AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
POB. DATE
CONTRACT
NOTE

EDRS PŔICE

- DESCRIPTORS

IDENTIFIERS
ABSTRACT:

Evertison, Carolyn Mor And others Investigations of Stability in Junior High School Math and English Classes: The Téxas Junior High School Study. Research and Development Report No. 77-3.
Texas Univ., Austin. Research and Development Center for Teacher Education.
National Inst. of Education (DHEW), Washington, D.C.

May 77
NIE-C-74-0089; OEC-6-10-108.

186p.; This report was prepared from a five-paper. presentation at the Annual Meeting of the American Educational Research Association (61st, New York, New Fork faprill. 4-8, 1977)

MP- $\$ 0.83 \mathrm{HC}-\$ 10.03 \cdot$ Flus Postage.
*Classroom Observation Techniques; *Comparative Analysis; Correlation; Data Analysis; Effective Teaching; English, Instruction; Junior High Schóols; *Junior: Hig,h School Stadents; Mathematics. Instruction; Pređictor Variables; *Reliability; Secondary.School Feachers; *Student`Behavior; Student Evaluation of Teach \in r Performance; *Teacher-Behavior; Teachér Evaluation; Teaching Styles; Test Reliability
*Texas Junior High School Study
,
The 'Vtability of classroom beha vior is examined from several perspectives: (1) the relative consistency of teacher behavior in two different sections of the same course taluht. concurrently; (2) the relative consistency of student bekavior in math and Engíish classes attended ccncurrently; and (3) differenzes in stưgent and teacher behavior in wath vs. English. Classes. (to det'ermine the effect's of subject matter on teacher and student behavior). In general, stability coefficients, obtained here were much. higher thad those expected on, the basis of earliet research-on stability in courses taught successively rather than concurrently. Even so, high inference ratings were more stable than low inference counts of duscrete behaviors, and many beha viors did not occur often enough to allow stable measurement, despite intensive observation. The data are discussed with reference to implementing different treatments in experimental studies in order to document the differential effects, and in reference to the possibility of linking teacher stability on clusters of variables with information about student outcomes. (Author/M.V)

Documents ácquired by ERIC include many informal unpublished materials not available from other sources. ERIC makes every - effort to obtain the best copy available. Nevertheless, jems of marginal reproducibility are often encountered and this affects the quality of the microfiche and hardcopy reproductions ERIC makes available via the ERIC Document Reproduction Service (EDRS). 0 is not responsible for the quality of the original document. Reproductions supplied by EDRS are the best that can be made from.

This project was supported by the National. Instifute of Education Contract OEC 6-10-108, Research and Development Center for Teacher, Education, and by Contract NIE-C-74-0089, Correlates of, Effective Teaching. Program. . The opinions expressed"herein do not necessarily , reflect the position or policy of Che National Institute of Education, and no official endorsement bshat office should be inferfed.

Abstract

This, research examines stability of classsoom behavior from several perspectives: 1) the 'relative consisterfcy of teacher behaviopr in two different sections of the same course taught concurrently;
2) the relative consistency of student behavior in math and English classes attended concurrentiy; and 3) differences in student and. teacher behavior in math vs. English classes ${ }^{\circ}$ (to determine the effects of subject matter on teacher and student behavior). In general, stability coefficients obtained here wete much higher than those expected on the basis of earlier research on stability in courses taught. successively' rather than concurrently. Even so, high inference. ratings were more stable than low inference counts of discrete behaviors, and many behaviors did not occur often enough to allow stable measurement, despite intensive observation: The data are discussed with reference to implementing different treatments in. experimental studies in order to document the differential effects, and in reference to the possibility of linking teacher stability on clustuers of variables with information about 'student outcomes.

Foatnotes to Authons

. The authors wish to acknowledge and thank the following individuals who participated in the research described herein and/or the preparation of this report:

Jenny Bankhead, Dr. Michael Baum, Cynthia Coulter, Dr. John Crawford, Ca'rol Dickerson, Jànet Honea, Alex Landesco, Mary Jane Leahy, Nancy McMurtry, Linda Harris Rogers, Sharon Russell, Joseph Sauter, and Gael Sherman who observed in-classrobtos and helped prepare data for analyses.

John Brozovsky, Dr. John Crawford, Tom Linsley, and Robert Morgan whö were involved in programming and statistical analyses.
 Yarborough_and.Sidney Weaver who assisted in manuscript preparation, Molly `Fernandez, \rangle Jesus Gaspar, Mary Jane Leahy, Melvin Miller, Pzul Persions, Morton Rosenthal, Debra Yarborough, and Ben Youngblood for assistance in report preparation.

Speciai recognition is extended tò Dr. John Crawford, Cynthia Coulter, and Dr. Michael Baum who assumed major responsibilities during the planning, data collection, and data analyses phases of the project as a whole.

The degree to which teacher behavior is consistent or stable rik across observat ons is. important to investigations of the relationships between teachir, processes and their oytcomes. It affects the magnitude of potential c rrelations between process measures and outcome measures in múch the ame way that test-retest reliability (stability) affects' the potentia "correlations between test' scores and other measures.

Stabifty also enters into theoretical conceptualizations. Many investigations of teacher effectiveness: are based on a stated of implied interest in generic teaching behaviors that cut across contexts; subject matter, student typés, and other variabies of ten used to circumscribe discussions of teach ${ }^{\prime \prime}$. The idea is to identify relationships between generic teaching variables and genëric outcomes. This approach is t'enable only if there really are generic teaching variables with generic outcomes.

There was litt'le interest in the stability of classroom process measures until fairly recently. There is considerable interest presently, partly because of greater recognition of the considerations described akove, and partly because of two recent influences. One has been the appearance and afțermath of Dunkin and Biddle's (1974) The Study of Teaching. After reviewing most of the existing processoutcome research on teaching, these authors concluded that a major deficiency of this rèsearch had been the failure to take into account -1-
classroom context varfables that influence processes and prṑcessoutcome relationships. Context was presented as a topic worthy of consideration in its own right; and also as something that needed to be taken into account more successfully in research on processoutcome relationships. 'Some important contexts might be subfect matter, area, class discussion vs. individual seatwork or grade level. The other recent influence which has led to an interest in the stability of classroom processes has been the application of generaiizability theory to classroom behavioral data (Shavelson and DempseyAtwood, 1976). Applying stàtistical concepts and procedures developed from test and measurement approaches, methodologists interested in generalizability theory have elaborated. the point made aboye, that process-outcome relationships are, affected by the stability of process , measures, illustrating some of their "conclusions with stability data from existing studies.

Shavellson and Dempsey-Atwood (1976) surveyed most of the existing - stability data-on classroom processes and concluded that generalizability of many of these measures is limited in most cases. Measurement ís not yet standardized, since a variety of observation systems are used. Also, context is seldom varied in ways that would allow its effects to be included in research designs systematically rather than left to contribute to error variance yielding low stability in process measures. In general, they found that global ratings were more stable
than low inference frequency counts of discrete behaviors. Low stability in frequency counts often is due to low fequency occurrence, which restricts variance so that stability calculations are based on inherently unreliable data. Also, low inference variables are more subject to context effects, and therefore more subject to instability when context is overiooked.

In contrast to generalizability theory approaches, studies designed and conducted by the Cốticelates of Effective Teaching Program are based on attempts to understand the reasons for instability., The Junior High School study, from which these data come, is one of a series of programmatic efforts to study teaching processes and the variables which affect them. . These studies have shown that there are few, if any', generic teaching processes (certainly none that can be expected to have constant and predictable effects across settings), so that it is likely that searching for them will not be very fruitful. Instability of procésses across contexts is viewed as not onlýy unavoidable but appropriate or ideal: teachers should teach differently in * different contexts, and effective teachers are likely to do so. The task of researchers who want to understand teaching effectiveness is to identify and examine these context differences. Treating them as error variance and either ignoring or trying to minimize them will mask orderly relationships'.

Before discussing the Junior High School Study and the stability data for this report, some of the findings from earlier process-
product research́ at second and third grades (The Texas Teacher Effectiveness Study) will be discussed as background (Brophy and Evertson, 1976; Note 1): In țhat study, context distinctions were built into data collection and analyses. Therefore; systematict differences in patterns of process-outcome relationships could be examined for different settings (low vs. high socio-économic schools) and for teacher-student interaction occurring in different confexts (whole class vs. small group interactions and contacts initiated by teachers vs. contacts initiated by students).

Stabilfty of process measures was also examined across time (two school years) and across contexts (whole class'interactions in the morning and in the afternoons, as weli as those in small groups). In general, these investigations revealed that high inference ratings were more stable than scores based upon low inference cioding of discrete behaviors. This agrees in general with the Shavelson and Dempsey-Atwood findings.

In particular, $\frac{1}{a}$ set of 1.2 high inference ratings developed by Emmer (Note 2.) , and discuśsèd in Emmer and 'Péck. (1973), showed correlations of .53 to .86 across contexts within the same school yeã and nine of these 12 rating scales showed correlatiofis between 55 and .88 acrọss school years (Brophy, Coulter, Crawford, Evertson, and King 1975). Two of the three measures' that were not stable across ${ }^{\text {r }}$ yeàrs concetned student rather than teacher behavior" (pupil "pässivity and pupil-pupil interaction), which is not surprising, since different
pupils were involved. However, the teacher measure that did not show consistency, was a rating of teacher presentation, one of the variables identified by Shavelson and Dempsey-Atwood as likely to be consistent.

The data on stability across years in this earlizer study (Brophy, Eyertson, Cràwford, King and Senior, Note 3), probably were artificially low for at least two reasons. One was that there was a district-wide mandated change in curricula and methods between the two years. We suspect that this is one reason why "teacher presentaion of subject 'matter" was not stable, as previously. mentioned. A second reason wast that only four observations were conducted per chassroom in the first. year of the study, compared to 14 in the second year. Four observations simply were not enough to obtain•a reliable sample of many of the behaviors being codeds

Texas Junior High School Study

The data collected in the Texas Junior High School Study are. more suited to the assessment of stabinty of classsroom process measures. The design was imp'roved over phe earlier study in several ways for the purpose of examining stability: 1) Data were collected during the same school year in parallel sections of seventh and eighth grade mathematiqs or English classes taught. by the same teachers in the same schools; 2) Pairs of observers alternated visits to 136 chassrooms averaging 20 hours of observation in each; ,3) Data were collected on a large number of individual students, enabling investigations of student effects on stability as well as teacher effects; and 4) The low inference codine system was modified especially for
use in secondary classronm in order to capture appropriate contextual differences. Details of sample selection, methodology and rationale. for the Junior High School study are discussed below.

Methodology and Rationale
Descriptian of the Sample. Sixty-eight teachers (39 in. English. and 29 in Math) were observed in nine of the 11 junior high schools -in a large urban school district. Since two sections for each 3: teacker were observed, there were witotal of 136 classrooms in all
 hour observations in each class, although the actual-range was from 16-22 observations, "Opservations 角egan in earlysfall, 1974, and ended in May, 1975. Junior high schoolis the district were included in a local busing plan whicher fovided for busing of black students (only) to the predominately white junior high schools,
\qquad previous year of experience in theirisubject matter area: Student teachent first year teachers, or teachers who shifted into-these areas 䌘rom some other subject matter were not included. Each' teacher was obseryed in two separate sections of his or her subject-matter. (math or English) which allowed systematic attention. to the question of teacher stability versus variability in process behavior across Elassroom settings. Inclusion of two different but important schoaz subject/areas allowed analyses of posidie
differences between optimal teaching for English versus math teachers.
The teacher sample was unusually complete and representive.
The number of teachers in the sample was not only large enough-to. allow cqnfidence in the statistical analyses to be used, but it was representatíve in that it includéd almost all eligible teachers in the city school system and was reasonably free of volunteer effects or other sample bias effects.

Approximately twelve students in each class were randomly chosen within sex as "target" students (total $N=1412$). It was apparent that obṣervers would not be able to identify and remember code numbers for all students in each class in which they observed (some observers saw as many as $500-600$ students a week). Therefore, in order to be able to record sat least some individual student data, a small subsample of ",target students was identified in each class. These "target", students were selected randomly from teachers' trolls before any observations were conducted in any classrooms. $\iota^{\text {These }}$ students were assigned identification numbers which weres used to record each dyadic contact that they shared with the teacher. The remainder of the class (non-target,' ' total $N=2008$) werre also included in the data collection, but their responses were designated only by check marks in the "male" or "femále" cblumns provided on the coding sheet̀s. Thése undifferentiated dyadic contacts were used in aggregate scores or for computing claṣ, means and proportions for each teacher.
i , ,
One" exception to random selection was made, however. In selecting target students, ${ }^{\text {, }}$ fforts were also made to use a large sample of
students who were attending both ra math and an English class included in the study $(\dot{N}=199)$. These selection procedures resulted in a subgroup of students: who : $\dot{\text { enererent }}$ by two different teachers. This subgroup will the study made it possible to examine Stability of individual teachers' behaviors across sections, and also stability: of individual student behavior across teachers and subject.

In most cases, the sections taught by each teacher were ostensibly alike, so that the student sc differed, but the subject matter content, teacher, and school were the same." Some differences were introduced, ; however, by tracking within schools. This sometimes created differences between the student populations in the two classrooms of interest." In general, however, there' was' reason to expect stability.

This expectation was' enhanced by the fact that the study was confined ton teachers who had taught for at least a year in their preṣ̂êt subject matter area and to class sections that met continuously and thus were structurally comparable (we avoided split sections that met for part of the time before lunch and the remainder of the time after lunch.)

It was believed that by examining stability across contexts of subject matter and time of day, we would be better able to determine how those contexts affect other findings of the study and to take into account student effects on teachers. Analyses such as those discussed $\ddot{i n}^{\prime \prime}$ this paper will serve to. Identify classroom processes and teacher behaviors and characteristics which are generic.and stable and those which are situation specific.

Description of the Instruments

A list and brief description of the data subsets is provided in Appendix A.

Classroom Observational Coding System. The pry mary low inference observation instrument was an adaptation of the çodingreystem used in the Texas Teacher Effectiveness Study (Brophy \& Evehtson, Note 4; Brophy, Eversion, Baum, Crawford and Edgar, Note 5). See Appendices B \& $\mathrm{A}_{\mathrm{C}}^{\mathrm{C}} \mathrm{C}$ for cop les of the coding sheets. This modified instrument wages developed to include a wide range of variables, including most oof those stressed by . the observational systems that have been used most frequently in previous educational research, as well as some unique to this system. The major adaptations and expansion were done to add variables based on Kounin's (1970) research on classroom management techniques, and to break down teacher behavior more specifically according to context variables having to do with the time and nature of classroom interaction during which a particular observationstook place.

The coding system provided space for coders to record the amounts. of time teachers spent in various activities such as: class. discussion, drill, lost time, transitions, etc. Space was also provided for coders to check off the content area of the lessons for that dey (eng., division \qquad with whole numbers or fractions for math classes, or gramiar;"drama presentations, literature, etc., for English classes)..

Another addition to the coding system was provision for detailed recording of student misbehavior (mild misbehavior, 'socializing, sassing, verbal or physical aggression) and the manner in which the
teacher handled the incidentor In addition, coders recorded the appro-- priakeness of the disciplinary intervention (target error, timing error or overreact, ignore). "This allowed us to examine not only the typelof student mísbehavior but teacher reaction to it and its appropriateness The system was expanded to include categries allowing detailed coding of teacher-initiated versus student-initiated publice response opportunities, private contact initiated by student or teacher (workrelated, procedural; or personal-social) and classroom behavior-related incidents. In all, the system was more complex and detailed than previous systems (Brophy , Evertson, Note 6) in order to aliow recording of behayiors we believed more likely to occur with older students.

Observers were trained to the reliability criterion of 80% agreement. .$\%$ agreement $=\frac{\text { Codes agreed upon by Cỡers A \& B }}{\text { Coder A's codes (which Coder B missed) }+ \text { Coder B's codes }}$ (which Coder A missed) + those agreed on by both + thoso coded by both but disagreed on.

See Coulter (Note 7) for a detailed explanation of training pracedures. In all, over 768 frequencies were tallied from this system, providing measures of absolute as well as relative occurrence of given teacher behaviors.

Each behavior coded with the low-inference coding system was individually tallied and summed and thése frequencies yịelded two types of scores:
(1). rate scores, for which frequencies were divided by number of minutes per average class period (50 in this case), thus giving an index of the absolute obr mean rate at which certain behaviors occurred (such as orrect answers per observationn), and (2) proportion scores,

4 which were compted by dividing raw frequencies of the variabies in the coding sy tem by the frequencies of the major categories, in order to seefthe relative occurrenke of given behaviors (i.e., the proportion ${ }^{\text {\% }}$ process questions was computed by dividing fequency of these questions by the total of aill questioning categories): Ultimately the proportions of each of the question types would sum to 100%.

However, some of these proportion measures involved more than one value in the numefator or denominator. For example, the variable "don't know or no response after which teacher gave the answer" includes both "don't know" and "no response" tin the denominator. These were combined because both were low.frequency variables, compared to forrect and incorrect answers. Thus, the variable "don't know and, no respponse with gives answer" was derived by summing the times that teachers gave the answer to students when they either' said that they did not know or made no response', and deviding this total by the total number of eimes that students in the ciass said that they did"not know or made no fesponse.

- Also, many vaniables have two values included in the numerator. For example, the measure "studen't, behaviors with management and no error" reflécts the proportion of behavior contacts coded as limited to a management resporise (vs. bonverbal intervention, criticism, or, threat) and as containing ind error (vs. a target error, antiming error, or an overreaction) Each behavior contact that was solved with only management, response and solved in a way that involved no erron counted toward the total used in the numerator of this proportion, and the sum of these
interventions was divided by the total number of behavioral interventions observed in the classroom to obtain the proportion score. Three a of the following sections will include data derived from this coding syistem using these measures.

