AJTHOR TITLE

INSTITGTION

,SPONS AGENCY

- púb DÅ E.

NOTE
EDRS PRICE
DESCRIPTORS
-IDERTIPIERS ABSTRACT

Beatty. Leslie; And Othërs Mathematics.for the. Blementary School. Grade 5. Teacher's Commentary, Part Ir Dait/ No: 31. Revised Bdition:
-Stanford oniy., Calif. (School Mathematics Study Group.
fational. Science Foundation; Mashington, D.C. 62
463 p . Por related dócuments, see SE 023"140-143.
MF- $\$ 0.83$ सC $-\$ 24.37$ Elus $\overline{\text { Postage. }}$
Curriculum Guidés; Elementary'Educàtion; *Elenentary School Hatheatics: Grade 5: Instruction; *Instructional Haterials; Lesson Plans: Mathematics Education; *Number Concepts; *Teaching Guides *School Eathesatics Study Group

In this guide, for teachers using the shag text màterials for grade 5, fivë chapters on numeration sistens, factors and primes, multiplication and division, and congruency of geonetric figures are considered. The purpose is stated fof each unit.and mathematical backgronn for the teacher is presented. Teaching procedares are then detailed through specific activities, statements, 'gyestions, and anticipated respońses. Exercise sets and answérs are also included. (4S)
 ** Documents acquired by ERIC include many informal unpublished.

* materials not available fron other sources. BRIC makes every effort
* to obtain the best copy ${ }^{\text {a }}$ ailable. Nevertheless, itemk of marginal.
* reproducibility are often encountered and this affects the quality
* of the ficrofiche and hardcopi reproluctions ERIC akes available
* via the ERIC Document Reproduction Service (EDRS). EDRS is not
** itesponsible for the quality of the orighnal document. .Reproductions * -* supplied by EDRS are-the best that can be made fr on the original.

業

Mathematics for the Elementary School, Grade 5

 Teacher's. Commentary, Part I REVISED EDITIONPrepared under the supervision of the Panel on Elementiary School Mathematics of the School'Mathematios Study 'Group:

Leslie Beatey , © Chula Vista City School District, Ghula Vista, Çalifontia
E. Glenadine Gibb \because Iowa State Teachers,College, Cedar Falls, Iowa

- W. T. Güy " 110 University of Texas
S.B. Jackson \quad Universiry of Maryland Irene Sauble $\quad \therefore$ Detroit Public Schools
M. H.Stone ' . University of Chicago
J. F. Weaver - Boston University.
- R;, L. W்ilder

University of Michigan

- New Hayen and London, Y̌ale University Press

Copyright © 1962 by The Board of Trustées of the Leland Stanford Junior University. Printed in the United States of America.
All rights reserved. This book may not be reproduced in whole or in pare, in any form, without written permission from the publishers.
Financial support for the School athematics Study Gtoup has been provided by the. National Science Foundation.

FOREWORD

The increasing contribution of mathematics to the culture of the modern world, as well as its importance as a vital part of ${ }^{\circ}$ scientific and humanistic education, has made it essential that the mathematics in our schooles be both well sélected and well taught.

With this in mind; the various mathematical organizations.in the United States cooperated in the formation of the School Mathematics "Study Group (SMSG). SMSG includes college and university mathematicians, teachers of mathematics at all levels, experts in education, and representatives of science and technology. The general objectite of SMSG is the improvement of the teaching of mathematics in the schools of this country. The National Science Foundation has provided substantial funds for the support of this endeavor.

One of the prerequisites for the improvement of the teaching of mathematics intour schools is an improved sarriculum-one which takes account of the increasing use of mathematics in sicience and technology and in other areas of knowledge and at the same time one which reflects recent advances in' mathematics itself. One of the first projects undertaken by SMSG was to enlist a group of. outstanding mathematicians and mathematics teachers to prepare a series of textbooks which would illustrate such an improved curriculum.

The professional mathematicians in SMSG believe that the mathematics presented in this text is valuable for all welleducated citizens in our society to know and that it is important for the precollege student to learn in preparation for advanced work in the field. At the same time, teachers in SMSG believe that it is presented in such a form that. It can be readily grasped by students.

In most instances the material will have a familiar note, but the presentation and the point of view will be different.. Some material will be entirely. new to the traditional curificulum. This is as it should be, for mathematics is a living and an ever-growing subject, and not a dead and frozen product of antiquity. \because This healthy fusion of the old, and the new should lead students to a better understanding of the basic concepts and.structure of mathematics and provide a fimmer foundation for understanding and use of mathematics in a scientific society.

It ins not intended that, this book be regarded as the onily definitive way of presenting good mathematics to students at this level. Instead, it should be thought of as a sample of the kind of improved curriculum that we need and as a source of suggestions for the authors of commerciay textbooks. "It is 'sincerely hoped that these texts will lead the way toward inspiring a more meaningful teaching of Mathematics, the Qqeen and Servant of the. Sciences.

CONTENTS
FORWARD PREFACE Chapter

Teachers! Pupils! 1. EXTENIING SYSIEMS OF ŃNMERATION: :. . . I.
Purpose of. Unit 1.
Mathematical Background 2
Teaching Procedures 7
Extending Systems of Numeration 739 1
Reading Large Numbers 10,11
Expanded Notation 14,15
Cotmentary Page
Benaming Larger Numbers .18,19 8
Decimal Names for Rational Numbors 21,25 10
Renaming Decimals $i 4$
Decimals With. Thousandthis 16
Other Decimals. $20 \cdot$
Base FIze Notation 124
Place-Value in Base Flve. 26
Base Five and Base Ten Numerals 28
More About Base Five and Base. Ten' Numerals. 54,55 30
Using Groupings. by Five 57,58 '32
Thinking About Numbers in Other Bases 59,60 33
Place Value in Other Bases. 62,6435
FACTORS AND PRIMES' 69
Purpose of the Unit 69
Arrangement of Ghapter 70
Teaching' the Unit 71
Factors and Products. 71,7641.
Testing Numbers as Factors. 79. 44
Different Product sexpressions for the Same Number 81°"The Associative Broperty ofMitiplication.82
46

Chapter

3. EXTENDING MUITIPLICATION AND DIVISION I 183
Puxpose of Unit. 183
Mathematical Background 184
Teaghing the Unit 191
Yeviewing Ideas of Multiplication 192,19391
Reviewing the Properties of Multiplication. 195
Conmutative Property of Multiplication. 197: 93
1 Assoaiative Property of Multiplication '1988 94
Review of Properties (Continued)
Disitributive Property, ofMultiplication over, Addition. 204;205.99
Becoming Skillful in Multiplying. 212,214 104
Multiplyịng Larger Numbers. . . . 217,220 107
A Shorter Form For Multiplying . 224,225- 110
Using A Shorter Form To Multiply Larger Numbers 227,228 i12
Problem Solving. 231,234 115
Reviewing Ideas of Division. 237,238 117
Working With Multiples of 10 and 100. 239,241 118
Becoming skillful in Dividing. 253,254 128
Finding quotients and Remäinders 256,258 130
Finding Multiples of Larger Numbers. 264,265 135

- Using Divisors That Are Multiples of 10 . 267.,268 137
A Shorter Form for Dividing. 271,273. -140
A Shorter Form for Dividing by Larger Divisors. 276 143
Practice Exercises 146
Review Problems. 149
A. cONGRUENCE OF COMMON. GEOMETRIC FIGURES 295
Purpose of Unit. 295
Mathematical Backgroiund. 296
Teaching the Unit. 303
Review of Ceometric Figures. 305,308 161.
Pyramid. 312,315 164
Cylinder 316,317 165
Triangle 318,319 166
Half plane 168
Congruent Figures 323:324 169
Congruent Line Segments. 326 171
Congruent Triangles. 328,329 173
Congrient Angles 3"32,333 776
Corresfonding Angles 334 177
Copying a Llne Segment 336,339 179
Copying a Irine Segment Using the Compasis. 341,342 181
Triangles 348,349 187
Copying a Tirtangle. 354,359 189
Constructing a Triangle, Given
γ Three Segments. 362 192
How Many Sides Determine Exactly One Triangle, ' 364 194
Copying an Angle Using Straightedge and Compass 366,367 196
F Comparing Sizes of Angles 373,375 201
Angles With a Common Ray. 376 202
Angles Without- a Common Ray 382 208
Using the Congruent Angle
Construction. 384$210^{\prime}$
Suggested Test I'tems: 389

5. EXTENDING MULTIPLICATION AND
DIVISION II 397
Purpose of Wnit 397
Mathematical Background 397
Teaching the Unit 398
Multiplying Large Numbers 400,402 215
Multiplying Larger Numpers. 4.05. 218
A Shorter Form for Multiplying. . 408,409 221
Expreasing Numbers to the Nearer. Multiple of Tén 411,414 223
Expressing Numbers "to the Nearer Multiple of "One Hundred..... 415,416 224
Division 417,418 225
Dividing by Numbers Greater Than: 10 and Less Than 100. : 421,422228
Flñing Shorter Ways of Dividing. 427,428 233
Using Shorter Forms When Divisors .Are Multiples of Ten. 433,434 238°
Working With Divisors Between 10 .and 100 437 241
Quotients Greater than 180. 440粦 244
More About Using Helpers When Dividing. 445,446 249
Shortening Our Work 451 254
$/$ As one of its contributions to the improvement of mathematics in the schools of this country, the 'School Mathematics Study Group - has prepared a series of sample text materials for grades 4 through 6. 'These are designed to" 11lu'strate a kind of mathematics curriculum that we belfeve appropriate for elementary sçhools.

This volume is portion of the'se haterials which were prepared by a group of 30 individuals', divided almost equally bétween distinguished college and university mathematicians and máster elementary teàchers and consultants. 'A. strong effort has been made on the part of all to make the content of this text material marthematically sound, appropriate and teachable. Prelfminary versions were used in numerous classrooms both to strengthen and to modify these judgments.

The content is designed to give the pupil a much broader concep $\dot{p} \dot{t}^{*}$, than has been traditipnally given at this level, of what mathen \because-matics really is. There is less emphasis on rote learningl and more emphasis on the construction of models and symbolic representation of ideas and relationships from which pupils can dráw important mathematical generalizations.

The basic content is aimed at the development of some of the fundamental concepts of mathematics. These include ideas about: number; numeration; the operations of arithmetic; and intuitive geometry. The simplest treatment of these ideas is introduced early. They are 'frequently re-examined at each succeeding level
and "opportunitie"s" are provided throughout the texts to explore them more fully and apply them effectively in solving problems. These basic mathematical understanding and".skills are'continualiy developed and extended throughou't the entire mathematics curriculum, from grades. K through 12 and beyond.

We firmly believe mathematics can and should be studied with success and enjoyment. It is, our hope that theşe texts may - greatly assist all pupils.and teachers who use them to achieve this goal, and that they may experience something of the joy of discovery and accomplishment, that oan be realized through the study of mathematics.

Chapter 1

EXTENDING SYSTEMS OF NUMERATION
PURPOSE OF UNIT
This unit is an extension pf the work of Chapters 2 and 10 ,of Fourth Grade.
(a) The decimal system of numeration, with its principle of place-value, is extended to involve numerals for whole numbers larger than those considered in Chapter 2.
(b) The decimal system of numeration, with its principle of" place-value, is extended to the right of the ones: column to embrace the writing of numerals in decimal form for tenths, hundredths, and thousandths.
(c) Non-decimal systems of numeration, with a prinçiple of place-value, are extended to cover the writing of three_place humerals. This is introduced primarily as a means to a greater understanding of the decimal system particularly and tho nature of numeration generally. . Oniy when the decimal system is studied in the context of place-value systems do certain of \because iṭs properties emerge cifearly.

- . In addition to the mathematical background which follows, yout will find it helpful to sṭudy. Chappter 2 (pages 17-49) of Number .Systems (.SMSG Studies in Mathematics, Volume VI).

MATHEMATICAL BACKGROUND

Principles of numeration cannot be developed effectively if confusion exists regarding the terms number and numeral. Thiese àre' not synonymous. A number is a concept, an abstraction. A numeral is a symbol; a name for a Aumber. A numeration systém is a numeral system (not a number system), a sýstem for naming numbers.

Admittedly, there are times when making the distinction * between "number" and "numeral" bëcomes somewhat cumbersome. However, an attempt has been made. In this unit to use terms such as number; numeral, and numeration with precise mathematical meaning.

This may be an appropriate time to comment on gur use of the equals sign $(\%)$. For example, when we write

$$
5+2=8 \cdot-1
$$

we assert that the symbols "5 + 2" and "8-1" are each names for the same thing - the number 7. In general, when we write

$$
A=B
$$

we do not mean. that the letters of symbols "A." and. "B" are the same. . They very evidently are not! What we do mean is that the letters " A " and " B " are synonyms. That is, the equality

$$
A=B
$$

asserts precisely that the thing named by the symbol "A" is identical with the thing named by the symbol "B". The equals sign always should be used only in this sensé.

- 'The naming of numbers, is a problem that has received attentioh over a period of many, many years. 'Sources such as the one mentioned earlier (Studies in Mathematics, Volume VI) give interesting and helpful information in this connection.' For our - immediate purposes it will suffice to consider onlog, the underlying nature of the scheme for naming numbens triat we use commonly today.

We are so familiar with our decinal system of numeration that we may fail tò sense clearly that it is only one instance.
of "the class of numeration systems. These are called place-value systems, because they use the same 1dea of place-value.

We learn, for example, that the symbol 213 (read "two one three") means

$$
2(\text { ten } x \text { ten })+\therefore \text { ten }+3 \text { ones. }
$$

It is because the base of our numeration system is by convention ten and not nine that we give 213 this interpretation and not

$$
2 \text { (nine } \times \text { ninè })+1 \text { (nine })+3 \text { (ones). }
$$

Both interpretations belong to what can be called place-value. númeration systems. . In any such system' 213 would designate

$$
2(n \times n) \pm 1(n)+3(\text { ones })
$$

The different systems. correspond to the possible choices of the number, n, called the base of the numeration syftem.

Because the numeral 213 has different meanings in different. \Rightarrow place-value systems, it is necessary to indicate the base of the system which is intended. We do this by writing the word name for the base as a subscript if the base is not ten. Thus

$$
\begin{aligned}
& 213=2(\text { ten } \times \text { ten })(\text { hundreds })+1(\text { ten })+3 \text { (ones }) \\
& 213_{\text {nine }}=2(\text { nine } \times \text { nine })+1(\text { nine })+3(\text { ones }) \\
& \left.\left.213_{\text {eight }}=2(\text { eight } \times \text { eight })+1 \text { (eight }\right)+3 \text { (ones }\right) .
\end{aligned}
$$

(The symbol $213_{\text {nine }}$ is read "two one.three, base nine".) : In any place-vatrit system arbitrary symbols are needed as numerals for whole numbers less than the base of the system. These numbers are called the digits of the numeral system. Since there are available conventional symbols for the digits of the decimal system, we can adopt these as the numerals for the digits of gher systems. No new symbols will be needed provided we restrict consideration to systems with bases no greater than ten. Thus in the base eight systiem we name the digits. $0,1,2,3,4$, 5, 6, and 7. In the base five system we name the digits 0,1 , 2, 3, 4.

Since afy symbod such as. 3 ;' whenever used as the numeral for a digit will name"the same number in every system, in which , it appears, this convention is unambiguous. . The numerals for
digits therefore require no subscript. \therefore As is often done in this chapter the subscript "may, however, be added as a reminder of the system under consideration.

In giving the interpretation of a place system numeral like $213_{\text {nine }}$ it can be confusing to use numerals from another place system. Thus

$$
\left.213_{\text {nine }}=\dot{(2 \times 81}\right)+(1 \times 9)+3
$$

involves the decimal:numerals. 9 and 81 , and the latter requires for its interpretation the very idea it is assisting to explain. This difficulty arises because all pláce. systems derive from the same principle of construction and because one of these systems, the decimal system, is our "native" system.

In such a situation it seems preferable to restrict the explanatory use of numerals to the singie digit numerais common to all place systems under consideration. The other numbers involved are named by kords which are not part of any of the systems being discussed. :Thus we prefer to write

$$
\begin{aligned}
& \left.\therefore 213_{\text {nine }}=2(\text { fine } \times \text { nine })+1(\text { nine })+3 \text { (ones }\right) \\
& \text { or } \left.213_{\text {nine }}=2(\text { fighty-ones })+1 \text { (nine) }+3 \text { (ones }\right) .
\end{aligned}
$$

This is of course fust the sort of explanation we are com: pelled to give for decinhl numerals, and it therefore has the : added advantage of reveding without bias the common aspects of - aill place systems. .

A word about the distinction between symbols and names may be in order. In any context where a symbol is used in more than one way it is important to distinguish the symbol as an object in itself from the symbol as a name of something.. That is why the symbol 213 is read "two one three" and not "two hundred thirteen". The latter is appropriate only when the symbol is employed as a dácimal numeral. Similarly, to read $213_{n i n e}$ as "two hundred thirteen, base ‘nine" would be to suggest a decimal. interpretation which is not intended. That is why we read.. $213_{\text {nine }}$ "two one three, base nine.". It is important that such distinctions be made from the beginning in any discussion". of numeral systems.

A chart_such as the following one is heipful in' sensing better the numeral sequence for place-value numeration systems with-㩆ferent bases.

Base

Ten'	Nine	Eight	Seven	Six	Five	Four	Three
1	1	1	1	1	1	1	1
2	2	2	2	* 2	2	2	2
3	3	3	3	3	- 3	3	10
4	4	4	4	4	- 4	10	II
5	5	5	5	5	10	II	12
6	6	6	6	10	II	12	20
7	7	7	10	11	12	13	21
8	8	10	III	12	13	20	22.
9	10	II	12	13	14	21	100
10	11	- 12 *	13	14	20	22	101
11	12*	13	14	15	21	23	102
12	13	14	15	20	22	30	110
13	14	15	16	21	23	31	111
14	15	16	20	22	24	32	112 :
. 15	16	17	21	23	30	33	120
$\bigcirc 16$	27	20	22	24	31	100	121
17	18	21	23	25	$32 \cdot$	101	122
- 18	20	22.	24	30	33	102	200
19	21	23	25	31	. 34	-103	201
20	22	24	26	32	40	110	202
21	23	$25 \cdot 1$	30	33	41	111	210
22	24	26	31	34	42	112	211
23	25	27.	32	35	43	113	212
24	26	30	33	40	44	120	220
25	27	31	34	41	100	121	221

As seen from the chart, the base numeral always appears as 10 Wh written in that particular base system. Similariy, in a particular base system the numeral 100 always designates the base squared i.e., the base times itself. In the chart, all numerals in the same row name the same number.

Extension of a place value system of numeration to the right of the ones: column is not restricted to, a system whose base is .ten. As before, a numeral such as 13.24 may be interpreted in various ways depending upon the base used.

$$
\begin{aligned}
& 13.24=(1 \times 10)+(3 \times 1)+\left(2 \times \frac{1}{10}\right)+\left(4 \times \frac{1}{100}\right) \\
& 13.24_{\text {nine }}=(1 \times 9)+(3 \times 1)+\left(2 \times \frac{1}{9}\right)+\left(4 \times \frac{1}{81}\right) \\
& 13.24_{\text {eight }}=(1 \times 8)+(3 \times 1)+\left(2 \times \frac{1}{8}\right)+\left(4 \times \frac{1}{64}\right) \\
& 13.24_{\text {seven }}=(1 \times 7)+(3 \times 1)+\left(2 \times \frac{1}{7}\right)+\left(4 \times \frac{1}{49}\right) \\
& 13.24_{\text {six }}=(1 \times 6)+(3 \times 1)+\left(2 \times \frac{1}{6}\right)+\left(4 \times \frac{1}{36}\right) \\
& 13.24_{\text {five }}=(1 \times 5)+(3 \times 1)+\left(2 \times \frac{1}{5}\right)+\left(4 \times \frac{1}{25}\right)
\end{aligned}
$$

Notice that, for symbolic simplicity, we have used decimal numerals:in explaining other place-value numerals. In some respects it may be clearer to write
$13.24_{n i n e}=1($ nine $)+3($ ones $)+2($ one-ninths $)+4($ one-eighty firsts $)$. and
$13.24=3($ ten $)+3$ (ones) +2 (one-tenths) +4 (one-hundredths):
Since the decimal-system is in nearly universal use the value in introducing any other base may be questioned. The principle object in doing so is to. improve understanding of the properties of the decimaz system by relating it to a general scheme. This provides a perspective which should promote useful insights such as:
(1) the distinction between properties of" numbers and properties of numerals. For example the statement $3+7=7+3$ reflects a number property which is independent of the language (numerral system) in which it is expressed.
(2) the distinction between general properties of all place-value systems and particular deoimal'properties. For example, the statement $3+7=10$ is peculiar to the decimal system, while the procedures for adding, subtracting, multiplying, and dividing are the same in any piace system.

Such insfighfs should help to reinforce the learning of both. number properties' and computational:"skills.

UNDERSTANDING OUR SYSTEM OF NUMERATION

"Objective: To review- the strugture of the decimal numeral system Materials: Place-value chart
Exploratión:
The numerals used in the following discussion should'be written on the chalkboard and a place. value chart should be, used.

In a numeral suéh as 436, there are two things to be stressed in relation to the idea of place-value. One of these deals only with the place-value associated with each digit. For example, in 436 the " 4 is, in the hundreds . place, the 3 is in the tens 'place, and the 6 is in the ones ' place. The other thing to be stressed is the number represented by each digit in relation to place-value. For example, in 436 the, 4 represents. 4 hundireds, or 400, the 3 represents 3 tens or 30 , and the 6 represents 6 ones or 6. Both of these ideas are stressed in the following discussion.
Let us review our decimal system of numeratifon. Look at "the numeral 936,427. In what position is the 9 located? (hurfored-thousand's place) In what position is tree 3 located? (ten-thousand's place) In what position is the 6 located? (thousand's place) In what position is the 40° located? - (hundred's plact) In what position is the 2 located? (ten is place) In what position is the 7 located? (one's place) What is the value of the place in which the 3 is written? ('ten, thousand) What is the 'value of the place in which ithe 2 is written? (ten) What is the value of the place in which the 4 is written?. (One hundred), what is the value of the place in which the 9 , is written? (One hundred thousand) What is the value of the place in which the 6 is written? (One thousand) What is the value of the place in which the 7 is written? (OTEP)

Write the numeral, 444,444 on the chalkboard: it point to each four and ask: "What number is represented by this 4 ?" (4; 40; 400; 4,000; 40,000; 400,000) Point to two separated fours, for instance, the 4 in the thousandst place and

$$
7
$$

> the 4 in the tens: place. This 4 means 4,000 ahd this 4 means. 40 . Point to the 4 in. the thousands place and to the 4 in the tens' place. The number represented by this 4 is how many times as large as, the number represented by this. $4 ?$ (loo) Follow this with other examples.

Suppose we write a 1 to the left of the numeral 936;427. Can you read this numeral? (One million, nine hundred thirtysix thousand; four hundred twenty-seven) In what place is the digit 1 ? (miliion) What number is represented by this 1 ? $(1,000,000)$ If you had 936,427 , and wrote $a l$ to the right of the numeral $(9,364,271)$, or wrote $a l$ to the left of ${ }^{7}$ the numeral ($1,936,427$), which numeral would represent the larger number? ($9,364,271$) Why? (When the i is written to the left of the numeral, it is in the millions' place, and the place-values of the rest of the digits remain the same value. When the 1 is written to the right of the numeral, all the digits represent numbers that are ten times as large as they werebefore.)

Provide further practice in analyzing other seven-place numerals.

Pl.

Chapter 1.
EXTENDING SYSTEMS OF NUMERATION

UNDERSTANDING: OUR SYSTEM OF NUMERATION

In our decimal system arch place or position in a numeral has a name. This name tells its value - opes; tens, hundreds, etc. For instance, in 24, the 4 means 4 ones. In . 421 , the 4 means 4 hundreds.

Look at the chart above. Tell what number is represented by each digit in the numeral $1,234,567$. ($1,000,000 ; 200,000 ; 30,000 ; 4,000 ; 600 ; 60 ; 7$)

If the 5 in the numeral above is changed to 9 , how much was added to the original number? (400)

What happens to the number, if the 3 is replaced with a 0 ? ($30,000^{\circ}$ is subtracted).

READING LARGE NUMBERS

S. Objective: "To learn the reason for the "use of "periods" in marking off groups of oneskand thousands

Vocabulary: Period

Exploration:
When we, read small numerals as in "one hundredisixty-seven", ; we use the place-value name with each digit.

However, this is not convenient with- very large numerals. . To make the reading of large numerals easier, we group the numerals in sets of three. These groups of three digits are called periods and are separated by commas as shown:

$$
12,406,037
$$

To make reading easier and clearer this numeral is interpreted 28

12 millions and 406 thousands and 37 ones.

In the reading of the numeral this is modified slightly to:
"twelve million, four hundred six thousand, thirty-seven".
|| Write 1834695 on the chalkboard without commas. Ask a child to read it. Rewrite the numeral, using commas. Ask a child to read it Discuss which is easier to read.

READING LARGE NUMBERS

To make-it easier to read numerals for large numbers, the names of the digits, the place-value name, and the period name are used. To, read the numeral in the table above begin with the period on theileft. Read the digit or digits in the first period as one numeral, followed by the name of the period, as "one "million"。

Then read the second group of digits as one numeral, followed by the name of the period, as "two hundred seventy-four thousand".

Now read the third group of digits as one numeral without the period name, as "three hundred sixty-five".

The complete numerall is read, "one million, two hundred seventy-four thousand; three hundred sixty-five".
P - -

In what place is each digit written in the numeral $1,274,365$?
 place. How many commas were used in writing this numeral? (n^{3}).

Why is each period separated by a comma? (for ease in reading.)
Explain how to place the commas to help you read a numeral. (Brains theimumerals in pets os three starting at the one e place and going tore lift.)
Read each of the following numerals.

$7,862,419$	18,771	$5,440,103$
275,002	$9,030,210$	$4,564,300$

1, 86 2, 419: (serionmielion, eight heendred surtitur thocesand, fourkundieid)
nideteen
275.002:; (twi kindred seriextyfice thacond, tern.)

18,771: (iigktean Thaceand, sovenhuncted) ancerty-oice
2, 030,210: (novice milline, thirty thrusaide, two fucudred ten)
$5440,103:$ - Five million freer hundred forty thacesaxd:
4, 564,300 (four suileinn finchundred sixty four (chacesand, three huendred)

- Exercise Set 1

1. What number is represented by the symbol 3 in each numeral " below?
a) $234,600(30,000)$
d) $413,062^{\circ}(3,000)$
b) - 98,532 . ${ }^{1 .}(30)$
e) $6,371,524 \quad(300,000)$.
c) $3,827,129(3,000,000)$.
f) 9,317 (300)
2. Write the decimal numeral for each of these..
a) Six thousand, nine hundred thirty-seven
(6,937)
b) Nine hundred eight thousand, thirteen
c) Four hundred thirty thousand, nine hundred ninety-nine (410,999)
d Eight million, three hundred five thousand, two hundred fifty-four ($8,805,254$)
e) Two million, eight hundred twenty thousand, one $(2,820,001)$
3. Write the name, of each numeral in Exercise 1.

BRAINTWISTERS.
4. Write the decimal numeral for each of these.
a) Twenty-two'million, four hundred' seven thousand, three: : hundred sixty-one $1(22,407,361)$
b) Seven hundred thirty-six million, five hundred twențy-five thousand, two hundred, thirteen
(736,525 21/3)
c) "Three. hung aired million, forty thousand, six \downarrow. (300, 040, 006)
:5". Write the largest possible ninemplatiz decimal numeral using the digits 3,4 , and 6 just once s, and as many zeros ias necessary.

EXPANDED NOTATION

Objective: To introduce the writing of. numerals in expanded notation
Vocabulary: Expanded notation ${ }^{\circ}$
Exploration:
You learned In the fourth grade that 634 means $600+30+4$. What is the meaning of 600,30 , and 4 ? $(600$ means 6 hundreds, 30 means 3 tens, and. 4 means 4 ones.) Six hundred is the product of 6 .times witt? (100) 30 解 the product of 3 times what? (10) 4 is the product of. 4 times what? (1)

Write on the chalkboard each part as it is discussed. The complete chart will be as follows. $\begin{aligned} 600 & =6 \text { hundreds }\end{aligned}=\left(\begin{array}{lll}6 \times 100 \\ 30 & \times 3 \text { tens } & =\left(\begin{array}{ll}3 & \times \\ 3\end{array}\right) \\ 4 & =4 \text { ones } & =\left(\begin{array}{lll}4 & \times & 1\end{array}\right)\end{array}\right.$

When we write $634=(6 \times 100)+(3 \times 10)+(4 \times 1)$, we are, writing. 634 in expanded potation.

Let us see how we would write a four-place numeral such as 8,172 in expanded notation.

$$
8,172=(8 \times 1000)+(1, \times 100)+(7 \times 10)+(2 \times 1)
$$

Suppose we are writing the expanded notation for 3,206 . We will first write $(3 \times 1,000)+(2 \times 100)$. What will be written next? (0×10) Is it always necessary to write $(0 \times 10) ?$? (No) Why? ${ }^{\circ}(0 \times n=0)$ We could write

$$
\begin{aligned}
& 3,206=(3 \times 1000)+(2 \times 100)+(0 \times 10)+(6 \times 1) \text { or } \\
& 3,206=(3 \times 1000)+(2 \times 100)+(6 \times 1) .
\end{aligned}
$$

Pupils'should have practice in writing other four-place numerals in this way: Additional practice in writing numerals in expanded notation should include five, six-, and seven-place. numerals.

2,5
-

EXPANDED NOTATION

To better understand a number," we learned to add the numbers represented by each digit in the numeral for that number. For example; we learned that - 352 can be thought of as $300+50+2$.

Since 300 means 3 hundreds, we can write it as (3×100). 50 means 5 . tens, which can be written as (5×10). 2 ones can be written as, (2×1) $\dot{\circ}$ Writing 352 as $(3 \times 100)+(5 \times 10)^{\prime}+\left(2^{\prime} \times 1\right)$ is called expanded notation.

Look at the numerals in the chart below. / Place values are written at the top of the chart. Use the chart to help you see how these 说merallṣare written in expanded notation.

$$
\begin{aligned}
= & (4 \times 1000)+(2 \times 100)+(8 \times 10)+(3 \times 1) \\
= & (2 \times 10,000)+(3 \times 1,000)+(5 \times 100) \\
& +(8 \times 10)+(4 \times 1) \\
= & (6 \times 100,000)+(2 \times 10,000)+(8 \times 1,000) \\
& +(7 \times 100)+(3 \times 10)+(9 \times 1) \\
= & (7 \times 1,000,000)+(9 \times 100,000) \\
& +(4 \times 10,000)+(3 \times 1,000)+(2 \times 100) \\
& +(1 \times 10)+(5 \times 1)
\end{aligned}
$$

"r

15

Exercise Set 2

1. Write the decimal numeral for each of these following in expanded notation.
a) $\quad 8,134(8 x 1009)(x+109)(3 x \times 1)(4 y)$
d) $2,591,622^{(2 \times 1000,000)+(58100,000)+}$
b) $\quad 2,236$
$2,236(2 \times 1009)+(2 \times 100)+(2 \times 10) \times(6 \times 1)$
e) 4 4,525
c) $, 14,892$

- $(4 \times 10,000), 5(9 x, 000)+(-x, 00)(2 \times 10)+(5 \times 1)$ $\left(\begin{array}{c}835 ; 731 \\ 8 \times 100,000)(3 \times 19000)+5 \times 1000)+(2 \times 100)(3 \times 10) \\ (\times 1)\end{array}\right.$
no. Write the decimal numeral for each. Of these,
a) $(4 \times 1,000)+(2 \times 100)+(2 \times 10)+(3 \times 1)^{\prime}(4,223)$
b) $(5 \times 1,000)+(8 \times 100)+(1 \times 10)+(7 \times 1)(5,817)$
c) $(2 \times 10,000)+(2 \times 1,000)+6 \times 100)+(6 \times 10)$

$$
+(5 \times 1) \quad: \quad \because \quad(23,966)
$$

di) $(9 \times 10,000)+(3 \times 1,000)+(7 \times 10)+(4 \times 1),(93,074)$
e) $(8 \times 100,000)+(\mathbb{1} \times 10,000)+(6 \times 1,000)+(5 \times 100)$

$$
+(9 \times 10)+(2 \times 1)
$$

(816,592)
3. Write the decimal numeral for each of these. 'Look carefully at this exercise.
a.) $(\dot{6} \times 10)+(3 \times 100)+(5 \times 1)$
b) $:(4 \times 100)+(1 \times 1,000)+(7 \times 1)+(3 \times 10)(1,417)$
c) $(6 \times 1)+(9-1,000)^{\prime}+(2 \times 10)$.
$(9,026)$
d) $(4 \times 10,000)+(8 \times 10)+(2 \times 1)+(2 \times 100)$

$$
+(7 \times 1,000)
$$

(47,282)
e). $(8 \times 1,000)^{5}+(3 \times 10)+(4 \times 100,000)+(5 \times 1)$

- $+(6 \times 100): \prime$
(708,635)

4. BRAINTWISTERS. Fill in the blanks so these mathematical sentences are true.
a) $(4 . \times 100)+(5 \times 10,000)+(6 \times 1,000)+(8 \times 1)+((2 \times 10))$ $=56,478$.
b) $(9 \times 1,000)+(8 \times 1)+((5 \times 100))+(1 \times 10,000)+(8 \times 10)$

$$
=19,588 .
$$

c) $(9 \times 10)+((3 \times 1000))+(8 \times 100)+(6 \times 10,000)+((9 \times 1))$

$$
+(2 \times 100,000)=263,897
$$

$\begin{aligned} \text { d) }\end{aligned} \quad(5 \times 10)+(4 \times 100,000)+(2 \times 10,000)+((3 \times 100))+(8 \times 1)$.

$$
=420,358
$$

(When two parts are mixing in Exercise ty it in eat neesunary to have the axceciecio in the rider given.)

RENAMING LARGER NUMBERS

Objective: To provide practice in renaming five-, six-, and seven-place mumerals in a variety of ways

Exploration:

* Discuss with the children that in grade four they learned that a number has many names. They should be able to express three- and four-place numerals. in a variety of ways.

Begin by writing ly,000 on the chalkboard. -Ask the pupils to give some of the ways it can be renamed./ For example,

$$
\begin{aligned}
& 1,000=1,000 \text { ones } \\
& 1,000=100 \text { tens } \\
& 1,000=10 \text { hundreds }
\end{aligned}
$$

Continue renaming these powers of ten:
10,000, 100,000, 1,000,000.
Practice renaming multiples of the powers of ten such as $60,000,490,000,5,000,000$, 2,700,000, etc.

Now consider the four-place numeral, $8,456^{\circ}$. Ask the class to give some of the ways it can be renamed. For example,
$8,456=8$ thousands +4 hundreds +5 tens +6 ones $8,456=84$ hundreds +5 tens +6 ones
$8,456=845$ tens +6 ones
$8,456=8,456$ ones
$8,456=8,000+400+50+6$
$8,456=8,400+50+6$
Then discuss various ways to express fiveand, six-place numerals. Although it is important to explore the numerous ways for renaming a number, it is not necessary to exhaust all posisibilities. You might, however, point out that an interpretaition like $7,000+1400+40+16$ is often used. in subtraction problems.
*

ジ

Below are examples showing some of the ways a number can be named.
A.

25,000	$=2$ ten thousands +5 thọsands
25,000	$=25$ thousands
25,000	$=25,000$ ones
25,000	$=250$ hùndreds
25,000	$=2,500$ tens

B. $426,3 \underset{j}{5}=4$ hundred thousänds +2 tèn thousands ${ }^{\circ}+$
: 6 thousands +3 hundreds +1 , ten 45 ones $42 \overline{6}, \hat{3} 15=42$ ten thousands +6 thousands +3 hundreds + 1. ten +5 ones
$426,315=426$ thousands +3 hundreds +1 ten +5 ones $426,315 \doteq 425$ thousands +13 hundreds +15 ones $426,315=400,000+20,000+6 ; 000+300+10+5$

Exercise Set ${ }^{3}$

1. Write four different names for each of these numbers.
a) 14,651
c) 230,000
b) 27,748
d) 632,110
(There are many paciibilitici,y
2. Write the decimal numeral for each of the following.
a) Twelve thousands + three hundreds + seventeen ones
b) Thirty-eight $(12,317)$ thousands + eight thousands + ninety-four tens + two ones
$(388,9+2)$
c) Four ten thousands + twenty-eight hundreds + fifty-three ones
($42,88^{3}$)
3. Write each of the following as a decimal numeral.
a) 365 tens +7 ($3,65 \bar{j}$)
b). 46 hundreds +2 tens +5 ones
c) 16 thousands +12 hundreds +14 tens
d) 29 ten thousands +340 thousands +73 tens +16 ones
4. Write each of the answers in Exercise 3 in expanded notation. $3,657=(3 \times 1000)+(6 \times 100)+(0 \times 10)+(7 \times 1)$ \# $620^{\circ}=(4 \times 1000)+(6 \times 100)+(2 \times 10)+(5 \times 1)$.
$17,340=(1 \times 10,000)+(7 \times 1000)+(3 \times 100)+(4 \times 10) r(0 \times 1)$
$293,746=(2 \times 100,000)+(9 \times 10,000)+(3 \times 1000)+(2 \times 100)+(+\times 10)+(6 \times 1)$.

DECIMAL NAMES FOR RATIONAL NUMBERS

- Obfective: To develop understanding and skill in reading and interpreting decimal numerals corresponding to
: fractions with denominators 10 or 100
Materials: Place-value chart
Vocabulary: Rational number, fraction, decimal, decimal point
It is important at the outset for you to
- understand clearly the way in which certain terms' are used in this and subsequent chapters.

There are two methods of naming rational numbers in common use. The first uses fractions (symbols of the form $\frac{a}{b}$) and has already been
\therefore introduced in Chapter 10 Grade Four. The second is an extension of the place-value concept in the. decimal system and uses numerals like. 47 and 31.8 which we will call decimals. SAnce we prefer the term "fraction" to "cominon fraction". the term "decimal" is preferable to "de'cimal fraction", because the latțer in our terminology does not name a fraction. Thus the numeral $\frac{3}{2}$ and the numeral 1.5 both name the same ${ }^{\top}$ rational number. The former is a fraction name and the latter a decimal name for that number. Bothe are names for numbers and therefore numerals.

Exploration:
Let us consider the part of the number line from 0 to a little beyond 1 . We candivide the segment of length, by 10 points from 0 to 1 into 10 segments of the same length: What are thelnames for these, points? ($\frac{0}{10}, \frac{1}{10}, \frac{2}{10}, \frac{3}{10}$, and so on.)

The length 1 - is how many times the length $\frac{1}{10}$? ' $(10$ times, $)$ We shall therefore say that the number 1 is 10 times the number $\frac{1}{10}$.

This amounts to anticipating, in this case, the way multiplication will later be defined for rational numbers:

$$
1=10 \times \frac{1}{10}
$$

At this stage, however, there is' no need to introduce this product notation.

With these facts in mind, let us try to think how our placevalue system of notation might be made to include a digit with place-value $\frac{1}{10}$. If we still wish each digit in a numergit to have place-value just 10 times the place-value of the digit to Its right, where should, a digit with place-value $\frac{1}{10}$ appear? (Just to the right of the digit with place-value 1.). Why?. (1. is the same as 10 times $\frac{1}{10}$.) A digit with place-value $\frac{1}{10}$ in a numeral is in the tenths ' place.

Another way to name the number $\frac{1}{10}$ is to use the decimal '.1. Both are read "one tenth". .The dot in the decimal is called the decimal point. It is needed so that we do not confuse or . 01 with .1. :

At this point the teacher might write on the chalkboard several decimals involving tenths (but not yet hundredths or thousandths) and ask the children to read them aloud.

In talking about decimals keep in mind that We are using this word as an abbreviation of "decimal numeral". Any numeral in the placevalue, base ten, numeration system will be called a decimal. Thus the numerals $25,6,4.3$, and .17 are all decimals.
How would you write a decimal name for the number three tenths? (.3) What fraction would name this same number? The numerals .3 and $\frac{3}{10}$ are just two ways of naming the same rational number. That is,

$$
\cdot \frac{3}{2}=\frac{3}{10}
$$

How would you write .4 as a fraction?, ($\frac{4}{10}$, How would you write $\frac{7}{10}$ as a decimal? (.7)

We are now going to talk about decimals which have a digit with place-value $\frac{1}{100}$. Let us first draw the segment of the number line from 0° to $\frac{1}{10}$ and divide it by points into 10 segments of the same length. We label these points $\frac{0}{100}, \frac{1}{100}$, $\frac{2}{100}$, and so on.

The length of $\overline{\mathrm{AC}}$ is how many times the length of $\overline{\mathrm{AB}}$? (10 times) We shall therefore say that the number $\frac{1}{10}$ is 10 times the number $\frac{1}{100}$:

Again this amounts to anticipating the way. multiplication will later be defined:

$$
\frac{1}{10}=1 \times \frac{1}{100}
$$

Where should a digit with place-value $\frac{1}{100}$ appear?. (Just to the right of a digit with place-value $\frac{1}{10}$) Why? ($\frac{1}{10}$ is 10 times $\frac{1}{100}$) A digit with place-value $\frac{1}{100}$ in a numeral is in the hundredths place. We write $\frac{1}{100}$ in decimal form as . 01. We read the decimal as "one hundredth". Why must we write one hundredth as .01 and not as .l?

At this time the teacher might write on the chalkboard several decimals involving hundredths and ask the children to read. them aloud.
How do you read the fraction $\frac{23}{100}$? (Twenty-three hundredths) How would you write the decimal name for this number? (.23) The numerals .23 and $\frac{23}{100}$ are two ways of representing the same number, twenty-three hundredths, so

$$
.23=\frac{23}{100}
$$

In the decimal . 23 the 2 is written in the tenths' place and the 3 is written in the hundredths' place.

, 护w would you read . 47 ? (Forty-seven hundredths) How would you write . 47 as a fraction? ($\frac{47}{100}$) $\dot{8}$

Continue giving examples of fractions and ask the children to write the decimal name.

Also give particular attention to the fact , that numerals such as .4 and .40 name the same rational number. Have pupils explain why such numerals name the same number.

DECIMAL NAMES FOR RATIONAL NUMBERS
\rightarrow We have learned how to name rational numbers using, symbols such as $\frac{2}{7}$ and $\frac{11}{12}$, called fractions r. When a' fraction has a denominator 10 or 100 , as in $\frac{-7}{10}$ 'or $\frac{53}{100}$ ' there is another way in which we can write its, name.

The chart below shows how we can extend the iaea of placevalue to the right of the ones' place. Using this idea we can name rational numbers like $\frac{7}{10}$ and $\frac{53}{100}$ in a new way.

K

The name .7. and the name $\frac{7}{10}$ are names $f \underset{i}{\prime} \frac{1}{c}$ the same rational number. Both names are read in the" same. way: " "seven. tenths".

The name' '. 53 and the name $\frac{53}{100}$ are names for the same rational number. Both names are read in the same way: "fiftythree hundredths".

Names like $\frac{7}{10}$ and $\frac{53}{100}$ are called fractions. Names like .7 and .53 are new examples of decimal numerals. We will usually shorten "decimal numeral" to "decimal".

The dot (.) in a decimal is called the decimal point. - In .7 , the. 7 is written in the tenths' place. In $.5 \dot{3}$, the 5 is written in the tenths' place and the 3 is written in the hundredths' place.

1. Are .7 and $\frac{7}{10}$ names for the same number? (yew)
a) Which name is a decimal? (7)
b) Which name is a fraction? $\left(\frac{7}{10}\right)$
2. Are $\frac{53}{100}$ and . 53 - names, for the same 'number?
(a). Which name is a decimal? (6)
b) Which name is a traction? ($\frac{50}{100}$)
3. \because Are .3 and .03 names for the same number? (x) Check your answer by writing each name as a fraction. 4. Are .7 and .70 names for the same number? yen Check your answer by writing, each name as a fraction.

37
 26

Exercise Set 4

1. Rename each of these as a decimal.

$$
\begin{array}{cccccc}
\frac{1}{10} & \frac{29}{100} & \frac{75}{100} & \frac{8}{10} & \frac{4}{100} & \frac{2}{10} \\
(.1) & (.29) & (.20) & (.8) & (-24) & (.2) \\
(.30)
\end{array}
$$

2. Rename each of these as a fraction.

$$
\left(\frac{.15}{15}\right)\left(\frac{9}{100}\right)\left(\frac{1}{10}\right)\left(\frac{82}{100}\right)\left(\frac{5}{100}\right)\left(\frac{4}{10}\right)\left(\frac{60}{100}\right)
$$

3. Copy, and/finish the following counting chart using. decimals.

4. rook at the decimals in the last column of the chart you just completed. (.10, .20, .30, etc.) Each of these decimals may be replaced by another decimal. (For example, . i is another name for (10) To the right of the chart, $\therefore \because$ write another decimal for" each decimal in the last column.
5. Complete each of these.
a) $.16, .18, .20,(.22),(.24),(26)$.
b) $.24, .27, .30,(33),(.36),(39)$.
c) $.37, .39, .41,(.43),(45),(42)$.
d) $.43, .48, .53,(.58),(.63),(.48)$.
e), $90, .80, .70,(60),(.50,(40)$.
f) . $85, .75, .65,1(35),(45), 6305$.
8) . .68, . $64, .60, \frac{(0-6)}{(.52),}\left(\frac{(+i+i)}{4}\right.$.
ah) $.58,{ }^{3} .55, .52,(.49),(46),(43)$.
6. Write T if the mathematical sentence is true. Write F if it is false.
a) $: 50=.5(T)$
b) $.7<.07$ ($\dot{\text { F }})$
c) $\frac{23}{100}>.23$ (F). :
d) $\frac{4}{100} \neq .4 \quad(i)$
e) $\frac{45}{100}<.54(T)$
f) $.72>.8(F)$
g) $\frac{9}{10} \leq .65(F)$
h) $\frac{50}{100} \neq .05(T)$,

BRAINIWISTIERS

Can we rename $\frac{2}{5}$ as a decimal? can we rename $\frac{9}{25}$ as a decimal? We can if first we are able to rename it as a fraction with ardenominator of 10 or $100 .{ }_{3}$

We can rename $\frac{2}{5}$ as $\frac{4}{10}$. We can rename $\frac{2}{5}$ as the decimal, (.4): Also, we can rename $\frac{9}{25}$ as $\frac{(36)}{160}$ So we can reasiqne $\frac{9}{25}$ as the decimal, (.36).
\cdot Now rename each of these as a decimal.

$$
\frac{1}{2}(.5)=\frac{9}{20}(.45) \quad \frac{47}{50}(.94) \cdot \frac{3}{5}(.6) \frac{18}{25}(.72) \cdot \frac{10}{40}(.25)
$$

. RENAMING DECIMALS
We' hat re learned to think about ag decimal like $.73^{\circ}$ as 73 hundredths: We also know that in .73 , the $7^{\text {" }}$ is in the tenths ${ }^{\prime}$ - place and the 3 'is in the hundredths' place. This gives us another way to name :73:
-4
$.73=7$ tenths and $\cdot 3$ hundredths.
In the same way,
$.49^{\circ}=(4)$ tenths and (9) hundredths.
We also can say.
8 tenths and 2 hundredths $=.82$.
In the same way,
3. tenths and 6 .hundredths $=(.36)$.

Exercise Set 5.

1. Fish each of these,
t.
a) $.29=$ \qquad (2) tenths and (9) hundredths.
b) $.58=1$ (5 tenths and. (8) hundredths.
c) $.41 \stackrel{A}{=}$ \qquad (4) tenths and \qquad (1) hundredths.
d) $.80=$ \qquad (8) tenths and (0) hundredths.
e) $.04=$ \qquad (0) tenths and \qquad (4) hundredths.
f). $.36={ }^{\circ}$ (6) hundredths and (3) tenths.
2. Write the decimal for each of these.
a) i 5 tenths and 7 hundredth $\$=(.57)$.
b), 9 . tenths and 3 hundredths $=(.93)$.
c) 1 tenth and 6 hundredths $=(16)$.
d) i^{2} tenths and 0 hundredths $=(20)$.
i. e) 0 tenths and, 4 hundredths $=(.0 \nless)$:
\therefore f) 5 , hundredths and" 3 tenths $=(35)$.

Objective: To extend the understanding of decimal fractions to include thousandths.

Materials: Place-value chart
Vocabulary: Thousandths

Exploration:

What are the names of the places to the right of the ones: place? (Tenths' place and hundredths' place). What valiue does $\frac{1}{100}$ have in relation to $\frac{1}{10}$? ($\frac{1}{10}$ is 10 times' $\frac{1}{100}$) What do you think the name of the third place to the right. of the ones: place. 1s? (Thousandths) Is $\frac{1}{100}$ ten times $\frac{1}{1000} ?$ (Yes), How do you know? (In the decimal system of numeration each digit has a place-value ten times the place-value of the digit to its right.).

We can write the fraction $\frac{1}{1000}$ as the decimal. . 001. Both are read "one thousandth":-
$\frac{3}{1000}$-and .003 are two ways of naming the same rational number.. What number do they name? (Three thousandths)

Read these decimals.

$$
\begin{array}{ll}
\therefore .005 & \text { (five thousandths) } \\
.014_{s} & \text { (fourteen thousandths) }
\end{array}
$$

.297 (tion hundred ninety-seven thousandths)
.Use counting at difficult places so that the pupils will become more familiar with three-place decimals. Such sequences as .008, .009, .010, .011; .098, .099,..100, .101, eもc. are hard and need careful teaching.

Count by thousandths from 1 thousandth to 10 thousandths. Write the decimals" on the chalkboard.
nt from 35 thousandths, to 45° thousandths." Write the decinals,

Count from 138 thousandths to 142 thousandths. Write ' the decimals.

DECIMALS WITH THOUSANDTHS

We have learned how to extend place-value for decimals from tenths to hundredths. Using what we have learned, let us extend the place-value chart another place to the right.. This is called the thousandths' place.

The name .421 , and the name $\frac{421}{1000}$ are names for the same rational number. Both names are read as "four hundred twentyone thousandths".

In .421 the 4 is written in the tenths' place, the 2 is written in the hundredths' place, and the 1 is written in the thousandths ' place.

1. Are $\frac{421}{1000}$ and 421 嘓mes for the same number? (yew)
a) Which name is a decimal? $(\$ \Delta \Omega)$
b) Which name is a fraction? ($\frac{100 /}{100}$)
2. Which is "largest, $2, .02$, or :002? Check your answer by naming each number as a fraction.
$\therefore \quad\left(.2 \dot{\ln } \mathrm{lng} \mathrm{gent} \frac{2}{10}>\frac{2}{100}>\frac{2}{1000}\right)$.
3. Are $2, .20$, and 200 all names for the same rational number? (yd Check your answer by writing each as a fraction. $\left(\frac{2}{10}=\frac{20}{100}=\frac{000}{1000}\right)$
\therefore Another way to think about and name $: 421$ is 4 tenths and 2 hundredths and $\cdot 1$ thousandth.

In the same way,
$.582=(5)$ tenths and 8 hundredths and (2) thousandths.

Finish each of these.
a) $.138=$ (1) tenth and (3) hundredths and (8) thousandths.
b) $.140=(1)$ tenth and (4) hundredths and (a) thousandths.
c). $.306=(3)$ tenths and (0) hundredths and (6) thousandths.
d) $. ~ 374=(37)$ hundredths and (4) thousandths.
e) $.009=(0)$ tenths and (0) hundredths and (9) thousandths. 3

Pl.

Exercise Set 6

1. Rename each of these as a decimal.

$$
\begin{array}{lllllll}
\frac{32}{1000} & \frac{5}{1000} & \frac{9}{10} & \frac{492}{1000} & \frac{18}{1000} & \frac{174}{1000} & \frac{8}{1000} \ldots \\
(.032) & (.005) & (.9) & (.492) & (018) & (.174) & (.008) \\
(.18)
\end{array}
$$

2. Rename each of these as a fraction.

$$
\left(\frac{475}{1000}\right)\left(\frac{11}{1000}\right)\left(\frac{8}{10}\right)\left(\frac{.03}{1000}\right) \stackrel{.62}{\left(\frac{62}{100}\right)}\left(\frac{.729}{\left(\frac{j 89}{1000}\right)}\left(\frac{1}{1000}\right)\right.
$$

3. Write T if the mathematical sentence is true. Write F if it is false.
a) $.6=.600(T)$
e) $\frac{52}{100} \neq .052$ (T)
b) $.9>.009(T)$
f) $\cdot .79=\frac{79}{1000}(F)$
c) $\frac{23}{1000}>.23$ (F)
g) $\quad .008>\frac{8}{1000}(F)$
d) $\frac{8}{10}<.85$ (T)
h) $.072<.72(T)$
4. Arrange the three numbers in each group in order of size. . Name the smallest number first in each case.
a). . 003
b) .37
. 3
.037
c) $=.402$
a) .560
$.03(.003, .03, .3)$
$.3(.037,-3, .37)$
:042 (.042 .402,. 42)
a. .056 (056 . 506, .020)
5. Complete each of these.
a) $0058 \quad \because 060 \quad .062 \quad(.064)(.066)(.068)$
b.) 007 , 012 '.017. (.022) (.027) (.032)
c) .550 . 450 . 350 (.250) (.150) (1050)
d) $\quad .755 \quad .760 \quad .765$ (.1720) (.770) (780)
e) $.042 .142,242,(.342)(.442)(.542)$
6. Complete.
a) $.729=(9)$ thousandths and (2) hundredths and (2) tenths.
b) $.402=(4)$ tenths and (0) hundredths and (d) thousandths.
c) $\quad .519=\frac{(5)}{1}$ tenths and (1) hundredth and (9) thousand the.
d) $.052=(2)$ thousand the and (5) hundredths and (0) tenths.
e) $.530=(5)$ tenths and (3) hundredths and (a) thousand the.
Y. Write the decimal for each of these.
a) 5, thousandths and 3. hundredths and 4. tenths $=(435)$.
b) 0 ,thousandths and 2 hundredths and 3 , tenths $=(320)$.
c) 6 thousandths and 4 hundredths and 8 tenths $=(846)$.
d) 5 tenths and 0 hundredths and 5 thousandths $=(500)$.
\boldsymbol{J}

OTHER DECIMALS
Objective: To lear'n' to read,!write, and analyze decimals' with digits on both sides of the decimal point

Materials: Number lines drawn on the chalkboard, place-value - chart

Exploration:
Draw. the number ilne on the board and record the numeral as a child counts by tenths from zerof to 1.3.

As soon as the child counts ten tenths, ask for another name for ten tenths. (1) Since we are to continue counting by tenths, indicate that 1 may be written "1.0" to show there are no tenths In the tenths' place. "When we count, by tenths, what is the next number?" (one and one tenth) In decimal form this is written 1.1. The i to tho left of the decimal point is in the ones place and the I to the right of the decimal point is in the tenths' place: The decimal point is read "and (N.B, $\frac{1}{1.1}$ should be read "one and one tenth" and not as "one point one "). Continue counting and recording to give practice in reading similar decimals with tenths.

The same development may be followed to introduce the reading of other decimals. Draw other number lines on the chalkboard. Put the first numeral on it and ask the child to count by hun-, dredths and record the numeral as he counts. Use the se number lines and others if needed.

\qquad

We have been learning how to read and interpret decimals such as . 7 and .39 and .561. We already knew the meaning of" decimal numerals such as 82,7, or 356 ; Many times. we need to use rational numbers which are greater than one but. are not whole numbers. We already have fraction names for some of these numbers, names like $\frac{11}{10}, \cdots \frac{12}{10}, \frac{21}{10}$, or, $\frac{125}{100}$. Since these all have denominators which are 10 of 100° we should be able * to find decimal names for them and for numbers like them..

- We might begin by thinking of counting "by tenths.

The number line below shows counting by tenths with decimais and with fractions. We need decimal numerals to complete the top Ine.
decimals
fractions

$$
\frac{10}{10}=1
$$

$$
\frac{11}{10}=\text { eleven tenths }=\text { one and one tenth. }
$$

We express this as "a decimal numeral by writing 1.1. The numeral 1 on the left stands" 1 one. 'The numeral, 1 on the right standersor 1 tenth.

1. Use this idea to copy and complete the number line shown above. When we are thinking in. Eenths we ' usually write 1.0 (one and 0 tenths) instead of 1 and 2.0 instead of 2 .
2. Write a decimal for each of the following:
a) 1 ten and 1 one ($1 / .0$)
b) 1 tenth and 1 hundredth (. $1 /$)
c) 1 one and 1 hundredth (($1 . c 1$)

We read 2.3° as "two and three tenths", and 1.25 is read as "one and twenty-five hundredths". The chart below should help us to read and interpret other decimals.

