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ABSTRACT

The focus of this project has been the.preparation of a manual

aimed at the improvement of both the design of longitudinal research

and the analysis of data arising therefrom. Primary substantive

emphasis has been given to issues related to educational and develop-

mental research. Topics of particular salience to longitudinal

researchers include: (a) the explicit differentiation between intra-

. individual variation, interindividual differences, and interindividual

differences in intraindividual change; (b) stochastic models of de-
,

velopmental change; (c) mathematical representation of growth curves;

(d) structural equation models; (e) analysis of variance applications,

both univariate and multivariate; and (f) analysis of categorical

data.



PREFACE

This report to the National Institute of Education represents

the'core of an advanced manual being developed to aid the design and

conduct of longitudinal research in the behavioral and social sciences

in general with particular emphasis on developmental/educational

concerns. The various chapters presented here, as well as a few

additional ones to be included in a proje.cted commercially available

,volume, cover aspects of formulating research questions that are

inherently longitudinal, designing appropriate empirical research

Studies, and analyzing effectively the resulting data. Our primary

concern in choosing topics and selecting authors has been to provide

this manual as a common meeting place, as it were, between leading

experts in particularly salient aspects of longitudinal research

and empirical researchers whose capacity for asking keen and interesting

substantive questions exceeds their familiarity with longitudinal

research tools presently'at the "cutting edge" of methodological

innovation.

Presented in Appendix A is a prospectus representing the contents

of the entire.manual as it is currently envisioned. Negotiations to

secure a commercial publisher are currently underway and will be com-

pleted soon. The investigators have also completed a major part of

the introductory and overview material to be included in the commercial

volume. :Appendix B includes a list of project related papers by the

investigators that were developed during the course of the contract

period and credited accordingly.

We wish to acknowledge the work and ideas of several people who

helped to make this project possible. In addition to various erstwhile

ii
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and present peYonnel of the National Institute of Education whose

.
helpful advice was greatly appreciated, we are appreciative of the advice

and counsel of our colleagues here in the College of Human Development

at The Pennsylvania State University concerning potential contributors

and Perhaps most importantly, our collaboration

with the contributors
)

tp,,this report was not only enjdyahle and pro-

.
.. ,

, -4 -141

'ductive76ut.also educational for us:

A treat deal of gratitude is also due our project staff. Our

graduate assistants, e"sp"ecially Steven W. Cornelius and Allison Okada

Wollitzer, not only offered valuable' intellectual input but were

extremely helpful in tracking down references and assisting with

editing. T. J. Winand and Richard L. Erwin of the Institute for the

Study of Human Development helped us repeatedly in the management of

resources. An expression of profound appreciation is due several

very capable project.and diviiionAl secretaries and typists who

assisted at various stages on the project, including: Sally Barber,

.

Diane Bernd, Jo Ann Christina, Kathy F. Droskinis, Kathy Hooven,

Miriam Landsman, Joy Lose, Patty Senior, and Ingrid Tarantelli.

To all of these and others whom, we may have neglected to mention --

thanks!

May, 1976
John R. Nesselroade
Paul B. Baltes
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Abstract

A general developmental model for considering interindividual differences,

intraindividual differences, and intraindividual change is presented. The

model consists of defining each of the latter concepts in terms of Person X

Variable X Occasion data and considering their interrelationships. Two major

psychometric concepts, stability and regression, are then`singled out for

special consideration within the model. The latter tack provides for some

useful conceptual distinctions, her several different kinds or aspects of

both stability and regression become readily apparent. In this way, the

developmental researcher can become more self-conscious of, arid achiee greater

clarity of, some key psychometric issues which undoubtedly will intrude upon

his theory and practice.
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I. INTRODUCTION

The mission of this brief chapter is to present the beginnings of a

unified conceptual framework from which to view traditional psychometric

concepts such as stability, regression, reliability, and measurement error

within a developmental context. In addition, the emphasis will be upon the

'multivariate situation--accommodating the notion of repeated measures through

time on multiple variables for several individuals. Critical in the model to

be presented are the concepts of interindividual differences, intraindividual

differences, intraindividual changes, and-their interrelationships. To the

extent that developmental psychologists should focus on intraindividual change

and interindividual differences in intraindividual change (Wohlwill, 1970,

1973; Baltes, 1973), then there is a real need to consider within developmental

methodology the interfac between such concepts as intraindividual change and

inter- and intraindividual differences, and traditional psychometric issues:

Thus What follows is an exer&se in concept methodology rather than in formal

pethodology. In this way, the practicing developmental psychologist may

acquire. a firmer grasp of some of the psychometric concepts necessary for

carrying out valid developmental research in the multivariate situation.

II. OVERVIEW OF THE GENERAL DEVELOPMENTAL MODEL.

In 1974 I proposed a general developmental model (Buss, 1974a) which '

N
attempted to integrate the concepts of interindividugl difitrences, intra-

individual differences, and intraindividual change within a multivariate

developmental perspective. The major focus at that time was upon data-gathering

strategie's and data analyses rather than on traditional psychometric issues.

In order to prepare the ground for a consideration of the latter, a brief

Overview of the 1974 model will be undertaken at this time. Note at the outset

that the general developmental model proposed by Buss (1974a) is not identical

with the one advanced by Schaie (196S) in the context of age-cohort research.

A./
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A. Nultiple Values on One Dimension .1

The basic general developmental model a la 1974 involVed taking Cattell's

(1946, 1952) three-dimensional Person X Variable X Occasion covariation chart

as a basis for defining the concepts of interindividual differences, intra-

individual differences, and intraindividual change and there interrelationships.
.. .

-4

Figure 1 presents the simple case, where the datum in each sell is an indi-

vidual's score,on a variable at a particular oCCasiOn.',in_this mddel, inter-
\

.

individual differences are defined by sampling across inaividuals,for each

variable at one occasion; intraindividual differences are defined by sampling

across variables for each individual at one occasion; and finallY, intraindivid-

ual changes are. specified by sampling across occasions for each variable for

one individual.

Insert Figure 1 about here

a. Multiple Values on Two Dimensions

Figure 2 extends the concepts of interindividual differences, intra-

individual differences, and intraindividual changes by considering the Six

possible ways of comparative sampling across each of the three dimensions.

That is to say, for each of the three dimensions, the simple case is indicated

in which at least two values, components, or "ids" (Cattell, 1966) are sampled

across each of the remaining two dimensions or sets. The six cases thus:

generated are: (a) interindividual differences in intraindividual differences,

in which individuals are compared in terms of sampling across variables at,one

occasion;'(b) intervariable differences in interindividual differences, in

which variables are compared in terms of sampling across individuaA

occasion; (c) interoccasion differences (changes) in intraindividual differences,

5
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Figure 1 -- The three cases generated by sampling across each

of the three dimensions of individuals, variables,

and occasions are interindividual differencs
(Inter-ID), intraindividual differences (Intra-ID),

and intraindividual changes (Intra-IC), respectively.

(frdm Buss, 1974)
,
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in which occasions are compared in terms of sampling across variableg' for one

individual; (d) intervariakle differences (or intraindividual differences) in

intraindividual changes, in which variables are'compared in terms of sampling

across occasions for one individual; (e) interindividual differences in Intra-

AIL

individual changes, in which individuals are compared in terms of sampling

across occasions for one variable; and finally, (f) interoccasion differences

kf,

(changes) in interindividual differences, in which. occasions are compared in

terms of sampling across individuals for one vatlable.

Insert Figure 2 about here

Each of the Above six data-gathering strategies is defined by what is

compared--which gives the first aspect or the interindividual differences,

intervariable differences, or interoccasion differences part--and in terms of

what set is sampled acrosswhich gives the second part of interindividual

differences, intraindividual differences, or intraindividual changes aspect:

The two interoccasion-comparison cases (see c and f above) may be considered

as changes through time. It may be appropriate to consider the (d) case as

intraindividual differences in intraindividual changes, since different
4

variables are compared in terms of intraindividual dhangeS. This observation

r.

reveals that there are two distinct ways of operationalizing the concept of

intraindividual differences in Figure 2: by samplingiacross variables for one

individual at one occasion (a and c) and by comparing variables in terms of

sampling across occasions for one individual (d). Similarly, there are two

dikinct views of interindividual diff6rences: by sampling across individuals

for each variable at one occasion (b and f), and by comparing individuals in

terms of either sampling across Variables at one occasion (a), or by,simpling

across occasions for one variable (e).

7 -
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Figure 2 The six cases,generated by comparative cross-sampling
for the simple case in which only two components from
one dimension are compared in terms of sampling across

a second dimension are shown. (abbreviafions for terms

are as follows: ID= individual differences, IC=indiviftal
changes, liD=variable differences, and OD=occasion

differences.) (from Buss, 1974)

8
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Each of ,the six cases in Figure 2 is illustrated by comparative sampling

for two ids, although the mere general case would involve an entire two-
. . 7

dimensional matrix. The latter situation would' make use ofthe exact same

data from anIndividual X Variable matrix at one occasion, but in (a) one

would first get an overall measure (e.g., a variance measure)-of variable

differences within each? individual (intraindividual differences) and compare.
.

. % .

.

individuals (interindividual differences' ntintraindividual differences) in

terms of variances ,-while in (b) one would first get a variance measure of

differences between individuals for each variable (interindividual differences)

a'nd compare yariab/e variances (intevariable differences in interindividual

.

e ... 4
.

......: ... "
, .

L':,7differences): Mutatis mutandis, a similar situation exists for the remaining,

four cases in Figure 2. . .

Since the (a) and (b), data-gathering strategies are carried out atones

occasion,.they are not particularly useful for addreSing developmental aspects" _

of changes in variable scores,..uriless one simultaneously considers the third

dimension of occasions (see below).- In contrast, the remaining four data-

-gathering strategies, whicli_invoIve, in part, sequential dependent measures or

changes in variable scores through time, would be especially" useful develbp-

mental paradigms., In considerinwthe two cases'(d) and (e), which are sampleS

across the occasion dimension and are thus concerned with intraindiyidUal

.

changes, one must focus on comparing either variables (d) or individuals (e),

Sand this requires that the unit for analysis be the plotting of the entire set
A

of variable scores through timer A useful statistical technique that could be

,employed here would be testing for trends. This focus on the pattern of

changes in variable scores may be contrasted with the,other four cases, in

which the unit of analysis for making comparisons would be variances. In the

(a) case, for-example, where interindividual differences or comparisons are

9
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made with respect to intraindividual differences, th?--appropriate index for

the latter is a measure of the within-person variance of variable scores at

one occasion. In order to compare variables at one occasion in terms of

interindividual differences (b), again it is a variance measure that captures

10

the extent of the interindividual differences. A similar situation holds for

cases (c) and (f).

Variable scores are typically standardized across individuals-for each

variable at one occasion. This common practice needs to be avoided in the

present scheme, since it would result in identical variances for each variable

at each occasion (the variance of a standardized variable is equal to unity).

If such .a standardizing procedure were adopted, it would be impossible to

detect intervariable differences in interindividual differences (b). By a

similar argument, it would be undesirable to standardiie each variable across

occasion's for each person, each occasion across variables for each individual,

etc. What is necessary for meaningful comparisons for all'six cases is to

1.0

standardize each variable in terms of both individuals and occasions, that is,

across each rectangular 'slab " or matrix for each variable. In this way,

spurious, identical interindividual dif j ces variances for each variable at

each occasion, which are brought about by 147Caling procedures, are avoided.

One of the advantages of standardizing in the manner being recommended here is

that 'absolute changes in variable scores result in correspondingly' higher or
411F

lower standard scores, since variables are not restandardized within each

occasion.

C. Multiple Values.on Three Dimensions

It is possible to extend each of the six data-gathering strategies outlined

above in that situation in which one also samples through the third dimension.

In other words, there is a three-step process here, in which one first samples

10
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.across the first dimension, compares such sampling in terms of the ids dr

components on the second dimensions (the six cases just outlined above), and

then proceeds to sample the comparisons of cross-sampling through the third

dimension. In the complete three-step procedure, two dimensional "slabs" or

matrices are compared. This process generates six cases, in which,those data-

gathering strategies in Figure 2 are now moderated by a term referring to the

third dimension that is sampled through.

.+"

Insert Figure 3 about here

Figure 3 illustrates the complete three-step procedure for the simple

case in which two ids (which have been sampled across on one dimension) are

successively compared across the third dimension. The more general case would

involve successive sampling of entire matrices through the'third dimension.

As before, the latter procedure could involve the same data for various cases,

but it is the operational sequence of the three sampling steps that determines

six separate relational systems.

The six, three-step camas in Figure'3 are the following: (a) interoccasion

differences (changes). in interindividual differences in intraindividual differ-
,

ences, in which the variances reflecting the extent of intraindividual differ-

ences for each individual at an occasion are compared for individuals through

time or the occasion dimension; (b) interoccasion differences (changes) in

intervariable differences in interindividual differences, in which the variance's

teflecting the extent of interindividual differences for each variable at an

occasion are compared for variables through time or the occasion dimension;

(c) interindividual differences in interoccasion differences (changes) in

intraindividual differences, in which the variances reflecting the extent of



Figure 3 -- The six cases generated by sampling the labeled

comparative cross-samplings through the third

dimension are. shown. (The simple case is indicated

in which only two cross-samplings are successively

compared through the third dimension: Abbreviations

for terms are as follows: ID=individual differences,

IC=individual changes, VD=variable differences, and

OD=occasion differences.) (from Buss, 1974)

12
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intraindividual differences for each occasion for an individual are compared

for occasions through the individual dimension; (d) interindividual differences

in intervariable differences (intraindividual differences) in intraindividual

changes, in which the plots of variable scores across occasions at an individual

are compared for variables through the individual dimension; (e) intervariable

differences in interindividual differences in intraindividual changes, in

which the plots of variable scores across occasions at a variable are compared

for individuals through the variable dimension; and finally, (f) intervariable

differences in interoccasion differences (changes) in interindividual differences,

in which the variances reflecting the extent of interindividual differences

for each occasion at a variable are compared for occasions through the v4iable

dimeniOn.

Although these extended -six data-gathering strategies may-appear quite

complex prima facie, acquiring a firm conceptual understanding of them may'be

facilitated by working backward through the three steps and, consequently,

their verbal designations. For example, in the.case of interoccasion differences

in interindividual differences in intraindividual differences, the focus is

initiallm,on the extent of intraindividual differencesin variable scores at

one occasion and for one individual as reflected by a variance measure. If

one were then to proceed to compare such variances for two individuals at one

occasion, we would arrive at the two-step concept of interindividual differences

in intraindividual differences. Considering now the third dimension'of occasions,

in which individuals are4low compared through time (occasions) in terms of the

extent of intraindividual differences in variable scores, we arrive at the

three-step concept of interoccasion differences in interindividual differences

in intraindividual differences. One may work backwards in a similar fashion

for'each of the six extended cases in order to fully grasp their conceptual

significance.

13
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The lt data-gathering strategies for interindividual differences, intra-

individual differences, and intraindividual changes are summarized in Table 1

Insert Table 1 about here

in the order presented above, in which the. first three cases consider multi-

:ids on only one dimension, the nextsix cases on two dimensions, and the, -last

six cases on all three dimensions.

it

D. Limitations of the Model

Before leaving the general developmental model per se for a consideration

of some key psychometric concepts within its framework, a few cautionary

-comments are in order. First, the model makes the assumption that the meanings

of the constructs which the variables are measuring remain invariant across

time. In other words, it is quantitative rather than qualitative or structural

change (e.g., seeBaltes & Nesselroade, 1973; Buss, 1974b; Nesselroade, 1970)

which the model is capable of addressing, and itis therefore confined to

slices of the'lifespan where the invariance of one's constructs has been

demonstrated.
oc

A second limitation related to the above is that the present model is not

focussed upon an analytic treatment of interbehavioral change. That is to

say, the strength of the model lies in those situations where change is monitored

within a given variable or variables rather than marking out inte...behavioral

changes involving cross-variable paths through time. The latter would also

require techniques capable of analyzing qualitative change. A third, and once

again related, limitation, serves to'place the entire model in proper perspec-

tive. This point can be best appreciated by contrasting the model and its

intent with related notions.

14
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Table I: Data-Gathering Strategies for Interindividual Differences, Intraindividual
Differences, and Intraindividual Changes (From Buss, 1974)

Dimension 1:
sample across

Dimension 2: Dimension 3: Type

compare on sample through

Individuals No No Inter-ID

Variables No . No Intra-ID

Occasions No No Intra-IC

Variables Individuals No Inter-ID in intra-ID

Individuals Variables ; No Inter-VD in inter-ID

Variables Occasions No Inter-OD in intra-ID

Occasions Variables No Inter-VD in intra-IC

/

Occasions Individuals No Inter-ID in intra-IC

Individuals Occasions No Inter-OD in inter-ID

Variables Individuals Occasions Inter-OD in inter -ID in intra-ID

Individuals Variables Occasions Inter-OD in inter-VD ieinter-ID

r Variables Occasions° Individuals Inter-ID in inter -O& in intra-ID

Occasions Variables 0 Individuals Inter-ID in inter-VD in intra-IC

Occasions Individuals Variables Inter-VD in inter-ID in inira-IC

\
Individuals Occasions Variables Inter-VD in inter -OD in inter-ID

Note Abbreviations are the following: ID = individual differences. IC individual

. changes, VD variable differences and OD occasion differenpss.

.15
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Mention has already been made of Cattell's (1946, 1952) original three-

dimensiOnal'covariation chart. The purpose of that model was to set out the

six different factor analytic techniques defined by what as correlated (persons,

variables, or occasions) over what (one of the two remaining options after the

initial selection). In the expanded version of the covariation chart into a

generic data box Cattell (1966) has gone beyond his initial desire to set

nut various methcds of factor analyz,ing Person X Variable X Occasion data and

has employed a full 10 dimensions for indexing a datum. Important to note in

the present context is that Cattellls more recent treatment of data relations
0

is not confined to specific data analysis techniques. Implicit in his data

box is the notion that different data analyses are appropriate for different

aspects or relational systems. In the Context of longitudinal data analysis

techniques, Kowalski and Guire (1974) have explicitly linked specific analytic

1

techniques' to various relational aspects of Person X Variable X Occasion

data. In contrast to Cattell's (1966) comprehensive treatment of how one can

conceptualize data.in general, and in contrast to Kowalski and Guire's (1974)

:general account of the various analytic techniques available for longitudinal

data, the present model is restricted to conceptualizing specific concepts

(inter- and intraindividual differences, intraindividual change) within the

three-dimensional
i

hree-dimensional data frame. Its intent, therefore, is to focus in upon a

specific set of concepts as these are related to longitudinal data. The

present model makes no attempt-to explore terrain previously charted out by

others

-A.
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III. PSYCHOMETRIC CONCEPTS AND THE GENERAL

DEVELOPMENTAL MODEL: STABILITY

the. two psychometric concepts singled out for specific treatment in terms

of the multivariate developmental situation and the preceeding model are

stabilityland regression to the mean. Other concepts, such as reliability,

measurement error, true scores, etc., are introduced as needed and as they are

relatedopecifically to stability and regression.

A. Stability in Two Dimensions

By1 stability in the multivariate developmental situation, one can mean

either the stability of differences between or within persons through time.

In considering Figure 2, these two cases translate respectively into noting

either the degree of stability of interindividual differences scores on a

single variable through time (case f), or the stability of intraindividual

differences scores on a single person through time (case c).

In each of these simple cases, multiple values on one dimension (either

individuals or variables) for one id (either a variable or individual) are

obtained on two successive occasions. The simple two-occasion situation would

involvp calculating a correlation coefficient as the stability coefficient,

whereas the multiple occasion situation would involve calculating successive

stability coefficients (see below). Since the Pearson product moment correla-

tion restandardizes scores at each occasion, that is, it cancels out means and

variances, this statistic would permit inferences concerning the degree of

stability of the pattern or shape of the multiple scores through time. Thus,

it would be possible to have absolute changes in scores, yet obtain a h.gh

stability coefficient so long as there was relatively high invariance of the

pattern of interindividUal differences through time. It can be noted in

passing that the ceiling of a two-occasion product moment stability coefficient

17
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would be the lower reliability coefficient as determined by assessing'reliabil-

ity at each occasion:

An alternative index of stability that takes more than just the con-

sistency of shape into account would involve one of the measures of similarity

based upon distance (see Bolz, 1972, for a review of such indices of similarity).

Cattell's (Cattell et al., 1966) pattern similarity coefficient is probably
Al*

the superior statistic in that it simultaneously considers differences between

two patterns of variable scores due to: elevation (the mean of all scores in

a\profile), scatter (the square root of the sum of squares of the deviation

scores about the mean), and shape (the residual information after equating two

patterns for both elevation and scatter).' In addition, the pattern similarity

coefficient is readily meaningful--varying between 0 (no pattern similarity)

and +1 (perfect pattern similarity), and it has known distribution and a test

for significance (Horn, 1961).

If one were to employ the pattern similarity coefficient as a two-occasion

index of stability of either interindividual differences or intraindividual

differences, it would be necessary to standardize across each rectangular

"slab" or matrix for each variable as previously outlined. In this way, one

can make the best use of the additional measurement properties of the pattern

similarity coefficient, that is, its sensitivity to,differences in both the

means and variances of two patterns. Thus, the pattern similarity coefficient

should be used as an index of the stability of inter-or intraindividual differ-

ences when the concern is for absolute rather than relative pattern invariance

over two occasions.

B. Stability in Three Dimensions

The above notions of stability can be readily generalized to the three

dimensional situation, that is, where it is desirable to make variable compar-

18



isons in the stability of interindividual differences, or, person comparisons

in the stability of intraindividual differences. Each of these cases in the.

two-occasion situation can be visualized by reference to Figure 3. Variable

comparisons in the stability of inte:individual differences involves case

(f)--where it is extended through the third dimension of Variables such that

variable differences in stability coefficients are observed. The same rationale

follows in making person comparisons in the stability of intraindividual

differences, which involves extending case (c) in Figure 3 through the third

dimension of Individuals. In either of these two cases, the product moment or

pattern similarity coefficient may be used, depending upon the question being

asked in light of the unique properties of each of these statistics as previously

dismissed.

Thus far the concept of stability has been extended to both inter-and

intraindividual differences in the multiple variable and person situation.

However, a truly adequate treatment of stability in a multiyariate developmental

context must provide for more than the restrictive two-occasion model. Extend-

ing cases (f) and (c) in Figure 2 right across occasions to involve an entire

matrix or "slab," illustrates successive or multiple occasion data-gathering.

Thus in case (f), successive stability coefficients for a single variable

could be obtained, where each stability coefficielt is calculated from adjacent

occasions. The values of the stability coefficients could then be plotted for.

purposes of variaWe comparisons in trends over time, and Figure 4 illustrates

/
three prototype cases: increasing stability (IS), stable stability (SS), and

decreasing stability (DS). By using curve fitting techniques, one may then

determine variable differences in
..

stability trends through time. The exact

%Issame logic may be applied to case (c) in Figure 2, here Figure 4 may now be

regarded as illustrating three prototype stability functions for intraindividual
x

:...
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differences. Each function, then, characterizes a particular individual

rather than a particular variable. The term "prototype" in the latter situation
4

is more than a mere casual use of labels, since it may indeed be possible to

distinguish "types" or clusters of persons on the basis of stability functions
#

for'intraindividual differences.

Insert Figure 4 about here

What about the interrelationship between the degree of stability of

interindividual differences and the degree of stability of, intraindividual

differences, where the same data are analyzed in the appropriate manner? High

stability of interindividual differences on each of net
'(

variables is a priseq-

uisite for high stability of intraindividual differences for each person, and

vice versa. In other words, in the extreme case (i.e., considering the stability

of the entire Variable X Individual matrix through time), both the stability

of inter- and intraindividual differences are two different ways of looking at

the same phenomenon. However, the direct translation between the degree of

stability of inter- and intraindividual differences evaporates as soon'as one

selectively focuses upon a subsample of variables or persons through a limited

number of occasions. The latter statement, of course, does not deny the ever

present nonindependence of the stability of inter- and intraindividual differ-

ences when calculated from the same data.

C. Stability of Population Parameters

Having distinguished between stability of inter- and intraindividual

differences, there remains another important sense of the term "stability"

applicable to the multivariate developmental situation. Thus, one may speak

of the stability of various variable properti-s of a population through time,
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4.

where the focus is now upon the 'degree of

statittics. such as the mean or variance.

restandardize the,variablq scores at each

stability of certain descriptive

Clearly, in this case, one would not

occasion, since this would mask

changes in absolute valueof the mean and variance. In mapping out various

statistical properties of .variables over time, it is quite possible to have

stability of,.say, the mean and-variance, yet, at the same time, have radical

instability of inter- and/or intraindividual differences.

The distinction being made here is conceptually quite important, since

the stability or "dynamic equilibrium" of a population on a particular variable

does not entail stability and/or systematic change at the individual level.

To the extent that in multivariate developmental psychology there should be an

emphasis upon intraindividual change and interindividual differences in intra-

individual change (e.g., in the present context, the degree of stability of

intraindividual differences and person differences or interindividual differences

in the stability of intraindividual differences), then it is important to make

the kind Of distinction presently being made. This is not to say that questions

concerning the stability of properties of a population on a particular variable,

or the stability of interindividual differences through time, may not be

extremely interesting or important.. Rather, and this is the basic point,

there are several ways one can frame questions concerning stability in the

multivariate developmental situation, and the practicing-researcher should be

,quite conscious of the various alternatives available and effect an adequate

match between the research question and the concept of stability employed.

IV. PSYCHOMETRIC CONCEPTS AND THE GENERAL

DEVELOPMENTAL MODEL: REGRESSION

A. Regression as a Prediction Model versus Type of Change

Regression towards the mean is a thorny issue in developmental psychology,

22
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and, although it has been discussed within a developmental context (e.g.,,

Baltes & Nesselroade, 1976; Baites, Nesselroade, Schaie, & Labouvie, 1972;

Clarke, Clarke, and Brown, 1960; Furby, 1973), there remains 4 need for further

clarifiCation.. Any discussion of regression must, of necessity, consider such

psychometric concepts as measurement error, reliability, true scores, and so

on. In discussing regression within a developmental context, it is advan-

tageous, as suggested by Baltes fr Nesselroade (1976), to separate the typical

psychometric issue associated with this term, namely, regression as a prediction

model, from observed regression in the data.

/ The previously outlined developmental model of Buss (1974a) can be fruit-

fully consulted in attempting to keep separate regression as a prediction

model and observed regression in the data. Thus in Figure 2, regression as a

I/
prediction model can be best located in terms of case (b), where one would,,
employ regression techniques for predicting scores on one variable from scores

on another variable. Regression in this .instance is not "in" the data, or in

other words, is not a "real" phenomenon.

In order to better understand the point I am trying to make' here, consider

case (f) in Figure 2, where measures are obtained on the same variable on two

separate occasions. In the latter instance, there is continuity over time,

and if there is regression from occasion to occasion, it is a phenomenon

intrinsic to these data. In other words, and this is the basic point, when

regressing one variable against another different variable, we are using

regression as a prediction model. When we obtain repeated measures for two

occasions on the same variable, regression toward the mean, if it occurs, is a

phenomenon to be explained. In the latter situation, regression toward the

mean is,a special kind of chanue'in one's data. Should one desire, variable

differences in regression as a type of change can be located in the general

23
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model by considering case (f) through the third dimension, that is, as illustrat-

ed in'Figure'3.

In the following. discussion, regression as a prediction model is bracketed.

The focus of attention is exclusively upon that situation where observed

regression Is in the data (regression as a type of change) in order to- try to

clarify some of the developmental issues in this area.

B. Regression of Extreme Sample's

Observed regression to the mean may be associated with either changes in

true scores or changes in error scores in the classical measurement model of

x = t e, that is, the observed score is the sum of a true score component

-and an error score. component. Important to note, then, is that ohierved

regression, .which is in the data, may or may not reflect true changes in the

underlying trait or variable of a particular sample.

The developmental psychologist must, in certain situations to be explicated,

take account of observed regression associated with the error part of scores'

in order to make valid in erences concerning real or true score change over

time. The classical case w ere the developmental psychologist simply must

consider the extent to which observed regession towardS the mean is associated

with-true changes in the variable is illustrated in Figure 5 (see also Baltes

& Nesselroade, 1976; Furby, 1973).

In Figure 5, the sample of individuals is initially selected from the

extreme range of the normal distribution of the population. We can make the

Insert Figure 5 about here

assumption in Figure 5 that measurement error exists and is constant across

occasions, that is, reliability is invariant. As the second occasion, the
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OCCASIONS

Figure 5 -- The classical situation of regression towards the
pOpulation mean, where the sample is initially
selected from the extreme range of the normal .

distribution of the population.



entire sample has shifted closer to the population mean u. To the entent that

the reliability of variable x is less than unity, that.is, there is some

measurement error, then there will be observed regression associated with

changes in error scores. This follows from the classical measurement model- -
T

.a model that forms thet. bedrock of measurement theory--and a model which must

be accommodated until displaced by something shown to be. superior.

The classical measurement model states that (because errors of measurement

are assumed to be uncorrelated over time) extreme scores in a disti-ibUtion are

biased inthat same extreme direction, and that on a second occasion,. the

error associated with these individual -s' scores will, on the average, be

less -- thereby effecting observed regression towards the population mean.

Another way of saying this is that in nonerror -free measures, obserVed scores

are biased estimates of true scores, where observed scores above the population

mean are biased upwards, and vice versa for observed scores below the population

mean.

For the developmental psychologist who is working with a select sample of

nonerror-free extreme scores, regression toward the mean associated with

changes in error scores will occur. It will show up as observed regression,

all other things being equal. To the extent that there are true changes in

the underlying trait or construct which a variable is tapping, this may effect

no observed change in the sample distribution if the true score and error

score changes, on the average, cancel each other out. Thus, the developmental-

researcher, when working with a sample under conditions described above, must

know from where the sample came, as well as the reliability of measures, in.

order to make valid conclusions as to the extent of true score or "real"

changes in the underlying construct over time. The latter conclusion is not

the consequence of a specific prediction model, but is the consequence of a
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very general measurement model underlying all measurement--psychological or

otherwise.

In regard to integrating the concept of regresSion within the present

methodologiCal model, we can-note that, in that ideal case of error-free

measures and where regression is associated with changes in true scores and,

for arguments sake, the Pearson product moment 'stability,coefficient is unity,

then in the shift towards the population mean in Figure S there will'be no

interindividual differences in intraindividual change. The latter would be a

very unlikely situation in any actual research outcome. More probable would

be observed interindividual differences in intraindividual change towards the

population mean associated with either real or/and spurious factors, respectively

paralleling true score and error score changes.

C. Regression of Representative Samples

There is 'another, quite different, situation involving regression toward

the mean, and previous discussions have failed to place it in sharp contrast

with what is most typically meant by regression (but see Baltes& Nesselroade,

1976). On occasion there has even been a tendency to confuse the two situations

of regression, or at least switch from one to the other without adequate

awareness.

The second major case of regression toward the mean is illustrated-in

Figure 6' where, in this instance, the sample distribution can be considered as

representative of a popdlation rather than coming from a selective region of

the population distribution as was previously the case. In Figure 6 there is

observed regression towards the mean, but in this' instance,' regression is

defined by a reduction in the sample variance rather than a shift in the

sample mean (and thus the sample) towards the population mean. Thus, in

Figure 6 the means at each occasion are identical yet there is within-sample

27:34
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regression 'towards the mean, and within-population regression to the mean to

the iXtent the sample is representative of a population. As before, such

observed regression may be associated with changes in either true scores or

changes in error scores. However; in this second case of regression, any

regression associated with changes in error scores is due to increased reliabil-

ity across occasions and a reduction of the error variance--which was not.the

case in the first instance of-regression where it was assumed reliability was

constant over time. Of course, in considering only changes in error scores,

both within2sample regression to the sample mean and regression of the sample

to the population mean could occur simultaneously in Figure S if there were an

increase in,reliability over time.

Insert Figure 6 about here

In Figure 7 it can be seen that mean sample changes in either an upwards

or downwards direction are independent of within-sample regression to the

mean. Thus the entire distribution of scores may shift in either direction--

regression still being defined, as a reduction in variance. The latter observa-

tion brings us to the point that, in the multiple occasion situation, changes

in regression to the mean may be mapped via noting changes in variance through

time. However, this conclusion reveals that observed regression is "merely"

observed change in a specified direction, although there is more to it than

that, The observed change may be associated with changes in either error

scores (reliability) or/and true scores, and valid developmental conclusions

require separating these two sources in both types of rbgression discussel in

this section.
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Figure 6 -- Regression towards the population and sample mean
where the sample is representative of the population.'
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Insert Figure 7 about here

Concluding comments on Regression

While is is true that within- sample regression may or may not occur- -

depending upon whether there is a reduction in error variance and/or real

discuSsed in the first instance and illustrated in Figure S, will occur,

changes in true scores towards the mean--:egression of observed scores, as

assuming nonerror-free measures and all other things being equal. Develop-

mental psychologists will need to d.sess any true score change in the sample

mean either towards or away from the population mean in light of error score

change.

Recently, Baltes and Nesselroade (1976) have concluded that regression

toward the mean is often an irrelevant issue in developmental research to the

extent that we should focus upon change and multiple Occasion data beyond the

two-occasion case. According to them, regression is only one form of change

rather than some immutable law and in multiple occasion data,- it can be assessed

via error-centered baseline comparisons. Thii view has much to recommend it,

since it places the typical two-occasion regression situation within a broader

framework for the multivariate developmental res 'earcher. Such being the case,

the spirit of their effort is consistent with perspectiVes developed here.

17. MARY

The concepts of interindividual differences, intraindividual differences,

and intraindividual change were defined in terms of sampling across one of the

three dimensions of individuals, variables, and occasions, respectively. Each

of these concepts was then considered in comparative sampling by introducing

a second dimension, thus generating six data-gathering strategies. Each of
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Figure 7 -- Regression towards the samplemean but not towards
the population mean in two different, situations: change

in' an upwards direction (UD) and change in a downwards

direction (DD).
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the latter six cases was extended to include the third dimension. through which

the comparative sampling is sampled. OUt of the total 1S data-gathering

strategies considered, 11 were defined in part by the occasion dimension and
a.,

arc therefore capable of dealing'with change data.
-

Limitations of the general developmental model were discussed. These

included: (a) the model rests upon the assumption that the meaning of the

constructs which the variables are measuring remain invariant; (b) the model

is not equipped to deal in an analytic way with interbehavioral change; and

finally, (c) the model is-to be used far focussing upon a specific set of

concepts as these are related to longitudinal data, rather than for attempting

a general and comprehensive deliniation of various developmental data analysis

techniques. -as

Having outlined the general developmental model and its limitations, two

important psychometric concepts were considered withip the developed framework:

stability and regression. Twe kinds of stability were outlined which were

defined by two of the three dimensions of persons, variables, and occasions:
_ ..... ,-..r

- (a) the stability of interindividual differences on a single variable through,- .;,c" ''

( ---:.' %-

time; and (b) the stability of intraindividual differences on'a single perem
. . . ..e

through time. Stability in three dimensions involves extending each of these

types of comparing stability coefficients across variables or persons respec-

tively.
.

Stabilit:, can also involve multiple occasion data; where successive'

stability coefficients are calculated at each occasion for_determining changes

in stability of either interindividual differences on one variable, or intra-

individual differences for any; person. One could then make variable or

person compar'i'sons, respectively, of trends in stability functions. Finally,

stability of population parameters was another aspect considered, where it was

82 ..
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1

pointed out that one could plot the values of 'certain descriptive statistics'

over occasions. This meaning of stability reveals the important conceptual

point that, it is quite possible;to hav6stibility,of,.say,. the mean and

variance-of'a population, yet,,at the same time, have radical instability of

.1
and/or intrainaividual.differencess

In cOnsidei.ing regression toward the mean:two fundamental types wee

r

defined within'the general developmental model: (a) regression as a prediction

model; and (b) regression as a kind of change. The former was seen asOsen-
4

tially nondevelopmental; arid thus discussfon was confined to regression as a

special kind of change over'tilne.

Two kinds of regression toward the mean as change were considered for the

two occasion case only: (a)*regression of-extreme samples; and (b) regression

of representative samples. Regression of extreme sample means tapopulatign

means was seento occur given the assumptions of the classical measurement

model and all other things being equal. To the extent that there are changes

in the true *ore component oobserved'scpres; this will effect the amount of

observed regression which would otherwise be due solely to changes in measure-

,

merit error over occasions. Regression of representative samples of particular

populations was seen to involve a decrease in variance over time rather than

changes in sample means. Thus there can be h decrease in sample variance (and

thus regression towards the mean) brought about by.changes in either the true

scores and/or the error scores. The-mean may or may not change over time--

regression in this case being andePendent of such change...

In conclusion it should be noted that greater clarity of psychometric

concepts in the developmental situation is possible and necessary for those

practicing the craft of developmental research. The proposed formulation of a

general developmental model involving interindividual differences, intraindi-

vidual differences, and intraindividual change is helpful in this regard.
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Footnotes
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Some of those considered are the following: curve fitting,/factor analysis,

.
.....--

multivariate analysis of variance, polynomial growth curve models,--ragession,

time Series, etc.
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ABSTRACT

In this paper we explore the consequences of particular stage linkage

structures for the evolution of a population: We first argue the importance of

constructing "dynamic" models of developmental theories and show through a

series of examples the implications of various stage connections for population

movements. In discussing dynamic models, one thrust of our cpmm
//
ents is to

Identify the sorts of process features about which assumptions must be made in

-order to convert a static theory about stage connections (the sort of specifica-

tion commonly presented in life-span psychology) into a dynamic model. A second

focus of our discussion concerns inverse problems: how'to utilize a model

formulation so that the stage linkage structure may be recovered from survey

data of the kind collected by developmental psychologists.

t
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MATHEMATICAL REPRESENTATIONS OF DEVELOPMENT THEORIES

I. INTRODUCTION

Although time, usually 1.41 the guise of age, is a crucial variable in

developmental psychology, it is the case that formal models of developmental

phenomena .raruly have the character of dynamic representations, in the sense of

mimicking, the evolution of an empirical process through time. The analytic

procedures employed most extensively by life-span psychologists are factor

analysis, regression, analysis of variance, scaling, clustering, and variants

of these methods (see, for instance, Nesselroade & Reese, 1973). These are

powerful techniques for identifying variables that are central to the course of

development in a particular substantive area (e.g., intellectual maturation,

/acquisition of moral values). Also, when applied to panel data, the procedures

can yield insights into how the salience of kevariables shifts over the life

cycle, or overa portion thereof (e.g., stages in infancy, youth, adulthood).

These analytic method, do not, however, lead to dynamic formulations of

developmental theories, whiCh can be useful in testing predictions from a

theory about the evolution of an empirical process, or in comparing the implica-

tions of competing explanations. By a dynamic formulation we mean a representa-

tion which incorporates into the mathematics the main assumptions about a

developmental phenomenon and is specified in such a way that the relevant

variables, and their postulated interrelations, are functions of time or subject's

age. In this sense, like the empirical process, it too constitutes an evolving

system. As a simple illustration of such a model, consider the following

statements of alternative evolutionary mechanisms:

(A) The growth of a process at each instant is proportional to its

potential for future growth.
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(B) The growth of a process at each instant is proportional to the

product of its current size and its potential for further growth.

These statements might be proposed as competing explanations of the

manner by which information is diffused in a population of size N. In formu-

-lation (A), it matters not how many persons y(t) know the information of

concern at instant t; only those yet to hear, numbering N-y(t), are salient to

the diffusion rate. If the information were propagated by a mass media source,

such as radio or television, rather than by interpersonal communication, this

model might apply. Formulation (B), in comparison, is consistent with a process

in which those already aware of the information "infect" the uninitiated through

contact and conversation. Assuming that the informed and the uninformed mix

.
randomly, the variable governing the evoittion of the pi.° ss would be y(t)[N-

.

y(t)], which measures the rate at which individuals from the two groups come

into contact.

The evolutionary mechanisms, (A) and (B), can be represented by the

differential equations (I.1) and (I.2), respectively,

dy(t)

d(t)
k
1
[N-y(t)j, y(0) = 0 (I.1)

(I.2)dY(t) k y(t)u;- y(t)], y(0) 1
d(t) 2

where.]:
1

and k
2

are constants which adjust for the time unit (e.g., day, year)

used in the measurements.
1 Equations (I.1) and (I.2) have for solutions (I.3)

and (14),
-klt

y(t) = N(1-e )

Nk7t

Ne
Y(t)

Nk
2
t

N-14.e

'which predict the different evolutionary paths displayed in Figure 1.
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Figure 1 about here

These formulations are "dynamic" in that time appears explicitly as a

variable; they are process "models" in that the predicted value of y(t) evolves

according to the assumptions of a particular theory. If a researcher has data

on the time course of an empirical process, he could test whether equation

(I.3)i (I.4), or a specification of an equivalent sort best approximates his

observations. By this exercise it is often possible to select among competing

explanations of the mechanism underlying a developmental process. Indeed,

these very models have been applied by Coleman, Katz, and Menzel (1957) to data

on drug adoptions by physicians (also see Coleman, 1964, pp. 43-45). They

concluded that the drug acquisition iattern by socially integrated MD's is best

reprer,ented.by a logistic curve (implying mechanism [B)), while isolated MD's

adopt according.to the constant source model (mechanism [A]), as they are

Flifluenced principally by drug advertisements in trade journals. To our know-

ledge, although developmental psychologists emphasize ontogenetic processes and

emplpy the imagery of an evolutionary system, few attempts have been madeto

translate their theories into formal models of the above sort.

In this paper, we describe the formulation of dynamic models where the

objective is to test developmental.theories against data or ascertain the con-

sequences of particular assumptions about the structure of a process. To

delimit our task, we focus on the sort of mathematics that is appropriate for

studying qualitative change. As a result, the tools we introduce are pertinent

to theories whiCh postulate stage sequences, a variety of explanation with

considerable precedent in developmental psychology (Piaget, 1960; Kohlberg,

1968; Ausubel & SulAlivan, 1970). To the degree posgible we have written this

'paper with a view toward substantive issues and have concentrated on the
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Figure 1 -- Illustrative Growth Curves for Diffusion via Social
Interaction znd Diffusion from .a Constant Source .

ay = population size; y(t) = number aware of the information

at time t.
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translation of theoretical specifications into mathematical formalism; the.

reader usually is referred elsewhere for mathematical details and estimation

procedures. The organization of the paper is as follows: In the next section

we introduce a class of models that is suitable for studying evolutionary

processes which incorporate the notion of stage. In section III we describe
1-

how particular stage theories can be cast in the framework of the general

model. In section IV we relax several requirements of the basic model so that

it can more realistically represent developmental phenomena.

II. THE CONCEPT OF DEVELOPMENT STAGES AND A MATHEMATICAL

FORMULATION OF STAGE PROGRESSIONS

Stage sequences have been postulated for a variety of developmental processes- -

the evolution of moral behavior (Kohlberg, 1973), cognition (Piaget, 1954),

personality (.Loevinger, 1966), and motor skills (Shirley, 1933), to cite but a

few topics. There also exist diverse formulations of stage models in the

literature of life-span psychology. These differ with respect to the presumed

sources of the stages and with regard to the rules governing movement between

them. In regard to stage origins, some authors have emphasized maturational

considerations, in which individuals are viewed as programmed genetically for

particular behaviors or abilities to emerge (Gesell, 1954). The specification

of .psychosexual stages, keyed to biological activation of the sex glands,

provides an illustration (Kohlberg, 1973, p. 181). Others view stages as

arising from interactions with the social environment: Kohlberg (1968, pp.

1016-1024), for example, contends that experience with the cultural and physical

world is necessary for cognitive stages to take the shapes they do. Still

other researchers have adopted the position that stages are a useful research

construct around which to disCUss development, without insisting that they have

an empirical existence (Kaplan, 1966; Reese, 1970).
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We shall not discuss further the very important issues concerning the

etiology of stages, but will focus insteadon the mathematical representation

of theories about stage connections and on the consequences of various linkage

stiucturessfor the evolution of individuals amihg the stages. Formulations of

.
stage connections in a developmental process differ according to whether the

progression-is viewed as unilineal or multilineal, whether stages in the

sequence can be skipped, and whether regression to an earlier level is possible.

A second set of considerations pertinent to the structure of developmental

theories concerns the age specificity of a stage and the related matter of the

variability of duration in a stage, For discussions of these topics in the

context of particular substantive processes, the reader ii referred to Enmerich

(1968) and Kessen (1962).-

To develop the mathematical apparatus for ascertaining the implications of

particular stage connections, we discuss both the simplest prototype of a stage

theory (for concreteness) and.the general mathematical formulation.
2

Consider,

-then, a developmental progression consisting of n stages, in whiclithe linkage

is unilineal and there is no possibility of stage skipping or regression. An

r.

example of such a structure, with n equpl to 5, is presented in panel A of .

Figure 2; henceforth this model is referred to as example 1. It will be conven-

ient to also have available a matrix representation of the stage linkages. For

an arbitrary n-stage structure, we define a matrix M,

M =

mll m12 min

m
21

m
2n

p

.
m
n1

m
nn

,

whose elements are m.. ={probability of transferring from stage i to stage ji.n .=.. .
. .

when a transition occurs }, where,cm.' < 1, and 4r mij = 1. 'These restrict-

. . 1J j.1 0,

q

ions an the elements of M ensure that each row. of the matrix constitutes a
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I.

.

probability distribution. We require, in addition, that m.. .= 0 for-each stage

i which is not an absorbing state of the process; that is, frou which individuals

can exit. This means we exclude the possibility of within-stage transitions,,

a type of move which is undefined in most developmental, theories. Also, ite set

m.. = 1 for each stage which is an absorbing state of the process. This is

done for mathematical convenience and, as we shall see, arries no substantive

implications. In the particular case Of the unilineal prqgression (Figure 2,

panel A), we have the further requirements on M: = 1, and mij = 0

otherwise (except that mss = 1). This matrix, M1, is reported in panel B of

Figure 2.

-

-c Figure 2 about here

.

To this point, though matrix M conveys important'structural information
4,',

about the process, the description of the stage progression is a static repre-

sentation. To elaborate the model we must indicatelloW stage transition
4.j

4
4 /

events occur. At a general level of description we assume that the time
k

speryt by an individual in stage i follows some probability distributiOn,

Prob.(1.
k
<tit

'

T
k-1

) (II. 2)

where report the sojourn times in earlier stages. Our imagery; v

therefore, is the following. An individual originates in stage cat the begin-

ning of the process, t0 = O. He remains there for an interval T1, specified by

a distribution function Probi (Ti<t), and then tiansfersito stage j with prob-

1

ability m..ij . He remains in this stage for a p iod r2, specified by a condi-

tional probability distribution Probj (r2<rlii), transfers to stage. k with

probability mjk; and so forth.
3

The process continues until some absorbing

state is reached, at which print the evolution is terminated. The time path
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a, Diagram of Slagi Linkages

b. Matrix Oepreseniationaof the

r-0 1 0 ,0'0
Stage Linkagesb

0 0 1 0 0
0 0 0 1 0
0 -0 0, 0 1

_0 0 0 0 .1_,

Figiire 2-- Representation of a Simpleynilineal Stage Structure.

a
Each'row of M

1
is a vector of destination probabilities. Thus,

if an individual were in ,cage one before a transition, the row one
entries would pertain and they indicate movement to stage two with
probabilitSk equal tp 1.

b
Theimai diagonal entries are set equal to zero (with the

exception of ow 5) to indicate that a "move" is not defined apart
from a stage transition; i.e., there is no notion of movement within

a stage. The main diagonal entry of row 5 is set equal to 1 because
this stageis an alsorbing state (15j = 0 for j 5) and the definition

of m
1
--see-textrequires

5j
= 1.

1
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for the unilineal progression associated with the stage linkages of matrix
X11

is presented in Figure 3.
-

Figure 3 about here

Several further assumptions are necessary to complete the specification of

the model. One,matter concerns the relevance of an individual's past movement

history to the course of his subsequent evolution among the stages. We assume,

(i) knowledge of current stage. conveys all information that is relevant

to forecasting future movements.

Stated technically, if mij,ab...f =
{probability of moving from stage i to

stage j at the occurrence of a transition, given prior sojourns in stages a,

b,...,f}, then

mi = mi
j,ab...f j

(This assumption is superfluous in the current example of a unilineal pro-

gression since there is only one possible path, but it is relevant.to the

evolution of a population in less restrictive models.) We indicate in the next

section that this specification has been employed in descriptions of stage

linkages in developmental psychology.

For an initial baseline class of models, we further assume,

(ii) the sojourn time in stage i is exponentially distribted: that is, -

Probi(Tk<t1T1,...,Tk_i) = Prob. (T
k
<t)

-X it

E F.(t) = 1 - e (;-3)

Use of the exponential distribution amounts to specifying that the probability

of departing from stage i during the infinitesimal interval (t, t+dt), condi-

tional on being in stage i at time t, equals



STAGE

T

Ab

.111. OM. Of.li ON.

T2
>1--1 I"( 7. ,J TIME

-4

Figure 3-- A Sample Path Description Corresponding to tne Unilineal
Stage Structure of Figure 2.

a
It is- assumed that there are five stages, which must be traversed

. sequentially. T1 is the value of a random variable and denotes the

sojoui.t time for an individual in stage i. Stage 5 is an absorbing

state of the process.
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I

-Ait

f
1
(t)dt A.edt

= X
-X.t

.dt

1-Fi(t) 1-(1-e 1 )

where f.(t) is the density function corresponding to F.(t). This result, in

turn, indicates that the probability of leaving stage i is independent of

duration in the stage, and is tantamount to specifying an absence of aging, so

new entrants have the same likelihood of departing as individuals who have been

in the stage for some period of time. The parameter, Ai, incidentally, has an

interpretation as the rate of movement out of stagel.; consequently, 1/Ai equals

the expected duration in stage i.

Finally, we require that

(iii) if the data perain to the movements of a population, rather than to

the transitions of a single individual, the population is homogeneous

with respect to the structure of the evolutionary process.

This does not mean that all persons have the same duration Ti in stage i, but

that Tic, the time spent in stage i by individual c, follows the single expo-

nential distribution F1(t) = 1-e
-)2 t

. Stated less formally, duration in a

stage is a random variable with the und9rlying distribution of holding times

the same for all individuals. Similarly, where alternative destinations are

available to persons in stage i, homogeneity means that all have the same list

of probabilities for making the various transitions, not that they move ident-

ically.

It is worth dwelling on the conceptual status of the preceding assumpt-

ions. The ?question of the structure of M is a familiar topic to developmental

psychologists, since stage theories are commonly specified at this
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-level: Assumptions (i) to (iii) can be viewed as "side conditions," aspects of

the process to which researchers have generally not been sensitive, though see

Kessen (1970) and Emmerich (1968) for provocative comments on precisely these

matters. What is made evident by formulating a dynamic model is that development

theorists must address these auxiljary questions if :omplete models are to be

specified. The partiLular assumptions we have made constitute a gross simpli-

fication of.reality; this is especially true of specification (ii), which

postulates an absenceof duration effects, and specification (iii), which

postulates population homogeneity. These assumptions do, however, provide a

convenient startina point from which to consider more realistic formulations,starting

which are develdped in the next sections.

`' lye now wish 1-..o convey the implications of assumptions (i) to (iii) for the

movements of individuals among the stages. We denote by pij(t) the probability

that an individual in stage i at time 0 moves to stage j by time t. (This

prpability differs from m..
13

in that ,the latter refers to movement proclivities

at, the occurrence of a transition, not over widely spaced time intervals.)

With this Specification in hand, the evolution of a population among the stages

is described by the system of integral equations,

-A.i t -k.0

E
1

1
P.

j
(t) = a

13

1
+.e IA.e m. p

kj
(t-u)du

ak
k o

0 <i, j<n

(11.4)

where(5ij =1 if i = j, and 0 otherwise. This expression, known as the back-

ward equatidns for a continuous-time Markov process (Feller, 1971, p. 484), is

amenable to the following interpretation: (1) When i / j, pij(t) consists of

the sum of products of three factors: the probability of a first departure

from stage i at time u, the probability of a stage i to stage k transition at
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that instant, and the probability of transferring to stage j by some combination

of moves in the interval t - u. The summation is over all intermediate stages

k and over all time divisions u in the interval (0, t). (2) When i = j, in .

addition to the above term, there is the possibility of not transferring out of

stage i during (0, t). This probability is given by the first term.

If we represent by P(t) the matrix of elements
pij
..(t ) ,

P(t)

p11(t)
Pin(t)

p
nl

(t)
pnn(t)

0 < pijgt) < I, 5pij(t) = 1, then the integral equations (II.4) have the con-

venient solution,
110

P(t) = e
A(M-11t,

P(0) = I

In this representation A is a diagonal matrix,

A =

0

I

whose entries are the reciprocals of the expected duration times in each stage,

I is the identity Matrix, and M is the array specified in equation (II.1) which

describes the pattern of movement between the stages. Further, by the expression

e
A

, A an arbitrary square matrix, we mean the power series in A,
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eA = L An

n=0 b!

which can be e luated by standard-numerical methods (see e.g. Gantmacher, 1960).

