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o " ABSTRACT

~

The focus of this project has been the, preparation of a manual
aimed at ;he improvement of both the design of longitudinal researéh
and the analygis df data arigihg therefrom. Primary substantive
emﬁhagis has been given to issues related to‘educational and develop-
. mental research. Topicé of particulgr salience to longitudinal

researchers include: (a) the explicit differentiation between intra-

. individual variation, interindividual differences, and interindividual

—— ——— differences in intraindividual change; (b) stochastic models of de-

-

velopmental change; (c) mathematical representation of growth curves;

<

(d) structural equation modelg; (e) analysis of vacriance applications,
both univariate and'multivariate; and (f) analysis of categorical

data. .
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PREFACE

¢

This repoFt.to the\National Institute of Education represents
the‘coré Qf an advancéd manual being developed to aiﬁ the design and
conduct of longitudinal research in the behavioral and social sciences
in geﬁeral with particular géphasis or developmental/educational

concerns. The various chapters presented here, as well as a few

.additional ones to be included in a projected commercially available

Q&iune; cover aspects of~formﬁ1ating research questioné that are
inherently longitudinal, desiéning appropriate empirical research .
sfﬁdies, and anaiyzing effectively the fesulting data. Our primary
%oncern in choosing topics and selecting authors has beer ﬁo pro;ide

this manual as a common meeting placé, as it were, between leading

experts in particularly salient aspects of longitudinal research

and empirical researchers whose capacity for asking keen and interesting

substantive questions exceeds their familiarity with longitudinal

. t

';esearch tools presently ‘at the "cutting edge'" of methodologicai

H

Presented in Appendix A is a prospectus representing the contents
of the'entire‘manual as it is currently envisioned. Negotiations to
secure a commercial publisher are currently underway and will be com-
pleted soon. The investigators have also completed a major part of
the introductory and overview material to be included in the commercial
voiume. “Appendix B includes a list of project related papers by the
investigators that were déveloped during the course of the con;ract
period and é;edited accordingly. | v

We wish to acknowledge the work and ideas of se;eral people who

helped to make this project possible. In addition to various erstwhile

ii




and present personnel of the National fnstitute of Education whose
helpful advice was greatly appreciated, we are app;eciafive of the advice
and counsel of our colleagues here in the College of Human Development

at The Pennsylvania State University congerning potential contributors
s [' K P ’

and pe'tlnent>reference . Perhaps most importantly, our collaboration

‘Wlth the contr1butor> to thls report was not only enjdyable and pro-

‘\ L (]

ductxve”ﬁut also educaglonal for us:

[ -~

A Breat deal of. gratltude is also due our project staff. Our
graduate a551stants, espec1ally Steven W. Cornelius and Allison Okada
Wollitzer, not only offered valuable' intellectual input bu; were
-extremely helpful in tracggng down.reférences and assisting with
editing. T. J{.‘ Winand ‘and Richard L. Erwin of the Institute for the

_ Study of Human Development helped us repeatedly in the management of

resources. An express1on of profound appreciation is due several .

very capable project.dnd d1V151ona1 secretaries and typlsts who

assisted at various stages on the project, including: Sally Barber,

. -

D1ane Bernd, Jo Ann Chrlstlna Kathy F. Droskinis, Kathy Hooven,
Miriam Landsman, Joy Lose, Patty Senior, and Ingrid Tarante111 ~

" “To all of these and others whom we may have neglected to mention --

thanks!

May, 1976
__ _John R. Nesselroade .
// Paul B. Baltes
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. Abstract

1

A general developmental model for considering interindividual differences,

* s i )
intraindividual differences, and intraipdividual change is presented. The
model consists of defining each of the latter concepts in terms of Person X

Variable X Occasion data and considering their interrelationships. Two major

psychometric concepts, stability and regression, are then ‘singled out for
. .

special consideration within the model. The latter tack provides for some
usefu). conceptual distinctions, where several different kinds or aspects of
both stabili.y and regression become readily apparent. In this way, the

developmental researcher can become more self-conscious of, and achie'e greater
clarity of, some key psychometric issues which undoubtedly will intrude upon

his theory and practice.
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: : I. INTRODUCTION

The mission of this brief chapfcr is to present the beginnings of a

. unified conceptual framework from which to view traditional psychometric

Al
~

concepts such as stability, regression, reliability, and measurement error

within a developmental context. In addition, the emphasis will be upon the

'multivariate situation--accommodating the notion of repeated measures through

time on multiple variables for several individuals. Critical in the model to

L.

e N . -

be presented are the concepts of interindividual differences, intraindividual
differences, intraindividual changes, and their interrelationships. To the
extent that devélopmental psychologists should focus on intraindividual change
and interindividuai diffenénges in intraindividual change.(Wohlwill, 1970,
1973; Baltes, 1973), then there is a real need to consider within developmental
methodology the interface between such concepts as intraindividual change and
inter- and 1ntra1nd1v1dua1 dlfferences, an; traditional psychometrle issues.
Thus what follows is an exercise in concept methodoiogy rather than in formal
methodology. In this way, the practicing developmental psychologist may
acquire a firmer grasp of some of éhe ésychometric coﬁcepts necessary for

, . -
carrying out valid developmental research in the multivariate situation.

II. OVERVIEW OF THE GENERAL DEVELOPMENTAL MODEL. . !

In 1974 I proposed a general developmental model (Buss, 1974a) which °
. ~ ) '
attempted to integrate the concepts of interindividual diff@fences, intra-
individual differences, ard intraindividual change within a multivariate

develoﬁmental perspective. The major focus at that time was upon data-gathering

. strategies and data analyses rather than on traditional psychometric issues.

In order to'prepare the ground for a consideration of the latter, a brief
- ¢ . . \ . . .
overview of the 1974 model will be undertaken at this time. Note at the outset

that the general developmental model proposed by Buss (1974a) is not identical

-

with the one advanced by Schaie (1965) in the context of age-cohort research.

A}

Nl .

PO




A. Multiple Values on One Dimension Ve L,
A Y

The basic general developmental model a la 1974.iRQDIVed taking Cattell's

(1946, 1952) three-dimensional Person X Variable X Occasion covariation chart

.

. N
as a basis for defining the concepts of interindividual differepces, intra-

~

individual differences, and intraindividual change and there }nterrelatibnships.

-. [4
Ve 3
€

+

Figure 1 presents the simple case, where the datum in éach'gell is an indi-

»?
.

tre

vidual's. score on a variable at a particular oébasion.*f{n_this model, inter-

.

A ? J.- Lt N . -
jndividual differences are defined by sampling across individuals for each .
LI, Y
. EEs
variable at one occasion; intraindividual differences are defined by sampling .

\

across variables for each individual at one occasion; and finally, intraindivid-

L]

ual changes areifpecified by sampling across occasions for each variable for o

one individual.

z

.
" e ———— Lmmm———

N Insert Figure 1 about here

B. Multiple Values on Two Dimensions

-

Figure 2 extends the concepts of interindividual differences, intra-

’ e,

jndividual differences, and intraindividual changes by considering the six

possible ways of comparative sampling across each of the three dimensions.

’,

That is to say, for each of the three dimensions, the simple cas€¢ is indicated

in which at least two values, components, or "ids'" {Cattell, 1966) are sampled

»

across each of the remaining two dimensions or sets. The six cases thus® .

-

generated are: (a) jnterindividual differences in intraindividual differences,

in which individuals are compared in terms of sampling across variables at,one
L]

. . - . I T T I . ' D
occasion; '(b) intervariable differences 1n interindividual differences, in 7
<
which variables are compared in terms of sampling across individuall atone ;¢

occasion; (c) interoccasion differences (changes) in intraindividual differences, .

12




INDIVIDUALS

INTER-/O

Figure 1 --

The three cases generated by sampling across each

of the three dimensions of individuals, variables,
and occasions are interindividual differences
(Inter-iD), intraindividual differences (Intra-1D),
and intraindividual changes (Intra-IC), respectively.
(from Buss, 1974) )
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in which occasions are compared in terms of sampling acress variables for one
individual; (d) intervariakle differences (or intraindividual differences) in

intraindividual changes, in which variables are compared in terms of sampling

»
» .

across occasions for one individual; (e) interindividual differences in intra-

) . ~ /
individual changes, in which jndividuals are compared in terms of sampling’
hY
across occasions for one variable; and finally, (f) interoccasion differences
Lo i . -
(changes) in interindividual differences, in which. occasions are compared in

térms of sampling across individuals for one variable.

Each of the above six data-gathering strategies is defined by what is

compared--which gives the first aspect or the interindividual differences,
intervariable differences, or interoccasion differences part--and in terms of

what set is sampled across--which gives the second part of interindividuai

differences, intraindividuzl differences, or intraindividual changes aspect?

»

I

The two interoccasion comparison cases (see ¢ and f above) may be considered
as changes through time. It may be appropriate to consider the (d) case as

. -‘ -! - - . - . - = - - ‘e -
intraindividuai differences in intrairdividual changes, since different

. ‘ .
variﬁgles are coppared in terms of intraindividual ¢hanges. This observation

.

. S
reveals that there are two distinct ways of operationalizing the concept of

R -

intraindividual differences in Figure 2: by sampling, across variables for one
individual at one occasion (a and c) and by comparing variables in terms of
sampling across occasions for one individual (d). Similarly, there are two
distinct views of interindividual différences: by sampling across individuals
for each variable at one occasion (b and f), and by cbmﬁaring individuals in’
terms of either sampling across ‘ariables at one occasion (a), or by{%émpling
?
across occasions for one variable (e).

- o

7 aboe .

, 14 S

!
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Figure 2 -- The six cases‘generdted by comparative cross-sampling °
for the simple case in which only two components from
one dimension are comparcd in terms of sampling across
a second dimension are shown. (Abbreviations for terms
are as follows: ID=individual differences, IC=individual

: changes, VD=variable differences, and OD=occasion

‘ differences.) (from Buss, 1974)
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Each of the six cases in Figure 2 is illustrated by comparative sampling

<
.

for two ids, although the more yeneral case would igvolve an entixre two- -~
' . )
dimensional matrix. The latter situation would make use of’ the exact same

. data from an- Individual X Variable matrir at one occasion, but in (a) one

i

would first get an overall measure (e.g., a var1ance measure)—of variable

<

differences within each; individual (1ntra;nd1V1dua1 dlfferences) and compare

£

» - -

. 1nd1v1duals (1nter1nd1v1dua1 diffarences 1n‘1ntra1nd‘vldua1 dlfferences) in
> - o
terms of var1ances,-wh11e in (b) one would first get a variance measure of
* v e
K differences between ind1V1duals for each variable (interindividual d1fferences)
N - ’

and compare variabIe varianceS‘finteEEariable differences in interindividual

-~
M . .- v A

:f;differences) Wutatls putandis, a similar sltuatlon exists for the rema1n1ng

- - .

% e ) -

.. . four cases in Flgure 2. . . .

= .
.

4

Slnce the (a) and (b) data-gathering strategies are carried out at® ‘one *

.«

4 13 .~

occasion, ,they are not particularly useful for addresslng developmental aspects ™ _
¢

~

-~ .
of changes in variable scores,aunless one simultaneously considers tke third

- - - 2

-~ # ..
dimension of occa51ons (see below) * In contrast, the remaining four data-

- -

.gathering strategles, whlch,lnvolve, in part sequential dependent measures Or
“ -

changes in varlable scores through t1me, would be eSpec1a11) ‘useful develop—

mental paradlgms In considering' the two cases“(d) and (e), which are samples

across the occa51on dimension and are thus concerned with 1ntra1nd1v1dua1
changes, one must focus on comoaring either varlables (d) or 1nd1v1dua;s (e),
'and this requires that the unit for analysls be the plottlng of the entire set
of variable scores through time. A useful statistical technique that could be

;employed here would be testing for trends.l This focus on the pattern of
changes ;n variable scores may be contrasted with the:other four cases, in
which the unit of analysis for making comparisons would be variances. In the

(a) case, for example, where interindividual differences or comparisons are
1

\

v




- .
. .
-
L -
-

made with respect to intraindividual differences, the-appropriate index for

the latter is a measure of the within-person variance of variablz scores at

.

one occasion. In order to compare variables at one occasion in terms of -

r- -

interindividual differences (b}, aga%g it is a variance measure that captures
the extent of the interindividual differences. A similar situation holds for

\ .
_ cases (c) and (f). . oL .

Variable scures are typlcally standardlzed across 1nd1v1duals for each

-

_ variable at one occasion. This common practice needs to be avoided in the

present scheme, since it would result in identical variances for each var1ab1e
“at each occasion (the variance of a standardlzed variable 1s equal to unity).

If such.a standardizing procedure were adopted, it would be impossible to
- 3'. - b
detect intervariable differences in interindividual differences'(b). By a

similar argument, it would be uﬁdesirable to standardiie each variéble across

-
.

occa=1ons for each person, each occa51on across variables for each 1nd1v1dua1

~.

etc. What is necessary for mean1ngfu1 comparlsons for a11 six cases is to

standardizeieach variable in terms of both individuals and occasions, that is;u

across each réctangular viglab". or matrix for each variable. In this way,

spurious, identical interindividual dif gcgs variances for each variable at
. s - .-

each‘occasion, whicﬁ are(bfought about by Y sﬁaling procedures, are avoided.
One of the advantages of sfandardizing in the manner being recommended here is
thatﬁgbgolute changes in variable scores result in correspondingly hig?er or

lower standard scores, since variables a;e not restandardized within each f

occasion. . : ¥ '

C. Mu1t1p1e Values on Three ‘Dimensions

NIt is poss1b1e to extend each of the six data gathering strategies outllned
above in that situation in which one also samples thrOugh *the third dimension.

In other words, there is a three-step process here, in which one first samples

10

17 o




5

bﬁt it is the operationaf sequénce of the three sampling stepsfthat determines

$
- 4
v

-

_across the first dimension, compares such sampling in terms of the ids Or

components on the second dimensions (the six cases just outlined above), and
then proceeds to sample the comparisons of cross- sampling through the third
dimension. In the complete three -step procedure, two dimensional "slabs" or

matrices are compared. This process generates six cases, in wh1ch‘those data-

gathering strategies in Figure 2 are now moderated by a term referring to the

third dimension that is sampled through.
*‘ . - . \"‘

:

Flgure 3 111ustrates the complete three-step procedure for the 51mp1e

-~
o

case 1n which two ids (which have been sampled across on one d1mens1on) are

- /4

success1ve1y compared across the third dimension. The more general case would

!
!

involve successive samp11ng of entire matrices through the third dimension.

»

. . . C..
As before, the latter procedure could involve the same data for various cases,

i
!

s
the six separate relational systems. : - .

>

Ea The six, three-step caﬁbs in Flgure 3 are the following: (a) interoccasion

.

dlfferences (changes) in 1nter1nd1V1dua1 differences in 1ntra1ndiv1dua1 d1ffer-

' ences, in which the variances reflecting the extent of 1ntra1nd1v1dual d1ffer—

‘e

ences for each individual at an occasion are compared for individuals through

tlme or the occasion d1men51on, (b) 1nterocca51on differences (changes) in

1
v b3

1ntervar1ab1e d1fferences in interindividual differences, in which the 'variancés
ld s

reflecting the extent of interindividual differences for cach variable at an

occasion are compared for variables through time or the occasion dimension;
. . . .

(c) interindividual differerces in interoccasion differences (changes) in

intraindividual differences, in which the variances reflecting the extent of
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The six cases generated by sampling the labeled
comparative cross-samplings through the third
dimension are shown. (The simple case is indicated
in which only two cross-samplings are successively
compared through the third dimension. Abbreviations
for terms are as follows: ID=individual differences,
IC=individual changes, VD=variable differences, and
OD=occasion differences.) (from Buss, 1974)
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intraindividual differences for each occasion for an individual are compared

4

_one occasion and for one individual as reflected by a variance measure. If

for occasions through the 1nd1v1dua1 d1men51on, (d) interindividual differences

in intervariable dlfferences (1ntra1nd1v1dua1 dlfferences) in intraindividual

- changes, in which the plots of variable scores across occasions at an individual

are compared for variables through the individual dimension; (e) intervariable

differences in 1nter1nd1v1dua1 differences in 1ntra1nd1v1dual changes, in

-
st

which the plots of variable scores across occa51ons at a variable are compared -
for individuals through the variable dimension; and finally, (f) intervariable
differences in interoccasion differences (changes) in interindividual differences,

in which the variances reflecting the extent of interindividual differences
.

for each occasion at a variable are compared for occasions through the va}iable
. e

dimension. ) 5 7 ’
Although these extended.six data-gathering strategies may appear quite
complex prima facie, acqu1r1ng a firm conceptual understanding of them may- be

fac111tated by working backward through the three steps and, consequently,

their Verbal designations. For example, in the case of interoccasion d1fferences .

»

in interindividual differences in intraindividual differences, the focus is

initially.on the extent of intraindividual differences in variable scores at

one were then to proceed to compare such variances for two individuals at one

occasion, we would arrive at the two-step concept of interindjvidual differences

n

in 1ntr11nd1v1dua1 differences. Considering now the third dimension of occasions,

in which individuals are.now compared through time (occa51ons) in terms of the
extent of intraindividual differences in variable scores, we arrive at the
three-step concept of interoccasion differences in interindividual differences
in intraindividual dlfferences. One may work backwards in a similar fashion
fo¥ each of the six extended cases in order to fully grasp their conceptual

significance.

13
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The 1% data-gathering strategies for interindividual differences, intra-

individual differences, and intraindividual changes are summarized in Table 1

’

in the order presented above, in which the. first three casés consider multi-

ids on only one dimension, the next six cases on two dimensions, and the-last

six cases on all three dimensions.

D. Limitations of the Model =

Before leaving the general developmental model per se for a consideration

~
-

of some key psychometric concepts within its framework, a few cautionary

‘comments are 1n order. First, the model makes the assumptlon "that the meanings

cf the constructs which the variables are measuring remain invariant across
: ¢ N

time. 1In other words, it is quantitative rather than qualitative or structural

change (e.g., see-Baltes § Nesselroade, 1973; Buss, 1974b; Nesselroade, 1970)

. . 5 X

. which the model is capable of addressing, and it-is therefore confined to
slices of the'lifespan where the invariance of one's constructs has been
demonstrated.

§ . ®
A second limitation related to the above is that the present model 15 not
p :

v v

14
focussed upon an analytic treatment of interbehdvioral change. That is to

say, the strength of the model lies in those sltuatlons where change is monitored
id
within a given variable or variable$ rather than marking out inte.behavioral

changes involving cross-variable paths through time., The latter would also
require techniques capable of analy~ing qualitative change. A third, and once

again related 11m1tat10n, serves to place the entire model in proper perspec-

tive. ThlS point can be best apprec1ated by contrast1ng the model and its

1

intent with related notions.
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Table 1: Data-Gathering Strategies for Interindividual Differences, Intraindividual

Differences, and Intraindividual Changes (From Buss, 1974)

Dimension 1:

Dimension 2:

Dimension 3: Type

sample across compare on sarmple through
Individuals No No Inter-ID
Variables No . No Intra-1D :
Occasions No No ‘ *  Intra-IC
Variables Individuals No . : Inter—nl in intra-ID
Individuals Variables ; No Inter-VD in inter-ID
Variables Occasions No Inter-0D in intra-ID
Occasions Yariables No . Inter-VD in intra-IC
Occalsions Individuals _ No Inter-ID in intra-IC
Individun'ls Occasions No Inter-0D in intezl-m
" Variables Individuals "Occasions Inter-0D in inter-iD in _;ntr;-ID
Individuals ‘Variables Occasions . Inter-0D in inter-VD in“inter-I1D
Vg}'iébles Occa.s.ions: ° Individuals Inter-ID in i,.nt:r-OD in intra-ID
Oc:.;asioné Variables o Individuals Intex-ID in inte:-VD in intra-IC
fOccasions Individuals Variables Inter-VD in inter-ID in intra-IC )
I.ndividu\alls Occasions Variables Inter-VD in inter-0D in inter-ID

Note Abbreviations are the following: ID » individual differences. IC = individual
. changes, VD = variablé differences and OD = occasion differences.

1
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Mention has already been made of Cattell's (1946, 1952) original three-

dimensional® covariation chart. The purpose of that model was to set out the
six different factor analytic techniques defined by what was correlated (personms,
varisbles, or occasions) over what (one of the two remaining options after the

initial selection). In the expanded version of the covariation chart into a

generic data box Cattell (1966) has gone beyond his initial desire to set

out various methcds of factor analyzing Person % Variable X QOccasion data and

has employed a full 10- dimensions for indexing a datum. Importaat to note in

the present context is that Cattell“s more recent treatment of data relations
9
is not conflned to spec1f1c data analysis technlques. Implicit in his data

box is“tﬁé notion that different data §na1yses are appropriate;fbr different
aspects or relational systems. in thq‘tontexf of longitudinal data analysis
techniques, Kowalski and Guire (1974)‘have explicitly linked specific analytic
techniquesl to various relational aspects of Person X Variable X Occasion

data. In contrast to Cattell's (1966) comprehensive treatment of how one can

o

conceptualize data in general, and in contrast to Kowalski and Guire's (1974)

.general account of the various analytic techniques available for longitudinal
) s
data, the present model is restricted to conceptualizing specific concepts

(inter- and intraindiﬁiaual differences, intraindividual change) within the

three-dimensional cata frame. Its intent, therefore, is to focus in upon a

“ »,

specific set of concepts as these are related to longitudinal data. The
present model makes no attempt-to explore terrain previously charted ocut by
others'.

- -

~
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! ITI. PSYCHOMETRIC CONCEPTS AND THE GENERAL

. DEVELQPMENTAL MODEL: STABILITY — ’

|
The.ﬁwo psychometric concepts singled out for specific treatment inrterms
of the mu%tibariate developmental situation and the preceeding model ére
stabilify/and regression to the mean. Other concepts, such as reliability,
measuremqﬁt error, true scores, etc., are introduced as needed and ;s they are

relatedigpecifically to stability and regression.

A. StaBility in Two Dimensions

gyystabllity in the mﬁitivariate developmental situation, one can mean
,eith;r the stability of differences between or within persons through time.

In considering Figure 2, these two cases translate respectively irto noting
_éither the degree of stability of interindividual differences scores on a
single variable through time (case f), or the stability of intraindividual
d;ffereﬁées scores'on a single person through time (case c).

In each of these simple cases, multiple values on one dimension (either
individuals or variables) for ome id (either a variable or individual) are
obtained on two successive occasions. The simple two-occasion situation Yould
involve calcuiating a correlation coefficient a; the stability coefficient,

S
whereas the multiple occasion situation would involve calculating successive -

stabiiity coeff;cients (see below). Since the Pearson product moment correla-
tion restandardizes scores at each occasion, that is, it cancels out means and
variances, this statistic would permit inferences concerning the degree of |
stability of the pattern or shape of the multiple scores through time. Thus,
it would be possible to have absolute changes in scores, yet obtain a h.gh
stability coefficient so long as there was relatively high invariance of the

pattern of interindividual differences through time. It can be noted in

passing that the ceiling of a two-occasion product moment stability coefficient




would be the lower reliability coefficient as‘determined by assessing reliabil-
ity at each occasion. -

An alternative index of stability that takes more tpan just the con-
sistency of éhape into account would involve one of the measures of similarity
based upon distance (see Bolz, 1972, for a review of such indices of similarity).
Cattel}'s (Cattell et al., 1966) pattern similarity coefficient is probably
the superior statistic in that it simultaneously ézisiders differences between
two patterns of variable scores due to: elevation (the mean of all scores in
i\profilei, scatter (the square root of the sum of squares of the deviation
sco;es about the mean), and %%fpe (the residuﬁl information after equating twoc
patte¥ns for both elevation ﬁnd scatter). ~ In addit;on, the pattern similarity

coefficient is readily meaningful--varying between 0 (no pattern similarity)

and +1 (perfect pattern similarity), and it has known distribution and a test
; "

[

for significance (Horn, 1961). .

If cne were‘to employ the pattern similarity coefficient as a two-occasion
index of stability of either interindividual differences or intraindividual
differences,. it would be necessary to standardize across each rectangular
nglab" or matrix for each variable as previously outlined. In this way, one
can make the best use of the additional measurement properties of the pattern
similari£y coefficient, that is, its sensitivity to‘differenccs in both the
means and variances of two patterns. Thus, the pattern similarity coefficient
should be used as an index of the stability of inter-or intraindividual differ-

ences when the concern is for absolute rather than relative pattern invariance

‘over two occasions.

B. Stability in Three Dimensions ) %

e above notions of stability can be readily generalized to the three

dimensional situation, that is, where it is desirable to make variable compar-

18
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isons in the stahility of interindividual differences, or, person comparisons
in the stability of intraindividual differences. Each of these cases in the
two-occasion situation can be visualized by reference to Figure 3. Variabie
compayigsﬁs 3in the stabjlity of intc;individual differences involves case
kf)--where it is extcnded through the third dimension of Variables such that
variable differences in stability coefficients are observed. The same rationale
follows in making person comparisons in the stability of intraindividual
differences, which involves extending case (c) in Figure 3 through the third
dimension of Individuals. In either of these two cases, the product moment or
pattern similarity coefficient may be used, dependiné upon the question being
asked in light of the unique properties of eath of these statistics as previously
discussed. : A ’
Thus far the concept of stability has been extended to both inter-and
intraindividual difégrences in the multiple variable and person situation.
However, a truly adequate treatment of stability in a multivariate developmental
context must provide for more than the restrictive two-occasion model. Extend-
ing cases (f) and (c) in Figure 2 right across occasions to involve an en£ire
matrix or'"slab," illustrates successive or multiple occasion data-gathering.
Thus in éase (f), successive stability coefficients for a single variable -
could be ob;ained, where each stability coefficicnt is calculatedrfrom adjacent
occasions. The vzlues of the stability coefficients could then be plotted for~
purposes of varialle comparison; in trends over time, and Figure 4 iilustrates
three prototype cases: iqcreas{gé stability EIS), stable stability (SS), and

decreasing stabil¥ity (DS). BY.hsing curve fitting techniques, one may then
deterﬁine variable differences in "stability trends through time. The exact
same ldgic may be applied to case (c) in Figure 2, &Ppye Figure 4 may now be

regarded as illustrating three prototype stability funstipns for intraindividual




. !

- N b
‘differences. Each function, then, characterizes a particular individual

rather than a particular variable. The term "prototype" in the latter situation

q

is more than a mere casual use of labels, since it may indeed be possible to

¥

-

distinguish "types" or clusters of persons on the basis o§ stability functions

fpr'intraindividual differenc?s.

.What about the interrelationship between the degree of stability of

¥
interindividual differences and the degree of stability of intraindividual
differences, where the same data are analyzed in the appropriate manner? High
stability of inte}indiv;dual differences on each of thd variables is a préreq-

uisite for high stability of intraindividual differences for each person, and

vice versa. In other words, in the extreme case (i.e., considering the stability

tw .

‘pf Ehg:gntire Variable X Individual matrix through time), both the stability
of inter- and intraindividual differences are two different wéys of looking at
the same phenomenon. However, the direct translafion between the degree 6f
stability of inter- and intraindividual differences evaporates as Soon as one ‘
selectively focuses upon a subsample of variables or persons through a liﬁited
nunber of occasions. The }attér statement, of course, does not deny the ever
present nonindependence of the stability of inter- and intraiﬁdividual differ-

ences when calculated from the same data.

c. Stability‘gf_Popplation Parameters

Having distinguished between stability of inter- and intraindividual
differences, there remains another important sense of the term "'stability"

applicable to the multivariate developmental situation. Thus, one may speak

A

of the stability of various variable properti.s of a population through time,
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i Where the focus is now upon the degree of stability of certain descriptive v

statistics.such as the mean or variance. Clearly, in this case, one would not
&

restandardize the variablg scores at each occasion, since this would mask

changes in absolute valué of the mean and variance. In mapping out various

» -~
< AR ~

© statistical properties of .variables over time, it is quite possible to have

~

l

stability of, say, the mean and- variance, yet, at the same time, have radical

v o —

instability of inter- and/or intraindividual differences.

e - The distinction being made here is conceptually quite important, 51nce‘
the stability or "dynamic equilibrium" of a population on a particular variable
does not entail stability and/or systematic change at the individual level.

To the extent that in multivariate developmental psychology there should be an

emphasis upon intraindividual change and interindividual differences in intra-
1ndiV1dua1 change (e.g., in the present context, the degree of stability of

1ntra1nd1v1dua1 differences and person differences oT 1nter1nd1V1dua1 differences

-

in the stability of intraindividual differences), then it is 1mportant to make

- -

the kind of distinction presently being made. This is not to say that questions

concerning the stability of properties of a population on a particular variable,

or the stability of interindividual differences through time, may not be

»

extremely'interesting or important.. Rather, and this is the basic point,

there are several ways one can frame questions concerning stability in the
hn;ultivariate developmental situation, "and the pract1c1ng_researcher should be
_quite conscious of the various alternatives available and effect an adequate

match between the research question and the concept of stability employed:
C

IV. PSYCHOMETRIC CONCEPTS AND THE GENERAL

DEVELOPMENTAL MODEL: REGRESSION

A. Regression as a Prediction Model versus Type of Change

Regression towards the mean is a thorny issue in developmental psychology,

Q ’ 22 \
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and, although it has been discussed within a developmental context (e.g.,

Baltes § Nesselroade, 1976; Baltes, Nesselroade, Schaie, § Labouvie, 1972;

Clarke, Clarke, and Brown, 1960; Furby, 1973), there remains a need for further

»

clarification. Any discussion of regression must, of necessity, consider such

H
psychometric concepts as measurement error, reliability, true scores, and so

< 7 ~

on. In discussing regression within a developmental context, it is advan-

tageous, as suggested by Baltes & Nesselroade (1976), to separate the typiﬁal

x

psychometric issue associated with this term, namely, regression as a prediction

-

model, from observed regression in the data.

. The previously outlined devélopmental model of Buss (1974a) can be fruit-

fully consulted in attempting to keep separate regression as a prediction
i

model and observed regression in the data. Thus in Figure 2, regression as a

prediction model can be best located.in terms of cage (b), where one would )
employ regre§sion techniques for predicting scores on one variable from scores
‘on andther variable. Regression in this instance is not "in" the data, or in
other words, is not a "real' phenomenon.

In order to better understand the point I am trying to maké' here, consi&er
case (f) in Figure 2, where measures are obtained on ghe same variable on two
separate occasiéns. In the latter instance, there is continuity over time,
and if there is regression from occasion to occasion, it is a phenomenon »
intrinsic to these data. In other words, and this is the basic pqint, when
regressing one variable against another different variable, we are using
regression as a prediction model. When we obtain repeated measures for two
occasions on the same variable, regression toward the mean, if it occurs, is a
phenomenon'to be explained. In therlatter situation, regfession toward the
mean is-.a special kind of change‘in one's data. Should one desire, variable

differences in regression a5 a type of change can be located in the general




o,

N

Q

[ &

model by considering case (f) through the third dimension, that is, as illustrat-

ed in Figure '3. -

<

In the following discussion, regression as a prediction model is bracketed. -

The focus of attention is exclusively upon that situation where observed |

~ I ‘ . L -
regression is in the data (regress1on\as a type of change) in order to try to

»
clar;iy some of the developmental 1ssues in this area.

B. Regre551on of Extreme Samples~

’

Observed regression to the mean may be associated with either changes in
true scores or changes in error scores in thetclassicar measurement model of

x =t + e, that is, the observed score is the sum of a true score component

‘and an error score. component. Important to note, then, is thét ob%erved

regress1on,«wh1ch is in the data, may or may not reflect true changes in the
underlying trait or variable of a particular sa?ple.

‘The developmental psychologist must, in certain situatiohs to be explicated,
take account of observed regression hssociated with the error part of scores’
in order to“ﬁake valid ;h erencegrconcerniné real or true score chapge‘over
time. The“c}gssical casegsh re the developmental psychologist siﬁplx,must
consider the extent to whichséhserved regqssi;ﬁ towards the mean is associated
with true changes in the variable is illustrated in Figure 5 (see also Baltes
& Nesselroade, 1976; Furby, 1973).

In Figure 5, the sample of individuals is initially selected from the

extreme range of the normal distribution of the population. We can make the

- ————— - . - - -

»

assumption in Figure 5 that measurement_ error exists and is constant across

occasions, that is, reliability is invariant. As the second occasion, the
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The classical situation of regression towards the
populatlon mean, where the sample is initially
selected from the extreme range of the normal
distribution of the population.

+
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- entire sample has shifted closer to the pOpulation mean u. To the entent that
~

the reli.bility of variable X is less than unity, “that .is, there is some
\measurement error, then there w1ll be observed regre551on assoc1ated with
chanées in error scores. This follows from the classical measurement model--
-.a model that forms the bedrock of measurement theory--and a model which must
.be accommodated until displaced by something shown to be. superior.
- The classical measurement model states that (because errors of measurement

are assumed to be uncorrelated over time) extreme scores in a distribution are

biased in ‘that same extreme direction, and that on a second occasion, _the

error'associated with these individuals; scores will, on the average, be
less--thereby effecting observed regression towards the population mean. ~
F Another way .of saying this is that in nonerror-free measures, observed scores

are biased estimates of true scores, where obServed‘scores above the population

7

mean are biased upwards, and vice versa for observed scores'below the population
‘mean.

, " For tbe developmental psychologist‘who is working with a select sample of :
nonerror-free extreme scores, regression toward the mean asSociated with

° < -

: changes in error scores will occur. It will show up as observed regreSSion,
all other tbings being equal. To the extent that’there are true changes in
the underlying trait or construct which a varisble is tapping, this may effect
no observed change in the sample distribution lf the true score and error
score changes, on the average, tancel each other out. Thus, the developmental-
researcher, when working with a sample under conditions described above, must
know from where the sample came, as well as the reliability of measures, in
order to make valid conclusions as to the extent of true score or 'real"

! changes in the underlying construct over time. The latter conclusion is not

the consequence of a specific prediction model, but is the consequence of a

“ ’
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very general measurement model underlying all measurement--psychiological or
otherwise.

In regard to integrating the concept of regression within the present

methodologiéél model, we can-note that, in that ideal case of error-free

measures and where regression is associated with changes in true scores and,

+

for arguments sake, the Pearson product moment 'stability coefficient is unity,

then in the shift towards the population mean in Figure 5 there will 'be no

’

interindividual differences in intraindividual change. The latter would be a

1

very unlikely sitnation in any actual research outcome. More pfbbable would
be observed interindividual differences in intraindividual change towards the
population mean associated with either real or/and spuriou% factors, respectively

paralleling true score and error score changes.

C. Regression of Representative Samples

-
&

There is another, quite different, situation involving“regression toward
the mean, and previous discussions have failed to place it in sharp contrast
- with what isgiost typically meant by regression (but see Baltes § Nesselroade,
1976) . On occasion there has even been a tendency to confuse the two siFuations
of regression, or at least switch from one to thé other without a&equate
.

awareness. ) .

The second major case of regression toward the mean is illustrated- in

Figure 6 where, in this instance, the sample distribution can be considered as

representative of a popilation rather than coming from a selective region of

the population distribution as was previously the case. In Figure 6 there is

observed regression towards the mean, but in this instance, regression is
defined by a reduction in the sample variance rather than a shift in the
X

sample mean (and thus the sample) towards the population mean. Thus, in

Figure 6 the means at cach occasion are identical yet there is within-sample

v
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regression ‘towards the mean, and within-population regression to the mean to

&»

the ex;eng the.sample is represeﬂtatAVe of a populat1on. As before, éuch
observed regress1on may be associated with changes in either true scof@s or
chénges in €rror scores. nnwevér; in this second case of regression: any‘
regression assbciated with changes in error scores is due to increased reliabil-
1ty across occasions and a reduction of the error var1ance--wh1ch was not .the
case in the first instance of regression wﬁere it was assumed re11ab111ty was
constan% over time. Of course, in considering only changes in errgr scores, y
both within- sample regression to the sample mean and regre551on of the sample

* to the population mean could occur® slmultaneously in Flgure S if there were an

increase in reliability over time.

-

In Figure 7 it can be seen that mean sample changes in either an upwards
or downwards direction are independent of within-sample regression to the

mean. Thus the entire distribution of scores may shift in either direction--

regression still being defined.as a reduction in veriance. The latter observa-

¥

X

tion brings us to the point that, in the multiple occasion situation, changes

in regression to the mean may be mapped via noting changes in variance through
N . b

time. However, this conclusion reveals that observed regression is "merely"

observed change in a specified directionm, élthough there is more to it than

that, The observed change may be associated with changes in either error

scores (reliability) or/and true scores, and valid developmental conclusions

.

require separating these two sources in both types of regression discussel in

this section.
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Figure 6 -- Regression towards the population and sample mean
where the samplc is represcntative of the population.
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D. Concluding comments on Regression ’ -

.

- While is is true that within-sample regression may or may not occur--

depénding upon whéther there is a reduction in érrof variance and/or real
changes in‘true scores towards Fh; mean---egression of observed scores, as
discuksed in the first instance and illustrated in Figure S, will occur,
assuming nonerror-free measures and all other things being equal Develop-
mental psychologists w111 need to iksess any true score change in ;h; sample
mean either towards or away from the population mean in light of error score
; change.
Recently, Baltes and Nesselrééde (1976) have concluded tpat regression
-toward the mean is often an irrelevant issue in developmental research to the
extent that we should focus upon change and multipie ‘occasion data beyond the
. two-occasibn case. According to them, regression is only one form of change '
rather than some immutable law and in multiple occasion data,” it can be assesscd
" via error-centered baseline comparisons. "This view has much to recommend it,
since it places the typical two-occasion regression situation within a broader
framewgrk for the multivariate developmental rescarcher. Such being the case, ~
the spirit of their effort is consistent with perspectives developed here.
. V. suaffy |
The concepts of interindividual differences, intraindividual differences,

1

and intraindividual change were defined in terms of sampling across one of the

three dimensions of individuals, variables, and occasions, respectively. Each
of these concepts was then considered in comparative sampling by introducing

a second dimension, thus generating six data-gathering strategies. Each of

-
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Figure 7 -- Regression towards the sample.mean but not towards
the population mean in two different, situations: change
in“an upwards direction (UD) and change in a downwards
> direction (DD).




important psychometrlc concepts were considered withinp the developed framework:

DN e

the latter six cases was extended to include the third d1men51on ‘through which

[ -
-

the comparative sampllng is sampled.

\q

Out of the total 15 data-gatherlng

strategies con51dered 11 were de*1ned in pgrt by the occasion dimension and

4

arc therefore capable of dealing’with change data

. - T

Limitations of the general developmental model were d1§cu55ed. These

jncluded: (a) the model rests upon the assumption that the meaning of the

constructs which the variabies axé measuring remain invariant; (b) the model
is not equipped to deal in an analytic way with interbehavioral change; and
finally, (c) the modei is'to be used for focussing upon a specific set of
concepts as these are related to longitudinal data,‘rafher than'fér attempting

a general and compreheﬁéive deliniation of various developmental data analysis

-

techniques.

- o

Having outlined the general developmental model and its,limitations, two

stability and regression. Twc klnds of stability were outlined which were -

defined by two of the three dimensions of persons, variables, and occasions:

(a) the stability of interindividual differences on a single variable througha"

time; and (b) the stability of 1ntra1nd1V1dua1 dlfferences on a 51ng1e ﬁ%iﬁon .

Stability in th:.ee dimensions 1nvolves extendlng each of these

- )
types of comparing stability coéfficients across variables or persons respec-

. -

through time.

tively.

L3
v

Stabilitr can also involve multiple occasion data;, where suecessive '

P . . . ¥
stability coefficients are calculated at each occasion for determining changes

- L

in stability of either interindividual differences on one variable, or intra-
. ! *

One could then make variable or -

individual differences for oag person. 0

, ‘\'
person compafggggg. respectlvely, of trends in stability Lunctlons. Finally,

stabllity of population parameters was another aspect considered, where it was
* . . -

- . .
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pointed out that one could plot the values of ‘certain descriptive statistics’
over occasions. This meaning of stability reveals the important conceptual

point that, it is quite possible;to havé stability of,. say, the mean and

variance»of'a population, yet, at the same time, have radical instability of

b ]
1nter— and/dr 1ntna1nd1v1dua1\dlfferences: PN

= \

In c0n51der1ng Tegression toward the mean, “ two fundamental tyves were
r 2 i
defined w1th1n the-general developmental modei (a) regre551on as a predlption

v -

model and (b) regre551on as a kind of change. The former was seen astpssen-

) -

tlally nondevelopmental " dnd thus dlSCUSSlQn was conf1ned to regression as a

spec1a1 k1nd of change over time. . ) . - ; .

Ny . ) 4 T

Two k1nds of regression toward the mean as change were con51dered for the

two qQccasion case only: a)’ regre551on “of- extreme samples, and (b) regre551on

of representatlve samples. Regre551on of extreme sample means t&.populatlon
‘means was Seen- todoccur g1ven the assumptlons of the classical measurement
model and a11 other things be1ng equal. To the extent that there are changes
in the true score component of observed scores' thrs w111 effect the amount of

observed regression which would otherw1se be due solely to chanves in measure-

“ .

ment error over occasions. Rzgression of representative samples of partlcular
populations was seen to involve a decrease in variance over time rather than
changes in sample means. Thus there can be & decrease in sample variance (and

thus regression towards the mean) brought about by:changes in either the true

.

scores and/or the error scores. The mean may Or may not change over time--

regression in this case being andependent of such change..-
7 .

In conclusion it should be noted that greater clarlty of psychometric
concepts in the developméntal situation js possible and necessary for those

pract1c1n0 the craft of developmental research " The proposed formulation of a

-

L4

general developmental model idvolving 1nter1nd1vrdua1 d1fferences, 1ntra1nd1- .
AR

V1dua1 d1fferences, and 1ntra1nd1v1dua1 change 1s helpful in this regard
. :?3 1 o ‘ .

L
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. - Footnotes [ .
’ 1Some of those considered are the followipg: curve fit«ting, (factor anz}lysis,
. . ) ) \ — s
. multivariate analysis of variance, polyncmial growth curve models,-rcgression, L
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ABSTRACT

-

In this paper we explore the consequences of particulaxr stage linkage

“ >

structures for the evolution of a population. We first argue the importance of
constructiﬁg rdynamic' models of developmental theories and show through a
series of examples the implications of various stage connections for population

movements. In discussing dynamic models, one thrust of our cpmmenté is to °

identify the sorts of process features about which assumptions must be made in
- order to convert a static theory about stage connections (the sort of specifica-
“tion commonly presented in life-span psychology) into a dynamic ‘model. A second

focus of our discussion concerns inverse problems: how to utilize a model

formulation so that the stage linkage.structure may be recovered from survey

]
3
£

data of the kind collected By developmental psychologists.

i

- 9

~




MATHEMATICAL REPRESENTATIONS OF DEVELOPMENT THEORIES T

A _ . I. INTRODUCTION

Although time, usually'iy the guise of age, is a crucial variable in

4
A3

deve10pmentél'psychology, it is the case that formal models of developmental

T ey

phenomena .rarely have the character of dynamic representations, in the sense of
mimicking. the evolution of an empirical process through time. The analytic
procedures‘employed most extensively by life-span psychologists are factor
analysis, regression, analysis'of variance, scaling, clustering, and variants

. df these methods (see, for ingtance, Nesselroade & Reese, 1973). These are
powerful techniques for identifying variables that are central to the course of
development in a particular substantive area (e.g., intellectual maturation,

*

//aqduisition of moral values). Also, when applied to panel data, the procedures
can yield insights info how the salience of keyrvariables shifts over tbe lifé
cycle, or over* a portion thereof (e.g., stages in infancy, youth, adulthood).
| These analytic method. do not, however, lead to dynamic formulations of
developmental theories, which can be useful in testing predictions from a
theory anut the evolution of an empirical process, or in comparing the implica-
tions of competing explanations. B; a dynamic formulation we mean a representa- °
tion which incbrporates into the mathematics the main assumptions about a
developmentgl phenomenon and is specified ;n such a way that the relevant
variables, and their postulated interrelations, are functions of time or'subject's

. age. In this sense, like the empirical process, it too constitutes an evolving

system. As a simple illustration of such a model, consider the following
statements of alternative evolutionary mechanisms:
(A) The growth of a process at cach instant is proportional to its

potential for future growth.

39
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(B) The growth of a process at each instant is proportional to the
product of its current size and its potential for further growth.
. These statements might be proposed as competing explanations of the
manner by ;hich information is diffused in a population of size N. In formu-
. lation (A), it matters not how many persons y(t) know the 1nformat10n of
concern a£ 1nstant t; only those yet to hear, numberlng N-y(t), are salient to
the diffusion rate. If the information were propagated by a mass media source,
such as radio or television, rather than by interpersonal communicatjon, this
modei'migﬁt apply. Formulation (B), in comparison; is consistent with a process
in which those already aware of the informafion vinfect" the uninitiated through
contact and conversation. Assuming that the informed and the uninformed mix
randomly, the variable governing the evoiption of the p%;ﬁéss would be y(;)[N-
y(t)], which measures the rate ét which individuals from the two groups come
into contact. .

The evolutionary mechanisms, (A) and (B}, can be represented by the

differential equations (I.1) and (I.2), respectively,

9%%%%-= kllN-y(t)i, y() =0 | (1.1)
/
Y& = ky®F-y®)], y(© =1 (1.2)

where'k1 and k2 are constants which adjust for the time unit (e.g., day, year)

“used in the meaSurements.1 Equations (I.1) and (I.2) have for solutions (I.3)

and (I.4), -klt
y(t) = N(1-e ) (1.3)
]
Nkt
Ne ~
y(t) = -
) Nk, t — (1.4) -
N-l+e

which predict the different evolutionary paths displayed in Figure 1.




These*formulations are "dynamic' in that time appears explicitly as a

variable; they are process "models" in that the predicted value of y(t) evolves ’

according to the assumptions of a particular theory. If 2 researcher has data
on the time course of an empirical process, he could test whether equation
(I.3), (I.4), or a specification of aﬁ equivalent sort best approximates his
observations. By this exercise it is often possible to select among competing

explanations of the mechanism underlying a developmental process. JIndeéd,

these very models have been applied by Coleman, Katz, and Menzel (1957) to data

-on drug adoptlons by physicians (also see Coleman, 1964, pp- 43-45). They

concluded that the drug acquisition pattern by socially integrated MD's is best
represented.by a logistic curve (implying mechanism [B]), while isolated MD's

adopt according to the constant source model (mechanism [A]), as they are

influenced principally by drug advertisements in trade journals. To our know-

ledge, although developmental psychologists emphasize ontogenetic processes and >

employ the imagery of an evolutionary system, few attempts have been made. to
translate their theories into formal ﬁodels of the above sort.

In this paper, we describe the formulation of dynamic models where the
objective is to test developmental . theories against data or ascertain the con-
sequences of particular assumptions about the structure of a process. To
delimit our task, we focus on the sort ofgmathematics that is appropriate for
studying qualitative change. As a result, the tools we introduce are pertinent
to theories which postulate stage sequences, a variety of explanation with

considerable precedent in developmental psychology (Piaget, 1960; Kohlberg,

1968; Ausubel § Suldivan, E970). To the degree possible we h%ye written this

+ - paper with a view toward substantive issues and have concentrated on the
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translation of theoretical specifications into mathematical formalism; the.
reader usually is _referred elsewhere for mathematical details and estimat;ion ‘
prdcedures. The organization of the paper is as followg: In the next section

we introdﬁce a class of médels that is suitable for studying evolutionary
pﬁqcesses which inco;poratg thé notion of stage. In section III we describe

how particular stage theOﬁies can be cast in the framework'of the general

‘model. In section IV we relax several requirements of the basic model so that

1t can more realistically represent developmental phenomena.

II. THE CONCEPT OF DEVELOPMENT STAGES AND A MATHEMATICAL

FORMULATION OF -STAGE PROGRESSIONS

Stage sequences have been postulated for a variety of devglopmental processes=--
the eyolution of moral behavior (KohlPerg, 1973), cognition (Piaget, 1954),
personality (Loevinger, 1966), and motor skills (Shirley, 1933), to 9ite but a
. few topics. There also exist diverse formulations of stage mode1§ in the
literature of life-span psychology. These differ with respect to the.?resumed
sources of the stages and with regard to the rules govérning movement beéween
them. In regard to stage origins, some authors have emphasized maturational
coﬁsiderations, in which individuals are viewed as programmed genetically for
particular behayiors or abilities to emerge (Gqsell, 1954). The specificaféon
of psychosexual stages, keyed to biological activation of the sex glands,
provides an i{lustration.(Kohlberg; 1973, p. 181).\ Others view stages as
arising from interactions with the social environment: Kohlggrg (1968, pp.

7

¥016-1024), for example, contends that experience with the cultural and physical
world is necessary for cognitive stages to taye the shapes tiiecy do. Still
‘other researchers have adopted the position that stages are a useful research

construct around which to discuss development, without insisting that they have

an empirical existence (Kaplan, 1966; Reese, 1970).




4]

S o
. . ) My o ov oo e oo e s My . (I1.1)
x . M=
. . . ; . : -y L %
t?nl e e e e e mnn ,_‘u¢ ]
whose Pleménts are miJ {probability of transferrlng from stage i to stage j
n .|~
when a tran51t10n occurs}, where 0:'<- mij < 1, and}f mij = 1. -These restrict-
. - . i=1 L 4

“stage connectiowis in a developmental process differ according to whether the

Figure 2; henceforth this model is referred to as example 1.

We shall not discuss further the very important issues concerning the

etiology of stages, but will focus instead on the mathematical representation
g .

of theories_about stage connections and on the consequences of various linkage

structures “for the evolution of individuals am§hg the stages. Formulations of *

wty

progression: is viewed as unilineal or multilineal, whether stages in the

sequence can be skipped, and whether regression to an earlier level is possible. )

A second set of considerations pertinent to the structure of developmental
theories concerns the age specificity of a stage and the related matter of the
variability of duration in a stage,

context of particular substantive processes, the reader is referred to Emmerich

For discussions of these topics in the

(1968) and Kessen (1962).-

-
:

To>deve10p the mathematical apparatus for ascertaining the implications of
particular stage connections, we discuss both tbe simplest?prototype of a stage
iheory (for concreteness) and ‘the genefal mathematical formulation.2 Consider,
-then, a developmental progression cogsisting of n stages, in which' the linkage
is unilineal aund there is no possiﬁility of stage skipping or regression. An
exampletof such a structure, with n equal to 5, is p;ésented in panel A of

It will be conven- .

jent to also have available a matrix representation of the stage lirikages. For

Y

an arbltrary n—stage structure, we define a matrix M,

: lons on ;he elements of M ensure that each row. of the matrix constitutes a




- L

. -
7’ ’ .

r“ ] - ° N
probability distribution. We require, in addition, that Moy F 0 for-each stage

) .
y i which is not an absorbing state of the process; that is, frou which individuals

can exit. This means we exclude the possibility of within-stage transitions,~

v

a type of move which is undefined in most developmental, theories. Also, we set

- ns = 1 for each stage which is an absorbing state of the process. This is

. . 3 N .
done for mathematical convenlence and, as we shall see, ‘carries no substantive

implications. In the particular case of the unilineal progression (Figure 2,

panel A), we have the further requirements on M: m

15,141 = l? and mij =0,

.

otherwise (except that Mge = 1}. This matrix, Mi, is repbrted in panel B of -

*»

Figure 2.
. ‘s
* .« ~ . Figure 2 about here
¢ 7 .
’ .v. .
9 .a :T ! meessssec—scoossees
© T .%_. .
To this point, -though matrix M conveys important ‘structural information
LAl <

* .
about the process, the description of the stage progression is a static repre-

sentation. To elaborate the model we must indicate how stage transition
b Vi . IS .
. s ’ . .
_events occur. At a general level of description we assume that the time Ty -
sﬁent by an individual in stage i follows some probability distribution,

’

Prob, (r,<t]tyse- 07y ) (11.2)

- = . . . L .
where TyseeoaTy g report the sojourn times in earlier -stages. Qur imagery, v
1 -

therefore, is the following. An individual originates in stage i at the begin-
ning of the process, ty = 0. He remains there for an interval Ty specified by
! $

a distribution function Probi (rl<t), and then tr¥ansfers/to stage j with prob-
i

ability mij' He remains in this stage for a pe{i::Q;z, Epecified_by a condi-

.

tional probability distribution Probj (rz<r|rl), transfers to stage k with’

probability mjk; and so forth.” The process continues until some absorbing

state is reached, at which pnint the evolution is terminated. The time path

’




’ .
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- -

b. Mairix Represeniatior®of the Stage Linkages?

[0 1 0.0 0]
1o 0 170 0
- M =]Joo0oO0 1 O —
_ 0°0 0,0 1}, :
(> |00 0 0 1I_ - : ,
Eiééﬁg.gf' Représentation of a Simple Unilineal Stage Structure.
o -

. 3gach ‘row of M1
if an individual were in 4tage one before a transition, the row one
entries would pertain and they indicate movement to stage two with

probabilityx equal to 1.

is a vector of destination probabilities. Thus,

bThe:mai diagonal entries are set equal to zero (with the
exception of yow 5) to indicate that a 'move' is not defined apart
from a stage transition; i.c., there is no notion of movement within
a stage. The main diagonal entry of row 5 is set equal to 1 because
this stage-is an absorbing state (Hsj =0 for j # 5) and the definition

. of m, --see text--requires ?mSj = 1. . .
J
r~

s I’ 6 ' |
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for the unilineal progression associated with the stage linkages of matrix M1

is presented in Figure 3. ' .

[}
.

Several further assumptlpns are necessary to complete the spec1f1cat10n of

the model. One matter concerns the relevance of an 1nd1v1dua1's past novement

history to the course oE his subsequent evolutlon among the stages. We assume,

(i) knowledge of current stage conveys all information that is relevant
to forecasting future movements. ‘ -,
Stated technically, if mij ab.. . £ {probability of moving from stage i to
,ab...

stage j at the occurrence of a transition, given prior sojourns in stages a,

b,...,f}, then

Mij,ab...£  "ij
(This assumption is superfluous in the current example of a unilineal pro-
gression since therecis only one possible path, but it is relevant. to the
evolution of a population in less restrictive models.) We indicate in the next
section that this specification has been employed.in descriptions of stage o
PR

linkages in developmental psychology. |

For an initial baseline class of models, we further assume, <

(ii) the sojourn time in stage i is exponentiallf distributed: that is, -

Probi(rk<t|11,.. ) = Prob, (rk<t)

Tr-1

CaxLt .
sF(t)=1-e + (U.3)

Use of the exponential distribution amounts to specifying that the probability
of departing from stage 1 during the infinitesimal interval (t, t+dt), condi-

tional on being in stage i at time t, equals




"o awp wmy oo

TIME

Figure 5-- A Sample Path Description Correspording to tne Unilineal
Stage Structure of Figuré 2.

aIt is- assumed that there are five stages, which must be traversed

sequentially. T is the value of a random variable and denotes the

sojour.t time for an individual in stage i. Stage 5 is an absorbing
state of the process.




—Ait
fl(t)dt ) ‘Aie dt

-A.t
1-F, (t) 1-(1-¢

= A,dt
i

where fi(t) is the deasity function corresponding to Fi(t). This result, ip
turn, indicates that the probability of leaving stage i is independent of
duration in the stage, and is tantamount to specifying an absence of aging, so
new entrants have the same likelihood of departing as individuals who have been

in the stage for some period of time. The parameter, li’ incidentally, has an

interpretation as the rate of movement out of stage ‘i; consequently, 1/)\i equals

the expected duration in stage i.
Finally, we require that
(iii) if the data per.ain to the movements of a population, rather than to
the transitions of a single individual, the population is homogeneous
with respect to the Structure of the evolutionary process.
This does not mean that all persons have the same duration T4 in stage i, but
that T5er the time spent in stage i by individual c, follows the single expo-
nential distribution Fl(t) =.1—e-?it. Stated less formally, duration in a
stage is a random variable with the underlying distribution of holding times
the same for all individuals. Similarly, where alternative destinations are
available to persons in stage i, homogeneity means that all have the same list
of probabilities for making the various transitions, not that they move ident-

ically.

¢

It is worth dwelling on the conceptual status of the preceding assumpt-
ions. The f'question of the structure of M is a familiar topic to developmental

psychologists, since stage theories are commonly specified at this




~level. Assumptions (i) to (iii) can be vieved as 'side conditions," aspects of
the process to which researchers have generally not been sensitive, though see
Kessen (1970) and Emmerich (1368) for provocative comments on precisely these

mattens. What is made evident by formulating a dynamic model is that development

)

theorists must address these auxi’iary questions if completc models are to be
specified. .The particular assumptions we have made constitute a gross simpli-

fication of.reality; this is especially true of specification (ii), which
postulates an dbsence.of duration effects, and specification (iii), which
¢ - - . .
. postulates population homogeneity. These assumptions do, however, provide a

! »

~
. conyenient starting point from which to consider more realistic formulations,
’

’ - .
-

- which are develdped in the next sections.

-¢ We pow wish vo convey the implications of assumptions (i) to (iii) for the’
movements of individuals among the stages. We denote by pij(t) the probability
that an individual in stage i at time O moves to stage j by time t. (This

prqbabiiity differs from mij in that the latter refers to movement proclivities
at, the occurrence of a transition, not over wideiry spaced time intervals.)
With this épecification in hand, the evolution of a population among the stagés

is described by the system of.integral equations,

i

, —A.lf: t  -xu
Y = § .e 3 . . (t- 1 ? ’ 11.4
Pij(t, 8,8 + t frje mlkka(t u)du ( )
ko
0<i, j<n
where‘éij =1 if i = j, and 0 otherwise. This expression, known as the back-

ward: equations for a continuous-time Markov process (Feller, 1971, p. 484), is
amenable to the following interpretation: (1) When i ? 3, pij(t) consists.of

the sum of products of three factors: the probability of a first departure

from stage i at time u, the probability of a stage i to stage k transition at




2 2

that instant, and the probability of transferring to stage j by some combination

of moves in the interval t - u. The summation is over all intermediate stages
k and over all time divisions u in the interval (0, t). (2) wWhen i = 3j, in . -
addition to the above term, there is the possibility of not transferring out of

.

stage i during (0, t). This probability is given by the first term.

