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'Chapter 1

INTRODUCTION' ,

As its.title suggests, this is a text written especially'for those

junior hfgh'gchoO.3 teachers who wish to have more mathematical background

on number systems. Though,* naturally, the author has in mind those using4 4

SMOG Maten.ais for grades 7 and 8, he also is writing for the larger audience

of those'wpo are interested in teaching-youngsters arithmetic from a "modern"
point of view.

. ,

'What is this so-called "modern approach"? It is, in fact, as old as

the hills, and every outstanding teacher in his or her time had a modern

approach, from Sbcrates to Hopkins to the most outstanding teacher you
,evet- had. "Modern MathematiCS",has come to be associated in the minds of

many with words like: set, number systems to differ t bases, modular systems,. /

v.commutate. , inverse, etc. None of'these words new to mathematics; 6
course ma be "modern" without using'any,of ;.or ktcan use all of them

*Tv-.

without being "modern."-
-

.We have completed 'the circle to the question at the beginning of the
. , prevtpus paragraph. To most ofthe leaders of the moveMent for change, the

now overworked term seems to meanfundamentally a certain.point of view.. It

is -to' teach the student not only to manipulate but to know why and what for,

to'cuItivate the 'inquiring mind and the love of inquiry,-to develop the fac-

ulty of precise ,expression, to see and utilize relationshipi.

Why all this outcry for change? Some think it was due to Sputek, but

its beginntrikg antedated this achievement of Russia. It is that t'Otiye we
must change. Things are moving so rapidly that we must be able to use ma-,

chines, to be sure; bdt much more is needed--we must make neW ones, and this
requti-es a knowlerige.of-h6w

maChinesare,made, what they-can '0141., how one is
related to the other,. St is one of the paradoxes of the present age that in

. , ,

'a contracting
e

world, communicatiOn is fast becoming the prime problem; hence

we must develop efficient medhof dispensing and receiving information..
- This requires precisetechnical language.

it

1 t
0i
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Inject, the language, ideas and methoOs of,mathematics are more and
,

- 4 ,
mere ervad/ng the life of the .worl,d.. This partly due to the enlargement

of mathematicy itself; sach branches as lineA progftmming, queuing theory,

game thl6ory are infants in the mathematical world, &47d even such a branch as

topology is' cn4
7

a little past adolescence. 'There is much more to learn and

se little time.to learn it. BudTso the laerld is teaching toward mathematics

and mathematical thought for help in solving (as well as.creating) its prOb-
c,

lens. ,Though computing,achines rule all cur llves^these days, the use ofd

mathematics transcends thc 'computational and,.as machines take cve7;' the cal-
.-

culation, mathematics is freed ,fdr the realm of Ideas. For instance,.One,

controversy in theoretical physi.:s revolves aoundthe question: In certain
.

fields will increased knowledge enable L.;,' o.latedict, or are
F
certainThenom-

ena uhcredi_table and only a matter of chance? This harits parallel in

mathematics ih the discovIriy that there ale unprcvaLe theorems;_this does

not meanq,theorems whiCh have not been proved but ones which-sannetisCproven

true or faZse. In this case mat*matas has not provided the answer for the .

, .

physicist, but it'does seem clear that if, he does find his answer, it will be P

by means of mathematics. if:
a

As was stated above, the aim of this book is to help the teacher acquire`'

background for the material whi.ch is presented to the junior high school stu-

dent in the books ofthe School Mathematics Study Group and other books with

similar coverage; It i's, obvious that 'Iny teacher of any subject must, know
7,

more than he te§tches so that he will not be the slaw of the textbook nor

live in fear of his bright students. Hence we here deal with the development

,9f,the system of rational numbers beginning with the properties of the inte-

gers as we know them, why they are important; why we make certain definitions

in extending the set of integers to the rational numbers ar'd what are their

.consequences. Hand -in -hand go the graphical representation of.pumbers and
.

pairs of numbers, for interplay-,of geometry and numberis important to

both branches. ,Since the idea of equation is also fundamental to the'undel-

standing of various connectials, we include sometylingof tAis'subject. The,

,real number system) because of, complexity dealt with only very intui-

tively, and complex numberz.are relegated tolan,appendix. Most of all is

the attempt made to 4evel,op.a mathtmatical structure of nimbers based on
. .

reasonable axioms and developed along paphs painted out by intuition'an&

. made secure, by proof. The reader is toldhere we4are going and the reason
.

for the phe particular path taken as well as possible alternate paths. Too

often has dwma ruled'in mathematics; here we try to make'the point that the

only authoritpis reason. (and some experience) and that we are all humble

'Wore the shrine of learning
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. .

Any civilization dies when the youth widh merely to reserve what they
r

inherited from their fathers ar the new. We must t ach them what we

kn w,'but th.tt,is net enough. We must also teach them that they can extend

1 their own knowledge fax beyond where ve can lead. By letting them find some.

relationships that we know, we can hope -Let they will see some which we d'o '

not know. ;.f+ we can show them how discoveries are made, perhaps they can -
,

see the joy of discovery and so cultivate in themselves the power to make 61.5-
*...

.
coveries which are really their own. ,

It is somewhat in the spirit of the above, that this book is written'.
-V

By descli4ing why certain things seem important to h

csltivate in the tea er4he.art of picking out what
°'his general aims; by demmstrating why certain Rroce

im, the author hopes to

is important in view of
4k

sses Are as they are,

perhaps he oan bring, the teacher to the-point wbeTe ht can answer similar

questions without assistance; by pointing out score relationships, perhaps

he can showthe teacher. how to filed relationships t;.ot mea tiond here. The

readermight like to compare so.e of this i.ntztauction with Ctopters 1 through

4 of reference 1 in the Bibliography, d5
,

Ttere are two kin ds cf exorcises throughoutrthe boOk. Th?se labelled

"proSays" are usually e:,tensft)ns app'applications of the textual material,'

, and are definitely part of the development of the theory~ Complete answers

arc given in tone back of the book. The) second kind, labell.ed "exercises;"

are generally of a more routine nature., Partial..answers to some of these

/ ,v

311

/
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2.1

Chapter 2

NUMERATION
4

2.1 Introduction .

In'thiS chapter we=e primarily 'concerned with the way numbers are and
IAA ,

may be written. A little of the development of number sense and

symbols is included to stress the idea that there are many ways of writing ar.
-

number-and also that various tases .,were and still 1"; used. This leads natu-

rally into discussion Of humeral-systems to different bases and some of the

consequences of the various notations. It is impossible twgo very farin

this direction without using the distributive property, a(b-+ c) ab + ac,A 4

_Of numbers, as well as -sOme of the other properties, .tand for th4 reason the

teacher may find it better to change the order in her classroom. But the -

-
.

author
.

feels that this fundamental property is familiar tO his readers and
. .

. that it is-more important to keep the, historical bag ground close to the dif-
.

-,ferent'numeral systems. Also it is important to stress that there, are ;Ogle
1

15roperties which stem froMIthe notation in which the number happens to be

written and others which are properties of the numbers themselves. By this

Means we can separate these two sets of properties in Chapter's II and III,

though` in Chapters iv and VI both types of properties are dealt with.

on/we come face to face with thedistiriction between "numeral," the

notation, and " number", the abstract idea., This distinction can certainly

be overemPhasized, but it iI important to
3-1

have in mind- . '1Copsider
;.A.

. . 18
three ,

-

3
t

, 6 - 3 1 HT .
, . , ..5%,..

.These are ell different ways of writing the numbei- three. They are' certainly

not the same; but they represent the same'numher. This distinction is per-
.

haps most., strikingly exhibited in the dif4erence.between "numeral. systems"

., (or "numeration") and "numbr systems." lhhatever-the words used, there tire
. . '

certainly two kinds: In ,this chapter is, a. discussion 0 numeral syktrmS to
. .

various bases. Thesedte just different Ilys of writing the set of integers;
. .

, .

I 7

the numbers are the same for all.
,

,But 4so theike are,different,numbe'r systems.
0

set of real numbers is different frOm the se, of rational numbers. In

.

5 9
-



; V a 1. if a nu;:scr tystem which has .only. twelve
rd r in it 1:;; ; ij 11.-1 sore 1:E.3-pc,A.--, quite different' from our familiar

Tnc; stis- H t co n,n'oc,r and nugicral bodomen important and
ni 1.13, (,. i's,g rit fr,aetit-tls. We quite frequently use the

rcnti is c.utsici-e of -.athematic's-, and there is no
thi- pr,vi ied ti; s_ we 1-:oo7.; difl'e.s.incrt' in qach particular situa.

3 -,;(; not, :. for sinstanct;,, -tlik re art two was to answer 1,1;,
: go, tioE. ackc yo-1?". You -!a; i nar-fe, or you ran tell sorictiing
ab. ,H r 35 whidh the, q;-zeu%-tion.::,ans'.. So the sugges.

of at`l,o_r I ml f 'I; teedher oarcfully the disc tfor between,
failure to do so wouni 'reat( 2onfus

t N,"

Fur ic- to t oti n cs ti of ne --sc:'?desponden;:"E".

i d qd.i al cnc, t.11- ide' l su.'1- ,-crreo,pcndexie -rust
be -;c :, no :cunt" the ,pcoplc Inn prim,itive vi.,11age, there was

. ,-7,1?.del,1--:tc-11,,- a d,3t of
-

'ma, 1-1..-; a no;tol. in ,a ::.-3ti..1-: or sk'coci others mark, for
,

r- a '1. rcr-.;cn.. To easr, war 3.:- w:,u&.-orreo,tond a person and only one _Person:. ,

,
. .0.1-- n);,..1-locr .o f 9.,sS'l 3 WC*-11 'I'l He thco' 3'1." e as the nunbef prstons., Each, sr.e.i-le.

' d.;
of in d wey - (-Ind of 'rap of a person: .1.'t re;i2;lot, not hav,e ahy, of his, a

....1-arectcristi :-. (J on,-;-,,' ,d,-.1t, fot, thin), but it -;.ould nere.,ly stand for the
p' r.,,or. in thc. ":..r.t. P. :t," I y wr Tisn-1 ; t convcnient ever. ii*dfihif in counting

't.1--:"- angel t- sion, for, inotanse, fo (ce p. tra.-_1-, by making a marl-, for
ce '' 'vote, ,Shcuflo ';,(. usually introi-,"c, the slight refinement of grouping the ,

snaps Hy five s .0 o , i 2,..
The next stop aftr she tally narko would te , h vc a symbol,' different ..

, . ... ) ,from the tally mar: to rep-rcscnt a spc2ificd numb-er of stlech- marks. The most o,
an -iens rt;Jordo we h,.;-.-r- of s,-,h a procedure are of the Egyptigis ilho, as far
on-k as "- 00 B. Ct ,-oulf, -:,:pres.s' nuMb, rs up to 'rain ions. Their symbols were;/

Our rsd-^, 1-3.i Egyptian n symbol Objefr.-\, represented
,

I st- o. e or vertical staffi
10 n- 4 , *. -heel bone

4

. 0

100 9 , ,01.1(i rope or scroll .-.r
1000' . g lotus flower

. 10,000 (P .pointed finger
100,000 -Ir burbot fisli (or polliwog).

. . q
1,0Q0,00.0 ,f. astonished ndn . f

13,
: .



So.when they, wrote 'a number, they gst repeated the apprObriate-s- tols
i -the required number of times, and 4n no case,' exdept--for-milli-ons, Wou3.40...k

e
1:e-necegsar,-to repeat tAsymbol mcre'than nine times. 1Far,instance, 3,002,3'45

could

1-4 fit: 9p 9 ni)9 !ill(

The Greeks and HcbreWes, u d their re.spedtive alphabets fdr their. nuternls;

-that is, each of the numbers from bne thrcugh.nine, the tens through ninExy,

the h9ndredf.3.tnrozgh nine hundred had a lettfr of the alnha'6:et..associated

th it. :Ile Hebrews dsecl.the same symbol for 1000 asifor 1, but the Greeks
0

made tre distincticn by use of an extra symbol like the solidus: / . But

for neither there. any sense of p1..a.e value, It -seemos. '1.a.ther remarkable

ti-at for all theinspremacy ,tn g-ecmetry, the 'Greeks apparently,did not pro-.

gr,_cs far in a noWiLn for Au-ive-rs. However, certain fact about the nom-

thensel-:es were familfax tc the-1. (Note ,cdr discussion in.Qhapter IV of

,the'eucliAen algorithm and the nraf which was known in Xualidls time of the--

existence of ah'infihitude of prime numbrs.)

The 'Romannumf,'ols are used enough today so that they sf,,11 familiar:

OurAltmera],

Roman 'humeral

1 5. 10

mgV x

50- 100 500 '1000

C

' ,Again they indicated, -, y- writing the,lappropriate Symbols a suf-

fieient number o times nd in their case no symbol except M need be written .

1

mcre.thari four time . They introduced two modifications; first they wrote t-

their syMhols go that one symbol would be to the left of another symbol if'
. .

the first represented'a larger number and the two -a.rounts were to be added,
.)

while if the-syllbol to xhe left ia one (Z.", X, C and,represqnts a smaller
_

number, then it would be subtracted. For example, VI means six and IV Twills

four; similarly CD would /4preseRt .and sik hundred, and

is fbr&y while LX is sixty.,
But DM, Lc, vx wopld not be written because simpler symbAs for them

would be D,.1, and V, respectively; similarly IIV would not'appear. It is

C'D,rather strange that the Roman's progress 'ed so little,beond the Egyptians in

,the rePrepentation opmipers,.
04

The Babylonians about 2000, B.C. seemtohave

duce place value, Their symbol for 1 was a stylus

-a combination. of two,' like this . The numbeN

beL the first tointno-,

stroke 9 , and for ten-

up thrOugh 59 were repre:

tented by repeating the reqpired number of times-thele two symbols. For .

instance, their representeition of our 34 was 41 1TV , And their wres91.-

tation of 59 was

f

44( v7v So.far there was
7

MP
nothing really new --

. 7 1 .

.1

7 -

-71

0



2.2

:t11,eir systcr;. But for numberq greater than 59. they used p4tce

, wi:ich was s)omehing radically new,. - .For instance, 991" 79 would represent

3 x sixty, 2 or- l82 in our notation. Also .i7177f 9917 97, would represent
,*

-5x4( s-1,:xty )
2

+ x ( sixty') + 2

~`This use_ o: position was, a big, step forward, because with juau.t;neir twb

synbils 'theywould be able ti represent' a number of au, size. Their Chief'

as that they did not have a symbol for zerovand hence it would be
,difficult to tell whether rle -1 2 or 1 x (sixty) + one or x (sixty) + 1.

*4 o

4

L

^

^-1

a

"s.

%2230VA*

tt)

191to

Grenessor held
of this sign fh
is patron of the

lni 1 S

9.11.1cing Griph

s Xei only sanable clement
ante glyph of the deity oho
ere Combo) m which the

rhanal date falls

9 Jufmnt
(9-X 144,000 Jays
= t,z96,000 dass)

1% kstunt
'07 X 4200 Jay,
= 11:400 .1.00

e-

O (#01 O sonalc
(o X 36o clays (o X zo dais

= o Jays) °slays)

A

6 kin, 1 1, Ahau (Jay reach,: by

(o X ot day counting (otosard
total of Jays shorn 'Start

oilays)
, ihfpoint of Maya Era)

Glyph`G9
Name - glyph of .the deity
who is,patron of the Ninth Glyph F

... Day in the nineJay series Meaning unknown
s' <The Nine--God* of the ' "

- Lower World)
It

Glyphs E and D , Glyph C.
Glyphs denoting the moon' Glyph denoting position
age of the Initial Seats, of current lunar month in

4 terminal date, hire "new lunar half-year period, here
- moon" the 2.1 positio.ri

..... ..
440

Glyph X3 Gjyph B yr
Meaning unknowns Meaning unknown

.

& -
V) Qlyph A9 :' IS Cumhu (month *reached
2

Current lunar month, here by counting forward Acne
tag days in length. halt total of days from starting,
glyph othe Supplementary point of Maya Era). Litt

Scrip glyph 'of the initial Series

Examples of an Initial and a Supploventary Series: cast side of Stela F.,
Quirigua.

r
8 1 0
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I

- -TheMayans inTentral-Arne rita in the third or fourth century B.C. had
e

I

both a place notation and a symbol,for zero. They had fundamentally three

symbols: one to four dots indicating units, a horizontalLine* indicating
e

. r. ,

!Wive, and a shell' which represented zero. They wrote their,numrals vefti-
.

.
caliY."-Thlis;-=-=7-W-Oald retfesentl.0-(.- 3 x 5 -i- 4).- Our number_twenty,'

. . -wuld4be represented -by.. .
.

. .
.

They had names and symbols (called "glypIts") corresponding to our ten,

hundred, thousand, etc., except that theirs were for pokers of twenty (with

one dbebtion noted .below.) instead of powers of ten. Thus, with the excen-
44

ti.on noted below their names ',Jere:

3
20

4Par number '1 20 292 20 205

\
206 .207 20

8 .\

'Mayan name kin uinal tun katun baktun pictun, calabtun kinchiltun alautun

1.4'
, 4 , IP

At least this was the System except when their reckoning had to 'do with the' ?
.. ,

.calendar. For the calendar one tan was eighteen urinals -instead of twenty; '
.

v.

fro^^ that point on it continued as above; that ts, one katun was twenty tuns,,
..4

one bakta9, twenty katums, ands,c 'forth. Withthis a:Aeration, heir tun is

equi,yalent to cur 3604 4nich'is close to the number of days In the year. For
.

,

, example; consider tpe symbol: ?
/.

.. . . ..-

5

AI

411?
N

If this had to do,with the calendar, it,would be:

p
0 0 .20 + 10(20 ;le) 3(20 ,18 20) -1-.1m).% la 20. 20

3600 + 21.',600 1.4;000 = 169,200

'If it had nothing to do with the calendar, it would_be;

N. si '004 0' 20 + 202 + 3

o t r o + 000- -F-1. 05;130(5'2' Vi3,-t

Thusthe.Mayans antedated by about a thousand years the Hindu introduc-

tion 9g'place value and a symbol for zero. The

ghd4r and the movements of some of,the heavenly

In 'fact, in thel sixt i or seventh century of the

Mayan's knowledge of the,:cal-

bodies was remarkably accurate.

Christian era,. the ancient

Mayan astronomer pries,ts ateCopafi had a calendar slightly more
.

*Sometimes the lines appeax vertically.

40,
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- ?

our Gregorian leap year correction. Our means of-Sorrect(on i' to have an-

additional day every four years (leap years) ev.eptfor es-which are

not multiples/of 4; that'is, 1700, 1800, 1200 were not leap ye-rs but 2000

'w1:11 be. This gives a yeae of'365.2425 days. ,The c mparative igures are:.
v .

Modern astronou 65.24220

, Julian year 305:2500

-, .....1,- \
...

Present Gregorian yar -,3;5.2425

,.
' Mayan year :;65.2420 '

a

wd

The Mayan year had 18 months of 20 days ea and one month of 5 (6 (S) days

Oat tne ena.

In44.93") the National Geographic Soliety - Smithsonian fisti Ution dis-
/

4overe_d-r Tabas :o,'Mexico- (near Yucatan), remains'of the lost 0 rn e civili-

zation which'flo.rispedfrcm 1500 to 800 B.C. nrec'eing the Azt c. Among

theseremains Was a stone slab bearing the oldestdate found in he New World,

cbri;esponding tc November 4, 2)1 B.C. The numerals on this saa: were -Chose-
I ' 1

of the Mayans, iffdicating that they were not the firs't to useth t-r sYstem

gf!numffration.. 4.)t
1411-

4 .

The Hindu 3y.is which we use today roved from India to Arabia near the---

eighth cery and did not arrive n Spain antil the tenth century. Here ,we

have the familiar symbols _or tfle rImbers from one -through nine, the symbol

for,jero, and the place value which seems tc have begun with the Babylonians.

'4
4 .

I -

The decimal system

We have Seen that the Babylonian, Mayaniand'Araoic systems- ail had sym-

bols,Wnich had different meanings ac.00rd'ing to their place in the numeral.,

They deme, oe ca ea-the the place. For the Baby-

Ionians, powers a ,,5 were involved; for the Mayys, powers Of 20;%and for

us, ppwers of ten. That is, for Ale-Babylonians, if 'a , b , c were groups

ofsTrbols representing numbers between 1., and 59, a ,.b , c would mean_

.4`

For the Mayans

b

Cr , ,

. .

here again a, b,, 2 are groups of symbols for numbers between 1and 19 means

c + b (twenty). : a-(twenty) (if 'a calendar'calcjlation is not involved).

2

emu-



2.4
4

FOr our notation we can write t12..g symbols close'together without spac-
ing since only a single symbol is connected with each power of ten. Thus
abc (not a, produQt) would mean a x 102 + b x 10 + c

The number which appears to the various pcniers is called "the base of
the numeral system." Thus Babylonians used a base of sixty; the Mayans,

11/4iwi,th one modification, a base of twenty; and we...use one of t'on.

\ the
)mal

We shall consider other systems,. in the sections following, but for us
most important one_^. is ene system to the base ten 'which we call the deci-
system.. We. know

.
(In the iecoki'd the eauivalents'n'Srtened nota ion where the small
raised numbtr, called the exponent, indicates how many times 10 occurs in

14.. _the ..pr.poi:sct..For instance, 10`. = 20,000 = 10 10. .10 10 . ) In Ittie
decirrial Syster,i it is, very easy to.multiply by 7.6:-ST.n.515o e we do it ,the icing
a ay, With the num.ber aocve to Gee what is going on.

that 12;05 means

1 ,10000 2 '1.0001+ 3 1.00 + 0

1 10 + 2 103 + 3 d1.0- +'0".

1.0 +

10 + 5

(12305) 10 = (1 10 + 2 103 + 3 102 + 0 10 + 5) 10.

OBy
virtue of the fact that , = (10 110) ...I =,10' etc.. Qe have,

2

using the distributive -property ( see. Chapter III), .'
(12305) 10 =,.1 105 + 2 104 + 3 103 + 0 102 -L5 10 3050 -

,
y -r

, So- we multi.ply by ten by, adjoining a zero at theright side of the.num-
ber.' To multipil- by 100 we would adjoin another zero, an'd so forth. It is
eaually..easy, to divide by 10, but we leave that to a later chapter.

2.4-Numeral systems,to other bases
If we were tc se our schemeof

the bade 'sixty, we would, barb to
0 thr6ugh 59, which would of course bevery

writing numbers for a numeral s
have a skmit 1 for eactfof the numbers from

we would need ten more symbols than we now h

of sMore mpact, but tir increased number
.. ha a larger multipliCation' table.to, learn.

, rdifferent 'humeral' .sysiems ) we -shall here corA.--,--,..-4---......, .,..- ,--
, -4-41"----7'rfe-ren ones. But '.-t.he4fo, cher is yned tha

-'/'44f;t1 0.,,,t,,,t;"0,4t Oi.sie the stuc*rits Prof ',2i5nc

but m.re-17-471Tru-S-cit,aont,rast ,i7..hal.:
41.- , , --'

,,---''r' : --. '::*-- ki '3 ,' h

. s'.-'

-4., e ,, +- 1' ""

,.. . 7"' ' ' '

.' 'd

. . .-

+ 4

Y

wkward.' Even. fbr 14; ba'se twenty
ye. This would make our numerals,.
bols. would mewl that we wotild,
To' show ,what may Happen w,ith

ider inAe_detail three dif-
4c.-Purpose of such, consider,a-

.
411 Computation in other,.pases
1.1y:goes on wher7 we perform the

,.f
11,

143

,

4
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familiar manipulations inbur decimal system. Hence here is one place where

the-teacher should not try to cultivate in the students any great adeptness 1

in the manipulations; of the fundamental processes in numeral,sy;tems,pther., ,x

than the decimal one. Fox..instance, the properties of theimItiiplication' 4,

table for the numeral system to the base twelve in the next section are in-

terestinges well as their use in manipulations, but certainly there is no

use in memorizing the table or drilling for rapidity of calculation. To sub-
.

. stitute mechanics in the duodecimal system for that in the decimal system

would be fruAT6s.

JO"

42.5 The duodecimal system

This is the system to the base twelve. Her we need two new symbolst, °

and we might as iwell use the corresponding lettes': using the symb61 t

xSLn
.,..trxten and e for, eleven. Thus' bye have the symbols:,

0, 1, 2, 3, 4, 5,4, 7, 0, 9, t, e. .
.

..,

\
Thus, e230t means .

.

, ,

4^-eleven (twelve)
.4

+ 2ktwekve)3 + 3(twelye2tti + 0(twelve) tin

vs

which, in the decimal system, is: . .
....

. -- t-
. .

11( 12 ) + 2(1.2) ±'3(12)2 + 0( 12) + 10,

. 228;096 + 432 + 10 = 23 ,994 .

Firkt consider theprocess-of addition, for instance, for the sum

A+ t in;the duodeciiZ3. system. One-method for comphing this woullbe to
. V t

note'tbatnine plus ten indlthe decimal.system is nineteen which in turn, is
i - ,

seven more than twelve. Thus in the duodecimal system 9 + t = 17 . This

is a process df converting to the - decimal system,,performing the addition, -,

and converting back.. A second methOd is perhaps z1ittle more efficient,

especially if you are used to using it for the decimal system. For this we '

notice that 9 lacks 3 of twelve, and we think 9 + t = 9 + (t 3)

twelve + 17. .
t

The,process ofedding a column of numerals in the duodecimallsystem is

the same as for the Eecimal syltem. For instance, for.the.sum 571
41 . e , 8ei.

c-
1

.... 23 .

..

0
---r--.-*,..,,.. _ le 1!:

213
4

o ,

..

..

we add= ,the right column add the left, and keeping our',eclumns in line, add ,

the results. ',Written out th1s would be, . t,'
, 1

+I ' i

12'

-

.9
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us?ng the
,

desOription of tese properties see Chapter,III,) Then (5 + 8 + t) (twelve
.. (le) (twelve = (twelve)

2-
+,e(twelve)., So our sumia equal to.-

.

A\

8 + t9 , 5(twelve) + 7 + 8(twelve) + e + t (twelve) + 9

. .4- 8 t t) (twelve) + (7 +. e.-g 9)

tat;vc, associ'at'ive, and distrpiltive.properti.:es.... (For 4

2.5

. % °'
.,, ',

" ; ,,

Use tITe ..stributive -orSPerty again on the two middle terms, and we haveI . - ..
o-

' J.
,

(twelve)2 + llitgelve) + 3 = 2(twelie)2 * (twelve) + 3

whi is written 2f7. When we write it out this way), twoXhines are accom-

pl shed: we see what the process is, and we appreciate more, perhaps, how

simply the mechaLcal process gives us sour result.",

When it cones to mui.,' ficationl'itie could again use the "convert, mu.1-

.tiply, and cqpvert baCk"tech que,

\

but here it is probably simpler to con-

struct
I.

struct and ,se a multiplidation tab e.
' ) , 1 ,-

So, the multiplicatiOn
V°,

tabl:e f the'diiodecimal system is :'
.,f.

..

,
.

. z...-...,

, ,2
+,e(twelve) + 2(tvelk,d) + 3

2 3 L 5

2 3 4 5

4 6' I 8

3 3 6 9 10 13

4 4 8, lo. 14 18

5 5 t 13 18 21

-9* t

12 14 16 018 lt

9 20 23 26 29

4 28 30 ,;34

26 , 34 39 14 47

38

6 lo 16 20 26 jb 36 I -46 56

7 7' 12 19 .24 2e 36 41, 53 5t 65.

8 8 14 20' 28 34 t40 48 X54. 60 68 '74

9 9 16 23 30 39 46. 53 go 69 76 83

; \_

t i8 21 34 \5o 5t- 68 76 84 92'

e lt .29 38 471 56 65 7 83. 92 t),

? r
As a matter of fact, the constrIt'ion of

structive. One can follow' the pattltn of

-of the rows,an easier pattern emellges.

in the multi** of 3, 4, 6, 8; 9, t,

o-kijrN.spect to the iagbnal from upper 1

a kind of symmetry E:4- the other diagonal

the multiplication table is/in-.

successive additi!on, Sut for some '
t

atch.the succession of last; digits

e. Notice the symmetry -of the table

dft to lover right. There is even

3:3 2 4-)

k'

'1 A

I it



25

f -

Using this table, let us find mechanically first of all the value of
' .

the following product in the duodecimal,systcm, thatis, using by analogy

for this :System the same process which we know so well in the decimal system.

f 1

7t6' ' , - .
;' ' e2 .

1 31910
.

. ,

7 29756 1

."
- .

. 7 3 ell; Q
. ,

COnsider in,detail the process of Multiplying -.e by 7-C. From the table

d e 6 = 56 , and hence we write the 6 and "carry tht,5"; that is, .S.dd 5 to

the next product. Thus we have next

5 + t e = 5 + 9;2 = 97

Then -we-write 7 an add 9 to the net product. Thus we haveb9 + 7 e

2 + 65, using' the table. Here. 9 4 g: = twelve + 2 - 12 , and thus
;/'

-

1 '+65-= 60. 1:6 ; 1. 12 = 72k .

To see what is iSAck Qf the mechanical process. we .can aritte it as
0

fol ()Ws(

(7t6) e2 = e(twelve) C7. 6504 2 .:(7t6) =

.e (7t6) (twelve,) + 2 (7i6) ,

r
using the distributive property 'arid the associative and, commutative properties

. f
. .

,

,of multiplication. , Then

e (7t6) = e sa :7(,velve)2 +-e t(twelve). + e 6 :,-

,

65(twelve)
2
+ 92k twelve) + 56

= [6( tweir)., + 51 (twelve)2 + [9.0twelve) -0 2] ( twelve) + 5(twelve) +, 6

6(twelve)3 + (5 + (twelve)2 + (2 + 5) (twel.q.e) + 6

'Then 5 + 9 = 12, and so

2)' (twelve)2 = 12 (twelve) 2 = (twelve)' + 2( twelve) 2 :

Thus finallr'w,e have f

e ...7i6 = ( 6 + 1) (tweive)3 .+ 2 (twelve) 2 +.7 ., (twelve) + 6 = 7276 . ,

.?
.

-,. . ..,. . L

4 Writing it out this Way soen, becomes "rather boring, but it does again

' impress us with the advantages of the mechanical system. ,
,

. ' , ,

t NOW let uszcheck the result by converting into and out of- the decimal

system. First

7t6° = 7 ( twelve)
2

+ 't ( twelve) 6 ,.

c

l4
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which in the decimal sYSteM, .is

7 111.4 +10. 12 + 1134

e2 e, (twelve) + 2 ,

'7'. je
e

2.5

which in the decimal system is 134. Then the product is 151;956.
We could complete the check by converting 7360 into the decimal system'
to illustrate the conversion in the othel direction, we elect to con-

vert 151,956 into the duodecimal system. Here we need to write this number
, 1

,in the form:, ,

*' (t.elve) 3 + * ('twelve)2 + * (twelve) + .
where the stars stand for, unknown numerals from 0 to e, inclu
have to begin with a higher power of 'twelve.

(fwelve) n in the decimal, system
, ,

,
The fifth power wouVi be in the neighborho '6 of 240,000; which is too large.4(4

The highest. multiple .of 20,76 less than 11,95 "6 is 7, and 'we have

151956r 77-, (207 6) + 6804.

ive. We may

Let is form a ittle table:

*

6,

3 ' 7 7 1- '

1? 144 1728. 207364' c,

The highest multiple of 728 less-than 6 04 i5 3, and ,we have
-

68o4' = 3 1728 + 1620,
Also 1620 = 11(144),,76,3'6, where

4 -36 . 3 j 12'.
...- ..-'`., .

Comb.inirig these -result's, we have. - _.a. \ 4
3156,492 =-7(twe-Ive) + 3(twelve + e(twelve)2 +b(tw

I . 7,3e30 in the duodeci 1 System. 1. ,

1,e
This checks with our direct,compq, n.

Po

I,

t a. a

There is another method,of con e sfiffn which is simpler mechanically
but is' a little harder to justify. Fiirst we show the computation, which
consists' in a, sequence of divisions by twelve, and the recording of the quo-
tients and ,remainders..

4

4

15

."L-' 6.4
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.....-s .., . ....A
,,,...,-- -.:_ . 4,', 0 7 .;,.....

....

.
Hence 151,956 in,the decim

'

'system is equivalent tol3e30 in the duo- '

,
- %*

decimal system. Each line is tained from the previous one by dividing by
--.

.A.

twell're.
a

. a '''.

a
..

Why does this. work? To explatp this.;'w iook at a more general

,...

. ,
.

,1

- 4

.. o
.

Quotients Remainders
, .

151,956 .

12663 0
4 .

''1,055 : 3

87
. e

7 3 '

/ .3 ' .2 /

N +.bktwelve) + cktwelve) + dIswelve) + f .

7Z. 1 7 jf =N `iS divided by twelve, the quotient is' °

N' = a(twel;;)? + b(twelve)2 + cjiWelve)_+ d

with the remainder f . So the first remainder is the 14st digit in the

numeral in.the duodecimal system. Next d is the remainder when-Nt 'is di-
',

,I.O.ded by twelve arid the quotient iFr
.

a(twelve)
2 b(twelve) + c .

.

So-the process continues. ' "
.

. ,
.

The usual process for division could be carried out also,in this system,
,

..

but it seems ...carcely worth the effort. Thee seems to be no historical
.

.. .

record of 4 race using consistently the duodeciral 'syitem,"though.it.appears
. ..

. , ,
ofteriin ourowp civIltzation: there are -t_Ii7: inches in a foot;, eggs are

sold by the dozen; stud in our calendar-there are twelve months 9i114,the SreArT .1

Twelve is -much more satisfactory/ in these Cases, since it is divisible evenly

bye-3,
4, 6, whereas*10 is idivisiblq only by 2 and.5 beside itself and 1:-

But the advahtages of a change ao not,seem worth the trouble to most people,

rand the Duodecimal Society does not mgke much prOgress iedbnverting the

world.

. . '
2.6 The numeral gvstem to the baseNfive. (The.reader map prefer to .omit i

--- ----+-- --1' .
i ,

. C
this section.)

Much simpler than the duodecimal system is that to the base five. .Here

4
,we heve only five symbols, and tlie(illtiplication table is much simpler than

- 6,0

2 3

I .
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our own. In fact it would not be much of an effort to memorize, if it were
worth doing, which it is not.- 'But here it is:

R1 2 3 '4 .

s

-

It-.

1

2

3

1 2

2 4

3 11

4 l3

3

11

-14-

22

4

13

22

31

Here we .illustrate the process of multiplication by an example. The
basis for the prOceSS, ,using the various properties of the mber system,
is the same as for the duodecimal system, or indeed any 1 thel of this type.,- c

. .

,, .

. 4

.12

423 "

^ 11131

To illustrate. the process.of conversion in.both directions, we can
. the process as follows:

2 ''
, 423 F 4(five) 2(five) + 3 = 113 in the decimal system

12 = l(fi've) 2 7 in the decimal system .
o

The product in the; decirCal system' is %.701. 'To find what this number is. in .

the system to the base five, we use the shortendd form illustrated aboVe

for the duodecimal system:

eck

Quotient

71.1

158

, t 6 .

0

divide by 5 andiwrite th

divide tOt . by 5, the quqtient is 158 and
- 5.

158 by 5, the quotient is 51 .and the rem

the numeral system to the base five.*

Remainder

1

1 ,

1"1

1

I

...quolient And remainder. This if we

the remainder is 1; if we divide
.

alnder;,,3, etc: 191' = '11131 in
ye

... ,-, .

atically of the numeral system to the

w this tendency and the Mayans had

'There .see= to be little use, system

base five, 'though the Roman -numerals sho

syMboi for The five also appears in, the abacus.

17 4';',
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.7 The numeral system to the base two

The simprest of the numeral systems todiferent baSes is that to the

base two. Here the addition and multiplication tables are about as simple

as could be imagihed. Here they are:

+ 0 1

0 0 1

1 1 10

Addition becomes very simple:

x 0 1

0 0 0

1 0 1

.t

For the right column we have 1 + 1 = 16 and 10 +.1 = 11. --Simila4y3 for the'
, \ ';

other columns. Multiplication is also easy: (

10 1

) 100

The:conve'rsions are, as follows:

,71

,
1011 = 1(two)

,t3
+ 1(two) + 1 = 11 in the decimal system

1101 = 1(t0o)3 # 1(two)2 + 1 = 13 in the decimal system. . s'

The product. is 143. convert this to the ,base two, have by "s-G?eesdive

divisiong by two the following:

I

Quotient. HeMindflr'

143 '

71

35 -

17 1
.

2

.

1

.0,

0

Cr_

1

-- 7
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Thus' writing the numbers from left) to right Instead 'of ,fi.om the bottozil'up,

we hays4: 10601111 . , .

. 1

There are a number of applications of the
.

numeral system tc the base

: two. Fundamentally, the uses of t is system in coMpiltatidn IA that there are

only two symbols used an1 they can be made to correspond to the two positions
)

of an electri switch. Thus number could be represented by closed or open

,switches a,22ording- to the occurrence of a one or a zerp in corresponding IN .

p.l.'aes in its binary lepresen..tation. It is forthis reason ,that 'the binary-"

..systbm' lies at the basis of the computing machine. , N,

. 4 We eshOw two applications of a puzzle nature. The first is-
i
the so-

Ei.11ed Rupsian peasant method of multiplication. W, .ill ustrate it. for fit/t1- -
. /-
frig the progrict of 573 and 25., In the left column multiply each time by

.',
two and in4 right we divide by two, discareir-ii emainders: , \

d .
34,:. .

. 573 '.
- -i;k ,.t.

:".. .,

1146
a 1- 2292*

:t-°2
4584

12

>,)"<" ", o _

.. ' '' 9168 1*
,'

.,

To get the pr oduA, we add the numbers on the 1eft4 corresponding to 'he

stair* ( that is, ode) ntgers on the right, that is 573 + 4584 + 9168 =

14,0325. The reason for this is seen if we add two columns - -on the right

the remainders and on the leftrthe multiples:

1 573 '25 1

2 1146 12 0

4 2292 6: 0

'8. 4584' 3 1

16 9168 1 1.
,

The right column gives the digits in the representation of 25 in the binary. v,
,,,

systeM. That is, 25 is 11001 .in the binary system; in other' words'

. 25 = 1 + 0 2 4- 0 -4 + 1 .f 8+:1 16, .

. ,A.

, .

C,

c.

So the'product of 25 by 573 is

,
. (1 +0 2 +0 4 +1 8 + 1 ,. 16) 573 .

')1 . 573 + 8 ..573 + 16 573 . 573 + 4584,4, 9168 =1:4;325 ...
.

_

41L secCnd application is. in the construction bf a set of cards for a

trick. Here is the set of'numbers on each or them or the determination of-
.

,
.

r- .
f.numbers from 1 through 15. .,.-

.

A '
= 1==

1
0: (34

A=4-tdit)

-.

-

,
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3. 5 7

9 11 13 f5

'2 3 . 6 7

10 11 14 15

14! 5 6 7

1 13 14 15

8 9 10 1L

12''13 14' 15

1. . The trick is this. You ask someone to select a number from 1 to 15, inclu-

sive, and then pick out the cards on Which this number lies. You then add

the first nul6ers on the cards chosen spa recover the number which was

thought of. The reason for the Success of this trick,A,that on the first

card occur the numbers whose. last digit in the'binarypstem Is 1, that is,

tdd numbers. On the second card are the numbers whose next to the last

digit in the binary system;is 1. The third card contains those whose third

digit counting from the right is 1, and the rourth Card, those whOse fourth
r

digit counting from the right is 1. Thus, for instance, if the number is 13,

it representation in,the,binary:system is 1101 which corresponds to 13

f' d on al1401,cards except the second. That is, 1; = 1 + 0 2.--+ 1 4 +

1 - 8 = 1 " + 8 .

'Another interesting applicatiOnis to the game of Nim, thich,-May be

found in various references.

.1 gL

,A

Exercises

1. "Four score and seve n years ago" indicates a numeral system to what

base? "Find evidences in our civilization of use c4 the following °

2.

r

bases: .five, twelve, one hundred.

Arrange the following in order,of-size:

. ) 34, 43, 27, 7
2

' i-Y-A, 1, V PV t.- ' ' ...- ,4/ %%3, ',.'''' t,,... , A... (.., > 4 +-,, J ;"1",f ' k,
3. Perform the folloingealculations in the numeral system to the ase

,.e,'..- ,

twelve and checkk,yoil result:

a) -eee 35 \ lY---tt + ele + 999

o
*

ek ..ipee ee

. Writeqhe multiOication table Of the numbers from 1 to 7. in the

numeral system tb the base eight.

5. In the numeral ystem to the base two, perform the following4palcula-
-.

tions and check your results:

a. 11111 1111 , . ab.F 1010101 10101
1 A 1,

IT u --
111

(In the last tyo note that in this system, .1 means one-half, ;01 one-
..

fourth, etc.)

