

SPONS.AGENCY ${ }^{\circ}$
REPORT N
POB DATE
GRANT
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

Steffé, Leslie p.
Quantitative Comparisons and Class. Inclusion as Readiness Variables for Learning First Grade .Arithmetical. Content. PMDC Technical Report No. 9. Florida State Univ. . Tallahassee. Project for the Hathematical Developient. of Childran.
National Science Foundation, Tashington, Dic. PMDC-TR-9
[76]
NSP-PES-74-181.06-A-03.
289p.; F'Or related documents, see SE 023 057-.058, SE 023 060-065, SE 023 063-072: Best copy available

MF-\$0.83, HC-\$15.39 Plus Postage.
*Cognitive Development; Educational Research;
*Elementary School Mathematics; Grade/1;
*Instruction;: Learning; *Mathematical Concepts; Priurary Education; *Rea3iness Counting; *Project*for Nathematiçal Déselopment of Children

A,BSTRACT

This report prestents.the results of a teaching experiment which investigated (1) the role of mathema'tical' experiences on the derelopment of counting, addition, subtraction, mental, arithmetic, classification, and other arithmetical topics and (2) the role of quantitative comparisons and class"iaclusion as readiness variables for learning the content in (1). The readiness and•achievement variables are discusseł in detáiľand tasks are described carefully: Rorty-eight first graders were tested and intervie wed, with each of the three, intervieus videotaped. Data were extracted from the tapes and coded. Twenty four pupils were given instruction on the concepts for 12 weeks Multivariate analysis of. variance, univariate analysis of variance and discriminant functions as necessary, and correlation matrices were used. Results are presetited and discussed in detail: (MS)

* Documents acquired by ERIC inclade many informal unpublished *-materials not available. from other sources. ERIC wakes every effort * to obtain the best copy available. Nevertheless, items of marginal * reproducibility are often encount fred and this affect's the quality * of the ticrofiche and thardcopy reproductions ERIC makes available
* Vía the ERIC Document Reproduction Service (EDRS). EDBS is not
* responsible for. the quality of the otiginal document. Reproductions *
*-supplied by EDRS are the best that can be made from the.original.: *

PMDE.Technical Report No. 9
\qquad
\qquad NATIONAL.JNSTITVATE OF
EDUCATION THIS DOCUMENT MAS BEEN REPRO.
DUCED EXACTLY AS RELEIVED EROM
THE PERSON ORORGANIZAL
 EDUCATION POSIIION OR POLICY , 'PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY Rober't M. Johnsori TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)
ÜSERS OF THE ERIC SYSTEM:-

Quantitative Comparisons and Class Inclusion as Readiness Variables for Learning First Grade Arithmetical Content Leslie P. Stelife

FOREWORD

Ed Begle recently remarked that curricular efforts during the 1960's taught us a great deal about how to teach better mathematics, but very little about ho'w to teach mathematics better. The mathematician will, quite likely, agree with both parts of this statement. The layman, the parent, and the elementary school teacher, however, question the thesis that the "new math" was really better than the "old math." At best, the fruits of the mathematics curriculum "revolution" were not sweet. Many judge them to be bitter.

While some viewed the curricular changes of the 1960's to be "revolutiqnary," others disagreed. Thomas C. O'Brien of Southem Illinois University at Edwardsville recently wrote, "We have not, made any-fundamental change in school mathematics." ${ }^{1}$ He cites Allendoerfer who suggested that a curriculum which heeds the ways, in which young children leam mathematics is needed. Such acurriculum would be based on the understanding of children's thinking and liarming. It is one thing, however, to recognize that a conceptual model for mathematics curriculum is sound and necessary and to ask that the child's thinking and learning processes be heeded, it is quite another to translate these, ideas into a curriculum which lan be used effectively by the ordinary elementary school teacher working in the ordinary elementary school classroom.

Moreover, to propose that children's thinking processes should seave as a basis for curriculum development is to presuppose that curriculum makers agree on what these processes are! This is not the case, but even if, it were, curriculum makers do not agree on the implic̣ations which the understanding of these thinking processes would have for curriculum development.

In the real world of today's elementary school classroom, where not much hope for drastic changes for the better can be foreseen, it appeqars that in order to build a realistic, yet sound basis for the matnematics curriculum, children's mathematical thinking must be studied intensively in their usual school habitat. Given an opportunity to think freely, children clearly display certain patterns of thought as they deal with ordinary mathematical situations encountere daily in their classroom. A videntaped record of the outward manifestations of a child's thinking, uninfluenced by any teaching on the part of the interviewer, provides a rich source for conjectures as to what this thinking is, what mental structures the child has developed, and how the child uses these structures when dealing with the ordinary concepts of arithmetic. In addition, an intensive andalysis of this videotape generates some conjectures as to the possible sources of what adults view as children's "misconceptions" and about how the school environment (the teacher and the materials) "fights" the child's natural thought processes.
-
The Project for the Mathematical Development of Children (PMD \dot{C}^{2} set out to create a more extensive and reliable basis on which to build mathematics curriculum. Accordingly, the emphasis in the first phase is to try to understand the chlldren's intellectual pursuits, specifically their attempts to aequire some básic mathematical skills and eoncepts.

1 .
$1 \cdot$
The $P \dot{M} D C$, in its initial phase, works with children in grades 1 and 2 . These grades seem to comprise the crucial years for the development of bases for the future learning of mathematics, since key mathematical concepts begin to form at these grade levels. The children's mathematical development is studied bx means of:

1. One-to-one videotaped interviewsisubsequently analyzed by various individuals."
2. Teaching experiments in which specific variables are observed in a group teaching setting with five to fourteen children.
3. Intensive observations of children in their regular classroom setting.
4. Studies designed to investigate intensively the effect of a particular variable or medium on communica: ; ting mathematics to young children.

1"Why Teacn Mathematics?" The Elementary School Journal 73 (Feb. 1973), 258.68.
2PMDC is supported by the National Science Foundation, Grant Nowes 74-18106.A03.
5. Formal testing, both group and one-to-one, designed to provide further insights into young children's mathematical knowledge.

The PMDC staff and the Advisory Board-wish to report the Project's activities and findings to all who are. interested in mathematical education. One means for accomplishing this is the PMDC publication program.

Many individuals contributed to the activities of PMDC. Its Advisory Board members are: Edward Begle, Edgar Edwards, Walter Dick, Renee Henry, John LeBlane, Gerald Rising, Charles Smock, Stephen Willoughby and Lauren Woodby. The principal investigators are: Merlyn Behr, Tom Denmark, Stanley E.rlwanger, Janice Flake, Larry Hatfield, William McKillip, Eugene D. Nichols, Leonard Pikaart, Leslie Steffe, and the Evaluator, Ray Carry. A special recognition for this publication is given to the PMDC Publications Committee, consisting - of Merlyn Behr (Chairman), Thomas Coogey and Tom Denmark.

PREFACE

This publication is ${ }^{\dagger}$ a summary of ${ }^{\prime}$ PMDC Technical Report No. 9. That publication is the report of rhe results of a teaching experiment conducted during the academic year 1974- $\lambda 5$ with first.grade children. 'The teaching experiment was done to investigate (1) the roie of'mathematical experiences on the devélopment of counting, addition, subtrac'tion', mental arithmetic; classification, and various other topics in arithmetical caryicula and (2) the role of' quantitative:comparisons and class inclusion as readiness variables for. learning the content in (1).

The names of the schools used in this studyare fictitious. The stưdy took place in a city in the Southeast with a population of 50,000.

Tḥanks are expressed to the principals of the two éfemertary schools, the teachers, and most importantly, the chilaren. cooperation such as that experienced by, the principal investigator is critical in the total enterprise of research and development in mathematics. \qquad education..

∞
Page
Chapter I'... Presentation of the Variables 1
The "Readiness Variables 4
Quantitative Comparisons 4
Number in Piagetian theory 4
Quantity 7
Quantíty as vieẃed by Piaget $7^{\prime \prime}$
Elkind's replication of quantity 9
Quantity and one-to-one correspondence 11
Quantity as a scientific concept and as a cognitive-development concept 13
Quantity and arithmetic. 16
Quantity* and set'partition 27
Class Inclusion. 29
Training studies 32
Classification 35
Class.inclusion and arithmetic 40
The Achievement Variables 45
Theoretical and Empirical. Background of Cardinal and Ordinal Number. 46
Ordered systems 47
Cardinal number. 48^{\prime}
: A contrast of cardinal number in mathematics and number as defined by Piaget 49
Ordinal number 52
Set similarity as a developmental concept. 56
Cardinal and ordinal number as developmental concepts 56
Addition and subttraction of ordinal number 58.
Addition and subtraction problems and counting 60
The Achievement tasks: 65
Ordinality and cardinality tasks 65
Counting back,.just before, just after, and between tasks 69
Verbal problems 70
Set partition tasks 73
Addition and subtraction of ordinal number tasks 74
Mental arithmetic problems 75
Nested classification tasks 76
Loop inclusion tasks 78
3
The Variables 78
Cluster. 1. 78
Cluster 2. 79

- Cluster 3. 79
Clúster 4. 79
Cluster 5. 79
Cluster 6. 79
Cluster 7. 79
Chapter II. Presentation of the Design 80
The Design of the Readiness Study 81
Sample 81
Tests. 82
Description of criteria on the readiness tests 82
Administration of achievement tasks' 82
Data sources 83
Treatments 89°
Description of the treatments 89
The Research Hypotheses 101.
Cluster 1. 101
Cluster 2 101
Cluster 3. - 102
Cluster 4. 102
Cluster 54 103
Cluster 6. 103
Cluster 7. 103
Statistical' Analyses 104
Item analyses 104
Analyses of variance 104
Chapter III. Presentation of the Results 105
Results of the Readiness. Study 106
Item analyses 106
Quantitative comparisons 106
Number in S and number in P 108
Problem solving without objects 110
Problem solving with objects and partitions tests 111
Addition and subtraction of ordinal numbers 117
Mental arithmetic 119
Class.incIusion, loop inclusion, nested classification task A, and nested classification task B 122
Page
Ànalyses of variance 125
Cluster 1 125
Cluster 2 130
Cluster 133
Cluster 137
* Cluster 148
Cluster 6. 152
Cliuster 7 154
Correlations among the variables 157
Variables `apparently, requiring rational countrig in solution 158 Variables requiring at most point counting in solution 159 Variables `apparently requiring tational cbunting vs.
variables requiring at most point counţing: 161
Cor'relations between classification and numerical variables. 161
Chapter IV. Discussion of the Results. 167
Quántitative Comparisons as a Readiness Variable for Learning
First Grade Arithmetical Content 1.68
Variables Apparently Requiring Rational Counting in Solution 168
Cardinal information from ordinal information 172
Between 173
Point Counting, in Sums and Differences 174
Successor, Predecessor, Just Before, Just After, and Counting 177
178
178
Counting 179.
Classification 181 181
Class.Inclusion as a Readiness Variable fot Leaming First Grade Arithmetical Content. 181
Loop Inclusion, Partition, and Nested Classification 182
Rational Counting 185
Addition, subtraction, and missing addend. 186
Class Inclusion as a Correlate of Arithmetic Achievement. 187
The Treatment 189
Classification and Partitioning 190Counting by Levels and Learning. Instructiohal Phasés
for Addition and Subtraction 196

roblem Solving Activities for Addition and Subtraction.

roblem Solving Activities for Addition and Subtraction. 203 203 204The HandrHeld Calculator.
\square

CHAPTER I

Presentation of the Variables

- The potential of Piagetian theory as a readiness theory for learning mathematical content seems hardly explored, even though some, studies have been directed toward such a purpose. 'On the face of it, the psychological mechanisms Piager çalls mental operations ought to determine, in a.substantidmanner, the mathematical content'related to cardinal and ordinal number a-child is ahe to-acquire within at least a two or three months time span. But whether a child who does not display mental operations, in a Piagetain sense, forms mental operations related to cardinal and ordinal number during the coursè of instruction is an unanswered - question. The issue is simply this--it is not known how children develop mathematically through the course of an instructional program except in the most global of ways: Until*the charts of childrens' progress are carefully documented, the best that can be done in the development of instructional programs in mathematics is to guess at the answers to the most basic of questions. An illustration is the introduction of the missing addend problem. During the 1960 '萖, program developers introduced, universally; the missing addend problem in the first grade with the hope that it would connect, for the children, addition and subtraction. Of course, if it did, then \mathfrak{a} great savings transfer would occur in the learning of subtraction facts. Just define subtraction in terms of addition, But teachers found the missing addend problem a source of great frustration for many children. With "such feédback program. developers essentially abandoned introduction of the missing addend problem in the first grade. Most decisions made relative to "the introduction, then abandonment of the missing addeff problemwere done in the
absence of any data on the way children develop throughout the course of a mathematics program. That such data is desperately needed should be clear from. the example given. In' fact, this study shows that both 'decision's are essentially incorrect--that of universal introduction and that of universal abandonment. Moreover, a great deal of information is presented on how one may hermine which children are ready for introduction of the missing addend problem and which are not-a very useful piece of information.

Before delving into the study, a few preliminary ideas are useful in understanding the nature of the variables. . The readiness variables are founded in Piaget's developmental theory, and the achievement , variables are founded in the mathematical theory of cardinal and ordi-... $\dot{n a l}$ number: Even though Piaget offers a developmental theory concerning cardinal and ordinal number, the mathematical theory is distinct from the psychological theory. In order to be precise concerning the mathermetical theory, a discussion of some important aspects of cardinal and ordinal number is given. Likewise, discussion of Piagetian theory." conceprning cardinal and ordinal number is offered. For the purpose of the readiness study, Piagetian theory concerning number, quantity, classificalion, and relations is assumed to be internally consistent. The theorem tical interrelationships of number, class inclusion, relations, one-toone correspondence, and set partitions are discussed in the, next few sections.

The Readiness Variables

Quantitative Comparisons

Number, in Piagetian theory. "Piaget, in his ciassic work "The Child's. Conception gf Number, attempted to show that cardinal and ordinal number are develppmental, arising.in the child as a synthesis of Grouping I, Primary Addition of Classes, and Grouping V, Addition of Connected, Aşymetrical Relations. While the data presented•in this book are "old," the basic theory of the Genevans concerning the development of number in the child has not changed substantially over the last three decades (Piaget, 1970; Beth and Piaget, 1966; Sinclair, 1971). Number, for Piaget (1952), "is at the same time a class and an asymmetrical relation" (p. 184).

Even though; the relevance of the total grouping structure to cognition of relations has been questioned (Steffe, 1973), literature of the Genevans: concerning the development of number can be understood, only in the context of the grouping structures. Two essential conditions for the "transformation" of"classes into numbers exist (Piaget, 1952, pp. 183-. 84). Given a class, all of the elements must somehow be regarded as equivalent, but at the same time distinct. To illustrate these two conditions imagine`some hierarchical system $\emptyset \in A_{1} \in A_{2} \subset A_{3} \subset \cdots \cup_{i} A_{i}$ of classes wheré the following classes contain single elements

For example,., A_{1} could be a bead, $A_{1}{ }^{\prime}$ a cube, A_{2} ' a bean, etc.
The first condition given is that all elements must be regarded as. ${ }^{*}$. equivalent (all qualities of the individual elements are eliminated). But, if condition one holds, then, for example, A_{2} would not be a class of two elements, but instead only one, for $A_{1} \cup A_{1}{ }^{\prime}=A_{1}-$ which is to say that the quality of the elements are eliminated. If the differences of A_{1} and A_{1} ' are taken into. account, then they are no longer equivalent to one another except'with respect to A_{2}. This. brings the second essenvial condition into focus. In effect, the equivalent terms must remain somehow distinct, but that distinction no longer has recourse to qualityfive differences. Given an object (the bead), then any other object is L distinguished from that object by introducing order--by being placed next to, selected after, or etc. "These two conditions are necessary and sufficient to give rise to number. Number. is at the" same time a class. and an asymmetrical relation". . . (Piaget, 1952, p. 184). -According to Piaget (1952, p. 184), in qualitative logic, objects cannot be, at one and the same time, classified and seriated, since addition of classes. is commutative whereas striation is not commutative. However, if the qualities of the elements are abstracted, then the two groupings (I and V). no longer function independently, but necessarily merge into a single system.

In Piaget's system, "then, number is not top be reduced to one" or another of the groupings, but instead is a new construction--a .synthesis of Groupings ${ }^{\prime \prime}$ and V. Elements, "from the point of View of their qualities, and either considered from the point of view of their partial equivalences and are, classified, or are considered from'the point of view of their differences, and are seriate. It is not possible to do both at once unless the qualities are abstracter (or eliminated), but then it is, necessary to do both simultaneously. .

The only. way, then, to distinguish $A_{1}, A_{1}^{\prime}, A_{2}^{\prime}, A_{3}{ }^{\prime}, . \quad$. is to seriate them: $A \rightarrow A \rightarrow A \rightarrow, \ldots$, where \rightarrow denotes the successor relation and A represents A_{i} ' where all the qualities of the element of $A_{i}^{\prime \prime}$ have been eliminated. 'Clearly, Piaget ‘ónsiders each A to be a unit-element, at once equivalent to, but distinct from all the others, where the Γ , equivalence arises through the elimination of qualities and the distinc-. aLiveness? arises. through the order of succession.

- The notion of a unit is central in Piaget's system and in not deducible from the Grouping Structures, but rather is the result of the synthesis already alluded to. Once reversibility is achieved in striation and classification, "groupings of operations become possible, and define the field of the child's qualitative logic" (Piaget; 1952, p. 155): Here operational striation has as a necessary condition reversbility at the first level of reciprocity.

A cardinal number is a class whose elements are conceived as ' $u n i t s$ ' that are equivalent, and yet distinct in -that they can be seriated, and therefore ordered. Conversely, each ordinal number is a series whose terms, through following one another according to the relations of order that determine their
respective•positions, are' also units, that are equivalent and' can therefore be grouped in a class. Finite numbers are : therefore necessarily at the same time. cardinal. and ordinal . . . (Piaget, 1952, p. 157).

The development of classes and relations does not, as it may seem from the above quotations, precede the development of number in Piaget's theory, but those developments are simultaneous. Without knowledge of the quantifiers "a,"'"none," "some," and "ail," which implicitly involve cardinal number, the child is not capable of cognition of herarchical classifications. A genetic circularity consequently exists in \Rightarrow the developmental theory of classes, relations, and numbers.

- Quantity. It is now possible to discuss the notion of quantity as elaborated by Piaget (1952; p. 5). Strictly -speaking, Grouping VIII, Multiplication of Relations, should be discussed prior to the discussion on quantity. Suffice it to say that Grouping VIII allows the child to consider two perceptual -relations simultaneously. (e.g., taller but narrower for two glasses of water).
. In the subsequent discussion, quantity as viewed by Piaget is 'described; a replication study by Elkind is discussed;' quantity is related tone-to-one correspondence; quantity, as a scientific concept contrasted 'with. quantity in'Piagetian theory; and the relationship of quantity and number is pointed out in Piagetian theory.

Quantity as viewed by Piaget. Whether it be continuous (ie.., liquid) or discontinuous (ie, collections of objects) quantities, Piaget's logical analysis of quantity in children is the same. First, there is what it termed gross quantity. Piaget (1952): describes gross. quantity" as follows

At the level of the first stage, quantity is . . . no more than the asymmetrical relations between qualities,.i.e.; comparisons of the type 'more' or 'less' contained in judgments such as 'it's higher,' 'not so wide,' etc. These relations depend on perception, and are not as yet relations in the true sense, since they cannot be coordinated one with another in additive or multiplicative operations. This coordination begins at the second stage and results in the notion of 'intensive' quantity, i.e., without units, but susceptable of logical coherence. Ass soon as intensive quantification exists, the child can grasp . . . extensive quantity. (p. 5)

An illustration of gross quantity was given where two containers of beads; one containing green beads $\left(A_{2}\right)$ and one containing red beads $\left(A_{1}\right)$ were placed before a child. The containers were of identical dimensions. The child was asked if there were the same amount of. beads in the two containers, and if a necklace made from the green' beads. and red beads would be of the same length. The green beads (or reds) were then poured into a container taller but narrower than the two originals. Questions were then put to the child concerning the necklaces. Children who were capable only of gross quantity would think that the necklace of green beads would be"either longer than the necklace of red beads or shorter, depending on which dimension he focussed. Such children were not able to coordinate the dimensions of the container.

Children capable of intensive quantity were capable of coordinating. the two dimension of the container (higher but nair over). They could use this compensating coordination to explain why the number of beads doesn't change upon pouring from one container to another, if they knew that the numbers of Beads'were equal to begin with.

Psychologically, intensive quantity would not be sufficient for a child to compare, numerically, two circular arrangements of blocks of differing diameters but of equal number. One arrangement would be less dense bu

- of greater điameter (or circumference) than the other. But realizing this compensating relation would not guarantee that the two circular arrangements contain the same number` of blocks. According to Piaget, it would be necessary that arithmetical units intervene.

Logical multiplication of relations and the intervention of the notion of the unit are the two conditions for quantify to be extensive quantity for the child. Logiçal multiplication of. zelations is a nẹcessary (but not sufficient) intermediary between gross, one dimensional quantity and extensive quantity. In the case of two amounts of liquid in two full containers A and B, a child could make a decision about relative amounts of liquid in A and B through logical multiplication in the two cases where \dot{B} is both taller and of greater diameter, than A and where A and B have at least one constant dimension (height or diameter). .In the case where both dimensions vary, no decision would, be possible. In such a case, the notion of units would logically have to intervene before a comparison could be made. 'Piaget's claim is that, Rsychologically, if the child knows that the quantities are equal in some initial state, realizing that they are equal in a final state, where both dimensions of the cylindrical containers vary inversely, demands a conception of units (Piaget, 1952, p. 21): In the case of the red and green beads above, the unit is Piaget's arithmetical unit. Elkind's replication of duantity. 'In his study replicating Piaget's experiments on quantity Elkind (1961a) gives the folłowing, summary: -

Eighty. . .children were divided into three Age Groups ($4,5,46-7$) and tested on the three Types of Material for three Types of Quantity in a systematic replication of Piaget's investigation of the development of quantitative thinking: Analysis of variance showed that success in comparing quantities varied significantly with Age, Type of Quantity,

Type of Material and two of the interactions
The results, were in close agreement with Piaget's ". -finding that success in comparing quantity developed in : three, age related, hierarchically ordered stages. $r^{(\mathrm{pp} .45-46)}$
The types of material Eikind used were (1) wooden sticks $1 / 4^{\prime \prime}$, square by $11 / 4^{\prime \prime}$, (2) orange colored water, a tall narrow, glass, and two drinking' glasses, one a 16 ounce glass and one an 8 ounce glass, and (3) large wooden beads that would just fit into the tall narrow glass in (2) above. The types of quantity he compared, were.(1) gross quantity,' (2). intensive quantity, and (3) extensive quantity.

In the study, gross quantities were easiest to compare, intensive were intermediate, and extensive were hardest. For the types of material, quantities involving liquíqs were hạrdest to, compare, with no difference between sticks and beads. There was a signifficant interaction of age groups and the quantity compayed. Comparisons involving gross quantities was eas,y for all'three groups. However, comparison involving intensive quantities was quite difficult for the 4 -year group and became increasingly easier for the two older groups: The same was true for con involving extensive quantities, but "these comparisons remained more .difficult than the comparisons involving intensive quantities. Since Piaget defines his stages in terms of the type of quantitative comparisons childzen are capable of making, it is clear from'Elkind's
" 7 study that a child may be able to make extensive quantity comparisons using materials of a given kind and tkereby be classified at Stage 3, but changing the type of material could affect the type of quantitative comparison the child is' capable öf and thereby alter the stage ${ }^{\circ}$
classification. However, there is a definite statistical rejationskip between age groups and stages as exemplified by the interaction of age groups and quantity compared and high and signifficant corre̊lations Between ${ }^{\circ}$ types material.

Quantity and one-to-one correspondence.' Piaget $(1968, \%$, $\mathrm{pp}: 36,37$) has identified two psychological types of one-to-one correspondence; qualitative one-to-one correspondencẹ•and numerical one-tọ-one correspondence. Qualitative correspondence is based on the qualities of the elements where an element of one class is made to. correspond to some" element of another classmbecause of the qualities associated with the elements--e.g., color, shape, or size. Numerical correspondence is such . < that any element of one class is made to correspond to any elementrof the other class regardless of qualities of elements. "Each eîement counts as one, and its particular qualities have no importance. Each element becomes simply a unity, an arithmetic unity." (p . 37) \&

Another type of behavior associated with one-to-kne correspondence. tasks is optical correspondence (Piaget, 1968, p. 34). Essentially, this* is where children make global evaluations. An example is in a task where the adult has, say, six' red chénkers aligned in a rob and gives a child the black checkers and instructs him to put out the same number مif black checkers as red checkers. An optical correspóndence woulp be where the child afigns all the black checkers in a row adjacent to ond the same length as the row of red checkers. Another optical correspofdence is where a child places one black checker by one red checker but cannot cbnserve the correspondence established. If conservation is pesent,
the correspondence is called operational.
Qualitative correspondence may be either optical or operational. 'A child making a correspondence between two collections based on the qualities of the elements may.not be able to ${ }^{\circ}$ conserve the correspondence if the configuration of the elements is altered; in this case, the qualitative correspondence is optical and not óperational. If the child is." able to ehsefve the correspondence, this is an operational corresponđence (i:e., the elements" altered always have" the possibility of being placed back in the original position). A numerical correspondence is essentiallỳ operational. Children.pass through three stages regarding one-to-one correspondence. The first is global evaluation, or essentially no one-to-one correspondence (up to approximatély five or six years of age). The second is optical qualitative çorrespondence and the third is operational or numerical correspondence. Piaget (1952) spells. out the relationships between different types of quantitative comparisons and the different types of correspondénces, i.e., "global evaluation 'corresponds to 'gross quantity,' qualitative correspondence to 'intensive quantity,' and numerical correspondence to 'extensive quantity' [p. 90]. ".

If two sets of objects are placed in rows in front of a child capable of qualitative correspondence (and hence of intensive quantification) and one of two sets is altered, then a proper judgment could arise in the case of:
(1) equal length and equal density of two sets;
(2) greater length and greater density of one of the seț; ${ }^{*}$
(3) equal length and greater or less defisity, or greater or less length and equal density, of one ${ }^{3}$ of the set's;
but not in the case of:
(4) greater length and smaller density, or greater density and smaller length, since he must be able to deduce the proportionality of differences (Piaget, 1952, p. 91).

Quantity as a*scientific concept and. äs a cognitive-development concept. "Confusion exists concerning, what Piaget means, by intensive and extensive quantity and what intensive and extensive quantity means in aॅ scientific sense. This séction is an attempt to cláarify that confusion.
A.quantity can be viewed as a collection of elements for which criteria of comparison have been established (e.g., ordinal numbers). : But it is well to view quantity in the general context of measurement. Mea-- . $\quad\}$ surement can be interpreted in terms of a function, where the domain of the function consists, of a collection of objects (called bodies) with definite structure and the range (for the purpose of interest here) a subset of the real numbers. The structure in therdomain is of particular interest, Through some empirical (or operational) procedure, the bodies of the domain can be ordered on the basis of some property (or dimension). The property is called intensive whenever there exists two physical rela- tions $<$ (order) and $=$ (equivalence)' süch that. given any two bodies B and
C, the trichotomy law holds, and the transitive property holds for ${ }^{\text {f }}$ >. It is important to realize the only way pne can be sure that the law of trichotomy and the iransitive property hold. is through experiment. A property is extensive if it is intensive if there exists a physical operation that is closed, with respect to the property, if it is commuta-
 $A=B$ and $C=D$; then $A+C=B+D$ for all bodies A, B, C, and D, and (2) if $A=B$, then $A+C>B$ for all C.

So, the domain of the function has definite structure, was stated without regard to number, and depends on whether the property iṣ Intensive of extensive as well as intensive (any extensive property is intensiwe, but not conversely). Once this structure has been identified it is possible, through assignment'of some body as a unit body, to assign reak numbers to bodies through a process called measurement (or application of the measurement function). '. The function thus' defined must preserve the structure of the domain. For an intensive dimension; this means that (1) $F(B)=\frac{2}{2}(C)$ if and oniy if $B_{n}=C$; (2). $F(\dot{B})>F(C)$ if and only $\dot{\prime}$ if $B{ }^{\prime}{ }^{\circ} \mathrm{C}$ and, for an extensive dimension, $F\left(B^{\circ}+\right.$ $C)=F(B)+F(C)$. Obviously, F depends on the unit selected so that $F=k \cdot G$ for another measurement function G defined on the same domain, where k is a positive real number. An example of a^{2} domain of bodies important for this study is the class of collections of physical objects, where the comparison between sets is based on one-to-one correspondence. If the unit selected is a single object, the measurement of \dot{a} set is its count. The measurement function then assigns
ordinal numbers to sets and preserves the additive structure (for a dimension to be extensive, it is sufficient for the bodies to be pairwise disjoint).

7 Contrast of Piaget's conception of intensive quantity and extensive : quantity with ve definitions given above are made with regard to the structure of tomain of the measurement function, with regard to units, 'and with regard to mathematical and cognitive structure. . A child who is capable only of intensive quantity in a Piagetian sense would not have mastered the notion of ưnits. However, units of measurement may intervene in an intenstve quantity (e.g., denstity) in the scientific definition, but not in the Piagetian conception. When a child is capable of what Piaget calls "extensive quantity," units intervene. Apparently, . a child. capable of extensive quántity in the Piagetian framework would be likely to comprehend quantity, intensive and extensive, in the scientific sense. It should be noted, that it would be a restricted conception in the sense of a farmal contept and in the sense of generality (i.e., a' ghild would not necessarily be able to conceive of all different, quantitiés such as, real numbers or density). Surely, it sould seem for a child to comprehend an intensive or an extensive quantity in the scienFific sense with units, he would of neqesity have to be capable of extensive quantity in the Piagétian sfase due to the intervention of units in the scientific definitions.

The reason a differentiation needs to be made between genetic structures concerning quantity and the scieqntific structures of quantity can be seen by example. Let B_{B} be a collection of collections of physical objects. If equivalence and order are defined on the basis of one-to-one
correspondence in the usual manner, B together with the critériá for cómparison which have been set up is a quantity. "Do we have an extensive or an intensive quantity? It. depends on whether or mot the elements of B are or are not mutually exclusive, respectively. In either case, a unit is taken to be a singular object so that the collections are uniquely assigned numbers. A child's conception of gross, intensive, or extensive quantity in the Piagetian conception in no way depends on whether the collections of B are mutually exclusive. Rather, it depends on the cognitive operations of which the child is capable. If the child is capable of extensive quantity in the Piagetian sense, he ought to be capable of comprehending the structure of the uleasurement function under discussion, the unit of measurement, and the necessity of disjoint. collections being used for adaition of numbers*.

Extensive quantity is identified with numerical one-to-one correspondence, both of which, incorporate the notion of a unit. As' was ${ }^{4}$. seen in the section Number in Piagetian Theory, the notion of a unit is essential to number and is arrived at by a synthesis of Grouping I and V, as is cardinal and ordinal number. Consequently, extensive quantity is paralleled by cärdinal and ōrdinal number in Piagetian theory. Gross; and intensive quantity correspond to stages in the development of number, which have not yet been discussed here.

Quantity and arithmetic. Two noteworthy studies have been conducted in which quantitative comparisons addition and subțraction; and manipulatable objects have been interrelated. In the stưfies "(Steffe, 1966, Le Blanc, 1968), children for whom evidence was present that they were
able to make extensive quantitative comparisons performed significantly better on tests of addition and subtraction problems than did children for whom no such evidence was present. Both of these studies were con-- ducted toward the end of the school year using first grade children. Three four item tests were'constructed, each of these being designed to measure the ability of children to make quantitative comparisons. Four geometrical arrangements were used, one for each test-circular, rectangular, and linear.

FIGURE 1

Item 1

Item 2

Ifem3

Item4

Note: Circular patterns have $4^{\prime \prime}$ and $7^{\prime \prime}$ diameters.

In item 1 of one of the test using circular arrangements (see Figure 1), if a child made a comparison based on the diameter of the two circular arrangements (making a gross comparison), he would no doubt give an incorrect response to the examiner's question, "Are there more blocks here or are there more blocks here or are there the same number. of
blocks here as here ("here" is identified by. pointing)?" A gross comparison could also be made based on relative density alone, which wóuld lead to a "correct", response. A child could also make an intensive judgment that one circle had more blocks because both circles were of the same diameter but one was more dense; this would also be a correct judgment. It was, therefore, possible for a, shilet to respond correctly on this item without making an extensive guantitative comparison. The same can ${ }^{\text {bee }}$ said for Items 2 and 3. Hopever, for a child to respond cơrrectly on Item 4, an extensive comparison had to be made if one ascrfbes to the theoretical intertitationships of correspondence, quantitative comparisons, and logical multiplication. Certainly an intensive comparison was not possible since there were the same number of blocks in each circle, all equally spaced, so that the arc distance between the blocks was always in the same ratio to the diameter.

The two remaining tests were strictly analogous. to the test using circular arrangements. In the two studies under review, there was no attempt to explicate experimentally the theoretical interrelationships mentioned immediately above nor are such attempts made in the present 8 study. . The assumption is made that for a child to respond correctly to items analogous to the last item of each test of quantitative comparisons under review', a process of "foìward transformation" had to be initiated and the forward transformation involved quantitative comparisons, which in turn involved logical multiplication of relations. The concept of forward transformation has been advanced by Beilin (1969).

Forward transformation is a more significant type of transformation than reverse transformation* since it is the basis of many kinds of problem solving. It, is apparently more difficult to initiate, however, than backwfird or reverse transformation. Carrying out the forward transformation inevitabley means involving a compensation procedure with the dimensions of length and width and so the transformation is inextricably involved with logical multiplication.

Successful response in the quasi-conservation** task is much more difficult than in the classic conservation task. The difference, as we have suggested, highlights the role of the analytic-set which triggers an' Internal transformation process that gives rise to some kind of conflict among inferences. No conflict exists on the stimulus side of the equation per se. Conflict results only from the subject/. s disposition to analyze the data of his experience in such \nexists way as to generate inferences which are in conflict because of their logical incompatability (i.e., "the objects cannot be both identical and nonidentical at the same time") [p. 435].
Of the 341 first-grade children tested for the "addition", study
(Steffe, 1966), 128 were incorrect in at least one item of each test.
Since Item 4 of each test was very difficult for the, 128 children, these children may be viewed as being gross quantitative' comparers. They were designated as Level 4 . Three other levels of an'ability to make quàntitative comparisons were identified: Leved I, where ali items of all tests .. were scored correctly; Level 2 where all items on exactly two tests were scored correctly; and Level 3 where all items of exactly one test were scored correctly. Analyses of variance indicated that stathstical differences ($\mathrm{p} .<. \mathrm{d} 1$) existed among the mean peřformances of the four levelsifor addition and subtraction problems. ' It is important to note
Reverse transformation is a process initiated by a child; either physical or mental, where, e.g., a collection of objects are returned to their initial positions in a conservation of one-to-one correspondence problem.

[^0]that the test of quantitative comparisons was administered starting March 8 and the test of problems was complet'ed on Aprif 12, 1966. Sullivan ${ }^{\circ}(1967)$, in his critical analysis of Piáget's theory as it relates to School Curriculum, has stated:

A substantial correlation between number.readiness (è.g., conservation of number) and the achievement of addition and subtraction can be interpreted in both directions. Simply, it raises the question of "which came first, the chicken or the egg;" that is, we do not clearly know whether learning of addition or suibtraction enhances, conservation or whether the oppositê obtains (p. 21).

When the significant differences among the four levels of quantitative comparisons noted earlier are considered, it must be pointed out that the children in the studies received very little or no direct instruction on extensive quantitatinve comparisons as meàsured, but had received -. instruction on processing sums and differences. Children who showed little aptitude for making extensive quantitative comparisons involving forward transformation performed-statistically less well on the problems than children who were successful in making extensive quantitative comparisons. Since the children in Level 4 did have a mean solution rate of approximately two out of every three addition problems and one out of.every two subtraction problem, it cannot be said that where instruction on processing sums has been given, the ability to make extensive quantitative comparisons involving forward transformations is necessary for the solution of problems.

But the results of the two studies were as theory predicted. Further analyses showed children who did not make an extensị ${ }^{\text {ve }}$ quantitative comparison and, in consequence, did not (probabilistically) initlate or
unsuccessfully ini iated an internal forward tränsformation, also performed poorly on the type of problems most demanding a forward transformation. For the problem structure $a-b=x$; where the problems were verbally presented without manipulatable objects, the mean score. was only 24 percent. For the problem structure $\dot{a}+b=x$ under the same conditions, the mean score was 49 percent.

A later study conducted by Steffe and Johnson (1971) was designed to answer questions raised in the first two studies (Steffe, 1966; . Le Blanc 1968). .During November, 1967, 199 firsE grade children were given a test of quantitative comparisons. These 199 children were in eight classrooms housed in four different school buildings in a rural Georgia County. Between January 15 and 24,1968 ; 192 bf the previously tested 199 children were adminilistered the Lorge-Thorndike Intelligence Test', Level 1, Form A. The test of quantitative comparisons (discussed later) contained 15 items. Evidence was strong that a child could make extensive quantitative comparisons if he scored at least 10 of the 15 items* ${ }^{*}$ correct. If he scored seven or leśs evidence was considered weak for extensive quantitative comparisons. Of the 192 children, 127 with IQ scores in the range of $80-97$ or $103-l^{\prime} 20$ were used in the study. Four groups of children were, then defined by crosising the two classification variables. During the month of May, 1969, a 48 item problem solving test was administered to 108 children remaining in the study at that time. Twelve problems for each of, the; following four problem structural types were presented to each child: $a+b=n, a=b=n, a+n=b$, and $\ddot{n}+a=b$. A treatment variable çalled Problem"Conditions (presence
or absence of manipulatable objects during problem solution) was used where children were_randomly assigned to the two conditions. The following research hypotheses were of interest.

1. Chîidren who are able to make extensíve quantitative comparisons are able to solve arithmetical word probiems with structural types $a+b=n$, $a-n=b, a+n=b$, and $n+b=a$ better than children who are not able to make extensive quantitative comparisons.
2. Children who are not able to make extensive quantitative comparisons are able to solve arithmetical word problems with the four structural types in the presence of manipulatable objects significantly better than in the absence of manipulatable objects. -
3. The problem structure $\mathrm{a}-\mathrm{b}=\mathrm{n}$, is correlated higher with the problem structures $a+n=b$ and $n+a=b$ than with $a+b=n$.

In the analysis of the data, it was found that mean performances of children in the high and low categories of quantitative comparisons differed substantively on addition problems ($a^{\prime}+b=n$) in the case of no manipulatable objects present during problem solution (48 vs 75 percent). But mean performances across the two categories did not differ in the case of manipulable objects present for the same problem structure. The analogous mean performances for the problem structures $a-b$ $=\mathrm{n}, \mathrm{a}+\mathrm{n}=\mathrm{b}$, and $\mathrm{n}+\mathrm{b}=\mathrm{a}$ did'not differ within objects present or objects absent. However, mean performances on the structural types $a-b=n, a+n=b$, and $n^{8}+b=a$ was between 46 and 54 percent, inclusive. The mean performance for the structural type $a+b=n$ was approximately 75 percent. So, hypothesis (1) was rejected for all problem structural types except for $a+b=' n$.

The presence of manipulatable objects was a stfong variable for all problem types for all categories of children. Hypothesis (2) was, not rejectéd and was extended to include extensive quantitative comparers. - The correlation of the problem structure $a+b=n$ with the three others was in the interval $[.45, .59]$ while the intercorrelations among these latter three structural types fell in the interval $[.65, .79]$ with most greater than . 70. These correlations do not contradict hypothesis (3).

Moreover, in view óf the low mean scores for the subtraction problems and in view of the significance of quantitative comparisons in the case of the structural type $a+b=n$, instead of considering the ability to make forward and reverse transformations basic to an ability to solve arithmetical problems of the various structural types, it is now hypothesized that the ability to makeforward and reverse transformations is basic to the acquisition of an ability to solve arithmetical word problems.

The test of quantitative comparisons used'in the Steffe and Johnson (1971) study was developed in an earlier, study (Harper and Steffe, 1968). Eight of the test items involved a forward transformation and seven a reverse transformation. Of the eight items involving a forward transformation, six involved a comparison of two equal sets, three of six objects per`set, and three of eight objects per set. The geometrical configurations varied across thése six items with configurations of (I)... circiles, (2) rectangles, (3) lines, and (4) triangles, since comparisons of two equal sets of objects are easier in a rectangular configuration than in a circular or a linear configuration (Steffe, 1966). The objects in two of the eight items involving a forward transformation were arranged in lines--one of six objects and one
of eight objects. These items were included to provide some floor in " the test. If two rows of objects have equal length but one has greater density, an intensive quantitative judgment would suffiée for a correct comparison of the numbers of objects in the two sets. - One of the two items was exactly of this nature. In the other item, the row of eight objects was shorter than the row of six objects. Actually, an intensive comaprison should be necessary for a correct response, but children who were capable only of gross comparisons should have responded correctly to the item if they focussed on density, which seems to be the most likely focus. The six items which had the same number of objects in both sets required the children to make an extensive quantitative comparison if they were to respond correctly.

Since it is the extensive quantitative comparison that makes possible a numerical correspondence, the child who made a correct 'compari. son by using one-to-one correspondence was said to have established a numerical relation between the sets of objects. If a child made a correct comparison by counting, then, because the three stages, in. coordination of cardinal, and ordinal numbers corresponds to the three. stages in numerical correspondence, the child was said to have established a numerical relation between the two sets of objects.

The remaining seven items of the test involved objects which the child moved. Four of these items involved situations in which the child had to compare two sets of objects with the same number in each set. These items varied in many ways from the corresponding síx in the first, eight discussed above. One of the most'striking differences was that,
in the items with môvable objects, the one-to-one correspondence was' established by the children before they were asked to compare the two sets in their final state. A principal component analysis supported a contention that different abilities were required to distinguish : between the items containing équal 'numbers of objectos' in' ©he sets to be compared and the items containing unequal numbers of objects in the sets to be compared. It is important to note that these items varied across transformational types (forward andreverse). Other fluctuation of item.difficulty was not a function of the transformational type as Beilin found (1969), but rather a function of the final geometrical configuration of the objects.
'An interesting study has been reported (Mpiangu and Gentile, 1975) ${ }^{\circ}$ where an experimental test was made of the hypothesis that conservation of number is a necessary condition for learning other number concepts. The children used in the study were kindergarten students enrolledin two schools in surburban Buffalo, New. York.

An eight item conservation of number test and a fifteéen item. arithmetic test were administered to the children as pretests." Any child who scored at least' seven on the arithmetic 'pretest was adiscarded from the study. The children were then randomly assigned to experimental and con'trol groups. The experimental group was given ten 20 -minute arithmetić training session and the control group was givên the 15minute session playing a card game. The arithmetic concepts tested were: rote and rational counting; number recognition; relations * (just before, just after, betwen); number synthesis and analysis.

The experimental group dramatically outperformed the control group on_the posttest arithmetic test: When the post achievement test in *. arithmetic was regressed on the pretest conservation scores, no differences could be detected in the slopes of the regression lines. This lack of differences in the slope of the regression lines was taken by the, experifintes as meaning that conservation of number is not a necessary requirement for learning arithmetic.

There are, of course, great differences in the studies, reported by Steffe (1966); Le Blanc (1968); Steffe and Johnson (1971); and Mpiangu and Gentile (1975). The first three studies concentrated only on problem solving performances, whereas the latter stidy included basically order concepts. This difference in criterion variables is very important, as Brainerd (1976) has shown order concepts' (transitivity of weight) to precede carcinal number concepts (his test was analogous to the extensive quantitative compàrison test, static items) by as much as two years. His critical ages where order concepts were present and cardinal number concepts not spanned the age interval from 5 to 6 years. Consequently, it would not be expected that one would predict learning of one from the other during this age span. 'The situation is not as clear, however, for first grade chịldren.