If we represent by P(t) the matrix of elements pij(t)’

-‘Pll(t) L pln(t; ’ !

P(t) =

Py () - p_ (%)

- -

0 ﬁ_pijgp) « 1, §pij(t) = 1, then the integral equations (I1.4) have the con-

venient solution, !

_ MM-ITE

P(t) , P(0) =1 (I1.5) -

In this representation A is a diagonal matrix,

whose entries are the reciprocals of the expected duration times in each stage,

’

1 is the identity matrix, and M is the arra} specified in equation (II.1) which

describes the pattern of movement between the stages. Further, by the expression

A . . . .
e, A an arbitrary square matrix, Wwe mean the power series in A,

S




e = I A (11.6)
. .

 which can be evaluated by standard-numerical methods (see e.g. Gantmacher, 1960).
It is useful\so recapitulate what is accomplished by this mathematical
formulation. The m trix P(t) relates the &istfibution of a population among
stages at time t td Ats distribution at time 0, in the sense that a typical
entry, pij(t)’ conveyg\;he probability of moving from stage i to stage j during

the interval (0,.:. The model is "dynamic'" in that P(t) is a function of time;

with the passage of time, P(t) describes the evolution of the population among

ooy

the stages. Equation (11.5) shows how the matrix P{t)\is built up from the arrays
{/’“ M and A. However, while this e&uation is useful as a calculating formula, the
logic of the process is conveyed more adequately by the integral equitions (I1.4).
A
To illustrate this model in the setting of a simple unilineal progression
(matrix M1 of Figure 2), we must specify average waiting times in stages 1;2,3,
and 4. We assume these to be .5, 1, 2, and 5 Yyears, respectively. Consequently,
we have for matrix A, ' .
2 0 0 0 0 B
o 1 0o 0 ©
A = 0 0 .5 0 0 (ar.n
0 0 0 .2 0
i 0 0 0 0 AS
where the choice of AS is arbitrary. Since stage 5 is an absorbing state, the
notion of waiti&g time to a departure has no meaning. Mathematically, M - I]SS =
[m55 - I} = [1-1] = 0, so A, bears no influence on the calcuiations.) Now,
from,Nl, A, and I, we have
‘-2 2 0 o0 0
j 0 -1 1 0 0
AN ICHERS = 0o 0 -.5 .5 0 (I1.8) ~
0 0 0 -.2 .2 .
0 0 0 0 0

52
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Fox the jllustrative times t = 1, 2, and 4 years, we obtain, from (I1.5) for

P(t),

.1353 - . .4651 .3263 .0691 .0041"
. .0000G ° .3679 A7 .1438 .0110

Q) = .0000 .0000 .606 .3537 ..0398 (11.9)
.0000 .0000 .0000N  .8187 .1813
| - 0000 .0000 .0000 * .0000 1.0000
, . 0183 .2340 . 4641 .2482 .0354
/ .0000 .1353 . 4651 .3394 .0602

P(2) = .0000 .0000 .3679 .5041 .1281 (I1.10)
.0000 <« .0500 .0000 .6703 .3297
| - 0000 .0000 .0000 .0000 1.0000

and

.0003- .0360 .2881 .4843 L1913

.0000 = .0183 .2340 .5079 .2398 .

P(4) = .0000 .0000 .1353 .5233 .3413 (I1.11)
- . }.0000 .0000 .0000 .4493 .5507
L.oooo .0000 .0000 .0000 1.0000

~ . .

These values of P(t) describe the evolution of individuals among the

stages, subject to the assumptions about the process structure detailed above.

The eﬁtries pij(t) refer to proportions4 of the population who have moved
between particular stages in the relevant time inter;al. For exapple, according
to the entries in the top row of P(1), if observations are taken oée year

apart, we would expect 13 percent of the population in sfage 1 at time 0 to
still be there, 46 percent to have moved to stage 2, and 33 percent to have
reached stage 3. By compafison, over a four-year interval, less than 1 percent’
would remain in stage 1, 48 percent would have reached stage 4, and 19 percent
would be in the terminal stage of the process .

The results from the three'calculations reveal that, even though the
progression is unilineal with all jndividuals characterized by tlje same para-
meters, if observations were taken on the population at two time points, t=0
and t=t,, ?he arraysa(tl) might be interprete& as evidence for a more complex

theory, such as one permitting stage skipping or population heterogeneity in

the rate or pattern of movement. Further, the correspondence between the

Q 53
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matrix constructed from the population locations at two time points, P(tl), and
the rule governing stage transitions, Ml, decreases with time. Thus, different
researchers observing the same population at two time points, but with different

spacing intervals, might draw contrary conclusions about the stage linkage

structure even though the single mechanism, Ml of Figure 2, governs its evolution.
Only with a formal model of the process could vne hope to urcover its underlyin:

structure.

IIT. MODELS OF MORE ELABORATE STAGE THEORIES

s

The matrix M contains structural information about stage linkages. Since
theories of develépment aie commonly posed at the level of specifying this
array, flexibility in incorporating a variety of particular formulations would
appear to'be an important feature of a general framework for describing evolu-
tionary behavior. In this section we focus on the issue of translating stage
theories into M-matrices, and illustrate the evolution of P(t), the transition
matrix for a population based on its locations at timeS O and t, under alter-
native specifications of M. As we have ncted, auxiliary information about the
process, concerning the distribution of waiting time intervals and the form of
popﬁlation heterogeneity, is required for a2 full description of a dynamic

-~ model. In the next section ue therefore elaborate upon these "side conditions"
~and outline ways in which our initial assumptions can be relaxed.

No technical difficulties arise in reformulating the continuous-time
Markov model to accommodate more elaborate theories of stage linkages than the
structurehin Figure 2. We illustrate the broquure with a few examples6

-
2. A unilineal progression which permits stage skipping. The formulation

of such a structure is diagrammed in Figure 4, panel A; its translation into an

M-matrix is reported in panel B. The principal new feature is that, supple-

menting the deterministic sequence of Figure 2, it is now possible to move

-
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A

directly from stage 2 to stage 4 and from stage 3 to stage 5, when transition

out of the relevant origin 10catibn~ﬁakes place. We musr also specify the

-

probabilities of following the aiternate paths.{ In the present example, lacking

information as to the rclative magnitudes of the various probabilities, we

assume all destinations to be equally likely; that is, we prescribe Myg = Moy

=5, and Mgy = Mye = .5.- In p;actice, estimates of the transition probabilities

would be assigned on the basis of theory or from observation on ‘the empirical

process.

Using matrix Mz, together with the A array of equation (II.7), whose
entries describe the rate of movement by individuals out of each stage, we

obtain for P(1) and P(4), from equation (II.S5):

.1353 4651, 1632 22012 .0352 |
| -0000 .3672 " 2387 .3177 ° .0757 :
P(1) = 0000 .0000. .6065 .1768 .2166 (I11.1)
.0000 .0000 .0000 .8187 °  .1813
| .0000 .0000 .0000 .0000  1.0000
~.0003 0360~ .1440 .4104 .4093 |
.0000 .0183, .1170 .3964 .4683
P(4) = |.0000 .0000 .1353,  .2617 6030 (111.2)
.0000 .0000 .0000"  .4493 .5507
.0000 .0000 .0000 .0000  1.0000

These P(t) arrays are the transition maprices a researcher should expect to
observe if the stage locations gf‘ininiduals are surveyed one yeafmor four
years apart, assuming that the popualation éVOIVeS according to the 1in§age
specification M2 together withtthe auxili;fy conditions outlined in the précehing
section. The entries are different from those obtain;& with the simple

3

unilineal progression (equations II.9 and II.11), yet the same pattern of zero's
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a. Diagram of Stage Linkages

b.  Matrix F?ep‘resen?cﬂon of the Stage Linkogesa

po—

: 0O 1 00 O]
- O 0.5 5 0
M2= O O O .5 .5 -
0 0 00 | ~
0 0 O O |
= . L~
Figure Q}L Representation of a Unilineal Progression in which

Stage Skipping is Permitted.

a . . . . .

All destination stages corresponding to an origin location are
assumed to occur with equal probability. See notes to Figure 2 for
additional details on interpretation of Mz.




-

-
-

and non-zero's is present, and without a formal mode! of the evolution of the
process a researcher would be unable to predict the different implications of

these structures.

.

3. é_dnilineal progression with stage skipping and the po§§ibility of
Eggfession. We now Superimpose on the linkage structure the pos;ibility of
reverting to an earlier stage. This arrangement is diagrammed in Figure 5,
panel A, in which we have provided for the possibility of backward flows from
stage 2 to stage 1, from stage 3 to stage 2, and from staée 5 to stage 4. The
-M—matrix corresponding to this model is reported in panel B. Again, where
mult1p1e destinations correspond to an origin stage, we have arb1trar11y a551gned
equal values to the mij 's. There is one additional alteration in MS’ in compar—
ison with the M-matrices of earlier examples. Because there now exists a
po§sibility of regressing from the teé¥minal stage to an earlier level, Mco £ 1. //
To maintain .our conceptual imagery, in which within-stage transitions are

/
undefined, we set Me, = 1 and Meg = 0. Note that the former value does not °
imply a high rate of departure from stage 5, since the rate of movement is

controlled by AS'\ It only means that all transitions from stage 5 are directed

/
. -~
7
‘

to stage 4.

To obtain P(t) we use M3 and A-in ccnjunction with equation (II.5). Here
the element Asﬁin equation (II.7) is no longer arbitrary, as movement out of
stage 5 is a possibility. We shall assume that such reversions are rare, and
hence specify the average waiting time to a transition from stage 5 to be eight
years; Fhat is, AS = .125. With these assumptions, we obtain for our illustrative

calculations at t = 1, 4:
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a. Diagram of Stage Linko§es

b. Matrix Representation of the Stege Linkages®

"0 1 0 0 0] |
330 3430 |
M = 0O 33 0 .34 33
O 0 0 0O |
| 0 0 0 | O]
Figure 5-- Representation of a Unilineal Progression in which

Stage Skipping and Regression to an Earlier Level
arc Permitted.

a . . . .. .
All destination stages corresponding to an origin location

ars assumed to occur with equal probability. See notes to Figure 2
for additional details on interpretation of i

3"




,2043 .5240 .1153 .1374 %0190
.0871 .4758 .1742 .2217 .0411

P(1) = |.0094 .0858 .6215 .1461 L1371 (II1.3)
.0000 .0000 .0000 .8292 .1708
- .0000 .0000 .0600 .1067 .8933

0330 .1560 .1652 .4025 .2433 ]

. .0259 .1246° 1560 174 .2820

L P(4) = -|.0135 , .0739 .1846 . 3542 .3738 (I11.4)
-} .0000 .0000 0000  ,.5523 o .4477

. -0000 ;0000 -0000 12798 - .72@3_ . -

If we compare the ‘P(1) matrices and the P(4) matrices from the three

examples [i.e., equations (II.9), (III.1}, (III.3), and (I1.11), (IIr.2)5 and
' *
\.l

(111.4)], we can acquire a fair idea of the implications of different stage

v

AN

interconnections for the evolution of a population among the statuses. We-also

emphasize the fact that if a population were surveyed at two time points,

'
especially widely spaced time poinfs, it may not be obvious from inspecting the
empirically determined transition agray, ﬁ(tl), as to the structure of the .
stage linkages (matrix M) which generated the observations. ‘Wé will return to
the issue of identifying the correct structure and recove;ing matrix M when the
observations on a process are widely spaced; first we conclude this discussion

- s
on translating theoretical specifications of stage linkages into M-matrices ',
with a couple of examples of multilineal sequences that have been deScribed in
the developmental psychology liQerature.i

. 4. A divergent multiple progression (Van Den Dacle, 1969, Figures 2, 4).

This stage linkage structure has the diagrammatic representation of Figure 6,
panel A; its corresponding M-matrix is presented in panel B. Because stages 4-
7 are specified to be terminal states of the process, the corresponding rows of
. M.4 have 1's in the wain diagonal. Van den Daele provides no discussion of
&aiting time distributions to departure from the various stages; hence the

model remains incomplete as an evolutionary process. N

) 59 A o
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5. A_cénvergent multiple progression (Van Den Daele, 1969, Figure 2).

- ) . - - - " L7 . - "
This stage sequence is depicted in Figure 7, panel A, and its associated M-

.
« . -~

matrix is xeported in panel B. In this instance, the structure consists of a

L] . -

“ .
collection of deterministic unilineal progressions, the specific sequence for
an individual being contingent upon his entry stage. Note al€o that the

o

assumption of irrelevance of past history, which is posited in this formulation,

is one of the side conditions we have required (assumption [ij in the preceding
section). In particularz_this specifiéation appears in the fact that knowledge
oﬁ the pat{ by which one has reached stage 5 (or stage 6) is of no‘v;lue in
, %g;ecesting;'or understanding; an ihdivid&él's subquuent mevements. Van De? -
'6ge1e (19?9) discusses)severql additional models of stage linkagesi such as

“partially convergent, divergént progression,' and '"partially divergent,

*

.
N -

conivergent progression."” As the procedure in converting flow structures into

M-matrices should be evident at this point, discussions of these specifications

are not presented.

To recapitulate, subject to several side conditions, we have shown that it

3 .
v

is possible to construct formulations of a range of developmental phenomena
which himic the evolutionary character of the observed process. With such a

model one can foracast the movements of a population among the stages. By

carrying out the requisite calculations for different specifications of the

stage linkages, and comparing the predictions, it is possible to ascertain the




a. Diagram of Stage Linkages .

b. Matrix Represenioﬂ%ﬁ of the Stage _Linkoqes

01 00000

O 00 5500

O 0O 000 5 5
M4= O 0 0ot 00 O

O 00 01 00

O 0 000 1 O

| 0 0 000 O 1 |

L4

Figure 6-- Representation of a Divergent Multiple Progressiona.

aSource: Van Den Daele (1969, Figures 2, 3).




b. Matrix Representation of the Stage Linkages®

(0000 1 0 0]
0O 00O 1 00
O 00 00O 1 O
MS= O 00 0 O 1 O
O 000 0 0 1
0O 0 00O 0 0 |
O 0 0 0 0 0 |
Figure 7-- Representation of a Convergent Multiple Progrcssiona.

*Source: Van Den Daele (1969, Figure 2).
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ways in which rather complex theories produce divergent implications and

ihesign testing schemes which maximize the possibility of rejecting one or

another formulation as a description of the empirical process. Of equal ,
importance, it is often possible to work backwards, ;tarting with observations
on the stage locations of a population at a few widely spaced time points, and
derive the structure of the stage linkages,compatibfe with the data.

An inverse problem. Until this point we have assumed that observations

have been made on an empirical process in a way such that M and A can be estimated
directly from the data, or that theories are available which specify the values
of their entries. We then sought to derivé the evolution of the process subject
to-the presumed structure. In developmental psychology, it ;s not uncommon for
a researcher to have many observations on a few individuals (e.g., Piaget,
1954). Such a data collection scheme approximates "sample path information," a
comélete history on movements and waiting times of the sort illustrated in
Figure 3. Detailed observationé on a few subjects is a research strategy not
without its costs, however. One learns little about the frequency of rare ’
events (e.g., regression to an earlier sStage, Stage skipping, rare development
paths) and acquires only the most rudimentary knowledge about the variation of
duration times in a stage. It is therefore not surprising that investigators
who rely on this approach tend to be oriented to uncovering nniversal rules
(e.g., Piaget, 1960) rather than to elucidating individual cifferences and
ascertaining the variety of developmental patterns.

Partly because of the limitations of small data sets, it is becoming

increasingly common to employ survey mettods, in which a large population,

sometimes thousands of individuals, is observed (or interrogatud) at a very few

time points (c.g., Baltes § Nesselroade, 1972). The spacing intervals in




such panel studies are usually wide, often one or more years elapse between
interviewé, so it is not unusual for some subjects to have made multiple moves
‘while others have made one or zer? shifts between stages. The transition
matrices which can be constructed directly from such observations are P(t)-
arrays, rather than M-arrays, and the stage linkages may not be readily dis-
cernible. Indeed, deEermination of the movément structure which underlies the

evolution of the population can be'a difficult task.

One approach to ascertaining the stage linkages from survey data involves
consideration of the '"inverse problem' td the mathématical formulation of the “
evolutionary model (equation II.S). Stated formally, we have available thé
matrix E(tl), constructed from observations on the stage locations of individualg
-at times 0 and ty- The typical entry in this matrix is Bij(tl) = nij(tl)/ni.’
where n; = {number of individuals in stage i at time O} and nij(tl) = {number
of persons who started in stage i at time O and are in stage j at time tl}. We
wish to inquire whether it is possible to recover a unique M-matrix for the
process and, where the answer is affirmative, we wish to estimate this matrix.

The first step in solving he inverse problem is to take the logarithm of

both sides of equation (II.5).

L

t

In B(tl) (111.5)
1

Q = AlM-I} =

2

Just what we mean by the logarithm of matrix ﬁ(tl), the conditions under which
a solution to ecuation (III.5) will exist, and the circumstances under which
_the solution will be unique, are complex issues which are discussed at leigth
in Singer and Spilerman (1376). Assumiﬁé we can obtain a valid and unique Q- ’
matrix from these calculations, a second task, separating M from A, still

remains. Ia many instances, though, this matter is of little concern, Ssince




the pattern of zeros and non-zeros in Q and M - T will be identical and develop-

ment theories are often posed at the level of identifying permissible transitions.

L3

Moreover, because zeros are typically present-in many main diagonal cells of M -

*

in models of|developmentél structures, a complete or near complete separation

between M and A can frequently be effected.

We conclude this section with an example of the calculations associated

0 and t, have produced the transition matrix,

1

.0224 .2633 .2402 . 1261 .3479
.0063 .1758 .2460 L1735 . 3982
0216 .0288 .3758 .5060 .0679 (I11.6)
.0365 .0745 .0288 . 6794 .1809
.0005 .0960 .0460 L0177 -.8397

Such data would appear to be consistent with a variety of evolutionary mechanisms.
From inspection of ﬁ(tl) we do know that regre;sion to some earlier stage must

be possible; otherwise all entries below the main diagonal would be zero.

Little else about the structure of M, however, can be inferred from inspection

of P(tl). Indeed, because of the sizable non-zero elements in most cells of

the matrix, a researcher might conclgde tLat direct transitions arc possible

-

between mc ,t pairs of stages.

If we arc willing to assume that matrix P(tl) vas generated by a continuous-
. . . . AM-I)t

time Markov process; that is, via the evolution of the structure P(t) = e ,

some matrices A and M which satisfy the definitional restrictions enumerated in

connection with equations (IT1.1) and (II.S5), we can sblve for 'A(M—I)t1 using

equation (III.5). This yields the array,

with the inverse problem. Suppose observations taken on a population at times ‘

for




~

AQ - Dty (111.7)

40

i
QO OO,

0.
0.
1.
-0.
0.

QOO OO

.20
.25

1

argument. From our earlier examples we know that a main diagonal element ms 5 of

‘In this instance At. and M can be separated by employing the following

M will equal zero if any off diagonal entry in the same Tow, mij’ is different
from zero. According to equation (III.7), each row of matrix M must have at
least one non-zero off diagonal element; therefore mes = 0 for all values of i.

¢

With this information we can obtain At uniquely,

K

At 0
0
0

(111.8)

OOON‘O
OO OO
;\JOOOO

5

and solving for M provides the structure M4 reported in Figure 8, panel A. The
schematic representation of the stage linkages implied by M4 is shown in panel
B, in which probabilities of the various moves have been appended to the

ﬁaths.

The point to be emphasized is that it is not apparent from inspecting
matrix ;(tl) in equation (III.6) that the hnderlying stage linkages are those
reported in Figure 8, nor would any statii‘analytic procedure be likely to lead
a researcher to the correct cor~lusion. What is necessary is to comnstruct a
model of the evolution of the process and solve the implied inverse problem for

the parameters which corrsspond to the particular data set. (In the present

66
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Q. . M"['nm‘rixb

, "0 I 0 0 O]
"0 0 50 5
M = 0O 00t O
4 50 0 0 5 .
| 01 0 0 O

b. Diagram of Stage Linkogesc

figure 8. Stage Sequence Structure Implied by P(tl) in Equation (III.6)a 1

a . . . .
The process is assumed to evolve according to a continuous-time
Markov formulation. ’

“Entrics indicate the probability of a stage i to stage j move
when transition takes place

c_Probabilitics of the various transitions are attached to the

appropriate paths.
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example, we have assumed that the underlying model is a continuous-

time Markov process [i.e., specification (1)-(iii} of the preceding section]

and have solved for the matrices At1 and M which are compatible with the

N

observed arréy P(tl), in that they would have given rise to this array if the

postulated evolutionary process were- approximately correct.)

IV. ALTERNATIVE SPECIFICATIONS QE_THE SIDE CONDITIONS

i

In this section we discuss relaxing two of the more burdensome speciri-

cations of the model, in the sense that they are likely to be inappropriate as
characterizations of developmental processes. We first consider the require-
ment that the duration intervals in a stage must follow an exponential dis-
tribution [assumption (ii) of section I1]. Following these comwents we turn to
the requirement that the population be homogeneous with respect to the process
parameters A and M [assumption (iii)].

More general waiting times than exponential. The exponential distribution

is frequently employed in the literature of reliabiiity theory to describe
duration intervals in a system state (stage in the current application). It
has the advantages of being mathematically tractable and approximating reality
in situations where the probability of a state change is uninfluenced by aging
or time in the state. For example, if the proce;s states are '"alive" and '"not
alive," then over the middle age ranges of many animal species,.thevage—specific
mortality rate is relatively constant and the duration intervals (in the "alive"
state) are reasonably well captured by the exponential distribution. Similarly,
‘

when mortality results from exogenous events--accidents--the distribution of
ages at failure can often be approximated by the exponential.

In a great mony situations in socialyresearch, however, we know that

A

proneness to changing state is a function of duration. In particular,.this




has been suggested with respect to residence location (McGinnis, 1968) and

employment affiliation (Ginsberg, 1971). In these

applications it has been

argued that the duration-specific departure rate decreases with time, giving

risé to the phenomenon of "cumulative inertia''--the longer an individual
P g

remains in a state the less likely he is to leave in the immediate furture.

The substantive explanations for a declining departure rate involve the growing

investment an individual has made , with durationm, 1

in friendships (in the first

instance) and in seniority in his place of work (in the second). There is no

mathematical reason, however, to assume a declining departure rate in choosing

Fi(t); and in other substantive contexts a different specification may be more

appropriate. For a superb review of stochastic models incorporating the

notio of duration dependence, see Hoem, 1972.

L]

A convenient way to generalize the Markov model to accommodate a variety

of duration-time distributions is to begin with the integral equation repre-

sentation for transition probabilities. Equation (II.4) is a special case of the

formulatio:

. \ t

C<i, j<n

\ —

in which the terms are identical with those of the

that £, (u) replaces the exponential density, Aie'

Aju

&

i pij(t) = 6ij[l—Fi(t)] + i é fi(u)mikpkj(t—u)du (IV.1)

earlier equation except

, and Fi(t) [the distribution

function corresponding to fi(t)], replaces [l-e'kit]. A theoretically appropri-

ate choicg'may now be made for Fi(t).

As an illustration, one candidate for Fi(t)’ in the case of a declining

A

departure rate, is the two-parameter family of functions

-




Fl(L) =1 ~-e Ai>0 ; 0<Yi<l (Iv.2)

Here the probability of departing from state i during the infinitesimal interval

(t, t o+ dt), conditional on the process being in state 1 at time t, equals

®

> i [

fi(t)dt (Xiyit ) e . Y.l

F® T Y de = Agygt ©ode
B :

3
e -

i

Because of the réstriction on Yi’in equation IV.2, t is a derreasing
Al o \

.
function of time, and the declining failure rate aSgect of the distribution is
evident. v . \\\

The general formulation (IV.1l) for duration time &Es&ributions and transit-
jons between states generates a class of models known as sé i:Markov processes.
These generally do not have simﬁle representations for the maf;ices P(t)
analogous to equation (II.5), and the solution of the system of équations

(IV.1) requires numerical integration methods.

Population heterogeneity. To this point we have assumed that the matrices

k and M of equation (II.5) are identical for all individuals. This does not
mean that all persons move identically since the process is probabilistic; it
goes imply, though, that individual level ;haraqteristics are unrelated to the
structural parameters of the process. In other words, homogeneity means that
conéideratiéhs of genctic makeup, intell.gence, sensory stimulation, and other
factors.gy which indi idJals‘differ from one another do not pcrtend distinct
evolutionary pgth§ in the deveLopmentalmprocess_under consideration. ’

4 -
There is reason to believe, however, that individual differences are

present in the-course of development in many processes (Werner, 1957; Kohlberg,

Al
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1968, p. 1024). We therefore desire a formulation in which the movement
pattern is parametrized in terms of variables which differentiate among persons.
To construct a general specification of heterogeneity within the conceptual
framework of a Markov process, we assuiie that, corresponding to equation (1I1.5),

the stage transitions by individual c have the structure

A M -Dt
Pc(t) =, c C

This formula indicates that zach person is characterized by a pair of matrices;

-
1

A and M , and his evolution, in turn, is described by Pc(t). Thus, our Fgrmq

|
i

ulatlon begins with a separate Markov process for each individual.

This approach directs a researcher to identify the variables which, descrlbe

heterogeneity; that 1s, to ascertain which factors account for individual
. i
differences in the matrices M and A. Thus, not only does a heterogeneity

formulatlon lead to more realistic models of evolutionary processes, in Ithat

allowance is made for individual differences, but it stresses the analytlc

tasks of specifying the variety of developmental patterns in a population and

l
ascertaining the attributes which make an individual more prone to fol}owing

one set of paths rather than another. [
i

One form of heterogeneity comcerns the. distribution of M-matrices in a

population. Focusing on these arrays serves to emphasize individual differences

in proneness to making particular moves where a transition takes place.. We

shall not discuss this form of heterogeneity in ‘the present essay and direct
the interested reader instead to McFarlami (1970), Spilerman (19725) and

Singer and Sp rman (1974). A second form of hqtq;ogeneity stresses individual
differences in the A-matrix, i.e., in the fgtes at which departures occur for

. . 2
persons in the various states. we conclude this section with @ simple formulation

.




of population heterogencity in which it is assumed that the individual differ-
ences can be expressed in the latter way.
To simplify the discussion, we further require the non-zero entries in the .

diagonal matrix A to be equal for an individual; i.e., Ai = X for all i. This

means we are specifying identical departure rates from all states. As a result,
equation (II.5) reduces to
e)\t(M—I)

P(e|)) = (IV.4)

where P(t])) denotes the transition matrix for an individual having a rate of
movement value equal to A. We shall assume that equation (IV.4)- describes the
evolution of an individual drawn at.random from the population.

Heterogeneity is incorporated into the formulation by specifyipg a density
function é(>) which describes the distribution of A-values in the population.

We now define the population-level transition matrix corresponding to times 0

and t to be

P(t) = S P(e|N)gW)dr = S e
0

tA (M-1) (Iv.5)

g(A)dA

o

This formula expresses the population-level matrix as a weighted average og the
indiyiduéi—level arrays, P(t|r), the weights reflecting the population proportions
. : associatved with particular A-values.
‘To complete this specifiration of heterogqneity it is necessary to select

a den%ity function g(a) to desciibe the distribution of X-values. One useful

choice is the gamma family of functions

() = Bu a—l’—BA (1v.6)
B "—%?E)f-- A>0 , «>0 , B>0
Q 79
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which is flexible enough to describe a variety of unimodal curves. With this
- - selection of g(2), a convenient representation of the population-level matrix

P(t) is qbtained (Spilevman, 1972b, p. 608):

¥

- (Iv.7)

The transition probabi’ities (IV.7) do not describe the evolution of a Markov

process; however they do describe the movement of a population in which each

~

individual follows a Markov model with individual differences being specified

b} g(A) in equation (1v.6).

In analogy with our earlier inverse problem discussion for Markov chains,
the present formulation can b; used with observations taken at widely spaced
;}me points, 0 and t,, together with estimates of a and B to yield an estimate

of the underlying transition mechanism M, according to the matrix equation

1 (1v. 8)

Thus,“from.observations of the sort zollected in many surveys, éeven under an
assumption of population heterogeneity in the rate of movecment, it may be
possible to recover the matrix of stage linkages which goverms the evolution of
the process.

V. CONCLUSIONS AND SUMMARY

In this paper we have exploied the consequeuces of particular stage
linkage structures for the evolution of a population. One thrust of our

comments has be=en to identify the sorts of precess featutes concerning which

73
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-

assumptions must be made in order to convert a static theory about ‘stage,
* ~

connections_into a dynamic quel. A second %ocus in our discussion has centered
on inverse:problems;'how to u;ilize a model formulation so that the stage
linKage structure kmétrix'M) may be recovered from survey data of the kind
usually collected by develafmental psychologist;.

We have presented only the most rudimentary s;rts of stage structures.
Indeed, even within the Markov frameqork we have limited our consideration to

»

“a subset of these models; namely, those which are time-stationary (i.e., A and M

. are not functions of time). By this specification we have excluded the possi-

bility of accomodating age-dependent transition laws, a consideration of
substantial importance in developmental psychology. (An extension of ‘the o
models discussed here to incorporate both age dependence and cohort effects is,
howaver, ; feasible undertaking but one with an increase in maﬁhématical

complexity.) Further, all the models we have discussed entail a’ low dependence

of future movements on the transition history of an individual, given his

.

7 . . o . -
current Eﬁige . Restrictions of these sorts are likely to be'%easenable for
some processes, unreasonable for others. Appropriate models of developmental

s
phenomena must, thercfore, be constructed from a list .f known characteristics

about an empirical process. }

We also point out that the conceét of stage merges with the notion of
state as the number and sorts of permissible transitions increase. !'Stage"'
seems conceptually rooced to the idea of progress (i.e., development) and would
be an appropriate component of a theory which sees the system's statuses a§
genetically determined or as facilitating the conditions for succeeding statuses
to come into play.8 The mathematical framework we have introduced is also °

compatible with a '"state' notion, in which there is an extensive opportunity to

cycle among the statuses. State formulations have been suggested in the




.psychology litcrature in relation to anxiety, moods, ctc. (ec.g., Kessen, 192?,
pp. 72-73).
~ &

As a final set of considerations in relation to the structure of stage
models, we note that all the formulations we have addressed are models of
solitary processes. le have proceeded as if intelligence, cognition, motor
skills, and personality development unfold autonomously. In reality there no
 doubt cxist extensive dependencies among some of these processes. Mathematical

models of interacting developmental phenomena could be formulated but clear

empirically-based specifications of such dependencies are still lacking.




Aruitoxt provided by Eic:

FOOTNOTES : :

1The initial condition, y(0) = 1, in equation (2) 1is necessary because
diffusion through communication cannot begin until at least one person is

knowledgeable. -

2 . ! . .

For a more technical presentation of continudus-time Markov processes sece
Feller (1968, Chap. 17) and Singer and Spilerman (1974). For discussions on
the superimposition of theoretical structures on stochistic models see Coleman

(1064, Chaps. 5, 6).
3In the present example i, j, k=1, 2, 3, respectively.

4If the observations are on a single individual the interpretation of
pij(t) is in terms of tne probability of a stege i to stage j move between

times 0 and t.

s ~ . . - -
The symbol """ over a matrix or over an element 1n a matrix, will mean

shae it chould bo viswed as est:mated directly from data rather than calculated
bogin here with example 2; example 1 refers to the structure in

7 . . . ; .

The time-stationary Markov formulations postulate irrelevancc of
prior stage affiliations, durations in those stages, and duration in current
stage. The tast two of these restrictions can le eliminated by introducing

non-stationary semi-Markov models as delineated, for example, in Hoem, 1972.

L3
8 . - : . . C s s
Stages in childhicud, such as "walking" or "reading" expcse an irdividual

to entirely new.sets of experiences which may be prercquisites for the onset of
’

more advanced behaviors. p

4
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Mathematical Description and Rgpresentation of Developmental
Change Functions on the Intra- and Interindividual Levels 3
' I. INTRODUCTION
In an earlier paper (KowalsKki & Guire, 1974), we surveyed the then -

/ available data analytic strategies for several types of longitudinal data

; sets. In particular, we identified six distinct types of longitudinal data
sets, viz., (1) univariate time series,‘(Z) univariale cne-sample data matrices,
(3) univariate K-sample data matrices, (4) multivariate time series, (5)
multivariate one-sample data matrices, and (6) multivariate K-sample data
mat;ices, and the methodologies appropriate for each of these types were
treated separately. The present paper builds oun this background, paying -
special attention to the mathematical description and representation of develop-
mental change functic 3 on the intra- and interindividual levels. An overview
of tﬁe available models and statistical procedures for the analysis of such
data °is presented. The aim of this p.osentation is to identify certain proce-
dures which have provad to be uselul i thc‘biulugi»al, growth-oriented sciences

for possible application in beha
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csearch. 1In 50 doing,
we must crrefully consider petential dlff:renzes in the structure of the

mefsurencnts to Le analy:zed and, whene.er possible, models which do not require

e
e

- morotonicity and nonparametric anzlogn for the statistizal procedures discussed

will be cited. (n thz other hand, more.research - both from the standpeint of

theory and from the standpoint of practice - needs to be done before we can
confidently analyze multivariare data sets 1n any field ot application {c.f.

Kowalsky 1877} <o that anv worde of ¢ on in tils context should be tempered

-
V“’_

1§32 94

sde

by the need for the entire developuental research community to gain some '
-~ &

cxpericnce in thi u3¢ of these techniyues {Prahl-Andersen § Kowalski, 1973).

It 1s wn this spirwt that this paper .s written. Behavioral scienti *s should
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be aware of the pussibilities and limitations of statistical treatment of

developmental data and the models presented were chosen to illustrate both
ends of this spectrum, as well as many of the shady areas in-betveen.
4

We begin with a general discussion of longitudinal data seté in the
context of the design of Jevelopmental studies. The pufpose of this section
is to place the longitudinal pproach into some per.pective vis-a-vis the oft
heard dictum that ''the design of a study is a function of the pﬁrposes of the
investigation" and an attempt at delineating the class of studies for which
longitudinal designs may be aﬁpropriate is made. It is recognized that develop-
ment will often Jepend on factors other than simple chronological age, but it
is arguéd that this does not imply‘that the class referred to above is empty.
Since questiéns of this type are considered in great detail in the first part
of this book, our discussion is b-i¢f and somewhat cursory. It is included
only in an attemp: to countcract some of the impact of much of the recent
develupmental literat = Which secems bent on condemning the longitudipal method.
We then consider questions associcted with the descriptive ;nd explanatory
study ofrintraindividual Jhange.  We focus on the implications of choosing one
or another of the mcdels which can be used for these purposes and thercby
confront important pﬂiIOSUPh;cal proble s ranging from the making of reasonable
a priori assumptions to the validation of a model by the expedient of subjecting
it to a goodn2ss-uf-fit test. Finaily, we discuss techniques for the investi-
gation of interindividual differences in development. We consider not only
formal hypothes.s testing techniques but also less formal, descriptive, data-
analytic procedures which may prove useful in unraveling some of the complex
problems asscoisted sath the measurement of change (Harris, 1963).

Pi. DESICNS FOR THP. STUDY OF DEVEOPMENT

[N T RN wads ot !.};]H!‘.lnf' in L:havioral oo dao It canmiet iy L stud
& &

£ develonment vas goncodted by a series of mners by Scha o (1065, 1970,
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1972). In 1905, Schaie introduced a trifuctorial developmental model which
views developmenz, D, as a function of A = chronological age, C = cohort and

>

T = time-of nmeasurement. Perbaps the grodtest contrihution of this model was to

focus attentiol ua the xuplications it had for the choice of the design of

developmenta: studies. In particular, schare (1970) pointed out that (a)
cross-sectionil designs vonfound the age and cohort effects, (b). longitudinal
designs confound the age and time-of-measurement effects and (c) time-lag .

designs confound the cohort and time-of-measurement effects. While these

<

%
facts were epparent long before Schaie introduced his model, the model provided

a convenient <onceptual framework which clearly illustrated the source of

.
.

these problens. In an attempt to rectify the situation, the general notion of

1

2 mixed-longitudinal design was developed (Prahl-Andersen & Kowalski, 1973)

.

and scveral special cases, viI., the cohort—;equential, time-sequential and
cross-sequentini designs, were identified and proposed for use in certain
well-defined types of developaental investiesations (Wohlwill, 1970). It was
clear that Schate viewed these mixed-longitudinal strategies as completely
replacing the moce traditional Jesigns. Schaie (1972) was especially vociferous
syrodinal desigrs, concluding that, 'the single cohort longitu-
dinal stady be ws2d for no vt.er purpose than that of +he historian, the case
histoiy reportc:, Or Lo pgatier anicaotl material for the purpose of generating
hypotheses." [F wovec, one of tie Sch:ie desisns completely solves the probliex
of con;:hmdin; Mlind.d to ouri.er and a rumber of questions have arisen régardlng

both the anals s Coan't Hor, ot o210, 1979) and the interpretation (Baltes,

1968) of Cura <vilov..d neangd the riacd-longitudinal approach. Thus lindley

~4

(1977) rounarm b g 7o = an By nulTIRC v .a% the same time that he belabors

the longitudinai wetiod too risting on cubious assumptidns, he scems prepared
a /

to e o har g oemeriaeean e ;e ol Consy jey (-(ll'!m! Iv ovpen to auestion.
!
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One example 15 hi, use of projected longitudinal gradients which, as he admits,

depend on the assumpityn that cnvaronmental input, wiil be approximat€ly equad

over past and future tinz 1ntervals' (p. ). It would appear, then, that

.
’

there may be a’bit of lire left in longitudina, research despite the wel’ -
known and documented probloms it presents in the data collection (Jones,

-~ '

. _ ) .
1956), data-analytic (howalsh = suire, 19743, and interpretive (Cronbach Gi :

Furby, 1970) spheres.

Wie approach this quastion by suamarizing the case against the longitudinal
t 4

method in the context of Schaie's trifactor: 1 developmental model. If we .

write D = f (A,C,1)

ct

o repoesent Schaie's nedel, we see that there are two
distinct problems to be faced. The first %F that since longitudinal studies
are indexed by but twu or the three factors comprising Schaie's model, D = £f(A,T),

we cannot generalize the rosulte ¢ lcngitudiral investigation bey?nd the

118
~

cohort selected for stud,. Utherwise stated, if we ace to attempt to generalize
, .

thé results of a lonzitudinal stuvdy, - - nust assume that the cohort effect is

zero. The second problem already wentioned. is that even if the cohort effect

can reasonahly be noglected, age differences will still be confounded with®

- time-of-measurenent <ifucts, these being viewed as temporary variations or

aberrations sup.rcinposed on the doteleynental function. What Schaie's argument

'S

. - - .

cones dows o, then, .3 thiat gongltddlnal studies are appropriate only in

those cases whoi & - 1 o+ 0. But must every study answer all questions? Jt is
our opinion thit to wiopt tiny atritade would stifle a pood deal of potentially
valuable reszeir o Uysre are fitaations ip which the longitudinal approach

must be éapley *f wipte 1 nuzber oo questions cannot be answered in any other

way. To cite Luronn oo pde, if one o, cern ig with intraindividual patterning
o et on e e et i i ... bl.w, fhere simply 17T sithatisuts fay
the tong.cawiaal 700D o b e Wnenever we wish to study the




relationships between the amount or direction of change for two or more variables,

or between such change and any other information about the tindividudl, the .

only alternative to the longitudwnal approach is the abandonment of the project.
Thid does not mean that every project is worth doing, that one should flatly

igriore ppten.ial Lime-of -measurement disturbances, and that cohort effects are

«

mere figments of the' imagination. It means simply that we should take care

with the procedural conduct of the study and prudently limit our inferences to

the populatlon from which our sample was selected. We need not over-rzact to
o e
. the point of jettisoning the longitudinal approach. As stated by Jones (1958),
g L
| .
“If we wish...to achieve a body of developmental theory, we cannot eliminate ,

12

developmantal observation" (p.98).

.
o

While we certainly do not advocate the use of the longitudinal approach -
in every developmentai investigation, it is our contention that there are .
situations in which tiﬁe—of-measurement effects may be safely neglected, e.g.,
in most studies of physical growth, and that when these effects are unimportant,
most of theabjections to the tongitudinal approach disapiear. This is primarily
due to the fact that the remaining technical difficulties associated with tThe
longitudinal method are counterbalanced by its great efficiency in estimating

, B .

change scores. Wallis and Roberts £1956), e.g., estimated that in analyzing
the weights of men pefore and after a lapse of time, each of two independent
samples would ﬁave to contain 2,222 individuals (a total of 4,444lobservations)
to provide the same saapling reliability as a single paired-sample of 25 men
measured before and after the ldpse of time. While the data they used to
obtain these estimates * °re artificially generated, they do provide some idea

~

of the increasv in precision of the paired-sample approach which may be

. J
- egxpected 1n practice (see also Rao & Rao, 196G;. * \
-
C// ! Wo turn now e q merions dealing with the ovudy of intreindlividual chehgc.
?
a Some nathomatical mode s which san be used to mirrver these cce are presented

chun
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and discussed 1in the context of their potentia' usefulness in developmental

»
research.

ITL. MODELS YOR'}NTRAINDI\IDUAL.CHANGE

We begin, following Kessen (1960), by agreeing that "a characteristic is

said to be developmental if it cun be related to age in an orderly or lawful
i
way." Thus, given a series cof measurements X aXgs e Xy on a given individual,

we suppose that the t-th Such measurement (t=1,2,...,T) can be expressed in

)

the form

~ x, = £(t) + e ' (I11.1)

in which the obYservations x, are viewe! as being composed of a systematic

“which ebeys some probabilit

part, f(t), and a random or stochastic part, €, ¥,

law. The busic problem is then to fit a function, f(t) to the observations

in such a way that tie function (a) provides a close fit to the data; (b) has

a2 rcascnably simple'mathematlcdl structure and (c) has relatively few parameters,
. I

whage meaninse ~re clear with « definite developmental significance (Israelsohn,
1960) A number of such functions have been proposed for use in a variety of

vtzl circumstances. “erhaps the simplest of these is the first-order

.

autore, ressive scheme, ov Merkov Process, in which

f(t) = Bx

(t) -1 |
!

sc that the value of the observation at time t is a simple linear function of
i

th: measurement made ot the preceding time point. The next most complex form
t

T ) ) . . ) !
of linear autoregressive series 1s the Yule series where

4
ft) = 8 x + BX
(e = ByXey * Bty
and . 1e deted sined beone vaiges of the obseryations smade at the preceding
85 (-
Hd
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two time points. This formulation can be extended in obvious ways and a good
account gf auv-oregressive model: 1s provided by Kendall and Stuart (1968).

.~

These and a nuaber of other forms for f(t) may be generated Yy chara terizing
the developmental process in terms of a differential equation and we here
sketch some examples of sirpl. differential equations which have been nsed to
th.s end. Let:iny t denote time and X the‘magnitude of the measurcment being
taken, the differeariz! coefficient dx/Jt then denotes the rate of zrowth,

i.e., the increase in x per unit time. It is generally assumed that the

growth Drocess may be'charact: .ized by a differential equation

dx _
Et— = g(x,t)

which cays that the growth rate depends both on time and current size. -In the

examples to follow, we consider ~nly special cases of the type

LA (I11.2)
which may be written as
- dv
—;-(—‘:“ nykjdt
~J
i - N
or, solving, .
> .
i) Z(—’:T =" (t) (I11.3)

o~ . ‘ 3 - - -
which determin=s . as a function of t. Turning to some specific examples, if

we let g(x)=1, a, +-x and x(r-xy for 0 < x < A in (111.2), we obtain the differ-

.

cntial equations K

o

(T
xh{z)
(3-)h(t) (T77.4)
x(r-x)a(t)

[o9
-
n
— ot

&

¢~ 86
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where, in the last two equations, * is interpreted as the maximum value of x.

-
L3

The four equations relate to quite aifferent and varied types of growth processes.

Specifically, the resnective eoquat.ons .nlicate that at 2 given time the -
b 4 { 8

-~

growth rate (1) depends on time, but not on size, (2) is proportional to size

and a function or tims, {(I) it proportienal to tne 'growth potential," i.e.,
the maximum Size ninus current size, and a2 function of time and (4) is pro-
purtional to both the .nrrent size and growth potential, as well as a function
o’ ;ime. .

If we nNow consider the "lojarithmic differ-ntiail coefficient” dlog x/dt=
dx/xdt which denotes the relative growth rate, i.e., the proportional increase

.

per unit of time, the last three equations in (I11.4) may be written

d log x } :
Llows o
-
e -2 log {x-x) ®
o —nl = h(t)
dt
* and
Jd log x d log(r-x) _
BT dt = h(t)
Solving thesc 4 o (11D w0, the equations {111.4) yield
.‘.‘ > h(:) : 3
log x = H{t
log(r-,0) = log A - H(t)
' log(t-a) - log » = -} R{t) )
o 37 {
g 3
ERIC , )
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or, if solved er £,
H(t) -
o . exp(H(t))
‘ ' V[1-exp(-R(t))]
Afl-exp -+ H(t
) ‘ » ( [I~expl (t)]

»

H{t) wherc ¢ is the base of the natural logarithms. The

(I11.5)

-1

Here exp(H{t)} = ¢
*

equations include a constant of integration which may be determined from a

given value of (x,t). By looking at pérticular values of h(t) we can noy

zenerate a numper of examples of growth curves satisfying the conditions set

out following equation (III.4). Taking h(t) = g, e.g., we obtain

> 2+ 5T
exp(a + it)
Al - exp(- x- 8%))
VR -1
AL+ expl-a(x + 8t))])
For & » 0 these .i- increasing functions of t, the last two having asymptote
A. ‘ipe last of fiese vapressions defines what is gererally called the logistic

£, ivl.aeingd the sicps that led to its derivation, we may be

LiUNCE vl Ve

able te pain sene eppreciation for the sorts of growth processes it might

¢. The equation for growth rate is

.
.

and for ol , roty,
Plop o d lgafa-x) R
\ oz dlelin)
- ut it

~ ~yvmen
4 .

oo Be(en) = -x

' : 88 Qg
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i’e., the relative growth rate is a linear function of x. Thus before fitting

a logistic function to developmental data, one should be sure that the conditions
1mp;3ed by these equations do not V1olate their a priori knowledge of the

. process under consideration. Looked at the other way around after fitting a

\, >
N\

logisiie\function to develoﬁmental data, a reasonable test of goodness—of-flt
N\

=
©

would be té\piot the values of x on the abscissa vs. the values of Alog x /At
on the ordinate to see whether or not¥a linear relationship obtains. But it
should be noted that while goodness-of-fit is perhaps a necessary condition
for the employment of a particular function to mirror a growth process, it is
by no means sufficient to ensure transcending mere description to the real
desiderata of explanation. This is due not only to technical, statistical
difficulties (Kowalski, 1970, 1972), but also to the very philosophy underlying
the use of goodness-of-fit tests in this context. As stated by Feller (1966),
The logistic distribuéion function...may serve as a warning. An un-
believably huge literature tried to establish a transcendental 'law of
logistic growth': measured in appropriate units, practically all growth
processes were supposed to be represented by a function of this form...
Lengthy tables, complete with chi-squared tests, supported this thesis
for human populations, bacterial colonies, development of railroads, etc.
Both height and weight were found to(fbllow the logistic law even though
it is thepretically clear that these two variables cannot be subject to
the same distribution. Léboratory expeciments on bacteria showed that
not even systematic disturbances can produce other results. Population
theory relied on logistic extrapolations (even though they were demon-
. strably unreli;ble). The only trouble with the theory is that not only
the logigtic distribution, but also the normal, the Cauchy, and other

distributions can be fitted to the same material with the same or better

~
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goodness of fit. In this competition the logistic distribution plays no

distinguished role whatever; most coq}radictory theoretical models can

be supported by the same observational material. (p.52)

Thus the proper emphasis on fitting a xurve to longitudinal data is not
on selecting a function on the basis of goodness-ofifit, but rather on selecting
a function which accurately mirrors the biologiégl structure of the proce;s
under consideration. There are certainly enough functions to choose from --
each with its own set of assumptions which must be met if we are to go beyond
a mere description of our developmental data. In addition to those already »
discussed, we should mention.several others that have been proposed for use in
relatively well-defined sets of circumstances. -In the realm of physical
growth, because of the adolescent growth spurt typical of the higher primates
(which may or may not obtain in psychosocial investigations),.a parameterization
consisting of distinct components for prepubertal and adolescent growth is
often recommended. Thus Deming (1957) suggested the use of

. f(t) = a + Bt + v log(t)

for the period up to nine years in girls and ten in boys, and from that point

to maturity, the Gompertz (1825) curve, viz.,

f(t) = « exp [-exp(B-yt)]

Similarly, Jenss and Bayley (1937) fit

f(t) = a + Bt - exp(y+6t)

over the prepubertal period and then used the Gompertz function. An analogous

strategy was suggested by Count (1543). Examples were

98
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. A\
provided by Israelsohn (1960). But, as pointed out by Bock et al. (1973), the

problem as to where gg;g;urve should end and the other begin is still an open

*

\

question. > They suggested instead the use of a mixture of logistic growth

curves. In their notation,

a, f-a1

1 + exp[—bl(t-cl)] 1+ exp[—bz(t—cz)]

-

£(t) =

:

where

i a is the upper limit of the prepubertal component.

b1 determines the initial slope of the prepubertal compdhentf implicitly

given by v, = a1b1/4, the maximum velocity of growth in the prepubertal

component.

¢ determines the location in time of the prepubertal component.

f is mature size.

>

a, = f—a1 is the contribution of the adolescent component to mature size.
b2 determines the slope of the adolescent component, implicitly given by
v, = aabz/d,-the maximum velocity of growth of the adolescent component.

<, 15 the age at maximum velocity of the adolescent component.

In fiféing this model to data on stature, Bock et al. (1973) were given t,
observed y, assumed £ known and the remaining five parameters (al, bl? cy> b2, cz)
were fit by non-linear least-squares. Another'pargmeterization which permits

straightforward interpretation of the parameters comprising the model was

suggested by Weinbach (1941). Here

f(t) = b1 exp(clt) -(b2 exp(-czt)




where -

c is the multiplicative rate of growth per unit time.

bl is the size of the individual when he enters the time span ¢f constant

rultiplicative growth in early or middle childhood.

'bz is birth weight

.

and
v ‘ .

<, represents how rapidly the child decelerates from birth into the phase

of constant multiplicétive growth.
The rationale behind the use of this model is that since the growth of most
bhysical measurements is decelerative:in infancy and more nearly constant fqr
some years thereafter, a convenient mathematical representationséf the growthf
of an individual is one whichféétimates both this deceleration and the more
constant phase of middle childhood. Presumably the use of another function
would be required if the age range were extended to include the pubertal
spurt. ) ’ -

e might also mention at this stage another model which can actually be

used to test the hypothesis of a significant change in the pattern of growth

due to some event E (e.g., puberty) occurring within the interval of observation.
This is due to Box (1967) who considered the general problem of testing for a
‘change in the level of a non-stationary time series.' Potential applications

in the context of the present discussion include checking on whether or not
behavioral measuremehts exhibit a growth spurt and in facilitating the choice
of where different growth curves may be needed to accurately mirror changes in
the processes governing develdpment. Suppose we have a total of T =n+mnm
measurements; the first n of these being taken before E, the next m after. If

then & measures the shift in level of the series associated with the event E,

Box's model is of the form

' i %1-0 ' ‘




/ t-1 )
L+y £ a . +a for t<n

/ (o] =1~ t—{], - -
I . J
/ - .
: . X = . t-1

L+ ¢ . ]

*Y, §=1 at—j *ag .for-t>n

where L denotes the initial location of the series, Y, is a constant, 0 < y < 2,
-7 .

presumed known, and the o's are independent normal deviates having variance o°.

It may aid in the interpretatibn of this model to wcite

Y

-2

j ! :
t-j t (1-v,) Xe-1-5 F a Yo) L+oa

t
Yy I o . +ta_ =Y .
i ° -

oot

=1
which emphasizes its aqtoregressive structure. Box then shows how to estimate
o?, L and § (say by s?, L and & ) from the data and the required test follows

from the fact that ’
. ’ 2 : 2
(- av )™ o= asr )™

(8-9) - -
- a-v)™ v, vy st

(I11.6)

has Student's t-distribution with-n +m - 2 deérees of freedom.- Box approached
this prdblem from the Bayesian point of view in which certain (non-informative)
prior’distributions for the paré%eters in the-model were assﬁmed, (II1.6) then
representing the posterior distribution of . The test can, however, be
dirgctly applied in the ﬁore usual Neyman-Pearson framework where no a priori
information concerning these parameters is invoked. In either case, yo is
taken as known but'Box has shown that (III.6) is felatively insensitive to
éhanges in the value of Y, '

“ The point of the above examples is to acquaint the reader with a number

" of models which have been proposed for representing intraipdividual physical
growth. As already noted, it is important to realize that in the competition
between these models, goodness-of-fit plays a relatively minor role. While a

poor fit of the model to the data should reasonably cause one to question the

applicability of the model under consideration in the context of the current

*.

9
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problem, a good fit to the data is not sufficient to insure this applicability.
A ﬁore prudent course is perhaps via the derivation of a model thgt satisfies
certain definite a priori requirements imposed by the structure of the develop-
. mental process under consideration. This may be apbroached by the use of
differential equations as sketched above (see also Shock, 1951). Alternatively,
‘the prOperties of évailable models can be checked to see whgther or not they

conform to these a priori criteria. Thus, for example, if we wish to use a

model that is consistent with allometric growth, the use of the Gompertz curve

may be appropriate (Deakin, 1970).
On the other hand, if only a simple descriptive function is required

and/or little is known about the mechanisms governing the growth process, the

class of polynomial functions

£(t) = a ) + gt + a2t2 oo aptp

.

aré apt to be satisractory and have the convenient property that the '"mean
curve" (that fitted to the observed growth patterns of a number og individuals)
is equivalent to the "mean constant curve" {that obtained by fittiﬁg the in-
.dividual records to a set of such polynomials and then averaging the coef-
ficents a; ). This-is not true for growth curves in gene;al (e.g., Gompertz,
logistic) and thus the character of the individual curves are subject to dis-
tortion through group averaging. This may be a critical point in practice
since indiscriminate averaging tends to over-smooth the growth curves, masking
the inﬁere;t interindividual variability, which is often of prime importance
in the study of growth. Thus while polynomial growth curves may not lend
themselves to easily interpretable explanatory models for growth processes,

they may still be useful for the description of development and in the effective

reduction of the observations to a small number of parameters characterizing

.
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the observed course of growth. This method was introduced by Wishart (1938,
1939) who suggésted that the g;owth curve for each subject be broken down into
its mean and linear, quadratic, ctc. components, each of these being subjected
to separate ;nalysis. The ecffects of treatments on the average growth rate
could the; be seen from the analysis of the linear components, and analysis of
the higher—ordér components would show to what extent the treatments were
effecting the shapes of the growth curves. The method was valuable in that it

succeeded in replacing the successive observations on growth by a few summary

figures which led to efficient comparisons between the groups being studied
(Rao, 1958). .
In an.attempt to extend this approach, Rao (1958) considered the problem
of transforming time by a function ;= G(t) in such a way that the growth rate
is uniform with respect to this new time metameter, SO that an adequate -+ ‘
represéntation of growth would be available in terms of the initial value of -
the ﬁeasuremeﬁt and the redefined uniform rate. This method produces.the
required transformation from the data in hand, provides a valid test of the
hypothesis that the average growth curve is the same under all treatment

conditions irrespective of any assumptions on the nature of the growth curve,

and it is not even necessary to know the exact values of the time points at

which the observations were made. Rao (1958) also considered the model

Yia = A8 + €y ' (I111.7)

wh?re Yea is the increase in the t-th interval, Xa is a parameter specific to'
individual o, g(t) is an unknown function of time only, and €, is a random
error. Whéreas the first method did not depend on any assumptions about the
individual 3srowth curves, (III.7) implies that, apart from a deterministic

linear trend for growth with respect to some time metameter, there. are independ-




ent disturbances taking place in small intervals of time. By a common trans-
formation T = g(t), all the individual growth curves can be made linear apart
from rendom fluctuations.

Finally, Rao also considered extending (I11.7) to its factor-analytic

analog

}ta = Aél)gl(t) + Aéz)gz(t) ... € (I11.8)

where X(l), X(Z) ,... correspond to the factors and 81> 8y +-+ to the regression
coefficients. If (111{8) hoids, we should be able to replace the growth curve
by its estimated factor ?alues x(l),'x(z),... and to single out the

dominant ones for further analyéis. While this approach has obvious merit'as

a potentlally valuable data-reduction technique, (II1.8) differs enough from the
standard factor amalysis model to require an entlrely new set of associated
significance tests and these have not as yet been worked out. In‘case €, can
be assumed independent of t, Hotelling's principal component analysis may be
used to obtain the requisite factors and standa;d tests can be applied (Rao,
1958). -

In the following sectﬁons‘we consider how some of these models for intra-
individual development are used in the study of 1nter1nd1V1dua1 differences in
developmental patterns and in providing tests of hypothesis concerning the
mean,patterne of growta in several groups of individuals.

IvV. MODELS FOR INTERINDIVIDUAL CHANGE

When an 1nvest1gator is concerned with a single attribute measured longi-
tudinally on one or more groups of’ jindividuals, there are a yariety of analytical
models which can be employed. These techniques which are quite cifferent from
those described above for iptraindividual analysis, fall into three main

categories: (1) univariate analysis of variance, (2) multivariate analysis of
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v;riance, and t3) polynomial growth curve (PGC) models. For any particular
analysis problenm,.-the choice of one of these three approaches should be made
as a function of the extent to which the structure of the model is appropriate
and the extent to which the statistical assumptiDps are met. In describing
these three approaches, careful attention will be paid to thesc points.

However, most attention will be given to the PGC models which are least widely

considered in applitations. -

¥

.

