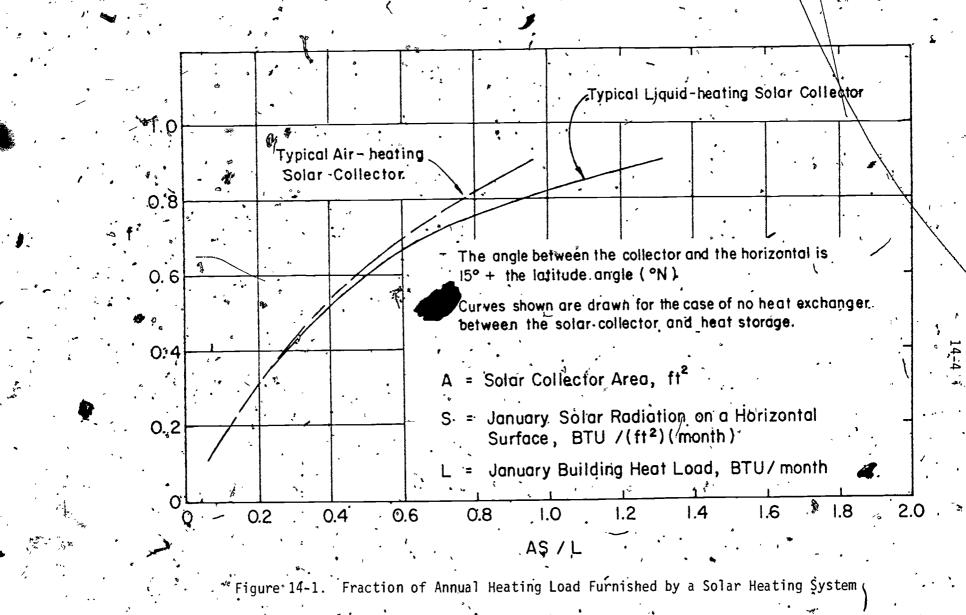
# RULES OF THUMB

Rules of thumb for sizing air and hydronic solar systems are presented in Table 14-1. Collector area is not listed in the table because there is considerable variation and freedom to choose areas arbitrarily. From the collector area sizes, other components of the system may be determined.

> Table 14-1 Rules of Thumb for Sizing

· · · · · · · · · · · · · · · · · · ·	
SOLAR AIR HEATING SYSTEMS	•
Collector slope	Latitude+15°
Collector air flow rate	1.5 to 2 cfm/ft ² of collector
Pebble-bed storage size	1/2 to 1 ft ³ of rock/ft ² of collector
Rock depth	4 to 8 feet in air flow direction
Pebble size	3/4" to 1" concrete aggregate
Duct insulation	l" fiberglass minimum 📑
Pressure drops:	•
Pebble-bed	0.1 to 0.3" W.G.
Collector (12-14 ft lengths)	0.2 to 0.3" W.G.
Collector (18 20 ft lengths)	0.3 to 0.5" W.G.
Ductwork	.∿0.08" W.G./100' duct length
SOLAR HYDRONIC HEATING/COOLING SY	STEMS
Collector slope	Latitude + 15°
Collector flow rate	$\sim 0.02 \text{ gpm/ft}^2 \text{ of collector}$
Water storage size	1.5 to 2.5 gallons/ft ² of collector
Préssure drop across collector	0.5 to 10 psincollector module
SOLAR DOMESTIC HOT WATER HEATING	SYSTEMS
Preheat tank size	1.5 to 2.0 times DHW auxiliary tank size
	·* .

# ACTION OF THE ANNUAL HEATING LOAD CARRIE


14 - 3

The collector area required for hydronic and air heating solar systems to provide the desired fraction of the annual heating load is determined by the use of Figure 14-1. The symbols used in the figure are; A, the solar collector area in square feet  $(ft^2)$ ; L, the January heating load of the building in Btu per month; S, the total solar radiation per unit area for the month of January on a horizontal surface at the building location in  $Btu/(ft^2)(month)$ ; and f, the fraction of the annual heating load delivered by the solar heating system. Suppose that a solar heating system has a total collector area of 500 square feet, the building has a heating load in January of 15 million Btu, and the total , solar radiation in January at the location is 31,000 Btu/ft². Then,

 $\frac{AS}{L} = \frac{31,000 \times 500}{15,000,000} = 1.0.$ 

From Figure 14-1, it is seen that a liquid-heating solar system would provide about 80 percent of the annual heating fload and an air-heating system would provide about 90 percent of the annual load.

For the purpose of sizing the area of collectors in a system, the values of S and L are determined for the particular building at a given location, and the fraction of the annual heating load, f, is selected. With these values, the area of collectors needed to provide the desired fraction of annual heating load is determined with the aid of Figure 14-1. For example, let us suppose that we desire a solar hydronic system to supply 80 percent of the annual load. From Figure 14-1, the value of AS/L corresponding to f of 0.8 is 0.9. Thus,



and the area of collectors needed is determined by:

 $A = \frac{0.9 \times L}{5}$ .

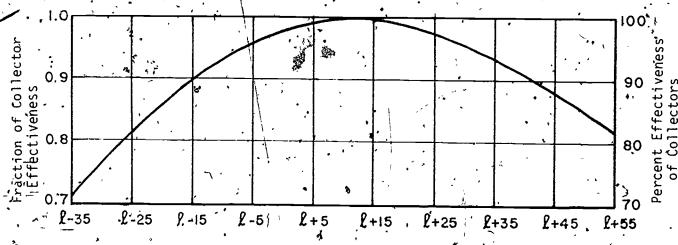
area

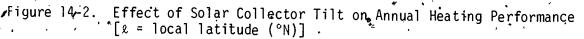
The area of collector desired is dependent upon the January solar radiation, S, and January heating load, L, of the building. The mean daily radiation for January (also for every month of the year) is listed for several cities in Table 4-1 (see Module 4). The cities listed in the table are limited in number and, for other locations, the maps of Figures 4-9 or 4-20 may be used. The values in the table, or those obtained by interpolation from the maps, must be multiplied by 31, the number of days in January, to establish the value S. The January heating load for the building is determined from the procedures described in Module 13. Because it is not practical to design a solar system to provide more

than 90 percent of the annual load for a building, the curves in Figure 14-1 do not apply for f greater than 0.9. There are several assumptions concerning the "typical" solar systems used in determining the curves in Figure 14-1. The "typical" flat-plate collectors consist of two glass covers and an absorber coated with black paint. A "typical" air-heating collector consists of two glass covers and black absorber, and the air flows through a duct beneath the absorber plate. In a "typical" liquid , heating collector, the liquid flows through tubes that are either integral with, or bonded to, the absorber plate. The collectors for the typical systems are facing due south and tilted at an angle equal to the latitude plus 15 degrees. It is also assumed that the hydronic system has no heat exchanger between the collector loop and the storage circulation loop. When there are variations in the systems from these assumptions, corrections must be applied to determine the appropriate collector

### EFFECT OF HEAT EXCHANGERS'

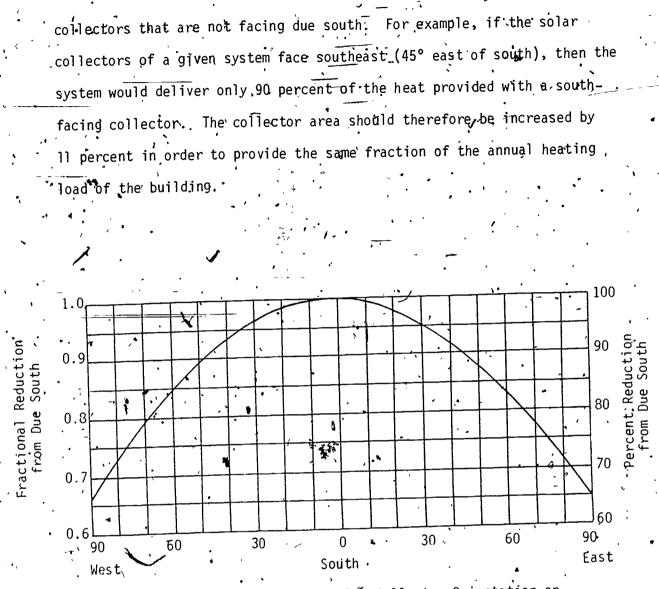
_For figuid-heating solar systems in cold climates a heat exchanger between the solar collector and the hot water storage tank is appropriate. The effect of a heat exchanger is to reduce the temperature of the water in storage because a finite \temperature difference is required to transfer the heat from the collector fluid to the storage fluid across the heat, exchanger. Alternatively, we may consider that the heat exchanger raises the operating temperature of the fluid in the collector to provide the required storage water temperature. The warmer collector fluid temperature causes a reduction in collector efficiency, which reduces the quantity of heat delivered to storage:  $\rightarrow$  The effect of the heat exchanger may be offset by increasing the area of the collectors. The additional collector area required is one percent for every one ^OF across the heat exchanger. A well-designed heat exchanger will operate with a temperature difference of about 10°F between the collector and storage water, loops. - The collector area calculated with the use of Figure 14-1 should then be increased If the temperature difference is 15°F, the area should by 10 percent. be increased by 15 percent.

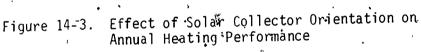

An air-heating solar system does' not require a heat exchanger because the air which is heated in the collectors is delivered directly to the rooms or passed through storage where heat is transferred to the pebble-bed. The surface of the storage material is, in effect, also the heat exchanger. When no heat exchanger is used in a hydronic system between the collector and storage loops, a correction need not be applied to the collector area determined from-Figure 14-1.


333

14-6

# EFFECT OF COLLECTOR TILT


The recommended angle between the plane of solar collectors and the horizontal is 15 degrees plus the local latitude,  $\epsilon$  (⁰N) for the systems represented in Figure 14-1. As an example, if the location is Boulder, Colorado, where the latitude is 40°, the collectors are tilted 55° (40+15) from the horizontal and facing southward. The effect of solar collectors mounted at tilt angles other than that recommended is shown in Figure 14-2. Continuing with Boulder, Colorado, as an example, suppose the collectors are tilted 25° from the horizontal ( $\epsilon - 15$ °); then a fixed collector area will deliver only 90 percent of the energy that the same collector area will deliver when tilted at 55°. If the same fraction of the annual heating load is to be provided, the collector area must be 11 percent. greater [(100% : 0:9) - (00%] for collectors placed at a 25° tilt angle.






#### EFFECT OF ORIENTATION

Figure 14-1 applies to collectors facing due south. The effect of solar collector orientation on annual heating performance is shown in Figure 14-3. There is reduction in the amount of heat delivered by





-401

FR

14**-**∕8[•]

# WORKSHEET TR-2

### Collector Area

The calculations needed to determine the collector area for a preselected fraction of the annual heating load are organized on worksheet

- A. The latitude, (1), of the solar system installation is needed to set the collector tilt. If the latitude is not known, the map of Figure 4-20 (Module 4) may be used to determine approximate latitude.
- B. The mean daily solar radiation in January, (s), for selected cities is listed in Table 4-4 in Module 4. Values are in-Langleys and should be multiplied by 3.69 to convert the. units to Btu/ft².day. If the values in Table 4-1 are inappropriate, Figure 4-20 may be used. It will be necessary to interpolate between the iso-radiation intensity lines.
- C. Average radiation for the month of January, (S), is determined by multiplying the value in B by 31, the number of days in January.
- D. The building heat load for January is calculated on worksheet TA-1.
  E. Divide item C by item D. This yields the quantity S/L.
- F. Enter collector tilt. The recommended collector tilt to latitude plus 15 degrees for heating systems.
- G. Collectors oriented due south is zero. Off-south angles east or west of south should be indicated.
- H. Indicate whether a heat exchanger is used.
- I. . Calculate collector area as follows:

Golumn [1], enter trial number. Note: Trial collector sizes will be used in the life cycle cost analysis to determine

best collector size.

14-10 Worksheet TA-2 SOLAR SYSTEM DATA Building Owner: Address: Contractor: Type of Solar System (air or liquid) 📜 Location: Nearest city _____ Latitude (1) Α. Mean daily solar radiation in January (s) _____(Btu/ft².day) · B. January solar radiation on a horizontal surface (S) ۴C.  $(B \times 31) = (B \ddagger u/ft^2 \cdot month)$ (Btu/month) January building heat load (L) D. January solar radiation + January building load Ε.  $(S \div L) = (1/ft^2)$ Eollector tilt : 2+ ____ of 2- . F. Collector Orientation /_____ degrees, _____from south G. . Heat Exchanger Temperature Difference (Liquid systems only) ____ Η. I. Fraction of annual heating load: **•**[6]· •[7] [4] [5] [3] [1] [2] Trial Collector Area Corrected Area Corrected Area Corrected Trial SA T for for for f Area at Number Orientation |Heat Exchanger Tilt Tilt = Latitude Selected arbitrarily or determined from f [2] [3] Correction to column [2] for tilt not equal to latitude + 15⁰ (Fig. 14-2) Correction to column [3] for orientation (Fig. 14-3) [4] Correction to column [4] for heat exchanger (liquid systems only) [5] From Figure 14-1. [6] Selected arbitrarily or determined from Figure 14-1 [7]

Column [7], enter fraction of load to be carried by solar. Column [6], enter the value from Figure 14-1 for the liquid or aftr system.

Column [2], calculate area from

A = value in column [6] ÷ item E°

column [3] by factor from Figure 14-3. Column [5], correct area for heat exchanger. Multiply A in column [4] by [1 + (temperature difference in H/100)], i.e.,  $[1 + \frac{10}{100}]$  for a 10 degree temperature difference at the heat exchanger. NOTE: This applies to liquid systems only.

Fraction of Annual Load_ -

The calculations to determine the fraction of annual load can also be made by using worksheet TA-2.

Items A through H are provided in the same manner as previously lescribed.

Calculate fraction of annual load as follows:

Column [T], enter trial number 🖈 Note: Trial collector sizes

will be used in the life cycle cost analysis to determine best collector size.

Column [2], enter trial collector area.

Column [3], correct area for tilt.

Divide column [2] by factor from Figure 14-2.

4()4

Column [4], correct area for orientation.

Divide column [3] by factor from Figure 14-3.

Multiply column [4] by (1 + temperature difference ) Note: This applies to liquid systems only. Column [6], calculate SA/L.

Multiply A in column [2] by S/L in item E of the worksheet. Column [7], read f from Figure 14-1 for air or liquid solar system.

Extra worksheets are provided at the end of this module. Copies should be/made from the blank forms for general office use.

A building in Boston, Massachusetts, has a January heating load of 27.85 million Btu per month and an annual Deating load, H, of 154.08 million Btu per year. An air-heating solar system is planned.

14-13

EXAMPLE

The collector is to be tilted at an angle of 83 degrees from the horizontal and faces 35 degrees west of south. Determine the solar collector area required to provide 60 percent of the annual heating load. The solution is given on worksheet TA-2.

From worksheet TA-2, the area required is  $1060 \text{ ft}^2$ . If the collector modules are 3 feet by 6 feet, then the total number of collector modules required is:

$$N = \frac{1060}{18 \text{ ft}^2/\text{module}} = 58.9 \text{ modules}$$

Because integer, and usually even numbers of modules are desired, 60_collector modules will probably be used.

#### SOLAR SYSTEM SIZING

When the collector area has been determined, the other system components may be selected. Worksheet TA-3 is provided for convenience. Most of the sizing guidelines are provided in Table 14-1, except for sizes of pumps, blowers and heat exchangers. The selection of heat exchangers may require specialized assistance. Manufacturer's representatives or catalogs can be used as aids in making proper selections.

Worksheet TA-2

SOLAR SYSTEM DATA Building Owner: Address: Contractor: Type of Solar System (air or liquid) 🐴 🔊 🔼 Location: Nearest city Boston, MA Latitude (2) 4.2 Α. . Mean daily solar radiation in January (s) = 476 · (Btu/ft², day) Β. January solar radiation on a horizontal surface (S) С.  $(B \times 31) = 14.756$  (Btu/ft².month) January building heat load (L) 27,850;000 (Btu/month) D. January solar radiation + January building load  $(S \div L) = 0.00053 (1/ft^2)$ Collector tilt 83° : 2+ 41 ٠F. or Collector Orientation <u>35</u> degrees, <u>Dest</u> G. from south Heat Exchanger Temperature Difference (Liquid systems only) Η. Fraction of annual heating.load: -Ι. [6] - [7] [5] [4] [1] [2] [3]. Trial Collector Area Corrected Area Corrected Area Corrected Trial • Area at SA Number for for for Ľ. Tilt = Latitude Orientation Heat Exchanger Tilt A 🕈 1060 . . ·. 1006. 0.48 .906 100 1. [2]. Selected arbitrarily or determined from f 12 [3] Correction to column [2] for tilt not equal to latitude + 15⁰ (Fig. 4-2) [4] Correction to column [3] for prientation (Fig. 14-3) [5] Correction to column [4] for heat exchanger (liquid systems only) [6] From Figure 14-1 [7] Selected arbitrarily or determined from Figure 14-1

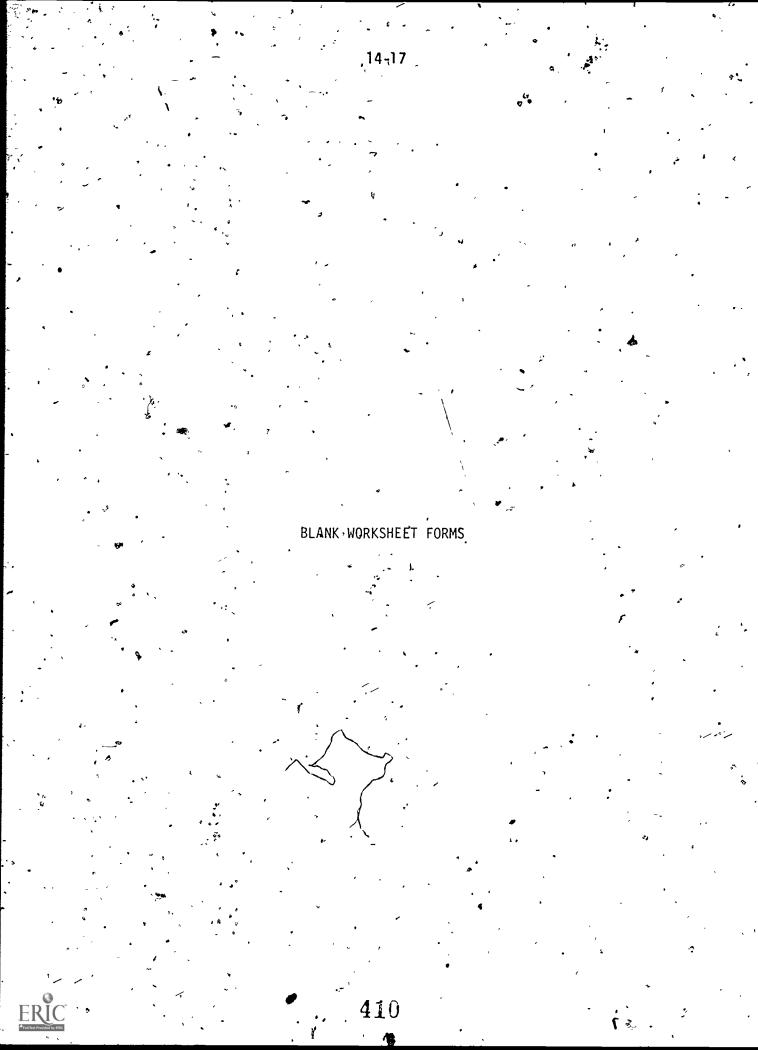
14-14

, Ja	14-15	· · · · · ·
		WORKSHEET TA-3
, , , , , , , , , , , , , , , , , , ,	SOLAR SYSTEM SIZE	· · · · · · · · · · · · · · · · · · ·
A.	Type of System	
B.	Economical Collectór Área	ft ²
ć <u>C</u> .	Collector Tilt	degrees
Е.	Collector Fluid Flow Rate: 1. Air System (1.5 to 2 cfm/ft ² collector) 2. Liquid System (0.02 gpm/ft ² collector) Pumps: Liquid System	cfm. gpm
, <b>,</b>	<ol> <li>Collector loop flow wate (D.2)</li> <li>Storage loop flow rate (1.5 x E.1)</li> </ol>	Headft
	<ol> <li>Service water preheater</li> </ol>	Head $gpm$ ft 3 $gpmHead 2-3 ft$
٠.	4. Heat distribution coil (depends upon heat delivery rate)	Headft
F.	Blowers: Air System	•
· · .	<ol> <li>Collector loop (D.1)</li> <li>Distribution blower (provided with furnace)-</li> </ol>	Head <u>1-1.5</u> in w.g. +Head <u>in w.g.</u>
, , , , , ,	3. One blower system (D.1)	<pre>*Headin w.g. cfm Head1-1.5 in w.g.</pre>
G.	Storage:	
• · • ,	<ol> <li>Liquid system B x 2.0 gallons/ft² collector</li> </ol>	gal .
•	2. Air system $B \ge 1/2$ ft ³ /ft ² collector	ft ³
, <b>*</b> , <b>*</b> ,	(a) Pebble size (l-in. screened concrete aggregate) (b) Cross-section area (D.1 ÷ 20) (c) Rock depth (G.2 ÷ G.2.b)	ft ²
	Heat Exchangers:	<b>*</b>
•	Consult heat exchanger manufacturér	· · · · · · · · · · · · · · · · · · ·

REFERENCES

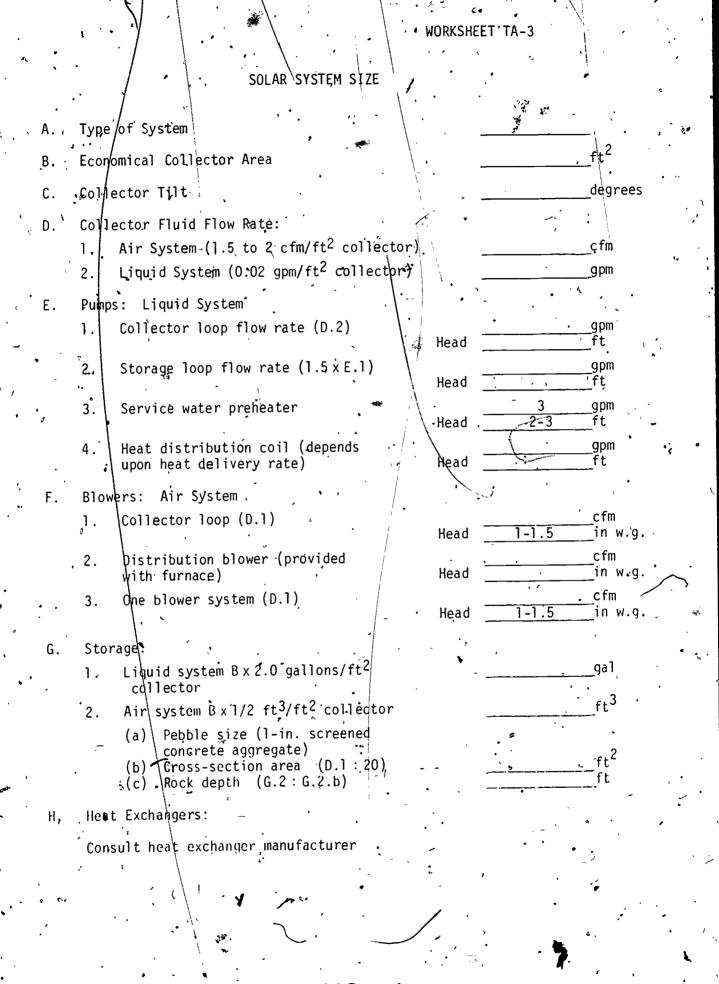
E

3.


14-16

Klein, S.A., Beckman, W.A., and Duffie, J.A., "A Design Procedure for Solar Heating Systems". Presented at the 1975 International Solar Energy Society Congress and Exposition, University of California, Los Angeles, CA, July 28-August 1, 1975.

a. . h.


2. Solaron Corporation, "Application Engineering Manual", 1976.

Balcomb, J.D., Hedstrom, J.C., and Rogers, B.T., "Design Considerations of Air Cooled Collector/Rock-Bin Storage Solar Heating Systems". Presented at the 1975 International Solar Energy Society Congress, University of California, Los Angeles, CA, July 28-August 1, 1975.



Worksheet TA-2 SOLAR SYSTEM DATA Building Owner: "Address: Contractor: Type of Solar System (air or liquid) ______ Latitude (¢) ____ Location: Nearest city Α. Mean daily solar radiation in January (s) _____(Btu/ft²:day) Β. C. January solar radiation on a horizontal surface (S) (B x 31) = ____(Btu/ft².month) (B**≱**u/month) January building heat load (L) D. Ε. January solar radiation : January building load (\$...L) = _____(1/ft²) Collector tilt _____ 2+___ or 2-____ F.\ Collector Orientation _____ degrees, _____, from south Ġ. Heat Exchanger Temperature Difference (Liquid systems only) _____⁰F. Η. Fraction of annual heating load: 1. [1]` [3] [7] [4] [6] [2] [5] Inabl Collector Area Corrected Area Corrected Area Corrected Trial Area at for for SA iumber , f Tilt = Latitude •Tilt • Orientation | Heat Exchanger А Seldcted arbitrarily or determined from f [2] Correction to column [2] for tilt not equal to latitude +  $15^{\circ}$  (Fig. 14-2 [3] (correction to column [3] for orientation (Fig. 14-3) [4] Correction to column [4] for heat exchanger (liquid systems only) [5] **,** [.(.] From Figure 14-1 Selected arbitrarily or determined from Figure 14-1 171 ALL "

SOLAR SYSTEM DATA Building Owner: Address: Contractor: Type of Solar System (air or liquid) Location: "Nearest city _____Latitude (⊥) · A. (Btu/ft²·day) Mean daily solar radiation in January (s) Β. c. January solar radiation on a horizontal surface (S) (Btu/ft²·nonth)  $(B \times 31) =$ January building heat load (L) D. January solar fadiation : January building load Ε.  $(1/ft^{2})$ (S:L) =Collector tilt F. : ℓ + ____ or G. Collector Orientation. from south degrees Heat Exchanger Temperature Difference (Liquid systems only) _____ ^OF Η. Fraction of annual heating load: [7] [4] [5] [6] [1] [3] Trial Collector Area Corrected Area Corrected Area Corrected Trial <u>5A</u>* L lumber ′Area at for for for . f Tilt=Latitude Tilt Orientation Heat Exchanger • . [2] Selected arbitrarily or determined from f Correction to column [2] for tilt not equal to latitude +  $15^{\circ}$  (Fig. 14-2) [3] Correction to column [3] for orientation (Fig. 14-3) [4] Correction to column [4] for heat exchanger (liquid systems only) [5] from Figure 14-1 [6] Selected arbitrarily or determined from Figure 14-1 *[*7]



• 413

•

	WORKSHE	ET TA-3	· · · · · · · · · · · · · · · · · · ·
SOLAR SYSTEM SIZE	, <b>b</b>	• • • • • • •	· · · · · · · · · · · · · · · · · · ·
A. Type of System	· 1	· · · · · · · · · · · · · · · · · · ·	• À
B. Economical Collector Area	:	ά.	ft ²
C. Collector Tilt	•	,	degrees
<ul> <li>D. Collector Fluid Flow Rate:</li> <li>1. Áir System (1.5 to 2 cfm/ft² collector)</li> <li>2. Liquid System (0.02 gpm/ft² collector)</li> </ul>	۰ مرد مرجع		cfm * gpm
E. Pumps: Liquid System 1. Collector loop flow rate (D.2)	Head		gpm ft
.2, Storage loop flow rate (1.5 x E.1)	Head		gpm ft
3. Service-water preheater	Head	2-3	gpm ft
4. Heat distribution coil (depends upon heat delivery rate)	Head	• •	gpm / . ft /
FBlowers: Air System	•		/
1. Collector loop (D.1)	Head	1-1.5	cfm in w.g.
<ol> <li>Distribution blower (provided</li></ol>	Head	·	cfm`, in w.g.
3. One blower system (D.1)	Head	1-1.5	cfm in w.g.
G. Storage: 1. Liquid system B x 2.0 gallon's/ft ²	-	• •	gal
collector 4	•		• ′.
<ul> <li>Air system Bx1/2 ft³/ft² collector</li> <li>(a) Pebble size (1-in. screened concrete aggregate)</li> <li>(b) Cross-section area (D.1:20)</li> <li>(c) Rock depth (G.2:G.2.b)</li> </ul>	s ,	<u> </u>	$\frac{ft^{3}}{ft}$
H. Heat Exchangers:	•	•	۰ مە
Consult heat, exchanger manufacturer		\$	,
		~	1

ER

_!

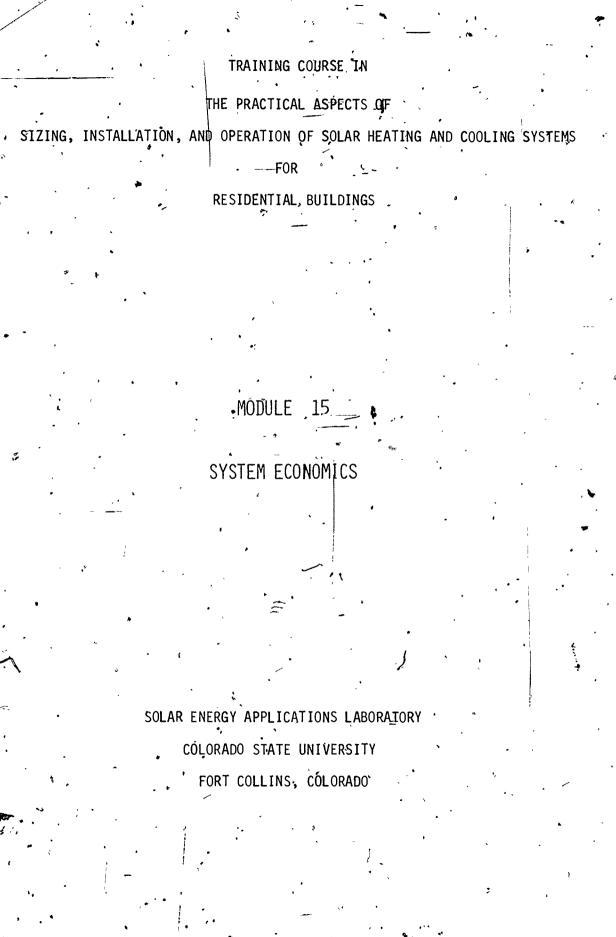



TABLE OF CONTENTS

₹ 15-i

	•	•	1.	·			
LIST OF FIGURES	•	•	. 1.	• ,•	• •	. 15-ii	
×			. • )		•	•	· · · · ·
INTRODUCTION		•	: •	•••	· · ·	. 15-1	· · · · · · · · · · · · · · · · · · ·
OBJECTIVE .	• _ •			• •	~ .	. 15#1 -	
ENERGY COSTS .	• ,•	• .	[. ,	·	•	. 15-2	<u>.</u>
- INFLATION RATES	•••	•	• .	• • • • •	• •	. 15-5	•
SOLAR SYSTEM COSTS	, • •	•		• • •		.7 15-6	• •
MORTGAGE PAYMENTS	• •,	•	. ] .		, • •	<ul><li>15-7</li></ul>	
PROPĘRTY TAX, INSUR	ANCE AND	CREȚIT	ON TINCOM	TAXES	-	. 15-9	
OPERATING COSTS	· · ·	•	. ]/	••••	Α	15-13	*
- MAINTENANCE COSTS	••••	· · ·	·. ·.	• '\•		. 15-13	: 2
LIFE CYCLE COST ANA	LÝSIS	•	·			. 15-14	
- WORKSHEET LCA-	ì.	•	[ '\$.	• • • \		15-14	· · · · · ·
WORKSHEET LCA-	2.			· · ·	••, •	15-16	
WORKSHEET LCA	3 · .	· · /	• •		\·. •	. 15-19	
XANT I	•••,	<u>;</u> ]]		•	<u>\</u>	. 15-21	
AN WORKSHELT TOR	MS.	.	• •	•	•	15-24	-
			3			، به المعاد الم	، متر محمد ا
				<b>4</b>	•	•	•
	¥	<u> </u> -'			-	r —	•
			-		<u>,</u> 1		
	·			, <u>-</u>		: -	•
, <b></b> , ,		•			_		
	-7 ,	• مە	*	·   ·	3		- 1
	. •		•		· ·	, ,	, ,
ERIC			· 41		•	7	

15-ii.

<u>1</u>.

· · · ·

ø

,

٠Ś

*

ĺ٠.

3

. (1*

	· · · ·	LIST OF FIGURES	
<u>`</u>	Figure.		Page .
	, 15-1	Energy Cost per Million Btu for Natural Gas, Propane, and No. 2 Fuel Oil	15-3
• Same	15-2	Energy Cost per Million Btu for Electricity	15-4
<i>i</i> ,	, 15-3	Inflátion Factors	15-5
•	15-A	Repayment on Loan	.15-8
	15-5	Fraction of Mortgage Payment Which is Interest	15-11
		417	
	· ``.		· · · · · · · · · · · · · · · · · · ·

INTRODUCT, ION

15-1

The major portion of the cost of heating a house with a conventional heating system is the cost of energy used by the system. A significant portion of the cost of heating a house with a solar system includes payment for solar hardware as well as energy used by the auxiliary unit in the solar system. While the capital investment in a conventional heating system is usually less than \$2,000, the capital investment in a solar heating system is many times that amount.

An economic analysis of solar systems involves comparison of the capital and operating costs of a solar system with the operating costs of a conventional system. Among the many methods available, the method of life-cycle cost is explained in this module. In this method, the annual cash flows for solar and non-solar systems are considered. If the cumulative difference in cash flows (non-solar minus solar) is positive over the life of the solar system, then the solar system is economically viable.

#### OBJECTIVE

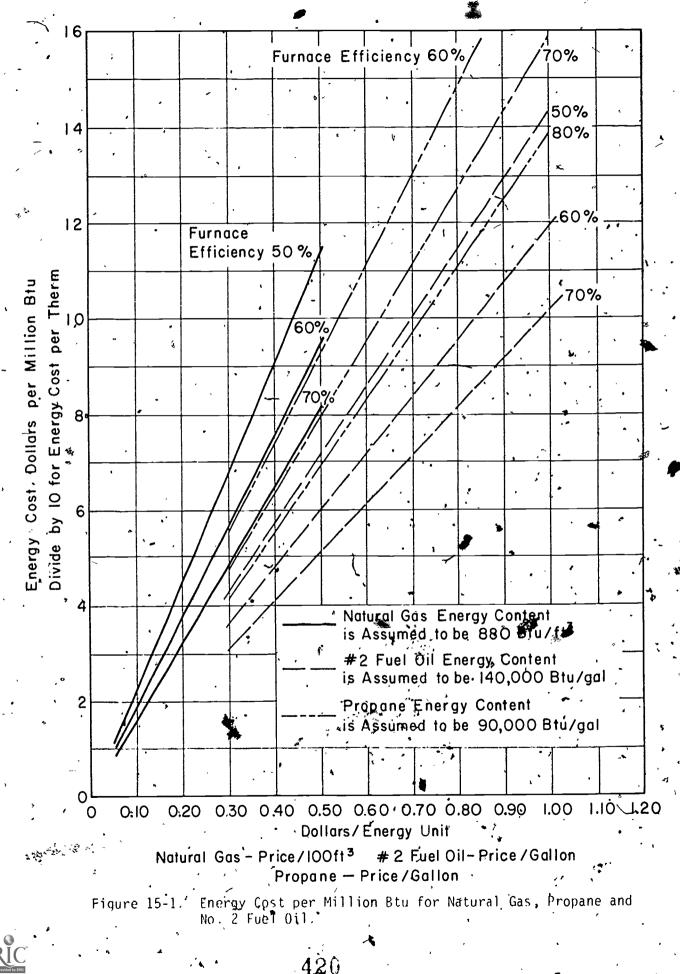
The objective of this module is to describe the life-cycle cost method of economic analysis to compare solar and non-solar systems. The trainee should be able to use the work-sheets provided in this module to:

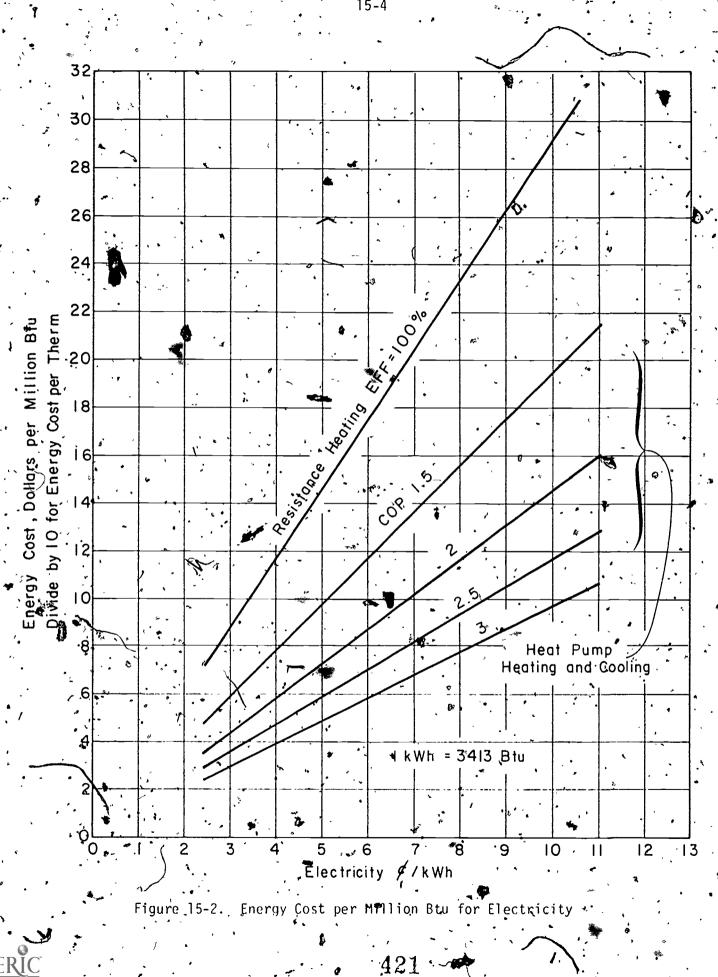
- 1. Determine the annual cash flows for solar and
- non-solar systems,
   Determine the feasibility of a solar system
- 3. Optimize the collector area for a particular solar
  - system installation.