One should also consider that in essentially two. weeks of arithmetic instrúction, the expérimental. children went from a mean of 3.57 to a mean of 11.17 out of $15-$ from approximately 24 to 74 percent. When considering the scope of the learning tasks, the mean increase is quite substantial for such a short period of time. The children were required to count
in both directions from any number between 0 and 11 and count by two's; find the name of a missing number in a given sequence (1-10); find numbers just before, just after; or between any two in the sequence $(1-10)$; and find thé correct answer and provide a correçt justification to an item such as "thrée and two make how many?" Either the children-were very able or else the criterion items were very close to the content taught. No delayed posttest was given, so it is not possible to ascertain the quality of the training in the sense of retention over time. The four studies discussed in this section definitely raises a fundamental question needing resolution. This questron is as follows:

Are children who are capable of only gross quantitative comparisons able to acqúire arithmetical kfowledge to the same extent as children capable of extensive quantitative comparisons?

The question, as stated, is imprecise. It, will, however, be made more precise in other sections of the report.

Quantity and set partition. In Part III of The Child's Conception -of Number, Piaget (1952, p. 115) discusses the additive and. multipligative composition of number. In the discussion of the additive composition of numbers, the goal was to discover whether the child is capable of understanding that a wholéremains 'constant irrespective of its parts. In the wirst problem, the child was tolld that he is. to have four sweets at one t.ime and four at another. The next dary, he is to have the same number but, because he will be less hungry at the first then at the second, he will have only one sweet at the first time and all the others at the second. Beans were used to illustrate each statement, three beans
ing taken from one pile of four and put with the other four to represent the situafion the second day. The child was asked to conmere the other two. $[(4+4)$ and $(1+7)]$ and to say whether he would eat the same number of sweets on both days. The second problem consisted of giving the child two unequal sets of counters and asking him to make them equal (apparently it was always possible to do so). In the third problem, the child was given some counters and 'was asked to divide them into two equal parts (again, it apparently was always posisible to do so).t

Three stages were identified regarding the three problems; where. the stages were the same across problems. In the first stage, the children grasped neither the equality of the two arrangements ($4+4$) and $(1+7)$ mor the permanence of the whole in spite of changes in the "distribution of the parts, the latter beigg a characteríation of the famous class-inclusion problem reported in the same volume (Piaget, Chapter 7, 1952). The last (and operational) stage was characterized by reversible operations." The middle stage is a transitional stage where the chíld can bested to a realization of the invariance of the whole, but does not.discover it spontaneously. The same type of phenoména can be observed with regard to the remaining two problems.

Two aspects of the relationship between a set and its partitions are esseptial: The first is that a partition exhausts a collection, and the second is that, any two partitions are' not equal sets. The . first ifessential for the child to realize what'is invariant relative to the second. Piaget's study of addition concentrated on these two aspects when he asked a child to recognize, for example, that $4+4=$ $1+7$. So, it would seem that partitions of a collection, as a concept,
is developmental and highly related to quantity and number in Pilagetian theory.

Glass Inclusion
In the section Number in Piagetian theory, it was pointed out that Piaget views nested clas'sification às being essential for number, ánd reciprocally, number aś being essential for nested classifications. Piaget (1952) has stated that "class and number are mutually dependent, in that while number involves class, class in it.'s turn relies"ímplicitly on number" ($p: 184$). "The difficulty of understanding the serial inclusion associated with whole number was pointed out by Sinclair (1970, pp: 150-151). In an experiment designed by A. Morf (Greco and Morf, 1962 pp. 71 ff), a collection of 9 cubes is placed"in front of the child. The experimenter had one block and added to it until a good deal more than 9 were present: The question put to the child was whether there was a time when the oxperimenter, and child had the same number. The five- and sometimes the sixfyear olds were not at all sureb. Class-inclusion, then, is to. Piaget an integral aspect of a childs' numerical reasoning. On the other hand, numerical reasoning is an integral part of class inclusion.

Dodwell and Elkind have performed replications of Piaget's experiments on the ability of children to include partial classes. within a total class, i.e., if $A V_{B}=C(A \cap B \rightarrow \phi)$, then $A \subset C$ gr $B C C$. For his sub \rightarrow jects, Elkind (196la) selected twenty-five children from each of the grades kindergarten to third. The question asked, of each child was, "Are there mare boys (or girls depending upon the sex of the child being questioned) ${ }^{\circ} \dot{\text { or }}$ more children in your class?" "Other questiops were also
asked to gain assurance that.the children understöod the above question. On the basis of the responses, the children were placed in three stages; S_{4} tage ${ }^{\prime} 1$ if either ${ }^{\wedge} C \subset A$ or $C \subset B,(A=$ boys, $B=$ girls, and $\dot{C}=$ children $)$, Stage \mathcal{f} if $C=A$ or $C=B$, and Stage 3 is either $C \supset A$ or $C \supset B$. Fifty percent of the five-year-olds, thirty-two percent of the six-year-olds, twelve percent of the seven-year-olds, and eight, percent of the eight-year-olds were in Stage, 1. Correspondingly, 48, 56, 76, and 92 percent respectively were in Stage 3. The four distributions of percents were "statistically different.

Dodwell (1962) was interested in investigating the response to class inclusion guestions and responses made on'the t'ests of provoked and unprovoked correspondence discussed earlier. In the discussion of the results, he stated that the "ability to answer correctly questions which invplve simultaneous consideration of the whole class and its " ((two) companent subclasses, appeárs to develop to a large extent independently of understanding of the concep't of cardinal numbers (a's ${ }^{\circ}$ measured by the test's for provoked and unprovoked correspondence)" (p. 158).

The above studies are what may be called "one-shot" studies, that is, stadies that test an. indivudual at a point or points in time. The question immediately arises, then, if a child is on a given stage at a given point in time, with reference to a particular situation and particular materials, will the same child be on the same stage at a different point in time, all other things constant? Dodwell (1961), using the tests devised in an earlier study, made a test-retest reliability study with intervals of one week and three months. He comments, "The short-term
reliability of the test is highly satisfactory, and compares well with the, reliabilities of many commercially available cognitive tests. The long-term reliability indicates considerable stability, in the development of number concepts. : . ." (p. 30).
4. In this same study, Dodwell examined the data from his original sample of 250 children to detect differences due to sex and soccioeconomic status. He reports that differences were extremely small, insignificant, and did not favor either sex. To test for socio-economic status, the children were divided info three groups on the basis of their fathers' occupations: (1) professional, (2) clerical and semi-skilled, and (3) semi-skilled or unskilled trades. No differences were det'ected among the groups, but the higher socio-economic groups scored more favorably.

Class inclusion being unrelated to one-to-one correspondence does not prove conclusively that it is not an integral part of the child's conception of number in a serially inclusive sense, nor does it prove that it is not an integral part of whole number operations. The latter two problems remain to be studied more definitively.

Logically, addition and subtraction of whole numbers and Piaget's class-inctusion problem are inextricably intertwined: Little data are available, however, concerning acquisition of addition and subtraction and performance on the class' inclusion problem. Sullivan' (19.67), in. . his critical appraisal of cognitive development theory to school curriculum, noted that "If a relationship was demonstrated. . .between the attainment of addition and subtraction \because and the wooden bead problem,
it might just as. well be interpreted that addition and subtraction is a necessary condition for class inclusion. . ." (p. 2)" Sullivan unwittingly may be, partially correct as, already noted, Piaget sees number as a synthesis of Groupings I (Primary Addition of Classes) and V (Addition of Asymmetrical Relations). Operational classification, however, awaits the development of number where the elements of the classes are considered as units. Consequent My, Piaget's formulations lead to a genetic. circularity among classes, relations, and number. Class inclusion is taken as the criterion of presence of Grouping I, so that, from a genetic point of view, there is no reason to attribute necessity to one or the other of class inclusion and addition and subtraction (as studied by Piaget) for the presence of the other. So, addition and subtraction may be necessary and sufficient for class inclusion.

Training studies. Berlin (1971) has given an extensive review of the literature pertaining to training children to perform logical operations. Class inclusion was included in his review. In fact, he found few data regarding the training of classification beyond that pertaining to class inclusion. The major goal of the training studies reviewed by Beilin was to determine whether class inclusion is symptomatic of an underlay mental organization pertaining to classification, Grouping I: Primary Addition of Classes; or whether it is mainly the result of experience. The most noteworthy of the 'studies reviewed by Beilin is the one conducted by Kohnstamm (1968) due to the results and the subsequent controversy created by the study. Kohnstamm's approach. was. to use a total educational experience to teach children class inclusion. He used
three instructional approaches, one a pure verbal method and the others a verbal method supplemented by pictures or by, physical objects. In the purely verbal method, he asked questions such as "In the whole world, are there more dresses or more clothes?" . In the case of incorrect answers the children were told they were incorrect and were given the correct, answer as well as a reason for the answer.

In the second instructional approach, the purely verbal method. -was supplemented with pictures of different classes. The same feedback procedures were used. In the third instructional approach, the verbal method along ,with pictures was supplemented with Lego-blocks.

In the case of the purely verbal instructional approach, six of twenty five-year old children were observed to have learned how. to solve the class inclusion problem. In the case of the second in-structional-methed, eight of twenty five-year oild.children could. solve the pictorial items as well as the verbal ones. In the case of the third-Instructional group, sixteen of twenty children could soive the picture items as well as the block items.

Könnstamm's (1967) results clearly indicated that experience may be a primary factor in solving the class inclusion problem. But the Piagetians' took exception to his interpretation of the results of his experiment, claiming they were "figural structures" rather than operative structures. In response to Kohnstamm's work, Inhelder and "Sinclair (1969) undertook a learning experiment in class inclusion With eleven children. When using Kohnstamm's criteria, they observed that nine of, the 11 children succeeded in class inclusion. When more stringent
criteria were established, only two of eleven succeeded. The more stringent criteria involved a valid explanation and correct response to a problem of a different form.

The response of Inhelder and Sinclaif to the Kohnstamm experiment is very important because Grouping I would imply that a child who is operational with class inclusion has at his disposal. a potential of elaborating a nested hierarchy of classes not restricted to a class and one of its subclasses. The class inclusion problem is merely a convenient way of tapping this potential. Children trained on ad narrow front (with only two classes) may act as if they have the potential of elaborating a nẹsted classification but may not, in fact, be capable of doing so. A similar situation in mathematics teaching is where a student is trained to prove the triangle inequality (a+ $b \geq c$, where a, b, and c are the lengths of the sides of a triangle), and, given: a triangle, 'knows' that the sum of the length of two . sides always exceeds the length of the third, but thinks it is possible to construct a triangle out of a three, inch segment, a four inch seq- . ment, and an eight inch segment.

Rather than dwell on the complete set of training studies surrounding'class inclusion, Beilin's (1971) summary statements are cited.

These studies of class inclusion point to the fact that training can lead to successful acquisitron of this logical ability.