It is usefpl\to recapitulate what is accomplished by this mathematical

formulation. The 11\, trix P(t) relates the distribution of a population among

stages at time t to its distribution at time 0, in the sense that a typical

entry, p..(t), conveys the probability of moving from stage i to stage j during
3.j

the interval (0,4. The model is "dynamic" in that P(t) is a function of time;

with the passage of time, P(t) describes the evolution of the population among

the stages. Equation (II..5) shows how the matrix P(t) is built up from the arrays

M and A. However, while this equation is useful as a calculating formula, the

logic of the process is conveyed more adequately by the integral equations (II.4).

To illustrate this model in the setting of a simple unilineal progression
-

(matrix M
1
of Figure 2), we must specify average waiting times in stages 1,2,3,

and 4. We assume these

we have for matrix A,

to be .5,

2 0

1,

0

2, and 5 years,

0 0

respectively. Consequently,

0 1 0 0 0

0 0 .5 0 0 (II .7)

0 0 0 .2 0

0 0 0 0 A
s

where the choice of A is arbitrary. Since stage S is an absorbing state, the

notion pf waiticg time to a departure
has no meaning. Mathematically, [M - 1155 =

[m
55

- I] = [1-11 = 0, so A
5

bears no influence on the calculations.) Now,

from ,M1, A, and I, we have

1

A(Mi - I) =

-2 2 0 0 0

0 -1 .1 0 0

0 0 -.5 .5 0 (I I .8)

0 0 0 -.2 .2

0 0
.

0 0 0_
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For the illustrative times t = 1, 2, and 4 years, we obtain, from (II.5) for

P(t),

and

.1353

.0000

P(1) = .0000

A0000
.0000

-.0183

/7
.0000

R(2) = .0000

.0000

.0000

.4651 .3 63 .0691 .0041'

.3679 .4 3 .1438 .0110

.0000 .606 .3537 ,.0398 (II.9)

.0000 .0000 .8187 .1813

.0000 .0000 ' .0000 1.0000

.2340 .4641 .2482 .0354.-

.1353 .4651 .3394 .0602

.0000 .3679 .5041 .1281 (11:10)

.0000 .0000 .6703 .3297

.0000 .0000 .0000 1.0000

.0003. .0360 .2881 .4843 .1913

.0000 .0183 .2340 .5079 .2398

P(4) = .0000 .0000 .1353 .5233 .3413 (II.11)

.0000 .0000 .0000 .4493 .5507

.0000 .0000 .0000 .0000 1.0000

These values of P(t) describe the evolution of individuals among the

stages, subject to the assumptions about the process structure detailed above.

The entries p..(t) refer to proportions
4 of the population who h ve moved

13

between particular stages in the relevant time interval. For ex ple, according

to the entries in the top row of P(1), if observations are taken one year

apart, we would expect 13 percent of the population in stage 1 at time 0 to

still be there, 46 percent to have moved to stage 2, and 33 percent to have

reached stage 3. By comparison, over a four-year interval, less than 1 percent'

would remain in stage 1, 48 percent would have reached stage 4, and 19 percent

would be in the terminal stage of,the process.

The results from the three calculations reveal that, even though the

progression is unilineal with all individuals characterized by the same para-

meters, if observations were taken on the population at two time points, t=0

and t=t the array
5
P(t

1
) might be interpreted as evidence for a more complex

theory, such as one permitting stage skipping or population heterogeneity in

the rate or pattern of movement. Further, the correspondence between the
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matrix constructed from the population locations at two time points, P(ti), and

. the rule governing stage transitions, M
l'

decreases with time. Thus, different

researchers observing the same population at two time points, but with different

spacing intervals, might draw contrary conclusions about the stage linkage

structure even though the singlt mechanism, M1 of Figure 2, governs its evolution.

Only with a formal model of the process could one hope to uncover its underlyin!

structure.

III, MODELS OF MORE ELABORATE STAGE THEORIES

The matrix M contains structural information about stage linkages. Since

theories of development ale commonly posed at the level of specifying this

array, flexibility in incorporating a variety of particular formulations would

appear to be an important feature of a general framework for describing evolu-

tionary behavior. In this section we focus on the issue of translating stage

theories into M-matrices, and illustrate the evolution of P(t), the transition

matrix for a population based on its locations at time 0 and t, under alter-

native specifications of M. As we have noted, auxiliary information about the

process, concerning the distribution of waiting time intervals and the form of

population heterogeneity, is required for a full description of a dynamic

- model. In the next section we therefore elaborate upon these "side conditions"

and outline ways in which our initial assumptions can be relaxed.

No technical difficulties arise in reformulating the continuous-time

Markov model to accommodate more elaborate theories of stage linkages than the

structure in Figure 2. We illustrate the procedure with a few examples
6

.

2. A unilineal progression which permits stage skipping.. The formulation

of such a structure is diagrammed in Figure 4, panel A; its translation into an

M-matrix is reported in panel B. The principal new feature is that, supple-

menting the deterministic sequence of Figure 2, it is now possible to move
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directly from stage 2 to stage 4 and from stage 3 to stage 5, when transition

. ,

out of the relevant origin location takes place. We must also specify the

probabilities of following the alternate paths.' In the present example, lacking

information as to the relative magnitudes of the various probabilities, we

assume all destinations to be equally likely; that is, we prescribe
mz - 3 m24

= and m34 = m35 = .5.- In p,actice, estimates of the transition probabilities

would be assigned on the basis of theory or from observation on-the empirical

process.

Figure 4 about here

Using matrix M2, together with the A array of equation (II.7), whose

entries describe the rate of movement by individuals out of each stage, we

obtain for P(1) and P.(4), from equation (II.5):,
_

.1353 .4651, .1632 :2012 .0352

.0000 .367 '.2387,-.2387 .3177 .0757

P(1) = .0000 .0000. .6465 .1768 .2166 (I1I.1)

.0000 .0000 .0000 .8187 .1813

.0000 .0000 .0000 .0000 1.0000

_
.0003 .0360 .1440 .4104 .4093-

.0000 .0f8,3, .1170 .3964 .4683

.P(4) = .0000 .0000 .1353, .2617 .6030 (111.2)

.0000 .0000 .0000' .4493 .5507

.0000 .0000 .0000 .0000 1.0000

These P(t) arrays are the transition matrices a researcher should expect to

observe if the stage locations of individuals are 'surveyed one year or four

years apart, assuming that the population evolves according to the linkage

specification M2 together with the auxiliary conditions outlined in the preceding

section. The entries are different from those obtained with the simple

unilineal progression (equations 11.9 and II.11), yet the same pattern of zero's

55

6 3



f

a. Diagram of Stage Linkages

o

-.4 tic

(

b. Matrix Representation of the Stage Linkagesa

O 1 0 0 0
O 0 .5 .5 0

M2 = 0 0 0 .5 .5
O 0 0 0 1

0 0 0 0 1

Figure_ 4-- Representation of a Unilineal Progression in which
Stage Skipping is Permitted.

aAll destination stages corresponding to an origin location are

assumed to occur with equal probability. See notes to Figure 2 for

additional details on interpretation of M2.
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and non-zero's is present, and without a formal model of the evolution of the

process a researcher would be unable to predict the different implications of

these structures.

3. A unilineal progression with stage skipping and the possibility of

regression. We now superimpose on the linkage structure the possibility of

reverting to an earlier stage. This arrangement is diagrammed in Figure 5,

panel A, in which we have pttwided for the possibility of backward flows from

stage 2 to stage 1, from stage 3 to stage 2, and from stage 5 to stage 4. The

M-matrix corresponding to this model is reported in panel Again, where

multiple destinations correspond to an origin stage, we have arbitrarily assigned

equal values to the mij's. There is one additional alteration in M3, in compar-

ison with the M-matrices of earlier examples. Because there now exists a

possibility of regressing from the tdtminal stage to an earlier level, m55 1. /

To maintain our conceptual imagery, in which within-stage transitions are

undefined, we set m54 = 1 and m55 = 0. Note that the former value does not

imply a high rate of departure from stage 5, since the rate of movement is

controlled by A5., It only means that all transitions from stage 5 are directed

to stage 4.

Figure 5 about here

To obtain P(t) we use M
3

and A in conjunction with equation (II.5). Here

the element A
5
in equation (II.7) is no longer arbitrary, as movement out of

stage 5 is a possibility. We shall assume that such reversions are rare, and

hence specify the average waiting time to a transition from stage 5 to be eight

years; that is, A5 = .125. With these assumptions, we obtain for our illustrative

calculations at t = 1, 4:
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, 0

a. Diagram of Stage Linkages

:OP

b. Matrix Representation of the Stage Linkages°

M3

0 I 0 0 0
.33 0 .34 .33 0
0 .33 0 .343
0 0 0 '0 1

_0 0 0 I 0_

Figure 5-- Representation of a Unilineal Progression in which

Stage Skipping and Regression to an Earlier Level

are Permitted.

aAll destination stages corresponding to an origin location

are assumed to occur with equal probability. See notes to Figure 2

for additional details on interpretation of 1.13.
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F08712043
.

P(1) = .0094
.0004
.0000

..

7 0330

0
.0259

P(4) = .01,35

..000'0o

.0000

')
. .

If we compare theP(1) matrices and the P(4) matrices from the three

.5240

.4758

.0S58

.0000

.0000

.1560

.1246

.
.0739

.0000

.0000

.1153

.1742

.6215

.0000

.0000

.1652

.1500

.1846

moo-
.0000

.1374

.2217

.1461

.8292

.1067

.4025

.4174

.3542
..5523

:2798

14.0190
.0411
.1371

.1708

.8933

.2433

.2820

.S738

.4477

.7262

(III.3)

(II1.4)

examples [i.e., equations (11.9), (II1.3), and (II.11)4 (IIr.2); and

(1II.4)), we can acquire a fair idea of the implications of dithrent stage

interconnections for the evolution of a population among the statuses. We-also

emphasize the,fact that if a population were surveyed at two time points,

especially widely spaced time points, it'may not be obvious ftom inspecting the

empirically determined transition array, P(ti), as to the structure of the

stage linkages (matrix M) which generated the observations. ,We will return to

the issue of identifying the correct structure and recovering matrix M when the

observations on a process are widely spaced; first we conclude this discussion

on translating theoretical specifications of stage Linkages into M-Imatrice

with a couple of examples of multilineal sequences that have been dekribed in

the developmental psychology literature.

4. A divergent multiple progression (Van Den Daele, 1969, Figures 2, 4).

This stage linkage structure has the diagrammatic representation of Figure 6,

panel A; its corresponding M-matrix is presented in panel B. Because stages 4-

7 are specified to be terminal states of the process, the corresponding rows of

. M4 haVe l's in the diagonal. Van den Daele provides no discussion of

waiting time distributions to departure from the various stages; hence the

model remains incomplete as an evolutionary process.
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Figure 6 about here

5. A convergent multiple progression (Van Den Daele, 1969, Figure 2):

This stage seqUence is depicted in Figure 7, panel A, and its associated M-
.

matrik is z.eported in panel B. In this instance, the structure consists of a

collection of deterministic unilineal progressions, the specific sequence for

an individual being contingent upon his entry stage. Note also that the

assumption of irrelevance of past history, which is posited in this formulation,

is one of the side conditions we have required (assumption [i] in the preceding

section). In particular, this specification appears in the fact that knowledge

of the pat; by which one has reached stage 5 (or stage 6) is of no value in

fvecosting:or understanding; an ihdividual's subsequent movements. Van Den

*Daele (1909) discusses several additional models of stage linkages; such as

"partially convergent, divergent progression," and "partially divergent,

convergent progression." As the procedure in converting flow structures into

M-matrices'should be evident at this point, discussions of these specifications

are not presented.

Figure 7 about here

To recapitulate, subjeCt to several side conditions, we have shown that it

is possible to construct formulations of a range of developmental phenomena

which mimic the evoldtionary character of the observed process. With such a
: J -

model one can forzcast the movements of a population among the stages. By

carrying out the requisite calculations for different specifications of the

stage linkages, and comparing the predictions, it is possible to ascertain the
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a. Diagram of Stage Linkages .

L--,Matrix Representation of the Stage Linkages

M4

O 1 0 0 0.00
O 0 0 .5 .5 0 0
O 0 0 0 0 5 5

= 0 0 0 1 0 0 0
0 0 0 0 1 0 0
O 0 0 0 0 1 0
O 0 0 0 0 0 1

,

Figure 6-- Representation of a Divergent Multiple Progressiona.

a
Source: Van Den Daele (1969, Figures 2, 3).
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a. Diagram of Stage Linkages

b. Matrix Representation of the Linkages°

0 0 0 0 1 0 0
0 0 0 1 0 0

0 0 0 0 0 1 0

5
= 0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0-0 1

0 0 0 0 0 0 1

Figure 7-- Representation of a Convergent Multiple Progressions.

Source: kan Den Daele (1969, Figure 2).
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ways in which rather complex theories produce divergent implications and

design testing schemes which maximize the possibility of rejecting one or

another formulation as a description of the empirical process. Of equal

importance, it is often possible to work backwards, starting with observations

on the stage locations of a population at a few widely spaced time points, and

derive the structure of the stage linkages. compatible with the data.

An inverse problem. Until this point we have assumed that observations

have been made on an empirical process in a way such that H and A can be estimated

directly from the data, or that theories are available which specify the values

of their entries. We then sought to derive the evolution of the process subject

to the presumed structure. In developmental psychology, it is not uncommon for

a researcher to have many observations on a few individuals (e.g., Piaget,

1954). Such a data collection scheme approximates "sample path information," a

complete history on movements and waiting times of the sort illustrated in

Figure .3. Detailed observations on a few subjects is a research strategy not

without its costs, however. One learns little about the frequency of rare

events (e.g., regression to an earlier stage, stage skipping, rare development

paths) and acquires only the most rudimentary knowledge about the variation of

duration times in a stage. It is therefore not surprising that investigators

who rely on this approach tend to be oriented to uncovering universal rules

(e.g., Piaget, 1960) rather than to elucidating individual differences and

ascertaining the variety of developmental patterns.

Partly because of the limitations of small data sets, it is becoming

increasingly common to employ survey met!-ods, in which a large population,

sometimes thousands of individuals, is observed (or interrogated) at a very few

time points (e.g., Baltes & Nesselroade, 1972). The spacing intervals in
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such panel studies are usually wide, often one or more years elapse between

interviews, so it is not unusual for some subjects to have made multiple moves

'while others have made one or zero shifts between stages. The transition

matrices which can be constructed directly from such observations are P(t)--

arrays, rather than M-arrays, and the stage linkages may not be readily dis-

cernible. Indeed, determination of the movement structure which underlies the

evolution of the population can be'a difficult task.

One approach to ascertaining the stage linkages from survey data involves

consideration of the "inverse problem" td the mathematical formulation of the

evolutionary model (equation JI.S). Stated formally, we have available the

matrix P(t
1
), constructed from observations on the stage locations of individuals

at times 0 and tl. The typical entry in this matrix is pii,(ti) = nii(t1)/ni.,

where n.
1
= (number of individuals in stage i at time 0) and n.

aj
(t

1
) = (number

of persons who started in stage i at time 0 and are in stage j at time t1 }. We

wish to inquire whether it is possible to recover a unique M-matrix for the

process and, where the answer is affirmative, we wish to estimate this matrix.

The first step in solving -le inverse problem is to take the logarithm of

both sides of equation (II.S).

Q = = in P(t1) (IILS)

Just what we mean by the logarithm of matrix P(t
1

), the conditions under which

a solution to equation (III.S) will exist, and the circumstances under which

the solution will be unique, are complex issues which are discussed at length

in Singer and qpilerman (l9-76). Assuming we can obtain a valid and unique Q-

,

matrix from these calculations, a second task, separating M from A, still

remains. In many instances, though, this matter is of little concern, since
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the pattern of zeros and non-zeros in Q and M --I will be identical and develop-

ment theories are often posed at the level of identifying permissible transitions.

...

Moreover, because zeros are typically presentin many main diagonal cells of M

in models of-developmental structures, a complete or near complete separation

between M and A can frequently be effected.

Vie conclude this section with an example of the calculations associated

with the inverse problem. Suppose-observations taken on a population at times

0 and t
1
have produced the transition matrix, ,

.0224 .2633 .2402 .1261 .3479

.0063 .1758 .2460 .1735 .3983

P(ti) = '.0216 .0288 .3758 .5060 .0679 (III.6)

.0365 .0745 .0288 .6794 .1809

.0005 .0960 .0460 .0177 -.8397

Such data would appear to be consistent with a variety of evolutionary mechanisms.

IS

From inspection of P(t
1
) we do know that regression to some earlier stage must

be possible; otherwise all entries below the main diagonal would be zero.

Little else about the structure of M, however, can be inferred from inspection

...

of P(t
1
). Indeed, because of the sizable non-zero elements in most cells of

the matrix, a researcher might conclude tLat direct transitions are possible

between mc ,t pairs of stages.

If we arc willing to assume that matrix P(t
1
) vas generated by a continuous-

time Markov process; that is, via the evolution of the structure P(t) = e
A(M-I)t

, for

some matrices A and M which satisfy the definitional restrictions enumerated in

connection with equations (II.1) and (II.5), we can solve for °A(M-I)ti using

equation (III.5). This yields the array,

fir
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-4. 4. 0. 0. 0.

0. -2: 1. 0. 1.

A(M - I)t, = 0. 0. -1. 1. 0., (III.7)

0.20 0. 0. -0.40 0.20

0. 0.25 0. 0. -0.25

In this Instance At
1
and M can be separated by employing the following

argument. From our earlier examples we know that a main diagonal element mii of

M will equal zero if any off diagonal entry in the same row, m..ij , is different

from zero. According to equation (III.7), each row of matrix M must have at

least one non-zero off diagonal element; therefore m..
11

= 0 for all values of i.

With this information we can obtain At
1
uniquely,

At
1

=

[ 4

0

0

0

0

0

2

0

0

0

0

0

1

0

0

0

0'

0

,4

0

0

0

0

0

.25

(II1.8)

and solving for M provides the structure M
4
reported in Figure 8, panel A. The

schematic representation of the stage linkages implied by M4 is shown in panel

B, in which probabilities of the various'moves have been appended to the

paths.

Figure 8 about here

The point to be emphasized is that it is not apparent from inspecting

...

matrix P(ti) in equation (III.6) that the underlying stage linkages are those

reported in Figure 8, nor would any static analytic procedure be likely to lead

a researcher to the correct conqusion. What is necessary is to construct a

model of the evolution of the process and solve the implied inverse problem for

the parameters which correspond to the particular data set. (In the present
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a. M-matrixb

0 1 0 0 0
0 0 .5 0 .5

.0M4 = 0
.5

0
0

0
0

1

0 .5

0 1 0 0 0

b. Diagram of Stage Linkagesc

41,

Figure 8. Stage Sequence Structure Implied by P(ti) in Equation (111.6)
a

a
The process is assumed to evolve according to a continuous-time

Markov formulation.

DEntries indicate the probability of a stage i to stage j move
when transition takes place

c
Probabilities of the various transitions are attached to the

appropriate paths.
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example, we have assumed that the underlying model is a continuous-

time Markov process [i.e., specification (i)-(iii; of the preceding section]

and have solved for the matrices At
1
and M which are compatible with the

observed array P(t1), in that they would have given rise to this array if the

postulated evolutionary process were-approximately correct.)

IV. ALTERNATIVE SPECIFICATIONS OF THE SIDE CONDITIONS

In this section we discuss relaxing two of the more burdensome spee.fi-

cations of the model, in the sense that they are likely to be inappropriate as

characterizitions of developmental processes. We first consider the require-

ment that the duration intervals in a stage must follow an exponential dis-

tribution [assumption (ii) of section II]. Following t%ese comments we turn to

the requirement that the population be homogeneous with respect to the process

parameters A and M [assumption (iii)].

More general waiting times than exponential. The exponential distribution

is frequently employed in the literature of reliability theory to describe

duration intervals in a system state (stage in the current application). It

has the advantages of being mathematically tractable and approxiMating reality

in situations where the probability of a state change is uninfluenced by aging

or time in the state. For example, if the process states are "alive" and "not

alive," then over the middle age ranges of many animal species,,the age-specific

mortality rate is relatively constant and the duration intervals (in the "alive"

state) are reasonably well captured by the exponential distribution. Similarly,

when mortality results from exogenous events--accidents--the distribution of

ages at failure can often be approximated by the exponential.

In a great mmy situations in social research, however, we know that

proneness to changing state is a function of duration. In particular,.this
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has been suggested with respect to residence location (McGinnis, 1968) and

employment affiliation (Ginsberg, 1971). In these applications it has been

argued that the duration - specific departure rate decreases with time, giving

rise to the phenomenon of "cumulative inertia"--the linger an individual

remains in a state the less likely he is to leave in the immediate future.

The substantive explanations for a declining departure rate involve the growing

investment an individual has made, with duration, in friendships (in the first

instance) and in seniority in his place of work (in the second). There is no

mathematical reason, however, to assume a declining departure rate in choosing

F.(t); and in other substantive contexts a different specification may be more

appropriate. For a superb review of stochastic models incorporating the

notioq of duration dependence, see Hoem, 1972.

A convenient way to generalize the Markov model to accommodate a variety

of duration-time distributions is to begin with the integral equation repre-

sentation for transition probabilities. ,Equation (II.4) is a special case of the

formulatio:

P..(t) = 6..(1-F.(0) E I fi(u)mikpki(t-u)du
k 0

0 < is j < n

t>.

(IV.L)

in which the terms are identical with those of the earlier equation except

thatf.(u) replaces the exponential density, Ale
-A

I
u

, and F.(t) [the distribution

functioncorrespondingtof.(t)], replaces [1-e
-At

A theoretically appropri-

ate choice may now be made for Fi(t).

As an illustration, one candidate for F.(t), in the case of a declining

departure rate, is the two-parameter family of functions
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F
1
(t) = 1 - e

Yi
-A .t

1
A.>0 ; 0<y.<1
1 1

(IV.2)

Here the probability of departing from state i during the infinitesimal interval

(t, t dt), conditional on the process being in state i at time t, equals

Y. -1 -A.t

f.(t)dt (X.y.t
1 1

1
) e y.-1

1-F.(t)
dt = A.Y.t dt

1
-

-A t
Y 1 1i

v
e

Yi-1

Because of'the restrictiontherestriction.Yl 'in equation r:t is a de'reasing

function of time, and the declining failure rate aspect of the distribution is

evident.

The general formulation (IV.1) for duration time distributions and transit-

ions between states generates a class of models known as se i-Markov processes.

These generally do not have simple representations for the matrices P(t)

analogous to equation and the solution of the system of equations

(rv.1) requires numerical integration methods.

Population heterogeneity. To this point we have assumed that the matrices

and M of equation (II.5) are identical for all individuals. This does not

mean that all persons move identically since the process is probabilistic; it

does
imply, though, that individual level characteristics are unrelated to the

structural parameters of the process. In other words, homogeneity means that

considerations of genetic makeup, intelligence, sensory stimulation, and other

factors by which indl idjali differ from one another do not portend distinct

evolutionary paths in the deveLopmentalprocesssunder consideration.

"'-
There is reason to believe, however, that individual differences are

present in the-course of development in many processes (Verner, 1957; Kohlberg,
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1968, 1024). We therefore desire a formulation in which the movement

pattern is parametrized in terms of variables which differentiate among persons.

To construct a general specification of heterogeneity within the conceptual

framework of a Markov process, we assume that, corresponding to equation (II.5),

the stage transitions by individual c have the structure

A (M

Pc(t)
c c

(IV,3)

This formula indicates that each person is characterized by a pair of matrices;

A
c

and M
c'

and his evolution, in turn, is described by P
c
(t). Thus, our form-,

ulation begins with a separate Markov process for each individual.

This approach directs a researcher to identify the variables which describe

heterogeneity; that is, to ascertain which factors account for individual

differences in the matrices M and A. Thus, not only does a heterogeneity

formulation lead to more realistic models of evolutionary processes, inithat

alloWance is made for individual differences, but it stresses the analytic

tasks of specifying the variety of developmental patterns in a population and

ascertaining the attributes which make an individual more prone to following

one set of paths rather than another.

One form of heterogeneity concerns
the.distributiOn of M-matrices in a

population. Focusing on these arrays serves to emphasize individual differences

in proneness to making particular moves where a transition takes place. We

shall not,discuss this form of heterogeneity in'the present essay and direct

the interested -reader instead to McFarland, (1970), Spilerman (1972) and

Singer and Sp rman (1974). A second form of heterogeneity stresses individual

differences in the A-matrix, i.e., in the rates at which departures occur for

persons in the various states. We conclude this section with a simple formulation
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of pgpulation heterogeneity in which it is assumed that the individual differ-

ences can be expressed in the latter way.

To simplify the discussion, we further require the non-zero entries in the

diagonal matrix A to be equal for an individual; i.e., Ai = A for all i. This

means we are specifying identical departure rates from all states. As a result,

equation (II.S) reduces to

P(tIA) = e
At(M-I)

(IV.4)

where P(tIA) denotes the transition matrix for an individual having a rate of

movement value equal to A. We shall assume that equation (IV.4)- describes the

evolution of an individual drawn at. random from the population.

Heterogeneity is incorporated into the formulation by specifying a density

function g(1) which describes the distribution of A-values in the population.

We now define the population-level transition matrix corresponding to times 0

and t to be

CO

P(c) = I P(t1A)g(A)dA = I e
tA(M-I)

g(A)dA

0 0

(IV.5)

This formula expresses the population level matrix as a weighted average of the

individual-lee1 arrays, P(tIA), the weights reflecting the population proportions

associated with particular A-values.

To complete this specifi'ation of heterogeneity it is necessary to select

a density FUnction g(A) to descIibe the distribution of A-values. One useful

choice is the gaMma family of functions

g(N) = ficzA71 -RA

r(a)

2

A>0 , u>0 ,

(IV.6)



which is flexible enough to describe a variety of unimodal curves. With this

-selection of g(%), a convenient representation of the population-level matrix

P(t)' is qbtained (Spilerman, 1972b, p. 608):

P(t) =
L_

a+t

E

(IV.7)

The transition probabi'ities (IV.7) do not describe the evolution of a Markov

process; however they do describe the movement of a population in which each

individual follows a Markov model with individual differences being specified

by g(A) in equation (1V.6).

In analogy with our earlier inverse problem discussion for Markov chains,

the present formulation can be used with observations taken at,widely spaced

time points, 0 and tl, together with estimates of a and 8 to yield an estimate

of the underlying transition mechanism M, according to the matrix equation

1-
Bi.t1

P(t
1
)

aa (-

/
(IV. 8)

Thus, from.observations Of the sort :ollected in many surveys, even under an

assumption of population heterogeneity in the rate of movement, it may be

possible to recover the matrix of stage linkages which governs the evolution of

the process.

V. CONCLUSIONS AND SUNNARY

In this p-iper we have exploted the consequelices of particular stage

linkage structures for the evolution of a population. One thrust of our

comments has llen to ideutify the sorts of proces featutes concerning which
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assumptions must be made in order to convert a static theory about'stage,

connections into a dynamic model. A second (focus in our discussion has centered

on inverse'problems;'how to utilize a model formulation so that the stage

linkage structure (matrix M) may be recovered from survey data of the kind

usually collected by developmental psychologists.

. We have. presented only the most rudimentary sorts of stage structures.

Indeed, even within the Markov framework we have liMited our consideration z:o

a subset of these models; namely, those which are time-stationary (i.e., f and M

are not functions of time). By this specification we have excluded the possi-

bility of accomodating age-dependent transition laws, a consideration of

substantial importance in developmental psychology. (An extension of"the

models discussed here to incorporate both age dependence and cohort Affects is,

how-Iver, a feasible undertaking but one with an increase in mathematical

complexity.) Further, all the models we have discussed entail a low dependenCe

of future movements on the transition history of an individual given his

current age
7

.
Restrictions of these sorts are likely to

-

..be 'easenable for

some processes, unreasonable for others. Appropriate models of developmental

phenomena must, therefore, be constructed from a list Jf known characteristics

about An empirical process.

We also point out that the concept 'of stage merges with the notion of

state as the number and sorts of permissible transitions increase. .Stage"

seems conceptually rooted to the idea of progress (i.e., development) and would

be an appropriate component of a theory which sees the system's statuses as

genetically determined or as facilitating the conditions for succeeding statuses

to come into play.
8 The mathematical framework we have introduced is' also

compatible with a "state" notion, in which there is an extensive opportunity to

cycle among the statuses. State formulations have been suggested in the
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,psychology literature in relation to anxiety, moods, etc. (e.g., Kessen,

pp. 72-73).

As a final set of considerations in relation to the structure of stage

models, we nate that all the formulations we have addressed are models of

solitary processes. We have pro9eeded as if intelligence, cognition, motor

skills, and personality development unfold autonomously. In reality there no

doubt ,oxist extensive dependencies among some of these processes. Mathematical

models of interacting developmental phenomena could be formulated but clear

empirically-based specifications of such dependencies are still lacking.



FOOTNOTES

1The initial condition, y(0) = 1, in equation (2) is necessary because

diffusion through communication cannot begin until at least one person is

knowledgeable.

2
For a more technical presentation of contine us -time Markov processes see

Feller (1968, Chap. 17) and Singer and Spilerman (1974). For discussions on

the superimposition of theoretical structures on stochastic models see Coleman

(19 '1. Chaps. 5, 6).

3 In the present example i, j, k = 1, 2, 3, respectively.

4 If the observations are on a single individual the interpretation of

Pij (t) is in terms of the probability of a sti.ge
i to stage j move between

times 0 and t.

5The symbol "^" over a matrix or over an element in a matrix, will mean

that :t stleuld lc vi-wed as estimated directly from data rather than calculated

from a marhematit-al model.

6
Wc bcvin hot with e:-.amPle 2; example 1 refers to the structure in

figur.; 2.

7
The time-stationary Markov formulations postulate irrelevance of

prior stage affiliations, durations in those stages, and duration in current

stage. The list two of these restrictions can be eliminated by introducing

non-stationary semi-Mrkov models as delineated, for example, in Hoem, 1972.

8
Stages ire childhood, as "walking" or "reading" expose an individual

to entirely new,sets of experiences which may he prerequisites for the onset of

more advanced behaviors.
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A Bs1 R AcT

W.thods of the analysis of longitudinal data are discussed. For the

intra-individual case
which deals with a single longitudinal series. a

variety of curve fid.Yng approaches are considered. For the inter-individual

case whicl deals with one or more samples of longitudinal observations, a

variety of methods including univariate
analysis of variance, multivariate 9

analysis of variance, and polynomial growth curve models are considered. An

attempt is made to relate these methods, which are widely used in biological

applications, to the broader context of developmental research.
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Mathematical Description and Representation of Developmental

Change Functions on the Tntra- and Interindividual Levels

I. INTRODUCTION

In an.earlier paper (Kowalski E Guire, 1974), we surveyed the.then

available data analytic strategies for several types of longitudinal data

sets. In particular, we identified six distinct types of longitudinal data

sets, viz., (1) univariate time series, (2) uniaxiaLe one-sample data matrices,

(3) univariate K-sample data matrices, (4) multivariate time series, (5)

multivariate one-sample data matrices, and (6) multivariate K-sample data

matrices, and the methodologies appropriate for each of these types were

treated separately. The present paper builds un this background, paying

special attention to the mathematical description and representation of develop-

mental change functiu 3 on the intra- and interindividual levels. An overview

of the available models and statistical procedures for the analysis of such

data is presented. The aim of this p-escntation is to identify certain proce-

dures which haxe proved to be usef.1 gruwth:olviented sciences

for possible application in beha.::_i_11 do;olup,aental research. In so doing,

we must cPrefully conSider poton':ial :!:.fforences in the structure of the

me4surements to be analyz-,!d and, wheneer possible, models which do not require

monotonicity and nonpirametric analog:-. for tho statistical procedures discussed

will be cited. On the other hand, morP,research - both from the standpoint of

theory and from the standpoint of practice - needs to be done before we can

confidently analyze multivariare dare set: in any field of application (c.f.

Kownicifi 1q7.,1 .,;(1 char any. wo7 of caution in Cri.is context should he rempered

by the need for tho entire deelop7lental research c.)mmunity to gain some

experience in of the:.., tech:iitlues (Prahl-Andersen & Kowalski, 1973) .

It is in this spirit thAt this ,)ap;:r .s written. Behlvioral scienti should
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be aware of the possibilities and limitations of statistical treatment of

developmental data and the models presented were chosen to illustrate both

ends of this spectrum, as well as many of the shady areas in- between.

We begin with a general discussion of longitudinal data sets in the

context of the design of developmental studies. The purpose of this section

is to place the longitudinal pproach into some per.pective vis-a-vis the oft

heard dictum that "the design of a study is a function of the purposes of the

investigation" and an attempt at delineating the class of studies for which

longitudinal designs may be appropriate is made. It is recognized that develop-

ment will often depend on factors other than simple chronological age, but it

is argued that this does not imply that the class referred to above is empty.

Since questions of this type are considered in great detail in the first part

of this book, our discussion is b-ief and somewhat cursory. It is included

only in an attempt to counteract some of the impact of much of the recent

d'evelopmental literat e which seems bent on condemning the longitudinal method.

We then consider questions asso,..iiited with the descriptive and explanatory

study of intraindividual L'iange. We focus on the implications of choosing one

or another of the medelc aich can be used for these purposes and thereby

confront important Ailosophical proble'is ranging from the making of reasonable

a priOri assumptions to the validation of a model by the expedient of subjecting

it to a goodness-of-fit test. Finally, we discuss techniques for the investi-

gation Of interindil,idual differences in development. We consider not only

formal hypothesis testing techniqies but also less formal, descriptive, data-

analytic procedures which may prove useful in unraveling some of the complex

problems asse._iited 1.1th the mea;urement of change (Harris, 1963).

. Oi(,ICNS FOR THE STUDY OP DPVPIOPmFNT

" thinking in liThavioral

(,)? devPlopmPr w-- g-ae:ated by a serl.: pipors by cOY o (1065, 1970.

RI
(.:(1

(.1



1972).. In 196S, Schaie introduced a trifactorial developmental model which

views development, D, as a funt.tion of A = chronological age, C = cohort and

T = time-of measulemen. Perhaps the e,reatest contribution of this model was to

focus attentioi t,n the 1,iplications it had for the choice of the design of

developmental studies. In particular, chaLe (1970) pointed out that (a)

cross - sectional designs confound the age and cohurt effects, (b). longitudinal

designs confound the age and tine -of- measurement effects and (c) time-lag

designs confound the cohort and time-of-measurement effects. While these

facts were apparent long before Schaie introduced his model, the model provided

a convenient .conceptual framework which clearly illustrated the source of

these problems. In an attempt to rectify the situation, the general notion of

a mixed-longitudinal design as developed (Prahl-Andersen & Kowalski, 1973)

and several special cases, 32., the cohort-sequential, time-sequential and

cross-squentiai desi;n_; e identified and proposed for use in certain

well-defined types of d;:v,,,1.7):-.11enta1 investigations (h'ohlwili, 1970). It was

clear that Schaie viewed these mixed-longitudinal strategies as completely

replcing the :-ore tLaditiunal designs. Schaie (1972) was especially vociferous

in r.,-,rd eTnirg ','!sit lrlal destrs, concleding that, "the single cohort longitu-

dinal study be u,ed fir 1-:.) Qt..: purpose than that of the historian, the case

histoiy reportt.1, or tc, gather 311...!cdotal r-latetial for the purpose of generating

hypotheses." ,,,;(sc., non,,: of t11. Schaie designs completely solves the problem

-N\

of confot\ridin; alici..1 to4earl_er and a ntraber of questions have arisen regarding

both cnc yin _1 ; . t,. ah't il,L', t _IL, 19%) and the interpretation (Baltes,

1965) of da. -::- J rl.,*d-1...mgitudinal approach. Thus Hindley

(1977) ,-,-,-,, 4..! ,,,, ,ttn:. ...at the same_time that he belabors

the lonoitudil:ai :.et;,,,.! t ,r r:._;rkn,; o:1 dubious assumptins, he seems prepared

to ,x1:,, ,,-A,., '7 7."'")' sm , . mivi.t k.tr,,i ;1 0,1411.- oneh to ouestion.

.
,
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One example i, hi. 11 ;e of projected longitudinal gradients which, as he admits,

depend on the assux.ptiti,n that environm,ental input, will be approximately equa.4

over past and future ill::: Intervals" ip. 10). It would appear, then, that

there may be a'bIt of life left in longitudinal research despite the wer.-

known- and documenzt?d probl%ts it presents in the data collection (Jones,

1956), data-analytic (KowalsK

Furby, 1970) spheres.

dire, 1974), and interpretive (Cronbach &1)

We approach this question by suLoarizing,the case against the longitudinal
1

4

method in the context of Schaie's trifactor. 1 C1(7?Nelopmental model. If we

Write D ti f to rep:esent Schaie's model, we se that there are two

distinct problems to be fv:ed. The first y that since longitudinal studies

(
are indexed by but tt,o of the Ciree faetons comprising Schaie's model, D = f(A,T),

we cannot generalize the r, gilts 1c2gitudinal investigation beyond the

cohort selected for study. Uthefaie stated, if we ase to attempt to generalize

thd results of a lon2situ:linal study, , must assume th2t the cohort effect is

zero. The second problem Arcady L<.entioned. is that even if the cohort effect

can reasonably be neftcted, ate differences will still be confounded with

time-Of-measuremeut thz.se being viewed. 3s temporary variations or

aberrations sup_ei:-.1p)ed the ,:.A.:,2:,:ment21 function_ What Schaie's argument

cones then, that longitudinal studies are appropriate only in

those cases - O. But mu:-;: eve..7 study answer all questions? Jt is

our opinion thut to alapt this qt*;t,Ide would stifle a good deal or potentially

valuable reqei ih:re Jre :,ituations in which the longitndinal approach

must 6.aples,

way. To cite

010

,...lzher of questions cannot be answered in any other

-ern is with intlaindividual patteiiiing

-v. :here simply

, ;';nenever we wish to stuay the



relationships-between the amount or direction of change for two or more variables,

br between such change and any other information about the Individual, the

only alternative to the longitudinal approach is the abandonment of the project.

ThiA does not mean that every project is worth doing, that one should flatly

igriore ppten..ial time-of-measurement disturbances, and that cohort effects are

mere figments of theimaginatiOn. It means simply that wp should take care

with the procedural conduct of the study and pAidently limit our inferences to

the population from which our sample was selected. We need not over-react to
.

0
he point of, jettisoning the longitudinal approach' stated by Jones (1958),

"If we wish...to achieve a body of developmental theory, we cannot eliminate

developmntal observation" (p.98).

While we certainly do not advocate the use of the longitudinal approach

every developmental investigation, it is our contention that there are

situations in which time-of-measurement effects may be safely neglected, e.g.,

in most studies of physical growth, and that when these effects ate unimportant,

most of the`,Qbjections to the longitudinal approach disap 'ear. This is primarily

due to the fact that the remaining technical diffiCUlties associated with the

longitudinal method are counterbalanced by its great efficiency in estimating

change scores. Wallis and Roberts (19S6), e.g., estimated that in analyzing

the weights of men before and after a lapse of time, each of two independent

samples would have to contain 2,222 individuals (a total of 4,444 observations)

to provide the same salpling reliability as a single paired-sample of 25 men

measured before and after the lapse of time. While the data they used to

obtain these estimates , -re artificially generated,, they do novide some idea

of the increase in precision of the paired-sample approach which may be

oxpecteo in practice (see also Rao f, Rao, 1966).

1',6 turn now to q ,,ctions deallne wIth the --udy of intr.iindivi4udl k_harigc.

Sctitr ,rathematical mode s ;d1161 eati be used to mirrrr the -le changes are presented

84



and discussed in the context of their potentia! usefulness in developmental

research.

III. MODELS FOR' INTRAINDRIDUAL, CHANGE

We begin, follohing Kessen (1960), by agreeing that "a characteristic is

said to be developmental if it can be related to age in an orderly or lawful

way." Thus, given a series of measurements xi,x2,...,x1, on a given individual,

we suppose that the t-th such measurement (t=1,2,...,T) can be expressed in

the form

x
t
= f(t) + c

t
(III.1)

in which the observations xt are viewO as being composed of a systematic

part, f(t), and a random or stochastic part, Et, "which obeys some probabilit)?

law. The ba,ic problem is then to fit a function, f(t) to the observations

in such a way that ti-e function (a) provides a close fit to the data, (b) has

a rcazonably simple mathematical 7.tructure and (c) has relatively few parameters,

whnccs nu.aninnc ^rte ,I.Ar with e definite developmental significance (Israelsohn,

1960) A number of such functions have been proposed for use in a variety of

de:eloemental circumstances. -)erhaps the simplest of these is the first-order

auturebreili... scheme, or .!?1-1<3v Process, in which

f(t) =

so that the vJlue of the observation at time t is a simpl;e linear function of

the measurement T.Ae :t the preceding time point. The next most complex form

of linear autoregressive series is the Yule series where

4

f(t) + B2xt_2

and
t

is det-,.: ,1;e of Lhc olil'ervationf-y made at the preceding



two time points. This formulation t..nn he extended in obvious ways and a good

account tf au:oregressive model: is proided by Kendall and Stuart (1968).

These and a number cf other forms 'for f(t) may be generated tv chara terizing

the developmeltal process in terms of a differential equation and we here

sketch some examples of sirpl.: differential equations which have been used to

this end. Let tin: t denote time and x the magnitude of the measuroment being

taken, the differential coefficient dx/dt then denotes the rate of growth,

i.e., the increase in x per unit time. It is generally assumed that the

growth process may becharactt.izcd by a differential equation

dx
= g(x,t)

dt

which says that the grol.th rate depends both on time and current siLe. In the

(III.2)

examples to foilov., we consitier ^-ly specill cases of the type

which may be ,.,ritten as

or, solving,

dx
dt

= u(x1),(t)

=-11(t)

which determl as a function of t. Turning to some specific examples, if

we let g(x)=1, 2 dk-x and x(X -x; for 0 < x < A in we obtain the differ-

.

ential equatiuna

h(t)
r)

dA
xh(
0-.)h(t)

x(A-x)h(t)

4r- 86
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where, in the last two equations is interpreted as the maximum value of x.

The four equations relate to (iiiite oifferent and varied types of growth processes.

Specifically, the respocti'e equat.ous .ndis:ate that at a given time the -

growth rate (1) d(.dond,; on tine, 'hut not on size, (2) is pinnortional to size

and a function of (,;) it proportional to tne "growth potential," i.e.,

the maximum si:e minus current size, and a function of time and (4) is pro -

purtional to both the urrent site and growth potential, as well as a function

o: time.

If we now Lonsitkr- the "loarithmic differ-ntial coefficieht" dlog x/dt=

dx/xdt which denotes the relative growth rate, the proportional increase

per unit of time, tilt. last three equations in (III.4) may be written

and

log x
dt

-d log (A-x)
= h(t)

dt

d log x d log(A-x)

dt dt
h(t)

Solving the -.c J tIll equati,n,; (111.4) yield

x, y h(t)

log x Kt)

= log A - H(t)

log(1-x) - log ) = -A H(t)



or, if solved f

If(t)

exp(Ii(t))
x " \[l-exp(-h(t))1

\

_1

1.1(1-exp-.H(t)))
AP

Here exp(H(t)) e
H(t) y is tlo base of the natural logarithms. The

equations include a constant of integration which may be determined from a

given value of (x,t). By looking at particular values of h(t) we can now

generate a number of examples of growth curves satisfying the conditions set

out following equation (111.4). Taking h(t) = e.g., we obtain

x

a + .t

exp(a + ',:t)

Ail - exp(- a- Et)]

A(1 + exp(-k(a + St))]
-1

For P, > 0 thesc in:re,ksing f:_nctions of t, the last two having asymptote

A. Inc last of se eAprr:ssion5 defines that is gererally called the logistic

!;lo'.,,i, .;.1:.. ...1..,_! the .itc17.s that led to its derivation, we may be

ably ,t,Drciitior f,r the sorts of growth processes it might

and

we

,

The equation for growth rate is

d 1:44(x-x)
=

88 Dt;

ae

ex(k-x) =



i.e., the relative growth rate is a linear function of x. Thus before fitting

a logistic function to developmental data, one should be sure that the conditions

implied by these equations do not violate their a priori knowledge of the

process under consideration. Looked at the other way

.

logistic\function to developmental data, a reasonable

would be to\plot the values of x, on the abscissa vs.

around, after fitting a

test of goodness-of-fit

the values of flog x /At

on the ordinate to see whether or notsfa linear relationship obtains. But it

should be noted that while goodness-of-fit is perhaps a necessary condition

for the employment of a particular function to mirror a growth process, it is

by no means sufficient to ensure transcending mere description to the real

desiderata of explanation. This is due not only to technical, statistical

difficulties (Kowalski, 1970, 1972), but also to the very philosophy underlying

the use of goodness-of-fit tests in this context. As stated by Feller (1966),

The logistic distribution function...may serve as a warning. An un-

believably huge literature tried to establish a transcendental "law of

logistic growth": measured in appropriate units, practically all growth

.processes were supposed to be represented by a function of this form...

Lengthy tables, complete with chi-squared tests, supported this thesis

for human populations, bacterial colonies, development of railroads, etc.

Both height and weight were found to follow the logistic law even though

it is theoretically clear that these two variables cannot be subject to

the same distribution. Laboratory experiments on bacteria showed that

not even systematic disturbances can produce other results. Population

theory relied on logistic extrapolations (even though they were demon-

strably unreliable). The only trouble with the theory is that not only

the logistic distribution, but also the normal, the Cauchy, and other

distributions can be fitted to the same material with the same or better
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goodness of fit. In this competition the logistic distribution plays no

distinguished role whatever; most contradictory theoretical models can

be supported by the same observational material. (p.52)

Thus the proper emphasis on fitting a turve to longitudinal data is not

on selecting a function on the basis of goodness-of-fit, but rather on selecting

a function which accurately mirrors the biological structure of the process

under consideration. There are certainly enough functions to choose from --

each with its own set of assumptions which must be met if we are to go beyond

a mere description of our developmental data. In addition to those already

discussed, we should mention,several others that have been proposed for use in

relatively well- defined sets of circumstances. In the realm of physical

growth, because of the adolescent growth spurt typical of the higher primates

(which may or may not obtain in psychosocial investigations),.a parameterization

consisting of distinct components for prepubertal and adolescent growth is

often recommended. Thus Deming (1957) suggested the use of

f(t) = a + at y log(t)

for the period up to nine years in girls and ten in boys, and from that point

to maturity, the Gompertz (1825) curve, viz.,

f(t) = a exp (-exp (S-yt)]

Similarly, Jenss and Bayley (1937) fit

f(t) = a + St exp(y+Ot)

over the prepubertal period and then used the Gompeitz function. An analogous

strategy was suggested by Count (1943). Examples were
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provided by lsraelsohn (1960). But, as pointed out by Bock et al. (1973), the

problem as to where e curve should end and the other begin is still an open

question. 'They suggested instead the use of a mixture of logistic growth

curves. In their notation,

where

al

f(t)

f-a
1

1 + exp[-bl(t-c1)] 1 + exp[- b2(t -c2)]

is the upper limit of the prepubertal component.

b
1

determines the initial slope of the prepubertal component, implicitly

given by v
1
= a1b1 /4, the maximum velocity of growth in the prepubertal

component.

c
1
determines the location in time of the prepubertal component.

f is mature size.

a
2

= f-a
1
is the contribution of the adolescent component to Mature size.

b
2

determines the slope of the adolescent component, implicitly given by

v
2

= a
2
b
2
/4the maximum velocity of growth of the adolescent component.

c
2

is the age at maximum velocity of the adolescent component.

In fitting this model to data on stature, Bock et al. (1973) were given t,

observed y, assumed f known and the remaining five parameters (a
l'

b1, cl, b2, c
2
)

were fit by non-linear least-squares. Another parameterization which permits

straightforward interpretation of the parameters comprising the model was

suggested by Weinbach (1941). Here

f(t) = b1 exp(clt) - b2 exp(-c2t)
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where

and

c
1

is the multiplicative rate of growth per unit time.

b
1
is the size of the individual when he enters the time span of constant

multiplicative growth in early or middle childhood.

1)
2

is birth weight

c
2

represents how rapidly the child decelerates from birth into the phase

of constant multiplicative growth.

The rationale behind the use of this model is that since the growth of most

physical measurements is decelerative;in infancy and more nearly constant for

some years thereafter, a convenient mathematical representation of the growth-

of an individual is one which estimates both this deceleration and the more

constant phase of middle childhood. Presumably the use of another function

would be required if the age range were extended to include the pubertal

spurt.

We might also mention at this stage another model which can actually be

used to test the hypothesis of a significant change in the pattern of growth

due to some event E (e.g., puberty) occurring within the interval of observation.

This is due to Box (1967) who considered the general problem of testing for a

`change in the level of a non-stationary time series. Potential applications

in the context of the present discussion include checking on whether or not

behavioral measurements exhibit a growth spurt and in facilitating the choice

of where different growth curves may be needed to accurately mirror changes in

the processes governing develdpment.
Suppose we have a total of T = n 7 m

measurements, the first n of these being taken before E, the next m after. If

then 6 measures the shift in level of the series associated with the event E,

Bok's model is of the form

foo



t-1

L +y0 E a
t-j

+a
t

for t<n

j=1

t-1

L + 6 +y E at- +a ,for,t>n
o t-j t

where L denotes the initial location of the series, y
o

is a constant, 0 < / < 2,
o

presumed known, and the a's are independent normal deviates having variance 62.

.
It may aid inithe interpretation of thit model to write

t-1 t-2

yE a . +=yE (1-y
0
)ix . + (1-yo)t-1L+ at

o t-3 t o t-l-j

which emphasizes its autoregressive structure. Box then shows how to estimate

A

a2, L and 6 (say by s2, L and 6 ) from the data and the required test follows

from the fact that
1.1

, (1 - (1-yo)
2n

1
[1

- (1-1 )
2m

]

2

.
(1 (1-yo)

2t)
y
o

(2-y0) s. .

has Student's t-distribution withrn + m - 2 degrees of freedom. Box approached

this problem from the Bayesian point of view in which certain (non-informative)

prior distributions for the parameters in the model were assumed, (III.6) then

representing the posterior distribution of 6. The test can, however, be

directly applied in the more usual Heyman-Pearson framework where no a priori

information concerning these parameters is invoked. In either case, y is
0

taken as known but Box has shown that (III.6) is relatively insensitive to

changes in the value of y
o

.

The point of the above examples is to acquaint the reader with a number

of models which have been proposed for representing intraindividual physical

growth. As already noted, it is important to realize that in the competition

between these models, goodness-of-fit plays a relatively minor role. While a

poor fit of the model to the data should reasonably cause one to question the

applicability of the model under consideration in the context of the current
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problem, a good fit to the data is not sufficient to insure this applicability.

A more prudent course is perhaps via the derivation of a model that satisfies

certain definite a priori requirements imposed by the structure of the develop-

mental proceSs under consideration. This may be approached by the use of

differential equations as sketched above (see also Shock, 1951). Alternatively,

the properties of available models can be checked to see whether or not they

conform to these a priori criteria. Thus, for example, if we wish to use a

model that is consistent with allometric growth, the use of the Gompertz curve

may be appropriate (Deakin, 1970).

On the other hand, if only a simple descriptive function is required

and/or little is known about the mechanisms governing the growth process, the

class of polynomial functions

f(t) = ao + alt + a2t
2
+...+ a tP

are apt to be satisfactory and have the convenient property that the "Mean

curve" (that fitted to the observed growth patterns of a number of individuals)

is equivalent to the "mean constant curve" (that obtained by fitting the in-

dividual records to a set of such polynomials and then averaging the coef-

ficents a. ). This-is not true for growth curves in general (e.g., Gompertz,

logistic) and thus the character of the individual curves are subject to dis-

.
tortion through group averaging. This may be a critical point in practice

since indiscriminate averaging tends to over-smooth the growth curves, masking

the inherent interindividual variability, which is often of prime importance

in the study of growth. Thus while polynomial growth curves may not lend

themselves to easily interpretable explanatory models for growth processes,

they may still be useful for the description of development and in the effective

reduction of the observations to a small number of parameters characterizing
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the observed course of growth. This method was introduced by Wishart (1938,

1939) who suggested that the growth curve for each subject be broken down into

its mean and linear, quadratic, etc. components, each of these being subjected

to separate analysis. The effects of treatments on the average growth rate

could then be seen from the analysis of the linear components, and analysis of

the higher-order components would show to what extent the treatments were

effecting the shapes of the growth turves. The method was valuable in that it

succeeded in replacing the successive observations on growth by a few summary

figures which led to efficient comparisons between the groups being studied

(Rao, 1958).

In an attempt to extend this approach, Rao (1958) considered the problem

of transforming time by a function Ti= G(t) in such a way that the growth rate

is uniform with respect to this new time metameter, so that an adequate

representation of growth would be available in terms of the initial value of

the measurement and the redefined uniform rate. This method produces the

required transformation from the data in hand, provides a valid test of the

hypothesis that the average growth curve is the same under all treatment

conditions irrespective of any assumptions on the nature of the growth curve,

and it not even necessary to know the exact values of the time points at

which the observations were made. Rao (1958) also considered the model

y
ta

= X g(t) et;

-4

where yta is the increase in the t-th interval, c is a parameter specific to

individual a, g(t) is an unknown function of time only, and et is a random

error. Whereas the first method did not depend on any assumptions about the

individual 3rowth curves, (III.7) implies that, apart from a deterministic

linear trend for growth with respect to some time metameter, there are independ-
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ent disturbances taking place in small intervals of time. By a common trans-

formation T = g(t), all the individual growth curves can be made linear apart

from random fluctuations.

