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The Technical Report Series of the Sc ence Education Center; University
of Iowa, was established bylaction,of the faculty during 1973. The series
provides a mechanism for communicating result's of research, developmental
projects, and philosophical investigations to'eshers in Science Education.
The reports include details and supporting information not often included =

in ,publiiations in national-journals. .

Authors of technical reports include the faculty, advanced giaddate
students, alumni, and friends of science education at Iowa. Technical
reports are distributed to all major Science Education Centers in the United

. States. Reports are also generally available upon request for%the cost of
packaging and mailing.
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Major programs centered in Science Education at the University of
Iowainclude the following: Science Foundations, a core course in, Liberal
Arts-for undergraduates in education; a special concentration in science for*
elementary education majors; an undergraduate and a'graduate sequence in ,

the history and philosophy of science; a general science,sajor in-Liberal
Arts, including five emphases for secondary science teething (biology,
chemistry, earth science, environmental studies, and physics); Iowa-UPSTEP,
a model six year sequence for preparing new science` teachers at the
secondary level; undergraduate and graduate programs, in environmental studies;,
Iowa-ASSIST, a Statewide curriculum implementation program for in-service

.,teachers; SSTP, a summer and academic year program series for highly taibrested
and motivated secondary School students; self-instruction materials, including
computer -based programs.

Major research thrusts at Iowa not reflected in the listing-of special,
programs include: Piagetian Develgpmental Psythology Xlassroom*Interaction

Studies, Teacher Skills andAttitudinal Studies, Effects of Individual Dif-
ferences on Learning Science, Philosophical Studies, and Simulation-Methods,

Information concerning the Technical Report Series can be received by

4' contacting the Science Education Librarian, Room 470, Science Edpcation Center,.
University of Iowa, Iowa City, Iowa52242. Lists of dissertation and - thesis
reports are available. Also, Field Service Reports, Special Project ASSIST
Reports, Special` Reports concerning Progress, reporti of faculty'reaearch,
and:material describing the various facets.of.the programsat Iowa are
available from the' same source.

Since the primary function of the Technical Report Series is communication,
comments from you and other cdhsumers-of the series are solicited.
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Robert E. Yager, Coordinator
Science Education Center
'University of IoWa



MA ICAL MODELS

IN SCIENC UCATIoN RESEARCH

A Rationale for Mathematical Models

[in Science Education

0
' For a number of years science educators' including Watson ti), Tyler

(2), fella (3), Hurd (4),'Glass (5) and Novak (6).have advocated the

development of theoretical bases for research in science education.
C-
How-

.

ever, literate reviews. (Novak, Rin & Tamir [1]; Johnson, Curran & Cox

[81; Voelker [9]) support the contention that research on science concept

learning suffers from a lack of underlying models. And mote recently,

Bowen (10) has discussed the need for a paradikm.it science education re-

search. While major rebearch efforts in science education have focused on

the cognitive.dotspain,ArogrAs has been relatively slow in the development

of theoretic al models which give power do individual studies and to groups

of studies., At.improved conceptualization of the domain oracience educe-
.

tion a the cognitive subset of that domain is needed., Voelker (9) has
s

stated that research in science education would.beentianced if-studies
. .fk .......

. .

tested the application of a specific theory tp a specific science, oncept

learning situation.

. The Authors believe that mathematical models'of concept learning have

to._.s

0

0
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the potential to'provide meaningful theoretical. bases or research in
' 1

science?education'and that science educators generally should be informed

regarding their research implications. Mathematical models are examples

of Nagel's (11) "theory in the second sense"; the fundamental assumptions

being considered are descriptive laws'or generalizations presented in a

Mathematical manner. Mathematical models are primarily formulations of

fundamental assumptions under idealized Conditions. Such models are _still
. .

. *

relatively new)in behavioral and social science research and are even less evidet

in contemporary educational research. In psychological 'tesearch, however,]
...

.