2027
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6. Can you draw any general conclusions from the examples in the previous

exercise?

Write in the numeral system to the-base seven the numeral for six dozen.,
0

What numeral systems do yOu use in the solution'to this, p blem?

8. Is 11 in the numeral system to the base:seven divisible by two or not?

How would, you test a number written in the:numeral system to the base

seven for divisibility by two?.

Problems

1. Construct e set of five cards which can be used in the trick above to

determineany number from 1 through 31.

. 2 An object is weighed by a balance on one 'side of which the object is laid

and on the other are put certain specified weights. What weights would

you use as a minimum set to weigh all objects of a' whole number of ounces

from 1 to 15, inclusive?

3. In the markets of Guatemala and other, Central American countries, to

weigh out the corn and other commodities there is a little kind of

brass 21.110 holding.nestedyqghts The innermost one-half an

ounce, approximately; this With the first cup weighs one ounce; the
0

second cup weighs the same as the first two weights together, that is,

onebUnce; the third weighs the, same as til.e first.three, and so on. If

thele are five cups in addit'on to the innermost weight, what amounts

can be weighed on a balance with this series of weights?

References
-- . .

(The underlined numbers refer to the Bibliography at the back of tire

. , book) *. .

,

1 (Chapter 5), 2, 5.(Chapters 1 and 2), 8 (Chapter 3), 18, 19, 20

(Chapter 1), and 22 (Chapter. 4).

21

28
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3.1 Introduction

The set of numbers

t

Chapter 3-

WHOLE NUMBERS

t

_.

1, 2, 3, 4, ...

is called tr.e set of natural numbers or of counting numbers. We shall usu-

ally use the latter term. This set with zero added we call the set of whole

numbers. The reader. should be warned, that this terminology is not :universal.

0 In this chapterwe shall be concerned with properties of these numbers

expressed in'the decimal system, which are independent of what numeral sys-

ten .is used to represent them, that is, properties of the numbers themselves,

...-irrespective.of what notation is used. to represent_ them: It is important to

study these properties in detait bemuse if wefee/ at -borne with -nUmbis at

all, we feel so with these numbers; their properties are familiar to us

though perhaps we do not often.thinX. about them..-Kere there is no. thought
.

of trying to lay a ffrm fo.Indation' for a number system_complete it all_ detail, , t. .

,
;-

but ratIler to become thol:oughty familiar With these propertfes so that as 'we
.

proceed to extend our-number system, .up will be- at home in,perpaps less fa-
'_

..miller surroundings. Really what happens is that in each stage of pension -..-_0

of our dumber system and in the algebraic processes which follow, we make
.

sure to manage it.so that as many as_gOssible of the familiar properties of

the .whole.numiSers carry over into .the, extension.: And furthermore,, the basis

for the manipulative 'rules" of 'algebra i,s again these fundamental proper-

ties of the whole ntiMbers.'

Not only is the study of thed properties important, for the forward

view toward other numbers and algebra, but it is important .1Ooking.backward

over the common manipulathe prOcesses of addition, ...subtraction, multiplic a-

tion, and division. The junior high school student presumabl:Sr'isjamiliar

with these, but he is old enodgh. -,t6.,haliSr the right to know why and, inci-

dentally, get,more practice in theIisrocesses in this new setting. (NOtice

also the last section this chapter )

.,1

23.
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3.2

_

Thus this chapter, rather than the previous one, 2s the place for,

thoroughness; for if the properties are unders,tood in this familiar setting,
. .

-\ it will be much easier to understand Them in_less familiar surroundings, for __

these same properties recur at each stage of the develaliMeht. And yet it is
P ; ir

truejhere; as_ in all branches of learning, that the now is never. thoroughly

understood until the hereafter makes.it Kist.:. y. - , .

1 '.

t

, #(

9 ,
3.2 The set of whole numbers -

-....."4 ... l ,C.
We saw in the preyious chapter that the set of counting numbers is ,a

ikin dof.ymmisti-mby.-r.hich--me---car,answer questions about how many. (Ste
.

c
Appendix I for a short discussion of sets and the accompanying terminology,)

If we want to compare the number of elements (or objects) in two sets,-we

car. set UT) a one -so -one cortesnondence.beti,een theth as far'as possible and

see if there are elements left over in either. Another method is to count

the number of elements in both and qomparc,the numbers) that is, exhibit a
. .

cne-to-one correspondence between each of the giv.en sets and a set of :hume...E.

als. The set of counting numbers is usefulfor this purpose because t here

is alwayea "next one," and in virtue of this order we can tell-at a glance

'(at least in our 'decimal system) which of two numbers is greater and hence

whi.11h*of the corresponding sets contains more elements, unless they have

the same number of elements. It doh ,}got matter in what way we set up the

one-to-one correspondence between elements of a set and natural numbers, -4--

which wecall counting,,,but it is viV,O, thatfthe numbers with which we count

have order..

An excellent way to exemplify this is to set up points on a line (more '

accrately, a ray with end-point 0) i=n one-to-one correspondence with the

whole numbers, using the geometric order from left to right to correspond

the numerical order as follows: -

0 1 2 3,4 5 6 7 8: 9 .;

Just as we-say that 13 is greater than 9 because 1-5--f6rIlltin the-whble num- ,
I

. ber sequence, so on'the number line the point corresponding to 13 is fo the

fright of the point corresponding to 9. We dtsignate this relationship by,
.

1.41
13 >.9 or 9 < 13. In general, if a whole number occurs after another 4..n'the

ordered.ses.ence of whole numbers, we say that the former is greater than

the latter or that the latter is less than the former. The symbol for- -'

f.

"greater'than" is > and that'for "less than" is < i 4

24
, 30



3.2

.' The two fundame4a1 properties of order are: . ,4. -!-....,--..% 0 a.

-- .
, 1. If b and c are any two whole numbers, then exactly, one of the

--

following holds; . e
.

b > c, b . c, c > t .
2. If a j b And b .> c, then a > c (the transitive property). These- , . .-. ,

properties occur in other settings in mathematics and outside of the subject

and are characteristic of .whet it.s often called an "orderetca."
.

*0;1- More formally, we call a set S an ordered set with respect to a rela-1 , .tiWship R if it has the following
.

pronerties: \

1. If a and b are two different elements or the set, exactly one

of the following holder

a R b, a b, b R a..
2. _ If a R b and b R -c , then a R c (the transitive property). 'In

the case of whole numbers above, R is > . Of course the same properties

wound hold if R 4eant_< .

Another example of an orq.ered set Would 'be a set of foods where, a R _b

means "I like food a better than food b ," and the equality would mean

that I like them equally well. This satisfies the two conditions in general,

though-for some iTconsistent people the second property may riot always hold.

If R signifies th4- relationship "is contained in" for pairs of sets, it

is not, in general, an order relationship. To see 'this, consider the sets:

A =r(r, s, t) and r.-qc, d,

`. "Neither set of three letters is cont ined- in the other nor are they equal.

A consequence of the order relations} is that of betweenness. A num-

ber is said to be between two others if it is less than one and greater than

the other. In terms of our general relationship R we. can define between-

ness as follows:

Definition: A'set S'is said to have the property.of betweenness with

respect to a relationship R if, for every three distinct elemehte a, b, c

of S, at least one of the7following holds:

#

'aRbRc, cRbai bRaRc, cRaRb; a.RcRb, bRcR a,

. -

where 'aRbRc means aRb and b.Rc .butt does not mean c°,, et

frrtlieTrAt t:io`OaSes '1S""ihNild to be between a and c; it the th' d

and, fourth a is said to be between b and, c ; and in' the last two 7c is

sairto be between b and a Also " a is between b and, c equiva-

lent to " a is between e and b ."

A

.

1



VI/ /
If ( end th.is ,e_:_teTWre..(:,or..,,lezined_14th,40-1e set S iS the se,t of

points on _a h *o.:zoni*=5;;fte,, the fj.g.eitionthip a R b could-hean: point
to the-l-eft_o,f -ortth7 line. Since the points:ar.e-ordered on the

1line,the2property of hetweZness holds. ',In fact, it iynot hard to see that
4

this pro erty toi_lows'e'rellttne property of being an ordered set. Let us' show
why thi .--.1,S: so ,-jx,r,.tem'e4f 1i-umbers and inequality. The proof or the'"general '''-

..,

relation'ship -would the-same way. To be defiqte,',He state a theoreth:
Theorein:--=-I nr,k-sTniMei's is an ordered set for the relationship >,_

"; .

then it has the pr p,e,r ,of b-etweenneSs for this same relationship. AN.,- ,-.:...,--_-.,: -i- .:, ,A...--_,.;

1,46.0ar Slipti5S7e-r ,--s-__..arldt, _are 'three different numbet-dered
set. Then there are four- possibilities for s in relationLt,o the 'Other two:. . .

--i) s ) and s ) t ,

.1.1) s > r and t ) s , when s -is be ,-t-re---Jn- 1 11.cl, t

"iii) r ) -an15---s---_,,-4a-, when s is bttween r and 't-,. ,

-r-5 g-" afid7---te'r-. 4 ,-
In case i), if t,). ,between r and ; iahile 4f r'> t ,_.. . ----,j-- -,--- - , .then r is' between s and t . In )age iv) the situation is sim fat.
Thirompletes the proof. /,But it'is'possitire to liay.e''rfiCe property o betwepriness, as w have_ . _ -
stated it, without trke;-1-.p-ro

pe rti. e o-f an ordered set. , For instance; et., ...

A, B, C be the three yerti 2'es of an...equilateral, triangle, And----let. ARB mean
.

"we can move point A Ito, point B by a rotatio
e apgle of 120 ° in. the DO-wise dire - ion about its

or the triangle through an
center" .gs...i.ndldated in

_the figure.:- 7;

- ' _
-- ,

ikt

_ ,; ,7

Than it is easy to see that

Ks

.ARBRC, BRCRA, CRAR,B,-
and so in this sense each point is between the other two. The first prop-,
erty of order holds., since

4 ARB BRd, an0
-

4 )

.
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n.r,

but the second does not,hold since A,R B and B R C do not imply C;
howeve7 C R A does hold. The reader

should'be warted at this point that
"often the idea of betweenness is expanded to the point where it is equiva-.

lent to the property of order. 9

To

return to the set of whole numbers, we know that it' forms akordered
set for the relationship > and hence has the property of betweeriness; that

given any three'Whole ntiMbers, exactly one is between the other two.
But it is not true that given any pair of whole numbers, there-,is always
one between them. 'In other words, the set of whole numbers is not dense.
Bet us define this notion precisely:

Deftniticn: A set S with a relation R having the property'of between-.

,
ness Is called dense* if, a'or,any two elements of the set,, there is a third-

I.
element between them. (For another definition of density and more complete
discussion, see Section 5.10.)

,e

There is no whole number between 2 and 3'or, in fact, between any two
whole numbers whose difference is,1. You may notice with surprise.that the
set of three vertices of a triangle given in the illustratidn above does,
have the property of-denseness though, in an intuitive sense, it anything

4but dense.' More to the poiht is the\fact which we can establiqh later that..1
the rational numbers form a dense set, since if a and b are any two ra-'

+tional numbers,
(a

is a rational number which is between tri, 2
?), To the author it" does not seem advisable that junior high school-.stu-

dentS study these properties formally2 but the knowledge of them should
gradually evolve out of experience, and-the good teacher can see to it'tha$
experience of'this nature is had.

4

- 1

The numeral zero, as we saw in the previous chapter, has a most impor-
tant_role irr the deciqal systet of numeration. But the number zero has
more important properties peculiar to'itself., In counting,. it indicates the
absence of what is counted; for instance, zero is the number of persons over
twenty feet tall. Every whole number has a predecessor except zero. This4

is exhibited,in a "count down": 5, 4, 3, 2, 1, 0; e2t the Number zero the
rocket is fired. Zero has la very speial role, as we shall' see, with respect
to addition.-4 multiplication.

27 33



Problems

,

' 1

i: Complete the fourth possibility in the discussion Q, betweenness above.
7r,;,,,

2. If,in'an ordered set, a is'between b and c , and c tsvbetween a
1

and 6- -- prove that a and, c are between b and d .

- - .

,

3. Let A, B, C, pnbe the four vertices in clockwise order of a guar and

A.,R B mesh "we can move from A to B by a rotation of the s are through

: \

an angle of 90° or'180° in a clockwise direction about it ceeel'" with
,

4 §imilar4eaning for. any other pair of vertices. Is th. set of points

an, brdered set? Does it have the property of betweenness? Is it dense?

Explain. ,

O

Addition of whole numbers

The fundamental notion of'additiq '- whole numbers is, as we 'know,

associated with the idea of counting in the following way: if two sets'of

objects are distinct (that s, have no eleffients in common), then the, number

of objects in both sets together is,defined to be,the sum of the numbers of,

objects inthe sets separately. For example,, if A is the set (2, 3, 5, d, Z)

.
and B the aet (r,"s, t), A has five elements, B three, all different from those

,

of A, 'and hence the combine p , which,we call the union, has 5 + 3 or 8

elements. 'Tenenotation t s could be:'
,

,

'

1

11)- J n(A) + n(B) = n(AA4B), -if

A and_B have no efem nts in common, that is,1 if their intersection' is the

null set and ii(A) notes the number of eleMents'in-A. ;

The'first,p roperty of whOle numbers which follows from this is that of .

--aclosure: 'The sum of twp whole numbers is,e whole number.

A second property,of addition which imMediately.follows from this rela-

tionship is ardirept result of the ct that the combined set of A and B iS '.

Stthe same as the combined set of B an A; that is, the union of sets A and B

is 'the sante as the union of sets B and A. In notation this may be written:

.

( ) r n(A) + n(1) . n(AtiB)= n(B6A) = n(B) + (A).

_,,

tr
.

,.

:The first equality'lllows from the definition, the second from the equality
.,,-...,

of AUB and. BUA, allO the third
-again

froM the definition with B and A
. .

interchanged. This Would hold for any pair of sets without a common element.

.

So we have

9

e
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The Commutative Property of Addition: If b and c are any two whole
,... 1,numb, er,s , then

7-
b ' .. c 4-b . !( .

,I

In thinking of this, we perhaps assumed iliat neither of the letters atood
. .for the number zero, but it .also hc3lds for zero because n(A), _,0 would meati

that A is4 the n'ull set and in that case (AUB) ..:B , and, equations (2) abOve
wouid give ---- :

i..

3.3

0 n(B) = n(B) 0 .

Actually we have a little more- -our first property of zero:
sir

0 +c=c+0=c.
Zero is called' the. identity (or neutral) element for addition.

Of course this is not the way one would first teach these facts .4o a
junior high 'school clasa, but, in the opinfon of the author, the above is what
should be in the teacher's mind to guide him or her in the presentation.
Moreover, this apprOach might be useful for a review. The commutative prop-; ,
erty is,part of the' justification for ,adding two columns of figures first
in onetorder and then.An the other. :It can be shoWn graphically by consider-_
ing two rows ,of dots:

If we count the dote from le;t to right; we have b c dots; if from right
to left, we have c b cicits. Since the number of dots in both set,'is in-
dependent of the order in which we count them, ,we have shown b'''Y this device
that' addition is commutative.

Suppose now that we,haye three sets A, B, and C. If we want to !find:the '
uni n of all three, ,that is, the set consisting, of all the elements together,
it could make no difference whether we' combined rA qnd B first and then this
union with C, or A With" the union of '13 and 'C. In notation

4 (AUB) UC = AU (BUC)
-

and sinCej-ihis ,is true, we could just as well write .them both in the 'form

c dots

AUBUC ..
: 0

i

,.,l
0

..

PThis is the associative property for the union of sets. For example,
if A =- (5, 7, 6) B.= (n,.%) C = (A, Z, 2, 4).

alw. . 4-.
laJB = (5, 7, 6, (AUB)yC = (5, %,- A, 1, 2, 4),

BU6 (g,'%, A, Z, 2, 4, AU(BUC) = 7; 6; Z,P2,
4

4

29
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- 3.3
00'

Perhaa this is s/Mpler without all this notation; we are merely saying. that

if you -wish to combine three sets, it makes no difference in, what order you

combine them.

Now, to make the connection with numbers, we assume"that
r
no pair of

ti
Et, B, C has common elements and see that the numbers corresponding to the

sets have the same property that, the sets have; that is,

(a+ b) + c a + (b +'4).
r,

This is the assoA.ative property for addition of whole'nuMPer: Notice that

the order of the letters is the same on both sides of the equation, 'ant the ;

way in which they are combined is different.: Just as for sets, this prop-

erty allots us to write

a + b +

without parentheses and without ambiguity.

`"£his is a vital property for addition, since we can pray really add two

numbers at a time. So to And the sum

*4
, 7 4; 8 + 9 ,

I.:or instance, we can first add, and 7, then that sum to 8 and that sut to 9.

Each time we add just two numbers. The property of associativity and commu-
.

tativity assures us that if we had, worked from the right side to the left,

the result would have been the sameo

Finally, there is another property which is q e evident at this stage 1'

but is not so apparent in less familiar Settings.:, In fact.it is the basis

for one of the methods of manipulation for the solutiOn of equations. Tit is

this: ,

If a and b are'-two names foi the same whole number, thelya+ c

and la +"c are twa names for the same k umber. In notation

a = b implies a+ c = b + c .

u,

This is sometimes called the U*1-,defined property.

is this rephi.asing of the property:

The sum of two

For instance, since

.0

/

The reason for the name
,

..7

numbers is independent of the particular.numerals

6 '10 67 = 5- , then + 7 = 7 .

3030
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Exercises-

l. 'IV a booklet the last three digits of the numbers of travelerst checks

run from,168,to 192, inclusive. How many checks does the booklet:

contain?

2. In each case below, find's number which may be used in place of ,x 'to

make At equation true. Give reasons for you(answer.

a) 3 + T . 7 + ) I (6 + 3) + 2 + (3 + x)

c) + 5) . (2 + p):4 6

3. Give examples of parrs Of operations outside of mathematj.cs which are
: -

aommutativevand also examples which are not commutative.

4. Is it possible for twq fathers and-two sons to be just three persons?

Explain. What's. the connection betweenthis,and this section?

-5. When one adds a column of figures from the bottom up and then from the

top down, what properties show.that the two results should be the same?

Is there a method of finding the following sum which 11:s better than

. either adding up or adding down:

, -

9 + 8 + 7 +)6 + 5 +41, + 3 + 2 + 1 ?
i

,

-
.. .

Could your same, method be applied to the following sum:

15 + 14 + 13:+ 12 + 11 -r10+19,+ 8 + 7'+ 6 + 5.4- 4 + 3 + 2 + 1 ?

6. Use the above me,thods to find a short method of adding the multiples of

9 froth 9 to 99, inclusive. '

-A41,7. Let A be the set of people who likeice.creat and the set who Me

chocolate, all chosen from a-given class of students. WhO would be the
gar

interprqtation of the formula 'n Problem 1 below?

3-.. bive .an example of a set S' and relation R , different from those
s

given above, for which S forms a ordered sgt with respect to the
c...., relation R. Then give an example n which S does not form an ordered

set.
.

9. Suppose we define a 1elationship R between two whole numbers as

follows: 1. If a,- b is even (divisible by 2), thena R b means

a > b. 2. If a is odd and ',="10e13:-.74'then a R b is true. ,Which

of the fundamental4ofropertiesforder-does R have?

31 3 7
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3.4

'IP

ProbleMs

1.). If A and B are two sets and n(P) denptes the numb of elements in

any set P, prove

n(A) = n(A B) + n(A B)

where A P denotes the intersection of A and B, that is, the set of

elements common to both.
A

2. Using the notation of t e previous problem, what isan interpretation

in terms of sets of the well-defined property of addition?

3. Use dots' to illustrate the associative prOperty of *addition, Jas. for

the.cOmmdtative property above.

. 4

3:4 .Multinlication of whole numbers

If we have five sets each containing three elements and if no two sets

have an element-in common, then the number of elements in &11 five sets com-

bined is what we mean by the product of 5 and 3, or 15. In other words,'15

is the sum of five threes:

15 . 3 + 3 + 3_+ 3 + 3 .

In general, for b. and c , any nat ral. numbers

b ce= c + c + c + +c

where there are b cis in'the sum. This is what we mean by the product of-
.

two natural numbers. We indicate the/product in one of three ways: b C ,

b X c , bc. Similarly,, I

C 4 b = b .4=13, + b + ...( + b ,

where the number of b's in the sum is c . It is not at all apparent that the

two above sums are equal. /
One way to see this for'the pairfof numbers 3 and 5 is to 'consider the

following 'array of dots:

O sok

a
4

If we count the dots by columns, we have five columns of three dots

each on five threes. If we count them-by rows, we have three,rpws of, five

dots each otAhree fives. The number of dots is independent of tie scheme
s ' A,

used to count them and so.te two results must be equal: is e sy lo be-
,

that this- same scheme could be uded with any pair of natural numbers

32 3.0
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to arrive at the *responding result, which we know intuitively from long
experience to be true. 'his... -is -the commutative property for multiplication

Atiit
of natural numbers:

cb

wherebc denotes the product of tVte numbers b and c .
Notice that this property allows us to speak of the 'product1/4of two qup-.bers without ambiguity -and to check a multiplication by performing' it in the..other order.
We have also shown almost incidentally, tie closure property for multi--

plication:
b and ,c-:,,aPe--two natural numbers, then bc is a natural number.

Notice that multiplicatiam-is-possible only when we are repeating irk, a
sum the same' number again--and=;ateattr.

What of multiplication-by Iero? We Would want five zeros to be zero:
0 + 0 + 0 + 0 + 0 =- 0, -geaeral x 0` = 0. But zerox.,s.-has rean-
ing. However, since we want ifertlplication to be conanaktatiyaelp ?s well
as 4or the'natufal numbers, we define 0 ;:x to be 0: Thenlie have

be = cb

for every pair' of. kinele-raimbers :^"'Also the set of whole numbers is closed
under multiplication.

Notice, however, that .unless one of b and c- is zero, their prod
-cannot be zero' In ether words, if for two whole numbers; b ana 'a, . . i--:.'bc = 0 or cb = O. then b = 0 or a = 0 or both:- , 7 -, A

tc, . ._ .......... 0 ,N. The well-defined property for'mUltiplicatign is (Rite -obvi.ous her-e"; but.we state it for future referent(: . .

a and .b are --6-Wa-n for" the same whole number and c is a
whole 'number, then'ac-%=. bc.

7
The associative property for whole numbers is harder to justify, and perhaps ,it is better just to assume it outright. ,However, there. is a three-dimension4

e -model that Might makeait seem 'plausible. Consider' a stack of 'four trays of
glasses,where in each tray ethe arrangement is like that in_the rectangular#array of dots -above. If '.re cdunt the glasses by trays, we have 11- (5 3').
If we look,a,t the stack from the front, we see.'four rows of five glasses,each, and we know there. are two similar arrays behind tt-;-giving "us tq-, 5/ 3.
These 'results must be 'the' same. This *is' an example of theaasscrciative
erty for multiplication of whofe numbers:

a(bc) '=fr(ab)c

33-%
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for any whole numbers a , b and" c . At the end of the next section we

shall see that the associativeproperty can be'proved from.the distributive

property.

Here again we would haVd to give the'nu.ber zd o

we need merely noticeAkhat if-any one of b "r

ducts are zero. .Just as for addition, the associative

special attention, but

c is zero, both pro-

property allows us to

find the product of more than twoWnuibers and.to write abc without any

ambiguity.

that in the pi:ieViOus section 3.,./e called the number zero the identity.

element for addition.bebause 0 + b =1)- b, no matter wfiat whole?number

b is. The corresponding, number for multiplication is 1 side

1 . b I=

. ,
Thisnumber is called.the identity element for multiplication.

4 0

3.5 The cTistributive property

Thl.a is the prope,rViihich seems to be the least understood of all the

elementary properties of numbers, and yet it is used unconsciously whenever

we multiply two numbers one of which is greater than ten., For instance, to

'find the product of 2 and-34,..,,ye-multiply fby 4 and get the units digit

and 2 by 3 to get the beAsigit: What we are really, using is: 2(30 +-4)-.

2. 30 + '2" 4.

In general the distributive propertyfor whole numbers. is

a(b + c) = (ab) + (ac) b + c)a

where the second equality follows from the commutative propertyfor mUttipli-

cation. It is called by this name since in,a'sense the multiplication-is
4

distributed' through the Members,of the sum. It is also used in the other

direction., For instance, to find the aum

'12 27 + 2 33 ,r

it would be eoier to add 27 and 33 and multiply the result by 240This is

the factoring process of allekbra. This property can be seen by an array of

jilt dots as follows:
I

ily

Reading by rows, we have 2(3 + 4) or taking the two parts separately, we
...,,, 1, ,, i ..'

would have 2 3 +.2 4.
, . .

, -
Tiglenwelatiply two numbers greater than ten, we actually use th-dis-°

.
,

tributiwe property twice, as -.is illustrated by the following:,

4

4'O 4.,



0 3 5

(21)04) . (21)(30 + 4) r! ?I. ..30 + 21 +_ ..

..',,

+ I) ; 30 +*(2o + 1) 4 . 20 .. 30 + 2, 3o + 20 4 + 1 4 . 600 + 30

.f. 8o 4 4 .
. ,

.

...?etice that we used both orders forthe distributive property and also.the
.. ., .

associative. property for addition. In letters this would give us

.
o-. (a + b)(c + d) = ac4+.ad+ 'bc + bd, at

where,,of course, on the right-"Side,,it is understood from the convention

, that,y,e calcplate the pro'duWle*e we add.
L.-vv.. . . . . - - - 1 , ..k 1 , c - 44 . s--- ....--zi-4-1 _ ,

One of the characteristi-cs of th stributive property is that there
,, A

are T,ani wags, which it may be misinter'P'e-MJ Note, for instance, that
. ,

°

The distributive property is implicit in most of our aNimetic calcula-

tions. We shall be tAng it in the tests for divisibility in the followng

chapter. Moreover, in algebra. it is the fundamental property at the basis
.

3 .5 + 2 / '3(5 + 2). Also the distributive pt, rty does not hold for

multiplication alone: -(2 Ag 5) / 2 3 5 .4=

of factoring. For instance, to find the product

2 *

. / .

. , rt. .4 I
j* (a + b)-,

. .e
in algebra, we use the distributive property twice as follows:

/ .

(a + b)(a f b) = (a- + + (a + b)b = a
2

+ ba + ab + b .

We have also used the associative property of addition.) To complete the

result, we use fte commutative property for multiplication to get ab = ba

and have as ouiinal result
1100

o

a2 + tab + b .
. .

Furth4rmote, to factor this'expresSlon we use the distributive property in,
.'"411V

the reverse direction. So it is .especially important that, at this stageIt r
when we are working with familiar numbers, this property be made evident

4:--- .

, .

andfnatval.
b i

It is possible to prove the associative property fox whole numbers by
...,

use of, the distributtVe property. With the thoughtthat the teachertigpt.

be interestedto see how it goes, we includesuch,a'proofat this point.

We,want to prove:
4 .

(ab)c = a(bCY
n.

for U. whole. numbers a , b , andic . To accomplish thid, we prove it in
_ _

suc,ession for variou3 values of a . .iirst, if a = 1, te equality becomes
,

i,

,b, (lb)c 41(bc) ,

3 5 4



3.5

which is true since both sides are equal to be. If a = 2, we have -84

o '(2b)c = (b + b)c = be + be

on the one hand, and

or. the

Now we want to prove

d;sired equality is

[(2 + 1)bjc.= (2 + lf)(bc) .

2(bc). be + be

it for a = 35 theft is a. = 3 = 2 + 1. Then ,our

The left side is, using the distributive property,-

(2b + b)e =2 (2b)c + tie .

The right side, using the same property, is equal to

2(bc) ± bc'.

But we have already shown that (2b)c = 2(bt) and hence

[(2 + 1)bjc = (2b)C + be = 2(bc) + be = (2+ 1)(bc)
.

oP,Our next step would be to prove it for a = 4 = 3 + 1. This ire could

do by carrying throughl the above proof "with 2`replaced by 3. Next we could

prove it in the same way for% 5 i= 4 + 1 and so for all values of a How-
ever, just to show this :a littl< more formally, let-us carry through the

.proof with 2 replaced by n . That we assume

(nb)c =n(bc)

and want to prove

[(n +1)bjc*= (n -t1)(b.c).

Now the left side is .equal to

)14.*

(nb + c + bc
.

and the right side to

n(bc) + bp.

But-by our assumptiOn-(nb)c = n(bc), and we haveo
[(11 + 1)b), = (nb)c + be = n(bc) +.be= (n +,`

Thus on i,the assumption of the property for a, "n, we have shown it for - =Y,

-, The advantage of this method is that we -haver now shown 7-that

equality holds, for any whole number xi , it holds for the next one. ._SO.-sizee
= Y.)-

4 2

a, = n+ 1

if the



3.6

it holds for a = 2,\ it holds fOr a = 2 + 1 . 3; since it holds for a.= 3, it
. -holds for el 4 = 3 1,,and so on. Some readers may recognize this type of

argument as mathematical induction.

Problems

For each of the ollowing'find for what whole.numbers7a, b, c= -'the

equalities hold:

a) (ab) +-'tt = ab + ac b) (ab) (ac) = abc

c) (8b) + (ca) = a(b + c)

2. Prove a(b + c + d) = ab + ac 4- ad, pointing out at each stage 1st

what properties you are usi-g,

Dissect the "process of multiplying by 7,8°,,sing the distributive

t
tproperty and oth-rs At each stet) point out what properties you are

usi(ng. Compare the process for 23 78 with that for 78 -23.

A 1 If we divide the number 327,327 first by 7, then by 11, then by 13,

J.

the final quotient will be 327. 'Is this only by chance, or will

be tre that if-wedivide any namber of the fort abc,abc by 7, 11
0

and then 13, our final buotie..tzwill be abc.? Why or why note

3.6 Subtraction:

We have may examples of inverse operations inside and outside of mathe-

' matics. A man sluts on a coat or takes it oFf. One-UtIdoes the other, and

sometptes it cabe done and sometimes not. (He cannot take off the coat if

(.he does not have it e When we add, we solvLi.'e an equation a +. b = x; that

is, we are given the numbers 'and want'to.find the sum. When we subtract, we
.

.

Are.giveri one 4.' -the numbers and the sum and want to find the other number;

that is, we solve the equation a+ x-= b. This is illustrated by the usual

process of makirg change when the clerk starts with the amounif of the pur-

chase and gives you money until it reaches the amount which you gave him.

When we solve a + x =-b, we write the solutibn as: x'=1) - a. And since

x + a = a +z, the answer is the same when we solve x +. a = b. In words,
.

x is the numbers which, when added to a , gives b . _4
4,

Now if a = 7 and b = 5, there is no whole number mhichwe - can add to

7 to get 5,'and the equation 7 + x ='5 has no solution in whole numbers.

fn fact, we,have the fallowing possibilities for the solution/of a + x = b:

2.. "If a = Q.
!

1. II: a > b, .no solution.'/

' Ifla <b x=b-, a.
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ater of course we shall extend our number system so that we shall have a

solution in the first case also, but at this stage- if-we are-to- consider

only whole numbers, our only choice is to say that in our number system we
re.cannot subtract a frr. b if a is-greater-than b .

What are some of the propelties of subtraction? If b > a, we have
`a + (b - a) = (b - a) + 'a because both a and (b - a) are whole numbers. But
what about the commutative property for subtraction:

b - a = a -b?

This can hold only if a = bhen both sides are zero, for if b >p., the left
0

side is a whole number b...t the right side is not, while, ir.,a > b, ire right

side is a whole'ru-ber b,t the left side is not.

What of the'"In'rrrtntin-rrolreTre Co-pare 9 - (7 - 2) with (9 - 74 - 2
The former is equal to 4 and the iitter to'zero. Th.is means that without

so-e understanding the expression 9 7 2 is ambiguous. It .is customary

to adopt the second meaning, but this of course. makes it very important that *

the uninitiated are inst;anted in his mathemptiCal mystery. Is it any won:.
der that some stunents think that to compute 2 + 7 . 9 you add 2 to 7 and

multiply the sum by 9! For this reason there are those who would like to

discontinue the convention that a - b c means (a - b) -.c.

What of the distributive property? Let us try this out: 9(7 - 2)

9 7 9 2 = 45. Let ,us try this in general to find :

a(b Q)

where b > c. We know that there is a whole number x so that b = c +:x.

Shen ab-='a(c + x) = ac + aaf.'by the distributive property for whole numbers.,

But this shows that ax is the number Which you add to ac to get ab Iii

other words, at .ab -ac. This is then equal to a(b - c):, since x.=, b c..

-So the distributive property does hold for subtraction, at least for a to

the left of the parenthesis. See Problem 1 below.

Exercises
A 4

$

1. Introduce parentheses in the following to make' the equation true:

a) '8 5 3' = 6 b) 8 5h., 3 =,0

. .

2. lIow many possible different numbers can one,represent by placing one

pair of parentheses in the following?

32 - 16 8 7 4 - 2 -(1 'i

t11- L

,

3. Introduce parentheses In the following- to make.the equation true:
A 9 7.c* 3; 90 ''

a
b) ; 9 7 3,= 66

.

tt

38 tisl i
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4. How many possible different numbers can one represent
- -"by 'placing one

-%59.1r Ofjarentheses in each of the following:

a) .8 2 3 ' b ) ' 9 - 2 3 - . 1

5. What properties of numbers areused to establish the following for

two numbers x and ty :

Y)(X [-f- Y) = x2 Y2,

By this or other means find an expression. equal to

assuming x

. ,

(x 1)
2

-x2

6. Write the sequenog of squares and compute the, difference between

squaft and the next, as follows:

1 4 9 16 25 36 49 64 81 100

3 ;f5. 7 9 11 13 15 17 19

Use theresults of Exercise-5 to fi d a relationship between the

differences and the adjacent squares.

R.

9.

any

each

The sum of- the fir st four odd numbers, 1 3 5 7, is 16, the square

of 4. The sum. of the first nina odd numbers is 9 2 : Why would a simi-

e ler' result hold in general ?`

Suppose instead of considering all the.squares,

odd squares: 1, 9, 25, 49. What an you find

similar to that in Exercise 6?

Perform on a given pair of nu

for the numbers 11 and-7.

I
1210:- 7 = 4

11 7 18

we considered only the

about the differences

ers two sets of operations as follows

II

11
2

= 121.
.

2
7, = 49

Then the product of the two results in I, 4 18 = 72, is the same as

the difference of the two results in II, 121- 49 = 72. Is this an

accident,' .or will it hold ,for any two,numbers? Why?

10. If we divide 45,624;562 by 73 and then by 137,,we &et 4,562. Is this

' an accident?
, .

11; A girl went to the pantry,with only a 5-cup and a 3-cup pontainer to
,

&et 4 cups of flour. CEIn this be done if nothing but the flour con-
; -

tainer is used in addition to the two containers? If so, how? EX-

plain4the,use of parentheses,in your answer:

39F;
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Problems

1. If a , b ,.c are whole numbers and b > cl is the following true?

.;

(b - c)a =ba - ca

2., -If a , b , c are whole numbers and b > c, is the followink true?
.

a + (b - c) = (a + b) - c

)If not, give an example,. If so, prove it 11.

3. ;.Anser the question in the previous problem for the expressions_

a - (b ± b) + c
ti

. 4 N..

3.7 Cancellation properties
,

4

At this point the cancellation properties can be ought of as the

converse of the well - defined properties, though in the light of later number

systems we shall see that all 'can be thought,of as well-defined properties.

In Sectior. 3.3 the following important property of addition was pointed out

for whole numbers. a , b , c.: . --.,

4
If a = b, then a + c = b + c .

The cancellation property fsr addition i,s the converse :.

If a + c t + c, then a = b .

This, follows immediately because if we let a +If = x, then by definition

a = - c , and since x is alsb equal to b + c, we have b = x c. Hence

a = b. In effect what we have done is to subtract c from both sides of

the equation a + o"= b.+ c.

For multiplication,the well- defined property as for Whole numbers

a , b , c

h. =,b ac = be .

What of the converse statement:

This is certiai

ac = bc implies a = b?

4'

hot true if c = 0, ,since 3 0 = 2 0, but 3 / 2. But if

The fqllowing sequencetfsteps leads tq,the
F

#e.
c / 0, it is true. Why?

desired result:

ac = bc means ac - be = 0 .

From the distributive property for subti.60U haver

Ito

, e
,,..;...

N* .

-.,

r
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(a - b)c = 0.

'B t we know that the product of two whole numberscan be zero only .if4one of

them is zero. Hence the last equation,impIies

a - b =0 or ,c =0
,

Thus if c / 0, a - b = 0; that is, a = b. Thus we have proved the canCelia-

,tion property for multiplication:

ac = be with c / 0 implies, a ..b

Problem

1. Prove that if a , b , c are whole numbers with c / 0, then ca = cb,

. implies a = b.

3.8 Division

Recall that subtraction is the inverse operation of addition. That is,
when we add we solve the equation a + b = x, and when we subtract, we solve
the equation a + y = b. -In, other words, y- is the rlumbek.We add 'to a to
get b. Sometimes there is such a number in the se of whole numbe s and
sometimes not. When there is .such a number, we 'alwe say
we get it by subtracting a ;fir e f"

Similarly, for multiplication we solve t equation.0.,.,x,Ad for
division we solve the equation gy = b. In of words, y is the'number we
multiply by a to get 'b . So atimes there is sucha number in the Set of
whole numbers and sometimes no . When there is such a number,'we call it

b/a or
b
-
a

w
. 1

,..

and say that we get:it by dividing, b by° a : Jult as subtraction and
t.' 4

,

addition are inverse Operations, so are multiplication and division.
..

Another way to think of the inverseoperation is in terms of one "undo-
\

,ing" the °tll. FOrAnstanlaif b - a exists,' then{'

.4
b - a + a L-. b ;

, g I6
1

f

.
ibecause b - Ellis the number which, when added to a , gives b . SimilarlY,

if
b
,,- exists:i .

\a , .

b 0,-a F b I' ,
I

b ecause by deiinit,,. i, z. is the number which, When.* iplied by a -gives ?b.
a axis

'":.! if ; .

IV
1 1

P
.

'

la 4,7

.

..4

1,4},Ck''

f
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To repeat, sometimes there is an inverse number or multiplication and

sometimes not. For instance, 3x = 12 has a 'tolut x*= 4, but 5x = 12

has no solution in-the.set of whole numbers. H it is not so easy to tell

by inspection whether or not a solUtionexists, but we have a.terithwhich we

3411144i,can use in this connection. i`f ax = b-has a sotrtfrOlf-ili-Wholf r ers, we

. say that b is divisible by a', or that b is a multiple of a ,-or -0

a is a divisor of b or a is a factor of b

' Since-in the next chapter we shall be concerned with properties cannec

with divisibility or non-divisibility, we shall not carry this further at this

point, except to write that if b is divisible by a we write the solution

of ax = b in one of several ways:

b/a , b t a -
b

.

a

In the process,of division the identities for addition and multiplication

play a sbepial role. If a = lIthe equation ax = b always has,a solution,

x = b.' But if a = 0, then ax =ie for every wh4e number x , and one of two

,things can happen: 1. If b 0, there is no number x for which 0 x = b.

2. If b = 0, any x will do. Thu6 we either have no solution or too many.

,90 we must be careful to avoid division by zero. We shall see that not only

for Whole numbers but for any numbers there would be this trouble with'divi--

sion by zero.

One can illso look at this question of divisibility somewhat physically.

The number be came from having b sets with c elements in each set.

Then to solliebx = c, we want to find b sets with x elements in each

set such that the total number is' c To solve xb = c, we would want to

.

find x, sets with b in each set so that the, total number is ca. If one
0 0

equation is solvable, so is the otheg from the commutative'property of mul-.

'tiplication (though the physical situation is quite different), and the two

, solutions are the same number.

The symbols. a t eb, t é and a/b/c are ambigUOus, and parentheses mint .

be used to give them meaning. An eample is..,sufficient to Show'wily:they,aie

ambiguous: (8/4)/2 = 272 = 1 , while if we rat the parentheses in differ-: - II'

ently, we have W(4/2) = 8/2 =4 .

O

' k

.1
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Ex. cises-0,

Consider the equality: ,

(At b) * = a * (b * c)

where a, b and t are whole numbers'. .Why does this hold for all whole

numbers when * stands for + as well as when * stands for multiplication?'

Suppose * stands-for -.and a- b, as well as (a.- b) - c, is a whole
/"..;-muMer; is th right side necessarily a whole number, and if so, is it

equal to the 1 t?. Answer the corresponding-questions fordivision

instead pf subtr tion.

2. Answer the same questions as for Exercise 1 for the expression

a * (b *c) = c &b Et)' :

3: How- many'possible different numbers can one represent by placing

parentheses'in

n
16 osni. 1 4. 2 + 1 ?

