

AOTHOR
TITLE. . γ
先NSTITTOTION
POB DATE
NOTE
available from

EDRS PRICE.
DESCRIPTORS

IDENTIFIERS
osborne, Alan R., Ed Investigations in Mathematićs Education, Vol. 10.. No. Ohio State univ.. Columbuis. Center for Science and. Hathematics Education.
77
67p.
Information Referene Center (ERIC/IRC). qhè ohio State University, 1200 Chambers Rd.. 3rd Floor. Columbuş ohio 43212 (Subscription $\$ 6.00$, $\$ 1.75$ ea.)

MF-\$0.83 HC- $\$ 3.50$ Plus Postage.
*Abstracts;' Collegè Mathematics; Elementary School Mathematics: Elementary Secondary Education; Higher Education; Instrüction: \#Learnip: *Hathematics Education; *Research-Reviews'(Publications):
Secondary School Mathematics; *Talented Students *Krutetskii (V A) :! *Study of dathematically Precocious Youth; USSR
$\dot{A} B S T R A C T$
$\Gamma^{\prime \prime}$
of'recent Mathematically Precocious Zout ${ }^{(S M P Y}$) at Johns Hopkins University. An overviewis provided of the book "Intellectual Talent: Research" and Development", edited by Keating. Nine studies reported in the book are thea abstracted and critiqued. A second fegture of this. issue of the journar is a review of Krutetskii"s "The Psychology, of Mathematical abilities in School Children". (Author/MS)
$* * *$
$*$
Documents acquired 'by ERIC include man' itformal unpublished * materials fot available from other sources. ERIC makes every effort \mathbf{N}_{*}^{*} * to obtain the best copy available. Nevertheless, items of marginal * réproducibility are often encountered any this affect's the quality * of the microfiche and hardcopy reproductions ERIC makes available * viá the ERIC Document Reproduction Service (EDRS). EDRS is not * responsible for the quality of the original document. Reproductions * * supplied by EDRS are the best that can be made from the original.

- Cine majority of this issue of IME ís a set of reviews, of recent research articles that have emanatedrom the project for the Study of Mathematically Precocious Youth (SMPY) directed by Julian C. Stanley. John Harvey provides an overview pf the entire book, Intellectual Talent: Research and Development, 'edited by Keating, that is the source for these stụdies: Nine studies that are reported in the book are 'abstracted and reviewed. Since the studies make' extensive , use of an assortmenE" of tests, a listing of the tests used is provided aiong with a citation of a source of reviews of the test 'in Butos' Seventh Mental Measurements Yearbook." I think that you will find the reviews of the ȘMPY research interesting and stimulating.

A sefcond special feature of this issue of IME is a review off krutetskid's The Psychology. of Mathematical Abilities $\Gamma_{\text {in }}$ School Children edited by Kilpatriek and Wirszup. Bright provide's an abstract of the contents of the . Krutetskii book and two ćritical commentaries are offered, one by Goldín and the other by Bright. The Russian approach to the study of mathematical ability provides a sharp contrast to that of the SMPY project.
TKeating, Daniel P. (Ed.) Intellectual Talent: Research and Develop-ment. Baltimore, Maryland': Johns Hoṕsins University Press, 1976.Overvịew by JOHN G. HARVEY-1
Keating, D. P'. A Piagetian Approach to Intellectùal Precocity.In Intellectual Talent: Research and Development. Edited.byDaniel P. Keating. Baltimore, Maryland: Jơns HopkinsUniversíty Press, 1976, pp90-99.Abstracted by LESLIE P: STEFFE8
George, William C.; Denham, Susanne A. "Currićulum Experimentationfor the Mathematically Talented. In Intellectual Talent:Research and Development. Edited by Daniél P. Keating. Balti-more, Maryland: Johns Hopkins University Press, 1976,pp103-131.Abstracted by RICHARD CROUSE•-11. ${ }^{\circ}$
Stanley; Julian C. Special Fast-Mathematics Classes Taught byCollege Professors to Fourth through Twelfth Graders. InIntellectual Talent: Research and Development. Edited byDaniel P. keating. Baltimore, Maryland: Johns HopkinsUniversity Press, 1976, pp132-159.Abstracted by ARTHUR F. COXFORD 15.
Fox, Lynn H. Sex Differences in Maţiematicail Precocity. In Intellectual Talent: Research and Defvelopment. Edited by Dániel P. Keating. Baltimore, Maryland: Johns Hopkins Univer-‥ sity. Press, 1976; pp183-214.
\qquad
-Haier, Richard J.; Solano, Cecilia H. Educators' Stereotypes of Mathergaticafly Gifted Boys. In Intellectual'Talent: Research and Development. Edited by Daniel P. Keating. Baltimore,. Maryland: Johns Hopkins Unịversity Prèss, 1976, pp215-222. 'Abstracted by THOMAS R. POST.24
Fox̀, 'Lynn H. ; Pasternak, Sara R.; and Peiser,' Nancy L. Càreer-

- Related Interests, of Adolescent Boys and Girls. In Intellectual Talent: Research and Development. Edited by Daniel P. Keating. .. Baltimore, Maryland: Johns Hopkins University Press', 1976, pp242-261.
Abstracted by JOHN C. PETERSON
Keating, Dániel \dot{P}. Creative Potential of Mathematically Precocious Boys. In Inteilectual Taleryt: Résearch and Development. Edited bý Daniel P. Keating. Baltimore;' Maryland: Johns Hopkins $\because \quad$ it University Press, 1976 , pp262:-272.
Abstracted"by OTTO C. BASSLER 32
Fox, Lynn H.. The Values of Gifted Youth. In Intellectual Talent:
Research and Development. Edited by Daniel P. Keating.
Baltimore, Maryland: Johns Hopkins University Press, 1976,pp 273-284.
Abstracted by LEWIS R. AIKEN 36
Linsenmeier, Joan A. W, Random vs. Nonrandom Study of Values Profiles. In Intellectual Talent: Research and Devêlopment. Edited by Daniel P. Keałing. Baltimore, Maryland: Johns Hopkins University Press, 1976, pp 285-292.
Abstracted by LEWIS R. AIKEN 38
Teats Used in the SMPY Study 41
Krutetskii; V. A. The Psychology of Mathematical Abilities in School Children. Edited by.J. Kilpatrick and I. Wirszup. Translated by J, Teller.. Chicago: University of Chicago Press, 1976.
Abstracted by GEORGE W. BRIĠHT 43
*o Critical- Commentary I by GERALD, A. GOLDIN 48
Critical Commentary II by GEORGE W. BRIGHT 53
Doblaev L. P. Thought Processes Involved in Setting up Equations. metics, vi, pplo3-183, 1969.
Abstracted by EDWARD. G. BEGLE 57
Mathematics Education Research Studies Reported in Resources in Education (January - March 1977) 6.1
Mathematics Education Research Studies'Reported in Journals as Indexed by Current Index to Journals in Education (January - March 1977) 65
)

INTELLECTUAL TALENT: RESEARCH AND DEVELOPMENT. Edited by Daniel P. Keating. Baltimore, Maryland: The Johns Hopkins University. Press, 1976.

An Overview Prepared Especially for I.M.E. by John G. Harvey, University of Wisconsin-Madison.

The goal of the Study of Mathematically Precocious Youth (SMPY).is to "identify, study, and facilitate educationally those youngsters who are especially adept at mathematical reasoning while still in the first two years of junior high school, i.e., grades seven and eight and ages 12 to .14" (Stanley, 1974, p. 197). This study, directed by Julian C. Stanley,.. is being conducted, at Johns Hopkins University with the financial șupport of the Spencer Foundation of Chicágo; it began 1 September 1971. Thus far two comprehensive reports have resulted from this study; they are Mathematical Talent: Discovery, Description and Development (Stanley, Keating and Fox, 1974) and Intellectual Talent: Research and DeveIopment.

The origins of SMPY can be traced to two 'sources. First, it is somewhat akin, to and, in a narrow sense, continues the work of Terman et a1. It is akin to the work of Terman and his associates in that psychometric instruments are used to identify and study mathematically precocious youths. It continues the work of Terman in that it attempts to study longi-: tudinạly those mathematically precocious junior high school students who participate in its program of counselling and educational facilitatioñ. It is narrower in that instead of studying generally precocious individuals, it is studying mathematically or quantitatively precocious ones (6ee Keating, 1976, p. 24 for a definition gf quantitatively precocious). The $^{\text {f }}$ second impetus for SIPY was the frequent, unsought identification of mathematically precocious youths by Stanley (1976, pp. 6-10).

The SMPY project staff initially thought that informal 'methods 'such as parent or teacher referrals would identify for study sufficiently large numbers of junior high school stúdents who were mathematically precocious. However, this proved not to be the case. Thus, in early 1972 the fifst talent-search test competition was organized. The competition was advertised primarily in the Baltimore area. In March 1972, 167 seventh-grade students (77 gị rls, 90 boys), 224 'eighth-grade students (95 girls, 129 boyंs), and five accelerated'ninth-grade studentis" (l girl, 4, boys') took two College Entrance Examination Board (CEEB) tests: TKe Schblastic' Aptitude, Test - Mathematics (SÁT-M) and Mathematics Achievement Leveli i (M-I). Twenty.'seventh-graders (7 girls, 13 hoys), 33 eighth graders (4 girls, 2.9 boys) and one ninth-grade girl took the Educational Testing Seryice Sequential Tes̊'t of Educational Progress, Series II - Science (STEP.II-Science). A list of the tes'ts used by SMPY that are reviewed in Buro's' Seventh Mental Measurements Yearbook, appears elsewhere in this issue of IME.) On the basis of 'their scores on SAT-M or STEP' II-Science, 35 boys and 10 girls were invited back for further" tésting; all of the boys and eight-of the girls came. Theșe 43 children comprise the first group of mathernatically prec \neq. ciaus youths identified by 6 KPY. A complete, description of the character-. istics of these youths and of the educational facilitation initially offered
them is included in Mathematical Talent: Discovery, Description and Development (Stanley, Keating and Fox, 1974); a. majority of that data is also included in Intellectual Talent:' Research and Development (1976).
*. In 1973° and 1974 the talent-search test competition (now called the Maryland Mathematics Talent Search) was-expanded to include students in all of Maryland; students in the Washíngton metropolitan area counties were especially sought in 1973. After the 1972 competition two other. changes were made. First, in order to particcipate in 1973 or 1974 a student had to be in the top two percent of his or hef grade on national norms in arithmetic reasoning, total arithmetic, quantitative aptitude, or their equivalent. Seçond, only-the SAT was'admintistered to the 1973 and 1974 participants; Table 1 indicates the numbers of seventh- and eighth-grade boys and. girls who participated in each year:

TABLE I
NUMBER OF STUDENTS BY GRADE AND SEX WHO PARTICIPATED IN
THE 1973 AND 197.4 MARYLAND MATHEMATICS TALENT SEARCHES

Notes: 7G = seventh-grāde girls; ${ }^{\prime} 7 \mathrm{~B}=$ seventh-grade boys; $8 \mathrm{G}=$ eighthgrade girls '(includes accelerated ninth-gräders); $8 \mathrm{~B} \xlongequal{`}=$ eighth-grede boys (includes accelerated ninth-graders). This table is derived from data given by Keating ($19.76, \mathrm{p} . \mathrm{P}^{27}$).

In-1974 the 111 students who scored at least 640 on SAT-M were declared the talent-search winners folt that ydar (George ánd Solano, 1976, p. 63). Similar data are not given for 1973. Using the data given by Keating (1976, p. 27), it can be determined that in 1973 there were 90 students (14 girls, 76 boys), who had a SAT-fy score of at least 650 . This criterion was not used, however, in choosing studentis to participate in a special class conducted at Johns Hopkins;' for that゙class, students from Baltimore and Howard counties who had a score of at least 500 on SAT-M and 400 on SAT-V were invited to. participate. It cannot.be determined what further study and educational facilitation have been given tod the other students who participated in 1974 except that 41 of the 1974 participants did receive one-course college scholarships. Intellectual Talent: Research and Development reports the research conducted with the educktional facilitation given to youths who had high scores on the' tests.given by SMPY. in the 1972, 197.3, or 1974 talent-search test competitions.

Chapter One of Intellectual Talent is a revised version of an address given by Stanley to the Amexican Psychological Assoctiation in August 1973. In this chapter Stanley adgances the theses that

1. Tests are a prime, way - probably the prime way-for the preliminary identification of high'level devghoped aptitude or achievement.
2. It is evén more important than generally realized for tests to have enough. "ceiling" (and."floor," too) for each individual tested. This means bold use of tests designed for older persons, . . .
3. The higher an examinee's scores are, the greater his or her potential tends'to be. For appropriate criteria, validity does not drop at the upper part of the score range of a test that is difficult enought for the persons tester (Stanley, 1976, p. 5).

The chapter then goes on to recount instances in whish its author had encountered precocious or talented, individuals and concludes with some of the early outcomes of SMPY.

Chapter Two, by Keating, gives a definition of quantifiative precocity (p. 24) and describes the data collected in the 1972, 1973, and 1974 talent-search test competitions, including a grouped frequency distribution of the SAT-M scores by grade and sex for egch of these years (p. 27, Table -2.1). Most.of the data previously described in this overview are from or based'on data given in this chapter. In this chapter 'Keating also discusses

- the need for, and value of tests whifh are adequately difficult in detect:ing differences between students who would otherwise appear to be the same when tested; for example, in-grade tests on which two students of unequal , abifity score in the 99 th percentile. On the basis of this discussion, Keating concludes that to. find out "which of a given group of able twelveto fourteen-year-olds has attained a level of quantitative reasoning ability comparable with able high school seniors, one, need only to give them the same test of mathematical reasoning one would give to a group of high school seniars. The excelleht and frequently used test for this.purpose is.SAT-M" (p. 29). He then goes on to argue that a younger student who has a high score on the SAT-M uses higher-level processes than dbes the high school senior and that this probably biases the predictive validity positively; that is, that these students are more likely to be successful in learning new material than are high school seniors.

Chapter Three concerns itself with methods and models for the ikentification and acceleration.of gifted.junior high school students, especially those who are mathematically talented. Using experience, gained through SMPY', Fox proposes that a wide variety of psychometric instruments be used to identify precocious youths, to establish their range and level of abilities, and to determine their interests'and motiyations. Next she discusses the alternatives which a school could use to accelerate a precocious youth; these irclude grade skipping, subject-matter acceleration, fast-paced
classés, Advanced placement Courses, and college courses. With these alternatives established, she then progoses four plans; briefly, thei are:

Plan I: Seventh Grade to College-in Five Years *
Plan II: Seventh Grade to College in. Four Yeaŕs
Plạn III: Radical Acceleration Alteznativive
-Plan IV: Subject-matter Acceleration Only

* It would seem 'that, except for details, the tịtles of these plans are selif. explanatory_ except for Plan III. In that plan a student would be placed in "tenth grade" during, the next school year except that all of hifs or her precalculus mathematics courses would be radically accelerated so that. this student would enter an Advanced Pacement calculus.course during the following school year. Fox concludes this chapter with a short discussion of the need for and ways to monitor the' progress of a student who is accelerated in one of these ways.

Chapter Four very carefully dexails the 1974 Maryland Mathematics Talent' Search. Chapters Five through Seyen describe research associated with SMPY. This research is abstracted in this issue of IME: thus it will be briefly described here. In Chapter Five, Keating reports. an experiment. . in which psychometric and Piagetian methods for identifying mathematical .precocity are compared. Chapter/Six reports. on the fast-paced classes offered for mathematically precocious students by SMPY. This chapter also reports on the cognitive tests, "the interest inventories.and the values scales completed by the strudents in these classes. In Chapter Seven the results of an experiment are reported in which college-level teachers taught special fast-paced pathematics courses to.school children. 'Chapter
 also conducted at Johns. Hopkins University and.funded by the Spencer Foundation of Chicago, is similar to SMPY in that it is seeking to learn more about giftedness and to develop effective methods of facilitating the education of gifted students.