Finally, Rao also considered extending (III.7) to its factor-analytic

analog

),(1)g )1/4(2)g

to a 1 a 2 t

where A
(1)

, A
(2)

,... correspond to the factors and g
1,

g
2

. . to the regression

coefficients. If (III,8) holds, we should be able to replace the growth curve

by its estimated factor Values a(1), a(2),... and to single out the

dominant ones for further analysis. While this approach has obvious merit as

a potentially valuable data-reduction technique, (III.8) differs enough from the

standard factor analysis model to require an entirely new set of associated

significance tests and these have not as yet been worked out. In case et can

be assumed independent of t, Hotelling's principal component analysis may be

used to obtain the requisite factors and standard tests can be applied (Rao,

1958).

In the following sections we consider how some of these models for intra-

individual development are used in the study of interindividual differences in

developmental patterns and in providing tests of hypothesis concerning the

mean ,patterns of growth in several groups of individuals.

IV. MODELS FOR INTERINDIVIDUAL CHANGE

When an investigator is concerned with a single attribute measured longi-

tudinally on one or more groups of individuals, there are a variety of analytical

models which can be employed. These techniques which are quite different from

those described above for intraindividual analysis, fall into three main

categories: (1) univariate analysis of variance, (2) multivariate analysis of
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variance, and (3) polynomial growth curve (PGC) models. For any particular

analysis problem,,the choice of one of these three approaches should be made

as a function of the extent to which the structure of the model is appropriate

and the extent to which the statistical assumptions are met. In describing

these three approaches, careful attention will be paid to these points.

However, most attention will be given to the PGC models which ate least widely

considered in applications.

The univariate analysis of variance models are probably the most widely

used, most widely documented (viz. Winer, 1962; Gaito & Wiley, 1963), and most

problematic approach to the analysis of longitudinal data. In the case of a

single sample of individuals, the approach is often referred to as trend

analysis (Winer, 1962; Kowalski & Guire, 1974). In this model the total sum

of squares is partitioned into components attributable to individual differences,

time, and error under the assumption of no interaction between the time and

individual factors. This model allows the investigator to test the overall

hypothesis of no differences attributable to the time factor. It is also

possible to subdivide the sum o,f squares for time into orthogonal polynomial

components allowing hypotheses concerning the shape of the time response to be

tested.

In the case of two or more samples of individuals measured longitudinally,

a repeated measures analysis of variance (Winer,_1962) can be employed. In

this model, individuals are treated as a random factor nested within groups

with repeated measurements over time. In the context of this model the main

null hypotheses of interest are (1) no time effect, (2) no group effect, and
..-

(3) no time by group interaction. The last of these hypotheses is often of

greatest interest since it can be thought of as a test that the time response

functions of the k groups are parallel. As in the simpler case described
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above, it is possible to partition the time effect into orthogonal polynomial

components to gain greater insight into the shape of the time response. This

k-sample repeated measure design can be thought of as a prototype for a great

variety of more complex Models in which the k-groups are structured as the

levels of a factorial or other design. It is also possible to structure the

repeated measure as levels of a more complex experiment.

These analysis of variance models seem at first glance to be ideal for

the analysis of longitudinal data since they are relatively simple and the

questions of interest correspond to hypotheses which can be tested in the

context of these models. Tke problem, of course, has to do with the validity

of the underlying statistical assumptions of the models. It an unfortunate

fact that the ratios of mean squares will have an exact F-distribution only

under rather restrictive assumptions described by Huynh and Feldt (1970). A

sufficient condition for the result requires that the repeated measures are

normally distributed, have equal variances, and either are mutually independent

or have equal correlations (Greenhouse & Geisser, 1959). The assumption of

mutual independence is virtually never tenable and the assumption of equal

correlations is seldom tenable when the repeated measures are indexed by time

since adjacent pairs of measures will almost always be more correlated than pairs

separated by a greater time interval; If the investigator does not wish to

prejudge the validity of the equal correlation assumption, a test of equal

correlation is available (Box, 1950). When'the assumption of equal correlations

clearly does not hold, Box suggested that it might hold if the analysis were

performed on differences between adjacent measurements rather than on the

original data. The only other approach to salvage the univariate analysis of

variance models for the analysis of longitudinal data when the equal correlation

hypothesis is not tenable is an approximate procedure proposed by Greenhouse and

Geisser (1959). They have shown that the ratios of mean squares have approximate
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F-distributions with modified degrees of freedom which are a function of the

unknown population variance-covariance matrix. They further show that there

is a lower bound on the degrees of freedom which is independent of the unknown

parameters. Unfortunately, the use of this lower bound gives a test which is

conservative in the sense that the null hypothesis will too often be accepted

when it is not true. This loss of power may well be unacceptable.

Because of the restrictive assumptions of equal variances and covariances,

it is clear that univariate analysis of variance approaches are not applicable

in most situations and that other models which are not dependent on this

assumption are needed. Multivariate analysis of variance techniques provide

such a class of models. In the case of a single sample of individuals measured

longitudinally, the multivariate analog of trend analysis can be thought of as

a multivariate generalization of a paired t-test. In this situation, the data

_consist of the vectors = x12, xip) for 1=1, ...,N and the hypothesis

of interest is that of no time effect, i.e.,

1.1 : =ui

where u is the mean vector, p is a scalar, and j' = 1, ..., 1). Morrison

(1972) has shown that under the assumption that the observations are an inde-

pendent sample from a multivariate normal distribution, the maximum likelihood

40
test of this hypothesis is equal to.a test of the hypothesis

Ho: Cu = 0

where C is any (p-1) by p matrix with the property Cj = 0. In practice, C

is chosen so that the transformed observations are the successive differences

of the original data.

This model also allows the investigator to obtain simultaneous confidence
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intervals for all contrasts a'p of the repeated treatment means using Scheffeis

method of.multiple comparisons. when the null .hypothesis is rejected, this

capability allows more precise statements to be made about the nature of the

time response. In particular, the contrasts a could be chosen to be orthogonal

polynomial contrasts. In addition to this basic result, Morrison (1972)

derives analogous test statistics and confidence intervals under the more

restrictive assumptions of (1) equal variances and covariances and (2) reducible

form for the variance-covariance matrix. He then compares the lengths of the

confidence intervals with those derived with no structural assumptions. It

seems clear that these methods provide a reasonable alternative to trend

analysis under a variety of conditions which an investigator might be willing

to assume.

The multivariate analysis of variance approach to the k-sample problem of

repeated measures is known in the literature as profile analysis (Greenhouse

Geisser, 1959; Morrison, 1967). The basic model is that of a k-sample multi-

variate analysis of variance in which the observation on the jth individual in

the ith group is denotedy'ij = (yiji, yij2, yijp) and is assumed to

have a multivariate normal distribution with mean pi and variance covariance

matrix E. The linear model for these observations is

E (Y) = X B

(nxp) (nxk) (kxp)

where X is the k-sample
design matrix and B is the matrix of group means. In

the context of this model, it is possible to test hypotheses of the formCBA= r

for arbitrary C, A, and I' satisfying the
requirements of the general Gauss-

-

Markoff theorem. In particular there exist choices of C, A, and F to test

the three basic null hypotheses of interest.

The first of these null hypotheses Hol, is that the k profiles are
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parallel which is analogous to the test of no group by time interaction in

theuniVariate analysis of variance approach. For appropriate choice of

C, A and F, this hypothesis has the form

Pll "12
4

u
12

u
23

14

0
.

1
:

u
l(p-1)

u
p

= . =

(p-1) kp

which is equivalent to a one way multivariate analysis of variance on the

differynds between measures made at adjacent times.

The second ntA hypothesis 1102 is that there. is no chansethrough time,

that is,

u
11

P12

11.

02'
= = =

P
kl

P
k2

u
1p

11.4:

;Matrices C,A and I' can be found to test the hypothesis in this form which
-s,

assumes nothing abOut the parallelism of the profiles However, Morrison

(1967) proposes an alternative choice of the test matrix which causes tlit:==4-7,

hypothesis tested to be based on equality of sums over groups for each variable.

The test in this form, is

k j

P" E tli'l =-E ilj202 .)=1 j=1 -

k
. = E

J.j=1. JP

which is interpretable onlyunder the assumption of parallel profiles.-

The third hyp.ovircilIs, H03 , is that there axe no group differences.

Without the assumption of parallel profiles, this hypothesis has the form:

H
03

:

P 11

1p

u
21

P
2p
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u
kl
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As above, under the assumption of parallel profiles, Morrison (1967) suggests

an alternative hypothesis based on the sums over measurements which has the

form

E =E u2
j
. =...=E v.

03
j=1

lj
j=1 j=1

kJ

As in the case of univariate analysis of variance, the basic k-sample MANOVA

model can be generalized to more complex designs by considering the k-samples

' as levels of a factorial or other experiment or by assuming some structure for

the repeated measures. McCall and Applebaum (1973) present'such a generalization

with six repeated measures structured as a two by three factorial design.

They then compare the univariate and multivariate results for this case and

conclude that the multivariate approach is superior.

In the profile analysis model, it is important'to point out that the only

assumptions made are that the longitudinal series for each individual has a

multivariate normal distribution with the same variance covariance matrix in

each of the k groups. The assumption of parallel time response functions in

the k groups is not necessary. It should additionally be pointed out that the

model doesThot assume anything about the structure of repeated measures. It

is in fact not necessary that they be indexed by time of measurement, be

equally spaced, or even ordered. Because of this lack of structure the model

simply tests whether the time response functions have the same shape without

providing a model which describes the shape of the function.

The final major class of models which we will consider are the polynomial

growth curve (PGC) models. This class of procedures differs from those

already considered because the models are formulated as a function of the

structure of the repeated measures. In the previous cases, this structure
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could be incorporated by considering
appropriate contrasts but was not in-

cluded in the overall tests of hypotheses.

The development of the PGC approaches goes back to the pioneering work of

Wishart (1938) which was alluded to earlier as a way of summarizing an in-

. dividual's time response with a few lower order orthogonal polynomial regres-

sion coefficients. Rao (1958) improved on this basic idea by suggesting that

the time scale be transformed so that more complex time response functions

could be adequately summarized by the linear coefficient computed with respect

to the modified time axis. More recent developments in the area of estimating

and testing hypotheses about the average PGC of one or more groups have been

provided by Rao (1959, 1965, 1966), Potthoff and Roy (1964), Khairi (1966) and

Grizzle and Allen (1969). These investigators have provided a variety of

procedures which are equivalent under certain but not all conditions. Because

of the extent of overlap between approaches, we will concentrate primarily on

the PotthoffPotthoff and Roy approach sce their basic model seems most appealing.

However, we will point out relationships between their results and the work

Khatri and Rao.

As presented above, the usual MANOVA model can be written as

E (Y) = X B

(nxp) (nxm) (nxp)

where the rows of Y are assumed to be independent and follow a multivariate

normal distribution with variance covariance matrix E, X is a design matrix

of known constants, and B is a matrix of unknown parameters. In the context

of this model, it is possible to test hypoitheses of the form

H
o

: C B A = r

(qxm) (nxp) (pxu) (qxu)

for appropriate choices of C, A and r satisfying the generalized Gauss-

103



Markoff theorem (Timm, 1975). It is also possible to provide simultaneous

confidence intervals for functions of the form

b' C B A" f

(lxq) (qxm) (mxp) (pxu) (uxl)

for all b and f.

Pdtthoff and Roy (1964) propose a more general model of the form

B (Y) = X B Q

(nxq) (nxm) (mXp) (pxq)

where Y has rows which are indepe ent and follow a multivariate normal

distribution with variance-covariance matrix E
o

, X is the 'between individual'

design matrix of known constants, B is a matrix of unknown parameters, and Q

is the 'within individual' deign matrix. Potthoff and Roy show that this

model can be reduced to the previous MA NOVA model with the same paximeter

matrix B by considering the transformed variable

Y = Y G-1 Q' (Q G Q')
-1

where G is ancarbitrary q by q symmetric positive definite matrix. In their

=0, -

original discussion, Potthoff and Roy suggeited that the choice G = E
o

Would

be optimum but that since E
o

was unknown and the distribution theory of

using a data derived estimate of Eo was unknown, another choice which approx-

imated E
o

but which was not data based would be appropriate. The choice of

taking G = Ia was also discussed. Subsequent results by Khatri (1966), Rao

(1965), and Lee (1974) established the usefulness of choosing G = E
o

where
-

o
is the data based estimate of E

o
.

Given this basic model, the,one sample problem considered previously can



be parameterized by choosing

and Q =

1 1

t
1

t
2

tq

t
p-1

t
1;-1

t
p-1

so that the expected value of the jth observation on the ith subject has the

form

E(y..) = 81 + 8,t. + 8,t.
2

+ + 8ptp-1
-13

for all i and j. It is important to point out that the form of the time
wo.

response is assumed to be the same for each subject i.e., have the same

degree. For appropriate choices of matrices C and A, this model allows an

investigator to test'hypotheses about the regression coefficients. In particular,

one could test the adequacy of a model of a certain degree; or using the

result for simultaneous confidence intervals, Confidence bounds for the mean

growth curve could be derived.

.0'
The generalization of this model to the case of k_grodpg of individuals

a

with N. individuals/in the ith group is straightforward. The matrix X(N,k) is

constructed to contain N1 rows of (1,0,;...,0), N2 rows of (0,1,0,...,0), ...

and Nk row; of (0,0,...1). The matrix Q is chosen as above. With this

specificationthe expected value of the jth observation on the ith subject in

the'kth group has the form

E(Ykij) fficl f3k2tj "kr4.2 "kptp-1j

With this model,.matrices C aAd A could be chosen to test the complete.equality

of the k regressions, the parallelism of the regressions, or the adeqUacy of a

model of some lower degree. As in the case of the other methodologies discussed,

generalizations of the k-sample model to more complex situations are possible.
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Timm (1975) presents an eXample in which the k groups correspond to levels of

a two factor factorial experiment.

Alternatives to the use of the Potthoff-Roy model include the one sample

PGC model proposed by Rao (1959) and the independent but essentially complemen-

tary developments by Khatri (1966) and Rao (1965, 1966, 1967) which are argued

to be superior since they eliminate the arbitrary choice of the matrix G.

"These models have the form

E (Y) =xs+zr

where Y, X, and B are as before, Z(N,p-q) is a matrix of covariates chosen from

the higher order orthogonal polynomial coefficients, and r is a matrix of

unknown covariate coefficients. If the covariates are not included, the

results are identical to the-choice G = I in the Potthoff-Roy formulation. If

all of the q-p covariates axe used,the Rao model is equivalent to the model-

proposed in Rao (1959) and. to the chaice G = S in the Potthoff-Roy model where

S is the data estimate of Z
o

. Rao (1966) and Grizzle and Allen (1969)

recommend the,use of some tut not all of the p-q possible covariates with the

decision of which covariates to include determined by the data. The important

point of this rather technical discussion'is that the various choices are more

similar than different and that each formulation has its problems, i.e., the

choice of G for Potthoff and Roy and the choice of which covariates for Rao.

In any case the class of models is rich and seems to answer most questions of

interest.

The preceeding sections discussed a variety of methods 5or interindividual

analysis which (1) were derAved under an assumption that the data: were sampled

from a univariate or multivariate normal distribution (2) made inferences in

classical statistical. fashion on the basis, of the sampling distribution of
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statistics (3) made a tacit assumption that all data were present in all of

the longitudinal series studied, and (4) considered only a single attribute

measured longitudinally. It is the purpose of this section to discuss briefly

approaches in the literature for which not all of these four conditions

pertain.

The assumption of univariate normality usually does not present a problem

in most data analyses since the validity of assuming normality or the extent

of deviation from-norm lity can be assessed easily either by using a testing

.procedure or by ins ecting histograms or probability plots. In contrast, the

assumption of multivariate normality raises more serious problems since testing

and graphic procedu es are not nearly as available and results concerning the

robustness of procedures in the absence of normality are largely unknown

(Kowalski, 1972). In order to avoid the assumption of normality, nonparametric

approaches have been developed for many data contexts, but these approaches

have been conspicuously absent from the longitudinal data analysis literature.

One exception is the paper by Ghosh, Grizzle, and Sen (1973). In this paper,

two examples are considered in which the longitudinal series for each individual

are replaced by a vector of regression coefficients which summarize the

individual's4 time response function. Under the assumption that these coeffi-

cients have a continuous but not necessarily multivariate normal distribution,

statistics based on ranks of the coefficients are Proposed, and inferences are

based on the permutation distributions of these statistics which are asymp-

totically x2. The main hypothesis tested is equality of treatment groups in

a design that includes a.block factor. While the precise results on the

asymptotic-,relative efficiency of these procedures are not known, the authors

assert that these approaches have high asymptotic relative efficiencies for

distributions with heavy tails and that the procedures are robust insthe
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presence of gross errors cr outliers.

The second common attribute of the interindividual procedures discussed

in the previous sections is the fact that they are all based on sampling

distribution's of statistics. This fact is not in any sense an assumption of

the models analogous to the assumption of normality but rather a constraint on

the type of inferential statements that can be made. The major alternative

inferential Context is the Bayesian approach WhiA, among other differences,

allows prior information about parameters to be formally incorporated in the

analysis. Unfortunately, there are few examples of the application of Bayesian.

inferential methods to longitudinal data analysis problems. One such application

is the work of Geisser (1965) and Geisser and KappenMan (1971). In these

papers, the profile analysis model is considered' from a Bayesian point of view

for, respectively, the two and k-group cases. Under the assumption of parallel.

profiles, a posterior region is derived for the difference between profiles

in the case of two groups and for the vector of differences between the k-1

pairs of adjacent profiles in the case of k-groups. This derivation is consid-

ered for both "non-informative" and "natural conjugate" priors.

The third point concerns the presumption of complete longitudinal series.

This requirement is, in practice, quite severe since it is often the case in

protracted studies that only a small percentage of the series are complete for

all ages. The loss of data imposed by this constraint is even more serious

r
inferentially if there is any reason to believe that the occurrence of missing

data is in any way related to the value of the attribute being measured. This

problem can be dealt with in at least a couple of ways. One method would be,

to take the approach used by Wishart (1938) to replace the longitudinal series

by summary parameters which can be estimated even in the presence of a moderate

amount of missing data. Such derived data, though not precisely identically

108

.116



distributed, should allow at least an approximate analysis using a larger

sample size.

A more formal approach to this problem was suggested in a recent paper by-

Kleinbaum (1'973) who generalized the polynomial growth curve formulation of

Potthoff and Roy to consider the presence of missing data. In the presence of

complete data the model has the form

E (Y) =XBQ
(Nxq) (Nxm) (mxp) (pXci)

If ;the structure of the data is such that there are 2. blocks of cases with

N2, cases in block t and that within block 2. all cases are complete fosome

number o of the q observations, Kleinbaum proposes 'a modified model

E (yz) = Xz .13 Q Hz

(Nzxqz) (N2,xm) (mxp) (pXcl) (ecti)

where H is an incidence matrix of zeros and ones. With this model it is

possible to obtain best asympototically n/^yrmal estimates ioelineai- functions

-'of the parameters and to test hypotheses about such liner functions.

While this approach may be useful in correcting for data missing by

chance, it is also applicable to situations in which data are missing by

design as in the case of mixed longitudinal cross-sectional designs (Prahl-

Aride;stri'fi Kowalski, 1973).

The fourth point concerns the fact that all of the preceeding discussion

at both the intra-'and inter-individual levels has been restricted to situations

which are univariate A the sense that the data have consisted of a series of

measurements of a single attribute indexed by time. The extension of these

approaches to the case of a three dimensional data matrix in which two or more

variables nse measured lOngitudinally introduces a new level of complexity.

109

117

--v



Several approaches to this problem have been suggested in the literature for

both intra- and inter-individual analyses (Kowalski & Guire, 1974). Of these,

the approach most widely used in biological applications is bivariate allometry

which relates the growth of exactly two dimensions in a single sample of

cases. Attempts to extend this approach to more than two dimensions have been

made but not without introducing additional problems of interpretation.

Another avenue of approach to this problem has been in the area of factor

analysis generalized to the case of a three dimensional data matrix. Such

approaches, which go beyond the scope of this presentation, seem also to

introduce difficult problems of interpretation.

Of the topics discussed in this paper for the univariate case, two areas

seep to offer a way of approaching, the problem of a three dimensional data

.
matrix. The first approach is simply to reduce the problem to a two dimensional

one by summarizing the longitudinal series for each variable with one or more

deri'ved variables. The methods of section III for intra-individual analysis

provide a variety of pos'Sihle ways in which this could be done. Possible

candidates for such summary variables include orthogonal polynomial coefficL'ats

(Wishart, 1938; Rao, 1958), the parameters of an appropriate Gompertz or

logistic model (Bock et al., 1973), or the scores derived from a principal

components analysis of the longitudinal series as suggested by Rao (1958).

Such summary parameters could then be used in a variety of multivariate analyses

which either analy:e the structure of a single sample or compare two or more

samples. The utility of this approach obviously depends on the choice of

summary variables, which introduces a certain degree of subjectivity into the

analysis. However, it would seem that this approach makes considerable data

analytic sense.



The second approach is provided by the,Potthoff and Roy polynomial

growth curve models which can be applied directly to the case of two or more

variables measured concurrently. This can be done simply by appropriate

choice of the pre- and post-design matrices. One could, for example, specify

a model in which a polynomial was fit separately for two or more variables

taking into account not only the correlations within a series but the cor-

relations between series as well. Having fit such a model, one could test

whether the several time response functions were equal or parallel. More

complex models involved more than a single sample could also be considered.

SUMMARY

We have attempted to survey a variety of methods which are appropriate

for the analysis of a single longitudinal series and for the analysis of one

or more samples of longitudinal observations. We also attempted to place in

perspective the role of such methodologies in the broader context of

developmental'research. Having done this, it seems appropriate to comment

on the current state of the art from the point of view of both theory and

practice.

In 1963 Bereiter, observed that deflAiencies of statistical methodology

seriously impaired the scientists investigation of Auestions dealing with

, change. Since that observation was made, a great deal of theoretical work

has been carried out. At the intra-individual level, new models have been

proposed by Bock (1973) and others which are parameterized in ways that

facilitate biological interpretation of the fitted curve. At the inter-

individual level, the development of polynomial growth curve models which

began with theyork of Rao (1959) and Potthoff and Roy (1964) is certainly

the most notable advance of the last few years. Because of these

achievements and others one would have to conclude that the state of the
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art has indeed improved in recent years. One would also have to conclude

that there are many interesting and challenging problems remaining. At the

theoretical level, the problems of growth prediction for individual series,

of V data observed longitudinally, and of nonparametric

alternatives to normal theory procedures stand out as areas of ongoing

interest. At the applied level, the challenge Of testing new methodologies

in a variety of contexts always exists as statistical practice lags

frustratingly far behind statistical theory.
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ABSTRACT

An experimental design notational system is described. A "minimal power"

check is recommended for use with complex analyses of covariance structures.

Longitudinal models always include 3epeated measures. Conventional ANOVA

longitudinal analyses are contrasted with covariance type linear models._ The

'covariance models have the virtue of permitting the use of P different organ-

ismic (X) variables, while conventional ANOVA usually is limited to one. Tests

of homogeneity of regression slopes are illustrated for covariance type models

with a repeated measure factor and: (a) X's available on subjects but not each

separate occasion; or (b) X's available for each occasion.

(
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I. INTRODUCTION

Longitudinal studies automatically imply that there will be one or more

repeated measure factors (Kirk, 1968; Winer, 1971). For convenience we shall

label one repeated measure factor as T, the time factor. The simplest possible

design is to obtain several subjects drawn at random from some meaningful

population, and record the dependent variable, Y, upon those subjects over the

T factor. ;This permits the plotting of individual "growth" or T curves on Y.

Unfortunately, when we note that the curves for John Smith and for Tom Johnson

are different, we have gained little useful knowledge. Since these individuals

differ in many wayg, we have no basis for distinguishing future individuals who

are likely to show the "Smith curve" instead of the "Johnson curve", To obtain

useful information it is necessary to have available data on other trait or

organismic variables that may be used to classify or group the individual

subjects. We shall label these variables as X's. X may be something as-easily

observed as sex, or something that must be measured by instrumentation or

psychological tests. Thus we may have a study in which children are grouped

into those with internal locus of control versus those with external.locus of

control. If tfiese groups now show divergent T curves on Y, we have obtained

useful information such that other children may be assessed on this X and

predictions made about the type of T curve expected. Thus the 'minimum useful

design is one where there is at least one X in addition to the dependent varia-

ble Y.

II. REPRESENTATION OF EXPERIMENTAL DESIGNS

It is helpful to have a concise notation to-express the information

. available in a given design. We need two basic terms. Two factors are crossed

if each level of each factor appears with each level of the other factor. Since

each subject, S, appears with each level of T, we say S and T are crossed
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and represent this as S x T. We may use subscripts on the factors to represent

thenumberoflevels.ThusSnxLindicates that n subjects are crossed with

5 levels of time.

If a level of factor A occurs within only one level of factor B, then we

say A is nested in B. This is represented as A in (B). In a completely random-
,

ized one factor design where 50 subjects are randomly divided into 10 subjects-

under each of 5 levels of factor A, we would write S10 in (A5). ,A Completely

randomized factoral design with 2 levels of A, and 3 of B May be represented as

S
n

in (A2 x BS). Since subjects are nested in the AB crossing, this shows that

any one subject appears in only one of the 6 cells formed by'the AB crossing.

Lee (1975) has written an ANOVA text using crossing and nesting notations

throughout that should, be consulted if an expansion of this brief explanation

is desired.

We must also add a notation to express the role of X. We shall use X to

stand for any continuous variable available other than the dependent variable,

Y. We shall arrange the terms so that when X is present, it implies an X in

every unit prior to the appearance of X. Thus Sn w X x T4 implies that there

is an X available with every subject, or here a total of n values of X. However,

if there is an X available on each observation, this would be represented by

placing the "w X" last. Thus S
6

x T4 w X implies there are 24 values of X

available, or an X associated with each of the 24 observations of Y. The w is

for, mnemonic value since the S w X x I would be read as,Subjects, with an X

value on each, crossed with T.

These' symbols may be combined to represent more complex designs. As an

example with one repeated measure, B, and one between' subjects` measure, A,

Winer has an [S3 in (A2)] x .134 design (197b p. 525). The [ ] bracketsjndicate

B is crossed with both A and subjects. he must .distinguish whether there is
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only one X for each subject, or one X for each observation. An example of the

former is an [S4 w X in (4.2)] x B2 in Winer (1971, p. 803) while an example of,,

the latter is an [S3 in (A3)] x B2 w X (Winer, 1971, p. 800.

Naturally it is possible to have more than otoRe organismic variable in a

study. To indicate more tnan one, we will add extra values of'X. We shall

designate the number of X variables as P, and may represent a more general case -4

of Winer's covariance example (1971, p. 803) as [S w XI.,.Xp in (A2)]*x B2.

III. POSSIBLE ROLES OF ORGANISMIC VARIABLES
4 .

A. Reduction of Error Term

There are several possible roles of organismic variables in, longitudinal

designs. In some designs they may be included' primarily as a device tcoreduce

the error term, and increase the polder and precision of the comparisons made., k

If we have variable X, we may divide it into 4 adjacent intervals, and treat

'these four revels as a factor with subjects nested in the fobz levels. If the

initial design involves'a manipulative factor A, the design may be expanded by

addirig the additional 0 factor with four leAls: Thus an initial [S
40

in

(A3)] x T2 design may be expanded to an [S10 in (A3 x 04 )] x T2 In
4

the litter design the addition of the 0 factor should reduce the error term for

the A effect, MSs(A0),: just as in a treatment by levels deign.41e statistical

considerations of such usage are well-covered in Lindluist (1953, chapter 5)

and Myers (1972, chapter 6).
4 I

An alternative way of using an organismic variable to reduce mean square

error (MS ) is to use X as a covariate in a legitimate experimental design.

With an [S w X in (g)j x T design where subjects were randomly assigned to the

=

.

A conditions so the R values vary only by chance, the major role of a covariate

would be in reducing MSS(A) term, the error'term.for the A main effect. A test

for heterogeneous slopes in such a design is illustrated later in.the present

chapter.
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B. Identifying Variable by Time Interactions

A second role of org401i.smic variables is in a search for organismic

variable by time interactions, or a search for organismic variable by treatment

interactions that Occur over time. In an [S in (A x 0)] x'T design, the AO

interaction would be an exatple of an "aptitude by treatment" interaction.

,The presence of an OT inleractiOn would indicate different growth Ncurves,

the several 0 levep. A significant AOT interaction would indicate that the

-:`aptitude by treatment interaction changed over time...
Similar searches for'0 interactions are possi6le without subdividing X

into levels and,using it an additional factor in an analysis of variance.

.
In all [S w X in (A)] x T desigliNthe Check of homogeneops'regression'slopes is

*
e

equivalent to a test fpr a linear AO interaction :Thus the finding of beterogen-
-

. .

eous slppes in a covariance model is another way of discovering an "aptitude by.

treatment" interaction.'

Similarly, if there is interest in a possible X by T interaction, it is.

possibleto build-vectors cons4ting of the X vector multiplied by contrasts, of

I

-
\

--......
..

,

-... .

interaction.
.

the T factor to determrne,if there-is an XT nteraction. Unfortunately, this

.,, "..

. a

. involves methodology that is less likely to be Used. similarly, the search for.

a triple interaCt63 by use of AXT vectors is even lesi common: The beginning

: e

student is probably well-advised to use the blocking method of.forming an O

variable, and AOV when he has only 'a single X variable. The complexity of the-

other methods is4bainly needed when there are severn X variables.

C: Clarifying the Nature of Relationships

The third role of organismic variables is in an attempt to "eliminate" the

effect of other "extraneous" organismic variables to provide "clear" interpretat-

ions.' This is the role of partial correlations, part correlations, and sometimes

of analysis of covariance when the X's differ systematically due-to the fact

that a legitimate randomization of experimental subjects has not been carried
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out. Unfortunately, such usage is easy to misinterpret. Campbell and Erlebacher

(1970) give a long, detailed presentation of such problems.

Some such studies take a multiple regression form. We may ask, for example,

hOw much:effect does education have on income at age 40 after IQ, SES, and

parental income have been "partialed out." Such a study computes the residual

'2 02
increment in Ry.123 where education is the fourth variable of the

four highly intercorrelated variables. The problem is, each of the four variables

may have a very low "additional contribution" so that no matter which of the

variables is placed last, it will contribute very little once the other variables

2
have entered. Thus R1274. -Y.124

may by equally low suggesting that parental

income is a very minor contribUtion once education, SES, and IQ have been

partialed out.. Unfortunately, some authors (e.g., Bowes & Gintus,.1972)

report only the one type of partialling that fits the investigatOrst intellect-

ual framework. The statistically naive reader is left with the impression that

this hasdpeen a dramatic demonstration that education has no effect on future

income. Such a study merely reveals high intercorrelations between the predict-
,

ors, so that no one predictor makes much of a unique contribution once the

others have been used.

Unfortunately, there is no solution to obtaining clear causative confusions

in the absence of manipulative studies. Studies in which subjects can not be

'ed akrandom eon yield tentative guesses of causative chains, bueno more...
Sometimes, these tentative guesses can be strengthened by attempts that show the

same trends'exist even after a possible extraneous uncontrolled factor has been

"partialed out." Thus if an [RS in ( )] x T experiment shows that low anxiety

subjects have-a more rapidly rising lea

the interpretative or theoretical value

lit turns out,that the low anxiety group

rning curve than high anxiety groups,

of this result may be questioned when

glad amean IQ of 110 and the high

anxiety group had a mean IQ of 100. "Partialling out" the IQ variable may
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restore part of the credibility of the finding, if the same results are obtain-

er However, such results never have the interpretative cl.rity that can be

obtained when "anxiety" is determined from.a manipulated condition rather than

a biographical inventory. If several manipulative conditions all supposed to

produce anxiety, yield consistent results, clear causative conclusions are

possible. Unfortunately, longitudinal studies must often use organismic variables

to designate their groups. From such studies many alternative explanations are

always possible.

D. Use of Organismic Variables in Complex Structures

A fourth use-of organismic variables here must be a catch all category. We

shall call it'use of organismic variables in complex structures. This is meant

to include factor analysis, analysis of covariance structures, and the models
0

..Jtireskog identifies as LISREL models (Joreskog & Sorbom, 1976a; see also chapter

this volume). Thb latter refers to a very general model that Joreskog has

incorporated into a computer program that permits specification and testing of:

a measurement model of latent,yariables in the X's,'a measurement model of

latent variables in 'the Y's, and a structural analysis relating the X latent

variables and the Y latent variables. This general,structure includes many

multivariate analyses as special cases. It permits specification of simplex

/ models on the Y's with X's as additional predictors.

Me numerous possibilities are too many, and too complicated to comment on

here, except for a brief philosophical note. We will be seeing many complex

models formulated on behavioral data sets. In many cases, the authors report a

given model, say it is compatible with the data, and let it go at that. areskog's

programs permit maximum likelihood tests of specified models. It is hoped

that readers will learn to take such tests in a sensible fashion, without some

of the habits that seem to exist in the interpretation of simpler hypotheses

tests. One of the most superficial review practices is to take a given area of.
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content, or a given experimental question, then to obtain z Ireferences on

that topic and tabulate the number of signicant differences. In asking "Is

A greater that B," some review articles say 15 were significant with A>B, 25

were nonsignificant, so A = B was retained, and 2 were significant with B>A.

Therefore the A = B's have it, and further research is needed. Such reviews

often ignore the fact that many of the studies may have had such small n's that

for any reasonable A-B effect, the power was minimal, and retention of the null

is quite likely. Until reviewers consider power problems, and the adequacy of

the experimontal design such compilations are of little value. A modicum of

statistical sophistication is needed to yield.worthwhile reviews that separate

the wheat from the chaff, the signal from the noise.

As we go to more complex models, for more complex questions, still more

sophistication will be needed. It is.clear that for most sets of data, many

different models could be built. If n is small enough, the power will be small

so that almost any model will "fit" in that the null will be retained. On the

other hand, if n is large enough, almost any model will not fit, in that the

chi square on the model fit will be significant because some specified parametev-,

in the model will be a little bit different in
reality than it is in the model.

Readers who use the "significant versus nonsignificant" gauge as their sole

evaluation tool for published research are going to be hopelessly lost when it

comes to the use of complex models. It is difficult to provide guidance rules

that will always apply, but the author would like to add one suggestion.

It is often very difficult to express the adequacy of fit,of these complex

0 models. The more interesting publications are often, those that at least. explore-

altortwrivo moaot Madas, Wnotk, nnd Malan (1973) present an interesting

study based on a very large n, on the hierarchial model of Bloom's taxonomy of

cognitive objectives. They construct a model that knowledge items must be

mastered before you can master comprehension items, and one must master comprehen-
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sive items before he can master application items on that topic, etc. They

Compare a model without a general intelligence factor, and a model with a general

IQ factor, and conclude that the latter is needed to fit the data. Basically,

their final model supports the notion of a hierarchial structure from knowledge

to comprehension to application. However, no heirarchy is indicated for analysis,

ow'

synthesis, or evaluation. Their study is especially interesting because it

compares several feasible models with each other. (Further statistics and

further models to be included'may be desired by the reader; this is a very

tough problem for the editors and reviewers of studies testing complex structures.

We can only ask that authors make copies of their data available to those who

request it.)

To provide at least a minimum basis for publication of such studies, it

would be desirable to know that the experiment at least had enough power so

that it could reject some "outrageous models." In the Madaus et al. (1973)

study, it, ould be possible to reverse the hierarchy and test a model in which

evaluation, synthesis, and analysis are taken as prerequisites to successful

mastery of kndwledge and comprehension items. That is, an "outrageous" model

might be one in which the direction of the hierarchy is reversed. If the study

had so little power it was unable to reject this "outrageous" alternative,

there certainly is little basis for taking the model that was retained very

seriously. As we get complex models, we must recognize that many, many different

models may adequately fit the same data. We can only hope to improve our

models, much as the physical sciences have done. We must not consider that

every model that is not rejected is true, or that every model that is rejected

is useless.

Rather than continue in this general vein, let's turn to the class of

models probably used most often in(longitudinal studies, covariance type models.

The author is somewhat skeptical about interpretations of such models when the
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X's differ considerably (Games, 1976; Campbell & Erlebacher, 1973), but feels
A

that a major problem with covariance usage is that many, or even most, users

readily adopt a covariance model without first looking at the more general

models that permit heterogeneous slopes. Even modern computer programs (e.g.,

BMDP2V) do not provide a test for the homogeneous slopes assumption in covariance.

The following two sections shall illustrate such tests in repeated measure type

designs.
1,*

IV. COVARIANCE TYPE MODELS WITH A NESTED FACTOR AND A REPEATED MEASURE,

BUT WITH X VALUES AVAILABLE ONLY ON SUBJECTS, NOT ON EACH

SEPARATE'OBSERVATION

In this design, we have only one set of X's per subject. ft.is possible

to have several variables in X, as in [R8nw Xl...Xp in (Aa)] x Bb and such

designs would be carried out using the steps we will illustrate below, only

iwith several vectors of X. For convenience, we shall use data with a single X

vector. Winer (1971, p. 803) has such a set of data analyzed by covariance.

One of the assumptions of covariance is that the regression coefficients within

groups is the same. Winer does not illustrate how to test this assumption on

any designs with repeated measures nor does any other source the author knows

of. To illustrate the procedures needed in a more general context, we shall add

a third (A
3
) group of independent subjects to Winer's data,'thus resulting in

an [RS4 w X in (A
3
)] x B

2
design. B is here used, instead of T, to match Wineri's

symbolism.

A. Linear Models for a Test of Heterogeneous Regression,Slopes

The data are given in Table 1, with various vectors needed for a linear

models solution with homogeneous or heterogeneous slope solutions. The'first

three columns are the usual subscripts for the desigrifactors. Column four is

the dependent variable, Y. There are two Y's for each subject (due to the

repeated measure factor B with two levels), here each observation is found in a



different row, with the corresponding B level indicated in the third column.

The unity vector of all l's (for estimation of u ) is column five. The control

variable, X, is given in the sixth column. Since there is only one X per

'
subject, we repeat the X value for each of the two rows of that subject. Thus

subject 1 has a 3 punched in bo" F the first two rows (ril = 3). The X value

is given twice for all subjects. Since X varies only over the'different subjects,.

it can influence only the results on the between subject factors, A

and S(A). Columns seven and eight are vectors expressing the three levels of A

in two orthogonal contracts: -2, +1, +1, and 0,.-1, +1.

Insert Table 1 about here

Similarly column nine expresses the B +1, -1 contrast as a vector. If

there were more than two levels of b, we would need (b-1).- such vectors, each'an

orthogonal contrast. In addition, we need vectors for the subjects, but since

these are both-numerous and constant for any of the analyses we shall consider,

we shall not Clutter up the table with them; they are implied (see Cohen 4

Cohen, 1975, chapter 10). The final vectors deeded are for the interaction.

When we multiply a main effect contrast vector for A by a main effect contrast

vectoz for B in a balanced design, we obtain an orthogonal interaction vector,

as in-columns ten or eleven. Thus we have a set of five mutually orthogonal

experimental design vectors.

If we use columns 5, 7-11, and the subject vectors as predictors in the X

matrix of a multiple regression on Y, we may obtain the usual ANOVA as given in

Table 2.

Sincethe five experimental vectors are mutually orthogonal, we could

obtain a SS with one df for each vector and these would sum to SS
cells

. However,

is conventional to sum the single df into the usual omnibus SS for a factor
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rt
Table 1

Columns

2 3

B

4

Y

Data & Vectors for an [RS4 w X in (A3) ] x B2

Design (Winer, 1971 p. 802)

5 6 , 7 8 9

U X IPAI IPA2
11,B

10

IPA.1B

11-

1PA 28

12

XII)
Al

13

,
4A2

1

A

1 1 1 10.0 1 3.00 -2 0 +1 ' -2 0 -6.00 0.0

1 1 2 8.00 1 3.00 -2 0 -1 +2 0 -6.00 0.0

1 2 1 15.0 1 5.00 -2 0 -2 0 -10.0 0.0

1

,
. 12.0 1 5.00 -2 0 -1 +2 ' '0 -10.0 0.0

4

1
1 20.0 1 8.00 -2 0 +1 -2 0 -16.0 0.0

1 3 2 ) 14.0 1 8.00 q -1 +2 0 -16.0 0.0

1 4 1 12.0 1 2.00 0 1 :2 0 -4.00 0.0

1
-4 2 6.00 I 2.00 0 -1

4 ) 0 -4.00 0.0

2 1 1 15.0 1 1.00 -1
+1 -1 1.00 -1.00

2 1 2 10.0 1 1.00 -1 -1 -I 4 1 1.00 -1 . 00'

2 2 1 25.0 1 8.00 -1 +1 +1 -1 8.00, 8.00.

2 2 2 20.0 1 8.00 -1 -1 -1 +1 8.00 -8.00

2" 3 1 20.0 1 10.0 -1 +1 +1 -1 10.0 -10.0
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2 3 2

2 4 1

4 2

3 1 1

3 1 . 2

3 2 1

3 2 2

3 3 1

3 3 2

3 4 1

3 4 2

Means

Coy b's

I :36

19.0 1

15.0 1

12.0 1

7.00 1

327.

13.625

7.4167

Table 1 (cont.)

r

10.0 1 -1 -1 +1 10.0 -10.0

2.00 1 -1 +1 '' +1 -1 2.00- -2.00

2.00 1 -1 -1 -1 +1 2.00 -2.00

2.00 +1 +1 +1 2.00 2.00

2.00 --) +1 4 -1 -1 2.00 2,00

6.00 1 +1

I,

, +1
, +1 +1 6.00 6.00

6.00 . 1 +1 -1 , -1 . -1 6.00 6.00

9.00 1 +1
.

+1 +1 +1 9.00 9.00

9.00 1 +1 -1
I.

-1 -1 9.00 9.00

3.00 1 +1 +1 +1 +1 3.00 3.00

3.00 1 +1 -1 -1 -1 3.00 3.00

118. 0 0 0 0 0

4.917

.45833 -2.125 .375

1.250 -2.125 0.0
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'

or interaction, as given in Table 2.. (When apriori reasons specify a-particular

interaction or main effect vector as of prime interest, it is advisable to test

-.that one vector alone.) The summary tabl e of the ANOVA has ignored the 'presence

of the X vector as a predictor.

Insert Table 2 about here

To obtain an analysis of covariance,we merely include the X vector (column

G3 in the predictor variable matrix of multiple regression. However, if we

insert this one X vector alone, we are assuming that X acts the same way in all

three of the independent groups of the .A factor. We are assuming that the

subject means (summed over the B'factor) have the same regression, from X inn all

three groups. Before making such an assumption, it is wise to test.it.

To test for homogeneity of regression, we add-not only column.6, but also

columns 12 and 13 to the predictor matrix. Given that vector 6 is already in

the analysis, column 12 is testing Ho: al ..(S2 a3)/2 where the a's arethe

raw score regression coefficients in the population for the three respective A

populations, Al, A2, and A3. Similarly column 13 is testing Ho: 02 = a3. If

-both of these are true, then 61 = 02 = 83; i.e., we have hotdogeneity of all

three regression slopes. The common procedure is to combine these into a

single famifywise test. This may be carried out several wAy, depending upon

the computer programs available. If only gdneral multiple regression programs

are available, it may be necessary to punch the data as in Table 1, and obtain

two different SS (regression)` values.

We can simplify the analysis by ignoring the within subject variables.

These are orthogonal to all of the between subject variables; and only the

latter are influenced, by the between subjects covariate vectors in the present

design. If we use columns 5, 6, 7, 8, 12, and 13 as predictors for the heter-
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Table 2

AOV of Data of

[R54 i&X in (A..5.)] x B Example

Analysis of .Variance Table

Source DP
.

BTN. Subjects

A c-- '.

.

S(A) = E 9

'Within Subjects

. '

*.B .; 1

AB i-
SB(A)

.k-

--EW 9 .'

r;;-°------

Total (ADJ) 23

Oe
0

-

Sum of Squares
.'

1,: 8.3.250' .

.:

08.88

108.37

2.2500

8.8750

.

,
.

511.63

Mean Squar;t
-. .

/

41.625

44,319.

108.37

1.1250

0.9861.1

...

7

F

1.21

.

10g.896

1.141

P

>.25
ID

<.01

>.25

Y Means, 51"
JK ;

A2

A3

1,

,.k

B1 A. = . - .

3 .31 .32

14.2R 10.0 12.125 4.25

18.75. 13.75 16.25 5.00

14.25 10.75 12.50 3.50

'15.75 11150 13.625
4-

129139
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ogeneous A slopes model, we obtain SS (regression) = 339.16 with df =,5. Then

dropping to the homogeneous,A slopes model, we would use columns 5, 6, 7, and 8 .

only and obtain SS (Regression) = 328.46 with df = 3. Taking the difference

between these two SS we obtain the SS associated with heterogeneous slopes =

339.16 - 328.461= 10.70. The df is 5 - 3 = 2, go MS (hetero slopes) = 5.35. 1"

This should be tested using the adjusted MSS(A)
of the heterogeneous slopes

model of 8.8269 as MSE, yielding an F of .606. With an F-less than one, we

would retain the hypothesillof homogeneous slopes thus justifying adoption of ?5'

the covariance- odel.

If the regression slopes were heterogeneous, it would be necessary to

proceed using different regression slopes for each of the 3 levels of. A.

probablythesomplestwaywouldbewobtaintllesubjectmeansof?.j (averaged

over B)'and solve for a separate regression equation fqr each of the three
A

groups. The procedures ale illustrated in Cohen and Cohen (1975, p. 314-319).

If yoU use the- sithple Y= b +
-
b
1
X for each group separately, you may insert the

y,
value of the grand,mean of the'X's, X.., to obtain a predicted value of Y for

each of the three grotIiihen X is at its mean value. This plus graphs of the

three regression equa ions will provide usetu4rinformation. The statistically

sophisticated may wi h to use the Johnson-Neyman technique as illustrated in

Walker and Lev (153,'pp. 398:404), or the extensions discussed by Cahen and

Linn (1971).

B. A Linear Model for Covariance

With the above results, it is possible to proceed by covariance, using

)vectors 5-11. n this case, we obtain the analysis given in Table 3. Note

that only the.between-subjects factors SS's have changed. Anytime we have only

one set..of X's per subject, only the between-subject factors may change. In

this case, the covariate is successful in reducing the error term, MSS(A)
Inn?

34.319 in the AOV to 7.958 in the COV. Thus there will be more power in tilt:
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.COVthan in the AOV. This is the major virtue of COV in a legitimate experiment-

4
3

, al design. When S's are assigned randomly and X is obtained prior to the

treatments, the X. .'s will differ only by random fluctuation. Hence the

adjusted Y 's for the A groups will not differ from the original `i 's by

.3: -7

1 '

very
much.4,When the groups are not assigned at random, and the R ,'s are

-3

substantially different, then we get, into complexities of interpretation: We

are then working onsestimates of the 'effects of A when substantial- differences .

.

X have been,"paitialled out." .Interpretations are now similar to those of

partial correlations.

Insert Table3 about here

Note that the adjusted means of the covariance have changed just slightly'

from the origirial ? means of'Table 3. The B means and SS have not changed at

all, since the covariance here may change only the between subject effects.

The AB interaction SS also is exactly the same, and correspondingly the differen-

ce between the two cell means for a given row of A is'exactly the same in Table

4 as in Table 3. Only the A main effects have been changed by the covariance

(the cell means reflect this effect also). The A main means have changed only

a little,becausetheR.
3

differ only by small amounts, as would be expected

if only random sampling produced the differences. The covariance has now

increased the precision so the.main A effect is significant whereas it was not

in Table 2. The Tukey WSU'value for the A means is 1.9697 so the A
2
mean is

fourotobesignificannylargertharleithertheAloriv,rileans,
the latter two

not being significantly different.

There are two different procedures that may be used to solve for the

"adjusted A means." Some programs and texts solve for the "adjusted mean" as

thepregctedYvalueusingtheobserved5i.of that particular group. The
.3-



'Table 3

COV of Data of

[RS4 w X in (A3)] x B2 Example

Analysis of Variance Table

Source DF Sum of Squares Mean Squares

BTN.Subjects
Reg. X1' 1 266.73

A 2 61.728 30.864

S(A) 8 63.663 7.9579

Within Subjects

B

AB

SB(A)

'Total (ADJ)

1 108.38 108.37

2 2:2500 1.1250

9 8.8750 0.9861

.23 511.63

B
1

ADJ. Means
. j k

A
2

A
3

..k

B Y' '

.j,

14.771 l0.21 12.646

18.333 13.333 15.833

14.146 10.646 12.396

15.750 11.500 13.625

132

142

F. P

3.879 <.05

109.896 <.01

1.141 >.25

A.
3

4.25

S,00

3.50



present solution uses the grand mean of-the X's (4.9167) for all three A groups,

so the "adjusted means" are the predicted values of Y for that common point.

C. Linear Models Using More Than One X Vector

One of the virtues of the general linear model approach is that it readily

facilitates the use of as many covariates as available, while the conventional

procedures covered in Winer (1971), Kirk (1968), Dayton (1970), or Myers (1972)

become very awkward with more than one covariant. We shall illustrate the

expanded case by adding a second covariate, X2, to the data of Table 1. The

new vector, and the vectors generated from it are found in Table 4. These

should be considered a continuation of Table 1.

Insert Table 4 about here

The heterogeneous slopes model would now use all vectors from S to 16 as

`predictors. The homogeneous slopes model includes vectors 5 to 11, plus the

new vector 14 (X2). There are now four vectors included in the heterogeneous

slopes model that are not in the hpmogeneous slopes model. Thus>sebtracting

the SS regression from the two models yields the SS (heterogeneous slopes) =

8.4974 with df = 4. This value, converts to MS of 2.1244. The new value of

the adjusted MS
S(A)

error terms (8.9137) when divided into the above MS yields

.
an F less than 1, so we retain the hypothesis of homogeneous slopes, and would

proceed with the 'usual covariance.

, The covariance table, and adjusted means are contained in Table S. We see

that the second covariate has further reduced the MS error term, since it

accounts for much of the subject variance (within A). The error term has,been

reduced from 7.96 in the COV with X
1
alone, to 5.03 in the analysis with both

X
1
and X

2
as covariates. However, while the A effect was significant in Table

4, it no longer is significant in Table 5. Partialling out X2 removes more
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Table 4

Additional Vectors Needed With

A Second Covariate, X9

Columns 14 16

7

X
2 A X A

1 2 2
X
2

2.00

2.00

7.00

7.00

9.00

9.00

4.00

4.00

7.00

7.00

9.00

9.00

8.00

8.00

5.00

5.00

-4.00

-4.00

-14.0

-14.0

-18.0

-18.0

-8.00

-8.00

7.00

7.00

9.00

9.00

8.00

8.00

5.00

5.00

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-7.00

-7.00

-9.00

-9.00

-8.00

-8.00

-5.00

-E.00

1
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Table 4 (cont)

3.00

'3.00

6.00

6.00

8.00

8.00

4.00

4.00

135
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3.00

3.00

6.0')

6.00

8.00

8.00

4.00

4.00

3.09

3.00

6.00

6.00

8.00

8.00

4.00

4.00



variance from S
SA

than it does from SS
S(A)

so the test of the A effect is no

longer significant. Those who believe that covariance always will decrease p

values are in for disappointments.

Insert Table 5 about here

The observant reader will have noted that the within-subjects effects SS
B

and

SSAB, have been completely unaffected by all of the above. This is because the

A, X1, and X2 vectors are all orthogonal to the within-subject effects. Thus

analysis of covariance, when there is just a single X set of values for each

subject will only influence the between-subjects effects. The within-subjects

effects are here reflected by the B main means, (here always 15.75 and 11.5)

and the differences between the cell means for each A row (here always 4.25,

5.00, and 3.50). These terms stay the same regardless of any between subject

covariate effect. This same difference in between-subjects and within-subjects

effects would hold on more complex repeated measure designs exactly as it holds

here.
ti

It would be possible US add a third covariate vector to the present set.

However, to test forhomogeneity of regression would require a total of three

additional vectors, as in Table 5, aid this would leave zero df for the adjusted

error term, MSS(
.

In reality, we should have many more subjects to achieve
A)

stability when using many covariates0,

V. COVARIANCE TYPE MODELS WITH ONE COVARIATE VALUE PER OBSERVATION

(SEVERALPER SUBJECT)

In this situation, we have the entire design available in both the X and

the Y values. There is one X paired with each Y. This may be represented in

our notational form by placing the w X tern after the last term in the design.
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Table 5

COY with X1 and X2

As Covariates

Source

Btn Subjects

OF Sum ofSquarlt Mean Squares

Reg. X1 & X2 2 339.373

A 2 17.509 8.7547 1.739

S (A) 7 35.238 5.0341

Within Subjects

B 1 108.38 108.37 96.229

AB 2 2.2500 1.1250

SB(A) 9 8.8750 0.98611
.