In each of the following a , b and c are whole numbers and every

indicated quotient is an integer. For instance, in .part 1) on the

left side, b is divisible by a and c is diivisible by their

quotient; no denominators are zero. Indicate which of the equalities

had:

a) c/(b/a)t. (c/b)/a

b) c/(b+ a) 7 c/b + c/a
c

c) (c + b)/a ='cia + b/a.

(i) (c - b)/a = c/a - b/a with_c > b

3.9 Inequalities

There are also properties Of inequalitkes which correspond to theiwell- .

define'dandcancellation properties,for equality. In this slightly less

fclie eating, it.is perhaps more apparent why we should take notic ,of

these properties. Inrabhnny-haa_fewer marbles than Henry and if we gi e each

of them the Seine number of additional marblesi/Johnny will still have fewer

(Aarbles than,He o if ye take the same number of marbles away from

b have fewer. 'In notation this means:

r

C

..j,.. . . .

y_. ii) If a <.b, then a .4. c < b+ c

1 iii), If a + c'< b + c,, then a <b.
,

i .11.v.
1 'i i

I 1

.i- 43
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3.9-

-ht A We can just accept these as fundamenW44apexties.,..o.f....numberBut if
. \ . ..

we define inequality in terms of addltion, 1,d'can derive these properties

from preVious ones. This we shall do., .

6
. . Definition: I' for some natural number x it is.true that a + x = b,

_
.

we sarOldt "a .is less than b" and write it a < b , or alternately, "b

is e'eater than a ," which is written b a
0

.

..- Note that a definition'works both ways; that is, in this case by the
N

statement a < b we mean that ther& is a natural number x such that

a + x = b , as well as iiithe other order given, in the definitiop. We shall

extend this definition later in the book to other numbers. Now, in terms

of''6-lis definition, let usreturn to the first of the statements above and,

- show -};ow, using the definition, we can prove:

If a < b , then a + c b + c .

*

Proof: From the IVieothesis, a < by we know that there is a natural number x
o

such that a + x = b. But by the well-defined property for addition

(a x) + = b + co.
o

By the commutative property and associative properor addition

(a +.c) + x = b ,+ c

which by the defini

L
'on is equivalent to

a + c < ix+ c .-

. u .....- "
-This prow statement i). We leave the proof of ii) for .a problem

.
below.N %.

We can use the same technique to deallwith inequalities fot multiplica- 1

tion. The corresponding ones are -.for natural numbe
.

.

. iii) If a < b , thenac4<, be , q

7

".

- , , 4
iv) If ac <,bc , then a;4 b, :%, . . N..*

l'.

To prove' iiiY notice that a < b is equivalent to a -4-* x = b, Ttien by ,:t 1-
4'.

defined property for multiplication,

3 i 41

1 , (a + = bc- .

By the distributive pr4pertyl
0:

1
t.

,

1

i

?

1

ac + xc =' be .

r ,

Since the se of natural numbers is closed under multiplication, then tc t

0
is a natural umber, arld theAast equation implies ac Oc.

We leaVelthe proof? of id) to the problems. The realder should be warnecr
-.......____

...., .
, ,a0t,

that while Oland,ii) h ld fOr larger sets of pdMbers, #i) and iv) do not.S.
,1

,

-c:
i

I ? :

-.4
t

e,.id, 52
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3.9

sold in-general, In fact, if we were eionsidering whole numbers instead;of

natal!6.1 nuigers, we would have had to specify c /r0 in iii) and iv).

The teacher mighw'#,11 ask at this point, why give these proofs when we

have assumed less obvicuz, results. The authq's /;eason was to emphasize the

connection between inequality and equality, noting that the former could be

defined in terms if the latter and that the well-defined properties of the

latter imply those of the former. It is not so Mueh-the proofs in themselves
,b.but the relationships. between inequality and equality, which are important.

ti

1. If a b , c

c < d implies

Exercises,

and .d are natural numbers; show that a K b and

ac bd .

(This can 1..e C,c'ne either from the definitiol, of inequality in terms of
sums or from the basLc properties of inequality; note the summaryin
Sectioti 3.10.)

2. If :a , b , c ann d are whole-nu ex's, show that a < b and c < d'
lilies a + c < b +. d.

..^

3. 1.31Apose a.< b and a +.0 < b ,+ d. What conclusions could be drawn,.

if any, about the relative size ce c and d ? (a, b, c, a are
whole numbers.)

,

-`%\i 4. Suppose a < b and a + c 5 b d.- What conclusions could be drawn,
any, -about thd'relativesize of c and d ? (a, .b, c, d are

wliGle number's. )

5. Angsker the 'ban questionS-as-iri:Exercises 3 and 4 when the sUMs are0
,

. replac0 by prodircts, if we assume: that' a, b,, c, d are natural numbers.,
, .

6. State inequalities
'a
one. a

,
b '"a 0'`,and o. '>that bothjf the 'following are

I 2.

equal to whole numbers, assumtnd-4hat b and c are themselvs- f

*whole numbera:

iWhat are

a - - c) , (a b) - c. 1

the conditions that both r`epresert natural numbers?

Problems
. 1 .

Prove,Ising the methods above,' that, a 4- ck b +c implies a K b./

Lyve,tha, for natural 'nth bers a, b; o (c
?

ac <lac implieS' a < b e cancellation property)

'

45

t
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3.10

/

3.10 'Looking backward A

The wader at times in thisphapIer may have wonder d why the seeming
A

effort to make something obvious diff:cuTt. The point is that these proper-

ties are not so obviof,s,in later situations. It is better to dig into them

here so t later' we will have seen them 1)efore. The author does ot recom-

mend that all-these properties be pointed out o the stude5pa. but the
4.66. J.. -

teacher should have in mind that tl se are the fundamental properties and

, that the students should have i ntuitive ex<11.encSs which will make thgoe.

properties appear. The matter of first importance is that they shall know

these properties. Much of what lies back of the and why they ,are related

will of necessity come'Alater. Time spent here should pay dividends later
O

on. , But again, these ideas will recur again and again,- and 'as this happ8ns,

-6

familiarity with theM should increase.

Finally, for ease of referer&,Ide list lire the properties of whole

numbers which we have dealt with in this chapter. Here the letters stand

for whole numbers.

Fundamental Algebraic Properties
0,4

1. ,Closure woperties:-

Commutative'properties!

3. Associative properties:

a + b and ab are whole numbers.

'a+b=btaand ab = ba.

(a + b) +c = a + (b + c) and

(40)e = a(bc)

4 Existence of an identity element: For addition it is 0 which has'the

54' The distributive properties:

6. The well- defined, properties:
ee.

7.

property: 0 +a=a+0=afor all a.

- For Multiplication its 1.apd ham`' he

property: 1 a = a 1 = a, for all a.

a(b + c),= ah + ac and (b + c)a

ba + ca.

a =bimpliesa+c=b+cand
;ac = bc.

The cancellation properties:, lIf a + c = b + c, then a = b.

At
If ac = bc and c 0, then a = b.

An important consequence bf the above that a product of two whole

is zero if and only if one or both of them is

Propertiqs Of Inequ'ality.

11. If b and, c are any two whole nuMbers,lhen exactly one of the

following holds: b > c , b1,1= 'c , c > brr %. ) '

1

. .

1



2i. If 4 > b,and b > c, then a > c. (The transitivil property)'

3i. The .well-defined properties: if a > b, then a + c >b + c;- and, if

c / 0, then ac >bc.

4i.% The cancellation propertiet: If a + c > b + c, then a > b; and, if

c/ 0 and ac > bc, then a >b. co

As we noted, the conclusions for multiplication in 31 and 4i are not valid
for other sets ofnumbers. As it turns out, all the other properties hold
for integers, rational nuaers, and real numbers as zde:y. In fact 'the al-
gebraic propertis hbld for complex numbers and other mathematical systems,
as we shall see.

3.10

°'t
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Chapter 4

DIVISIBILITYAND PROPERTIES OF WHOLE NUMBERS

4.1'

4.1 Introduction
.

The properties .of whole numbers Which we considered in the previous
chapter are 'often called "algebraic' because they are properties which also
hold for other kinds of numbers and the' elementary processes of aTgebra,
But lbere are also 'properties, often called the arithmetic properties, which
arisefrom the restricted character of the whole numbers. Subtraction fora4lik
whole numbers Es made possible by the introduction of negative numbers to
Torii the set of integers. But division is quite a different matter for two

First, the criteria for divisibility are more complex than for'
"subtractibifity." Second, when we make division possible by the invention
of the raticinal numbers, we'llse some of the essential properties ,of the
integers, for example); the lack of the prOperty of density. (lust as outside
of mathematics the lack of something Important makes it the center of atten-
tion (like water in desert qountry), so the fact that, divisibility is a prob-
lem for the whole numbers forces upon us a consideration of this property.'

Consideration-of these arithmetic properties is 'important not only be-
ca:ase these are fundamental to 'our understanding of the integersA(whole num-
bers and negative, numbers) but also because many'of the same properties
carry over to the pol9nomials 'which are studied later On in 'algebra. Also

°it is true that much of our life is concerned with whole numbers: popula-' ,
I

tions,' itemization, coinage (whole number multiples of one cent), for instance. .
In aQt, %in many. ways the physiicaliWiirld. is dsiseretetrather than continuous.
Finally, many of the puzzleb which_ amatetir mathematicians tenor have whole
numbers for answers. Moreover, t4 e is a branch of mathematics called the .

iTheey of Numbers which concerns itself almost exclusively with the proper-
ties of integers.

Except for the last section of this chapteii, we shall be concerned only
.with the yhole pUmbers, We -shall see in the last section that there is no,',-great difficulty` in carrying over our results to the cOmplete, seS, of nte&rs

. including -'the negative integers:-

-0
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4e2 Divisibility

When we say that 21 is divisible by 3, we mean that thcre is an integer,

7, such thbt 21 is the pro,duct of 3 and 7.° In general we have the

Definition: r isAivisible by s if there is an integer ix such

.\\ that xs = r, and we.write - or x = r/s. Physically this cv.4have

meanings. From one point of view it means that we can, apportion' r objets

into s sets with the same number, x , in each set. From another Icint'of

A ,view, as was pointed out, in Section 3.8,sinceymu,Itiplication id commutative,
*a'

it means that the r objects can be appOrtIoned into a certain numbe# of

seta, x ,-with s objects in each set. Actually this is a physical way of

determining divisibility. For instance, to determine whether a number n is

divisible by 2, we form from objects one set of 3, another set of 3,

anopler set of c,,until one of two things happens: either we have none left

over, in which case n is divisible by 3, or wehAlit something left over less

Char 3) in which case n is not divisible by 3. We know that for any whole
1

number n:, not a multiple of 3, there will be two successivemultiples of

3 between which it lies. This result which we Call the remai prpperty

is worth stating formally:

If b and ,c rare any natural numbers,,, there are whole numbers cp and

r such that b ='cq_+ r, r < c. In' fact, q is the quotient when b is

divided by c and r is tharemainder. From another point of view, q, is

the greatest tritifikger. Less than or eq4a1 to -_,blcadse___, f

Thus q and therefore r , is unique. To say that b is divisible by c

is the same as saying that the remainder i5 zero.

There are many differeqt. 'ways to express the facts of divisibility.

Each of thefollOwing list is a different way of,saying that r is divisible

by .

a) s is a facto-r of r .

b-) s 11: _

c) r is a mult\iple of s

d) r is divisible by s
.

. In this collection the number oneoccupiesr a unique positiOn. It is a
.

divisor of every whole number, and its only divisor is itself (recall that.
. .

we arelxpstrictlng ourselves. to .whole numberS). On the other hand, zero is
; ..; . ,. . , *,4L

not a divisor of any number but is divisible by all.

- .

There-are some fundamental properties of

.

dpisibility which we now list,

leaving the proots'as exercises. .

;

I,
1. If r is a factor of -s and, s is .a factor of r , then s = r.

I

9 ,.
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2; If r is'a fatto49.t,.r of 4's and s is-6 faCtor of t , then 'r is a,
i

factor of t . (The transitive property- -see Section 3.2)

. $

3. If r is a factor of s and of t , it is a factor of s + t and st ;.
-v

end, if i./* t, of 1 -,t, ...

Of course) the letters above stand f r counting or natural numbers. A whole

number divisible by 2 is called
t
an even number, and one not divisible by 2/.

an odd number. Property kabove,shows us that the'Sdb of.two even numbers is

an even number.

Exercises

1. Find the number of factors of:

a) 9 , 49 , and 9 49.

b) 5 , 3 , 4 , and 60

c) 15 , 21 , and 15 21,

C"

Nlig*
2. Can you rake anT gUesses from the examples of the previous exercise?

If so, try to establish them by proof.
/ * -

`,
.0

3 Prove that if b is factor of
,

,f a and d is at factor of f then

ti

bd is a factor of' of .

..

4. Fin& q and r. for each of-the-following pairs bf values of tr, and

c , assuming that in e'Orh-case b + r ; with c and r whole
...7"

numbers and r < c . -,-- 1 ( )( .

, a) b =17 , c =5 b) b = 379 , c = 23

5. Let b and c be 'Any two numbers,-and sholg, that there is a multiple
. _

.

of c which is not farther from b than 2 . If the difference be-

tWeer2 andthe nearest multiple of c is , show that 2b is

a multiple of c (The answers to these.questions might be easier

-ifyou try them aut-f6rpaTticillgr-imbersfirstr)

6. How many different remainders are possible whenidividing aartuitkepby

,. 73? If the Sum of two numbers is divisible by 73, what can you say

about the remainders when these two numbers ere divided by'73?
.

, -

7. If a and b are two numbers and if a + b as well as'a - b is-di-

visible by 7-3-,- show that a ana b are divisible by 73. Would the
'i,

same conclusion follow if 73 were replaced .by any' other number?, WIT

or Whhot9
;

.604.
Car 4.
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8. Show that if x an y
1

that

,
n = x

2
-.y

2
,

then - y and y) ar8 factors, n . Are there solutions

for n = 1 and n = 22 ? Where there are solutions, ft-rid them".

9. Show that the remainder when

0

are whole numbers an

r

n is a whole number such
,

or 2.

x" -

3. Show that

either one is

any number-is'divided by 3 °is one of 0, 1;

Hence show that .if x is an integer not divisible by 3, then

Or x + 1 is, divisible by 3 and hence that x2 1 is divisible by

if x2 rand y2 are the squares of two natural, numbers,

divisible by 3 or their difference is divisitTe,by 3.,

In terMs of the number

= co-. r is a whole number lesS than c .

Problem

line, Eive a gpothetrdl ipterpre-6atibn of

2., -Pcrove'the" three rol'operties
.
of divisibility.. i

3. . Prove that if when whole numb'prs x and y i x > y, ape divided by-

the remainders are the same,"then x - y is disvisib4le.by s .

4, proire that if x and" y e whole dupers and if _x

number° divisible. by s , t en the remainders when x

are the same.

and

-.__La,-1,......1..1,....;........4..
.a ,

.1 eft .

4:3 PriMe numbers

.

s'

is,a whole

y ere divid6

.

_

We have seers that 1 is a factor op every ceunt, number. And every

counting number "has itself as a factbr as well. numbers which have only

these',two factors, are galled prime numbers. "'In oihe'r words, a pri:me,,number

ip_a.,7;o,untinglnumber Aihish has jtt,t tide _factors:..4.tse3._f_ _ n_umber-1
= T , - t .

is not counted among theprime numbers frOr anfimportant reason which we -shail

ain below. Cout'ting numbers2d,ifferent'liOm1 which

called 2ompos,1te Ambers. Thus thre.let of..cotratleg

three subsets:
a

fr.
a) The number 1 which has ju,st)one factor.

b) the prime numbers which have just tworactbrs.
, 4 '

c) The composite numbers which Piave nacxe than. two f.kctors.

are

are -not prime numbers

numbers consists of
.

.

The first ten prime numbers are:
/

2, 3, 5, 7, 11, 13, 17, 19,-23, 29:
1+

IP

r

4

. 1' e.52e 0
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' 4.3
]

Notice that only the first ogre is an even number. Why? Also the only two

successive numbers which ate prime numbers are 2 and
.3..

To many matAematicians prime numbers are impoi)tant because of their

irregularity and all that we do not know about them. They'-are important for
4&hildrensto know about because in a sense they Are the building blocks ford.

thetstructure of the integers. This stems from a fundamental result which

we state as a theorem:f
A

Theorem 1. (The Unique Factorization Property ofCounting.Numbers,or,

The Fuhdamental Theorem of Arithmetic) 'First, every counting number can be

exprlessed as a produCt of prime numbers, and second, the productis unique ,

,except fot/t.e orde of the factors.,

ITce first part of this result is easy to show; the second depends on a

process called the euclidean.algorithm which we discuss in Section 4 of this

c:-.-lapter. The proof of this theoremiscompleted in Section 8 of this chapter.- ,

To show that such a factorization is possible, consicler a countin& num-

ber n . If ,it is not a prime number, :Li has factors between 1 and itself, I/

L' 3andit can be written in the form n = rs where neither r nor s isl. If

both r and s' are-primes, we have the result-needed. If r , for instance,

is not a'prime nipber, it can be

So we can continue this nrocess.

nubers are smeller than before:

as a product of prime factors.

Consider{ the number 2275:
r

It is divisible by 5 since theliast digit is.
-

(See Seetion..4.6'.) '.,ItividIng by 5_,4e,fiaye2275 455. .Theagain. . r.t _

45j = 5 1 , and 2275 = 5.. 5 For 91'we see that 3 is not a divisor
,

and neither is 5,-;but it is. divisible by.i,.the next prime', and yellow have

written as a proC47, of two other numbers. .

It will 'pave, to stop because*eyery time our

Hence in the end we will have expressed n

7
2275 = 5r 5 7.13

5o 2275 is a product of four prime numbers, two of which are the same. Of
. --

course we coul4 have done this another way. We-could,have divided by 7 - first, .

rtuying2275:=7"--a4.-Thn-divIsionS 6F-5-a--d giTj -.- ..1 '' T
. .

4" 2275 = 7 5 13 5 .. -c
.

. --,
. _ . . .

The factorization is different but only in theorder irr which the factors
4

appear; in,both there are two 51s,.one 7, and one 13. i- ..:

/

Let us choosean exampleesomewhat,harderihan that above, the factorize.-

"tipp of the number 551. We would try fri.suctesion 3, 5, 7, Il, 1,, 17 with-,1 e
/

out success, tut 1.9 is a facto? and 55; = 19 29. In general, would
.
one,

have to try all the primes less, than the giver} number before finding -out
...

whether it is'prime or not?
4 ...

0
...' (2

5 0
°
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Now it is clear w4y we lited to exclude 1 from the list'of primes. If

it were included, we would have many trivially different ways of expressing

a number 'as a product of prime numbers, using as many one's as we wish.

There are' other reasons for excluding 1, but this is

A somewhat more compact wax of Writing a number

primeqaCtors is-to use exponents. a in Chapter II.

1
. p 2275 = 5 7 Y.3.

In letters we might have,

a b c
-11 =1.3cir

the most immediate.

as a potict of its.

For instance,

,

whera. p , q ; and r are distinct prime numbers and

. " counting rrImbers.
. ,

r
Vg,

I

Exercises

.

1. Why is 2 the only even prime number?

2. Let x and y be two successive Counting numbers;

differenCe 1:s 1. Cad both

conditions?

a, b, c are

that is,thein

of then be prime numbers? If so, under what

3. Let n, n 1 and n + 2 be three succe'ssiountinkg numbers. Can

they Live...reasons for y6ur ans4.0,
I o

countingynumbers. Can they both

6.

.Let n tati'd n + 2 be two

yur.d?ers?4,9Ave_reaSons.

Let n, n' + 2' and n + 4 be three Counting ?Umbers.

-prime numbers :I've eagons.

ApplyinglProblem lgit ind which of the following

2- "1'
313, 323; 4501

be prime

Can they all be

are ori'ne numbers:

Problem
,k

x=e

1. How far would one haveto try possible prime ftctors'of 4501 before

ascertaining whether or not it is a prime? What is the general result?,

Cr

it '54 5
0

4
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1
.

'4.4 Greatest cgmmOn factor 0 ., .----i--So far we have been considering,factors of one number at a tine.' For
two numbers we may find that they', have factors in common, that is, common,

,.factors. fiery, pair will have 1 as at common factors and sometimes there are r
m.9re. Lei us list all the factor's of' three numbers: . .

x
4 12: 1, 2, 3, 4, 6, 12

56: 1, 2, 4, 7, 8, 14, 28, 56
175: 1; 5, 7, 25, .35; 175

The pair 12, 56 has corr:mod factors: 1, 2, 4.
The Pair. 12, 17.5 has no common factor exceit 1. I. .

The pair 56, 175 hers just two common factors: 1 and 7.
In each eas-e ,we can pickout the eatest common factor (abbreviated

to g.c.f.). (It is sonetirles alled the greatest corndivisor and abbrevi-
ated to g.c.d.) In the first case it is 4, in the second 1, and in the third

47,

Let us look at this. discussion' in terms of sets. Let F12 be the set 'of
factors of 12,,F56 the set. of factors of 56, and F175 those of 17,5. Then

F12 (1, 2, 3, 4, 6, 129 ,

Thep

F56 = (1 2, 4" 8, 14, 20, 50) J

I

F175
= (1, 5, 7, 25, 35, 175\. .

3

'Y' ,`4;J \ .
; i _ ,,, 1.,

A . s

is the set of factors common to the firsst. two sets. Similarly:

F12 n F175 (13
. F56 n F175 = (1, 7) .

. .,. /
Then the greatest common factor for eactl pair of numbers is te greatest in-
teger in.each of the intersection sets. In other words, 4 is the greatest

-, ri?nteger in F-,-2 CI ''5'6 and hence is theTg.C.f. of 12' and 56.: Similarly 7 is the1
# 5..c.f. of 56 and 1755 virile the greatest integer in F12n F175 1s the only

numbet it contains, gamely 1. , .

, *While the above.pftIcess 1.6 irery useful in fixing the ,idea of what',the. ,
greatest common f iactor is, efficient way of finding it.it is not the most effici
For small numbers the best way is probably t express each number'as a pro-
duct of its prime factors and from this determine, the g.c.fce,:greatest corn-.
mon factor). For example, to ..find the/g.c.f. pf 525 and 14455, first, express
each, as, a: product of ,primes:

' .

'525 = 3 5 5 7 = 3 '5 7;-. '4455 = 3 j 3 3 11. = 544 .' 5 1111
st.

,..

i

4.
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.11r
The .highest p WeiT of 3 occurring in both is thefirst.power, and Aimilarly

I

for 5, The p Oduct s)f these is 15, the greatest common factor.
14%

In more keneral terms, suppose.

m
abed

p.q r u , n
e
q t.
f g

where p,q1,,r, u ,t are different prime numbers. The greatest COMIXT

factor would/be phqJ where. h is the smaller of a and e , and j is the

smaller of b and f .

For larger numbers-there is a process ga lled the euclidean algorithth

based on the remainder broperty of Section 4.2 which we illustrate by a nu7

merical exale. To find the g.c.f. of 299 and 221, divide the larger- by the

smaller and Compute the remainder. Then divide 221 by the remainder and find

its remainder. Continue this process until a remainder 0 appears. The pre-
.

vious remainder is the g.c.f. Here is tht-calculation:

(

I 299 = 1 221 78

221 = 2 78 65

65 +

65 -!-L.'5 13 + 0 .

Conclusion:. 13 is the g.c.f. of 299 sand 221:'

Why does this process give the g.c.f'? We apswer this question in

,terms' of the example. The first equation shows that any common factor of

299 a:,(3)221 is a factor of 78, since 78 .299 - 1 221. The 'seconddiecua- I

tien shows similarly that ey,common factor of 223-and 78 is a factOr'Uf-65;

that is, any common-factorrof 299 and 221 isAd factor of 65 -The third equa-

tion shows that any corm= factor of the two given nCimbers is a factor of 13.

pn the other hand, acting with4the last equation, 13 is a factor of 65;

from the third equation it ig a factor of 78; from the second equation a
.

factor of 221; and from the first a factor of29. Thus every common factor -

of 291:-and-22gis factor of 13 ,and 13-.a/la.factor-of 299 and

. Hence 13 is the neatest common factor. From this example it may be seen

that this process ways gives the g.c.f. of two, numbers.

Based g bove ideas, it is possible tOodevise El. shortened means of

computation. But for us the computation of a g.c.f. is not very important.

It. is tiie existence of a g.c.f. which is important because from this we can

prove the Fundamental Theorem of Arithmetic. We should elaborate on this
N

'Point. The existence of the g.c.f. follows directly from the Fundamental,

Theorem of Arithmetic, as we have illustrated'above, andrthis is probably

the best way to shot./ the existence to4a class, of junior high school students.t
t

But also the,euclidean algorithm Shows the existence of a g.c.f., and from

56.
6 J
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this algorithm may be proved the Fundamental Theorem of Arithmetic. The

euclidean algorithm is tht_more fundamental result. We shall find useful

later the following two importacit consequences of the idea of g.c.f. ,

1
1Thedrem 2: If b and c have g- as their greatest common factor,'

then 1 is the'g.c.f. of
b
- and -c'.
g g

b c 1

To show this; suppose .e ' is a common factor of -' and - . This Means
b c g g
- = ebt' and - = ect for natural numbers bt and c'. Thus b = geb' and c = gec'.g g
This shows that ge is a common divisor of b and c . But g .wie took .Co

be the greatest common factor of 'b and c . Hence ge = g and e = 1. This

is what.we wanted to show.

Theorem 3: If at is a factor of bd and if a and ti have g.c.f. 1,

then a s a factor Of d .
,

Thiis practically obvious from the, Fundamental Theorem oi" Arithmetic,

for 1 is the only factor of to which can divide' b, and hence all the other

factors of a , including- a itself, must divide d-. With the usual-Junior

,high school class the teacher will want to leave it at thitt. But it is pos-

Sibleto give a proof without the use of the Fundamental Theorem, that is,

deperiding anly on the euclidean algorithm. The point of doing
a

this, as we

have noted above, is that then we can safely use this theorem to prove the

Fupdamental Theorem of Arithmetic. In fact, Theorem 3 follows direc-Oy from

the following result.

Theorem 41 If 1 is the g.c.f. of two whole numbers a and b , then

there are integers x a indy
...r

tv'
ax + by . 1.

%

that

.

Notice that ;E. and y need -not be positive,;,,In fact, one of. them must be

negative if both' a and% b :are greater than'l.'
. .

.
.

---- Before provi EL44.P=1.,..4,-..w.e,show,h,G40141t.cari be used to prove Theorem

TheivSiA4e for -The eM 3, i is the g%e.f. of a and b , Theorem tells us
.*; ,: o 1'

. ,that -- ,

,

,.', _

' --$-'4-1---
.z' : ,

- ": 7-1t1.,.,

- .,,,,..,-.

:.,-) ex ,+-, by 7.--.1 -

3.

for iriMters: thiS r

'But a' 'divides aeL;t3rd'Id by Property 3.ef Section 2-of this

'chapter, a die the number dAthe left sj:de;:hence it divides d

dpr proof is complete.'

Now we prove Theorem A. To' do this, consider the set S" of sail the count-,

ing*mbers which can be written ,in the form:
410L

a57
.69

Sr

V .

I
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t

ax +

For ,instance, using x = y = 1, one of t se numbers is a + b. Using x = 1,
1

. y 0, we have a x + by = a. If b < a, then we can take x = 1 and y = -1 andl..

see that the set $ contains ax + by = a - b. There are many, numbers in S.

We let m be the least trImber'in S, that is, the least counting number such

that - p

ax + by =m

-
for integers x a' y . If we can prOvc that then m = 1 , our proof of

Theorem i will be -omplete. If we can prove that m divides both a and

b , then 1 the of a and .b would imply m = 1. So first we sup=

pose n does divide .b .

We the heAe

b r, where 0 < r < T

and q and r are integers. Then we stag with the equation

ax + by = m,

and nultiply both sides by q to get

-ciax_+_gby = mg = b - r,

qaX +.q12.)i

-qax - qldly + 1)* r . k

This can be *written:'

7.
.

So.we have shown. that.

a(-qx) + b(1 - r.

aX + bY = r

eke X' =.-qx and Y = 1 - qy. Thus X and Y are integers, and r is less

4-11AWI^x.. But m is the least dumber of S. This is the contradiction whidc_.

'Ire.need to cbmplete the proof that m must dtvide b . Similarly we can

Via

Rrbve that m -must divide a and hence that,Sirnee. the g.c.f. of a and b

,..is 1, m mustle 1. -
{

-...,- '

,

.

It may be helpful if we illustrate this for a numerical case. Take
..

.a = 15 and b = 4-. .Then in the expression 15x * 4y we can take.x = 1 and

' y.= -3 to get .

. .4

15 1 - 4 3 = 15 - 12 = 3 .

Thus 3 is an element of the set S of counting number's expressible in the

form 15x + 4y where x and 3* are integers. But it is not the mintiurti,,,

8 /...tit/
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number of S, for 'we may write 4

equation by 11, - '1, we have

AO" 1

15 1

4

or. 15 - 4

15 - 4

15(-1)

3

-

4.1 or 3

4 3 = 4

3 -

-4 = -1

4 4 . 1.

= 4

- 1

1

- 1, and 'replacing 3 in the

.

So a solution of 15A + 4y = 1 is x = -1 and y =.11.

In Section 4.8 we4use Theorent 3 to prove, the Fundament Theorem of
Arithmetic.

There is an idea in connection with sets which is quite close to the

g.c.f. of tWo, numbers. The intersection of two-sets can be thought of as

the greatest:common subset. What is then tht subset analogous to 1 for the
g.c.f.?

, a

/Exercises
'

1. gxwess the, f011owing number as a product of prime factors:
. 17,325

2. Use the euclidean algorithm to find the g.c.f. of the numbers 17,325
and 407.

V .

3. Using 'theorem 4 and the result of the previous exercise, find for what
values of' -c tIke, following equation has integer solutions x and y:

17,325x - 407y = c .

What is he least such value of c which is a natural number? Use the

methods oi.he section to find a solution in this case.

4. Prove that if 1 is the g.c.f. of the natural numbers .eb and c , then

every factor of be can be expressed in exactly one way asicy product

-of a-factor of, b - and *e. factor of -c For Ihttarice; if Ii-`= 9 ETfel 1

q = 49, 21 = 3 7 where 3 is a factor of 9 and 7 of 49.' Also

63 = 9. 7 .

5. Suppose g > I is the g.<c,.f. of the liktural -numbers b and c . Are
tthere some factors of be .which ckn be expressed in exactly one way as

prpduct of. a factor of b and one of c ? Are' there some which have

more than one such renresentaion ?-

- 6." If g is the of a and b, and h the g.c.f. of g and 'c

shdw that It is the g.c.f. of b; and c.

C
,



14.5

.1,6 the symbol (a,b) stand for the g.c.f. of a and b . Ib this

symbol assoclativeat

((a,b),c) = (a,(b;c))

Problems

'1. Answer the last question in this section.

. 2 A shortened procepaor the g.c.f. is illustrated by the f011owing:

299 = 1 221 + 78

221 =3 78 - 13

78 =1 13 +0

The difference is that in the second line we used
e

of 78 to 221 instead of the greatest.multiple less than 221.' Why does
. -

this process yield the g.c.f. as xell?
, 4 .

the nearest rnultlple

3. Use the euclidean algorithm to find the g.c.f. of 89 and 55. Whatrare

someof the chai-acte'ristics of this pa'rticular example?

4. Prove that if a . bq + r, then the of and b. is equal to the

g.c.f. of b and r . Use this to give anotherprodf that-the euclidean

algorithm yields the g.c.f.

5. Prove that if 'g is the g.c.f. of A and b there are integers x

.and 'y such that ax + by = g.

'''

,

4.5 Lgast canton multiple

Though, each number has a finite number of factors, it has an infinite

number of multiples. The least common multiple of two whole numbers is the

multlyle of both which is,different fripmipro, For instance, the

least common multiple of 12,and 56 is 168. That 168 is the 1.c.m. (the ab-

breviation for "least common multiple")ecanbe seen from the factorizations

of 12 and 56:
A

12-.= 22 3 and 56 = 23 7 .

;/

Thell.q.m. must be a multiple of:22and 23, but since the former is a factor

of the latter, we can merely specify that-the 1.c.m. must be a multiple of

g' 23. It also must be a multiple of..3, Since it is a multiple of 12, and of 7,

since it is a multiple of 56. Hence

2
3 3 -7 = 168.
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1.6 a multiple of both 12 and 56, and by our choiee'it is the least positive
multiple.

..

4.
Recall that Par the g.c.f. we took the lesser of"the powers of the ,

,

common prim aes', and notice that here for the 1...m. we take the greater. In_
erms of the literal example of the prievous section, suppose ' 6

m paqbrcud, e
n = p q.f t

g

where p, q, r, u, t are distinct prime numbers. Then the 1.c.m. of the two,

numbers must be divisible by pa and pe, so that k lit the greater of
and 'e the 1.c.m. will be a multiple of p

k
. Similarly if s is the greater

koe b and' f , the 1.c.m. will be a multi01e of p'. Then the 1.c.m. will be

s
p q

c
r u

It may be Tiihtening to see that thi's dIscIsion amounts to in terms. ..,

. , --

of sets. Let M, be tne set, of positive multiples of 6 ant? M. those of 15.o . 15.. .

Then .

m = (6,-12, 18, 24, 36, 42, 48, 54, 60, 66, 72, 78, 84, '90, 9 , ...)

-1415 , (15, 30, 45, 60, 75, 90, 105, ...).

M6,f)M15 = (30, 60, 90, . }

-

repreaents.-the sets of, common multiples different from zero of 6 and 15. The

least number in this set, 30, is the least common multiple of 6 and 15.

There-is a slightly different point of view which 'exhibits7mewhat
mor connection between the g.c.T. and the though -it may
not be as satisfactory for a class in junior high school. We return to th
example Of Section 4.4 and' recall that b

0
is defiWed to be 1 for every

number b which is different from zero. Then we canwrite the factorizations

of 525 and 44555 as lollows :`t"..
"V-

4

where 110 = 1 = 7
0

, and,of cpurse,the lack of an expressed exponent means
-

that'it is 1. We have thus expressed each number, as a product of powers of.

the same set .of,primes 3, 5, 7, 11 where now the exponents are whole numbers.

To-find the g.c.f.we use the product of these same primes.buteach time
'choose the smaller of the exponents in the t/..)o factorizations; that is, for
3 we choose the, exponent 1, for 5 the exponent 1,. and for 7 and 11 the ex-
pdnents 0, 'We thui liave

525 = 3 5; .4. 7 -7 1
0

4455 = ,3
4

5 '70 11 ';

,
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g.c.f. of 525 and 4455 = 3 5 7
0

11
0

= 15.
k

wr a .

Now to get-.the'l.c°.m. we choose the larger-of the two exponents for each

prime'factO4 which is 4 for the prime 3, 2 for the prime 5-, and 1 for 7 and

We th4i-have

of 525 and 4455
34 52

= 155,925::

The -in 4t common use of the 1.c.m. is in the adding'of two fractions.

'.Though it its out of place in our logicaldevelopment of the numter system, the

readers olythis book are certAtly familiar with fractior)s; and it is worth-
:.

while to-recall this connection.. If e are to add

71 57
and

525 755
could express the sum in the following way:

71 . 4455 + 57 521 ,316,305 + q9,925. 316,230

525 4455 2,335,d75 2,33 , f5

BuCa more efficient way is to .1.1.6-O the 1.c.m. Here

0 1.c.m. 3
4 52.7 .

525
3 5

2
7

. .

,4 =2
J )
34

'and 755 7 .'11.

11

3 11 = 297

e-

5: 7 = 35

Then we can write equivalent fractions having the 1.c.m- as the

denominator as follows:

71 71 29,7,: ' 57 57 35

525 525L. 297 ; 7555 4455 35

Here,the sum is equal to

71' 297 + 57 35 21,087 +.1995
. 155,925 155,925

;
In,the former case', with large?'numbers, there

Numerator and denoMinator in the final fraction. In the latter case, as it .4
0

happcns, the finaLyfraction is not.in the simplest terms either, since the

numerator and denominator have a Rpm= factor 3. The same methods appil

*

2,082
-.155,925

is a factor

ootrmlon.

cohMon to the
.

when we are dealing'with algebraic fractions. There is a slightly shorteK
0

.,method of performing the above, bajet On Problem 2 below.

Cr

O

6 67
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Problems-

4.5

1. We fourt in the previous section that for sets there was a 'close analogy

between the intersection and the g.c.f. Whet is similarly analogous*to

the 1.c4n. for -two sets?,

2. Notice that the product of 525 an 4455 is eq6 1 to the product of

their g.c.f. andA.c.m. Is this an accidentror s this,property

hold in general? Why or why not? How may your result be used to shri?rten

the process of summing the twofractions above?

3. What is the g.c.f. of the numerator-and denominator of the!fraction at

the close of the section?

4. Be116- A and B ring Blether at noon.LifbEll A rings-every 12 minutes

and bell B every 15 minutes, when will they next ning together?

5. Bell A ripos-st noon and bell 1. one minute ,after noon.' If bell A iros

every 12 minutes and bell B every 15 minutes, will they ever ring-toe-

gether, and if so., when is the first time?

6. If in the previous problern,.1 is replaced by 35, what would be your,
answer?

7. Can you generalize Problems 4, 5, and 6? TN

11 *
Exercises

we.
.

'.
1. Using the result of Problem 2 of this section' and Exercise 2'of Section

4.4, find the 1c.m. of 17,325 and 407. Use this to exjress as a single

fraction

79' 13
17,325. '47

2. Find An 1.c.m. of the three numbers:

17135, A97,

Can this be done without factoring any of-them?-

Let m be the 1.c.m. of numbers A and b and n the 1.c.em'of'''

m .and o . Is n the71.c.m. of al, and c ? See' Exercise 6 of

the previous section.)

4. Let [a,bJ stand for the 1.c.m. of a and b . Is this symbol associa-

ti've, that is, 'is: " - °

fra,b],el = fa,[b,c]T?

63

68
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:5. Show that if be is the lease common multiple of b and' c,, then
_ .

Iir g.c.f.'is 1: Is the nverse of this statement true?

6. Givw1 a pair of natural numbers, is there a least Common divisor? Ts

there a greatest cbmmpn multiple?
4

4.6 Tests for divisibility' ' ,-;A.

':,;,.,._

Up to this point in this chapte-we have.been4considering:properties of
.

the numbers themselves, irrespective of the particular system of numeration. ---.)

/7fn the-decimal system 11 is a prime. In the numerallsystem to the b se-thrr""I

4
.-

i( is written 102, but it still is a prime. In the numeral system t th,e

base two it ie written 1044,', but it still is the_ fifth prime number. On the

other hand, if wc. keep the. numeral the same but-change the numeral system,

sometimes we have a prime Humber and sometimes not. In the numeral system,to

-,t1;_e bast two 11 happens to.be a prime because it is the pride number "three.",

But in the numeal system to the base five, 11 is not a-prim's- numbeybecause

it is tile number "six "' - -in fact, in the base five 2. 3 11.

In any numeral sygtem there are ways of telling by yo4ng at the numeral'
-.

.

whether it has certain kinds of factots or not. In one.system one can test

'certain numbers for divisibility'quite easily, and for anbther system the.

east tests may be for numbel-s which are quite different. In this sec on we ,

sharl be concerned chiefly with tests for numbers expressed it the.de,c mat, .
.

..,
system because it is here,. that these tests can be most useful.l. . - ..,

1. . .

The simplest kind of test is, found by looking at thelast digit. If tlie

last digit pf a number, expressed in the decimal system is b,, we can write

the number as
1*

10n 4-;1)

where n. is a whole number. This means that if b is even, that is, divisi-

ble by 2, so,is the numb. 'That is, if b is one of 0, 2, 4,-6:8 the

number is even. Alsererif b is a multiple of 5, -so is the number; that is,

if b 5, the number is divisible by 5. BUt i! the multip1V

of 9 less than 99 are listed, it is seerithat a multiple of 3:can.bave any
.4

number as its final'digit:

A second kind-Of test involves looking at all of the digits.. The Sim,.
. ,

plest of these for the decimal system is -nip test:forrdfvieteility by 9 9r

3. We have !
... ,

. 4s.
Attest for divisibility by 9 (or 3) A number,. is' divisible by.-9-if and

.

only if the slim of its digits is divisible by, 9. In.fd0-x-We can.iprve a .

\,.little more
/

.

. ,..

,,,,.

6 iA
. 6 9-. .
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If a number is diyided by'9, the remainder is the same at' whet the sum110,

.''%.... of its,digits is divided by 9. \ .

First of all, let us see why this is so for a particular number: ,5348.

. -for'instance:

5348 = 5(1000) + 3(100) + 4(10).+ 8
-tc

=5('999 +1) + 3(99-,+ 3.)45N 9 +1) '8

By the distributive property this is equal to
e .

.,- 5(999) + 5 + 3(99).4- 3 1 + 4(9)+ 4 + 8.