ENERGY COSTS

15 - 2

: 'n


The conversion of unit costs of energy to dollars per million Btu (\$/mBtu) with various furnace efficiencies is shown on Figure 15-1 for natural gas, propane, and No. 2 fuel oil. The conversion of electric energy costs to dollars per million Btu for resistance heating and heat pumps with various coefficients of performance are shown on Figure 15-2 To determine the cost per million Btu of heat generated from furnaces, electric resistance heaters, or heat pumps, follow the unit cost of energy, found on the horizontal axis of the graphs, vertically to the appropriate line on the graph and read the cost in dollars along the vertical axis. For example, if No. 2 fuel oil costs-fifty cents per gallon, and the furnace efficiency is 60 percent, the energy cost is 6.00/mBtu or 60 cents per therm (¢/therm). If the furnace is more efficient, say 70 percent, the energy cost is \$5.10/mBtu or 51 ¢/,therm. Similarly, if electricity costs three cents per kilowatt-hour (¢/kWh), and resistance heating is used, the energy cost is \$8,80/mBtu. If a heat pump is used, and the COP of the heat pump is 2, the energy cost is \$4.40/mBtu,


The cost of energy will increase in future years and an estimate of the rate of increase is subject not only to inflation rates of goods and services, but also to economic and political decisions of the federal, government and the governments of other nations. One expects, therefore, the rate of fuel cost increases to be different from "normal" inflation

rates.



Ø.





15-4

### INFLATION RATES

The increases in costs per unit of energy, several years in the future, in terms of cents per gallon, cents per kilowatt-hour, cents per hundred cubic feet of natural gas, or dollars per therm, can be estimated on the basis of annual percentage increases over current costs. The multiplying factors for current energy costs to determine future costs is shown on Figure 15-3. The horizontal axis is the years beyond the current year. The vertical axis gives the multiplying factor over current costs.

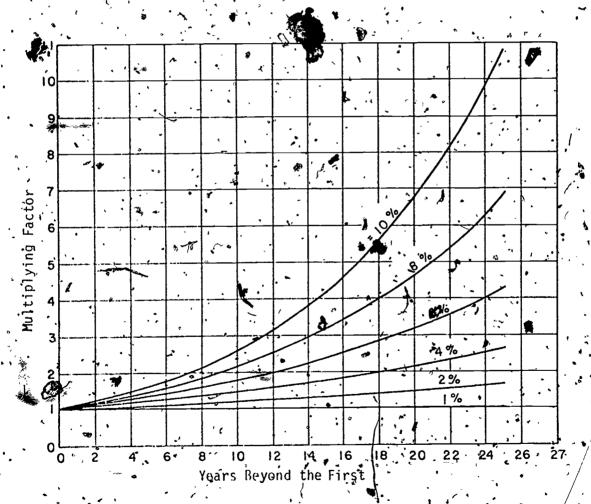



Figure 15-3. Inflation Factors

15-5

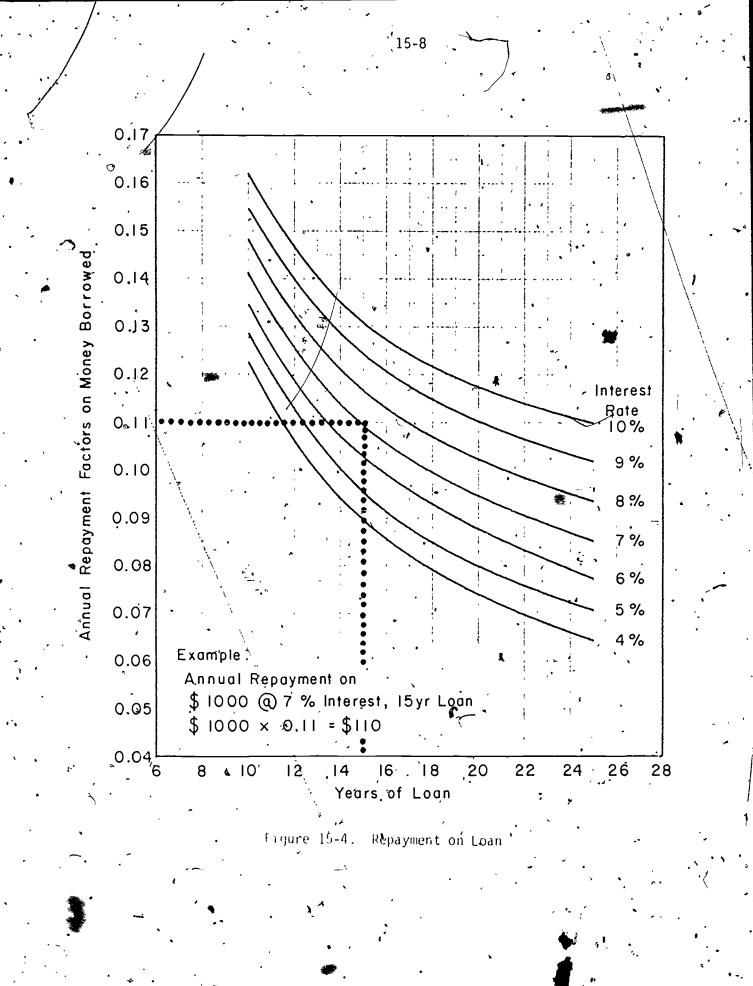
For example, if the current cost of electricity is expected to increase at a rate of 6 percent each year for the next 12 years, at the end of 12 years the electricity cost will double. If 3 cents per kilowatthour is the current cost and heating cost is \$8.80 per million Btu, the end of 12 years the electricity will cost 6 cents per kilowatt-hour and \$17.80 per million Btu.

____^{]5-6}

#### SOLAR SYSTEM COSTS

There is much speculation about the installed cosis of complete solar systems and there is little information available to substantiate. published information on costs. System costs based on research projects and demonstration projects funded by the federal government are misleading because the total costs of such projects include considerable engineering design costs, research staff costs, in some instances instrument costs for monitoring the performance of experimental systems; and often development costs of several alternative components in the systems are included. The costs reported in popular magazines and newspaper accounts are likewise misleading because often systems which are designed and assembled by the owner on a do-it-yourself basis are cited and cost for the owner's time is seldom included in the cost quotations.

On the basis of a few commercial solar installations made, where no governmental subsidy has been involved, the installed costs of practical solar space and hot water heating systems of the types discussed in this course range from 19 to about 30 dollars per square foot. The lower cost is appropriate for simple hydronic and air systems, ranging in size from 500 to 1000 square fees of collectors, where some economy of scale is realized over small systems and where experienced installers and timely


scheduling are arranged with the building construction. The higher costs are appropriate for smaller systems and difficult installations.

The costs for collectors currently (1976) range from 7 to about 15 dollars per square foot, F.O.B. the job site, with more efficient collectors being generally more expensive. Storage will add one to two dollars per square foot of collector to the system costs, and appurtenances, from 5 to 8 dollars per square foot. Including the cost for experienced labor for installation, overhead, and profit of 6 to 8 dollars per square foot, the installed system costs range from 19 to 33 dollars per square foot.

# MORTGAGE PAYMENTS

The largest portion of the annual cost of a solar system is the repayment of the loan obtained to install the system. The loan may be based on the total building costs or separately on the solar system alone. In either event, a down payment ranging from 10 to 20 percent is required to secure the loan. The annual mortgage payments can be calculated from the mortgage interest rate and term of the loan using the curves of Figure 15-4.

To illustrate the use of Figure 15-4, suppose that a solar system with 500 square feet of collectors costs \$12,500 (determined by 500 ft² X  $$25/ft^2$ ). A 20-year foan is obtained to purchase and install the system with interest at 9 percent, which requires a 20 percent down payment. The annual mortgage payment on the loan is calculated as:



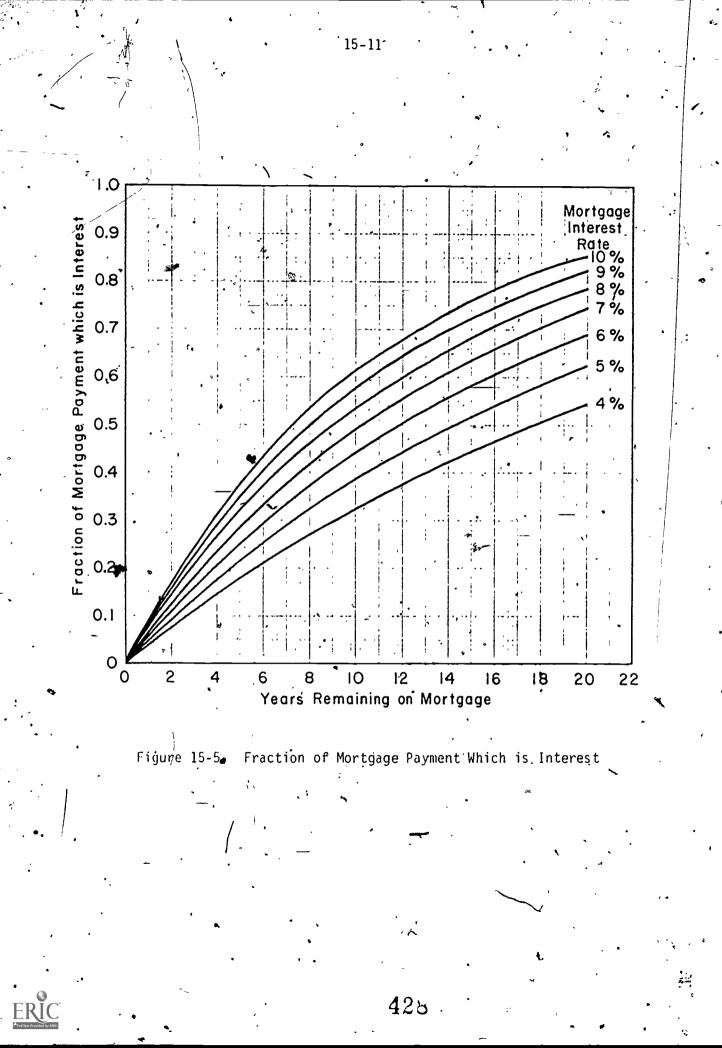
\$1100, ŧ (12,500 - 2500) X (0.11)

PROPERTY TAX, INSURANCE AND CREDIT ON INCOME TAXES

The annual cost of a solar system includes all the items contributing to the cash flow to operate a solar heating system. The costs include the mortgage payment and fuel costs, operating and maintenance costs, property tax, insurance on the solar system, and savings on . federal and state income taxes for interest paid on the loan. In some states there are additional credits provided to state income taxes for owners of solar systems. Some of these special tax credits are substantial and impact significantly on the annual costs of the solar system.

Property taxes are based on a fraction of the assessed value of the solar system. The method of assessment, and the tax rate, vary from state to state and sometimes from county to county within the state. The office of the county treasurer can provide detailed information on method of assessed valuation and the tax rate. Usually, the assessed value is a market value of the property, and the tax rate is applied to a fraction of the assessed value. The property tax rate varies widely, from zero in some states to ten percent in others. The property tax can be calculated as:

Property = (System cost) X (Fraction for taxable value) X (tax rate)


Insurance rates on houses with a solar system, at present, are the same as for houses without solar systems. The basic insurance rate depends upon the type of house construction and location of the building within or outside a city or town. The insurance rate for a comprehensive homeowners policy differs from that for a straight fire . insurance policy, and the insurance rates for earthquake and flood damage (whrich are federally subsidized) are the only special insurances available for one of buildings. The information on various insurance rates is available from local insurance agents. However, very few insurance compaties have established insurance rates for solar systems. Damage to the contents of a building resulting from leaks in piping or 'storage tanks or damage to the solar system resulting from flooding by' natural causes is based on comprehensive or flood insurance rates. Although there are many factors to be considered, the annual premium on insurance for houses with solar systems is less than one percent of the #alue of the house and contents, and ranges from 0.3 to about 0.6 percent. The "safings" on state and federal income taxes for interest paid on the mortgage can be substantial, depending upon the "tax bracket" of the homeowner. The amount of interest paid annually on the mortgage decreases with the number of years remaining on the mortgage. The portion of annual mortgage which is paid as interest can be determined from the graphs on Figure 15-5. The use of curves in the figure is illustrated

Let us assume that a loan of \$10,000 has been secured at a term of 20 years and 9 percent interest. The annual mortgage payment was computed in the previous section to be \$1100. Of that mortgage payment, \$900 js for payment of interest in the first year, which amounts to 82 percent of

in the following example.

42%

.15-10



the mortgage payment. As this is the first year of payment, 20 years remain on the mortgage at the beginning of the year. By following the vertical line corresponding to 20 years in Figure 15-5, to the 9 percent curve, it is seen that the fraction of mortgage payment, which is interest, during the first year is 0.82. In the eleventh year, with ten years remaining on the mortgage at the beginning of the year, the interest paid during the year is  $(0.575) \times (\$1100)$ , or \$632. The income tax savings on a federal or state return would be:

15-12

( Income ( Interest paid ) x ( Tax rate based )
tax credit ) = ( Interest paid ) x ( Tax rate based )

The federal income tax return provides credit for state income taxes paid and many states give credit for federal income taxes. Thus the full credit for tax savings resulting from payment of interest is not simply the sum of state and federal tax savings. The net effective rate is:

> Net  $\left( \begin{array}{c} \text{Federal} \\ \text{Effective} \end{array} \right) = \left( \begin{array}{c} \text{Federal} \\ \text{tax rate} \end{array} \right) + \left( \begin{array}{c} \text{State} \\ \text{tax rate} \end{array} \right) - 2 \left( \begin{array}{c} \text{Federal} \\ \text{tax rate} \end{array} \right) \times \left( \begin{array}{c} \text{State} \\ \text{tax rate} \end{array} \right)$

> > 429

If the income tax rate on a federal tax return is 25 percent and on a state tax return is 10 percent, the net effective rate is  $(0.25+0.10-2\times0.25\times0.10=)$  0.30, or 30 percent. Thus net annual income tax savings realized on the federal and state taxes for the first year, in the previous example, are  $(0.30) \times$  \$900), or \$270 and, in the eleventh year,  $(0.30) \times ($ \$632), or \$190.

#### OPERATING COSTS.

The cost of operating a solar heating system, including the cost for operating the auxiliary unit in the system, is the cost of electric energy required to operate the pumps, central heat distribution fan, valves, and controller in a hydronic system, and the blowers, motorized dampers, and controller in an air system. The amount of energy ested to collect, store, and distribute solar energy varies from system to system in the range from 5 to 10 percent of the total solar energy collected. The lower values in the range apply to low-head systems with small pressure drops, and air systems with single blowers with small pressure drops. The higher values in the range apply to high-head systems with large pressure drops, small systems with large pumps, and air systems with two blowers.

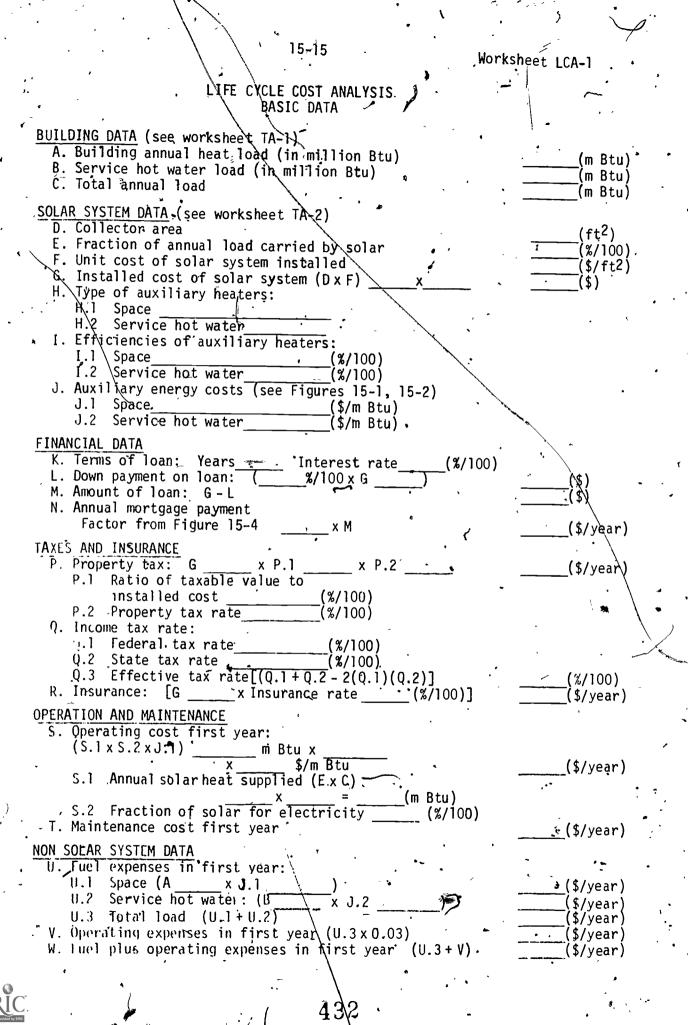
The operating cost for a non-solar system is much less than for a solar system. Although the blower size for distributing air to the rooms is the same, the power requirement is less for a non-solar system because the pressure drop in the system is lower. As an approximation, the energy required to operate a non-solar system is two percent of the total annual heating load.

#### MAINTENANCE COSTS

The maintenance costs for solar systems are unknown; there is insufficient long-term experience with various systems to indicate an appropriate annual maintenance cost. While there is one air system that has been operated continuously for 19 years, on which the maintenance cost was zero, it can be expected that all solar systems will require

15-13

15-14


#### LIFE CYCLE COST ANALYSIS

A life cycle cost analysis provides a means of determining the net savings realized with a solar system as compared to a non-solar system. Annual cash flows are calculated for the systems and the difference will determine the savings possible with a solar system over the non-solar system.

The method of life cycle cost analysis enables one to determine not only if a given solar system is economical, but the optimum economical size of the solar system. By analyzing several (at least three) different collector areas for the solar system, the size of the solar system which will yield the greatest savings over a comparable number of years will be the most economical. The methodology is outlined in the form of worksheets.

Worksheet LCA-1 is used to calculate the installed cost of the solar system, the mortgage payment, tax rates and insurance, and the annual operating and maintenance costs. The first year expense of a non-solar system is also determined.

WORKSHEET LCA-1



### WORKSHEET LCA-2

. The annual cash flows for a solar system for one collector area are determined from worksheet LCA-2.

-15-16

The collector area is an arbitrary value and the solar fraction of total load is determined by using worksheet TA-2. The auxiliary fuel inflation rate is estimated and, if desired, a different general inflation rate can be specified.

Column [1] is the year into the future for which the analysis may be made. A reasonable economic analysis can be made for 15 to 20 years into the future.

Column [2] is the annual mortgage payment determined from LCA-1, Ine N. If the mortgage payment is a fixed annual amount, the payment for all future years would be the same as the first year.

Column [3] is the years remaining on the mortgage at the beginning of the year. At the beginning of the first year of a 20-year mortgage, there would be 20 years remaining.

Column [4] is the fraction of the mortgage payment which is paid as interest. The fraction decreases with increasing years and may be determined from Figure 15-5 for the particular interest rate of the mortgage.

Column [5] is the portion of the mortgage which is paid as interest, and is the product of column [2] times column [4].

Column [6] is auxiliary fuel cost. Because of expected fuel cost increases, the first year fuel cost will increase for subsequent years. The first year fuel cost is determined from worksheet LCA-1 as follows:

	,	<b>*•</b>	1	· · ·	۰. م			- a <b>r</b>	•	.*	• • • •	· • •		
•	۰.						•		•	· •	· Works	heet LCA-	-2	• .
•	.'				· · /		ł			•				
	;	, <b>*</b>	•	* `	· ,	•	LIFE CYCLE		ALYSIS		. ,			ر <b>د</b> .
-		în i	•	₩' £'.	·		• • • • • • • • • • • • • • • • • • •	<b>∖SH</b> 1FLOŴ _"				· -		4
: `	۳.				-	•	•	•		• • •	2 .	· •		
\$		A. K.M	ortgage i	nterest r	at/e	%/100	Colle	ector area				ystem∙Co: own Paym		·
••	ía.	8.~A	uxifiary noral in	fuel infla	tion rate	%/100 %/100		e workshe	of total lo et TA-2)	υdψ <u>.</u>	100,. 0	•	uno 0 <u></u>	- <b>«</b>
	·	יטי. ט יירי	•				• •		- <b></b>	· ,	[]o] [;] ,	•, ·	, ** - 7	
·`	-	<u> </u>	. [2]	•``[3]	[4]	<u>[5]</u>	· [6]	.[7] [•] `	[8]	<u>[9]</u>	[10]	[11]	[12]	· · ·
		<i>.</i>	AnnsaT	Years	Frac. of	Interest	Auxiliary	Property		Operating	Maintenance	Income	Expense	<b>x</b>
er set i	• •	lear	Pavmont	Left on	as as	Paid	Fuel Cost	Tax	Insurance	Cost	Çost	Tax Savings	with Solar	٠ د
	•e	<u>`````</u>		Mortgage	Interest	<u> </u>		0				Juvings	· ·	•
`•.	ŀ	· ],		<u> </u>	· · · ·		· · · · ·	· · · ·	<u> </u>	о.	<u></u>	₽		
	-	2	·····	+			<u></u>	<u> </u>				<u> </u>		
•		4.			· · ·									
• 10	i.	-5 (	1	i and		· · · ·	•	·	-	· · · ·	•	-	[[	
``		6.			· · · ·						•	· ·		/
		7		-	<u> </u>		· / · · ·	•				· · · · ·		•,
	¢	<u>8</u>	· · · ·		<u> </u>				<u> </u>		•			· · -
	¢ _	10				<u> </u>			-				9	, , , , , , , , , , , , , , , , , , ,
		11.	1.	1.5	1 76	· · ·	-		· •		·		· •	
, in	~ [	12	2 i • @			,			· · · · ·			5	[ ·]	4
	1	13	1	· · ·		, ·		· · · · · ·		· · ·	/		· ·	
e. •	- 1	14	· · ·	+		· .·						,	<b> </b>	
		716	÷		· · ·		<b>k</b> • •		₩		-1	<u> </u>		•
. 🔊		17		17		·'			<u>  · </u>	· · · ·	• 1	- 1 1	1 An	1
a' x2		-18			~	71	ه ~	. *	~	۹ <u>م</u>				
•,	•	19				<b>.</b>		<i>k</i> , ·	ļ	40	,		· · · ·	• •
		20		1, .	L	<u> </u>	<u> </u>		1,	l,	· · · ·	I,	<u>                                     </u>	1.
	· •-	[2]	Annual m	ortgage pa	ayment fro	om LCA-1,	line N 🧷			<mark>ne R, w</mark> orks		, ,	• • • •	
	•,		See Figu	re 15-5.	• <b>Г</b> И Л	•	· .	•	[9] First y	year cost s	ee line S, 1	worksheet	< LCA-1 ک	•
0				2] x columnar cost fi		t ICA_I	(	• • •	Second	and future	years:		kon nat	
-	• •	[0]	$(C) \times (1)$	- E) X (J.				·	(prev 10] First v	voar cost s	cost) x (1 🗤 ee line T, 1	workshe		.е. <b>į</b>
	·			nd future		. <b>.</b> .		• • • • •		and future		NOI. KSIICCI		
1	•					+ fuel ir	aflation ra	te)	(prev	ious year o	cost)'x (1+g	eneral ir	nflation r	ate)
	,	, <b>[.7</b> ]	See line	P, worksł	eet LCA-1	•		. []	[]] Column	: [5∱ <mark>★ (</mark> Q√3	, worksheet	LEA-1)		· / · ·
•	· ·			*r • •	•.	•• , •		[`	12] Downpay	yment + <b>[</b> 2]	+[6]+[7]+	[9]+ <b>[</b> *	5]-[11].	٠.
6.	- <b>m</b> /				· · ·	, <b>•</b>	1	• •	÷ /				2 I	10-

r.

First year auxiliary fuel cost =
----------------------------------------

15-18

The second year fuel cost is determined by multiplying the first year cost by (1 + fuel inflation rate). For example, if the first year fuel cost is \$400 and the fuel inflation rate is 7 percent, the second year cost is  $(400 \times 1.07 =)$  \$428. The fuel cost for each succeeding year is determined by multiplying the previous year by (1 + fuel inflation rate). The inflation rate may be change for any year.

Column [7] is the annual pertyriax determined on line P on Worksheet LCA-1.

Column [8] is the annual insurance premium determined on line R on Worksheet LCA-1.

Column [9] is the annual operating cost of the solar system. The operating cost for the first year is determined on line S of Worksheet LCA-1. The cost for each succeeding year is determined by multiplying the previous year-cost by (1+electricoty inflation rate). The cost for electricity is expected to increase at the fuel inflation rate.

Column [10] is the annual maintenance cost. The first year cost is estimated on line T of Worksheet LCA-1. The annual increase in maintenance cost can be estimated arbitrarily, for the cost can be estimated by multiplying the first year cost by (1 + general inflation rate).

Column [11] is the income tax savings calculated by the product of the effective tax rate on line Q.3 of porksheet LCA-1, and the annual interest paid, in column [5].

Column [12] is the annual expense of a solar system and is determined by: column [2] + column [6] + column [7] + column [8] + column [9] + column [10] - column [11] = column [12].

#### WORKSHEET LCA-3.

Worksheet -CA-3 is used to calculate the solar savings for solar systems with three different collector areas.

Column [1] is the year into the future for which the analysis may be made and should correspond with worksheet LCA-2.

Column [2] is the total fuel and operating cost for the non-solar system. The first year cost is the amount on line W of worksheet LCA-I. The costs in succeeding years are determined by multiplying the cost for the previous year by (1+ fuel inflation rate).

Column [3] is the expense with a solar system and is obtained from column [12] of worksheet LCA-2 for a given collector area.

Column [4] is the savings expected with a solar system and is the amount in column [3].

Column [5] is the cumulative saving with a solar system and is the running sum of column [4].

Columns [6] and [9] are the expenses with a solar system for different size collectors, obtained from worksheet LCA-2.

Columns [7] and [10] are the savings expected with different collector sizes, determined from (the cost of the non-solar system) - (cost with a solar system).

437

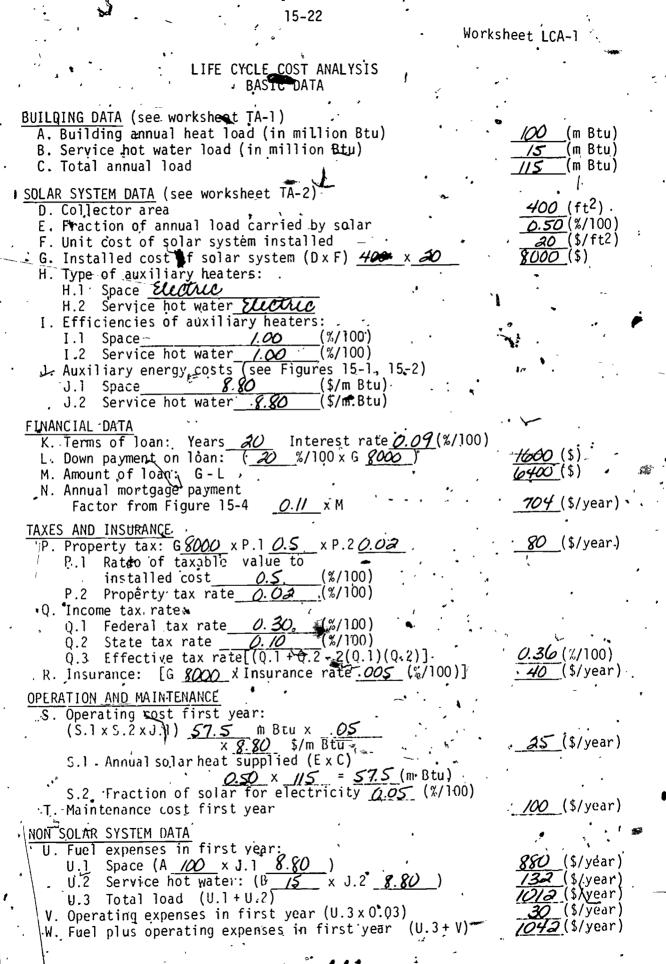
Columns [8] and [11] are the cumulative savings expected with the collector sizes specified. The collector area yielding the greatest savings is the size that is more economical to install.

15-19

Worksheet LCA-3

### LIFE CYCLE COST ANALYSIS ECONOMIC ST. WARY

[1]	[2] - ,	[3]	[4] '		• [6]		[8] ·	[9] <u>-</u>	[10]	•[1]]
	NON-SOLAR SYSTEM		-	••••	• • •	SOLAD SYSTE	· \	<u>\.</u> .	<u>\</u>	·
Year		Collect	tor area _	ft ²	Collect	or area <u>'</u>	f.€2		tor Area	ft ²
-	Fuel Plus Operating Expense	with Solar	.Savings with Solar [2] - [3]	Cumu&. Savings with Solar	Expense WithSolar fromLCA-2	Savings withSolar [2] - [3]	Cumul Savings with Solar	Expense with Solar from LCA-2	with Solar	Cumul. Savings with Solar
· 1		× •			· · ·		•			
, - 2		· · ·	G	· · ·	· · · · · · · · ·	<u> </u>		· · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·
3	· · ·	<u> </u>			· ·		· · · ·	* .	<u> </u>	• • •
5	· · · · ·	· · ·			<u> </u>		`` <u> </u>	<u> </u>	/-	
6		•	-		•		,		\	· ·
7.				*	,					· · ·
8	· · · · · · · · · · · · · · · · · · ·	1		2	<u>↓</u>	· · · · ·			· · ·	
10					<u> </u>		<u> </u>			
11			· .			• : *	• . •	· ·	· · · · · · · · · · · · · · · · · · ·	
12				ļ						
13		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		1	ļ			<u> </u>	·
15	1	· · · · · · · · · · · · · · · · · · ·		• ,	· · ·		·			<u> </u>
16				- ,				· `		
17	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	<u>↓</u>	<b>! ·</b> _;	ļ	ļ	<u> </u>	
<u>18-</u> 19	· · ·	<u> ·</u>		<u> </u>	·	, '			1	· · · ·
20	·	<b>A</b>	+	<u>├</u>	<u>├</u> _	· · ·		· ·		- <u>-</u> ,
[2]	First year cost, s Second and futurer 'previous year cos Column [12], works Column [2] - colum	year: t) x (1 + heet LCA-2	fuel infla	•	•	[7] ( ' ' [9] (	Column [2] Column [12]	], workshee - column   ], workshee ] - column	[6] . 🚝 🕳 et LCA-2	4


evided by ERIC

#### EXAMPLE

A building in Podunk, U.S.A., has an annual space heating load of 100 m Btu and water heating load of 15 m Btu. A solar system for the building having 400 ft² of collector is calculated to provide 50 percent of the annual heating load. Electricity at 3t/kWh is available and electric auxiliary heating is the only basis on which a logm can be secured.

The terms of the loan are 20-years at 9 percent with 20 percent downpayment. Property tax amounts to 2 percent on one-half the market value of the system, insurance is 0.5 percent of installed cost and the owner's income tax bracket is 30 percent for federal and 10 percent for the state income tax return. The electricity to operate the solar system is 5 percent of the total solar energy delivered as useful heat, and maintenance cost is \$100 for the first year.

• Electricity cost is estimated to escalate at 7 percent per year and general inflation rate will probably remain at 6 percent for the forseeable future. Determine the annual cash flow for the owner of the solar system for the next 20 years.



. .

ERIC^{*}

Worksheet LC	ŀΑ	-2
--------------	----	----

Ø

•

•	•4IFE	CYCLE COST ANALYSIS	
		CASH FLOW	

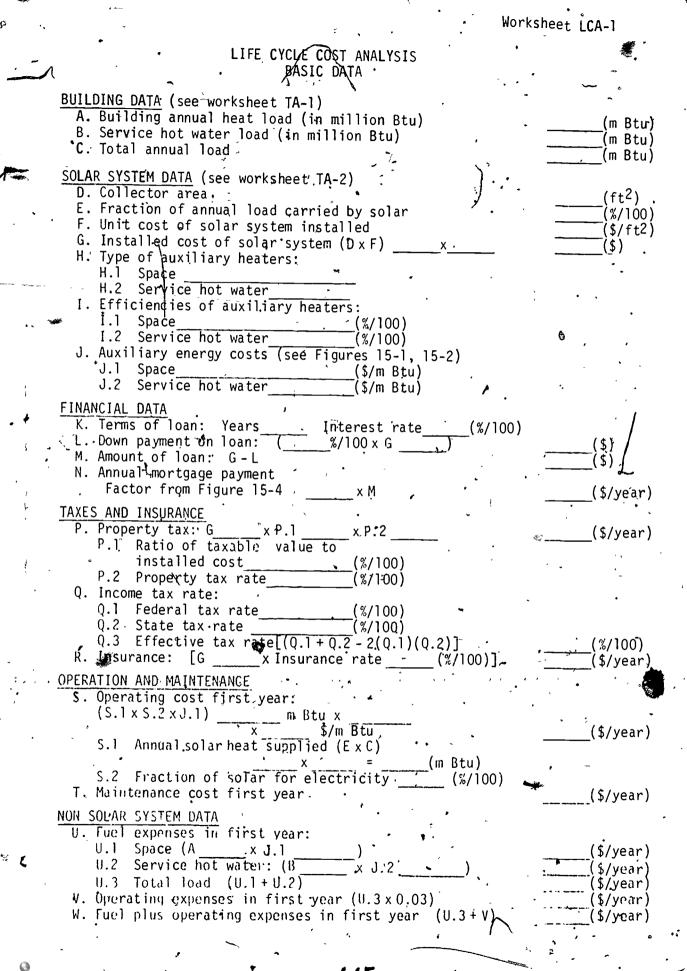
·

v

			-			x						-	
	A. M	ortgage i	nterest.	rete .	.09 %/100		ector are				ystem Co	st \$ 8;	<u> 000      </u>
					<u>a.07</u> .℃/100	Sola	rfraction	of total l	oad .5 %	/100 [	)own Paym	ien't S <u>7</u>	600_
	C: Ge	eneral in	flation	rate .	06 %/100	` (us	se workshe	et TA-2)			•	- /	
L		[2]	[3]	[4]					503	[] 0]	<b>5</b>	<b>5</b>	
	['3				[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	
·.		[Annua]	Years	Frac. o		Auxiliary Fuel	Property	,	Operating	Maintenance	Income	Expense	1
	Year	Mortgage	Left or	n Mortgag	Paid		Tax	Insurance	Cost	Cost	Tax	with	· ·
		Payment	Mortgag	le Interes		Cost			LUSL	LUSL .	Savings	Solar	
	1-1-	704	20	0.820	577	440	80	40 -	22		208	2778	·
	2	704	19	0.805		471	80	40	24	100	-204	/22/	·]
•	1 3	• 704	1 19	0.785		504	1 80	, 40	25	1/2	199	1266	.]
	- 4	704	17	0.765		539-	· 80	40	27	119 **.	194	1315	·
	• 5	704	16	10 745		-577	. 80	40	29	126	189	1367	
- 	6	- 104	15	0.720		K 617	80 .	40	3/	/34	183	1423	•
<u>د</u>	7	704	14	0.700		660	80	40	33	142 -	171	1482	
	8	. 704	13	0.670		707	· 80 ·	40	35	150	170	1546	
	9	. 704	12	10640		756	80	40	38	159	162	1615	· .
,	10	704		1 0.610	429	809	\$0	40		169	154	1688	-
	11	704	10	10.575		866	80	40	40	179	146	· 1766	1 1
	12	704	9	10.540	380	=926	80	40	46.	190	137	1849	
*	13.	704	8	-0:5:00		-991	80		50	201	127	1939	
~	14	104	1 1	0.450	317	1060 .	80	40 . 40	53	213	114	2036	
	15	704	1.6	0.400	282	· 1135 °	80 .	46	57 .	226	102	2140	
· · ·	16	104	5	1.0.350		1214.	80	40	61	\$40	. 89	2250	
- <b>.</b> .	17		.4	0.290		1298	80'	40	65	254	73	2368	
	18	104	3	0.230	) 162	1390	80	40 -	. 69	269	58	2494	
•	19		a.	0.1601		1487	80.	40	14	285 -	41	2629	
	20	704		0.085	60	1593	80	40	80.	303	22	2778	1
	[2]	Annual m	ortgage i	payment fr	rom-LCA-1,	line N	· · ·	B] See li	no D worke	Theet LCA-1		· .	
•		See Figu	re 15-5	<b>j -</b>	2011 1,					see line S,	workshoo	H I CA M	·
	ไรโ	Column [	21 x col	umn [4]	- *	-	' I	Second	and future	rec need	WUIKSHEE	LUNFI	•
	<b>↓</b> [6]	First ye	ar cost	from work	sheet LCA-1	:		(nrev	ious vear	cosț) x (1 + f	uel infl	ation	te)
		(C) x (1	- E) X.(J.	.1)	*		• []	0] First v	/ear cost s	sée line T,	worksheet		,
		Second a	nd fu	e years:				Second	and futur	e years:	not konee	s Long i	
•		first ;	year 🐻s	t) x (1 + fi	uel inflati	icn rate)	•	(prev	ious year	cost) x (1 + q	eneralir	flation	rate)
•	[7]	See line	P, works	sheet LCA	-1	·	٢ı			, worksheet			· · · <b>·</b>
,			• •	•						]+[6]+[7]+[8		הוז_נו	
9 14	12 .		~, ' <del>-</del>	,		-	Ĺ,	· • J · Domipuj	· · · ·		1.123.610	נייטייני	443

•

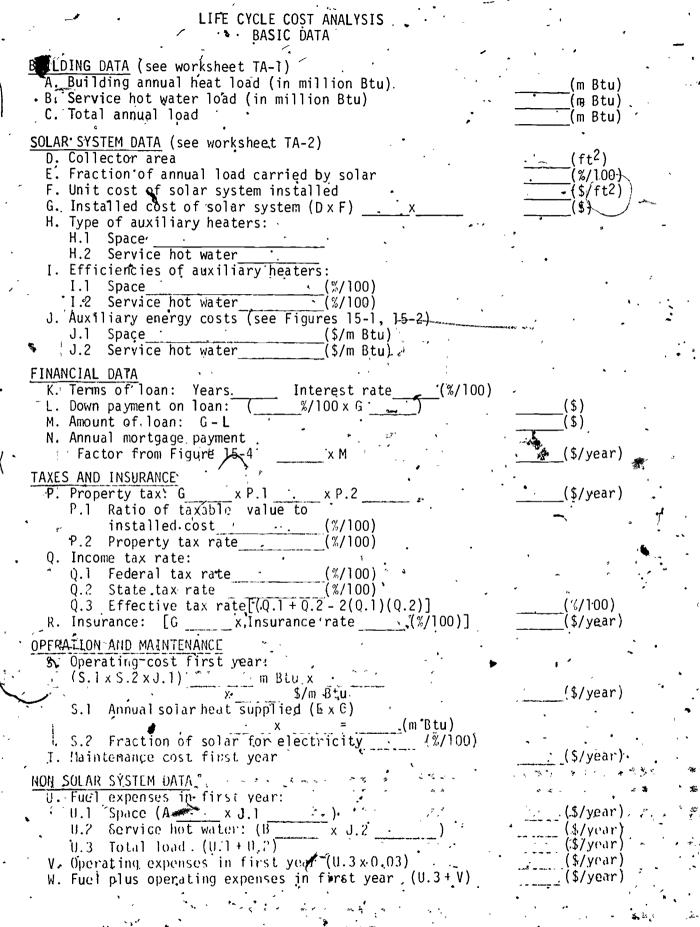
BLANK


ERIC

•

## BLANK WORKSHEET FORMS

ייי**י** ר


-444



445

•

Worksheet LCA-1



·<del>}_</del>.

