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This book began as an attempt to "explain what measurement is abo;ﬁ'., from
s, the pomt of view of a mathematic:.an It was intended that there® would%e a,
compan:.on ook, wrltten from. a sc1entlfov1ewpo;.nt. It soon’ became apparent A
R tba a book about measurement, written from either po:.nt of v1ew, would have . ‘
to 'say something about the other. sIt also became apparent that the Q{lglnal ) /
L. “obgect:.Ve was 1nappropr1ate' the question of what measuremez#t is about" is”
. not mathematlcal but ph:.lbsophlcal Much has been written @‘nd much more
will undoub,tedly be wrltten) by sc:.entlsts ,and p,hi\osophers, on the subject &f
. meaiuriment’ __FMost of these wrlters f‘lnd i aecessary to use mathematlcal; 1deas : 7'""
. «‘i‘h their ' explanatlons ; but, from a maﬁém&t%p\ point of view, their treat- -
ment of.’the relevant mathemat&cal ideas, and Gf?%he connect:.ons between.‘ these
ideas; frequently leav’es much to be desired. \* 1s an obJectJ.ve of the present
book to help to fill this ga‘p:‘_7 to identify those mathemat:.cal:concepts wh:.ch
are relevant to eleme\ntary‘ measurement, and t6 exhibit their logical: 1nter—. : o \
relationships.. [ s. ' e . e \ St Y c
. . . . .

. -+ 1In comparatlvely recent t:.mes, 1t has been dlscovered that mathemat:.cs has i
no necessary loglcal connectlon wa.th the real world. Thls dlscovery has been ST

' -
accomparq.ed‘ by~an ever growlng expanslon of the act1v1ty, often called "model- ) k

. buildimg" ,' wthh"SQGKS to.link the emp:.rlcal structures Df the sclences. wlth o f:;::’
thee formal structu}c‘es of mathematics. ‘This link is establlshed by means of .'Q_' +]
o functions., which i =3 (or, ,model "), emplrlcal systems into mathematlcal,sys.tems,“h ]
_ in such a waytthat structuz;es arfived at empirically and inductively are ) N o
carrled. over :Ln‘to correspon’dlng mathematlcal structures. SQmetimes this pro- , 4
) cess makes use of ex:.stmg mathemat:.cal systems,/ and sometlmes new mathe t:.cal : \
, ‘ systems alre crea ed “to prov:.de appfdprlate model spaces. Among- the mathe-..; * ..

matical systems fin most frequent tse” as'model spaces are the vax’:.ous num}ger

systems (the whole num‘oers ) the rational rumbers , the rea‘l numbers , the com~ "
) plex numbers), var:.ons geomet‘ric spacses, vector spaces, and S0 orr\Many model *
'funct:.o&\s are, in fact complex and, 1nter-rélated collections of simpler func-
t‘.ions, and 1t these simple funct:.ons {whlch are“ssocxated directly wﬁ.th :'; !
. : [
o . “the process‘es of meei/urement) .and their relaatlonshlps wl‘dh one another, wh:Lch N
R ° ‘ 4 -
¢ " are oné.“gwur pain céncerns in this book. . - N e
l—"?‘-’.’;‘” -| H ) ° ."*%""?o .. ) , ‘ . g * a » « ‘;
'\V\.M‘, ""1\’\\'\"‘\“‘ : ..?“\;7 ?}‘GF‘F wi:u‘;*;:\f%a., o zl . R L. R : - d L e
'.‘_;o" » ,'o _.. N e . ’.~~: . -t . sz Py II,Q\A | 1]
. > i3 . - M
. . .‘ 4 ¥ > . ‘ '
P, ' o, . o e e ® - : R
.--\ Oy e LR L . . .
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«_ . a coneeptual framework in which the elementary ideas of measuUrement can be ° ..

Y

e

ER

A v oo . “ e N .
v “situation. .- - v (.'\ ' P A \] T

" school mathemﬂlcs teachers,,- - e N ‘ )

5N Measurement a also "has a place w:.thi'n mathematlcsl ther:aré many s:.tua-
tions in mathematics in wh:.chfone mathemat:.cal system 1s mapped 1nto another
in such a ‘way that we.feel Ghat a’ measurement" process is 1nv'olved (e. 8.,
length and area concepts 1n geometry) *When ‘these ‘mathematlcal systems are ., _
© used’ 1rf\model-mak1ng, mathem_at:.cal- measUrement" frequently becomes a component

in emplrlcal measurement We examine, some of the s:.mplestﬂexampaes of this

T N ¥y FE 4
Thg, book hias Yeen ‘wiltten with h1gh ‘school ,mathematlcs teaphers in mind,
but 1t is hoped that somé of 1t will be wlthln the grasp of elementary school
. ‘ueache::s, and that it might be usef‘ully redd by teachers of s»c:.ence, and’ by
colleg\e teachers The/ Drln&pal concern of the book is to exp101t the 1dea
that "measurement ‘1nvélves structure-preserv:.ng functlons in order to prov1de

\
o,
.

. understood. It is not necessary 1o follow all of tht details (ste of yhich N

are rather J(ﬁvolved) insorder to get a picture of th1s framework, and it is
ceg*tag.nl?y‘“hot implied that this is the only framewor\k whlch 1s suitable for
the study of a theogry\of elementary measureﬂlent } \ ' . rf“” .

¢ [} LI N

¢ As you will see, the mathematicdl concepts which a\re rele;rant to elemen-a

’

»

* tary measuz‘e}1ent come from-a variety of bramches of mathematlc‘s (class:.cal ) ‘ ’
real.analysls, llnear algebras lineay analysis, geome‘try, elementary topology, .
and so on). These concents are usually encodntered’ separ tedy in more or less
© d1st1nct mathematlcs courses, and the reader \mo has,so en ountered them should
find it 1nterest:.ng to see how a study of the mathematlcal ackground of -measur;-
< ment ideas ‘grlngs them together.. For th1s reason the book should 'Ee a uséful

Jtext for an advanced unde;graduate course, or for. an 1nserv1ce course for high
Ny . -

. \m "\‘v“‘,"lx4

The mathematlcal tlackground whlcn 1s recB.ured of the reade 1s _approxi-

o’

o,

mately that which is 1ncluded ma good. high school e\ducatlon, ut it is -
expected that most readers will have gofie further than mls We assume a - v
general famlllaquty W1th the “real n}lmber System, some oulédge of geometry, Lo
3and some 1dea of what i5 invplved in the concept of “function". In the func-
tlonal approach 10 me ‘b.rement ‘Je are typ:.callyr concerned w:.th two systems, _?*’“
‘and we are’)looklng for structure-preservn_ng funct:Lons from one to the other.;‘“ ”*‘
The structures commonly encountered may be described An terms of .Such notions ,
as, equ1val nce relatlons, order «relatlons, and binary operations; and the ) —

systems themselves are”often semi-groups, or groups. We 1ntrod'uce thesesterms,

. : v . , e
*A ¢ gt ! \ -

. ‘ P ’ ‘

b . . L}
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. bec@use)"f wo-u.ld “be clumsy, and unnatural to do m.thout them, but ,you do.not

%1 need any prlor knowledge of them 1n ‘ordemw: to understand thelr l1m1ted use in
" this book. . . E . f" - .
L) » . \.' *s . . =
In most of theaneasurement sitnatlons which we treat, the ‘values of the

,measure funétlons are posrtive real’ numbers. From the emplrlcal polnt of view

it 1s frequently s f1c1ent to use:positive,rational numbers, but from theﬁﬁ%&

. b

‘‘‘‘‘‘‘ N

.. theoretlcal p01nt of view we canndt answer many of «thé most 1nterest1ng

tloné (e g.: Why hust two length functlons be s1mllar? Why must the

e N .

B

a?ea funptlons for rectangular reglons be related as they are to length funct

= tlons?  Why gre power functions- and homogeneous functgons- so 1nt1mately con~
=

) nected with dlmens1on questlons?) unless we usé thie resal numbers, and those

prooert es‘cf reagl numbers (i.e. ; topologlcal completeness) which distin ulsh i
. H 4 ) g

~. the real number sysqem from the ratlonal«ggmbers For many réaders this d1s-

e . -

9

JERIC . e

-

tlnctlgn mrght not b clear,'so we.Tave devoted a section to an outline of the

. development of the sjructure of the real number system In thls sectlon we

., prove a number of’ results which depenid on the deeper properties of the real
numbers, and Wth we need to use ldtef in the book. fThe pacé’ is falrly
rapid, and “the 1 adeT to whom the 1dgé/.of this segtion are totally unfamiliar
wlllfprorlt frog\a more detalled study of orie of the expanded!treatments to

{
which®we tefer However, 1n thls and other places it is probably best td skip

. . over some of the-more complex’detalls, and veturn to them if and when they

become necessary for‘an understanding of ‘what comes later. The‘pace of the

book is necessarily uneven, and you should not attempt to master every topic

. ¢ Py

e before proceeding to the next(\ . . N . .
K . ’ S : |
. v
: . A number of-exerc1ses are 1ncluded, pag;icularly in the earlier review

. sections. "Some of these are really extens1ons of the text, s0 you should
(at least) read them to see what they are about In the later sections there

aré mamy unproved statements ,which can be treated as exerc1ses.

Concernlng measurement itself, nothlng is agsumed whlch,ls not part of

the general knowledge of most citizens.- " However, before reading thlS'bOOk )

. you unight fing it useful to review the elementary ideas on measurement which
) are contained ig the School Mathematlcs Study Group publlcatlons (in the .
MStudies in Mathematxcs" Series): -

~
- - - *

Vol. V: Concepts'of Informal Geometry (Chapters 6, 7,:10)

. { .
..  Vol.*ViI; Intuit .Qemg{:try (Chapters,2, 7)
' Vol. 'IX: A BrleEﬁGo rie- in Mathepatics For Elementary Sehool
e L - « Teachers (Chapters 27, 8). o - B
/] ° ;e .- ) ¢ . . “

. . ‘ -
) . . ' .

r ¢ . . ' -
FullTox Provded b ERC . oo
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tMeasurement is a,very big topic, and anything approaching ‘a templete
treatment would océupy-a small library.

is Jnev1table that the- choice of content has been somewhat arbltrary

With so much mater1al available, 1t
Thus
there is an emphaszs on mathematlcal, rather than on emplrlcaI, ideass there B
is an emphasls on those measurement concepts wh‘ch have been motivated by the ’
physical sciences, rather than on those Wthh are more relevant to the bioe
logical and social sclences; and ouCh 1mportant topics as the establdshment

and malntenanpe-of'standards,\and the statlstlcal analysis of data, are a

’

L]

ape ey Ny

O

-

oomoletely 1gnored
2

T
treatment of elementa
Thus

1deas;wh ch are usual

whole subgect

ry

4

lm?st

.

\\o a oonsiderabbe extent we have concentrated on giving a fairly cpmplete
»

"oncepts, rather than a superficial picture of the
h of our discussion falls inh that no-man?s-land of .

censidered .too sophisticated for an elementary treat-

ment, but which are later assumed %o be "known" or "understood", in -more

L

advanced courses and’texts.

RIC

2 «
Full Tt Provided by ERIC.

\ .
+ Ina fevw places (e.g., under the headlng "Links With Other Parts; of

Mathématics® ) we .have p01nteduout thaé some of the mathematlcal ideas Wthh

arlse in connectlon with a theory of measurement are directly related 0" some

6f the basiz ideas of more advanced mathematlcs (E.g., the notaon of "dual .

i
space s 1n;iﬂnear algetra; gnd the notlon of the ' tensor product" of modules.)
These COHHELtlonS are pointed out for the beneflt of any readér who happens to

be familiar with these ideas, and to show thit many so-called "advanced"

notﬂons are already present in the context of elementary measurement; but it
‘ds not assumed that the majority of mathematics teachers eithér are, or should

be, famlllar with these ;deas at the present time.
RIVNECEN

We expect to explore these
'
cdnnectlons more thoroug y in a latéer book.

-
-~

.ot

\
&

’

The present book w1ll have served its purpose if it glves you some feellng )

for the varlety of mathemat;cal ideas which are relevant to an elementary theory

of measure, ané if it encourages you not only to pursue these ideas, but also «
to read more widely (and critically) in the extensive'literature whfch is
devoted to the subject of measurement. e

p
. ' K2

-~ .
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T . " MPASURRMER} AND'MEASURE FUNCTIONS ’
v : . . )
\l 1 Inﬁroductlon . l LN

W

In the year 1900, the great, phllosopher-mathematlclan, Bertrand Russell, |
wrote: . ‘ - .
.g, . .

"Measurement of magnitudes is,- Q%ats most general sense, any method
by which a unique and reclprocal’@ﬁrrespondence is establléhed between
,all or some of the magnltddes of a ®ind and all or_some of the numbers, 5
integral, ratioral qr real, as the case hay be. - - - - It will be
‘ deslrable that the order of the’ magnrtudes measured should correspond

k o that *of the numbers, i. e., that all relatlohs of between should be

bl

* the same for magnltudes and their méasures.™ = . \ '

- . While thls statement might not,give us a very complete picture of all
‘the complexity that is involved in the notion ‘of measurement, it ddes conteih .-
4§
. the germ of the -idea that the present book attempts to convey: that a "measure”

* .is a functlon, deflned on some specified set of obJects, and designed to re-

:

flect certaln propertles of those objects. In order to elaborate this Ldea,
we need to usé such, mathqmatlcal notlons as set, relation, functlon, group,

semlgroup, and So on. As these are not generally.tr%atea together in the
b

}n which we peed them, mpst of th}s Tirst-chapter is devoted to a basic

.
e

*““”“iv“* of . ideas and termlnology If these ideas are familiar to you, you- |}
should be able to o through the chapter falrly quickly. If they'are not,
you are urged to séop and work the exerclses. (For a few of the erercises . oty T
H .you Will have to draw on your knowledge of mathematlcs outs1de of this bHook.) -

References are given to more detailed treetments of many of the ideas intro- °°
*  duced. ! . ° , “ L
* A4 . .

’ - The chapter concludes with the outline of a "scheme for classmfylng

M measure functions‘ This 1nvolves the informal use’of some common ideas like

N

length,' time,. area, etc., some “of which are 1ntroauced more ﬂrec1sely 1n

..
[V

later chapters. This was ,done deliberately in order to” give you a general’
i tframework in which to fit all, or $t least most, of the common measure func-
) tions, before getting involved inh. so’much detail that it might obscure the » ’

J ' : - N

AL
R S

qverall picture. X

* T . . -
- . * - i : )
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. 122 Measurement . , ‘ .. .
A I ) . ‘
You' ntight expect us to begin with a definition of "measurement", or by .
¢

explaining the nauure-of measurement, so that you could determine, in a par- . I~

I

ticular situation, whether the idea of measurement was involved. This, un-

oo

fortunately, we®are unable to do. Some attempts at deflnltlon tie the notion. ‘(
of measurement to the notion qf nhmber. Our point of view is certainly . i—

!

|

. broader than this: we consider that each of the examples below involves the -

idea of measurement. These examples have been chosen to indicate the wide <

variety of contexts in.which the idea of measurement issdiscernible. ‘ )

1, Our identity is measured at birth, partially by the assignment to each

of us a name, partially in terms of the identity of our parents and the ,

3>

B . ‘
date of our birth. Later our identity might be more accurately measured |

: - by a serial number if we are in the armed forces, or by a social security ‘i

N .
-—

« * number, a fingerprint, or a passport. .

2, The location of Sur place of pesldence is usually measd?ed by a set of,

b
y ! fdﬁr items: a state name, a city name, a street name, and a number. . ’
,trlples, each'of which consists ° Y
Y« of a date, a number representlng our weight and .a number representlng !

.

‘ '3.' Our growth may be measured by a set of

our helght. . . . v
¢ i

b, The size of our famlly is measured by a number‘ the cardinal number of
¢ |

m
N 2 the set of members of our family. ’ . <

5. Our shoe size 1s measured by a pair of items consisting of a number and

a letter (or comblnatlon of letters) w@hese, in turn, are measures of ‘e

-~ '
=

the length and the w1dth of our shoes ’

» . Looel
6. The s1ze of our house is measured by a. collection of numbers representlng,; 4
i b

sugh thlngs as the floor area and the numbers of rooms of various types.

FS - [ (N

) -

- 7. Our 1ntelligence 1s measured by & number, our so-called IQ. ' N
. . - o ’ '
. - 8. Our school' report cards are a measure of our educatlona%\progress. v

., . -

- 9 / We can use thelr annual dlv;dend rates as a measure of the success ‘of

i

; . ourinvestments.- ‘. - o b *7?
- } ‘ . L
10. If we are farmers, our annual production of wheat : | o
“+ number whlch gives the size of our_whegt” crop in bushels, our annual ‘
= 1
. production of eggs is measured by a number which gives the. size of our
| 17, egg "crop" in dozens, ‘ : ' P ; .
,..«...., o A\-"\ . ,a,&' . o, . .
" ll A baseball player’s battlng average is a measure of his succeSs at bat J
. [1 -
N : . £ L
- R ° . ’ ! o |2
O ‘ ) N 6‘ T [
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12. The half-life. of a radioactive element is a measure of the stgbility of
) ’ .

v its atomic nucleuys. L. -t “ ) L
* . ¢ » - - » ’ 5 .

'13. The symmetry of a crystal is measured qy means of a certain group of ,
transformations, y : s ’
- & L4

1k, Jhe éxtent to which a group fails to be abelian (commutative) is

.\\ ¥ tT

-

meastxed by its commutator subgroup. . A '
v ; , - R P ) #‘.% . % . .' .
15. The connectivity of a: topological space is mea by its homotopy

\?"" S groups. . ' T ..
o [Pon?t worry if the last.few examples contain wifemiliar iMeas. ] .
©.. 4 Ope could add to this iist indefinitely, but this should be enough to
: convince “ou that thé idea of meastirement' is found in a w1de yariety of con- “ \
texts and forms You mighv well ask whether there are any discernible common ' ‘
features, and 1f S0, what are they '
x . Ff%stly, notice that in each case there are ."objects" to be measured. -

In examples 1,3, 7,8, and 11 these objects are people. In 6 the I
objects are‘houses In' 4 the objects are families. In l3 the oﬁgects

. .are crystals. In 15 tﬂe obJects are topologtcal spaces. In 1h the v

<
.

objects are groups .

econdly, each measurement 1nvolves some attribute of the object, and

.1Some proc s by means of whith this attribute is to be measured . We don®t

* . s1mply measur Deople' we measure them for weight, we measure’ them for
height we measure> them fox 1ntelllgence, and so on. It is convenient in
many cases to ‘Uus€ the common names of the measured attributes -- names such
‘8" as length, speed, area, ¥ntelligence -- but we make no attempt to define these
words, or to consider them independently of the processes, ﬁy means of which '
' they are measured: In Most, if not all, cases, it ¥s dOubtful if the atiribute

has any obJective mean;gg except. in relation to Ppe measurement pnocess.

t Finally, gp eachs case there is a, quantitAf which results from applying
. . a measurement process to one of the objects for wHich this particular procesgl
v is applicable. In example i ), this quantity is & wbole number. In 9 5 10,
T and 11 , “the quagtity is a. real number. In 8 K it is a report card ({ .y
the set of information contained on the card) In example 1, it might be a\

fingerprint, a social security number, oy a pagsport depending on the *

° Partlculan process used.‘ R .

This question is of considerable philosogphical interest. You will find' ,

e referencé to it.-in [11, [2}, [3] (4] , [5) and in various Encylopaedia
Bfitannica articles under the headings “Dimensional Analysis", "Meaning",
' "Knowledge s "Logical\3081tiyis '
" : 7 & o -
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% speaking-«ﬂ.we should not use the ‘def,;.nite ar;cicle, as the 'same function ean’.- - -

1 { ~
* h , ¢

. To sum up. in each case thére is a coLlection A of objects to be I 4

measured, ‘a; set B of "quantities or "measurements >, and a procedure for - *°

asso‘cigting with each object in A" an element of B . "We immediately ¢ "
E recognize this situation. what we are dealing with is- a function. We shall

“have a lot to say about functions in later sections, but it might be useful

- - P

N to re¢fll here the babic 1dea of a function. ”

Suppose that A and B are ‘any two sets, and that we have a rule which
e - ' assigns exactly‘ one mem‘ber of B to each member of A .. Then the.,rlﬂ.é, t_o“--

pe

gether with thes set A‘ , is said to be a function {or a 111322'%), and the set
S A is called its domain The elements of ; A are called arwent of the '

function. The set of those members of B W/I.Oh" are actually assigned tq | R

members of j} 1% called the range of th€ function. The-particular member of .