Classroom Observation Scales. In addition to coding classroom behavigrs, observers also filled out at least one' set of 12-item classroom observation scales per observation. For each item, they rated on a five-point scale such variables as level of student attention, clarity of presentation, enthusiasm, and negative or positive, affect. (Reliability was computed by percent agreement within one point, and this ranged from 71% to 100%), Also, observers raţed the presence or absence of certain types of teacher questions: memoryfact related, higher cognitive level, or personal-self questions.

Observer Ratings of Teachers. Af the end of the year, observers filled out another set of five-point scales, which included 79 ratings of teàchers on attributes such as personal-social interactive style, competency in their subject area, and classroom organization and control. Since each teacher was rated by more than one observer, their ratings were correlated to get reliability timates. Fifteen items were橉 dropped for unreliability when $p>.10$. Even so, there is some reason to suspect halo effect in these, ratings, since 42 teachers were seen in both their sections by the same two observers, 22 teachers were rated by three observers, and only four teachers wère rated by four obsérvers.

Observer Ratíngs of Students. In addition, observers also completed 26° five-point rating scales on each target student they òbservẹd, deáling with' work habits, likeability, classroom conduct, and physical development. Again, each target student was seen by at least two observers., Reliability estimates for these items were high ($\mathrm{p} \leq 01$). In addition, teachers filled out a five-item rating scale on target students regarding likeability, achievement level, motivation, work habits and classroom behavior.

Student Ratings of Teachers. At the end of the school year, students 'were asked to fill out nine five-point rating scales about their'. teachers. These scales included essentially two types of items: those which assessed generail liking of the teacher ("I would go. to this teacher if I had a problem") and those which assessed the degree the $\chi_{\text {. }}$ student felt he learned the subject matter ("I learned a lot from this teacher"). All students, both target and non-target, filled out these. ratings.

Data Analysis

Two types of analyses were performed, a series of two-wasy classification analyses, of variance and a series of Pearson product-moment correlations. In the case of the analyses of variance, rate and proportion scores, highi-inference observer ratings, and the student. ratings of teachers were used as dependent measures in analyses which examined stability across subject matter. Since each teacher taught two sections of hís or her subject, these are referred to as first and second
observed sections. Class section, in this case, was included in the analyses as a within-groups factor. Therefore, there were rate and proportion variablès for all classes, and the classes were categorized 'on the basis of subject matter (beftween-groups math and English) and class sedtion (withín-groups--first vs...second obserived section). See Table 1 for information about the spacing of these sections. This allawed examination of the effects of subject andter, and class section, and interactions between the two. Section II will deal with findings from these analyses.

Correlations were also computed for all variables across class sections. The results of this analysis will be presented in Section I and will indicate which behaviors of teachers are unstable across his or her two sections and which are unaffected by section differences,

In addition, correlations were computed for thè subssample of overlap students who were observed in both a math aña, an English class involved in the study. This mifalysis permitted examination of student behaviors h and of teacher behaviors toward individual students in the two classes in which the student was observed. These results, presented in Section III, will be discussed in terms of student effects on teacher and classiroom processes.

In summary, the following sections of this report each address the issue of stability vs. variability in, classřoom process measures. in naturalistic classroof observation. They examine this issue by - separately considering these possible sounces of instability:

- behaviors which vary across sections of the same subject
. matter taught by the same teacher (Section I)
- behaviors which vary across two subject matters using high and low infèrence measures (Section II)
- behaviors which are affected by individual.student variations. across two different classes and teachers (Section III).
I. Correlations-Between the Two Sections of the Same Subject for All Variables

The analyses for thilis seçtion were done by correlating all variables for each teeacher's two 'class sections. They include both the high inference and the low inference coding system data. Data are presented and discussed in terms of those measures which show high or low stability within the year and those which do not. $/$.
\because Content Formats (See Section 2 of the coding sheets in "Appendix B)
Observers noted the lesson format during each observation and checked the appropriate categories.

Information for dereloping these instructional formats was obtained by preobservation and interviews with teachers. Thēse formats included 11 categories for content areas coyered during English classes, and six for activities during math classes. A residual "other" category was added to each set to allow for recording of content areas that did not -fit within the coding schemes. These data were summed and converted to frequencies per class hour:

Inskrt Table 2 about here

Correlations of these format scores across the two class, sections in which each teacher was observed yielded information on the "degrece to which the teachers initiated similar instructional activities in
their two classes. High consistency was expected here, because the two classes observed 'for each teacher were sections of the same course, and because the sections generally were observed across similar patterns of observational'visits (i.e., the observers set regular coding schedules during each week to spread visity as evenly as possible). Thus, if the teachers ${ }^{*}$ taught similar content, the data on formats should have yielded strong positive correlations. The data presented in Table 2 indicate that this was the case. All correlations were significant beyond the .01 level, and all but one were above .65 . The only exception was the relative frequency of drama exercises in English classes, and even here the correlation was .41.

The significance of the data in Table 2 , is that teachers in this sample did engage in similar activities in different sections of their same subjects. Within this particular study, this indicates that, unless similar activities were implemented differently in the two class sections taught by each teacher, we can expect similarities in content covered when we compare classroom behavioral measures for these sections. If significant differences appeat, they are more likely to reflect differences in students than to be ascribable to content format differences. Low Inference Process Measures

The low inference observational codirg system yielded frequency measures of dlassroom processes. These frequencies were divided by teacher .controlled time per 50 -minute ciass period to get rate measures. The major rates are shown in Table 3. "Proportion measures were also, derived from the raw frequencies for total occurrence of the behaviors across.
all observations. (Cômputation of the"se variablếs was discussed in \sim the Introduction.) A complete list of these proportion measures is shown in Table 4 and the variable numbers in the tables will be included in parentheses for easy reference as each measure is discussed. Rate Measures

Means for rate variables are presented in Table 8. (See columns headed "Observed section".) Rate measures relating ta public response opportunities w.ere generally quite. stable.

Insert Table 3 abouthere

These included the rates for public response opportunities per class period (1), as well as for the subcategories dealing with type of question (2-5), method of selecting a student to respond (6-10), and the quality of student response (11-14); also rates of student initiated questions and comments (15-16), fates of teacher praise and criticism (17-18) and rates of sustaining interactions with the original respondent by asking follow-up questions (20-22); Al1. of these measures and their subcategories had moderate to high stability coefficients, except. for the frequency of choice questions (4) (yes-no, either-or quẹstions). This probably is because such questions are infrequent after the first few grade levels.
. These data indicate that, across their two ${ }^{\text {sections, teachers }}$ were consistent in the amount of classroom time devoted to question and answer situations or discussions in public settings. (as opposed to
seat work or other non-interactive activities); in the kinds and levele ; of difficulty of the questions they asked; in their methods of calling on students to respond; in the quality of the answers they elicited b. (another indication of difficulty level of questions); in their rates of praise and criticism of student answers; and in their rates of asking follow-up questions. To a lesser degree, there was consistenoy in student initiated questions and comments during public discussions. The studênts in the two sections were different, so that this correlation indicates a combination of congistency in the frequency of such discussion. settings and consistency in encouraging or allowing student initiatives.

The remaining variablès in Trable 3 are all mođ̃ately to highly ' stable (r's ranging from . 49 to .79). These coefficients are not as high as those for public academic interactions, ' Curiously, the data for private contacts do not show teacher initiated contacts $(26,28$, . 31', 33) to be consistently more stable than student inditiated contacts $(24,25,27,29,30,32)$. It may be that the studeñts become more consistent and predictable fin their adjustments. to the student role so that student behavior in different class sections (even though different students are involved) can be expected to be similar if teacher behavior is similar (as wassthe case here). Regardiess, these data help underscore the mutual relationships between measures of teacher and student behavior. Just as measures of teacher behavior are affected by students to some (usually unknown) degree, so are measures of student
behavior affected by teachers. The measures of student inftiation. shown here are partly reflective of the kinds of classroom environments that teachers create, and the specific expectations they project concerning what is desirable, 'appropriate, and allowable.

The same is true for behavior al (disciplinary) contacts (34-37)
and for total reinforcing and aversive contacts ${ }^{\circ}(38,39)$ which also showed moderately high stabilify. The rates of typical and even serious misbehaviors that individual teachers encounter mifferent ${ }^{\circ}$, classroóms appear to be similar, suggesting that teachers are directly or indirectly responsible for them. ${ }^{3}$ Some teachers are excelilent cla'ssroom managers who can minimize such problems, while others encounter them regularly.

In general, the stability of these behavioral rate measures was much higher than expected based on masearch. Possibly, this was due to the sample selection criteria, which insured that the two class sections observed for each teacher wọuld be as similar as possiblé, ". and that all the teachers would be experienced.

Proportion Measures

: Means for proportion measures in first and second sections are. given in Table 9. These measures were derived from raw frequencies., In addition to the rate measures, there were a, great many other measures which were subdivisions of the major categories. For example, response opportunities were subdivided into process, 'product, choice, and opinion questions. The first

[^0]four variables in. Table 4 are the proportions of response opportunities h were either process, product, choice, or opinion questions (1-4).

Insert Table 4 about here
Each of these is a percentage of the total number of response opportunities
Added together, they constitute 100% of all response opportunities coded for all class discussion.

Similar relationships hold for the other proportion measures: In each case, the first variable in the title is the subsuming category of which the other measures are subsets. The larger. category variable was ,usedras the denominator in computing the proportion score. For example, the variable "correct answers praised" was computed by dividing the total number of correct answers praised by the total number of correct answers. The result is a proportion indicating the relative frequency with which a. given teacher was apt to praise students following correct answers.

Since the proportions generally reflect combinations of the rates. there was reason to expect similar stability coefficients for given subsets of the data. However, this is not always the case; there were some interesting exceptions, and they will be noted as they occur.

Type of Question. Product questions are the most typical type of response opportunity, and the variable composed of the proportion of response opportunities which were product questions (2) did show moderate stability. However, the proportion of response opportunities which were process:questions. (1) showed even higher stability. These questions. apparently appear often enough to allow. reliable measurement, but teachers
may differ systematically in their frequency of asking process questions ("Why." or explanation questions,) so that this type of. question was the most stable across sections even though it was not the most frequent. However, there was no stability in the proportion of times in which process questions were answered correctly (5), although there was stability in the proportion of .product questions answered cerrectly (6)'. 'This may reflect the-variation in the difficulty of process questions, in comparison to the more factual product questions. For the latter, the key factor is whether or not the students have read and remembered the material and therefore product "questions are presumably easier than the more complex process ques'tions which require reasoning. This instability may reflect student differences in ability within the teachers' two sectigns.

- Neither student opinion (4) nor chóice questionsi (3) were stable. 4ihis was expected for opinion questions, which are infrequent, and extremely variable in type and content. Choice questions were expected to be more staible, based upon research in the early elementary grades. The fact that they were not inthe present study indicates again that this type of question may not beasked as much in the higher grades.

Selection of Reskondents. The five méthods of selecting respondents (9-13) all showed some stability, including call outs by students. This has been observed before (Crawford, Brophy, and Evertson, Note 8), and it indicates again that measures like these reflect not only student activity but also the degree to which teachers encourage and allow such activity, Teachers tend to be stable across classes in the proportion of student call outs that occur in their classrooms, apparently because
they communicate consistent expectations and exert consistent socialization pressures upon students in this regard.

Quality of Student Answers. The proportions of response opportunities, which were correct answers (19) were more stable than thase for the various forms of incorrect answers ($20,21,22$), and théproportions for student incorrect answers were more stable than those"for "don't know". responses (21). However, the stability of failures to respond was higher, indicating that.even though the actual occurrence of this type of student * behavior was infrequent, teachers tended to be consistent across class sections. Possibly these results indicate that difficulty level of questions remains stable, if we can assume that failure to respond (no response) indicates difficult questions and/or student ability or willingness to answer.

Teacher Feedback to Answers. Most measures of teacther feedback to correct responses (23-28) were stable. The single exception was "correct answers after which the teacher asked•a non-academic question" (25). The means for this variable in Table 9, show that this type of feedback seldom occurred. However, while teacher feedback to incorrect answers (29-39) showed only three stable teacher responses [criticism (2g) ; asking a new. question (32) $\frac{\text {; }}{\text { \% }}$, and giving process feedback (36)], these responses were among those which occurred the least often. Teacher feedback to "don't know's" and failures to respond (40-48), showed only moderate stability for a few measures [repeating the question (41); asking a new question:(43); and asking another student (47) J. Again, examination of the means shows that asking another student occurred proportionately more than other types
of feedback, both' for incorrect answers (38) and for failures to respond (47). However, this type of feedback is stable only for "don't knows" and fallures to respond. In part, this was due to differences in raw frequencies. Correct answers are more frequent than any other types of student response, and incorrect answers are more frequent than "don't know" or no response. However, these figures also reflect the fact that teachers are more predictable when things are goifg smoothly and according to expectation. Curificuium outlines and teachey plans arè generally geared to obtaining correct responses and movirg forward in the lesson, and often there is 1ittle. or no specific-preparation for dealing with incorrect responses (Blank, 1973; Good and Brophy, 1977).

Another interpretation of these findings is that incorrect,' "don't know" and no response answers have a wider range of possible. feedback depending apon the type of error the student makes, whereas correct answers do not present such decision points for teachers. Instability in this case could reflect studènt differences and possiblè differences in ability levels between the two sections.

The most stable'measures of teachers' handiling of wrong answers were those relating to criticism, asking a. new question, or providing process feedback, although the mean proportions were very low for any of the above responses to wrong answers (. $02, .05$ and .10 respectíyely). The most stable teafcher measures in situations where the students responded with "don't know" or made no response were those for repeating.
the question (41), asking a new question (43), or calling on another student (47): These mean proportions were . 08, . 04 and .47 respectively. However, in general, teacher sustaining feedback to incorrect (188) or "don't know" and no responses (189) was not ṣtable when various feedback strategies were added across categories. Teacher sustaining feedback to'response opportunities (190°) in total was stable, however, largely because correct answer's made up the major portion of academic response opportunitis.
.CombInations of categories
Combinations of the major components of respponse opportunities (selection, questions, answerss, or feedback) were examined by creating variab'les which described the immediate precedent or consequent of a single behavior. For example, the types of selection used to ask the various types of questions were compared $\mathfrak{i}^{* *}$ The rationale for looking at such combinations is that context effects can more easily be recognized when a combination variable does not follow the pattern expected of "the single varíables of which' it is 'composed. For example, aș discussed in the preceding section, the data indicate that the proportion of response opportunitiès which were answered correctly was stable, but that when analyzed for types of questions, only correct answers following product questions, was a stable variable. This suggests that the immediate precedent"of a behavior is important to know about, since it establishes a context for the interaction in terms of type of selectfion, type of question, or type of answer which led to the subsequent question, answer and/or̀ feedback.

Selection and question. The data on the scombinations of type of question and type of selection of respondent (58-73) mostly reflect the relative frequencies of the variables used in the combinations. In general, frequent and typical combinations showed moderate to high stability, whereas the more unusual combinations had very low stability (e.g. process questions which were answered by a student calling out (70)).

Question and feedback. While teacher praise of student answers showed stability for process, product and choice questions (74-76), the proportions of response opportunities which were praised for any type of question are low (, 16 for process, .10 for product, and .06 for choice). The extent to which teachers do praise, then, is apparentiy fairly consistent agross class sections. To the extent that teachers criticized at all, they tended to do so for product questions (79). Again, the . mean proportion of response opportunities which were criticized was also extremely. low (.01):

Repeating the question was stable across sections onily in connection with choice questions (82), even though choice questions wére not as frequent as other types of questions. This combination occurred only 1% of the time, on the average:

Simplifying the question as a feedback strategy to product questions (84) answered incorrectly was stable even though this only occurned 2* 3% of the time in the average"class. It was expected that simplifica-:o tion would be most appropriate, and therefore predictable, for process
questions, which frequently are complex and can be broken down into: èsier steps. Nevertheless, neither simplifying nor asking new questions was stable as a follow up to process questions ($83 ; 86$).

The remaining data in this section mostly indicate that other types of feedback are also stable when they follow product questions, but not for process questions. One possible reason is that since process questions vary considerably in difficulty and complexity, no single teacher response is always used by a teacher. On the other hand, it is possible that causes for errors to product/questions are. more uniform, so that it is reasonable to expect-the feedback, in this situation to be stable also.

Selection and Answer. Types of-respondent selection connected with wrong, answers (111-115) show that incorrect answers associated with nqn+volunteers and with preselected-patterned turn students are stable across classes. Possibly this technique is'related to teacher jstyle. Teachers may, use these questioning methods with non-responders in order to insure participation. Also, volunteers and students calling out are relatively unlikely occurrences unless students know the answer. In any case, wrong answers are less stable under these conditions than they are when students are required to respond either as non-volunteers or in a patterned order.

Selection and Feedback. Praise and criticism in different kinds of response situations (125-129) do not always follow expectations: praise to volunteers and students who call out was just as stable
açross class sections as pratse 在o non-volunteers (125-127). Critic̀ism to non-volunteers. (128) was the only situation in which criticism showed any stability. Asking simplified questions (137) and asking néw questions (142) were also stable for non-volunteers, suggesting that teachers may systematically try to draw these students out and get them to participate.

The data for int grating, student answers into the discussion -(149-153) showed generally higher stability than those for most other teacher feedback reactions. The exception was integration in preselect patterned situations, which had a nonsignificant negative coefficient. Possibly, the preselect patterned situation involves drills focused on getting the answers, and jintegration usually is irrelevant and breaks the pace of the class. Most of the rest of the data for teacher feedback (154-174) indicate higher stability for non* volunteer, volunteer, and call outs, compared to the two types of preselection.: This also reflects the frequencies of these types of selection.