The univariate analysis of variance models are probabiy the most widely
used, most widely documented (viz. Winer, 1962; Gaito & Wiley, 1963), and most
problematic approach to the analysis of longitudinal data. In the case of a

single sample of jndividuals, the approach is often referred o as trend

analysis (Winer, 1962; Kovalski §& Guire, 1974). In this model the total sum

of squares is partitioned into components attributable to individual differences,
Limé, and error under the assumption of no interaction between the time and
individual factors. This model allows the investigator to test the overall
hypothesis of no differences attributable to the fime factor. It is also
possible to cubdivide the sum of squares for time into orthogonal polynomial'
components allowing hypotheses concerning the shape of the time response to be
tested.

- In the case of two or morz samples of jindividuals measured longitudinally,
a repeated measures analysis of variance (Winer, -1962) can be employed. In
this model, individuals are treated as a random factor nested within groups
with repeated measurements over time. In the context of this model the main
null hypotheses of interest are (1) no time effect, (2) no group effect, and
(3) no time by group interaction. The last of these hypotheses is often of
greatest interest since it can be thought of as a test that the time Tesponse

functions of the k groups are parallel. As in the simpler case described
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above, it is -possible to partition the time effect into orthegonal polynomial
components to gain greater insight into the shape of the time rcsponse. This
k-sample repeated measure design can be thought of as a prototype for ; great
variety of more complex models in which the k-groups are structured as the
levels of a factorial or, other design. It is é}so possible to structure the
repeated measure as levels of a more complex experiment.

Thése analysis of variance models seem at first glance to be ideal for
the analysis of longitudinal data since they are relatively simple and the
questions of interest correspond to hypotheses which can be tested in the
context of these models. Tiie problem, of course, has to do with the V;lidity
of the underlying statistical assumptions of the models. It iz an unfortunate
fact that the ratios of mean squares will have an exact F-distribution only
under rather restrictive assumptions described by Huynh and Feldt (1970). A
sufficient condition for the result requires that the repeated measures are
normally distributed, have equal variances, and either are mutually independent
or have equal correlatioﬁs (Greenhouse § Geisser, 1959). The assumption of
rutual independence is virtually nev;r tenable and the aésumption of equal
correlations is seldom tenable when the repeated measures aré indexed by time
since adjacent pairs of measures will almost always be more correlated than pairs
separated by a greater time interval. If the investigator does not wish to
prejudge the validity of the equal correlation assumption, a test oﬁ equal
cqrrelation js available (Box, 1950). When the assumption of equal correlations

clearly does not hold, Box suggested that it might hold if the analysis were

performed on differences between adjacent measurements rather than on the

~original data. The only other approach to salvage the univariate analysis of

Q
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variance models for the analysis of longitudinal data when the equal correlation
hypothesis is not tenable is an approximate procedure proposed by Greenhouse and

Geisser (1959). They have shown that the ratios of mean sqﬁares have approximate
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F-distributions with modified degrees of freedom which are a function ot the

*

unknown population variancc-covariance matrix. They further show that there
is a iower bound on the degrees of freedom which is independent of the unknown
parameters. Unfortunately, the use of this lower bound gives a test which is
conservative in the sense that the null hypothesis will too often benaccepted
when it is not true. This loss of power may well be unacceptable.

Because of the restrictive assumpyions of ecqual variances and covariances,
it is clear that univariate analysis of variance approaches are not applicable
in most situations and tha:t other models which are not dependent on this
assumption are needed. lMultivariate analysié of variance techniques provide

] such a class of models. In the case of a single sample of individuals measured

longitudinally, the multivariate analog of trend analysis can be thought of as

a multivariate generalization of a paired t-test. In this situation, the data

14
»

_consist of the vectors XE = (xil’ xiz, xip) for i=l, ...,ﬂ and the hypothesis

. %, .
of interest is that of no time effect, i.e.,

o
4

where u is the mean vector, p is a scalar, and j' = (1, 1, ..., 1). Morrison
(1972) has shown that under the assumption that the observations are an inde-
pendent sample from a multivariatg\normal distribution, the maximum likelihood

test of this hypothesis is equal to-a test of the hypothesis

S

where C is any (p-1) by p matrix with the property Cj = 0. In practice, C
is chosen so that the transformed observations are the successive differences
of the original data.

This model also allows the investigator to obtain simultaneous confidence
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intervals for all contrasts a'u of the repeated treatment mefins using Scheffé's

-~

method of.multiple comparisons. when the null hypothesis is rejected, this

capability allows more precise statements to be made about the nature of the

time response. 1n particular, the contrasts a could be chosen to be orthogonal

polynomial contrasts. In addition to this basic result, Morrison (1972)

derives analogous test statistics and confidence intervals under the more

restrictive assumptions of (1) equal variances and covariances and (2) reducible
form for the variance-covariance matrix. He then compares the lengths of the
confidence intervals with those derived with no structural assumptions. It
seems clear that these metheds prévide a reasonable alternative to trend
analysis under a variety of conditions which an investigator might be willing

to assume.

The multivariate analysis of variance approach to the k-sample problem of
repeated measires is known in the literature as profile analysis (Greenhouse &
Geisser, 1959; Morrison, 1967). The basic model is that of a k-sample multi-
variate analysis of variance in which the observation on the jth individual in
the ith group is denoted-z'ij = (yijl’ yij2’ . yijp) and is assumed to
have a multivariate normal distribution with mean My and variance covariance
matrix L. Thé linear model for these observations is

E (Y) =X B
(mxp)  (mxk) (kxp)
where X is the k-sample design matrix and E is the matrix of group means. 1In
the context of this model, it is possible to test hypotheses of the form C B A = r
for arbitrary C, A, and T satisfying the requirements of the general Gauss-
Markoff theorem. In particular there exist choices of 9, A, and E to test
the three basic null hypotheses of interest.

The first of these null hypotheses HOI’ is that the k profiles are

L4
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b

- parallel which is analogous to the test of no group by time interaction in

therupivariate analysis of variance approach. For appropriate choice of

C,Aand T, this hypothesis has the form

T w — . _—
: . M1 T M2 | Mpp T Mg
P e PR < B _ | Mk ks
oL . e TN .
u -y W -gu '
< L 1(13-1) P | | k) ke
/ ' :

ghich is equivalent to a one way multivariate analysis of variance on the

differgnces between measures made at adjacent times. =

-

The second ndT} hypothesis H

02 is that there.is no chénge'through ti@e,
‘d’that is, ’ _
‘ T H12
H\Dz’ . - : = F .
' o 3y "2 i

Matrices C, A and T can be found to test the hypothesis in this form which
- -~ 4 ) £ - R

assumes nothing about the parallelism of the profiles.. Howeber, Morrison

{1967) proposes an alternative choice of the test matrix which causes tﬁ%==;~rﬁ

-

hypothesis fested to be based on equality of sums over groups for each variable.
pn . ;

The test in this form is *

which is interpretable only'under the assumption of pdrallel profiles.-

The third hygobhcﬁis; H03 , is that there are no group differences.

. Without th® assumption of parallel profiles, this hypothesis has the form:

. ) — r— —1 3
"11-1 { Y ‘\~ ) ki,
Hos : = : = = .
- ! . u
: 1p Y} s+ T p
— ' - v -~ }-_ -

.




As above, under the assumption of parallel profiles, Morrison (1967) suggests

an alternative hypothesis based on the sums Over measurements which has the

form? ° \\ ‘

As in the case of univariate analysis of variance, the basic k-sample MANOVA

model can be generalized to more complex designs by considering the k-samples

. as levels of a factorial or other experiment or by assuming some structure for

the repeared measures. McCall and Applebaum (1973) present’ such a generalization

W1th six repeated measures structured as a two by three factorial design.

They then compare the univariate and multivariate results for this case and

conclude that the multivariate approach is superior.

In the profile analysis model, it is important ‘to point out that the only
assumptlons made are that the longitudinal series for each individual has a
multivariate normal distribution with the same variance covariance matr1x in
each of the k groups. The assumption of parallel time response functions in
the k groups is not necessary. It should additionally be pointed out that the
model doesfnot assume anything about the structure of repeated measures. It
ié(in fact not necessary ehat they be indexed by time cf measurement, be
equally spaced, or even ordered. Because of this lack of structure the model
simply tests whether the time response functions have the same shape without
providing a model which describes the shape of the function.

ThelginaL major class of models which we will consider are the polynomial
growth curve (PGC) models. This class of procedures differs from those

already considered because the models are formulated as a function of the

structure of the repeated measures. In the previous cases, this structure
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could be incorporated by considering appropriate contrasts but was not in-
cluded in the overall tests of hypotheses.
The development of the PGC approaches goes back to the pioneering work of

/ Wishart (1938) thch was alluded to earlier as a way of summarizing an in-

dividual's time response with a few lower order orthogonal polynomial regres-

sion coefficients. Rao (1958) improved on this basic idea by suggesting that

the time scale be transformed so that more complex time response functions _ °

could be adequately summarized by the linear coefficient computed with reépect

to the modified time axis. More recent developments in the area of gstimating
. and testiné hypotheses about the average PGC of one or more groups have been

provided by Rao (1959, 1965, 1966) , Potthoff and Roy (1964), Khatri (1966) and

Grizzle and Allen (1969). These investigators ha;e provided a variety of

proced;res which are equivalent under certain but not all coﬁditions. Because

of the extent of overlap between approaches, we will concentrate primarily on

the Potthoff and Roy approach s{i?e their_basic model seems most appealing.

However, we will point out relaFionships between their results and the wori‘of

Khatri and Rao. i

As presented above, the usual MANOVA model can be written as
E (Y) = X B
(w%p)  (nxm) (m<p)
where the rows of i arc assumed to be independent and follow a multivariate
Aormal distribution with variance covariance matrix I, § is a design matrix
of known constants, and § is a matrix of unknown parameters. In the context
of this model, it is possible to test hypatheses of the form
Hp ¢ B A =T
" (qm) (axp) (pxu)  (qxu)

for appropriate choices of C, A and T satisfying the generalized Gauss-

-
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Markoff theorem (Timm, 19?5). It is also possible to provide simultaneous
confidence intervals for functions of the fofm
P' c B A" f
(1xq) (gxm) (mxp) (pxu) (uxl)

for all b and f.

Potthoff and Roy (1964) propose a more general model of the form

E(v)= x 8 g &
(nxq)  (nxm) (mxp) (pxq) ’ -

where:l[o has rows which are indepei?ent‘and follow a multivariate normal
disg:ibution with variance-covariance matrix Zo s § is the 'between individial!
S
deéign matrix of known constants; B is a matrix of unknown pa;gmeters, and Q
. : : ~ N
is the 'within individual' design matrix. Potthoff and Roy show that this
model can be reduced to the prev;ous MANOVA model with the same paxdmeter

matrix B by considering the transformed variable

-

where G is an‘arbitrary q by q symmetric positive definite matrix. In their
-

S .

original discussion, Potthoff and Roy suggested that the choice G = Zo would

~

be optimum but that since Zo was unknown and the distribution theory of
> : v
using a data derived estimate of Zo was unknown, another choice which approx-

*

imated Zo but which was not data based would be appropriate. The choice of *

taking G = I, was also discussed. Subsequent results by Khatri (1966), Rao

(1965), and Lee (1974) established the usefulness of choosing G = Zo where

o)

Zo is the data based estimate of Zo.

.

Given this oasic model, the, one sample problem considered previously can

04
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be parameterized by choosing
’ — 1 1

X

~ = . and Q =
(nx1) -

Pl
q

i — —d

so that the expected value of the jth observation on the ith subject has the

.o

p-1 p-1
t t:2

| e
fo

' form

2 -1
E(y..) = 8, + B, t. + B_t_ + ... + t? .
(le) 1 275 B3 j Bp J

for all i and j. It is important to point out that the form of the time

-

response is assumed to be the same for each subject i.e., have the same
. degree. For appropriate choices of matrices C and A, this model allows an

jnvestigator to qest'hypotheses about the regression coefficients. In particular,

»

- [}

one céuld test the adequacy of a model of a certain degree; or using the N

.

result for simultaneous confidence intervals, gonfidence bounds for the mean

growth curve could be derived.

>

. . /‘
The generalization of this model to the case of k.groip$ of individuals
. - a .

[N
.

with Ni individuals’ in the ith group is straightforwardi The matrix X(N,k) is
. ’ [ .
» N L
constructed to contain N, rows of (1,0;...,0), N2 rows of (0,1,0,...,0), ...,

and Nk rovs of (0,0,...1). Thg matrix Q‘is chosen as above. With this

specification,_the expected value of the jth observation on the ith subject in
> N > . 4

"» the kth group has the form '

At

t? + ... + B t?'l

E(y,..) =
Okij) = Bra * Braty * Bist; kp'j . . -

~

.

' With this model,.matrices C aad A could be chosen to test the complete.equality

" of the k regressions, the parallelism of the regressions, or the adequacy of a

model of some lower degree. As in the case of the other methodologies discussed,

general izations of the K-sample model to more complex situations are possible.

L4
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Timm (1975) presents an ekample in which the k grOups correspond to levels of
a two factor factorial experiment. |

Alternatives to the uee of the Potthoff-Roy model includeuthe one sample
PGé model proposed by Rao (1959) and the independent but essentially complemen-
tary developments by Khatri (1966) and Rao (}965, 1966, 1967) which are argued
‘to be superier since they eliminate the arbitrary choice of ehe matrix G.

‘ These models have the form

* E(Y) =XB+2ZT

where Y, X and B are as before, Z(\,p -q) is a matrix of covariates chosen from

the higher order orthogonal polynom1a1 coefficients, and P is a matrix of
unknown covariate coefficients. Rf‘the covariates are not 1nc1uded, the |

results are identical to the-ch01ce G =11in the Potthoff-Roy formmlation. If

- 3

all of the q-p co»arlates are used,ehe Rao model is equivalent to the model-
proposed in Rao (1959) and. to the chaice G = S in the Potthoff-Roy model where
S is the data estimate of Zo. Rao .(1966) and Grizzle and Allem (1969)
recommend the use of some Lut not all of the p-q possi@le covariatee with the
declslon of which covarlates to 1nc1ude determined by the data. The important
point of this rather technlcal discussion’ is that the various choices are more

similar than different and that each formulatlon has 1ts problems, i.e., the

-

choice of G for Potthoff and Roy and the choice of hhlch covarlates for Rao.

. e

In any case the class of models is’ rich and seems to answex’ most questlons of

interest. . o - . C

»

The preceed1no sections discussed a variety of methods for interindividual

.

’ analysls which (1) were derived under an assumption that the data were sampled

! ’

frem a univariate or multivariate normal distribution (2) made inferences in .

classical statistical fashion on the basis, of the sampling distribution of
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§tatistics (3) made a taéit assumption that all data wére present in all of
the lqngitudinal series studied, and ({j considered only a single attribute
measu;ed longitudinally. It is the purpo;e of this section to discuss briefly
apﬁroaches in the literature for which not all of these four conditions

- +

pertain.

. . ¥

The assumption of univariate normality usually does not present a problem
in most data analyses since the validity of assuming normality or the extent
of deviation from normality can be assessed easily either by using a testing .

.procedure or by 1ns écting histograms or probability plots. In contrast, the

assumption of mul€ivariate normality raises more serious problems since testing

- and graphic procedukes are not nearly as available and results concerning the
& - robustness of procedu}es in the absence of normality are largely unknown

(Ké&alski, 1972). In order to avoid the assumption of normality, nonparametric

+

approaches have been developed for many data contexts, but these approaches
have been conspicuously absent from the longitudinal data analysis literature.
One exception is the paper by Ghosh, Gri:z:le, and Sen (1973). In this paper,

two examples are considered in which the longitudinal series for each individual

are replaced by a vector of regression cosfficients which summarize the
individual'%'tine response function. Under the assumption that these coeffi-

" cients have a continuous but not necessarily multivariate normal dlstrlbutlon, g
statistics basnd on ranks of the coefficients are proposed, and inferences are
based on fhe permutation distributions of these statistics which are asymp-

totically x?. The main hypothesis tested is equality of treatment groups in N
. ,

a design that includes a.block factor. Wnile the precise results on the

-

asymptotic~relative efficiency of these procedures are not known, the authors

assert that these approaches have high asymptotic relative efficiencies for

- &

; ~ distributions witit neavy tails and that the procedures are robust in the

-
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presence.of gross errors Cr outliers.

The~second common attribute of the interindividual procedures discussee
in the previgus sections is the fact that they are all based on sampiing
distrieutioné of statistics. This fact is not in any sense an assumption of
the models analogous to the assumption of normg&ity but rather a constraint on

the type of inferential statements that can be made. The major alternative

i

inferential context is the_Bayesian approach,whiéh, among other differences,
allows prior information about&;arameters to be formally incorporated in the
apalysis. Uﬁfogtunately, there are few examples of the application of Bayesian.
infereﬁtial methods to longitedinal data analysis problems. One such application
is the work of Geisser (1965) and Geisseriand Kagpenﬁan (1971). In these
. papers, the profile analysis model is considered from a Baye51an point of view
for, respectively, the two and k-group cases. Under the assumption of parallel
profiles, a poster;or region is derived for the difference betwien proflles '
,in the case of two groups and for the vector of differences between the k-1
pairs of edjacent profiles in the case of k-groups. This derivation is consid-
ered for both "non-informative" and "natural conjugate" priore.
The third poiet concerns the presumpeion of complete longitudinal series.

This requlrement is, in practlce, quite severe since it is often—the case in

protracted studies that only a small percentage of the series are complete for

.
?

alil ages. The loss of data imposed by this constraint is even more serious

inferentially if there is any reason to believe that the occurrence of missing

deta is in any way relateg to the value of the attribute being measured. This
problem can be dealt with in at least a couple of ways. One method would be
to take the approach used by Wishart (1938) to replace the longitudinal series
by summary paramefers which can be estimated even in ehe presence of a moderate

amount of missing data. Such derived data, though not precisely identically :




. distributed, should allow at least an approximate anaiysis using a larger
g »
sample size.

A more formal approach to this problem was suggested in a recent paper by
Kleinbaum (1973) who‘generalized the polynomial growth curve formulation of
Potthoff and Roy to consider the presence of missing data. In the presence of
comolete data the model has the form V

E(M = X B Q
(xq)  (Nxm) (xp) (pxq)

If;the structure of the data is such that there are % blocks of cases with

- N, cases in block ¢ and that within block £ all cases are conplete for- some

.W
£

number N of the q observations, Kleinbaum proposes ‘a mod1€1ed model

L=

¢ .
- ¥ » Pl

o, A oA

B 5 % B QK

o (Ny%q,) " (Nxm) (nxp) (pxa) (axdy)

~
-

v

where H is an incidence matrix of zeros and ones. With this model it is

o i . ~ ~ .

possible to obtain best asympototically nprmal estimates for®linear functions
' 5 . . l < 4 'y [] Q
- *of the parameters and to test hypotheses about such line~v functions.

While this approach may be useful in correcting for daza missing by

N - chance, it is also applicable to situations in which data are missing by

-~

de51gn as in the case of mixed longitudinal cross- sect10na1 de51gns (Prahl-

. - —— -

Ande;sen‘ﬁ Kowalski, 1973). )
The fourth point concerns the fact that all of the preceeding discussion
at both the intra—'a;d inter-individual levels has been restricted to situations
? which are univariate i, the sense that the data have consisted of a series of
measurements of a single atrribute indexed by time. The extension of these

approaches to the case of a three dimensional data matrix in which two or more

variables »re measured longitudiﬁally introduces a new level of complexity.
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Several approaches to this problem have been suggested in the literature for
both intra- and inter-individual analyses (Kowalski § Guire, 1974). Of these,

the approach most widely used in biological applications is bivariate allometry

which relates the growth of exactly two dimensions in 2 single sample of
cases. Attempts to extend this approach to more than two dimensions have been
made but not without introducing additional problems of interpretation.
Another avenue of appréach to this problem has been in the area of factor
analysis generalized to the case of a three dimensional data matrix. Such
approaches, which go beyoﬁd the scope of this presentation, seem also to

t h
™ introduce difficult problems of interpretation.

a

Of the topics discussed in this paper for the univariate case, two areas

- seem to offer a way of approaching the problem of a three dimensional data

matrix. The First approach is simply to reduce the problem to a two dimensional

one by summarizing the longitudinal series for each variable with one or more

1 Ied

derived variables. The methods of section III for intra-individual analysis

S

ﬁrovide a variety of posSible ways in which this could be done. Possible
candidates for such summary variables include orthogonal polynomial coeffici..ts

(Wishart, 1938; Rao, 1958), the paramcters of an appropriate Gompertz or
P . .

.

logistic model (Bock et al., 1973), or the scores derived from a principal
components analysis of the longitudinal series as suggested by Rao (1958).
Such summary parzmeters could then be used in a variety of multivariate analyses

which either analy:e the structure of a single sample or compare two Oor more

samples. The utility of this approach obviousiy depends on the choice of
summary variables, which introduces a certain degree of subjectivity into the
analysis. However, it would seem that this approach makes considerable data

analytic sense.
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The second appreach is.provided by the, Potthoff and Roy polynomiel
growth curve models which can be applied directly to the case of two or more
variables measured concerrently. This can be done simply by appropriate
choice of the pre- and post-design matrices. One could, for example, specify
a model in which a polynomial was fit separately Zor two or more variables
taiing into account not only the correlations within a series but the cor-
relations between series as weli. Having fit such a model, one ceeld test
whether the several time response functions were equal or parallel. More

complex nodels involved more than a single sample could also be considered.

. SUMMARY
We have attempted to survey a variety of methods which are appropriate
. for the analy51c of a single longltudleal ser1es and for the analysis of one
or more samples of longitudinal observations. We also attempted to pldce in
perspective the role of such methodologies in the broader context of
dévelopmental’research. Having done this, it seems appropriate to comment
on ;he.current state of the art from the point of view of both iﬂeory and

]

practice.

In 1963 Bereiter, observed that def}tiencies of statistical methodology

seriously impaired the scientists investigation of questions dea%ing with
. change. Since that observation was made, a great deal of theoretical work
has been carried out. At the intra-individual level, new models have been
‘progosed by Bock (1973) and others which are parameterized in ways that
facilitate biological interpretation of the fitted curve. At the inter-
individual level, the development of polynomial growth curve models which
began with the work of Rao (1959) and Potthoff and Roy (1964) is certainly
the most notable advance of the last few years. Because of these

achievements and others one would have to conclude that the state of the

19




art has' indeed improved in recent years. One would also have to conclude
| - \

that th%re are many interesting and challenging problems remaining. At the
A

theoretifal level, the preblems of growth prediction for individual series,

!

Rl ! v - - -
of multi?ariate data observed longitudinally, and of nonparametric

[ -
. alternat}ves to normal theory procedures stand out as areas of ongoing
interesti. At the applied level, the challenge bf testing new methodologies v
/
. [« . s s .
in a variety of contexts always exists as statistical practice lags

, .
frustratingly far behind statistical theory. -
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ABSTRACT

kn experimental design notational system is éescribed- A "minim&i power”

checilis recommended for use with complex analyses of covariance structurcs.

Longitudinal models always include tepeated measures. Conventional ANOVA

longitudinal anélyses are ébnﬂrasted with covariance type linear models._  The

~covariance models have the virtue of permitting tpe use of P different organ-

ismic (X) variables, while conventional ANOVA usually is. limited to one. Tests
S

of homogeneity of regression slopes are illustrated for covariance type =models

with a repeated measure factor and: (a) X's available on subjects but not cach

3

separate occasion; or (b) X's available for each occasion.
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I. INTRODUCTION

‘Longitudinal studies auﬁomatiéally imply that there will be-one or more
repeated measure factors (Kirk, 1968; liiner, 1971). For converiencé we shall
laLel one repéated measure factor as T, the time factor. The simplest possible
design is to obtain several subjects drawn at random from some meaningful T

‘ -

population, and record the depeﬁdent variable, Y, upon those subjects over the ™

T factor. ,This permits the plotting of individual "growth" or T curves on Y.

Unfortunately, when we note that the curves for John Smith and for Tom Johnson-

.are different, we have gained little useful knowledge. Since these individuals

.
4

differ in many ways$, we have no basis for distinguishing future individuals who

are likely to show the "Smith curve" instead of the "Johnson curve". To obtain

useful information it is necessary to have available data on other trait or

~

-

organismic variables that may be used to classify or group the individual
subjects. We shall label these variables as X's. X may be soﬁething ;s‘easily \
observed as sex, or something that must be measupeq by instrumentation or
psychological tests. Thus we may have a study i; which children are grouped

into those with internai locus of control versus those with-external.locus of
control. If these groups now show divergent T curves on Y, we have obtained

useful information such that other children may be assessed on this X and

o~

predictions made about the type of T curve expected.- Thus the minimum useful

design is one where there is at least one X in addition to the dependent varia-

ble Y.

’ : I1. REPRESENTATION OF EXPERIMENTAL DESIGNS

It is helpful to have a concise notation to-express the information
\
. available in a given design. We need two basic terms. Two factors are crossed

if each level of each factor appears with each level of the other factor. Since

each subject, S, appears with each level of T, we say S and T are crossed !
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and represent this as S x T. We may use subscripts on the factors to represent
the number of levels. Thus Sn X Ts jndicates that n subjects are crossed with
5 levels of time.

1f a level of factor A occurs within only one level of factor B, then we
say A is nested in B. This is represented as A in (B). In a'completely random-
ized one factor desién where 50 subjects are raﬁdémly divided into 10 subjects~-
un&er each of 5 levels of factor A, ve would write S10 in (Asj. .A completely
randomized factoral design with 2 levels of A, and 3 of B ﬁay_Bg'repreSented aé
Sn in (A2 X BS)' Since subjects are nested in the AB cro§§ing, this shpws that
any one subject appears in only one of the 6 cells formed\by'the AB crossing.
Lee (1975) has.ﬁritten an ANOVA text using crossing and nesting notations
throughout that should, be consulted if an expansion of this brief exﬁl;nation’
is desired._

. We must also add a notation to express the role of X. w; shall use X to
stand for any co?tinqus variable available other than the dependent variable,
Y. We shall arrange the terms SO that when X is present, it implies an X in
everyuunit prior to the appearan;e of X. .TPUS Sn w XX T4 implies that there
is an X available with every subject, or‘here a total of n values of X. However:
if there-is an X available on each observation, this would be represented by
placing the "w X" last. Thus 86 x T, v X iméiies there are 24 values of X
available, or an X associated with each of the 24 observations of Y. The w is

-

~ R ] . .
for. mnemonic value since the S w X x T would be read as‘Subjects, with an X
) ) ¢

value on each, crossed with T. . o ' .

-
.

These® symbols may be combined to represent more complex designs. As an

example with one repeated measure, B, and one betweeﬁ‘Subjects'measure, A,
Winer has an [S; in (A,)] x B, design (197}, p- 525). The [ ] brackets, jndicate

R is crossed with both A and subjects. we must -distinguish whether there is *

-
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| C
only one X for each subject, or one X for each observation. An example of the
formér is an [S4 w X in (&2)] x B, in wider (1971, p. 803) while an example Bf,,»
the latter is‘an [éS in (AS)] X B2 w X (Winer, 1971, p. 806). ‘T.
(” Naturally it is possible to have more than‘ape organismic variable in ;
study. To indicate more ithan one, we will add extra valees of 'X. We shall

~desionate the number of X variables as P, and may represent a more general case "¢

of Winer's covariance example (1971, p. 803) as [Sw X '“'Xp in (Az)]-x BZ'

- III. POSSIBLE ROLES OF ORGANISMIC VARIABLES
. = . Q R . . A
A. Reductlon of Exrror Term ‘ . ) Lo

X
There are several p0551b1e roles of organismic variables in, 10ng1tud1na1'~
4

designs. In some designs they may be included'prlmarlly as a device to' reduce

.
- - . ®

the error term, and increase the power and precision of the comparisons made. . §
- . . -, A )

- ’

If we have variable X, we may divide it imto 4 adjacent intervals, and‘treat

—

“these four Tevels as a factor with subJects rested in the fbhr lebels. If the ’ -

* + initial design rnvolves a manipulative factor A, the deslgn may be expanded by
addmng the additional O factor with four levéls. Thus an 1n1t1a1 [ 40

(A )] X T “design may be expanded to an [S10 in (A X O )] X T de51gn Id

( the latter design the addition of the O factor should reduce the error term for e

the A efEect, MSS(AO)ﬁ JUSF as in a treatment by levels de51gn £.Ehe stat1st1ca1

considerations of such usage are well -covered in L1ndgu1st (1953, chapter 5)

and Myers (1972, chapter 6).
2 v ]

A}
An alternative way of using an organismic variable to reduce fiean square

error (WS ) is to use X a5 a covariate in a 1eg1t1mate experimental design.
1th an [SwX in (A)] x T design where subjects were randomly a551gned to the

A c;dditigns so the X valpes vary only by chance, the major role of a covariate

would be in reducing MSS(A) term, the:error:lerm,for the A main effect. A test

.

for heterogeneous slopes in such a design is illustrated later in the present

' -

chapter. ¢
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B. Identifying Variable QZ_Time Interactions .

N

A second role of orgagjsmic variables is in a search for organismic

variable by time interactions, or a search for organlsmic variable by treatment
» A\ ]
;_1nteractions that dccur over time. In an [S in (A x 0)] x ‘T design, the AO
~ N L. .
interaction would be an example of an "aptitude by treatment" interaction.

Jhe presence of an OT 1nteract10n would 1nd1cate different growthxcurves\for

the several O levels. A 51gn1f1cant AOT interaction would 1nd1cate that the

- <aptitude by treatment 1nteract10n changed over time.

+ Similat searches fon‘O interactions are p0551ble without subdividing X

-’
- -

into levels and usinc it as an additional factor in an analysis of variance.

. ter

In an [S w X in (A)] x T design>the Theck of homogeneous regression slopes is
.- . .

EQuivalent to a test for a linear A0 interaction. Thus the flnding of heterogen-

eous slopes in a covar1ance~model is another way of discovering an "aptitude by.

. ~
] - o . ¢ L4

treatment" interaction. ¢
Similarlf, if there is interest in a possible X by T igteraction, it is .-
. )

»

| possible-to buildrvectors con51st1nc of the X vector multiplied by contrasts‘of
\ R

< the T factor to deternrne\if there is an XT interaction. Unfortunately, thlS

. 1nvolves methodoloov that is less Iikely to be used Similarly, the search for,

,Y o .

a triple 1nteractfg: by use of "AXT vectors is even less common: The beginning

4 . hd

y IaN
student is probably well “advised to usé the blocking method of .forming an 0

' . variable, and AOV when he has only a single X variable. The complexity of “the-
other methods isﬁnainly needed when tnere are several X variables.

C. Clarifying the Naturc of Relationships . : ‘ .

The third role of organismic variables is in an attempt to "eliminate' the

effect of other ''extraneous" organismic variables to provide '"clear' interpretat-

ions. ~ This is the role of partial correlations, part correlations, and somgtimes

e

of analysis of covariance when the X's differ systematically due-to the fact

that a legitimate randomization of experimental subjects has not been carried

El{fC‘ | 1192/ o




out. Unfortunately, such usage is easy to misinterpret. Campbell and Erlebacher

(1970) give a long, detailed presentation of such problems.
. o . R
Some such studies take a multiple regression form. We may ask, for example, _

ﬂs'

hbw muchteffect does education have on income at age 40 after IQ, SES, and

parental income have been "part1a1ed out." Such a study computes the residual
1ncrement in RY 1234 RY 123 where education is the fourth variable of the . ‘

four h1gh1y 1ntercorre1ated variables. The problem is, each of the four var1ab1es

@

may have a very low "additional contribution" so that no matter wh1ch of the

variables is placed last, it will contribute very little once the other var;ables

others have been used

it turns out .that the low anxiety group dad a mean IQ of 110 and the high ) .

-income. Such a study merely reveals high 11tercorre1at10ns between the predict-

have entered. Thus RY 1234 RY 124 may be equally low suggesting that parental

-.. income is a very'mlnor contrlbutlon once education, SES, and IQ have been

part1a1ed out.. Unfortunately, some authors (e.g., Bowes § Gintus, 1972)

report only the one type of partialling that fits the investigators' intellect-

ual framework. The, statistically naive reader is left with the impression that

this hassbeen a drapatic demonstration that education has no erfect on future S

!

ors, SO that no one predictor makes much of a unique contrlbutlon once the

<

\
* Unfortunately, there is no solution to obtaining clear causatlve conxlu51ons

o

in the absence of man1pu1at1ve stud1es tudies in wh1ch subjects can not be
! ' - . .
assigned a\’random c3n yield tentative guesses of causative chains, ‘but' no more. -

ra

Sometimes, these tentative guesses can be strengthened by attempts that show the
same trends exist even after a possible extraneous uncontrolled factor has been

"partialed out." Thus 1f an [RS in (P)] x T expe11ment shows that low apxiety %
subjects have a more rapidly rising learning curve than h1gh anxiety groups,

&

the interpretative or theoretical value of this result may be questioned when

-~

-

-~ -

anxiety group had a mean IQ of 100. 'Partialling out" the IQ variable may

| ' B 7
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. restore part of thz credibility of the finding, if the same results are obtain-

L4

ec However, such results never have the interpretative clarity that can be

1

. obtained when "anxiety" is determined from.a manipulated condition rather than

a-biographiéal inventory. If several manipulative conditions all supposed to
produce anxlety y1e1d consistent results, clear causative conclusions are
possible. Unfortunately, longitudinal studies must often use organismic varlables
to designaﬁe their groups. From such studies many alternative explanatiops are .
always possible.

D. Use of Organismic Varlables in Cokplex Structures

A fourth use-of organismic variables here must be a catch all category. We
shall call if*use of organismic variables in complex structures. This is meant
to include factor analysis, analysis of covariance strgctures, and the m&hels

y . .

_ Jureskog jdentifies as LISREL models (jbreskqg & Sorbom, 1976a; see also chapter
this volume). The latter refers to a very general model that Joreskog has
indorporated into a computer program that permits specification and testing of:

-

" a meésurempnt model of latent\ﬁariab}es in the X's, a measurement model of

latent variables in ‘the Y's, and ; structural analysis relating the X latent

variables and the Y latent variab}es. This general,structure includes many
multivariate analyses as-special cases. It permits specification of simplex‘

/ models on the Y's with X's as additional predictors.

Thé nhmprous possibilities are too many, and too complicated to comment on‘ \

.

here, except for a brief philosophical note. Ve will be seeing many complex

7
.

models formulated on behavioral data sets. In many cases, the authors report a
given model, say it is compatible with the data, and let it go at that. JbYreskog's
programs permit maximum likelihood tests of specified models. It is hoped'

*that readers will learn to take such tésts %n a sensible fashion, without some

of the habits that seem to exist in the interpretation of simpler hypotheses

tests. One of the most superficial review praétices is to take a given area of.
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content, or a given experlmental questlon, then to obtain & l _references on

that top1c and tabulate the number of 51onlflcant dlfferences. In asking "Is

- v

A greater that B,' some review art1c1es say 15 were significant with A>B, 25
were nonsignificant, so A = B was retained, and 2 were significant with B>A.
>
Therefore the A = B's have it, and further research is needed. Such reviews b
v

often ignore the fact that many of the studies may have had such small n's that
for any reasonable A-B effect, the power was minimal, and retention of the null
is quite likely. Until reviewers consider power problems, and the adequacy ef
the experlmvntal design such compilations are of little value. A modicum of
.statlstlcal‘sophlstlcatlon is needed to yield. worthwhile reviews that separate
the wheat from the chaff, the signal from the noise.

\ As we gb to more complex models, for more complex questions, still more
'soph{stication will be needed. \It is .clear that for most sets of data, many
different models could be built. If n is small enough, the pewer will be small
so that almost any model will "fit" in that the null will be retained. ‘On the
other hand, if n is large enough, almost any model will not fit, in that the
chi square on the model fit will be significant because someé specified parameter™.,
*in the model yill be a little bit different in reality than it is in the model. ¢
Readers who use the '"significant versus nonsignificant' gauge as their sole )
evaluation tool for published research are going to be hopelessly lost when it
comes to the use of complex models. It is difficult to provide guidance rules
that‘will always'ahply, but the author would like to add one suggestion.

It is often very difficult to express the adequacy of fit.of thése complex
models. The more interesting publications are ofter. those that at least.explore:
altermatrive madels  Maulaus, Woads. and \uttall (1973) present an interesting

study based on a very large n, on thc hierarchial model of Bloom's taxonomy Of

cognitive objectives. They construct a model that knowledge items must be

mastered before you can master comprehension jtems, and one must master comprehen-

~
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sive items before he can master application items on that topic, etc. They

compare a model without a general intelligence factor, and a model with a general

>
-~

IQ factor, and conclude that the latter is needed to fit the data. Basically,
their final model supports the ng;ion of a hieraréhial structure from knowledge
to comprehénsion to application. However, no heirarchy is indicated fo; analysis,
,synthes;s, or evaluaéﬁon. Their study is especially interesting because it
compares several feasible models wifh each other. {Further.statistics and
- further models to be included may be desired by the reade?; this is a very
tough prdblem‘for the editors ana reviewers of studies testing éomplex structures.
We~cén only ask that authors make copies of their data available to those whq’
request it.j |

To provide at least a minimuﬁ‘basis for publication of such studies, it
wo&ld be desirable to know that the experiment at least had enough power So
that it could reject some "outrageOus models.”" In the Madaus et al. (1973)
study, it would be possible to reverse the hierarchy and test a model in thch
evaluati;n; synthesis, and analysis are taken as prerequisites to successful
mastery of knowledge and comprehension items. That is, an '‘outrageous' model .1it
might be one in which the direction of the hierarchy is reversed. If the study
had so litple power it was unable to reject this "outrageous" alternative;

3

there certainly is little basis for taking the model that was retained very

seriously. As we get co;plex modelg, we must recognize that many, many different

models may'adequately fit the same data. We can only hope to impr?ve our

models, much as the physical sciences have done. We must not consider that

every mole that is not rejected is true, or that every model that is rejected

is useless. . i
Rather than continue in this general ;ein, let's t;rn to the class of

models probably used most often in Jlongitudinal studies, covariance type models.

-

The author is somewhat skeptical about interpretations of such models when the

123
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- . .. €
X's differ considerably (Games, 1976; Campbell & Erlebacher, 1973), but feels

N
that a major problem with covariance usage is that many, or even most, users
.

readily adopt a covarlance model w1thout fitst looking at the more general

models that permlt heterogeneous slopes Even modern computer programs (e.g.,

\ BMDPZV) do not provide a test for the homogeneous slopes assumption in covariance.

The following two sections shall illustrate such tests in repeated measure type

designs.
= .
IV. COVARIANCE TYPE MODELS WITH A NESTED FACTOR AND A REPEATED MEASURE,
BUT WITH X VALUES AVAILABLE ONLY ON SUBJECTS, “NOT ON EACH |
SEPARATE ' OBSERVATION

3

In this désign, we have only one set of X's per subject. lt.is possible

to have several variables in X, as in [Rsnw Xl...X in (Aa)] x B, and such

b
designs would be carried out using the steps we will illustrate below, only

iwith several vectors of X. For convenience, we shall use data with a single X
vector. Winer (1971, p. 803) has such a set of data analyzed by covariqpoetﬁﬂﬁ

One of the assumptions of covariance is that the regression coefficients within

groups is the same. Winer does not illustrate how to test this assumption on

-
.

any designs with repeated measures nor does any other source the author knows

of. To illustrate the procedures needed in a more general context, we shall add
a third (As) group of independent subjects to Wlner S data, thus resulting in

an [Rsh w X in (AS)] X B2 design. B is hero used, 1nstead of T, to matoh Winer's

" symbolism.

A. Linear Models for a Test of Heterogeneous Regression .,Slopes

The data are given in Table 1, with various vectors needed for a linear
models solution with homogeneous or heterogeneous slope solutions. The first
three columns are the usual subscripts for the design factors. Column four is
the dependent variable, Y. There are two Y's for each subject (due to the
repeated measure factor B with two levels), here each observation is found in a

-




Y . '
different row, with the corresponding B level indicated in the third column.
The unity vector of all 1's (for estimation of uy) is column five. The control

variable, X, is given in the sixth column. Since there is only one X per

subject, we repeat the X value for each of the two rows of that subject. Thus

“

subject 1 has a 3 punched in bo** £ thf first two rows (X’lI = 3). The X value
is given twice for all subjects. Since X varies oniy over the ‘different subjects, "
it can influence énly the results on the between subject factors, A

and S(A). Columns seven and eight are vectors expressing the three levels of A

in two orthogonal contracts: -2, +1, +1, and 0,.-1, +1.

-~ x A

Similarly column nine expresses the B +1, -1 contrast as a vector. If
there were more than two levels of b, we would need (b-1)- such vectors, each an -
orthogonal contrast. In ;ddition, we need vectors for the subjects, but since'
these are bothhumeruus a;d constant for any of the analyses we shall consider,
"we shall not tlutter up the table with them; they are implied (seé Cohen § *
Cohen, 1975, cﬁapter 10). The final vectors fieeded ar; for the interaction.
When we multiply a main effect contrast vector for A by a main effect contrast
fxggtox for B in a balanced design, we obtain an orthogonal interaction vector,
as in.columns ten or eleven. Thus we have a set of five mutually orthogonal
expé}imental desién vectors.

’ . If we use columns S, 7-11, and the Sugﬁect vectors as predictors in the X
matrix of a multiple regression on Y, we may obtain the usual ANOVA as given in
Table 2.

Since the five expe}imental vectors are mutually orthogonal, we could

obtain a SS with one df for each vector and these would sum to SScells' However,

it is conventional to sum the single df into the usual omnibus SS for a factor

IToxt Provided by ERI
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- Table 1

Data § Vectors for an [RS4 w X in (A)] x B,

o besign (Winer, 1971 p. 802)




Table 1 (cont.)

~a

15.0- .1 10.0 1 -1 -1 -1 +1 10.0  -10.0
2 4 1 . 15.0 1 2.00 ! +1 s ¥ 2.00- -2.00
2 4 2 100 1 2.00 1 -1 -1 -1 +1 2.0 -2.00
3 1 1 110 1 2.00 +1 4 .+l + 2.00  2.00
3 1 < 2 8.00 1  2.00 i) +1 -1 :’"‘-1 -1 2.00 2..00
3 2 1 . 15.0 1 6.00 1 +1 ° +1 +1 +1 6:Q0 _ ' 6.00
3 2 2 130 1 6.00 1 s1 -1 -1 4 600 6.00
3 3 1 19.0 1 9.00 1+l +1 +1 {1 9.00 9.00
3 3 2 15.0 1 9.00 1 +1 ol -1 -1 9.00  9.00
3 4 1 12.0 1 3.00 1 +1 +1 +1 +] 3.00 3.00
3 4 2 7.00 1 3.00 1 41 -1 -1 -1 3.00 3.00
z o 327. 118. 0 0 0 0 o
Means .. 13.625° 4.917
Cov b's 7.4167 45833 -2.125 .375

1.250 ~2.125 0.0
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1 S . e
~ L]

. or interaction, as given in Table 2..'(Wheﬁ apriori reasons spegify a-particﬁlar -
intéraction or main effect vector as of prime intérest, it is advisable to test
'¢£ha} one vector alone.) The'summagy table oé the ANOVA has %gnaréd the presé;ce

of the X Vector.as a ﬁ&gditto;. ) : ;

” - ————— e = == Sy e e =

Insert Table 2 about here

- - ——— = - - - - -

- .., - {: - ~
- - N L b - = -
. o To obtain an analysis of covariance,.we merely include the X vector (column

G) in the predictor variable matrix of mdltiple regression. Howé?er, if we

‘ -

insert this one X vector alone, we are assuning that X acts the same way in all -

three of the independent groups of the A factor. . We are assuming that the -
ik 4
subject means (summed over the B factor) have the same regression from X in all

» three groups. Before making such an assumption, it is wise to test.it,

To test for homogeneity of regression, we add not only column 6, but also

-, r
PY

~ colunns 12 and 13 to the predictor matrix: Given that vector 6 is already in °

the analysis, column 12 is testing Ho: 81 ='(82 + 83)/2 wvhere the B's are-the

Taw scofq regression coékficient§ in the popuiétion for the three respective A
populations, Al, AZ, and A3. Similarly ?plumn 13 is t?sting Ho: B, = Bs- If
-both of these are true, then 81 = 82 = 83; i.e., we have héﬁoggneity of all
three regression slopes. The common procedure is to combine these into a
single famiTywise tegé. This may be carried o&t several ways, hepending upon
the computer prog;ams available. If only general multiple regression programs
are avaiiéble, it may be necessary to punch the data as in Tablell, and obtain ¢
two différent SS (regfessionT‘values.
We can simplify the analysigjby ignoring the within subject variables. -
These are orthogonal to all of the between subject variables; and only the

1

latter are influenced by the between subjects covariate vectors in the present

design. If we use columns 5, 6, 7, 8, 12, and 13 as predictors for the heter-

ERIC - 128 ‘ ' "
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L e N .
\ . . R . ‘ R M . . I ) p “
. .. L. - " . N ’
¥ - Table 2 . ,
e * R , M . . ~ -
,r e -0 ‘ ." AOV of Data of
e . [R§4 Q\X in (AS)] X B2 Example )
“ « ’
. Analysis of Variance Table o
\. . . " -
. . . ©L . [
. Source - DF Sum of Squares Mean Squareb F P
) BIN Subjects =~ ) : . , .
[+ ’c " A : .t ) )
A 2., % 83.250" . 41.625 - 1.21 >.25
N .- . L — , . s . . % 2] *
S(A)=E + 9 #_  308.88 34,319 )
‘Within Subjects i . ’
B o1 "' 108.37 108.37  + 109.896  <.01

a2 2.2500 . 7.1.1250 . 141 >.25

SB(A) =W 9. 8.8750 0.98611 .’

Total (ADJ) 23 51163 . | , )

AR

=<t

Y Means, Y.jk ; ’ By ) ?2 Y.j. ‘ Aj = Y,jl I

1
)

-

A 14.25 10.0 12.125 ‘ 4.25
A ' , 18.75 . 13.75  16.25 " 5.00 '

14.25 10.75 . 12.50 . .. 3.50

Y *15.75 1150 13. 625 : ‘ . .
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o

. ogeneous A slopes model, we obtain SS (regression) = 339.16 with df =.5. Then

' \

) dropping to the homogeneousJA slopes model, we would use columns 5, 6, 7, and 8

°

only and obtdin SS (Regression) = 328.46 with df = 3. Taking the difference

between these two SS we obtain the SS associated with heterogeneous Slopes =

.

339.16 - 328.46,= 10.70. The df is 5 - 3 = 2, 30 MS (hetero slopes) = 5.35. *

This should be tested using the adjusted MSS(A) of the heterogéneous slopes

b

model of 8.8269 as MSE, yielding an F of .606. With an Elless than one, we,

would retain the hypothesi?of homogeneous slopes thus justifying adoption of *¥
the_covariaﬁce model. //
If thq\:fgression slopes were heterogeneous, it would be necessary to

proceed using different regression slopes for each of the.3'1evels of A.

.

£ - -~
Probably the simplest way would be to obtain the subject means of Y.j (averaged

over B) and solve for a separate regression equation for each of the three

? \

groups. The proceduras are illustrated in Cohen and Cohen (1975 p. 314-319).

PR .

If you use the~51mp1e Y b + b X for each group separately, you may insert the
/

value of the grand.mean of the‘X’s, X.., to obtain a predicted value of Y for "
eaéh of tﬂe thrEe'orodﬁtf%hen X is at its mean value. This plus graphs of the
three regres;ign equaklons will provide usefu;rlnformatlon The statistically
sophlstlcated may wi h to use the Johnson -Neyman technlque as Jllustrated in
Walker and Lev (1953, pp. 398-404), or the extensions discussed by Cahen and

Linn (1971). >

B. Q_Linear Model for Covariance -

With'the gbove results, it is possible to proceed by covariance, using
vectors 5;11. n this cas;, we obtain the an&lysis given in Table 3. Note
that only the: between-subjects factors SS's have changed. Anytime we have only
one set.of X's per subject, only the between-subject factors may change. (n
this case, the covariate is successful-in reducing the error term, MSS(A) frog

34.319 in the AOV to 7.958 in the COV. Thus there will be more power in the .
\
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_COV-'than in the AOV. This is the major virtue of COV in a legitimate experiment-
. al design. When S's are Assigned randomly and X is obtained prior to the

- -

tréatments) the X j's—will ditfer only by random fluctuation. Hence the

adjusted Y j_'§ for the A groups will not differ from the original Y j's by
. ! ’ R . » ' . . - :
very much.Y When the groups are not assigned at random, and the X .'s are
€ N L'y [

.substantlally different, then we get into complexltles of interpretation. We

are then working on estimates of the effects of A when substantial dlfferences :

~in X have bgen."paftialled out." olnterpretations are now similar to those of
‘partial correlations. ’ -

» - ———- - —— " - e =

- o - ————— . = = e e u fe e = T

Note that the adjusted means‘of the covariaﬂ;e have changed just slightly-
from the original Y means of ‘Table 3. The B means and SS have not changed at
all, since the covariance here may changé only the Letween subject effects.

The AB interaction SS also is exactly the same, and correspondingly the differen-
ce between tﬂ; two cell means for a given row of A is exactly the same in Table

4 as in Table 3. Only the A main effects have been changed by the covariance
(the cell means reflect thié effect also). The A main means héVe chénged only

a little, because the i.j. diffe? only by small amounts, as wou1d~be expected

if only random sampling produced the differences. The covariance has now
increased the precision so the.main A effect is significant whereas it Qas not

in Table 2. The Tukey WSD'value for the A means is 1.5697 so the A2 mean 1is
found to be significantly larger than eithgr the A1 or A3 means, the latter two

not being significantly different.

There are two different procedures that may be used to solve for the

-,
e

."adjusted A means." Some programs and texts solve for the "adjusted mean' as

the predicted Y value using the observed X ; of that particular group. The

EC | T41




> “Table 3
COV of Data of
[RS4 w X in (A3)] x 82 Example

Analysis of Variance Table

Source DF Sum of Squares Mean Squares F. P

BTN Subjects

Reg. X, 1 266.73
A ' 2 , 61.728 30.864 3.879 <.05
S(A) 8 63.663 7.9579

Within Subjects

s B | 108.38 - 108. 37 ‘ 109.896  <.01
AB 2 2:2500 1.1250 1.141 >.25
SB(A) 9 8.8750 0.9861

*Total (ADJ) 23 511.63
ADJ. Means, Y' . ‘
.jk
V1
By B, ¥ ;. A
. A 14.771 10.521 12.646 4.2%
A, 18.333 13.333 15.833 5,00
Ay 14.146 10.646 T 12.396 3.50
o 15.750 11.500 13.625
1 . 132
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present solution uses the giand mean of the X's (4.9167) for all three A groups,
so the "adjusted means" are the predicted values of Y for that common point;

C. Linear Models Using More Than One X Vector

One of the virtues of the general linear model approach is thrat it readily

facilitates the use of as many covariates as available, while the conventional

procedures- covered in Winer (1971), Kirk (1968), Dayton (1970), or Myers (1972)

become very awkward with more than one covariant. We shall illustrate the
expanded case by adding a second covariate, XZ’ to the data of Table 1. The
new vector, and the vectors generated from it are found in Tabie 4. These

should be considered a continuation of Table 1.

-

-]

The heterogeneous slope% model would now use all vectors from 5 to 16 as
“predictors. The homogeneous slopes model includes vectors 5 to 11, plus the
new vector 14 (XZ). There are now four vectors included in the heterogeneous

A% .

slopes model that are not in the hpmogeneous sfopes model. Thus~§ubpracting
the sS regression from the two models yields the SS (heterogeneous slopes) =
8.4974 with df = 4. This value, converts to MS of 2.1244. The new value of
the adjusted MSS(A) error terms (8.9137) when divided into the above MS yields
an F less than 1, so we retain the hypothesis of homogeneous slopes, and would
pfoceed with the ‘usual covariange.

_i;The covariance table, and adjusted means are contained in Table 5. We see
‘Ehat the sec;nd covariate has further reduced the MS error term, since it
éccounts for much of the subject variaqce (within A). The error term hasbeen
reducgd from 7.96 in the COV with X1 alone, to 5.03 in the analysis with both

Xl and Xz as covariates. lHowever, while the A effect was significant in Table

4, it no longer is significant in Table 5. Partialling out X2 removes more
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Table 4

Additional Vectors Needed With

A Second Covariate, X,

4

Columns




.r‘;f' ’

'3.00

©3.00

6.00
6.00
8.00
8.00
4.00

4.00

¥

Table 4 (cont)
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3.00
3.00
6.00
6.00
8.00
8.00
4.00

4.00

3.00
3.00
6.00
6.00

8.00

8.00

4.00

4.00

. ‘
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- variance from Ss than it does from sss(\) so the test of the A effect is no

longer significant. ‘Those who beheve that covariance always will decrease p '

values are in for disappointments.

Thevpbggrvant reader w%ll have noted that the within-subjects effects SSB and
SSAB’ have geen completely unaffected by all of the above. This is because the

A, Xl’ and X2 vectars are all orthogonal to the within-subject effects. Thus
analysis of covariance, when there is just a single X set of values for each
subject will only influence the between-subjects effects. The within—subject§
effects are here reflected by the B main means, (here always 15.75 and 11.5)

and the differences between the cell means for each A row (here always 4.25,

5.00, and’3.50). These terms stay the same regardless of any between subject

<

covariate effect. This same difference in between-subjects and within-subjects

effects would hold on more complex repeatéd measure designs exactly as it holds
here.
/'/ J
- N -
It would be possible/td add a third covariate vector to the present set.

s

However, to test for homogeneity of rpg?éﬁsion would require a total of three
additional vectors, as in Table 5, aﬁﬁ this would leave zero df for the adjusted
i
érror term, Mss(\). In reality, we should have many more subjects to achieve
£ 1

stability when using many covariatesd, .

i1

i
V. COVARIANCE TYPE MODELS WITH ONE COVARIATE VALUE PER OBSERVATION

(SEVERAL: PER SUBJECT)

A

A

In this situation, we have the entifb\design available in both the X and
A

the Y values. There is one X paired with e?ch Y. This may be represented in

¢

our notational form by placing the w X tery after the last term in the design.
/

71406




Source DF

Btn Subjects

Reg. X; & X, ' 2
A 2
S(A) 7

Within Subjects

B 1
AB : 2
SB(A) ‘ 9
Total (ADJ) 23

- n'|
Adjusted Means, Y .jk

A ' 13.938
A u 22.187

A 11.125

COV with X, and X

Table 5

2

As Covariates

Sum ofiSquar@s

339.373
17.509

35.238

. 108.38
2.2500
8.8750

. 511.63

-
=

9.688
17.187

-

7.625

Mean Squares F
8.7547 1.739
5.0341
108.37 96.229
1.1250
0.98611
Y, A,

. . J

11.813 4.25

19.687 5.00
9.375 3.50
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This is in contrast to the previous case where w X was placed after the subject

’»

term to indicate X's are available only for each subject. Winer (1971, p. 806)

has 'an example design that is an [S3 in (AS)] x By w X. We shall use these -

.

data to illustrate the linear model analyses needed to test for homogeneity of -

~

slopes, and the covariance analysis. ,
rd

v

Winer's data are given in Table 6. The first three columns contain the

subgcfipts for the A, S, and B factors respectively. Column four contains the
% values and column five has the Y's. Unlike the prior exampie, note that X
varies from row to row of the same subject. 1In this design, it is necessary to
obtain a covariate for the between-subjects terms, (here A and S(A) and a
differént covariate for the within-subjects effects, (here B, AB, and SB(A)).
Column six has been created by averaging the two X values for a given subject.
‘Column six will then be used in exactly the same manner the X vector was used

in the previous example, i.e., as the between subjects predictor variable. We

shall label it hefe as SX to indicate it has just one value per subject.

Column Seven is created by subtracting column six from column four. It is

labeled as the WX vector to indicate it is the regression vector‘to be used on
within subjects effects. (The same results may be obtained by using column
four as long as all models include column six prior to column four‘or other
columns derived from column four. The use of column seven is desired onl& to
improve the clarity of the example) .

!

Vectors 8, 10, 12, 14, and 16 are created to r~flect the orthogonal

contrasts in the design. B is in column eight, the A effects are in columns 10
. . . . 5]
and 12, and the AB interaction in columns 14 and 16. Use of a unity vector and-¢

these vectors (plus subject vectors) in a multiple regression will yield the
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Table 6
Linear Model Vectors of Winer's

. [RS3 in (AS)] X B2 w X Data

'Columns
A S B . X Y SX WX v X?B ¢A1 SX¢AL wAz SX¢A2 ¢ABl X¢An1 ¢A82 waBZ )
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
F¥ 1 1 3.00 8.00 3.50 -.5 -1 -3.00 -2 -7.00° 0 0 +2 6.00 0 0
1 1 2 4.00_' 14.0 3.50 +.5 1 4.00 -2 -7.00 0 0 -2 -8.00 0 0"
1 2 1_ 5.0 11.0 7.00 -2 -1 -5.00 -2 4.0 0 0 +2 10.0 0 0
2 1 2 2 9.0 18.0 7.00 +2  +1  9.00 -2 -14.0 0 0 -2 -18.0 0 0
- y 3 1 11.0° 16.0 12.5 -1.5 -1 ~-11.0 -2 -25.0 0 0 +2 22.0 0 0
Ts 1 3 2 14.0 22.0 12.5 +1.5 +1 " 14.0 -2 -25.0 0 0 2 -28.0 0 0
5 1 1 2.00 6.00 1.50 +.5 -1 -2.00 1 1.50 -1 ~1.50 S1 -2.00 +1 2.00
> 1 2 1.00 8.00 1.50 -.5 +1  1.00 1 1.50 -1 -1.50 #1  1.00 -1, -i.00
 , 2 1 8.00 12.0 85 -.5 -1 -8.00 1 8.50 -1 -8.50 -1  -8.00 +1  B.00
2 2 2 9.00 14.0 8.50 +.5 +1 9.00 -1 §.50 =1 -8.50 +1 9.00 -1 -9.00
J 2 3 1 10.0 9.00 9.50 +.5 -1 -10.0 1 9.50 -1 =-9.50 0 -100 41 10.0

2 3 2 9.00 10.0 9.50 -.5 +1 9.00 1 9.50 -1 -9.50 +] 9.00, -1 -9.00
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Table 6 (cont.)
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‘AOV summary table reported.as Table 10.6.7°(ii) in Winer (1971, p. 07).