Chapters Nine through Fifteen are also abstracted in this issue of IME. In Chapter Nine Fox describes. an experiment in which a special summer accelerated Algebra I program,was used with seventh-grade girls. A study of educators' stereotype of mạthematically gifted boys is presented in ${ }^{\text {- }}$ Chapter Ten. Chapters Eleven, Twelve, Thirteen, and Fourteen report on the nontntellectual correlates of mathematically precocious boys and girl's, the carée $\dot{x}-r$ lated interests of those youths, the creative potential of the boys, in that group, and the values of. these stoudents, respectively. Chapter Fifteen recounts a study which corpared the profiles of values reported in Chapter Fourteen to randomly: generated values.

In Chapters Sixteen and Seventeer, Page and Bereiter comment upon SMPY and the techniques which that project bas used to identify, study, and edu-. cationally' facilitate thathematically precocious youths. In addition, Page introduces and discusses a measure of intelligence (or mathematical Entelifgence) analogous to IQ which is. calculated using stores. from tests designed. for older persons. He then goes on to describe, some of the uses of this '
new measure.
\because :'These-seventeen chapters comprise the papers which were given at the Sixth Annual Hyman Blumberg Symposi,um' held at Johns Hopkins University in October 1997. The concluding chapter of Intellectual Talent is a summary of the gepneral discussion which followed the presentation of the papers.

Critical Commentary;

While this overview of Intelletual Talent: , Research and Development has not followed the usual format for the abstracts which appear in IME, it still seems appropriate to conclude with the ușual "Critical Commentary. ${ }^{1}$ Some of the remarks in this part may echo or reinforce those which áppear. in the abstracts of the research papers.

1. The criteria by which the 1973 group of mathematically precocious youths was chosen from, those who participated in the talent-search reds competition that'year do not seem to be described::
2. ' The plans for the study and educational facilitation of the 1974 group of mathematically $\mathrm{Rrecgcious} \mathrm{youths} \mathrm{do} \mathrm{not} \mathrm{seem} \mathrm{to} \mathrm{be} \mathrm{included.}$, is hoped that this does not indicate that the long-range 'planning for this group of students is not complete. or has not been initiated especialiy because of the negative reactions from schools reported by Fox (-1976,. p. 203), the less than favorabie stereotypes of mathematically gifted boys. reported by Haier and Solano (1976)', and the belief that

The need for special efforts ${ }^{\circ}$: . . to design innowative educa-. tional programs for them [talented stidents] is particularly
acute during the junior high sìchool years (Fox, 1976,
p'. 33). p. 33);
3. It is often difficult to discern which group(s) ${ }^{\circ}$ 解 students arel being discussed;' a more consistent identification of each group and the . group from which they were drawn would, assist the reader in understanding the SMPY. program of identification, study, and facilitation and in evaluating the research which is reporterd.
4. Carriculum and grade acceleration of.precocioous youths do not, seem to be good ways to facilitate the development of these-students. However, while advancing, these students 'should learn at a different level of abstracjtion than do less able students and better problem-solving performances . should be expecteḑ, from them [see Lucas (1972) for definitions of mathematicaltproblems and problera-solving performànce]:- It cànnot be discovered from either Mathematical Talent (Stanley, Keãting and Fox, 1974) or this account if these goals are being sought or accomplished: .
5. - A description of the Advanced Plac̣ement examinations in calculus states, "Both Calculus $A B$ and Calculus $B C$ are primarily concerned with an intuitive [emphasis added understanding of the concepts of calculus and experience with its methods and applications" (College Entrance Examination Board, 1976, p. 3). Since a criterion for success in the calcylus courses. taught the students in this study has been a score of four or five on one
of̣ the Advanced placemênt exáminațions, it ẹannot be concluded from this evidence alone that these students are açuiring the kind of knowledge in calculus expected of college honors students. The evidence that thëse students makè good grades in college-taught honors calculus for advanced dalculus courses'is'mugh more, persuasive.
6.- Recognizing the difference' between prococity and creátivity, the SMPY project has tried to determine the creative potential of the youths, 'they have identified. This attempt, while not futile, did not show that the subjects, have creative potential: One ability commonly 'thought to be a necessary prerequisite for creativíty is the ability to solye problems. Thus, a study of the mathematical problem solving abilities of mathematically -precocioús youths seems to be" suggested (see Kilpatrick, 1967; Lucas, 1972;' Zalewski, 1974; and Weakne; 1976).

REFERENCES
College Entrance Examination Board: " The 1976-77 Advanced Placement Mạthèmatirss...Prin'ceton, New Jersey: Author, 1976.
«Fox, L. H.. I'dentification and Program Pianning"; Motls and Methods.
In Intellectual Talont: Research and Development. Edited by Daniel P. Kéating. Baltimore, Maryland:, Johns Hopkins University Press, 1976.
 In Intellectual Talent: Research and Development. Edited by Daniel P.'Keating. 'Baltimóre, Maryland:; Johns Hopkins University Press, "1976.

George, W. C.;'Solano, C: H. • Identifying Mathematical Talent on a State.wideģBasis. In Intellectual Talent; Research and Development.
Edited by Daniel R. Keating:. Baltimoŕe, Maryland: Johins Hopkins University .Press, 1976 . $^{\circ}$.

Haier, R, J.; Solano, C. H. Educators' Stereotypes of 㴧thematically Gifted Boys. In Intellectual Talent:, Research and Development. Edited by Daniel P. Keating: Baltimore, Maryland: Johns Hopkins University Press,' 1976.

Keating, D. P. (Ed.) Intellectual Talent: Research and Development. Baltimore, Maryland: Johns Hopkińs University Press, 19766

Keating, ${ }^{\text {D }}$. P. Discovering Quantitative Précocity., In Intellectual. Talent: Research and Development: Edited by Daniel P. Keating: Baltimore, Maryland: Johns Hopkins University Press, 1976.

Kilpatrick, J. Analyzing the Solution of Word Problems Mathematics: An Explprabory Study. Unpubliṣhed dóctoral dissertation, Stanford University, "1967.

Lucas; J. F. An Exploratory Study or the Diagnostic Teaching of Heuristic Problem Solving Stratêgies in Calculus. ${ }^{\circ}$ Unpublished doctoral" dissertation, University, of Wisconsin-Madison, 1972.

Stan 1 y, J. D.i; Keating, D. P.; and Fox, $\dot{\mathrm{L}} . . \mathrm{H}$. . Mathematical Talent:
Discovery, Description and D'évelopment. Baltimore, Maryland: Johns
Hopkins University Press, 1984.

Research and:Developmenta Edited by Daniel P. Keating. Balțimore, Maryland:• Iohns Hopkins University Press, 1976..

Wearne, D. C: Development of fat of Mathematical Problem Solving Which Yields a Comprehension, Application and Problem ${ }^{2}$ Solving Scores, Technical Report No. 407. Madison Wisconsin: The Miscohsin Research and
 $t \cdot 19.76$. 1 i $1, \cdots: 1$
Zalewski, D. L. An Exploratory. Study"to cómpare Two Performancé Measures: An Interview-Coding Scheme of Mathematical Problem Solving and a Written Test. Technical.Report No. 306. Madison, Wiscotsin: The Wisconsin Research. and Development Center for Cognitive Learning, The University of Wijconsiñ, 1974.
 Intellectual 'Talent: Research and Development. Edited by Danjel P. 斤. Keating, Ḅaltimore, Maryland: Johns Hopkins University Press, 1976, pp90-99:

- Expandeá Abstract and Analysis Prepared Especially for I.M.E. by Leslié P.. Steffe; Unìversity of Georgia.

1. Purpose

Keating's purpose was to study the relationship between psychometrically defined brightness and cognitive devefopmental precocity within' Piaget's stage theory in early adolescents. Three questions were investigatted, regarding the purpose. The. first question (and, "fortant to the authors) had to. do with the relationship betwe ${ }^{\prime}$, cocity. , Does brightness as measured by psychometric testing imply". deyellopmental precocity? The second question was sparked by the use of psychometríc tests to identeify precocious students. . Is it the case that high scorers on psychometric test's are just "good test-takers? ${ }^{\text {ji }}$ The third, question was whether similar aspects of "inteligent behavior" are being tapped by the psychometric. and the Plàgetian traditions.

$2 ;$ Rationale.

Two traditions that exert major influence on theories of intelligence are, the psychometric and the Piagetian. , The basis of the psychometric tradition is the measurement of individual differènces, through evaluation of representative samples of behavioral productsin standardized siturations.
Variability iq themental abilities is assumed. mental thepry of Piagët is a unified theory that has the goal of identifir cation of universal shactures of human thought. - The methodology of study is not standardized, EGt clinical, with the purpose of displiaying behavioral symptoms of underlying cognitive processest.

3. 'Research Design and Proctedure

One hundred nine students in grades five and seven from the. Baltimoré County school Syrfen-were used as subjects: Of"the 109 subjects, 31 were bright weventh graders, wère average seventh graders, 37 were bright fifth graders, and 22 were average fifth graders. To be classifinied as bright (B) a studenthad to score at the 98 th or 99 th percentipe on the arithmetic section of the Iowa Test of Basic Skills.. To be classified as average (A) a sțudent had to, score betweent the 45 th and 55 th percentile on"the mame test. All'subjects completed five tests: : (a). Raven's Standard Progressive Mat'rices; (b) 'conservation of' volume, (c) displacement of verume, (d) equilibrium in thie balance, and (e) period of pendulum. Test ${ }^{-}$ (a) was considered as a psychometric test and was used to determine a "psychometric order" among the groups. The prediction was that the groups
would be arranged using the Piagetian tests in the same way as the psychometric order. Test.(b) was considered an advanced conerete operational task whereas the remaining othree wete considered to be formal . operational tasks. The Piagetian tasks were scored 1 (clearly concrete operational), 2 (a breakdoin of concrete operational but no indication of formal opérational), 3 (transitional), and 4’(formal operational) A. A. repeated-measure ANOVA was run , using Ps'ychometric Level and Grade a's classificational variables. and the three Piagetian formal operational tasks as repeated. measures.
(1) JOn the Raven's Standard Progressive Matrices, the psychometric order of the groups was $7 B=5 B>7 A>5 A$ uding Scheffe's multiple comparison.method. Scores were 48, 47, 44, and 38, rounded to the nearest whole number.
(2) Inter-rater reliability on the Piagetian tasks pitr the four groups was .94. All subjects "passed" the conservation of volume tests; therefore, it Was disregařded in subsequent. analyses.'
(3) The percentages demonstrating formal operations on all three Piagetian formal operational tasks were 62, 47,23 , and 0 for groups 7B, 5B, 7A, and 5A respectively. The orde'r of the groups was reported to. be $7 \mathrm{~B}>5 \mathrm{~B}>.7 \mathrm{~A} .5 \mathrm{~A}$.
(4). The percentages of "students demonstrating formal operations on' at least one Piagetian task were $85,93,63$, and 31 for the $7 B, 5 B$, 7 A , and 5A groups, respectively. '. The order was teported to be; $7 B=5 B>7 A \geqslant 5 \AA$.
(5) The percentages students demonstrating formal operations on the displacement task were $77,70,38$, and 0 ; on the equilibrium in the "balance task, 77, 85, 47, and 8 ; on the period of pendulum task, 62, 70, 38, and 23. Percentages in all three categories are for 7B, $5 \mathrm{~B}, 7 \mathrm{~A}$, and 5 A , respectively.
(6) In the ANOVA psychometric' level was highly signingeant ($p<.001$) and 'age was marginally significant (.05 < $\mathrm{p}<.10$). No other. factor or interaction was significant.
5. Interpretations.

Keating, in his discussion ofwhe results; states: ,
(a) "The major hypothesis...that brightness...implies developmental precocity in reasoning...was confirmed...".
(b) "...when students are selected for high scores on psychometric tests, those successful are indeed precocious in cognitive development, and not just 'good test-takers'."
(c) "...this research. \therefore confirms the empirical relationship of brightness and" precocity and does so across differing traditions.....It seems that brightness leads to precocity... the brighter individual would be at an advantage in moving' through the successive , stages more quickly...".
(d) "the absence, of a main effect for tasks (in the ANOVA) suggests that development within the formal operational period is not entirely analogous with that in the concrete operational period...instead of a series of structural changes, there may be instead a global structural change....".

Critical Commentary

Keating expressed a goal of cognitive-develqpment research quite aptly in his rationale for the stidy-the identification of universal structures of human thought. . It is well known that the rate of development of such -structures varies across individual is within cultures. It seems. that Keating's results confirm this fact. The issue is not, then, that indyviduals differ, in quite important ways. "The, issue is in the interpretation of those differences.

Piaget does not believe that the uni versa structures of human, thought are a priori in the sense of existing prior to experience. Experience plays a major role. in the development of such structures. Hence, it is not at all surprising that children in the 5B and 7B groups essentially displayed formal reasoning whereas those children in the 5 A and 7 A groups displayed formal reasoning only erratically with the results better for the 7A group than the 5A group. So, are the 5B children precocious because they are bright or vice vera? ' Keating seems to think that brightness implies . precocity. Ais brightness means scoring at the 98 th or 99 th percentile on the mathematics. subtest of the Iowa Test of Basic. Skills, there is little bast? for attempting to establish brightness as a sufficient condition for devi lopmental precocity'. Apparently, the relation could just as well be 'taken the other way,

Focusing on the psychometric.tradition (standardized achievement tests or tests of intelligence) and/or on the universal structures of human thought will not alone lead to an understanding of acquisition of mathematical know-

- ledge. Much more is needed. Keating alludes to the interaction of organism and environment as a prime factor in such acquisition. He seems to believe, however, that brightness is a gift to only a small number of lucky india viduals. The psychometric tradition would seem supportive of this alleged belief. But, is it possible for an "average" student to become a "bright" student, and vice versa? Surely we should not' ignore this very important question, as the influence of environment on an individual's social, emotonal, and intellectual existence is barely understood.

CURRICULUM EXPERYMENTATION FOR THE MATHEMATICALLY TALENTED. George, Willia巫 C.; Denham, Susanne A. In ințellectual:Talent: Resêarch and Development. Edited by Daniqly. Keating. Baltimóre; Maryland:", Johns Hopkins University

- Press, 1976, pp103-137)

Expanded Abstract and Analysis Prepared Especially for I.M.E...by Richara Crouse, University of Delaware. *

1. Purpose

To describa the"design of a fast-paced mathematies furriculum which was established to meet the needs of highly gifted junior high school students.

2. Rationale

Julian Stanley hás suggested that "the highly able are the pan ' 'disadvantaged'group in schools because they are almost'always grossly retarded in subject matter . flacement". The subject matter, retardation cań have serious effects on stựents' mathematical performance not only because of failure to develop their talent but also through the influence on students.' attitudes and aspirations toward mathematics. This program was based on the assumption that if students with ability and interest in mathematics were given the opportunity to learn as fast as they could, their achievements and satisfaction would probably be apparent.