Answer and Selection. Types of answers again indicate that preselect nonpatterned and non-volunteer $\dot{\text { response }}$ opportunities involved more difficult quedstions (175-187), at least relative to the achievement levels of the students called on to respand.

Student Initiated Questions and Comments. The measures dealing with student questions and comments and with teachers' reactions, to " these initiations (191-237) showed moditrate tò high stability.

These, measures included rates and proportions of such infitiations which"were questions vs. comments; the proportion called out; those which we relevant; and those within each of these categories that the teachers responded to with criticism or other: types of feedback. Again, even though ostensibly these are peasures .of student behavior, the consistency across class sections indicaţes that they reflect the degree to which teachers encourage and allow such behavior. By and large, teachers control the patterns of student initiations, although as will be discusped in Section IIF, the same students also tend to elicit similor responses from different tepchers.

Coefficients for variables relating to student initiated questions are generally higher than those for parallel variables relating to student initiated comments. This is likely due to the fact that student questions occurred about three times as of ten as did student comments and were probably based on much more reliable estimates.

Private Contacts

Student and teacher initiated work, procedural; personal, "and social contacts showed similar lèvels of moderate stability. . This suggests that teachers are reasonably predictable in what they do when they are not conducting general class lessons, and also predfictable concerning the kinds of "student behavior that they encourage or aillow. Tint is includes such teacher behaviors as the relative time devoted to each of the major types of personal contacts; the frequency of praise and criticism in work contacts; the typical length of work contacts; approving vs. delaying vs. refusing student requests; and the quaility
of feedback given to students during private contàcts. Student measures include the frequency of initiation of contacts with the teacher, and of each of the subtypes involved. The rates of praise in student inftiated contacts were slightly mor stable than thosex of criticism $\left(240 \mathbf{2}_{24}\right)$, but this was reversed in teacher-initiated - contacts (256-257).

Behavioral Contacts
Correlations across sections of student miśbehaviors (268-339) and teacher reactions to these milkbehaviors were scattēred, although perhaps higher than might have been expected. As with the data for cal' outs and student initiated private interactions, stability here Indicates that the teachers wers somewhat predictable in the kinds of student behavior that they encouraged, tolerated, or eliminated, and also predictable in their reactions to misbehavior when it did occur. The stability coefficients for different types of student misbehavior mostly reflect the raw frequencies of these kinds of misbehavior; but there were more psychologically explainable patterns in the teacher response data. In general, there was moderate stability frethe kinds of reactions the teachers made to student misbehavior, and somewhat higher stability-in the relative effectiveness with fich they dealt with it.

Teacher reactiôns coded as involving no error generally were stable and were by far the most frequent, and so were the particular errors they made (when combined across all kinds of student misbehaviors).

There was a very high coefficient for the measure of studeñt misbehavior combined with teacher criticism and target errors (.86), suggesting that certain Ėeachers consistently make target érrors and other teachers consistently do not. The same was true for timing errors, although . ; the coefficient was not nearily as high (.46).

Measures relating particular types of student misbehavior to particular types of teacher responses generally did not.show stability. Probably particular types of student misbehaviors are not consistently associated with particular types of teacher responses. This probably is an instance where instability is appropriate, because teachers should individualize their management responses to particular students and situations. The data for types of teacher responses across ali typés of misbehaviors did show moderate to high stability, ,howevèr, - again indicating that teachers are predictable in the way they deal with management problems. This is essentially what Kounin (1970). reported, and what we have seen in our earlier research.

General Measures

The last 21 variables in Table 4 dfe general proportion measures derived by combining data from many different contexts. The variables themselves reconfirm much of what already has been said: teachers are moderately consistent and predictable in their rate's of both praise and criticism; in the proportion of classroom time devoted to public response opportunities vs. private contactss; in the types and frequencies of student inftiations that they allow; in the frequencies with which they have to deal with misbehavior; in their frequencies and types
of non-academic contacts with students; and in the types and levels of feedback they give to students.e.

High Inference Ratings by Observers

Classroom Observation Scales (COS)

Two sets of high inferente ratings were completed by the clässroom observers. The first was a set of 12 Classroom Observation Scales (COS) (Émmer and Peck, 1973; Emmer, Note 2) and included in'. prevịous process-outcome and stability investigations (Brophy, Coulter, Crawford, 'Evertson, and King, 1975; Brophy and Evertson, Note 1). These scales were completed every time the observers visited the classroom ${ }^{\prime}$ and ratings were averaged within and across observento arrive at a single score for the teacher. . In addition to the 12 scales included in the original battery, three additional-scales dealing with the relative frequencies of fact questions, explanation questions, and personal questions also were rated on each visin and averaged to get single scores.

The stability coefficients for these 1.5 rating scales are shown in Table 5. The first 12 scales for the COS instrument all showed high stability, with coefficients ranging from . 73 to . 86 . Thesé coefficients for junior high teachers teaching in different class

Insert 'Table 5 about here
1 sections during, the year are generally higher than those for second and third grade teachers teaching ${ }^{\text {re }}$ in different contexts during the
*same year and in Similar contexts across tho different years (Brophy, et (1, 1975).

象

The three measures of level of question all showed significant stability coefficients, but those for fact and explanation questions were. much higher than that for personal questions. The high.coefficients for fact and explanation questions fit in with the pattern seen in the COS measures indicating that discussion of academically relevant content is the most common activity in these classrooms. Personal questions are less likely to be seen and less stable in their occurrence, probably because they depend more on teacher initiation and personal preference or style than factor explanation questions, which are mainstays of questioning students or conducting discussions.

The earlier, investigation by Brophy, et al (1975) revealed that all 12 of the COS scales showed high stability across context within the same year, but only nine of the 12 showed stability across years. The exceptions were teacher presentation, pupil tot pupillinteraction, and passive pupil behavior. Differences on the latter two variables were attributed to changes in the curriculumgade between the first and 'second year of observation.

The present data indicate that the difference in students probably, was not the reason for low stability, at least not it its own right. three of these variables had very high stability coefficients in the present study, even though' the teachers were dealingewith different
students in the two class sections．This indicatos，once again，that measures of student behavior are strongly affected by the expectations and general socialization activities of the teacher，and that these measures reflect the teachers äs much as the students．Apparently， teachers are more consistent within shorter timespans in the kinds of things that they expect and／or tolerate from their students，so that comparable student behavioris obsèrved in different class sections seen concurrèntly．．It＂is not oclear why pupil to pupil interaction and pupil passivitw，were not stable across years in our earlier study． Apparently，though，the differences ohave something to do with the teachers and cannot be attributed solely to different student populations．

Observer Ratings of Teachefs．In addition to the 15 COS scales filled out on each classroom visit，the observers rated the teachers． on another 64 scales at the end of the year．Thé ratings of each two observers were averaged to arrive at $a_{i n s i n g l e ~ s c o r e . f o r ~ e a c h ~ c l a s s r o o m . ~}^{\text {a }}$ These ratings dealt with a broad range of variables，such as the appearance of the room and 0^{*} classroom climate，but moset are high inference judgments about teacher process behavior．Finalily，there were some judgments about general téaching effectiveness and about． ovefall observer impressions＂of the teacher（would the observer like Whaye this teacher if they were in the grade that the teacher teaches？） As shown in Table 6 ，all 64° of the stability coefficients fung \because these ratings were significant beyond the ． 01 level，and many were extremely high．Thése genera ${ }^{\text {lilly }}$ highín correlations probably indicate a

Insert Tablé 6 about here
degree of halo effect operating when coders see the same teacher in both sections (as they frequently did), as previously discussed in the first section, although these variables were expected to show generally high -stability anyway: The only ones that did not have coefficients of .70 or higher were the ratings of crowdedness of room, quality of teacher directions, variety of assigñments, and 'consistency in giving feedback regarding seạt work and homework. Low stability for crowdedness of room was to be expected (some correlation was expected because crowdedness was more a charäcteristic of schools than of individual rooms). However, the teachers' two sections did differ in crowdedness on occasion.

The variables that had the highest syability coefficients were those for classroom management, affective characteristics, teacher awareness of the observer, teacher confidence, and the observer's. opinions of the teacher's overall general competence and attractiveness as a teacher. These are not surprising.' They probably combine the most halo effect with the most genuine stability across class sections, because they involve the most general and probably stable (at least in the short run) teacher qualities.

Taken together, these high inference ratings indicate that teachers look very similar in different class sections, at least when teaching similar students in the same courses in the same grades in the same school. The degree of stability observed probably is higher
than woild have been expected on the basis of earlier research (Shavelson and Dempsey-Atwood, 1976). Some of this can be attributed to halo effect, but most of it appears to be genuine, indicating that the very low stability coefficients seen in some earlier studies probably were due to the limited amount of data collected in each classroom, or to differences between classrooms in student composition, course title, or organization. The present data suggest that parallel sections of thè same course given comparable students are quite comparable and would be good places in which to conduct research that requires matching of classrooms taught with different treatments or approaches.

Student Ratings of Teachers. Toward the end of the school year, the students in each class were asked to rate their teachers on nine high inference ratings dealing with their perceptions of the teacher's competence as an finstructor and affective orientation toward teaching and students. Correlations across class sections were significant. beyond the . 01 level for all nine scales, ranging from .56 to . 75 (Table' 7). Like the observer ratings.in Table 6, these student ratings

Insert Table 7 about here

suggest that teacher behaviors (or at least the impressions that teacher, behaviors engender) are stable across comparable class sections with different groups of students. However, the coefficients for student rätings are not as high as those for observer ratings; suggesting again that the observer ratings probably were-inflated by halo effects;
II. Subject Matter and Class' Section Differences,
: for High and Low Inference Meä́sures.

The previous section dealt with the question of general stability of teacher behavior across two class' sections. Stability was" estimated by correlating measures of each behavior for the two class sections.

High correlation coefficients mean similar teacher behavior in each of their classes.

This section examines the effect of subject matter on many of these same variables. The first part of this section presents" the low inference measures, such as the rate and proportion scores computed for each teacher and for each class section. The second part, of this section will report results from the high inference rating scales described in the introduction (See Appendix A for descriptions of each: of these measures).

These scores were used as dependent variables in a series of tiwo-way analyses of variance which examined possible subject matter (Math vs. English) and class section (first vs. second observed sections) differences.

Low Inference Measures

*These data are reported in Tables 8 and 9, and the variable numbers correspond to those in Tables 3 and 4 for comparison. Tables are organized by presenting the mean rates or proportions for subject matter separately, along with the probability levels if the differences reached significance. Secondly, the'means for first vs. second observed
sections are presented, with the probability kevels if these differences reached significance. The last column indicates the probability levels of any subject matter by class section interactions which were significant.
.Seventy-one variables reached significance for the subject matter comparisons, while only 44 did for the comparisons of the two observed sections: The interactions between section and subject yielded 21 significant findings, where 20 would be expected by chance.

Insert Tables $8 \& 9$ about here

Results are presented by major subdivisions of the observational coding system which comprised the low inference data set. These coding system divisions were constructed to address teacher-student interactions by the context in which they occurred.

Public Academic Response Opportunities

The first major section of the coding fystem recorded public response opportunities heard by the entire class (see Section 1, Appendix B for example of section of coding sheef). These interactions were coded for type of questions, method of respondent selection, quality of student's response, and type of teacher's reaction to the response. The relative stability of these categories has been discussed in the previous section.
 -asked by teachers. English teachers used many more opinion and slightly more product questions (f.e. fact questions for which there is usually a single correct answer). Math teachers posed more
'process questions--the "why" type of questions requiring an extended, reasoned-through response. Choice questions were also used more by English teackers than math teachers. Possibly the nature of junior high mathematics, being the final attempt to lay a solid foundation of general mathematics with students before going on to algebra; geometry, and trigonometry in high school--for the college-bound students at least--could account for the use of process questions.

English classes, on the other hand, are possibly, a-more appropriate. forum for expression of student's opinions, particularly in literature. The official English curriculum of the school system included six. units of approximately equal importance, only one of which was. grammar. 'The others included: careers, mythology, the novel, the short story, and folklore.

The way students were selected for response opportunities also seemed to be strongly related to subjéct matter.. Across many váriables, the teachers' style of preselecting and patterning their choice of respondents occurred much more in English than math. By.this, we '
『 mean that the teacher named the student who was to respond before stating the question, and that the teacher proceeded around the room in some orderly manner'--either down rows, every other student, or some other predictable pattern. Preselection has the function of allowing the student to be forewarned that this is "his" question, perhaps stimulating greater concentration. . Conventional thinking in instruction techniques has usually held that this is counter-
productive because students will relax and tune-out if they know the question will not be directed to them. However, previous studies (Brophy \& Evertson, 1976) have indicated this type of selection to be positively associated with•learning gains in the early grades, probably due to either equalization of résponse opportunities or reduceģ่ anxiety on the part of the student answering-or to a combination of these factors. This is the first timép however, that we have found indications of respondent-selection to be subject specific. I't is possible that some of the classiroom activities for English are more conducive to fgllowing patterns of response opportunities than math activfies. In looking at student responses, the data indicated that there wére more correct answérs given in English classes than math classes. This finding is plausible since English is not as precise and objective a subject as math. There were also significantly more incorrect answers in math. Since responses were coded as correct or incorrect according to the teącher's reaction, a broader range of material could be consi-- dered correct in English. Possibilities existed for students to "be coded as answering corfectly in English for a wider variety of responses. In addition, math teachers used, on the average, twíce as many process questions as did English teachers. Thése require bọth longer .answers and uşually a verbal explanation of the reasoning process behind $\&$ concept ${ }^{*}$, mâking them more difficult to answer correctly $\dot{j}_{\dot{A}}$. Math teachers were more prone to criticize "don't know's" or no responses from students, but criticism of any response seldom happened. Math teachers
pushed for a response and also tended to integrate a student's correct answer into the ongoing class discussion more often than English teachers. Math teachers may have been more focused on specific. goalus.

Time Utilization

As Dunkin and Biddle (1974) noted, contextual effects generally have not běen considered adequately in teaching effectiveness studies. The coding system for this study addressed one aspect of this problem. by coding classroom format* (Section 2, Appendfy B). This was' measured by indicating the number of minutes spent in each format, such as minutes in independent seatwork, transitions, or. class discussion.

In these contexts math teachers Eended to spend more time at the board and in lecture; English teachers' lessons, conversely, were characterized by. time spent on special projects, with advance organizers being used extensively to introduce a new topic. This is Both logical and reasonable, considering the nature of the two subject matters. However, Eflifish teachers were coded af spending more time in testing. We, suggest that this may be due to the fact, that spelling tests were given on a routine basis, whereas math testing usually took, the entire class period and observers normally did not code during this time. Student Initiated Questions and Comments

Some ${ }^{\circ}$ questions and comments during public interaction are initiated by the student rather than the teacher; they are public in nature, meant for the entire class' hearing.. The datagagain fell cleanly into subject-matter categories, with "comment variablen, in English and

"question" variables in math. In general,. the data indicate that most questions and comments were relevant to the' lesson content, with English teachers responding to more call outs and using more praise in their feedback.

English teachers may have been more anxious to fill silences and appear warmer and more accepting of their students, by praising more and accepting, call outs as a means of accomplishing this. English teachers also were not bound by a rigorous subject matter where there was no room for error. Their objectives were more generally to promote communication skills.

Math teachers gave more lengthy and process'feedback. Math class seemed to be a place for attending to problensolving tasks directy, while English. class allowed more personalized input--hence, the greater incidence of comments. 'C̣urricula would account for this, as English students, particularlý when doing literature study and research projects, were encouraged to relate these to their-own lives rather than simply learn foundational skills, as in math.

Teacher Initiated and Student-Created Contacts

- Student created contacts occurred in both math and English classes, but those which were content-related and responded to in a lengthy way occurred more in math. This appears reasonable since math content requites memorization and working through steps in solving problems, while student created contacțs in English dealt more with procedural. or personál requests. A student's personal request made in math class' was more often denied or delayed than in English class, suggesting
more public and private contacts for math students. Math teachers also tended to give more sustaining feedback to 'students who did not know the answers.

Behavioral Contacts

The data indicate that there were more minor misbehaviors in ${ }^{*}$. English than in math classes. English teachers typically responded mildly, with some form of non-verbal intervention, such as a look or by moving closer to the of ender, or with a mild remonstrance which we termed a "management" response. They were usually on target with their management, meaning that they correctiy identified the student daing the misbehavior.
While the overall occurrence of misbehaviors was lower in math classes, those that, did occur were serious "in nature" and were, responded to more strenuously by the texther, who more, often criticized or threatened even mild mismehaviors. Nath tachers also made more targeteorrors; meaning; that they selectof the "wrong stude to discipline more frequently.

Where differences between sections were significant, hearly 摇lf of these reflected swings of only a few percentage points, that ${ }^{2}$ while. these differences were statistically significant, they weref not practi-。 cally or meaningfully so. • The same number of significant meandifferencés occurred for each class section and in each section the same types of variables were those which reached signific̣ance. It might have been reasonable tó expect more sṭudent misbehaviors, less teacher sustaining
feedback, or fewer interactions for second observed sections becaúse they met later in the day and fatigue could bes a factor, but this was not the case. Examination of Table 1 . Shows that most second observed sections.followed rather closely after the first observed sections. Also, there were somerinteractions between observed section and subject ${ }^{\circ}$ matter but again there were no interpretable patterns. .-In-summary, the data show marked subject matter differences but few člass rsection differences which indicated patterns. This suggests that teachers tend to be stable in their behavior across'different class sections but subject-matter differences are present and.clearcut.