-

“ -

‘A, Tests for Heterogeneous Slopes

Veﬁyprs 6 and 7 would be added as predictors to yield a COV sulmary table.
¢ “~However, priof to doing this,,it is desirable to test for homogeneity of slopes.

L) %] F) ‘e

-'Thgre are two types of regression slopes present in such a desigr, and they

must be tested separately since they will have different error terms. Hetero- ,

-~

geneity of between-subjects regreﬁfiPns (in the three A groups) is tgsted usin,

.

the adjustec “S(A) " Heterogeneity of slopes on the within subjects factors is

: tested using adjusted MSSB(A)' To provide a test of heterogeneous slopes on

*

the A groupé, multiply the SX vector by the A contrasts, yielding columns 11
and 13. To provide for a test of heterogeneous slopes on the within subjects
fac:grgldwe multiply column seven by the B contrast and the AB contrast vectors.
This yields columtis 9, 15, and 17. Using a unity vector, and vectors 6 to 17

of Table 6 in one pr more computer runs (depending on the programs available)

in a process similar to that illastrated in the prior example yieldé the summary

table of Table 7. N

—

. I SS—

The SS in the SX and WX rows are the sum-of squares of regression associat- -

ed with columns six and seven respectively. (These would, not be included in
some program outputs.) They clearly indicate the effectiveness of both covar-
' s

jants. The main interest in this model is whether we may assumé.homogeneity of

slopes of the colump seven vector over the several within subjects:effects.
The between sub;ect; homogeneity is tested by MSHet A/MSS(A) = 2.528.. This

value has a probability greater than .20, which leadg to a retentigq of homo-

-

geneous slopes of the SX vector on the three A'groups.




Table 7

Summary Table of the Completely Heterogeneous Slopes

@

Model Using Vectors 6 to 17 of Table 6
&ource . DF " Sum of Squares Mean Squares

BTN §ubjects\\

\

A\
\\ v
A \ | 27.129

SX reg.

Het A ‘ . 13.924
(cols. 11 & 13)

S(A) 5.5072

Within Subjects

WX reg. , 62.745 A

vy

B 29.418 29.418

Het B 1.1179 1.1179
{(col. 9)

AB 1.9228 0.96142

Het AB 1.8317 0.91584
(cols. 16 & 17)

Pooled 9, 16 2.9496 0.9832
& 17 .

’

SB(A) 0.46492 0.23246

Total (ADJ) 374.50

-

126.551

4.804

4.136

3.940

4.230




>

. t
There are two different possible heterogeneous slopes tests for the within

subject véctor, WX. Using column nine we nay test for heterogeneous slopes

over the B main effect, while using columms 16 and 17 we may test for hetero-

geneoys slopes over the AB interaction contrasts. Unless there is an apriori

reason for believing that these would diffex, these would be combined into a
single test of heterogeneous slopes for the WX vector over all within subject
effects. This is shown in Table 7 in the row with the pooled SS from vectors

9, 16, and 17. This test has a probability greater than .10 (as do the individ-

ual -zests) so again the null hypothesis of homogeneity of slopes is retained.

If the pooled test leads to the conclusion of heterogenity, it would be approp-
riate to test for homogeneity on B, and on AB separatély.

B. Covariaﬁce Models

In the absence of heterogeneity, the covariance (homogeneous slopes) model
is appropriate. This 1is given in Table 8. The table differs Qlightly from
Winer's (1971, p..807, iii) because Winer chose to use the regression coefficient
for the WX vector also as the regression coefficient for the SX vector (they

_were quite close). The present solution uses the two vectors separately.
Aggiﬁ the grand mean Of the X's (7.5) is used to find the "adjusted means' a
the predicted valﬁeé of Y. In this case, the A main ﬁeans,-the B main means,-
and the cell means all will have changed somewhat due eo the “a&justment” by

covariance, since this included regression by both a between-subjects vector

and a within-subjects vector.

It is possible in some examples that only one of these two covariate
vectors (column six and column seven) would have a signi ficant regression, soO

you may wish to go to a simpler model with only one of the two. Since the




Table 8
Summary Table of the Covariance Model Using Vectors

6-8, 10, 12, & 14 of Table 6 and the Adjusted Means

:
\

Source " DF Sum of Squares Mean Squares F P

BTN Subjects

SX reg. 1 178. 37
A 2 54.259 27.129 3.057 >.10
S (A) 5 44.370 8.8741

_ Within Subjects

WX reg. 1 62.745

B 1 29.418 29.418 49.063  <.001
. | AB 2 2.3393 1.1696 ' 1.9506  >.20

SB (A) 5 12.9980 0.59960

Total (ADJ) 17 374.50

Adjusted Means, Y' .

jk.
B, B, .
A 12.516 16.595 14.556
‘ A, 10.526 \ 12.474 11.500
Ay 11.893 | 14.996 " 1s.44e
o 11.645 14.688 . - 13.166
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previous section illustrated the use of only the between subject vector, we

shall illustrate an example where only the WX vector is retained, and the SX
vector is dropped. Table 9 contains this summqéy table, and the adjusted means
corresponding to it. The between subjects SS's are changed by dropping the SX
vector, but we see that this has no effect on the within subjects $S's since
the SX vector is orthogonal to z11 within subjects contrasts. For the same
reason, the Btn-subjects SS's are the same as in the AOV table, and the main A
means (a Btn-subjects effect) are the same as in the ANOVA analysis ignoring
column seven. With the WX vector, as a lone covariate, the SS's within-
suﬁjects and the B ﬁain means. are identical to what they were in the complete
covariance analysis of Table 8. The cell means have been "adjusted" with
respect to the WX covariate also. The general point is that in such an analysis
of covariance you are always working with two orthogonal sets of effects. The
between-subjects effects require one covariate, column six, ;nd will be changed
by it, but the between-subjects effects are crthogonal to the within-subjects
effects, and the within-subjects covariate, column seven. Correspondingly, the
within-subject effects are orthogonal to the between-subjects effects, and
column six, the between-subjects covariate. Neither set is influenced by the
decisions made on the other set.

This kinl of covariance can be conceptualized as doing two different
covariate analyses, one for the between-subjects effects, and one for the
within-subjects effects. In each case, we should start by testing for hetero-
geneity of slopes, and procesd with the coveriance only if the condition of
homogeneous slopes is feasible. It is perfectly possible to have.heterogeneous
slopes on the between-subjects portion, and homogeneous slopes on the within-

subjects effects; or vice-versa.




VI. CONCLUSIONS AND SUMMARY

When working with organismic variables, onc must face the fact thaf clear
interpretative conclusions are not as easy to come by as when working with
manipulative variables. The investigator must recognize that the organismic
variables he has used are correlated with many other organismic variéhles, and
fé.is impossible to be 100% confident that it is "rigidity" rather than some
other variable correlated with rigidity that has produced the observed differ-
encesi The limitations of cross sectional studies can be viewed as the problem
that the observed organismicAvariable, age, is confounded with other variables
of educational differences, historical differences, environmental differences,
etc., of cohorts. This same prcblem is present, in a different and lesser
extent, when an organismic variable, X, 1is dgéd in a longitudinal study.

Although covariance can be used as one method to try to eliminate some of
the possible alternative interpretations, it is oiten used incautiously without
testing éven the basié assumption of homogeneous regression slopes. Least
squares an{lyses are possible for either heterogeneous or homogeneous slopes
models, with or without repeated measures. Since longitudinal studies require

at least one repeated measure, such analyses have been illustrated in the

present article. Unfortunately, even if all statistical assumptions have been

!
met, it is still a matter of con51dq¢ab1e controversy whether clear interpret-

ations after a covariunce analysis are justified if the X's are considerably
different. Evans and Anastasio (1968), Ferguson (1966) , and McNemar (1969) say
yes, but Cronbach and Furby (1970) , Campbell and Erlebacher (1970) and Games
(1976) say no. The author thus recommends caution in such interpretations, and

a willingness to look at the data from alternative interpretations.




Table 9
Analysis of Covarianc: with Only The
WX Vector as a Covariate
~(f/ Source " DF Sum of Squares M.an Squares F P
BTN Subjects
A » 2 100.0C ) so.ooo' 1.695 >.20

. S(A) 6 177.00 29.500

Within Subjects

WX reg. 1 62.745
B 1 29.418 29.418 49.063 <.001 |
AB 2 2.3393 1.1696 1.951 >.20
SB (A) 5 2.9980 0.59960
Total (ADJ) 17 374.50
- ,
Adjusted Means, ?'.jk
By B> LA
12.794 16.873 14.833
8.859 10.808 9.833
13.282 16.385 14.833
\\
) o 11.645 14.688 13.166
R ]
1
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Most longitudinal studies are investigations, as distinguished from
>/éxperiments (Games & Klare, p. 442). We must recognize we are mere observers

// in situations in which nature pulls a thousand strings. The strings we are

4

watching may not be the crucial ones. Only by careful observation over many
studies and mahy situations are the crucial strings likely to be identified,

and only after they are ideatified are ve likeiy to learn the crucial cues that

indicate a desired response shortly will follow. The longitudinal investigator
needs considerable patience, not only for the collection of his data, but for

the processes to yield clear interpretatiions.

e
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. ABSTRACT

»

” - - - < - - - el kS
Detecting and describing change over time is a widely encountered method-

ological problem which, given certain design and measurement restrictions, can .

be effectively solved by analysis of variaﬁce and i&s multivariate extensions. °
: Polynomial trend analysis is used to investigate the sh%pe~of the curve descriéing
time-dependency of_a population mean and differences in shapelbeiheen populations,
when data are cross secpional in nature. Fo; longitudinal. data; analysis of.
pépulation time-point means or differendes in trend between populations can be
carried out by multivariate repeated measures analysis or, in favorable'cases,
by mixed—model'univariate analysis of variance. Special data characteristics
are discussed which lead to very powerful applications of the general modeis.

Examples are presented and discussed in which the models are applied to physical

growth data.




UNIVARIATE AND MULTIVARIATE ANALYSIS OF VAkIANCE
OF TIME-STRUCTURED DATA

- -
.

) Dé%a‘a}e time structured whsq the observations can be identified with a
number of pre—assigped p&ints on the time continuum. In behavioral studies, we
have éhe option~of introducing time structure on more than one level: to study
secular change™in pépulatipﬁs, we locate the oBsErvations in historical time
(yeays, de&ades, centuries); to describe the growth andﬁﬁeve;opment of individual

subjects within ?opulations; we typically observe the subject at fixed intervals

days, months, years) on a time scale originating at his conception or birth;
4 Yy g g P

~ .

to characterize time-dependent response processes within subjects, we can
13

» . .

record the subject's responses during intérvals beginning af/various elapsed

times (seconds, minutes,- hours) atter:the onset of an experimentally imposed

.
.

" condition or stirulus. '
As a general technique for the statistical treatment of time-structured
data, analysis of variance is virtually umique in its capacity to detect and
summarize Systematic time-dependent variation and covariation in observations
from all of these levels, ceparately or joinély. In one unified analysis, -it
can encompass the possibly nultiple outcomes of an experiment represented at
several points in historical time, based on responses from subjects at differént
stages of geveIOpnent,_and repeated within each subject on a number of occasio
or trials. Given this structure, we could with the aid df,analysis of variance
and its multivariate extensions, extract the shépe of the average response
curve as a function of trial times, test for differences in shape JLe to the
;onditions imposed by tﬁe experinenter, to the stage cf dcvelopment of the
subjects, or to secular change, and investigate all possible interactions of

these factors.

.
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Even in such complex applications the analysis of variance approach is
Y 19Y

-

surprisingly modest in its demands on mental effort to formulate the problem
and on computing resources to perform the calculations. This conceptual and
comquatioﬁal econonmy i§ not, however, purchased without a certain price.
Becausg analysis of variance is part of linear least squares (Gauss-Markov)

estimation, it requires simplifying limitations and assumptions for a straight-

- rd
forward and exact analysis. To benefit from the advantages, we have to be

- .

.
. Cognizant of the limitations. Ne must not attempt to extend this general - .

purpose technique into realms where more specialized mq}hods (often involving
non-linear estimation) are required. Obviously, we nmust begin our investigation
with the plan of the data analysis and its restrictions clearly in view. Some
of the points to be considered at the planning stage are discussed in the next

section.

[4

v .

I. ASSUMPTIONS AND LIMITATIONS

. -For time-s:ructured data to be accessible to analysis of variance, not
M . ™

-+ only must each obserivation carry a time identification, but the method of

measuring ‘response, the sanpling plan, the arrangement of the time points, the

o]

assumed form of tine-dependency, and the nature of the error distribution must

.

be restricted in certain ways.

A, Interval 'lzasurcnent

o lescribe svstematic trend over time,

ct

If the obj.: * of the anal¥sis is

it i's mandatory that th2 rosponse vari

v

hiecs be measured on a2 scale whose units

are commensurate throu ~~ur the rolevant range of variation--i.e., the mea§h{e- P
ment nust be o 1 o-c:ljed "interval” s lle with units everywhere of constant

.
)

size in some woll-leins? sense. Orherwise, the shape of the trend line is
e
arbitrary, stra:-ht b s cannot > lis=inelistr! from curves, and parallel
] - * N

lines at different ele 2t =~ - oqr rons-rarailed. bFven vhen the noeasures

dare kpown o b e ,LJ N ..o b or Domts suen s yrae, centineter,

ERIC Iy - :

Aruitoxt provided by Eic:




seconds), it may e desirable to transform them to equality on ancther scale in

4

order to see cleaciy the essential form of the trend line. For examplg, variables

measuring exponential growth may be better analyzed in log units rather than

¥

the originaf units.
(‘ \
'the problem of commensurate units can be especially severe when the measures

arise from behavioral responses. Bock and.Jones (1968, Chapter 1) discuss the
issue of defining measurement scales for behavioral data that have some of the

w

properties of, for example, the c.g.s. System in physical measurement. They

<

point out tha£ physical units are intrinsically defined not by the method bf ’
which the measurements are taken, but by their role in the mathematicai ﬁodels
that connect one observable phenomenon with another. Thus, the units of length
take on meaning when the formula for computing area can be used at every point |
on the scale of measurement, and that area can bﬁ used tb translate preSSuie

into force in terms of units of mass, and so on. Specifically, it is the
invariance of a great variety of mathematical models with respect to 1ocation

on the measurement scale that gives meaning, utility and generality to systems

3

such as c.g.s. . .

With admittedly weak .theoretical underpinning, we can perhaps accept as

» 3

X
having units any behavioral measurement scale that has a validated linear
! N -

re atiornship with another variable of interest. By this criterion we might be
willing to accept the Binet 1.Q. scale as interval measurement on_the grounds

that in the interval from five to fifteen years it exhibits a linear relatiénspip

- .

with many other physiological and psychological indices of maturation. To the
) .
extrnt that Binet 1.Q. dirtccences translate proportionately into increases in

these measurcs, the assumption that the [.Q. scale has well defined units is

3

not entirely gratuitous.

A

Aut stronger definitions of hehavioral scales are possible. Bock and

.

r L}
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Jones (1968) consider Thurstone s psycholog1ca1 scaling, to.be 1nterva1 measure-
b

ment defined by related reQPonse models. They present a number of models for

- T »

judgment and. choice that are connected by a common scale-and, using units on
this scale, perform analyses of variance of factorial models for sensation and
preference. In much the same sense; modern psychometric methogds of latent |

.

trait measurement produce scales with commensurate u?itg by defining a model
relating differences on the‘scale to item-response probabilities (Bock, 19725
Lord, 1974; Rasch, 1960{ Samejima, 1969 ). These scales appear also to yield A
linear relationships with other variables (An&ersen, 1976; Bock, J976;\Béck and
Thrash, 1976). Because much of research on human behavior at the individual
level depends on objective test instruments, it is of considerable interest
that latent trait theory can open this’domé&n to statistical methods, such as

3

analysis of variance, which assume interval measuxrement.

&

'B. Group Comparisons

If a straightforward application of analysis of variance is desired, only
estimatién or comparison of group means should be considered. The questions
the investigator can ask of the data are limited to those concerning the shape
of the curve of ?opulation means as a function of time, or differences between

the means Oof two or more populations as a function of time. Whether or not

.

these are interesting questions depends cr1t1ca11y upon the practical meaning-

- -

fulness of group averages. It has long been recognized that such averages are

»

ot c0ﬂp1etel» informative about individual development. A,uell—kndwn example
is the unsatisfactory,character1zat10n of the adolescent growth spurt in plots

-

of mean stature versus age.  The spurt is apparent in such data, but few if any

.

subjects foliow the mean curve in their own growth. ‘The group mean curve tends
. A

to sFow a more ggﬁi;ﬁ-Spurt'becausc of the averaging of individual growth

P

/ - ~ -‘ » . - - -. -
spurts occurring at different times. But even this geperalization 1s not

entirely true because there arg some subjects, especially among the boys, who

156 ’
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show a more gentle and protracted slope than is seen in the average data.

The positive thing that can be said of average data is that, if there is

some weak but consistent trend in the population, the average growth curve may

-

detect it whereas the examination of individual growth curves separately may

not. An example of this phenomenoﬁ presented in Bock (1976) suggests that,

»

without resort to advanced treatment of individual growth curves including‘non—
; linear models and Bayes estimation (see Bock, 1976), the-investigator will be
limited to charactcrization and comparison treads of group averages.

C. Fixed Time Points

"Analysis of Qariance can be applied conveniently to time-dependent data
only wheﬁ the time points are'fixed in.advancg and are moderate in number. In
studies where chronologiéal age is thé time variable, this:requirement can be
met by méaéuring a sugject at pre-selected ages. In growth studies such as the
Fels or Berkeley studies, for example, the children were ﬁeasured on or near ‘

)
their birth dates or, at younger ages, at their year and half-year anniversaries.
If this degree of pre—planning is not possible, the subjegts-will have a more
or less rgndom distribution of age at the time of measurement. For purposes of
the analysis of variance, the data must then be grouped into age ranges and the
mean or median age used to represent the group. In educational work, similar
use of grade-in-sdhool as a time point may be defended on grounds that the
relevant dimension for growth of agﬁievemeng is years of schooling rather than
chronological age. Although not a mandatory requirement, it is also convenient

for the time points to be evenly spaced. As we shall see, the analysis of

variance of trend is then more easily catrried out.

D. Short-term Moderate Change -
For a number of reasons, analysis of variance techniques may become difficult
to apply when there _are many time points encompassing substantial change in the

variables of interest. This is ot simply @ matter of the computational labor

ERIC S 27169
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in analyzing designs. with many time points, but one of increasing difficulty 1n

~

justifying the assumptions of conventional trend analysis. As discussed in the '
next section, we typically use a low-degree polynomial to represent group mean
curves and differences in mean curves. This is quite satisfactory for short-

run change, but may not be suitabl¢ over a wider range. The curve for average

growth in stature, for etample has no very satisfactory pglynomial represent—

™ .

ation over the entire growth cycle. 'Only non-linear models such as the two-

. domponent 1og15t1c model of Bock, et al. (1973), or the three-component model

of Bock and Thissen (1976), seem capable of describing growth in stature from

near blrth to maturlty. Fitting and testing of these models requires non-

linear estimation and cannot be appreached by the elementary methods of univariate
. . . . . /

or multivariate analysis of variance discussed here. However, growth over a

more limited range can be so described, as will be apparent in the examples in

Sections III anq’IV. . _ T

E. Freedom From Outllers

Like all least-squares techniques, analysis of variance is adversely

h “

-

affected by a few aberrant observations far removed from the main body of the
data. In behavioral and biological measurement, guch aberrant values are
almost alwa&s the result of clerical errors, or of ;ubjects'in the sample who
do not actually belong to the' populations sampled. Fortunately, outliers are
easy to detect when pre-screening the data and can be removed from the sample
before the analysis bqgins.-

To -justify linear- least-square estimation in terms of unbiasedness and
_minimum variance, it is only necessary to assume that the error distribution
A . ) .
has finite mean-and fin:te constant Variance throughout the range of easurement.
(The presence of outliers iﬂdicates that the a:suﬁption of ﬁomogeneous variance

has been violated.) To justify the nominal error rates of the significance

tests associated with analysis of variance, it is necessary to add the assumption
J ) 158
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of normally distributed error or large-sample assumptions. Because many of the
measures used in behavioral studies are essentially additive combinations of
many more or less independent sources of envi} ;mental, biological and phy-
siological Jariation, the assumption that a normal error distribution, after
systepatic effects have been absorbed into the model, is broadly jusfigzed.

! The only notable exceptions are response-time measures, which tend to have a
log-normal rather than a normal distribution. In many applications, the logarithms

- ¢ - - - -
of response times are satisfactory quantities for analysis of variance (see

Thissen, 1976).

- IT. TYPES OF TIME-STRUCTURED DATA

. Insofar as it affects the method of analysié, the main distinction to be

made is between cross-sectional and longitudinal data.

A. Cross-sectional Datq .

In cross-sectional data; different subjects are sampled at each time point
l and all measures in the sample are assémed to be statistically independent. As
a result, in the crossed design of (experimental or sampling) groups x time
poii.s, the observations are independent both within and between cells. They
may therefore be analyzed in a conventional two-way ov multi-way analysis of
variance with but one feature particularly related to time dependence--that in
~ thé partition of the sum of squares for the time way—pf-classification and its
, 1interactions, single-degree-of-freedom terms arc isolated for veach component of
trend. . .
If proportionate numbers of subjects in each group appear in cach time-

point class, a straightforwurd orthogonal analysis of variance applies. If the

snunbers are disproportionate, a non-orthogonal analysis will be necessary and

will require the investigator to fix the order of the partition of sum of
squares by choosing an order of priority anong hypotheses abovt various effe:ts

in the model. This issue will be clarified in the discussion of analysis of

-

159

N |




variance of cross-sectijnal data illustrated by an example from anthropology,

presented in Section III.

B. Longitudinal Data
Time-structured data are longitudinal when each subject is measured on a
scale commensurate at each time point. Note that, while a longitudinal study

resulting in this type of data is pros ective, not all prospegtive studies are
g 34! prospective prospes

longitudinal or even time-structured. A study that obtains one set of measures’
at an earlier time, and a second quaiisftively distinct set at some later_time,
is prospective and may enable prediction of later characteristics from earlier.
But it 1s not longit;dinal or time-structured, does not describe change or
growth over some perind of time, and cannot be subjected to analysis of variance.
Longitudinal studies are both prospective and‘time—structured, enable both
prediction and description of growth and change:\and are amenable to analysié

\

of variance. \
The analysis of variance of longitudinal data is more complex and interesting
than that of cross-sectional data. In the psychological\and bghavioral literature,
the statistical treatment of longitudinal data 1s often culled ''rcpeated measures
analysis" (Bock, 1975, Chapter 7; Winer, 1971). In the biometric and statistical
literature, this tOpfc is usually referred to as "analysis of gréwth“ or of
"growth'curves”‘(Khatri, 1966; Lee, 1974; Pottoff & Roy, 1964). Basically,
three forms of repeated measures analysis have been proposed:

1) Mixed-model univariate analysis of variance (Lindquist, 1953; Winer,
1971).

‘ 4
2) Unwcighted (exact) multivariate analysis of variance (Bock, 1963).

3)  Weighted (large-sanple) multivariate analysis of variance (Khatri,
1966; Pottoft & Roy, 1954).

The choice-anony these nethods depen&s upon the nature of the time-dependency
and on the structure of the varLincee-coviriance matrix of the rcsiduals from the
fitted trend line. [Iun nost cases, thi . choice can be made only after some °

N
160
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preliminary inspection of the data. How this inspection is carried out and the
subsequent analysis performed is discussed and illustrated in Section IV.

C. Other Characteristics of Longitudinal Data

A sometimes troublesome limitation on the frultivariate analysis of long-

itudinal data is that the data for each subjeft must be complete. Although

recent work on the problem of mul e incomplete data appears promising

(Kleinbaum, 1973; Rubin, 1974; Trawinski § gmann, 1964), the practical

implementation of these developments is still several years off.

“In the meantime, the investigator faced with missing data has the option
of (1) omitti#é suvjects with incomplete data records (if this makes the'experi-
mental or samplinglgssign unbalanced, a non-orthogonal multivariate analysis of-

variance will be required), (2) preceeding under mixed-model assumptions with a

£

. . R . N . ‘ .
non-orthogonal dnlvarlpsn analysis of variance (because subjects must be included
£ o

L
as a way-of-classification in this analysis, the computations will be extremely

heavy if the nuaber of subjects is large), (3) using some method of interpolating
!
data points if relatively few records arc incomplete. Considering, the problems

that may attend any of these options, the investigator is better advised to

expend his enerzy on collecting complete data initially than to attempt a

!

l

As a prefice to the discussion of statistical methods, it should perhaps

patch-up later.

be mentioned thit, except in the simplest cases, the computations will require
the use of a fairly largje-scale coaputer program. df the several multivariate
analysis of variance prosrams available, the MULTIVARIANCE prog¥am of Jeremy
Finn (1974) 1s th< rost conv-nient for repeated measures analysis, and Version
VI, ‘ch is in provross, greatly extends this facility (Finn, 1976). (The
exar in the present paper were prepared with Version V.) A discussion of

the use ¢f the MULTIVWRINNCD progran in the anilysis of time-structured data

appearts in binoand Mattson (19Tt
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- ITI. ANALYSIS QE_CROSS-SECTIONAL DATA

In studies of human growth and development, limited time and resources may
fZave the investigator no option except to collect cross-sectional data. A good
example are the measures of height and weight, collected by Haller, et al.

(1967) and~m6re recently by Jamison (1977), among children indigenous to tﬁe
Alaskan Nofth Siope. Although purely cross-sectional, these data are quite
adequate to check un anecdotal reports that these children grow more slowly

than children living in the south 48 states. An analysis of some of Jamison's
results in comparison with a control group of children the same age is presented

in the computing example at the end of this section.

A. Form gf_Cross-sectional Data

Cross-sectional data may be represented in the form of a so-called "crossed"

analysis of variance design (groups-x occasions) shown in Table 1. Note that

the necessary limitation to time points identjcal for all groups, is represented

>

- - - e e e = =

in Table 1 by the recurring value of Xy, - Note also that the numbers Njk of
independently sampled subjects in the group X occasion subclasses are not

necessarily assumed equal--indeed, 2 non-orthogonal anal¥sis of these data is

-

)

still possible even when some of the xjk are zero. .

The sample st.tistics requir~d for least-squares analysis this form of

X =
ik
data are the subclass means c .= = oov. . [N,
Y5 L 'le/ ik
the subclass nunbers Nj‘ and the pooled within-subclass variance estimate,
n
- N -
ik Yl

‘2 = - - N s v . % v .
0?‘-' ) [jfl S | (71)', Totiugn ”/’(“'n)’, s

-




TABLE 1

Forii of Time-Structured Cross-sectional Data

Groups Time- Observés}ons
j points yijk
X (i=1,2,...,Nik)
X1 Yiil
) Yi12
1 .
Xn yilm
X1 Yi21
: X3 Yi22
2
Xn yi2m
X Yinl
) Yin2
n

inm




n m
where N = L L N . -
j=1 k=1 jk : .

The first objective of the data analysis is to choose the linear model
that describgs systematic cffects in the observations. The criterion for this
choice is one of plausibility and parsimony--namely, that the ;odel should
compri;e the least number of effects that accord witﬁ theory concern}ng the
phenomenon in question and with acceptable fit of tﬁe modzl as judged by a

formal goodness-of-fit test.

v
-~

. The second objective is, given the data, to estimate the effects and their

standard erroxs, to compute from thé'estimatgd effects the expected trend lines

for the groups, and to show the exﬁected dispersion of observations about the

trend line, possibly in the form of a tolerance interval for a new observation .
at given time points. The first step in reaching either of these objectives is
to formulate a class of models for time trend. ) .

B. The Polynomial Model For Time Trend

If some interval-measured time-dependent variable y has been observed on

N, subjects at successive distinct fixed time points x,, k=1, 2;=..,m, and m

-~

is not too large nor the change in y discontinuous in this interval, a suitable

statistical model for time trend is the q<m degrce polynomial with additive
2 q o
Ya= Bo + By X+ Box .4 qu + e . (T11. 1),

error,

The random error, €, is assumed to be independently distributed with mean
2 . : “
0 and unknown variance, ¢ . The B's are in general unknown, but may be estimated
Ny .
from the means of the observations at each- time point, Y X = %. 'El y'k ,
. N, 1% 1
J

by the so-called Gaus<-Markov (leua t-squares)estimator,

4

§ = (X'DX}-! Xtby. , for jxruxl#o0 (I1l. 2)
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where  g' = (B ,81,32,...,8q] ,
)_';' = [Y'l’ )’.-2:---: .V-m} >
D = diag [N, Noueeo Nl
- 2 a l
and ll S R W
i
i 2 q
!1 X X, “ae X5
. (I11.3)
i
> .
ll X x” YQ
] m m

The mx(q+1) matrix X contains the leading q+1 rows of the Vandermende
matrix of order ﬁ. Since X 1s of rank q+1 when all x are distinct (Browne, ¥
1958), |X'DX| # O in general. The expected value of this (unbiased, minimum-
variance linear) estimator is B and its sanpling variance-covariance matrix is

2 -1 ~
o (X'DX) T (ses M3MBR, Sec. d4.1). )

Although satisfactory in most other respects, this method of fitting the
polyn mial model by estimating the 8's has the disadvantage of requiring the
deyree q to be specified in advance. In general, all clements of (X‘I)X)_1 and
of 3 change when colutns are added to or deleted from X. Yet in many cases the
investloator 1s uncertain about the leasi-degree that will give a good 5cc6unt
of the data anl will wish to inspect £he goodness-of-fit of several successively
lower-degree rodels hetore deciding.

ic facil.tate this fori. of stepwise testing of polynomial models and to

nake the calculations easrer, Fisher (1321} introduced a method of reparamet -

erro.ny {(IT1.1. o a v-called orthovsnal pelvnomial model. The reparameter-
5 g [l R

t-ation 1s equi.a. nt to applyiny fo v ioe Gram-Schmidt orthogonalization with

| =) N - N - “- W
. -

Poeanee, £ 10 the et casr.< DL codnoan £r mAce anlpmny nf ¥ and
o m v f E
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working to the right’ (see MSMBR, Sec. 2.2.4). The result is to dccompoée X

into an mX(g+1) orthogonal matrix P and an upper triangular matrix S'. This
is, v X :
X = PS', (I111.4)

where P'DP = I and X'DX = SS'. \

Then (III.1) may be expressed in terms of the'brthogonal coefficients

vy = $'8, which are estimated from the group means by

TII1.5)

The elements of the {g+l)x 1 vector u have expected value S'8; their

variance-covariance matrix is the (grl) x (g+l) identity matrix--that is, they -

have unit variance and are uncorrelated. The convenience of this parameterization

is due to the implied-statistical inlependence of the orthaqgonal estimates$ when

the observations are normally distributed and to the ‘fact that S' is upper

trianguiar with strictly nositive diagonal elements. The former properiy

implies that, vn the hypothesis that the corresponding orthogonal coefficient

»

is null, the square of each element in u is distributed independently as -a
central chi-square on onc degree of freedom. The latter impli¢és that accepting

+he null hypothesis for the last orthoronal coefficients is equivalent to
i 2 > .

accepting q, = a-9, for the degrée of the polynomial model for trend. Togéther,

-

they justify ths aVeraging of sanares of the last q, elements of u for use as

ator ncan-square of an F statistic testing goodness-of-fit of the

degree a, polynomial vs. the dezree q pulynomial. The denominator is either v
the within-group mean-square or the residual mean-square for the degree q model

el\‘-nv:‘npl e smamling tha racidnal hatiaoanoaronn nm of <anares (')nd the Wi‘thi_n'
L ad oo - s - 2 L
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group sum of squares. The calculations invelved in this test are summarized in .

Table 2. If on the basis of this test, the degree q, model .

B 1o\l
E} = (Sll) iy (III.?)

where S.. is the leading {q,*1)x{q,+}) submatrix cf 5§, and v, contains the

Co1l
eading q+1 elements of u. The variance-covariance matrix of this estimator is
- — .

) ts

—

.1 : 2 : : :
The error variance, © 15 estimated by the denomlnator mean

v

1 cue ’ . .

square in the goodness-of-fit statistic. roe

2
o (S

-

But it is not aiways necessary 10 compute the restimated 8- coefficients.
\ - .

~
'

In most cases the trend line can be plotted from the fitted values «t the \\

\

assigned time points, and these may b computed from the orthogonal estimates

. >

by . .

s . y - P ) . (TLIr. 7y

N o - - . . I . .- - -
wheve Pl contains the leating ¢, ~i colurns of v, Similarly, the 27 tolerance
ifiterval for 1 mew chservation at the point x. 1< )

3
whorc'[P ] .13 the/i-th row of Pllﬁrltrcn as a colnrn’ (See MSMRR | Sec 41173
) K ¢

.
)

R, The Fisher-Tchebycheff Qfghgiggj}_?y}ypgmjgln

The true nertt of Fisher's methol of fotting the polynem:ot moadal For

iv most ovident when the “iee priats are soaced eanally (e whoen

s

I
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TABLE 2

- Cross-sectional Data: Analysis of Variance for Testing the
Fit of a q, Degree Polynomial, Given that the q Degrce -
Model has Been Found to Fit. The Regression Sums
~of Squares are Computed From the Orthogonal
- ——-EStimates u =P' Dy. |

/ .

”
: ’\ Source of Degrees of Sums of
Variation \)‘/r'e/edom Squares F-statistic*
' 2
Constant ) 1 ssm = u
-—__—:—0
Linear 1 u
Quadratic 1
\
-ic 1 ' u’ .
q;-% a
d del . Ssr L2 '
ree mode ST, = L. u
q, degree 9 S-S W)
4 2 ssr,/a
q degree model, q, = 9-9, SST, = L u. 22
. given q degree - ' x1=ql+l (sse+ssy)/ (N-y-1}
Between-groups m-q sse = ssg-ssrl-%srz-ssm / !
residual , - .
Ta :
Group means m ssg = L N YT -
K 'k
k=1 . -
+  Within groups N-m ‘ SSW = Sst-ssg )
< : - -
* il N 5 .
Total Vo= oL ‘\"L sst o= L% Y;} \
| N b=l =t )

f -
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xj+1 -xj is constit tor j=1,2,...,m-1). For'then,'P is invariant with respect

to the ~igin and\gp&ts of the time ufeasure and is, in fact, precisely the
. t ¢
tabled ¥Fisher-TchebyshefS orthoyonal polymomial. Provided the values of x
! N
belony to the:rationa! nunmbers, -the eléments of I are rational and may be given
- .t v

in integer form with respect to a largest common denominator, as may the square
of the normali:ing constants for the coluxns of P. As a result, the orthogonal

estimates can, for given data, be €onputed &p to the limit of the tables without

v
ao

any rovnding error whatsoever. Similarly, the matrix.S may be tabled in integers

and inverted in integer operations to obtain estimates of 8 without error.

’

Thus, the problem of round-off error, which plagues least-squares fitting of

. ™~
high order polynomiuls (hwampler, 1970) 1s completely gblved if the orthogonal

polynaﬂials are used. TIhe tables given in MSMBR, Appendix B, for polynomials

.

up to q=9 inclule the integer for~» of the P matrix, the normalizing constants, -
L ‘e
and the S matri.. Thev are convenrent for othogonal polynonial trend analysis

wher *he pumber of tioe points Joes not exceed 10, Tor greater nunbers of

.

.
)

po.ats, the belory (1050 and Fisher-Yatres (1903) tables are avallable.

. oorhoconal Pollonennat Troend oty iy dp f;0>s—5cctiona£ bata

PPN RGN - e e e - . — ——

spacs b, e oot ceTyaemial s oatrix of order nomay- be incorporated inte

the analva1s 08 Teamees To nron leip ty -l single degreo-of-freedom ¢omponents
of th. stm o 2o thote s drmension and for it anteraction with the -

other wavs 0f s0o. trecat.om o e e heept for the additlonl ways of

>

classifreatic s ©otn o rear o, thi woely P 1S similar to that shown in Table 1

R R R LI LR TR Cq the muamerical illustration to follew, the
- . i . . . . .
subjocts are o AL veiom 0¥ the cormunities froa which the .
<
Shjects Wt A b e £, as- eaflect differvences in the cthale
L

e ol fie ol o onndotertdorocla o hied by ose, and by yeirs of age,
-~ ™ -

thin, ) thae e T et e 2o v abroges 2ox x Aee (rosseclas afication.”

FOr CPuss- o tiontl O ti o5 in which, say, motime polnts are cqually . :
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Usin% the convent:ional nodel for cFussed designs (see MSMBR, Sec. 5.3), the
parameter spaée o< the nolel, and corresponding suns of squares in the analysis )
of variance is partigionzd into thé following subspaces: General mean, Location,
Sex, Age, Location x Sex, Location x Age, Sox x \ge, anh Location x Sex x Age.

: The purposz of the analysis of variance for this type of design is to aid
in the choice of the least complex model for effects of the sample classes (in
this cese the Location and Sex sroups) and the lowest degree model for polynomi.l
trend in any of these effects. If *hereis a significant way of classification
in the analysis, the corresponding parameter space is retained in the model.

If there is a.ciznificant two-factar interaction involving a given way of
clzisification, then the two-factor space and the main class space of that way
of classification i< reained. Similarly, if there is a significant three-
factor interaction involving a given day of classification, the spaces corre-
sponding to Liwi lnteraotion, Toothe e Snsror interactions involving that
classification and the muin class space are retained. And so on, to the highest

order of interr.tiomn. . .

4

In any vl (iwse apoe 505 nomial ic required for a given

way of classitricns.on *noany main ciass or interaction space, then the 95

I

deares polynori:l as oo in alt ~ee. involving that way of classification

, . . . - raad fe 4t daea o Jdonicto -~ i T
when —itting o« . i .20l Crond in 0o data is depicted by computing, from.

4
the fotred deeele 0 aolmonial the mirsinal or group nean, required for

plotting intori. oo noo” Cn-claan Frects as Ay cvopciate. A plot of trend .
iines is i T .00 an to STDUTING SXEALLLS. '

[§ £np g 1L onomoosrncaorar e Che wabe Tase oede o~ are dispro-
portionatel. tio o Lo i Wb otre ouhoraces cnter the model must be npocified

by the 1mvest. 1 r. InotnoralyotphoonrooTony Po u enter effectn wetiomore
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provides a critiéhl test of the more dubious effects, unconfounded by effects
that are presumed to exist and are necessary in the model.
In the case of the Location x Sex x Age design, age effects are a foregcne
., conclusion, éex effects are always possible, but there is little prior knowledge
about location e%fects. If interactions are considered less certain than main

- effects, a reasonab) : ordering of spaces for the analysis of variance might be:.

Mean, Age, Sex, Location, Age X Sex, Age x Location,
Location x Sex, Age x Location x Sex.
When there is ambiguity as to the ordering, the analysis may be carried in

more than one order. But such analyses are in general not independent and

~

should be held to a minimum to avoid incurring Type 1 errors considerably more

frequently than their nominal rates.
D. EXAMPLE 1: Cros<-sectional comparison of growth in stature of children
aged 6 to 14 )ear§ from two oopulatlons

To illustrate the analysis of variance of trend in cross-sectional datz,

we compare some data reported by Jumison (1077) giving the staturc & 53Y'35 and

Y - .
girls age 6 to 1} yours from the villa .c» of Barrow and Wainwright, Alzcke,

. with dita of Tulde nh“ﬂ and Stiyder (12534, p. 199) for boys and giris in the

.
i

Berkeley Guidinee Stuldy. Srri.tly speahing, this is not a rigorous analysis

because the sorreley Jata are actually lensrtudinal {and will be analy:zed

iongitudineily in franple 2). Bur it clarifies the calculations and gives some
* indication of 1o re.ults thit a1 ht b2 e<pected from actull cross-sectional
.
> data.
- kY ¢ 3 - » »
Cample Htat.afics Dquare s o t+& ¢ .leulations are shoun in Table 3. The
Lithin-a e-arn.n viarianes e371mate 1s re:amsTructed [rom Lies agoe-pivuy
¢ .

El{llc : & e

Aruitoxt provided by Eic




Insert Table 3 about here

sample standard deviations reported in the original sources.

‘the calculations outlined in Section III-were carried out on these data by

mes.1s of the MULTIVARIANCE program (Finn, 1974). This program provides both
the non-orthogonal analysis of variance and the orthogonal polynomial trend
analysis required in this problem. After the terms to be retained in the model

are chosen, the procram computes the estimated orthogonal polynomial coefficients.

v

‘and the predicted values for the mean-trend lines for the groups.

v

"In this application, the groups are cross-clessified by location (North
Slope, Berkeley) and by sex (wmale, female), and the between-group and group X
occasion interaction degrees of freedom are partitioned accordingly in the

analysis of variance shown in Table 4. Note also that degreces of freedom for

polynomial trend of higher degree than quartic are pooled in this table.

.sis of variance in Table 4 are clear enough, with

one minor exception. lhere is some ovidence of Location x Qccasion trend

effocts ¢ - degree 5 through S (p=.0tn). Significant high-degree orthogonal
-

nelynemial components almoot alwayvs inlicate the presence of one or two irregulax

points in the Jdata, vfren becaus»e of procedural or (lerical crrors. From the
<
¥

rlot of the group nen an tigure 1, 1t ppears that age aroups 10 and 13 are

-~ j‘: 1:... hhmsel oawm toasre an i o miric n amy<on! s data, ’;hi“. iS llnd(‘llbﬁ("(’l‘/ dlle

to non-random .amplin agarasated b, <o opoating of sanples from several Lates
| B

and by elevared o STTioh - : Lt L, T ng ores slope village, .
{

1 0
O
ERIC s
|




TABLE

S

Mean Stature (cm.) of Boyvs and Girls Aged 6 Through 14:
) yYorth Slope and Berkeley Samples @

v
North Slope® B:rkeley ©
Age Boys Girls Roys Girls
(Years) Mean N Mzan N Mean N Mean N
6 1 22 113.4 11 17.5 66 117.2° * 70
7 117 15 118.2 22 124.0 66 123 .4 70
8 122, i5 122.5 . 19 130.1 66 j129.2 70
‘ 9 129. 20 129 2 22 135.9 66 135.2 70
10 152 23 130.1 16 141.3 66 141.0 70
il 137. 14 137.6 18 146.5 66 147.6 70
‘2\ 12 14, 29 117.2 10 152, 66 154.5 70
o B O 1S 1 1iR 1 164 158.8 Y66 159.8 70
-1 RERTUIE (351 4l 165.8 66 163.1 70
o Lr ST AROAT ) e s o S 0Ly
th:;svu |
- . o
.




TABLE 4

Cross-sectional Trend Analysis of Average Stature of

Children Aged 6 Through 14 from Berkeley, California,

and the Alaskan' North Slope (Age x Sex x Location)

. ( A
Source of Sum of
Variation d.f. Squares . F «p
General Mean 1 -—- v —-- _—
'y \7 \\ .

Linear Age 1 336,242 8666 <.0001
Quadratic Age 1 11.96 .30 .'s
Cubic Age 1 4.48 1 R
Higher Age 5 . S 1 096.91 . .51 .77
Sex 1 611 .16 .69
Location ' 1 ' 15,766 406 <.0001
Lin. Age x Sex 1 36.75 .G5 .33
Quad. Age x Sex 1 73.55 1.90 .17
Cubic Age x Sex 1 319.40 8.23 .004
Higher Age x Sex 5 .190.36 .98 . .43
‘Lin. Age x Loc. 1 1,004.6 25.89 < 0001 ~
Quad. Age x Loc. 1 18.75 .48 .49
Cubic Age x Loc. 1 : .002 LDO0 LGo
Higher Age x Loec. 5 - . 437.35 2.25 .046
Loc. x Sex 1 2 .25 .55 .46 i
.&g\x Loc. » Sex 3 : 140.97 45 .89
S U d_'._w : ,
Within Groups I"{‘S 58,391

)
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If the significant higher-degree Age x Location interaction is discounted,

v

the only significant greater-than-linear effect is the cubic<Age x Sex inter-
»

action (p=.004). Because girls reach maiure stature bef~re boys, this type of
inter;ction is to be e pected as the children enter adolescence. It\is clearly
seen 1n the group means in Table 1 as an inversion in the order of the means
for the two sexes in the Berkeley data. That there is no similar inversion in
the North Slope data might suggest an Age x Sex x Location interaction, but the
analysis does not confiﬁn its presence.

If the cubic Age x Sex term is included in the model, the Sex main effect
and Age main effects up to degree 3 must also be retained along with the highly
significant Location effect and the linear Age X Location interaction. The
latter conrirms the reality of a difference in growth rate between the Berkeley

and North Slope populations during the long period of essentially linear-in-age
: ’ | '
preadoiescent growth in stature. From the fact that the Location contrast is

North Slope minus Berxeley (A-B), and the linear Age x Location contrast is

Aruitoxt provided by Eic:

nepative, we deduce that the Berkeley population is growing faster. This 1s
confirmed by th- plot in Figure 1, of the fitted group means calculated from

the orthogonat c-timates in Table 5. Between 8 and 14 years of age, the rate

of growth of the Berheley children as about .8 cm/year greater

insert Table G- about here

than that of the Lo?\{\:lgpé hiitdren. This figure 1s obtained by dividing the

arthnoonal actimaro hy the normalizing coafficient for the linear orthogonal

< . - »
- ’
polynomnial *of order U@
N
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> N
' TABLE S
, ) Orthogonal Estimates: Rank 10 Polynomial Model .
Effect Estimate S.E.
5% -
Constant 137.3027 .1968
Linear Age 42.5591 .6143
Quadratic Age s -0.2143 .4805
Cubic Age -0.0620 4782
Sex (Boys-Girls) 0.0096 .3176
Location (NS-B) ) -7.9580 ) . 3937
Lin. Age x osex -0.6483 .9625
Quad. Age x Sex 1.1824 .9603
Cubic Age x Sex 2.6.67 L9567
Lin. Age x Loc. -6.3038 1.229%

I8
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" ¥ ssame or gquivalent, pl"eEassigned;time ;ioints.z The formal layout of data from

) . Y

-6.3038//60 = -0-.8138"

Ve

IV. ANALYSIS OF LONGITUDINAL DATA

fully iohgim&inaf@&gdy,\efgei?. and every subject is measured at the
N L4 N ‘t

AN - \\ L >, %
) s * *\7-:-/"‘ ----------------
r &
X \3 Inserf Table 6 about here ...
= » . . "“{ ”, I.‘ - °
‘ ‘!---,,e-‘!_--.- ------------ ..

A

such a study is shown 1n Table G‘f”&'bte that the measure repeated on each
" ";
subJect is indexed by the superScan k=1,2,...,p (in parentheses to distinguish
N

it from an exponent) The- subscnpt is reserved for™the identification of

-

-

_ experimental or sanplmg group j and for subJect I within group j. The (arbi-
: oS -

trary) .number of subjects’ 1n each group lis N . \If the groups are further i v\\.,

classified accordlno to e\cpenment@ factors and/or sampling attrif)utes, j may

be replaced by a multiple subscript mdlcatmg the treatment or attribute

Ve

rd . e

combination. T
-~ :1 B

-t

. -

A. Sample Statistics -

‘e

.~ All computations of, 3 linear least-squares analysis of longitudinal data

\ . . . .
may be performed startmg-from-'the following summary information:

1) (2
[yfj) _(J-) Y(IJ-’)], av.n
- ~ - ﬁﬂ\
N . +
3 y(K) C—\
i .
ji=1t M 1.
j r
. ¥
178 <
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TABLE 6

Form of Longitudinal Time-Structured Data

j . ‘:(1' XZ cee Xp
- ‘ @ ®. . Rt
1 Yiv© Yiy oo i s 1 LiZe-oN)
: ‘ (1) (2. ®. ;_4°
GrOUP-"’ . 2 yi'_) Y,lz b yiz > 1= 19?:0-03‘\'2
1y (@) . ., _
n . Yin Yin 00 Yin 0 17 LZeeolNy
. X .
7 3
= ~ CoT _
) e #
i
?
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2) The subclass numbers Nj’ j=1,2,...,0.
3) . Theunggézd within-group variance-covariance matrix I in which the

diagonal elements are the unbiased variance estimates,
4

n

o =ﬁ{ 1[y“‘)] z .\'[)'(k)]} , (IV.2)

k j=1 i=

and the off-diagonal elements are the unbiased covariance estimates

- SR 5 BT € T (k) (2)
- L y(®y
%s, = Fn GE1 i1 Y15 i 55 EME AN
L7k , : (1V.3)
_ n
h N = I, N
where J‘_'l j

o

-

A typical example of lonéitudinal data summarized in this form is shown in
Table 8. The uéper gection of Table 8 contains the mean yearly measures of
stature (cm.) for boys and girls ages 2 through 8 in the Berkeley study. as
published by Tuddenham and Snyder (1954). The lower section contains the
unbiased estimate of the common within-sex-group variation and covariation.
"Note that to facilitate visual inspection, the latter is shown in the form of

standard deviations and correlations rather than variances and covariances.

B. The Polynomlal Model for L0101tud1na1 Data

A general linear model suitable for repeated measures data was first given
by Roy (1957, p. 83) and applied to the analysis of change in Bock (1963? and
to the analysis of growth curves by Khatri (1966), Pottoff and Roy (1964), and
numerous subsequent workers tKleinbaum, 1973; Lee, 1974; MSMBR, Sec. 7.2; Timm,
1975, Secc. 5.16; Tﬁbbs, Lewis and Duran, 1975). For present purposes, it
is most convenient to express this model in terms of the nxp matrix Y. of

vector means for the experimental or sampling groups:

180
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Y. = ABX' + € - (v. 4

In (12), the n x m design matrix A contains 1 and 0 elements specifying

how the trend effects enter additively into the expected values of the group’

.

means. . . .

>

The colurms of the m x s matrix 8 pertain <0 the unknown coefficients of
the degree s-1 polynomial model and the rows:ﬁertain to main class and possible

" interactive effects of the experimental factors or sampling attributes.

»

The p x s matrix X contains the leading ssp columns of the order-p Vander-
monde matrix shown in (III.3)..
Row j of then x p matrix £. contains the means of errors due to random

sampling of subjects within group j. The expectéd value of £ is the n"x p null

matrix. Different rows of f. are statistically independent, but elements

within Tows are in general correlated ard their covariance matrix is

1

¥ £, where £ is the covariance matrix of the p~variate vector observationms.

'3

Although X is of full columm Tank when the X, are distinct (see Sec.
III.B), A is in general not of full column rank. When A is of deficient column
rank r<m, |A'DA] = 0 and, in consequence, the elements of g are mot all estimable.

Nevertheless, the normal equations arising from routine appiication of least-

squares to (IV.4) are consistent, and the various mathematical methods of

expre551ng thelr solution (such as plac1ng 1ndependent restrlctlons on the rows

of B) can be shown to be equ1valcnt to decomposing the model, matrix into

A=K , (IV 5)
where the n x T matrix K is a rank r column basis’for A,‘and the T xm maérix
L, also of rank r, contains the coeffitients of certain seleccted linear parametric
functions of the rows of B. (Bock, 19635; MSMBR, Sec.'S.l.) [When L is specified,
K is obtained by K = AL’ (LL')'l.]

Substituting (IV.5) in (IV.4), and at the same time introducing the

orthogonal reparameterization of the polynomials as in Section II, we may write
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(IV. 4) as

=
]

K(LBS)P' + E.

K T P' +&. (1v.6)
NXr rXS SXp

Then the weighted least-squares (Gauss-Markov) estimator of T is (Lee,

1974)

"

= o kov.s s in T av.7)

-

The expected value of this estimator is I' and its sampling variance-

covariance matrix is given by the Kronecker product (see MSMBR, p. 212),

-

«'oy !t x @'z iyt . A (1v.8)

We notice, however, that (IV.7) contains the error variance-covariance
matrix I and cannot be applied in general unless I is known.. Fortunately, -
there are a number of straightforward methods of dealing with this problem:

i) Timm (1975, Sec. 5.16) has pointed out- that if tﬁe degree of the

PP ———

polynomial model is set equal to p-1, then P is non-singular, Pfl = P', and the

matrix 171 cancels out of (Iv.7); i.e.,
s lpeprz eyl = sleprzp = p .
Thug, if p is not large and there is no advantage in using a Tess than p;l
degree trend polynomial, the Gauss-Markov estimator of the orthogonal coefficients

is obtained in an unweighted analysis simply by transforming the vector obser-

vations by the p x p matrix of Fisher-Tshebycheff orthogonal polynomials P'.

182




2) ° If the structure of I is such that

; A = P'IP \ V.9~
pxp

js a diagonal matrix, the weight matrix cancels out of (Iv. 7) for all values of

/

/sgp. This is true because, if P is an orthogonal matrix and (IV.¢) is diagonal,

the columns of P are the characteristic vectors of I and corresponding elements

i}

of A are the characteristic values associated with each. Thus, IP ='PA, =
PAP"aﬁd 2'1 = P'A'IP. . Then if the n x s matrix P1 contains the leading s

colums of P, and the s x s diagonal matrix As contains the corresponding

characteristic values, we have

z“lpl(P'z“lpl)'1 = PIAI-}(AI-I)_l =
aﬁd the unweighted estimator is Gauss-Markov.

"This result is of considerable practical‘interest becauéé it can be shown
un&er mixed-model assumptions (Bock, 1960, 1963; MSMBR, Sec. 7.1.2) that I belongs
to a class of covariance structures dlagonallzed by a class of orthogonal
'transformatlons of: which P is a member. The former is the class of so- called
iraducible’ covariance structures studied by Bargmann (1957; see also Huynh and
Feldt, 1970)’.S Thus, unweighted multivariate analysis of ¥e§eated measures
given in Bock (1963) and MSMBR (Chapter 7) is justilied when applied under ‘
mixed—model assumptions, or more generally when P'EIP can be assumed diagonal,
even when s is less.than p. |

A This result also suggests that, in the presence ;f non-zero association in
P'EP, the‘transformed covariance matrix may be So greatly dominated by its diagonal
,elements\that thé unweighted estimates will differ but ‘little from the weighted

estimates.
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The analysis in Example 2 is an instance in which this is the case.
3) Finally, if P'IP.is not diagonal, the most practical alternmative would

seem to be to forego an exact analysis and proceed by maximum likelihood esti-

. mation under large-sample assumptions. It can be shown (Khatri, 1966; Tubbs,

Lewis § Duran, 1975) that, if a maximum likelihood estimator of T is available

independent of Y. (e.g., the within-groups covariance matrix ), then, for

lz| 40, - ~

T = (K'DK)_IK'DY.Z-lp(P{E-lp)-l (Iv.10)

is a consistent estimator of T with large-sample variance-covariance matrix
given by the Kronecker product 7
woK) Tt x ey (Iv.11)
Associated with (IV.10) is a multivariate analysis of variance that plays
v
the same role in longitudinal data as does the univariate analysis of varlance
of cross-sectlonal data in Section III B. For purposes of the multivariate |
énalysis ;f variance, the columns may be orthogonalized from left to right with
respect to D to obtain, say, K*, where K*'DK* = Ir. Similarly, the columns of
Pl-ére orthogonalized from left to right with respect to E'l to obtain, say
-1

i, ‘whére PI'E 1Pi = Is' Then, letting M* = K*'D and Qi = 2 Pi »

~

e = MAY.QF = U
N TXS

e

(IV.12)

—-——
e o-- |e
- [Ligel
La ]
1
(=

is a maximum likelihood estimator of orthogonal parameters, T*, with large-sample
covariance matrix I xI . The partition of the s x s matrix of sum of squares
and cross—products (briefly "sums of products') for the multlvarlate analysis

of variance rniay therefore be computed as shown in Table 7.
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The sums of products matrices are emplbyed in tests of multivariate hy-

‘potheses of trend as follows:

Suppose it is desired to test.the hypothesis that orthogonal polynomial

coefficients greater than degree sl—l are null for some between-group effect
) . +1’Lh

represented by the sum of products SSH 1F§+1 SSBk on ng '

freedom. For this test, an error sum of products independent of SSH is extracted

degrees of

from the table. For example,
SSE* = SSE + SSW ,

onn, = (N-r)> s-s, degrées of freedom.

1
Tﬁen, for s, = s-54, the;,s2 X s, submatrices SSH2 and SSEE arﬁ extracted
from the lower-right corners of SSH aﬁh SSE*, respectively, and the min (nh,sz) non-
zero roots of the determinantal equation
|ss.112 - xsss*zfl =0 ’
are found and ordered from largest to smallest. From these roots, the following
test stati;tics'may be computed: . Cg

1) Roy's Jdargest-root statistic, for example, in the form of the generalized

F with arguments T and t (MSMBR, Sec. 3.4.7):
_t
Fo =T 2 (IV.13)

where Al = max Az, 2=1,2,...,min (nn, sz)
r=n -5, +%1
t=n_ =-5,+1

Critical points for F_ may be read from the table for min(n,,s,) roots in

Appendix A of MSMBR.
-
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TABLE 7

Longitudinal Data: Multivariate Analysis of Variance of
an s-1 Degree Polynomial Model for r Group Effects.
The Sums of Squares and Cross-products are Computed

from the Orthogonal Estimates U = MY.Q!

¥

Sums of Squares

Source of Degrees of and Cross-products
Dispersion Freedon (sxs)
General mean 1 SSM = uu,
C

Between-group effects 1 ’ SSB1 = Elgf

1

ina im-« = ?

leading effects elim 1 S§82 uu,

inated and following

\ i T - ' = u' .
effects ignored 1‘ SSBI.__1 wo vy
Between-group effects _.or-l SSB
v
Between~-group
residual n-r - SSE = SSG - SSB - SSM

n N
t 1

Z N.y..y..
Q§=1 JZ Jl'J] Q

SST - SSG = 1
S

Group means n SSG

Within Groups N-n SSW

n n N.'T 1 '
N=Z, X, sST = Q[Z * y;.¥:..1Q
iF17j j=1 12171371
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2) Hotelling trace statistic:

2 min(nh,sv)
T =n2l “ A
o Me“p=1 3 (IV.14)

An F approximation for this,statistic has been given by McKeon'(1974):

F (K,D)_ mbD TZ
M sznh(D—Z)ne o‘
&
where m = n_ -s_ -1 .
e 2
K= s .
=4 3 K#2 %
D=14+33
. (m+s,) (m+n, )

(m-2) (m+1)
Exact .05 and .01 points for T§ are available in Pillai (1960) and Pillai and

Jayachandran (1970).