B whigh i§ assv@ed to a particylar zrgument " is called the valae of the

function at a , or the image of a- under the function. If f is.a name .

for the function, ,then the value of £ cat a is usually denoted by fﬁa) M ot

" We say“that“’ Mo dg a function’on A w:.th va],ues in B" ;.or "r is a'funcs

- tion from A to .B" , and 1nd1cate this symbolically by such. notations»és., o

"\ i .-:“ ) \ . : f"tA_)B“- ¥ ! . l‘

. and .. ' . 'A\—>B., 4 L . ¢
. <@

. ~ . - . .

The set B 1is called-the- value space, or. 1mage space, ofJf Str:.cthr < f

have different image spaces. (Some whiters use "range", where we use '1mage

, .
space"; and Vset oi’ values", where we use range . Otheér writers use,"domain,.
of definition® where Ve use "domain s and "domair;/wfvalues , where we use R

value space ) e ‘< sy S I - . '-T’i“—-.e..eq ‘

s . ¢ - -~ L o e e —— % ¥ » e oy

s ' In ei?ery si’tuation in which the idea of measurement 1s 1r?volved, there #
R is a related function. -its dOmgin 1s~ the set’ of obJects to which the particu—

A w———

lar measur'ement process applies, and the process tsgtf\ providefthe rule by -

means of Which'a value, or measure, is assigned to eabh member of the det of” -«
objects. L N . o ’ L e ¥ R ST

: ' g .. . ’ ‘ . "\' * - T
: It is convenient o refer’to those functions which arise in measurement L&

situations as measure functions. Some of the measure functions arising in, ’\/ .
b - e

:bur earlier examples can 'be roughly described by such expressions as "length . J
- in 1nches ,. "area in square feet“ numeros1ty in dozens" T
RIS ’\" o, . . ' e -, . . . R
— ¢ “' ~ ¥
1] - ¢ . ~ .
. N - ‘ A5 X o . { £ ;! 5 «
. e . - Vs L e K}
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It has ,‘sometlmes been suggested .that foriany twQ sets A and B . any
function f:A-B should be regarded aS$ & measure functionaon Al . We
do not need to accept or reJect‘this pofnt of view. However, 1f adopted, it
would ‘mean that there are arr awful lot of measure functions ‘ for most of which
. we have, at present,, no conceivable use. You w1ll find a lot oft 1nterest1ng
. digecussion and diversity of viewpoint on this, and on other i:deas related to '

> - N .
measurement, in ‘[1] . : . ’ )

. B
N .
N . , ¢ ’
- . L’
, . - . . . . »

. J1-3 Relations

In this section and: the next we review some of the basic ideas and pro-
perties of relations and functions «~ Much of th1s will probably be famlliari‘ to
ww_ir_om go fairly quickly with véery few examples. Parts of th1s material
,are tr_}{;e;d in much more fetail, and'with many examples, in the SMSG pu'blica-
. tions, Intermediate Mathematics" B "Elemen‘tary Functions", and Calculus A S

YN ey R ) "\‘\'»‘\ N Y
more advanced treatment can be- found in- [6] SR '

The notion of function ijs one of th fundamental ideas of mathematics. -

.
-

It is also .central to our treatment of measurement There are different ways .

i of approaching ther funttion concept Ome of these ways has been indicated in *
.. \:he last, section, wheref a- functi}én from 2 set A to a,. set B: was regarded

s a rule of correspondence, or Sociation, which pairs each elément of A )

w1th exactly one elemen¥ of B . An equivalent procedure 1s t0 regard a func-

tion as a spec1al kind of relation. As we shall néed the general coneept of
relation later, we devote this sek'tion tq a reviey of some of the main ideas

concerning relations, b‘efore chtinuing the discussn.on of"functn.ons

’ )
, : ’

. Let A and .B be two sets, not necessamlpdlfferent The cartesian . Lo ,’r
g oduct of /A and B, denoted’ By A X B, 1é tile set of all ordered pairs
(a b) s wheré a.€ A t})}S}B . *(.Equali‘cy of ordered palrs is defined by. J s Co*
(al,bll (aa,b2) ‘ if and only if a, = a2 and bl S oA particular case, ' “
with which you aré undoubtedly familiar, is the cartes:Lan product RxR of — 7

. ‘the real number system with 1tself the elements of R X R are ordered pairs

.- -7
* .
of re,al numbers. Given any Nne, we can set. up a 1-1 correspondence (i e., .-,
! a coordinate system) between points of the plane and elements  RXR. [ - ‘

- Thus Af we p1ctuMe real number system 'as the number line, we can s1mflarly e
». m‘ - -
S picture R X R as the (cartesian) plane. c ’ 3
L . . eyt

4 5. . < el T
. It is assumé'd that you are familiar with the. notion of 1-1 correspon- * R

" demce. It is introduced formally in Sectian l L. - . . -
‘__-

’ ) . o ’ * - ":. :—:.-m- -.
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We are frequently interested in pairs of sets. whose .elements have_some
sort. of relationghip between them. For exanfple, if A is the set of male
resldents of.a certain town, and B the set of 'all resldents we can consider '
the relationship "is the son of" between members of A and B ., That is, for .

S any a €A and b e B, either g~ is the som of b or a Mot ‘the'son of En

"

b . We can abbreviate "a 1is the son of Bb" by a S b . "I’hus the Pelation-
ship "is the son of" determines a set of ordered pairs (a,b) for which

a Sb . This set is a ‘subset of AX3B . Itis somet‘imes convenienf to
N * -

denote this subset by the same” symbol 5., so that - Coe

1

Il
- ' -

. ) S={éab§’:a3b}. " N

-

. an

We generalize this sltua%mn by def‘lnlng a binary-relation from , A to B,

to be a“.y subset of the cartesian produet A X B4 if A =38 , we call this a °

-

T blnary ‘relation on A , / » , ) .

Whengver a subset K of A X ,«R“‘”‘ speclfled, we can use it
o S 3
© +  "relationship" etw een certain e ement&of A and, B, For e*cample,‘

defme &, A

might .be the set of males at a da,nce, B the set o,f females, and K the
subset of A X B consisting off those ordered palrs (a,b) -such that a
danced with b ; o A(=B) ‘might be the set of ajl 'people Tiving in the ‘

“ -t

> ) Upited Stétes, and K Q’g‘he set of those ord'ered ‘pairs (a,b) ?such that a d

o and b 1live in the same.state; or A(=B) might-bé the set eal numbers,
and K the set of those ordered Jpairs (a,b9~ such m (Can you .

plcture this.set ‘of* p01nts as a subset of the car‘teslan plane?) The number

‘of, examples could be extended 1ndef1n1tely. tl'}e concept qf relatlon is

- . ! glea;‘ly very general.. . - ! ' ) .

BN .
The set of those,"a 1n A which appea“r as a first member in at least

one ordéred ‘ﬁair (a ,b) 'K , is called the dagain 6f K ; it is a subset of
. AL The get of those b in B which appear as a second member in gt least

L O A
A |

N . Let us’ t Empo ng:\c‘l,lxx?conﬁme. ou.n,attentlﬁn to s;.tuatlons wvhere A =B .

I3 -

gne ordered pair (a,b) € K , is called the' range of X = . .
o o

That :z.s, we donslder _relations on a set A - _Such relatmr}s can be .classifled .
-~ MJ’#{,I 7

Py . w
** __ in terms.of theis propentjes: , Lét. K bé a re.].atlon«on A (1.85; KCAXA).

. . 1 by gt B PR o= W N N N .
. Theil we say’ that e, T . - -
(1) K«»}.s refle{:we if-x(aya) «€'K for every a ¢ A ; (i.e., if
; T T T EKa ﬁfor eve‘r'y a €4); . . . .
- (11) K is m‘ “.Lf’ *(a 'b) 3 K whenever (b a) €K ; izel, ) / ’
“ T b X a m\p"lzes & K 1}),. ¥ . o
¢ ’ A
(ili) ‘K is 1',1' AFITIVE " TE” ”(g,d) ‘e K whenever (a,b) e K and ©
- " - N
. (b,g) X7 (.L.ke.g, a* Kb;fgxd bKc imply a K c). . ~

\‘ . e - ¥ ’i re—F A - A N . 5

e e qm T

P SN § - v ‘g .. v
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To flx these ideas in- nhnd you should examine tH& z‘elevantr éxamples
gbove to see which of the relatlons in them have some or all of these. pro-
perties, and you should construct other examples for yourself YOu should

also ldok for examples of relatlons which have none of these propert:.es, ,
-2 f{e.g., the relgtion F defined I}g,y afFb prov:.ded that a=b+1l, c}n the f?’;

s, S€t Of“positive integérs; ;.{11,2,3,. . .}). . . P
Mg, o . -, N "‘ “ ,A‘—; " ' R
Relations which have all three properties -- i.e., which are symmetric,

reflexive, and transitive -- are ,particularly importanty; they are called

equivalence relations. These have the important property of separ«atj‘néx(or

. gértitionigg) the sets to whl;,éh they apply into disjoint subsets. (A partition

" of a set is a collection of /non—empty pairwise di:sjoint suﬁsets, vwhose union is ’
,k} whole set.) For an exemple of an equivalence -elat;,on, see the relation- -

: ship éboye of residéng' in the same state. The disjoint subsets resulting from ) ’)

~an equivalence relat:.on are called, equlvalence classes' any two éfements in

ﬁxe same equ:.valence class stand in the glven relata.;on to each other,, and no

* twg, elements fnom dlfferent eq‘ulvalence classes stand 1n the given relation to

“ each other. .Every equ:.valence relgtion on a set determines a part:.tlon of the

set, and every part:.t:.on determlnes an equivalence relation. Equlvalence re=

lations atound in mathematlcs. congruence and s:.m:.larW,qu;;};f Fﬁ:eﬁ o -
WY

are equlvalence relations; congruence modulo a non-zero J.nteger 1s an eqngg v ot
‘ ' "

¢

lence relat:.on on the J.ntegers, the relatlon (a b) K (c a) if and only if3e

o
a+d=b+c,.is an equ:.valence relat:.on oh the set of ordered pairs of
ns.tural (;osn.tlve whole) numbers; the relation "is as tall as" is an equ1v§-
lence relation.on a set of people; the relat:.on of 1-1 c‘brx‘espondence is aﬁ
equlvalence relathn on a collecta.on of sets. You should try to thlnk of '.*

\ other efcampfé( " //7 pN ‘igg . T

s . .
N ¥ i . .0
v

Another kind of, ‘relation which“ iS5 partlcularly important in the considera-
tlo’n of me:é‘ure 7 is an order relation ‘I’here are a number o,f dlfferent RO

" ’ types of oxder re ation, ‘all of which are trans:.t:.ve A partial order rela- .

tlon, o:gz/p,a_rtial order:.ng is transitlve reflex1ve and antlsmetric. (That '
/ P C A X A 1s a partlal orderlng on A 1f in additlon to being transi- ‘
ive nd reflezgive, (a, b). e]g*’ and . (b, a) €K imply a =" .) Examples of .

'
partlal orderlngs are: .- f‘ , b
¥ vk - : - ' S :
L, e
H (1) a, K b if -and only if a<b; A=R=the set of r)eal numbers, .
% . '(ii) a K b 1i‘ and only if a/f/’b(,, A 8 the set of all subsets of a -
j e be B L eSS
[ T “Grixed set S . w7 : “‘Zfig : I
o ) ! e s ! . L - ’ ‘ :’ B * : g
b . o . . ] i ‘ cLr e
) - \\\ (] v N “.‘
T
P B
I3 o, ~ “ - .
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Note that for & partial ordering K ona set.r A, it- is{ not necessary
4 that a K b or b K & i’or each two elements a , b of A,r- (LooT: af Lo ¥

example (i) above .f»rom this point of view.) However, if a partial ordgg‘
I‘elation K on a set \‘A} atisf‘les the additional condition that for 'every
el el PR

two elemefits a s b of A, ei, he'r 2, K b or b Ka, then the relation 1S-‘
(SRR ENS, S I CE S thad DA

0 £
called a weak total order relation. For an example see (1) above.

~

.~ Another important class of order, relations are those which, m addition
to being t'ransitive, are irreflex:.ve. A relation K on a set' A is irre-

. flexive if, for every aehA, fa,a) § K+ (Note that refiexive and irre-’

flexive are not complementary properties: there‘are so}ne:' relai;ons which are

neither '?reflexivg nor irreflexive. Sée if you can think of 'one,.')

!

. A strict ¢otsl order relation K- on a set A is g relation which is | '

s transitive, ‘and, which has the additional property (often called the "law —
‘' of. trichotomy ) that for every, two, elements a-, b of. A 3 exactly, one’ of NS
..
“the following three’ statements is true: a =b , aXKb; bKa . The relations

N + <"and > on the real numbers are well Kknowm examples of strict tetal oréer

v, 3
?relations. When there is no danger of confusion we abbreViate*"f%*ic tota L
e 4 oOrder relation" to "order relation". It is ‘easy to prove that a strict
- ‘Q;der relation is‘irrefle;(ive. - s

* < © s
- Y . ¥ i
. . . , -~
: . . A c . o . . {
1-4 Funections® ) n " . )
- R - -

Ll

In Section 1-2 we have &escribedf funct%on - from A to B as an

asso‘ciatioﬁ of exactly«ong"element of .- B With ea(:h element of A . Thus for -

" each acA,f determines an ordered pair (a,b) with b = f(a) »_and hence '%

f determines uniquely.a set F of suc ,prdered pairs, with the properties' {

z ! i .
(i) each element of A occurs,gas a first member of some ordered
~pair Za b) . from F ; '){

\ NS | ;

s (ii’) each element‘ of A oc}curs! only onde as ‘a fnjst member. .
| s . _ i

-As we have seen in the previous section, the set F is a relation from
4

A to B .°® Thus a function determines a particular kind of relation: one
whose/domaip is, the whole of A, (prOperty (i)), and which aﬁ.so satisfied a
condition of "s:.ngle-'valuedness" (property (i1)). On the other hand, it ds
clear that - if ~we have a r}lation F satisfying. (i) and (i) , then™Ve can,
use F to defihe a function T A > B, such that f(a) =b if and only
, if (a, b) €F-. : Thus we have a natural l-l correspondence between functions,
_““‘L, and. those relations which satisfy (1) and (ii) " This suggests that we

et

could equally well define a functiOn asVa special kind pf relation -- a

‘ definition fwhich you Wlll find in many.books. ) -,
I ST, ’°,c. 12 : o
ERIC R SAT s T
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'_,\,. The notion of a functio.n as a set of ordered pairs has an ébvious con-

- ERI!
. o TR i ' ’ © , o

”~ - A ¢

’.Phe function concept is so important'that it is useful to use both -
appnqaches, and to realize their equivalence. Because off this equivalence we
‘»Shall move freely ffom one approach to the other, and it will be convenient
to economize on notation by uél?:‘é the same symbol for the sét of ordered pairs
and for thé’ rulke of a,ssocj.ation. Thus, .refv'errzng back to our. earlier notation,

we Wwses £ =F = {(a ,_f(a)) ‘ﬁor all a € A}

nection w1th the notien of the graph of a function. The graph of a function
’f" : A B “can be defined as, the subset of A X B ¢ which the func/tion deter-

mines This makes the 1deas of function, and graph of a function, virtually
the same. You will recaJ_'L that 'in more elementary work, especially where

3.3 = B= 1R = the set of real numbers, it is customary to refer to a diagram-

matic representation of f as its “grapn". . 0 ' .
A functionsf’: A - B is said to, bBe one-ome -(1-1) it f(ai)‘ = ﬁ(aé).

1zﬂplies tha‘}/ar,-«ag Lt is saig to be onto,1 if every element off B -8ppears
at least once as a value; i.e. P if the range of the function is B . Every

3

fu.nction is onto its own range . A function which is both l-l‘ Na‘nd onto is the
+ ~

well-known 1-1 correspondence or 1somorghi&9m of sets. ., Such functions are
I

particularly, :meortant Because they ‘have inverses: the inverse of a 1-1 ;

correspondence f:A-B is the function (also 8 1-1 correspondence) £t
defined by £'(b)

i}

a , where a 1s the unique elementm«,o‘f A satisfying
f(a) =b . Clearly, if £' 18 the inverse of f theng' £ e1§"thé inverse
~

h

. . L - p. o - . N @9.
Of_ fr o, . . . . v&” N foea ("L\ .
A 1-1 correspondence f ::,A - B 1is often denoted'by f "A <-—>B - ‘ . !
In order to distinguish (in diagrams) between a 1-1 correspondence . : X
. .. e %
f i A< B and its inverse, we introduce the nqtatien . : s 3 g
. .. K . :t‘ . . . s :.c } >
t ) e . : s \f , < * R - e
. ! X . A <> 31 , ) N T , .
S - AR L : : )
This should be read  "f s a ‘function’ from & to B, and f 18 a 1-1 ) .
co #pondence The inverse function (£') ‘dad be :Lndicated'by ) >.
coe \ - )
[ ) fit , P . ~ .
) j\ “—»B , ‘ . - - - . i; -t
s . . . B :* . (’: .
In other words, the double arrowhead indieates the "direction" ‘uhich corres- "% .
ponds to the named function. “ We shall look at inVerses again after we have . 5
¢
* considered,the notion of composition of functions. ! ’ .
- co 14 H
I3 . -
[ -"' . } b
" ~. “w ,
N ] ¢ 2
- . ' ~ &
T, -
o S 13 -




: A partlcular‘l;y fﬁtportant type of functlon is one which maps each ordered
palr of elements of ‘a set \to an element of thé set. Such a function 1s

known as a binary op_eratlon on the set. *Tgus a.nb 3 n%rx gpe,ra,t).on onaset A,

= .,7..3 PR TU T 3 L
is a functlon - ] ;
. . ' - > ’
- hd ©

. f:AXA->A, ~

>

If f is only defined on a subset of A X A ’ then we call it a binary

. operatlon in A .  The best known examples of b1nary operations on a set are
the famll).ar operatlons of addition, subtraction, and multiplication, defined
on the %ai numbers .‘ Examples of binary opefations Jin sets'are. subtraction
for the posltlve 1ntegers, division for the pos:Ltlve 1ntegers, division for

the real numbers.

.

If a binary;operation

R
satisfieg

£(£(a,b) ,c) = £(a, £(b,c)) .

.

¥ for-all a , tw, c', € A for which each side of the equatiodn is defined,;%

tifen f és said to be an assoc1at1ve Jeratlon. This pi‘bpe&'ty is more, ,

v
v

»

famﬁ:szar’ *n the form whigh uses a notatlon such as

. . .

. . asb) =ao0b ,
_ ; , o Lla3D) ° .
~ N - s b .
‘Wivtff this notation the associ‘ative condition becomes
~ . i . M v_g' N
N ‘:':‘A.ﬂlw-\ T TN LT 'ﬁ(a o b) o C =.a ] (b [} C)

M .

Using the same notation, the operation is said to be commutative if

M aob = ,for all -a , 3 ’ for whlch each side of the equation is defined.
L- - Yeu-*shoaldu‘remind yourself, by cons@e’ﬁat{;omc}{dhe familiar 0perations of

i e~ o et e

.

subtractlon and division in the real numbers, that not all binary 0perat10ns

et areLassocn.ate and /or commitative. Wx}& R

-1 - - .t -'.y‘::wriv»

. Moxe genera“lly, a f‘unctlon, -

[

N 3 .
- [

f AXA—>B

— . . .

is called a binary o Lration on A- w_:.i;h values 1n B . .For example, if A
denotes %e set of all cit).es in the Umtede&stes sthe functlon which assigns
to each ordered gair of cities ' (al,a ) the mlnimum highway dlstance between

them (in miles) is a binary operation onﬂ with values in the set of real

e e -

numbers . The concept of commutativity is de?fined as before. If B 74 A, then N
the question of associativity ‘does pot arise. ¢

foarand * .




° . iy ..

'Iﬁ"“A B », G are three sets, and if £ : A =3B ) 8¢ B—>C are
functlons, the‘n we can omp_ose f and k by consd.derlng the1r effect, in
: that[ o:r;der, on elements of A This' Yeads to the following defin_ltion of

. . - - . P . .

tﬁe composite functlon gf : . PO . oL

- L. . " ‘ .