3. Research Design and Procedure

The sample for the investigation was 33 students (29 ninth graders, 2 eighth graders, 1 seventh grader and 1 sixth grader) from Howard and. Baltimore "Counties in Maryland. 'These students were selected from amorig 953 Maryland séventh; eighth and under-age ninth graders who seored in the upper 2 percent on standardzed mathematical or verbal reasoning aptitude 'tests. These studentos were then administered both the mathematics and verbal sections of the Scholastic Aptitude Test'. It was decided that . thọe students who obtained a score of at leas.t 500 on the SAT-M and 400 on the SAT-V.would be eligible for a class at Johns Hopkins University. A sample of 31 students $(22$ boys and 9 girls) was thus identified for the class; 2 boys, one ninth grader and, one sixth grạder, were added later

From June to August 1973 these 31 students participated in an. Algebra II, class for one two hour period per week. Four girls and "one, boy chose to drop out of the special class at the end of the summer. At the end of the Algebra II segment of the clasis before Plane Gepmetry was started, it wąs decided to split the class intotwo sections. Fiye of the students needed more detail than was given, in the regular. cyass. These classes met for the entire 1973-1974 year. During each class the teadher intrgjuced challenging material at a rapid pace. The material covered includld all of Algebra IF, Plane Geometry and a large portion of Algebra III. In addition several students continued further with the class and completed the four and one-half. years of pre-calculus mathematics:

Jdevels of achievemént were measured using Cooperative Achievement Mathematics Tests. In addition, the students were given a battery of Cognitive and Vocational Interests. Tests. These included the Raven's Progresfive Matrices, Standafd and. Advanced; Sequential Tests of Educational Progress, Science; Revised Minnesota Paper, Formboard Test, forms AA and CC; Revised Scales froim Holland's Vocational Preference Inventorys the StrongCampbell Interest Inventory and the Allport-Vernon-Lindzey Study of Values. Means, standaṛd deviations, and pexcentile ranks were reported.
4. Findings
(a) In 108 hours of instruction, 28 students iearned Algebra II and Plane Geometry at a high level of, achievement. Algebra III was completed by 23 students and 13 boys suceessfully completed the four and one-half years of pre-calculus mathematics.
(b) All 28 students scored at the 85 th percentile or higher on the natioņal high school normis as measured by the 80 -item ETS Cooperative Mathematics Test in Geometry. . Thus in 38 .hours of instruction they exceeded the total score earned by 85 percent or more of the students who had studied Pliane Geofietry for an entire school year.
(c) Trigonometry was completed by 17 students in 16 hours. . The mean score for the group on the 40 -item ETS Cooperative Mathematics Test in Trigonometry was 28. This was the 96th percentile of gnational high school nofys. No student scored below the 76th percentile.
(d) Analytic Geometry was completed by 16 boys in 14 hours of'instruction. The mean score of this group on the Cooperative Mathematics Test in Analytic Geometry was 29 , which wàs the 9.5 th percentile of, national high schqol norms. -No one scored below the 75th percentile.
(e) The majority of the students found the new class more productive, more fun, and more competitive. . In regard 'to what the students' likedGbest about the class; the•students rated the teacher's teaching style highest.). The challenge of the mathematics taught and the students' feelings of

- accomplishment rated next highest.
(E)* Girlss scored significantly lower than boys on tree SAT-M and on Bennett!'s Mechanical mprekénsion Test, Form AA.
(g) Boys were not significantly higher than* girls on the investigative (inquisitive and scientifically oriented). Holland Scales. Howeyer, girls were significantly, lower ($\mathrm{p}<.01$) than boys on science and mathematics interest scales as measured by the Strong-Campbeli Interest Inventory scale, but "girls were significantly higher ($\dot{p}<.001$) than the boys on the social service\interest scale.
(h) On the Allport-Vernon-Lindzey Stady of Values, boys were signifir, cantly higher ($\mathrm{p}<.001$) than the girls on Theoretical ând Economić Values while the reverse was true on the Aesthetic, Social, and Religious Values.

5. Interpretations

(a) In order to conduct a fast-paced maxhematics class, careful attention'must, be paid to: (1) identification of qualified studen'ts through' appropriately difficult tests of mathematical and non-verbal reasoning (a certain minimum degree of verbal mastery seemed neçessary to learn mathematics at a rapid-fire pace); (2) the selection of a dynamic, bright, assertive teacher who can create an atmosphere of fun and productivity while introducing challenging materials; and (3) voluntary participation by the students. It appears that once these considerations are met, the academic and social aspects of such a class will proceed "naturally"..
(b) From their SAT-M score it appeared that from the outset boys had 'more mathematical reałoning ability than girls, even though a greater percentage of girls than boys had taken Algebra I already. It seems that boys acquire some of their, mathematical skills from sources outside the. classroom.
(c) The "higher scores of girls on the social service interest scalemay be of practical educational significance. Their high interests in . social sciences and mathematics in combination with their social-investigative orientation lay lead them into the teaching field, medicine, psychology, or similar careets: On the other hand, the boys were far more scientifically: oriented, pointing, to possible kareers as scientists, mathematicians, or .computer designers.
(d) An investigative orientation toward pursuing, goals and choosing activitles is helpful if one is to survive in an investigative envirgnment. Thus placing a socyally (but not investigatively) oriented student in a highly investigative environthent may not allow for the effective usel of the individual's talents. It is worth considering whether social classroom enyironments should be constructed for the benefit of sotial-type students. and investigative, environments should be construted for, those students who can benefi i from them most. . This would imply considerable segregation by sex.

Critical Commentary

Mepting the needs of highly gifted.stuldents in mathematics via an appropriate curriculum is an extremely important problem. This program is certainly an interesting one that should stimulate both researchers and classroom- practitioners to emulate and/or refine the principles and practices'developed. The predictive potemtial of this program holds consideráa promise, but only limited generalizations and/or interpretations can be made from this investigation. Any conclusions drawn and/or -implications made must be tempered by the following facts and questions.

The authors report that the material covered included all of Algebra II, Plane Geometry, Algebra III, et ceteřa. However, what does this mean? - Exactiy what was inclûded in Algetbra III? It would have been clearer if . the authors described the material covered by listing the topics included.

Not alí tests wéré described in detail; in particular, no reliabilities weré repoited for the Cooperative Achievement Mathematics Tests which were
; usied to measure levels of achievement.' It has' been thils reader's experiénce that these. tests hawe low ceilings, thus raising the question of 'just how well or how much these students really did learn. Several improventits in this investigation could. have been made, such as including a.pre- ànd' pósttest component for each subject which wuld have provided valuable baseline, . as well as change data. Rétention tests might aiso provịde useful nformation.

- The authors report that "the teacher's style and ability are vítal to the success of such a program". This conclusion may indeed be true but further data or experimentations are needed to substantiate this claim. It wouldè be interesting to investigáte whether these students could have learned the same materiąl with another teacher with, a different teaching style or by independent sturdy with appropriațe mathematics material.

In general this report is clearly wrîten. Hbwever, the authors could have done a better job in organizing the material. It would have been better to describe thérevels of achievement of the students immediately after the description of the program instead of being. separated by a discussion. of cognitíve and vocational interests tests. Trying to figure out which students were inowhich elass.at what time was also quite confusing. In spite of thèse thinor criticisms, thís report is certainly one thāt should be read. Its potential for meeting the needs of highly gifted mathefiatics students ís, considerable.

SPECIAL FAST-MATHEMATICS "CLASSES TAUGHT BY COLLEG̣E PRQFESSORS TO FOURTH THROUĢH TWELFTH GRADERS.' Stanley, Julian C. . In Inteilectual Tarent: Research ${ }^{\text {andd }}$ Dè̀velopment. Edited by Daniel pr. Keating. Baltimore Maryland:. Johns Hopkins University. Press, 1976, pp132-159.

Expanded Abstract and Analysis Prepared Especially' for I:M.E. by Axthur F. Coxford, The University of Michigàn.

1. Purpose

(a) To develop and evaluate, within a single school, a program for teaching algebra to matheqatiçally apt students, earlier and faster than usual.
(b) To apply' thè fast-mathematics teaching techniques to supplementing calculus instruction for apt students in order to improve performance on the BC Level Advanced Placement Program examination:

2. Rationale

The author and. his colleagues have illustrated the effectiveness of special fast-paced mathematics instruction for extremely apt pathematic's students in situations which drew students from large populations. Such
 studentow. In a local single school building, the number of talented students is sigrificantly less. Thus, the participants in SMPY (Study of Mathematitially Precocious Youth) wished to test their procedures under the more ; difficult conditions existing in a single building. That is, they. wished to determine whether the principles and practices developed in semi-laboratory settings coùld be used under moṛe typical school cpnditions.

3. Research Design and Procedure

The school used to test the fast-mathematics procedure for teaching. 'algebra'enrolled 67 fourth-, 63 fifth-, $\times 68$ sixth-, 370 seventh-, and 360 eighth-grade students. An initial screefing of fourth- throygh seventhgrade students was done by examination of scores on the arithmetic reasoning section of the Iowa Tests of Basic Skills achipvement battery: A sliding, scale; was used. Twenty-three girls and 17 , boys weré identified.

These students, yere given the Academic Promise Test (APT) and Raven's Standard Progressive Matfices (SFM) on consecutive days. The subtests Numerical (N), Verbal ((y), Abstract Reasoning (AR'), and Language Usage (LU) of APT were girls for an all-girls class and 12 boys for an all-boys class. Seven girls were in grade 7 and 5 in grade "6. Six boys were in gráade", 3 in grade 6,2 in grade 5 , and 1 in grade 4. All were highly talented mathematics students.

The procedure called for the boys to be taught by as man and the girls by a woman. The, teäching in the classes. was to be fâst--no pacing
adjustment fas ailowed for students lagging behind; rathor the students were to, fill gaps by completing carefully designed homework. The s.tandards were high and the teachei was bright'and alert with' mathematical badground well beyond the level taught. The two classes each met for a two-hour block each week. In each class, a total of 37 thours of instruction was.. provided before giving ETS-Cooperative Algebra I' test in June 1974.

The same students were to resume fast-algebra study in Fall. 1974. However, due to a variety of factors only 5 boys and 9 girls continued, and they were put in a.single class. These 14 students participated in 24 additional hours of fast-Algebra I study and were retested. (Following this' test, the class studied fast-A'lgebra I.I and were given the Cooperative Algebra 'I I ${ }^{4}$ test in March 1975 and again in. June.

The fast-supplementary calculus teaching work began in Séptémber 1974. The class was composed "of" students studying regular calculus in school. The teaching tolk place on Saturdays for wo hours. . The purpose was to prépare for the BC Level Adyanced Placement Examination in calculus. , Fiftieen boys participated initially on a volunţeer basis. . Thirtieen continued until February 1975, at which time the completed the Cooperative Calculus test. The sáme test was administered again in May 1975 and all thirirteen completed the BC Level Advanced Plácement Calculus Test on May 13, 1975.

4. Findings

For the fast-Algebra I class tested in Júne 1974,7 of 21 scored at or below, the 49 th percentile rank on national eighth-grade norms, 6 scored at or above the 90 th percentile, and 8 scored between these extremes. When compared with 66 eighth-grade Algebra I students ($\approx 18 \%$ of the 360 . eighth-grade.students), the fast-algebra I students fared as follows: 5 scored higher than any of the 66 , and all scored higher than twentythree (35%) of the 60 eighth, graders.
. Of the 14 continuing fast-Algebra I stưdents taking an alternate form of the Cooperative Algebra I test, 50% scored on the 90 th percentile or abóve after 24 additional hours of fast-Algebra I. In March 1975, eleven of the 13 , contipuing fast-Algebra II students took a form of the Cooperative Algebra II Test; the other form was given in June 1975. In Márch nearly 50% scored at or above the 79th pefcentile on national normb

For the fast-calculus' supplementary teaching-class, the results on the "Cooperative Calculus Test giventín February 1975 showed only 2 of 13 sisoring below the 90 th percentile for national high school norms and showed no one below the 90 th percentile in national college norms. Two of these student's were in grade 9, 7 in grade 10, one in grade 11, and
$\therefore 3$ im grade 12. In the May administration of the alternate form of the Codperative Calculus 'te'st', all 13 students scored at or above the 99.1 percentile for national college norms. In the AP Level BC calculus ${ }^{\circ}$; examination, 9 , students earned a 5 rating, 3 earṇed a 4 rating, and 1 had a 3 rating.

5. Interpretations

In regard to the "fast-algebra I and II in "a", single large school, the author concludes:

The most important factors that produce results. . . seem to be as follows: a teacher who knows, mathematics well, is enthusiastic, has high. standards, and moves the group fast; students bho have considerable mathematical and verbal aptitude; as determined by standardized tests, and are fairly homogeneous in these respects but not necessarily alike in grade p'lacement or chronological age; interest in learning mathematics 'quickly and will, which (especially among girls) does not always accompany "aptitúde; facilitative parents wha value the unusual edưtational opporțunity the special cilass represents and therefore encourage their chikdren to do well, and helpful school personnel who do not try to obstruct progress because they fqe \ddagger threatèned by it.

By all criteria the course was' a resounding suceess. In just 30 two-hour supplemental meetings with Dr. McCoart these ${ }^{-1}$ able young men learned college Ealculus I and II splendidiy, and a great deal of calculus III also.

The author concludes in gemeral that the results of the fast-mathematics instruction imply that the type of class, homogeneity of student, and equalify of instruction are vital. considerations for learning. "In far fewer hours the students: : have learned far more mathematics well than they would have in a regular ćlassroom. . ." one or more years later. Finally, the author suggests that the techniques used in fast-mathematics.classes may be applicable for other subjects in other schools, and that until these classes are instituted the intellectually gifted students ". . .will. for thermos't. part continue to get little that effectively meets their real intellectual needs".

Critical Commentary.

There is no doubt 'that some extremely able yọungsters attained high l'evels of mathematical achievemen't in Algebra I and in Algebra II at.young ages." It is also true that a significant paŗt of the students did not. complete the. program. Whether or not the same youngsters would have learned more or less under a"different procedure has not been answered in this report. Also the issue of whether the are more effective ways to attain better results with the "also able" \& pouts has similarily; gone unanswered.

In a sense the report Verifies a tautology: Those who can learn under certain cknditions do so. Now that the author and his colleagues have illustrated tautology, it would be extremely worthwhile to vary their procedures in order to try to reach more of the able youngsters they so obviously wish to educate. For example, the results of the Algebra II co-educątional class were quite gapd. Does this not suggést
that teaching sifgle-sex groups may not be necessary? And what about the pacing? It was not made clear how fast' was "fast". . Can, the pace be varied to obtain better results for more of the talented students?

With regard to the supplementary teaching of calçulus, let it be noted that 30 two-hour extra sessions is 60 hours of,instruction. Sixty hours of instruction is what a college student gets in a 15 -week, 4-hour course. 'Thus it is not surprising that these very able students did well on a test of two semesters of calculus having q.tudied calculus for a time equivalent.to three'semesters.

In general" the author seems to be crusading for his brand df. "fast-" math". I would suggest that he consider it as one approach and examine the ${ }^{2}$ sitive effects (as was done in this article) and the negative effects. For example, were there any ill'effects for those students who could not K"eep up?' Before exporting this.procedure to other areas, the author should experimentally verify that the features he thinks vital actually 'are, for it' ma'y be that the highly able will respond to any stimulating learning environment, not, just this particular one.
 In Intellectual. Talent: Research and Development. Edited by Daniel P. Keating. Baltifore, Maryland: Johns Hopkins University Press, 1976, pp183-214.
Expanded Abstract and Anąlysis Prepàred Especially for I.M.E. by Peggy A. House, University of Minnesota.

1. Purpose

The investigator hoped to accelerate by one year the mathematics program of bright seventh-grade girls by having them, stúdy Algebra I for three months in a special summer. clalss. designed to focus on the girl's' social interests.