We read 26.345 as "twenty-six and three hundred forty-five thousandths". In reading a decimal with digits on either side of the decimal point, the decimal point is read as "and".
3. \cdot Re gd evan of the following.
a)
b)
c).

a)
2.6345

侖安

Sometimes a kind of numerators used, which ombjnes
 It names one and time tenths or 1.3° (deck ${ }^{\circ}$ $\frac{13}{10}$ (fraction). Such a numeral is called hated form.
4.
a) Read $7 \frac{5}{100}$.
b) What is a decimal name for this number?
c) Write a mixed form for 7.5 .

Exercise Set 7

1. Choose the largest number in each column.

a) 7.58 .0 (8.5) $9.0 \quad \frac{(9.5)}{3} \quad(10.0) \quad(10.5) \quad$ (11.0)
b) $3.40 \quad 3.30 \quad(3.20) \quad(3.10) \quad(3.00) \quad(2.90)$
c) .20
.48

| .60 | .80 |
| :--- | :--- |$\frac{1.20}{1}$

d) 4.75
4.80 4.85
4.90

- 4.95
5.00

3. Write these as decimals..

$$
\begin{array}{llll}
2 \frac{3}{10} & 15 \frac{7}{100} & 32 \frac{64}{100} & 148 \frac{37}{1000}, 52 / \frac{184}{1000} \\
(2.3) & (15.07) & (32.64) & (148 \div 037)
\end{array}
$$

4. Write a mixed form name for each of these.

$$
\left.\begin{array}{lll}
22.3 & 72.15^{5} & 18.047 \\
\left(12 \frac{3}{10}\right) & \left(72 \frac{15}{100}\right) & \left(18 . \frac{47}{7000}\right)
\end{array}\right) / \begin{array}{ll}
459.003 & 78.39
\end{array}\left(459 \frac{3}{1000}\right) \quad\left(78 \frac{39}{100}\right)
$$

5. Tell the number represented by each numeral 3.

Tell the number represented by each numeral: 5.
a) $321.59\binom{300}{.5}$
b) $71.03 .(.03)$
c) 421.36
d) $720.513\left(.5^{.003}\right)$
e) 49.035 (.030 $)$
f) $795.309\left(\stackrel{.}{s}^{3}\right)$
6. Write a decimal for bach of these.
a) 27 and 9 , tenths (27.9)
b) 364 and 57 hundredths (364.57)
c) 70 and 41 thousandth's (70.041)
d) 38° and 7 hundredths (38.07)
e) 3 and 0 hundredths $=(3.00$ oi 3)
f) 5 and 429^{\prime} thousandths (5.429)
g) 83 and 4 tenths ($83: 4$)
h) 480 and 5 hundredths (480.05)
i) 20 -and 64 hundredth (20.64)
j) ${ }^{6} 6$ and 7 thousandths (6.007)
k.) 75 and 2 tenths ${ }^{\circ}(75.2)$ ।.

BASE FIVE NOTATION
-Objectivie: To gain'increased"understanding of the decimal system by considering systems of notation using

1. Flannel board and cut-outs
2. Packets of twenty to thirty objects which can be counted (A demonstration set should be large be counted (A demonstration set should be large
enough so 1t may be seen from all parts of the classroom. The students may have smaller objects suitable for work at their désks.)
3. A place-value chart may be made that will show groupings of twenty-fives, fives, and ones.
Exploration: bases. other than ten

Ouf decimal system uses groups of ten. However, the decimal system has not always been in use. Iong ago the Mayans of Yucatan counted by groups of twenty. Some tribes of Eskimos used groups of five. Each numeration system made use of grouping in counting.

Let us pretend we are Eskimos and count in groups of five. What name could we give to our new sỳstem of numeration? (Base five system) How many symbols would we use in the base five system? (5) What symbols could we use? ($0,1,2,3,4$) Why must we always have a symbol to represent zero?. (In using the idea of place-vilue, there must be a numeral to represent the empty set or the set of no members.)

During the discussion the teacher should.make \therefore a chart showing the numeral, the meaning, and a picture of each number. Follow this form.

Picture	X ${ }^{\prime \prime}$	XX	${ }^{\text {ct }} \mathrm{XXX}$	XXXX	XXXXXX
Meaning	one one	two ones	three ones	four ones	one five and no ones
Numeral	$l_{\text {five }}$	$2_{\text {five }}$	${ }^{\prime}$ Saive $^{\prime}$	4 five	$10_{\text {five }}$

-Let us use our objects to illustrate the base five"system. Start with a single object and write the symbol "I five". (The subscript "five", on digits is not really necessary. Use it for emphasis as you wish.) Add one object. . What symbol would we use to name the number of objects we now have? ($2_{\text {five }}$) Add another object to the set. What symbol would we use? ($3_{\text {five }}$) Add another object to the set. What symbol would we use?, ($4_{\text {five }}$) Add another object to the set. How many do we have? *(one set of five) We have written $1_{\text {five }} \Sigma_{\text {five' }} 3_{\text {five }}$ ${ }^{4}$ five: How do we write one five and no ones? (10 five)
and "Take time to discuss the idea of "five ones" one five" as we did earlier with "ten ones" and "one ten". The final-notation should be " $10_{\text {five }}$ ". \circ (read "one five and no ones" OR "one zeros base five".). Continue adding a single object eapen time and writing the name of the number represented using base five notation. We can discover in this. way that the easiest way to count large numbers of objects is 'to group them first, and then count the groups.
NOTE: It might be advisable to limit the number of objects to twenty-four for this discussion. (to count twenty-five objects using the base five notation, we would need to know about three-digit numerals.)

The next step-is) to discuss with the pupils the two examples in their text. Read the examples with the pupils and explain, unfamiliar mathematics and vocabulary to. them.

At the beginning of this chapter, you reviewed grouping and regrouping by tens. This is the idea behind our decimal numeral system. However, there are many ways of grouping object's. One of these ways is grouping in sets of five. This gives us the idea of a numeral system based on grouping by fives.

Example A
XXXXXX
XXXXXX
XXX

Here is a picture of ${ }^{\text {a }}$ set of thirteen X !s. This set. can be grouped into 2 sets of

- five and 3, ones. We shorten this to 23 (read."two three") to name the number of '-X's in the set. The set can also be grouped - into 1 set of ten and 3 , ones. We shorten this to 13 to get our ordinary decimal, numeral. To show that 23 comes from grouping by fives and not by tens we will 'write' the word "five" to the night' and slightly below the numeral.
" $23_{\text {five }}$ means 22 gets of five and 3 ones. 13 - means 1 , set of ten and 3 :ones. We call $23_{\text {five }}$ a base five numeral and we read it "two three, base five".

Look at this picture.
How many sets of five " $\mathrm{X's}^{\prime}$ arr there? (4)
How many X's remain? (2)
How would you write the base five/numeral? (4 five) How would you readethis' base five' numeral?

- (4 fives and 2 ones, or four two basic five).

Exercise Set 8

3. Draw the following sets of X's. Group in fives and answer these questions for each set.

How many sets of five are there?
How many ones remain?
How would you write' the base five, numeral?

Use this form.

2. ${ }^{\text {D }}$ Draw a picture that will represent X 's for
a) $30_{\text {five }} \frac{x \times x \times x)}{x \times x \times x} \frac{x \times x}{x \times x}$
c) ${ }^{14}$ five $x \times \times \times x \times \times \times x$.
b) $\quad 42$ five $\frac{x \times x \times x(x \times x \times x}{x \times x \times x \times x \times x} \times x$
d) ${ }^{10}{ }_{\text {five }}$
3. Name the largest number with a base five numeral having two digits. (4 fins)
4. Name, in base five, the number which will come just before each of these 'numbers.
a) $4_{f i v e}$
b) $\quad 20_{\text {five }} \dot{n}_{;}{ }^{\prime}$ c) $\quad 32_{\text {five }}^{\circ}$
d) $\mathrm{PO}_{\mathrm{ff}}$ (3fice).
(1 4five)
(3 five)
(Afire)

1 in

PLACE VALUE IN BASE PIVE

Exploration:

Previously we have been limiting our discussion of base five to two-place numerals. Now we are ready to introduce the third place in base fiye. Use a place-value chart and bundles of cardboard strips to show groupings of twenty-filvet, fives, and ones:

Twenty-fives	Fives	Onès
	.	.

Write the base five notation on the chalkboard as the children count the cardboard strips. For example:

Note: When a title is used, the word "five" does not have to be written beside each numeral.

Count out four cardboard strips, writing the base five notation as you count, and put them in the ones 'place of your place-value chart. Add one more. "How many sets of five are there? " (one) Bundie the set of five ones and put them in the 'fives' ', place. "What' notation do we use to show one group of five? (12. ($0_{f i v e}$) Continue counting, grouping, and rekording untili you have put. 4 Ives and 4 ones in the chart. "What base'five numeral do w? have?" ($44_{\text {five }}$) Add one more strip in-the ones: piace. You now have 4 sets of five and, five ones., "How many sets of five "do we have?" (five). There are five sets of fivé or: ${ }^{\prime \prime}$ set of twenty-five. Bundie the five fives and put this set on twenty-five. in the twenty-fives: place. "What notation do we use to show 1 group of twenty-five?" (100 five). This is read "one twenty"five, no fives, no ones, " gr "one: zero zeros base five ".

Continue grouping, reading, and recording, other three-place numerals in the base five system. Note that Ill $_{\text {five }}$ would be read "one twenty-five, one five, and one ore" or "one one one, base five": In base, five 124 is read "one twenty-five, two fives, and four ones", or "one two four, base five". discussing grouping by fives.
-
∞

PLACE•VADUE IN BASE FIVE

In the base ten system, the number named 99 is the largest with a two-place numeral. This is because, 9 is one less than. the base.

In the base five system, the number named 44 five is the largest with a two-place numeral. This is because 4 is one 'less' than the base, as shown in the diagram below.

There is no twóplace symbol in our base ten system. to mean ten tens. We give ten tens the name 1 hundred." "We white this as the fhree-place numeral 100.

When we are thinking in base five we think of five groups of five as 1 group of five fives. We can use the name twentyfive for five'fives.

How'would the base five numeral for ifive fives' or twentyfive be written?

48

Exercise Set 2°

1. Copy the XI s below and group them in fives and five fives. Write the number of X 's in base five notation.
a) $x x x$
b) $X \dot{x} \times x \times x x$
c) . XXXXXXXXX
xxxxxxxxx
XXXXXXXXXX Xxxxxxxxx
($12 /$ five)
2. Copy and complete the following;
a), $33_{\text {five }}$ means \qquad (3) fives and \qquad (3) ones.
5.) $142{ }^{4}$ five men ns (1) twenty-fives and \qquad (4) fives and (2) ones.
(i) ${ }^{2}$ $104_{\text {five }}$ means \qquad (1) twenty-fives and \qquad (0). fives and (4) ones.
3. Write the base five numeral for the number that is one larger than each of these.
a) ${ }^{4}$ five (10 five $)$
c) $43_{\text {five }}\left(44 f_{\text {five }}\right)$.
e) ${ }^{144_{f i v e}}$
(200 five)
b), $I 3_{\text {five }}(14$ five $)$
d) $1.32_{\text {five }}\left(133_{\text {five }}\right)$
f) ${ }^{204}$ five $(210$ five l)
-4. Write these numbers in base five notation
a). The number of this page in this book (102 five)
b) The number of cookies in 4 dozen (143 five).
c) The total number of pages. in this book ($1 /$ Oo flue)
4. Make a base five chart of the numerals from lifive to ${ }^{200}$ five

Base Dixie Counting clave

BASE FIVE AND BASE IEN NUMERALS

Exploration:
At first the child compares base five and base ten numbers by grouping objects in base five and then grouping these same objects" in base ten. He repeats the same process with drawings:

Another way to see that we are using different numerals to represent the same number is to write in a column the first few counting numbers in base ten notation, and then, in arparallel column, the same numerals in base five notation. Base Ten Base Five

The pupil can change from base five to base ten if he knows how to read the base five numerals. He should be able to think through the transferring from base five to base ten in mach this way. For. example,

$$
\begin{aligned}
23_{\text {five }} & =(2 \text { fives }+3 \text { ones }) \\
& =(2 \times 5)+(3 \times 1) \\
& =10+3 \\
& =13 \\
& =\left(114_{\text {five }}\right. \\
& =(1 \times 25)+(1 \times 5)+(4 \times 1) \\
& =25+5+4 \\
& =34 .
\end{aligned}
$$

Some children. may want to show in writing how this change is made. If.so, they may use the above form.

BASE FIVE AND BASE TEN NUMERALS

Study the chart above. What does the numeral $22_{\text {five }}$ tell us? What does the numeral 12 tell us (h en are 2 five and 2 incivicolise
 Are 12. and 2保ive names for the same number? (yea) Why are $33_{\text {five }} 18$ names for the same number? (33 fine
 Why are 114 five and 34 names for the same number? (114) five means' / twenty five 'five, and stones on thin ty four objects. 34 means 3 tans and s ones or thinly faces abietw.)

The procedure below shows how we may think to change a base five numeral to a base ten numeral.

$$
\text { a) } \begin{aligned}
22_{\text {five }} & =(2 \text { 'fives }+2 \text { ones }) \\
& =(2 \times 5)+(2 \times 1) \\
& =10+2 \\
& =12^{\prime}
\end{aligned}
$$

b)

$$
\begin{aligned}
33_{\text {five }} & =(3 \ldots \text { fives }+3 \text { ones }) \\
& =15+3 \\
& =18
\end{aligned}
$$

c) ${ }^{114_{\text {five }}}=(1$ twenty-five +1 five +4 ones $)$

$$
\text { . }=(1 \times 25)+(1 \times 5)+(1 \times 4)
$$

$$
=25+5+4
$$

$$
=34
$$

In changing base ten numerals to base five numerals, select the largest place-value of base five (that is; power of five) contained in the number. Divide the number by this power of five and find the quotient and remainder. This quotient is the first digit in the base five numbaral. Divide the remainder by the next smaller power of five. The quotient is the second digit.', Continue to divide remainders by each succeeding, smaller power of f five to determine all the remining ${ }^{\text {digits }}$ in the base five numeral.

For example, to change 113 to a base five numeral, we must first see'that $7>3$ is less than five twenty-fives. Then "we ind how many groups of twenty-five are in 113: We can do this by division or repeated subtraction. In either case we find there are 4 twenty-fives. This 4 becomes the first digit in the base five numeral. There are 13 ones left to be grouped.

Now find how many groups of five there are in 13. We find there are Z fives and 3 ones. The two becomes our second digit and the 3. our third digit. Therefore, $113=423$

If a group is not contained in a remainder, -remember to put a zero in that place in the resulting numeral. For example, when changing 104 to base five we find 'there are 4 twentyfives, no fives, and 4 ones. Therefore, $104=404_{\text {five }}$.

MORE ABOUT BASE FIVE AND BASE TEN NUMERALS

So far, when we have written numerals, in base five, we have \therefore so r. \rightarrow we have written numerals. in base five, we have used the place-values, that are shown above. Can you tell what the next place-value will be? (give "twenty fiver or one hiculved. twenty-fiven)

For numerals we will be using right now, the only placevalues we will work with are twenty-fives, fives, and ones.

Suppose we want to change 111 to a base five numeral.
How many groups of twenty-fiye are there in 111? (4)
II The pupil may, use any method he nay tenow tonotve thin porshimell What is the remainder? (II)
Write the mathematical sentence for this division process.

$$
(I I l=4 \times 25+11)
$$

Find how many fives there are in 11. (2)
How many ones remain?/(1)
Write the mathematical sentence for this division, process.
Put both mathematical sentences together ip a mathematical sentence which shows how, 111 can be grouped by fives and twenty-fives. $\quad(1 / 1=(4 \times 2,5)+(2 \times 5)+1)$
What is the base five numeral for 111? (421 fine)
Try changing the following base ten numerals to base five numerals. In each part write the mathematical sentence which shows why four answer is correct.
a) : 12
b) 36
c) 44
d). 52
(2 Rifle) $^{\prime}$ (121 five) (134 five)
(202fioe) $(12=(2 \times 5)+2) . \quad(36=(1 \times 25)+(2 \times 5)+1) \quad . \quad(44=(1 \times 25)+(3 \times 5)+4) ;(52=(2 \times 25)+(0 \times 5)+2)$.

- P31

1: Draw a set of $21_{\text {five }} X^{\prime} s$. Separate these X 's into. groups of ten.. How many X's are there? Write your answer as a base ten numeral. $\left(\begin{array}{ll}\left.\binom{x \times x \times x}{x \times x \times x} \times 11\right)\end{array}\right.$
2. Draw a set of $134_{\text {five }} X^{\prime \prime}$. Separate these X^{\prime} 's into groups of ten. How many X's are there?. Write your answer as a base tan numeral.

3. "Change the follow base ten numerals to base five numerals.
a) I4.(24 five)
c) 23 (43 five)
e) $42(132$ five $)$
b) 51 (20 1five),
d) 60 (220 five)
f) 33 (113 /five)
4. Change the following base five numerals to base ten numerals.
a) ${ }^{23} 3_{\text {five }}(13)^{\circ}$
c), 34 five (19)
e) ${ }^{42_{\text {five }}(22)}$ (:
b) 141 $_{\text {five }}(46)$
d) $\quad 340_{\text {five }}(95)$
f) $204_{\text {five. }}(54)^{\circ}$
5. Which is greater?
a) $210_{\text {five }}$ or (201
b) 13 fine or 42
c) : $33_{\text {five }}$

Exploration:
Since our system of moneý uses groupings*of, - five, some experience in this area will help develop this idea more completely. At first the teacher may need to use play money with some children. Proceed from these experiences to expressing the groupings in a table as follows. Encourage the children to use the smallest number of coins in "\$eparating the money into quarters, nickels, and cents. Draw the chart on the chaikboard. Complete the chart fith the children.

USING GROUPING BY FIVES

We use some groupings of five in our everyday. lIfe. . Let us.look at our system of money; Suppose we have 34 cents. If we use only quarters, nickels, and pennies and the fewest coins, we have one quarter, one nickel, and fourcpennies, How could we write this using base five notation?

Exercise Set 11

Separate the f^{2} lowing amounts of ${ }^{4}$ money into quarters, nickels, and cents. Use the smallest number of coins.

THINKING ABOUT NUMBERS IN OTHER BASES

Exploration:
We are now, going to discuss number bases other than, ten and five. The next experiences involve facts that may be deduced from a definite pattern that you help children to discover. The following is one of many -procedures that may be used. Again, the students will need their manipulative materials. The teacher may wish to duplicate Exercises Set 12.
2. Ask the students to count out fifteen objects.
2. Separate the set of fifteen objects into groups of nine.
a) How many groups of nine are there? ;
(one)
b) How many objects remain?
(six)
c) How would you express this number using. base nine notation? ${ }^{\circ}$
3. Separate the set of fifteen objects into groups of eight..
a) How many groups of eight'are there?
(one)
b) " How many objects remain?
(seven)
c) How would you express this number using base eight notation?
4. Separate the set of fifteen objects into groups of seven.
a) 'How many groups of seven are there? (two)
b) • How many objects remain?
(one)
c) How would you express this number using base seven notation?
$\left(21_{\text {seven }}\right)$
5. Separate the set of fifteen objects into groups of six.
a) Ho many groups of six are there?
(two)
b) How many objects remain?
(three;)
c). How would you express this number using base six potation?.

$$
\cdot{ }^{\prime}\left(23_{s 1 x}\right)
$$

THINKING ABOUT NUMBERS IN OTHER BASES

Exercise Set 12

Copy'ard complete this chart,

;	Arrange in groups of	How many groups?	How many remain?	Notation
	three	2	- 2	${ }^{22_{\text {three }}}$
1. $\left(\begin{array}{ll}x & X \\ x & x\end{array}\right)^{x}\binom{x}{x}$.	four	(2)	(0)	(20four)
2. $\begin{gathered}x \cdot x\left(\begin{array}{l}x \\ x \\ x\end{array} x_{x}^{x} x\right. \\ x\end{gathered}$	four	(2)	- (3)	(23fois)
3. $\begin{gathered}x \times x \times x \\ x \times x / x\end{gathered}$	$y^{\text {seven }}$	(1)	(2) ${ }^{\circ}$	(i'sewen)
	6	(2)	(3)	(${ }^{23}$ aix)
	five	(2)	(4)	(24 five)
	- eight	(1)	$\because(5)$	(${ }^{15}$ eight)
	three	(2)	(1)	(21 these)
	'eight "	(2)	(6)	(26 eight)

9. . Draw a set of $20_{\text {six }}$ objects. Separate these objects into groups of ten. How many objects are there? Write your answer in base ten notation.(12)

10. Draw a set of 34 seven, objects: Separate these objects; into group ,s of ten. How many objects are there? Write your answer in base ten notation. (25)

il. Each mathematical sentence below shows how to change a decimal numeral into a numeral in another base. Write that, numeral in the blank as show in a).
a) $\quad 21=(1 \times i 6)+(1 \times 04)+1$

$$
21=(111, f a r)
$$

b) $\quad 50=(1 \times 36)+(2 \times 6)+2$

$$
50=(122 \text { in } x)
$$

c) $26=(1 \times 16)+(1 \times 8)+(1 \times 2)$: $26=(11010 t=0)$
d) $82=\left(1^{i} \times 81^{\prime}\right)+1$

$$
\begin{aligned}
& =\frac{(101)^{n}}{}{ }^{n i n e} \\
& =(10001)_{\text {three }}
\end{aligned}
$$

Base	Group Names		
Ten	Hundreds	Tens	Ones
Five	Tventy-fives	Fives	Ones
Three,			
Four			

We will now develop the idea of a three-digit humeral in bases other than five or.ten. Place on the chalkboard the chart shown above. Fill in the group names of base three and base four as they are. discussed. During the discussion use a place-value box labeled with the group names of the base being studied.

Review with the children that in base ten each successive place to the left represents a group ten times that of the preceding place. The first place tells us how many groups of one there are. The second place tells us how many groups of ten, or ($10 \times i$). The third place tells us how many groups of ten times ten there are, (10×10), or one• hundred.

Continue with base five; noting that the first place tells us hon man groups of one there are. Tife second piace telis us how many groups of five thereapl. The third place tells us how many, groups of five times five there are Each successive place to the leftrepresents a group five times that of the preceding place.

Using the place-value box and the bundles of cardboard strips, develop placervalue in base three.
.The teacher should lead the pupils to discover that. when numerals represent whole numbers, thé last digit on the right indicates the number of ones (or units) in base three, the second digi't from the right ind sates the number of groups of three. The third digit from the right indicates the number of "groups of nine.' In writing numerals in base three, the value of each place in the $!$. numeral. is three times the value of the place to its right.

4		
,		
¿		
- E	发	$\stackrel{ \pm}{ \pm}$
$1{ }^{\text {* }}$	2	

Continue with. base four.

${ }_{9}^{6}$		
		$\stackrel{(1)}{¢}$
$\stackrel{7}{6}$	${ }_{4}^{\circ}$	
2	3	

In base four nota:tion, the value of each place is four times the value of the place tq its right.

The number of basic symbols necessary to write numerals in a numeration system depends upon the base used. For example, base three/uses three symbols, base ten uses ten symbols base five uses five symbols; etc.

The base we use will determine the value of each place in the numeral. As the number increases in size, the number of places; in its numeral increases faster when one uses α small base than' when , one uses a larger base.

$$
\begin{aligned}
\text { Example: }: & 17_{\text {ten }}=32_{\text {five }_{\text {ive }}} \\
& 17_{\text {ten }}=122_{\text {three }}
\end{aligned}
$$

* The child should be able to compare numeraif in other bases with base ten numerals. For example, 15 eight is read one eight and five ones; ", which is 13 in the dectmal system. Likewise, 43 seven: is read four sevens and, three, ones which is 31 in the dedimal system.

Whem the children count in different bases.,
they will discover many interesting facts.
The follôwing chart, Exercise Set 13, may be duplicated by the teachér.

Exercise Set 13

Copy this chart." Write the numeral for the first twenty-four counting numbers.using base eight; base six, base three, and base four.

Base Ten .	Ease Elght ${ }^{\text {a }}$	froge Six	Base Three	. Base Four
1	(1)	3 (1)	(1)	(1) ${ }^{\text {a }}$
2	(2).	(2)	(2).	(2)
3	. (3)	- $(3)^{4 / 4}$	(10)	(3)
4	(4)	(4) s	- (11)	(10)
5	(5)	- (5)	- (12)	(11)
. 6	(6)	- (10)	(20)	(12):
7	- (7)	(11)	- (21)	(13)
8	(10)	(12)	' $\cdot(22)$	(20)
. 9	(11)	(13)	(100)	(21)
10	- (12)	$\therefore(14)$	(101)	(22)
11	- (13)	(15)	(10,2).	(23)
12.	(14)	' (20)	(110)	${ }^{\text {P3 }} 31(30)$
13	(15)	(21)	(119) -	(31)
14	- (16)	(22)	$\therefore \quad(112)$	(32)
15	(17)	$\dot{+}$ (23)	(120)	$\because(35)$
16	(20)	(24)	$\cdots(121)$	(100)
17	- (21)	(25)	. (122)	(101)
18	(22)	(30)	. (200)	(102)
19	- (23)	- (31)	(201)	$=(103)$
20°	. 24)	$\cdots \quad(32)$	(202)	(110)
21	(25)	(33)	(210)	(111)
22	- (26)	- . 34)	(211)	(112)
- 23	(27) '	(35)	(212)	(113)
4, 24	(30)	(40)	(2, 20)	(120)

Exercise Set 14

Complete the table．

Base Ten Numeral	Sixteens	Fours	Ones	Base Four Numeral
31	（1）	：（3）	（3）	（133 four）
17	（1）	（0）	（1）	（101 frus）
59.	（3）	（2）	（3）	（323four）
Base Ten Numerai	Thirty－sixes	Sixes	Ones	Base Six Numeral
34	（0）	（5）	（4）	（54 six）
90	（2）	（3）	（0）	（230 Aix）
215	（5）	（5）	（5）．	（555，ix ）
Base Ten Numeral	Nines	Threes	Ofes	Base Three Numeral
－ 26	（2）	（2） 6	（2）	（222three）
1．9－1	－（1）	－（0）	（0）	（100 thra）
22	（2）管	（1）．	（1）	（211 three）
Ease Ten Numeral	Forty－nines	－Sevens	Ones	Base Seven Numerai゙
60.	（1）	（1）	碚）	（114 neven）
290	．（5）i	－（6）	（3）．	（ 563 peven）a
99°	（2）	（o）．	（1）	（201）Reven）
Base Ten＇Numeral	Twenty－fives	Fives	Ones	Base Five Numeral
$\because \quad 46$	（1）	（4）．	．（1）	－（141fire）
103	（4）	（0）	（3）	：（403 five）
$\because 89$	（3）	（2）	（4）	（3．24－fire）
Base Ten Numeral	Sixty－fours．	Eights	Ones	Base Eight Numeral
31 ¢	．（0）	（3）	（7）	（37eight）
780	（1）	（2）	（0）	（12teight）
154	（0）：	（6）	（6）	－（ 66 eright）

：

ψ
 Exercise Set 15

1. Fill in blanks as shown in the example

2. Change these numerals into base ten numerals as shown in a)
a). ${ }^{23}$.five $=(2 \times 5)+3$

$$
=10+3
$$

b) 202 three
$(202,2 \times 9)+(0 \times 3)+2=20)$
e) $18_{\text {nine }}$ $\left(18_{\text {mine }}=(1 \times .9)+8=17\right)$

$$
=.13 ̋
$$

c) $10 \sigma_{\text {seven }}$

f) 34 eight

h) 122 three
i) $\left.312_{\text {four }}^{\left(122_{2}\right.}=(1 \times 2)+(2 \times 3)+2=17\right)$
(312 ane $=(3 \times 14)+(1 \times 4)+2=54)$
3. : Copy and complete this comping chart.

$\left(\frac{300}{f i n e}\right)\left(\frac{201}{f i n e}\right)\left(\frac{202}{f 10 e}\right)$
b) Base seven
$\therefore \therefore$ A \because
c) Base four

4. In what base are we counting?
a) $1,2,3,4,10,11,12,13, \ldots \ldots$ (back five)
b) $14,15,16,20,21,22 ; 23,24,25,26,30, \ldots$ (base seven. $)$
c) $i, 2,3,10,11 ; 12,13,20,21,1 / 22, \ldots$ (tace four)
d) $11,12,20,21,22,100,101,102,110, \ldots$ (base three)
5. Copy the work below. Use the "greater than"; "less than", or "equals" sign to complete a true mathematical sentence.
a) $44_{\text {five }}(>) 102_{\text {three }}$
b) $100_{\text {seven }}(=)^{5}{ }^{n}$ nine
c) $32_{\text {six }}$ ($\left\langle\right.$) ${ }^{25}$ eight
d) 21 ?renee (>) ${ }^{21}$ four
e)' $77_{\text {eight }}(=) \quad{ }^{223_{f}}{ }_{\text {fie }}$
6. A place value system of numeration has twenty digits. What is the base? (twenty or 20)
7. Count by tens in base five from $20_{\text {five }}$ to $400_{\text {five }}$. (2 0five, "fafive, "!five, 130 five, 200 five, 220 five, 240 five, 310 five, ${ }^{3} 330$ five, . 400 five)
8. Are these odd or even numbers?
a) $12_{\text {three }}$ (odd)
d) ${ }^{111_{\text {three }}(o d d)}$
b) ${ }^{21}$ three $(\operatorname{cod} \alpha)$
e) ${ }^{121}$ three (even)
c) $\because 101$ three (even)
f) $102_{\text {three }}$ (odd)

BRAINTWISTERS

9. Copy and fill in the blanks.
a) ${ }^{33}{ }_{\text {five }}=(24)_{\text {seven }}$
b) ${ }^{14}{ }_{\text {eight }}=(110) \quad$ three
c). $25_{\text {six }}=\frac{(101)}{(\text { four }}$
d) $128_{\text {nine }}^{\prime}=\underline{(402)}_{\text {five }}$
10. What is \underline{n} in each of these mathematical sentences?

$$
\begin{aligned}
& \text { a) } n_{\text {five }}^{\prime}+2_{\text {five }}=11_{\text {five }}\left(\text { five }={ }^{4} \text { five }\right) \\
& \text { b) } 23_{\text {four }}+10_{\text {four }}=n_{\text {four }}(\text { four }=33 \text { four }) \\
& \text { c). } n_{\text {eight }}=42 \text { eight }=25_{\text {eight }}(\text { night }=67 \text { eight }) \\
& \text { d) } 123_{\text {six }}+n_{\text {six }}=130_{\text {six }}\left(n_{\text {six. }}=3 \text { pix }\right)
\end{aligned}
$$

11. Suppose a base three system used the symbol A, for the number zero $\%$ f for one, and C for two. In this (. numeral system count from zero through ten. ($A, B, C, B A, B B, B C, C A, C B, C C, B A A, B A B$)
12. Change each of the following to decimal numerals.
a) BBB
(13)
c) CBA (21)
b) $\operatorname{CAB}(19) \sim$
d) ${ }^{\prime} \mathrm{ABC}(5)$

Chapter 2.

FACTORS AND PRIMES

PURPOSE OF UNIT

'The most fundamental objective of this unit is to investigate what might be called the multiplicative structure of the counting numbers. We try to find out something about how new numbers are "constructed" as products of given numbers and how a given number can be "broken up" into products of smailer numbers. Because a given number does not have every smallen number as a factor, the situation is not as simple as it is in addition where every smaller number is an addend. There are, in fact, simple statements about multiplicative'structure which remain unsettled.

While the study af multiplicative structure can be approached. as a parre of intrinsic interest, it should. also be of substantial value in reinforcing the learning of multiplication facts by emphasizing their interrelations.
'The immediate aim of this unit is (1) to develop the techniques of expressing a number as a product of prime numbers . and to put this, to use in (2) finding all factors of a number, and (3) finding the greatest cormon factor of two numbers. These techniques will be used later as manipulative tools in operating with fractions. At that time they can be reviewed and-the necessary proficiency devezoped.

Special Note to the Teacher: If this is the first time that you have.' taught, this umit, you will find it most helpful, before you present. the unit, to study first all of the pupil. pages and the background accompanying them. Then your study of the Mathematical 'Summary at the end of the chapter will be much more rewarding.. After you have seen the arrangement of the chapter as a whole, :your teaching of the material will be more effective.

The materials of this puit âre organized and presented somewhat differently than in other units; The basic pattern for each section of the unit is as follows:
) 1. Background material for the teacher including comments on ideas and possible lines of discussion
2. An outline of suggestions for classwork
3. Pupil pages containing examples and a summary of the language, ideas, or techniques which have been developed in classwork
4. Pupil pages containing exercises involving the ideas of the section

At the end of the unit'the mathematical ideas which appear in. it are summarized briefily in a section headed Mathematical Summary. In this summary, more attention is paid to deductive explanations than in the background material in the body of the unit.

FACTORS AND PRODUCTS

Objective: To review some of the basic ideas involving factors and products.
Materials: : Five arrays (1 by 10, 2 by 5,1 by 20,2 by 10 ; 4 by 5)

Vocabulary: Factor, product, multiplicatipn sentence, product expression, commutative property, associative propertya

Background:
Special Note: It is imperative that children have a strong knowledge of the basic multiplicatton facts through 9×9. If thery do not, then you past spend some time in review, using both mental arithmetic and written work.

It is important also that the ow the division algorism. - In this unit wise one developed in Chapter 7, Grade Four; but if the class did not study SMSG in the fourth grade, then the algorism they know will be sufficient.

For your own information, you will want to rèview the basic properties of multiplication and division as they are presented in Chapter 4, Grade Four. This'does not mean to go back and teach all these ideas to the children, but each teacher needs an understanding of rthat unit.

From the outset of this unit it is important for you to keep in mind the distinction between prime and composite numbers, even though this distinction is not needed specifically and $\operatorname{sexplicit-~}$ ly until the later section on "Prime Numbers."

A prime number is a counting number greater than 1 that has no factor (among the counting numbers) other than itseli and 1 . (e.g.: 2, 3, $5 ; 7,11,13,17$, and 19 are the prime numbers less than 20.)

A composite number is a counting number gneater than 1 that has factors (among the counting numbers) other than itself and 1. \because By definition, 1 is neither a prime number nor a composite number
'It' is well to keep in mind that we are interested in facfors that are counting numbers and not just any factors. For example; although 5 can be factored (since $\frac{5}{2} \times 2=5$) it can not be 'factored using only ${ }^{2}$ counting numbers.

Let us use the number. 24 to illustrate several different kinds of things children may be asked to find in terms of factors associated with a composité number.

- l. Children may be asked to find a product. expression for a composite number such as 24.
fact. The product may be expressed as two
factors; e.g.,

$$
\because \quad \begin{aligned}
& 24=3 \times 8 \\
& 24=4 \times 6 \\
& 24=1 \times 24 \\
& \text { etc. }
\end{aligned}
$$

.b. The product may be expressed as three (or more) factors; e.g.,

$$
\begin{aligned}
& 24=2 \times 3 \times 4 \\
& 24=2 \times 2 \times 6 \\
& 24=1 \times 3 \times 8^{2} . \\
& \text { etc. }
\end{aligned}
$$

2. Children may be asked to express a composite number such as 24 as a product of prime factors (i.e.; as a product of factors which are prime numbers). Without regard for the order in which the factors are stated, there is only one way in which a particular composite number can be expressed as a product of prime factors. In the case of 24:

$$
24=? \times 2 \times 2 \times 3
$$

3. Children may be asked to find the set of $\frac{a l l}{24}$ factors of a composite number. In the case of $\frac{24}{24}$ this is $\{1,2,3,4,6,6,12,24\}$: Each member of this set is a' factor of ' 24 : din: Special mention should be made of the use of 1 as a factor in connection with each of the three preceding situations.

In connection with la and lb, beginning work permits the use of 1 as a factor. Ultimately it is shown that writing 1 as a factor in many product expressions gives no additional. information regarding the factors of a number; hence, it'need not be written.

In connection with situation 2 (expressing a composite number as a product of prime factors), 1 is never included as a factor since. I is not a prime number (by definition).

> In connection with situation 3 (listing the set of all factors of a number) inciuded, along with the number itself. $\frac{\text { aiways }}{\text { Both }}$ and n are factors of $\frac{n}{\text { n }}$ (a composite number), but neither is prime factor.
> Some childen will need your help at times in sensing clearly which one of the three preceding situations is under consideration.

Every whope number has many names. In this chapter, we will Lise this idea, again. Take the number. 20. Many names can be given for $20(10+10,22-2 ; 2 \times 10,1 \times 20,4 \times 5$, etc. 20 . If we list ony hames, which show multiplication for $\cdot 20$, we include only product expressions. ($1 \times 20,2 \times 10,4 \times 5,5 \times 4 ; 10 \times$ 2, $20 \times I$.) 'It will be 7óted in the next section that if we "remember the commutative property, three of these product expressions for 20 are sufficient.

By u'sing 'the commutative property, we get the last thre from, the first three.

$$
\begin{aligned}
& 2 \times 20=20 \times 1 \\
& 2 \times 10=10 \times 2 \\
& 4 \times 5=5 \times 4
\end{aligned}
$$

Each product expression for a number corresponds to an array. An array may be described by $a, n u m b e r ~ p a i r ~ l i k e ~ 5, ~ 3 . ~ T h e ~ f i r s t ~$ number named gives the number of rows, and the second number named gives the number of coxumns in the array. An array describing 5, 3 looks like this:

3

Suppose there are 10 objects when which to construct arrays. If all objects are used, how many different arrays, can be forme đ'? A 1 , by 10 , 2 by 5,5 by 2, or $a^{\prime \prime} 10$ by 1 array can be formed. Each of the arrays is different from the others if they are not to be moved about.

Again you will notice that we have considered every pair of factors whose product, is, 10 . ($1 \times 10,2 \times 5,5 \times 2$, and 10×1)

- Actually, we have used only two pairs of numbers, but have four different expressions if we consider order;

Take 36. $1: \times 36$ is a product expression for 36. Since 1 is a factor of all numbers, every number has "a product expression W of this type. Other mint expressions for 36 are 2×18, $3 \times 12,4 \times 9$, and ${ }^{3} 6$: Here there are five different expresssins.' By applying the commutative property of multiplication to "them, we can arrive at four more: $9 \times 4, \cdot 12 \times 3,18 \mathrm{kl}^{2}$, and 36×1. There are not' five more expressions because when the commutative property is applied to 6×6 we arrive at the same product expression.

For a small number, knowledge of the multiplication fact \grave{y} enables us to find every product expression with two factors for the number. 'For at large number, another method must often be ;used to" find factors and product expressions for the number.

Suppose the problem is to find whether a number has a factor 3, "and to write a product expression for到t if it has. This might be done by two methods.

METHOD A:
(i) Is 3 a factor

$37=(12 \times 3)+1 \cdot($ a remainder $:$ of 1)
3 is not a factor of 37 .
${ }_{4}^{4}$
$57=19 \times 3 \quad$ (no, remainder)

3 is a. 播ctor of 57.

METHOD B: (Here we must use the multiplication facts and mathematical sentences.)

Is 7 , a factor of $\quad 67$? $I^{*} k n o w ~ 9 \times 7=63$,

$$
67-63=4
$$

therefore $(9 \times 7)+4=63+4=67$.
When we divide 67 by 7 there is a remainder of 4. The only way that 7 could be a factor of 67 would be if there were no remainder.

Suggestions' for Exploration:
Review many names for the same number.
(Review multiplication language and ways of writing. Review arrays and their relation to product expressions.

* Find several product expressions for several numbers. Introduce Methots A and B to find whether a number has a factor, thereby making it possible to write a product expression.

Chapter: 2
FACTORS AND PRIMES
\int FACTORS AND PRODUCTS

Exercise Set 1

1. List three different names for each of the following

2. Copy the following statements and fill in the blanks: .
-a. 5 is a factor of 15 because $15=\left(5^{\circ} \times 3 \times 3 \times 5\right)$
b. $\quad 15=5 \times 3$ shows that $0(3)$ is another factor of 15 .
c. 24 is the product of 6 and \qquad (4).
d. \qquad is a factor of every number.
ie. - Every number greater than -1 different factors. .
3. How many different arrays can be formed with
${ }^{2}$ has at least

a. 10 objects? 4. $\left(2 \times 5,5 \times 2,10 \times 1,{ }^{2} 1 \times 10\right)$
+b. 20 objects?. 6 ($4 \times 5,5 \times 4,2 \times 10,10 \times 2, \cdots \times 20,20 \times 1$),
List the number of rows and columns in each array'.
(Remember that the number of rows is always named

Exercise Set.2
i. . 1. Express the following numbers as a product of two factors. Find three different ways for each.
a. $24 \quad(2 \times 12,4 \times 6,3 \times 8)$
b. $30(5 \times 6,2 \times 15,3 \times 10)$
c. 28 ($\left.4 \times 7,1 \times 28,{ }^{2} \times 14\right)$
2. Write the decimal numeral for each product.
a. $6 \times 9 \doteq(54) \quad$.ff: $5 \times 9 \doteq .(45)$
b. $7 \times 6=(42)$
g. $8 \times 6^{1}=(48)$
c. $9 \times 7=(63)$
h. $9 \times 8^{\prime}=(72)$
d. $8 \times 8=(64)$
i. 7×8
j. ' $6 \times 6=(36)^{\prime}$.
3. Complete each mathematical sentence below. to make a true statement.
a. $3 \times \frac{(7)}{x}=21$
f. $\quad(7) \times .4=28$
b. $(x) \times 8=56$
g. $8 \times(4)=32$.

- $C_{0} \cdot 4 \times(1)=4$

$$
h_{0} 4 \times(q)=36
$$

d. $9 \times(9)=81 \cdot \therefore 1.4 \times 6=24$

1
$\dot{e}:(8) \times 2=72^{n}:^{-2} j .7 \times(9)=63$.
4. Express each of the following numbers as a product of two factors in every possible way.
a. 112 (There are 6 ways.) ($12 \times 1,6 \times 2,4 \times 3,3 \times 4,2 \times 6,9 \times / / 2$)
b. 35 (there are 4 ways.) $(5 \times 7,35 \times 1,7 \times 5,1 \times \times 35)$ \qquad

dr $18{ }^{\circ}$ (There are 6 ' ways.) $(1 \times 18,2 \times 9 ; 3 \times 6,4 \times 3,7 \times 2,18,1)$.
e. 45°, (There are 6 ways. $)(1 \times 45,3 \times 15,5 \times 9,9 \times 5,15 \times 3,45 \times 1)$.

TESTING NUMBERS AS FACTORS

Is 3 a factor of 57 ? Is 3 a factor of 37 ? We may * see by using division (Method A).

$5 \dot{7}=(19 \times 3)$
3 is a factor of 57.

$-37=-(12 \times 3) \stackrel{\circ}{+} 1$
3 . is not a factor of. 37.

Here is another method we may use to see if one number is a - factor of another (Method B). Is $\because \quad .0$ factor of 67 ?

$$
\text { I know } 9 \times 7=63
$$

and , $67=63+4$.
Therefore $(9 \times 7)+4=63+4=67$.
'Stye " 4 is less than 7, , 4 is the remainder when 67. is divided by 7: This shows that 7 is not a factor of 67 .

Exercise Set 3

1. Use: Method A "to answer each of these

c. Is: 7 a factor of 59.3 (Ho
?. 1 Use Method .B to answer each of these: Write your answer 'In \ddot{a} complete sentence.
 your answer. in a complete senterice.

c. Is 6 a to 6

DIFFERENT PRODUCT EXPRESSIONS FOR THE SAME NUMBER
objective: To help children understand that one number can be named by more than one product expression

Vocabulary:: Product expression, associative property,

$$
\because \text { commutative property }
$$

Background:
before beginning this unit, the teacher should study Chapter 4, Grade Four, particularly the material on the associative and commutative properties of multiplication.

In the review on P46 and P47, we attempt to show that for our purposes, it is unnecessary to distinguish between $(2 \times 3) \times 5$ and $2 \times(3 \times 5)$ or between 2×3 and 3×2 in whiting product expressions.
oncelwe know"

$$
2 \times 3 \dot{\times} 5=30
$$

we also know that \{any rearrangement of $2 ., 3$ and 5 : gives another product expression for $30 . \because$ We maya, of course f find it helpful to think of the rearrangements; but we will not regard them as different product.expressians for 30 ; and -we will, write any ope as a representative of them. all. The essential point $4 s$ that, by remembering the commutative and associative properties, we can' get as much. information about factors and product expres
sions of 30° from. $2 \times 3 \times 5$,
as we can from all possible groupings andprearrangements of the e factors shown:
'Şugestions for explore $\begin{gathered}\text { sion': }\end{gathered}$

1. Review the associative property of multiplication with' the class before introducing pupil page 46 . Use examples similar to the one given ion that page.
2. Review the commutative property in the same way

P47 ,

THE COMMUTATIVE PROPERTY OF MUETTRIICATION

- When we know" 62×3; we also k ow

$$
6=3 \times 2
$$

If we know that - $24 \times 32=768$, then we know that

$$
32 \times 24=-768
$$

If we know. $30=2 \times 3 \times 5$,

$$
30=2 \times 5 \times 3
$$

$$
3 c=5 \times b \times 3
$$

$$
30^{t}=3 \times 2 \times 5
$$

product of three factors terns us, that $\mid 2,3$ and 5 are factors of '30: When we: Io now one way. :we can list. fl six; but we will find nothing new from the other five ways.

From now on in this unit we will not say two ways of writing a product expression aireiffenant; way unless they show' a different set of factors.

Bockground
an papil page 47 six ways were found to use the same factors, to exprest the product, 30 , They are all considered as one way of expressting 30 as a product. We will not pay that two ways of writing a product expression are different ways unlesf they show different factors. For example:

$$
\begin{aligned}
-6 & =1 \times 6 \\
-6 & =2 \times 3
\end{aligned}
$$

There are two different ways of expressing ϵ° as a product betailse Each product expression involves a different set of factors. are five different ways to express 30 as a product of three. facitörs.

$$
\begin{aligned}
30 & =2 \times 3 \times 5^{6} \\
& =1 \times 2 \times 15 \\
& =1 \times 5 \times 6 \\
& =1 \times 3 \times 10 \\
& =1 \times 1 \times 30
\end{aligned}
$$

To write the producit expresision for 12° using three factors and beginning with the expression $12 \doteq 4 \times 3$, we have:

$$
\begin{aligned}
12 & =4 \times 3 \\
12 & =2 \times 2 \times 3, \\
12 & =1 \times 4 \times 3
\end{aligned}
$$

If we begin with $12=2 \times 6$, then $12=2 \times 2 \times 3$, and

$$
12=1 \times 2 \times 6
$$

Each product expression shows certain factors of the number. it 'names. Other factor's can be obtained by multiplying two factors or by multiplying three.factors, etc.

For example, from $12=2 \times 2 \times 3$,
welknow that " l_{1} is factor of 120 (1 is a factor of every
2 is a factor of ${ }^{\circ}$ 12. "(Shown)."... number)
3 is a, factor of 12. (Shown)
.4 is a factor of $12, \therefore(2 \times 2)$
6 is a fac torr of $12,^{\prime}(2 \times 3)$
12 is a factor oof 12 , ($2 \times 2 \times 3$).
We also know that "ic" is a factor of 12 because every number has itself as a factor. So, we know that. $1,{ }^{\circ} 2,3,4,6$ and, 12 are factors of 12 . "This happens" $\ddagger a$ be the set of all factors of 12 .

If we had written

$$
12=1^{\prime} \times 2 \times 6
$$

\therefore then; from this expression we would have fund only nr 1, 2, 6, 18 as factorsmof 2.2.
'We could have. found out just as much from

$$
12=2 \times 6 \text { \&as from } 12=1 \times 2 \times 6
$$

This is a good reason for not, always specifically including $I_{\text {. }}$ as a factor in a product expression:

Expressing a number as a product of $2,3,4,5$ or even more factors does not always give all factors of the number, In this section children are learning that different product expressions for the same number may lead to different sets of factors. For example, these differer produce expressions for 60 lead easily to reaognition of different se of factors for ${ }^{\circ}$ 6.0.

$$
60^{\circ} \doteqdot 1 \times 2 \times 30^{\circ}
$$

Easily seen set of factors of 60: , $\{1,2,30,607$.

$$
\begin{aligned}
& 60^{\prime}=2 \times 3 \times 10 \\
& \mathrm{rs} \text { of } 60:
\end{aligned}
$$

Easily seen set, of factors of 60: (h, 2, 3, 6, 10, 20, 30,60).

$$
60=2 \times 5 \times 6
$$

Easily seen'set of factors of $60:\{1,2,5,6,10,12,30,60\}$ Nothing assures us that the union of all these f sets factors of 60 Is the set of all factors of 60 . Indeed, from the three
given factorizations it is cléar that not all factors of 60 are obtained since 4 and 15 are not in the sets of factors and clearly they are factors of 60 ...This.raises the following question: From which product expressions can we find all factors? The answer depends on the idea of prime numbers and is given in the section FINDING ALL FACTORS.

Suggested Exploration:
Discuss the different ways a product expression having two factors may be written as a product expression with three factors.. Emphasize the role of multiplication facts: Discuss the way in ${ }^{\text {which }}$ product expressions can be used to find factors.
Show by example that different product expressions for the same number lead readily to some factors of'the number. Some of thesè factors might not be seen at áll if we began. with a different product expression: This is quite evident 'in our example which used different product expressions for 60. For example:
$\cdot 60=2 \times 3 \times 10^{\prime}$
We get the fldctors:
2 (given)
3 (given)
$10($ given $)$
$6 .(2 \times 3)$
$20(2 \times 10)$
$30(3 \times 10) \quad$.
$60=2 \times 5 \times 6$
We get the factors:
2 (given)
6 (given)
5 (given)
$12(2 \times 6)$.
$10(2 \times 5)$
$30(6 \times 5)$.
1° is a factor because 1 is a factor of every number. 60 is a factor because every number has itself as a factor.

If $60=2 \times 3 \times 10$,
the factors of . 60 are: 1', 2," 3, 6, 10, 20', 30', 60

If $60=2 \times 6 \times 5$,
the factors of 60 are: $1,12,5,6,10,12,30,60$

Sthow by example that using 1 , as a fattor to exteind a product expression does not give more information about factors: Discuss the answers to exercises 1, 2, and 3 in Exercise Set 4 in the light of these ideas.

WAYS TO WRITE DIFFERENT PRODUCT EXPRESSIONS FOR THE SAME NUMBER

There are two different ways to express 6

as a product of two factors. We can use the factors
1 and 6 , or 2 and $\dot{3}$.

$$
\begin{aligned}
& 6=1 \times 6 \\
& \therefore=2 \times 3
\end{aligned}
$$

There are five different ways to write 30
as a. product of three factors. The factors of
30. are, $1,2,3,5,6,10,15$; and 30.

Using these factors, name the 5 different ways'.

$$
\begin{aligned}
30 & =1 \times 1 \times 30 \\
& =1 \times 2 \times 15 \\
& =1 \times 3 \times 10 \\
& =1 \times 5 \times 6 \\
& =2 \times 3 \times 5 .
\end{aligned}
$$

The factors we get depend upon the way we write the - product expression. If we write $6 \dot{0}=2 \times 3 \times 10$, we will find pane set of factors. If we write $60=2 \times 6 \times 5$, we ". will get a different set of factors:

$$
60=2 \times 3 \times 10
$$

$$
60=2 \times 6 \times 5
$$

The factors are:
The factors are:

'I' is a factor because 1 is a factor of every number.
60 is a factor because every number has itself for a factor.
E

$$
I^{f} 60=2 \times 3 \times 10
$$

If, $60^{6}={ }_{2}^{5} \times 6 \times 5$,
'the factors are: * the factors are:

$$
1,2 ; 3,6,10,20,30,60
$$

$$
\because \quad 1,2,5,6,10,12,30,60
$$

Exercise Set it

1. Each number below is written as a product of two factors. Use this to write the number as a product of three factors. a. $12=4 \times 3$

- Answer: $12 \doteq 1 \times 3 \times 3$ or $12=2 \times 2 \times 3$
b. $8=4 \times 2$
e, $18=6 \times 3$
c. $18=9 \times 2$.
f. $36=6 \times 6$
d. $16=4 \times 4$
g. $36=4 \times .9$

2. Write two different product expressions for each of these numbers. Use three factors in each product expression. Then use each product expression to find as many different factors of 'the number as you can. Part. a. is done, for you.
a. 12

Answers: $12={ }^{\circ} 2 \times 2 \times 3$, Factors we can find: $2,3,4.4,6$ 12 $12=1 \dot{x} \cdot 2 \times 6$. Factors we cen find: $1 ; 2,6,12$.
b. 18
c. 36
d. 16
3. In exercise 2 , when we used $12=2 \times 2 \times 3^{\circ}$, we find that if we put 1 in our list we have all of the factors of 12. Find whether this is true for each of the product expressions in exercise 2.
4. How can we express a number as a product of three factors in all different ways? We might first express the number as a product of two factors in different ways.
a. 10

$$
\begin{aligned}
& 10=2 \times 5, \quad \text { so } \quad 10=1 \times 2 \times 5, \\
& 10=1 \times 10, \text { so } 10=1 \times 1 \times 10 .
\end{aligned}
$$

I can find two different ways.?
b. . 12

$$
\begin{aligned}
12^{\prime}=3 \times 4, \text { so } 12 & =1 \times 3 \times 4, \text { and } \\
12 & =3 \times 2 \times 2, \\
12=2 \times 6, \text { so } 12 & =1 \times 2 \times 6, \text { and } \\
12 & =2 \times 2 \times 3 \text { (already found) } \\
12=1 \times 12, \text { so } 12 & =1 \times 1 \times 12, \text { and } \\
12 & =1 \times 2 \times 6 ; \text { (already found) } \\
12 & =1 \times 3 \times 4 \text { (already found). }
\end{aligned}
$$

I can find four different ways.

$$
\begin{aligned}
& 1 \times 3 \times 4 \\
& 2 \times 2 \times 3 \\
& 1 \times 2 \times 6 \\
& 1 \times 1 \times 12
\end{aligned}
$$

Use the method shown in a and b to find as many ways as you can to éxpress these numbers as products ${ }^{8}$ of three factors.
c. 16
d.. :18

$$
\text { g. } \quad 44
$$

e. 20

$$
\text { h. } 42
$$

Answeris Exercise Set 4

1. b. $1 \times 4 \times 2$, or $2 \times 2 \times 2$, (possibly differènt order)
c. ${ }^{\prime} 1 \times 9 \times 2$ or $3 \times 3 \times 2$
d. $1 \times 4 \times 4$ or $2 \times 2 \times 4$:
e. ${ }^{-1} \times 6 \times 3$ or $2 \times 3 \times 3$
r. $1 \times 6 \times 6$ or $2 \times 3 \times 6$
g. $1 \times 4 \times 9$ or $2 \times 2 \times 9$ or $4 \times 3 \times-3$
2. ฉ. $18=1 \times 9 \times 2$ or $3 \times 3 \times \times 2$ or $1 \times 3 \times 6$.

$$
\begin{aligned}
& 1, \overline{2}_{2} 9,18 \cdot . \quad 7,2,3,6,9,18 ;{ }^{\prime} 1,3,6,18 \\
& \text { c. } \therefore \text { in }=1 \times 6 \times 6 \text { or } 2 \times 5 \times 6: .4 \times 4 \times 2 \\
& 1_{2} 6,36 \quad 1,2,3,6,72,18,36 ; 1, i 4,9,36 \\
& \text {.or -others ..s } \\
& \text { d. } 16=1 . \times 4 \times 4 \text { or } 2 \times 2 \times 4 \text { or } 1 \times 2 \times 8 \\
& 1,4,16 \quad 1,2,4,8,16 ; 1, \cdot 2,8,16
\end{aligned}
$$

(áuewet contixued on ixest paje)
3. b. If your answer was $18=3 \times 3 \times 2$, then by, adding 12 . to your inst of factors, you would have the set-of all, the factors of 18 , i.e. $\{1,-2,3,6,9,18\}$.
s: Not true f and gas
d. If your answer was $16=2 \times 2 \times 4$, then by adding $1^{\text {a }}$. to your list of factors, you would have the set of all factor's of $\cdot 16$, i.e. $\left\{1, \frac{1}{2}, 4,8,16\right\}$.
There is no way that $36=4 \times 9$ could be expressed as a product of ${ }^{-}$factorsothat would aid you in finding all the factors of " 36 . You must use $36 .=2 \times ? \times 3 \times 3$.
4. "c. $2 \times 2 \times 4, .4 \times 4 \times 1,2 \times 8 \times 1$,
d. $3 \times 3 \times 2,6 \times 3 \times 1, \quad 9 \times 2 \times 1, \quad 18^{\circ} \times$ i. $\times 1$.
.. e. $2 \times 2 \times 5,4 \times 5 \times 1,10 \times 2 \times 1,20 \times 1 \times 1$.
f. $11 \times 1 \times 1$
= g. $2 \times 2 \times 11,4 \times 11 \times 1,23 \times 2 \times 1, \quad 44 \times 1 . \times 1$
, h. $2 \times 3 \times 7, \quad 6 \times 7 \times 1,14 \times 3 \times 1, \quad \stackrel{1}{21} \times 11 \times \frac{1}{2} ;$ $42 \times 1 \times 1$

Using ${ }^{\prime} 1$ as a factor.in a product expression tells us nothing we don't know about the factors of the number. -For example:
a. We know that 1 and 15 are factors of 15, since every number has as factore, itself and. 1. Writing. $15=i \times 15$, tells us nothing more about the factors of 15.
b. If we write $12=4 \times 3 \times 1$, we know no more about the factors of 12 than if we write $12=4 \times 3$.
c. If we write $36=9 \times 4 \times 1$ or $36=1 \times 4 \times 1 \times 9,{ }^{\prime \prime}$ we know no more about the factors of 36 than if we write $36=.4 \times 9$.