Total (ADJ) 23 .511.63

Adjusted Means, Y'
.jk

3
1

B
2

.

. 3 .

A.

Al 13.938 9.688 11.813 4.25

A
2

22.187 17.187 19.687 5.00

A
3

11.125 7.625 9.375 3.50

`il
..k

15.75 11.5 13...
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This is in contrast to the previous case where w X was placed after the subject

term to indicate X's are available only for each subject. Winer (1971, p. 806)

has 'an example design that is an [S.. in (A
3
)] x B

2
w X. We shall use these

data to illustrate the linear model analyses needed to test for homogeneity of-

slopes, and the covariance analysis.

Winer's data are given in Table 6. The first three columns contain the

subscripts for the A, S, and B factors respectively. Column four contains the

X values and column five has the Y's. Unlike the prior example, note that X

varies from row to row of the same subject. In this design, it is necessary to

obtain a covariate for the between-subjects terms, (here A and S(A) and a

different covariate for the within-subjects effects, (here B, AB, and SB(A)).

'Column six has been created by averaging the two X values for a given subject.

Column six will then be used in exactly the same manner the X vector was used

in the previous example, i.e., as the between subjects predictor variable. We

shall label it here as SX to indicate it has just one value per subject.

Insert Table 6 about here

Column seven is created by subtracting coif= six from column four. It is

labeled as the WX vector to indicate it is the regression vector to be used on

within subjects effects. (The same results may be obtained by using column

four as long as all models include column six prior to column four or other

columns derived from column four. The use of column seven is desired only to

improve the clarity of the example).

Vectors 8, 10, 12, 14, and 16 are created to reflect the orthogonal

contrasts in the design. B is in column eight, the A effects are in columns 10

and 12, and the AB interaction in columns 14 and 16. Use of a unity vector and'

these vectors (plus subject vectors) in a multiple regression will yield the
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Columns

ASB.
1

r

2

1

3

1

1 1 2

1 2 1

f-
W
%0 1 2 2

1 3 1

1 3 2

2 1 1

2 1 2

2 2 1

2 2 2

./
2 3 1

2 3 2

Table 6

Linear Model Vectors of Winer's

[RS
3

in (A
3
)] x B2 w X Data

X Y SX WX
tljB Xl"13

'A1

SX1pAl 4)1\2 SX11A2 11,

'AB
1

"AP
1

IPAB
2

"AB
2

4 5 6 7 8 9 10 11 12 13 14 15 16 17'

3.00 8.00 3.50 -.5 -1 -3.00 -2 -7.00- 0 0 +2 6.00 0 0

4.00. 14.0 3.50 +.5 +1 4.00 -2 -7,00 0 0 -2 -8.00 0 0

5.00 11.0 7.00 -2 -1 -5.00 -2 -14.0 0 0 +2 10.0 0 0

9.00 18.0 7.00 +2 +1 9.00 -2 -14.0 0 0 -2 -18.0 0 0

11.0' 16.0 12.5 -1.5 -1 -11.0 -2 -25.0 0 0 +2 22.0 0 0

14.0 22.0 12.5 +1.5 +1 14.0 -2 -25.0 0 0 -2 -28.0 0 0

2.00 6.00 1.50 +.5 -1 -2.00 1 1.50 -1 -1.50 -1 -2.00 +1 2.00

1.00 8.00 1.50 -.5 +1 1.00 1 1.50 -1 -1.50 +1 1.00 -1. -1.00

8.00 12.0 8.50 -.5 -1 -8.00 1 8.50 -1 -8.50 -I -8.00 +1 8.00

9.00 14.0 8.50 +.5 +1 9.00 1 8.50 =1 -8.50 +1 9.00 -1 -9.00

10.0 9.00 9.50 +.5 -1 -10.0 1 9.50 -1 -9.50 -1 -10.0 +1 10.0

9.00 10.0 9.50 -.5 +1 9.00 1 9.50 -1 -9.50 +1 9.00. -1 -9.00
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3 1 1

3 1 2

2 1

3 2 2

3 .3 1

3 3 2
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Table 6 (cont.)

7.00 10.0 5.50 +1.5 -1 -7.00 1 5.50 +1 5.50 -1 -7.00 -1.

4.00 10.0 5.50 -1.5 +1 4.00 1 5.50 +1 5.50 +1 4.00 +1

8.00 14.0 9.00 -1 -1 -8.00 1 9.00 +1 9.00 -1 -8.00 -1

V'
10.0 18.0 9.00 +1 +1 10.0 1 9.00 +1 9.00 +1 10.0 +1

9.00 15.0 10.5 -1.5 -1 -9.00 1 10.5 +1 10.5 -1 -9.00 -1

12.0 22.0 1.0.5 +1.5 +1 12.0 1 10.5 +1 10.5 +1 12.0 +1

-7.00

4.00

-8.00

10.0

-9.00

12.0
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4,

,

AOV summary table reported'-as Table 10.6.76(H) in Winer (1971, p. SO7).

A. Tests for Heterogeneous Slopes

Vewrs 6 and 7 would be added as predictors to yield a COV summary table.

L'',plowever, prior to doing this, ,it is desirable to test for homogeneity of slopes.

Mere are two types of regression slopes present in such a design, and they

must be tested separately since they will have different error terms. Hetero-

neity of betWeen-subjects regressions (in the three A groupg) is tested usin,
...)

the adjusteo
S(A)*

Heterogeneity of slopes on the within subjects factors is

tested using adjusted MSsB(A). To provide a test of heterogeneous slopes on

the A groups, multiply the SX vector by the A contrasts, yielding columns 11

and 13. To provide for a test of heterogeneous slopes on the within subjects

fac&&we multiply column seven by the B contrast and the AB contrast vectors.

This yields columhs 9, 15, and 17. Using a unity vector, and vectors 6 to 17

of Table 6 itione Dr more computer runs (depending on the programs available)

in a process similar to that illustrated in the prior example yields the summary

table of Table 7.

Insert Table 7 about here

I

The SS in the 5X and WX rows are the sum-of squares of regression associat-

ed with columns six and seven respectively. (These would not be included in

some program outputs.) They clearly indicate the effectiveness of both covar-
6

iants. The main,interest in this model is whether we may assume homogeneity of

slopes of the columv, seven vector over the several within subjects, effects.

The between subjects homogeneity is tested by MSHet A/MSs(A) = 2.528.. This

value has a probability greater than .20, which leads to a retention of homo-

genedus slopes of the SX vector on the three A'groups.

141

1 5 3



Table 7

Summary Table of the Completely Heterogeneous Slopes
r7

Model Using Vectors 6 to 17 of Table 6

Source

BTN Subjects
\

SX reg.

DF

1

Sum of Squares

178.37

Mean Squares
v F P

A 2 54.259 27.129
..-------

4.926 >.10

Het A 2 27.849 13.924 2'.528 >.20

(cols. 11 & 13)

S(A) 3 16.522 5.5072

Within Subjects

WX reg. 1, 62.745 '
\

B 1 29.418 29.418 126.551 <.01

Het B
(col. 9)

1 1.1179 1.1179 4.804 3 >.10

AB 2 1.9228 0.96142 4.136 >.10

Het AB 2 1.8317 0.91584 3.940 >.10

(cols. 16 & 17)

Pooled 9, 16 3 2.9496 0.9832 4.230 >.10

& 17

SB(A) 2 0.46492 0.23246

Total (ADJ) 17 k 374.50 ..,

4..

j/ s
4

.



There are two different possible heterogeneous slopes tests for the within

subject vector, WX. Using column nine we may test for heterogeneous slopes

over the B main effect, while using columns 16 and 17 we may test for hetero-

geneous slopes -over the AB interaction c trasts. Unless there is an apriori

reason for believing that these would differ, these would be combined ihto a

single test of heterogeneous slopes for the WX vector over all within subject

effects. This is shown in Table 7 in the row with the pooled SS from vectors

9, 16, and 17. This test has a probability greater than .10 (as do the individ-

ual-tests) so again the null hypothesis of homogeneity of slopes is retained.

If the pooled test leads to the conclusion of heterogenity, it would be approp-

o

riate to test for homogeneity on B, and on AB separately.

B. Covariance Models

In the absence of heterogeneity, the covariance (homogeneous slopes) model

is appropriate. This is given in Table 8. The table differs slightly from

{liner's (1971, p.,807, iii) because Winer chose to use the regression coefficient

for the WX vector also as the regression coefficient for the SX vector (they

were quite close). The present solution uses the two vectors separately.

Again the grand mean of the X's (7.5) is used to find the "adjusted means" as

the predicted valueS' of Y. In this case, the A main means, the B main means, -

and the cell means all will have changed somewhat due to the "adjustment" by

covariance, since this included regression by both a between-subjects vector

and a within-subjects vector.

Insert Table 8 about here

It is possible in some examples that only one of these two covariate

vectors (column six and column seven) would have a significant regression, so

you may wish to go to a simpler model with only one of the two. Since the
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Table 8

Summary Table of the Covariance Model Using Vectors

6-8, 10, 12, & 14 of Table 6 and the Adjusted Means

Source DF Sum of'Squares Mean Squares F P

BIN Subjects

SX reg. 1 178.37

A 2 54.259 27.129 3.057 >.10

S (A) 5 44.370 8.8741

Within Subjects

WX reg. 1 62.745

B 1 29.418 29.418 49.063 <.001

AB 2 2.3393 1.1696 1.9506 >.20

SB (A) 5 2.9980 0.59960

Total (ADJ) 17 374.50

Adjusted Means,

B
1

B
2

.

.-7

Al 12.516 16.595 14.556

A
2

10.526 12.474 11.500

A3 11.893 14.996 13.444

11.645 14.688 13.166
..k



previous section illustrated the use of only the between subject vector, we

shall illustrate an example where only the WX vector is retained, and the SX

vector is dropped. Table 9 contains this summary table, and the adjusted means

corresponding to it. The between subjects SS's are changed by dropping the SX

vector, but we see that this has no effect on the within subjects SS's since

the SX vector is orthogonal to 211 within subjects contrasts. For the same

reason, the Btn-subjects SS's are the same as in the AOV table, and the main A

means (a Btn-subjects effect) are the same as in the ANOVA analysis ignoring

column seven. With the WX vector, as a lone covariate, the SS's within-

subjects and the B main means,are identical to what they were in the complete

covariance analysis of Table 8. The cell means have been "adjusted' with

respect to the WX covariate also. The general point is that in such an analysis

of covariance you are always working with two orthogonal sets of effects. The

between-subjects effects require one covariate, column six, and will be changed

by it, but the between-subjects effects are crthogonal to the within-subjects

effects,'and the within-subjects covariate, column seven. Correspondingly, the

within-subject effects are orthogonal to the between-subjects effects, and

column six, the between-subjects covariate. Neither set is influenced by the

decisions made on the other set.

This kin.' of covariance can be conceptualized as doing two different

covariate analyses, one for the between-subjects effects, and one for the

within-subjects effects. In each case, we should start by testing for hetero-

geneity of slopes, and pKocet-d with the covariance only if the condition of

homogeneous slopes is feasible. It is perfectly' possible to have. heterogeneous

slopes on the between- subjects portion, and homogeneous
slopes on the within-

subjects effects; or vice-versa.
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Insert Table 9 about here

VI. CONCLUSIONS AND SUNN.ARY

When working with organismic variables, one must face the fact that clear

interpretative conclusions are not as easy to come by as when working with

manipulative variables. The investigator must recognize that the organismic

variables he has used are correlated with many other organismic variables, and

is impossible to be 100% confident that it is "rigidity" rather than some

other variable correlated with rigidity that has produced the observed differ-

,

ences. The limitations of cross sectional studies can be viewed as the problem

that the observed organismic variable, age, is confounded with other variables

of educational differences, historical differences, environmental differences,

etc., of cohorts. This same problem is present, in a different and lesser

iextent, when an organismic variable,, iX, is used in a longitudinal study.

Although covariance can be used as one method to try to eliminate some of

the possible alternative interpretations, it is often used incautiously without

testing even the basic assumption of homogeneous regression slopes. Least

squares analyses are possible for, either heterogeneous or homogeneous slopes

models, with or without repeated measures. Since longitudinal studies require

at least one repeated measure, such analyses have been illustrated in the

present article. Unfortunately, even if all statistical assumptions have been

met, it is still a matter of considqrable controversy whether clear interpret-

ations after a covariance analysis are justified if the R's are considerably

different. Evans and Anastasio (1965), Ferguson (1966), and McNemar (1969) say

yes, but Cronbach and Furby (1970), Campbell and Erlebacher (1970) and Games

(1976) say no. The author thus recommends caution in such interpretations, and

a willingness to look at the data from alternative interpretations.
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Table 9

Analysis of Covariant! with Only The

WX Vector as a Covariate 1

Source DF

BTN Subjects

Sum of Squares M.qn Squares F P I

A 2 100.00 50.000 1.695 >.20

S(A) 6 177.00 29.500

Within Subjects

WX reg. 1 62.745

B 1 29.418 29.418 49.063 <.001

AB 2 2.3393 1.1696 1.951 >.20

SB (A) 5 2.9980 0.59960

Total (ADJ) 17 374.50

. Adjusted Means, 11'..jk

B
1

BB2 ?' .

.3-

12.794 16.873 14.833

8.859 10.808 9.833

13.282 16.385 14.833

'

..k
11.645 14.688 13.166
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Most longitudinal studies are investigations, as distinguished from

/experiments (Games & Klare, p. 442). We must recognize we are mere observers

in situations in which nature pulls a thousand strings. The strings we are

watching may not be the crucial ones. Only by careful observation over many

studies and many situations are the crucial strings likely to be identified,

and only after they are ide.Itified are tie likely to learn the crucial cues that

indicate a desired response shortly will follow. The longitudinal investigator

needs considerable patience, not only for the collection of his data, but for

the processes to yield clear interpretations.

O

148

I t) ()

oo.



(

Univariate and Multivariate Analysis of Variance
of Time-Structured Data

by

R. Darrell Bock
The University of Chicago

149

161



Table of Contents

UNIVARIATE AND MULTIVARIATE ANALYSIS OF VARIANCE

OF TIME-STRUCTURED DATA

R. Darrell Bock
The University of Chicago

ABSTRACT

I. ASSUMPTIONS AND LIMITATIONS

II. TYPES OF TIME-STRUCTURED DATA

III. ANALYSIS OF CROSS-SECTIONAL DATA

IV. ANALYSIS OF LONGITUDINAL DATA

V. SMEARY

o

150

1 62



Acknowledgement

,

Preparation of this paper' was supported in part by NSF Grant BNS76-02849.

,.,

151

I G3 4

1.0



ABSTRACT

Detecting and describing change over time is a widely encountered method-

ological problem which, given certain design and measurement restrictions, can .

be effectively solved by analysis of variance and As multivariate extensions.

Polynomial trend analysis is used to investigate the shape-of the curve describing

time-dependency of a population mean and differences in shape between populations,

when data are cross sectional in nature. For longitudinal. data, analysis of

.
population time-point means or differen&s in trend between populations can be

carried out by multivariate repeated measures analysis or, in favorable cases,

by mixed-model univariate analysis of variance. Special data characteristics

are discussed which lead to very powerful applications of the general models.

Examples are presented and discussed in which the models are applied to physical

growth data.
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UNIVARIATE AND MULTIVARIATE ANALYSIS OF VARIANCE
OF TIME-STRUCTURED DATA

I

Ddta are time structured when the observations can be identified with a

number of pre-assigned points on the time continuum. In behavioral studies, we

have the option of introducing time structure on more than one level: to study

secular change-in populatiOhs, we locate the observations in historical time

(years, deCades, centuries); to describe the growth and aevelopment of individual

subjects within populations, we typically observe the subject at fixed intervals

(days, months, years) on a time scale originating at his conception or birth;

to characterize time-dependent response pOcesses within subjects, we can

4

record the subject's responses during intervals beginning ai'various elapsed

times (seconds, minutes,- hours) atter the onset of an expe -a mentally imposed

.

condition or stimulus.

As a general technique for the statistical treatment of time-structured

data, analysis of variance is virtually unique in its capacity to detect and

sunmai-ize systematic time-dependent variation and covariation in observations

from all of these levels, separately or jointly. In one unified analysis,-it

can encompass the possibly multiple outcomes of an experiment represented at

several points in historical time, based on responses from subjects at differ n

stages of developmentand repeated within each subject on a number of occasion

or trials. Given this structure, we could with the aid 6fi..analysis of variance

and its multivariate extensions, extract the shape of the average response

0

curve as a function of trial times, test for differences in shape due to the

conditions imposed by the expk-rimenter, to the stage c-F development of the

subjects, or to secular change, and investigate all possible interactions of

these factors. 1

15
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Even in such complex applications the analysis of variance approach is

surprisingly modest in its demands on mental effort to formulate the problem

and on computing resources to perform the calculations. This conceptual and

computational economy is not, however, purchased without a certain price.

Because analysis of variance is part of linear least squares (Gauss-Markov)

estimation, it requires simplifying limitations and assumptions for a straight-

forward and exact analysis. To benefit from the advantages, we have to be

, cognizant of the limitations. ice must not attempt to extend this general

purpose technique into realms where more specialized methods (often involving

non-linear estimation) are required. Obviously, we must begin our investigation

with the plan of the data analysis and its restrictions clearly in view. Some

of the points to be considered at the planning stage are discussed in the next

section.

e
I. ASSUMPTIONS AND LIMITATIONS

-For time-str-.:ctured data to be accessible to analysis of variance, not

only must each observation carry a time identification, but the method of

measuring-response, the .?amplin plan, tHe arrangement of b.:he time points, the

assumed form of time-dependency, and the nature of the error distribution must

be restricted in certall ways.

A. Interval Masur2m-2:it

If the obj,: t of Cie drialysi; is to describe systematic trend over time,

it is mandatory that tl,e re-Tonse variaIes be measured on a scale whose units

are commensurate tl'rolu th2 relevarit range of variation--i.e., the meaNke-

nent must be 'inter%al" .le unit,: everywhere of constant

size in some shape of the trend line is

arbitrary, -;tral-ht 1'

lines at difforen':

are 1,nown to b2

fro'1 curvr,:., and pirallel

tr tri:1-1. 1 v sn t.hen r.asilres

1 f;t)

rentimeter,



seconds), it may be desirable to transform them to equality on another scale in

order to see clearly the essential form of the trend line. For example, variables

measuring exponential growth may be better analyzed in log units rather than

the original units.

The problem of commensurate units can be especially severe when the measures

A

arise from behavioral responses. Bock and.Jones (1968, Chapter 1) discuss the

issue of defining measurement scales for behavioral data that have some of the

properties of,.for example, the c.g.s. system in physical measurement. They

point out that physical units are intrinsically defined not by the method by

which the measurements are taken, but by their role in the mathematical models

that connect one observable phenomenon with another. Thus, the units of length

take on meaning when the forMula for computing area can be used at every point

on the scale of measurement, and that area can be used t6 translate pressure

into force in terms of units of mass, and so on. Specifically, it is the

invariance of a great variety of mathematical models with respect to location

on the measurement scale that gives meaning, utility and generality to systems

such as c.g,s.

With admittedly weak.theoretical underpinning, we can perhaps accept as

having units any behavioral measurement scale that has a validated linear

re:atioffship with another variable of interest. By this criterion we might be

willing to accept the Binet 1.0. scale as interval measurement on the grounds

that in the-intervay from five to fifteen years it exhibits a linear relationship

with many other physiological and psychological indices of maturation. To the

extent that Binet I.Q. diftccences translate proportionately into increases in

these measures, the assumption that the I.Q. scale has well defined units is

not entirely gratuitous.

'Tut stronger definition: of behavioral scalr.s are possible. Boa and
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Jones (1968) consider Thurstone's
psychological scaling, to. be interval meaure7

ment defined by related response models. They present a number of models for

judgment and,choice.that are connected by a common scaleand, using units on

tills scale, perform analyses of variance of factorial models for sensation and

preference. In much the same sense!' modern psychometric methods of latent

.
trait measurement produce scales with commensurate units by defining a model

relating differences on the scale to item-response probabilities (Bock, 1972;-

Lcrd, 1974; Rasch, 1960; Samejima, 1969 ). These scales appear also to yield

linear relationships with other variables (Andersen, 1976; Bock, .1976; Bock and

Thrash, 1976). Because much of research on human behavior at the individual

level depends on objective test instruments, it is of considerable interest

that latent trait theory can open this domain to statistical methods, such as

analysis of variance, which assume interval measurement.

B. Group-Comparisons

If a straightforward application of analysis of variance is desired, only

estimation or comparison of group means should be considered. The questions

the investigator can ask of the data are limited to those concerning the shape

of the curve of population means as a function of timeor differences between

40

the means of two or more populations as a function of time. Whether or not

these are interesting questions depends critically upon the practical. meaning-

fulness of group averages. It has long been recognized that such averages are

not completely informative 'about individual development. A,well-kndwn example

is the unsatisfactory.characterization of the adolescent growth spurt in plots

of mean stature versus age. Tlie spurt is apparent in such data, but few if any

subjects follow the mean curve in their own growth. The group mean curve tends

to low a more spurt'because Of the averaging of individual growth

spurts occurring at different times. But even this generalization is not

entirely true because there are some subjects, esof.,cially among the iwys, hho
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show a more gentle and protracted slope than is seen in the average data.

The positive thing that can be said of average data is that, if there is

some weak but consistent trend in the population, the average growth curve may

detect it whereas the examination of individual growth curves separately may

not. An example of this phenomenon' presented in Bock (1976) suggests that,

without resort to advanced treatment of individual growth curves including
i

non- .

linear models and Bayes estimation (see Bock,,1976), the-investigator will be

limited to characttlrization and comparison treads of group averages:

C. Fixed Time Points

'Analysis of variance can be applied conveniently to time-dependent data

only when the time points are fixed in advance and are moderate in number. In

studies where chronological age is the time variable, this, requirement can be

met by measuring a subject at pre-selected ages. In growth studies such as the

Fels or Berkeley studies, for example, the children were measured on or near

their birth dates or, at younger ages, at their year and half-year anniversaries.

If this degree of pre-planning is not possible, the subjects will have a more

or less random distribution of,age at the time of measurement. For purposes of

the analysis of variance, the data must then be grouped into age ranges and the

mean or median age used-to represent the group. In educational work, similar

use of grade-in-school as a time p-Iint may be defended on grounds that the

relevant dimension for growth of achievement is years of schooling rather than

chronological age. Although not a mandatory requirement, it is also convenient

for the time points to be evenly spaced. As we shall see, the analysis of

variance of trend is then more easily carried out.

D. Short-term Moderate Chance

For a number of, reasons, analysis of variance techniques may become difficult

to apply when {here art many time points encompassing substantial change in the

variables of interest.. This is riot simply maticr of the computational labor



in analyzing designs. with many time points, but one of increasing difficulty in

justifying the assumptions of conventional trend analysis. As discussed in the

next section, we typically use a low-degree polynomial to represent group mean

curves and differences in mean curves. This is quite satisfactory for short-

run change, but may not be suitable over a wider range. The curve for average

growth in stature, for example, has no very satisfactory polynomial represent-

ation over the entire growth cycle. Only non-linear models such as the two-

domponent logistic model of Bock, et al. (1973), or the three-component model

of Bock and Thissen (1976), seem capable of describing growth in stature from

near birth to maturity. Fitting and testing of these models requires non-

linear estimation and cannot be approached by the elementary methods of univariate

or multivariate analysis of variance discussed here. However, growth over a

more limited range can be so described, as will be apparent in the examples in

Sections III and IV.

E. Freedom From Outliers

Like all least-squares techniques, analysis of variance is adversely

affected by a few aberrant observations far removed from the main body of the

data. In behavioral and biological measurement, such aberrant values are

almost always the result of clerical errors, or of subjects.in the sample who

a

do not actually belong to the populations sampled. Fortunately, outliers are

easy to detect when pre-screening the data and can be removed from the sample

before the analysis begins.

.To -justify linear-least-square
estimation in terms of unbiasedness and

minimum variance, it is only necessary to assume that the error distribution

has finite meanand finf'.e constant variance throughout the range of easurement.

. (The presence of outliers indicates that the assumption of homogeneous variance

has been violated.) To 'justify tire nominal error rates of the significance

tests associated with analysis of variance, -it is necessary to add the assumption
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of normally distributed error or large sample assumptions. Because many of the

measures used in behavioral studies are essentially additive combinations of

many more or less independent sources of envi>nmental, biological and phy-

siological variation, the assumption that a normal error distribution, after

systematic effects have been absorbed into the model, is broadly justified.

The only notable exceptions are response-time measures, which tend to have a

log-normal rather than a normal distribution. In many applications, the logarithms

of response times are satisfactory quantities for analysis of variance (see

Thissen, 1976).

II. TYPES OF TIME-STRUCTURED DATA

Insofar as it affects the method of analysis, the main distinction to be

made is between cross-sectional and longitudinal data.

A. Cross-sectional Data

In cross-sectional data, different subjects are sampled at each time point

and all measures in the sample are assumed to be statistically independent_,As

a. result, in the crossed design of (experimental or sampling) groups x time

poils, the observations are independent both within and between cells. They

may therefore be analyzed in a conventional two-way ot multi-way analysis of

variance with but one feature particularly related to time dependence--that in

the partition of the sum of squares for the time ay-of-classification and its

interactions, single-degree-of-freedom terms arc isolated for-each component of

( trend.

If proportionate numbers of subjects in each group appear in each time-

point class, a straightfort%Jrd orthogonal analysis of variance applies. If the

&numbers ale disproportionate, a non orthogonal analysis will be nece3sary and

will require the investigator to fix the order of the partition of sum of

squares by choosing an order of priority aong hypotheses abott various effects

in the model. This issue kill be clarified in the discdssion of analysis of
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variance of cross - sectional data illustrated by an example from anthropology,

presented in Section III.

B. Longitudinal Data

Time-structured data are longitudinal when each subject is measured on a

scale commensurate at each time point. Note that, while a longitudinal study

resulting in this type of data is prospective, not all prospective studies are

longitudinal or even time-structured. A study that obtains one set of measures'

at an earlier time, and a second quali tatively distinct set at some later_time,

is prospective and may enable prediction of later characteristics from earlier.

But it is not longitudinal or time-structured, does not describe change or

growth over some periorl of time, and cannot be subjected to analysis of variance.

Longitudinal studies are both prospective and time- structured, enable both

prediction and description of growth and change;, and are amenable to analysi;

of variance.

The analysis of variance of longitudinal data is more complex and interesting

than that of cross - sectional data. In the psychological\and behavioral literature,

the statistical treatment of longitudinal data is often called "repeated measures

analysis" (Bock, 1975, Chapter 7; Winer, 1971). In the biometric and statistical

literature, this topic is usually referred to as "analysis of growth" or of

"growth'curves" (Khatri, 1966; Lee, 1974; Pottoff Roy, 1964). Basically,

three forms of repeated measures analysis have been proposed:

1) Mixed-model univariate analysis of variance (Lindquist, 1953; Winer,

1971).

2) Unv,Aghted (exact) multivariate analysis of variance (Bock, 1963).

3) WeightLN1 (lar,;e-sample) multivariate analysis of variance (Khatri,

196o; Pottoff i Roy, 1964).

The choi,:e.amontl th,-;e.
methods depn2s upon the nature of the time-dependency

and on the structure of the varvin.;e-covariance matrix of the residuals from the

fitted trend line. 1:1
thi, choice can he made only after some



preliminary inspection of the data. How this inspection is carried out and the

- subsequent analysis performed is discussed and illustrated in Section IV.

C. Other Characteristics of Longitudinal Data

A sometimes troublesome limitation on the u- ltivariate analysis of long-

itudinal data is that the data fo each subje t must be complete. Although

recent work on the problem of mul e incomplete data appears promising

(Kleinbaum, 1973; Rubin, 1974; Trawinski gmann, 1964), the practical

implementation of these developments is still several years off.

In the meantime, the investigator faced with missing data has the option

of (1) omitting subjects with incomplete data records (if this makes the experi-

mental or sampling design unbalanced, a non-orthogonal multivariate analysis of

variance will be required), (2) proceeding under mixed-model assumptions with a

non-orthogonal anivari pi analysis of variance (because subjects must be included

as a way-of-classification in this analysis, the computations will be extremely

heavy if the number of subjects is large), (3) using some method of interpolating

data points if relatively felti records are incomplete. Consideringithe problems

that may attend any of these options, the investigator is better advised to

expend his enerzy on collecting complete data initially than to attempt a

patch-up later.

I

As a prefl,:e to the discussion of statistical methods, it should perhaps

be mentioned th.it, excr.pt in the simplest cases, the computations will require

the use of a fairly large -scale computer program. Of the several multivariate

analysis of \ariance pro.!.ram.i available, the MULTIVARIANCE program of Jeremy

Finn (1974) ls ro,t 1/4,orr.-nient for repeated measures analysis, and Version

VI, ch is in pro,4r23-,, greatly extends this facility (Finn, 1976). (The

exam in the present paper were prepared .pith Version V.) A discussion of

the use cf thc !.'ULT1\\PI',\C! pr-,4r.cm in thy analysis of time-structured data

rAppeo in I inn 110 latton (1.0
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III. ANALYSIS OF CROSS-SECTIONAL DATA
1

In studies of human growth and development, limited time and resources may

leave the investigator no option except to collect cross-sectional data. A good

example are the measures of height and weight, collected by Haller, et al.

(1967) and-more recently by Jamison (1977), among children indigenous to the

Alaskan North Slope. Although purely cross-sectional, these data are quite

adequate to check un anecdotal reports that these children grow more slowly

than children living in the south 48 states. An analysis of some of Jamison's

results in comparison with a control group of children the same age is presented

in the computing example at the end of this section.

A. Form of Cross-sectional Data

Cross-sectiontl data may be represented in the form of a so-called "crossed"

analysis of variance design (groupsx occasions) shown in Table 1. Note that

the necessary limitation to time points identical for all groups, is represented

Insert Table 1 about here

in Table 1 by the recurring value of xk. Note also that the numbers Njk of

independently sampled subjects in the group x occasion subclasses are not

necessarily assumed equal--indeed, a non-orthogonal anal sis of these data is

still possible even when some of the N
jk

are zero.

The sample st,tistics requir,-d for least-squares analysis this form of

data are the subclass means y
jk

.
jk
IN

jk '

1-A

the subclass numbers N., and the pooled within-subclass variance estimate,

n ik

ov = j-1 i -1 C-,'1 (Yi



TABLE 1

For of Time-Structured Cross-sectional Data

Time- Observa5ions

points yijk

x
k

(i=1,2,..., Nik)

xl Yil1

x
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xl

x
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m Yi2m

Yinl
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;)11 Yinm
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n m
whereN=E EN

j=1 k=1 jk

The first objective of the data analysis is to choose the linear model

that describes systematic effects in the observations. The criterion for this

choice is one of plausibility and parsimony--namely, that the model should

comprise the least number of effects that accord with theory concerning the

phenomenon in question and with acceptable fit of the modal as judged by a

formal goodness-of-fit test.

b.
The second objective is, given the data, to estimate the effects and their

standard errors, to compute from the estimated effects the expected trend lines

for the groups, and to show the expected dispersion of obervations about the

trend line, possibly in the form of a tolerance interval for a new observation

at given time points. The first step in reaching either of these objectives is

to formulate a class of models for time trend.

B. The Polynomial Model For Time Trend

If some interval-measured time-dependent variable yhas been observed on
. .

N
k

subjects at successive distinct fixed time points x
k'

k=1, 2,-7r..,m, and m

is not too large nor the change in y discontinuous in this interval, a suitable

statistical model for time trend is the q<m degree polynomial with additive

error,
2

Ro + RI x + R2x a xq c (III. 1).

The random error, c, is assumed to be independently distributed with mean

2

0 and unknown variance, o . The B's are in general unknown, but may be estimated

1 k
from the means of the observations at each time point, y =

.k i =̀'1 yik '

by the so-called Gauss -Markov (lea t-squares)estimator,

= (VDX)
-I

X'Dy. , for / 0

1I4
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where

and

W = Ek0,61,32,,6(11

1 =- [Y.!, Y.2,...,

D = diag i\l, N2)---, \/111

2

2 '2
x,

7 .0.
X

in

The mx(q+1) matrix X contains the leading q+1 rows of the Vandermonde

matrix of order m. Since X is of rank q.,1 when all x are distinct (Browne,`!

1958), IX'DXI / 0 in general. The expected value of this (unbiased, minimum-

variance linear) estimator is 5 and its sampling variance-covariance matrix is

2

G (XIDX)
-1

(see MS'13R, Sec. 4.1).

Although satisfactory in most other respects, this method of fitting the

polynmial model by estimating the B's has the disadvantage of requiring the

degree q to be specified in advance. In general, all elements of (X'I)X) ?Ala

of change %,hen columns are added to or deleted from X. Yet in many cases the

investi:ator is uncertain about the least-degree that will give a good account

of the data ani t11 ish to inspect the goodness -of -fit of several succesively

lower-degree n) !el before deciding.

iv facil,_tate this for:, of stepwise testing of polynomial models and to

nal,e the calculattoni easier, 1-isher (1921) introduced a method of reparamet-

eri:.ng (ff:.1, ,-called ortho;-,na bolvnomial model. The reparameter-

i-ation is eTli.a.,nt to applyibc t. t ,e Gram-Schmidt orthogonalization with

te-:.e. f to the
1,CA. A ne f



working to the right (see MSMBR, Sec. 2.2.4). The result is to decompose X

into an mx(g +l) orthogonal matrix P and an upper triangular matrix S'. This

is,

X = PS' , (III.4)

where P'DP = I and X'DX = SS'.

Then (III.1) may be expressed in terms of the orthogonal coefficients

y = S'13, which are estimated from the group means by

uo

y = PIDL.= u =
u

1

U
Q

'MS)

The elements of the (g+1)x 1 vector u hm,'eexpected value SIB; their

variance-covariance matrix is the (v-1) x (g+1) identity matrix--that is, they -

have unit variance and are uncorrelated. The convenience of this parameterization

is due to the impliedstatistical independence of the orthogonal estimates when

the observations are normally distributed and to the 'fact that S' is upper

triangular with strictly positive diagonal elements. The former property

implies that, vn the hypothesis that the corresponding orthogonal coefficient

is null, the square of each element in u is distributed independently as

central chi-square on one degree offreedom. the latter im?lios that accepting

the null hypothesis for the last q) orthogonal coefficients is equivalent to

accepting (11: q -q7 for the degree of the polynomial model for trend. Together,

they justify the averalling of squares of the last q2 elements of u for use as

the numorator mcan-square of an F 'Ltati'>tic testing goodness-of-fit Of the

degree ql polynomial vs. the decree q polynomial. The denominator is either

the within -group mean-ignore or the residual mean-square for the degree q model

hy the c(InAre,. and the within-

i

N



group sum of squares. The calcUlations involved in this test are summarized in .

Table 2. If on the basis of this test, the degree ql model

Insert Table 2 about here

is adopted, the ql +1 estimated coefficients of the polynomial are given by

(sil) lui

w ere S
11

is the l.nding (q
1
fl)x(q

1

4,1) submatrix of S, and u
4

contains the

eading q+1 elements of u. The variance-covariance matrix of this estimator is

a
2 -1

2

(S 11) Sii. The error variance, 1L, is estimated by the denominator mean

square in the goodness-of-fit statistic. r

But it is not always necessary to compute the .eLimated coefficients.

In most case,' the trend line Lan be plotted from the fitted valdes ,r,t the

assigned time points, and these m h computed from the orthogonal estimates

by

Y
1

(111.7)

where PI contains the lea''ing qi-1 cDlurns of P. Simillry, the 20 tolerance

ilitervalforam.r.qobservati.,..)rta'tthep',) intx..i'

li,where lil ) .i5 the th row of P t,rittcn as a roilwt,' C-44. MCMR12 Co, .1 1 ri )

R, The Fisher-TLhebycheff Orthoonal Pol -norliaL,

1 j
-, 1

Thy true merit of ishyv's not113,1 of f.ttin:: th:

trigid i.,, most nident i,hon the 'flint'
,T,,11C0d

-1 - VIIAial

orniallv (i.e..



TABLE 2

Cross-sectional Data: Analysis of Variance for Testing the

Fit of a ql Degree Polynomial, Given that the q Degree
Model has Been Found to Fit. The Regression Sums

of Squares are Computed From the Orthogonal

(------Fglimates u = P' Dy.

i/

Source of
Variation

Constant

Linear

Quadratic

gric

q1 degree model

q degree model,
given ql degree

Between-groups
residual

Degrees of
yreedom

1

1

1

1

ql

q,

m-q

Sums of
Squares

2
ssm = u

2'
ul

ssri

q
2

ssr
2

= Z -
.,

+
'1

1

1,=1
u
2

Y.,

FTstatistic*

ssr
2
/0

2

(:;se+ssv)/(N-q-11.

sse = SSA;-SSri-ssr2 -SSM

m

Group means m ssg = Ni\>

17,1

Within gr.)ups N-m ssw-, sst-ssg

. m m N
r i

Total N = L N sst ,
1,-1

l.

Z y-
11.

1,-1 1=1

*or (ssr,/q,)/Hy/(N-m)]

t)?'

I '(1



x.
3+1

-x. is constant k1,2,...,m-1): For then, P is invariant with respect

to the -igin and upi-ts of the time rSeasure and is, in fact, precisely the

tabled Visher-Tchby:heff orthwsonal polynomial. Provided the values of x

belong to therational nwibprs, -the el6ments of l> are rational and may be given

in integer form with respect to a largest common denominator, as may the square

of the normalizing constants for the colLmns of P. As a result, the orthogonal

estimates can, for given data, be eonpute4 up to the limit of the tables without

any roending error whatsoever. Similarly, the'matrixSomay be tabled in integers

and inverted in integer operations to obtain estimates of B without error.

Thus, the problem of round-off error, which plagues least-squares fitting of

high order polynomials (ampler, 1970) is completely c-olved if the orthogonal

polynorlials ace used., Eic tables given is MSMBk, Appendix B, for polynomials

up to q--9 ii 1t the inter fors of the P matrix, the normalizing constants,

and the S matri.... They a .{. crienient for othogonal polynomial trend analysis

1her ntrIhr of t r p,)int_; dies not exceed 10. For greater numbers of

1-)J-Jt, the (1(,--)1 Fis'aer-\at-; (1963) tables are available.

...4p41.c
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of th_ -;P-

otl,,-r ways

:II! 1r2nd tt ?s in Ass-sectional Data

: say, m time points are equally

.! ,trix of Ca-Jer m may-be incorporated into

ip t) --I single degre.?-of-freedom components

Ar'

011,411 01 :_.!

ti

-

`j.1" J:- and for it interaction with the

fxcer the additional aays of

ihcr

is splilar to that shown In Table 1

illtr,tration to folle1;, the

communitie:; fro: which th,;

-,--flect differences in th,, ethnic

by 1..fN, by of :y,e

aYlu
C,.

.A,TE4 cid', I i cat ion.'



Using the conventional model for crossed designs (see MSMBR, Sec. S.3), the

parameter space of the r.oJei% and corresponding sums of squares in the analysis

of variance is partitiorc:d into the fdllowng subspaces: General mean, Location,

Sex, Age, Location x Sex, Location x Age, Sox x \ge, and Location x Sex x Age.

The purpose Of the analysis of variance for this type of design is to aid

in the choice of the leaSt complex model for effects of the sample classes (in

this cz_sethe Location and SPY oroups) and the lowest degree model for polynomi,i1

trend in any of these effects. If *here is a significant way of classification

in the analysis, 'he corresponding parameter space is retained in the model.

If there is a s';-"7;-.,-*
interaction involving a given way of

classification, then the two-factor space and the main class space of that way

of classification is re,-aired. Similarly, ifthere is a significant three-

factor interaction involving a'given way of classification, the spaces corre-

sponding to 1:.:,,_raction, to the t::c factor interactions involving that

classification and main class space are retained. And so on, to the highest

order of interl_tion.

In any v7 ; if a
I

pclynomial ic requ;.red for a given

way of cllccilon-,nn ,n any main class or interucti6n space, then the q,

degree pt,iyn J,I1 el is in all involvInj, that way of classification

'when -:ittinv, 'i'r,-r,1 in data is depicted by computing, from:,

'ht fIttod ;):. :131. the 10.1r.:inal. or group required for

plott1T:7,

lines i,

if tr.:'
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by the Invest-.
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provides a critical test of the more dubious effects, unconfounded by effects

that are presumed to exist and are necessary in the model.

In the case of the. Location x Sex x Age design, age effects are a foregone

,
conclusion, sex effects are always possible, but there is little prior knowledge

about location effects. If interactions are considered less certain than main

effects, a reasonabi ordering of spaces for the analysis of variance might be:.

Mean, Age, Sex, Location, Age x Sex, Age x Location,

Location x Sex, Age x Location x Sex.

When there is ambiguity as to the ordering, the analysis may be carried in

more than one order. But such analyses are in general not independent and

should be held to a minimum to avoid incurring Type I errors considerably more.

frequently than their nominal rates.

D. EXAMPLE 1: Cros-sectional comparison of growth in stature of children

aged 6 to 14 years from two populations

To illustrate the analysis of variance of trend in cross-sectional data.,

We compare some data reported by Jamison (1977) giving the staturc at. may a and

girls age 6 to 11 y<Irs from the villa of Barrow and Wainwright, ",Ian.,

with data of Tuddenha'n and Srlyder (195-1, p. 199) for boys and girl 7.. in the

Berkeley Guid)n,:e Study.
Stri.t1y speaking, this is not a rigorous analysts

because the 6erkelei data are act-ially lcn,itudinal (and will be analyzed

longit'idinlly ;71 !'fla. 2). But it cllrifies ti;e calculations and goff,s some

indication of tl- re.ult, that z ;ht i, (-Koected from actual cross-:,ectional

data.

ciculations are shown in Table 3. The

(-;t irate reonsrructed itom tlz ag-yioup



Insert Table 3 about here

sample standard deviations reported in the original sources.

The calculation.) outlined in Section III were carried out on these data by

means of the MULTIVARIANCE program (Finn, 1974) . This program provides both

the non-orthogonal analysis of variance and the orthogonal polynomial trend

analysis required in this problem. After the terms to be retained in the model

are chosen, the program computes the estimated orthogonal polynomial coefficients.

'and the predicted values for the mean-trend lines for the groups.

In this application, the groups are cross-cl,ssified by location (Norte

Slope, Berkeley) and by sex (male, female), and the between-group and group x

occasion interaction degrees of freedom are partitioned accordingly in the

analysis of variance shown in Table 4. Note also that degrees of freedom for

polynomial trend of higher degree than quartic are pooled in this table.

itiert Table 4, about here

1-,:.;,.1t5 3f he of variance in Table 4 ape clear enough, with

one minor exception. !hero is sone' evidence of Location x Occasion trend

efft,,ts degree 5 through s fp-.0lp;. significant high-(legree orthogonal

polynomial cmponents almD,t always indicate the presence of one or two irregular

point: in 0,0 )ften he,:au,e procedural or Llerical crxors. From the

plot of the g-oup in figure 1, It -1ppears thla ag ,,roups 10 and 13 are

IL 1:-. ,,T11 wv1,1,.. In 1TA1,(Ini , data.

to non-rande-t

a,id ivy t-

This is undoubte'lly due

It, Qt i;',,t)lw; from ,;(..:;r.t1 :.ttes



TABLE 3

Mean Stature (cm.) of Boys and Girls Aged 6 Through 14:
North Slope and Berkeley Samples

a

Age
(Years)

North Slopeb Barkeley°

Boys
Mean N

Girls
Mean N

Boys
Mean

Girls

N Mean N

6 11: 2, 113.4 11 117.5 66 117.2 ° 70
a

7 117., 15 118.2 22 124.0 66
. 123.4 70

8 122.4 15 122.5 19" 130.1 66 :129.2 70

9 129.9 20 129 2 22 135.9 66 135.2 70

10 130.1 1-6 141.3 66 141.0 70

11 137.9 11 137.6 18 146.5 66 147.6 70

12 114.L 26 117.2 19 152 66 154.5 70

, l',- 1 -11 1.1S 1 lA 158.8 66 159.8 70 .

11 1- ISS.i 165.8 t6 163.1 70

f , v.t1 no .1 r n- i )lt = t)

.11:

1
1



TABLE 4

Cross-sectional Trend Analysis of Average Stature of

Children Aged 6 Through 14 from Berkeley, California,
and the Alaskan' North Slope (Age x Sex x Location)

Source of
Variation d. f .

Generg1 Mean 1

Linear Age 1

Quadratic Age 1

Cubic Age 1

Higher Age 5

Sex 1

Location 1

Lin. Age x Sex 1

Quad. Age x Sex 1

Cubic Age x Sex 1

Higher Age x Sex 5

Lin. Age x Loc. 1

Wad. Age x Loc. 1

Cubic Age x Loc. 1

Higher Age x Lo,:- 5

Loc. x Sex 1

,

Within Groups

t
A 5 t 1

Sum of
Squares F .1:,

336,242 8666 <.0001

11.96 .30 .78

4.48 ".11 .74

1 98.91 .51 .77

6.11 .16 .69

15,766 406 <.0001

36.75
73.55

319.40
.190.36

1,004.6

.95

1.90
8.23
.98

25.89

.33

.17

.004

.43

< 0001

18.75 .48 .49

.002 .000 .q9

437.35
.

2.25 .046

2 .25 .55 .46

140.97 .45 .89.

.5,391

u



Insert figure 1 about here

If the significant higher-degree Age x Location interaction is discounted,

the only significant greater-than-linear effect is the cubic,Age x Sex inter-

action (p=.004). Because girl= reach mature stature bef^re boys, this type of

interaction is to be epected as the children enter adolescence. It is clearly

seen in the group means in Table 1 as an inversion in the order of the means

for the two sexes in the Berkeley data. That there is no similar inversion in

the North Slope data might suggest an Age x Sex x Location interaction, but the

analysis does not confirm its presence.

If the cubic Age x Sex is included in the model, the Sex main effect

and Age main effects up to degree 3 must also be retained along with the highly

significant Location effect and the linear Age x Location interaction. The

latter confirms the reality if a difference in growth rate between the Berkeley

and North Slope populations during the long period of essentially linear-in-age

preadolescent growth in stature. From the fact that the Location contrast is

North Slope minus Berkeley (N-B), and the linear Age x Location contrast is

negative, we deduce that the Berkeley population is growing faster. This is

confirmed b) t plot in Figure 1, of the fitted group means calculated from

the orthogonal e,.!- (mates in Table S. Between 8 and 14 years of age, the rate

of growth of the Berkeley children is about .8 cm/year greaer

Insert Table S-about here

than that of the r, `)1>e, Lhildren. This-figuee is obtained by dividing the

nrthoJnnil iNv rh" r,ornili7;ny coofficiont fur the linear (Yrthogomil

volynomial'of order '1:

I

Is
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TABLE 5

Orthogonal Estimates: Rank IO Poynomial Vodel

Effect Estimate S.E.

Constant 137.3027 .1968

Linear Age 42.5591 .6143

Quadratic Age -0.2143 .4805

Cubic Age -0.0620 .4782

Sex (Boys-Girls) 0.0096 .3176

Location (NS-B) -7.9580 .3937

Lin. Age x .;ex -0.6483 .9625

Quad. Age x Sex 1.1824 .9603

Cubic Age x Sex 2.9-67 .9567

Lin. Age x Loc. -6.3038 1.2291

IC'

.2*



1.

Appendix B.)

-6.3038/M5 =

IV. ANALYSIS OF LONGITUDINAL DATA

.
fully longitudinalP' tudyems, and every subject is measured at the

%' dame or.9quivalent, pr r-assigned time .oints.
2

The formal layout of data from

4* ? -,' 401
.. Le

...; k 41.... .

such a study is shown in Table ett Nte that the measure repeated on each

subject is indexed by the superscript I=1,2,...,p (in parentheses to distinguish
\.,

Insert Table 6 about here
,r

%.1

it from an exponent). Thp,staiscript.is reserved for"-the identification of
_

experimental or sampling kroup:j and for subject 1 within group j. The (arbi-

t'. .--

trary).number of subjects in each grouplis N.. If the groups are further

classified according to experiment factors and/or sampling attributes, j may

be replaced by a multiple subscript indicating the treatment, or attribute

combination.

A. Sample Statistics' ;

All computations of linear least-squares analysis of longitudinal data

may be performed starting frorethe following summary information:

where

1) .arpup vector,,eans. \
(1) (2) COi

...

.2
= br.i y..j. ...y. l, (IV.1)

.1

...',-:. N.

y(k) I I) A)
.j 11

j i=1
ij

178
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TABLE 6

Form of Longitudinal Time-Structured Data

j i

-

x
1

x2 ... xp

. Group&

(1) 2) (P).
.

1
Y

y. , i = 1,2,...,N
il Yil 1

(1) (2). (P).
2 i

Yi2
y
i2

, = 1,2,...,h

n
(1) (2) (P) = 1,2,,..,N
in in in n
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2) The subclass numbers Ni, j=1,2..,n.

3) . The_ 'pled within-group variance-covariance matrix E in which the

diagonal elements are the unbiased variance estimates,

N.
1 n 3 (k) 2 n (k) 21;2= .E ry . . 1 .E NJ> . ,

k N-n 3=1 1=1' 13 ' 3-1 3' .3
(IV.2)

and the off-diagonal elements are the unbiased covariance estimates

n N-

a = 1 r N y(k)y (z)
N-n 3=1 1=1 ij ij j=1. j .j .j r e.'

/- k

where 14 = .E N.
3=1 3

(IV.3)

Atypical example of longitudinal data summarized in this form is shown in

Table 8. The upper section of Table 8 contains the mean yearly measures of

stature (cm.) for boys and girls ages 2 through 8 in the Berkeley study, as

published by Tuddenham and Snyder (1954). The lower section contains the

unbiased estimate of the common within-sex-group variation and covariation.

Note that to facilitate visual inspection, the latter is shown in the form of

standard deviations and correlations rather than variances and covariances.

B. The Polynomial Model for Longitudinal Data

A general linear model suitable for repeated measures data was first given

by Roy (1957, p. 83) and applied to the analysis of change in Bock (1963) and

to the analysis of growth curves by Khatri (1966), Pottoff and Roy (1964), and

numerous subsequent workers (Kleinbaum, 1973; Lee, 1974; MSMBR, Sec. 7.2; Timm,

197&, Sec. 5.16; Tubbs, Lewis and Duran, 1975). For present purposes, it

is most convenient to express this model in terms of the nxp matrix Y. of

vector means for the experimental or sampling groups:
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193



Y. = ABX' E (V. 4)

In (12), the n x m design matrix A contains 1 and 0 elements specifying

how the trend effects enter additively into the expected values of the group

means.

The columns of the m xs matrix B pertain to the unknown coefficients of

the degree s-1 polynomial model and the rows,41ertain to main class and possible

interactive effects of the experimental factors or sampling attributes.

The p x s matrix X contains the leading sp columns of the order-p Vander-

monde matrix shown in (III.3)..

Row j of then x p matrix E. contains the means of errors due to random

sampling of subjects within group j. The expected value of E is the n'x p null

matrix. Different rows of E. are statistically independent, but elements

within-rows are in general correlated and their covariance matrix is

1
FEE, where Z is the covariance matrix of the pa-variate vector observations.

3
Although X is of full column rank when the xk are distinct (see Sec.

III.B), A is in general not of full column rank. When A is of deficient column

rank r<m , 'ATM = 0 and, in consequence, the elements'of $ are not all estimable.

Nevertheless, the normal equations arising from routine application of least:

squares to (IV.4) are consistent, and the various mathematical methods of

expressing their solution (such as placing independent restrictions on the rows

of 0) can be shown to be equivalent to decomposing the model. matrix into

A = KL- , (IV.5)

where the n x r matrix K is a rank r column basis for A, and the r x m matrix

L, also of rank r, contains the coeffitients of certain selected linear parametric

functions of the rows of a. (Bock, 1963; MSMBR, Sec. 5.1.) [When L is specified,

K is obtained by K = AL' (LL')
-1

.]

Substituting (IV.5) in (IV.4), and at the same time introducing the

orthogonal roparametorization of the polynomials as in Section II, we may write
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(IV. 4) as

1974)

sN

Y. = K(L8S)P' +

= +
nxr rxs sxp

Then the weighted least-squares (Gauss-Markov) estimator of r is (Lee,

-1 1 -1
K'DK) K DY.E-1P(P E-1P) CIV . 7)

The expected Value of this estimator is r and its sampling variance-
-.

covariance matrix is given by the Kronecker product (see MSMBR, p. 212),

(K'DK)-1 x (P'E- P -1 (IV.8)

We notice, however, that (IV.7) contains the error variance-covariance

matrix E and cannot be applied in general unless E is known, Fortunately,

there area number of straightforward methods of dealing with this problem:

1) Timm (1975, Sec. 5.16) has pointed out,that if the degree of the

polynomial model is set equal to p-1, then P is non-singular, P
-1

= P', and the

matrix E
-1 cancels out of (IV.7); i.e.,

E
-1

P(P'E
-1

P)
-1

= E
-1
PP'EP = P .

