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. o The Techﬂlcaiskhport Series \ to N
The Technical Report Series of the Science Education €engter, University

of Iowa, was established by‘actionvof the féguity during 1973. The series
provides a nechanian for communicating resﬁlf‘\of research, developmental -
projects, and philosophical investigations to’'others in Science Education.
The reports include details and supporting infotmation not often included -
in QubliﬁatiOns in national journals. ~ . ’

Authors of technical reports include the faculty, advanced gfaddate
students, alunni, and friends of science education at Iowa. Technical
reports are distributed to all major Science Education Centers in the United
. States. Reports are also generally available upon request for’ the cost of .

packaging and mailing. A . | ’

Major programs cenfered in Science Education at the University of

. Iowa include the following: Science Foundations, a core course in Liberal .

Arta for undergraduates in education; a special concentration in science for |

elementary education majors; an undergraduate and a'graduate sequence in . S

the history and philosophy of science; a general scienge major in-Liberal | o

Arts, including five emphases for secondary science teaching (biology, -

chemistry, earth science, environmental studies, and phyaica), Iowa-UPSTEP,

a model six year sequence for preparing new science teachers at the

secondary level; undergraduate and graduate programs in environmental studies;

Iowa-ASSIST, a #tatewide curriculum impleméntation program for in-service :

. ‘teachers} SSTP, a summer and academic year program series for highly idWrested \\

and motivated secondary ﬁchool atudents. self-instruction materials, including

_computer-based programs . ¢ e = e,
Major research thrusts at Iowa nq; reflected in the liating of special . L

programs include: Piagetian Develgpmental Psychology, Classroom’ Interaction -

Studies, Teacher Skills and Attitudinal Studies, Effects of Individual Dif- h

ferences on Learning Science, ﬁhiloaophieal Studies, and Simulation'ﬂethoda.
Information concerning the Technical Report Series can be received by

contacting the Science Education Librarian, Room 470 Science Education Center,,

University of Iowa, lowa City, Iowa r52242. Lists of dissertation and thwsis

reports are available. Also, Field Service Reports, Special Ptoject ASSIST

Reports, Special Reports concerning Progress, reports of faculty ‘research, _ . .,

and ‘material degcribing the various facets,of .the programa at Iova are . -

available from the same source. .
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y MA ICAL MODELS

IN SCIENC UCATION RESEARCH . ‘iD .

‘ " A Rationale for Mathematical Models . . '

I “in Science Education - -

< ’
. s i
.

[ . ;’-. ' . - . . ) .
// * FOT a number of years science educators including Watson (1), Tyler

\

* (2), Pella (3),”Hhrd (4), Glass (5) and Novak (6).hav§,é§v6cated the
development of,theorgfical bases for reseagc; in SCi;ncé eq&cation.c;ﬂow-
ever, 11terétﬁf§ reviews, (Novak,‘#in & iami; [f;; Johnson, Cu;;an & Cox

) i 181; Voeiker (9]) support the contention that research o; science concep;

A learning ;uffers fr;m a lack ;f ;nde;}yi;g‘godélg. And moge recently," ‘~" o

- - Bowen (10) has discussed the need for a paradigm.id science educa;iop re- |,

\ éeapch. hhile ﬁajor research efforts in sc;ence ed#cation have focused on

. .the‘cognifive.doﬁain, p?ogrQXS’has beenA;elativer.sléw in the development

of theoretical models which\give power to individual séudigs and ﬁe groups

of studies. ’An.improved cOncep@ualizatiqn of the domain of science educa-

< .

tioq;gyd/éhe éognitivé subsét of that domain is needed. Voelker (9) has
s :

» . « N

) . X . , .
stated that research in science education would.be .enfanced 'if. studies

[ ~— R

tested the,application of a spécific theory to a specific science ,concept

’ . )
. .
. . . . IS

. learning situatioﬁ. c . ) Lo

. ' . The authors believe that mathemdtical models'of concept learning have . .
N . N ‘ . ‘" .. hd B '

L : . .

* . N L . .
. R . . . - ”
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the potential to ‘provide meaningful theoretical bases ‘for research’in

'science)education‘and that science educators generally should bé informed

- . '

regarding their research implications. Mathematical models are examples

t

)

- of Nagel's (11) "theory in the second sense"; the fundamental assumptions

' being considered are descriptive laws ‘or generalizations presented in a
mathematical manner. Mathematical models are primarily formulations of -
! ' ) [y v P

fundamental assumptions under ‘idealized tonditioms. Such models are still
A S R 0 . - . & v

.relatively nev)’in behavioral and social science research and are even less evideht '
2 . in contemporary educational research. In psychologacal'tesearch, howe_ver,j
mathematical modeling‘has been used to compare certain hypotheses such as

all-or-none learning and incremental learning. Snow (lﬁ) has written that

~ e
«

mathematical medels are extremely powerful tools‘ not only for systematiz-
. 2 4 ~
: o ing research on individual theoretical formulations but also for controlling

comparisons betWeen competing formulatijgns [p. 96)." J
'
L]

Research_pn mathematical models attempts to maintain the specificity

. - and simplicity of the models themselves, while aspiring to a degree of _—
generality that is necessary to any useful model of learning behavior.

. A

Atkinson (13) stated that over time mathematical modeling must develop
\ - -
the kind of engineering knowledge that’will enablé investigators ,
. . . oo . ,
to select situational variations*and rules of cdrrespondence

’ - LI S L) ] *
et " that are simplifiedl and yet,relevant both to the pddél and-to %

the behavior it‘attempts to predict.h It is ecially' true of
NN

i ' : research on mathematical models that such relatively minor sith—

ational and experimental variations as _the location ahd ascribed

significance of stimuli, responses, and reinforcing e&ents must

- \

L I s

< . ' be considered in detail {p. 162j. . . o
. . . ) AN .
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A major: limitagion of mathenétical model's in science education research

: may well be that the‘general,principles developed by studying a phenomenon b
. - . . . L
. y '1ﬁ its'most'simplified‘form might prove,tophe,considerably more complex
- in application. Even when the model is,correct,and all the yariahles are )
-\\‘ . knownf‘prediction'of the course of actual events‘may be very‘different : .
due to the enormous number of‘inter;cting variables. Mathema;icalhmodels
. .

| . : , . .
. do enable researchers to examine behavior in fine detail; anaf?eis shifts . ‘\v‘

frem testing null hypotheses toward testing formal predictions by

;'goodneég of fit" techniques. i L. - i
' .. c oy , -
‘ Empirical Studies Concerning Concept Learning: o T
' - ’ . . '

An Historical Perspectfive .