-
/

mathematical modeling has been used to compare certain hypotheses such as

all-or-nOne learning and incremental learning. Snow (1k) has written that

'mathematical models are extremely powerful tools, not only jor systematiz-
#

ing resdarCh'on individual theoretical formulations but also for controlling .

comparisons between competing formulatidmsjp. 96]." j

Researai,pn mathematical models attempts to maintain the specificity

- and simplicity of the models themselves, while aspiring to a degree of

generality that is necessary to any useful model of learning behavior.
,

Atkinson (13) stated'that over time mathematical modeling must develop
.

the kirid of engineering knowledge thatlWill enablt investigatord

to select situational variations''and rules of cdtrespandence
,.

that are simplifieil and yet,relevant both to,the del and-to

the behavior it'attempts to predict. It is ecially'true of

research on'tathematicaf moLls that such relatively minor situ-

ational and exriertmental:variatiOns as -the location 4d ascribed

significance of stimuli, responses, and reinforcing ev$ents must

be considered in detailqp.,162j.
4
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..A major:limitation of mathematical model's in science education research

may well be that the -general,principles developed by studying a phenomenon m

in its'most'simplifietform might prove ,to be,considerably more complex

in application. Even when the model is correct, and all the Variables at

known;
t,

prediction of the course of actual events-may be very different ,

1/4* ,
-.

due to the enormous number of interacting variables. Mathetatical models
I

do enable researchers to examine behaVior in fine detail; anallsis shifts

from, testing null hypotheses toward testing formal predictions by

It
goodness of fit" techniques.

Empirical StUdies Concerning Concept Learning:

An Historical Perspect4e

Early in this century, Serious efforts were made to move away ft-ma a'

pribri do'gma in educational pract.ce to analysis-uf eMPirical data. Dur-

ing this time psychologists, following the lead of people like Edrd L.
.

Thorndike, began to apply' a broad range of. resultA from psychological re-
_

search to 'problems of {classroom learning. -However,, the movement toward

I .

scientific operationalism has not been constant and-unchalenged: negative

reactions to achievement testing by tee use of standardized instruments and

to "objectivity" were particularly apparent after World War II. Currently'
.

'there is a movement for greater flsexibility in &ideational evaluation

which is less limited to superficial notions bf "hard data" (-14).
l

However, over the past twodecades there has continued to be a growing

.

J.

etaphasis.in educational research upon objective data:statistical analysis

and Application. Many empirical studies, sometimes of excellent design
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and-execution,.have beenconkucted to evaluate the learning of student t

and the effectiveness of particuilr method4 of ,instruction.' In the late
.

nineteen-fifties mathematiaal Model>of learning were develoged
.

'4
,

pir4.cal studies. Researchers developed thesemodels in attempts to quan-

titatively describe specific kinds of learning. Mathematical models were

generally developed cautiously without sweeping claims that they were ade-

quate for all' kinds of learning.

One of thetmajor.criticisms. of the research was that learning theorists

have ignored the prescriptive aspects of instruction. Oh the other hand,

Atkinson -(15) has stated that "the danger lies in that if.the surge, in

this direction goes too far, we will end up with a massive spt of preserip-
.

tivg rules and, no theo4y to integrate them." Critics havealso.argued that
,

the analysis'of learning in idealized laboratory environments should be
VA

.redirected and should be studied in real -life situations., There are re-
4

s earch studies, however, that

18), uppes and Rosenthal-Hill'

pear to bridge this gap. Suppes (6, 17,

19), Atkinson (13), Atkinson and Paulson

Nt(20), and,l'reagust (21)., for example, have utilized,mathematical models of.

learning that have not been restricted to simple tasks in the learning lab-
.

oratory. ,These modelsNhave been app14ed directly tethe learning ofsubject

.matter ranging from concepts in elementary mathematics -to a second language

at the college level.

Mathematicalpodels'for Optimizing

IftptIictiona/ Strategies

.