By thg commutative property of addition 'we,

= 5(959) + 3(99) + 49) + 5.4:,3-+ 4 + 8;

This may be written:

5348 + 3 + 4 +8) =5 929.+.3 99 +4 ..9 .

By,the dtstibutive property the right side is amultiple bf49. Thus we

have ishowfil that the differrence between 5348. and the sqm of its digits is'a
9

multiple of 9. By Problem 4 in Section 4.2 this means that the remainders

when the two numbers are divid d by 9 are the same:

Just the 'same process works fur divisibilityllrnine of any number ex-

sed in the decimal numeral system. We illustrate this using letters,for

four-digit numeral: abed. (Here the juxtaposition of;the-letters does

not indicate a product as it usually does, but merely that the digitsof the '

number.are a, b, c, d in order.)

abed = a(11000) + 1)(100) + c(10) + d

=a 999 -ftb. 99 +c 9 +a+b+c+d.

Thus abed - (a I! + c + d) a :999 +.b 99 + c 9.

Againthe differencebe en the number aplaothe sum of its digits is a multi-

ple of 9,-alld hence the re inders.Aen they are 'divided by 9*are the same. ,

This property used to be used for checking additions and multiplications

by a process called "casting \out the nines." We illustrate this for addition

'but it can be -used also or multiplication, division, and subtractigell:
c

, 537) remainder after division-,by,9: 6

4372 remainder after division by'O:
. 7

4909 ,

9

t't,
- Now 57 is a multiple of 9,,p1 ; that is, 537 = 9 . b + 6 for some

ger b . 4372, is a- multipl f 9 plug 7; that is, 472 = 9c + 7 for

integer c Thus,

9

537 .1- 4372 9b +: 6 + 9c + 7 . 9(b

r 65

70,

+6.+7..
z.
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1,
.

This moan;, that the remainder when the

by 9 it the same as the remainder wlie

7sum of the numbers 'is 4909. The sum

O

sum'Of the given numbers is...divided

6 + 7 = 134tis divided by p. Now the

f its, digits is 22, and thejemainder

when tiiis is divided,by 9 is 4'which i the same' as the sum of the digits of

the numeral 13.

course the,process'is shorter than the explanation. We merely add

the digits of the'sum and compare the remainder .with that for the sum of

t-e-^eiriders. In act, it is possible to shorten the process'in various ways

To get the remainder when 22' is divided by 9, we need nQt divide but.merely

add the digits. Also,, in dealing with 4909; we ma' omit the 9's (this'is

the origin of the name "casting out the nines") ot, n fact, ar.7 sum divisi-

ble by 9 and- merely write 4, the remaining digit.

This property of the n.Imber ? with relation to our decimal system of

nu-leration save-rise pseudo-science called numerology, in which you

find the n' 'er p to9 associated with your name according to the place of

its letter in the 'alphabet and ascertain by looking in the book what your

character is according.to the nurberwhich comes from it.

It is important to emphasize that the above is a prOpertydefiniteiy

-associated with the numeration system in which the number is wr;tten. For

' instance, in'the numeration system to the base 6, w4 could not judge divisi-

bility by 5 by lookirz'at the last digit, since for instance, the iumber ten

is in this system 14. But since 6is Lore than 5, we could test for divisi-

bility by 5 in this system by adding the_ digits just-as for divisibility by 9

in the decimal system" For example, in the numeral system to the base six,

we canshow that -

.1432
.

is divisible by 5. The sum could be computed either in the base 6 or the

laelimal system. For baSe 6 alone, however, one can continue to add digits.

-as we did in ;the decimal system. That is, in. the numeL4 system to the,baSe

six, the sum is 14 and the 'Sum of its digits is But in'the decimal. sys-
.

ltem the sum is 10, and the sum of its digits is not a multiple of five.

For us, tests for.divisibility in other syste4s than the decimal system

are not important. The only purpose in mentioning them at all-isfto empha--
size th,e fundamentd1 principles on which are based the tests for divisibility

in the decimal system!

There are tests for divisibility by other.nutr,bers in the decimals system,
. .

but' except perhaps4for'divisibility by lI, theyseem to be oflittle.pratti-
,

cal use, especially in these days of computers: .7z

s

.4
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Exercises

'ID
1. Find Nests for divisibility by the following numers: -15, 45, EA, 8, and

72.

,
4.6t.

2. Use the results of Exercise 1 to test the following for divisibility by

the numbers above: '

.
82710 , 67A1l , 6228

a
3. In ti numeral system tp the base eleven, how would you test for divisi-

bilitni,two?
.s , - .

For what numeral systems can one test for divisibility by two by merely

loOking at ee last digit? For the other numeral systems how may one

test for 6ivisibilityby two?

:

)
Problem

Establish the test for divisibility by 9 in the decimal system for the

five -digit number 'abode .

2. Find, a test for divisibility t'yr eleven in the decital system. Hint:

What.are the remainders when the po4 wers of 10 are divided by 11?

3. Show how thef011owing trick cane performed and ;thy it works. Also .

mention any possibility offailure. You -elect any number, Lem from it
. . .

another number containing, the same digits in a different order, subtract, . .. 1

the smaller of the two numbers from the larger, and then tell me all but

one of the digits of the result. 'Ican then (perhaps) tell you..what is

the other digit of the result
.

. j
!-. 4. In tie decital system is there any other number-besides 9 which could

be tested for divisibility by adding the digits?
..-

i ,.

5. In the numeral syst m to-tliebase six, what number wouldhAye a test

for divisibility an1
.

ma slogous to that for eleven_in the decimal ystem?
. , I% .

6.-- In-the.numeral system to the base six, for,divisibility by.what numberss
t-.

; would looking at the lasi'digri suffice, as for 5 and 2 in the deCiMal

system?
:

67
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Looking fbrward to the integers
Though

Anough we do riot deal with negative numbers until later in this book,
the reAder who is familiar with them might be.thterested to see what modifi-
cations would be necessary in this chapter to iiiclude the negative integers
as well. Actually very little -change would be ntsUessary. We would still re-
quire that any remail.der be a whole number (not negative). Prime numbers,

-1?-,JOuld have four ihstead of two factors : -1 and -p in addition to 1 and
D. -Nat only 1 but also -1 would divide every, number. The greatest common

factor and least common multiple would still be whole numbers.
. -

It would be quite a different matter if we were to consider the questions ;.."-z,

of thi s chapter for rational numbers, because in this set,..every.. number is
divisible 'Ey every other number except zero. In fact, if r is a rational
numbe.r different from zero, it can be expressed *in infinitely many different
ways as a product of, rational numbers. To see this, we need merely note
that if s d.s any rational number different from zero, .0,

r0e* r =

ana is a rational -numbe".r. Hence there aft ittprime numbers in the set pf
.rational numbers.

y: ?:, e

4.8 S ome properties of priMe numbers
In this section we deal with some of the-properties of -prime numbers .

,

which, may be of interest to the reader. (This section is not essential to

what comes later.,) First We show how we can prove the Fuadamental Theorem
ofArithmetia assuming, only results dei-ived from the euclidean algorithm.
Recall

7

Theorem 1. Every cpunting4number can be expressed as a product of
prime numbers, and the product is unique except for the order of the factors.

We proved the first part of this theorem in Section 4.3. Fot$' the second

part our chief tool is Theorem 3 of Section 4.4. We repeat it here for easy
reference:

If a is a factor of bd and if a and b . ve g.c.f: 1, then a
_ . .is a factor of d . ,

,,,, -

1Now
then1 for

4
the proof, suppose n 1.is expressed' in two diofferent ways

as .d procrucf of,. prime factors as follows:. .

, , s
n =5)1P2P3'"Pr q1q2q3 qs '

,-

were thepts,'and qts are prime nurnberts, not necessarily distinct.
4;
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We want to prove that r = s and that the following sets are equal: --":...)
.

,

A111
P-S

(p.
1,

p
2'

p
3'

p
r

...) ) (q1, q 2 , q3, ... ' q
,

,
where an repeated prime in the. first setopcurs'the same number of times in

.the s.econd set. )

Suppose first, for convenience, we ordt'r the,factars so that in each

product the prilies occur In order of size, that isy

P1 P2 P3 S Pr' ql q2 S q3 s 4)1,*

ss we want to show that p1 = q1. Suppose pl were smaller than When,

.since pi is a prime number, the g.c.f. of p1 and 01 old have to be 1. But

-1
D is a factor of q

1
c where c is the product of all but the firbt, q .

Thus by Theorem 3 quoted 'above, pi must be a factor of c . Now since p1

is less than ql, it is certainly less than q2, and by the same argument we

see that pl must be a factor of the product

0

q3q4C15 . CIS 6'

Continuing this argument, we see that p1 would have to be a factor

the product of the last s - 3 primes q, then of the product of the last s .L,41- 4

primes q , and so forth

ik

J..

would have to be a factorof q
s

\

which is impossible since > pl. This was all on the assumption that p1
l

ere less than ql. If ql were less thanpi, we would repeat the same argu-

mentwith p and q interchanged. Thus we have a contradiction unless
. '4....

Si

, So now we have
4

P1P2P3 ***, Pr (11q2q3 ... qs
-

tft

with pl = q1. We May then divide, both sides by pl and have

P2P3154 Pr (12(13(14 ... qs

. mach of these products has one less term than before, and we can repeat

the whole argument. We can continue to repeat the argument until either the

p's or tile q's're exhausted. Th9 it follows that r = s and the p's and

q's-are equal in pairs.- This is what we wished to prove.
. ,

Arrother important result a bout prime numbers is the following: e

Ttleorera it. The number of pr fne nutberg is infinite; that is no matter

what: nurtei you name, there is more than that number of pri es. i -P

was known in Euclid's time and is generally attributed to hi
f

To proye this, we assume that the statement is falge; th is, some

number .n represents the'nfimber,ofdi,rfarent primes. If that werethe

4



4.8

case, we caluld indicate he set of primes by

c\t

F-

Pi' P2' P32 "' Pn,

.where pl is the fi;.st prime, namely 2, p2 the second prime,. namely 3, and so

forth until We get to p_,,which is the last prime. Let P be the product of

thesh prime numbers and write the number-

Now N is not diVisible by p1 because the remainder len you divide N by this'

_nuiger is 1; it is not divisible by p2 for.thesame reason; in fact, it is

. not divisible by'any df the _primes we have lasted. In fact, the remainder .

is 1 when 7 is divided by any factor of P. So it must be either a prime it-
,

self, different from all the others, or it must have a prime factor which is

different fromall those listed. In either-case wp have shown.theexistence

of one'more prime than we started with. This 'is the contradiction we .sought.

The reader should be.warned about two things in connection with this
. .

result. In the first case,. N need not-bethe (n + 1)th prime. Irk fact-,

kt

there is a restil. whiCh tells us that, except' for n = 1, N canno 'tile
1;

next prime. (We rlefer to this result in a problem below.) Secondly, 1

primneed' not be a prim k.

; '.

y

One of the di iculties, and attractions of prime numbers 1.s #1-eir it -_ . 411

regular distribution. The primes °2 and ..,3are the closest together, and the
.

- -,..---.5-:
q

minimum difference between any *two other `primes is bedause every second
---______

number is divisible by 2. Thus after 2-and 3, the primes Whidh are the , , ,.:.,.... .

' '' " tit; `fi.;:stclosest tokether differ by 2. These ar lied .twin primes -an . r . -."-

i :4*,A`; \ - -,;,,. ...-,,--
. , .

five-pairs are: ,
..... -

,

,

...

-----'5:: .:-,i''
.:...4.i.. 1,....-,, .4. .

'.3, 5; ,52 7; 11, 13; 17, 19; 29, 31 .

It is not knOwn whether or not there is an infinite number of suet-if/341ra:-

On the other hand, two successive prime numbers can be as far,apai-t

you please. For instance, duppose you want to see ten consecutive numbers

none of which is a prime number. For this let

-

/
n = .2 3 4 5 7 8 9 a.o' 11

t

that is, the p;oduct of thefli-st ten natural numbers after 1.' (A.short way

of writing this-number is 11::) Then forM the,following set often consecu-

. tive whole numbers!
c h.

n 2/51 + 3, h + 4, n + 5, n,+ 62 n + 7, n + 82 n 92-'''11\t fo2 + 11.

The first of these is divisible by 2 since nfislthe4ebond;is divisible by

3 because n is, the third by 4 because n is, the last divisible

. 70



by 11 because n is. Now n

happens, n 12 is not a prime number, since n is divisible3'by ,. But n +

might or might not be a prime number. In any case, we haveIshown ttlat tike:

are two prime numbers whose 4Afference is greater than 10. SirdlarfY, we

could exhibit 20 consecutive integers, all composite, or any other nuMber of

6

+ 12 might or might not be a/prime number. As it

consecutive composite integers.

Problems

There is a theorem, much too difficult to prove here, which is called

"Bertrandts Postulate" and which tells us that between every nurbgr

greater than i arM its double, there is at least one prime number. For

instance, between 5 and 10-there is the, prime 7; between 1 and 22

there is the prime number 13 (as well as 17 and 19). Use this result

to provethat the number N in our proof above of the infi itude of

primes,can never be the (n + l'th prime number5unless = 1. .

2. In ellast paragraph of this section we exhibited ten consecutive num-

bed all of which are compdsitd. A'somewhat more effic'ent choice.of

n u uld have been to choose it to bg the produetof:the prime numbers
T.;

less thahor equal to 11, that is

n'. 2 3 5' 7 11 = 2,310

and the write the following set of ten consecutive whole numbers:.

n+ 2, n + n +41'n + 5, n +6, n+ 7, n + 8, n n n 4: 11.

Why are all of:these c 80.te numbers? Is n + 12 composite? Why is

this somewhat more efficient?

10 4.9 'Other systqffis

The fundamental t heorem of arithmetic does not hold in all systems.

simple example of such a system i% the following:

1,.4.4.6, 8, 10, ...,

tA

. .

that is, the's4 c4,even. coufting numbers,-and.the number 1. This set isj
.

2 v...., ..,.". q%...,
.

.

closed, und *A0t441:1ion (thoug of unqer addition). A prime number we
.

.

,

wouIddnat IY'define,as a- epb. ,;!..the,set, differentfrbm 1, which could
t .0-

not 'tig-r :t.ik-as .e!',- c of two nmmbers of the set neither of f--whiCh
N

:

is 1: Wih t s definition it is easy "see that the prime numbers for this
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4.9
zq

k

set are the even numbers not divisible by 1. liciw CO can be written .in two

different ways as a product of prime numbers of this set: 6o. 2 .00=
6 10. These products do not coniain"the same prime nuMbers, and hence the

fundamental theorem of 'arithmetic does 'nut hold here.

On.the the hand, there are many systems besIdes the counting-numbers

for which the fundamental icorem of arithmetic does hold.

For instance,Itt D be the set of numbers of the form,-- where a is
- 2

,

ani-ateger and--k is a whsle number. This set Is closed under agditien ana

multiplication. Here we. must introduce a new term, that of a unit. In,the -

set of whole numbers, 1 afid -1 are peculiar in that they are.divisore of

ever;;, aunber; that is, their reciplapcaisfre intews. wIn general, a nber

of a set S is said to bea unit if its reciprocal (multipliiative

in S. In the set of rational nurbe,-o ev,ew nilml)er'exaept zero is a unit.

In oar s D, the number 4 is a unit if and only if 2t is also in D.

A
But ,if 2

t
is to be-in D, then a must be a powefvof 2y .say 2r . Thus

a ,rt
the units of. are the numbers: c where r-t is an integer which

2
t #.

may be positive, regative, ,or "fro. Thus the units of'D.ere:

. A

-2

2
w ' 7 ' '2

where is- a whole number. CAct4!).1y, migtlt be neglpive, we could

omit the first two f5ims.) Now by analogy. with the set of integers, we call

a number jr.T D a prime number, in D if it is not aunit and if 4°'

40
M = ab , with a

.
'And b in D,

irllies that a .or b is a unit.

To find the prime number.3 of D, nbtice,first t i f m is an' element

p D, it may be written,

where

ca n take u as the highest power of 2 in' rrt if m is an integer, or the
,

deNaliator of m if m is not an integer: Hence to find the priMe numbers

of D, we need only find those among the integers. /

First, if n is not a Prime number, it'can be expressed in the form

n.= ab where both "a,,and b' are different from and -1. Then a and

b , being integers, are in D, neither is a unit,-both are odd, anefhence n

is not aorlme numb'er in D., Conversely, suPPOse n is not a prime number in

m , a.

'u is a unit of D and n isan ob'integer. This is tfu$, since we

D; then ,
44fr. 44-
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where neither fraction, is a Unit,. Assuming each of :the- fractions to be in

simplest form, we see"that c and d must,be7 odd and hence n being an-,

.-integer implies that .,r and s are both zero. Thus n
c
= cd with neither,, "6

'c nor d a unit, that, is, neither _is L nor -1, ands n is not -a- prime num-

ber. Hence we have shown that the prime numbers of D are of the form)
. ,,

-,,,,,:
.pu,,...' ;

where p is an odd prime number and u is a unit of D.
, ...

.

.,c

2r

Problems

1. Let S -be the system of numbers desc'ibed in the first paragraph of

this section. Does the following result hold? If a and b are two

numbers of S , then there are numbers q and r of the set S luck

4

a = bq r,' 0 r <

2. Consider the following set.of numbeq a.; where b is an odddXnteger

-and a is an integer. What are the units for this set? _What are,the

primes? noes the Fundamental' Theorem of Arithmetic, hold 'for this set?

References'
171,.., 4 a ^ '
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4 4 NUMr01°133r) ) 9 (Chapter ili), 12 (Chapterii), 13 (Chapter 5., Appen-
. ,
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dices A and B), 14, 17, 20 (Chapters 2, 3, 4);:21 (Chapter 1),., 22 , (Chapter 4)'
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Chapter 5 *.

THE NOIT- NEGATIVE RAVONAL NUMBERS

5.70 Introduction 4

As we noted at the beginning of the previous chapter, the set of whole

numbers is not closed with respeC-t to division. The purpose Of the-intro-

5.1

duction of"rational numbers is to remedy this deficiency. We want tcfrpreserve

'as many"as possible of the properties we found so useful in the manipulatiorr

of whole numbers,..-At the same time we need to have a system which fits in

with bureverydaypeeds4 Lucki:ly'it,turns out that if we are willing to let

go by the board most of the .:propeAies ;.n the previous chapter, which were

really forCed on us by'the'netUre of the system we were COnsidering.;-we can

/lave both a
c

Iseful system and one that has the properties we described for the

whole numbers in-Chapter III.',

The use for fractions needs no justifiCation, but the need for under-

standing them again rests not ot1y on the rules for mooltpulatidrbat on the

reasons fo; setting up the rulds'in the firSt place. Of course one does the

manipiAlations byrote just as one memorizes the multiplication table. But

-the reasons put a firm basis under the manipulations as well as enlighten what

went before. 4A,Irthermore, for those going on to algebra, here in a simpler
,

setting are reason dhd processes which recur later in the less familiar

Setting of algebra.

The plan of this chapter is as follows. We define what we mean by a,-
1

rationdl number and. give the conditions for equality so that important
4lor6--

perties will hold. Addition and subtraction, multiplication anddilisibn are

defined from the same pointtof view.,. This we do in detail for the reasons

mentioned above. It is also important to check along the way to be sure that

these new ymmbers do what we want them to do; that isthat they are a model

for the applicatiOns we have in mind. The teacher may not want to"gointo

as much detail irfelass as we doherettut certainly the pupil has a right to

know why definitions are set up as they are.

The second step would be to verify that indeed the

properties with which weliere familiar in Chapter III.

complete treatile in thiS/genSe,,' we gtlie only a sample

be done to be Complete.- .' c

-75 19

se numbers have the

Since this is not a

A would have to



The third step would be-to aacialire'dexterity in the handling of, the

processes.. This the student presumably,already has to aL"celpain extent, bott

undoubtedly he needs more. Since the acquisition of this facility is priprily

a matter of, practice, the authorfeels ti.at he can contribute little to this

-;important topi except, by the innusion of sample exercises in this text.

Since fractions Teem easier than negative numbers .e deal, with positive

1ational numbers in this chapter and leave negative ix and rational

numbers to a later point in the bOok.
. ,

5,2 The-definition of r i.ona numbers

4, The mathematical need for an extension of our number system and the

practical deed 5ctend from the same problem--the need to divide sometning

into a number of equal pants. If we are to ditiride a pie into.five equal

parts we must, in mathematical terms, solve the equation 5x = 1. In fact we

needa number for a solution of any evation of the, form ax = 1 provided that

a is any number different from zero. So, taking our cue from the,notation

for quotient in Chapter IV, we create a whole new set of numbers and denote

byo

1/a or
1

or a
a

the solution of ax = 1 with a./ 0.',We exclude a = 0 because 0. x = 0. 'More

abotit,this later. .

1 4
Physically this number indicates cutting something up into a equal 4a. .

o part&. In other words, it has the property that if you multiply it by .a

you get 1. We could.'ndicate this on a line as follows, where a is taken

I-,to-'gie 8.
0 4

0

;I.

The distance between ea441 pair of dots is.one-eighth of the whole.

To be useful this new set of nt'..doers shoua,have certain properties.
. ..,...4

For one thing, it should have the associative property for multiplication.

.
I thisCase:

.,. It.
, . ' i

. . ,

a[(-
1.)bf

=
[
a
(1
Mb = 1 * b = b, a / 0,

a a

and we see that for,M,...=(t.)b, it is true that ax = b. Also we would want

these new numbers to be associative, and commutative under multiplication with

themselves and the integers. Thus we have

f.

[(27)b]a = [b(a)]a = b[(t)a] = b.
At
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o

6 .

Hence x = (-I)b is a solu;ion of both the equations: ax = b and xa = b. Thena
1

1,
% b b \we designate b(-) and"(--1)b by the symbol - and create a set of numbers -

I
a a a a

where b and ,a are whole numbers with a different from zero and having bh

following property.:

a(-a ) = (-)a =;b

for b a whole nuMber and a counting number. That is, our /few n er
b

a
will be a solution of the equations ax =:b and xa = b. formally, we havethe.
following:

Definition: Ntbers can be represented oy fractions 1),(a or

where b is a whole number and a a counting number are called rational

numbers. In other ,,orsb, the rationalmnumbers are the solutions of equations:

ax = b where b is a whole numoer and a a counting number. (This defini;ion

will be extended` lacer to case---wireff--b_and a mayA5e negative.-

This creation raises a number of questions. Pe'rhaps the first is, how

do we know that such numbers exist? The answer to It.his question is that we

know they exist because we bring them into being. 71arder question is: why

is there only one solutlAto the equatiOn ax = 1? If there were two, x and

y, we would have ax = 1 = ay. Then if,the cancellation property is to hold,

the equation ax'; ay, with a # 0, would imply 'x = y.

Of course, .11 larger question is:. will these numbers do whAtieWant them to
do? Here we have to take some initiative and so,Aanage our definitions that

tkeqe'numbers are our faithful well behaved servants. Also there goes with it

a certain amount of faith that 'bur definitions will not lead us into trouble.

Luckily we shall find that at each stage there is really only and chdice to

make if these new'numbers are to behave as we wish themto

W have already made the choice that b() shall be equal to (4b by
a a

writin heth both
a
--. This checks with our practical experience for we know

take one-seventh of a pie and tonsider two of these pieces, we

have the same amount of pie as if we had foundone-seventh of two pies.

that if

will

As a,matter of tact, parenthetically our practical experience keeps As

straight many times in mathematics. We me the world `about us to be con-
--

sistent and if. we.mp.e oUr mathematical system a model of the forld as we

know it we can feel reasonably sure'of consistency in the mathematics.,

'Higher mathematics often leaves the ordinary world far behind oi, from another

point of view, becomes4n expansion itself ofsthe world. Then new instruments

for navigation are necessary. But here we are close to our known world and -

to

we must maintain contact With it, for our o comfort and security.
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.

5.3Y Equality of rational numbers

Above, by definition', we made the product of a whole number and a

rational number commutative. Here we .rant to make all su64products associa-
,

0

, tive. The solutions - of

ax = b and cax = cb
r .--- r

should be tha same since we want c(ax) to be equal to (ca)x. But, by our
o _

4 definition, tho, solution of the first equation is
a

and that of the second is

(cb)
Thus weagreethat777.

b cb

a ca

is Itobe true whenever a, b, c arP'counting numbers. This is iMportant .

enough o state formklly as:

Property 1. If the numerator and denominator of a fraction are mult4pligd

or difv4.aed by the same counting number (or as we stall later seek y any number

different fr6m zero) the number represented is not ehanged.
a

We can checksthis with'experkence. Suppose-a line segment is marked off

in twelve equal diyisions. One third of the segment will be four twelfths:

In general, if a lix4 segment is divided into ab equal segments, then b' of
W. ..

these segments combined will have a length equal to
1
- of the given segment.
a

That is 2-- = IL .
, - .

' a ba
.

$

He we need a word to describe the relationship between two fractions

which re resent the same number. Traditionally two such fractionsfaTe called

equal, but for reasons discussed in the next section we prefer to call them,

least'forthe time being, "equivalent: 'Thus:

Definition: Two fractions are said to be equivalent'if-they represent

/epthesailie number.

PrOterty 1 does not tell the complete story.as far as equiyalende of

fractions is concerned.' For instance, consider
- ,/

6
To. and 37-5 .

By Property 1, 346 and are.equivalentfiections and so are 5 and All

' .:--' 4 2 6 4 6
tilt* of To , 5 and 7 represent the same number. Thus, 37 and 53 are &pi-

,
-1.

6 4
valent even though one cannot get' 15 15-tY-Multiplying or dividing the

enumerator and denominator by a counting,number. ..i.

t .

7 8
.
8 -2

-



7-s. There are two ways of determining whether two fractions are equivalent.
.

.

4 'Probably the simpler,as well as the less familiar is given in
, .

a c

d
Theorem 1: Two fractions

b
and with b and d different from zero'

are equivalent if-and,vily if ad== bc.
9.

b

a adThe proof is,not hard. First 'suppose ad = bc. Then and b--,7 are equi-
, . . 4 ,

- , ad bcvalent by Property 1, ad = be implies 7 and 7.)-ci are equivalent and,*by Property
..-

.bc

,

t

c
c.1,

bd
1.-- and 7 are equivalent. Thus 75- aid T are equivalent. Conversely,'suppose

A A
a c ad a -17 and -d- are equivalent. By Property 1, n- and T3- are equivalent; for -the sameuu

bc c ' bc adreason, 7 and -c-i are
.

equivalent. Thus 171, and 7repre'sent the same number.
1, , 1

"That is,bc(-17) and ad(ti) represent the same number, which implies

bc(1))bd = ad(1--;it)bor PC.= ad, assuming the associative property.
. This metnod of determining the equivalence of two fractions has the

'....

advantage, that it merely requires the'comparison
of twNproducts and also it4.

holds not.only for countipg numbers bwb for any
\

numbers discussed ip this book.
The second metho4of determinatiori iss ewhat more laborious but,_sinte.

e . -,,,it is in common practice anS hassome adv tages over the above we discuss it,

. too. To this end we first define a fraction "in simplest form" or "in lowest
. -

..- terms."
, ,

aDefinition: A fraction
b

is said to be in simplest form or
,

in lowest
`terms if a and b are counting numbers without a common factor greater

.
. '''.'than 1.4

.

. ...

TITis definition is useful because every,rational,nutber can be repre-.,....L. i
N , ed IT a fraction in lowestIterms. To see' -this merely note that if g is

the g.c.f. of c and d, we may divide numerator and .denominator Hof the
fraction i by g and have one ift simplestiorm sinct, by Section 4.4,d

,

d 4 6 1

, I !

eorem 2;=2.
g

and have g.c.f. 1. Forlexample --and ----'are 'both-equivalentg
.1

10 15
.

,

,l' to simplest form.

f

.

`.'-7Thefn we have the following:
1 :,

I

1

,40eTheOrem 2: o fractions are egui alent iffand only if t6 heir simplest

forms'are the sa (See the discussidnafthe properties of an equivalence
relation i

4
n the ri¢xt section.).,

, ,

.

To prove4 s, note that if they are equivalent to the same fraction tper,

...

are equivalent t each other,' T4` complete the proof we need merely show tliat
i \ :-

.... two fractions in; simplest form a 0-equivalent only if they arethe same. Forai c .,/ ,this, suppose 7 and eT are two *eq ivalent fractions in simplest.form..: Then,-
. 'a,. ''from Theorem 1,14e have .ad = bc..Since.1.7 is in

simplest'formi llis the.g,.c.f.
.

:of R and t; hence, from Sect on .4 'ais sefactor of c .. SiMilarly,4
,

...,,, , ..

. .

It
'4 .II. ,, I . 79'8 3 %
4', . *. \''' r.....- ., ' ... , it
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c
since 71 is in simplest form And c .s a factor of ad, c Ise. factor of a .. ,..

.

Thus.c and a are factors of each other and, by Section 4.2, a = c.. Simi-

,larly,:b:= d and our proof is complete.
"I

.../We want ever* counting number"to be a rationalanumber. ,For instance,
.

2x = 6 has the solution3 and also, by our definition of fractions, the solu-

tion which is to the fraction 'So agree that and 3,_ _f s equivalent rac on --
3

.

1
we 1

shall.be two ways of representing the same number. In general 1 x = a has ',
f

the solutiOn x = a and also y. SO by definition

ft

a
T. a

0

for every counting number.

Pinally, we haye avoided fractions with numerator zero. This was just a

matter of convenience. The fraction
OP

should be the solution of ax = 0. We
_ . 401* a

know that this hasthe Solution,0 and hence we define

a
= 0, when a / O.

This is- ite a different matttfrot ha'ing the denominator zero.
1

Suppose for that x = --were a number. This would have to mean

1 = 0 ox. If wexere to mult4ply both sides by 2 and assume'the associative

" property we wouldllave:::

"

2 ,= 2, = 2 (0 x)

iw

This would mean

= (2 0) x = 0 x = 1.

e would either have to accept the equality 2 = 1 or .

dispense with th pciAive propel 4,Hence we outlaw division by 0 and°
. ,

. '
, .

fractions/with zero denominator.
:

, -, 0
i

.

,

4

Prove that two fra tions
.

with the same denominator represent'the same
. .

s.,
.

rational number if. and only if the numerators are the same. 0

It
Proulems

O

Ai
2. Does the conc usion of theTreviolA problet hold if the wor4.".numerator"

b

.
and "denomina or" are interchanged?

i
-s.

-60
,

.*

0
7-4

O,
0

)
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5.4 "Simplest" or "canonical" forms
, (

At this point we digress from our development of the rational number

system to loolc a little at,what we have doile. PrevidUs to this chbpter we

-had various ways of representingnumbere. For instance the fo4owingall., .

represent the same'numbr

10+.3,.7 -20, 1 4- 1 + 1 + I + 1
2

,

V The ere typresebtations of the number five. We would ,probably agree

'that.the simplest.way 176 represent the number five is by the single numeral

5. The Mayan would not have agreed'With this, they would have used simply
a bar: . One way to.show that two expressions represent the same number.

is to show that theyrepresent the same "simplest" number in some well-defined

sense. Though we, may differ on:'What is "simplest," and indeed this may well.

'depend on%the use we are going to make of it,"ye it(should have two ,funda-
N'

aental properties:
rr

. 1. Every numbeil of the kind we are:considering should be expressible

'in'our "simplest form." ,

- 2._ For a given number there is only on "simplest forr" that is, the

"simplest forms"must look the Are

Thee mathematical te for suc a is "canonical form." 'Though ft is

not in the least necessary to use this term, the concept is an important one.

?"For instance, if you were asked, "What is the sum of
1 2
and ?' a perfectly

proper answer would be

1 2

. 5

This is'a representation of thenuMber which is the sum of the two given '

rations num rS. Tut to findthe sim lest'form which represents the sum of

the num ers, t en some :cal

'Of the author that some of

because of the lack of giv

f

' 2
sumdf,

1
and 5, the r uest should ize'something like:

1ction in simplest form he sum: 7 5.
'Flare also'are questions of numerals Ttersus.numbers.

s dare4 a fraction to be a numeral--something which represents a number. 'We

Ulation needs to be performed. It is the opinion

he trouble which teachers have. with students is
-

ng definite instructions. Instead of asking, find

ress as a single

We have here con-

e

a

e the term "equivalence" when referring,t
...)

o two tractions first of alltb

phasize the above ideas and second to make a bow to what we hope will,bec me
.

e, tradition in- eometry .and elsewheri e of calling things equal may- -the
t '

e--Pie same, tha is; identical. Thus if we are to express soiAelve in

AccOrdanc4 wit4 a strict usd of theltem "equal" we would call two fractions4. ,

).

'. '

' i,: ( ,\
h li

os,8
' 8)c
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.

a
;and 7 equal onl 4 they are the same, that is a ='c and, b = d; they are

equivalent if4ad' 0...ft We have tried to be careful in our language to be

consistent with this concept. It is easy to slip and if 'carried to extremes,
a

this care can be ridiculous pedantry. For instance, what is the,numerator of

a fraction? Is it'a number or a numeral? Since it is part of a numeral pre-

sumably it hasottfte a numeral itself. So we do not really multlOt.y the

;nurser :'or of'a fraction by a counting number; we multiply by a counting

num er the number which the numerator represents, and then we write the numeral

which represents this product in forming .Le.neW fraction. This -is of lee

1, a ridiculous way to express ourselves. In the opinion of the author there is

really no harm in calling two fractions equal when they represent the same

number, provided that this double meaning is pointed out explicitly.

In various connections we, shall meet this idea of an equivalence rela-.

tion and hence at this point it is well to consider what properties it has.

,Consider some set containing elements a, O, c, .... These elements may be

numbers, tlidangles, equations--what you will,., Suppose there is a relation

between-any_two elements of the set and call it R. If the set is aset''of

numbers, R might be equality. If the set is a set of triangles, R might be
'114

P

cdngruence. If the apt is a set of persons, R might be the relation: "live

in the same house as." Whatever it is, we call Iran equivalence relation. if

it has the following thiee properties.

1. (reflexive) a R a for all 'a in the set.

2. (symmetric) If a R b therrb R a.

3. ,(transitiveT If a R b 'and b then a R c.

Let us try this. out on the examples given'abovEvality is certainly

an equiValence relationship, because a number is equal to itself, if a = b

then .b = eland, finally, If a!=b'and b ,,c/hen . The last in

Euclidean phraseology is "two things eq to the

,other." tCongruence of triangles. is, also an equiv

thing are eq 1 to each

nce relationship Is for'

the third example notice ffrst that a person lives' n the s e house as hfm-

self, next _if person A liVes in the same hous ;as then B ives in Ithe same
.

.

house asA, and finally, if A and live in the same house and B and',C live'
.

.

in :the, same house,,then certainly A and C live in the same house, . - ,

However, "is the brother oeis not an.equivalence relationship among

people for it satisfies none offthe properties abode. The relationship among

people "is nottallerthae satisfies Properties 1 and 3 bUt not 2.

An.equivalence relation always leads to a classification, provided we

put inn the same
I

clas elements which are equivalent' to, each other j Its.'

.

ll
../

an equivalence relation:has the following properties analogous to those fo

,
1

19.



le. An element A is in its own class.

2c. If A and B are in the-same class so are B and A.

3c. If A is in the same class as B and B in the same class as C, thenB. ,
A and C are in the same class.

In fact, beihg fn the same class Is then an equivaInce relation; In the t
first example above we put into one class all the numbersequal toa given

one, in the sec d ease we put all triangles congruent to one"Th the same

--class,.anA in t third case we classify people by the houses they live in.,

In the light of this general discussion, let us return to the idea of
. .

equivalence of frac.t ns and write in ,twotwo parallel columns corresponding
.te,

statements abput fractions nd rational numbers. To simplify this writing,

=1, we denote "the fraction a is equivalentuivalent to -c- .1 = .2- we mean
"1 . d o cr. .b d

that the numbers which the fractions represent are equal. ° r

L

Property

Reflexive

Fractions0
8. C

b d

a a

-b b

c

,,gymm
a 7etric If - then

transitive Ifs
%c

!cc:- 7 and

then' a e

c a

d b

f

. -

Rational Numbers

a c

T.

a a
b b

c c aIf = then =
d d 0

a
=

b :d

a e
then 17 = F

,

and

---*

c

f

Z . ! '''' 4%-
. a

The parallelist_iesults "from-the f ''that<both equiyaience in t is sense 0 ..
1 ..

. .

equality Are equivalence.relationa ips. We also havea bla hfi ation odf ac-i

, ...

'tiohp obtaihed-by puttihK, in the same class all fractionew ich are equiyal nt
..--.

,.. -..
.= .4

to a'given fraction, that is;. all thoss.Nhich represent the same number.
.

!

'

83

t

r
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5.5,

Problems I

i-
1. Show that the equivalence oflfractions satisfies the three properties

. ,

above of an equivalence relation.

2. Show that if there is a classifi!cation'satisfying the three properties

lc, 2c, 3c then there is a corresponding equivalence relation.

/
3. 'Find examiDles of relationship; which satisfy two 'of tile properties of

an equivalence relation but not the third.

0

5.5 Multiplication of rational numbers-

Since multiplication is here easier than addition, we consider it first.

b *

Let x = --,
d

and y = -.
a -;,- c

These mean that axi= b and cy = d. Thus
,-,

'bd = (ax)(cy) = (ac)(xy)

where for the irst equality we made.use of the fact that ax and b -represent

the same numbe7 and also cy and d. For the second equality we assumed that

our rational numbers have the associative and commutative properties for

multiplication.' But bd = (aq)(XY) means Xy.7 bd.
ac

Thus we hay

- b d bd

a c 7 ac
I

In other words, we have the

Definition for multiplication: The prbduct of two numbers in.fra:ctional

form is represented by the fredtion whose-numerator is the product of the

numerators * the fractions and whose denominator is the product of th

enom nators. -qhat is, to find the product or two numbers in fractional,

orm,
P

multiply the numerators an divide by the product_Of the denominators.
. ,

O 1prtunately this.checks witl some other properties f factions which

are very usefLl.'(172eturnind toll) es, IN knOw t.One-half of ones-thireof a

pie.is.one -sixth. ;This checks w'ttratr.m tiplication .)rocedure-above:

...-..-..,

. !

'.)!, .. A A
1 7..

N1

. :. N... -.13 2 3 ;.

X

;

.

4 2. .R _ "
. --

Furthermore: 2 .- 3- ,=- .-= - 6 whi is, also fortunate.
-3. 1 -P-1 ----

. :

, ;.:" 4 ,-.. - ._, ----...t .,I4 ..:-.. , -,...-- :..

. l' *,`b ., &...b-,.;-, r °,,if,,.,'rb
ilk

- ..- ,... . ; - _ 4

Iiior c7unting numke4s a14. and ,p-.11hus.'ounidefinition of
:?..; .0 , 1 ,;,.;-,,-_;- :---,-,-,..-'-_-..

*.i,

.
consistent with. the probe ,oWegikivaleDek f4;fraatibns.

44

3:till;i:cation is

41. "
; -1' .

" "°
,...=- A
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a ...c 1.n
Exercises

\ ( I;)( s) n(
d )( u).

4
i31. Prove that if - .

r t121.1d s = u, then
-7/*, .<,

.)

/77-"------:-iie- R., etiiitv ence relation fdr a set of numbers S, and supposebe an
.1 that it .c,a '4101;1 aTe (then` in then a R b implies ac R bc. Then
" prove that r?141 nd . c d, then ac R bdi.

. ..1,.-..- ,----
j.*-f In his will Fa'310..e*. Brown 's c if led that One -half', of iiis. -es,1a 'te should--

So tO third to the nexT--rn:'tj.ne 'inadvorke;;. '''7.t2,11irs.,.. ikk ...*:.,--,. .- ,-- ---e,''.., .--, .,1,est . 0. u;Kee--he; died,''whereupon tlie. ee Aogs.set-DA -4,,, ,-;- ''-- , .,... ,..I / +I ' 4 3.,'-h . '
diwide the' cordance with , their f ,:leriA.Szi,e's.' . This, we

' , ,,,. A
easy for theN1-dand,:they soli the 'i e. ut whIn .it came to the! .17_ ,-,-,

liar'ses.,:,.:S.4g,tt:KiA Ooui.ke itag, they talked the more
-.,

sitter the...argt.trit' bacarrm-- , hearing the alterdation,
came toik4e What:. the, difficulty was. Re ''said--tbat in the interest of
pe,ace4 among ,.neighbors, Would contribute his, horse. That made all
things easy for with 18, horses, the eldest 'received his shag, 9 horses;
the second his share, 6 horses and the,youngest his, 2. As it happened,,
the rieighboris horse was leftsoyer anti' he took it back home. What is

moral of this tale?