	' 10 ·		· · · · · · · · · · · · · · · · · · ·	in the second se	Ĩ.	LIFE CYCL	° E COST AN	ALYSIS.				δ. νε το τη τ' ι.	\$, ₽ 3
,	م ^{الريا} نية ا			•	•	б ^а .	ASH FLOW	•		···	·^· .	9	*
-	A. No	ortgage.ig	terest ra	ate	%/100 %/100		ector are	a. noftotall			stem Cos Svn Payme		
•	-β. Αι -C. Ge	uxiliary,f eneral inf	lation [*] r	ate	%/100	· (ùs	se worksho	eet TA-2)		• \		, , , , , , , , , , , , , , , , , , ,	1
•	[î]	[2]*	· [3] • ·	<u> </u>	[5]	[6]	ິ່ [7]ັ 🌺	1.	[9]	[10]	[11] Indome	[12] , Expense	- '
• •	Year	Annual Mortgage Payment	Years Left on Mortgage		Paid	Auxiliary Fuel Cost	Property Tax	Insurance	Operating Cost	Maintenançe Cost	Tax Savings	with	· **:
					- 6		<u> </u>	¢		· · · ·	·	<u>, , , , , , , , , , , , , , , , , , , </u>	
•	• 2 ~		· · ·	}		<b>I</b>	•						1.
	4					4			152	3.	·	<u> </u>	1
	5	· _ •	~~~~	<u> </u>	<u> </u>	<u>  .:</u>		· · · ·		×	·		
	6	· .		12 .		00			· 🕈 🔋		· · ·		1 · • • · · ·
	8		,					P .			· · ·		
	, 9,	··		• , , ,	+	· · ·		· ·	<u> </u>			5.	
	10	<u> </u>		·					?	K.	<u> </u>		
• .	12.					· · ·		···	· · · ·				ي بعد
-4	• 13	*	<u> </u>				<u> </u>				1.7	• • •	لم خ
	14	<u> </u>			· · ·	· · · ·							- 4
4	16	,		·		`			· <u> </u>	· · · · ·	· · ·	<u>↓ · · · </u>	
	. 17		ļ			· · ·						+···,	
4	18	· · ·	· · · ·	<u>  · · · · · · · · · · · · · · · · · · ·</u>	e		1	1		A	,	· ·	
	20	<u> </u>	1				· · · ·	1		.]	<u> </u>	L. La	
	[2] [4] [5]	-See Figu Column [] First ye (C) x (1	re`1545 21 x colu	mn [4] rom work 1)	rom LCA-1,	1:	۰. ۲.	[9] First Jecono (pre [10] First Secono	year, cost 1 and futur vious year year cost 1 and futur	cost)x(l+f see line T, re years:	uel`infl workshee	ation ra t LCA-1	لا ـ
•			year cost			ion-rate)	>			$\cdot \cos t$ ) x (1 + c			rane)
· · · ·	r. [7]	See Mine	P, works	reet LUA	-I 			[12] Column [12] Downpa	□[⊃]/×(Q. ayment + [2	3, worksheet 2]+[6]*+[7]+[8	]+ <b>[-9</b> ]+[1)	0]-[11]	<b>-</b> ·
C ⁴	7		ني. م	*	· •	· 1	· · · /	- • • • • · ·	1		·	، ب	448

***** 

ERI FullText Previded by

.

۰.,

17

Worksheet LCA-2

**S** 

≥ 8. 1

۲

٥

Worksheet LCA-2 🐐

, **.** , **.** 

#### -LIFE CYCLE COST ANALYSIS . CASH FLOW ۰. • .

•		xiliary fi eneral.inf [2]	lation r		%/100 %/100 [5]	Sola ,(u [6]	r fraction se workshe [7]	,	oad%		own Paym י נוז	[1?]
	•	Annual Mortgage	Years Left on	Frac. of Mortgage as Interest	Interest		Property Tax	Insurance	Operation	Maintenance Cost	[11] Income Tax Savings	Expense , with
	1 • 2 3	•		1 1	, , , , , , , , , , , , , , , , , , ,	•	· · ·	· · ·	- -	· · ·		
•	4 • 5 6 7	· · · · · · · · · · · · · · · · · · ·		1 1 1								
>	/ 8 9 10	·	· · · · · · · · · · · · · · · · · · ·		0 							•
. · •	$\frac{10}{11}$ $\frac{12}{13}$				*	· · · · · · · · · · · · · · · · · · ·	*			· · ·		· · · · · · · · · · · · · · · · · · ·
•	14 .15 .16	· - · · ·	>		, , , , , , , , , , , , , , , , , , ,		,,	* :	;	P	· · · ·	
• •	17 18 19			 			÷ ,		• • •		*	
; ,	20 [2]	Annuàl mo	rtgage pa	i ayment fro	, m LCA-1 ⁻ ,	i.ine [*] N	<u> </u>	[ <u>.</u> [8] See lir	ne R, works	sheet LCA-1		· · ·
•	[5]° [6]	(C) x (1 - Second an	] x`colur r cosț fr E)X(J.1 d future	rom worksh ) years:	¥.	•		9] First y Second (prev 0] First y Second	vear cost s and future ious year vear cost s and future	ee line S, w e.years: cost)x(l+f ee line T, w e years:	uel infl workshee	ation rate) t LCA-1
49	·[7]	(first y See line∘		x(1+fue eet LCA-1		oņ rate)	۲۱			cost)x(l+g , work <u>sh</u> eet		nflation rat

Worksheet LCA-3

ć.,

. LIFE CYCLE COST ANALYSIS ECONOMIC SUMMARY.

A, Fuel inflation rate _____(%/100)

1]	[2]	[3]	[4]	[5] .		· [7]		. [9] /	[-]0]	·· [11]
	NON-SOLAR SYSTEM	, ,		•		SOLAR SYST	EM	*	• • •	•
ear•		Gollect	corvarea	ft ²	. Collect	tor yrea _	ft ²	Collect	or Area <u>·</u>	ft ²
••	•, Fuel Plus.' Operating Expense.		Savings with Solar [2] - [3]	Cumul. Savinĝs with Solar	Expense with&olar fromLCA-2	with Solar	Cumul, Savings with Solar	Expense with Solar from LCA-2		
1			· .							•
Ş			· ·	. 3					·	
3	Ţ.,		•			* *	· . ·			<u>`-</u>
• 4		2 3	<b>V</b>	· · · · · ·	· · ·	ļ	· · ·			· · ·
<u>5</u> •6		·		• •	· · ·	<u> </u>	<u>-</u>	· · ·	· · · ·	
-7-			, , , , , , , , , , , , , , , , , , ,	5		·	· · ·	•	-	· · · · · · · · · · · · · · · · · · ·
8			*	• ~	· · · · ·				•	
•9		· · · · · · · · · · · · · · · · · · ·	,				- 24	· 、	1	
10			·		· ·	-		•		•
$\frac{11}{12}$	· · · · · · · · · · · · · · · · · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	• I	<u> </u>
12	· · · · · · · · · · · · · · · · · · ·		· · · ·						<u></u>	· · · · ·
	7			· · · ·			· · · · · ·		<u> </u>	·
14 [.] 15		· · · · · · · · · · · · · · · · · · ·	7			•				
16	$\sim$		* .		L		1	··•		·
-17	ļ ' ·	· · · ·	· · ·	`				<u> </u>		
18	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·		<u> </u>		··			<u> </u>	
<u>-19-</u> 20			· · · · · ·	<u> </u>	••	· ·	,			
[2]	First year cost, s Second and future (previous year cos Column [12], works	year: t) x (1 f *	,∶ fuel infla:	•••••	vo ' i	[7] ( 7 [9] (	Column [2] Column [12]	], workshee / column [ ], workshee ] - column	6] ' t LCA-2	() * * * * * * * * * * * * * * * * * * *

-452

· · · *	•	*****	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		i a si a	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		,		sheet LCA-	
- ' 	•						÷	•	.work	sneet LLA-	3
			Q.	· · ·	LIFE CYC	E COST AN MIÇ SUMMAN	ALYSIS RY		-	·	-,* * * ;
		. Fuel inflation	rate	(%/1,00)	h-5		•	•		• •	· • • ·
أ 	[1]~~	·	[3]	[4]	• [5]	. [6]	[7]	, [8]	[9]	[10]	- <u>[i]</u>
•		NON-SOLAR SYSTEM		5÷			SQLAR SYST		· · · · · · · · · · · · · · · · · · ·	• · · · · · ·	<u>``</u> ]
·   Y	lear		4	tor area	ft ²		tor aréa _	$ft^2$	<u> </u>	tor Area	ft ^p
•	, ,	Fuél Plus Operating_Expense	with Solar	with Solar	Cumul. Savings with Solar	with Solar	Savings with Solar [2] - [3]	Cumul. Savings with Solar	/Expense with Solar from LCA-2	with Solar	Cumul Saving WithSo
: [	· 1 2			· · · · · · · · · · · · · · · · · · ·		1	•				
*	3		· · ·				,		• 1		
-5	•.5 ⁻	· · · · ·		• •	• *		· · · ·		· · · · · · · · · · · · · · · · · · ·		
~~  -	٢7				,		*			·	
	8				· · · · · · · · · · · · · · · · · · ·			· /.			
¥  -	10 11		<b>*</b>								
	12 13.	· · · · · · · · · · · · · · · · · · ·		•	• 						
	14 •15		<u> </u>			8	•=*				1.
	16 17				•		•				· · · · ·
	1 <u>8</u> 19			· ·	,	·			· · · · · · · · · · · · · · · · · · ·		,
	20· [	Einst year cost	) .	f uorkah-				Colume [10]	· · · · · · · · · · · · · · · · · · ·		•
2		First year cost, se Second and future y (previous year cos Golumn [12], works Column [2] - column	vear '		7		[7] ( , [9] (	Column [12] Column [2] Column [12]	- column.[ , workshee	[6] <b>t</b> et LCA-2	• •
	[4]	Column [2] - column	1 [3] ( '		•	· ·   ·	, j i u j	Column [2]	– co i umn	, , , , , , , , , , , , , , , , , , ,	454
	• •		8	<i>i</i> ,			121 t. ,	• • 1			•

Worksheet	TA-2

ilding Own dress:	2000		<b>~</b> , <b>4</b>	•	<del>美</del>	~	
	, ,	,	 	•			
ntractor:		·		x			
pe of Sola	r System (a	ir or liquid) <u></u>	·	•	_ ·		· . **
Locatio	n: Nearest		Ľ	atitude (	- ;,)		۰,
Mean da	ily solar r	adiation.in Jan	uary (s) ·	· .	(Btu/ft	?•day)	• •
January	solar radi	iation on a hori			•		```
. •		•	(B x 31), = '				ı)
January	building h	neat load (L)	•	•	(Btu/mo	nth) .	,
January	solar radi	iation : January	·building load				
,			(S÷L) =		(1/ft ² )		•
Collect	dr tilt	·: ℓ+	orze -	ł 			
	1	tion	· _		from so	uth	
Host La	charger To	mperature Differ	rence (Liquid s	vstems onl	v)	٥ _٢	
. /	•						
/		1 heating load:		΄. Γε'	ı.	י זנו -	[7]
• /			[4]			- <u>[0]</u>	[/]
rrul Íma a ber	1 Collector	Area Corrected	l for	, 101		• <u>SA</u> `	- f
/Fiit	Floriector Freatat Zititude <u>A</u>	Titt.	Orientation • A•	Heat Exc	hanger	Τ.	
	<u> </u>	<u> </u>					
			·	, ,			· · ·
/.		1					

455

/ ERIC

Worksheet TA-2

2

ſ

uilding Owner:	÷	· · · · · ·	•	,
Idress:			•	
ontractor:	•	- 		
vpe of Solar System (a	air or liquid) <u>'</u>	·	, 🕷	; ;**
Location: Neares	t city	<u> </u>	• .atitude (%)	
Mean daily solar i	radiation in Jan	uary (s)	(Btu/f	(2.day)
, January somr rad	iation on a hori	zontal surface	(\$)	<u>م</u>
		(B x 31) =	(Btu/f	t ² -month)
Janyary building I	neat load (L)		(Btu/m	onth)
January solar 🏞 að	iation January	building load	•	
	· · · · · · · · · · · · · · · · · · ·	(S÷L) =	(1/ft ²	) .
Collector tilt	:	or 2-	·	·
Collector Orienta	tion	degrees,	from s	outh
Heat Exchanger Te			• ·	
-Fraction of annua		•		*
		[4]		[6] [7]
[1] [2] rial Trial Collector				
umber Area at	for ~	for	• for	SA f
Tilt - Latitude	Tilt · A	Orientation ~ A	Heat Exchanger A	
7	•	•		
	*	•		
	~		· · · · · · · · · · · · · · · · · · ·	
<u> </u>	<u> </u>	,	لــــــــــــــــــــــــــــــــــــ	
[2]. Selected arb				
[3] Correction t				15 ⁰ (Fig. 14-2)
	o coquiin [3] foi	• •=		· · · · · · · · · · · · · · · · · · ·
(5) Correction t	•	r heat exchange	r (liquid system	us only)
[6] From Figure [7] Selected arb	itrarily or dete	ermined from Fi	aure 14-1 🖋	<u>,</u> .
		· · · · · · · · · · · · · · · · · · ·	<b>.</b>	۰ ۰
, ° .			_	•
•	•	, .		•

Full

WORKSHEET TA-3

SOLAR SYSTEM SIZE Type of System Α. ft² Economical Collector Area Β. . *.. degrees <u>ت</u> ک Collector Tilt 1 D. Collector Fluid Flow Rate: Air System (1.5 to 2 cfm/ft² collector), cfm 1. Liquid System (0.02 gpm/ft² collector) 2. gpm Pumps: Liquid System £. Collector loop flow rate (D.2) gpm 1. . Head ft Storage loop flow rate (1.5 x E.1) 2. gpm Head ft gpm Service water preheater 3 3. 2-3 Head ft Heat distribution coil (depends qpm 4. upon heat delivery rate) Head ft -Blowers 🔊 Air System F. c.fm Collector Poop (D.1) 1`. 1-1.5 in w.g. Head Distribution blower (provided cfm 2. in w.g. Head with furnace) One blower system (D.1) cfm 3. 1-1.5 in w.g. Head Storage: G. 1: • Liquid system Bx 2.0 gallons/ft² qal collector .  $ft^3$ Air system  $B \times 1/2 ft^3/ft^2$  collector 2. (a) Pebble size (1-in. screened concrete aggregate) ft² b) Cross-section area (D.1:20) (c) Rock depth (G.2:G.2.b) ft H. Heat Exchangers: Consult heat exchanger manufacturer

WORKSHEET TA-3

SOLAR SYSTEM SIZE

	·	•			с. , ,	
⁻ A.	Jype of System	- <b>19</b>	, , -	· ·		
Β.	Economical Collector Area	• •		· · · · · ·	_ft ² · ·	
, C.	Collector Tilt:		• * .	•	degrees *	
°D.	Collector Fluid Flow Rate 1. Air System (1.5 to 2 2. Liquid System (0.02	cfm/ft ² collect	· -	• •	efm	
Ε.	Pumps: Liquid System 1. Collector loop flow	rate (D.2)	Head		gpmaft	
	<ol> <li>Storage loop flow ra</li> <li>Service water prehea</li> </ol>	· ·	Head Head	3 2-3	gpm ft gpm ft	4
،، 	4. Heat distribution co upon heat delivery r		Head		gpm ft	
, t.	Blowers: Air System 1. Collector loop (D.1)		Head	·• <u>1-1.5</u>	cfm in <b>v</b> .g.	
i i	<ol> <li>Distribution blower</li> <li>with furnace)</li> <li>One blower,system (D</li> </ol>	· · · · · · · · · · · · · · · · · · ·	Head _	<u>{</u>	_cfm _in w₊g.・ ∽cfm	
G.	3. One blower.system (D Storage:		• Head	<u>1-1.5</u>		•
2.	1. Liquid system B x 2.0 collector	•	- /`		gal, 	· ·
•	<ul> <li>Air system B x 1/2 ft</li> <li>(a) Pebble size (1- concrete aggreg</li> <li>(b) Cross-section a</li> <li>(c) Rock depth (G.</li> </ul>	in. screened ate) / rea (D.1:20)	*		ft ³	•
.  • _  •	Heat Exchangers: Consult heat exchanger ma	nufacturer (		· · · · · · · · · · · · · · · · · · ·	• • • *	•
C.		458		· · · · · · · · · · · · · · · · · · ·		· · · ·

Full Text Provided by ERIC

TRAINING COURSE IN THE PRACTICAL ASPECTS OF SIZING, INSTALLATION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS

春香····香香

RESIDENTIAL BUILDINGS

FOR

MODULE 16

SOLAR SYSTEM SIZING

SOLAR ENERGY APPLICATIONS LABORATORY COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

459

FRIC

## TABLE OF CONTENTS

•

				,
	INTRODUCTION	· · · ·	· 、	16-1
	OBJECTIVE	λ.	•	∞-16-1
	SYSTEM SIZING PROBLEM	· · ·		16-2
	WORKSHEET TA-1 .	• • • • •		16-4
	WORKSHEET TA-2 .		ن مربع	16-6
,	WORKSHEET LCA-1 (Collector Area 400 ft ² ).	· · ·	• •	16-7
	WORKSHEET LCA-2 (Collector Area 400 ft ² ).	· · · ·	• • • •	16-8
	WORKSHEET LCA-1 (Collector Area 500 ft ² ).	• • •	• •	16-9
-	WORKSHEET LCA-2~(Collector Area 500 ft ² ).	• • • •	· · ·	16-10
	WORKSHEET LCA-1 (Collector Area 600 ft ² ).	,		16-11
	WORKSHEET LCA-2 (Collector Area 600 ft ² ).		• •	16-12
•	WORKSHEET LCA-3, Economic Summary		• •,	16-13
	WORKSHEET TA-3, Solar System Size .	•	• •	·16-14
	BLANK WORKSHEET FORMS	• • • •	· · · · ·	16-15
				•

#### .INTRODUCTION

To calculate the size of a solar system for a residential building we need to know the monthly average daily solar energy available for the location of the house, the heating load, and collector size. The balance of the system can be sized from the collector area and the economic details for the system may be calculated in desired.

Worksheets are provided to make the necessary calculations. The worksheets are:

TA-1, Building Meating Load Calculations (2/sheets)

TA-2 Solar-System Data

LCA-1 💘 Life Cycle Cost Analysis, Basic Data

LČA-2 🦽 Life Gycle Cost Analysis, Cash Flow

LCA-3 Life Cycle Cost Analysis, Economic Summary

The worksheets are explained in detail in the following modules TA-1 Module 13 TA-2 Module 14

LCA-1 to Module 15

All the worksheets are reprinted in this module.

OBJECTIVE

The trainee should be able to select the most economical solar collector area for the system.

#### SYSTEM SIZING PROBLEM

16 - 2

Design an air heating solar system for a 3-bedroom house in Boulder, Colorado, The house is to be wood frame construction with R-13 wall insulation and R-19 ceiling insulation. The dimensions of the houseare 27 by 55 feet on the main floor with a full basement and unheated garage. The ceiling height on the main floor rooms is 8'-0" and in the basement, 7'-3". There are 130 ft² of window area on the main floor with storm windows and two 3'-0" by 6'-8", 2.2" thick solid wood doors with wood frame storm doors. The basement has 30  $ft^2$  of windows with storm windows: Assume the building will have 4 occupants. The installed cost of the system will vary from  $\frac{27}{ft^2}$  for a system with 400 ft² of collectors to  $24/ft^2$  for a system with 800 ft² of collectors. Electricity is the auxiliary energy for space and water (heating, and current cost is 3.1¢/kWh. Prospects are that energy cost will increase at 8% inflation rate while the general inflation rate could be 6 The best loan negotiable is 20 years at 9 percent, with a 10 percent down payment. Property tax is 62 mils on 30 percent of assessed value. which is at market. Assume there is a state, law which exempts solar heating and cooling systems from property tax The owner of the building is assumed to be in the 30% tax bracket. and in Colorado, the state income tax rate is 8 percent for persons in the 30% federal tax biset. The insurance premium on solar systems is the same rate as a homeowners policy, and can be obtained at 0.3 percent per year based on insured value.

The solution is given at the end of the module, but participants are encouraged to size the system on their own and determine the economical collector area for the system.

**463** 

Ó

С С Building Heat Load Calculations

16-4

Job Module 16 Problem ... Number of Occupants 4 Date January 13, 1977 Computed by Latitude 40 N Location BauldER Colorado ·Indoor temperature, T_R, <u>68</u> ··· °F Design winter outdoor temperature,  $T_0, -2 \circ F$ "Design temperature difference.____70__ Design degree-day, 65 - To, _____67 °F • Building Dimensions: Width <u>27</u> ft Ceiling Height <u>8</u> ft Above Grade: Length 55 ft Depth 7.25 ft Width 27 ft Below Grade: Length 55 ft Concrete Floor Slab: Exposed perimeter O ft Exterior Wall Area:  $8 \times (55 + 27) \times 2 = 13i2 f + 2^{2}$ · 130 ft2 🕻 Window Area: · 40 ft2 2x(3×6,67). Door Area: 1142ft2 ... Net Exterior: Wall Area: Ceiling Area: 1.485 ++2 Floor Area: Basement Wall Area: 7.25(55+27)x2-30=1159 Heating Degree-Days: * January 1132 . *F-days ( DEnver) Annual 6283 °F-days * From Tuble 13-2 464

Worksheet TA-1 Sheet <u>2</u> of <u>2</u>

		4. t	-		
		U Btu \$ (hr)(ft ² )( ^O F)	Á · .	·ΔΤ ^Φ F (T _R - T ₀ )	.h = UA ∆T Btu/hr
Exterior Wa	lls (net) 🚬 🙀	7.07	11:42	70	5600 .
Basement	Above gráde			•	
-Walfs	Below grade		1159	23.*	1600
Windows	Single	•		· ·	
and	,Double	. *	• . •		•
Sliding   Patio 🕞	Triple		1 22	·. -	: ~
Doors	Storm	.56	160	70	6270
		,			
Exterior S	ab Doors		40	.70	670
Floors	Over Crawlspace			/,	,,,,,
	Concrete Slab on Grade	1,		, · · ·	•
	Basement :	.06	1485	a3*	2050
Ceiling 🚙	e		14/85	70	5200
' Subtotal (w	alls, windows, doors, fl	loors, ceiling			···&1390
Infiltratio	on; (0.018) x 37x 55x 8 f	t ³ x 70 ´°F	¥ -	· · · ·	14 970
	f subtotal (if ducts not	· · · · · · · · · · · · · · · · · · ·	envelope)		3640
. Design Heat	ing Load: Btu/hr		• • •	· · ·	
			•	•	40 000
·Design Heat	ing Load: Btu/DD		<u>`</u>	,	40,000
. Design	Heating Load (Btu/hr	(24 hr/Design	TD)- '		11/ 220.
January Hea	ting Load: m'Btu				
. (Btu/DD	) X (January DD)	<b></b>			
·		·			16.2
Annual Heat (Btu/DD	ing Load: m Btu* ))X (Annual DD)		•	•	
· · · · · · · · · · · · · · · · · · ·	<u></u>		· · · · · · · · · · · · · · · · · · ·		.90.0
$\star \Delta T = T_{R} - 45$	• •	7	ی در م		- 🔨 👝
· · · · · · · · · · · · · · · · · · ·	DOMESTIC HOT	WAALER LOAD	۰ ۰	•	•
Number	of occupants X*16,680 Bt	tu/day	66720		, , , , , , , , , , , , , , , , , , ,
January			12	7	
Annual			àn an	<i>s</i> .	,
<b>L</b>		•		•	· · · ·

*:* ·

.

٠.

t

16-5

Worksheet TA-2

SOLAR SYSTEM DATA Building Owner: Module 16. Bouldone Cotoriado Address:. Contractor: -Type of Solar System (air or liquid) Air Location: \ Nearest city Boulder, CO Latitude (2) 40 ·A. Mean daily solar radiation in January (s) = anix any ft2 day) Β. January solar radiation on a horizontal surface (S) £.  $(B \times 31) = 33,940$  (Btu/ft² month) January building heat load (L) . 16,200,000 (Btu/month) "January solar radiation : January building load  $\mathbf{P}(S \div L) = 001416 (1/ft^2)$ F. Collector tilt ... 55 : 2+ . 15 . or . 2-2. Collector Orientation _____ degrees; from south ٠G. Reat Exchanger Temperature Difference (Liquid systems only) <u>0</u> Ή. Fraction of annual heating load: ŀ. **[**6] [7] [5] [4] [1] •[3] Trial Trial Collector Area Corrected Area Corrected Area Corrected ₫SA' Areà at for. for Number főr f. × . Tilt = Latitude Tilt Orientation Heat Exchanger 400' 0.57-0.68 à 0.71, 0.78 500 0.85 0,85 6000 3 ۴. 0.99 4 100 [2]. Selected arbitrarily or determined from f [B] Correction to column [2] for tilt not equal to latitude (Fig. 14-2) [4] Correction to column [3] for orientation (Fig. 14-3) [5] Correction to column [4] for heat exchanger (liquid systems only) <[6] From Figure 14-1. [7] Selected arbitrarily or determined from Figure 14-1