In recent years, Atkinspn (20, 22, 23)'and Suppes (24,'!5, 26) have

0-4
I
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.clede3:o?,eli some theoretical cwitributaoos to systems of computer-assisted

instruction (CAI). Two primary fact'Ors have eicilitatedthese develop:-

menta. First, the draMatie.growth of computer tedhnelogy has previded'a

new instructional medium having:the potential to facilitate individualized
.-. I It

instruc)tion. Second, computers have assisted,in the formulation of math -

ematical models d learning and instruction._ . .

A major focus of tire research effort of Atkinson and Suppes has been
.

,

I .

the development and testing of instruetional 'strategies, expressed as _

TY $ .
.

.

mathematical models A- simple learning processes such as initial reading

and elementary maihematics. OptiMization models, comprising an important .

. . ...

class of mathematical mAela,= prescribe the sequence-of instructional

events which will produce optimal learning for individual students within'

certain boundary copditions, Optimization models are difficult_to(investi-

gate in a rigorbus way for complexlearning but al, suitable for fairly , .

simple learning tasks. Optimization models are not concerned with row well

data from subjects on a conceptual task compare with datefromAhe mathe-

matical model of the underlying conceptual proce Rather, the models

are aimed at finding a strategy which ledds to the beak optimizing procedilre
f

feir learning. Optimization of relatively simple learning processes has

'-been studied by comparing three models: the incremental model, the all -or -none

modeL'and the random-trial increments model:
p

In the incremental model, the state of.the learner with respect to each
4

concept is determined by the number of time the concept to be learned has

Of
been htudied. At the start of the experiment, a concept has some inItial

/
'

probabiltity of error; each time the concept is-presented its'error robability
sr..

is.reduced by a factor. a, which is less than one. Stated as a matJ4ematical
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equation,: the prob!abili.ty ofon error 'op the to + Isj,preSentation of a
---

6.

concept to be learneers related to its probability op the nthPresenta-
.. .

tion in the fallowing way.

6

' q
n+1

.= a(q ),
.

_____...)

1 Thus the-error probability (q) for p given concept depends on they number ..(,.

. ., A
. . 1

of times it has been reduced, by_the factor a; that.is; the number 8 tines
1 . . ..) .-

it has been.presenEed. learning is tbe gradUal re'duetion-in the probabil -.

1.4_,af error by repeated presentations of conceptto be learned. This is
, , "

represented'diagrammatically in Figure 1.'

Insert Figure 1 about here.

r.

, Jr -

)

In the all-or7nonemodel, mastery of. a concept is gOt.gradual. At."

lo any point in time, a-student is either in thelearned.state Or the unlearned

state with respect to the concept to be learned.i'WherVa concept is presented,
J.

.
'

an incorrectresponse isIgiven when the subjeCt is in theleunlearned state ,.

\ unless the sebject makes a correct' response by guessin. J,When hn unlearned

concept is presented,' the sbbje< may move into th earned stite with prob--'
:r

J

.ability c. This probability does ,not change unt the concept moves into

the learned state. Stated as 'a mathematical equation:

(1), with probability 1-c

qn+ 1 =
o, , with fftbfkility e. :

. 0

4
I ' . *._ . ,

Here the error probability in the learned state is 9, the error probability
- i

/4 '

, .. _ . , .. ,

in the unearned` state is 1. .Once. a concept is learned, it remains in, the
11 r

N
learned statethroughouf the course di inst ruction. onceptts are

\1-
earned the first time they are presented; gthers.may b

,t

1

4r. .

resented several

4.
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times before they are 44nalkr.i 14rned. allerefore the list as a whole' is`
...,

, ; - ;
, , \

learned gradually4.bliefor,ApVP4iicular Otesentation of a concept to, be. '

. .
.- .,,,' ... .I.

learned, the transition, from to the learned state acCurs.in',--
+W.

% : ,

7

a single trial.. This. IS,4,9040ted' diagrabiatiall4 In Figure '2., ,
s',

, ... _ A- -- -.4 . . .
.