S e b gﬁw {(a C) rach g f(a)) . v .

.\\' *,

In other v':o'rds, .c (gf)(a) is the vaﬁlezof g ‘on” f(a) N6 ambiguity can
arise If we om:lt the ?ntheses on® gf + Note that we, have denoted by gf

the composite functiosf I'f ,flrst“ then g" because Qf the way in which we

~ write the value of a functlon on'g partlcular element of 1ts domain; some

books use fg to denote "f first, then g" . Thls i, ‘sometimes referred \
to as the product" of f and /g , but we awpid th3.s term for reason# which

In ocons:.der;mg functlons' whose values are real .

will become clear later,
Ner the ﬁoduct ofgw}s f‘unct:.ons, obtained by

© numbers we shall wish to cons]

" maltiplying values. The notation for thls
- “inguished from the nota;eion 2t , m
of g and f .) Observe that ‘If ~ A\= '

’
" 4
i

(- operation on the set of all functions - - ‘%, ~
, . 7 ] . N A
The following diagram is use uring composition of function$? .
14 * - .
- % .
. - s J“ L ) ) \b
- H 3 .
/ i
~ ’ A
« VX h i ' g ]
N - -~ '/
The co poslte gf is so defined that, st rtlng from an element a of A, Y
K eachiof the possible "function paths" fr A to , C’ leads to the.same elemer?t i
" (gf)(a) =g(f(a)) of €. I.e., we have IR R ’
i iﬂ T, 4% ~ « ‘ . _.A .\ ‘ N . i
e R VR (Y RPNV e : (%{?)?a) =g(f(2)) ST
- — -q_. . 17 »4‘1)_‘: \" &‘k‘\ ! .
: ( ’ / ' . . b “; > svw .
- - i N —— w:_,:-)‘ . R
_ . — T
- - L Bt ﬁ—‘ PR
- - i« .
v . X *\., N o
The 3‘.dea of compos:.tlon can be extended to &n ordered’ﬁ%et of *E‘hre»e or
more suitable functions; i.e., functions ‘hav:.ng the property*‘that fﬁe range lﬁ o
of any one is contained 1n the domain of the next '1f there is & next.—Thus &
da——-anﬁ.ﬁ:&_}-
(i LT T ASTE, g_. BC, h: 0D, ve can form‘oyvomposition n(egf) - . . -
Y T . - ' + ! N
- - e e - - ' . < ~ omy - K
S N ‘ S - . . [ L N L % LVt " n e, ,‘3\
o oty ‘ L’A P . PRV .- ) &—M@'_‘z& m: :;%
. ‘ . ’ c - '&, ! o Al N
\41 ! - n‘- - ‘ o - 15 p— gt ciire A hracd ‘ .
- ERIC = "~ . 20 N

— e s e ' ‘ L e ; 2 VL
. . : S e ey =t &
A . o

“
P PR - Y. .

. — - X N . - i ATy = . .
* - ,




,

and (hg).f' . We then have, for any a €A,

rtee))(e) = nlete(w))) 7<<hg)f>(a5 L

~ ’ -

» ~

Bl © so that compos:.tlon ‘1s associa‘tive, and we cah drop parentheses and write

’
sinply - hgf for the composite “function. The folIow1ng~d.sagran}_may be used*

.. in picturing this result: ’ Gt el

. We can lnterpret the result\k\‘és 1na1cat1ng that if “we_start from any element
a of A, and proceed from it to D by any of the.four possible ’function-
pa‘bhs » the same element of ,D is reached in each case Dlagrams which

plcture sets 'and’ Funcfions which are re]@ted in this. way, are " called oo

. -~ ~

commutat:,ve diagrams. , - T
R —#L ., . AN ; S

“ As we-shafl use commutativé dlagrams a great deal, we slow down here and
say a little more about them First of all, a diagram ,such as the one used
above (whether or not it is cormnutatlve) should be cons1dered as a natural

extenslon of the commonly used s:.mnle dlag\vam for a functron*.
\ v B . "
\\- L A-B . J 7 > ‘{..‘

\

The term "commutative diagram” probably derives from one -of the simplest -

examples of the usé‘of such a diagram: the commutative diagramn wh1ch o

. cor, esponds to a commutatlve blnary operatlon Let £ :AXxA —>4A be a "‘:

,

\bin ry' operation on A ,*and dendte f(a 8,,8, ) by -0 8y "Then there is a
natural func‘bion (p ’ say) on the’ eleménts of AXA 'whlc}’l slmply reverses \

the order of the terms in each ordered pair: that is,, .o : (a ,az) (ae,a )
Clearly is a 1-1 correspondence. If we cons;Lder now the followmg func- ,
. \ X ) Y {
oo ‘tion d;i.ag am R i ,

~ Vo .
\ .

\ ‘ 4
\\
0 I -
- " “ P
r
- > ] - - '
P / /
- ‘ . .
; .
o 2 R R A N - ‘ . ‘ 3
; . . *
é * . i I i . e . 1
. * - q.‘ ¢
X .
& .
*
O I n ‘16 » v .
~ " . i !
ERIC! - 2 ~ : -
Rl i e g T ' ‘ T
f'% N oL R * ‘ yf
SRl T




R . . A A .
a L « M A © N ’ IS
v ¢ - Al o ¥ o ; <
¢ » . ’ . RS ‘ « l-h
4 ¢ S v * 4 N
3 - .
. P w - -
" then the dlagram 1s commutatlve 1f and only if, i‘or everm( ) e A %T’
- we have, e - T ' -
. . ) ., o~ . - T g .

. ' ] - . . L

. P o : .
- - - 8, ,8 ¢ .
(81}32) . ( X4 l) .
. & - . . . »
: v ‘ > / ?m . » 4_;' < ,"\q: g o e
> e W Y ~ B ~ R e e LSS TP T - S
Xa N M P R
¢
. . p— ~ A
. f ~ -~ N
> ‘ L
.}
TS : - ' a, o a. = N - ¢ «
, b 2 .
e ke .
3 .

In other words, the dlagram is commutative 1f and only if the bindry operation

V‘ » L[4

‘<is commutative. vl (\ TN e e

. In order to be ‘commut'ative, a diagram (of functions) must have the pro-
‘perty that, every pair of composite function.s represenéed. (vy directed "paths")
in the diagram, which have the same domain and the same image space, must “
"agree' .,\1 e., they must be ‘the same function. If this condition. faﬂs for ~
any element Jin the common'domain of any x-palr of su1 tabIe composite funttions, - .

5 "

then the diagram is not commutatlve.

N - ¢

The earlu.er diagram whlch repreéented the associativity of functlonal
compos:.tlon, was commutatlve because of the way in which composition was -

deflned Thls is a fajrly common s:.tuation. But we shall also encounter

other 1nsta’nces of commutative dlagrams in which the commutat1v1ty is a

- H

theorem, and not qulte ‘so obvious, ™ L -

> .
» - N

Conunutat:.ve dlagrams have beenf‘consn.derably used in more advarféed parts
of* mathema’elcs (espetially in algebra and algebraic topology) They are
partlcularly useful whenever we Have a number of sultably 1nterrelate}i sets

. and functlons. lee any good diagram, thelr main purpose is 4 aid to the
_imagination: they frequently help us to pictute apd summariz al
n}elatlonshlps which can be» quite complicated, when wrltten out in' algebralc

form . . v : . )

d It is possible to prove theorems abou't comnutative diagrami, but as our R
use of ‘them is quite elementary,  we shall nét take the tjime to do thig. (An
example of such & theorem (which you can easily prove) is the followings

w
'

.
. [ ] 2 . .
. w8 ¢ 2 - « ‘

v
[$]

4L
- - Sy s
Sopimd 4 i SRS R R




l-,“' . - ) ' ‘ ' /

. ‘
Theorem. If each of the triangular "subdiagrams" insthe Following diagrap
'is commutative, then the whole diagram is dommutative: . .

A > B
hd . .: ‘ ‘ ’ .
> Y ~ Yy -
b e c - D !

7 . .

© The"ideas of composition and inverse can be brought together through the -.
« notion of idemtity fundtion. ‘ For any set A, the identity functioh I, is

the 1-1 correspondence I, : A& for-which I ) =a for every a €A .

N If we have a 1-1 correspondence f:A-B whose inversé is deroted by £t
) . then we cap vompose f  and f?! in tw’\ways, and we get e
v ) ) ‘e .f:f = IA'5 fft = IB . - . .- B . ‘r
'l\- .o ~e d -~ .

You should check this, and obsex:ve that there is some s:.mzlarity bet‘ween the - -
compos:.tion of functions and the multipllcation of real numbers} Wl‘th the.

1den,t1ty function playing the role of the number 1 . Because of ‘th'.LS )
s:Lm:Llarity the eng_’tation f L is often used where we have used £t , to ;l_enot:,e P

[
R

the in grse of a’l-1 correSandence f . We do not use the notation 3

Ces N
= here cause we need it later to denote something different, but is not always

*,

feasible” ﬁo avoid 11;. In most’ eases the.sense will be clear from the ( ;‘ﬁxt
Frequently we have\co deal with a function £ IA -B., in a siti:g’%gion
where there are relations A B KB on A and B respectzvely. In this case
we say that f is\comgatible Wl‘t:}h (or | preserv es)'the relations A 5. IgB ,_iif, :
,' (ai.,ae) €’ @ (f(a ) f(aﬂ”) ”e]{i .-, Ve alsq say that such an f is 8 .
o> homomo&hism from (A K,)" ‘L‘,o (3 ,Ka), ',4 IQJ‘;%% and K =K, £his- - '
caJ&ledAan endomorphism of” fﬁ‘ L, K TR ,.R’k:“ . o /
'‘If, in addition to, be.lg com}atible w;i:h the,gg,yen, relations, £ isa o
1-1 cor@spondence**whﬁse inverse #1-*35 also compatibleawith K- ',"KB f then .
PR we say that f is an isomo hism of ° A onto B- with respee!{; to the given .o

4, relations. We denote this by (}X‘ vi&;) s (B, KB) . If f maps’ A. tsomor--
. e phically o‘nto a prbper Ysubse‘buéf B ' theh we say that f 1is an.isomorphism

. of LA  into B . ,The tions of homomorphism and isomoz;phism wﬁ.l keep re-
curring in-different contexts, but they wi]_]. generally have the same sort of”

. meaning we have two sets with some sort of, "structure" (usvally given by

-.....
- '—;.;»_.n»

.

relations and operations -- see later) apd a ﬁmction which’ "preserves the
structure "It is a simple matter to shew that the composite of two homo- Loty

v
jo- \‘,
o

) morphisms (isomorphisms) is a homomorphism’(isomorphism)

O et . , . 238 T K o 3
--FRIC . e - ,
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Important cases WL:)f rei»_atlon-preservlng funqtlons, v(%.ch we shall encounter
Pe in this mk ocecur when A. ;#B £ R %ﬁ,‘set.@ofnreal numlS%rs, ‘and when

K, = KB is one of the wel_l-fknown order elations >, < p>, < . &function, *

£ R - R which is compatlble with -> or w:.th S dsssaid .,to_lze;wegli.y[ s
§ >increas1n§, or order-preservmng, a function which preserves 2.0r < §s said ’
to be increasing.” A function which reverseés order (e.g., for which
a<b =2 f(a) > (or >}, f(b)) is said to be weakly decreasing (or decreas:.ng)
A Junction which is either weakly increasing or weakly decreasing is called © -
* monotone. A funct:.on which ig either increasing or decreasing is ca.‘l.ledw
strongly monotone A strongly monotone functlon,is 1<1 . A function whlch:° "
is s'trongly monotone and onto (and'henc':er a 1-1 corre‘sPondeTxce) is culled !

¢« . isotone (or isp ton:.c} Thus an isotonic transformatlon 1s an 1somqrph1sm .
TTTR S e eV

. With respect to he order structure of R . More precisely, an isotofie
increasing function is an isomorphism’ af '(R,<) and (R,<),; an isotone'

decredsing functlon is &n 1sqmorph1sm of (R,<) and (R, >)
> - ’ - 1]

.».z.««'v~ .-

e When deéllng w:.th a.function Af f,‘aom R to R ,‘113 i sometimes useful
'to plcture the function by means of a diagram in which’the domain and the
f range are séparately r;presented by parallel coples of the number line s and
argunlezrt;g, a y are JOlned by direated line segments to thelr Values, f'(a)

. Y0f course » not all can be draWn') For example s such a dlagram for a monotone

1ncreas:,ng funtion might- look liRe: e v

‘ ¢

> A

‘ ] ‘\ .
K The monotone increas‘]‘.ng proper y i&,reflected in the fact that nd two seg-r -
ments® (drawn)or not) crogs ‘each other. For monotone «decreasing function§, .

" every two segments érods. You might find these ideas useful in thinking dbout
, some of "the exercises below. ! \ . -

1

i . - ‘ ' ’ ¥ . = \

. - . e . [

'
- ) - - B i
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. .. o E;(ercises -4 . .

1. Prove the assertlon made above, thet" a,zys's,rongly monotone function from

R to R is 1-1. ‘ . ' ‘ R

2. If you-are familiar witi? the.nohion,of_acon;in\n,ty,‘s};oy that a 1-1 P

correspondence R <> R _is isotonic if gnd only if it.is continuous.

.
L] -t .

’ + 3. Prove that the 1nverse of an isotonic functlon is a]‘so 1sotom?c, ‘and

has the same sense (i.er, increasing or decreas:.ng) . ’

> /

a0 L, If f eand g ,are monotone ('or strongly monotone) ‘functions in the same
~"sense (i.e., Both increasing, or both decreasing)t show that fg g 8f
. . : ‘ .
‘ . are monotone increasing (or strangly monotone increasing); if f and g .
. * - * . ¢
have opposite 4senses, then both composites are decreasing.
4 . N R ‘e ~
5. Prove that if f and g .are isotone, then fg and gf are isotone. |
L . . > 7 ) .
6. Prove that the identity function-, I, is‘isotonic and increasing. T
. P R N T s | ‘ ;
H ’ N ’ N !9 <. * ( - *

- o . 0
- ,
—
K

o We conclude thls sectlon w:.th some further® cons:.derat:.on of the various

notatlons used ‘in the descrlption of functions: . s
. L, - - .
> ’,

If we are dealing w:.th a finite set (not too l’arge'j and a fanction forﬁ

‘which there is no partlcular pattern in the assignment gf a value to each
argument we usually llst the set of ordeted® pairs which descrlbe % he function..
For example, t¥e state-of-residence function, for a speclfled set of people

(the domain) could be deScrlbed by a set of ordered palI‘S. > . .

br el }“ st f(Smlth New “York) , (Jones, Callfornia) “te - - =) - v

,

Anpther functlon normally des\\'%ed" 1n thisé’glgnner is ‘ehat whd.ch associajces

T -

SRy - g%telephone number with each person 1ksggcified domal you may regard

ephenie directory as giying an organized H‘éf’fﬁg of the ordered pairs >
v ' dbrrespon ng to this function. As- far as this fun n\is con”c‘irned the
) ¢ . - ‘v e
. aib‘na\hetlcal order of the listing is irrelevant. - . i %@;

When we are dealing with a r‘lmction,whose domain‘and/o‘r image space‘nq.e_
some "structure", it is often (_but not always). possible tp d'éscribe the .
function by means of an equation, or in some other way. For e)gample; if
. domafn = image space = R = set of real numbers, the function £ “which maps

every number intéo its square may be described By such notations as

l12 -
Ly =f(x) =% ;f: xo ;(2 Such notations are incomplete -- the domain o
o ' e, * ¢ . TN
€ v 7 o0 - .
« -
-7 - ST
) R o L4 ! - .
e - - o : S < T
EK‘IC S - h9p T R
. : ; .

w > . L -~ n = = . -




1-k -

must be spec.lfied. separately -- but they have advantages in other respects.
For example, we, cannot specify a funct:.on whose damain is an infinite set,
by llstlng separatel)a all of the ordered palrs which ge 4o make up the func-

tion. . . v '

- v b W E g
) [ S A o 2 o as R L v ARLEE 2 I Y

" When u51ng the r;;otatlon Yy = R with domain = image"space =R, we . "
understand that the funct:.on described is the set of those ordered pan:s of
real dumbers (xyy) which make up the truth set of the equatiorn y = 2 .
This 1dea is also used in situations involving a verbal statement. For
example, we’may define the integer Eart function s Whose domain is R ,

s ¢ )

= {(x,y) & X ;¥ € R; ¥y is the largest integer fgr vhich x -y > o} .
4 . M ’ . - °

This integer part-of x is often denoted by [xj s so\that thé' in’r:eger part
.";unction on R .is also described by )

!
nrem v oA, 0y A, g )

(3

Exercises.l-4t (continued)

Show that the function f : R — R 'defined by
,"
. 2
x= x .for x>0 N
f : A 2 .
o x=-x for x<0Q

.

1s isotone. ’ .

ff £ x —)f(x) is monotoneron R (strongly’mopotone; isotone) and

a, b, c areTeal numbers, a £ , show that
¥
g x> af(X)

t
:X-)f(x-i-b)
kx> £(x) +c

and hence

fd) § o x—>af(x +b) +ec

Tare monotone (strongly monotone; isotone). Sketch sﬁLtaIgle graphs to

e

‘z,v\\}flﬁ you' g0 picture these xesults. { . . ..., -

™

- ) - \ . .
9. If ™% b, ¢, d are Teal numbers; and. £, &.,.are the functions on .R-s
glven by

t

_ - N

f:x=2ax+b, g ¢ x—cex +d,

find expressions gwmg the values oﬂ fg and \gf , at x.

e = e o o g ™ et

I/ e v by enic:
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° 1-5 "The Algebra of Real Vadued F‘unctions oo T . .
5 @ L4 -, "
- We introawge fi the not:.on of»;equaln.i,y of ﬁmctions Two functions )
o ’ f ai}d g are said to be equal provided thit they have the same domain, and
prov%ded that for every element @ df the ’domaln, f(a) g(a) Clearly, © ¢
equal functions determine the same set of ordered pairs, and equality of L
" functions ‘is an equivalence relation, e L : o :
) e Let g "be anyvset, and let R be the set of real numbers. We use RA
N =
to denote the set of all functions from A to «R . The motivqtlon for this
notation lies in the exercises “below, . ° . )
¢ IS - -
- Exercises 1-5 .
T . 1.- Prove the assertion made above, that equality. of functlons is an equiva-
( lence re,latlon . . y ' ) Co-
‘ 2. Let’ A and B be finite sets contalnlng &, and b elements respec-
y ) tlvelyl Prove that BA (the ‘set of :f‘unc’tﬁons from A to B) contaln‘
" 1% elements. o i
T 3. Let A be a finite set with a elements, and let S denote the set of
T T . all subsets of A . Let /B be the 2= Q{lement set, {o ¥} . If TesS )
; é.é':e., T 'is any subset of A) define £ i A —>B 5, (4. e., £, € BAo) )
i Iy "o ‘ i R .o . .
) * 0 if x4 .
y i < f (x) = ’
ol ' . T 1 if xeT. .
T e e T Now definert T - 0 <o R
: AN  risopt T .-
vy F(T) = 'f'T' , and*show that . . -
(8) F is 1-1 and onto; c \ - ‘
(b) 5 nhas 2° elegents. ' s 7 . : &
. . . H - s
(For this reason the symbol 2A is sometimesMuised to denote the set of
all subsets of a given set A, whether or not A i f"inite.) . .
) . ¢ R .
. i ¢ . , . . . ° . & . : 4 )
. : - A . - ) ~ .
o The €lements of the set RA are functions. Particular elements of RA
which can be singled out are the so called constant functions' correspondmg
to each real number .r , we define, the constant function r:A-=R ,/by , N
‘ r(a) =r for every a ¢ A . Important constant fupctions are O and 1 .