The question of operative achievement from instruction and training still appears not fully resolved. . . . (p. 105).

```
# )

It must be pointed out that when Beilin states that training can lead to successful acquisition of class inclusion, he considers class incilusion as being simply one class included in another. The position being taken here is that the structure of the class inclusion relation (a partial ordering) must be taken into account for any claim of operativity to be made. . It is not enough to train children on a particular problem or set of class inclusion problems, test them on the same problem or set of problems, and claim class inclusion has been internalized as a flexible, functional scheme.

Classification. In order to fully appreciate classification behavior of children, it is necessary to discuss classes per se. Generally, when objects are classified together, they share common properties. For example, quite dissimilar objects can be classified together under the heading, "fruit." What makes these objects "fruit" is what is common. Within the class of fruit, however, important differences exist -- oranges - and apples are different. Given a universe of objects, three distinct kinds of properties exist (Inhelder and Piaget, 1964).
1. Properties spëcific to members of a given class (e.g., the properties which make items fruit) which. distinguishes the class from other classes (from vegetables, meat, etc.).
2. Properties which are common to melbers of a given class and - those of other classes to which it belongs (e.g., that which is common to fruit and. vegełables).
3. Properties which differentiate members of a given class one from another (those which differentiate a pear from an apple, for example).

The intension of a class is the properties common to the elements, and the extension of a class is just the members of the class. The cooraination of the intension and the extension of a class is what develops in
children in stages.
Young children below about six year's of age have been shown to employ .primitive behavior in attempting to form classifications. The, types of collections formed by these children have been called complexive collec. tions or graphic collections (Inhelder and Piaget, 1964). For example, children were asked to classify a collection of geometric objects together, some triangular shapes, some square shapes, and some haḷf ring shapes. At least three varieties of graphic collections were identified. First, some children constructed a number of subcollections, ignoring the rest of the material which was never classified. The, subcollections had, no common property--the child would change criteria of classification within a subcollection. Sometimes, subcollections were not formed but properties of individual items noted. Second, successtive similarities between one object and the next were formed. While this is an improvement over the type of behavior noted in the first èxample, it is not true classification since no over-all criteria for classification were found for subcollections; subcollections were not differentiated, and part-whole relatiotships were not.identified. Third, definite figures are made out of the objects-a "house", is made, then windows, etc. That is, the child makes no real attempt at classification, but instead plays with the objects, constructing whatever comes to his fancy.

The graphic collections described above have two features differen7 tiating them from true classes. First, some collections are formed on the basis of the spatial arrangement of the objects. Second, no criteria for classification (no properties which tied all, the elements together)
were isolated by the children. These two aspects are simply another way of saying that intensiye properties were not identified by the childrenthese children are at Stage I (pre-operational) as regards their classificàtion behavior:

Stage II (or transitional) classification behavior is adyance over Stage I "classifícation behavior, but it is not yet operational'classification behavior. Stage II classifigation behavior can best be characterized by.a recognition of intensive properties, 'with no complete coordination between the intensipn of a class and the extension of a class. Given a class of objects; children are able to separate the class of objects into subclasses. This means that they understand that all elements can be classified, each subclass contains elements of a specific kind or which possess a specific property, and two or more subclasses are constructed. - Yet, the subclasses formed are not \({ }^{\text {rthought of as forming á }}\) higrarchy of classes. The clasšinclusion relatiqn'is not mastered.

The class̀-inclusion relation being mastered means simply that, -: given a class \(A\) which is contained in a class \(B\), the child understands all of the \(A\) are some' of the \(\stackrel{\circ}{B}\) büt ali of the \(A\) do not constitute all of the \(\mathrm{Bi}_{2}\). For example, if \(A\) is the class of Siamese cats and \(B\) is the class of cats, then all Siamese chats are certainly cats, but they do not exhaust the cats. That is, there are cats that are not Siamese cets. So, all of the \(A\) do pot consittute \({ }^{\text {a }}\) all of the \(B\), but just some of the B. Chil- dren at the transitional stage of classification certainly realize that Siamese cats are indeed cats, and in fact are part of the set of cat. \({ }^{-}\). So, one would think they would understand class-inclusion. But they
may not. It is critical they understand that there are cats other than Siamese cats or, in other words; that all cats are not Siamese. If \(A^{\circ}\) denotes the set of nonSiamese cats, then \(A \cup A^{\prime}=B\) and \(A=B-A^{\prime}\).


To understand class-inclusion, the child must be' able to engage in reversible thinking. To do so is to be able to conceive that the Siamese cats, together with the nonSiamese "cats ( \(A \cup_{A}\) '), make up the cats ( \(B\) ); and that the cats, minus the nonsiamese cats, make up the Siamese caters \(\left(A=B-A^{\prime}\right)\). In this reversible reasoning, the child has to be able to conceive of the total class of cats as being made up of the two subclasses at one and the same time.' Stage II children, when focusing on the cats, 1 lose sight of the subclasses, and when focusing on the subclasses, lose sight of the total collection. Typical responses of transitional children (Stage II) are given in the fallowing situations... A picture is shown to the children on which there are, say, four Siamese cats and three. cats which are not Shame. The children are asked to compare the number of cats to the number of' Siamese cats. When asked to do so the child, req will compare the Siamese cats to the other cats.

The children at. Stage III (concrete operational) are capable of solving the class inclusion problem, and are much fore flexible in their
classificafion behavior than are Stage' II children. Stage. II children are able to build hierarchies of classes. For example, they are capable of conceptualizing such hierarehies as maltese terriers are part of the terriers, terriers are part of the dogs, dogs are part of the mamals, and etc. Stage III children are not only capable of building hierarchies of classes, but are able to change the criteria of classification and reclassify a set of elements in a new way. The child may consider new* dogs in his classification and refine the classification to include many more classifications than those given. Two complementitary processes exist that describe the Stage III flexibility in classification. One, given a classification, the child can go back and construct finer 'classifications or whole new classifications and not be tled to the one constructed. Two, a child can anticipate a classification before it is done.

In sumary, the forlowing three stages in children,'s classificatory behavior have been identilifed:

Stage one (Preoperatidnail) Given a collection of objects and told to "put everything together that geqs together, ford at this stage forms what is kpown as "graphic collections." : Thwh does anything, he constructs one or more spatial wholes! Ihis is a childishirst atempt to coordinate part-whole relations with those of equivikencé and difference.

Stage two. (Transiteional) At this stage, the chat tructedo collections are no longer graphic collections. Trial and errorplays a large role in construction of classifications and no ofer-all plan is presentses Children cannot yet solve the class-inclusion problem but do understand that all elements need classifying, each subclass contajus"elements whích possess
a spécific property, and two or more subclasses are constructed.
Stage three. (Concrete Operational) Children at this stage are able to coordinate the intension and extension o a class, as evidenced by the solution of the class inclusion problem. Children at this stage are capable of conceiving of hierarchial arrangements of classes, and are capable of imposing more than one classificational system on the same collection of elements, anticipating the new classificational system before carrying out the classification.
ffass inclusion and arithmetic. Surptisingly, class inclusion has not been. used to any freat extent by mathematics educators in studies of chilidren's acquisition of arithmetical content or in studies designed to assess effects of instruction in logical reasoning . . . especially classification. A study of the latter type was carried out by Johnson (1975). This study is critical for the utilization of class inclusion as-a readiness variable in the present study, so it will be discussed in some detail.

The purpose óf the study was to determine if specific instruction on classification would dmprove the ability of young chrildren to (a) form classes, (b) establish selected equivalence and order relations; and, if so, would transfer' occur to other class-related activities or the tran-.' sitive property. The sample consisted of kindergarten and first-grade children with chronolơgical ages in months in the intervals ( 64,76 ) and (77; 89):, respectively. The children were further categorized into IQ intervals of \((80,100)\) and (105, 125), as measuìed byme otis-Lennon Mental Abilities test. Random assignment was used in forming á é experi-" mental and a control group.

The lęarning material was designed to provide children with experiences in forming classes, intèrsection and union of classes, the complement of a class, and relations? between classes and class elements. The intensive properties of the classes could beabstriacted through simple abstraction of physical properties (e.g. red) or else were functional properties (e.g., things to ride in). The first three sessions (I, II', III) were desigtied to provide experiences in forming classes. In the next three sessions (IV, V, and VI) work was done on the intersection and complement of the intersection of classes. The children were put in a conflictíve situation where it was pointed out that an object could not be placed inside of two nonquerlapping hula hoops simultaneously. The two following sessions (VII and-VIII) included activities concerning formation and union of olasses. Sessions XII - XV contained activities designed to operationally, define the relations "more, than," "fewer'than, \(\\) and "as many as." The remaining sessions (IX - XI) involved practice material on formation of classes involving uñion, intersection; complementation, and nested classifications.
hould be pointed out that all of the necessary content was inclu \(_{n}\) the instructional session to enable the ehild to solve the cIass sion problém. All he had to do was structure the information. Essents everything through Stage II classification was * includer ie instruction, as well as the set relations "more than," "fewer \({ }^{\prime}\).nd "as many as" which occhr in the question of the problem. The instr a given cl: alization that an object can possess mode than one intensive prc intersectionsand umion); recognition of properties
that separate element's of a given class (cómplementation); and recognition of properties common to members of a given class and other classes to which ft belongs (nésted classification, intersection, union, and complementation). It was felt that the class. inclusion relation'must . . be structured by the child.. If instruction is to be assimilated regarding classification, it must be broadly based, including intension and extension of classes. But the child must coordinate the inteasion and the extension. Specific training, such as Kohnstanm's only serves, a nerrow function in äcquisition of Stage III classification behavior.,

The posttests were separated into achievement tests and transfer \({ }^{t}\) 度. The achievement tests were a connectivè test (and, or, and not), a relations test, and an intersecting rings test. The transfer tests were a multiplication of classes and relations test, a class inclusion test, and a transitivity of relations test.

The, data analysis showed, that the treatment -greatly affected achievement. Age did not yield significance, whereas a categorization variable (IQ) did yield fignifičance for ail achievement mean differences. The peans for the connective achíevement test were \(7 \dot{1}\) percent for items based on content contained in the learnitg material, and 72 percent for items based on content not contained in the learning material in the case of the experimental group. For the control group, the analogous means were 42 percent and 33 percent. For the relations rachievement test and the intersecting rings test, the means were \(7 \dot{8}\) and 44 percent for the' experimental's and 52 and I 1 percent for the controls. These means
indoicate that the t'reatment was highly effective for its designed purpose.
In the case of the transfer tests, treatment was effective for the multiplication of classes and transitivity tests, but not for the-class inclusion' test. Agaín'; age was not significants for any test, but intélligence was, especially for the class inclusion test, 'which had a grand mean of only 29 fercent. The grand mean for the transitivity test was 68 percent and for the multiplicatiồn of classes and relations test, \({ }^{\circ}\). the means were 6 ' 3 percent ( \(3 \times 3\) matrices) and 55 percent ( \(2 \times 2\) matrices) for the experimentals and 44 percent ( \(3 \times 3\) matrices) and 39 ( \(2 \times 2\) matriced) for the controls.

From the training sessions, it was evident that class inclusion was resistant to the instruction. The intersecting ring items showed improvement due to the training, but there was strong evidence that the control children viewed the intersecting rings as forming three subregions due , to the most frequent response choice in a multiple choice format. More'over, direct instrućtion was given on intersecting rings.

It appears, then, that while one can dramatically improve children's classification capabilities in the sense of recognition of intensive properties of a class, it is quite difficult to improve the coordination of the intension and extension by instruction, on the intension and necessary subskills. Direct training is effective, as shown by Kohnstamm, but that training is shallow, as shown by Inhelder and Sinclair.

The conclusion drawn here is that class inc̣lusioñ is resistant to traiping, if the goal, of that training is to influence the structure of class inclusions as a relation. "While this conclusion is stronger than
the one made by Beijing, he did not have the advantage of Johnson's study in his review. Johnson (1):55) goes on to extrapolate "When considering the results of the study . . . a serious problem is revealed in that children are being presented with concepts they are conceptually unable tot handle. In a subtraction problem súch as \(9^{\circ}-5=4\), if a child thinks.. that the difference is larger than the minuend he might.just as well write ed something like 5-9 = \(4^{\prime \prime}\) (p. 143).

Very little work has been done, attempting to show a causal reltionship between class inclusion and addition and subtraction. Vitale (1976), In a study conductèd to evaluate the Comprehensive School Mathermatics program at the kindergarten and first-grade level, observed a correlation ff. .06 between class inclusion and subtraction computation and a correlation of only .28 between class inclusion and addition computation. These. low correlations cannot be taken as showing no relation between class inclusion and subtraction and addition, because - the addition and subtraction items were computation items presented using numerals. However, she also observed a correlation of only :09 between class inclusion and subtraction problem solving. As the sub--traction problems had to be read by the children, possible effects of class inclứsion may hàve been masked due to reading difficulties. Moreover, the study does not shaw possible effects of the lack of class inclusion on learning of addition, subtraction, and especially of the missing -addend problems. It does indicate that not as much relationship exists between class inclusion and whole number operations as Johnson

\section*{implied.}

\section*{The Achievement Variables}

Quantitative comparisons and class inclusion are personalogiçal -variables of a cognitive nature. They are based in Piaget's. grouping U struetures but have a logical relationship to cardinal and ordinal. number. - But the extent to which they are teadiness variables for learning different aspects of cardinal and ordinal number is yet to be detérmined.

Seven clusters of variables are defined in the subsequent presentation. Each one of these clusters is used in a multivariate analysis of variance where Quantity is used as a categorization variable-mextensive quantitative comparers versus, gross quantitative comparers. Through these analyses, a determination ofr Quantity as readiness variable for aç̆uisi- . tion of contenit of first grade mathematics can be accomplished. While the multivariate analysés cannot be, used to prove deductively Quantity is a réádiness variable, statistical differences can"be used to gain " súpport or rejection of hypotheses arrived at through logixal analyses.. The statistical differences would be especially compelling if the mathematical learning tasks of the children are controlled to include what are considered as mathematical learning, tasks çitical to acquisiontion of the content in question.

In the next section, those aspects of cardinal and ordinal numbet. important for instruction of the children, for the definition of the achievement variables, ánd for ascertáinment of a logical connection between' the two readiness variables and the achievement variables, are Rresented.

\section*{Theoretical and Empirical Background of Cardinal and Ordinal Number}

In his classic work, Set Theory, Hausdorff (1962, p. 29) leaves cardinal and ordinal number completely undefined and asserts. that relations between cardinal and ordinal number are merely convenien ways to express : relations between sets. Hausdorff (1962) comented that "this formal explanation sayf what the cardinal numbers'are supposed to do, not what they are...we must leave the determination of the 'essénce' of cardinal number to "philosophy" (pp. 28-29). Although Hausdorff's point of view is consistent wfthemodern postulational developments in mathematics, it does not lessen the importafice of his.work on cardinal (and ordinal) number for research on acquisition of mathematical knowledge. For the structures which characterize the \(\begin{aligned} & \text { mathematical knowledge the childis.asked to acquire }\end{aligned}\) seldom, if ever, correspond exactly in form to structural aspects of the child's natural thought.": It is truely the case that Hausdorff is not concerned with the nature of cardinal' (and ordinal) number and leaves the determination of their" "essence" to philosophy, and ultimately to psychology as well: . Not only is there a difference in the way in which the objects called cardinai and ordinal numbets bre viewed in mathematical structures as discussed by Hausdorff and in genetic structures as discussed by Piaget, but there are formalimdifferiances. In the structures and these differences are profound.

In the following exposition, only "naive" set theory is dealt with.In this theory, such constructions as "the setof all" cardinal numbers". lead to antinomies: For a theorem is provable which leads to an unbounded sequence of "cardinal" numbers--which means that for any set of cardinal numbers, there.is styill a greater one. Consequently, "the set of all
cardinal number's" is not conceivable even though it would appear to be so. In the axiomatic treatment of set theory, these obvious contradictions have been removed (Kelly, 1955, pp. 250-81). Since the theory does not allow for \({ }^{\text {- }}\) unlimited construction of sets, the objects \({ }^{\Delta}\{x\) : \(x\) is a cardinal number \(\}\) and \(\{x: x\) is،an ordinal number\} do not. represent sets. A distinction is made betweèn a class and a set, in that a class is undefined, whereas a set is a class which is a member of another class. That is, a class \(x\) is a set if-and only if there is a class \(y\) so that \(x\) is a member of \(y\). Using this special restriction, cardinal and ordinal numbers are defined to be
 the development of cardinal and ordinal number, the treatment by Hausdorff is adhered to because it is felt to be closer" to modeling child thought. Ordered systems. During subsequent díscussion, occasion arises to employ general ordered systems. 'The basic concept of ordered systems is that of a parefrally ordered set. -A ready example of a partially ordered set is the set of subsets \(P(X)\) of a given set \(X\) ordered by the set'inclusion \(K\) relation " \(<\).

If \(P\) is a partially ordered setand \(E \ddot{a}\) subset of \(P\), then an element \(x\) of \(P\) is called an upper'bound for. \(E\) if for every \(e \varepsilon E\), \(e<x\).' An element \(X\) is the least upper bound for \({ }_{-1}\) if, for any other upper bound \(y \varepsilon P, x \ll y\). Analogous definitions can be given for' lower bounds' and the greatest lower bound of E. A lattice is a partially ordered set for which every te wo element subset \(\{x, y\}\) has a least upper bound and a greatest lower bound. Examples of lattic̣es are \(\hat{P}(\underset{\sim}{x})\) ordered by set inclusion and the politive integer's ordered by "a divides b." The least upper bound of any two sets \(A\) and: \(B\) of " \(P(x)\) is \(A \cup B\) and the greatest lower bound is \(A \cap B\); and the "least upper bouṇd of any two positive integers"ordered by "dividẹs!" is
their least. common multiple and the greatest lower. bound is their greates̀t common divisor.

A chain in \(a_{\text {e }}\) partially ordered set \(P\) is a subset \(C\) of \(P\) in which < is connected (that is, a subset \(C\) where if \(x ; y \varepsilon . C, x<\dot{y}\) or \(y<x\) ). Any such subset \(C\) of \(P\) is partially ordered by \(<\) and is a lattice as well as•a chain. The set 'of natural numbers'ordered by \(<\) is an example of a chain.
i Cardinal Number. Hausdoriff (1962) assigñ̄ objects, called cardinal numbers, to sets in such a way that if object a corresponds to set' \(A\) and objèt \(b\) corresponds to set \(B, a=b\) if and only if \(A\) is equivalent to \(B\). It is important to note that the set \(A\) to which she cardinal number \(a\) is assigned may or may not be an ordered set. Two cardinal numbers may be compared \({ }^{*}\) by comparing the sets to which they are assigned. \(\mathrm{a} \leq \mathrm{b}\) means that \(A \sim B_{1}\) where \(B_{1} \subset B\). It may be that \(A=B_{1}\) in which. case \(A \subset B\). The sum and"product of cardinal numbersis.determine their arithmetic. "The sum \(a^{f}+b\) of two cardinal numbers is the cardinality of the set'theoretic̣ sum \(A \bigcup^{6} B *\), where \(A\) and \(B\) are any two disjoint sets having the' - \(\%\) cardinalities, a and b respectively (Eausdorff "p. 33) :" This deffnitín is

Subleties exist concerning comparison of any two cardinal numbers in that it is, in facfs true that the comparability of any two cardinal numbers relies on Zermelo's well-ordering theorem, which states' that any set can be well-ordered. This theorem is necessary (in Haùsdorff's development) to show that there do not exist- two incomparable sets \({ }_{p}\) i.e., that it is never the gase that there exist no \(A_{1}\) and no \(B_{1}\) so that \(A_{1} \sim B\) and,\(B_{1} \sim A\).
**"U" has been substituted for " + "..
justified because if \(A \sim C\) and \(B \sim D\) where \(D\) and \(C\) are disjoint, then \(C \cup D\) \(A^{\prime} \cup_{B}\), so that the cardinality of \(\dot{C} \cup_{D}\) is equal \({ }^{\circ}\) to that of \(A U_{B}, ~, ~ 1\)

The product of two cardinal numbers \(a\) and \(b\) is dèfined \(a \bar{s}\) follows. "The product \(a b\) bf two cardinal numbers is the cardinality of the set theoretic product \(A \times B\), where \(A\) and \(B\) are two sets with cardinalities \(a\) and \(b\) respectively (Hausdorff, \(\left.p_{i}, 35\right) . "\) The product of \(a\) and \(b\) is invariant of the particular choice of the sets \(A\) and \(B\) just as was the sumb except that in the sum; \(A\) and \(B\) had to be disjoint. That is, if \(A \sim C\), and \(B R D_{0}\), then \(A \times B \sim C_{0} \times D\), so that the cardinality of \(C X D\) is equal to that of \(\mathrm{A} \times \mathrm{Br}\). The commutative, associative, and distributive laws hold for the processes just. defined, and depend directly on the commutative, associative, and distributive laws for set operations.

Bárnes (1963, p. 194) defines a cărdinal number as an equivalence class of sets without regard to order. With regard to this definition, . there are two uses of cardinal number a class usage and a member-of-a-cliass usage. The member-of-a-class usage refers to the practice of using a representative set (a standard set, but not necessarily so) from a particular equivalence class. For example, one might look at a.horse and say,"that horse has four legs.". "Four" in this case is used in the member-of-a-class sense. The class ysage of "four" is implicit in the fdllowing stakement: "Horses normally have four legs." In the first case, a particular collection was referred to, and in the second, a class of collections was referked to: Log'ically, set equivalence is a critical concept for.the class asage of number. Set equivalence, of course, is based on.one-to-one correspondençe.

A contrast of cardinal number in mathematics \(\frac{\text { and }}{\text { number }}\) as defined by Piaget. It would seem that the class asage of cardinal number would not
develop until numerical one-to-one correspondence is available. But here a fundamental difference exists between the mathematical development of cardinal number and Piaget's notion. That difference can be characterized by the notion of a unit. In the mathematical development, no analogue "of Piaget's "arithmetical unity" exists except for elements' of sets. "Set" is taken as an defined object and relations and cardinal number are defined in terns- of sets. Such a procedure is acceptable although Piaget (1971, p. 37) is of the opinion that to define cardinal number in such a way is to introduce "number" into the definition of number. His opinion. is based on the different psychological types of one-to-one- correspondence-operational one-to-one correspondence assumes number.

Whether Piaget's psychological analysis is correct should be discussed. Ven Engin (1970, 'p. 40) commented hat Piaget does not distinguish between a relation that may exist between two or more elements of a set and the elements of a set:. Van Efren's claim is certainly true, because Piaget's arithmetical unity depends on order relations for its constructionorder of some type is essential for the objects to be considered as distinct, but yet equivalent. .

The question of whether order is essential for the development of cardinal number needs an answer. Logical identity is involved. Tarsi (1954) has defined! logical identity as follows: " \(x=y\) if, and only if, \(x\) and \(y\) have every property in common (p. 55)." Examples and nonexamples - \(\rightarrow\) may clarify the concept. Set equality is an example of logical identity' and set equalivance is a nonexample of logical identity. From the definition; one can conclude that (1) every thing is identical to itself; (2) if \(\cdots x=-y\), then \(y^{\prime}=x\); and (3) if \(x=y\) and \(y_{y}=z_{x}\) then \(x^{\prime}=z\). Logical identity is therefore an equivalence relation and has an accompanying symmetrical
difference: relation "not identical to." This symmetrical difference relation seems to:be quite important in \(\rightarrow\) classification because if objects are classified together, they share common properties, but they also are • different one from the other even if this difference is no more than the fact that the objects are distinct. Suppose we have two physical objects with every physical property in common. Would they be indistinguishable? Certainly not, for two distinct physical objects are always nonidentical because they, can never have every property in common -- spatial position is an example they can never have in common. In case of number, however, It is clear that Piaget is considering mental constructions and not physical objects. But the arithmetical units Piaget speaks of need not be arranged mentally in a linear order to be held distinct. Rather, they can be arranged mentally most any way by virtue of the fact they are distinguishable as objects" (albeit mental constructions). They are not logically identical to one another because they are different objects --'they may have independent existence in the mind much the same way objects which look alike physically have independent existence.

The beginning of number for a child may be set equality, which is a logical identity. .A collection of objects in one beaker is the same collection no matter whether it is thrown out the window of an airplane or poured into another beaker. A child may think there are more objects in, one beaker than the other, but also know they are the same objects. Here "more" denotes a global evaluation having little to do with thé objects themselves. It is in this sense that the member of a class.meaning of cardinal number may arise before the class meaning.

The abqve argument was advanced to illustrate the possibility that cardinal number and ordinal number may be distinguishable in their development.

That does not mean logical identity is to. be considered a necessary and sufficient condition for the psychological existence of cardinal number. Nothing may be farther from the actual case. It-would be rather surprising, though, if a child had a concept of cardinal number but not logical. identity.

If one does not consider "number", to be necessary for operatory one-to-one correspondence, how is one to account for the development of operaOnal one-to-one correspondence?. If a child sets up a qualitative one-toone correspondence between two classes and one or both of the classes were. rearranged, there would be no hope that without logical identity, the correspondence would be maintained. Following Van Engen (1970, pp. '34- * 52), if a number (e.g., four) is regarded as a particular set in the mem-ber-of-a-class meaning, then \(\log i c a l\) identity is surely a logical prerequisite to number while one-to-one correspondence is not. It is quite. feasible that a child learns member-of-a-clảss meaning of cardinal number before the class. After (or when) the member-of-a class meanings are; established, (at least for small numbers) the child may then construct one-to-one correspondence concepts.

Ordinal number. Just as set equivalence is a basic notion for cardinal number, set similarity is a basic concept for ordinal numbers. For clarity, the order relations discussed below are asymmetric and transitive (strict partial orderings) as well as being connected. Two ordered sets are called similar if there exists a one-to-one correspondence between their elements that preserves the order in the two sets. In symbols, "A is similar to \(\mathrm{B}^{\prime \prime}\) is denoted by "A. \(\cong\)." Set similarity is an equivalence relation just as is set equivalence. Hausdorff (1962, p. 51) assigns order types fo ordered sets in such a way that similar sets; and only
* similar sets, have the same order type assigned. In symboís, \(r=s\) means \(R \cong\). If a set is well-ordered, then its order-type \(i_{\boldsymbol{f}}\) călled an ordinal. number.

In general, the arithmetic of order types is not isomorphic to the arithmetic of cardinal numbers. For if \(A\) and \(B\) are disjoint ordered sets, then the set theoretic sum of \(A\) and \(B(A+B)\) is a new ordered set such that the order of the elements of \(A\) is retained, the order of the elements of \(B\) is retained, and every a \(\varepsilon A\) precedes every \(b \varepsilon B\). If \(a(\) is the order type of \(A, b\), the order type of \(B^{\prime} ;\) then \(a+b\) is the order type of \(A+B\). That \(a+b \neq b+a\) in geheral can be seen-by the following example. Let \(A=\{1,2,3, \ldots, n\}\), and \(B=\{n+1, n+2, \ldots\}\). The order type of \(A\) is \(n\), the order type of \(B\) is \(\omega\), and the order type of \(A+B\) is \(n+\omega\), where \(\omega\) is the order-type of the natural numbers. But the order type
pf \(B+A\) is \(\omega+n\) which is not \(\omega\) becãuse \(B+\dot{A}=\{n+1, n+2, \ldots, 1 ; 2, \ldots, n\}\) contains a last element ( \(A+B\) does not). So \(\omega+n \neq n+\omega\). Because \(n\) end \(\omega\) are ordinal numbers and, in general, ṣince the above example shows that the sum of two ordinal numbers is not commutative, the arithmetic or ordinal numbers is not isomorphic to the arithmetic of cardinaly numbers. Nevertheless, two sets with the same ordinal number necessarily possess the same cardinal number. If \(A\) is a well-ordered set, \(A\) is a chain. An inturitive example of a chain important to subsequent discussion is as follows: Let \(A\) be a well-ordered set. Then \(A\) has a first element, say. \({ }^{a} a_{0} ; A-\left\{a_{0}\right\}\) hás ,a first element, say \(a_{1} ; A-\left\{a_{0}, a_{1}\right\}\) has a first element, say \(a_{2}\); etc., so that \(A=\left\{a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\}\). The notation used here is that the index of every element is the ordinal number of the set of "elemfrts preceding it: For \(a_{3}\), " 3 لl is the ordinal number of \(\left\{a_{0}, a_{1}, a_{2}\right\}\), which is calied a segment of \(A\) determined by " \(a_{3}\)." In more general terms,
 \(\cdots\) If \(\bar{Q}=\{x \in A: x \notin P\}\); then \(A=S+Q\). Note that a \(\not \subset S\) because \(<\) is irreflexive; so a is the first element of \(Q\). A result of this definition, is that a well-ordered set is never similar to one of its segments, which \({ }^{\top}\) leads to the fact that for any two ordinal numbers \(a\) and \(b\), -either \(a<b\), \(p<a\), or else \(a=b\). In particular, \(a<b\) means that \(A\) is similar to a segment of \(B\). Of course, if it were possible for \(B\) to" be similar to one of its segments, then it would be true that \(a=b\) as well as \(a<b\).

As indicated above, the elements of a set \(A\) which is well ordered can be indexed by successive ordinal numbers. If \(A\) is a finite set, then \(A=\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}\right\}\) and \(n\) is the ordinality of \(A\) where 0 is the ordinality of the empty set. - Because any ordering of a finite set is a -well-ordering, it is impossible to distinguish the orderings with refergitce ordinal number of the set; i.e., all orderings give the same ordinal number. Thereby, the ordinal and cardinal numbers of finite sets correspond, and it is possible to find the cardinal number of a set by a process of counting, that is \(s_{2}\) by indexing the elements of the set \(\AA\) by the ordinal numbers \(\{0,1,2, \ldots, n-1\}\) by virtue of successive selection of single elements." (Select some \(a_{0}\), then some \(a_{1}\), etc, until the last one \(a_{n-1}\) is selected.) Then \(n\) is called the cardinal number of the set'. This process is often referred to as counting. It is important to recognize that "counting has its basis in ordinal number. .
"管
The notion of equivalence classes of finite sets is implicit in the above discussion because \(\neq\) is an equivalence relation. This observation has' led to the definition of an ordinal number as an -equivalence class of wéll-ordered sets (Barnes, 1963, p.. 194). The set \(\{0,1,2, \ldots, n-1\}\) of cardinality (and ordinality) n can be considered as the standard set of
an equivalence class of sets each of cardinality \(n\).' It must be explicitily pointed out that the arfthmetics of cardinal numbers and ordinal numbers of finite sets are, in fact, isomorphic.

To view a cardinal number as a class of sets should be no more foreign than to view the objects of a sinite fiefd formed by the integers modulo a prime as classes of sets. Of course, to tell-a five year pld : child that a number is an equivalence class of sets is absurd. The identification of a number as a set of objects, howeyer, is a natural way to think about cardinal ata ordinal number. (n the well-known "emptỳ hat" (Van Engen, 1970,pp. 38-39) approach to cardinal number, "0".is defined to the empty set, " 1 ". is defined to be the set containing 0 as an element, étc: More formally, \(0^{\circ}=\emptyset ; 1=\left\{0^{\circ}\right\} ; \cdot 2=\{0,1\} ; 3=\{0,1,2\} ; 4=\{0,1,2,3\}\); \(\ldots ; n=\{0,1,2, \ldots, n-1\}\). Thus, " 4 " is the ordinal number of the segmeqnt \(\{0,1,2,3\}\) and is identified with the segment itself. Because cardinal and ordinal numbers are indistinguishable in this. context, it is also the cardinal number of the set.

Concretely, if \(A\) is a finite set to be counted, then by successive selection of elements; successive segments of set \(A\) are determined and a chaịn of ordered sets is formed. "One," in thelection of the first,. element has both cardinal and ordinal characteristics in that "one" tells how many elements have been selected and also that the first one has been selected. A subset of the collection A of one element has also been determined. "Two" in the selection of the next element also has both cardinal and ordinal characteristics in that "two" tells how many . elements have been seiected and also that the second one has been selected. The segment corresponding to "two" is an ordered set, id a subsef of the collection \(A\), and contains the set consisting of the first element. It
is ordered by the refition＂precedes， \(\mathrm{M}_{\text {which }}\) is transitive and asymmetrical （and is thereby \(\frac{3}{a}\) strict partial ordering）．
 ordered by the relation＂precedes．＂A chain of sets has been established In that if \(A_{1}=\left\{a_{1}\right\}, A_{2}=\left\{a_{1}, a_{2}\right\}\) ，etc．，then \(A_{1} \subset A_{2} \subset \ldots \subset A_{n}\) ．In this Side，one can say that one is included in two，two is included in three， eto if ins counted in a different way，\(A=\left\{a_{1}{ }^{*} f_{2}{ }^{*}, a_{3}{ }^{*}, \ldots \ldots a_{n}^{*}\right\}\) ．It解st ，be noted that while \(a_{i} *\) may \({ }^{6}\) not be the same element as \(a_{i}\) ，neverthe－㠫ess \(a_{i} *\) ．is the ith élement and also the cardinal number of \(A_{i} *=\left\{a_{1}{ }^{*}\right.\) ， \(\left.a_{2} *, \ldots, a_{i}{ }^{*}\right\}\) where \(1<n\) ．While \(A_{i}\) ．and \(A_{i} *\) are similar（and therefore equivalent），＂they＂are not necessarily equal sets．

Set similarity as a developmental concept．The concept of set similarity has been shown to be developmental by－Piaget（1952，p．97）．He differentiates between qualitative correspondence between two seriations and numeridal correspondence between two series．．The construction of a＇single series and that of finding a one－to－one correspondence between two series amounts to the same thing insofar as hìs behavioral analyses show．Children go

先through three stages with regard to set similarity－no conception of the possibility \({ }^{\circ}\) of seriation，or similarity；seriation or similarity based on perceptual processes；and then numerical correspondence between two series． Cardinal and ordinai number as developmental concepts．Piaget＇s（1952 p．157）definition of number is close to the concept of a welltardered． ＂finite set．In his study of ordination＇and cardination，Piaget＊（1952，Cha． VI）．employed three experimental situations，one involaing seríation of sticks，one seriation of cards；and one seriation of hurdles and mats：In the seriation of sticks experiment，the child was asked to seriate ten stigks from shortest to longest and then was＂given nine more sticks and
was asked to insert these into the series already formed (the material was constructed in such a way that no two sticks were of the same length) He was then asked to count the sticks of the series after which sticks not counted (or sticks the child had trouble counting) were removed apparatly along with one or two he did not have trouble counting. The experimenter then pointed to some stick remaining and asked how many steps \(\frac{\mathrm{a}}{\mathrm{a}}\) doll would climb when it reaches that point, how many steps would be behind the doll and how many it would have to climatin order) to reach the, top of the stairs formed by the sticks. \({ }^{\circ}\) OThe series was then disa ranged and the same questions as before were put to the child who would have to reconstruct the series in order to answer the questions.

There is no question that aspects of ordinal number and cardinal number were involved in the bove experiment. Any conclüsion drawn with - regard to, number, however, by necessity is a function of a capability to construct a series of sticks based on the connected asymmetrical relation "longer than" having little to do wiphordinal number. To demonstrate thé point more concretely, an eight year old child was asked which of a collection of books on a table would be the third one. He answered, "What do you' mean, aø̆y one could be third!!. Piaget's experiment with the staiŕcase, then, was more an experiment concerning similarity. between a set of \(n\); sticks ordered by "shọrter than" and the standard counting set \(\{1,2, \ldots, n\}\) "than it was an experiment concerning ordination and cardination. 'A" similar anatysis holds for the seriation of the cards experiment. While no analysis of the hurdles and mats experiment is given, suffice it to say that it too involves specific relations.

Piaget's (1952, Cha. 5) experiments with set similarity were also dependent upon particular relations; As sưch, it may be that, the particular
relations influenced the outcomes of the experiments. In the mathematical development, the connected, asymmetrical, transitive rèlation "precedes" is whạt is important--not "ṣhorter than" for dolls, or "smaller than" for. hats. While particular order relations determine order of precedence, precedence is only incidental and not primary in the orderingor

It should be clear that Piaget views a child's conception of number as both cardinal and prdinal. A child can make cardinal judgements and ordinal judgements, but when oné is present the othequis always possible.

Addjtion and subtraction of ordinal number. Bryainerd's (1976) data not withstanding, there is not enough evidence available to make a decision whether cardinal and ordinal fumber develop as "a unified construct ór whether they develop somewhat independently. "Piaget's data, of course; Iead to the conclusion that they develop as a unified consthinct. If a child's number concept is as Piaget víews it; addition for a child would be best modeled by addition of ordinal numbers; An example of ordinal number addition follows. If \(\alpha=5\) and \(\beta=3\), then \(5+3\) is the ordinal number of the set \(\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}, b_{2}, b_{3}\right\}\), where \(A=\left\{a_{1}, a_{2}, a_{3}\right.\), \(\left.a_{4}, a_{5}\right\}\) and \(B=\left\{b_{1}, b_{2}, b_{3}\right\}\). To rename \(5+3\), the child could count "one", "two", "three", "four", "five", "Msix", "seven", "eight", ōr could count "six", "seven", "eight", which represents a counting-on of \(B\) to-A. In both cases, \(5+3\) is renamed as, 8 .

Subtraction of ordinal numbers tis possible in spectial eases. If a and \(\beta\) are ordinal numbers and \(\alpha<\beta, \alpha\) and \(\beta\) determine a uníque óordinal number \(\xi\) satdisfying the equation \(\alpha+\dot{\xi} \equiv \beta\) (Hausdoriff, 1962, "p. 74). \(\xi\) is of type \(W^{\prime}(\beta)-W(\alpha)\) where \(W(\beta) \doteq\) (ordinal number \(\left.\leqslant \beta\right\}\). Chearlyy, if \(\alpha<\beta^{\prime}, W(\alpha) C\) \(W(\beta)\). An example is if \(\alpha\) is 7 and \(\beta\) is 9. then \(W(\alpha)=\{0,1,2,3,4,5,6\}\); \(W(\beta)=\) \(\{0,2,3,4,5,6,7,8\}\) and \(W(\beta)-W(\alpha)=\{7,8\} . \xi\) is a remainder in the following
sense. If a is'an élement of a well.ordered \(\overrightarrow{\text { set }} P, S={ }^{*}\{x \in A: x<a\}\) and \(Q=\left\{y \in A:^{*} y \geqslant a\right\}\), then \(P=S+Q\) and \(S\) is the segment and \(Q\) is the remainder determined by \(\overline{\text { a. Essentially, then, } \xi \text { is the ordinal number }}\) associated with the remainder of \(W(\beta)\) determined by \(\alpha\). The solution \(\xi\) of \({ }^{\circ}\) \(\alpha+\xi=\beta\) is denoted by \(\beta-\alpha\) for finite \(\alpha\) and \(\beta\).

In the case of the equation \(n+\alpha=\beta\) where \(\alpha<\beta\), the solution is also represented by \(\beta-\alpha\) for finite \(\alpha\) and 8. However, the solution is arrived at by the following process. \(n+(\alpha-1)\) is the predecessor of, \(\hat{n}\); \(n+(\alpha-2)\) the predecessor of \(n+(\alpha-\overline{1})\); and so forth, until \(n\) is reached. Concretely, if \(x+5=11\) is the equation, one counts back from if to reach 6 (the solution) in the following way: ."ten", "nine", "eight", "seven", "six"; so since six is the predecessor of \(x+1\), \(x\) must bè six:

In the case of the equation \(5+x=11\), the solution is found by counting the remainder, starting with the first element of the remainder and proceeding, to ithe list. It should be clear that one could also start with the last element of the remainder and count-backward to the fifst. In either case, a double counting process is, necessary: Ten is one; nine is two; eight is three; ;even is four; six is five; so the answer is six. Or; six is one: seven is two: eight is three nine is four; ten is five; eleven-is six; so the answer is six. 'In the case of counting-back, rather than counting predecessors of elements in the remainder, one can count the elements themselves: eleyen is one; ten is two; nine is three; ejght is four; seven is five; so the answer is six.

The above counting processes associated with addition and subtraction of ardinal numbers are hereafter referred to as "counting on" and "counting .back" strategies. On the assumption that the child's concept of number. is basically modelled. by ordered finite sets, they are viewed as being
central processes when children find sums or differences. Counting-on and counting-back dó not necessarily involve tallying as in the above strategies, for solving equations. Imagine a situation such as six blocks being in, full view of a child and three not visible. If the child knows there are. three not in view, he could start with three and count the remaining six on without 'tallying. Likewise, a task could be designed to tap counting back without it involving talling.

4
- Addition and subtraction problems and counting. Counting is not only involved in addition and subtraction in the sense of counting-on and counting\(\therefore\) back, but is involved in other ways for the child. There are three types of . counting easily identifiable. The types are rote counting, point counting (or one-to-one córrespondence counting), and rational (or mentai) counting. The basis in mathematics for rote counting is the set of ordinal numbers \(\{0,1,2,3, \ldots \text {. } n-1\}_{\text {g }}\) Behaviorally, rote counting is the recitation of the symbol chain "one," "two," "three," . . . . The basis in mathematics for point. counting is the one-to-one correspondence between a collection of n élements and the set of ordinal numbers \(\{0,1,2,3 \ldots, \ldots n-1\}\) represented by Indexing elements: \(A=\left\{a_{1}, a_{2}, a_{3}, \ldots . a_{n}\right\}\). Behaviorally, successive elements of \(\bar{A}\) are selected until they are exhau'sted. The basis in mathematics for'rational counting is counting-on and counting-back. But it must be understood that counting-on and counting-back must be associated with mental répresentations of collections such as A imediately above. Behavioral aspects of rational counting are given below. The child who is a rote counter can recite an ordinai. number sequence while pointing to a set of objects, but fails to index the elements correctly. That is; a rote counter mirscounts a set. of objects because of failure, to tally for, each object of the set once and only once.

The rote-counter would not be expected to solve addition and subtract.Lion problems. Consider this general problem: "Here is a set with s things in it. Here is a set with \(q\) things in it. How many things do you have altogether?" When the items of sets \(S\) and \(Q\) 'are, placed together (assuming S \(\cap Q=\emptyset\) ) the child must determine the count correctly for \(S U Q\), \({ }^{\text {regardless }}\) of the configuration of the items, if \(\#(S \cup Q)\), is to be correctly determined. The rote counter will \({ }^{*}\) have difficulty finding \# ( \(S Q\) ) for many configureZion of the elements of \(S\) and \(Q\). The rote counter has analogous problems with subtraction.

For a point counter, each item in a collection is perceived as an unique element and is tallied once and only once when determining the cardinality of the'set. The child 'at this level of counting is heedful of objects in the set that are likely to be counted more than once. But the successive selectron of elements of a collection does not, 'in the counter's mind, determine a, chain of inclusive sets: one is included in two, etc. The counties a \% labeling process.

When presented an addition problem, the point counter solves it using a counting all strategy. Given two collections of things defined in the problem ( \(S\) and \(Q\) ), the child, counts \(S\), counts \(Q\), then counts \(p=S \cup Q\). This involves counting all of the objects to count. \(P\). When subtracting the objects of the set \(S\) from the set \(P\), the child counts out elements of \(P\), counts out elements of \(\dot{S}\), then counts all of the elements of \(p-S\) to determine \(\#(\mathrm{P}-\mathrm{S})=\# \mathrm{Q}=\mathrm{p}-\mathrm{s}\). At, this level of countipot the basic addition and sub-. traction. facts would not be available to had taken place.
* \({ }^{*}(S \cup Q)\) means the number of \(S \cup Q\). unless explicit.,らeaching

Rational counting is stratified into several levels according to the complexity and scope of the problem solving behavior exhibited by the' child. The levels; labeled as \(R-1 ; R-2, R-3\) and \(R-4\), are delineated below.

The first level of rational, counting, \(R-1\), is counting-on. The child point-counts correctly, but also can determine correcty the cardinality of the set \({ }^{\circ} \mathrm{P}=\mathrm{S} \cup \mathrm{Q}\) when S is covered or otherwise not subject to a point-count.


A collection of \(p\) objects with \(s\) objects covered.
- The chịld holds \(s\) as both the cardinality of the covered subset \(S\), and at the same time, mentally recovers the ordinal property of the such that through mental awareness of \(s\), he recalls the existence of the successors of \(s ; s+1, s+2, \cdot . \cdot, s+q \cdot p\). The child at the ( \(\mathrm{f}-\mathrm{l}\) ) level can extract the ordinal sequence \(q+1, q+2, \ldots, n\) from his internalized simple verbal chain \((1,2, \ldots, \ldots, q+i, \ldots, n)\), for each "integer \(q\) of that' chain, when \(q<n\).

The child at Level \(\mathrm{R}-2\) can count on in the manner described in \(\mathrm{R}-1\), as well as solve problems in the "class presented.befow. The child can count S, "one," "two," "three," "four," "five," and then considering Q́C P, and

\(S U_{Q}=P\), count on from five: * "six," "seven," "eight," "nine" while at the same time tallying the count of \(\dot{Q}\).

The next two levels of rational counting are determined by counting back. It is possible to conceive of point counting back as well as point counting forward from "one" as described above. A child may start at say, "ten,". and count back" to "one" verbally or by labeling a collection "ten," . : .; "one," the latter being point counting back. As a procursor to rational counting back, the child can use a sophisticated point count back to solve a missing addend problem. Let \(\# P=9, Q\) visible,

\(\# Q=5\), and \(S\) covered. The child can count back assigning the numbers "nine;" "eight,". "seven," "six," and "five," by a point-count, to the five visible objects in \(Q\). "The child can then construct symbolically the set \(S\) with tallies assigned by a continued count \(\dot{\vec{b}}\) backward of the "sequence "four,"."three," "two," and "one." He then counts the tallies and determines \(\# S\).

The student at level \(\mathrm{R}-3\) can extract mentally, from the ordinal. sequence \(p-1, p-2, . ., c\), . . ., 1 , the fact that \(c\) in the sequence conveys the cardinality of the set of units available for the continued count-back. the fact is used to solve' the missing addend problem by . eliminating the need for. a tally of the unknown number of objects when counting-back, and inherently, the point-count of the tali y. When given . \(\quad\) a set \(\dot{P}\) and a set \(Q \dot{P} \dot{P}\), the student can find \(\# S\) when the set is covered using only a counting -back procedure,

In the problem diagrammed "above, let \(p={ }^{\prime} 9\) and \(q=5\). The child at level R-3 point-counts the five items of the uncovered set \(Q\) using the "backward verbal chain" "9, 8, 7, 6, 5". At this point, the student understands \({ }^{\text {un d }}\) to continue the count " \(4,3,2,1\) ". is the reverse of "the count " \(1,2,3,4\) ". Hence the 非 S is determined without additional counting.

The level \(R-4\) can be used to salve problems where \(P=S U Q\), \(\# P\) is known, \# \(Q\) is known, but \(S\) and \(Q\) are bot premed.

\$ known, \(q\) known, \(s\) unknown.

Again, for concreteness, let ı \(p^{\prime}=9 ; q=3\) in the above diagram. The child at level \(\mathrm{R}-4\) can determine a tally of \(g=4\) while counting -back the predetermined number of tallies.

The tally is to \(A=4: \begin{array}{llllll}1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 .\end{array}\)
The count~back is .."9, 8, 7; 6" and is corresponded to the tally. The \(\# S=s\) is then determined by the student's awareness that the end of the count-back produces \(s=5\).
\(\therefore\) The types of counting are downsized below.
Rote counting - recitation of a simple verbal chain but with_ incorrect point counting

Point-counting-- correct, use of one-to-one correspondence counting.
Rational counting -
RI - rational counting -o ns
R2 - rational counting -on with tally
\(\frac{R_{3}^{*}}{1}\) - rational counting -back
R4 - rational countíng-back with tally.

The counting all strategy, can be used to solve addition and subtraction problems as welf as exercises such as \(3+2\) or 5-2. Children also use the counting-on strategy to solve the problem modeled by sco \(\quad \square \quad \square\) Rational counting-on, \(R-1\), is used, since the child considers either one of the numbers, as a starting point and the other number to represent. a şet of units in the verbal chaip. For example, to solve \(9+3=\square\), the student might select nine as his starting point in his verbal chain and count on three units more in the chain; 'ten," "eleved," "twelve." Thẹre is no need to count through the forward verbal sequence to the number nine since the child mentally extracts the cardinal property of "nineness.". AE (he same time the child initiates a three unit count from the number nine in the verbal (mental) chain. The child does not need to keep a tally in the problem if the makes marks over " 3 "" to begin with. Otherwise, a tally is needed.

The missing dddend problem is solved with a rational equnting-on strategy that utilizes a tally. The level. of rational counting used is R-2. When given the missing addend problem, the missing addend is perceived as part of the total sum. Given the problem \(3+\square=11\), the student counts-on from three to eleven and symbolizes the units of the missing addend with a "tally as he count

The child solvies a problem like \(9-5=\square\), by starting at nine to count the units in the backward ordinal sequence'. He counts back five unit's to the number five and mentally extracts the next number in the. backward-ordinal sequence and names* it as the solution to the problem. In this problem situation, the student is asked to solve the problem ty counting back.

THe Achievement Tasks Ordinality and cardinality tasks. In Piaget's study of cardinal and
ordinal number, he was concerned, with two basic problems. First, the child had to determine a cärdinal number given an ordinal number and, second, the child had to determine ordinal number given a cardinal number (Piaget, 1952, p. 149). These experiments have b'een discussed earlier in the section on Cardinal and Ordinal Number as Developmental Concepts. It wàs pointed. - Out in that section that Piaget's experiments were more an experiment con': cerning similarity between "a set of n sticks ordered by "shorter than" and the counting. set \(\{1,2,\} \ldots, n\}\) than they' were experiments concerning the two problems posed. Different tests for the coordination of cardination and ordination need to be constructed to eliminate that criticism, of Piaget' \(\$\) work, while emphasizing the relation "precedes."
: The following termirology is adopted for description of the tepting formats. "P".denotes a finite well ordered set ordered by the relation "precedes" \(\because\) "S". is a segment of. \(P\) determined by any element p of pand \(Q\) is the remainder. The minimum element of, \(Q\) is denoted by \(q\). Two tasks were designed (see Appendix A.1). In the first, task (A) a row 12 counters was presented to the chily. The first two. questions of the task determine whether childsen can start with any counter, given an orientation of firsst and second, and determine a sucessor and a predecessor. The thid quesigh determines, whether a child can Start with an element. \(>\) q" of q and determine the cardinality of S , the segment determined by \(q_{5}\) the minimum element of \(Q\). The third question also determines whether the child cantotermine the exardinality of \(P\) given thercardinality of s. However, various résporise sequencies are possible. Eor example, if a chilld was not able to determine the cardinality of's given the ordinal number \(q+2\), he was asked to dezermnne the cardinality of \(P\) given \(q,+2\). If successful in finding the ceardintility of \(P\), he was then asked again to find.
the cardinality of \(S\). *
The second task (B) was presented with \(S\) determined by the three objects covered. The basic intent of the task was to determine the cardinality of \(P\) given an element of \(Q\) (in this case \(q+1\) ). The first question was designed to orient the child to the direction of the relation "precedes". Again, different response sequences were possible. But whether the child found the cardinality of P or not, he was asked to \(\mathrm{f}_{\mathrm{in}}\) (the cardinality of Q . \({ }^{+}{ }^{+}\)

Logically, class inclusion and quantitative comparisons should.be readiness variables for a child's acquisition of the ability to perform the two tasks abové. Class inclusion is logically involved because in order to \(\dot{f}\) ind the cardinal number of \(P\) given that \(S\) is covered and \(Q\) visible, the child needs to know that the objects of \(s^{\prime}\), even though they are covered, make up part of the objects of \(P\) (or \({ }^{2} 11\) of the objects together), and that there are more in. \(P\), than in either \(S\) or \(Q\). If \(S\) and \(Q\) are not united in the mind of the child, but remain separated, the most likely answer for the total number of objetts is the number of visible objects, or the number in \(Q\) because there would be no conception of \(P\). Class inciusion is also logically involved in finding the number in \(S\) given \(q+2\). The child'seemingly would have to realize that the objects of \(S\), even though they are covered, are part of the objects of \(P\).

Quantitative comparisons should be a readiness variable for the two tasks because ordinal numbers and cardinal numbers satisfy the conditions for a quantity from the scientific point of view. As noted in the contrast of the Piagetian's notion of quantity and the scientific notion of quantity, it would seem that a ehild capable of extensive quantity in the Piagetian sense should be capable of comprehending extensive and intensive -quantity in some cases in the scientific sense. Cardinal and ordinal number
should fit those cases, because a singular object can be considered as a unit.

From the two tasks on cardinal and cardinal number, the following variables were identified.*
1. Successory of an element (task \(A\), question la or \(c\); task \(B\), question la or b). Range: \(\{0,1,2\}\)
2. Predecessor of an element (taṣ A, question 2a)., Range: \{0, 1\(\}\) 3. Number in S (非) (task A, question 3 a ; taskB, question 3a). Range: 10,1, ,
 Rangé: \(\{0,1,2\}\)
5. Number in \(S+\) Number in \(\mathrm{in}^{Y}\) (task \(A\), questions 3 a or d or f or h ; task \(B\), questions 3 a or b ; task \(A\), questions 3 b or c or g ; task \(B\), questions 2 a or b or c ). Range: \(\{0,1,2,3,4\}\)

The sucessor and predecessor variables should be clear. However, the others need discussed.
1. Number in S. In task A, question 3 a was, the first time the child was asked to find.the pumber in S : Likewise, in task B ; question 3a was the first time the child was asked to find the number in \(S\). In tesk \(B\), there was distinct possibility the child would use the information that there were eight in set P and five showing, and do a subtraction prablem. 'Nevertheless, he would obtain the number in S from ordinal inforifation, but not necessarily by counting back.. He could count on to find the number. in ' \(P\), then use a subtraction fact.