16-6

- -

# LIFE CYCLE COST ANALYSIS BASIC DATA

LIFE CYCLÉ COST ANALYSIS BASIC DATA BUILDING DATA (see worksheet TA-1) A. Building annual heat load (in million Btu) G. Total Annual hoad. C. Total Annual hoad. Service hot water load (in million Btu) C. Total Annual hoad. SOLAR SYSTEM DATA (see worksheet TA-2) D. Collector area M. (f ² ) C. Total led cost of solar system (to F) 400 x 37 H. Type of auxiliary heaters: H. 1 Space MCMCL Auditatut H. 2 Service hot water Cost (%/100) J. 2: Fracting tax rate Cost (%/100) J. 1: TAKE AND INSURANCE P. Property tax rate Cost (%/100) J. S. 2: Fracting tax rate Cost (%/100) J. S. 2: Fracting Cost First year: (S.1 & S.2 & J.1 ) TB: I m Ptu x Cost M. 2: Service hot water: (% Cost (%/100) J. Maintengee Cost First year: J. 5: Coperating cost First year: J. 5: Soce A. Oct X. 1. 30 J. 2: Service hot water: (% Cost (%/100) J. Maintengee Cost First year: J. 5: Soce A. Oct X. 1. 30 J. 2: Service hot water: (% Cost (%/100) J. 3: Siter load (U.1 + 0; 2) J. 2: Service hot water: (% Cost (%/100) J. 4: Siter load (U.1 + 0; 2) J. 2: Service hot water: (% Cost (0, 03) J. 2:		
A. Building annual heat load (in million Btu) B. Service hot water load (in million Btu) C. Total annual load (in million Btu) D. Collector area D. Collector area D. Collector area H. System DATA (see worksheet TA-2) D. Collector area H. System Joan (See Norksheet TA-2) D. Collector area H. System Joan (See Norksheet TA-2) D. Collector area H. System Joan (See Norksheet TA-2) H. System Joan (See Norksheet TA-2) J. System J. J. System (J. System) J. State tax rate: JSG (See Norksheet TA-2) J. Federal tax rate: JSG (See Norksheet TA-2) J. System J. J. System J.		1
C. Total annual load $\frac{(14.3)}{(14.3)} (m Btu)$ $\frac{(14.3)}{(14.3)} (m Btu)$ $(14.$	A. Building annual heat load (in million Btu)	•
D. Collector area E. Fraction of annual fload carried by solar. F. Unit cost of solar system installed: G. Installed cost of solar system (DxF) 400 x 47 H. Space Cucluo Musicance H. Space Cucluo Musicance J. Space Cucluo Musicance M. Amount of Ioan: G-L N. Annual mortgage payment Fractor from Figure 15-4 O.M. xM Insurance Cucluo Musicance Cucluo Musicance J. Space Cucluo Musicance Cucluo Musicance J. Space Cucluo Musicance J. Space Cucluo Musicance Cucluo Musicance J. Space Cucluo Musicance Cucluo Musicance Cucluo Musicance J. Si Annual solar rate Cucluo Musicance Cucluo Musicance Cucluo Musicance J. Si Annual solar rate Cucluo Musicance Cucluo Musicancucluo Musicancucluo Musican	C. Total annual load	•
F. Unit cost of solar system installed: G. Tinstalled cost of solar system (0 x F) $\frac{400}{400} \times \frac{47}{42}$ $\frac{27}{40}$ $\frac{5}{400}$ $\frac{47}{5}$ $\frac{1}{10}$ $\frac{700}{100}$ $\frac{1}{10}$ H. Type of auxiliary heaters: H. Space $\frac{140000}{10000}$ $\frac{140000}{10000}$ I. Space $\frac{1400000}{10000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ J. Space $\frac{1}{200}$ $\frac{1}{5}$ $\frac{1}{1000}$ $\frac{1}{1000}$ J. Auxiliary energy costs (see Figures 15-1, 15-2) J. Space $\frac{1}{200}$ $\frac{1}{5}$ $\frac{1}{1000}$ $\frac{1}{5}$ $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{100000}$ $\frac{1}{10000}$ $\frac{1}{100000}$ $\frac{1}{10000}$ $\frac{1}{10000}$ $\frac{1}{100000}$ $\frac{1}{10000}$ $\frac{1}{100$	D. Collector area 400 (ft ² )	•
<pre>h. Type of auxillary heaters: H.1 Space $\mathcal{L}(200, \mathcal{L})$ Auxillary heaters: I.1 Space $\mathcal{L}(20, \mathcal{L})$ (\$/100) J. Auxillary energy costs (see Figures 15-1, 15-2) J.1 Space $\mathcal{L}(20, (\$/100)$ J. Auxillary energy costs (see Figures 15-1, 15-2) J.1 Space $\mathcal{L}(20, (\$/100)$ J. Auxillary energy costs (see Figures 15-1, 15-2) J.1 Space $\mathcal{L}(20, (\$/100)$ J. Auxillary energy costs (see Figures 15-1, 15-2) J.1 Space $\mathcal{L}(20, (\$/100)$ J. Auxillary energy costs (see Figures 15-1, 15-2) J.1 Space $\mathcal{L}(20, (\$/100)$ J. Auxillary energy costs (see Figures 15-1, 15-2) J.1 Space $\mathcal{L}(20, (\$/100)$ L. Down payment on loan: $\mathcal{L}(20, \$/100 \times G(200)$ M. Amount of loan: G - L N. Annual mortgage payment $\mathcal{L}(20, \$/100)$ P.1 Ratio of taxable value to $\mathcal{L}(20, \$/100)$ P.1 Ratio of taxable value to $\mathcal{L}(20, \$/100)$ P.1 Ratio of taxable value to $\mathcal{L}(20, \$/100)$ Q. State tax rate $\mathcal{L}(20, \$/100)$ R. Insurance: <math>[G \mathcal{L}(2000 \times Insurance rate $\mathcal{L}(20, \$/100)]$ S.1 Annual solar heat supplied (ExC) <math>\mathcal{L}(20, \$/200 \times Insurance rate $\mathcal{L}(20, \$/100)]$ S.2 Fraction of \$/3 arf for electricity $\mathcal{L}(20, \$/100)]$ S.2 Fraction of \$/3 arf </math></math></pre>	F. Unit cost of solar system installed G. Installed cost of solar system (DxF) $400 \times 27$ $\frac{27}{1000}$ (\$/ft2)	• • · · ·
1. Efficiencies of auxiliary heaters: I.1 Space $/200$ (%/100) I.2 Service hot water $7.00$ (%/100) J. Auxiliary energy costs (see Figures 15-1, 15-2) J.1 Space $9.00$ (S/m Btu) J.2 Service hot water $9.00$ (S/m Btu) FINANCIAL DATA K. Terms of Joan: Years $20$ Interest rate $9.00$ (S) M. Amount of Ioan: $6-L$ N. Annual mortgage payment Factor from Figure 15-4 $0.11$ , xM -Factor from Figure 15-4 (%/100) (S/year) P.1 Ratio of taxable value to ipstalled cost $0.945$ (%/100) Q. Income tax rate: $0.062$ (%/100) Q. State tex rate: $0.062$ (%/100) Q. Income tax rate: $0.062$ (%/100) Q. State tex rate: $0.062$ (%/100) Q. Income tax rate: $0.062$ (%/100) Q. State tex rate: $0.062$ (%/100) Q. State tex rate: $0.069$ (%/100) A must solar heat suppHed (Erx C) $3.0$ (%/100) S. 2 Fraction of Solar for electricity $0.06$ (%/100) T. Maintengage: Cost first year: $0.069$ (%/100) T. Maintengage: Cost first year: $0.069$ (%/100) Q. Stotal load (U. T+ J: 2) stot	H.1 Space dectric resistance	••
J. Auxiliary energy costs (see Figures 15-1, 15-2) J.1. Space ( $(5/m Btu)$ J.2. Service hot water $9.00$ ( $(5/m Btu)$ FINANCIAL DATA K. Terms of Joan: Years $30^{-1}$ Interest rate $9.((100)$ L. Down payment on Ioan: ( $10^{-1}$ $(100 \times 6.060^{-1})$ ) ( $1080$ ( $s$ ) M. Amount of Ioan: $6^{-1}$ N. Annual mortgage payment Factor from Figure 15-4 $0.11^{-1} \times M$ TAXES AND INSURANCE P. Property tax: $60600 \times P.1$ $30^{-1} \times P.2$ $000^{-1}$ P.1 Ratio of taxable value to isstalled cost $0.45^{-1}$ ( $(100)^{-1}$ P.2 Property tax rate $0.062^{-1}$ ( $(100)^{-1}$ Q. Income tax rate $0.062^{-1}$ ( $(100)^{-1}$ Q. State tax rate $0.062^{-1}$ ( $(100)^{-1}$ R. Insurance: $[6.02000 \times Insurance rate 0.03^{-1} ((100)^{-1}S. Operating cost first year:(S.1 \times S.2 \times J.1) 7S.1^{-1} m Btu \times 06^{-1}S. 1 Annual solar heat supplied (E \times C)S. 2 Fraction of Solar for electricity 0.06^{-1} ((100)^{-1}S. 2 Fract load ((10^{-1})^{-1} ((100)^{-1})S. 2 Fract load $	I. Efficiencies of auxiliary heaters: I.1 Space //00 (%/100)	٠
FINANCIAL DATAK. Terms of. Joan: Years1L. Down payment on loan:( $n$ M. Amount of loan:( $n$ M. Amount of loan:( $n$ Factor from Figure 15-40.11. x MFactor from Figure 15-40.11. x MP. Property tax:0.060 (\$/year)P. I Ratio of taxable value to200. (\$/year)P. 1 Ratio of taxable value to0.45. (\$/100)P. 2. Property tax:0.62 (\$/100)Q. 1 Federal tax rate0.62 (\$/100)Q. 2. State tex rate.0.62 (\$/100)Q. 3. Effective tax rate[(Q.1+Q.2+2(Q.1))(Q.2)]0.333 (\$/100)Q. 4. State tex rate.0.63 (\$/100)Q. 5. State tex rate.0.68 (\$/100)Q. 5. State tex rate.0.68 (\$/100)Q. 6. State tex rate.0.68 (\$/100)Q. 7. Federal tax rate0.68 (\$/100)Q. 8. State tex rate.0.68 (\$/100)Q. 9. State tex rate.0.68 (\$/100)S. 0perating cost first year:0.68 (\$/100)S. 1 Annual solar heat supplied ( $E \propto C$ )S. 1 Annual solar heat supplied ( $E \propto C$ )S. 2 Fraction of solar for electricity.0.6 (\$/100)T. Marnbengue cost first year:50 (\$/year)U. 1 yearses in first year:50 (\$/year)U. 1 yearses in first year:50 (\$/year)U. 1 yearses in first year:10.63 (\$/year)U. 2 Service hot water:10.70 (\$/year)U. 3 Total load (U, 1+U.2) (\$/year)10.33 (\$/year)U. 5 portic hot water:10.32 (\$/year)U. 5 portic hot water:10.32 (\$/year) </td <td>J. Auxiliary energy costs (see Figures 15-1, 15-2) J.1 .Space9.00 (\$/m Btu)</td> <td>•</td>	J. Auxiliary energy costs (see Figures 15-1, 15-2) J.1 .Space9.00 (\$/m Btu)	•
L. Down payment on loan: $(10 \ %/100 \times G \ 1050)$ M. Amount of loan: G-L N. Annual mortgage payment Factor from Figure 15-4 $0.11$ $\times$ M <u>TAXES AND INSURANCE</u> P. Property tax: $G/0800 \times P.1$ <u>30</u> $(P.2 \ .060)$ P.1 Ratio of taxable value to ipstalled cost $0.45$ $(\%/100)$ Q. Income tax rate: Q.1 Federal tax rate: Q.2 State tax rate: Q.1 Federal tax rate: Q.2 State tax rate: Q.3 (%/100) Q.3 Stifective tax rate: Q.4 Federal tax rate: Q.5 (%/100) Q.5 State tax rate: Q.6 (%/100) Q.5 State tax rate: Q.6 State: S. Operating cost first year: (S.1 x S.2 xJ.1) <u>78.1</u> m Btu x <u>6.6 S 2 1/4.5 = 78.1</u> (m.Btu)' S.2 Fraction of solar for electricity. <u>6.6 S 2 1/4.5 = 78.1</u> (m.Btu)' S.2 Fraction of solar for electricity. <u>6.6 S 2 1/4.5 = 78.1</u> (m.Btu)' S.2 Fraction of solar for electricity. <u>6.7 (%/100)</u> T. Maïntenanee cost first year: <u>4.2 (\$/year)</u> U.5 Total load (U.1 + U.2) $(3.2 \ (%/100)$ U.2 Service hot water: (B <u>24.8</u> $\times$ J.2 <u>9.00</u> ) U.3 Total load (U.1 + U.2) $(3.2 \ (%/200)$ W.0 Operating expenses in first year (U.3 x 0.03) <u>50 (\$/year)</u> <u>50 (\$/year)</u> <u>633 (\$/year)</u> <u>634 (\$/year)</u> <u>634 (\$/year)</u> <u>635 (\$/y</u>	FINANCIAL DATA	•
N. Annual mortgage payment Factor from Figure 15-4 0.11 x M <u>TAXES AND INSURANCE</u> P. Property tax: $GNSUD$ x.P.1 30 P.2 .062 P.1 Ratio of taxable value to isstalled cost 0.45 (%100) Q.2 Property tax rate 0.62 (%100) Q.3 Effective tax rate	L. Down payment on loan: ( <u>/0</u> %/100 x G <u>10800</u> ) M. Amount of loan: G-L	•
P. Property tax: $G_{NSW} x.P.1 .30$ $Y.2 .062$ $201 . ($/year)$ P.1 Ratio of taxable value to installed cost $0.45$ $($/100)$ P.2 Property tax rate 0.1 recome tax rate: 0.1 Federal tax rate 0.2 State tex rate: 0.3 Effective tax rate[ $(0.1 + 0.2 + 2(0.1)(0.2)$ ] R. Insurance: S. Operating cost first year: $($.1 \times $2 \times $1.1 \times $2.1 \times $1.1 \times $1$	N. Annual mortgage payment Factor from Figure 15-4 <u>0.11</u> x M	<del></del> *
installed cost $0.45$ (%/100) P.2 Property tax rate $0.62$ (%/100) Q. Income tax rate: Q.1 Federal tax rate $30$ (%/100) Q.2 State tax rate $30$ (%/100) Q.3 Effective tax rate[(Q.1+Q.2 $_{2}2(Q.1)(Q.2)$ ] R. Insurance: $[G.//g200 \times Insurance rate .003$ (%/100)] R. Insurance: $[G.//g200 \times Insurance rate .003$ (%/100)] $\frac{0.33}{32}$ (%/year) $\frac{0.53}{32}$ (%/year) $\frac{0.5}{32}$ (%/year)	P. Property tax: $G_{10800}$ x.P.1 .30 x.P.2 .062 201. (\$/year).	,·., · /
0.1 Federal tax rate <u>30</u> (%/100) 0.2 State tax rate <u>08</u> (%/100) 0.3 Effective tax rate[(0.1 + 0.2 + 2(0.1)(0.2)] R. Insurance: $[G/0,800$ x Insurance rate <u>.003</u> (%/100)] <b>3.3</b> (%/100) <b>3.4</b> (\$/year) <u>0005484710N AND MAINTENANCE</u> S. Operating cost first year: (S.1 x S.2 x J.1) <u>78:1</u> m Btu x <u>.06</u> <u>x 9.005488</u> Btu <u></u> S.1 Annual solar heat supplied (Exc) S.2 Fraction of solar for electricity <u>.06</u> (%/100) T. Maïntenance cost first year <u>0.68 x //4.8 = 78.1</u> (m.Btu)' S.2 Fraction of solar for electricity <u>.06</u> (%/100) T. Maïntenance cost first year <u>0.68 x //4.8 = 78.1</u> (m.Btu)' S.2 Fraction of solar for electricity <u>.06</u> (%/100) T. Maïntenance cost first year <u>0.50 (\$/year)</u> <u>0.5 Space (A 90 x J.1 900)</u> U.2 Service hot wate:: (B <u>24.8 x J.2 9.00</u> ) <u>0.3 Total load (U,1+U.2)</u> <u>0.3 (\$/year)</u> <u>0.3 (\$/year)</u> <u>0.3 (\$/year)</u> <u>0.3 (\$/year)</u> <u>0.3 (\$/year)</u> <u>3.3 (\$/year)</u>	ipstalled cost <u>0:45 (%</u> /100) P.2 Property tax rate <u>,062 (%</u> /100)	*/
R. Insurance: $[G/2,800 \times Insurance rate .003 (%/100)]^{1/2}$ <u>OPERATION AND MAINTENANCE</u> S. Operating cost first year: $(S.1 \times S.2 \times J.1)$ <u>78.1</u> m Btu x <u>06</u> $\times \underline{9.00}$ S/m Btu $\times \underline{9.00}$ (%/year) $\times \underline{9.00}$ (%/year) $\times \underline{9.00}$ S/m Btu $\times \underline{9.00}$ S/m Btu $\times \underline{9.00}$ (%/year) $\times \underline{9.00}$ S/m Btu $\times \underline{9.00}$ S/m Btu $\times \underline{9.00}$ (%/year) $\times \underline{9.00}$ S/m Btu $\times \underline{9.00}$ (%/year) $\times \underline{9.00}$ S/m Btu $\times \underline{9.00}$ S/m Btu $\times \underline{9.00}$ (%/year) $\times \underline{9.00}$ S/m Btu $\times \underline{9.00}$ S/m Btu $\times \underline{9.00}$ (%/year) $\times 9.00$	0.1 Federal tax rate $\frac{30}{0.2}$ (%/100)	、 ·
S. Operating cost first year: (S.1 x S.2 x J.1) 78.1 m Btu x 06 $\times 9.00$ S/m Btu S.1 Annual solar heat supplied (E x C) S.2 Fraction of solar for electricity 06 (%/100) T. Maintenance cost first year U.1 Space (A 90 x J.1 900) U.2 Service hot water: (B 24.8 x J.2 9.00) U.3 Total load (U.1 + U.2) V. Operating expenses in first year (U.3 x 0.03) 31 (\$/year)	R. Insurance: $[G_{10,800} \times Insurance rate .003 (%/100)] = 32 ($/year)$	١
S.1 Annual solar heat supplied (Exc) S.2 Fraction of solar for electricity. <u>06</u> (%/100) T. Maïntenance cost first year NON SOLAR SYSTEM DATA U. Fuel expenses in first year: U.1 Space (A <u>90</u> x J.1 <u>900</u> ) U.2 Service hot water: (B <u>34.8</u> × J.2 <u>9.00</u> ) U.3 Total load (U.1+U.2) V. Operating expenses in first year (U.3 x 0.03) 31 (\$/year)	S: Operating cost first year: (S.1xS.2xJ.1) <u>78:1</u> m Btu x <u>Ob</u>	. ·
T. Maintenance cost first year $50$ (\$/year)NON SOLAR SYSTEM DATAU. Fuel expenses in first year:U. Fuel expenses in first year:U.1 Space (A 90 x J.1 900) $810$ (\$/year)U.2 Service hot water: (B 34.8 × J.2 9.00) $810$ (\$/year)U.3 Total load (U,1+U.2) $1033$ (\$/year)V. Operating expenses in first year (U.3 x 0.03) $31$ (\$/year)	S.1 Annual solar heat supplied ( $E \approx C$ ) $0.68 \approx 114.8 = 78.1$ (m·Btu)'	
U.i Fuel expenses in first year: U.i Space (A <u>90</u> x J.1 <u>900</u> ) U.2 Service hot water: (B <u>34.8</u> $\times$ J.2 <u>9.00</u> ) U.3 Total load (U,1+U.2) V. Operating expenses in first year (U.3 x 0.03) V. Operating expenses in first year (U.3 x 0.03)	S.2 Fraction of solar for electricity <u>.06</u> (%/100) T. Maïntenance cost first year <u>50</u> (\$/year)	• • • •
U.2 Service hot water: (B <u>34.8</u> * J.2 <u>9.00</u> ) U.3 Total load (U.1+U.2) V. Operating expenses in first year (U.3×0.03) <u>31</u> (\$/year)	U.Fuel expenses in first year: U.I. Space (A 90 x J.1 900) 810 (\$/year)	•
	U.2 Service hot water: $(B \underline{34.8} \times J.2 \underline{9.00})$ , $\underline{aa3}$ (\$/year). U.3 Total load (U,1+U.2) ( <u>1033</u> (\$/year)	
		<b>.</b>

.

Worksheet LCA-2

LIFE CYCLE COST ANALYSIS CASH FEOW

<u>.</u>

, **t** 

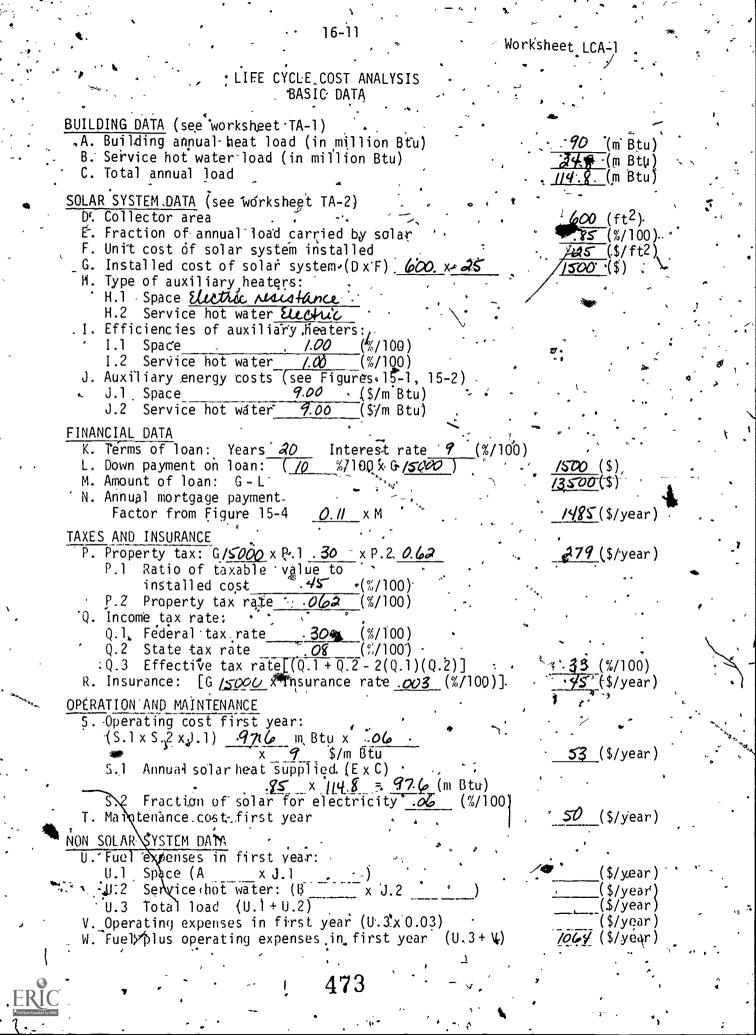
	• -	* ¹		4 / . •		*	•		· * · ·			
د ،	A. Mortgage in B. Auxiliary f	uel inflati	on rate .	08 %/100	Solar	ctor area fraction e workshe	$\frac{400}{000}$	ft 68_%/		System Cos Down Payme	st s <u>'10,</u> ent s <u></u>	800 . 080
· · ·	C. General in: [1] [2]	flation rat [3]	.e <u>.06</u> [4]	%/100 [5]`	[6]	· [7] .	√[8] →	[9]	[]0]	[11]	[12].	ı <b>)</b>
	Annual Year Mortgage	Years F	rac. of		Auxiliary Fuel Cost	Property Tax	Insu <b>#</b> ance	<b>•</b> • • •	Maintenance Cost	Turcome	Expense with Solar	•
, - •	1 1069. 2 1069 .3 1069	20 4	·82 ·82 ·805 ·12785	877 861° 839	<u>330</u> 357 386	0 0 0	32 32 32	42 . 45. . 49	50 53 56	289 284 217	2314 · 1272 1315	•
•	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17 16 15 9 14	765 .745 .720 .700	818 196 770 778	416 : 450 486 525	0 0 •0	32 32 32 32	53 · · 57 · 62 · 67	60 63 67 71	270 263 254 247	1360 1408 1462 1517	16
•	8 1069 9 1069 10 1069	13 12 11	.670 .640 . 610	716 684 652	567 612 661	0 0 0.	32 32 32 32	4 - 72 - 78 - 84	75 80 84	236 215	· 1579 1645 : 1715	• <mark>م</mark>
•	11 1069 12 1069 13 1069	10 9 8 7	.575 540 .500 .450	615 577 535 481	7/4 • 77/ • \$ 33: • 899		· 32 32 · 32 · 32	91 98 106 114	90 95 101 107	203 190 177 159	1793 1875 1964 2062	•.*
	15 1069 1.6 1069 17 . 1069	6	.400 	428 - 374 310	971 	0	32 	. 123 . 133 . 144	·//3 /20 /27	4   23  02	2167 2280° 2403	· · ·
· · · ·	18 1069 19 1069 20 1069	3	.230, .160 .085	171 - 91 -	1223 1321 1427	0	3.2 3.2 3.2	,155, 168 187	/35  43  /5	8/ 56 . 30	2533 2677 2830-	
, , , , , , , , , , , , , , , , , , ,	[2] Angual m 	re 15-5 2] x colum	ή [.4 [.] ]	, <b>)</b>	· · · · /	· · · ·	[9] First Second	year cost I and futur	sheet LCA-1 see·line S, e years:	workshee	I.	
· · · · · ·	· Second a	-E)x(0.1)	years:	:	4	ĺ	10] First	year.cost	cost) x (1 + see line T, e yeaks: cost) x (1 +	workshee	t LCA-1	469
468 ERIC	[7] See line						11] Column	1 [5] x (Q.	3, workshee ]+[6]+[7]+[	t [CA-1)		, , , ,
,				· · ·				•			· · _	

			•	٠		÷	· · · ·
ب` د		$r \sim 10^{-1}$	16-9	•	Workshe	et LCA-1	19
•		LIFE	CYCLE COST ANAL BASIC DATA	LYSIS	ĵ		•
•	A. Building B. Service C. Total a	,	oad (in million (in million B	n Błu) tu)		<u>90</u> (m Btu) <u>24 8</u> (m Btu) <u>114 8</u> (m Btu)	) - '
• • • •	D. Collect E. Fractio F. Unit co G. Install H. Type of H.l Spa	n of annual loa stoof solar sys ed cost of sola auxiliary heat ace	d carried by s tem installed r system (DxF ers:		· ·	<u>500</u> (ft ² ) <u>78</u> (%/100 <u>26</u> (\$/ft ² ) <u>73000</u> (\$)	
•	I. Efficien I.l Spa I.2 Sen J. Auxilian J.1- Spa	rvice hot water ry energy costs	ary heaters: (%/ (see Figures .9:00 (\$/1	100) 100) 15-1, 15-2) n Btu) n Btu)	•**		
•  •	FINANCIAL DA K. Terms o L. Down pay M. Amount o N. Annual r	-	<b>20</b> Interest ( <u>10</u> %/100x	t rate <u>9</u> G <u>13000</u> )		<u>/300 (</u> \$) <u>/ 700 (</u> \$) 1 <b>287</b> (\$/year)	•
	P.1 Rat	/ tax: G/3000 x tio of taxable stalled cost operty tax rate	value to .45. (%/1	2 <i>062</i> 100) 100)		<u>242 (</u> \$/year)	, t
	Q.1 Fec Q.2 Sta Q.3 Eff R. Insuranc	deral tax rate <u></u> ate tax rate <u>a</u> fective tax rate ce:`[G <u>13000</u> x	₩ .08 × (%/1	100) 100) {0.1)(0.2)] e <i>0</i> 0 <u>3_</u> (%/10	(00)]	<u>.33</u> (%/100) <u>39 (</u> \$/year)	
.	(S.1 x S.	ng cost first ye (2xJ.1) <u>89.5</u>	• m Btu x <u>• 0</u> • <b>9.00</b> \$/m Btu		· · ·	<u>48 (</u> \$/year)	
æ .	S.2 Fra	action of solar ince cost first	for electricit	<b>89.5</b> (m Btu	1) /100) 	<u>\$0_</u> (\$/year)	· · ·
· · · ·	Ur Fuel exp U.1 Spa U.2 Ser U.3 Tot	Denses in first ice (A x J vjce hot water: al load (U.14 b expenses in f	(BX) (BX) U.2)		· · · · · · · · · · · · · · · · · · ·	(\$/year) (\$/year) (\$/year) (\$/year)	
Q	W. Fuel plu	is operating exp	penses in first	year (U.3	+ 17)	<u></u>	• ••
	5	· .	470.	×			

C

			۴ 🛸	
۲	Worksheet	, LCA-2	. / .	٠.
			1 -	

_	•		ʻ 5	2				·	• . • •					
· ·	•	1 <b>x</b> =	-	<u>,</u>	•	LIFE CYCLE	COST ANA	LYSIS		•	· •			,
	· ·					CA	SH FLÓW	•						. '
,		· •		-	•	_	• • •	6 - E	· . · .	, ¹ •		•	<b>\$</b> -	•
	-	; · · .	-		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	·		•	500 ft	2	ystem Cos	st \$ /3	.000 .	
•	A. Mo	ortgage ir	iterest r		<u>', %/100</u>	Colle	ctor area	$\frac{1}{2}$	oad . <u>78</u> %/		own Payme	ent $\frac{5}{7}$	300	``
	B. Au	ıxiliary f	uel infla	tion rate.	28_%/100	Solar	e workshe	$a_{1} T_{2}$	0au <u>. /0</u> %/	- بر بر				
•	C. Ge	eneral int	flation r	ate <u>. 06</u>	%/1 <u>0</u> 0	'(us			· ·			•	•	
	[1]	[2]	[3]	[4] _	[5]	[6]	[7.] (	[8]	[9]	[10] .	[[1]]	[12]		
<u>,</u>		Annual	Years	Frac. of	• • •	Auxiliary	0		Oneusting	Maintonanco	Income	Expense		
<u> </u>	Year			Mortgage	Interest	Fuel	property	Insurance		Maintenance Cost	· · Tax	with	İ	
		Payment		as l	Paid	Cost a	Tax	<i></i>	Cost ·	COSC	Savings	Solar		
			<u>}</u>	Interest		4					·348	1603		
		1287	20	820	1055	227	0 :	* 34	48	<u>50</u> 53	342	1334		
•	. 2	1287	19.	1.805	1036	245	0	31	52	-	333	13.34	•	
	33.	.; 1287	18	.785	1010	265	0	39.	56	56	325			
	4,0;	1287	17	.765	985	289	0	39	60	60		1407		
	5		16	.745	959	309 -	-0	39	.65	63	316			
	6	1287	15	. 720	927	334	.0	. 39	. 71 .	67	306	1492		
	7_,	1287		.700	901	360	0	. 39 •	82 .	71	284	.1536		٩. او
	8,	1281	/3	. 670	867	389	0,	. 39		75	.272	1588		<u>_</u>
	9	1287	12	.640	824	420	6	. 37	. 89 .	80	259	1643		0
•	<u> </u>		<u>H</u>	1.610	785	454	0	.39	96	. 84	244	1766	]	
	<u>{ 11 ∕</u>	1287	. 10	. 575	740	490 .	0	39	104	* 90 * 95	229	1833	l	<del>م</del> .
· ,	12	1287	9.	1.540	695	529.	0.	39	112 .		2130			`,
	13	1287	8	1.500	644	572	0.	39	121	101 .	191	1907. 1991		
	<u> </u>	1287	. 7	450		618	0	39 39	/31 .	107	170	<u> </u>		٠.
	15	. 1287	6	.400	5/51	668	0 '		141	//3	149	2078 ai70	· .	5 e
-	-16	1287	5	. 350	450	721	0	<b>3</b> 9 39	152		123	2273	· · ·	
-	17	1287	4	.290	373 j	779	0.		164	127	98	2382		
•	18	1287	1 7		296.	, 841	0	39	178	/35	- 68	2501	- 1 - La	~
	19	1287	2-	1.160	206	908	0	39		, 143 15/	- 68	2629		
	20	.1287.	<u>  ·/ · ·</u>	085	. /109 _	. 981	0.	39	7	/3/	30	av .1	1	:
*	[·2]	Acoulal m	antiane :	payment fro	m LCA-T	line N	•	[8] See 11	ine≇R. work	sheet LCA-1		•	•	•
		See Figu								see line S,	workshee	t LCA-1	,	· .
e*		Column []		umn [4]	¢	•	1 × 1		d and futur		· · ·			
	161	Eirst ve	ar cost i	from workst	det ICA-	ľ: • •		' (pre	vious vear	cost) x (] +	fuel inf	lation r	ate)	-
	۲¢٦	(C' x 11	- E) X.(J.	.1)		· · · · ·	<u>، ، د</u>	10] First	vear cost	see line T,	workshee	et LCA-1	•	
·.· ,	•			years: 2	اراهي∙≌ي اس عام	• *	۔ <b>ا</b>	Second	d and futur	re years:	• •	1 .	- 47	72
ず1				t) x (1 + fu	1. Inflat	ion rate)	•	· · · (pre	vious vear	cost) x (1+	general i	nflation	n rate	)
1 L	[7]	See line	D' worke	sheet: LCA-			ſ			3, worksheet			• . •	
0	ί']	Jee The	· i s WOIKS		1 . S 🖌 🖉	, _				2]+[6]+[7]+[8		01-011	•	
ĬĊ	•	۰ ۱	•		, ²	•••••	ł		Lymentry [2	1.[0],[1],[0],[0]		, ,∨].[.,].		


:

• /

.

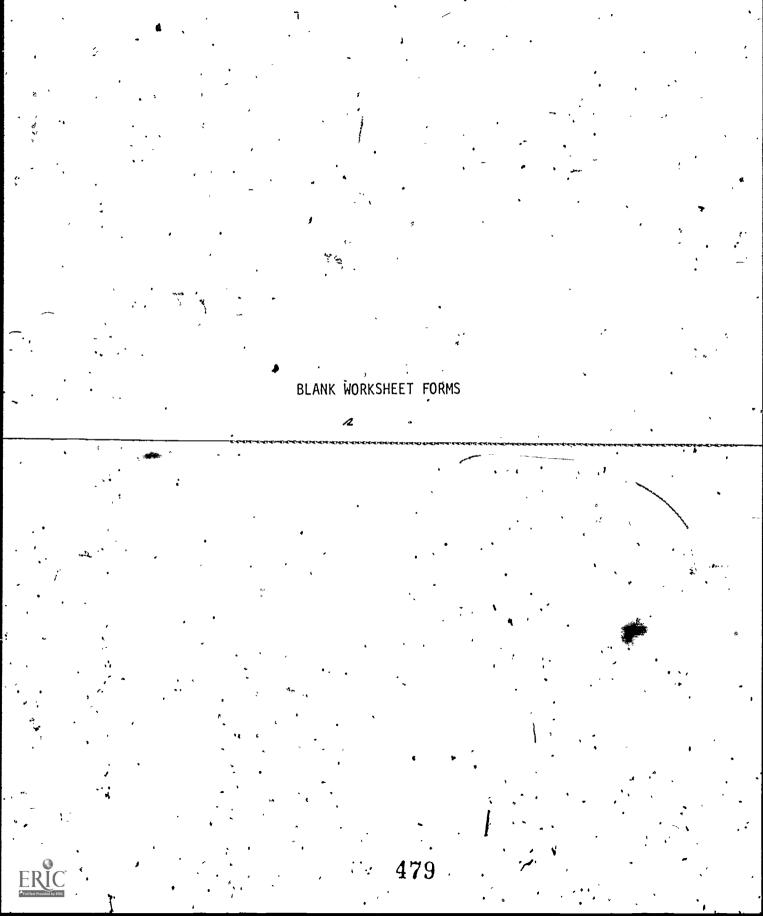
471

``





		/;	· ,	· , ·	• -	•	. * `	. ,	د •	,	•		
. • •		•		- <b>F</b>	• •	•		z		Work	sheet LCA-	21	•
· •	, <b>1</b>		· · 2·	۶	- '	LIFE CYCLE	COST AN	ALYSIS		,	•	•	•
•	B. Au	xiliary f eneral int	uel infla flation re	ate 09 tion rate	<u>6</u> %/100	Sõlar (us	e worksh	n of totallo eet TA-2)	ad . 85 %,	/100 -	System Cos Down Payme	ent \$ <u> </u>	
•	[1].* Year	Annual Mortgaĝe	[3] Years Left on Mortgage	[4] Fra <u>c</u> . of Mortgage as Interest	<pre></pre>	[6] Auxiliary Fuel Cost	[7] Property Tax	[8]	0penating Cost	[10] , Maintenanc Cost	[11] e Income Tax Savings	[12] Expense with ' Solar	•
· · ·	1 2. 3	1485 1485 1485	<pre> 20 . 19 . 19 . 18</pre>	.820 805 .785	1218 1195 1166	· 155 167 181	0000	45 45 45	53 57 62	50 53 56	· 402 394 385	2886	• •
-	• 4 5 6 7	1485 1485 1485 1485	1 <u>5</u> 14	- 765 - 745 - 720 - 700	1/36 1106 1069 1040	195 211 238 246		45 45 45 45	67 72 78. . 84	60 63 67 71	· 375 365 ·353 343	1477 1511 1550 1588	· · · ·
	8	1485	13	. 670 640 - 610 . 575	995 950 906 - 854	2.66 2.87 310 335	0 0 0 0	45 45 45	98 106 1/4	* 75 * 80 * 84 90	328 314 299 282	<u>1634</u> <u>1681</u> <u>1731</u> 1787	
1°,	1.2 13 .14	·1485 1485 .4485 .1485	10 9 - 8 - 7	.540 .500 · .450	802 743 * , 668	36/ 390 . 422	0 0 0	45 · · 45 45	124 *133. 144	95 101 107	265 ·245 220 196	1845 1909 1983	
	15 16 17 18	1485	6. 5 4 3	.40 .35 .29 .23	594 520 431 342	· 455 992 531 574	0 • 0 • 0	45 45 45 45	156 168 182 196	//3 /2/ /27 /35	172 172 172 172 172 173	-2058 2138 2228 2322	
•		1485	$\frac{2}{1}$	.16 .085 ayment'fro	238. 126	619 669	0.	. [8] See 1	2/2 229	143 157 ksheet   CA-	. 42 .	2425 2537	
*	[4] [5]	Sec Figu Column [ First ye - (C) x (1	re 15-5 2] x colu ar cost f - E) X (J.	mn [4] rom works1 1]	•	•		[9] First Second (pre [10] First	year cost d and futu vious year year cost	see line S re years: · cost)x(l see line,1	5, workshe + fuel inf	latión r	
47 <u>RIC</u>	<b>4</b> [7]	(first		years: ) x)(1 + fue heet LCA_		ion rate)		. • .(pre). [11] Columi	n [5] x (Q	pre years: r cost) x (1 .3, workshe 2]+[6]+[7]+	et.LCA+1)		


(

(

, `				* ^		·	-		, t			,
•	-	• • • •	•	-	•	. \$		* *	Works	heet LCA-3	Ŧ	;
•		1	-			E COST ANA			••	,	•	, \
1	Д	, Fuel inflation,	rate <u>08</u>	(%/100)		` <i>.</i>	.*			j	-	
,	[1]	. [2]	· [3]	[4]	[5]	[6]	[7]	[8]	[9]	[10] •	[11]	
		HON-SOLAR SYSTEM	-			ý s	OLAR SYSTI	ЕМ 🥤	Ĩ [.] .			
·· .	Year	• •	<pre>¿ Collect</pre>	or prea	400 f.t2	• / Colject	or area <u>s</u>	00 ft ²		or Area 💰	3	
		. Fuel Plus Operating Expense	Expense with Solar from LCA-2	Savings with Solar [2] - [3]	Cumul. Savings with Solar	Expense with Solar from LCA-2	Savings withSolar [2] – [3]	Cumul. Savings with Solar	Expense with Solar from LCA-2	Şavings with Solar [2] - [3]	Cumul. Savings with Solar	
6	- i 2	1064	23/4	-1250 -123	- 1250	P 603	-1539 -185	-1539 -1724	2886	- 1822	- 1822 - 2086	-
	· 3,	1241	1315 .			1370	- 129	- 1853	· ·1444-	- 203	- 2289	
	- (4, 5	1340	1360 1408	- 20 40	-1467	1407	- 67	-1920 -1919	1477	- 137 - 63	- 2426	1
	6	- 1563	1462	101	-1326	1492 .	- 71	- 1848	1550	· 13	- 2476	ω
	7	1688	1517	171	-1155	1536	152	- 1696	1588	100	- 2376	
	8	1824	· 1579 - 1645	245	- 910	1588 1643 ·	236	-1460 -1134	1634	190 288 v	- 1898	· ·
l	10	. 2127	1 1715	412	:- 174	1701	426	- 708	1731	396	- 1502	-
	11	2297	1793	504	330	1766 *	531	- 177	1787	510	- 992	1
-	<u>12</u> 13	• 2481	1875	606	936	1833	<u>, 649</u> 772	1243	1845	<u>636</u> 770	- <u>356</u> 414	-
	$\frac{13}{14}$	2894	2062	832	2483 -	1991	903	2146	1983 -	911	911	]
	15	, 3125	2167	. 958	3441	2078	1047	3/93	2058	1067	1978 -	] .
•	16	3375	2280	1095 -	4536	2/70	1205	4398	-2138-			+
	17	3645	2403	1242 '	5778	2273 /	1372	<u> </u>	2228	1417	<u>4632</u> 6247	
	18 19	<u>. 3937</u> . <u>4252</u>	2533	1575	8757	2501	1751	9076	2425	1827	8074	
•	20	4592	2830	1762	10,519	2629	1963.	11,039	2537	2055	19,129	1
	· · · · · · · · · · · · · · · · · · ·	First year cost, s Second and future	ee line W c				[6]	Golumn [12	•	et LCA-2	<b>.</b>	٠
	• [3]	(previous year cos Column [12], works	t)	fuel infla	tion rate)				], workshee ] – column		,	
_	[4]	Column [2] - colum	n [3]		•		_		• • •	· ·		イワワ
FR	ĨC76							• ·		•		411
Full Text Prov	ided by ERIC	•	,	. *	,			•		9 k	•.	1

•		WORKSHEE	T TA-3	•	•
•••	SOLAR SYSTEM SIZE		•	· · ·	
А.	Type of System	, ,	Au		-
	Economical Collector Area		500	ft ² ·	<i>7.</i>
ć C.		, , •	55 .	degrees	
<b>D</b> .	Collector Fluid Flow Rate: 1. Air System (1.5 to 2 cfm/ft ² collector) 2. Liquid System (0.02 gpm/ft ² collector)	•	1000 N/A	cfm gpm	• •
Ē	Pumps: Liquid System 1. Collector loop flow rate (D.2) 2. Storage loop flow rate (1.5 x E.1)	Head Head	N  A N A N A N A	gpm ft gpm ft	• ) •
5.	<ul> <li>3. Service water preheater</li> <li>4. Heat distribution coil (depends upon heat delivery rate)</li> </ul>	Head Head	3 2-3 N/A N/A	gpm ft gpm ft	. ``
, F.	<ul> <li>Blowers: Air System</li> <li>Collector loop (D.1)</li> <li>Distribution blower (provided with furnace)</li> <li>One blower system (D.1)</li> </ul>	Head Head	1000 1-1.5 N/A 1000		
Ģ.	Storage: •	Head	1-1.5	in w.g.	•
	<ol> <li>Liquid system B x 2.0 gallons/ft² collector</li> <li>Air system B x 1/2 ft³/ft² collector         <ul> <li>(a) Pebble size (1-in. screened concrete aggregate)</li> <li>(b) Cross-section area (D.1:20)</li> <li>(c) Rock depth (G.2:G.2.b)</li> </ul> </li> </ol>	• • • •	25D 50 5	ft ³	•
· · H.	Heat Exchangers:		• . ·		• •
· · , , ,	_ Consult heat exchanger manufacturer	•	· ·		× .
ERIC	478	• •	-		~ n •

16-14



16-15

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	, , , ,	\$ \$	Workshee Sheet <u>1</u>	
	Building Heat Load	Calculat	tions	, ' , ,	· ·
Job			umber of Oc	cupants	
Computed by	<u> </u>				
Location		La	atitude	àite	
Indoor temperature, ^T R		•F		۰ ۲	
Design winter outdoor	• •	· ·	,		` ,
Design temperature dif		-• F	, :	•	
∿ Design degree-day, 65	- '0,	<u> </u>	- -	•	· • X
Building Dimensions:		· -			1.1
. Above Grade: Length				Height	•
Below Grade: Length			Depth		_Tt,
Concrete Floor Slab:	Exposed perimeter_	ft	-		
Exterior Wall Area:					,
È.	۱ 		<b>i</b>	, 	
Window Area:				<u> </u>	
		•	· · ·	\ .	<b>,</b>
Doór Area:			•	•	
	· · · ·	<del>.</del>	<u>`</u>		
Net'Exterior Wall Area:	······	·	;	•	· · ·
Ceiling Area:					
	·····	·	·		
Floor Area:			<u> </u>		
· · · · · · · · · · · · · · · · · · ·	a				·
Basement Wall Area:	· · ·	·	*		a da campa angenation
· · ·	<u> </u>	- <u>-</u>		·	• •
Heating Degree-Days:*	January	<u> </u>	S ,		
	Annual	°F-day	'S	<del>،</del>	•
· · · · ·	· · · · · · · · · · · · · · · · · · ·	,	,	· .	• • • • •
• • •	••••	7		)	
* From Table 13-2 .	; · ·	è ·	•	F * *	• · · ·
• • · · · · ·	• •	• •		· .	• '
		• •		۰. ۲	•
	1. 480		•	· · ·	• •

Full Sax Provided by ERIC

Worksheet TA-1 Sheet <u>2</u> of <u>2</u>

:

)	• 1	• /			/ ••
(	· · · ·	Btu	:A	∆T °F	h = UA ∆T
. ,		(hr)( <i>f</i> t)(°F)		$\left( \begin{array}{c} T_{R} - \\ T_{O} \end{array} \right)$	/ Btu/hr
Exterior Wa	lls (net)			•	
Basement	Above grade			;	
Walis	Below grade '		ļ. · .	*	÷.,*
Windows	Single	• • • • •	1		, <u>, , , , , , , , , , , , , , , , , , </u>
and	Double	· · · · · · · · · · · · · · · · · · ·	1		•
Sliding . Patio	Triple	•	:		
Doors	Storm				
Exterior S1	ab Doors				
Walls, Wind	ows, and Doors	· .	† <b>`</b>	<u>`</u>	3
Floors	Over Grawlspace	•	1		
1 1 1	Concrete Slab on Grade		1		
*, , •	Basément				
Ceiling			·	• ,	,
Subtotal (w	alls, windows, doors, f		,)		
Infiltratio	n: (0.018) xf	ft ³ x°I	:		
/ Duct = 10 ' or	fsubtotal (if ducts not		envel	ope) -	Å .
Design Heat	ing Load: Btu/hr		*		•
	ing Load:	(24 hr/Design	DD)	•	•
	ting Load: m Btu ) X (January DD)	•			• •
Annual Heať (Btu/DD	ing Load: m Btu ) X (Annual DD)	· · · ·			
$\star \Delta T = T_R - 45$		· \	• •	•	
,	· DOMESTIC HOT	WATER LOAD'		• •	*
· · · · · · · · · · · · · · · · · · ·	of occupants X 16,680 B	•	1	<b></b> ,	
81.1.	OT OCCUDANTS X IN NXD B	stu/day /		.	
·					
January Annual	Load (m Btu) (Btù/day	) x 3·1 x 10-6	÷.		