> . LN . . . ’ -

Early in’this centdry,"serious efforts were made to move away from av’
priori dogma in educational practice to analysis*of empirical data. Dur-

ing this time psychologists, following the léad of people like Edaard L.

Thorndike, began to apply a broad range‘of:resulta from psychological re-
»\ ’ R - [ . . .
search to problems of ‘classroom learning. .Howevér, the movement toward

+ -

’ [ .
scientific operationalism has not been constant amd unchallenged: negative
. . ¥ ' o — . '

reactions to achievement testipg by tHe use of stendardized instruments and

M ‘ " . . -
¢ Il . ’

to "objectivity" were particularly apparent after World War II. \Currently' Lo
P -,
N ‘there is a movement «for greater flexibility in edUcational evaluation i
. ] which is less limited to superficial notions of "hard data" (14) } :
‘ However, -over the past two decadee there\has continued to be a growing“\~ .
.. ' ehphasis:in<2ducationa1 reéearch hpon objective data, statistical analyeis . f%
' andlapplication. Many empirical studies, sometimes of extellent design .’
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a;H‘execution,.have beep-coég;cted to evaluaq? the learning of student$

and the effectiveness of particul%r methoddy of_instruct{on:' In the late

. e c . oL ) . . .
nineteen-fifties mathematical modeE%cﬁ learning were developed from e
- : .4 ' ve N LI
. * V)

pirical studies. Researchers developed qhese,ﬁodels in attempts to quan-

. % . -
titatively describe specific kinds of learning. 1}athematical models were
b } ' 4 -

gengral{y developed‘caytiously‘without sweeping claims that tﬁey wvere ade-

»

quate for all’ kinds of learning.
« One of thg;major,crfticisms of the research was that learning theorists

'

have ignored the prescriptive aspects of instruction. On the other hand,

v .
~— .

Atkinson .(15) has stated fhat "the danger lies in that if the surge, in

this direction goes too far, wé will end up with a massive sgt of preserip-
] . .

. r

" Critics have -alsos argued that
' d

»

tive rules and no theory to integrate them.

* the analysis ‘of learning in idealized laboratory environments should be

-

~ L) . . )

.redirected and should be stud;gd in real-life‘situétioné., There are re-
- Y A ’ !
search studies, however, that appear to bridge this gap. Suppes (16, 17,
)‘ s ‘ . ' . ‘.
18)[<Suppes and Rosenthal-Hill® (19), Atkinson (13), Atkinson and Paulsog

\‘(20), and. Treagust (21),, for example, have utilized mathematical models of -

1

Jdearning ‘that have not been restricted to simple tasks in the learning lab-
: ’ - ‘ .

AY

oxatory.  These models Whave been applied directly ts‘the learning of'subjecf
P '

,matter ranging from concepts in élementary mathematics to a second language

- . NS . » - .
~at the college level. ‘ . - -

. L0 - &

¢ MU . .
Mathematical Models for Optimizing

» " « N ' E
y ' . Ingtructional Strategies ‘ ’
7 In recent years, Atkinspn (20, 22, 23) "and Suppes (24,25, 26) have
' - ’ . - . '\k
. ' .
% ﬂ ~ +
\ - + L4 - .
s . e .
' \ O

Y

.

-
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°"deVerped some theoretical cqntributions to systems of computer-assisted'

» instruction (CAI). ’Two primary factors have‘éacilitated these develop—'

! ]

ments. First, the dramatic growth of computer techncélogy has provided a

new instructional medium having:the.potential to facilitatc individualized
-, 7 ¢ _‘ . lc.'. ‘.
instrhc}ion. Second, computers have assisfed»in the formulation of math-

. - N -

ematical models of learning and instruction. e L

-

/ . N

A major focus of the research effort of Atkinson and Suppea has been -

the development andotesting of 1nstructional strategies, expressed as

\ . ? . ) L2

nmthematical models {Br simple léarning processes such as 1nit1al reading

and e}ementary mathematics. Optimization models, comprisihg an important
' o [ , . . L4
class of mathematical models, prescribe the sequence”of instructional

-
4

events which will,produce optimal learning for individual students within’
S, - ‘ .
certain boyndary copditions. Optimization models are difficul&qto'investi- \

-

L 4
gate in a rigorous way for complex Yearning but a€9 suitable for fairly’\\

simple learning tasks. Optimization models are not concerned with how well

, -

data from subjects on a conceptual task compare with data”from'the mathe~ °

o' 4

‘matical model of the underlying cofceptual proceds. Rather, the models

are aimed at finding a strategy which lé&éads to the besk optimizing proceduqé
for learning. Optimization of relatively simple learning processes has T
ZP¢en studied by comparing three models:'the incremental model, the alljor-npne
-model,'and the random-trial incréments modelt ’. |

In the incremental model, the state of .the learner‘with respect to each

- 0

concept is determined by the number of time; the concept to be learned has
been Studied. At the statt of the experiment, a concept has some iqitial

probability of error; each’ time the concept is presented its error 'robability

is.reduced by a factor a, which is less thdn one. Stated as a mat ematical

. * , ’ o, .
. ’ . :

+

o~




e . 3

equation, the probabilixy ofjan error ‘op the m + lst.préeentation of a
qua co ; e p
coneept to be lehrned‘T% related to its probability op the nth. presenta-

L e ¢ : N ~ . . ‘v

<

tion in the following _way: - o *

=alagd o . : ' “ 4

. . K . B
4 Thus the-error probability (q) for a given concept depends on thg number ..

qn+1

of tiﬁes it has been reduced by. the factor a; that, is the nunber df'times e
- . ./

.

it has been presented. Learning is the gradual reduetion in the probabil—

v

- ' 0

ixyﬂoi error by repeated presentations of conceptéxto be learned Th!s is

’ L4 -
14 - hd » . L

[ L A

represepted ‘diagrammatically in Figure 1.7 . L . L
’ ~ ’ . . v
. _ h ’ Insert Eigure 1 about here. . . K s
- ~ - . .. ‘ N
Y. I3 . 4 . v - . 'Y ‘ I

. ) . . . [P
In the all-or-none-model, mastery of.a concept is ﬁot-gradual. At. "¢ o

. . >
- P .