Because of this, when we want to know more about the factors of a number, we look for factors greater than 1 but less than the number itself.

FACTOR TREES
Background:
The process used to express a number as a product of more than two factors can be pictured in a diagram. This diagram may help children see how, a number is "built up" from smaller numbers by multiplication.

A factor tree is a. way to picture factors. $36 \approx 4 \times 9$.is - r$r e p r e s e n t e d ~ b y ~ d r a w i n g: ~$

We picture $36=(\dot{2} \times \dot{2}) \times 9$ by extending this drawing to make:

Finally $.36=(2 \times 2) \times(3 \times \cdot 3)$ is shown as:

If, for example, 'a different pair of. factors had been chosen; such as, $36=2 \times 18$. The drawing would have been started:

$36=2 \times(2 \times 9)$ would be added to the diagram:

Since 2 has only 1 and 2 as fäctors', i.t-would not bé written as a^{-}product. To show thi"s we would draw:

The picture would be:

This unit is good readiness for study of prime numbers. You will notice when a factor tree is completed, the last row is a product expression showing all the prime factors of the product. Suggested Exploration:

Use the examples shown in the background for an explanation of factor trees.
Follow each?step caréfully. Do not omit any of. the procedure. Use s'everal examples $(16,15,40){ }^{\circ}$ as' necessary for the class.

FACTOR TREES

A "factor tree": is a diagram. which shows factors of a given number. Letis look at the number 24 . We can give product expressions, with two factors (each one greater than.1) as follows:

$$
\begin{aligned}
& 24=2 \times 14 \\
& 24=3 \times 8 \\
& 24=4 \times 6
\end{aligned}
$$

These product expressions can be pictured by "facted res" which look like this.

We can picture each product expression using 3 factors (each > 1) by using. the "factor trees."

We can extend the factor trees at the bottom of page 96 to picture how. 24° can be expressed as a product of 4° factors.

- Is it possible to extend the factor tree to another row 1 that "would 'show . 24 às" a product of . 5 factors' (not using 1 ass a factor)? $\mathcal{H} 0 . \therefore$

What do you notice about the last row, in the factor trees

 $1 . \quad \because \quad \because \quad$,

Exercise Set 5

1. Draw two factor trees (if there are two for each of the following numbers. Extend each.tree as far as possible. Do not use the factor 1 .
a. 24
b. 30
e. 60
f. 23
c. 28
g. 48
h. 72°
:-
2. List the smallest number which has 'all of these numbers as factors.
a. $2,3, .5$ (30)
b. 2, 5, $7^{\circ}(70)$.
c. 2, 4, 8 ((8)
d: 2, 6, 12 (12)
e. 2, 3, $4(12)$
f. 4, 6, $8(24)$. i
g. $5,7(35)$
$\therefore \ddots$ h. 2, 5, 7, $10(70)$

- BRAINTWISTERS
3.. 6 is a factor of 678. This means that 678 . must have other factors: What are they? (Fher (The ary $2,3,6,113,226$) 678,339

4. 12 is a factar of 2,844 . What other factors must 2,844 have? ($1,2,3,4$ aind 6 are foctors hecause thy are $)$ factors of 12. Fhere are

PRIME NUMBERS
Objective: To help children understand prime numbers and the "role they play in multfplication

Vocabulary: Prime number (prime), composite number, Sieve of Eratosthenes

Backgroưnd:
Note: The process illustrated with factor trees always terminates, -perhaps after many steps, perhaps after one or two. It may happen that it dannot be begun, as for $5,7,17,23$, since. numbers like this cannot be expressed as a product of two smaller factors. In this chapter, factors shall always be whole numbers. Of course, It is just prime numbers such as these that appear in the last level of a factor trea. They are the "bricks" from which all other numbers are "constructed ${ }^{n}$ by multiplication. If one is to answer. questions involving factors or product expressions, we mast become familiar with the prioperties of these numbers, called prime numbers. Our study will also have some.very practical consequences for the computation of greatest common factors and least common multiples. Least common multiples will be reserved for a later chapter.

It is not possible for a"number to appear. In the last leyel of a factor tree if it oan be expressed as a product of two whole numbers less than itself. For example, 6 çannot appear, because it can be expressed as the product " 2×3. "The numbers in the last level are those which cannot bè written as a product of two smaller factors. These numbers in the last level are called prime numbers.

A prime number is a number which is greater than 1 , but can not be written as the product of two smaller factors that are Whole numbers greater than 1 . Take the number 3.3 is greater. than \bar{i} but cannot be written as the product of two smaller factors: Therefore, 3 is a prime number.

On the other hand, the number. 4 is larger than 1 but can be written as the product of two smaller factors, 2×2. So 4 is not a prime number. It is a composite number.

There are other ways to define prime numbers:
(1): A prime is a number which as greater than ' 1 ' but which cannot be written as a product without using 1 as a factor. (You may use a prime' to mean a prime number.)
(2) A prime (or, a. prime number) is a number with exactly two factors, itself and one. For instance, 3 is prime (or, is a prime number) because its only factors are 1 and 3. 4 is not prime (or, is not a prime number) because it has factors ${ }^{-1,2, ~ a n d ~} 4$.
(3) A prime number is a number with no factor which is smaller than itself but greater than 1.37 is prime because there is na factor of 37 - that is' smaller than 37 but greater than 1 : 6 is not prime because it has the factor 2 that is smaller than 6 . but greater than 1 .
Ail these definitions of prime numbers are saying the same thing: " "A prime number' is a number which is greater than 1 but cannot be written as the product of two smaller factors, each of which is smaller than the number."

A whole number which is not" prime and is greater than 1 is called a composite number.

$$
\begin{aligned}
& 4=2 \times 2 \\
& 6=2 \times 3 \\
& 9=3 \times 3
\end{aligned}
$$

show that 4 多 6, and 9 are composite numbers.

Suggested Exploration:

Write several factor trees on the poard, for example:

Ask when we know we have finished.a factor tree.
Introduce the idea and terminology of prime "and composite numbers. Use many examples.
Define a prime number as a number which is greater than 1 but which cannot be written as the product of two numbers. each smaller than the number. Define a'composite number as a number which is not prime and is greater than 1 . It can be written as the product of two numbers each'smaller than the number.
After discussion; have children study pupil page 56.

PRIME NUMBERS

A prime number is a whole number which is greater
than 1 but cannot bee expressed as the product of two smaller factors.

2, 3, 5, 7, 11 are examples of primes.
The name "prime number" is usually shortened to "prime".

A whole, number which is rot prime, and is greater
than 1 , is called a composite number.
A composite number is one which can be expressed
a product of two smaller factors.
4, 6, 8, 9, . 10 are examples of composite numbers.
A. "factor tree" can picture 'prime numbers'. This factor tree tells us that .2, 3, and" 5 are prime numbers.

PAIRS OF FACTORS
This section is included as preparation for the next section, "Testing for Primes.".

Background:
The'set of all factors of 24 is $\{1,2,3,4,6,6$
12, 243.

The diagram shows that the factors of a number belong together in pairs. 24 , can be expressed as a product of pairs of factors* in these ways:

$$
\left.\begin{array}{lll}
4 & 4 & 6 \\
\therefore 3 & \times & 8 \\
\times & 2 & \times \\
\cdots & 12 \\
\cdots & \times & 24
\end{array}\right\} \quad\left\{\begin{array}{rrr}
6 & \times & 4 \\
8 & \times & 3 \\
12 & \times & 2 \\
24 & \times & 1
\end{array}\right.
$$

* |l. If. one of a pair of factors of 24 is less than 5 'then the other factor of the pair must be greater than 5. For example, if one factor A 4 (the factor less than 5) the other factor of the pair mást be greater than 5 since $4 \times 5=20$ and $20<24$. If both factors in a pair were 5, then their product would be 25 and if both factors were greater than 5, then their product would be greater than 25. This may be summarized briefly in the following way. Select all the whole numbers each of whose "squares" (the "square" of a number n is " $n \times n$) is less than or equal to 24. These numbers are possible factors of 24. Then test each number to determine if it is a factor. Such of these that are factors will be one factor of a pair of factors. The other factor of the pair can be found easily. In this manner all factor pairs can be obtained.

If one of a pair of factors of 36 is greater than' 6 , the other is less than .6. This diagram shows the pairs of factors of 36.

36 can be expressed as a product. of pairs of factors in these ways. The pairs of factors are:

, In each case if one of the 'factors is less than 6', the other factor must be greater than 6. . In any case, if each factor is ". greater than 6, the product would be at least $7 \times 7=49$.

Suggested Exploration

Use diagrams at hose shown on Pages 103 and $4{ }^{4}$ to illustrate pairs of factory.
Using P57 for class discussion, help the children make observations similar to these: $\left.\right|^{\text {s }}$

1. If one of a pair of factors of 24 is less than 5, the other is greater than 5. If it weren't, the product would be. no greater than $4 \times 5=20$ 交
2. If both factors in a pair are 5 or more, then their product will be at least $5 \times 5=25 ;$ and $25>24$.

Questions for Class Discussion

1. In each classroom in a school, the seats form an array. The re. are 'never more than 7 , rows of 5 seats each. What -is the largest number of seats there can be in a classroom? 35
2. I am thinking of two numbers. one is no greater than 8, and the other is no greater than 7 . What do you know about their product? Their, paroskint will he 56. or has.
3. A number is no greater than 4. If it is multiplied by, itself, how great can the product be? 16 or hiss.
4. The product of two numbers is 64. One of them is great than 8. "What do you know about the others? He doth number in
5. The product of two numbers is 100 . One is less than 10^{\prime}. What do you trow about the other? 14 a th in greater than 10.
6. A certain factor of 144 is greater than 12. What do you know about the unknown factor? The unknown factor in

BRAINTWISTER The number 6 is equal to the sum its factors, not including 6 itself. $6=1+2+3$. There is another whole number less than 30 which is equal to the sum oof its factors, not including itself: Find it. (28)

Backeground:
The idea brought out on page 57 can be used to make the work easier in finding factors of any number and in locating primes.

Find the set of the factors of 15.1 and 15 , are both, factors of i5. 2 is tested and it is found that $\dot{1}$ in not a factor of 15.3 is tested and it is found that 3 " is a-factor of 15 . Since, 2 is not a factor of 15 , then 4 cannot be a factor, because 2 , is a factor of 4 . If 4 were a factor of 15, then .2 would also be a facfor of 15 . Also, if. $15^{\text {- had a }}$ factor greater than 4, the other factor of the pair belonging together woild have to be "less than 4 , secause $4 \times 4=1.6$ and 16. >1. Without tersting further than 3, a factor from each paif of factors of 15 is found. The remaining factors can be found from known multiplicattion facts or by division. For example,
$\cdots .3 \times 5$. is 15 , so the set of all factors of 15 is $(1,3,5$, and (15,) This method greatly reduces the wom in finding factors of larger numbers and in finding primes:
rake. the number 23. In every pair of factors, one would have to be less than 5. Otherwise their product woyld be at least $.5 \times 5 \mathrm{~m}$ The oniy proposed factors necessary to test ${ }^{3}$ Wili be' 2, 3, arid 4. Multiplication facts demonstrate that neither 2 nor 3 is a factor of 23. Therefore, 4 is. not a factor: of 23 . Since none of these is.a factor, then the only factors of 23 are 1^{*} and 23. This tells us that 23 is a prime number.

AB another example conder 67. We wish to determine if 67 is a prime number. Consider the number' whose "squares" are 67 . or less than $\because 67$. These numbers are $2,3,4,5,6,7$, and 8. If none of these is a factor then 67 is a prime number. The testing of these possible factors can be shortened in this way.. Test 2 and find that 2 is not a facetor; then it follows, that neithe .4 nor 6 nor 8 is a factor because each of these has 2 as a flector. Then test 3 and find that . 3 is not a factor. (we already know that 6 is not a factor.)
\therefore Consequentily only 5 and 7 remain to be tested añ"testing shows neither is a factor. Consequently 67 is a prime number. Now observe that of all the possible numbers whose "squares" are less than" 67 , namely $2,3,4$, $5,6,7$ and 8 , it was necessary to test only the ones of these that are prime numbers, iso i. e., 2, 3, 5 and 7 .

Suggested Exploration:
From the speçific problems, help children dísgover the generaliza'tion that, to test a number for "primeness", we néed . consider only the prime factors whose squares are less than the number. One should not expect a statement of thís idea until. further work is done. Children can be aware of the notion añ did use, it-without being able to express it in words.

TESTING FOR PRIMES

The factors of a number are arranged in pairs. . This diagram shows these pairs of factors of 24.
$₹$

If one of a pair of factors of 24 is lets than 5 , the other is greater than 5. Why?

If one of a parr of factors of 36 is greater than 6 , the other is less than 6. Why?

At least one factor in every pair of factors of 48 is Yes than $7 .{ }^{\circ}$ Why?

We can use this idea to make the work easier in finding factors. It also helps in locating primes.

Suppose we want to find factors of 23 . We can test 2, $-3,4$ by dividing or by knowing multiplication facts. None of these is,'a factor of 23 . We know,' then, that 23° is prime because: if 23 had a factor greater than 4, the other factor would have to be 4 or smaller. Otherwise, their product would be at least $5 \times \dot{5}=25$.

To know that. 23 is prime, we, do not need to, test any other numbers as factors. We do not even need to test, 4. Do you see why'?

Exercise Set 6

1. To find whether 41 is prim b or composite, what numbers must we test as possible factors? 2, 3, 5
2. Use -division to find "Whether. 41 is prime.

Test the following numbers as you did 41.0 If the number is composite, express it as a product of prime factors. If it is prime, write "prime.":

Example: 19 prime
21 composite, $21=3 \times 7$.
3. $22=2 \times 11$.
9. ${ }^{\circ} 55=5 \times 11$
4. $27=3 \times 3 \times 3$.
10. 67 prime
5., 31 prime
11. $69=3 \times 23$
6. $33^{\circ}=3 \times 11$

12:- 83
7. $39_{i}^{y}=3 \times 1.3$
8. 53
13. $87=3 \times 29$
14. $143=1 / \times 13$

THE PRINE FAGTOR CHART
Background:
wifhe role of primes in multiplication may be better understood with the aid of an analogy. Like all analogies, it requires : judicious use and.firm resistance to addiction. Experience indicates. that this analogy may be best appreciated if"it is read . several times
\rightarrow The essence of the analogy is the viewing of a number as a $-\cdots-$ compound structure, say a wall. The wall is built rom several different. colors of bricks. By a brick, we mean a structure consisting of just one indecomposable unit. The analogy: a irequires that we think of prime numbers as bricks. The process of Eutting bricks together to construct a wall.corresponds to multiplying primes to form composites. Given a pile of "number bricks" of different colors; so many 2.1 s , so many $3^{\mathrm{i}} \mathrm{s}$, and so on, many different walls can be constructed using some or all of each color. Sipfee

$$
60=2 \times 2 \times 3 \times 5
$$

"the wall". (60) is made of 2 bricks of one $\operatorname{col} \phi \theta$ (2) and one each "of two other colors, (3 and 5).

Sưppose, on the other hand, that we are given a finished number wail, e.g. 12, and wish to determine how it is constructed. We can breake the, wall apart into smaller parts, which me must also
© think of as wails, in several ways. (In the wail" analogy, "factor" corresponds to "pant of".) The wall 12 breaks up into the wall. 6 and the wall 2. It also breaks into, the wall 4 and the wall 3.

However for number walls às for actual walls, no matter how we break up the wall into smaller walis, if we continue breaking pieces until "each piece is a single brick; then we must always. finish with the same collection of bpicks. That is to say, two different sets of bricks, say $2,4,3,7$ and $2,3,3,5$ can never form exactly the same wall. This is the meaning of the undqueness in the representation of a number as a product of primes.

Notice that the analogy, does not proyide a counterpart to the commutativity of "multiplication. For the number wall, it does not matter in what order the bricks are laid, the result is the same. In an actual wall, a whitè brick ovér a red brick produces a different wall than the reverse.

Nevertheless the analogy can be extended to some of the properties of primes. gor example, if an-actual wall contains a red brick, and if the wall is broken into two parts, then one of the two parts contains a red brick. This is the analogy of a:useful property of primes: If a prime divides a product, then it divides at least one of the factors

> Note: The wall analogy, is suggested as a possibly useful way to illustrate the process of factorization and the rule of primes. It is strictly optional for classroom use, and no reference is made to it in the pupils text.

Finding the prime façtors of a number by testing smaller primes as factors has several disadvantages. First of all we must already know the primes smailer than a eemain number. To test 9,997 we might have to try ali. primes less than 100. (100 \times $100 \stackrel{\circ}{=} 10,000$) and so we must already know them.' Secondly, the process is extremeiy tedious. It is particuiarly poorly adapted to the very'problem whose prior solution it requires; namely that of finding all primes.s.maller than 50 or 100 or. 200.

A much better process for systematically discovering primes derives from the observation that it is relatively easy to write down the ${ }_{5}$ composite numbers less than 100. Each composite number
less than 100 has $2,3,5$, or 7 as a factor. Therefore, if we list the numbers 2 : to " 100 and then strtwe out the numbers which are larger than 2 and have 2 as a factor, the primes must be among those left.

$$
\begin{aligned}
& 2,3,4,5, \not, .7, \not, 9,70,11, \not 2,13, .14,15, \\
& 16,17,28,19,20,21, \not 2,23,24,25,26,27, \\
& 28,29,30,31 ; 32,33 \ldots
\end{aligned}
$$

If we now also strike out the numbers greater than 3 with $3^{\text {a }}$ as a factor, the primes still remain. Then we can eliminate in order those with 5 or 7 as a prime factor. The remaining numbersuis. must be the primes less than 100.

This idea suggests the physical analogy of a series of sieves through which a heterogeneous bunch of particles is passedin succession. The method we have descroed is actually called the SIeve of Eratosthenes, after"a man of' ancient Greece who used it. Using the sleve analogy we can describe what we have done in the following terms:

First we put the numbers 2 through ioa onto a "2 sieve". This "2 sieve" holds only fumbers' larger than 2 with 2 as a factor and allows the rest to pass through. These passing through then fall onto the "3 sieve" which retains only numbers larger than 3 with 3 as a factor. The numbers passed by the, 3 sieve fall through onto the " 5 sieve" and then the "7. sieve". Those which pass through the final "7 sieve" are the primes.

Note: The actual process of finding primes in this way can be made to reveal more than the immediate objective, and is something the children can do themselves. It is suggested that the chart which is shown on page 60 be duplicated and distributed. to the childrens Some children may be interested enough to extend the chart through 100. The chart can be extended to. 120 ...using .only the primes 2 ; 3, 5, 7. The columns showing prime factors up, to 7 can be filled in now. The column showing each number as a product of primes should be filled in at an appropriate point in the work of the next
section. section.

Suggestions for Exploration:

The wall analogy is included primarily for teacher backgrọnd. If it seems appropriate to use with pupils, do so: Explore the ways in which a number is like a wall, factors are like parts of a wall, primes: are like bricks, and finding prime number expressions is like finding the number of each color, brick that makes up the wall.
The Sieve, of Eratosthenes offers a systematic process for discovering primes. Discuss with children the meaning of the word, sieve.
Use the last paragraph of the teacher background (P.112) as a guide.
Distribute duplicated copies of the chart show on $P 60$.
Either ask the children to fill in the prime factor part of the chart individually, or do it as a class project., Keep the charts. The final column should be completed later. Here children use the chart in their discussions in Exercise. Set 7 .

Prime Factors

Prime Factors

Exercise Set 7° (oral)
Using your prime factor chart, answer the questions.

1. Look at all the primes in the chart that are greater than: 2. There is always at least one number between any two of them. Why? (there is at lent one except e arc on d and any two add numbers)
2. Look at the numbers between 7 , and 49 with 7: as p

- prime factor. Each number also has 2, 3, or 5 as

 3. Can the numbers from 2 to 50 have prime factors which are not shown on the chart? ' Give ap example if there is one.
(Yes. 22 has the foetor II)
, 4. What numbers in the chart are prime numbers in addition to the numbers $1,3,5$, and 7 ?

$$
(.2,11,13,17,19,2329,31,37,4 i, 43,47)
$$

TESTING 2 ; 3 , AND 5 AS FACTORS-OF A NUMBER Backiground:

Below is a.list from the factor chart of the composite numberethat have 2 as a factor.

The unit digit in each numeral shows that a definite pattern exists in those numbers having 2 as a factor. It is: $4,6,8,0,2,4$, $6,8,0, \ldots$. If a numeral ends in $2,4,6,8$, or 0 , the number will have 2 as a factior. We can draw a conclusion: In the set of all counting numbers, $\{4 ; 2,3, \ldots\}$; a number will have 2 as a factor provided the unit digit in its decimal numeral is 2,4 , 8, 8, or 0 .

There also is a pattern existing among all the composite numbers having 3 as factor. Below is a list of all the composite numbers in the chant having ${ }^{*-1} 3$ as a factor.

There is a pattern in the unitsi digits but the patiern gives us no clue as the pattern did for selecting the factor . 2. All of the ten digits appear as unitst digits in the aboveset of multiples of 3 . Certainly we cannot conclude that a number whose units' digit is one of the ten digits has 3 as, a factor.

Consequently we must look elsewhere for a clue in determining if 3 is a factor of a certain number. For this purpose consider the following numbers and the corresponding numbers obtained by finding the sum of the digits in the numerals.

Number	Sum of digits	Number	Sum of digits
71	$7+1=8$	86	$8+6=14$
92	$9+2=11$	304	$3+0+4=7$
96	. ${ }^{9} 9+6=15$	522	. $5+2+2=9$
129	$1+2+9=12$	675	$6+7+5=18$
135	$1+3+5=9$	111	$1+1+1=3$

In the table above consider the digit sums which have 3 as a.factor. These sums are the numbers $15,12,9,9,18,3$. The numbers with these sums are 96, 129, 135, 522,. 675, 111. These numbers whose "digit sums" have 3 as a factor also themselves have. 3 as a factor. Indeed it is true in general that "If the sum of the digits of a numeral is a number which has 3 as a factor, ${ }^{\text {mint }}$ then the number named by the numeral has 3 as a factor."

No proof of this general statement is given hore but the following illustration may be of interest to the teacher.
Consider 2439, for example. We may write

$$
\begin{aligned}
2439 & =2(1000)+4(100)+3(10)+9 \\
& =2(999+1)+4(99+1)+3(9+1)+9 \infty
\end{aligned}
$$

and then by use of the distributive, "commatative, and associative properties we oan write this as

$$
2(999)+4(99)+3(9)+(2+4+3+9)
$$

It should be clear now from this expanded form of writing 2439 that if. 3 is factor of $(2+4+3+9$ or 18$)$, then 3 is a factor of 2439 .

In summary, among the set of counting numbers, $\{1,2,3$, ...\}, a number will have a factor of $3^{\text {p }}$ provided the "sum of its digits" has 3 as a factór. 111 has the factor 3 because $1+1+1=3$, and 3 is a factor of 3 . 1,437 has the factor

3, because $1+4+3+7=15$ and 3 is a factor of 15 . Also, 3 is a factor of 765 because $7+6+5=$ is not a factor of 765^{\prime} because the last digit is not $2,4,6$, $8 y^{\circ}$ or 0 .

- There is one other observation to be made at this time. . How . can we tell quickly (without dividing) whether a number has a factor of 5 ? Make a list of all the numbers in the chart that have 5 as a factor. 5 is a factor of 5 , so it may be included in the list.

5	-20	-35	50
10	-25	40	
15	30	.45	

The , units ${ }^{2}$ digit in the listing is either 5 or 0 . This means. that if the units: digit is 5 or 0 , then it must be divisible by 5 or have a factor of 5 . There is no number that ends in 5 or 0 that does not have 5 as a factor.

In the set of all counting numbers, $\{1,2,3, \ldots\}$; a number \therefore will have 5 as a factor provided the units' digit of its decimal numeral is 5 or 0 . 235 has a factor of 5 because its units digit is 5. 630 has a factor of 5 because its units digit. is 0 . 630 has a factor of 2, a factor of ' 3 , and a factor of 5 Since 2,3 , and 5 are each factors of 630 , then $2 \times 3 \dot{\times} 5$, $2 \times 3,=3 \times 5$, and 2×5 are each factors of 630. Some of the factors of 630 are $2,3,5,30,6,15$, and 10 .

Tests for divisibility by 2,3 , or 5 can be applied. quickly to a number. For example, $;$ $734\left\{\begin{array}{l}\text { The units' digit is } 4 ; \text { so } 2 \text { is a factor of } 734 . \\ \text { The sum of the digits is } 14 ; \text { so } 3 \text { is not a factor of } \\ 734 . \\ \text { The units' digit is } 4 ; \text { so: } 5 \text { is not a factor of } 734 . \\ \text { The units' digit is } 5 ; \text { sQ } 2 \text { is not, but } 5 \text { is a } \\ \text { factor of } 615 .\end{array} \quad . \quad\right.$.
*
Suggestions for Exploration:
Develop rules for divisibility by following the background and referring to the prime factor charit pupils have just completed. Much of the background for mules of divisibility can be drawn from the pupils' observations as they work with the chart.
First, consider numbers divisible by 2. Proceed to ${ }^{-1} \mathrm{~s}$ and $5^{\prime} \mathrm{s}$. Then give several examples in which all three are tested'as factors of the same number.
testing 2, 3, and 5, as factors of a number
From our study of the Prime Factor Chaft we observed:

1. In the set of counting numbers, $\{1 ; 2,3,4, \ldots\}, \cdots$ number will have 2 as a factor if the units' digit of its numeral is $0,2,4,{ }^{\circ} 6$ or ${ }^{\circ} 8$.

Examples of counting numbers which have a factor of 2 are: 40, 182; 364, 56, 218.
2. In the set of counting numbers, a number will have 3 as a factor $1 f$ the sum of the digits in its numeral can be divided by 3.

Examples of counting numbers which have a factor of 3 are:

951-(Because $9+5+1=15$ and 715 can be divided by 3.)

543 (Because $5+4+3=12$.)
864. (Because $8+6+4=18$. 864 also has 2 for a a factor because the units: digit is 4 .)
3. In the, set of counting numbers, a number will have 5 as a factor if'the units' digit of its numeral is • 0 . or 5 . , Examples of counting numbers which have a factor of 5 are: 4,835, 495, " and "860.

495 would also have 3 as a factor because the sum of the digits of its numeral can be divided by 3 . 860 would have-a factor of 2 , because the units' digit in its numeral is 0 .

Exercise Set \oint

Find one prime factor of each of the following numbers.

Find two different prime factors of each of the following, numbers.
9. 4053 and 5
10. 6,780 2 and 5 or ind 3 , 13. 4,314 2 and 3 .
11. 3,042 and 3 14. 6,060 2 and 3,3 and 5, at 2 and 5 r.

Write 2, 3, and 5 in the correct -places in this chart. Exercise 15 is done for you.

132

BRAINTWISTERS:
For each exercise below, what are all, the numbers less than 100 which have these numbers and no others as prime factors?

$$
\begin{aligned}
& 21 . \quad 3 \text { and } 5(15,45,75) \quad 23 . \quad 5 \text { and } 7(35) \\
& 22 . \quad 3 \text { and } 7(21,63) \text { 24. } 2 \text { and } 11(22,44,88)
\end{aligned}
$$

COMPLETE FACTORIZATION

Background:
When the factor tree can be extended no further, the last sow always contains all the prime factors of the number. If a number In the tree is composite (having a factor smaller than itself but greater than 1), two more branches can be drawn.
Example:

A composite number, 54:
Both factors are composite,
In this pow, we have 2 primes and one composite number.
All factors in this row are primes.
Every composite number is the product of smaller factors. If one of these factors is composite, then it is the product of smaller factors. If this process is continued, a product will emerge in which no factor is composite, and every factor is a prime. For example, in the tree above

$$
\begin{aligned}
54: & =6 \times 9 \\
& =2 \times 3 \times 9 \\
& =2 \times 3 \times 3 \times 3
\end{aligned}
$$

(6, and 9 are Both composite.)
(2 and 3 are prime but 9 is θ (All factors are prime.)
Another approach could be taken:

$$
\begin{aligned}
54 & =6 \times 9 \because \\
& =6 \times 3 \times 3 \\
& =2 \times 3 \times 3 \times 3
\end{aligned}
$$

(6 and 9 are both composite.)
(6 is composite and 3 is prime.)
(Ali factors are prime.)
Look, at several other numbers:

$$
\begin{aligned}
\hat{N} \quad & =4 \times 9 \\
& =2 \times 2 \times 9 \\
& =2 \times 2 \times 3 \times 3
\end{aligned}
$$

This method suggests that every number greater than 1 is either prime or is a product of primes. The expression of a number as a product of primes is the source of much information. Since we will use these product expressions throughout the remainder of this unit, it is important to devise processes for finding them. Sometimes it is possible to begin with a known multiplication fact. For example, to find the product expression, using only primes, for 36. we may begin by remembering

$$
\begin{aligned}
36 & =4 \times 9 \\
; \quad 36 & =6 \times 6 .
\end{aligned}
$$

Now we think of multiplication facts giving 4, 9, or 6 as products:

$$
\begin{aligned}
& 36=4, x, 9^{\circ} \\
& =(2 \times 2) \times{ }^{\circ}, \quad, \quad(2 \times 3) \times 6 \\
& =(2 \times 2) \times(3 \times 3) \\
& 36=6 \times 6 . \\
& " v=(2 \times 3) \times(2 \times 3)
\end{aligned}
$$

This way of factoring be looked upon as a "splitting process". Notice that in the two solutions above, the final product expression are the same except for order. The splitting process, applied to " 42 might lead to any of the following, depending upon what facts are used.

$$
\begin{aligned}
& 42=2 \times 21 \\
& =2 \times(3 \times 7)=3 \times(2 \times 7)=(2 \times 3) \times 7
\end{aligned}
$$

Again the splitting process was used in 3 different ways. Each time the; same prime factors, apart from order were found.

The splitting process requires knowledge of many multiplica'tin facts and is difficult to apply to large numbers.' There is a more systematic way of factoring that requires less knowledge. Begin by examining the units digit to see if it has a factor 2.0 If it does, then divide the number by 2. If it does not, then
check by division the prime number 3, then 5 , then 7 , then 11, then 13, etc., until all possibilities have been examined. If the number does have the factor 2 , then find the unknown factor and proceed to test 2 as a factor of it. Suppose we wish to write the number 156 as a product. of primes., Since the last. digit is 6, then 156 is divisible by 2. Division gives

$$
156 \underset{\underline{ \pm}}{2} \times 78 .
$$

Again check to see if 78 is divisible by 2". It is, and division gives

$$
156 \underline{\underline{z}} 2 \times 2 \times 39
$$

Look at 39. Because the last digit is not multiple of 2539 is not divisible by 2. Check for divisibility by 3 . $3+9 ; 12$ and 1 ? can be divided by 3 , therefore 39 is divisible by 3 . Now,

$$
156={ }^{\circ} 2 \times 2 \times 3 \times 13 .
$$

13 is not divisible by 2 or 3 (or any other prime number other than 13), therefore 13 is prime. This process might be called the peeling process.

The results of this process as adhered to 780 tan be summarized as follows:

$$
\begin{aligned}
780 & =2 \times 390) \\
& =(2) \times(2 \times 195) \\
& =(2) \times(2) \times(3 \times 65) \\
& =(2) \times(2) \times(3) \times(5 \times 13) \times \begin{array}{l}
\text { (We have all primes }
\end{array} \\
& \begin{array}{l}
\text { so the process is } \\
\text { complete. }
\end{array}
\end{aligned}
$$

It is convenient to think of factoring as a "splitting" or "peeling" process. However, these two names for the two different ways of factoring may or may not be? used with children. "It is possie"-" bile that as children work with these two different methods, they will develop names of their own to suggest the two ways of factoring. *

The next goal to be reached with the pupils is the expression of a composite number as the product expression of all the prime factors of the number. Complete factorization of a number means that the number is expressed as the product expression using its prime factors. For example, complete factorization of 24 meaṇs $24=2 \times 2 \times 2 \times 3$.

As well as the complete factorization of a number we shall consider also all the factors of a number. Finding all the fractors of a number is studied in later sections in this unit but it may be well to contrast complete factorization and.finding all factors at this time. The names of these processes seem to suggest they might have the same meaning but they are quite different and must not be confused. The complete factorization of 24 (for example), is expressing 24 as the product expression using its prime factors. This can be done by the use of the factorstree; or some other pay. But, finding alt the factors of 24 requires finding all factors (prime and composite, if any) of 24 , namely $1,2,3,4,6,8,12,24$.

Examples.
$36=2 \times 2 \times 3 \times 3 \quad$ This is complete factorization. $1,2,3,4,6,9,12,18,36$ is the set set of all factors of 36 .
$50=2 \times 5 \times 5$ This is complete . factorization. $1,2,5,10,25,50$ is the set of all factors of 50 .
$1.44=2 \times 2 \times 2 \times 2 \times 3 \times 3$. This is complete factorization. $1,2,3,4,6,8, \cdot 9,12,16,18,24,36$, $48,72,144$ is the set of all factors of 144.
After complete factorization of 144, for example, the, set of all factors of 144 is obtained in the following manner. *
"From the product expression $2 \times 2 \times 2 \times$ $2 \times 3 \times 3^{\wedge}$ (1) seleck all the different primes which appear in the product expression. (2) Then from the product expression select all the products of two factors, (3) then of three factors; (4) then of four factors, etc.
${ }^{\prime}$ These are respectively
(1) $2, \cdot 3$
i
(2) $2 \times 2,2 \times 3,3 \times 3$
(3) $2 \times 2 \times 2,2 \times 2 \times 3,2 \times 3 \times 3$
(4) $2 \times 2 \times 2 \times 2,2 \times 2 \times 2 \times 3$,
$2 \times 2 \times 3 \times 3$
(5) $2 \times 2 \times 2 \times 2 \times 3,2 \times 2 \times 2 \times 3 \times 3$ and finally
(6) $2 \times 2 \times 2 \times 2 \times 3 \times 3,0$
the original product expression for 144. (This last one is, of course, not needed as we knew it from the complete factorization.)
Fromi: (1) we get the factors 2,3
(2) we get the factors $4,6,9$
(3) we get the factors $8,12,18$
(4) we get the factors. $16,24,36$
(5) we get the factors 48, 72

We know 1 and 144 are factors of 144 . From the product expression $2 \times 2 \times 2 \times 2 \times 3 \times 3$ we have found that. $1,2,3,4,6,9,8,12,18$, 16, 24, 36, 48, 72, and 144 are factors of 144. It is a consequence of a property of primes that this method yields all factors of 144. Thus the set
$\left\{1,2,3,4,6,8,9,12,16,18,-{ }_{1}^{2} 4,36,48,72\right.$,
is the set of all factors of 144 .

Outline for Exploration:

Write a factor tree for 54, on the board.

Analyze the numbers at each level.
Children should see that at the last level, each factor In the product expression is prime.
) Continue with other examples (24, 36, 42, etc.)
Be sure children see that, regardless of the first multiplycation sentence written, the product expressions at the last level of the factor tree are the same except for order, ie.

$$
\begin{aligned}
142 & =2 \times 21 \\
& =2 \times 3 \times 7
\end{aligned} \quad \begin{aligned}
42 & =3 \times 14 \\
& =3 \times 2 \times 7
\end{aligned} \quad \begin{aligned}
& =6 \times 7 \\
& =2 \times 3 \times 7
\end{aligned}
$$

Two different approaches to factoring were mentioned in the background. Both of them, although not necessarily their names, should be presented to children.

METHOD A (Splitting)

$$
\begin{aligned}
36 & =4 \times 9 \\
& =2 \times 2 \times 3 \times 3
\end{aligned}
$$

36 is written as 4×9.
4^{4} is written as 2×2 and
9 is written as 3×3.露
In this method, multiplication facts are used. to write the composite number. as a product of smaller and smaller factors until it is expressed as a product of primes.
". MEHHOD B " (Peeling)

In this method, we look for prime factors of the composite number by testing the primes in order, starting with 2 ; i.e., we try 2, $3,5,7$; etc.

Several examples of each method may be needed before, understanding is realized.

Example:

$$
\begin{array}{rlrl}
252 & =2 \times 126 & & \text { (Peeling off } 2) \\
& =2 \times 2 \times 63 & & \text { (Peeling off } 2) \\
& =2 \times 2 \times 3 \times 21 & & \text { (Peeling off } 3) \\
& =2 \times 2 \times 3 \times 3 \times 7 & & \text { (Peeling off } \\
& 3)
\end{array}
$$

Children and teacher should read and discuss pupil pages 65 and 66

After Exercise Set 9 has been completed, children are introduced to a property of products of primes. This property, stated on pupil page 69 is called the Fundamental Theorem of Arithmetic. This idea should be discussed carefully with pupils.

P65

COMPLETE FACTORIZATION •

Every composite number is the product of smaller numbers. If one of these numbers is composite, then it also is the product of smaller numbers. "If we continue this, we must come to a product expression in which no number is composite and every factor is a prime. Doing this is called complete factorization of a composite number.

An example of complete factorization:

$$
24=3 \times 8
$$

(3 is prime.)
(8 is composite.)
$=3 \times 2 \times 4 \quad$ (3 and 2 are prime.) (4 is composite.)
$=3 \times 2 \times 2 \times 2$ (All are prime.)
$=2 \times 2 \times 2 \times 3$. (Rearranged for convenfence)
$54=.6 \times 9$
(6 and 9 are composite.)
(2 and 3 are prime.)
(9 is composite.)
© $2 \times 3 \times 3 \times 3$. (All are prime.)
$=2 \times 3 \times 9$

A picture, using the factor tree is:

This suggests that every number greater than 1 is either prime or is a product of primes.

How can we find a way to express any number as a product of primes, for example j́6?

We may know some way to express the number as a product.

$$
36=4 \times 9
$$

Then we can write each composite factor as a product expression.' Continue. until we have only prime factors.

| . | |
| ---: | :--- | ---: |
| 36 | $=2 \times 2 \times 9$ |
| | $=2 \times 2 \times 3 \times 3$ |

This, product expression $2 \times 2 \times 3 \times 3$ is the complete: factorization of 36."

Another way to express a number as a product of primes is by testing small prime numbers such as 2, 3, 2,7 , etc.; to see. if they are factors of the numbers.

Example:

$$
36=.2 \times 18 \text { (starting with } 2 \text {) }
$$

Then we look for prime factors of 18 starting with 2.

$$
36=2 \times(2 \times 9)
$$

Then we look for prime factors of 9 , starting with 2 . Since 2 is not a factor, we next test 3 . .

$$
\begin{aligned}
36 & =(2 \times 2) \times(3 \times 3) \\
& =2 \times 2 \times 3 \times 3
\end{aligned}
$$

Either of these ways may be cailed factoring. Sometimes it is easier to use one process. Sometimes it is easier to use the other process. With practice, you can find shortcuts by, combining them.

Exercise Set 9

For mamie, see T.
Express each number below as a product of two smaller factors: Ti possible, then express one of these factors as a product of smaller factors. Continue until you have expressed the number as a product of primes. This is one factoring. process. Show your work by drawing. a "factor tree.".

Example: $12=4^{\circ} \times 3$

$$
=(2 \times 2) \times 3 \text { or }
$$

$$
12=2^{i} \times 2 K 3
$$

1: 16
'6. 28
2. 18
7. 30
3. 20
8. 35
4. 25
9. 40
:5. 27
10. Do exercises 1 through 9 again, but this time start with a different pair $\mathbf{0 f}$ factors if there is another pair.
11. Following the example show, express each number as a product of primes. Draw a factor tree for parts b, d, f. * Example: $\quad 24=6 \times 4$

$$
\begin{aligned}
& =2 \times 3 \times 4 \\
& =2 \times 3 \times 2 \times 2
\end{aligned}
$$

$$
24=2 \times 2 \times 2 \times 3
$$

a. 30
c. 84
e: $\quad 128=8 \times{ }^{`} 16$.
b. 72
d. . 96
f. $288=12 \times 24$
g. $225=15 \times 15$
12. Use any factoring process to write each number as a product expression of primes.
a. 144 Answer: ${ }^{\circ} 144=2 \times 72$

\because	$=2 \times 2 \times 36$
	$=2 \times 2 \times 2 \times 18$
$\therefore \quad$	$=2 \times 2 \times 2 \times 2 \times 9$
	$=2 \times 2 \times 2 \times 2 \times 3 \times 3$

b. 225	e. 385	h. 18.9
c. 588	f. 127	1. 143
d. 363	gi. 585	

13. Withoutsmultiplying, write each number as a product expression'of primes.
a. 18×60
b. 42×84
c. 21×78
d. 50×50
e. 125×64
f. $.25 \times .320$

Exercise Set 9, Sample Answers

2.

7

10.

NOTE: We have given ontity sone solution to each exercise. There ane: others factor trees that can be drawn.
11. a. $30=2 \times 3 \times 7$
b. $72=2 \times 2 \times 2 \times 3 \times 3$

Note: Factor trees
for b, d, and f
will vary.
*
d. $96=2 \times 2 \times 2 \times 2 \times 2 \times 3$
e. $128=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
f. $288=2 \times 2 \times 3 \times 2 \times 2 \times 2 \times 3$
g. $225=3 \times 5 \times 3 \times 5$
12.
b. $22 \overline{5}=3 \times 3 \times 5 \times 5$
c. $588=2 \times 2 \times 3 \times 7 \times 7$
d. $363=3 \times 11 \times 11$
e. $385=5 \times 7 \times 11$
f. 127 is prime
g. $\quad 585=3 \times 5 \times 13$
'h. $189=3 \times 3 \times 3 \times 7$

1. $1.43=1,1 \times 13$
13.. 6: $14 \times(2 \times 3 \times 3) \times(2 \times 2 \times 3 \times 5)$

- $0_{2} \times 3 \times 3 \times 2 \times 2 \times 3 \times 5$
b. $42 \times 84=$ 年 $4 \times 3 \times 6 \times 2 \times 3 \times 7$
c. ${ }^{21} \times 78=3 \times 7 \times 2 \times 3 \times 2 \times 10$
d. $50 \times 50^{\prime}=2^{\prime} \times 5 \times 5 \times 2 \times 5 \times 5$
e. $125 \times 64=5 \times 5 \times 5 \times 2 \times 0 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
f: $25 \times 320=5 \times 5 \times 2 \times 2 \times 2 \times 1 \times 2 \times 5$,

P69

A PROPERTY OF PRODUCTS OF PRIMES

The results of the last exercises suggest that'we have
found a general.'property. We might state it as:

Except for the order in which factors are written, a composite number can be
expressed as a product of primes in only ope way.

0

You will not find any exceptions to this property because there is a way to show that it.is always true. We do not attempt to show in this bogk why" this is true. However, as you, use it you shouid become more sure that it is true. The statement in the "box" is called The Fundamental Theorem of Arithmetic:

FHNDING ALL"FACTORS
. Background:
*
Note: The product expression of a number, using prime factors, is always the same regardless of the method by which it is obtained. This fact

- can be used to Justif'y our methods used in. finding:
- 1. All factors of a number

2. The greatest common factor of a pair of numbers
3. The least common multiple of a pair of numbers (in Chapter 5
These methods are discussed with increasing formality in the pupilsi pages $(70,71,74,76)$ the background material (137, 146) and In the mathem matical summary at the end of the unit.
-It might be helpfulthow to reread the background ${ }_{i}$ on page. 126.
If it is known ho to express a number as a product of primes, then the set of all factors of the number can be found.

Example:

$$
60=2 \times 2 \times 3 \times 5
$$

A number can be expressed as a product of primes in only one way (disregarding órder). Some of the things that can be found are:

1. The prime factors of ' 60 are 2, " ' and 5 .
2. By multiplying in sets of two the factors in the product expression $(2 \times 2 \times 3 \times 5)$, it is apparent that $4,6,10$, and 15 are factors of 60, $(2 \times 2,2 \times 3,2 \times 5$, and $3 \times 5)$
3." By multiplying' in' sets of three the factors 1 in the product expression; it is apparent that 12,20 , and 30 are also factors of $60 . \quad(2 \times 2 \times 3,2 \times 2 \times 5$, $2 \times 3 \times 5$). There cannot be any other factors exdept 1 and 60 .
3. $\{1,2,3,4, \dot{5}, 6,10, \dot{12}, 15,120,30,60\}$ is the set of all factors" of 60 .

In general, if we can write a number as a product of primes then we can find all factors of that number in the manner used in finding alleffactors of 60 .

That we get all factors by this method is' a conséquence of the property of primes stated on pupils' page 69. It. is not true of Other product expressions. For example,. from

$$
36=2 \times 3 \times 6
$$

We conclude that $2,3,6,(2 \times 3)$, (2×6) and (3×6) are factors of 36: Thus we know that

$$
1,2,3,6,12,18 \text { and } 36
$$

are factors of 36. Those are not, however, all factors, since 4 and 9 are also factors of 36 . It is because 6 is not prime that the method failed to give all. factors.

Another way of using the complete factorization of a number is in finding all ways to express that number as a product of two numbers. First we.find all factors, for example, of 60°. These factors can be arranged in pairs so that the product of the factors in each pair is 60 . Thule

This shows all the pairs of factors of 60 and gives every way of naming 60 as a product of two factors.

As another example, consider" 24°. The, product expression for 24, using prime factors is $2 \times 2 \times 2 \times 3$. This tells us that 2 and 3 are both factors of $24 . \quad(2 \times 2),(2 \times 3)_{2}$ (2. $\times 2 \times 2$), and $(2 \times 2 \times 3)$, also are factors of 244° Every number has itself and 1 . as factors; 1 and 24 may be included as factors of 24. Now we may list all the factors of $24^{\text {'in order', from small to large, }}$

$$
1,2,3,4,6,8,12,24 .
$$

This information can be used to get every way to name 24 as a product of two factors.

$$
\begin{aligned}
& 1 \times 24=24 \\
& 2 \times 22=24 \\
& 3 \times 8=24 \\
& 4 \times 6=4
\end{aligned}
$$

Yet another use of complete factorization is its application - in discovering whether one number is a factor of another. First each number is expressed as a product of primes. Then the question can be answered. For example, is 42 a factor of 714 ?

$$
\begin{aligned}
42 & =-2 \times 3 \times 7 \\
714 & =-2 \times 3 \times 7 \times 17=(2 \times 3 \times 7) \times 17 \\
42 & \text { is a factor of } 714
\end{aligned}
$$

Is 28 a factor of 238 ?

$$
28=2 \times 2 \times 7
$$

$$
238=.2 \times 7 \times 17
$$

28 is not a factor of 238 because 2×2 does: not appear in the complete factorization of ${ }^{* \prime \prime} \cdot 238$.

Children will be -helped in determining if one number is a factor of another if examples which require rearrangement of the factors are used. Example: 1

Is 42 a factor of 252?

- Is 210. a factor of 3150?

Suggestions for Exploration:
Using the previous background, recall that a number can be expressed as a product of primes in only one way, disregarding, order. (This is. The Fundamental Theorem of Arithmetic.).
Indicate that if we know how to express a number as a product of primes, we can find the set, of all factors of the number by. multiplying the factors shown in the product expression in two is, threes, etc. Follow theteacher background using similar. examples.
Point out how the set of all factors can be used to find ail. ways to express the number as a' product of two factors. Also point out how complete factorization can be used to find if one number is a factor of another. Read and discuss pupil page 70, FINDING ALL FACNORS:

- Then pupils can work Exercise Set 10 Independently.:

FINDING ALL' FACTORS

If we know how to express a number as a product of primes; then we can find the set of ail factors of the number. r Suppose we write

$$
60=2 \times 2 \times 3 \times 5
$$

Here are some of the things we can find:

1. The prime factors of. 60 , are $: 2,3$, and 5. :
$\therefore 2 .-y^{y}$ multiplying in pairs the factors shown in the product expression -for 60, we see that 4, (2×2), \qquad 6, $(2 \times 3), 10,(2 \times 5)$ and $15,(3 \times 5)$ are factors of ${ }^{\prime}$ 60.
2. By multiplying in threes the factors shown in the product expression for 60 , we see that 12 , ; $(2 \times 2 \times 3), 20,(2 \times 2 \times 5)$ and $30,(2 \times 3 \times 5)$ are, also factors of 60 .
The factors shown in $2 \times 2 \times 3 \times 5$ are primes. For, i i this reason, we must have found by our method, every factor of 60 .

- 4: We know then that,
$\because\{1,2,3,4,5 ; 6, \underset{10}{\prime}, 12,15 ; 20, .30,60\}$ is the set of all factors of 60.

5. From the set of all factors of 60 , we can get every way of naming 60 as a product of two factors.

$$
\begin{aligned}
& 1 \times 60=60 \\
& 2 \times 30=60 \\
& 3 \times 20=60 \\
& 4 \times 15=60 \\
& \therefore 5 \times 12=60 \\
& 6 \times 18=60
\end{aligned}
$$

Exercise Set 10, Answers

!. b. 30, $\{1,2,3,5,6,10,15 ; 30\}^{\circ}$
c. $72,\{i, 2,3,4,6,8,9,12,18,24,36,72\}$
d. $84, \cdot(\{1,2,3,4,6,7,12, \cdot 14,21,28,42,84\}$
e. 96, $\{1,2,3,4,6,8 ;, 12,16,24,32,48,96\}$

ค. 128̀, $\{1,2, ' 4,8,16,32,64,128\}$
g. 225, "\{1, 3, 5, 9, 15, 25, 45, 75,.225\}
h. 144, $\left\{1,2,3,4,6,8,2,12,16,18,24^{\prime \prime}, 36,48,72,144\right\}$

ㄴ 363, $\{1,3,11,33,121,363\}^{\circ}$
j. 385, \{1, 5, 7, $11,35,55,77$; 385\}
k. .89, $\{1,8 \overline{9}\}$
.1. 189; $\{1,3,7,9,21,27,63,189\}$
im. 143, $\{1,11,13,143\}$
2. b. $30=1 \times 30=2 \times 15=3 \times 10 \stackrel{5}{=} 5 \times 6$
c. $72=1 \times 72=2 \times 36=3 \times 24=4 \times 18=6 \times 12=8 \times 9$
d. $84=.1 \times 84=2 \times 42=3 \times 28=4 \times 21=6 \times 14=7 \times 12$
e. $96=1 \times 96=2 \times 48=3 \times 32=4 \times 24=6 \times 16=8 \times 12$
'f. $128=1 \times 128=2 \times 64=4^{\prime \prime} \times 32=8 \times 16$
g. $225=1 \times-225=3 \times 75=5 \times 45=9 \times 25=15 \times 15$
$\mathrm{h}_{\mathrm{g}}, 144=2 \times 144=2 \times 72=3 \times 48=.4 \times 36=6 \times 24=8 \times 18$ $=9 \times 16=12 \times 12$
-1. $0363=1 \times 363=3 \times 121={ }^{\circ} 11^{\prime} \times 33$
j. $385=1 \times 385=5 \times 77=7 \times 55=11 \times 35$
k. $89^{\circ}=1 \times 89$

1. $189=1 \times 189=3 \times 63=7 \times 27=9 \times 21$
m. $143=1 \times r 43=11 \times 13$

Exercise Set 10

For amine, we T.C. page 143
2. Find the set. of all factors of each number.
a. 24

Answer:

$$
24=2 \times 2 \times 2 \times 3
$$

'Set of factor's of , $24=\{1,24,2,3,4,6,8,12\}$
$=\{1,2,3,4,6,8,12,24\}$
b. 30
i. 363
c. 72
J. 385
d. 84
k. : 89
e. 96

1. 189
f. $12 \dot{8}$
m. 143
g. 225
h. 144
2. Use what you found in exercise 1 to get all of the different ways to whale each number, in that exercise as .a product expression of two factors.
a. 24

Answer:
Set of factors of $24=\left\{1,2,3,4,{ }^{\prime} 6,8,12,{ }^{\prime} 24\right\}$
$24=1 \times 24=2 \times 12=3 \times 8=4 \times 6$.
8.3. Find whether each number listed betiow is a factor of $2 \times 2 \times 3 \times 7 \times 11 \times 11$:
a. 6

Answer:
Yes, becąuse $2 \times 2 \times 3 \times 7 \times 11 \times 11$

$$
\begin{aligned}
& =(2 \times 3) \times(2 \times 7 \times 11 \times 11) \\
& =6 \times(2 \times 7 \times 11 \times 11)
\end{aligned}
$$

Trie factor belonging with 6 is $2 \times 7 \times 11 \times 11$.
b. 14 yec becinita $\times \hat{p}) \times(2 \times 3 \times 11 \times 11)=14 \times(2 \times 3 \times 11 \times 11)$.
\therefore c. 28 Yes, berome $(2 \times 2 \times 7) \times(3 \times 11 \times 11)=28 \times(3 \times 11 \times 11)$.
d. 210 no, tecaure $210=2 \times 3 \times 5 \times 7$ aid 5 dres notappeav in $2 \times 2 \times 3 \times 7 \times 11 \times 11$
e. 242 yee, becañe $(2 \times 11 \times 11) \times(2 \times 3 \times 7)=24.2 \times(2 \times 3 \times 7)$.

COMMON FACTORS

Objective: .To use prime product expressions to find a greatest common factor

Vocabulary: 'Intersection, common factor;' greatest' common factor Background: (Common Factors, Pupil pages 74 and 75.)

First, review an idea developed in the study of sets. Consider Sept. K, and Set L.

$$
\begin{aligned}
& K=\{11,12,13,14,15\} . \\
& \mathrm{L}=\{11,13,17,19\}
\end{aligned}
$$

The intersection of these two sets is the set of members common to both sets. Specifically, the intersection of Set K and Set L, is the set $\{11,13\}$. This can be written as, follows using the special symbol, \cap, to indicate intersection. $K \cap L=\{11 ; \cdots 13\}$. This is read as: "the intersection of Set K and Set L is the set whose members are 11 and is," or more briefly, "the Set ${ }^{7} \mathrm{~K}$ Intersection L is (11; 13),"

Now consider the set of all factors of. 12. Call It Set. s . Next consider the set, of all factors of 18 . Cali' it Set R.

$$
\text { Since } \begin{aligned}
18 & =2 \times 3 \times 3, \\
R & =\{1,2,3,6,9,18\}
\end{aligned}
$$

There are some members of Set S that are also members of Set $\cdot R$. The members which are contained, in both Set S and Set R are $1,2,3,6$. This information can be recorded as $S \cap R_{1}=\{1,2$, $3,6\}$. Since the members of Set, S are the factors of 12 and the members of Set \dot{R} are the factors of 18 , we say that the members of $S \cap R$ are the common factors of 12 and 18. The common factors of 12 and 18 are $1,2,3,6$.

If Set A is the set of factors of 15 , and Set B is the set of factors of 20 , what is $A \cap B$?

$$
\begin{aligned}
A & =\{1,3,5,15\} \\
B & \doteq\{1,2,4,5,10,20\} \\
A \cap B & =\{1,5\}
\end{aligned}
$$

Background: (Finding the Grěatest Common Factor, Pupil pages 76-78)
There are two observations to be made about the character of the set of. all the common factors of any two numbers,

1. If any number is in the set, each of its factors must be also.

For example, look at the set of common factors we found for 12 and 18.

$$
\{1,2 ; 3,6\}
$$

Each of these numbers has its factors in the set. The factors of 6 are. $1,2,3$, and 6. The factors of 3 , are i and 3 and each of these is in the set. ,The factors of 2 are also in the set. Thưis $\{1,2,6\}$ cannot be the' set. of all common factors of any two numbers because. every number with. 6 as a factor also has 3 as a factor.
2. A set. of all common fáctors of two numbers contains only those numbers which are factors of the largest number in the set:

Look againat the set of common factors for 12 and "18,

$$
\{1,2,3,6\}
$$

The largest number in the set is 6 ; and 1,2 , and 3 are factors of 6 . We see, then, that factors of 6 are the only members in the set. Thus, because 4 is not a factor of 6 , $\{1,2,3,4,6\}^{-}$cannot be the set of all common factors of any two numbers. That, this is always triue is not at all obvious.
$15{ }^{187}$

It is a consequence of The Fundamental Theorem of Arithmetic. For example, the reason that $\{1,2,3,4,6\}$ cannot be the set of ail common factors of two numbers is that each number must have both 2×2 ($^{\circ}$ is a factor) and $2 \times 3(6$ is a factor) as "pieces" in its complete factorization. But this cannot occur unless $2 \times 2 \times 3^{\circ}$ appears in each prime product expression. Thus every number with both 4 and 6 as factors must have 12 also as a factor. Consequently any set of common, factors which includes 3 and 4 must also include 12.