The picturewhich emerges is of a typical junior high math teacher being very businesslike and attending rather closely to the curriculum and foundations of general math. 'Thè classroom emphasis is on acquiring basic number skills and understanding basic mathematical principles. Process questions, process feedback to public and private contacts, keeping contacts content-related rather than personal, eliciting questiónsorather than commentés from student-initiated exchanges, integrating student responses into ongoing classroom process, and more frequent use of criticism for incorrect responses or inappropriatembehaviors (although on an absolute basis it does not occur often), all suggest a rather impersonal, task-orientedsenvironment!

English teachers, on the other hand, used special activities, more personal and apinion questions, praisé, moderate behavioral responses, and encouragement and acceptance of studeńt comments’ as têchniques to
personalize the subject matter. Junior high students were encouraged, to relate the curricula to themselves personally through career units and discussion of isssues raised in literature as they applied to their own lives. They generally are not acquiring basic foundational skills, as in math, but rather attempting to develop broader abilities and higher level"skilis such as researching, writing, and integrating ideas. .

As previously mentioned, there was general stability between class , sections; therefore, little appeatred in the way of variation of teacher behavior but great subject matter differences did appear. It is possible that subject matter determines teaching style differences between sections, or that the individual's.personality determines his choice of occupation', and, therefore, what subject he will teach. Of, perhaps, the situation is explained by some interaction of the twọ explanations. "At any rate, these differences are likely to appear across subjects, and would be taken into, account in research that includes several subject matters and involves attempts to generalize across them.

High Inference Ratings
The second part of this section will discuss differences in subject matter and class period effects using high inference measures. Shavelson and Dempsey-Atwood foufd these more global raṭings to be more stable, thus we wili consider them separately from the low infere coding of discrete behaviors.

The first set of high-inference data to be examined are from the Classroom Observational Sčales (COS): These variables were among those
most heavily stressed in the development and application of classroom observation systems. Two-way analyses of variance were conducted on the scales using subject matter and class section as classifying variables.

These, analyses allowed comparisons between subjects for each of the high inference ratings. Only those variables for which the findings held across observations are oreported. Other variables significant by subject area for one observation; but not the other, have been listed in the tables, but no attempt has been made to explain those at this point. - It is expected that future hypotheses will be generated from these data to account for such "instability". Classroom Observation Scales

Attentiveness of students, teacher presentation of subject matter, convergent. evaluative interactions, and questions with applications to students' lives were the only variables on which differences occurred.

Insert Table 10 about here

The attention level of students was higher in English than in math. This might be explained by the teacher's style of presentation, since teacher showmanship was also rated higher. in English classes. Math teachers lectured more; the lectures may have been directed to small groups 就ithin the class (e.g. lecturing to those students who exhibited *difficulty mastering a technique or understanding a concept, while" other students may have been busy with other individual or group assignments and still others may have been involy in peer tutoring, etč.).

Teacher Presentation of/Subject Matter. Math teachers utilized the teacher presentation method more than English feachers did ($\mathrm{p} \leq .05$). Teacher presentations were observed during about 20% of the otime in. math' classes, but. werk observed muck less frequently in English. Much the material in the math classes was likely to be fact-related and likely to follow a logical sequence. 'In order for material tol be factually correct solving, teaçers assumed a role of "authority". or "expert, in the field". On the other hand, English lesson content may have been more flexible than that of math.

Convergent evaluative interactions. Math teachers tended to strive more for "right" anśwers without probing than did•English, teachers. Although the difference between subject areas is significan't ($\mathrm{p} \leq .05$), neither group tended to use this questioning technique with great frequency.

Questions with applications to students lives or current events: English teachers tended to ask significantly more questions of this nature than did math teachers ($\mathrm{p} \leq .01$), probably because math teachers adhered more strictly to the text and other prepared illustrations so that students learned first to solve problems in a common context that can be used for later reference. Also; it is probably assumed that. If the student'sunderstanding of basic concepts and principles is accurate, transfer of that knowledge will occú more reâdily. Observer Ratings of'Students

The coder ratings of students consisted of 26 variables. Onily
one variable from this scale was significant (i.e., student is usually unhappy.)." Before the fipdings on this variable are discussed, some of the suggested reasons for lack of additionalignificant findings on this scale will be mentioned. TSome of thesevariables were expected to remain constant (stable) acrữoss situations (e.g., shoddy appearance) and would' not be explected to be changed as a result of environmental changes. Assuming randomization of students within classes, it was also expectederthat other differences amongestudents would be balanced out and therefore, not significant. This should be the case for such-variables as emotional maturity, achievement motivation, physical maturity, etc., so the lack of significant findings for ratings of students is expected.

Insert Table 11 about here

Students were rated as more unhappy in math classes. However, this did not reflectextreme unhappiness. Rather it probabily represented a change toward a more sober mood required for independent thinking and problem'solving.

Student Ratings of Teachers
Only one of the nine variables on these seales reffected significant differences across subject areas: "student feels comfortablef going to the teacher with a problem." This finding raised the question of whether English teachers weré more student oriented than math teachers.s or-whether wid the differences in student pergeptions of teachers were due to the structuring of 'teacher behavior by the c̣urriculum.

Insert Table 12 about here

Observer Ratings of Teachers

There were several significant differences by subject areas: These were often related and could be grouped into the following general categories:

1. Differences in"manner of presentation of context: :Math teachers lectured more, used blackboards more; "went to students during seatwork, and assigned homewofk more frequently. . . . r^{2}

English teachers, on the other hand, used oral readings, drama, and vazious audio-vishal materials their presentations.
2:. English teachers tended to give more attention to the atfractiveness of the room, as if setting the stage' for: relaxed student participaṭion in class. Also, English teachers had greater flexibility in the materials they μ sed to decorate their rooms.
3. English teachers exhibited a, democifatic leadership style and tended to nurture students móre; a more authoritarian style. was inferred for math teachers. Again, this was possibly : demanded, by the nature of the material to be taught.
. Insert'Table 13 about here
\qquad

Summary of Subject Matter Differences
The differences found in math and English classes generally-fit into specific patterns which reflected the ofntent of the subject (e.g., development of problem solving skills in math and facilitation of communication skills in English) aṇid the teaching methods usually used in the two fubject areas (e.g., lecturing and demonstration on the blackboard math classes and the use of oral readings and audio-visual matètrails in Eng ifish classes).

The differences have some implications for research controls K * situations, whèra process data from different subjéct matter areas are going to be हompared: The pacing and methods used in these two types of classes appeared to be very different. It is important to recognize is that these differences were probably.due to the subject matter and not to ; the individual characteristics of the teachers.

Generally, there were more similarities than_differences found between 并ath and English classés. Where'significant differences were found they seldom reflected mean differences of great magnitude, except where a given variable was ofserved in only one subject area. (e.g., the use of drama in English cidasses) and not at all in the other subject aréa.

Differences for obseryed sections showed no meaningful patterns, although data from the flassroom Observation Scales (COS) showed significant differenteg for the second observed section: Again as previously mentioned, there was no feason to believe that these

[^1]findings are anything but çhance since most second observed sections followed closelythe first observed sections. Also, what intéractions appeared between subject mfetter and observed section revealed no ; intèrpretable patterns.
III. Consistency of Behavior of Same Student Observed in Junior High School Math and English Classes

The purpose of these analyses was to examine the stability of the measures collected for the subsample of 199 students observed in both the math and English classes. These students are referred to as the "overlap" subsample. The results reported here come from correlational analyses in which, each student's paired scores were compared for each variable for which there was individual-student data to determine the stability of measures across the two classes. Significant correlations indicate stability, which does not necessarily mean that students had the same score. in each class, but that a student's stảnding relative to the rest of the students was about the same* in either clàss.

Another purpose of these analyses was to determine to what extent the ${ }^{\text {d }}$, individual student may affect the stability of classroom measures. Variables which show high stability across classes can be said.to be subject to a student effect. Such variables are certainily not out of the teachex's"control on influence, but they do reflect.ciassroom processes in which individüg1 differences in students wifll strongly. dictate what happens.

The measures reported here have been discussed in previous sections of this report: high-inference ratings and lowinference observational coding measures. Some of the data were collected for
individual students and some were collected only on teachers. The subsets which contain individual student scores are those which will be reported here:

Variables are reported as "stable". when they were corirelated highly enough to be significant at, $\mathrm{P} \leq .05$.

Results
Before presenting those variables which were significantly stable, the unstable and nonsignificant findings wịll be briefly discussed:

The only variables which were significantly negatiyely correlated across twंọ classes were those examining the use of preselected patterned turn selection for public respoñse opportunities. As wis discussed in. the previous presentation, this variablershowed strong subject-matter differences'which probably account for the negative correlations for -students in different classes. It is unlikely that any student factor . would account for vastly different amounts of this type of selection in, two different classes, since it involved the teacher treating the entire group, in the same way:

Insert Tables $14 \frac{18}{18}$ about here
Nonsignificañé variables, were, in generá , those for which strong. subject matter influences were found, although the influence was not strong enough to yield significant negative correlations." These were variables measuring the type of questions asked (whether process,

product, choice, or opinion) and the difficulty level of the questions (whether correct or incorrect); for, these variables, the math teachers - asked. more process questions and student's gave more incorrect answers in - math classes. The type of feedbadk given by the teacher also was not stable for overlap students with the exception of some instances of integration feedback and process feedback.

The types of misbehaviors for which students were corrected were not *stable with the exception of two 'typès. of misbehaviors related to $\stackrel{\square}{6}$ disrespect for the teac̈her. 'The more severe types of teacher reactions were not stabltand although the use of milder corrections was. stable. This may reflect consistent teacher treatment of students who do not gerious behavior problems.

Four*ways of classifying the stable variablés will be presented.
 oriented worker was highly stable characteristic. This is supported by several general ratings tion, aćademic performance, and record of turning in homework on time. Good students in one class tended to geo good students in the other.

Second, the extent to which the student initiated his or her involvement in interactions was highly stable. For example, the thypes of selection for public response opportunties which were stable were student volunteering to answer and student calling out the answes. The rate of student initiated questions and comments during a
discussion was highily stable across classes, as well as the rafe of a - student's initiating a private contact with the teacher (such as calling the teacher over during seatwork, or going to the teacher's desk). Reflecting this same characteristic are the kinds of teacher initiations with the student. Being selected for a pyblic response opportunity as a non-volunteer and being approached by the teacher for private interactions were measures which showed high stability. Although measures of teacfer behaviors, these variables probably reflect teacher responses to student differences: if the student needs contact with the teacher (i.e. is not on task, is not getting practice by answer.ing questions) and is not goinf to initiate that contact, then the teacher must make the effort.

Another indication of this characteristic is the proportion of public contacts to private ones, which wàs also stable. The same students in both classes are heardmest often by the rest of the class.

The high-inference ratings of the overlap students. are consistent with this pattern of results. Classroom observers' ratings of the students in their two classes on the factor of "outgoing, sociable, and happy "with peers and teacher" was highly \{table. All of these results considered together indicate, that student willingness (and/or capacity) to initiate his or her own interactions is a stable characteristic, not, strongly affected by subjec matter differences.

A third pattern notable in the results is the consistency of the quantity and quality of teachef-sfudent contacts.- The papers on
-subject-matter differences suggested several ways in which the types of questions and activities are influenced by the demands of the subject matter; but the overlap analyses presented here point out that stüdent differences are also quite important in determining the nature of teacher-student interactions.

Overall, the rate of any contact with the teacher, rates of public academic contacts, behavioral contacts, student created work contacts, procedural contacts, and social contacts were all stable. When proportions of types of contacts are examined, those which "were workreḷated, non-work related, or behavior-related were stable. Looking just at student-cpeated contacts (student: initiated private contacts with the teach(r), the proportions of these which were contentrrelated and which were procedure-related were stable ${ }_{\mu}$ although there were also subject 'matter' differences between content related and prócédure related contacts by students. (There were more of the former in math classes, . x and more of the latter in Eng1ish classes.)

These findings suggest that a student who stays on-tabk and doed not misbehave in one class is likely to be about. the same in another. Likewise, a student who often needs to/question the. teacher on the page number of an assignment is as likely to need guidance in a math class as in an English class, or at least his or her standing relative to ${ }^{\circ}$ the rest of the sample will be the same. The content of the lesson changes', but the student's concerns di.e. work, procedures, or misbehaving) stay the same.

A fourth way of classifying the stable variables is to consider the tone of the interactions described by them. This can be measüred by looking at both student-controlled variables and at teachercontrolled variables which probably reflect reactions to student differences.

Teacher feedback to answers or requests is an example of the latter. The proportion of the time that teachers offered integrative feedback or process feedback rather than perfunctory feedback to a student's answer was stable for several variables, although not in all instances. This is interesting because subject matter differences were also notéd for these measures. For example, even though integration of, a student's answer is less likely to happen in English clas̀, studentston'. who receive the greatest amount of it in English are also likely to receive. the greatest amount of it in math, compared to other students: On an absolute scale, they will receive more in math than in English, due to subject matter influences:

Providing more elaboratre:feedback to some ștudents may represent teacher willingness to take some students answers more seriously tha? others, but it is isalso likely that this is a reflection off the quality. of the ${ }_{4}$ answer itself, in that some students may consistently give better, morè $=$ appropriate answers.

The rate of academic criticiom and the proportion of teacher. afforded work contadts given criticism were also stable evaluative \because
.feedback variables, as was the proportion of behavior contacts in which the teacher delivered a mild correction (coded as* a "management" ehavior). Again, these resuits can be interpreted either as teacher
atitudes toward students or as reactions to the student behaviors (or a combination of the two), but the importance of this finding for this paper is that the behaviors were stable. The students tended to receive elaborate or perfunctory feedback, criticism, and mild rather than more severe behavioral corrections to about the 'same 'relative degree in each class. Again, however, the absolute amount ${ }^{\circ}$ for any student might be affected by the subject matter.'

The student-controlled behaviors which were stable and which reflect the tonal quality of interactions with the teacher are primarily reflected in the types of misbehaviors occurring. The proportions of all-misbehaviors which were "sassing and defying the teacher". or "baiting the teacher" were stable. The students exhibiting these behaviors in one class also did so in the other. Overall; the rate of "aversive'/ dyadic contactis was stable, and the rate of "reanforcing" dyadic coṇtades approached significance ($p=: 06$), indicating that the extent to which a student had pleasant, neutral, or unpleasant 'contacts-was stable from class to clask.

High actions and which were stable were observers ratings, of "antisocial teńdencies, emotional, or behavioral problems ir and teacher ratings of the students as "would want student in class again" and "student's behavior" in class." These suggest that the student strongly influences the tone of his or her interactions.

The picture that emerges, then, is one of students being treated with relatively the same amount of warmth, acceptance, and respect in each cIass, and affording the same reiatively to each of the teachers he or
she, has, One might expect, then, that, the student ratings of teachers would reflect this and also be stable, but that was not the case. Only two of nine scales were stable: "Student feels comfortable going to the teacher with a personal problem" and "Student learned a great deal in this class". Ratings of the teacher's competence, interest in the students, and student's desire to have the teacher again were not stable.

Another study conducted by the Correlates of Effective Teaching Project, the•Student Attribute Study, yielded results which are very similar to these (Brophy, Evertson, Anderson, Baum, and Crawford, Note 9). That study focused on behavioral correlates of students who were ranked by their teachers as being consistently high or low on several scales. It was generally found that students who were seen positively were seen that way on almost every measure, and likewise for the student ranked low on Such scales as achievement potential, persistence, cooperation, etc. Even though this study was done with elementary students, many of the same patterns of behavior which distinguished the "top" from the "bottom" students are those same types of behaviors. which were stable for the overlap students:, public vs. private contacts, and general tone of teacher-student interactions.

In summary, several student characteristics and classroom processes are seen to be stable across two classes of different subject matter." In any specific fituation, these characteristics may bee moderated by f the demands of the subject or individual teacher influence. On the

60
whole, however, certain, kinds of student behavior and student characteristics were stable across classes, meaning that the student's
relative standing was the same, regardless of teacher or subject matter.

Discussion

Using a box score approach for categorizing across the studies surveyed, Shavelson and Dempsey-Atwood concluded that taper presentation, positive and neutral feedback, probing, and classroom management were moderately stable; that the stability of content presentation, motivational skills, expressive teaching style, affective style, classroom administration, and teacher individualizatin was unclear because some variables showed good stability, and others 'did not; and that the stability of teacher questioning, negative feedback, student-centered teaching style, interpersonal behavior, the degree to which the teacher followed prescribed procedures, 'and indirect teacher control of the classroom was very ion.

These are interesting suggestions that will be considered, but we do not believe that the data upon, which they are based were strong enough to justify considering them as hypotheses. In many studies, the length of the observations used to generate the raw data was so limited as to call into question any attempt to assess stability, and in others, known differences, in the contexts in which different measure--mints were taken ${ }^{\text {c }}$ call into question the very expectation of stability, ${ }^{\circ}$ Also, the research settings varied widely in general level, subject \dot{t}. matter, number and type of teachers included, types of behavior measured, and types of scores used.
© Among the variables found to be least stable in this study were the difficulty level of questions, the" types "of feedback following
\therefore wrong answers, praise to students in private contacts, and the percentage of total time devoted to student response opportunities in public settings. This inclutes the variable of questioning mentioned by Shavelson and Dempsey-Atwood, and it includes elements of student-ćentered teaching style and inđirect tgacher control as well. However, the other variables, included in this" report do "not apgear on this ilist; and, in general, there is not much correspondence between the two lists.