2. Number in \(P\). In task. A, question 3 b , the child could possibly use the information that there were seven in set \(S\) (question \(3 a\) ) and then use addition. Again, however, he would use ordinal information to find the number in \(P\). Task \(B\), question \(2 a\), was the first time the child was asked for the number in \(P\) in that task.
3. Number in \(S+\) Number in \(P\). This variable was identified because it was felt that some indication had to be given for cases where the children found the number in \(S\) or the number in \(P\) after prompting. Given that the.child missed one or more questions of the Number in \(S\) or of the Number in \(P\) questions, the experimenter attempted to give * the children additional is mation which could help them find the Number in \(S\) or.P. If a \(c\) was sućcessful after prompting, it could be said that' he had 'e notion of the interrelationship between ordinal and cardinal number but did not initiate the counting process on his own. There is the possibllity that the child appeared to find the number in \(S\) or the number in \(P\) after prompting, but \({ }^{\text {Wid }}\) so as a result of rote counting. This possibility dictated that the - \#S + \#P vari:able be differentiated from either of the
\#S or \#P variable. The range of \#S \(+\# P\) is \(\{0,1,2,3,4\}\) due to the questioning sequences, but was not merely the sum of 非 and \#P variables. A child could score 0 on either of the latter two variables,' but 4 on 级 + \#P variable.

Counting back, just before, just after, and between tasks. Counting 0 has been described mathematically in the section on ordinal number: Because the cardinal and ordinal numbers of a finite set correspond, it is possible mathematically to findex the elements of a set \(A\) by the ordinal numbers \(\{0,1,2, \ldots, n-l\}\) by virturè of successive selection of single elegents. (select some \(a_{0}\), then some \(a_{1}\), etc., until, the last one \(a_{n-1}\) is selected). Then \(n\) is the ordinal (and cardinal) number of the set. of course, counting begins with 1 , so the above set is replaced by \(\{1,2,3, \ldots, n\}\), where \(n\) is associated with the last element selected and, with the entire set rather than being associated with only the set \(A\).

The tasks for Counting Back, Just Before, Just After, and Between are presented in Appendix A.2. From the tasks, the following variables " were identified.
1. Counting Back. If a child could not count three discs and count back from 3, no furthè questions were asked. If a"child successfully completed the task with discs, he was asked to do it with 8 . If successful, he was asked to do it with 12. IA successful, he was . asked to count back from 15 without objects and without counting up to 15. If a child made errors with 8 discs, he was asked to do it with 4 , but the variable was scored 0 . If he, made an error with 12, the variable was scored 1 and the task was terminated. If he made an error with 15, the variable was scored 2 and the task terminated. If he did each task correctily, the task was scored 3. Range: \(\{0,1,2,3\}\)
- 2. Just Before. In task \(B\);' the child had two chances to score 1 on the task. If not correct on the preliminary task, he was told the correct answer. Range: \(\{0,1\}\).
3. Just After. In task \(C\), the child had two chances to score 1 on the tasic. If not correct on the preliminary task, he was told the correct answer. Range: \(\{0,1\}\).
4. Between. The child Received 1 point for each paimber he found between two others: In case he could not find a mimber between 1 and 3, he was told the correct answer. Range : \(\because \in \mathbb{Q}, 9 ; 2 ; 3 ; 4\} \ldots\)

It was expected that the variable Counting Back, would not be related : to class inclusion nor to quantitative comparisons. The reason for, this expectation was that one-to-one correspondence counting or rote counting would be sufficient for completion of the tasks. The variables.Just Before and Just After are in the same category--rote, counting would be sufficient for correct solution. The variable Between, however, was expected to have quantitative comparisons as a readiness variable. The reason for the expectation is that for a child to realize that 10 is between 8 and 12 , he had to realize that 10 is a successor of 8 as well as a predecessor 12 . , Consequently, reversibility, at Piaget's first level ( \(\mathrm{R}^{\prime \prime}\) ) would seem to beo involved. This being the case, quantitative comparisons would be a readiness variable because réversibility and quantitative comparisons are manifestations of the same general scheme.

It is not as clear that clasd inclusion is a readiness variable for Between. One could make the argument that class inc!̣usion is a readiness variable because, in a nested set sense, 8 is included in 10 , which is in turn, included in 12. So, 8 is less than 10 and \(1^{T 0}\) is less than 12 . Likewise for 9 and 11. Again, however, class inclusion may not be a readiness variable because ordering processes may be sufficient to answer the question-i 9 is, after 8 and before 12 , so it is between 8 and 12 .

Verbal problems. Rational: counting is not necessitry to be able to solve*verbally presented addition and subtraction problems modeled by the sentences \(a+b=n\), and \(a-b=n\) where \(b \leq a\). One-to-one compondence counting and a "counting all" strategies are sufficient... If the pebiem. Mary has five marbles, Nancy has two. How many marbies' dộ "pothogis haye?" is presented to a six-y ar old, the chila could count qut ofve marbies from a marble source, two more, then count the selected
marbles, starting from one and proceeding through seven. Of course, such ap strategy does not incorporate all of the information available to the child, as both subcellections were counted twice. A counting-on strategy would be more efficient, but not necessary, in the solution.

In the case of a subtraction problem, say, "John has seven peppermint' sticks. He eats three. How many does he have left?" a child could count seven objects from an object source, count thee of the seven, and , then count the ones remaining. This solution process is merely the reverse".of the "count all" process described above. Consequently, it is referred to "as a "count all" process for subtraction. The more sophisticate process of counting back modeled by subtraction of ordinal umber se would entail the child starting at seven and county one. of the two ways identified in the section Addition and Subtraction of Ordinal Numbers.

The missing addend problem is modelled by the sentence \(a+n=b\). An example is "Joe has five pennies. His fath gives him some more. Now he has nine. How many did Joe's father give him?" Of course, two solution strategies are possible, one involving rational counting and one involving a counting -all strategy for subtraction.

It would seem to be the case that gross quantitative compares * would not be capable of solving the missing addend problem' through rational counting procedures. However, extensive quantitative compares would have a greater incidence of solution through countingłon than gross quantitative compares, but would not always be capable of initiating such solution . procedures because rational counting level \(\mathrm{R}-1\) and strategies used to solve the missing addend problem are not isomorphic. The statement of the missing addend problem woữid undoubtedly militate against a counting-alí subtractive
solution.
Many children who are capable of only"gross quañtitative comparisons may have mastered counting:all procedures for'addition and subtraction. Consequently, quäntitative comparisons would not be as strong a readiness yariable for addition and subtraction problems as for missing addend problems. Quantitattive comparison should be, however, a strong readiness variable for rational, counting solutions to addition problems and counting back solutions to subtraction problems. That is not to say, however; that quantitative compariṣn is not a readiness variable for learning to solve addition and subtraction problems. In the section, Quantitative Comparisons and Arithmetic, statistical differences were observed between performance on addition and subtraction problems between the group of.gross \(\mid\) and the grọup of extensive quantitative comparers.

Presence*or absence of manipulatable objects during problem solution has been convincingly sḥown to be a significant variable (Steffe, i966:. LeBlanc, 1968; Steffe and Johnson, 1971). The reason the variabie is significant may be because objects'facilitate one-to-one correspondence counting. -Two different sets of six problems per set were constructed. In the case of verbal problems with objects, the objects were always present where the objects used were objects named in the problem statement. Each problem was read to the child in total before he started to solve it. If necessary, the problem was reread to the child: The child was told he could usé the objects to help, him find the answer and was urged to use them if he thade mistakes: The problems are presented in Appendix̂ A. 3. :

In the verbal problems with no objects present during solution, the child was asked to write the number sentence for thé problem. Records were made of whether the child constdered the sentece as open or closed
and whether he processed the information before or after he wrote tha sentence. The problems are presented in Appendix A.4. ,

It would seem-that class inclusion would be a readinéss variable, especially for the missing addend problems and the subtraction problems. In cases where children solve the problems by a counting-ail procedure, no relationship would be expected. But where children are faced with the necessity of counting on to solve a problem, one wguld expect relationships with class inclusion and processes used on those problems. The children *were urged to read each problem if they could. If not, the experimenter 'read the problems to the chifaren. The sentence for the first problem, if not written by the child upon request, was written by, the experimenterHewever, every means possible was used to urge the child to write the sentence. The variabies are icentified as follows.

Problems with objects present.
1. Addition" Range: \(\therefore 0,1,2\) )
2.. Subtraction. Range: \(0,1,2^{\text {i }}\)
3. Missing Adiend. Range: \(0,1,2\) :

Problems wit ojjectis absent.
1. Adeditión. Ránge: \(0,1,2\);
2. Suptraction. Range: \(0,1,2\) )
3. Missing Addend. Rahge: \(: 0,1,2\).

Sét partition tasks. In the section, Quäntity and set partitioms, arguments were advanced that quantitative complarisons and class inclusion would be readiness varïables for set. partitions. Four tasks were constructed to test the ability of a child to form partitions. The tasks were constructed to test thé invartance of the number of objetts in a collection regardless 'of how they are partitioned. They are presented ing Appendix A. 5.

In the first two tasks, the child counted to establish equivalence and in the last two tasks he was told they were equivalent--in the third a particular number weis involved (100) and in the fourth only a relation. The intent of the tasks was to establish that the two collections had the same number in each, and then partition them into a different number of subcollections. -If the, child focused on the number of subcollections he wouldrespond to the itom incorrectiy. He had to disregard the number of \({ }^{*}=\) subcollections and judge them on the basis of the information before the 'partitioning: Two'variables were identified,

1:' Set, part Mions" with counting: Rangé: \(0,1,3,:\)
2. Set Partitions without counting: . Range: \(\{0 ; 1,2\).

Additi6n and subtraction of ordinal number tasks. It has been argued that the objects Piaget calls finite numbers (cardinal and ordinal) develop in the child as, a synthesis of Grouping I and \({ }^{\circ} V\). After presentation \({ }^{\prime}\). 'cardinal and ordinal nember in mathematics, it became clear that Piaget's \({ }^{\circ}\). notion of number is quite well modeled.by a well-ordered finite seţ. But Piaget never. extended his "developmental theory beyond the objects" he called finite numbers. Consequently, one cannot know the extent which.operan \(\therefore\) tions on cardinal and ordinal numbers are development \({ }^{n} 1\). Obviously, without a conception of numbr, it would not be possible for operàtions to be \({ }^{\circ}\) there. 3ut if the concept of number is present. in the child's mird, does that aiso imply the operafion? Or, are the operations a later acquisition; 'perhaps dependent upon school insẗruction?

Addition and subtraction of ordinal numbers/would seem'to haye' quantitative compàris̀ons as" a readiness variable as well as class inclusion. What is meat by addition and subtraction of ordinal. numbers is the countin the section on the mathematics of addition and sulaction or ordinal
the tasks in the addition of ordinal number test are graduated in complexity. The first three tasks are warm up tasks and are presented verbally. Errors are freeiy corrected: Tasìs 4 and 5 are counting-on' tasks and are a test of ordinal number addition items-modeled by the equation is \(+\xi=\xi\), where \(\xi\) is unknown. Tasks 6 and 7 are ordinal number


The first three tasks of the subtraction of ordinal number test are warm-up tasks presented verbally to the children where corrections of the children's errors " allying. Tasks 5 and 7 are counting-back tasks with tallying. 'All tasks are modeled by the equation \(\bar{\xi}+a=3\), where \(;\) is unknown (or equivalently, by \(\bar{j}=3\) ). Eour variables were identified.
1. Rational Counting-on'(Tasks 4 and 5, Addition of Órdinal Numbers): Range \(0,1,2 ;\)
2. Addizion of Ordinal Numbers (Tasks 6 and T. Addition of OrdinaF Numbers): Range \(\left(0^{\prime}, 1,2\right\}\)
3. Rational Coünting-baç (Task 4 and 6; Subtraction of Ordinal Numbers): Range \(\therefore 0,1,2\)
4. Subtraction \(\not \subset f\) Ordinal Numbers (Tasks 5 and ?, Subtraction of Ordinal Nuqbers): Rañge \(\{0,1,2\}\).

Mental arithmetic problems. Tasks have been presented which could be legitimately called'mental arithmetic. But none of the tasks'were such that the problem was presented in a written numeralsformat where the child was discouraged from using his fingers or tially marks ásids. For a task. to be a testrof mentalrarithmeric, the child must not use•physical, pictorial, or bodily aids in solving the problem. The task could be presented in mafe than one stimulus mode. The one selected here is writien numbers. "Whether quańtitatịe comparisons or class inclusion are réadiness variables for mental arithmetic is uncertain. The mental arithmetic test is presented in, Appendix A.7.

Twó scores were obtained for each problem, a product scpré (answer \({ }^{*}\) score) and a time score (the numbè of seconds it took to start one problem and then finish by writing the sum or diferene obtained). The variables

Nested classification tasks." In the section Classification; a distinclion was made between the intension of a class and the extension of class.
 mon to the elements of a class and the extension the members of the class. Coordination of the intension and extension was identified as what develops in stages in children. In addition to \(a^{\prime}\) class inclusion test, it was decided that it was necessary to include a rest which would give the child an opportunity to demonstrate, within particular hierarchy of classes, the ability to:
1. Identify properties specific to members of a particular class which distinguishes. the class from other classes;
2. Identify properties specific to members of a given class and to other classes to which it belongs;
3. Identify properties which may be specific to one or more members of a given class which distinguish them from other memotes.

The nested classification tasks were designed to tap Stage II alassification behavior identified by Inhelder and Piaget (1969) as a minimal câpability. An indirect technique was used. The two tasks wẹre designed using the same:material set, the first task including one instance of the. inclusion relation and the second two instances.

The material set consisted of seven pieces of polygonal shapeq"objectes, three round objects that were not buttons, four round nonwhite buttons, "and, 15 round white buttons. The: polygonal shaped objects, included three triangular shapes, two square shapes, and two parallelogram Gapes. . The: round objects inçiluded an orange felt, a black checker, "and a red disc. The nonwhite buttons included two blue, a y yellow, and an orange. In each task, the child was asked to sort the items in particular waves. 'In order to ensure the child recognized the properties of the classes, specific
icems were given to the child to classify. 'After the dild classif.ied these items (with help, if necessary), the child was shown a box which contained an object. The child had to agree that something was in the box. The experimenter then placed it into its respective place, The two tasks are presented in Appendix A. 8.

Two bas questions were asked, one a question of possibility and one a question of fact. In task \(\dot{A}\), the first question was asked to determine if a child could differentiate properties specific to members of a given class from properties specific to members of another specific class. Hereafter, such properties are called type l-the first type of properties iisted in this section. Type 2 and type 3 propperties ase those properties in (2) and (3) of that same listo The firşt three questions were to. test identification of typer properties-or relevant attributes. The fifth and sixth questions were of type 3. Questions \(5 a, b\), and \(e\) were of type 1. .

In task \(B\), the firse three and the sixth questions asked about, type." 1 properties. Ouestions l a, b; 2a; 3a; 4a; and Sa were also of type . \(1^{*}\) properties." Some of these questions contained aspects of type 2 properties (for example, question 2 tested a type 2 property). Question 6 was


Neither of task, nor task' B explicitely. asked the crild ro solve the class inclusion probiem: ajchila could conceivably answer every
 nested, This wat by design. \(\therefore\) It would seem that neither cláss inclusion nor quántitative comprason wouldoe readiness variables qor the nestea clabsiécation fasks.
 inclusion within the context of the nested classes.

Twa variables were identified based on the number of collections.
1\%. Nested classification A. Range: . \(\{0,1,2,3,4,5,6\}\)
2. Nested classificatiọn B. Range: \(\{0,1,2,3,4,5\}\).

Lotp inclusion tasks. The loop inclusion tasks were designed to tést the capability of a child to view regions as being nested or intersecting. Johnson (1975) found that one reason' chlldren failed to solve the class inclusion problem was that they viewed nested regions defined by two' boundaries as separating the regions into two separate.regions. 'Moreover, as Piaget and Inhelder" (1963) claim that the concept "inside" develops. early of in childhood (as early as fouff years of age), littlè difficulty - should be present for a child to comprehend the concept "inside" as it pertains to a singlef loop. Difficul'ties"are introduced. when two or more loops intersect or when they are nested. "Inside" was defined operationally in the present, study by placing a stick vertically in a loop and showing that the loop could noÉ be pulled through the stick Quantity was not expected to be a readiness yaríable for \(\underset{\sim}{\text { loop }}\) inćlusion tasks. 'These tasks are présented in Appendix \(A-y\).

The Variables
The achievement tariables used in the present study were partitioned for the purpose of data analysis. The partitioning is based on logical groundis. Investigation of the achievement variables per, se is contrained in the correlational study following the rieadiress study

Cluster 1." The firsti cluster of variables was composed of some of the variables identified in the destription of the ordinality and cardinality - tasks.
1. Number in \(S(\# S\}\). Kange: \(\{0,1,2\}\)
2. Number in. \(P(\%\) R \()\) Range: \(: 0,1,2!\)

Cluster 2. The second chluster of variaples was formed by, the remaining variables identified in the ordinality and cardinality tasks and in the counting back; just before, just after; and between tasks.
․:. 'K1. Counting Back. Range: \(\{0,1,2,3\}\)
2. Just Before. Range: \(\{0,1\}\)

3: Just After. Range: \(\{0,1\}\)
4. Between. Rangé: \(\{0,1,2,3,4\}\)
5. Successor. Range: \(\{0,1,2\}\)
6. Predecessor. Range: \(\{0,1\}\)

Cluster 3. The third, cluster of variables was forited from the verbal problems, to be solved using no object́s.
1. Addition. "Range: \(\{0,1,2\}\)
2. Subtraction. Range: \(\{0,1,2\}\)
3. Missing Addend. Range: \(0,1,2\) )

Cluster 4. The fourth cluster of variabies was formed from the verbal problems, to be solved with objects and the set partitions test.
1. \({ }^{\circ}\) Addition. Range: \(\{\dot{0}, 1,2\}\)
2. Suitraction. Range: \(\{0,1,2\}\)
3. - Yissing Addend. Range: \(\{0,1,2\}\)
4. Set partitions With Counting; Range: \(\{0,1,2\}\)
45. Set partitions Without Counting. Rănge: \(\{0,1,2\}\).

Cluster. 5. This cluster of variables was formed.Erom the addition/ an'd subtraction of orcinal numbers tasks.
1. Rational Counting on, Range \(\{0,1,2\}\)
2.' Adiition of Ordinal, Numbers. Range: \(\{0,1\}\),
3. Rational-Counting Back. Range: \(\{0,1,2\}\)

Cluster 6. This cluster of variables was formed from the mental arithmetic problemsi
1. Aåditión Produç̣t' Score. Rangè: \(\{0,1,2\}\),
2. Subtraction F゙roduct Score. = Range: \(\{\{0,1,2\}\)
3. Addition Trme Score.. Range: \(\{0,1, \ldots, n\}\)
4. Subtraction Time Score. Range: \(\{1,2, \ldots, n\}\)

Cluster 7. This cluster of variables was formed from the 'gested classification tasks, the loop jnclusion tasks, and a post administration jof the ciass, inclusion testi.

2!. LoQp.Inclusion. Rarige: \(\{0,1,2,3\}\)
3. Nested Classification A. Range: \(\{0,1,2,3,4,5,6\}\)
4. Nested Clạssification \(B^{\prime}\). Range: \(\{0,1,2,3,4,5\),\(\} .\)


The Design of the Readiness Study

Sampl
The fist grade children in Huntington Street Elementary School and Roberston Lane Elementary school City, Southeast, were used as the initial popuiation. Aill of thése children" wére administered the SMSG firist grade test selected by PMDC. staff in September of 1974. The two scales used in the selection were SMSG Scale 204, Counting Members of a, Given Set, and SMSG

Scal \(205^{\circ}\), Equivalent Sets. Only those chịldren for whom evidence was present that they could count to at least \({ }^{\circ}\) even were included in the population.

Two readiness tests, quantitative comparisons and clas̈s inclusion, were administered individually to all of the children in the population. Children were judgêd to be eịther gross quantitative comparers, ?xtensive quantitative comparers; or indeterminate. Children for whomevidénce was present that they could not solve the clas \(\dot{f} \dot{f} \dot{\text { inclusion }}\) problemmere then selected. The children were ther randomly ordered within each group of and extensive quantitative eomparers within each school: The first six of each of the two quantitative comparison groups were assigned to the experimental. group and the second six to the control group, as diagrammed.
\begin{tabular}{|c|c|c|c|c|}
\hline Schoól. & \multicolumn{2}{|l|}{Huntington} & \multicolumn{2}{|c|}{Roberston} \\
\hline Treatmen Quantity & Experimental & Control & Experimental. & Control \\
\hline Extensive & 6 & 6 & \(\cdots 6\). & 6 N \\
\hline Gross - & 6 - & 6 & , 6
. & \(\cdots 6\) \\
\hline
\end{tabular}

During the course of the experiment two control children (one extensive and fone gross comparex) moved from the district and were subsequentiy replaced , by tho extensive quantitative comparers.
\(\therefore\) In summary, the characteristics of the 48 children in the sample were as follows:
1. Each child could one-to-one correspondence count tej at la east seven \(\because 2\). No child could solve the class inclusion problem:
3. Twenty four of the children were extensive quantitative comparers and 24 were gross quantitative comparers.

Tests
Description of criteria on the readiness, testis. In the case of quantitative comparisons, evidence was considered strong, if a child answered correctly at least five of eight questions with justification. A chíld was judged to be a gross quantifative comparèr if judgements were made on the basis of perceptual cues and a mator orty of the answers were not correct. An "rinconclusive" category was also present when clear judgements could not. be made.

A criterion for the class inclíision testr was not at issue because 88 of the 107 children scored the nessibfectore of 2 ero of the remaining children亏゙ seven scored one.

Administration of the achièvement tigy The etest involved in Clüster 4 variables was administered individuallyfor the 48 children in the sample as pretests during the first two weeks ofobertig74. "During February 1975, the tests in, all of clusters \(1-7\) and die quantitative comparisons test were administeded.
\(\therefore\) During February, each chíld was interviewed in thre different sittings of no more than 30 minutes per sitting. Each' interview was audio-video recorded as well as hand recorded by the interviewer. During the first:
sitting, the class inclusion test, the loop inclusion test, and the nested classification test wereadministeret, inthat order.". During the second sitting, counting back, just before, jutstafter, and between tasks Fisk A. of the ordinality-cardinality test, task B of the ordanaty chardiality -test; quntitative comparisons test; verpal probsiems whtobjects. and the set partition test were individually administerẹ, in that order During the third sitting, the mental afythmetic tes't, the verbal problems without objects; the ordinal number addition test; the ordinal number - subtraction test; and a test called the "formalization test (which has not beer described) were administered, in that order. The testers for the experimental group we Mre Charles Lamb and Mr. Tamenirstein. The testers for the control group were Mr. Curtis Spikes and Mr. Ieslie Steffe.

Date sources.
Each audio-video tape wạs viẹwed and alli data were extracted from the tapes. The deta we ne coded on record sheets which are presented in Appendix \(B\). The record sheets are presented the order that the tasks were administered to. the childien.
 The colum on the left provides opportunity to code whether the chitherr pointed out each subset and the containing set. The two possible animert. are presented in the middle column for each task with the correct choice in all capital letters. 'The last colum provides the opportunity to code the child's rèsponse to the "Why?" question. For an item to be correct, the child had to respond correctly to each-of the two questions asked. The rationale was included as supporting evidence for the presence of class inçiusion when available. Verbal justifictation
was not necessany for an item to be scored correctly Each item scored correcty on the second administration was given a score of \(1 \therefore\) A score of 0 was assigned any otheq response pattern for an item. En case of the readiness test, strong evidence, would be available for the presence of class inclusion if fourciout fiyt items were answered correctly with justification on at least; one ofthose founcems. Strong evidence would be available for the absemce of ctass inclusion if a score of 0 or 1 was obtained. Anything edse would be indeterminnate.

OThe second report sheet prosented is for loop inclusion. Task A. inciluded three directions to the chihd. In order to be given credir for dong otask. A.correcty, a child had to place the stick correctif for all thre directions. In sych case, a 1 was assigned. In any other case, a \(\mathfrak{O}\) as asigned, The third direction was critical as the chiTd had to reatie that it is not possible to place a stickinside the green but not inside the red. Likewise, the child had to place the stick correctly for each of.the three directions in task \(B\) to be awarded a score of 1 . If not, à score of 0 was awarded. In tàsk \(C\), the child had to place the stick correctly for each of the two directions to be awarded a score of 1. Otherwise a score of 0 was awarded.

The third record sheet is a fiow chart depicting the possible response paths a child could follow through the questions for nested classification Task A. There are. five rows (corresponding to the boxes), one for each item. . The insert in the upper right indi•cates whether the child classified the items in the warm-up task. independently or whether help was neededa \({ }^{\wedge}\) The solid lines represent the correct response path.' On any item, (each box in' the left column represents an item) a score of 1 was awarded if a
child's response followed the solid line response path. A 0 was awarded otherwise.

The fourth record sheet is a flow chart depicting the possible response paths a child could follow through the questions for nested i classification task \(B\). There are six Rows (corresponding to the boxes), one for each itatn. The insert in the upper right hand former indicates whether the child classified the items in the warmup tasks independently or whether help was \(\backslash\) needed. The insert in the lower right hand corner indicates the responses on the nested classification supplement. Again, the solid lines represent the correct response path. On any item, a-acóre of 1 was awarded if the child's response followed the solid line? A 0 was awarded otherwise.

The fifth record sheet presented consists of flow charts depicting the possible response pathos for the counting back test and just before and just after tests. \(P_{8} ; P_{4} ;\) and \(P_{12}\) indicate action sequences where the child counts back from 8, 4, and 12. A score of 1 wasoawarded if a. child correctly performed \(P^{\prime}\) flout not \(P\) A score of 2 was awarded if a child correctly performed \(\mathrm{P}_{8}{ }^{\circ}\) and \(\mathrm{P}_{12}\) could not punt back from lg. A score of three was awarded if all threfwere dene. 'A scone of was \(\therefore\).' awarded in any other case. \({ }^{2} B_{14} ; B_{11} ; A_{14}\); and. A indicate, the responses. given to questions concerning what number comes just before (or just after) 14 or 11 . A score of 1 was awarded to the "just before" problem if either \(\mathrm{B}_{14}\) or \(\mathrm{B}_{11}\), were correct. A score or 0 was awarded in case reach was incorrect. Likewise, a score of 1 or 0 was awarded to the "just afters question:

The sixthecord sheet presented consistsiof a flow chart depicting
possible response paths for the between tasks. A score of 1 was awarded for each correct response.

The. seventh record sheet presented consists of a flow chart depicting possible response paths a child could follow through the questions for the cardinal and ordinal number Task \(A\).' 'The first box ( \(p \Rightarrow p+1\) ), represents the child's response to question 1 asking for the successor of 9 . If immediately correct, a score of 1 was awarded for Successor.' If the child counted from the beginning or didn't know, a response was ascertained (box' lc) for the successor of \(10(p \wedge p+1 \Rightarrow p+2)\). In the case a child was immediately correct, answering " 10 " a score of 1 .was awarded for Successor. In any other case, a score of 0 was awarded Successor.' Box \(2 \Rightarrow \mathrm{P} .-2\) ) represent's the 'child's response to question 2 asking the child to name the seventh counter given the position of the ninth. If Immediately 'correct, a score of 1 was awarded to Predecessor. In any other case, a score of 0 was awarded to. Predecessor. Box 3 ( \(q+2 \Rightarrow\) \#S) represents the child's response to question 3 asking the child to find the cardinality of \(S\) given the position of \(q+2=10\). " If correct, a justification was asked for (How do you know?): Box \(3 \mathrm{~b}(\mathrm{q}+2 \Rightarrow\) 非) \(\quad\), represents the child's response to question \(3 b\) in Task \(\dot{A}\) asking the child to find the cardinality of P . Regardless of the response ( \(q,+2 \Rightarrow\) 作) , the task was terminated. . If the response \((\dot{q}+2 \underset{~}{\Rightarrow}\) ) for question 3 was incorrect, various other " question sequences -were possible. Box \(3 c^{\prime}\) \((q+2 \Rightarrow \# P)\). represents the child's response to question 3 c of Task \(A\) asking for the cardinality of \(P\) giver \(q+2\). If correct, question 3 - wats 'repeated \(\{\mathrm{B} 0 \mathrm{x} \cdot 3 \mathrm{~d}(\mathrm{q}+2 \Rightarrow \mathrm{H} \Rightarrow \mathrm{H})]\). In case of any respónsè to question 3 d ; Task \(A\) was, terminated. If the response in box \(3 \mathrm{c}(\mathrm{q}+2\)
\#P) is incorrect, various. response paths were possible and should, be self-evident. The : S variable was scored from the respponse in box " 3 . The if F variable was scored from the response in either box 3 b or 3 c .. The \(\# S+\sharp P\) variable was scored fróm the response in either of box 3 , box \(3 d\), or box ( 3 f or r 3 h ).; and. from'the response in éithes of box 3 b , box 3 c , or box 3 g . It should be cilear that responses from box 3 d , or box 3 f or 3 h ; and bax 3 g were facilitated by the experimenter.

The eighth record sheet presented is a flow chart depicting posisible response paths a child could follow through the questions for the cardinal and ordinal number task \(B\). The first box \((q+1 \Rightarrow q+2)\) represents the . child's response' to question 1 asking for the successor of 5 . if the response was correct, a lyas awarded for Saccessor. If incorreqtr question lb was asked. I If the response was correct a 1 wàs awarded för Successor.
 represents the child's response to question 2 asking the child for the cardinality of \(P\) (the total number of objects) given the position of \(q+1\). If the child's response was correct, he was sequenced through box 2a. - If the child's response was incorrect, the was sequenced through the appropriate sequences; box \(2 b\) or box \(2 c\). The \(\$\) variable was scored from the response in \(B \dot{\circ}^{\circ} \times 3\), The 非 variable was scored from the response 'in Box 2. \(\# \mathrm{~S}+\neq \mathrm{P}\) variable was scored from the responses in Box 2 , Box 2 b ,, Bơx: 2c, Box 3, or Boxes 3b.

The ninth record sheet presented is for the quantitative comparison test and the verbal problems with objects text. In order to be given credit for an item on the quantitative comparisón test, a child had to
answer the relational question correctly, and have a response basis which indicated something' other than, a solution based on perceptual features for one or more of the eight items. One point was given for each correct * item. The verbal problems were scored on a right-wrong basis for the product score. Whether the child used objects and any observable processes. were recorded.

The tenth record. sheet is for the partitions test. An item was score\& as correct: if a corrèct response was given to the relational question and a justifícation.

The éleventh record shéet is for recording responses to the mental arithmetic test and the verbal problems withoút objects test. of the data recorded on the verbal problems without objec secord sheet, only the colum "answer" was" úsed in the readiness \({ }^{\circ}\) analysts. The columns headed by \(E, S, E \cdot+. S\) denote when the problem was "read by the experimenter, the child or both. Other columns are self-explanatory. The items on'. " both testṣ \({ }^{-}\)were scóred on a \(0-1\) basis, 0 incorrect; 1 correct, in the case of the answer.

The twelfth record sheet is for recording the children's responses to the tests of addition and subtracition of cardinal and ordinal number. Of the data recorded, only the columns "answers" were considered for analysis ,in the readiness study; Some comments are necessaty to interpret the other, coding schemes. . On the addition test, "records were made of (1) whether the basis of the response was an immediately given fact, whether the child counted on, or counted all; (2) where the observed process were correctly employed (a child could make an exeçutive error and still have
'the correct process) ; and (3) what answer. the child produced based on a give rit process: A section was' provided for comments. On the subtraction test, 'space was provided to record whether the child found the minimum element of \(Q\), whether the correct profess was employed for a given process, the answer, and the source, of cardinality of \(S\). The linter could be obtained in various way's.

\section*{Treatments}

Description of the treatments. The children in the Control Group participated in their regular mathematics program, Elementary Soho Mathematics for Kindergarten through Grade 6 (Eicholz and. Martin, 1971): The children in the experimental group participated in mathematics classes conducted by leslie P. Steffe and W. Curtis Spikes. The 12 experimental children in Oglethorpe School were taught from 10:00AM to 11:00 AM Monday, Tuesday, Thursday, and Friday and the 12 experimental children. at Whitehead Road School were taught from 12:00 PM to 1:00 Pm on Monday; Tuesday, Wednesday, and Friday: Instruction began October \(1 \$ 1974\) and ended January 17, 1975 for the experimental chirdren.

The instruction in the experimental groups was highly, individualized for, each child in that very few sessions were held where group interaction or group demonstration was used. Because the instruction was individualized the children from the ferimental group were pooled for data analysis.

1 The first instructional week was spent on classification where the terminology "and,": "or," "not," "some," and "all" was introduced. The : content of the classifications were dog, squirrel; and bird cutouts and balloons, toy soldiers, toy horses, and toy cowboys. A sampler instructional session is given below.

Objectives: Given"a collection of five dog cutouts, two squirrel cutouts, and three bird cutouts, the children should be able to:
1. Select ally of the dogs, squirrels, or bixds;
2. Select all of the animals that are not birds, squirrels, or dogs;
3. Select all of the animals that are not birds and not squirrels, etc; '
4. Selecit some of the animals; and
5. State that- the dogs are some of the animals, "but not ? .all of the animals, etc.

Adtivities: a. Give the children the animal.cutouts and have them select the dogs, the squirrels', and then birds.
b. Have the children select the dogs. Thèn ask, "Do yọu hatye some of the animals?"
c. Repeat (b) using the squirrels and birds.
d. Repeat. (b) using combination of two of the obvious subsets.
e. " Have the children select all animals that are not squirrels, bịds, or dogs.
f. RRepeat (e) using combinations of two subset's.
g. Ask the children to compare the number of squirrels. and birds, squirrels and dogs, and birds and dogs.

Then have them' compare the "animals and dogs', the animals and squirrels, and the animals and birds.

The second instructional Week was spent on, partitioning collections \(\checkmark\) of objects." Three basic actịities, were designed. The first was designed using two subcollections with counting, the second three subcbiletions with counting, and the third more than three without counting. Samples of three activities are given below:
Objectives: Given a collection of objects, the child should be able to partition the collection into subcollections and realize that:
* 1: There are as many objects in the subcollectiòns as in the original, collections, and
2. The number of subcollections are componsated byythe - number in each subcollection..

Materials: . Construction paper with two nonoveslapping rings dráwn inside of another ring.

Activities : \(\because\) a. Instrứct eačh child to count out ten objects and stresis. that gach has ten.
b. Have the children place five objects in each of the two rings, and ask, "How many'here (pginting to the other)?" and "How many altogether?"
c. Have each child take ope object from one of the rings" ard'place it in ther. other and repeat questions in (b). : \({ }^{\circ}\)
d. Continue additions and subtractions of one object between the rings' until all cợmbinations summing, to 10 are covered. i4
e. Repeat the above ackivities using nine objects; \({ }^{\text {ºnght }}\) objects; seven objects.
f. The experimenter and children. each take five objects. The experimenter puts two in की̉e ring and three in the other with the three covered so that the children cannot see' the objects. The children are then asked to find out how many the experimenter has covered by using their objects. Repeat with other combinations.
lg. Repeat (f) using other total number of objects.
h. Instruct each child to pour his popcorn into a glass Ask the children to estimate the number -of kernels \(\phi \mathrm{f}\) popcorn in their glass. Check the estimation less than 20 through counting: After a few estimations, tell the children that, there are 100 kernels of popcorn in each glass because they were counted.
i. Form pairs of children and have one child of each pair pour his popcorn. into five'glasses and the other into twenty glasses. Then ask each pair who has,more popcorn or \(i f\) they both have the same number of kernels.
j. Repeat activity (b) changing the number of glasses*. around in each pair.
k. . Heave each child pour'his popcorn into ten glasses. Ask the child if he has the same number of kernels \({ }^{\circ}\) of popcorn before pouring as after pouring. . ....
1. Line. 50 glasses in a row and have èach child pour his 5. popcorn into the glasses; some in each glass. Ask each child to compare the number of kernels before pouring to the number of kernels after pouring.

The third instructional week was spent on loop inclusions and inteŕsections:. Sample activịties are given below.

Objectives: Given a chain of rings, able to:
1. Place an object inside of exactly one ring, exactily two rings, etc.,
2. Ascertain that any object inside of a given ring is. also inside of its containing rings, and
3. After objects are placed inside of each ring, find how - many are inside of.a given ring.

Materials: Three closed strings of different colors where the strings can be used to form concentric circles, and a pile of tile. Activities: a. Givépeach child one ring. Have the children put of of their hands winside of it. Take the ring and show the children that it will hot come off, so their hand is Inside of \(\boldsymbol{f i t}\).
b. Give the children two concentric rings. Have, them put one of their hands inside of exactly one ring. Show the children that theit hand is not inside of the innermost ring because it can be;picked up and their arm is not
inside of it. However, for the outermost ring, their - hand is' "caught."
c. Using two concentric rings, have the children place pne of their hands inside of exactly two rings. Assist children who have difficulty by showing them that neither ring will come off their hand.
d. Give the children three rings and have them place tile, inside of exactly one rinǵ, exacṭly two rings; and exáctly three rings.
e.. Place the five rings or the flyor in the appropriate way. Instruct a child to step inside of exactly one ring. Discuss why the child is inside of exactly one ring using the operational definition given earlier.

Loop Intersections

Objective: Given two or three overlapping' rings, a child shipuld be able to identify the interior of exáctly one on more rings.

Materials: A collection of rings made of differènt coloréd yarn.,
Activities: a; Place rwo overlapping rings on the floor and have each child stand in different parts of the interior-inside of one, of the othẽt and both. piscuss why the children stand where'they do each time:
b. Give each child a checker, and have them place the checkers inside of exactly one ring (e.g., the biue ring only); and inside of exactly two rings (e.g., the blue

\footnotetext{
- ring and the red ring).
}
c. 'Place three overlapping rings on the floor', a blue, a red, and a green ring. Repeat (a) and. (b) with
appropriate modification. . . , .
The' remaining.instrúctrional time was, spent on addition and subtraction. The instruction was sequenced according to the learning instructional phases for addition and subtraction. It is here that the instruction was highly individualized. Consequently, it is very difficult to describe any one uniform instructional sequence. However, the learning-instructional phases for addition and subtraction are presented, after which activities are elaborated.

In the exploratory phase, for the children with rote-counting abilities, addition and subtraction problems were not attempted until they acquired point-counting abilities. This means that children who were rote-counters were given many concrete examples of point counting, to bring their level of counting up to the level of point-counting. This was done in the context of counting all strategies for addition and subtraction. The counting-all strategy was uṣed to solve addition and subtraction exercises at the exploratory phase. The children at this phase were given the problem of determining hownemany elements there were in two sets, \(S\) and \(Q\), when all the elements of both were put together. The elements of \(S\) were, counted out, the elements of \(Q\) were counted out and placed with the elements of S . The children then counted out all of the elements of \(S U Q=P\). The students continued these types of activities with objects and with their fingers, and worked spontaneously from bath verbal and written instructions for basic addition facts. This means that being told: "solve this problem: How much is six and four?"
and being given the symbolized statement--" \(6+4=\) \(\qquad\) ,'" elicited the same problem-solving behavior. In the case of using their fingers, the students counted out six fingers, counted out four fingers, and then
r counted each finger and determined that the answer was "ten.". Concrete objects were abandoned by all of the children aftér about two weeks of . instruction \(o\) addition and subtraction. Finger dexterity increased. if the sums were ten or less:

Aill of the children in the experimental groups were \({ }^{*}\) introduced to the exploratory phase of addition and.subtraction. The reason for s decision was that an attempt was made to let the children differentiate themselves in instruction to the abstraction-representation phase for addition añ subitraction. It was expected that the children who were extensive quantitative compafers ' would enter the abstraction-representation phase more quickly than would thè grosis quantitative comparers. The abstraction and tepresentation. phase is described below:

In the abstraction-representation learning phase for addition, the children can use the counting-on strategy to solye the problem s \(+\dot{q}=\) \(\square\). Rational counting-on, \(R-1\), is used, since the child considers either one of the numbers as a starting point and the gther numbers, to łepresent awset of uníts in the verbal chain. For example, to solve \(9+3=\sqrt{\square}\), , the student might select nine as his starting point \(\because n^{\prime}\) his verbal chain and count on three units more in the chain: "ten," "releven," "twelvet". There is no need to count through the forward verbal sequence to the number nine from one since the child extracts, mentally, the cardinal property of "nineness." At the same time the child initiates a three unit courrt from the number nine in the verbal
\(\qquad\)
(mental); chain. The child does not need to count each unit. in the problem but does need to keep a tally of three units. The missing addend is solved with a rational counting-on strategy that also utilizes a tally, but in a different way., The level oE, rational counting labeled \(\mathrm{R}^{2}-2\), is needed here. When given the missing addend problem, the missing addend is perceived as part of the sumáctal. 'Given the problem to solve, \(3+\square=11\), the student, counts -on from three to eleven and symbolizes ere . units of the missing addenda with a tally as he counts. In finalizing the solution, the child point-counts the tally either simultaneously while counting on, or after. The subtraction problem is solved with R-3 level counting--counting back without tally. The child solves a problem - like \(9-5=\square\), by starting at nine to count the units in the backward ordinal sequence. 'He counts "back. five units to the number five and mentally extracts the next number' in the backward-ordinal sequence and names it as the solution to the problem. In this problem. situation, the 0 child is asked to solve. the problem dy notating back.

Instructions on counting on and counting back activities were given to each child. The firs' \(\mathrm{R}-1\) level count ing activities were as follows. A card withethree rings on it : : OO. Was used, objects were \(\therefore\) counted out while being placed into one of the rings. These objects' were screened from view. Objects were counted out while being placed into the other ring: The children were then asked to find how many were in the big ring. Counting -all, strategies could be ged to some: the problem well as R-1 counting. The goal of such activities was to have the children abstract, through counting activities, that the objects covered did not, have to be recounted, but one could start "with
the number of objects covered and count-on, as described above in the abstraction-representation phase.

From the active \({ }^{i}\) involvement, in counting physical objects, 'children' were presented with exercise sheets, with sums. They were encouraged to use tally, marks with pencils in either counting all or R-1 counting Tomas" they' were "able.
* The missing addend problem was first presented using a variation - of R-1 counting behavior, transforming it to \(\mathrm{R}-2\) counting behavior. 'Instead of counting each collection and covering one, the children were told there were a certain number in the big ring, some under the cover, so how many were altogether: R-2 counting behavior was modeled by the \(\because\) teachers and by able children for those not able to display it.

Because some of the children had a great deal of difficulty with R-1 and R-2 counting, the solution to the missing addend problem presented in symbols \((5+\square=7)\) was modeled using partitioning as a base. In the case of the, example, sever objects were counted out, five of the seven were counted out, and then the wo were contented out to go into the box. A child with counting-all strategies could execute the solution presented in that. way. Efforts were then made to take the children. that were able into solution by \(\mathrm{R}-2\) level counting.

Counting-back activities were also presented, first point countingail and then rational counting back without tallying. Then countingback activites were then incorporated into subtraction exercises such as \(5-3 \pm \square\) The children were given a counting-back board as . follows. They were shown that to process 5-3 on the board, they would


start at five and count of three, to find the answer "two." An attempt was made to emphasize that even though, say " 6 " appeared under'a particular tile, it told how many tiles there were up to and including that ti, le. Structured materials were used due to the great difficulty child experienced in rational counting back:

All of the children were presented with counting-on and.counting back strategies associated with the three equations \(\alpha+\beta=\xi ; \alpha+\xi=\cdot \beta\); 。 and \(\cdot 3-\alpha=\xi\), and \(\alpha\) and 3 known and \(\xi\) unknown. The, third learninginstructional phase was also dealt with in instruction. This learninginstructional phase is called the formalization-interpretation phase.

The formalization-interpretation learning phase for addition and subtraction is characterized by the interrelationships of addition and subtraction: The student in this final learning phase for addition and stitaction can relate problems of the type \(9-5=\square\) and \(9=\square+5\). To become aware of the latter equation from the first one, the R-4 counting--coumting-back with tally--must be employed and utilized in a special way: : The'student counts back five units nine to the number five \({ }^{\circ}\) with a tally (mental). He preserves the solution as four units of the nine and he preserves the five units counted-back, as part of the nine. The numbers five and four are parts of the number nine; The numbers four血 . . . . . . . . . .
and five are considered as units. \(\ell\)
So, the child realizes (with reconstructing the 5 units he counted. back) that 5 units counted back on to four units results in the original 9 units: In this way, addition and subtraction are interelated. So, when a child finds the sum of 5 and 4 , he also knows the difference of. 9 and 4.

The opportunity was given each child in the treatment to enter this learning-instructional phase tbrough written work. Eamilies of equations were presented to thé children for solution, such as \(4^{\prime}+5^{\prime}=\square\);
\(4+\square=9 ; \square+5=9 ; 9-4=\square\); and \(9-5^{\circ}=\square\). The children were never told the inter relationships but were left to make the observations. The written work for each child was retained as children differed greatly in the amount of written work they could do.

Addition, subtraction, and missing addend problems were given. to the children to sólve during instruction on addition and subtraction. The problems were presented in written format. Children who could read the problems węre ençouraged to work independently: They-were encouraged also to write a mathematical sentence for each problem they solved. The probiems were rea" to the children who could not read. These children were also encouraged tơ write mathematical sentences for the problems they solved.

The children were allowed to use the hand-held calculator during the last four weeks of instruction. The role of the calculator was to check sums or differences. ?

The research hypotheses for the readiness study are stated. for each cluster of variables. Kationale for the hypotheses. are contained in the previous sections and are summarized whenever appropriate.

Gluster 1. The research hypotheses advanced for Cluster 1 variables are as follows:

1: Extensive quantitative comparers obtain cardinal information from ordinal information to a greater extent than gross quantitative comparers.
2. Extenşive quantitative comparérs who are taught couniting strategies will be able to obtain cardinal information from ordinal information to a greater exţent than extensive quantitative comparers who. are not taught counting strategites.
3. Gross quantitative comparers are not able to obtain cardinal information from ordinal information regardless of being taught counting strategies.

Cluster 2. The research hypotheses advanced for Cluster" 2 variables are as follows:
*. Extensive quantitative comparers and gross quantitative comparers 'do not perform differentiy on the variables Counting back, Just Before, Just After, Successor', and Predecessor.
2. Extensive quantitative comparers will outperform the gross quantitative comparers on the variable \({ }^{*}\) Between. 3. The children in the experimental and control groups do not perform differently on all variabiles in Cluster 2 :

Cluster 3. ©The ressear̃ch hypotheses advanced for Cluster 3 variables are as follows:
1.. Extensive quantitative comparers will solve verbally"presented missing addend problems better than gross quantitative comparers. Differences will aìso exist on-add́ition and subtraction problems, but not as acute as for the missing addend problems. Moreover, subtraction is more difficult for the gross quantitative compares than addition:
2. The experimental group will out-perform the control group on all three problem types.

Cluster 4. The following resèarch hypotheses are advanced for the pretest.:

1: Grosş.quạntitative compare'rs are not able to solve thè missing addend problems nor the subtraction problems.
2. Extensive quantitative comparers can solve addition and subtraction problems and can, with moderate success, solve missing addend problems.
3. Gross quantitative comparers are not able to solve set partition problems but extensive quantitative comparers are \(a b l e\) to solve these problems.
4. Extensive quantitative comparers will outperform gross quantitative comparers on all variables of the cluster.
In the case of the posttest, the following hypotheses were advanced.
1. The children in the experimental group will outperform the children in the control group on all variables except addition, where there will be no difference in performance. This hypothesis should be esp̂pecially true for the gross quantitative comparers.
2. The extensive quantitative comparers will outpérform the gross quantitative comparers in the control group on the .variables missing addend, subtraction, set parțittiòns with counting, and set partítions without counting.

Causter 5. The following research hypotheses are advanced for Cluster
variables..
1. Extensive quantitative comparers are able to (a) ratiởal count"on, (b) raťional coukt back; " (c) sólve ördinal thumber addition problems, ande(d) solve ordinal number subtraction problefts to a greater extent
2. "The experimental gross'quant fative comparers will outperform the control gross quantitative comparers. on the rational counting on and the ordinal numbet addition problems.
3. Rátional counting on and addition of ordinal number problems are highty related.
4. Rational counting back and ördinal number subtraction problems are highly related.

Cluster 6. No research hypotheses are advanced for Cluster 6 variable. Cluster 7 . The research hypotheses advanced for Cluster 7 variables are as follows:
-1. Quantity is not a readiness variable for any of the classifictation tasks.

2: The experimental group will outpetform the ciontrol group
- on nested classification tasks and on the loop inclusion tasks.

\section*{Statistical Analyses}

Item analyses. An itẹm analysis was conducted for each test whenever appropriate. Program ANLITH, an item analysis computer program made available py the Educational Research Laboratory of the University qf Georgia was used to conduct the item analysis. The program was finteratea for: use at the Educational Research Laboratory by Yi-Ming Hsu and was developed by Thomas Groneck and Thomas A. Tyler.

Item difficulty (p-values) are"reported for each item. "A p-value is a ratio of the number of correct responses to the total number of responses for an item. Test means, standard deviations, and Cronbach's Alpha reliability coefficient' are reported for each test as well as the frequency distribution of total scores.

Analyses of variance. Multivariate analyses of variance were conducted for each cluster of variables and were used to test the research hypotheses. Program MUDAID, Multivariate, Univariate, and Discriminant' 'Analysis of Irregular Datas was used for the analyses of research (Applebaium \& Bargman, 19675. .This program is available through the Educational (a. Research Laboratory at the Univérsity of 'Georgia.

Quantity was used as a ciassification variable (Extensivévs. Gross). and treatment as an independent variable in all analyses of variance. Each ánalysis 'of varịancé then, was 2.x 2. A univariate analysis of variance and one or more discriminant functions (corresponding to the significant effects) are reported in cases of significant interactions or main effects in the \(2 \times-2\) pultivariate analyses. Correlation matrices of the dependent variables are also presented.

具
4


Chapter. III

Presentation of the Results
\[
\psi^{\prime} \cdot{ }^{\prime}
\]
i

1

Reşults of the Readiness Study

\section*{Item analysés}
- Item analyses are presented:for fests of the readiness variables and for tests of some of the achievement variables. These analyses include a difficulty index for each item, a frequency distribution for each test, an Internal consistency reliability coefficient for each test, test means; and test standard deviations.

Quantitative comparisons. The test of quantitative comparisons. (Appendix A.11) was administered to 107 children as a pretest o *a bile 1 contains the difficulty indices for each item, and item characteristics. Items \(1, \cdot 2,3, \cdot\) and 6 were of comparable difficulty. These items either had

Table 1
Difficulty Indices and. Item Characteristics 'for Quantitative Comparisons Pretest
Item \(\quad\) Difficulty \(\quad\) Item Characteristic \(\quad \because \quad \because \because \quad . \quad\).


Triangular arrängement;'six red, six green
Rectangular arrangement; six red, eight green
Random arrangement; six' red, six green'
Linear arrangement; six.red, six green
Linear arrangement; eight red, eight green
Random arrangement; eight' green, six red . \({ }^{\prime}\)
Circular arrangement; eight red eight green
Random arrangement; eight red, eight gree
a configuration conducive to solution by visual inspection (triangnlar or rectangular), had two collections of six objects with a random artangement (item 43 ), or contained a collectian which apparently had omore that the other (item 6). These items all demanded an extensive guantitative comparison for correct solution due to difficult geometrical configurations or aight, \(\quad 0\) objects in each collection to be compared. They were the criticals items to separate "th extensivé quantitativencomparers from the gross quantitatiỵe comparers.

The test mean was 5.01 , standard deviation 2.58 , and intergal consistency reliability \(.84^{\circ}\). The reliability of .84 supports the classificiation into extensive and gross categories. Further justification of the validitey of the twe quantitative categories is that, if a child scored at least 5 out of \(\dot{8}\) cQrrectly with justification for his answers, evidence was strong he would have made an extensive quantitative comparison. Evidence, was stron̆g because at least one of items \(4 ; 5,7\), or 8 would by necessity have to be andswered correctly with justification.

The distribution of thal scores for the eight item ent was as follows. Eleven children scored zerp, five scored one, five scored two;'seven scored "three, eight scored four, ten scored five, twentyi-one secored séven, and nineteen scored eight. The rathet large frequencies for the scores five, six, seven, and eight can be attributed to items \(1, \dot{2}\), 3 , and" 6. In retrospect, those items did not necessarily measure extensive quantity.

The test of class inclusion (Appendix A.10) given to the total firstgrade population was extremely difficult ( 88 out of 107 scored zero), sor no psychometric analysis was needed. Evitence was available that only nine children häd class, inclusion.