~y - 30V point in time, a~stident is ejther in theﬁlearned.state or the unlearned

i

state with respect to the céngept to be learned.' Wher’a cgncept is presented,
. : o ” g » .

’ . ' [} ' . ! * t - ~

an incorrect-response is\gaven when the subject is ir thepunlearned stat;\ o

\ﬂ unless the swbject makes a correct ‘response by guessing. % When an unlearned ‘

~

Aearned Stite with prob-""°
) .

v M . B .
cohcept is presented, the shbje££ may move into th
1 R .'T
.ability c. This pro)ability does not change"unt
, &
the learned state. Stated as a mathematical equation.

[P s e . LI

the concept moves into

»’ .

q, 51), with probability 1- -¢

0, . with pMinty ¢ v e

9t

Here the error probability in the learned state is 0, the'brron probhbilit& !

. =
" ’ j LN
.

in the un}earned state i 1. Once'a concept is learned, it remaing in_the °

3 -

r . ® *
+  learned states throughout the course df instruction. So

oA
goncepts are .

- -

: 1)
learned the first time they are presented, gthers_may B¢ presented several-
' ‘ L : .



L1

ERI!

}e
‘
1
A
>
[}
‘ﬁk
»
[

Probabilfty
of Erfor

»

. . ¢
. : -
0 1
\ .
» [ 4
. ‘ L 3
. . - . - . . ; ) 3
. . - ™ - .
. - L)
. - .
‘ ~ . []
' / . i N ) - r ~ Ct
. - * .
- . ‘
. . 4 . [ - .
- -~
e . . -
K ) » , N
: . . . v
1 — : Trials
' . ’ -

Figure' 1.

model.
. .
.
.
.
[ 3
”~
-
L] a ‘
.
-
.
» * R
4’ “_
. .
.
3 7 )
-
; »
.
. © .
v
D
’

.

.

P'

‘ .
.
.
¢
) i
=
'
‘
<
<
+
.
L

Idg?lized individual learning curve fg¥ the incremental




- ¢

K * e ,a‘~ . . . * . N : o

‘ " times before they are wfina»lly/ le}r\ned Iherefore the list as a whole is” "~ L

\
learued gradually,t but for ayy phrticular p!esentation Qf a concept to- be D

o 1.. " te oM .

leamed the trausition fron -the unlearned to the learned state o.(:curs. in"

a simgle trial. Thls‘ ia%i'eg\rﬁseﬁted‘ diagrahmxabitalla in Figure 2. ..

- e
i N -~ A
' ' .

P m — Y ¥ . _—
= ) o ’\%( ; 3 .. . .
L Los ’ - ’\I : T y 7 * oz .
. Conus y nsert Figute 2 ab_oug{he_rer. ' . - .- ,

’ «
i y i ok —_—

. . . - < -~ - ‘ . PR “ .
. . - 5 1 > ¢ . R .o
‘ . -~ .
. “ . -
. . . . ‘ . -

The random-trial inctements model is a comproE'i/se between the increm-"* |
kY T -,

v - -

. LT

‘- -~ L. . o N . N ;
o 7  ental.and all-or-one yﬁlojels. (27). For this model, the hathematical ;equa---
N e . S . ; » . *

s , J N

1 7

tion ig stated aé: ‘ : o T
_(. o " PR qt'l,”“.‘} witg‘probabﬂity l-c . - _— .‘;
. o a4 _. , .
s 0

a/(q )y with p?obabiliby c b . R
: , ‘ ‘

" . : ' —

» where cT¥is the probability that' some event. that pl‘oduces learﬁing occurs } ]

. <
on dhy trial n and a is the reduction factor® relating to the number of

I . \'

s , - . .

1 A ‘ ,’ ’ 4
-

. presentations ‘of the concept. ) - .,

-

1f ¢ = 1, the‘~r'andoxn—tria~l in¢rements. mod'e'lr redyces*’to sthe incremental s

- - . . - \

\model; if a = O, ’_ft reduces to th,é all-or-none modeli. "However, for ¢ 1’ )

‘

.,
.-, . Vé ’ i . . 4

- - and a>0, the randomrtrial incremenis model generates predictions that ate. -

quite distinct from :both the inc:reme t‘a‘l-anrf the{)ﬁll;or-none models. ' ‘
Optimal'strategiee we;r..e develop:ed‘fo% tho in'clremént’al '}nlxodel andq.for’ -

.the all-or-none model with the assumption tha't' each conce.pt to te learned ' ' .

4had the same learning parameters and :hﬁitial error probabilitiee., With -

. - . . " ]
. the incremental model tHe reduction in errpr probability on each trial was /
. v .

. ¢

‘uged to_ aéduce the optﬂimal strategy fon.presentatipn of items ‘to be 1learned.

o It involves preaenting a°ll itemé once, ;‘andomly reordering\them, ‘and re— . .
v M ’ .
/
peatingo the procedure untkil either the time allocat'ed for inm:ruction has
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*a

each item in a given list. . . ) . ) .

- )
".been’ exhausted or the task has been i%}rned‘,(ﬁith the all—or—none model'
once a concept has been learned there is no further reason to present it.