Thus, if p is not large and there is no advantage in using a less than p-1

degree trend polynomial, the Gauss-Markov estimator of the orthogonal coefficients

is obtained in an unweighted analysis simply by transforming the vector obser-

vations by the p x p matrix of Fisher-Tshebycheff orthogonal polynomials P'.
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2) If the structure of E is such that

A = P'EP
pxp

IV :9

is a diagonal matrix, the weight matrix cancels out of (IV. 7) for all values of

s..cp. This is true because, if P is an orthogonal matrix and (IV.9) is diagonal,

the columns of P are the characteristic vectors of E and corresponding elements

of A are the characteristic values associated with each. Thus, EP = PA, E =

PAP' and E
-I

=
-1

P. _ Then if the n x s matrix P
1
contains the leading s

columns of P, and the s x s diagonal matrix As contains the corresponding

characteristic values, we have

E
-1

P (P'E
-1

P
1
)
-1

= P
1
A

-1 -1
)
-1

pi,

and the unweighted estimator is Gauss-Markov.

This result is of considerable practical interest because it can be shown

under mixed-model assumptions (Bock, 1960, 1963; MSMBR, Sec. 7.1.2) that E belongs

to a class of covariance structures diagonalized by a class of orthogonal

transformations of which P is a member. The former is the class of so-called

"reducible" covariance structures studied by Bargmann (1957; see also Huynh and

Feldt, 1970):3 Thus, unweighted multivariate analysis of repeated measures

given in Bock (1963) and MSMBR (Chapter 7) is justi:Ned when applied under

mixed-model assumptions, or more generally when P'EP can be assumed diagonal,

even when s is less. than p.

This result also suggests that, in the presence of non-zero association in

P'EP, the transformed covariance matrix may be So greatly dominated by its diagonal

,elements that the unweighted estimates will differ but 'little from the weighted

estimates.
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The analysis in Example 2 is an instance in which this is the case.

3) Finally, if P'E,F.is not diagonal, the most practical alternative would

seem to be to forego an exact analysis and proceed by maximum likelihood esti-

mation,under large-sample assumptions. It can be shown (Khatri, 1966; Tubbs,

Lewis & Duran, 1975) that, if a maximum likelihood estimator of E is available

independent of Y. (e.g., the within-groups covariance matrix E), then, for

1E1 f o,

r = (K'DK)
-1
K'DY.E

-1
P(P'E

-1
P)

-1
(ll./Am)

is a consistent estimator of r with large-sample variance-covariance matrix

given by the Kronecker product

(K'DK)-1 x (P'i-1P)-1.
(IV.11)

Associated with (IV.10) is a multivariate analysis of variance that plays

the same role in longitudinal data as does the univariate analysis of variance

of cross-sectional data in Section III B. For purposes of the multivariate

analysis of variance, the columns may be orthogonalized from left to right with

respect to D to obtain, say, K*, where K*!DK* = Ir. Similarly, the columns of

P
1
are orthogonalized from left to right with respect to E

-1
to obtain, Say

Pi, "where P*'E
-1

P = I. Then, letting M* = K*'D and Q* = E P*
1 1 '

r-

-0

r* = m*r.(1 * = u =
i

u,
4

rxs

(IV.12)

Lu'r
-1J

is a maximum likelihood estimator of orthogonal parameters, r*, with large-sample

covariance matrix I
r
xI

s
.

The partition of the s x s matrix of sum of squares

and cross- products (briefly "sums of products") for the multivariate analysis

of variance May therefore be computed as shown in Table 7.
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Insert Table 7 about here

The sums of products matrices are employed in tests of multivariate hy-

potheses of trend as follows:

Suppose it is desired to test. the hypothesis that orthogonal polynomial

coefficients greater than degree si-1 are null for some between-group effect

c+n,,

represented by the sum of products SSH SSBk on nh degrees of

freedom. For this test, an error sum of products independent of SSH is extracted

from the table. For example,

SSE* = SSE + SSW

on n
e
= (N-r)?. s-s

1
degrees of freedom.

Then, for s2 = s-si, they s2 x s2 submatrices SSH2 and SSE2 are extracted

from the lower-right corners of SSH and SSE*, respectively, and the min (nh,s2) non-

zero roots of the determinantal equation

(SSH2 - ASSE*I = 0

are found and ordered from largest to smallest. From these roots, the following

test statistics may be computed: .1

1) Roy's clargest-root statistic, for example, in the form of the generalized

F with arguments r and t (MSMBR, Sec. 3.4.7):

F
o

= X
r

where Al = max at, 2.=1,2,...,min (nn, s2)

r = nh - s2 + 1

t = ne - s2 + 1 .

(IV.13)

Critical points for F
o
may be read from the table for min(nh,s2) roots in

Appendix A of "MSMBR.
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TABLE 7

Longitudinal Data: Multivariate Analysis of
an s-1 Degree Polynomial Model for r Group
The Sums of Squares and Cross-products are

from the OrthOgonal Estimates U =,\MY.

Variance of
Effects.
Computed

Qi

Source of Degrees of

Dispersion Freedom

General mean 1

Between-group effects 1

leading effects elim 1

inated and following

effects ignored 1

Between-group effects r-1
x

Between-group
residual n-r

Sums of Squares
and Cross-produotS

(sxs)

SSM = u u
-o-o

SSB = u u'

SSB
2
= u

2-2
u'

SS13 = u
r-1 -T-1- r-1

SSB

SSE = SSG - SSB SSM

Group means'

Within Groups

n

N-n

c

SSG = Q[E N.y..Y..] Qt
j=i 3- 3

SSW = SST - SSG = Is

Total

n

N=.7
3.

N
3

.

-'1

n N3 -

SST = Q{E E Y-.Y!.] Qt
j=i i=r13-13
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2) Hotelling trace statistic:

2
min(n

h
,s

9
)

To = neE
2,=1 (IV. 14)

An F approximation for this; statistic has been given by McKeon (1974):

mD
TM s

2
n
h
(D-2)n

e
o

where m = n
e

-s
2

-1

K'= s
2
nh

9
D = 4 +

K+1

B-

(m+s2) (m+nh)
B =

(m-2) (m+1)

Exact .05 and .01 points for T
2

are available in Pillai (1960) and Pillai and

Jayachandran (1970).

3) The likelihood ratio statistic:

min(nh,s0
A =

2,=1 (IV.15)

Rao's F approximation (see MSMBR, Sec. 3.4.9) may be used to compute

probability levels for A.

Note that, since the weighted analysis is based on an estimated E and

assumes large-sample statistics, critical points of the distribution of x
2
/n

h
s
2

on n
h
s
2

degrees of freedom (given, for exam le, by Hald;-' 1952) could be used in

place. of Fo, Fm, or FR.

Both the weighted andspe unweighted.analysis
include u :/variate F statistics

4P.
tfor the separae'terms of the polynomial. If the7.com4Dtion o tains that P'EP is

diagonal, these F statistics are statistically independent unc. muiltivariate

normality. Thus, a union-intersection test, namely, that the.hypo esis is

tsoit10%1 if the. t. Niotftemit-.tt the a Ic'Nel quite sar1W-Ov

,nil1ik311310 it hilh 101111 IOVOt es*..\
r (1 clk) (I



(c.f., Roy and Bargmann, 1958; J. Roy, 1958). -

In the weighted case, where the terms are orthogonalized in the sample,

(IV.16) applies in large samples. Because of the greater diagnostic and de-

scriptive detail in the F's for the separate functions, the union-intersection

test is in general more useful in repeated measures analysis than are statistics

1, 2 and 3 above. This is the test used in Example 2 in this section.

When the rank r of the model for the sampling or experimental effects and

the rank s of the polynomial trend model have been chosen, possibly with the

aid of the foregoing tests, estimates of the parameters in (IV.6) are obtained

from (IV.12) as follows:

-
=

-1)'
r.T

s

1 (IV.17)

where S
r

is the leading r rows and columns of the Cholesky factor of K'DK, and

T
s
is the s leading lows and columns of the Cholesky factor of P'E

-1
P (see

MSMBR, Sec. 2.7.2). These factors are given by the ORTUM subroutine of MATCAL

(Brock and Repp, 1974) during the orthonormalization of K with respect to D and

P with respect to E-1.

The fitted values of the group means may then be computed from

Y = K r P' .
(IV.18)

rxe

The variance-covariance matrix of the element4tof (IV.18), rolled-out

across rows, is

(K x P)[(K'DK)
-1

x (P'E
-1

P)
-1

j(K x P)
1

I
= K(K'DK)

-1
K' x P(P'E P)

-1
PI (IV.19)

The 2 sigma tolerance interval on a new observation in group j at time point k

is, therefore,

I,Jk) -12/14(KPW NO-1[:1(P) k (P'E
-I

P)
-1
[1 k

(IV.20)

where [K] is the j-th row of K, written as a column, and [P]
k

is the k-th row

of P, similarly -Jritten.
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C. EXAMPLE 2: Longitudinal Comparison of Growth in Stature of Boys
and Girls aged 2 Through 8

Although sex differences in preadolescent stature are only weakly detected

by the cross-sectional analysis in Example 1, they are clearly revealed in the

present example when the inherently more powerful repeated measures analysis is

brought to bear on longitudinal data. Table 8 summarizes measures of stature

of boys and girls aged 2 through 8 from the Berkeley Guidance Study as reported

Insert Table 8 about here

by Tuddenham and Snyder (1954). Table 8, which includes standard deviations

and product-moment correlations in addition to means and sample sizes, contains

all of the information needed for a multivariate analysis of varialIce of mean

trend in the tto sex groups.

The first step in examining these data is to test their conformity to the

assumptions of the mixed model, unweighted, or weighted analysis. With the aid

of the MULTIVARTANCE program, the common within-group covariance matrix is

reconstructed from the standard deviations and correlations, and is transformed

by the order 8 matrix of orthogonal polynomials in normalized form. (The

MULTIVARIANCE program gives the user the option of such a transformation and

generates the required matrix.) The result of this transformation is shown in

Table P.

Insert Table 9 about here
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A

TABLE, 8

Sample Statistics for Stature of 129 Complete Cases Aged 2 Through 8

from the Berkeley Guidance Study

2

Year tvians (cm)

4 5 6 7 8

Group N

Boys 65 88.174 96.579 104.118 110.962
. i

117.335 123.852 129.932

7 Girls 64 87.123 95.489 103.072 110.430 117.541 123.639 129.367

Within-group S.D. 3.1875
_

3.4445 3.8021 4.1688 4.5479 4.8241 5.1267

2 1.0000.

3 .8706 - 1.0000

4 .8243 .9352 1.0000

Correlations 5 .8050 .9214 .9603 1.0000

6 .7821 .8904 .9187 .9701 1.0000

7 .7755 .8941 .9107 .9621 .9856 1.0000

8 .7583 .8790 .9047 .9474 .9723 .9889 1.0000

a These are the same cases studied by Thissen, et al, (1976)

20:3 1
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TABLE 9
Orthogonal Polynomial Transformation of Statistics in Table 8

Constant Linear

Term
Quadratic Cubic Quartic Quintic Sextic

Group N

Boys 65 291.392 36.481 -1,9287 0.5175 -0.1188 -0.1366 -0.0626

Girls 64 289.771 37.324 -2.3025 -0.1531 -0.0995 -0.2169 0.0762

Within-Group S.D. 10.5552 2.9507 1.2480 1.0299 0.7507 0.6770 0.5814

Const. 1.0000

Lin. .6737 1..0000.

,--

%.0
,-.

quad. -.1934 -.2896 1.0000

Correla-
tions *

Cubic -.0031 -.0714 -.3716 1.0000

Quart. -.0169 -.0732 -.1141 -.2413 1.0000

Quin. .0658 .2170 .0790 -.3062 -.4563 1.0000

Sext. -.0311 -.0090 .0208 -.0041 .1888 -.2531 1.0000

Characteristic roots of the within-group correlation matrix:

[At] = [1.8899, 1.6498, 1.3464, 0.8845, 0.6907, 0.2911, 0.2475].
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Inspecting the transformed correlations in Table 9, we see that the values

in the first subdiagonal are large enough to suggest that the population matrix

is not diagonal. We confirm this impression by calculating, from the character-

istic roots of the correlation matrix shown in the footnote of Table 9, the

likelihood ratio chi-square statistic for testing the hypothesis of no association

in a p x p corre]ation matrix (Anderson, 1958, Chapter 9):

S
X
P(p-1)/2

2
= - (N-n

6
) E lnXQE

1

= 209.10

(IV.21)

On the null hypothesis and multivariate normal distribution of the within-

group residuals, this statistic is distributed in large samples as a central

chi - square variate on p(p-1)/2 degrees of freedom. In this instance, the

number of degrees of freedom is 21 and the value of the chi-square clearly

contradicts the hypothesis that the correlation matrix (and thus the covariance

matrix)' is diagonal. We therefore conclude that a weighted analysis is necessary.

Had we accepted the hypothesis that the population covariance matrix is

diagonal, we would have tested the v.'riances of the linear through sextic terms

for homogeneity. [ilie Hartley variance-range test is suitable for this purpose

1
.(Pearson and Hartley, 1966, e. 202).] If these variances had appeared homogeneous,

we could have then pooled them to obtain for the R ratios a denominator with 6

x,127 = 762 degrees of freedom. Because,of the resulting increase in power of

the F tests, this "mixed-model" form of analysis is obviously the preferred

approach to repeated measures data when it it justified (see Bock, 1963; Huynh

& Feldt, 1970).

If the population covariance matrix is assumed diagonal but the variances

in multiple-degree of freedom subspaces of the within-subject variation are not

assumed homogeneous,. the unweighted repeated measures analysis is indicated.

This type of analysis is simply a multivariate analysis of variance of the



orthogonal polynomial transform of the original data. In the MULTIVARIANCE

program, it is performed by transforming the summary statistics before entering

the estimation of tests-of-hypothesis phases of the program. The estimation

phase computes the basis matrix K in (IV.6) and estimates effects associated,

with the experimental or Sampling structure of the data. In the preSent study,

1

the.sampling,structure consists simply of the classification of the subjects as

male and female. Since there are only two sample. groups, the K matrix generated

by the program is

1 1/2

K2 =
1 -1/2

The first column of K
2

corresponds to the one degree of freedom for the

general mean, ignorihg the sex classification, and the second column corresponds

to the one degree of free
d
Om between groups. Associated with each of these

I

l'

degrees of freedom is an p statistic for each of the terms in the polynomial;
I

.
.

.

these statistics are independent if,the transformed covariance matrix PEP is
I

diagonal'.

1

When the transformed covariance matrix is not diagonal and the weighted

analysis is required, an, additional step must be interposed between the calou-

,
lationof the summary statistics and the multivariate analysis of variance:

the matrix of orthogonal polynomials must be orthogonalized again with respect

to the inverse sample covariance matrix. The MATCAL subroutine ORTHM performs

this,operation (Bock 4 Repp, 1974). For the present data, this inverse is

shown in Table 10. The polynomials orthogonalized with respect to this matrix

are shown in Table 11. The (upper triangular) matrix of the transformation of

the order 7 orthogonal polynomials (i.e., the T;1 matrix of formula IV.17) is

Insert Tables 10 & 11 about here
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TABLE 10

Inverse of the Sample Within-group Covariance Matrix

2 3 4 5 6

1-.

to
.p..

1

2

3

4

5

6

7

.4154

-.3141

-.0570

.0564

-.0989

.0127

.0579

1.0020

-.4520

-.0905

.2362

-.4584

.1522.

1.2923

-.0244

.0192

.6559

-.4108

2.1499

-.8347

-.6421

.3753

(Symmetric)

2.259

-.6296

. .1045

4.2315

-2.2124 1.8759

V
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TABLE 11

Orthogonal Polynomials for Weighted Trend Analysis

ti

Age Con-Stant. Linear

Terms
Quadratic Cubic Quartic Quintic Sextic

2 2.9204 1.0426 .3385 -.5765 .2984 -.0876 -.0211

3
ti 1.5517 -.4531 .4506 -.5169 .3225 -.3853

4
II 2.0609 -1.0041 .6411 -.0364 -.4368 .2625

5 2.5700 -1.3146 .3519 .4358 .0383 -.4495

-.
t.0

trr
6 3.0791 --1.3844 -.0601 .3468 .7924 .0688

!

7 3.5883 -1.2137 -.2379 -.1057 .5130 -.2525

8 4.0974 -.8024 .1754 .0268 .5308 -.0921
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given in Table 12. Tables 10 and 11 contain the matrices required for the

computation

Insert Table 12 about here

of the transformation matrix for the weighted analysis as given by Q* = E P*.

Sind-6 the MULTIVARIANCE program has a provision for any arbitrary linear trans-

formation of the sample data it is a simple matter to perform the weighted

analysis with the transformation matrix Q*.

For purposes of comparison, the results of both the weighted and unweighted

repeated measures trend analysis are shown in Table 13. Despite the apparent

smooth progression of sample means shown in Table 8, the differences between

Insert Table 13 about here

the sex groups is not a simple function of age. Both the weighted and unweighted

analysis show a significant degree S trend component in the differences between

the means of the sex groups. To represpnt completely systematic differences in

average stature of boys and girls in this age range therefore requires a rank 2

model for sample classes (r=2) and a rank 6 model for trend (s=6).

If the subjects regarded as a sample from a single populationoand the sex

groups are combined, the curve of mean growth is considerably simpler.,Oth

analyses show at most a marginally significant cubic component. Ignoring the

sex classification thus leads to a rank 1 (r=1) model for the sample and a rank

4 (s=4) moael for trend.

The weighted and unweighted estimates of the orthogonal, polynomial coef-

ficients for these models are shown in Table 14. Note that when the quintic
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'TABLE 12

Coefficient Transformation From Unweighted to
Weighted Orthogonal Polyfiomials

/
.i.

1--

to
+.1

2

Unweighted

3 . 5 6'\ 7

Weighted

1

2

3

4

5

6

7

i

7.7266

(Triangular)

6.7996

2.6941.

-2.2050

1.0062.

, 1.1025 .

;

.0.2813

0.0336

-.5126

.8742

0,1697

0.0739

.--.1144 .

-.4352

.6656

. 0.6322

..

0.6549

.1086

-.3271

-.3170

.6550

y

\

-.3285,

-.0267

. .0260

-.0042

.1417

-.1714.

-.5814

I
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TABLE 13

Test Statistic for Longitudinal Trend Analysis

of Growth.in Stature of Children Aged 2

Through 8 in the Berkeley Guidance Study
.(Within-groups'df=127)

Source of
Variation d.f.

Weighted

p

Unweighted
F p

General Mean

Constant
Linear
Quadratic

1

84,805

21,770
443.0'

<.0001
<.0001
<.0001

97,770
20,172

370.2

<.0001
<A001
<.0001

Cubic 3.576 .06% 4.]54 .043

Quartic 2.420 .122 2.7,29 .101

Quintic 0.4969' .482 .4223 .517

Scxtic .0150 .903 .0150 .903

Between Sexes 1

Constant 4,210 .042 .762 .385

Linear .0867 .769 2.631 .107

Quadratic 11.040 .001 2;893 .091

Cubic 5.388 .022 13.672 .004

Quartic 2.264. .135 .0213 .884

Quintic 11.692 .001 8.792 .004

Sextic 1.836 .178 1.836 .178
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Insert Table 14 about here

polynomial is assumed, the weighted and unweighted solutions give essentially

the same result. This is a consequence of the very small correlations between

the sixth degree term and the remaining terms of the polynomial (Table 9). With

respect to the last term, the transformed error covariance matrix is nearly

diagonal, and the weighted and unweighted analysis become nearly identical at

the fifth degree. term.

When the cubic polynomial is assumed, on the other hand, the effects of

the weights are more evident, especlally in the sex effect and sex x age inter-
.

actions, which are sensitive to the greater weight assigned at younger ages

where the within-sex variation is smaller. Despite the significant failure of

fit of the degree-3 model, the fitted means reproduce the observed means almost

as well as the much less parsimonious degree-5 model. This is apparentan

Table 5, where the observed means in Table 8 are reproduced along with means

computed by (IV.18) from the weighted estimates in Table 14. The figures in

Table 15 demonstrate the efficacy of low-degree polynomial models for growth

when a limited agl span is examined.

Insert Table 15 about here

V. SUMMARY

A methodological problem widely encountered in 'the study of secular trend,

growth and development, or experimental manipulation of behavior is that of

detecting and describing systematic change over time. With certain restrictions

on the design of the study and the method of measurement, this problem has a

ready solution in analysis of variance and its multivariate extensions; To be

1016

AMINEM11111



TABLE 14

Longitudinal Trend Analysis:" Estimated
Orthogonal Polynomial Coefficients

Effect
Weighted

Degree S Degree 3
Unweighted

General Mean

Constant
Linear

290.5870
36.9030

290.5694
36.8709

290.5816

36.9026

Quadratic -2.1160 -2.1386, -2.1156

Cubic 0.1823 .1442 .1822

0
o

Quartic
Quintic

-0.1109
0.0422

-.1091
.0401

Sex (B -C) 1.5436 1.9692 1.6220

Age x Sex

Linear -0.8492 -0.4353 -0.8429

Quadratic 0.3800 .4151 .3738

Cubic
Quartic

076696
,

0.0145

.3573 .6706

-.0193

Quintic -0.3944 -.3535
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TABLE-15

Obierved and Fitted Age-group Means for the
Berkeley GUidance Study. Data

Mean Stature ,(cm.)

Observed
- Fitteda

Degree 5 4 Degree 3

Boys Girls Boys Girls Boys Girls

Age (yrs.)

2 88.17 87.12 88.17 87.13 88.23 87.16

3 - 96.58 95.49 96.54 95.54 96.48 95.42

4 104:12 103.07 104.15 103.04 104.03 103.20

)-

5 110.96 110.43 110.91 110.49 111.04 110.48

6 117.34 117.54 117.34 117.53 117.62 117.24 ,

7 123.85 123.64 123.83 123:67' 123.92 123.48

8 129.93 129.37 129.92 129.38 130.06 129-18

a
From the weighted estimates
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amenable to this technique, the observations should be time - structured (i.e.,

limited to a moderate number of pre-assigned time points, preferably equally

spaced), and the measurement of the trait or response in question should be

made on a scale with commensurate units throughout the relevant range. The

analysis is further faCilitated if, in cross-sectional data, the observations

'are replicated at each time point, or, in longitudinal,data, all subjects are

observed at precisely the same or comparable time points.

When the data are cross-sectional (i.e., independent samples of subjects

.
are-drawn contemporaneously at the several time points), the shape of the curve

describing time-dependency of the population mean, and differences in the shape

between populations, can be investigated in a polynomial trend analysis. A

single-degree-of-freedom univariate analysis of variance of successive orthogonal

polynomial components of trend and trend differences provides a convenient,

exact, unbiased minimum-variance method bf performing this analysis. Although

the calculations for this analysis are most straightforward when the time-

points are equally spaced and the equal numbers of subjects are sampled at each

time point, the statistical theory and computer methods for unequal spacing and

unbalanced sampling are fully worked out and available if needed.

When the data are longitudinal (i.e., each subject is measured at each

time point), trend analysis of the population time-point means, or differences

in trend between populations, can be carried out by multivariate repeated

measures analysis or, in favorable cases, by mixed-model univariate analysis of

variance. If the variance-covariance structure of the sampling errors is trans-

formed to no-association (i.e., uncorrelated) by a suitable orthogonal matrix

independent of the data (e.g., a matrix of Fisher-Tchebycheff orthogonal poly-

nomials), an exact analysis of trend is provided by a multivariate analysis of

variance in which the orthogonal com:sJaents of trend.appear'as variates but are

tested in a manner analogous to, but in general more powerful than, the single-

2 o 2,22 3



degree-of freedom tests in the univariate analysis of variance of cross-

sectional data. If the transformed errors are uncorrelated and the error trend

components exclusive of the constant component are homogeneous in variance, a

pooled estimate of the error components may be used and the multivariate repeated

measures analysis specializes to a still more powerful single-degree-of-freedom

mixed model univariate analysis of variance.

If the error covariance structure cannot be reduced to no association by a

suitable orthogonal matrix independent of the data, a consistent, efficient,

Farge-sample, weighted method of repeated measures analysis based on the Pottoff-

4 _

Roy formulation may be available. It is shown here that this analysis'is

conveniently implemented by orthogonalizing the Fisher-Tshebycheff orthogonal

'polynomials with respect to the inverse of the sample within-group covariance

matrix. The statistical tests of conventional multivariate analysis of variance --

of trend components computed with this re-orthogonalized matrix weighted by the

-inverse sample covariance matrix may then be interpreted in a large-sample

sense.

Examples of these procedures applied to measures of stature and computed

with the MULTIVARIANC program are presented in the text.
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Footnotes

1This secti9n is based on Section 5.2.5 of Bock, R. D. Multivariate statistical

methods in behavioral research. McGraw-Hill, 1975 (herea-fter referred to as

MSMBR).
1111r

2
Various designs for semi-longitudinal studies have been proposed (Schaie,

1965). Their analysis is beyond the scope of this paper.

3
The hypothesis that the population transformed *error matrix is diagonal may be

tested by a likelihood ratio test of no-association in the transformed sample

matrix P'EP: (See. Anderson, 1958, Chapter 9.)
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.ABSTRACT

This paper is coacerned with` the analysis of multivariate cat:Torical

data %bich are obtained from longitudinal studies of human growth and

devplopment. An expository discussion of pertinent hypotheses for such

situations is provided within the context of two methodologically illustra

tive examples, and appropriate test statistics are developed through the*

application of weighted least squares. These procedures are illustrated

with extensive analyses of'eadi of the data sets.

3

208

229



I. INTRODUCTION

Many longitudinal investigations dealing with behavioral and/or

educational'aevelopment are concerned with intraindividual change for
o

variables which are measured in terms of discrete categories (based on

nominal or ordinal as opposed to interval scales). Examples of such

categorical ,(qualitative) variables include measures of

(i) child competencies in task performance,

(ii) verbalization patterns,

(iii) coping ability in stress situations,
.

.

(iv) self-concept,

parent-child interaction,-

( ) developmental stages.

(v)

' Thus, the basic research design for such studies involves the classifica-

tion of each subject with respecx to each categorical variable (which is

called an attribute) at each of several successive time points. Moreover,

the subjects may also be classified into a set of sub-populations on the

basis of other categorical variables such as

(vii) demographic characteristics,

viii) health status with respect to the presence or absence

of certain traits,,g.:g., dyslexia,

.(ix) program status with respect to certain specialized types

oftrainirig.

Within the context of this framework,. the data resulting from longi-

tudinal studies can be conceptually arrayed in (potentially very large)

multidimAsional contingency tables for which the! corresponding dimensions
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are the classifications according to each attribute like (i)-(vi) at each

time point, together with the respective sub-population variables like

(vii)-(ix). For this reason, the various questions of interest for data

analysis may be regarded as'equivalent to statistical models for the cell

`probabilities in such contingency tables. Thus, principle, data

analysis can be undertaken in terms of various computational algorithms

for contingency table model fitting. As will be demonstrated in Section

III, the weighted least squares methods discussed by Grizzle et al.

(1969), Koch et al. (1977), and Landis et.al. (1976), can be used to deal

with questions pertaining to

(a) the nature and extent of intraindividual change for the respec-

tive attributes over time, both separately and simultaneously,

(b) the nature and extent of interindividual differences among two

or more sub populations with respect to intraindividual change

over time'for the respective attributes,

(c) the nature and extent of the variation over time of the r7lation- 4.

ship among two or more attributes as reflected by certain

mcsasures of association.

In this regard, the basic approach is in the same spirit as multivariate

analysis of variance (profile analysis and/or growth curve analysis) with

respect to analogous intenally-scaled quantitative data situations. For

this reason, its application to longitudinal data is the primary purpose

of this paper. The types of examples where weighted least squares methods

are potentially most useful are briefly described in Section II. Specific

formulations of the various hypotheses of interest are hen presented, in
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Section III and their evaluation is illustrated in Section IV with respect

to the examples in Section II. The paper concludes with a brief'discus-

sion of certain special computational considerations for dealing with

very large contingency tables, together with other potential difficulties

which may arise in the analysis of longitudinal data.

Alternatively, in many investigations, the questions of interest

pertain to the identification of the underlying structure of a large

number of attributes in terms of a small number of implicit dimensions,

and hence are analogous to those for which factor analysis is used with

quahtitative data. This topic is outside the scope of the present paper.

However, it is discussed to some extent by Goodman (1974) in the context

of latent structure analysis. Similarly, the analysis of transition

patterns over-time for one or more attributes in terms of stochastic

process models is also outside the scope of this paper. Further informa-

tion with respect to this general subject area is given in Bishop, Fien-

berg, and Holland (1975, Chapter 7).

II. LONGITUDINAL DATA EXAMPLES

In this section, we present two examples which may be regarded as

methodologically illustrative data sets from longitudinal studies in

human growth and development. In particular, a simple one-population

study involving two attributes measured at two time points is considered

in Section II A to indicate the full range of hypotheses which can be

tested. Moreover, in Section II B a two-population study involving one

attribute measured at three points in time is"used to illustrate the

types of hypotheses associated with comparing growth curves among several
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groups. Although these examples involve hypothetical data and are much

smaller in scope than those usually encountered in research situations,

the extension to more complex designs is straightforward as developed in

Section III.

',%A. A Single Population Example

The following hypothetical example arose from a longitudinal study

in which two developmental attributes labelled Al and A2 were measured at .

two time points labelled T1 and T2 for an age cohort of 354 children. In

this regard, each subject was classified as absent (1) or present (2) for

each of the attributes at each of the specified time points. The frequency

data corresponding to each of the 16 possible response profiles is shown

in Table 1.
N

Insert Table 1 About Here .

The statistical ssues concerning intraindividual change can be

summarized within the.frameworKof the T011owing basic questions.

(1) Are there any differences between the occurrence rates of

the tvib attributes at each of the time points?
.

(2) Are there any differenz.es between the two.time points with

respect to the set of individual occurrence rates of the two

attributes?

(3) Is there any attribute x time interaction in the occurrence

rates of the two attributes?
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Table 1

ATTRIBUTE DATA FORALONGITUDINAL STUDY

A
Ti

l

A2

A
T2

Al
A2

Response Profile for Al and A2 at Tl and T2.

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

TOTAL

FREQUENCY .57 36 18 69 0 0 0 33 0 3 0 15 0 0 0 123 354
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(4) Are there any differences between the tWo time points with

respect to the overall joint distribution o the two attributes?

(5) Is there any difference between the two time points with respect

to a selected measure of association or agreement between the

two attributes?

The first three questions which involve the occurrence rates of the two

attributes are essentially similar to the hypotheses of interest in

repeated measurement (or mixed model; experiments as discussed in further

_detail in Koch and Reinfurt (1971),, Koch et al. (1977) and Landis and

Koch (1977a). More specifically, question (1) addresses, ifferences

among attributes, question (2) involves the issue of time point differences,

and question (3) is concerned with the attribute x time interaction as

measured by the individual occurrence rates of the attrioutes. Thus, the

first-order (univariate) marginal distributions of response for each of

the attributes within each time point contain the relevant information

for dealing with these. questions. In contrast to overall average differ-

ences among the occurrence rates, questions (4)-(5) address the relation-
s

ship between the attributes on-specific subjects across the time periods.

As a result, these questions involve measures of association or agreement

between the attributes such,as those discussed_in Bishop, Fienberg, and

Holland (1975) and Landis and Koch (1975a, 1975b). Hence, certain func-

tions of the diagonal cells of varioas subtables are used to provide 11

information for dealing with these questions.

B. A Two-Population Example

The following hypothetical example arose from a longitudinal study

to compare boys and girls from a selected age cohort with respect to
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their ability to perform a particular behavioral task. In this regard,

each subject was graded as success (S) or failure (F) at the end of 1

year, 2 years, and 4 years of follow -up. These resulting data are shown

in Table 2.

Insert Table 2 About Here

Accordingly, the statistical issues concerning these differences in

growth patterns can be summarized within the framework of the following

basic questions:

(1) Are there any differences between the boys and the girls with

respect to the behavioral task success rates at the three time

points?

(2) Are there any differences among the three time points with

respect to the behavioral task success rates across the two

groups of children?

(3) Is there any sex group x time interaction with respect to the

behavioral task success rates?

These three questions involving the success rates are directly analogous

td the hypotheses of "no whole-plot effects," "no split-plot effects,"

and "no whole-plot x split-plot interaction" in standard split-plot

experiments as described in Anderson and Bancroft (1952), Federer (1955),

or Steel and Torrie (1960). In particular, since time is the split-plot

factor, these resulting success rates give rise to growth profiles for

each sex group. In this context, question (1) addresses group differ-
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Table 2

LONGITUDINAL DATA FOR BEHAVIORAL TASK

Sex

Response Profile at year 1 vs )kear'2 vs year 4

SSS SSF SFS SFF FSS FSF FFS FFF TOTAL

Boys

Girls.

0 a 5 0 21 14 51 71

16 5 12' 5 71 12 74 14

162
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. A

ences; question (2) involves the issue of time differences, and question

(3) is concerned with the hypothesis of parallelism among corresponding

segments of the growth,profiles. Consequently, the joint set of first-

order (univariate) marginal distributions for each of the time points

within each sex group contain the relevant information for dealing with

these questions.

III. METHODOLOGY

This section is concerned with a general methodology for answering

the types of questions outlined in Section II in terms of specific hypo-

theses. Because the measurement scales of the response variables (here-

after referred to_as attributes) are categorical, the conceptual formula-

%

,tion of such hypotheses must be undertaken in terms of an underlying (s x

r) contingency table, where s is the number of sub-populations and r is

the number of possible multivariate response profiles. Test statistics

for such hypotheses and the estimators for parameters of underlying
ll

linear regression models are obtained through weighted least squares

computations by methods originally described in Grizzle, Starmer, and

Koch (1969) (hereafter referenced as GSK) as reviewed in the Appendix.

Consequently, this methodology represents a categorical data analogue to

more well-known counterparts for quantitative data like multivariate

analysis of variance as described by Cole and Grizzle (1966) and Morrison

(1967) in the parametric case and multivariate rank analysis as described

by Koch (1969, 1970) in the non-parametric case.

For longitudinal studies, each subject is measured on the same set

of d attributes at each of t time points. In accordance with the general

framework in the Appendix, let i = 1,2,...,s index a set of sub-populations
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from which random samples have been selected: Let m = 1,2,...,d index a

set of d characteristit:s or attributes corresponding to behavioral tasks

which are measured at each time point using an-1%-point scale. Then let

the r = (1,11,2...Ld)
t
response profiles be indexed by a vector subscript

j = (j 1,17,...,1t) with ja = 00,ja2,...,jad), where jam = 1,2,...,L

for m = 1,2,...,d and g = 1,2,...,t. Furthermore, let v. = v.
1). 111,j2,...,jt

represent the joint probability of response profile j for randomly se-
,.

lected subjects from the i-th sub-population. Then the first-order

marginal probability

E 7r.7lgmk j with
i

jgm =

i,= 1,2,...,s
g = 1,2,...,t

for m = 1,2,...,d
k ='1,2,...,Lm

represents the probability of the k-th response category of the m-th

attribute at the g-th time point in the i-th sub-population.

In addition, it should be noted here that this formulation for

longitudinal studies presumes the following conditions:

(i) there is no assumed'struct%rn on the attributes, so that

all possible attribute combinations or response profiles

are observable, i.e., v.. > 0 fof all j and for i=1,2,...,s;
1.)

(ii) every subject entering the study is followed until com-

4e
pletion of the study, i.e., there are no :0st-to-follow up

cases;

(iii) every subject is measured on each attribute at each time

point, i.e., there is no incomplete data.

Further discussion of these potential difficulties is giver. in Section V

in the form of concluding remarks.

A. Hypotheses Involving Marginal Distributions

Hypotheses directed at questions pertaining to average differences

among sub-populations, attributes, and time points involve the first-order
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/I!marginal distributions of the response profiles and can be expressed

igmktermsofconstraintsonthecorrespondingprobabilities 4. }.
More

specifically, the hypotheses associated with questions (1) - (3) of each

of the examples in Section II can be formulated within the scope of one

of the following statements:

(1) If there are nodifferences among the marginal distributions of

the respective attributes at each time point for the s sub-

populations, then the {¢.* mk
} satisfy the hypothesis

ig

HSM: I'lgmk 4'2gmk (:)sgmk
for g = 1,2,...,t

m = 1,2,...,d , (III.2)

. k = 1,2,...,Lm

where SM denotes sub-populations means;

(2) If there are no differences among the marginal distributions of

the respective attributes over the t time points within each of

the sub-populations, then the (Oignild satisfy the hypothesis of

composite first-order marginal homogeneity (symmetry)
\I

/ \

time marginal homogeneity;

HTMH: 4)i2mk

(3)

where TMH denotes

= 0
itmk

for m
k

= 1,2,...,s
= 1,2,...,d
= 1,2,...,Lm

(III.3)

If there is ,no time x subgroup interaction (with respect to

the marginal distributions of the respective attributes at

the t time points), then the (4). } may be written in terms
igmk

of an additive model

4).igmk
= 11 +

-mk i*mk + *gmk for

i = 1,2,...,s
g = 1,2,...,t
m = 1,2...,d
k = 1,2,...,L

m

where ST denotes subgroup x time, and where for the m-th

attribute, umk is'an overall mean associated with-the k-th
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0

response category, F,i*mk is aye effect due to the -th sub-

population, and -r*gmk is an effect due to the g-th time

point, and where it is understood that the {Pink}, {Ci.mk}; /

and {t
*gmk } satisfy the usual analysis of variance constraints.

Moreover, if the d attributes are all measured on the same L-point

scale, it follows that L
m

= L for m = 1,2,.,.,d. For example, each

attribute may be classified as present or absent as proposed in the

example,in Section 2.1, or each attribute may represent a different scheme

of classifying development under the assumption that there exists an identical

number of steps or stages as discussed in Wohlwill (1973). In such situa-

tions, several additional hypotheses of this type may become of interest:

(4) If there are no differences among the'marginal distributions of

the attributes at each of the time points within each of the

sub-populations, then the { ) satisfy the hypothesis of

marginal homogeneity (symmetry) among the attributes

i = 1,2,...,s
H

9iglk
= qi

ANH ig2k gmk for g = 1,2,...,t , (III.S)
k = 1,2,...,L

where fini denotes attribute marginal homogeneity;

(5) If there is no interaction between the marginal distributions

of the attributes and time within each sub-population, then

the {c; may be written in terms of an additive model
igmk

i =

H Oi =
g = 1,2,...,t

+ T.AT' kmk ik ig*k i*mk m = 1,2,...,d , (III.6)
k = 1,2,...,L

where AT denotes attribute x time, and where for the i-th

-.4.1'%-po.onfAtion, la, is au overall mean associated with the
is

k- th rtspone category, F, is an effect due to the g-th
irk

time noint, and T
i*mk

is an effect due to the m-th attri-
.

buter and where it is understood that the (ui ), { },
k ig*k
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T}and {, i*mksatisfy the usual analysis of variance constraints.

All of these considerations can be extended somewhat further if

the respopsc categories k = 1,2,...,1 for m = 1,2,...,d are ordinally

scaled with progressively larger intensities. In this situation, the

effects of the respective sub-populations, attributes, and time points

can be compared in terms of summary indexes

Lm

n. = E a o
i = 1,2,...,s

igm mk i gmk for g = 1,2,...,t
in = 1,2,...,d

Here
nigm

can be regarded as a mean score for the m-th attribute at the

g-th time period in the i-th sub-population with respect to an undei-

lying numerical scaling ami,am9,...,ami, of the Lm categories.

Inthiscontext,the(nigm }are equivalent to mean scores derived, from-

strictly quantitatii,ely scaled response categories as discussed in

Bhapkar (1965). Thus,-the hypotheses in (111.2 -*III.6) can also be

expresSedintermsofconstraintsonthe{nig{night} in (III.7). .Expressions

of these hypotheses in terms of the {ninm) are discussed in More detail

in Koch et al. (1977) and are illustrated in Landis (1975).

B. Hypotheses involving Measures bf Association

Whereas the hypotheses in Section III A were addressed at comparisons

among sub-populations, time points, and attributes within the context of

first-order marginal distributions, the hypotheses in this section are

directed at relationships among the attributeS at a given time point,

and the extent to which those relationships change across time. These

hypotheses can ba formulated in terms of comparisons among full joint

distributions ur second and highar-order joint marginal distributions

across time perils or in terms of measures of association such as the
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log cross-product ratio for nominal data as discussed in Bhapkar and Koch

(1968a,J968b) or the Goodman-Kruskal rank correlation coefficient for

ordinal data as discussed in Forthofer and Koch (1973).

In general, these hypotheses can be expressed as a set of constraint

equations on the joint probabilities of specified response Profiles. For

purposes of simplicity, we will focus on the joint distributions of two

selected attributes (relabelled as 1 and 2) at each of the t time points

for each of the s sub-populations. Consequently, the jbint probability

of the k1 -th category on the m,-th attribute and the k2-th category on

the m
2
-th attribute at the g-th time point in the i-th sub-population can

be written as
,

= E
k

1 2 j with jgm = k and jgm = k
2

7

1-1"2; '%t
1 1 2

Using this notation, the log.cross-product measures of association between

a

the two attributes can then be expressed as

,

,

.

J-

Y
ki ,=

Aigk
k

= log ,
Yigkik2

igL1L2
for

= 1'2'"',*
1 2

e

YigLk7
YigkL

.ki. 1,2,..,k
1 . (III.9)

.

) c L

In particular, for two dichotombus (Ittrputes (L
1

=e.,=2), the measures of
. - .. .

associarionfAigkk1in (3.9) reduce torthe familiar'fog.:cross-product

ratio for a 2 x 2 table

.
i = 1,2,...,s

log
e

Yig22 I for g = 1,2,...,t . (I1I.10)
ig

Yig21 .102

Otherwise, an alternative measure of association for 2 x 2 tables due to

Yule can be formulated as

Yi Y. - Y
Q. = gll Ig22 ig21 ig12

YigllYig22 Yig2lYig12

222

for i = 1,2,...,s
g = 1,2,...,t . (III.11)
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(For'a more complete discussion of measures of association, see Bishop,

Fienberg, and Holland, 19g5, Chapter 11.)

Hypotheses concerning comparisons among full joint distributions.of

-

the. attributes can now be expressed in terms of constraints on the joint

probabilities {T
iak k

} More specifically, hypotheses associated with

° 1 2

questions such as (4) in Section II A can be formulated within the scope

9of-one of the following statements:

(6) If there are no differences among the joint distributions of

the two"attributes among the sub-populations, then the

{Ti } satisfy the hypothesis
gk k

2. k, g = 1,2,...,t

H T = = T
sgkik9SJD* lgkik2' 2gk1k2

for k = 1 2 .. L

k
1
= 1

'
2

'
/ L

1

2 -1\-7***'

(7)

where SJD denotes sub-population joint distributions;

If there are no differences among the joint distributions

of the two attributes among the timt points, then the

{T
igklk2

} satisfy the hypothesis

HT4D:
1
k
2 1

k
2

l'itk
1
k
2

for k1 = 1,2,..,L1
k2 =

wfiereTJD denotes time joint 'distributions.

Additional hypotheses involving the joint distribution probabilities

in 011.8)., such as an additive oodel implying no interaction between sub-
-

pOpulations and time periods directly analogous to (111.4), could also be

considered here. Moreover, hypotheses of "no interaction" among higher-

order joint distributions involving more than two attributes simultah-

eously can be developed as direct extensions of these results, although

the notation for corresponding expressions becomes more cumbersome.
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Similar considerations also apply to hypotheses of "no interaction" for

the joint distribution over time of each separate attribute and/or simultan-

eous sets of attributes. Finally, a log-linear model can be fitted to

the joint distribution of the attributes at each time point under appro-

priate hypotheses of "no interaction" as discussed in Koch et al. (1976).

This approach then permits hypcthesis testing for relationships across

the time points in terms of the resulting log-linear model parameters.

Alternatively, several hypotheses associated with questions such as

(5) in Section (II.A) involving the measures of association in (III.9)

can be formulated as follows:

,(8) If the two selected attributes are independent of each other at

each time point within each sub-population, then the a
k

-Nil": 1 2

satisfy the hypothesis

i = 1,2,...,s
H :

i
A = 0 for g = 1,2,...,t

PI gk
1
k
2 k

1
= 1

'

2
''

I.

1
-1

k
2
= 1

"' '''
2 L

2
-1

where PI denotes pairwise independence;

, (III.14)

(9) If the relationship between the two attributes as measured by

the.log cross-product ratio is the same across the time points for

each'sub-population, then the (Aigk1k2) satisfy the hypothesis.

: A . = . for i
1,2,...,s

TA ilk
1
k
2

=
i2k

1
k Alty2 1,2,...,L1-1 (III.15)

k2=

where TA denotes time association;

(10) If the relationship between the two attributes as measured

by the log cross-produz.--.t,,ratio is the same across sub-popula-

tions at each tine point, then the ( Aigkk} satisfy the

hypothesis

H G
SA" lgk

1
k
2

=
2gk

1
k
2

= . = Asgk
1
k
2
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for

'

.k =1"2 . . L -1
'

(III.16)
1

' ''

1
k =1 2 . L

2
-1
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where S:\ denotes sub-population ')ciation;

(11) If there is no sub- population x tine interaction with respect

to the log cross-product ratio measure of association, then the

} may be written in terms of an additive model
igkiLl

i = 1,2,...,s
g = 1,2,...,t (III.17)

H
STA

A
igk 1k2

= +
i*k

1
k
2

+ T
*gk

1
k
2

for k = 1 2 L 1 -1

k = 1 2 ... L -1
2 " ' 2

where STA denotes sub-population x time association, and where

I'. is an overall mean effect, is a sub-population
1
1
k
2

3.4c1:
1
k
2

effect, and T
k

is a time effect, and where it is under-

"' 1 2

stood that the {'Ik , }, {Zi*k k } and (T* I satisfy the

lr'2 1 2 gklk2

usual analysis of variance constraints. For an application of

this type of additive model to measures of association, see

Grizzle and Williams (1972).

Moreover, if the d attributes are all measured on the same L-point

scale, hypotheses directed at the extent to which individual subjects

are classified into the same category for each attribute can be investi-

gated. For example, agreement on the classification ofdevelopMental

stages by sel.eral different criteria is of considerable importance in

establishing certain theories of behavioral growth (see Wohlwill, 1973).

These problems are similar to those raised in the general area concerned

with the measurerient of agreement, am! as such have received attention in

a wide range of research areas as reviewed recently in Landis and Koch

(1975a, 1975b). In this regard, numerous measures of observer agreement

have beet proposed for categorical data, e.g., Goodman and Kruskal (1954),

Cohen (1950, 19(,), Fleiss (1971), Light (1971), and Cicchetti (1972).

Mu ,t of t;l -c quAutitis ,Itc of :!;t2 Corm

= e

1
Re

24U
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where IT
o

is an observational probability of agreement and IT
e

is a

hypothetical expected probability of agreement under an appropriate

set of baseline constraints such as total independence of attribute

classifications.

Furthermore, kappa-type measures of agreement directly analogous

to (III.18) can be developed to investigate the joint, agreement of several

attributes, as well as the paitwise agreements of two selected attri-

butes. In addition, sets of weights which reflect the role of each

response profile in a given agreement index can be seledted to investigate

"path" models of development among several behavioral tasks as discussed

in Wohlwill (1973), Applications of such generalized kappa-type mea-

sures of agreement to clinical diagnosis data involving several observers

is discussed in Landis and Koch (1977a, 1977b). In particular, the choice

of weights which are in a hierarchical relationship with each other can

be used to investigate hypothesized patterns of development such as syn-

chronous progression, convergent "decalage," divergent "decalage," and

reciprocal interaction (see Wohlwill, 1973, p. 215),

C. Estimation and Hypothesis Testing

Test statistics for the hypotheses considered in the previous

sections as well as estimators for corresponding model parameters can

be obtained by using the general approach for tha analysis of multi-

variate categorical data discussed by GSK (1969). This procedure can

be implemented by constructing the appropriate functions of the observed

proportions whi.:11 are directed at the relationships under investiga-

tion by a sequence of watrix operations. Then a weighted least squares

computational algorithm is used to generate linearized minimum modified
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chi-square test statistics. The basic elements of the GSK procedure-

which pertain to this paper are summarized in the Appendix.

All the hypotheses in Section III.A involving constraints on

6
the first-order marginal probabilities can be tested by expressing

the estimates of the {
(igmk } igm

or the {n } as linear functions of the

type given in the Appendix (A.14). Although these particular matrix

expressions have already been discussed in considerable detail in

Koch `and Reinfurt (1971) and I' a et al. (1977) they will be presented

within the context of the data analysis in Section 4. Otherwise, their

specific construction for hypotheses like (III.2)-(III.6)' is also docu-

mented in Landis (1975).

In. contrast to the linear functions which pertain to,the hypotheses

in Section III.A, all the hypotheses involving measures of association

and agreement require the expression of the corresponding ratio estimates

as compounded logarithmic-exponential-linear functions of the observed

proportions as formulated in the Appendix (A.20, A.21). As a result, the

test statistics for the hypotheses in Section III.B can also be generated

by the corresponding expression given in th- Appendix (A.11).

IV. ANALYSIS OF LONGITUDINAL DATA EXAMPLES

This section is concerned with the analysis of the longitudinal data

from examples II.A and II.B presented in Tables 1-and 2 with primary

emphasis given to illustrating the methodology in Section III. In this

regard, tests of significance are used in a descriptive context to identify

important sources of variation as opposed to a rigorous inferential con-

text; thus issues pertaining to multiple comparisons are ignored here.

These, however, can be handled by the Scheffe type procedures given in

GSK (1969).
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A. Analysis of One-Population Exa:iple

The comparisons required to answer the questions associated with the

example in Section-ILA can be described more clearly within the context

two sub-tables of Table 1 corresponding to the cross-classification of

the two attributes at each time point as shown in Table 3.

Insert Table 3 About Here

This study involves s = 1 Sub- population, t = 2 time points (rl and T2),

d = 2 attributesSA1 and A2), L1 = 2 response categories for A., and

L, = 2 response categories for A2. Thus, there are r = (L1L2)
t

= 4
2
= 16L2

possible multivariate response profiles.

The functions required to test the hypotheses involving the first-

order marginal distributions can be generated in the formulation of (a.r4)

byd using

Al =

0000 0000 1111 1111
0000 1111 0000 1111
0011 0011 0011 0011

0101 0101 0101 0101

This yields the function vector

F' = (0:398,0.441, 0.729, 0.788); (IV.2)

which contains the occurrence rates of Al and A2 at each of the time

points as shown in Figure 1.

Insert Figure 1 About Here
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Table 3

CROSS CLASSIFICATION OF ATTRIBUTE DATA BY TM, POINTS

Time Point

Attribute

T1

A2

T2

A2

Category 1 2 TOTAL Category 1 2 TOTAL
1 180 33 213 1 57 39 96

Al

2 18 123 141 18 240 258

TOTAL 198 156 354 TOTAL 7S 279 354
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A2
A 1

T1 T2
TIME

Figure 1-- Occurrence rates of two attributes
(Al, A2) at each of two time points
(T1, T2).
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Consequently, the hypotheses associated with question (1)-(3) dhn be

tested in the linear models phase of the analysis by setting X = I
4

and testing each of the following contrast matrices:

C1= 11 -1 0 0

0 0 1 -1 (IV.3)

C,
4

= Ell -1 0 0.] (IV.4)

C3 = [0 0 1 -1] (IV.5)

C
4

= I1 0 -1 0

0 1 0 -1 (IV.6)

C5 0 -1 CU

96 1 41 (IV.8)

C7 = L1 -1 -1 1] (IV.9)

The hypotheses from Section III which correspond to the C matrices,and

tne resulting test statistics are given in Table 4. These results

suggest that significant differences (a = 0.05) exist between the

occurrence rates of the attributes at each of the time points, and

that the occurrence rates of each attribute are significantly different

= 0.01) betv,een the time points. Otherwise, the attribute x time

interaction is not significant (a = 0.25), which indicates t1e simi-

larity of the change over time in the occurrence rates of the two

attributes.
oof

Insert lable 4 About Here
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Table 4

TESTS OF HYPOTHESES INVOLVING MARGINAL DISTRIBUTIONS

Hypothesis
d.f.