ę

• Worksheet TA-2	
s SOLAR SYSTEM DATA	•
Building Owner:	¢
Address:	
Contractor:	•
Type of Solar System (air or liquid)	
A. Location: Nearest city Latitude (2)	
B. Mean daily solar radiation in January (s)(Btu/ft ² .day), &	
C. January solar radiation on a horizontal surface (S)	
$(B \times 31) = $ (Btu/ft ² month)	
D. January building heat load (L)(Btu/month)	, ,
E. January solar sadiation + January building load	2
$(S \div L) \doteq (1/ft^2).$	
F. Collector tilt: 2+ or 2	v
G. Collector Orientation degrees, from south	
· · · · · · · · · · · · · · · · · · ·	
H. Heat Exchanger Temperature Difference (Liquid systems only)	
	Į.
	, 
I. Fraction of annual heating load:         [1]       [2]       [3]       [4]       [5]       [6]       [7]         [1]       [2]       [3]       [4]       [5]       [6]       [7]         [1]       [1]       [2]       [3]       [4]       [5]       [6]       [7]         [1]       [1]       [7]       [7]       [7]       [7]       [7]       [7]         [1]       [7]       [7]       [7]       [7]       [7]       [7]       [7]         [1]       [1]       [1]       [1]       [1]       [1]       [1]       [1]       [1]       [1]       [1]       [2]       [1]       [1]       [1]       [2]       [2]       [3]       [4]       [5]       [6]       [7]       [7]         [1]       [1]       [1]       [1]       [2]       [3]       [4]       [5]       [6]       [7]       [7]         [1]       [1]       [1]       [1]       [2]       [3]       [4]       [5]       [6]       [7]       [7]       [7]       [7]       [7]       [7]       [7]       [7]       [7]       [7]       [7]       [7]       [7]       [7]       [7] <td></td>	
I. Fraction of annual heating load:         [1]       [2]       [3]       [4]       [5]       [6]       [7]         [1]       [2]       [3]       [4]       [5]       [6]       [7]         [1]       [2]       [3]       [4]       [5]       [6]       [7]         [1]       [2]       [3]       [4]       [5]       [6]       [7]         [1]       [1]       [1]       [5]       [6]       [7]         [1]       [1]       [2]       [3]       [4]       [5]       [6]       [7]         [1]       [1]       [2]       [3]       [4]       [5]       [6]       [7]         [1]       [1]       [2]       [3]       [4]       [5]       [6]       [7]         [1]       [1]       [1]       [2]       [3]       [4]       [5]       [6]       [7]         [1]       [1]       [1]       [2]       [3]       [4]       [5]       [6]       [7]         [1]       [3]       [4]       [5]       [6]       [7]       [7]       [7]         [1]       [2]       [3]       [6]       [7]       [7]       [7]       [7] <td></td>	
I. Fraction of annual heating load: [1] [2] [3] [4] [5] [6] [7] Irial Trial Collector Area Corrected Area Corrected Area Corrected Number Area at for for SA f	
I. Fraction of annual heating load:          [1]       [2]       [3]       [4]       [5]       [6]       [7]         [1]       [2]       [3]       [4]       [5]       [6]       [7]         [1]       [2]       [3]       [4]       [5]       [6]       [7]         [1]       [2]       [3]       [4]       [5]       [6]       [7]         [1]       Trial Collector Area Corrected Area Corrected For       Area at for       for       for       for         [1]       Tilt = Latitude       Tilt       Orientation       Heat Exchanger       L       f	
I. Fraction of annual heating load:         [1]       [2]       [3]       [4]       [5]       [6]       [7]         Itial       Trial Collector       Area Corrected       Area Corrected       Area Corrected       for       <	
I. Fraction of annual heating load:         [1]       [2]       [3]       [4]       [5]       [6]       [7]         Itial       Trial Collector       Area Corrected       Area Corrected       Area Corrected       for       <	
I. Fraction of annual heating load: [1] [2] [3] [4] _[5] [6] [7] Irial Trial Collector Area Corrected Area Corrected Area Corrected for for $\frac{SA}{for}$ Tilt = Latitude Tilt Orientation Heat Exchanger L f	
I. Fraction of annual heating load:          [1]       [2]       [3]       [4]       _[5]       [6]       [7]         [1]       [2]       [3]       [4]       _[5]       [6]       [7]         [1]       [1]       [1]       [2]       [3]       [4]       _[5]       [6]       [7]         [1]       [1]       [1]       [2]       [3]       [4]       _[5]       [6]       [7]         [2]       Selected arbitrarily or determined from f	
I. Fraction of annual heating load:          [1]       [2]       [3]       [4]       [5]       [6]       [7]         Init       Trial Collector       Area at for	
I. Fraction of annual heating load:          [1]       [2]       [3]       [4]       _[5]       [6]       [7]         [1]       [2]       [3]       [4]       _[5]       [6]       [7]         [1]       [1]       [1]       [2]       [3]       [4]       _[5]       [6]       [7]         [1]       [1]       [1]       [2]       [3]       [4]       _[5]       [6]       [7]         [2]       Selected arbitrarily or determined from f	
I. Fraction of annual heating load:          [1]       [2]       [3]       [4]       _[5]       [6]       [7]         Initial Trial Collector Area Corrected Area Corrected for Area at Thit = Latitude Tilt       Area at Area at Area A A A A A A A A A A A A A A A A A A A	
I. Fraction of annull heating load:          [1]       [2]       [3]       [4]       [5]       [6]       [7]         Inial Trial Collector Area Corrected Area Corrected for Area at Tilt = Latitude Area Corrected Area Corrected Area Corrected Area Corrected Area Corrected Area Exchanger L       f         Init = Latitude A.       A       A       A       A       f         Init = Latitude A.       A       A       A       A       A       A       A         Init = Latitude A.       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A	

ζ

1

¥

482

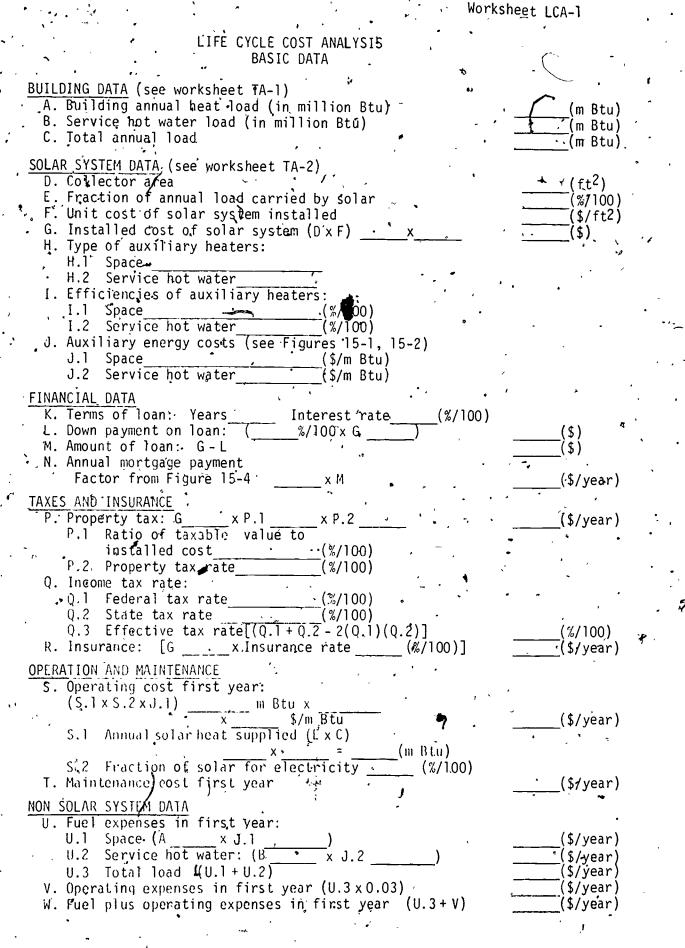
ħ

SOLAR SYSTEM DATA Building Owner: Address: * 🎽 Contractor: Type of Solar System (air or liquid) Location: Nearest city ____ _____Latitude (1) Α. B., Ċ. January solar radiation on a horizontal surface (S) ____(Btu/ft².month) (B x'31) = January building heat load (L). _____(Btu/month) D. , January solar radiation ÷ January building load Ε. '(S÷)) ≐ (1/ft²) Collector tilt _____: . . . . . . . . or . . ____. F. Collector Orientation G. Heat Exchanger Temperature Difference (Liquid systems only) Η. Fraction of annual heating load: 1. [4] . 1[5] [6] [7] [1] [2]<u>·</u> [3] Trial Collector Area Corrected Area Corrected Area Corrected 'Trial <u>SA</u> Number Area at for . for for ••` Orientation Heat Exchanger Tilt = Latitude Tilt, Α A Δ. --, , [2] Selected arbitrarily or determined from f [3] Correction to column [2] for tilt not equal to latitude (Fig. 14-2) [4] .Correction to column [3] for orientation (Fig. 14-3) [5]. Correction to column [4] for heat exchanger (liquid systems only)

[6] From Figure 14-1

FRIC

[7] Selected arbitrarily or determined from Figure 14-1


lorksheet LCA-J LIFE CYCLE COST ANALYSIS . BASIC DATA BUILDING DATA (see worksheet TA-1) A. Building annual heat load (in million Btu) 💊 (m[°]Btu) B. Service hot water load (in million Btu) (m Btu) C. Total annual load (m Btu) SOLAR SYSTEM DATA (see worksheet TA-2)  $(ft^2)$ .D. Collector area ' E. Fraction of annual load carried by solar F. Unit cost of solar system installed -(%/100) _(\$/ft2), G. Installed cost of solar system (DxF) _____ x ____ (\$) H. Type of auxiliary heaters: H.1 Space H.2 Service hot water I. Efficiencies of auxiliary heaters: (%/100)., Space I.1 Service hot water (%/100) J.2 • J. Auxiliary energy costs (see Figures 15-1, 15-2) J.1 Space (\$/m Btu) J.2 Service hot water (\$/m Btu) FINANCIAL DATA FINANCIAL DATA 😕 🛀 K. Terms of loan; Years_____ Interest rate L. Down payment on loan; (____%/100×G____ <u>(%/100⁴)</u> M. Amount of loans G-L (\$) N.'Annual mortgage payment Factor from Figure 15-4 _____x M (\$/year) P. Property tax: G_____x P.1____x P.2____ 1 TAXES AND INSURANCE (\$/year.) P.1 Ratio of taxable value to installed cost (%/100) P.2 Property tax rate (%/100) Q: Income tax rate: Q.1 Federal tax rate_____(%/100) Q.2 State tax rate_____(%/100) Q.3 Effective tax rate[(Q:1+Q.2-2(Q.1)(Q.2)] _____(%/100)] R. Insurance: [G ______x Insurance rate_____(%/100)] _____(\$/year) OPERATION AND MAINTENANCE . S. Operating cost first year: (S.1 x S.2 x J:1) ____ m Btu x ____ ____ \$/m Btu · ____(\$/year) . S.I Apprual solar heat supplied (ExC). _(m`Btu). S.2 Fraction of solar for electricity ____ (%/100) _(\$/year) T. Maintenance cost first year NON SOLAR 'SYSTEM DATA U. Fuel expenses in first year: (\$/year) U.I Space (A x J.I .U.2 Service hot water: (B. _____x J.2 <u>. (</u>\$/year) (\$/year) (\$/year) (\$/year) U.3 Total load. (U.1+U.2) V. Operating expenses in first year (U.3 x 0.03) W. Fuel plus perating expenses in first year (U.3+V)

484

	Worksheet LCA-1
LIFE CYCLE COST ANALYSIS BASIC DATA	
BUILDING DATA (see worksheet TA-1) A. Building annual heat load (in million Btu) B. Service hot water load (in million Btu) C. Total annual load	(m Btu) (m Btu) (m Btu)
SOLAR SYSTEM DATA (see worksheet TA-2) D. Collector areas E: Fraction of annual load carried by solar F. Unit.cost of solar system installed	(ft ² ) (%/100) (\$/ft ² )
<pre>G. Installed cost of solar system (DxF)x H. Type of auxiliary heaters: H.T Space H.2 Service hot water</pre>	
<pre>1. Efficiencies of auxiliary heaters: -² 1.1 Space (%/100) 1.2. Service hot water (%/100) J. Auxiliary energy costs (see Figures 15-1, 15-2) J.1 Space (\$/m.Btu)</pre>	
J.2 Service hot water (\$/m Btu) <u>FINANCIAL DAJA</u> K. Terms of loan: Years Interest rate L. Down payment on Ioan: (\$\sum_k/100 x G^{-1}) / M. Amount of loan: G-L N. Annual mortgage payment Eactor from Figure 15-4 . x M'	_(%/100) (\$) (\$) (\$/year)
TAXES AND INSURANCE         'P. Property tax: Gx P.1x P.2_         P.1 Ratio of taxable value to         installed cost       (%/100)         P.2 Rroperty tax rate       (%/100)         Q. Income tax raté:       (%/100)         Q.1 Federal tax rate       (%/100)         Q.2 State tax rate       (%/100)         Q.3 Effective tax rate[(0,1+0,2-2(Q:k)(Q.2)]       R. Insurance: [Gx Insurance rate(%/10)	(\$/year) (%/100)
OPERATION AND MAINTENANCE S. Operating cost first year: (S.1xS.2xJ.1) m Btu x x \$/m*Bty	(\$/year)
T. Maintenance cost first year	u) 6/100) (\$/year).
NON SOLAR SYSTEM DATA U. Fuel expenses in first year: U.1. Space (A	)(\$/year) (\$/year) (\$/year) (\$/year) 3+V)(\$/year)

#### LIFE CYCLE COST ANALYSIS . * BASIC DATA

BUILDING DATA (see worksheet TA-1) A., Building annual heat load (in million Btu)' (m Btu) B. Service hot water load (in million Btu). (m_Btu) C. Total annual load (mˈBtu) SOLAR SYSTEM DATA (see worksheet TA-2). D. Collector area (ft²) E. Fraction of annual load carried by solar (%/1 🌒 F. Unit cost of solar system installed (\$/,ft2) G. Installed cost of solar system (DxF) 👘 \$) H, Type of auxiliary heaters: H.1 Space H.2 Service hot water I. Efficiencies of auxiliary heaters: (%/100) 1.1 · Space I.2 Service hot water ´、**(%/**100) J. Auxiliary energy costs (see Figures 15-1, 15-2) Space____ - J.] (\$/m Btu) J.2 Service hot water __(-\$/m Btu) FINANCIAL DATA K. Terms of loan: Years Interest rate (%/100) %/100 x G. L. Down payment on loan: ·• ' (\$) M. Amount of loan: G-L (\$) N. Annual mortgage payment 🕔 Factor from Figure 15-4 \$/year) хΜ TAXES AND INSURANCE. _x P.T P. Property tax: G x R, 2. 【\$/year) P. Ratio of taxable value to installed cost . ' (%/10.0) P.2 Property tax rate (%/100) Q'. Income tax rate: ·Q.1" Federal tax rate (%/.1.00) _(%7100) •Q.2 State tax rate • 0.3 Effective tax rate[(0.1 + 0.2 - 2(0.1)(0.2)] (%/100) R. Insurance: [G 🐅 🔹 x Insurance rate  $(\frac{2}{100})$ \$/year) OPERATION AND MAINTENANCE S. Operating cost first year: (S)1 x S.2 x J.1) \$/m Blu (\$/year) S.1 Annual solar heat supplied (ExC) (m Btú) S.Z Fraction of solar for electricity -(%/100) (\$/year)[.] T. Maintenance cos<u>t</u> first year NON SOLAR SYSTEM DATA U. Fuel expenses in first year: (\$/year) U.] Space (A x J.] • U.2 Service hot water: (B 🔭 x J.2 (\$/year) U.3 Total load (U.1+U.2) (\$/year) V. Operating expenses in first year (U.3×0.03) (\$/<u>ye</u>ar) W. Fuel plus operating expenses in first year (U.3+V)* (\$/**3**ear)



•	• • •	•	۹. ۲.		<b>*</b> -	LIFE CYCLE C/	E COST ANA ASH FLOW	ALYSIS .	• ' •		•	-
-	B Au	ortgage in uxiliaryf eneral in	uel infla	tion rate.	%/100 %/100 %/100 %/100	Solar	ector årea rfraction e workshe	oftotal lo			ystem Co own Paym	
	[1]	[2],	[3]	[4]	[5]	[6]	<b>`</b> .[7]	[8]	. [9]	[ <b>ì</b> ]	[11]	
•	Year	Annual Mortgage Payment	loft on	Frat. of Mortgage as Interest	Interest Paid	Auxiliary Fuel Cost	Property Tax	Insurance	Operating Cost	Maintenance Cost	Income Tax Savings	
•	1				· _		· · · · · · · · · · · · · · · · · · ·				<u> </u>	· · ·
	$\frac{2}{3}$				,		<u> </u>	•				
	4 `	•	· · ·			· _ ·						
•	5	· - ·		•				•	*			· · · · · ·
•	7	· · ·							· · ·			
•	8	. \					1	· · ·	r	1		
	9	· ·			•		<u> </u>	<b>j</b>	·			·
	10						•	,			<u> </u>	<b>.</b>
	12			- 3	<u>ر</u> `	× ' .			(35.	<u></u>	<u> </u>	
•	13			•			_			*		
_	14	• 	•	``		<u>`</u>						
	15 16	· · ·			· 、	· · · · ·					<u> </u>	
•	17			• •				• •		<u> </u>	· ·	· · · ·
	18,	*				<u>.</u>						
	19	. ,			·			•		,	· •	
•	20	<b>\</b>		,		·			· · · ·	L	<u> </u>	<u> </u>
88	[4] [5] [6]	See Figur Column [2 First yea (C)x(1 Second ar (first y	re 15-5 2] x .colur tr cost fr - E) X (J.1 nd future year cost)	rom workst  )	neet LCA-	<b>]::</b> : '	·.,,	[9] First Second (prev 10] First Second (prev 11] Column	year cost l and futur vious year year cost l and futu vious year [5] x (Q.	<pre>cost) x (1 + see line 1,</pre>	fuel inf workshee generali LCA-1)	lation rate et LCA-1 nflation ra 4

,

Worksheet LCA-2

# LIFE CYCLE COST ANALYSIS

* 		B. Au	ixiliary f	nterest ra uel infla flàtion ra	ate ;:on_rate	%/105 %/105 %/105 %/130	Solar	ctor area fraction e workshe	of total lo		t ² /100	S D	ystem Co: own Paymo	st \$ ent \$	 
		[1]	[2]	[3] .		[5] ·	[6]	[7]	[8]	[9]	[10]	./	[41]	[12]	•
х. Х.	•	Year		Years Left on Mortgage	Frac, of Mortgage. as Interest	Interest Paid	Auxiliary Fuel Cost	Property Tax	Insurance	Operating Cost	Mainte Cos		Income Tax Savings		
	,	. ]				·		•		· · · ·	¥	•			-
		2		 			<i>r</i>	•	· · ·			<u> </u>			
	-		•		<u> </u>			~ •	04	2					•
•	, ,	5	·			1			ļ		• •	, 	<u> </u>		
•		6	•						· · · ,						•
	1	- 1/ -	<u> </u>		· · · · ·							• •	†. :	· · ·	
		- 9-	<u>_</u>			````		,			e				
	c	10	· · · · · · · · · · · · · · · · · · ·	1		·				·		• •	· ·	·	
)		11	¥					•		· · · · · · · · · · · · · · · · · · ·	1		ł	· .	
· -		12					· · · · ·		· · · · ·	· · · · ·		,			•
`		14	¥					-				·		· · · · · · · · · · · · · · · · · · ·	
		15 -	,				•		· · ·					<u> </u>	
		16		· · · ·	· · ·	<u>.                                    </u>	A-1.				Ţ.		· · · ·	· · · ·	
•	· · ·	17 1'8					1 ²⁴ 1 ¹² .						<u>.</u>		
		19.		1								•			
•	J	20									l í		·	L	
A O	· · · · · · · · · · · · · · · · · · ·	[4] [5] [6]	See Figur Column [2 First yes (C) x (1 Second an (first )	re-15-5 2] x colu ar cost f -E)X(J. nd future year cost	rom works } years:	ňeet LCA- ′ el ınflat	,	•	[9] First Secon (pre [10] First	d and futu vious year n [5]·x (Q	see ]i re year see li re year cost) .3, wor	ne S, s: x (1 + ne T, s: x (1 + kshee	workshe fuel inf workshe general ¢_LCA-1)	lation « et LCA-1 inflatio	n rate)

Worksheet LCA-2

•	<b>م</b>	•	, 		•		LE COST AN	ALYSIS	• •	•	,	۱	
		•	•				CASH FLOW	ء ه م ن		· · · ·		<b>b</b>	• •
	<b>B.</b> Au	• ntgage in nxiliary f eneral inf	uel infia	tion rate	. [*] _%/100 %/100 %/100	Sol	lector are arfraction use workshe	of total 1	f oad%		ystem Cos Iown Paymo		,d ^o
	[1]		• [3] ·	[4]		· [6]	[7]	[8]	•[9]	[10]	[11]	* [12]	°.
	Year	Annual Mortgage •Payment	left on	Frac. of	Interest	Auviliar	Y Property : Tax	Insurance	Operating Cost	Maintenance Cost	Income Tax Saviņgs	Expense with Solar	· · · · ·
۰ ۰	1			1	•_•			•			+		-
1	$\frac{2}{\sqrt{3}}$		· · · ·	1						· · · ·			- '
	4	r			* (ge.			-				· · ·	
· ., ·	5,		l		· , ·		• • • • • • • • • • • • • • • • • • •			• • • •	· · ·	<u>                                     </u>	
	• 7	:		1				· · ·	· ·	,	1		A "
*	8:				· · · · · ·	· · · ·	•	· · · · · · · · · · · · · · · · · · ·	······	· · · · · · · · · · · · · · · · · · ·		ļ	
** * •	<u>.9.</u> 110		<u>}</u>				• /	2-1 0	•	• ,	1		•
· · ·	11	· · · · ·				· · · · ·			·	•	· ·	·	
· ` ,	12.	· · · · ·			· ·	· · ·	· · · · · · · · · · · · · · · · · · ·		··	•		<u></u>	
•	+ 14	• 		+	- 5 -	, .	~~		· · ·			· ·	* .
هم ^{ار} د ج		•			. :	•		·				·	• •
• • •	16		• • • • • •		••••••		<u>, i</u>				······	<u> </u>	•
	18					<u> </u>	1.1.		<u> </u>		·		
	19	7	·.·					<u>_</u>	•			·	
.1 `	20	· · · ·	1		L	1	<u> </u>		1. ,	L	<u>¥</u>	<u> </u>	1
<b>491</b>	[4] [5] [6]	See Figur Column [2 First yea (C) x (1 Second an (first s	re 15-5 2] x colu ar cost f - E) X.(J: nd future year cost	róm workst	neet LOA- el inflat	l':	)	[9] First Secon (pre [10] First Secon (pre [11] Colum	year cost d and future vious year year cost d and futu vious year n [5] x (Q	_cost) x (1+ see line T,	workshee fuel inf workshee general t LCA-1)	lation r et LCA-l, inflation	
	•	۰. ب		¥	· · · · .	•	· · · · ·		_ ·	÷ -	, , ,		

Worksheet LCA-2

۱.

## LIFE CYCLE COST ANALYSIS CASH FLOW

٠١

* • • *	B. A	bortgage in Nuxiliary f General inf	uel infla	tion rate_	%/100 %/100 %/100	Solar	ctor area fraction e workshe	of total lo		2 Sy 100 Do	, ystem Cos own Payme	ent S	, , ,
	[1]		[3]	[4]	[5]	[6]	. [7] 🧹	[8]	<b>[9</b> ]	[10]	[11]	[12]	•
• • • •		Annual Mortgage	Years Left on	Frac. of	Interest Paid	Auxiliary Fuel Cost	Property Tax		Operating Cost	Maintenance Cost	Income Tax Savings	Expense with Solar	· · ·
• '	1	;		-	·						<u> </u>	<u>├</u>	
		:4	ļ	<u> </u>		·•		,	·	· · · · · · · · · · · · · · · · · · ·			
	<u> </u>	t / *	<u>  · · </u>	1			<u>.</u>	<u> </u>				·····	
	· · · · ·	· · · · · · · · · · · · · · · · · · ·		V	·	·							-
	6	1	<u> </u>	· · · · · · · · · · · · · · · · · · ·				· · ·			I	<u> </u>	
•	1.7	······································		·							<u> </u>	<u> </u> !	
	8			1	•				-			<u>↓</u>	
٠	9		1		•	× · ×	· · ·	·			<u> '</u>	<b></b>	.
•	10	1.	1			ļ,	ļ.,	<u>;</u>	· · · · ·	· · · · · · · · · · · · · · · · · · ·		<u></u>	1
•				<u> </u>		. `		<u> </u>	·	<u> </u>		<u></u>	
	12	,i	ļ. [,]	<u> </u>	<u> </u>			<u> </u>	*•			+	
		· · · · · · · · · · · · · · · · · · ·		J	·			h	· · · · · · · · · · · · · · · · · · ·		1.	11	}.
	.14		· · · · ·	· · · ·	┝		<u> </u>			- (	1.		
		<u> </u>		<u> </u>			· · ·	11 .	;				
	16							·····	-	,	·		
`	18		<u> </u>	······				• 4			<u> </u>	<u> </u>	· · ·
					·				· · ·	· · · · ·	4	<u> </u>	
•	20		1,	1				<u> </u>	<u> </u>			<u> </u>	1
<b>49</b>	[2 [4 [5 [6	] Annual m ] Şee Figu ] Column [ ] First ye (C)x(l Second a	re \$5-5 2] x colu ar cost f - E) X (J. nd future year cost	mn [4] rom works 1)- years: ) x (1 + fu	heet LCA- el inflat	•	, , , ,	[9] First Secon (pre [10] First Secon (pre [11] Colum	year cost d and futu vious year year cost d and futu vious year n [5] x {Q	cost) x (1 + see line T,	workshe fuel inf workshe general t LCA-1)	flation'r et LCA-1 inflation	ate) _ nrate)

ſ

	•	. *	· •	LIFE CYC	LE <b>C</b> OST AN	ALYSIS	•	, r	• .	
•	· · ·			•	OMIC SUMMA	RY ,				•
Þ	A. Fuel inflation	n rate	(%/100)	•	Ň	<u>^</u>	٩	•		
[۱] ک	[2]	[3]	<b>[</b> 4]	[5]	[6] ·	[7]	. [8]	. [9]	[10]	. [11
	NON-SOLAR SYSTEM	•		•	,	SOLAR SYSTI	EM			
Yea	ŕ	Collec	tor area	ft ²	Collec	tor area	ft2	Collec	tor Area	ft ²
	Fuel Plus Operating Expense	Expense with Solar	Savings with Solar	Cumul. Savings	Expense with Solar	Savings with Solar	Cumul. Savings	Expense with Solar	Savings with Solar	Cumu Savir
<b>.</b>				with Solar	Trom LLA-2		with Solar	from LCA-2		with S
-2	2.	·	·	<u> -`</u>		<u>_</u>		•		<u> </u>
	*		*			····	· · · · ·	<u>├</u>	·	· ·
				<u>e</u>	, , , , , , , , , , , , , , , , , , ,					
	· · · · · · · · · · · · · · · · · · ·				• •					
7					1		·	•·-	·	· · ·
· 8								·		
10			<u> </u>		<u> </u>					
	S		+			·	,			ļ.,
12	· .							· ·	· · ·	
13		\$				N		<b>۲</b> ــــــــــــــــــــــــــــــــــــ	·	
14		` ` <u>`</u>	}	·	<u> </u>	•				
$\frac{1}{16}$				·	·			•		<u>                                      </u>
17							· · · · · ·	•	*-	<u> </u>
18		r •				`				<u> </u>
· 19			, ,					4		···
20		<u> </u>	<u> </u>		l				Ĺ	
[2	] First year cost, Second and future	see line W ( syear: st) x (1 +				[7] C	olumn [2]	, workshee - co]umn [ , works <del>h</del> ee	[6] .	

• ,

. <

.

.

5

		e e
	Alexal in the second	FCA 3
	Worksheet	LUA-3
•		
	· · ·	•

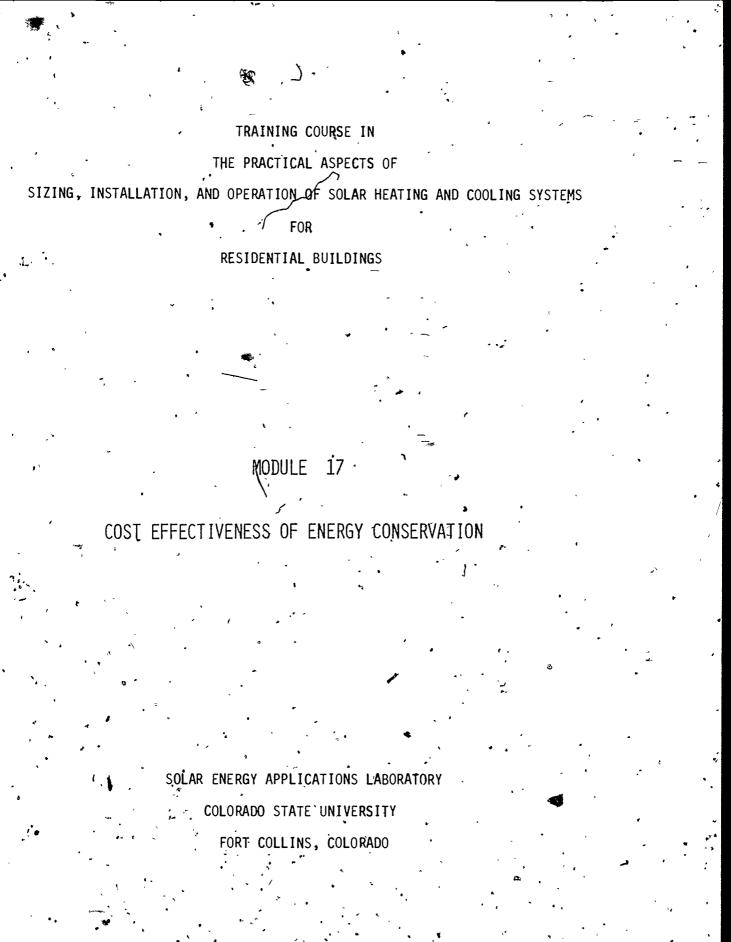
LIFE CYCLE CO		
ECONOMIC	SUMMARY	•

(%/100) Fuel inflation rate ____ Α.

[1]	[2]	[3].	[4]	· [5], ·	[6] .	[7]	[8]	[9]	[10]	[11]
ر ب] 			ý			 Sõlår syste			··	· · · · · ·
	NON-SOLAR' SYSTE	N -	• .	•	'		`	<u>````</u> .	· ·	· · · · · · · · · · · · · · · · · · ·
Vani	-	Colle	ctor area <u> </u>	ft.2	. Colfect	or area	ft ² 、	• Collecto	or Area	ft ²
Year		Expense	· Savings		Expense	Savings	Cumul.	Expense	Savings	Cumul.
1	Fuel Plus	lwith Soli	arlwith Sola	r Savings	with Solar	with Solar	Savings	with Solary	with Solar	Savings
N .	Operating Exper		-2[2] - [3]	with Solar	from LCA-2	[2] - [3]	with Solar	from LCA-2	[2] - [3]	with Solar
	P	<b>`</b>								
2						,		· · ·	• ‹	· .
- 3					, ,		•			<u> </u>
4		-{			•		**			
5				•		•				· · ·
. 6	*		•	•	· ·	· · · · · · · · · · · · · · · · · · ·	l	<u> </u>		
7				· ·			<u>·</u>	· · ·		ļ
8	1				•				<u> </u>	
9		· · · · · · · · · · · · · · · · · · ·			· · · ·	· •	<u> </u>			
10					<b> </b>	<u> </u>	<b>├</b> ───			
-11			<u> </u>				<u> </u>	┣━━━━━╋		
12					<u> </u>	· · · · · ·		<u>↓ · · · · · </u> ↓		<u> </u>
13			·		· · · · · · · · · · · · · · · · · · ·		<u></u>	<u> </u>		
14				• • • • • •			<b>-</b>			
16										
17			2	· · ·			1		·	
18								<u></u>		<u>t</u>
19				a !			•	<u> </u>		ļ., <u>`</u>
20			*	1		L	· · ·	<u> </u>	<u> </u>	1
[2	[] First year cos Second and fut (previous year	ure_year: ' cost) x (1 ·	+ fuel infla		• •	[7] ( [9] 1	Column [2] Column [12	], workshee - column [ ], workshee	6] t LCA-2	<b>e</b> - ¹
<b>S</b> . [3	8] Column [12], w 6] Column [2] - c	orksheet LCA	-2 .	, , , , , , , , , , , , , , , , , , ,		[10] • •	Column [2	] - column	· · ·	497

'+

WORKSHEE₹ TA-3


SOLAR SYSTEM SIZE A Type of System B. Economical Collector Area ft² C. Collector Tilt degrees D. • Collector Fluid Flow Rate: Air System (1.5 to.2 cfm/ft² collector) 1. cfm Liquid System (0,02 gpm/ft² collector) gpm Pumps: Liquid System / Collector loop flow rate (D.2) 1. qpm Head ft 2. Storage loop flow rate (1.5 x E.1) qpm Head ft 🗠 · Service water preheater gpm 🖌 2-3 Head ft Heat distribution coil (depends ·gpm upon heat delivery rate) Head ft Blowers: Air System F. Collector loop (D.1) 1. cfm Head 1-1.5. in w.g.[.] 2. Distribution blower (provided cfm with furnace) Head in-w.q. 3. One blower system (D.1) c fm Head 1-1.5 in w.g Storage: 1. Liquid system Bx 2.0 gallons/ft² ga 1 collector ··· -2. Air system Bx 1/2 ft³/ft² collector Pebble size (1-in. screened (a) concrete aggregate) Cross-section area (D.1:20) (b) (c') Rock depth  $(G_2 : G.2.b)$ H. 9 Het Exchangers: Consult heat exchanger manufacturer

WORKSHEET TA-3

, , ۰ 3-۱

SOLAR SYSTEM SIZE

-	*	• • • • • • • • • • • • • • • • • • •		n .	•
	Α.	Type of System		· 	• •
ı	B.	Economical Collector Àrea			ft ² '
•	C.	Collector Tilt	-	- • · ·	degrees
	D.	Collector Fluid Flow Rate:			<i>(</i> ,
		1. Air System (1:5 to 2 cfm/ft ² collector)		•	Cfm
	-	2. Liquid System (0.02 gpm/ft ² collector)			_gpm
	Ε. `	Pumps: Liquid System	×.		
	•	1. Collector loop flow rate (D.2)	۲ ۰.۰۰	<u>ن</u>	gpm ,
-			Head		ft、
	\$ ±1	'2 Storáge loop filow rate (1.5 x E.l),	Head		gpm ft
•	<b>-</b> а	3. Service water preheater		3	gpm
•	,		Heada	2-3	ft
		4. Heat distribution coil (depends upon heat delivery rate)	·Head	·	gpm     . ft
	F. •	Blowers: "Air System		<u>م</u> ر ب	
<b>د</b> •	•	1. Collector loop (D.1)	📢 Head	1-1.5	cfm in w.g.
	•	2. Distribution blower (provided with furnace)	Head		cfm in w.g.
	~	3. One blower system (D.1)		. ,	cfm
•			Head	. 1-1.5	in w.g.
	G.	Storage:		,	•
• `		<ol> <li>Liquid system B-x 2.0 gallons/ft2 collector</li> </ol>	٦		gal _ '
	•	2. Air system Bx1/2 ft ³ /ft ² collector	r		ft ³
٠.	• _	(a) Pebble size (1-in screened 🔹	•	· .	•
ì	*	<ul> <li>concrete aggregate)</li> <li>(b) Cross-section area (D.1 ± 20)</li> <li>(c) Rock depth -(G.2 ± G.2.b)</li> </ul>	-		ft ^{2 ``} ft
	H.	Heat Exchangers:	•		×
		Çonsult heat exchanger manufacturer	¥	• ,	•
•				æ ,.	•
		еч., 2 Х			· ·
	•			•	*



500

ERIC

6	TABLE OF CONTENTS	<b>~</b>	<b>c</b>	, ⁽³	, : -	
' Lis	st of Figures.		•		17 22	• •
	t of Tables	•••	•	•	. [;] 17-ii, . 17-ii	•
- 	RODUCTION	N	`.		· ,	
•		••••	•••	•	. <u>17-1</u> . 17-1	:
ENE	RGY CONSERVATION MEASURES	• •	、 <b>•</b>	•	17-2	۰.
•	OVERALL HOUSE DESIGN	•••	•	• • •	17-2 17-2	
-	WALL CONSTRUCTION AND INSULATION	• •		· ·	17-3 、	•
, ¹	FLOOR INSULATION	• •	•	• •	17-3	•
• • •	INFILTRATION REDUCTION	•••	• , • •	• •	17-4	-
<u></u> EFFI	ECTLVENESS OF ENERGY CONSERVATION MEASURES	· ·	•	• •	17-4	•
	REDUCTION IN HEAT LOSS RATES	•••		• •	17-9 17-9	ۍ مد
- Enef	RGY CONSERVATION AND SOLAR SYSTEMS	••••	•	· · · · · · · · · · · · · · · · · · ·	17-3	
•	NO REDUCTION IN COLLECTOR AREA	· · ·	•	• 、•	17-13	
	REDUCED COLLECTOR AREA ~	•••	•	•••	17-13 '	

سبيم ري ري

		- : · · · ·	· · · · · · · · · · · · · · · · · · ·	, ,	•				·• . •.	** [	•
	ي د م د م		, ,	•	17-ii		• • -		•	•	
	· · ·		•	· ·		ð		, , , , , , , , , , , , , , , , , , ,		•	• •
**	• :	•	· · ·	អ្មែរst of	FIGURES	•	<b>.</b> .	•	•	-	
	Figure			ç.	•	• •			<u>Page</u>		:
. + <b>h</b>	17-1	Example Ho	use .	•	• • •	• L. •	· - m	× . :	17-5	• •	-
•		÷ • ,	J "	°		×	Ų		• •	· ·	
•	· •		••	-		÷	• •	· ·	Ŧ		•
- 53 F	- `بار هرچ س	•	, f	LIST 0	F' TABLES	<u>*</u>	•	л ,	· •	•	
* <b>•</b>	<u>Table</u>	• •	• <b>*</b> 5	• •,	_	• • •	ţ		Page ·		•
•	17-1	'Calculated	d Heat Lo	ss_Rate	• s for the	Example	House	· · ·	17-6	• .	-
	17-2	Annual Co	st for He	eating t	ĥe Exampl	e House I	Based on	4¢/kWh			•
· ·		Electrici	ty and 69	6 Inflat	ion Rate	• •	•	<b>r</b> 	17-15		• '
<b>-</b> .		e '•		•	· • _ ·	•		÷ ě			
( 	).	· .	~			·	• •	-	-	• •	
	{		· · ·		•		۰ ۲		•		7
· ·	•	· •	•	ы. Ф		·	ې -	۰ ۱		-	
			$\sim$	~ ~	4						
-	f 4	<b>~</b>	•	·. •			•	• •	• •	-	•
•	4	, ,				·	• •	•,	́х		
4 .	• •		٠	0			•	e	• •		•
<u>,</u>			,		·	1		*		• •	
	•	•		•	· · · ·		• _				
	•		•	1	•	•	•	•	•		,
.*			ι	•.	•		•	τ,	•		
	• _	* .	·				•				
	۰ <u>ب</u>	~	<u>,</u>		• •	•			ʻ_	с. Х	•
	• ,	•	ج				•	•			
⊾ (	¥	3.	´ 3			· 			2	•,•	,
, * •			• ,	,	•	•	• •	a • • <u>•</u> • •	۰ ۱	•	•
-	, ·		¢	I	502	÷		,		•	,
FRIC		-					•	•	, •.		• •
Full Text Provided by ERIC	· · · ·	••• • •		· ·		•					•

#### INTRODUCTION

17-1

Rising energy prices is a strong incentive to reduce energy consumption, and a way to conserve energy in buildings is to reduce heat losses. There are many ways this can be done, the most direct being to provide more insulation in walls and ceilings of new buildings, reduce window area, and use double pane windows and storm doors. While these energy conserving measures are obvious, there are physical and economic limits beyond which energy conserving measures are not effective. This module concerns the cost effectiveness of practical energy conservation measures in residential buildings that provide economic returns on invested capital.