Since. all*unlearned items are equally” likely‘to be learned if presented

N [ ‘ KAV

" the 9ptinal.presentation strategy seIects the item least likely to be in

-the Iearned state for:}resentavion. If the 1ast teSponse was incorrect,

Jhe item was certainly in the unlearned?gtate at that time' If the 1ast

.

.response was cor;ect, then, it is'more likel} that the‘concppt was in the .

L] - . -
s 7 - ’ . . > e »
learned state. 1In genera&, the more coryect -responses that Have been made
s . [ A ‘

‘.

. Ay B
since the last error on the concept, the more likely it is that the concept

was in the learned state. The sitdatibn—is moxe~hqmp1ex in the random-trial:
- €. v/‘ L) - . '

incremenye]_/‘ . . N TS
. N , LT L] . \ T
* Charft and Atkinson (23) described a number ef researchers who were

. -~ ’ -2 |
‘Interested in‘the applicatinn of these three gptimization techniques‘to;

modeis‘of‘learning'and instrnﬁkion. Atkinson'(ZZ) described a CAI program

4

designed for Spellfhg lessons in thegkrégsry,graaes. This.applicstionnbf

&

CAI involved a: regular Jprogram fof practice and review designed to ;omplement
teaching by the classroom teacher. In another experiment, Atkinson and

Paulson (20) described optimization strat?gies for an instructional program .
to téach 300 Swahili vocabulary items to college-level 'students. The objec-

tive qf both CAI .programs was' to teach students the correc& reSponses to

T t4

Atkinson's (22) experiment compared the incremental model and the all-

4

ar-none model. Data from this expemiment indicated that the all-or-none
o rd

strategy was more efficient than the incremental model at a leval predicted’

» .
.

by the theory, and was far better ‘than strategies that presented the items

* to be learmed iy a predetermined manner. Atkinson and Paulson (20) compared

e 3 .

- -

- .

I3



. 1 ' - -‘~ “ N
the gll-or-none and the-raﬁ@om—trial increments models for presentation

o

. ‘ "
g procedures. Results indicated that the random-trial- increments model was

more sensitive \than the all-or-nond strategy in identifying and plesenting

%  those items that would ‘benefit most from additional stugy. In ther words,

@ ‘ .

- N4 the random—trial’incre@ents'modef provided a better optimizat4on procedure'

for learning in that study. According to Atkinson (22): i
. rd B &
. N . . " o . ‘ e
! . . . . the development of ‘effective optimization strategies and

viable theories of learning will be an interactive enterprise), !
with advances in each area influencing the concepts and data
base of the other. Jor too lohg psychologists studyihg keafﬁing ‘

e )

have shown 1}ttle interest in’ insf%uctional problems, whereas’

7 educators have made only prlmitive and superficial applications ¢ -
- ’ of theory [p. 594]. - ) ‘
,m . -
¥ Using these research methods to examine the learning .of selected science

’
- i

concepts may well ﬂﬁcilitate the development of ome kind of theoretical

M .

‘basis for research‘in science education. . . .
- - W\ o
’ The Application of Mathemet%caltModels
.  in Concept Learning P ’
v . ’ g
1 - X T ) Yo

Psychological research involving concept learning consists of both

concept formation and concept identifica{ioe. While some authors_claim

- A v
this distinction is difficult to draw or’that the distinction is semangic,
‘ ’

~

other authors define concept formation as the_iqyentive act by whith cate-

\ ’ o ~ .

gories are construycted and define concept ldentification as the searchefor

attributes or rules tﬁat distinguish exambles from non-examples in the category




.
~
L
o
LY
™oy

. [ ’ “ ), ..‘A." - s e Ad :
. one seeks to diseriminate (28—31) In,concept identifjication tasks it is

" .
IR \ \ . ¢ . M
N . . .

assumed thasra subject\q&ready knpws whats the' given concept\means; his

: < ) - - .
. .‘ pdly task 1is to di'scpve the defining dttributes or rules of the concept

L] - . - ¢
. dn order to pred&th;he er or not a presentation belongs in that category. at
¢ P o > . N ~ -

Since much of scfence within .the réalm of concept

. . * - \‘:
identification- (fot example, identifying fauna and fiora using taxonomic
. - " 4 ———:f' " '
keys or deciding wbich laws apply in solving a physical problem), a more

th’ ough investigation of the nature of mathematiéal models of concept e

’ , - N

- identification and their applications would appedr to. be appropriate reg - .

- o -

X

- \\:earch ip science educatipn. . "~

-
- . e o
-

In this regard Treagust and iuqetta3632)-designed-a study to examine
the application ofta matheﬁatical learning theory:to a’ four-category sci-

“ence problem consisting of identification of broadleaf'treesf It was .

-

hypothesized that thi inquiry might lead to the development of?a.model-

that will facilitate understanding of concept Iearning and iné?ruction,in

.

science education. The.model under inveqtigation diMd appear to be general-

«
- L' [

’ . . . . ’
izable to’ science stimuli’Where the dimensions of the concepts had a binary ’
’ ‘e - ) . . ' T
nature, R - BT ot
A variety offﬁodelgfhaxe been proposetho‘explain the major phenomena‘

that have been. observed in t§o4category concept identification reseagcha, \ ‘.

> ’ - A - .
‘studies within the psycholog§(;aboratory. Early stuidies evaluated whether

..t

- . . y : . - hike
these lehrning processes were all-or-rione or inctemental; in the all~oanone

£

. model there is no improvemen before the subject learns, whe as in the

incremental model the performance of a subject improves _Step by sté,‘jith

%o, .

practIce. The results, gﬁ a wide variety of concept learning experiments
o " - ‘ ’ - .
(reported by Suppes and Rosenthal-Hill [19)) genmerally concluded-that an




./ ’

. & - T
) ‘all-or-none model provided a first 'ppro&imat;on to reSpQE?e data, but

that a more complex moﬁél‘was needed to go beyond the first aﬁproximation.