Problem

1.
a
Slaow that if We define 11)(2.) = (1-4). when one or both of b arid da -c - ac. , 0aie zero, this is consistent with our ..winititn of =0 for c 0.

s

g Division of; ratiAal numbers

We devised rational numbets so
seem to have accomplished it for 'countng pumbera

that we could divideithe
in-that we can solve ax = b

4,

ivided.4417e

for count qg numbers a and b.i Blit what happens if a and b are tnem-
selves rational numbers? We take care Of this probleft in two parts.

:Fi..rst, we vish"-Cor-find a solution of the equation:

c
I

Since, we at the we 1-d fined property for ,multip ication t 'hold, the
solution x shOUld. ati fy the "equati4:

4 ; c . s;
O,.

..1),. i
4.,, , 85- .3 96 .

, q 'I ''. '

a
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r .

&(-c x) = d.

From the associative property this implies

(d 2-)x = d
d

'

c .
,

. But (d -9 = c and hence the equation above becomes

ex ='d.

Thus x must be equal to and We have shown that if the propertieswe

.
.

desire hold) the solution of

x = 1

must be That this is indeed a, solution can be verified as follows:

,

--;--
r

Mechanically then the\fraction which represents the solution of the equation

i 7 .

z . .t.r c

.,.', - is obtained.* interdInging the numerator and,denominator of -

4
d'1, -:-

.6'
. )

,,. a b
,

At 1- x

The numbers - and - are oalled_reltiprocals or multiplicative inverses
b a %

.

of each other. Their product is 1, as may IA! verified directly by.the

.definition%of multiplication of fraCtions. In th$,set of whole humberstfiere

was only onenumber which had a reciprocal in the set; the number 1. If we

were to lodk ahead and include the negative inVegers as well, we would have

only mi.:more? -1. But for, the rational numbers We have Shown that every
1,

number except zero has reci vocal. This is very convenient for if we 'wish

i i 1

to 'olve the,equation rx r
...-

Are, r.....and s are rational numbers we need

merely multiply both side of he equation by the reciprocal of r anduse
1

the associative -propertyoffiatiplication Is follows:

r . .

.

1

. -.* I

. N
nac = s implies - rx - - s . .-

r

1 1

.n

c d cd_ = =
d c C. dc

. ilA
u -I9rx = k -9y .x = x and e see th.a-Cithe qp ufion'of rx =s is

r r . 0

1
,

X = (-)s . 1
r .

, ? .f
) r t

s
hefdefinition of 7,:and,the

. .

numbers in fractional/form,
ri

I

t

defipition. in Section'5.5 of 'the pro uct of, .' . .

-1, t

1
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a- 'If we express r and
b

as fractions' an
d

i
2
we hae

a c-

aIf we multiply both sides by the reciprocal of We have

(-11)(2) =1/12)(2.-)x = 1 x =-xa d

/'Then x
be

is
aN

the solutiori of Vvx =
,c

ad

By showing how to holve the evation rx = s with s ration

numbers, we have shown that the set of rational numbers excluding zero is

closed under'd-iyision.

I

4

Exercises

1. By definition, the' solution -of ex = b is
a

for whole numbers b--and a,,

with ,a different from zero. Why does this also hold when

are rational numbers, with a different\fr& zero?

.-- c
-d-

24

a
Let x = =y and ,z = T, where a, d, e and f are whole'numbers

with, none of b, d, f zero. Find expressions as a single fraction for

each of the following:

a) ' (xM/I

Are the two results eqUal?

1, b
3. 'Is

(a/b) + (c/d),
+

d7 assuming that all letters stand for whole 4,

numbers'and no denominator is zero? (Hint: check this first for

a and b

1.

numbers.)

For rational numbers x , y ,,a111 z (none zero)

(x/y)/z,= z/(y/x)? .

...,

(Hint: -cpecWthis first for numbers).
..

.

*
1,

,-

II.,

oes. the following, ho

Problem
. -

bcVeAify/idfrectly that (2)x, = (24 has the so ution
d ad

( '(
.1
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,

517 Additiodoof rational numbers .

Here; as above, there are too problem o. 'First, how can we define 4dition

rational numbers.so that willit wi have the propertiesiant? See4d, after

we know the answer to the first, 'what is the process or a process by which we

can :express as one friction-the suns of two Timbers repA seated by fractions?

4e
w

For.he.first, we can proceed asinthe'section on nultiplication. We
e 6. l

have ax = b and cy ly\and wish to find ,x,i- y.. If we awe tb use the distribu-

-xtive property*, that i5, if rational numbers are to have- this property we need
.,.

to change the given equationst.into equivalentee8 in which the coefficients

ofx and y° are the same. We can do this by repla'cing -

# ,,..
..

ax = b by cax ='bc and cy = d by acy = ad.

1-t.en n hnve...
?

..., e

. , b'c + ad = cax + acy = ac(x + y).

..
Gy

. .. ."6 (bc + ad)
./This means that x + must ,be
, - .ac

. In other words we have the following'
4,

' --
definition:

b,
_
bc + ad

a c a.c r

We have thus found the sin le fraction which repreJens the,sum of the

numbers indicated on 41,t le side c4 the equality. The fraction
(bo t ad)

ac

may not be-in simplest form, but it certainly is a single fractioniwhieh

.11

-'3'

retresents the sum.

There is another way of arrivingat the same result.40This.steMs from

observation that: if two fractions-have the same denominator a fraction

represery_inc he sum is o e which b s the samedenainator a th two, d

whose.numerat r isthe.s of the erato -5 ofithe two. Tk is, again,i depel s

on our desiri/ to have the distrbut ve property. Let us se how 41i4 goes:

r( 4? t(21)

. .

If the distribUtive property is to hold, + must be eq 1 to

1-
(r +

s

This proves the underlined statement abpv,e.
d t".,,.

1
. So now, ifiwehal.te fractions 1-2.and - we'first write them a two equiva-

lent Tractions'With the same denominator:

tab be
and

d da
=

c ac

.

t

4

.1
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i
- .-

r,

. * - 1-
'km

b d bc da (bc + da)haveThen we ha + = -- 1- -
a, C ac ac

:

, which is the-same what we had

previously. ' . ' '
. ; P

There is a, .51 more''efficient'way to add two rational numbers if we

'are interested in having 'the re's ltig fraction in simplest form. ,ship is-6
41. . - .

little modification of Ithe last method. What we we/1'C is to have a denominator, .-
.

which is_the ame-flor bothfiqi(ctions. If wp could have a smaller ane, we wound -".1

IlaveMscomputatiop. 'The denomigator common -to the two must'6e4,multiple ' .
-

t' 4of both dehOminators. So the smallestpossible'denohinator is'the Yeast '.-

. . 4 i
comm2A multiple of the two. --, .

.
, ,

....10". .. , .

, ...,21) Probably the best way to explain this. process is by means: of a4:Mple,'
-:

y. 5 7
. .

example: Suppose we are 'faced wi-th_ the sum 74'
15
:-=. Here tile 4c.m. of the

denoMinators is 300(see gection'.4.5). Since must he muaiPL.ed by 5:lo get
: N, i '

.'?,), we multiply the numeratot and denominator bfhe firstrction by 5 and

since 15 must be multiplied "oy 2 to get 30 we multiply the numerator
o

,
.

-

_denominator of thesecond:cfraction by 2: Thus:._4 . i.

25. and 7 - 14 -...:,

0 .- Td
(25 + 141' 3r? e % ,. 1,,

and tile sum is
30

- 7. NotiCe that for all our laborlhe resulting
..

,

. fractionis ph in Amplest form. However: it somewhat 'simpler P!tflan
17

result
1
--- Which we would halLe obtained usihg the definition alote., tuall

.

the edvantages"A using theil.c.m. arp much greater in algebgaic expressions
_

.

Phan for numbers and for this reason there is some poi,bt 111.showthg this'

method to the students. But, in the:tpinion of the author, it is,*tter, to
.

learn the process first wj.t.hout the.use.of the

.71WC

Exer ige

,l., Prove that be is the gic.f. of b* nd .d, an
c ..

and a- are in s mplest form, then so is th -fraction

4.
' J ,%

adO be
I

You sere may want to refer back to Sectio 4.2.

a o
'Let 17 and -d- be :two fract4ons in

not'an integer ailless t= d.

simplest form. Show that their

.,, 7- l'r,34:
.... /.

....Assume that all letters below stand for rational numbprs'nd no.,....

or ii zero. Then fi d\Thich hold for ell"rati nal'numbe:
flie letters (It Ili ght be helpful 'f' st to t, y out par4ulir4.
: 1. .1! ' .; . ', , --, /

!

values

numbers

)



.

11/4(Note: t expre.-,sion qn the right side of _) is called the harmonic

mean of a axd p., Try it for a = b = for example.)
5

1

9

1)
2 2ab

a +. b
_

1
4.
1

..f

a
lt

a b

,.).
a + b + c

- b +
(a - b) + (c b)

.3 ... 3

2ab 2
a + b i I

a °T;

3)

I

Problem

b d (bc + ad)
1. Prove that, + - when b or d or both are zero.

a c ac

This extends our definition of addition from positive rational numbers

to mtn-negative rational numbers. '..

5.8 The basic structure of rational numbers

Now that we have completed the basic-structure of non-negative rational

numbers let us look at what we have. It is understood in the_simmnry hpirrl

that a, b, c and d are whole numbers and whenever %number appears in a

denominator it is not zero.

1. The fraction
a
represents the number with the property:

(
a
)a = a(a -) = b

0
a c

2. Two fractions
b

and represent the same number if and only if ad =,bc.

[3. The prdduct of twol

d

fcaotions.(or, if you wish to be part[Lcular, the

action which represents the product of the numbers represented by the two

YActons) is given by . - , .

-;
, (-t1) (i) = g ill ,f .

, a c (ad 4 bc)
4. The sum of two fractions is..ib +ed -

...
, bd

.."..,...'

!: *".-- .

(-:

7. The set of numbers representqd by the fractions, escribed above is

We chose these defini.tio so that certain properties ( e property,in

one rase and another ill andthe ) would hold' t at this point we do dot knows

that a)\l the desired ro p e tie, hold for all the operations des ribed above.
;,,,'.

to.be systeMatic,be Ore ,work with our m numbers too much, we should. .

called, the, set of 'non- negative rational rsambers.



iff

C

4 identity 0 and the multiplicative 'identity SlnLlarly

1 r
=

1 r
-
r 1

1 s 1 s s- s 1.
'

Pi-obab y the hardest is the'associative Property for addition. We do
,

half of it and leave'tcre-Other half as an exercise. We want to show

_ i..
.-f, ^1 . 4.8

list all the properties and show them one by one. Here we merely list the

properties and ver a few pf them. R
+

stands'for the set of positive .

rational numbers an iR' the set of non - negative ones. Where R or -are not
indicated it is understood that 'the letters stand for rational numbers.

in 'a 4nd b in R (or RO'implieg

Closure:

Commutativity:

Associativity:

Identity element:

Inverse element:

. For addition For multiplicaeon

a +'cr'-ifl R+ (orR') ab in R
+

(or R')
.

- .

a'+ b = b*+ a ab = ba

. a + (b+ c) = (a + lc) + c a(bc). = (ab)c
. t, .

.
a + 0,'-= 0 + a = a

8 . . . 1: = 1 .a.-= a41 .

Does note exist for
_

If a is in R
1-

addition. there is an
:i cr:/"" , l

element in R
a

such that

a() =(2.-)a = 1.O
, a 8

Distributive Property: "a(b +c) =ab+ ac and (b + c)a = ba +ca,

Most of thes

propertiesfor the

instance, if
r
and

s

counting numbers,

properties follow quite easily from the corresponding
I 0.

t

counting numbers, in view of the definitions given.' For
t

are twe rdtional numbers which r, s, t, u are

their sum is, by definition, (ru + st)/su. Since the.set

of counting uuMbers-is closed under multiplication and addition, ru + st and

su are counting numbers and the sum is a. rational number. Henee we have)

psshook. that the closure property for addition.nolds

zt. For the identity el nts, note that using the definition of addition,

We have:

0 r ( + 1 r r 0
s s r 7 1'

"using the properties of the epunti g numbers involving both the additive

a

,A. ,t = (11 +
r 4: X

S u' y s

where all the letter stand gor

is zero. The left side is equal to:

numbers and none o

i
4

the denominators
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4

r (ty + .ux) (ruy t sty + sux)

1.3.Y -suy
. f

Since the set oT, positive rational. numbers with the operation of multi.-

plication has the properties of closur associativity, existence of identity

-

and inverse we say that this set forma' astultiplicative group. Since,

ffur hermoe, multiplication is commuive, it kallalled a multiplicative

Tian (or c6mmutative) group. In fact,, any. set with In oper;Iion (some\
%

0

A

rule of combination)' is said to fd,m a group if it has 1,he four properties .,

. named at the beginning .of this pa-agraph. We shallfmeet other examples

of groups later. Notice that the positive rational numbers do not fArm an

i asdditkve group since neither the=identity element for addition.is included

nor the inVerses. If we were to consider the "ntn-negative national numbers?,
, .

there would be an identity element but still-rp, additive inverse.
'-.

. In this connection therd'is another pair of properties which, we should
.

e. . r 0

point, out and for which we had a precedent in the set of whole numbers; "

. , I .,

well-defined,nr6pertiesa \ The

a `= implies a + e
.

= b + c' and ac 4 be .

..*
.

. i,

Thes e seem quite obvious. They are in fact a joint property 'of the definition

of equivalence of frqations and the definitions of pd/ition and multiplicAion.

ur reason for emphasizing,them here is,thatvldhirleyjare basic.,for the'manipula-
,

r

tioni6f equationd later on. .14 th,Toirnguage of Fuclid this property of

&=1,ition was: equals added ip equals are equal.
....

. We..ohow this for addition and leave,ithe. multiplication as an exercise:
Ito t

o

r t 'r x t x

Now

Supp9se - ; we wish to show + +
s u s yuy

The two re esent the same rational number if and only

that is

(ry + sx)uy = (ty + u4sy
,

r i

P
,2 .

1 . ruy ,JAsxuy = tsy
2

+ uxsy .

t
.1 I

.:t:f., %.

r t
A ..

But = - implies ru st and ...phus, by the well - defined property for luitip3.1-,
S te k

cation of ighole numbers Tuy
2

-,.tsy
2

and lly thp'well-'defined property for the

,. *0 -- m

4.,

V'

,
r.
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ad ditiot of whole numbers (as:well 'as,Ithe associative and.commutative pro- ,

nerties of multinIication):
1.

:..
,..1 2 ' -) $

ruy t sxuy = tsy- + uxsy.
/ .

This ;s what,we wanted to prove./

.Equally Important are the

Cancellatijon properties

!: implies
s y. 0 y

y u
= (4(x) x 0,

y

r t
=

s u

r t
implies =

s u

These follow directly from our definitions above...an.d. ;the Corresponding pro-
.

perties4 for ti.e whole numperJ. We show how' it goes for multiplication.

= 32."1:71')(2 =
tx

y sy uy

Since the two frvctions are ecT.:ivalent we have
et.

rxu7 = sytx.

That is ru(xy) = st(xt).
\

Then, xy # 0 and the coacellationproperty tor the product 'of whole numbers
implies

ru =' St 1$

which, in turn, implies
-

c
$ I

.

I

S U, I .
.f.

ef 4
.

0
Finally there is one very important consequence bf tne closure property

<of multiplication for the numbers of 4 9Fils!is that if a . and b are

positive rational numbers their product must, be a 'positive rational" number.

Or,,in other, words,. if the product Of two non=ne6tive rational numbers is

zero,'at least one of them muss be zero:

if

1. Prove tliq associative

numbers.

2. Complete the proof Of

numbers.

.1

Problems
!

pronee*Ar multiplication of lion-negative rational
,t .

,

the associative property for addition of rational'

93

9

1

f
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3. Prove the well-defined property for multiplication of rational'nUmbers.

4. Prove the cancellation property for addition of rae.ronal umbers.

7.9 Subtraction of positive rational numbers

.Here the situatioris.qui-te analogous to th4t for the counting.numbers.

Hence it is desirable for the .rea erito renew hla acquaintano_with the sub-
.

traction of integers-J. lust as for the whole numbers, the equation r
'

sometimes solvable in the set of nor.-ne.gative rational numbers and sometimes'

not, There are three possibilities:,

l. r + x = s i.s solvablefor a positive ratlenal number x.

In this case we Say that s is greater than r and writes > r.

. 2.' r + x = sis solvable for x =.0, in which case r = s.

. 3. r + X = s is not rue /20T any non-negative rational number x.

v.,
Of course then we need to have some way of telling whether or not one rational

i

, .

number ,ti_greatFr. than another. For the counting nuMbers we- referred to. the
i

J
nifbercjine. :For the rational numbers it.seems better to deal with them first

,. .

al- aically for we can thus relate the problem in rational numbers pthat

unt,ing numberv.'

Uppose r =
b

and s = We We can more easily compare them, at least at

if we write them asifractions with a commonidenominator. Then our.

.eqllation r + x = s becomes:

be da
+ x = .

ac ac
f

. or, if we write x = -I-- we 'have , , Jo'

ac

(bc + y) da
- . 4

ac ac
^

tFrom problem 1 of Section-5.3, these can.be equal only if

bc + y = da..

In other words we have showrithat the following tmo'equations are equivalent

if,y = (aF)x

( 1) bp + y = da

bd '
+ x =

a

Notice that if x is a positive numW so is y, and if )4= 0 so is y. ,`thus

we have

9" :10
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1.' If:.equatiOn (2) is solvablefor a positive rational number' x, that
bd. ''

is, . if. ,.> ,then da > bc. Conversely, if da > bb, equation (2)haa aa

and
bPositive rational numbthlas its solution and --;
a

> .
c

. .
.

2. I'' equation (2) j..s solv ble. for x = 0, then d b
= and da = bc. The'

. c a .=

converse hoa.ds.

If
.

equatIon
/

(2) Is not solvable for a non-negative rational.number. x;

(1) is Cot solvable for a whole number y. This_means that da < bc and the

eqUation'da + z = dc is solvable, that is the equationl b
i+ x = is solvable

t a

and
d

< o
c a

Briefly, then, we have4the followfmg:

b. -(3.
1 < if and only if oc < ad.

a c

'

2..
a

d

.*
= and only if bc = ad. ,,

c

b d
.3. --> if and only if bc >

a c s .

A

.Rea4yki"of course, the first and third cases-are essentially the same.
0

A11 this means that if we have any two rational Ilumber's r and s, just.
. ,.\

.
,,........._ .a ,as for whole number,. one is greater thpc the other 41* they are the same

0
°number. Thus the rational numbers caD.be put in order on the number'line.

-,-*
b - ri

just as the whole nmmbgt-s4v.% We can compare.t,wo,..c bers' and by writing
-r a .c.

thj,,as fra&tions.14ith the same denominator and comparing the numerators:

or, what 'is simpler, comparing the products bc arlod.

Just as for ehole numSers, if r and s are, 1.atiOnal.numbers with i ''
, 4

, r e s :4e write the solution of r + x = send x r r, = s as s),- r: This tells -
t .. .

.
us

k

d (da bc) .
c .a , ac -

,..

5.10 Density . . t ,

In Sect0p,3,2 we gave a definItion of density which, for covenience,c

\

,. .
we, repeat here as: ....

...

." Definition/1: 'A set? S, with a relEktioneR,haying the propeif between-.

, --:1-`. -I -

-....,--"'t
;

- -ness IS cast. d dense if, for any 4o elements .Of the,,i_Ite.--i,s a third

element b ween them.
. ..

If is the set of ationa4 numbers and R. s the relation "lesS than,!',
,

we can how that 41e set $ *is dense' by showiltgt,,,_, twen any.tworational

numbers s and r (with s > 0 there j.s-a rat'onal number. In fat,,, such a

number is

55

Tie,"00

V'

I
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r
s - ,r

-
s + r
--7"."

Th.is shqws, that oetween any two rational numbe4'.s there i an

'infinite number of rational numbers. Why?
,

There is another definition of density for a subset of real numbers and

-the relit on of ineql,ality which is Nora in accord with the usual usage in

advanced mathematics. Hereis t'he eCond one:

Definition 2: Any putbset Sof the set of real numbers is called dense

if between any two real numbers the i8 a number of S.

Notice that these aeiinztiohs are not equivalent! 1141,fact, Definition

2 implies Definition 1 since rational numbers are real numbers. There are

sets, thoagh rather comblex''ones,'-.hich are dense by Definition". outnot:by

Definition 2. To that the set of rational numbers is' dense in tlivs

-

sense word have to show to at b".een any two 'real numbers there is a

rational r;;:qer. We can do this a little more.easily afte'r we 'rove mare

experience ,,ith inequalities and we coAporie this until Section ").3.

`.

Exercises -

1. For each of the following pairs of fractions, find which represents the

smaller number:

and if4 a)
18 .18

7 d) Y7- and 9

11 ( - 17 15
/

p 73- e) -9- and

--..anu --
17 A 15 17

15
9. 7

and
11 -,, .

-Which of the above could be answered -by inspection* without calculation?

.

2. Put 'the following.riples of number,s in the proper order from lesser to

'greater:

5 11 16
11.- (2,,7' 17' 74 17 ' 7 17 2

b) 1
16 5

If a > b with a and b whole numbers, which of'the following is

gi-eater: Can this be used to simplify some,of the work in the

previous exercises?
. .
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0 . )
4. Show that if 1 is the g,c.f. of b and c, tnere are integers x and

y such that

x 1

b c be

(see Section 4.4).

One bell rings every thi d of an hour and another every

They ringitogether on the hour. How close together can

out ringing simultaneously?

t

fifth of pn hour..

they ring with-

Refer to Problem 4 below and write the Farey Series for n = 10. .

0 Problems
0

0?
I,. We compa.-6-61 thevalue of two rational numbers in fractional_form-by

con9arihg the aramerators,of two equivalent fractions with equal denote-

natal's. CoulAie have done this by comparing the denominators of :t1,:p

-:;-841..

quivalens_fractions with equal numerators? If so hoTe?
:

2. II,rove that if and are two positive rational numbers and > 12, thena d.. a

(a) is between ',hem.
a 1

3. We could hive chosen a simpler .lefi?liflon of the sum of two tractions,

1

,hamelyr s

(r t)
'.- s 41) (s 4 u)

In,leed:thia is sometimes 'seen. ,1l-at would be ,some peculiar consequences

,Of:this definftion?Which of "the fundemAltal properties for adtlition '

51oU1dhold?
7 ST' ,

4, There an rilteresting series 'called the Farey Series which -cpn:4ts
Ak

of all.thefract ons in Increasing.Order between 0 and 1 with.,denomi-

, ndiOrs less of equal to than a fixed number n. For n = 7 the series is

4

s

1, 1 1, 1. 1 2 1 a 3
0, 7, , 5 , 5, , 2,

4 3 2 5 3 4 5 '6
-7, 5 , 7 ,, 5 , 4.

%
.,

.
. - .

: One plCuar proPerta is that if any three successive tprms:ere chosen,
,

the'thi.ddle pne Can be_bbtained from the other, two by the proeess ,des-
,

1 2 .cA
.

bed. in. 3 abore. For instance, if we chooSe -,l-, ':, .., we hare ,..
.1

7

. e 4 4
1 + 1 ---3:

.,j;..i..,.. ,.",,,.44, 7 t '- 12 17 '
. : f ,:..v s..-.:. r. 1 .

4. % f.t %,' ..
I.e.

.

W.,
97J`0;'t

.

',. .
. .

.-

1 .

a
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You should check this for some other cases. Another property, and the

one which Makes it useful in the theory bf numbers is that. the difference'

oetveen any two successive numbers of the.:series is 1,divided by the
3 '2

5 3 5
product of their denominators: e.g.,

7
- - = .

(-rd.

5% If is a fraction in which a and b are. counting numbers, willa

b

number which tAe fraction represents' increase, decrease. or remain t

same if we add the same counting number to the numerator and denominator

'of t4e fraction?
/

5.11_,Ordered number Pairs

Whether wA write a :fraction in the form

0;2

2
2/3 br

3
- it is 'stn 1,1!brde2.-ed pair"

of numbers (or, if yck wil1,4numern1s). In the first instance it is ordered

from left to right since 24/3 is dif erent frOm j2; in the second instance it
4

is ordered from top lo bottom since,
.3 9

different frane=. .(Actually in the

secon'dcase we order the numbers from left to right when we say "two.-thirds"

instead of "thirqs-two.") Anbther way of writing a fraction could be (,3)

though' this seems awkward sindeCe are not used to it. There are.two advantages,

however, in writing\he ord4ed pair in the form 4,3). The first is that we
.e t

can ascribe various meanings to it as'we please. One title it might mean 2/3,

another time 2 1. 3,or, again 3 + 2 or 2 3. Inothe latter two the

Ordered pairs} would 4e different but the sum and products would be%-the same,
°

e.g., the ordered pafr'(2,3)Ind,*(3,2) would be IlsOciated,with the same'

number for the scum since 2 + .= 3 + 2.
, . :.

A second advantage of usin he more general notation, (a,b), is that we
.

Flinset up a one-to-one corresp:.ndence betweQm thes% ordered pairs an a set
. .

,

of points in the plane.' COnb,idelf two number raysperpendicular -Co each other
.

with the counting numbers marked of? on them as i0iCated. The numerals on ,.

- ..
.

...

the horizontal ray can_defiote, cauma and those.on the vertical ray rows.

We can thet form a grid .(or
0

attic'e) and:each point where the lines of the

grdd croSs cabe identifie ,by th& collumn'and row in which it occurs.. Thus

the point in the 1 column a d the.3rowcan be denoted by the number Pair

_(1,3). This will ,,i.ped'different point.Sfom that in the 3 column and 1 row

'which is design

order; (01.0),

cr,e.

be d Rotqd (

a id ross,

Pa-fr Wh'e'r

ated by f3,1). ..The points on the;VertAal ray will be in

e0;XY, (9,23,'), and' those on horizontal my will

6,01,0), (2'0 , Every point, where. the lines of

that is, every attice point designated by'an,ordered.

Vox and y axe whole numbers and every ordei:ed pair (5,y)
- -

e
a.

r
,o; I

ofi. '

°4,

e ° .

98
,

O .

),
ONO

ea
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i.
a

4.
...N

-..
.

4.

7k.' i

.

,

II .

I
I

.
S L - --..- -.7.....S. ... . ...L.). i

.

.
(11,b) I

/16-4-. ql

4
. i

l
v

. ./
t .

IV I

1

N.*
4.°

t.

I

.

,

(2 , 3) .
.

...,

. .
(9.

. \
A

(6,2)
. 4

.

4
ill'

0
"-*-

. .

(34)
k ill

. .
.
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: : -1. * 7 . , .
-,':- ( (0,0)((1,0) (,o) (3,0).(4,0) (5,o) (6,0) (7,0) (8,0)

kr
'

.
.

., .
..

' 'o* thole numbers will designate a point. me point' (O,4) i-s called the4

ori-in. In other words theze is a.1 - 1 correspondence between the lattice
At

points and tire ordered pairs 'of whole numbers.

i

a

e

AMIlt ,
p. . .,

Now returri to the inteePretation of the ordezed number .pair (a,b) as the .,o,
, *

.

fractioh alb. In this charter the only frActions we considered are /p ,
0

' those .in wiiich the numerator is d'whole.number and the denominator) a counting

number. 'po,by the means, described iri:the paragraph above, we have a one-to-
.

- .

gne correspondence between a1.1 such Fractions and the lattice poitatT of,the '

.

pline, except those on the horizontal ra seY.the,lattice pOints would porres-N.
%

.
.

_pond to the ordered pairs in which the second element is
..

zero. .

.
.0This can lead to a correspondence betl.teen thet rational number and .

lattice points by way of the.ordered pairs. Since 1ere the. situation is a

little more complex, first we find the lattice points which correspond to the

integer3 or 3/1. (The-tfacher may wa t to postpone the rest of thissecti&

until he considers Chapter IX.) Other' apt?.ons representing the same integer
. .

rl"are:
r

.6 9 12'
.

-0% , 3,, 7" , a

. -

.4

,
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1'
for allY,counting number a: It' you loOk at the set of-corresponding points of

.fou will'seethat they are all on a strai,ghtline through the origin

and'tPe point (3,1). Similarly, if We Consider the pair,(2,3) corresponding

. to the Fraction 2/3, then all'the fAirs which' correspond to this rational,

/number be (2a, 3a) for counting numbers a."'Ifthese are, dralan on the

grid, they 14111 oe seen to be tIe lattin points on the line 'through the'.

origin,and the point (2,3).
a'

fn general we shall show in Chapter IX that-for any fraction 172 the

ordered pa ors whichlare associated with the fractions representing the same

#ationaI numbeCewIll 511 be on a line through the origin a;c1' the poirlt (a,b7.
. . -
.t'urthermore, the poilit neorect.to the origin wilal porrespond.to4!che fraction

in lowest terms, since its coordinates will

.

.be-the least. Thus we-not only

hare a one--CO-one corresponleEceipetween the fractions and the lattice poihts

hot on the horizontel raz1t to eaCh rational number corresponds a unique
. ,

2non-hbontalsfine through the origin; KIversely to each non- horizontal line

through the origin and a latice'point'corresponds a unique rational number.

Wp could even. carry the correspondentp a.littlefurther and "add points".

, 4 Wei know, from the sum of two fractions, that
0' " -

c ad + nc
b d '.bd
-

qL

/2 A
If we write this in the.form of number pairs we have

. .

- (a,b) + (cd) (ad +

. So, in-tnis sense.the sum of two lattice points ia.ariother. lattice point.

Moreover we caQ, in a senSe,sddlfnes,'for suppose the first lattice point

is on line L` through the oigin and the second' on line L then the sum will

be on a line throtilgh the ariein. The well- defined property of the_sum_af

two rational numbers tells us that if we,rpplace the first*latticekointby

another- lattice point on L, and the second lattice point by another lattice

point onLI, our resultawill be a lattice point on the same line L". For

e)omple):,

.

2 4 10.+ 12 . 22
3-4' 5 15

.

2 -- 10 4
---1Z-1,6-TreYadee'V"then-TIMIent'frad*mr-17--and,.7 by the equivalent fraction

28
and add" the numbers which they represent we get

/35 g° '

i

70 84_ 154
105 105

100

**I
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22
which is equivalent to.r5 . This means that not only do we have a corres-

pondence between rational numbels and lines through the origin,but that this

correspondence is preserved when weadd in the above sense. The same could
, .be seen to be true for multiplication. In such a setting as this, the wel1-.'

defined property is anything.but trivial. It -was for this reaon that we

mentioned it earlier in a simpler setting.

The ordered pair is 3 way of writing what is called a Cartesian Product.

FOrmall, if W is any set and N another, or the same pet, then

W x. N

stands for ttie set of ordered pairs (w,n) where w is an element of W and

n an,element of N. ,above, W is.the set of whole numbers and N the set of

natural counting numberp.

Tie teacher will have to use his jOdgement on'how far to go with the

ordered pair idea at, this point, but it.is a fundamental pointeorview and we

shall meet it again in various guisbs. .

2-

Problems

Why.are there-po r..,ional numbers corresponding to the points on the

horizontal ray desdsibed above?'

2. Zupieoseo(a,b) were another way of writing'a + b. Wha,t, points of'the

lattice woup represent the number 4, the number 5, in,general the

number n?

3. Suppose.(a,b) were another way.of writing ab. What points,of the lattice

would represent the number 5, the number 6, the number _Zr in general the

number n?. . /

clo

11P4 Suppose (a,b') were another way of

lattice 'would correspond to whole

the whole number n?

writing a - b: What points of the

numbers. 1What would correspond to

-Reference

Parey Series: 7 (Sectibn.3.8) Groups: 12 (Chapter c,) and 21 (Chapter M, ')
". .7

8 (Chapter 5.), 9 (Chapter 1), 13 (Chapter 2), 21 (Chapters 1,2), 22 (chapters 9,12).

101 1 0
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. Chapter6

RATIOS,. DECIMALS AND APPLICATIONS
4

6.1

6.1 Introduction
4

Here we ar'concerne3 with another way of representing rational numbers

whici extends to'other kinds of numbers as well. Anyone who. deals with

mathematics knows e usefulnesszof notation but he;also realizes the danger

of disassociating notation from what it really represents. For many teachers

this disassociation has been especially notorious in the case of,decimals.

But many other teachers have for a long time taught decimaLs in relationship
4

to the rational numbers and, in fact, the old teem "decimal fractions"

acknowledged'this relationsh' . Tt is at this place where the relationships
s.,

are most imporlant, for a knowledge of decimalorand.their'connection. with
V'

fractions reinforces knowledge of both.

It is,especially important to maintain a prope perspective with relation

to applications. There is, first, the choice of applications. These should

be largely within the range of the student's actual interest and practice.' If

he has a bank account, interesS, is importaht.. rf he is concerned with,base-

ball, the percentage of games lost or won is, important. But it is a rare

junior high school student who pays income tax or who borrows from,the bank

at a discount.

Second] it is important that each applidation not be treated as a

separate body of knowledge but as having a common base in mathematics. For

instance, the two following problems g-e the same mathematically and the

student and teacher should recognize them as . such:
'.1

p Problem 1. If the population of a town 'is 1000 gndsit increases ip one

year by.5%, how Many more persons are in the town at the end of the /eel:than
,

/

at the beginning?

Problem 2. If 41000'is deposited in a, savings account and each dollar

.

A
erns five cents interest'over the period of a year, what will be the interest

, at the end of the year on the total amount?'
.2

Finally, it should be kept in mind that it is the fundamental ideas

0o0

which are important and in no case should applications outdistance their. 0

connection with these ideas. Xhe most .important.tshing is that a student haves

a firm base of knowledge and-experience so that he can-make -h t&oyn,applica-

trons as they arise.

, 1031 0 6
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6 . 3

.2. Ratios :

Rational numbers ye Ina kinds of applications. Since the language is, .

different,Motetimes we eve to think 9 second time, oefore:we realize,thai it

is really a rational number we ar e.1"ealing ith. Wz hear'such things as: one

out of five children entering nign scnooZ graduates from collegt; the odds are

two to three tnat that horse dill place first, the sides;df the two s-imilar

triangles are. in the _ratio four to five. Each cif the above could be stated

in terms 'of fractions: one firti:oi. the children entering high school grAduate

'froM college, the probabqit,ftat the horse will place First is two fifths,

eac;.._ side of one triangle isfour-fifths ,the length of the corresponding side

of the other triangle.

A proportion is only a/relationship between two fraCtiono.v"Tv-is.io ,

five a tour' 1s to ten" is merel: a different way of Saying:

2 4,

.5 7 1(5-

In -.ore 'general t'ermp,lie a, o and are proportional to A, B andC we
.

mean that for some fixed number n: a . LA b = nB, c ,. nC. This just means
N, ,' )

a b 'cthatrepresent the sane number,-n.
A '. B' C .

-,

In. the old notaion: a:b'. c., 1 'and the rule that the 'product of the
P .

means is equal to the product of the extremes" is tlerely in disguise the
c eif al = oc; And hence this rule ia.superflueus: 4fact that

:

4 = -
o .. d . .

In all these cases, the imporOnt thing is to recognize, in the languae
c

,-the meaninc, of the terminology in terms of the rational numbers. Here it is

k. a matter of Translation, and tne,m'Alipulations shOuld be in terms of fraction
,

'

Decimals

With leglmals there is agi1.1 a translation proolem out, whereas ratios

are usually easier to deafwithif we consider them as fractions, decima1s

have-their own rules of mani:pulation which make trem useful in themselves. In
.

fact,. to Tia ,decimals is much easier than to add fractions and it is easier to

compare t',4o nUMbe'rs in decimal forthqn in frattional form.

The decimal notation,,,as you know, uses 5 decimal poj,nt.at part t

indication of* the number represented. Within the United States the deeima

point is placed below the line and a raised period de;otez multiplUati

many other countries it is the other way around. With a whole number if me:,

use 'the decimal point at all we place it.at the end, that is, the right-hand

side of the number. Thus 325 and j25. stand Zor the same number. .Similarly

1 and 1. stand for the same number.. Ttlen:we indicate division by ten by a

R.
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tige in the position of the d6c4nal point. Thus

.

1 -, ]_.1 = Td, .01 = ---
loo

'

'
.001

= il000 '
.0001 -

l0000 %,
,

--. ,

Another .way of writing this series would be

t' -

.1 = 10
-1

, .01.= 107
2

, ,001 =10 -3
, .0001 . 10

-4
, ...,

."1'..,1

Notice that in all cases the exponent, :e.g., -4, corresponds to the number
, .

of dzLats to the right of the deqmal point, e.g., 1 This is- slightly 1.,
.

I

different from iihat happens with the positive ,powers:
.

g

3

.
.

.10 = 101, 100 = 102, 1000 =.10^, 10000 = 1104,....,

when4the'exponent counts the number Of zeros. We complete the picture by.
44c'

defining:.

Thus:

1

1 e

543.1034-% 5,102 + 4 -"01 + ,3 .10 + 1 lo, , + o lo + -3 + 4;,104.
o -1 , -2.

,
.

.s

e One advantage of decimal§ is tt not only can every real number
Its

be

represented as a decimal (see Chapter VIII); out with one type of exception
., . . ..

..)which we shall mention later, the decimal Which represents.4t is unique.

The 4salition and subtraction of decimals is no problem since the
I

same
t

techniques and the reasons are just the samei as for, whole numbers. ..tit

multiplication anddivision present some additional difficulties.

For instance:

... 51:320N = (5432)(100)

. i

5432: = 5432 )
t

543:2-=f.543 + 2 (5430 + 5432 "
1

10 -- 10 10I t

9..2 ph. 3a 12_______Iroo+ 2) 5432.".
100

-.
100 '' 100 ..

1
.

5.432 = 5 laL -(roo + 432) 5432
1000,-. 1000 1000 1

4

I,. This shows. thatTirery time we more the decimal point one place to. the left we

.vide the number by 10 and every time we move it to the r.i.ght we multiply by,
,

ten. gometimes"we have to it zeros 4 to getthe decimal Noint in,the right

place just as We had to .do for the dec 1 notation in the beginning: thus
411$1 ,

,., " .1

54,32 .10 = 54320 and
5432e

=-..0.543 S division or multiplication by 10 in
4, 10000 .

...

the decimal system is'easy.

O j

\ 105 01 08 .
.
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What. about multiplication in general? Here again it is better to consider

it in'tvms af,ah,evgtple: ,
,

, 54'3:2 x t,7.03.
r

9432 6703 (5432)(n70 ;)' (.5432)(0')
., :Por the-product,,there.-This is ----

10
10

2
- .

'10 .10
2

- . .

103

fore, of 54322.and ,-)7.03 in each.case the exponent of 10 in the d'enominVOr

. above is the number of digits.to-the right of the-decimal point; namely, 1
.

and i respectively. Then,the exponent of 10 in the aenomfnater or" the product

'is
.

the sum of these two exponents,, case ? So ih:generol we htve:
- , J,; ,

, ., ,d,,.

The number Of digits to LIT right:ofiethe-decimak:soinit in a product 0of'

. , .

two numbers in decimal Corm is the um of the number _(,: digitn to the qght of
, -----7:- . -,---

the lecimil point in the two members of the product. -

A,somewhat differentkind of,xampl4 is the 1:ellowingpro(iuli'""

(511.Q0)(2.1',I,),^.,i734u4.2140'. i7jW,14,.,?. IA notation, ;1Upposye humber A

Sias a Iligits to ,the right 'of the deCimal paintand B has

the

to ;Jae

riL:ht, then the product XB has a b digits to the right of the decimal ,point.'

Por Lvision, we Stst "turn the rule''around." ,suppose c has c digits
.c

A a to the right of the decim al point and we are to divide by A with 'a quotient

B. Then a*-1- b = c, where ct and b have the same meanings as in the pre-

viovs paragraph, is equivalent to
(4(

b

Vr
That is; we make the number of he digits to the right hf the decimal point

.in the quotient, the difference of the numbers of digits of the other two

numerals. ,
.

0
,

,Tor example, suppose we will to divide 88.925 by 523.5. To se lat. is

iP happening, let us write this in terms'of frabtions:

88995 5235 :88995 10
88.9)5 4, 523.5 --, 755

10 *,

'1 ".88995 1

5235 100

SO, fdr our result, we first divide 88995 by 5235 and-tnen divide the result

by 100. This is represented by moving the decimal point i, tre quotient

88995 _1.7

-5235

A

twb'places to the left,°giving us 0.17.
...4w

In praitite, this is of course, shortened. Since 5?3.5x = 88.995, x

being the quotient, the numbe r of digits to the right of the decimal point

in the product .(in this cage ) is 1 more than that for the quotient x.

a

,s 106
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Hence the number of digits to the right of the decimal point in the quotient

is 3 - 1 = 2. MechanicallY, this is accomplished in yarious'way's.

-Stientiffe notation a6 approximation

Closely connected with the above is a notatioh, frequently.usedin.

science, which has two purposes: one the concise representation of very

small-'numbers ana so the. indication of the deglIee of accuracy in
It

representing a measurement. For both, powers of ten are used, as

' .