.

,
.

1Isert Fig;Ite 2 aboy<heref
i f

.

;" , .
4 .

1 4
4-

;
.

The random-trial indtements model is a compromise between Cfie increm-'`
. ,

ental.ana ail-or-none 'clioilela,(27). For this model, the hiathematicolceve--

Lion 14e stated as: .
.

cIn'
witprobability 1-c

. (111+1

: I ir

ai(ci ), with probabiliby
v

c

,.

n
1

.,......

. .
.. where cis the probability that'some eventthat pSoduces learding occurs'

4 -- *

. .
, 4

on dhy trial n and a is the reduction factor' relating to the number of,
, .

. : ,

.
I_

presentations'of the concept.
, ...

.

If c = 1, the random- trial intrements, model reducesqoithe incremental

-1-
9 ''

/-'

I

' & I 1 -

model; if s = 0, it reduces th all-or-none model. However, far c< 1
...

/) ,%---- -.
and 00,,the random,trial'incremen s model generatespFedictions that ate.

quite distinct fromboth the indreme tat and the' ll-or-none models.
3 -

Optimal strategies were developed foe the incremental'model and for

.the all-or-none model with the- assumption that each concept to be learned'

4

J

glad the same learning parameters and ifiitial error probabflities._ With . .,
.. ,.

.) .. -,

s,
.

the incremental model, the reduction in error probability on each trial was ,)
.

.
.

.
.

. t

,

used to
.
deduct the optimal strategy rfopresentatipn of items -to be learned.

.

It involves presenting all items once, xandomly reorderinaltilem,..and re-:

peating. the prOcedure until either the time allocated for insiruction,haa
. .

. '

12
I

,

I
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lbeen exhausted or the task,has leen'le rned?Aith the all-or=none Model;
.

.

once a concept hos been learned there is no further reason to present It.

Since_all-uniearned items are eflually'likelyito be learned if presented,

the pptimal,presentation strategy selects the item least likely to be in
. .

... .

,.
.,

. . .- ..
. .

the learned state for .yresentaadon. If the last.xesponse was incorrect,
. .

the item was certainly in the unlearnedf&ate at that time Ifthe last
Its

.

.

.response was correct, then, it is more likel t t thetconce Pt was in ,the .

-

learned state. In general, the more correct -re0onses that Rive been made

since the last error on the concept, the more likely it is that the concept

. --
was in the learned state. The situation is more complet in the randoM-trial,

increments mo 1/"- .,t
-

'Chadt and Atkinson (23) described a number of researchers who were

(in terested in the application of these three optimization techniques to:.
%

modeleoflearning"and instruction. Aqinsons(22) described a CAI program

's designed for spelling lessons in thaTMCary.grades. This.applicationof

CAI involved a.reguiar programiof practice and review designed to .omplement

teaching by the classroom teacher. In another experiment, Atkinson and

Paulson (20) described optimization strategies for an instructional program

to teach 300 Swahili vocabulary items to college-level students. The objec-

aye' qf bOt4 CAI .programs. was. to teach students the to

. r

I

each item in a given list

Atkinson:8 (22) experiment compared the incremental model and the all-

ar-none model. Data from this experiment indicated that the all-or-none

strategy was more efficient thin the incrementaodel at a level predicted.

by the theory, and was far better than strategies that presented Ole items

to be learned i a predetermined manner. Atkinson and Paulson (20) compared .

*

1 4
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the #11-or-:none and the random -trial increments'models for presentation

procedures. Results indicated that the random -trialincrements model was

more sensitivekthan the all-or-nont strategy In identifying and Oesenting

those items that would'benefit most from additional study. In gther words,

the random-trial'incrementa model provided a better optimize on procedure

for learning'in that study. AcCording to Atkinson (22):

. . . the development of 'effective optimiiation strategies ,and

viable theories of learning will be an interactive enterprise.,

with advances in each area influencing the concepts and data

base of the other. .For too lohg psythologists studying keet<ing

have shown little interest in'insfructional problems, whereas'

educators have made only primitive and superficial applications f

of theory [p. 594].