Bourne ahd Dominowskif(33x reported that thé'first‘concéﬁt identifi-

.cation tasks, where subjects selected from a pool of rules and/or 'attri-
‘ K

butes that were possible contenders for solving the conceptual problem,

gy . were Jévelopqd by Bruner. Other researchers have developed more elaborate
- » . ’ .‘.‘ * o g\
‘\j hypothesis formgpionsand selecttun strategy theories in twgl tegory con- '
1 Ao , . . € ' ‘
cept’ identification_tasks, and have also developed mathematical models in‘

’ ‘ . ' " = ‘
) an attempt to formulate their ' findings. MathemaLical models were initially

1 1N

d%velopéd,for sigple learning situations with animals and were applied to
A 4 L] .
human concept lgarhipg tasks later with considerable caut}on. Caution is

N esgential 'since human learning is so much moxe complex; hence,~w0rkable"f .

- .

models will also be relatively comﬁlex. - ’ -~

» Y t ?
e

Three Mathematical Models for Research -~ . . e

-

in the Learniﬁg.of Science Concepts -

\

Three such systems have been developed for the representation of
. . . \ . : .

humar concept Iéarning by mathemstical models:

~ L] . .

o 1) an infdrmati;:_‘rbcessing approach utilizing computer simuiatiog,

e 2) a stochastic approach utilizing Markov chains, and

' h )
3) an informdtion theory approach. - \

kl) The information processing model is explicf?ly designed'foi com-"

puter simulation. An informatfon processing system (IPS) cons%sts of a .
. i .
memory containing symbols and mechanisms for receiving, prganizing .

and interpreting stimuli and feedback from the environment, A computer isg

- 5

T

.
‘.
- ’
“ .

v » . [N

p , . :
. -
.



. a familiar example of an IPS, and in this approach; to concept learning; . N

_‘humangthinking is aléo an IPS, Computer programg\can be_writtea to perform T-

L 4 : . ’ !
4 . 2;‘ 'tasks which in humanS'require thinking,and.learning1 The model can be L .

‘

o~ v

tested by compﬁring the "learning' of the computer progrgm with that of the «’ -
. ’ .

. subject when both ang performing, the same learning task. “If the computen/
\ . :
. }o_utput and subject's learning strategy do not compare well, other procedulr’es

can be incorporated ihto the Information processing model to improve the

- s
. » A

. goodness of fit af the modkl.. . ‘ ' e i

Another 'example of anl information processihg apﬁroach is the Wisconsin .
. . [ T .
. ’ . - . ] ‘ o .
- model of ctoncept learning and' development initiaIly‘formdlated by Klausmeier:
7’ ’ . N 4 » - B

" (as reported b¢lKerlinger and Carroll [34]). It defines four levels of con-

.«
.

i

i - 1 ! 4 Y
< » Gept attainment, outline ‘the possible uses and extensions of attained

4 ““‘a‘.,
(_’at each of tke four l

.

- J h ]
els and postulates internal and exte;nal condit{ons

[y L

.

< of learning related yo the specific levels. _The levels'of concept‘mastery,

’ - we
. the operations, and the conditions of learning hav&‘been identified through ,

- hehavioral~anal§ses of concept-learning tasks and ;hrough ‘empirical research

.
-

iJiFaborafory and school settings. The Wisconsin model is concerned with

";\system of concepté and related experimentation involvihag subjects ranging ~ - -,

- . .
o ¥

in age- from about three years to young adults, The model describes different

.
4 -

levels of attainment of the same concept and 5pecifies the operations essen-

» v

tial to aﬁtaining concepts at sliccessively higher levels. * : o

. ' (2) The sﬁBchastic model involves a random procesir;hat is observed
. repeatedly;,the probahility of the qutcomes may be different from qﬂe trial

, ¢ . . - - . ~
to the next. One of the bgsic assumptions of the stochastic modelof concept

- s - ;oo
leatning is ‘that man'stggénitive pfscesses operate as ap apfroximate ergodic

«
N . . . v
. ..
'
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. . ~ .

- source (i e., the -ef.fect of one cognitive process on another is limited to

L

’ a certain finite maXimum that- can be as‘rtained as in the cémpletiw of an k
“@&’ . incomplete sentence) using a _stochastic prdcess and Markowian chain reason-; ' ‘
¥ ' .

. ing. The probability of identifylng concepts depends directly on what has g .

i -

happened‘ before. Concept identificdtion is' ind1rectly‘ related to ‘trials -
- s o . [N
: ! or time.‘ ‘In the simplest caSe the probability distribution on trialm * T Yo
SNy -
. depends only oQ the ouueome of trial n-l: this produces \a finite Markov .
chain. Gréeno ~(35) claims that ;0n;a1 human behavi‘or treated as’ a’ sequepce

-
n " g 4 ' .

N of behaviors is Markov1an,- althoUgh this 1s a, subtle conﬂe‘ratlon. it has, N

. major importancle ts the research of learning bﬁhavn,ors. PN ]
) ) T § ’ , . : -
o : The idea of finite c¢haing in 1earning psychology has had at least .

‘ N -
N

. thtee effects. 1) The use of Markov&hain,s with few statés to represent

N A, v . 3 s s /{ . e

learning ‘has encou?:aged t'he development ‘of ideas about lezarnim§ processes
'

_ T involvirfg Ve small cha.nges in a- i:eamef‘s state of knowledge. 2) Finite '

‘ Markov chains have provided (the basis of a:vigorous mer.hodology for inves-

-« S tlgating stages in the précess of- l'eaming.‘ B.y;noting! the pattern Of change \
- © in the parameters of a Markov' model, the invedtigator’ can make relatively_ -,
e S strong inferences about)the nat;ur.e of‘ the pSYCh;iogic;l. processes im’°1vea -
A in leaming. '3) It.is convenient to represent a *complex ptocess as a .- -
N . S

Jhrox_noger:w_ous collectIén of elementar} prqcesses.,» Infth,ia manner finite Mquov
" >
- T chains have been applied succeesfully to the theory of problem solving, \\
espacially concept identif’ication, ‘by researchers such, as Bower, Restle,.” T\V
’ . . . ) , N . ‘ ." .