2. . Rationale

It is generally recognized that there are sex differences in, average Tathematical aptitude and achievement among adolescents and adults." Previous research by the. Study of Mathematically Precocious 'Youth (SMPY) showed bays to be more successful than girls in accelerating their mathematics learning through special out-of-school mathematics courses. The • investigator hypothesized that the gịls' 'mor limited success may rest on two factors: first, the SMPY class, taught by a male ex-physicist, was theoretical whilefthe girls were sociai by nature and did not like the 'classroom atmosphere or. the required ingependent study; and, second, the program did not attempt to emphasize the'relevance of mathematical study to the educational and career goals of the girls. An underlying assumption of the present study was that if one is to succeed in a mathematics-related field, then at an early age one must recognize the possibility of career success in that fieid and must begin to aspire, positively toward deviloping one's talents. The special clas's was 'desjigned to appeal to the girls' social interests as a means of accelerating their achievement in mathematics.

'3. Research Design and Procedure.

Seventh-grade girls from Baltimore County, Maryland, who scored 370 or above on the Scholastic Aptitude Test-Mathematics (SAT-M) during SMPY's 1973 Talent Search were invited to participate in the experimental class. Invitations went to 32 girls selected, on the above criteria and to two others referred for other reasons. Twenty-six accepted andenrolled in. the class; 18 complèted the program. For eaçh girl who acçepted, two control Ss, one girl and one boy, were selected from among the remaining SMPY contestents. Control subjects were matched on mathematical ability (SAT-M), verbal ability (Scholastic Aptitude Test-Verbal,. SAT-V), educationál

- - level of mother, and education and occupation of father. An analysis of variance.showed the three groups to be significantly different ($p<.01$) . on ${ }^{\text {"SATM, }}$, and Tukey comparisons of the differences between means indicated that the boys scored higher than girls in both experimental ($p<.01$) and control ($p<.05$) groups. However, the decis,ion was made to accept the boys as the best control group available. The groups were not significantly different on the other variables. Mothers' education was hypothesized to
be related to the expectations which they hold for their daughters. No rationale was given for the inclusion of fathers' education and occupation as variables.

Experimental $\frac{S}{s}$ studied Algebra I for three months during late spring and early summer of 1973, meeting approximately four hours per week. Control Ss took Algebra• I in regular school classes during 1973-74. No information is given about the distribution of the control subjects in Baltimore County schools'or about the nature of either their.Algebra I classes of the teachers of these classes. None of the subjects'had -studied Algebra I in seventh grade. A pretest of Algebra I using the Cooperative Mathematics (COOP) Test, Form A, showed'no significant. differences among the three groups, on knowledge, of Algebra I prior to the experimental class.

The experimental class was taught by three women. No.further information isegiven about the teachers. The class was organized around smallgroup and individualized instruction and was conducted informally, with a stress on cooperative rather than competitive activities. Whenever : possible and appropriate, teachers emphásized ways in which mathematićs could be used to solve social problems. No information is provided on: the number or frequency of these talks, on the background of the speakers, or on the approach used in addressing the girls. Finally, efforts were made-to develop the study habits. and skills of the experimental Ss by strongly encouraging them to read their mathematics texts, to use the test as a resource, and to set and meet selfrimposed deadines; How thèse efforts were carried out is not described.

Three questions were addressed in the study: Was an emphasis on social interests effective in recruiting girld to participate in the accelerated programs? To what degree did the girls master Algebra I in the accelerated program? Did, the program actually accelerate the progress of the girls in their studies of mathematics in school?
4. Findings

Experimental Ss were compared with girls in two previous mixed-sex SMPY classes (SMPY-I, SMPY-II) for recruitment and dropout rates. The acceptance rate of girls invited to the all-girl class was higher than for girls invited to either SMPY-I or SMPY-II. No índication is given as * to the statistical significance of th s difference. Further, the crijeria for selection differed among the three classes. The dropout ratp was. about the same as for SMPY-I and lower than for SMPY-II. Agaín, the statistical significance of the differences is not reported. The 18 girls who completed the program were reported to be more interested in investigative careers and to have pronger liking for mathematics than the eight who dropped out, but the report does not specify what instruments were used to obtain these ratings of attitude and career interest. Neither dọes it report the reliability or validity characteristics of the instruments. Other differences (girls who dropped out tended to come from homes where one or both parents were college graduates) are reported but not interpreted.

The 18 who completed the program were tested in July 1973 using Form A. of an Algebra I test. The reference to the Algebra I test is not explicit,
but it appears to refer to the coop test used earlier as a pretest. ${ }^{\circ}$. The mean score of 30.6 was at the 89 th percentile of national ninth-grade" norms. Experimental and control subjects were retested in January 1974 using, the COOP Algebra I, Form B: Scores from 23 matched triads were analyzed using an analysis of covariance, with premeasures of SAT-V, SAT-M, and algebra achievement (COOP'Algebra I, Form A) as cdovarinates. The difference in performance among the three groups on the tests of algebra knowledge was significant (p .4 .001); Tukey comparisons of the differences between means showed the experimental Ss to be significantly higher ($p<.005$) than either control group. The control groups were not significantly different. .These comparisons treated the entire experimental group ($\mathbb{N}=23$) without distinction between those who completed and those who did not complete the program, At the time of testing in January, control subjects were enrolled in regular Algebra I classes in their
--respective schools; experimental $\underline{S} s$ who had completed the program were enrolled in Algebra II or were repeating. Algebrá I. The mathematics program of experimental Ss who dropped the, course is not reported.

Eleven girls completed Algebra il during the year following the experimental course, nine of them receiving grades of A\% or B. Reasons why others did not complete Algebra II are complex and primarily related to difficulties with administrators, teachers, and counselors in the home schools. A second factor may have been that the criterion for success. in Algebra I (65th percentile on ynth-grade national norms) was not hight enough.
5. Interpretation

It is possible to motivate mathematically. talented girls to attend a special acceletated program when social aspects of the program are emphasized. It is also possible to teach them Algebra I in less time than the typical. school year. It' is still difficult, however, to accelerate their progress in sčhoor:- Further, the impact of accelerated programs appears' less successful for bright girls than for bright boys.

Research is needed to investigate the impact of learner style and interests on achievement when aptitude is relatively constant. Research also is need mathematical ability, particularly at higher levels of achievement. Comparisons should be made between accelerated programs and programs which supplement traditional classes with career education components and between sex-segregated. classes, and interest- (but not sex) segregated classes.

Critical Commentary

The investigation calls attention to two areas of significance in mathematics education: . the needs to develop the mathematical abilities of the 省ifted and to encourage girls to pursue, mathematics. Efforts to find viable alternatives for the education of gifted girls need to be encouraged and supported.

While it raises some important "questions in these areas, the study as feported here cannot be considered an experiment. Questions must be raised about the investigator's attempt's to compare nonequivalent groups. Most questionable is the attempt to compare experimental and qentrol groups on Algebra I achievement at a time (January) whef control subjects. would have been in the middle of their Aigebra I courses while nost experimental subjects bad completed Algebra I and an additional half-year of study at or beyond that-level.

There are further difficulties in interpreting the results and conclusions because needed information is not reported. Other questions arise from design considerations: two girls were included in theosåmple - for reasons. other than the stated selection criteria; it appears that the same instrument was used as b h pretest and posttest to measure Algebra I achievement; retest scores of Algebra I were analyzed for experimental Ss'without differentiating between those who'completed the program and those who dropped; some subjects were allowed to take the January test at different times and under different test conditions.

Variables are suggested, but their relationship to the study is not - clear. Experiences of girls in the SMPY classes were cited to suggest the need to focus on the social interests of girls, but other factors (teacher male, teacher an ex-physicist; course theoretical, indepedent study required; et çetera) are not systematically controlled. Varfables introduced into the experimental program (female teachers, more than one teacher, outside speakers, informal class organizarion, attention to study skills, et cetera) are not measured or evaluated for their effect on achievement or accèleration. 'It also, appears that no attempt was made to control these variablies for subjects in the control groups. .

The study does provide evidence that, under certain conditions; talented girls can learn algebra in a brief period, of time. It is hopeariont future studieswill be designed to identify and investigate those conditions which contribute significantly to that success.. However, this reviewer would find it impossible to replicate the study as reported here because of the many unknowns indicated above.

Two additional questions, must be raised: first; the study seems to assume that acceleration in mathematics is the most desirable outcome for mathematically gifted girls. This aşesumption istopen to chalilenge. Second, the study rests on the assumption that the key in motivating the, girls to succeed and accelerate in mathemattcs is through emphasis pn threir career, interests. However, it is not at all clear that seventhgrade students arë highly, motivated by career goalls. To ask the , subject which of several-careers she or he would prefert can suggest career preferences.; does not necessarily follow that the: subject is conscious of or motivated by those preferences. This assumption needsantavestigation.
 to the problems encountered when the investigator'sought' to make. provisions
 of teachers, counselors, and principais are extremely discancerting an 'they' sërve to emphasize the urgent need not only for móre, fesearch but.
also for major changes in the attitudes of educators toward the gifted and in their priorities for meeting the educational needs of this portion of the school population.

EDUCATORS' STEREOTYPES OF.MATHEMATICALLY GIFTED BOYS. Haier, Richard J.; Solanó, Cecilia H.• In Inteflectual Talept: Research and Development. Edited by Daniel P keating, Baltimore, Maryland:- Johns Hopkins University Press, 1976, pp 215*22.
Expanded Abstract and Analysis Prepared Especially for I.M.E. by
Thomas R. Post, University of Minnesofe

1. Purpose

Previous experiences of the SMPY•(Study of Mathematically Precocious Youth, originated in 1971 at Johns Hopkins University under the direction of Julian C.Stanley) indicate that a negative stereotype of the gifted child exists in academic circles. This survey explores the preyalence and content of stereotypes of gifted male students in two groups of educators, one unfamiliar with a specific:group of 'gifted students’, the othèr personaliy" familiar with these mathematically precocious youth. Identification of the nature and extent of this stereotype is the primary focus of this paper.

2. Rationale

The success and continuation of programs designed for exceptionally gifted students is dependent to \dot{a} large extent on the approval and cooperation of principals, teachers, guidance counselors, and other school officials. Resistance to implementation of specialized programs for the gifted is sometimes substantiated on grounds of lack of money, difficulties with bureaucratic channels, schedying problems, and existence en $_{\boldsymbol{q}}$ of adequate programs for enrichment. Although these factors undoubtedly contribute to such reluctance, it ailso appears that an undertone of negativism pervades some thinking about "gjifted students." The attitudes or stereotypes that educators hold toward gifted students are critically importane!. Unfounded negative stereotypes can needlessly impede effort's made on behalf of such students. Although it has, been shown repeatedly that negative stereotypes of the gifted have little empifical basis, there exists some evidence that such negative stereotypes continue to exist.

3. Research. Design and Procedurë

Two hüffred principals, teachers, and guidance counselors from. 50 public junior high schools in Pennsylvania were selected to represent a population of educators having no prior contact with the Study of Mathematically Precocious Youth (SMPY). An attempt was made to select schools from those counties in Pennsylvania whose demographic characteristics worie similar to the counties in Maryland in which SMPY high scorers 'áttend school. Principals of selectè sehools were asked to disseminate survey materials to one male and one female mathematics teacher, one guidance counselor, and hitn- herself.

Each of the four educators in each school received a form contairring . case descriptions" which briefly described fqưr "rèal" boys identified by
the SMPY as mathematicalily gifted: Each form contained descriptions of three gifted and one exceptionally gifted student. These des̃criptions were neutrally worded and inclúded test scores, college courses taken, and grades received. Nine șuch descriptions of gifted tudents were" prepared. 'Thyee additional"boys who were described as exceptionally gifted were'0 also "written up." . The twelve descriptions were randomly assifned to one of three forms. Forms were subsequently sent to a rand ϕ mly s'elected third of the schools contacted along with an attitude measure consisting of 150 personality-relevant"adjectives, both positive (i.e., active, adaptable,... wise) and negative (i.é.., affécted, aloof,....whiny) in mature. Survey. participants were instructed to read the case descriptions and then check those adjectives which he or she thought applied to the group of gifted boys. "The Pennsylvania sample thęrefore represen'ted a population of educators who described mathematically highly talented boys on the basis of little or no direct experience with such students."

These data were compared to data from a sample of teaćhers, guidance' counselors, and principals, of 46 SMPY high scorers.- This group is referfed) to as the Matylan educators. The same checklist was completed but with reference, to Wthe specific student of his/her acquaintance."

Scores from both groups were standardized and individuals were subsequently lassified as holding a positive or negative stereotype toward gifted students; positive if the standard score on the fayorable seale exceeded the scoré on the unfavorable scale and negative if. the reverse were true.

4. Findtngś

The frequency of negative sterebtyंpes was found to be higher among Pennsylvania educators than Maryland educators. Negátive stereotypes aremore commốn' with educators unfamiliar with such student, sthan with those having had personal experience with gifted boys. Fifty-two percent of the Penisylvania educators surveyed held negative stereotypes, of mathematically, gifted boys. The same was true for 32% of the Maryland educators.

The percentages of negative stereotype educators checking each of the 150 adjectives were calculated.' Higher percentages of endorsement on favorable as compared to unfavorable adjectives was observed. The duthors concluded that there esists more agreement on the favorable attributes of gifted students than on the unfavorable attribates. Even educators holding negative attitudes endorse many 'favorable adjectives. This was true in all groups.

The Pennsylvania"educators (those not personally familikar with specific - SMPY students) have higher. percentages of endorsement on bath favorable and unfavorable adjectives, when contrasted to their Mary.land counterparts.

A large degree of consistency with respect to the endorsement of specific adjectives was observed. The m8st popular favqrable adjectives were: alert (96%), intyelligent (95%), çapable (94%, and antbitious (89%); the most frequently checked unfavorable descriptors were: opinionated (44%), argumentative (43%), impatient (38%), and egotistical (36%).

5.' Interpretations

Although many educators held negative stereotypes, these are neither ' extremely hostile nor derogatory and may have some basis in fact. Since. famifiarity appears to mitigate-negative opinions, the negative, stereptypes are likèly to be. troublesome but temporary obstacles in faciliteating the education of gifted boys.

No suggestions for further research were made.'

Critical Commentary

It is difficult for this reviewer to react initially to the findings of this survey because of a number of procedural and design questions which cast, some doubt as to the "validity of the findings. The question of validity of the direct comparison of Pennsylvania and Maryland teachers needs further consideration.

Why.did the authors choose to identify populations of educators in two different states? Such. geographically diverse populations might véry well have: large-scale, "a priori" attitudinal differences ingrainéd parhaps. due to region, educational climate, or a number of other uncontrollable or unidentiffied variables. Such differences might invalidate comparisons, even though an attempt was made by the authors to match counties on the basis of demographic variables. Would it not have been bettềr for comparison purposes to select subjects from the same geographic location, ideally at the school level? Given. such discrepancies as might exist in the Pennsylvania and Marylafd populations, it woutd have been desirable to establish that S_{s} in both groups were in fact comparable in their professionall perspectives except for the fact that one group had prior extensive experience with mathematically gifted boys. This was not done.

- Pehnsyívânia and Maryland educators were gíven different directions prior to responding to the adjective checklist (ACL). The Pennsylvania group was asked to "check those adjectives on the ACL which" he thought applied to the group of gifted boys" described by the four case summariod. These four summaries varied in length from two to six sentences, obviously an extremely small data-base from which to formilate a globalized opinion of mathematically gifted doys. . The Maryland group, on the other hand, was asked to check "those adjectives that were descriptive of the specific student of his or her acquaintance." The validity of observed differences is suspect given the differential stimulus conditions at the time of "testing".