E 7 . i . B

, o . \ , - -
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+  Operations=of ad@ition and multiplicatioh can be defined on the set, of ; T

fq.nctions . K, by using the corresponding operations in R . It is customary » T
; tolﬁse the usual 'symbols, "+"  for addition of functions, and ". for — e
. multiplication of functions. Thus if ’ . l '::
. * ' -
. H -t . .l -
. . \
* ‘ - fl‘ ; 'fé € RA ,- fe .. ’ ° . b
. we define B g . o, !
N . - r . te H -~ ]
& N .
+ =t 4 H '
' f( £ f2 tla, £ (a) + f2§a)) caeh); |
- . R : . o . s s »
S gy = e, (5(a) S (£,(a)) fa e} R
‘ vl .
Clearly fl + f2 and fl . f2 bélong to RA which is therefore close{
under addition and 'rrlultipligatlon. You should verlfy for yourself that this :
' . aadition arid multiplication are both associative and commutative; that the ' . *
X gultiplication is distributive over the addltion; and tha‘t 1-f=f-1=¢ ,\‘ -
and O-f =f-0=0 forall feR . ’ \
! For each function f ¢ RA we can define a unique negative, or additive .
invei'se,, -f € RA by ° ;-
» i .
) ' -fi = {(a, -f( a)) a.eA] . ’
‘and we readily verify that gl ’ , ,
R ] ) - . N 1
£+ (-f)=0. .
7/ . .
Subtraction of‘functions can noy,ﬁbe introduced in the tisual way-., .
A . Y b
. You might be tempted to thlnk that RA has all of» the algebraic struc- ‘;"“"”f
JO SR > 5 e s A

\_/ ture of the real’ numbers,. but this is not generally the case:
. § .
F:.rstly, while all non-zero real numbers have multlplicatlve inverses,

>

-we can define s .

L. ' . U - )
o . ~ . = {(a,’}—(—y) : a eA] . T, B ,
i > . &3 ’

only for those functions f whose range doqs not include the number zero.

(In general the set of those f‘unctions whose range includes zero contains’

much more than the constant funct:.on [¢] .) We call £ -1 the tigli.cative
f‘a;]_ -1 )

- - inve"rse; or reciprocal of f . If £ exists, we have £ -f 7 ="L . We .
[ * ! - .
* can define d:.vis:.on by.é =f-g L only when 0 # range,of g . One con- -

sequence of this restriction on the existence of multiplicative inverses is\

that the set RA can havg what are ca].'l.ed divisors of zero. These are

Yo. b . . ; [ T 2
. - ) S s w
. o v to k3, - - _—
“ERIC.. . 28 o o
= T N B ot ' S
Cant feed e ETTU T TR Y X o R SUERE SRR x
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. PR Ay e o, vy
w.«‘r.._,«w—»‘ s T e - T 7 = [ r

. ¢

e

elements f , g , su_e‘h Fhat £ # 0,.¢g ,J-O but £ - g 0+ You should con-
vince yourself that such functions eglst by constructing examples.

~

Secondly, we cgn set up an order rela.tion in RA by the deflnltlon

f < g**provided that f(a) < g(a) for all a e A but in' éeneral this
relatlon'ls only a. partlal ordering, whereas the coz;respondlng relation for

'bhe real numbers is a total orderlng. ‘ AR

v J. - S M :

Exerc:Lses ‘2 (contlnued) -

b, Let A bve & 2-element set. Find functlons f-, g € RA such that
f¥g and gff'. 5 - - . - ' ,

— el T

. \ B . .
5. If A has exactly one element,\ s'how that“the séts IRA and R are
¥

PN

1somorph1c w1th respect to then"algebralc opefations and order structures

4’ \\ -
3"?' (oot

SR ’ 0
' . \.; . K_J—»/ .."

PN Lo b el &
umgr";& @«

‘\‘ ,\ N o Ny S
Apother operatlcn Whlch‘ can ke fmtroa >

A’to R ,”1is the so-,called 1g’s‘ca}.ar mul“t pl:,catlo of ele(nents of RA by

real numbets. Let r e R “and f € RA’\ Then we define : A~R by

-

- e

N g (rf)(a) i* (f(a)) for a]\.}.\ a €A, .("‘I&

This "muli:lpllcatlon is i'elated ‘t;o the notions of' constant function and the
mult:.pllcatlon of fun\tlons s‘ée Exercise 6,below.

7

~ _ . B l si'I ..‘ X ’ *,
‘? L]
LLS
S SO
.. " ‘
&?fA=£'f=f'£' :
6 o ) S '
where r:a-r, forevery 2¢d .. o
. (] . ’
. . o PR R I N .
7. If n -is a positive integer,*and f : A >R 'y, show that ¢
nf=f+f+...+f (n tgrms) ‘ - e T

] - ;
“te

%\ (a) *Prove that a»ddition'in Fe is commutative and associdtive. «
(v) 1r P , q ‘are real numbers, and f s 8 € RA s prove that'

— ’

(1) - (pa)f = p(af) =.q(pf) ; _ T

* (li) (p + ,q)f = ;ﬁ%, ; \ ’ | . ) _i,‘.-g.«%‘

. (B1) p(bv'g) =premy .- - /
(1%) 1 =1, < o

2]




Vil

b) if r >0-, £t .1is monotone (strongly monotone; isotene) in the -
2

. " same sense as-}f ; . . ' . ( .

(¢) if..r <0, rf X\:‘;‘s monotone (strongly monotone; isotone) in the

<

\, <% ot .

‘ opposite sense . s PR s .
- —

)
-— —~ 1“‘;:‘ e

L)
PR % T~ i .=
. \ a ‘&\‘ : ES / : N
Ve '\\ ) L

' [4 [ .
. A partlcularly 1mportan‘t function space iz set RR , the well known.

e T
' set of "real functlons of*a r\eal variab . £his case, in addition to the

« algebralc structure for thre s}t as desbrlb d above, we can compose func-
R .

) AR
“\ ~  tions: the dompdsite of two functions in RR-- also a function in R

» L

\ Thus we have the addltlonai blnary operation of composltion in RR . This -

eratl 1; is asso atlve, ‘ﬁ)ut not commutative. Composition is related in &

- of 1nt estlng ways t the ot—l‘}efr operatlons in RR , but it would take .

4= ___.,Au..} ’ /H .
ﬁ Sﬂnxlarlty Transformations andeﬂnllar Functions. A subset of RR whi?:h

\ is 1mportant 1n questlons of measurement, is the set of those functions which

axd f‘d m the multlpllcatlon of every number in R by a fixed number Irf,

k e R Lé" denote the Qorrespondlng,ﬁ.mctlon by ™ the symbol k . Thus L )
. k:R~— R is deflned vy . . ‘ . X n

s N 3
A , -

k"r-—)kr,for,all reR.

« . [
’

It is ‘fre"quenti‘y “convenient to den’ote the function k simply by, the tmmber .
k , but ve must. be careful not to confuse it with the constant i‘unctlon* ko o .
"These functlons are related to the 1dent1fy i‘unc{bion I in’a simple w‘ﬁ; .

\k = =k - I . If this is comblned W:.th tﬁe results of the _exercises. \’-.. ' .

) abb we. obtain the following properties /for ko // Lo o

e

\‘"\,%NM (1) if k0, ! is \i.-l cd'réaspondence,,ﬁrom R ‘to itself;

-

. w

. 611) if k>0, ,,,319 ~1s t rf
(ﬁ % arfé ordier gres : 3

o " 'wk

-??-'(i.‘i;,i) 1 k<0, Bis

an

’%&
’ '
“ . .
’ ‘4
* * ‘
. . \ -
. R '\‘ .
~ ® 30 ~ N
- lC 7 - E 4 / h . e
K -’.)\ 7o * o e \“" ’ A
«, <Ay “,’ mn g «'—-‘-Tr\(’« v e - e - v;- -y - — ; hd £ ‘,} bl -




+ ) 1‘ ) > bl \.. ~ L4 ’\E \ .

a; s . . ‘4 \.\ . o “l “

T A . (v) if £f:A-R" :then - ‘ ‘ § .i
. . \_,- kf k_f' (kaR);‘_—;‘]i-f:f.E.\' .

> This result can, be pictured, using the commutative diagram.

'1 - L. . B »

$ I J“-—-‘--“.. ‘ B
oo™ \\-&
4 1 P
‘I * PN 4 v i L
3 | '
‘. * and poting that if We startj fron afy element a “of A, move
) by £ to its value f(a) in R, then dowa by k.to k(f(a)) ye 7

Wwe reach the same element of R as if we had gone directly to

Tee R.by kf.. If A=R, observe that, in general, kf # £k . .
’ (Cons:Lder £ 1 ox- o D . —
. If k£0 ; k is called a s:.milarity transformation,.or similitude, of

the real numbers. A s:.militude transfqrms any subset of the real line into
a similar subset, in the geometr1cal~s§nse. If ' 0<kK.< 1, k could be des-

’ cribed as a "uniform contraction 3 ifluk >1, k . could be described as a
Yuniform expansion” ' A ’
v, . A | :
.. If £ and g, are two functions from A to R, and if there exists °

. eR {x £ O) ch that g —‘K:f} thé\x f and g are said to be simg,lar
functions'. If k> O f and \g a said to be pos:.tively similar lnetipns.

.In connection with measurement R sets%of positively similar, functions:(with

values in“the set R’ of positi egeal numbers) are extremely eommon. "(E. -
the set of all length i\mctions, with a &ommon domain ) When. dealing with _. o
"such 1 functionsS we usually omit the word "positively" , and refer to them simply

.

-

~  as. similar functions". Similar t.y, and-positive similarit are quivalence .
relations. <o . . i , 4 /V

~

PN

‘ H . . , . . .
/ .. A similarity transfoz:mat‘ign on- R is a special* Caﬁe of a linear function. e

A linear function on R “is a ction £ /' s ) .
. ; A ’ . wr?
.o where b are fiteq real numbers. If a 74 0 ,/the linear funotion is: '*‘"j .
-non-singu_lar, such a function is also known as a ,polxz_lomia function of the » .,
- ‘ ,first degree. If & #0 and b =0, the line fu.nction iska similarity )' e
: transformation. If a = O ’.the linear functi ar:: a singular - -
e ’ F-2inguiar: R
[ linear functionon R 1is s of course, a coniti/nt functiOn. ¢ & C
; - . " , . | . K x” 2 "‘. ‘u

-3 St . : - e % B

- N , e




eatge « () itr"f and g] are non-singwlar, then fg is not a linear

- ) Exercises-1-5 (continued) o
co - 3 '
10. Assume that f : %= ax +b , g : x—>cx+d are linear functions

on R. and let k ¢ R (k £ 0). ,Prove that

- t

(a)” kf ‘is a linear function; kf is non-singular if &nd only if f

1sl non-singuldr; oo -

i

e function; ! ‘ :

(¢)' £+ g is a linear-function; f + g is ',non-si'n'guiar if and on]:gg
. if af -c; v ' '
(d) fg and gf are linear fungtions; fg and gf are hon -singular . °
it and only if f an@ g are npon-singular; . O

(e)- tg = gf if and only if ad + b = Ve +74 ; « BN
(f) fg=gf =TI, if and only if ac =1 and be +d =ad + b = 0';.

= {g) ; I; is linear; .., .

(h) every non-singular linear function f has an inverse f; (vith
respect to compos:.tlon) such th%t f” is linear and non s:.'gular,
- " and ff’ f£if = IR ; : “h - e
(1) it a> ") ;, £ is isotonic increasing; if a <O f is-igotonic

’

decreasing. . oo
ll. If A # ¢ , prove that
(a) s:\.m:.larity is an equ:.valence Telation on RA

{b) ,positive simildrity is an’ equivalence relat:\.on on (R ) and on RA;

(c) all ?instant functions in RA are similar. .

.

L . . s - A e

. Ve ae e et R
-~ = P LR g
—— - ) . .

: As you are undoubted"i'y aware, the graphical representation of a linear
function in the cartesian plane i§ a straight line. You might find it help-

ful to L‘l;se a graphical picture when working some of the above exercises.

-

If you have takenca ceurse in calculus you will have encountered many
of the ideas mentioned ,above, but not in a context which emphasizes the
algebraic structure of RR You will recall that. in differential calqu.us
_We are interested in, those functidns from B (or from KA , where A is -
a specified‘ukbscifz;/f R) which have derivatives This is the,\su‘bset' of '
so-called differentiable functions. In developmentiof the properties of

er(es for dii”fer ating\,sums of

ps

derivat:\.ves 5 you undoubtedly discussed
f‘unctions, products of functions, quotients of ﬁmctions ul;;iples of func-
tins by real numbers, ®nd functi_ons of functions (i.e., composite functions)

A
’ s .

g4 .

4 : 27 . . ~
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- product IIR » Or On some specified subspace“of this product’, ) Another, l g el

+
functions, where B = R ,-ang the relevant ,binary operation on R is '
. 2

These various operations wer__precisely’those which we have discusseqd above, f
but restricted %;4the subset of differentiable functions, Thus-differentia-
tion_itse¥§~is a function whose domain is the Set of. d1fferentiable functions
in R and Whose values*(not necessarily differentiable) lie in RR and -
uhe varioush"ru;es-of»differentiation express the relationship of thé deriva-

tive rnhctiéﬁjfo;the algeEraic Structure of gE . ,

Another situation which arises in connection with measure functionsJ
(espeCiaily;;n r»iation to "derived measures, and "dimension" ) concerns the

subject of induced functiong on cartesian products Suppose that we are given
tuo functions*

’ o A4 o R
’ f.FAl—)Bl,g.ﬁ2*->B2 ‘

Then f and g induce, in a natural way, the function
fxg.Aleg—)leB2,,definedby .o

fxg: (al,a ) = (£(a ), g(a )); (a ' l; a, € A2) . /_ ‘ .

It Bl'= B = B ; and there is g binary operation on B (such as addition,
multipiication, or diViSion) then £ X g can be«composed with the‘binary
Operation (which, you will recall, can be considered as' a function from.
BXB-B) to give a mapping from A, x A into B, Wwe shall see an

1 2
example of this in connection with the relationship of length ang area *

multiplication. Other examples concern angular measures and velocity measures,
where the relevant operation ig diVision These and Trelated guestions of ... i

dimenSion will be considered in a later chapter. N

M N

Einear and Homogeneous Functions. . Let a,x,beR. A polynomial
ax + h (a ¥‘O) of degree 1, determines a non-singular linear function
X=ax'+b . This polynomial is homogeneous if b=0 2 and the cdrres-
ponding function f ; x - ax , satisfieg the condition f(kx) kf¢x) for
every positive k , Such a function is said to be g homogeneous funct¥on of
degree‘ 1 in'a single variable, or argument , -

geneity for funetions of several variables (i.e.z,on a finite'cartesian ..
generalization leads to the more restricted motions of ‘multilinear and multi-
homogeneous functivns, which we shall, encounter in connectionIWith tHe treat-
ment of derived measures and dimenSions Wé inxroduce these ideas heEe/

oy Aoy,

v *
- ~"‘$1ﬁ“ » * .

« 88 o8




™

in their simplest form;(l e., WIth domains and imeg& spaces derived from'¢he

real numbers) and cqns1der further generalizations as the need arises.

4

A function f tRXR—=R #s linear if and only 1f it has the follow1ng

properties:

(i) “for every (xl,yl) and 2,y2) € R x R,
AT ,/!} A
' .f(xl + X2 ) yl + YQ) = f l}yl) + f 2;y2) ) ’
(11) for every . (x,¥) eR X R s.and every k € R‘ fkx ﬁﬁy) = kf(X,Y)‘.

>

0
1

Remark Perhaps you are surprised that the second property should be requlred
as 1t is a "homogenelty condition; that is, our definition is really a genera-
lization to two variables of the notion of a homogeneous linear function 9f

one variable. It so happens that the notion of homogentous linear.funct{bn;;s

the important one in generalizations, and the homogeneity property is there-

fore included in the definitiom. Thus our (generalized) linear functions are

s . -
all homogeneous, and our multilinear functions (see below) will be multihomo-
geneous. Many writers use the term "linear transforma}ion" (especially in,

generalizations to so-called "linear spaces") where we have used “linear

PN s ) L . . .
Tunction"; a linear transformation is thus a homogeneous linear function.

33
Tive s

&

o )
Tt follows readily, from tife definition, that “(x,y) ~2x + 3y is a

linéar function on R X ‘R, ahd that the functloq_ (x,y) »2x + 3y +1 1is
not . Thf/deflnltlon is eagily extended to the case of a finite number of
b.

\
real varfables.

. . et s -

P - - - ]

A function fu R /R is defined to,be homogeneous if and ronly if it
has the property that/there exists a fixed « ¢ R » such that fbr'every *
k>0 » and every xeR,

‘

/

The number o 1is called the degree of f . An,example of such a homogeneous

function is the function x —92x3 . The deflnltlon can be, sultably modified

to apply to a functlﬁn whose domain is a subset of R . (E.g., the function

134 * /

x> 3x 2.) ‘ \ ‘ ) S - / . 3.

;".‘ ;;
The concept of homogenelty can be simply extended to ‘functions of several
real variables; Wwe give the definitiop for the case of two variables only. A

functior f : R X R >R is homogeneous {of degree Q) Ef and pnly'igzihere
< =/ . y

exists a fixed o € R, such that for every k >0, and evefy ‘(x,y) e RXR,

R
* ¢}

29 !

e - . ¢
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" f(kx , ky) = KE(x,y)

This is the natural gens,ralizatlon of the idea of a homogeneous polynomlal
" function; e. g,, the function (x,y) - x2 + 3xy + 3y is easily shown %o be
homogeneous of degree 2 . A nonpolynomial example is the function

,(»x,y)‘ P S 5 whl,ch 1s homogeneous of degree 0'. You should observe .
[ | L

that , with the definition which ife have glven for a linear function of two or

more variables, ever)r such linear functlon 1s “homogeneous of degree 1l , but

the converse 1is def1n1tely falsg. (See exercises below. )

A [ 3

’

Multilifiear and Mult:.homogeneous Functi,ons The concef;ts of multilinear

and multihomogeneous function are more restr:.ct:.ve g%erallzations of ,the
notiong of l:.nearJ.ty and homogeneity We glve the definitions for the casg of
“two varia‘gles only: these definitions are easily extended. ‘

v » - ), "

A function f : RX R—R is bilinesr if and only if it.has the
. P - —_ _ .
follagwing properti'es: 4 ’

- v

(1) for every real R > Xy s Y and fe s

PR

o
£(x, *+ x5 ,¥,) = £(x,¥,) + £(x,,¥,) , and

f(xl ,yl + ye) = f(xl,yl) + f(xl,ye) 5 n ' -‘.

.

(ii) * for every real x ,y , and k, f(kx, y) = £(x, ky) = ki‘(x,y) "l)
P » £ 0-
Observe that the second property is again a homogeneity requiremgt it

1mplies that _every bllufvear function 1s homogeneous of degree 2 " Every ]
bq.llnear f\)fi&tlon is alsFrblhomogeneous {see’ below) of degree (l l) An
ample of a bilinear functlon is the :Egnction (x,y) b 3xy . ‘~ ¥

Ay >

A function .£.:RX R -R fs’%mﬁ if and only if there exist
P o "'\3"5'-

o , Q, , such th@, for ever&w .x,?)r) € RX R, and every posjtive real

¢ fx
N E ! ~

SR AT : . T

& . N
. ,-v—V—;N:\»} \"‘i‘ I ® : v ’
§e

L 0
, ot E( x5 k) = kzl Ky f(X,y)

.