53 ,000,000,000.=-- 53 10 ,. .0600000000053 = 53-.10-13
4

large or

fo lows

As regarls accuracy we must remember that there are two kinds of,uses of

numbers in mathematics.' When we .1eal4iwith numbers in te.abstractand some-

times in the specific there are no approximations involve.l. When there are

ten people in.a room-ele can oe sure'that there are not 10.1 people-or 9.99.

There are ',just exactly ten people. But for the population ofa city.we can-
nbt oe sure. We know that thArnumber muat be a whole number but which whole

number it is we can. only approximate., Also yhenit."measure the length of

table we can be pretty cure '{,'hat the measurement is accurate to within an
inch or eve an efghth of an inch but a more accuratblkaasurement would

<require a,fAner instrument of measurement, and ny instrument. has its limita-

t*1A inaceuragy. .So, when a measurement is en, it is important to know

.how accuraebit.is,

Now if a 4..easuremegt is tiven as 53000 feet it is not clear whethenit is
.

accurate to within a thousand feet) A hund4e feet, ten feet or a hundredth of

a foot. In the respective cases these can be represented as

53 .103, 530 .10
2
, 5300.'10, 530006Q -10

-2

indicating the accuracy by ple multiple of the power of ten..

This can also be used to approxiiate the accuracy of a.product.' Here.

one can consider absolute error or relative error. We'illustra,te them each -

by examples.

Suppose 523.4 and ,78.5 represent two measurements in feet. .They are

presumably accurate to withih one-tenth of *!1,66t. ,How.acculato is theiri..

product in'Square feet? Prestimably the fffrq is between 523.35 and 523.45

and second between 78.45 and 78. SO the product,will be between

523'35 x 78,45 and 523.45 x 78.55 that is between

.41056.80W5 and 41116.9975.

fr
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6.4
O

This means that in this case the product.is accurate to withinone half, of

' the difference between these two numbers, or.6:17ZZT-301/1,1 square "feet. In

general, designate the measurements by a and ti. Then if we assume the

maximum possible error is the Jame in both cases, we see that the true value

of the area will have to lie betweep* the product of the idast po'ssible dimAK

sions; a - e axid b 7 e, and the product of the greatest possible dimenlions,

a +.e and 'Q + e: That is, the area ra,s lie between

(a -e)(b -e) = ab a ,+o) + e and (a + e)(o e), = ab +e(a +b) +e2.

be seen alp from the adjoining figure ifwo take a to be .the

tr

This can

c

C

0
I

, - ..'

0

o

)

M

%

N

.1,

I

.*-

K J

;

e --
length of the line segment AC and b that of the segment AK, with e the,

length of the segments; BC, CD, LK, Kj. Then ea will ba the area of the

square iTON Which will ba,mucll 'smaller than the area of the rectangle LPOK

(which is ea) as wel.1 as the aijea of the rectangle CBNO (which is eb) pro2

videdythat a and b are much 'larger than e. So, if we disregard e
2
we

1'

see that the maximum error is aboUt e (a- + b), of the

example above 'is .05(%3.4 + 78.5), that is; approximately 30.
sr

From "another point of view, it is the relative error (or ratio of error)

whicH is mord, pertinent. ,1t wouTd lbeimuch harder to achieve accuracy to one
A

foot ix5.'measUrin45Y34 feel-thsdin measuring 51.34' feet. So in practice we

might describe the possible error in terms' of a ratio! for example, one part

n a hundred: Thrs- if -e is now the ratio of possible error, ea would be ,the

. 1 41.1.

I
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6.4
4)0,4,

0*>4"'.

maimum error, that is, the actual measurement of the side AC would be between
a 7 es, the length of segment' AB, and-a,+ ea, the length of segment AD. We
could set up i,ilar correspondence for b on the assumption that the.
possible relativee is'the same. 'Hence the a;e4a'wolild lie between

(a - ea)(b - eb) = ab t 2eab T e-0ab

kr-
_

and

'

.
t..

Thi time e
2
ab will be the a,rea of the little rectangles).TON and GHOF. So ,

the maximum possible efro? s. ill be abo-,zt 2eab .any the,trelativ ossible error

. 2eab.....

ab
,

.----..,

ea)(b'+ eb) ab + 2eab+ e,2ab.

Thus the relative i,ssible error of the product j_s twice that of each measure-

ment. ." .

Two coriaents should ''ele made in connection"withthe above discussion. In0
2each case we neglected a term.inVolving,e with the remark that.Ais smaller

than e. In Tact; the smeller the error, the greater the disparity hetween..
e. and e-

0
as the following table shows:,

.1 .01 .001

e
. ,

-01 '.0001 .000001

/

Second, in myatiplying numbers whic,h represent approximations there,is no
point in having-9 ' retard for the last decimal places. For instance aevro-_

duct of the numbers

523.4 and 78.5 is 410$6.90.

. , r
..,- ' -tut if the -No numbers represent two measurements i feet which can be:in. ,

. ..

error by as much as .05 of a foot, the area can be in error by as much,as 30. X'''''

square feet. -So if the product is to indicate the degree o± accuracy:We
. ..

/

should write it as

411,

which indicates that the area is 41)100 square feet to within 50-square-feet.

So One has a choice of multiplying the two numbers and then writing the-,.'

result, taking into account the possible error, di%he may take this into.

account in the multiplication procets.ancl abbreviate his multiplication as. is

illustrated by the following:

)
109

1
4



6.5

t

523.4
_7.8.5
260.

-41842
,-- -36638.

41082.

For this, since 1,,,e know the answer can be off as muc

certainly do not need to have regard for anything les

the first multiplication we,multiply .5 by 520. Then

and 70 by 523.4. After we get_our result, we write i

feet and hOe 411 .10,!..

Exercises
4 6

How should a measurement of 32 feet be written in s

it is accurate to the extent indicated below:

a) To.Within .1 of a foot.

,b) To within ten feet.

c) TO within .0001

2. Ig each of the cases in Exercise 1, ,what is

percent of error?

A st

as 30 square fe t we
s A

than 1 foot. S fot'

e multiply'8. by 23.

t to the nearest but d'

entific notation if

the approxi te relative

>41

3. For each,, off' tie cases in Exercise, 1, what is the greatest potsible error?

4. Show why the qrealtest pos9iVle error in a sum is the sum of the greatest
.

possible arrO;F in the members of iite,ium.

If the percentage of error-4n the measurement of the side Of a cube is

1%, what is the approximate possible percentage of error in the computa -,

5.

tibn of the Volume of the cube?

e . .

i. 6,5 '.Decimal expansions

1 2' 1
TT

1
We know that 5 .4 and = .125 but T= .33333 .... In other words,

-1"

r

is no. filite decimal wipin
1

'represents 7_,--or is the decimal
- f

1 7.

can approximate 7-as closely at,we'caease by a decimal since
' .

)

3 :3 TD.

1

'33 3oo

,'333 '="3o00 4

expansion of
1

14

1 s.

111

there

We I

and so on:



In fact:

- .333..:3 -
3 .10

n

6.5

where n it the number pf 3is,which appear in the decimal. This means that,
. .

by taming n large enough, tlatjs, using a sufficiently large.mumber of 3's,
I -

3

1
rwe can make the difference between - and the finite decimaas small as we

' please./.We say that the decimal expansion coneerges,to 7
; it,

l ,

i Di YSome other ecimal expansions of rationafnumbers are: 's
,

.090909...,
37 = .027027...,

,7 = .142857142857... .

r

In all cases there is a succession of digits which repeats:. in the first

1case 09, in the second 027 and in the third 142857. We call such 'decimalS-

repeating. or periodic decimals and the repeating part the e etend..

Of course, in some 'cases the decimal does not repeat f om the beginning.

For instance;

4119 1373
. 4123 12 3123... ._

9990 3330
t ,

Every rational number has a repeating or terminating Aecim Why?

Conver'sply, every rep;ating or terminating decimal represents a rational

number. If thp decimal terminates the result,is easy. If mot, ye show wiat

*pens in generalby an example.'
0

.

To find the number represented by 5.234234..., let x = 5.234234...

1000x = 5234.234234...

L

x = 5.234234...
'999x = 5229

, 54229 __58,3
e-- x = ---- ---

999 111
.

4--

Here isenother case i which a repeating deciMal does not repeat from the

beginning but will ailffr a certain point.

A
Repeating decimals have many interesting properties which we do not have

-e,".
..,space to consider here, but two should400-mentioned.. --Sin oe...e3,,ery.--ratrional

,-

number has a rePeiting decimal expansion, one which does not repeat without. ..,-

end does noI represent a rational =tier'. ',Or instance:

It

= .101001 100001...

does not represent a rational number.

111
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r

, Also it isspossible for tw decimals, one of them Infinite, to represent

same number: For instance: .92T)... converges to the number 1. It can

be seen from this that'any finite decimal

infinite decimal obtained from the finite

by 1 and adjoining an infinite succession

Exercises

1. Find each of the 4'011owingproducts:

\
a. (23- 107) 1067

0. (16 .10-6)(15 .10-3)

c- (125 10
8
)(8 16-6)

e.

5 110
,

represents the same number as on ,"

decimal by decreasing the last digit

of 92s.

125 .10
8

5 104

125 .10-3

34 106

-17.10 -3

. %

^2. The dimensions of a rectangle are 6.5 feet and 7.8 feat as measured. If

it is known that these measurements are curate to 1%, what can be the

,
approximate percentage of error in the com ted area of the rectangle?

3. Suppose each of the measurements in the previous exercise is accurate to

'.01 of a foot, what-would be the maximum posible error in the computed

area? ,

1
4. Find the ANcimal expansion of 17 and'show

happens if one:tmultiplies the repeating pa

from 1 tg 12 inclusive, in compari.son with

Problem 2?

4-1m.

, ke. t

hat the
l

TWO.mal repettd. Whht

-of the 1ecilQa1 by,the numbers
1.c

7
hat'happenedfor in

4

1
. Find the decimal expansion of --and answer the questions in 15pe preFious

12

exercise;

6.
1

. Find the decimal expansion of --
75'

*ma

I

.4
1. Show that every rational number-has either a terminating decimal e4tn--

Problems

/
sion,or an infinite deCimel expansion which from some point on repeats

without end.

2. if 142857 (the repeating part of the expansion of 7) is ralltiplied by 2

welget 285714, by 3 we get 428571. We have the same succession of digits 1!,

cyclically permuted. Why? '*

J
O

o ,

liq



3. Is there any

expansion of

by 37? .

e. 6.6

conneqtion between the test for Aivisibility by 9 and the
.

'Similarly for 11. That would be a test for divisibility9

4. . What rational numbers have finite decimal expansioris?.
5. What would be the expansion of one-speilth-in the numeral- system to the

baseseven? What woula'be the expansion of one=fifth? 'Does either

eV

.repeat; ,does eithentermlnatteT In this numeral system, moving the point

one place to the left does what' to the `lumber?'' :

6: Find two cicimal expansions for 8. Does
3
- have-two decimal exp.ln%ions? .

7.411 As above, le

2
4

+ . The

x 1 + 2 + 2
2

A-2
3

+

2x - . -1, or x = -1.

and.see that 2x = 2 + 22 + 2
3

+

.4..What is wrong?

6.6 Percentage

Percentage is just ho er notation for a frip4
5,common use. You know that % means y55 or .05 and with

know decimals anthrational umbers you know percent=

and the reader is referred 'o other books for these e

development of compound into est.

If $100 is putlinto a-s Vings account, ft accumu ates interest over
certain specified periods. or instance, if the ra stated'ass4% per
year compounded quarterly, this means that the rate is per quart6. Then;
for cbmp.-A.,interest, at the end of each quarter 1% of th amount at the
beginning of the quarter is called the interest and added

.amount at the beginning of a period is called the principal

end the amount, fihus we have the following table

2 3 4 5

4100 101 103:03 104.06

1. 1.01 1.02 ,.03 1.04

Amount at the end $101_ 102.01 103.03 104.06 105.16

but it is.inver

many

this knowledge if'

e following

to e amount. The'

nd.that at the

Quarter .i

Trldi'pal at beginning
'..;,..ir

!Inte"rest'

The Simplest way to compute the amounts is 17) Use of tables,_but,there.
is'a ,formula. To obtain it we need merely notice that each amount i8 1.01
times the previous one. 'Thus the nqunts at the ends'of the quarters above

e
100(1.01), 100(1.01)(1.01). = 100(1.01)

2
, 100(1.01)

2
(1.01)

= 100(1.01)3,, 100(1.01)3(1.01) = 100(1.01)4

113
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6.6

Ingeneral, if P is the principal ($100) above, r .is the Ate per

interest period (.01 above) and qi the .number of periods, the amount. at. the

end of each period is (1 + times Ale amount at the beginningof the period.

Thus the amount at the end of the first period will be

P(1 +

at the 1, of the second per:iod willbe
e.

P(1 + + r) = P(1 + r)2,

and at the end of the third period will be

P(1 + r)2(1 + = P(1 + r)3.

.11

Thus the number of times .(1 + as a product will be equal to the
, 0

number of interest periods. Hence if the rate per interest period is r and.

the.number'of interest periods is n, we have as the final amount:

P(1 +

There* is another useful Itay to wNe,this same compollnd interest'formula.

Suppose the annual rate is t and the number of interest periods per year

is q. Then the.,rate per interest period will be and the number of
. q

interest periods in n years will be qn: For these meanings of the letters

the formula Sor the amount becomes

t qn '
71) .

J

For instance, if the annual rate is 4% and interest is compound ed

quarterly, that is there are four inlaerest periods per year, the amount-'at,
,

the end of rive years would be

P(1 + .01)20.-

Fortunately there are tables-for these values. ,'

.

. 4

Now let us see what happens in a particular case as ,q, the number.of
-,7ska

interest periods, increases with the annual rate remaining the same. Let, t,
,; ' " P

the annual rate, be 6% or .06 and let .q be the number of ibterest ieriods,
7

hper yeat. Thus if the interest is 'compounded annually, q = 1; while if it is
r,

- compounded quarterly, q,= 4, etc. In the table, A denotes the amount et the"

end ofone year for a sum of $100 deposited at the beginning of the year.
ca

So the first line gives values of q, the-second line the corresponding
A.

values of
k100
--- according to the formula

°

.

.

A.

100
rf

'

t

1
1±14.1

.o4,(1

q '

'1

Ir.



and the'thlrd. line gives A to the nearest cent.
,,.

cf f i 1 V... 2
12 24

. ,

; 09
'(I.06)-

$ o oo

-11.06)2

Sio6.09

(1415)4

S1o6 14

0,o1)6

$106.1,

(1.09712

$106.17

( 2524

$106.18

Notice that there is only 18 cents difference between the first and last

amount awl'as'the number, periods increases the difference in amounts
,

become's less. As a matter of fact in this particular case, the amount would

be $10%.le for any greater number of interest periods, though if the principal

had been $1000 there mould be a little difference. This then naturally, leads

one to wonder what would happen if the- number of interest ,periods were to

increase without limit. The formula for the limitipg amount turnt out to be
a

Pe
nt

where e Is important mathematical constant whose value is
:
approximately

2.718; a is the'numberOf years and t is the

.

rate,p.ayear. It may be

*'eers-'-f4rotn.--ec-table-441.at...
1

g e
.06

1.0618

correct-to four decimal places. This verifies the statement above that if

- he4number of interest periods per year is more than twelve'the amount at ,

the end of the year for $100 would be $106.18.

oThis-is a formula for what is'called "continuous

used infansipereasing number of banks today. It has sknumberof advantages:

the formula holds when n is not a whole number and by reference to tables

One can find the amount at each Instant, it has "good customer appeal" sine
_ -_ -

money draws interest for the exact time it is in the bank, and the slightly

interest" and is being

increased cost to the bank in interest is more than made up for by the con-
.

veniencd.to its accounting department.

JY

P.

Vat 4'4\

Exeeciaes

1. An insurance,' agent makes _a commission of 3% on tall ineri.ance sold. }owe

v Much insurance must he, sell to have an incomW $10,00

2. 'A town has p population of 1000 persons. Each year for a period of five

years, the population increases by.0 persons. What is the percentage,

o; `increase each year?. 46

u
.
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3. Suppose in Exercise 2; thePopulation decreased By..6b0;.t4gsgna each dear.

What would be the percentage of decrease each year?.

, 4. Comparing the two exercises,, is the percentage of decrease in any year

for Zxercise 3 equal to the percentage-Of'increase for Exercise 2? Give

reasons why you should have expected the- answer to ,be what it is before

you carried out the computation. '

5. Suppose in Exercises 2 and 3 we compute the percentage ol increase and

1 decrease comparing the original population oiN 1000.with that at the end

of five years? Are the two percentages ti-i same? If so, how does that
4

jibezwith the results of Exercise 4? . \

4 P''

6. State an exercise 'involving'ihe, same calculations as E" rcise 1, but

.starting with "A man has $1000". -, .
..

.

In a certain country, halt' -the Population is under 16 years of age at
. ..1.,

pres.ent. During.therlext sixteen years each of these will have an

.average of two children (that is,"each couple will have four children).

If the net increase of the rest of the population is 20% over the,next
. ,

. .
sixteen years, what wi;1,. be the increase it total,population at ,the end.

,

..::
.

.

., of that time?

.74

Problems,
'

The population of a certain city increased by 6%..in one year and then
.

decreased by 6% in the following year. Does this mean that over the

' two year period its population neither increased nor deicreased?

#
2. In city A1the popfla:tionNtcreased by 12% over a two year period. ,In

city B'the population increased by .":% each year for two ykrs. If the

two cities had equal populations at the beginn
.

ixig thp two -year period;

how did their populations Compardp at the end of the two years?,

3.. A person-desires to borrow $400 from.a bank and will pay it back in four
.. ,

quarterly ins 6.1ments over the period ref 6;reWr. Spicethe integest.

rate for the bank is 6%, the year's' interest bri $400 is $24 and hence

.r
the,, bank requires that principal and interesi, be paid off in ;quarterly

installments of $106 each (one-fourth of 400 + 24). Is the,person really

4

Paying interest at the rate of 6% annually ?:

ileferences

3, 6 (Chapter 6: Sections 4 and 5),,9 (ChapteA), 22 (Chapter 9).

r

- .6,

116
11.9
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Chapter 7_

RATIONAL NUMBERS

-.7.1 Introduction .

In Chapter V we extended our- number system so that we could solve the
..,

equation ax = b Where a and b are whole numbers and,a / 0. The resultingk . .
.

system,was the set of non-negative rational numbers. And we found that the

equation ax = b was solvable also in this system provided, again, that a is

'different from zero. When we consider the equation a + x = b with b < a, we
t e .

come to the negative integers and then the negative,rational numbers. Thisr

extension is somewhatmore difficult because the need of it is not quite as4.
,,,, ,

--apparent. In the:authbi'is opinion part of theyeason for the difficulty is

that many imes a teacher is so anxiousto 'make the topic cleerthat he (Or

she) burl-.fs student under a wealth of applications and interPretati,ons.Attie

It woad be much better to show the algebraic reason and.thegeometrical '

1' .interpretation-in whichever order seems best.' Then the teacher could connect

it with one really simple and direct application likelthe usual thermometer

wnich is the number line Placed vertically. Other applicationscan be cons-

fusing except those which the studehts may,suggest themselves and should be
. .

t

7.2

left until afterqhe ideas are .fixed.

Illndamentally the in of view of the extension is the same as for the-

rational ,numbers: the whole numbers are not adequate for ourineeds; so we

introduce new Limbers for the purpose, and so define equality and the opera-
_

tions that as many of their properties-as potsible are preserved, and at the

same time make these new numbers applicable to the model we have in mind.

Here the readei may want to refresh his mind on what went on in Chapter V.

- .

7.2 .Definition of negative integers
4

Recall that.tn Chapter III, we considered the equation a + x = b where

'and- b- are whole37W* s We found..th&t,it. had a solution which was a

whol ber whenever b.> a ,d_ we called that solution b a, ourour

.6" appr o'rational pumbvs_ fTe first considered the more limited equation

ax = 1 in place of ex = b: So here we consider the equation a + x = 0, the,
-..,---

o
1'additive identity. Just as we defined numbers - for the first equation, de
a

ft L, o
117--,

-'/
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7.2

.4.

define stew numbers a r.the second. Thus for every whole nthiber a, we

create a new'number- -a which has the property that. a + 2.= 0. We can

represent these numbers and the old ones on a number line (instea3 of ray) as

follows:

5 J3
2 1 1 2 3

. 9
Thus thepoiht corresponding to "5 (Which we can call the point 5) '

is
- .

thgt tiglich is 5446aces to the left. of the point 0. The number 5 has the

property that 5 + 5 =.0 and the -point 0 is reached when we start at the point

5 and count five spaces to the rjeght. ''We want addition to be commutative and

so we-agree that 5 + 5 shall also be zero.as well as a + a = 0. What about

0? We know that O+ 0 = 0 and thus we should chopse 0 tobe the,same,as
. ,

Thus for every whole number a, we have 'defined an opposite number a4o that

These new numbers:

a + a, = a a = 0, 0 .0.

1, -2; -3, ... . .

we call the negative integers. These together with the whole numbers form
.

the set of integers. The natural numbers are called positive integers. ,Here

the mathematical and practical needs go side by side. We speak of "minus.five"

intemperature*When it has to rise by five degrees to'be at zero.

c.o. We have Wised the word "opposite" which carries a connotation. of. symme try.

If A is.opposite B, then B should be,opposite A. Thus it is time to define

oppodite number'.'-in-symmetrical-foline --f

Definition: Two numberg are ca4ed opposites if their sum is zero. If

b is an integer we denote its opposite by b.

We have already defined b in accordance with this definition .i.P b is

a whole number. Suppose b = c where c is a positive integer. Then the

Opposite integer to. -would have to be
s

c since c4`4. c = 0. Thus

(5) = 5 end (a) = a.

We have defined negative integers. Next we consider addition. Here it

is best to take little steps and then summarize our results.

First, suppose a and b_ are natural numbers with b > a; what is

a + b, or, rather, what do we want it to be? Since we want the associative
-

property, we should have

- '

a + ( a + b) = (a + a) + b = 0 b = b.

9
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But we know that b a is the number which has the property that if it is

added to a'the result is;. -'b. So we hav'e
0, $

a t b = bi- a if b > a.
O

We want tilt commutative property'and so we agree that

b+ a=b-aalso, if b'i':a.
(

Second,what should be 'the number a 4 b if b < a? Of course-the number. . --" -:
I

,

is -a 7'1) but we want to express it as a single numeral. Here there are at

least two possible approachEs-and preferences may vary. We first Considerr__
.

the alg7-aic approach-4 /
t ,

.

a+ b+ b+ a= a+lb-+b)+a= a+0+a=a+a--e0

if the'as,sociaike and commutative propefties are to hold. This means that

a + b.arid,b-+ a are opposite numbers. -We already know that b + a is.a 7 b-

since a > b., Hence

01

a + b v + a) = - b)
,,r-1"1\:r,l'A

To suMmarize these'two cases, we have for a and b whole numbers:

b + a = a +b=b-aifb>a.-

b + a F a +,b = (a - b) if o < a.

In fact, for unformity's sake we define. .

4tt

b - = b a

regardless of the relpiiret sizsof.V0,,,and a but the interpretation is that

above. This is natural Vec use,b + a has the propertythat when a .s

:added to it we get b and b - a has the same'property.

"We may also ute_e,number line to find a meaning, for "a + b when b and

a are whole numbers: ,To-do this recall that to get b from a we add b,

or on the 'number line yount b,, spaces to the right. So to add b to a we

should start at 'a and-,:bount_pices, to the right. Then our,rtsulting

number is b - a if bZ-,a,.as it should be.. Nos.1-.alsoolf.. a is greater' than

b, to find tbe,siim +.b we should-start at a and count .' spaces to

the right. In that tag-e we stop short of-:0 just-a b spaces, whi-c"5--anres-
.

,ponds to the number -(a= V). )The case in which a is greater than is

illustrated in the figure below:

a

--11.1

a + b 0 a - b

119

12.2
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7.2

. . 4 4-1

. .
.../

Here b is the distance between the points -a and -a 4 b as well as that
:

, between the points 'a' and a - b. It to_apparent,from this that a - b and ' -'

_ *
. .a + b are opposite points;

.....
,

. ,..

Thus', whether we consider the-ad31tign of a positive And a negative

.integer aigebraiCally Or geometri2a11:, 'o 4-he same conclusions.

For addition it remains to,clon'fiie-; '.4.esum of two negative integers.

Here, in the authorlo-opinion, the rnlgebraic -ppfo.;121. is better. Again choos

a and ,;1:/, whole numbers A,n see

a b a, o A-.4"( a + a) + o) = 0 4 0 =0
if the associative and commutative properties are to hold. This means',

o A

(a + b1 = 0

and hence

a + o = (a

On the number line this means that to get the sum a b you start at

La and move b spaces to the left.

Here rules for addition of integers are orm,ch more complex th6n the

actual use of them. To sLimmurize them we write firat a numerical example and .

follow it with a literal one.' In the latter, for tA,e time being, we let -a, e

b and c designate whole number:

_ .

i) 3 +5 = 5 4- 3 =5 3 =2 a I- b b+ a =b - a' if b >

= 3 4.... -5 = 3 2":5 = 2 '-a +. b h + a =:(a -.b) if b < h..

.iii) -3 = -3 -5 8 -a + -b = b + -a = -(a b). \

We shall see below that i) and ii) hold without the restrictions given.

Here we must distinguish between the process by which we'cometo these.
66

ifRC
Conclusdons and the conclusions themselves. We have shown that to be consid-"

14-

tent with previous properties, we must define the sum of two integers ad we
...

have done. When it edges to actual manipulations with integers we memorize

certain rLlel to the point where their 1.1e, is.second nature and we wonder why

'anyone--shoulAd have difficulty kith them sipce we know them so )4e1.11),_ An

interesting approach 1,6 a class would,be to'introduee the negative integers as

opposites of the positive ones and then-ask the Lass what it thinks 3 + 5,

51'3'and 5 + 3 should be. It would not be hart to eliminate all butt the'

'right .Cpnclusions. Here in tHis section and in the one to come, the author

makes no, recopme,ndation that the methods used here.be used in a junior high

`school class, but rather that these properties be in the mind of the teacher as

' furidamentally'the reasons for the properties de'veloped.

120

123
O
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7.3 Subtraction of integers
.

. .

We set out to create the negative integers so that we could salve the

equation:
s.

.......,

a + x = b. $,

Have we accomplished' this? We certainly have if a and ti, are whole numbers

for the solution is .x = a + b. This has meaning 'since a was. defined for a

a whole number and if a_ is a negative number, eis its Opposite which is a

positive number; ainalarly we_defined above the sum of, any two integers.

Assuming the associative property for integers:

a + (-a + b) = (a + a),+ b = 0 + b = b.

This shoWs that a-+ b is a solution of a + x = b, nb matter,whaWintegers a

and b are.

We now proceed to eliminate the conditions imposed for 1.) ,' ii), iii)

ahove. So far notice that we have defined r - when 'r and s are'

whole numbers. Now we know that 's + x = ^r is always solvable in int;gers.

Hence we define r - s to be'that solution. So by this definition:

a,+ b = b -
4:

for all integers a' and b. Also:

by definition,

Thus .

(a - b) + (a- b) 0

a - b) = b + a + 1--b*\4-- -04- 0 = 0.

.b - s = (a - b)

for all intagers a and b. Thus We have for all integers a and b:

a-t b = b t :a = = (a - b).

4
- As for (iii), the same'argument we'used when a and, b are whole.

numbers applies for all integers a and b. Thus we nave the same conclusion.

We'sunnarize the results of this and..the 'previouesecti4p, where it is under-
.

stood that, a and b are integers: $

< to,
I '-

i) The solution of'a,+ x = b is b - a. This can also bewritten:

ii)°'(-a) = a.

b + a, a + b' (a - b) (a +.-b)

This means t' in most cases wecan dispense'with the elevated minus sign.

But there still is'a residue of the old meaning left, for-While b-I,a can

mean equally "add minus, a to b" or "subtract a- from b", yet -a by itself

can only'mean "a number which is the opposite of a".
4

r A
I 24

4-0...
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Tp illustrate the above consider 7 - (1). MISis equal to

7 + 7(3) = 7 + 3 = 10. Also -5 - (7) = -5 + < = 5 + 7 = 7 - 5 = 2.

It is helpful to see what all this meant-zon the-ntimber line. First
. _.., -,....:.!,.___-_!.--

suppose b is a number and c is any iLteger. This was ealt with
:

01..

-,
. . ,

in the previous section where we,saw that to get the.point corresponding to

c + b we find, the vint corresponding to and coUnt b spaes to the right.

Now suppose b a negative integer.. Then-LI

This will be the rrc- with the piopertY that if you add the positive integer

b -L; it yon :et - (see figure). Thus the point corresponding to this number*

b-

b 0 'c + b c
)

must.:be -b pgints the left of the point which corresponds to Thus add4ng

b, her b is negative,.is'equivalent to moving b Points to'the left.- To

,summarize the geometrical sign.ificance we have:

To move from the point 'corresponding to c on the riAmber:iine to that

corresponding to c + b, move b spacea_to the right-Af b is positive

or b spaces to tht b is,negaiive.

This is independent of whether c is p6Htive or negative or Zero.
, -

7.4 -Multiplication of negative integers

Actually multiplication is a little easier `ha n addition._ What should'

' 3(-5) be? It .should be ;

-5 4. 5 + 5 = 15

Similarly if a and b are whole numbers a( b) should be (ab). We define it

that way. We want multiplication-to be commutative and so we define

We could

("b)a = a(-.0 = (A).
, .

also arrive at this resultWlie'bralcally by,noticing that

3(y) 4-3(5) = '3(75 + 5) = 3- 0 =

Thus when we add 3(-5) to 15 we get zero, which shows, that 5C5) = 15.

The value for ( best, determined by our,desire to haVe the

tributive property hold;

(-3)(-5) + (-3)(5) = (3)(5 + 5) = (3) .0 =

9 r;
122-1-

I
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But (,73)(5) = -(15) and since 15 + -(15) = 0, we-must have

= (3)(5)
r ;

?or the product of two negative integers, geometrical picture is not much

help. In summary we have the following for a and b whole numbers

(a)b-= b( a) = -(ab)'

(a)(-b) = ab.

In words we have: the product-of two negative integers or the product of two

positive integers is pbsitive and the product of a negative integer and a

positive one is negative. It is in "eXplainfhg" that the product of two
,

negative integers isa positive integer that many ingen ous devices are used,

.like walking backwards on a moving train. This is orfe place wherey in the

author's opinion, illustittions bf this kind confuse rather,than illuminate.

The question: "what is the product of two negaqve integers?" 1:v a mathematical

F , question and deserves, a mathematical answqr.

It is not very difficult to show that the dihributive property holds for

the set of integers but if we were to consider all the possibilities the proof

would be rather long and some4hat '(111.1i. So we merely assume it here.

Exercises
/

. '1. For what natural numbers n is
1161) = 1 and for what values of n is

(-1)n = -1? 0

r ,

2. Will the pl-oduct of 25 negative numbers be positive or negative? or may

it he sometimes one and sometimes the other?

3. Will the sum of 25 negative numbersfbe'positive or negative o' may it be

sometimes one and sometimes the other?

'4. Answer the questions of Exercises 2 and 3 if 25 *is replaced by 30.

5. The prdduct of 13 numbers is negative. Which of the following,statemens

cannot"be true°

a. all.are positive c. exactly-two are negative

b. exactly,dne is negative d a-C:tlythree are negative.

What are the possibilities?

1
.S.i Suppose

5
-.- is written 5

-1 1
and similarly = a

-f
for every rational number

a 4,
%

,

El / O. What wa& d be equal to
'
(5

-1
)
-1

? .
,

123/ /
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7. Using the notation in,EXercise 6, that is letting -a- = a whenever

/10, group the following into sets bf equal numbers:
- -1

(-5)-, -(5-1"), (-5), (-"41 5, (2--) 7---11-
5 5 ' \-5/

,`

. Let Rx mean "replace x by its reciprocal" and Sx mean "replace x by its

opposite; that is, "change the sign." If x = 5 findthe following: 4"

R(S5), s(R5), RTR5), S(S5),

S(R(S5))).

Show that each of those in the previous list is equal to one otthe

following four: 5, R5,'s5,R(s5)'

Problems

1. %Prove (a)(b) = ab) when a is a positive integer and b a negative

one, also when at is a negative integer and b a positive one; finally

when both le and Vb are negative.,

2t1 The previous problem for the p'roduc't (a)(b) = ab.
( , .

3. Prove (a F b) - c / a - (b - c), but

(a= b) - c ,= a - (b - + c) = (a -(C) b

7.5 Absolute,value

There is one concept which is convenient on severk occasions and is
,

very simply defined, namely 'the absolute value. The absolute value of a k

. number- b is written 1bl and defined like this:
,2

If b is positive,, lb] =. .

If b =, 0, = 0 = b'

ibi = "b .
lr If b is neg4ive,

L 1Y' s

4

zs.

It has aglefinite geometrical meanisrigif the number is thought of as represented
.

on the number line. The absolute value o b is the " tance ,, of the plaint 0

which represents b from the point O. course "distence",mearis. the number
1 .

of unitsf. An important property4of the absolute value is
i

- -
,

koal;= lal 1bl: A,

. r
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7.5

This is easily verified.

In terms, of this notation it is easy to show another property of the

integers. Let I* denote the set of integers with zero omitted. This'set is

closed under multiplication for if a and b are vly two integers in I*,'

labl = lal Ibl. The right side of t'hi's equation is the product of:,,,wo,count-

ing numbers and w know thit...this pr duct qs a counting number, not'Wovr

Then since the:absOlute value of ab is not zero, the value of ab is not

,fe,-;:-F-efirp-41-4411T134:Nr-re

Exercises

In this set of,exercises, the small letters

' stand for integers.

1. Prove that it b and 'c are both negative or bol positive, bc=

Prove that if he = (bd., then b and c are both positive, both!

negative or one, is zero. j

Suppose Ibl < lcl. What conclusions can bP drawn about inequalities

between b and c? ,

-.0404t

4. If 1bl > lcl, and'b < c, what conclusions can be'drawn about b and c?

5. Let the numbers b and c correspond.to points B and C on the

3.

number line. Prove tha

BC = lb - cl = bl,.

N-
-where BC denotes the distance between B and C.

. 'Suppose -

t,
If B and D are the points corresponding to the nu9bers b and 'd on

the number lines what are the possibilities for the point C,,correspond-

ing to the -number c? './

lb - cl
lc - di .

. PrOve; lal Ibi = labl.

Problem

O

1251 2
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.

4111k6 The structure of the setof integers
0

We now have the set of integers comprising the negative integers and the

whole numbers. We have defined addition,,subtraction and multiplication. .But

in this set we cannot alWays divide for there is still no solution in integers

to, the equation 3x = 5, for example. If now we refer by comparison-to the set

of propertied of the rational numbers listed in Section 5.8 we see 'that the

set of integers has the following properties for-addition and multiplication:

Closure (including'that for I* under multiplication),

(1) Commutativity,,associativity, existence of identity elements,

. Distributive property.

It also is true that every element has an inverse element for addition but,

in contrast to the set'of rbn-negative rational numbers,it has in general no

inverse-element for multiplication., Thus for this set we have a group under

addition but-not under multiplication. The group is abelian.
s .

For multiplication, in place of the existence of an inverse, the set of

integers has a weaker but important property, namely the cancellation property.
. .

That is

ab = cb, b /'0 implies a = c ,

for all integers a, d, c. To show this note that ab = cb is equivalent to',

ab - cb, = 0. By the distributive ptoperty we have

(a - c)bti= 0.

But the set of non-zero integers is closed under multiplication. Hence the

product can be.zero only if one of its membersis' zero. But we have assumed

that b is not zero. Hence a - c = 0, or a = c. The desired property is

proved. ./

There is a name for a system which has the properties (1), the-exibtence

of an inverse for addition and the cancellation property for multiplication.

It is called an integral domain.

More preciselyilan integral domain is a set of'numbers or elements with

two °Pere ons, addition and multiplicat ion, Mr, which the following pro-

perties d:'

1. For addition: closure, commutativity, associativity, theAastence

of An identity element, 0, and an additive inverse for each element of the

set, the 'opposite number." (In other words, the set is a group under

addition:) ft

2. For multiplication: closure, associativity, commutativity and

the existence of an identity element 1.

12
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4

3. If the product of two numbers is zero, at least one of them must be zero.

4. The distributive property.

7.7 Negative integers as number pairs

Negative integers can be defined as number pairs of whole numbers as we

did for rational numbers but with different definitions of equivalence, addl.-

tion and multiplication. Mathematically this is the most satisfactory way to

define negative integers but the motivation for.the definitions associated

with these number pairs lies in the properties which we developed above. In

other words; this is another example of a mathematical structure built in

worldaccordance with our world as we see it.

Now then, we letc'the ordered pair of whole numbers (a,b) correspond to

a - b and have the following correspondences in the two notations for

equality (or equivalence), addition and multiplication.

1. a - b = c - d if and only if (a,b)' = (c,) if and only if

a +d=c+ b a +d=c+ b
2.' (a -b)+ (c - a) (a + c) (b ± d) + (c,d) = (a + c, b + d)

3.
1

(a -b)(c -d) = (ac+bd)'7 (bc+ ad) (a,b)(c,d) = (ac+bd, bd +.adr

To see the geometrical meeting of Propertj 1 in tarms'of the lattice

pointg (x,y) where x and y are whole bers, let L be the line through

the points (0;0) and (1,11. All points on the line Li-will have the same
difference, namely zero. Thus the la tice points on the line L correspond
to the integer 0. The set of point (x,y) in'which x - y = 1 is another line

parallel to L; all the lattice poin s on this vline correspond to the integer 1.

Similarly the'set of lattice Poi s (x,y) in which x - y = 2 correspond to
the Integer 2 and lie on anoth line parallel to L. From this j.tr is not

hard to see in generalTlat all the points correspon-T.R4FtTETifixed.integer

lie on a line parallel to Lr (See figure).

127.
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(0,0) (2,0) (3,0) (4,0)..,f5,6). (7,0).(8,0)

-y =1.

,

Here the reader may want.to refer back to our similar discussion for non-
.

negative ration numbers in. Section 5.11. There we showed that each such

rational number dortesponded to the set of lattice points on a ray through-the
0 -

()Agin. Here each integer corresponds to the set Qf latticq,points on a ray

which is'parallel to L, the line through the origin and the point (1,1).

For Property 2, the student should tryout the figtres for A few values
.

of a, b, c,d and tryoto form his own conclusions. -In,particular he;should

look at the figure formbd by connecting by lint segments the points (a,b) and
oh.

(c,d) first 'with the origin and sebond with the sum (a + c, b + d)o. This is
, ,,

proposed in a problem below and the answer given at the end of the book.

There does not seem to be a simple geometrical interpretation for

multiplication of pairs according to the above definition.

ee.IF
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Exercises .

se,
x

.

, .. ,
.

1. '.Let (a,b), (c,b), and (c,d) be the coordinates of potnt:t A,'B and t!,. ,N.

. t

in Exercise 5 for Section 7:5, or by other means, show the following:

AB la - cl, BC = lb.- dl.

2. Use the results of the previous dercise to find the following formula

for the, diitance between A and C.
t.

AC - 1/(a - c)2 (b -472.
.

3. Use he formula developed in Exercise 2 to find the distance between the

points (4,5) ands(-2,6).

4. Suppose, in Exercise 1, (a,b) and (c,d)correspond to the same,numbei;

that'isr a + d = b + c. Then find a relationship between the distances

AB and BC.

5. --na t1e correspondence.between number pairs and integers give in this

section, which number pairs correspond to the number 1, ch to -1 and
, .

which to zero? Show that if (x,y) is a number pair corresponding to 1,

then'

(a,b)(x,y) = (.a,b)

Ior every,number pair (a,b). Show also that if (z,t) is a number pair 7
'corresponding tq zero, then:

*44-r

(a,b)(z,t) = (z,t).'4!r
4

Problems,

1. Deve44) a method for finding the line which corresponds to a given. .

integer, as described above.

2. Find a geometrical meaning for the s

above.

two number pai g,?.s defined

4 '

3,_ Show that equlity of umber pairs as defined above is an equivalence

relationship in the sense of Section 5.4.