The authors further assume that "the Pennsylvania sample represented: a population of educators who described mathematically highly telanted boys on the basis of little or no direct experience with such students:" The authors provided 'no evidence'that this assumption had been further substantiated. Is it reasonable to assume that mathematically gifted boys exist only 'in Maryland?

The- ACL scores were standardized, by converting obtained raw scores using "adult normative data in the manual." It is not clear to this
reviewer how such.normative data could have been developed and/or could be useful unless the specific prompt used....e., mathematically gifted boys, is identified with the specific norms \mathcal{I} such was the case, it was not explicitly stated.

The manner used to ídentify positive and negative stereotypes seemed to lack precision: In reality the difference between being classified as having a positive or negative stereotype could have been the difference between the \underline{S} checking cation is therefore potentially spurious. An alternative would have been to estabitsh some percentage differential between the number of favorable and unfavorable responses as a prerequisite for classification. Such a procèdure would undpubtedly result in a' number of midrange individuals who would not be classifiable in either the positive or negative category, but the remaining persons would have expressed clear-cut attitudes toward the population in question. Such a procedure would serve to reduce the. number of classification errors.

The actual resulfs obtained in this survey are quite disconcerting 'to this reviewer if it is assumed for the moment that the issues addressed above have not, in any way had an influence on the validity of, the data. ,For example, it would be appalling if'in reality 52%, of educators who have not had direct corttact, and 32% of educators who have had direct aontact with gifted youth, have predominantly negative attitudes toward them.
 the educat tion and re-education of school personnel. Glearly, as the authors indicate, the attitudes of educators toward a specific student population will play a crucial role in the effectiveness of programs designed for that population. If educators do in fact hold large-scale negative attitudes toward the'gifted, as this study implies, a more precise understanding of those ättitudes would provide a knowledge or conceptual base from which subsequent investigations might be launched. More research is needed.

CAREER-RELATED INTERESTS OF ADOLESCENT BOYS AND GIRALS. FOX, Lyñ. H.; Pasternak., Sara R.; and Peiser, Nancy, L. In Intellectual Talent:; Research and Development. Edited by Daniel P.• Keating. • Baltimore, Maryland: Johŕs Hopkins University Press, 1976, epp242-261.

Expanded Abstract and Analysis Prepared Especially "for I:M.E. by John C. Peterson, The Ohio State University.

1. Purpose'.

To obtain more information concerning the interesits and career choices of seventh-grade boys and girḷs of bigh ability who were matched on mathematical aptitudes, verbal aptitudes, att sociometric level.
2. Rationale

Cognitiye ability and personal.interests and values are important psychologicalsfactors. . Previous research by one of the authors indicated a relationship between extremely high cognitive‘ability, values, scientific interests, and career choices of young adolescents. Results of other studies indicated a relationship between masculine intérests, "scientific career choices, and achievement in mathematics. Another study has shown that highly precocious boys (scores of 640 or higher on the SAT-M) showed a greater intprest (as measured by the Allport-Vernon-Lindzey Study of Values) in investigative careers and theoretical values than less preco-. cious boys or giprls.
3. Research Des'ign and Procedure

Three matched groups of.equal size ($n=26$) and cognitive ability were formed: One experimental group of girls, one control group of girls, and 'one control group of boys. All students were gifted seventh graders in the upper two percent of their grade level on the lowa Test of Basic Skills.

The two matched control 'groups (were used for the first part of this study. The career interests of these 26 boys and 26 girls were compared with each other and with those of 75 ninth-grade boys and 75 ninth-grade girls from twq junior high schools and for whom sutimary data were' already available. Interests were measured using the Strong Campbell Vocational Interest Inventory (SCII). The ninth graders are referred to as the average adolescents and the seventh graders the gifted adolescents.

Scores Erom the SCII are reported in three ways. Part Two, the Basic. Interest Scales; which show the consistency of one! s interests in 23 specific areas, were the main criteria used in this study. These 23 scales are grouped into six General Occupartional Themes: Realistic, Investigative, Artistioc, Social, Enterprising, ind Conventional. A score above 50 on any of the 23 scales indicates above anverage interesf for that particular theme.' An individual's interests are well. diffetentiated if he or she earns high scores in numerous unrelated areas. Such differential profile\% are not uncommon among adolescents.

Students in the three seventh-grade groups wefe asked to rate eight. - occupations on a seven-point scale of 16 adjective pairs in the form of a semantic differential, called a "See Myself \&cale.". The eqght occupations selected consisted of' four typiçally female occupations hhoémaker, nurse, professor of English, and, elementary-school teacher) and four primarily male occupations (physician, professor of science, mathemetician, and computer programmer):
'4. Findings
The girls in the gifted groups scored above a mean of 50 for 17 of the 23 interest scales; the boys in the gifted group scored above 50 for nine of the interest scales. The girls scored above 50 on every scale ${ }^{\circ}$ except mechanical activities (Realistic) and the fiye Efterprising scales (public speaking, sales, law/politics, merchandising, and business management'). The boys scored above 50 on all the Realistic scales except nature and all the Investigative scales except medical service. The boys scored below 50 on all the Artistic scales, the Conventional scale, and all the Social and Enterprising scales except athletich (Social) and public speaking (Entorprising).

- An analysis of variance of the two groups on: the 23 scales showed the sex difference was significant ($p<.05$), as wełe the differences of rating on the interest scales ($p<.001$) and the interaction of sex and interest scales ($p<.001$):

Tykey tests of mean comparisons showed that the girls scored signifi-cantly-higher than the boys on the following interest scales: domestic arts, art, social service, music/dramatics, teaching, writing, nature, office practice ($\mathrm{p}<.005$), religious activity ($\mathrm{p}<.01$), and medical service ($p<.05$). The boys scored significantly hogher than the girls on mechanical activities and science ($p<.005$).

- The students in the sample of average adolescents were almost two grades older than the gifted sample. The basic inferest scale scores of the average. groups were lower than those of the giffed group on most scales, especially the scientific and_artistic ones. The average ninthgrade girls scored above 50 on only nine of the 2β interest scales as compared.with 17 for the gifited seventh-grade girls. The ninth-grade boys scored above 50 on only five of the scales, as compared with nine. for the gifted seventh-grade boys. The'ninth-grade gi,rls scored higher than the ninth-grade boys on the following scales: domestic arts, offige 'practice, social service, art, medical'service, music/dramatics, and' nature. The boys scored higher on the folloking cales: mechanical activities, adventure, military "activities, and science.

All three groups of seventh graders were ased in the second part of the study. For the semantic differential, three groups were used--two groups of girls and. one group of boys. A mean score of 64 indicates a neutral position with respect to that career;' a score above 64 is con--sidered positive. Group II girls rated all eight of the occupations above 64. Group I girls rated all occupations except nurse above 64. The boys rated all occupations excepe nurse, homemaker, and profesśor of English above '64. 'In' an ANOVA of ratings of the eight careers by the
threè groups, the caréers were rated significantly đifferent (p’ . . 001) , there were signifdcant differences'between 'the groups ($p<.05$), and the interaction of groups and careers was also significant (p < . 001).

- Tükey tests of multiple mean comparisons were used to determine which careers were rated significantly different by the three groups. For the male careers, boys were significantly higher than girls on three 'of the eight' comparisons. On the female careers, boys were significantly lower than the girls on seven of the eight comparisons.

Tukey tests of means with groups, across careers were computed in order to compare the ratings of each of the four male careers with each of the four female careers. Boys rated every male career significantly higher than every female career, except elementary-school teacher. . Group I girls did not rate any male career significantly lower than any female career and did rate mathematician significantly higher than nurse. Group II girls rated professor of science significantly lower than elementaryschool teacher and hómemaker, and rated computer programmer significantly lower than every occupation (male or female) except professor of science.

*5. Interpretations

Intellectual ability andecientific career interests appear to be highly related. Gifted girls and boys have stronger.interests in mathematics, science, medical science, writing, and public, spéaking than do soméwhat older students of more average ability. This result would seem consistent with the fact that gifted students can more realistically aspire to academic careers.

The gifted girls are somewhat more like; gifted. boys than average girls with respect to interests that are fairly predictive of adult career choices. Although gifted girls do differ from average girls with respect to investigative interests, the gifted girls hâd somewhat less interest in these areas than gifted boys. What appears 'to be true is that gifted girls make fewer clear distinctions between preferences for male and female career interest areas than gifted boys and appear more drawn to male interest-areas than giris of average abiltty. These data suggest that high cognitive ability leads to more conflict for gifted.girls than gifted boys or average girls with respect to future career choices'.

Critical Commentary

This study has the potential to serve as an impetus for several other studies. How do the career interests of gifted students differ-ffom the interests of non-gifted students who are the same age ormit the same grade?. How do students,' (gifted and non-gifted) interests change as they progifess through .school (e.g., what changes occur between seventh grade and ninth grade?)? Are these changes the same for males and females? How indicative are the career interests of. students at various grades of their occupation at age 25? age 30?

This study compared the career interests of gifted \hat{d} seventh graders with the career interests, of average ninth graders. Thus, students
difłered not only in cognitive ability but"in age. What results were due to the differences in cognitive abilities? . in ages? These questions should have been addressed. Why did the researchers use average ninth graders rather than average seventh graders?

Perhaps the most important concern of the abstractor is in the selection of the Strong-Campbell Vocational Interest Inventory, (SCII). This instrument was, apparently, still in the developmental stage at the, time of this study. A current catalog indrcates that the instrument is, for grade 11 and up. Did the researchers have, any data on the reliability : and validity of the instrument? Why did they select an instrument that. is not recommended for students below grade 11?

- The SCII was developed by combining the Strong Vocational Interest Blank (SVIB) for Men and the SVIB for Women; Development of SCII was prompted by a great deal of concern about the possible" sex-bias of the SVIB. No data were available to the abstractor to indicate if the SCII is a sex-fair instrument. This would seem to have been a prime consideration of this study. Since the instrument. was still under development, the experimenters should have addressed this issue.

More studies need to be conducted into the vocational, interests of adolescents. Hopefully, any future studies will take into consideration these questions and comments.

- CREATIVE POTENTIAL OF MATHENATICALLY PRECOCIOUS BOYS. Keating, Daniel P. In Intellectual Talent:: Research and Development. Edited by Daniel P: Keating., Baltimore, Maryland:. Johns Hopkins University Press, 1976, pp262-272.

Expanded Abstract and Analysis Prepared Especially for I.M.E...by Otto C. Bąssler, George Peabody College.

1. Purpose

To investigate potential creativity, values, and vocationai preferences of youths with great mathematical ability.

2. Rationale

This investigation is a par, of the Study of Mathematically Precocious Youth (SMPY) which has been primarily concerned with identifying students. who possess a high level of mathematical reasoning ability and then helping these students, to further this ability. Identification of such students presented the opportunity to $\dot{s} t u d y$ variables such as creativity, values, and vocational preferences within fhis group. These variables may become meaningful and potential indicators of the future productivity and creativity of academically talented mathematics students.

3. Research Design and Procedure

The subjects were 72 junior high school boys who were the top scorers in two mathematics competitions held one year apart: These boys all had demonstrated high ability and achievement on tests designed for high school seniors.

The students were administered a battery of paper-and-pencil measures at several testing sessions. Fifty-seven subjects took all measures and this group was used as the base group. When boys not in the base group were compared to those in the base group, there were no significant differences on the scores that the. two groups attained.

The instruments administered were:
a. Study of Values in It assesses values denoted as theoretical, political, economic, aesthetic, and religious. The "classic" value structure of the creative scientis, is high theoretical, high aesthetic, .and low religious.
-b. Biographical Inventory-Creativity - It is a self-report of past behavior and selferatings that yieldg.scores on "art and writing" and "mathematics and science.".
c. Barron-Welsh Art Scale - It assesses preference for certain figures and may discriminate between creative and less creativémathematicians.
d. The California Psychological Inventory - Ito is used to predict creativity.
e. Strong-Campbell Interest Inventory - It assesses vocational interests.
f. Vocational Preference Inventory - It assesses vocational preference.
g. Raven's Advanced Progressive Matrices - It is an TQ instrument that measures ñón-verbal reasoning ability. ${ }^{*}$. . 3 4. Findings
a. Study of Values: The theoretical value was rated highest or second highest by 77% of the subjects; only 8% rated aesthetic. as highest or 'second'highest; and 43\% rated religious last.
b.- Biographical Inventory-Creativity: In comparison with the college norm group, the mathematically. precocious boys, had a mean score equivalent to the 58th percentile on the arts and writing scale and to the 68th "percentile on the mathematics and sciences scale.
c. Barron-Welsh Art Scale: The mean score of subjects in this study was 17.9 , which when compared to a non -artist group. (mean of 15.06) was non-significant.
d. 'The California Psychological Inventory: Using a previously developed degression equation for the scales of this test, the subjects as a group appear to be less creative than a group of randomly-selected eighth graders as well as a high school norm group..
e. Strong-Campbell Interest Inventory and the Vocational Preference Inventory: The subjects most frequently selected occupations in the investigatory category as their first. (61%) or second (24%) choice on one scale. On the other scale, 93% chose investigative occupations as their first or second choice. Most occupations in this category are science-. oriented and require advanced educational degrees.
f. The -Advanced Progressive Matrices: The mean score of subjects in the study (29.51) is above the 95th percentile of adult norms.
'To determine the potential creativity of an individual student his score on each measure was compared to a criterion specified to be the mean score of the group plus one standard deviation. This criterion was established within the group of precocious boys as well as for the norm group of each test. Within-group comparisons indicated that 56% of the subjects were above criterion on one or more measures; 26% on two or more measures; 7% on three or more measures; and 2% on four measures. Norm group comparisons were 96% above criterion one or more measures; 77% on two or more measures; 32% on three or more measures; 10% on four or more measures; and 2% on five measures,
5. Interpretations

From the group averages for the various instruments, it is not clear if the group of mathematically talented boys can be characterized as creative or not. In general, the group as a whole does. not stand out from the norm groups on any measure except the Raven Advanced Progressive Matrices test where it markedly exceeds the norm group.' The group possesses a strong theoretical-investigative orientation but a low aesthetic orientation; these are mixied results with respect to creativity'.

Sifnce almost one-third of the students tested were substantially above, the mean of the norm group on threer or more measures, it was concluded that these individual students had high creative potential., Further it was hypothesized that some students who do not appear to be particularly creative at this time may in the future come up to the criteria used in this investigation. This seems plausible since most of the instruments were normed on much older subjects.'

Explanationsuadvanced for the lack of agreement of creativityrelated measures in this group were:
a. One or mone of the measures may not bear'any deep relationship to creativity.
b. There is a restriction in range within this -group and this may providé too little variation on measures that are even slightly correlated with creativity. to creativity and that each of them is measuring a different aspect of creative potential. For an individual to be creative, it maylbe necessary to possess all or nearly all of these traits.
-

$\frac{\text { Critical Commentary }}{\text { it }}$

'This study was exploratory in nature and was designed to describe the attributes of a very select group of boys on factors thought to be related to creativity. As such it added.to our knowledge of the characteristics of academically talented junior high school boys. Comparisons between the"studied population and the groups for which the tests were normed were casual rather than statistical. This is as it should be since the instruments $\hat{w} \in{ }^{\prime} r e$ generally designed for different age groups and different types of individuals. :

The questions of what creativity is and how can it be measured were left open in this, study. In fact, the author points out that the measures used here, are indirect measures of creativity and are not presumed to be in themselves measures of the construct. Thus the validity of this: approach can only be determined by a longitudinaf study which the author says is plárped'.