This last observation about pieces of prime product expressions suggests a way to find the greatest common factor "without first finding all factors and then finding'the greatest among. them. We first write each number, say 30 and 42° as a product of primes.

$$
\begin{aligned}
& 30=2 \times 3 \times 5 \\
& 42=2 \times 3 \times 7
\end{aligned}
$$

Since all factors of 30 and 42 can be found by using "pieces" of these expressions, the greatest common factor must be expressed by the largest piece common to both expressions. Thus 2×3 or 6 . iks the greatest common factor of 30°. and 42. (By "pieces" of the expression $2 \times 3 \times 5$, we mean 2,3 , 5, $2 \times 3,3 \times 5,2 \times 5$, and $2 \times 3 \times 5$. The, "pieces" of the expression $2 \times 3 \times 7$ are $2,3,7,2 \times 3,2 \times 7,3 \times 7$, and $2 \times 3 \times 7$.)
'Cónsider another example, 90' and 84:

$$
\begin{aligned}
90 & =2 \times 3 \times 3 \times 5 \\
84 & =2 \times 2 \times 3 \times 7
\end{aligned}
$$

By regrouping the factors:

$$
\begin{aligned}
& 90=(2 \times 3) \times 3 \times 5 \\
& 84=(2 \times 3) \times 2 \times 7 .
\end{aligned}
$$

Since $3 \times .5$ and 2×7 have no common prime factors, 2×3 is the largest comfon block shown in both product expressions 90 and 84.

To find the greatest common factor of "90 and. 50, firat write:

$$
\begin{aligned}
& 90=2 \times 3 \times 3 \times 5 \\
& 50=2 \times 5 \times 5
\end{aligned}
$$

By regrouping, show the common factors:

$$
\begin{aligned}
& 90=(2 \times 5) \times 3 \times 3 \\
& 50=(2 \times 5) \times 5
\end{aligned}
$$

The greatest common fáctor of 90 and 50 must be 2×5 or 10.

Perhaps a quicker way to find the largest "piece" that is common to both expressions would be this. Write each factor that is common to both expressions the least number of times it. appoars in both expresisions, *

$$
\begin{aligned}
3,150 & =2 \times 3 \times 3 \times 5 \times 5 \times 7 \\
360 & =2 \times 2 \times 2 \times 3 \times 3 \times 5
\end{aligned}
$$

The largest "piece" is $2 \times 3 \times 3 \times 5$ because 2 appears only "once in 3,150, (even though it appears 3 times in 360), 3 -appears twice in both expressions, and 5. appears just"once in 360 feven though it appears twice in 3,150). :Therefore, the greatest common factor is $2 \times 3 \times 3 \times 5$ or 90 .

A more complicated example is:

$$
\begin{aligned}
10,890,936 & =2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 7 \times 7 \times 7 \times 7 \times 7 \\
8,820 & =2 \times 2 \times 3 \times 3 \times 5 \times 7 \times 7
\end{aligned}
$$

The greatest common factor is $2 \times 2 \times 3 \times 3: 7 \times 7=1,764$.
2 appears at least twic̣e in both expressions.
3 appears at least twice:1n both expressions.
7 appears at least twice in both expressions.
The 5 appears oniy in 8,820 so it is.not included in the '"piegé:".

Because of the properties noted under 1 and. 2 on page 147 once we have, found the greatest common factor we can readily "find all common factors.

Since 6 is the greatest common factor of 30 and 42 the set of all common factors is the set of all factors of 6 or: $\{1,2,3,6\}$.

For the same reason $\{1,2,3,6\}$ is also the set of all common factors of 84 and 90 , and $\{1$, , , 5,10$\}$ lists all the cormion factors of 50 and 90,
¿Suggestions fon Exploration:

1. Review the idea of intersectio if sets. 'Then apply : this to the intersection of the sets of all factors of 12 and 18 as is developed in the backgroundy Other numbers such as 15 and 20,18 and 28 , and 25 and 40 can be used. This will lead to an understanding of cormin factors do two numbers.
Pupil page 74 might be quickly noted and pupils can then work Exercise Set 11. These exercises can be discussed after pupils have completed them. Exercise 2 of this Exercise set leads to work on Finding the * Greatest Common Factor. During the discussion of the sets of common fractors, the special character of the set may be noticed. Leading questions such as these can bs asked:

What do you notice about the largest number in each set of common factors? Are all the other members of the set also factors of the largest numbers Are the factors of each member of the set, also in the set? Are there any members in the set which are not factors of the largest member? Do you think $\{1,2,5,10\}$ can be a seti of all common factors? Can $\{1,2,6\}$ be a set of all common factors? Can $[1,2,3,4,6\}$ be a set of all cormmon factors?
Disouss these questions in the light of the preceding background given for the teacher.
2. Now is the time to introduce the term greatest common factor. Children should have no trouble in wdentifying the largest number in the set of common' factors as the greatest common factor.
Draw a diagram on the board to ililustrate the way 'in. which the greatest common factor of two numbers has been found, for example 24 and 32 ..

Diagram

Find the common factors, of 24 and. 32 .

Ask if amyone can see a way to get from the first step to the greatest common factor without going through all* * the other steps. Have, children velosely examine the product expressions for 24 and 32 given in the flrst step. Ask questions such ass "What factors of 24 are also factors of 32 ? How many times does the factor ? appear in the product expression for 24 ? for 32 ? What is the greatest number of times that 2 appears in both product expresslions? Are there any other prime factors which appear in both expressions?" Try to get ${ }^{\circ}$ pupils to see that there is af way to find the greatest - common factior without going through all the steps in
the diagram. Use other examples of finding the greatest common factor such às those given in the background for the teacher. Follow the development given in the teacher background to help. children find the "piece" that is Common oto "both product expressions. Children will need to find othe greatest common factor of two numbers in several examples during this exploration period in order to gíain skill and confidence. .

Arter the greatest common factor for two numbers has been found, ail common factors of the two numbers cáno be determined because these are simply the factors, of the greatest common factor. In class discussions, have the children determine the set of all common, factors after they find the greatest common factor of two sumbers. If this is done during the exploration period, children should be prepared"to do, Exerciise set 12. Pages 76,77 , and 78 in the Pupils' Book provide material designed to help.children understand the meaning and application of greatest common faftor. " Following the exploration you have done with the pupils, you may want to examine these pages with the children before they begin working independently on the exercise set.

Suppose Set S is the set of all factors of 12 "and Set $\mathrm{R}_{\mathrm{p}}=1 \mathrm{~s}$ the set of all factors of 18.

$$
\begin{aligned}
& S=\{1,2,3,4, \overline{6}, 12\} \\
& \left.R^{?}=\{1,2,3,6,0), 18\right\}
\end{aligned}
$$

Then the set of all factors of both 12 and 18 .. is.

$$
S \cap R_{i}=\{1,2, .3,6\}
$$

: The members of this set are called the common factor of $\because 12$ and 18.

What are the common factors of 16 and, $36 ?$.

$$
K=\{i, 2,4,8,16\} \text { is the set of ail factors of ' } 16
$$

and

$$
\mathrm{L}=\{1 ; 2 ; 3,4 ; \quad 6,9,12,18,36\} \text { is the set or }
$$

211 factors of 36 , \qquad

$K \cap^{\prime} L=\{1,2,4\}$, is the set of all common factors of 16 and 36
The common factors of 16 and 36 are 1,8 , and 4.

Exercise Set 11'

1. Two numbers are given in each exercise below. find ali factors of each number; then find the common fattots of. the two numbers. 'The first exercise is an example of what you are to do.
fa. 12 and 30.
Let $A=$ the set of all factors of 12 .

$$
\vec{A}=\{1,2,3,4,6,12\}
$$

Let ${ }^{\circ} B=$ the set of all factors of 30 .

$$
B=\{1,2,3,5,6,10,15,30\}
$$

$A \cap B=\{1,2,3,6\}$ $1,2,3$, and 6 are the common factors of 12 and 30 .
b. 40 and 30 "
e. 52 and 72 .
c. 36 and 27°. . f. . 75 and 120
d. 60 and 40°. . g.'
a. What is the largest or greatest factor in each set of commor factors?
b. Is each other member of the set of cammon factors \dot{a} factor of the largest member?
c. Are there any members of the intersection set which are not factors of the largest member?

Exercise Set 11, Answers

1. b.
c.

$$
\begin{aligned}
& C=\text { set of factors of } 2 \times 2 \times 3 \times 3 \\
&=\{1,2,3,4,6,9,12,18 ; 36\} \\
&=\text { set of factors of } 3 \times 3 \times 3=\{1,3,9,27\} \\
& C \cap D=\{1,3,9\}
\end{aligned}
$$

d.

$$
\begin{aligned}
E & =\text { the set of factors of } 2 \times 2 \times 3 \times 5 \\
& =\{1,2,3,4,5,6,10,12,15,20,30,60\} \\
F & =\text { the set of factors of } 2 \times 2 \times 2 \times 5 \\
& =\{1,2,4,5,8,10,20,40\} \\
E & \cap(1,2,4,5,10,20\}
\end{aligned}
$$

e. $\quad G=$ set of factors of $2 \times 2 \times 13$

$$
=(1,2,4, .13,26,52\}
$$

$\mathrm{H}=$ the set of factors of $2 \times 2 \times 2 \times 3 \times 3$

$$
=\{1,2,3,4,6,8,9,12,18,24,36,72\} .
$$

$$
\mathrm{G} \cap \mathrm{H}=\{1,2,4\}
$$

f. ' $X=$ the set of factors of

$$
=\{1,3,5,15,25,75\}
$$

$$
3 \times 5 \times 5
$$

$Y=$ the set of factors of $2 \times 2 \times 2 \times 3 \times 5$

$$
\bar{A}\{1,2,3,4,5,6,8,10,12,15,20,24,30,-40,60,120\}
$$

$X A Y=0(1,3 ; 5,15\}$
G.i:A $=$ the set of factors of $2 \times 2 \times 2 \times 3 \times 3$

$$
=[1,2,3,4,6,8,9,12,18,24,36,72\}
$$

$B=$ the set of factors of $2 \times 2 \times 3 \times 3 \times 3$

$$
A \text { ती } B=\{1,3,2,3,6,9,12,18,27,36,3,12,18,36\}
$$

*

2. a. b'. The g.c.f. is 10 .
8^{\prime}. The g.c.f. 1 s 9 .
('. The g.c.f. is 20.
es. The g.c.f. is 4.
f^{\prime}. The g.c.f. is 15.
g'. The g.c.f. is 36.
b. Yes:
-c. No.

$$
\begin{aligned}
& R x \text {. the set of factors of } 2 \times \dot{x} \dot{x} \dot{x} 5 \\
& =\{1,2,4 ; 5,8,10,20,40\} \\
& S=\text { the set of factors of } 2 \times 3 \times 5 . \\
& \mathrm{R} \hat{\bar{\wedge}}\{\mathrm{~S}=2,3,5,6,10,15,30\} \\
& R \cap S=\{1,2,5,10\}
\end{aligned}
$$

FINDING THE GREATEST COMMON FACTOR
" "If we know the set of common factors of two numbers, we can easily find the greatest comin factor of the two numbers. The greatest number in the set of common factors is called the greatest common factor.

The set of common factors of 12 and 18 is

$$
\{1,2,3,6\}
$$

- The largest among these numbers is 6 . It is called the. greatest common factor of 12 and 18.

The set of common factors of. 16 and 36 is

$$
\{1,2,4\}
$$

The greatest common factor of 16 , and 36 is 4.
There is a way to find the greatest common factor of two numbers without first finding the intersaction of the sets of, factors of each number.

First we express the numbers, say 30 and. 42 , as products of primes.

$$
\begin{aligned}
& 30=2 \times 3 \times 5 \\
& 42=2 \times 3 \times 7 .
\end{aligned}
$$

The factors of 30 can all be found by folming npieces" of this expression. Pieces of $2 \times 3 \times 5$ are $2,3, \therefore 5$, 2. $\times 3,2 \times 5,3 \times 5$, and $2 \times 3 \times 5$, The factors of 42 can all be found in the same way. The pieces' of $2 \times 3 \times 7$ are $2,3,7,2 \times 3,2 \times 7,3 \times 7$, and $2 \times 3 \times 7$, The cormon factors of 30 and 42 must be expressed by those pieces which are found in both expressions. The greatest common factor must be the largest piece found in both expressions.

The largest piece in the prime product expressions for both 30 and 42 is 2×3 or 6 .. Then 6 must be the greatest common factor of 30 and 42 .

Here is "another, example. To find the greatest common factor of 90 and 50 we write:

$$
\begin{aligned}
& 90=2 \times 3 \times 3 \times 5 \\
& 50=2 \times 5 \times 5 .
\end{aligned}
$$

By rewriting $90=\cdot(2 \times 5) \times(3 \times 3)$ we see'that 2×5 is the largest piece that can, be found in both expressions. The expression $2 \times 5 \times 3$ can be found in one and $2 \times 5 \times 5$ in the other. But neither can be found in both. We know then that 10 Is the greatest common factor of 90 and 50.

If we have found the greatest common factor in this way we can quickly find all common factors. Do you see how? Thecommon factors must be those which can be expressed as pieces; of both prime product, expressions. They must then be the pieces of the largest piece: This means that the common factors are simply the factors of the greatest common factor.

Since 6 is. the greatest common factor of 30 and. 42 , the set of common factors is. $\{1 ; 2,3,6\}$.

Since 10 is the greatest common factor of 90 and 50 , the set -of common factors is. $\left\{1,2, " 5,{ }^{\prime \prime} 10\right\}$.

Now try 24 . and '60. :

P78 ${ }^{\circ}$
The pieces which these expressions have in common are 2,3 , $2 \times 2,2 \times 3$, and $2 \times 2 \times 3$. This list is the largest, so 12 is the greatest common factor of 24 and 60 . The set of all common factors is $\{1,2,3,4,6,172\}$.

Exercise Set 12

1. Find the greatest common factor by first finding the intersection of the sets of factors. Exercise a. is answered for you as an example.
a. 12 and 40

$$
12=2 \times 2 \times 3
$$

\{ All factors of $12 \quad A=\{1,2,3,4,6,12\}$ ' $40=2 \times 2 \times 2 \times 5$
All factors of $40 \quad B=\{1,2,4,5,8,10,20,40\}$
$A \cap B=\{3,2,4\}$
The greatest common factor of 1? and 40 . is 4 .
b. 16: and ' 6 (2)
c. 90 "and 12 (6)
2. Find the greatest common factor by first writing each; number as a product of primes.
a. 2 and $6(2) \cdots, 48$ and $30(6)$
b. 7 and $35(7)^{\circ}$ - f. 60 and $45(15)$
\therefore c. 16 and $8(8)$ g. 72 and $60(12)$
d. 20 and 36 (4)

$$
\begin{aligned}
& \text { h. } 2 \times 2 \times 2 \times 3 \times 3 \times 5 \quad \text { and } 2 \times 2 \times 5) \times 5 \times 7 \\
& \text { 1. } 3 \times 3 \times 3 \times 3 \times 7 \times 7 \times 11(3 \times 3) \times(9) \times 3 \times 3 \times 13 \\
& \text { 1. }{ }^{2} \mathrm{~m}=2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 7 \times 7 \times 7 \times 7 \times 7 \\
& \text { and } n=2 \times 2 \times 3 \times 3 \times 7 \quad(2 \times 2 \times 3 \times 3 \times 7) .
\end{aligned}
$$

3. a. Can a pair of numbers, with 2, 3, and 5 among their common factors have 20 as a greatest common factor? (x_{0})
 b. If . 2 and 3 are among the common factors of a pair of numbers, nam on d other common factor which the pair ming have. (6)
Answer the same question if the common factors are:
c. 3 and $5(15)$ f. 4 and $6(12)$
a. 9 and $5(45)$
g. 6. and $14(42)$
e. 9 and 4 (36)
h. it and $9(36)$
4. a. The greatest common factor of 728 and 0968 , is 8. Write the set of common factors of 728 and 968 . The greatest common factor of 330° and 294 is. 6.:
Write the set of common factors of 330 and 968.

$$
\{1,2,3,6\} .
$$

FACTORING AND FRACTIONS
Vocabulary: Measure, numerator, denominator
Suggestions for Exploration:.

- This section is an application of "What has been learned in this chapter.

The presentation on the pupil pages can be followed.
The Braintwisters of Exercise Set 13 should be discussed -
in class after pupils have had an opportunity to work ρn them,independently.

FACTORING AND FRACTIONS

When we studied fractions we learned that there are many fractions which name the same -rational number.' For example

$$
-\frac{2}{3}, \frac{4}{6}, \text { and } \frac{6}{9} \cdots
$$

are all names for the same number.

$$
\frac{2}{3}=\frac{4}{6}=\frac{6}{9}
$$

This number line may help to remind you why this is so.

The diagram shows scales in units, thirds, sixths, and ninths.
\therefore It shows that if a segment has a measure $\frac{2}{3}$ then $1 . t$ also has measure $\frac{4}{6}$ and $\frac{6}{9} \therefore$ By studying the diagram you should be abies to answer g following questions:

1. John has pa riles $\frac{1}{3}$, of a foot' long. Mary has a 'piece of chalk. $\frac{1}{6}$ of a foot long. John measures the side of a large book with his pencil. Mary measures the same side Whin her chalk. John finds that the edge measures 4 in pencil (4 $\frac{4}{3}$ for ($1 \frac{1}{3} \mathrm{ft}$)
lengths. What does ft measure in feet?. What number should
Mary find as the measure of the edge in chalk lengths?(8) How
\therefore would she probably express this length in feet? $\left(\frac{g}{6}\right.$ ar it $\left.\frac{1}{3} q t\right)$)
2. List the twolother names for $\frac{5}{3}$ shown on the diagram. List two more names not shown on the diagram. $\frac{12}{12}$ Is there a name for $\frac{1}{2}$ shown on the diagram? $\left(\begin{array}{ll}\text { (}\end{array}\right.$ soles would you add to the diagram to show two other names for $\frac{1}{6}$? (twelfths) (eighteenths)

In using fractions it. is of ten very important. to be able to answer questions like these:

$$
\begin{aligned}
& \text { a: Is: } \frac{30}{48}=\frac{25}{40} ? \\
& \text { b. Is } \frac{15}{25}<\frac{24}{30} ?
\end{aligned}
$$

We can answer questions like these if we can tell when two fraction are names for the same number. We. know that

$$
\frac{1}{2}=\frac{2}{4}=\frac{3}{6}=\frac{4}{8}=\frac{5}{10}=\frac{6}{12}=\frac{1}{2} \times \frac{n}{2}
$$

and that

$$
\frac{2}{3}=\frac{4}{6}=\frac{6}{9}=\frac{8}{72}=\frac{10}{15}=\frac{12}{18}=\frac{2 \times n}{3 \times n} .
$$

We can also use this idea to find smaller numerators anna" denominators.

Thus

$$
\begin{aligned}
& \frac{18}{24}=\frac{2 \times 9}{2 \times 12}=\frac{9}{12}=\frac{3 \times 3}{3 \times 4}=\frac{3}{4} \\
& \frac{18}{24}=\frac{3 \times 6}{3 \times 8}=\frac{6}{8}=\frac{2 \times 3}{2 \times 4}=\frac{3}{4} \\
& \frac{18}{24}=\frac{9}{12}=\frac{6}{8}=\frac{3}{4}
\end{aligned}
$$

-This suggests that we can answer our question about $\frac{30}{48}$
and $\frac{25}{40}$ by factoring. We can start by writing both 30 and 48 as products of primes.

$$
\begin{aligned}
30 & =2 \times 3 \times 5 \\
48 & =2 \times 2 \times 2 \times 2 \times 3
\end{aligned}
$$

$$
\begin{aligned}
\text { Now } \frac{30}{48} & =\frac{2 \times 3 \times 5}{2 \times 2 \times 2 \times 2 \times 3}=\left(\frac{2 \times 3}{(2 \times 3) \times(2 \times 2 \times 2)}\right. \\
& =\frac{6 \times 5}{6 \times 8}=. \frac{5}{8}
\end{aligned}
$$

Also $\frac{25}{40}=\frac{5 \times 5}{2 \times 2 \times 2 \times 5}=\frac{5 \times 5}{5 \times(2, \times 2 \times 2)}$

$$
=\frac{5 \times 5}{5 \times 8}=\frac{5}{8}
$$

(. We find then that $\frac{30}{48}=\frac{25^{\circ}}{40^{\prime}}=\frac{5}{8}$.

Now for our second question, 'b).

$$
\begin{aligned}
\frac{15}{25} & =\frac{3 \times 5}{5 \times 5}=\frac{3}{5} \\
\frac{24}{30} & =\frac{2 \times 2 \times 2 \times 3}{2 \times 3 \times 5}=\frac{(2 \times 3) \times(2 \times 2)}{(2 \times 3) \times \frac{5}{5}} \\
& : \frac{2 \times 2}{5}=\frac{4}{5}
\end{aligned}
$$

Since we knop that $\frac{3}{5}<\frac{4}{5}$, we also know that $\frac{75}{25}<\frac{24}{30}$:

Exercise: Set 13

1. Find the fraction with the smallest possible denominator: for each of the following.
Example: $: \frac{60}{350}=\frac{2 \times 2 \times 5 \times 3}{2 \times 5 \times 5 \times 7}=\left(\frac{2 \times 5) \times(2 \times 3)}{2 \times 5) \times(5 \times 7)}=\frac{2 \times 3}{5 \times 7}\right.$. Since $\dot{2} \times 3$ and $\dot{5} \times \dot{7}$ have no common factors, except 1 , $\frac{6}{35}$ must be the fraction we wanted to find.
a. $\frac{6}{16}\left(\frac{3}{8}\right)$
d. $\frac{21}{35}\left(\frac{3}{5}\right)$
g. $\frac{2 \times 3 \times 5 \times 5 \times 7}{2 \times 5 \times 7 \times 11}\left(\frac{15}{11}\right)$
b. $\frac{7}{19}\left(\frac{7}{19}\right)$
e. $\frac{26}{14}\left(\frac{13}{7}\right)$
h. $\frac{3 \times 5 \times 7}{2 \times 11 ;}\left(\frac{105}{22}\right)$
c. $\frac{12}{20}\left(\frac{3}{5}\right)$;
f. $\frac{16^{*}}{27} \frac{16}{27}$
2. $\frac{9 \times 4 \times 5}{16 \times 3 \times 7}\left(\frac{15}{28}\right)$
3. Find each of the measures given below, Express each using the smallest possible denominator.

Example: The measure of 5 days in weeks is $\frac{5}{7}:$ This is. the expression with the smablest denominator.
a: $\%$ The measure of 36 seconds in minutes. $\left(\frac{3}{5}\right)$
. b. The measure of 14 "hours in days. $\left(\frac{7}{12}\right)$.

- c. The measure of $3 p$ days in years. $\left(\frac{6}{73}\right)$
d. The measure of 6 ounces in pounds. $\left(\frac{3}{8}\right)$
e. The measure of 42 inches in yards. $\left(\frac{7}{6}\right)$

3. Suppose that m and n are counting numbers. Mark T for true or F for false for each of the following sentences about $\frac{m}{n}$
a_{i}. If m and n are bo titi even then $\frac{m}{n}$ can always be expressed using a denominator smaller than
b. If m and, n are both odd then $\frac{m}{n}$ cannot bpexprespled using ad smaller denominator. (F)
c. If no prime is a factor of both m and n, then the

- greatest common factor of \dot{m} and n is $1 .\left(T^{\prime}\right)$
d. If. no prime is a factor of both m and n, i then $\frac{m}{n}$ cannot be expressed using a smaller denominator. $\left(T^{\prime}\right)$
e. If $\frac{\dot{m}}{n}=\frac{4}{6}$ then, 4 is a factor of m, and 6 is a factor of $n \cdot(T) \quad$.
f. If $\frac{m}{n}=\frac{2}{3}$ then 2 is $\dot{\alpha}$ factor of m and -3 is a
factor of $n .(T)$

Additional Information for Supplementáry Exercise Set A:
2.: 'Observe that neither 2 nor' 3 is a factor of 7,075 .
3. 'Pick two multiples of 9 , for which the factors other than 9 have no common prime factor; e.g. 2×9 and $3 . \dot{x} 9$. or $3 \times 9^{\circ}$ and 5×9.
4. : A composite number less than 13×13 mist have $2 ; 3,5$, 7, or 11 as a factor. Therefore n has 11 à a factor. The other factor must be il also because $11 \times 13>625$;
5.. Find the g.c.f. of 6 and. 9. This is 3. Then find the g.c.f. of 3 and 30 .

Supplementary Exercise Set ${ }^{\circ}$ A

1. Write as a product of primes:
a: $63 \times 120(3 \times 3 \times 7) \times(2 \times 2 \times 2 \times 3 \times 5)^{3}=(2 \times 2 \times 2 \times 3 \times \times \times 3 \times 5 \times 7)=$
b. $\quad 65 \times 92(5 \times 13) \times(2 \times 2 \times 23)=(2 \times 2 \times 5 \times 13 \times 23)$
b. $\quad 65 \times 92(5 \times 13) \times(2 \times 2 \times 23)=(2 \times 2 \times 5 \times 13 \times 23)$
c. $210 \times 180(2 \times 3 \times 5 \times 7) \times(2 \times 2 \times 3 \times 3 \times 5)=(2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 5 \times 7)$
2. a. How many times does 2 , appear if 24×7075 is written as a product of primes? (3 temic)
b. How finany timés does : 3 appear? (oxce)
3. Find three pairs of numbers with the number giverl as greatest common factor.
a. $9(9,18),(9,27),(18,27)$, ete.
b. $10(10,10), "(10,20),(20,30)$ ete.
c. $12(12,24) ;(12,36),(24,36)$ ete.
4. There is a composife number less than 125 . It does not have $2,3,5$, or 7 as a factor. What is the fumber?
5. Find the greatest common factor of these triples of numbers.
a.: 6, 9, 30, (3)
b. 8, 12, 25 (1)
c. 25,$30 ; 50(5)$

6: I am thinking of an operation on counting numbers. I will call the result of operating on m and $n, m \cdot n$ ($" m$ dot $n^{\prime \prime}$). Here are some facts about the operation "dot. ${ }^{\prime \prime}$ '

$$
\begin{array}{llll}
6 \cdot 4=2 & 04 \cdot 3=1 & 5 \cdot 15=5 & , 8: 12=4 \\
n \cdot 1=7 & 10: 15=5 & 18 \cdot 26=2 & 42 \cdot 25=1
\end{array}
$$

 $b:$ Is the operation " dot" commutative? (ye,) c) Is it associative? (yes)

Additional Information for Supplementary Exercise Set $\frac{B}{4}$:

1. Every prime except: 2 is odd. Since n is odd, $n+1$ is even." Except for 2 and 3 no two primes can ever be adjacent.
2. In any base $30=3 \times 10$. In base five, 10 is prime. In b, note, that, in any base $100=0^{\circ} \times 10$. In b conversion to base ten is necessary.
3. Make a list' comparing base.ifive and base, ten numerals, or use a, list made previously. The even numbers are 2, 4, 11, $23,20,22,24,31, \ldots$ etc. Notice that in any base, the base is a factor of a number only if ifs ${ }^{4}$ unit digit is 0 .
4. Thesé questions can ali be answered by converting to base ten. Notice that 13 is prime in base ten. but not in base 7; that 15 is composite ja base 10 but not in base 8.: Of course, 10 will be 'prime' only if the base. is prime, and 200 is Sways composite.
5. In 'any 'pen' base y one -half of the base will, have the same sort of divisibility test as 5 does in the decimal system.
[^0]Supplementary Exercise Set B

1. Suppose you know a large prime number, n. Then you tan be sure that $n+1$ is not a prime. "Why? ($n+1$ must be even)

2, In this exercise write only base five' numerals. Write
a product of primes, if possible:
a. $\operatorname{lin}_{\text {five }}=(15=5 \times 3=10$ fire $\times 3)$
b. (131) five $_{\circ}(25+15+1=41=13$ /fine is prime $)$ $\therefore \quad(100)_{\text {five }}=\left(10\right.$ five: ${ }^{\prime} \times 10$ fine $)$
3., a. Using base five numerals;, is there a simple test to find whether 2 is a factor of a number? (The digitomuct of the enc.)
b. Is there a simple test for 3 as a factor? $\left(\lambda_{0}\right)$
c. Is. fere a simple test for (10) five? (He unit digitmuct). be 0 .
-4, Which are prime and which are composite?
a. (10) four (2×2 (ompreite)
d. (10°) (2×4. comporite.)
b. (10$)_{\text {seven }}^{\text {c. }}\left(7_{\alpha}\right.$ prime $)$ e. (15) eight $(13$, prime $)$
(7×17 composite) for testing
\therefore unction
\therefore
5. Find a rule for testing 3 as a factor using base six numerals. (The units dinge rues be or 3.)

Additional Information'for Supplementary Exercise Set C :
= 1. "There can be no other triplets because at least one or . ny set 0 ' successive odd numbers is a multiple of
3.

. . ’ $\mathrm{r}^{\text {i }}$ If neither \dot{a} nor c is a muitiple of 3 , then b musț De. Elit in that case \ddot{e} is also.

己ं. Test each numberin; order.
'3. Notice that there is Sometimés more than one way to " -write an even number as a sum of odd primes.

1. Primes with only one number between them are called twin primes. 11 and 13 are twins, so are 17 and " $19 .$, a What are the next two pairs of twin primes? $\binom{29$ and 31}{$4 /$ and 43} The primes 3,5 , and 7 .fight be called triplet primes. If 15 were prime then 11, 13 , 15 would be triplets. b. Do you know any other triplets besides 3,5 , and 7 ? c. In your chart of prime factors, find one other triplet other than 3 , 5 , and 7, if "you can. (Here are no $\left.\begin{array}{c}\text { others }\end{array}\right)$.
2. The number 6 as interesting property noticed by Greek mathematicians over 2,000 years ago. It is this: the number 6 is the sum of all of its factors except 6

$$
1+2+3=6 .
$$

The Greeks admired thy s rare property and called such numbers perfect numbers. No; one" has, 'ever been able to. find a way to get ali, perfect numbers. No one knows ${ }^{\text {e }}$ whet the there are any "odd perfect numbers. Find the next, perfect number greater than

$$
(28=1+2+7+7+14)
$$

3. All primes except 2 are odd. The sum of any two odd primes is even. "Suppose we ask what even numbers'are sums. of two (perhaps equal) odd primes? The smallest number which could be is $\dot{6}$. It is, because $3+3=6$. Also $8=3+5, \quad 10=3+7, \quad 12=5+7$.

Show that every number from 6 through 30 is a. sum of two odd primes.

No one has ever found an. even number greater than 4 which is not the sum of two odd primes. Most mathematicians Believe that every such even number, is the sum of two odd primes. *o one has been'able to show that there cannot be any exceptions.

$$
24=11+13=5+19=7+17
$$

$$
\begin{aligned}
& 14=7+7 \\
& 16=5+11 \\
& 18=5+13=7+11 \\
& 20=7+13 \\
& 22=11+11=5+17
\end{aligned}
$$

$$
26=13+13=7+19
$$

MATHEMATICAT SUMMARY

When a mathematical operation, ilke additiop or maitiplication, As first studied, attention is upuanizodreeted toward
(1) finding and learning basiec $2+3=5$ or $? \times 3$
\square (c) knowing, or at ieast uging the properties, like comurtativity, assoctativity, and distributivity, which underilie the general process for openating on any numeris
This is the approactitg addition lin capoter of orade 4 and Chapter goo Gade 4. abd to multroseation the chapter 4 of Gradee 4 and Chapter 7 op Grade te

To organize and extend kowleage of an oration it is of ten valuable to change the point of viajo ong can, von instance, invert the usual approach by beginning with a number ard asking how 16 can pe obtained by operateng on otien numbers othis is
 express 12 as a produot in several wateor abt rop equts factors, we are taking this favented of miltiptoation. The same general questions applied to adation are not so intemesting, For example, every numer smaller tion 12 - an adend for in.

An Inver diew mi mitiplicaton

 4×3 Hex we path out that these fac may theme ives be
 Fonexamy

Continued appilication of this process in several cases should suggest these observations: *.
(ir) The" "breaking up" can continue indefinitely
a if $\mathrm{I}^{1} \mathrm{~s}$ are used as factors, but using. I'st as factors does not contribute additional information.

$$
\begin{aligned}
& l 2=3 \times 4 \times 1 \times 1 . \text { might as well be } \\
& 12=3 \times 4 .
\end{aligned}
$$

(2) If 1 is not used as a factor, then the process must end.

$$
12=(2 \times 3) \times-2
$$

terminates the "breakup". of 12.
The process ends when each factor cannot be written as a product of smaller factors. At this point we have reachedithe "bricks" or "atoms" from which the number is "constructed" by multiplication. These are called prime numbers or simply primes. Products of primes are called, compgs,1te numbers.
(3) It appears that, for aiven number, no matter
how the: "breaking up" process:is undertaken, when the "bricks" (primes) are reached; thore are always the same numbers of each type of "brick" (each prime).

$$
\begin{aligned}
12 & =6 \times 2=(2 \times 3) \times 2 \\
12 & =3 \times 4=3 \times(2 \times 2) \\
60 & =5 \times 12=5 \times(3 \times 4)=5 \times(3 \times(2 \times 2)) \\
60 & =6 \times 10=(2 \times 3) \times(2 \times 5)
\end{aligned}
$$

Another wayy to say this is: If we ignore distinctions in the order and groupiñe of factors, there is only one way to write a number as a product of primes.
This property; whose consequences are manifold; is called the fundamental theorem of arithmetic.

Primes and Products of Primes
While this' property of primes can be proved; we ask the chilldren to assume it as a probable generalization of their experience. It means that with every number there is associated a certain set of prime factors (types of bricks) and a certain number of repeti-. trons of each prime (number of each type of brick). For example, 36 has two prime factors, 2 and 3 . Each is. repeated once:
$\therefore 36=2 \times 2 \times 3 \times 3$.

This leads us to a computational problem. ' (1) can we find a method for writing any, number as a product. of primes? Less compere-- hensive objectives are (2) to find a way to determine whether or * Not a given number is a prime or (3) to find all primes smaller than some given number. Any answer to (i) must include; answers to (2) and (3). We begin with these more modest aims because they lead us to a solution oof the original problem (1,).

There is a obvious but tedious way to find the factors of a number, say. 97. Beginning with 2 , we divide 97 . in-order by each number to test its even divisibility. If we already know the primes'less than 8 we con shorten our work in finding ail. prime factors of 97 or prove that 97 is. prime., If we are interested only in deciding whether or not 97 is prime, this . - Method can be greatly improved. We need to observe that factors come in pairs; for example (1,12) $(2,6),(3,4)$, are the paired factors of 12. It follows that: ",
a) for any" number tess than' 5×5, if one factor is greater than 5, the other of the pair is less than $5:$
b) for any number 1 espn for 7×7; $1 f$ one factor is greater

c) for any number less tifati 10×10, if one factor is greater than 10, thfother 1 s. less than 10 ,
This principle implies hat if 97 has no prime factor less than 10, then 97 is 1tsfine prime \because For if 97 has a factor' greater than 10 then it ais dams a factor' less than 10 . If 97 has a factor less than 11 , then 1 has $2,3,5$, or 7 as a factor. We, therefore , meed only test $2,3,5$, and 7 . for even divisibility to prove that 97 is prime.

Testing 2,3 , or 5 can be simplified by noting characteristic properties of the deçimat numerals numbers with one of thesse primes as a factor.

The method outilned above is a reasonably effective proceg for reaching objective (a), But if wel wisht to find aly prines up to 1po, testing each number vould be tedious It 18 more efficient and revealing to fand the composite humbers up to 100 : Thi's can be systematized by finding the numbers with a giten prime factor. First we can write down in order che numbers greater than 2 with 2 as a factori.

$$
4, .6,8,108
$$

These are composite. Then we can inciude the numbersoreater than -3 with 3 , as a factor, lgetting:
in addition to those atready written. "Each of these is composite. If we add to our Nist the nybers with i5 as 7 as actor, we will have listed all epmposites less than hoo ? numbers not listed must be the primels.

This process suggfots the passing of materiat through a series of selective filters or sieves \therefore In this anaogy, each puccessive "sieve", retains oniy thé numbens with a certain factor, and passes the rest. The numbers pased by the final "fijtration" will be the primes less than 100 This thent ts a way teach objective (3).

We now have the fingredients of d fonkabie method for writing reasonably large numbers as products of primes that is for nedoh ing objective (1). The method is to tesit the number for eveno divisibility by the primes in order. Fop exanfle, to apply the method to 1092 we note that 2 is a factor and get bigititsion

$$
109 \text { द्द }=2 \times 546
$$

Now we apply the method to 546, again beginning with $2 ;$ and getting.

$$
1092=2 \times 2 \times 273
$$

Since 273 is not div.isible'py 2 ; we,test 3 , getting

$$
1092=2 \times 2 \times 3 \times 91
$$

91 is not divisible by 3 . or by 5 , so we test 7 , getting

$$
1092=2 \times 2 \times 3 \times 7 \times 13
$$

ERIC

Because :is: is prime, we have achieved our goal.

A Property. of Primes

The fact that every number can be written as a product of primes in just one way has many implications. Of fe of these is a particularly significant property of primes which can be used to justify many assertions in the subsequent part of the unit. It is. derived from a-very useful observation; namely, to write m $\times n$ as a product of primes, we simply bring together the separate expressions for \underline{m} and n as products of primes

From 1 $\quad 110=2 \times 5 \times 11$. and
we get

$$
\begin{aligned}
78 & =2 \times 3 \times 13, \\
8580 & =(2 \times 5 \times 11) \times(2 \times 13) \\
& =2 \times 2 \times 3 \times 5 \times 11 \times 73
\end{aligned}
$$

This means that any prime factor of product mo min is a factor of esther \underline{m} or .

It is easy to show by example that this property is not shared by composite numbers. While. 4 is a factor of $8,580=110 \times 78$, it is a factor of neither 110 nor 78 .

The observation made above has a direct application in Justifying the process for finding all factors of a number from its expression as a product of primes. Suppose. r is a factor of'. 8,580. 'Then

$$
8,580=r \times s_{i}^{\prime \prime}
$$

If r and s are expressed as products of primes, we will have the expression for $8,58{ }_{c} 0$ as a prdauct of primes if we bring together these expressions. It follows that r mast be a product of of the factors "shown. in.

$$
2 \times-2 \times 3 \times 5 \times 1 \times 13 .
$$

We conclude that by makirost all possible product expressions using some of: $2,2,3, \circ 5,11,13$, we get all factors. Given time, we can actually write all of them down.

The most practical benefits of the work on factoring. to this poontare its applications to the determination of the greatest common factor and the least common multiple of two numbers. The calculation of these quantities is necessary in "reducing" frack:tons and in adding rational numbers.

To begin, we examine the set of ail common factors of two numbers; To get t he set of common factors of 12 and. 20 we find:

$$
\begin{aligned}
& \text { set of factors of } 13 \text { is }\{1 ; 2 ; 3,4,6,12\}^{*} \\
& \text { set of factors of } 20 \text { is }\{1 ; 2,4,5,10,20\} \text {. }
\end{aligned}
$$

The set of common factors, is defined to be the intersection of these two sets, namely

$$
.\{1,2,4\}
$$

Now it is not. a coincidence that this is the set of all factors of '4". The set of common factors is always the set of ${ }^{\text {a }}$ all factors of some number. It can never happen that

$$
\therefore \quad\{1,2,53,4,6\}
$$

is the sat of common factors of two numbers. if 6 is the greatest common factor, then

$$
\{1,2,3 ; 6\}
$$

: will be the.set of common factors. Why?
To see the answer, suppose that. m and n are two numbers with both 4 and 3 as of ton factors. Then,

$$
m=4 \times 6 \times 9=3 \times 2 \times q
$$

and

$$
n=4,^{\prime} \times s=6 \times t:=3, \times 2 \times t
$$

This means that 3 is a factor of $4, x$ p. Butjifor a prime to be a factor of $4 \times p$, it must be $a /$ factor of either ' 4 or p. However, 3° is not a factor of $/ 4$, hence it is a factor of p. For the same reason, 3 is a factor of s . Thus

$$
\begin{array}{ll}
\dot{m}=4 \times 3 \times p & (p=3 \times r) \\
n=4 \times 3 \times \dot{u} & (s=3 \times u)
\end{array}
$$

\qquad

But now 12 is a common factor' of m and n. Thus, whenever 4 . 'and - 6 are common factors', so is 12.

A general argument of this sort shows that every common factor of two numbers is a factor of the greatest. common factor. The-problem then reduces to determining the. greatest common fac'tor wi,thout Pirst having to determine all common factors. Writing each number as a product of primes enables 'us. to find. the greatest common factor efficiently. From

$$
\begin{array}{ll}
\therefore & 150=2 \times 3 \times 5 \times 5 \cdot \quad \text { and } \\
\therefore \quad 420 & =2 \times 2 \times 3 \times 5 \times 7
\end{array}
$$

we can pick out the largest common "piece" in the "construction" of 150 and : 420 from primes,
\therefore

$$
\begin{aligned}
150 & =(2 \times 3 \times 5) \times(5) \times r \\
\text { and } 420 & =(2 \times 3 \times 5) \times(2 \times 7)
\end{aligned}
$$

clearly. $2 \times 3 \times 5=30$ is a common factor. Any greater common. . factor must be of the form ' $30 \times$ (common factor of 5 and 2×7).

- Because the greatest common factor of 5 and 14 is 1 , ' 30 is the "greatest common factor of 150 and $420 . "$

The definition,' computation; and use of "least common. multiple", will be treated in Chapter 6 in connection with the work on the addition of rationai numbers.

EXTENDING MUITİPICATIQN AND' DIVISION I
PURPOSE OF UNIT

- The purpose of this urit is to help children develop greater"skill in
(1) multiplying whode numbers, and
(2) dividing whole numbers.

Based on an understanding of relevant properties associated with each gperation, emphasis is given to the use of progressively more mature and more efficient algorisms.

Skills and techiques develop at different rates for, different children, $/ /$ and not, all children can be expected to perform at the same level at any given time. However, each , child should be encóuraged to progress to as, high a lẹvel, of performanee as possible--but not at the expense of . - understanding.

MGITIPLICATION ALGORISMS

- When multiplying two numbers such as 12 and 26 ; it. . generally is not convenient to renfember all of onels thinking. used to arriye at the carrect product, 312. Rather, it usually is helpful to necord some of this thinking in a wriften way:.

Various forms for multiplying may be used, depending upon the pattern of thinking used, and the extent to which a record. of parts of this thínking is made, in writing. Consequently, some forms of recording (or algorisms) are considered to be shorter or more efficient than others. In any event, an algorism must be based upon, recognized operational properties ánd numeration, principles.

- Examples of algorisms for multiplying two numbers suxch as. 12 and 26 foilow.

Examples öf Algorisms
b

The fundamental basis for each algorism is found in the distributive property of multiplication over addition, coupled with the commutative and associative properties of multiplication. For examplé: .

Explanation for Algorism ${ }^{\circ}$:

$$
\begin{aligned}
12 \times 26 & =(10+2) \times 26 \\
& =(10 \times 26)+(2 \times 26) \\
& =[10 \times(20+6)]+[2 \times(20+8)] \\
& =[(10 \times 20)+(10 \times 6)] \cdot+[(2 \times 20)+(2 \times 6)] \\
& =(200+60)+(40+12) \\
& =260+52 \\
& =312
\end{aligned}
$$

. Explanation for Algorism B:

$$
\begin{aligned}
12 \times 86 & =(10+2) \times 26 \\
& =(10 \times 26)+(2 \times 26) \\
\therefore & =260+52 \\
& =312 .
\end{aligned}
$$

Notice that, in effect, Algorism, B 1s an abbreviated form of Aigorism A.

Algorism C is similar to Algorism B, except that 12 is expressed as $2+10$ rather than as $10+2$.

Finally, Algorism D is an abbreviated form of Algorism C. In Algorism D the. "place value". principle.', is used explicitly so that by its position the 26° indicates. "26 . tens" or 260.

DIVISION ALGORISMS

We have recognized tha't. generally, it is not convenient for a person to remember all of his thinking when multiplying larger numbers. It is even less convenient to remember his thinking when dividing larger numbers. Consequently, the need for a written record of at least some of this, thinking is even greater in division.

What is meant by an expression, such as " 69 divided by $4^{\text {rr }}$ or, "57 divided by $3^{\prime \prime}$? We may interpret ahy expression. of this kind in two quite different ways.
(1) Expressions like ". $6 \dot{9}$ divided by $4 "$ and " 57 divided by", $3^{\prime \prime}$ may be interpreted in relation to the operation of division within the set of whole numbers. We.'may write; $69 \div 4=n$; so, $4 \times n=69$ and $n \times 4=69$. Also:. $57 \div 3=n$; so, $3 \times n=57$ and $n \times 3=57$. In each instance, we are aşked to determine the "unknown" factor, if one exists, within the set of whole numbers.

There, clearly is no whole number n such that $4 \times n=69$ (or $n \times 4=69$). In a sense, then, the expression " $69 \div 4$ " has no meaning as an operational expression within the set of whole numbers. The set of whole numbers is not closed under division.

In the other instance, |however, there is a whole'number n such that $3 \times n=57$ (or $n \times 3=57$). That number is 19, since $3 \times 19=57$ (or $19 \times 3=\dot{5} 7$). We alsp may write: $57 \div 3=19$.
(2), Expressions súch as "69 divided by 4" or $" 57$ divided "by 3 " may be. interpreted in relation to. the partitioning of sets intio equivadent subsets as described by mathematical sentences of the form:.

$$
\begin{aligned}
& 69=(n \times n)+r \text {. . or . } 69 \text { ! } \doteq(n \times 4)+r \\
& 57=(3 \times n) \dot{+} r \quad \because \text { or } \quad \dot{5} 7^{\prime}=\left(n^{-} \times 3\right)+r
\end{aligned}
$$

in which n and " r are wholé numbers, ${ }^{\prime}$ and: n is as large as possible.

- In the first instance we may-write:

$$
69^{\circ}=(4 \times 17)+1 \ldots \text { or } \quad 69=(17 \times 4)+1
$$

In the second instance we may write:

$$
57=(3 \times 19)+0 \quad \text { or }-57=(19 \times 3)^{3}+0 .
$$

Note that this second instance "is analogous to the case in "which 19 was found to be the "unknown." factor in the" sentence, $3 . \widehat{\times} \mathrm{n}=19$.

Solutions such as those illustrated in (i) and above usually cannot be determined easily, by inspections. when* larger numbers are involved. Consequently, an aIgorism, º $_{8}^{\circ}$ a way of processing, or of recording one's thinking'--is helpful:

Let us illustrate the preqeding discussition whth an algorism (shown in several alternative forms) that copld be used in relation to the expression, " 862 r divided by $6 . "$.

In each form we of ten use special names to refer to, specific. parts of the algorism:

862 may be called the dividend.
6 may be, called the divisor:
143. may be called the quotient.
4. may be called, the remainder.
(1) First lett us consider the information given by the algorism in relation to the mathematical sentence, $862 \div 6=\mathrm{n}$. We have found that there is no whole number n such that. $6 \dot{\times} \mathrm{n}^{\circ}=862$. (or $n \times 6=8 \dot{6} 2$). We therefore know that 6 is not. a factor of $\cdot 862$:
(2) Now let us consider the incofmation'given by the -algorism in relation to the mathematical sentences:

$$
862=(6 \times n)+r \quad \text { or } \quad 862=\left(n^{x} \times 6\right)+r
$$

We now may write:

$$
862=(6 \times 143)+4 \quad \text {.or } \quad 862=(143 \times 6)+4
$$

We may think of this in relation to:
(a). partitioning a set of " 862 objects into 6° equivalent subsets. There will be 143 members in: each of the 6 subsets, with a set of 4 members remaining.
(b) partitioning a set of " 862^{*} objects into equivalent subsets of 6 members each. There will be 1.43 such subsets, with ar set of $\because, 4$ members remaining...
Now let us examine the mathematical bases for our commonly used division algorism.

In the preceding volume of Mathematics for the Elementary
School, the distributive property of division over addition

$$
{ }^{1}(a+b) \div c=(a \div e)+(b \div c):
$$

was used to explain the basis for the division process.
However, the basis for a division algorism san be seten, more. cleariy at-times in terms of the distributive property of multiplication over additions.

$$
a \times(b \neq c)=(a \times b)+(a \times c)
$$

Think of dividing 760 by 20° using one or the other . of the'se forms:

This division could have been indicated by the sentence α $760 \div 20=\mathrm{n}$, which may be re-expressed as $20 \times \mathrm{n}=760$.

We know that n mist be greater than 10 but liess than 100, since $; 20 \times 10=200^{\circ}$ and $20 \times .100^{\circ}=2000$, and 760 is between. 200 and. 1000. We then may think of n as being in the form $b+c$, where b is the largest possible. multiple of 10 . So $20 \times n=\dot{20} \times(b+c)$.

Using the distributive property of multiplicatipn over addition," we ma $\underline{\dot{y}}$ write:

$$
\begin{array}{r}
20 \times(b+c)=760 \\
(20 \times b)+(20 \times c)=760 \\
(20 \times 30)+(20 \times 8)=760
\end{array}
$$

Each form of the algorism shows that we have determined b. to be 30 and "c to be. 8. So, the "unknown" factor n is $30+8$, or 38 .
\because But how' can we determine, for example, that.'b is" 30 ? We could think: . $20 \times 10=200^{\circ}$
$20 \times, 20=400$
$20 \times 30=600$
$20 \times 40=800$
We see that $.800>760^{\circ}$: and $600^{\circ}<760$. Since $.20 \times 30=600$, . $b \in 30 ;$

In a shorter, way, we can use our knowledge of the " "multiplication "facts" $2 \cdot \times 3=.6$ and 2×4 " $=8$ to help - us infer that 30 , will be the fargest'multiple of 10 to use as a factor with 20 so that the product will not exceed 760. ,

By a similar inference we can determine that c is 8 . . Knowing that $2 \times 8=16$. helps us determine that $20 \times 8=160$.

Finally, mention should be made of the fact that it is through a more explicit application of the principle of "place" value" that we may condense either of the preceding forms to ones such as these:

TEACHING THE UNIT -
This chapter is organized in the following way.
. 1. There are teaching suggestions and exploration which appear ônly in the teacher's. commentary.
$\dot{2}$. There are expiorations and, summaries , which appear in the pupil text.
3: There are pupil exercises to be done independentiy:
It is recommended that the teacher follow. the exploration in the teacher's commentary precedint the work with pupils in the pupil text. The pupil text materials are designed to be read and discussed together. Thiese offer pupils a record of review and extension of techniques of multiplication, and division. It is not intended that all children do all exercises. Yet, you also may find it necessary '七七o supplement some exprcises with addytional work.

As background for this unit,' pupils should know the multiplication facts through 10×10. Since the properties of multiplication are used: extensively in this chapter, teacher familiarity with Chapters 4. and 7 of fourth grade is recommended.

In. the previous chapter it was emphasized that product expressions. such as 3×4; $(3 \times 2) \times 2$, and 2×6 are different names for the number twelve. In many problems a desired.response to a mathematical β entéence such as $3 \times 4=n$ is $n=2 \times 6$. Since, in this chapter, we are concerned with multiplying and dividing, we try to be explicit by asking for the decimal numeral. (Decimal numenals are numerals using the base ten numeration system. . Actually here we will need. such symbols only for representing whole numbers. The numerals usually used to name the whole numbers are $0, I, 2$, $3, \ldots .10,11,12,13, \ldots, 8, .86$, 87,.....). In the later exercises we shorten. the instructions to something like, find n, compute n, etc: Such instructions are to be: interpreted as asking, for the decimal numeral formf for n.
$\therefore \therefore$ REVIEWING IDEAS OF MULTIPLICATION
Objective: . To review the language of multiplication
Materials:'. Duplicated blank table as suggested in.. Exercise Set 1 in pupif text

Teaching Suggestions:
Before children begin this chapter, elficit from them what multiplication means and review. the vocabulary of multiplication. Note that the product of two nupbers, such as .3 and may be named as a produc't expression, $3 \times$ or as a decimai numeral. 12 . Determine pupi1, understanding of the mathematical sentence.

As one way of reviewing multiplication facts through 10×10; charts similar to the one Eiven in Exercise Set 1 may be , constructed. Forms may be duplicated so that pupils can fill in numbers as needed. Changes in sequence may be made to provide practice material.

After reading with the children the first, page of this chapter in the pupil text, have 1 them do 'Exercise. Set. 1 independently.

P91
***. - EXTENDING MULTIPLICATION AND DIVISION I
Chapter. 3
REVIEWING IDEAS 'OF MULTIPLICATION
To express the product of two numbenusing a mathematical sentence, we, can write:

$$
\ldots 5 \times 4=20
$$

We read this either as:
5 times 4 is equal to $20 \therefore$
.. or'.
5 times '4 .equals :20.
20 is the product of the numbers 5 and $4 . \overline{5}$ and $4{ }^{\circ}$ are factors of 20.

We have found that any number has many names'. The expression, $5 \times$. 4 , is another name for 20 . When we use -a name showing multip̣lication-jlke $.5 \times 4$ for 20 , we call It a product expression. Both, 20 and 5×4 name the :product of 5. and ..4. . In this chapter we will learn ways of finding the decimal name for the products, of large numbers.

Exercise Set. 1
$\therefore \quad$ Copy the following table and fill in the blanks with the products: (Use decimal numerals.)

x	6	-8	5	10	4	0	9	2	7	3	1
4	24	32	20	40	16	0	36	8	28	12	4
7	42	56	35	70	28	0	6.3	14	49	21	7
1	6	8	5	10	4	0	9	2	7	3	1
9	54	72	45	90	36	0	81	18	63	27	9
3	18	24	15	30	12	0	27	6	21	9	3
6	36	48	30	60	24	0	54	12	42	18	6
10	60	80	50	100	40	0	90	20	70	30	10
5	30	40	25	50	20	0	45	10	35	15	5
0	0	0	0	0	0	0	0	0	0	0	0
8	48	64	40	89	32	0	72	16	56	2	8
2	12	16	10	20	8	0	18	4	14	6	2

REVIEWING THE PROPERTIES OF MULTIPLICATION
Objective: To review the properties of multiplication
Materials: Two 4 by 6 arrays, two 3 by 8 arrays and

In reviewing the commutative property of multiplication, use two 4 by 6 arrays. Pupils should review that a 4 by 6 array and a 6 by 4 array are different only in the way they are formed. Each has the same number of elements. It might be well to review that by turning a 3 by 8 array, we can place it over焳 18 by 3 array; but a-4 by 6 array cannot be placed over a 3 by 8 ' array, no matter how. much turning is done.

It is important that pupils understand the use of the associative praperty of multi-' pilication. ' It is desirable that pupils'be able to verbalize their understanding of the property, but it is most important that pupils be able to make use of associativity. They should recognize that the way 3 factors are grouped toes not affect the product:

After reviewing the associative property, have pupils do Exercise Set 2.

From their work in Chapter 7 of fourth grade, children should know how to multiply. using multiples of, 10 and 100 . In that chapter, pupils found the associative property very useful in multiplying by multiples of 10 and yere able to show their work using the mathematical sentence form. Pupizs should -be able to write products of multiples of 10 without having to use the longer form.

The teacher may need to gize pupils additional oral and writtegractice. Children should be able to explain their way, of arrioving at the product to insure that their work with multiplication is not merely me'chanical.

In Examples 4 and 5 in the pupil text, you will notice that several steps have been combined in order to reach a shorter form. In this note we will inclüde lll of the steps as they shouid be in order for you, and possibly some of the better pupils, to see the complete form.

Examply. 4:

$$
\begin{aligned}
& 60 \times 70=(6 \times 10) \times(7 \times 10)=\text { (Rename. } 60 \text { and 70.) } \\
& =\{(6 \times 10) \times 7] \times 10 \text {. (Use associative property.) } \\
& =[6 \times(10 \times 7)] \times 10 . "(\text { Use associative property.) }
\end{aligned}
$$

$$
\begin{aligned}
& =(6 \times 7) \times(10 . \times 10) \text { (Use associative property.) } \\
& =42 \times 100 \quad \text { (Product of } 6 \text { and } 7 \text { is 42; } \\
& =4200 \quad \cdots \text { product of } 10 \text { and } 10 \text { is 100.) } \\
& \text { (Product of } 42 \text { and } 100 \\
& \text { is 4200.). }
\end{aligned}
$$

Example: 5:

$$
\begin{aligned}
& 700 \times 30=(7 \times 100) \times(3 \times 10) \text { (Rename } 700 \text { and 30.) } \\
& =\{(7 \times 100) \times 3] \times 10 \text { (Use associative property.) } \\
& =[7 \times(100 \times 3)]^{\prime} \times 10 \text { (Use associative property.) } \\
& =[7 \times(3 \times 100)] \times 10 \text { (Use commutative property.) } \\
& =(7 \times 3) \times(100 \times 10)(\text { Use associative property.) } \\
& =21 \times 1000, \quad \text { (Product of } 7 \times 3 \text { 1s 21; } \\
& \text { product of } 100 \text { and } 10 \\
& \text { is 1000.) } \\
& \text { (Product of } 21 \text { and } \\
& \text { 1000. is 21;000.) }
\end{aligned}
$$

COMMUTATIVE PROPERTY OF MULTIPLICATION
A 4 by 6 array can be turned to form'a 6 . by. 4
array.