Number in \(S\) and number in P. Table 2 eontains the difficulty indices for the Number in \(S\) and Number in \(P\) tests (Appendix A.1). The first item on Number in \(\$\) test was more difficult than the second. The first is probably more indicative, of the difficulty of the \(l\) 非 S items due to the

Table 2
Dffficulty indices fqr \(\# S\) and \(\# P\) Tėsts

Test
Item . . . Number in \(S\) in Number in \(P\)

1
\(\therefore 2\)
\(.31 "\)
.46
. .54
fact that the second item was from the second ordinality task and the child had processed a considerable amount of information about the task' before asked to find the number in \(S\).

Table 3
Frequency Distributions, Means, Standard Devíations, and Reliabilities of the \#S and \#P Tests
- Frequency.

Distribution


The frequency distributions, means, standard deviations, and reliabilities for \({ }^{\prime \prime}\) S \({ }^{*}\) \#P. tests are given in Table \(3 .{ }^{2}\) None of the distributions appear \(\xi_{0}\) represent normally distributed variables. The relia-: bilities are extremely low and are a reffection of the rather large number. of children scoriag one out of' the two items correctly. . The items were not homogenous. This heterogen \(\widetilde{\text { 4ity }}\) may be a result of the items being on "different tasks and in different sequences in each task.
- While.the low reliabilities may be attributed to the fact that, the tests contained only two items, the tests were administered individually by competent testés. Such individual administration shoild minimize errors of measurement. This argument strengthens the necessity for better task design for tests of \#S and \#P variables. "
- In the event differences for main effects are detected in the aralyses of variance for \#S or \(\# P\) variables, they can be interpreted. The reason such inferpretation is possible is that, given significant differences (say, \(\uparrow\) for quantidy) a preponderance of the children scoring zero would have to \({ }^{\circ}\) be in one category, and a preponderence of the children scoring 1 or 2 would have to be in another category. For children scoring either zero or two, it is reasonable to conclude that they did not or did have the ability to obtain cardinal information from ordinal information, respectively. For children scoring`one, however, diffiçultines of interpretation are present.

In the event differences are not detected in the analyses of variance for \#S or \#P variables, no interpretation should be made.

Problem solving without objects. Table 4 contains the difficiculty Indices for problem soliting test without objeots; (Appendix A.4). . The TIAdices are -surprisinglýhigh for a problem solving test"with no objects
 present.
\(\therefore \quad \therefore \quad . \quad\) Table 4.
: Difficulty Indices for Problem Solving Test Without Objects


The missing addend problems are more difficult than the four addition and subtraction items; as expected. The índices for the addition and subtraction items are quite comparable but greater than indices for the missing addend items, indicating that cqunting-all strategies were used during solution.

Table 5 contains the frequency distribution, mean, standard deviation, and reiliability information for the three problem types. None of the -- distributions appear to represent normally distributed variables. The internal consistency reliabilities are quite substantial for Subtraction and Missing Addend but rather modest for Addition. Inspection of the frequency distributions show that the missing addend problems were

121

Table 5
Frequency"Distributcions, Means, Standard Deviatiofs, aind
Reliabilities of the Addition Subtraction and Missing
7 Addend, Tests *Without Objects

almost an all-or-nothing phenomenon. The subtraction problems were easier than the missing addend problems; but yet only 8 children scorfed one of the two correctyly. The additiol problems'were quite easy for the children and aily'but four scored at least one "of the two correctly. The analyses of variance should be interpreted in th caution in the case of the addition problems if no significant differences exist. If differences do exist, a preponderance of children who scored 0 or 1 would have to in in a category together. So, here again, interpretation would have to be made with caution. There is no difficulty interpreting results in the analyses of variance for the two othèr problem types.

Problem solving wíth objects and pártitíons fests. The problem solving test with objects (Appendix A.3) and the partitions test (Appendix A.5) were administered as pretests. The problem solving test consisted of
two addition items, two subtraction items, and two missing addend items. 'These three, item-types were considered to be subtests. The partition test was made up of two items where the child counted and two items where' he did. not count. These item types were considered as subtexts. Table 6 contains the difficulty indices. for each item of each test.

Table 6
" Difficulty Indices for Problem Solving and Partition Pretests


It is apparent from Table 6 that the indices for addition and subtraction are approximately the same, but the missing addend problems were more difficult. Moreover, the indices for the two items with counting in the partition test are each considerably greater than the two items without counting, which did not include a particular number-only the relation "the same" number." "

Table 7 contains.the frequency distributions for the two total tests and their subtes̃ts. Nonef the distributions appear to represent normafly distributed variables. Fōr items with counting and without counting, responses for the variable Partition nearly reflected an all-or-事。 nothing phenomenon, since scores \(\dot{\dot{f}} \mathrm{f}\) one were relatively few in number. a.

Table 7
Frequency Distributions for Problem Solving and Partition Pretests


Because 36 children scored 0 on the missing addend items, that subtest did not contribute a great deal to the middle three scores in the total problem solving test distribution. Às the difficulty indices for addition and subtraction were around .50 , those items should have contributed heavily to the middle three and possibly upper three scores in the total testa" distribution. Consequently, one would expect the a distribution of nonezero
scores to be nearly bêll-shaped. The actual distribution of the total test met this expectation.

Table 8 contains the internal consistency reliability coefficients, means, and standard deviations: The reliabilities of the tests are substantial except for the variable Missing Addend, which was a very difficult test. The reliabilities support further analyses of the data

Table 8
\(=Y\)
Reliabilities, Means, and Standard Deviations of Problem
Solving and Partitions Pretest

and allow those analyses to be interpreted with the confidence that the criterion measures are internally consistent. In fact, the reliabilities associated with the two-item subtests support analyses conducted using, those subtests as dependent variables.

The problem solving with objects and partition tests were administered as posttests as well as pretests. Table 9 contains difficulty indices of the items of each test. Very substantial gains from pre-to-posttest were

Table 9
Difficulty Indices for Problem Solving and- Partition Posttests

made in scores on the addition and missing addend items and in all of the itemsiof the partitions test. The difficulty indices for the subtraction and missing addend problems are' now comparable and all are less than the indices for the addition items. The problem solving item difficulties in Table 9 are consistent with those observed by Steffe and Johnson (197i) but not consistent with those observed in Table 4 for the subtraction problems, a result to be explained in the section Analyses of Variance.

Table 10 contains the frequency distributions for the two total tests and their subtests. All frequencyrdistibutions changed from pre-to-posttest from the lesser to the greater scores (See Table 7). As subtraction was worked on in the experimental group, it is surprising that the frequency distribution was not altered in the same magnitude as the other distributions. Interpretation of the changes in the distributions is delayed until the section Analyses of Variance.

Table 10
Frequency Distributions for Problem Solving and Partition Posttests


Table 11 contains the internal consistency reliability coefficients, means, and standard deviations. All of the reliability coefficients, except r
for the addition subtest, are substantial and again support analyses of variance using the subcests as criterion tests. The rather low reliability of the addition tests is to be expected because the test was

Table il
Reliabilities, Means, and Standard Deviations of Problem
Solving and Partition Posttests

relatively easy (mean score 73 percent). .The standard deviations' remain substantial and reflect the fact that children scored at each possible score on the criterion scale, with heavy loading at the extremes.

Addition and subtraction of ordinal numbers. Table 12 contains the diffioulty indices for the addition and subtraction of ordinal number tests (Appendix A. ' \(^{3}\). The rational counting on'items, modeled by \({ }^{\circ}\)
\(\alpha+\beta=\xi\), \(\xi\) unknown, were each fairly easy items. ' The missing addend problems, or ordinal number addition items modeled by \(\dot{\alpha}+\xi \geqslant \beta ; \xi\) unknown were also surprisingly easy. However, the ordinal number subtraction fitems were difficult; as were the counting-back items. Item difficulty is somewhat a function of the particular numbers involved.

Tabie 12
Difficulty Indices for Additio and Subtraction
of Ordinal Number Tests.
\(\qquad\)
Test
Ordinal Number Test
Ordinal Subtraction Test


Table \(13^{\circ}\) contains the frequency distributions, means, standard deviations and reliabilities for the total tests of addition and subtraction of ordinal numbers. The reliabilities associated with the two tests with equation forms' \(\alpha+\beta=\) and \(\xi+\alpha=\beta\) with tallying are rather low. The former is easy and the latter difficult, each of which contributes to low reliabilities. The analyses of variance for these two tests should

Table 13
Frequency Distributions, Means, Standard Deviations and Reliabilities of Ordinal Number Addition and Subtraction Tests

be definitely interpreted, but. with some caution if no differences are detected in the analyses. \(c\)

Mental arithmetic. Table 14 contains the difficulty indices for the mental arithmetic test (Appendix A.7): The difficulty indices for the time score represent an average time for each item. The subtraction exercises took longer, on an average, than did the addition exercises. ; Not only did they take longer, but they were more difficult.

Table 15 contains frequency distributions for the mental arithmetic test, product score. Table 16 contains the same data for the time score.

Table 14
Difficulty Indices for Mental Arithmetic Product and Time Scores.

Table•15
Frequency Distributions for Mental Arithmetic Test:
Prodúct Scote


Frequency Distribution for Mental Arithmetic Test: 'Time Score ,
\begin{tabular}{|c|c|c|c|c|c|}
\hline  & 1 , & 2 & \[
3
\] &  & \(\therefore\) \\
\hline Total & 16-115* (36)** & 115-214 (9) & 214-313 \({ }^{\text {(1) }}\) & 313-412 & \\
\hline Addition & - \(0-188\) (0) & 18-117 (44) & 117-216 (3) & & \\
\hline Subtraction & \[
0-99(4 \dot{5})
\] & 99-198 (1) & 198-297 (1) & 5 & \\
\hline
\end{tabular}
*time range in seconds
**Number of students that completed the test within the time interval given.

Most of the student \(\overline{\text { chempled }}\) comple the 16 to 115 seconds -- within approximately two minutes.

Table 17 contains the reliabilities, means, and standard deviations associated with each of the product. score and the time score. \(\mathrm{In}^{n}\) some \({ }^{\text {. }}\) cases; the reliabilities are extremely low. For the addition items product score, the reliability is only .15. The fact, that the test was easy certainly contributes to this low reliability. No interpretation should be given to the analysis of variance on that measure. The reliabilities: associated with the time score should be interpreted as a measure of the consistency of the time it took to do each problem. If, for example, it took consistently much longer to do one subtraction item than the other, a low reliability would be the result. But if it always took about the same time, a'substantial reliability would show. Just because the addition. items aremich closer in difficulty than the subtracfion items; one cannot;
"say they took closer to the same time than did the subtractionnitems, for the reliability is less for the addition time scores than for the subtraction time scores:

\section*{Table 17}

Reliabilities, Means, and, Standard Deviations of the Mental, - Arithmetic. Test: Product and Time Scores

Table 18
Difficulty Indices for Class Inclusion, Loop Inclusion and
Nested Classification Tests

The difficulty indices of the items in the three other tests fluctuated \(\therefore\) a great deal. In the case of the loop inclusion test, the third item was relatively easy compared to the first two.". When considering the item context (intersecting rings), it appears to be measuring, something quite different than the two others. This claim is supported by the low. correlation (connected for overlap) of .35 between the third item and the total test. In retrospect, the third item could be answered correctly even - though a dill looked at. two intersecting, rings as forming three separate regions. In the caserof items 1 and 2 , the probability was great that \(a^{-}\) (0) child had to view the nested rings as being nested in an inclusive sense.

In the nested classification task \(A\), the most difficult item involved a sequence of four questions involving attributes irrelevant in the nested classification, Whether the number of questions, the irrelevant attributes,
or both contributed to the difficulty is not clear. The two most difficult items of task B of not involve irrelevant attributes, but rathereclassi-. \(\because\) fication of the buttons, 'Apparently, children in some cases thought . that the object in the box could be a white button.

Table 19 contains the frequency distributions and Table \(20^{\circ}\) the reliabilities, means, and standard deviations of the tests. It is apparent that the class inclusion test is quite difficult with approximately one half of the children, scoring zero. Fifteen of the Children. displayed scores of at least three, which iadicated that these children learned how to solver the class inclusion problem during the'time from September to February.

Tablye 19
Frequency Distributions of the Class Inclusion, Loop Inclusion, and Nes'ted Classification Tests.


The class inclusion test is highly internally. consistent, but the remaining three are only moderately reliable given that they were con- : structéd to measure a single capability." As the "last.item of the loop inc̣lusion test is faulty, it undoubtedly contributed to the Iow reliability.

Reliabilities; Means, and Standard Deviations of the Class Inclusions, Loop Inclusion, and Nested Classification 'Tests


Whether the nested classification tests are good measures iss, at this point, an open question. They do not possess particularly good psychometric properties given the way they were constructed.

\section*{Analyses of Variance}

Cluster 1. The variables included in Cluster 1 were Number in \(S\) (\#S), Number in \(P(\# P)\), and Number in \(S+\) Number in \(P{ }^{*}(\# S+\# P)\). These variables are defined in the section The Achievement Tasks. The research hypotheses to be tested in this section are that (i) extensive quantitative 'compares obtain cardinal information from ordinal information to a greater extent than gross quantitative compares, (2) extensive quantitative compares who are taught counting strategies obtain cardinal information from ordinal information to a greater extent than the extensive quantitative compares who are not taught counting strategies, and (3) gross quantitative
comparers are not able to obtain cardinal information from ordinal information regardless of being taught counting strategies.
 Was noẗ significant. The multivariate \(F\) for Quantity was significant 1. \(\left(F_{3,42}=3.14,0 p<.05\right)\). The multivariate \(F\) for Treatment was not significant \(\left(\mathrm{F}_{3,42}{ }^{-}=39\right)\). Table 21 contains the raw weights of the discriminant function foṛ Quantity and the total group correlations of the original variables with the discriminant function. Because Quantity was significant (p \(<.05\) ) the univariate \(F\)-ratios are presented in Table 22. The variables showing

 well to the fact they contributed most (correlations, Table 21) to the separation of the extensive and gross quantity groups. The cell means for the \#S variables are presented in Table 23 , for the 非 F variable in Table 21
-Weights of the Discriminant Function and Correlation of Original Variables with the \(D\) Scriminant Function for Quantity: Cluster 1.
Statistic

Table 22
- Quantity Versus Treatment Univariate Analysis of Variance: Cluster 1.

\[
* *(p<.01)
\]

Table 24 and for the \(\# S+\) \#P in Table 25 . The first hypothesis tested was supported in the multivariate analyses and was supported for the \(\# P\). and the \(\# S+\mathbb{F}\) variables in the univariate analyses. Apparently, the extensive quantitative comparers were able to utilize the hints in the

Tabie 23
Cell Means for \#S



Table 25
Cell Means for \(⿰ ⿰ 三 丨 ⿰ 丨 三 S+\# P\)

cardinal－ordinal tasks to a greater extent than were the gross quanti－燩 tative compares．This finding．is quite significant．The extensive quantitative compares，especially those in the experimental group， seemed quite capable of solving problems of the nature presented．： Solution strategies necessary for the tasks were apparently available ． to the extensive quantitative compares and were easily activated．＇

Apparently，the task design for \＃S produced too much conflict for extensive quantitative compares to activate relevant strategies to the same extent as in the two other variables．This opinion is based on
the results of the \(\mathbb{\# P}\), and \(\# \mathrm{~S}+\mathbb{\mathrm { P }}\) variables. Consequently, the results for the \#S variable are viewed as inconclusive, neither supporting nor refuting the first hypothesis of this section. A test of the hypothesis for \(\|^{\prime} S\) awaits better and more reliable task design.

In case of the \(\mathbb{\# P}\) variable, the extensive quantitative compare rs outperformed the gross quantitative compares, especially in the experimental group. An interaction between quantity and treatment is suggested by the means in Table 24, but was not significant statistically. One can say that children who are extensive quantitative compares gan obtain cardinal information from ordinal information better than gross quantitative compares as long as that information can be obtained from counting forward rather . than backward. The effect of Quantity was not as strong for \#P as it * should have been theoretically. But it must be remembered that the reliability for 非 variable was low. The first hypothesis was supported by the data from the \#P variable, but the should not place strong confidence in the results. A more conclusive test awaits better task design. Even though the interaction of Quantity and Treatment was not significant for any off the three variables, the second hypothesis seemed supported by the results in Tables 23,24 , and 25 . The results \(\vec{s}\) are suggestive enough that the hypothesis should be tested again. The third hypothesis appears: to be supported, although not strongly.

The correlations of the variables are presented in Table 26. The
 modest correlation between \#S and \#P is further evidence that improved ! task design is necessary for the two variables. The two remaining \(\mid\) correlations are spurious due to definition of the variable \(\# S\) fo \(\#\) P.

Correlations Among Variables in Cluster 1
\begin{tabular}{|c|c|c|c|}
\hline & 非 & & \#P \\
\hline \#S & - & - & \\
\hline \#P & 「.54** & & \(\therefore\) \\
\hline , & & & , \\
\hline \# \(S^{+}+\#\) P & . \(61 * *\) & & - . 61 ** \\
\hline & & & \(\checkmark\) \\
\hline
\end{tabular}

Cluster 2. The variables included in Cluster 2 were Couting Back, Just Before, Just After, Between, Successor, and Predecessor. These variables are defined in the section The Achievement Tasks. The research hypotheses to be tested in this section are that (1) extensive quantitative comparers and gross quantitative comparers do not perform differentiy on the variables Counting Back, Just Before, Just After, Successor, and Predecessor, (2) that the extensive quantitative comparers outperform the gross quantitative comparers on the variable Between; and that (3) the children in the experimental and control groups do not perform differently on ali the variables in Cluster 2.

The multivariate \(F\) for interaction of Quantity and Treatment ( \(F_{6,39}=1.46\) ). was not significant. The multivariate \(\bar{F}\) for Quantity was significant. \({ }^{\prime}\left(\mathrm{F}_{6,39}=2.57, \mathrm{p}<.05\right)\). The multivariate F for Treatment ( \(\mathrm{F}_{6,39}{ }^{-}=.94\) ) was not significant. The raw weights of discriminant function for Quantity and the total group correlations of the original variables with the discriminant function are presented in Table 27. The variables Counting Back and Between contribute most to the separation of the extensive and gross quantity
groups. These two variables are also significant in the univariate analyses presented in Tabie \(]_{28}\).

Table 27
Weights of the Discriminant Function and Correlation of Original Variables with the Discriminant

Function for Quantity: Cluster 2


Table 28
Quantity Versus/Treatment Univariate Analyses of Variance: Cluster 2

\(* *(\dot{p}<.01)\)

Cell Means for Counting Back and Between


Table 29 contains the cell means for the two variables for which Quantity was significant in the univariate analyses. In case of the variable Counting Back, the gross quantitative comparers had a mean sccore of only about \(54 \%\), which indicates some difficulty with point counting back for these children. In that' the treatment had no positive effects, oneacan expect teaching gross quantitative comparers to count back to be somewhat ineffective if the teaching is not sustained and repeated over time. Gross quantitative comparers have a difficult \({ }^{\text {i }}\) time determining the numbers between two given numbers, as shown in Table 29. Again, the concept was resistant to instruction on counting-on strategies given for these children.

The first hypothesis tested in this section is not supported in a multivariate sense. To locate precise differences, the univariate analyses were run. It was found that hypothesis was not supported for Counting Back, but is supported in the case of the remaining fariables. The second hypothesis was supported. Acquisition of the concept Between
, appears related to quantitative comparisons as hypothesized. The third hypothesis was supported.

The correlations among the variables are presented in Table 30. The , critical correlation is \(r=.30\) to be significant for \(p<.05\), and \(r^{\prime}=.35\) \(\rightarrow\) to be significant for \(p<.01\). The correlations are modest at best given that the variables, are conceptually related.


Correlation Among Variables in Cluster 2

\(*(\mathrm{p}<.05) \cdot * *(\mathrm{p}<.01)\)

Cluster 3. : The variables included in Cluster 3 were Addition, Subtraction, and Missing Addend problems, to be solved in the absence of physical objects. The research hypotheses tested in this section are that (1) extensive- quantitative compares will solve verbally presented missing addend problems better than gross quantitative compares. Differences". " will also exist on addition and subtraction problems, but not as acute
as for the missing addend problems. Moreover, subtraction will be moxe difficult for the gross quantitative comparers than addition, and (2) the experimental group will out-perform the control-group on all three problem types..
- The maltivariatse \(\dot{F}\) for interaction \(\%\) quantity and Treatment \(\left(F_{3,42}=1.23\right)\) was not significant. The multivariate, for Quantity was significant \({ }^{( }\left(F_{3,42}=6.89, p<.01\right)\). The multivariate \(F\) for treatment \(\left(F_{3,42}=1.03\right)\) was not significant. Table 31 contains the raw weights of the discriminant function for Quantity, and the total group correlations of the original variables"with the discriminant function.

Table 31
Weights of the Discriminant Function and Correlation of Original Variables with the Discriminant Function
, for Quantity: C̣luster 3


The missintedadendeblems contribute a great deal to the separation , of the extensive and gross quantity groups. The subtraction problems are next, and then the addition problems, which contribute relatively litte. To further understand the variaghes, univariate F -ratios and cell means are presented as \({ }^{\circ}\) Table 32 , and Table 33 , respectively.

*The F-ratio for Quantity is significant for Missing \({ }^{\circ}\) Addend. In the case of Missing. Addend the mean for the extensive quantity.
group is 72 percent and the mean for the gross quantity group is' 20 percent -- a striking difference.

It appears as if Quantity and Treatment should have. interacted for Addition and Subtraction. In the case of the control group, the differences * in the means for the extensive and gross quantity groups were 38 and 40 percent for Addition and Subtraction, respectively. The same differences were 0 , and \(1: 3\) percent for the experimental group. These interactions are not significant sțatistically.

Because of relaftively large within-dell variances and the fact that only ape degree of freedom was available for the numerator of the F-ratio, strong between grgup differences had to exist before they were statisticalily significant. Consequently, if a main or interaction effect was significant statistically it was certain to be significant educationally. Moreover, some between gfoup differences could be concluded as reducationally, significant when not statistically significạnt. The interaction effeçts in the analyses of variance for the addition and subtraction tegts fall in this category. The differences in the means for the control group are of a magnitude that they would be significant if differences in experimental groups werfe of the same magnitude. In fact Quantity was significant for Subtraction. : At'any rate, the interactions of Quantity and Treatment.are considered as educationally significant for Addition and Subtraction, and are explanable in terms of the treatment.

The experimental children were encouraged to use their fingers in doing addition and subtraction problems using a counting-all strategy. The gross' quantitative comparers apparently learned to exécute thè śstrategy about as well as extensive quantitativemparers in case of the experimental group. "However, due to the counting-on necessary, for the missing
addend problems, counting-all procedures were not appropriate. The gross quafitity children apparently had a great deal of difficulty learning counting-on procedures even though such procedures were taught:

The correlations among the variables in Cluster 3 are presented asi - Table 34. The correlation between Addition and Missing Addend is modest. A more extensive disc̣ussion of the correlations is offered in the next section when the analysis for the variables in Cluster 4 is presented.
- Table 34
-
Correlations Among Variables in Cluster 3


The first hypothesis is suppported in a multivariate sense, well as a univaŗíate sense. \({ }^{\prime}\) The predicted differences were observed for addition, subtraction, and missing addend problems. The second hypothèsis wasinot supported. However" "the gross quantitative comparers who were in the experimental'group outperformed the gross quantitative comparers in the control group in the case of addition and subtraction.

Cluster 4. The variables included in Clusten' " were Add tion, Subtraction, and Missing Addend Problems to be solved in the presence of objects and Partitions With Counting and Partitigas Without Counting.

This cluster of variables was administered to the children before the treatments began and after the treatments were over. Two sets of data are then presented-pretest data and posttest data; The pretest data arè presented first."

The research hypotheses for the pretest data for Cluster 4 are that (1) the gross quantitative comparérs are not able to solve the missing addend problems nor the subtraction problems, (2) the extensive quantitative comparers can solve addition and subtraction problems and can, with moderate success, solve missing addend problems, .(3) the gross .quantitative comparers are not able to solve set partitions problems but extensive "quantitative comparers are able to solve these problems, and (4).extensive quantitative comparers will out perform gross quanti- \(r\). thtive comperers on all operation variables.

The interaction of Quantity and Treatment was not significant. The multivariate F for Quantity was significant ( \(\mathrm{F}_{5,36} \cong 9.84, \mathrm{p}<.01\) ). The multivariate \(F\) for treatment was not sigmificant-

Table 35 contains the raw weights of the discriminant function for Quantity and the total group correlations of the original variables with the discriminant function. Partition problems do not contribute a great deal to the separation of the two groups involved as shown by the correlations. All other variables do contribute, with subtraction and missing addend problems contributing quite heavily.

Table 36 contains the univariate analyses for all of the varfiables: Quantity was highiy significant for uddition', Subtraction, and Missing Addend; but was not signigicant for either Parfitions With Counting or - Partitions Without. Counting. In order to inspect the cell means Table \(\because 37\) is presented. Any differences due to treatment groups wąs strictly


\section*{Table 37}

Cell Means for Cluster 4 Variables: Pretest

due to chance fluctuations in sample selection. The subtraction problems appeared tow easier for the control children than for the experimental children.

The first hypothesis was strongly supported the missing addend problems. but only weakly supported for the subtraction problems, as a mean score of 25 percent was obtained by the 24 children who were gross quantitative compares on the subtraction problems. The extensive quantatative compares, however, had a mean score of 80 percent on the subtraction problems and a mean score of 82 percent. on the addition problems, but only a mean score of 41 percent on the missing addend problems. Consequently, hypothesis (2)-is strongly supported.

Hypothesis 3", surprisingly, was not supported by the data. No differences were found between the extensive wand gross groups on either of Partitions With Counting or Partitions Without Counting. Moreover, " the correlations between the partition tests and the other, three vari-. abies are low as shown. in Table 38. Partitionsiwith and without counting
do not correlate with subtraction or missing addend problems. The partition tests do correlate significantly with addition problems, but
- Table 38

Correlations Among Variables in Cluster 4: Preteṣt, \(0^{\circ}\)

the correlations are barely significant. The addition problems correlate .7
substankially with subtraction and missing addend problems, which, in \(\because\) turn, do not significantly correlate.

Hypothesis 4 was supported in a multivariate sense, The univariate analyses showed that the hypothesis was supported:

The research hypotheses for the posttest data are (i) the Tchildreh in the experimental group will outperform the children in the control. group on all jvariables except addition, where there will be no differences in performance. This hypothesis should be true especially for the gross quantitative comparers. (2) the extenfive quantitative comparers wit 11
outperform the gross quantitative comparers in the control group on the varíables. Missing Addend, Subtraction, Set Part With Counting, añ Set Partitions Without Counting.

The multivariate \(F\) for the interaction of Quantity and Treatment was•not sigrificant. The multivariate \(F\) for Quantity was significan't ( \(F_{5,40}=8.24, \mathrm{p}<.01\) ). The multivariate F for Treatment was not significant \(\stackrel{F}{2}_{5,40}=2.37\) ) for \(p<.05\), but was significiant for \(p<.06\). 'Table‘ 39 contains the weights of the diṣcriminant function for Quantity and the correlations of the original variables with the discriminant function.

Table 39 .
/ Weights of the Piscriminant Function and Correlagtion of the Disčriminant Function for Quantity:, Cluster 4 Posttest


Table 40 contains the results of the univariate analyses. Every variable was significant for Quantity. These significant F-ratios are a reflection of the correlations in Table 39 in that each variable contributed to the separation of the extensive quantity and gross quantity groups with the operations variables contributing more than the partition variables: Table 41 ís a table of cell means for the two factors across

\section*{Table 40}

Quantity versus Treatment Univariate Analyses of Variance:

\section*{Cluster 4 Posttest Variables}

18
2

\[
* \cdot(p . \leqslant: 05) \quad * *\left(p^{*}<.01\right)^{\prime} .
\]
the variablest, and Table" 42 is a correlation table for the variablés. Hypos
 calse of addition, the control children outperformed the experimental children. Hypothesis 2 was suppored and can be extended to include 'addition.

It is now pos'sible to make statemients from the perspective of the pretest and posttest clụ̂́ér 4 variabilles. On the pretest, "the control' children uniformiy outperformed the experimental children on the subtraction probiems (signifịcantly) and the addition problems (nonsignifi-. cantly). On the posttest fine control children uniformiy outperformed the éxperimental children on the addition problems (signtficantly) and

Interaction Table for Cluster 4 Variables: Posttest


Table 42
Correlation Amodg Cluster 4 Variables: Posttest

\(\therefore\) the subtraction (nonsignificantly). By inspection of the means, one can say that the experimental children did not improve a great deal from"
variables. Onemust remember, however, that objects were present during solution. Fgr the addition and subtraction problems with no objects present, the experimental children uniformly performed quite well (see Table 33 ). The control children performed no better on the addition and subt the experimental children performed better (the gross quantitative comparers) on addition and subtraction problems without objects than with objects is not consistent with research reviewed (Steffe, 1966; LeBlanc, \(u\) ' 1968 ; Steffe and Jönson, 1971) ; nor is it consistent with the results for the contfol children. The result 品盆 explanable in terms of the treat'ment. The experimental children were encouraged to use their fingers in computational work utilizing counting all strategies for addition and subtraction. For these children, the countingrall. strategies were personal and eà̉sily activated. Comparing the results of Tables 32 and 41 for the gross quantitative comparers, it easy to see that the presence of manipulatable objects interfered with the solution strategies they had been taught. In the treatment, those children resisted uṣing manipulatable objects, much prefering to use their fingersuas aid to solution:

The experimental children also used the hand calcuiator to perform ormputati .
tations. But the results presented for the mental arithmetic test refute the possible interpretation that the experimental children had learned their facts and used them in solving problems without objects. The missing addend problem remained quite difficult for the gross quantitative comparers for problems with objects present and was difficult for problems with no objects present. This difficulty is attributable
to the solution strategies necessary for solution of the problem．Further discussion of the results for the missing addend problem is delayed until results of Cluster 5 variables are presented．

The results for the set partition problems are a curiosity．On the pretest，they were not correlated with subtraction or missing addend problems and were correlated only moderately with addition problems．These results． cannot he attributed to test difficulty－－that some tests were too easy or too difficult for the sample．Moreover，as shown in Table 8 in the section Item Analyses，the internal consistency reliability of Cluster 4 ．－ variables were substantial on the pretests，except for the difficult missing addend problems．One can only conclude that，on the pretest，the two set partition tests＇functioned relatively independently of the other －tests．This result was entirely unexpected and was not as theory might predict．

1．On the posttest，解he extensive quantitative－comparers had acquired the facility to solve the set．partition problems to a greater extent－than had the gross quantitative compares．Consequently，one may say that Quantity was a readiness variable fdr learning to solve the set partition problems．Moreover，the test retained its substantial reliability on the posttest as shown in Table 11 in the section Item Analyses，so that the results can belaccepted with confidence that the test functioned quite well． On the posttest，there wast convergence of performance on Cluster 4 variables in that all were significantly correlated（Table 42）except Addition and Partitions With Counting．Partitions Without Counting correlated fairly well with addition，subtraction，and 覴lissing addend problems．This result is considered as reflection of beginning amer－ gene of number facility on the part of the gross quantitative compares．

It shouild be clear, however, that se partitions is not a precursor to addition or subtraction nor is it erue that addition or subtraction is a' precursor to set partitions. The capabilities emerge in the same \({ }^{-}\) age range, but as unrelated phenomena.

The relative magnitude of the correlations between Addition and Subtraction'depends on the tast conditions' and also depends on the time of the year that tests are administered. On the pretest for problem solving with objects prèsent, Addition correlated substantially with Subtraction' and 'Missing Addend (Table 38), but Addition was not as strongly'correlated with. Subtraction and Missing Ådend on the postrtest (but correlated significantly) as on the pretest. On the test for problem solving without objects, Addition and Subtraction were correlated to a .. greater extent than Addition and Missing Addend (Table 34): This result was the opposite of the results obtained from the objects present pre-orposttest. Moreover Subtraction was substantially correlated with Missing Adderid for the test of problem solving without objects.

The above mixture of result's of correlations among Addition, Sub? traction, and Missing.Addend variables indicates that underlying solution proçesses are not necessarily reflected in product scores. One would think. that in a "natural state," children's success in solving subtraction and missing addend problems would bè highly related due to counting strațegies. But after "counting-all", strategies had been taught, solution of addition and subtraction problems should be highly related, but solution of missing addend problems would not be related to solution of addition or subtraction' problems because of the almost certain" necessity of "counting on" to solve the missing addend problem. 'The correlations in Table 34 and Table
.42 do" not support this reasoning.

Cluster 5. The variables included in Cluster 5 were Rational Counting Op, Addition of Ordinal Numbers, Rational Counting Back, and Subtraction. of Ordinal Numbers. The research hypotheses to be tested in this scion are that (1) extensive quantitative compares are able to. (a). rational count-on, "(b) rational count-back, (c) solve ordinal number addition problems, and (d) solve ordinal number subtraction problems to a greater extent than gross -quantitative compares; (2) the experimental-gyoss quantitative compare rs will outperform the control gross.. quantitative compares on the rational counting -on and the ordinal number. addition problems; (3). rational counting -on and addition of ordinal number problems are highly related; and (4) rational counting-back and ordinal number subtraction problems are highly related.

The multivariate \(F\) for interaction of \({ }^{\prime}\) Quantity and Treatment "was not significant, \(\left(F_{4,41}=.93\right)\). The multivariate \(F\) for Quantity was significant \(\left(F_{4,41}=3.50, \mathrm{p}<.05\right) \cdot\) The multivariate F for Treatment, \(\left(\mathrm{F}_{4,41}=1.00\right)\), was not significant. Table 43 contains the weights of the discriminant function and correlations of the original variables with the discriminant function for Quantic Table 4,3
Weights of the Discriminant Function and Correlational of Original Variables With Discriminant Function for Quantity: Cluster 5
\begin{tabular}{l|cccccc} 
Variable \\
Statistic \\
\hline
\end{tabular}

Table 44 contains the univariate analyses and Table \(\$ 45\) contains the céll means for all the variables in Cluster 5. The univariate analýses are consistent with the results in Tables 43. The significant Fratios are consistent with the substantial correlations of the original, variables with the discriminant function.

JTable 44
Quantity versus Treatment Univariate Analyses of Variance:
Cluster 5

- Table 45

Interaction Table for fluster \(5 \times\) Varimables
\begin{tabular}{|c|c|c|c|c|}
\hline Variable & \begin{tabular}{l}
Rat'ional \\
Count-On \\
; \(\qquad\)
\end{tabular} & Ordinal Addition & \begin{tabular}{l}
Rational \\
Counţ-Back
\end{tabular} & \begin{tabular}{l}
Ovdinal \\
Subțraction
\end{tabular} \\
\hline  &  &  & Cons Exp &  \\
\hline  & \[
\begin{array}{|cc|}
88 \% & 87 \% \\
50 \% & 71 \%
\end{array}
\] & \[
\begin{aligned}
& 77 \% \\
& 32 \%{ }^{71 \%} . \\
&
\end{aligned}
\] & \[
\left\lvert\, \begin{array}{ll}
\because 65 \% & 58 \% \\
\because 23 \% & 21 \%
\end{array}\right.
\] & \[
\begin{aligned}
& 9 \% \\
& 98 \%
\end{aligned}
\] \\
\hline
\end{tabular}

The interaction effect of Quantity and. Treatment was sígnificant-- at P . \({ }^{\text {‘ }} 08\) for the variáble Ordinal Addition. Inspection of Table 45 shows that the experimental gross quantitative group outperformed the analogous controly group \(71^{\prime}\) to \(32^{\circ}\) per cent. An analogous result appeared Ior Rational Counting-Qn, but was not as strong as for Ordinal Addition. These results are educationally significant as counting-on strategies were emphasized in the experimental group. Apparently, the instruction was effective for the gross quantitative group. In fact, the gross quantitative comparers in the experimental group \({ }^{\text {p }}\) solved exercises like \(6+3=\square\) by counting-on three from six during the last week of合。 instruction. No appreciable differences existed in the mean of the cỡnṭrol and experimental groups for the two other variables.. In the case of Rational Counting-Back and Ordinal Subtraction, the experimental.
treatment was not effective, suggesting more resistance to instruction for kational Counting-Back than Rational Counting-On.:

Table 46 contains the correlations among the variables of Cluster 5. Rational Counting-On is highly correlated with Ordinal Adeition and

Table 46
Correlations Among Variables of Cluster 5


Rational Counting-Back is highly correlated with Órdinal Subtraction. These results are as theory predicts.

Hypothesis (1) is supported in a multivariate and univariate sense. The variable Quantity appears to be a readiness variable for all variables * . of Cluster 5. Hypothesis (2) is considered as being supported for ordinal number addition problems èven though statistically nonsignificant resufts were obtained for the interaction of Quantity and Treatment for Ordinal Number Addition: The, results are strong enough to be considered las educationally significant: Hypothesis ( \(\beta\) ) and (4) are also supported by the correlations in Table 46.

Apparently, there was a training effect for rational counting-on strategies with talíying (ordinal number addition). The training effect did not.transfer to the missing addend problems with no objects or with objects (Table 33 ant Table 41). The latter two problem types were different than the ordinal number addition problems. The ordinal number addition problems had the objects of the segment visible and the remainder coyered, so the child c̣ould use the visible objects to conunt initially. The misising addend problem with objects present. during solution had 10 objects present. but, the'sum was less than 10. Extra objects were then available for use. The missing addend problem with no objects did not have objects present; but rather referred to objects familiar to the children;" Apparently, the visible objects in the ordinal numbè addition test activated available solution strategies. It must be pointè out, however, that the ordinal number addition test was just. Iike the instructional tasks. The experimental gross quantity children.'s Counting-On behavior was apparently specific to the tasks given in instruction, but it is encouraging to note the improvement
obtained. The fect it was not generalized across tasks is suggestive wof a "procestin the making."
yoluster 6. The variables included in Cluster 6 were Addition Product Score, Subtraction Prodüct Score, Addition Time Score, and Subtraction Time Score. No hypothesesiwere advanced because there was no redictive theory from which hypotheses could be generated.
 Treatment were not significant (Q: \(\mathrm{F}_{4,41}=2: 07 ; \mathrm{T}: \mathrm{F}_{4,41}<1\) ). Even though Quantity was not significant in the multivariate analysis for Tabile 47

Quantity versus Treatment Univariate Analysis of Variance: Clustę "6,

\(\therefore\) *(p \(<.05)\)
' \(\mathrm{p}<.05\), it was significant-for \(\mathrm{p}^{\prime}\) < .10. As three univatiate analyses
 the multivariate analysis ( \(\mathrm{p}<.10\) ), the univariate analysés are presented in Table 47. Quantity was significant for addition product and time scores
and for Subtraction product scores.- Cell means are presented in Table 48.

Table 48

\section*{Interaction Table for Cluster 6 Variables}


There was a tendency for the subtraction exercises to more difficult than the addition exercises zo take longer to process. Because síubtraction was presented in the experimental group, they could have outperformed the control group on the two subtraction variables. No such differences were ơbserved in the analyses.

Quantity apparentiy tså fairily wéak reàdiness variable for learning to mentaljly process addition and subtiraction éxercises and the time it \(\dot{\sim}\) takes to do them。' A most plausible reason Quantity is not a strong, readiness variable for Cluster 6 vatlables is, that addition and subtraction exercises can be'solved using counting-all strategies.

Table 49 contains the correlations of Cluster 6 variables. . Low, and sometimes stanificant, negative corirelations exist among the time and product varịiables. This result weakly sapports. pdpularly held beliefs that children who scote addition and subtraction exercises correctly will
1. Áddition product

2. Subtraction product
\(.38 *\)
3. Adation Time
4. Suptraction, Time

.75**
take less tipe, on the whole, than children who score them incorrectiy. The correlation of . 75 between Addition Time and Subtraction Time is Y Substantial.

Gluster 7.. The variables jhcluded in Cluster 7 are Class Inclusion, Loop. Inclusion, Nested Classification Task'A, and Nested Classification Task B. The research hypotheses to be tested are as follows: (1) Quantity is not a readiness variable for any of the classification tasks; and (2) the experimental group will outperform the control group on thé nested classification tasks and on the loop inclusion tasks:

The multivariate main and interaction effects for Quantity and Treat- . ment were not significant \(\left(Q: \dot{F}_{4,41}=2.29 ; T: F_{4,41}=.819 ; Q X T: F_{4,4}=.819\right)\). However, \(\mathrm{F}_{4,41}=2.29\) is significant, \(\mathrm{p}<.10\). Consequently, univaride analyses are presented. Table 50 contains the univariate analyses for the variables and Tabie 51 contains the cell means for the variables.

No differences were attributable to Treatment or to the interacty of Treatment and Quantity. This result is somewhat-surprising due

Table 50
Quantity versus Treatment Univariate Analyses: Cluster 7.

\[
*(\mathrm{p}<.05)
\]

Table 51
Cell Means for Cluster, 7 Variables

to the rather substantial amount of instruction given on \(100^{\circ} \mathrm{p}\) inclusion and classification in general in the experimental group. Apparently, the轎。
children did. not profit from the instruction. These results are not completely consistent with those of Johnson (1975), even though hís tests were quite, different than the four in Cluster 7 : In that no differences existed between the experimentals and controls on Class Inclusion is consistent with the results of Johnson (1975). "Moreover, the fact thatt Treatment is not significant for Loop Inclusion is consistent with the results•of Johnson (1975), because to do items 1 and 2 on that test, the child had to go beyond the physical knowledge of the óperational definition and reason logically. The third item coulde done using the physical knowledge of the operational definition and the separation of the subregions formed by the intersecting loops. Even so, the first. two items on the test did demand more than physical knowlédge for solution and were a test of whether the compréhension of loop inclusion could be improved through the operational definitions given. The results are negative. The results of the nested classification tasks are not completely consistent with the results of Johnson (1975). A child could score high fon either of "the nested classification task's and do so through using the results of physical knowledge. The properties of the classes were 2 ail physical properties, so they should have been easily recogaized by the children (round, polygonal shaped, white, button, nonwhite). The conclusion from the Johnson' study was that physical knowledge pertaining. to classification should be easily acquired by first grade children. While the results of the nested classification tasks do not contradict Johnson's reṣults due to tacisk difference, it is true that the children had a great deal of difficulty applying-their physical knowledge in problem setting (finding out what was in the box) which demanded the
children use their physical knowledge. The problem was a discrimination problem that did not. demand the use of class inclusion.

Table 52 contains the correlations of the variables in Cluster 6 . 'All of the correlations are low except for the correlation of \(.50^{\circ}\) between Task A and Task B, nested classification. Even this correlation, "however, is lower than expected due to the nature of the tests. It was expected that class inclusion and loop inclusion would correlate rather substantially.

Table 52
Correlation Among Cluster 7 twariables


In that they did not, one should not use one to test transfer effects of instruction of the other in future studies:

Hypothesis 1 was not strongly supported in a multivariate sense. Quantity was significant for Loop' Inclusion; so hypothesis 1 was not'. supported for this variable. Hypothesis 2 yid not supported for either the multivariate or univariate analysis of va

\section*{Correlations Among the Variables}

The variable clusters were formed through logical analysis of tass structure. Apparently, the logical analysis led to credible results except in all but a few cases as the within-cluster correlations generally were
substantial. But because it was not of major interest to do a structural analysis of children's thought processes, factor analyses were not performed. Consequently, the presentation in this section is limited to correlations of the most interest. In order to obtain the correfations reported below, the 29 dependent variables were considered as a 29 element vector in a two-by-two multivariate analysis of variance. This procedưre was used so

That effects due to Quantity and Treatment would be eliminated statistically from the correlations.

Variables'apparently requiring rational counting in solution. Some
variables apparently requiring rational counting in solution may have been solved by processes other than rational counting. However, in all but a few cases, as shown in Table 3 3, significant correl'ations exist among variables apparently demanding rational counting for solution. "The exceptions that exist are due. to. the across cluster correlations involving Cluster 1 variables (i/S; \#P, and \#S + \#P). The correlations within Cluster \(\mathfrak{F}\) . variables were significant, the most important one being the correlation of .54 between \(\# S\) and \#P. The two others are spuripus due to the definition of \(\# S+\# P\). It is somewhet surprising that the correlation between \(\# \dot{S}\) and \#P was significant due to the low reliabilities of the tests used to measure the variables. of the remaining 21 corriafions involving Cluster 1 varịables, nine were not significant, seven were in the rangé . 30 to . 39'; and the remaining five were in the range .43 to .50. All of the remaining correlations in Table 53-were significant.
- Correlations Among Variables Apparéntly Requíring Rational
Counting ịn Solution*

\section*{}

\(*|r| \geq .30\)
Significant \(p<.05\)

Variables requiring at most point counting' in solution. Table 54 contains' the "correlatifons among variables requiring at most point counting. Scixty of 105 correlatiońs reported in Table 54 were not significant. Eight of the . 26 correlations involving the two time variables were significant, but only marginally--significant correlations were observed for Just Before, Addition *No Objects, Subtraction Objects, and Subtraction Product Score. The results weakly" support the popularly held belfef that children who score addition and subtraction facts correctly will take less
time in computation and children who do addition and subtraction problems correctly will take less time in computation. But speed in computation is not negatively correlated universally with tasks requiring at most point counting.

Of the 26 correlations involving the two Partitions variables, 18 were not significant. Of the eight that were significant, four of them were with addition or subtraction problems. However, none of these four were greater than 47. All of the correlations involving. Successor were not significant and all of the correlations involving Just After except two (Counting Back and Just Before) were not significant.

Table 2
\(\pi\)
Correlations Among Variables Requiring at Most Point Counting in Solution*

10. Partitions With Objects.
\(.41 \therefore 21.08, .04 \quad: 32\) - \(^{-} .22 \quad .21 \quad .14 .31\)
11. Partitions Without Count, \(\quad .32, .15-.09: 01 \quad .48 \quad .22, .33, .43 \quad .47 \quad .71 \quad\) -
12. Addition

Product Score \(.19-.20^{\circ}\) : 06-.03 . .03. . \(44^{-1}\). \(30^{\circ} .25\). \(31^{\circ}-122\). \(07^{\prime \prime}-\)
13. Subtraction Product Score
\(\begin{array}{llllllllllll}2 & .19 & .07 & .01 & .23 & .57 & .46 & .32 & .26 & .03 & .12 & .\end{array} 3^{-}\)
14. Addition Time
A. core
\(-.23-.33-.03-.05-.03-.42 \quad .29-.08-.39-.28 \cdot-.34-.2 \hat{i}-.30\)
15\% Subtráction
\({ }_{2}\) Time Score, \(-.17-.30^{5}-.07, .26-.28,-.38-.25^{\prime \prime}-.02-.24-.08^{\circ}-.12:-.33-.26\)
\(\bar{*} \mid \overline{2} .30^{\circ}\) significant \(p<.05\)

Variables apparently requiring rational counting vs. variables requiring \({ }^{\wedge}\) at most point counting. Table 55 contains 150 correlations, 67 of which were n'ot significant. The correlations give some indication of the relationship between rote and point counting and rational counting. The relationship is strongef than one might expect due to the different numbers of children who could point count but not rational count. However, there is a nesting characteristic between point counters and/rational counters and likewise between point countés and rote counters by definition, Consequently, the correlations which are significant are a reflection of the nested character of the three pajor types ."Of counting identified. 'In fact, the correlations in Table 55 appear to be more substantial than (those of Table 54.

Correlatigns between classificationt and numerical variables. Table 56 contains the correlations petween the classificationsind numerical variables \({ }^{\circ}\). The variables Between, Just Before, and Number in \(S\) were the most consistently correlated with the classification variables. Class Inclusion, however; was significantly correlated with Just Before and Ordinal Subtraction ail of the significant correlations, however, were only marginally significant except one, which was . 46.

As the tests given. in this study were given in January and Febfuary of 1975, the question arises concerning the correlations between classification variables and numerical variables at the beginning of instruction in mathematics in the first and second grades. The iow correlations repbrited here may bea result of instruction in school mathematics in the first grade. Moreover; it is possíble that as children progress into seconderade, the correlations pedween classification variables and numerical variables would increase due to the fact that clas's inclugion is easier for older children.

Correiations Between, Variables Apparently, Requłring Rational Counting


\section*{Correlations Between Classification and Numerical Variables*}

' In the fall of 1975, tests constructed by PMDC staff. (see Apendix A. 12 and A.13) were administered to 132 entering first grade children and 97 entering second grade children in City, Southeast. Each of the first and second grade - Otests contained thomisms constructed to measure class inclusion. The first grade test also contained five other subscales: Elementary Counting (9 items); Advanced Counting ( 4 items); Problem Solving ( 6 items); Set Equivalence ( 8 items); and Before-After-Between (10 items). The Cronback Alpha reliabilities were as follows: . Class Inclusion (.61); Simple Counting (.79); Advanced Counting (.59) ; Problem Solving (.67); Set Relations (.79); and Ordering Numbers
(.86). Table,57 contains test-test correlations for the first grade test. It is apparent that the correlations of Class Inclusion with the five other. subscales are negligible.

Table 57
Test-Test Correlations: PMDC First Grade Test*'

2. Advanced Counting .47
3. Problem Solving . 57 . 46
4. Set.Equivalence .65 . . 39 . . 58

6. Class Inclusion
.11. . 07
.07
\(199^{\circ}\)
\({ }^{*} r \geq .23\) significant \(p<-01 ; r \geq .19\) significant

The second grade test contained eight subscales, other than class inclusion. The subscalés, the number of items in each subscale, and the reliability of each subscale are as folloys: Elementary Countịng (7*items, . 47) ; Advanced Counting (5 items', .78); Patterns (2 items,..70); Place Value (8 items, .95); Equivalent Name „ (6 items, . 89); Ordering Nümbèrs (4 items, . 55) ; Addition-Subtraction (4 ịtems, .58) ; Missing, Addend (4 items, .59) ; Class Inclusion (2 łtems, .67). Table 58 contains test-test correlations for the subtests of the second grade * tests. The correlation of class inclusion with the eight other subscales were \(f\) low, the greatest being . 37 .

Table 58
Test-Test Correlations: PMDC Second Grade Test*

onsignificant p<.01; r \(\geq .20\)
\&gnificantë \(p<\dot{4} 05\)

The fact that class inclusion was not significant for the variable Quantity, \(t\) did not correlate significantly with any variable of clusters 1 , 3 , and 5 except for Ordiñal Subtraction (this correlation was oñly marginally significant), and, on the PMDC Fall 1975 tests, had negligible or significant but fow correlations with all other subscales, indicates that class, inclusion is not repated to nlmerical variables in a product sense. It appars reasonable, based on the datp in Tables 56.-58, to strongly conjecture that classification variables'are only weakly related to numerical variables. It could be argued, however, that in order to solve-missing addend problems or solve the ordinal addition and subtraction .problems, class inclusion would of necessíty intervene in the numerical reasoning. This observation does not weaken the conjecture hecausen (i) endecture was made with regard to product socres rather than process scores and (2) it is conceivable that processes other than those involved in class inclusion produced the, numerical product score in Clusters \(1,3,4\), and 5 .


167


Discussion of the Results
Quantitative Comparisoṇs as a Rêadinès's Variable
-
for Learning first Grade Arithmetical Cöntent

In the past, counting was not explicitly considered in studies (Steffe, 1966; LeBlanc, 1968; Steffe \(\&\). Johnson, 1971; Mpiang \& Gêntile, 1975) of Quantity as areadiness variable for learning first grade arithmetical spntent: Moreover, only a restricted collection of variables were considefed in anyo one study, so that conflicting results, are present across studies. In. the current study, at wide variety of variables were included so that information on Quantity as a readiness variable could be obtained for the variables on a constant sample.

\section*{Variables Apparently.Requiring Rational Cpunting in "Solution}
- Theoretically, Quantity as a, classification variable should be significant, -for any achievement. variable, apparently requiring rational counting (rational counting-on with or without tally and rational counting-back with or without tally) in solution. These achievement variables and their levei of significance , for Quantity are presented in Table'l. The variables are consistently s"tatisticalíy significant fơr Quantity ëxcept for \#S, which'had.an associated internar consisțency reliability of only \({ }^{\prime} \cdot 15\). Missing Addend with and Nithout Objects was strongly significant (mean scores 84 vs. 20 and 72 vs. 20 percent, respectively for extensive \(\dot{\text { vé }}\). gross quantitative groups).

Further empirical confirmation that Quantity is a readiness variable for aspects of arithmetic apparently requiring rational counting' are the consis'tently high scores of the extensive quantitative comparison groups across the variables, in Table 20 It made little difference whether an extensive quantitative

Table 1
Achievement لariables Necessitating Rational Counting: Level of Significance for Quantity