Investigations of this type are needed to provide better information about the capabilities of precocious mathematics, students, to further our.
).
understanding of constructs such as creativity, and to seek relations between constructs such as ability and creativity. Only after exploratory studies 'like this will we be able to construct valid instruments and to facilitate the learning of precocious youth.

THE VALUES OF GIFTED YOUTH. Fox, Lymn H. In Intellectual Talent: Research and Development. Edited by Daniel P. Keating. Baltimote, Maryland: Johns Hopkins University Press, 1976, pp273-284.

Expanded Abstriact and Analysis Prepared Especially for I.M.E. by Lewis R'. Aiken; University of Cailfornia at Los Angeles.:

1. Purpóse

* The study was undertaken to learn something about the values and interests of indivi\&uals counséled in the Sțudy of Mathematicaky Preco-. cious Youth.. Such information would hopefully assist in décidíng what methods of facilitation-college courses, advanced work, it high school; *. mathematics, , gecial fast-paced mathematics courses, or rapid-paced "independent study in mathematics $\dot{\text { mow }}$ would be best for a given student.
-2* Rationale
The investigation was a part of the Study of Mathematically Precocious Youth conducted by Julian Stanley, Daniel Keathgs, and their colleagues at the. Johns Hopkins University. int was one ofereveral sub-studies focusing on"the relationships of "affective variables to mathematical ability. One prediction from previous research was that scores on the theoretical scale of the Study of Values (SV) would. be positively related to mathematical ability.

3. Reseaf'ch Design' and Procedure

The Allport-Vernon-Lindzef tudy of values was administered to 655 boys and girls who participated in the -1973. SMPY mathematics talent search "and to. boys who were winfers or near-winners in the 1972 afnd 1274 contests. The result's were compared with those of the normative sample of male and female high schobl students (grades 10-12) given

Girls in the 1973 Talett Search scored higher-than high-school, girls in the normptive sample on the stcial, theoretical, politipal, and aesthetic scales, but lower on the religious and economic.scales. Boys in thé 1973 'Talent Search scored higher than high school boys in the normative sample on the theretical, social, and political, scales, bu't lower on the religious, aesthetic, and, economic scales. The rarik ordering of the values was also different for girls in the gifted sample than"for those in the pormative sample, althơgh the ordering of the values for the gifted boys was quite similar to that'of the boys in the normative group. The seventhis and efghth-grade students of the same sexin the gifted group had quite similar value profiles.-Among the gifted students, the mean scores for boys were significantiy higher than those for gind on the theoretical, economic, and political scales, but significantty lower on the social, aesthetic, and religious.scales., Girls tended to score highest on the ssecial and
religious scales, and boys on the theoretical and politicial scales.. In general, boys who had the highest scores on the theoretical and religious scalès of the SV scored highest on the SAT-M, whereas girls who had the highest scores on the aesthetic scale scored highest on the SAT-M.
5. In'texprertations

More máthematically précocious students appèanto value theoretical purśuits more than less mathematically able students, However, this was less true of girls than of boys; and certainly•not true of all boys. Mathematically talented students who are highly motivated are likely succeed in, accelerated mathematịcs courses even when their`theore'tical scores on the SV are not particularly high .

Critical Commentary
Thja is basically a correlational study whicth shows that scores on the Study of Values differ significantly for mathematically talented and mathematically non-talented groups and groups Certainly the finding that the oret tal scale scores are ${ }^{\text {º }}$ highe fin the mathematically talented bdif in po way gives assurancethat the high theoreticals will be most 'successful if certain approaches to irrstruction in mathematics are utilized. Hence, the purpose of the investigation is not actualiy realized. The results do not provide a somd, rationale for courseling. and plàcing students in particular intervention or factilitative procedures.

This report, as with the book as a whole, is primarily descriptive - rathér than explanatory. Ít provides no prescriptions for the treatment. of mathematically talented youth. Furthermore, the reviewer.found this chapter a bit long Winded and indirect in its message. Thus, the reader has to search in order to find out what statistical tests were used in determining the significance σf the findings. Nn in a situation that : Iiterally cries.for correlation coefficients and muitiple rfgression, procedures, none are found. Als. , the norms on the SV are probably inappropriate for comparison purposes for a number of reasons; wohoft and age -differences being, the primary, ones. The observed sex differences in this investigation were among the most interesting, findings of this. investigation, but they, also require a much clearer interpretation than, G. that.givęn.

RANDOM VS, NONRANDOM STUDY OF VALUES PROF́lles. Linsenmeier, Jóan A. W. In Intellectual Talent: Research and Developmert. Edited by Daniel P: Keating; Baltimore, Maryland: The Johns Hopkins University Press, 1976," pp285-292.

Expanded Abstract and Analysis Prepared Especially for I.M.E. by Eewis R. Aiken, University of California at Los Angeles.
, This study was designed to determine whether the Study of Values profiles of "mathematically talented junior high school students were likely to result from random responding to the test items.

2. Rationale

The investigator briefly describes the statistical characteristics of fósative measures such as the $S V$ and the use of ipsative tests for intraindividual comparisons. Some of the previous statistical work on ipsative medrures is summarized, and the thegretical rationale of the SV is described.

3. Research Design and Procedure

The SV was admmistered to the 35 top-scoring students in the 1972 Mathematics Talent Searich; all of whom were boys aged 12-14 selected on the basis. of their SAT-M and STEP-Mathematics (Level I) Scores.' Threé sets of 100 randóm SV profiles were also generated by Monte Carlo methods. Frequency diṣtributions of scores on the six SV scales and profile standard deviations were computed for the profiles of the 35 students and the three sets of random profiles.

4. Findings ${ }^{-1}$

\because.The distributions of the random profiles. were nearly normal, and none of the scale means were significantly different from expectation. The: differences among scale variances within each of the three sets of random profiles were also non-significant. In contrast, the variances of scores on the six values for the actual profiles were statistically significant, the varsance of actual scores being greater than the variance of ràndom scores on all scales except political: Furthermore, for the group of actual scores the means on the theoretical, economic, aesthétic, and religious scales were significantly different from the expected, means on the respective scales. Finally, the mean profile standard deviations were. significantly greater.for the actual profiles than for the random profiles.

5. Interpretations

The fact that the variance of the individual SV profiles of the mathematically talented group, was greater than that of the randomly

- generated profiles is interpreted as indicating that the profiles will remain. stable over time and that it is appropriate to use the profiles in describing the characteristics of the students. The greater variances of the actual profies. Were produced primarly by high scores on the theoretical and economic scales and low scores on the aesthetic and religious scales, a finding' which the investigator interprets as reflecting true characteristics of the students.

This paper and the previous one (Fox, 1976, pp. 273-284) have gone to considerable effort to demonstrate, that the Study of Values, an. instrument originally developed many years ago änd renormed on a nationwide sample òf 6,000 high, school students in 1968, is an appropriate measure of the values of matKematically talented junior-high students. It may, well be so, but'no concrete evidence of the reliability and validity of this instrument for the target group 'has been presented, in either chaptetr As intimated in the.previous abstract, this revieyer is not impressed by comparisons of SV profiles of junior high students' in 'the 1970s'with those of 'senior high students in the 1960 s, the former group, consisting of mathematically talented and the latter group of presumably dveragè students: Neither am I comfortable with computer-generated random profiles as baseline data aginst which to compare actual profiles, It is a fairly safe bet that if the investigators, had asked the same or: another group of jumior high students to respond randomly to. the $S V$, the results would have been substantially different from the computer-generated profiles. Furthermore, even if, the $S V$ is unreliable and invalid for this particular group, the gccurrence of random data would certainly be unexpected. The main point, however, is that lack of randormess in the data in no way guarantees that the test is appropriate and valid for the target group.

Although the results of administering the $S V$ to the mathematically. talented students are interesting and. Heuristic, any comparisons, that are made from the data must--like the SV itelf-mén ipsative. The "normative" data from average high schoof. studentst the 1960 s and computer-generated data in the 1970s hardly quafify as satrisfactory frames of reference for interpreting the $S \bigvee$ profiles ${ }^{\text {fin }}$ mathematically gifted junior high students or for validating the tes stor these students.

The SMPY studies reviewed in this issue of IME are heavily dependent upon tést instruments. Not all. of the instruments are-commonly used by mathematics educators. Many of the abstractors did not want to use limited space to consider the appropriateness or the characteristics of the tests. Consequently we have listed for your convenience reviews of the tests that appear in Buřos Seventh Mental Measurements Yearbook (1972). - Each is cited by an ordered pair (x, y) where x is the number of the test and y is the page number in the Buros volumes.

Academic Promise Test $(672,1046$)
Adjective Checklist (38,71).
Advanced Placement Examinations (662,ió09)
Adyanced Progressive Matrices (376C2,695)
Alpha Biographical Inventory $(975,1370)$
Art Scales (41,8I)
Bennett's Mechanical Gomprehension Test (1049, 1483)
California Psychological Inventory $(49,87)$
Cooperative Mathematics Tests - Algebra I \& II $(500,894)$
Cooperative Mathematics' Tests - Analytic Geometry (532,926)
Cooperative Mathematics Tests - Calculus (53 in, 924)
Cooperative Mathematics Tests - Trigonometry $\|^{m}(543,593)^{2}$
Iowa Test of Basic Skills, Modern Mathematics Supplement to the, (481, 870)
Modern Languageqptitude Test - Elementary (255,542)
'Pérsonality Inventory;' Eỵ̂senck ($76, \mathrm{i}$ 159)
Remote Ȧssociates Test $(445,825)$
Revised Minnesota Paper Fprin Board rTestis. $(1056,1487)$
Scholastic/Aptitude Test L Verbal l^{l} and Mathematics $(3 \dot{4} 4,640)$.
Social Inqight Test, Chapin $(51,98)$
Fudy of Values: A.Scale for Measuring the Dominant Interests in Personality, Third Edition (146, 350),
Vocational Preference Inventory, sixth Revision $(157,384)$

THE PSYCHOLOGY OF MATHEMATICCAL ABILITIES IN SCHO̊OL CHILDREN. Krutetskị; V. A. Edited by.J. Kilpatrit and I. Wirszup. Translated by J. Teller. Chicago: University of Chicago.Press, 1976.
Expanded Abstráḉt"Prepareq Espécially for I.M.E. by George w. Bright,
Northern Illínois University.

1. Purpose

The basic goal was "to create psychological foundations for an active pedagogy of abilities." The specific goals were (a) "to characterize the mental activity of mathematiçally gifted pupils as they solve various mathematical problems, 'r (b) "to create experimental methods of investidating mathematical giftedness that might have an independent value", (c) to: " reveal "typological differences in the structure oof abilitiès," and (d) to determine whether the development of mathematical abilities is related to age.

Several specific hypotheses regarding mathematical abilities were 'also made:
(1) Pupils with differet pathematical abilities are characterized by differences in de of development of both the ability, to generalize.mathemat materials and the ability to remember ,gereralizations.
(2) Able and less-able pupils differ in their rate of "curtailment" of reasoning.
(3) Pupils with different mathematical abilities are characqerized by different degrees of the ability to switch from a direct to a reverse train of thought.
During the course © of 'the study additional hypotheses were generated.
(4) Able pupils are characterized by an ability tọ swịtch rapidly from one mental operation to another.
(5) An ability for spatial concepts is expressed in different ways and may be related to the presence of diffetent types of mathematical abilities.

2. Rationale

The foundation for the study is built very carefully through an extensive review of non-Soviet as well as Sovitet research literature. Ability. is not viewed as an inborn trait. Rather, certain typological properties are cgnsidered to Be inborn. The manifestations of these mental pròpertiés, however, are determined by the circumstances in which an individual is reared.

Seven basic rasstumptions are statied.
(1) Abilities are abilitiè for a definite kind of activity, exist only within a specific activity, and miust be studied within that activity.
(2) Ability is dynamic and develops only in a specific activity.
(3) There are optimal age periods for the development of abilities.
(4) Progress' in an activity depends on a complex of abilities.
(5) High achievement in an activity can be conditioned by different combinations of abilities.
(6)'Reiative weakness in one ability can be compensated by other' abilities.
(7) General and specific giftedness are related, though the nature of the relat hiship is not well understood.

3. Research Design and Procedure

, The research was conducted over the twelve-year period 1955-66. In all, 201 subjects were studied, some briefly and some for several years. In addition, groups of 62 and 56 mathematics teachers and 21 mathematicians were surveyed, biographies of 84 prominent mathematicians and physicists were studied, and data which permitted correlation of progress in various school subjects were examined for more than 1000 students in grades 7 to 10 in Moscow schools. Further data were gathered from several local mathematics contests and from examination of notebooks of a "large number". of students in grades 6 to 8.

Seven basic prínciples underiay the'methods of the study.' First, activities were chiefly mathematical in order to highlight mathematical abilities. Second, experimental problems were designed to reflect various degrees of difficulty. Each problem type was represented by a series of problems of increasing complexity and difficulty. The sfmplest problems were designed to be accessible even to pupils of indifferent abilimes. Third, solving the problems should help clarify the structure of matnematical abilities., That is', features of mental activity specific to mathematical activity should be manifested. Fourth, processes for solving problems were more important than the fact of a final'solution. Fifth, to measure ability rather, than past habits, experience, and skills, the problems that were selected were non-standard and required little particular previously learned information. Sixth, experimental methods were used that were instructive as well as diagnostic. The 'pupil's rate of progress was observed in two situations: (-1) independently and (2) with slifght help from the experimenter. Seventh, quantitative as well as qualitátive methods Were used, Counting data (e.g.; number of problems solved with and without help, number of different solutions) were maintained, and factor analysis was apried to aid in the interpretation of the data.

Twenty-six series of problems were developed: Briefly described they
 'mation, isolation of parts of a figure, inductive generalization, common
mathematical structure, increasing abstraction, generalization from a single instance, próof, composition of equations, unrealistic situations, artificial concepts, multiple solutions, changing content, reconstructing a process, unconscious restrictions, direct and reverse processes, heuris- ${ }^{-}$ tics, logical reasoning, series, sophisms, compłex data, visual, verbal and visual, spatial concepts, visual-pictorial versus verbal-logical.

Preliminary experimentation was conducted with selected students. Labeling of subjects as very ciapable•(V C), capable (C), average (A) 2 or incapable (I) was accomplished in accordance with broadly stated guidelines. Experiments of the longest duration were conducted with the capable and very capabler studeñts. Six major studies involving individual experimentation were conducted.

Subjects were told that the purpose of the experiment was to collect material for new problem books. Usually experiments were conducted individualif, during out-of-class time, and after a good rest. Indisposition, fatigue, low spirits, or lack of interest in solving the problems were sufficient cause for postponement of a session.

4. Findings and Interpretations

Several components of mathematical thought were identified. by at least 50% of each of the $t w d$ groups of mathematics teachers surveyed: logical thinking, resourcefulness in studying mathematics, stable mathe-: matical memory, and ability to generalize. Ability to generalize and abstracting essential features of a problem were eited most frequently by the mathematicians surveyed.

On the basis of selected cases of mathematical giftedness; several conclusions were made. First, mathematical abilities can take shape.
early, usually in the form of computational skills. Second, characteristics * that develop include ability to generalize, flexibility in processes,., striving for economical solutions, memory for generalizations, curtailment of reasoning, and mathematical perception of the environment. Third, giftedness at an early age is relatively independent of support of such deve.lopffent. ["Flexibility in processes" means an ability to sewitch rapidly from one operation to another or'from one train of thought to an'other. "Econ8mical solutions" are the easiest, clearest, or most difect. "Curtailment of reasoning" refers to the shortening of processes of solution. when the processes are used more than once: The logical jumps between explicit steps in these processes become larger as the intermediate steps are accepted as 'obvious'.]