$4 \times 6=24$

6 by 4 array
$6 \times 4=24$

This shows that $4 \times 6=6 \times 4$.
A 24° by 35 array can be turned to form a 35 by 24 array. This shows $24 \times 35=35 \times 24$. When we write $24 \times 35 \mathrm{in}$-place of 3 裂 $\times 24$, we are using the commutative property of multiplications

By using the commutative property, we have fewer multiplication facts to learn.

If we know $5 \times 9=45$, then we know $9 \times 5=45$.
If we know $7 \times 8=56$, then we know $8 \times 7=56$. If this property is used, how many multiplication facts are

What are the properties of 0 and 1 for multipilcation?
$(i \ddot{x} m=m \times 0=0 \quad 1 \times m=m \times 1=m)$
How can we use these properties so we have even fewer
multiplication facts to remember? (amy fact involving 0 on 1 as a factor dow not have to po. mendiged if en can use quietly the perpertica of 0 end w 1 .)

ASSOCIATIVE PROPERTX OF MULTIPLICATION

We know that we can multiply three numbers, such as, 4 and ' 2 and 3 , in that order, in either of two ways:

$$
\begin{aligned}
& (4 \times 2) \times 3=8 \times 3=24 \\
& 4 \times(2 \times 3)=4 \times 6=24
\end{aligned}
$$

- Each way of grouping the numbers gives the same product.

So, we mà write:

$$
(4 \times 2) \times 3=4 \times(2 \times 3)
$$

\because When we replace one way of grouping the numbers by) the other way, we are using the associative property - of multiplication.
$\because \quad$ Because of the associative property of multiplication, we can write

$$
4 \times 2 \times 3=24
$$

without using any parentheses. We know that either grouping of the factors will. give the same product.

We have learned how to multiply using 10 , or 100, "or 1000 as a.factor in examples like these:
$3 \times 10=30-\quad 7 \times 100=700 \quad 9 \times 1000=9000$
$23 \times 10=230 \quad 57 \times 100=5700 \quad 39 \times 1000=39,000$
Wé also know our "multiplication facts," such as:
$4 \times 3=12,7 \times 5=35, \quad 6 \times 8=48$.
Now let us review how we can use these two things along with the associative property of multiplication to find products of numbers such as 4 and 20 , or 6 and 700 , or . 5 and 3000 .

Example 1

$$
\begin{aligned}
\because 20 & =4 \times(2 \times 10) & & \text { (Think of } 20 \text { as } 2 \times 10 .) . \\
& =(4 \times 2) \times 10 & & \text { (Use associative property.) } \\
& =8 \times 10 & & \text { (Product of } 4 \text { and } 2 \text { is } 8 .) \\
& =80 \quad . \quad & & \text { (Product of } 8 \text { and } 10 \text { is } 80 .) .
\end{aligned}
$$

Example 2

$$
\begin{aligned}
6 \times 700 & =6 \times(7 \times 100) & & \text { (Think of } 700 \text { as } 7 \times 100 .) \\
& =(6 \times 7) \times 100 & & \text { (Use associative property.) } \\
& =42 \times 100 & & \text { (Product of } 6 \text { and } 7 \text { is } 42 .) \\
& =4200 & & \text { (Product of } 42 \text { and } 100 \text { is } 4200 .)
\end{aligned}
$$

Example 3

$$
\begin{aligned}
5 \times 3000 & =5 \times(3 \times 1000) \quad \text { (Think of } 3000 \text { as } 3 \times 1000 .) \\
& =(5 \times 3) \times 1000 \text { (Use associative property.) } \\
& =15 \times 1000 \quad \text { (Product of } 5 \text { and } 3 \text { is 15.) } \\
& =15,000 \quad \text { (Product of } 15 \text { and } 1000 \text { is } \\
&
\end{aligned}
$$

Products of numbers such as 60 and 70 , or 700 and 30 can be found using the associative, property of multiplication along with the commutative property of multiplication.

Example 4

$$
\begin{aligned}
& 60 \times 70=(6 \times 10) \times(7 \times 10) \quad \text { (Rename } 60 \text { and } 70 .) . \\
& =(6 \times 7) \times(10 \times 10) \text { (Use the associative and } \\
& \text { commutative properties.). } \\
& =42 \times 100 \\
& \text { = } 4200 \\
& \text { (The product of } 6 \text { and } 7 \\
& \text { " } 18 \text { 42; the product of. } \\
& 10 \text { and } 10 \text { is } 100 . \text {) } \\
& \text { (The product of } 4 \dot{2} \text { and, } \\
& 100 \text { is 4200.) }
\end{aligned}
$$

Example 5

$$
\begin{aligned}
700 \times 30 & =(7 \times 100) \times(3 \times 10) \quad \begin{array}{l}
\text { (Rename } 700 \text { and } 30 .)
\end{array} \\
& =(7 \times 3) \times(100 \times 10) \quad \begin{array}{l}
\text { (Use the associative and } \\
\text { commutative properties.) }
\end{array} \\
& =21 \times 1000 \quad \begin{array}{l}
\text { (The product,of } 7 \text { and } 3 \text { is } \\
\text { 21; the product of } 100 \times 10
\end{array} \\
& =21,000 \quad \begin{array}{l}
\text { 1s 1000.) } \\
\text { (The product of } \\
1000 \text { is 21, } 000 .) \text { and }
\end{array}
\end{aligned}
$$

- Do you know a way in which you can find the product of numbers like 60 and 70 , or 700 and 30 more quickily? If not. see if you can find one.

Exercise Set 2

1. Write each of the following products as decimal numerals.
a. 3×10
h. 33×100
$(3,300)$.
b. 4×100
(400)
2. $4 \times 600^{\circ}$
$(2,400)$
c. $1,000 \times 7-(7,000)$
J. 800×3
$(2,400)$
d. $100 \times 12=(1,200) \mathrm{k} .8 \times 2,000 \quad(16,000)$
e. $32 \times 1,000(32,000)$ 1. 500×6
$(3,000)$
 (600)
g. $200 \times 4 . \quad(800) \quad$ n. 7×80
3. Find the product of each of the pairs of numbers by using the commutative and associative properties of multiplication.

Example: 50 and 40

$$
\begin{aligned}
50 \times 40 & =(5 \times 10) \times(4 \times 10) \\
& =(5 \times 4) \times(10 \times 10) \\
& =20 \times 100 \\
& =2,000
\end{aligned}
$$

"a. 30 and 70
e. 300 and 40
b. 80 and $60 \rightarrow$ f. 50 and 700°
c. 200 and 300
g.. 600 and 80
d. 90 and 700
h. 300 and 9,000

* Answers to Exercise Set 2

2. a: $30 \times 70=(3 \times 10)^{n} \times(7 \times 10)$

$$
\begin{aligned}
& =(3 \times 7) \times(10 \times 10) \\
& =21 \times 100 \\
& =2,100
\end{aligned}
$$

b. $-80 \times 60=(8 \times 10) \times(6 \times 10)$

$$
\begin{aligned}
& =(8 \times 6) \times(10 \times 10) \\
& =48 \times 100 \\
& =4,800
\end{aligned}
$$

$$
\text { c. } 200 \times 300=(2 \times 100) \times(3 \times 100)
$$

$$
=(2 \times 3) \times(100 \times 100)
$$

$$
=6 \times 10,000
$$

$$
=60,000
$$

$$
\text { d. } 90 \times 700=(9 \times 10) \times(7 \times 100)
$$

$$
=(9 \times 7) \times(10 \times 100)
$$

$$
=63 \times 1,000
$$

$$
=63,000
$$

$$
\text { e. } 300 \times 40=(3 \times 100) \times(4 \times 10)
$$

$$
=(3 \times 4) \times(100 \times 10)
$$

$$
=12 x \cdot 1,000
$$

$$
=(5 \times 7) \times(10 \times 100)
$$

$$
=35 \times 1,000
$$

$$
=35,000
$$

g. $600 \times 80=(6 \times 100) \times(8 \times 10)$

$$
\begin{aligned}
& =(6 \times 8) \times(.100 \times 10) \\
& =48 \times 1,000 \\
& =48 ; 000
\end{aligned}
$$

$$
\text { h. } \quad 300 \times 9,000=(3 \times 100) \times(9 \times i, 000)
$$

$$
=(3 \times 9) \times(100 \times 1,006)
$$

$$
=27 \times 100,000
$$

$$
=2,700,000
$$

Exercise Set 3^{0}
Find n in each sentence. (Use a decimal numeral.).

1. $\quad 40 \times 30 \doteq n \quad(1,200)^{\circ} .111 \quad 200 \times 300=\dot{n}(60 ; 000)$
2. $50 \times 70=\mathrm{n} \because(3,520)$ 2 $12 . \quad 500 \times 700=\mathrm{n}(350,000)$
3. $60^{\circ} \times 80^{\circ}=n^{\circ}(4,800) \quad 13 . \quad 300 \times 800=n \times\left(240^{\circ} 0000\right)$.
4. $\quad 30 \times 50=\mathrm{n} \quad(\%, 500): 14 . \quad 700 \times 40=\frac{n}{0}(28,000) \therefore$

5: $\quad 60 \times 40=n \quad(2,400) \quad 115.30 \times 600=n \quad(18,000)$
6. $20 \times 600=\mathrm{n} \quad(12,0,00) \quad 16 . \quad 70 \times 90=\mathrm{n} \quad,(6,300)$,
7. $\quad 500^{\prime} \times 30=\mathrm{n}^{\cdot}(1,5,0.00) 17 . .80 \times 700=\mathrm{n} \div(56,000)$.
8. $400 \times 7=n, \ldots(2,800) 18 . \quad 90 \times 30^{\circ}=n, \quad(2,700)+$.
9. $70 \times 800=n \quad(56,0,00)$ iq. $80 \times 50 \doteq n^{\prime} \ldots(4,0,0)$
10. $80^{\circ} \times, 900=n(72,000) .20 . \quad 20 \times I 2,000=n \cdot(240,000)$

REVIEW OF PROPERTIES (CONTINUED)
DISTRIBUTIVE PROPERTY OF MULTIPLIGATION OVER'ADDITION
A 7 by 18 array may be used to picture the distributive property of multiplication over addition.

When a -7 by 18 ;array is used, it can be seen that 18 nay be renamed in many ways (by making various folds) but most convenientiy 18 is named $10+8$.

From this," pupils should be able to w: ite

$$
\begin{aligned}
7 \times 18 & =7 \times(10+8) \\
& =(7 \times 10)+(7 \times 8) \\
& =70+56
\end{aligned}
$$

$$
=126
$$

Using the commutative property, we can see that

$$
7 \times 18=18 \times 7
$$

This couzd be demonstrated by turning the 7 by 18 array 90° and using the same separiations. It becomes apparent that the number of rows are renamed and the number of columns distributed over the rows.

Thus we recognize that:

$$
\begin{aligned}
18 \times 7 & =(10+8) \times \\
\cdots+2 & =(10 \times 77+5 \times 7) \\
& =70+56 \\
& =126 .
\end{aligned}
$$

Although many renâmings of 18
 choose the most convenient. one; in thes examples it is $10+8$.

DISTRIBUTIVE PROPERTY OF MULTIPLICATION OVER ADDITION array.

Separate it into two arrays showing products you already know. For ex sample:

7 by 10 array
$7 \times 10=70$

7 by 8 array
$7 \times 8 \geq 56$

These arrays/help us see that

$$
\begin{aligned}
7 \times 18 & =7 \times(10+8) \\
& =(7 \times 10)+(7 \times 8) \\
& =70+56 \\
& =126 .
\end{aligned}
$$

When we write $(7 \times 10)+(7 \times 8)$ place of $7 \times(10+8)$, we are 'using the distributive property of multiplication over addition.

Now. suppose we find the product of 18 and. 7 .

(10 by 7 array)

Find the products separately and add them to get the total number of elements in the 18 by 7 . array. 10

$$
\begin{aligned}
18 \times 7 & =(10+8) \times 7 \\
& =(10 \times 7)+(8 \times 7) \\
\because & =70+56 . \\
\cdots & =126
\end{aligned}
$$

The commutative property of multiplication tolls us that a $\dot{7}$ by 18 array has the same number. of elements as an $1 \dot{8}$;by 7 array, thus:

$$
\begin{aligned}
7 \times 18 & =18 \times 7 \\
\because 7 \times 18 & =7 \times(10+8) \\
& =(7 \times 10)+(7 \times 8) \\
18 \times 7 & =(10+8) \times 7 \\
& =(10 \times 7)+(8 \times 7)
\end{aligned}
$$ Since..

and
then $(7 \times 10)+(7 \times 8)=(10 \times 7)+(8 \times 7)=126$ elements.

- ERIC

Here are other illustrations of how. we may use the distributive property of multiplication over addition.
2. $42 \times-20=(40+2) \times 30$, (Rename 42 as $40+2$.

$$
=(40 \times 30)+\left(2 \times 30^{\circ}\right) \text { (Distribute } 30 \text { over } 40
$$ and 2.)

$$
=\text { iz̨00 }+60 \text { (Use multiplication facts }
$$ and place value.)

(Use addition facts and place values.)
3. $4 \times 285=4 \times \cdot\left(2000^{\prime}+80+5\right)$

$$
\begin{aligned}
& =(4 \times 200)+(4 \times 80)+(4 \times 5) \text { (Distribute } .4 \\
& \text { over 200, } 80 \text {, } \\
& \text { and 5.) } \\
& =800+320+20 \\
& =1140 \text { : } \\
& \text { (Use addition facts, } \\
& \text { associative property, . } \\
& \text { and. place value.) } \\
& \text { and place }{ }_{a} \text { value.) }
\end{aligned}
$$

$$
\begin{aligned}
& =(20 \cdot \times 30)+(20 \times 7) \text { (Distribute } 20 \text { over } 30 \\
& \text { and 7.) }{ }^{\prime} \\
& \cdots \quad \dot{y}=600 \% 140 \% \text { (Use multiplication facts } \\
& \text { and place value.) } \\
& =.740-\text { - Use addition facts and } \\
& \text { place value.) }
\end{aligned}
$$

Exercise Set 4

1. Using the properties of multiplication, express the following products as decimal numerals. (See answer, page

$$
\text { Example: } \quad \begin{aligned}
6 \dot{0} 21 & =6 \times(20+1) \\
& =(6 \times 20)+(6 \times 1) \\
& =120+6 \\
\cdot & =126
\end{aligned}
$$

a. 3×27

1. 20×62
b. 42×6
J. 7×30
c. 2×128
k. $40^{\circ} \times 57$
d. 7×341
2. 60×23
e. 217×8
m. 78×10
f. 4×285
n. $20 \times .91$
g. $22 \times \frac{10}{10}$
-. 86×30
h. 47×30
p. 39×50
3. Name the property of multiplication illustrated by each mathematical sentence.
a.
$8 \times 18, \equiv 18 \times 8$
Commutative
b.
$2 \times(9 \times 6)=(2 \times 9) \times 6$ associative
c.

4. Find n in each mathematical sentence. Use what you know about the properties of multiplication to help you.
a. $15 \times 30 .(10 \times 30)+(n \times 30)$
n. 5
b. $18 \times 5=5 \times n$
-c. $36 \times(10 \times 2)=10 \times(2 \times n)$
5. On your paper; write true if the mathematical sentence is true. Write false if the mathematical sentence is false.
a. $8 \times(7+5)=(8 \times 7)+(8+5)$
b. $12 \times 10=10 \times 12$
true
c. $33 \times 42=(30+3)^{3} \times(40+2)$
true
d. $(10 \times 3) \times 4=10 \times(4 \times 3)$
true
e. $(10 \times 5) \times 7=10 \times(5+7)$
false
+5. Each of the expressions below is equal to (40×60). 'Which does not illustrate the distributive property? Write its letter. - (c)

$$
\begin{aligned}
& \text { a. }(20 \times 60)+(20 \times 60) \\
& \text { b. }(40 \times 30)+(40 \times 30) \\
& \text { c. }(4 \times 10) \times(6 \times 10) \\
& \text { d. }(25 \times 60)+(15 \times 60)
\end{aligned}
$$

Typical answers to Exercise 1, Exercise Set 4 :

$$
\begin{aligned}
& \text { a. } 3 \times 27=3 \times(20+7) \\
& =(3 \times 20)+(3 \times 7) \\
& =60+21 \\
& =81 \\
& \text { b. } 42 \times 6=(40+2) \times 6 \\
& =\cdot(40 \times 6)+(2 \times 6) \\
& =240+12 \\
& =252 \\
& \text { c. c. } 2 \times 128=2 \times(100+20+8) \\
& =(2 \times 100)+(2 \times 20)+(2 \times 8) \\
& =200+40+16 \\
& =256 \quad 1 \\
& \text { d. } 7 \times 341=7 \times(300+40+1) \\
& =(7 \times 300)+(7 \times 40)^{\circ}+(7 \times 1) \\
& =.2100+280+7 \\
& =2387 \\
& \text { e. } 217 \times 8=(200+10+7) \times 8 \\
& =(200 \times 8)+(10 \times 8)+(7 \times 8) \\
& =1600+80+56 \\
& =1736 \\
& \text { f: } 4 \times 285=4 \times(200+80+5) \\
& =(4 \times 200)+(4 \times 80)+(4 \times 5) \\
& =800+320+20 \\
& =1140 \\
& \text { g. } 22 \times 10=(20+2) \times 10 \\
& =(20 \times 10)+(2 \times 10) \\
& =200+20 \\
& \text { = } 220 \\
& \text { h. }: 47 \times 30=(40+7) \times 30 \\
& =(40 \times 30)+(7 \times 30) \\
& =1200+210 \\
& =1410
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. } 20 \times 62=20 \times(60+2) \text {, } \\
& =(20 \times 60)+(20 \times 2) \\
& =1200+40 \text {. } \\
& =1240 \\
& \text { j: } 71 \times 30=(70+1) \times 30 \\
& =(70 \times 30)+(1 \times-30) \\
& =2100+30 \\
& =2130 \\
& \text { k. } 40 \times 57=40 \times(50+7) \\
& =(40 \times 50)+(40 \times 7) \\
& =2000+280 \\
& =2280 \\
& \text { 1. } 60 \times 23 \leq 60 \times(20+3) \\
& =(60 \times 20)+(60 \times 3) \\
& =1200+180 \\
& =1380 . \\
& \text { m. } 78 \times 10=(70+8)^{\prime} \times 10 \\
& =(70 \times 10)+(8 \times 10) \\
& =700+80^{\circ} \\
& =780 \\
& \text { - n. } 20 \times 91=.20 \times(90+1) \\
& =(20 \times 90)+(20 \times 1) \\
& =1800+20 \\
& =1820 \\
& \text { ㅇ. } 86 \times 30=(80+6) \times 30 \\
& \text { * }=(80 \times 30)+(6 \times 30) \\
& =2400+.180 \\
& =2580 \\
& \text { - p. } 39 \times 50=(30+9) \times 50 \text {. } \\
& =(30 \times 50)+(9 \times 50) \\
& =1500+450 \\
& =1950
\end{aligned}
$$

Objective: To develop greater skill. in multiplying whole numbers
Vocabulary: Partial product, vertical form of multiplication
Teaching Suggestions:
In this chapter an algorism for multiplicate, an $_{\text {on }}$ is developed. By using place value, we are able to find a shorter way of recording the process.

Begin class discussion of multiplication by showing the use of the distributive property to find products. Use the mathematical sentence form.
For example, $8 \times 476=8 \times(400+70+6) \quad$ Rename 475 as

$$
\begin{aligned}
& =(8 \times 400)+(8 \times 70)+(8 \times 6) \text { Distribute } \\
& 8 \text { over 400, 70, } \\
& =3200+560+48 \\
& =3808 \\
& \text { Use multiplication } \\
& \text { facts and place. } \\
& \text { value. } \\
& \text { Use addition facts, } \\
& \text { associative prop- } \\
& \text { ert, and place } \\
& \text { value. }
\end{aligned}
$$

Relate the mathematical sentence form with the vertical form below. Children should be able to see that the partial products of the vertical form are the same as those in the mathematical sentence form.

Class discussion could include various orders in which the partial products may be written. (Review from Chapter 7, Grade 4.) For example,

Have pupils explain the steps in multiplying when they write only the final product. For example, to multiply "'6 and 273, the steps are: $2736 \times 3=18$. Record the 8 ones, remember 1 ten. 6×7 tens $=42$ tens. -42 tens +1 ten $=$ $\times 6 \quad 6 \times 43$ tens. Record the 3 tens, remember 1638 the 4 hundreds.. 6×2 hundreds $=12$ hundreds. 12 hundreds +4 hundreds $=16$ hundreds. Record the 16 hundreds.

Certainly, as the process is shortened, place value for each digit of the numeral is emphasized.

The writing of additional numerals to show the regrouping may be used in approaching the level of writing only the final product. For example,

However, it is expected that when children are -ready for this level they will not find the need for this crutch for any length of time. The term "carrying" is not used with children.

It is assumed by fifth grade most children are using the conventional algorism and should be encouraged to continue with it. At the same time it must be recognized that all children are not at the same level of development and may need to use the long form.

You may wi'sh to use such examples as thế following for exploration with the class and class discussion béfore children work independently.

$72 \times 3=n$	(216)
$7 \times 18=n$	(126)
$3 \times 78=n$	(234)
$6 \times 55=n$	(33)

It is desireble that all development be'. done independently of the material in the pupil text. The record in the text then will serve as reférence when, the child works the exercises and for further study of these ideas. A teacher should develop the exploratory material for his class in light of the needs of his particular group.
becoming skillful in multiplying
$\therefore \quad$. We have learned that we can use mathematical! sentences to show our thinking when we multiply. .For example,
$4 \times 2^{8} 85=n$.
We can' find the number which n represents in this way.

$$
\begin{aligned}
4 \times 285 & =4 \times(200+80+5) \\
& =(4 \times 200)+(4 \times 80)+(4 \times 5) \\
& =800+320+20 \\
& =1140
\end{aligned}
$$

Then, $\quad 4 \times 285=1140$.
The numbers 800 , 320 , and 20 , are called partial products. Here is a shorter way to. find the product of 285 and .4 . We can write the partial products, under each. other as we multiply. Then, we can add them. For example, if $4 \times 285=n$, we find the number which n_{0}. represents in this way.

Many of us should be able to write the product in an even shorter way. 285

$$
\frac{\times 4}{1140} .
$$

G $\because \quad$ Then, $4 \times 285=1140$:
What must we remember in order to do this?

Now let us consider this mathertatical sentence.

$$
3 \times 408=n
$$

We may write:

$$
\begin{aligned}
3 \times 408 & =3 \times(400+8) \\
& =(3 \times 400)+(3 \times 8) \\
& =1200+24 \\
& =1224
\end{aligned}
$$

So, $n=1224$, and $\dot{3} \times 408=1224$.
If we used shorter ways to find the product, we could write:

$$
\begin{array}{r}
408 \\
\times \quad 3 \\
\hline 24 \longleftarrow(3 \times 8) \quad \text { or } \\
\hline 1200 \longleftarrow(3 \times 400)
\end{array}
$$

In the shorter was at the left, above, why are there just two partial products? (We need wite m partial product when thew are 0 tea.)
In each of the shorter ways shown above, is there any. time when you did or could use the zero property for multiplication? (yam, $3 \times(0 \times 10)=3 \times 0=0$.

Exercise Set 5

A. Find n. If you need to, show the partial products.

1. $.5 \times 63=\mathrm{n} \quad 315 \quad .6 .8 \times 209=\mathrm{n} \quad 1,672$
2. $4 \times 56=n \quad 224^{\circ} \quad$ •7. $9 \times 347=n \quad 3,123$
3., $6 \times 93=n \quad 558$. 8 . $6 \times 986=n \quad 5,916$
3. $\quad 3 \times 256=n^{*} \quad 768$
4. $7 \times 837=n \cdot 5,859$
5. $6 \times 307=n \quad 1,842$
'10. $8 \times 2,609=n \quad 20,872$
B. Use mathematical sentences to help solve the following problems. Express each answer in a complete sentence.
6. A building has 72 windows. If -it takes 3 minutes to wash one window, how many minutes will it take to

7. A traffic light changes its color every 18 seconds. How many seconds. will it take for the light to make 7 changes? $\left(\begin{array}{c}7 \dot{x} 18=c \\ 126=c\end{array}\right.$, lo will take the 126 second..$)$
8. A phonograph record revolves 33 times a minute. How many revolutions will the record make if it plays for 3 minutes? ($\left.\begin{array}{l}3 \times 33=r \\ 99=r \text {. Thicend will } \\ 99\end{array}\right)$
9. John and his father went on a fishing trip. It took.。 them. 6 hours to get to the lake. -John is father was driving 55 miles per houri. How far did they have to drive, before they could fish?

$$
\binom{6 \times 55=d \quad \text { They had to dive } 330}{330=d \quad \text { milled before they could fink. }} \text { : }
$$

MULTIPLYING LARGER NUMBERS
Objéctive: To develop skill in multiplying larger whole numbers * Vocabulary: 'Vertical form , V
Materials: One large 1.7 by 24 array made on materiai that may be folded while the teacher demonstrates to the class

Exploration:

- We have learned to find the product of two numbers. When. the numeral of one number has one place and the numeral ef the other has no more than three places. Now we are ready to, consider finding the, product of two numbers when both their. numerals have two places.

First, let's review the distributive property. of multiplication over addition in the example,. $5^{*} \times 2$ which is on the chalkboard.

$$
\begin{aligned}
5 \times 21 & =5 \times(20+1) \\
& =(5 \times 20)+(5 \times 1) \\
& =100+5 \\
& =105
\end{aligned}
$$

Now look at this array. How many rows are there? How many columns are there? When we multiply 17 and 24 we will find how many elements thére are in this array.

Ctan we use what we know about multiplication to find the number of elements in each of the smaller arrays? We will record this on the board.

$$
\begin{aligned}
10^{\circ} \times 20 & =200 \\
7 \times 20 & =140 \\
10 \times 4^{\circ} & =40 \\
\quad 7 \times 4 & =28 \\
17 \times 24^{\circ} & =200+140+40+28 \\
\therefore \quad & =408
\end{aligned}
$$

There is a shorter way to find decimal numerals for such expressions as 17×24. We could use the vertical form to|show
what we just did with arrays. Let's look at it.

24 Can you see how the ipartial

$\times 17$, products were obtained? (Yes, the $28 \quad 28=7 \times 4$, the $140=7 \times 20$, the
$40=10 \times 4$, and the $200=10 \times 20$.

Working Together

$$
23 \text { by } 67 \text { arraý }
$$

We can show, by using the distributive property, how to multiply two numbers. greater than 10 but less than' 100.

$$
\begin{aligned}
& n=23 \times 67 \\
& =23 \times(60+7) \quad \text { (Think of }{ }^{\circ} 67 \text { as } 60+7 \text {.) } \\
& =(23 \times 60)+(23-7) \\
& \text { (Distribute } 23 \text { ôvér 67. The } \\
& \text { heavy vertical line shows how } \\
& \text { the array is separated into } \\
& \text { smallerarrays.) } \\
& \times 7 \text { (Think of } 23 \text { as } 20+3 \text {) } \\
& \times 7)+(3 \times 7){ }^{\text {+ }} \text { (The heavy }
\end{aligned}
$$ horizontal line then' shows how the array is separated into " 4 smaller, arrays. The heavy .lines - drawn on the array above illustrate these four arrays.)

$=1200+180^{\prime}+.140+21$
$=1541$
(These show the number of elements - in each of, the four arrays.).
(The total number of elements-in a 23 by 67 array is 1541.)

220

The vertical form also can be used with larger number Look at this example.

$$
\therefore \quad 23 \times 67=n \quad 67^{\circ}
$$

$$
140 \longleftarrow(20 \times 7)
$$

$$
=\frac{1200 \longleftarrow}{1541 \leftarrow}(20 \times 60)
$$

$$
23 \times 67=1541
$$

See if you can identify each of the partial products shown above with parts of the array.

Using the vertical form, compute the following.

$$
\begin{aligned}
& \begin{array}{r}
54 \\
\times \quad 32 \\
\hline 108 \\
120 \\
1500 \\
\hline 1,228
\end{array} \\
& \begin{array}{r}
\therefore 25^{\circ} \\
\times 18 \\
\hline 400 \\
160 \\
50 \\
\hline 200 \\
\hline 450
\end{array} \\
& \begin{array}{r}
37^{\circ} \\
\times 42 \\
\hline 14 \\
60^{\circ} \\
280 \\
\times \frac{1200}{1,554}
\end{array}
\end{aligned}
$$

Exercise Set 6
A. Comple using the vertical form. Show the partial, prdducts.

Example: 32×54

1. 45×23
2. 37×86
3. 64×25
4. 49×87
5. $37 \times 26^{\circ}$
6. 57×77
7. 61×59
8. 66×88
9. . 28×92 -
10. $37^{\mathbf{A}} \times 12$

13\{ 44×95
14. 82×28
7. 24×37
15. $37 \times .75$
8. 26×97
16. 91×67
B. Use mathematical sentences to help solve the following

1. problems. Express each answer in a complete sentence.
2. A set of books weighs 12 pounds. If a school ordered 38 sets, what would be the total weight of the books prdered?

There were - 24 dozen eggs in each crate. How many dozen eggs did he send to market? $\left(\begin{array}{ll}n=27 \times 24 & \text { whe sent } 648 \text { dagen } \\ n=6448 & \text { eqpot maiteo. }\end{array}\right)$
19. During our vacation last summer, we traveled for 28 . hours. We drove at , 59 miles per hour. How far did we travel iduring the 28° hours? $y_{n=2,8 \times 59} \quad$ The tharelel ${ }_{n}=1,652$. 1652 miled.
20. The candy store packed 86 boxes of candy. Each box contained 64 pieces of candy. How many pieces of candy

Answers to Exercise Set 6 ?

A SHORTER FORM FOR MULTIPLYING
Obyective: To lead pupils to use a shorter algorism
As soon af children are ready, develop a shorter algorism. The following is a suggested procedure.

We know that we can think of 23×67 as $(20 \times 67)+(3 \times 67)$. We can use this idea to learn a shorter way of finding the product of. 23×67. Use the chalkboard to remind children that they know

67
$\times \quad 3$
201
---:
$\times \quad 20$
$1340:$

Then the same information may be written in this form.

67
$\times \quad 23$
201
1340
1541

Ask such questions as:
(1) How did we get 201 ?

Continue with many other examples to show the relationship between the longer and. the shorter vertical forms.

When it seems appropriate, use the pupil material entitled A Shorter Form for Multiplying.

Children can gain greater insight into multiplication by being reminded of the commutative property. Because of this property, the order in which partial products are writtentis does not change the product.

It may be of value for your more capable' children to recognize that the following are other ways of recording partial products.

Children should be able to expain what was done in each example.

A SHORTER FORM FOR MULIIPLYING

Look at this example.

$$
25 \times 72=n
$$

Here are two forms for finding the decimal numeral for n :

Explain how the partial products in the longer and shorter. forms are related to each other.

Exercise Set 7

Compute using a vertical form. Use the shorter form if you can.

USING•A SHORTER FORM TO MULTIPLY LARGER NUMBERS
Objective: \cdot To extend the skills of multiplication to find products of still greater numbers

Teaching Suggestions:

This portion of the chapter should give pupils additional skill with vertical form for multiplying using two-place and three- and four-place numerals.

In examples 1 and 2 on the next pupil page, all of the partial products with the alternative shortened form are shown. It is hoped that children may extend their $\wp k i l l$ s readily so that they may use a shorter form for computing.

Only the vertical form is given for the examples in the pupil book. Some teachers, however, may want to consider the mathematical sentence form which follows in the teacher's commentary. The mathematical sentence form should help pupils understand the multiplication algorism. It should be kept in mind, however, that the teacher's goal is to develop facility with a. shorter algorism.
Example 1:

$$
\begin{aligned}
43 \times 237= & (40+3) \times 237 \\
= & (40 \times 237)+(3 \times 237) \\
= & 40 \times(200+30+7)+3 \times(200+30+7) \\
= & (40 \times 200)+(40 \times 30)+(40 \times 7) \\
& +(3 \times 200)+(3 \times 30)+(3 \times 7) \\
= & 8000+1200+280+600+90+21 \\
= & 10,191
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
34 \times 5432= & (30+4) \times 5432 \\
= & (30 \times 5432)+(4 \times 5432) \\
= & 30 \times(5000+400+30+2)+4 \times(5000 \\
& +400+30+2) \\
= & (30 \times 5000)+(30 \times 400)+(30 \times 30) \\
& +(30 \times 2)+(4 \times 5000)+(4 \times 400) \\
& +\left(4^{\circ} \times 30\right)+(4 \times 2) \\
= & 150,000+12,000+900+60+20,000 \\
& +1,600+120+8 \\
= & 184,688 \quad \therefore
\end{aligned}
$$

USING A SHORTER FORM TO MULTIPLY LARGER NUMBERS

These examples. will help you to learn how to find
" products of larger numbers.
Example 1: : . $\quad n^{\prime}=43 \times 237$

Example 2:

$$
n=34 \times 5032
$$

Exercise Set 8,

A. Use a vertical form to compute the following.

1. $26 \times .201=(5,226)$
2. $\left.45 \times 378^{=} \quad(17,0,10)^{\circ}\right)$
3. $41^{\circ} \times 607(24,887)$
4. $37 \times 856(31,672)$
5. $42 \times 121 .(5,0,2)$
6. $254 \times 2805(!51,470)^{2}$
7. . $64 \times 328 \quad(20,992)$
8. $317 \times 47 \cdots(14,899)$
9. $270 \times 37 \quad(9,9,90)$
10. $598 \times 36(21,528)$

Hint: By using the commutative property of multiplication we know that $270 \times 37=37 \times 270$.
6. $863^{*} \times 27 \quad(23,30!)$
13. $58 \times 4566(264, .828)$
14. $638 \times 21 \quad(13,398)$
7. $96 \times 8021(770,016)$
B. Use mathematical sentences to solve the following problems. Express each. answer. in a complete sentence.
16. If your father earns ' $\$ 840$ a month, how much does'. he earn in' a year? $\left(\begin{array}{ll}n=840 \dot{x} 1 c^{\prime} & \text { it caina-7. } 10,080 \\ n=10,080 & \text { in a year. }\end{array}\right)$
17. An automobile averages 16. miles per gallon of gasoline. The gasoline tank holds 17 gallons.

- How many miles will the automobile go. on 17 gallons? $\left(\begin{array}{l}n=16 \times 17 \\ n=-272 .\end{array}\right.$

272
18. BRAINTWISTER: During the time Columbus, a different multiplication form was used in Europe: This was called the Gelosia or Lattice method.

The solution of

- Can you find the value of n from the diagram? 管est your knowledge of the Gelosia method by showing that

$$
56 \times 672=37,632
$$

The Gelosia multiplication process is a schematic device using the ideas of positional notation. In each square; the ones' digit of the product is written below the diagonal; the tens ${ }^{\prime}$ digit of the product is written above the diagonal. (See the diagram below.) The product is found by adding the numbers whosel numerals are between that diagonal. We begin in the lower right hand corner. 1 If the sum is 10 or'greater, we pláce the tens' digit in the next diagonal and continue yith our -addition.

Teaching Suggestions:

The purpose of this lesson is to help children learh to use several mathematical sentences to solve one problem, and to combine several sentences into one sentence.

Before using the exploration and develppment in the pupil text, it is desirable to discuss selected problems. Here are some suggestions:
Exàmple 1: .
An auditorium has 48^{\prime} rows with .26 seats in each row on the main floor. In the balcony there are 76 rows with 23 seats in each row. What is the largest number of people this. audiforium can seat?

You might proceed by ksking questions.
as: What do, we know about the number of

- seats in the auditorium? (There are 48 rows of seats, on the main floor. The $\bar{r} e$ are 26 seats in each row on the main sloor.) You may wish to stop here and write a mathergatical sentence about the number of seats on the main floor.
 dif seath in the auditoripm? (In the balcony
 16, rows. Askin what way we can express this idea. Ydu will hope they wijl suggest

$$
16 \times, 23 \equiv b
$$

If they don't, tiry to help them aprive att this sentence.

- Then ask for suggestions ast to
they should do next to find the number of f° seats in the auditorium. (They may finding m and b and if they dopproced in that way.)

Then suggest that they can wille still another mathematical sentence for the total number of seats.

$$
\left(m+b=n ; \quad 1248^{\circ}+368=n\right)
$$

Also ask if they can write only one sentence for the problem, directing discussion to their suggesting the sentence: $-(48 \times 26)+(16 \times 23)=n$.
Upon completing the computation, ask how they can expo the answer to the question of the problem, using a complete sentence. (De auditorium can seat 1616 people.)
s
$-$ to He use. Example 2:

A parking lot has 25 rows with '18 spaces for cars in each row: If 3 rows are removed for a driveway, what is the greatest number of cars which can be parked on the lot?

Suggest they try to think of two ways in which they could solve this problem and tell what mathematical sentences would be written for each way.
(b.) One way. might be:

What mathematical sentence can we write to express the numberłof cars that can be parked in the lat? Then what is the sentence for the number of spaces to be removed for the driveway?

After the decimal numeral is found for each of these numbers, a sentence can be written for the greatest number of cars that can be parked on the lot.

$$
\left.\begin{array}{rl}
\begin{array}{rl}
2 p \times 18 & =\mathrm{p} \\
\mathrm{p} \times 18 & =\mathrm{d}
\end{array} & \begin{array}{l}
\text { (Before driveway) } \\
p-d
\end{array} \\
\text { (For driveway) } \\
\text { or } & \\
450-54 & =n
\end{array}\right\} \begin{aligned}
& \text { (After driveway) }
\end{aligned}
$$

(b) Another way might be:

Use ($25 x_{d} 18$) as the number of spaces before making the driveway and (3×18) as the number of spaces removed for the driveway. Then the mathematical sentence for the number of cars that can be parked after making a driveway is:

$$
(25 \times 18)-(3 \times 18)=n .
$$

Ask what computations are necessary. After finding that $25 \times 18=450$ and $3 \times 18=54$, you must subtract 54 from 450.
(c) With either way, you can then answer the question of the problem: There is room for 396 cars on the parking lot.

You may wish to use other examples before going to the materials in the pupil text.
\dagger

233

PROBLEM SOLVING.
A coin book has 35 slots for coins on each page. If the book has 12 pages and 287 coins have been placed in the slots, how many more are needed to complete the book?

Here is a way to solve this problèm using two mathematical sentences.
$12 \times 35=p \quad 420^{\circ}-287=n$
35 . . 420
$\times 12$
70

$$
-287
$$

133

420
There, are ' 133 coins needed to complete this book,
Here is a way to solve this problem using one.
mathematical sentence.
 350 420

There are 133 , coins needed to complete the book.

Exercise Set 2

Use mathematical sentences to help you solve the following problems. Express each answer in a complete sentence.

1. A typewriter prints 12 symbols to an inch across a page. How many symbols can be printed on a sheet of paper 8 inches wide without using spaces between the symbols if there are 65 rows of symbols possible?
2. John bought a notebook for 25\&, a pencil for 7\&, and an arithmetic book for $\$ 2.50$. He gave the clerk $\$ 5.00$. How much change did he receive?
3. Jane takes the bus to and from school 5 days per week. The fare each way is $25 \%^{\circ}$. How much is her fare for the week?
4. The Brown family of six planned to fly to Washington on their vacation. Each person was allowed 40 pounds of free baggage. 'The Browns had 263 pounds of baggage.. What was the number of pounds of extra baggage?
5. There are 24 pages in Mary's. stamp alton. On each page there is room for 18 stamps: Mary has 279, stamps. How many stamps does she need to fill her album?
6. A parking lot had 25 rows with 16 spaces in each row The size of the lot was increased with spaces for 225 cars. Since the addition, how many cars can be parked on this lot?

Answers to Exercise Set 9

1. . $8 \times-12 .=\mathrm{p}$
$65 \times, 96=\mathrm{n}$

$$
\begin{gathered}
65 \times(8 \times 12)=\dot{n} \\
n=6,240
\end{gathered}
$$

6,240 symbols can be printed on the sheet of paper.
2. $\quad 25+7+250=p$.
500. $-282=n$
or

John received $\$ 2.18$ change.
3.

$$
\begin{aligned}
2 \times 25 & =\mathrm{p} & \text { or. } & (2 \times 25) \times 5=n \\
5 \times 50 & =\mathrm{n} & & \mathrm{n}=.250
\end{aligned}
$$

Jane's fare is $\$ 2.50$ each week.
4. $6 \times 40=\mathrm{p} \quad$ or $\quad 263-(6 \times 40)=n$
(263 $\quad 240^{\circ}=n$
$n=23$
6
They had 23 pounds of extra baggage.
5. $18 \times 24=1$.

$$
4,32^{\prime}-279=n
$$

$$
\begin{gathered}
(18 \times 24)-279=n \\
\quad n=153 .
\end{gathered}
$$

Mary needs. 153 stamps to fill. her album.
6. $\quad \dot{2} 5 \times 16=\dot{p}$

$$
400+225=n
$$

$$
\begin{gathered}
(25 \times 16)+225^{2}=n \\
n=625
\end{gathered}
$$

625 cars can be parked on the lot.

REVIEWING IDEAS. OF DIVISION

Objectives: 1. To peview the ideas of division by relating the operation of division to, the operation 5 of multiplication
2. To place particular emphasis on the divesion process
3. To distinguishr between ideas associated with., the operation' of division and the division process ${ }^{\circ}$

Teaching Suggestions:

- The major emphasis in this chap ${ }^{\circ}$ ter is upon an understanding of algorisms and developing increasing skill in their use.

Throughout the chapter two forms of the division algorism, will be presonted in the pupll text.

Form I:
 Form II:

IMPORTANT: This does not mean that pupils should become skillful in using both forms Pupils should determine which form, they prefer and-gain. skill in just one. "While it is not to be expected that all chilaren achieve the same degree of skill or work at the same level, 'they should be encouraged to move to a more mature form, as they are ready. Of course, atmore mature form ofs:

Before having children read Reviewing Ideas of Division, elicit from them their ideas of the relationship of multiplication and division. Be surke that pupils know, the language of division and how too read and write the sentences showing divis'ion as an operation, as illustrated in the pupil,text.

REVIEWING IDEAS OF DIVISION
\because Division is the operation we use to fid an unknown $;$ factor when the product and one factor are know.

\therefore In each case we are to find the unknown factor: We may use the same process.

A form for comprising:

$4 \begin{aligned} & 5 \\ & 20 \\ & 20\end{aligned}$
$n=5$

We have learned to become skillful with multiplication. Now we want to learn ways of making "the process of division easier.

WORKING WITH MUETIPLES OF 10 AND 100
Objectives: 1. To develop" skill in multiplying with multiples - of 10 and 100

- 2. To develop skill in finding an unknown factor that is a multiple of 10 or, 100
: Materials: Duplicarte tables as in the next section of the pupil.text
Δ \qquad

Teaching Suggestions:
Children néed to be able to récognize and find multiples of numbers--particularly those of $101 \mathrm{~s}, 100 \mathrm{~s}$, and $1000^{\prime} \mathrm{s}$ in order to make their work in division easier. The following exploration using the dittoed tables is designed to increase pupils ${ }^{\prime}$ familiarity with :multiples. The :chart also serves as a means of demonstrating to children the rapidly increasing.. size of products of a number and a multiple of 10.
Explorgtion: (Referring to the table on the page entitled Working with Multiples of ' 10 and 100 in the pupil text)
What kind 'of a table is this? (Multiplication)
How do you know? " (There is a multiplication sign in the ${ }^{\prime}$ upper 'left comer ${ }^{\prime}$)
"Consider the numbers across the top of the table: What do those numbers have in common? (They, are multiples of io.)

We know that this is a multiplication table and that the numbers at the top of the'.table are multiples of 10 :

See that " 40 " is written in the square which is the intersection of the "2-row"..and the "20-column". What can we call the " 40 ". (Product)

40 is the product of what two numbers? "(2" and 20)
40 is the product of 2° and what.multiple of $10 ?\left(20^{\circ}\right)$
Find, $4 \underset{F}{ } 0$ "in-the "table. 420 is' the product of what two numbers (6 and 70)

Let's'fill out the "4-row" together.
Now complete the table. You can do this.easily if you know how. to multiply a number and a multiple of: 10.

After the tabie is completed., disंcuss It with the pupils as suggested in the pupil 'text. After pupils have finished Exercise Set 10, have the second duplicated table completed and have a similar discussion. During this, you may want to emphasize the relations between multiplying by 10 and multiplying by 100

P118

WORKING WITH MULTIPIES OF 10 AND 100°.
Copy the table and complete it.

x	10	20	30	40	50	60	70	80	90	100
1	10	20	30°	40	50	60	70	80	90	100°
2	20	40	60	80	100	120	140	160	180	200
3	30	60	90	120	150	180	210	240	270	300
4	40	80	120	160	200	240	280	320	360	400
5	50	100	150	200	250	300	350	400	4.50	500
6	60	120	180	240	3.00	360	420	480	540	600
7	70	140	210	280	350	420	490	560	630	700
8	80	160	2.40	320	400	480	560	640	720	800
9	90	180	270	360	450	540	630	720	810	900
10	100	200	300	400	500	600	700	800	900	1000

Study the table you have just completéd. How did you know to write 1000 in the lower right hand box?

How can this table be used to find the unknown factor in a division example?

4

- Look at-this example.

$$
150 \div 3=n
$$

We think: $3 \times n=150$. 'In the table, find the "3-row" and follow it until you see 150 . Then look up the column and find the other factor, 50. Thus, $3 \times 50=150$. So, $150 \div 3=50$.

1

Exercise Set 10
Find n in each of these.

1. $540 \div 9=n \quad(60)$
2. $640 \div 8=n \quad(80)^{2}$
3. $270 \div 3=n \quad$ (90)
4. $400 \div 5=n$. (80)

3: $600^{\circ} \div 10=n$
11. $120 \div 2=\dot{n}$
(60)
4. $720 \div 8=n \quad(90)$
12. $810 \div 9 .=n \quad(90) \quad=$
5. $490^{\prime} \div 7=n$
(70)
-13. $360 \div 9=n$
6. $.350 \div 5=n$
(70)
14. $540 \div 6=n \quad(90)$
7. $180 \div 6=n$
(30)
15. $240 \div 4=n \cdot(60)$
8. $210 \div 3=\mathrm{n} \cdot(70)$
16. $400 \div 5=\frac{n}{n} \quad$ (80)

Exercise Set 11

x	100	200	300	400	500	600	700	800	900	1000
1	100	200	300	400	500	600	700	800	900	1000
$2 \cdot$	200	400	609	800	1000	1200	1400	1600	1800	2000
3	300	600	900	1200	1500	1800	2100	2400	2790	3000
4	400	800	1200	1600	2000	2400	2800	3200	3600	4000
5	500	1000	1500	2000	2500	3000	3500	4000	4500	5000
6	600	1200	1800	2400	3060	3600	4200	4800	5400	6000
7	700	1400	2100	2800	3500	4200	4900	5600	6300	7000
8	800	1600	2400	3200	4000	4800	5600	6400	7200	8000
9	900	1800	2700	3600	4500	5400	6300	7200	8100	9000
10	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000

After you complete this table, your teacher will discuss it with you.

Find n in the following examples. Use the table you have just completed.

Exercise Set 12

Using the tablec you just completed, find the unknotn, factor in each of these mathematical sentences.

1. $80 \div 2=n . \quad(4,0), \quad 11 . \quad 6300 \div 7=n \quad$ (8000)
2.: $280+7=n \quad(40) \quad$ 12. $4200 \div 6=8 \quad$ (700)
2. $5400 \div 9=p$ (600) 13. $640 \div 8=n \quad$ (80)
3. $6400 \div 8=8 \quad\left(800^{\circ}\right) \quad 14 .{ }^{\circ} 270 \div 9=\mathrm{m} \quad$ (30)
4. $3500+5=\mathrm{m}(700) \cdot$ '15. $6300 \div 9=r \quad(700) \cdots$

6: $490+7=r \quad(70) \quad 16 . \quad 4006+8=m \quad(500)$
7. $810+9=n \quad$ (90).. 17. $450+5=n \quad(90)$
8. $(320+4=p \quad(80) \quad$. 18. $420+7=1$ (60).
9. $270 \div 3=8 \cdot(90) \quad$ 19. $1200 \div 4=t:(300)$,
10. $1400 \div 2=r \quad(700) \quad$ 20. $5000+10=p \quad(500)$

Exploration:
Look at the examples.

As you work the examples in "row 1 above, ask the following' questions.

3 "times what number equals 9 ?
3 times what multiple of 10 equals 90 ?
3 .times what multiple of 1 op equals 900 ? As the children give the answer, write it on the chalkboard. Ask the same kind of questions for rows 2 and 3 .

When the examples have been worked, discuss them in this manner.

Look at the first example in each row.
Now look at-the second example in each row.
.Do you see any relationship between the two? (The answer to the second example is ' 10 times the first.)
'How are the products related? (The second product is: 10. times the first product.)
In the first example, you used your multiplication facts. How can the first example help you with the second one? (I can think of 3 and 9 to help me with. 3 and 90 , etc.)

Exercise Set 13

Copy each row of exercises below. Complete the blanks "so that each mathematical sentence is true.

Use the largest whole number.

1. (a) $4 \times \underline{3}=12$
2. (a) $6 \times 6=36$
3.

(a) $8 \times 3=24$
4.
(a) $9 \times 5=45$
(a) $5 \times \underline{y}=30$
6.. (a) 3×9.97
7. (a) $7 \times \underline{8}=56$
8.
(a) $4 \times \underline{8}=32$

Use the largest multiple of 10.
(b) $4 \times 30=120 \quad$ (c) $4 \times 300=1200$
(b) $6 \times \underline{60}=360$
(c) $6 \times \underline{600}=3600$.
(b) $8 \times 30=240$
(c) $8 \times 300=2400$
(b) $9 \times 50=450$
(c). $9 \times 500=4500$
(b). $5 \times \underline{60}=300$
(c) $.5 \times 600^{\circ}=3000$
(b) $3 \times 90=27^{\circ}$
(c) $3 \times 900=2700$
(b) $7 \times 80=560$
(c) $7 \times \underline{800}=5600$
(b) $4 \times 180=320$
(c) $4 \times 800=3290$.

Exercise Set 14

1. Copy and complete with the correct multiple of 10 . Example: $\quad 70 \times 5=350$
a. $70 \times-6=420$
f. $90^{\circ} \times 9=810$
b. $8 \times \frac{60}{}=480$.
-g. $\quad 50 \times 8=400$
ic. $30 \times 9=270$
h. $30 \times 6=180$
Ta ~ $80 \times 3=240$
2. $7 \times 30=210$
e.. $2 \times 90=180$
3. $40 \times 6=240$
4. ${ }^{-}$Copy and completecinith the correct multiple of $100 .{ }^{\text {. }}$ Example: $\quad 400 \times 4=1600$
a. $500 \times 3=1500$
b. $400 \times 6=2400$
c. $4 \times 800=3200$
d. $700 \times 7=4900$
e. $200 \times 8=1600$
f. $900 \times 5=4500$
g. $9 \times 800=7200$
h. $800 \times 6=4800$
5. $900 \times 7={ }^{\prime} 6300$
J. $6 \times 600 \cong 3600$
6. Copy and complete with the correct multiple of (10 or 100.
.Example: $80 \times 6=480$
a. $7 \times \underline{900}=6300$
f. $800 \times 2=1600$
b. $700 \times 1 \times 2800$
g. $700 \times 9=6300$
c.. $900 \times 5=14500$
h. $800 \times 8=6400$
d. $\quad 90 \times 3=270$
i. $7 \times \underline{800}=5600^{\circ}$
e: $10 \times 600=.6000$
f. $500 \times 5=2500^{\circ}$

Exploration:

$30 \times 6<127$
40×.5<225
$50 \times 7<392$
$300 \times 6<12^{7} 4$
$400 \times 5<2256$
$500 \times 7<3928$

Look, at the examples on the chalkboard.
What is the largest whole number times. 6 that is not greater than 19? (3 because: $3 \times 6=18,4 \times 6$) $=24$, and 24 is greater than 190°)

What is the largest multiple of ten times. 6 is not greater than, 197? (30 because: $30 \times 6=180$, $40 \times 6=240$, and 240 is greater than 197.)

What is the largest multiple of one hundred times 6
Stat is not greater, than 1974? (300 because: $300 \times 6=1800$, $400 \times 6=2400$, , and ${ }^{\circ} \mathbf{y}^{400}$ is greater than 1974.)

Ask the same kind of questions for rows 2 , arid 3 .
When the examples pave been worked, discuss them in this manner.
In row 1 , do you see any relationship among the Unknown factors? ?

How can the result of the first example, help you with . the second and third?

Discuss rows 2 and $3^{\text {if }}$ similarly. It would be valuable for the teacher to have pupilstell how they find the largest multiple of ten and one hundred.a-

- Copy each row of exercises below. "Completerthe blanks so that each mathematical sentence is true.
f
Use the largest whole number.

Use the-largest multiple of 10:
(b) 40×76252
(c) $400 \times 6<2526$
(b) $20 \times 4 \leqslant 315$
(c) $700 \times .4^{\circ}<3158$
(c) $300 \times 9 \leq 2834^{\circ}$
3. (a) $3 \times 9<28$
(b) $30 \times 9<283$

Use the largest multiple of 100.

1. ${ }^{-(a)} \cdot 4 \times 6<25$
2. (a) $1 \times 4<31$

- (a) $3 \times 9<28$

4. (a) $5 \times 8<44$
(b) $50 \times 8<446$
5. (a) $8 \times 3<26$
(b) $80 \times 3<263$
(c) $500^{\circ} \times 8.4 .4465^{\circ}$
(c) $800 \times 3 .<2839$
6. (a) $2 \times 8<76$
(b) $20 \times 8 .<765$
(c) $900 \times 8<7657$
7. (a) $1 \times 8 \leq 60$
(b) $20 \times 8<600$.
(c) $200 \times 8 \leq 6000$;

8: (a) b \quad. $7 .<45$
(b) $60 \times 7<456$
(c) " $600 \times 7<4568$

Exercise Set 16

Copy each row of exercises below．Complete，the blariks so that each mathematical sentence is．true．

Use the largest whole number．	Use the largest multiple of 10．	Use the largest （a） $3 \times 7<23$
（b） $30 \times 7<238$	（c） $300 \times 7<2385$	

2．（a） $6 \times 9=54$
（b） $6 \times 90=540$ ．（c） $6 \times 900=5400^{\circ}$
3．（a） $4 \times 5<21$
（b） $40 \times 5<219$（c）． $400 \times 5<2197$
4．＇（a） $5 \times 7<37$
（b） $5 \times 70<375$ ．（c） $5 \times 200<37$ 场
5．（a）工 $亠 7=49$
（b） $10 \times 7=490$
（c．） $700 \times 7=4900$
6．（a） $8 \times 2<78$
$\begin{array}{ll}\text {（b）} 8 \times 90<782 & \text {（c）} 8 \times 900<7828\end{array}$
7.
（a） $9 \times 0<65$
$\begin{array}{ll}\text {（b）} 20 \times 7<654 & \text {（c）} 900 \times 7<65^{r} 47\end{array}$
8．（a） $8 \times 6<50$
（b） $8 \times 60 .<500$ ．（c） $8 \times 600<5000$

Exercise Set 17

\}

1. Complete with the largest multiple of 10 , that may be used to make the sentence true.
a. $20 \times 5<103$
f. ${ }^{8} 8 \times \frac{60}{2}<500$
b: $\frac{190}{2} \times 6<191$
g. $70 \times 9<650$
c. $30 \times 7<220$
h. $80 \times 7<583$
d. $4 \times 40<175$
2. $9 \times 80<750$
e. $5 \times 60<311$
J. $90 \times 6<549$
3. Complete with the largest multiple of 100 that may be used to make the sentence true.
a. . $400 \times 6<2500$
f. $4 \times 700<3000$
b. $100 \times 5 \times 600$
g. $500 \times 9<4852$
c. $200 \times 4 \times 1000^{\circ}$
h. $300 \times 3<1000$
d. $6 \times 300<2000$
4. $4 \times 400<18460$
e. $? \times \underline{500}<4000^{\circ}$
J. $2 \times 900<1946$
5. Complete with, the largest multiple of i 100 that may be, used to make the sentence true. If this is not possible then use the largest multiple of 10 . A.
a. $8 \times 600<5000$
f: $4 \times 70<304$
b. $500 \times 4^{\circ}<2196$
g. $6 \times 700<4507$
c. $7 \times 8.0<5,68$
h. $\frac{5 a}{i} \times 8<412$
d. $6 \times$ ' 90 . $<596^{\circ}$
6. $800 \times 4<3597$
e. $300 \times 8<2502$
J. $9 \times 900<8200^{\circ}$

BECOMING' SKÍLLFUL IN DIVIDING

Objective: To help children use a dívision algorism more skillfully
Vocabulary: Pårtial quotient
Teaching Suggestions:
Review ways of finding an unknown factor starting with such an example as $n \times 5=365$. Note that we also can write this: $365 \div 5=n$. Ask questions which will suggest thát pupils think about multiples of 10 and 100 . For example:

Is $5 \times 10<365$?
Is $5 \times 100<365$
Is $5 \times 100>365$
Then ask what does this tell us about the quotient? (We need to think of the largest multiple of 10 so that when it is multiplied by 5 , the product is no greater than. 365.)