The ordered pair of real num'bers (a ,a ) is called the degree of the
bihomogeneous Mctlon. (We ‘also say that such a function has tdegree OLl ine

x and @, in )y ) An example is the function . (x,y) - 3% y3 , vhich is’
'bihomogeneous of dey‘ee (2, 3) The function (x,y) - 2x 3y1/2_ , on the

. o \',;L’

domain R" x RV , is bihomogeneous of degree (-3 ,2) . A R,
. * & -t

b 4 i r\w
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13. If f RXR- RS is a polynomial function, prove that f is homo-
. geneous of degiee n (n a positive integer) if and only 1f all of its’
terms have' the same deé&'ee, n . (This latter property is, of 'course, K Y
the usual definition of ' homogeneous polynomial of degree n"/.)‘; ®
- 4 " . ; 14
1k, Prove that for each pos1t1ve 1nteger n, the function
5{, (x;y) > (" +y ) , defined on R "x R" , is homogeneous of degree, -
<"+ 1, but it is not linear unless n =1 , o . . - (
. . . .o e Lo
J15. ' Prove that, evéry bilinear function is homogeneous pf degree 2 , and .
bihomogeneous of .degree® (1,1) A_j o ' ;
> , . ,+ + + . R . ) M - . x v
ylﬁ. f*R XR >R is bihofiogeneous of degree (al,az) . Prove that: . <,
" . o o, i ' o)
(a) there is a ceR such tha{: f(xy) 2ex "y °; .
(v) . £ is homogeneous of degree Ctl + o, ; : — : ’ :
™ “ .. . . . . ’ .
(¢) £ 1s lineai' if and only if o) =0, qQ, \/ or @ = =0, / ]
17. " Find examples of homogeneous functions (of 2 variables) which are not -
- bihomogeneous. . . ’ N .
N ’ ' * [
18, « If you are familiar with the notion of "Venn diagram s drav a Venn diagram ;
w f PRSP
4 which 1llustrates “the relationship of the sets of linear, bilinear, homo- v
geneous , and ibihomogeneous functions from R XR to R : ' .
1 N + b4
- 19, . f and g aref’ homogeneous functions with the sae_domain, "and with .,
“dégrees o 5 @, , respectivi ly. . ) ( N ’)
(a) Prove that f + g 1is homogeneous if and .only if al =0, and <
v that, in this case, the degree of fl Hfy ds o . . ’
(v) . Prove that fl -.fa is homogeneous of degree @ +ay . . 3
. * " al .
) + + ’ . ’
‘20. If £ ' R —>R and g : R =R are homogeneous functions of degregs: .
. Otl é.nd Ot s respectively, prove‘that the composite functions fg 7 r ’
* and gf are each homogeneous of degree ala ' .
. ’ . &~ *
‘(‘ - . ’ e *
Qo 3l ' .
ERIC ' "
- ‘«*~ - e fl:..,--_' -, . 3(), - - et e P P £

H LA Lt i

. o o ~ - 1 1-5
,3?“'*{‘""““”"""‘:31/ N y ‘ ’
; 12, If f: R+ - R+ is a homogeneous function ofbdegree o , prove that .
,m;\: - there is.a ¢ € R* such that for all % e R , £ : x = x> 3 hence "_‘. j’
L. . show\tha‘t f' {s homogeheous- of degree zero if and only 4f it is a o X )




_ Sone Sbecial Sets of Functionse

kel

° 2y

In this, sectlon e introduce some spec1al §ets of functlons, most of __vhich
" have the structure of a ﬁroup (or a semigroup) with respect to the operation of

compos¢tlon These groups are, used in. the next section in connectioh wfth the

-

c18551f1catu‘5 of measure functlons [For a more detalled 1ntroductlon to
0

OO
group theory, 1nclud1ng most of the greups discussed here, see [7] .1

—ory
-y o
-

3 Before discusging these partlcular groups, we 1ntroduce the congept of
grouo formally, and summarize some of the main grouo 1deas whlch we shall

need. JA group con51sts of a non empty set G together w1th a b;nary opera- ﬁé
.tioﬁ on G (thé'value»of this operation on (x,y5 is indicated rn thls -

definition_by the ;uxtepoéition xy)} such that . b

(i) G is c3osed ﬁnder the operation. (Actually thls is 1mpL;c1t

in the fequirement of a binary operation on G) ;

-
|

(ii) the operation is assoc1at1ve,‘1 e., if X,9,2¢€ G then
» ’

.y)z = x(yz) ; .

(iii) G confains a spedial element e B celled an identity element
(0% null element), such that

-«

ex = xe,= x for all x €.G ;

(iv) correspondlng to each x e G , there is a ynique element .-
’ -1. -1 -l ’

. X eG', such that xx ~ =x x=¢e A \
i -
. 4 .
The element . x-} is called the inverse of x with respey{/io the given

operajion. . .. : .

°
3

‘A group G is called:abelian, or commutative if for each~phir of -

.elements °x , y\, of G,
. . f . . . ¢ .
¢ .
' : A Xy = yxX . - - -
A non-empty subset of a group, which is itself a group with respect Yo -

the given group operation, is called a subgroup of the original group.f ‘. . .

s
» ’

in
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M T :T Exerg%seg 136 .
" 1. Verify that the following sets end Qpera%iong are groun H
(a) the 1ntegers (or % the ratlonal gpmbers, Or the ‘real numbers),
g under addltlon, - e R ’ RS
L. (b) the non- zero rational numbers (or the npn-zero real numbers),
B . " under multlplmcatlon, e ’ . . .
(¢) the positive ratloniilﬂumbers (or the positive real numbers), - )
¢ under multlpllcatlon, . .. -
{d) ‘the equlvalence classes of integers, mod 12 , under edﬁib;on;_
- (e) the equlvalence classés of 1ntegers mod 7 , with the zero ;lass . ‘ .
A excluded, under multiplication; * . . , ‘
- -(§Y~ the set of‘all i-l functions of a 3¢e1e@ent set onto itself, . .
; ) ynder function composition; : . . -8
l ~: : (é) the set of linear functions on R , under composipion; ’

A -
. .6h) the set R, of all funcfions from a set A to the real numbers

b R , under addition of functions; . i -
g /> (1) the set Rﬁ of all functions from a set A to the positive real .
\ + , ‘
\ numbers R ‘,ﬂunder multiplication of functions. i >
2. Whlcﬁ\of the‘groups in the preV1ous exercise are abelian? o .
3. If G \1s a group, HC G B show that H 1is a subgroup #f G provided
..y . .
that * ,
(a) hhy ¢ H, for all h, ,"h, in H J(i.e., the subset H is :
* closed under the group operation);
(§) éeH; 3 . - ’

( -1 = i
. ‘(c)heﬁ’%ﬁhle}{y ,

s . I

I 4. ‘Show that tﬁé set of even integers is a cu

il
~

Integers under addltlon

L group of non Z§ro real numbers under multlpllhatlon Lo, ’h ~-,ﬁ
- - ' -

‘ 6. Show that the setmof pos1t1ve reals is a subgroup of the group of

- non-zero reals under multlpllcatlon . . s
L T
L4 - - f ]
»T. Show that the 2-element set [l,-l}, ig a subgroup of the group,of _. .
non-zero regig under mulﬁiplic%tion. ) - .
h v . —P - - . .0 &
L k] +
7 A} <§= . . -
N . . ¥ * ‘ R
-~ ' . . . ’ i
K : _ - o/ ‘
\)4 . ’ ‘" . 33 A . roe, °
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. . - H ;
. i,,f\;.:r |

N g - - - s
. , ! b g

o ' . . S
8. Show that the relation p defined on e set fH ) “of all.subgroups R |

. B el
) -of a group, .G by: " AR
» a " ’ “\‘ s T .
- Hl P .2{2 if and ,only if Hl is a subgroup of H2 , ron
. - . .t - — e e . - . e, *
\ T &* ) )
is & reflexive, antisymmetric, and transitlve relatz.bn, (i €., A, A N
. - . - R W v ,_‘.\ — .S . 3 J
partial order’ relation) i~ - - T - -
. . - B . ® B T -
. Ve T L Y
. . 4 e —,

Permutation Groups A permitation of a finl?;e,.set of objects is a 1-1

mapping of the set onto itself. In other words, a permutation is ,just a l-1,

o S ,an}~ be’a set of n objeots. Thé _

-permutations ,of A can be composed by functional composition, and the com~

correspondence. Let A = [al )

posite of any two permutations is agaln a permutation, the composition opera-
. tion is associe.tive, the permutation I is an identity element for the set « oy
of permutations, and eaqh permutation is 1-1 onto, and hence has an, inv;erse
. with respect to composition It follo.ws that the set of all permutations of
A 1s a group under c,omposit:.on This very important group is known as the
. permutation group"(oz) symmetrit group) on n ob,jects, and denoted by P . -

The definite article is used because, for fixed n , the nature of the n
obJects does not affect the structure of the permutation group: ‘all permputa-
. tion groups on. n ob,jects are similarly structured or isomorphic. This is
another example of'the idea of isomorphism; Two groups are s9mo§phic if there
is s 1-1 correspondence between their elements which- preserves the group struc=
ture (Actually It is sufficient to requfre the existence of a 1~-1 correspon- )
dence which is compata.ble with the .group operations: see Exercise 9 below) & )
A ﬁlncti‘b‘ﬁ which is cbmpatible with the group operations, and which is onto,
but not necessarily 1- -1, is caHed a homomorphism” 'I‘hus an isomorphisma.isna
) l 1 homomorphism (See exercises ;g)elow.) An isomorphism of a group onto

itself is called an automorphism. > - .7

i

A function which meps a group G isomorphically onto a proper subgroup
of a grQup H, is referred to as an somo;phism of e«*rms‘ H_. A homo- <
. morphism into is similarly defined. A homomorphlsm of a group to itself
(onto or into) is called an ndomorp_hism. K k °

Homomorphisms are conveniently pictured by means of commutative diagrams. -
If G and H are groups, a, function £ G—H induces (in a :iatural way) ‘
a function f XxXf :GXG— H X H as described in Seetiom-1-5. 1If the
vertical arrows in the following diagram 1nd1cate the group operations‘for «

G and H , then f is a -homomorphism,of G ’1nto H if and only if the

- -

c follqwing diagram .is commutative:
o

- v
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o © YA TRE TR o oy A7 TS T YE T TR T




Y

The 1somorphi,m of the permutation groups on equivalent sets, 155&
direct consequence of tHe 1-1 correspondence of the sets of ‘permuted objects.
You might be tempted@ to think that isomorphism 9T gxroups is alwayw this

o simple, but this’is not the case: For example, ifr" e denotes‘ the group of

positive real numbers under multiplication, and H the group of all rea} .

numbers under addition, the fihction s
, - o ) f:.x—>loglox

LY s
N

is an isomorphism from G “tg H .

L Exercises 1-6 (continted) o

2 o

G and H are grodps and £ : G - H isal-l correspondence ang a
homomorphlsm (i.e., f(gng) = f(gl)f(gz) for all g , &, €G ).
Show that £ satisfies; :

——
-

(a) f(e ) = ey ; (eG » & are the respective identity elements),:

. (v) - f(s 1) = (@)t for every g€ . ‘ .

~ -~ Thys’ f preserves products; the identity element,\ and inverses (i €.,

the whole group structure) and hence f 1s an isomorph:.sm. <

10. Prove the assertiont made above, that f : x —>loglo x 1is an

isomorphism from the positive reals under multiplication to the reals

’ I4

under addition, ¥ a . “w e .
fWhat is the inverse function to the f of Exercise 10? Is this also

- >

an Jsomorphism? . - 1 . .

’

12. Show' that the composite of homomorphisms (of gro“ixps) is also a ;ﬁﬁl ’
hpmon;orph,ism, and that the composite of isomoz‘ph!sms is an isomorphism.

If k ,1. 0 , show that ‘qhe functlon
T P I, :

is an au"comorphism on the group of real numbers under additign. .

35
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14, Show, that zn contains n! elements.

15. Show that each df the groups B, B, is abelian, but that 23 “is

’/’//’ not abelian. . . . -
t
. ' ‘ o . ‘

>

The set of all 1-1 correspondepces of a non-finite set (e.g4, the real
numbers) with itself, is al%o a group under functional.composition. as you may

readily check. We use the symbol ER for the group of 1-1 correspondences oﬁ
R Although the word "permutation is usually used only in the finite case,

2

¢ =% it is sometimes convenient to refer to ER - as the permutation group of the .

real numbers. The function iR is, of course, the identity element of ER'

’
-, s .

The Isotonic Group. You will recall thdt in Section I:b we defined an.
isotonic transformation of the real numbers as one which was strongly mono--

tone and onto (and hence 1-1 and continuous) In the exercises of Section -

1-4 we asked you to prove that * ’ : .
S g ’ v

. (i)' 'the composite of o isotonic fundtéons is isotonic; tje

. . ° ~ . . .
(i1} the identify function I is isotonic; )

(iii) the inverse of an isotonic function is isotonic.

If you did npt profe these before, you should do so now. These properties,

and the fact. that composition of functions is always associative, show that the
« set of isotonic functlons‘is a group under composition. Observe that this
£
. group, which we call the hsotonic group, is a subgroup of;ﬁhe gf&up J—R .
e We denote the isotonic gr%up by the symbol I. - .

Y
T

Fooe ' f
In another of the exercises of Section l-k yqu%ﬁere asked,to show that

. - v B
, (i) the composit gyf two strongly monotoﬁe increasing functiOns»as
- . °' strongly moﬁ one increasrng P g R : h
, - .
* (41) the identity function is isotonic increasing; RN

~ 0 -
-

(iii) thé inverse of an iSOtonic iqcreésing function is isotonic
increasing o e ’

» ~ -

These results show that the set of isoﬁonic indreasing fupctions forms -
a subgroup*of the isotonic group. By analogy with the multiplicative pro ~
perties of the real numbers , we call this subgroup the pﬁsitive isotonic

. ggoug, and denote it by the suggestive notation I ' ° .

[XS
<

. .
Hﬁﬂﬂﬂﬂﬂ ° . BN : -
€
! !
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PExercises 1-6 (continued) ‘-

. ~ - 3 \+ v
16.' By means of examples, show that neither 2 mnor I. 1is commutative.

¢
L]
N g 4 . -

'l‘he éfglne Groug.
calledl an “dffine transformation. A non-sihgular affine transformation is a
< function R o . ’ ’ -

A linear furction f : x 2ax + b

on R 1s also

£ x ,ax+b,” ", with a#£0.

-

In Exer01se 1-5.10 we asked you to prove that if f and g are ‘non- singular

afflne ‘transformations, then ‘T—"”/
‘ (1) fg’and gt are non-singula;' affMjWiOnS;\‘
’ (1’1) ,IR is a non-s;ngulér affine transformatio;l; '
N .
(iii) every such transformation has an inverse (with respect\to compo-

{
. sition) which is also a _non-si

. . 2>

It followskthat the of all such functions on

e
called the affine group ‘;n/»af or the 1-dimensional
ol A v

affine group.’ We denote thls group by © \e s
A non smgular afflne transformatlon x - ax + b oan be regarded as

. srblor{ ThlS group

|

the compds:.te of a hombgeneous non-—smgular lmear transformatlon , X —ax ,
and a translation,u XX+ ‘9_‘ , in.the given order. It i

I~
.and the' nen-gingularflinear

also the composite

ansforingtion

R
of the translation x - x + a

x —ax , in the given order.
:

v ’ A

. . I *
. t Exercises 1-6 (contifued)® B
17. Show by means of -examples that A 1is not commutdtive. . ) .
18. Show that the homogeneous, non-singular ‘linear transi‘ormations
', x—>ax,a;40 formasubgroupof A - a ‘
\ L % .
19. Shov that the translations ix - x.+ b form a subgroup of A . *

d 1

-~

-
4 i

We consider next those affine transformations

-

! N

f:x-ax + b for which

a > 0 %~ For convenience we call these functions Rosit/ive affi:ne transforma -

A ‘<7 .

5 ﬂ;ons. It is al simple mattez_' to,verif:y‘ that . ) ,
" i " . . N
oy U)., * F,\,;‘/ .

[ Ry ! -
i ‘e , , * Fd o 0
. ; . , !

LS » 1 37 ~ “
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(1) #he composite of positive affine transformations is positive,
t { i

(i1) . I is a positive affine transformation,_ .

(111) the 1nverSe of a posit;ve affine transformgtion i&xaffine and.h
. positive ;

Thus the positive affiﬁe-§§§§§fotmatlong form a»subgrdup‘of thé‘affine’éroup.
We denote this by’ A* H?T: 'Ter tp it agi

dimension one) K

e
X { - g :

) We examine’ next the relatlonship Qf the affine groups to the isotonic
groups discussed earlier. As we saw'in Section 1-5, a non- S1ngular linear
7 functlon is isotonip, .and a positive non-singular linear function is 1soton1c

+
increasing. Hence the affine groups A, A , are subgroups of the 1sotonic
&

groups I, I+ ; respectively. ) ) . ) LN

b )
- .

The Similarity Group. In the discussion of the affine group you were
agked to show that the set of transformations

~ N . f:x-.ax, .

o

formed a group under composition, and that.this group is a-subgrodp of the
affine group. We _call this grOup the similarity group.on R because of the

connection of the transfonnatlons in this group with the notion of slmilarity . § 1.
in geometry. (A similarity transformation on R 1is the same as & non-singular s
homogenéous linear transformation on R , but9this is not true for the corres- e
ponding transformations of the plane and higher dimensional spaces. ) As we

saw in Section l -5, individual functions in thetsigilarity group £ are

called similarity transformations (abbreviated to "similarities"), or

similitudes. We ca;l those similarities for which & >0 , positive similari-

EEEE You can easily verify that the positive s1milarities £orm a subgroup 1, e
of 8 . We denote th1s by S - ! ;1

The relationship between the various groups of functions introduced in
this® sebtion is exhibited in the ﬂollowingxdiagram, in which each arrow in-
dicates that the group at the tail of the srrowis a subgroup, of the group at
the head It follows from the transivity af the subgroup rela%ion that each
group is a subgroup of any group’reached from it along a sequenoe of arrows.
The arrovs may also be thought of as representing the natural inclusion
funetiohs thich map each element of a subset of a set, into itself.

r N
¢ L e
—

N
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i
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- group operation by the property: e p b implies that ac p bc and cap cdb

TSI

f’ .
-
+ + - .
-A T .
A T
b ! - -
T
- A - >I——>F T e
oy ;;:} - 1.\ ¥ / - -
/ \ -
R . . e L -~ .
‘ ‘Exercises 1-6 " (continued)
. y ' S T .
E

. 20 Show that .8 and s" are commubcdtive:’g'roups - K L
ol

[ » - ; .
21. Show that § is isomorphic to 'the multiplica.t } A%gp\of nonszero real
numbers 5 ancL that S is isomorphic to the nml‘tipi:.ca’ti*)e group of

-. positive real numbers . 1 (o~ l‘ ;.
- , M -
. Semigroups. We shall also need the more general ideas of semigroup and
ordered semigroup, so we explain these briefly A semigrou p is a set of ele-"

. . ments, “together with an assbciative binary operation #n the set. (This implies
) that the set is closed under the operation, but that is all; it is not

ef

necessary that there be an identity element, or inverses.) It follows that

every éroup is.a semigroup 5 “but you can easily find examples of semigroups

which are not groups. (See exercises.) Jf the operation is also conunutative,'
+ the, semigroup is said to be-abelian. If a right -cancellation property holds :

(i.e., &b =cb implies that a = ¢) the set is called a right-cancellation
\' s€migroup; if both right and left'cancel_lation hold, the set is ca].]'.ed a

+ ° >

cancellation semigroup ' : o o ’

C . Kd
~ .

12

A semigroup H which has an order relation p , linked with the _semi~

for al:L .ceHl, is called an ordered semigroup" A group which is an ordered'
semigroup_ is called an ordered group. -

. . e v H
. i

 The concepts of homomorphism and isomorphism arq defined for the vgrious

-

¥t

- types of semigroup in the natural wey, and it is easi.}y shown that the com-

IR posi;t.e of tw0 homomorpb,isms (isomorphisms) is & homomorphism (isomoz;phism)
' J

3 . 1 ~ i
et { ‘3 i t B . s M : PP .
. e s T ; SR v, § o : H
- I v } < R ¢ - ' Lo '
{ ; P ’
f
I

¥
o . Lo . : . |
( . -

vas

Y

; . . ; yo T 5
51 - H

hY
i
I
H
i
3
i ’
"

} !
| }
} ! ! ;
3 , ! .
{4 a: i . N } :
2 NZad i !
?t ) sl F : '
A 4
. ¢ } 3 fe :ﬁ‘ ! 3
o P S ; i - .
\‘1 “ x‘- , R £ :?'4 o - > , 7(?‘)‘f4
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[ Iy ) EXerca.ses 1-6 (continued)
22‘. (a) Show that the set of pos1t1ve 1ntegers (pos:.tlve rationals; ‘o ‘.
- - ‘ posit:.ve reals) under addition, with the usual ordering "<' , is
als - . ) an ordered abelian semigroup with cancellation.
. ) (v) Similarly for the setsof all integers (rationals, reals) greater
x < than some fixed positive integer (rationdl mumber, real number) - '
* 23. ‘Similar to Bxercise 22(a), but with respect tq the operat:.on of multi- "
pllcat:.on. In this case each of the senigroups has the add:.t:.onal T

, Property of possessing an 1dent1ty element which 6f these semigroups
* are groups? )

) 2k, Show that everygroup is a cancella’tion semigroup. ’ - ’
TS
N ~ 25. Shoy that the set of all regl numbers is a semigroup with identity, ot s
' with’ respect to multlpllcatlon. Is it ordered semigroup? 1Is it 'a' ‘%
~ cancellation semigroup? Is it a group? .
26_.‘ ,;(48.) Show that the set RR of all functions from R to R 1s,a seml-
) g'xioup with respect to composition; that :Lt has a left and a rlght
“ e J.&entlty, that it is not - commutatlve, and that it 1s nelther a
X rlght nor a left cangellation semigroup. -
. (b) Show that if £ x he RR, and if = - . S
o (i) gf =gh and g is 1-1 then f =h; . i
! Eg(fn) fg =hg and.“g is onto, then f = h, ‘ o t
- 27. Show that if m,n are any positive integers, then the set of all '
-— : 4 . - .‘
transforimtlons n  on the ‘positive integ,ers, defined by
R - T '
. is an abelian’ cancellat:.on semlgroup with 1dent1ty, under composition,
’ and ‘that it is 1somorphic to the sem:.group of the pos:.tive integers
: undez‘ rrmlt:.pllcat:.on. N ) .o,
' { ! . - .
1
'28- Similhrly to Exercia.se 27,, but for the set of all transformations T —~—
oy ; . .\ . 3 3 > -
[~ def:.ned by { i \ .
N ’ 1 N AQ‘A’ } !‘ 3 .
- S - - ‘q » . i)
3 Ve i, ‘ i l .g\,x _)_)S 1 ' ! - it
Lo -3 RV L
. j & ' . ' i, .
: "on the set. of %ll real numbe’rs%& ! C o *:
:.) . \“&
. 29. Prove that an orde:qed a'beld.an semigro‘aﬁ j a cancellati,on semigroupl.,
W 4 . i Adase- 4
/ , 3 ! P | }l
) , 2 B { . .
b ¢ - )‘ 2 K - o A g ! ;" P « :
e L e
K ?‘-. “ e""“ “‘ “ % i ": xt." K E ;51""" s ‘J} < s h
O . Ams’wko . ' , SE J ¢ AT :
SERIC - - ], v 1% ".;ff s ST
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b }5,\ Let J ‘deﬁ tgﬁ?»}ié set ‘of pOSIﬁiV? integers , afld 'Q+ the set of Npos*ltive )
{‘,1' .