From the data of all subjects (but"with fprimary emphasis given to the , data of capable and very capable students) the following conclusions were reached:
-(1) Capable pupils perceive the mathematical material of a problem analytically (different elements are assessed differently) and synthetically (relationships are sought for among the elements). Average and incapable students perceive only disconnected facts, and have difficulty synthesizing concrete data. There seems to be an ability to extract from the given terms of a problem the information maximally usely for itsolution.
(2) Capable pupils generalize quickly and broadly. They generalize not only the content of the problem but also the method of solution.
(3) able pupils can with very limited exposure to similar problems curtail their processes for solving such problems. Average pupils do this, only after repeated exposure. Incapable pupils experience great difficulty in producing such curtailment.
(4) Capable pupils easily switch from one mental process to anoţher qualitatively different one, approach problem-solving from different aspects, are free from conventional solution techñique's, and easily reconstruct established thought patterns. Incapable pupils are.marked by inertness, sluggishness, and constraint in their thinking, and they are impeded by previous solution techniques.
(5.) Capable pupils strive for the clearest, simples't, shortest, and most elegant solution to a problem.
(6) Capable pupils can reverse their reasoning processes easily.
(7) When able pupils solve a hard problem their trials seem to be a means of thoroughly investigating it rather than direct attempts at solving it.
(8) Capable pupils remember generaližed and curtafled structures. These structures are created from the data and the relationships of particular problems.
(9) There appears to be an identifiable "mathematical cast of"mind" which is formed "as a particular-synthetic expression of mathe ${ }^{-}$ matical giftedness and includes cognitive, emotional and :volitional aspects." Further there appear to be three types of - "mathematical minds:" analytic, geometric, and harmonic. (combination).
(10)'Sudden inspiration among capable pupils is frequently explainable by the ability to generalize and the ability to think in curtailed structures.
(11) Capable pupils tire" much less during mathematics lessons than during other kinds of lessons.
(12) 'The ability to generalize appears to develop first. Curtailing reasoning, generalizing memory, and striving for elegance in solutions appear to be formed later.
(13) There is no difference in qualitative characteristics of mathe-matical, thinking of boys and girls.

Summaŕy conclusions were as follows:
(1) There appears to pe a basis for speaking of specific abilities (including mathematical abilities) rather than general abilities that are only "refraçted-in a unique way in mathematical activities."
(2) In some people, the brain is uniquely attuned toward isolating from the environment stimuli of the type of spatial and numerical relationships and symbols and toward optimal work with, precisely this kind of stimuli. That is, some people have Inborn characteristics in the structure of their brains which are extremely favorable. to the development of mathemațical abilities.

Critical Commentary I

'Prepared Éśpecially for I.M.E. by Gerald A. Goldin, Philadelphia, Pennsyl-' vania.

Krutetskii's investigations are not quantitative; rigorous analyses of data tending to confirm, or deny specific experimental hypotheses. Consequently many U.S. readers may experịence a certain initial resistance to his approach. For me, however, the study of mathematical abilities based on the obseryation of problem solving processes, rather than the statistical interpretation of test scores, is sensible and enormously refreshing.

Too often researchers in mathematics education propose hypotheses . haphazardly; without developing conceptual foundations, or else in scattershot fashion seek to correlate lists of supposedly deppendent variables with lists of independent variables. While such studies may enjoy a claim to statistical and methodological rigor, their eventual outcomes lend credence to no particular theory or model for mathematical learning, because the initial hypotheses were themselves unmotivated by such a. theory or model. Krutetskii's studies, on the other hand, may be seen as principally clinical investigations aiming toward the creation of a model for the structure of mathematical abilities. Such a model, he points out, should consist of more than a list of independent or partially independent "factors;" in fact Krutetskii, has harsh words for the preoccupation of Western ps.ychologists with factor-analythethods. He devotes a major section of the book to his critical review. Rather he maintains with justification that the components in a model for mathematical abilities ought to be interrelated and comprise a coherent system, an organizafional whole.

A meaningful model, emerging as it may from qualitative or semiquanitatative clinical data, can then be subjected to a more rigorous quantitative verificat on. This is the scientific context with respect to which I am evaluating Krutetskii's contribution. Therefore, the following comments focus priftarily on the problem-solving instruments (test series) designed by Krutetskii, and the model which he develops as a consequence of hist investigations.

The rich and varied collections of mathematical problems in this book alone make it worthwhile for purchase, even by the reader who is uninterested in trutetskii's theories. The problems are organised into 26 groups or series, based on various shared problem characteristics within each series (see Table 1). Many of the problems are ingenious, and are suggestive in themselves of teaching objectives and motivational strategies.

These problem sets constitute the experimental instrumentation for the development and substantiation of Krutetskii's model for the structure of mathematical abilities. As such they are subject to certain criticisms Whfich, in view of the scope and significance of the problem sets, ought not to be construed as detracting from their value.

1. Krutetskii presents only the most cursory discuss of the content. validity and reliability of his test instruments. For example,

TABLE I
THE SYSTEM OF EXPERIMENTAL PROBLEMS FOR INVESTIGATING SCHOOLCHILDREN'S MATHEMATICAL ABILITIES*

*Krutetskii, pp. 100-104, abridged

The , yalidity (suitability, legitimacy) of"the 'experimental problems was established before the beginning of the experimental stiudy. As is well known, the validity of test problems is determined by demonstrating their $\mathrm{r}^{\frac{1}{3}}$ results in practice. The trial experimenṭs showed rather persuàsively that the more - mathematically, able the examinees, the more successfully they. .solved the experimental problems .1:.(p. 91).

There is no discussion of such important related questions as the validity of the classification of problems into the various series. Would all experts agree that each problem designated as an example of "Composition of Equations Using the Terms of a Problem" indeed belongs in that group? Similarly, we have:

Thereliability of the problems was confirmed selectively (using th \neq feries that yielded numerical scores): from the standpoint of ${ }^{-}$ the stability of the scores (p..91).

However', Krutetskii is concerned not mainly with test'scores, but with the use of certain problem-solving processes. It would have been useful to measure the reliability of the problems from the standpoint of the stability of the processes which the problems are designed'モó elicit. We are given no detailed data on either validity or reliability.
2. The selection of problems, and more particularly the decisions about the characteristics of the various problem series, are of necessity influenced by theseartis preconceppions as to the nature of the information being sought. Yek the. infy/uence on Krutetskii's findings of the structure of the problem sets themselves is enormous. One might go so far as to say that many of the conclusions of the study are built into the problem series, and it is not clear to what extent the author appreciates this fact. It is useful at this point to refer,to Krutetskii's general outline of the structure of mathematical abilities:

1. Obtaining'mathematical information
A. The ability for formalizúd perception of mathematical - material, for grasping the structure of a problem.
2. Processing mathematical information
A. The ability for logical thought in the sphere of quantitative and spatial relationships, number and letter symbols; the ability to think in mathematical symbols.
B. The ability for rapid ànd broad eneralization of mathematical objects; relations, and operations.
C. The ability to curtail the process of mathematical. reasoning and the system of correspondin'g operations; ;the ability to think in curtailed structures.
D. Flexibility of mental processes in mathematical activity.
E. Striving for clarity, simplicity, economy, and rationality of solutions.
F. The ability for rapid and free reconstruction of the direction of a mental process, switching from a direct to a reverse train of thought (reversibility of the mental process in mathematical-reasoning). .
3. Retalning mathematical information
'A. Mathematical memory (generalized memory'for mathematical relationships, type chàracteristics, schemes of arguments and proofs, methods of problem-solving; 睯d principles of.appioach).
4. Geñeral synthetic component A. . Mathematical cast of mind. (pp. 350-351)

The quantitative substantiation for component l.A. above, for example, is bated on problem:series I-III (p. 225-226). It is certainly plausible to assert that these three problem series (unstated questioh, incomplete information, and surplus information) measure the same component of mathematical ability. Krutetskii's data support the existence of a comon factor that accounts for success in these three groups of problems. Howeyer, this result is not obtained from an alysis of scpres on all' of the test problems grouped together, as Kilpatrick and Wirszup note in their introduetiag (p. xv). It is based rather on the correlation matrix for ${ }^{\prime}$ sèries I III pxclusively. Thus Krytetskii has not really isolated a "factor;" he thas simply developed an instrument for the evaluation of a^{*} : trait presupposed to be a component of mathematical ability, and has demonstrated the internal consistency of this instrument. This limitakion applies in turn to the quantimative verification of each component of the structure, and highlights the sense in which the organization of the problem into series has largely, though not entirely, determined the resulting structure of mathematical abilities.

Krutetskii also presents important qualitative data in support of his model: data ffrom research mathematicians, analysés of individual cases dif mathematically gifted children, and excerpts from children's problem-solving protocols. ${ }^{\text {. I found the latter to be rather unsatiṣfying due to the short- }}$ ness and selectivity of the excerpts. It is almost always impossible to. reach an independent conclusion as to the correctness of the author's interpretations, and much has to be accepted on faith.

Wé may now ask whether or not Krutetskii has succeeded in his objective of elucidating the structure of mathematical abilities. He has. certainly identified-several distinct components. He has demonstrated that each component "hangs together;" that is, it can be measured consistently by means of a variety of problems developed for the purpose of doing so. He has neither asserted nor demonstrated his components to be independent of each other; on the contrary; he views them to be intercelated, and to correspond in a broad way to sequent al problem-solving stages. In these, a
respects I beliepe that a meaningful structure has been asserted.

Krutetskii uses some of the language of information processing theory, but he does not build on the research in this field. He is ulfimately not trying to characterizé the individual problem-solving process, "to to identify and study the organization of the shared characterfstics'(traits).of. successful vs.' unsuccessful children as problem solviers.

Krutetskii's work will inevitably be compared with that of Piaget. Just as many educators and psychologists have sought to accelerate, childre ${ }^{3}{ }^{4} 5$ progression through Piaget's developmental stages, one response to Krụtetskii
will be $\overline{0}$＂try to teach the various components of＂mathematical ability，＂ In the case of Piaget，these efforts often ran counter to the spirit of the theory；but for Rrutetskii；I believe this to be the very object of his work．Granting，for example，that successful problem solvers perceive the problem in relation to its laments，grasping initially the problems strum－ tube，can Wee not teach this ability or at least．facilitate its development？ Krutetskli＇s problem series are suggestive of ways to do exactly＇that．

This commentary has omitted mention of much that is interesting and valuable in Krutêtskii＇s book？the discussion of various＂types＂of mathematical ability，its relationship to personality，age and sex differ－ ences，fond the discussion of certain，skills or components of 倠athematical ability，which（perhaps surprisingly）turned out to be inessential to the ＊structure of Suffice it，to say that this work is an important contribution －to thénerature ind eight to inspire research in mathematics education and uathemical prof solving for many years to come．

B
－ 5

Prepared Especially',for I"M.E. by George W: Bright, University of Northetn Illinois.

不有 seems virtually certain that Krutetskii's yolumen become one of the mosy quoted mathematics education keports published iniz976." The research is apparently important historically in the Soviet study of abilities, and its distinction within the USSR is sufficient cause for serious examination of the report, by, all mathematics educators. .However áabspletely open-minded reading is difficult, at least for this reviewer, be in ise of the conflict between the value system'implicit in the Western view of acceptable empirical research and the value system associated with the Soviet view.

The prominence statistically based, empirical research in the United States tends to cause some automatic suspicion of studies that are not 'quantitative. Soviet researchers; in contrast, doubt the value of studies. for . which interpretations are based, pejmarily on statistical manipulation; e.g.; factor analysis. Open-minded acknowledgement and evalation of the Soviet eriticisms of the sic orientations of Westem empirical research are difficult, because the process of andyzing such criticism causes considerable dissonance. -This dissomance, in turn, causes a distraction so, severe that some important conclusions are overlooked, simply because they are not permissible within the value systeme of Western research,
-The comments that follow, therefore gieuld be interpreted with the knowledge that this reviewer has experienced a significant -conflict of values...Negative crit cisms are potentially overrreactions to Krutetskii's diferent values.: Positive criticisms, on the fother hand, are potentially over-compensations for the recognized.conflict. "the/mann purpose of all the comments is to provide a set of 'guideposts for'the reade personal study of the book.

1. The research is a massive midertaking; and Krutet'skil is to be lauded for the clarity of exposition find fot the level of synthesis, not only of his own work but also of the publirshed iiterature. Krutetskii's view of Western literature is substantively differentifrom that: of any . Literature review published in this country, His unusual view is, by 'itself, an important contribution to the study of mathematictal abilities and evolves frum the value system implicit-in Soviet research. The posithor of "Spviet political and social philosophy is that Individual differences are not.significant. Consequently, Soviet psychology has denied the importance of differential performance, at leas \vec{t} as medasured by tests, and has 'focused.instead on the processes by which problems are solved by, different people. The implementation of this focus hasween the deverop-r ment of the "teaching experiment," which is basically a one-on-one, openended, ahd loosely structured interview.
" 2. "The most obvious deficiency"in. Krutetskit's report is the lack of detail in explaining what happened. in the experimotrs. Since the problemsolving sessions were designed as potential if not-actual "teaching "experi* ments," complete details of specific pracedures, of course, could not be reported in only a single volume. Each trial was unique and tas "defermined"
not only by the problems presented but ${ }_{y}$ al'so by the responses of the subject. It is important for adequately interpreting the results however, to know how much direction was provideatyr the experimenters. The reader is at a loss, to determine this. Too, 'since so much importançe was given to the data of the capable and very capable pupils, there is at least a possibility that the quality of addgiven to those pupils was higher than that given to average and incápable púpils. More information is needed before a judgment can be made of whe ther such a bias existéd.
. 3. The most critical problem in interpreting Krutetskii's research arises from" the lack of descriptions of criteria by which supportive data were retained and non-supportive data were discarded. In comparison to dialogues reported by Piaget, for example, Krutetskii's selections are quite short. As less and lessiverbatim dialogue is.reported, of course, the more importan't become fhe eriteria for selection of the quoted passages. In this reviewer's opinion, Krutetskii becomes suspect of ouer-zealous selection of supportive data when he q as a nine-year-old as saying, "Oh, what an example! But it only sed there is a common factor i_{n}-all 3 par hard. It is apparent at once that (p. 250): "This child is admittedly bright in mathematics, though at áge 8 . "she twrites"bady and does" not read very readily" (p. 193) : It seems unreasonable that by age nine she would have acquired use of such sophisticated language. It is of course true that her, response has been translated twice; first, into the original report and second, from Ryssian to English. Nonetheless, the sophisticated use of language by subjects who excel only, or at least mainly, in mathematics creates some suspicion. One wonders whether editing has been done to the transcripts in order to support the hypotheses. More information abput the details of selection of data should hayebren provided:
2. It seems that throughout the manuscript the data from capable and very capable pupils are viewed as positive and those from average and incapable pupils are viewed as negative In part this is explainable in terms of the philosophy of Soviet research. Since mathematical ability is. , only expressable in mathematical activity, then those, pupils who cannot / perform mathematical activities, cannot be viewed as possessing.mathematical abilities. From the Western view, however, it is unreasonable always. to interpret the data of average and intcapable pupils in terms of deficiencies relative to the data of capable, and very capable pupils Western research-. ers are more inćlined toward makiñ̈g positive interpretatmon of data. Too, a theory of mathematícal abilities ought not to be determinéd in its positive aspects. wholly by the behavior of capable puls. Average pupils may have diffeyent kinds of abilities rather than only ${ }^{\prime}$ 'lack of abilities..
3. The façtor analyses that were performed seem to have employe'd datia only from capable. pupils. Consequently there is a possibility that the factors that were identifjed were related as much to characteristics unfque to the subjects in that sub-popalatin as to mathematical abilirty * factors. After all, if subjectss are selected for statistical stüdy because of similar behavior it is no surprise that statistics verify that similaríty.
4. The report creates the impression that, for Krutetskii, ability and 'giftedness are synondmous. Less dissonance would have been created for this reviewer if the title had been The Psychology of Mathematical. Giftedness in Schoolchildren, although such a book might receive considere:能ly less attention. Western researchers would probably not accep't the
equivalence of these two terms. The use of Krutetskif's work in support of future research there ${ }^{\circ}$ 多re, will have to be handled very carefully. Notions about giftedness may not"apply to studies of noprgifted pupils.
5. Krutetskil's'reséa'tch should be viewed as developmentali ratather than experimental. His conclusions are somewhat conservative in light of the data presented'; but such a'stance is desirable in the context of current knowledge. "Thé conclusions seeth more useful as suggestions of hypotheses for future research than as well-substantiated results of càreful experimentation.
6. The task of ${ }^{*}$ defining a theory' of mathematical abilities is both very important and very complex. Krutetskii has greatly illuminated some aspectin of that task, and he has-suggested ways of illuminating other aspects. As "one step in the development of a full theory, Krutetskii's work deserves a veriy good reputation. Honfever, this reviewer sincerely. hopes, that enthusiasm over the work will yot, cause it to assume unjustified importance: \because

THOUGHT PROCESSES INVOLVED IN SETTING UP EQUATIONS. DOblaev inmp. Soviet Studies in the' Psychology of Learning and Teaching Mathematid . 火र्ञ , pp103183, 1969:

Expanded Abstract and Analysis Prepared Especiaily for $\dot{f}, M . E$ by Edward G. Begle; Stanford Unjuersity, Stanford; Califórnia.