#### OBJECTIVE

The objective of the trainée is to recognize the merits of specific energy conservation measures in residential buildings and their effect on the economics of solar heating and cooling systems. At the end of this module the trainee should know:

1. The amount of insulation that should be placed in buildings,

• walls and ceiling

2.

- The effectiveness of storm windows, doors and multiple glazing to reduce keat losses
- 3. The effectiveness of lowering the thermostat by two degrees, in winter

The impact of energy conservation measures on solar heating and cooling systems.

ENERGY CONSERVATION MEASURES

17-2

#### OVERALL HOUSE DESIGN

The arrangement and orientation of a house can strongly influence the energy requirements of the house. For example, changing the shape of a house can change the heat loss rate. A one story house with outside. dimensions of  $32 \times 50$  feet can have a heat loss rate as much as 700 Btuh less than a house having dimensions of  $25 \times 64$  feet, even though both have the same floor area, wall insulation (R-11) and window area. A reduction of wall height from 8 feet to 7-1/2 feet for the  $32 \times 50$  foot house can result in a further reduction of about 450 Btuh. An L, T, or H shaped house requires more heating energy than a rectangular house because of greater wall area for the same floor area. A 24 x 50 foot house with a 20 x 20 foot L has the same floor area as the  $32 \times 50$  foot house but there can be a greater heat loss rate by as much as 1000 Btuh.

Locating an unheated garage or a blocking wall on the side of the house toward the prevailing wind (usually the north or northwest) can reduce the winter heating load when the wind is blowing. A similar effect can be obtained by planting natural windbreaks. A protected entrance way to the building or an air lock entrance can also reduce energy needs.

WINDOWS AND DOORS

The window area for many houses is about 15% of the floor area. If this can be reduced to 10% there will be reduction in both initial glass cost and heat loss rate. With double pane windows, heat losses can be reduced by as much as 3000 Btuh. Reduction in window area

can be achieved by raising the silf height without sacrificing the view or lighting. As much as 25 to 30 percent of the heat loss from the house occurs through doors and windows. The use of storm doors and windows will reduce this loss by 50 percent.

### WALL CONSTRUCTION AND INSULATION

Walls constructed with 2 x 4 studs on 16-in centers have space for 3 1/2 inches of R-11 insulation. By framing the wall with 2 x 6 studs on 24" centers, insulation can be increased to R-19, with 40 percent reduction in heat loss rate. New types of sheathing are available with an insulation value of R-5. In older homes where there is often no wall insulation, mineral wool or similar material can be blown in to achieve an insulating value of about R-7.

Basement walls that extend above grade can be insulated on the interior surface by adding furring strips and insulation which can be covered with gypsum board or plywood. In moderate climates, 2 x 2 furring strips with R-7 insulation is effective, and in extremely cold climates, 2 x 4 furring strips with R-11 insulation may be considered.

FLOOR INSULATION

Floors over unvented crawlspace should be insulated along the perimeter walls of the crawlspace. Vapor barrier on the ground will also help to reduce heat losses to the ground. If the crawlspace is vented, insulation should be installed between the joists. Pipes and ducts passing below the floor should be insulated, as the heat should be conserved in delivery and the heat lost from the pipe or duct will not be useful for heating the enclosure.

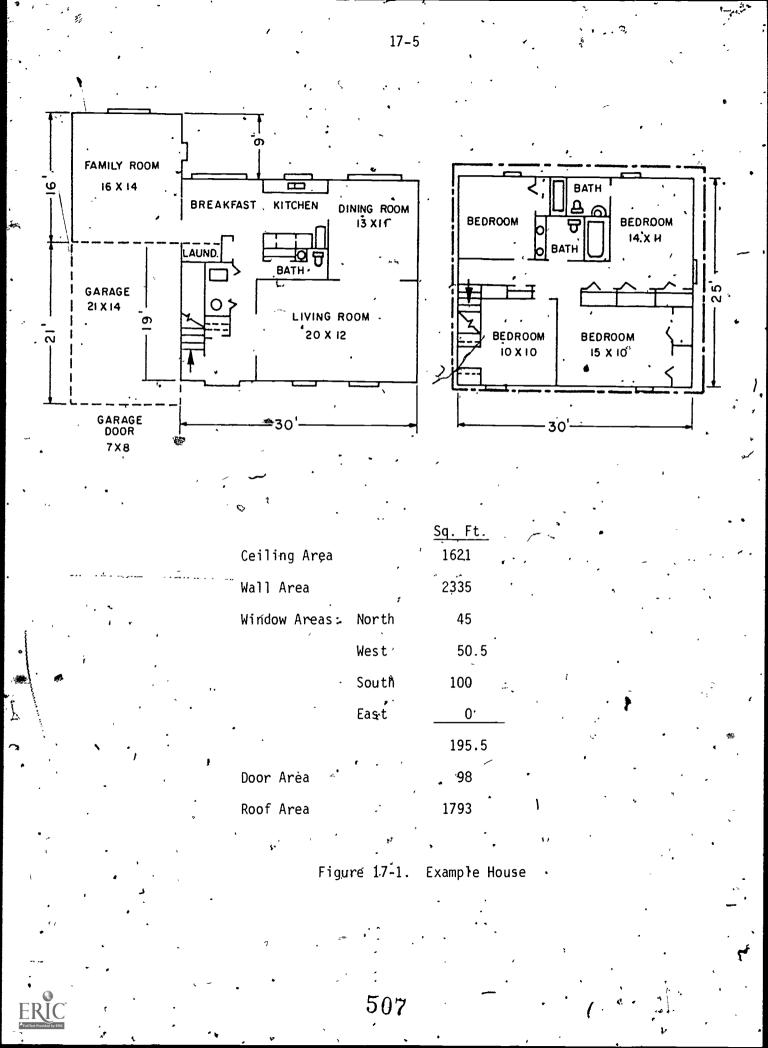
#### CEILING INSULATION

Ceiling insulation to R-30 can easily be attained and is recommended. The minimum insulation should be to R-19.

#### INFILTRATION REDUCTION

Infiltration of air accounts for half or more of the total heat losses from a building and can be reduced markedly by sealing, caulking and insulating the end plates of the floor joists on the basement walls, around door and window frames and at intersections of walls. The holes around pipes, ducts and wires where they pass through walls and ceilings should be caulked and insulated.

Other ways to reduce infiltration include use of tightly closing flaps on exhaust vents, design fireplaces to draw outside air for combustion, or petter still, eliminate fireplaces.


If a building is heated uniformly indoors to 70  O F, reducing the "thermostat setting to 68  O F- can reduce the heat losses by as much as 2 to 3 percent, depending upon the location. For a building with a heat loss rate of 50,000 Btuh, this can mean a reduction of about 1000 Btuh.

### EFFECTIVENESS OF ENERGY CONSERVATION MEASURES

The effectiveness of energy conservation measures is illustrated through calculation of heat losses for a moderate-sized house as shown in Figure 17-1. The house is a simple two-story building and is to be located in a region where the winter heating degree-days is 6000. The calculated heating loads for this example house are listed in Table 17-1 along with basic variations in insulation and types of doors and windows. The design ambient temperature is  $-10^{\circ}$ F and the indoor temperature is 68

005

17-4



Calculated Heat Loss Rates for the Example House (Figure 17-1) Table 17-1. .

.

17-6

J.

•			•			
, L	INE	WALL INSULATION	CEILING. ' INSULATION	DOORS	WINDOWS	BTUH HEAT LOSS
	1	R-0	R-7	Solidwood 1.5 in.	Single glass 100% glass	88,846
•	2	R-0	R-7	Solidwood 1.5 in.	Single glass 80% glass	87,234
	3	<b>R-</b> 0	R-7		Single glass 80% glass	87,0
-	4°,	<b>R-</b> 0	Ŕ-7 °,	Storm metal & 1.5 in. Solidwood	Single glass 80% - glass ,	86,989
	5	<b>R-</b> 0	R-7	Solidwood - 1.5 in.	Double insulating Double glass 80% 3/16 in. air space	82,077
-	6 '	R-0	R-7∙ ↓	Solidwood 2.0 in.	Double insulating Double glass 80% 3/16 in. air space	81,916
	7	<b>R-</b> 0	·R-7,	Storm metal & 1.5 in. Solidwood	Double glass 80% Double insulating 3/16 in. air space	81,832
* 4	8	R-0	R-7	Solidwood 1.5 in.	Triple insulating. Triple glass 80% - 1/2 in. air space	77,605 *
	9 ັ	R-0	R-7	Storm metal & 2.0 in. Solidwood	- Triple insulation Triple glass 80% 1/2 in air space	77 ,229
•	10 (	- R-7	R-7	Solidwood 1.5 în.	Single glass 100% glass	66,636
	11	R-7	R-7	Solidwood 1.5 in.	Double insulating Double glass 80% 3/16 in. air space	59,867
	* 12 *	R-7	R-27	Storm metal & 1.5 in. . Solidwood	Triple insulating**, Triple.glass-80% 1/2 in.' air space	55,149
•	, 13 _,	R-7	R-11 )	^Solidwood 1.5 in.	Single glass 80% glass	<b>62,5</b> 00
	14-	R-7	R-11	Storm metal & 1.5 in. Solidwood	Single glass 80% glass	62,255
• •			¥	508	•	•

508

Þ

٤

÷

## Table 17-1 (continued)

LINE	WALL- INSULATION	CEILING INSULATION	DOORS	, <u>WINDOWS</u>	BTUH HEAT LOSS
• 15	R-7	R-11	Solidwood 1.5 in.	Double insulation - Double glass 80% 3/16 in. air space -	57,343
16	R-7	R-11	Storm metal & 1.5+in. Sol,iatwood	Double insulating Double glass 80% 3/16 in. air space	57,102
- 17	R-7	R-11	Storm mețal & 2.0 in. Solidwood	Triple insulating Triple glass 80% 1/2 in. air space	52,496
18	R-11	R-11	Solidwood 1.5 in.	Single glass Double glass 80% 3/16 in. air space	58,987
19	R-11	R-11	Storm metal & 1.5 in. Solidwood	Double insulating Double glass 80% - 3/16 in. air space	53,585
20	R-11	R-11	Storm metal & 2.0 in. Solidwood	Double insulating Single glass 80% Emissivity = 0.2	49 <u>,</u> 525 ·
21	R-11 .	R-11	'Storm metal & 2.0 in. Solidwood	1/2 in. air space Triple insulating Triple glass 80%, 1/2 in. air space	48,983
. 22	R-11	R-19	Solidwood 1.5 in.	Single glass 100% glass	58,233
23	R-11	R-19	Solidwood 1.5 in.	Single glass 80% glass	56,621
24*	R-11 -	R-19	Solidwood 1.5 in.	Double insulating Double glass 80% 3/16 in. air space	, 51,464
25 <b>°</b>	R- 1, I	R-19	′Solidwood 1.5 in	Double insulating Single glass 80% Emissivity = 0.2 1/2 in. air space	47,534 •
≝ 26	R-11	R-19	Storm metal & 1.5 in. Solidwood	Double insulating Single glass 80% Emissivity 80% 1/2 in. air space	-47,288
. 27	•R-11	R-19	Storm∛metal & 2.0 in. Solidwood	Triple insulating Triple glass 80% 3/16 in. air space	46,616
	· · · ·	•	509	s	v

ERIC

÷

4

, ±

12

509

17-8

Table 17-1 (continued)

LINE _	WALL INSULATION	CEILING INSULATION	DOORS	WINDOWS	BTUH - HEAT LOSS	
28	R-0	, R-11	Wooden Door 1.5 in	Single glass 100% glass	86,303	₩, ₩
29 /	R-O	R-19	Wooden Door' 1.5 in.	Single glass . 100% glass	83,915	•
ر30 -	R-7	R-0	Wooden Door 1.5 in.	Single glass 100% glass	84,698	• •
· · 31	R-7	R-11-	Wooden Door ( 1.5 in.	Single glass	64,112	
32	R-7 .	R-19	Woodeh Door 1.5 in.	Single glass 100% glass	61,743	
33	R-11	- <b>R-0</b>	Wooden Door	Single glass 100% •glass	81,165	
- 34-	R-11.	R-7	Wooden Door 1.5 in.	Single glass 100% glass	63,120	
35	R-11,	R-11	Wooden Door 1.5 in.	Single glasş 100% glass	60,599	
36	R-19 -	- <b>R-0</b> -	Wooden Door 1.5 in.	Single glass 100% glass	, 77, 748	
37	R-19	R-7	Wooden Door 1.5 in	Single glass 100% glass	59,720	
່_ 138	R-19	→ R-11	Wooden Door ' 1.5 in.	Sinģle glass 100% glass	57,202	
· 39	R-19	R-19 ·	Wooden Door 1.5 in.	Single glass 100% glass	54,838	`
.40	R-0~	R-0	Wooden Door 1.5 in.	Single glass 100% glass	107,032	
. 41	R-19 -	R-40	<ul> <li>Wood Storm Doors</li> <li>&amp; 2.0 in.</li> <li>Solidwood Doors</li> </ul>	Triple insulating 1/2 in. air space & Storm windows	40,079	•
•	. !	ł .		60% glass=wood sash	、	

Total Door Area = .98 Sq. Ft. 45° Pitched Roof No Basement

ERIC

Consider that the basic design for the house includes R-7 insulation in the walls, R-11 insulation above the ceiling, solid wood doors and single glass windows. The basic design condition is identified by the box in Table 17-1, (line 13), and the calculated heat load is 62,500 Btuh for the design condition.

#### REDUCTION IN HEAT LOSS RATES

When a double-glazed window replaces the single-glass window (line 15) in the example house, the heat loss rate reduces from 62,500 Btúh tó 57,343 Btuh, which is a reduction of 5,160 Btuh. With double glazing and increased ceiling insulation the heat loss rate reduces further to 51,460 Btuh for a total reduction of 11,040 Btúh from the original condition. Other energy conserving features can be compared from the tabulated values. The cost-effectiveness of the energy conservation measure is dependent upon energy cost, rate of energy cost increase, interest and terms of the loan for money borrowed to implement the energy conserving measure, property tax if any, increase in annual insurance premium and savings on income taxes.

#### ENERGY CONSERVATION COST AND SAVINGS

The methodology for determining the cost and benefits from investments made in energy conservation fractices is presented. Using the example building, suppose that the ceiling insulation thickness is increased from 3 1/2 inches to 6 inches, changing the R factor from R-11.to R-19, and the wall insulation is increased from R-7 to R-11. This results in reduction of heat loss rate from 62,500 Btuh (line 13, Table 17-1) to 56,621 Btuh (line 23), or 5879 Btuh, (say 5900 Btuh).

The reduction in heat loss rate will mean a reduction in consumption of energy. The amount of energy saving is determined as follows: The design heating temperature difference is:

TD =  $68^{\circ}P - (-10^{\circ}F) = 78^{\circ}F;$ 

the design heat load for the base design is 62,500 Btu per Nour. The heat requirement for degree-day is:

 $\frac{62,500}{78}$  x 24 = 19,300 Btu/DD.

The reduction the heat loss rate because of the added insulation is (62,500 -56,621)'x 24/78 = 5879 x 24/78 = 1809 Btu per DD. For a heating season with 6240 DD, the savings in energy is:

 $1809 \times 6240 = 11.3 \text{ mBtu}.$ 

From Figure 15-2, with electric resistance heating at 3¢/kWh, the heating cost is \$8.80 mBtu. The annual dollar savings is:

 $\frac{\$8.80}{\text{mBtu}}$  x 11,3 mBtu = \$100.

The total cost of insulation to effect a savings of \$100 annually in heat costs is determined as follows: The extra ceiling insulation of 3 inches is about \$0.09/ft², including installation, or 0.09 x 1621 = \$146 (see Figure 17-1for ceiling area), and for the walls, the added costs are about \$0.05/ft², or 0.05 x 2336 = \$117. The total added cost for insulation is about \$263. Although in this example it is readily seen that with \$100 annual energy cost savings, the added \$263 cost for insulation is returned through fuel savings in less than three years, we will continue through with this example to illustrate the economic analysis. Let us assume that the money for

insulating was borrowed at seven-percent interest and 15-year loan. The annual repayment factor from Figure 15-4 is 0.11, so that the mortgage payment on the loan is:

### Annual Mortgage Payment = 0.11 x 263 = \$29/yr

In addition to the mortgage, there are property tax and insurance to be paid at an annual rate of, say; 1.5 percent of the added cost or, 0.015 x 263 = \$4/year, and there are savings on income taxes for interest paid. Although the credit will decline annually and is, dependent upon the income level of the omeowner, assume that the savings on income taxes balance the amount for property tax and insurance. The ratio of annual savings to annual cost is then:

Savings Factor (SF) =  $\frac{$100}{$29}$  = 3.4

If the energy cost increases, the savings factor will increase. While in this example the ratio of the benefit in annual savings to cost of the added ingulation is large, there are some energy conservation measures where the benefit/cost ratio may be less than one. Obviously such energy conservation measures should not be implemented.

ENERGY CONSERVATION AND SOLAR SYSTEMS ..

To determine the effect of energy conservation on solar system size, an economic analysis must be made on the basis of a smaller annual heating load, using the procedure discussed in Nodule 15. We will use the example house in Figure 17-1 and consider the effect of energy conservation with a simplified economic analysis. With R-7 insulation in the walls and R-11 insulation in the ceiling, the heat load is 19,230 Btu/DD. With 6240 DD during the heating season, the total heat required during the season is:

19,230  $\frac{Btu}{DD} \times 6240 DD = 120 mBtu.$ 

A solar air heating system with 500 square feet of collector can be reasonably expected to provide 70 percent of the heating load for the assumed location. Thus, the initial cost with 24/ft² installed collector area will be \$12,000. Assume that a 20-year loan is secured at 8 percent interest with 20 percent down payment.

The annual mortgage payment on the \$9,600 loan is  $(.102 \times 9600)$ \$979/yr. The annual operating cost for the solar system is \$60 with electricity at 4¢/kWh. The balance of the heat load must be provided by electricity at 4¢/kWh, or \$11.85 per m Btu, and it will cost \$427 annually to provide the auxiliary heat with the solar system:

120 m Btu x (1-0.7) x  $\frac{\$11.85}{m Btu} = \$427/yr$ . Thus the first year cost for solar plus auxiliary electric heat is \$3866 with the downpayment and \$1466 without the downpayment. Maintenance

cost, property tax and insurance are assumed to be offset by income tax savings. A 6 percent inflation rate **\$**\$ assumed.

With the added insulation, the heat loss rate reduces to 18,100 Btu per DD. The total heat load for a 6000 DD season is:

 $18100 \frac{Btu}{DD} \times 6000 DD = 108.6 m Btu.$ 

There are two ways to view the effect on the solar system. One is to maintain the same collector area which will obviously provide greater percentage of solar contribution to total load and reduction in auxiliary

 $51^{\circ}$ 

energy, and the other is to reduce the collector area to provide about the same fraction of the total load as before, i.e., 70 percent.

NO REDUCTION IN COLLECTOR AREA

With no reduction in collector area, there should result a reduction in auxiliary fuel consumption by 11.4 m Btu. With auxiliary energy cost at \$11.85/m Btu, the total cost of auxiliary energy is:

[\$427 - (11.85 x 11.4)] = \$291

The annual cost for the energy conservation measure is \$29 which must be added to the annual solar and auxiliary energy costs. Thus, the annual costs are:

	First Year with <u>ownpayment</u> \$ <u>3</u> 379	First Year without Downpayment \$ 979
Dperating Cost	° 60 291	60 291
Energy Conservation Cost	<u>29</u> \$3759	<u></u> \$1359

The total annual cost with the energy conservation measure is less than the cost to heat the house with the original design by \$107/year.

REDUCED COLLECTOR AREA

With reduction in meat-load by 11.4 m Btu, it should be possible to reduce collector area to 450  $ft^2$  and maintain 70 percent of the annual load. The costs are as follows:

	Solar System Cost (\$24 x 450 ft ² )	\$10800	
	Downpayment	\$2160	
•	Annual Mortgage Payment	\$881	
	Operating Cost	54	
	Auxiliary Energy Cost (108.6 x 0.3 x 11.85)	386	
	Energy Conservation Cost	29`	
	FIRST YEAR COST WITH DOWNPAY	MENT \$3510	

FIRST YEAR COST WITHOUT DOWNPAYMENT \$1350

Comparison of the annual costs indicates the reduction of collector area will reduce the first year cost with downpayment by \$249, and by \$9, not including the downpayment. A summary of costs for solar and non-solar systems is presented in Table 17-2 with an inflation rate of 6 percent applied.

The comparisons after 15 years for savings with conservation in a non-solar system indicate that as much as \$2500 might be realized by simply adding insulation at the time of initial house construction. In this example, there is a difference of \$2700 after 15 years between a solar system with and without energy conservation measures. The difference clearly indicates that energy conservation with a solar system is economically advantageous.

`.