In general, the stabrility coefficients'presented here'are much higher than would be expected on the bas'is of previous research (Shavelson and Dempsey-Atwood, 1976), and Kigher than those obtained in-our own earlier work using similar observation instrumentsion second and third grade cilassrooms (Brophy, Coulter, Crawford,
 Note 2; Crawford, Brophy, and Evertson; Note 3).' This seems attrif butable to the fact the two class sections observed for each'teacher were taught to. students at the same grade level in the same school taking the same course, and to the fact that a great deal of data were collected in eắch clasșroom (an average of 20 hoùrs). The high eomparability of class sections had the, effedt of matching classes-on a -great many, contepxt variables, leaving only' random differences’ in stưdent composition.. Even here, the potential for such differences was minimized,' because the students were in the same grade in the same school. Many of the studies reviewed by Shaverson and Dempsey-Atwood
(1976) used class sections that were known to be different Coften deliberately structured to be different) in one or more fundamental ways. This may be the primary reason for the generally low stability reported in these studies.
The present study shows that more thorough sampłing reveals many *low inference measures to be quite stable across class sections, but Yor yazriables that appear with low frequency. The frequency with which particylar process behaviors occurred was dne of the strongest' single "determenants of stability coefficients, although there were some exceptions. Even` in this stụdy, a great many process behaviors did not appear often enough to allow reliable sampling. "Many of these varriables probably are not important enough'to warrant serious and extended study. Those that are will have to be studied with methods that artifically produce the behaviors more frequently and perhaps predicEably ${ }_{j=}$ so that they can be observed often enough to allow statistical , assessment.

One way to to this is' to assemble' "case studies" that could be analyzed later as part of a single sample: This mäthod would preserve the naturalistic character of the interaction samples, although doing it would require a good deail of advance information á ábout what 'aspects of situations should be recorded for préservation. An alternative method would be to ${ }_{0}$ produce situations experimentally by manipulating teacher behavior to see its effects on students, or manipu-- lating student behavior to observe i.ts effects on teachers. • Here, it
would be important to see that the subjects did not know the hypatheses (or, ideally, éven the variables of interest). . These , methods would produce a greate gain in efficiency or control, butc at the cost of naturalístic realism. . .This might not be a. problem for variables dealing with instructional techniques (what should the -teacher do if the student otiginally said "I don't know," and a prompt 'has failed to elicit a response?), but the $10^{\circ}{ }^{\circ}$ in \cdot realism might be too seriqư to overcome in investigations of variables having to do with classroom management techniques (what should the teacher do if two students who are fooling around have not responded to instructions telling them to get to work?)

- The present data confirm previous findings that high inference ratings yi'eld higher stability coefficients than scores from low inference coding: .This should not be taken to imply that high inference ratings are preferable, however, for several reảsons. First, high inference ratings generally deal with broađ and often covert aspeçts of classroom process, in contrast to the more specific and overtaly behavioral aspects included in low inference coding. One implication of this is that high inference ratings should be more stable. Fof 'certain variables, they may be the method of choice; but. other yariables (feedback to student enswers) cannọt be rated validly with high inferénce scales, although they can be counted accurately with low inference methods. Alsó, high inference ratings' implicitly assume that certain teacher characteristics are or should bé generic, but as knowledge about context effects increases, it is be-
coming clear that few process behaviors are truly generic. Most vary (probably appropriategity with context (Brophy and Evertson, Note 10).
'In addition to this conceptual problèm, there is also the question of validity, High inference ratings are frequently distorted by hało'effects, personal biases, instructional set; and many other influences that inflate measures of $\dot{\dot{r}}$ 纤liability but erode validity. Aspects of this were seen in the present study: observer ratings on 64 scales covering a great variety of aspects of teaching were more, stable across class sections than student ratings of nine general teacher characteristics. Students saw the teachers only within one. class section, but observers often saw them in both class sections; so that the stability in observer ratings probably was inflated by 'halo effects somewhat. This will be checked further by examining the stability of the ratings, done on a given teacher by only two observers versus those done by'three or more observers.

In general, fhough, the stability seen in this study wás quite impressive. Among other things, it implies, that the use of parallel class sections taught by' the samé teacher "would allow a great deal of غontrol over extraneous variables in studies: which compared treatments. There would be serious. contamination problems, here, of course; because the same teacher would be asked to do one thing in one section and another thing in another section. However, if two positive trea咯ents (rather than one treatment and a control procedure) were involved, so that the teacher could concesntrate on doing one set of things in one
class and a.different set of things in the other class, the result . could be an excellent opportunity to observe the specific effects of each treatment.

The contrast between the relatively high stability seen here vs. other studies shows that stability in process measures can be achieved with enough observations and enough control over context variables, but it also illustrates the futility of expecting all process measures to be stable. Tkis will happen only if investigators confine themselves to the most frequent and typical (andrusually uninteresting) behaviors.

As" we have noted elsewhere (Brophy and Evertšon, Note 10), ultimately the sqlution to stability/generalizability concerns lies in learning more about context effects on process measures and processoutcome relationships, and about how to accommodate such effects in improved research designs. If this is accomplished, the stability/ generalizability. problem could disappear.

One issue which has not been addressed in this report is that of the role of stability in individual teacher effectiveness. Most researchers recognize-and agree that flexibility is likely to be a vịtal component in teachër behavior and that tailoring teaching methods to the demands of the classroom is appropriate behavior. If so, one should expect pértain effective teaching behaviors to be unstable. A future report from this study will examine the stability scones of individual teachers from clusters of empirically.preselected behapiors
and relate these to student outcomes in order to determine the 1 conditions under which consistency is effective and under what conditions consistency fails to meet individual meeds and may have a detrimental effect on pupil outcomes.

The data presented in this report are derived from.several sets of the Junior High Study. The following is a list of the subsets used, a brief description of each, and an indication of the report sections where they will be discussed.

1. Classroom Observation Scales (COS): a set of twelive high$2 \mathrm{~s}^{\text {inference }}$ five-point scales of teacher and stâdent' classroom behaviors. Included also are 3 types of questions and 4 factor sçores from the factor analyses. Results from this subset are discussed in Sections I and II.

- 2. Observer Ratings of Teachers: a subset ${ }_{\&}$ of 100 high-inference five-point scales on which teachers were rated at the end of the year by the two abservers who had seen the teacher throughout the year. 'The two sets of ratiós per teacher were combined after unreliable variables wère dropped." Results from this subset are discussed in Sections I and II.

3. Observer Ratings of Students; a subiset of high-inference data consisting of twenty-five five-póint scales; each of the two observeŕs, cellecting daṭa in áarticular clàss rated target students at the end of the year. One variable was dropped for lack of reliability and the rest; which were highly reliable, were comblned to give one score pèr student. Results from this subset are discussed in Sections I, II, and III.
4. Student Ratings of Teachers: a subset of high-inference data consisting of all students in each observed ciass rating their teacher on \cap nine five-point scales. "Results from this subset are discussed in Sections I and II.
5. Time Utilization: as a portion of the low-inference coding system, classroom observers kept, an account of the number of minutes teachers sutilized various teaching formats. These were caiculated as proportions of total teacher controlled time. Results from this subset of data ars discussed in Section II.
s.6. Teacher Ratings of Students: a subsety of high-inference data consisting of five ratings of each target student. These were done on five point scales from (1) low on the behavior to (5) high on the , behaviór:
6. Low Ifference Observational Coding System Proportions and individually tallied and summed and these frequencies-ifelded two types of scores: (1) rate scores, for which frequencies were dividdd by number of minutes of observation, thus giving an index of the absolute rate at which certain behaviors occurred (such as correct answers per 50 minute classperiod, and 2) proportion scores for which raw frequencies were used to indicate the relative amounts of various behaviors (such as the proportions of corract answers of all answers given). Results from these subsets are discussed ${ }^{(}$Sections I, II, and III.

\qquad DATE： \qquad
\qquad START \qquad PAGE
\qquad $\mathrm{H} \quad \mathrm{F}$ OBSERVER \qquad $\stackrel{\Delta}{s}$ TOP \qquad OP \qquad
GEN＇L CLASS \qquad SHALL \＃GRP． \qquad MEMBER I＇s \qquad TEACHER INITATED CONTACTS
x

7. Brophy, J. \& Evertson, C. The Texas teacher effectiveness project Presentation of non-linear relationships and summary discussion.
(Res. Rep. No. 74-6). Austin, Texas: Research and Development Center for Teacher Education, 1974.
8. Emmer, E. Classroom observation scales. Austin, Texas: and Development Center for Teacher Education, 1973.
9. Brophy, J., Evertspn, C., Crawford /J., King, C., \& Senior, K. Stability measures of classroom process behaviors across three different contexts in second and third grade classrooms. (Res. Rep. No. 75-1). Austin, Texas: Research and Development Center for Teacher Education, 1975.
10. Brophy, J. \& Evertson, C. The Texas teacher effectiveness study:. Classroom coding manual. (Res. Rep. Nó. 76-2). Austin, Texas: Research and Development Center for Teacher Education, 1976.
11. Brophy, J., Evertson, C., Baum, M., Crawford, J.,' \& Edgar, D., Junior high school study: \because Coding manual. (Res. Rep. No. 75-3). Austin, Texas: Research and Development Center for Teacher Education, 1975.

12. Brophy, J., Evertson, C:, Crawford, J., Anderson, L., and Baum, M.: Criterion referenced observational measurement in the classroom. (Res. Rep. No. 76-5). Austin, Texas: Research and Development Center for Teacher Education, 1976.
13. Coulter, C. Training observers for naturalistic observational research, (Res. Rep'. No. 76-9), Austin, Texas: Research and Development Center for Teacher Education, 1976.
14. Crawford, J., Brophy., J. \& Evertson, C. Texas teacher effectivnes ${ }^{\text {s }}$ project: Stability correlations bétween first and second year data. (Res. Rep. No. 75-14). Austin, Texas: Research and Development $:$
Center for Teacher Education, 19:75;
15. Brophy, J., © Evertson, C., Anserson, \quad Baum, M., and Crawford, J., The Student Attribute Study: Preliminary Report (abbreviated version).

Austin, Texas: Research and Development Cēnter for Teacher Education, 1976.
10. Brophy, J., \& Evertsfon, C. Context variables in research on teaching. Paper presented at the Annual meeting of the American Psychological Asspictation, 1976.

References

Blank, M Teaching learning in the preschool: A dialogue approach. "Columbus: ${ }^{\circ}$.
Merrị11, 1973,
Brophy, J. Stability of teacher efféctixueness., American Educational Research Journal, 1973, 10, 245-252.
'Brophy, J. \& Evertson, C. Learning from teaching: A developmental perspective. Boston: :Ally nad Bacon, 1976.

Brophy, J., Coulter, C., Crawford, J., Evertson, C. \& King, C. Classroom observation scales: , Stability across time and context and relationships with student learning gains. Journal of Educational. Psychology, 1975, 67, 873-881. Brophy, J. Evertson, C., Crawford, J., King, C. \& Senior, K. Stability of measures of classroom process behaviors across three different context's in second and third grade classrooms. JSAS Catalog of Selected Documents in Psychology, 1975, 5, 338.
 Winston, 1974.
Emmer, E. \& Peck, R. Dimensions of classroom behavior. Journal of Educational 'Psychology, 1973', 64, 223-240.
Gotta, T. \& Brophy, N. Changing teacher and student behavior: An empiral ínuestigatiogn, Journal of Educational, Psychology, 1974, 66, 390-405. Good, T. \& Brophy, J. Educational psychology: A realistic approach. New York: Holt, 'Rinehart and Winston, 1977.
Kouning, J." Discipline and group management in classrooms. New York: Holt, Rinehart, Winston, 1970.
Shavelson, R. Dempsey-Atwood, N. Generalizability of measures of teaching. behavior. review of Educational Research; 1976, 46; 553-611".

Table I. Time Differences between the Two Observed Sections of Math and English Teachers' Classes

Intervening classes

 between the two observed sections:

Table 2: Correlations across Class Sections for Content Formats

Math

3. Four functions: decimals **
.4. /Percentages . $66 * *$

6.. Algebra $\because . . . \quad$-. $75 * *$
7. Other . 0 $33 * *$

* English

8. Spelling tests
9. Spelling activities
.79**
$.80 * *$

. $7.72 * *$
10. Gramar: : sentence structure

11. Grammar: parts of speech
12. Story reading

I6. \because Composition, exercỉses $\quad \because \cdot \because$

13. Vocubulary exērctises

19: Other

Table 3：Correlations across Class Sections for Rate Measures from the Low Inference Observational Coding System ${ }^{\perp}$

Rate of：

$$
6
$$

1．Public Response opportunities
2．Process questions
3．Product questions ：81＊＊4．Choice questions0951＊＊
6．Preselect－patteinned type of selection ．56＊＊
7．Preselect non－patterned type of selection 54＊＊
8．Non－volunteer type of selection83＊＊
9．＇Volunteer type of selection ．69＊＊
10．Call－out type of selection 76＊＊
11．Correct answers ．83＊＊
12．Incorrect answers 83＊＊
13．＂Don＇t know＂answers 76＊＊14．${ }^{1 / 7}$ responses3．
15．Student－finitiated－questions 高等
16．Student－initiated comments ：44＊
17．Academic praise．58＊＊
18．A Academic criticism ．73＊＊
19．Student initiations evoking a negative teacher response ．3］．＊
20．Total sustaining：feedback．81＊＊21 Sustaining feedback given wrong／answers in academicresponse opportunities context

察
O：

22.. Sustaining feedback given "don't know".or no respotise in academic response opportunities contest
. 56 **
.49**
. $54 * *$
$.63 * *_{4}$
$.64 * *$
1.66**
.72**
.59**
.71 $\times *$
$.59 * *$
i. 65
.66**
:73**
$.55 * * ;$
.74**
.59**
. $50 * *$
.68**:

Table 4: Correlations across Class Sections for Proportion Measures from the Low Inference Observational Coding System ${ }^{1}$

-Proportion of:

1. response opportunities generated by process questions . 47**
2. rèsponse opportunities generated by product questions :.35**
3. response opportunities generated by choice questions -.05
4. response oppostunities generated by, opinion questions .20
5. process questions which'students answered correctly -. 21
6. product questions which students answered correctly . 48 **
7. : choice questions which students añswered correctly -. 02
8. opinion questions which students answered with " "doñ't' know": or no respa
9: respanse opportunithes given to students whot were presefected in patrerned turns restonse "opportunftes given to students who wete preselected in non-patterned turns
9. response opportunities which the teacher gave to non-voluunteers
10. , response opportunities whịch teacher gave to volunteers
11. response opportunities which students answered by caling out

14: preşelected, patteqned turnstudents who answered

$15:$ preselected, non-patterted turn students who answered correctly

Table 4 （cont．）
16．，non－volunteers who butiswered correctly
17．volunteers who answered correctly
18．call－öut students who answered corréctly
19．correct answers
20．incorrect answers
21．answers which were＂don＇t know＂
22．answers which，wère no response
23．correçt answers which teachers praised
24．correct answers after which teacher asked new question

25．correct answers after which teacher asked non－ academic questiọn .01 ．

26．correct answers which teacher integrated into the class discussion
27．correct answerst which teacher gave no feedback
 .82 ＊＊ feedback

29．incorrect answers which teacher criticized
30．incorrect answers after which teacher repeated人：\because the question

31．－incorrect answers ${ }^{\text {r }}$ after which teaoher simplified the question ．，䋨品

32．incorect answers after which teacher asked a new question

33．rincorrect answerssafter which teacher＇asked a non－ academic question

Table 4 (cont.)
34. incorrect answers which teacher integrated into - the class discussi6n
35. incorrect answers after which teacher gave no feedback
36. incorrect answers after which teacher gave process feedback
37. incorrect answers after which teacher gave, the answer
.16
38. incorrect answers after which teacher asked another student

39: incorreçt answers after which another student called out the answer
40. "don't know" and no response answers/which teacher criticized

Tabie 4 (cont.)
50. product questions which students answered incorrectly
51. choice questions which students answered incorrectly,
52. process questions which students answered with "don't know"
53. product questions which students answered with "don't know"
54. choice questions which students answered with "don't know"
55. process'questions to which students gave no response answers
.42**-
56. product questions to whích students gave no yesponse answers
.44**
57. choice questions to which studentṣ gave no rèsponse answers
58. preselected., patterned turn students' who were asked product questions
59. . preselected, non-patterned turn students who were asked process questions .42**
60. preselected non-patterned furn students who were asked product questions
61. preselected, non-patterned turn students who yere. asked choice questions
.49**
62 . process questions difrected to non-volunteers .25*
63. Wroduct questions dimected to non"-volunteers
64. choice questions directed to non-volunteers
65.: opinion questions directed to non-volunteers.

66 process questions directed to volunteers $-.42 *^{\prime}=$
$\because \%$
.22
67 Qroduct questions directed to volunteers

Table 4 (cont.)
68. choice questions directed to volunteers .09
69. opinion questions directed to volúnteers . 28
70. procéss 'questions answered’ by a student
. calling out
71. product questions aṇswered by a student calling., out
72. choice questions ånśwered by a student calling out .36*
73. opinioh questions answered by student calling out .06
74. answers to process questions which teacher praised ${ }^{\text {º }}$
75. - answers to product questions which teacher. praised
76. answers to choice questions which teacher praised
:44*
77.- answers to opinion questions which teacher praised32
78. answers to process questions which teacher criticized02

79. ${ }^{\text {Knswers. }}$ to product questions. which teacher
-criticized
80. process "questions aftèr which teacher repeated the question.