1. Purpose

This study was an attempt to ascertain the menal processes used by students in deriving algebraic equations from word. problems. .

2. . Rationale

The design of the study was influenced by the experimenter's beliéf that the only logical way, to solve a problepm is to first recall the general rule for that kind of problem. and then to insert the specifics of the -problem into the rule:
$.3_{1}$. Résearck Design and Prócedare
Tiwo experiments were.performed.
The firs"t used ten seventh graders. Five had been taught by "one teacher (B) and-the other five by another teacher (N). Each ${ }^{\text {s }}$ set of five consisted of "star" student, two average students, and two weak students.

A 21. 1tem instrument was used. Each item asked for the formulation of an algebraic expressioh or equation. The instrument was administered to the subjects individually. They were asked to tell, after solving the problem, what went on in their minds during the solution, whether they recognized the general proposition, how they decided what to designate by x, ettc.

If a student was unable.to provide an answer for an item, he was given variants of it until.he, did produce an answer.
4. Findings
© Out of the 210 answers, 180 were correct. In only 28 of these cases did the student. report completf, or even artial', recognition of the' general proposition. In 21 ceses, the gereral propostion had’been taught to them. In seven cases the students generated the proposition.
51. Interpratations

The experimenter uses the term "associatyon." for the meftal operation used by subjects to obtain correct answers 'without recalling the'general
rule, "He provided lengthy discyssions of these association's but did not come'tò any pedagogically useful. conclusions.
3.'. Research'Design and Procedure

The second experiment used the originaF ten students, another set-of five of B^{\prime} s students, and "ten ninth graders';. They were given a setipf ten more complex word problems to solve and to report on as in the first experiment.
(It should be noted that each of these problems was easy.to siglve by means of two linear. equations in two variables. However, in each of the " solutions quoted in, this report, only one equation was used)

Two methods were observed of choosing which unknowh to denote by x. In the first method, the unknown required by the statement of the problem was chosen.' In the other method, some other unknown was denoted'by \dot{x}.

Similarly, twormethods of setting up the equation were observed. One mettred proceded by forming new expressions*involving the known quantities of the problem and the basic unknown. In the other method, it was decided, perhaps even before choosing x, what was to. be on each side of. the equation.

Of the 250 problem attempts there wére 202 correct' fesponses. Of these, it, was possible to determine the method of choosing the yaríable '.to be denoted by x and aiso the method of setting. up the equation in 160 case's.
$4_{2} \cdot$ Findings
(a) The 160 cases were distribúted as followş:

- Method of Choosing Variable

In the remaining findings, the method of choosing the variable is not considered any further, and only the two methods of setting up the equation are compared.
(b) The percentage of solutions using the two methods variad from probilem to problem. The first method waşnot used at all on one problem but was used 69 percent of the time on another:
(c) The percentage of solutions by the two methods was not the same." at the two grade levels.

- Grade

\because Seventh	Ninth	
$\because 51$,	\cdots	33
.49	\ddots	67

(d) The percentage of solutions using the two methods was not the same far different ability levels.

Ability 'Level

High ${ }^{\prime}$ Average	。 Weak	
28	$\therefore 47^{\circ} \cdot$	68
72	$53 \cdot$	32

(3) The percentage of solutions using the two methods, was not the same for students of different. teachers.

(Note: 'Teacher B concentrated on the second method of' problem solving in class,.while Teacher'N concentrated on the first.)
 nificantly different when, comparing those students included in the first experiment and those not included.

52. Interpretations

The experimenter concludes from findings (c): and (d) that the second method of formulating the equation is preferable, but, because of finding (b), it should not be taught exclusively.

Critical Commentary

The quantitative results listed above are not surprising. But even if they had been, the small number. of subjects, as is not uncommon in 'Soviet mathematics education research; would not allow. much confidence in them:

The extensive discussion of "association" is based on a view of the problem-solving process that will seem narrow and too rigid to most Western educators and too much based on the author's opinions rather, than on the data he collected, and consequently will, not be of much interest to them.

MATHEMATICS EDUCATION RESEARCH STUDIES REPORTED IN RESOURCES IN EDUCATION - .. m"January - March 1977

ED 128166 Everest, \dot{M}. Inez. Community College Students' Academic Achiévement in Mathematics and Attitudinal Change as a Function of Instructional Methodology. 106p. MF and HC available from EDRS.

ED :128 182 ~ Austin, Howard. Teaching Teachers LOGO, The Lesley Experiments'. Artificial Intelligence Memo- Number 336. 27p. $\overline{M F}$ and HC available from-EDRS.

ED 128189 Burt, Gordon J. The Detailed Evaluation of Mathematic's Courses at the Open University. Report No. 1: The Unit on "Functions" î̂ the Mathematics Foundation Course. 28p. MF and HC available from EFRS:

ED 128195 . Fennema, Elizabeth (ed.) Mathematics Learning: What Research Says About Sex Differences. Mathematic Education Reports. 5lp. MF and HC available from EDRS.
ED 128196 . Johnson, Carl S. An Analysis of the Required Mathematical Preparation for Secondary School Mathematics Teachers in the United States; A Summary. 19p. IF and HC available from EDRS.

ED 128 197. Brown, Stephen W.; Wunderlich, Kenneth W. The Effect of Open Concept Education and Ability Grouping on Achievement Level Concerning the Teaching of Fif.th Grade Mathematics. 17 p .

EDं 128198 Flake, Janice L. Interactive Computer Simulations fór x * V Sensitizing Mathematics Methods Students in Questioning Behaviors. 18p. MF and, HC available Erom EDRS:
ED 128.201 Eastman, Phalip; Behr, Merlyn. Interaction Between Structure of Intellect Factor̀s and Two Methods of Presenting Concepts of Logic. 23p. MF available from EDRS. HC not available from EDRS.

ED 128202 Hungerman, Ann D. 1965-1975: Achievement and Analysis of Computation Skills, Ten Years Later. 1lp. MF available from EDRS. HC not available from EDRS.
 Learning Mathematics, Papers from a Research Workshop. 210p. MF and HC availlable from EDRS.

ED 128 228. 'MacKay, Irene Douglas. A Comparison of Students' Achievement in, Arithmetic with Their Algorithmic. Confidence. Mathematics Educatiqu' Diagnostic and Instructional. Centre (MEDIC) Report no. 2-75., 42p. MF available from EDRS. HC not available from EDRS.

ED 128229 r Robitaille, David F. A Comparison of Boys' and Girls' Feelings.of Self-Confidence in Arithmetic Computation. Mathematics Education Diagnostic and Instructional Centre (MEDIC) Report No. 3-76. 22p. MF avai'lable from EDRS.' HC not available frbm EDRS.

ED 128 2:30
Feghali, Issa.' Interviews with Students of High Confidence and Low Achievement: Mathematics Education Diagnostic and Instructional Centre (MEDEC) Report No. 5-76. 19p. . MF and HC available from EDRS:
ED 128323 ` Dod̃̃, Carol Ann. An Evaluation Model Applied to a Mathe-matics-Methods Program Iitvolving Three Characteristics of Teaching Style and Their Relationship to Pupil Achievement. Teacher Education Forum; Volume 3, Number 4. 15p. . MF and HC available from ${ }^{+}$ERS.

ED 128400 Forbes, Dean 7 . The Use of Rasch Logistic Scaling Procer dures in the Development bf Short Multi-Level Arithmetic - Achievement Tests for Public School Measurement. 19p. . MF añd HC avail'able from.EDRS.

ED 128465 . Virgiń A, E. ; Darby, L. M. 1974 Replication and FollowUp of a Survey of Mathematics and Roading Skills. .29p. MF and HC availậble from EDRS:

ED 128 466. Virgin, A. E.; Rowan, M. 1975 Replication of a Survey of Mathematics Reading Skills. 25p. MF and HC àvailable from EDRS.

ED 129613 • Bukowskí, 'Joseph E.' A Survey of Attitudes on the Úse of Calculators in the College Classroom. 20p. MF available from ${ }^{\text {C }}$ EDRS. HC not available from EDRS.

ED 129.623 G'raening, John Jay. Ans Evaiuation of a Secondary Mathematics Teacher Education Program Emphásizing-School Experiences in, Contriasting Cultural Settings 266p. . available from EDR'S. HC not available from EDRS:
ED 129628 . Poulsen, Sten C. The Study -Methods. in Mathematics Project.
6. I. Background Assumptions and Perspectives. Report No. 18. 36p. MF available from EDRS. HC not available from EDRS.

ED. 129631 Damarin, Suzanne K. Problém Solving: Polya's Heuristic* Applied to Psychological Research. 40p. MF and HC available. from EDRS .

ED

633. Fennema, Elizabeth'; Sherman, Julia. Sex-Relatéd Differences in Mathematics Learning: Myths, Realities and Related Factors 24p. MF available from EDRS. HC not available from EDRS.'

Ne, ED 129636 Mathematics Technical Repört: Summary Volume. National Assessment of Educational Progress. Education Commission of the States, Denver, Colorado. 181p: MF available from EDRS. HC not available from EDRS.

ED 129868 Crist-Whitzel, Janet L.; Hawley-Winne, Barbara J. Individ-
ual Differences and Mathematics Achievement: An Investigation
of Aptitude \rightarrow Treatment Interactions in an Evaluation of Three
Instructional Approaches. 42p: MF and HC available from ẸDRS.
ED 129886 : Dwyer, Carol.Anne. . Test Content in Mathematics and Science: The Consideration of Sex. ${ }^{-9 p . ~ M F ~ a n d ~ H C ~ a v a i l a b l e ~ f r o m ~ E D R S . ~}$

ED 129, 949
Eftz-Gibbion, Carol Taylor. The Role. Change Intervention:
An Experiment in Cross-Age Tutoring. 340p. Available from University Microfilms. Not available from-EDRS.

ED 130618
Brown, 0: Robert, Jr. A Comparison of Test Scores
Students Using Programed Instructional Materials with, Those of
Studènts Not Using Programed Instructional Materials. Techni-
. cal Report No. 3. 25R. MF and HC available from EDRS.
ED 131-115 ' Calfee, Robert C.; Calfee, Kathryn Hoover. Reading and Mathematics Observation System: Description and Measurement of Time Usage in the Classroom. '19p. MF and HC available from EDRS:
*ED 131116 Elias, Patricia; And Others. The Reports of Teachers About Their Mathematics and Reading Instructional Activities. 14p. MF and HC available from EDRS.

ED 131 117 McDonald, Frederick J. A Report on the Result's of Phasé II of the Beginning Teacher Evaluat n Study: The Effects of - Teaching Performances on Student Leafning. 12p. MF and HC

MATHEMATICS EDUGATION RESEARCH STUDIES REPORTEP• IN JOURNALS AS INDEXED BY CURRENT INDEX TO JOURNALS IN EDUCATION

January - March 1977

EJ $14295{ }^{\circ} 9$ Vitello, Stanley L. Quantitative Abilities of Mentally Retarded Children: Education and Training of the Mentally Retarded, vll. n2, ppl25-129, April 1976:

EJ I43 182 Lim, James K.; Tseng,'M. S. The Electronic Pocket Calculator--A Significant Factor in Students' Performance of Pharmaceutical Calculations? American Journal of Pharmaceutical Education, v40 nl, ppl4-16, February 1976.

EJ 143298 Scandura, Alice M.; And Others. Using'Electronic Calculators with Elementary School Children. Educational Technology, vl6 n8, ppl4-18, August 1976.

EJ 143675 - Suydam, Marilyn N.; Weaver, J. F. Research on Mathematics Education Reported in 1975. Journal for Research in Mathematics Education, v7 n4, pp193-257; July' 1976.
EJW43 Wood, Robert. Sex Differences in Mathematics Attainment at GCE Prdinary Level. Educational Studies, v2 n2, pp141-160, June 1976.

EJ 144 .007 Dunn, J. A. Discovery, Creativity and School Mathematics: A Review of Research. Educational Review, v28 n2; ppl02-117, February 1976.

EJ 144133 Olson, A. T.; Freeman, E. The Objectives for Teaching Mathematics ín the Jumior High School as Perceived by Parents, Students, Teachers, and Professional Educators. Alberta. Journal of Educational Research, v22 nl, pp59-70, March 1976°.

EJ 145403 Abkemeier, M. K., Bell, F. H. Relatiqnships Between Vartables in Learning and Modes of Presenting Mathematics Concepts. International Journal of Mathematical Education in Science and Technology, v7 ñ3, pp257-270,, August 1976.

EJ 146106 Johnson, Virginia G: Comparing Attitudes toward Mathematics of Female Elementary Education Students with Other Female Students. College Student, Journal, vl0 n3, pp213-216, Fall 1976.

EJ 146242 Kŗatochwill, Thomas R.; Demuth, Deninis M. .An Examinatión of, the Predictive Validity of the Keymath Diagnostic Arithmetic Test and the Wide Range Áchievement Test in Exćeptional Children. Psychology in the Schools, vl3 n4b. pp404-406,
$\therefore 8$
EJ 146365 Osguthorpe, Russell T.' The Effects of Pre-ketnedial Instruc-- tion on Low Achievers' Math Skill's and Classroom Participatione Reading Improvement, v13 n3; pp.147-150, Fall 1976.

EJ 146613 Morgali, Ronald R.; Lamon, William E. Using the Papy-Lamon Minicomputer to Thach Basic Addition Facts and Related Concepts to V uaily Handicapped Children: A Pilot Study Report. Education of the Visually Handicapped, v8 n2, pp33-43, Summer 1976.

EJ 147074 Carlson, Gaylen R. Location of a Point in Euclideañ- Space by Children in Grades One Through Six. Journal of Research in Science Teaching, v13 n4, pp337-343, July 1976.