3) The likelihood ratio statistic:

a
rd

min(n, ,s.)
. h™"2 1
A= ﬂ£=1 15 Az .(IV.15)

Rao's F approximation ksee MSMBR, " Sec. 3.4.9) may be used to compute

probability levels for A.

Note that, since the weighted analysis is based on an estimated I and
assumes large-sample statistics, critical points of the distribution of xz/nhs2
on n s, degrees of freedom (giveh, for exam Lgl-by Hald$” 1952) could be used in

place of Fo, Fl’ or FR' . -,

3

b

Both the weighted and,the unweighted,analysﬁs include u‘avariate F statistics
— - S T#‘ ”~

for the separate térms of the pol§nomia1. If theycondﬁtion oBtains that P'IP is

diagonal, these F statistics are statistically independent un

multivariate

R ’ -
. normality. Thus, a union-intersection test, namely, that the hypbfgz:;s is
. - - -

-
T P « . N . . oY Ny .
vedevted g thv-lL st hieant -at the “ ttel is a quite saf iSf¢dry

[y

A o 2"
TR Be et wth et g ficinee beedt .2 r::\h\
' W, ‘ N

Sl R e (I(\"..ISY




(c.f., Roy and Bargmann, 1958; J. Roy, 1958). -

In the weighted case, where the terms are orthogonalized in the sample,
(IV.16) applies in large samples. Because 6f the greate? diagnostic and de-
scriptiv; detail in the F's for thé éeparate éunctions, the union-intersection
test is in general ﬁore useful in repeated measures analvsis than are statistics
1, 2 and 3 above. This is the test used in Exanple 2 in this section.

When the rank r of the model for the sampling or experimental effects and
the rank s of the polynomial trend model have been chosen, possibly with the
aid of the foregoing tests, estimates of the parameters in (iV.6) are obtained

from (IV.12) as follows:

~

- (Sr-l)' f'*T;l . (1v.17)

13

where Sr is the leading r rows and columns of the Cholesky factor of K'DK, and
T, is the s leading Pows and columns of the Cholesky factor of prz-lp (see

MSMBR, Sec. 2.7.2). These factors are given by the ORTHM subroutine of MATCAL
(Brock and Repp, 1974) during the orthonormalization of K with respect to D and

. o-1
P with respect to £ .

The fitted values of the group means may then be computed from

PN
~

Y= KT p . (IV.18)
~ TXe
The variance-covariance matrix of the element®of (Iv.18), rolled-out
across Tows, is
INK -1 IA—]‘ —1 ’ ! e 4 "'1 :‘l -1
(K x P)[(K'DK) ~ x (P'Z "P) "J(K x P) = K(K'DK) "K' x P(P*r "p) "P' (IV.19)

The 2 sigma tolerance interval on a new observation in group j at time point k

is, therefore,

(S NP AT TP N — :
Y. 2/1 (K13 (oK) (K] (P, 12Tl (IV.20)

where [K]. is the j-th row of K, written as a column, and [P]k is the k-th row
J - -

of P, similarly written. .
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C. EXAMPLE 2: Longitudinal Comparison of Growth in Stature of Boys
and Girls Aged 2 Through 8

Although sex differences in preadolescent staturec are only weakly detected

" by the cross-sectional analysis in Example 1, they are clearly revealed in the

present example when the inherently more powerful repeated measures analysis is
brogght to bear on longitudinal data. Table 8 summarizes measures of stature

of bSys and girls aged 2 through 8 from the Berkeley Guidance Study as reported

5
by Tuddenham and Snyder (1954). Table 8, which includes standard deviations
and product-moment correlaticns in addition to means ;nd sample sizes, contains
all of the information needed for a multivariate analysis of variaiuce of mean
trend in the two sex groups. -
The first step in examining these data is to test their conformity to the
assumptions of fhe mixed m&ﬁel, unweilghted, or weighted analysis. With the aid
of the MULTIVARTANCE program, the common within-group covariance matrix is
reconstructed from the standard deviations and correlations, and is _transformed
by the order 8 matrix of orthogoral polynomials in normal.ized foxrm. (The
MULTIVARIANCE program gives the user the option of such a transformation and

generates the required matrix.) The result of this transformation is shown in

Table ©.

- —— - ) —— - —— — —— -
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TABLE 8

Sample Statistics for Stature of 129 Complete Cases Aged 2 'I'hrougﬁ 8
from the Berkeley Guidance Study

. i Year Means (cm) Q ' A :
. ’ 2 | ki 4 5 6 7 . 8
Group "N v o
| Boys 65 _88.174 ,// 96.579 104.118 110.53} " 117.335 123.852 - 129.932
3 girls 64 ~ 87.123 > 95.489 103.072 110.430 117.541  123.639  129.367
, ; Within-group S.D. 3.1875- 3.4445 3.8021 4.1688  4.5479  4.8241  5.1267
< 2 1.0000 - ’
3 R .8706 ~ 1.0000 R
. 4 .8243 .9352 1.0000 -
) Corrclations 5 .8050 .9214 .9603 1.0000
. 6 .7821 .8904 .0187 .9701 1.0000
) 7 .7755 .8941 .9107 .9621 .9856  1.0000
8 ' .7583 .8790 .9047 .9474 .9723 .9889  1.0000
o ,

2 These are the same cases studied by Thissen, et al, (1976)
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Orthogonal Polynomial Transformation of Statistics in Table 8

TABLE 9

&
Ternm
Constant Linear Quadratic Cubic Quartic Quintic Sextic
Group N
Boys 65 291.392 36.481 -1.9287 0.5175 -0.1188 -0.1366 -0.0626
‘ Cirl; 64 289.771 - 37.324 -2.3025 -0.1531 -0.0995 -0.2169 0.0762
Within-Group S.D. 10.5552 2.9507  1.2480 1.0299 0.7507 0.6770 0.5814
Const. 1.0000
Lin. .6737 . 1.0000 -
§ -~ Quad. -.1934 -.2896 -  1.06G00
Correla- _ Cubic -.0031 -.0714 -.3716 1.0000
tions * -
Quart. -~.0169 -.0732 -.1141 -.2413 1.0000
Quin. .0658 -2170 .0790 -.3062 -.4563 1.0000
Sext. -.0311 -.0090 .0208 -.0041 .1888 -:2531 1.0000
Charactefistic roots of the within-group correlation matrix:
[l;] = [1.8899, 1.6498, 1.3464, 0.8845, 0.6907, 0.2911, 0.2475].
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fnspecting the transformed correlations in Table 9, we see that the values
in the first subdiagonal are large enough to suggest that the population matrix
is not diaggnal. We confirm this impression by calculating, from the character-
istic roots of the correlation matrix ;hown in the footnote of Table 9, the
likelihood ratio chi-square statistic for testing the hypothesis of no association

>

_in a p x p correlation matrix (Anderson, 1958, Chapter 9):

2 _ 2p+5 P
Xpp-1)72 =~ (N-n —=—) I Ink, (IV.21)

n

209.10 |

On the null hypothesis and multivariate normal distribution of the within-
group residuals, this statistic is distributed in larée saﬁples as a central
chi—squaré>yariate on p(p-1)/2 degrees of freedom. In this instance, the

. number of degrees of freedom is 21 and the value of the chi-square clearly
contradicts the hypothesis that the correlation matrix (and thus the covariance
matrix) is diagonal. We therefore conclude that a weighted anadysis is necessary.

. ) !
Had we iccepted the hypothesis that the population covariance matrix is

diagonal, we would have tested the v.riances of the linear throuéh sexti;’terﬁs .
for homogeneity. [The Hartley variance-range test is suitable for this purpose
‘(Pearsqﬂhand H;;tley, 1966, . 202).] Ig these variancés had appeared homogeneous,

wwe cqﬁid Eave then pooled them to obtain for the R ratios a denominafor with 6
‘-,¥;127 = 762 degrces of freedom. Because.of the resulting ig;rease in power of
the F tests, this "mixed-model” form of analysis is obviously the preferred
approach té repeated measures data when it is justified (seé Béck, 1963; Huynh
§ Feldt, 1970). ~ ’ BN

If the population covariance matrix is assumed diagona} but the varianceé

ih multiple-degree of freedom subspaces of the within-subject variation are not
assumed homogeneous, .the unweighted repeated measures analysis is indicated. P
This typé of analysis is simply a multivariate analysis of variance of the

: »
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orthogonal polynomial transtorm of the original data. In the MULTIVARIANCE

sy s . o i
program, it is performed by transforming the summary statistics before entering

the estimation of tests-oflhypothesis phases of the brogram. The estimation

phase computes the basis matrix K in (IV.6) and estimates effects associated
/

with the experimental or %ampling structure of the data. In the present study,

! . . ;
the "sampling, structure copsists simply of the classification of the subjects as

! .
male and female. Since there are only two sample. groups, the K matrix generated

<

by the prograﬁ is

X
+

, -
&>

‘ .
The first column _ofiK2 corresponds to the‘one degree of. freedom for the

general mean, ignorihg the sex classification, and the second column corresponds

to the one‘degree of freeﬁbm between groups. Associated with each of these

r <

* degrees of freedom is an F statistic for each of the terms in the polynomial;
. ' 2 . . -

’ ) L . o . .
these statistics are independent if .the transformed covariance matrix P'IP is
‘ .

diagonal’ %
: 1
! . s . .
When the trangformed covariance matrix is not diagonal and the weighted

analysis is required, an, additional step must be interposed between the'calcu-

- .

lation. of the summary staﬁistics and the multivariate analysis of variance:

thé matrix of orthogonal ﬂflynomia1§ must be orthogoﬁalized againiﬁith respect
to‘the inverse sample cova;iance matrix. The MATCAL subroutine OBTHM pérforms 3
‘.;his,operation (Boc% & Repﬁ, 1974). For tﬁe present data, this inverse is

shown‘in Table 10. The poly%pmials-orthogonalized_with respect to this matrix

/ are shown in Table 11. HThe (upper triangular) matrix of the transformation of

the order 7 orthogonal polynomials (i.e., the T;l matrix of formula IV.17) is

[}




ot
[To)
&

&

TABLE 10

Inverse of the Sample Within-group Covariance Matrix

1 2 3 4 5 6 7

1 .4154 (Symmetric)

2 -.3141 1.0020

3 . -.0570 -..4520 1.2923
4 .0564 -.0905 -.0244 2.1499

5 -.0989 .2362 .0192 -.8347 2.2509

6 .0127 -.4584 .6559 -.6421 -.6296 . 4.2315

7 ,0579 .1522. . -.4108 .3753 . .1045 -2.2124 . 1.8759

- 210
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. TABLE 11 »
Orthogonal Polynomials for Weighted Trend Analysis
. .
. L . Terns .
Age .- Constant. Linear Quadratic Cubic Quartic Quintic Sextic
2 2.9204 1.0426 .3385 -, 5765 .2984 -.0876 -.0211
3 n 1.5517 -.4531 .4506 -.5169 .3225 -.3853
4 " 2.0609 -1.0041 .6411 -.0364 -.4368 .2625
ﬁ .
-5 " 2.5700 -1.3146 . 3519 .4358 .0383 -.4495
§ 6 " 3.0791 - —1.3844' . -.0601 .3468 .7924 .0688
"7 " 3.5883 -1.2137 % -.2379 ~.1057 5130 -.2525
8 " 4.0974 © -.8024 .1754 .0268 .5308 -.0921 .
L 2
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given in Table 12. Tables 10 and 11 contain the matrices required for the

computation‘

of the transformation matrix for the weighted anai&sis as given by Q* = E_IP*.

Since the MULTIVARIANCE program has a provision for any arbitrary linear trans-

- formation of the sample data: it is a simple matter to perform the weighted

" analysis with the transformation matrix Q*.

For purposes of comparison, the results of both the weiéhted and unweighted

repeated measures trend analysis are shown in Table 13. Despite the apparent

smooth brogression of sample means shown in Table 8, the differences between

1.

the sex groups is not 2 simple function of age. Both the weighted and unweighted

[l

3 3 3 - - 5 f‘.;'
analysis show a significant degree 5 trend component in the differences between

the means of the sex groups. To represent completely systematic differences in .
average stature of boys and girls in this age rangevtheréfpre requires a rank 2
model for sample classes (r=2) and a rank 6 model for trend (s=6).

If the subjects regardeé as a sample from a singie populationgand the sex
groups are combined, the curve of mean growth is considerabl; simplqy,A\gdiﬁkt—»
analyses show at most a marginally significant cubic componFnt. -Ignoring the
sex classification thus leads to a rank 1 (r=1) model for ;he sample and a rank
4A(s=4) model for trcnd. . .

The weighted and unweighted estimates of the orthogonal polynomial coef-

ficients for these models arc shown in Table 14. Note that when the quintic

196
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TABLE 12

LY

-

Coefficient Transformation From Unweighted to’
Weighted Orthogonal Polynomials

4
A

1 2 3 4. 5 6
1 7.7266 6.7996 -2,2050 . 0.2813 0,1697 - . 0,6322 -.3285
2 « 2.6941.  --1.0062°  , 0.0336 0.0739  0.6549 _ < _ -.0267 )
/ - - - \ - ~
- N \
. 3 1.1025 . | -.5§26 “-.1144 | .1086 . .0260
©  Weighted 4 .8742 -.4352 -.3271 -.0042
- ' S
5 5 : - ) ", 6656 -.3170 .1417
6 ) i .6550 -.1714
- %
7 (Triangular) ' . -.5814
// ] 4 ‘ _ .
i i
|
. |
= s
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TABLE 13

14

. Test Statistic for Longitudinal Trend Analysis
- of Growth.in Stature of Children Aged 2
' F Through 8 in the Berkeley Guidance Study
(Wlthln groups d‘~127)

v -

-

Source of " ‘ . . Weighted ) Unweighéed z
Variation d.f. = F . P Fo P
General Mecan : s 1 -
Constant e <, 84,805 <.0001 97,770 <.000%
Linear ) 21,770 <,0001 20,172 <.0001
Quadratic 443,0° <.0001 - 370.2 <.0001
Cubic 3.576 .06Y 4,154 043
Quartic 2.420 .122 2.729 .101
Quintic , . - 0.4969° .482 L4223 517
Sextic : . 0150 .903 .0150 .903
Between Sexes ] 1 A
Constant ‘ 4,210 ~ .042 .762 .385
Lincar .0867 - 769 ¥ 2.631 .107
Quadratic j? 11.040 .001 2:893 .091
Cubic 5.388 ¢ ,022 = 13.672 .004
Quartic 2.264 .135 .0213 .884
Quintic 11.692 .001 8.792 .004
Sextic 1.836 2178 1.836 .178
- g'.
3y . ™
1] . * 7 '\
. < ¢

~1
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S [ndert Table 14 about here

- = —— -

polynomial is assumed, the weighted and unweighted solutions give essentially

the same result. This is a consequence of the very small correlations between

v .

the sixth degree term and the remaining terms of the polynomial (Table 9). With

respect to the last term, the transformed error covariance matrix is nearly

diagonal,‘and the weighted and unweighted analysis become nearly identical at'
the fifth degree term.
When the cubic polynomial is assumed, on the other hand, the effects of

the weights are more evident, especially in the sex effect and sex x age inter-

’

actions, which are sensitive to the greater weight assigned at younger ages

-

where the within-sex variation is smaller. Despite the significant failure of

-

~fit of the deéree-S model, the fitted means reproduce the observed means almost

as well as the much less parsimonious degree-5 mbdel. This is apparent in

Table 5, where the observed means in Table 8 are reprod&ced along with means
c;mputed by tIV.lS) from the weiéhted estimates in Table 14. The figures in
Table 15 demonstrare the efficacy of low-degree polynomial models for .growth

when a limited ag~ span is examined.

o
-

- = —— -

V. SUMMARY
A methodological problem widely encouﬁkered in the study of secular trend,
growth and development, or experimental manipulation of behavior is that of
detecting and describing s;ggematic change over time. With certain restrictions
on the design of the study and the mcthod of measurcment, this problcm has a

ready solution in analysis of variance and its multivariate extensions. Tc be

218
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TABLE 14

Longitudinal Trend Analysis:” Estimated
Orghogonal Polynomial Coefficients

Weighted

Unweipghted

Effect Degree 5 Degree 3
General Mean ’
Constant 290.5870 290.5694 290.5816
Linear 36.9030 36.8709 36.9026
Quadratic -2.1160 -2.1386. -2.1156
Cubic 0.1823 J1442 .1822
Quartic -0.1109 -.1091
Quintic 0.0422 .0401
Sex (B-G) 1.5436 1.9692 . 1.6220
Age x Sex
~ Linear -0.8492 -0.4353 -0.8429
" Quadratic 0.3800 .4151 .3738
Cubic 076696 .3573 - .6706
Quartic 0.0145 -.0193
Quintic -0.3944 -.3535
219



S . TABLE - 15

Berkeley Guidance Study. Data

. . * - P
Observed and Fitted Age-group Means for the

Mean Stature (cm.)

)

Observed T Fitted® va

Degree 5 . Degree 3
Boys - Girlsv _ Boys Girls Boys Girls

’ Age (yrs.) . : :

2 '88.17 . 87.12 - 88.17 . 87.13° 88;23 ) 87.16°
8 -3 - 96.58 95., 49 96.54 95.54 96.48 95.42
4 b ‘ 104:12 ° 103.07 ‘ 104.15 103.04 104.03 103.20
5 110.96 = 110.43 - 110.91 . 110.49 111.04 110.48
6 117.34 117;54 | 117.34 1 117.53 117.62 - © 117,24
7’ 123.85 123.64 123.83 123:67* 123.92 123.48
8 125.93 129.37 129.92 129.38 130.06 129.18

2 From the weighted estimates




amenable to this technique, the observations should be time-structured (i.e.,

limited to a moderate number of pre-assigned time points, preferably equally

Epacéd), and the measurement of the trait or response in question should be -
made on a scale with commensurate units throughout the relevant fange. The ‘
analysis is further fdbilitated if,'in cross-sectional data, the observations
‘are replicated at each time poinﬁ, or, in léngitudinal,data, all subjects are
oBserveq at precisgly the same oxr combarabie time points.

When the data are cross-sectional (i.e., independent s#ﬁples of‘subjecté

, are drawn contemporaneously at the several time pointsj, the shape of the curve
describing time-dependency of the population mean, and differences in the shape
between populations, can be invéstigated in a polynomial trend analysis. A.

'3. singlg-degree-o%—fregdom univariate analysis of variance of successive orthogonél
polynomial components of trend and trend differences provides a convenient,
exact, unbiased minimum-variance method of ﬁerforming this anal&gis. Although
the calculations for this analysis are most straightforward when the time-
points are equally spaced and the equal numbers of subjects are sampled at each
time point, the statistical theory and computer methods for unequal spacing and
unbalanced sampling are fully worked out and available if needed.

When the data are longitudinal (i.e., each subject is measured aé each
time point), frend analysis of the population time-point means, or différences
in trend betwcen populations, can be carried out by multivariate repeated
‘ﬁeasures analysis or, in favorable cases, by mixed-model univariate analysis of
variance. If the variance-covariance structure of the sampling errors is trans-
formed to no-association (i.e., uncorrelated) by a suitable orthogonal matrix
independent of the data (e.g., a matrix of Fisher-Tchebycheff orthogonal poly-
nomials), an exact énalysis of trend is provided by a multivariate analysis of

variance in which the orthogonal comj.nents of trend .appear as variates but are

tested in a manner analogous to, but in general more powerful than, the single-

’
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. |
degree-of freedom tests 1in the univariate analysis of variance of cross- 1
|

. 4

sectional data. If the transformed errors are uncorrelated and the error trend |

~

\components exc1u51ve of the constant component are homogeneous in variance, a
pooled estimate of the error ébﬁponents may be used and the multivariate repeated
measures analysis specializes to a still moxe powerful 51ng1e-degree—of-freedom
mixed model univariate analysis of variance.

If the error covariance structure cannot be reduced te no association by a
suitable orthogonal matrix independent of the data, a éonsistent, efficient,
large-sample, weighted method of repeated measures analysis based on the Pottoff-
Roy formulafion may beqé;ailable. It is shown here that this analysis’is
coﬁveniently implemented by orthogonalizing the Fisher-Tshebycheff orthogonal

" polynomials with respect to the inverse of the sample within-group covariance
matrix. The statistical tests ofrconv?ntional multivariate analysis of variance- --
of trend components computed with this re-orthogonalized matrix weighted by the

-inverse sample covariance matrix may then be interpreted in a large—sample_igi
Ee

sense.

Examples of these procedures applied to measures of stature and computed

. with the MULTIVARIANCE pfogram are presented in the text.

Q | 203
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Footnotes

%

1This section is based on Section 5.2.5 of Bock, R. D. Multivariate statisZical

methods in behavioral research. McGraw-Hill, 1975 (hereafter referred to as

MSMBR) . -

P ) . i
2Various designs for semi-longitudinal studies have been proposed (Schaie,
1965). Their analysis is beyond the scope of this paper.

. The hypothesis that the population transformed error matrix is diagonal may be

tested by a likelihood ratio test of no-association in the transformed sample

matrix P'IP: (SeefAnderson,1958, Chapter 9.)

. N 1
i

A
4
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.ABSTRACT

-
.

This paper is coicerned with®the analysis of multivariate catogorical
. . —

data which are obtained from Iongitudinal studies of human growth and

devglopment. An expository discussion of pertinent hypotheses for such

situations is provided within the context of two methodologically illustras
< .

‘ A >
tive examples, and appropriate test statistics are developed through the’

application of weighted least squares. These procedures are illustrated

.

with extensive analyses of each of the data sets.




I.  INTRODUCTION

Many longitudinal investigations dealing yith behavioral and/or -

. educational development are concerned with intraindividual change for
¢ ] °
d Variables hthh are measured in terms of discrete categories (based on

nominal or ordinal as opposed to interval scales). Examples of such

categorical (qualitative) variables include measures of

0
-

(i) child compétencies in task performance, ‘
) (ii) verbalization patterns, ’
(iii) copiné abilicy in stress situations,
M []
(iv) self-ccncept, A\
. ) parent:child interaction,i
- }y&a}{ aevelopmental stages.
* * Thus, the basic research design_for such studies involves the classifica-

tion of each subject with respect to each categorical variable (which is
called an attribute) at each of several successive time points. Moreover,
the subjects may also be classified into a set of sub-populations on the

basis of other categorical variables such as

R " " . (vii) deﬁographic characteristics,
‘T‘ %Hiii) N health status with respect to the presence or absence
/ of certain traits, e7g., dyslex1a
s “(ix) ‘ program sta;us with respect to certain specialized types
. .

of training..
Within the context of this framework, the data resulting from longi-
~ . tudinal studies can be conceptually arrayed in (potentially very large)

[
multidimeRsional contingency tables for which the! corresponding dimensions

209
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Aruitoxt provided by Eic:

are the classifications according to each attribute like (i)-(vi) at each
time point, together with the respective sub-population variables like
"(vii):(ix).' For this reason, the various questions of interest for data
analysis may be regarded as equivalent to statistical modéls for the cell
br9£abilities in sgch contingency tables. Thus, in principle, data
gnalysis can be undertaken in terms of various computational algorithms
for cohtingency table model fitting. As will be demonstrated in Section
III, the weighted least squares methods discussed by Grizzle et al.
(1969), Koch et al. (1977), and Landis et.al. (1976) can be used to deal )
witﬁ questions pertaining to
(a) the nature and extent of intraindividual change for the respec-
tive attributes over time, both separately and simultaneously,
(b) the nature and éétent of interindividual differences among two

’ - - - - I3 -
or more sub-populations with respect to intraindividual change

over time for the respective attributes,

(¢) the nature and extent of the variation over time of the rﬁlation— -

ship ameng two or more attributes as reflected by certain
me~asures of association.
In this regard, the basic approach is in the same spirit as mu{tivériate
analysis of variance (profile analysis and/or growth curve analysis) with )
respect to analogous intervally-scalad quantitdtive data situations. For
this reason, its application to longitudinal data is the primary puréo§e
of this papzer. The typeé of examples where weighted least squares methods

are potentially most useful are briefly described in Section II. Specific

formulations of the various hypotheses of interest are xhen presented. in
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AN
Section III and their evaluation is illustrated in Section IV with resbect
to the examples in Section II. The paper concludes with a brief ‘discus-
sion of certain special computational considerations for dealing with
very large contingency tables, together with other potential difficulties
which may arise in the analysis of longitudinal data.

Alternatively, in many investigations, the questions of interest
pertain to the identifi;atioﬁ of the underlying structure of a large
number of attributes in terms of a small number of implicit dimensions,
and hence are analogous to those for which factor analysis is used with
quantitative data. This topic is outside the scope of the present paper.
However, it is discussed to some extent by Goodman (1974) in the confext
of latent structure analysis. Similarly, the analysis of transitioﬁ
patterns over-time for one or mére attributes in terms of stochastic
process models is also outside the scope of this paper. Further informa-

A
tion with respect to this general subject area is given in Bishop, Fien-
berg, ;nd Holland (1975, Chapter 7).

.

ITI. LONGITUDINAL DATA EXAMPLES

In this section, we present two examples which may be regarded as
methodologically illustrative data2 sets from longitudinal studies in
human growth and development. In particular, a simple one-population
study involving two attributes measured at two time points is considered
in Section II A to indicare the full range of hypotheses which can be
tested. toreover, in Section II B a two-population study involving one

attribute measured at three points in time is ‘used to illustrate the

types of hypotheses associated with comparing growth curves among several

.



_groups. Although these examples involve hypothetical data and are much

+ smaller in scope than those usually encountered in research situations,
the extension to more complex designs is straightforward as developed in
Section ITI.

",NA. A Single Population Example

The following hypothetical example arose from a longitudinal study

-

in which two developmental attributes labelled Al and A2 were measured at
two time points labelled Tl and T2 for an age cohort of 354 children. In

this regard, each subject.was classified as absent (1} or present (2) for
each of the attributes at each of the specified time points. The frequency

¢ )

data corresponding to each of the 16 bo%sible response profiles is shown

in Table 1. ) ) . ' A N g

-

The statistical dssues concerning intraindividual change can be
el ( . ..l .
summarized within the'fgamgwork\gf the following basic questions.
LN, TN )

o tra
~

(1) Are therc any differences betweén the occurrence rates of

. ron . <
the two attributes at each of the time points?

A -

+
-

™ N . * .
(2) Are there any djffereages bétween the two.time points with

. . . . >
respect to the set of individual occurrence rates of the two
attributes? ~ ) - .

~

(3) Is there any attribute x time interaction in the occurrence

rates of the two attributes?

212
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Table 1

ATTRIBUTE DATA FOR,LONGITUDINAL STUDY

.

Response Profile for Al and A2 at Tl and T2

Al 11011 1 11 2 2 2 2 2-2 2 2
A2 ] 1112222 111 1222 2
Tih-Al 11221122 112 2112 2
A2 ] 2 121212 121 2121 2
) TOTAL
FREQUENCY| .57 36 1869 0 0 035 0 3 0 15 0 0 0123 | 354
213




-(4) Are there any d;fferences Setween the two time points with
respect to the 6vera11 joint distribution of the two attributes?
(5) 1Is theré any difference between the two time points with respect
to a selected measure of association or agreement betweéﬁ the
two attributes?
The first three questions which involve the occurrence rates of the two
attributes are essentially similar to the hypothéses of interest in
repeated measurement (or mixed model; experiments as discussed in further
- detail in Kocﬁ and Reinfurt (1971),,Koch‘é£_g£. (1977) and Landis and
Koch (1977a). . More specifically, question (1) addresses differences

among attributes, question (2) involves the issue of time point differences,

and question (3) is concerned with the attribute x time interaction as

"
-

measﬁred by the individual occurrence rates of the attrioutes. Thus, the
first-order (univariate) marginfl distributions of response for each of
the attributes within each time point contain the felevant information
for dealing with thQSe'questions. In contrast to overall average differ-
ences among the occurrence rates; questions (4)-(5) address the relation-
ship between the attributes on.specific subjects across the time periods.
As a result, thésé questions involve measures of association or agreement

between the attributes such,as those discussed in Bishop, Fienberg, and

)
.

Holland (1975) and Landis and Koch (1975a, 1975b). Hence, certain func-

b o

tions of the diagonal cells of various subtables are used to provide =
information for dealing with these questions.

B. A Two-Population Example

The following hypothetical example arose from a longitudinal study

to compare boys and girls from a selected age cohort with respect to

214
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their ability to perform a particular behavioral task. In this regard,
each subject was graded as success (S) or failure (F) at the end of 1

year, 2 years, and 4 years of follow-up. These resuiting data are shown

.. in Table 2.

. P et

Accordingly, the statistical issues concerning these differences in
growth patterns can bé suﬁmarized within the framework of the following
basic quéstions:

(1) Are there any differences between the boys and the girls with

respect to the behavioral task success rates at the three time
points?‘ - . ’

(2) Are there any differences among the three time-points with

respect to the behavioral rask success rates'across the two
groups of children?
(3) 1Is there any sex group X gime interaction with respect to the

behavioral task success rates?
These three questions involving the success rates are éirectly analogous
to the hypotheses ;f "no whole-plot effects," 'no split-plot effects,"
and ''no whole-plot x split-plot interaction" in standard split-plot
experiments as described in Anderson and Bancroft (1952), Federer (1955),
. or Steél and Torrie (1960). In particular, since time is the split-plot
factor, these resulting success rates give rise to growth profiles for

each sex group. In this context, question (1) addresses group differ-
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Table 2

’

LONGITUDINAL DATA FOR BEHAVIORAL TASK

-

A

Response Profile at year 1 vs §gai‘2 vs year 4

7

FSF

Sex SSS SSE SFS SFF FSS FFS FFF TOTAL
»
Boys 0 0. 5 0 21 14 51 71 162
Girls. 16 5 12 5 71 12 74 14 209
/
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ences,; question (2) involves the issue of time differences, and question
(3) is concerned with the hypothesis of parallelism among correSponding.
segmehts of the g;owth,profiles. Consequently, the joint set of first-
ordef (univariate) marginal distributions for each of the time points

- "

Qithin each sex group contain the relevant information for dealing with
these questions. ) ‘
. : ITI. METHODOLOGY
This section is concerned with a general methodology for answering

ghe types of questions outlined in Section II in terms of specific hypo-
tﬁeses. Because the measurement scales of the response variables (here-
;fger referre& to as attributes) are categorical, the conceptual formula-
,iion of such hypotheses must be undertaken in éerms of an underlying (s x
rj contingency table, where s is the number of sub-populations and r is
the number of possible multivariate response'profiles. Test statistics
for such hypofheses and the estimators for parameters of underlying
linear regression models are obtained through weighted lgasg squares
computations by methods originally described in Grizzle, Starmer, and
Koch (1969) (hereafter reéerenced as GSK) as reviewed in the Appendix.
Consequently, this methodology represents a categorical data analogue to
more well-known counterparts for quantitative data like multivariate
analysis of variance as described by Cole and Grizzle (1966) and Morrison
(1967) in the parametric case and multivariate rank analysis/as described
by Koch (1969, 1970) in the non-parametric case.

For longitudinal studies, cach subject is measured on the same set

of d attributes at each of t time points. In accordance with the general

framework in the Appendix, let i = 1,2,...,s index a set of sub-populations
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from which random samples have been selected. Let m = 1,2,...,d index a

f

set of d characteristius or attributes corresponding to behavioral tasks

- 13

which are measured at each time point using an?Lm-point scale. Then let
ther = (L1L7...Ld)t response profiles be indexed by a’vector subscript
j = (11’22""’1t) with lg = (ng,JgZ,...,Jgd), where ng = 1,2,...,Lm;«

for m = 1,2,...,d and g = 1,2,...,t. Furthermore, let .., = T.. - .
i, iipdpeeods

represent the joint probability of response profile j for randomly se-

lected subjects from the i-th sub-population. Then the first-order

marginal probability - i=1,2,...,s
g = 1)2)~~~;t
$. =z ces Tow,.t o . for m=12,...,d (I11.1)
gk 5 with jg, = kM2l k=12,

represents the probability of the k-th response category of the m-th
attribute at the g-th time point ir the i-th sub-population.
3
In addition, it should be noted here that this formulation for
longitudinal studies presumes the following conditions:
(1) there is no assumed struct'.re on the attributes, so that

all possible attribute combinations or response profiles

arc observable, i.e., ﬁij > 0 fof all j and for i=1,2,...,s;

-~

(ii) every subject enteri:g the study is followed until com-
pletion of the study, i.e., there are no sost-to-follow up
cases;

(iii) every subject is measured on each attribute at each time
point, i.e., there is no incomplete data.

Further discussion of these potential difficulties is given in Section V

in the form of concluding remarks.

A. Hypotheses Involving Marginal Distributions

Hypotheses directed at questions pertaining to average differences

among sub-populaticns, attributes, and time pointc involve the first-order




%

marginal distri:Butions of the response profiles and can be expresséd '
terms of constraints on the corresponding probabilities {¢igmk}' More
) specifically, the hypotheses associated with &uestions (1) - (3) of each
of thetexamples in Section II can be formulated within the scope of one
of the following statements:

(1) 1If there are no differences among the marginal distributions of

- the respective attributes at each time point for the s sub-

bopulations, then the {¢i§mk} satisfy the hypothesis

Ho o ¢ = ¢ = ... ¢ for g = 1,2,...,t .
SM 1gmk 2gmk '’ ’ ;
gm gm sgmk m=1.2....4, (I11.2)
. k=1,2,...,L
m w

where SM denotes sub-populations means;

(2) If there are no differences among the marginal distributions of

the respective attributes over the t time points within each of

the sub-populatiors, then the {¢igmk} satisfy the hypothesis of |

composite first-order marginal homogeneity (symmetry) \
. g
i=1,2,...,s
- = &, = ... = ¢, form=1,2,...,d , (IIL.3)
HTMH ilmk i2mk itmk K = 1’2""’Lm

where TMH denotes time marginal homogeneity;

(3) If there is no time x subgroup interaction (with respect to

’ the marginal distributions of the respective attributes at ig
the t time points), then the (¢igmk} may be written in terms

of an additive model

i=1,2,...,s
. g =1,2,...,t
Hor® 9igmk = "mk * Si*mk + Trgmk for " i’gf""g s (1IER.4) .
3 3 ',m '

where ST denotes subgroup x time, and where for the m-th

“attribute, Mok is ‘an overall mean associated with the k-th




response category, Ei*mk is an effect due to the .i-th sub-

population, and T, is an effect due to the g-th time

grk

point, and where it is understood that the fu, ), (& 3 *

i*mk
and {T*gmk} satisfy the usual anélysis of variance constraints.
Moreover, if the & attributes are al}_measured on thé same L-poinf
scale, it follows that Lm = L form =1,2,...,d. For example, each
attribute may be classified as presén; or absent ;s proposed in the
example in Section 2.1, or each attribute may represent a different scheme
of.cla;sifying development under the assumption that there exists an identical
number of steps or stages as discussed in Wohlwill (1973). In such situa-
tions, several additional hypotheses of this type may become of intereét:‘
(4) If there are no differences among the marginal distributions of
the attributes at ecach of the time points within each of the

sub--populations, then the {éigmk} éatisfy the hypothesis of

marginal homogeneity (symmetry) among the attributes

’ Ho s = 5 - 0 i=1,2,...,s
A %iglk T Yigak T 0 Pignk for g = 1,2,...,t ,  (III.5)
k=1,2,...,
where A'H denotes attribute marginal homogencity;
(5) If there is no interaction between the marginal distributions
of the attributes and time within each sub-population, then
the {6igﬂk} may be written in terms of an additive model
' i=1,2,...,s
: - g=1,2,---,t .
Bar® Qigmk © Mik * figek t ik m=1.2,....d, (111.6) %
’ k=1,2,...,L .

where AT denotes attribute x time, and where for the i-th

aub-popnlation, M is an overall mean associated with the
l . b

k- th vewponse category, is an cffect due to the g-th
* r

Cigtk
time noint, and TSank is an cffect due to the m-th attri-
- . 1
G bute, and where it is understood that the {uik}, {gig*k}’
] 220
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and {: i*nk} satisfy the usual analysis of variance constraints.
- .
All of these considerations can be extended somevhat further if

the respopsc categories k= 1,2,...,LP form= 1,2,...,d are ordinally

scaled with progressively larger intensities. In this situation, the
effects of the respective sub-populations, attributes, and time points

can be compared in terms of summary indexes

lp .

. I a ¢, 1=

ign mk igmk  for g =
il =

32,4...,5
,2,...,t . (I11.7)
»2,...,d

|
Pod pud pud

Here ng n can be regarded as a mean score for the m-th attribute zt the

4.
\

g-th time period in the i-th sub-population with Tespect to an under-

lying numerical scaling a of the L categories.

a U {
ml’ w2’ ? mLm

In this context, the {nigm} are equivalent to mean scores derived from*

strictly quantitatively scaled response categories as discussed in

Bhapkar (1969%). Thus,“the hvpotheses in (III.2 - "111.6) can also be

-

expressed in terms of constralnts on the {n } in (I11.7). .Expréssions

of these hypotheses in terms of the {nion‘ are dlSCUSSed in wore detail
in Koch et al. (1977) and are illustrated in Landis (1975).

B. Hypotheses involving Measures §£_Association

Whereas the hypothescs in Section III A were addressed at comparisons
among sub-populations, time points, and attributes within the context of
first-order marginal distributions, the hypotheses in this section are

‘
directed at relationships among the attributes at a given time point,
and the extent to which those relationships cﬁange across time. These
hypotheses can b2 formulated in terms of comparisons among full joint
di;tributions or sccond and higher-order joint marginal distributions

across time perinds or in terms of neasures of association such as the
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log cross-product ratio for nominal data as discussed in Bhapkar and Koch

(1968a,_1968bj or the Goodman-Kruskal rank correlation coefficient for
ordinal data as discussed in Forthofer and Koch (1973).

In generzl, these hypotheses can be expressed as a set of constraint
equations on the joint probabilities of‘specified regponse profiles. For ‘
pufposes of simplicity, we will focus on the joint distributions of two
selected attributes (relabelled as 1 and 2) at each of the t time points
for each of the s sub-populations. Consequently, the joint probgbility
of the kl-?h categor& on the ?l—th attribute and the k,-th category on 4

the mz—th attribute at the g-th time point in the i-th sub-population can

- be written as

.

Y. L ‘ . > T.., . .t
igk .k - oy 1dyedgseeendl - (111.8)
1 2 3 with ngl k and ng kz -1’22 “t .

-

Using this notation, the log.cross-product measures of association between

. - f
the two attributes can then be expressed as
¥igk k, i 1=L2...,5
A. = lo ) ~ 1g12 lgLL ? g=1,2,...,t
igkk, - %% L2 for k= 1,2, L1 . (II1.9)
1ng1\, 1gk1L2) R SR I S

In particular, for two d1chotomous ﬁttr}butes (L L =2}, the measures of

-~

association {Algk K } in (3.9) reduce to" the familiar Iogﬁcross—product T,

%2 s e -
ratio for a 2 x 2 table . ’ Sy
y y i=1,2,...,s
Aig = loge igll "ig22 for g = 1,2,...,t . (111.10)
Yig21 Yigl12 }

Otherwise, an alternative measure of association for 2 x 2 tables due to
Yule can be fornulated as

Y. Y. - Y. Y, .

Q. = "igll ig22 ig2l igl2 for i

1g g
Y v
Yien1¥ige2 * Yiga1igiz

1250
VR (111.11)
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’

%f one of the following statements:

B SR

*
3

(For'a more complete discussion of measures of association, see Bishop,
: \

Fienberg, and Holland, 1975, Chapter 11. ) N

B

Hypotheses concerning comparisqns among full joint distributiéns.qf
the attributes can now be expressed in terms of constraints on the joint
- .
probabilities {¥. , | }. Hore specifically, hypotheses associated with
188%™

?
[

-

" (6) If there are no differences among the joint distributions of .

»

- . the two attributes _among the sub-populations, then the .
& PP } satisfy the hypothesis :
LA N
. ‘ g=1,2,...,t .
Hoo: ¥ * =y = ... Y for k. = 1,2,..,,L (I11.12)
.1 7qak k IR Y
, ST lgkk, o t2gkiky T sgkk, ky = 152 an

where SJD denotes sub-population joint distributions;
(7) If there are no differences among the joint distributions’

of the two attributes among the timé points, then the 3 .

. . {wiok K } satisfy the hypothesis
712 -
- i o= 1,2,...,5
Hpjpt Y o= Y, = ... =Y, for k, = 1,2,... (III 13)
JD . k L . - 2 > 2
TI0T Tilkk, ik, itk ¥ k) = 1,2,...,_[.;

Fd

where 1 denotes tlno JOlnt distributions.

1Y

Additional hypotheses xnvolxlwg the J01nt distribution probabllltres
in (L[1.8), such as a; additive rodel implying no interaction beuhecn sub—
pdpulations and time periods directiy analogous to (LLI.4), could also be
céhsidered hefe. Moreover, hypotheses of 'no interac£ion” among higher-
order joint distributions involving more than two aftributes simultah:

* - - , -
eously can be developed as direct extensions of these results, although

the notation for corresponding expressions becomes more cumbersome.

‘
¥

questions such as (4) 1in Section II A can be formulated within the scope -

P




¥

Similar considerations also apply to hypotheses of ''no interaction'" for

the joint distribution over time of each separate attribute and/or simultan-

£

eous sets of attributes. Finally, a log-linear model can be fitted to

the joint distribution of the attributes at each time point under appro-
- g )

priate hypotheses of ''no interaction' as discussed in'Koch et al. (1976).

This approach then permits hypcthesis testing for relationships across

the‘time points in terms of the resulting log-linear model parameters.
Alternatively, several hypotheses associated with questions such as

(5) in Section (II.A) involving the measures of association in (III.9)

can be formulated as follows:
.(8) If the two selected attributes are independent of each other at

}

- each time point within each sub-population, then the {Ai K K
' ‘ _ s 172
satisfy the hypothesis *
i

=0 forg

1k2 k
k

ot Aoy , (III.14)

Pod Pud Pud Pud

b
b
b
b

NN NN
v e v .

et

b
cey
b
b

1
Pd

1:i
2
, where PI denotes pairwise independence;

N

(9) If the relationship between the two attributes as measured by

the.log cross-product ratio is the same across the time points for

each’sub-population, then the {A, . K} satisfy.the hypothesis.
igk K,

1,2,...,s
1,2,...,Ll—1 ,(III.IS)
1,2,...,L2-1

i
rat Cinkk, T fizk " ek, Tk

. kz cee

1 1

1
where TA denotes time association;

(10) If the relationship between the two attributes as measured
by the log cross~pfodu:t\ratio is the same across sub-popula-

- tions at each tiae point, then the {A, L } satisfy the
) 18k hy

hypothesis

tp

E S :_ =4, 0
SA lgxlkz 2gk

2

1,2,...,t
1,2,...,L
1,2, L

b
b
b

. .
v v .

K T T Asgk

" -1, (I11.16)
12 12 -1

1
2




where SA denotes sub-population as sciation;

t

o (11) If there is no sub-population x tinme interaction with respect
s to the log cross-product ratio measure of association, then the
{1, )} may be written in terms of an additive modei
1gk1L7
i 1,2,...,5
. - g =1,2,...,t , (I11.17)
Hora' 2igk k. = Pkok, " Sitkk, T Trgk k) for k.= 1,2,...,L)-1
172 172 172 172 1_ 1
k2- 1,2,...,L2—1

where STA denotes sub-population x time association, and where
a . . _ ®
Lklkz is an overall mean effect, gi*klkz is a sub-population
effect, and Tagk. K is a time effect, and where it is under-
’ °™172
ctood that the {u, , }, {Z... , } and {7, , } satisfy the
klhz i klkz gklkz
usual analysis of variance constraints. For an application of

this type of additive model to measures of association, see

Grizzle and Williams (1972).

Moreover, if the d attributes are all measured on the same L-point
scale, hypotheses directed at the extent to which individual subjects
are classified irto the same category for each attribute can be investi-
gated. For example, agreement on the classification of developmental
stages by several different criteria is of considerable importance in
establishing certain theories of behavioral growth (see Wohlwill, 1973).
These probleas are similar to those raised in the general area concerned
with the measuresent of agreement, and as such have received attentién in
a wide range of research arcas as resviewed recently in Landis and Koch
(1975a, 1975b). In this regard, mumerous measures of observer agreement
have been proposed for categorical data, e.g., Goodman and Kruskal (1954),
Cohen (196v, 1965), Fleiss (1971), Light (1971), and Cicchetti (1972).

Mo U of the-e quanttties are of the torm

c =0 " e (II1.18)

ERIC 240 ' .
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where T is an observational probability of agreement and LI is a
hypothetical expected probability of agreement under an appropriate
set of baseline constraints such as total independencg of attribute
classifications.

Furthermore, kappa-type measures of agreement directly analogous
to (III.18) can be developed to investigate the joint agreement of several
attributes, as well as the pairwise ag¥eements of two selected attri-
butes. In addition, sets of weights which reflect the role of each
response profile in a given agreement index can be selected to investigate
"path'" models of development among several behavioral tasks as discussed
in Wohlwill (1973). Applications of such genq;alized kappa-type mea-
sures of agreement to clinical diagnosis data involving several observers
is discussed in Landis and Koch (1977a, 1977bj. 1In particular, the choice
of weights which are in a hierarchical relationship with each other can
be used to investigate hypothesized patterns of development such as syn-
chronous progression, convergent ''decalage,' divergent ''decalage,” and
reciprocal interaction (see Wohlwill, 1973, p. 215)..

C. Estimation and Hypothesis Testing

Test statistics for the hypotheses considered in the previous
sections as well as estimators for corresponding model parameters can
be obtained by using the general approach for the analysis of multi-
variate categorical data discussed by GSK (1969). This procedure can
be implemunted by constructing the appropriate functions of the observed
proportions which are directed at the relationships under investiga-
tion by a sequence of matrix operations. Then a weighted lcast squares

compututionzl algorithm is used to jenerate linearized minimum modified




chi-square test statistics. The basic elements of the GSK procedure-
which pertain to this paper are summarized in the Appendix.

All the hypotheses in Section III.A involving constraints on
the first-order maréinal probabilities can be tested by expressing
the estimates of the {¢igmk} or the {nigm}-as linear functions of the
type given in the Appendix (A.14). Although these particular matrix
expressions have already been discussed in considerable detail in
Koch*and Reinfurt (1971) ;hd P oaetal. (1977) they will be presented
within the céntext of the data analysis in Section 4. Otherwise, their
specific construction for hypotheses 1like (III.2)-(III.6)" is also docu- -

mented in Landis (1975). n

v

In contrast to the linear functions which pertain toifhe hypotheses
in Section III.A, all the hypotheses involving measures of association
and agreement require the expression of the corresponding ratio estimates
as compounded logarithmic-exponential-linear functions of the observed
proportions as formulated in the Appendix (A.20, A.21).e As a result, thev
test statistics for the hypotheses in Sectior III.B can also be generated

by the corresponding expression given in the Appendix (A.1l1l).

IV. ANALYSIS OF LONGITUDINAL DATA EXAMPLES

This ;ection is concerned with the analysis of the longitudinal data
from examples II.A and II.B presented in Tables 1-and 2 with primary
emphasis given to illustrating the methodolééy in Section III. In this
regard, tests of significance are used in a descriptive context to identify
important sources of variation as opposed to a rigorous inferential con-
text; thus issues pertaining to multiple comparisons are ignored here.
These, however, can be handied by the Scheffe type procedures given in

GSK (1969).
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A, Analysis of One-Population Exanmple

The comparisons required to answer the questions associated with the
example in Section II.A can be described more clearly within the context
of two sub-tables of Table 1 corresponding to the cross-classification of

the\ twvo attributes at each time point as shown in Table 3.

\
S g UG U U
\\

This §tudy involves s = 1 sub-population, t = 2 time points (T1 and fZ),

d = 2 attributes (Al and A2), L1 = 2 response categories for A. and

. Thus, there are r = (L]Lz)t = 42 = 16

L2 = 2 response categories for A2

possible muitivariate response profiles.

The functions required to test the hypotheses invelving the first-

order marginai distributions can be generated in the formulation of (A.¥4)

~

by‘ using
- ) 0000 0000 1111 1111
. 0000 1111 0000 1111
’ Ay =" | oo11 0011 0011 0011 (.1
0101 0101 0101 0101
This yields the function vector

F' = (0.398,-0.441, 0.729, 0.788); (1v.2)

-~

" which contains the occurrence rates of Al and A2 at each of the time

points as shown in Figure 1.



Table 3

CROSS CLA"SSIFICATION{ATTRIBUTE DATA BY TIMF POINTS

Time Point T1 T2
Attribute A2 A2
Category 1 2 TOTAL Category 1 2 TOTAL
1 180 35 213 1 57 39 96
Al ]
2 18 123 141 2 18 240 258
TOTAL 198 156 354 TOTAL 75 279 354
g
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PRESENCE OF
ATTRIBUTES
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025 +
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TiME

Figure 1-- Occurrcnce rates of two attributes

(A1, A2) at each of two time points
(T1, T2).
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Consequently, the hypotheses associated with question (1)-(3) can be

tested in the linear models phase of the analysis by setting X = 14

-~

and testing each of the following contrast matrices:

c, = 1 -1 0 0]
- 0 0 1-1 : (IV.3)
- r . .

c,= 1 -100 ; (1v.4)
C; = l:o 0 1 -1] ; (IV.5)
c, = 1 0-10

- 0 1 0- : (IV.6)
Cc= {1 0-1 0] 3 (V.7
25 L : e
Cq = [0 10 S (1v.8)
C,= {1 -1-1 1] ; (IV.9)

The hypotheses from Section III which correspond to ;he 9 matrices‘énd
tne resulting test statistics are given in Table 4. These results
suggest that significant differences (a = OlOS) exist between t;e
occurrence rates of the attributes at each of the time points, and
that the occurrence rates of cach attribute are significantly different!
(» = 0.01) between the time points. Othervise, the attribute x time
jinteraction is not significant (& = 0.25), which indicates tte simi-

/
larity of the change over time in the occurrence rates of the two

attributes. -




Table 4

TESTS OF HYPOTHESES INVOLVING MARGINAL DISTRIBUTIONS

Hypothesis d.f. Q-
l&@ﬁﬁ ATTRIBUTES
’Cl (T1 & T2) 2 13.32*%*
CZ (Tl) =1 > . 4.47*
03 (T2) ' 1 7.91**
: N
HTMH TIME
C4 (Al § A2) 2 268.52**
C. (A1) 1 : 162.33**
-2
C6 (A2) 1 188.49**

Hypl " ATTRIBUTE X TIME

C. 1 0.32

-

* gignifizant at & = 9.05
x% gignificant at @ = 0.01
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The data Erom Table 1 can also be disélayed in terms of the joint
distribution of the two attributes cross-classified by the time points
as shown in Table 5. In this context, the bivariate distributions of
the two attr:butes for Tl and T2 are summarized in ‘the row and column
margins respsctively. ‘This joint distribution can be generated for
each time point in the formulation of (A.14) by using

1111 0000 0000 0000
0000 1111 0000 0000
A, = 0070 0000 1111 0000 (Iv.10)
1000 1000 1000 1000 )
01¢0 0100 0100 0100
L9010 0010 0010 0010

Then by setting X =1

6° the hypotnesis HrJD in (III.13) associated with

question (4) concerning differences between the two time points can be

tested by using

C = - (IV.11)

-_—0 O
QO
O - O
~ oo

to o
Qo O

- —

For 'these doza, the test statistic for Hpp, is dc = 265.53 with d.f. = 3,
which implies significant differences (a = 0.01) between the jeint dis-

'

tributions o Al 2nd A2 at the twe zime points. In particular, we

*

observe in Tcole 5 that the major diffcrcn&e in the bivariate distri-
butions is the shift from the ldrge proportion (180/354) of the subjects
who had neitner attribute present at Tl to the large propqrtion (240/354)
who had both attripbutes present at 2. ﬂouever, we also note that this
shift was ro: attributable only to iadividual subjects moving dircctly
from (11! tc (22). In fact, this distributional change is due to the

high probability (48/51) of sujjects who had o.aly one of the attributes




e

Table S

JOINT DISTRIBUTION OF ATTRIBUTES CROSS CLASSIFIED
. BY TIME POINTS o

Time Point S
. .Attribute _ T2 ?
categories . . .
(Al, A2) B b 12 - 21 22 | TORAL,
r- . N . .~ =
11 Y 36 18 69 180
Tl 12 0 0 0 33 33
21 0 3 0 15 18
22 0 0 0 123 123-
TOTAL . 57 39 18 240 354
!
{
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-~

present at Ti moving to the state of having both attributes present at
T2, together with the tendency for those who had neitner a£tribute
present at Tl to progress to having cither one or both of the attributes
present at T2.

Al'though observed frequencies of zero as displayed in Table 5 can
cause computational problems in certain applications, their presence is
not troublesome here. In principle, this table has 15 degrees of free-
dom, but in terms of the observed da;a there are effectively only 7 d.f.

which <an be manipulated (without computafional singularities as dis-

cussed in the Appendix), unless certain zero cells are replaced by 0.5.

However, the 6 functions associated with the bivariate distributions

specified in (IV.10) do not require such artificial data adjustments;

-~

" thus, they can be analyzed directly. For a more detailed. discussion

-\
“\ concerning the treatment of observed zeros, see Koch et al. (1977).
’
Furthermore, the measures of association and agreement between ‘Al
and A2 in Section III can be generated as compounded functions of the
<
uvndeslying vectcrgff proportions. In particular, for each of the two
. |
‘ time poi;bs*\she log cross-product ratio in (1171.10) can be generated
. 3 R ¢
- AL
in the formulation of (A.20) by using
. _ N\ -
. ‘1111 0000 0000 0000 . .
~ ) 0000 1111 0000 0000 _
v0o0G 0000 1111 0000|
Al = 0000 0000 0000 11lily: ('v.12)
- 1000 1000 1000 1000
0100 0100 0100 0100
0010 0010 0010 0010
0001 0001 0001 0001
“ - J =
A, = ’[1-1-11 cmooo] :
- 0.0 0.Q 1 -1 -1 1} (1Iv.13)
Sy
. "
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the .measure of association Q in (I1I1.11) can be’estimated in the for-

-

mulation of (A.21) by using A, in (IV.12);

31001 0000

0110 0000- .

0000 1001 { ; (IV.14).
0000 0110 .

-
u

- -0 O
- =0 O

1 -1
1 1
A, = 0 0 ; (IV.15)
0 0 i

Ay = -1 _ (IV.16)
and finally, Cohen's kappa in (111.18) under the baseline constraints of
independence can be computed in the formulation of (A.21) by letting

1111°1111 0000 0000 )
0000 0000 1111 1111
1111 0000 1111 0000
0000 1311 0000 111l
A, = 1111 0000 0000 1111} ; (1v.17)
1100 1100 1100 1100
0011 €011 0011 0011
1010 1010 1010 1010 |
0101 0101 0101 0101
1001 1001 1001 1001 |

16100 00000 ]
10010 00000
01100 00000
: 1010 00000
. ‘ A, = 00001 00000 ] ; (1v.18)
00000 10100
00000 10010
00000 01100
00000 01010 .
| 00060 00001 |

-0 O
- 0O O
[ ==~

; . (IV.19)

(92}

O OO
[

o -0O0

o -0oQ

-1
0
0
0

o

(1v.20)




A

- The estimates of these measures of association and agreement between
Al and A2 for the data in Table.l,-togethet with their estimated.
stahda;d errors are displayed in Tabdble 6. Furthermore, the difference
~between the two time points with respect to each of these measures of
association can be tested individually by setting X = Ez and C = [1 -1] . .

for A, Q, and « respectively. In this regard, the corresponding test

statistics for this hypothesis in (III.15) associated with question 5)
are displayed in Table 7. Here we note that although the correlation

Insert Table 7 About Here

structure between Al and A2 (as measured either by 4 or Q) did not change

between T1 and T2, the agreement between Al and A2 is significantly dif-

ferent (x = 0.03) between the two time points,— This decrease in the

agreement statistic from 0.70 to 0.36 is due largely to the increase in

the expected value for the presence of both attributes (22), without a
* corresponding increase in the observed prOpomtian of oyerall agreement.

B. Anzlvsis of Two-Population Exaaple - . .
) v —

The exanpl s in Section II.B involyes~s = 2 sub-populations (boys,

.girls), t = 3 time periods (year 1, year 2, year 4), d = 1 behavioral

‘-?
I
v
=
-
[
=
Cu
L)
I

2 tesponse categoriss {success S and failure F). Thus, ~

- ind

there are r = ! 27 = § pussibie multivariate response profiles.
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MEASURES OF ASSOCIATION AND AGREEMENT

" Table 6

BETWEEN Al AND A2

2

Lo

™

’

Time Period

- -

Tl T2 .

—-— - .

Estimate Standard Error - Estimate Standard Error

L%

" Estimated " ' Estimated g

0.316 . 2.97 0.321

<

. . .0.016 ’ 0.90 0.030 .

0.038 ©0.56 0.051




Table 7

TEST STATISTICS FOR TIME DIFFERENCES IN MEASURES ,
OF ASSOCTATION AND AGREEMENT BETWEEN Al AND A2

Hypothesis d.f. ) ' Q. i

Y

* significantﬁws - .

” 3




4 A

In thié regard, differences .in the growth profiles for the boys and girls

can be investigated by using

. [11110000]
00001111 .
51 = 11001100 & }2 ~(Iv.21)
00110011
10101010
;9 1010101]
to generate estimates for the first-order marginal probabilities of

success (S) shown in Figure 2 and failure (F) for each time X sex group
combination in the formulation of (A.14), where @ denotes Kroﬁe%ker

product of matrices and Iu is the u x u identity matrix.