I

, ,

4
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. '7.8 Negative rational numbers _ . _
- ,- . . I

Once the negative integers have been under8-tood,- it is not a very

difficult step to pass onto the -negative rational numbers. For instance,
k ... ,

whet should -(2-1.beZ, It -should Cleve. the property that when we add it to .r.
a

b bo...

we get zero.. But .

a a a + a-
=

b p b. - .

a
.

the opposite
..

a
' Thus

b
- is thOf

b
- and we have

Also

a
) = 7,a(1-0'

11. ( 1) (a) a

b -1 b -
k 1) b b

So we have

(--a)

a a_ = ___.
b ' b b _

' .../
With the. Ar.dive rational numbeics we can completeAe ;number line fbr all
rational numbers:

7.9- Properties of the rational number sSiem

NOW we have the rational numbers. We defined--addition and multiplica-

tion so\-titat we would have certain selected properties of comntutativity,

associativity, distributivity and additive and` (except for zero)

o
tiv_e inverses. If we were tO be systematic -1.7,e-wo_144-cleok to see that all

1

theseproperties indeed hold. But i;71 this book we prefer to take them for

granted. We should, however list them. Tffe-retterThlOw stand for rational

numbers:
_

1 Closur a + b and ab are rational numbers. ,

2. Commutativity: a +b=b+a and ab,= ba.

3. Associativity: '(a + b) + c = a + (b + c) and (ab)c a(bc). 4

4 .Exi'atenee of Identity Element: Fdr addition: a + 0 = 0 + a = a.

For multiplication: a 147.-lo-a = a.

5. Existence of.an Inverse except Zor Divisio by Zerd:
I -

For addition: for each a there is a -a such that
- _

°a,+
. a= a+a=0.

1
For multiplication: for each a / 0 there is a - (sometimes written

a

-a
1

such that (-1 )a = a(-1) = 1.
I a a ... I,

e 7. 447
13G ;4)
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6., The distributive property

a(b + = ab + ac, (b + c)a = ba + ca.

There are-,-other systems which have all these prOperties, as-we shall see in

laterchapters: Each such system is called a field. (Irk some books it is

not assumed that for a field multiplication is ,commutative, but all other
rr..

pioperties aN'assumed.)

11 A short wi-Y-',6f describing a iield wo d be to call it a system whichi

closed under addition; subtraction, mfrtlilieation and division excppt by

zero anApOwhich the distributive property holds.
. .

, . .

"-------------we' have developed,in turn four number Systems: the, whole numbers I',

the nonnegative rational pumber-Rt, the integers I and the rational numbers

R. In All of these we hadfor multiplication and addition closdre, commute-
.

tivity, associativity, extstence of an'identity and the distributive Property. ,

The difference was in the existdnce of an inverie. We can exitbit th in

the following table:

S.

Syttem "Existence of ,an in

-flip addition for multi lication
except for zero

.I', the whole numbers no no rti

Rt, the nonnegative rational's ' no

the integ6rs -, yes'

R, the rational numbdts yes
9.

yes

no

yes

However 11.(ell cases the cancellation and well-defined properties for

addition and-Multiplication hold. Whenever we have an inverse the cancella-

tion property must hold sinoe we 2anadd or multiply the inverse. But the

cancellation property can hold when, the inverse does not exist.

Pi-oblem

1. Prove that in a field the cancellation properties for addition and

multiplication must hold, as a consegueneePof the well-defined property.
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7.10 The rational numbers as number pairs of integers

Just as in Section 5.11 we
considered expressing the positive rational

numbers as ordered pairs of whole numbers,
so we can consider the set of

rational numbers as ordered pairs of integers. Here instead of having two
perpendicular rays, we_have two number lines. perpendicular at the point (0,0)'.
The lattiCe p9ints,will then be represented,by the pairs (a,b) where' a and
b are integers. Each lattice point (a,b) will correspond to a rational
Number b, if b # 0. All -the pairs corresponding to the same ratlonal humber
will be on a line through the point (0,0) called the origin. It is a'ff
taht, fact that from arty integral dOmain, D, a field may be constructed by
means of ordered paird of numbers of D 'just as we constructed the rational
nuMblard from the integral dothain of integers.'

7.11 Inequalities
. .

W1Mher we are considering,the set I of integers or the.set-R of rational -,,.e

numbers, we can divide the set into three classes: 0 .

.
.

P: .theset of positive numbers (integers or rational numbers)
0: the number zero

.
.

. .

N: the Set of.negative numbers (negative
integers or negative rationalte numbers)

,-. .

-Thege.sets are categorical anddisjoint. That is, every'number in I orin*R -t-.
it in one of these sets and no number is in two of them. 'There are several

. . ..
). ./.. .t.mportant properties of tkis clAsification:

1. The set P is closed under
multiplicati6n and addition. That is,

the sum of, two positive
numbers.is positiVe and their prodvt also.

6 2. If x is any number in I.,or R except-ziro, either x or x is iri P.
of.two numbers in N is in P. .:11;

of 'a number in N arid a number in.P is in N.

set N is closed under addition,
since the sum of two

3. The product

-4. The product

Notice that the

negative numbers is negative. But it isnot closed under multiplication
since the product of two negative numbers is positive.

Recall also that in I and R, the equation a + b is always solvable.
With this preparation we can give a definition of inequality.
Definitidn: Let a and b be two numbers in I or in R, tZnd.let`.---x-- be

the solution of a,+ x = b. Then
o1. If is in P, that is, if x is positive, we say that b is

greater than a and write b'> a.

2. If x = 0, then a = b.

132 3 5. .
,
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3. If x is in N,'that is, if x is negative; we say that b is les*

thA -a and write b.< a.

. Notice that the disjointness of the sets P, 0-and N implies that if b

and a are any two numbers in I or in R exactly bne. of the en-I:lowing -is- -true:

b > a, b a.-_

Furthermore, if a + x = b,..ye can, by the well - defined property for

addiltqa,add-^iTto both sides/A' the equation and have
1.1. .

"'. + -x = (a + x) + x = a,+ (x x.),...= a + 0_ = a. ,_

_ _ _ "Tills' =+ *x al_
.

Now by the second property of P above, we hate

If b > a, then is positive, -x is negative and a < b.
0

If b < a, then x is negative, x is positive and a > b.

Bo.

rSo, as we know', b > a an..1 a < b mean the same thing and b -.< a and a > b also
..-.,-,,_...4...---,,

mean
. ,-. .

-,' A-mean the same thing. . ..- , A

A

For inequalities the well-defined and cancellation-properties which we
Jo,

considered for equalities take on.a new significance., First consider them

' for addition. They are, you will recall,

I

implies a + c = b + c

a+,c'=b+cimpliesa=b.

For sets like I and R which are closed under subtraction, `.these two conditions'"

are equivalent, for to get the second from the first we need only make the

following replacements' ,

a.0-6. a+ a. b b+ c c c.'

And a similar replacement will allow us to deduce the former from the latter.

So'Ve need Consider'''Only: =
1 81.2 e " , , : , . ,

The well-definedI- roperty of additionfor -equalty:.,, . ,

.

. a = b implies a + c =4, + a.
. ,

The corriponding property for inequality is: -,-

a 5 b implies a + c < b + c.
\g, /

The property for inequflit follows ilmediately from that for equality since
,

a.+x=b.implies (a'+ c) + x = b + c-and if x- is positive in die equation
A.

it is positive the, other, if x is negative in one it ii,negatiVe in the

other. That is, if x is posi 1i'e.both a < b and a + c < b + o ... While if
t.

ax is negative bottja > b and a z > b + bs. So the well-defined property for

addition holds for inequalities just as for equalities.
...,, .

J. c
..;'',

_,
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0

For multi lidation the situation is somewhat more complex. Recall that

the two'properti are:

Well-defined roperty for multiplication: a = b implies ac =

Caricella n property for multiplication: ac = bc, implies a = b if
1

c/ 0.

Both of thest properties hold in the set I' of integers and in the set R
00 4'

of rational numbers but only in R are Zey equivalent since only in R is there

a multiplicative inverse. So we consider the prope arately.

Thus we have the following question for a, b, ee numbers in ror R.

. . Does a < b imply ac <

Now a %:b means a + x,= b where x is a positive number. So, by the

well-defined property for multiplication and equality we'have

ac + xc & bc.
It*

The relationship between ac and bc all depends on whether xc is positive,

zero or negative. 'There are, in fact three possibilities, from the properties

of the sets P and N:
J.

,

If c is positive, xc is positdve and ac < bc.;\

, 2.° If c = 0, xc = 6 and ac = bc.

3. If c is negative, xc is negative,and ac > bc. °

, Thus we have: If a < b then

1. if' c.,is positiye, ac < bc
"mem,

2. if c, = 0, then ac = bc
f

3..: c os negative, tac-> bc.

It iweasy to show by interchanging a and b, that the corresponding

results hold when a is;greater than b, We can phrase these results as
4

follows:

Mult1Plying the numbers onlgoth sides of an inequality a a positive

number preserves, the direction of the inequality and multiplying la a negative

number reverses the direction of the inequality. We call this the well-defined

property of multiplication for inequality. t,

It can be shown simila4.y that the 'same situation exists with respect t1Ple

'° the,canceilatiOn property. We state the result and leave the pro& as an

exercise:

if ac,< bc then a <43 if c is positive and a >b if c

° if.ab > bc then a > b'ff ,c is positive and a <b if c

There is, to problem in determining which of two integers

if we merely consider the number line as, follows :`

134 137

is negative

is negative.

is the greater
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-4 -3 -2 0 2 3 4
.

Thus any number is.less than another number if the point which corresponds to

it is to tile left of ale point whith corresponds.to the other. Thus if two

numbers are to the right of, the point 0, the Oint closer to the point 0 repre7

sents the lesser'number. If the two points are on the opposite side of the

point 0, the number corresponding to the point on the left of 0 is the lesser.

If both points are on the left,"the one farther from 0 corresponds to the

lesser number. Thus, lit the laf case,. 5 is less than 3 because 5 + 2 = 3.

Since the distance between 0 and a point is the absolute value of the number

corresponding to the point, we can state these facts in terms of absolute vakie

although it is not clear to the author how much this statement contributes to

the understanding of the situation:

1. If and b are in P, a < b if and only if at < 1bl.

2. If a N in N and b is in P; then a < b.

3. If a and b are in N, then a < b if and only if lal > 1bl.

For instance, the numbers, 3 and 5

absolute values. So of course 3 <5 if

number is less than any .positive number.

1-51 = 5, I-31 = 3 and 5 > 3.

are in P and are the same as their

and only if 131 < 151. Any negative

Finally, 5 is less than 3 since, °

For the rational numbers we have to...exercise a little care. Here the

reader' is referred tojection 5.9. We could use the same meteod.here.as,

there if we specified that the denominators of the fractions were to be

positive. But a slightly more efficient and somewhat more informative way;to

deal with the matter at this stage is to build directly on the prcterties above.

Suplibte we have two rational numbers 7 and 171 and we :wish to determine Which is

the greater. We learned above from the well-defined and cancellationlproper-

.ties of mu1tiplicatiori and inequalities,
.

s
.1004,

a < b is equivalent to ac < be if e is positive.'

, r
So, taping p = b = and c = su we have

r t
(r) su< is equivalent to k-qsu < (t)su

s u

t.proVided that su is positive. But (S)su = ru a ()su = ts. So we have

r ft

< is 'equivalent to ru < ts,
s u

rprovided that su is positive. But since = %Tp de can write any rational

number as fraction whose denominator is a positive integer. This means

that If the twcr fractions are written so that the denominators are positive

135
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(or; for that matter, both neptive);

s u s

t< if ruv< r
ts and if ru < ts, then

,u

t

For example; suppose we wish to compare the fActions

sand
5--

1 3.*
7

We write the second fraction in thelform :5 and see that
7

1 > -implies, >2

3

5

7

Of course if one fraction represents a negative number and the other a positive

number, we do not need any such complex means of comparison.

Problems

1. _Why are the well-defined and cancellation properties of multiplication

for equality equivalent in the set of rational numbers? That is, why

does each imply the other.?

2. Prove the cancellation property of multiplication for inequality in the

set of rational numbers. 1

3. Refer to th definition of a group in Section 5.8 and stateLwrcich of the

cfollowing f rm a group under multiplication::

a. The set; P, of positive integers. ,

b. The set; P'., of positive",rational numbers.

c. (The'se(t; 11,-of negative integers.

d. The, set; tit; of'negative,,rational numbers.

e. The union of P and N, that is; all non -zero integers.;
,

f. )Thelunion of Pt end N', that is, all: non-zero) rational numbers..

g. The set of wflole;numbers1.,.

1-139
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7.12 Betweenness
si

A

In Section 3.2 we discussed betweenhess for the set of whole numbers.

Let us carry this further for the set of rational numbers. ReferringLIo the

numbel line we see that a point is between two others if the nUmielt.:wfiich

corresponds to it is between the numbers corresponding to the other two points.

In other words, let A, B, C be three points on the number, line and a, b, c

the numbers corresponding to them, then B is between A and C if one of the,

following setd°of inequalities holds:

a < b < c or'a > b > c.

We say that the number b is between the numbers a and c. It is not hard

to prove the following for rational numbers. ,
1. If b is between a and c, then,b,+ betweeka t d and c t d.

131-
2. If b is between a and c, then bd-is b*tweenAad'iind cd if d 0.

The first is left as a problem. To prove the second,, sup OSP

, 0
a < b < c. t

5

A

Men if d is positive, we gave from properties described al)OVe:

ad < bd < cd.

On the gther hand, if d is negative,

ad > bd > cd.
.0 1

In both cases bd is between ad and cd and our results proved.

Exercises

1. Let b, c and d be-numbers corresponding to three points on the number

line. Prove that if the'point corresponding to c is between'the
1

: ,

corresponding to the other two numbers then

°11V.- cl,+ lc dl = lb dl
t'

2. Show that'lf b,'c: and d are three rational numbers such that

(

lb - el 4 ic - di . lb - di )
.

i r
Ithen the oint correspbnding to c on the number line is between the

1-:ppints corresponding to the other two numbers. (See Section 3.2).
/'

Let b, c and a be three rational numbers. Show that one 04, the 1

following is the sum Of the' other two , .-6

lb - ci,, lb - di, Id - cl.
e

'Me Seetion 3.2). .
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4-

.

Problems

. .

1. Prove' Property 1 ofbetweenneas above.

2. What is needed to coiplete the proof for Property 2?
f

t +

3. If a is between b and c and c is between a and d, prove.

that a' and ,c are between b and d.

"2:7.13 The, triangle inequality

Nowwe discuss two important applications of the concept of absolute

value and the properties 'of inequalities. The first theorem is quite easy to

prove:

Theorem 1. If a > b > 0, then a
2

> b
2

.

Proof: Since a > b and a > 0, then a
2

> oa from the well-defined property

of multiplication fo;inequality. Similarly, a >b and b > 0 implies ba">b

The transitive property of ,inequality then completes the proof.

4 Theorem 2. (The triangle inequality).. If a and b are rational num-

bers, hen

la + bl < Ibl.

12 J .

Pr of: We know that 1!9.1 = a
2
since either lal, a in which caserio

al . a or (al = -a in which case lal = (-a) = a
2

. Similarly
12 2 1 I 1 i2 x2

1b12 = b2 and la + b12 = (a + b)2. liow suppose that the conclusion of the
. .

theorem were false. Then we wou11 nave ,

I )

la + bl > lal
7 1

and it would follow, by Theorem'1,1 that.
% 0

(1)
(a i))2 ibi)2,1; a2

b2
1 1

+ b + 21abl.

since (see Section 7.5) lal 1bl 4'labl: On the other' hand, we aw that
r

(a 4. bp
2 2

= a( + b
2

+ 2ab.
N

.)

?

'

r

138 14 1
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There are then two possibilities which we consider in turn:

i) ab > 0. In that case", the inequality, (1), becomes

a
2

+ b2 2ab > a
2

+ b
2

+ 2ab

which is false.A

ili) If ab < 0, we would have

a2 + b2 > a2 + b2 + 2ab > a
2

+ b
2

+ 2
1. 1

> a
2

+ b2

which is also impossible. Hence our assumption that the inequality

of the theorem is false leads to a contradiction.. ThiC-completes

the proof.

A

iThough this theorem was proved for rational numbers we used only the

properties of Section 7.11 together with the properties of a field and hence

any system which has these properties will also be a system in which the

triangle inequality-holds. In particular, the real-numbers whid'h are dealt
wish in the next chapter have these properties and the triangle inequality

holds for them also. Idfact, with a definition of absolute value for cora-
.

plex numbers, it holds for theses as well.

r The reason for the name "triangle inequa ty" lies in its connection
,.4

with vectoh and the4Aiscussion,of complex n bers in Appendix III. Atthis

point suffice it to say that geometricslry, the triangle inequality is this: '

If A, B and C are three points, the the sum of any.two of.. the

distances AB, AC, BC iNilot less th n the Jhird. If the, sum of

,two is a third, the points are collinear -- otherwise the three

points are the vertices of a,triangle.

I

'1



Exercises 1

1. ' (See Problem 4). Under what conditions is the following true:
A

la - bi 4 + Ibl? -

2. If a and b'-ereespsitive rational numbers with a > b, does it

always follow,that:

1

b'
4.

3. Let a be a positive ration41 number and c a rational number such

that a + c > 0. Prove the folloVing:'

(a + t) +
a

a
2

+ c
> 2a.

and e equality holds only if C = 0.

4. Usin ltejrcise 3 or by other means pririe,that if b .is a rational

number difprent from zero and a a positive rational number, then
, a' C

2

lb + " 2a.
1b

.71
Apply this to an improvement of the result of Problem 5.

t

7.13

Problems

1. If in Theorem 1 we require only'that a'> b and a and b be different'

, from zero, doesthe conclusion necessarily hold?

`2. If a and b are rational numbers and a > b, does it always follow

that a3 > b3?

3. Prove for rational numbers a and b: - bl > Ilal - Ibll.

4. Prove that la + bl = lal + Ibl if'and only if ab > 0:

44 ,

5. Prove.that / 0, then

lb bl I > 1.7
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Chapter 8

THE REAL VUMBERS

8.1 Introduction

Though there is probably not much to be said abotri6 the real numbers toa

student in junior high school, he can scarcely fail -be) meet some numbers which

are not r tional ones. The number'v is not rational,though this'is not easy

to prove1, The number if is not,rational,and the proof can be found almost

anywhere. Just for varietywe give one which'is a little different from the

usual one. Suppose 2 were the square of a rational number. Ther( we would

have

2 2

2 = = If ,

that is

'Cr) 2b
2

= a
2

.
a

a°

Consider the.factorization of b into"prime factorsikb = pqr t. Then
-

for of b it appears an even number-of
132.= p2i2

... t2. So if 2 is-a° f

,
times as a factor of b

2
(note tha

Aappears-an odd number bf of as a factor. But in a2, appears far even

httriber of times as a factor. It is impossible for 2 to appeaar an even number .

'1 of times on one side of (1) and an odd 'dumber of times on the other since both

ero is an even integer). Thus in 2b
2

it

sides represent the sow number. Thus our supposition that (1) is possible is
°

false and there is no,rational number whoseose square is 2. We also noted that

the decimal-

.1010010001r..

cannot represent a rational number: All these

need; though a somewhat more sophitticattd,one,

numbers.

considerations pint to the

for numbers-beyond.the rational
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Deinit 'on of a real number

Up to t is point we could always shave extended our, number system by con-
.

sidering pai s of numbers of the previous system. But an argument in Appendix

rr of this book s o s that this will not suffice for passirig from the rational

numbers to the real bers. In fact, triples, quadruples, etc., of numbers

would not do either. One has to use an,entirely pew approach.

Probably the. simplest way to think of a real number is to consider it to

be any number which can be "represented" by a decimal. But though this may do

give one a vague idea, yet many difficulties are bound up in the word

epresented." For one thing, a number has'to exist before it can be repre-

s nted. One may also think of a real number as one which can be used to

epresent the istance between any two points, but it isieasier to define

distance in te s of real numbers than the other way around. A rigorous

definition of a real number is much too difficult for us here but we can

perhaps give some-idea of how a rigorous definition could be made. Let us

approach our definition by the consideration of two examples:

First of all, consider theunending'decimal:

.33333...
.

We know that this is the decimal expansion for one-third, but let'us look at

some of lts'characteristics. It can be considered as a sequence of numbers

as follows:

L1 = .3, L2 =.33, L3 = .333, ..., Ln = .333...3, ...

where L
A
contains n 3's. We can associate this sequence with, another:

.111 = .4, U2= .34, U3 = .334, ..., = .333...34, ...

whei:e U
n

has (n - 1) I's and its last digit is a 4. We goteach m'froits

corresponding LAy,adding an appropriate power of 10 as follows:

= L1 + .1 = Li +,10 --. 1,

U
3

= L
3

:001 = L + 10
-3

, U4 '= L4 + .0001 = L4 + 10
-4

U -='L' + .000 ... 01 = L. + 1011.
n

In other,words, for each natural number n, we kve

(1)
n 1

Un - .Ln = 10. =
.

10n



. \

These`tWo'sequences of numbers have the following four properties:

1. The Lts form., nondecreasing sequence, that is, each is greater

than or equal to its predecessor. In notation:

Li < L2-< L3 < ... < Ln < .

4, The Uts fain a nonincreasing sequence,;ihat is, ea

or equar-to,its predecessor. In notation:

U > U U > . > >1 2 3 n

3. E,."y U is, greater than every L..

As n becomes larger' and larger, the difference Un - Ln approaches

zero.
t

These prOperties can be represented graPhically as ollows:

8.2

is less than.

Ly L
2

L
3 3-"n ...1.3n

U
3 Ts., 0

. .

(We have not ,tried totried terepresent this to scale.) The first two,propert&os.
4..

.
,

are apparent. Consider Property 3. Equation (1) shows us that L
n-

is less
,...,,),-/

!,

-than U . ti,;t all the preceding L's are less than L 'and hence less then U-
..--...1., n n

, n
whrbb= turn is'less than all-ttefollow'ng Uts. In notation, ar argument,
is:

,
, .

i in n. Vj , if i
A
and j re less 'than n..,

Finally, PrOPertylliollows from the Equation (1) and the fact that-1-.

lo,
apprdaches zero as n becomes larger and larger. More Precisely, by

A

choosing n large endugh we can make the difference Un - In as small as e

please.
.($ Ali

So associated with the decimal .333 we, have two sequences with tfie
,r

properties listed atove. There is just one number, one- third, which 0 greater

than 'or equal to all the Lts and less than or equal Ipi111 the Uts. In other

words if a number lc% has the prdperty that

"

for all valueebf n, then k must be one-th10. This is the number wlgch'

is defined by the decimal. (In this case we did not need the qualification
,

"Or equal to but there are cases in which We will need it.,)

ti
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Now consider the decimal associated with V. We-proceedto construct

two sequences having the fourproperties'above

Step 1. We know 1
2 .

less than 2 and 2
2

= 4 is greater than 2; so.we write

r
L
0

= 1 and U
0

= 2.

Step'2. We know 1.4
2

= 1.96 is less than 2 and 1.5
2

So we choose .
A A

L 17 1 04 M:Ci

1"7..

= 2;?5 is greater than 2.

Step 3., Similarly 1.412 =1.9881 which is less than,2 and 1;422 = 2,0164

which is greater and so we write:

L
2

= 1.41 and U
2

= 1.42 .

Step 4. To find L-
3

we could try in succession the squares of 1.410, 1.411;

1.412, 1.413, 1.414;.. until we find the greatest one which is less

than 2. This process would have to stop ecause we know that the

square Of 1.42 is greater, than 2. It turn out that

L
3
= 1.414 and U

3
= 1:415 ;

can check oi&calculations from a table of square roots where the
ate+

square root of 2 is listed as 1.4142 to foul] ,decimal places, which

implies that 1.4141.$ isless,tuan 2 and 1.4143
2

is greater than 2.

At an rate we nave fodhd 'the first four terms of the two sequences:

` 1= L L
2
= 1.41,1

3
= 1.4145

4

4.. 4 1

,Iir = 2, ,= 1.5, U
2

= 1:42,
,

U = 1.415
4 13

..
-- k,

, .
-7.

We could carry this cdtputat'ion4furtheT along lines ;.ndicated above. .

..,
' *---.... --..- t..: 1,,.

But the important thing to/see is that we "haAlkso constructed the two sequences

/
...

,,_ ..P..........

~audition,

.

that the four properties /bold as well as Propere§":417'in audition, we hfree

constructed our sequences that the square of every Lis less'tllan 2 and the
.1..

. ,..,
square of every U is greater than 2. (This could be used to establreh,

`ct

Property 3-.)

In the case of the decimal .333... there was a rational number which wast
greater than or equal to all the Lis andless than or equal to all the Ups.

We'now show
,

Theorem 1. If there were a number k .with the property.tliat it is

greater than or equal to all the Lis in .61e sequence above associated with

the square root of 2 and less than or equal to all the Tits, then its square

.
N,ti

would have-to be.2.

144 1 4
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Notice that when we have established this, 4e will have shown that' k '

could not be a rational numberosince we hale shown that there is no rational
e

number whose square is 2. Now, to begin the proof, we have

ar

for all integers n. Then (see Section 7.13) we have

L <k <U
n - -- n

L2 < k
2
< U2 d

for all integers n. But, from the const ction of the sequences we'have also

L2 < <1.T .n - - n
7

Our results up to this point are shown in the following figure:

2 2
2L, L

2
, L

2
L
2

U2L 0 2 3 n n 3 2 1 UO

The both numbers 2 and k
2

are between L
A

and U and hence the distance
n

between 2-and k
2

must *tle less erthqn or equal to the distance, between L2 fAnd U.
In notation this is

But

_2
i

u L
2
> 12 - k

21.
n n

a

e

U - L2 (U.. L )(U + ) <
-4

,n n n n .n n
10n

since U
n

- L
n

1
= --- and

*

10
n

Un + Ln < Un +
n
.= 2U

n
< 2U

0
=

Thus, by choosing r large enough we can make the ditarence between 2 and k
2

as small as we Tlease. This is impossible unless k
2

is equal to 2. This com-

es the proofog Theorem 1.
At

Thus we-hlTe shown that there is no rational number which is greater than

or equal to all he Lis and less than or equal to all the,U1s. This is an

unsatisf9ctory,state of affairs and sO we create such,a-numi)er just as we

created numbers before. Or, alternately, we might, postulate the exiptence
,of such 'a number. We 'state trihiformally as a postulate:

N.:.

115 4 48



8.2 *lc

-41. ".

The Completeness Postulate; Suppose we lave two sequences of decimals

,L
n

and U
n

with the four properties listed above. Then there is a unique

number which is greater than or equal to all the L's and leds than or equal

to all the U's.

Definition: The set-of real numbers,consiits of all numbers postulated

above.

Note: Actually the sequences L and U need not be decimals and it is

true that property 4 implies that the word "unique" is superfluous by an

argument like that which we ised in the proof of Theorem,l. But the postu-,

late and definition is sufficient for our purposes 'here. 0

No we are in a position to.give a more definite meaning to the phrase

"represented by a decimal." Suppose we have'a decimal which we write as

follows:

.a
1
a
2
a
3

... an

where thea's are the digits. If the decimal terminates, this just means

that froq a certain poll\ton-.0.1 the a'S are zero. Then we write the series

of. L's:

,

n
.ala2a3 ... a

n
L
1!
= .a

1
; L

2
= .a

1
a2 , L

3
= .a

1
a
2
a
3

For all values of n we define

-n

n
U Ln

as before.

Now we want to show that these two sequences satisfy the four properties

above. Property 1 is evident. (Notice that if a'digit is zero, two succes-

sive.L's may be equal.) Property 4 follows from the definition of U
n

.

a'

Property 2 may be intuitively evident, but it is better to give a formal

proof. First we need some information about the sequence of L's. Since no

digit greater than 9, we have the following sequence of inequalities:

L2 L1 + .09 = + 9 10-2'

L3L

2
.+ :909 = L

2
+ 9 10-3

L3 + .0009 = L3 + 9 1 -4

V

L
n

L
n-1

9 10
-n

= L
n-1

9
n

10

9Ln +
10

n+1

c- 146
w
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The last inequality then gives us: -
..

s; t.

'L - L 9----1 n+1 n '

10
4+1 -

. , *Since;U = L + 10. , this leads immediately to
-; n n . . . '4'

.

' 1 1
t.I - U L + to -

10
nn + 1 n n+1 n+1 n

10 .

. .1

10

1 10

-,
'

(Ln+1 In) n+1 ''' n+1,
10 0 0

7 0 : :
9 9'

10n+1 10n+1
' -.,;

.
. .

This we have shown that U
.*-. 1.1 0 , that is U

n
.4.1.<:U

n
,' which estabAshesn+1 'n

,*Property 2. Then, just as previously, Property 3follOws since
?.

. . ,

$

8.2'

Li < Un S Uj

for all i and' j less than n. Looking back over the argument we see that we

began with a decimal between 0 and 1, but this was only.a matter'ofconveni-.

t-_ ence in notation. We could,have utilized the same development with any decimal.
Thus we have shown that from any decimal there may be constructed two?

sequence6 of U's and L's with the four properties. Then the number pdstulated
above s the number which we say is associated with the decimal or represented
by it. In turn, we can speak of the dedimal expansion of a real number.
, The readermay think that this is a long way around to come to something

so obvious as the concept of a number represented by a decimal. The,point is
that along these line, one may define a rea.1nimber and that this method places
the real)nuMber in relation to thetwo.bsequences. Furthermore, the process 4

Aalso places the real numbers on the number line. Starting with this; oner---
could provethat the real numbdrs form a field which is ordered. This, how-

- ts

ever, 'is ,too.difficul t to attempt here.

There are two kinds of real numbers: rational'nu4ers and *irrationaF

numbers (those which are not rational). There would also°be megative) and

positive real numbers. It is a little hard to show that 'Vtween any two
-

rational numbers there is an irrational number and between. every two irra-.
,

tional numbers there is a rational number. (See,Section 93). We can/think

of the real 'numbers, as' filling the number line," whatever that means.

The real numbers form an ordered set which has the same properties as

were described for rational numbers kn Sectkon 7.11. -One,ofthe.consequences
'of this is that the square of every non-zero real number is a positive number...

An imPOrtant consequende of this is that.the equation x
2

-1 has-no /

solution in the set.of real numbers. This lack can be taken.-care-of in the

147 4
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creation of the complex numbers as discussed in Appendix 3, by considering

ordered pairs of real numbers with certain Prescribed Properties. Thee com-,-
..

,

plex numbers, however, do not have the propertiesof an ordered Set. , .10

1,

A
Problems

Prove that there is no.rational number whose square is 3 .

2. Prove that thereis no rational number whose cube is 2 .

3. Proire that if r is a rational number different from zero and s' is,
an irrational number, the% rs is irrational.

4. If r and s are two rational numbers and r< s, show that

12-\
r + (s - r)(2)2

O

is-an irrational number between r and s.

5. Find abTational number between I and 13 . Describe a method.of finding

a rational number between any two given irrational numbers.

0 I

"/ rind the first five members of t e sequence of U's and L's r ea of_

the following: i) the decimal k r -f-1.-i. ; ii) the decimal for

iii) the decimal for g , which to five places is 3.14159.

7. There are two decimals which represent
2

.40000: and .3999 ..
1

_ Find the sequences,of, tits and, Utp

8._ Consider the following two sequences, prove that they haVe the four

properties described above, and find what number they define:

1 2 3 1 + n
L = L L
0- 2 3 2-J

-
-3 4 5 3 + n

UO. -0 U2 I
.

' n 2 + n

9.-: In Problem 8.above replace the two sequences by the following:

1 2 3 1 + nL0=
'

L 1=
L2 ' ' ' Ln 41'

.

3 5 3 + n
a- . a U0 = = z Ua = . . U .M 4 4- en

1 `

4

U 148.
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,,
Exercised*

r,
'

Consider the exercises of Section 7.13.,There it was assumed that the

letters ptood for ratipnal numbers. Would the same results hold for

any real numbers? .
.

.

t

2. Suppos we consideAhe numeralsystem\f6 the base seven. RecIl,that'
then .1 eans one-seventh, .01 means one forty-ninth, etc. Could reaP"

..

/numbers be defined.in terms of these "deciffigld"? If so, how could thid

be: done? ',,

-

, 3. Give so examples of decimals.whili\represent irrational numbers. t`

114. Let t
o

t1 = 1 - -2 , t2 = 1 - -2
+ 22 '

t r 2-
2 3

2

1 1 1 1 ( -1)n-3 ( -1)n-t = 1 -
n f

2 23 2 n-1 2
n

Then define two 'sequences of L1 and 's as follows:

L0 = d , Ll = tl
'

L2 = t3
3;
= t

5
..

r t

U
0 =.tc

'
U
1

= t
2 '

U2 = t4 , U3 = t6 , , Ur = ttr .

In words, the I's are the is with thk odd subscripts, and the U's are,

).the is with even subscripts. Show that these two se uences satilfy A
the four properties of this'sectibn. What number is represented?

4 e,
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Chapter 9

EqUATItRIELAfD GRAPHS

O

9.1 Introduction

We he been using glibly through this boOZ equations like

,a + b = b + a , a + x = b.

The first was used to express a property of numbers;

ard'any:two-numbvrs (perhapS" rational numbers), then a

second equation thepoint tip view was quite, different.

that is, 111116a. and b

+ b = b +01: For thee.

We thought of the
4 plumbers: a. and b ,as given fiked numbers and wanted`to find for what numbersg

x 'thefequation would be true.
.

.

Traditionally an equation was "an indicallted

- sions" .most of `the newer teicts

equality between two expres-s'.
now i-t is thought of as a sentence com-

posed of twos"nUmber phrases" with a-verb phrase,"is equal to" ,kpchanIcally-.
.

1' .

there are twd A sides' . of an equation: that wliTZrfticifto\the left of the equal-
,

it sign and that which is to the'right. These are tithe two "number phrasps."
. -

equa ion s a Statemept*thattwo numbers are ,eqdal. gornetimes the

state t is
4 . ylv

'0.mA-sometimes it is not.

We may have pations which involve,numbers alone 14.;ke:

3 + 5 =.6 , 4 + 7 +'2 = 1
-0

3 , =-1 .
-

. ..
.

.

an eqOation which is not true. (ome peopleaiqould pre,
41/4.0

The first of these is

'fertv say that-_it is

different definition

not anluati9n,_ but

often equation.) The secend is an eqilatiq

true.' The third is an'eq tion which is nOt true bpCause it. do

any m2an#g, in eontrast to the first one which hasa a meaning.

We also have equations involving letters anfrnuM4ers like:-.

that ease,..they 'would have a

a

0 The first of

a ). This

J..
.

a + = 5 + a x 7 ,

+1 (13-- 3:)(a
. a - 1 3x +.5 = 2, x +1 =x.

ave_,

these' is true fora llnumbers% a (or if you like, ,saa values

equation and Amy tither Which is true, no matter What numbers

. ,

,

. 1.5.1

1. 0

,a.
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are substituIpd for the letters, is called an identity. The second equation

is true if the'letter x is replaced by 7 but not otherwise. The third
,

equation is true for all values of a except a - 1. The reason for the .

exception iathat if a is 1, the right side beComes

0 24 0
that is, ,

_which, as we have noted before, has no meaning. It is gewal practice,

though not very consistent, to call this equation an identity too. This

requires a slight modi,kiation of the definition oftdentity'as

Aridentity is an equationi which is true for all substitutioris-

of nunibes for the letters for which both sides of the equation

. have meaning.

The equation 3x + 5 = 2 is not trpec?cir any co,nting number nor for any

non- negative rational number. It is trueif k = -1. We call this value of

x a solution,of the eq6ation. That is, any numberaiOr which the equation is

true is said to "satisfy the equation" or is "a solutibn of the equation."
, .

om 'this point of view, if every number is a sql.ution of the equation, it is
%

an identity's...
.

Finally the equation x + 1 = x is .not truefor,aumber x . It Hts ...
4

no solutions.

Equations which, are hOt identities are often called conditional equa-
e

. tions. The set of solbtions of an equation is,often called the blution set

of tlie equation.

9.2 iSolving equations
A 4

" 4 I.;

ks.,
_Z"-1

The process of ftpding all the numbers whiAilosatimLequatioli.is

called "solving the equation." Sometimes this can be done:tly.iApection as

fqr x +,5 = 7. .Wc can tell bidooking at.it that x = 2 is a 'solution and.
. .

only this number atisfis thpequation, For more comAl.lcapid.,,equationsthe

process consists in finding a succession of "equivalent" equations'on the way
. .

,

to an equation who4 se solution is obvious. Two equations are said;"-to 13e-
_ ,

equivalent tf they have the some solutioa eset. For instance, th,pairk +
.I

T
. .

= 5 and x - I = 3 are equivalent, since x = is a common sOluticip and they
. .

01'0- --,,"1"'.1.,-,:',14..'s-1-'`,.--,-.,"""-4-0..k,4,....... , i
i

havk no other. In fact, x + '..e = x and y + 2 = x are equivalent equations

because neither has a solution; that is, their solution sets are the null set)
, . . ,"

There are certain ftndamental processes which we can be sure yield ='

equivalent equations. If we confine ourselves to these we know that.from
, ." . 1.

step to step we do not change the solution Sets, so that, at the end, the
, , de .

final equation will giV-e us all.and only, he solutions of that with which

-
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4

we began.' These stem from the well-defined and cchceilation properties for

It
addition and Multiplication. Recall that for numbers they are the following:

1. For addition: if arch; then a-+ c = b + c

if a . + c-= b + c, then a = b

2. For multiplicatidn: if a = b, then ac = be.

if ac = b and c / O.
f

then a = b.

Then if the sides of an equation Apres nt numbers and if we get another

equation from tbe first by adding or subtrae ing any number to both sides or.

by multiplying by or dividing by any number different from zero, then the

solutio'n set of the fist equation will be the same"as that for the second.

Let us see how this' works for a numerical equation. Consider

2x + 3 = 20.
/

Here we have in led that,ye..want to end with an equation like x = b for

some number b So fist we add 3 to both sides and get
1.

2X + 3 + -3 = 0 + -3

or =

We know from Property 1 above that ,tne solution set of this equation is the

same.as tha of the given one. We would Dave had the same result had we

subtracted 3 from both sides.

Next we divide both sides by 2 or multiply both sides by one-half to get

17

s.

x =
2

'.
17r

This last equation has just one solution, 7T, and hence the first equat4on

has the same solution 0
The purpose of checking this'by-substitut4 7'

og 72 in,:

the given equation 'is-to find d-Whether Wrr-aedela miStak;in-the process, If

we Werejsure.thAt there were no mistake, wewcoiild be sure that what wd fin-
.

ished with promlded_all the-solutions,

As long as one is sollring linear equaliti42211 (.like ax + b =
1-4;,"-r;

one may confine hiMself to the pro esses of adding, sUbtraCting, multiplying,

and dividing by numbers. (numbers different from zero in-.the last two pTocesses)

without danger of trouble. .

In fact, whenever we keep to these processes we,are on safe ground.

When we Use others, car is necessary. For instance, considen the equation:

S

(
(1).

Aix

1 -1

- 2 ()E 2)(x 1)

To eliminate the fractions, we shoUld multiply-by (x - 2)(x - 1).', Let us do

this and explore the consequences. This yields,:,

At:

4

\

1,3 .f f

1 55
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x 2)(x - 1) (1c - 2)(x - 2),(x - 1)

x 1 ir 2 ( x r 2),( x -

el-=t: (2) . x - 2 + x - 1 = -1 .

4

V.

Now let us nalyze what we have done.- By the first part of Property 2

above, if (1) is true for some number x , then (2) is also true;;in other

words, evei.ysolUtion of equation (1) is a solution of equation (2). Another

way to say this is that the solution set of (1) is contained in the solution

set of (2).

Furthermore, -we can obtain equation (1) from (2) by dividing by (x - 2)

(x - 1),..andthe second part of Property 2 above shows that, unless this

"divisor is zero, every solution of (2) is a solu on oT (1). Now

(x - 2)(x - 1) = 0

if and o nl y if x = 2 or x 1, since the prolduct of two numbers'is zero if
4

and only if one of them is. Thus we have shown that, aside from x = 2 and

x = 1 (which may be solutions of '(2)?but not (1)), the solutions of (1) and

care the same.
4

It remains to solve equation (2) and apply what we have noted. Equation

(2) can be written A

2x - 3 = -1 .

By Property,Labove it is equivalent to

2x = 2 ,

4 ; s

141441 from Property 2 Akequivaleni to x = 1._ Hence the only solution of

equation (2) is x = 1. This means that exceptifor the possibility of x = 1,

there-can be no solutions of equation (1) "-But x = 1 is not a solution of

(1)since for x = 1 the first Aenominaton" is zero. ,Hence (1) has no solutions;

.

,t1.1fitlis).the)solutio&setof(1,1.1s,the,nuZ1

For solving quadratic equa:iicins, the i'echnique is quite' different. Here

onjfi'ObjeCit ato arrive ate an equation like-.

ex - a)(-x - b) = O.

4

Then we '1,104 eithei-,x-r_.a= 0 (A- x - b = 0; since the product of

two numbers can be'ze o only when one ofthem is. Thus to solve

x - 3x =,3x - 5.
d. .4

one finds.an 'equivalent equation in_whichtthe number 40 alone appears on the

.right side of the 'equality sign. To.th3.s end we subtract 3x - 5 from both
:a

sides to get

154
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2

x - ox + 5 = 0.