Help childrer decide what this multiple of 10 is to be. For example:

$7 \times 5=35$	so	$70 \times 5=350$
$8 \times 5=40$	so	$80 \times 5=400$

Then help them with whichever form
Form I: (as completed at the right) is being used by your class to record their thinktng. After recording the partial quotient, 70 , and subtracting 350 from 365 , ask if the work is completed. If it isn't, what must be done? Continue by thinking: What is the largest multiple of 5 -which is equal to or less than 15. : Record as before. Discuss the result and how it can hip us to rewrite our first sentence. Write the sentences:

- $73 \times 5=365$ (or: $365 \div 5=73$)

Recall with them how we check our' computation, by multiplying 173 by 5 .

- Choose other examples (be sure the re-

$\frac{73}{3}$
70
$\left.\begin{array}{r}365 \\ 350 \\ \hline 15 \\ 15 \\ \hline 0\end{array}\right]$

 mainder is 0) and discuss them with the childnen. Then praceed to material in the pupil text.

NOTE: : We want chile write 0 for the remainder in such examplet aese: This is in preparation for work to fo when we express the result of dividing using the form a $\overline{\tilde{\prime}}(\mathrm{b} \times \mathrm{n})+r$
in the section "inding quotients and Remainders"
.BECOMING SKILLFUL IN DIVIDING

We shall use what we know about mitiples of numbers to learn more about dividing one number by another.

Suppose we are to find n in either of these sentences.

To find n in either sentence we divide 332 by 4 . We can use one of the forms below. You may select the one you would like to use. Use either Form I or Form II.

Form I: 83 Form II:
3

* Mathematical Sentence:
$83 \times 4=332$ or
$332 \div 4=83$.

We can check our answer:
 83

\qquad
332

$25^{\frac{1}{4}}$
265

P129
Exercise Set 18
然。

- Find n. Use either Form I or Form II. Check your answers.

1. $n \times 4=52^{\circ} \quad(n=13)$ in. $n \times 4=208^{\circ} \quad(n=52)$
2. $n \times 6=84 \quad(n=74) \quad 12 . \quad 7 \times n=217 . \quad(n=31)$
3. $n \times 9 \times 117 \quad(m=13) \quad 13, \quad 3 \times n=153 \quad(m=51)$
4. $5 \times n=75 \quad(m=15)^{\prime} \quad 14 . \quad n \times 49^{n}=828^{\circ} \quad \cdots(m=92)$
5. $7 \times n=98 \quad(n=14) \quad$ 15. $n \times 7=574, \quad(n=82)$
6. $n \times \dot{4}^{\circ}=84 \quad(n=21) \quad$ 16. $7 \times n=231 \quad(n=33)$
7. $n \times 8=560^{\circ}(m=70) \quad 17 . \quad 8 \times n=448 \quad(m=56)$
-8. $5 \times n=39.0 \quad(m=78) \quad$ 18. $4 \times n=192 \cdot(n=48)$
8. $n \times 9=837 \quad(n=93) \quad$ 19. $n \times-7=595 \quad$ (in $\vdots 85$).
9. $9 \times n=135$. $(n=15) \ldots \quad{ }_{n} \times 3=279 \quad$ (2n=93)

FINDING QUOTIENTS AND REMAINDERS

- Objective: To help children understand the technique of division with remainder and the mathemalical sentence which describes this division process $a=(b \times n)+r$ or $a=(n \times b)+r$ where a * is the dividend, b, is the divisor, n is the quotient, And r is the remainder

Teaching Suggestions:
The pupils should be given practice similar to the following examples to stress understanding of mathematical sentences of the form $a=(b \times n)+r$

$$
\begin{aligned}
37 & =(7 \times n)+r \\
57 & =(8 \times n)+r \\
89 & =(n \times 9)+r
\end{aligned}
$$

For each, pupifs are to find n and r so that n, will be the greatest whole number possible. In each instance, r then should be) less thän the "known" factor in the product expression.

We fan use the division process to solve problems like this one.

Mr. Smith has 372 . oranges which he wants to pack into 5 c̈rates. How many cain he put in each crate? How many will, he have left over?

As you guide children in solving this probiem, lead them first to write the sentence:

$$
372=(5 \times n)+r .
$$

Use one of the forms shown tó find n and r. . Rewrite the sentence as:

$$
372=(5 \times 74)+2 .
$$

Have the children interpret the 74 and the 2^{2} in relation to the problem, and check their work:

This means that Mr. Smith would have 74 oranges in. each crate with 2 remaining. . *

Using the results of either method we can write a mathematical sentence like this;

$$
372=(5 \times 74)+2
$$

In our wonk, we call 5 the dikisor, 74 the quotient, 372° the dividend, and 2 the remainder. The remainder is less than the divisor.

To check our work, we can multiply, and 74. Their product is 370 . To this we add the remainder $2 . \therefore$ This a check may be shown like this:

$$
\begin{array}{r}
74 \\
\times \quad 5 \\
\hline 370 \\
+\quad 2 \\
\hline .372
\end{array}
$$

You may wish to use other problems such as :this one before the pupils study the text material. Be sure to select problems with remainder not 0 .

FINDING QUOTIENTS AND REMAINDERS

We have used sentences like this

$$
47=(5 \times n)+r
$$

in working with story problems.
We have seen how we can'find the largest possible n ? and the smallest r in ways like these.

$$
\begin{aligned}
& 9 \longleftarrow \text { quotient } \\
& \text { divisor } \rightarrow 5 \longdiv { 4 7 } \leftarrow \text { dividend } \\
& 45 \\
& 2 \leftarrow r \text { remainder }
\end{aligned}
$$

We have found that $47=(5 \times 9)+2$.
We can see that this sentence 1 s true by thinking

$$
47=45+2 .
$$

We can use these same ways to find quotients and remainders when we work 'wither larger dividends:

Now look at this mathematical sentence."

$$
437=(n \times 9)+r
$$

Which number is the quotient? (48)
Which number is the diwidend?
(437)

Which number is the divisor?
(9)

Which number is the remainder? (5),
Is the ręmainder less than the divisor? (Yes)

- We have found that

$$
437=(48 \times 9)+5
$$

- We can check to see if the sentence is true by . multiplyint 48 and 9, and adding 5: Our answer should be 437 .

Exercise Set 19

A. Use either form I or Form II to $f i n d n$ and r. Then rewrite the sentence using the numbers you found.

1. $600=(\mathrm{n} \times 7)+\mathrm{r} . \quad 600=(85 \times 7)+5$
2. $138=(\mathrm{n} \times 9)+r^{-} \quad 138=(15 \times 9)+3$
3. $21_{0} 3=(7 \times n)+r \quad 2 / 3=(7 \times 30)+3$
4. $\quad 450=(n \times 8)+r \cdots \quad 450=\left(56^{\circ} \times 8\right)+2$
5. ${ }^{2} 271=(n \times 3)+r \quad 271=(90 \times 3)+1$
6. $\quad 107=(3 \times n)+r \quad 107=(3 \times 35)+2$
7. $230=(n \times 7)+r \quad 230=(32 \times 7)+6$
8. $162=(n \times 6)+r$
$162=(27 \times 6)+0$
9. $738 \%(-9 \times n)+r$
$738=(9 \times 82)+0$
10. $200=(n \times 6)+r \quad 200=(33 \times 6)+2$
11. $\quad 372=(\mathrm{n} \times 9)+\mathrm{r} . \quad 372=(41 \times 9)+3$
12. $725=(8 \times . n)+r \quad, 725=(8 \times 90)+5$
13. $373=(\underset{n \times 9}{ })+r$
$373=(4 / \times 9)+4$.
14. $288=(\mathrm{n} \times 8)+\dot{r}, 288=(4 \times 72)+0$
15. $451=(n \times 8)+r$
$451=(56 \times 8)+3$

B. Use mathematical sentences to solve these problems:

Express each answer, in a complete sentence.
16. At camp, John made a collection of 176 small stones. J

He puff the same number of stones. in each of 4 small boxes. How many did he put in each box? How many were left over? $\binom{176=(n \times 4)+i n}{$ gobs put 44 -atones in each box. } (Hone lift oven)
17. There were 256 children visiting the Natural History Museum. Nine guides showed children around the museum. How many groups containing the same number of children could be formed? Are there any children left over?.

$$
\left(\begin{array}{l}
256=(n \times 9)+\sim \\
\text { There would be } 28 \text { groups. with } \\
4 \text { children left over. }
\end{array}\right)
$$

$$
t
$$

Teaching Suggestions:

1. Name the divisor, dividend, quotient, and remainder for each of the following:
a: gustient $\rightarrow \frac{32}{2}$

$\$$
b.

C". Use a number to complete the following so they are true statements.
a. If the remainder is O, then the diviso factor of the dividend.
b. If the remainder is not Q, then the divisoris not a factor of the dividend.
c. If $1026=(7 \times 146)+4$, then the remainder is 4 .
d. If $842=(6 \times n)+r$ with $r<6$, then $n=140$, and $f=\frac{2}{2}$.
3. Divide the first number by the second: Then write the mathematical sentence. For example, 258 divided by 8 gives. a quotient 32 and a remainderł2. The mathematical sentence is. $258=(32 \times 8)+2$. Check , the past 5 sentences.
a. 512 by 8 f
b. 382 by 7

Objective: To help children acquire skill, in finding multiples of largen numbers

Materials: Duplicated table as on the next pupil page
Teaching Suggestions:
Have pupils.fill in this table as they did earlier ones. Then discuss with them how the table can be used to find quotients. The completion of the table will serve as a review of the facts pupils learned in previous units.
\because In this section we are concerned with such product expressions as

$$
20 \times 30
$$

$$
50 \times 70
$$

$$
200 \times \prime 30, \text { etc. }
$$

After children have completed Exercise Set 21, use the following mathematical sentence to introduce further work with. these multiples.

$$
40 x \cdot n \cdot<983
$$

Guide children to sense h6w they can use 4 and 9 as "hélpers" to determine the largest multiple of 10 to use with 40 so- that the product of 40 and n. will be less thian 983. In this connection, have them recall how they already have learned how to use 4 and 9 as "helpers" when dividing 98 by 40, for example.

Use furthotr examples as needed. . Be isure to incluade some iike

$$
30 \times, n<\cdot 1374
$$

in which one of the "helpers", il3, is named by a two-place numeral.

Then have children work independently on Exercise Set 22.

FINDING MULTIPLES OF LARGER NUMBERS'.
Copy and complete the following table.

x	10	20	30	40	50	60	70	80	90	100
10	100	200	300	400	500	600	700	800	900	1000
20	200	400	600	800	1000	1200	1400	1690	1800	2000
30	300	600	900	1200	1500	1800	2100	2400	2700	3000
40	400	800	1200	1600	2000	2400	2800	3200	3600	4000
50	500	1000	1500°	2000	2500	3000	3500	4000	4500°	5000
60	600	1200	1800	2400	3000	3600	4200	4800	5400	6000
70	700	1400	2100	2800	3500	4200	4900	5600	6360	7000
80	800	1600	2400	3200	4000	4800	5600	6400	7200	9000
90	900	180	27.00	3600	4500	5400	6300	7200	8100	9000
100	1000	2000	3000	4000	5000	6000	7000	8000	9000	19,0

Exercise 'Set 21
Use your table to find n. *

1. $800 \div 20=n .(n=40) \quad 11 . \forall n \times 50=1500, \quad(n=30)$
2. $2800 \div 40=n(n=70) \quad 12.80 \times 80=n \quad(n=6400) \prime$
3. $2800 \div 70=n \quad(m=40) \quad 13.4900 \div 70=n, \quad(n=70)^{\circ} \cdot$
$4 . .20 \times n=1800 \quad(n=90) \quad 14.50 \times n=2000 \quad(n=40:)$
4. $n \times 70=5600\left(n_{5}=80\right) \quad \therefore 15.80 \times n=7200, \quad(n=90)$.
5. $70 \times 90=n \cdot(n=6300) 16.6000 \div 60=n \quad(n=100)$
6. $4500 \div 50=n \quad(n=90) \quad 17!3600 \div 40=n \quad(n=90)$
7. $n \times 100=8000(n=80) \quad 188 . \quad 30 \times n=1800 .\left(n=60^{\circ}\right)$
-9. $60 \times n=5400 \quad(n=90) \quad$ 19. $n \times 90=6300 \quad(n=70)$.
8. $2700 \div 90=n, \quad(n=30), 20, n \times 100=10,000(n=100)$

Exercise Set 22

1. Complete with the largest multiple of 10 which makes the sentence true.
a. $36 \times 20 .<720$
g. $40^{*} \times 70^{\circ 1}<3040$
b. $80 \leq 10<836^{\circ}$
h.. 90. $\times 60<5500$
c. $\frac{10}{1} \times 30<506$
2. $60 \times 80<5000$
d. $10 \times 50<918$
J. $90 \times 70<65001$
e). $20 \times 20 \cdot<432$
k. $80 \times 50^{\circ}<4700^{\circ}$
f. $50 \times 60<3290$
3. $50 \times 60<.3500$.
4. Complete with the" largest multiple of 100 which makes the sentence true.
a. $40 \times 200<.8442$
g. $50 \times 100<36,012$.
b. $20 \times 200^{\circ}<5591$
h. $600 \times 70<45,000$.
c. $10 . \times 200^{\circ}<2146$
5. $20 \times 200<5640$
d. $200 \times 30<6723$
j. $7.0 \times 300<26,500$
le. $500 \times 6<3290$
k. $80 \times 700<60,000$
f. $900 \times 3<2872$
6. $90 \times 800<75,000$
7. Find the largest multiple of 100 which makes the sentence true. If there is no multiple of 100 , then find the largest " multiple of 10 :
a. $20 \times \frac{30}{4}<73 \mathrm{ij} ;$ f. $40 \times 60<2449$
b. $100 \times 46<4830$
g. $60 \times 700 .<45,000$
c. $20 \times 30<742$
h. $70 \times 400<30,000$
d. $30 \times 400<12,200$
8. $80^{\circ} \times .90<7500$
e. 50×500 < 26,200
f. $90 \times 1800<75,460$

USING DIVISORS•THAT ARE MULTIPLES OF 10

- Objective: To extend techntques in computation to fnclude dividing by multipies of 10 which are less. . than 100
than 100

$$
\| \begin{array}{ll}
\text { Follow pupil exploration carefully, } & \text { If } \\
\text { you encounter difficulty in terminology, } \\
\text { refer to earlier parts of the unit. }
\end{array}
$$

Exploration
'We are going to learn to divide when the divisors are multiples of 10. Look at each of the examples below. Can you tell what was done in each example?

Example 1:

$$
\text { - Divide } 480 \text { by } 20 .
$$

24
4

We think of. n as the largest multiple of $\because 10, \therefore$ so that ($n \times 20$) is not greater than. 480. (in 20 .)

We then think of n, as the largest number so that ($n \times 20$) is not greater than 80. ' (in es 4:) !,

We describe the results of the process by the mathematical sentence:

$$
480^{\circ}=(24 \times 20)+0 \text { or } 480=24^{\circ} \times 20
$$

We can check the work by multiplication:

Example 2:

. We think of n as the largest multiple of 100 so that ${ }^{+}$

Next we think of n as the largest multiple of 10 so that $(n \times 40)$ is not greater than 1,285 . (nus io.) Finally, we think of n as the largest number so that - (n $\times 40$) is not greater than 85. (in es 2.). Ne describe the results of the process by the mathematical sentence.

Exercise Set 23

A. For each of the following exercises, divide the first number by the second. Then write a mathematical

- sentence which describes how we can express the results.

1. 720 by 30
$720=24 \times 30$
2. $\times 840$ by 20

840: 42×20
3.' 680 by 40
$680=17 \times 40$
4. 570 by 10
$570=57 \times 10$
5. . 1160 by 40
-1160 = 29×40
6. 990 by 90
$990=11 \times 90$
7. . 780 by 60 780 = 13×60
8. 3850 by 50
$3850=71 \times 50$
5810: by 70 5810: 83×70
10. 5360 by 80 $5360=67 \times 80$
11. 783 by 10
$783=(78 \times 10)+3$
1600 by 30
$1600=(53 \times 30)+10$
13. 1956 by 20
$1956=.(97 \times 20)+16$
74: 1897 by 40
1897: $(47 \times 40)+17$
15. 3162 by 50
$3162=(43 \times 50)+12$
10. . 5599 by 70
$5599=(79 \times 70)+69$
17. 2600 , by 60
$2600:(43 \times 69)+20$
18. ' 8746 by 90 .
$8746=(97 \times 90)+16$
19. 7543 by 80
$7543=(94 \times 80)+23$
20. 5757 by 70
$5757 \cdot(82 \times 70)+17$
B. Solve the following problems.
21. A shipping carton holds 20 books. How many cartons will be' needed to ship an order of 900 books?.
$900:\left(m \times 10^{0}\right)^{+}+\cdots{ }^{2}=45$

40 persons, how many rows are in this auditorium?

23. How many trips must an elevator (capacity 20 persons make to carry 254 peons? (hint: One trip may not

24. The room mothers are boxing candy; to selim the annual carnival. 'They bought. 2,880 pieces of candy and each box 'will hold 30 pieces. How many boxes of candy do the room mothers have to sell?

A SHORTER FORM FOR DIVIDING

Objective: To develop a'shorter division "algosism

Teaching Suggestions:

Have the following example worked on the chalkboard, using either Form I or Form II of the algorism:
$7 \longdiv { 5 9 3 4 }$
Give pupils' whatever guidance is necessary to determine appropriate multiples of 100 and. 10 to use in finding the partial quotients.

The example should be completed and the results interpreted in terms of an appropriate mathematical sentence:

$$
\text {). } 5934=(847 . \times 7)+5 .
$$

Then ask the children to think how they might develop a shorter form for computing. In particular, ask them.if they can see how they might use place value as a way to make it easier to record the paritial quotrients and the quotient.

Diagrams such as the ones illustrated below nay be used to help the children see the kind of shorter form , that is to be

	the shorter form, the 8 indacetes 800 , the 4.-indrates $40 ;$ based on the principle of place value. Continue this exploration using other exampies as needed. . Welp children see that they can determe from the stant the number of placest there mist-be In the quotient numepai. Then discuss page 140 In the pupil text wath the elatis. - Arter the pugt Is have comp ieted Exercise Set. Ak dexelop with them a similar shorter algorism for divisors: such as $20,30,-60$, etce Take Tn白 account the shorteryorm the chlidren have been using int dituisors lesg than 10% A W̆ot óc Cutton: Chidren w111 difer tre time they are -- to a yorter algoriam foteyeloped here: - Consequentuys this. materiad on SAStokTER FORM FOR DIVIDING WII be apprerate for - ome chis aren at one time anch -other

A SHORTER FORM FOR ${ }^{\text {TD DIVIDING. }}$
There is a shorter way to write your quotient in division.
It will allow you to do your work more quickly.
. Study the examples below.

- a. Longer Form
b. Shorter Form

$\therefore \quad$| 30 |
| :---: |
| 100° |
| $6 \longdiv { 8 3 6 }$ |

$$
\cdot 6 \longdiv { 8 3 6 }
$$

600

- 180
.236 .
$.5 \%$
. 54

In b, to show the partial quotient 100 , we can write ' 14 the hundred's. place. Instead of writing 30 , we can write B in the tenst place. Then we can write 9 in the one ts place.

We describe the results of either process by the mathematical sentence:

$$
836=(139 \times 6)+2
$$

c. Longer Form
d. Shorter Form

In d, to show the partial quotient $1 \overline{0} 0$, we can. write 1 . In the hungredrs place:. Instead of writing 30 , -we can write, 3 in the ten's place. Then we can write in the one 's place.

We describe the results of either process by the mathematical sentence

$$
836=(139 x \cdot 6)+2
$$

What do you notice about: $h /$ and don

Exercise Set 24°
For each of the following, divide the first number by' the second. . Write a mathematical sentence to describe the result:

1. 963 by 3 " $963=32 \times 3$
$\because \quad$ 2. 848 by $4 \quad 848: 21.2 x+0)$.

$\begin{array}{rl}\text { 7. } 4928 \text { by } 6 & 498=(821 \times 6)+2 \\ \text { 8. } 6524 \text { by } 9 & 6524=(724 \times 9)+8 \\ & \\ & \end{array}$
2. 7932 by $8,7932=(991 \times 8)+4$
3. 3654, by 4 . $36349(9 x+4 \times 4)+2$

A SHORTER FORM FOR DIVIDING BY LARGER DIVISORS

Study the examples below.
a. Longer Form
b. Shorter Form

* ${ }^{\text {• }}$

'

$$
\because \because \quad . \quad \text { eden. }
$$

In b, to show the partial quotient, 200, we can write 2 in the hundred's place. Instead of writing 60, we can write 6 in the ten's place. Then we can write 1 in the one's place.

We can describe the results of either process by the mathematfeal sentence

$$
7833=(261 \times 30)+3
$$

",
i

$$
276
$$

d. Shorter Form

261
$3 0 \longdiv { 7 8 3 3 }$
6000
1833
$60 \quad \because \quad \because \quad 1800$
33
30
3

In "d, to show the partial quotient 200 , we can"write 2 in the hundred' 's place. Instead of writing 60°, we can write 6 in the ten's place. Then we cain write l in the one's place.

We can describe the results of either process'by the mathematical sentence

$$
7833=(261 \times 30)+3
$$

What do you notice about examples b and d ? (They
Find the quotict and minder in each of these, us ting both a longer form and the porter form.

$$
. 4 0 \longdiv { 8 1 5 3 ^ { \circ } }
$$

$$
3 0 \longdiv { 1 0 5 1 7 }
$$

For each example, did you gey the same quotient and remainder using both forms? You should have!

277

Exercise Set 25

For each of the following, divide the first number by the second. Write a mathematical sentence to describe the result of the process.

1. 5820 by $10.5820=582 \times 10$
2., 9240 by $40 \quad 9.240=231 \times 40$
2. 13,440 by $20 \quad 13,440=672 \times 20$.
3. 17,550 by $30 \quad 17,550=585 \times 30$
4. 23,350 by $50 \quad 23,350=467 \times 50$
5. 58,980 by $60 \quad 58,980=983 \times 60$
6. 57,840 by $80 \cdot 57,840=723 \times 80$
7. 40,680 by. 90 . $40,680=452 \times 90$
$\begin{array}{lllll}\text { 9. } 27,760 & \text { by } 80 & 27,760 & =347 \times 80 \\ 10 . & 21,000 & \text { by } 50^{\circ} & 21,000=420 \times 50\end{array}$
8. 3,462 by $10 \quad 3,462=(346 \times 10)+2$.
9. 18,464 by. $20 \quad 18,464=(923 \times 20)+4$
10. 19,056 by . $40 \quad 19,056^{\circ}=(476 \times 40)+16$

14: 27,291 by 70 27,291: $(389 \times 70)+61$
15. 29,083 by $30 \quad .29 ; 083=(969 \times 30)+13$
16. 32,240 by $60,32,240=(537 \times 60)+20$

18. 42,750 by $80 \quad 42,750=(534 \times 80)+30^{\circ}$
19. 40,876 by 50 . $40,876=(817 \times 50)+26$
20. 31,452 by $70 \quad 31,452=(449 \times 70)+22$

Practice Exercises

1. Write each of the following as the product of two factors. Write 3 . different product expressions for each number. Example: $30=1 \times 30,2 \times 15,5 \times 6$
a) $52=1 \times 52,2 \times 26,4 \times 13$
b) $116=1 \times 116,2 \times 58,4 \times 29$
c) $128=2 \times 64,4 \times 32,8 \times 16$
d) $88=2 \times 44,4 \times 22,8 \times 11$
e) $176=2 \times 88,4 \times 44,8 \times 22$
f) $90^{\circ}=3 \times 30,5 \times 18,9 \times 10^{\circ}$
g) $81=1 \times 81 ; 3 \times 27,9 \times 9$
h) $126=2 \times 63, .3 \times 42,6 \times 21$
i) $110=2 \times 55,5 \times 22,10 \times 11$
2. Solve the following.
a) $8 \times(9000+6)$
$(72,048)$
b) $(32+78)-41$
c) 9×847
$(7,623)$
d) $: 6+.45+1.7+8$
e) $(74 \times 600)+(74 \times 95)$
(51, 430)
f) $835-585$
(250)
g) $301 \div 7$
h) $.7 \times 7 \times 912$
$(44,688)$
1) $.61+.09+8.5+.48$
j) $976 \div 8$
(122).
3. Write the number that n represents.
a) $90 \times 370=n$ $(33,300)$
b) $49,003-n=-39,936 \quad(9,067)$
c) : $n \times 9=936$. $\quad \therefore \quad$ (104)
d) $887+875+699-n=0 \quad(2,461)$
e) $n \div 9=98$
f) $7 \times n=637, \therefore{ }^{\circ}$ " 91°)
g) $835^{\circ}-257=n$ (578).
h) $(104 \times 9)+n=950$ (14)
i) ${ }_{9} 97 \times 8697=n$ $(843,609)$.
j) $2275=(n \times 35)+0$ $(65)^{-}$
4. 'Solve' the following;
a) $n \div 8^{-}=5632$ $(45,056)^{\circ}$
l
b) $52 \times(6000+40)=n$. (3204, 080) :
7 c) $\cdot 6408=(8 \times n)+0$ (801)
d) $70 \times 490=n \quad \because \quad \dot{(34,300)}$
e) $7 \times n=672$. . . . (96)
f) $32,40+n+41=162$ (89)
g) $n+184=986$ (802)
h) $503=(6 \times n)+5$
1) $764=(34 \times 22)+n$
j) $3 \times 3 \times 465=1 n$

$$
\begin{equation*}
(4,185) \tag{16}
\end{equation*}
$$

5) Solve:
a) $997=(33 \times \mathrm{n})+7$
(30)
b) $9076 \times 6 \times 6=n$
7. $(326,736)$.
c) $5472:=(8 \times n):+0$ (684.$)$
d), $164^{-}="(41 \times 4)+n$, (0)
e) $5838=(6 \times n)+0$ (973)
"f) $n=(7 \times 906)+3 \quad$. \quad (6,345$)$
g) $6: \times 465 \times 3=n \quad-\quad-(8,37,0)$
h) $48 \times 7080=n$. . $(339,840)$
i) $97 \times 8697=n \quad(843,609)$
j) $2275=(n \times 35)+0$.
(65)

6: Add

1) 578
2) $6,32 \ddot{4}$
(3). 305
3)

$$
\begin{array}{rrr}
4,549 \\
496 & 39,137 & 76,451 \\
& 3,517 \\
\frac{27,083}{32,706} & - & +\frac{4,034}{50,2,91}
\end{array} \begin{array}{r}
\frac{25,064}{105,336}
\end{array}
$$

5)

$$
5 0 \longdiv { \frac { 1 3 } { 6 5 0 } }
$$

Subtract:
6) 58;931
7) 6,719
8). 5, 833
9)

$$
\frac{6,336}{52,595}
$$

. $\frac{2,480}{4,239}$
$\frac{3,097}{2,736}$
Multíplŷ:
10) 354
11) 836
12) 8235 .
13) 709 " 14), 126

$$
\frac{26}{9,204}
$$

$$
\frac{54}{45,144} \cdot \frac{\cdot 35}{288,225}
$$

$\frac{\therefore 61}{43,249} \because \frac{16}{2,016}$
15)

$$
\text { 15) } \begin{array}{r}
789 \\
-\quad 56 \\
44,784
\end{array}
$$

16)
17) $\frac{309}{2472}$
18)

$$
20)^{4160}
$$

20)

$$
\therefore 60)^{\frac{70}{4200}}
$$

Part .A

1. Write each of these as a decimal. Example a, is done for you.
a) $\frac{7}{10}=.7$
b) $\frac{34}{100}=(.34)$
c) $16 \frac{2}{10}=(16,9)$
d) $\left.25 \frac{1 \mathrm{~s}}{100}=(25.13), 8\right) \quad \frac{102}{100}=(1.02)$
e) $4 \frac{1}{10}=(4.1)$.
f) $\frac{45}{10}=(4.5)$
h) $5 \frac{16^{\circ}}{1000}=(5.016)^{+}$
i) $2 \frac{10}{100}(2.10)$
2. Write the decimal numeral for each of the se:
a) $(9 \times 100)+(8 \times 10)+"(6 \times 1)=(986)$
b) $(3 \times 1,000)+(4 \times 100)+(2 \times 10)+(5 \times 1)=(3,425)$
c) $(4 \times 1,000)+(2 \times 100)+(2 \times 10)+(3 \times 1)=(4,223)$
d) $(9 \times 10,000)+(3 \times 1,000)+(1 \times 100)+(7 \times 10)+(4 \times 1)=$
e) $(6 \times 100,000)+(3 \times 10,000)+(4 \times 1,000)+(7 \times 10)+\left(\begin{array}{l}(93,174) \\ (4 \times 1)= \\ 634,074)\end{array}\right.$.
f) $(5 \times 100,000)+(8 \times 10,000)+(9 \times 1,000)+(6 \times 10)=(534,074)$.
g) : $(1 \times 10,000)+(5 \times 7,000)+(8 \times 10)+(7 \times 1)=(15,087)$
h) $(8 \times 10,000)+(9 \times 10)+(4 \times 1)=\cdot(80,094)$
3. Which of these numbers are divisible by 10 ?
a) 353
d d 4,00
e) 30
e e)

(J) 5,800
b) 63,7
f) 42
i) .462
k) 190
c) 21
f) 42
I) 382

Which of these, numbers are divisible by
a) 38
d) 3055
g) 1114
(j) 215
(b) .700
e) 105
(h) 680
k) $23 \rightarrow$
(c) 90
f) 77

1) 53
(i.) 190

282
293

Which of these numbers, are divisible by 2° ?
a) 94
(b) 1112
a)
(d) 894
g) ,201
j) 27
c) $\cdot 423$
f) 633
(h) 50 .
k). 1,128.
IF' $7 ? 9$.
4. Complete the following to make them true sentences.
a) $68 \times 11=680+(68) \quad \therefore$
b): $28 \times 64=512+(1280)$
c) $74 \times 11^{4}=(74 \times 7)+(74 \times 7)^{-}$
d) $57.1 \times 318=(500 \times 318)+(70 \times 318)+(1 \times 318)$
e), $74 \times 386=21,000+5,600+420+\underset{\sim}{1200}+320+\frac{24}{2}$
5. Use: 2 as many times as you can as a repeated factor of each of these numbers. Example. ${ }^{\circ}$ is done for you. .
a) $28=2 \times 2 \times 7$
f) $42^{-}=\left(2 \times 3^{\circ} \times 7\right)$
b) $16=(2 \times 2 \times 2 \times 2)^{1}$
g) $2 \dot{2}=(2 \times 11)$.
c). $24={ }^{\prime}(2 \times 2 \times \dot{2} \times 3)$
h) $.6=(2,4 \times 3)$.
d), $14=(2 \times 7)$.

1) $12 \Rightarrow\left(2 \cdot x_{3} 2 \times 3\right)$
e) $20=(2 \times 2 \times 5)$
*j). $32=(2 \times 2 \times 2 \times 2 \times 2)$

What do you notice about all, of the factors above? (They are prime factors.)
6. In each of the following explain what the 4 represents:

A sample problem is done for you;
a) In 242 five 4 represents. 4 sets of five
b) In 40 eight (4 cacti of eight) e) In 1024 seven (4 sets of one or 4 ones $)$
c) In $I^{\prime 04} \mathrm{five}$ (4 sets of ones) f) In 542 ones. . 4 sets of six).

7. Write each of the following as decimal numerals
a) Twenty-six thousand eight hundred twelve ($26 ; 81 \%)$
b) Forty thousand, three hundred sixty $\left(40^{\circ}, 360\right)$
c) Eight hundred fifty-seven thousảnd, ninety-one (857,091)
d) Four million, sever hundred sixty-three thousand
e) One’mililion, one.thousand, one ($1,001,001$).

Part $\dot{\mathrm{B}}$

Write a mathematical sentence (or'two sentences if necessary) âñd solve. Write an answer seritence.

1. The , Jackson School bought, 7 new wall maps. Each map cos't \$9.95. What was the total cost of the maps? $(7 \times 9.95=n$. $J_{n}=69.65$ The tơtan cost of the maps was $\$ 69.65$.).
2:. Jim hạd $\$ 3.25$. ©Tom had 75 cents more than Jim. How much money did the two boys have together? ($3.25+.75=\mathrm{t}$

2. Joanne went to a. party dressed as a witch. She paid 85 \because cents for black cloth for ${ }^{\circ}$ a dress, 72 cents for ${ }^{*}$ "broom, and. 29 cents for a mask. How much did she pay for the entire costume? She gave the clerk five dollars. How much
 or $.85+.72+.29=t \quad t=1.865 .00-2.86 \cong n \quad n=3.14$ Joanne paid \$1.86 for her costume. She shoura get \$3:14 change from the clerk.)
'4. The pupils in Peggy's class are making bookcovers. There were $26 ;$ books to cover. They had a dozen and a half sheets of colored paper. How many more sheets of paper will they need in order to have a "sheet for each, booke $(26-(12+6) \cdot n$ or $n+(12+6)=-26 n=8^{\circ}$ Peggy's class needed 8 more. sheets of paper.)
3. The Hoover School was built in 1934." The Lincoln Schooi wás built in 1960.. The Hoover School is how many years older than the Lincoln Schoo'1? (1960-1934 = $n \quad n \doteq 26$ The Hopver School is .26 years otder than the Lincoln School.)
4. There are 32 children in Mr. Lang's class. For a party each child received 4 cookies. How.many cookies did the class have? $\left(4^{2} \times 32=c \cdot c=, 128\right.$ The class had 128 cookies. $)$ Suggested Activities

Group Activity

Relays - Working with Multiples
The object of the game is to locate points named by muitiples of the number on the number line. The first membeŕ of each f team draws the line and locates the first point, for example using multiples of 7 he would locate and name 7: The next player in each team would go up.to locate 14 , the third player names '21, and"so on. The team that can correctly name the most points in a. determined.time period wins. This may also be used for counting in other bases.

Individual Project
Prepáre and show your class a magic trick with numbers. Tricks with numbers fall into three"main groups--lightning galculations, predictions, or mind reading effects. You will find information about number tricks in many books about. mathematics. One clue--try looking up some of the "mysteries of nine. "

P153.

Review
SET II*

Part. A

1. Using the symbols \rangle,\langle, or $=$ make the following true sentences.
a) $.40^{\circ}=.4$
f.) $.64 \leq . .7^{\circ}$.
b) .6 \qquad .06
g) $\frac{8}{10} \rightarrow: 65$
c) $\frac{34}{100} \equiv .34^{\circ}$.
h) $\frac{5}{100}=i^{2} .05$
d) $\frac{5}{100}<.5$
i). $4^{4}>^{*} .36^{\text {- }}$
e) $\frac{54}{100}>.45$
j) $\cdot .3$ \qquad .40

- 2. Write these numerals in expanded notation.
a) $114=(3 \times 100)+(1 \times 10)+(4 \times 1)$
b) $2,236=(2 \times 1,000)+(2 \times 100)+(3 \times 10)+(6 \times 1)$
c) $7,330=(7 \times 1,000)^{\prime}+\left(3 \times 100^{\circ}\right)+(3 \times 10)+(0 \times 1)$
d) $5,050=(5 \times 1,000)+(0 \times 100)+(5 \times 20)+(0 \times 1)$
e) $6,8 Q 3=(6 \times 1,000)+(8 \times 10,0)+(0 \times 10)+(3 \times 1)$.
f) $49,527 \quad(4 \times 10,000)+(9 \times 1,000)+(5 \times 100)+(2 \times 10)+$
g) $827,666=(8 \times 100,000)+(2 \times 10,000)+(7 \times 1,000)+(6 \times 100)+$
h) $412,305^{\circ}=(4 \times 100,000)+(1 \times 10,0$

$$
(0 \times 10)+(5 \times 14)
$$

3. On the number line below, the points for 0 and. l° are labeled. Label the other, points with base five numerals.

Fill in the blanks with the numerals $\dot{2 O_{\text {five }}}$ and ${ }^{24}$ five to make each of the following true sentences.

4. $A^{\prime}=\{1, \dot{3}, 5,7,9,11,1 \dot{3}\}$.

Sets T, S, E and P are subsets of A :

- a) The 'members of Set T are divisible by 3 .
$T=\{3,9\}$
b) The members of Set S are divisible by 1 .
$S=\{1,3,5,7, .9,11,13\}$
c) The members of Set E are divisible by 2.
d) The members of Set P are prime numbers.
$P=\left[3,5,7,11 ;{ }^{\circ} 13\right)$
e) Rewrite-set A and rename its members as product."
expressions. Call it set M.
$M=\{1 \times 1,1 \times 3,1 \times 5,1 \times 7,1 \times 9$ or $3 \times 3,1 \times 11,1 \times 13\}$
$B=\cdot\{0,2, \cdot 4,6,1,8,10,12,14,16\}$.
Sets F, R, Q and H are subsets of B.
a) The members of $\underset{F}{ }$ Set $F(2,4,6,8,10,12,14,16)$.
b) The members of Set R are divisible by 3 :
c) "The members of $R=(6,12\}$ ' Q et Q are divisible -by 1 .
d) The members of $Q=\{2,4,6,8,10,12,14 ; 16\}$.
d) The members of set H are prime numbers.

$$
H=(2]
$$

e). Write the members of the set $A \cup B$.
$A \cup B=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,16\}$
f) Write the members of the Set $A \cap B$.

$$
\mathrm{A} \cap \mathrm{~B}=\{\cdot\}
$$

5. Rename each of these decimals. The first one is done for you.
a) $6.84=6$ ones +8 tenths +4 hundredths.
b). $12.62=12$ ones $+\underline{6}$ tenths +2 hundredths.
c) $: 07=0$ ones $+\quad 0$ tenths +7 hundredths:
d). $1.01=1$ ones +1 tenths +1 hundredths.

6: This is one way of chánging a basef five numeral to a base ten numeral.

```
\(114_{\text {five }}=(1\) twenty five \()+(1\) five \()+(4\) ones \()\).
\(114_{\text {five }}=(1 \times 25)+\cdot(1 \times 5)+(4 \times 1)\)
\(114_{\text {five }}=25+5+\dot{4}\)
\(114_{\mathrm{five}}=34\)
```

Using the same procedure change the following base five numerals to base ten numerals.
a) $23_{\text {five }}$
(13.)
c), $12_{\text {five }}$
b) ${ }^{44} \mathrm{five}$
d) $123_{\text {five }}$
(7)

Part B *

Write a mathematical sentence (or two sentences if necessary) and solve. Write an answer $\dot{\text { a }}$ sentence.

1: Roy bought four fish for his aquarium. He paid 60° cents for one, 28 cents for another, 35 cents for another, and 45 cents for the fourth one. How much money did he spend for all the fish? $\quad\left(60+28+35+45^{\circ}=n \quad n=168\right.$ Roy spent $\$ 1.68$, for the fish.)
2. The Smíth family went on a vacation. The first day they drove "an avierage of 41 miles an hour. They traveled 9 $\stackrel{\downarrow}{ }$ hours. How many miles did they drive the first day? ($9 \times 41=d \quad d=369$ They had gone 369. miles.)
3. Janis and her sister made ${ }^{6}$. pieces of fudge for a party. After the party only 19. pieces of fudge were left. How many pieces of fudge were eaten at the party? $\left({ }^{\prime}{ }^{\prime}+n=75\right.$; $75-19=n \quad n=56$. There were 56 pieces of fudge eaten
at the party.)
4. Mrs. Gray has the milkman deliver 3 quarts of milk each day." The milk costs 26 cents a quart. What is the total o milk billifor a week? ($3 \times 7=2121 \times 26=n-n=546$ or $(3 \times 7) \times 26=n \quad n=546^{-}$The milk bill is $\$ 5.46$ for a
5. Shirley has been saving quarters. She now has 10 quarters. If she changes them to nickels, how many will she get? ($5 \times 10=m \quad m=50$ Shárley will have 50 nickels.)
6. Mr. Norman pays 16 doliars a mon'th for garage rent. How much rent does he pay in one year? ($16 \times 12=\mathrm{n}, \mathrm{n}=19$? Mr. Norman pays $\$ 192$. rent in one year.)

Braintwisters

1. A frog is climbing out of a well twenty feet deep. \therefore He climbs four feet every day and slips down three feet every. night. How long do'es it take the frog to get to the top? ($20-3=17 \quad .17$ days.).).
2. You have - 8 sections of silver chain, each of four links. The cost of cutting open a link is lo\& and of welding it ${ }^{\circ}$. together again is $25 \notin$. What is the least you can pay to have the eight pleces. yoined together in a single chain? $(6 \times 25)+(6 \times 10)=210$. $\$ 2.10$
3. Sally had a piece of ribbon 4" "inches long. She found another piece 4 ? Inches long." Now she has 13 ? Inches of ribbon. What number base was Sally using? (Base five $\left.4+4=8,8 .=13_{\text {f1.ve }}\right)_{\text {, }}$
4. Two boys werè comparing sticks. One boy had a stiqk 6 ? inches long. The other'boy's stick was 3 ? inches longer or 72 ? Inches long. Whet number base were they using? (Base seven $6+3=9^{\circ} 9=12_{\text {seven }}$)

Review

SET II'I

Part A

$\therefore 1$. Write each of the following expressions using symbols=. Example: The number n increased by ${ }^{*} 6^{\circ}=n_{+}+6$.
a). The number. n increased by $8^{\circ}, \quad n+8$
b) The number 7 multiplied by n, $n \times 7$
c) The sum of $\cdot \mathrm{n}$ and 9
$\underline{n+9}$
d) The number n decreased by 4
n-4
e) The product of 6 and n
$6 \times n$
f) The number n divided by 3
$n \div 3$
g) The number which is the result of 10 subtracted from n $\underline{n-10}$
2. What number is represented by each of the expressions in Problem'l if $n=12 ?$ it
a) 20
b) 84
c) 21
d) 8
e) 72
f) 4
g) 2
3. Answer each of the following with a" complete sentence.
a) How many 4is are there. in six 8is? There are twelve 4is in six 8is.
b) How many $7^{1 / s}$ are there in three 14's? There are six $7^{1} \mathrm{~s}$ in three 14's. 1.
c) How many 6's are the in fifteen $^{\prime \prime}$ 4's? There are ten 6is in fifteen 4:
d) How many $3^{\prime} \mathrm{s}$ are there in four $12^{1} \mathrm{~s}$? There are sixteen $3^{\prime} \mathrm{s}$ in four $12^{\prime} \mathrm{s}$.
e) How many $8: s$ are there in fourteen 4is? There are seven. 8is in fourteen $4^{i} \mathrm{~s}$.
4. Find what number y represents in each of these. Tell what. operation is needed to find y. Example a is done for you.
a) $108+y \stackrel{\ddot{8}}{=} 144$ 1.
b) ${ }^{8} 87+11 \frac{1}{6}=y$

$y=2,220$
$y=972$
$y=5,447$
$y=50 ; 286$
$y=9,412$
$y=30,192$
subtraction addition
multiplication
multiplication
subtraction
multiplication addition
subtraction
5. Name the first ten members of each of the following sets:

$$
\begin{aligned}
& S=\text { (The set of multiples of.100) } \\
& S=(100,200,300,400,500,600,700,800,900,1000\} \\
& \mathrm{T} \text { - (The set of muitiples of } 1,000 \text {). } \\
& T=(1,000,2,000,3,000,4,000,5,000,6,000,7,000, \\
& 8,000,9,000,10,000\}
\end{aligned}
$$

6. Complete these sentences with a multiple of 100 or 1000 needed to make them true sentences; Here are some possibilities. Example: $\underline{2,000} \times 5<12,100$
a) $1000 \times 6>932$
f) $100 \times 3,3=3,300$
b)" $9 \times \underline{400}<40,121$
g) $25 \times 100>2,312^{\circ}$.
c.) $1,000 \times 4<5,210$
h) $2,000 \times 140<293,000^{\prime}$
d) $.70 \times 200<115,316$
1) $30 \times \underline{200} \doteq 6,000$
e) ${ }^{*} 6 \times 5,000 \geqslant 27,880$
j) $200 \times 25=5,000$

291
7. Complete eacn of these. Example a is done for you:
a) $.58 \cong 58$ hundredths or 5 tenths plus. 8 hundredths
b) $.33=33$ hundredths or 3 tenths plus 3 hundredths
c) $.07=7$ hundredths or 0 tenths plus" 7 hundredths
d) $\quad .70=70$ hundredths or $工$ tenths plus 0 hundredths
e) $.09=2$ hundredths or 0 tenthr plus 9 hundredths f) $.99=99^{\circ}$ hundredths or 2 tenths plus 9 hundred.ths
8. How many dots are there in this diagrama Write the answer in each of the following number bases.

a) Base ten 33
e) Base nine 36

- •••••
b) Base five 113
f) Base seven 45
c) Base six 53
g) Base eight 41
d) Base four 201

Part B

Write a mathematical sentence (or two sentences if necessary) and scive. Write an answer senternce.

1. Mark said, "Tonight I am going to sleep 9 hours and 30 minutes. How many minutes will Mark sleep? $(9 \times 60)+30=n$ $n=570 ; \quad(9 \times 60)=t \quad t=540 \quad 540+30=n \quad n=570$ Mark. Will sleep 570^{*} minutes.
2. An army division has 345 platoons. There are 38 soldiers in each platoon. How many soldiers are there in the division? $345 \times 38=\cdots \mathrm{d}=13,110$ There are 13,110 soldiers in the division.
3. Mr. Jones bought. 12 gallons of gasoline. He paid 33 cents a gallon. How much money' did he spent for gasoline? $.33 \times 12=n \quad n=3.96 \mathrm{Mr}$. Jones spent $\$ 3.96$ for gasoline.

P160
4. Mary and Martha were selling greeting cards at 50 cents. a box. The first day Mary sold 16 poxes and Martha sold 10 boxes. How much money did they make altogether that day? $(50 \times 16)+(50 \times 10)=n$ or $(16+10) \times 50=n$ $\mathrm{n}=11300$ Mary and Martha made $\dot{\chi} \$ 13.00$ altogether.)
5. There were two fifth grade classes in the Marshall School: There were . 57 fifth grade pupils In the'two classes. 23 of these were girls. How many boys were. there? $23+n=57$ or $57-23=n \quad n=34$ There were .34 Boys in the two fth grade classes.
6. Dick rides his bicycle to and from school in 10 minutes. He walks to and from school in 26 minutes. How much time will he save riding his bicycle to school all week? $(26-10) \times 5=y$ or $26-10=16,16 \times 5=y, \quad y=80$ Dick will save 80 minutes each week.

Suggested Activities
Group Project
Column Relays - Have the class choose teams and form team columns facing the board. A dittoed sheet of problems is handed to the first person in line. He moves to the board, read, s and works the first problem then returns the problem sheet to the second person in line, as he moves to the rear of the line. Each person moves up, works his problem, and returns to line until all members have had a turn. One point is scored for each correct answer.

Example: $16 \times \underline{n}=2 i 2$ or $325 . \quad 30=10+25$
Other questions may be given on:
a) writing expanded notations
b) changing to other bases
c) writing decimals as fractions and vice versa.

CONGRUENCE OF COMMON GEOMETRIC FIGURES

PURPOSE OF UNIT

The purpose of this unit is:

1. To review geometric concepts and terms introduced.
earlier in the fourth grade chapter, Recognition of Common Geometric Figures..
2. To achieve familiarity with the intuitive concept of congruence of géometric figures, partichilarly as applied to lipen ségments, triangles, and angles.
3. To gain facility in using compass and straightedge in copying and comparing such simple figures as line segments; triangles, and angles.

mathematical background

The fagt that every object which we see has size and shape suggests that the study of geometry be begun as early as possible in the child's.school life. In previous units the child is made awarerof representations of geometric figures in his envirotiment. He recognizes the models of some geometric figures and can name them.

We beliefe' that the child can now come to greater understanding and/greater en Joyment of his environment through more discriminating observation. He will be provided with guidelines for productive thinking about the figures with which he is now familiar by means of exploratory discus'sions and developmental exericisesf, Another tajor objective is to develop ability to read mathematical material independently. In the preparation of this material, care has been taken to foster achievement of. this gqal:

A basic geometric, concept developed in this unit is the concept of congruence. Pupils will leam to recognize congruent geometric figures (figures of the same size and shape) by tracing one figure on a sheet of thin paper and determining whether this tracing will fit exactly on another geometric figure. They will learn that two triangles are congruent to each other when three sides of one triangle are congruent to three sides of the other. triangle. This is used in copying a triangle with compass and straightedge. Congruent angles will be discussed, using first the method of tracing and then copying an angle using the straightedge and compass. The same two methods will be used to explore inequalities in size of angles.

Even if your last exposure to mathematics was in your early high school'years, we think you will enjoy the teaching of informal geometry. It is an intuitive approach and an inductive development of some of the basic understandings and skills of geometry. We do not propose that pupils at this level study a set of formal proofs to reach generalizations about common geometric
figures. This material is planned to provide opportunity for observation of common figures and for reaching generalizations about them as a result of this observation.

A geometric figure is a set of points. We know that we can- . not make a point on a piece of paper since a mathematical point has no size at all. What we can make is a model or a picture of the point. When we draw a side of a triangle we are drawing a model of this set of points. In this text when we say, "Look at the triangle," we really mean, "Look at this model of the triangle."

A line (the term "line" means "straight line") is a particular set of points in space with certain properties. One important - property is. that through any two different points in space there is exactly one line. A second important property is that a line has no. end points. We represent a line by a drawing such as this:

If we wish to give it a name we label two points, on the line, for example,

and call it the line $A B$, written $\overleftrightarrow{A B}$ or the line $B A$, written $\overleftrightarrow{B A}$. Observe that the order of the letters A and B is inmaterial when we are talking about a line.

A segment is the set of points on a line consisting of two points called end-points, and all the points between. We represent a segment by a drawing such as this:

and we name it "segment $A B^{\prime \prime}$ or "segment $B A$ ", 'written $\overline{A B}$, or $\overline{B A}$. Observe that the order of the letters A and B is immaterial when we are talking about a line segment.

sèparaties the line into three sets of points: the set consisṭing of the point P and.two. other sets of points called half lines. The point F is not in either half line. We call a set of
\therefore points consisting of a half line together with point P a ray. We indicate a ray with endpoint A like this, .

and we name, it rąy $A B$, writtaen $\overrightarrow{A B}$, writing first the letter which names the endpoint. It is clear that a ray has only one endpoint and that ray $A B$ iddifferent from ray $B A$. A model of ray $B A$ looks like this:

Observe that the order of the letters A and B is very. important when we are talking about a ray. We need to use the words line; segment, and ray carefully.

Any flat surface such as the top of a desk or the wall of a raom suggests the idea of a plane. Like a line, a plane is thought of as being unlimited in extent. 'We think of a plane as containing many points and many lines. Just as a line is a. set of points that has certaln properties, so a plane is a set of points that has certain properties. One important property of a plane'is that, any three points not on the same line are in ore and only one plane. We have seen that a point separates a line into three sets of points, and in the same manner a fine separates a plane into Vhree sets of points: the set-consisting of 'the points of the line itself and two other sets of points called haif planes. The line of separation is not in either half plane.

$$
\begin{aligned}
& \frac{298}{} \\
& 308
\end{aligned}
$$

An angle is \dot{a} set of points consisting of two rays not on' the same line but with a common endpoint. We represent an angle by a drawing such às this:

We name this angle: $\angle R S T$ or $\angle T S R$ or $\angle S$. . (Many students have suggest the symbol \angle RST, but $\angle R S T$ or one of the other variations is quite standard.) It is. very important to observe that the endpoint, S, of the rays is named second in both \angle RST and in LTSR. On the other hand, the order of ${ }^{\prime} R$. and T is immaterial. "If there is no chance for misunderstanding, we just "Write $\angle S:$ This abbreviation could not be used for a drawing such as

An angle separates-a plane into three sets of points: the set. consisting of the set of points of the angle itself and two, - other sets of points called the exterior of the angle and the interior of the angle. These sels are suggested by the following "exploded" model:

299
309

The set of points represented by the cross hatched piece ins the sketch on the right is called the interior of the angle and the cross hatched piece in the sketch on the left represents the exterior. The "angle itself is not included in either the interior or exterior. In order that such "concepts as these will have exactly one meaning, we restrict our concept of angles so that the rays will not be ion the same' line. "Thus, situations like these will not be considered (although the rays represented by each drawing do have the same endpoint).

Rays extending in opposite directions $\overrightarrow{A B}$ and $\cdot \overrightarrow{\mathrm{RS}}$

A triangle is a set of points. It consists of three points: not ail on the same life and the points on the three segments Joining them. Each of the three points (endpoints of he three segments) is called a vertex of the triangle. We label the.
 A, B; and $\cdot C$, like this:
 letters naming the vertices. A triangle determines three angles called the angles of the triangle. Although $\triangle A B C$ determines "three angles ($\angle A B C$, for example), not all the paints' of $-\angle A B C$. are points of the triangle, as can be illustrated by the following figure:

- We indicate the segment joining the points A and B as $\overline{A B}$ and call this segment a side of the triangle. The triangle will be named $\triangle A B C$ or $\triangle B A C$ or $\triangle B C A$." or with any other arrangement of the
A triangle determines three angles s.
\qquad

Suppose ẁe have another triangle, $\triangle D E F$, which is an exact copy of $\triangle A B C$. We cannot say that $\triangle A B C$ is equal to $\triangle D E F$, for this would mean that $\triangle A B C$ is another name for $\triangle D E F$, and yet the set of points constituting,$~ \triangle A B C$ is not the same as the set of points forming \triangle DEF. But we would like to show that a tracing of $\triangle A B C$ fits exactly on $\triangle D E F$ when we plage vertex A on vertex D,
vertex B on veritex E, and - vertex C on vertex F .

We introduce a new word for this relation and we say that $\triangle A B C$ (with its vertices named in the order A, B, C) is congruent. to \triangle DEF (with its vertices named in the order D, E, F) and write $\triangle A B C \cong . \triangle D E F$. We call the vertices that must be placed together so that $\triangle A B C$ will fit exactly on $\triangle D E F$, corresponding vertices. Note that this correspondence id shown when we write $\triangle A B C \cong \triangle D E F$, since the first vertex; A, named in $\triangle A B C$ corresponds to the first vertex, D, named in. $\triangle D E F$. The second \because named vertex, B, of $\triangle A B C$ corresponds to the second vertex, E, named in $\triangle D E F$, and similarly for the third vertex of each triangie.

After theypupils have studied congruent figures by using tracings. (which can be "turned over", if needed) for comparison, they will be introduced to reproducing a geometric figure using the straightedge and compass. The pupils should use a straightedge and not a fuler in this portion of the chapter. The difficulty. with a ruler is that it encourages. measuring when such is nōt desired for the construction involved . The straightedge,
can be used only for trawing a line segment. (If only rulers are available then it should be stressed that they are to pe used only as a straightédge and not as a measuring devjce.) . The compass is used only for drawing a circle or an arc (that is, a connected piece of a circle). Úsing these instruments and their knowledge of congruent figures, the pupils will learn how to make congruent segments, congruent triangles, and congruent angles.

Materiäls Needed:
Teacher: Box of colored chalk, model of a pyramid, model of a cylinder, chalkbox, or othér. rectangular box, chalkboard compass or string compass, long straightedgé (a $36^{\prime \prime}$ ruler will do), some type of transparent sheet for tracing triangles at the chalk= board, paper fasteners, cardboard strips, scissors

Pupil: Straightedge, compass, tracing paper (ordinary, paper might do), protractór, scissors, paper fásteners, cardboard strips, paper and pencil

The lessons in this unit vary in their composition. Some have three parts which are: first, Suggested Teaching Procedure, , second; Exploration, and third; Exercises which the children should do independently. In some, lessons the Exploration and Exercises are sufficient to deveiop the lesson. Some lessons. need only the Exploration to clarify the concepts for the . ehildrez.

The first part Suggested Teaching Procedure provides an overview of the. lesson. It is here that the teacher will find suggestions for providing the background the children will need for the understanḍings and skills to be devieloped.