- $-.0 \ddot{8}$

81 \therefore -
81 . product questioñs áfiter whịch teacher repeated the quegtion. $\quad \because r$
 the fuestion
83. proons questions after which teacher simplified the question

Table $\frac{y^{2}}{4}$ (conts)
84: product:"questions after which teaghêr simplified the question
85. choice questions after which teacher simplified the question ${ }^{\circ} \mathrm{F}$.
86. process questions after which teacher asked a, \because new questition 溇
87. prodừct questions after which teacher asked a
new question
88. chaice questions after which teacher asked a new question
.47.**
$-.12$

.12
-. $47 . * *$
$89 . \therefore$ opinion questions after, whìch teacher asced a. new question
90. process questions after which teacher asked a. non-academic question
91. product questions after"which teacher asked a non-academic question
92. answers tó process. questions which teachey integrated into the class disuctssion
93. . answers to product. fuestions which teagher integrated into the "class discussion'

58**
94. answers to choice questions which teache integrated into the class discussion
95. answers to opinion questions which teache integrated into the class discussion.
96. process questions after which teacher gave feedback
97. product questions after which teaacher. gave no feeddack.
98. process̀ questions after which teacher gave process feedback
99.. product questions after which teacher gave process feeuback

Table 4 (cont.)
100. "choice questions, after which teacher gaye
101. opinion questions after which teacher gave process feedback $-.19$
102. process questions 'aftér"which teacher gave the answer
103. protuct questions after which teacher gave the answer
choice 'questions after which teacher gave the answer
105. process questions after which teacher asked another student13
106. product questions after which teacher asked another student
.25*
107. choice questions after which teacher asked another student 25
108.: process questions after which another, student called out the answer
109. product questions after which another studen't called out, the answer.

110: 'choice questions after which another student called out the answer
ill. preseleçted, patterned turn students who' answered incorrecttly, 76 ***

112 . preselected, non-patternéd turn" students who i ansfered incorrectly
113. non-volunteers who answered incorrectiy : $42 \times$
114. volunteets who answered incorrectly .05
115. call-out student who answered incorrectly .07
116. preselected, patterned turn students who answered with "don't know"

Table 4 (cont.)

117. preselected, non-patterned turn 'students who answered with "don't know" $-.04$
118. non-volunteers who answered with "don't know" -. 10
119. volunteers, who answered with "don't know" $-.03^{*}$
120. preselected, patterned turn students who gave no response answers 00
121. preselected, non-patterned turn stứents who gave no response answers 22
122. non-volunteers who gave no response answers 53**
123. preselected, patterned turn students whom teacher praised 01
124. preselected, non-patterned turn students whom teacher praised 12
125. non-votunteers whom teacher praised $\cdot: 5 \dot{4} * *$
126. ソ̣olunteers whom teacher praised55**
127. call-out students whom teacher praised 6.5**
 34 .*
128. call-out students whom teacher criticized $-: 00$Toff preselected, patterned turn students for whomteacher repeated the question ${ }^{*}$.40
'131. preselected, non-patterned turn students for whom teacher repeated the $e_{\text {ques }}$ quin 06
129. non-volunteérs for whom teacher repeated the - question 14
130. volunteers for whom teacher repeated the question
131. call-out students for whom teacher repeated the questionteacher simplified the question

Table＂ 4 （cont．）
136：preselected non－patterred turn students for whom teacher simplified the question．

137．non－volunteers for whom teacher simplified
－the question
138．volunteers for whom is teacher simplified the question

139．cal！－out students for who q teacher simplified
15

141．preselected，non－patterned turn students whom teacher asked new questions23

142．non－volunteers whom teacher asked new questions
143．volunteers whom teacher asked new questions23

144．call－out students whom teacher \rightarrow asked new questions

145．preselected，patterned－turn－students whom teacher gave non－academic feedback
146．non－volunteers who teacher gave non－acàdemic
feedback
14迕 volunteers whom teacher，gave non－academic ；feedback
148．call－out students whom teacher gave on demic
149．preselected，patterned turn students whose answers teacher integrated into the class discussion
150．preşelected，non－patterned turn students，whose answers teacher integrated into the class discussion feedback

151．non－volunteers，whose answers tache integrated into the class discussion
.Table 4. (cont.)
152. Volunteers whose answers teacher intègrated into. the class discussion 59 **
153: call-out students whose answers teacher integrated into the class discussion 44**
154. non-volunteers whom teacher gave no feedback :25*
155. volunteers, whom teacher gave no feadback $39 * *$
156. cal1-out studēnts whom teacher gave no feedback $.30 \%$
157. preselected, patterned turn students whom. teacher gave process feedback 17
158. preselected, non-patterned turn students whom teacher gave process feedback 11
159. non-volunteers whom teacher gave process feedback 40**

- 160. volunteers whom téacher gave process feedback 58 **

161. call-out students whom teacher gave-porocess feedback $53 * *$
162. preselected, pateřned turn students whom teacher 10gave the answer
163. preselectted, non-patterned turn students whom 05

- teacher: gave the answer

164. non-volunteers whom teacher gave the answer *47**
165. volunteèrs whom teacher gave the answer 13
166. call-out students whom,teacher gave the answer 30 *
167. . preselected, patterned turn students whose turns "teacher terminated by asking another sţudent 19
'168. . ${ }^{\text {Pryeselected, non-patterned turn students whase }}$ 'turns teacher terminated by asking anothex-student 06
168. non-volunteers whose turns teácher terminated by asking another student 26*
170, volunteers whose türns tèacher terminated by asking another student 30*

Table 4 (cont.)

171. call-out students whose turns teacher terminated by asking, another student
.172. non-volunteers whose turns another student terminated by calling out
'173. volunteers whose turns another student terminated by calling out13
172. call-out students' whose turns another student terminated by calling out
173. correct answers given by preselected, patterned turn students
174. correct answers given by preselected, non-patterned turn students
175. correct answers given by non-volunteers , . $60 \times *$.
176. correct answers given by volunteers . $60 * *$.
177. correct answers given by students who called out . $\quad .62 * *$
178. incorrect answers given by preselected, patterned turn students25*
179. incorrect answers given by preselected, non-patterned
turn students
180. incorrect answers given by non-volunteers .39**
181. incorrect answers given by volunteers .23
182. incorrect answers given by students who call out . 10
183. "don't know" or no response answers given by preselected, patterned turn students21
184. "don't know" or no response answers given by ..
preselected, non-patterned turn students
185. "don't'know" and no response answers given by nonvolunteers

Tabie 4 (cont.)
188: incorrect answers after which teacher gave sustaining feedback
.09
189. "don't know" and no response ang íners after which
190.: all response opportunitiesofer whech teacher gave sustaining feedback

Student Indidiated:

191. questioris and comments which were questions 192: questidns: and comments which were gomments
192. questions which were calleq-out
194.. called-out questions which were relevant
193. relevantíquestions which were called-out and
. \because criticized . \quad. . .
194. .relevant questions which were chlleq-out and ignored
.60**
60**
،77**

195. relevant questions which wereficalled out and not accepted
196. relevant questions which "were , called-out" and given feedback
$.70 * *$
199". "relevant questions which were "called-out and given process feedback
$.76 * *$
'200. relevant questions whichiwère called-out and thtegrated into the class discussion
197. calledout questions which were irrelevant

57**
202. irrelevant questions which were called-but and given feedback

42**
(203. irrelevant questions which were called-out and not accepted 12
($\}^{20^{\circ} 4 .}$ irmelevant questions which ware called-out and
.56**

Table 4 (cont.)
205. questions which were not called-out , 77 **
206. qtestions which were rélevant. .ï**
207. relevant questions which were not accepted . . 03
208. relevan't: questions which were given feedback .78**

209: relevarit finestions which were given process. .
210. relevant questions which were redirected
. 42**
-211. relevant questions integrated into the class discussion
.57**
212. questions which were irrelevant .23

214. comments which were called-out . . . $63 * *$
215. relevant. comments which were called-out $.56 * *$
216. relevant comments which were called-out and given . . 13
217. relevant comments which were called-out and given critictism
218. rélevants comments which were called-óut and ignored .27*
219. relevant comments which were called-out and not accepted
220. relevant comments which were called-out and given feedback
.58**
221. relevant comments which were called-out and given - process feedback
222. rélevant comments which were called-out and integrated into the class discussion 23
223. irrelevant coments which were calleḍ-out. . .66**
224. irrelevant comments which were cafled-out and. criticized

Table f (cont.)
225. irrelevant comments which were called-out
and ignored
!.54** and not accepted .37** and givant comments which wrie called-out and given feedback
" .53** .01
230. relevant commed which were not called-out and were givel feedback.
:48**
231. relevant comments which were not called-ound and were given process feedback
232. 'relevanf' comments which were not called-ofit and wifch were integrated into the cláss disc) sion
233. 1 levant comments which were not called out were ignored
234. írrelevant comments which were not calléd-out and were not accepted

235:- irrelevant comments which were not called-out and were'given, feedback
-.35**
256 . questions and comments which were praised
237. question's and comments which were criticized

Sţudent Created:
238. contacts. which related to academicentent
239. contacts which related to classroof procedure
240. acadenic related contacts which \& \& give given praise
241. academic related contacts whichun
ctiticism-
Table 4 (cont.)
242. academic related contacts which involvedbrief teacher contact--'$.66 * *$
243. académic related contacts which involved long teacher contact 63**
244. academic related contacts in which teacher delayed contact 38**
245. academic related contacts whịch were given -feedback 58**
246. academic related contact's which were given ${ }^{-}$ process feedback 60 **
<247. . contacts which involved personal requeṣts 54**
248. personal contacts which teacher granted 26*
249. personal contacts which teacher delayed -. 02
250. personal contacts which teacher did not.grant * 25*
251." academic related contacts given brief feedback 57**
252. academic related contacts given brief process feedback 81**
253. acädemic related contacts given long feedback 45**
Teacher Initiaţéd *
255, contacts which related to academic content 61 **
256. academic related, contacts which involved praise 38**
257. academic related contacts which invoived criticism 59 **
258. 'academic.related contacts'which were brief :33**
259. academic related contacts which were long $38 * *$
260. academic related contacts In which teacherobserved student, 51**
Table 4 (cont.)
261. academic related contacts which involvedfeedback. . 46 **262. academic related contacts whichrinvolvedprocess feedback-32**-263. academic related contacts which involvedbrief feedback
264. academic related contacts which -involvedbrief process feedback41**
265. academic related contacts which involved long feedback 25*
266. academic related contacts which involved long process feedback 35**
267. contacts which related to classroom procedure 63**
Behavior Related Contacts:268. misbehaviors to which teacher responded butwhich coder did not observe 22
269. nondisruptive misbehavior (daydreaming,wasting time)37**
270. misbehavior in which student socialized with others: 32**
271. misbehavior which involved being late to class 09
272. disruptive misbehavior $55 * *$273. misbehavior in which student sassed or defiedteacher21
274. misbehavior in which student was verbally. aggressive toward teacher or peers$\because .01$
275. misbëhaviors in which student was physically aggressive toward teacher or peers
276. misbehavior in which student left class; without permission

Table 4 (cont.
277. misbehavi s which involved contraband items.(kn ves', radios, toys, etc.)
.41**
278. misbehavics in which.student baited teacher $\therefore \quad .48 * *$,
279. miṣbehavi rs in which student slept in class . 06
280. misbehavi rs which could not be classified in the above
283. misb aviors which involved management request. but which teacher directed to wrong student (target error)

28̣4. misbehaviors which involved management request but in which teacher delayed acting (timing error) .44**
285. misbehaviors which involved management request and in which teacher overreatacted
286. misbehaviors which teacher criticized
. 18
287. misbehaviors in which teacher cyiticized wrong studẽnt (target exror) \quad - . $86 * *$
288. 'misbehaviors in which teacher delayed criticizing (timing error)
289. misbehaviors in which teacher overreacted with criticism
290. misbehayiors in which teacher threatened student
291. misbehâviors in which teacher delayed threatening (timing error)
292. misbehaviors in which teacher overreacted with
293. misbehaviors which involved management request but which coder did not observe

Table $4^{\text {(}}$ (cont.)
294. misbehaviors which teacher criticized but
which coder did not observe
295. mild misbehaviors in which teacher intervene ${ }^{\text {ef }}$ nonverbally.
296. mild misbehaviors which involved managemēnt request from teackêr 28*
297. mild misbehaviors which teacher criticized 22
298. mild misbehaviors in which teacher threatened student 41**
299. misbehaviors'in which student socialized with others and in which teacher infervened nonverbally 15
300. misbehaviors iṇ which student socialized with others and which involved management request 11
301, misbehaviors in which sfudent socialized with others and which teacher-criticized 08
302. misbehaviors in which student socialfzed with others.and in which teacher threatened student 21.
303. tardịness which involved management request $51 *$
304. tardiness which teacher criticized 42
305. disruptive misbehaviors in which teacher intervened nonverbally. 11
306. distruptive"misbehtaviors which involved. management request 19
307. disruptive misbehaviors which teacher criticized 29*
308. disruptive misbehaviors in which teacher threatened student 08
309. misbehaviors in which student sassed or defied teacher and which involved management request 13
310. misbehaviors in which student sassed or defied teacher and which teacher criticized 07

Table 4 (cơnt.)

311. misbehaviors in which student sassed or defied
téacher and in which teacher threatened student $\$.12$
312. misbehaviors in which student- was verbally
aggressive and which involved management request 04
313. misbehaviors in which śtudent was physically aggressive and which invoḷved management request' . -. 02
314. misbehaviors in which student was phyically aggressive and which teacher criticized
"315. misbehaviors' in which student left class without permission and which involved management , request
315. misbehaviors which involved contraband items and which involved management request-
316. misbehaviors which involved contraband items and in which teacher threatened student
317. misbehaviors in which student baited teacher and which involved management request. 05
318. miscellaneous misbehaviors (not in the above categories) which involved, management requests 06
319. miscellaneous misbehaviors (not in the above categories) which teacher criticized 36
320. misbehaviors which involved management requests \$ 18
321. mispehaviors which teàcher criticized 15
322. -misbehaviors in which teacher threatened student 44**
323. misbehaviors in which teacher acted without target or timing error
324. misbehaviors in which teacher acted withtarget.error $61 * *$
325. misbehaviors in which teacher acted withtiming error44**
Table 4 (cont.).
326. misbehaviors in which teacher overreacted 73**
327. mild misbehaviors which involved management requests. 18
328. mild misbehaviors which teacher criticized 13
329. serious misbehaviors which involved management requèst 14
330. serious misbehaviors which teacher criticized 26*
-332. mild misbehaviors in which teacher acted without target or timing error 39**
331. mild misbehaviors in which teacher acted with target error 55**
332. 'mild misbehaviors in' which teacher actedewith timing error. 20
333. mild. misbehaviors in which teacher overreacted 74**
334. serious misbehaviors in which teacher acted without target or timingerror 09
335. serious misbehaviors in which teacher acted with target error 25*
336. serious misbehaviors in which teacher acted with timing error 30*
337. serious misbehaviors in which teacher overreacted $-.02$
Social Contacts
338. teaçher-initiated contacts which werk socital47**
339. student-created contacts which wère social342. student-created contacts which were social antwhich teacher accepted
340. student-created contacts which were social and which teacher did not acceptr. 07
General Categories
341. response opportunities in which teacher präiśed 63**
342. response opportunities in which teacher critidized 58 **

Table 5. COMrelations across Glass Sections for Classroom Observation Scales Made on Each Visit ${ }^{1}$

1. High level of student attention 73**
2. Teacher initiated problem solving 83**
3. Pupil-to-pupil interaction 77**
4. Teacher presentation 80 **
5. Negativerafféct (teacher and students) 77**
6. Positive affect (teacher) 83**
7. Higher cognitive level student behavior 75**
8. Passive pupil behavior 81**
9: Convergent evaluative interaktions (teacher probes for right answer') 86**
9. 'Teacher task orientation 84**
10. Clarity of teacher presentations 82**.
11. Teacher enthusiasm.' 79**
12. Ràndom questioning; memory questions; fact related 1. . 80**
13. Higher cognitive level questions: synthesis, "why", questions76**
14. 'Questions with application to students' personal lives; personal questions 48**
$\underline{I}_{\underline{N}}=68$
** $\mathrm{p} \leq .01$

Table 6. Correllations across Class Sections for High Inference Observer Ratings Made at the End of the Year ${ }^{1}$
15. 'Patience of teacher in correcting errors 87 **
16. Attractiveness of room 85**
17. Effectiveness of teacher's management methods 83**
18. Crowdedness of classroom- 64**
19. - Democratic leadership style of teacher 90 **
20. Taik among students 88**
21. Teacher stress on form of responses 83**
22. Student obedience to teacher 85**
23. Quantity of directions; overly explicit and repetitive 65**
24. Classroom interruptions 87 **
25. Teacher use of students in performing certain classroom functions 68**
26. Teacher has seating arrangement 77 **
27. Frequency of seating arrangement 'changē's 89**
28. Consistency of enforcement of rules 89 **
29. Teacher grants requests to go to restroom or water foun'tain 76**
30. Length of time after bell for cläss to begin 89**
31. Teacher 能解 "explanations", to solye behavior problems 83**
32. 'Amount of disturbance teacher, accepts 90 **
33. Amount of teacher confusion, fiuster 79**
34. Correction of minor misbehaviors: 77**
35. Monitoring of class89**
Table 6.(cont.) -
36. Efficiency of transitions during the class period$\xrightarrow[.86 * *]{\sim}$
37. High level of teacher affection 83**
38. Teacher range of affection: low end
39. Teacher range of affeçtion: high end
40. Teacher solidarity with group 4 $.84 * *$
41. Teacher anxiety 79**
42. Teacher confidence level $94 * *$
43. Teacher enthusiasm 85**
44. Student respect for teacher 85 **
45. Teacher deal's effectively with student personal problems 83 **
46. Teacher socializing with students $88 * *$
47. Teacher awareness of coder $91 * *$
48. Teacher credibility
49. Teacher showmanship 83 **
50. Academic'encouragement given by teacher 84**
51. Receptiveness to student input 84**
52. Nurturance, of student affectiv'e skills $.91 *{ }^{2}$
53. Variety and choice. in assignments $66 * *$
54. Teacher, use of 'self-paced work 88**
41.- Teacher use of blackboard for lectures anddiscussions89 **
55. Teacher'use of audio-visual aids $.78 * *$
-43. Teacher use of orai reading $84 * *$
56. 'Teacher use of drama; students read parts in plàys or stories $81 * *$
110
57. Teacher's productive use of own mistakes
58. Teacher goes to students during seatwork
59. Student eagerness for response opportunities
60. Time allotted for class discussion
61. Amount of teacher preparation
62. Teacher attention t to "learning disability",

49. Task-oriented seatwork

52. Teacher academic effectivenë̀s 91**
53. Frequency of homework 88 **
54. Amount of class time spent it in productive work 84**
-55. Teacher emphasis on grades76**56. Teacher concern for academic achievement, grades81**
57. Teacher primarily lectures$.84 \times 4$58. Teacher primarily assigns seatwork
59. Teacher primarily uses class discussions60. Teacher command ow subject matter
*89**
.85**
. 86**
.70**
63. Teacher consistently gives' feedback on assigned work
64. Codè̀r, if fth or 8th grader, would choose this teacher. ؛
$I_{N}=68$ except where noted.