Q{.:

H ' ATTRIBUTES
AMEP

C
1

(Ti & T2)
2

13.32**

C
2

(T1)
-1

, . 4.47*

C (T2)
1

7.91**

3

H
T NH

: TIME

C
4

(Al & A2)
2

268.52**

C. (A1)
1

162.33**

C6 (A2)
6

1
138.49**

H
AT

ATTRIBUTE X TIME

C_
1

0.32

..,

* signifi:ant at a = 0.05

** significant
at a = 0.01
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The data from Table 1 can also be displayed in terms of the joint

distribution of the two attributes cross-classified by the time points

as shown in Table 5. In this context, the bivariate distributions of

the two attributes for T1 and T2 are summarized in'the row and column

margins respectively. This joint distribution can be generated for

each time point in the formulation of (A.14) by using

1111 0000 0000 0000

0000 1111 0000 0000

00".;0 0000 1111 0000 (IV.10)

10J0 1000 1000 1000

0100 0100 0100 0100

0010 0010 0010 0010

Insert Table 5 About Here

Then by setting X = 16, the hypothesis HTJD in (III.13) associated with

question (4) concerning differences between the two time points can be

tested by using

C =

0 0 -1 0 01

0 1 0 0 -1 0

0 0 1 0 0 -1

(IV.11)

For 'these. ds.171, thy.. test statistic for IITJD is Q, = 268.53 with d. f. = 3,

which implies significant differences (a = 0.01) between the joint dis-

tributions of Al anJ A2 at the two tie points. In particular, we

observe in Tob'.e 5 that the major difference in the bivariate distri-

butions is the shift from the Edrge proportion (180/354) of the subjects

who had neither attribute present at T1 to the large proportion (240/354)

who had both attributes present at 72. However, We also note that this

shift was not attrii.utable only to individual subjects moving directly

from (11! to (22). In fact, this distributional change is due to the

high probabi:ity (4S/51) of su)je,.::.; who had oily one of the attributes
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Table S

JOINT DISTRIBUTION OF ATTRIBUTES CROSS CLASSIFIED

BY TIME POINTS

Time Point

T1

.Attribute
categories
(Al, A2) 11 12

r

11

12

21

22

TOTAL .

57 36

0 0

0 3

0 0

57 39

T2
.

21 22 TOT I:

18 69 180

0 33 33

0 15 18

0 123 123- '

18 240 354
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present at T1 moving to the state of having both attributes present at

T2, together with the tendency for those who had neither attribute

present at T1 to progress to having either one or both of the attributes

present at T2.

Although observed frequencies of zero as displayed in Table 5 can

cause computational problems in certain applications, their presence is

not troublesome here. In principle, this table has 15 degrees of free-

dom, but in terms of the observed data there are effectively only 7 d.f.

which can be manipulated (without computational singularities as dis-

cussed in the Appendix), unless'certain zero cells are replaced by 0.5.

However, the 6 functions associated with the bivariate distributions

specified in (IV.10) do not require such artificial data adjustments;

thus, they can be analyzed directly. For a more detailed, discussion

"--"N concerning the treatment of observed zeros, see Koch et al. (1977).

Furthermore, the measures of association and agreement between Al

and A2 in Section III can be generated as compounded functions of the

4

undezlying vectcr of proportions. In particular, for each of the two

time ruin the log cross-product ratio in (III.10) can be generated

in the formulation of (A.20) by using

Al

A
2

=

=

1111
0000

0000
0000
1000

0100
0010
0001

[..1 -1

0 .0

0000
1111

0000
0000

1000

0100
0010

0001

-1' 1

0

4. :

0000
0000
1111

0000
1000

0100

0010
0001

0001
0000
0000
1111

1000

0100
0010
0001

;
(1V.12)

0./;0 0 C]

/ .1-1 -1 1 ;
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the.measure of association Q in (111.11) can be'estimated in the for-

mulation of (A.21) by using Al in (IV.12);

1001 0000
0110 0000

A2 0000 1001
- ,

0000 0110

o

1 0 0

(IV.14)

a
A_ = 0 0 -1

0 0 1 1

;
(IV.1S)

A
4

= D
(IV.16)

and finally, Cohen's kappa in (111.18) under the baseline constraints of

independence can be computed in the formulation of (A.21) by letting

Al

A

1

A,
.5

A4

1111-1111
0000 0000
1111 0000
0000 1111
1111 0000
1100 1100
0011 0011
1010 1010
0101 0101
1001 1001

10100
10010
01100

01010
00001
00000

00000
00000
00000

00000

0000 0000--

1111 1111
1111 0000
0000 1111
0000 1111
1100 1100
0011 0011
1010 1010

I
0101 0101
1001 1001

oomii]
00000
00000
00000
00000 ;

10100

10010

01100
01010
00001

- 1 0 0 -I 1 0

0 1 1 0 0 0

0 0 0 0 0 -1

0 0 0 0 0 0

1 0 0

0
0 1 -1

(IV.17)

(1V.18)

0 0 00
0 0 0 0

0 0 -1 1 ; . (IV.19)

1 1' 0 0

(IV.20)
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The estimates of these measures, of association and agreement between

Al and A2 for the data in Table 1, togethe:t with their estimated

standard errors are displayed in Table 6. Furthermore:the difference

between the two time points with respect to each of these measures of

association can be tested individually by setting X = 12 and C = [1 -1]

for A, Q, and K respectively. In this regard, the corresponding test

Insert Table 6 About Here

statistics for this hypothesis in (III.15) associated with question (5)

are displayed in Table 7. Here we note that although the correlation

Insert Table 7 About Here

structure between Al and 12 (as measured either by A or Q) did not change

between T1 and 12, the agreement between Al and A2 is significantly dif-

ferent (a-= 0.05) between the two time points. This decrease in the

agreement statistic from 0.70 to 0.56 is due largely to the increase in

the expected value for-the presence of both attributes (22), without a

corresponding increase in the observed propor,tion of overall agreement.

B. Analysis of TI,o-Population Example

The exampl: in Section II.8 involves 's = 2 sub-populations (boys,

,girls), t = 3 time period,' (year 1, year 2, year 4), d = 1 behavioral

task, and L .= 2 rilse cateori-5 (success S and failure F). Thus,

there are r = 2" = 8 yo,,siblc mAtivariate response profiles.

i7
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Table 6.

MEA.54ESOF ASSOCIATION AND AGREEMENT
BETWEEN Al AND A2

Time Period T1 T2

Estimated Estimated

Estimate Standard Error Estimate Standard Error

A 3.62 D.316 . 2.97 0.321
.

Q 0.95 - -0.016 0.90 0.030

K 0.70 0.038 0.56 D.051



Table 7

TEST STATISTICS FOR TIME DIFFERENCES IN MEASURES

OF ASSOCIATION AND AGREEMENT BETWEEN AP AND A2

Hypothesis d.f. Qc

Al = A
2

2.02

Q1 Q2

1.76

K = K 1 5.03'

1 2

* significant .05

I

i4)
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In this regard, differencesin the growth profiles for the boys and girls

can be investigated by using

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

Al = 1

0

1

0

0

1

0

1

1

0

1

0

0

1

0

1

(IV.21)

1 0 1 0 1 0 1 0

"01 01 01 01

to generate estimates for the first-order marginal probabilities of

success (S) shown in Figure 2 and failure (F) for each time x sex group

combination in the formulation of (A.14), where @ denotes Kroneiker

product of matrices and I
u

is the u x u identity matrix.

Insert Figure 2 About Here

Although a straightforward profile analysis could be performed directly

on these estimated marginal probabilities, we will illustrate an

alternative approach involving an underlying logistic model which is

often of interest in growth studies (e.g., see Kowalski and Guire, 1974,

and Guire and Kowalski, this volume). These involve log ratios or

logit functions which can,be generated in the formulation of (A.20)

by selecting A7 = [1 -1] k) 16, together with Al in (IV.21). These

estimated probabilities of success and their corresponding logits, to-

gether with their respective estimated standard errors are shown in

Table S.

Insert Table S About Here

Foy this analysis, let alg denote the asymptotic expected value

of the logit corresponding to the i -th sox and g-th year. If time

2
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0.0
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Fi,I,:re 2-- Probtbility of success [P(S)] on a behavioral
__

task f,r b,)ys and girls at three different years

of age.
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Table 8

OBSERVED AND PREDICTED ESTIMATES FOR
FIRST ORDER MARGINAL PROBABILITIES
OF SUCCESS AND CORRESPONDING LOGITS

Sex
Group Year

Observed
est. prob. Est.

success s.e.

Observed
est.

logit

Est.

s.e.

Predicted
est.

logit

Est.

s.e.

Predicted
est. prob.

success

Est.

s.e.

Boys 1 0.03 0.01 -3.45 0.45 -2.99 0.20 0.05 0.01

Boys 2 0.22 0.03 -1.29 0.19 -1.50 0.14 0.18 0.02

Boys 4 0.48 0.04 -0.10 0.16 0.00 0.14 0.50 0.03

Girls 1 0.18 0.03 -1.50 0.18 -1.48 0.14 0.19 0.02

Girls 2 0.50 0.05 -0.01 0.14 0.01 0.09 0.50 0.02

Girls 4 0.83 0.03 1.57 0.18 1.51 0.14. 0.82 0.02

242
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is assumed to represent a metric. which is analogous to drug dosage

in quantal bioassay research, then the linear logistic model with

respect to log time represents a reasonable model by analogy to well

known results discussed by Berkson (1944, 1953, 1955) or Finney (1964).

More specifically, we first consider the model

X. = p.
1

+ y.x. for i = 1,2
-1g 1 ig g = 1,2,3 , (IV.22)

where pi represents an irtercept parameter 'in reference to year 1 which

is associated with the i-th sex, yi represents a corresponding contin-

uous slope effect over time, and xig is the log to the base 2 of year

g for the i-th sex. In matrix notation, this model can be fitted via the

regression model

E
A

(F) = X11$
=

1

1

1

0

0

0

0

1

2

0

0

0

0

0

0

1

1

1

0

0

0

0

1

2

r-

Y,

119

Y9

(IV.23)

for which the goodness of fit statistic is Q = 2.29 with d.f. = 2. The hypo-

theses and test statistics in Table 9 suggest differences exist among the

respective sex groups with respect to the intercept, but not the slope.

On the basis of these results, the original

Insert Table 9 About Here

model can be simplified to

1 0

1 0

6-
1

ul

E
A

( F l = X22 . 1 0

0 1
2

0
/12 (IV.24)

0 1 1 Y
0 1 2
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Table-9

STATISTICAL TESTS FOR X, MODEL

Hypothesis d.f.

P
1
= P

2

Y1 Y2

1 18.95**

0.22

**significant at a = 0.01

-

24 1
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where pi is the intercept parameter for the i-th sex grodp and y is

an overall slope parameter. For this model, the goodness of fit

statistic is Q = 2.51 with d.f. = 3, which suggests that this reduced

model provides a satisfactory characterization of the variation among

the logits. The corresponding estimated parameter vector b2 and its

estimated covariance matrix V
b

are given in (IV.25).

F12.91
b
2

= -1.48

1.50

1,

; V
-b

=

3.99

1.60
-1.60

1.94
-1.07 1.0,7

x 10 (IV.25)

From these results, the predicted logits shown in Table 8 can be deter-

mined via (A.12). These can then be used to obtain the predicted

values for the f.rst-order marginal probabilities of success (S) responses

by reverse transformation which are illustrated in considerably more

detail in Koch et al. (1977) and Landis et al, (1976). These quantities

are also shown in Table S and, are plotted in Figure 3 within the context

of fitted logistic cures. Estimated standard errors for these predicted

values obtained through suitable manipulations of (A.13) are substantially

smaller than those for the corresponding observed estimates, and thus

reflect the extent to which the fitted,model X enhances statistical

efficiency.

Insert Figure 5 About Here

Finally, it L,th be sho.;-1 that for this linear logistic model the

parametricfunctionscAp(-
'

/I) n_:present the median aged for success-

ful nerFon-a:-:e thc2 behi%loral (the EL -50 analogue from bioassay

studies) in the '2,YA f-timatc,, for these quantities are

ubtain'A b, and are shown in Table.10.
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Insert Table 10 About Here

V. DISCUSSION

Although the methodology for the analysis of longitudinal data

developed in this paper is quite general, these procedures have been

illustrated with relatively simple examples. However, for situations

in which either the number of time points t, the number of attributes

d, or the number of categories LI, L2,..., Ld are moderately large,

the number of possible multivariate response profilei r = (L1L2.Ld)t

becomes extremely large. Consequently, the matrices required to

implement the GSK procedures directly may be outside the scope of

computational feasibility. In addition, for each of the s sub-populations

many of the r possible response profiles,will not necessarily be observed

in the respective samples so that corresponding cell frequencies are

zero. Thus, in such cases, specialized computing procedures are required

to obtain the estimates of the pertinent functions.

One alternative approach for handling such very larce4 contingency

tables in which most of the observed cell frequencies are zero is

discussed in Koch et al. (1977) and is illustrated in Landis and Koch

(1977b). Specifically, this approach permits the same estimators which

would need to be obtained from the conceptual multidimensional contin-

gency table to be generated by first forming appropriate indicator

variables of the raw da from each subject, and then computing the

across-subject arithmetic means. Subsequent to these preliminary steps,

the usual matrix operations discussed in the Appendix can then be

applied to these indicator variable means to generate the required
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Sex
Group

Boys

Girls

Table 10 -

ESTIMATED MEDIAN AGE FOR SUCCESSFUL
PERFORMANCE OF BEHAVIORAL TASK

Estimated
Median Age

4.00

1.99

Estimated
Standard Error

0.25

0.09

248

269



functions. These alternative computations involving raw data, os well

as these involving standard contingency table data, can all be performed

via the computer program GENCAT discussed in Landis et al. (1976).

Otherwise, several additional potential difficulties associated

with the introductory remarks in Section :if may arise in the analysis

of lengitudinalSata in studies of human growth and development. First

of all, if the response profiles we assumed to be structured (e.g., as

specified by certain irreversible growth or learning patterns as discussed

in Wohlwill, 1973), some of the a.. will be zero. In such situations,
13

analogous hypotheses to those discussed in Section III that reflect

these restrictions imposed by such structures can be taken into account

by suitably modifying the definition of the appropriate hypotheses. In

particular, the hypotheses pertaining to the first-order marginal

probabilities are still appropriate here because their formulation is

consistent with the available degrees of freedom. However, the higher order

margins involving joint distributions or measures of association may not

be*feasible depending
specifically on the nature of the restrictions

involved. Secondly, the methods discussed in Koch, Johnson, and Tolley

(1972) represent a life table approach to dealing with the issues involved

with ajects who are lost-to-follow-up.
Finally, for a discussion of

one approach to the analysis of incomplete data resulting from tne

failure to measure e,,ch subject on each attribute at each time point,

see Koch, Imrey, and Reinfurt (1972).

SULNL-iRY

In this paper we have proposed an extremely general approach

to ttle analysis of multivariate
categorical data associated with
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longitudinal investigations of human growth and development, For

purposes of illustration, two hypothetical data sets were presented

to .indicate the range of statistical issues of interest in such studies,

and the types of functions from corresponding multidimensional contin-

- gency tables which can be used to suggest answers to these questions.

Within this context, a general methodology for the analysis of categorical

data resulting from longitudinal studies was then developed in terms

of specific hypotheses. In particular, hypotheses directed at questions

pertaining to average differences among sub-populations, attributes, and

time points were expressed in terms of constraints on the probabilities

associated with first-order marginal distributions of the-response pro-

files. Furthermore, hypotheses directed at relationships among the

attributes at a given time point and the extent to which those relation-
.

ships change across time were formulated in terms of comparisons among

joint distributions and in terms of measures of association across time.

periods.

A general unifying approach to the analysis of multivariate eate-

gorical data was recommended to create test statistics for these hypo-

theses as well as estimators for corresponding mod61. parameters.' This

procedure can be implemented by constructing the appropriate functions of

the observed proportions which are directed at the relationships under

investigation by a sequence of matrix operations. Then a weighted

least squares computational algorithm is used to generate linearized

minimum modified chi-square statistics as discussed in more detail in

the Appendix.

An extensive analysis of ech of the two data sets was presented

within the context of the hypotheses of interest. In this regard, the
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matrices required to generate the-appropriate functions and the matrices

used to compute the test statistics werd all specified in detail.

Furthermore, the fitting of final :,,Ioothed models was illustrated in the

second example in terms of an underlying linear logistic model often

_considered in growth studies. In particular, this modeling permitted the

estimation of predicted values for the first-order marginal probabilities,

together with their estimated standard errors, even though the analysis

was performed on the logit transform scale.

Finally, this paper concludes with a discussion of certayn computa-

tional difficulties associated with very large contingency tables, together

with other potential difficulties associated with structures response

profiles, missing data, and incomplete data.



Appeildx

Let j = 1.ndex a set of categories which correspond to the .

r possible response profiles asso,:iated with the simultaneous classifi-

cations of the subjects on the d attributes. Similarly, let i = 1,2,...,s

index a set of categories which corrbspond to distinct sub-populations as

defined in terms of pertinent independent variables. If samples of size

n. where i = 1,2,...,s are independently selected from the respective sub-
s s

pcpulations, then the resulting data can be summarized in an (s x r)

contiegency table as shown in Table 11, where n.. denotes the frequency
ij

of response category j in the sample from the i-th sub-population.

Insert Table 11 abOu here

The vector n., where n.' = (n. ,n. " ir
) will be assumed to follow

il 11

themultinomialdistributionwithparametersn.and u.'
1 -1

=
1

(u. 7.
T.

)
1' 12" ir '

when." 7..
ij

rvpr,,sent:, the probability that a randomly selected element from

the i-th ppulation classifiLd i1' the i-th response category. Thus,

4 the rele,ant 1,roddct f.711t1nomIal rodel 3s ,

r

n'!

]=1
1, I .

with tint

I)
n

(A.1)

1 fo t 1,2,.,s. (A.2)
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Table 11

OBSERVED CO\TI\G.q.NCY TABLE

Sub-population

.kesponse profile categories

1 2 r Total

1

7

n
11

21

n
sl

n
12

n
/?

n
s2

n
lr

n
2r

nST

n
1

n

11s

sto

L

rf,

;

t

f

1, rro



Let p.
1

= (n.1 /n.) be the (r x 1) vector of observed proportions

associated uith the sample from the i-th sub-population and let p be

the (sr x 1) compound vector defined by p' = (pi, Thus,

the vector p is the unrestricted maximum likelihood estimator of n

where 71 = (14,71,...,V. A consistent estimator for the covariance

matrix of p is given by the (sr x sr) block diagonal matrix V(p) with

the matrices

V. (p.) = 1 ) pip]
_p.

n. ..1

(r

(A.3)

for d = 1,2,-0 on the main diagonal, where D is an Cr x r) diagonal

--1

matrix with elements of the vector p.
1
on the main diagonal.

Let F1(p),F2(p),...,Fu(p) be a sot of u functions of p which pertain

.

to some aspdct of the relationship between the distribution of the

response profiles and the nature of the sub-populations. Each of these

functions is assumed to have continuous partial derivatives through order

two with respect to the elements of p within an open region containing

= E{pl.. If F 7 F(p) is defined by

F' = iF(1)))' = [F1W2F9(13)2..2Fu(E)3 (A.4)

then a consistent estimator fJr the covariance matrix of F is the (u x

'-u) matrix

V = H[V(p))H'
_F

(A.5)

where H = [dF(x)/dx 1 x = 11 is ta (u x sr) matrix of fir,;t partial

derivatives of thc: func:tioni F evalated at p. In all applications, the
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functions comprising F are chosen so that VF is asymptotically non-

singular.

The function vector F is a consistent estimator of F(n). Hence, the

variation among the elements of F(r) can be investigated by fitting linear

regression models by the methOd of weighted least squares. This phase of

the analysis can be characterized by writing

E
A

{F} E E
A

(F(p)} = F(n) = X00 (A.6)

where X is a pre-specified (u x t) design (or independent variable) matrix

of known coefficients with full rank t <u, fi is an unknown (t x 1) vector

of parameters, and "EA" means "asymptotic expectation."

An appropriate test statistic for the goodness of fit of the model

(A. 6) is

Q = Q(X,F) = (RF)' [It V
F

RI]
-1

RF,
-

(A.7)

where R is any full rank [(u-t) x u] matrix orthogonal to X. Here Q is

approximately distributed according to the x
2
distribution with d.f.

(a-t) if the sample sizes,[nd are sufficiently large that the elementS

of the vector F have an approximate multivariate normal distribution as

a consequence of Central Limit Theory. (CLT). Test statistics such as Q

are known as generalized Wald (1943) statistics and various aspects of

their application to a broad range.of problems involving the analysis

of multiviriate categorical data are discussed in Bhapkar and Koch (1968a,

1963b) and Grizzle et al. (1969).

However, these test statistics like (A.7) are obtained in actual

practice by using weighted least squares as a computational algorithm

Ck
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which is fustified on the basis of the fact that Q of (A.7) is

identically equal to

0

Q = (F-XWIN -1
(F-Xb) , (A.8)

where b = (X' VF
-1

X)
-1

V
F

-1
X' F is a BAN estimator for based on the

linear zed modified 4 -statistic of Neyman (1949). In view of this

identity demonstrated in Bhapkar (1966), both Q and b are regarded as

having reasonable statistical properties in samples which are suffi-

ciently large for applying CLT to the functions F. As a result, a

consistent estimator for the covari'ance matrix of b is given by

V
b

= (X'VF '
-1
-X)

-1

_
(k.9)

If the model (A.6) does adequately characterize the vector F(iT),

tests of linear hypotheses pertaining to the parameters a can be under-
-

taken by standard multiple zegression procedures. In particular, for a

general hypothesis of the form,

where C is a known (c x t) matrix of full rank c < t and 0 is a (c x 1)

vector of 0's, a suitable test statistic. is

Qc = (Cb)° [C(XTV -1X)-1CTin (A.11)

which has approximately a X2- distribution with = c in large samples

under H
0

in (A.10).

In this framework, the test statistic QC reflects the amount by

which the goodness of fit statistic (A.8) would increase if the nodel
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(A.6) were simplified (or reduced) by substitutions based on the addi-

tional constraints implied by (A.10). Thus, these methods permit the

total variation within F(7) to be partitioned into specific sources and

hence represent a statistically valid analysis of variance for the

corresponding estimator functions F2

Predicted values for F(u) based on the model (A.6) can be 'calculated

from

F = Xb = X(X1V
-1KW

F

-1
F

_ _
(A.12)

Thus, consistent estimators for the variances of the elements of F can be

obtained from the diagonal lements of

V'
F

= X(X'_V
F

-1
X)

-1
X' (A.13)

The predicted values F not only have the advantage of characterizing

essentially all the important features of the variation in FM, but

also represent better estimators than the original function statistics

F since they are based on the data from the entire sample as opposed

to its component parts. Moreover, they are descriptively advantageous

in the se,ise that they make trends more apparent End permit a clearer

interpretation of the relationship between F(I) and the variables

comprising the columns of X.

Although the formulation of F(p) can bquite general, Grizzle et

al. (1969) and Forthofer and Koch (1973) demonstrated that ,a wide range

of problems in categorical data analysis could be considered within

the framework of a few specified classes of compounded logarithmic,

exponential, and linear functions of the observed proportions. However,

A
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these functions are all special cases of a broad class of functions

which can be expressed in terms of repeated applications of any se-

quence of the following matrix operations:

Linear transformations of the type

F
1
(pi = Alp = a

1
,

where Al is a matrix of known constants;

(ii) Logarithmic transformations of the type

F
2
(p) = log

e
(p) =

2-

,

(A.14)

(A.15)

where log
e
transforms a vector to the corresponding

---

vector of natural logarithms; .

(iii) Exponential transformations of the type -

F (p) = exp(p) = a_ (A.16)

where exp transforms a vector to the corresponding
---

vector of exponential functions, i.e., of antilogarithms.

Then the linearized Taylor-series-based estimate of the covariance

matrix of F
k

for .(-= 1,2,3, is given by (A.5), where the corresponding

H matrix operator is
k H

_1 ;

(A.17)

H
2

D
-1

; 4 (A.18)

H
3

= D"
'

(A.19)
_fs

where D is a diaonal matrix with elements of the vector y on the ain

diagonal.

The hypotheses involving marginal distri utions can all be tested

in terms of linear functions of the for giv
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N.

log-linear functions of the form

F(P) = A
2

{ log
e
(A pi)

-..

(A.20)

can be use to generate logits and log cross-product ratios; whereas

compounded functions of the form

F .)11
(A.21)

can be used to generate complex ratio estimates such as Yule's Q statis-

tic or generalized kappa-type statistics. As a result, the linearized

Taylor-series-based estimates of the covariance matrices associated with

F(p) in (A.20) and (A.21) can be obtained by repeated application of

the chain rule for matrix differentiation. In particular, let

al

a2

.1h13 ;

(A.22)

!)T{IS[1?Fe(1)1) ;
(A.23)

(A.24,
a-
s

= A-sa
2

a4 - exp{N{1oge(!.3)31. (A.25)

Then the results in (A.17)-(A.19) can be used to provide a consistent

estimate of the covariance 1.,dtrix Via (4.) for F(p) in (11.20) by using

H = A
2
D
-1

_ a -1
1

4
,

and for F(p) in (A.2I) by using

H = D A.D lA D A D lA .

- -a4 _
4 a._3 a

2
_2_a -1
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Finally, Koch, Imrey, Freeman, and Tolley (1976) discuss the

application of this general approach to implicitly defined functions

of p in the context of estimated parameters from fitted log-linear

models. Thus, all aspects of this methodology can be directed at

implicit functions which are based on maximum likelihood estimation

equations corresponding to preliminary or intermediate (as opposed to

final) models with a priori assumed validity; in other words, models

in which the likelihood (A.1)_initiall (i.e., prior to any data

analysis) satisfies both (A.2) as well as certain other constraints

analogous to (A.6).

For purposes of completeness, it should be noted that other statis-

tical procedures for the analysis of categorical data from longitudinal

and other types of repeated measurement experiments are-available in

the literature. In this regard, Bishop, Fienberg, and ilolland (1975,

Chapter 8) discuss the application of maximum likelihood methods to

test hypotheses of total symmetry and marginal symmetry as well as

certain ozher hypotheses of intereet. They also provide a relatively

complete literature review of other papers dealing with similar

questions including the early work of Bowker (1948).
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ABSTRACT

The use of causal models in longitudinal' research is discussed with emphasis

on their logic tild Construction. Advantages of longitudinal designs over

cross - sectional designs for making causal statements are presented first.

Following an argument for theory-based research, the usefulness of causal

m?dels fur incorporating' substantive theory and knowledge into the data

analysis model is-stressed. The construction of causal models from substantive

examples is explained and illustrated as a two -stage process involving (1) the

structural model which specifies, therelations of the important constructs,

and (2) the measurement model which relates the unobserved constructs to their

observable measures. Longitudinal panel designs are considerea extensively,

and causal models are constructed from two substantive investigatit.is conform-
gog

ing 4o a panel design. The use of correlations in these studies to support

causal statements is shown to be misleading.
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CAUSAL MODELS IN LONGITUDINAL RESEARCH

INTRODUCTION

In this chapter a set of methods for making causal inferences from longitu-

dinal data will be considered. It is useful to distinguish between explanation

(which implies some form of causal statement) and description in investigations.

A descriptive approach addresses such questions as "how" and "how much", while

an explanatory approach treats the question "why" and thus incorporates causal

inference. (See,the discussion of description vs. explanation in Wold, 1956).

For example, a measurement of a child's cognitive functioning is a description,

while an investigation of the dependence of cognitive functioning on maternal

ft

nurturance'and the child's motivation is an example of explanation. (Clearly,

explanation and causal inference are appropriate when a researcher is interest-

ed in the mechanism which generated the observable relation between variables).

Explanation of developmental processes is the primary focus of this chapter,

but the discussion has clear implications for a variety of applications to

other content domains.

A. Why use longitudinal data for causal inferences?

Cross-sectional analysis was originally conceived as a practical and approp-

riate means to study longitudinal change. However, sharp differences between

the findings of cross-sectional and longitudinal studies have led many researchers

to doubt the utility of the former:

Because of the striking discrepancies in the results of

c7oss-sectional and longitudinal investigations (Damon, 1965;

Kuhlen, 1963), developmental psychologists have felt the need

to formulate more sophistocated models.

(Labouvie, Bartsch, Nesselroade, & Baltes, 1974, p. 288)
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An examination of the assumptions underlying cross-sectional designs

explains the discrepancies. Cross-sectional analysis assumes that interindivid-

ual differences in development are stable over time. The measurement of certain

individuals at one time period, then, would presumably yield the same results

as would the measurement of other individuals at the same developmental stages

at a different time. Coleman (1968) expressed this as an assumption of equilib-

rium:

The cross-section analysis assumes, either implicitly or explicitly,

that the causal processes have resulted in an equilibrium state.

That is, the implicit assumption in regression analysis is that this

is a stable relationship, which would give the same values for the

regression coefficients in a later cross-section unless an exogenous

[outside] factor disturbed the situation. (p. 444)

Cross-sectional research further assumes that the interindividual diff-

erences found between age groups can be interpreted as changes"that an individ-

ual would undergo across time (intraindividual change). It has been shown,

however, that interindividual differences in growth do not adequately measure

intraindividual growth, but rather reflect the increasing variability in the

rate of growth among individuals (Huston-Stein & Baltes, in press).. Thus,

Baltes and Willis (1976) stated:

change on the individual level involves intraindividual change, and

differences in change functions. between individuals [involve] inter-,

individual differences in change .... One of the important features

of aging is that interindividual differences typically increase with

time and age, resulting in progressively less age-related homogeneity.

(p. 12, italics in original)
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Because cross-sectional studies confound intraindividual growth with

interindividual ferences in intraindividual growth (Baltes& Nesselroade,

1973), they are a poor method for studying change. These problems with cross-,

sectional designs have been noted in other research contexts:

Repeated cross-sections from a panel of organizations which are' out

of equilibrium will ordinarily produce estimateevarying considerably

from cross- section to cross-section.... It should be apparent that,

if-the 'processes of study are not symmetric in growth and decline,

cross-sectional analysis mixing growers and decliners will obscure

the processes of interest.

(Freeman & Hannan, 1975, p. 216

Furthermore, Colema (1968) argued that measures designs are more

useful than cross-sectional designs/in demonstrating causality:

When variables are obseryed
t

at tilkor mor points in time, additional

,..., \
information exists beyond that obtained in cross-sectional data.

, . ,.

This is information which, if\used properly, can indicate what

factors brineabout change in (a variable. These changes will, of -; 71'

course, create or paintain therelationships that may be found in

cross-sectional data, and thus provide informationabout the dynaaics

of a system beyond that provided by cyoss-sectional data. (p.445)

Theise of temporal variation to establish causality is a major aspect of the

rationale for the longitudinal panel designs in section IV.

Another advantage of longitudinal research lies in urtangling the:Complex

effects of reciprocal causation or what some have.called "causal roops" (Hannan

& Young, 1974). Examples of reciprocal causation are the reciprocal influences

(of mother-on-child and child-on-mother) in a mother-child dyads (Lewis &

Rosenblum, 1974; Rogosa & Ambron, 1976) .
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An example from research on personality development illustrates this

point. A number of cross-sectional studies have shown that "there is no.quest-

ion that there is a persistent relationship between the self and academic

Achievement [and] that therb is a continuous interaction between the self and

academic'acheivement, and that each directly influences the other" (Purkey,

1970,, p. 23). In a longitudinal study of these variables, O'Mally and BachMan

(1976) explained the advantagesof such a design:

There is reason to believe that self-esteem is linked to educatiohal

and occupational attainment, and that this linkage probably involvet

a number of different and complexly interrelated patterns of causat-

ion. While it is a rather simple matter to point out the complexities,

4

the problem of disentangling such reciprocal causation is extremely

difficult and vexing. In most-cases the empirical evidence is

limited to a static relationship at a single pOint in time--e.g.,

survey respondents with higher levels of educational attainment alib

have higher mean scores op'a measure of self-esteem. While such

findings are important inidemonStrating that a relationship does

exist, they leave us lariely in the dark about causal dynamics p.*S)

4

Longitudinal Research and Classical Experimental Design and Analysis

While longitudinal designs are preferable to cross-sectional ones in terms

of demonstrating causality and studying intraindividual change, they also

create practical problems.
studies must be performed outside

of controlled laboratory settings, where the characteristic features of classic-

al experimentation--control of eCtraneous influences, manipulation of treatment

variables, and equivalent experimental groups--are frequently impossible to

implement. ,Furthermore, develop. ental studies often focus on relations of

variables that cannot be control ed or manipulated (e.g., organismic variables).
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One advantage of this break with classical experimental-design lies in the

increased ecological validity of naturalistic studies which decreases the

.

threat to the external validity or generalizability of the study (Bracht &

Glass, 1968). Bronfenbrenner (1974, 1976) argued persuasively for the necessity

of ecologicalfl alidity in developmental research and claimed that "much' of

'z)

developmental psychology is the science of the strange behavior of children in

strange situations with strange adults for the briefest possible periods of

time (1974, p. 3):,
Bronfenbrenner(1976)calledkfor a new perspective in

developmental research termed "the experimental ecology of education".

The increasing recognition of the need for naturalistic, longitudinal

studies has led to a press for the development of appropriate design and analy-

tic techniques. From the perspective of life-span psychology (Huston-Stein and

Baltes, in press) stated that "most of the traditional, experimental design

methods in the psychological sciences are-ill-suited for the assessment of

long-term chains and distal causes. Therefore, life-spaiiRresearchers have

pointed to the general usefulness of quasi-experimental designs" (13:11). Given

the break in design strategies with traditional psychological experimentation,

the analysis techniques successful in making causal inferences from experimental

data are not likely to be useful for the analysis of causal patterns in natural-

iStic studies. Wiley and Hornik (1973) discuSsed this trend in design and

analysis

Sociological and social-psychological
research workers have long been

concerned with the attribution of causality to ,,variables representing

basic sociological or piychological concepts. Given the difficulty

of variable manipulation in many real social settings, scientists

have turned to statistical Methodology rather than experimental

techniques of investigation for help. (p.1),

Huston-Stein and Baltes (in press) speculated that "with more powerful
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methods of inferring causal relationships from naturalistic, correlational

data, child developmentalists may be lured away from their heavy reliance on

laboratory experiments" (p. 11). Herman Vold (1956) in a paper "Causal 'nference

from observational data", indicated one path to "the more powerful methods":

in the absence of experiments the statistical analysis has to be
A

closely coordinated with subject-matter theory both in specifying the

causal hypotheses_and_in-testing them against other sources of know-

ledge. A crucia] feature is randomization, which in experimental

situations reduces the disturbing effect of uncontrolled, variation.

This device not being a.ailable in observational situations, it is a

pertinent problem to what extent the disturbance factors should be

taken into explicit account, and at this point strong reliance must

fall upon subject-matter argument. (p. 31)

The attribution of causal effects from nonexperimental data can be accom-

plished through,causal models which incorporate substantive knowledge into the

analysis, of data as a substitute for experimental controls. The process by
. .

which substantive knowledge is incorporated into the data analysis in a causal

model through the construction of causal models from longitudinal studies is

illustrated in sections III and IV'.

II. LOGIC OF CAUSAL MODEL3

A. Theory-based Research

A strong appeal for theory-based research was made by Suppes (1973):

I think the time has come to call for a much deeper theoretical

orientation of research in education in order thereby to' increase its

relevance. In many areas, the greatest limitation on research is not

the absence of hard-data studies, but the absence of serious and

sophisticated' theory (p. 23)-'
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Suppes ejects the "firm prejudices and soggy arguments" common in educational

debate in favor of "well-put-together theories that have definite and precise

assumptions and deductive consequences that bear on behavior and the way students

learn" (p. 24). Suppes (1974) argues that theory goes beyond empiricism to

explain the complexity of phenomena. He attacks the "triviality of bare empiric-

ism" which at the ext eme is the simple recording of facts that leads nowhere.-

A similar crit'cism was voiced by Einhorn(1972):

As methods and techniques get more complicated, the role of theory in

research is being dangerously ignored in favor of purely empirical

work that proceeds without so much as a hypothesis. Like Pirandello's

characters in search of an author, many of today's researchers seem

to have an assortment of techniques in search of a substantive problem.

(p. 367).

In order to guide research, theory should be explicit about the relations

of its Componentsthat is, be translatable into empirically justificable

statements--since vague, verbal theories (which Suppes terms fantasies) will

rarely help to focus research. One of Suppes' examples of fantaSies in educat-

ional researdhls Piaget's concept of developmental states since it "operates

in large theoretical terms and with little regard for detailed experimental

investigation" (Suppes, 1973, p. 13).

7-Phillips and Kelly (1975) examined the "much-touted hierarchical theories

of development": _J

\
Hierarchical theories may be potentially useful in understanding

human development. At the present time, however, the scientific

status of, such theories is obscure. In the flurry of experimental

research on child development, it is not always clear what type of

evidence would count as confirmation or refutation of such a theory,

or*indeed whether empirical research is relevant at all. These and
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related issues have not been totally ignored in the literature, but

discussion has been hampered by the failure to draw some important

distinctions and to make explicit certain underlying assumptions.

(p. 352)

The strongest condemnation of obscure, vague theory is provided in Popper's

(1972) discussion of the psychological theories of Freud and Alder.

This does not mean that Freud and Adler were not seeing certain

things correctly. I personally do not doubt that much of what they

say is of considerable importance, and may well play its part one day

in a psychological science which is testable. Bat it does mean that

those "clinical observations" which analysts naively believe confirm

their theory cannot do this anymore than the daily confirmations-

which astrologexs find in their practice. And as for Freud's epic of

the Ego, the Super-ego, and the I no substantially stronger claim

to scientific status can be made for it than for Homer's collected

stories from Olympus. These theories describe some facts, but in the

manner of myths. They contain most interesting psychological suggest-
)

ions, but not in a testable form. (p. 23)

Explicit statments of theory are essential for worthwhile theory-based

research. Many developmental theories are stated ambiguously; conseqUently,

thej%are often misinterpreted and are difficult for the researcher to test.

Theorists use notx,ins like causes, forces, systems, properties, schemes, and

stages. The research must infer the relations of these terms from the incomplete

specification provided by the theory and must select or develop measures that
o

act as indicators for the unmeasured variables in the theory. Unfortunately

there are substantial variations in the ways researchers interpret theory. The

more ambiguously the theory is stated, the more confused are the results of

empirical investigations.
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The gap between theory and.research is not uncommon in social science.

Blalock (1963) described the problem in sociology and one approach to a solution:

There can be little disagreement that in sociological theory we have

made use of numerous concepts that have been vaguely defined...

it

These are the 'big words' sociologists are often accused of using.

Sometimes they are thrown into theoretical discussions with almost

reckless abandon. In other instances they may be rather vaguely

linked with measured indicators that are referred to as 'correlates',

'manifestations', or 'symptoms' of the underlying variables. Sometimes

the 'big words' are utilized to provide explanations for empirical

relationships, but upon detailed logical investigations We find that

these theoretical explanations make much less sense than supposed...

One possibility is to retain whatever vaguely defined concepts we may

think will ultimately prove useful, while at the same time attempttn,

to spell out exactly how we might link these theoretical concepts

//
with specific measured variables. (p. 62)

The major problem for empirical research is that when theories include

ambiguous concepts whose postulated causal relations are not well-specified, _

the resulting research is usually a collection of non - comparable studies which

.relate only vaguely to the original theory. Two examples are research on Piaget's

theory of moral development and research on attachment (Ambron and Rogosa,

1975).

B. What are Causal Models?

A causal model is a representation of the postulated causal links between

'the variables of interest and is an explicit and quantitative statement of

theory. Through the use of causal models verbal theorieg'are recast in terms

of the causal processes assumed to operate among the variables under considera-

tion. The use of causal models forces the theorist and the experimenter to make
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explicit all causal assumptions in an internally consistent system. Clearly,

this is a large step in overcoming the problems with verbal theories. As

Duncan (1966), asserted "The great merit of the path scheme, then, is that it

makes the assumptions explicit and tends to force the discussion to be at least

internally consistent, so that mutually incompatable assumptions are not introd-

uced surreptitiously into different parts of an argument extending over scores

of pages" (p. 9).

In the formulation of a causal model, the important variables in the

developmental process are first identified, for example, self esteem, educat-

ional attainment, occupational aspiration. Then the causal links between these

variables over time are specified. On psychological grounds some variables can

be said to influence others; in other instances the causal link may be assumed

not to exist. The variables to be included in the model and their postulated

causal links may be obtained from the theoretical formulation of the problem.

Causal models have been discussed under a variety of names. in a number of

different literatdres. Structural equation models is the term used most often

in econometrics; path analysis was formulated by Wright in genetics and brought

over into sociology as path analysis or as causal modeling. Goldberger (1972).

provided an interesting hiitory of the parallel but independent historical

developments in econometrics and biometrics. Structural equation models are

more general in formulation and in estimation techniques thdn path analysis but

the logic is nearly identical. The models in this chapter are termed causal

models or structural equation models, but almost all comments apply to the

special case of path analysis also.

Causal models are regression-based procedures. The regression equations

which compose a causal model are called structural regression equations.

Systems of structural regression equations, in which each equation represents a

T-Zausal-link between-variables, are distinguished from predictive regression
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equations which represent empirical associations with no special regard for

whether the predictor (i.e.; independent) variables are theoretically interest-

ing. 4

Predictive regressidh, on the one hand, is concerned with identifying the

best linear predictor of the dependent variable from a combination of the

independent variables; any observable prediciors that add to the explained

variance, the squared multiple correlation (R
2
), are utilized. The usual

multiple regression techniques are exazples of predictive regression. In

structural regression, on the other hand, the concern is with the interrelation-

ships of the theoretically important variables, not simply the predictability

of one from the others.

In structural regression, the mechanism that generated the observations

can be characterized in terms Of more fundamental parameters. Goldberger

(1973) proved that, iq general, the coefficients in predictive regression will

be a mixture of the structural parameters;'hence a change in one structural

parameter may change all the predictive regression coefficients. Therefore,

the more fundamental structural parameters have the invariance and stability

desired of scientific formulations. As Abraham Wald (1940) pointed out, "The

knowledge of the structural relationship is essential for constructing any

theory in the empirical sciences... in deducing la from observations we have

the task of estimating structural relationships" (p.300). Tukey (1954) concluded,

"Almost any causal theory comes sooner or later to deal with structural regres-

sion rather than predictive regression" (p. 41).

Once a causal model is constructed, the set of causal links in the model

are written as a set of structural regression equations. Estimating the para-

meters in the structural regressions (see Chapter , this volume) yields

estimates of the causal influences between4the variables and thus is a calcula-

tion of how change in one variable in the system will affect the other variables
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in the system. The results of these analyses depend on the theory which deter-

mined the structural equation model. Intuitively, the estimation techniques for

these structural equation models decompose the observed association of the

variables into direct and indirect effects. We are, in some sense, taking the.

correlation apart and examining its causal components. However, this decomposi-

tion of the observed covariation depends upon the particular causal ordering

assumed to be valid by the researcher. The incorporation of relevant substan-

tive knowledge into the regression analysis may be termed analyzing data condit-

ional on a theory. From the theoretical a;.d psychological conceptualization of

the investigation, the observed association between the observed variables is

specified.* Then the regression analysis proceeds to supply estimates of causal

parameters from the nonexperimental, correlational data. Of course, the numbers

obtained are reasonably correct only if the substantive specification is adequate.

these-causal modeling techniques cannot prove ,:ausality; they can help one

choose between, relevant causal hypotheses by ruling out those not conforming to

the data. This is the logic of falsification (Popper, 1972). When theories

are expressed as causal models, they are subject to rejection if contradicted

by data.

C. Spurious Correlation: A Causal Interpretation

A specific problem which illustrates the importance of careful interpreta-

tion of the relationships between variables is that of spurious correlation,

where the association between two variables is entirely due to the influence of

a common factor. In investigating spurious correlation interest lies in whether

a relation between two variables (x and y) disappears when a third variable z

is introduced. The correlation of x and y is spurious if the association of x

and y is totally due to the causal influence of z. This is illustrated in

Figure la. To guard against this possibility we might compute the partial

correlation r
xy.z between x and y with 'z held constant. If r

xy.z
is effectively
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zero then this may be the spurious case in FigureAa. But it is also possible

that z is a mediating variable in the 'true' relationship of x and y ..as illust-

rated in Figure lb.

Insert Figure 1 about here'

Whether an association is spurious or utrUa"ffrom a causal standpoint)

cannot be determined on the basis of correlations. Information about the

causal ordering of the system of variables is required,, which is best derived

f.romsubstantive theory.

4

-In Simon's (1954) classic example, a high negative correlation is found

between x, the percentage of a group that is married and y, the average number

of pounds of candy consumed per"month per person. Can we conclude that mar-

riages causes a reduction in candy consumption? Variable z is the average age

of members in each of the several groups. However, when age is held constant,
A

the correlation disappears. From common sense the relationship in Figure la is

believed to.hold° the correlation between candy consumption and marital status

,
is jointly caused by a variation in age--the relationAip is spitious. This is

- A

a 'common sense' conclusion, put it depends on the assumption'that certain

relations are not causal. Irk this example, the decision between models (a) and

(b) was made by the a p i,assumption that the age of a person does not

depend upon marital status or candy consumption. Here the answer is obvious,

but determinini causal*ordering and structure is often treacherous, and exp-

I

licit statements of theory are necessary for the unambiguous interpretation of

data.

Although problems with the causal ordering of variables affect all anal-
.

.
ysis schemes, a number of other chafac'teristics of correlation coefficients

,make their use to support claims of causation in'non-experimental studies
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a. Correlation between X and b. The true association

Y is spurious since the betweeti X and Y is

association is entirely due mediated by Z.

to the causal influence

of Z.

Figure 1 Examples of true and spurious correlation. The partial

correlation r
XY.Z

will equal zero in the population in

both cases. Assumptions about the causal ordering of
the variables are necessary to differentiate a from b.
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inappropriate and often misleading. Correlation is a measure of the liuearity

of a relationship between two variables. Correlation is a descriptive statistic,

and contains no information about the direction of the association. Thus

correlations are inappropriate for causal statements. However, many longitud-

inal investigations report correlations as evidence of causal relationships.

Longitudinal researchers may do well to heed the message of John Tukey (1954),

who in an-article on causal models, argued "cOkrelation coefficients are justi-

fied in two and only two circumstances, when they are regression coefficients,

or when the measurement of one or both variables on a determinate scale is

hopeless". (p. 39)

In the substantive examples to be presented in Sections III and IV, some

'of the many pitfalls associated with the use of correlations for causal state-

ments are illustrated. The. use of regression coefficients solves some of the

problem associated,with the stability of reported effects over differ pies.

.As Tukey (1954) noted, "We are very sure that the correlation cannot remain 'the

Sam

same over a wide range of situations, but it is possible that the regression

coefficients might" (p. 41). The regression coefficients.that possess the

desired stability are these of structural regression equations.

III. CONSTRUCTION OP CAUSAL MODELS

The construction of a causal model from aTreviously published develop-
-,

mental study, is presented to clarify the preceding,discussion-of their pro-
.

perties. Radin (1971, 1974) investigated antecedents of cognitive development

in lower-class children. Radin was primarily interested'in the effects of

_child rearing practices, maternal behavior in particular. Based on theoretical

and empirical studies Radin hypothesized that "maternal nurturance would foilTer
A

intellectual functioning of the child" (1974, p. 1126). Radin also considered

evidence that the motivation of the child to achieve is an intervening variable

in the relationship between maternal behavior and cognitive functioning.
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Radin's first hypothesis that,maternal nurturance would foster the child's

intellectual functioning can be represented as a relation between the constructs

Maternal Behavior and Cognitive Functioning as depicted in Figure 2a. The

2

arrow leading tc Cognitive Functioning indicates the hypothesized causal influ-

ence of Maternal Behavior on Cognitive Functioning.

The consideration of motivation to achieve as a mediating variable can,be

incorporated into the relationship described it Figure 2a. Figure 2b includes

the Motivation construct in the postulated causal ordering. The model in
t

Figure 2b exhibits the two causal paths by which Maternal Behavior may influence

Cognitive Functioning. The direct path connects Maternal Behavior and Cognitie

Functioning, and the indirect path involves the Motivation construct, as an
A'

intervening variable. Figure 2b is a representation of what is termed the

structural model, which expresses the assumed relations between the unmeasured,

variables. Unmeasu ed or unobserved variables arise when the measurable7vaila-
t

bles differ from th it theoretical counterparts. Unmeasured variables often .

are theoretical constructs which have implications for determining the relation-
,

ship between observables. Since theory is most often expressed in terms of

constructs and unmeasured variables, the structural model contains the statement

of substantive knowledge to be incorporated into the data analysis. Causal

models provide the machinery to relate theory and hypotheses.expressed in

, unmeasured constructs to observed variables.

Frequently the variables actually measured are thboretically unimportant

in their own right, but are taken as indicators of the underlying, theoretically--

significant constructs. As Tukey (1954) explained "a prime characteristic of

quantitative causal theories is that they include quantitative concepts which

are n6t all subject to direct measurement" (p. 40). The goal to make causal

t

- statements about the unmeasured variables from the observed relatiOns of the

indicators.
4
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TRe measurement model provides the link between the,constructs and the

indicators. Radin measured tvo indicators for each of the constructs in Figure

2b. The two indicators of Maternal Behavior were measures of warmth and

restrictiveness, obtained,during a one hour observation of interaction between

mother and child. The two indicators of motivation were part of the Pupil

Behavioral Inventory (PBI) and a psychologist's rating of the child's motivation

while taking the Stanford-Binet Intelligence Scale. For Cognitive Functioning

the two indicators used were the Stanford-Binet and.the Peabody Picture Vocal)-

ulary Test (FINT).

Insert Figure 2 about here

Figure 3 depicts the full causal model, combining the structural and

. 5...

measurement models, of Radin's investigation. The symbols 0 0 0 -(3 through
l' 2' 3' 1

refer to the parameters of.the causal paths which can be estimated from the
6§)

data. In pgure 3 the ei represent the part of the observed variable that is

notpartoftfleconstructitispresiledtomeasure.Thee.include measurement
if

_errorandotherinformatimirrelevanttotheconstruct.%Thee.tay
be thought

1

of as-the unique part of the ,oserved_variable. Often the ei are assumed to be

uncorrelated with each ()tiler. In Figure 3'a correlation between e4 and e5 is

allowed. This correlation is not-assumed to be zero because X4 and X5, measures

of Motivation and Cognitive Functioning respectively, are obtained on.the same

occasion, the-administration of the Binet. It is reasonable to expect X
4

and

S
.to be related- -for reasons additional to the presumed relation between Motiva-

tion and Cognitive Functioning. The ability to estimate models with correlated

errors is an important feature of the estimation techniques for these models

(See JOreskog E SOrbom, 1976a;, and Chapter this volume).
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a. Representation of the hypothekkzed causal

effect of tvtoteitral Behavior on the Cog

nitive Funttioning of the Child..

b. Representation of lthe three constructs

(unmeasured variables) in 'the pdstulated

causal ordering.

Figure 2 -- Representations of ,the causal relationship between
Maternal Behavior and the Cognitive Functioning of

the Child.
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The causal, model is equivalent to a series of regression equations with

the same paraieters as in Figure-3. The structural model is

X
8 1

X,
A

+ U

X = 3XTB +03 XA +V

The measurement .model is

X
1

= 6'X 4 e1
1 A

5 X + eX2 TA 2

X3 = 6
3
X
B,

+ e
3

X
4

= 64% e4

XS =
65XC-f eS

X6 = 6
6X

+ e
C .6

3

Insert Figure 3 about her

From these two sets of equations, relationships can be expressed strictly-

between the observables and the unknown parameters. These regression equations

are called the reduced form. To estimate the model, the constraint 61 7 63 =, 63 =

1 is introauced, which constrains XA,to be in the sate metric as X1,-Otc. This

constraint does not effect the generality of the analysis.

r

It should be noted that t14,usual multiple regression approach is inadequate

when multiple measures (indicators) of the same Construct are present. High

collinearity leads to the problem of the 'bouncing beta weight' and results in

theoretical nonsense (Gordon, 1968).

In this example the parameters B
2'

and 0
3
representing the causal

influence between the constructs, are of central interest. The direct influence

of Maternal Behavior on'Cognitive Functioning is,xepres.ented by 0
3.

The indirect

effect of Maternal Behavior on Cognitive Functioning, with Motivation as the

.
mediating variable, is the product of 01 and 62. The importance of Motivation
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Constructs (unmeasured variables) Indicators (measured variabres)

X
A !Maternal Behavior

X8 Motivation of Child

Xc- cognifive Functioning

of the Child

Figure 3 --

X, Maternal Warmth

X2 Maternal Restrictiveness

Motivation (PE31)

X4 -Motivation during Binet

X5 Stanford Binet Score

.X6- PPVT Score

Complete causal model of Radin's investigation
with constructs and indicators labeled.
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as a mediating variable can thus be gauged by the relative magnitudes of the

estimates of .0
3

and 0
S2.'2'

Radin's original analysis (1971, Table 2) did not produce conclusive

resulti on the importance of motivation. In the original analysis, using

partial correlations between the indicators, all of the indicators could not be

considered simultaneously. Causal model methods can estimate the relationships

between the unmeasured variables using all the data at once. A reanalysis

based on the present formulation (Rogosa, Webb, & Radin, 1976) indicated that

motivation is a very important, intervening variable for the influence of

Maternal Behavior on Cognitive Functioning.

The process of selecting the variables to be included in the model and

postulating the causal relationships of the included variables and the residual

terms constitutes the specification of the model. Mistakes in the specification

,such as omitting an important causal variable or incorrectly assuming that a

-

causal paVI`does not exist are termed specification errors. Duncan (1975a)

suggests ;flat specification - ,error' "is quite a useful euphemism for what in

blunter language would be called 'using the-wrong model'. There'are many more

wrong models than right ones, so that specification error is very common,

though often not recognized and usually .not easily recognizable" (p. 101).