Using thegt research methods to examine the learning of selected science

4
concepts may well ft9ilitete the development of one kind of theoretical

1
'basis for research in science eddcation.

The Application of Mathematical Models

in Concept Learning

A7
Psychological research involving concept learning consists of both

concept formation and concept identification. Wh e some authors claim
--...

this distinction is dbifficult to draw or'that t e distinction is semantic,

other authors define concept formation as thainyentive act by whith"cate-
,

gories are constructed and define concept identification as the search *for

attributes or rules that distinguish examples from non-examples in the category

00

4



one seeks to

assumed thatf
only task Is

1

4

*110
10

T
f

diptriminate (28-30._ In,concept identiftcation tasks it is

a subject oiready Pyrows what.the'given concept means; his

to discove the defining Aftributessor rules of the concept

in order to predIttZh

Since much of scrence,

er or not-a presentation belongs in that category.

4,4

-learnin within-the realm of concept,
, .

identification-(fol- example, identifying fauna and flora using taxonomic

keys or deciding which laws apply in solving a physical problem), a more

hough investigation of the nature of mathemat4a1 models of concept

. ,

'identification and their applications would appear to. be appropriate rem

search' in science educattpu.

1, . . ,

In this regard Treagust and Lunetta-(32)-designed,a study to examine
S

the application ofla matheiatical learning theory ,to a' four-category Sci-
,

. .
. ,

_

ence problem consisting vd identification of broadleaetrees. It was

hypothesized that thil inquiry might'. lead to the developmen t

that will facilitate underStanding of concept learning and inilruction-in

science education. The model under investigation dAl appear to be general-
.

. .
. ...

izable to'science suimuliiitere the dimensions of the concepts had a binary'

nature.

A variety of.mOdels have been proposed to explain the major phenomena'
6

that have been,observed in two-category concept identification r se ch%

,.
, .

'studies within the psycholog .rSboratary. Early studies evaluated whether

these learni ng proCesses were all -or -none or incremental; in the ill-orLmone

model there is no improVeldeA before the'subject,learne, Who as in-ibe
4

incremental model ble,performance of a subject improves Step by step Stith
.

`practice. The results, of a wide variety of conceit learning experiments

(reported by Suppes and Rosenthal-Hill [19)) generally concluded-that an



/

ail-or-none model provided a first ppraXimation to respKtse data, but

that a. more complex modil was needed to go beyond the first approximation.

Botiine and Dominowski4.(33) reported that the 'first concept identifi-
'.

. -

\cation tasks, where stibSects selected from a pool of-rules and/or,aftri-

butes that were possible contenders for solving the conceptual-problem,
' .

were developed by BrUner. Other researchers' have developed more elaborate-
..

0 '
1

hypothesis formationvand selectten strategy- theories in tvidOitegory cOn-s
.

, .
.0 ,

cept identification tasks, and have also developed mathematical models in ", :(.
an attempt to formulate their'findings. Mathematical models were Initially

4.

dIveloped,for sjile learniqg situations with animals and were applied to

human concept learning tasks later with considerable caution. Caution is

essential aince human learning is so much more complex; hence, workable:: .

models will also be relatively complex.

Three Malheiatical Models for Research

in the Learning of Science Concepts .

Three such systems have been developed forthe representation of

human concept learning by mathemlittical models:

1),an informatiomprocessing approach Utilizing computer simulation,

2) a stochastic approach utilizing Markov chains, and-

3) an information theory approach.

(1) The information processing model is explicr?ly designedfor com-'

puter simulation. An information processing system (IPS) consfats of a
(

memory containing symbols and mechanisms for receiving, organizitl .

and interpreting stimuli and feedback from the environment. A computer if
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a familiar example*of an IPS, and in this approach; to concept learning,

humaskthinking is also an IPS.. CoMputer programs can be wTittia to'perform

tasks which in humans'require thinking,and.learning. The model can be

- Y

-.0tested by comparing the "learning" of the computer progrgm with that of the 4-.

ee

. subject when both an% performing the same learning task:If the computer(
. ,

. .
)output and subject's learning strategy do not compare well:, other procedures

, .