-Although a szrgightforward profilg analysis could be performed directly
on—gﬁese estimated margzinal probabilities, we will illustrate an
alternative approach involving an uqderlying logistic model which is
often of interest in growth studies (e.g., see Kowalski and Guire, 1974,
andfCuire and Kowalski, this volume). These involve log ratios or

logit functions which can be generated in the formulation of (A.20)

by selecting A, = [1 -1 I, together with A; in (IV.21). These

1 estimated probabilities of success and their corresponding logits, to-
gether with their respective estimated standard errors are shown in

Table §.

Fos~ this analysis, lcot klg denote the asymptotic expected value

of the lozit corresponding to the 1-th sex and g-th year. If time
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Fi.nre 2-- Prob:bility of success {(P(S)] on a behavioral
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Tablz 8

OBSERVED AND PREDICTED ESTIMATES FOR
FIRST ORDER MARGINAL PROBABILITIES
OF SUCCESS AND CORRESPONDING LOGITS

Observed Observed Predicted Predicted
Sex est. prob. Est. est. Est. est. Est. est. prob. Est.
Group Year success s.¢. logit s.e. logit s.e. success. S.e.

Boys 1 0.03 0.01 -3.45 0.45 -2.99  0.20 0.05 '0.01

.22 0.03 -1.29 0.19 -1.50 0.14 0.18 0.02

N
o

Boys
Boys 4 0.48 0.04 -0.10 0.16 0.00 0.14 0.50 0.03
Girls 1 0.18 0.03 -1.50 0.18 -1.48 0.14 0.19 0.02

.50 0.05 -0.01 0.14 0.01 0.09 0.50 0.02

™~
o

! . Girls

.83 0.03 1.57 0.18 1.51 0.14 0.82 0.02

dw
<

Girls




is assumed to represent a metric which is analogous to drug dosage .
in quantal bioassay research, then the linear logistic model with

respect to log time represents a reasonable model by analogy to well

Known ;esults discussed by Berkson (1944, 1953, 1955) or Finney (1964).

More specifically, we first consider the model

oo o= u, o+ Yix. for i = 1,2 . .

& g=1,2,3 , (Iv.22)
where u; represents an irtercept parameter ‘in reference to year 1 which
is associated with the i-th sex, Yi represents a corresponding contin-
uous slope effect over time, and xig is the log to the base 2 of year

g for the i-th sex. In matrix notation, this mndel can be fitted via the

fegression model

-
1000] fu
1100
B, {F}=X8 = /1200 ny, (Iv.23)
SR 00L0| |u,
0011 2
oo12f |

for which the goodness of fit statistic is Q = 2.29 with d.f. = 2. The hypo-
theses and test statistics in Table 9 suggest differences exist among the
respective sex groups with respect to the intercept, but not the slope.

On the basis of these results, the original

—-].O(ﬂ *ulj
101
E {F} = X 2 = 102 u ‘
né - .22 010 2 (1Iv.24)
011 Y
012} |
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v ' Table 9

- STATISTICAL TESTS FOR X, MODEL
N\
Hypothesis d.f. \ Qe
TRERN 1 18.95%*
i = Y, 1 0.22

**sjignificant at a = 0.01




£

where My is the intercept parameter for the i-th sex group and Y is
an overall slope paramcter. For this model, the goodness of fit
statistic is Q = 2.51 with d.£. = 3, which suggests that this ;eduéed
nodel provides a satiséactory characterization of the variation among

the logits. The corresponding estinated parameter vector b2 and its

eéstimated covariance matrix V., are given in (IV.25).

~2
[2.09 3.99 5
b, = |-1.48} ;v = | 1.60 1.94 x 1077 (1v.25)
- 1.50| 22 |-1.60 -1.07 1.07

From these results, the predicted logits shown in Table 8 can be deter-
mined via (A.12). These can then be used to obtain the predicted
values for the f rst-order marginal probabl.lities of success (S) responses

by reverse transformation which are illustrated in considerably more

detail in Roch et al. (1977} and Landis et al. (1976). Taese quantities
are =1s0 shown in Table 8 and>are plotted in Figure 3 within the context
of fitted logistic curves. Lstimated standard errors fgr these predicted
\ values obtzined through suitable manipulations of (A.13) are substantially
\ smaller than those for the corresponding observed estimates, and thus
' reflect the extent to which the fitted.model 52 enhances statistical
efficiency.

Finally, it can be showm thet for this linear logistic mo&el the
parametric fanctions €xp (-.iﬁy) represent the median agee for success-
ful perforrarce of the behaioral +asL (the ED-50 analogue from bioassay
studies) 1n the i-th sea ¢roup.  [-timates for these quantities are

obtained d4s coriowronding ramctiens of b, and are shown in Table'10.
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V. DISCUSSION
A}though the methodolagy for the analysis of longitudinal data
developed in this paper is quite general, these procedurés have been
jllustrated with relatively simple examples. However, for situations
in which either the number of time points t, the number of attxributes

d

the number of possible multivariate response profiles r = (Lle.wath

/

becomes extremely large. Consequently, the matrices required to
i
implement the GSK procedures directly may be outside the scope of

d, or the number of categories Ll’ L2,..., L, are moderately large,

computational feasibility. Im addition, for each of the s sub-populations

many of the r possible response profiles will not necessariﬁy be observed
1

?n the r:spective samples so that corresponding cell freqhqncies are

zero. Thus, in such cases, specialized computing procedur%s are required

to obtain the estimates of the pertinent functions. ;

One alternative approach for handling such very largé contingency _
tables in which most of the observed cell frequencies are zero is
discussed in Koch et 'al. (1977) and is illustrated in Landis and Koch
(1977b). Specifically, this approach permits the same estimators which
would need to be obtained from the conceptual multldimeﬁsional contin-
gency table to be generated by first forming appropriate indicator
variables of the raw da  from each subject, and then computing the
across-subject arithmetic means. Subscquent to these preliminary steps,

the usual matrix operations discussed in the Appendix can then be

applied to these indicator variable means to generate the required




,

S~ ’ -
Table 10 -
- ESTIMATED MEDIAN AGE FOR SUCCESSFUL T,
PERFORMANCE OF BEHAVIORAL TASK S
=
Sex Estimated Estimated ' o
Group Median Age Standard Error ~ '
Boys 4.00 * 0.25 :
. .
Girls ;

1.99 . 0.09
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functions.

These alternative computations involving raw data, &s well

as these involving standard contingency table data, can all be performed

Pi

via the computer program GENCAT discussed in Landis et al. (1976).

Otherwise, several additional potential difficulties associated

Y

_with the introductory remarks in Section I may arise in the analysis

of lbngitudinéfghata in studies of human growth and development. First
of all, if the response profiles a~e¢ assumed to be structured (e.g., as
specified by certain irreversible growth or learning patterns as discussed
will be zero.

in Wohlwill, 1973), some of the ﬁij In such situations, .
1

analogous hypotaeses to those.discussed in Section III that reflect
these resirictions imposed by such structures can be taken into account
by suitably modifying the definition of the appropriate hypotheses. In
partigular, the hypotheses pertaining to the first-order marginal
prcggpilities are still ;ppropriate here because their formulation is
consistent with the available dezrees of freedom. However, the higher order
margins involving joint distributions or measures of association may not

be* feasible depending specifically on ‘the nature of the restrictions
jnvolved. Secondly, the methods discussed in Koch, Johnson, and Tolley
(1972) represent a life table approach to dealinz with the issues involved
with s&bjects who are lost-to-follow-up. Finally, for a discussion of
one approach to the analysis of incomplete data resulting from tﬁe

failure to measure e.ch subject on cach at-ribute at each time point,

see Koch, [mrey, and Reinfurt (1972).

l
&

SUMMARY
In this paper we have proposec an extremely general approach

to tﬁe apalysis of nultivariate categorical data associated with
&)
£ 78




. investigation by a sequence of matrix operations. Then a weighted

longitudinal investigations of human growth and de;elopmentf For

-y purposes of illustration, two hypothetical data sets were presented
to indicate the ranée of statistical Issues of interest in such studies,
and the types of functions from corresponding multidimensional contin-

. gency tables which can be used to suggest answers to these questions.
Within this context, a general methodology for the analysis of categorical
data resulting from longitudinal studies was then developed in terms

.., of specific hypotheses. In particular, hypotheses directed at questions

e $~bertaining to average differences among sub-populations, atitributes, and
time points were expressed in terms of constraints on the probabilities
associated with first-order marginal distributions of the response pro-
files. Furthe.more, hypotheses directed at relationships among the
attfibutes at a given time point and the extent to which thos; ?elation—
ships change across time were formulated in terms of comparisons_among
joint distributions and in terms of measures of association acros;‘time- ~,

v

periods. i
A general unifying approach to the analysis of multivariate cate- _

gorical data was recommended to create test statistics for these hypo-

theses as well as estimators fo}acorresponding moééi'paxameters.' This

procedure can be implemented by constructing the appropxiaie functions of

the observed proportions which are directed at the relationships under

least squares computational algorithm is used to generate linearized
minimum modified chi-square statistics as discussed in more detail in
the Appendix.

An extensive analysis of e.:ch of the two data sets was presented

within the context of the hypotheses of interest. In this rvgard, the




matrices required to gqnefate the "appropriate functions and the matrices
used to compute the test statisties weré all specified in detail.
Fugthermore, the fitting of rinal -moothed models was illustrated in the

second example in terms of an underlying linear logistic medel ofgen S
_considered in growth studies. In particular, this modeling permitted the

estimation of predicted values for the first-order marginal probabil}ties,

t&gethe; with their estimated standard errors, ¢ven though the anélyéis ’
was performed on the logit transform scale.

Finally, this paper concludes with a discus;ion of certajm compuﬁa—

tional difficulties associated with very large contingency tables, together

with other potential difficulties associated with étrubturei response

profiles, missing data, and incomplete data.

o ool Ciee
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Appendix

. & . . . '
Let j = 1,2,...,r index a set of categories which correspond to the |

»
r possible response profiles associated with the simultancous classifi-
cations of the subiccts on the d attributes. Similarly, let i =1,2,...,s
. )

index a set of categories which corréspond to distinct sub-populations as

defined in terms of pertinent: independent variables. If samples of size

. -

n, where i = 1,2,...,s are independently selected from the respective sub-

puoulations, then the resulting data can be summarized in an (s x r)

contirgency table as shown in Table 11, where nij denotes the frequency

of response category j in the sample from the i-th sub-population.

The vector n. where n.' = (n. ,n.al\..,n } will be assumed to follow
~ 1 -1 11’712 1T .
the nultinomial distribution with parameters n; and ﬂi' = (“il’ﬂiz""’ﬂir)’

where s represents the probabality that a randomly se.ected element £rom

the i-th population 1s classificd ir the j-th response category. Thus,

~

the relevant prolduct rultinomial rodel 3s . .

N r n Ty
- rto . L] / A1
LT a -1 T .
=1 R 1] /(: . (A1)
= k= ] -
I R :
with the constrants
r ,~
: = 1 for 1 1,2,...,8. {(A.2)




Table 11

OBSLERVED COSTINGENCY TABLE

Sub-population

Response profile categories

)

1 2 B a T
- ¥
’ n n n n
! 11 12 1r 1
2 n n n n
21 22 2r 2
—_— -
n . r n
> nsl s2 ST s .
e o /
.
’
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C o~
1
,
[ 3
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Let p; = (Ei/ni) be the (r x 1) vect;r of observed proportions
associated with the sample from the i-th sub-population éhd let p be
the (sr x 1) compound vector &efined by E' = (gi, gé,...,g;). Thus,
the vector p is the unrestricted maximum likelihood estimator of ¥
where f' = k?ﬁ,ﬂé,...,ﬁ;). A‘éonsistent estimator for the covari;ncc

-~

matrix of p is given by the (sr x sr) block diagonal matrix V(p) with

-

the matrices

V. o= 1 )] - p.p! . (A3
VY-l [.pi euri) 03
(zxT) i - T

for'i = 1,2,...s5 on the main dlagoqal where Dp is an (r x r) diagonal
T S |

matrix with elements of the vector p; on the main diagonal.

~

Let Fl(p),Fz(p),...,Fu(p) be a2 st of u functions of p which pertain

to some aspéct of the relationship between the distribution of the

response profiles and the nature of the sub—populatiohs. Each of these

~

funciions is assumed to have comtinuous partial derivatives through order

two with Tespect to the elements of p within an open region containing

z E(p) is defined by

= [F(p)])' = {Flcg),cmg),...,Fu(p)} , (A.4) -

<

then a consistent estimator for the covariance matrix of F is the (u x

.

1) matrix

p = HVEIE © (A.5)

-~

where H'= [éF(X)/dX | x = é] is the (a x sr) matrix of first partial

derivatives of the functions F evalaated at p. In all applications, the

25/
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-

- . j

functions comprising F are chosen so that VF is asymptotically non-

~

. ]
singular.

The function vector F is a consistent estimator of F(w). H?nce, the
variation among the elements of F(r) can be investigated by fitting linear’
regression models by the method of weighted least squares. This phase of

the analysis can be characterized by writing

£y (7

-~ -~

?A {f(g)} = F(m) = XBo (A.6)

-~ ~

where X is a pre-specified du x t) design (or independent variable) matrix -
of known coefficients with full rank t < u, B is an unknown (t x 1) vector

of parameters, and "EA" means "asymptotic expectation."

M .
~ 4 - 1

An appropriate test statistic for the goodness of fit of the model

-

(A.6) is
Q= Q(X,F) = (RF)' [RV_ R']™" ¥, . (A7)

~

where R is any full rank [(u-t) x u] matrix orthogonal to X. Here Q is

approximately distributed according to the xz distribution with d.f. =

\

(u-t) if the sample sizes,{ni} are

-

of the vector ¥ have an approximate multivariate normal distribution as

sufficiently large that the elements

a consequence of Central Limit Theor}-(CUr). Test statistics such as d
are known as generalized Wald (1943) statistics and various aspects‘of
their application to a broad range ,of problems involving khe analysis

of multiviriate categorical data are discussed in Bhapkar and Koch (1968a,

- 1968b) and Grizzle et al. (1969).

However, these test statistics like (A.7) are obtained in actual

. practice by using weighted least squares as a computational algorithm

-

. - 10O .




]

which is'jﬁstified on the basis of the fact that Q of (A.7) is

identically equal to .

. ‘
Q = (F-Xb)' . (F-Xb), (A.8)

~

where b = (X' !F_l 5)-1 X! VF-l F is a BAN estimator for B based on the

~ -~ -~

linear.zed modified xf -s;atistic of Neyman (1949). In view of this
. identity demonstrated in Bhapkar 61966), both Q and b are regarded as

having reasonable statistical properties in samples which are suffi-
“"y

e

ciently large for applying'CLT to the functons F. As a result, a

consistent estimator for the covariance matrix of b is given by

Lol Ca
b= o™ ®-9)

~ ~

If the model (A.6) does adequately characterize the vector F(w),
tests of linear hypotheses pertaining to the parameters B can be under-

taken by standard multiple 1egression procedures. In particular, for a

, general hypothesis of the form,

. o li,: CB=0, 1.10)

where C is a known (c x t) matrix of full rank c <tand 0isa (c x 1)

vector of 0's, a suitable test statistiu_is
Q. = (Cb)” [ccxrvp‘lX)'lc']‘ICb CAD

~

whichk has approximately a y?-distribution with «.f. = ¢ in large samples

under H, in (A.10).

0

In this framework, the test statistic QC reflects the amount by

which the gocdness of fit statistic (A.8) would increase if the nodel

256
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/ .
(A.6) were simplified (or reduced) by substitutions baseé on the addi-

3

© tional constf;ints implied by (A.10). Thus, these mefhoés permit the
total variation within E(E) to be partitioned int6 specific sources and
hence represent a statistiCdlly valid analysis of ;ariance for the
corresponding estimator functions Fe

Predicted values for F( i) based on the model (A 6) can be calculated

3

from

= X'V B .\')- \'vF ]

-~ -

[ Bie 7 I
il

(A.12)

- ’”~
Thus, consistent estimators for the variances of the elements of F can be

obtained from the diagonal lements of

= XXV Ly i ) (A.13)

-

F

The predicted values F not only have the advantage of characterizing

essentially all the important features of the variation in F(m), but
also represent better estimators than the oriéinal function statistics
F since they are based on the data from the entire sample as opposed
to itg coﬁionent parts. Moreover, they are descriptively advantageous
in the’sense‘that they make trends more appafent ¢nd permit a elearer 1
S »
interpretation of the relationship between E(g) and the variables
comprising the columns of X.

! Although the formulation of E(g) can be quite general, Grizzle EE.~
al. (1969) and Forthofer and Koch (1973) demonstrated that a y}de range
of problens in categorical data anal}sis could be considercd within

the framework of a few specified classes of compounded logarithmic,

exponential, and linear functions of the observed proportions. However,

-
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these functions are all speciil cases of a broad class of functions

which can be expressed in terms of repéated applications of any se-

i
\

quence of the following matrix operétions:
(i) Linear traasformations of the type

F_(p} = glp =a; , . (A.14)

‘where A, is a matrix of known constants;

(i1) Logarithmic transformations of the type
Fp8) = 1og ) = 3, b )
N - -

Vi .

where loge transforms a vector to the corresponding

¥ ~

~

vector of natural logarithms;

(iii) Exponertial transformations of the type -

(A.16)

Dl
o w S

F.(p} = exp(p) = 2

where exp transforms a vector to the corresponding

~

vector of exponential functions, i.e., of antilogarithms.

Then the linearized Taylor-series-based estimate of the covariance

matrix of F, for_ﬁ/; 1,2,3, is given by (A.5), where the corresponding

~

-, H_ matrix operator is ) . -

o= A ' (A.17)

H, = D;I; °  (A.18)

, He = D7 ; ' (A.19)
- P

~
-~

where Dy‘is a diagonal matrix with €lements of the vector y on the uin .
~ : |

diagonal. '
N

The hypotheses involving marginal distrilhutions ean all be tested
in terms of linear functions of the for giv in (A.14). Furthermore,

i
.

-
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log-linear functions of the form .
, _ ,
F(p) = A, { log [Alp]} (A.20)

can be uset to generate logits and log cross-product ratios; whereas

-

compounded functions of the form

»
ot
nned

} (A‘. 21)

~ - ~ o~ ...--

f(g) exp[A (lOg (A [exp(A {log [A p]}

~ -

can be used to generate complex rétio estimates such as Yule's Q statis;“
tic or generalized kappa-type statistics. As a result, the linearized

Taylor—series—based estimates of the covariance matrices associated with
é(p) in (A.20) and (A. 21) can be obtained by repeated application of

-~—the chain rule for matrix differentiation. In partlcular, let

a) = Lyp s (r.22)
‘d,:;% B a, = exp{A {log (al)l} ; (A.23)
g%gﬁfﬁ\ i - - 2 =~
W : az =A@, - : (A.26)
- a, = exp{A [log (as)]} . (A.25)
Then the results in (A.17)-(A.19) can be used to provide a consistent
estimate of the covariance Latrix via (A.5) for F(p) in (A.20) by using
H = A D R (A.26)
- ~1 -1
and for F(p) in (A.21) by using
) f’j}—‘v ~ A
4 =D AD  AD aplta . \ (A.27)
~ ~ 4..4.. 5 3 a2 2-’11 l .
O , 259 .
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Finally, Koch, Imrey, Freeman, and Tolley (1976) discuss the
application of this general approach té implicitly defined functions

of p in the context of estimated parameters from fitted log-linear

.

models- fhus, all aspects of this mnethodology caﬁ be directed at }

implicit functions which are based on maximum likelihood estimation

., equations corresponding to' preliminary or intermediate (as opposed to

final) models with a priori assumed validity; in other words, models

3

in which +he likelihood (A.l)finitiall (i.e., prior to any data ¢
§na1ysis) satisfies both (A.2) as well|as certain other constraints
analogous to (A.6).

. l
For purposes of completeness, it §hou1d be noted that other statis-

tical procedures for the analysis of categorical data from longitudinal .

[ -

and other types of repeated measureaent experimeﬁts are available in

the literature. In this regard, Bishop, Fienberg, and Holland (1975,

Chapter 8) discuss the application of maximum likeliliood methods to
test hypotheses of tofal symnetry mnd marginal symmetry as wéll as
certain ccher hypotheses of interect. They also provide a relatively
complete literature review of other papers dealing with similgr

questions including the early work of Bowker'(1948).
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. ABSTRACT

The use of causal models in longitudinal research is discussed with emphasis

on their logic ipd construction. Advantages of longitudinal designs over

-~

cross-seccional designs for making causal statements are presented first.

- - N

Following an argument for theory-based research, the usefulness of causal
d?dels fur incorporating'substantive theory and knowledge into the data

3 .
aﬁﬁiysis model is-stressed. The construction of causal models from substantive
examples is explaine& and illustrated ;s a two-stage process invoiving (1) the
structural model which specifies- the "relations of the important cénstructs,
and (2) the measurement model which rzlates the unobserved constructs to their

¥

observable measures. Longitudinal panel designs are considereu extensively,

and causal models are ccnstructed from two substintive investigatiu.s conform-
.o L W -
ing *o a panel design. The use of correlations in these studies to support

»

* causal statements is shown to be misleading.

»

L 4
o
+
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CAUSAL MODELS IN LONGITUDINAL RESEARCH

INTRODUCTION ~

In this chapter a set of methods for making causal inferences from longitu-
dipal data will be considered. It is useful to distinguish between'explanation
(wﬁich implies gone form of causal statement) and description in investigations.
A descfigtive approach addresges sﬁch questions as "how" and "how much", while
an explanatb:z approach treats the question "why" and thus incorporates causal
.. . .
infgrence. (See. the discussion ofgiescription vs. explanation in Wold, 1956).
For example, a measurement of a child's cognitive functioning is a description,
while an investigation of the dependence of cognitive functioning on maternal
nurturance "and the chiid's motivation is an examéle of explanation. (Clearly,
explanaiion and causal inference are appropriate when a researcher is interest-
ed in_;he mechanism which generated the observable relation between variables).
Explanation of developmental processes is the primary focus of‘this chapter,
but the disc&ssion has clear implications for a variety of applications to

other content domains. -~

A. Vhy use longitudinal data for causal inferences?

Cross-sectional analysis was originally conceived as a practical and épprop-
riate‘meéng to study longitudinal change. However, sharp differences between
the findingg of cross-sectional and longitudinal séudies have led many researchers
to doubt the utility of the former:

Because of the striking discrepancies in the results of
cmoss-sectional and longitudinal investigations (Damon, 1965; '
Kﬁhlen, 1963), developmental psychologists have felt the need

to formulate more sophistocated nodels.

(Labouvie, Bartsch, Nessclroade, & Baltes, 1974, p. 288)

3




An examination of the assumptions underlying cross-sectional designs

explains the discrepancies. Cross-sectional analysis assumes that interindivid-

~

ual differences in development are stable over time. The measurement of certain
1nd1v1duals at one time period, then, would presumably y1e1d the same results |
as would the measurement of other individuals at the same developmental stages

at a different time. Coleman (1968) expressed this as an assumption of equilib-

rium: : g -
<

The cross-section analysis assumes, either impiicitly or explicitly,
{ ‘.‘

that the causal proceéses have resulted in an equilibrium state.

That is, the 1mp11c1t assumptlon in regression analysis is that this

is a stable relationship, which would give the same values for the

regression cogfficients in a ieter cross-section unless an exogenous H
[outside] factor disturbed the situation. (p- 4;4)'

Cross-sect10na1 research further assumes that the interindividual diff-

erences found between age groups can be interpreted as changes ‘that an 1nd1v1d-
ual would underco across time (intraindividual change). ‘ It has been shown,
however, that interindividual differences in growth do not adequately measure
intraindividual growth, but rather reflect the increasing variability in the
rate oflgrowth among individuals (Huston-Stein & Baltes, in press)._ Thus,

Baltes and Willis (1876) stated:

change on the individual level involves intraindividual change, and

differences in change functions. between individuals [involve] inter-,

individual differences in change .... One of the important features '
of aging is that interindividual differences typically increase with
time and age, resulting in progressively less age-related homogeneity.

(p. 12, italics in original)
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Because cross-sectiona]l studies confound intraindividual growth with

*
-~

interindividual qifferences in intraindividuai growth (Baltes- § Nesselroade,

- 1973), they are a poor method for studyfng change.. TheseAproblems with cross-,

sectional designs have been noted in other. research contexts:

. :i " - ‘
Repeated cross-sections from a panel of organizations:which are out
t ¢ . : ' .
of equilibrium will o\r\dinarily produce estimateg varying considerably

from crogs-section to cross-section.... It should be apparent that,
R ( - . L . )
- if-the processes of study are not symmetric in growth and decline,
-h .

-

cross-sectional analysis mixing growers and decliners will obscure
€

-~ d -

-

! > the processes of interest.

— Ly (Freeman_G Hannan; 1975, p. 216Y.

. Furtﬁernore,‘Colema" (1968) argued that’repeated measures designs are more

useful than cross-sectional de510ns/1n demonstratlng causa11ty
. / . B
When variables are obserwed at tﬂp or more\301nts in t1me, additional

information exists beYQnd that obtained in crbss-sectional data. °
. \ . ™~

This is information which, if>used properly, pan\indicate what

- factors brlng about chanae in {a variable. These changes will, of ™

course, create or jaintain the‘relatlonshlps that may be found 1n

hE 4

1)
A

"

Cross- sectlonal data, and tnps provide infoxmation, about the dynaﬁlcs

of a system beyond that prov1ded by cross sectlonal data. (p.445)

-The -yise of temporal var1atlon to establlsh causa11ty is a major aspect of the

* -

rationale for the longitudinal panel de51gns in section IV.

.

Another advantage of longitudinal research lies in urtangllng the “complex

+

effects of reciprocal causation or what some have\called "causal Yoops” (Hannan
1 -
§ Young, 1974). Examples of reciprocal causation are the reciprocal influences

(of mother-on-child and child-on-mother) in a mother-child dyads (Lewis &

Roscnblum, 1974; Rogosa & Awmbron, 15?6).
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" An example from research on persona11ty development illustrates thlS :

© -

point. A number of cross-sectional studies have shown that ''there is no.quest-

_ion that there is a persistent relationship between the self and academic

achievement [and] that theré is a continuous interaction befween the self and .

.. academic;acheivement, and that each directly influences the othexr'" (Purkey,
1970, p. 23). Ina 10ng1tud1na1 study of these varlables, O’Mally ‘and Bachman

(1976) explalned the advantages of such a de51gn

- .
A - H

“ There is reason to believe that self-esteem is linked to educat10na1
and occupational attainment, and that this linkage probahly 1nv01ves
a number of dlfferent and complexly interrelated patterns of causat-
jon. While it is a rather simple matter toO point out the complex1t1es,
the problem of dlsentangllng ‘such rec1proca1 causation 1s extremely ' '
difficult and vexing. In most-cases the empirical ev1dence is
limited to a static relationship at a single point in time--e.g.,
survey reépondents with hidher levels of educational attainment alSo

have higher mean scores on a measure of self-esteem. While such’

*

findings are 1mportant 17 demonstratlng that a relationship dces
exist, they leave us 1arge1y in the dark about causal dynamics.. "(p. 5)

" B. Long1tud1na1 Research and Gla551ca1 Experlmental Design and Analysis

While longitudinal designs are preferable to cross-sectional ones in terms
of demonstrating causality and studying intraindividual change, they also ) //
... Ccreate practical problems. Most longltudlnal studies must be performed outside

of controlled laboratory settings, where the characteristic features of classic- .

S

al experimentation—-control of ektraneous influenceé, manipulation of treatment

variables), and equivalent experi?ental groups--are frequehtly impossible to

1mp1ement. Furthermore, developmental studies often focus on relations of
7

variables that cannot be control ed or manlpulated (e.g., organismic var1ab1es)
. :j

»~
#

i
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One advantaoe of this break with classical experimental” design lies in the
increased ecolog1ca1 va11d1ty of natural1st1c studies which decreases the

threat to the external va11d1ty or generallzablllty of the study (Bracht &

t

Glass, 1968).‘ Bronfenbrenner (1974, 1976) argued persuaigvely for the necessity
/ .
of ecologlczi/valldlty in developmental research and claimed that "much of
1

development psychology is the sc1ence of the strange behav1or of children in
strange 51tuat10ns w1th strange adults for the briefest possible perlods of

. tihe (1974, p. 3):. Bronfenbrenner (1976) called{for a new perspective in
developmental research termed "'the experimental ecology of education".

The increasing ;ecognition of the need for neturalistic, longitudinal
studles has led to a press for the development of appropriate design and analy-
tic techniques. From the perspectlve of 11fe span psychology (Huston-Stein and
Baltes, in press) stated that "most of the tradltlonal exper1menta1 des1gn

methods in the psychologlcal sciences are ill-suited for the assessment of

long-term chains and distal causes. Therefore, 11fe—spah>researchers have

‘pointed to the'general usefulness of quasi-experimental designs" (p.l1ll). Given

the break in design strategies with traditional psychological experimentation,
the analysis technlques successful in making causal 1nferences from experimentel
data are not likely to be useful for the analysls of causal patterns in natural—
istic studies. Wiley and Hormik (1973) dlscussed this trend in design ano
analysis ' ’ . .
Sociological and social-psychological research workers have long been
) ’conc;rned with the attrlbutlon of causa11ty to_variables representing
basic sociological or psychologtcal concepts. Given the difficulty

of variable manipulation in many real social settings, scientists’

v P
have turned to statistical methodology rather than experimerital
tcchniouos of investigation for help. (p.1):

Huston-Stein and Baltes (in press) speculated that "with more powerful

¢ -
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.. methods of inferring causal relationships from naturalistic, correlational

o,

data, child deveiopmentalists may pe\lured away from their heavy reliance on

from observat10na1 data s 1nd1cated one path to ''the more powerful methods"'

v )
¥

tln the absenqe of experiments the statistical analysis has to be
\

closely coordinated with subject-matter theory both in specxfylng the

causal hypotheses and_in-testing them against other sources of know—

ledge. A crucial feature is randomizatlon, which in exper1menta1

situations reduces the disturbing effect of uncontrolled variation.
' This device not being a.ailable in observational situations, it is a
pert1nent problem to what extent the. dlsturbance factors should be

taken 1nto explicit account, and at this p01nt strong reliance nust
1
fall upon subject-matter argument. (p. 31)

-

The attr1but10n of causal effects £rom nonexper1menta1 data can be accom-

2

.

plished,throughagausal models which incorporate substantive knowledge into the
Ed : ' : -

analysis of data as a substitute for experimental controls. The process by

which substantive knowledge is incorporated into the data analysis in a causal

modei through the construction of causal models from longitudinal studies is

illustrated in sections III and IV. .

II. LOGIC OF CAUSAL MODELs

— — ———

¥
f

A. Theory-based Research ‘

A strong appeal for theory-based research was made by Shpnes (1973):
I think the time has come to call for.aimueh deeper theoretical
or1entat10n of research in education in order thereby to increase 1ts
relevance. . In many areas, the greatest limitation on‘research is n0t
the absence of hard-~ data studles, but the absence of serious and
¥ :

sophisticated theory (p. 23)-"

\ -
4
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1aboratory experlments" (p. 11). Herman Wold (1956) in a paper 'Causal %nference-
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Suppes ejects the "firm preJud1ces and soggy arguments" common in educat1onal

H

. debate in favor of "well-put- together theories thal have definite and precise
assumptlons and deductlve conseqhences that bear on behavior and the way students
learn" (p 24). Suppes (1974) argues that theory goes beyond emp1r1clsm to

expla1n the compleX1ty of phenomena. -He attacks the "triviality of bare emp1ric-

ism" whlch at the ez;;eme is the simple record1ng of facts that leads nowhere. -

A similar crit¥cism was voiced by Einhorn (1972):
As methods and techniques get more complicated, the role of theory in
research is being dangerously ignored in favor of purely eupirical
- work that proceeds w1thout so much as a hypothe51s. Like Pirandello's
characters in search of an author, many of today's ‘researchers seem
to have an assortment of tcchnlques in search of a substantlve problem.
(p. 367). ' ‘

' In order to guide'research, theory should‘be explicit ahout the relations
of its ¢omponents-—that is, be translatable into enpirically justificable
statements-—since vague, verbal theories (which Suppes terms fantasies) will
rarely help to focus research. One of Suppes' examples of fantasies in educat-
ﬁional research is Piaget's concept of developmental states since it‘"operates
in large theoretical terus and with little regard for detailed experimental
1nvest1gatlon" (Suppes, 1973 p. 13).

< e Phllllps and Kelly (1975) examined the "much-touted h1erarch1cal theories

of development"'

N, H1erarch1cal theories may be potentially useful in un&erstandlnc’

A

human development. At the present time, however, the scientific

status of, such theorie: is obscure. . In the flurry of experimental
research on child development, it is not always clear what type of
evidence would count as conflrmatlon or refutatlon of such a theory,

or 1ndeed whether empirical research is relevant ‘at all. These and

.
i
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related issués have not been totally ignored in theyliterature, but
discussion has been hampered'by the failure to draw some important
- distinctioné and to make éxplicit certain(underlying assumptions.

| (p. 352) |
The strongest condemnation of obscure, vague theor; is prov1ded 1n Popper's
(1972) discussion of the psycholoalcal theories of Freud and Alder.

- - "This does not mean that Freud and Adler were not seeing certain
things correctly- I personally dq not~dou§t that much of what tﬁey
say is of considerable importance, and may well play its part oﬁe day
in a psthoiggical science which.is testable. But-it does‘ﬁean that
tho;e "clinical obsérvations" which analysts naively believe confirm
their theory cannot do th1s anymore than the daily conflrmatlons
which astrologersAflnd in their pract}ce. And as for Freud's ep1c‘of
the Ego, the Super—egé, and the 13, no substantially‘§tronger claim

- to scientific status can be made for it than for Hoﬁer's collected
stories ffgm Olympus. The;e theories describe some facts, but in the
manner of myths. They cont;ie rost interesting psychological sugge;t-

.

ions, but not in a testable form. (p. 23)

Explicit statments of theory are essential for worthwhile theory-based
résearch. Many developmentaiﬂtheories are étaied ambigubusly; consequently,
2 theycare often misinterpreted and are difficult for the researcher to test.
1y,

: Theorists use notiuns like causes, forces, systems, properties, schemes, and
stages. The research must infer the relations of tﬂese terms from the ihcomplete

Spécificagion provided by the theory and must select or devélop measures that

aci as indicators for the unmeasured variables in the theory. Unfortunately

there are substantial variations in the ways researchers interpret theory. The

_more aﬁbiguéusly.the theory is stated, the more confused are the results of

- — ~empirical investigations.

272 .«
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The ‘gap gg;ween theory and research is not uncommon in social science.
. ' ot
Blalock (1963) described the problem in sociology and one approach to a solution:
o There can be little disagreement that in éocio}ogicél theory wve haﬁg
"  made qge of numerous concepts thaéuhavq been v;gueiy defined...
These are the 'big words' sociologistskgre often accuséd af using.
Sometimes they are thrown_into theoreticql discussions with almost
"reckless abandon. In other instances they may be rathér vaguely
linked with measured indicators that are referred to as 'correqugs',

; * "manifestations', or 'symptoms' of the underlying variables. Sometimes

the 'big words' are utilized to provide explanations for eﬁpirica}

‘

relationships, but upon detailed logical investigations ﬁe‘find that
these theoretical explanations make much less sense than supposed...
One possibility is to retain whatéver vaguely defined conéépts we may
think will ultimately prove ﬂseful, whilé at the same time attempting
to spell-out exacfly how we might link these theoretical concepts
with.specific measﬁ;eq variables. (p. 62j

The major problem for empirical research is that when theories include

ambiguous concepts whose postulated causal relations are not well-specified, .

the resulting research is usually a collection of non-comparahle studies which

>

relate only vaguely to the original theory. Two examples are research on Piaget's

theory of moral development and research on attachment (Ambron and Rogosa,
1975) .

B. What are Causal Models?

S A causal model is a representation of the postulated causal links between

‘the variables of interest and is an explicit and quantitative statement of

theory. Through the use of causal models verbal theories - are recast in terms

¥

of the causal processes assumed to operate among theavariables under considera-

tion. The use of causal models forces the theorist and the experimenter to make

273
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explicit all causal assumptions in an internally consistent systen. Cléarly,
this is a large step in overcoming the problems with verbal theories. As
Duncan (1966), asserted "The great merit of the path scheme, then, is that it

N

makes the "assumptions explicit and tends to force the discussion to be at least
intérnally consistent, so that mutually incompatable'assumptions are not introd-
uced surreptitiously into different parts of an argument extending over scores
of pages" (p- 9). ' . ; . - -

lln the fsrmulation of a causal model, the important variables in the
developmental process.are first identifiea, for example, self¥esteem, educat-
ional attainment, occupational aépiration. Then the causal links between these
variables over time are specified. On psychological grounds someAvariables can
be said to influence others; in other instances the causal link may be assumed -
not' to exist., The variables to be included in the model and their postulated
causal links may be obtained from the theoretical formulat:on of the problem.

éausal-models have been discussed under a variety of names_in a number of
different literatures. Structural equation models is the term used most often
in econometrlcs, path analysis was fornulated by Wright in genetics and brought
over into sociology as path analysis or as causal modeling. Goldberger (1972).
provided an interesting history of the parallel but 1ndependent historical
developments in econometrics and biometrics. Structural equation models are
more aeneral in formulatlon and in estimation techniques than path analysis but
the logic is nearly 1dent1ca1g The models in this chapter are termed causal
models o; struc;ural equatlon models, but almost all comments apply to the
special case of path analysis also.

Causal models are ;egression-based procedures. The regression equations
whicﬁ compose a causal model are called structural regression equations.
Systems of structural regression equations, in which each equation represents a

-—causal-1ink between-variables, are distinguished from predictive regression

7b95
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equations which represent empirical associations with no special regard for

whether the predictor (i.e., independent) variables are theoretically interest-

. &>

ing. . s . .
Predictive regressidn, on the one hand, is concerned with identifying the
best linear predictor of the dependent variable from a combination of the
independent variables; any observable predictors that add to the explained
variance, the squared multiple correlation (Rz), are utilized. The usual

multiple regression techniques are exaoples of predictive regression. 1In

structural regression, on the other hand, the concern is with the interrelation-

" ships of the theoretically important variables, not simply‘the pfedictabil@ty

of one from the others.

In st;uctqral regression, the mechanism that gengrated the .observations
can be chaéécterized in terms of more fundamental parameters. Goldberger
(1973} proved that, ig general, tﬁe coefficients‘iﬁ predictive regression will
be a mixture of the structural parameters; hence a change in one structural
parameter may change all the:predictive regression coefficients. Therefore, ¥
the more fundamental structural parameters have the invariance and stability
desired of scientific formulations. As Abrabam Wald (1940) pointed out, '"The
knowledge of the structural relationship is essential for congtructing any
theory in the empirical sc£;Bces... in deducing lawg from observations we have
the task of estimating structural ;elationships" (p-300). Tukey (1954) concluded,
"Almost any causal theory comes sooner or later to deal with structural regres- .
sion rather than predictive regression” (p. 415.

Once a causal model {s constructed, the set of causal links in thé model
are written as a set of structural regression equations. Estimating the péra-
meters in the structural regressions (see Chapter , thi$ volume) yields

cstimates of the causal influences betweengthe variables and thus is a calcula-

tion of how change in one variable in the system will affect the other variables
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in the system. The results of these analyses depend on the theory which deter-

éined the structural equation model. Intuitivéiy; the estimation techniques for
these structural equation models decompose the observed association of the
variables inic direct and indirect effects. We are, in some sense, taking the.
correlation apart ghd examining its causal components. However, this decomposi-
tion of the observed covariation depends upon tﬂe particular causal ordering

assumed to be valid by the researcher. The incorporation of relevant substan-

tive knowledge into the regression analysis may be termed analyzing data condit-
Al ~

— — e e «

ional on a theory. From the theoretical aid psychological conceptualization of
the investigation, the observed association between the observed variables is
specified.# Then the regression analysis proceeds to supply estimates of causal

parameters from the nonexperimental, correlational data. Of course, the numbers

'A' F . e - e . -
obtained are reasonably correct only if the substantive specification is adequate.

These'causai mq?eling techniques cannot prove >ausality; thef'can help one
choose between relevant causal hypotheses py £uling out those not conforming to
the data. This is thé‘logic‘o}:falsification ﬁPopper, 1972). @hgn theories
are expressed as causal models, they are subject to rejeétion if contradicted

by data. - -

C. Spurious Correlation: A Causal Interpretation

- A specific ﬁroblem which illustrates the importance of careful interpreta-
tion of the reiétionships between variables is that of spuricus correlation,
~where the association between two variables is entirely due to the influence of _

a common factor. In investigating spurious correlation interest lies in whether
t

a relation between two variables (x and y) disappears when a third variable z

isfintroduced. The correlation of x and y is spurious if the association of x
and y is totally due to the causal influence of z. This is illustrated in

Figure la. To guard against this possibility we might compute the partial

correlation rxy z between x and y with 'z held constant. If rxy z is effectively




zero then this may be the spurious case in Figure<fla. But i§ is also possible

B . ‘\

that z is a mediating variable in the 'true' relationship of x and y -as illust-
— .

[ 4

_rated in Figure 1b.

- - ot S0 o it A W st T A A S e ey

Whether an association is spurious or "trhq“\(from a causal standpoint)

cannot be determined on the basis of correlatighs. Information about the

¢ v

" causal ordering of the system of variables is required, which is best derived

from substantive theory. o - .

; -In Simon' s (1954) classic example, a h1gh negative correlatlon is found -

Kyt

befweeh x, the percentage of a group that is married'and y, the average number
: t ] M .
of pounds of candy consumed per month per person. Can we conclude that mar- \

. riages causes a reduction in candy consumption? Variable z is the aVerage age

of members in each of the several groups. However, when age 1is held constant,

‘_,

" the correlation disappears. From common sense the relationship in Flgure la is
. LPE - el

1

- ’ -
. believed to.hold; the correlation between candy. consumption and marital status

Ay
’

. is jointly caused by a variation in age--the relationghip is’sgggious, This 1is

a ‘common sense' conclusion, Put it depends on the assumption'that certain

!

E

relations are not causalih

(b) was made by the a E‘!’?@ assumptlon that the age of a person does not

A e

» depend upon marital status or candy cénsumption. Here the answer 1is obV1ous,
2

but determlnlng causal orderang and structure is often treacherous, and- exp-
- l

11c1t statements of theory are necessary for the unambiguous 1nterpretat10n of

data. : i -
l

' Althouch problems with the causal ordering of variables affect all anal-

ysis schemes, a number of otLer characterlstlcs of corre1at10n coefficients

>

.make their use to support claims of causation in non-exper1menta1 studies

’

» 4} - r
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17 this ekample, the decision between models (2) and
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a. Correlation betwéen' X and b. The true association
- Y is spurious since the - between Xand Y is
association is entirely due mgedi'ated_ by Z.
to the causal influence
of Z. ’

Figure 1 -- Example% of true and spurious correlation. The partial
correlation Tyy.z will equal zero in the population in

both cases. Assumptions about the causal ordering of
the variables are necessary to differentiate a from b.




inappropriate and often misleading. Correlation is a measure of the linearity
of a relationship between two variables. Correlation is a descz;iptive statistic,

and contains no information about the direction of the association. Thus

correlations are inappropriate for causal statements. However, many longitud-

-

inal investigations Teport correlations as evidence of causal relationships.

Longitudinal researchers may do we11 to heed the message of John Tukey (1954),

who in an article on causal models, aroued ncdrrelation coefficients are ]ustl-
g.
fied in two and only two circumstances, when they are regression coefficients,

[

LV

or when the measurement of one or both variables on a determinate scale is

. hopeless". (p. 39)

In the substan‘_lve examples. to be presented in Sectlons II1 and IV, some
X

s0f the many pitfalls assoc1ated with the use of con'elatlons ‘for causal state-

-

Aments_ are illus_trated. The. use of reore>s1on coeff1c1ents solves some of the 4 - -
problem associated-with the ‘stability of reported effects over d1ffer€h:..8£p1es.

.As Tukey {1954) noted, "We are very sure that the correlation cannot remain \tshe

-

same over a wide range of situations, but it is possible that the regressmn '

coefficients might'" (p. 41). The Tegression coeff1c1ents that possess the -

desired stability are those of structural reé‘i‘ession equations.

-2

III. CONSTRUCTION OF CAUSAL MODELS ‘ .

: The construction of 2 causal model from a‘l;'reviously published develop.—

mental study is presented to clarify the preceding, discussion of their pro- L
perties. Radin (1971, 1974) inves;tigated antecedents of cogmf.ti.'ve devélopment

in lower-class children. Radin was primarily interested in the effects of

child rearmo practices, naternal behavior in part1cu1ar. Based on theoretical %
,and emp1r1ca1 studies Radin hypothesized that "maternal ‘nurturance would fo‘er
:mtellectual functlonma of the child" (1974, p. 1126). Radin also considered'

—

evidence that the motlvatmn of the child to achieve is an 1nterven1ng variable

{

in the relationship between maternal behavior and cognitive functioning.

500 . o




Radin's first hypothesis that maternal nurturance would foster the child's
intellectual functioning can be represented as a relation between the constructs

Matefnal Behavior and Cognitive Functioning’as depicted in Figure 2a. The
< ~
arrow ieading tc Cognitive Functioning indicates the hypothesized causal influ-

ence of Maternal Behavior on Cognitive Functioning.

. -~

<

The consideration of motivation to achieve as a mediating variable gan,be
. N . 1

.

incorporated into the re1aticnship described in Figure 2a. Figure 2b ‘includes
’ ’ 3 - . ~

the Motivation construct in the postulated causal ordering. The model in

. -~

Flgure 2b exhibits the two causal paths by which Maternal “Behavior may 1nf1uence‘
2 Cocn1t1ve Functlonlnc - The d;rect path connects Maternal Behavior and Cogn1t13e ’

.Functioning, and the indirect path involves the Motivation construct as an

intervening variable. Figure 2b is a representation of:what is termed the

- s
- -

structural model, which expresses the assumed ‘relations between the unmeasured,

———

var1ab1es. Unmeasu ed or unobserved varlables arise when the measurable vaf1a—

-

bles differ from th ir theoretical counterparts. Unmeasured variables often .

’W - - r

are theoretical constructs which haveiimplications for determining the relatron—

ship betwzen observables. Slnce theory is most often expressed in terms of

constructs and unmeasured variables, the structural nodel conta1ns the statement

of substantlve knowledge to be 1ncorporated into the data analysis. - Causal

.. models prov1de the machlnery to relate theory and hypotheses .expressed 1n

unmeasured constructs to observeé variables.

-
-

Frequently the variables actually measured are théoretlcally unimportant
in their own right, but are taken as indicators of the underlying, theoretrcally—'

significant constructst As Tukey (1954) explained med "a prime characteristic of

quant1tat1ve causal theories is that they include quant1tat1ve concepts which

are nbt all subject to d1rect measurement" (p- 40) . The goal is to make causal

-

{
- statements about the unmeasured variables from the observed relatlons ‘of the

v - ~ »
P .

-indicators.

e




.«

The measurement model provides the link between the constructs and the
4

i~

indicators. Radin measured tyo indicators for each of the constructs in Figure

2b.. The two 1nd1cators of Maternal Behavior were measures of warmth and

-

restrictiveness, ‘obtained during a one hour observation of 1nteraction between

. mother and child. The two indicators of motivation were part of the Pupil

-

Behavioral InVentory (PBI) and a psychologist s rating of the child’s motivation
=

- while taking the Stanford-Binet Inteiligence Scale. For Cognitive Functioning

the two indicators used were the Stanford Binet and -the Peabody Plcture Vocab-

ulary Test (PPVT). E

(9

3

L3
- —— . - "

. ’
r——

figure 3 depicts the full causal model, comb1n1ng the structural and

measurement models, of Radin's 1nvestigation. "The symbols 81,62,63,6 through

.

6) refer to the parameters of. the causal paths which can be estimated from the '

-

data. In figure 3 the e; represeﬁt the part of the observed variable that is

R not part of the construct it is presxned to measure. The es include measurement
-€¥ToT and other 1nformation irrelevant to the construco« The e; may be thought
of as ‘the unique part of the -;:erved_variable. Often the e; are assumed to be

ncorrelated with each other. In Figure 3 a correlation between € and eg is‘

‘

allowed. This correlation is not assumed to be zero because X4 and Xs, measures

>

" $. .7
of Motivation<and Cognitive Functibning respectively, are obtained on.the same

occasion, the administration of the Binet. It is reasonable to expect X4 and

X% to be related- for reasons additional to the presumed relation between Motiva—

- ¢

-tion and Cognitive Functioning. The ability to estimate models with correlated

5
~

“errors is an important feature of the estimation techniques for these models

S

(See Joreskog & Sorbom, 1976a; and Chapter this volume).

’

[ 4




Mcmqmi
Behavior

Q. Represen’m’non of the hypothesazed causcﬂ
effec’r of Maternal Behovzor on i\Cog‘

nitive Funchomng of the Child.

Maternal
\ Behavior

R Y Represen’mhon of ’:he three constructs
' (unmeosured vanables) in 1he posiu!ated

causol ordermg T
‘- i - ¢
Figure 2 -- Representatlons of the causal relat1onsh1p between
s . Maternal Behavior and the Cognitive Functioning of
N the Chlld
«’. ) ’;“ N , R
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The causal model is equivalent to a series of regression equations with

’

the same parameters as in Figure 3.. The structural model is

. RS T 31’% ML
‘f i \ ’ XC‘ = + B x +V .
The measurement .model is
. i _ AR
X1 .GIXA te ‘
- . R R #
‘ . _ AT
i - X3 - GSXB,+ e;
% X4 = , 54XB te, #
X . Xg = SXp+eg o
Xs = S * %% - o
. ‘:; *
¢ . Insert Figure 3 about here .

FrOm these two sets of- equatlons, relatlonshlps can be expressed strictly-

-

w« T o 'o oo
between the observables and the unknown parameters. These regresslon equations

%

are called the reduced form. To estimate the model, the constraint 6 =8, =8 =

1 1is 1ntroauced whlch constralns XA to be in the same metr1c as Xl’ etc. This

constralnt "does not effect the generality of the ana1y51s._

';

» -

It should be noted that théwusqal mult 1p1e regre551on approach is 1nadequate

-

when multiple measures aindicators) of the same construct are presentg High =

. c0111near1ty leads to the problem of the 'bouncing beta welght' and results in

theoret1ca1 nonsense (Gordon, 1968).

Y d
H

In this example the parameters 81, Y and B representlng the causal

influence between the constructs, are of central 1nterest.A The direct 1nf1uenbe

of Maternal Behavior on'Cognitive Functioning is.xepresented by B . Tﬁe indirect.
T

- -

effect of Maternal Behavior on Cognitive Functlonlng, “with Motivation as the

,medlatlng varisble, is the product of B and B The 1mportance of Motivation

- \ -
~ .
-
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‘COﬂSi’I’UCfS (unmeasured variables)

| XA'-':Mdtgrnal Behavior
Xg— Motivation of Child
X~ Cognitive Functioning
" of the Child

lnglicaio‘rs {measured variables)

-~

X, —~Maternal Warmth

Xé — Maternal Restrictiveness
X3~ Motivation (PBI)
+ X, —.Motivation during Binet

X, — Stanford Binet Score

AXs~ PPVT Score

Figure 3 -- Complete causal model of Radin's investigation

with constructs and indicators labeled, -

-,
-
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as a m&diating variable can thus be gauged by the relative magnitudes of the

estimates of~B3 and 81: 82. k

Radinls?originel analysis (1971, Table 2) did not produce conclusive
results on thehimportancé of motivation. In the original analysis, using

partial correlations between the indicators, all of the indicators could not be
. ’ ‘ . .

-

s

considered simultaneously. Causal model methods can estimate the relationships
. between the unmeasured variables using all the data at once. A reanalysis

" based- %? the present formulation (Rcgosa, Webb, & Radin, 1976) indicated that

1

motivation is a very important, intervening variable for the influence of

,—a~

Maternal Behavior on Cognitive Functioning. ‘ ST

The pr0cess of selecting the variables to be included in the model and

» -

postulating the causal relationships of the included variables and the reSidual

S~ terms constitutes the specification of the model. Mistakes in the SpeCification

.such as omitting an important causal variable or incorrectly assuming that a

' causal path does not exist are termed specification-errors. Duncan (1975a)

™~

suggests t& at specification error "is quite a useful euphemism for what in
blunter language would be called 'using the wrong model'. There ‘are many more
wrong models than right ones, so that specification error is very common, X

though often not recognized and usually not easily recognizable" (p- lOl)

At

In the Radin model, at least two measures of each, construct were needed in

{)
‘order to estimate the parameters in the model. This is the technical problem
Ay 7’
of identification; a model is identified when all the causal parameters-are

o uniquely pstimable from the data. Underidentification results when there 1is .
not enough information to estimate certain causal Uarameters.
For many constructs used in developmental research a single measure will

rarely be sufficient for valid measurement, and thus multiple indicators are

g

important for both the technical concerns with identification and for the

substantive problems of valid measurem°nt. Baltes and Nesselroade (1973)
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~ a

if one wishes to deal with more zbstract concepts, such as patterned
change~-change in the interrelationships among a var-ety of measures--
then a pultivariate approach is necessary. It is from the interrel-
at1onsh1ps anong measures (e.g., covariances), so often 1gnored in
developmental research, that we nay eventually extract the raw mater-
ial that can be eff1c1ent1y molded 1nto general, but powerful constructs
to"aid the selentlflc study of development. A related point 1s’that
when research interast centers on chaﬁge in more molar behavior .

) T

‘patterns such as anx1ety and aggression, no 51ng1e variable can serve

as a perfect indicator of the target construct. The use of multrpie

indicators (measures) enables us to form some combination of measures

RN which "locates'" the construct more precisely. (p,}2§21_#“,,

>
A

- The choice of multiple indicators is not alwa&s desirable, “Since it
~indicates the presence of redundant information and not necessarily an increase

in measurement va11d1ty Detailedrdiscussion of the choice and interpretation,

0

of mu1t1p1e indicators may be found, for example, in chapters 7 and 8 of Blalock

‘

(1074). | :

-

Iv. LONGITUDINAL PANEL DESIGNS

One ef the most common and useful designs for 1ongitudina1 research is the
longltudlnal panel de51gn where the same sample of un1ts, is observed at more
than one p01nt‘an time. Essentially, panel de51gns are a comblnatlon of t1me-
series and cross-sectional designs, with a cross- sect1on (wave) be1ng measured

at each time point. Typ;cally, the number of cases in edch wave 1is con51der—

-erably greater thah the number of waves. Longitudinal panel designs' are often

"employed to study rec1proca1 causation, using "10ng1tud1na1 (or 1ntertemporal)
variation to disentangle reciprocal causal effects" (Hannan & Young,1974 p-

© 2). Hannan & Young presented another use for panel designs:

’




A closely related motivation for panel analysis arises from work with

‘models containing unobservable variables. Such models confront

_equations models both measured and unmeasured variables. The use of
unobservables will ordinarily lead to probléms of identification
unless strong restrictions are placed on the model. One possibility
‘that occurred to a number of sociologists is to measure the same

-

variables at multiple points in time,and”presume that the causal

‘relations under study are time-invariant. Under a limited number of

\\'

< conditions this strategy leads to identification of multl—variable,

multi—wave panel models containlng unobservables. The main p01nt for
a "‘o

presen* purposes is that this use of the panel de51gn uses temporal

variation to eliminate 1dent1f1cat10n problenms. (p. 5)

The assumption that the causal relations under study are time 1nvar1ant

_means that the configurations of the constructs aré -assumed identical across

-~

/ the different time periods. This is equivalent. to an assumption of "explanatorj*

continuity'". "Explanatory discontinuity occurs when behavioral antecedents or

mediating processes at one period of development differ from those at another

hd 7

period" .(Huston-Stein G Baltes, in press). In a causal model qf a longitudinal
) panel,‘explanatory discontinuity would mean that the causal orderings differ

' among the waves, and a model assuming invariance over time would be misspecified

-

“"in some waves. No assumptions that the causal parameters are invariant over

- time is being made; the parameters are allowed to vary.
< N . ° . *

- L - .

. A, Two-Wave Panel Designs -

-

" The 51mplest (although not the 1deal) panel de51gn is the two wave panel

with observations recorded at two points in time. In the most popular and

widely discussed two-wave design, two variableg are measured at each time point’
. - \ -

’

o 08

P .- measurement and other analytic difficulties by inserting into structural

7

X
Rl

* e
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and\thus the design is termed the two-wave-two—variablg/panel (2w2v). The

representation of the causal model usually assumed for 2W2V panels is shown in

-~

Figu e 4. Some important reétrictions are built into this model to allow estima-
tién of the parameters. Most important is the assumption that lagged causation
is t é sole causal forcg; simultaneous causation between Xz énd Yz is ruled

ot/ _Also, the rusiduals (disturbance terns) u and v are assumed to be independ-

%

ent, and the variables must be measured without error. More general models are

‘ ?gnsidered by Duncan (1969, 1972) who concluded:
//// " no set of 2W2V data will answer, a qaestion about d{rectipn of causal

- -

influence or relative importénce of causes except on some set of
definite assumptions. If one,wishes}to avoid assumptions of the type
illustrated heré, the only recdurse is to expand the study design
beyong the limits of 2W2V (1969, p. 181). '

- - o b S oy T O W wm S wm w m

- - = = = o - b S T o

The configuration.in Figure 4, can be represented as a regression model:

e

Xz 81X1 + YZYI + u
AN Yo = BXypry v o
Tﬂ% parameters, Blﬁ Bzf Y, apd Y, are éstimable by fegressibn, and the esti-
., mated causal effects ;ré easil& interpreted, when the restrictions of the model
. N ;
are satisfied.