’

pertwes of the feal nwnbers.] -

~

: , : ’ . . T . 1.6

- - ‘ ' B ” ,g?
(H,+) . is an ordered abelian semigroup. Prove 'that the relation: o
(a,b) ~ (c,d) if,and only if, a +d =b +c , (a,b,c,dseﬁ) is an
equivalence relation on HxXxH . - . . . Lo .

. . . 4
(‘@I,Q\ is an ordered abelian semigroup, n'is a ‘positive integer, and

na denotes the'n-fold iterated sum. Prove that the relation ~ defined
c 3

by : ) ) .ot

v ’

7

(a,b) ~ (c,d) if, and only if, for all positive integers m and -

n, ma <nb if, and only if, mc <nd , .
. = o L
is an equivalence relation dn H X H . ¢ : )

- . ~ * ‘
. [The results of the next two exercises are 1mportant m the dlscussion

of measure functions. _We give proofs in Chapter 2, ai‘terﬁavn.ewn.ng the prf

32.

3.

(

-
4
. < ’ .

If f: R->R l’belongs to the affine group, prbove that £ p%"eserves
ratios (in particular, equality) of differences, I.e., prove that if
X) s Xy s Xy 5 Xy ¢'R, and x5 # x), » then f(x3) # f(xh_') , and’

17 % f(xl) - f(xa) ’ .

'x3 - X, if(x3) - f(xh) . . .

Conversely, if f is an 1sotone transformatlon which preserves ratios

~of gifferences, prove- that f belongs to the affine group.
3 - . .

X

S - 4]
Prove that any pos:.t:.ve s:.milar:.ty transformation on R s, is an auto-
morphism of the ordered sem:.group (R o+ ,<) . Conve:sely, if f 1is L \
any automorphism of (R +,<)* prove t_hat f is a positive' similarity ) >

transfonna\:.on . - ' - ’
) ) R - -

(a) Prove that every similarity transformation on R preserves ratiog,

, and, conversely,. that every natio-preservn.ng transfom.ation is a . Lot

1

‘ simllarity . - ¢ |

(b) Similarly show that the rat:.o—preserving transformations of R
1

- .1 - ' [

are the positive similarities| | g

'
:

¢ ~ i b
1

rationa,l nu.mbez's ‘%Let H= {kx : ‘ , X € J , k fiked} Prove that :

(H +,<}, is an ordered semigroup, gnd that if "k >1 this is a proper . N
sub- semigroup of (J 2+,<) . What ﬁs\ the corresponding situa‘éion if e
P o f ‘ I
replage 5 ,by Q - or R ? ; - ! .. NP
’ ) . “% . !
¢ i ? ~ Lo « u 4 . " N
) : -
‘ iy .

PO BN
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2-7 L

.
.

"36. Prove that the set of monotone increasing functions on R is a non-
abelian semigroup (under composition) with a two-sided 1dent1ty, and .
with left-cancellation. ' . ‘

. : ) e T /
A L v
1-7 .A Classification oﬂ Measure Fuxnctions S )

“
,../

In a subject as.large as mathematics there 1s 8 antinuous effort to

find ways* of giving conceptual order to the growing diverslty of 1deas and “ “
theorles. One method which has proved fruitful and which was formally ‘
presented (in relation to the classification of geometries) by Felix 'Klein .

in a famous address {the Erlanger program) given in 1872, is to study the . -
relationship between certain sets with mathematical structures (e.g,, opera-
tions, relations) and certain sets of transformations which leave-invariant the

.

esdential featur®s of these structures. Thus in euclidean geometry, we might

be concerned- with the study of those properties of subsets of euclidean spaces
hich are unaffected by rigid motions (congruences or b slmilarlt trans-
W y rig (cong ), or by Llarity tre

formations;" in projective geometry the concern might be w1tgfthe 1nvar1ants
*

projective transformatlons, 1n affine geometry, with afflée transformatlons'

r"\-(x"\t'

in tapology, w1th topological transformations (homeomorphisms), in _group theory,

with 1somorph1sms, and so on. This is the spirit in which the present “section -

is written. But before going intd detail, it must Qe emphasised that we are R

o not going to describe a nice tidy. finished theor&with a complete classifi B i
"~ tion™of all possible measure functions.’ There are many loose ends, and it is,
not clear that these could all be tidied up. Nevertheless we belleve that you

W1ll flnd thii\pfrtial classification of considerable value and interest.

M 0
-

—a We are all familiar w1th the fact that, in our everyday experience, we

§

\M,,///Encdﬁﬁt@r a-varkety ofmlgngth functions. 1In, the next chapter we discuss the
'construction and propertles of these functions in sbme detail, but for the

<

purpose of thls section wve assume that you are familiar with the genéral pro-
perties apd‘relatlonships ‘of these, and other corimon measure functions. For

. \ ,
length funcﬁions We assume that there is a domain D" of objects (a term ypu.~ A

should intexpret Very broadly) which possess the attribute of "length", and

‘ |that there ﬁs a,length in-feet function, f » from D +to the real numbers \/} irg
R . We alsoLhQYe a length~-in- inchés function, xi ; 8 length- in-miles func‘* "*q;~;
tion, xm a lengthrin centlmeters,function, xc 3 and so on. All of these L e
 functions have the same domain D > and the same value-space R, ,and they ) ‘?kﬁ
‘. all purport to measure the same attribute, 1ength. It is reasonable to ask {
5 whether there are any relationships petween them. oOf course the answer-is’ ;%; ; ‘
. oy e L ! T, S . ”‘ 'w

. ! . i L. 4
: g ) e ’ - :
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! "yesI : for example, the value of )\ on any element ',d.me D is 12 times
the value of )\f on d ; the value of )\f on each element of D is 5280

.fimes the correspondlng value of )\ ; and so on. In terms of the notation
i -1.2)\f 5 )\f—5280)\m ; ete.

relations in the following commutative diagram:

e/

" developed earlier, We “can indicate these

(Where sm automorphism and

its inverse are-indicated by & double-headed arrow, the appropriate name is

placed near the head of the arrov). \

y

Ly
3

. .
. .

o

" 2 .
Any one of these, length functions is similar to any other i.e., any-

one can be obtained from any other by composition with an appropriate posi-
tive ‘similarity of R ; and, more generally, any funcftion obtained by com— '
positwn of a length function with a positive similarity ‘!.S glso a perfectly
sultable lenagth function. We can summardize this situatién by asserting that
the essential propertiés of a length function are uhchanged by composition
with any element of the positive similarity ,group S+‘ We antiéipate the .

next chapter by saying tha\t the basic proi)erties of a length function, on a

o
a

. &

set D of real objects, a e that it should assume only"positive values, and
of D
This empirically determine structurg will include an equivalence relation
on D; (a le;lgth -function, must assign equal values ,to length-equivale‘nt
T\.“:/ o‘bjects), ah rder relation on the set D of equiwfalence classes, anq an
o ,egui;falence ré ation on Bix B , which determines equivalence of "ratios".

., , 5*&\’5&?} seé the group f transformations of R' which (vy, composition)
*!e/ug one length fun-_ti\o nto another, is precisel,y the positive T

imlilarity grOup ’S intrad ced in' the last section. Each element of S ;

that it should preserve an empirically determiged "length’ structure"
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\\ - ‘determines a transformation (actually a 1l-1 correspondence) of the set A of .
’ all length functions onto itself, ;

This is sometimes expressed by saying that
o §f acts as a group of operators on A . Actually A .has the structure of

an ordered semlgroup under addition, and these operators determine automorphlsms

| of A as an ordered semlgroup In this sense, the ordered semlgroup A sof E—

i length functions is'"invariantﬁ wnder the positive similarity group of trans-
s formations ° . o o ', a
? As the lengths of all real ‘objects are posltlue, we could conslder S

“as a group of transformations on R S

is the largest group of such trans-
. 1

formations which (by composition) leaves A invariant. Chdosing a unit or a

'scale" for length corresponds to selecting a particular function of A . AS - -

we shall, see later, if d is any object in 4he domain D., and P any posi-
tive real number, then (with suitable assumptlons) there is exactly one length

Lo functign A € A such that A(4d) =p . Moreover, ‘for fixed d, the set of all

such functions is the set of all length functlons Thus the set A has\k'many
elements §s” there are positive real pumbers. ) o

-~ s v . x ® B
The situation which we have described for length functions is common to
. ° many of the so-called "scalar measures"

of the physital sciences (e.g., mass,’

area, volume, work, density, time intervals). The fact that a "scale" for

. ]
. méasurlng each of these is only unique up to a s1mllar1t@ptransformat1on, 1s

well known; it plays an 1mportant role 1n the method of "dimensional analysis".

e

.. Measure ﬂenctions of the type ‘which ve have considered aboye, might well

T
be referred to as srmllarlty- invarisnt measures. ,Another name somet1mes

sed
for them is ratio scale, a name which is reiﬁ%ed to the fact that the preser-

(See Exercise 1-6.3k. )
Some of the measure functlons used in the physical Sclences, and ma

those used in ‘the social sclences, are determined only up to a transformation

by compdslthn with a larger group than the group of positive similarities.
“For eXa@ple, in the measurement»of tempgrature (

not absolute temperature) ypu T
ate undohbted famillar with, the transformations betweenfthe centigrade
function T and the fahrenhelt function T
of theseg

) -

Py
¢+ if d belongs to the domain txv;%
tlons, these transformations ‘are } !

o
R

S Tf:(d) ﬁmc.(d)‘,=§ (Tf(a)' 132)
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\// line a coordinate system.

. 3
D attribute being measured than in the cases of such attributes as length and

- That is, Tf\ and T, differ by composition with fire’ positive affine functions
8
' ) "x—>-g-x—3-'§-9—= (x - 32) . )

and its inverse * T
2 F ¥
. - . 9
. . N X —>-5~ x + 32 .

°

The important fieature of these transformations (as ﬁar as temperature
"is concerned) ig that they preserve equal differences. A little thought J
" should convince you that any positive affine transformation on T ('or T )
will yield a suitable ature funct:.on, and that the. essential features
of temperature functions” are unaffected by composit:.on vwith & positive affine
Atransformation. In fatt, there is no reason why we could not reverse the
roles of hotter \and cold‘er’, and construct a temperature scale (function) on
wh:.ch the v,alues for hotter objects were smaller real numbers‘ this corres- ‘
ponds to perrnitting the variatien of tempersture functions . by composition with

any element of the full affine group’ : i . . ~ .
’ A quite similar s:.tuat:.on holds with respect to the measurement\of~
pos:.tion on & line. The measurement of pos:.tion on a line, by an appropriate
. assignment of, real numbers\to points of the l:.ne, is the process of giving the -
\)&\ coordinate function" on the line is a measure /
. of location. It is well known that 1f any coord‘inate function is composed
'with any non-singular affine transformation of R‘, then anather coord!.nate ”
function is obteined. (¥You will f;,nd mpre detail on this stion, in the SMSG
books "Geometry s Geometry with Goordinates s "Analytic etry§Ii - d
"Geometry Based on Ruler, and Protractor Axioms“ )’ Oﬂher measure fuﬁctions ’ £,

whose prbperties are affine- invariant are the measure, oquocation ;hngime ge.g. s’

s

calendar time), and potential energya. - . X ,' é.
4 ) S
When one looks beyond the physical sciences » one finds examples of

-

-‘.

measurement situations in whicﬁ ‘the image space is R -p~but the domain of
, the appropriate measure function has less ,structhre with’ respect to the
% température. This is reflected ‘in the fact that & laréer group of trsnsfor-;
maitions of R leaves intact the essential é‘ya@ges of the relevant measure¢
fu.nctions. Most measurement procedures for ranking sets of ob.jects in a,
transitive order(, permit’ composition with elefients of the isotonic (or positive
isoton:.c) group, or e.Ven with elements of the corresponding semigroups of 4
strongly monotdne functions . An example is the ranking of a class of students

by . means of, the scores on é test: Thése scores might range from,-say,‘ 0 to

t

9
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": affide-Inyariant, because affine transformatj,ons (and hence, of course, + /

Rianty HQ« also introduces the term nominaL acale to describe those real-valued '
e ' W e - s
’ : H k) ; ’,I ‘ i { .
vowe Y *'ia.’f : 46 Zf,\ % ‘
) . = '
LS D i . .
i 1

1-7 - . ) ) ‘ Q\
" 200°, but we would not generally infér that a student with a score of 80 was
twic€ as good as one with a score of )6'; or that the difference in ability
between students with scores of .180 and 190 was "the same as the ability
"difference of students with scores of 30 and ko . The scores mérely yield
an order relation on the domain, and compos‘ition with any strongly monotonic
transformation of R does not d1sturb this feature Of course, in practice,
we often use (gene;:ally 1mpl:.citly) a monotonic increas’ing transformation which
transforms thé raw score fpinction into a function whose range is a segment -
(1,2,3,...,n) of-the positive integers, and we regard this function as a sort . - ]
of "canonical function" for the measurement of this .particular attribute.
Other examples of measﬁre functions of this fype are: hardness measurement
for minerals; grading measures for the quality of materials' loca1:ion of houses
. on a street, by nunmbers (where east and wegt, or north and south, are introduced .
these can ;be regarded as pogitive and negative, in either order), many kinds of ' v
preference measurement in psychology; and so on. An early stage in“™he .
development of such measures as loudne A temperature (where we might onl)ﬁ

have. the means for deciding for each paj of objects an order, such as warmer

“
RF
A d

(SN

than", ‘which yields an empirically transitive relation) would put them into ey
this category. The simplest form of -the notion of u‘tility (in economié’ theory)

mighg be considered’ to belong to the isotonic-invariant category of measure
fu.ncc:Lons, & more advanced viewpoint of this notiorf, which would put the

- measurement of individual utilities into “the category of affine-invariant C -
measure functions, is contained in Chapter 1 of the moders classic, Theory L
of Games -and Economic Behavior, by J. "Von Neumann and 0. Morgenstern £8] . 4

;, Intthis chapter oﬁe finds a thorough discussion of the sort of empirical . oo
"structure" on the domain of the utility-measure fu.nction, which would enable .

it to be considered as affine-invariant. It is interqsting to note that in o
the same chapter, there is brief mention of the basid : idea of this section:”
that real-valued meé%gre functions might be classified in terms Gf the sets
(often groups) of transformations on :R which lead to .equivalent functions. L
This idea, which seems to have occurre.d independently to the psychologist.
S. s, Stevens, i5 also discussed (in more detail) in [1]. and .[9].* Stevens -
uses &};e{t&em interval scale to describe a type of measure function which 15

similarities) on R preserve equality of intervals (see Exercise 1-6.32),

but strongly monotonic functions generally do not' *he uses the term ordinal . -
scale to describe a type of. measure fung 509 which is isotone-invariant, and

ratip scale to describe a type of measd‘reﬁ%?hcﬁon which is 5:Lmilarity invari-H
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measure functions whose essential tharacter is unchanged by the permutation i

group P In tbhis case the enly struycture on the domain is an eqp.ivalence

Pr ¢
relation {which might be trivial), and the only reguirement is that the measure

!
function assign the same value to equivalent elements of the domain. In other

T wo¥ds, the measure function simply uses numbers to name, or identify,—eﬁé

valence classes. Examples of this type\%)measure are tzlie_’ide’ntification of
team members by numbers, the assignment of telephon nu:%bers to individuals _.
{not generally 1-1: as”‘E{ rule members of the same family have the same numbe})
"and the a5signment of social security numbers (In the last example, if the
assignment of a social securi,ty nomber were required to indicate order of
entry to the scheme as well as to provide identification, then ‘the measure
wou'ld be ordinal rather than nominal ) In some countries, as many bewildered
tourists have discovered, there are towns where house numbers Iin a street are
asgigned serially in the order of cpnstructiont Such-an assignment is nominal,
. as far as the measurement of locatidbn is concerned,: ,ﬁ}ut%‘dinal when regarded
. as a measure of the time'of cbnstruction, or of age. As an agé measure, this )
would not be an interval scale, becausle it would not be generally true that ~
pairs of ‘houses with the same difference in their asSigned numbers would have

the same difference in their ages . -

\,'\" wYou will have noticed that the classification is rather "forced" or
" \'\’ ver§implif:.ed in seVeral places, For example, although there woug.d be
‘5"?1 ing wrong, in priﬁcigle, in using arbitrary real numbers, such as = ,
'\’“ “, /-*"," or e\fen negative n\m'téers, t6 indicate social security numbers, in
pz:aictice we prefer ttL §tic}:‘to positive integersj' Thus the " invariance set"
.. might, in practice_j, be rest;rj,cted to the set of permutations of the positive
%_r%egers. sshﬂzm\ remarks’ apply to the numerical measurement of house posi-
o e *$i0m on'a st;;eet,.whére lwe yqsua\lly use_integers. But these miror exceptions
do not detracj frmf e value of this transformation-set/invariance idea in
givJ;n,g a gene.
. the 2&ea can be extended beyond those measure functions whose values are

A

al cléss’ifidation of rea¥valued measure functions. Moreover,

real ‘numbers.
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5 The' following table swmmarizes some-of the above ideas: . "5
3 ' ) "

- - w o~

CLASSIFICATION. OF MEASURE FUNCTIONS . _
°_ » . -

Type of Function Einpiricgl Structure Invar:tance Examplesm ‘ .,
A : in Domgin ** Group «
Permutation 1nvaMnt Equivalence .- Pr Social security numbers; .
or relation identification numbers
- b " Nominal . ' assigned to members 9f
* * ' T . a team. . . o
) . .
' Isotone-invar';iant Above, and also L ar Street numbering; ‘hard-
. . or- ™\ .+ an order relation * ness of minerals, rank-
Ordinal ' L = 'ing of students. .
Affine-invariant All of above , and A or .. Location Qf'position
or ° , @lso-an’ equal- ................ ¥ in space’ or time;
~Interval .. <interval" relation +« = temperature (not
- on ordered pairs ° : absolute); utility.
Simflarity-inverjant . Al of above, and S or  ,Length, absolute -- °
. * or also an "equal- st temperature, mass, :
v . Ratio . " ratio"-relation on = demsity, work, area, /
: ’ , ordered pairs N volume, elapsed time s '
) M . " : numerosity. -
. L ] \ . .
» . @ . '
: We make severdl comments on-this tablé: . - L ’{\
" 1. Roughly speaking, the domain of each type of measure function has a -
- structure which, includes ‘that of *the types listed above it in the table H
. i.e., we have an increasing complexity of domain structure (with respeet h
BEY N
to the particular attribute under consideration) as we read dawn the table.
. 2. ’I‘he in riance groups become "smaller" as we reade ‘down the tgble. :
v .-, (Roughly speaking, each is a subgroup of the ‘one above ) Thig is a .
natural consequence of the fact that there is more structure to be - ’ _‘
LI Qpreserved ) ‘“.*\.“«’g; ! FAN “

v 3. We of’cen wish to put additional restrictions .on various meaSure functioqs.
Thes include such rest 1ctions as' positive values only; integer values T
% ® Yo S

, only, rational values only, values on a certain §egment of the integers

oﬁly, and so on. These ° restrictiOns can be reflected in corresponding :

restrictions on@edadmtssi‘ble transformations » and the ,resulting measure C
: functions can be further classified a’ccbrding to the appropriate sub-groups :
0 or se;nigroups which resulf. (For ,anmple, in using numbers to tdentity a » -
- . finitg’a set of objects’ (e.g., embers of a team), we‘,often use the segment',_ p

. ‘-
\ . . +
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of the‘integers from 1 to n , for suitable n. The appropriate trans- «

o
N

formation group P can Jbe considered as thé subgroup of those elements

of ER which are otherwise constant.) Proceeding in this way we observe

that the categorles of real-yalued measure functlons (classlfled by the
approprlate groups of transformations) form a partlally ordered set under
the relation of ' subgroup , and not a'totally orderedset, as you might

. conclude from the over:simplified table.