. -

can be incorporated ifito the Informatioo processing model to improve the

. goodness of fit of the mo

Another example of a information processing approach is the Wisconsin
s

.
4

model of concept learning and' development initially formulated
-

by Klausmeier-

(as reported b}4° Kerlinger and Carroll [34]). It defines four levels of con-
!

cept attainment, outline the possible uses and extensions of attained

concepts, specifies t e cognitive operations involved in learning concepts
. -1 -

43.t each of the four 1 els and postulates internal and external conditions

of learning related o the specific levels. :The levels of concept 'mastery,

, the operations, and the conditions of learning have-been identified through
1

4

behavioral- analyses of' concept-learning tasks and through empirical research

inqaboratory snd school settings. The Wisconsin model is concerned with

' s;i\system of conceits and relaredexperimentation involvihesubjeCtsranging

t f

.in age -from about three years to young adults. The model describes different
_

levels of' attainment ofthe same Concept and specifies the operations essen-

t

tial to attaining concepts at stIccessivell higher levels. 4

(2) The stochastic model involves a random processiehat is observed

repeatedly;.,the probability of the outcomes may be-different from op(e trial

the,to next. One of the basic assumptions of the stochastic modelof conceit
A r

leafning is that man'a:52initive peOCesses operate as ag apfroximate ergodic
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,
,

source (i.e., theeffect of onecognitiire process on another Is limited to

a certain

incomplete

ing./ The

finite maiimum that-tan be astrtained as in the cOmplethlp of an

sentence) using a
.

stochastic prOcess and Markowian chain reason-

probability of identifying concepts depends directly on what has

happened2before. Concept identification'is' indirectlr related to

the probability distribution on

trial n-1: tilt's produces $a finite Markov

or time. In

depends only

the simplest (aSe

op the outcome of

chain.- greano(35) clhibs that normal human behavior treafed as,a'seCluence
.... o ,

' .'s.
.of behavidrS is .14.11;ekovian;.. althoUgh'thiS Is a.subtreconlpation.it figs, ,.

, . % ,

i . , '
,' 1 ,A, .

major importance to the research_of learning b4havi.ors.

4
.

K,
.1" ' i ,

The idea of 'finite Chains in learnirii3'psycholOgy has had at least
i

the effects. 1) The use of Markk
.;

ereerning.has encouraged, ehe,developme

, -
.

hains wfth few states to represent
.

. .,
.. . . .

nt of- ideas about learninf processes

, .

,involving very small changes in a' learnees etAte of knowledge. 2) Finite

;,

4 Markov chairis havel'providedehe basis ora4'vigorous mephodology for inves-

tigating stages in the
I

in the pardmeters of a

precess of,learning14 Ay4noting'the pattern of change
, 4

Markov illodel the investigator can make relatively.

-.strong inferences about)the-nattire of'thel:osychological processes involved
-

.

,.

. ,
,

, - .
. ,

.
.

. ,
. .

in learning. 1) It is convenient to represent +a `complex process at ,a
v

."
I , .

homogeneous 'collec&on of elementary processes,* In this manner.finite Markov
de--- , . Y .

chains have been applied successfully to thetheory of ,problem solving. \
I

- r

'ebpaciallr concept identificatibn,'W researchers suc as Bower, Restle,,-

, )

Supper and Trabassb?

An example.of-the'stolczhastic approacb,is owef and Trabsaso'smodel,

whiCh postulates two concurrent processes durl concept identificatiOn%0

namely a selection of Stimulus dimensigns and.a learninglrrocese by which
,

- - .

19
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7.*
.