A rgéearch example of the use of the 2W2V design is the investigation of
E?aho,-Kenny, and Campbell (1972) concerning the causal relationship between.
iatelligence and achievement. The substantive background for the study was

‘ that: - - o7
The literatur;»of cognitive development has produced two opposing .

models of mental growth. One holds that the acquisition of concrete

ERIC 288309
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Figure 4 --

r

3 N
Representation of the causal model for
2W2V 'panel. Assumptions built into this
model are no sinultaneous ‘causation,
measurements without error and uncorrelated

residuals.
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.

mental skills causes the later davelcpment of higher order organiza-

" tional schema or rules. The contrasting model postulates a progres-

_ sion in which the initjal acqﬁisition of larger schema results ih the. -
inc;eased‘capgcity to acauir€ new concrete skills. Wwhile both probably
operate‘to some extent, an Ettempt was made in this research to

. determipe the preponderant developmentel sequenee. (p. 258).

-

The research guestion was:

-

Does the acquisition of specific skills'or the lea ning of specific

information (Achievement) result in an increased ability for abst-

raction (intelligence), or is the progression more acfurately describ-

? . . .
ed as one in which intelligence ¢auses achievement, that is, goes the

-

greater ability to form abstractions result in a greater amount of
gr

concrete infor@ation being absorbed and retained? (p. 258-259)

‘l—

The research design consisted of measurements of intelligence and achievement
at two points in time. The data are intelligence (Lorge-Thorndike) and achieve-
. i
. i . Y -
ment (Iowa Basic Skills),test scores of children attending the fourth grade in

N . .
the academic year 1963-4jand the same tests glven two years later to the same

students. If the required assumptions were made, the data can be entered into

the model of Figure 4 (with X as Intelligence and Y as Achievement), and the

~ causal parameters, estlmated Crano et al. did not perform a causal model

-t S,
ana1y51s of their 2W2V data, but 1nstead enployed the method of cross-lagged

correlations discussed below.

~

In the educatlon and psychologlcal literature, much attention has been

B

given to cross-laggnd correlatlons as a means for 1nferr1ng the direction of

causal influence. In Flgure 4 the cross-lagged correlations are ry y and
‘ 1°2
If r the suggested interpretation (Campbell, 1963) is that
Xy’ XY, ” Ty,
-X causes Y. Although the cross- lagged procedure has come under sharp attack

\\ .. (Duncan 1969, Goldberger 1971) its use is still W1de1y recommended (e g,

*EKC I o 311
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Clarke-étewart 973; 1975; Huston-Stein § Baltes, in press). Goldberger charged
,that ‘the 3ust1f1cat1on of the cross-lagged correlatlon method is based not on

l -l

“evidence but on "1ntu1t10n, huncn, and plausibility, which are hardly persua-
Y ¥ ' B .

" sive" (1971, p. 102).- A super1 T method for inferring the direction of causal
7 >
1nf1uence is to estimate the _parameters of the causal quel (Flgure 4) wh1ch
a ‘ \ . ~

Y 2
have d1rect 1nterpretat1on l ' -

-

i

The cross—lagged correlations are a complicate& function of the causal

v » ot
parameters Bl, Bz’ Y1’ Yz.' It is easy to construct cases where cross- lagged
. - o
\\he_wrong answer; that is 1ead to the inference thdt

¥

the d1rect1onbof’causa11ty is opposite to that in the underlylng model. For

¥ 1

o example in the causal model (Flgure 4) let all variables have unit variance and
Y

.

correlations give exactly t

' let the true values of the causal parameters be B 5 0.9, Bé 0.3, Y= 0 1,

1Y2 0 and rx Y 0 6 " Thus the underlylng causal influence over t1me 1s in
, ¥y 7
% the d1rect10n ‘of X causes Y. The cross- lagged correlations are Ty y = .36 and
. . 12 -
Ty X = :54 and the conclusion would be that Y caudes X. This example is not
P 172 - .

just a mathemat1ca1 aberratlon, 1arge differences in stab111ty of the two

measures ire common, for, example, in research on mother-child interactions (see

.
- N - e

. Clarke Stewart; 1973) and will cause the cross- -lagged analysis to break down.

i Estimation of the underlying causal model 1s-preferred to developing a spec1a1
theory of cross-lagged correlat1ons. ‘ “
© *B. Complicat jons in 2W2V model : Y N

s
- .

As Duncan (1972) sagely observed, it is unreasonable to expect "that in

: panel analysis the usual obstacles to 1nference and est1mat10n are suspended

for the benetlt of the analyst" (p. 37). Two major obstacles are measurement

3 error and specification error. Their consequences for analysis are dlscussed
‘below in the context.of the 2W2V design. The consequences of violation of

assumption and the consideration of alternative models is, applicable to all

causal models.

291
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A 2w2Vlmode1 with measurement error is shown in Figure 5. The causal

represent

their use:

1nf1uenceq are presumed to be transmitted through the true scores X*, Y* which
are unmeasured. Because add1t10na1 parameters must be included in the model to
xﬁe'measurgment error there is no longer enough information from the
obserQables to estimate:£hé c;;sal paths, and the model is underidentified. The
_problems with cross- lagged correlations are naturally increased when the varia-

L
bles are'measured with error. Wiley and Hornik (1973) argued cogently against

-
.

Comparison of cross-lagged panel coérelations was the first widelﬁ‘
advocated non-experimental technique for the attribution of causality
to quantitatively scaled variables in sociai-psychological research.
In add1t10n to the lack of a clearly stated statistical model, one
unlversally recognized weakness of this technique is 1ts serious

— -~

distortion by commonly occurring measurement errors. One especially

- -
3 -

distorting event is systematic change in the reliability of variables

over time. Such events occur, for example, when a true variable's

: | . & .
variance changes, although the quality of the measurement remains the

>
.

same. This is nearly always the .cas® when any change in a true

varlable takes place (Wlley & Wiley, 1970) Thereiqre, it is

difficult to justify the use of [this] technique in typical social

resea;bh settings. (p.2)




4
\
ki

<

Representation of a 22V design with measurement
error. In addition to the previous dssumptions
for 2W2V panels the measurement errors (ei) are

~

assumed uncorrelated. Howeyver, the causal param-
eters of %nte;est Bl’ 82, xi,éyz,-which represent
the causal influences between the unmeasured true

scores, cannot be estimated without additional -
information. -

o e oy
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If independent estimates of the reliabilities are not available the

o

additional information needed to estimate the model may be obtained by two

i

strategies: increasinc the number of measures of each variable at each point

) (Wiley &,Hornik 1973) or 1ncrea51ng the number of time points to three (Heise,

1Q69). Wiley and Hornik (1973) explain the use of duplicate measures represent-

t - »
L]

v s
v

We suggest expanding the number of measures of each variable at each

point. Two,measures of each variable at each time point produce
enough additional information to allow the calculation ‘of ‘all the
quantities in a quite general two-time point model. (p. 8)1

- - - —— - = - -

- - - - - — - - = . wn = = em=n = -

Specification error accurs when the postulated causal model is an 1ncorrect

“r

representation of the actual (psychological) process. A commonly considered

form of specification error in panel analysis is the existence of a common

-

factor causing both the X and Y variables (Duncan 1972; Kenny, 1973). Duncan
presents many etamples of specification errors due to omitted causal influences
and correlated errors. Clearly, numerous ways exist for assumptions to‘be
‘violated. 'One example presented by Duncan (1972, p. 56) 1is adapted as Figure

7. 4The oata reported by Joreskog (19732, see also Chapter this volume) are
- ~ 13 - Q -

test results in mathematics and science taken in the fifth and seventh grade.

It may be reasonable to posit that a common factor (F) is ‘the sole causal

agent, the observed test scores are related only through the common cause. An
. "‘\—\k '-:-‘
analysis based on the model in Figure 4 when the model in Figure 7 is_the

Ty . s = -

R SN . < -
corréct-one will yield misleading results. Many other plausible forms of

specifﬁcation error in longitudinaf panel models are considered in Duncan
(1972, 1975a) and Jéreskog and Sorbom (1976a).
) - : 1

1

Q - ‘ ) . o
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A 2 wave 2 variable 2 indicator (ZWZVZIj model. The :
o _ duplicate measures of each causal variable allow oY s
estimation of the causal parameters, Bl,‘ 82, Yyr Yo )
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C._ Multiple Wave Panel De51gns-

1
%

=
x
. B ~ . S

.- In. developmental research, more than two waves of observat1ons are usually

des1red on substant1ve groands. Multiple waves have the added advantage that

’ they allow est1mat1on of parameters under less restrictive assumnt1ons (Hannan, ~

Rubinson § Warren, 19741. However, as might be expected,.multaple waves of
. ! .
observat1ons make model spec1f1cat1on and est1mat1on more complex. To illus-

trate the use of panel designs, two studies.in wh1ch the 1nvest1gators attempt- .

ed to make-causal statements~from longitudinal data are formulated. as causal

. *models.‘The original analyses are discussed so as to point out the advantages -
h ’ . .

v ?

of, causal models in design and- ana1y51s. ) . ; ! : ) .

Clarke~Stewart (1973) collected data on 36 mother-child dyads over a nine- E

N

month per1od tracing the ch11dren from age nine months to 18 months. Repeated
" observations of the mother~ch11d dyads,were made both in natural settings (the

home) and in a var1ety of stagdard1zed or semistructured (test and 1aboratory)

x -

s;tuat1ons. C1arke~Stewart began her longitudinal study by 1dent1fy1ng as one

- ‘o

.of; the problems of method in child, development research that "in the past, .
. - - ht

studles haVe seldom been 10ng1tud1na1 in design, apd when long1tud1na1 mat-

ernal behaV1or has often been measured at one t1me and 1nfant performance at _ ‘i‘l§~
" another, c0nsequent1y not perm1tt1ng the analysi> of causal relationships" (p.

.8) Slnce the mother-ch11d interaction is certainly an instance of rec1proca1

causat1on, long1tud1na1 des1gns may allow the untang11ng of the rec1proca1

o &

causal 1nf1uences. , 5 ’
The port1on of the total data which Clarke-Stewart used to make causal
1nferences (see 1973, pp. 82-91) corresponds to a three wave long1tud1na1 panel

o

with waves at the chrldrages of 11, 14 _and 17 months. Most of the attempts at

3

e - Mg
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causal explanation used data from only the firstﬂand third waves. For all

' causal statements Clarke-Stewart used the nethod of cross- lagged correlations.

b .

One 1nstance in which she con51dered all three waves is illustrated in Figure 8
where the causal inf 1uences of maternal. attention and the child's attachment to
the mother are examined As can be seen in Figure 8 Clarke-Stewart considered
the three waves- of data as two two-wave p1eces. ‘The somewhat ambiguous causal
‘conc1u51on drawn from the two sets of cross- lagged correlations 1s 3 i
At Times 1 and 2 the cross-lagged correlations for infant attachment
-and materual attention suggested that'%aternal attentiod was causing
..an increase in infant attachment. From Time 2 to Timq 3 howeyer, the

'+ cross-lagged correlations implied the opposite: that 1nfant -attach-

ment was causing maternal attention. This finding suggests the

p0551b111ty that, as mother and child search for harmonious, balanced *"

. interaction over the course of development, first one then the other

assumes the '"causal role". (p. '91)
EE Y ty -

o

A causal mddel of the 3W2V panel is shown in Figure 9. The;panel model in
Figure 9 allows doubly laaged causation between waves one and three between
" variables but not within variables. Labouvie (1974) wouxd term thiS*modei a
between-domain distal-within domain proximal model. A causal model analysis of
‘these three-wave data is certainly more attractive since it would use all the
. data at once as opposed to breaking the longitudinal data into two separate two

.wavensequences. Also it might be expected that analyz1ng all three time

'periods~at once would alter the or1g1na1 conclusions, espec1a11y if there were

-
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Figure gl—- The 2W2V configuration, with the cross-lagged
and synchronous correlation exhibited, of a-
three wave design. (Adapted from Clarke-
. . - Stewart, 197_3). ) f .
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any appreciable direct causal effect between wave one and wave three, represented
by B, and Y, in Figure 9.

&

Insert Figure 9 about here

- o S o " o - e b - > . O o o b
ey hd G

~ . ~

S 0'Mally and Bachman (1876) reported an eight year longitudinal study” in
: ' . ’ & )
which the relationship between self-esteem and success ﬁas'investigated. Measures

o

of self-esteem were collected at five points in time on 1600 young men over an

eight year perzod (1966~ 1974J—beg1nn1ng when the subJects entered tenth grade

through five years after graduatlon. Success was measured once, Ri 1eve1 of

occupat1ona1 and educational attalnment in 1974. Many other variables were

1l

measured across some or all of the five waves: status of aspired occupation at’

all. waves, grades at the first three waves, and backgrcund measuresnof‘ability

°

and SES at the first'wave. The design was not strictly a longaxudlnal panel

since the major outcome varlable, success, was only measured at the f1na1 wave.

¥
g ot

' Therefore, .the reciprocal relationship between self-esteem and success (attaln-A
ment) nay be difficult to unravel. ~~
0'Mally and Bachman distinguish three logically independent patterns of
N . i
causation between self-esteem and attainment: (a) that self-esteem contributes

directly to attainment; (b) that attainment contributes, both indirectly and

N

directly, to heightened self:esteem; and (c) that some of thé‘underlying

determinants of self-esteem are also important determinants of attainment
(é.g.,’ academic ability, past educationat accomplishments and family socioe-

conomic level).

¥

These three patterns of causat1on, which may be-responslble for the

" observad relations between self—esteem and success, can be represented

’

&
2
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Figure 9 -- The 3W2V design of Clarke-Stewart 1{1973) with-
. the causal parameters and structural regression
equations shown. The X variables are Maternal
Attention to the Child and the Y variables are
the Child's Attachment to the Mother.
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(a) "Self- .——~—“"";’ Attainment .

resteem o

i . (b) Attainment — 3 Self-esteem ‘ .

(c) Background . Attainment
éfei. o . Variables
? ‘ ) B ‘ ~ Self-esteem '
) . . The analysis of these calisal sequences is based entirely on cqrrelations.
2 s ) .
HTo jllustrate svme of the problems with the analysis, consider the correlational

XN

Q

A analysis 0'Mally and Bachman (1976) proposed for the second suggested causal

sequence, that attainrment (theéir B). causes self-esteem (A). Two of their

*

peitinent ‘hypothses were:
\

‘Hypothesis 2av Later self-esteem 1is positively correlated with

l'

attainment, after statistically controlling background and ability

and also earlier self-esteem (based only on B causes A).

Hypethesis‘ﬁ. Attainment (five years after high school) is more strongly

correlated with later self-esteem than with earlier self-esteem. This
.. . Thypothesis is based on B causes A. (p.8)

Figure 10 represents a causal model of the relationship of self-esteem and

attainment, relevant to the above hypotheses. t

~ - - 1

~ [ ekt atatadadkedbad adenheinatesbad

»

. Figure 10 shows that the O'Mally and Bachman hypothesis that B causes A is
. ; equivalent to postulating a nonzero value of Y. However, a positive-value of -
BS would cause the correlatlon between self-esteem at time p01nt S and at-’

tainment, with earlier self- esteem held constant, to be p051t1ve even when

Y is zero. Therefore Hypothesis 2a is not "based only on B causes A." By the .
. . § :

b

r ‘éoz 3 2 3 ’ i 4 - ) . - \‘

L




k2
Figure 10 --

the O'Mally and Bachman (1976) data. 3

self-esteem at the five time points. Y* is the attainment
(success) construct with indicators Y = educational

attainment, Y2 = occupational attainment. The causal

paths andiparameters of the causal relations are shown.

: . .
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same logic, if-Bl, 82, 83,’84‘were zero in Figure 10, then-attainment would be

more strbngly correlated with later self-esteem {XS) than with earlier self-

-

esteem for any nonzero values of Y and 2.. Hypothesis 3, then, is also not

9

1

properly tested when correlations are used in place of estimation of y. The

at M ¢

= i -

correlations confound the effects of a nonzero Y with other causal configura- .-

tions. Because plausible alternative explanations exist for the correlations

.

that 0'Mally and Bachman posit as proof of their causal ﬁypotheses, Hypotheses

2a and 3 are not logically sound representations of the causal structure.

In addition to the previously discussed problems with correlations as a
: N R i

i R R

measure of causation, there are important ones associated with standardizatior

Wiley é'Wiley (1970) and Tukey (1954) among others warned against using stantlard-

ized measures for causal statements. It is unreasonable to expect variances to

remain constant over time; in fact the increase over time of interindividual .

. s . s s . : s " e
differences in development implies an increase in variance. But a change in

the variance of, say, self-esteem changes.the correlation without necessarily.

affecting the strength of the relationship. j

" Furthermore, aside from the inadequacies of correlations in this context,

without rqpeated‘measures'of attainment over the waves of observatiecas, 0'Mally

»

-and Bachman are not able to disentangle, unambiguously the reciprocal causation

i -

between self-esteem and attainment. Perhaps grades could have been v-ed as a

proxy for attainment.in the earlier waves, in order to evaluate causal influenc-

es from the available data.

D. Distal Causation akd Causal Lag ) .

~
. .

Thé question of the preper éegree of causal lag has frequently appeared in,
- - ‘i,k :; _ i . -
the causal models that have been considered. For example, in the 2W2V models
- < - -
simultaneous causation‘was ruled out; cohsequently, the proper causal lag was

-

‘assumed to be one tihe-péri&d‘(see Figure 4). In multiwave models such as
A, Y . ,

Figure 9 (Clarke—Stewar€15,3W2V design), a variety of causal lag patterns are




.Structufing time-lagged relationships and performing distal-cause analyses

4
3

v
e 4 N . N
! N - -
!

p0551b1e. There may be d1rect effects from time 1 to time 3 both within and

between the var1ables, 1n addition to simultaneous effects. In the O'Mally and

Bachman example, a number of d1fferent indirect and d1rect causal lag patterns

\are p0551b1e

¥

A maJor concern of life-span, psychology is estab115h1ng long-term causal

Telations. "Slnce,llfe-ﬁpan research deals_most explicitly w1th the ana1y51s

of long-term phenomena and chains, it has been forced to attend to the 1ssue of!

.

(Huston-Steln § Bzltes, in.press, p. 11). Often ‘the results of the causal

model analy51s of the tlme-lagged relatlonshlps depend on the kinds of causal

»

rlags bailt into the~mode1. Unfortunately, developmental theories which would

- be the'best guide to the proper k1nds of causal lags to incorporate in the

model offer little guidance in most situations. The majority of longitudinal

-

panel nodels p05tu1ate single perlod causal lags or equal Iags across multiple

waves. An éxception is an analysis by Hannan et al. (1974) whese SWZV model
‘has. a two-wave causa} lag in one direction, and a one-wave lag in the other
direction. :
| V. SUMMARY
This chapter has involned consideration of some methods for making causal
statements in developmental research. In the\stud} of development and gtowth,
longitudinai designs should be'used.' Cross—seot;onal designs will give conflict-

ing (and mﬁsleading) evidence over replications, and can yield little informat-

jon on the causal dynamics.of development. Ffom‘practical necessity and for

:eccloOical validity the longitudinal designs will often be nonexperimental and

>

naturallstlc Additional knowledge from substantive theory and empirical
eV1dence may be profltably incorporated into the data ana1y51s of such designs

through the use of causal models. ' ‘ :

’ L3
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) Causal models are presented as an attractive~vehicle for the formulation
v of » " q ) ' :
. . & e e

of well-specified theory in an empirically testable form. The construgtion of

causal models is a two-stage procedure involving the sfructﬁral model which

" specifies the relations between the theoretically important constructs and the

’
¥

_ measurement model which relates unobserved constructs to their observable

measures. The construction of a causal model from a subsggntive,study illust-

~ 3

rates the usefulness of multiple measures of constructs in the estimation of
LS ‘4
causal effects. o e

t

Longitudinal panel designs combine features of cross-sectional znd time

h ]

series designs in that waves of cross-sections, containing the same séﬁpling
units, are measured at two or more time pdints. A strong feature of panel .
desiéns is their ability, in certain situations, to separate reciprocal causal
influenceg‘between éwo or more vdriables, which is in general impossible‘wi;h
crosgfsectional data. T@e two-wave two-variable (2W2V) design has been widely

used for this purpose. A formulation of the 2W2V design as a causal model .

reveals that highly restrictive assumptions are necessary for estimation of

x

‘causal influences and for the desired determination of which variable causes

~ ) \

the other. The popular method of cross-lagged correlations is, shown to be

% -

N

undesirable; direct estimation of the relevant causal parameters is always

preferable.

Two major technical problems associated with causal models (and with -

3 )

almost all analysis techniques) are measurement error and spegification error.

However, multiple indicators of the fallibly measgred constructs may, in many

4

§
H

instances, allow unbiased estimation of the model. Specification errors arise

. .
most often when’ important causal variables are omitted from the model and cause

‘ ’ hd

the estimates of the causal influences between the included parameters to be

biased. Some common forms of these two obstacles to estimation are illustrated

306
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", for the 2W2V design. Technical issues in estimation are treated in another
o . . . v

4 ~o

chapter. . . .

» N - -

The more powerful multiwave panel designé are described by formulating
A . . ! o

—

ubstantive longitudinal studies. The use of correla- -

N a4

causal models from two s

~
~

tions in these studies to support causal statements is criticized. ™

Causal models specify on an a priori basis how the* same correlations might

have arisen from a variety of.causal mechanisms. The value ‘of causal models, N

-3 K

o> . P LN o t e 5
.7 then, lies in their incdrporation of substantlve\theory and reduced dependence
: Sy T e (
-on post hoc interpretation of correlational data,
¢ + N
;oo C,

W

—

v

—

4
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LS

ABSTRACT )

L

-t Thisfchapter deald-with statistical methodological problems in the
analy51s of data from large longltudlnal studles where the same or
similar quantltatzve measurements have been obtained at two or more

- H

*. occasions, possibly from several dlfferent groups ‘of pe0p1e. Several

jimodels are developed for a w1de range of app11cat10ns for psychological
and educational measurements. The“problems of model spet if1cat10n,
statlstlcal 1dent;f1cat10n, estlmatlon and testing are discussed. In.
particular; the chapter focuses on~the follpwing problems: 1) ;ne
estimation of gfowth curves under auto-pegressive models; (i;) the
‘treatmept of measuremept errers‘in observed variableg; and (iii) the

scallng of latent varlables._ Several examples are given illusttating
N ¢

the assessment of fit of a model and data- analytlc strategles for

model'quification.v

-

NP




sy

.two or more occasions. The«purpose of a longitudinal or panel

I. Introdhction
The characteristic feature of a 10ng1tud1n\1 research de51gn ’

is that the same measurements are obtained ‘from the same people at

- -

study 'is to assess the changes that occur between the occasions -

Y

and to attr1bute these changes to certa1n background characterlstlcs

and"events ex1st1ng or occurring before the first occasion and/or to

>

various treatments and developmerts that occur after the first

occasion. A schematic illustration of a two-wave lqngitudinal design
is given in Fig. 1. Earlier'chapters of this volume have dealt with

~

the conceptual and substantive issues and with the 1ogic of causal ’

4

model building in lonoltudrnal research in developmental psychology

. and education. Other chapters have dealt with specific methodologlcal

problems. Wiley and Harnischfeger (1973) have given an account of the

conceptual issues in the attribution of change in educational studies.

"In the sociological literature there has been a number of articles

‘concerned with the specification of models incorporating causation and

-

measurement errors and the analysis of data from panel studieg-(see

e.g. Bohrnstedt, 1969; Heise, 1969, 1970, 6uhcan, 1969, 1972, 1975b).
Other papers dealing with methodological‘probiems are Lord (1963), -
Thorndike (1966), Hirnqvist (1968), Cronbach and Furby (1970) and

Bergman (1971). Complex models involving multiple measurements and/or

several occasions have been considered by Harris (1963), J8reskog,(1970a),

Corballis and Traub (1970), Nesselroade (1972), Corballis (1973),
Bentler £1973) , Frederiksen (1974),  Jireskog and Sorbom (1976a-b)
and Olsson and Bergman 61977). ‘

————————————— - ——— - — -

. -~ Insert Figure 'l about here
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Figure 1 -- Schematic Yepresentation of a two-wave longitudinal design.
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In this paper we consider several models suitable for anélyzing

.

longitudinal data and deal with problems of model specification and

stat15t1cal 1dent1f1cat10n, estimation and testing. - The general
"-"“_—__! —-—

: setup -is.that of a‘longltudlnal study where the same or,similar

quantitative measurements have been obtained at two or more occasions,
W - » = N . «

possibly fromgseveral different groups of people. Ehe models cover

ey

‘a ‘'wide range of appffcatiﬁﬁs and are relevant for psychological and

éducational measurements as well as for social and sogio—economic

measurements. o " *

&

Section III considers the measurement and assessment of change -

at the group level. It derls with the estimation of growth curves

A

describing the means of the variables as functions of time. This

section also considers various auto;regressivé'or first;order ﬂarkov
models that occur naturalix in repeated méasﬁfqments. ;n this sectioﬁ
we treat the variables'as_errorfrée.

One of the most difficult pqoblensfbf a ‘social scientist, when
it comes to tﬁe formulation of a causal model, a?ises because mahy of

\Y

. i - % .
the concepts and constructs that he/she wants to work with are not

Wt -
‘directly measurable (see e.g. Torgerson, 1958, Chapter 1, Goldberger,

1872, Duncan 1975a, and Heise 1975j. Although such hypothetical
concepts and constructs, or iaten; variables, as we shall call

- them, cannot be directly measured, a number of variables

can be used to measure various aspects of these latent

'




"cannot be directly observed, they have operational implications for

-relationships among observed variables. We may regard the observed

S

4

. ° j

variables more or.le¢ss accurately. Thus, whilé the latent variables

ol - . -‘ -
variables as indicators of the latent variables. Each indicator
has a re}lationship with the latent variable, but if we take one

indicator alone to measure the latent variable.-we would obtain a

biased measurement.. By using several indicators of each latent .
variable we get a better measurement of the latent variable .
Another reason for using latent variables in behavioral and socioeconomic \

:
studies .is .that.most of the measurements employed contain sizeable . o

(34
s
—

errops of measurement (observational errors) which, if not taken o \

~ <

: » ) ) 3 M . -
into account, can cause severe bias in the résults. Errors of

A}

measurement arise because df'impenfection in the variou$ measurement
instruments (questioﬁnaires, fests, etc.), that are used to measure
such . abstractions as people's behaviof, attitudes, feelings and .
motivatiohs. Even if we could construct valid méasureﬁgnts of thesé it ‘ '
is usually impossible to obtain perfectly reliable vériab&és. Special
care must be taken to‘obtain measurements that really measure the
latent traits or hypothetical constructs that one is interested in ._ i?f'
measuring. Various models with latent variables are considered in
secfions IV for two-wave“situations and in section V for multi-wave
situatio;s: .

A common experience in two-wave longitudinal studies.is that the

initial status is the best determinant or predictor of the final
» - k1

status (see e.g. Lord, 1963). Therefore, if one is interested in

K]




Y

o

s
.

L

attributing change to certain background variables one must find
X .

3 . I

some way of éffectively eliminating the initial status from the s %

final status. This has been taken to mean that one should study L

»

-

difference scores (final scores mi;us initial scores). However;
) R . £

this is not nicessary;ﬂ}he important-thing is that both background

. variables and initial measures are included in the madel as C 2

determinants of final measures. In multi-wave studies one can

&

. . : . . IV
- determine the effect of the background variables on the dependent i

variable at various points. in time. Most of the models introduced J
in sections IV and V are considefeq both with and without background. K

~ ¥

variables, , T o 4

e e N v

Often it is not possible, or even desirable, to specify the
%

model completely since there may be'other models which are equally . |

a2

_ plausible. 1In such a situation it is necessary to have a techﬁique -

of analysis which will give information about which of a number of

alternative models is (are) the most reasonable. Also, if there is

-

sufficient evidence to reject a given model due to poor fit to the
, -

data, the technique'should!be such as to suggest which part of the
‘model is causing the poor fit. Several examples will be

. N N . -«
given illustrating the assessment of fit of a model and

-

-

strategies for model modification. -
In presenting the various models it is convenient to use a péth
diagram. In this path. diagram observed variables are enclosed in

squares whereas latent variables are enclosed in circles. Residuals

-
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/ ‘ \ - | |
T - (errors in equations) and errors of measurements are included in .

" the diagram but are not enclosed. A one-way arrow pointing from one

e variable x to another variable y indicates a possible direct

~

! 1y .. .
causal influence of X on Yy , whereas a curved two-way arrow be- '
tween x and y ihdicates that x and y may correlate without

any causal interpretation of this correlation being-given. It is .

< 1

convenient to write the coefficient associated with each arrow in the .

o

4 »
path diagram. When the coefficient is omitted it means that_ it is

one. For one-way arrows suéh coefficients will be (partial) regression

coefficients (path coefficients) and forvtwo-yay arrows they will be

. covariances. In the special case when all observed and latent variables
'

are standardized, these coefficients.will be correlations. With these

conventions it is poggible to write dowﬁ the model equations from the

path diagram. In order to define the model completely it is only

necessary to specify the assumptions about the origin and unit of

measurement of the variables involved and the distributional assumptions,

if any.
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.

’ . s I1L. Computer Programs
*“3 All'the modelsxéonsidered in this chapter may be estimated by -
‘means, of three computer programs: ACOVSM by Jbresk;g, van, Thillo
and Gruvaeus (1970), 'LISREL by Jbreskog and Sbrbom (1976c)and
COFAMM by Svrbom anq‘Jdreskog (1976) . The general models .on

which tﬁese prograns are based are described briefly here for

future reference. For each model introduced in later sectionsiof .

this chapter it will be %hgwn how this is a special case of one
. of the models presented here. h

A. _ACOVSM
The ACOVSM model considers a data matrix X(N x p) of N observa-
tions on p varizbles and assumes that the rows of X ane‘independently:

distributed, each having a multivariate normal distribution with the

same variance-covariance matrix I. It is assumed that .. _

-a RSV

- - p—

20 - A2, o ®

Y »

where A(ﬁ X g)= (aas) and P(h x p) = (pti\ are known matrices of
ranks g and h, respectively, g < N, h<p, and E(g x h) = (&;St) is
a matrix of parameterc: and that I has the form

L = B(AGA” + ¥ )B + 02 2)

L

-

whore the matrices B(p x q) = (Bik)’ g(q X T) = (Aknp, the symmétric '




.

C matrix’ ¢(r xXr)= (¢ ), and the diagonal matr1ces V(q X q) =‘(6k1wk)

and . e(p xp) = (6 6 ) are parameter matrices. 61 denotes the .

. - '

Krodecker delta, wh1ch is one if i'= j and zero otherwise.

o Thus the general model is one where means, variances., and
[} . s
covarlances are structured in terms of other sets of parameters that

, are to be estimated. In any application of this mo&ei p> N, and X
will be given by the data, and g, h, q, T, A and P will be given by

the partlcular appllcatlon. In the special case when both E and -

A

L ‘are unconstrained, one may test a sequence of linear hypotheses

. . - N “

of the fbrm

CzD = 0 , - (3) ' :

where C(s x g) and D(h x t) are given matrices of ranks s and t,

-~

respectively. N - . >
[

For further information about the ACOVSM model and its uses see <

Jéreskog (1970c, 1973b). o * g

B. LISREL ° .

<

The LISREL model considers 'random vectors n = (nl, Nyse-vs nm)

and §’= (El, 52’\"" En) of latent dependent and independent variables,

respectively, and the following system of linear structural relations

‘ Bhp=TE + T . (4)

where B(m x m) and T(m X n) 'dre coefficient matrices and

- -




r

.= (cl, Ly ...,cm)'is a random vector of residuals (errors in

equations, random,diséqrbanéé terms). Withght loss of generality
it.ﬁay be assumed that E(n) = E(¢) = 0 and E(§) = 0. It is:

furthermore_assumed that & is uncorrelated with & and that B

N
Y

is nonsingular.

{Tﬂé vectors, n and £ are not observed but instead vectors

y = (yl, Yoo ...yp) and‘f = (xl, Xy» ...xq) are observed, such

-~

that
Vs

(6)

. . -~
where ¢ and are vectors of errors- of measurement in Yy and x,

-~ . - -~

respectively. y and x are assumed to be measured as deviations from
their means. The matrices’ Ay(p x ) and 'Ax(q X n) are regression
and of -x on £, respectively. Jt is-con-’

matrices of y‘on 10’

_venient to-refer to y and x as the observed variables and' n and

£ as the latent variables. The errors of measurement are assumed to
-~ ’ » L 4

be uncorrelated with the latent variables. - ) '

v
.

Let ¢ (n xn) and ¥(m x m) be the covariance mat;ices of ¢ \ .
and ¢ , respectively, and 1ét,;ﬁ€~ and e6 be the covariance matrices

~

of ¢ and 3§, respectiv»ly: Then it follows, from the above .assumption,

|

~

that the covariance matrix Z[(p + é) x (p+q)] of z=(y",x")" is




——

A (B'1r¢r'a"
Y o~ -

1, B—l

-1
YB” )AL
IAS

' . »»—1»
-X?E ? QY

s

. .

N P . L f
The elements of I are functjons of the elements of Ay, Ax’ B,

; -. - N g <
and Oe . In applications some of these‘elements,gge
~ ¢

o«

IR
fixed and equal to assigned values., .in particular, thig is so for

. - ‘ -

* * &) 8 . R . .~ Ag
elementé\:’n{\y, Qx’ l} and T. There_ is no requirement that m< P, n<gq

and that 0e ‘and ©

-~

§ 5 be diagonal as in traditional factor'analyéis.“
The only requirement is that I in (7)°§§’nonsingu1ar,and~thab the

.
- 4

model is identified (see section II;E); .

There are several options available to -the usek te choose various

> * g - .
" rspecial cases of the general mqgel. Probably the most important ot

these options is the '"n6 x" 652105,'iﬁe., . th;\specificatioq of

- ) , 6 . ) ) -
a model in which thefe is no x. , Then, the whole equation (6) is
-~ . ~ . ! L
missing, so there is no &, §, Ax, ¢ and 06' In this case, equation {*:
-~ o~ 0~ by ~

¢

should te interpreted as

4 s ~
M . o
' - = .

« B ,
’ . 'Bn:Z;"

. ’

Then the only vector of observed variables is vy and the covariance -.

matrix of yAZ(p,x p), is
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The measurement model part of the general model, as giveﬂ by
(5) and (6), speci?ies how ‘the latent variables’
* are measuyred in terms of the observed variables. “This is

used to déscribe the measurement properties (reliabilities'and\validi-

ties) of the observed variables. The structural equation model part

Pl

of the generaf model, as given by (4), Speéifies the causal relation-~

_ships assumed to hold among the latent variables. This is used to

) describe and assess the causal effects éndapp estimate the amount of
. unexplained variance in the dependent variables. In order to assess
the causal-effects it is necessary that the unitséof measurement) in the

e
latent variables be defined in‘a natural way. This can often be

i

done by specifying the unit of measurement to be the same as in one’

of the observed variables. For further information _about LISREL

-9

and its uses, see. Joreskog (1973a,,1§76f and Jbreskog and Strbom_

/

(1976a-c). =~

c. -COFAMM *~ - .

The COFAMM mddel assumes that we have measurements. from several
A N
- independent groups of individuals possibly with different mean vectors

- and covariance matrices. It is assumed that p variables have been

- ¢

measured in a random sample of individuals from.each pojulation.

- - ’

. Let Zg be a vector of order p, representing the measurements

obtained in group g, g=1,2,..., GJO:Wq regard Zg as a random vector

with™mean vector’ "g and covariance matrix Xg. It is assumed that a

faq;op‘apg}ysié’modgl holds in each population so that Zg can be accounted

- . s TN

-y

- M - 7 . - . “ M
for by k- common factors -fg and p unique factors or residuals eg> as

zZ_ =V +A £+ e

s . (9
g -8 -8-8 -8 ©)
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Y

where’ vy is a pxl vector of location parameters and Ag a pxk

parameter matrix of factor loadlngs. It is assumed that E(eg) =0

-~

and E(fg) =6 ,2 kxl parameter vector and that eg and fg are K

uncorrelated. These assumptions imply that the mean vector ° I of -

. . -8
Egi is . ' ; ‘: . ' \;:>
.'\ ‘Bg "%t i‘é‘ig ) -» ’ -(1,6)
and taat the cotariance matrix §g of z, is '
' Cposhenev , (11)

-§ -g-8-8 -8

> . .
-

where ¢g is the covariance matrix of f_ and Y is the covariance

\ T . - TE
: matrix of eg .

Concerning the specification of parameters Vg and ng‘ there -

-

P

are several options. The most important of these is the specification
#

- of invariance over groups, i.e.
15 B TR ¢ :

. This makes it possible to estimate the eg, g=1,2,..., Gona e
comnon scale. For further information about COEAMM and its uses, see

Jéreskog (1971), Strbom (1974) and Strbom and Joreskog (1976).

.

D. Fixed, free and constrained parametersl

A In all three models and computer programs, some elements of any parameter

3.
&

matrix may be fixed and equal to assigned values. For cthe remaining nonfixed
i ; p P

elements of the

El{llC : - 52844




unkndwn values. Thus each element in any parameter matrix may be:

(i) a fixed parameter that has been assigned a given value, ot

'1) a constralned parameter that is unknown but equal to

Va

' o \ one Oor more other parameters or

e ’ ’ -(iiij\a free parameter that is unknown and not consyrained to” .

be\equal to any qther parameter. - i
% 5. .
A This results in, great genera11ty and flex1b111ty in that many different

4 . . kinds of models may be handled The three ‘models and the progr21s
_cover a wide range of applications.in the behaviqral and social sciences.
y & .
t @ ’
7 - E. Identification of parameters "

-

. The general models described here-and those that will be considered, ;
. t ~

in later sections of this chaﬁter are all of the following fbrm. The

4

d1str1but10n of the observed variables is mu1t1var1ate w1th mean
'LA i vector u(e) and covariance matrix I(6) both be1ng funct1ons of
parameters §’= (61, 62, ey és) .whichgare to be‘estimated from -
datatzllt is assumed that the distribntion of the observed variables

is sufficiently well described by.the moments of first and second
/

‘) N - -
: nrd/e’r, i.e. by the mean vectdér u and the covariance matrix £, so that

/ . .
informstion about © contained in moments of higher order than the second he
nay be ignored. In particular, this will hold if the distribution is L
/ . ) . ., i . . —_— .

‘mul tivariate normal.,( ..

In general the parameters in 6 may be of three kinds
/o ) . ~
/ (i) those that are involved in both u and I

P (ii) those that are involved in only,

\‘ B
t

(iii) thq§e that are involved in I only.

f . . .
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Let 61, aé and 63 be, vectors with these three types of

parameters, so that 3 (6'; 2, 63). A’ special case is when

6, - is empty as in ACCVSM and LISREL\ A further special case is

Ly '-!

“when 91 1s empty and the transformaflon u(ez) is one-to-one' as in

LISREL. Then the mean vector u is unconstrained and the only,
restriction is on I . Another special ¢dse is when 6, is

empty and the transformation 2(93) is one-to-one, Then & is un-

constrained and the only restriction is on. wu-

Before an attempt is made to estimate'the'parameters 6‘ the

1dent1f1catlon problem must be resolved. The model is said to be

identified if 6 # 6 1mp11es that'{y(el); 2(6 2} {t(ez), 2(6 i}

)"
i.e.,dif (u ,L) 1is generated by one and only one 6 . However,

even if the whole model is not identified some parameters in ©

~can_still be identi%ied. Consider the set © of all 6 generating™

-

the same (u,z). If a parameter ei has the same value in all, vectors

" 8 ¢0then ei is said to be identified. For parameters Wwhich are
~ - ]

jdentified it is usually possible to find consistent estimators.

-

If 2 model is not completely identified, restrictions must be imposed

on .6 to mske it so. If a parameter is not identified it is not

possible to find a consistent estimator of it.

Identifiability depends on the choice of model and on the

[}

spec1f1car10n of fixed, constrained and free parameters. To examine

-~

the 1dent1f1catlon problem consider the model equations in the form

w; = £.(0) .
(12)
5 gjk(g), j <k
vhere £, and gjk are continuous oon—linear functions of 6.
: M
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A
If, for given:.p and I, a parameter 8 can be determined from

w and I , this parameter is identified; otherwise it is not.
- -~ % toa

Often some parametiers can be determined from £ anmbr;xin different

’

ways: This glves rise to overldeﬁtlgylng condltlons on I and/or W,

wh ch must hold if the model is true.. The solutlon of (12) is often

/compllcated and tedious and exp11c1t solutions for all 6's seldom

exist.- It is sometimes difficult to determine whe;her or not a
parameter is identified and whether or not the whole model is

¥ -

identified. FSftunéfely, however, there is one way in which the

computer programs checks the 1dent1t1cat10n status of.the model.

At the starting p01nt of the 1terat10ns the progranm

“computes the information matrix (see e.g., Silvey, 1970) for all the
- € ¢
independent unknown parameters. If this matrix is positive definite °
the model is identified. On the otherdhand, if the information

matrix is singular, the model is not ideéntified. If the information

\
.

matrix is inverted by the square.root method and the n:th pivotal
element is zero or negative, this is an indication that the n:th parameter
is not identified.

‘F. Estimation and testing of the rodels

; -

Once the model has been specified to be of tha form suitable for

4

any of the three programs ACOVSM, LISREL and COFAMM, these programs

~ : ¢
~ may ‘be used to estimate the model from data. This is done by fitting

w(6) and Z(98) to the corresponding sample estimates z , the sample mean

vector, and:- S, the sample covariance matrix. The fitting function is

325
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F = Nlloglz] + er(sr™) + G -oEE ) - logls] - pl -

where p is the number of observed variables. F is minimized with res-

pect .to 6. This'giyes maximum likelihood estimates if the diéfribution’
of the obéerved variables is multivariate normai. Standard errors may
be ohtained for each estimated parameter by computing the inverse of
the informatipn matrix at the minimum of F.

The minimﬁm value of F provides a xz—goodness-of~fit meésure
‘xof how well the model fits the data. This may be regarded as a large
sample x2 test _of the specified model against the most genéral
alternative model that both u and E are unconstrdinpd. The degrees
of‘freedom for this test is‘(1/2)(p + 1)(p + 2) - s, where p is the num-
ber of o%served variables and s is the tetal number of independent
pé;ameters estimated quer the model. If yu is unéonsérained, the
degrees of freedom is (1/2)p(p + 1) - s. ‘ . ) -

Suppose H.o represents one model under given specifications of
fixéd, free, and const;ained parameters. Then it isvggssible, in large
samplés, to test the model Ho aggiégt any more general model'Hl, by
estimating each of them sephr;tely and comparing ;heir x2 goodness-
of—fitrvalues. The difference in x2 is asymbtotically a xz’ with
Qegrees of freedom equal to the corresponding difference in degrees
of freedom. In many situations, it is posSible to set up a sequence of
hypotheses such that each one is a specid& case of the preceding and _
to tést these hypotheses sequentially.

In a more exploratory situation the xz-goodness—of-fit~va1ues‘

can be used as follows. If a value of x? is obtained, which is

large compared to the number of degrees of freedom, the fit may be
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A\l -

N

examined by an inspection of the magnitudes of the first derivatives

#

of F with respect to the fixed parameters. Often suc}; an inspection
of the results of analxsis.will suggest ways to relax the model

. somewhat by introducing more parameters. - The ‘new model usually

* yields a smaller xz. A drop in xz which is large compared to the ‘difference
in degrees of freedom, indicates that the changes made in the model

» represent a real improvement. On the other haid, a drop in xz close

LY

» x >
to the difference in number of de fees of freedom indicates that the

»

‘improvement i fit is ‘obtained by Mcapitalizing on chance" , and the’

added parameters may not have real significance and meaning. -

~: iy
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AN .
111. Estimation of Growth'Curves

One variable over time
Con51der one variable y being measured on N 1ndlblduals at T p01nts

AQ

in time tl, tz, cens tT. The raw data takes the form of a data

trix Y of order N x T:
T’ Al
. YIIJ lle, LR | le

Ya1r Y220 002 Yar

YN1® YNoa oo c? UNT
/

~
1
——
-
’
/

S

/

where ¥y is the observed measurement of individual i at time t..

1)
We assume that the Tows of X are indc.pendently distributed w1
Also the mean vectors- of th rows

the same covariance matrix T
- >
» . L)
are assumed to be the same, namely ) ,/
. . /
(l-lls 1-‘2) ey UT) ,’l

However, in this section, the mean values are not regarded as free

parameters, but instead we focus attention to the mean My as a

This gives a growth curve describing how the

function of t.
population mean of y changes over time.

(53
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We consider polynomial growth curves of the -form

PR

. 2 h
ut = Eo+.£1t‘+ gzt +“'€ht”

-

M

althc;ugh other mathematical forms may alco be considered. The

degree of the polynomial h is assumed to be less than or equal
» to T-1. When h < T-1, the mean vector p 1is constrained and” there

is not a one-to-one correspondence betveen’ Hi» Hos ooes Hp and the

polynomial coefficients s Bs oevs &+ In this section we

consider the estimation of these polynomizal coefficients.
Let Eo= (go; El, cees Eh) and let

~r

t

L

h
1

L]

Then the statistical model for the data matrix is

E(Y) =) &P,

where j is a column vector of order N with all elements equal to one.




»/’4“‘.‘

~ A"

If the time points. are equidistant it is convenient to use the h + 1

first orthogonal polynomials of order T as rows of P

~ -~

(see e.g. Kendall & Stuart, 1961).
¥hen ‘the Tows of Y have a multinormal distribution, the vector
of polynomial coefficients g may be estimated by the maximum likelihood

méthod. The maximum likelihood estimate of £ is

~

- sl esly | (14)

-~

[ )1 b

4 . -

where ¥ is the sample mean vector and S is the sample covariance
patrix computed from Y . .
The above result generalizes easily to the case of several groups

of individuals with possibly different mean vectors. Suppose, for

example, that there are two groups with n, and n, individuals in
p group 1 2

each group. Let the first n, TOWS of Y be the measurements on

individuals in group 1 and let the last n, rows be the measurements

on individuals in group 2. The growth curves for the two groups
may differ so we assume that there are two distinct growth curves to
be estimated, i.e.,
(8)y - £(8) (g) (g).h _ _
E(yit ) = § ot El t + "‘,Eh t, g=1,2

or in compact form :

E(Y)

1
r >
LN E1]
L e~
-
~
[
wmm
—




' where . I
‘ ac =11 .. 100 0 i “
Cboto o0 ¥ 1t ) '
and

&0

R i
~ @ @ . '(25\ : -
‘ :\_fo £1 h ’

(1) 5{11

i
tan
1
4
yn

=~

Pd

~

-
.
.
.

yn

Let U =-(1/N) A"A, V= (1/N) A”Y and W= (1/N) YY. Then v

/

b,

s = W-vuly (16)

.
13

is the pooled within groups covariance matrix and the maximum
likelihood estimate of £ is (see Khatri, 1866)

lys-1p- (ps~1p-y~t (17)

[\ 104

=U-

~

- »

In general, if there are g independent groups of observations

with n_ observations in the s:th group, n, +n, + ... +n = N,
" the model is still in the form of (15), where A is of order Nx g

and has n, Tows§ (i, 0, ..., 0), n, rovs 0,1, 0 ..., 0), ...,

¢ N -

and ng rows (@, 0, ..., 1). Further,

-

- WL W
: @ 1 )
E?2) gﬁz) B2y

T e &
. :
. - * - .-

*/

t (2
'
:




’ » X ) . ) “
~and P is-as before. The s:th' row of .2 consists of the polynomial

coefficients for group .s. ‘The growth gurves are.assumed to have

. . - - N ‘.

the same degree h for all groups. Evem in the general case ,the

result is given by (17) ,shere U, V and S are defined'as before.

For_practical'burposes the maximum likelihood estimate of Z may be

2

obtaine@;by means of the cqmputer program ACOVSM (as described in

)

section II).- With this program one can also test linear hypotheses' .’

on = of the form h "
=0 -

-~

LY

_where | C uxg - x v) are given matrices qf:ranks
L] * » ‘
u and v, respectively. In particular, one tan test the hypothesis

-

that certalq coeff1c1ents in one or more growth curves are zero and

- the hypothesis that cértain groups have the same or parallel grcwth

>

curves. ‘One ‘can also restrlct elements’ of = to zero in adva:ce.

’,

, Thus w1th the ACOVS“ program it'is not necessary to assume that all

groups have ggpwth curves of the same degree.  In this case, of course,
A « A . ' T
= is;nd longer given,by (17) but can still easily be computed subject

-~

to the zero a pr10r1 rest,rlctlons

.

As an illustration, con51der the data in Table 1 taken from Pott-

hoff and Roy (1964). ' The data is from a dental study in which, the °

distance, in-miflimétefs, from the center of the pituitary.to the

~

pteryomaxillary tissue, was measured on each of“11 girls and 16 boys

at ages 8, 10, 12 and 14. The data matrix has 27 rows and 4 columns,

the first 11 rows representing the girls and the last 16 rows representing

¢

the boys.




S : © TABLE 1 '
‘ i Dental Measurements on 11 girls z‘md 16 boys
e at 4 different ages /
. % pata from Potthoff & Roy ’(19}34), Table 1
' Girls ‘(,J . Boys
Age irlYears \ _ ~ Agg in ':Ye;a.rs
Individual 8 10 12 14 | Individual ‘8 10 12 14
-1 21 20 21.5 23; 1} 26 - 25 ° 29 31
2 21 21.5 24 25.5 2 21.5 22.5 23 26.5
. " "3 20.5 24 24.5 26 3 - 23 22.5 24 27.5
s 25.5 245 25 26.5 40 255 27.5  26.5 27
5 . 21.5 23 22.5  23.5 s 2d  23.5 22.5 ° 26
.6 _220 21 l21 22.5 6  24.5 25.5 27  28.5
. 7 21.5 22,5 ;23 ’ 25 7 22 22 24.5 26.5
. 8 23, 23 25.5 24 8§ . 24  21.5 24.5q 25.5
e 20 " m 22 - 21.5 9 23 20,5 31' 26
) _‘106 16.5 . 19, RSt .. 19.5 10~ 27.5 28 51 315
11 24.5 25 28 28 in 23 23 235 25
' 12 21.5 "23.5 24 28
13 17 245 26 29.5
, .14 225 25.5 25.5 267
’ N 15 23 24.5 26 30
v i6 22 215 235 25
Mean  21.18 2\2.2-3‘_' 23,00  24.09 Mean ~ 22.87 23.81 25.72 27.47
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The following two, questions may be asked.

-

(1) Should the growth curves be represented by second
A}
.degree polynomials or are linear equations adequate?

.,(ii)‘ Should two separate growth curves be used for boys and

LY

. girls, or do both have the same growth curve?

To answer these questions we set up a model as in (15) with
¢

£

NQZZ, T=4, and g=2 and h=2, with A,a matrix of order N x 2 with the

first 11 rows equal‘to (1, 0) and the last 16 rows equal to (0, 1)

L3
-

and with

- prases

(G)
0

B : B)
g() . g()
0 2

3

Since the time points are equidistant we take the rows of P as the

first ‘three orthogonal polynomials of order four, i.e.,

likelihood estimate.of

p—

- | 22.704 0.479 ~0.003

[

24,631 0.788  0.050 -
© . ® _q

To examine question (i) we test the hypothesis £ - £
2 2
This can be done by choosing '

. -/1 o0 ’
C =N
1o 1




N s

The test statistic tan be traﬁgformed t6 an defbtribution s . .
(see Pottoff § Roy, 1964). In this case one obtains an F=1.19 .

with 2 and 24 degrees of freedom. This indicates that the
hypothesis cannot be rejected. - We may thereforé\regard the

~

growth curves as linear rather than quadratic.

. ' ' S -
We now modify the model and take Z as
— . ‘
[0, (6
N | 5o 1
E = (B) (8
z Eo El
®: ., and P with only two rows instead of three. The maximum -
, likelihood estimate of = 1is now o
A i22.689 0.477
. §24.923 0.826
// To eXamine question (ii) we set up the hypothesis ggc) =
i . i
géB) s ggc) = 5%8) . This corresponds to choosing*
. .
3 ! r _‘ !1 0 i
. 9 » = ll’ -1 _! Y 13 = I\O 1 )
_ *Also, in thi§ case, the test statistic can be transformed to
; an F distribution. The test” gives F = 6.44 with 2 and 22 de- . .

grees of freedom, suggesting that the hypotbesis should be

rejected. Boys and girls have different growth curves.
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B. An autoregressive model for one variable o&er time
B : -

The development in the previous subsection did not take the

ucovariance structure in Z into account. However, the growth

P

curves can”EE/;;tlmated more efflclently and the tesfs w111 be moré powerful

1f the covariance structure, which arises naturally in repeated

*
LY

measurements, is taken into.account. This -covariance structure

>

. .
very often has an aqtoregressive nature. Therefore, in this sub-

section, .we focus attentlon to the deviation e, = Ye ~ ¥y of

L

" autoregressive models for-thisw ——— - —- - - —

The first-order autoregressive model is

e = B.e + zt , t=2,3, ..., T,

a

where the residualazt is uncorrelated with et-l'

7t§é§ zz, Zg> --e» I

model is shown . Fig. 2 for the case of T=4.
It is readily verified that

’

_ _ 2
Cos (¥,» yt_l) = E(e, et_l) = B0y 1’

.2 _ _ 2
where "o, ; = Var(yt_l) = E(et-l)’ and that
Cov (v, ¥, 3) = BB B, 11y O
- . t’ ‘t-k t -1 °7° Tt-k+1 "t-K’
where 02 = Var ( )
t-k Ye-x! -

v Y, from its mean value W, on the growth curve and consider varlous

-
' - - —_

(18)

It is also assumed

z.. are all uncorrelated. A path diagram of this

k=1,2,...

*




22 | Z3 | 24 -

Figure 2 -- An autoregressive model for one variable over time.




. From (18) it is seen that I is constrained; its ten variances and “

" ‘where :H

-

»

b ‘ o

D ' . J
JIEN S ! 02 - . 5
1
. ‘e 2
B ag T4 ° ° A ,
- . 2 2
B3B201 B39, o3 . ‘
. - 2 2 2. 2
: <o | BaBsBa0y  ByBgoy  Byoz 9y .
7 I :
. . )

t

covariance§ are functions of only seven parameters. Since the
variances are free parameters it is the six covariances that are
functions of tﬂe three parame?érs 82, 83 _agé/84. .In.the éeneral
case there .are (1/2)T (T + 1) variances gﬁ&'covariances‘in L and
i . ) \ , ~

.2T - 1 free parameters.-

The correlation matrix corresponding to (19) is

1
PPz Py 1 y
4 0 0 p
Pofsy P3Py 4 1
- ) 1

\

Bi(ci_l/ci). There are only T-1 independent corrélations,

namely those just below (or apove) the, main diag6na1 and the other

correlations are products of these. For example,




T

p.. = || oy (i<3). (2D R -

< It k= i+

‘It is seen that the correlations fall off as one moves away from the

‘main diagonal, a phenomenoh usually found to occur empirically.

The - artiai correlation p., . is zero, whenever i < j < k. This is o
P ik-j J

« readlly verified since p“K 0 by virtue of (21).

?15% 35k
Higher order partial correlatlonsp\wlth two or more'lntermedlate

variables_held constant, also vanish. It follows that in the regression’

4

z

3 ‘ i .
Yo TBuYrtBe¥at s tBe et (22

of Yy On all precedlncr variables, the only regression coeff1c1ent

) Sl
that can be non-zero is Bt o1 = B¢ For the predlctlon of Yeo only
,t-

the }mmedlate neighbor Ye1 is usefu\. The effects of Yezr Yeozo o

s .\
--+» ¥y ony, are only indirect via VARE .

If the growth curve specification in ( 15) is ignored so that, the

mean vector u is unconstrained, this m&del can be estimated very ) o

A

. . )
easily. Under multinormality, the maximLm likelihood estimate of B
\

is just the ordinary least squares estimafp one obtains by estimating

each regression equation in (18) separately, namely

() n

‘ B = se /St o

where the sij are elements of S in (16). The residual variance,

Var(zt), is estimated as

1}

n

1

w5y
[ 2 381

s .

14
Var(z.) t-1,t-1

tt
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k]

The estimation of the growth curves and the B's s'imulfaneously

is not so easy. This may be done numerical 1); by means of". the ACOVSH
program. We now. show that the § in (19) is indeed of the form
required by that program‘. To do so we defi.ne z) 2 & and write

— - the equations (18) as (in the case of T = 4)

— = ‘
ey 1 0 0 0 /zl \
| e | | By 1 0 0 z,
- - ‘ A . (23) ‘
. " - P .- N
°3 Bafs B3, ! 0 31 ~
€4 828384 B8, Ba 1 %4

k = . B.- i = 3, ..., T. i 3.
Let i 8283.. 31 for i = 2, 3, , T. Then if all 1740

thers is a one-to-one correspondence between' Kips Kogs voes K and

_1_32, 83,;.., BT and Bi =K_i/ Ki—_l The matrix in (23) is_

\ —~ - g

\ 1 0 0 0 .
\ . K 1 0 0 - .
2 _ -1
| 1 o omwmd
3 K3/, o
Ky K4/K2 K4/K§ 1
where QK?' diag (l,xcz, K g K4) and

—

t




Hence,.(235 can be written

. D TD;1§

-~ ~a o

(1
]

= D Tz*,

-~ '

with covariance matrix

- I = D T¥TD , . (24)

- W -~ i
where Y¥* i3 the diagonal covariance mgtrix of z* = D “z. The
* * *
- . 1 ! i
2T 1 parameters Ko Kgs e Kps V1£§\¢22’ cees Yo are in a

" one-to-one correspondence with the original\ parameters 82, 83, wes)y BT’

011> 022{ cevs Oppe Equation (24) is in the\form of (2).

The whole model is defined by (15) and (24). T

> ACOVSM program
gives estimates of the growth curve polynomial coj}fisients as well as

: N
Bys Bgs -ves Brs Opp» 9992 o I The program also\glves a

<

q - - i3 N\
x2-goodness—of—flt‘measure for assessing the £it of the overall model.
This xz-measure may be divided into two components measuring the fit

of the growth curve model (15) and the covariance structure model

(24) sepatrately.
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Growth Curves for several variables simultaneously

C.
The model of the preceding subsection will now be generalized to
the case of several variables at each occasion. We still assume thaﬁ‘the

observed variables are measured without errors. The case of measure-
ment errors in the dependent variables will be considered in sections
IV and V. An example of the type of model to be considered is shown
" ' 4

in Fig. 3. Here there are 3 variables for all t and, as before, we
illustrate with T = 4 occasions. ' ;
i

o

- —— . = oy = . = T = - -

Insert Figure 3 about here .