,		Based on Rate (See	4¢/kWh Electr text of modu	icity and for comp	% Inflation utation details
	`````		• /	`	
>	NON SOLA	R SYSTEM	./. 、	SOLAR SYST	EM.
YEAR	NO CONSERVATION	WITH CONSERVATION	NO CONSERVATION A = 500 ft ²	WITH CONSERVATI A = 500 f	WITH CONSERVATION ft^2 A = 450 ft^2
1	\$1422	\$1314	\$3866	\$3759	\$3510
2	1507	* 1393	1495	1380	1376
3	1598	/ 1476	1526	= 1402	1404
4	1694	/ 1565 -	1559	1426	1434
`5	1795 ·	/ 1659-	1594	1451	1465
6	• 1903 /	1758	1631	1478	1499
7	· 2017 •/	1864	1670	1506	1534
8	2138 /	• 1976	· 1711	1536	1572
.9	2266	2094	1755	1567	1611
10	2402	° 2220	1802 5	、 1601	1653
11	2547	2353	. 1851 *	1 637	1698
12	2699	2494	1903	, 1674 [•]	1745
13	2861	2644	1959	1714	1795
14	3033	- 2803	· 2018	. 1757	1 848∙
15	3215	2971	2080	1802	. 1904

\$28420,

\$33097 30584 \$-2513

\$28420 25690 \$ 2730

موہ - سیس

, \$25690

Table 17-2. Annual Cost for Heating the Example House

;17-15

Summary of Savings	
Non Solár - No Conservation	•
Non Solar - With Conservation	:
Savings with conservation	
•	
Solar - No Conservation	
Solar - With Conservation	
Savings with Conservation	

\$30584

\$33097

TOTALS

517

\$26048

TRAINING_COURSE IN

THE PRACTICAL ASPECTS OF

FOR .

SIZING, INSTALLATION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS

RESIDENTIAL BUILDINGS

MODULE 18

RETROFIT CONSIDERATIONS

жţ,

SOLAR ENERGY APPLICATIONS LABORATORY COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

TABLE OF CONTENTS

211 112

18-i

		3 `						•	•		• }	* , * ·
	LIST OF FIGURES.	•*	·\^		•	•	•	•••	•		•	18-ii
	INTRODUCTÍÓN, `.	•••,	• .	•	-	•		•	.•	•	•	18-1
	OBJECTIVE		4	•	•	•	•	•	•		•	18-1
•	GENERAL CONSIDER	ATIONS °	•	. •	•	• •	•	•	•	•	•	18-1
•	INSULATING	EXISTING	BUIL	DINGS	•		•	•	• .'	•		18-1
ç	TREES AND L	ANDSCAPE	:	د •	•	•	•	• ``	•	•		18-2
	DOMESTIC HOT WAT	ER, SYSTEM	1	•	•	•	:	• ,	•	•	•••••••	18-2
	SPACE HEATING .	•	•	•	•	•		` ,	•	• -		18-3
	COLLECTOR L	OCATION		• •	•	•	' .		•			18-3,
	ADAPTATION	TO EXISTI	NG HI	EATIN	G EQU	IPMEN	Г	•	•••	• .		18-7

519

ERIC

LIST OF FIGURES

÷			₫	
~	Figure		Page	
•	18-1	Retrofit Solar Domestic Hot Water Heater, Non-Freezing		1
		Climates	18-4	•
	18-2	Retrofit Solar Domestic Hot Water Heater, Freezing	•	
•	•	Climates	18-4	
_	18-3	Direct Heating Pump Circulation 🖌 .	18-5	
•	18-4	Collector Frame Supports on Roof	18-6	
	18-5	Hydronic Solar System for Retrofit Installation	18-9	Ø
	18-6	Air-Heating Solar System for Retrofit Installation	18-9	

INTRODUCTION ·

Retrofit in the present context means the adaptation of solar systems to existing buildings. There are many owners of residential buildings who are experiencing rising costs for heating, and consequently, a strong interest is developing in retrofitting solar systems to existing structures. Solar system designs for existing buildings are fundamentally the same as for new buildings. However, there are many factors concerning installation that need to be considered in retrofitting; factors that are not involved in new construction. These factors relate to the structural and mechanical features of existing buildings and to the cost of installation. Each installation is a special case and generalizations of problems are difficult. At this stage in development (1976), there have not been many retrofit installations of solar heating and cooling systems for residential buildings.

The objective of this module is to direct the attention of trainees. to some of the typical problems that could be encountered in retrofit installations.

OBJECTIVE

GENERAL CONSIDERATIONS

INSULATING EXISTING BUILDINGS

Although insulating a building is not strictly a feature of solar energy systems, it was shown in Module 17 that there is a significant impact on solar systems with energy conservation designs in buildings.

Many existing residential buildings have little or no insulation in the wall's and ceilings and the heatloss rate is therefore large. If a solar system is contemplated, an initial step is to insulate the building.

If the cost for adequately insulating the building is high, an economic analysis to determine benefits and cost is recommended.

TREES AND LANDSCAPE

The availability of sunshine for the particular building is of prime importance. There are many existing residential buildings that have been landscaped generously with trees for the specific purpose of shading the building and at least some of the trees will have to be removed. Although solar radiation will filter through leaf-less branches of deciduous trees during the winter, the reduction in useful sunshine could greatly affect the system size and performance. An alternative to removal is to reduce the height, but this will invite an annual or periodic maintenance cost that is chargeable to the solar system.

There are many locations where buildings on hillsides are shaded by neighboring structures. Solar systems for buildings that are in shadow a portion of the day will necessitate an unusual orientation of the collectors with consequent increase in collector area and system cost.

DOMESTIC HOT WATER SYSTEM .

Domestic hot water retrofit systems are being considered in many regions of the United States. The types and performance of solar hot water systems that are appropriate for retrofit installation are discussed in detail in Module 7. There is no basic difference in system configuration for new and retrofit construction. However, depending-on the site,

it may be necessary to situate the collectors away from the building. A schematic arrangement to support collectors that are not mounted on the house is shown in Figure 18-1. The system is applicable for non-freezing climates. The hot water line should be insulated however to reduce thermal losses in transport from the preheat tank to the existing hot water tank. No drains other than the ones on the water tanks are needed for the system. Manual valves are installed in the lines inside the house to isolate the solar system from the conventional system.

A retrofit solar domestic hot water heater in freezing climates is shown in Figure 18-2. In freezing climates, it is advisable to locate the preheat tank inside the building. There will be greater line losses in circulating water through the collector, and provisions for drainage are needed.

The simplest arrangement for retrofitting to electric resistance hot water heaters is shown in Figure 18-3. The system is discussed in Module 7 and is a system that could be used in non-freezing climates.

SPACE HEATING

There are several potential difficulties involved in providing retrofit solar space heating systems. These problems concern:

1. Collector location

2. Equipment location


3. Adaptation to the existing heating system.

COLLECTOR LOCATION .

- Collectors can be advantageously mounted on the roof of new buildings if the weight of the collectors can be supported. Otherwise, collectors

523

18-3

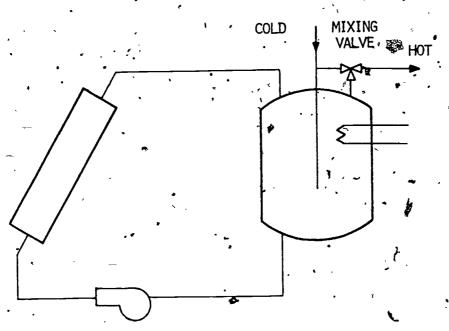
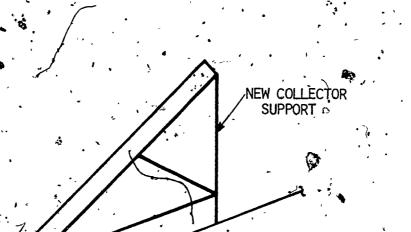



Figure 18-3. Direct Heating Pump Circulation

will have to be supported on a separate structure on the ground. In the construction, the roof pitch is set at the desired collector tilt angle to maximize the collection of solar energy for a particular orientation, but in retrofit situations, the roof pitch normally is 5 on 12, or 22.6° from horizontal. This angle is too flat for solar collectors in most Pocations so a separate frame is needed to mount the collectors at a more suitable angle. One possible arrangement is shown in Figure 18-4. The "add-on" appearance of the collectors and supports may be aesthetically unsatisfactory to some home owners. When aesthetics govern, either the entire roof must be reconstructed to blend them architecturally with the building, or the collectors must be placed at ground level. Removal and reconstruction are expensive and although there may be beneficial effects in the renovation other than to accommodate collectors, the costs will be chargeable to the solar system.

XISTING ROOF

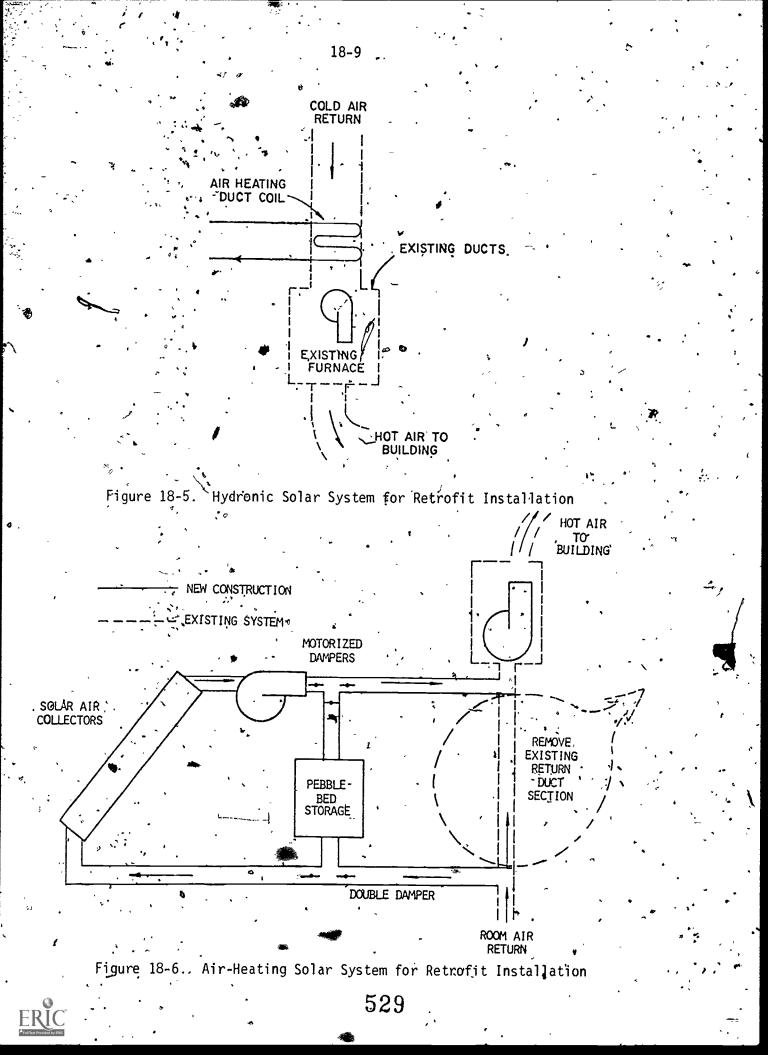
.Figure 18-4. Collector Frame Supports on Roof

When collectors cannot be placed on the building roof, they must be placed at ground level and preferably on the south side adjacent to the building. Placing collectors at ground level offers some advantages and some disadvantages. One advantage is lower pumping head. Another is that piping and ducting to the collector banks are easier to install than in the attic of an existing building with a low-pitched roof. Maintenance of collectors at ground level is easier. The disadvantages / are that the collector array may offer hazards to the occupants, and pipes and ducts are in unheated areas or exposed to the outside air. Insulation around pipes and ducts must be thick to reduce heat losses.

The location of equipment needed for solar heating and cooling systems may offer difficulties for some retrofit installations. The bulkiest equipment that has to be installed is the storage tank for a hydronic system and a rock bed for an air system. The most easily accessible area in the building is at ground floor level. However, ground floor space is expensive compared to comparable space in the basement or garage. The fabrication of storage toks and rock boxes in basements, or placing of rocks in storage, are restrictive activities in retrofit installations. The walls of rock bed storage containers can be fabricated relatively easily, but fabricating tanks for water storage could be more difficult. Tanks may be fabricated inside by either welding or bolting sections together, and if bolted tanks are used, neoprene or butyl rubber lining is recommended to prevent leaks from the bolted seams.

Locating the storage tank or rock bed in the garage offers the simplest installation for retrofit situations. Adaptation to the existing heating system with the storage tank in the garage may require longer pipes and ducts than if storage were located inside the building. The biggest disadvantage with storage located in the garage is that the heat loss from (storage is not recovered as useful heat in the building enclosure.

It is recommended that heat exchangers and pumps be located close to the storage tank for hydronic systems to minimize head losses and, economize on space. The appurtenant equipment such as pumps and heat exchangers will not occupy much space. Maintenance will also be facilitated if all of the equipment is located in one place.


ADAPTATION TO EXISTING HEATING EQUIPMENT

FRIC

The solar heating and coording system discussed in this manual are for central air distribution systems. Adaptation of solar systems to existing buildings is likewise facilitated if a central distribution system exists. While baseboard heating systems are prevalent in many nonsolar hydronic systems, flat-plate collectors will not function well with such systems. Fan coil units are recommended for such retrofit installations. A difficulty in adapting to an existing air-heating system is illustrated in Figure 18-5. Usually, the blower is an integral part of a furnace. The heating element, whether fuel-fired or electric, is coupled to the blower. The controls must be arranged so that the blower is independent of the heat unit. Whether the blower is after the heating coil, as shown in Figure 18-5, or before, it would not matter, particularly if the motor to drive the blower is outside the duct. The location of the water-to-air heating coil is dependent upon the existing duct arrangement.

18-8

An air solar system might Arranged as shown in Figure 18-6. A two-blower system is most switable for retrofit installations. The existing blower will have to be decoupled from the heating element control as discussed before and the dampers shown in the figure will control the different modes of operation.

TRAINING COURSE IN THE PRACTICAL ASPECTS OF SIZING, INSTALLATION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS

RESIDENTIAL BUILDINGS

FOR

MODULE T9 SCHEDULING, OF SOLAR INSTALLATIONS

SOLAR ENERGY APPLICATIONS LABORATORY COLORADO "STATE UNIVERSITY

FORT COLLINS, COLORÁDO

TABLE OF CONTENTS

۱.

>

19**-i**

LIST OF FIGURES.	19-ii
INTRODUCTION	19-1
OBJĖĆTĮVE	19-1
CONSTRUCTION SCHEDULE FOR A TYPICAL HOME WITH AN AIR-HEATING SOLAR SYSTEM	19 - 1.
PART 1, ROCK-BED STORAGE	19-1
PART 2, COLLECTOR SUPPORTS	19-2 `
PART 3, INSTALLATION OF COLLECTORS, PIPING, AND CONTROL PANEL	19-3
PART 4, INSULATION	19-5
PART 5, PREHEAT TANK INSTALLATION	19-6
PART 6, FINISH THE HEATING SYSTEM AND FINAL INSPECTION	19-6
CONSTRUCTION SCHEDULE FOR A TYPICAL HOME WITH A TYPICAL LIQUID-HEATING SOLAR SYSTEM	• 19-7
PART 1, WATER STORAGE TANK]9-7
PART 2, COLLECTOR SUPPORTS	19-8
PART 3, COLLECTOR INSTALLATION AND PIPING	19- 9
PART 4, INSULATION AND AUXILIARY BOILER*	19-10
PART 5, PREHEAT TANK AND CONTROL WIRING	19-1]
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

531.

' · \`	LIST OF FIGURES	•	<i>*</i>	•••••
Figure)		و روست م. ب	ŕ.	Page
19-1	Part 1 - Pebble-Bed Storage Fabrication .	•	•	19-2
19-2	Part 2 - Collector Support Construction :	•••	• .	19-3
19-3 ` `	Part 3 - Collector, Heat Exchanger, and Control Panel Installation	•	تو -	19-4
-19-4	Part 4 - Application of Insulation	•	. 1	19-5.
19 - 6	Part 5 Preheat Tank Insulation	• •	• *	19-6
19-6	Part 6 - Finishing and Final Inspection .	• •	**	19-6
.19-7-	Part 1 - Storage Tank Foundation	• ,	•	19-7
19-8 ·	Part 2 - Fabricate Coffector Support	•	• ,	19-8
19-9	Part 3 - Collection Installation and Piping,	•.	•	19-9
1 9- 10,	Part 4 - Insulation and Auxiliary Boiler	•	•	1 9-11
19-11	Part 5 - Preheat Tank and Control Connections.	•	•.	19 -11

532

19**-**ii

•

Ð

ERIC

INTRODUCTION

The scheduling of sequential and concurrent activities for installing solar heating and/or cooling systems during new home construction depends upon the type of system to be installed. Undoubtedly, standard or simplified critical path schedules are used only for larger construction projects. Nevertheless, two example schedules for constructing typical homes will be followed in this module to trace the sequences of installing solar systems in new home construction. If attention is not given to the sequence of assembly, unnecessarily difficult situations could result, with consequent increase in the total costs for the building construction.

The objective in this module is to familiarize trainees with the important sequences for installation of solar systems in new home construction.

OBJECTIVE

CONSTRUCTION SCHEDULE FOR A TYPICAL HOME WITH AN AIR-HEATING SOLAR SYSTEM

PART 1, ROCK-BED STORAGE

The initial steps in the construction of a-home with an air-heating solar system are shown in Figure 19-1. The building contains a basement in this example, and the principal solar system component included in this phase is a storage unit located in the basement. The activities concerning the pebble-bed storage unit are identified by heavy lines from 4 to 6, 6 to 8, 6 to 9, 9 to 11, and 10 to 11.

Figure 19-1. Part 1 - Pebble-Bed Storage Fabrication'

The structural base for the rock-bed storage unit should be constructed during the foundation work of the building. The concrete base should be scheduled for pouring along with the concrete footings. If the storage container walls are to be concrete, the rock bed can be located in the corner of the basement to utilize common walls. If the container is to be fabricated of wood, the walls and insulation can be constructed prior to placement of the floor girders and joists.

The placement of temperature sensors for the control system and, if desired, for monitoring purposes, is a simultaneous activity with the filling of the rock bin. It is not practical to install sensors after the gravel how been placed in the bin.

PART 2, COLLECTOR SUPPORTS

FRIC

The support structure for solar collector modules or panels may be the vertical wall of the building or the roof trusses or rafters. The schedule in Figure 19-2 assumes the collectors are to be placed on the roof, but may be revised as necessary for attachment to the external wall. The spacing between roof trusses, or wall stude, should be convenient for the type of collector to be used in the solar system.

Figure 19-2. Part 2 - Collector Support Construction Unnecessary consumption of time in mounting collectors can be avoided with forethought given to convenient placement of purlins and naïlers. There must be space provided for manifold air ducts which will cross the roof trusses. The roof trusses should be made up of cross-pieces that, will support the ducts.

Frame and Sheathe

External.

Walls

Frame

Floor

Subfloor

Fabricate Collector Supports

Set Roof

on Rafters

Sheathe .

Roof

Trusses

Ĩ.

Roof

Felt

The manifold which delivers air from the collector to storage is usually installed near the ridge of the roof. There should be sufficient space available to facilitate duct installations. Supports for collectors on flat roofs can be an integral part of the rafters, or the collector supports can be mounted above the finished roof.

PART 3, INSTALLATION OF COLLECTORS, PIPING, AND CONTROL PANEL

Installation of collector modules can be scheduled simultaneously with the roofing and flashing. The collectors, in most instances, will replace the roofing, and should be rendered water-tight with cap strips between collector modules and flashing along the top, bottom, and sides of the collector array.

For heavy collector modules, a mechanical hoist such as a fork lift may be needed for installation. Although detailed instructions may be

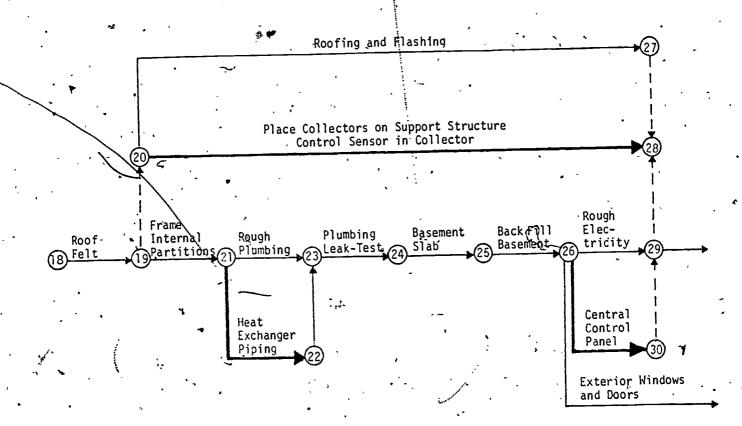


Figure 19-3. Part 3 -/ Collector, Heat Exchanger, and Control Panel Installation

provided by the manufacturer for assembly of collector modules, considerable attention should be given to effect air-tight joints at all duct connections. Air leakage into the collector array can cause loss of heat from the system.

Piping to the air-water heat exchanger may be scheduled with the other building plumbing. All pipes should be leak-tested along with the other pipe joints.

If the control panel for the solar system is a separate unit, the installation can be scheduled with the other rough electrical work. The control panel should be located close to the solar system for convenience.

526

19-4

PART 4, INSULATION

Insulation on piping and ducts can be applied following leak-tests. Insulation should cover valves as well as the piping. Loosely wrapped insulation may allow air circulation and therefore is not effective, but tightly wrapped insulation reduces the thickness, without decreasing conductivity, and is therefore poor practice. All ducts and pipes, whether they are flexible or rigid, should be insulated.

19-5

🖣 . fô,i

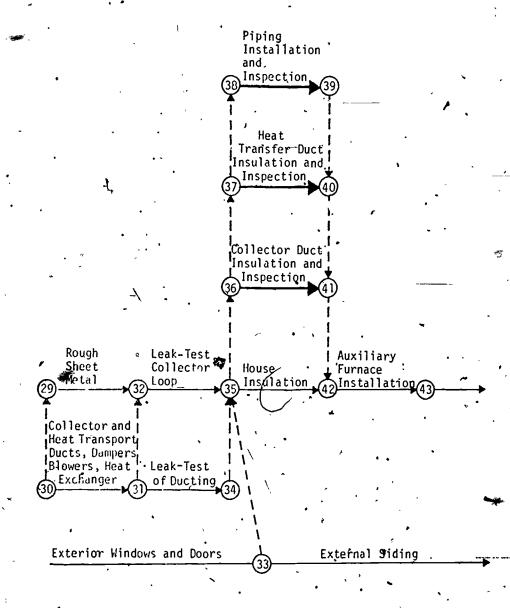
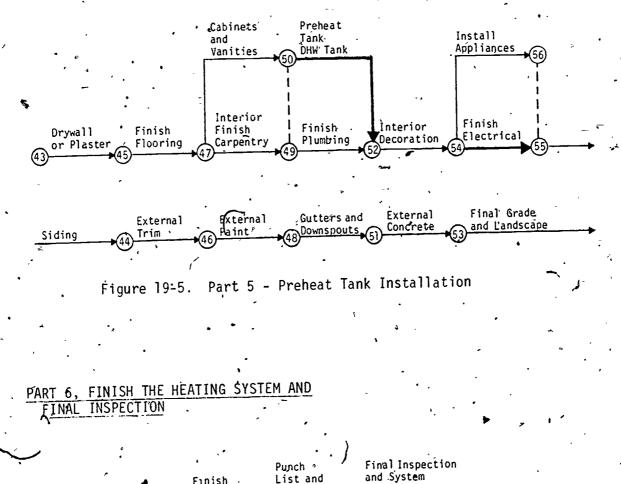



Figure 19-4. Part 4 - Application of Insulation

PART 5, PREHEAT TANK / INSTALLATION

After the interior of the building has been completed, the preheat tank and domestic hot water tank can be installed and the plumbing finished. Insulation around the piping is recommended to reduce heat losses. While the appliances are being installed, the electrical work can also be completed.

Finish List and and System (55) Heating 57 Touch Up 58 Final grade and Landscape

Figure 19-6. Part 6 - Finishing and Final Inspection

(59)

19-6

After the completed installation, the system should be tested using a check list similar to the one included in Module 12 of this manual. The motorized damper mechanisms should be given particular attention. If dampers do not close firmly, there will be leaks into the flow loop and when cold air is mixed with the warm air, considerable temperature degradation can take place. Although heat may not be lost from the system, lowered air temperatures can eause the auxiliary furnace to operate a larger portion of the time. A check of the system and in particular the dampers is advisable after the system has been in operation for a short period of time.

> CONSTRUCTION SCHEDULE FOR A TYPICAL HOME WITH A TYPICAL LIQUID-HEATING SOLAR-SYSTEM

PART, 1, WATER STORAGE TANK

The structural base for the thermal storage unit is provided when the concrete is poured for the footings. The storage requires a thicker concrete slab than the normal four inches poured for basement-floors.

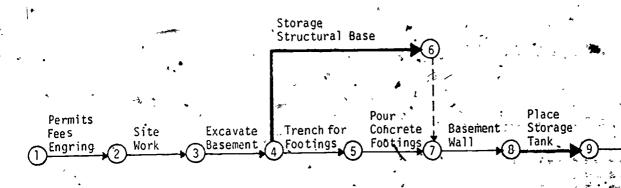


Figure 19-7: Part 1 - Storage Tank Foundation

Tanks are normally prefabricated and when located in basements should be placed on the base before the floor girders are assembled. The storage tang hould be provided with appropriate connections for pipes and the control sensor, and any connection located on the base of the tank should be attached before the tank is placed on the base. Depending upon the type of storage tank, the bottom insulation should be installed before placement to eliminate extrá work at a later time to insulate the tank.

PART 2, COLLECTOR SUPPORTS

Floor Frame Sheathe Ext Roof Trusses, Sheathe Girder 10 Floor Subfloor 12 Walls '13 or. Rafters 15 Roof

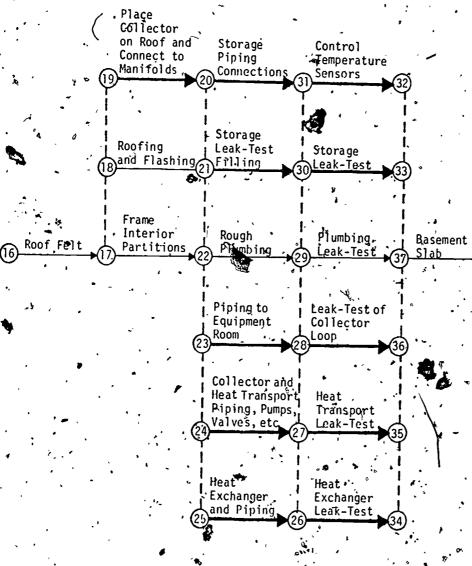
Frame and

Fabricate Collector Support

-Set'

Figure 19-8 Part 2 - Fabricate Collector Support

Normally the rafters are the supports for the collector are very however, special supports may be required for some installations. When rafters are to support the collectors directly, some preplanning will reduce the labor costs to assemble and secure the collectors, particularly if the collectors are support between the rafters. Normally collectors are mounted on plywood sheathing and the collectors are secured by bolts through the plywood.


Pipe manifolds are mormally placed along the ridge and eave of the roof. Provisions for easy access, not only for installation, but also for maintenance should be provided. Replacement of flexible connections between the collector panels and the manifold is a common maintenance

item and, although represent is simple, it can be made difficult with restrictive access particularly the upper manifold,

Collectors mounted on flat roofs will require supports for tilting the collectors. The supports should be secured to the rafters, and open collector supports should be closed in to prevent wind drag and snow drifting, both of which will add extra loads on the roof.

PART 3, COLLECTOR INSTALLATION AND PIPING

(38

Figure 19-9. Part 3 - Collector Installation and Piping

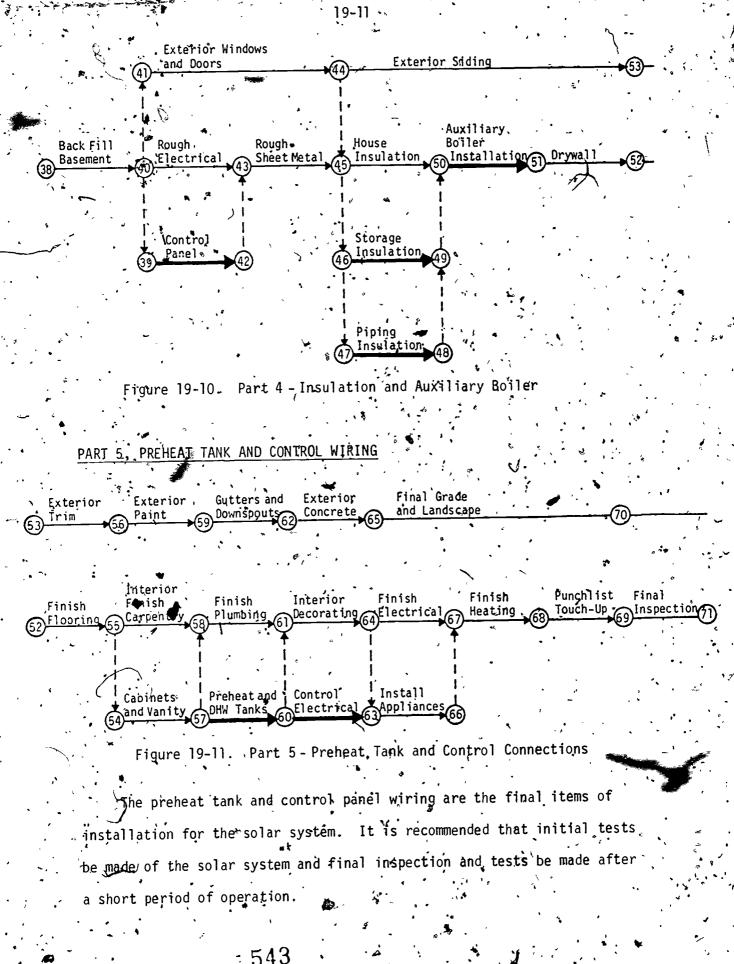
ERIC

541

19-9.

Collectors should be carefully inspected before installation. Broken glass, improper seals, absorber plate conditions, and bad plumbing fittings are easy to identify. There is an advantage in placing liquid collectors tightly together side-by-side to minimize side heat losses from each collector module. When this cannot be done, insulation between the collector modules should be used to reduce the side heat losses. The manifolds should be connected to the collectors as the modules are installed to facilitate the connections. Although flexible connections will probably be used in most installations, the misalignment of a few collector modules can be cumulative, and even flexible hoses may become difficult to install if the collectors and manifold

The rough plumbing for the house and solar system can be scheduled simultaneously and, after placement of the control sensors, the various pipe loops can be leak-tested. A filter unit, all the valves, the heat exchanger, pumps, and an expansion tank should be installed in the collector loop.


The control temperature sensors can be installed in the storage tank and the collector outlet pipe manifold either before or after the leak

PART 4, INSULATION AND AUXILIARY BOILER

piping are not aligned properly.

The pipes in the sola hystem should be insulated to minimize heat loss, and the insulating must be done before drywalling. The storage tank, heat exchanger, and the expansion tank, as well as the valves, should be well insulated.

FRIC

TRAINING COURSE IN THE PRACTICAL ASPECTS OF SIZING, INSTALLATION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS

RESIDENTIAL BUILDINGS

FOR

MODULE 20

CONSTRAINTS AND INCENTIVES

SOLAR ENERGY APPLICATIONS LABORATORY COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

544

ERIC

TABLE OF CONTENTS

20-1 .

' 20**-1**

20-1

20-2

20-2

20-2

20**-**3

20-3

20-5

20-5

20-5.

20-6

20-i

INTRODUCTION OBJECTIVE LACK OF UNDERSTANDING INSTITUTIONAL CONSTRAINTS

LEGAL Access to Sunligh Land Use and Zoning Building Codes FINANCIAL INSURANCE

ERIC

JINTRODUCTION

20-1

There are several significant "barriers" to widespread application. of solar energy systems in homes, and there are a few incentives that could be created to induce greater use. The greatest barrier to solar system utilization is the lack of understanding of solar heating and cooling systems among homeowners, contractors, engineers, architects, and others in the home building industry. This course is intended to overcome some of the lack in knowledge about solar systems. First cost of systems is another barrier, but understanding the economics of solar systems, and the rising cost for fuel, will assist in overcoming this barrier. Among the greatest incentives for homeowners to install solar systems is to provide substantial credit against first cost. The credits can be for income and property taxes. These and other barriers and incentives are discussed in this module.

OBJECTIVE

The objective of the trainee is to recognize the barriers and incentives for installation of solar heating and cooling systems in residential buildings.

LACK OF UNDERSTANDING 🛶

Unless the homeowher is a technically oriented individual, the potential customer for a solar heating system is likely to maye little basic understanding of a solar heating and cooling system. The building tontractor, or HVAC installer, is given the responsibility of explaining the system; the components, and the performance of systems as compared to standard heating and cooling methods. The knowledge gained from this course can be used effectively by the trainees to explain the kinds of solar systems available and the probable performance of the systems in residential buildings.

The contractor should explain the economic aspects of solar heating and cooling systems -- that, despite high first cost, the cumulative costs after 10 or more years will favor the solar system. It should be emphasized that a solar system can provide the major fraction of the annual heat load, and an auxiliary unit is needed, but the energy consumption and costs are substantially reduced.

INSTITUTIONAL CONSTRAINTS

Solar heating and cooling systems are new to the legal, financial, and insurance institutions and face existing and, perhaps, new institutional constraints. Fortunately, there are few barriers established to constrain installation of solar systems, but characteristically laws are, written after problems occur, financial policies are developed after experience is gained; and insurance rates are based on risk factors and probabilities.

LEGAL

Access to Sunlight

An important aspect of solar systems is continued access to sunlight. While zoning can be effective, it is not a guarantee to continued access to sunlight because zoning can change. A high-rise building on the south side of a residence with a solar system can be devastating. Even if the problem of shading by other structures is avoided, shadows cast by the neighbors tall trees can be a serious problem. At present, the owner of an adjacent lot can plant any tree he wishes, except if the height may interfere with utility lines. The concept of a solar easement has some merit, but has not been enacted anywhere at this time.

Land Use and Zoning

Land use legislation and zoning restrictions can restrict the usefulness of solar energy systems by regulating the placement of collectors. On the other hand, regulations can also encourage the use of solar systems by requiring street layouts to maximize solar energy use. Restrictive regulations regarding architectural style or materials of construction should be scrutinized. It is difficult, for instance, to build a solar house in a subdivision that allows only shake shingle roofs. Likewise, a restriction on the orientation of a building on the lot could hamper the collector orientation.

Building Codes

There are virtually no building codes in the United States which deal specifically with solar heating systems or components thereof. Some efforts toward establishment of specific codes have been started, but until criteria and standards have been set by national agencies, the information on which local authorities must base their codes for solar equipment is not available.

Most building codes, however, have provisions which can be applied to solar heating equipment as part of the structural and heating components of a building. Requirements as to roof load capability, structural integrity, flammability of material, ventilation requirements, and so on, have restrictive as well as proscriptive influence on solar equipment. It is therefore necessary for an installer and owner of a solar heating system to comply with such terms in the local codes. In turn, the manufacturer will be required to conform if his hardware is to be sold and used in a particular area. For example, if a local code requires Underwriters Laboratory certification on heating units in a building, the manufacturer and installer would be required to use only such equipment in the solar system.

. 20-4

1.211.

1 1 Strate

To the present time, building inspectors appear to have encountered no serious problems in approving solar heating installations. With probably over a thousand solar heating systems in the United States, it is evident that the lack of specific codes on solar heating equipment has not significantly deterred its use.

Since a full-capacity conventional heat supply is required in practically all areas where building codes apply, there is no appreciable danger that a solar heating system would fail to keep, a building at a comfortable and safe temperature. Even if the efficiency of a solar heating system is far less than expected, a code authority could still approve such a system without transgressing code requirements.

As a general rule, an owner or contractor planning to install a solar heating system should contact the local building inspector prior to the expenditure of major effort on the project in order that any questions which may relate to compliance with the code could be resolved in advance. If a particular solar heating system or component clearly violated a code requirement, a change to some other type of hardware could be made prior to expenditure of significant funds on a system which would not be acceptable.

FINANCIAL

Financing is available for solar systems from a few lending institutions. Because information about system performance, reliability, and life times is meager, many savings and loan companies do not have established policies. Some loan money for the entire building project, less the down payment, purely on the ability to pay the mortgage. Others restrict loans to projects that include approved solar systems, and still others loan money only on the basis of the type of auxiliary unit that is used in the solar system. If loan companies provide financing only for the building, and not for the solar system, there is a financial barrier to installing solar systems.

INSURANCE

Insurance companies have shown no reluctance to insure solar houses at rates comparable to other houses. There has not been sufficient experience to change the insurance rates for solar houses from non-solar homes.

INCENTIVES

The greatest incentive for solar heating systems is the rising energy cost and the lack of alternatives to electricity for heating. Other incentives are being created in the form of tax relief. For example, several states have reduced or eliminated the property tax assessment on new solar systems and a few states have provided deductions on state income tax returns for owners of solar heating systems in their homes.

REFERENCES

.] .	Air Conditioning, Heating, and Refrigeration News, "Solar Heating . Devices Code Adopted in Florida", August 11, 1975.
2.	City of Colorado Springs, Phoenix Project, Chapter XI, "Identifica- tion of Applicable Building Codes" (exact title of report is not available, Report NSF-RA-N-75078, National Science Foundation),
3.	Engineering News Report, <u>Code Bodies Stall in Energy Standard</u> , January 8, 1976.
4.	Frieling, D.H., Fischer, R.D., Yano, R.A., and Eibling, J.A., A Critical Review and Analysis of the Advanced Research Implications of the Phase O Program Results on Solar Heating and Cooling of Buildings, March 31, 1975, NSF/RANN/SE/AER/742436/FR/75/1, The Energy Research and Development Administration, Division of Solar Energy.
5.	Johnson, A.G., Solar Heating and Cooling of Buildings - Institutional Considerations, M74-62, June 1974. The MITRE Corporation, 1820 Dolley Madison Blvd., McLean, VA.
6 <u>.</u>	Śouthern Building, ASTM Forms New Subcommittee on Solar Energy Utilization, December 1975 - January 1976.
7.	Stratton, Sandy, <u>Energy Conservation in Buildings - Making Our</u> <u>Limited Resources Last</u> . The Building Official and Code Administra- tion, April 1975.
8.	Teem, Dr. John M., Standards: Groundwork for a Growing Solar Industry, Speech presented at National Conference on Standards for Solar Heating and Cooling, Philadelphia, PA, October 15, 1975.
9.	Thomas, W.A. and Robbins, R.L., Solar Energy and the Law.
10.	Tyree, Perry Co., Solar Energy and the Building Code Building Standards - Part 1.
11.	Weingart, J.M. and Schoen, R.M., Barriers and Incentives to Commercialization of Solar Technologies for Buildings, presented at International Solar Energy Society Annual Meeting, NASA-Lewis Research Center, Cleveland, Ohio, October 3-4, 1973.
12.	Westinghouse Electric Corporation, <u>Solar Heating and Cooling of</u> <u>Buildings</u> , Phase O, Final Report Vol. 2, May 1975, NSF-RA-N-74-023C Westinghouse Electric Corporation, Special Systems, Box 1693, Baltimore, MD 21203.
13.	Yosick, Dennis A., Fire Stopping, The Building Official and Code Administration, January 1975.

551

TRAINING COURSE IN

SIZING, INSTALLATION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS

RESIDENTIAL BUILDINGS

FOR

MODULE 21 • BUYÉR'S GUIDE

SOLAR ENERGY APPLICATIONS LABORATORY COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO

ERIC

TABLE OF CONTENTS

<21-1

21-2

21-2

21-2

· 21-3

21-4

21-5

21-6

21-7

21-8

21-8

21-9

21-11

21-11

21 7 2

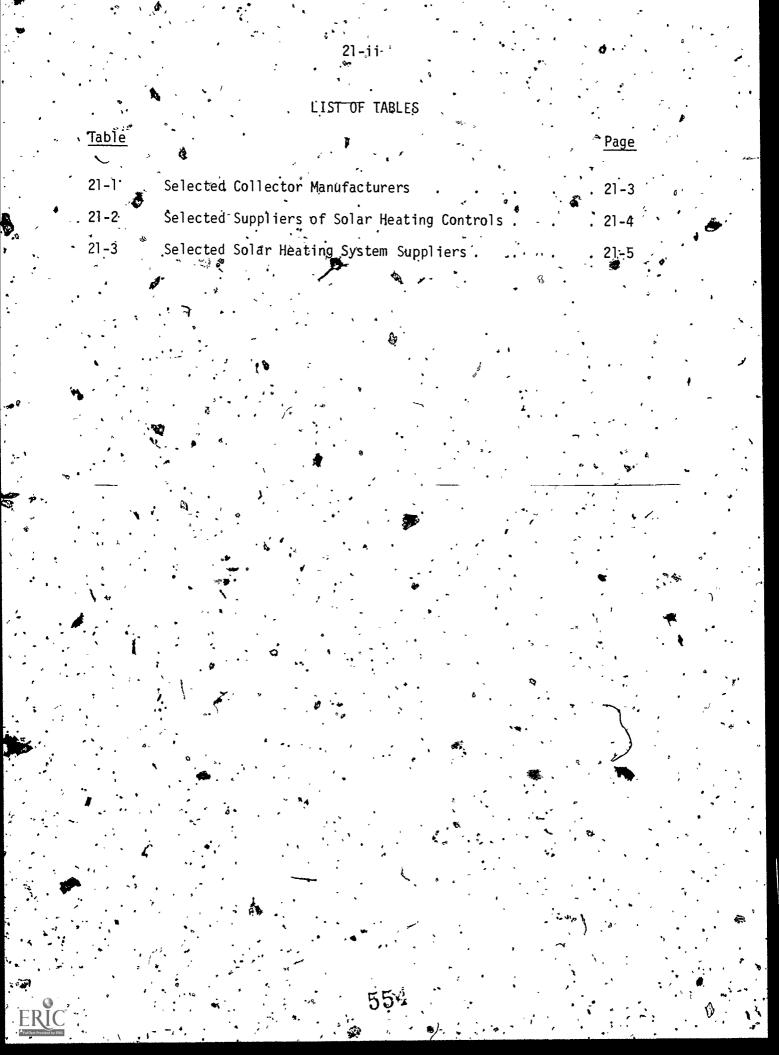
21-14

21/14

21-15

21-16

21-18


21-20

21-i

LIST OF TABLES .

FRĨC

INTRODUCTION OBJECTIVE . AVAILABILITY OF SYSTEMS AND COMPONENTS COLLECTORS CONTROL HEAT STORAGE COMPLETE SYSTEMS EQUIPMENT PERFORMANCE DATA SELECTION OF COMMENTS AND SYSTEMS SELECTION OF SYSTEMS QUALITY OF MATERIALS AND WORKMANSHIP .SELECTION OF COLLECTOR COMPARISON OF SYSTEM TYPES ADVANTAGES OF LIQUID SYSTEMS DISADVANTAGES OF LIQUID SYSTEMS ADVANTAGES OF AIR SYSTEMS DISADVANTAGES OF AIR SYSTEMS SYSTEM PERFORMANCE COST OF HEAT DELIVERED CRITERIA AND STANDARDS WARRANTIES

INTRODUCTION

21-

In addition to understanding the design and operation of solar heating systems; suppliers and users should be acquainted with several other.aspects of solar heating. In order that intelligent selection of equipment can be made, knowledge of industry standards, equipment warranties, performance evaluation data, and related topics is necessary. If evaluations have been performed, their results need to be available to the supplier and user. The kinds of data required for such appraisal must be understood. The advantages and the disadvantages of the main system types for a specific application are particularly important. Knowledge of the type of hardware available, their cost, and their compatibility with other components in the system is essential. Such items as safety and durability are additional criteria for equipment evaluation. and (selection.

Within this module, the main points enumerated above are addressed, and a guide to their consideration is presented. Because of (a) the newness of the solar equipment industry, (b) limited experience in the use of fully commercial systems in non-subsidized installations, (c) lack of criteria for system evaluation and certification, and (d) lack of information on durability, marketability, and other factors, much of the material here autlined is tentative, rapidly changing, and highly variable in time and place. The following information should therefore be considered a guide rath The objective of this module is to provide the trainee with guides to the purchase of equipment for solar heating systems. The reference list of manufacturers of equipment is not intended to be all inclusive. Guidelines for choosing solar equipment and systems are provided, not only in this module, but throughout this manual.

AVAILABILITY OF SYSTEMS AND COMPONENTS

COLLECTORS

A directory of manufacturers and suppliers of solar heating (and cooling) equipment has been published by the U.S. Energy Research and Development Administration under the title, "Catalog on Solar Heating and Cooling Products". Published in November 1975, and designated ERDA-75, it has been updated by the Solar Energy Industries Association. Among scores of organizations listed as manufacturers of solar heating equipment, possibly a dozen firms, have supplied or could furnish solar collectors in quantities of thousands of square feet with one- to twomonth lead time for delivery. A listing of some firms is shown in Table 21-1. The list is not intended to be complete nor. is the inclusion of a firm intended to imply relative usefulness (efficiency, durability, cost, etc.) of the product. The list contains, however, most of the firms hawing sold collectors, for space heating, to residential users and to the federal government in total quantities of thousands of square The type of collector manufactured and miscellaneous comments feet.

are also presented.

Name of Firm	Collector.Type	Collector.Material's		
Ametek	Liquid	Copper, glass (1) or (2)		
Chamberlain	Liquid	Steel, glass (2)		
General Electric °	, L'iquid	Aluminum, lexan (2)		
Grumman	Liquid	Copper, glass (2)		
Hon v eywell	Liquid	Copper-steel,glass(2)		
Lennox	Liquid	See Honeywell		
Owens-Illinois 🛀	Liquid	Glass (evacuated tube)		
PPG 🙀 . 🔹	Liquid	Copper, glass (2)		
Revere	Liquid	Copper, glass(2) or(1)		
Solaron	Air ·	.Steel, glass (2)		
Sunsource	Liquid			
Sunworks	Liquid or air	Copper, glass (1)		

Table 21-1 Selected Collector Manufacturers

21 - 3

CONTROL

In addition to the equipment listed above, another commercially available component is the control system. The special unit in most solar heating control systems is the differential thermostat with its temperature sensors for insertion in collector and storage. Also available are control panels for connection of the differential thermostat, the room thermostat, and the various relays and motor actuators for blowers, pumps, and valves and dampers. The controllers may be of the conventional electromechanical type with bimetallic temperature sensors or thermocouples or thermistors; along with mechanical relays for energizing motors. Also available are solid-state controllers with thermistor and thermocouple inputs and solid-state switches and relays producing appropriate electric outputs to motors. Electromechanical types are more familiar to heating system installers and service personnel, whereas

solid-state units will probably emerge as the more compact and economical system.

21-

Suppliers of control components and special control systems for solar heating include long-established firms in the general control business as well as new companies and groups specializing in specific solar control equipment. A representative list of companies offering differential temperature controllers and complete solar control systemsis shown in Table 21-2.

Table 21-2

Selected Suppliers of Solar Heating Controls.

Barber Coleman Deko.Labs Heliotropé General Honeywell -Penn Controls Rho Sigma Robertshaw Control's Company Solar Controls . @Fly Zia Associates)

HEAT STORAGE

Another important component of the solar heating system is the heat storage unit, but there appears to be no commercial offering of that item. In the liquid system, a conventional tank of some type is purchased. With the air system, a bin is usually constructed on site by the contractor and filled at a suitable time with screened gravel.

COMPLETE SYSTEMS

Several collector manufacturers also provide complete solar heating systems. Their products consist of collectors, accessory hardware for collector support and connection, pumps and/or blowers, preassembled fluid handlers comprising motors, blowers, automatic dampers, filters, water heating coils (for the air system), and motors, pumps, automatic valves (for the liquid system), and controls, including sensors and circuitry for actuating the various motors in the system. Some companies also supply water heating accessories, including heat exchanger and tanks, when that option is involved. The suppliers of complete solar heating systems do not usually furnish a heat storage unit, because its size and local availability usually make its local procurement more practical. Sizing, layout, and detailed design are also offered by some system suppliers. These firms provide the information necessary for installation of their equipment by heating and plumbing contractors having little or no experience in solar equipment installations. Table 21-3 lists a Vew of the known suppliers of complete solar heating systems.

· · · · ·	
Name of Firm	Type of System
Daystar -	Nonfreezing liquid collection and storage
'General Electric	Nonfreezing liquid collection and storage
Honeywell	Nonfreezing liquid collection and storage
Piper Hydro.	Water collection (nondraining) and storage
Reynolds	• Water collection (drainable) and storage
Solaron -	Air collection, pebble-bed storage
Solar Utilities Co.	Water collection (nondraining) and storage

Table 21-3.