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { Number in } \\
S(H S)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Number in } \\
& \dot{P}(H P) \text { ( }
\end{aligned}
\] & \[
\# \dot{S}+\# \mathrm{P}
\] & Missing Addend With Objects & 'Missing Addend Without Objects \\
\hline Variable & & \[
\mathrm{P}(4 \mathrm{P})
\] & \# & With Qbjects & Without Objects \\
\hline
\end{tabular}

Level of \({ }^{-}\)
Significance
n.s. . :07. . 01
.01


\(\bar{\gamma}\) Interaction of Quantity and Treatment-significant
'comparison'grouprwas the experimental or control group. ' This fact is displayed
in Table 2. It must be remembered that the control group received little or no instrucfion on counting, strategies, whereas the experimental group received explicit, instruction on counting strategien The fact that the extensive control
- Table 2

Mean Scores on Achievement Variables
Necéssitating Rational Counting: Percents

childeren used counting strategies across variables strongly stogests those children' possessed a, counting scheme in the sense of Piaget's schemes.

1
The instruction on counting strategies given to the experifental gross quantitative comparison group resulted in improved group mean scores in the case of only two variables--Rational Counting-On and Ordinal Addition. The tasks used to measure thèse two yariables were contained in the experimental 'treatment. . Since Missing Addènd was analogous tó Ordinal Addition in logical裡 structure, it offered. an excellent test of transfer of the learned processes present för Rational, Counting-On and Ordinal Addition especially sincéall childreq were given opportunity to solve missing addend problems forally presented) in the experimental treatment. No such transfer took place as was . revealed by the mean scofes, for Missing Addend With and Wathout Objects in

Table 2. The improvement in rational-counting for the gross quantitative comparérs was specific, thén, to the pasks on which the childrep received explicit training." They did not initiate learned kountinatrategies in novel tasks, whereas the extensive quantitative comparers performed uniformíy well across all tasks inyolving rational counting:*

Beilin's (1969) concept of forward transformation is very useful in exploration of the iack of tranśfer of learned çonting. strategies on the part. . of the gross quantitative comparers. Apparently rá itonal counting-on with and without tally was possióle for the experimental gross quantitative comparerss but the liack of initiation iñ nōvel but closely related tasks suggested that the counting strategies were processes "in the making." They had not aftained : the statús of mental operations but rather were leamed algorithms or procedures for solving certain tasks. 'It is in this sence that Quantity is a' readiness
yariable for learpingrional counting
The above results di, fer from those observed in the study by Steffe \& Johnson (1971). In that study, Quantity was not significant for the missing addend problems-in the presencé or absence of objects. The fact that Quantity was significant for Missing Addend in Table 1 strongly suggests the mathematical experiences the children engage in are instrumental int acquísition of mental operations.associated with rational counting. Because teaçiers do not explicitly ṭéach rational counting, it is apparenty enough, that.' extensive quantitáátive comparers be exposed to problems which stimulate rational counting. The textbook series used by the teachers in the Steffe \& Johnson (1971): study (Morton, Grey, \& Rosskopt, 1965) did notémphasize missing addend problems whereas the textbook used in this study dị.

The ability to make extensive quantitative comparisons signals the presence. 'gf \({ }^{\prime}\) 'synthesis. af Groupings \(I\) and \(V\) if Piaget's theory is to be bellieved. But as piaget"s theory does. "thent account for rational counting, exact renhips are, not to be expected betweên Quantity and Missing Addend. "This expectation is empirically verified by Cluster 4 pretést variables:as the meanscore for the total extensive quantitative comparison graupas 41 percent for the missing addend problems. This rather modest mean score is comparable to the means opsèrved by Steffe \& Johnson (1971) for extensive quantitative comparers. That the gross'quantitative comparison group in this study performed at about the same level as the extensive quantivative comparison, groupd in the Steffe \& Johnson (1971) stady can be explained by the inferent times of test administration-October vs. May of the first"grade.

The dafa strongly suggest that counting is not developmental in the sense of the grouping strictures but rather the emergence of the grouping structures = allows children's qulturally induced rote and point counting capabilities to "take on numerical meaning not possible prior to the emergence of the.
the counting schemes and to raise them，tb＂the level of rational counting on and rattonal counting－back for théextensive quantitative comparers．For the gross：quantitative comparers，mathematical instruction alone apparently is not sufficient for acquisition of rational counting－on or rational counting－back．at the level of mental，operations．For the latter group，the role of mathematical． instructiont still not understood for the acquisition of rational counting－on and rational counting－back．

Cardinal information from ordinal information．The extensive quantitative comparers could obtain cardinal information from ordinal information better． than the＇gross quantitative comparers in the case of counting forward（花） but not in the case of counting backward＇\((\# S\) ）．Moreover，the extensive quantitative comparers could．utilize the hints in the cardinal－qrdinal，number tasks（\＃S \(\pm \# P)\) to a greater extentrthan the gross quantitative comparers． In symbolic＇notation，if \(P\) is a finite set ordered by＂precedes，＂\(S \cdot{ }^{*}\)＂segment of \(P\) and \(Q\) the remeinder，and r＇some element of \(Q\) ，but not themmimal element： then extensive quantítative children when toldathe vosition of ry could cofur forward to determine the number in \(P\) better than the grośs quantitative children．：In the tasks，\(S\) was screened from viē ，and \(Q\) was viisible：Móreover， upon＇prompting by lgiving one（or more）adjacent＇（or successively adjacent） positons to \(I\) ，the extensive quantitative comparers cóuld utilizze the prompts and，solvé the tasks to a＇greàter extent than the grgss quantitative comparers． There was no evidence thát thé exten＇sive quahtitative comparers could count gross quantitative emparers to detémine the一 nimior in \(S:{ }^{\circ}\)
，Othergthan thelow reliabilyties＇of the＂tuéasures，of＂the variabies is

fetwéen thé extensiye and Gross＂quantiterive fomparers．Because．athe．children ane told he position of the logh element in Task \(A\) and the fifth element in Tásk Bu，（see Apdendix A．2）：it woulupe pgssible for the children to employ point
' counting behavior t. find the number in \(P\). Moreover, as all of the ochildreń could point count to at least seven (all quite byond seven at the time the tasks were administered) the possibility the children utilized point counting is very strong. It has also been observed that children who cannot rational count-on or rational count-back éan, given a particular number, hame, orally counton or count-back from that number. The basis for this observation is the feasure for Cluster 5 variablęs in the preliminary ittems (see Appendix A.6). The child being told that a particular object was 10 th or 5 th certainly could have elicited rote counting-back * or rote counting-on. That s,me gross quantitative comparers correctly found the number in \(S\) could be a result of knowing three comes before four and seven comes before eight on a rote counting basis. Confilict must be introduced into the task design in such a way to separate the false posi'tives (children who scored the item correctly but who could not ratiofal count-back) from the true positives. One way would be to add objects to \(S\) and require the children to (1) Eind the new number of \(S\) and (2)'find"the position of some re \(Q\).

Between. The variable Between not only demanded that the child had "syñthesized the pefore, and after relations, but also that he be able to synthesize internalized counting with the relations. The child was asked to find a number between 8 and 12 , then another, then another, then another. The questioning sequence assumes the child 'gave only one, then one more', than one more. The list question was asked to equsured the child would not give a number between 8 and 12 after exhuasting the possibilities.
Of course, the questioniny sequence was altered to fit the child's responsest: The child was then asked to give a number, between 8 and 6 . 0 orde poitit wàs gíven for each correct number cited. The way the item was scored aklowed cilldren to obtạin a nonzero scoré on the basis of guessing or mérely employing the "after" or "before"' relation along with the counting sequence. Moreover, a child could give too many numbers and stilr receive a manero. . .
score. Even so, Quantity was significant (extensive vs. gross quantitative comparison group mean's 73 vs. 44 percent) for Between. With more stringents scoring procedures, one would expect even greater differences., Improved scoring procedures should penaliže children for' giving too many numbers a well as not enough. The reason children were not penalized for the formet was that it is possible for children to be fnduced to write a number as being between two others because of the demands placed "on'him by the questions. If a child thinks he has them all and another is asked for, he may give one just to please the experimenter. Consequently, caution must be extrised in task design to minimize 'the‘possibility of \(\begin{gathered}\text { 'false incorrect responses. }\end{gathered}\)

\section*{'Point Counting in Sums and Differences :}
dchievement variables which require ônly point counting in solution processes may be significant for Quantity if the splution processes require more than immediate application of an algorithm. Addition and subtraction problems with objects and withotit gbjects and addition and subtraction product scores required Only point counting in the solution process. "These variables and their level of significance \(\overline{\text { for }}\) Quantity are presented in Table 3.
dchievement Variables Necessita Level of Signif cance.for Quantity


The extemsiye quantitative comparers invariably initiated a point counting procedure in the solution of items on the test of quantitative comparisonstathey. point counted regardiess of whether the item could be solved by a gross quarriz tative comparison or demanded what Piaget would call an extensiỵe quarititatiye comparison. The fact that the gross quantitative comparers did rot aitiate point counting techniques (or initiated them, fut relied on pexceptuly eyps for the answer) In the test of quantitative comparisons fas strong enough to carry over to the problem-solving contexts especially for the cóntrol grossquantitative comparíson group.
fecatnent was signlifant in the, case of didition With objectsin favar of the control group: "owever, without object, tife experinent grass quantitative comarers outperformet the controi gross quantitative eomparers for both Addition and Subtraction (table 4). These fesults fan berattributed directly to the treatment. The children in the experimentatoups. fere encouraged to use sheir fingers to aid computatin and soongandoned using physical objects to perform sums and dienerences The physical oblects in fact impeded them in performing eoumt ag-ail pgocedres in enndiog sums Evidenty ding a gross quantitatve comprer does not impede a chinf fom
 is allóne to :se his Eingetst


 Suggest that chiloren s superqr pex ordate in pfe presenee of manoulatable




finding sums, and finding differences. Physicail objects are external fo the child and offer litale in' the way of sensory impressions: Children of ten finger count by touching their lips, nose, cheek, or other facial parts, thus gaining sensory impressions of units in time'sequences.
- The fact that the control extensive quantitative comparers outperformed - the controi- gross quantitative comparers on every variable in Table 4 Tl agreás with the studies cited above except, for subtraction in the case of \$teffe \& Johnson (1971). In that study, Quantity was not significant for subtraction. However, mean scores were low, suggesting that the \(\therefore\) children had not been given experiences with finding differences.

Table 4
Mean. Seores on Achievement Vaŕiables \(\quad>\) Neçessitating Point Counting: Percents


\section*{Success,or, Predecessor, Just Befóre, Just After and Counting-Back}

The variables Successor, Predecessor, and Counting-Back involved at most point counting capabilities but did not require rational counting. (Of these variables only Counting-Back was significant for Quantity-7 vs. 54 percent for the extenṣive vs: gross quantitative comparison groups, respectively. That Successor and Predecessor were not significantifor quantity fot surprising (they. were very easy items for ali children). Essentially, rote counting capabilities . would be sufficient for task solution for these two variables, just as was. true for Just Before and Just After (also not significant for Quanfity).
That Quantity was sigmificant for Counting-Back is consistent with the operational dẹfinitions of extensive and gross quantity \(/\)

The variables ipmediately above overlap with those studied by Mpiąngu \& Gentile (1975): They required ckíldren to count in both direction's between 0 and. 11; count by twos; find the name of missing number in a given sequence (1-10) ; fínd numbers just before, just after, or between others in the sequence (1-10) ; and find the correct answer and. provide justification to an item / such as "These two make how many?" Mpiangu \&r, Gentile (1975) found that number conservation. is not necessary for learyifg.tapove content. The fact that Successor, predecessof, Just Before, and, Juty fiter were not significant for
 Quantity is consistent with Mpiangu* \(\&\) Centilíd (1975). results.: Moreover, the statistical significance for Counting Back dof not contict their findings because the gross quantitative comparers had an score of 54 percent. Undoubtedly, both the extensive and gross quanty fative comparers gained faclity in point counting. The addetion and subtraction product scoreș displayed in Tablé \({ }^{\prime \prime} 4\) also are consistent with Mpiangu \& Geitile's (1975) findings. However, exception must be taken to their conclusion that conservation of number is not
a necessary requirement for learning arithmetic in that it is’overly simplistic, as shown by data in this study \(\because\) dinette counting or point counting is ali that is required of the task; gross, quantitative compare rs are quite capable Of being trained to perform the task as, the knowledge is in the main what Piaget (1964) has called physical knowledge The training in rational counting, however,' was narrowly acquired by the experimental gross quantitative compares As already noted, it is doubtful that the learned counting behavior was at the level of mental operations. It is in, this sense, that Quantity serves as a readiness variable for learning arithmetic rather than prohibiting acquisition of the simplest arithmetic skills. Curriculum designers who relyon leaning hierarchies can be confident \({ }^{\circ}\) of task specific training but not horizontal or vertical transfer in the case of gross quantitative compares." Even so, it should not be concluded that task specific training is ne cessarily undesirable. Only further research of a longitudinal nature will answer the question of the utility of training gross quantitative compares to count on and count -beck If any|future investigators include Just Before or Just After as variables, they should design the tasks to include five to six it informer measure and use a less-than-10, 10-20 and 20-99 trichotomy to insure a range of responses But at the present time, the best evidence dailablemindates thatomentity is not a readiness variables for the two relations.

Successor and Fisedecessor fall into the same category as Just Before and Just After. Improved task design is necessary if the variables are to be used in future experiments.

Counting-back. The variable Counting-back deserves special mention. The test (Appendix A.2), was (designed sequentially in that if a child could
not "point count-back. 12, and if he cquld not point. count-back from 12 , he would not be asked to rote count-back from \(15 . \therefore\) Of course in the case of success, the child would proceed through the tặsk. The sequential rature of the test was predicated on the assumption that chridrencen point count-back from a digit before they can either paint count, or rafe count-back from a tivo digit number because of the familarityof chifidreng withe digits 1-9. The fact that Counting-Back was significint certainiy reṣides in the sequential nature of the test. The extensive quantitative comparers had a mean score of 77 percent vs a mean scoret por percert for the gross quantitative comparers. These means along a utith the ofact that \(2 / 3\) of the gross quantitative comparers could not rote cont bock ftom is confirms that the bas is of the significance of the variabible is the capabjility to rote count-back from 15. Critical tests of Quantity as \(\ddot{a}\) readiness variable for leaming counting-back skills would be the familiarity with two digit numbers or the capacity to acquire such familiarity. Such tests were not made in this study.

Partitions
As noted in the section on Ouantity and set partition, Piaget demonstrated that a child's "additive composition" of number develped in stagès synonomous with those associated with cardinal and ordinal number. Consequenty, the variable Partition should be related statistically to Quantity." Partition was agessed at two different times--prior to the treatment and afteg the treatment. On both pretest and posttest, the internensistency reliabilities were quite. substántial!́for Partitions Nirh Count and Partitiong, Without Count (all ata least . 80 except one, which was .72). As shown in the analyses of Cluster 4
variables, Pärtitions Withe negligibly to the "separation of the gross and extensive quantitative comparison groups in the disctiminant function in case of the pretest and only nominally on the posttest. Quantity, was not significant for Partitions Wiëh Count nor Whout Count on the pretest. On the posttest \(\cdot\) quantity was sighificant ( \((p<.05)\) for partitions With Comt and Withiut Count with a strong suggestion of. a Treatment by Quantity interaction : Mean scores are presented in Table 5. The significance for Quantity on the posttest must be discounted because the same general "pattern of scordsware present on both test adminsitrations. The one notable exception is that the extensive quanțíative comparers improved on the measure for Partitions Without Count to a greater extént that did the gross qunntitative comparers. It must be'rememberéd that the experimental group received instruction on set partitions whereas 'the control group did not, having " followed the mathematical curriculum astexemplified by the textbook.

Table 5
Mein Scoresfor Partitions: Percents.


The above results are at yariance with the results of Piaget refiewed in the sectifon Quantity and set partition. Evidence is very weak that Partitions
 or after such intruction.

\section*{Classi.fication}

Even though there was a general trend for Quantity to be significant for the four claṣsification varıables, significont. In view of the substantial internal consistency reliabilities' reported in Table 20 of the Item Analysis section for the four classification variables, the results can be interpreted with confidence the tests were measuring what they were designed to measure.. In the case of Class Inclusion (reliability .90) the results ạre consistent with Dodwell's: (1962) results that class inclusion and provoked and unprovoked córrespondence develop independently.

The nonsignificance of Quantity for the nested classification tasks is not suprising in view of the fact that they were designed ta test Stage 2 classification behavior. The stgnificance of Quantity for Loop Inclusion vas due mainly to the low mean score ( \(24 \%\) ) pif the control gross quamtitative comparison gtoup. The mean score ( \(44 \%\) ) for the experimental gross quantitative comparison group can be attributed to the treatment. There does seem to be a reiationsh(ip between Quantity and Linup Incluṣion, although weak.

> Class Inclusion as a Readiness Variable for Lèarning First Grade Anthmetical Content

No statistical tests'were possible on Class, Inclusion as a categorization variable. Only, 12 children out of 107 scored at least. two on the class inclusion tesíh Iń laté September, 1974.' Consé̉quently, only" children for whom evidènce was present they could not solve the class inclusion probièm were 'adpitted to. the study. There was no hope that Class. Inclusion would be related to. Quantity on the pretest because of the poor performance on the crass inclusion test. But because every child in the sample could not solve the class inclíusion problem, . judgments could be made on the necessity of class inclusion for learning first grade arithmetical content as measured by the posttests. These; judgments
have to be based on heuristical argument.. Evidence, would be present for Class. Inclusion as a readiness variable for some other variable in any of the following cases.

Case 1. If Treatmentwere not significanit and a strong correlation existed between Class Inclusion and thę other variable on the posttest.
Case 2. If Treatmentwere signifícanti and a strong correlation existed. . between Class Inclusion and the other variable on the posttest. '
Case 3. If each child who scored well on the other variable couldualso solve the class inclusion problem.

Evidence would be absent for Class Inclusion as a readiness variable for some
c other vâriable in any of the following cases.
Case 1. If Treatmentwere not significant and a negligible correlation existed between Class Incl,usion and the other variable on the posttest, given comparable group mean scores.

Case 2. If Treatmentwere signifcant and a negligible correlation existed between Class. Inclusion and the other variable on the posttest, given comparable mean scores.

Case 3. If the mean scores for the other variable significantly exceeded the mean score for class inclusion.

\section*{Loop' Inclusion, Partition, and Nested Classificaţion}

The class \({ }^{\downarrow}\) inclusion test was administered as a posttest to ascertain posisible improvement \({ }^{\circ}\) in class inclusion scores. The treatment contained class inclúsion activities, partitioning activities, and loop inclusion activities, so a treatment effect could have been possible for classification \({ }^{\prime}\) variables. However, treatment was not significant far any classification variable, \& - indicating that classification per se is resistant to training, especially class inclusion. The result that class inclusion was resistant to training is consistent with the conclusion made inther review of literature in the section Cłassinclusion and arithmetic. There, it was concluded that if the goal of classification activities is to influence class inclusion as a scheme
(or a relational structure), then it would be resistant to training. The results are at variqnce with those of Kohnstamm (1968) as he obsorved dramatic improvement in class inclusion through training. The results are in agreement with those of Inhel dér \& Sinclair (1969) and Johnsion (1975): . Both Inhelder \& Sinclair and Johnspn used problems of a different.form in the testing than were used in the training just as was the case in this study. Apparently, this may have been enough to wash out any possible 'training effects in this experiment. EVen though only two-stage problems were used, they contained content different than that used in instruction, except for one of the four items. But the difficulty of that \(i\) tem (ifem 4) was not discemibly different than the other four items (see Table 18, (tem analvses). A'mQre plausible- explanation for the lack of training effects than change in item form is that there was a three months time interval betwe the classification experiences and the classification tests. But if class inclusion had been inducëd by the treatment as a. flexible - functioning scneme, the three months delay should not have been important, as one characteristic of operativity is that loss of operational concepts does not occur due to - forgetting. Consequently the treatment was not effective especíally for inducing. class inclusion.

Onily 32 percent of the total sample answered correctly at least 3 out of a possible 5 items on the class inclusion postiest. As Quantity was not significant for Class Inclusion, one cannot predict gain in class inclusion proficien inclusion at the beginning of experiment didnot deter that 32 percent from gaining olass incluṣion: But specific experiences in, classification, as noted above, did not enhance acquisition. Apparently, there are more important factors than specific training in acquisition of cíass"inclusion. , Begause Treatment was essentially not significant for Partitions With Counting, Partitions Without Counting, and Loop Inclusion after, substantial instruqtion took place, none may be tempted tol conjecture that lack of
class inclusion had a dampening effect on training of these variables.
But as variables other than Class Inclusion could account for kack of treatment effects, posttest correlations musit be considered in the heuristical analysis. The correlation between foop Inclusion (mean, 46 percent) and Clas? Inclusion (meam, 31 percent) was only*. 28 and not statistically significant. So the, Loop Inclusion ầ' Class, Inclusion tésts. Eunctioned indépendeñtly. One would expect, that in the absence 0 a treatment effect the two variables \(\checkmark\) would improve synchronousiy over time if they/were both part of general schemes of clássification, one logical and one infralogical. The correlation of \(\dot{2} 8\). does not support the thesis that Class Inclus won is a readiness variable'for acquisition of loop inclusion. Moteover, the mean \({ }^{1}\) scores on the loop inclusion test do not support the thesis that the infralogical operation would follow the logical operation in development, as item difficuities were comparable except for the list item of the loop inclusion test which was"high, indicafing an easy item.

The correlations petween Class Ínclusion and Partitions With Counting and Class Inclusion and Partitions Without Counting were only \(0.06^{\circ}\) and .05 respectively. The mean scores on the three test were \(13 ; 75\), and \(65^{\circ}\) percent for Class fnclusion, Partitions With Counting, and Partitions'Without: Counting. On the pretests, the respective means were 0,56 , and 36 percent. The relatively high means of the set partitions.tests and the essentially zero córrelatíons should discourage any further conjecture that Class. 'Inclusion and Partitions are related variables, one bèing a readiness variabla for the "other.

Treatment was not signtficant in the case of either of the nested classifieation tèsts \({ }_{\gamma}\) and the correlations between Class Inclusion and the two Nested \(\because\) ? s
 not be expected to be a readiness variable for Nested ciassification due to
the way Nested Classification was tested. Only Stage 2 classification behavior was required for task performances on the Nested Classifícation tests.

Ratipnal Counting
In. the case of the tasks designed to asséss, the ability of children to obfain cardinal information from ordinal information, it was argued in the section The Achievement Tasks that Class Inclusion should be a réadiness variable for acquisition of the ability. As every ordered. set \(p\) can be thoughtof as the union of a segment \(S\) and remainder \(Q(P=S+Q)\), if a child is told the position of some element of \(Q\), say \(q\), and asked to find the number of elements of \(S\) (or \(P\) ), class inclusion is logically' part of the task. The. child, it would seem, mustregard, \(S\) as being part'of \(\dot{P}\), and \(S\) and \(Q\) together comprising \(P\). As the tests of the \(\# S\) and \(\# P\) variables are of low reliability, only conjectual statements may be made,

Nine children correctly answered both of the items for the 非 variable * and twelve correctly answered both of the items for the \(\#\) ' variable. Correlations between Class Inclusion and \#S, \#P, and \#S + \#P were. 27, 0 , and -ille reqspectively, none of which were significant. Consequently, some children acquired capability to obtain cardinal information fyom ordinal information independently of their ability to solve the class inclusion o problem. . These résults, however, are tenuous due to low internal consistency reliabilities for the test used to meature the variables.

Cluster 5 variables were of greater interest than were Cluster 1 variables because thé measures were mpre reliable and trational counting strategies were clearly used in task solution. For the same reason that was given for Clúster 1 varíables., Class Inclusion should be a readiness varible for CountingOn, Ordinal Addition, ‘Counting-Back, and Ordinal Subtraction. The internal
consistency relabilities for these measures were. \(50, .84, .61\), and .47 , respectively. The means were \(75,64,42\), and 3.8 percent, respectively \({ }^{\circ}\). The \(\forall\) reliabilitijes are substantial enough to interpret the data, al̉beit with some caution for Ordinal Subtraction. The analyses' of variance showed Treatment \(\frac{a}{\Sigma}\) significant for the gross quantitative comparers in the ca'se of Rational Counting-on and Ordinal Addition. The means for"the experimental grotip in the case of these two variables were 71 percént for. both. However, the posttest correlations of Class Inclusion with the four variables (as órdered above) of :20, .25, . 16 , and .30 (considered in conjunction with the mean scores) does. not lead to, the conclusion that Class Inclusion ts a readiness variable for acquisition of rational countirtg strategies.

Addition', subtraction, and "mssing addend. E'ven though counting-all procedures were sufficient for sofion \(\dot{b}^{\circ}\) the subtraction problems,' it is somewhat surprising that the extensive quantitative comparers had.a mean score of 80 percent on the pretest. - The gross'quantitative comparers had a mean -score of 25 pexcent. These mean scores destroy any illusions. that Class Inclusion is a readiness variable for solution of simple subtraction problems
 group had a mean score of 42 percent for the mising addend problems, on the pretesti, it'seemed possible that Class Inciusion still would be a readines's variable for acquisition of an ability. to solve such problems as the gross quantitative comparers had a meạn 'score of oniy 2 percent. On the posttest, the analogous mean scores were 85 and 22 percent. But the posttest correlation
 of such a lợcorrelation, one would not conjecture that Claṣs Inclusion is a readiness variable fif acquisition of solution to missing addend problems. in the presence of objects:

Because Treatment was effective for Addition and Subtraction Without Objects, it could have been the case that Class Inctisition was a readiness variable for solution to orally presented addition (mean 7.8 percent) and subtraction (mean 71 peŕcent) problems. If so, those children fho-solved suçíh problems should be able to. do the Class Inclusion problems." However, posttest correfations were only. 27 and . 19 between Class Inclusion and - Addition and Subtraction Without objects, respectively, There was a 0 . ,\(\dot{i}\) correlation between Clàss Inclusion and the Missing Addend Wíthout objects (mean \(48^{\prime}\) percent).

The above, results are consistent.with those of Dodwell (1962) and Vitale (1975). Dòdwell observed that class inciclusion and provoked and unprỗoked correspondence apparentíy develop independently añ vitale observed small correlątions bétween class "inc'lusion' and addition and. stubtraction computation. \({ }^{6}\)

\section*{Class Incilusion as Correlate of Arfthmetic Achie vement}

Not beifg satisfied with the results of Clas's Inclusion as a readiness variable for açutsition of rationit counting, prablem solving; loop inclusions, and interrelàtion of cardinaía ànd ordinal number, çass inclusion items were included as part of entering first- and second-'grade mathematics. tests constructed by PMDC staff (see Appendix A. 12 and Ǎ.13). Class Inclusion, correlated nonsignificantly. with, dll first-grade number scales (Table 57 in Correlations Among the Variables). In case of the entering second-grade testy Class Inclusion correlated low but significantly with Advahced Counting, Place Value, Ordering Numbérs, Addition-Subtraction, and Missing Addend.

Based on the above data, it is reasonable to strongly conjecture that Class Inclusion as measured is only weakly related to numerical variables. It' is, not tenable to regard Class Inclusion as measured as a readines variable for achieying arithmetical content tested in Clusters 1, 3, 4, 5, and 7 and -tested in the first- and second-grade PMDC tests. Where does this leave Piaget's theory thate number in children is a synthesis of classification and seriation?

The item content for the Class Inclusion items was of arpictorial : ' nature and perceptually.distracting. Moreover, as 'Johnson '(1975) has shown, children regard intersecting ring items as separating the occupied region into disjoint rather than. ove rlapping subregions. A similar phenomenon may be operating with regard to pictorial items--children may regard the problem one.of comparing two subclasses due to the overwhelming perceptúal features of the stimulus configurations. 'As a result, the class inclusion'test may be conseryative in that too many false negatives occur (children who have the potential of solving the class inclusion problem but fail). This conjecture is plausible due to the fact that class inclusion should intervene by necessity in solution to Cluster 5 variables and missing addend problems. However, if such is the case, then class inclusion would be present each time a child solved a numerical reasoning probiem logically requiring class incilusion. In such cases, the re whe be nó need to assess class inclusion because it would be synonomors with suchnumerical. reasoning. In any case, then, it is questionable whether class inclusion needs to be consídered as a readiness variable for learning ărithmetical content, unless new measures are developed which are related, but do explain, . numerical reasoning.
test would entail a class sinclusion measure that did not depend on pictorial items containing distrạ̀cting features but yet would bé different than tests implied by, the question "Which are there more of in the whole world, chịldren or boys?". The problem"associated with pictorial tests have been pointed outc. The problems with the latter test are numerous, one of the most obvious being the necessity of attempting to imagine all of the children'in the world. A universe of objects, must be selected that is comprehendable by the child but yet does not contain perceptuelly distracting featưres. It has been conclusively shown in this study that such distracting feature's have nothingsto do with pure numerical teasoning.

The Treatment

Content was included in the treatment not normally included in the mathematics programs for grąde one. The features of the treatment were the incluṣion of classification, activitiès,*set partitioning activities, counting activities by levels, the learning anstructional pháses for addition and subtraction, problem solving activities far addition and subtraction, the ohand-held calculator for drill on basic facts, and the individual nature. .gf the mathematics instruction. The treatment was included in the study to control the mathematical experience of the children in the experimental group. There was little interest in accelerating the learning of a particular :topic per se. But there was a great deal of interest. in determining the effects of particular mathematical experiences on different groups of quantitative comparers and on various closely related mathematical topics.

In short, the emphasis was placed on understanding, the role of mathematical instruction on the development of mathematical concepts for identifiably, distinct groups of learnẹrs.

It must be emphasized that the achievement variables are performance variables and consequently do not measure the important aspect of how the children, progressed through"instructign. Various comments will be made throughout this section concerning observations made during inistruction. These comments are a result of daily lobservations of the children as they progressed through instruction and are offered to shed further light on various. results. The 29 variables iden'tified do give a good picture of a cross sectional nature of where the children stood at the time of testing.

\section*{Classification and Partitioning}
! There were no significant differences due to treatment for any of the
 Classification \(A\), or Nestéd Classification B) nor did treatment interact "with Quantity for any of the four variables. Moreover, treatment was not significant for either Partition With Counting or Partition Without Counting nor did Treatment and Quantity interact fór either of the latier variables. In the case of Partition. Without Counting, it, appeared that Treatment and Quantity should have interacted but the mean sçores were a reflection of how children began on the pretest for set partitions. (see Tables 37 and 42 in the section Analyses of Variance).

Three instructional weeks were toted to classification, set partitioning and loop inclusions. The total instructional time amounted to 12 instructional days of approximately 45 sminutes per day. The children enjoyed the instructional activities and seemed at the time of instruction to profit. The basis of the instruction was operational definitions. For example, in
the classificational activities, the terms "and," "oŕ," "not," "some," "and. "1ll" were clarified for the children through their actions on añimal cutouts and toys. The chịldren were required to follow directions such as "'select some of the animals." Corrections were made in the case of incorrect performance. In this way, the terms were defined operationally. The children has little trouble in leaming the operational meanings of the terms. Class, inclusion activities were also emphasized utilizing the terminology developed in an attempt to train the children to focus on all. the animals when comparing all the animals with some of the animals \({ }^{\circ}\) : It was feit that children may in many cases focus on some of the animals (e.g., dogs)' in comparison of.all the animals (e.g.', dogs and cats) wiṭ some of \(\dot{f}_{1}\) the animals (cats). At the time, clarification of the terminology - seemed to help most of the children in solving class inclusion problems. But it was difficult at the time to know whether the children were being trained to respond to the verbal cues all and some, knowing all is more than some. The rësults of the class inclusion test (Tables 50 and ' 51 in the section Analyses of Variance) in the pgettests support the contention that no feal improvement, wäs the case for class inclusion problems. In 1 fact, the control children had a greater mean score than the experimental children ( 41 vs 25 percent, respectively). Moreover, the extensive quantitative comparers in the experimental group did not do any better than did the gross quantitative comparers rin the experimental group on the class inclusion posttest. Had Quantity been a readiness variable for learning classinclusion, the extensive éxperimental group should have gained great deal from the instruction on class inclusion.

There are good theoreticai reasons for hypothesizing that the experimental extensive quantitative comparers would in fact acquire the facility to solve the class inclusion problem: In the section Number in Piagetian Theory, it is .? \({ }^{\text {? }}\) llustrated how hierafchical classifications are involved in children's conception of number. Number intervenés into classificicational hierarchies, through the quantifiers "a," "some,", "noze," and "all," which must carry numerical meaning in Piaget's analysis of thé. interrelations of classification, relations, and number for children to conceive of hierarchical classifications. Children who are extensive • quantifiers have, in theory, the notion of a unit essential to extensive quantification in Pidget"s theory (see the section Quantity as viewed by Piaget). The unit is also essential to the child.'s conception of number as outlined in the section' Number in Piagetian Theory. 'Consequently, those children who wer extensive quantítative comparers who failed to solve the class inclusion problem should have done so for reasons other than not possessing the concéption of a tonit, failing to attach numerical meaning to. the quantifiers "a';" "none, "r "some," and "all, \(\mathrm{T}^{\prime}\) " or not being able 'to conceive of, hierarchical clássifícational systems. Possible reasons. for failing to solve the clasṣ inclusion problem for these children are the dominance of the perceptual configuration of the tasks or notrunderstanding" the verbal direction. The instruction in, the treatment was organized to elimínate these two possible reasons.for failure of extensive quantitative comparers to solve the class inclusian problem. It was not expedted that. the gross quantitate ive comparers would acquire the facility due to lack of Grouping I cappabilities--nof being able to conceive of hierarchifal classif fications. The extensive andgross quantitative comparers in the control
group did not receive instruction on classificational systems.
The lack of a statistical (or educational) significant Quantity by
Treaṭment interaction for Class Inclusion (Table 50 in the sec̣tion -.. Analýses of Variance) strengthens the conclusion made earlier in this chapter that Class Inclusion is resistant to training. In that discussion, extensive vs gross quantity was niot highlighted \(i t\) can now be concluded that \(\dot{c}\) lass inclusion is resistant to training regardless of , whether the children are extensive quantitative comparers or gross quan-
 also strengthens the conclusion that class inclusion need not be considered in future studies as a readiness variable for learning first grade arithmetical content unless dramatically different measures for clàss inclusion are devised. Under the hypothesis of, hierarchical classificational schemes being an integral aspect of number and therefore extensive quantity, the instruction given in , the treatment on classification should have been assimilated into operational schemes avaiłable for classification. The lack of the aforementioned statistical interaction throws into question the premise that the extensive quantitiative comparers possessed hierarchical - schemes of classification which were not activitated on the pretest of class inclusion. The premise that number precedes hierarchical classification certainly deserves serious consideration. The question of merger is also interesting:
- The loop inclusion tasks were designed to measure the application Grouping I to spatial content--as a measure of of priaget's infralogical operations (Sinclair, 1971). It is generally accepted that infralogical
operations develop later than logical opterations so it was. hypothesized that Quantity would not be a readiness variable for learning roop inclession. But due to the experience given to the children on loop inclusions, it was hypothesized that the experimental group would outperform the control group. The operational definition given for an object to be inside a loop. (a simple closed curve) was that if the loop had to be taken over the top of the object to be pulled away, This operational definition was particularly effective when the object was' a stick placed on end inside the loop, or if a child were standing intside one or more loops.

Quantity was significant for Loop Inclusion with a suggestion'of the experimental gross quantitative, comparison group performing better than the analogous control group (mean scores 44 vs \({ }^{24}\), percent, respectively). The mean scores for the two extensive quantitative comparison groups, were approximately equal. However, itt cannot be claimed that the experiences given to the gross quantitative comparers in the treatment caused the 20 percent difference as it could be just as well attributed to chance. The difference is just not great enough to warrant any suggestion that the treatment was effective for the gross quantitative comparers." That Quantity was significant is somewhat surprising in view of the fact that it was not significant for Class Inclusion. The means for the two groups were 60 and 30 percent, respectively, for the exteñive vs grosis quantitative comparers. This difference does given some encouragemelt that suitable measures can be found for class inclusion which would be at least statistically related'to Quantity.
 for 'all children: It is apparently, nonproductive to spend more than one or \(\stackrel{\square}{8}\)
\(t_{\text {two }}\) days on showing children the operational definition of "inside" for simple closed curves becaúse the level of achicvement was comparable in the case of the experimental and control groups.

The instruesion on set partitioning was included because at the time set partitioning was considered to be instrumental in establishing meaning for addition and subtraction and eventually numeration. The instructional activities were designed in such a way that for a particular collection of objects, all two-subset and three-subset partitions would be considered. For example, given a collection of seven objects, they would be partitioned into subcollections of 6 and 1,5 and 2,4 and 3,3 and 4 , and 2 and 5 , and 1. and 6 objects successively, by moving an object from one subcollection to \({ }^{\text {an }}\) the ocher. "In each case, the chidren were focused on therconstancy" of seven and the changing numbers in the subcollections. Partitioning activities were also presented to the children using approximately 100 , kernels of popcorn and four or more glásses into which the popcorn was poured. No counting was included in the latter type of activities. During the courseof instruction, children seemed to be generally successful with the activities. The partitioning activities are analogous to Piaget's additive composition of number.

In the section Quantity and set partition, it was pointed out that what Piaget calls the additive composition of number develops in three stages paralleled by gross, intensive', and extensive.quantity. Even though the pretest.data on set partitions did not relate to \({ }^{\circ}\) Quantity as expected (no.differences existed due to Quantity where the mean total score , has 44 .percent för the gross quantitiatve comparers and. 58 percent for the extensive quantitative comparers), it was felt-that the instruction on set.partitions would lead to improvement for the extensive quantitaitivé comarers at least for set partitions which did not include counting. All of the children'improved on Set Partitions Without Count as wellas
on Set Partitions With \({ }_{f}\) Count but there were no educationally significant treatment by Quantity interactions. Because the'control children improved at least as dramatically as did the experimental children (the control children did not receive direct instruction on set partitions), and because Set Partitions are at best on fy weakly related to other numerical -variables in the study, there seems to be little reason in the future to include direct instruction on set" partitioning in first grade"instructional programs. There is no evidence that the children in this study abstracted the meaning of addition or subtraction through partitioning activities.

\section*{7}

Counting by Levels and Learning Instructional Phases for Addition apr Subtraction \(-\gamma\).
As the instruction was individualized for each child in the treatment group, no one instructional sequence, may be described. It was, the case, however, that each child was presented counting activities which progressed through rote counting, point counting, and rational Counting. The instruction for addition and subtraction progressed through the learning instructional phases exploratory, abstraction-representation, and formalization-interpretation. Thy children were programmed through the learning-instructional phases at different rates and did different amounts of work. With few exceptions, the extensive quantitative compares progressed through the abstraction-representation phase and associated counting activities more rapidly than did the gross quantitative compares. Even though each -child was given the opportunity to progress through the formalizationinterpretation phase, only eight of the 48 children. in the total sample actually did.. It is important to note that tests were given for the formalization-interpretation phase even though they are not reported in this monograph.

At the culmination of the learning activities, all of the children were using rational counting-on to process exercises such as \(4+5=\square\). It is interesting to ndte what seemed to be critical instruction for children who were at most point counters to progress to that level. The instructional procedure used was to direct the children to máke marks on their paper to represent the two addends and then gradually lead them into a realization - that oniy marks for one of the two addends would be necessary if one would sfart counting from the other addend. An analogous procedure was used with finger calculation. The children were then encouraged to not mark or use fingers, but to count the smaller addend on to the larger (in the case of unequal addends) mentally. After the children had mastered the procedure, they seemed very impressed with their powerfulness in calculating sums, now being able to find sums such as \(15+4,25+3\), etc. Such sums were found even though the children did not know numeration.

Initially, each child was given experience in rote and point counting activities. All of the children learned to point count and write the numerals Lo at least 50. Point counting-back activities were alo given, fiyst̀ starting with 10 and progressing through 20 or greater, depending on the child. The childref, some with great difficulty, learned to point count: back from 20. Addition and subtraction activities were integrated with .the counting activities where children used the counting-ali procedures. with objects to proces's sums and differences of the basic fact variety rit \((a+b \leq 10)\). The children who were extensive quantitative comparers soon tired of using objects, and wanted to use finger calculation. Therpafter, it soon became apparent that all of the children wanted to abandon the physical materials in favor of finger calculation. They were allowed to do so. . The extensive quantitative comparers (with the exception of one child) easily learned to process sums such as \(4+3\) by counting-on three
to four--"five," "six," "seven"--either through using finger calculation or mental calculation. The gross quantitative comparers, however (with the exception of two children, one of which was one of the best spudents) used
 the counting process until direct.instruction was given. It is importan't tö note that trials (on an individual basis) during instruction were profided these children to give them the opportunity to change counting strategies from counting-ali to counting-on while pidesing sums such as \(4+3\). The trials were used/as, checks to insure that children were not held to counting-all procedures when in fact they could use fore efficient counting strategies. It was not until the last week of in'struction that the gross quantitative comparers (wtth the exceptions noted) were able to progress on to counting-on aqtivities (after approxitnately six weeks of instruction usíng counting-all strategies with physical objects and finger calculation). Work with the * hand-heid calculator ánd problem solving within the same six weeks, so six weeks should not be consídered as a requíred time. But it does give indication of the extreme diffičulty children have of acquiring counting-on without tallying if it is not within their cognitive competence.
-The above procedures of instruction--integrating rational copnting with finding sums-may only lead to what one may call algorithms for finding sums. The induced counting behavior may not have been counting/schemes. . In fact, the evidence is strong that gross quantitative comparers did not generalize, the counting-on without, tailying procedures taught across tasks as noted in the discussion of quantitative comparisons as a readiness variable for learning fitst \&rade airthmetical content. Onn the addition problems without objects, (Table 33 in the section Analyses of Variance) and the counting-on test (Table 45 in the section Analyses of Variance), the gross quantitative comparers in the experimental group performed
-quite well. But on the addition problems with obfjects (Table 41 in the section Analyses of Variance), the experimental gross quantitative cómparers performed quite poorly. 'But it is important to note the instructional procedures were effective over a rather narrow range of problems and gave the gross quantitative comparers a sense of intellectiual competence (as observed in instruction) in performing arithmetical exercises.

The effects of instruction or counting-on with tallying and the missing addend problems were also interesting. The instruction was synthesized so the children were not aware that two different goals were'being' accomplished with the same activities--the capability to count-on with tallying and the capability to solve the missing addend problems. The missing addend problem was initially presented using a counting-all strategy. For example, to solve \(4+\square=7\), the children were instructed to take seven objects, count out four and the ones remaining would be the answer. Invariably, children who did not possess counting-on with tallying confused the procedure with previously learned counting-all procedures for processing sums. That is, to process sums such as represented by the sentence \(3+8=\square\), the children would councout eight objects, count three and the five remaining, represented the festit of the algorithm. It was, necessary to explicitly point out the different appearance of the two types of sentences for these children. Through successive examples, the gross qugntitative comparers did discriminate between the two sentence types and. apply the correct algorithm. The same learning problem, however, did not occur for the children who were able to count-on with tally. They conceptualized the senterce \(4+\square=7\), as four agd how many is seven-five, six, seven--so it is three. Consequently, no problems in disc̣riminating ' 9
solution procedures existed for these children for the sentence types
represented by the sentences \(3+5=\square\), and \(3+\square=9\).

The \({ }_{4}^{*}\) counting all procedure for solving the sentence type \(3+\square=8\) seemed to 'interfére with' the more natural counting-on strategy available to some of the children. After being shown the counting-all procedure; surch. children seemed to view it as the preferred solution process and were very reluctar to employ countingंon with tallying: It should bé recognized that counting-on with tallying requires more mental effort than does the counting-all procedure which may be the cause for some children's great reluctance to use the more sophisticated coun'ingrstrategy. But it also should be recognized that adults presented the counting-all procedure which may have given it a status of Being the preferred adult solution.

The counting-all procedure for solving missing addend sentences was used initially, of course, so that the gross quantitativé comparers would have a procedure for solving the problems which (it was hoped) could•be transformed into a countingion procedure. In the transformation, an ańalysis of the counting-all procedure was aṭtempted in the following manner. After a child had solved, say, \(3+\square=7\), by counting out seven, taking three, and then counting the remaining ones to obtain four, they were instructed to refocus their attention on the three, then count-on the four obtaining seyen. This analysis move was not effective for some children as they could not counton without 'tazlying, which was a minimal requirement to conceptualize What was being analyzed. Direct instruction was also given to tie the missing addend senterce to rational countigg-o'n with, tallying. . Problems were presented where some of a collection of objects were screened from a child's view: The children were then asked to find hofw many were screened. They had counted all of the objects to find the number in the total collection before some of them were screened. The unsuccessful children were allowed to "peek" behind the screen and count the objects there. These procedures were associated with missing addend sentences, e.g., \(4+\square=7\),
in the obvious ways after the physical problem was solved. "Encoding of the physical and mental actions seemed extremely difficult for children who 'were not, able to count fon with tally. These children seemed "'lost" in instruction:

The posttest data on the missing addend problems and the ordinal addition problems showed that the gross quantitative comparers in the experimental group were guite capable of solving ordinal addition problems (méan. 71 perc̣ent) but were particularly inept at solving missing addend problems with objects (mean 17 percent) and without objec̣ts (mean 25 percent). It was in fact surprising that the experimental gross quantitative comparers performed so well.on the ordinal addition problems (see Table 45 in the section Analyses of Variance) because during the treatment they seemed particularly inepr ait doing so. They apprently used trained procedures withín a problèm context \({ }^{\text {familiar to them. It was particularly 'pleasing ta }}\) note that the extensivé quantitative comparers in the experimental group performed quite comparably to these in the control group on the missing addend problems and ordinal addition problems. 'The experimental extensive "quantitative comparers, when forced to do'.so, did utilize counting-on with fallying, in problem contexts not solvable by counting-all procedures. Based on experience in instruction with children not capable of : counting-on with tally or without tally, it is recommed that teachers not present misking addend problems to these chatren until counting-on. schemes are ecquired either through development or instruction. While such children can learn to solye such missing addend problems through'. counting-all procedures, țhe solution process is algorithmic and cónqepualization of the problem is lacking. In the case of children capable of countingen with tally, the missing addend probem should be presented witheolution process that of counting-on. These children, in their own time, should
- produce, more efficient solution procedares. It is strongly orged that the child's'counting capabilities be the determiner of whether the missing addend problem is. pŕresentéd or not..

Children who are capable of counting-on, even ifoit is only wîthout tallying, should be presented with addition through counting-on procedures rather than counting-all procedures. The countiog-on procedures atrould lead to knowledge of basic facts more quickly. . Moreover, the children can be . . exposed to more sophisticiated sums "(such as \(43^{\circ}+4\) or \(56+5\) ) and thereby gain a sense of competence not posisible through counting-all procedures. . Essentially, the exploratory phases of addition and sumtraction can be done very minimally with these children. While countíng-all procedures should. not be forbidden (especially for differences with minuênd less than or equal to ten), they should not be emphasized.

Conceptually, counting-back is to differences as counting-on is. to " sums. While differences may be found by counting-on with"tallying, there is not presently available data which shows a child is capable of conceptualizing differences in terms of counting-on if countingoback and counting-on are not synthesized (formalization-interprefation phase), one being associated with differences and one with sums. In the instrúctional activities, counting back with and without tallyjng seemed especially. difficult for most of the children. Presentation of the activities seemed \(*\) to cause, dissonance, with children refusing to participate mentally.. While. the extensive quantitative comparers fared much better than the grós. quantitative comparers, the instruction on counting-back seemed to be noty. well received by the children. 'But because of its importance to differences, instructional procedures need created and tested before definitive recomendations are made cohcerning the introduction of counting-back with and without tallying.

\section*{Problem Solving Activities 'for Addition and Subtraction}

Addition, subtraction, and missing addend problems were presented to the children in oral and written contexts. These problems were an integral part of the instruction utilizing the learning-instructional phases for addition and subtraction. Consequently, only features of the problems not diescussed heretofore are presented. Children who could not yet read were given problemoto solve in an oral presentation. Children who were able read the problems. One main góal of the roblem solving, actoivities was to teach the children to write mathematical sentences for the problems. In the main, the cherden were not of determining the defining relationships in the problem, writing an associated open sentence, solving the sentence; and then interpreting the soluţion back in terms of the problem. Rather they solved the problems mentąlly (if they in fact solved them), and then wrote a closed mathematícal sentence to symbolize what they had done. This procedure was manifest in the postest of addition; subtraction, and missing addend problems without objects. The children were asked to write the associated. sentences it doing the problems. Observations were made concerning whether the children first processed the information and then wrote the sentence, or vice-versa. For the addition problems there wefe 88 attempts to write a mathematical sentence by the children. In 80 of these 88 attemp'ts; the children first processed the information and then wiote the associated sentence. For the subtraction problems, in 71 of 82 attempts to write a mathematical sentence, the