- Some teachers may prefer to have the children's books closed during this introduction of the concepts. During the second.part of the lesson, the Exploration in the pupil's book, the pupils and•teacher will read and answer the questions together. She may say, for example "Now turn to páge \qquad and look at the "Exploration. Is this what we did?" Is this what we found to. be true?!! A resourceful teacher will be sensitive to the mood of her class and will not extend this part of the lesson beyond the point of interest.

Other teachers'may go immediately into the Explorations: The Exploration then serves as a guide for the lesson. Stila others may wish to hiave the pupil's book closed during. the presentation and then have the pupilis read the Exploration independently for review.

The third part of the lesson is the Independent Exercises. These are designed for the pupil to work independentily. They are provided for maintenance and establishment. of skill but they' are also developmental in nature and help pupils gain additional understandings andiskills.

- Each teacher should feel free to adapt these'ideas in a way that will suit her method of teaching and in a way that meets the particular needs of her class.

The firs st section of this unit is a review of material covered in the SMSG text for the fourth grade. If the pupils have not studied this, material, you will need. to spend more time on this section. In either case, you should have a copy of the SMSG text for grade four.

References:l 1. School Mathematics Study Group Text'for Grade Four.

Mathematics for Junior High School, 'Volume I, .' Chapter IV, Sghool Matnematics Stuidy Group.
3. Freeman, Mae and Ira, Fun with-Figures, New York: Random House, 1946.
4. Ravielli, A., An Adyenture in Geometry; New York: Viking Press.
5. Bassetti, F., Solid Shapes Iab, New York Science Material Center:
6. Anderson, R. D., Concepte of Infórmal Geometry, Volume V, Studies in Mathematics, School Mathematics Study Group.

REVIEW OF GEOMETRIC FIGURES

Objective: To develop the following understandings and skills.
(1) The primary purpose of this section is to recall those understandings previously developed which will be used in this untt.
(2) The idea that plane geometric figures are parts of the solid figures is emphasized.
(3) A review of some of the mathematical vocabulary occurs in a natural setting in. which solid figures are manipulated and discussed.

Materials Needed:
Teacher: Any rectangular space figure such as a chalkbox, or a shoe box, or a piece of lumber such as a "土wo by four;" a pyramid, made of paper (or of wood); a cylinder, such as an unopened soup can; a straightedge for use at the chalkboard; chalkboard and colored chalk; chalkboard compass or string compass

Pupil: Paper and pencil; if practical, examples or models of rectangular solids, pyramids, and cylinders for each pupil

Vocabulary: *
Mathematical.vocabulary used which has been taught previousiy inciludes:.

Suggested Teaching Procedures:
You may wish to begin by saying to the clais something of this nature: "For the next few weeks we are going to be doing trings in mathematics that are a little different from what we have been doing." What is meant when we use the term geometric figure? Loók around the room. What are some of the geometric figures you see? Can you see any t́riangles, squares, or rectangles? What shape are the windows? What shape is the door? What figures do you see on your desk? On my desk? There are examples of, geometric figures all about us. Can yoù look anywhere and NOT see examples of them?. We will be studying many of them in our new work."
 This is just one of the tools. we will be using. Each of you will have one."

Show a compass. Do not take time now to explain its use. Show the rectangular solid, pyramid, and cylinder. Ask whether anyone can tell the names of these figures. Any other type of introduction which gets children thinking about the idea of the unit and provides motivation could, of course, be tused. The presentation above gives just one way and the resourceful teacher will no doubt think of many superior introductions.

Use the rectangular solids and have pupils do the activities called for An Exercise 1, page 161. If possible, each pupil should have a rectangular solid.

The meaning of face, edge, vertex, segment, plane, vertices, point, and endpoint are reviewed.

Draw a model of the rectangular solid on the board and label it as in the sketch on page 161. Review the way of writing names of line segments such as 'AB, $\widehat{D E}$, and $\overline{A H}$. The pupils could, for example, write the symbols for segments DC, BG, and FG. They could also trace on the diagram on the board the segments for which you write the symbols such as - $\overline{\mathrm{HG}}$ or $\overline{\mathrm{CF}}$.

REVIEW OF GEOMETRIC FIGURES .
Rectangular Prism

> Exploration

Look at a chalkbox.

1. a) Place your finger on the top face. Place your finger on the bottom -face. How many faces has a chalkbox? (sid)
b) Trace any edge of the box with your finger tip. How many edges has the box? (twelve)
c) Point to a vertex of the box. How many vertices has the box? (eight)
2. Suppose we name each comer (vertex) of the box with the letter given in the above 'sketch.
a) Name 3 edges of this rectangular prism. (any then if $\overline{A H}, \overrightarrow{H E}, \overline{E D}, \overline{\bar{A}}, \overline{A B}, \overline{B C}, \overline{E F}, \overrightarrow{A G}, \overline{B G}, \overline{G F}, \overline{F C}$, or $\frac{1}{C B}$.)
b) Name 4 faces of this rectangular prism. any four of fain $A D E H, O E F C, B G F C, B G H A, H E F G$, of $A B C D$.)

Emphasize in Exercise 3, page $R 162$, that plane geometric figures are observed in solid figures in the physical world--that solid figures can be used as a source of plane figures. To help the pupils see that the edges form rectangles, the edges may be traced with the fingertips. If the solid is held so that only one face is visible at a time, the outline is a rectangle.

The intersection of two faces is a line segment as illustrated in Example 4, page 162. This can be shown by having the pupils again trace the interisection on the solids with their fingers. The "intersection of the set of points. of the bottom face and the set of points of the front face ${ }^{\prime \prime}$ is the line segment $\overline{B C}$ (We are calling face $A B C D$ the "front" face. If face DEFC is called the "front" face then the intersection is CF).

In Exercise 5 s page P 163 children can best get the idea of intersectign by again tracing the edges on the solid firgures with their fingers. The idea of point and vertex will be reviewed here.

There are at least two different types of answers to "Name the three sets" whose intersection is the point H." One would be the intersection of the line segments AH, EH, and GH . Another would be the intersection of the three faces which are parts of planes. Help the pupils find both of these answers. There are, of course, other answers.

There are other illustrations of the empty set in addition to the intersection of $\overline{A D}$ and $\overline{B C}$. They would include the intersection of any of the segments which are parallel such as HE . and $\overline{A D}$, $\overline{B G}$ and $\overline{C F}$, and $\overline{A H}$ and $\overline{D E}$. Another illustration is the intersection of $\overline{\mathrm{AD}}$ and $\overline{\mathrm{CF}}$.

In Exercise, 6, other unions of sets which result in rectangles include the union of, $\overline{\mathrm{HE}}, \overline{\mathrm{HA}}, \overline{\mathrm{AD}}, \overline{\mathrm{DE}} ; \overline{\mathrm{AD}}, \overline{\mathrm{DC}}, \overline{\mathrm{CB}}, \overline{\mathrm{BA}} ; \overline{\mathrm{BC}}, \overline{\mathrm{CF}}$, $\overline{F G}, \overline{B G}$. Children should name all six of the rectangles.
c) You can see that a vertex represents a point; an edge represents a line segment, and a face represents a part of a plane.

Every line segment has two endpoints. We label the endpoints with capital letters.

Then we may name a line segment by using the letters at its endpoints with a bar over them. :Thus: $\overline{\mathrm{AD}}$ or $\overline{\mathrm{GF}}$.

3. What geometric figures can you find that are formed by the edges of the box? (rectenghi and frailly acme -guava) How many rectangles did you find? How many squares did you find? (sit rectangle, two of which are probably squares)
4. Name the intersection of the top face and the front face. ($A D$ if free $A O C B$ is called the front face. $B E$ if face $D E F C$ is called the front face.) What is bottom face and the set of points on th front face? ($\overline{B C}$ if face' $A D C B$ is called the front face. $\overline{C F}$ if face DEFC is called th
front face.)
5. What is the intersection of $\overline{C F}$ and $\overline{G F}$? $\{F\}$ What is the intersection of $\overline{A B}$ and the top face? $\{A\}$ Name three sets whose intersection is the .point H. $\sqrt{A H}, \overline{E H}$, and $G H$ or face $B G H A$, face $A H E D$, and fore $G F E H$) What is the intersection of $\overline{A D}$ and $\overline{B C} ?\}$
Name some other pairs of sets whose intersection is the empty set. ($\overline{A H}$ and $\overline{E F}$; or face COEF sad face $B G H A$, - or free $H E F G$ and $\overline{A B}$)
6. Name the geometric figure which is the union of the sets $\overline{D C}, \overline{D E}, \overline{E F}$, and $\overline{C F}$. (rectangle (OEF)

Name the geometric figure which is the union of the sets $H G, \overline{G F}, \overrightarrow{F E}$. $H E$. (rectangle or pasiebly gequare $H G F E$)

Pyramid
In guiding the children to recall what they learned about the pyramid, ask them if they have ever seen anything shaped like this as you show a model of a pyramid. Write the word pyramid on the board, and encourage pupils.to respond. (They may mention the Pyramids of Egypt and this would be an excellent response. Perhaps a child could show pictures of these Pyramids or make a report about one of them.)

You might use just one pyramid for demonstration and as you show a model of a pyramid have the children handle the model to find the answers to leading questions. Or you can duplicate the pattern for a pyramid, given on the next page, and let each child made a model of it (possibly as a home ass.gnment).

In either case, the pupils can find the answers by handling the pyramid. Ask them to close their eyes and tell what they can "feel" about the pyramid. Have a child describe the pyramid as he handles it with his eyes closed. The base of a pyramid is also called a face.

Pyramid

Draw on the chalkboard the pyramid pictured in the pupil text. Use this drawing to answer
the questions in Exercise 1, of the Exploration on the pyramid after you have introduced the pyramid. Pyramids must have triangular sides. However they may have bases which are triangular or which have four or more sides.

Look at Exercise 1, and 2 of the Exploration to see what you might conclude at this boint. Any two of the faces of a pyramid intersect in a line segment. All faces except the bdofe intersect at 0 .,

The main idea of Exercise 3, is that the .edges of each face--other than the base--of a pyramid form a triangle. In other words, you can see an illustration of a triangle on a pyramid.

The intersection of the edges of the four triangular faces is the set whose only member is the point 0 . Children can see, this by running their fingers aiong the edges of the. pyramid up to the vertex at 0 .

You may want to refer to the chapter on Recognition of Common Geometric Figures in the text for Grade Four for reviewiag the definition and idea about pyramids.

Pyramid"
a) How. many faces has this pyramid? (fane)
b) How many edges does the pyramid

- have? (eight - $\overline{O A}, \overline{O B}, \overline{O C}, \overline{O D}, \overline{A B}, \overline{B C}, \overline{C D}, \overline{D A}$)
c) How many vertices gas the figure? (fine- Vortex O, A, B, C, O)
d) Which edges outline the bottom. face? $(\overline{A B}, \overline{B C}, \overline{C D}, \overline{D A})$
e) Name the figure 'formed by the edges of the bottom raçe. (rectangle $A B C D$
 or passably azure $A B C O$)

2. a) Which faces intersect on $\overline{O D}$? (face OAD and face OOC)
b) Which faces intersect on $\overline{O C}$? on $\overline{O B}$? on $\overline{A B}$?

Do faces $O A D, O B C, O A B, O D C$, and $A B C D$ represent planes? (yew)
d) which of these planes intersect at O ? (μ lane $O A B, O B C$, (QCD, and 'OAD).
3. a) Name the geometric figure outlined by the edges $\overline{O D}$, $\dot{\overline{O C}}, \dot{\overline{D C}}$. (triangle)
b) Trace these edges with your finger tip. Name them $\overline{O D}, \overline{O C}, \overline{D C})$.
c) Place your finger tip in the interior of $\triangle O A D$.
4. Name tine intersectition of the edges of the four triangular races. (Point O.) '
5. a) Could a pyramid nave just 3 face? Remember that, the base is called a face, too. (N_{0})
b) Could a pyramid nave just, 4 faces? (yen).
c) Could a pyramid have just 999 faces? ((yen)

Cylinder

Show the cylinder next, writing the word cylinder on the board. (Remember that a cylinder includes the two bases as well as, the "lateral surface", but does not include the interior. That is a cylinder is hollow.) Ask the children what the object is and relate it to its mathematical name on the board. Ask for examples of cylinders. Encourage children to bring examples of cylinders to school. (Be sure the examples have a "top" 'and a "bottom"..) A committee might make a display of these and of - other geometric figures.

Show one of the faces ("top" or"bottom") of the cylinder as you ask for the name of the figure which outlines a base. Give children opportunities to handle the cylinder.

You may want to refer 'to 'the chapter on Recognition of Common Geometric Figures in the text for Grade Four for reviewing the definition and ideas about cylinders.

.

Cylinder

\%

1. Nearly every time you select a can of food at the store, you are handling an object like a geol.etric figure called a cylinder.
r, a) What are the "top" and "bottom" of \& cylinder* called? (bacon)
b) What is the name of the geometric figure which outlines a base of this kind of cylinder?' (a circle)
2. How many such figures are outlined ont this cylinder? (two) Trace them with your finger tip.
3. Do the bases of a cylinder have to be circular regions? (χ_{0})
4. Could the bases of a cylinder be square regions? (yea)
j. Could each base of a cylinder have 1001 sides? (yes)

- Triangle

Draw a triangle on the board as shown in the Exploration on the Triangle. Emphasize that f an angle is the union of two-ray's with the same endpoint but not on the same line. Rays of an angle are sometimes called the sides of the angle. Any particulan drawing can show onyy a portion of the rays of' an angle. Show more of the rays of the $\angle O D C$, as 1h Exercise 2, to illustrate this. Show a line segment that (except for its endpoints) is in the interior of each angle of

This is a good time to distinguish between a triangle and its interior. Some childrê may still think the term triangle inciudes the interior of the triangle. Having them trace with their fingers just the sides of the triangle and then place thelr finger tip in the interior of the triangle, may help them understand which set of points is the triangle and which set of points is the interior of the triangle.

You may want to refer to the chapter on Sets of Points in the text for Grade Four for reviewing the definition and ideas about triangles.

Exploration

I, i

A

1. a) Copy figure $O D C$ on a sheet of paper. What set of points form $\triangle O D C$? (the set which in tile union of oh
(b) Trace $\triangle O D C$ with your finger tip.

Place, your finger in the interior of the triangle.
c) Name the angle, whose vertex is at D. ($\angle O D C$ or $\angle C D O$)
d) Name the angie whose vertex is at
0. ($\angle O O C$ or $\angle C O D$)
e) How many names were given for the angle whose vertex is at D ? (官w
f) How many names were given for the angle whose vertex is at^ 0? (two.)
2. a) Recall that an angle is the set of points on two rays which have a common endpoint arid which are not on the -same line.

Trace the rays (that is, part of them) with your finger tip.
b) Name the rays that form $\dot{\angle O D C . ~(~} \overrightarrow{D O}$ and $\overrightarrow{D C}$)
c) Name the common endpoint. (D)
d) Does $\overrightarrow{D C}$ end at C ? (N_{0}, at centimes indefinitely.)
e): How many endpoints does $\overrightarrow{D C}$ have? (one)
f) Why was the letter D plated in the middle (between 0 and C) in the name, $\angle O D C$? (Benauseme lave agree that if wen ene

3. a) Make another drawing to show the rays which Why is the letter C placed between the letters 0 and D in the name $\angle O C D$?
b) Make another drawing to show the rays which form LDOC. Why is the letter $0 \cdot$ placed between the letters D and C in the

4. In the drawing for Exercise 2 which line segment (except for its end points) is in the interior of $\angle O D C$? ($\overline{O C}$)
5. Draw an angle on your paper. Color the interior of the angle red. If only the interior of the angle is to be red, should the rays of the angle be made red? (kypatouldnat.

Half plane

The concept of a half plane may need to be developed here. By first discussing a plane you may make half plane more understandable to the pupil. Show lines of a plane in various positions. Observe that a line separates a plane into three sets of points: the set consisting of the points of the line itself and two other sets of points. Each of these other sets is called a half plane.

The exploration is written for the children to do the indicated steps. You may not want each pupil to do the coloring or make his own models. Instead, you may prefer to imagine that the coloring has been done and then ask the children to point out the sets involved. Alternately, you could do the exploration as a class demonstration and discussion.

Exploration

1. a) Copy the figure below.
 which contains C) blue. Do not get any blue on the line EB.
d) What would be a good name for the part of your figure which is colored blue? (a hob alone.)
e) What is the name for the part of your figure which is colored red? ($\overleftrightarrow{E B}$)
f) What would be a good name for the part of your figure - which is not colored? (a biff plane).
2. a) Color the half plane above $\overrightarrow{D C}$ (the part which contains E) yellow. Do not get any yellow on line $C D$.
b) What color is the interior of: (BAC? (green)

322

CONGRUENT FIGURES

Objective: To develop the following understandings and skills.
(1) Two geometric, figures are called congruent when a tracing (which may be ""turned over") of one figure will fit exactly on the other.
(2) Two triangles are congruent only. When.certain vartices are placed together.
(3) When two triangles are congruent the corresponding angles are congruent and the corresponding sides are congruent.

Materials Needed:
Teacher: Straightedge, sheet of transparent plastic
Pupil: Straightedge, paper suitable for tracing

Vocabulary: Congruent, :corresponding

Suggested Teaching Procedure:
The first paragraph of the pupil text should be read with the class and the distinction between the concept and its representations noted. However, when you draw a triangle on the board say, "Here is a picture of a triangle," and emphasize the fact that you have actually drawn only a moder or picture of a triangle. When you draw triangles or other geometric figures on the board, comment frequently that you are really drawing only a picture of a triangle or a model of a geometric figure.

CONGRUENT FIGURES

Congruence

Exploration

1. Can you find pairs of figures which look as if one of them could fit exactly on the other? (Band I, Band $\overline{\text { Da nd }}$,

(C)
(H)

(N)
2. Which figure will fit exactly on

Triangle A (I)
Rectangle F (None)

Segment B (J)
Triangle G (None)
Square C, (None)
Circle D (H)
Figure L (None).
Figure N. (None)
Figure M 'x/7ome
3. How can you use tracing paper to, see whether your answers are correct? (Irace one forgive on' th tracing paper and place the tracing pager owe another figure. Your tracing paper thing be Summary

A geometric figure is a set of points. We know that we cannot make a point on a piece of paper but only a model or a picture of a point. When we draw a line or a triangle we are drawing a model. In this text when we say, "Look at the triangle," we really mean, "Look at this model of the triangle."

Two geometric figures are congruent to each other if they have exactly the same size and shape. This means that if we make a tracing of one figure and place it on top of the other figure and if it fits exactly, then we say that the two figures are congruent.

Congruent Line Segments

Exploraty
5

Trace $\overline{A B}$ on a thin sheet of paper. Can you place this tracing of $\overline{A B}$ so that it fits exactly s on $\overline{C D}$? Did you place the tracing of the point A on the point. C or the point D ? Does it matter? $\left(n_{0}\right)$

Recall that $A=B$ means. A and B are names for the same thing. We cannot write $\overline{A B}=\overline{C D}$ because the points of $\overline{A B}$ are not points of $\overline{C D}$. For example, there is no point on $\overline{C D}$ that is the same point as the point A on $\overline{A B}$. But we would like to write briefly that. a.tracing of one segment fits.exactly on the other. We will write $\overline{A B} \cong \overline{C D}$ to say. that the two segments are congruent.

Exercise Set I'

Can you find two congruent segments in each figure?
Can you find more than two? Trace segments on a thin sheet of paper to help you decide. Write your answer's like this: $\overline{M N} \cong \overline{P Q}{ }^{`}$
1.

$\overline{A B} \cong \overline{D C}, \quad \overline{A D} \cong \overline{B C}$
2.

3.

$\overrightarrow{A B} \cong \overrightarrow{B C}$
4.

5.

$\overline{B C} \cong \overline{C D}, \overline{B G} \cong \overline{D F}, \overline{A B} \cong D E, \overline{C A} \widetilde{Z} \overline{C E} \cong \overline{G F}$

Congruent Triangles

By, use of the exploration on Congruent Triangles draw congruent triangles $A B C$, $D F E$, on the, board. You may use straightedge and compass and the method shown in the Exploration on Copying a Triangle (pupil text page 189) to construct the congruent triangles. (Pupils should not see the construction at this time. They will learn it at a later'time.) Trace $\triangle A B C$ that you constructed on the/board on the sheet of transparent plastic: tou might emphasize the corresponding vertices of the' congrúent triangles by writing the names on the board as follows:
 the toiangigs are congruent only when certatn vertices aro placedtogetther, that is,

This means, of course, that you will hatye to be very careful about the order of naming "yertices when talking about" congruences:

Exploration :

You have learned that we call two figures congruent'if a tracing of one figure, can -be placed to fit exactly on the other. (The tracing may be "turned over.") Let us see whether the following two triangles are congruent?

Trace $\triangle A B C$ on a sheet of thin paper and see whether it will fit exactly on Δ DFE.

Notice that the triangles will fit exactly if ${ }^{\circ}$

1. Vertex A is placed on vertex D of " \triangle DIE.
2. Vertex B is placed on vertex F of " \triangle DEE:
3. Vertex C is placed on vertex E of \triangle DEE.

We notice then that when the vertices are matched the sides also match. Complete the following: .
4. . $\overline{A B}$, is congruent to side $D F$ of $\triangle D F E$.
5. $\overline{A C}$ is congruent to side $\overline{D E}$ of $\triangle D F E$.
6. BC is congruent to side FE of $\triangle D F E$.

We call the vertices A, and D, B and \ddot{F}, C and E corresponding vertices since when A is placed or D, B on F, and C on.. E, one triangle fits exactly on the other. We call sides $A B$ and $D F$ corresponding sides since they join
corresponding (matching) vertices

7. Name the other pairs of corresponding sides. ($\overline{A C}$ and $\overline{D E}$; $\overline{B C}$ and $\overline{F E}$).
We can use the same symbol ${ }^{\prime \prime \prime}$ " that we used for congruent line segments to show that one triangle is congruent to another. If. the triangles fit when

$$
\begin{aligned}
& \text { point } A \text { is placed on point } D, \\
& \text { point } B \text { is placed on point } F \text {, } \\
& \text { point } C \text { is placed on point } E \text {, }
\end{aligned}
$$

we shall show this by writing
$\triangle \mathrm{ABC} \cong \triangle \mathrm{DFL}$.
8. Is $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$? This means: Can you place the triangles so that A is on D, B is on E, and C is on F?). (n_{0})
9. Use your tracing of $\triangle A B C$ to see whether the following triangle is congruent to $\triangle A B C$. Are the triangles congruent? $(\triangle T S R \cong \triangle A B C)$

10. List the corresponding vertices.

Exercise Set 2

By tracing one triangle on a sheet of thin paper find ${ }^{*}$. the triangles which are congruent to each other. Be sure to name corresponding vertices in order. In Exercise I, state your answer like this: $\triangle B A D \cong \triangle D C B$. In Exercises 3,5 , and 6 you may have to trace more than one triangle:

3)

$$
\binom{\triangle A B C \cong \triangle F E D}{\triangle A F C \cong \triangle D C E}
$$

2)

$$
-\quad(\triangle B G C \cong \Delta D G C)
$$

4)

$(\triangle B A D \cdot \triangle D C B)$
d

$\left(\begin{array}{l}\triangle A B E \cong \triangle C B E \cong \triangle A D E \cong \triangle C D E ; \\ \triangle A B C \cong \triangle C D A ; \triangle A B D \cong \triangle C D B ; \\ \triangle A B C \cong \triangle A D C ; \triangle A B D \cong \triangle C B D\end{array}\right)$

Congruent Angles

The exploration on Congruent Angles develops the idea that angles may be congruent although the segments shown which are parts of the rays are not congrūent.. In the previous work the congruent angles have, been parts of congruent triangles and consequently have had congruent segments as representatives of the rays. The student should realize that an angle actually consists of two rays and that the segments are parts of the rays: You may wish to discuss the Exploration on Congruerice with the children to be sure that they will understand that angles can be congruen't' although the parts of the rays shown are not congruent. The hands of a large, (tower) clock compared with the hands of a
small wrist watch (at.3:00 p.m., for example) would provide an iliustration of this idea.

Congruent Angles
© Exploration

We say two angles are congruent to each other if we can place the vertex of a tracing of one angle on the yertex of the other angle and the rays of the tracing can be placed to lie exactly along the rays of the second angle.

Exercise Set 3

By tracing. $\angle A B C$ 'on a sheet of thin' paper, determine which of the following angles are congruent to $\angle A B C$.

Corresponding Angles

Exploration
Trifang Yes J J KL and MNP are congruent. ${ }^{\circ}$.

Trace $\triangle M N P$ and place this tracing so it fits exactly on $\triangle J K L$.

Where does $\angle N$ falls ($\angle N$ fill e on $\angle K$)
$\angle \mathrm{N}$ and $\angle K$ are corresponding angles.
Where does $\angle L$ fall? ($L . L$ fall on $\angle P$)
$\angle L$ and ' $\angle P$ 'are corresponding angles.
Where does ' $\angle J$ fail? $(L, J$ fall ion $L M$)'
$\angle J$ and $\angle M$ are' corresponding angles.
Corresponding angles of congruent triangles are those which fit together when a tracing of one triangle is placed so it fits exactly on the other.

P178

Summary
In this section we learned some facts about congruent line segments, congruent angles, and congruent triangles. We learned that:

1. Line segments are congruent if a tracing of one can' be placed to fit exactly along' the. other.
2. Triangles are congruent if a tracing of one can. be placed to fit exactly along the other. The tracing may be "tu pined over:"
3. In naming. congruent triangles, vertices mist beamed in the proper order.
4. Two angles are congruent if we can place the vertex of a tracing of one angle on the vertex of the other angle, and the rays of the tracing can be made to lie exactly along the rays of the second angle: " Γ
5. When -two triangles are congruent the corresponding angles rare congruent and, the corresponding sides are congruent.

Do 'you agree that this summary tells" what we found? Can you think of anything that should be added?

Objective: To develop the following understandings and skills.
(1) Lengths of line segments may be compared with the aid of a compass.
(2) Every point on an arc of a circle is the same distance from its center. The center. of an arc is the center of the circle of which the arc is a part.
(3) Line segments maj be copied with the aid of a straightedge and compass.

Materials Needed:

Teacher: Board compass or string compass, warđstick

Pupil: Straightedge, compass, cardboard strips, papers fasteners (Unlined paper for construction. work is preferable.)

Voca'bulary:•• Aro

Suggested Teaching Procedures:

If in the exploration of Comparing. Lengths of Line Segments with a Compass, the pupils do not recall from their fourth grade experiences the use of the compass for comparison of line segments, review this here. Actually whèn a compass is to be used merely for comparing the lengths of 'line segments, a pair of dividers * (which have two points at the ends, and no pencil) is sufficient substitute. The children can make their own dividers by using two cardboard stripss \longrightarrow and a paper fastener:

In. comparing lengths of line segments, demonstrate on the board:
(1) Wo place the endpoints of the dividers on the endpoints of one of the line segments.
(2) Without changing the setting, move the dividers to the other line segment.
(3). Place one endpoint of the dividers on one , endpoint of the second line segment.
(4) If the second endpoint of the dividers falls between the endpoințs of the second segment, then the first segment is shorter than the second segment.

(5) If the sfocond endpoznt of the dividers falls beyond the second endpoint of the line. segment, .then the frest segment is longer than the second ${ }_{4}$ segment. -

After you have given the above demonstration on the board, have the children do Exercise Set 4, independently.

338

COPYING A LINE SEGMENT

Comparing Lengths of Line Segments

Exploration

1. Do you remember how to use your compass to compare the lengths of two line segments? Look at $\overline{A B}$ and $\overline{C D}$. Which appears to be longer, $\overline{A B}$ or CD? (answers will vary)

2. Use your compass to compare the length of $\overline{A B}$ with that of $\overline{C D}$. What' do you observe now? ($\overline{C D}$ s larger)
3. Does your observation agree with the guess you made by just looking at the line segment?
($\overline{A B}$ appears longer thar $\overline{C D}$ hit $\overline{C D}$ is longer.)
娄
Exercise Set 4

Use your compass to find answers to the following questions.

1. How does the length of IW compare with that of

RS? Which is longer?
How do you know?
(TW. io longer than $\overline{R S}$. of the compare
 pant are placed on P and S methout clanging the compar, the clap point is placed on 7 , th other pout fate betaven T and W.)

A

2 . Is the length of $\overline{\mathrm{MN}}$ greater than, equal to, or less than the length of $\overline{\mathrm{K}}$?

3. Which side of $\triangle A B C$ is the longest? $(\overline{A C})$,

4. Compare the length of $\overline{A C}$ with that of $\overline{B D}$. ($\overline{A C}$ and $\overline{B D}$ have same length.)

about circles? (yea, all paint of a circe an th same
\therefore deiteree from thicanter of th

- deterge from the canter of th
$\overline{A E}, \quad F B, \quad \overline{C D}$ FD. Compare the lengths of $\overline{O A} ; \quad \overline{O B}, \quad \overline{O C}, \overline{O H}$,
b) Since 0 names the center of the circle, do your results agree with what you already knew
 $\therefore \cdot \cdots$

-Copying a Line Segment Using the Compass

Exercise 5, in the Exploration on Copying a Line Segment provided an opportunity to review. with the pupils the fact that every. - point on a circle is equidistant from the center. Follow the exploration in the text to make clear that an arc is part of a circle, and hence every, point of an arc is equidistant from the center of $*$. the circle. Dividers are no longer satisfactory. We need a pencil point on the compass in order to draw an arc. In'the demonstration the teacher may use a string and a piece of chalk instead of. the board compass. Discuss with the pupils why this is a satisfactory substitute. In this sectionc 2-Ine is named by a small letter, for the first time. The letters k, and 1 , are most frequently used, but this does not mean'that other letters are not acceptable. It is suggested that for this exploration, the tearcher work at the board, discussing, and demonstrating.

After the development of the procedure "for copying a line segment anywhre on another line, have each child do this at hil seat. Then illustrate, at the board, copyng a line segment when one endpoint of the copy is indicated. . Follow this with provision for each child to practice this skill at his seat, under ciose supervision. Make clear that the intersection of the set of points on the arc made with the compass, and the set of points of the line on which we make the copy, is a set whose only member is a single point. This is an endpoint of the copy. In the exercises which give opportunity. to fix the understandings and skills of this subsection, it is assumed that the pupils will make reasonable facsimilies of the figures. -on their papers and do the construction work there.

Copying a line Segment Using the Compass.
Exploration
Recall that every point on a circle is the same distance. from the center of the circle. We call a connected part of a circle an arc of a circle, and we call the center of the circle the center of the arc.

In this picture the part of the circle from A to E which does not include C represents arc $A E$. The points A and $E T$ are the endpoints of the arc. The arc may be named arc $A E$ or arc EA. © (If there is a possibility of confusion we name this arc, arc ADE.)

You do not have to draw a complete circle to make an arc of a circle. You could draw arc AE with your compass
 like this:

Every point on an arc of a circle is the same distance from its center. The lengths of $\overline{O A}, \overline{O D}$, and $\overline{O E}$ are the same, since 0 names the center.

You may usevan arc to help make a copy of a line segment. Suppose you are given a line segment TS which you wish to copy on line k. (Sometimes we name a line with a small letter.).

How is the compass placed on TS? (O M $X_{i p}$ at T and x other t_{r} at 5 .)
Since you haven't been told where on line k to copy $\overline{T S}$ you may place it anywhere on the line.

l

The sharp metal point of the compass was placed at M. .
The pencil point of the compass made an arc intersecting the line k at a point wंe name N. Is $\overline{\text { MN }} \cong$ TS? Why? $(\overline{M N} \cong \overline{T S}$ beanse the aptting of the compase for' $\overline{M N}$ wes the eame as the astrang for $\overline{T S}$.)

Sometimes yqu are asked to copy á line segment ${ }^{\sim}$ at $\dot{a} \dot{\circ}$ special place. If you are given $\overline{\mathrm{GH}}$, anditold to copy it on line k so that one endpoint of the new segment is at point P, then the picture would look like this:

$\cdot-7$
2. Copy each segment so that one endpoint is at the point named on the line.

How many segments can you make on line ${ }^{\circ}$ math one endpoint at J and with, the length the same as the

3. a) Copy this figure on a. piece of paper.

b) 'Copy $\overline{A B}$ on $\overline{A C}$ of your drawing so that one展. endpoint of the new segment is at A. Name the other'endpoint D.
c) Cofy $\overline{A B}$ on $\overline{A C}$,of your drawing so that one endpoint of the new segment is at. C. Name the... other endpoint $\cdot \mathrm{B}$.
d) Copy $\overline{\text { d }}$. on $\overline{A C}$ of your drawing so that one endpoint of the new segment is at \dot{A}. Name the : Other endpoint F.
e) Copy $\overline{\mathrm{BC}}$ on $\overline{\mathrm{AC}}$ of your drawing so that one sendpoint of the new segment is. at C. Rame the other endpoint $\dot{\theta}$.
4. *a) Copy this figure on a piece-of paper.
b) Copy $\overline{C F}$ on CD. of your figure using C as, an'endpoint. Label the other endpoint H.
c.) Copy FD on EC of your figure using C as . an endpoint. Label the other endpoint I.
d) Copy FG on CG of your figuré using G as àn endpoint. Label the endpoint J.
e) Can you copy $\mathbf{C E}$ on $\boldsymbol{F D}$ of your figure using $\underset{i}{ }$ as an endpoint? $\left(x_{0}\right)^{\prime}$
Why? ($\overline{C E}$ so long then $\overline{F D}$)
Can. you do:it using D as an endpoint? (K_{0})
Can you do it using any point on. FD as the endpoint? (x)

tritangles.

Objective: To develop the following understandings and skills:
(1) A triangle is determined if the length of its three sides are given:
(ट) We can make a copy of a triangle by copying its three sides.
(3) We can make a triangle if we are given the three line segments whose lengths are the lengths of its sides.
(4) We cannot always make a triangle with sides whose lengths will be those of just any three line segments.

Materials Needed

Teacher: Board compass or string compass, colored chalk, . yardstick

Pupil: Straightedge, compass, paper fasteners, cardboard - strips

Vocabulary: determine

Suggested Teaching Procedures:
The brief section on Seeing Triangles in the pupil text will help children "see" triangles in geometric figures. Do this work orally with them as they. loak at the pictures of the barm, napkin,
and star in their texts.

TRIANGLES

- Seeing Triangles

Exploration

Here are sketches of a barn, a folded paper napkin, and a six pointed star.

紋。
Trace the triangles in each picture with the tip of your finger: How many triangles did you find in the picture of the six pointed star? Did you find as many as eight?
(Yea, thari are englt thingh.)"

Exercise Set 6

Trace with your finger the triangles in the following figures. Tell how many you found in each case.

3.

$(\varepsilon i g h t, \triangle A E B, \triangle B E C, \triangle C E D, \triangle A D C$, $\triangle C B A, \triangle D E \dot{\oplus}, \triangle R B A, A, B O C)$

4.

$\binom{S_{i f}, \Delta R S Y ; \triangle R S T, \triangle R S W}{A R T}$,
5.

4 Making a Triangle with Strips

At this time there is value in a teacher demonstration "lesson showing the Construction of a Triangle with Strips:

Materials Needed:
The teacher shoúld have'a kit of plastic or cardboard. strips and paper fasteners. A kit should have a dozen paper fasteners and at. least

2 strips - 12 ineties long
2 strips - ll-inches long
1 strip - 9 inchesitiong
2 strips.- 8'inches long
1 strip - 7 inches long
1 strip - 10 inches long
The strips may be an inch wide with holes made a Thalf inch-rrom each end. A compass point makes suitable holes. It should be brought out that when two strips are fastened together and one strip is rotated around the fastener, then the endpoint of that strip traces a circlé. Be sure that when the third strip is selected to attach -at ' N , the sum of'the lengths of strip PZ and strip. WN is greater than the "length of "strip* PN. 1 To assure this, choose one 12 inch strip, one 10 inch strip and one 9 inch strip.

落。
Teacher Demonstration：Making a Triangle with Strips Choose a 12 inch strip．Name one hole P ， and the other hole N ．Attach a 10 inch strip ＇at P and a 9 inch strip at N ，as shove in the． figure．

You may wish to ask the following questions as you proceed with the demonstration lesson．

1．Can．I swing strip $P Z$ around P ？（ o）What kind of geometric ＊figure does point Z trace if I swing the strip ald the way around？（a circle）

2．How can I make point＇W trace the same kind of＇geometric ＂figure？（Swing WN arocend N ）＂
3．Watch as I swing both strips around at the same time． When are the points Z and W farthest apart？ （where $2, P$ ，N axed W are as a line） When are they closest？ （when． 2 and ware thence prince；
4．Can Z and．W fall on the same point？Now I put a single fastener through W and 2 ．What geometric figure is forme by the three strips．(Δ) can I swing either strip＂around now？（no－）
5. Now I choose three other strips whose lengths are the same as ${ }^{\text {PR, } P N, ~ a n d ~ N W, ~ a n d ~ a t t a c h ~ t i z e m ~ t o ~ f o r m ~ a ~}$ triangle.
6. I place these two models' of triangles so that one fits exactly on the other. What can you tell me about the two.mòdels of triangles? (They are enguent.) If three sides of one triangle, have the same lengths. as three sides of another triangle, then the triangles are congruent.

Make two triangles of different shapes using paper strips, Make a third triangle congruent to one of these triangles. Letter the vertices of the triangles which are congruent to each other.

Is this third triangle congruent to both of the other

- triangles you watched me construct? (he third twianglei. List the corresponding vertices of the congruent triangles.

List the corresponding sides of the congruent triangles.

Copying a Triangle

The explqration in Copying.a Triangle is in sufficient detail in the pupil text to provide a suitable development for the teacher to follow.

The teacher might carry through the entire construction for copying a triangle at the board with pupil participation whenever indicated. Use one color of chalk to make the arc whose radius is the length of $\overline{\mathrm{AB}}$. Use a contrasting color to make the. arc whose radius is the length of $\overline{B C}$. This refers to Exploration on Copying a Triangle. Repeat the construction, this time having pupils work at their seats. Have each pupil start with a triangle of the same general, shape and size of $\triangle A B C$ in the text.

After working through the exploration for constructing a.triangle in te pupil's Text in Constructing a Triangle Given. Three Segments and before' the, pupils attempt the exercises, the teacher should emphasize that it is not always possible to make a triangle with sides whose lengths will be those of just any, three line segments.:

Teaching Procedure

Do you think we can always construct a triangle when we are given three line segments to use for the sides?

Choose, three line segments whose measures, in inches, , are 2, 3 , and 7.. Can we construct.a triarigle using line segments with these measures? (Mo)

Let' the children experiment to see the - difficulty which arises.

Demonstrate at the board, how you would try to draw a triangle using sides whose lengths are 2, 3, and 7 inches. The childiren will be doing the same work at their seats. For your drawing at the board, use sides four times as greãt as the 2, 3, and 7. This would give you lengths of 8, 12 and 28 inches with which to \because.work and will be a scale drawing of the shorter segment.s. Children can see your work better if you use these longer segments.

Why cant. we make a triangle with the sides whose

.- Now let's try this: Make a triangle with sides whose measures, ip inches, are 3,3 , and 6 .
\square $!$ while the children do it at their seats: You might use lengths of 12,12 , and 24 inches at the board.

- 3 inches long

-

Bring out that:

(1) two triangles are not corsmuent if only one pair of corresponding sides are congruent;
$\therefore(2)$
wo triangles are not congruent if only two pairs of corresponding sides are congruent;
(3) two triangles are congruent if all. three pairs of corresponding sides of the triangles are congruent.

Since all triangles with sides congruent to three given line segments are congruent, we say that these threeigiven line segments determine a triangle.
$\%$.

357
36%

Exploration

When you saw a triangle made with the strips, do you remember that two of the attached strips could be moved around?

1

Here are three strips like the ones I used before. I will. pu a the model on the chalkboard, holding strip $P Q$ firmly in place. With the chalkpoint through' the hole at R, ' I will. swing. PR around. "hat figure does the chalk point trace? (an ac)

- Let's do the same thing with the other strip. Do the two arcs - I made cross each other? (The length will error ur lew. the length of) $\overline{P Q}$ is greater than the sum of the lungtto of $\bar{P} \mathrm{R}_{\mathrm{ax}}$) Does this suggest how you might use a compass to copy a "triangle? (yes)

Copying a Triangle

Exploration

1. Trace $\triangle \dot{A B C}$ on another sheet of paper. Place \overleftrightarrow{K} on this same sheet of paper. We may, start by copying. $\overline{\mathrm{AC}}$ on line
 K. Call the ends of the segment T and S. Your copy should look like this.

2. Then place the points of your compass. at A and B. Move your compass so .that the sharp point is on point T. Swing the pencil point to make an arc."

3. Copy $\overline{B C}$. This time put the sharp point of your compass at S : and swing the pencil point to make an arc. Label the intersection of the two arcs Q.

Draw $\overline{T Q}$ and \bar{Q}. Your copy of $\triangle A B C$ will-be named $\triangle T Q S$. Is $\triangle T Q S \cong \triangle A B C$ d $\xlongequal{\sim}$) How can you be sure? $(\overline{T Q} \cong-\overline{A B} ; \overline{T S} \cong \overline{A C}, \overline{S Q} \cong \overline{C B})$

Exercise Set 7

In each of the following exercises draw your own line k and choose some point on it to be an endpoint of the line segment you copy on $\stackrel{\leftrightarrow}{\mathrm{k}}$,

1. Copy each of the following triangles using a compass 2 and-straightedge.

Copy the triangle whose Interior is shaded.

2. a), How does the length of $\overline{\mathrm{AC}}$ compare with that of $\overline{A D}$ in the figure below? ($\overline{A C}$ and. $\overline{A D}$ have the sue length.)
b) How does the length of $\overline{\mathrm{CB}}$ compare with that

: c) What can you predict

$$
\because \quad\left(\begin{array}{c}
\text { about } \triangle A B C \text { and } \triangle A B D \text { ? } \\
\because A B C \cong \triangle A D B \text { bename } \overline{A C} \cong \overline{A D}, \\
-\overline{B C} \cong \overline{B D} \text { ind } \overline{A B} \cong \overline{A B} .
\end{array}\right)
$$

Constructing a Triangle, Given Three Segments

- Exploration

You have been copying triangles. However, you might be given these line segments and be asked to' construct a triangle

whose sides have the lengths of these segments; of course, you would need to choose your own line k and point P it. Does it matter which of the three given segments you copy on line $k ?(\sim \sigma)$ If you copy $\overline{R S}$ on line k, which two segments will you use for finding the intersection of the $\operatorname{arcs?}(\overline{T M}$ and $\overline{N Q})$ could you copy $\overline{T M}$ on line k ? (yes) Could you copy $\overline{N Q}$ on line k ? (yeas)

If each child in the class constructs a triangle using $\overline{R S}, \overline{T M}, \overline{N Q}$ as lerigths of sides, what can you predict about all the resulting triangles? (all mill or, at hent, held be confine.)

Exercise Set 8

- If possible, in each exercise construct a triangle using the lengths of the given line segments for" the lent hs "of the sides of the triangle., If it is not possible, tell why.
 is.
- 2.

4.

(5) It in expansible bennett th elothrospontiti in lie then the raceme' of the thad.
6.

8.

10.

How Many Sides Determine Exactly One Triangle? *

Exploration
Be sure to read all the instructions for each problem before you start. This will help you in arranging your drawings on your paper.

1. , a) Draw five congruent line segments, each about four inches long. Call them $\overline{A B}, \cdot \overline{C D}, E F, \overline{G H}$, and $K L$.
b) Draw, a triangle using $\overline{A B}$ for one side.
,c) Draw a differently shaped triangle on each of the other segments.
d) If you had fifty congruent segments, could you draw a triangle on each of them, each one different in shape. and size from the other 49 triangles? (yen)
2. "ar Draw five new congruent segments.
b). Draw a special sixth segment different in length.
c). On each of the first five segments draw a triangle: This time, make the second sidtof each triangle congruent to your sixth segment.

Try to make each triangle different in size and shape from all others. Can you do' this? (.yew)
3. a) Draw three new congruent segments.
b.) Draw a fourth segment not congruent to any one of the first three.
c) Draw a fifth segment not congruent to any one of these four segments.e Choose the length of this fifth 2) segment"carefuliy. We want to construct a triangle on each of your first three segments with sides congruent to the fourth and fifth segments.
d) Draw three triangles on the first three segments. In each triangle, make the second side congruent to the fourth segment and the third side congruent to the fifth. segment.
e) Can you ae each triangle different in size and shape from any of the others? (μ_{0})
if) What is true about all your triangles? (al lore congruent) Because all of the triangles are congruent pay say that three sides determine exactly one' triangle.
4. Did two sides determine exactly one triangle? (no)
5. Did one side, determine, exactly one triangle? (no)

COPYING an angle using straightedge and compass
Objective: To develop the following understandings and skills.
(1) An angle may be copied by making it an angle of a triangle, and then copying. that triangle.
(2) It is more convenient to make it an angle of an isosceles triangle, and then copy that triangle.
(3) Skill in using a compass should bè increased.

Materials Needed:
Teacner: Yardstick or meter stick, string and chalk or blackboard compass, colored chalk; plastic sheet. for tracing

Pupil: Compass, straightedge; paper transparent enough to be used as tracing paper

Vocabulary: .No new words are included.
Suggested Teaching Procedure:
Effective use of tais section depends upon certain concepts developed previously. Some of these have been mentioned above. Review what is meant by
(1) An angle (set of points of two rays with'same endpoint but not on same line);
(2) a ray (the union of one point (the endpoint of the ray.) of a line and the set of all points of the, line in one direction from this endpoint);
(3) , angle of a' triangle:

The sides of a triangle are segments while the sides of an angle are rays. In $\triangle A B C$, angIe $B A C$ is the angle determined by. $\overline{A B}$ and $\overline{A C}$, but $\overrightarrow{A B}$ and s $\overrightarrow{A C}$ includespoint's not on $\overline{A B}$ and $\overrightarrow{A C}$
 the 'triangle, but the angle "is 'not a subset 9

COPYING AN ANOLE, USING STRAIGHTEDAE•AND' COMPASS

Exploration

You have learned how to copy line segments and triangles using the straightedge and compass. Now you will learn how to copy angle using the straightedge and compass.

1. Do you remember how to copy a triangle using the straightedge and compass?., Draw a triangle and copy 1 t .
2. When you copied the triangle, did you also copy its angles? (Yen) (\%
3. Suppose you wish to copy $\angle \mathrm{C}$. (When we name an angle by a single letter we mean the angle whose vertex is the point named by that letter.)

How could you make part of CC
two sides of a triangle?. Draw a dashed line to complete a triangle, The dashed line will help to keep in ming the angle you are copying.
4. Wake a -copy of the triangle you made in excise 3. \%
5. Which angle of the triangle that you mad er Exercise 4 do you think is congruent to "¿C? Trace' this angle and place it on $\angle C$ to. see whether it is a copy.
$\$$
ask, If no pupil thinks. of antanswer for Exercise. 6, point S ?" could you have chosen point R and the same lenth segments could have been made isosceles that choosing an simpler.

多

$$
\begin{aligned}
& \text { (} \\
& \text { the questions, following Step 5, so that re reasons }
\end{aligned}
$$

d. In Exercise. 3 you made $\angle C$ an angle of a triangle $:-$ Would some special triangle have made the construction easifer?. Can you think of -a special triangle which \therefore would have required fewf changes in the distance

7. List the things you do in copying an angle, fnd then see how your list compares with the list in the following summary.

- To copy an angle suich as- $\angle C$

7 make it an angle of triangle. Next, copy the triangle by making the three sides the same lengthsias the three sldes of the first triangle;

The following procedure cän be used:
$\therefore \quad \therefore$ 资
\because. The vertex or the angleswe wish tof copy is point \% $\because \because$ With: C as cerrter construct an:urc cutting the sides át
 pointere w1ld cent A and B.

Draw the daghed ine -segment AB: ABG ishe triangle "you are to copzaz
3. Draw a ray (leave enough room so you can construct the triangle using part of this ray) and call the endpoint,
D.

4. With point D as the center and with the same setting. of your compass as in Step 1, construct an arc. Call the point where this arc intersects the ray, point E.

5: Change the setting of your compass so that its point are points A and B of $\angle B C A$. Keep this setting and place the point of the compass 'at E and"draw an are which
intersects the first arc.
Call the point of intersection. 7 of the two arcs F.
6. Draw $\overrightarrow{\mathrm{DF}}$.

Have you made $\angle F D E \cong \angle B C A$? Let us see.
Draw $\overline{B A}$ and $\overline{F E}$.
Is $\triangle F D E \cong \triangle B C A$ dy Why?

- Beocure then sulisaci congruent.) ID

Is $\angle F D E \cong \angle B C A ?^{\circ}$ Why? \boldsymbol{N}.

- We know \triangle FIE $\cong \triangle B C A$ because we have made three sides of one triangle congruent to three sides of the other triangle. We have chosen two sides the same length for convenience. Now, since we know that corresponding angles of congruent triangles are congruent, we know that $\angle \mathrm{FDE}=\angle \mathrm{BCA}$:

Exercise set 9

1. Make an angle about like $\angle \dot{A}$ on your paper, Copy \pm, by using the steps we have outlined then do the same 'for the other angles:

COMPARING SEZES OF ANGLES
\because Objective To develop the following understandings and skills:
(1$)^{\circ}$: The sizes of angles can be compared.
(2) The sizes of angies may be compared by tuse of tracings or compass athds'tràightedge construction.

Materiats Needed:*
Teacher: chalkboard compass or string compass, meterstick or yardstick, colored chalk, tracing plastic 1
.. Pupil: compass, straightedge, tracing paper

Suggested. Teaching pocedures:
D. The definition of an angle as, set of points of two rays suggests that, since a ray has only "one endpofint and therefore has no definite length, the idea of the "size" of an angle, has no meaning. Howeyer, intuition tells us that some angles are "larker in'size" than others". In this section we define what is meant by this term, that is, how sizes of angles are compared.

We examine first, the case in which the angles have one ray in common with the second ray of one angle lying in the interior of the other angle. The sketch of the three roads represenits such a situation. It will probably be necessary to review the meaning of "interior of an angle" and. "exterior of an angle." You may wish to have the pupils observe that all points in. a planef are in one of. three sets: the setor points in the interior, the set of points in the exterior, ind the set of points on the angle itself; and that no point is in more than one of these sets.

We next examine the case which both rays of one angle lie in the interior of the other angle, The questions in Exercises ll-15, provide practice - in identifying apgles.larger in size and smaller in size than given angles, using the definitions which have been developed.

The Ewercise 16 shows a case of congruent angles. angle can be placed to" fit exactly on the other; therefore, since a ray of one angle does, not fall in the interior of the , other, they have the same $:$ size.

In Exercise Set 10, Exercise 8; the pupils may fail to recognize that F is in the interior or. YABC, since the sides are the rays $C A$ and CB, not the segments $C A$ and $C B$.

The exploration, "Anglęs Wịthout a Common Ray," deals with comparing sizizes of angles which have no point in commori. Most pupils will use the tracing method without difficulty, but some" may place perfectly the vertices and one pair of rays of the two angles, but place the second pair of 子ays in opposite hadf planes. Note that in Exercise 2 , either $\overrightarrow{E D}$ or $\overrightarrow{E F}$ may bexplaced on either $\overrightarrow{B C}$ or $\overrightarrow{B A}$. The second pair of rays must then be placed on the same side of the first ray. This exploration sutgests placing a tracing of one angle on the otner. Exercise Set 12 provides practice for this.

- Using the "Congruept Angle Construction," the next exploration, suggests tuse of the, compass construction for congruent angles to make a copy of one of the angles in. such a position as to compare their sizes.

In using the compass construction for copying an angle, work through the construction on the board as the pupils work on their papers. Consideration of Exercise 3 and. 4 in this explomation, is importist for mphasizing the basic idea developed in this sectid

The Explo "trions and Exercises should make it possible in many.cases for the pupils to decide which of two angies has the larger size without using either the tracing or the construction procedure. In Exercise Sek, IT, Exercises, 1-5; they should be able, in many exercises, to make the - comparison intuitively. This will be more difficult in Exercises 6-11. Furthermere, since the angles to be compared are angles of triangtes or of other polygons, some pupils may need helfo in applying. the tracing or constru\&tion procedure.

COMPARING SIZES OF ANGLES

Three roads run from a point in the town of Ashton--one to Bayshore; " one to Camden and one to Devon. The man in the sketch is walking toward Ashton. When he cames to the . intersection in Ashton, he will choose whether he will foilow the road to Camden or the road to Devon. We sometimes say, "The Camden road angles off from the Bayshore road." If he goes to Camden he turns off "at an angle" of one size. If he goes to Devon, he turns off "at. an angle" of a different size. Let us see what we"mean by the "size" of an angle.

Angles With a Common Ray

Exploration

The first sketch below snows the Bayshore and Camden roads: The second shows the Bayshore and Devon roads. Think of the roads as representing rays with endpoint A. Which angle do you think has the larger size? ('File angle maned by theroad to Dewan ind the rood t Bayabre is the larger angle.)

*1.- Recall what we mean by the word "angle." : How have

2. Name the sides of $\angle B A C$ and $\angle B A D$. Are the sides segments. rays, or lines? $(\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A B}, \overrightarrow{A B}$, Meyer $)$
3. Do the sides of an angle have a definite length? $\left(\mathbb{H}_{\text {. }}\right)$
4. Do you think the size of an angle depends on the lengths of the sides you actually draw?

It is clear that the size of an angle cannot depend on the length of its sides, since rays have no definite length.

To see what is meant by "One angle is larger in size than another angle," look at the sketch 'af the roads to Bayshore, Camden, and Devon.

To Emmet

8. Name all the angles in the sketch. (There are six.) ($\angle B A C, \angle B A E, \angle B A D, \angle C A E, \angle C A D, \angle E A D$)
9. Look at $\angle C A E$. What rays are its. sides.? $(\overrightarrow{A C}, \overrightarrow{A E}) ;$
10. Are E and C in the interior of $\angle B A D$? Because and " C are in the interiof' of $\angle B A D$ we say, "The size of "BAD is larger than the size of $\angle C A E . "$ (Or, "The size of $\angle C A E$ is smaller than, the size of $\angle B A D .^{n}$)
11. 'Name an' angle whose size is smaller than the size of - $\angle D A C . \quad(\angle D A E)$ Name another one that appears to, be smaller. ($\angle E A C$)

12. Name an angle of larger size titan LEAD. (LCAD

13. Name three angles, each of larger size than $\angle E A C$. ($\angle D A C, \angle E A E, \angle D A B$, and $\angle D A E$)
14. Suppose another town, Farley', is on the Ashton-Camden Road. Copy the sketch and represent Farley by point.

15: What can you say about the sizes of $\angle C A E$ and $\angle F A E$? About $\angle D A F$ and $\angle D A C$? $\angle B A C$ and $\angle F A B$? (Zheregenare is
 Different meme for the asineangle.
16. In this sketch, $\angle A B C^{\circ}$ is congruent to $\angle R S T$.

a) Trace $\angle A B C$ on tracing paper. Place. B on - S and $\overrightarrow{B C}$ on $\overrightarrow{S C}$. Put $\overrightarrow{B A}$ on the Reside. , of $\overleftrightarrow{T S}$. Must $\overrightarrow{B A}$ lie on $\overrightarrow{S R}$? (yes)
b) Is either of these angles larger than the other? $\left(\varkappa_{0}\right)$
c.). If two angles are congruent, can the size of one, be. larger than the size of the other? (n_{0})

Summary

The examples above show:

1. The size of one angle is smaller than the size of a second angle:

a) If the angles have one ray in common, and a point on the other ray of the first angle .lies in ${ }^{\prime}$ the interior of the second angle. .
b) If a point on each ray of the first angle lies in the interior of the second angle.
2. Congruent angled have the same size. .

Exercise Set 10.

1. a) Trace \angle RS… Choose a point
in the interior of <RST.
Call this point, W. Draw $\overrightarrow{S W}$.
b) Compare the size of "ERST? with the size of '/RSW:

 With the size of "ZWST.

2. a). Trace $\angle X Y z ̇$ and point- K. : Point K is in the $($ interior $)$ of $\angle X Y Z . ~ D r a w ~ \dot{\overrightarrow{Y K}}$.