3 N . ' . . —

Suppes and Trabasso? S o s PRI

An example »of"the'sto‘:hastic approach. is \Bowef and Trab_aqao's-model, "
. which postulates two concurrent processes durifg concept identificaticn,?
- . N . . i b . /
namely. a selection of stimulus dimensiéns and a leafningﬁfrocess by which -

)
4 S . e o . . .
.o .
- . .




responsesuarénassigned to the values of a'selécted stimulus dimensiqn; . ‘

.
. - < . . .. J
<, -~ K - \ - ’

".both processes are assumed to be all-or-none. ﬁoweriand Trabasso's model

- has bten supported&by data in a series of experiments, initlally in‘situ— | .

. - . . “ '
‘L ations involving simple concepts with a single relevant dimehsion and - ‘ .
+ later iﬁ the learning of concept probisms withﬁtwo relevant dimensions ' ~

-(21, 36, 37, 38). ' B P S '
13 -~ 4 N e > S~ L . . . .
. a (3) The third system td represent concept learning, the infdrmation ‘ y

v ' ' ¢ IR

lthéogz model proposed by Moser and his Yssociates (39 Aﬁﬁ, draws on v o ot

<~ the early workﬂ%f Shannon Broadbent and othgr information theorists. _Moser"
x . .
: has incorporated additional theorhmp and'algorithms th describe'how human

. + memory operates fo;{processing'informhtion in Jhe acts of learning or cog-
‘ - . ' l\ . . )

+ ~ . nition. The basip concépts of the model are that .cognitive *behavior is . )

B e t

\v’}brkovian and " that the human memory operates in a logarithmic fashion to

. #
'

receive, output and store information. . N
A " ° , . -
. Co . Moser reports severdﬁ experiments where students' behavior in the~'

,° science.classroom was quantitatively'recorded. . For example, Faziob(as
T reported in Moser {39)) investigated:the structuredness (which relates ,

. ot - . RN
to the influence of complexity of form) of the overt concrete-problem—

v 1 ' . — .

~ e -

-solving behavior of colIege,students working on three related electric cir-

S

. -Eﬁit tasks. It was hypthesized that learning would be greater with more * -

structured~output. The restlts of this ekpetiment (and others) agreed with

the prediction of the\information—theory model. ' In another/ptudy, Dunlop
’ as teported in-Moser [40])° looked for hehavior»changes in‘ fifteen—year—old
. d _‘ youths resulting f;:m instruction in a classification task. Duniop'con—

v

v

cluded that abstract and concrete kinds of perceptual tatks are prgcessed

,in different ways by groups of childr who are at formal and concrete _/\
. o . . .

> .

\\ ) . B - ) P T__ "‘
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’ ’ . - , ) — ‘ . d . \ /‘ v
- operational levels of. devéIOpment respectively. - o » . i . ‘

( ) = -
' . oy AN . . v
The difficulty with cogputer simulation mbdels 1s that a human subject

. ! ' . -~
3 s - »

is not easily déscribablg éstaq'infbrmatidh{processing system. Yet, computer - )

’
- I3

. N 13 [ N B .
- simu}ation models are more convincipg than Markov models in that, although

) il

~

existing models arg imperfect, their ultimate aim appears to be' the : T
\ v , . - -

' " ¢ ~ N s
i " simulation o‘fnps;’rchological reality, A g,éég‘) point is Simon's (41) attempt

RN : - : ) T . :
to provide a moré concise definition of Piaget's notion of "operational ?
y - “ . .
v - ' . . .
,strgcturés" usinf an Information ‘processing approach, ;§imon conjectures

a 3

“that an objective referent for "operationa% structures” will consist of:some s
.+ . of the general featires of the meanSthat ch}ldren in a given society ‘learn
/23 ' to-use for:storing information. Data from information processing programs -
. . . - . ’ * :

—~ - L4

- . ) L .‘ ' . — . " o,
for human intellectual processes indicate that some memory structures and ,
associated processes are ‘relevant to Piaget's approach to intellectual. ' "
o, A - N ’

development. o o oo L. o

’

f *

+" " " The incorporation of memories inté the pool of hypotheses, the increas-

. N ’ . v . . . -
.1ngly detailed level at which data are identified, and the more complex :

* *

ianghage.in which.m;dels are formulated bring the most recent stochéqpic T

.
e,

. R -, . _ ‘ s - ) . )

concept learning; studies close to the computer simuld?!ﬁn‘approachesﬁ Both

/ X ™ K . - — o -

CF approaches appear to aim-ultimately at drawing inferences about psychological
s - .

)
- . "

-~ N -

\ . prdcesses from fine—grain/data. .
'\
\
|

N ' ‘ A
- ( - ‘ . N . \
ot Summary, . ' ) ’ ’
+ ‘ . ) )

, - 'R

This paper has reviewed some research in both educational and ..© -~

psychdlogical fields to discuss the relevance and applicatiom of




'

mathematical models of concept %eerning to the ffe1d~of science edusation.
- ) . A - M .

.qut‘of~the reséarch on cbncept"léarnihg,has;been conducted within the™

o LI \ .: } * " . .
. idealized psycholégy laboratory, though there is considerable evidence v .
. v , i . - I X : e
, -~ that such research has potehtial application in science‘education. While -
PR many éeience edugators strongly support such lines of research, little, v
. R -
. FA H

reaearch has been dape in science educagion involving mnfﬁematical models

. , of concept learningiﬁ‘mhis problem may be %ue, in part, to a lack ofy '
aw6¥eness of the relevﬂhg pdyohological work that this paper haQ\reviewed '
[
The areas of research c?vered “include: ) . ¢
. ' . . Lo

1) an historical perspective of emp:l.ri(al studies concerning concept ' "

[ .

’

s

-.learning; ( ’
. s ;
2) mathematical.models for optimizing ;hstructional strategies:

~N ,' . + 3) concept learning_and the development of mathematical models rele-

vant to research in science educatjion.




17

References

1.