children first processed the information and then wrote the sentence. t.

For the missing addend problems, the analogqus numbers were 67 out of 78 . In total", then, there were 248 attempts to write a mathematical sentence. for' a given problem. In 218 óut of these 248 attempts, the children first processed the information and then wrote the mathematical sentence.

These data are important in that they elucidate the role of the mathematical sentence in the solution of arithmetical problems for young children. The children wefe quite capable of symbolizing their mental activity but did not represent the problem condition iy written symbols and then work with the representation. Rather, any representation of the problems was internal. The mathematical sence did not carry the power of representation of defining relations, but was rather onsy a manifestation of mental \({ }^{\bullet}\) activity engaged in by the

The Hand-He'ld Calculator
The hand-held calculator was used each instructional day during the last four weeks of instruction, Each child in the experimental group,was given a calculator and was allowed to use it during the entire class period.; but wàs not required to usefit. Children had littłe difficulty with the mechanical aspects of the calculator, quite, readily learning to,enter, suffs and differences. The role of the calculator in the classroom was to check answers arriyed at through other means. The children enjoyed the calculators enormously during the time they used them. There was lithtle evidence, however, that the calculators improved speed or accuracy of computation because Treatment was not significant for the addition and subtraction product or time scores (see Table \(47^{\circ}\) in the section Analyses of Variance).

At times, some of the children wished to do calculations on the calculator just to get them done. These sessions were very ineffective frow the point of view'of the children remembering basic facts. They seemed to be nọt interested in, the answers, just writing them down.

The calculators seemed to be particularly ineffective for children who could only use count-all procedures to process sums'and differences. STuch children displayed little memory for basic, facts, each sum or difference being ünrelated to other syfis or differences already found. While the calculators were an effective motivational device in instruction, they Yid not help the children remember basic facts.

\section*{Correlations Among Selected Variables}

\section*{Variables Apparently Requiring Rational Counting In Solution}

The minimal correlations between Cluster 1 and Cluster 5 variables (Siee Table 53 in , the section Correlations Among the Variables) was disconcerting if they, represent valid correlations. The \#S and \#P. variables were constructed to measure the child's ability to interrelate cardinall and ordinal number. The tasks were based both in mathematics and in developmental psychology. Piaget (I952) ha's strongly asserted that "Finité numbers are. . necessarily at the same time cardinal and ordinal, since it is of the nature of number 'to be both a system of'classes and of. \({ }^{\circ}\) asymetrical relations biended into one operational whole" (p. 157). In the review (see the section Cardinal and ordinal number as developmental Concepts) of the tasks and theory supporting Piaget.'s assertion, it was noted that particular relations--1ònger than, shorter than, ete., for dolls and sticks-may have influenced the outcomes of the experiments Piaget performed. It is the relation "precedes" which.in general determines order of precedence. Position is also a critical concept in ordinal number. The position a particular element occupies is entirely dependent upon the particular way. in which the elements are ordered. In the tasks in Appendix
A.l, the child had to determine the cardinal number of certain segments and of the whole collection from being given the position of a particular object. The task design was an attempt to eliminate the criticism of Piaget's tasks that particular relations may, unduly influeqce the outcome of the tasks.

7 The tasks were, based al'so in mathematics in that if some finite get \(P\) is represented as \(\left\{\dot{a}_{1}, a_{2}, a_{3}, \therefore\right.\). .a \(a_{n} ;\), any particular element, say \(a_{\dot{r}} \dot{\prime}, 1<r\) determines a segment \(S=\left\{a_{1}, a_{2}, \ldots a_{r-1}\right\}\) and áremainder
 the order was determined by the row of objects, and the segment \(S^{\circ}=\left\{a_{1}, a_{2}\right.\), ..., \({ }^{a_{r-1}}\) was determined́f by the cover. Given the positiont, of \(a_{r+1}\) \({ }^{\text {a }}{ }_{r+2}\), the child had to give the cardinality of \(S\) and of \(p\). The numbers selected for \(P(12\) and 8 ) were small enough to be within the experience of the children. Piaget's' theory predicts that children who are in 'Stage IT \({ }^{-}\) with respect, to number should solve the task, especially in the cases-where hints were given.

The rational countinǵon, orđinal addition, rational courting-back, and ordinal subtraction'tasks were based on the same structural analy'sis of number as were the \(\# S\) and \(\#\) tasks. The important differences resided in the, facts that (6) no ôrder of the clements was implided by the physical Crrangement of the objects except for the physical determination of the . s segment and Femainder through covering the objects, and (2) cardinal number of the segment, remainder, or the total set \(\because\) s always given rather thap the position of some element.

If the minimal correlations between Gluster 1 and Cluster 5 variables represent valid correlations, the concept bf position as it relates to other aspect's of children's conception of cardinal and ordinal number will have
to be elucidated through further experimentation: However, given the low internal consistency reliabilities of the \#S and \#p tests, improved task design for those variables must be accomplished before any conclusions are drawn regarding a child's concept of position as-it relates to other . -, numerical variables.

The eight correlations Between the two missing addend problems and *
the variables of Cluster 5 were all significant but modesti. The greatest correlation was between Ordinal Addition and Missing Addend Without Objects.

The modest correlations can be attributed to the extraneous variables .present in missing addend problems. The children had to translate the orally presented problems from natural language into a numerical procedure. In the case of objects present, the child had to ignore the fact there were more objects present for use than were needed--a difficult task for many children as they never bothered to count all of the objects, but rather counted out the first given number and then counted the remainder for the answer. In the face of such extraneous variables, that the Missing. Addend variables correlated as well as they did with variables of Cluster 5 supports the contention that rational counting procedures are critical for comprehension and solution of missing addend problems.

The significant correlations for the variable Between with all other variables in Table 53 and the correlation of Ordering Numbers with Advanced Counting in Tables 57 and 58 in the section Correlations Among the Variables supports the contention that knowledge of Between demands rational counting as, acerequisite.

\section*{Variables Apparently Requiring at Most Point* Counting in Solution}

Set partitions. Set partition is pàrt of the mathematics of addition ¢ \(\quad\) ! !
Yand subtraction of cardinal and ordinal, number. On the pretest (See Table 38 in the section Analyses of Variance), Partitions with CQunt and Partitions Withoit Coünt correlated negligibly with Subtraction and only - marginally wi,th Addition. The analogous correlations on the posttest'(See Table 42 in the section Analyses of Variance) were greater and wtre ail significant except Partitions With Count and Addition. Moreover'; Partitions With Count and Partitions Without Count correlated negligibly with Addition and Subtraction with no objects (See Table 54 in. the section Cprrelations Among the Variables). The correlations of the two tests of set partitions with the addition and subtraction time product scores were essentially zero. 1
Both set partition variables did correlate significantly with CountingBack and Predecessor but, the correlations were less than . \(50^{\circ}\). Apparently, then, set partitions is not a critical apsect of cognitive functioning on arithmetical tasks requiring point counting for task performange.

This assertion is strengthened by inspection of the distribution of total scores for the variables. 'Partitions With Count and Addition Without and With Objects had quite similar distributions of total scores (see Table 5 and Table 10 in the section Item Analyses). The distributions of total scores for Partition Without Count and Subtraction With and Without Objects also were similar. In the former'case, the correlations.were . 14 and .22 , respectively. In the latter case, the correlations were .47 and .33, respectively. The only correlation of, the four which shows strength of, association was the correlation of .47 between Partitions Without fount
and Subtraction With Objectsin. With the exception of this correlation of .47 and the possible exception the correlation of .44 between Partitions Without Count and Addition With objects, (two variables also with similar, frequency distribution), cọrelations involving the set partition variables with other variables with similar frequency distributions were marginal or nonsignificant. It was therefore possible for children to succeed (or not to succeed) on set partition items but not succeed (or succeed) on tês based on point counting.
.. Ifoone argues that set partitioning is an integral aspect of the meaning of addition or subtfaction of cardinal numbers, the correlations of set partition variables with Cluster 5 variables and with the missing addend problems in the posttest of Cluster 4 variables should be seriously considered in the argument. Children who were not capable of set partitioning should not have been able to find sums or differences using point counting strategies because they would not be capable of applying the strategies. Children who were capable of set partitioning may or may not be able to find sums \(\underbrace{\text { or }}\) differences if the argument is accepted as, valid. In the face of the small correlations, the argument does not seem plausible..

Osborne (1967), in a study of subtraction through partitions, conjectured that "If the child is not perceptually or cognitively ready to conserve the whole upon sub-division, then he cannot acquire the concept of subtraction via a group manipulative approach" (p. 107). Because of the relative independent functioning of Partitions in this study, Osborne \({ }^{\prime}\) s conjecture is not supported. In fact, because the experimental group engaged in partitioning with associated number facts, the evidence is negative concerning Osborne's conjecture.

Another conjecture made by Osborne (1966) was that "Given an Instructional approach to subtraction, if the child thinks in terms of manipulation of groups, then the child will understand subtraction better than if he thinks in terms of "one-by-one manipulation" (p. 107). The evidence is also against this conjecture because of the small correlation between the two partitions variables and the various variables of a subtractive nature.

Addition and subtraction. The additjon and subtraction product scores were correlated negligibly with all variables \(\underset{Z}{\text { in }}\) Table 54 in the section Correlations Among the Variables except the addition and subtraction problems without objects. Although these correlations were modest, they are logical in that in both cases, mental or finger calculation had to take place. The mental calculation could involve knowledge of number facts. The correlations are comparable with a correlation of, 46 reported by Steffe (1966) beetween a number facts test and an addition and subtraction problem solving test without objects. The correlations between addition and subtraction with objects and the two product scores are "somewhat less than the correlation of .41 between comparable tests reported by Steffe (1966).. The correlations in this* study are more consistent with the conjectures advanced by Steffe ( \(1966, \mathrm{p} . \mathrm{.}^{43}\) ) that the presence of objects in the solution of addition and subtraction problemis would lower the correlation. between an addition facts test and an addition: and subtraction problem solyving test. However, finger calculation serves a fuñctional role in both number facts tests and addition and subtraction problem tests. Due'to children's great reliance ori finger calculation, it destrqys the role of knowledge of number facts as an explanation of performance on addition and subtraction tests. Consequently, althougheorrelations may be somewhat greater between "number facts" tests and orally presented arithmetic addition and
subtraction problems without objects than it is between the former and orally presented addition and subtraction problems with objects', they are not enough greater to strongly suggest. that objects are critical for formation of mental operations associated with addition and subtraction. If objects were critical in formation of mental operations associated with addition and subtraction, one would expect a negligible correlation between addition and subtraction problems presented in the presence of. objects and number facts tests. The presence of objects would enable the children to do the problems independently of knowledge of number facts which would manifest in an essentially zero correlation. On the other hand, one would expect addition and subtraction problems presented to children without objects to be related substantially to number facts tests if for no other reason "than mental calculation would seem'to be necessary for solution. But in the face of the correlations, the intervening variable of finger calculation destroys the line of reasoring and also destroys the illusion that physical objects are critical for early learning of arithmetic. this conclusion is supported by the fact that all six correlations among the four addition and subtraction problem solving tests were significant and of approximately equal range (. 33 to .55). It was the case also that correlations between the problems with objects and problems without objects (. \(39, .42, .37,: 33\) ) were not a great deal different than within objects (.37) and within no objects (.55).

Counting back, just before, just after, successor, predecessor. The five variables under consideration had only four significant intercorrelations out of ten. Couñtin̄ Back and Predecessor correlated .52. This correlation as well as the correlation of .34 between Predecessor and Just Before is manifestation of the fact a child had to count back from nine to name the
seventh element with a point count in the test for Predecessor. That Successax was not correlated with any other variable in' Table 54 in the section Correlations Among the Variables, is somewhat surprising. These éssentially zero correlations lead to 'the conjecture that children's ability to start at a number and count-on in a rote fashion does not lead to . arithmetical competence of any kind and should not be, taken as being essential in learning"arithmetical conteńt.

The variable Predecessor correlated significantly with the problem soiving variables as well as with Just After, Counting-Back, and Just Before. Counting-Back also correlated significantly with the problem solving tests. But; Just Before and Just After did not correlate significantly with the problem solving variables except for orre case (Subtraction With No Objects ' and Just Before). These results signal the commonality of, solution process among variables requiring point counting. Just Before atd Just After did not require point counting--only rote counting.

\section*{\(\therefore\) Variables Apparently Requiring Rational Counting vo}

\section*{Variables Requiring at Most Point Counting}

Set, partitions. The two set partition variables correlated greater with variables apparently requiring rational counting for solution than with variables requiring at most point counting for solution. However, the correlations of the two set partitions variables with variables apparently. requiring rational counting for solution are not easily explained in that some are significant and some are not significant. Those correlations not significant are for the variables Missing Addend Without Objects, Ordinal Addition, Rational Counting-Back and Órdinal Subíraction (see Table 55 in the section Correlations Among the Variables). Those correlations which
are significant are for the variables Number in, \(S\). Number in \(P\), Number in \(S+\) Number in P, Missing•Addend With Objects, Between, Rational Counting-On, and Ordinal Subtraction (Significant for Partitions With Counting). . 1 The significant vs. nonsignificant dichotomy cannot be explained by whether the initial equivalence in the partition test was. established by the child through point counting. In fact, the correlations for Partition Without Counting generally excéded the correlations for Partition With Counting and both generally had significant or..nonsignificant associated correlations. It would seem plausible that a physical objects present. vs'physical objects absent dichotomy could expiain the difference in the significant vs nonsignificant correlations because the test for Partitions included physical objects. In the case of nonsignificant correlations, the children had to answer, quèstions concerning objects screened from view even though some objects could be seen (except in case of Ordinal Subtraction). For these variałles, no image of screened objects would be navailable to the children through direct percep cion. But in the case of the signifircant correlations, direct perception of objects, was not the case either except for one variable-Missing Addend with Objects. Consequently
 a tenabie explanation for the dichotomy significant vs nonsignificant correlations.

A rational counting-on vs rational counting-back dichotomy does not explain the significant vs nonsignificant dichotomy for the correlations. Consequently, due to the rather marginal nature of the significant correlations under consideration (none were greater than .50), it is concluded that the underlying bạsis for the signịicant vs nonsignificant dichotomy for the correlations has no discernable explanation and may be attributed
to chance fluctuation of the sample. Partitions, then, is only weakly related to (1) arithmetical opërations (addition and subtraction) in the case where rational counting-on or rational counting-back is required for solution, (2) rational counting-on, (3) rational counting-back, (4) the ability to obtainn cardinal information from ordinal informationn, and (5) knowledge of betweeness for numbers up to 12 ."

In view of the frequency distribution of total scores (Table 10 in the section Item Analyses) for Partitions With Count, one would expect that the variable would not be correlated with Number in \(S\) (frequency distribution, Counting-back (frequency distribution, Table 13) or Ordinal Subtraction (frequency distribution, Table 13). One would expect, however, that* the variable could be correlated with Counting-On and Ordinal Addition (frequency distribution', Table 13). The correlation of only . 31 and. . \({ }^{\frac{7}{3}} 3\) for the, latter two variables only strengthens the above conclusion that , Partıtion variables are weakly related to the variables apparently requiring rational counting-on in solution.

Añalogous inspection of frequency distributions for Partition 'Without 'Count and other variables under consideration would'lead to the expectation of significant correlations in the case of Missing Addend With Objects (actual © correlation .43), Ordinal Addition (actual correlation .27), and Missing، Addend Without Objects, (actual correlation .21). These three ¢orrelations again strengthen the above conclusion. When the frequency distributions were such that it would be possible for significant correlation between Partition variables and other variables of this section, the correlations were minimal.

Addition and subtraction problems. Only five of 40 correlations involving addition and subtraction problems were not significant. Two of the five were between addition and subtraction problems with objects and missing addend problems without objects. Two others were between subtraction problems with no objects and rational counting-back problems and ardinal subtraction problems. *Solution procedures in both cases certainly may have contributed to the negligible correlations. For addition and subtraction problems with objects, \(\dot{\text {, }}\) children could use counting-all procedures but for missing addend problems without objects, children counted-on with tally either using their fingers or mentally. For subtraction problems without Pobjects, children generally used counting-all procedures with their fingers, but for rational counting-back and ordinal subtraction , children had to go'through a backward ordinal sequence either without 'tallying (counting- back) or with tallying (ordinal subtraction). These procedures were quite . different and may be used to explain why the variables involved did not correlate to sa greater extent than they in fact did.

Inspection of the frequency distributions for subtraction problems "With objects (Table 10 in the section Item Analyses) and missing addend problems without objects (Table 5 in the section Item Analyses), would lead one to expect a significant correlation due to similarity of the distributions. That the correlation was not significant strongly supports the process analysis given above. The other variables with nonsignificant correlations had dissimilar frequency distributions, which certainly does not contradict the fact that children use widely varying solution procedures in solving problems.

The correlation of .60 between ordinal addition problems and addition problems with no objects is quite surprising in view of the dissimilarity of the frequency distribytions. Rational counting-on problems and addition
problemp with no objects correlated .54 and had quite similar frequency distributions. Bữ rational counting-on problems ań ordinal addition problems correlated . 72. Consequently, evidence is strong that children who solved the addition problems without objectsidid so in the main by counting-on either on their fingers or mentally. Or at least they were capable of doing so. This contention is further supported by (1) the correlation of . 47 and .48 between addition problems without objects and rational counting-back problems and ordinal subtraction problems, respectively, especially in the face of the great dissimilarity of frequency distributions between the former and the latter two problem types, and (2) the correlation of . 49 between the addition problems without objects and missing addend problems with objects.

The remaining signifficant correlations in the main reflect statistical relationships rather than analogous solution procedures. •However, counting types are nested by definition--so children who can perferm ordinal addition: tasks, for example, 'can also point count and thereby use counting-all procedures in solution. However, the correlations are dampened by the fact. thát children whó apply appropriate solution procedureśs. arrive at : if correct answers through mechanical errors and by children who can utilize counting-all procedures but not rational counting procedures in solution. Addition and subtraction product and time scores. The addition product scores only correlated significantly with variables obtained from the ordinal number addition and subtraction tests. The subtraction*product scores als.o. correlated significantly with the variables obtained from this test. However, the subtraction product scores also correlated significantly with missing addend problems with and without objects. In the mental arithmetic tests, \(\cdot\). children were admonished not to use their fingers nor make marks on the :
paper. Apparently, the admonition was effective enough that the subtraction exercisés were thrown into the realm of mental aríthmetic for some chuldreq, which explains the significant correlation for the subtraction produc̣t scores noted above. The .admonition was effective also for the addition exercises to be thrown into the realm of mental arithmetic. But it was a fact that the "addition exercises were easier than the subtraction exercise's, which epplains the nonsłgnificant correlation of the addition product scolre with the missing addend problems with and without objec \(\boldsymbol{F}_{s}\) (see Tables 5., 10, and 15 in the section Item Analyses for distributiona).

The correlations of the laddition and subtraction product scores with Wariables upparently requiring rational counting do not contradict the contention that addition facts should be considered as abstractions from mental operations associated with rational counting-on or ordinal addition. The case for subtraction is not as clearcut. Howeyer, the correlations certainily do not contradict the contention that subtraction facts should be based on at least an integration ón rational counting-back with rational Gounting-on. In any case, teachers who drill children on addition or subtraction facts in the absence of strong rational counting capabilities (at least counting associated fith ordinal addition) run a great risk of frustrating the child.

The negative correlations between the addition and subtractiontime scores and the variables Missing Addend With and Without Objects, Rational Countiñg-on, Ordinal Addition, Rational Counting-Back, and Ordinal Subtraction supports the relationship observed for the product scores. A weak indication was present that childrén who obtained correct answers on the test items for the variables just noted, tended to work faster than the children who did not. But the association is weak and should not be.considered as vitally important' in planning arithmetic instruction. 'A

Counting back, just before, just after, successor, and predecessor. :
Of the, 50 correlations involving the five variables in the paragraph heading above, only 15 were significant. Six of the 15 involved Predecessor.

Counting Back was correlated significantly with two variables (\#S + \(\mathrm{i}_{\mathrm{P}}^{\mathrm{P}, .42}\) and Missing Addend With Objects, . 36) ; and Just After was correlated significantly (xith Only one variable (Between, .44). Just Beforé was correlated significantly with six variables. Óbviously, then, Just Before and Predecessor are the only two variables related consịtently with variables apparently requiring rational counting in solution. But in general the correlations were not strong except for the correlations between Just Before and Between (.49), and Just After and Between (.44). These two correlations support the logical relationship which exists among the three variables. For a child to find a number between two others,. conceiving of" numbers just beforè and just after the 'two given numbers and "being aware of which is which, is extremely important for being successful.

The significant correlations for the variable Predecessor were only marginally significant. But they may reflect on underlying conceptualizing ability on the part of the child.

\section*{Some Prdblems Needing Furtiher Study}

Ginsbur\% (1976, p. 147) has givin a useful characterilzation of children's knowledge of arithmetic-in terms of three cognitive systems. System 1 , informal in nature, develops outside of the formal school setting and involves perception and thought used to deal with quantitative problems. Counting is not part゙ of System 1. System 2 involves counting but is still informal in that it develops outside of the context of schooling. It has a cultural component since it depends on social íransmission of
ycounting. System 3 is formal in that it deals with arithmetic taught in school. Ginsburg (1976) conjectüres tifhat a great deal of interaction takes phe between System 2 and System 3. "Probably the great majority of young children interpret arithmetic as counting regardless of how they are taught... they probably use counting as the basic ,method for dealing' with arithmetic" (?. 148). While-Ginsburg did not identify counting typologies used in this study, he is essentially correct in his observation that mathematics educators have assumed counting in their mathematics programs for early childhood. Counting has'been viewed as being acquired by children through experiences outside of the mathematics curriculum. Serious attention has not been given to counting in school mathemattcs ? texts for early'childhood and its role in, the formation of mathematical concepts and principles.

Freudenthal (1973) has pointed out' the importance of counting to aritḩmetic: "We stressed the didactical priority of the counting number... The child should learn to add by counting further, to subtract by counting backwards, to articulate the counting by tens, to multiply by counting with other intervals but.1, and so on" (p. 242). The data dfe this study clearly confirm that one cannot be arbitrary concerning how a particular child should learn to add, subtract, etc. It is clearly imporiant that one be assured counting §chemes are available to the child before addition or subtraction are * done as Freudenthal suggests. But if addition and subtraction are connected in the mind of the child through counting-ón and lcounting-back, a great savings transfer could occur in the learning of subtraction. Śtudies need to be designed to deternine if such transfer occurs.

Counting has been used identify learning-instructiom phases in addition and subtraction. "But data other than that.presented in this monograph are necessary to establish psychological credibility of these, phases. In
other words, can a child, for example, operate cognitively at the formalizationinterpretation phase but yèt not have synthesized couriting-on ahd counting-back? Is that synthesis a critical cognitive function for the interrelation of addition and subtraction? Experiments alsted done to determine if there exist transitional characteristics from do counting typology to another and from one learring instructional phase to another. Such transitional characteristics, if they exist, could "bt critical indicators of instructional procedures.
-
\(\therefore\) Because children possess, different colunting capabilities, counting must be moved from Ginsburg's System 2 to Syste中 3. It shoudd be a function of schóol'instruction to develop counting capabilities and to develop their 'use in the learning of, concepts and principles in school mathematics. It is the role of research to study development of counting in children and how they use, counting in other aspects of mathematics. Other than addition and subtraction, numeration is given as an example of how counting may be used by children to learn important school mathematics concepts.

It should not be sürprising that learning instructional phases for numeration are \({ }^{\circ}\) logically identifiable and are closely allied with.learning instructional phases for addition and subtraction. New elements, of course, are introduced into definitions of the phases.

The exploratory phase for numeration corresponds to the capability to point count and to the exploratory phase for addition and subtraction. Herg, children may be expected to count out collections of a given number (e.g., count out collections of two tens and five from, a pile of thirty-two objects). However, the collections are looked upon by the child as being \({ }^{*}\) just that-"piles of objects having no particular significance in the sense of being lasting in the mind of the child. They may not be looked at as representing two tens' and five but rather cease to exict in any way upon being
physically destroyed. There is no representation of "ten" in the child's mind (here, we are not speaking necessarily of an image but a unit consisting of a plụralịty).

The child who is capable of counting-on without tallying is capable of counting a set \(P\) (where \(\# P=15\) ) by' counting a set \(S\) of ten, holding that in mind as an entity, and counting "one \({ }^{\circ}\) ten and one," "one ten and two," "one ten and three," "one ten 'and four," "one țen and fivè." "So, here, \(P=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5} ; s_{6}, s_{7}, s_{8}, s_{9}, s_{10}\right\} \bigcup\left\{q_{10+1}, q_{10+2}, q_{10+3}\right.\), \(\left.q_{10+4}, q_{10+5}\right\}\). The, element \({ }^{\circ}{ }_{10+1}\) means that the child holds \(S\) in mind as an entity and conceives of \(\mathrm{q}_{10+1}\) as representing one ten ( \(S\) ) and one (the element \(q_{10+1}\) ): The assumption here is that for, a child to conceive : of 15 , it is necessary for him to have the potential of constructing 15 : as one ten and five more in the way described by the counting-on process. Obviously, under the assumption, \(\cdot 10+5\) must be a conception of 15 . Then mif 15 is to mean one ten and 5 more, a counting-ali strategy alone is no.t sufficient to allow the child to connect the ten and the 5 more into one number, 15.

Counting:on without tallying, then is assumed as critical for the abstraction-representation phase for numeration. But that is not enough. Counting-oñ with tallying is also assumed as necessary. If a child has a collection of, say, nineteen, \({ }^{\wedge}\) and knows it, if he counts, out ten, he should be able to counti-on from ten keeping track of how many he has counted-on, so he doesn't go past 19. That is to say, counting-on with tallying is conceived. of as essential. for`a child to find the number of tens in a given number It would seem countring-on with tallying is a minimal condition for knowing how to find the number of tens in."a given number at some level other than counting out piles of tens.'

Añother example is when a child counts a collection he doesn't know the number of, say a pile of 25 objects. The child can count:

\(\begin{array}{llllllll}11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\ 19 & 20\end{array}\)

12345

2122232425

The numeral under the'stars represent the child's count and means he takes one, says "one," takes another, says "two," etc., until 10 is reached. He then takes, another, says "eleven" and tallịes "one," takes another, "twelve" and tallies "two," etc. The ab"ove procedure represents a mental count of a pile of objects. When the child is done, he knows he counted, out two piles of ten. One may object and say children do not do the above. Perhaps true, but in the case where a child is asked to find the number of tens in 36 , he should to so on a basis other than. merely being trained to say "3." 'The assumption is that for the question to have numerical meaning for the child, he will have to' construct the collections of ten through counting and tallying, or be able to do so. Such a procedure involves the above represented tallying procedure. "The tallies, of course, may be fingers !

Numeration activities for a child in the exploratory phase would be counting out piles of ten from a pile of objects, counting the piles and then the ones remaining, and associating a numerical "ab" (a and b are digiťs) with the procedure. Visuals, such as a bundle of ten could be
used, but numerals would have little conceptual (or numerical) meaning, but would have figurative meaning. The abstraction-representation phase implies the child has internalized counting-on strategies available. Numeration now has the potential of carrying numerical information and is much richer in its meaning.

In the abstraction-representation phase, the child can be presented with more abstract content concerning numeration than children in the exploratory phase. Here, children are capable of learning the concept of place-value, of learning the numerals, their names, and of conceptualizing one hundred as ten tens. They essentially view a numeral such as " 56 " as being five units each of plurality ten and one unit of plurality six, because they are capable of mentally constructing (through rational countingon with tallying) the various units. They also conceive of the five units of ten and the one unit of six as making up a total unit of 56 . This discussion brings to mind set partition. But set partition is now viewed, at this age level, as being made possible because of rational counting with tallying. But, for a child to have achieved the abstraction-representation phase with regard to numeration he should know, for example that it would take more two's to make twelve than three's to make twelve. Such capability is taken as manifestation of the above described conception of " 56. "

The formalization phase for numeration presupposes the formalization phase for addition and subtraction. The flexibility of thought implied by, the formalization phase for addition and subtraction is, of course, that once a child starts at some point in the ordinal sequence and counts-on \(k\), having \(p+k\), he knows, without actually counting-back, thát if he would count-back, \(k, p\) would 'be the result. The number 36 means thirney and six more, so a child should know that 36 less 6 would be 30 because 36 is thirty and six more.
\[
\therefore: 35
\]

At the formalization phase, a child has, to.order numbers. So to order' 30. and 36 , the child should know the connecting link both ways: \(30+6=36\); or \(30=36-6\). Ordering 48 and 55 is not so easy. The child should be able to mentally manipulate two digit numbers in such a way that he knows 48 to 50 is 2 , and from 50 to 55 is 5 , so from 48 to 55 is 7 . He would also know, then, that from 55 to 48 is 7 . Another example is 39 and 71 . The child should be able to go from either one the other through rational counting-on with tallying or rational counting-back with tallying. For formalization of numeration, any two numbers should be connected by the child being able to find the distance between them, or equivalently, by solving \(\mathrm{a}+\square=\mathrm{b}\) or \(\square=\mathrm{b}-\mathrm{a}\), and solving one, knowing the other. That is, if a child figures out it is 42 from 39 to 71 , he should know it is also 42 from 71 to 39.

Formalization of numeration does not involve two-digit addition and subtraction in the sense of algorithm, work. However, it does involve the senseof order: That is, \(a<b\) whenever \(b-a=c>0\) (or equivalently, if there exists \(c\) where \(a+c=b\) ). The point is, the child must not only order the numbers, but. find \(c\) mentally. The concept of place-value constructed at the abstraction-representation level should mediate, at some point in time, the precess in finding c. For example, from 39 to 71,49 is ten, 59 is twenty, 69 is thirty, thirty-one, thirty-two. So, 32 is the answer. Formalization also implies that verbal number names and the written numerals are coordinated and each has two connotations-a place value connotation and a position in the number sequence.

1 The work with standard algorithms for addition and subtraction may be looked at as following acquisition of the formalization-interpretation phase for numeration. The algorithms may be, to the child, justefficient procedures for processing sums and differences: Learning-instructional phases must be also developed for multiplication and division and validated.

It should be clear that a greait deal of work remains in the construction . and validation of models for learning and instruction of particular concepts. Measurement and particular aspects of space and geometry are critical as are addition, subtraction, multiplication, and division of whole numbers and fractions. These models should be of the nature outlined by Beilin (1976) to be maximally useful to school programs.

Other than the problems outlined above, it continues to be of importance to continue to study the influence of variables in Ginsburg's System 1 on the acquisition of knowledge in his System 3. One study of immediate importance is to determine the influence of Quantitative Comparisons on acquisition - of numeration concepts.

Applebaum, M., \& Bargmann, R. E. Ả fortran II program for MUDAID: Multi--variate, univariate, and discriminant analysis of irregula data. Technical Report NONR 1834(39). Urbana: University of Illinois Press, 1967.

Barnes, W. E. Introduction to abstract algebra. Boston: D. C. Heath, 1963.
Beilin, H:" Stimulus and cognitive transformation in conservation. In D. ' Elkind, \& J. H. Flavell (Eds.), Studies in cognitive development: Essays in honor of Jean Piaget. New York: Oxford University Press, 1969.

Beilin, H. The training and acquisition of logical operations. In M. F. Rosskopf, L. P. Steffe, \& S. Taback (Eds.), Piagetian cognitivèdevelopment research and mathematical education. Washington: D.C.: NCTM, 1971.

Beth, E. W., \& Piaget, J. Mathematical epistemology and psychology. (Translated from the French by W. Mays.) Dordrecht, Holland: D. Reidel, 1966.
!
Brainerd, C. J. Analysis and synthesis of research on children's ordinal and cardinal number concepts. In R. A. Lesh (Ed.) \& D. A. Bradbard (Tech. Ed.), Number and measurement: Papers from a research workshop. Ohio State Unịversity: ERIC/SNEAC, 1976.

Dodweil, P. C. Children's understanding of number concepts: Characteristics of an individual and of a group test. Canadian Journal of Psychology, 1961, 15, 29-36.

Dodwell, P. C. Relations between the understanding of the logic of classes and of cardinal number in children. Canadian Journal of Psychology, . 1962, 16, 152-160.

Eicholz, R. E., \& Martin, E. Jr. Elementary school mathematics. r Reading: Addison-Wesley, 1971.

Elkind, D. The development of the additive composition of classes in the child: Piaget reeplication study III. The Journal of Genetic Psychology, 1961a, 99, 51-57.

Elkind, D. The development of quantitative thinking:, A systematic replication of Piaget's studies. The Journal of Genetic Psychology, 1961b, 98, 37-46.

Freudenthal; H. Mathematics as an educational task. Doredrecht-Holland: ; . D. Reidel, '1973.

Greco, P., \& Morf, A. Structures numériques élémentaries. Paris: ‘Presses Universitaires de France, 1962.

Ginsbürg, H. Learning difficultit in children's arithmetic: A clinical cognitive approach. In A. R. Osborné (Ed.) \& D. A. Bradbard (Tech. Ed.), Models for'learning mathematics: Papers from a research workshop.
- Ohio -State University: ERIC/SMEAC, 1976..
- Harper, H. E., \& Steffe, L. P. The effect's of selected experiences on the ability of kindergarten and first-grade children to conserve numerousness. Research and Development Center for Cognitive Learning, Technical Report No. 38, 1968.

Hausdorff, F. Set theory (2nd English Edition). New York: Chelsea - Publishing Company, 1962.

Inhelder, B., \& Piaget, J. The early growth of logic in the child, (Translated from the French by E. A. Lunzer \& D. Papert.) London: Routledge and\&Kegân Paul, 1964.

Inhelder, B., \& Sinclair, H. Learning cognitive structures. In P. J. Mussen, J. Langer, \& M. Covington, Trends and issues in developmental psychology. New•York: Holt, Rinehart \& Winston, 1969.

Johnson, D. C. Leaming of selected parts of a Boolean algebra by young children. In L. P. Steffe (Ed.), Research on mathematical thinking of young children:- six empirical studies. Reston: *NCTM, 1975

Kohnstamm, G. A. Piaget's analysis of class inclusion: Right or wrong?
. (Translated by M. Peeck-0' Toole \& G. Uildriks-Bone), the Hague: Mouton \& Co., \(1967^{\circ}\).

Kelly, J. L. General topology. New York: D. Van Nostrand, 1955.
LeBlanc, J.F. The performance of first grade children in four levels of conservation of numerousness and three IQ groups when solving arithmetic subtraction problems. (Doctoral dissertation, University of Wisconsin), Ann Arbor, Míchigan: University Microfilm, 1968, No.-68-7111.

Morton, R. L., Gray, M., \& Rosskopf, M. F. Modern arithmetic, through' discovery, book I. New Jersey: Silver Burdett, 1965

Mpiangu, B. D., \& Gentile; J. R. Is conservation, of number a necessary condition for mathematical understanding? Journal for Research in Mathematics.Education, 1975,'6, 179-192.
Osborne, A. R. The effects of two instrutional approaches on the understanding of subtraction by grade two pupils. (Doctorial dissertation, The University of Michigan) Ann Arbor, Michigan: University Microfilms, 1967, No. 67-0.8321.

Piaget, J. The child's conception of number. (Translated by C. Gattegno \& F. M. Hodgsón), London, Routledge \& Kegan Paul, :Ltd. .; 1952.
 - (Eds), Piaget rediscovered: A report of the conference on cognitive * studies and curriculum development. Cornell University, 1964.

Piaget, J. Genetic epistemology. (Transläted by Eleanor Duckworth.)
New York: Columbia University Press, 1970 ..
Piaget, J., \& Inhelder, 'B. The child's conception of space (Translated by F. J. Langdon \& Ja. L. Lụ̣zer). London: Routlédge \& Kegan Paul, 1963.

Sinclair, H. Number and measurement. In M. F. Rosskopf, L. P. Seeffe, \& . S. Taback (Eds.), Piagetian cognitive development research and mathematical education. Washingtor, D.C.: 1971.

Steffe, L. P.• The performance of first grade "c̣ildren in four levels of conservation of numerousness and three IQ groups when solving arithmetic addition probiems. Technical Report No. 14, Research and Development Center for Learning and Re-Education. Madison: University of Wisconsin, 1966.

Steffe, L. P. Ah application of Piaget-cognitrive development research in mathematical education research.- In R. Lesh (Ed.), Cognitive psuchology and the mathematics laboratory. Ohio State University: ERIC/SMEAC, 1973.

Tarski, A. Introduction to logic. New York: Oxford University Press, 1954.

Van Engen, H. Epistemològy, research and instruction. In M. Fy Rosskopf, L. P. Steffe, \& S. Taback (Eds.), Piagetian cognitive-development research and mathematical education. Washington, D.C.: NCTM, 1971.

Vitale, M. A. The effects of the comprehensive school mathematics program - on kindergarten and first grade children's ability to perform class inclusion, seriation, and transitivity tasks. (Doctoral dissertation, University of Georgia) Ann Arbor, Mich: University Microfilms, 1976, No. 76-2271.

Appendix A．1：Ordinality and Cardinality Tasks．

Task A．（ 12 counters in a row）

here are some counters in a row．If we start counting from tins end（S＇s left）， THis ONE IS＇FIRST（point），THIS ONE IS SECOND（point），THIS ONE IS THIRD（point）．

1：THIS ONE IS NINTH（point）．WHICH ONE IS．THIS？（point to tenth）
a．［］correct crmoditaly（go，to．\＃2）
b．［ ］correct bis counts from，the beginning 各
c．［］incorrect
THIS ONE IS NINTH（point），THIS ONE L SS TENTH（point），HHICH ONE
I＇s THIS？（point to leven h ）．
［ ］correct immediately
［ ］correct but counts from the beginning
［ ］incorrect
2．THIS ONE IS NINTH（point）．WHICH ONE IS THIS？（point to seventh）
a．［．］correct immediately
b．［］correct but counts from the beginning
c．［ ］incorrect

3. (dover seven with cloth) - Tuts ONE IS TENTH (point). HOW MANY ARE COVERED?
a. [ ] correct - HaW' DO YOU KNOW THAT?
b. [] how many are there in all
c.- []. incorrect - THIS ONE IS TENTH (point), HOW MANY ARE THERE IN ALL?
\(\because \mathrm{C} .[\mathrm{l}\) correct - RIGHT, AND HOW MANY ARE COVERED?
e. - [ ] five - FEEL THE FIRST ONE. WHICH IS NEXT? (feel second)
f. [ \({ }^{\circ}\) ] correct - HOW MANY ARE COVERED?
[ ] incorrect
[] incorrect - STOP
\(f\)
g. [ ] incorrect (not 5) - THIS IS TENTH (point), THIS IS ELEVENTH (point), THIS IS TWELVTH (point). HOW MANY ARE THERE IN ALL?
h. [ ] correct - HOW MANY ARE COVERED?

[ ] correct
[ ] incorrect
[ ] incorrect - STOP

Task B.

here are some counters in a row. © SOME of them are covered. feel the first ONE HERE.
<
1. THIS ONE IS FIFTH (point), WHICH ONE IS THIS? (point to sixth)
a. [ ] 'correct - go to \#2
b. [ ] incorrect - THIS ONE IS FIFTH (point), THIS ONE IS SIXTH (point). WHICH ONE IS THIS? (point to seventh) [ ]. correct

\section*{[.] incorrect}
2. THIS ONE IS FIFTH (point). HOW MANY ARE THERE IN ALL?
a. [ ] correct - HOW DO YOU DO THAT?
b. [] five- REMEMBER, THERE ARE SOME UNDER THE COVER. FEEL THE FIRST ONE. THIS ONE IS FIFTH (point). HÓW MANY ARE THERE IN ALL?
[ ] correct.
- [ ] incorrect
c. [ ] incorrect (not s) - THIS ONE IS FIFTH (point), THIS ONE IS SIXTH (point), THIS ONE IS SEVENTH (point): WHICH ONE IS THIS (point to eighth).
[ ] correct - HOW MANY ARE THERE IN ALL?
[ ] correct.
[ ] incorrect
[ ] incorrect - FIFTH (point), SIXTH (point), SEVENTH (point), \(\cdot\)
HOW MANY ARE THERE IN ALL?
[ ] correct
[ ] incorrect
3. THIS. IS THE FIFTH ONE (point). HOW MANY ARE COVERED?
a. [ ] correct - done
b. [ ] incorrect - THIS ONE IS FIFTH (point). WHICH ONE IS THIS (point to fourth)
[ \(]\) correct - HOW MANY ARE COVERED
[ ] correct immediate
[•] correct, trial and error
[ ] incorreçt
[ ] ikcorrect - FIFTH (point), FOURTH (point ). HOW MANY ARE COVERED?
[ ] correct
[ ] incorrect

Appendix A.2: Test of Counting Back; Just Before; Just After; Between. \(\nabla\)

\section*{COUNTING BACK}

WE ARE GOING TO PLAY A GAME. IT GOES LIKE this: (Count out 5 discs, from the child's left to right, then count backward from the fifth disc).
NOW YOU PLAY THE GAME (Give the child 3 discs).
A. YOU PLAY THE GAME (Give the child 8 discs).
[ ] correct. PLAY IT WITH THESE (12 discs).
[ ]. correct COUNT BACKWARD FROM 15
[ ] . wrong. PLAY WITH THESE ( 4 discs).
JUST BEFORE - JUST AFTER
TELL ME THE NUMBER THAT COMES JUST BEFORE 3
TELL ME THE NUMBER THAT COMES JUST AFTER 3
B. TELL ME THE NUMBER THAT. COMES JUST BEFORE 14
[ ] correct. Stop
[ ] incorrect. JUST BEFORE 11
C. TELL ME THE NUMBER THAT COMES JUST AFTER 14
[ ] correct. ,Stop
[ ] incorrect. 'JUST AFTER 11

\section*{'BETWEEN}

CAN YOU GIVE me a number that goes between 1 and 3 ? "(Show child card with
1, \(2,3,4, * 5\) on it).
REMOVE CARD: STOP AT FIRST WRONG. ANŞWER
C. CAN YOU GIVE ME ANOTHER NUMBER THAT GOES BETWEEN 8 AND 12? '[] ANOTHER?

CAN YOU GIVE ME A NUMBER BETWEEN 8 AND 6?

\section*{Appendix A.3̣: Verbal Problems With Objects}
1. BILL HAS 3 MARBLES. TOM GIVES HIM 5. MOREs HOW MANY MARBLES DOES BILL HAVE NOW?
2. THERE ARE 7 APPLES \(\angle I N\) A BASKET. SALLY TOOK 5 OUT TO MAKE A PIE: HOW MANY APPLES ARE LEFT IN THE BASKET?

1 3. MIKE HAS -5 BLOCKS, HE FOUND SOME MORE. NOW HE HAS 8 BLOCKS. HOW MANY DID HE FIND?

4 . THERE ARE 8 BUTTONS IN A BAG. JANE TOO 2 BUTTONS OUT OF THE BAG TO SEW ON A DRESS. 'HOW. MANY BUTTONS ARE LEFT IN THE BAG? 5. RON HAS 4 TOY CARS. MARY' GIVES HIM 3 MORE TOY CARS. HOW MANY TOY CARS DOES RON HAVE NOW?
6. LORI HAS 3 JACKS IN HER HAND. SHE PICKED UP SOME MORE AND NOW HAS 7 IN HER. HAND. HOW MANY DID SHE PICK UP?

\section*{- Appendix A.4: Verbal Problems fifth No Objects}

1? KEVIN has 4 CRAYONS. JERRY GIVES him 3 MORE' CRAYONS, LOW MANY CRAYONS DOES KEVIN have 'Now?
2. There are eight marbles in a bat jane took 2 marbles out to Play with. how many marbles are' left in the. bag?
 DOES SALLY HAVE NOW?
4. TOM HAS 5 COMIC bOOKS. he GOT SOM' MORE FOR HIS BIRTHDAY. NOW he has 8 COMIC bOOKS., hOW MANY MORE did he get for his birthday? 5. there are 7 NUTS. in a dish. tom takes 5 nuts. out to eat: how t. many nuts are left in the dish?
- 6. 子 MIKE has 3 CATs. his mother gave him some more. he now has 7. HOW MANY DID hIS MOTHER GIVE HIM?/
\(j>\)
\}
1. HOW MANY RED CHECKERS ARE HERE (child counts)? HOW MANY BLACK C CHECKERS ARE HERE (child counts)? (Get \(s\) to count and agree that there are 10 of each. Then stack the blacks in stacks of \(3,3,3\), and 1 and the reds in stacks of 5 and 5). TELL ME IF THERE ARE MORE BLACR CHECKERS, OR MORE RED ONES; OR IF THEY ARE THE SAME.

WHY?

2. HOW MANY WHITE MẠRBLES ARE HERE?

HOW MANY BLUE MARBLES ARE HERE?
(G̣et the child to count ana agree there are \(12^{\circ}\) of each. Then put into transparent glasses, white 9-.3 and blue 4-4-4).
TELL ME IF THERE ARE MORE WHITE MARBLES, OR MORE BLUE ONES, OF IF THEY ARE THE SAME.

WHY?

3. The child was presented with two transparent glasses of beans filled to the same level, and told there were 100 beans in each. If necessary, adjustments were-made so the child woild agree there were the same number in both cups. 'The beans were then poured into transparent glasses, one into two glasses (most-few) and the other into three glasses evenly.
TELL ME TF THERE ARE MORE BEANS IN THESE CUPS (motion over the two glasses), OR MORE INoTHESE CUPS (motion over the three glassès), OR IF THEY ARE THE SAME.

WHY?

4. "The child was presented with two transparent glasses of kernels of popcorn filled to the same level, and told there were the same number of kernels in each. The popcorn was then poured. into two transparent - glasses, one into two glasses evenly and one into three glasses (most-。 few-few).

TELL ME IF THERE ARE MORE KERNEL'S OF POPCORN IN THESE CUPS (motion over. the two galsses), OR MORE IN THESE CUPS (motion over the three glasses), OR IF THEY ARE f HE SAME.

WHY?


251

Appendix A.6: Addition and Subtraction of Ordinal Numbers Tasks Addition of Ordinal Numbers.

1: START AT FOUR AND COUNT ON THREE MORE NUMBERS FROM FOUR (If unsućcessful, demonstrate).
2. START at SEven and Count on four more numbers from seven (if unsucçessfuí, demonstrate).
3. STM AT. TWELVE AND CÔUNT unsuccessful', demonstrate).
4. Three checkers covered with a cidth are presented to the child, Four visible checkers arranged randonly fre also presented to the child. E: THERE ARE THREE CHECKERS UNDER THE GLOTH. COUNT ON TO FIND HOW MANY CHECKERS ARE THERE ON THE CARD?

5. The same as (4) ex́cept seven checkers wére under the cloth and - five checkers were visible.

6. Three checkers covered with a cloth are presented to the child. Five ? visible checkers arranged randomly are also presented to the child:
E. HERE ARE FIVE CHECKERS. THERE ARE SOME MORE UNDER THE CLOTH. there are eight checkers in all on the card. Count on to -FIND HOW MANY CHECKERS ARE UNDER THE CLOTH.

7. The same as (6) except there are 12 checkers in all, eight visible.


Subtraction of Ordinal Numbers
1. START AT FOUR AND COUNT BACK THREE NUMBERS (If unsuccessful, demonstrate).
2. START AT SEVEN AND COUNT BACK THREE NUMBERS (If unsuccessful, demonstrate).

3: START AT TWELVE AND COUNT BACK FOUR NNMBERS. (If unsuccessful, demonstrate).
4. Four checkers covered with a cloth are presented to the child. Three visible checkers arranged randomly are also presented to the child.'
E. there are some checkers under the cloth. I counted them all., ON THE CARD AND THERE ARE SEVEN. COUNT BACK, STARTING AT SEVEN, TO FIND OUT HOW MANY ARE UNDÉR.THE CLOTH.

5. Seven checkers, four under one cloth and three under another cioth, are presented to the child.
E. THERE ARE SEVEN CHECKERS ON THE CARD UNDER THESE CLOTHS. THERE ARE FOUR CHECKERS UNDER THIS CLOTH (point). COUNT BACK, STARTING AT SEVEN, TO FIND OUT HOW MANY ARE UNDER THIS OTHER CLOTH (point).

6. The same as (4), except there are seven checkers covered and five visible.
E. HERE ARE SOME ADDITION AND SUBTRACTION PROBLEMS. I WOULD LIKE YOU TO SOLVE THEM. DO ©NOT USE YOUR FINGERS TO HELP YOU, OR MAKE MARKS ON YOUR PAPER.
1. \(5+3=\) \(\qquad\)
2. \(\dot{9}+2=\) \(\qquad\)
3. \(8-2=\) \(\qquad\)
4.- \(11-3=\) \(\qquad\)

Appendix A.8: Nested Classification Tasks.
'Taska: NESTED CLASSIFICATION
'here are bunch of things. put all the round things inside this.
\(=\). (big) STRING. (Pụt small string inside) PUT ALL THE BUTTONS INSIDE THIS (small) STRING.


Warm-up tasks (correct child's mistakes) (green feit square) PLACE THIS WHERE IT GOES. (brown, round button) PLACE THIS WHERE IT GOES. (green wooden disc) PLACE THis WHERE IT GOES. (black square button) PLACE THIS WHERE IT GOES. -Questions
THERE IS SOMETHING IN THIS BOX THAT GOES WITH THESE, (point and place box with round things not buttons),

- Warm-uyquesks (correct child's mistakes)
- (brown squàre tile) PLACE THIS WHERE IT GOES. (blue wooden disc) PLACE THIS WHERE IT GOES.
Whitersquare tile) PLACE THIS WHERE IT GOES.
te felt circle) PLACE THIS WHERE IT GOES.
plyestions
ghere is somethay in this box that goes with these. (point and place零 box with nonwhite buttons.)
1. COULD IT BE ROUND?
\(a\) [ ] no is it a button? \(\quad[\quad]\) no, \([\cdot]\) yes [] \(\operatorname{can}\) 't tell [ ] yes IS IT Round? - [ ] no, [ ] yes [' ] can't tell [] can't tell
2. COULD IT BE \(\dot{A}\) WHITE BUTTON?
- [•] no [ ] can't tell.
[ ] yes IS IT A WHITE BUTTQN?
[]no [.] yes
3. COULD IT BE A SQUURE?
[.]no [•]can't tell
a [ ]IS IT A SQUARE?
[ ]no . ['] yes
4. COULD IT BE RED?

5 [ ]no [.]can't tell
\(a \cdot[\) ]yes COULD IT BE.A RED CHECKER? [ ]no [ ]yes.
5. COULD IT \({ }^{\circ}\) BE-WHITE?
no - can't tell
a yes - IS。IT WH́ITE?
[ ] no
[]yes
\(6 \therefore\) COULD IT BE A BUTTON?
[ ]no .['] \({ }^{\text {non't tell. }}\)
a [ ]yes IS IT A BUTTON? [ ]no. [ ]yes

\section*{nested. CLASSIfication supplement}

\section*{Check out}

POINT TO ALL THE BUTTONS.
POINT TO ALL THE WHITE BUTTONS.
POINT TO ALL THE ROUND THINGS.

Questions
WHICH ARE THERE MORE O

WHICH ARE THERE MORE OF, ROUND THINGS OR WHITE BUTTONS? WHY?
(STOP if both of the previous questions are correct.)
Otherwise - (pretend the buttons are candy)
WHICH WOULD YOU RAM PER HAVE, ALL THE CANDY OR ALL THE WHITE CANDY? WHY?

If correct - WHICH ARE THERE MGRE OF, BUTTONS OR WHITE BUT'TONS?. WHY'?
(one loop, stick inside) THIS STICK IS INSIDE BECAUSE X I CAN'TrPULL THE LOOP OFF. (attempt to pull)
(two loops, orange inside blue, stick inside rive, outstare orange) THIS STICK IS INSIDE \({ }^{\circ}\) THE -BLUE LOOP BECAUSE I CAN'T PULL IT OFF. . (attempt) THIS • STICX IS NOT INSIDE THE ORANGE LOOP BECAUSE I CAX PULL IT ÓFF. (pull it off),

\section*{Task}


少

PUT THE STICK INSIDE THE RED LOOP BUT NOT THE' GREEN ONE.

PUT. THE STICK INSIDE THE RED LOOP AND THE GREEN ONE,
COULD YOU PUT THE STICK INSIDE THE GREEN LOOP BUT NOT INSIDE THE RED LOOP? [ ]no [ ]yes show ME How.


Task B
\(:\)


PUT THE STICK INSIDE THE BLUE RING ONLY. •

PUT THE STICK INSIDE ALE THREE RINGS.

PUT THE S̈TICK INSIDE EXACTIY TWO RINGS.

Task \(C, i\)


Appendix A.10: Class inclusion

\section*{Item 2.}

4.
- POINT TO THE. FLOWERS, POINT TO THE WHIT́E FLOWERS, POINT TO THE RED. FLOWERS.

WHICH ARE THERE MORE OF, RED FLOWEES OR FLOWERS?
WHICH ARE THERE MORE OF, FLOWंERS OR RED FLOWERS?

Item 3.


POINT TO THE RED SHAPES.
POINT TO THE SQUARE SHAPES.
POINT TO THE ROUND SHAPES.
WHICH ARE THERE MORE OF, ROUND SHAPES OR RED SHAPES?,
\(=\) Which are there more of, red shapes or round shapes?
*item 4.


POINT TO THE DOGS.
POÎNT TO/THE CATS.
- POİNT TO THE-ANIMALS.

WHICH ARE THERE MORE OF, ANIMALS OR GATS?
WHICH ARE THERE MORE OF; CATS OR ANIMALS?

9


Item 5.


POINT TO THE BUTTONS.
POINT TO THE WHITE BUTTONS.
POINT TO THE BLACK BUTTONS.
WHICH ARE THERE MORE OF; BLACK, BUTTONS ÓR BUTTONS? WHICH ARE THERE MORE OF; BUTTONS OR BLACK BUTTONS?

\section*{-APPENDIX A.11. Quantitative Comparisons.}

Item W-1. TELL ME IF THERE ARE MORE RED ONES, OR MORE GREEN ONES, OR IF THEY ARE THE SAME. WHY?


Item li-2. tell me if there are more red ones, or more green ones, ' OR IF THEY ARE THE SAME: WHY?


Item 1. , TELL ME ' IF THERE ARE MORE' RED ONES, OR, MORE GREEN ONES, OR IF THEY ARE THE SAME. WHY?


Item 2. TELL NE IF THERE ARE MORE RED ONES, OR : \(\because\) PSE GREEN ONES, OR IF THEY ARE THE SAME. WHY?


Item 3. TELL ME IF THERE ARE MORE RED ONES, OR :UEI GREEN ONES, OR IF THEY ARE THE SAYE. WHY?


Item 5. TELL MÉ IF THERE ARE MORE RED ONES, OR :ORE GREEN ONES, OR IF THEY ARE THE SAME. WHY?


Item-6. - TELL ME IF there are more red ones, QR MORE GREEN ines, or If they are the same. Why?


Item 7. TELL ME IF' there are more red ones, or hone green ones, OR IF THEY ARE THE SAME. WHY?


Item 8. TELL ME IF THERE ARE MORE RED ONES: OR MORE GREEN ONES, , OR IF THEY ARE THE SAME. WHY?


1
\(x\)
\(\cdots\)
\(\because \cdots 1\)





APPENDIX B
"pon

RECORD SHEETS
1. Class Inclusion Recbfd Sheet

\section*{Item 1}
() airplanes

Toys or airplanes
WHY?
() horses
( ) toy \({ }^{\text {º }}\)
airplanes or TOXS
Item 2
( ) flowers
red flowers' or FLOWERS

FLOWERS or red flowers

Item 3
( ) rea shapes
round shapes or RED SHAPES'
WHY?
() square shapes
( ) round shapes
Item 4
( ) đoges•
() cats \({ }^{\prime}\)
() animals

\section*{Item 5}
() buttons
black buttons 'or BUTTONS
WHY?

Comments:
. 2. Loop Inclusion Record Sheet
TASK A:
Inside red, not green.


Inside green, not red.


TASK B:
.Inside blue only

- Inside exactly two.

'Inside yellow, not green.


Inside' yellow and green.


24. Nested Classification Record Sheet (Task B).

5. Counting Back and Just Before - Just After \({ }^{\text {® }}\) Record Sheet.

\(\therefore \quad .\)\begin{tabular}{|c|c|c|}
\(\mathrm{P}_{8} \cdot\) & \(\mathrm{P}_{12}\) & verbal \\
\hline & \(\cdot\) & \\
\hline
\end{tabular}
l=correct \(0=\) incarrect \(\mathrm{x}=\mathrm{omit}\)

Comments:
6. Between Record Sheet.

\section*{20}

more
i
\[
\imath^{\prime}
\]

\(F\)

8. Cardialordian Number Task B Record Sheet.


11. Mental Arithmetic and Verbal Problems Without Object's Record Sheet.

Rećord Sheet Tape 3



sub̀tracitión
\(\left.\begin{array}{lll}\begin{array}{ll}\text { write } \\ \text { what's } \\ \text { said }\end{array} & \ddots & {[1]} \\ {[2]}\end{array}\right]\)


ED 144.812
AUTHOR
TITLE.

INSTITUTION
SPONS AG ENCI
REPORT
POB DATE
GRANI NOTE.
-EDRS 'PRICE DBSCRIPTORS

IDENTIFIERS

Nichols, Eugené D. First., and Second Grade Children's Interpretation of Actions Opon Objects. PMDC Technical Report No. 14.

Florida State, oniv., Tallahassee. Project for the Mathematical Developmènt of Childresn.
National Science Poundation, Mashington, D.C. PMDC-TR-14
76
NS:P-PES-74-18106-A-03
15p.; Fori rèlated documents, see SE 023 057-058. SE 023 060-066, SE. 0.23.068-072; Contains occasional light and braken type

MP-\$0.83 íc-\$1:67 Plus postage.
*Cognitive Deveropment; Educational Eesearch; *Elementary School Mathematics; Instruction; *Learning; *Manipulative Materials; *Mathematical Concepts: Primary Education; Teaching Methods Equality (Mathematics); *Project for Mathematical Development of Children

ABSTRAC.T
An exploratory investigation designed to.gain insights into children's mathematical formulation of observed actions upon objects ispresented. Eight episoles ín which first and second grajers were asked to interpret, in terms of number sentences, a sequence of actions with unifix cubes are alsó presented. Results of analysis of the videofaped episodes are presented and discussed in. relation:to . chilldren \({ }^{2}\) concepts of equality: (MS)
```