Table 7. Correlations across Class Sections for Students Ratings of'Teachers ${ }^{1}$

Student:

1. Thinks the teacher knows the subject well $.56 \% *$
2. Thinks the teacher is always well prepared and organized ;
3. Thinks. the teacher enjoys teaching
$.70 * *$
.63**
4. Thinks the teacher is interested in knowing students as well as teaching them
5. Feels comfortable -asking questions or asking for help .61**
6. Feels comfortable about going to the teacher with a personal problem
7. Feels he/she has learned a great deal in the class . ; . 66 **
8. "Has enjoyed the class . 66 **
9. Would ask for this teacher again next year

$$
\begin{aligned}
& 1_{\mathrm{N}}=68 \\
& *_{\mathrm{p}} \leq .01
\end{aligned}
$$

Table 8. Two-way Analyses of Variance between Subject 'Mátter and Cla'ss Section Using Means from the Major Low Inference Observational Coding System.

Table 8 (cont:)

Table 8 (cont.)

Table 8 (cont.)

Table 9. Two -Nay Analyses of Variance between Subject Matter and Class Section using Mean Proportions from, the Low Inference Observational Coding Syst

Table 9 (cont.)

.Table‘9 (cgnt.)

Table 9 (cont.)

52, process questions which students answered with "don'c. know"

53: 'produgt questions which students, answered with "don't know"。
54. choice questions which students. answered with "don'! t"know"
55. process questions to which students gave no response answers $\because \because . \not \psi_{4}$
56.. product questions to which students gaye no response answers .04 .03
57. choice questions to which students gave no response answers .02
58. preselected, patterned turn students who were asked product questions
59." preselected, 'non-patterned turn students who were asked process questions
60. preselected, nion-patterned turn students who were asked product questions
61. jpreselected, non-patterned turn students who, were asked choice questions .06 .05
62. process questions
directed to non-volunteers .43
63. .product questions directed to non-volunteers .48
64. choice questions directed to non-volunteers

Subject Matter
Math English Means Means P

Observed Section
First Second .? A x B Means Means P •

$$
\text { . } 32
$$

$$
.22
$$

$$
\text { . } 22
$$

$$
.14
$$

directed to volunteers

$$
.22
$$

$$
.35
$$ 70

70. process questions answered by a student calling out
71. product questions answered by a student calling out
72. choice questions answered by a student calling out
73. opinion questions answered by a student calling out
74. answers to process questions which teacher praised
75. .answer's to product questions which teacher praised
76. answers to choice questions, which teacher praised .04 .08

77: answers to opinion questions which teacher praised

Table 9 (cont.)

Varịable	Subject Matter.		Observed Section			
	Math ${ }^{\text { }}$	English	First	Second		$A \times B$
	Means	Means 'p	Means	Means	P.	P

78. answers to process
questions which teacher
criticized
79. answers to product
questions which teacher criticized
80. process questions after which teacher. repeated the question
81. product questions after which teacher
'repeated "the question
82. choice questions after which teacher repeated the question
83. process questions after which teacher simplified the question, . 03 . 01
84. product quèstions
after which teacher simplified the question
85. choice questions after which teacher
: - simplified the question
86. procesś questions after which teacher asked
a new question
-87. product questions after which teacher asked a new question
87. choice questions after which teadcher asked a new question
88. opinion questions after which teacher asked a new question

Table 9 (cont.)

Table 9 (cont.)

Table 9 (cont.) ,

Table 9 (cont.)

Table 9 (cont.)

Table 9 (cont.)
 'patterned turn students whom teacher gave the answer

04
164. non-volunteers whom t.eacher gave the answer .04 . 03
165. volunteers whom teacher gave the answer
166. call-out students whom teacher gave the answer03
167. preselected, patterned turn students whose turns teacher terminated by asking another student
168. preselected, nonpatterned turn students whose turns teacher terminated by asking another student
169. non-volunteers whose turns teacher terminated by asking another student .12 .09
-170: volunteers whose turns teacher terminated by asking another'student
. 05
.03
171.: call-out students whose turns teacher terminated by asking another student •. 02
172. non-volunteers whose turns another student terminated by calling outc

173:- volunteers, whose, turns
2another student terminated by calling out

174: call-out students whose turns another student terminated by calling out .02 .02

Observed Section
First Second A×B Means Means - p
.

```
Table 9 (cont.)
```

\therefore Variable
Subject Matter
Observed Section
\rightarrow. Math English
Means Means

First Second A×B.
175. çorrect ańswers given by preselected, patterned turn students
176. correct answers given by preselected, nonpatterned turn students
177. (correct answers given
by non-volunteers
178. correct answers given by volunteers
179. correct answers given by students who called out
180. incorrect answers given by preselected, patterned turn students
181. incofrect answers given by preselected, non-patterned turn students
182. incorrect answers given by non-volunteers.
183. incorrect answers given by volunteers
184. incorrect answers given by students who called out
185. "don't know" and no response answers given by preselected, patterned turn students
186. "don't know" and no response answers given by preselected, non-patterned turn students
187. "don't know" and no response answers given by non-volunteers

[^2] .

Table 9 (cont.)

Table 9. (cont.)

Table 9 (cont.)

Table. 9 (cont.)

226. irrelevant comments which were called-out and . not accepted
: 22,7 A iryelevant comments which were called-out and given feedback
228. relevant comments which were not calledJout
229. relevant comments which were not calledout
and were given praise.
230:* relevant comments which were not called-out and were given, feedback
231. relevant comments which were not-called-out and were given process feedback
232. relevant comments which
were not called-out and which were integrated into the class disc̣ussion
233. . irrelrevant comments, which were not called-out and were ignored
.02
234. irrelevant comments which were not, called-out and were not accepted
235. irrelevant comments which were not called-out and were given feedback
236. questions and comments which were praised 01.
237. questions and comments which were criticized

Table 9 (cont.)

Table 9 (cont.)

Table 9 (cont.)

Table 9 (cont.)

Table"9 (cont.)

Table 9 (cont.)

308. disruptive misbehaviors in which teacher threstened student.
309. misbehaviors in which student sassed or defied teacher and which involved pánagement reques
310. misbehaviors in-which student sasses or defied teacher and which teacher criticized 22 . 13
311. misbehav́iors in. which student sassed or defied teacher and in which teacher threatened studeht - . 10 . 10
312. misbehaviors in which student was vérbally aggressive and which involved management request .39
313. misbehaviors in which student was physically aggressive and which involved management request
314̈. 'misbehaviors in which student was physically
*gressive and which teacher cryticized
315. misbehaviors in which student left elass withqut permission and which involved 'management request .58
316. "misbehaviors which involved contraband items and which involved manage-: ment request
317. misbehaviors which involved contraband items and in which teacher threatened student

Table 9 (cont.)
$!$

Table 9 (cont.).

Table 9 (cỡ̃̆.)

Table 9 (cont.)

Table 10. Two-Nay Analyses of Variance between Subject
Matter and Observed Section using Means from Classroom Observation Scales (COS) ${ }^{1}$

Table 10 (cont.)

Table 11. Two-Way Analyses of Variance between Subject Matter and Observed Section using Means from Observer Ratings of. Students Scale ${ }^{1}$ N

Table 11 (cont.)

Table 11 (cont.)

Table 12.. Two-Way Analyses of Variance between Subject. Matteptand Observed Section using Means from Student`Ratings of Teditiers ${ }^{1}$

152
ERIC

Table 13. Two-W゚à Analyses of Variance between-Subject Matter and Observed Section using Means from Observer ... Ratings of Teachers 'Scales ${ }^{1}$

[^3]Table 13' (cont.)

Table 13 (cont.)

Table 13 （cont．）

Tā̄le 13 (cont'.)

Table 14. Correlations Between Student's Scores, for their
*. Math and English Clässes on Ratings of their Teachers ${ }^{1}$ *

VARIABLE

STUDENT RATINGS OF TEACHER

Student:

1. thinks the teacher knows the subject well 198 $-.10$
2. thinks the teacher is always
-wêll prepared and organized 197 $-.04$
3. thinks the teacher enjoys teachíng $\cdots \quad 198$ 09
4. thinks the teacher is interestedin knowing students as well asteaching them
5. feels comfortable asking questionsor asking for help
198 -. 01 06.6. feels comfortable about going tothe teacher with a personal problem19516*
6. feels he/she has learned a great deal in the class 196
7. has enjoyed the class 19714* 08
8. would ask for this teacher again next year197$-.06$
FACTOR I
Generalized liking of, teacher 198 02
FACTMOR IÍStudent view of teacher!scompetency (females only)1.12$\therefore 02$
FACTQR III\therefore Student view of téacher's$\because \ddots$ competency (males only)83
FACTOR. IVFavorable teacher/studentrelationship (females onily)112$\because 06$
FACPOR VFavorable teacher/student,relationship (males only)83 , -. 04

Table 15 (cont.)
17. gets along well with teacher, bas positive affective interactions
18. is aggressive, has "chip" on his shoulder", engages in physical or verbal abuse of others
19. is irresponsible, doesn't turn in work on time, comes without supplies
20. continually talks to neighbors, turns.
. around in chair to talk
21. lacks cooperativeness, shows no
desire to work with others, disagrees frequently
.22. is a behavior problem; disrupts class frequently, is often.reprimanded, . . criticized, etc.
23. has athletic ability, is well coordinated, muscular, etc.
24. uses profanity often--at least every few. sentences
25. displays ademic eeer leadership peers see the sttudent ag bright

FACTOR I is not motivated or interested and has bad work habits.

FACTOR II

in outgoing, sociable, happy - interàcts positively with both teacher and peers

FACTOR III:
is. physically mature and well coordinated
FACTOR IV
hàs antịsofal fendencies

198
.63** 199 197
.51** 198 .65**

199
.78**.

199
60**
.54**
. $60 * *$

199
.72**

58**
$*_{\mathrm{p}} \leq-01$
${ }^{*_{\mathrm{D}}} \leq .05$

Table 15 (cont.)
17. gets along well with teacher, bas positive affective interactions
18. is aggressive, has "chip" on his shoulder", engages in physical or verbal abuse of others
19. is irresponsible, doesn't turn in work on time, comes without supplies
20. continually talks to neighbors, turns.
. around in chair to talk
21. lacks cooperativeness, shows no
desire to work with others, disagrees frequently
.22. is a behavior problem; disrupts class frequently, is often.reprimanded, . . criticized, etc.
23. has athletic ability, is well coordinated, muscular, etc.
24. uses profanity often--at least every few. sentences
25. displays ademic eeer leadership peers see the sttudent ag bright

FACTOR I is not motivated or interested and has bad work habits.

FACTOR II

in outgoing, sociable, happy - interàcts positively with both teacher and peers

FACTOR III:
is. physically mature and well coordinated
FACTOR IV
hàs antịsofal fendencies

198
.63** 199 197
.51** 198 .65**

199
.78**.

199
60**
.54**
. $60 * *$

199
.72**

58**
$*_{\mathrm{p}} \leq-01$
${ }^{*_{\mathrm{D}}} \leq .05$

VARIABLE

1. Student's motivation, compared to the rest of the class
2. Teacher would want the student• in his/her ${ }^{\circ}$ elass again
3.- Student's academic performance, . compared ta the rest of the class
3. Student's record for turning in homework on time
4. Student's behavior in class

198
' -

$$
\therefore{ }^{-} 193 \quad . .40 * *
$$

Table 17. Correlations between the Same Students' Mean Scores per Class PPeriod for their Math and English Classes' from the Low Inference Observational Coding System ${ }^{1}$

VARIABLE
Rate of:.

1. public.response opportunities ..
2. process questions
3. product questions
'4. "chơice quêstions
4. opinion questions
5. 'preselect-patterned type of seleçtion.
6. preseléct nǫn-patterned type of selection.
7. non-volunteer type of selection
8. volunteer* type of selection
9. call-out type of selection

11: correct answers
12. incorrect answers
13. "don't know" answers

19. 'student initiations evoking a negative: teacher response
20. total sustaining feedbadk

Table 17 (cont.)
variable
離te of:
38. total reinforcing dyadic contacts
39. total aversive dyadic contacts

$$
\begin{aligned}
& \cdots{ }^{*{ }^{*}{ }_{p} \leq .01} \\
& { }^{*} \mathrm{p} \leq .05 \\
& \left.\begin{array}{c}
8 \\
\because \\
\because
\end{array}\right\}
\end{aligned}
$$

$\xrightarrow{N} \quad \frac{r}{r}$
$194-.13$
194
\ldots

Table 18. Correlations Between Proportion Scores for the Same Studentș in Their Math and English Classes from the'
 Low Inference Observational Coding System ${ }^{1}$

Propôrtion of:

1. resppnse opportunities generated by pracess question $1 \dot{0}$
2. ìesponséopportunities genérated bỵ product question * 07
3. - response opportunities generated by choice questioń 0.05
4. response opportunities generated 6y opinion question -.03
5. process questions which students answered correctly. -. 01
6. próduct questions which students answered correctify . . 04
7. choice questions which students answered correctly no data
8. opinion questions which.student's answered with "don't know" or no response
no "data
9: response opportunities given to students. who were
preselected in patterned turns.
9. . response opportunities given to students' who, were'