-

,

14

14

,. .

responses
0

ard assigned to the values of a selected stimulus dimension; -

.13Oth processes are assumed to Se all-ot-none. Bower and Trabasso's model

4 . 1 .«
has ben supforted by data in a series of experiients, initlally ip'situ-

e
.16 , t0 ,

P

talons involving simple concepts with a iingle'relevant dimension and -q
t .

- -

later in the learning of concept problems witktwo relevant dimensions

36, 37, 38). -

(3) The third system td represent concept learAing, the information

IL
'" :theory model proposed by Moser anehigiassoCiates (39,',40, draws on r e

-

the early worki5f ShanApn, Broadbent and other 'information theorists. Moser'

, A
has incorporated additional theorems and'algorithma decribe"how human

memory operates forprocessing iniormation in to acts of learning or cog-
"

. nition. The bas concepts of the model areg that ,cognitive'behavior is,

. . b :.,

.

,......0parkovian and 'that the human memory operates' in a logarithmic fashion to
-.,

,

receive, Output 'and store information.
.

. f
.

Moser reports severe% experiments where itudents' behavior fn the-
,.

t ,

science.classroom was quantitatively-recorded. .For example, Fazio,(ai

reported in Moser [39]) investigated, the structuredness (which relates

to the influence of complexity of form) of the overt toncreteproblem-
---

%Solvirig behavior of collegifSiudents working on three related electric cir-,. %

--nit tasks. It was hypothesized that learning would be greater with more

structured omtput. ,The_resUlts of this eipetiment (and others) agreed with

the prediction of thelinformation-theory model. 'In another turfy, Dunlop

as"reported in -Moser (40)).looked for tehavior ,changes in'fifteenyear-old

et

youths resulting from instruction in a classification task. Dunlopcon-
.

cllided that abstrapt and concrete kinds of perceptual tasks are prvessecT

in different ways by groups of childr who are at formal and concrete

4
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operational levels of, development respectively.

The difficulty with coputer,simulation mbd els is that a human subject

is not easily describable is an inibrmaticin processing system. Yet, computer,

simulation models are more convincing than Markov models in that, although

etisting models ar# imperfect, their ultimate aim appears to be'the

4
simulation ofpsYchological reality. A case point is Simon's (41),attempt

t

to-proyide a more concise definition of Piaget's notion of "operational

structures" using an .information.processing approaih. ymon conjecturts

-that an objective referent for "operationa; structures" will consist of:tome

of the general featUres of the means,that children in a given society 'learn

' to use for storing information. Data from information processing programs
.

for human'intellectuhl-Processes indicate that some memory structures and

associated processes are relevant to Piaget's approach to intellectual.

development.

. .

The incorporation of memories into the pool of hypotheses, the increas-

,in411 detailed level at which data are identified, and the more complex.
----- ,

language in whichmodels are formulated bring,the most recent stochasAic

, i

concept learning, studies close to the computer simulatitonaPproaches, . Both

*....

_ ___ , , . ,

amiroaches appear to aim.ultimatelyat drawing inferences about psychological

prdcesses from fine-graindata.,

\

;

Summary,

)

This paper has reviewed some research in both educational and

,

psychological fields to discuss the relevance and Oplicatiou of



I..
e

mathematical models o

1.10st of the research

e.

idealized psycholigy

4

f concept learning to the field-of science education.
%.

on- concept learning.haw been conducted within the

laboratory, though there is considerable evidence

that such research has potebtial application in science education. While

a

manTieience educators strongly support such lines of research, little,

research has been dekne in science education involving.mattematical models
i

of concept learninglojnas problem may be due, in part, to a lack of

awiletess of the relevint pYohological work that this paper ha reviewed.
,..

-; , ......

t...

The areas of research covered include:
( '1

, .
.

1) an historical perspective of empirical Studies concerning concept

%learning;
s

2) mathematical-models for optimizing instructional strategies;

3Y concept learning and the development of mathematical models rele-N

vant to research in science education.

rb-

r

I

r
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