--------------------------
!
1

The growth curve specification for the model in Fig. 3 is as
i‘

Sor an-arbitrary individual we arrange his observed scores

. follows.
| N "
so that his three scores at the first occasion come first, then/his
!

/
-’ //
three scores at the second occasion, etc., i.e., - /
i . '
Y110 Y120 Y130 Y210 Y22i Y230 Y310 Y3z Y3z Yar Yaze Yas
where ytj is the score on variable j at occasion t. The grow4L curve

for variable j is assumed to be

. _ 2 :
E(ytj) - Ejo + Ejlt + Ejzt > ; . (25)
say. As before, the model is given in matrix form by (15), where
and
Q = 342
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A

b 3

"1 o0 1 0 1 0 1 0]
tl 0 tz 0 t3 0 t4 ]
. ti 0 tg‘ 0 t:Z,, 0 ti‘ 0
P{6 x 8) = )
- 0 1 0 1 0 1 0 1 :
0 t;, 0 t, 0 ty 0t
2 2 2 2 -
‘Q t] 0ty 0 ty 0 .t ‘

The matrix A is a column Vector of order N with all elements equal

to one. If there are g groups of observations, there will be g rows

in £ and the matrix A will as be described in section III.A.

Without constraints on the covariance matrix I and with no
a priori zero restrictions on £ , this model can be estimated as in

III.A. The maximum likelihood estimate of = is given by (17).

D. Multivariate autoregressive models

3
2

. k3 - - .‘ .“
e now consider a multivariate autoregressive model which is
| ]
a direct generaiization of the univariate autoregsessive model in sect.on

III.B. This autoregressive model is '

Yt = ?tyt-l + Et > t = 2, 3.) soey T, (2())

vwith the y's measured as deviations from their means. For the model in

Fig. 3, each matrix Bt will be of the form




[ © (©)
8 512 0

2 = 0 sgg) 0 _ - (27)
(t) 5
0 0 B3

The residuals in z, are assumed to be uncorrelated across time but

may be contemporaneously correlated, i.e., E(z z;)‘= 0 for s # t.

t

The covariance matrix E(z _z[) is denoted Ot.» If the mean vectors-
oy W - . -

u, and the matrices B_ are unconstrained, this model may be  -——

t

estimated directly by estimating each regression in (26) separately: s

Let
S.1 Sz o Sy
Sap S22 o Sor
S = . )
] , S1 512 Str
b the sample covariance matrix of y* = (yi, yé, taty y;), where SSt is the

covariance matrix between Ye and ys.' Then the maximum likelihood estimates are
~ -~ )

Pd -

T ) . S -1
’ B, = s.t,t—ls.t-l,t—l
¥ and
) o -1 o
¥ ® %xt - %t,t-l %t—l, t-1 Tt-1,t

Qo . 345 36
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'li
!
1f the mafriceg B, have fixed zero'elements as in (éZ‘, the mo&él 1' i
may be estimatéd by means of the LISREL progr;m as described in sécfion e .
. . o \
2. LISREL.can estimate the covariance Struciure'but'not the growth ' . _;(
curves specification for the &eans. ¥hen ‘the latter are included in - ’ e ‘
..the model together with the multiva;iate.auto}égressive.model,'the eé;i; : M

mation problem is comﬁlicated and there does not seem to be any general
. . <

program available to handle this estimation. When all_B% are diagonal, ACOGSM may

be uséd in the same way

ERIC

Aruitoxt provided by Eic:

s in III.B.
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: 1v. Two-Wave Models . /
A. Two-wave, two-variable iodels T .
T .
In the previous sectign all the varlables were assumed to - .

- -

be measured %ithout error. Measurement errors in the variables
] ' . . '
I . .

were not taken into account in the models which focused directly
on relationships between the observed variables. Tn this and the

next section we assume that all the observed variables contain

errors of measurement and focus on the ferationships among the . -
true or late~t variables. In doing so we shall ignore any . - ‘

structure on the mean vector and simply assume this to be un-

cpnstfained, We may therefore take all variables to be measured °

.

in deviations from their means. . .
l We begin with the sihple model shéwn in Fig. 4, where two ‘ ) lm ’ -
variables are measured at two occasions.: We assume that the. two
variables meESu?es the same latent variable n, i,e., Y11 and Y12

i\ measures n; On the first occasion and y21‘and Y90 measures n,- 9-;

N on the second occasion. We are interested in the relationship

between n, and n, expressed in the structural equation

[

. the regression of n, on n,. In particular, we are interested in
g 2 1 par . .

whether 8 = 1 and ¢ 1is small, i.e., whether the same latent variables

// < -
are measured on both occasions.
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Figure 4 -- A two-wave, two-variable model.

a . 37U




.
.

R4V B /511
, !
y A 4] n €
| 12.§ _ 1 ] 1\ ( 12 , (29)
Y21 o 1 iim, 21
Y22 0 A \ %22

<

where it is assumed that Ny and n, are measured in the same metric

as yiy and Y91 respectively. This model is a special case of the

_ general LISREL model with no x, In terms of LI§REL, (28) may be /P

interpreted, in accordance with (4), as

1 0 /51 (4
1 = >

LR VAUYIRCY

and gz =g. _Let & be the covariance metrix of

M
(nl, nz) and let 9 be the covariance matr%x of (511, €.55 €ay> 522?.

where &y =

If all 'the €'s are uncorrelated so that © is diagonal, the covariance

-

matrix of (yll, Y120 y21,,y22) is z o
- . ) L ) ’
oyt 0y
AL Az + 8
11 1°11* %22
z =
*21 1921 22 * 033
! 2
F A% MAea A2%22 A2%22 1 fug
-* - ' —L
349 e
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£ has 10 variances and covariances whici are functions of 9 - . .

-~

parameters. The model has one degree of freedom. v
Often when the same variables are used repeatedly there is a

tendency for the corresponding errors (thg,,%'s) to correlate over

time (see section iII.B and III.D) because of memory and other retest

effects. Hence there is a need to generalize the preceding model to

-

ailow for correlations between €1 and €,y and also between
€y and €59° This means that there will be two non-zerc covariances
B 6, and 6,, in 0. This model is shown in Fig. 5. The co-
variance matrix of the observed variables will now be
: '¢11 o )
4 2 -
2011 Mot 922 ,
. . . =
%1 * 831 A2 22 * 33
: , 2, .
. . 221 Arhafat 952 M2 A%22* Oy
L . 4

This I has its 10 independent elements expressed in terms of 11"~

parameters. Hence it is.clear that the model is not identified. In

-

fact, none of ti.e 11 parameters are identified without -further
" restrictions. The loading A and A, may be multiplied by a
constant and the o's divided by the same constant. This does not

<

-~ ‘ 3 '
change Ga12 S320 941 and 043 The change in the other «'s may

be compensated by adjusting the &'s additively. Hence to make the

model identified one must fix one X or one ¢ at a non-zero value

- . - - - g e - tn e = - - -

- e = n - = - . = = -
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J?il | Figure 5 - A two-wave, two-variable model with correlated errors.
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or one'd at some arbitrary value. However, the correclation

<}

between n, and n, is identified without any restrictions,

£ .
since

Corr(nl,n?:) = 9517411722
’ i \/(°37°41)/("71"43)

Th's model may therefore be used to estimate this correlation

coefficient and to test whether this is one. The maximum likelihood

estimate of the correlaﬁion coefficient is Vk532541)/(521543) .

" To ﬁake further use of the model it is necessary. to make some
assumption about the nature of the variables. For examplé,

if it can be assumed that the two variables at cach occasion®

are tau;equivalént (see e.g. Lord & Novick, 1968) we can set both
%y and A, equal to one. Then:the model can bejesFimated and

tested with one degree of freedom.

B. ‘'wo-wave ,two-variables models with background variabTeg
The model of the previous subsection may be used for the’
measurement of change between two occasions. However, in many

longitudinal studies the objective is not only to measure change

but also to attribute or relate change to certain characteristics




1

and event;. Sﬁch studie~ must include not only pre- and postmeasures
but aiso various background variables believed to influence change.
The background variables may be socioeconomié variables or other
characteristics differentiating the individuals pridr to the
pretest occasion. . ' '

éonsider the‘model shown in‘Fig. 6. Thé background variable
is deﬁo;ed x. The main purpose of the model is to separate the
. . . s Lol
direct effect of ny on n, by eliminating the effect of x.

The measurement model for y is the same as in (29) but now °

the structural equations are:

(1 0) [m \_ Y % }

L ) = x + . (30)
B 1) n, Y, %y »

The.‘Ax in (6) is a 1 x 1 matrix with element one and § = 0.

The reduced form of (30) is

L TS ES

]

(v, - BYx + (5, - B2

o




Figure 6 --

d

A two-wave, two-variable medel with an infallible background variable.
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1
€11° %12° 21

have zero means and are mutually uncorrelated and uncorrelated’

As before, we assume that the measurement errors and .

-

€22

with ny and n,- Furthermore, we assume that the residuals ;1
\

" and ;? have zero means and are uncorrelated. The variances of
v . - 7 — -
cl and ;, are dencted Vi T Var (cl,, wzz = Va;(cz).
Let us first consider the identification probleh. We have five

observed-variables Yi1° Y127 Yo10 Y92 and x with fifteen variances

/

and covariances. The model has the following twelve ‘parameters to

/

be\estlmated Al, Az, 8{ Yy» Y5 o = V?r(x), ¢11’.¢22 and eii,

i=1, 2,3, 4. We have

-

COV(yll.X) = COV(nl,X) =vyd
Cov(ylz,x) =z AICov(nl,x) = Alyl¢
Cov(y,y»X) = Cov(n,,x) = m¢

va(yzz,x) = AZCov(nz,x) = A,m

-

Since ¢ = Var(x) is identified, these equation$ determine Yyo Al,

~

m and A,, respectively. Furthercore,

< 2’
Cov(y.q,Y.,) = k Vee(ny) = A (¥ 2¢ + Yo a)
11712 "1 1 1%1 117

which determines wll , and l
]

|

. 2
Cov(y,ys Ypu) = Ap¥ar(ny) = Apln"e + Var(W)],
which dr. .mines

2
Var(v) = wzz + 8 ﬁll'




For given Xl’ Ay Yﬁ’ n, ¢ and- ¢11,any one. of the four equations<

-8

= A - ’ IN

COV()'u’)’Zl) Yl'"r‘ B‘pll > ‘ (321
/

Cov(y,;,¥ps) = Ay (¥ mé = BYy )0, (33)

.

determine 8 . Then, with B8 deteriined, Y, = W +'BY1 and ¢22 is
obtained from (31). The error variances eii are determined from 050
i=1,2,3,4. Heﬁce jt is clear that th: whole model is identified and
has three independent restrictions on I.

Now supposé'that x cannot be measured without error and write 5

x = §+§6,

where £ 1is the true score and § the measurement error, ‘the latter
assumed to have zero mean and to be uncorrelated with £ aad everything
else. We shall consider two cases namely: (a) x has a known
reliability p;x =o§/ oi and (b) £ 1is measured by two congeneric

background variables x; and X,. Case (a) is shown in Fig. 7.

1

In case (a), the above equations are the same except that ¢

is replaced by oz . Since oz = pxx¢ where P rx "is known and ¢

«s identified, all the other parameters will be determined as before.
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. ) Figure 7 -- A two-wave,(two—variable model with a fallible background variable.
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" “included as“parameters.
. aranm

t
-3 P , ¢

d -

3 . - ] .
Next guppose the errors €,y ands'z1 and also €12 ‘and €0

are'cofrelaféd,as in section IV.A. Such a,quei is shown in Fig. 8:. -

Y

Then ©

3 will be added to the right side of (32) and 942 will be

\\\\\; added to the’right side of (35). Equations (33) and (34) still

determine B for given 11, 12, -Ylf T, . ¢ and wll ?nd esf

AN .
.

éng\\e42 are then determined by (32) and (35), respectively. Hence

‘this model hqé one overidentifying restriction.

? - -

Case (b) is shown_in Fig. 9. Here we write

x ! .
]

E+61'
Xy = AE S, .
vhete A; is a parameter to be determined and §, and &, are

.‘uncorrelated?neasurement errors,. uncorrelated with &£ and the other
latent variables. The other equations are as before except that °

x is replaced by £ . We then have three more‘parameters than before
.t ' : .

namely ~ A, 02 and 02 .- The parameter o, = Var(§) Teplaces
37 761 862 < £ .
¢ =ci = Var(x). On the other hand we have now six more manifest

parameters, so that the model has six degrees of freedom with

931 = e4é = 0 and four degrees of freedom with these covariances

-
- - -

.a,‘

- ”

The ﬁarameter Az is identified with three overidentifying

- -

_ restrictions since

Cov(xsz)/Cov(xl,w) = 13,

-~

£ 4 ’ - N
for w = yll”y12’ yzi and Yoz All the other parameters are

determined as before.
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The models in Figs. 6-9 have delib‘erately been chosen simple
to explicate the Aprincipal points. -The models can easily be
generalized in two ways. Firstly, the number of pre- and post

measures y can be more than two. Secondly, we could also have

-

2T sevex"al ’backg‘round vériables with a factor struc1‘:ur.e. ¥e mow give
two e;camples of models of this-kind. e - '
c. The Stabiiity of Alienation - :
- ‘P "For the first e:x‘ampleA we draw on ideas and data in nWheaton et. : :
al-{1977). Their study wa;pgncei'ned with the s1‘:abi'lit')7 over i:i«mé. A
of .attitudes such as &l iena1_:ion azxd its 1:'e1ation to background
_ variables such as education and c.)cc-ufat.ion. I")at@ on atti}:h:le scales
’ ,‘ w;re collected from 932 pers-on§ in two rural regions in Illinoié at B
g " three points‘ in tim{a: 1966,. 1967 and 19,_71. : (Sée Sumxners et al, 1969

.

for further description of the research setting.) The variables

T . we use for the.present illustration are t}ie Anomia subscéle'and the

Powe lessness subscale, taken to be‘_;ndlc;ator_sﬂqf_ﬁ A_henatmn. _NWe use - o

. these subscales from 1967 and 1971 only.. The background varlables are” ,
LV A /\ - .

respondent s educatlon (years of schooling completed) and Duncan"s

[}
- -

» .

Soc1oeconom1c Index (SEI). These are taken to be *indicators of ' V ;- v
5 ',\ e

respondent’s socioeconomic statqs fSESj We analyze these vanables

¥

under three different models as shown in Flgures 10A-C none of which
. .

corréspoﬁd to that of Wheaton et al (1977). The data are given in

(3
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<

. - Figure 8 -- A two-wave, two- variable.model wu:h correlated errors and a
- fallible backgrouhd variable.: . .o - ‘ -~
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Figure 10c -- Model for study of stability of alienation.
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_Tablé 2

Covariance,Matrix~for.the/ggdéls>of”Figurp

6,947

~

9.364

IS

6.819

5.091

'4.783  5.028
. 3.83 - 3.889"
-21.899 . -18.831
r
b r

C . 7.485

3

-
~

- 3.881 « - 3.625

1,

-21.748

-

9.986

-,

-18.775

-

[

16 (N = 932)
§
- B
3
9.610
‘\
o Y
35.522  450.288.
. ,
. f
A
-\ : M
B s
f
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<

o

The-maximum likelihood estimates of the parametersfof the

-

s 7
models are given in Table 3. The main aim of the Wheatoh et al .,

I :
. " ——

- study was to estimate the stability of alienation ove time, which is

- reflected in the parameter 8, or in the correlatlon between

'J VA

a11enat1on 71 and alienation 67. As can be seen,from Table 3 ve
obtain an estimate of 8 which is b1ased upwar?s 1f‘we ‘use. a model )
that does not take SES into account. The 1nfluence of SES on

Allenatlon at the two occasions is s1gn1f1cant, see Model 10B. The

'coeff1c1ent for 1967, Yl’ is ~-0.614 w1th a standard error of
0.056 and for 1971, 72, it is -0. 174 .with-a standard error egual
. to 0.054. The negatlve 51gns of the SES coeff1c1ents Y, and 'YZ .

- 1nd1cate that for h1gh soc;oeconomlc status the alienation is low . _

and vice versa. However, the overall fit of the ModellDBJs not’

RO

acceptable, xz w1th six degrees of freedom equals 71.544.  Since
'7 the same scales are used on both occasions, it seems reasonable to

assume that if the influence “of the true score, i.e: Alienation, is

-~ .
’ removed from the measured variables, i.e. Anomia and Powerlessness,

~
~

P * there might, still be some correlation left between the same

-
-

measures at the two occasions. Thus, thé MecdellOC is intuitively

ey

more plausable. As can be seen from Table 3 the inclusion of these

error correlat1ons results in a model W1th an accéptable overall fit.

. D. An Analys1s of Verbal and Quant1tat1ve Ab1l1tzA

For the second illustration we ‘use some longttudlnal data from

a large growth study conducted at Educat1onal Testing Service
P . - - - v




TABLE 3

" < Maximum Likelihood éstimates for the Models ig_Fighre 10-A-C

The standard errors of the estimates are given within parenthesis.

=

_ ) . Model in Model in Model in
Figure 10A Figure 10B Figure 10C
i -
SN 0.815 (.040)  0.888'(.041) 0.979 (.062)
y, ¥ 0.847 (.042) 0849 (.040) 0.922 (.059)
xg - - - 5.331 (.430) 5.221 (.gzzf“‘-;~
B 0.789 (.044) 0.705 (.054) 0.607 (.051)
) Y, - '0.614"(.056) -0.575 (.056)
i Y, - - : -0.174 (.054) -0.227.(.052)
- 7*11 - f - "5.307 (.473) 4.847 (.468j
A Voo 4.085 ;.432)‘ 3.742 (.388) ‘9.689 (.405)
R - 6.663 (.641) 6.803 (.650)
%, -- - 1.717 (.}45) 1.675 (.151)
%, --- s 16.153 (..565) 16.273 {.558)
& e % A 1.906 (.097) 2.004 (.086) 2.176 (.104)
% s N I1.865 (.077) 1.786 (.076) 1.602 (.126)
€1 £.827 (.109) 1.923 (.0571 2.098 (.125)
%ers | 1.969 (.077) _; {.904‘(.077) 1754 (124)
coE;(ell,eZI} - - - --=- ' oisss‘(;o47)
corr(slz,eiz) - - - -- - 0.121 (.082)
2 61.155 71.544 4.770
d.f. 3 6 .4 .

re




ey (Anderson § Maier, 1963; Hilton, 1969). “In this study, a nationwide’
(U.S.A.) sample of fifth graders was tested in 1961 and then again
ig 1963, 1965 and 1967 .as seventh ninth and eleventh graders,
respectlvely. The test scores 1nc1ude the verbal (SCATV) and -
quantltatlve (SCATQ) parts of the SCAT (Scholastlc Aptitude Test)
and ach1evementvtests in mathemaflcs (MATH), sc1ence (sC1), social
studies (SS), readlng (READ), listening (LIST), and wr1t1ng (WRIT)

~,
The exallnees for'wh1ch complete data were available for all the

. grades S 7, 9 and 11 w!re dlnded into four groups accordlng to sex
o

.o £
% and whether or not they were in the academic curriculum’in grade 12. . .. »
)t gﬂ o i
The four groups and the1r sample sizes are as follgws::

<

- - - 'Boys academlc (BA) - - N = 373, L '
= Boys non-academic (BNA) ‘h =‘24i, » ~ ‘1 ' ‘ i;'
' Glrls,academlc (GA): , - N =383, . s
- ' ’ ] Girls non-academic (G&A):V .N = 387. ' s
. Scores on éeach test have been scaled so that the‘uhit of measurement : ‘
is approximately-the same at a11 occa51ons. All analysee reported ,—f«vﬁ{ -
. here are based on 1nfbrmat10n provided by the means, standard dev1at1ons |
’ and 1nte;corre1at10ns of the 32 fgilables (8 tests at 4 occasions) “for
- the four groups. s =
In this example we usé the six tests MATH, SCI, SS, READ, SCATV,
, SCATQ in‘grades 7 and 9 only and only,the group GA. In later sections
we use data from other grades and groups as well. Eerlier studies
- ngrefkog, 1970a) suggest that these tests measure two oblique factore
. .
Lo . e T P ]
I . ‘ .
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< .
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whict may reasonably be 1nterpreted as a verbal (V) and a

. ff»\

quant1tat1ve (Q) factor. We set 'up the model in Fig. 11, which

>
L - e

i . represents a model for the measurement of change in ;\}h\} and

- B . , 1

‘ o quant1tat1ve ab111ty between grades 7 and 9 " Since there-are no
) ) ‘ -
background variables ‘in this . opel we may for est1mat10n purposes

. u.

; treat the pretests as the 1ndependent variables. Hence we use the
= ' -
notation x for these. Note/" that the model ‘includes the following

T . features' ‘/ o y - o

b (i) On each occasion the factor pattern is pOstulated'to be ,

restricted <in the follow1ng way. MATH and SCATQ are pure

- - " _measures of Q READ and SCATV are'@ure measures-bf V. T

\

SCI and SS and cpmp051te measures of V and Q ThlS 1mp11es -

> v . ¢ <
W\,

g Z+ ™« fhat there are four zero loadlngs in both™ A, and A y " .

% -~
'v ! . o ‘,7.— .

Tb fix the scales for V and Q we assume that they are measured

% .L,f, .'

-

L 1
~

/“”_,_____-—-—

- I
R means that—%here‘ls one f1xed one 1n each column of Ax and Ay
.. o { - -

(11) It 1s‘postulated that Q ~affects Qg only and not Vg and 4
I3

51m11ar1y for V This means that there are tgo zero

Y7
j ) . :
v ' . coefficients in TI. Furthermore, we postulate that the

Ky

. residuals Clj and iZ are uncorrelated, which means that,
%-m
. whatever remalns in Q9 and V9 after Q7 and V7 are accounted

for, is uncorrelated with everythlng else. . X
(iii) The errors or unqiue factors in 6. and ‘are assumed to

! -~ * -~
i

be uncorrelated both within and between occasions. .

1
1
1
I
1
1
v
.
~
! >
fa”

- B T v B "> - - . . o -

K]

« dk e tein i
! 'Insert EggUre 11 about héere .. .

| - : . -

in the same»unlt/,asfSCATV and SCATQ, respectlvelz_“_lh;s_____—‘—-———-"f




Figure 11 -- Mogie'i: for the measurement of char{geA in verbal and
. ability“between grades 7 and 9.-
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The maximum likelihood est1mates are given in Table 4,

3

The rather low loadings of SCI and SS on Q at both occa51ons may ‘ .

.-

seem a lrttge surpr1s1ng. However, an inspection- of the items in tests

SCI and SS reveals‘that these are mostly verbal problemsﬂponcerned ) . ﬂ .
with iogioal reasoning in comtrast to the'items in SCATQ which are
mostly numerioal items measuring the ability to work with humhers. : -
The small resrdua; variance 1,85 of gy means that yg“cah be //

_ predicted almost perfectly from V This is not quite so for

7°

Q 51nce we here have a re51dua1 variance of 18 49 Howeveri this

e’ ~

. BN T
may be due to the more\rapid increase in variancé of Q from‘grade;g -
. ‘ ) - - R . .
- -7 to 9, which is manifested in the increase in variances.which is ‘ ' N

‘ 143.54; - 103.87 = 39.67 for Q~amd 117.15 - 115.41 = 1.74 fbr‘v,‘

There is a reason not to look at'each number in Table 4 too

L2 b

serlously and thlS is the poor overall fit of the mode1 as evidenced P

by the xz—value of 217 79 w1th 47 degrees of freedom. We shall

therefbre 1nvest1gate the reason for this poor fzt and demonstrate

[

that LISREL may be used not only to assess or measure the

goodness of fit of a-'model but also to detect the parts of the model
\ "~

where the fit is poor. Taking the more fundamental assumptlons of
1
11near1ty and mu1t1norma11ty for granted, lack of‘flt of the model

e e A T r . . .
& b4

in Fig. 11 may be due to one or more of the postulates (1), (ii) or (iii)

,\

‘not- being reasonable. - We shall therefOre investigate each of these

.
separately. R
i A

To investigate (i) we set up a factor analysis of the pre- and
. I3 : “ R

P . . .
" - . . * “s

-’

posttests separately assuming the postulated two-factor structure.
x x . . -

- 0 > AT S 2y A s WOy = e D D D P - -
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* the value of this parameter was specified by the model.
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5.68

5.49-

6.61

6:80.
4.44
7.10

a.l‘ - : TABLE 4 . .
‘ ﬁ Maximun Likellhood Estimates (LISREL) for the Model of Figure 11
_— Group GA (Girls Academic), N = 383 ‘
A R Q7 Yy
R o7 TosT| T dam
= _ 0.20 ' 0.52 ‘ Qfscr7
. 0.25 0.84 | ss,
L As lo.* 1.21}" READ,
N - X )
v ‘ 0.* - 1.* SCATV,,
. F Lm0 SCATQ,

4.80

6.57 -
7.24
. 6:49

4.47
8.23

e




. This gives xz = 17.64 for the\pretests and xz = 2.62 for the
posttest§ both with 10 degrees of freedom. Although the fit is not
qu1te acceptable in grade 7 we take the postulated factor structure

M ~

to hold both for the pre- and posttests. So we must continue to look

- for lack of fit due to (ii) or (iiii).

{ The postulate (11) is concerned w1th “the_ 1nterre{atlonships'EEtmeen

-

the four factors Q7, 70 Qg, and Vg The most general assumptlon-

»

is that these four factors are freely 1ntercorrelated and this is

.

. equivalent to a LISREL -model with all four coefficients in r free and

s wlth V free as a fu11 symmetrlc matrlx. Hence, it is c1ear that,

t =

the assumptlons made in (11) is the 1ntersect10n of the two hypotheses ‘
Yt pis diagonal” and. " ¥ is\diagbnal". "It is therefore usefil
- * (" . ’ * ~

i'tp test 'each of the four possible hypotheses.. TheArésults of-these
'analyses may'be presented in a 2 x 2 table as in'TableAS. The TOW

marglnals of the table represent xz—values w1th one degrees of

PR

freedom for test1ng the ‘hypothesis-that '?”15 d1agona1 It is seen

e e

‘The column marg1na15 represent

. xz—values with two degrees of freedom for test1ng the hypothe51s that aA .
- A - -“;
I, is diagonal. This hypothe51s ‘seems qu1te reasonable.g Prom these .
- i

analyses it is.clear that "r diagonal and W free" is the most

reasonable assumption to retain. The overall fit of this model is

x2 = 196.4 with 46 degrees of freedom. Sinte this is still too
. : . . ~. o - ’ -

large we must continue’ to investigate. (iii).
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The assumptlon in (111) is that the_unique factors in 6 and oo
e' are. uncorrelateu b;EEVWIthln and between sets. That they are
uncorrelated W1th1n sets should not be %uestloned slnce we have alr ady
found that the rostulated factor analysks model holds for both pre- \‘~T~»
and posttest. That they are uncorrelated between sets, however, is
more questlonable because of spec1f1c factors in each test. This
reans that the)unlque factors for correspondlng tests should be
allowed to correlate. To account for such correlatlons, Jbreskog

(1970a) 1ntroduced 50 called test-speclflc factors, i.e. factors which

do not contr1bute to correlatlons between tests Wlthln occaslons

but between the,same tests at different occasions. In thls case,

when there are only two occasions, it is not possible to define,

(identify) test specific factors but we can merely introduce

correlatiops between unique factors for corresponding pre- and

[N

posttests.‘u

The model in Fig. 11 is therefore modifiedas 1n~F1g 12.

Y
Thls revised model can also be estlnated with the LISREL program.

The analysis of the revised model gives the results shown in Table 6

. which also gives standard errors of the estimated parameters; It is

seen that all the estimated parame}ers are significantly different

from zero. The test of overall goodness of fit gives x% = 65.63 .,
. Y

with .40 degrees of freedom. This represents a reaséaably good fit

"of the model to the data. An approximate test of the hypo:ﬂﬁfes ki

that the unique factors are uncorrelated between occasions is




- Figure 12 -- Revised model for the measurement of change in verbal and quantitative
ability between grades 7 and 9.
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' * TABLE 6
Maximum Likeljhood Estimates (LISREL) fof the Model of Figure 12

T e

Standard Errors in Parenthesis’ -

4

. L

N . -

Group: GA (Girls Academic), N = 383 '
BN e L - ! . "
( Q7 * - ; v7 - y f e .
-1.01 (0.05) N g7 U
0.13 (0.07)7 , " . 0.60 (0.07) 4 sCI; L, . C
A . 0/.12 (0.09) 0.98 (0.09)--— - SS,.
s . 0. T 1.24 (0.05) READ,
. 1 0.* 1.% SCATV7 oL, e -
g 1. P 0.* * SCA '
L | ( ‘ ] Q,
r 99 . Vg ' | !
. ]0.93 (0.05) 0.% . . ] MATH, \ :
i A 0.13 (0.07) " 0.77 €0:08) " SCI, L
A - 0.25 (0.08) © 0.8 ¢.08) |+ S5 + /-
Y 0.* 0.98 (0.04) READ, o .
~lo.* 1.% SCATVg~ . ;
i * A "
1 6.5 J SCATQ, ' i
- - . ”
. .'_\ Q7 V7 l‘ - A
r _ 11.06¢<(0.05) 0.* ' ' Qq
- 0.% 0.98 (0.03 "y .
~ - S -98 ( )1. S g
Q vy ; ‘
s _ 100.57 {10.86) 90.53 (8.46) Q i -
- v
~ 90.53 (8.46) 110.45 (9.74) v, \/ -
“ T . " - ‘ . —\: - )
.§ .- i§ : :
- ) 1-- . ) 2 N
V- - 22.63 %4.41] . 8.42 (1.73) } + s§° N )
.- 8.42 (1.73) - .6.94- (1.58) _r; ' ,
. ¢ .
.. A~ - ) 13‘6.52 1"2.% Qg &~
BN 102.62 112.53. Vo
X% . = 65.63 ‘with d.f. = 40
* Ehevj'ralue of this i:arameter was specified by thg model ' P
‘ 377 RO




obtainea as xz 196.4 - 65 6 = 130.8 w1th 6 degrees of freedom so that\

- e *

it is clear ‘that this hypothe51s is quite unreasonable. The

~

Sfarlances, covariances and correlatlons of the .unique factors are”

~

. given in Table 7. A comparlson of the covar1ances W1th their

. standard errors reveals that all covar1ances except p0551b1y the one

Ak ]

between 61 and €, is'significaﬁtly non-zero.

E. Comparlson of chang;gpetween groqg¥_

. In many Tongitudinal.studies both pretests and posttests are

*

admlnlstered to several groups of, 1nd1v1duals and one 1s interested

in compa:nnc the ‘change in varlous quantltles between the dlf% renti
groups. Such greups‘may be, for example, groups having’ dlffenent N
soEio-economic packgreunh, greu;s haviné thained'diffeyenf‘amoun;s
of $chooling or iraining either prior to the pretest eceasion or&”

between :the two occa51ons or groups having obtalned dlfferent treatments
between Ihe two occasions. When we have several groups it is natural

to "assume that the dlstrlbutlons cf the Iatent varlables are dlfferent

~ -

for fhe'dlfferent groups. Sﬁrbom (1974) has developed a model in which

+ . Y 3

the mean vector as hell as the covarlance matrlx of t&e latent var1ab1es

may vary from group to group. The structural equations will therefore
. ' - ¢ x

be different for different groups. On the other hand, the matrix A ,

-

which describes the relationships between the ‘observed test scores and
the datent variables, is considered an attribute of the observed

variables and is therefore assumed to be the s~me for all-grdhps.

~

It is assumed that observations from different groups are

— —— e —e

. : s
- independent. For a "random' examinee from group g we write his

Insert Table 7 about here

———————————— - - - - " - -

-~
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. . j SO
Variances, Covariances and Correlations for the

. s
7.

TABLE 7

% .Unique Factors in Table 6 (Figure 12)

>

~
T w

Var (61) '

Standard Errors in Parenthesis

- >
.- s rd

Var (gi?

1

-

‘Cov (GieiJ'

.Corr (Giei)

-

o

27.75 (3.78)

29.59 (2.37)

40.27 (3.60)

4421 (4.25)

24.37 (2.47) .

54.28 (4.87)  74.53 (6.73)

17:67 (3.88)

" 41.15 (3:38)"

.50.89 (4.21)

40.34 - (3.59)

24.84 (2.60)

-3.47 (2.78)
9.60 (2.10)

6.15 (2.82)

7.52 (2.89) -
12.04 (2.05).

 22.84 (4.40)

<
7

-
o

-

0.157 : i

0:275

- 0.136

0.178
0.489

0.359

~t

™
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sense that when fg

the mean vector of f

_of z

matrix of e .
There are two

factor in £_ may

i

0 then E(z

be denoted ﬂé .

individuals in all groups.

v + Af

+ AS '

~

-~ 8

Y

is (c.f. equation (10))

-

Vs

observed scores, using thé notation in (9)

é g

B

=¥+ -
and the coyariance mat?ix is\.(c.f. equation (iiii
BTSN "
whe;e ?g is the coyariance matrix of fg and b4

“Note that both v and A ‘are the same for a11 groups.

.) =v for all groups.

8

¥

<

considered an attribute of the tests and the scoring procedure.

Then the mean vector

(33) -

The con-
stant vector ' v represents the origin or level of the tests in the

This is

Let

-Eg‘

(35) 1

the covariance

A4

S

fundamental indetermihacies in (34) and (35).

' Every

be subjected to an arbitrary linear transformation

which may be different for diffe?ent,factorg'bﬁt the same for all

The effect of such tran;formafions may be.

compensated for by adding a constant vector to

v and by'a scaling of

-




I

P

?
¥,

A%

o .
"t . i
o - ! . T - .
- - | o ‘
the columns of A , in such a way that both u_ and Zg_ are- °
This indeterminacy-means that both the

unchanged for all groups.

\ t

or1g1n and the scale for the factors are arbltrary These may
a .

N
w

therefore be chosen arbitrarily, but must be the same for all groups.

1t is convenlent to fix the or1g1ns and "the scales by ch0051ng the
0 - for one grOUp and by choosing a ’ one in-

equaﬂ to

vector 6

each column of A
Models of this kind may be est1mated by means of the- COFA&M

This giyes maximum likelihood estimates” of the gommon v

=

program described in II.
, end A énd of the mean‘vector ? and covariance matr%x ?g as
well as the covariance matrix ?g of the unique factors fgr each'. .
A, @ a#a v .
- - : B

One may- postulate almost any pattern in
For example, oné

{,4 “group.’
: .4¢y" g ,4nd any degree of invariance between groups.
e , may postulate that *?g and sohe part of%_¢? arexlnvarlant eyer s
. groups. L . e o
F. . Comparis‘ of Change in Verbal Ability,bétween Groups - N -
) the method of %he’preceding subsecgion we qake use .

. To illustrate,
ThlS t1me we use the data

” of the data 1ntroduced in sectionlV.D.
for all the fOur groups but we use a somewhat 51mp1er ‘model than that

of Figures 11 and 12. We shall'use scores on thé reading and wrlfing
The model is shown in

achievement tests in grades 7 and 9 only
Here we are mainly concerned with.the comparison of the

7

Fig. 13.;
differences in mean changes and in the regression lines of V9 on V7 .

N
0 - o s b > " - G = > S b M B > S o =

. .
s '.The regression of Vg
381 :

' ' 412

-~




READING ACI-lIEVENENT

LIN GRADE 7

| WRITING ACHIEVEMENT
|IN GRADE 7 h

(\l

Figure 13 --

!

2

READING ACHlEVEMENT
IN GRADE 9. ..

v

WRITING ACHIEVEMENT

| IN GRADE 9

Model for comparison of change in verbal ability between grouﬁs.
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The maximum;likelihood solution is given‘in Table 8. If one

- »

takes the intercepts ag as relative measuyes of change, remembering

-~

<_ that. the scale isAchosenksuch that ag is zero for group BA , one

finds.that group GA has increased their verbal ability most

e

. followed by groups BA GNA and BNA in that order. Hdwever; ‘this
is not the whole story. For S1nce the" slope of the regre551on I;nes
;150 differ betweén gfohps on; shouldﬂtaEg tgis also 1nt; account (
when 1nterpret1ng .the data. ‘P£obab1y the best wﬁy of looking at the

. A ~ S
results is to use the estlmates g and @g to draw contourfellipses

(2

fbr each group as in Flg 14. With this klnd of plot one can f1x a

glven true pretest score and f1nd the 11ke1y range of true posttest

score fqr*the,varzous groups. For example,‘at £ = -15, approximate

95% confidence intervals for n.'.are.’

/




»

AN . .

LI At E = 10 these confidence intervals show a different pattern:

‘ . GAY 0.18<n<163¢

. BA: -3.46 < n < 19.09 -
-, o - GNA: =3.62 = n < 19:18°
_’%'e N ~ -~ . ]

, ' BNA: . 3.02 < n < 13.46 " .
we e " R o
‘ —-———--o-g_‘:——--————-—r ———————— - - - -

= P ‘
Insert Figure 14 and Table & about hére
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. r . .‘~ ;‘ 4 ‘\1
|1.00 0.00* - | 274.93
. 0.95 0.00* . 269.76
A= v = .
- 7 lo.op* 1.00% -~ 286283
& .t 8
~ lo0.00*: 1.12 283.35
P, . \
o _: o ; Y
B €€ - neg- . “ng Yg
BA £ 219.46 " 171.43 156.97 0.78
BNA 142.35 . 139.53 166.55 0.98
. GA - 186.65 143.57 121.49 0.77.
QNA 195.17 160.24 163.38 0.82 £)
: -an
f) [ .‘
g . e
. &, £g ®ng e
g, o
BA 0.00* ™ 0.00* ", 0.00*
X BNA -16.881 -18.108 -1.56
‘ - 5.949 . 5,140 0.56
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V. Multi-Wave Models

% P .

‘A ‘ Nuiii-“hve, 0n31Yari;b1¢ éodeisy_ ) } . o -
'” % e sﬁppqse one fhy}iGEe measure, Y _ is, adm;sistérqd repeatedly !
" to the same group of pebbie. .xh appr;priate moael for this siﬁuation
.1is shown 1s'F1g. 15 1n the case of four occas1ons. In the following
"~ | e ~
. “ Insert Figure 1S about here .

. we discuss allt models in terms of four occasions, the generalization
to an arbi‘trary‘numlser of_i occasions will be obvious‘ at a}l stages.

* Such models have been termed si.&tple_x models by Guttman (1954) to
desién‘at’e the typical pat-tern of intercor.x:el‘atio'ns they give rise
to. Anderson (1960) formulated-this model in‘tems of-various
stochastic processes and treated othe identification problem and _
Jareskog (1970b) treated the estimation problem. An application
to the measuren.l\'ent of academc .growth has been g1ven by Werts, Linn
and J8reskog (1977) and applications to sog1olog1c§1 panel \analys1s
have béen discussed by Heise (1969), Wiley and Wildy (1970) and
Werts,®dreskog and Linn (1971). ) .

~ " The unit of measureﬁent in ths_i;actors n, may be.chosen:to. be
the same as in yi » 1=1,2,3,4. The equationsv defining the model’

>

are then, taking all variables as deviations from fheir mean,

- X
~ L3

e y; =ng +e, i=1,234, (36)

14
[

" i = 2,3,4, (37)

4
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A * <
» «

where the si are uncorrelated among themselves and uncorrelated
: . o

t

with all the) ni_ and where Ci+1 is uncorrelated with n; o
i=1,2f3. The parameters of the model are ¢i = Var(ni), eii = Var(ei),

is= 1 2;3,4 and Bz, 83, 34. (he use the symbol ¢

td

’here -to denote the variances of the dependent variables. Since there o

. are no 1ndependent varlables there should be no confu510n ) The

+ . -

residual var1ance Var(; ) is a funct1on of ¢. , ¢ and B. 45
1 i+l i+l

namely Var(;1+1) 1+1 B1+1¢i’ i=1,2,3. The eovarlance matr;x~
‘of Y1 Y22 y3 and y4 is ' | : s

- . ]

$*%. o ) -
. S LN R 9% ceo b 88,

L =lpge, - B R ’
- Bty Bsh 93%033

. - . : e

L828384¢1 B3840 Byts 44044
It is sken from (38) that although. the product Bz¢ zi is identi:
fied, 82 and ¢, are not separately , 1dent1f1ed The product
B,y is involved in’ the off-diagonal elements in the first column
(and row) only. We can multiply B, by a constant and divide ¢1 -by
the same constant without changlng\the product. The change induced by

B \
¢1 in o,; can hf,ebfonhed in 611 in such a way that %y remains
unchanged. Hence 611 = Var(el) is not identified. For n, and “ns .
we have 4 A (
by = 932921 E
~ 931
o = 943%32 - '
3 o} 3 : ’




, 2
; AN
so that ¢2 ‘and ¢3, and Pence also 622 and 633, are identified.

3

With 4, and ¢ identified, B; and B, are identified by o

and“ 64

32

The middle coefficient 8 is overidentified since

3 3

8b. = 931%2
372 041

-
.

Since both- ¢4 and ’644 are involved in %44 only, these are ,

‘not identified but their sum 44 is.
‘This analysis of the identification problem shows that for the
"3 it 3 ~ d
inner' variables Yo aqg Y3 ¢2, ¢3,“Q22, &33 and 83 are

identified, whereas there is an indeterminacy associated with each of

N -

the "outer" variables Y1 and Yq- To eliminate these indeterminancies’

one of the parameters ¢;» 8;; and B,, must be specified and

one ?f the parameters ¢4 and By mMust also be specifiéd. lHence

there are only nine independent parameters and the model has one degree

of freedom. In the‘general case of T > 4 occasions there will be

3T - 3 free parameters and the degrees of freedom is‘(l/é)T(T+1) -.(ST—S)}
fhe estimation problem associated with'the siﬁpiex modél is a

straight-forward application of the‘LISREL program using the option

of "no - x". The LISREL equations are

1




i

r . ' N
[1 o o o (n) (3] :
‘ BB I P B
. = (40)
i 0 —63 1 0 e Ca ]
Y Tao o -8 1| {n, "z, *
L 404 )

[

T
-

" ..In (39) we have taken € =€,

=0 to eliminate the indeterminacies
and in (40) weipave &efined g, as ny- In LISREL it is inconvenient

"~

~ El

to treat ¢i = Var(ni) , i=1,2,3,4 as free parameters, so instead

.. of ¢i = Var(ni), i-f {,2,3,4 e take wi = Var(;i), i=12,3,4

- L

as free parameters. It is easily realized that the ¢; and the wi,'

-

i =1,2,3,4 are in a one-to-one correspondence. So the parameter |

. matric¢§ in LISREL are : R

RN o A - I

B N - S e
Ay =" ,. B as in (40), - ‘

o Ty = diagu, by ¥ V)

1 e 1
'

U3

and -~ . .

. . \ c diag(o, ci ,“02 , ).
. 1 - T2 3

(o]
n

Id

B.  Multi-Wave, Two-Variable Models

The direct generalization of the model in Fig.S5 to the case of four

’

occasions is shown in”Fig. 16.

N Insert -Figure' 16 about here
R {
~ wo - " » = ] N n N
’ ) ith f (xl, xz, XS’ x4) s Z ,(yl, Yoo y3, y4) , the model is

!
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Figure 16 -~ A four-wave, two-variable model with correlated errors.
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. y=0D

-

where DA dlag (A

-

R DAE’?A 9.,

-
RS

.+ where ¢, Gé and ee are the covariance nmatrices of n, & and ) ’
. ~ T~ . . - P N .

£ ,'respeqtively. It is seen that DA may be multiplied By a~nonzero

constant, ¢ divided by the same constant and with Osnhand Oe

) properly adJusted Z will not change. Hence the model is not
identified. One restrlctlon is needed to make it identified but there
does not seem to be any meaningful way to choose such a restriction.

We shall €herefore consider two other models whiéh are both identified ;

(see jﬁreskog & Sérbom, 1976a). These models represent diffgrent

m

specification of the correlation structures for the errors in § and

- ~ -~

as follows:

Model A: The errors are uncorrelated,

Model B: The errors have one common factor.

.

Model A is shown in Fig. 17 and model B in Flg. 18. In both models

-

-~ L3

| o 39342/
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x : 1\\
“In+ e,

Insert ?igures 17 and 18 about hére \
the. covariance matrix ¢ of n is restricted to be generatéd
by a simplex or first-order autoregressive model, i.e. : '
o - . - X B FN
N N i ﬂi .= Biﬂi_l _+ Ci "3- = 2’3,4 . . i , —
-This implies that’ :
. 2 | .
1. T I
IR X e, . .
PR I N
o {8283 Bso2 %
. . - - L] E
-where, as before, ¢i = Var(nij » 1=1,2,3,4. We now consider the
LISREL specification of each of these models. In both models we
treat both x and y as dependent‘variables and use the ''no-x'" option.
. N . .
Model A . . t
. A N¢
The LISREL specification is straightforward: , .
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Figure 18 -- A foxgiwave“, two-variable model with tect-specific factors (Model B)
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: ﬁ- : £ - K] ’
T As before, LISREL treats -wi =”Var(ci) .as primary parameters rather
than 9; = Var(ni);abbt:estimates of ¢ are obtained as a by- ) )
product. The one-to-one relationships’between~ ¢ and'_wi\,
) ) . ' ! < i
_ i=1,2,3,4 , are . ‘ S
* ’ > s L . '
o S S
. ‘ _ ¢i =“¢‘ B ¢1 1: “1=2:.3:4 . o ' §
The covariance matrix ©_ of ¢ - is diagonal. ~ :
Mode1 B Gt i .

Model‘B;assumésfthat the correlatibns between the errors é

»

and € lﬂ Fig. 16, are accounted for by one common’ fdctor. These

~ 3 .‘

are test specific factors in contrast .
|

‘common factors s and s

¥

to the factors nys - “2’ n3 and Ny which are occasion §peC1f1c

factors in the term1nology of J8reskog (1970@). The test spec1f1c

1

- factors s, and s

with n, § and ¢ . ) . ’

-

The equations for Model B are ) R ) . ’

n+ o + 6 .
1t @Sy ?

'!‘im fYsp e,

where a and y are factor loadings relating the observed Narlables
x -

and y to the test-specific factors S« and Sy» respectively.

. The factors s and s

¥

are scaled to unit variance, fbr convenience.
; .

Model A is a special case of Model B namely when both o - and y_ ___

v

i : 397

, . T . ’ N
are-assumed to be uncorrelated and uncorrelated !

4




. ‘ i . . . .
& are zero. The hypothesis @« =0 and v¢= 0 may be tested with

"+ .~ eight degrees of freedom. ‘ .
. . LI
- . The LISREL parameter matrices are specified as -
1 0 0 0 a 07
0 1 0 0 a, 0
. 0 0 1 0 a5 0 E —_—

. ~9 0 0 A4 '0 74- ) o
: o '
5 ) "1 0 0 0 o0 0]
6 1 0 0 0 0
=0 -85 1 0 0 0

. o o .0 o o I - '

o * -

Y_: diag(d’l’ ‘:’2’ ‘Ps: ‘:’4: 1, 1)
where, as before Vs =°Var(;i) , 4=1,2,3,4 and .9 and 6_ are

o %

oo diagonal as before.




c. Estimation of Four-Wﬁvé Models for MATH and SCATQ
. \ i . _
To:illustrate the models of the previous subsection we use the

data on the variables MATH and SCATQ from all four occasions. - The

maximun likelihood estimates of the various parameters are shown |
S C rane _

-

in Table 8 along with _xz-goodness-of-fit-yalues and Eorreéponding

degrees of freedom. "It is seen that model A is clearly rejected in

-

favour of model B. The parameters listed in Table 9 are th;se that‘l
Vcome out of the LISREL program and which are useﬁﬁio max1m12e the
11ke11hood functlon. Some of these may be very d1ff1cu1t to inter-
pret in a meaningful way. However, from thése estimates one can

compute various other parmeters which are more easily interpreted.
3 . * . a N ‘ *

Table 10 gives the estimates of the factor variances and the squared .
correlations R? between n, .and n, , for model B and Table 11

gives the covariance matrices of the errors e* =y - D.n and '

-~ -~
EN hd 1

-8* = x - n, i.e. the partial covariance matrices of y and x after

-~
-

elimination of n. Table 12 gives the corresponding correlation

=

matrices.,

. From Ta@le 10 it is seen that the squared correlations

— . . . ;

Ri\ are quite high. There is a very high s;gbility of ;ﬁe quantita;ive

- factor over time. This is also indicated by the stability of the

»

8-coefficients in Table 8. Table 11 reveals that covariation among the

enrors is present for the SCATQ tests to a larger extent than for the

Y

MATH tests. Table 12 shows that the correlatlfns among the e* s are
in general higher than those among the 6* s. | The latter are indeed

very small. Hence the model accounts for the;intgrcorrelations among

e Insert Tables 9, 10,7 11, and 12 zbout here

e
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Aruitoxt provided by Eic:

-Maximum Likelihood Estimates for Models A and B with x * WATH

TABLE 9 =

: and y = SCATQ
Group: GA (Girls Academic) N = 383
Parameter Estimate Model A Model B
¢ SEE RIS XSIITSISLIITTIITTTESITITIRXSIzTTIEs SZETIEITIRISITTTZITIT
Al - . 0.88., 0.85
Az 1.13 1.06
A3 ) 1.23 1.14
A 1.31 1.21
B 1.22 . 1.22 .
83 " 1.01- ] #1.00
By ‘ 1.06 - 1.05 .
2 . : R *
o, . 55.25 57.31
- .El t 2 .
o§ 9.28 10.93
- %, .
- e - - 20.29 - 13.74
. ‘23 ! N - KA
o g, * - . 3.37 5.79 N
- S .
. Yo . 6.19 5.94
. é1. i
! %, 6.20 ..+ 5.84
7 o 5.77 2.29
> 6.30 . - :lr' : ¢
<.l ~ - 7.85 " 6.83
(X3 . ! ;
%, 4.5:1 - R 4.47 —
. a 6.18 2 ' s.83
€2 . - [
o : - .40 * 6.87
. .53 e . . F |
‘e Lo 7.14 6.51 :
A - :
X 72.49 23.18 .
d.f. 17 . -9
Additional parameters B . -
- Mode1 B ) :
- ~ -
. , o1 097  y *1.48 .
‘ap = 0.26  y, = 3.51 :
a3 = 3.59  y3 = 4,66 .
o * ~0.92 v, = 4.99 .
- & . )
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TABLE" 11

of ¢* and §* for Model B
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TABLE 12

Correlation Matrices of €* and §* for Model B

,
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the MATH tests much better than the intercorrelations among the
" .

SCATQ tests. ' - ~

D. Multi-wave, two-variables models with background variables

Although the multi-wave, two variables model with freely inter-

-

. correlated errors between occasions is not -identified, it becomes

A

,SO as soon as one Or more background variables are included. For

thg case T=2 _this was demonstrated in sectionlV.3. A model with

e

T=4 and two congeneric baé‘kground variables X, and X, may be specified

as follows. The structural equations are-

1 0 0 -0 nl"‘ [yl\ (151\

52 |~

‘The measurement model for x 1 and X, is ‘ .
S / :
*1 1 8\ .
= . g + >
X, Xx 62

and the measurement mddel for v is the same as in (44). The co-

@s)

efficient Ye measure$ the direct effect of & on n, and is expected

L3

to decrease as t increases. In (46) we have taken £ to be measured

O

; - 404 ,
b 438




¢ * ~
3

in thé same units as X,. If there is only one background variable
* Ay

x, (46) is replaced by x = £, i.e., we take A = 1 and § = Q.

E:. A General Model'for Analysis of Longitudinal‘bata

~

In concludlng this section we develop a general model for ana1y51s of

-

. longitudinal data. All the models onsidered in the other sectlons of this
chapter are special cases of this general model. - & ° ‘ .
Suppose that several variables efe meaeured at T points in time:

1, tos ...,‘ tp, Mot ﬂecessarily equidisiant where time is measured from-
an arbitrary origin and w1th an arbitrary unit of measurement. Let pt
dependent variables be measured at occasion t, where t may be ts ty, eees

.er'tT,.an¢ let Y{ = (ylt, Your +oes ptt) be a'vector‘of ﬁhése P, veriables{
Neither the number of variables nor the.variables themselves need to be

the same at all occasions, although in most applications'theyrwill be” so.

At each occasion it is assumed that Ye has a common factor structure w1th

m, correlated commoe'faceors ~t (nlt, Myes + o» mtt), so that
= + -
Ye = Vet Ay De oo - (47)
where My is the mean vector of yt,’et is a vector' of mnique factors,

aq&‘ﬁyt is,a matrix of order P, X M, of factor loadings.
In addition to the dependent variables Y, .¥e assume phet q

independent variables f’ = (xl, Xy» ...,'xq) are measured representing .

characteristics and conditions existing before tﬁe‘first occasioﬁ and

assumed to influence the dependent variables Ve We assume that x also

has a factor structure with common factors £° = (§;, &5, -+-» £,) so that




-

A

48)

3 N

Ax'the matrix of factor loadings of order qxn.

1

The\ structural equations connecting the 'S and £ are assumed

. ", g
3 foa
. '« -

(50)

e ~
130 SalN

where At is a regression matrix of ordér m,

x n and B, is a regression-
h i ‘. . ) . ’=o AR 7
matrix of ord%rxmg‘x m._y- The vectors £2 =.(C; , L, ’ ;mtt) are
vectors of residuals assumed to be correlated within occasions but

v

~

upcorrelgted between occasions. As before, t may be tl, tz, eeey tT

v and if t = t. then t-1 is t. ...

- g, i i-1 ]
¢ y /_ - - . “

. Equations (47) through (50) constitute the basic general model

i ’

nsidered in this paper. A special case of this model is when there are

-

- : — .
no independent variables x. Then equation (48)is no longer included in

o

/'the mode1~and équations(4§)and (So)éfe‘replaced by the single équatibn

p——
—

Me = Be Mpay G- (51)

Equation (4 T)nlay be written more compactly as (here illustrated with

i
T = 4 occasions), -

‘
%




+ .

1%

Ll
“

e

X=X

[ =

t
P

Lo

=

case of T =.4 dccasions)

+ An+ e,

~J~

*

+ A E+ S,

-~

"Bn = TE +g,

~
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aixd‘ equations (49) and 550) may be ;meined and written as (in the

This shows that the model is % LISREL modél with

L

»
-

(54)

(55)

(56"

A
>

0
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Aruitoxt provided by Eic:

" interpreted as Bn =

.
' -

s

with Ay of Srder'pxm, B of order mxm and T of order mxn, where

+ ... +p ceo v m
Sty 1 2 - tp-

special case when there is no x, (55) is omitted and (56) should be

+m, o+

and m=nm +

+ I? the

p=p, +P
o L

%, Each of the ma?riges A By T Aes

t=1, 2, ..., T may contain fixed, free and constrained parameters

4

.as in section II.D. - - : :
R t
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> - .. VI. SUMMARY : L.

.~ - —___ In_this chapter we have developed several mode1§ suitable for

aﬁalyziné LOngitudiﬁal data and considered. the statistical problems of

model specification, identification, estimation and testing. Almost
. . , ; . .
¥

all of the models may be estimated and tested using three computef

_ 7 section IIN
- .- ) o

Section III Qeals with the estimation of polynomial growth curves T

describing the means of response variables as functions of time. The .

.

i .- growth curves maf~be estimated for several variables and for several
groups of individuals simultaneously and various hypotheseé may be

tested such that (i) the growth curve has a specified degree, (ii) the
{

growth curves are identical or parallel for several variables and/or

4

groups. The estimation of growth curves when the response variables

are auto-regressive is also considered. If the-auto-regressive model
-holds, the growth curves can be estimated more efficigﬁily and the

tests will be more.powerful. » . ¢

Y

b

Sections IV and V deal with models inVOlving latent variables or

Lt
oY

hypothetical constructs and the related problem of measurement errors ' —-

in the observed variables. The kernel in these models is a set of
L 4 N »

linear structural relationships among lagpnt variables that are not

-

directly observed but observed by means of two or more indicators,

We- consider models with or without background‘variables. Section IV

deals with two-wave models and section V with multi-wave models. In




.

B e . *

subsectzons 1V.E-F, we con51der the comparison of change between groups -

a

X under the assumptlon that certain characteristics of the response

-variables are 1nvar1ant over groups of people.

For most of the models in. sectlons IV and V ve con51der ‘the TR =
identificatioﬁ problem, The estimation problem is con51dered in the

sense that it is shown how to spec1fv the model for one of the

three computer programs descrlbed in section II. For some of the models,

-~

the estimation and testing is illust?dted by some data.

-3

— o
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Nesselroade, J. R., & Baltes, P. B, (Eds.). Longitudinal research in the
behavioral sciences: Design and analysis. ’ :

.

N

L

This book will present a comprehensive overview .of longitudimal
research methodology in the behavioral sciences (p§ych610gy, educdtion,
human developn nt). Its special .features are that (a) it-will combine
an easily comprehensible averview section’with:more technical "forward-
looking" expositions, and (b) it will be co-authored by a multidisciplinary
team of experts from psychology,.sociology, education, and statistics.

The primary substantive emphasis, however, will be on the study of behavior
by means' of longitudinal methodology.

L]

.

The volume is the product of a large-scale contract (1974-1976)
which the Natiomal Institute of Education awarded,to the Pennsylvania.,
State University and on which the editors were principal investigators.
The chapters have been carefully prepared and co dinated by the editors
and will be (or are being) edited with a'primary view on quality and
substantive convergence. Expected manuscript length (typed) is 50C to
600 pages. Expected completion date of manuscripts is May 30, 1977.

<

4.

H <

Audiepce - .- .

There is no ‘comparable book available in the literatyre. It is
expected that the volume will become widely used by graduate students .
and researchers interested in the study of behavioral development both
in the behavioral and social sciences. -

. o

There is also a rather significant likelihood that neighboring
disciplines (e.g., economics, anthropology, history) will use the volume
as a source manual. In general, the editors expect that the volume will
enjoy a large and long-term marxet. '
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