运

 preselected in non-patterned turns```
*-.04
```

11. response opportunities which.teácher gave to noń-volunteers.
. $37 * *$
12. response opportunities which teacher gave to volunteęrs
13. response opportunities which students answered by
$.34 * *$
14. preselected, patterned .turn students who answered
correctly
"15.' preselected, non-patterned turn students who answered correctly ..... $-.24$
15. non-yolunteers who answered correctly ..... 15
16. . volunteers who answered correctly ..... $-.11$
17. call-out students who answered correct1y ..... i16
.19 correct answers ..... 02
$\rightarrow \underset{\rightarrow}{\square}$

Table 18 (cont.)
20. incorrect answers . . . . . . . . . 04
21. ${ }^{\circ}$ answers which were '"dipn't know". . . . . . . . . 00.
22. answers which were no response . : . . 10
23. correct answers which teacher praised $\quad \therefore$. . 07
24. 'correct answers after which teacher asked new',
question.
25. correct answers after which teacher asked non-,
academic question
26. correct answers which teacher integrated into the :
class discussion
27. correct answers àfter which teacher give no feedback' -. 02
28. correct answers after which teacher gave process feedback
29. incorrect answers which teächer criticized
30. incorrect answers after which teacher repeated the question
31. incorrect answers after which teacher simplified the question ${ }^{-}$
32. incorrect answers after which teacher asked a new question
33. incorrect answers after which-teaeher asked a nonacademic question
34. incorrect answers which teacher integrated into the $-04$
35. incorrect answers after which teacher gave no
feedback
36. incorrect answers after which teacher gave
. process feedback. class discussion

Tablé 18 (cont.)
-37. incorrect answers after which teacher gave the answer . 23
38. incorrect answers after which teacher asked another student
39. incorrect answers after which another student called out the answer
40. "don't know" and no response answers after which teacher criticized
41. "don't know" and no response answers aftet which teacher repeated the question
42. "don't know" and no response answers after which teacher simplified the question
43." "doñ't know" and no response answers after which teacher asked a new question
no data
44. "don't know" and no response answers after'which teacher asked a non-academic question
45. "don't know" and no response answers-afer which teacher gave process feedback09
46. "don't know" and no response answers after which teacher gave the answer
47. "don't know" and no response answers after which teacher asked another student
48. "don't know':- and no response answers after which another student called out the answer
49. process questions which students answered $\therefore$ incorrectly
50. product questions which. students answered incórrectly

$$
-.03
$$

51. choice questions which stüdents answered Ancorrectly
Table 18 (cont.
52. prȯcess questions which students answered with"don't know"$-.03$
53. product questions which student answered with "don't know" ..... 05:54. Choice questions whiçh students answered with"don't know"no data
54. procesis questions to which students gave no response answers ..... -. 04
55. product questions to which students gave no response answers ..... 15
56. choice questions to which students gave no response answers ..... no data
57. preselected, patterned turn students who were asked produrt questions ..... -. $21 * *$
59: preselected, non-patterned turn students who were asked process questions
-60. 'preselected, non-patterned turn students who were asked product questions ..... $-.03$
58. preselected, nom-patterned turn students who were asked choice questions ..... no data
59. process questions directed to non-colunteers .....  $32 * *$
60. product questions directed to non-volunteers .....  37 **
61. choice questions directed to non-volunteers ..... 65
62. \$inion questions directed to non-volunteers ..... ṇo data
63. process questigh direg'ted to volunteers ..... 16
64. product questions direfted to volunteers 20*68. choice questions dipected to volunteers$-.25^{\circ}$
65. opinion questions directed to volunteersno data
66. process questions answered by a student calling - out ..... 12

Tablë 18 (cont.)
71. product questions answered by a student calling
.25**
72. choice questions answered by a student calling out

no data
74. answers to process questions which teacher praised
75. answers to product questions which teacher praised2403
76. answers to choice questions which teacher praised ..... no data2 77. answers to opinion questions which teacher praised
no data
78. answers to process questions which teacher criticized no data
79. answers to product questions which teacher criticized -.04
80. process questions after which teacher repeated. 'the question'
no data
81: product questions after which teacher repeated the ..question

靬
01
82. choice questions after which teacher repeated
the question
83. process' questions after which teacher simplified the question
84. product questions after which teacher simplified the question
.05
85. choice questions after which teacher simplified the question
$-.08$
86. process questions after which teacher asked a new,
question
87. product questions after which teacher asked a new question -. 04
88: ' choice questions' after which teacher asked a new. question

170

Table 18 (cont.)
89. opinion questions which teacher asked anew question
90. process questions after which teacher asked a non-academic quéstion
no data.
91. product questions after which teacher asked a non-academic question
92. answers to process questions which teacher integrated into the class discussion
93. answers to product questions which teacher integrated into the class discussion.
.28**
94. answers to choice questions which teacher' integrated into the class discussion
95. answers to opinion questions which teacher integrated into the class discussion no data
96. process questions after which teacher gave no feedback
97. product questions after which teacher gave no feedjack
98. process'questions after which teacher gave fprocess feedback
99. produch questions after which teachèr gave process feedback
100. choịce questions after which teacher gave process
. feedback
no data
101. opinion questions after which teacher gave process feedback
no data
102. .process questions after which teacheragave the answer
103. product questions after which teacher gaw the answer
104. choice questions after which teacher.gave the answer
no data*.
Table 18.(cont.)
105. process questions after which teacher asked another student ..... $-.12$
106. product questions after which teacher asked another student ..... $-.03$
107. choice questions after which teacher asked another student ..... no data
108. 'process questions after which 3nother student called out. the annswer ..... $-.02$
109. product questions after which another student called out the answer ..... $-.06$
110. choio questions after which another student cal 2 d out the answer : ..... no data
111. preselected, patterned turf students who answered incorrectly ..... $-.21$
-112. preselected, non-patterned turn students who answered incorrectly ..... $-.17$
113. noti-volunteers who answered-incorrectily ..... 01
114. volunteers who answered incorrectly ..... $-.01$
115. call-out students who answered correctly .....  22
116. preselected, patterned turn students who answered/with "don't know"no data117. preselected, non-patterned turn students whoanśwered with "don't know"no data
118. non-volunteers who answered with "don't know" ..... 13
119. volunteers who answered with "don't know" ..... $-.02$
120. preselectẹ, pattérned turn students who gave no response answers ..... no data
121. .preselected; non-patterned turn students who gave no response answers
122. 'non-volunteers who gave no response answersno data $\cdot \sigma$07

Table 18 (cont.)
123. preselected, patterned turn students whom teacher
praised

124. preselected, non-patterned turn students whom
teacher prąised

no data
125. non-volunteers whom teacher praised -. 00
126. volunteers whom teacher praised
127. call-out students whom teacher praised - .28*
128. non-volunteers whom teacher criticized
-.02 -
129. call-out students whom teacher criticized -. 03
130. preselected, patterned turn students for whom teacher 'repeated the question no data
131. preselected, patterned turn students for whom teacher repeated the 'question
no data
132. non-volunteers for whom teacher repeated the question
-. 01
133. volunteers for whom teacher repeated the question -. 03
134. call-out students for whom teacher repeated the question
: -.03
135. preselected; patterned turn students for whom teacher simplified the question.
no data
136. preselected, nori-patterned turn students for whom teacher simplified the question
-:17
137. non-volunteers for whom teacher simplified the question
138. volunteers for whom teacher simplified the question -.03
139. cali-out students for whom teacher simplified the ${ }^{\circ}$ questiof
140. preseleçed, patterned turn students whom_ teacher asked new questions

Table 18 (cont.)
141. preselected, non-patterned turn students whom teacher asked new questions -
142. non-volunteers whom teacher asked nễw questions . . -. Q̧
143. volunteers whom teacher asked new questions . $\because$. -05
144. call-aut students whom teacher asked new questions .o'7
145. prieselected, patterned turn students whom, teacher gave non-academic feedback. or ". qo data
146. non-volunteers whom teaçer gave non-academic feedback
$-.02$
147. volunteers whom teacher gave non-acadeinic feedback -.02
148. call-out/students whom teacher gave non-academic feedback
$\therefore .02$
149. preselected, patterned turn students whose answersteacher integrated into the class discussion nó data
150. preselected, non-patterned turn students whose ! answers teacher integrated into the class discussion . 86**
151. non-volunteers whose answers teafher integrated into the class discussion
152. volunteers whóse answers teacher iftégrated into the class discussion
153. call-out students whose answers teacher integrated
finto the class discussion
.32*-
$-.02$
154. non-volunteers whom teacher gave no feedback

15'5. volunteers whomrteacher 'gave no feedback . . -. 02
「156. c̀ call-out students whom teacher gave no feedback
157, presélected, patterned' turn students whom teacher gave process feedback
 no-data.
158. preselècted, non-pattermed turn gave process feedback
no. data


Table 18 (cont.)
159. non-volunteers whom teacher gave process feedback
160. voluntfers whom teacher gave process feedback . 20
161. call-out students whom teather gave process fedback -. 02
162. preselected, ${ }^{\wedge}$ patterned 'turn students whom teacher.
gave the answer
163. preselected, non-patterned turn students whom teacher gake the answer . ; " no data
164. non-yolunteers whom teacher gave the answer . . 14
165. volunteers whom teacher gave the answer -. 03
166. GaII-out students, whom teacher gave the answer, . 04
167. preselected, patterned turn students whose turns teacher ${ }^{\circ}$ terminated by asking another student , no data
168. preselected, non-patterned turn students whose turns teacher términated by asking another student. no data
169. non-volunteers whose turns teacher terminated by asking another student
170. volunteers whose turns teacher terminated by asking another student
171. call-out students whose turns teacher terminated by asking another stüdent
172. non-volunteers whose turns another student terminated by calling, out
173. volunteers whose turns another student terminated by calling out - -.03,
1.74. call-óut students' whose turns another ${ }^{2}$ stivideñt terminated by calling out
175. correct answers given by preselected, patterned turn students
176. correct answers given by preselected, non-pat turn students

```
Table ' 18 (conţ.)
```

177. correct answers given by non-volunteers

178. correct answers given by volunteers . 26 **
179. correct answers given by students who called out : $\quad 37$ **
180. incorrect. answers given by preselected, patterṇed turn students
181. incorrect answers given by preṣelected, nonpatterned turn students
182. incorrect answers given by non-volunteers
183. incorrect answers given by volunteers
184. incorrect answers given by students who called out . $25 \star^{\prime}$
185. "don't know" or no response answers given by preselected, patterned turn students. $\quad-.04$
186. "don't know" and no response answers. given by . preselected, non-patterned turn students.- .10
187. "don't know" and no response answers gi vien by non-volunteers

ج. 05
188. incorrect answers after which teacher gave sustaining feedback
189.' "don't"know" and no 'response answers after which teacher gave sustaining feedback
190. all response opportunities after which teacher gave sustaining feedback

## -Student Initiated:

-191. questions and comments which were questions . 07
192. questions and comments which were comments * . 07
193. questions which were called-out + . 22 *
194. cailed-out questions which were relevant $\quad 17$.
195. relevant questions which were called-out and criticized

Thble 18 (cont.)

```
196: ' Eelevant questions which were cåled-out and
fignored
\({ }^{*}-.04\)
```

197. , relevant. questions which 'were called-out and notačcepted
198. relevant questions which were called-out and given feedhack ..... 06
199.     - relevant questions which were called-out and given 7 . process feedback ..... 13
200: releyant questions which were called-out and integrated into the class discussion. ..... 45**
200. called-oút questions which were irrelevant ..... -. 01
201. irrelevantsquestions which were called-out andignored.-. 02
202. irrelevant questions which were calle ${ }^{\text {ce }}$ out and not accepted ..... -. 02
203. irrelevant, questions which were çalled- ${ }^{2} \mathrm{t}$ t and given feedback .....  00
204. questions which were not called-out ..... 22*
205. questions whith were relevant ..... :21*
206. _relevant, quedstions which were not accepted ..... -. 03
207. relevant questions which were given feedback .....  10
208. ${ }^{\text {felevant }}$ quéstions which were given process feedback .....  30 **
2 10 . relevant questions which were redirected ..... $-.03$
211:. relevant questions integrated into the clâs discussion ..... 06
209. questions which were irrelevant .....  32 **
210. irrẻlevant questions which were given feedback ..... 25*
211. comment's which were called-out ..... 01

Table $18^{\circ}$ (cont.)
215: relevant comments which were called-out
216. relevant comments which were called-out. and given praise ..... $\therefore \quad 04$
217. relevant comments which were called-out and given criticism ..... 29*
218. relevant comments which were called-out and ignored ..... : 04
219. relevant comments which were called-out and not áccepted ..... $-.05$
220. rélevant comments which were called-out and given feedback ..... $-.22$
221. relevant comments which were called-out and given process feedback ..... $-.06$
222. zelevant comments which were called-out and integrated into the ciass discussion ..... $\because .04$
223. irreleyant comments which were called-out .....  14
$3 \%$225. irrelevant comments. which were called-out andignored11.
226. irrelevant comments which were called-out and not accepted ..... 13
227. irrelevant comments which were called-out and given £eedback ..... -. 09
238. relevant comments which were not called-out ..... 01229. relevant comments which were not called-out andwere g'iven' praise$-07$
230. relevant comments which were not ealled out and were given feedback08
231. relevant comments which were not called-out and were

231: relevant comments which were not called-out and were $\quad \therefore \quad \because \quad . \quad \because$
231: relevant comments which were not called-out and were $\quad \therefore \quad \because \quad .16$

Table 18 (cont:)


232.relevant comments which were not called-aut and which were integrated frito the class discussion -.006
233. irrelevant comments which were not called-out and were ignored irrelevant comments which were not called-out and wère not accepted
no data irrelevant comments which were not called-out and
were given feedback
236. questions and comments which were praised no data
237. questions and 'comments which were criticized no: data

## Student Created:

238. .contacts which related to academic content $\quad \because .25 *$
239. contacts which related to classroom procedure
. 17*
240. academic related contacts which were given praise
241. academic related contacts which were given criticism
.03
242.- academic related contacts which involved brief "teacher cghtact
242. academic related contacts which involved long $\therefore$ teacher contact
243. academic, related cont

## 7

245. academic related contacts which were given
.. feedback. $\because \quad \therefore$ :13
242.- academic related contacts which involved brief contact $-.02$
246. academic related contacts which were given process feedback
247. contacts which involved personal requests
-248. personal contacts which teacher granted
248. s personal contacts which teacher delayed
249. personal contacts which teacher did not grant


Table 18 (cont.)

## Behavioxinelated Contacts:

268: misbehaviors to "which teachen responded but which coder did not observe
269. nondisruptive misbehaviors (daydreaming, wasting time)07

270. misbehaviors in which student socialized with
others' .....  20
271. misbehayiors which involved being late to class ..... $-.02$
272. disruptive misbehaviors ..... -. 11
273. misbehaviors in which student sassed or defied
teacher
274. misbehaviprs in which student was verbally aggressive toward teacher or peers
275. misbehaviors in which student was physically aggressive toward teácher or peers \& . ..05
276. misbehaviors in which student left clask without * permission
277 misbehaviors which involved contraband items (knives, Fadios, toys, etc.)
277. misbehaviors in which student baited teacher ..... 21*
279:- Lisbehaviors in which studentaslept in ${ }^{\circ} \mathrm{class}$
278. midsbehaviors which could not be classified in the abové ..... 03 ..... 14
279. misbehaviors in which teacher intervened non-
Por
280. (misbehaviors which involved"management request from

28.t teacher
283. misbehaviors which involved management request but which teeper direçed to wrong ṣtudent (target error)

Table 18 (cont.)

# -284, misbehavior which involved management request but , in which teacher delayed acting (timing error) <br> 285. misbehavior which. involved management request and -iphich teacher overreacted 286. misbehavior which teacher criticized 

Y87. misbehavior in which teacher criticized wrong student (target error) no data
2 88 . misbehaviors in which teacher delayed criticizing (timing error) ..... $-.06$
289. misbehavior in which teacher overacted with. criticism ..... $-.02$
290. misbehaviors in which teacher threatened student ..... 04291. misbehavior in which teacher delayed threatening.(timing error)$-.02$$\begin{aligned}-292 . & \text { misbehavior in which) teacher, overreacted with } \\ & \text { threats }\end{aligned}$
293. misbehavior, which involved management request294. mişbehaviors which teacher criticized but whichcoder did not observeno. dạ́ta
295. mild misbehavior in which teacher intervened nonverbally ..... $-.07$
296. till Min šbehaviors which involved management request' from teacher ..... $-.08$
297. mild misbehavior which teacher criticized ..... $-.20$
298. mild misbehaviors 'in which teacher threatened student ..... $\therefore 09$
299. misbehavior in which student socialized with others and in which teacher intervened nonverbally -. 04
300. misbehavior in which student socialized with others$\therefore$ and which involved management request $: \quad . \quad .07$.

Table 18 (cont.)
301. misbehaviors in which student sociaïized with others and teacher criticized
302. , misbehavior in which student socialized with others and in which teacher threatened student ; . 21
303. tardiness which involved management request . no data
304. tardineṣs which teacher criticized . . . no data
$305 \therefore$ disruptive misbehavior in which teacher intervend nonverbally
306. disruptive misbehâviors which involved management request 4 . . $\quad$-.in
307. disruptive misbehavior which teacher criticized . 21
30.8. disruptive misbehäviors in which tee teacher threatened student

309. misbehavior in which student sassed or defied: teacher and which involved management request : . no data

310: misbehavior which student sassed or defied teacher and which teacher criticized ' no data
311. misbehaviors in which student sassed or defied.
teacher and in which teacher threat mined student no.datä
312. misbehavior s in which student was verbally.

- aggressive and which involved management request no data
misbehavior in which student was physically aggressive and which involved management request no data

314. misbehavior in which student was physically aggressive and which teacher criticized no data
315. มITisbehguiors in which student left class without pepission and Which involved management request no data
316. misbehavfors which r involved contraband items and which involved management request.
317. misbehavior which involvedicontraband items and in which teacher threatened student

Table 18 (cont.)
318. misbehavior in which student' baited teacher and which involved management request
319. miscellaneous misbehavior (not in the above categorizes) which involved management request
320. miscellaneous'misbehaviors (not in the above categories) which teacher criticized
321. misbehavior which involved management requests
322. misbehaviors'which teacher criticized

. 923 misbehavior in which teacher threatened student
.11
324. misbehavior in which teacher acted without target or timing error
325. misbehavior in which teadher acted with target error,

26**
326. misbehaviors in which teacher acted with timing error
327. misbehavior in which teacher overreacted $-.04^{\prime}$

328 mild misbehavior which involved 'management' requests 7
329. mild mísbehaviors which teachericriticized 330.2 serious misbehavior ts which involved management requests
331. serious misbehaviors which teacher criticized
332.: mild misbehavior in which teacher acted
without target. or timing error
$\int_{-.09}^{.06}$
$-.32^{\prime \prime}$
.06
333. mild misbehaviors in which tee cher acted
with target error
334. : mild misbehavior in white teacher acted with timing "error

Table $18^{\circ}$ (cont.)
335. mild mist behaviors in which teacher' overreacted -. 04
336. sèrioüs misbehavior in which teacher acted
without target or timing error

33\%. serious misbehavior in which teacher acted with target error
338. serious misbehavior in which teacher acted with timing error
.17
$\left\{_{.12}^{\text {no data }}\right.$
339. serous misbehavior in which teacher overreacted no data
$\therefore$ 340. Neacher-initiated contacts which were social
341. student-created contacts which were social
342. student-created contacts which were social and which teacher accepted
343. student-ćreated contacts. which were social and which, teacher did not accept

| $\therefore$ |  |
| :--- | :--- |
| $\therefore$ | .20 |
| $\therefore$ | $\cdot\left(\begin{array}{l}20 \\ \cdots \\ -13\end{array}\right.$ |

.13
344 response opportunities in which teacher praised
.06
345. . response opportunities in which teacher criticized -.03 .

346: dyadic contacts which were response opportunities: . 08
347. "dyadic contacts which" were student-initi\&ted questions
348. . dyadic contacts which were student-initíatẹd comments

349. dyadic contacts which "were student-created (private)
350. dyadic contacts which were teacher initiated (private)
351. .dyadic contacts, which were behaviorgrelated
3522. dyâdic contacts which were social
353. dyadic" contacts which were private (not public) 0 . $20 \alpha^{2}$

354．dyadic contacts which were private and which
were student－created＇（excluding social）

355．contacts involving academic content which were private，and which teacher praised

356．contacts involving academic content which were private and which teacher criticized

357．contacts which were private and which involived academic content．
．27＊＊
$-.08$
．16＊
：25＊＊＊
358．contacts which were private and which did not involye academic content
．25＊＊
359．student－created contacts which were pubiic ．．，，51＊＊
360．teacher－initiated Coñtacts which were public （excluding kehavioral coṇtacts）

361．Student－created contacts which were private and which related to academic content
362. sudent created contacts which were prixate adind which related＇to classroom proce edure ＂警

警4．－
餢eacher－initia ted contacts which were behavior管elated



[^0]:    ${ }^{3}$ Añalysis of covariance was performed to determine to what extent, if any, certain stability correlations might be artificially inflated because of differences, among schools. In their analysis, a model predicting teachers' second class-section scores from school CAT means was compared to:a model having both schogl CAT means affid first class-section scores as predictor's. The results of the nalysis indicated that between-school variance did not have a significant effedt on the coefficients.

[^1]:    

[^2]:    -.

[^3]:    $\stackrel{y}{*}$