. 8

```

***\#**** * materials nat available from other sources. ERIC makes every ef fort * to obtain, the best copy arvailable. NeFertheless, items of marginal * reproducibility are often encounterez and this affects the quality * of the microfiche and hardcopy reproductions ERIC makes available * Via the ERIC Document Reproduction'Service (EDRS). EDRS is not * responsible for the quality of the original documeat. Reproductions * * supplied by EDRS are the best that can be made from the original.

PMDC Technical Report No. 14

THIS DOCUMENT HAS BEEN REPRO. OUCEO EXACTLY AS RECEIVED FROM OUCEO EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGIN.
ATINGIT POINTS OF VIEW OR OPINIONS AIING IT POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRE SENT OFFICIAL NATIONAL INSTITUTE OF EDUcATION POSITION OR POLICY

Robert M. Johnson

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC AND USERS OF THE ERIC̣'SYSTEM "

\section*{First and Second Grade}

Children's Interpretation of Actions upon Objects

Eugene D: Nichols


PREFACE
- This publication shares with the interested individuals the results of'zn exploratory investigation designed to gain insights into the children's mathematical formulation of observed actions upon objects. It is hoped that the reader interested in research on young children's mathematicad thinking will find this publication a source of ideas for fürther exploration of this area.

A special gratitude is expresséd to two doctoral students in Mathematics Education at the Florida State University: Patricia. Campbell, for assisting the author with the managerial aspect's of the interviews, and Max Gerling., for videotaping the interviews.

Thanks arée due to the Project administrative assistant, Jañelle Hardy, for coordinating the technical aspects of the preparation of the report, and. to Joe Schmerler for the typing.

Ed Begle recently remarked that curricular efforts during the 1960's laught us a great deal about how to teach better mathematics, but very little about how to teach mathematics better. The mathematician will, quite likely, agree with both parts of this statement. " The layman, the parent, and the elementary school teacher, however, uqestion the thesis that the "new math" was really better than the "old math. ". At best, the fruits of the mathematiss curriculum "revolution" were not sweet. Many judge them to be bitter.

While some viewed the curricular changes of the l960's to be "revolutionary," others disagreed. Thomas C.'O'Brien of Southern Illinois Universixty at Edwardsville recently wrote, "We 'have not made any fundamentalacinange in school mathematics."l He cites Allendoerfer who suggested that a curriculum which heeds the ways in which young children learn mathematics is needed. Such, a curriculum would be based on the understanding of children's thinking and learning. It is one thing, however, to recognize that a conceptual model for mathematics curriculum is sound and necessary and to ask that the child's thinking and learning processes be heeded; it is quite another to translate these ideas into a curriculum which can be used effedlively by the ordinary \&lementary school teacher working in the ordinary elementary school classroom.

Moreover, to propose that children's thinking processes should serve as a basis for curriculum development is to presuppose that curriculum makers agree on what these processes are. Such is not the case, but even if it were, curriculum makers do not agree on the \(1 m p l i c a t i o n s\) which the understanding of these thinking processes would have for curriculum development.

In the real world of today's elementary, school classroom, where not much hope for drastic changes for the better can be foreseen, it appears that in order to build a realistic, yet sound basis for the mathematics curriculum, children's mathematical thinking must be studied intensively in their usual school habitat. Given an opportunity to think freely, childrent clearly display certain patterns of thought as they deal with ordinary mathematical situations encountered daily in their classroom. A videotaped record of the outward manifestations of a child's thinking, uninfluenced by any teaching on the part of the interviewer, provides a rich source for conjectures as to what this thinking is, what mental structures the child has developed, and *how the child uses these structures when dealing with the ordinary concepts of arithmetic. In addition, an intensive analysis of this videotape generates some conjectures as to the possible sources of "what adults view as" children's "misconceptions" and about how the school environment (the teacher and the materials) "fights" the child's natural thought processes.

The project for the Mathematical Development of Children ' (PMDC) \({ }^{2}\) set out l"Why Teach Mathematics?" The Elementary School Journal 73 . (Feb. i973),
258-2.68.

\footnotetext{
\({ }^{2}\) 2PMDC is supported by the National, Science Foundation, Grant No. RES 74-' -18103-A03.
}
to create a more extensive and reliable basis on which to build mathematics Eurriculum. Accórdingly, the emphasis in the first phase is to trì to. understand the childiren's intellectual pursuits, specifically their, attempts to acquire some basic mathematical skills and concepts.

The PMDC, in its initial phase, works with children in grades 1 and 2 . These grades seem to comprise the crucial years for the development of base's for the future 'learning of mathematics, since key mathematical. con'cepts begin fo form at these grade levels. Théchilaren's.'mathematical developrient is studied by means of:
i. One-ţo-one videotaped interviews subsequentiy analyzed.by variou's individuals.
2. Teacning experiments in which specific variables are observed in a group teaching setting with five to fourteen children.
‘3. Intensive observations of children in their regular cl"assioom setting.
4.' Stadies aesigned to investigate intensively the "éect' of a* particular variable or medium on communicating mathematics'to youhg childaren.
5. 'Formal testing, both group and one-to-one', "designed to provide further insights into young children's mathematical knowledge.
\(\therefore n^{\prime \prime}\). The PMDC staff and the Advisory Board wish to report the project's activities and findings to all who are interested in mathematiaal educâtion one means for accomplishing this is the PMQC publucation program.

Many individuals contributed. to the activities of PMDC. Its 'Advisory Boa'rd mpmbers are: "Edward Begle, Edgar Edwards, Waltër Dick; Reneé Hency," John LeBlanc, Geräld Rising, Charles Smock, Stephen Willoughby, and Lauren Woodby - The principal investigators are: Mer!yniBehr \(y_{2}\). Tom Denmark, - Stanley Eflwanger, Janice Flake, Larry Hatfiele, William McKillip, Euğene D. Nichols, Leonard. Pikaart, Leslie Steffe, and the evaluator, Pay Carry. A special \({ }^{\text {º recognition for this publication is given to the pMDC Publications }}\) Committee consisting of !Kerlyn Behr (Chairman), r.'Thomas Cooney, and Tom
- Denmark:

As part of several types of research activities of the Project for the Mathematical Dęvelopment of Children, a clinical study of first and second .grade children was-carried but at an elementary school of about 1,000. children in the southeast. The purpose of the study was to find out how children interpret, in terms of number sentences, certain actions performed on physical objects. The objects used were single unific cubes. 'To obtain uniformity of stimuli, a sequence of actions on the cubes was recorded on a videotape. The author performed the actions upon the cubes and subsequently used the tape individually. with children.

The sequence of events in interviewing each child individually was as follows:

\section*{Step 1.}

After the child wrote his/her name on a sheet of paper., the experimenter said:

How about writing a number sentence for me--any number sentence you like?.

If the child wrote something that was not considered. a number. sentence (examples appear later in the text), the experimenter said:

How about now writing something that has' a plus or ad minus and an equals, sign?

Step 2. Next the experimenter said:
Now I am going to talk to.you on. TV. I'll tell. you to do something. You watch and do it, OK?

Step 3.
The eight action episodes were shown to the child on a 20 -inch' screen. After each episode, the tape was stopped, the child wrote'a sentence, and then the next episode was shown.

Each of the eight episodes was presented in the same mode. The first episode is fully. described below along with the instructions in the order in which they were presented. These instructions were also repeated in each. episode.

Episode l. Fiverunifix cubes are placed on a table as. follows: .


The experimenter points to each cube in`silence, giving the child an opportunity to count the cubes. Then he says, "Watch carefully." Two blocks on the left (child's view \({ }^{\prime}\) are pushed off the table (a strip of cardboard is used to assure that the blocks fall off simultaneously). Then the
experimenter says, "Write a number sentence that tells what I did." The resulting configuration, after the blocks 'have been pushed off, remains visible on the screen for from three to five seconds, then is phased out. The child writes a sentence and is asked to read it, Then the next episode is presented in the same. sequence.

Episode 2.


Episode 3.


The experimenter picks up the two block's with the right hand and

Episode. 4.


The experimenter picks up the one block with the left hand and removes it from the view of the child.

\section*{Epiapode 5 .}


The experimenter pushes simultaneously the two and the three. blocks together (two strips of cardboard are used for this purpose), so that one pile of blocks is formed.

\section*{Episode 6.}


The experimenter pushes the three blocks and the. one block together as in Episode 5.


The experimenter, using two strips of cardboard, simultaneously pushes apart the two and the four blocks, so that two. sets of blocks are obtained at the opposite ends of the table..


The experimenter pushes the 'six and the one blocks aparit, as in Episode 7.

THE RESULTS
- . As previously mentioned, it was necessary. to ascertain the children \(\because\) had some referent for the phrase number sentence, thus the directions,

How about writing a number septence for me--any number sentence you like?
was given first. In response to these directions, the following are some examples Qf what children wrote.

\section*{First graders}

123456789101112
: 11
\(1+2+4-5\)
\(?\)

\section*{Second graders}

I'like 2
I am nine years old.
I had 5 piecies
A boy is big
1234.5678910 .11 .1213
\(\Gamma \cdots=\square=3\).
I am 6 yéars old.

It is interesting to note that the responses the first graders wrote to the request for a number sentence, fall into these categories: . . "
(1) a'sequence of numbers, or
(2) a single number, of
(3) a phrase containing addition and suptraction.

In the examples above it can be seen that second graders are more flexible in interpreting a "number, sentence." This intarpretation_embraces English sentencés which refer to numbers as well as sizie.

Following the second set of instructions,

How about now writing something that has a plus or a minus and an equal sign?
all children wrote number sentences.
3The following is a sumary of the resiults for 22 . first graders (beginning of March) and 25 second graders" (middle of October)

Episode 1. Five-blocks on the table, two pushed off
Sentences written by children
B: Frequency
- First graders \(\quad\) Second \({ }^{\circ}\) graders

12 (6. horizontal, 14 ( \(12 \mathrm{~h}, 2 \mathrm{v}\) ) 6 vertical)

\(.3(2 h, 1 v)\)


1 (h)
- 2 . \(>5\)

Episode 2. Five blocks on the table, three pushed off"


Eplsode. 3. Five blocks on the table, two picked up


Episode 4. Five blocks on the table, one picked up.
\(5-1=4\)
4
other

11 (6h, 5v)
19. (16h, 3v)
i..

2
10
4


Episode 5. Two and three blocks pushed together


Episode 6: Three blocks and one block pushed together
\[
\begin{aligned}
& 3+1 \doteq 4 \\
& 4-0=4
\end{aligned}
\]

3 (Rh, lv)
12 (h).
4 (3h, lv)
\({ }^{*} 2\) (lh, Iv)

4
2
2
\(1+3=4\)
1 (h)
1 (v)
- other

12
8
Episode 7. Six blocks, four and two separated is.


Episode 8." Seven blocks, one and 'six separated

\(<\)

DISCUṠSION
In.selecting the first six ẹpisodés the PMDC staff postulated "key" \(\therefore\) responses. They were as follows:
i. \(5-2=3\)
4. \(5-1=4\).
2. \(5-3=2\)
5. \(2_{1}+3=5\) or \(3+2=5\)
3. 5: \(-2 .=3\)
6. \(3+. i=4\) or \(1+3=4\)

Accepting these, as "correct responses," the percents of "success" are as. follows:


With the exception of the first. episode, the second graders have given the expected, response much more frèquently, than the first graders. It
- would" probably be safe to ascribé this difference to the effect of the longer period of teaching, during whic̣h the predominant emphasis was on addition and subtractipn.
', It'is interesting'to note the differences' in preferences fqr ther horizontal over the vertical form of writing sentences. For the expected responses, the following are the percents of children who. used the horizontal form (the "keyeḍ" response is taken fo be 100\%).



The second graders' greater preference for 'the horizontal form (except '. for' Episode 1) can probably also be attributed to instruction; at that particular school the horizontal form was used more frequently than the vertical form.

The construction of Episodes 7 and 8 was motivated by the investigatetions of children's concept of equality, discussed, in other PMDC publications \({ }^{3}\). The crucial observation made in those investigations was that first and second graders' reject the equality form \(a=b+c\) ass being'. "wrong" and "backward." The author attempted to construct a dynamic. situation with manipulative which might suggest. to children this sentence form. The obvious manipulation seemed to be a motion separating simultaneously a set of objects into two subsets. From the following results, it is seen that the intended interpretation did not take place. It seems that the sentence form \(a^{\prime}+\bar{b}=c\) or \(a-b=c\) is so strongly imbedded in - children's thinking, that they employ these forms to the exclusion of others in interpreting actions upon objects.

The following results were obtained for the last two episodes: Episode 7. Six blocks, four and two separated


\footnotetext{
3'Behr, M., S. Eriwanger, and E. Nichols. How Children View Equality Sentences (PMDC Technical Report No. 3); and T. Denmark. E. Barco, and J. Voran. Final Report-A Teaching Experiment on Equality. Tallahassee, Florida: Florida State University, \(1976 . \quad\),
}

The complete abstinerte from writing the fotm \(a=b+c\) shóluld be investigated further. Although children reject•it as "wrong" and "backward," one might construct•an experiment in which chíldren could be enticed into pretending that a sentence lịke \(6 \doteq 4+2\) is alright and then asked to tell a story about real objects which would fit this sentence. It would be important to search for models which seem sensible to children and which promote the concept of equality as an equiyalence relation,. rather than as an operator. A study carried out by Coleen. Frazer \({ }^{4}\) points out that even college students do not possess an operational concept of the symmetric property of equality. The ability of an individual to accept, with great ease, the symmetric and possibly other properties of equality, does not neçessarily mean that this ibdividual is able to work with equal success with the two symmetric forms.

This exploratory experiment suggested that children begin very early in their school days to formulate mental constructs about the very crucial concept of equality and this particular construct, possibly extremel \(\dot{Y}\) inadequate, might persist throughout, the flater years.
*. Our informal observation of. second graders' whose teacher taught the children to use the phrase "is the same as" for the symbol "=" suggested that this phrase, rather than "is equal to" might be more conducive to children's mental construct of equality as a relation.

If one accepts the thesis that young children should indeed perceive mathematics as an "action" subject and that the primary goal should be to teach these children how to do mathematics and, furthermore, if one would want the symboiism to be isomorphic to students' thinking about the actions suggested by the symbols, then the conventional use of the equality symbol is inadequate. More than that, this use is contrary to children's perceptions. The symbol, which would be consistent with children's perception of mathematical operations would have to be a non-symmetria, one-way symbol. For example, the'symbol \(\longrightarrow\) in \(\left(4^{\prime}+3\right) \longrightarrow 7\) would more closely correspond. to how first and second graders think about addition. It would suggest. that adding 4 and 3 results in 7 . The same symbols in \(7 \rightarrow(4+3)\) should then possibly suggest separating 7 into 4 and 3 . The latter situation, however, raises, the question about the use of the addition symbol:, is it really analogous to the operation, expressed in \((4+3) \longrightarrow 7\), as the child perceives it? Perhaps separation of 7 into 4 and 3 would be more adequately expressed by \(7 \longrightarrow(4,3)\) and corresponding actions on objects performed in such a way that \(7 \longrightarrow(4,3)\) would be different from \(\nabla \longrightarrow(3,4)\).

This investigation suggests that the sentences \((3+4)^{\circ} \longrightarrow 7\) and \(\lambda(3+4)\) portray non-symmetric situations, as children perceive them, thus suggesting that the equality symbol, intended to have, the symmetric property, is not the most appropriate one to use.
\(\because\) The matter of equality and the basic operations is central to the elementary school mathematics curriculum and beyond. The investigation

\footnotetext{
4Frazer, C. D. "Abilities of College Students to Involve S.mandetry of Equality With Applications of Mathematical Generalizations," Florida State University, Tallahassee, Florida, 1976.
}

1 described in this paper is only a beginning of the kind of research .that 2. . should continue. The main' goar of the research should be to understand how children, as a result of their early experiences with mathematics, come to formulate mental constructs which possibly dominate therr thinking, for a long time.

ED \(144 \quad 8,14\)
AOTHOR
TITLE
pob date
NOTE
EDRS PRICE
-DESCRIRTORS

IDENTIFIEPS
ABSTRACT

D'Ambrosio, Ubiratan
Issues Arising on the 0se of Handtheld catculators in Schools.
[77]
.11p.; Contains oćcasional marginal legibility
MF-\$0.83 HC- \(\$ 1.67\) Plus Póstage.
*Deqeloping Nations; Educational Change; *Educational Needs; Instruction; \#Instructional Aids; Learning; Matinematical Model's; *hathematics Education; *Number Concept's; Problem Solving.
Brazil; *Calculators
This - paper notes three objections to the use of hand-held calculators in schools: they would (1.) block reasoning, (2) make individuals machine-dependent, and (3) broaden the gap between developed and underdeveloped nations. Each is addressed, with specific examples used to refute them. The belief is strongly expressed that calculators can aid in ajjusting social imbalances between "have" and "have not" groups and nations. Projects in Brazil in which calculators are being, used are cited. The use of calculators in modeling real probleins is allso discussed. (MS)*.

\footnotetext{
. 8
}

市
Documents acquired by ERIC include many informal unpublished * materials not available from other sources. ERIC makes every effort * * to obtain the best copy available. Nevertheless, items of marginal * * reproducibility aréoften encounterej and this affects the guality * * of the microfiche and hardcopy reproductions ERI make's available * * Vía the ERIC Docament Reproduction Service (EDRS) . EDRS is not * * reasponsible for the quality of the original document. 'Reproductions * * supplied by EDRS are. the best that can be made from the original.


ISSUES ARISING ON THE USE OF HAND-HELD CALCULATORS IN SCHOOLS
by Obiratan D'Ambrosio

Most of the objections to the use an hand-held calculators (HHC) in schools, may be grouped intó three tmain issues :

1st: HHC will block reasoning and will make individuals mentally slow;
2nd: the use of HHC will make individuals dependent on the machine, and the absence of itt will be a handicap for daily needs;
3rd: HHC will broaden the gap between rich and poor, developed and underdeveloped nations.

This talk will be addressed to questions derived from the three issues above. \({ }^{-}\)No doubt, there are fundamental questions which may be inserted in the very important branch of WHY's*in education.A further question, obviously depending on the one just. raised, is HOW. We will touch only briefly the question of "HOW" to use HHC. The WHY question deeply relies on philosophical considerations relating to the overall goals and objectives of mathematical education, and its underlying philosophy is present in the paper. We refer to [1] of to [2], for an expanded version. The second question, related to "HOW" to use HHC, is the subject" of much ongoing research and will obviously have a dynamic character, depending on the adopted philo sophy of education, in particular of mathematical education, on accept ed societal goals, and on technological advance. Anyhow, we will give a few examples on specific uses of HHC , as well as on some ongoing projects, and also reference sources.

Let is address initially to the first and second objections, which are closedy related. A Brazilian colleague of mine once said that "if a child forgets its calculator at home, it will forgets its head". As a preliminary, I must say that this is not the conception/ I have of the power and potential df a child's head. What, indeed can be said of the power and functioning of a child's mind? Not going into an "almost" endless discussion of the process of reasoning and creativity, we can briefly say that \(H H C\) reproduces, in \(a\), very sophisticated and crude way, some of the basic operative functions of the brain.

Inseveral instances, inventions which are, in a sense, similar to that of. HH\&, have'caused impact and reaction.. We might give' the awprd to Plato, in his Phaedrus, , which describes a conversation between the young King Theuth and the good.old King Thamus, of Egypt, on, the subject of the invention of writing. 'The.old King dennounced it as a danger for civilization", saying thàt plildren and young people, who used to apply themselves to learn and retain whatever was taught them, woụhld' how cease to exerćise their memoreies and consequently. would be less dilifent and capable.

Similar citations could be mentioned. Probably, the most strik ing is the rationale \({ }^{-\quad}\) of G.W. Leibniz, about his calculating machinel.In fact, the operational concept in mathematics is a recent fact, direct conscequence of the invention of arabìc algarisms, which by no means re present the essence of mathematics, and its inclusion in a course of general studies is even more recent, which was. amply discussed in [2]. For loñg, manipulation of operations had been a merely mechanical ability, done with the aid of instruments.or fingers and hands, recent ly replaced by, the mechaniçal use of Arabic'algarisms and positional notation.. In other words, this is a mere mechanization of the structu rewhich is the basis of positional numeric systems. Indeed, quantitative considerations, which carry the meanifg of precise counting only
up, to lower two-digit numbers, are always an attribute of qualita tive analysis. Linguistic considerations are illustrativé of this': We mention, in particular, the recent works on the Inca "quipus", carried on by "Marcia and Robert Ascher [3] , which imply a strong attribute aspect to quantitative' aspects of a discourse.
-. We regàrd the process of mentalization of reality in the' .. . following simplified scheme:


We agree with René Thóm's'description of mathematics as 'ạ finer language than natural langage to describe reality:

As mentioned before, and anthropological research reinforces this viéw; numbers appear with the precision of units only in the lower range. Exemplifying, no one, with the exception of children doing exercises and exames in arithmetics, and of machines, ever uses Uumbers like " \(1,432,173^{\circ}\). When some one needs these numbers, which фccur in very specific branches of activities, they are dealt with by mechanical means, be it with the recent electronic equipment or with the mechanical heavy machines of the turn of the century. Mean while, the needed an'd important capability of "wise and experiencied" men, which call for good quantitative evaluation, has been entirely subdued by the false importance of calculations precise to the unit! It would be useless to repeat examples of school failure in mathe matics which could be avoided by a minimal amount of quanti.tative common sense. This quantitative common sense has been almost. impossible to achieve due to overburdened emphasis on merely mechanić al abilities, which undoubtedly do not represent the potential" of \(\dot{f}\). the human mind. The overall and generalized use of HHC will probably make-man les's. concerned with details of "precision to the unit". and more concerned with global quantitative evaluation." of ,course, ". in some - a føw - instances, precision to the unit may be desirable, Then, a HHC br even a larger machine will be needed`and "properly used..

This brings us to the second'issye. . The dependence on the machine is, indeed, a false issue. The argument between. Kings Teuth and Thamus could be reproduced in practically.every moment when, a new invention is puc into practice. It is remarkable the fact that Arabic algarisms were forbiddep by legal edicts in Florence in the close " of the XIII centu'ry, and myself remember that when bailpoint pens were introduced, we were not allowed to use them, otherwise our handwriting would be spoiled to the point that we would be unable to write in an intelligent way. Probably, when wrist watche's were in:vented, people would object, saying that "the moment your watches breaks,
you will be unable to distinguish sunrise from sünset". The old always rejects the new. This rejection is probably the most active force against the absolutely néeded dynamical character which should prevail.in the educational process.

In fact, we brought to discussion a good comparative èxample for the issue of precise counting. Although in some dailyıpractices, precise timíng is needed, and apprópriate chronológical devices are used, for most of our routine activities unprecise and even intuitive time measurement are satisfactory. No one would dare to say he is sleeping in daytime for the reasor his watch is not working : As we said before, the overall and generalized use of HHC will' have the effect oof chánging the forces from "precision to 'the unit" to global quạntitáative evaluation. A HHC will always be available to someone, and with the 'same ease that we borrow a pen from a colleague when we forgèt ours, or we ask a passerby in the "street "What'time is it?", we will be able to remedy the situation of not having a HHC, at hand when need i's felt. It is remarkable to notiçe the drop in the price of HHC. : They are cheaper than books: indeed the cost. of a low cost model of HHC goes in the largest part to commercionization:

We, now come to discuss the very important issué of what influ ence will HHC have in social unbalance, which prevaili in móst comiries, and which seems to resist educational éfforts. And also about the urgents need of bridging the gap between developed and underdeveloped. countries'.

In both cases, the local social unbalance or the global world desequilibrium between "haves" and "have nots" dan be "challengea only by eliminating the strikifg differences between available basie "equipment and abilities. This is the rationale followed by training programi'; this was the radionale behind school systems set up by the declining aristocriacy to meet the challenge of the professional guilds; and this is the rationale for underdeveloped countries investing most of their human and material resources in education. For more dis -
cussion on this we refer to [2]. Indeed, the dbjective of, all these prpgrams is to prepare generations to compete with adequate abílities and tools., This competition, understood-in its broad and global aspect, is the ultimate goal of an evolving society", in`its full conception. Be it a lower class family with fropes of
) their children having better professional opportunitiès, be it an underdeveloped nation trying to deal and trade with developed , nations in more ldignifying circunstances. In both cases, it is necessary that the challenger be fully prepared to deal with the "established structure, and if not in possession \(\because\) of the full equip : ment, certainly knowing how effectively powerful this equipment i is. By rejecting sophistication in education with the argument of "this is costly" or "we are not"yet ready for this", socially un privileged classes or less developed nations: risk perpetuating, through the educational system a "status quo" which ' they" . must chåge.The oppressive power of "ań absent electronic brain". is much more effective, then the debts, which might result from learn ing that there is not such a thing!
probably, the young boy'in a peruvian village who, *after much effort, learned how to do arithmetic with paper and pencil, goes for a job in a aity, and sees the boss pressing a few buttons and getting , the results out of that "electronic"brain", will ex perience the same sensation as his ancester warriors wno met the \(\therefore\) gigantic armoured complexes of "Spaniards on ȟorses". They, were regarded as single entities:'

To introduce HHC'in aschool system is much more a matter. of attitude; and the understandable and expected reaction to its use must be faced. . This can be minimized if HHC i's allowed . \(\pm 0\) come into use, rather than forced upon a school system. . Several strategies may be adapted. A rather successful orie is tio . bring them into playing an important, role in teacher training, through modelling courses. See, for example - [4] and [5]. HHC must be brought into a uṣeful device for daily practices. Once the teacher
is "liberated" froin prejúdices and fear of HHC "spoiling.minds", the acceptance of the instrument as a companion in daily practices will be conveyed to children. At the same time, evidence of.rather immediate advantageous results of the use of HHC in schools may be an important factor. Research, projects on HHC, conductedin schools, have the advantage of showing such results. Rather than thè results of the research in iself, the main goal is to bring awareness to the usc of HHC. In the Institute of Mathematics, statistics and Computer Science, of the State University of Campinas, we conduct a chain of research projects, in classes, of 30 to 40 students, in various levels of schooling.

One typical project is being conducted in a lower income. private school in the city of Campinas. A class-room' of 45 students at the 7 th year of Primary School ( 14 years old) is divided- into groups of 15 stadents. Group A has no access to'machines, Group B - hàs limited access to machincs (during class period) and Group \(C\) has total access to the machines (taking them home). Classes are conducted in the usual way, with the normal program. No change in the attitude of the instructor nor in the choice of curricular materiai, examples or home work. Three tests are given with intervals of one week', with the same kind of exercises and problems. 'The attitude of the student is observed and compared, in the course of the experi ments..

Although the programatic material is not prepared for the utilization of HHC resources, the general attitude of the studen't should be affected, in the sense of giving him better and more + adequate methodology. for the utilization of what we have called "aúkiliary equipment". Phis éasines's is dealing with equipment in the analysis of real world problems or situations is the goal we hope to attain with the use of HHC.

In dealing with Mathematical Modelling, the use of HHC may bridge the gap between Mathematics and 'Applications, at an early stage. Concepts of the calculus, like limits, derivatives and ap-
proximation s find, 'in the use of HHC a natural vehicle for rather immediate applications. Model building, previously largely. restrained to finite mathematics, has the possibility of reaching, through numerícal manipulations, continuous phenomena. A few. e lementary examples àre dịscussied in [4] and. [5].

Furthermore, plausible reasoning, as presented by G.Polýá, can be conveniently adapted to bring up a full understanding of hypothesis forming, in ' \({ }^{\prime}\) the very essence of the axiomatic method'. In fact; borrowing from an example amply disçussed'in [5], we may present, through HHC; the full "mentalization" of analysis and solotion of real problem situations:. Starting with the example of a lifesaver which has to reach a swimmer in trouble in a beach resort, we are able to build up the entire process of formulating hypotheses

which are approximations of a real situation. To`bring'the situation
from the picture on the left to the diagram on the right represents the very essence of modelling. After this, the use of HHC shows, by simple computations involving solution of right triangles, throughPythagoras' theorem; that the solution of the problem of minimal path is indeed a broken line. The location of the point to "enter into the 'water" is found through a nesting interval technique. This example puts into effective combination, both the very deep" conceptual approach of axiomatics, regarded as a modelling of natural phenomena in the purest line of thought of Euclid, Newton, and others, and the use of numerical methọds as a tool for the analysis of the same natu ral phenomenum modelled into a mathematical problem.

A larger number of examples like the one just described, always close to the reality in which the educational process is taking place, will enable \(H H C\) to find its meaningful use in mathematical education. When we say reality we imply cultural and sociologi gipl framework, built up in an appropriate, motivation for the age group in which the educational experience is taking-place. And'when we. 'say meaningful use int mathematical education, we mean HHC used not merely as a tool for doing less fainfully maningless computations, but as a companion which can make possible through quantitative manipulation the mathematical analysis of natural phenomena, thus enhancing mathe matics in its proper place among the sciences.

Summing up; the use of HHC will allow for the never before experienced power of employing numbers in modelling real problems situations and reaching their understanding.
[1] : Ubiratan D'Ambrosio. : Overail Goals and Objecti*es of Mathe-- matical Education; chapter IX, New Trends in Mathematical .Educat'ion IV, UNESCO-ICMI, París, 197.7.
[2] : Ubiratan D'Ambrosio : Overall Godis and Objjectives of Mathetical Educatión, Instituto de Matemática, Estatísticaje Ciên cia de Computação da Universidade Estadual de Campiñors, São Paulo, 1976.
11
[3] : Marcia Ascher and Robert Ascher : The Quipu às a Visible Language, Visible Language, IX 4 Autumn 1975, pp: 329-356.
[4] 'U Ubiratan D'Ambrosio, Aproximación de funciones pór funciones lineales:-Nociōn de derivada, p. 141-157, Seminario-taller de modulos, UNESCO, Montevideo, 1977.
[5] : Ubiratan \(D^{\prime}\) 'Ambrosio: Um exemplo sobre a estratēgia de currí , culo dinâmico e integrado no eñino da matemática, Boletin do - GCEM (Belo Horizonte) no. 2, 1977 (in print).```


[^0]:    **Quasi-conservation refers to a task where the objects are not moved physically, as in Test 1 .