" v

as & similarity-invariant measure. Of course the slmplest measure of ; -
numerosity is;thé ordinary cardinal number measure . In a certain sense
this.has & "ratural" unit, and there are no "different but equivalent"

N measures. In this case the set of,those transformations of g which
yield (by composition) equivalent measure functioﬁs‘is the single-element
. group consisting of the identity element only Thus cardinal number

neasure coﬁld bg”put in a class by itself, and referred to as "identity-

-

1nvar1antA ﬁ# praptlce we do accept other measure functlons for

These differ from the cardlnal number measure by positive 51m11arity

y-

transformations, so it is approprlate to include numerosity measures in

., the slmllarlty—lnvarlant category. If we wished to restrict *such measures

fo those whicH correspond to integer "units", then the appropriate subset

3
S S would.be the semigroup of similarity transformatlons % , where

3 n is restrlcted to positive 1ntegral values. . ;ty - 7.t
'*\

One final comment * As you are undoubtedly aware, measurement//s ﬁéto

generally an end in itself. For example, in many_ situations t umberss,
resulting from measurements are subjected to statistical smalyses, lead&ng to.
the calculatlon of such statistics as means . modés, standard dev1atlons, and
‘ééﬁ s¢ on " The question of what statlstical procedures are apprqpriate ﬁor what
t}pes of measurements is strong%x related to the classificat;on of measure
IfUnqﬁaons by invariance-groups. " You can £ind”this questlon reated in the
%rtlcles of Stevens [1]7 and, [9] It should be p01nted oué thatithese 5
artlcles have stlmulated'a conslderable amount of current co@trovensy, largely
- ﬁevolving about the meaning to be given to appropﬁiate" in the consideration
of the relationship of measure function classiflcation, and "appropriate"

Statls;ichi procedures vl ) “
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k. You will have noticed that e heve 1ncluded the measurement of numerosity /)
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numeroslty-measurement in dozens, by the score, by thousands, and so on: &
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. ' Chapter 2 St .

) THE MEASUREMENT ‘OF NUMEROSITY AND LENGTH °~  V\
° ) " . ‘. > °
2-1 Inbroductipn. .o .

;h~hd,subgect of measurement, as it is to give you a cqnceptual vievpoint which is

<

.,?‘

h

dimensions. - . L -

P

In Chapter 1 we tried*to‘convince you‘that a functional viewpoint of'
measurement was both, natural and useful. 1In this chapter weostake a.much more
detailed,look at some simple measure functlons, especiallx'those for the i
measurement of numercsity and lengzh These are "simple" in a sense that will
becpme ‘clearer.vwhen we dlscuss 'non-simple", or derived measures,.such as area,
(We shall See that simple and derived are relative, and

1 %bat they represent

not absolute terms. ) They a?e also simple in the sense
the outcome of some of man? s earliest attempts to come to grips with the idea

volume, and velocity

- o .

of measurement. T . .
' . ] o

) The history of the development of meésurement ideas parallels the history
of the development of number idess, and the inter-relationship of the two is
a fascinating study. It is hardly ankgéaggeratlon to say that the familiar
arithmetic operatlons of addition and multlpllcatlon (for the positive whole
numbers and the pos1tive rational numbers) were 'invented" in order to satisfy
the needs of measurement, especially numeros1ty measurement length measurement,

and area measurement. But our concern is not so much with the history of the

P T
appropriate to our current level of mathematical development, and which exploits

ol

the prec1sion of mathematlcal ideas to make clear what is _involved in the

setting up of measure functlons, and in such related ideas as units and

‘I

e

Roughly speaklng, our viewpoint 1s“tnat‘we knov all about the real umber
system and, its various important sub-systems (natural numbers, integers,
rationals, &te.) and the1r inter- relationships, and that we are interested in
describing certain functlons, whose domains are ‘sets of real or mathematical
objects, and which will in a sense to be made clear, préserve an empirically
suggested or mathematically determined stfucture gf relations .and operations. -
In view of our earller remarks concerning the' way in which our ideas about
numbers have been influenced by, our ideas about measurement, it is necessary

to, recall that we now kmow that the ‘real number system caghbe logically

<

developed from certain axiomatic assumptions, without the uge (except as

motivation) of any of the results of measurement processes. This is important,

+
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because 1t would not make much sense to use number properties. wh1oLde§ended

Oh) measurement > in ape attempt to explain a theory\of measurement .

Many of you will be famillar with .an axlomatlc development of.the resl *

bey system from some appropriate set of axioms., (See for example, [6],~

bers

s and th\e way in which these various sy3tems are inter-related.

N s 4
2-2 -The Real Number Systen

. 'As we Shall\ee\dljome of these ideas in fairly precise form, we devote the
" next section to

4

L

We mighq:

" brief review of the real number System, with particular -

»

'f *
emphasis_on those rideas needed later 4n. You will figd these ideas treat@ ¢
much mor’e *systematica » with most of the necessary p(roofs, in [6] and yl.

‘&\

attenpt to explain to you the structure of th?“*re’al number

.

system by definmg it to be :a complete ordered field, and then explaimng

_ what these terms mean. Unfortunately suéh a postulational approach te!ls us
nothy ng&bout the natural numbers ’, the integers, and the rational numbers, or’
If we need to

hov t ese ® ,related te one ano;ther and to "the ‘real numbers.

o

know about these thlng\s (as we' do for the purposes of this book), we must [ .

"J‘Jork backwards" from the postulated jeal number .system in order to obtain
more 1nstru§:tifg‘ to start 1th a much
tem, the natu‘i‘al numbers, and\ show how its propertie
» - S B

Thé'n we can define
successively the integars \the rationals and “bhe reals, Without the hed; tQ

ﬁhem. In many ways 1t $ simpler,,an

more primitive n be

s

can be devel’o”ffed f om ‘a &s.1mple ax:.omatiq descriptlon.

:mtroduce any new undefi This program is

“terms, or any addi'tlonal axioms.
cerried thro.ugh~i\n 161 and (10]4 and in many of the similay fooks now

all we can do

]

available. It ozcupies, far too much space to be lncluded here:

..
»
-

1s indicate some of4 the {nore 1mportant 7steps in the development.v-— 3

%

T

T

The Natuz‘al Numbers. As a starting pomt (1n ad’dition to fundamental

ideas from logic and set theory) we take the so- called Peang axioms for the

B

'Y

natural numbers. Several dif%erent setg, of axioms (variat.lons of “the set

,given by the Ifalian mathematxiciarf G. Peano in 1889) ko by this name. A

ey

.,, E .

= 5
., C .

suitable set iss
o

' .
¢ r

27
“(i) ‘There exists a set N of ob,jects which we cal_l natural numbers.

)&’fw- ("‘Na“\bural number” is an undefined teni}' ) \11
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A

(a) @ 1is 1-1; s
_every element of N with’one éxception, occurs as an
(We designate this exceptional element ;
uyn .4.) N . ) o

(iii®) (Axiom of Induction.} If-M is a subset of N , such that
L =

§ (bl) @(n) ¢ M whenever n e M ; )
! .
then M=N. o '~ . N s \;—

v If g,is interpreted as the ction corres'poziding to the intuitive idea -
. ‘V'addltlonq of 1", these are well known pro‘pez&s of the set of posit'ive

»
« - ’

*integers. What is not so obviois, Unless you have gon% through j, is that
these fe%roperties, taken as axioms, enable us to develop 1ogically a system
which has al], of the properties which we have learned to associate with the
positive whole numbers I‘n this book, whenever we.refer to the natural nu}nbers B
sor*the - pasitive integers, it is this formally-developed system which we have !

" ih mind. . - . . .

- . R
r 4 .

The basic properties developed for the natxqal numbers are"

3

\«\\

"
A

which is assooiative aild commutative, and which ‘has the properties .

(a) m#l-q}f}),fogeaqh meN ‘,.‘
(b) m+¢(n) =@m +.1) ,for eachvm Jdn. €N . R .

-
] °

(ii) There ex:sts a binaw Operation on N , called multip].icat:.on, -

(1) There exists a binary oper\ation on N, called addition .(%-)

a(denoted by’ - ;'or by Juxtaposition) which'is associative and

[

. commutative, and wh:.ch d:.s'tributes ower additionj and which has
‘the properties- " . : )

it

.

‘;}‘ (&) m-1 %@ jfof each’ meN’ ¢ T

(b) m. ¢(n)=mp+‘m foreach.‘m,nsN.

1

&%
(ni) There exists an orgr relatxon ﬂ(<) on N 2 defined ‘by: m < ny’
*  if and only if therel- exists rb such that“;’m +r .=/n . A B
. ‘I‘his relation is connected with the operations of addition and

multiplication in such a, way, that the set' l\f,+,<) is an ordered

v

semigz‘oup, afd the set (N, <) is an ordered semigroup with
ide;xtity_ “1.e., for m ,._n 5P €'NI, . X

. (a) n<n,n<p =? m<p (transitivity);
) o ' S




N af“"rj - B Lt 3 ! o 7
22 .. . ? S B
’ * (b) exactly one of the.statements m, p ,m<n,n<n is
b . “vtrue (trichotomy); ’ I .
;- . .
3 . (¢) m<n if and only if m+'p<n+ix . _
. X .
; 4+ (d) m<n if and only if m-p<n-pj e
{ ’ . A * Y
o . (iv) If an initial segment, I, . of the natural numbers, is defined *
’ g ' to be the set df those natural numbers less than or-equal to m ,
'1 then ™ . - o -
o o v *m . (@) for m#n, there is no 1-1 mapping of I omfo I ; )
LT : .
L 1\,«»«(%) if A and B are d:.sJo:.nt sets, and there exist 1-1 ‘
N . correspondences- ' * :
. . -
\ ;) L A=—I ,Bee1,
v _then there exist 1-1 correspondences ":
’ ’ : AUB-‘“-—'Im+n ’ ’ §
- an . o . .
P - . d. - ‘;' .o - °
b S . & A X B I . .-

. « A
. - * -
> 4 v

These are, of course, only a few of the properties of the natural ﬁumbers‘

As you are no_ doubt aware there is a whole branch of mathematics » called

number theo_;y, which is mai concerned with the natural numbers. « s
A ¢ < - . ’ AN N N R ;, * r . .
y The Integers.. From the qa"ﬂurﬁql numbers we can proceed (w@hout additd.onal L

assumption) in eithér of two diregtions. ; we can either define the integers, or .
T ALTE WPV il

= - e we can “asfife the positive rational numbers. In elementary work in order to ot

4

o'btain lghe d.ntegers we usually postulate zero and the negatives s but we con- ‘

r
. .
-

struct the positive rat:.onals as equivalence cldsses of ordered pairs (frac-

kY . tlons) of natural numbers under the equivalence relation: - N ’

H ’ . : - ’e 7 X * < ¢ « - ‘; '

A X 2. 3 AF 'a‘rfd’o}f_ty*if? mg smp e oo o O
. } N Q n ’ . R . N 31 __:

A
/s Actually this procedure for const&'ucting the positi‘(re rationals has its’.exact
counterpart in a cbnstrqction for the integers; which may be defined as equi'\ra-

< len'ce. cldsses of ordered pairs (m,n) of natural numbers (ve can think of .3
; _* these pairs as “formal diﬁ‘erences“) under the equivalence relation . . N
. . o ,/ ~ Lot : . e )
+ (myn) ~ (pya) ~if and only if m+ g=ns+p o
S hd /
w N ’ [N * be
- L4 R . . v
. . - - & A ’
. 7
3 4 . - .\‘ . -
N t. * i ’ i e ’
-~ ot £t 4

t
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C oy ’ _-{Bhe’ obder relation in . Q -}}s*meﬁy important propﬁrties Y :

* +  , {i1)" It is archimedean, in the sehse that given any positive rational
. & —_—

. E’” Tn 'this sense We may regard Q as an extension~ of = J .

>

The operations of addition and multiplicationr and an order rela,tion, can

be introduced i}mté ‘this set of equivalence classes, in a natyral way, and we

find that this nev system, ‘J , has all of the prof)erties which we mqmally
associate with ‘the integers, and that J contains a subset, J¥ , which is

@ ; ] -

B

isomorphic to the natural }numbers under the correspondence ’ s .t

" wHere.the lefb side denotes the equivalence class of (n +1 .l) .. In this
. sense ve _may regard J as an "extension" of the natural number system. The
main difference between J,and N is that J contains the negatives (addi-—
“tive 1nverses) of the elements which correspond to elements of N, and zero,

and that J is a commutative group under aadition.

. \ N R .

- . . o

The Rational Numbers. These may be constructed as equivalence classés of

ofdered pair§ of integers (written as g , @ £0) under the relation

¢

5 . . N
- . : ' - I,
'g- ~ g if and 'onlit if ps =aqr . Ty

? 1
A Operatﬁoﬁs of add;[\tion and multiplication, and an order relation, dre intro-
duced Ip,a. rraturai,&way, to yield a system Q l which we call the rational

.

numbers . This system 11as similar structyral properties to J , and 1n addi-

tion the‘elements of., @ , with zero omitted, gorm a commutative group under .

E s
¢ Y

- whieh lS 1s0me.rphic to J\\under the correspondence ! J? » y /w A
i Eaal - -~ 5=

e multtplication. Q is an example of an.. ordered field. Q + contains a s'ubset

e o e,
f

~ \

" . . e \ \ [2}4—...p s ? N . * - v

-
-

/.

t
) .

e
" where » is an 1nteger, and%he‘left side denotes the equivalence class of -

o

1

4 T
(i} It is denge in the sense that, given any arand b e Q with

. a<b, there exists at least one (and hence infiniteiy ‘many)
¢ such that a <c < b . (Observe that "‘this is hot~a property
of the order rela‘tion%"r the integers )

- . - .

- "@ numbers a 5, b , there exists.at least.one (amd hende. infinitely
el . meny) pofitive integer m 'sy.ch‘ that ma > b .. (The relation .
o » 1is, of course, dei‘ined.in the normal way: a >b if and only
e Af b<a.) . - R

. R . MY T - '

A . . ( . - . ) i
U 55 e i ) .

&

. . , Loy . ' )
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The Real Numbers.

S e-*—-;*» - 7
—
. '3

In splte of the denseness of the ordering of ”Q'

there are mgny ways in whlch Q" "incomplete For example, it is well-
“’known (and ea51ly proved) thaéﬁthere is no rational number q with the pro-
Yy perty that qe =2 , and that this lack is hlghly slgnlflcant in relatlon to
questlons of- segment length in geometry. Q 1s also incomplete in other ways,
vhich relate to its so-called topologlcal (or continujty) structure. Both of

these deficiencies can Le overcome at the same time, by using the rationals to’
construct a new number system, the real numbers This can be done in a variety

of ways Le, 8oy Dedeklnd cuts,:gauthy sequences, infinite declmal or binary

al

that Dedekind®s idea was directly derived from the method invented by Fudoxus

expans1ons) whlch lead to isomorphic<systems. For our purpoies, the (Dedekind)

cut procedure is the most useful, a t which is not surprising if we remember
(about 370 B.C.) for the development of a satisfactory theory of proportion-
‘ .~ -
ality for segments. Eudoxus’ procedure may be con51dered to be a substitute .
for the factfthat no suitable system of numbers (i.e., the real numbers) was

As we shall have' to imitate

this procedure in our discussion of the‘measurement of length, you w1ll be

then available for the measurement of length

able to judge for yourself the greatness of Mudoxus! achievemerit.
4 o
Because of the importance of the idea of a (Dedekind) cut in connection

with questlons of measurement we shall des¢ribe the idea brlefly, and indicate
For the sake of simplicity,*let us

conf'ine our attentlon to the development of the pos1t1ve real numbers, from the .

how it leads ,to a new system of numbers.

st;tlveJrat;onal‘numhers.é_ihk designate. the set of positive, ratlonals by. lQ el

.

this set is an ordered semigroup under addltlon, and an ordered group.under

RN

multlpllcatlon )

N

‘We have already observed that there is no rational number whose shuare i’s5
: . o

It'is easy to prove that there are positive rational numbers whose squarges

and that there are positive rationals whose squares
; - 5 b

3

.

’

2.
are. less than 2 (e gy 1)

z;re ‘greater than 2" (eig., ) ; that every positive rational Jbelongs, to exhetly 77

one of these categorles, that every p081tive rational in the first categsry is
less than every positive rational in the second; that the first category con~
tains no greatest positive ratlonal, “and the. second category contains no legst |
positive rational; and that if any positivélrational.helongs todthe’fir ‘l .
(second) category, then every small%; greater) positive rationak also %flongs )

to that category




A
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2
e e
o st

i . P .

o - \ ) - ? \
v These prOperties of the above partition of Jche pdsitgge/{a.tionals are hot

Vet 1

. all 1ndependent some are consequences of the-others AftYer we have con- >

ﬁtructed the real numbers, we shall fir?d that{;lf/h’awtion 1s‘~eharPCterls-

tic of. a positiye irrational number (I.e., Th§ sets of positive raticnals

respectively less and greater than a specified pos1t1ve irration&l,%st:itute
,such a partition. ) What Dedekind did was, in effect to reverse this idea to—
obtain the pos1tive irrationals. In addition, in order that the new system of

numbers should contain a subset 1somorph1c to.the ‘positive rationals, he intros \

duced a minor modification by 'permitting the second category to ‘contain a -
N
least oos1tive rational. (Each positive rationgl p dete;mines a peartition -
‘ of the positive rationals into the set of those pos1t1ve rationals <p, and,);\vx

the complementary Set of those po?;i&ive rationals 2> p .) We\ c0uld riow develop

C2
the positive reals by defining ' ordered partitions" a certa&n ordered pairs
of sets of rationals, and introducing operations and relations into the set

N of suo‘n tions MSe 6f ‘ghe complementary chbracter of the oair of sets |

A
in an\orderéd pa“rtitionj it is s-ufi;‘ cient (and siglsr to manage) 1f we con-

centrate our aptention oOn the "lower" se,t in a paghition. This we call a cut.
Y -
More precisely, a cut, C , is a set of E%)swive“r}?ational numbers, such that
. . et 5
. \./
- . (i) C# ¢ (the empty set), and c%cz/,»f

: (ﬁ@ if re € and q<r,then qeeg»,
Alth p>r.

(iii) 1f r; € C s then there exists )p € C

- - '
A . P a 4

- We denote, the‘;”Setd of all gy by R and proceed to define operatipns

. . + - CITL Ldeduaddd

- of \addition and muld;fplication, andag%'h order relation, in gk as follows: .,

v " < ' ’
N C; +i%r- [rl+r2b. r, € Cl,r2€G L - . -q;..\\
. L c €. = {ry W1, (P eC,r ECT*"\ ) R ¢
™ 2 [g‘ﬁ 2 vl 1’ 2 20 % . s - ‘\
b if and only if thergyexists e'ﬁ ; such %

- - s, a . : ‘
v;," T é C . ? ’;g;z‘;?%v&.r il & R .
i - Y R "'s« S e, T Y gI T TYTT -
?‘#"’gk‘z‘m el TG

w If you think:'g{';%gt’ﬁese <;u s as- candidates for the i'bl
i
numbg@s a‘nd k%\in -mind that R" should contain a"/, “of rational cuts ™
Y Az 43'\
he rational partitions) whichg‘g{ 1somor§hic to Q , then -, 7

2" 'gosa.t ive rﬁal

( correspondin&

Y ATy

, You will see that these definitions are the nat\fré‘L-“v g . —\»r A : o
% -k 55" ' '
T: . Without too much difficulty, it\;c e shown that the defmeq,boperations
f%a . are associative and comutative?_,_ that m(%.%pfcation distributes over addi-

tion, and that order lS preserved under eac(hr,operation in the sense that, for

‘cuts. C C . Lo L L
. 12 VY2 3 5’ - \ ‘;'

- : . ; AR
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——
if and only if C., +‘('J3 <C

(i1) , if anq only if C) -+ Gy <G, -

Al +
We can also show that R has a multiplicative identity element (the

it
rational cut determined by 1);. and that eagh cut has a multiplicatiwae inverse.