In the Radin model, at least two measures of each,construct'were needed in

order to estimate the parameters in the model. This is the technical problem

of identification; a model is identified when all the causal parameters.are

uniquely Estimable from the data. Underidentification results when there is

not enough information to estimate certain causal uarameters.

For many constructs used in developmental research a single measure will

rarely be sufficient for valid measurement, and thus multiple indicators are

important for-both the technical concerns with identification and for the

substantive problems.of valid measurement. Baltes and Nesselroade (1973)

argued:
285306
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if one wishes to deal with more abstract concepts, such as patterned

change--change in the interrelationships among a variety of measures- -

then a multivariate approach is necessary. It is from the interrel-

ationships among measures (e.g., covariances), so often ignored in

developmental researgh, that we nay eventually extract the raw mater-

ial that can be efficiently molded into general, but powerful constructs

to-did the scientific study of development. A related point ii'that

when research interest centers on change in'more molar behavior

`patterns such as anxiety and ,aggression, no single variable can serve

as a perfect indicator of the target construct. The use of multiRle

indicators (measures) enables us to form some combination of measures

which "locates" the construct more precisely. (p._222)

The choice of multiple indicators is not always desirable, since it

-indicates the presence of redundant information and not necessarily an increase

in measurement validity, Detailed discussion of the choicetand interpretation

of multiple indicators may be found, for example, in chapters 7 and 8 ofBlalock

09741.

IV. LONGITUDINAL PANEL DESIGNS

One of the most common and useful designs for longitudinal research is the

longitudinal panel design where the same sample of units, is obterved,at more

than one point in time. Essentially, panel designs are a combination of time-

series and cross-sectional designs, with a cross-section (wave) being measured

at each time point. Typically, the number of cases in each wave is consider-
.,

eaably greater than the number of waves. Longitudinal panel designs are often

,employed to study reciprocal causation, Using "longitudinal,(or inteTtemporal)

variation to disentangle reciprocal causal effects" (Hannan & Young,1974, p.

2). Hannan & Young presented another use for panel designs:
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A closely related motivation for panel analysis arises from work with

'models containing unobservable variables. Such models confront

measurement and other analytic difficulties by inserting into structurel

equations models both measured and unmeasured variables. The use of

mobservables will ordinarily lead to probleMs of identification

unless strong restrictions are placed on the model. One possibility

that occurred to a number of sociologists is to measure the same

4

variables at multiple points in time,and presume that the causal

'relations under study are time-invariant. Under a limited number of

conditions this strategy leads to identification of multi-variable,

multi-wave panel models containing unobiervabies. The main.pointfor

,r!A

present purposes is that this use of the panel design uses temporal

variation to eliminate identification prpblems. (p., S)

The assumption that the causal relations under study ire time invariant

means thatthe configurations of the constructs are-assumed identical across

the different time periods. This is equivalent to an assumption of "explanatory`

continuity". "Explanatory discontinuity occurs when behavioral antecedents or

Mediating processes at one period of diivelopment differ from those at-another

period" (Huston-Stein E Bhltes, in press). In a causal model of a longitudinal

panel, explanatory discontinuity would mean that the causal orderings differ

among the waves, and a model assuming invariance over time would be misspecified

in some waves,. No, assumptions that the causal parameters are invariant over

. -

time is being made; the parameters are allowed to vary.

. Two-Wave Panel Designs

The simplest (although not the ideal) panel design is the two wave panel,

with observations recorded at two points in time. In the most popular and

widely discussed two-wave design, two variables* are measured at each time point'

tO8



7andthus the design is termed the two -wave- two - variable ,,panel (2W2V). The

representation of the causal model usually assumed for 2W2V panels is shown in

Figure 4. Some important restrictions are built into this model to allow estima-

tion of the parameters. Most important is the assumption that lagged causation

is e sole causal force; simultaneous causation between X
2
and Y

2
is ruled

out/. Also, the rJsiduals (disturbance terms) u and v are assumed to be independ-

en , and the variables must be measured without error. More general models are

2
considered by Duncan (1969, 1972) 'who concluded:

no set of 2W2V data will answer a qAestion about direction of causal

F.
r. X2 = BlX1 + y2Y1 + u

Y
2

= 12 X
1
+1,

1
Y
1

+ v

influence or relative importance of causes except on some set of

definite assumptions. If one wishes to avoid assumptions of the type

illustrated here, the only recourse is to expand the study design

beyong the limits of 2W2V (1969, p. 181).

Insert Figure 4 about here,

The configuration.in Figure 4. can be represented as a regression model:

vl

The parameters, 01% 02, yl and y2 are estimable by regression, and the esti-

Mated causal effects are easily interpreted, when the restrictions of the model

are satisfied.

A research example of the use of the 2W2V design is the investigation of

Crano, Kenny, and Campbell (1972) concerning the causal relationship between.

intelligence and achievement. The sLbstantive background for the study was

that:

The literature of cognitive development has produced two opposing

models of mental growth. One holds that the acquisition of concrete
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Figure 4 Representation of the causal model for
2W2V:panel. Assumptions built into this
model are no simultaneous causation,
measurements without error and uncorrelated

residuals.
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mental skills causes the later development of higher order organiza-

tional schema or rules. The contrasting model postulates a progres-

sion in which the initial acquisition of larger schema results in the

increased capacity to acquire new concrete skills. While both probably

operate to some extent, an attempt was made in this research to

determine the preponderant developmental sequence. (p. 258).

The research question was:

Does the acquisition of specific skills 'or the lean Ling of specific

information (Achievement) result in an increased ability for abst-

raction (intelligence), ar is the progression more ac ?urately desirib-

ed as one in Ohich intelligence Causes achievement, that is, does the

greater abilit7 to form abstractions result in a greater amount of

concrete infortiation being absorbed and retained? (p. 258-259)

The research design consisted of measurements of intelligence and achievement

at two points in time. The data are intelligence (Lorge-Thorndike) and achieve-

}

went (Iowa Basic Skills) test scores of children attending the fourth grade in

the academic year 1963-4 and the same tests given two years later to the same

students. If the requited assumptions were made, the data can be entered into'

the model of Figure 4 (with X as Intelligence and Y as Achievement), and the

causal parameters, estimated. Crano et al. did not perform a causal model

analysis of their 2W2V data, but instead employed the method of cross-lagged

correlations discussed below.

In the education and psychological literature, much attention has been

given to cross- lagged correlations as a means for inferring the'direction of

causal influence. In Figure 4 the cross-lagged correlations are rx and
1 2

rY X
If rX Y

> r
Y X

the suggested interpretation (Campbell, 1963) is that

1 2 1 2 1 2

X causes Y. Although the cross-lagged procedure has come under sharp attack

(Duncan 1969, Goldberger 1971) its use is still widely recommended (e.g.,

11
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Clarke - Stewart 973; 1975; Hugton-Stein & Baltes, in press). Goldberger charged
.

.
.

.-. .1. ,

f ,that the- justificatfonufthe cross-lagged correlation method is based not, ono
.

'evidence but on "intuition,,huncn, and plausibility, which are hardly persua-

t ,
. _

.

sive" (197r, p. 102).. A superiqr method for inferring the direction of causal

>
.

,
_ ,

influence is to estimate the parameters .ot' the causal model (Figure 4) which

.

,
,

have direct interpretation.t

4 The cross-lagged correlations are a complicated function of the causal

0

parametersR,a,y,y It is easy to construct cases yhere cross-lagged
1 2 1 2

.

correlations give exactly tl wrong answer; that is lead to the inference that

the direction, of causality is opposite to that in the underlying model. For

example in the causal =model (Figure 41'let all variablet have unit variance and

let the true values of the causal parameters-be a 5 0.9, a = 0.3, y1= 0.1,

= 0, and r = 0.6. Thus the underlying causal influence over time is in
2 X

1
Y
1

.g the direction'of X causes, Y. The cross-lagged correlations are r = .36 and
X
1
Y
2

.r
Y X

= 1-54, and the conclusion would be that Y causes X. This example is not

. 1 2 ,

just 4 mathematical aberration; large differences in stability of the two

measures are common, for example, in research on mother-child interactions (see

.
ClarkerStewart; 1973) and will cause the cross-lagged analysis to break down.

Estilation of the underlying causal model is preferred to developing a special

theory of crosslaggedCorrelations.
, .

'B. Complications in 2W2V model

As Duncan (1972) sagely observed, it is unreasonable to expeCt "that in

panel analysis the usual obstacles to inference and estimation are suspended

for the benefit of the analyst" (p. 37). Two major obstacles are measurement

error and specification error. Their consequences for analysis are discussed

below in the context of the 2W2V design. The consequences of violation of

assumption and the consideration of alternative models is, applicable to all

causal models.
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A 2W2V model with measurement error is shown in Figure 5. The causal

influences are presumed to be transmitted through the true scores X*, Y* which

are unmeasured. Because additional parameters must be included in the model to

represent Alie'measurement error there is no longer enough information from the

observables to estimate the causal paths, and the model is underidentified. The

problems with cross-lagged correlations are naturally increased when the varia-

L
bles are 'measured with error. Wiley and Hornik (1973) argued cogently against

their use:

(.

Comparison of cross-lagged panel correlations was the first widely

advocated non-experimental technique for the attribution of causality

to quantitatively scaled variables in social-psychological research.

In addition to the lack of a clearly stated statistical model, one

universally recognized weakness of this technique is its serious

distortion by commonly occurring measurement errors. One especially

distorting event is systematic change in the reliability of variables

over time. Such events occur, for example, when a true variable's

variance changes, although the quality of the measurement remains the

same. This is nearly always the casR when any change in a true

- variable takes place (Wiley & Wiley, 1970). Theefore, it is

difficult to justify the use of [this] technique in typical social

research settings. (p.2)

Insert Figure 5 about here
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Figure 5 -- Representation of a 2W2V design with measurement
error. In addition to the previous Assumptions
for 2W2V panels the measurement errors (e,) are

assumed uncorrelated. Howey.eT,_.' the causal param-

eters' of interest $
l'

$
2' '

y ,.y2, -which-which represent

the causal influences between the unmeasured true
scores, cannot be estimated without additional-

information.
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If independent estimates of the reliabilities are not available, the

additional information needed to estimate the model may be obtained by two

strategies: increasing the number of measures of each variable at each point

(Wiley &illornik, 1973) or increasing the number of time points to three (Heise,

1969). Wiley and Hornik (1973) explain the use of duplicate measures represent-

.

ed-Figure 6:

We suggest expanding the number of measures of each variable at each

z

point. Two measures of each variable at each time point produce

enough additional information to allow the calculation 'Of'all the

quantities in a quite general two-time point model. (p. 8).

Insert Figure 6 about here

Specification error occurs when the postulated causal model is an incorrect

representation of the actual (psychological) process. A commonly considered

form of specification error in panel analysis is the existence of a common

factor .causing both the X and Y variables (Duncan 1972; Kenny, 1973). Duncan

presents many examples of specification errors due -to omitted causal influences

and correlated errors. Clearly, numerous ways exist for assumptions to be

violated. One example presented by Duncan (1972, p. 56) is adapted as Figure

7. The data reported by Jareskog (1973a, see also Chapter this volume) are

. r -

test results in mathematics' and science taken in the fifth and seventh grade.

It may be reasonable to posit that a common factor (F) is the sole causal

agent the observed test scores are related only through the common cause. An

analysis based on the model in Figure 4 when the model inigure 7 is_the
xY

.
t

correct-one will yield misleading results. Many

specification error in longitudinal panel models

(1972, 1975a) and Jeireskog and Seirbom (1976a).

2941,
01,
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Figure 6

r

A 2 wave 2-variable 2 indicator (2W2V2I) model. The

duplicate measures of each causal variable allow
estimation of the causal parameters; 81; 82, Y1, Y2.

295316
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Insert Figure 7 about here

C. Multiple Wave Panel Designs

In. developmental research, more than two waves of observations are usually

desired on substantive grodnds. Multiple waves have the added advantage that

they allow estimation of parameters under less restrictive assumptions (Hannan,

---:-

Rubinson & Warren, 1§/41. However, as might be expected,, multiple waves of

observations make model specification and estimation more complex. To illus-

trate the use of panel designs, two studies:in which the investigators attempt ''4

cl'to make-causal statements-from longitudinal data are formulated, as causal
. .

'models. The original analyses are discussed so as to point out the advantages

of.causal models in design and analysis.

Clarke-Stewart (1973) xollected* data on 36 mother-child dyads over a nine-

month period, tracing the children from age nine months to 18 months. Repeated

observations of the mother-child dyadsiwere made both in natural settings (the

home) and in a variety of standardized or semistructured (test and laboratory)

situations. Clarke-Stewart began her longitudinal study by identifying as one

of; the problems of method in child:development, research that "in the past,

studies have seldom been longitudinal in design, awd when longitudinal, mat-
....

ernal behavior' has often been measured at one time and infant performance at

another, consequently not permitting the analysiD of causal relationships" (p..

.8). Since the mother-child interaction is certainly an instance of reciprocal

causation, longitudinal designs may allow the untangling of the reciprocal

causal influences.

The portion of the total data which Clarke-Stewart used to make clausal

inferences (see 1973, pp. 82-91) corresponds to a three wave longitudinil panel

with waves at the child ages of 11, 14 and 17 months. Most of the attempts at

7



1

. 1

Figure 7 -- An alternative causal structure for the 2W2V
design. All the causal influence is carried
by the common factor F.
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causal explanation used data from only the first and third waves. For all

causal statements Clarke-Stewart used the method of cross-lagged correlations.

5

One instance in which she considered all three waves is illustrated in Figure 8

where the causal influences of maternal attention and the child's attachment to

the mother are examined. A's can be seen in Figure 8, Clarke-Stewart considered

the three wavesof data as two two-wave pieces. The somewhat ambiguous causal

conclusion drawn from the two sets of cross-lagged correlations is

At Times 1-and 2 the cross-lagged correlations for infantThttachment

'and material attention suggested that-maternal attention was causing

, an increase in infant attachment. From Time 2 to Times 3 howeyer, the

.cross-lagged correlations implied the opposite: that infant attach-

ment was causing maternal attention. This finding suggests the

possibility that, as mother and child search for harmonious, balanced

interaction over the course of development, first one then the othen

assumes the "causal role. (p.91)

Insert Figure 8 about here

A causal model of the 3W2V panel is shown in Figure 9. The panel model in

Figure 9'allows doubly lagged causation between waves one and three between

. variables but not withinvariables. Labouvie (1974) would term this-model a

between-domain distal-within domain proximal model. A causal model analysis of

-these three-wave data is certainly more attractive since it would use all the

data at once as,opposed to breaking the longitudinal data into two separate two

,wave sequences. Also it might be expected that analyzing all three time

periods at once would alter the original conclusions, especially if there were
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MT = Maternal Attention to Child at Time T

CT = Child's Attachment to Mother at Time T

Figure The 21i2V configuration, with the cross-lagged

and synchronous correlation exhibited, of a.

three wave design, (Adapted from Clarke-

Stewart, 1973).
. I

)
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any appreciable direct causal effect between wave one and wave three; represented

by a.
4
and y.

4
in Figure 9.

. .

Insert Figure 9 nbout here

O'Mally and Bachman (1976) reported an eight year longitudinal stud, in

which the relationship between self-esteem and success Was investigated. Measures

of self-esteem were collected at five points in time oh 1600 young men over an

eight year period (1966-1974)-beginning when the subjects entered tenth grade

through five years after graduation. Success was measured once, y level of

occupational and educational attainment in 1974. Many other varia les were

measured across some or all of the five waves: status of aspired occupation at

aIl waves, grades at the first three waves, and background measures,of'ability

and SESat the first wave. The design was not strictly a longi.tudiiial panel

since the major outcome variable, success, was only measured at the final"wave.

Therefore,.the reciprocal relationship between self-esteem and success (attain-

ment) may be difficult-to unravel.

O'Mally and Bachman distinguish three logically independent patterns of

causation between self-esteem and attainment: (a) that self-esteem contributes

directly to attainment; (b) that attainment contributes, both indirectly and

directly, to heightened self-esteem; and (c) that some of the underlying

determinants of self-esteem are also impoitant determinantsOf attainment

(e.g./ academic ability, past educational accomplishments and family socioe- .4

conomic level).

These three patterns of causation, which may be responsible for the

observad relations between self-esteem and success, can be represented:
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X2 = pi xi + 73, + e,

'X 3 = P2 X 24,y4 + 75 Y2 +I e4

Y2 = ,+ P3-47XI +e3

Y3 Y2+ /34'XI
+Q5 X24- e5

Figure 9 -- The 3W2V design of Clarke-Stewart41973) with

the causal parameters and structural regression

equations shown. The X variables are Maternal

Attention to the Child and the Y variables are

the Child's Attachment to the Mother.
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(a) Self- Attainment

.esteem

(b) Attainment Self-esteem

(c) Background

Variables

Attainment

Self-esteem

The analysis of these causal sequence, is based entirely on correlations.

?To illustrate some of the problems,with the analysis, consider the correlational

analysis O'Mally and Bachman (1976) proposed for the second suggested causal

sequence, that attainment (their B), causes self-esteem (A). Twb of their

peitinent hypothses were:

,Hypothesis 2a. Later self-esteem is positively correlated with

Attainment, after statistically controlling background and ability

and also earlier self-esteem (based only on B causes A).

Hypothesis 3. Attainment (five years after high school) is more strongly

correlated with later self-esteem than with earlier serf-esteem. This

hypothesis is based-on B causes A. (p.8)

Figure 10 represents a causal model of the relationship of self-esteem and

attainment, relevant to the above hypotheses.

Insert Figure 10 about here

Figure 10 shows that the O'Mally and Bachman hypothesis that B causes A is

equivalent to postulating a,nonzero value of y. However, a positive-value of

$, would cause the correlation between self-esteem at time point 5 and et-'

tainmeht, with earlier self-esteem held constant, to be positive even when

y is zero. Therefore Hypothesis 2a is not "based only on B causes A." By the
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Figure 10 A causal model of esteem and attain nt patterned after
the 01Mally and Bachman (1976) data. re

self-esteem at the five time points. Y is the attainment
(success) construct with indicators Y = educational
attainment, Y

2
= occupational attainment. The causal

paths andqmrameters of the causal relations are shown.
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same logic, if01, 82, B4,134 were zero in Figure 10, then attainment would be

more strongly correlated with later self-esteem (Xs) than with earlier self -

esteem for any nonzero values of y and Hypothesis 3, then, is also not

properly tested when correlations are used in place of estimation of y. The

correlations confound the effects of a nonzero y with other causal configura-

tions. Because plausible alternative explanations exist for the correlations

that 01Mally and Bachman posit as proof of their causal hypotheses, Hypotheses

2a and 3 are not logically sound representations of the causal structure.

In addition to the previously discussed problems with correlations as a

-" t
measure of causation, there are important ones associated with standardizatior

Wiley Wiley (1970) and Tukey (1954) among others warned against using standard-

ized measures for causal statements. It is unreasonable to expect variances to

remain constant over time; in fact the increase over time of interindividual
40-

differences in development implies an increase in variance. But a change in

the variance of, say, self-esteem changes. the correlation without necessarily.

affecting'the strength of the relationship. 4

Furthermore, aside from the inadequacies of correlations in this context,

without repeated measures of attainment over the waves of otservations, O'Mally

-and Bachman are not able to disentangle, unambiguously the reciprocal causation

between self-esteem and attainment. Perhaps grades could have been vied as

proxy for attainmentjn the earlier waves, in order to evaluate causal influenc-

es from the available data.

D. Distal Causation all4 Causal Lag

The question of the proper degree of causal lag has frequently appeared in

.4"-

the causal mod61,s that .6;:re been considered. For example, in the 2W2V model's

simultaneous causation'was ruled out; consequently, the proper causal lag was

...., :-

assumed to be one timeperiad (see Figure 4)% In multiwave models such as
At 1

II

11
.

Figure 9 (Clarke-StewaWs=3W2V design), a variety of causal lag patterns are

4

n
. .*.
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possible., There may be direct effects from time 1 to time 3 both"within and

between the variables, in addition to simultaneous effects. In the OiMally and

achman example, a number of different indirect and direct causal lag patterns

are possible.

A major concern of life-span,psychology is establishing long-term causal

relations. "Since, life-span research deals.most explicitly with the analysis

of long-term phenomena and chains, it has been forced to attend to the issue of?

structuring time-lagged relationships and performing distal-cause analyses

(Huston -Stein kites, impress, p. 11). Often the results of the causal

model analysis of the time-lagged relationships depend on the kindS of causal

'-lags bait into the-model. Unfortunately, developmental theories which would

be th"best guide to the proper kinds of causal_ lags to incorporate in the

model offer little guidance in most situations. The majority of longitudinal

panel models postulate single.period causal lags or equal lags across multiple

_waves. An exception is an analysis by Hannan et al. (1974) whose 3W2V model

hos.a two-wave causal lag in one direction, and a one-wave lag in the other

direction.

V. SUMMARY

This chanter has involved consideration of some methods for making causal
-

statements in developmental research. In the study of development and growth,

longitudinal designs should be used.' Cross-sectional designs will give conflict-

ing (and misleading) evidence over replications, and can yield little informat-
.

ion On the causal dynamics.of development. Fiom practical necessity and far

ecological validity the longitudinal designs will often be nonexperimental and

naturalistic. Additional knowledge from substantive theory and empirical

evidence may be profitably incorporated into the data analysis of such designs

through the use of causal models.
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Causal models are presented as an attractive vehicle for the formulation

*
of well-specified theory in an empirically testable form. The construction of

causal models is a two-stage procedure involving the structural model which

specifies the relations between the theoretically imp,#tant constructs and the

measurement model which related unobserved constructs to their observable

measures. The construction of a causal model frOm a substantive study Must-
s.

rates the usefulness of multiple measures of constructs inthe estimation of

causal effects.

Longitudinal panel designs combine features of cross-sectional and time

series designs in that waves of cross-sections, containing the same sampling

units, are measured at two or more time points. A strong feature of panel

designs is their ability, in certain situations, to separate reciprocal causal

influences between two or more variables, which is in general impossible with

cross - sectional data. The two-wave two-variable (2W2V) design has been widely

used for this purpose. A formulation of the 2W2V design as a causal model

reveals that highly restrictive assumptions are necessary for estimation of

causal influences and for the desired determination of which variable causes

the other. The popular method of cross-lagged correlations is, shown to be

undesirable; direct estimation of the relevant causal parameters is always

preferable.

Two major technical problems associated with causal models (and with

almost all analysis techniques) are measurement error and specification error.,

However, multiple indicators of the fallibly measured constructs may, in many

instances, allow unbiased estimation of the model. Specification errors arise
1.

most often when'important causal variables are omitted from the model and cause
1 ,

the estimates of the causal influences between the included parameters to be

biased. Some common forms of these two obstacles to estimation are_ illustrated
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401* 327



for the 2W2V design. Technical issues in estimation are treated in another

chapter.

The more powerful multiwave panel designs are described by formulating

causal models from two substantive longitudinal studies. The use of correla-

tions in these studies to support causal, statements is criticized.

Causal models specify on an a priori basis how thesame cOrrelations'might

have arisen from a variety of-causal mechanisms. The value

then, lies in their incorporation of substantive theory ind

--N

on post hoc interpretation of coxrelAional data
C

k
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ABSTRACT

This,-chapter deals`- with,statistical methodological problems in the

analysis of data from,large longitudinal studies where the same or

similar quantitative measurements have been obtained at two or more

occasions, possibly from several. different groups of people. Several

Omodels are developed for a wide range of applications for psychological

and educational measurements. The..problems of model specification,

statistical identification, estimation and testing are discussed. In.

particular; the chapter focuses on the following problems: (i) the

estimation of growth curves under auto-regressive models; (ii) the

,treatment of measurement errors- in observed variables; and (iii) the

scaling of latent variables,. Several examples are given illustrating .

4

the assessment of fit of a model and data- analytic strategies for

model 'modification:

310
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I. Introduction

The characteristic feature of a longitudinO.research design

is that the same measurements are obtained 'from the same people at

c:two or more occasions. The,purpose of a lOngitUdinal or panel

study is to assess the changes that occur between the occasions

and to attribute these changes to certain background characteristics

and events existing or occurring before the first occasion and/or to

various treatments and developments that occur after the first

occasion. A schematic illustration of a two-wave longitudinal design

is given in Fig. 1. Earlier' chapters of this volume have dealt with

the conceptual and substantive issues and with the logic of causal

model building in longitudinal. research in developmental psychology

and education. Other chapters have dealt with specific methodological

problems. Wiley and Harnischfeger (1973) have given an account of the

conceptual issues in the attribution of change in educational studies.

In the sociological literature there has been a number of articles

concerned with the specification of models incorporating causation and

*measurement errors and the analysis of data from panel studie4-(see

e.g. Bohrnstedt,,1969; Heise, 1969, 1970; Duncan, 1969, 1972,'1975b).

Other papers dealing with methodological problems are Lord (1963),

Thorndike (1966), Harnqvist (1968), Cronbach and Furby (1970) and

Bergman (1971). Complex models involving multiple measurements and/or

several occasions have been considered by Harris (1963), Jdreskog,(1970a),

Corballis and Traub (1970), Nesselroade (1972), Corballis (1973),

Bentler (1973) , Frederiksen (1974), JUreskog and gOrbom (1976a-b)

and Olsson and Bergman (1977).

Insert Figure '1 about here
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Figure 1 -- Schematic 'representation of a two-wave longitudinal design.
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O

In this paper we consider several models suitable for analyzing

longitudinal data and deal with problems of model specification and

statistical- identification, estimation and testing. The general

setup ,is . that of a longitudinal study where the same or, similar.

quantitative measurements have been obtained at two or more occasions,

possibly from, several different groups of people. The models cover
1

;

a 'wide range of applications and are relevant for psychological and

educational measurements as well as for social and socio-economic
,

measurements.

Section III considers the measurement and assessment of change

at the group level. It dei',1s with the estimation of growth curves.

011rwo*

describing the means of the variable's as functions of time. This

40
section also considers various auto-regressive or first-order Markov

models that occur naturally in repeated measurements. In thii section

we treat the variables as errorfree.

One of the most difficult problems for asocial scientist, when

it comes to the formulation of a causal model, arises because many of

the concepts and constructs that he/she wants to work with are not

400
directly measurable (see e.g. Torgerson; 1958, Chapter 1, Goldberger,

1972, Duncan 1975a, and Heise 1975). Although such hypothetical

concepts and constructs, or latent variables, as we shall call
---

them, cannot be directly measured, a number of variables

can be'used to measure various aspects of these latent
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variables more or .1,:tss accurately. Thus, while the latent variables

cannot be directly observed, they have operational implications for

,relationships among observed variables. We may regard the observed

variables as indicators of the latent variables. Each indicator

has a relationship with the latent variable, but if we take one

indicator alone to measure the latent variable we would obtain a

biased measurement. By using several indicators of each latent

variable we get a better measurement of the latent variable .

Another reason for using latent variables in behavioral and socioeconomic

studies ds Ahat,most of the measurements employed contain sizeable

errors of measurement (observational errors) which, if not taken

into account, can cause severe bias in the results. Errors of

measurement arise because of imper.fection in the various measurement

instruments (questionnaires, tests, etc.), that are used to measure

such .abstractions as people's behavior, attitudes, feelings and

motivations. Even if we could construct valid measurements of these it

is usually impossible to Obtain perfectly reliable variables. Special

care must be taken to obtain measurements that really measure the

latent traits or hypothetical constructs that one is interested in

measuring. Various models with latent variables are considered in

sections IV for two-wave situations and in section V for multi-wave

situations.

. A common experience in two-wave longitudinal studies.is that the

initial status is the best determinant or predictor of the final

status (see e.g. Lord, 1963). Therefore, if one is interested in



attributing change to certain background variables one must find

some may of effectively eliminating the initial status from the

final status. This has been taken to mean that one should study

difference scores (final scores minus initial scores). However,

this is not necessary; the important thing is that both background

variables and initial measures are included in the model as

determinants of final measures. In multi-wave studies one can

determine the effect of the background variables on the dependent

variable at various pointin time. Most of the models introduced

in sections IV and V are considered both with and without background,

variables.

Often it is not possible, or even desirable, to specify the

model completely since there may loe other models which are equally

plausible. In such a situation it is necessary to have a technique

of analysis which will give information about which of a number of

alternative models is (are) the most reasonable. Also, if there is

sufficient evidence to reject a given model due to poor fit to the

data, the technique should be such as to suggest which part of the

model is causing the poor fit-. Several examples will be

given illustrating .
the assessment of fit of a model and

strategies for model modification.'

a In presenting the various models it is convenient to use a path

diagram. In this path diagram observed variables are enclosed in

squares whereas latent variables are enclosed in circles. Residuals
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(errors in equations) and errors of measurements are included in

the diagram but are not enclosed. A one-way arrow pointing from one

variable x to another variable y indicates a possible direct

causal influence of x on y , whereas a curved two-way arrow be-

tween x and y indicates that x and y may correlate without

any causal interpretation of this correlation being-given. It is

4 'A

convenient to write the coefficient associated with each arrow in the

path diagram. When the coefficient is omitted it means that.it is

one. For one-way arrows such coefficients will be (partial) regression

coefficients (path coefficients) and for two-way arrows they will be

covariances. In the special case When all observed and patent variables

are standardized, these coefficients will be correlations. With these

conventions it is possible to write down the model equations from the

path diagram. In order to define the model completely it is only

necessary to specify the assumptions about the origin and unit of

measurement of the variables involved and the distributional assumptions,

if any.
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IL. Computer Programs

All the modelOaonsidered in this chapter may be estimated by

means, of three cOmpdier programs: ACOVSM by Joreskog, van.Thillo

and Gruvaeus (1970), USREL by Jbreskog and'SUrbom (1976c) and

COFAMM by Sbrbom anciJOreskog (1976): The general models .on

which these programs are based are described briefly here for

future reference. For each model introduced in later sections of

this chapter it will be Shown how this is a special case of one

of the models presented here.

A. ACOVSM

The ACOVSM model considers a data matrix X(N x p) of Nbbserva-
..

tions on p variables and assumes that the rows of X are independently

distributed, each having a multivariate normal distribution 'with-the

same variance-covariance matrix Z. It is assumed that

E(X) = AEP, (1)

where A(N x g) = (aas) and P(h x p) = (pti) are known matrices of

ranks g and h, respectively, g < N, h < p, and E(g x h) = (t
st

) is

a matrix of parameter: and that E has the form

E = B(AOA' + I'
2
)B + o2, (2)

whore the matrices B(p x q) = (Si k), x r) = (Akm), the symmetric

317

339



matrix' 0(r x r) = Nn
), and the diagonal matrices V(q x q)

(6k1/1)k)

and. 0(p,x p) = (6ii8i) are parameter matrices. Sii denotes the
_ ., .

.

Kronecker delta, which is one if i= j and zero otherwise.

Thus the general model is one where means, variances, and

0

covariances are structured in terms of other sets of parameters that

*

are to be estimated. In any application of this model, p, N, and X

will be given by the data, and g, h, q, r, A, and P will be given by

the particular application. In the special case when both E and

E are unconstrained; one, may test a sequence of linear hypotheses

of the form

CED = 0 , (3)

where C(s x g) and D(h x t) are given matrices of ranks s and t,

respectively.

For further information about the ACOVSM model and its uses see

JOreskog (1970c, 1973b).

B. LISREL

The LISREL model considers.random vectors n- = (ni, n23..., nm)
,

.., ,

and k-= (1, cl) of latent dependent and independent variables,

respectively, and the following system of linear structural relations

' Bn'= (4)

where B(m x m) and r(m x n) are coefficient matrices and

4
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c' (c
1' 2' _

...,C
m
) is a random vector of residuals (errors in

_

equations, random, disturbance terms). Witholut loss of generality
.

it may be assumed that E(n) = E(c) = 0 and E(g) = 0. It is.

furthermore assumed that c is uncorrelated with g and that B

ss

. is nonsingular.

The vectors:, n and g are not observed but instead vectors

y' = (yi, y2, ...yp) and x' (x1, x2, ...x q) are observed, such

that

y = A
yn

c

where e and 6 are vectors of errors'of measurement in y and x,

respectively. y and x are assumed to be measured as deviations from

their means. The matrices A
Y
(p x m) and A

x
(q x n) are regression

matrices of y' on
. , .

n and of -x on g, respectively. -It rs-conr

.Venient torefei to y and x as the observed variables and n and

as the latent variables. The errors of measurement are assumed to

be uncorrelated with the latent variables.

Let 0 (n x n) and Y(m x m) be the covariance matrices of g

and c , respectively, and let 13 and 6 be the covariance matrices
_e _6

of e and 6, respectively. Then it follows, from the above.assumption,

that the covariance matrix Ef(p + q) x (p + q)] of z = (y",x')' is

9
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E .=

1

A W(B-1FB--1 + B-17B--1)A' + A
yB

lror

(7)

A
x
or'13-

-1
A'

--- _y
A OA' + 0
x__x e

The elements of E are functions of the elements of A A B,

I', o, 0 and 0
e 4

. In applications some of these'elements area

,

fixed and equal to assigned -values, in particular, thil is so for

elementi hit
y'

Ax, , If and F. There is no requirement that m< p, n < q

land
that 0

e
and 0 be diagonal as in traditional factor analysis.,,

The only requirement is that -E in (7) iWnonsingular,and%that-the

model is identified (s ee section -ILE):

There are several options available to-the use to choose various

special cases of the zeneral mVel. Probably the most important or

these options is the "n6 x'! ption, the pecification or

a model in- which thele is no x. Then, the whole- equation (6) is

missing, so there is no (5, Ax, (I) and O. In_this,case, equation :

should be interpreted as
,.--

.

f
,,,

...;

Then the only vector of observed variables is

matrix of y4S x p), is

-144
E A II-1W - lA

+ 0 --1
_y- _y _e

y

The only parameter matrices are t
Y1

B, ' and 0
e)

J

a.
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The measurement model part of the general model, as given by

(S) and (6), specifies how the latent variables

are measprea in terms of the observed variables. This is

used to describe the measurement properties

tits) of the observed variables. The structural equation. model part

of the general model, as given by (4), specifies the causal relation-

_ships assumed to hold among the latent variables. This is used to

describe and-assess the causal effects and,to estimate the amount of

unexplained variance in the dependent variables. 1n order to assess

the causal-effects it is necessary that the units of measurement tin the

1

latent variables be defined in'a natural way. This can often be

done by specifying the unit of measurement to be the same as in one

of the observed variables. For further information,about,LISREL

and its uses, see. Joreskog (1973a, ,1976) and JUreskog and Sorbom,

(1976a-c).

C. C0FAMM "

The COFAMM mSdel assumes that we have'measurements,from several

independent groups of individuals possibly with different mean vectors

and covariance matrices. It is assumed that p variables have been

,
measured in a random sample of individuals from.each population.

Let'

=z g

be a vector of order, p, representing the measurements

. -
obtained in group g, g=1,2,..., G. We regard 1

g
as a randob vector

...

with-mean vector' p
g

and covariance matrix E . It is assumed that a
_g

.
4,1,

factoranalysivmodel holds in each population so that 1 can be accounted
A t ,./

. ..
. . / . ..

for by k common factors -f
g

'and p unique factors or residual :4, as
... ...

_

zg = vg +A
g
f

gg
+ e.,-- _

3.4 3
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,..

where- v
g

is a pxlvector of locatiOn Parameters and A
g

a pxk

parameter matrix of factor loadings. It is assumed that E(e
g
) = 0

`

and E(f
g
) = 6

g
, a kxl parameter vector and that e

g
and f

g
are

uncorrelated. These assumptions imply that the mean vector n ofg,/
Za is

=v +AO
-g _g -gg

and that the covariance matrix E of z
8

is

E = A A' + T
_g _g_g_g _g

(10)

where 0
g

is the covariance matrix of f
g

and 'Y is the covariance

matrix of e
..g

Concerning the specificatiofi of parameters v and A there
-g -g

are several options. The most important of these is the specification

of invariance over groups, i.e.,

hv2 =vG

A = A = = A
1 2 ...G*

e.

This makes it possible to estimate the 8g, g=1,2,..., G on a

common scale. For further information about COFAMM and its uses, see

JOreskog D.971), Sdrbom (1974) and Sorbom and Joreskog (1976)..

D. Fixed, free and constrained parameters

IC

In all three models and computer programs, some elements of any parameter

matrix may be fixed and equal to assigned values. Forrthe remaining nonfixed

elements of the
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'pa ameter matrices one or More subsets may have identical but

unknown values. Thus each element in any parameter matrix may be:

(i) a fixed parameter that has been assigned a given value,

'') a constrained parameter that is unknown but equal to

\ one or more other parameters or

(iii) a free parameter that is unknown and not cons ra ed to

equal to any other parameter.

This results in\great generality and flexibility in that many different

. kinds of models may be handled. The three models and the progis

cover a wide range of applications.in the behavioral and socia"t. sciences.

E. Identification of parameters

The general models described herand those that Will be considered

in later sections of this chapter .are all of. the following form. The

4

distribution of the observed variables is multivariate with mean

vector p(0) and covariance matrix E(0) both being functions of

parameters 9'= (0
l'

8
2

..., 0
s
) whickare to be estimated from

data. '/It is assumed that the distribution of the observed variables

is sUfficiently well described by.the moments of first and second

/

,/

order, i.e. by the mean NectOr p and the covariance matrix E, so that
- -

information about 0 contained in. moments of higher order than the Second

May be ignored. In particular, this will hold if the distribution is

i
multivariate normal. ,

In general the parameters in 0 may be of three kinds

/

/

A

(i) those that are involved in both p and E

(ii) those that are involved in p only,

(iii) those that are involved in E only.

323
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Let 0 0 and 0 be,vectors with these'three types of
1' 2 3 /-

parameters, so that 0 . (8 6'
'

0:). A' special case is when
' 2...)

0
1

is empty as in ACOVSM and LISREL A further special case is
\ .

when 0
1

is empty and the transformation u(62) ) is one-to onelas in
- -

,

LISREL. Then the mean vector u is unconstrained and the only,

restriction is on E . Another special Case is when 01 is

empty and the transformation E(63) is one-to-one,. Then E is un-

constrained and the only restriction is on. ur
_

Before an attempt is made to estimatethe parameters 8 the

identification problem must be resolved. The model is said to be

identi.fW if !I 62 implies that fil(!1); (E21) = 6(!2),

i.e.,(if (u A is generated by one and only one 0 . However,

even if the whole model is not identified some parameters in 0

...x.,- can still be identilied. Consider the set 0 of all 0' generating-
\

, -

ihe same (u,E). If a parameter Oi has the same value in all, vectors

0 e 0 then e
i

is said to be identified. For parameters which are

identified it is usually possible to find consistent estimators.

'If a model is not completely identified, restrictions must be imposed

on .0 to make it so. If a parameter is not identified it is not

possiblle to find a consistent estimator of it.

Identifiability depends on the choice of model and on the

specificatiOn of fixed, constrained and free parameters. TO examine

the identification problem consider the model equations in the form

ui = f. (0)

(12)

ajk= gjk(9' j < k

where fi .
and ak rare continuous non-linea unctions of 0.

c'
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If, for givenl.0 and E, a parameter O can be determined from

u and E , this parameter is identified; otherwise it is'not.

Often some parameters can be determined from E and/oru in different

ways/ This gives rise to overidentifying conditions on E and/or u

wh ch must hold if the model is true.. The solution of (12) is often

complicated and tedious and explicit solutions for all 0's seldom

exist.- It is sometimes difficult to determine whether or not a

parameter is identified and whether or not the whole model is

identified. Fortunately, however, there is one way in which the,

computer programs checks the identification status of. the model.

At the starting point of the iterations, the program

computes the information matrix (see e.g., Silvey, 1970) for all the

independent unknown parameters. If this matrix is positive definite

the model is identified. On the other hand, if the information

matrix is singular, the model is not identified. If the information

matrix is inverted by the square. root method and the n:th pivotal

element is zero or negative, this is an indication that the n:th parameter

is not identified.

F. Estimation and testing of the models

Once the model has been specified to be of tha form suitable for

any of the three programs ACOVSM, LISREL and COFAMM, these programs

0

maybe used to estimate the model from data. This is done by fitting

11(0) and E(8) to the corresponding sample estimates z , the sample mean

vector, and- S, the sample covariance matrix. The fitting function is
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1

F = N[loglEI + tr(SE 1) + (z -t) E
-1

(z -p) logISI - p]

where p is the .number of observed variables. F is minimized with res-

pect to 0. This gives maximum likelihood estimates if the distribution

of the observed variables is multivariate normal. Standard errors may

be obtained for each estimated parameter by computing the inverse of

the information matrix at the minimum of F.

The minimum value of F provides a x
2
-goodness-of-fit measure

of how well the model fits, the data. This maybe regarded as a large

sample x
2

test.of the specified model against the most general

alternative model that both p and E are unconstrained. The degrees

of, freedom for this test is (1/2) (p + 1) (p + 2) - s, where p is the num-.

ber of observed variables and s is the total number of independent

parameters estimated under the model. If
/
p is unconstrained, the

degrees of freedom is (1/2)p(p + 1) - s.

Suppose Ho represents one model under given specifications of

fixed, free, and constrained parameters. Then it is possible, in large

samples, to test the model Ho agast any more general model H1, by

estimating each of them separately and comparing their x
2

goodness-
.

of-fit values. The difference in x
2

is asymptotically a x
2

with

degrees of freedom equal to the corresponding difference in degrees

of freedom. In many situations, it is posM.ble to set up a sequence of

hypotheses such that each one is a speciai case of the preceding and

to test these hypotheses sequentially.

In a more exploratory situation the x
2
-goodness-of-fit-values

can be used as follows. If a value of x
2

is obtained, which is

large compared to the number of degrees of freedom, the fit may be
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examined by an inspection of the magnitudes,of the first derivatives

of F with respect to the fixed parameters. Often such an inspection

of the tetults of analysis will suggest ways to relax the model

somewhat by introducing more parameters. .The'new model usually

yields a smaller x
2

. A drop in x
2
which is large compared to the difference

in degrees of freedom indicates that the changes made in the model

°represent a real improvement. On the other hadd, a drop in x
2

close

to the difference in number of degrees of freedom indicates that the

improvement in fit is'obtained by ,'capitalizing oh chance" , and the'

added parameters may not have real significance and meaning.
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III. Estimation of Growth Curves

A. One variable over time

Consider one variable y being measured on N inditriduals at T points

in time t1, t
2'

..., t
T.

The raw data takes the form of a data

matrix y of order N x T:

.
'11' y12'12' '1T

Y21' Y22' Y2T

YN1' YN2tipt' YNT

where y. is the observed measurement of individual i at time t. /

ij 37

We assume that the rows of Y are indcpendently distributed wi

the same covariance matrix E'. Also the mean vectors-of th/rows

are assumed to be the same, namely /

2:(111' 112' ...' PT)

.
However, in this section, the mean values are not regarded as free

parameters, but instead we focus attention to the mean pt
as a

function of t. This gives a growth curve describing how the

population mean of y changes over time.
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We consider polynomial growth curves of the form

Pt C)'4. 4 2t

2

ht '
(13)

although other mathematical forms may also be considered. The

degree of the polynomial h is assumed to be less than or equal

to T-1. When h < T-1, the mean vector p is constrained and there

is not a One-to-one correspondence betveen' pi, p2, pT and the

polynomial coefficients C
o'

;1, ' In this section we

consider the estimation of these polynomial coefficients.

Let E ""=. (C o, ) and let
o ' 1" h

r-
1

t,

2
t

1

h
t
1

1

t
2

2
t
2

t
2

1

t
T

2
t
T

h
tT

I

4

Then the statistical model for the data matrix is

E(Y') = j

where j is a column vector of order N with all elements equal to one.
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If the time points, are equidistant it is convenient to use the h + I

first orthogonal polynomials of order T as rows of P

(see e.g. Kendall & Stuart, 1961).

When'the rows of Y have a multinormal distribution,, the vector

of polynomial coefficients may be estimated by.the maximum likelihood

method. The maximum likelihood estimate of& is

= (PS-1P')-1 PS-1, , (14)

where y is the sample mean vector and S is the sample covariance

watrix computed from Y .

The above result generalizes easily to the case of:several groups

of individuals with possibly different mean vectors. Suppose, for

example, that there are two groups with nl and n2 individuals in

each group. Let the first n
1
rows of Y be the measurements on

individuals in group 1 and let the last n
2

rows be the measurements

on individuals in group 2. The growth curves for the two groups

may differ so we assume that there are two distinct growth curves to

be estimated, i.e.,

E(y1V) = 4g)t gg)th, g = 1,2

or in compact form

E(Y) = A EP,

330 352

(15)



44 where

A' =

and

1

-0

1 0 0 0

1 1

1-;(J) (1)
.11

h1

(2) (2) (2)

o

Let U = 11/N) A'A, V = (1/N) AlY and W = (1 /N) Y"-Y. Then

S = W - V'UJV

is the pooled within groups covariance matrix and the maximum

likelihood estimate of E is (see Khatri, 1966)

t% _1 ;%1
7 = U VS P'(PS P )

(16)

(17)

In general, if there are g independent groups of observations

with n
s

observations in the s:th group , n 1 + n
2

+ + n = N,

the Model is still in the form of (15), where A is of order N x g

and has n1 rows (1, 0, ..., 0), n2 rows (0, 1, 0,...,

and n
g

rows (Q, 0, ..., 1). Further,

(1) (1) (1)
En El Eh

12) t2) X2)
E o

&
I

(g). (g)

, 331 353
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ti

and P is-as before. The s:th.row of..E consists of the polynomial

coefficie nts for group .s: The growth curves are.assumed to have
.

the same degree h for all groups. Even in the general. case,the

result is given by (17),where U, V and S are defined as before.

Forpractical'Purposes the maximum likelihood estimate of E may be
.

obtained-by means of the computer program ACOVSM (as described in

section II).- With this prbgram one can also test linear hypotheses..

on E of the' form

CED = 0 ".

where, C (u x g) and D (h x v) are giVen matrices of ranks

u and v, respectively. In particular, one ean test the hypothesis

. - .

that certain coefficients in one or more growth curves are zero and

the hypothesis that certain groups have the,same or parallel growth

curves. .One can also restrict elements' of E to zero in advance.

,
Thus with the ACOVSM program it.is not necessary to assume that all

41.

groups 'have growth turves of the same degree., In this case, of course,

is, no longer given.by (17) but ,can still easily be computed subject

to the ,zero a priori restrictions.

As an illustration, ,consider the data in Table 1 taken from Pott-

hoff and Roy (1964). 'The data is from a dental study in which, the

distance, inmirlimetells, from the,center of the pituitary.to the

pteryomaxillary tissue, was measured on each of-11 girls and 16 boys

at ages 8, 10, 12 and 14. The data matrix has 27 rows and 4 columns,

the first 11 rows representing the girls and the last 16 rows representing

the boys.

Insert Table 1 about here

a
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Individual 8

- 1 21

2 21

,

20.5

. A
f+ 23.5

. 5 21.5

, 6 20

7 21.5

8 23.

9 - 20
.

10 16.5

11 24.5

TABLE 1

Dental Measurements on 11 girls and 16 boys

at 4 different ages!

Data from Potthoff & Roy t(144), Table 1

1

Girls

Age ill Years

10- 12

20 21.5

21.5 24

24 24.5

.

24.5 25

23 22.5

21 121

22.5 -, 23

23 23.5

.

21 22
.

:19, . 19

-25 28

,

Mean 21.18 22.25 23.09

Boys

Age in'Years

....14 Individual 8 10 12 14

23 1 26 . 25 29 31

25.5 2 21.5 22.5 23 26.5

26 3 23 22.5 24 27.5

26.5 4' 25.5 27.5 26.5 27

23.5 5 26. 23.5 22.5 26

22.5 6 24.5 25.5 27 28.5

25 7 22 22 24.5 26.5
a

24 8 , 24 21.5 24.5 25.5

21.5 9 23 20.5 31 ' 26

.

. 19.5 10 27.5 28 31 31.5

28 11 23 23 23.5 25
.

' 12 21.5 '23.5 24 28

13 17 -24.5 26 29.5

14 22:5 26.5 25.5 26*3

15 ' 23 24.5 26 30
-

16 22 21.5 2S.5 --25

24.09 Mean 22.87 23.81 25.72 27.47
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The following two.questions may be asked.

(i) Should the growth curves be represented by second

_degree polynomials or are linear equations adequate?

, (ii) Should two separate growth curves be used for boys and

girls, or do both have the same growth curve?

To answer these questions we set up a model as in (15 with

N=2Z, 1=4, and g=2 and h=2, with A,a matrix of order N x 2 with the

first 11 rows equal.to (1, 0) and last 16 rows equal to (0, 1)

and with

(G) (G) (G)

E

0 1 2

k(B) (B)
E
(B)

2

Since the time points are equidistant we take the rows of F as the

fii-st'three orthogonal polynomials of order four, i.e.,

r--

P = -3 -1

1

3

1,

9 1 1

The maximum likelihood estimate.of E is

22.704 0.479 -4.003

24.631 0.788 0.650

=To examine question (i) we test the hypothesis r
(G) (B)

-= O.

'2 2

This can be done by choosing

0,\

r
1/

D =
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The test statistic an be transformed to an Fdistribution

(see Pottoff & Roy, 1964). In this case one obtains an F=1.19

with 2 and 24 degrees of freedom. This indicates that the

o

hypothesis cannot be rejected. We may therefore regard the

growth curves as linear rather than quadratic.

We now modify the model and take E as

0
(G) (G)

I(B) (B)

0 1

and P with only two rows instead of three. The maximum

likelihood estimate of H is now

122.689 0.477

E = I

24.923 0.826

(G)
To egamine question (ii) we set up the hypothesis to

CB) (G) (B)
Eo , El . This corresponds to choosing.

C 11'= - - I ,

'Also, in this case, the test statistic can be transformed to

an F distribution. The test-gives F = 6.44 with 2 and 22 de-

grees of freedom, suggesting that the hypothesis should be

rejected. Boys and girls have different growth curves.

1'
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B. An autoregressive model for one variable over time

The development in the previous subsection did not'take the

,covariance structure in E into account. However, the growth

curves can-b-eme-stimated more efficiently and the tesfs will be more powerful

if the covariance structure, which'arises naturally in repeated

measurements, is taken into. account. This covariance structure

very often has an autoregressive nature. Threfore, in this sub-

section,,we focus attentionsto the deviation et = yt - ok

-y
t

from its mean value p
t

on the growth curve and consider various

autoregressive models'for- this- ------

The first-order autoregressive model is

e
t.

=
stet -1

z
t

,
t = 2, 3, ..., T , (18)

where the residual z
t

is uncorrelated with e
t-1

. It is also assumed

that z2, z3, zT are all uncorrelated. A path diagram of this

model is shown 'a Fig. 2 for the case of T=4.

It is readily verified that
2

Co/ (Y
t' Yt-1

) = E(et
e
t-I

) =
t
a
t-1'

where at = Var(y
t-1

) = E(e
-1 '

) and that
t

Coy (y
t'

y
t-k

) =
t t-1

... a
t-k+1 a 22t-k'

k=1,2,...

where
a t2-k

= Var (Yt-k)

Insert Figure 2 about here
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Figure 2 -- An autoregressive model for one variable over time;
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Hence the covariance matrix of y is (in the case of T = 4)

2
a
1 1

2

(32a21
a2

2 2 2
0
3
0
2
a
1

03(12 a
3

2 '2 2 2
0
4
0
3

ti

2
a
1

0
4
0
3
a
2

,0
4
a
3

a
4

(19)

From(18) it is seen that E is constrained; its ten variances and

covariances are functions of only seven parameters. Since the

variances are free parameters it is the six covariances that are

functions of the three parameters 132, $3 and 64. Inthe general

case there .are (1/2)T Cr + 1) variances and covariances in E and

.2T - 1 free parametert.

The correlation matrix corresponding to (19) is

1

P2
1

2P 3
P
3

P2P3C14 P3P4
P
4 1

(20)

'where pi = 13.1 (a.
1-1

/a.). There are only T-1 independent correlations,

namely those just below (or above) the.main diagonal and the other

correlations are products of these. For example,

0
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i
= Pk,

J1 --k=
(1 <-j).

It is seen that the correlations fall off as one moves, away from the

main diagonal, a phenomenon usually found to occur empirically.

The partial correlation p.'
-j

is zero, whenever i < j < k. This is
ik

readily verified since p - p..ij p
jk

= 0 by virtue of (21).

Higher order partial correlations,, with two or more-intermediate

variables held constant, also vanish. It follows that in the regression

yt $tlYi 8t2Y2 $t;t-rYt-1

of yt on all preceding v

that can be non-zero is

the immediate neighbor yt

y
1

on y
t

are only

(22)

ariables, the only regression coefficient

t,t-1
= For the prediction of yt, only

-1
is usefulv The effects of yt-2,

yt -3''

indirect via
'Yt-i.

If the growth curve specification i. ( 15) is ignored so that,the

mean vector p is unconstrained, this m del can be estimated very

easily. Under multinormality, the maximum likelihood estimate of
t

is just the ordinary least squares estimate one obtains by estimating

each regression equation in (18) separately, namely

St
= s

t-1,t
/s

t-1,t-1 '

where the sij are elements of S in (16)- ThP residual variance,

Var(zt), is estimated as

'2
Var(z

t
) = s

tt
- a

t t -1,t -1
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The estimation of the growth curves and the 13's Simultaneously

is not so easy. This may be done numerically by means of the ACOVSM

program. We now show that the E in (19) is indeed of the form

required by that program. To do so we define z1 = el and write

the equations (18) as (in the case of T = 4)

1' 0 0 0

B2 1 0 0

132E3
3

$ 0
3.