°
- -

& D
" 1. Watson, F. G, Toward effectivé research in science

ducation. Theory

Intg Practice, 1962, 1, 278-279.

1 -

7 2, .Tyler, %. W.  Resources, models and theory in the [improvement of

QrﬁFearch in science education. Journal of Resea in Science Teaching,

/ - <

/ Journal of -Research in

/

/0

/ . .
Lo .. , ,‘/s//'_ Lo

4, Hurd, P. D. Resegrch ‘in science’ teaching: planning for the future. _ e

1971, Wpa3-249.
/

uiry on education. Jo&snal of }“f

-

Sn 1967, s, ‘43-51.

-

3. Pelld, M,.0. A structure for science educatio

ol § Scienge' Teaching, 1966, 4, 250-252.

.

R )

’ 7 Joutnal of Research in Science Teachin

5. Glass, V. The wisdom of scientific’e
. ‘ . s

Y Research in Seience Teaching, 1972, 3-18.

?

-

“[ﬁ = " 6, Novak, J. D. »A summary of research in science teaching —- 1972.

fe " . . r ’

S ‘ Colunmbus, Ohio: ERIC Informstion Analysis Center, 1973. '
. - ¢ . P

¢+ 7. Novak, J. D.L/Bing, D, G., & Tamir, P. Interpretation of research
. / * .

- |

<

./ - .
findings in terms’ of AuSuyéi's theory and:implications for science ,

Te )

"education. 'Science Edugation, 1971, 55, 483-528.

/ \ i Y
8. ohrison, E.,, Curran, E., & Cox, D. L. A modﬁz\for knowledge of con-

-

' cepts in science: Jbrnal of Research in Science Teaching, 1971, 8,

\ 91-95, . % e

9. ,Vq:}kér, A. M. R dércb gn science concept learning -- an analysis.
, J ‘ T E - -
Columbus, Ohio: C Information Analysis Center for Sciénce, Mathematics
i " ’ Y *
Education, -1978. , ‘/' ’ ’

. © I ] A
/ « .

é(négd for paradigms in sci nce education research.

and Environmenta

, 10. Bowen, B. L.

! a

. ‘ . ’
Science Education, 1975, 59, 423-430.
= > PO .

\
'
; ¢ | . w
. N ]
’ I ) . .
; A4 A
. [ R
B
.. B
‘
B




. . > v v
‘ ;\ . R . . e ~ (J ) -
. / . . IR P R _ . L ) M * e :
’ [ ¢ ' 14
i . ’ . \ N : ' 18 , .
M - 4 , . \
. o o . &
N N A} " , - » P
- \ i - . . , . ‘ - 0 ‘
*11. Nagel, E.  Philosophy of sciepce and educatipna the0f§§ -Studies in . )
. 3 du ) yrueles 1o ¢
N . oot >\ <
Science and Education,_1969; 7, 4—%1. ‘ \z; - . .
) ' T . o - 'f\kﬁs S
- - ~12. Snow, R. E, Theoryﬂconstruction for rese ch/1in teaching.” In R, NV . !
s ‘ 1 A /' . - . ‘
E c e e 4
. Travers (Ed.), Second handbook of reseapch in teaching. New %Prk:
’ : . / ) \ T »
» McNally; 1973. Ly -/ : ‘. ’
i . . ] j ., . .
13. Atkinson, R. C. Mathemdtical models 17 research with children. In . )
J. C. Wright & J. Kagen (Eds. ), BasichqgnLtive processes in children.
. S Monographs,-Society for Research_in Chilg/De lopment, 1963 28 (2) *
" 14. Parlett, M., & Hamilton, D. ’ v 6, 11lumination: a new approach' .
’ . * - - .\ . ’ - ‘ (3 ’ . ) .
Y . to the study of innqvatory progfamg./ In G. V//glass (Ed. ), Evaluagion L
studies: review annudL;' Vol, i. everlg Eills, CalLfornia. Sage S )
. v © Publjcations, 1926.// -/ . T
RN : -/ / . : ' - )
. 15. Atkinson, R. C. Ingredi nt for a theory of imstruction. American -
y ’ )
. . - Se ‘
‘ Psychologlist, 1272 27/ 9 A . o o )
. i o~ [ - - , - : ‘//," .
16. Suppes, P. Applicatjons/o mathéi%;ical models of learning in s o
A ]
' < :
education. In H. A/ Wold (Ed.), Model buildimg in the human sciences.
Y . , ~
Monaco: Union Eurgpeefné d!Editions, 1964. -
17. Suppes, P. Mathemayfical concept formation in children. American’
Psycholdgist, J96b, 21 (2). . ' i o ~
. 18. .Suppes, P. Spme oretical models for msézematics learning. Journal ,

*  of Research nd /Development 1p Education, 97, ‘1 5-22. .
- b QI 9 3
° enthgl—Hill I. Concept‘formation by kindergarten I

19.  Suppes, P.

children in

c rd—sorting task. Journal of Experimental Child Paychology,

ot ' —
., & Paulson, J. A/ An approach €o the psychology of

Psychological Bulletin, 1972, 78 (1), 49-61.

a I\l . ,




———

27.
‘28

229, haughlin, P R. Selection sttategies in concept attainhent: In '

30.

Treagua£3 D.»F. An analysis of the learning of a four—category

.concept in science using /)maer and Trabasso theory of concept \

N c s
. .
v ¢ o . »
. .
. > i

* rl »
o L .

-~

’

identification. Unpublis 9d master's, thes®s; University of Iowa, i

.
. ‘ " .

,1976~ o ’/ SN . ! A

* ﬂ
Atkinéon, R. C. ‘Computeriassisted learniné in action. :Proceedings -~
\

of -the Natianal Academy of Sciences, 1999, 63, 588-594. AR

—_

Chant,- V. G., Atkinson, R. C Optima1 allocdtion of instructional

#-u‘p- / {

effort in interrelated 1earni;gﬁst;ands. Stanford: Stanford Unlversity
VAR v .. - . ,

Department of Engineeriné ——,Economic‘Systems,‘1972. \ N .
P .