(1.e. X Rt is an ordered abelian group under muI’ciplication and an ordered

abelian semigroup under addition ) /

We can now introduce a zero and ‘negatives (additive inverses), by a
procedure which ig entirely analoéous to the construction of the integers
from the natural lnum‘oers, to yield the system R of @ numbers. Addition,
multip‘cation, and'an order relation are defined in a natural way.- 'Rj is :

an abelian group under addition; and, with the zero element omitted, it is an
\ abelian group under multiplication. The distributive property 'holds, so that
R is a field. It has an order relation, which is preserved under agf‘ition ";. '
. and uhder multiplication by positive real numbers’ (i.'e . thos‘e réal numbers
greater than the additive identity element) making R an ordered field The .
. ordering in R is dense and archimedean (Obserfe that all of these pro-
perties were akso propertles of the rational humbers. ) R contains a subset
vihich is isomorphlc to sR , and 1n this sense R may be cons1dered as an

extension of, R . Moreover R contains a su‘os%t isomorphic to @ B and

hence R may be cons1dered as an extension of’ i I ‘
.

-

vl « 4

" A simple; but 1mportant, property of "R , is thft if =« 1s‘ap‘y positive

"‘ R4

_ real number, and- € =5k & k € Q Jk <r) ,‘then r |is the real, numbqr Whigh- - - “es
corresponds to the cut C . , L ;e : 3

- N ~ . h +
It is hardly surprising, because of the method of construction of R ,

’

A

that/R+ contains a number (cut) whose square.is the cut "2" . (I.e'., the
cut deterniined by the/ rational number 2) you can easily ver{fy that if

T S, W {r :reQq ";8r2 <o), — e TN N T
' M - ) ! ’ S : ’
“then C2 =2 . Whgt is perhaps fiore syrprising, is that R has all of the

7
4

properties which are implied by the ( topological) notion of completeness. We
do not need to discuss this idea 1n detail, SO0 Wwe merely remind you that #she '
idea of completeness is contained. in each of the following properties of R,
all of which\ can be, proved from the definition of R which we have g;ven:

-

.
LS - -

Jot
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, (1) Every Gauchy sequence in R converges. (A Cauehy’sequence (‘a )
of{ real numbers is one which has_the property thatJ ) given any’

/

. 4
v - réal t >0 ’ there exists a positive integer n, " such that for

ail positive iritegers p , 4, >0, , Ia - a I < z )

s , o,
(i) E]very (non-empty) set of real numbers which is bounded t]rom above -

has a supremum, or least upper Bound (denoted by l.u.b. 1 or sup);
[ -

every non-empty set bounded from below has an 1nfimum, r greatest
~

lower bound (denoted by g.L.b., or inf).

-

-

"‘*(111) If R=RUR, is’a partition of the real numbers (i:e., Ry £é,
- R, #¢ , and RlﬂR = §) 'such thet every numbér in R, is'less
’ 2 2 B . 1 -

than every numbér in R2 3 then either Rl contains a greatest’

. * real number, “or R, contains & least real nugber.

-

-

.
v >
- 2 4 ‘. ok

) If (an) and' $b gre non-decreasing gnd non-increasing

, intersection of all closed ' intle:?:'valsv [an,bn]-([an, 2 TN
(x:xeR,a <x<g bn)) is not empty. [This property can be
*_ thought of as a "geometric" expression of the notion of complete-

ness. You can prove it by snoﬁing that“the set A of those real
nimbers which are less than at least one an is $on-empty and
. ‘1 - bounded above , and then proving that the leas‘c upper bound, & ,

«"‘ . of this set pelongs to every [a b ] . .To ‘see that this prope,rty

S e e sia

‘sequences of real numbers, with an < bn for every- n , then the

=

"—0

Tt g,

decreasing sequences (a ) , (b ), of rational numbers, each of
which” c,onverges to /2., and prove that the intersection of the
Fatfonal "intervals" [a b ] ([a b ]-—- a:qeq, )8 _/\ b- b))
. is empty. (If you are not fam:.liar with the notion of ,sequential

:.T* a7 “1’?7 n Tcopﬁergen?e you can find it treated in anz ggo.a_calculus text )]

' S4me additional properties of R , which can be proved ‘quite easily, and ’

which are fusef‘ul in relation to the theory of measurement, are: '

. 0

(a) Both ithe rationai. numbers and the irrational numbers are dense
— subsets of R fn the topological sense; i.e., if r is any

" rational (irrational) number, then, for every resl ¢ >0, there

‘exists at least one (and hence infinitely many) irrational
b %(rational) number- x., such that |r = x] <t . (Th:r.s implies
o that every intez‘val {a,b] of real .numbers, with! a < b , con-

\
. tains both rational _ and irrational numpers ) o\

\
. , \

=
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(b) Let C bve a cut. ‘Then there are strictly monotone sequences

(q ), (q) of rational numbers ((qln) increasing, (q ) de=,

creasing) such that for every n ) q, € c’ A q #;C , and '’
4 <0
1 : . .
q - 9 <h - . ‘ _

<2

v,

1 "
suchthatfora]_l n>m,q+—eC. LA . .
.(d) If C' is a cyty and: n ds a positive 1nteger, then there is a
‘ . - qe€ecC suchthat\q+—¢C,andsuchthat q+l 1snotthe
v o least rational which is not in c.
» ¢ " ’

Exercis,es 2-2 : -

. R
1. Prove the completeness properties (1), (i1), (iii), and {iv). above, .

Prove the properties (a) -- (d) above. L 1 .

3. If C 4 Co s C3 are cuts, such that A
(a) if q €C ,,qe € C, , then q + 9, € C3 s '
(b) if 4ql¢C - q2¢C s therd ql+q2¢C3, /
' show that Gy =C) + G, " B ‘ -

'(I'e‘J {é:q=%+(!2‘)ql¢cl’q2¢c] @:4‘!#01"'232:!)-

b similar to 3., but with mltiplication instead of ‘addition.
. , 1 . .’
’J £t b PR B S b B I e L g
The Use of"

Wekind Cuts. To illustrate the use ©F cuts, we first prove

a theorem which relates to the' classification of measure functions .as dis«c}lSsed
in Section 1- -7, and we prove Exercise 1—6.32 as a corollary. Theﬁ?way in 'which

_cuts. enter. inteythes® proofs- 18 "typleal Gf the use of” “rebl. num‘be?f prdperties
in the theory of measurement. ‘ If you work throuélrg_the details you will see

how much simpler matiers would be if. we were able to restrict our attention
to rational numbers only! T 2

-y ror

’, ° .

. R=-R 1iga strictly monotone function which pre-
serves equality of differences then f also preserves ratios of

Theorem 2-2.1. J;f’ T

LolR S

.differences,’ [This result will be used in the discussion of, coordinate PR
sys't‘emi in Section 2-6, } ) 5 - .
N r - . -t '

: 64

If ¢ is'a cut, and q ¢ ¢ » then there is a positiw?e integer m ;L

fizd
o

' L L
B '60 ' .7 . o B0
Cpi e ' L ; : i L '
MC S « ¢ 4 o . . { )

- S T . ) oA

n~gs, .
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Lemma 1. Ir x eR ,‘ f:R-R is a i‘unction which preserves eqhaiity of

" v
Qifferences, ahd n 1is a positive integer, then J% ,f_\
. i , -
) f(nx) = n(£(x) - £(Q)) + £(0) .
- e, » 2 - . hd .
Y and - - » -
y : Cflmey) - £nx) = n(2(x) - 20,000 VR
' M ) ~ LR © -3
- Pseof. . e

-(n-l)x=(n-l)x-(n-2)x—,... =x-0.
Hence, because™ f preseryes équality of differences y

£(nx) - £((n = 1)x) = £((n » 1)x) - f(xn -2)x) = ... 2 £(x) - £{0) .

14

* " Hence, by addition, e . - - “& “

L ‘;nuu)lﬁm>=ﬂm):ﬂm

and therefore ’

2(n) = n(£(x) ~ £2(0)) + £(0) .

Hence

() - 2(my) = n(s0x) - £0)) + £(0) - [ae(x) - £(0)) # £(0)]
SER L anlelx) - 2(x)) . ' :

>
12

N
4 »

Lemrrig 2. If f :R->R is a stric%ly monotone function which preserves
: equality of dlfferences , then f is monotone vith, respect to dig‘ferences.r

o
i ..‘-,..rv»/l"

e “'(’I’e. ” either preserves or reve»rses'{;ﬁe ordering‘c;‘fiéifferences, according

as f is monotone increasing or- monotone decreasing.)

rre

-

. ; " and - o - .
. I:ro‘oﬁ_hLet x}l_ ) Xy 9 Xy 5 Xy € R ., an 1"}""'”?\‘1 '7“)"’72*@\.‘ 3 . xh_ Assume also - e

{The treatment ‘when the' firsih’ or both of these in-

that'x2'<x1 xu<x3.
equalities are reverséd is entirely similar.) Then there exists Xs such that
ﬂr ‘ ) 7 () . ©
< — - = - R ~ ~
' ) X x5 <x3 » and. X1 T X x5 X, . . - !
' Hence, because f preserves eqt’zality of .differerces 5 .
N . ‘ f(x_.L - f(x ) = f(x5) if xu) ’ "
' .- , . -
4 2 , “ .
o »x d . . ;- ”
- . . ¢ s .J
. o 61 , "

. \‘ ..\ . E | ,
s C T 63_) ]; C

e T . H s $ . . * : [ . . . .
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1
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1

N . % | l( ‘ .
N 1 v
. If f is monotoneé increasing, |
A : - . ‘ ) - -
'. ‘ - ; ?‘(xu) <f(x5) < f(x3) y \ .
, i N
and henge j‘ . - = ]] ’ .
N - . ‘ f(xl) = f(xa) = f(xs) = f(xh-) <_ f(x'B) = f(xh-) . -
ahd f g@tewes the order of differences. If £ |is monbton; dec;reasing,
‘ - l”““"—/ . ) . oy )
. N .. f(x3) < f(xs) < f(xh)\ N - . .
7 . ' - * ) IS
and ~
N . , d . . . c -
| L £(x)) - £lx,) = £x5) - £(x) > £(x,) - £0x) . .
BN , )

. " Herive- I “reverses the order of diffeFences.

-

Proof of Theorem 2-2.1. Let x , X, , X5 5 %) € R, 3c3 #xh , and let,

- - « -
, A . X, = X
3 el S o
A L) 3 L}, .

¢ . - - -

If k is positive and rational, let k = % s Where ‘m and n are positive

integers. We wish to show that g ) ; .
- . v K Mo ,
o S ) f(xl) - fﬂxa) . .m o ‘
B . 3 h’ ‘ . / . ,
! ! J j’-/. ) N o _:,;*,) ~ - o ":.,' 1—-v-2-:1
S0 We-haveis- 2 . - _ a. . A
‘ 8 : ] s N
St .l xp) = mle - ) .
ol . ¢’ . b 2
- " d.e./mx - nx, =mx, - mx, . Hence, since f preserves equality of °
- tl g2 03 L :
:';;x‘;lw‘*x-vq«j;i:fwe{?ric“%{ f:.. - B "7"71‘ ~3wav’771~' '74‘5» - 7 m*v'n"..T::
'_;'; — {'(,(nxl,) - f(-l?:xa) = f(mx3) - f(mxh;) .o
) & . ’ 7 \‘ﬁ;\,‘.:m«u~7
Hence, by Lemma 1, , - < ‘
¢ onle(x) - lx)) = mfe(x) ©2(x)) . .
n " Since f is strictly monotone, f(x3) # f(xu) , and hence \
. \ - . T p- . X . . &
'l - 'S
v 3‘ a ] -
. e .
o : . v o - ] L
N T =4 I 62" - ‘ _—
- ERIC -~ . 86 . . e
i T LF - . .
=0 . 3 .
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as required. The correspoh&ing result for k' rational and negative follows

immediately if we first reverse the ordgr of one of the differences; for

L3 .

k.= 0, the result is t!rivial. Hence. £ preserves ratios df differenbeS' when

[N

il

the ratio is rational.’ . ‘
' 4 b . ° & e - l’ .
- - _" z{‘
" In order-to complete the proof of the theorem, ve must show 'bhat the P
resu.lf, still holds when the ratio of differences is not necessarily rational' /'
this is where we make use ,of the definition of a repl number in terms of cuts. '
We trea® only the case of f monotone increasing: Yhe treatment when f is
decreasing is quité similar. -
L - o
N - Sugpose that x:; # X), s and that, ’ ‘
0 A s
. _ xX) =% f(xl),% f(_xe)‘; » 3
. 0 _x — = I‘l 3 —(_)_—(—yf - flx = r2 | — ) /\7 .
v . ! 3 h‘ 3 h' . . 3 3
; . . Y -

and assume that ry ,\(and hence’ , from the strictly ‘monotone property of £, .
r, ) 1is positive.- (The case rlﬁ, r, negative is "easily handled, sas befbre )

.
3 Let I-P*“be any rational number in the cut ocorresponding -to Ty with m and

n posi’cive Antegers. Then ¢ 9
. )
. ! . « g
PO IUEIPSIPYY FOPURRIS S R - - : le J
s noL. . ,
B and hence .. . z <-xl,— s - o 4
A . DXy X
’ .‘f\ I, rd L -’ K -
{;'.”;' ) 7 . m(x3 -_x,‘) <n(x:L - x2) ' : )
R e S T e T T I
) i,.e., . . mx39-mxh_<nx_‘L .-anxv- - )
o “ . ' ) °
: Hence s i‘rom Letnma 2, and the assumption that £ is monotone increasing, ’
4
. S f(mx) -f(mxu) <f(nxl) -f(nx) v .
¢ T . _ . o R
R Hence, from Lemma 1 sy T e ) . S o e
. ;i:. (f(x ), - f(xu)) <. n(f(xl) - f(x2))
L]
-t . LV -~ . M
N i.e., ’0 3 ’ - ¢ &

dey




o

2 <

Thus

P

By an argument which *

S8

belongs to the cutg\which corresponds to r, .

h)

is completely similar, we can show that if % dees not ‘oelong to the qu't'

~ 5

which corresponds tg r., ,. then. % doTMelon to the cut.which gcorres-

)

B i !
ponds to ry . Thus the set of positive rationals less than r:L + is the

, same as the. set of pos:.t:.ve rat:.onals less than ’%: « TMence 1, =T, y

o oa N
S and the thebrem is pioved. _ - -, .

S V.

[

- . . A
~ Iy

Corollary. (cf. Exercise l-6.32; "If £f:R-R Xs strictly monotone, and -

if £ preserves equality %f differences, then f 1is a ’non-s-ingﬁlar_affine.
transformation, and hence f is isotone. ' .

‘.

#Proof. From the\tieorer;x, T preserves rat:.os of glfferences@j
‘ ) x-O\f:(x)-f(O)‘ ' \\

. R NG Rl 6 I (0) B : -

Let £(0) = p, and Tet £(1) - £(0) = q . Then, because f is strictly
monotone, q 7400 . Thus, A o

-

.
°

!m — N

o f(x) =qx +p;

i.e., - “ fix-gx+p, ‘ . a#0,

. 1 3
‘and theréfore f is affine and non-singular, Clearly f is onte,"hence f

_is isotone.

) z .

Comments: L4 o

1.. TheoregLZ -2.1 and its corollary, show that the non- singular af,fine
transformations of R are those isotone transformat;drrs which preserve -

T/ . equaglity of differences (andvhencé ratjos of diffene.nces) ERAE

.k

R

2. By comparison (cf. Exerc:.se 1-6.34) the sim:.laritz transformations of
. R are “those which reserve ratio%. : s ’ e N
, p ratioft C \

. 3. A similarity transfo\;Z;:.on is, of ﬁ.xrse, h non- singu.lar affine trans-

oa formation, and preserves ratios of d:.fferences as well as ratios. ,
Dbt k. .

o "
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: e /( ) =, . . o ) .
Id M ~
_ As a}urthe} example of the propertles of the real numbers, we give the )
’ promised proof for Exercise 1-6.33. is result will be used many times in
the subsequent discussion of‘/measure i‘unctlons, in relation to the matter of ’
Qhange of unit/change of sJeale , and in the determlnat:Lon of the structure )
) (as ratio sca es) of ,th sets of admissible length functions area functions :
x b b
y Volume functidns, etc. > N
N V‘ -, . - ! /
Theorem 2-2.2. - - . ) A Jc
. 2 + ooy ok . ?’1’ =
(a) A function, 'f (R™,+) —->‘R »*) ,¢is a homomorphism, if and —
N 1
( only if it is a positive s:.mllarlty ' - .) ’a
Every enaémorphlsmjf '(R s+) is an automorphism, ’ ‘ )
o The set of aitomorphisms of R+§+) is a group (under composition)
- - and this group is isomorphic to (R+;, )
a ;
PFoof . . . .o : : <3
. . - » Rt
. (a) In one direction the proof is trivial if £ is b positive " :’.
similarity 5 we leave to you the proof that f isla homon;orphi'.sm. !
T " We shall prove that if f 1is a homomorphism of .(R*,+), then f ° T
“ is order-preserv:.ng, and f 1is a positive similarilty. -
+ * ’ + .
.If x,y € R , x <y, then there exists z € R , such that
' Y x+z2 =y . Hence f(x) + £fz) = £(y) , and f(z) >0 , therefore -
£{x) < £(y) , and f is order preservinge (I.e., monotone 1ncre‘as:.ng.) (
. + o ~. . : R S A
For any. 3( €R i, and m a positive integer, ° ]
cfTmx) = £(X + X+ ... + x) - | v
X . P (m terms) .
i 7 ] : - N
' . = £(x) *+£(x) + ... + £(x) ' - .
st ) < (m terms) .
RO < % ~
= m.f(x) . .. Y s
: ‘ . » X Sox X ‘m -
. . . = 2y = < 1.
Hence < . f(}‘) £(m m) mf(=) 4 . v e .
‘ L] 2 - - -
M s l . ~ - ~
SN %
- 50" that, & ;;(-) == £f(x) .
Combix'ling these, results, we get C o
m m . .
. f(n x) = n\f(x) i '
* ' for every positive xzationdl “ambeis-.%' Thus,,if 9 1is rationel, and 4f, "
£f(1) =k >0, we have f£(q) = gf(1) = kq « : ‘ .
'51 ’ . P . - & 3
. . . .
P S . 65. : e
%.'EN/C € ) e A - .. ' ° . »
o~ - R .- iy 69 = ;,‘\L.,» . . R
2 - LR T S ] Far ‘ -
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i Y < ’:‘%\-' )
Now suppose that r is any positive real number,and let f(r) =

"r is ratignal, then we have shown gbove that ,t =kr . If’'r is not rational, '

we know (from trichotomy) that exactly one of (t =krst <kr,t > kr) holds.

. . . -
If t <kr , then %< r . Hence there exists a rational numbe? q with

A .

Tt:-< q<r . Since f preserves order, we have f(q) <f(r) . Buly g 1is

ratidnal, hence f(q) = kq <f(r) =t . But -;—.<.q ; 1..,'t <kq . Hence we
have a cosbradiction, and therefore t § kr . Similarly t $kr , so that

t = kr , and the proof that £ is a po'siti've similarity, is compiete. Rarts;
(v) and (¢) are left for you to prove: the )proofs~are quite ,str,aig‘htfo'rward(

Kl
” . -

Corollary. Every endomorphism of (R+,+) is a non-singular, homoger;eous

>
*

linear function. .

*

Proof'. H’omogeneity is.all that remains to be proved. We hawe s\hown'that
+ +
there/is a k,eDR su