Selected Solar Heating System Suppliers

.EQUIPMENT PERFORMANCE DATA

Most of the suppliers of solar heating system components provide technical data on their performance. Most of the collector data sheets • contain information on solar heat collection efficiency at various temperatures and radiation levels. Some include information and instructions for sizing solar heating systems and installation procedures. At least one firm offers an extensive manual covering its products, instructions on their selection and sizing, and their assembly, installation, and servicing.

It should be recognized that some of the manufacturers' literature contains information which has not been verified by impartial analysis, and that the data may not be representative of performance under typical operating conditions... The user is advised to proceed with caution in applying manufacturers' performance figures that have not been independently verified.

Standardized procedures and instrumentation for testing solar equipment have been developed by the National Bureau of Standards (NBS) and are described in two reports:

> "Method of Testing for Rating Solar Collectors Based on Thermal Performance", NBSIR=74-635. Hill and Kusuda, Center for Building Technology, NBS, December 1974, Interim report prepared for the National Science Foundation,

"Method of Testing for Rating Thermal Storage Devices Based on Thermal Performance", NBSIR-74-634. Kelly and Hill, Center for Building Technology, NBS, March 1975, Interim report prepared for the Energy Research and Development Administration: Although the testing procedures described in these reports are not mandatory for the rating of equipment, they are being accepted by governmental purchasers of solar equipment.

21-7

Numerous solar collectors of the liquid heating type have been tested independently by the NASA-Lewis Research Center in Cleveland. Reports of their performance over a range of conditions are available and can be used as a guide to equipment selection. These test results may also be compared with the performance claimed by the manufacturers, in their data sheets. Additional testing of liquid heating collectors is also in progress in several independent laboratories.

There have been no independent evaluations and tests of solar air. heaters, but facilities are being established at the National Bureau of Standards and at the NASA-Marshall Test Center in Huntsville, Alabama. Facilities for testing and evaluation of complete solar heating systems are extremely limited. Colorado State University has three identical residential-type buildings in which various systems are being developed and evaluated. This program is producing information which can guide the choice of general system type, and will also yield detailed operating data on specific systems.

SELECTION OF COMPONENTS AND SYSTEMS

Choice of equipment for solar heating involves a knowledge of the . characteristics that are significant (and critical) and the advantages and disadvantages of each system type. Besides the information contained in this manual, reference may be made to a helpful government publication. "Buying Solar", published by the Federal Energy Administration, June 1976. Among the factors most important in equipment choice are the quality of materials and workmanship in the collector, controls, and fluid-handling equipment, the suitability of the materials and equipment to the application (involving such factors as durability, dependability, and safety), heat recovery efficiency over the range of operating conditions encountered, equipment cost, and installation cost.

SELECTION OF SYSTEMS

The system types requiring choice are primarily the flat-plate liquid-heating collector and associated equipment, and the frat-plate air-heating collector with its pebble-bed storage and air handling facility. Another possible choice is a system incorporating an evacuated glass tubular collector in either an air heating of water heating system. So-called passive systems involving collection and storage-of-heat by materials on or in roofs and walls of buildings rarely are candidates for selection because (a) their practicality has not been proven. (b) there is no manufacturer of such equipment, and ' (c) if used, these systems are essentially part of the building rather than a heating system. Finally, a system based on use of a focusing collector, although one is commercially available, would seldom be a candidate for residential use because of high cost, tracking requirements, and maintenance demands. Even for commercial buildings, the high cost is a deterrent to general use.

QUALITY OF MATERIALS AND WORKMANSHIP

Bu able materials and high-quality workmanship are necessary for efficient, trouble-free operation of solar-heating systems. Visual inspection will often separate the good and poor equipment. Other criteria

are records of satisfactory use in previous installations, compliance with minimum property standards, and recommendations from impartial specialists. With liquid systems, the collector, storage unit, heat exchangers, if used, and pumps and piping should be made of materials which are completely compatible with the liquids being used in order that corrosion will not prematurely damage or destroy the system or its components. The collector and other parts of the system must also be able to withstand the maximum and minimum temperatures to which they are exposed. The absorber plate in an efficient collector of the flat-plate type can reach temperatures above 350°F when fluid circulation is interrupted accidentally or purposely, and there should be no material in the collector not capable of withstanding no-flow temperatures for prolonged periods. Wood or other materials which can outgas at these temperatures should never be used in a solar collector. If inspection shows the presence of such materials, the collector is clearly unsuited to normal space heating applications.

SELECTION OF COLLECTOR'

The efficiency of the collector in recovering solar energy in a heated fluid is the primary determinant of the size of collector required for supply of a particular fraction of the total heat requirements of a building. And, although this is an important criterion for collection selection, installed cost per unit area is equally significant. Assuming two styles of collectors have equal durability, the one having the greater heat delivery per dollar of first cost is the superior choice, regardless of the efficiency and the cost themselves. In other words, an increase of a few percentage points in efficiency which might be achieved by doubling the cost per square foot is not advantageous. The purchaser

563

should therefore base the choice among various collectors of the general type selected on reliable efficiency measurements, delivered price of the collectors, and the cost of installation determined by the installer's bid or the cost of installing similar, systems in other buildings. Unless the solar collection efficiency claimed by the manufacturer has been independently verified or reliably confirmed, by theoretical.

analysis, it should not be accepted without question.

As noted in Module 14, the sizing of a solar collector and associated equipment for carrying a certain fraction of the total heating load cannot be based on some collector efficiency measurement at "ideal" conditions characterized by a full sun nearly perpendicular to the collector and at small to moderate temperature difference between collector fluid and the surrounding atmosphere. Seldom is the collector operating at such favorable conditions in normal use, so average efficiencies are far below such a level. In the selection of solar equipment, however, performance of collectors among a single general type can be compared at the ideal conditions. If collector efficiencys is reported over a range of solar intensities and femperature conditions, comparison can be made at poor operating conditions as well as the better

The two items probably most commonly overlooked in the selection of solar collectors and other system components are the durability, or apparent useful life, of the equipment and the cost of its installation in the building. The annual cost of ownership of the equipment is approximately inversely proportional to the useful life. In other words, if a solar collector must be replaced in 15 years, there is no advantage in its purchase at half the price of another collector having a 30-year life. Numerous collectors are on the market today which

559

ones

cannot be expected to operate satisfactorily even for 10 years, so their purchase at prices as low as \$5 per square foot appears unwise. A collector which costs \$12 to \$15 per square foot that can be expected to function satisfactorily over the entire life of the building is a far better investment.

COMPARISON OF SYSTEM TYPES

The two major types of systems now available commercially are those which employ a liquid for transfer of heat from collector to storage and those which utilize air for the same purpose. The so-called passive types, in which collection and storage are combined, are not commercially manufactured because they are so closely associated with the design and construction of the building that they are primarily architectural considerations.

Nearly all of the air and water-system types involve collectors. employing flat-metal absorber plates overlaid with flat-glass sheets. Á modification of this design is applied in the several variations ofthe evacuated tubular collector for air or water heating. A focusing type of collector employing a transparent plastic Fresnel lens is also receiving specialized experimental use.

ADVANTAGES OF LIQUID SYSTEMS

In comparing air and liquid handling in systems, each has advantages and disadvantages. The primary advantages of the liquid system are due to use of a low-cost fluid with high heat capacity. Relatively small piping for transferring heat from collector to storage and from storage to the heated space in hydronic distribution systems is an economic

.56:

advantage, particularly in large buildings. The volume of water in which a given quantity of heat can be stored is much less than required of any other material not undergoing a phase change of some type. Heat storage in materials undergoing phase changes is not commercially practical, so water is the most compact heat storage material now available.

Another advantage of the liquid system is its capability solar air conditioning. Although such systems are not fully developed, they do have practical possibilities, particularly in larger industrial and commercial buildings. An additional advantage in the liquid system is the number of commercial manufacturers of liquid heating solar collectors Various styles, materials (aluminum, copper, and steel), transparent coverings (glass, plastic films, and heavy plastics), and sizes are available. Finally, a large amount of experience is available with liquid collectors (originally used for hot-water supply), including theory as well as practice.

DISADVANTAGES OF LIQUID SYSTEMS

The disadvantages of liquid systems result primarily from the chemical and physical properties of water. Its freezing point, boiling point, and chemical react with with metals require designs and materials which can add substantial cost to a solar heating system. In nearly all parts of the United States, water would occasionally freeze in a solar collector and cause extensive damage. A fail-safe drainage system must, therefore, be provided if water is used in the collector, or a nonfreezing liquid must be used, with heat exchange to water storage in a part of the building where freezing cannot occur. A self-deatining collector imposes some design restrictions, and the periodic filling of the collector tubes with air imposes limitations on the types of metal

which can be used. Nonaqueous heat transfer liquids may be used in the collector loop, but their practical utility has yet to be adequately demonstrated.

21-1-3

The corrosiveness of water in contact with aluminum or steel, in the presence of air, is a factor which must be considered in the design and use of water-heating solar collectors. Galvanic corrosion (in the presence of other metals) of aluminum in water must be avoided by, suitable non-conducting connections in the system. Pitting corrosion of aluminum in the presence of slight metallic impurities as well as dissolved oxygen and impurities in the water may result in early failure of the aluminum tubes, particularly if thin-walled. Breakdown of antifreeze solutions (ethylene glycol, for example) to acidic compounds can accelerate corrosive attack and must be avoided by suitable preventive maintenance.

Steel is less subject to attack than aluminum, but precautions must nevertheless be taken. The probable life of a steel collector is greater than that of an aluminum collector having the same tube thickness. Periodic draining and filling with air must, however, be avoided. Copper, at least for tubes, appears to be the most durable and dependable material. The only disadvantage is its substantially higher cost. A plate-type copper collector requires an outlay roughly three dollars, per square foot in excess of that for aluminum. At the retail level, this difference could be as much as five to six dollars in selling price.

With any of the metals used for water-heating collectors, corrosion inhibitors can be added to the solution (whether freeze-protected or not), thereby substantially extending the life of the equipment. The inhibitor itself, however, must be maintained at suitable concentration by periodically checking and adding when necessary.

Another disadvantage of the water system is the boiling which occurs if circulation is lost during sunny weather. The system must be designed with appropriate vents or relief values to permit discharge of steam when these failures occur. If the condition persists for several hours, there can be so much loss of fluid that recharge is then necessary. For typical residential and commercial installations, a maintenance man would have to be called, and additional antifreeze agent (if used), corrosion inhibitor, and water would have to be added These requirements impose costs which must be considered in any comparison of systems.

In a well-designed and maintained liquid system, damage to the building and its contents from liquid leakage should not occur. However, poor maintenance or careless operation can contribute to leakage of the collector fluid or of water from the storage system through one of many joints and connections, or through corrosion sites, and can result in expensive damage. Good preventive maintenance is therefore a primary requirement of satisfactory operation of a liquid system.

ADVANTAGES OF AIR SYSTEMS

The advantages and disadvantages of an air system are essentially the reverse of those associated with a liquid system. Advantages are the absence of problems associated with corrosion, freezing, boiling, fluid replacement, monitoring of fluid composition, and potential damage by system leakage.

DISADVANTAGES, OF AIR SYSTEMS

A disadvantage of the air system it the larger volume required for heat storage - approximately three times that for the equivalent heat storage capacity in water. This requirement imposes a need for floor

space having a linear dimension approximately 60 percent greater than for a cylindrical storage tank. Equal heat storage can be provided, for example, in an eight-foot cube of pebbles and in a tank of water five feet in diameter and eight feet high. Another air system disadvantage is the size of ductwork between collector and storage. About four square feet needs to be available for two ducts between collector and storage in a typical residential installation. A third disadvantage is the current lack of air conditioning equipment operable with a solar-heated air supply. This situation is not yet a deterrent to air system use, however, because no solar air conditioning system is yet commercial.

Comparison of the advantages and disadvantages of solar heating system types outlined above leads to the conclusion that the air system is superior insofar at durability and freedom from maintenance are concerned. Experience with a limited number of systems bears out this generalization. As to compactness and wide availability of hardware, the liquid system appears to be the better choice. These relative advantages suggest that air systems may predominate in residential installations where maintenance is notoriously neglected, where compactness is often not considered essential, and where durability is important. Liquid systems, on the other hand, may predominate in commercial and industrial installations where maintenance is routinely practiced, where space is frequently at a premium, and where occasional equipment replacement is acceptable if economically desirable.

SYSTEM PERFORMANCE

In terms of system efficiency, or annual heat delivered per unit collector area, the two systems have comparable performance. Several studies

have shown that the difference in heat output is small, and that one system may be slightly better under some conditions and the other superior in other situations. The most recent information on two identical adjacent houses shows nearly one-third more heat was supplied by the air system from equal collector areas. But a conservative appraisal is that the two systems have approximately equal heat delivery capability per square foot of collector area. More data are needed before more definitive statements can be made.

COST OF HEAT DELIVERED

The final and conclusive basis for comparison is cost per unit heat delivered. If efficiency, useful life, and maintenance costs are equal, the system requiring the least maintenance per square foot of collector is the best choice. System costs are not yet sufficiently established for positive selection on this basis. However, examination of published prices of solar collectors and consideration of the costs of other components in the system suggest that the total installed cost of the air system is lower than that of the liquid system, for equal heat output. Evidence in support of this indication is not conclusive, however, so unless actual quotations can be compared, it should be assumed that the cost difference is not large, possibly not over 10 percent of the total investment, and that any difference is probably in favor of the air system.

Another important factor bearing on solar heat cost is the useful life of the system and the costs of maintenance and repairs. On these points there is little doubt that the air system involves lower annual expense. The absence of corrosion, the use of moderate-priced metal (mild steel), and the absence of servicing requirements indicate that

20

the air system will have a longer life and lower maintenance cost than the liquid system.

With respect to evacuated tubular collectors, their high efficiency is a great advantage. These units are not yet being made for general sale, so jt is difficult to make comparisons with flat-plate systems. Manufacturing costs are much higher, and current prices may not reflect true costs. But if these units can be produced in large volume (e.g., a thousand tons of glass per month), costs might reach a competitive level. Selection of evacuated tubular systems today would have to be based on criteria other than cost, such as high temperature delivery of collector fluid at reasonable efficiencies. But when demand reaches the level justifying automated tubular collector production with a furnace used exclusively for this product, costs may become very attractive.

Thère is also a focusing collector (Fresnel lens) which has received some experimental use. It requires a tracking mechanism and the cost is substantially higher than the other systems. Unless high temperatures, well above 200°F, were a specific requirement as, for example, for absorption air conditioning, there appears to be no , advantage in the use of this low-concentration focusing system. The considerably higher cost, inability to focus diffuse radiation, and the need for moving hardware, plus maintenance, appear to preclude its "practical use for space heating.

In the final choice of a solar heating system, consideration must be given to the type of use which the system is to meet. As previously indicated, liquid systems appear to have some advantages over air systems in large installations where maintenance is customary and where cooling may now or later be provided by solar energy. Other circumstances

might also provide incentives for liquid system use. It is evident that both systems have potential for widespread application.

21-18

' CRITERIA AND STANDARDS

Although no performance criteria or standards for solar heating equipment have been established, several such efforts are being made: Among the active organizations are the American Society for Testing and Materials (ASTM), the American National Standards Institute (ANSI), the American Society of Heating, Refrigerating and Air-Conditioning. Engineers, Inc. (ASHRAE), the Sheet Metal and Air Conditioning Contractors National Association (SMACNA), and various government bureaus, including the National Bureau of Standards (NBS), the Department of Housing and Urban Development (HUD), and the Energy Research and Development Administration (ERDA).

A committee of the ASTM and ANSI organizations is actively engaged in formulating standards for solar heating equipment. No results have been publicly released, but criteria or guidelines may be expected. ...ASHRAE, through its series of manuals on heating and air conditioning, continues to expand its section on solar heating and cooling. The 1974 edition of "Applications" contains solar heating information and guidelines in Chapter 59. This material is in the form of a reference handbook for designers and installers of solar heating equipment, but it is comparatively general in its content.

An important project of the National Bureau of Standards is the formulation of performance criteria which solar heating and cooling equipment should be expected to meet. Two of the results of this project are the reports, "Interim Performance Criteria of Commercial and Solar Heating and Combined Heating/Cooling Systems and Facilities", NASA 98M-10001, 28 February 1975 (prepared by NBS) and "Interim Performance" Criteria for Solar Heating and Combined Heating/Cooling Systems and Dweilings", HUD, 1 January 1975 (prepared by NBS for HUD). These publications contain information on the characteristics of solar systems and components which are important in the selection of equipment. No requirements are outlined, in terms of quantitative performance, but the equipment is expected to perform at the level which the manufacturer or supplier specifies. In addition to the criteria themselves, the reports describe methods for measuring the performance of collectors and heat storage units.

The next government effort along these lines has resulted in the release of "Intermediate Minimum Property Standards Supplement for Solar Heating and Domestic Hot Water Systems," prepared by the National Bureau of Standards for the Department of Housing and Urban Development (HUD). In conformance with other HUD documents of this type, the specifications outlined are those which solar heating equipment will have to meet if federal funds, such as FHA home loans, are used in financing the structure or its components. As with the "interim performance standards" developed by NBS, the solar heating and cooling standards in the HUD document are directed mainly to safety, durability, reliability, and such factors rather

21-19

than to the specific efficiency of heat supply or other quantitative criteria. The equipment is required to perform according to the manufacturer's claims.

21-20

The work being undertaken by SMACNA is directed toward standards for installation workmanship in solar heating systems. Such factors as the quality of the plumbing, sheetmetal work, and electrical work will be-considered.

Standards for testing solar equipment have been the subject of workat the National Bureau of Standards for over two years. A useful report of part of this investigation is "Development of Proposed Standards for Testing Solar Collectors and Thermal Storage Devices", NBS Technical Note 899, issued February 1976.

Another document related to standards and criteria, prepared at the Center for Building Technology of the National Bureau of Standards for the Energy Research and Development Administration, Division of Solar, Energy, is "Thermal Data Requirements and Performance Evaluation Procedures for the National Solar Heating, and Cooling Demonstration Program." This manual provides detailed information and directions for measuring and evaluating the performance of solar heating and cooling systems.

WARRANTIES

The types of warranties offered by manufacturers of solar heating equipment vary considerably. At the present time, if a supplier provides any warranty, it is of the "limited" type. Under its terms, the equipment

is warranted to be free of defects in materials and workmanship, and that if such defects are found within a certain period of time after initial use, correction or replacement will be made without cost to the user. Most of the suppliers of solar, equipment do not currently offer any type of warranty. A few, larger companies involved in solar equipment manufacture are offering one-year limited warranties. One company marketing an air system offers a 10-year limited warranty.

There appear to be no manufacturer's guarantees as to thermal efficiency or heat delivery capability of solar equipment. Although manufacturers are providing that type of information in their sales literature, they are not guaranteeing the performance in the field. To a certain degree, this omission is due to the inability of the manufacturer to control the quality of the installation. In addition, manufacturers supplying only certain components of a system, such as the collector, cannot be assured that the other components in the system are correctly selected or integrated with their own product. Thus, inferior performance might well be due to factors other than those controlled by the collector manufacturer. A performance warranty would thus be difficult to establish and maintain.

Still another problem in providing a meaningful performance warranty is the great variation in climate encountered and the practical difficulty in accurately measuring the output of the installed equipment. Instrumentation is usually not provided, so measurement of performance is likely to be an expensive investigation by an experienced engineer. Disputes, litigation, and other problems would be inevitable.

Practical performance warranties should become available for complete solar heating systems provided by a single manufacturer, assembled

and installed by a single responsible individual or firm. The manufacturer could then guarantee the system to the installing firm which, in turn, would guarantee it to the purchaser. In case of dispute, the installer could measure system performance in the presence of the owner and a third party, if demanded, for determination of conformance. If inadequate, corrections would be made in compliance with the warranty, and the installer and manufacturer would establish responsibility for the departure from specifications.

Such developments as the Home Owners Warranty (HOW) program, sponsored by the National Association of Home Builders, can be expected to have an influence on solar heating equipment guarantees. Under the HOW program, all defects in a residential structure will be corrected at no cost to the owner during the first three years of use. It may be expected that solar heating equipment will have warranties conforming with such a program. Manufacturers will then be required to guarantee to the dealer and installer the necessary support for compliance with this program.

The solar equipment manufacturing industry unfortunately includes several small suppliers having practically no experience with solar. equipment and offering no warranties of any kind. Purchasers of such equipment have very little chance of reimbursement for costly failures. Even if a small, marginal manufacturer offers some sort of warranty, a purchaser does not have much assurance that the manufacturer will remain in business long enough to make good on its guarantee. In the event of equipment defect or failure, the owner (or installer, if guaranteed by him), would suffer the loss. These and other topics are discussed in the previously mentioned government report, "Buying Solar", published in June 1976 by the Federal Energy Administration and HUD.

57t

TRAINING COURSE IN-

SIZING, INSTALL FION, AND OPERATION OF SOLAR HEATING AND COOLING SYSTEMS

RESIDENTIAL BUILDINGS

FOR

MODULE 22

FUTURE PROSPECTS FOR SOLAR HEATING AND COOLING SYSTEMS

SOLAR ENERGY APPLICATIONS LABORATORY GOLORADO STATE UNIVERSITY FORT COLLINS, COLORADO TABLE OF CONTENTS

22-i

EVACUATED TUBE COLLECTORS CONCENTRATING COLLECTORS : THERMAL STORAGE. HEAT EXCHANGER . SYSTEMS

22-3 22-5 - ----22-7 22-9

22-ii

22-ii

22-1

22-1-

22-2

22-2

LIST OF FIGURES

Page Figure Schematic of the Corning Glass Works Evacuated Tube Solar Collector Schematic of the Ovens-Illinois Evacuated Tube Solar-Collector 22-1 22-4 «22-2· 22-6 Fresnel Lens Strip Solar Collector 22-7 22-3 Direct Contact Liquid Liquid Heat Exchanger 22-9 22-4 LIST OF TABLES Page . Table Selective Surfaces Characteristics . 22-3 ,22#1 Properties of Possible Collector Fluids 22-2 Acia

579

RĬC

22-ii

INTRODUCTION

The solar systems that are described in other modules of this manual are cost-effective systems that have been installed and operated. Data obtained from experimental systems indicate that they function satisfactorily in residential buildings. Fluids that are heated by solar energy in flat-plate collectors are sufficiently high in temperature to heat space and hot water and to provide the space of the drive a an absorption cooling machine. Although efficiencies of the systems vary, they are generally about 30 percent and, while such an efficiency is satisfactory, if it can be improved by better components at lower, energy cost, the improvements are worthwhile. A number of new features. and components of systems are being researched and many could improve system performance significantly. Flat-plate collectors can be improved with selective coatings or redesigned to provide greater efficiencies in heat collection. Storage with latent heat materials could provide greater heat capacity in more compact space, and storage for liquid systems with direct contact heat exchanger to eliminate some hardware, would improve system performance. If air conditioning equipment using solar-heated air could be developed, the air-heating solar systems could be used throughout the year for heating and cooling. These and many other future prospects are in store for solar heating and coeling systems.

OBJECTIVE

This module describes some prospective features and components in solar heating and cooling systems that could improve overall system

features that could become economical to add to the systems described in this course and to recognize that considerable research and development effort is being devoted to component hardware in solar heating and cooling systems.

22-2

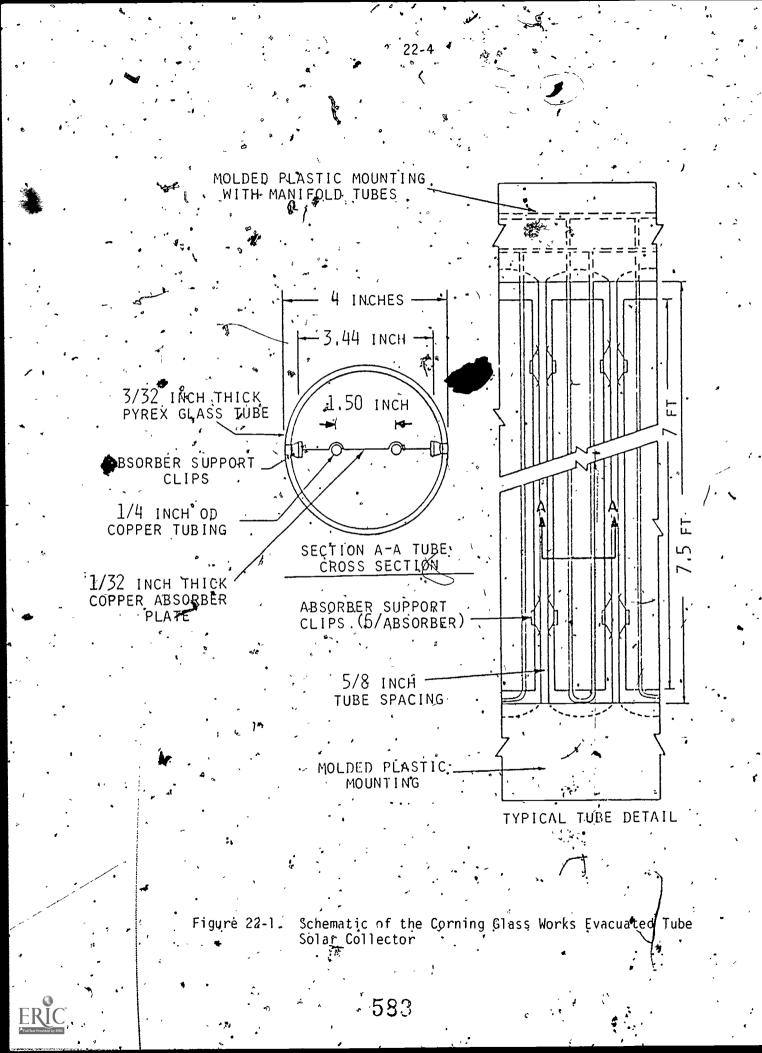
· SOLAR COLLECTORS

The most important component in a somer system which could improve performance is the solar collector. Improvements which will increase efficiency of energy collection and reduce the delivered costs are particularly worthwhile. Among many interesting possibilities are the addition of selective surfaces to absorbers, and collectors with the air evacuated from around the absorber plates to reduce heat losses and improve collector efficiency.

SELECTIVE SURFACES

• Selective surfaces have high absorptance of solar radiation and low emiltance of long-wave radiation. There are a variety of selective surface, that could be used in flat-plate collectors, and some are being tested on experimental units. Several coatings such as copper oxide and black nickel have been available for a long time, but technical problems and cost have limited their use. Black chrome appears to hold <u>some promise and</u> some flat-plate collectors are presently available with such absorber coatings. Characteristics of some selective surfaces are listed in Table 22-1.

Table 22-1


Selective Surfaces Characteristics

Coating	Absorptance	Emittance ·	
• Converted Zinc	0.90	0.071	
Black Nickel	0.88	0.066	
Black Chrome	0.92	0.085	

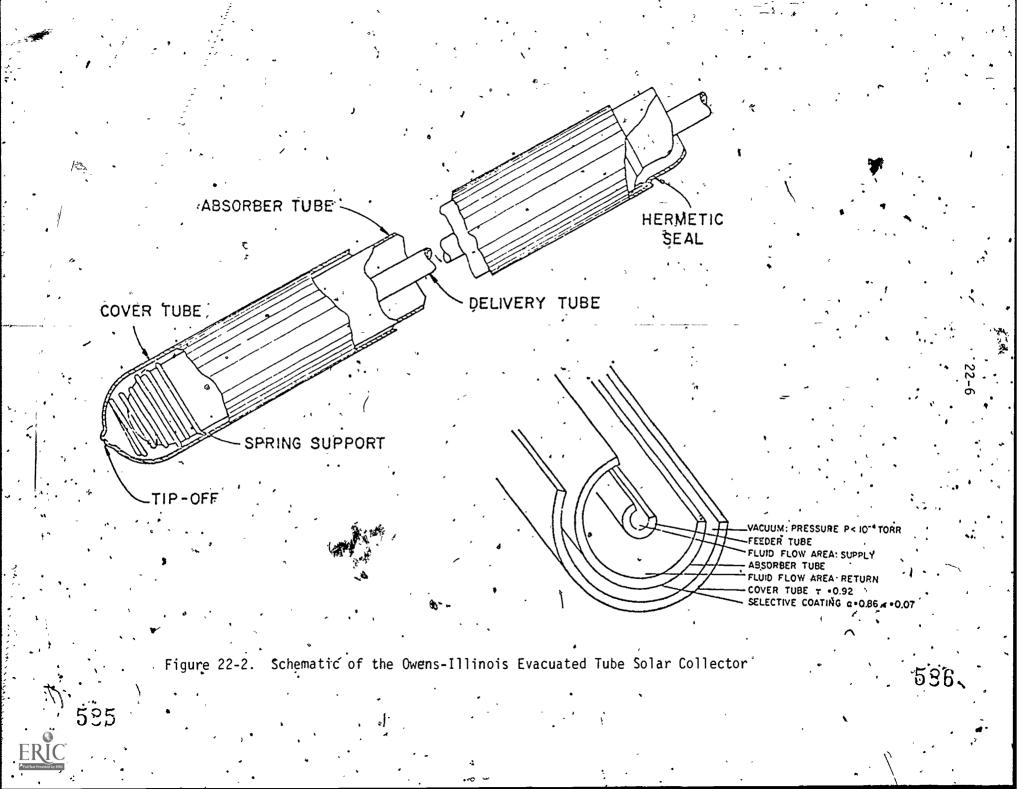
EVACUATED TUBE COLLECTORS

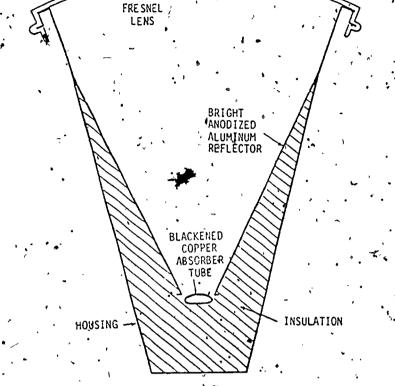
Evacuation of the air around the absorber plate is potentially a significant improvement in solar collectors. There are a number of different designs that are being assembled and tested, and at least one manufacturer makes them in moderate quantities. Evacuated collectors will produce more useful heat than standard flat-plate collectors under the same sun and weather conditions because the losses from the absorber are greatly reduced. With a vacuum surrounding the absorber, conduction and convection losses are effectively negligible and, if the absorber coating is a selective surface, the radiation loss is small.

One design, by Corning Glass Works, is shown in Figure 22-1. Inside an evacuated glass tube which is four inches in diameter is a copper absorber plate with a selective surface. Bonded to the plate is a copper U-tube which carries the heat transfer fluid. The ends of the tube protrude through one end of the glass tube, and the absorber plate is free to expand toward the other end. The efficiency range of the collector varies from about 75 percent when the inlet fluid temperature is low to about 60 percent when the fluid is near the boiling temperature of water. Most flat-plate collectors have high efficiency with low inlet fluid temperatures, but have low efficiencies when the fluid temperature is near 200°F. The evacuated tube collector has a

significant advantage when producing high temperature heat to the system and can be used effectively with solar cooling units where high temperature fluid is needed.

An evacuated tube collector design by the Owens-Illinois Glass Company is shown in Figure 22-2. There are three concentric glass tubes with the intermediate one coated with a black selective surface. The vacuum is between the outer and intermediate tubes. Fluid is transported through the inner tube and, as it passes through the annulus in contact with the absorber tube, heat is transferred from the glass to the fluid. Two other evacuated tube collectors are being experimentally tested.


one by the General Electric Company for use in air-heating systems and another is by the Philips Company in West Germany for liquid systems. Many variations in design of evacuated tube collectors are possible, = and different designs will gradually advance to the practical stage.


CONCENTRATING COLLECTORS

Concentrating collectors are used when very high temperature fluidis needed to drive heat engines or to be used in industrial processes. If concentrating collectors can be designed to be more efficient than flat-plate collectors, operate reliably, and with little maintenance sothat the cost of delivering energy is low, then such collectors can have potential uses in residential solar systems. Experience thus, far has indicated otherwise, but there is considerable research underway and new designs for concentrating collectors are being developed.

One type of low concentration collector is being developed by the Northrup Company and is being tested on a number of solar systems for large buildings. A Tinear focusing collector with a Fresnel lens is the type being developed and is shown in Figure 22-3. The collector is 7

. 584,

22-7.

Figure 22-3. Fresnel Lens Strip Solar Collector

mounted with the axis in the north-south direction and tilted at an angle with respect to the horizontal plane. The collector rotates from east to west during the day so that the direct rays from the sun are focused into the absorber tube. A distinct disadvantage of concentrating collectors is that only the direct rays from the sun are used, as the diffuse radiation cannot be focused.

. THERMAL STORAGE

Considerable research is being devoted toward the utilization of salt hydrates and other phase-change materials for storage of latent heat. The principal difficulties are packaging the storage material and stratification or separation of the material after a few hundred cycles of phase changes. One advantage in the use of phase change materials is supposedly the smaller storage volume required, as compared to water or rocks. However, a solar heating and cooling system requires a water volume of only two gallons of water or one-half cubic foot of rocks per square foot of solar collector area.and, in a typical system with 500 square feet of collectors, the water volume needed is about 1000.gallons or about 350 cubic feet of rocks. When packaged phase-change material is arranged in a container with adequate surface contact with the heat transfer fluid from the collectors, it is difficult to achieve a significantly smaller volume of storage. –

22-8

With proper materials there is, however, an advantage in being able to obtain a sustained constant temperature of the heat delivered, from storage. This property of latent heat storage materials can be used to advantage in solar cooling systems, both in the hot storage and cold storage tanks.

Another future prospect for storage of thermal energy is in chemical methods. Chemical storage offers technical possibilities that sensible and latent heat storage do not. These possibilities include: (1) long-term storage without need for insulation and without thermal loss, (2) storage at high energy density, and (3) recovery of stored thermal energy at temperatures above or below the original temperature. Although no thermo-chemical system appears imminent, in concept at least, this method of storage can have important applications in terms of supply and demand and improving thermal

efficiency.

HEAT EXCHANGER

The disadvantage of a heat exchanger in present liquid-heating solar systems is the temperature difference needed to transfer the heat at the heat exchanger. A temperature difference of 10 to 20°F has a significant influence on the amount of useful heat delivered by the system. The temperature in storage is low and the collector efficiency is less.

A heat exchanger-storage combination unit is under investigation where heat is transferred from liquid droplets that transport heat from the collector to water in the storage tank. A liquid that is immiscible in water is pumped through the solar collector and through the storagetank as droplets. If the density of the liquid is substantially different from that of water, the liquid droplets will either rise or descend through the water in the storage tank. A schematic of a heat exchangerstorage unit is shown in Figure 22-4. For the illustration shown, the

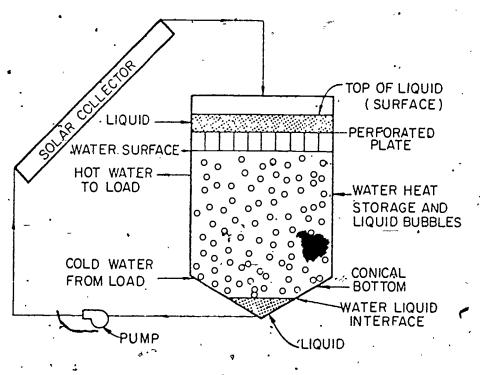


Figure 22-4. Direct Contact Liquid-Liquid Heat Exchanger

liquid is heavier than water. The liquid is delivered to the top of the tank, is broken up into droplets at the perforated plate, and collects in the bottom cone. The temperature difference between the droplets and the storage water is only about 1°F or less, with substantial heat transfer occurring across the large collective area of the droplets. There are several possible liquids that can be used and, although not named, their properties and approximate costs are listed in Table 22-2.

Table 22-2

	Properties of Possible Collector Fluids							
•	Fluid.	Freežing. Point (°F)	Boiling Point (°F)	Spec t fic Gravity-	(\$/gal)			
]	-31	· 698 ·	1,16	2.98 ·			
, . .	2*	-36	734 ^{, ,}	1.208	6.91			
	3 💰	· <u>~</u> -31	644	1.048	3.32			
	4,	-41.	. 568	1.120	3.46			
	5	-27 [°]	415	1.043	- 10.45			
	6	-13	770 🤺	1,162	8:63			
	7	-76	782	0.927	s. 3.79			
	8	-67	478	0.913	9.80			

SYSTEMS:

At present the only commercially available cooling unit in small . .size that is operable with solar energy is a lithium-bromide absorption cooling unit. As mentioned elsewhere in this manual, there are a number of different experimental cooling units that are being developed, such as the heat engine-driven refrigeration machine and ammonia-water continuous cycle unit.

— There is also significant effort being made in the development of so-called total energy systems, where high temperature heat from solar energy is used to generate electricity and the low temperature "waste" heat is used to heat and cool a cluster of buildings. Such systems are likely destined for specialized use in grouped facilities such as military bases but, with some variation, may serve a number of homes or apartment complexes.

In the long term, development of photovoltaic systems for residential buildings is a possibility. Electricity that is generated could operate the heating and cooling system in the house. Whether photovoltaic systems will ever be low enough in cost to be competitive with electricity generated from fossil or nuc(ear fuels is an open question, but a considerable amount of effort is being devoted to improve efficiency and reduce the costs.

Other improvements in systems which utilize solar energy are hybrid systems consisting of passive as well as active components. There has not been much effort toward development of passive systems except by architectural treatment of windows. While this effort has been significant, more direct heating of residential space with passive systems may minimize the size of the active components and thereby reduce overal]

'₁ costs.

U.S. GOVERNMENT PRINTING OFFICE . 1977 0-247-462