Suppes;/P. Computer—assisted instruction at Stanford. In Man and

i
¢

© computer: proceedings of the internatiopal conference. Bordeaux, 1970.

-7

.-
Eletcher,'J. D., & Suppes, P. Computervassisted jnstruction in red/ing,

grades 4-6. Educational Technology, 1972, 12(12), 45-—49.i .

Loftus, E: B, & Suppes, P, . Stretural variables that determine b
- - ~ i L -

problem-solving difficulty in computer assisted instruction. Jourmal ‘]

“of Educat{onal Psychology, 1972, 63, 531-542. . v

[

Atkinson; R. C., Bower, G. H., & Crothers, E. J. An introduction to

mathematical learning theory. New York: John Wiley and Sons, 1965.

-~

.. Pikas, A. Abstractfon-and concept formatiop. Cambridge; Massachusetts:
rd -

' . . . , . : . ~
. v

Harvard Unlversity Press, 19662‘\.1 ;o .

. . . .
ot . s oo 4

I
Conte@porary issues in cognitive psychologzj ‘the Loyola symposium //~—¢7’~_*

N~

New York: John Wiley anhd*Sons; 1973. N ~ .

N < A

Bourne, L. E., Jr. Human conceptual behavior. ’ Boston: Allyn and Bacon, |

1966. - L S




7 - .

o ] o ¢ .
o 31. Bourne, L. E.; Jr!, Ekstrahd, B R., & Dominowski R L. The psycholqu

A ‘. - /
. of thinking. Eﬁglewood Cliffs, New Jersey. Prentice—Hall L271

s
T e 32 Treagust *ﬁk F., & Lunetta V N. An analysis of a four category- .-

- * ’ -

concept in science using the Bower and Prabasso model of concept

A

identificatiog. Unpublished manuscript, University of Iowa Science

. _' «+ +Education Center, 1977. .

- N » . »

) . . . ] : .
*33., Bourne, Ly E., Jr. Human conceptual behavior. Boston: Allyn and Bacon,

1966. I . ST s
. ’ . - . ’ - e
] 34, Kerlinger, F. N., & Carroll, J.-B. (Eds!) Revieweof research in

education. Vol. 4. Itasca -Illinois‘ F. E Peacock 1974,

Ve

35. Greeno, Jf(L' Representzigon of learning and discrete transition’ in

- v .

a finfte’étate space. It D.-H. Kraft, R. C. Atkinson, P. D., Luce & T

P. Suppes (éds.), Contemporary developments inm mathematical ﬁgycholggy" *

- Vol. 1. Learning, memory and thinking. San Francisco:’W; H. Freeqan/\

- . 1974, . o 'ﬁ-
—_— - AN * . . * ’
«~ 36. Bower, G. H., & Trabasso, T. Ra Concept\identification. In'R. C. '

< ‘Atkinson (Ed.), Studies in mathematical psychology. Stanford; Stanford .

.

University Press, 1964. ‘h
37.iTraba§so; T. R., & Bower, G. H. Component learning in the f&hr—category .
problem.\‘JoutLal oﬁ‘gathehatical Psycholggy, 1964, 1, 143-169. Y \
- P . b N
38. Wandmacher,’J., & Vorﬁctg,/pi Agplication of th; BoYer and ?raﬁacao -
i ‘« thecr? to four categoty concéept learning with probabilistic feedﬁack.

Acta Psvchologica; 1974, 38, 215-233, ! . .
& . V\ . , . -

"~ 39. Moser, G. W., et al. The use of information theory to study human /‘\\ v

learning. Symposium prescnted at the meeting of the National Association

, ‘
for Research in Science Teaching, Pittsburgh, 1973.

« e - . N R .




A
[N 4
s
=
>
3

y . ‘

s . ’60.~ MQEer«,qu, W., et al. The rol,le of réﬂundancy and code informagion in

. _ memory and,intelligence: an analysis of -the new Piagetian model. y R
» "‘ * ’ * " - .
Symposium presented at the meeting of the National Association for |

S ~ Research*® in Sc-:‘{énce :I‘eachiﬁg, Pittsburgh, 1975. o .: & e

* 41, Simonm, H. A, An information procéssing theory of intellectual

- »

. % developmqnt. In Cognitive deve‘lopment"gLn childrep. Chicago and ’ i

’ - ..

- Eendon; Univer's’ity of £hicago Press, 1970. ' o~
| v : L D ' .

r . - y M ¢
v
. ‘ \
" v * . - -
. R ', -
- » -
I - R .
. S . >
.
{ .t .
A3
A ~ ’
. ~
B - ,
* . - e
. > -
! __. . ’ * Fa
[ - . . .
z 3 - .
. . ~ 1
S \\ . L] 3
- - » -
> N = °
kS . - - ) «\y
‘ . . ,
- ! ¢
v 3 P ’
. o
h 3 [ .
-~
, . % . ) .
= L]
- . .
Ky .
- t *
L 4
: 0
-
N . LS ¢ |
- s ! . ‘
» ‘ ) T +
. P
@ ’ ")\
’ - .
v - < ¢ '“
b3 * -
’ . . . .
L4 ‘ - ‘ .
. . . Y L4 N .
E_J - - -~ R ’ B -

. . .
' . - > )\ . . .
¢ ~ 4
r—-—/ ? . * . . ‘ 2
" ' * B * b ™~
. - . ’ ’ 3 . N - ¥’
) 4 7 - ‘
* . ‘; s g! . . ¢ L .
» N b
- . Y -
" h A
e ’ S e ’
' N v s i “ .’A
. ’ - - N ’ .
-
, v *
N . ) , » - . " ’ » ~ -
. ‘. - ' .« = . N a
S R ( . e 4 C -
. . |
‘ % ' oy N
\)4 . ‘ . B . ! ‘ . LY
ERIC ' 7 SR ~ 0
; - : ¢« 0 o
- T : " N ’ - . ]
- ! 2 -