 \because
 and $\angle X Y Z$. (in a jo of $\angle K Y Z$ is anele. the the
3. a) Cut along $\overrightarrow{Y X}$ and $\overrightarrow{Y Z}$ and tear along the jagged curve. Fold ald ing $\overrightarrow{\mathrm{YK}}$. Does $\overrightarrow{\mathrm{YZ}}$ fall along $\overrightarrow{\mathrm{YX}}$? $\left(x_{0}\right)$ b) Is $\angle X Y K \cong \angle K Y Z ?\left(\mu_{0}\right)^{-}$.
4. In the interior of $\angle 4 X X$ place a point N near Z^{\prime} and draw $\overrightarrow{Y N}$. ${ }^{\circ}$ Pod along, $\overrightarrow{Y N}$. Which has' the larger size, 〈XYN or $\dot{\text { MY Z }}$? $:(\angle X Y N)$,
5. Draw, an`angle. Name it $\angle M P R$. ' Choose. a point (fall it. S) so that you can be slue the size of LSPM is smaller than the size of ¿ $\angle M P R$. Where did you place S ? (s clued he placed is till intros of LAPR.)
6. Using the angle of exercise 5, choose a point (cali it T) iso you scan be sure that the size of $\angle T \mathrm{~T} \mathrm{M}^{\prime}$ is larger . . than the size of /MPR. Where did you place T? (4 Tisphad

7. a ${ }^{\text {min point }}$ D

- $\angle \mathrm{BAC}$ shown in this figure? (gm)
b) Is it' in the interior of $\angle A B C$? (you) of $\angle A C B ?\left(g^{\prime}-2\right)$

8. a) Is E in the interior of $\angle A C B$ shown in the figure? (yin)
b). Is it in the interior of $\angle B A C ?\left(X_{0}\right)$. of $\angle C B A ?\left(x_{0}\right)$
9. a) Draw $\triangle A B C$; and label a point D as in the \because previous sketch. Then draw $\overrightarrow{A D}$.
b) What two angles are smaller in size than $\angle C A B$? ($\angle C A D$ and $\angle D A S$).
10. a). Draw a $\triangle A B C$ and label a point E as in the sketch above ~ Draw, $\overrightarrow{B E}$.
b) What angle of $\triangle \dot{A} B C$ is smaller in size than - $\angle \mathrm{EBC}$? ($(\angle A B C$)

Angles Without a Common Ray

Exploration

You know how the sizes of two angles are compared when the two angles have one ray in common, or when the rays (except for the vertex) of one are in the interior of the other. How shall we compare the sizes of two angles which are not placed in either of these ways?

1. Copy CDER, by tracing it on thin paper. Copy the letters, too.
2. a) How should the rays of $\angle D E P$ be placed on $\angle A B C$ to compare the sizes of the angles? Yo o may want $\overrightarrow{B A}$

b) Is there more than one way to place UDEF in order to compare its size with that of $\operatorname{lABC?~(yen,~see~the~}$
3. How do the sizes of $\angle A B C$ and $\angle D E F$ compare?

Exercisé Set 11 -

1. "Trace $\angle \mathrm{CAB}$; on thin paper. . Then compare the size of. $\angle C A B$ with the size of each angle below.

(Jh sige of $\angle C A B$ os larger thith ang of $<E$.)

(the cyje of $\angle C A B+$ hargor then thesi of $\angle G$.)
 then the aysif $\angle F$.).

(Ih aris of $\angle C A B$ is emath then arie of $4 . J$.)

(16 sizi $\gamma_{3} \angle C A B$ longerthan theajif $1(K)$

Using the Congruent Angle Construation

Exploration

You know how to construct an angle congruent to a given angle, and you know that congruent angles have the same size. Can'you use what you know to compare the sizes of two angles, no matter what, their positions?

1. a) Look at $\angle A B C$ and $\angle D E F$. Where should. $\angle D E F$ be copied,so as to compare the sizes? What point.should you use as vertex?
b) What ray should you use as one side of the copy?

2. a)'. In the figures, $\angle A B G$ was constructed congruent to (DEF, so they have the same size. What angles can we compare now? ($\angle A B G \cdot a+A B C$)
b) What does this tell us about the sizes*" $0 f^{\circ} \angle A B G$

3. a) In what other position could be copy $\angle D E F$ to compare its size with, the size of $\angle A B C$? Could we use some point other than. B as vertex? $\left(\chi_{0}\right)$
b) Could we use a ray different from $\overrightarrow{B A}$ as er side? (yen, $\overrightarrow{B C}$ cold he \ldots)
$\succ \infty$) Could the comparison be the same? (yea)
4. a) Could we copy $\angle A B C$ instead of $\angle D E F ?$ (yea)
b) If so, what point should be the vertex? (E).
c) What ray should be a side? $(\overrightarrow{E O} \sim \overrightarrow{E F}$
'Exercise Set 12
I. Copy $\angle A B C$ and $\angle D E F$ by tracing them on thin paper: Use your compass and straightedge to construct an angle congruent to . DEFF so you can compare the sizes of the angles.

(He agio $\angle \dot{D E F}$ en larger then the as j f $\angle A B C$.)

5. Compare the sizes of $\angle R S T$ and. $\angle P Q R_{1}$.

(The sizas ano the same. Zlat: $\angle R S T \cong<R Q P$.)
6. Compare the sizes of $\angle A B C$ and $\angle \mathrm{MTS}$. (the aige of $\angle A B C$ is analar the. the iyg of $\angle M T S$.)

When "you' understand" what is meant by "The size of $\angle A$
is larger than the size of $\angle B, \prime "$ and what is meant by $\cdot \angle A \cong \angle B, "$ you can often tell by looking at two angles which has the larger sifze. You can also.tell whether they may be congruent.

Exercise Set 13

Compare the sizes of $\angle A$ and $\angle B$ in each pair below.
If you. cant decide which'is larger, trace one angle on thin paper and place the tracing on the other angle, or use your, " compass and straightedge to construct congruent angles.
1.

(The aye of $\angle A, \log$ the th $\operatorname{sig} \frac{6}{6}<B$.)

.
 ($41 \underline{1} \pm 8$)

- 4.

5.

(the size of $\angle A$ is smaller: the the rise of $4 B$.)

In the figures below, $\angle A$ and.$\angle B$ are angles of triangles or angles of other polygons. In each figure, compare the sizes of $\angle A^{\circ}$ and. $\angle B$ as you dy d in Exercises it to 5.
6.

(Th aye of $\angle A$ is longer then the ne of $\angle B$.)
8.

(He ese of $L A$ is small then the ago $f(B$.)
10.
7.

(These of $\angle A$ in harper the the size of $\angle B$.)
9.

(Il as o fo $\angle A$ is lager then the ins of (B.)

11

(Thane of $\angle A$ is sealer the then is of (B.)

$(\angle A \cong B C B)$

SUGGESTED TEST ITEMS

- These sample test questions age meant to serve as suggestions for types of items which the teacher may want to include in a unit test.

1. Choose the item from Column 2 that matches each itemin column 1. Write the word in the space provided.
A. Matching Symbols

- Column 1
$\left(\frac{\text { triangle }}{}\right) \Delta$

$1 \cdot(\text { segment })^{\text {DE }}$
 (hive) ${ }^{\text {d }}$ (aches that $) ~ a<b$

B. Matching the word with the sentence that describes it.
(entraceles)
A triangle with only two

1. angle sides. that are congruent
(ene) A connected part of a circle (angle). A set of points of two rays which have a common endpoint and which do not lie in the same straight line
(scielen) A triangle which has at least two sides which are congruent to each other
(Aegreat) A part of a line which : includes two endpoints and all points of the line between them
(ventesk) The intersection of two sides: of a triangle,
(equilatued) A triangle which has three angles, each congruent to the other two
(eviele) The set of points in a plane all of which are equidistant from a given point.
2. Choose the pains of figures which' appear to be congruent.

- (b)

(i)

(m)

(g)

(n)

(d)

(h)

(p)

3. Suppose we know that $\triangle P Q R \cong \Delta S T W: \therefore$
a) List the corresponding vertices
b) List the corresponding sides.
$($ Paid 8) $($ Qaud T) (Rand Yo)
$\left(\begin{array}{l}\hat{P Q} \text { aud } \overline{S T} \\ \overline{Q R} \text { aid } \overline{T W} \\ \frac{R P a r e d i}{W S}\end{array}\right)$
4. Suppose we know that $\triangle C D E \cong \triangle$ FGH. List the congruent angles.

$\left(\begin{array}{l}\angle D C E \cong \angle G F H \\ \angle C E D \cong \angle F H G \\ \angle E D C \cong \angle H G F\end{array}\right)$
j. a) Suppose you hay eu two triangles, $\triangle A B C$ and $\triangle D E F$. All you know about them is that $\overline{A B} \cong \overline{E F} .+$ Can you be certain that the two triangles are congruent? (x_{0})
b) Suppose you have two triangles, \triangle RST and $\triangle X Z Y$. All you know about them is that
$\overline{\mathrm{RS}} \cong \overline{\mathrm{XZ}}$,
$\overline{\mathrm{ST}} \cong \overline{\mathrm{ZY}}$, and
$\overline{R T} \cong \overline{X Y}$.
Can you be certain that the two triangle are congruent?
c) Suppose you have two triangles \triangle GHI and \triangle JKL. "All you know about them is that
$\overline{H I} \cong \overline{K J}$ and
$\overline{G I} \cong J$.
Can you be certain that the two triangles are congruent? 770 .
d) Suppose you have two triangles, $\triangle M N O$ and $\triangle P Q R$. A All you know about themis' that

$$
\begin{aligned}
& \angle M \cong \angle P \\
& \angle N \cong \angle Q, \text { and } \\
& \angle O \cong \angle R
\end{aligned}
$$

can you be certain' that the two triangles are congruent?
e) Suppose you have .two triangles, \triangle STU and \triangle VWX. All you know about them is that
S corresponds to V,
T corresponds to W, and
U corresports to X.
Can you be certain that the two triangles are congruent?
6. Choose the situations which you think best illustrate the use of the ${ }^{i}$ idea of congruence.
a) Lining shelves" of a dish closet with paper.
b) Covering living rom floor with wall-to-walf carpeting.
c) Enlarging a photograph..
d) Fitting a coffee table with a glass top:
. 7. Use your compass and. straightedge to copy $\overrightarrow{A B}$ on $\overrightarrow{A C}$ ' so -that A is one endpoint of the copy.

393

$$
403
$$

8. Point ' 0 ' 1 's the center of the circle bf which MP is an arc. Use only your straightedge to draw three' line segments of the same length in this figure.

9." Use your compass to find four different pairsjof congruent segments in the figure. List. your answers.

9. Complete the following sentences to compare the sizes of angles: Uss "larger than," "smaller 'than," or "about-

10. The size of $\angle A$ is (fuentes thar) the size of $\angle C$. ?2. The size of $\angle B$ is (smeslesthan) the size of $\angle E$. 3. The size of $\angle C$ is (smellentiter) the size of $\angle F$. ,
11. The size of $\angle E$ is (afrit theresa) the size of $\angle C$.
12. The size of $\angle A$ is (swallesthan) the size of $\angle F$.
13. The size of $\angle D$ is (liggenthac) the size of, $\angle B$.
14. The size of $\angle E$ is (breallenthan) the size -on $\angle A$.
15. The size of $\angle B$ is (tuallenthan) the size of $\angle C$.
16. Bob is at the top of a lighthouse. He sees two ships C and D as shown below. A, C, and D are on the same line.

Is the size of $\angle A B D$ greater than, less tisan, or the same as the, size of $\angle A B C$?
(The singe of angle $a B, O$ is greater than the size of lug he $a B C$)
12.' a) Use compass and straightedge. to show that the size of : $\angle A O B$ is smaller than the size of . $\angle B O C$.
b) Use compass and straightedge to show that the size of $\angle B O C$ is larger than' the size of ¿ DOC.

13. Use your compass and straightedge to make a copy of $\triangle A B C$.on your paper:
14. Use your compass and

15: Make a triangle, whose sides have measure's, in inches op.
 two rider of a triangle nut the quester then the
16. Use your compass and straightedge to copy son your paper.
17. Use your' compass and straightedge to copy • $\angle A$ so that the copy has point D as its vertex; one side shall be $\overrightarrow{D E}$ and the interior of the angle shall be below. \leftrightarrow.

Chapter 5

EXTENDING MULTIPLICATION AND' DIVISION II
gURPOSE OF UNIF
The purpose of this unit is to help pupils become more proficient in multiplying and dividing using large numbers. MATHEMATICAL BACKGROUND

The mathematical background for this unit is presented in Chapter 3.

TEACHINO THE UNIT

This chapter is organized in the following way:

1. There are teaching suggestions and explorations which appear only.in the teacher's oommentary.
2. There are summariés and explorations which appear only in the pupil text.
3. There are pupil exercises to be done independently
It is "recommended that whenever exploration sections appear in the commentary, these should be followed before. work is done with pupils on the material in the pupil text

4
The explorations in the pupil text are designed to servie as guides to pupil discovery. They are to be read and discussed by teacher and pupils. It is essential that teachers be thoroughly familiar with the teaehing suggestions, which usually precede the explorations, as well as the explorations themselves before lessons are.undertaken.

In those few instances where additional teaching suggestions are not given, it is recommended that the teacher fake time to consider what possible questions or difficulties might arise in his particular class.

The development and utilization of shortened forms In the 'division procesis is probably more individual than many other skills which pupils acquire. Therefore, the teacher must be particularly alert to the thinking \.
of his pupils. He must be ready to offer leading questions especially in relation to multipl 4 , "place vaiue, and "helpers" to aid children.in their own discoweries.

- It should be emphasized that pupils shorten their woik only to their level of understanding. Pupils should not be encouraged to adopt shorter procedures they are nat able to comprehend. On the other hand $\&$ when a pupil evidences that he is "able to shorten his work with understandingi; he should be encouraged to do so.
"It must be recognized that some pupils may not be ready to strorten their work as quickly as : others during the course of this chapter. Such pupils should not be forced tó do so at this time: Rather, they are to be encouraged throughout the rest of the year to shorten their work as they become able.

Maintenance and improvement of techniques of divibion must not be neglectied after the conclusion of this unit; rather, they must be continued throughout the fifth and sixth grades:

$$
\begin{aligned}
& \begin{array}{cccc}
& \ddots & \cdots & \ddots \\
\ddots & \ddots & \ddots & \ddots \\
& \ddots & \ddots & \ddots \\
& \ddots & \ddots & \ddots
\end{array} \\
& \text { Objective: T To help pupils become more proficient in } \\
& \text { multiplying using large whole numbers } \\
& \text { Teaching Suggest } \ddagger i \text { ans: } \\
& \text { H. } \quad \text { In this chapter pupils learn that a } \\
& \text { knowledge of place value affords a shorter } \\
& \text { and more efficient algorism for multiple- } \\
& \text { cation. } \\
& \text { - As an introduction to this chapter, } \\
& \text { review multiplication as follows. Compare } \\
& \text {.the two forms only if pupils need the } \\
& \text { review. Pupils who are not using a short } \\
& \text { form should be encouraged to do so. Yet, } \\
& \text { the longer form or modification of it may } \\
& \text { be more'desirable for individual pupils. }
\end{aligned}
$$

Examples like the ones below some-"
times offer unexpected problems to
children. For this reason, some like
these should be included during an^{-}:...
exploration lesson.
40×346,
43×370,
82×409, etc.

These examples may be worked in different ways according to the level of achievement of the pupils.

After review, extend the scope of multiplication examples to include la'rges numbers. Such exercises. as

$$
\begin{aligned}
& 542 \times 836 \text { and } \\
& 56 \times 9578
\end{aligned}
$$

should be worked together by pupils and teacher.

Attention should be given to the way in which partial products are obtained.

Before assigning Exercise Set l, read and discuss with pupils the section entitled Multiplying Large"Numbers in the pupil text:

After Exercise" Set 1 has been completed, read with the pupils the section entitled Multiplying Larger Numbers. Children then should be able to complete Exercise Set 2 independently.

MULTIPLYING LARGE NUMBERS

- In Chapter 3 you learned how to find the product of two numbers. Now we want to find shorter ways to find these products.' Let's look at these multiplication examples:

Explain how to get each of the partial products in the shorter form of these examples.

Exercise Set 1

Use $\underset{\uparrow}{a}$ vertical form to compute the following.
r $1 \therefore 86 \times 923(79,378)$
11. $625 \times 834 \quad(521,250)$
\square
2. $48 \times 654(31,392)$
12. $658 \times 762 \quad(501,396)$
3. $57 \times 874(49,818), \quad$ 13. $846 \times 648(548,208)$.
4. $473 \times 52(24,596 . \quad 14.607 \times 546(331,422)$
5. $36 \times 504,(18,144) \quad 15.971 \times 356(345,676)$
6. $56 \times 780(43,680)$ 16. $656 \times 750(492,000)$
7. $68 \times 5346-(363,528) \quad 17.720 \times 856-(616,320)$
8. $76 \times 3498(265,948)$
18. $384 \times 507(194,688)$
9. $4038 \times 79 \quad(319,002)$
19. $834 \times 720 \quad(600,480)$
10. $57 \times 7239(412,623) \cdot 20.34 .5 \times 637(219,765)$

Use mathematical sentences to help solve the following problems. Express each answer in a complete sentence.
21. There are 64 rows of seats in the auditorium.

There are 45 seats in each row. How many people can be seated in the auditorium? $\left(\begin{array}{c}64 \times 45=2 \pi \\ n=2,880 \\ 2,880 \text { page cen be acted } \\ \text { in anditrinem. }\end{array}\right)$
22. John kept a record of how much gasoline his family
) car used on their vacation last summer. They used 167 gallons. If they can travel 18 miles on. each gallon of gas, how many miles did they travel during their vacation? ($18 \times 167=0 n, n=3006$ they traveled 3006 miles during their vacation.)
23. A brick wall is 126 bricks long and 42 bricks high. How many bricks are there in the wall? $(42 \times 126=A, \quad n=5,292$ there are 5292 brice in the wall. $) \quad$.
24. If 76 nails are used in making a shoe, how many nails are needed to make- 23° "pairs of these shoes?

25. A helicopter makes a round trip of 102 miles three times daily to collect and deliver main in the San

- Francisco Bay area. How many miles -does it travel In a year? (Note: Use 365° days.)

MULTIPLYING LARGER NUMBERS
Example $1:$
Multiply 4365 and $\cdot 7439$.
.7439
$\begin{array}{r} \\ \times 4365 \\ \hline\end{array}$
$37195:$
446340
2231700
29756000
32471235
How many partial products are there in this example? (4)

Example 2:
Multiply 5063 and 8309..
c

Notice that there are only 3 partial products in this i. example. Explain how each of these partial products was obtained.

Multiply the numbers in the following example and compare the product with the product in example 2.

5063
$\times 8309$ -

Exercise Set $?$

Use a vertical form to find the product of each of these pairs of numbers.

- i. 537 and $4372(2,347,764)$ 1,1. 35^{142} and $4673(16,551,766)$

2. 200 and $317(63,400)$ 12. 234 and $3112(728,208)$.
3. 96 and $897(86,112) \cdot 13,909$ and $673(611,257)$
4. 4569 and' $5007(22,876,983)^{3} 14.231$ and $706(163,086)$
5. 957 and $8060(7,713.420)^{\prime}$ 15. 3570 and $4987^{\prime}(17,803,590)$
6. 357 and $892(318,444)$ 16. 8971 and $6173(55,377,983)$
7. 5430 and $59(4,012,770) 17.2003$ and $2131(-4,268,393)$
8. 709 and $5080(3,601,720)$ 18. $3672^{\circ} \cdot$ and $4819(17,695,368)$
9. 101 and $523(52,823)$ 19. 8080 and $5599(45,239,920)$ 10. 3586 and $367(1,316,062)$ 20. 2712 and $3486(9,454,032)$

Use mathematical sentences to help solve the following problems. Express each answer in a complete sentence.
21. . A cab driver makes many trips to and from a large city airport. He drives about 315 miles a"day. About how many miles does he drive in 28 days?

$$
\left(\begin{array}{c}
28 \times 315=n \\
n=8,820
\end{array} \text { le drives } 8,820 \text { miles en } 28 \text { days. }\right)
$$

22. A grapefruit orchard has 32 rows of grapefruit t trees with 45 trees in each row. How many trees. are there In the orchard? $\left(\begin{array}{c}32 \times 45=n \\ n=1440\end{array}\right.$. There are 1440 thees in tit ordaril.)
23. A jet plane travels 485 miles per hour on the average. or One month it is flown 114 hours: If that is an": average month, how many miles is it flown in a year?. $\left(\begin{array}{ccc}114 \times 485 \times 12=n \\ n=663,480 & \text { or } \begin{array}{c}114 \times 485-b, 290 \times 12=n \\ n=663,480\end{array} & \text { the plane in flem en } 663,480\end{array}\right)$
24. The Lincoln family spent $\$ 224$ for an 8-day trip. If they spent the same amount each day, how much

25. There were 103 passengers on a jet, plane going from New York to Toronto. Each passenger was allowed to take 66 pounds of luggage without charge. If each. passenger took the full amount, how many pounds of free luggage were carried? $\left(\begin{array}{l}66 \times 10^{\prime 3}=n \quad 6,798 \text { pounder of free luggage ave carried. } \\ n=6798 .\end{array}\right.$ 407

Objective: ‘To develop a shorter form for multiplying

Teaching Suggestions:

At this time it might be wèll to call attention to a way of shortening the form of recording partial products.

Put several examples on the chalkboard and ask pupils to discover a shorter way which has been used to record the partial products. As in the earlier development, pupils should not be given a rule but should be led through examples to discover one for themselves, al though they may not be able to verbalize it precisely. Neither should all pupils be expected to arrive at the same, level of achievement at the same time course, pupils should be encouraged to useshorter forms as soon as they appear ready for them.

You may wish to use such examples as the folloging:

A SHORTER FORM FOR MULTIPLYING
Study the following expamples. See what has been done to shortdn the way we record the partial products. Why can we do this?

Example 1:

5476
$\times 3528$
43808
109520
2738000
16428000
19319328

Example $\cdot \underline{2}$:

439
$\times 605$
2195
263400

Exercise Set. 3

Use a vertical form to find the product of each of these pairs of numbers:

1. 47 and $63(2,961)$ 11. 25 and $2359\left(58,975^{\circ}\right)$
..
2. 92° and $78(7,776) \quad 12.465$ and $750(348,750)$
3. 478 and $356(170,168)$ 13. 3049 (and $4340(13,232,660)$,
4. 4234 and $6209(26,288,906) 14.89$ and $76(6,764)$
5. 465 and $688(319,920)$ 15. 7294 and $-325(2,370,550)$

ह. 407 and $629(256,003) \quad 16.56$ and $1289(74,762) \cdot$
7. 634 and $6070(3,848,380)$ 17. 73. ard 496 (36, 208) 8. 97 and $401(38,897)$ 18. $20 \overline{7}$ and $639(132,273)$
9. 392 and $847(332,024)$ 19. 36 and, $74(2 \times, 664)^{\prime}$.
10. 54 and $286(15,444)$ 20. 66 and. $247(16,302)^{2}$

EXPPESSING NUMBERS TO THE NEAREST MULTIPLE OF TEN
Objective: To develop skill in expressing numbers to the * nearest multiple of 10

Teaching Suggestions:
Expressing numbers as multiples of 10 and
100 is useful in dividing by iarger numbers.
Al though there are several techniques for ex-
pressing numbers as mulitiples, only one technique
is used throughout the unit. .

The number line is a helpful visual aid, therefore it is used throughout the exploration. You should have a number line with points labeled from 20 through 50 on the chalkboard before the lesson begins.

It is important that children be led to discover a way to determine the nearer multiple of 10 to any number. The development of formal rules should be avoided because it. " frequently leads to rote learning rather than understanding.

Exploration: Look at the number line on the chalkboard.

Find 28 on the number line. Is it closer to 20 or 30? (30) If you were asked to express . 28 . to the nearer multiple of io, would you choose 20 or 30 ? (30) Why? (28 is nearer to 30 than 20 on the number line,)

Find 37 on the number line. Is.it closer to 30 or 40? (40) If you were to express 37 to the nearer multiple. of 10 , would you choose 30 or 40? (40)

Is 24 . closer to 20 or to 30 ? (20) How should 2^{4} be expressed to the nearer multiple of 10 ? (20)

Consider the points shown from 20 through 30. If we were to choose the nearer multiple of 10 to $21,22,23$, or 24, what number should we choose? (20) If we were to choose the nearer multiple of 10 to $26,27,28$, or 29 , what number should we choo"se? (30)

What about 25? Is it closer to 20 or, 30 ? (25 is the same distance from 20 as from 30.)

How can we choose the nearer multiple of 10 to 25 ?. Should we choose 20 or 30° ? (we don't know.)

Except when we Have 5 in the ones: place, it.is easy to see the nearést multiple of 10 to a number on the number line. How can we know the nearest muitiple of ten to a number when we have no number line? Is there \dot{a} way to discover, quickly the nearest multiple of 10 to any number?

[^1]
,

Let's find how well we can use our new way to find the nearest multiplemof 10 to a number. What is the nearest multiple of 10 to 42 ? (40) to 56 ? (60) to 75 ? (80) to 49 ? (50) to 15? (20)

Consider 144. What number would we use as the nearest multiple of 10 to 1442 , Should it be 140^{3} or 150? (140) Why? (If we had a number line, 144 is nearer to 140 than 150.) Do you think the way we found the nearest multiple of 10° earlier will help us with numbers like 144 ? (Yes)

What is the nearest r multiple of 10 to 279? (280) to 345 ? (350) to 572 ? (570).

Read and discuss with the pupils the section in the pupil text entitled Expressing Numbers to the Nearer Multiple of Ten. If you feel that additional practice is necessary, provide other oral qr written exercises.

EXPRESSING NUMBERS TO THE NEAREST MULTIPLE OF TEN

We have used a number line to help us see that:
53 is nearer to 50 than 60 .

- 58 is nearer to 60 than 50 .

We have discovered a way to find the nearest multiple , of 10 to a number without using a number line.

What is the nearest multiple of 10 to each of these numbers?

EXPRESSING NUMBERS TO THE NEAREST MULTIPLE OF ONE HUNDRED Objective: To develop skill in expressing numbers to the: nearest multiple of 100
Materials: "A number line numbered 100 through 200 Exploration:

Look at the number line on the chalkboard.

$\stackrel{100}{4}$| | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Find 160 on the number fine. Is it nearer to 100 or 200?" (200) What number would we use as the nearer multipl of 100 to 160 ? (200)

Find 125 or the number line. Is it nearer to 100 or 200? (100) What number should we choose as the nearer multiple of 100 to 125? (100) How could we find these multiples if we did not have the number line? (Ve could work with multiples of 100 just as we did with multiples of 10 only now we look at the tens' place of our numeral.)

Is 150 nearer to 100 or 200?. (It is half-way between them.)

When we were finding the nearest multiple of 10 to numbèrs like 45, 65, 125, etc., what did we do? (He agreed to choose the higher multiple when the number was half-way between the two multiples.)

What shall we do here? (Lèt us again agree to choose the next higher multiple of 100.)

What shall, we choose for 150? (200) 350? (400)

What is the nearest miltiple of 100 to each of these numbers?

EXPRESSING NUMBERS TO THE NEAREST MULTIPLE OF ONE HUNDRED

We have used a number line to help us see that:
142 is nearer to 100 than 200:
167 is nearer to 200 than. 100 .
We have discovered a way to find the nearest multiple of 100 to a number without using a number line.

What'is the nearest multiple of 100 to each of these numbers?

DIVISION

广

Objective: To help pupils become more proficient'in dividing using large numbers

Teaćhing Suggestions:

The exploration in the pupil text reviews the language and techniques of division. Increased emphasis is placed on the importance of place value in using shorter forms. At the end of the review, it is suggested that pupils try to find a still shorter way of dividing writing only the quotient and remainder. Encourage children to shorten their work. not tell them at this time. With understanding, children can develop short cuts on their own.

Read and discuss Review of Division in the pupil text. If some pupils cannot shorten their work readily, reassure tham that they will receive help later in the chapter. Do not dwell on a shorter form at this time; . rather, be supportive.

- REVIEW OF DIVISION

Exploration

In Chapter 3 we learned about a shorter form for dividing. The boxes below show several forms for dividing 836 . by 6.

Longer Forms

When 836 is divided by 6, what is the quotient? What is the remainder?

Find a mathematical sentence that tells us that when we divide 836 by 6 , the quotient is 139 and the remainder is 2 .

We may say that 100 and 30 and 9 are parts of the quotient. Using place value, explain how the shorter form tells us this.

In this chapter we are going to learn about dividing by larger numbers. We al§o will learn things that can help us become more skillful when we divide.

Can you find a short way to divide 928 by 6 so that you need to write only the quotient and remainder?

If you cannot discover this short way of dividing, this chapter will help you with it later.

Exercise Set 4

For each of the following, divide the first number by the second.. Write a mathematical sentence to describe the result.

1. 579 by 8

$$
579=(72 \times 8)+3
$$

7. 4758 by 9

$$
4758=(528 \times 9)+6
$$

8. 1690 by 5

$$
1690=(338 \times 5)+0
$$

9. 5670 by 6

$$
5670=945 \times 6
$$

10. 3549 by 5

$$
3549=(709 \times 5)+4
$$

11. " 5535 by 7

$$
5535=(790 \times 7)+5
$$

12. 6572 by 8

$$
6572=(821 \times 8)+4
$$

Teaching Suggestions:

Throughout the remainder of this unit, consiäerable exploratory material has been included in the pupil book. It is important to follow the development carefully. Note that much of it is done by raising questions. These are not necessarily all of the questions that need to be asked about the examples. Indeed, you may need to ask many additional questions. It is hoped that pupils by thinking, discussing, and computing will develop insight into the process.

Essentially, the intent of this unit is to guide through inquiry, rather than to achieve rote learning.

DIVIDING BY NUMBERS GREATER THAN 10 and Less than 100

Exploration

Let us divide 859 by 23. First, we will use one of the long forms. After we do this, maybe you can see how we cap use a shorter form.

A. . Will the quotient be at least 10 ? (yen, bereave $23 \times 10=230 \mathrm{ad}$ 230<280.) Will the quotient be as great as 100 ? (x, tevere $23 \times 100^{\circ}=2300$ and $2300>00 x$)

What does this information tell us? (1 pos tent in il great then 10 bet run then 100.)
B. We can use multiples of ${ }^{\circ} 10$ to help us find part of the quotient. "
What are the multiples of 10° that are less thar, $\left.100 ?, 20,30, \ldots, 90\right)$ 'We try to find the largest multiple of io that will be part of the quotient.

What is 10×23 ? (230) What. is $30^{\circ} \times 23 ?(690)$
\therefore What is $20 \times 23 ?^{\circ}(460)^{\circ}$. What is $40 \times 23 ?(920)$.
Have we found the largest multiple of 19 that will be part of the quotient? (yes) what is it? (30). How do we know that 30 is the largest multiple of 10 that will be part of the quotient? $\begin{gathered}(30 \times 23=690 ; 40 \times 23=920, \\ \text { and } 920>859 .)\end{gathered}$ Now explain the work shown in the boxes near the top. of the page:
$42 \check{~}$
C. Now we will find the remaining part of the quotient.

- How do we know that the remaining part of the quotient . WIll be less than 10 ? $\left(10 \times 23^{\circ} .=230\right.$, and $230>169$.) We try to find the largest number so that that number times 23 will be no greater than 169. What*is it? (7) How did you find that 7 is the largest number to use? (known wintry) - Now explain how the work in the boxes below was completed.

3

- We divided 859. by 23:

What is the quotient? (37)
What is the remainder (8)
Write mathematical sentence that tells us these things.
$[859=(37 \times 23)+8]$
Show how to cheak your work.

Now let us divide 1724 by 67. Two forms for doing this are shown in the boxes below.

Answer these questions, about the division.
How do we know that the quotient must be greater than 10

Mullion of 10 help us find the first part of the quotient 4 How can we find, the largest multiple of 10 to use * as the first part of the gutientr. What is it? (20)

How do we know that the remaining part of the quotient Will be less than 10 ? (Benue $10 \times 62=670$,

How can we find the remaining part the quotient? What is it? (5)

We divided 1724 by 67.
What is the quotient?. (25)
What is the remainder?. (49)
Write a mathematical sentence that tells us these things.

Exercise Set 5

Divide the first number by the second number. Write a mathematical sentence to describe the result.

1. $\left.\left\{\begin{array}{l}604 \\ 604\end{array}\right]=(82 \times 7)+30\right]$
2. 340 by 41
$[340=(41 \times 8)+12]$
3. 2681 by 39

$$
2681=(39 \times(68)+29
$$

4. 2464 by 57

$$
[2464=(57 \times 43)+13]
$$

6. $4090 \cdot$ by 73

$$
[4090=(73 \times 56)+2] .
$$

7. 5136 by 66

$$
[5136=(66 \times 77)+54]
$$

8. 184 by 27 .

$$
[184=(27 \times 6)+22]
$$

9. 6434 by 75° :

$$
[6434=(75 \times 85)+59]
$$

- 10. 51.03° by 88
- $[695=(94 \times 7)+37]$

Use mathematical sentences to help solve the following problems. Express each answer in a^{\prime} complete sentence.
11. It cost $\$ 128$ for a bús to take 32°.fifth-graders to the state capitol'. How much does each pupil have to pay? $\left[\begin{array}{rl}128 & =(3.2 \times 1 n)+r . \text { Each pupil has ti pay } 4.00] \\ n & =4\end{array}\right.$
12. A box holds 24 books. How many boxes will be needed To hold 984 books? $\left(\begin{array}{c}984=(24 \times n)+r \quad 41 \text { bate will be needed.) } \\ 41=n\end{array}\right.$
13. A store had a sale on one model of a bicycle. bicycles of this model were sold for a total amount of $\$ 2,856$. What was the sale price of a bicycle? $\left[\begin{array}{rl}2856 & =(68 \times n)+r \quad \text { The ale price of a bicycle warn } 42 . \\ 42 & =n\end{array}\right.$
14. Jane has 630. stamps that she wants to put into envelopes. If she puts 45 stamps in each envelope, how many envelopes will she need?

$$
\left[\begin{array}{c}
630=(45 \times n)+r \\
14=n
\end{array}\right.
$$

lane will need 14 equelopen.]
15. An automobile is moving at a speed of 28 feet per second. How many seconds will it take ito to. move 980 feet? $\left[\begin{array}{ll}980=(28 \times n)+r & \text { it will take the andsuabute } \\ 35=n & 35 \text { seconder to move } 980 \text { feet. }\end{array}\right]$

FINDING SHORTER WAYS OF DIVIDING

Teaching Suggestions:

This pupil exploration contains several shortened forms. Depending upon your class, you'may wish to emphasize only part of it at this time. There is some advantage, however,
$\therefore \quad$ for pupils to have several shortened forms before them. Because developing a shorter form varies with the individual, the display, of several forms suggests various possibilities to children.

Throughout the work try to encourage pupils to select the one form that they understand best and then concentrate on it. Children should not be expected to have equal mastery of all shortened forms. 'They should shorten their work only in-so-far as they understand it.

In this-lesson, it will be profitable to write on the chaikboard examples similar to those in the pupil exploration. You may wish to begin by showing either form I or Form II (whichever your class has used), and comparing it with Form A. When this comparison is made, the work should be put on the board as the discussion unfolds. This catises pupils to focus more directiy" on the topic under discussion. . •

As seemg - divisable, continue comparing the other forms. Remember, it is not expected that all children will attain the level of skill needed for Form C. For some children, the introduction of Form C may need to be delayed until later. In any event, this'exploration is one to which you may want to return frequentiy.

When children are asked to explain the work in examples, the may need. to be guided by leading questions proviged by the teacher. Such questions should erve to emphasize the importance of place value.

- FINDING SHORTER WAYS OF -DIVIDING .

Exploration
Let us think about dividing 836 by 6 .
We have learned how, to, shorten our work from either one of the two forms at the left to the one at the right.

We divided 836 by 6.
What is the quotient? ($13^{\prime 9}$).
What is the remainder? (2)
What mathematical sentence tells us these things?

$$
[836=(6 \times 139)+2] .
$$

Explain how we used place value to shorten the writing of the quotient numeral in the form at the right.

Now let us see how we can shorten our work' even more.

We have. used place value to help us shorten the writing of the quotient numeral. In the form at the right we also use place value to help us shorten other parts of our work.
.How did we use place value to shorten the writing - of $600 ?^{\circ}$ (We unduratol that 6 mort ten in th hundiado peopection:
-. How did we use place value to shorten the writing of 180 ? (We conducted tit 18 tamis ed asmaso180.)

Why is 54 . written the same way in both forms?
(Became the is the only urey w ea inti 54 ores ∞).
a single rumal.

Can we shorten our work even more than we have already? Look at the forms below.
A.
$6 \longdiv { 8 3 6 }$
$\frac{6}{236}$
$\therefore \quad-\frac{18}{56}$
$\therefore \frac{54}{2}$
B.
$6 . \longdiv { 8 3 6 }$

$6 \longdiv { 8 5 0 ^ { 5 0 5 } }$
:
\because

In Form B, explain how y au could use each of these "helpers", along with place value, to work the example. When dividing the hundreds, think:
$8 \div 6$. The quotient is 1 ; the remainder is 2. :

When dividing the tens, think:
$23 \div 6$. The quotient is 3 ; the remainder is 5.
i. When dividing the ones, think:
$56 \div 6$. The 'quotient is 9 ; the remainder is - 2 :
Could you use these same "helpers" with Form 'ci (Ye Explain. What does "ri" mean in Form co (r ? men me have maidu of 2 .) If you have a good memory, you don't even hake to write". the (2) and the (5) in Form C. If you remember them, all you need to write is the quotient and the remainder:
.

Let us study together three forms of dividing for the example, $1670 \div 7$.
A.
E.
∞ C.
238°
238
$7 \longdiv { 1 6 7 0 }$
$. 7 \longdiv { 2 3 8 }$
$\frac{14}{270}$
$\frac{21}{60}$
0
$\frac{14}{27}$
$\frac{56}{2} \cdot$
$\underline{21}$
$\therefore 60$
$56 \cdot$
\square
\because
\because
Explain how you couldrase each of these "helpers", along with place value, in forms, ' B ' and ${ }^{\circ} C$.

When dividing the hundreds, think: .
$\lambda!\quad . \quad \dot{\sigma} \div 70$. The quotient if 2 ; the remainder is 2 ,
When djvidingrthentens, think:
$27 \div 7$. The quotient is '3; the remainder is 6 .
When dividing the ones, think:
$60 \div 7$. The quotient is . 8 ; the remainder is. 4.

Exercise Set 6

- Find each quotient and ${ }^{d}$ remainder using the shortest form you can.
i. . $3 \longdiv { 2 6 }$ ri"

9. $7 \cdot \frac{1321}{9250}$.
10. $4 \longdiv { 2 3 } { } ^ { 2 5 } { } ^ { 3 }$
11. $5 \longdiv { 1 8 } r ^ { 9 2 }$
12. $\quad 2 \longdiv { 9 5 }$ r.
13. $7 \longdiv { 1 3 1 } { } ^ { \text { r } }$
14. $8 \sqrt{123}$
7.. $6 \sqrt{2222} r^{2}$
8.) $9 \longdiv { 1 4 5 7 } r 4$
15. $. 4 \longdiv { 2 3 6 3 } r 3$
il. $3 \longdiv { 2 } \sqrt { 2 8 7 4 } \times 2$
16. $5 \longdiv { 9 } _ { \frac { . 1 9 2 4 } { 9 6 2 0 } }$
-13. $6 \longdiv { 1 4 0 4 } \cdot \frac { 1 4 2 7 } { 8 4 2 7 }$
$. 1 4 . 8 \longdiv { 1 2 1 0 4 } { } ^ { 9 6 8 3 4 }$. ${ }^{2}$.
17. $: \frac{6636}{\frac{26547}{2}}$ r.

Note that remainders are written "by the quotients, only because the work is not shown. Whenever pupils show their work, the remainder should be found in the usual position in the algorism.. In most exercises, the pupils 'work should appear'in this fashion.

USING SHORTER FORMS WHEN DIVISORS ARE MU!TIPLES OF TEN

Teaching Suggestions:

This exploration closely parallels the preceding one in which the work with divisors less than 10 was'shortened. Again you may find it desirable to work and compare some examples on the chalkboard. The following is a suggestion.

Example:

Form A		Form B			Form C
211		211			211
$4 0 \longdiv { 8 4 7 9 }$		$4 0 \longdiv { 8 0 7 9 }$			8479
8000		80			80
479		479	-		47
400		40			40
79		79			79
140	1	40			
39		39			

Questions such as the following should Be asked:

How' do we use place value to shorten the writing of 8000?

Hodo we use place value to shorten the writing of 400 ?

Why is 40 . written the same way in both forms?

Explain how we use these "helpers", along vith place value, to work the example.

When diuiding the hundreds, think: $8 \div 4$. The quotient is 2 .
Wheñ dividing the tens, think:

When dividing the ones, think: $7 \div 4$. The quotientis 1.
In Form C, why do we write in the work just 47 rather than 479 ?

USING SHORTER FORMS WHEN DIVISORS ARE MULTIPLES OF TEN

Exploration

Here are some of the ways we can shorten our work when we divide 8469 by 30 .
A.

Here are some the ways we can shorten our work when we divide 9382 by 70 .
A.
B.
c.

1134					134
-70 $\longdiv { 9 3 8 2 }$			1	70	9382
70			,		70
2382	;				238
210					210
282	*				282
280.					280
- 2					2

434

444

Study carefully each set of examples on the preceding page.

What is the quotient and remainder when 8469 is divided by $30 ?^{(2 f 2)}$ Write a mathematical sentence that tells this. $[84696(30 \times 282)+9]$

What is the quotient and remainder when 9382 is divided by $700^{\left(13^{4}\right)}$ Write a mathematical sentence that tells this.

When dividing 8469 by 30, how could you use each of these as "helpers"?
$8 \div 3$
$24 \div 3$
$6 \div 3$

- When dividing 9382° by 70 , how could you use each of these as "helpers"?

$$
9 \div 7
$$

- $23 \div 7$
$28 \div 7$
*

Which form do "you understand best for working each example?

If you gan use a shorter form than the ones given on the preceding page, use the chalkboard to show and explain it to other pupils in. the class.

Exercise Set 7

DIvide. Use the shortest form that you can.

1. $30 \stackrel{\because}{1628} \times 8$
2. $7 0 \longdiv { 9 5 8 6 } \times 6$
3. $5 0 \longdiv { 1 4 9 } \cdot \frac { 1 4 6 } { 7 4 6 } \cdot$
4. $9 0 \longdiv { 3 8 6 4 2 }$ r32
5. $4 0 \longdiv { 9 2 7 4 }$ r34
$9 . 2 0 \longdiv { 3 2 6 } { } ^ { 6 5 1 8 }$
6. $8 0 \longdiv { 1 / 2 } \sqrt { 9 0 0 0 }$
7. $80 \frac{1}{\Gamma^{\prime} 7163} \cdot r^{43}$
8. $6 0 \longdiv { 8 5 6 3 } \times 4 3$
9. $7 0 \longdiv { 5 8 7 2 }$ r 62
10. $2 0 \longdiv { 7 4 5 9 }$ rx
11. $9 0 \longdiv { 8 8 4 2 2 } \times 4 9$

WORKING WITH DIVISORS BETWEEN 10 AND 100

Exploration

We have been working with divisors that are multiples of 10. We have used "helpers" to find parts of the quotient. We can use the same kind of "helper" when working with divisors between 10 and 100.

Here is an example for us to try: ' $975 \div 23$.
Our quotient must be between 10 and, 100 , Why?
Is 23 nearer to 20 or to 30 ? (20)
Since $\cdot 23$ is nearer to 20 , let us use $9 \div 2$ as a "helper" to try to find the first part.of"
 the qutient. For $9 \div 2$, we think " 4 ".

Does the 4 written above the 7 tell us that the first part of the quotient is $40 ?$. Why?
 Can the remaining part of the quotient be as

Now let us use $5 \% ?$ as a "helper" to find the remaining part of the quotient. For $5 \div 2$, we think "r2". Why is the 2 written above the
 5? What is the quotient when we divide 975 by 23? ${ }^{(142)}$ What is the remainder? ${ }^{(9)}$ Is the remainder less than the divisor? (yon)

Does $975=(42 \times 23)+9 ?$ (yan).

The check at the right will tell us.
$-\frac{\frac{46}{9}}{\text { Check }}$

$$
23
$$

4 $2 3 \longdiv { 9 7 5 }$ 920. 55

Check

42
$\times 46$
$92:$
-966"
$\begin{array}{r}975 \\ +\quad .9 \\ \hline 97\end{array}$

447

Now let us try this example; $1939 \div 68$

Our quotient must be between. 10 and 100°.
 Is 68 nearer, to 60 or to 70 (70) Since 68 is nearer to 70 , let: us use $19 \div 7$ as a "helper" try to find the first part of the quotient. For $19 \div 7$, ", think " 2 ".

- Does the 2 written above the 3 tell us that the first part of the quotient is 20 ? (ye) Whys Can the remaining part of the quotient be as -great as 10? Explain. (The remain port of the dining
 Now let us use $57 \div 7$ as a "helper" to find the "remaining part of the quotient.

For $57 \div 7$, think " 8 ".
Why is the 8 written where it is? (B nine sis What is of the numbing port of th dundee sig.) What is the quotient when we divide 1939 by $68 . \mathrm{i}^{(18)}$ What is the remainder? (35)

28
$6 8 \longdiv { 1 9 3 9 }$ 1360 579 544 35

Is the remainder less than the divisor? (yes)

Write the mathematical sentence that goes with this example. $[1939=(68 \times 28)+35]$

Show the check for the work.

Exercise Set 8

Divide. Check your answers..

1. $6 3 \longdiv { \frac { 3 2 } { 2 0 4 2 } } { } ^ { 1 6 }$
2. $47 \frac{20}{} \frac{1}{214} 34:$
3. $3 6 \longdiv { 2 0 1 4 }$ r 34
4. $2 1 \longdiv { 7 4 9 8 } \dot { r } 7$
5. $2 9 \longdiv { 1 9 7 } \times 1 9$
6. $\quad 88 \stackrel{65}{5748} \times 28$
7. $55 \Gamma_{823}^{\frac{14}{14}}$ r 53
8. $6 7 \longdiv { 5 7 2 9 } \times 3 4 \geqslant$
9. $8 4 \longdiv { 6 0 } \stackrel { 8 0 } { \square } \cdot 4 6$
10. . $7 3 \longdiv { 3 1 9 8 } \stackrel { 4 3 } { 1 } 5 9$
11. $4 9 \longdiv { 3 4 1 9 }$ r. 38

6
7. $92 . \sqrt{3423} \mathrm{r} 19$

$$
45 \times 23
$$

14. $9 7 \longdiv { 4 3 8 8 }$

QUOTIENTS GREATER. THAN 100

We will stud these examples together.
\qquad
,
1
$8754 \div 32$

How do we know that it could not be as much as 300 ? (Because $300 \times 32=9600$ and $9600>875 \%$.)

The second part of the quotient is 70. How do we know that. it could not be as much as $80 ?\binom{80 \times 32=2560}{.2560>2354}$.

Explain why each digit of the quotient numeral is placed where it is.

- What is the quotient? (273)

What is the remainder? (18)
Is the remainder less than the divisor? (yea)
Write the mathematical sentence for this example.
$[8754=(35273)+18]$

Show the check for your work.

440

How do we know the quotient will be
Is 57 nearer to 50 or to 60 ? (60) How can we use each of these "helpers" to finch parts of the quotient? "

$$
15 \div 6 . \quad 36 \div 6 . \quad 19 \div 6 .
$$

How can we know that the first part of the .
 quotient is not as great 300 ? $300 \times 0_{57}=13100$ and 17100715014. $)^{\circ}$ How can we know that the second part of the quotient is not as great ass 70 ? $\left(70 \times 57=3990^{\circ}\right.$. $\left.3990>3614\right)$.

Explain why each digit of the quotient numeral is placed where it is.

What is the quotient? (263)
What is the remainder? (23)
Is the remainder less than the divisor? (you)
Write the mathematical sentence for this example.

$$
[15014=(57 \times 263)+23]^{\circ}
$$

Show the check for your work.

Explain the work for these examples.
Be sure to tell why a zero had to be written in each quotient numeral.

$\rightarrow 1$

$18376 \div 89$

Exercise Set 9

Divide. Üse the shortest form that you can.

1. $3 8 \longdiv { 7 0 9 4 } \times 2 6$
2. $2 7 5 \longdiv { 3 4 2 4 9 } \times 4 9$
3. $8 2 \longdiv { 1 1 7 3 2 }$
, 3. $6 5 \longdiv { 1 2 9 }$ r61
4.. $9 3 \longdiv { 9 1 4 0 5 } + 7 9$
4. $\quad 4 7 \longdiv { 2 9 6 6 } + 4 2 .$
$6: \quad 5 6 \longdiv { 2 2 3 4 2 } + 5 4 ^ { \circ }$
5. $7 4 \longdiv { 8 0 0 2 6 } { } ^ { 1 2 }$

888 r 17
8. $1 8 \longdiv { , 1 6 0 0 1 }$
10. $2 1 \longdiv { 9 6 6 7 } { } ^ { \frac { 4 6 } { 6 } }$
11. $8 9 \longdiv { 8 2 8 1 0 } r \neq 0$
12. $53 . \sqrt{23055}$
13. $2 7 \longdiv { 4 4 6 \cdot r ^ { 2 } 1 8 = \cdots }$
14. $3 2 \longdiv { 2 4 5 }$
15. $67 . \longdiv { 4 5 0 4 6 } \times 2 7$

Use mathematical sentences to help solve the following problems. Express each answer in a complete. sentence.
16. A cattle rancher has 9,792 acres of land. He estimates that it takes 38 acres of land to provide grass for one cow." What is the largest number of cows he can have on his rancin? $\left(\begin{array}{c}9,792=(38 \times n)+r \quad \text { the rath can lave } 257 \text { cove }) \\ n=257, r=26\end{array}\right.$ on his ranch.
17. There are 31 rows of seats on one side of a football : field. There are seats for' 6,572 people. If each row has the same number of seats, how many seats are in each row. $\left(\begin{array}{cl}65772=(3 i \times n \\ n=212\end{array} \quad\right.$ there are 212 seato $)$

18̊.' A machine made 9,503 pencils in 43 minutes. How many pencils did it make in $\cdot l$ minute?

19. A book company can pack 58 books in each box. How many boxes will be needed to pack 39,018 books? $\left(\begin{array}{c}39,018=(58 \times n)+r \\ n=672 \\ 39018=(58 \times 672)+42\end{array}\right.$ It compangill mead 672 bottles. $)$.
20. There were $50 ; 902$ visitors to a park in " 62 days. If the same number of people visited the park each day, how' many people visited the park each day?

$$
\left(\begin{array}{l}
50,90.2=(62 \times n)+r \cdot 821 \text { people visited the park end day. } \\
. n=821
\end{array}\right.
$$

MORE ABOUT USING HELPERS WHEN DIVIDING

Teaching Suggestions:

MORE :ABOUT USING HELPERS WHEN DIVIDING

Exploration

The "helpers". we use when dividing will not always lead uss to a correct part of, the quotient.

We will see this th an example, such as:

$$
905 \div 24
$$

To try to find the first part of the quotient we can use $0 \div 2$ a) a° "helper," and
think " $4 . " \therefore$
Is 40 the first part of the quotient? $\left(N_{0}\right)$ How can you tell , that 40 is too great? ($960>905$)

Let us now -use 30 as the first part of the quotient.

Explain the work in the box.

To try, to find the remaining part of the quotient we can use $18 \div 2$ as a "helper,". and think "9."
Is 9 the remaining part of the quotient? $\left(\chi_{0}\right)$ How can you tell that is is too great? $(216>185)$

39
$2 4 \longdiv { 9 0 5 }$
720
785
216

Let us now use 8 as the remaining part of the quotient.

How do we know that 8 is too great? $(192>185)$

Is ${ }^{4} 7$ the remaining part of the quotient? (yea) How does the work in the box show this $/(168<(185)$ We 'divided 905 by 24. What is the'rquotient? (37)
What is the remainder? $\cdot(17)$
Is the remainder less thana the divisor? (yes)

447
457 To try to find the first part of the quotient,
we can use $19 \div 4$ as a "helper," and think "4." Look carefully at the work in the box. How can we know that 40 is not the greatest multiple of 10 we can use as the first

4'
$3 6 \longdiv { 1 9 1 5 }$ $\frac{1440}{475}$ 475

Let us now. use 50 as the first part of the quotient. Is this the greatest multiple of 10 we can use? Explain.

To try to find the remaining part of the quotient, we can use $11 \div 4$ as a "helper" and think "?."

How can we tell that 2 is not the

Let us use 3 as the remaining part of the quotient. Is this the greatest
 We divided $191 \hat{5}$ by 36.
What is the quotient? (53)
What is the "remainder? (i)

"Helpers", do not always lead us to correct parts of the quotient.

- Exercise Set 10

Divide.

1. $7 5 \longdiv { (4 2 }$ \qquad 9. $9 3 \longdiv { 5 2 } \sqrt { 5 2 } \cdot r 6 0 .$
-程
2. $18 \Gamma_{1656^{\circ}}$
s
10: $3 7 \longdiv { 4 2 }$
3. $. 5 4 \longdiv { 9 1 6 0 }$ r ${ }^{34}$
i1. $1 4 \longdiv { 5 3 7 }$ +5

4. $5 8 \longdiv { 3 8 9 1 8 }$
5. $7 5 \longdiv { 3 2 6 3 1 }$
6. $28 \cdot \frac{96}{2688}$
7. $9 2 \longdiv { 1 9 7 8 0 } =$.
(i) $2 1 \longdiv { 1 4 2 8 }$
8. $9 4 \longdiv { - 5 8 2 7 0 }$
9. $8 1 \longdiv { 3 4 . 9 1 }$ r8.
10. $7 5 \longdiv { 3 4 1 4 9 } \cdot \frac { 4 5 } { 3 }$
. 449

Use mathematical sentences to help solve the following problems. Express each answer in a complete sentence.
17. A machine produces. 348 spoons an hour. How many dozen will it produce in 8 hours of continuous

18. An auditorium is to be used for a meeting of 958 persons. If each row seats 21 persons, how many rows will be needed? $958=(21 \times n)+r$.
19. Robert reads approximately 96 words a minute. How many minutes will it take him to read a story of 1056 words?

20. A grapefruit orchard has 864 trees in. 32 rows.

How, many trees are there in each row?

$$
\left(\begin{array}{c}
864=(32 \times 4)+r \\
n=2.7 \\
\text { Ihreare } 27 \text { then }
\end{array}\right)
$$

450

Exploration

We can use place value to shorten our work with division examples when divisors are between 10 and 100 .

Think of dividing 17836 by 45 .
A.
B.
${ }^{\circ}{ }_{2}^{\prime}$
396

Exercise Set 11

Divide. Use the shortest form you can.
-1. $7 7 \longdiv { 5 6 5 } \cdot r 2 6$
9. $5 8 \longdiv { 3 9 0 9 2 }$
2. $3 2 \longdiv { 2 1 7 6 }$
10. $28 \cdot \frac{546}{15288}$
3. $2 9 \longdiv { 7 3 0 0 }$
4. $5 8 \longdiv { 7 4 4 1 } r ^ { 1 2 8 }$
5.'. $2 9 \longdiv { . 9 3 2 } \times 2 7$
6. $8 6 \longdiv { 4 3 6 8 8 }$
7. $1 8 \longdiv { 3 7 8 }$
$385 r 15$
8. $8 6 \longdiv { 3 1 8 } \times 6 5$
$-$

452

Use mathematical sentences to help solve the following problems. Express each answer in a complete sentence.
16. The committee has 685 -tickets for the school play. They put $15^{\text {' tickets in each package. How, many }}$ packages of tickets did they have? Were there any left over? If so, how many?
17. Mr. Jones sold 32 television sets for $\$ 11,040$. If these were all of the same model, what was the price of one set? $\quad\left(\begin{array}{l}11,040=(32 \times n)+r \\ n=345\end{array}\right.$

- of one set? $\left(\begin{array}{l}11,040=(32 \times n)+r \\ n=345 \quad r=0 \\ \text { the pres fore nt aves } 34 \sigma\end{array}\right)$

18. Ann wants to make 12 curtains. She needs 42 inches of material, for each curtain. How many yards of material does she need? $\left(\begin{array}{ll}C=12 \times 42 & 504=(36 \times n)+r \\ C=504 & n=14 \\ \text { She nude } 14 \text { yerde of matured. }\end{array}\right)$.
19. The Boy .Scouts were having a party. Their mothers baked 134 cupcakes for the party. If each of the 67 boys had the same number of 'cupcakes, how many would each boy eat? $\left\{\begin{array}{c}134=(67 \times n)+r \\ n=2 \quad r=0 \\ \text { Each by cured eat } 2\end{array}\right.$

20. Jean packed 288 oranges into boxes. If each box holds 36 oranges, how many boxes did she fill?

[^0]: y 1

[^1]: Some child will suggest, that if the ones: digit is less than 5, think of the next lower multiple of 10. If the ones 1 digit is greater than 5, think of the next greater multiple of 10. You should not expect the child to state this idea in such precise language, nor is it desirable that he do so.: It is important for children to be able to understand and use this knowledge.

 When we have a 5 in the ones' place, lead children to see that to find the nearest multiple of 10 wé will have to make an agreement that eteryone will do the same thing. Lead children to agree to use the next higher multiple of 10. d