1E3 2133134
B
3
$4 $4 1

z
2
\

z3

4

(23)

Let ki = 8283 $i- for i = 2, 3, ..., T. Then if all 3i 0

there is a one-to-one correspondence between 'K,2, K,3, K,T and

: 8T and $i = K.1/ Ki..1 The matrix in (23) i.S'

1
o- 6

K2 1

K
K3 K3 /K22

L-K4

K4 /K2

0

1

where AK= diag (1,K2, K K4) and

T

1

1

1

1

0 0 0

1 0 0

1 1 0

1 1 1

340
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Hence,_ (23) can be written

e = D TD
-I

z
-K--K

= D Tz* ,

with covariance matrix

E = D TY-*T'D
_K

. (24)

4here T* iS the diagonal covariance matrix of z* = D-
K
lz. The

4.*

2T - 1 parameters K2, 1(3.; '''' KT' 4'22' '''' 'TT
are in a

one -to -one correspondence with the original parameters 02, 03, BT, 4,

an' a22, "'' aTT
Equation (24) is in the form of (2).

The whole model is defined by (15) and (24). ACOVSM program

gives estimates of the growth curve polynomial coef 'cients as well as

132' 133' '''' 13T' all' (122' '''''
aTT, The program also\gives a

2 q
x -goodness-of-fit-measure for assessing the fit of the overall model.

This x -measure may be divided into two components measuring the fit

of the growth curve model (15) and the covariance structure model

(24) separately.
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C. Growth Curves for several variables simultaneously

The model of the preceding subsection will now be generalized to

the case of several variables at each occasion. We still assume that the

obserVed variables are measured without errors. The case of measure

went error's in the dependent variables will be consideted in sections

IV and V. An example of the type of model to be considered is showp

in Fig. 3. Here there are 3 variables for all t and, as before, we

illUstrate with T = 4 occasions.

Insert Figure 3 about here

The 'growth curve specification for the model in Fig. 3 is as

follows. For an.,arbitrary individual we arrange his observed scores

/ so that his three scores at the first occasion come first, then:his

three scores at the second occasion, etc.,'i.e.,

Yll' Y12' Y13, y21, y22; Y23, Y31' Y32, Y33' Y41' y42, Y43'

where ytj is the score on variable j at occasion t. The growth curve

for variable j is assumed to be

E(yti) = Ejo + Eilt + Ej2t
2

, (25)

say. As before, the model is given in matrix form by (15), where

and

E (1 x 6) = ,E ,E ,E ,E ,E ,E ,E )

10 11 12 20 21 22 30 31 32
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,11.011011=111

Yu

Y13

221

Y21

Y22

Y31

Z22

Y23

Y32

Z32

Z23

Y33

Z33

Figure 3 -- A multivariate autoregressive model.



P(6 x 8)

1

t
1

t
2

1

0

0

0

0

0

1

tl

ti

1

t
2

.

t
2

0

0

0

0

0

0

1

t2

t;

1

t3

t
2

3

0

0

0

0

0

-1

t3

t'.!

1

0

0

0

0

0

0

1

t4

.t
2

4

The matrix A is a column vector of order N with all elements equal

to one. If there are g groups of observations, there will be g rows

in E and the matrix A will as be described in section III.A.

. -

Without constraints on the covariance matrix E and with ho

a priori zero restrictions on E , this model can be estimated as in

III.A. The maximum likelihood estimate of E is given by (17).

U. Multivariate autoregressive models

We now consider a multivariate autoregressive model which is

a direct generaiization of the uaivariate autoreguessive model in sect..on

III.B. This autoregi.essive model is '

y
t

=Bt y
t-1 t '

t= 2, 3, T (26)

with the,y's measured as deviations from their means. For the model in

Fig. 3, each matrix Bt will be of the form
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S'

:t
=

elm

(t)
B
11

0

0

(t)

12

B(t)

22

0

0

0

8(t)

33

(27)

ss

The residuals in z
t

are assumed to be uncorrelated across time but

may be contemporaneously correlated, i.e., E(z z') = 0 for s # t.

The covariance matrix E(z.t..z:) is denoted 0
t.

If the mean vectors
.....1. * .

II
t
and the matrices are unconstrained, this model may be

estimated directly by estimating each regression in (26) separately;

Let

_11 _12 _1T

_21 _22 _2T

S

S
Tl _TT

b..: the sample covariance matrix of y' = (y:,
z

L-:, y'), where S
st

is the

covariance matrix between yt and ys." Then the maximum likelihood estimates are

and

= S
-t

1

=
-1

7 S S S S
t _tt _t,t-1 _t-1, t-1 _t-1,t
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Ct,

If the matrices B
t
have fixed zero elements as in (27), the model

may be estimated by means of the LISREL program as described in section

2. LISREL can estimate the covariance Structure'butnot the gKowth

curves specification for the means. When the latter are inCluded.in

the model' together with the multivariate .autOregressive. model, the esti-

mation problem is complicated and there does not seem to be any general

program available to handle this' estimation. When all 13 are diagonal, ACOVSM may

be used in the same way as in
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IV. Two-Wave Models

Two-wave,two-variable Models

In the previous section all the variables were assumed to

be measured without error. Measurement errors in the variables

were not taken into account in the models which focused directly

on relationships between the observed variables. Jn this and the

next section we assume that all the observed variables contain

errors of measurement and focus on the tionships among the

true or late-,,t variables. In doing so we shall ignore any

structure on the Mean vector and simply assume this to be un-

constrained. We may therefore take:all variables to be measslred

in deviatioris from their means.

We begin with the simple model shown in Fig. 4, where two

variables are measured at two occasions. We assume that the, two

variables measures the same latent variable n, i.e., y11 and y12

measures n on the first occasion and y and
1 21.

y22 Measures n2.

\ on tha second occasion. We are interested in the relationship

between n
1

and n
2

expressed in the structural equation

n
2
= Bn

1
4,

the regression of n2 on nl. In particular, we are interested in

whether 13 = 1 and 4 is small, i.e., whether the same latent variables

are measured on both occasions.

Insert Figure 4 about here
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Figure 4 -- A two-wave, two-variable model.
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The measurement 'model part of the model may be written as

Yll

Y12.

Y21

Y22

where it is assumed that

1

0

0

ni

0

0

1

2

and

1-

41

\
2

f

n2

;12
(29)

`21

22

are measured in the same metric

as and y21, respectively. This model is a special case of the

general LISREL model with no x. In terms of LISREL, (28) may be ir

interpreted, in accordance with (4), as

/1 0\ /C,1)

1
-8 1, (1)2 \.C2

where c
1
= n

1
and c

2
= c. Let 4 be the covariance matrix of

(n
1'

n
2
) and let 0 be the covariance matrix of (c

11'
e c

'1'
c
22

).

If all'the c's are uncorrelated so that 0 is diagonal, the covariance

matrix of (y11'
y12, Y21' -Y22) is

2
A1,11 + 022

A
1

4)
21

A
1
A
2
0
21
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E has 10 variances and covariances which are functions of 9

parameters. The model has one degree of freedom.

Often when the same variables are used repeatedly there is a

tendency for the corresponding errors (the. 6,1s) to correlate over

time (see section III.B and rii.D) because of memory and other retest

effects: Hence there is a need to generalize the preceding model'to

allow for correlations between 6
11

and 6
21

and also between

6
12

and e
21

. This means that there will be two non-zero covariances

.

8
31

and 8
42

in 0. This model is shown in Fig. 5. The co-
-

variance matrix of the observed variables will now be

.11 4. all

2
X
1 11

A
1 11

-I- 8
22

G
21

6
31 A1(21 .22 4. 033

X
2 21L .

Al X24)21 \-1.
-A2 G 22

2
A24)22 -4-844

--r

This E has its 10 independent elements expressed in terms of 11

parameters. Hence it is.clear that the model is not identified. In

fact, none of tLe 11 parameters are identified without .further

restrictions. The loading Al and A2 may be multiplied by a

constant and the O's divided by the same constant. This does not

change
4521, 'IP' a41

and 4543. The change.in the other u's may

be compensated by adjusting the e's additively. Hence to make the

model identified one must fix one A or one (I) at a non-zero value

Insert Figure 5 about here
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or one-6 at some arbitrary value. However, the correlation

between ni and n2 is identified without any restrictions,

Since

Corr(n1,n2) = 21

a2 41 21 4a

This model may therefore be used to estimate this correlation

coefficient and to test whether this is one. The maximum likelihood

estimate of the correlation coefficient is \/(s
32

s
41

)/(s
21

s
43

) .

To make further use of the model it is necessary, to make some

assumption about the nature of the variables. For example,

if it can be assumed that the two variables at each occasion

are tau-equivalent (see e.g. Lord & Novick, 1968) we can set both

XI and X2 equal to one. Then'the model can be, estimated and

tested with one degree of freedom.

B. Two-wave,two-variables models with background variables

The model of the previous subsectiOn may be used for the

measurement of change between two occasions. However, in many

longitudinal studies the objective is not only to measure change

but also to attribute or relate change to certain characteristics
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and events. Such studies. must include not only pre- and postmeasures

but also various background variables believed to influence change.

The background variables may be socioeconomic variables or other

chara'cte'ristics differentiating the individuals prig to the

pretest occasion.

Consider the model shown in Fig. 6.. The background, variable

is denoted x. The main purpose of the model is to separate the

direct effect of ni on n2 by eliminating the effect of x.

The measurement model for y is the same as in (29) but now

the structural equations are

0

1
)

n
2

Y
2 ,

x

42

(30)

2
))

The.A
x

in (6) is a 1 x 1 matrix with element one and d = 0.

The reduced form of (30) is

n 1 Ylx Cl

n
2 (12 13Y1)x (42 s4 l)

n 1- , say.

Insert Figure 6 about here
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Figure 6 -- A two-wave, two-variable model with an infallible background variable.
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As before, we assume that the measurement errors ell,
12' C21

and

,

e22 have zero means and are mutually uncorrelated and uncorrelated

with n
1

and n
2

. Furthermore, we assume that the residuals 4
1

and 4
2

have zero means and are uncorrelated. The variances of

c
1

and
'2

are denoted
11

= Var (1 )
'

¢
2.2

= Var(
2
).

Let us first consider the identification problem. We have five

observed-variables y
11' Y12' y21, y22

and x with fifteen variances

and covariance5. The model has the following twelve parametersarameters to

be estimated A
1,

A2,
'

0 y
1 2

, y*, ¢ = Var(;), ¢ 1¢11'.¢22 and 8..,
. 11

i =.1, 2, 3, 4. We have

Cov(yli,x) = Cov(ni,x) = yl¢

Cov(y12,x) = XiCov(ni,x) = X111¢

Cov(y21,x) = Cov(n2,x) = g¢

Cov(y22,x) = A
2
Cov(n

2'
x) = A

2
g¢

Since ¢ = Var(x) is identified, these equation.5 determine

g and A
2

, respectively. FurthPrmore,
.4-

1Cov(y_
11'12) Xlvar(n1) Al( T1

2
4'

A a. )

which determines th

11
, and

'

which dr,. .mines

11, A
1,

i

Cov(y21, y22)
x2var(n2)

)2[7r
2
¢ + Var(u)],

Var(u) = ¢27 + 5
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any one of the four equation
For given Al, A2, IT, 4, and-

Cov(yil J21) ,

Cov(yil 'Y22) X2(YIS " df

COI; (Y
12Y " 91") (Ye. 134'1 1) '

Cov(v Y )
= AiA2(1)." "11) '

(32)

(33)

(34)

(35)

determine B . Then, with B determined, y, = it + By.). and IP
22

is

obtained from (31). The error variances O. are determined from 0..,
11 11:

= 1,2,3,4. Hence it is clear that th3 whole model is identified and

has three independent restrictions on E.

Now suppose that x cannot be measured without error and write

x = t + 6,

where t is the true score and 6 the measurement error,*the latter

assumed to have zero mean and to be uncorrelated with t aAd everything

else. We shall consider two cases namely: (a) x has a known

reliability p
xx

=022 / 0
x

and (b) t is measured by two congeneric

background variables xl and x2. Case (a) is shown in Fig. 7.

In case (a), the above equations are the same except that 4)

is replaced by 0
2

Since 0
2

= p where p is known and 4
.

xx xx

is identified, all the other parameters will be determined as before.

Insert Figure 7 about here
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360

Figure 7 -- A two-wave, two-variable model with a fallible background .variable.



Next vippose the errors e
11

and 1 and also e
12 .

a
11

d t
22'

are correlafed.as in section IVA. Such a model is shown in Fig. 8: -1

Then 03
1

will be added to the right side of (32) and 0
42

will be

\\\\ added to the'right side of (35). Equations (33) and (34) still

determine 8 for given Ai, A2, .y1, ir, . $ and
1'11

and 031-

\ .

and 042 are then determined by (32) and (35), respectively. Hence

4
this model has one overidentifying restriction.

.,.

Case (b) as shown in Fig. 9,. Here we write

xi = C + of

= + 6
2 3- 2

wheie A
3

is a parameter to be determined and dl and 6
2

are

=uncorrelated measurement errors, uncori.elated with F and the other

latent variables. The other equations are as before except that

x is replaced by C . We then have three more parameters than before

.t

namely
A3' adl and a 2' ,.-

The parameter a
E

= Var(b replaces
-2

t =a
x
2

= Var(x). On the other hand we have now six more manifest

parameters, so that the model has six degrees of-freedom with

0
31

= 0
4
2 = 0 and four degrees of freedom with these covariances

-Included ag-Parameters.

The parameter A3 is identified with three overidentifying

restrictions since

Cov(x2,w)/Cov(xl,w) = A3,

f

for w y11, y12, Y21
and y22. All the other parameters are

determined as before.

358 38

0

ti



0

r

.Insert Figures 8 and 9 about here

The models in Figs. 6-9 have deliberately been chosen simple

to explicate the principal points. The models can easily be

generalized in two ways. Firstly, the number of pre- and post

measures y can be more than two. Secondly, we, could also have
', 4

several background variables with a factor structure. :We now give

two examples of models of this-kind.

C. The Stability of Alienation'

IC> For the first example we draw on ideag and data in Wheaton et.

al (1977). Their study wapconceined with the stability over tiee

of attitudes such as alienation aid its relation to background

variables such as edUcation and occupation. Data on attitude scales
(

were collected ,from 932 persons in two rural regions in Illinois 4t

Three points in time: 1966,. 1967 and 1971. (See Summers et'al, 1969

for further description of the research setting.) The variables

we use for the present illustration are the Anomia subscale'and the

Powerlessness subscale, taken to be_indicators of Alienation. We use

these subscales from 1967 and 1971 only. The backgfound variables ate-

. .

respoiident'sleducation (years of schooling completed) and Duncanrs
.,

Socioeconomic Index (SEI). These are taken to be 'indicators of ' (

respondent's socioeconomic status CSES1. We analyze these variables

under three different models as shown in Figures 10A-C none of which

correspond to that of Wheaton et al (1977). The data are given in

Table 2.

Insert Figure 10 and Table 2 about-here_
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- Figure 8 -- A two-wave, two-variiblemodel with correlated errors and a
fallible background variable.
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Figure 9 -- A two-wave, two-variable model with two congeneric background variables.
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Figure 10a -- Model for study of stability of alienation.
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Figure 10b 'Model for study of stability of alienation,. .0
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342
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Figure 10c -- Model for study of stability of alienation.

4
r-



Table 2

Covariance. Matrix for the Mode'is- of 'Figure 10 N= 932Y

11.834

6.947 9.364

6.819 5.091 .12 532

4.783 5.028 7.495

. 3.839 - 3.889A - 3.841

-21.899 -18.831 -21.748

365

9.986

4 - 3.625 9.610

-18.775 35.522 450.288.

F

s

.



'File-maximum likelihood estimates of the parameters%f the

models are given in Table 3. The main aim of the Wheato et al

study was to estimate the stability of alienation ove time, which is

reflected in the parameter a, or in the correAtioabetween

alienation 71 and alienation 67. As can be seen /from Table 3 we

obtain an estimate of B which is biased upwards if' we 'use. a model

that does not take SES into account. The influence of SES on

Alienation.at the two ocoasions is significant, see Model 10B. The

coefficient for 1967, Ti, is -0.614 with a standard'error of

0.056 and for 1971, y2, it is -0.174 -with-a standard error equal

to 0.054. The negative signs of the SES-coefficients y and
2

indicate that for high socioeconomic status the alienation is low

and vice versa. However, the overall fit of the Model 101Bis not

V

acceptable; x
2 with six degrees of freedom equals 71.544. Since

the same scales are used on both occasions, it seems reasonable to

assume that if the influence of the true score, i.e.. Alienation, is

removed from the measured variables, i.e. Anomia and Powerlessness,

'there might, still be some correlation left between the same

measures at the two occasions. Thus, the ModellOC is intuitively

more plausible. As can be seen from Tab le 3 the inclusion of these
. ,.-

. .

error correlations results
.

in a model with an acceptable overall fit.

D. AnAnalysis of Verbal and Quantitative Ability

For the second illustration we'use some longitudinal,Oata from

a large grow th study conducted at Educational Testing Service

Ingert Table 3 abo uthere
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(Anderson & Maier, 1963; Hilton, 1969). In this study, a nationwide'

(U.S.A.) sample of fifth'graders was tested in 1961 apd then again

ii 1963, 1965 and 1967.as seventh, ninth and eleventh graders,

respectively. The test scores include the verbal (SCATVT and

quantitative (SCATQ) parts of the SCAT (Scholastic Aptitude Test)*

and achievementtests in mathematics(MATH), science,(SCI), social
.es

Studies (SS),

The examinees

grades 5, 7, 9

reading (READ), listening (LIST), and writing (WRIT).

for 'which complete data were available for all the

and 11 ire divided-into four

and whether or not they were in the academic

groups according to sex

curFiculum'ip. grade, 12.

g:«

The four groups and their sample sizes are as fol19ws:
'

Boys academic (BA): N = 373,

Boys non-academic (BNA): N =.249,

Girls academic (GA): N = 383,

Girls non-academic (GNA): -N = 387.

Scores on each test have been scaled so that the unit of measurement .

is approximately the same at all occasions. All analyses reported

here are based on information provided by the means, standard deviations

00e.
and intercorrelations of the 32 variables (8 tests at 4 occasions) for

the four groups.

. In this example we use the six tests MATH, SCI, SS, READ, SCATV,

SCATQ in grades 7 and 9 only and only the group GA. In later sections

we use data from other grades and groups as well. Earlier studies

(Jireskog, 1970a) suggest that these tests measure two oblique factors
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j

whief may reasonably be interpreted as a verbal (V) and a

quantitative (Q) factor. We setup the model in*Fig. 11, which

represents a model for the measurement of change in 1;141 and
. 4'

4,7.

0 quantitative ability between grades 7 and 9. Since there are no

background variables iii n1this odel We may for estimation purposes-r"
treat the pretests as the independent variables. Hence we use the

notation x for these. Note that the model includes the following

features:

(i) On each occasion the factor pattern is ;postulated to be
t

restricted min the following way. MATH anCSCAfQ re pure
-

measures of Q. -READ and'SCATV arelpure measuresidf V.

SCI and SS and composite measures of V and Q. This implies
_ ,

-1 that there are four zero loadings in both° A x yand A .

ti

, To fix the scales for V and Q we assume that they are measured

. -----
in the sameiinits as--SCATV and SCATQ, respectively. This

..._,,.. -- _

,'''''-' / 4

s"-.- .means thatthere-ig-tie fixed one in each columfi of A and A
___-

6.
-x y

Y--.,:-, .

(ii At isVostulated that Q -affects 41, only and not V9 and
,

0 1

7 9

similarly for V7. This means that there are two zero

4 coefficients in F. Furthermore, we postulate that the

residuals Cl and are uncorrelated, which means that,

whatever remains in Q9 and V9 after Q7 and V7 are accounted

for, is uncorrelated with everything else.

(iii) The errors or Unglue factors in 6. and e are assumed to

be uncorrelated both within and between occasions. ti

Insert Figure 11 about 'gave
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Figure 11 -- Model- for the measurement of charige, in verbal and qUantitatiVe

ability=between grades 7 and 9.
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The maximum likelihood estimates are given in Table 4.

The.rather low loadings of SCI, and SS on Q at both occasions may

seem a little surprising. However, an inspectionof the items in tests

SCI and SS reveals that these are mostly verbal problemscconcerhed

with logiCal reasoning in contrast to the items in SCATQ which are

mostly numerical items measuring the ability to work with numbers.

- The small residual variance 1.85 of 4
2

means that V
9.

can be

predicted almostperfectly from V7. This is not quite so for

Q since we here have a residual variance of 18.49. Howeveri this
. . . . . ..

, . . I

may be due to the more rapieincrease in variance of Q from'grade,
g.

.
. ,

7 to 9,.1which is manifested in the increase in variances.which is

143.5k1/4- 103.87 = 39.67 for Q and 117.15 - 115.41 = 1.74 for, V.
N ;

tt

There is a reason not to look at each number in Table 4 too

seriously and this is the poor overall fit of the model as evidenced

'2
by the x -value of 217.79 with 47 degrees of freedom. We shall

therefore investigate the reason for this poor fii and demonstrate.

, smt ',ism, may be used not only to assessor measure the

goodness of fit of a-model but,also to detect the parts of the model

where the fit is poor. Taking the more fundamental assumptions of

linearity and multinormality. for granted, lack offit of the model

in Fig. 11 may be due to one or more of the postulates (1), (ii) or (iii)

not being reasonable. We shall therefore investigate each of thete

separately.
I k

_-

To investigate (i) we set up a factor analysis of the pre- and

posttests separately assuming the postulated two-factor structure.
*

Insert'Table 4 about here -
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TABLE 4

Maximum Likelihood Estimates (LISREL) for the Model of Figure 11

Group: GA {Girls Academic), N = 383

Q7 V
7

A

.7x

r

=

4

=

11

(!03.87,

(18.49

(143.54

0.97

0.20

a:25

o.*

0.*

Qs;

0.83

0.24

0.36

O.*

O.*

1.*

Q7

0 . *

Q7

92.38

O.*

.q1,9

01.54

0.*

0.52

0.84

1.21

1.*

0.*

V
9

0.*

0.64

0.69

0.95

1.*

0.*
.....

v t

.., )
1.00

0'
V7

92:581)

115.4

2

O.*

1.85

V
9

101.54)

-117.15'

MATH
7

`SC I'7

SS
7

11.AD7

SCATV
7

SCATQ7

MATH
9 _

SCI
9

'SS
9

READ9

SCATV9

SCATQ9

,, 1:ki.:

5.68

5.49.

6.61

6:80,

4.44

7.10

8

4
4.80

6.57

7.24

6;49

4.47

8.23

V9`
9

7

r

Q9

.V9
J

= 217.79 with d.f. = 47

* the value.of this parameter was specified by the model.
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This gives x
2
= 17.64 for the pretests and x

2
2.62 for the

posttestd both with 10 degrees of freedom. Although the fit is not

quite acceptable in grade 7 we take the postulated factor structure

to hold both for the pre- and posttests. So we must continue"tolook.

for lack of fit due to (ii) or (iiii).

The postulate (ii) is concerned with the_interrelatioiafliWeen

the four factors Q7, V7, andand V9. The most general assumption

is that these four factors are freely intercorreleed and this is

I
equivalent to a LISREL-model with all four coefficients in F free and

with' V free as a full symmetric matrix. Hence, it is clear tha;

the assumptions made in (ii) is the intersection of.the two hypotheses
1.,

r is diagonal" and t! isdiugonk". It is therefore usefdl

to test:each of the four possible hypotheses., The results of-these

analyses may, be presented in a 2 x 2 table as in Table 5. The row
. .

marginals of the, table represent x2-values with one degrees of
.

,

freedom for testing the hypothesis -that isdiagonal. It is seen

that this hypothesis may be rejected. The column marginals represent"

, )2- values with two degrees of freedom for:testing the hypothesis that ii

F. is diagonal. This hypothesiS seems quite reasonable.t From these, ,..,

analyses it istclear that "F diagonal and T free" is the most

reasonable assumption to retain. The overall fit of this model is

x
2

= 196.4 with 46 'degrees of freedom. Sinte this is still too

large we must continue"to investigate. (iii).

Insextlable,5 about here

st,
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TABLES

Test of Assumptions (ii) for the Model in Figure fl
#

Group: GA (Girls Academic), N = 383

!- diagonal V free

I' diagonal X2 217.8 x2 = 196.4 .
°X24=21.4,

4 7 , 46

- free X245 = 216.8
44

19.3.7 2 23.
; "

x2 = 1.0 X2
2 2

It
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The assumption in that the_unique factors in d and

c_ are uncorrelated both within and between sets. That there

uncorrelated within sets should not be Questioned since we have alr ady

found that the rmstulated factor analys\s model holds for both pre-

and posttest. That they are uncorrelated between sets, however, is

more questionable because of specific factors in each test. This

means that the)unique factors for corresponding tests should be

allowed to correlate. To account for such correlations, JOreskog

(1970a) introduced so called test-specific factors, i.e. factors which

do not contribute to correlations between tests within occasions

but between the sate tests at different occasions. In this case,

when there -are,only two,occasions, it is not possible to define.

(identify) test specific factors but we can merely introduce

correlatiops between unique factors for corresponding pre- and

posttests.*

The Model in Fig. 11 is therefore modified'as in-Fig. 12.

This revised model can also be estimated with the LISREL program.

The analysis of the revised model gives the results shown in Table 6

which also gives standard errors of the estimated parameters; It is

seen that all the estimated parameters are significantly different

from zero, The test of overall goodness of fit gives x2 = 65.63

with40 degrees of freedom. This represents a reasonably good fit

'of the model to the data. An approximate test of the hypo!Des

that the unique factors are uncorrelated between occasions is

Insert Figure.12 and:Table 6 abOut here
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Figure 12 -- Revised model for the measurement of change in verbal and quantitative
ability between grades '7 and 9.



TABLE 6

Maximum Likelihood Estimates (LISREL) foi the Model of Figure 12

AX

Standard Errors in Parenthesis'

Group: GA (Gills Academic), N = 383

1.01 (0.05)

0.13 (0.07))

021 2 (0.09)

,0.*

9-*

0,60 (0:07)

0.98 (0.09)

1.24 (0.05)

1.*

99
V9

MATH
. 7

SCI-

- SS
7

'READ
7

SCATV
7

-
SCATQ7

A
-y

r

0.93 (o:os)

0.13 (0.07y

0.25 (0.08)

0.*

0.*

-1.* .

o.*.

0.77

0.82

0.98

(0:08)

(0.08)

(0.04)

MATH
9

SCI
9

SS
9

READS

SCATV
9

-

_SCATQ9

.

1

T'

X
2

=

=

.

. 1.06t(0:05)

0.*
.

[

-Q7

100.57 (10.86)

90.53 (8.46)

...&

1.-
.

22.63 14.41)

8..42 (1.73)
[

Q9

136.52

102.62

65:63with d.f. = 40

V7

0:98

V
7

90.53

110.45

.. ig

2
8.42

6.94

V
9

112.a.

112.53,

(0.03)

(8.46)

(9.74)

(1.73)

(1.58)

Q9

V
9

Q7

V
7

1

2

Q9

V
9

* the 'value of this parameter was specified by the model
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1

obtained as x2 = 196.4 - 65.6 = 130.8 with 6 degrees-of freedom so that.

it is clear that this hypothesis is quite qnreasonatile. The

Aariances? covariances and correlations of the,unique factors are'

given inTable 7. A comparison of the covariances with their

standard errors reveals that all covariances except possibly the one

between 6
1

and el` is Significaltly non-zero.

E. Comparison Of change between groups

In many longitudinal. studies both pretests and posttests are

-

administered to several groups of. individuals and one is interested

,

. in comparing the'change in various quantities between the diiiereati

. ,
.

groups. Such groups may be, for example, groups having' different

socio-econoTic background, groups having obtained differT amounts

of schooling or training either prior to the pretest occasion

between,the two occasions or groups having obtained different treatments

between the two occasions. When we have several groups it is natural

to assume that the distributions of the latent variables are different

Tor the-different groups. Sorbom (1974) has developed a model in which

the mean vector as well as the covariance matrix of he latent variables

may vary from group to group. The structural equations will therefore

be different for different groups. On the other hand, the matrix A ,

.
which describes the relationships between the-observed test scores and

the datent variables, is considered an attribute of the observed

variables and is therefore assumed to be the F.:me for all grOups.
as

It is assumed that observations from-different groups are

independent. For a "random" examinee from group g we write his

Insert Table 7 about here

11.
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TABLE 7

Variances Covariances and Correlations for the

Unique Factors in Table 6 (Figure 12)

Standard Errors in Parenthesis

i Var (6i) Var (ei) 'Coy (6ici) Corr (Sici)

27.75 (3.78) 17.67 (3.88) -3.47

2 29.59 (2.37) 41.15 (3 38), 9.60

3 40.27(3.60) 50.89 (4.21) 6.15

44'.:21 (4.25) 40.34 (3.59) 7.52

5 24.37 (2.47) 24.84'(2.60) 12.04

6 54.28 (4.87) 74.53 (6.73) 22.84

(2.78) 0.157

(2.10) 0;275

(2.82) 0.136

(2.89) 0.178

(2.05), 0.489

(4.40) 0.359

ti
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observed scores, using the notation in (9)

zg = v + Af + e
g g

(33)

/
-Note that ,both v and A are the same for all grdups. The con-

_

stant vector' v represents the origin or level of the tests in the

sense that when f
g g
= 0 then E(z .) =v for all groups. This is

considered an attribute of the tests and-the scoring procedure. Let

the mean vector of f be denoted 6- . Then the mean vector
g , -g g

of z
g

is (c.f. equation (10))

S

= v + AO

and the covariance matrix is (c.f. equation (ii))

= AO A' + 7
_g __g _g

(35)

where 0 is the covariance matrix of f and the covariance
4 -g -g

matrix of e .

g

There are two fundamental indetermirsacies in (34) and (35). Every

fadtor in f
g

may be subjected to an arbitrary linear transformation

which may be different for different,factors'but the same for all

individuals in all groups. The effect of such transformations may be.

compensated for by adding a.constant vector to v and by a scaling of
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the columns of A , in such a way that both u and E are.
.g

unchanged for all groups. This indeterminacy means that both the

.

origin and the scale for the factors are arbitrary. 'These may '

therefore be chosen arbitrarily, but must be the same for all groups.

It' is convenient to fix the origins andthe scales_by choosing the

vector 8 equal to 0 ' for one group and by choosing a'one in'

each column of A .

Models of this kind may be estimated by means of the.00FAMM

program described in II. This gives maximum likelihood estimatesof the common v

.

an& A and of the mean vector 8
g

and covariance matrix 0
g,

as
, -,

. .

,well as the covariance matrix T of the unique factors for each
. .g

. . . ,?k.

group. One may-postulate almost any pattern in A, 0
-g

and
-

. P ,

'and any degree of invariance between groups. For example, one
ti

may postulate that T and some part of,.;. 0g are-anvariant over

groups.

F.. Comparis. of Change in Verbal Ability.between Grout's

To illustra the method of-the preceding subsection we make use

of the data introduce in,sectionIV.D. This time we use the data

for all the four groups but we use a somewhat simpler model than that

of Figures 11. and 12. We shall use scores on the reading and wriTing

achievement tests in grades 7 and 9 only. The model is shown in

Fig.,13.. Here we are mainly concerned with.the comparison of the

differences in mean changes and in the regression lines of V9 on V
7

.

InsertFigure 13 about here'

',The regression of V
9

on V in group g is
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toi
00

READING AC IEVEMENT

IN GRADE T

71
WRITING ACHIEVEMENT

IN GRADE

413

ti

READING ACHIEVEMENT .

IN GRADE 9

WRITING ACHIEVEMENT
}0--

IN GRADE 9
(2

$

Figure 13 -- Model for comparison of change in verbal ability betweep groups.
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,-*

where.

9
.=

g
+yg V

7
+C,

2
Y
g

= a /a

a

g

=0 -yg e

9g.

The maximum likelihood solution is given in Table 8. If one

-

takes the intercepts a
A

g
as relative measures of change, remembering

that.the scalejs. chosen such that ag is zero for group BA , one

finds.that.-group.--..GA has increased their verbal ability most

followed by groups BA , GNA and BNA in that order. H6weverthis

is not the whole story. For since tfie'slope of the regression lines

also differ between groups one should take this also into account

when interpretingl.the data. 'Probably the best way of looking at the

results is to use the estimates 0
g

and 0
g

to draw contour-ellipses

for each group as in Fig. 14. With this kind of plot one can fix a

given true pretest scoreand.find the likely range of true posttest

score for the various groups. For example,,at E = -15, approximate

9S% confidence intervals for n are.

GA: -17.32 < n

PA: -22.40 < n < -1.038,

GNA: -26.36 < n < -0.87,

BNA: -29.60. < n < -243.
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o.

A

At t = 10 these confidence intervals show a different pattern:

GA? 0.18< n < 16.34

BA: -3.46 < n < 19.09

,t-

GNA: 73.62 s. n S. 19:18*

BNA: 3.02 < .11 < 13.46

/
Insert Figure 14 and Table 8 about here

384

416



oo

4

417

27.9367

12.4128

GIRLS ACADEMIC
BOYS ACADEMIC.'

GIRLS NON-ACADEMIC

BOYS NON-ACADEMIC

-1a6352-

-341592

-49.6833
I

7'777 93463 2'8703 ''39.3943

Figure 14 -- ETS growth Study: Verbal ability, 'grade 7, - 9. 95 per cent regions.
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PA

'ABLE 8

. .4"
Maxikum Likelihood Estimates for the Model of Figure 13

SimiltadeOus,Analysts foi'all Four Group
ms

@alms:" (Boys academic) N =3

BNA (Boys non-academic) N = 249

73 GA (Gils academic) N = 383

GNA (Girls \nbn-academic) N = 387
f

1.00* 0.00* 274.93

A

0.95 0.00,
V =

269.76

o.op* 1.00* 286N

0.00* 1.12 283.35

A

a
nts-

a
ng

;Yg

BA '219.46 171.43 156.97 0.78

BNA 142.35 139.53 166.55 0.98

GA 186.65 143.57 121.49 0.77.

GNA 195.17 160.24 163.38 0.82 S.)
;2J

...
.-e

gs
ens

t-O,J

BA 0.00* 0.00* 0.00*

BNA -16.881 -18.108 -1.56

eA 5.949 5.140 0.56

GNA -9.298 -8.061 -0.43
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V. Multi-Wave Models

A. Multi-Wave, One-Variable Models

Suppose one fa] able measure, y*. is administered repeatedly

to the same group of people. An appropriate model for this situation

As shown in Fit. 15 in the case of four occasions. In the following

Ipsert Figure 15 about here

Ica discuss all models in terms of four occasions, the generalization

s to an arbitrary. number of/occasions will be obvious at 41 stages.

Such models have been termed simplex models by Guttman*(1954).to

designate the typical pattern of intercorrelations they give rise

to. Anderson (1960) formulated-this model in terns of-various
0

stochastic processes. and treated the identification problem and

aireskog (1970b) treated the estimation problem. An application
,

to the measurement of academic growth has been given by Werts, Linn

and J5reskog (1977) and applications to sociological panel analysis

have been discussed by Heise (1969), Wiley and Wil6r (1970) and

Werts*Breskog and Linn (101).

The unit of measurement in the factors r,. may be chosen to. be
1

the same as in yi i = 1,2,3,4. The equations defining the model'

are then, taking_all variables as deviations from their mean,

y. = n. + c. , i =1,2,3,4 , (36)
1 1 1

n. = 0.n.
1-1

+ 41
1 '

i = 2,3,4,
1

387 420
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where the e. are uncorrelated among themselves and uncorrelated
1

with all the n. anduthere.C1+1
is uncorrelated with

1
. ,

i=1,2",3. The parameters of the model are = Var(ni), eii = Var(ci),

i = 1,2,3,4 and fi
03'

0
4.

(We use the symbol 4)

here to denote the variances of the dependent variables. Since there

are no independent variables there should be no confusion.) The

residual variance Var(i4.1) is a function of 4)i...1.1 , and 0i+1,

2
namely Var(i.1.1)

4,i+1
i=1,2,3. The covariance matrix

of yl, y1, y3 and y45 is

E

Maw

S
1
+0 11 - %.

0
2

4) 4)2+e22
. (38)*

0
2
0
3

4)
1

03 2
4)3+633

i

1321331301
03

04
02

040 3 4)4+044

It is seen from (38) that although,the product 024)1 = a21 is identi---

fied, $2 and 4)1 are not separately ,identified. The product

$
2
4)1 is involVed in the off-diagonal elements in the first column

(and row) only. We can multiply 02 by a constant and divide 4)1 -by

the same constant without changinthe product. The change induced by

4)

1
n all can be absorbed in 0 in Such a way that a remains

. unchanged. Hence 011 = Var(e1) is not identified. For n2 and n

we have

(1)

2

a
32

a
21

31

(143a32

a
42
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1

1
,

so that 4)2 and 4)3, and hence also 022 and 033, are identified.

With 4)2 and 4)3 identified, 03 and 04 are identified by a32

and a43. The middle coefficient a3 is overidentified since

a a
'31 42

1334)2 a
41

3

Since both. 4)

4
and -0

44
are involved in a

44
only, these are ,

not identified but their sum a
44

is.

This analysis of the identification problem shows that for the

"inner" variables y2 and Y3, $2, 43, °022' 033 and 03 are

identified, whereas there is an indeterminacy associated with each of

the "outer" variables y1 and y4. To eliminate these indeterminancies

one of the parameters 4)

l'
0
11

and a
2'

must be specified and

one of the parameters $4 and 0
44.

must also be specified. Hence

there are only nine independent parameters and the model has one degree

of freedom. In the general case of T > 4 occasions there will be

3T - 3 free parameters and the degrees of freedom is,.(1/2)T(T+1) - (3T-3)',

The estimation problem associated with the simplex model is a

straight-forward application of the LISREL program using the option

of "no - x". The LISREL equations are

y1

Y2

Y3

o o

0 1 0 0

0 0

y4) 0 Q 0 1

390
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n2

n3

4

e2

e
3

L0 /

(39)



r
1

-0
2

0'

0

1

-0
3

0

0

1

-0
4.

OA

1

I
n1

n

41

2

4
C .J

(40)

In (39) we have taken e
1

= e
4

= 0 to eliminate the indeterminacies

and in (40) we have defined 41 as n
1.

In LISREL it is inconvenient

to treat
(ni)

= 1,2,3,4 as free parameters, so instead

of Si = Var(ni), i^ 1,2,3,4 we take Si = Var(y, i = 1,2,3,4

as free paameters. It is easily realized that the Si and the

i = 1,2,3,4 are in a one-to-one correspondence. So the parameter

matrices in LISREL are

)

and

\,

A
y

=-I B as in (40) , -

T = 4)2, *3, *4).

0 = diag(0, a
2

, a
2

0).

£2 £3

.00

1;', Multi-Wave, Two-Variable Models

The direct generalization of,the model in Fig. S to the case of four

occasions is shown in 16.

Insert Figure.16 about here

With x' = (x ,x2 ,x3 ;x4
_

) , y' , y2, y3, y4) , the model is
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a a

t

Figure 16 A four-wave, 'two-variable model with correlated errors.
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-r

x= n+ 6,

y =Dn+ c

where D = diag (a1, X2, 1
3

, X
4
). The covariance matrix of z =

(x' , y'r is

with

E = 0 + 0
6

a

E
yx

= D 0,

Eyy
!X?DA (2e '

where o, e and are e the covariance Matrices of n, 6 and

c , respectively,. It is seen that D
X

may be multiplied by a-nonzero
_

constant, 0 divided by the same constant and with 0 and 0
6 c

properly adjusted, E will not change. -Hence,the model is not

identified. One restriction is needed to make it identified but there

does not seem to be any meaningful way to choose such a restriction.

We shall therefore consider two other models which are both identified

(see Jdreskog & Sdrbom, 1976a), These models represent different

specification of the correlation structures for the errors in 6 and c

as follow's:

Model A: The errors are uncorrelated,

Model B: The errors have one common factor.

Model A is shown in Fig. 17 and model B in Fig. 18. In both models

3934 2 7



Insert Figures 17 and 18 about here

the, covariance matrix 0 of n is restricted to be generated

by a simplex-or first-order autoregressive model, i.e.

ni = Oini_i + , i = 2,3,4

This implies that'

(43)

'where,asbefore,0.=Var(n.) , i = 1,2,3,4. We now consider the

LISREL specification of each of these models. In both models we

treat,both x and y as dependent variables and use the "no-x" option.

Model A

. The LISREL specification is straightforward:

and (40).

= An + ,
(.44)

?i)

-394

426



, ,

A

E4

Figure 17 -- A four-wave, two-variable model with uncorrelated errors (Model

429
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Figure 18 -- A four-wave, two- variab1 model with test-specific factors (Model B

. .
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As before, LISREL treats .0i =-Var(4i) As primary parameters rather

than 0. = Var(n.)-:but estimates of ¢i are obtained as a by-
.1

product. The one-to-one relationships between- ¢i and ¢.

i=1,2,3,4 , are

1 4'1

¢. = ¢1
2

3. 3.-1
, i=2,3,4 .

The covariance matrix se of e is diagonal.

Model B ak'

Model'B Assumes:that the correlatibns between the errors 6

and c 16.are accounted for-by'one common'fictor. These
'4

Common fActors s and s are test specific factors in contrast
x Y

to the factors n
l''

n
2'

n
3

-and n
4

which are occasion ,specific

factors in the terminology of Jbreskog (1970a). The test specific

factors .s
x

and s areassumed to be uncorrelated and uncorrelated

with n, 6 and c .

The equations for Model B are
,

x= n + a.s 6 ,

y= D
X

+ y s
y

+ e._ __ '

where a and y are factor loadings relating the observed ,variables

x and y to the test- specific factors s
x

and s , respectively.

The factors s and s are scaled, to unit variance, for convenience.
x , Y .

,

Model A is a special case of Model B namely when both a - and y___
_ -
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.0

are zero. The hypothesis 0 and yf= 0 may be tested with

eight degrees of freedom.

The LISREL parameter matrices are specified as

r1
0 0 0 al

01
0 ,1 0 0 a

2
0

0 0 1 a3

0 0 l a
0 A =

-y
4

Al 0 0 0 0 Y1

Y2

0 0 13 0 0

0 0 0' 14

0 0 0 0 0

-8
2

1 0 0 0 0

R= 0 -8
3

1 0 0 0

0 0 -134 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

T.= diag(ij,1, 11,2, 11,)3, VO4, 1, 1)

yhere, as before tyi

diagonal as before.

, .= 1,2,3,4 and .06 and 0 are
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C. Estimation\of Four-Wave Models for MATH and SCATQ

To4illustrate the models of the previous subsection we use the

data on the variables. MATH and SCATQ from all four occasions. The

maximum likelihood estimates of the various parameters are shown

in Table 8 along with ,x
2
-goodness-cf-fit-values and corresponding

degrees of freedom. It is seen that model A is clearly rejected in

favour of model B. The parameters listed in Table 9 are those that

come out of the LISREL program and which are used Ito maximize the a

,

likelihood function. Some of these may be very difficult to inter-

pret in a meaningful way. However, from these estimates one can

compute various other parmeters which are more, easily interpreted.

Table 10 gives the estimates of the factor variances and the squared

correlationsObetween ni and n. , for model B and Table 11

-

gives the covariance matrices of the errors c* =y-Dxn and

-6* = x - n , i.e. the partial covariance matrices of y and x after

elimination of n. Table 12 gives the corresponding correlation

matrices,

From Table 10 it is seen that the squared correlations

R.
2

are quite high. There is a very high stability of the quantitative

factor over time. This is also indicated by the stability of the

8-coefficients in Table 8. Table 11 reveals that covariation among the

errors is present for the SCATQ tests to a lar er extent than for the

MATH tests. Table 12 shows that the correlations among the c* s are

in general higher than those among the 6* s. IThelatter are indeed

very small. Hence the model accounts for the intercorrelations among

Insert Tables ,9, 10; 11, and 12 about here
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i
4 TABLE 9 4,

*Maximum Likelihood Estimates for Models A and with x MATH

:r

.

.

4

.4

Group:

Parameter Estimate
====222=2=2:231./

Al

A2

A3

Ay

82

83

.84

.2

-2

i2

i3

and La SCAT°,

GA (Girls Academic) N 143

Model A
=

0.88_

1.13

1.23

1.31

1.22

1.01'-

4.06

55.25

9.28

A0.29

2.37

61.

0
S2

0,

0
6 1.

6.19

6.20

5.77

7.55

0 4.53
Cl-

a 6.18
C2

.10E 7.40

QC
7.14

2

X 72.49

d.i. 17

Model B

1.22

414.00

1.05

57.31

10.93

13.74

5.79

5.94

' 5.84

2.29

6.83

4.47

5.83

6.87

6.51

23..18

- 9

Additional parameters

-Moide1 B

) aY a 0.97 1.48

02 0.26 12 is 3.51

.03 = 4.59 Y3 a 4.66

04 = -0.92 Y4 4-9.0
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a.*

. 4

a

..: TABLE 10 4

Factor Variances and Squared Correlations

-'5

. I

foycModel B

Model B

2
ol...li ' 11?

3.

.,

57.31 - ,

,.. '. . _ ..._
.

96.23 0.886 .

'' \109.97 .^ 0.875
.

. ..

127.03 "0.954

. i.

.J

%

a

.,:'
a0

JO . -
". . ...

. 1

,

41

.....41

4r:

t
A .

.
.

4

.



TABLE.1

Cpvariance Matrices of E* and IS* for Model B

22.17

5.19 :46.31
'E*

6.90 ;16.36 68.91

')4.25 17.20 22.C3

I.

36.22

.6*.
0.25 34.17

4.45 . 1.10 26.31

-0.89 -0.24 -4.22

1
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TABLE 12

Correlation Matrices of e* and 6* for MOdei B

1.00

0.16 1.00

e*

0.18 0.29 1.00

0.19 0:31 0.34 1.00

1.00

0.01 1.00

6*

0.14 0.04 1.00

-0.02 -0.01 -0.12 '1.00

40(
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the MATH tests much better than the intercorrelations among the

SCATQ tests.

D. Multi-wave, two-variables models with background` variables

Although the multi-wave, two variables model with freely inter-

correlated errors between occasions is not identified, it becomes

so as soon as one or more background variables are included. For

the case T=2 -this was demonstrated in sectionIV.4. A model with

Td4 and two congeneric baCkground variables x
1 .4

and x,. may be specified

as follows. The
.

.

The measurement

Structural equations are-

_
1 0 0 0 n

1

=0
2

1 0 0

0 -0 1 0 n
3

0 0 -0
4

1 II
4

model for x
1

and x
2

is

(Y]

Y
2

4/

42

'43

4

/

. (45)

and the measurement mddel for v is the same as in (44). The co-

(46)

efficient measure s the direct effect of g on n
t

and is expected
4

to decrease as t increases. In (46) we have taken g to be measured

404
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in the same units as xl. If there is only one background variable

x, (46) is replaced by x = E , i.e., we take A = 1 and 6 = 0.

E: A General Model for Analysis of Longitudinal Data

In concluding this section we develop a general model for analysis of

longitudinal data. All the model!. -Insidered in the other sections of this

chapter are special cases of'this general model.

Suppose that several variables are measured at T points in time:

tl, t2, tT, not necessarily equidistant, where time is measured from

an arbitrary origin and with an arbitrary unit of measurement. Let pt

dependent variables be measured at occasion t, where t may be t1, t2,

or tT, an let yi = (v Y Y
be a vector of these pt variables.

1t' 2t' " ptt)

Neither the number of variables nor the,variables themselves need to be

the same at all occasions, although in most applications. they will be-so.

At each occasion it is assumed that yt has a common factor structure with

mt correlated common factors lc = n(lt'
n2t'

. nmtt), so that

Yt Pt+ Ayt 2t St '
(47)

where pt is the mean vector of y
t'

et is a vector-of unique factors,

and "A
yt

is a matrix of order p
t.
x m

t
of factor loadings.

In addition to the dependerit variables yV we assume that q

independent variables x' = (x
1,

x
2'

.. ' x
q
) are measured representing

characteristics and conditions existing before the first occasion and

assumed to influence the dependent variables y t' We assume that x also

has a factor structure with common factors E' = (El, E2, ..., En) so that

405
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x = v + A
x

+ 8 (48)

12

whe = v is the mean vector of;x,
,

the vector of unique factors'and

4

\

A
x

the matrix of factor loadings of order qxn.

Th
\\,

structural equations connecting the D's and § are assumed

to be

nl = Al g'+'.41

-Dt At g." +.1.3t

(49)

(50)

where A
t
'is a regression matrix of order m x n and B

t
is a regression-

matrix of .order x m The vectors C' = .(C C are
t-1' -t It 2t'

, Cm
t

t)

vectors, of residuals assumed to be correlated within occasions but

uncorrelated between occasions. As before,:t may be t1, t2, ..., t
T

and if t = ti' then t-1 is t

Equations (47) through (50) constitute the basic general model

considered in this paper. A special case of this model is when there are

4

no independent variables x. Then equation (48)is no longer included in

the model and equations (49) and (50)are replaced .by the single equation

=
-t -t -t- (51)

Equation (47)day be written more compactly as (here illustrated with

T = 4 occasions),

t

406
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(52)

and equations (49) and (50) may be combined and written as (in the

case of T = ..4'pec,asions)

I : 0

-B
2

I 0 0

0 -B3 0 0

0 0

45.,

4
This shows that the model is ,a LISREL model with

Y=P+ Ayn+ e,

x = V.+ A g + so,
.x.

Bn = rg +4,

407
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with A
Y
of order pxm, B of order mxm and I' of order mxn, where

P = Pt +-P + 11 and in = mt + m
t

+ + m . In the

1

t
. 2

4.

'T 1 2
tT

special case when there is no x, (55) is omitted and (56) should be

interpreted as Bn = L Each of the matrices A
x

B,, B I' and A
yt

,

. _. - _

t = 1, 2, ..., T may contain fixed, free and constrained parameters

as in section II.D.
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VI. &MARY

In this chapter we have developed several model's suitable for
\

analyzing longitudinal data and considered, the statistical problems of

model specification, identification, estimation and testing. Almost

all of the models may be estimated and tested using three computer

program ACOVS, LISREL and COFAMM, which are described briefly in

section I .

Section III s with the estimation of polynomial growth curves

describing the means f response variables as functions of time. The

growth curves ma e estimated for several variables and for several

groups of individuals simultaneously and various hypotheses may be

tested such that (i).the growth curve has a specified degree, (ii) the

growth curves are identical or parallel for several variables and/or

groups. The estimation of growth curves When the response variables

are auto regressive is also considered. If the-auto-regressive model

holds, the growth curves can be'estimated more efficialily and the

tests will be more powerful. 1.

SeCtions IV and V deal with models involving latent variables or

hypothetical constructs and the related problem of measurement errors
so+

in the observed variables. The kernel in these models is a set of

linear structural relationships among latent variables that are not

directly observed but observed by means of two or more indicators:

We consider models with or without background variables. Section IV

deals with two-wave models and section V with-multi-wave models. In
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subsections IV.E-F, we consider the comparison of change between groups

under the assumption that certain characteristics Of the response

variables are invariant over groups of people.

For most of the models in.sections. IV and V we'consider the

identification problem. The estimation problem is considered in the

sense that it is shown how to specify the model for one of the

three computer programs described in section II. For some of the todels,

the estimation and testing is illusttated by some data.
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APPENDIX-A

Book Prospectus

ti

Nessdlroad-e,\ J. R., & Baltes, Is. B. (Eds.). Longitudinal research in the

behavioral sciences: Design and analysis.

r.
rr

4

Objective
M1

This book will present a'comprehensive overview.of:longieu4pal
research ulthodalogy in the behavioral sciences (psychology, education,

human developa nt). Its special:features are that (a) it-win combine

an easily comprehensible averview section:with:more technical "forward-

looking" expositions, and (b) it will be co-authored by a multidisciplinary

tem_ of experts from psychology,.sociology, education, and statistics.

The primary substantive emphasis,' however, will be on the study of behavior

by means! of longitudinal methodology.

Background

The volume is the product of a large-scale contract (1974-1976)
which the National Institute of Education awarded to the Pennsylvania.,

State University and on hhich the editors were pr )ncipnl investigators.

The chapters have been carefully prepared and co dinated by the editors

and will be (or are being) edited with a'primary view on quality and

substantive convergence. Expected manuscript length (typed) is 500 to

600 pages. Expected completion date of manuscripts is May 30, 1977.

Audieffice

There is no'corparable book available in the literature. It is

expected that the volume will become widely used by graduate students

and researchers interested in the study of behavioral development both

in the behavioral and social sciences.

There is also i rather significant likelihood that neighboring
disciplines (e.g., economics, anthropology, history) will use the volume

as a source manual. In general, the editor5 expect that the volume will

enjoy a large and long-term market.
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