By multiplicaticin we can verify that x - 6x + 5 = (x 7 5)(x - 1), and thus
the solutions of Our, given equation are the solutions of x 5 = 0 together
with those of x 1 = 0. That is, x = 5'and x = 1. These are the only solu-
tions.

Exercises

1. Solve the following equations for xr

a) + 5 = 2 b) - 2x = 5 4- 5x

= 3 ed; 2
x = 4..x -

2 Consider the followng "method of solution" of the equation

(xc- 1C}(p- . 3

Since 3 . 1 2 we have two possibilities:

or

x - 10 = 1 and x- - 8 = 3.
-x - 10 = 3 and x - B 1 .

The first _pair gives x = 11 and x'= 1:1, which is a solution since,

(11 - 1;0)(11 - = 3 .

But the'second it gives x = 13 and x = 9, both of which cannot be
true.' Yet x = 7 is a soluti n of the given-equation-

-this did not
appear by tbe. mettioq--)-4-marr. 4 t is wrong, or what alteration should
be made?

3. Can the methods used in the previous exerci se be used to solve:6I

(x - 2)(x - 4) =5?
Why_ortwhy not

.a.

4. Show that the equation of Exercite 3 is equivalent to each of the fol.16i4t**
ing:

x2 - 6x + 3 =

x2 - 6x = 6 ,

(x;-.3)2 = 6 ,
x -3 = or x - 3 =

x= 3 + or x = 3 - .



.

Problems
1

1. Show that equivalence of equations is an. equiyalence relationshq in

the sense of Sectiop 5.4.

2. Consider the 'equation
e.

(x - 2)(x - 1) (x -1) .

To solve this 'one may divide both sides by (x -_.1) and get

a
x .! 2 = 1

or x = 3. Is 117 3 a solution of the given equation? Are there others?

What pairs of equations are equivalent'? Give reasons for.your answers.

3 Find all the solutions of the equation

1
+

x - 1 (x - 1)(x - 2)
-1 .

e

Explait which pairs' of equations in the process of your solution are

equivalent.

°' 9.3 Solving inequalities

For inequalities we could; with only slight alterations, use the same

discussion as appeared for equations in 4 ti;st section,of thils chapter. .0r,

.We have solution sets of inequalities and equivalent inequalities just as

for equations. The -basic techniques are the same except that atone point

there is a difference. Again it is based on the well-ddined and cancella-
, -aa

Rion properties. We state them again here for reference and comparison.

1.. For addition:' If.a < b, then a + c < b + C.

?

If a; t. c < b F., then _;81, _ .-

2. For multiplication: If a < b, then ac < bc, provided that c >4.

If ac < bc, then a b, provided that c > 0.

a

If in either of the cases for multiplication

c < 0, then the second inequality is 'reversed.

We thus must have regard for the sign of any multiplier, (Not only are in-
,

equalities important in themselves, but they are also importantas a mea

of emphdsizing the properties of manipulation of equations...) Let us us

trate the prO45s by solving an inequality in' two ways:

2x +,3 <7.

156 ac:
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4thpq I. 'Subtract 3 fkom bo4h side-s .to get thelequAija enti4aq

2x < 4. To find the solution we iould Want-i- divide both- idc/s by7),-

This is negative. Hence we teverCe the direction of,:ple! neitua1ity and Oti
. _r.f

: .j

x.> 2
i

,

This is equivalent to the given inequality which, therefore, has the solution-

9.3

0

x > 2

Method II. Add 2x to both sides to get 'the inequality; 3 < 7 + 2x.4

Subtract 7 from both sides to get 4 < 2x. Here we want to divide by 2, which
?

%. ."is posittVe. This leaves unaltered the direction of the inequality, and we
.

have as our final equivalent inequality

2 < x .

t'

Though,in this book we shall e concerned for the most part only with

linear inequalities, we might look at the irequality corresponding to one

of the problems in the previous section:

(x - 2)(x",il) (x - 1).

Here there are really two cases to consider.

Case 1. If x - 1 > 0, that is x > 1. In this case the given inequality .
4

is equlvalent to x --2 > 1; that is, x > 3, But her if x > 3, certainly

.,'x > 1. ,Hence our only condition is x > 3. ' a
Case 2. If x - 1 < 0, that.is x < 1. In this case the given Lhequa1ity.

. .

. .....dais equivalent to. x -2 < 1, that is x < 3. Since x_.< 1 implies -x -'<- 3; we seeL

that the given iriequality,holds. if'x < 1. P

Ire conclusion combining the two cases is ,

- x < 1' or x > 3.

91 As an, application'of'these techniques we recall and solve a postponed.
. .

problem from Section 5.10. There, using the secored definition of, density,

st4ed-the-fO/lowing resplt which we now give- as a-ihporem-1--- i7
Theorem; Between anytwo real numbers there is a rational number:\

Proof: This 'could be shoWn'using decimal expansions. Though notationally

this ig rather diffieUlito do, in any numerical case the technique is clear.
A

For instance, if two real numbers were

1.41459... and 1.4151....,

a rational number between them is 1.4146.

4

.15.71 5 9
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9.3

We give here another pro f because though it is somewh
J
t more sophisti-

, i

eat-ed,fit inyolves,some impor Eint i44eas and, can be mode mue ,more0,efi;nitti4,
1 ,/

First we prove a lemma which is an ,extension of a result in Segtion 4.2.

(An auxiliary'result is oftencalled a "lemma.").
,

4 ;

Lemma. Let' s and t be two, positive real numbers; then there is an

integer q and a real number r such that '

s = qt + r, OS -1- <t
i

Proof,: Notice first what this,affirms geometrically. We have.two points

s_ and t On the number line an to the right of the point( 0. If t is to

the right of s , that is, t> s, we take q = 0 and r = s. Tf t S s, we lay

off distances t on the line repeatedly until we have the greatest multiple

of t less than .5 . This,multiple of t is q and s - qt =r1: In a way ,

we divide s by t and write the remainder just as if t were,a whole

number.

To make this more precise, we consider the integral Multiples of t:

t, 2t , 3t , 4t , .
,

Since by choosing the integer n large enough, we can make as large as

we please, there will be some integer n svch that nt s. Let m be'the

least such value of n ->,Then choose q = m -'1 and r = s - (m - 1)t% Then

s = (M - 1)t + r .

verify the conditions N9 r ID the first.place,..s-< mt' It remains to
.

implies

which is part of the condition. It remains to show that' r is flon -negative.'

,-----
. ,..i....,

SUppose r .< 0,--, -Then--,, :- . , .,

S

s lt(m - 1)t + r < mt
5

mt - t + r < mt

+ r'< 0

r = s - (m 1)t < 0

s < (M - 1)t,

,whiph contradiAs our choice of m to be the least multiple of t greater

than . This completes the proof of the lemma.

I '

* TEls intuitively evident property we Ass,me. It is called the Arohimedian
property.

'158
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9.3

Now we_ are prepared to lgove that the' set -of ratienal-nurers ids
to thei oer144.44oe0010rthat10-

o

dense,

are of

is

&eOrem written/abottV et;

opposite sign4then 0 is,a rational number between theMand our result
shoWrr. If.we.can prove the theorem for two positive real numbers, it 1411
also be,true for two negative real numbers, since we can find,a rational
number between t4e absolute values of, the given real numbers and use

'additive inverse. Hence we assume that s and b are positive and
s. Now there is a rational numbloot.,t less thanb - s;

t =
1

and makIng n sufficiently large, we can make t as smell as we please.
It is intuitively evident from the geometric picture that if t is less than
- s, some integral multiple of t must be between s and b. -.a- To give

its

take

since by choosing

a more precise proof we use the lemma above and find

real number r such that

.IPPITrO

\since t> re Also
,

(q

t,

an integer q and A

q1-1)t=qt+t=s-r+t>.,s,

s + t r < s + (b - s)*- r

Thus we have shown that .he rational number .(1-1- 1

and-ourrbof-is complete.

... 4
Exercises

lr---505ethe following

=b r b.

t, is between s ,s-and

,

' a) 7x 4,_ 3 < 5 .
'13) -2x 4. 5:7(xy- -2

,

___

. 1 / ]

.5
. 2

7c) 2 >t-_---7 )
x 5 -. 17.6x

_

2t Suppose in thelqmma of this section s = it and t = 2. _Then find q'arit

4

3. Indicate on the number lime

ing conditions:

a)

c)

e)

x > 1 and

'x > 1 or

1x1 < 3

r.

the sets of.points which satisfy the follow-

b) x < or

d) x < 1 and

f) lXI 2 3-

159
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ue-

t

a

A, ..,.; ; f. V -1:, - .1.''

'1
Ia t 4.- fol oWing,theettex: a Aan0Pror*e ofa ,

and (I)
4 I

) f ,

dne Of the dame Set, while c stanlUtdr ,"or" on "and." Consider

the statement:

(x al) c 4) .

(For instance, if a is , b is > and c is "or." it becomes

x < 1 or x 4.)° Put in the,proper sign Or worn for a, b,'andc where

possible so that the set of.pointso.nthe-Aumber line id :'

a) a fin; segment

c) the whble line

e) the empty set

g) two line segmerits .

b) a ray

d) a ray without the end-point

f) two rays

Where your answer is "impossible," explain why.

Problems

1. Recall tat in Section'4.9 we defined a set Dof number of the form

2,

where n is an integer.and k is a whole number. Show that if a

"
.. 4

4 and b are any members of D, then there are other numbers q and r
.

of D such that
,

a = bq + r, 0', r-< b

2. Recalling t e seconddsfinition of density in Section 5.10prove that e'
,..

between any two,real numbers there is a number of the set D defined

, aboye and hence,by this definition of density, the set D is dense.
, .

. v
3.. Let a , b , and c be three pos'itive numbers of the set D defined

, k

above.< Prove that there are numbers q, ..and r of D such that

One way to show this V to use the result.of the prelaous Aoblem.

O

16o 2
I 1



4

y-sove- -inqUa4ti4?[-Af.u tion
,

, 0

Traditionally algebra was sometimes taught as if the whole purpose of

the subject were to solVe equations: -And trien when the grand climax appeared,

the ,equations were of the puzzle typ Most of us enjoy solving puzzles, and
, 4

they are edifying, but a mere puzzle should not be the aim of a yeat's study,

Most of the equations which one, would want to solve in everyday life 1)3r al-

, 9.4

1 '\

getTa requite much more complex processes_than can be.discussed in a high

school class,, and in many cases the use of tVMachine is-F&Eer." Certainly

there are not many really practical problems which recw're the ,solution -of

a linear equation. Here is one.

i=roblem. A theater owner does not want his cashier to h ve to be bothered

with anythin4les than half dollars. He wants a net gain, no "counting /

expenses, for instance, of about X6.00 for the best seats in the house. But
0

there is anrentertainment tax of 10 per cent. What should he set the over-

all price, to be?

He notices that 10 per cent of $6.00 is 60 cents. So if he charged

:i6.50 he would be a little short and 17.00 a little ahead. He asks himself%);,
0

what would be my net gain for these prices? Now if N is the net gain, the
11,

price charged -would be N +
10

= N(175). S'o he has two equations to solve:

3

11

10

11

= 6:50 ,

°
= 7.00 ,

that is,

tthat is,

N = (6.5)

N = (

12
11

10
=

1

70 °

II

65

11

1.1

This would. give him the general result that his net gain would be". the

price ch;rged. In tVese two cases Dr= 5.91 , and $6.36 would be the -net,

gains. Thus he has to decide b'etween these two prices. Doing it this,way

instead of by trial has the advantage that he has a ratio 4. which lie can

use for determining his net gain on the other priced seats as well.

This type of problem has many variations.. It could big used in determin-
r,

theWhOiedale Price of an article if you know the retail price and retail
4

mark-up. fn these days ot government contracts, if you knowthe percentage

of the overhead and the total amount, you can find what there is to spend

before overhead.

What should be emphasized a little More is the role of algebra in simpliT

fying calculations. For instance, suppose there ate threcities--A, B, and

C - -with B between A and C. You know the distances and want to find how far

from A is the'midpoint between B and C.' The most natural way to do it is to

add half the distance from B to C to the distance from A to B. But a silihtly

shorter way is to-find Half the sum of the distances of B andwe from f. That
,

161 /
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' th tw, are equivalent its dhown by the fb116wing, where b the distanCe
1 ,

of B. from A and c xthe distance of. C from A.

c -b, '`ic b b c b+ c
b + 2 6 b + 2 2 2 4: 2 2

A6tually it must be admitted th5t the average ci izen gets al quite

well without solving equations. To be sure, it is very common to use letters

to stand for something--our whole language is this--but we do not add them

unless we wish to be facetious as in.

USA + FDR = NEW DEAL

1 a

At least if we subtracted :'DR from both sides, theeauation would not be

true, nor in fact would it make any sense.

Moreover for the person,whose most eoMplicated arithmetical' transaction

is making out his income tax, algebra is diNensakle. But if he wishes to

be, informed about what is going on in the world around him, he certainly

needs to know the properties of numberg which pervade our lives. And these

are algebraic properties. See Section 9.8.

2.5 Relations'an ctions
0

So far we have considered only the solutions of equations involving

41.

one letter, though we have oopidered many identities involving two or three

letters like ab = baror ai+ (b't c) . (a t b) + c. Consider the simple
-.P t /

. . , e
equation:

- .,.. J ,,, .., ,_, . -4- "

X_ + 3 = y . .
. .

. '

' Here,wecan choobe x as we please, and the equation.will be true if y is
0

3 more than the x we chose. This expPesses a relationship between two

numbers x and y . Two other ways in which thibsame relationship could be
0

expressed are:.
I ----\

y - x = 3 and = Y - 3 .
.c,

-

0

N .

-,
. The sec nd of these shows that we could also choose y as we please if we

. -.. . ,

_allow x to bes,a.ny integer or rational number, tout that if x has to be a

positive rational number, the only valu-e7of y whichilkeld abvalue 0? x

are those greater than.3.

Another relationship would be expressed by the inequality:
4P, 0

In this case again we can cho6se x as we please and to satisfy the inequal-
,

ity, y lust be greater than 3 +.x.

.

i6 1 6,1
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' In bath cases above we have a pair of numbers.(x,y) and a relationship be-

tween them. We would even include the relationship implied.by the equation
40°'

,X5; = 0. For this equation if x = 0, we can'replac -y by any 11,11lbet and have

the" equation true. Also if y = 0, we can,weplace x by'anynumber and have

the equ'ation true. But if y / 0, therej.s only one x , 'x = 0, forswhioh.the
rA

equation holds., -

Th'ere are A'number of_ advantages in n'epreo.enting these relationships

graphically. Here the reader should recall Section 5.1.1.2whei'e th Ordered"

pairs of numbers (a, b) correspond to points in the plane.
i

.Consider the first equati6 of this section el .

x 3 = y

We could.make a table of som of the pairs_pf values for which this equation

isntrue:

-'x -3

0

-2 -1 0 1 2 3

1 2 3 4 5 6

If lie represent these points on

this:

rer

-

,raph taper, we would have apicture

'343 . .

1.65
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Of course tivse are not the Only points. Another, for instance, wouN be!

6) -- 4
k3 DP ,_-1) or, indeed, 3).

It looks as if these pointall lie on a'straight-line. In fact it is

true chat the solution Set of the*evation consists of the pairs of coordi-

nates of the points of4 the straight line connecting, for instance, points

(-3, 0) and (0, 3). This is proved in Appendix IV for those interested.

In fact, it iS" true that every linear equation (that is, ax + by + c = 0

for numbers,,,a , b , ands, ) has .a line as its graph, and every line is the
.

graph associated in this manner with a linear equation.

The line represAinting x = is parallel to that for x)+ 3 =r5, since the

two equations hal.cpa,commbh solutiOn.;

The inequality

x + 3 <'y

is true when y is a number Which is greater than 3 + x. In terms of the

graph, for any x the numbers satisfying the inequality will be the second

coordinates of those points above the line. So the graph of the-inequality

is all those points above the line x + 3 Similarly the graph of x + 3

y- would be all the points below the 11.11000*

Notice that t graph of the equation and the inequality differ in one

important-respec for the former there is just one y for each x and for

the latter there are Infinitely many. The former we ,call a function:

Formally.:

A function is a set, S, of ordered number pairs (x,ir) such that no two

'distinct -pairs of S.hav the same second element y . In this case we would

say that " x determines y This is not quite accurate, for there may be

4 4'

values of /- in a function which have no'orrespondiw y . .

For instance:

. 1,-

For'each x

ig

except x = 3 there is a value of y,,and exactly one. 'But for
.

. x . 3 there' no nlamber y. for ch the equation is true. We still pall
.

t

. thilpfunctioki.` But the inequali 3 < y is'hot a function because y

has an Afinite numbhr of values for each xs:
,

\ A-tlibMetithes a gi7n equation works both wys; that is, each of x, y As a.,

function of the other. Wt have the following pairs of equivalent equations: '

. 4

'1

x - 3 Y

4

164
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J

x + 3 -o y. and x = y -3
1

(x 3)' y d x =

In these casts we say that the function has an inverse.

But not.all functions have inverses. Consider the equation

4.

y x

It is a function &ince there is only one y for each xe. But for a given

non-negative y there are, except for y = 0, two possible values of

x : -,(5 and -However, even here if x is restricted)to be a non-negative

rea.1 number, for instan6e, and y Lobe non-negative, the inverse function

exists, fdr thpn for each vIue of y there,is exactly one value for x.

Graphically, we know that, there is a

orderM pairs of real numbers(x,y) 'and.the- point

starting with a pair of axes, represent& the-i

the vertical one.) 1So graphically such a functi

Set of points with the property that no two of th

-one corresponJence betwen

in the plane. (Recall that,

orizontel coordinateand

n may he repres ted by a

set are on the ame vertical
. -

line., :The function will have an inverse if no'tlgo. ioints. '- set are on
, .

the same horizontal Dine,,since the roles of x and y are reversed.

Figures la and 2a represent functi ns with inverses and lb and 2b functions

without inverses.

Y =
2

x > 0
,

Fire la

2y =x

4i ' Figure lb

,16 (7 e



(3,4)

(5,3)

'4 (1,2)

(4,1)

Figure 2a

1

(3,4) (5,4)
,

(1,2)

(4,1)

V.gure 2b

Of course there a relationships and function ,which are not given in
. .

terms ofe4uations. Figures 2 above are trio examples. The following table is

another example of a. function. This gives the heights of Nn persons. It is

.a function since every person has a unique height.

Person number 1 2 3 4 5 T. 8 9 10

Height in inches 48 73* 62 53 7i .69 73 52 58 65

Exercises

1. In Theorem 4 of Section 4.4 it was proved that if.;71 is the g.c.f. of a -

and b, then the equation.'

.'
. .

. ,?

_,/' ax + by = 1
,-

-

--..---its.

has solutions in integers x and y. haloes this tell us about the .

line 3x +-4y = 1? What doei this tell us about the general- link
, .

ax ti- by = 1 when 1 is theg.c.f. of a' and b?

2. Carrying on the ideas o5 the previous exercise and noting that

6x + 15Y = 1
11

has no solutions in integers x and y, what does this mean in terms of,

the graph of this line?

3. An housewife spent *1.00 on oranges and bananas. If oranges cott 4 cents

apiece and bananas 3, draw a graph indicating her possible purchases.
.

166 1 6E10
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9:6 Applications.to ordered Pairs

Here the reader should recall. Section, 7.7 in which there was set up a

correspondence between negative integers a'ilIN*deedlo-aTh OfA-Ore iiilders.

There the number a - b was made to correspond to the ordered pair (a,b).

There v,e -found that al; the .points defined by ordered pairs corresponding to

a given number were attire points on a line parallel to the line through the

points (0,0) and ( ,1). More specifically, all ordered pairs of whole numbers

corresponding to the number 1 are coordinates of lattice points on the line

x y = 1;all pairs corresponding to -2 are coordinates of lattice points on

the line x 7 y

We could set up another kind of correspondence as follows:

a - ib corresponds to the ordered pair (a,b).

Then t.114 ordered pairs corresponding to the number 1 would be coordinates of

the iattj:ce%points satisfying-the equation x - 3y = 1; all pairs corresponding

to would be coordinates of lattice points satisfying the-equation x 3y = -2,

Am-etc,

One can also, in accordance with this correspondence, set up definitions

of addition and multiplication of number pairs. Specifically
,

{a - 3b) +(c - 3d) = (a+ c) - 3(b +d) corresponds to...(a,b) +(c,d)= (a +c,b d)

(a -3b)(c - 3d) '= (ac +9bd) - 3(bc f ad) corresponds, to (a,b)(c,d) = (ac+ 'od,bc +ad)

We could proceed further with this correspondence and add and multiply

lines as in Section 5.11 bvt it seems scarcely worth while here.

In Section 5.11 we c nsidered also the positive rational numbers as

ordered pairs of whole n bers. In this case the correspondence is between
.

the number
a

and the pair (al,b). Then

/ ,

()E,y) = (a,b) if and only if,xb = ya,

which is the equation of a line through the origin. Recall that the number

pairs (a,b) and (c,d) will correspond to the same rational number if and only

if ad = be, This is jtst the condition that the point (c,d) lie on the line

xb = ya, since if we ,replace x by c and y by d, we have cb da. Thus

the pOint (c,d) will beron.the line xb = ya if and'only if-the numb pairs-

. (a,b) and (c,d) correspond to same ra al number. In other words,,all
,

'the.points corresponding to a gOen_ratlonal n are lattice points on a

single line thtoughtfie"or gin.
a
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Tog,. Pairs oftlibear equations *,

We have found that a single linear_equatiA in two letters orunknowns

usually has an infinite number of solutions. But if

equations and wish'a common solution what may happen

.that a linear equation represents a line. So one of

Thelines are the same..

2. The lines intersect in'Only one point.

The Tines, do not intersect, that is (since

they are allel.

Each of Ae e categories has its equivalent statement, of in term's of

the equations, as follows:

I. The equations represent the sameline, in other words they are

equivalent equations. For example: 2x + 3y = 5 and 4x + 6y =

There is just one common solution, that is, the intersection Of the

For example 2x 3y = 5 and

we have a pair of linear

can.be seen by recalling

three things mly happen:

they are in the same plane)

course,

,

two solution sets is one number pair.,

2k .1 35r =.-1 with the-solution-(1,1).

There is no common solution, that is, the intersection of the two

solution sets is the null set. For example, 2x +- 3y = 5 and

2x+ 3y =1,7. . A

In the last case it is easy to see that there is no solution in common

2x +. 3y cannot be.simultaneously equal td 5 and 7.

Here,.as for a single linear equation, the process of solution is to

devise, by certain procedures, a sequence of equivalent pairs 8t'equations

until in the end the pair is, in the case of'a single solution, something of
4,

4.

because

the form.x = a, y = b.

. We4first illustrates the process by a numerical example end then show why
. ;

the sequence is a set of equivalent pairs.

2x + 3y = 5,

' 3x - 2y = -12.

Here if we can manage it so that we have an 'equivalent pair of equations in
i

which thecoefficients of x are the same, tEen
0
we can subtract and get an

equation in y alone. If, we multiply the first equation by 3 and the second

by 2 this 141.11 be accomplished. So we have the air'

6k'1.1- 9Y =.15

This pair has the same solution

equation of the sequenCe. The

6x - 4y = -24.

set as the first because this is true of each

if we subtract the second from the first we get

168
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13 5r = 39,-or, y = 3 '
Qgt,

In the first of the given equations,yf=.3 implies

-
2x + 9 = 5, or x = -2. .

. f

,

Tire are a. least two ways to look.at the above process. The first is

this. We suppose that thereis an ordered pair (x,y) which satisfies bot

equations. If so,-this same pair will satisfy the second Lair of equatio s.

Thus for-this pair

Ox +9y - 15 = 0

and 6x. - 4y + 24 = 0.

So if a pair of numbers satisfies both equations above, ft certainly satisfies

that is,

+ 9y - 15 - (6x )4y + 24) = 0

13y -3? 1 O.:
.

This tells us that if there is a common 6olution, y must be 3 and by substi-
.

tuVTbn we find that, x must be -2. Thus we have shown that if there is a ....

sollitien it must be (-2,3); Thep by substituting this pair in the given pair

of equations we verify that indeed is a solution.;

The second°point of.viewiis this We have the given pair of equations

equivalent to the second pair for the reasons pointed out above.

third pair is

/6x + 9y - 15 - rp.x - 4y + 24) = 0, that- is; 13y - 39 = 0

and '2x + 3y = 5

,Just why this pair is equivalent to the previous pair can be seen a little -%

,more easily probably in terms of the general discussion below..

Then the pair

is equivalent to

and

F 3

2x + 3y = 5"

Y = 3

2x = -4

or finally,. to the pair y_5= j, x'= -2r By this line of reasoningwe know that
.

if we have not made a mistake in the process: (-2:3) the solution 'and there

are l o Morey_

169; 1
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St is perhaps a iittle easier to see what is going on if we use letters.
e-

-Suppose the two given equations are

= a

.g = 0.

(In our illustration f =42x + 3y - 5 and g = 3x - 2y 12). There are two

fundamental operations..
.

v% .

1. Multiply an equation by a non-zro constant: Thus f = 0 and af =40

for, a / 0. are equivalent equations and

af =- 0, a / 0

bg = p, b / 0

is an :equivalent pair.

2 Subtract one equation from anot'l r:. and have a pair

af - bg . 0

at'

This is an equivalent pair because if af - b and af = 0, then bg =)0.

Conversely if af = 0 and ,bg = 0, then af - bg = 0. We ituld of course also

.have used the pail' af - bg = 3 attd bg = 0.

Notice that in all case we must continue with a pair. Geometrica

this has a rather striking interpretation. The first process above does' no

change the lines, the second process replaces one of the lines by one which

,goes through_the same common poibt. Thus fiom a geometrical point of view

the solution is the process of finding a horizontal line and a verf-ical Una

which 'go through the common point.,
y

r'

x--2 clx - = -12

or: -3x + 12.= 2y)

Y=3
,.

tcr.
.1

x ,

'2x + 3y =

( or:
7
3y.= 5'- 2x)

4.
r.

,



C

r1

''-This same process works for inequalities as well. Suppose we hav

- 2x 3y > 5

3x- 2y < -12.

The first inevalityf1s equivalent to the inequality

> 5 - 2x. I

Now on the line 3y = 5 - 2x, 3y and 5 -,2x.tare equal.
Thus,for the inequality,

3y >5 - 2x, 3y and thus y is greater'than the, t on the line correspond-
ing to the same x. This means geometrica'ly th the points which satisfy the
i0auality 3y > 5 - 2x lie above the line 3y =5. - 2A.

The second inequality is equivalent to ":x 4- 12 < 2y. ,Hence the points

which satisfy it are the points above the line 3x -. 2y = ;1R: Thus thoie

points which satisfy both: /re those ;.hich are both aoove the first line and
abotre the second as'in the figure.

, Some may prefer to test an inequality by checking it for one point. A
convenient point to use for this purpose is x = 0, y = 0. _In the case of
2x + 3y > 5; we see that x = 0, y = 0 does not satisfy the inequality. Since,
from the graph,. the point 0 is in the half of the plane below the line,

'_2x-+-3y = 5, the of the plane which satisfies the inequality is that
f -above the lithe.-Lookingat the other inequality, 3x - 2y < -12, we see that

.the .coordinates of the Orkin do not satisfy this Inequality eiriNr. Since
the origin lies below the line 3x - 2y -12, the points which satisfy the
,inequality lie above the line'.

o.

Exercises
..-.._.

.
.4..

.

1. 'rind all the ,s. ions of each of the following-pairs of-equations
A algebraically and draw their graphs: .4 -,

_. .

a) x f-y. and. and x - y = 3.
6) ..2x.4- zt = 7 and ..;,x

t
- 2y = 4

' c). 2x + 3Y = 7-v*Nth' and ,1x + by = 14
. d) 2x + 3y = 7 , and 4x + 6y = 15

2. For each pair-in the previous exercise, repfacerithellObt equality by w -,,

\
> and the second by'<. Then show graphically the points which
satisfy each pair of inequalities.

. 171
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9.7. ;1/4

5

3. Recall that x
2

L Y
2

= (x y)(x y)

such that

then

A

2 ,
x. - y

2
=

and that if x and y are, integers

that is, (x - y) and (x + y) are two integeis whose product is 9.* Thus

find all the pairs of integers x 'and y .which satisfy the equation

2' 2
x - y =

4

P.,,,e

$

'-i..4, Find.all the solutions in integers of each of the following equations:
...1.

(1...,

.
.. /

b) x
2

- y
2

= 40
.

c) x2 - "r2 = 14

Guess from the examples in the previous exercise the integral values of

c for/which the following equatiom has a solution in integers x and
*

a 2'
x - y = c. .

. -

Then see if you can substantiate your, guess.

y

.

C. 0 e
ifoaems 0 I,

1'. 5uppos.e f = ax + by + c and ft =.0y. + bty + ct. SYbow the'At f = 0, f' ;0

have a single common solution if and only if

ab' -alb O.

, , C"_

2. In the previous problem, what,two kinds of thingstay happen if t1,3e
a

equality ab' '-- 'b = 0 holds?

A 3 Ukng the notati -6f Problem 1; for what values of r, s, t, u will

the given pair be equivalent to the pair:-

rf + sg = 0:

`tf -+ ug 0?
I



9,8. Applications

Not only are graphs useful in visualizing what is going on in the above

algebraic processes but they can also oe useful if one wants approximate

solutions. First consider' the problem of the' theater owner in Section 9.4.

Here there is a formula:

10
N =, ()P-11

where P is the price including*taiand Nis-thenetreturn'to the owner. A

simpler way to express this would be:

11N = 10P.,

Making use of our knowledge tat the graph is a straight line, we notice that

it.is.satisfied by the/Pairs N = 0 = P and,N = 10, P = 11 that is,it goes

through the points (0,0) and (10,11). Thus on the graph paper it 'is an easy

matter to draw the lint as in the,figu're. This is a function which has ark

inverse, that is,-if you 16ow P you, can find N and vice-versa. So to find

the net return,Cor a price of $6 you find the point of.the line which

f r I

-i
1

; 1 i

; ;

I 1

I ' 1

,
,

1, 1 11 4-- T -1----
I 1 I .

i
t i L__ L " ..

-- ------.---.-- / 1 -L i , .___. 1

1 ;

P6 1 1 '
' 7 t
Jiliii 1

1 1 ! t t t

I t '
I

1 4

1--__.---. ....,- 1
t 1 ; 1 , ;

r

--1}-1- L-: .-,-,____+_. _1,_.4___1_,.._ ,. - ,-,
t

f

f t ; 1
1

1 ' t

1

' 1 It

N
.

1 _11145.5.1 1 ; i I
I

,

1 : I i
11 1

r

..,

corresponds to P = 6 and see what the value of N is-at that point.

-The graphical technique is also useful in Mixture problems. Suppose.one , -
... ..61,04 t ^ It f I 4.."' ', ' '

has two mixtures of coffee, the first of which is 80% Java and 20% Mocha,
,

Late the second is 50% Java'and 50%-Mocha.- The objebt i's to use proportions
t

of these to'get a five pound bigg which is,60% Java and ,00% Mocha. If W stands

for the weight n pounds oft0e mixture, and J the number of pounds of
--,.

ile.
, ....we have inthe three cases:

^-r -1- -1-

'4* 173 175



9.8

J = .8W, J = .5W,

I

= .6w.,
4

,The graphs of these are three lines through the origin. The technique is as

follows. (We leave the reasons, f. or a problem.)

J
...F

I

, 1' ---
1

rI

W ,Er
IIIIIIIIM MIME ,

1

111. , i_

111
}

1

. ,

,
4 -1- 4

1

- A .-,,
,. A i .1 1

---1
A1,

. , 1 f--- I-- f 3) -' J.-.1.;
1' r t-
I ,,,, ,.e

) ''`. I

I"
4 t 4- -I

, -- 1- ---- ---t t -i. f

..i.._
..,-

r
-...',

1
1 1

P -7'-- --.-- ---- : -,--F - -L.-L.2:-. 1-..-. t7- - -
J,.. -L-

..
r II, L .. .... . a 4 - . - 4- --.- -4 --1._ -'4 -1 - : -_
,

1

1 I I

t- T

t
. ---,

11 I, 1 , ; -11- t ---.-

--..--t,.- t---1.4--7--.--4- .. -- --.
I. 1

+ i

4,- I/
Trdi 1 4 .___ _i -, -'

1 1 , i ! 1 1

I iz j c .1
, 1

,..,i ,

Plot the three lines, measuring weight along the horizontal axis and J

'along the verticalaxis. For the third line find the paint where W = 5, that

it, the po,int (5,3). Then draw the ling parallel to the second line through

this point (5,3). Where it cats the first line will i-De a point, P, whose

first coordinate, x, is the weight of 1:11e-Tirst mixture which should.be used.

Of course this problem can be solved algebraically. Though this method

ti* quite different and probably not as interesting, it does provide a more

accurAte solution. This also is left as a problem.

6W

W



9.8

Our third example involves inequalities. A certain dealer has a ware-
hOuse which he wishes to use to store bags of grain and cement. A bag of
grain takes twice the space of a cement bag but weighs 75 pounds instead of
50. The capacity or the warehouse is A bags of grain. Since the floor,s are
weak, he cannot store more than 13 pounds. Zen the other hand, grain is worth
three timed as Much per bag as the,cement. He wants to arrange his storage so
as not to exceed thecapacity of the

warehouse either in space or weighl, but
to maximize the value of vhat he stores. What shguld be the distribution?

To solve this, or show how it would be solved, let g be the number of bags
of grain and c the number of bags of cement. Then for the space requirements

g + 2o < A.

For the weient requirements

75g + 50c < B.

If'he wants to maximize the value, he must maximize

L_ Lt. ,4

CI 3g + c.

L
'

1-

L
L
-1

\ re

t.a 4 -t

"s

-=1 -4

V

I
75g +1507-4

174 77
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9.8

O

0
0

The graph of the first inequality is the set of points below and on the

line g + 2c = A and the graph of the second is the set of points below and on

the line 75g +'50c = B, as shown in the figure, in whichit is assumed that-

the common point of the two lines has both c6ordinates°Positive-: Now what °

about 3g +c? Consider"the lines 3g + c = x. These trill be parallel lines

since 110 two intersect. So it is quite-obvious from the graph (at lealt for

4 0

A = 6 and B = 250) that the maximum x will be 3g + c where (g,c) is the point

of intasectionof the first two lines. (For A = 6, B = 250, the point of

intersection is (2,2) and the value of 3g +_c
4
at this point is 8. It is

realized that these values for A and B are not realistic in terms of the 4

m0
problem.)

At

.
Exercises

0
,

% ,

N 1 The radiator of a car is full of a mixture of anti-freeze and water, the

zercentage of water being,515%. The tank hqlds fiye gallons. How much

of the tank must be drained. and replaced by pure anti - freeze to get a

50% mixture? Solve this algebraically and graphically.

C

2. Jack Sprat could eat no fat and his wife could eat no lean. Jack's

minimum daily requiralent.ial.2 pounds of lean and his_ wife's 1. pound 0.''

411k.of fat. Niw pork is 30% lean ancl 70% fat while beef is 60% lean and 40%b .

.
,

At.

.fat; but beef costs as much as pork. How many pounds of each kind of

meat sh9uld the buy to meet Ihe'minimum requirements, and still be as

., economical as.possible? v
.

, .
,

.
,

i"
3. Inthe mixture problem of.this section Vhe solution was obtained by

dra wing line through`the point A parallel to the fine J =w5W, and,
-%

f' ng the first coordinate of its intersection witIVJ = :8W. 0onld

leP
one so obtain the solution by drawing a line through the,point, A

parallel to the 1 Jne = .8W, and finding the'first coordinate of its

110 3

intersection with J =' .511? Why or why pot?

4. Find a solution of the mixture problem-with .8 replaced by the letter
.

, r .5 by the letter s and the letter t, where 'r, s and t4
,

are numbers between 0 and 1 and t is between r and s.

116 I 7_
.



Problems

9.8

-

Give an algebrhic solutidn of the problem above about the poffee mixtures.,
9

2 Justify the method used for the geometrical solution ofAthe coffee pix-
ture problem.

3. For the example'-above involving a,warehbuse, find conditions on A and B ,. .

that the point of Ihtdrsection of-the two lines have both coordinateS

positive. What are the possibilities if this condition' is-not satisfieol,"

, .

References

1 (Chapter 10), 8 (C4apters.6,and 7).
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Appendix

SFAS

- ,
. Introduction.

We have various names for collections of things, marl or animals: herd,. .

flock, squad, regiment, covey. The word "set" includes all of these, and more,

without

.

dhy.connotation of the kind
.

of thing considered. Iii faiiik.could.- .

include a coaection of thoughts,'.ideas, or what yOu 14.11. The member* of the

set again could have various names 'hut, tp be noncommittal,,,in mathematics we...

'i

call the members 6f the set its "elements." The chief thing important about

set is that for one or another reaion'any given entity is.either an element of

the-set or not. AU the houseg on a given st,reet constitute a'set becasise

either something is a houseon the street or it is not. We may -nbt know. -whe-

ther John's ncuse i4 on.that street but we know that it is *her an element

\
of houses on ihe street or it is not.

0

2. Relationships Between Sets. -.

-Suppoie A and B stand for two!_setS-. There are a number of possible rela-

_tionshfps between them. They may be equal; by this we mean that every element

A is in liand vice verta. I If on the first par f this relati nship holds;

'A is contained in oB or,.41i:it is if every.element.of A is in 'B, we' say that

is a subset of B,l
1

ogthat B conta'ns A. We write th s relationship*- , 1

A c B .
P

'
/

*
;

c
,

Often the notation c is used in place of our . WhenA islis the
.,. .4=.

0the symbol c exeludes equality, whereas for our usage c includes
, 4. \

----

ir.

.44



fer

0

As we. have just itten:
.

sand

If AcB and tc: A: then ,ALB

0. if A B, then A c B B c A.

S
Thus'qf A is the sei-of even counting numbers: 2, B is the

set of jole numbers: 0, 1, 2, 3, ti. c."5, 6, ..., then A is a subset of B. If

A is the setconsistin4 of the numbers 6, 7, 8 and B of 7, 8, 6 then the two

sets are equal, or thosame.

3. New Sets from Old.

Sometimes two sets have elements in'ComMon. These elements form a set

since if we$.1,cnow when something is in set A and when it is in set B, we know

t
when it is in both. This-set is called the intersection of the two sets and.

d&signate it by, A B. .

.

Thus A n B.denotes the set of eleents common o A and B. Suppd-se-A'is '`.
.

the set of countries in Central jgerica: Guat- a, El Salvador, Honduras,
.

Nicaragua and Costa Rica.
,

Let B,be the set of countries in'the western hemis-

phere whose names begin with C: Canada, Costa Rica, Chile, Colombia. Then the

.,,,,. 'intersection of these two sets is; Costa Rica.'
0. 0

It sometimes happens that two sets have no elements in common. For In.
,

t
.

steno le.R be, he set of countries in the western hemisphere whose names

T
I

Sillc4' begin,with U: Un'tedStates of'America, Uruguay,
i 4I ;1-

in Central America whose names begin with U, t1iere are

there are o countries

o elements common to

lk..,,and,R, So tha%Pwe can_say that,the.intersectiop of any two sets is a set,
*4,

-
and for other reasons, we define what we call, the null or empty set and=denoie

it by 0. Thus we write

4

A n =

The null s contained in ;very set Why are all coil sets the same? If

1

the inters ctio or two.sets fr.s the I set, we call them disjoint.' 's

s'

)

ih ,



We can form another set frpm to
Fr

by considering all the elements

which are in one both. This is c --Ilion of two sets. Thus the

union of sets A as above is:

^Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica; Canada, Chile,

:Colbhbia.

We desigate the un A and B by A U B.

Trieseksets

tow

y be pittured°as in the following figure:

Here the set A consists of the. two regions numbered 1 and 2, while B.consists

of the regions numbered 2 4nd 3. 'T1 union of these two sets, A U B, consists

-
of the regions numbered 1, 2 and 3. The intersection, A fl B, is that legion

numbered 2.

Emblems* .

1. It -A and B are two lines in a plan , what possibilities are there for

their intersection? A and_ are se s of what?
. 4 ' G :

- i
%

2. Provle that.all null-sets are equal. ' 4
I.

3: Show that the intersection of tw sets isa subset of each.
- . .

IfiNf-A and B are two sets, prove hat they are both sUbsetsof their union.
o , A

5.. If A 6 B = B, what relation must exist between the two sets?

6. If A, U' B = 2, what relation must exist between t e two sets? -
,

1

7. Show that A 1.1 B .,-- Bi U, A A 11B = -)311 A; A.0 ) = (A. U B) U 6.-.->
.7..

r-
_

.Alsb show A U-(B n'c) =la u B) u



a°

' 4. The Relative Complement and Cartesian Product

There are two other sets which can be obta ed,from a pair of given ones

and wh we have used in one form or another.. he first is the relative

lament, denoted by

. 4.

A - B.
- fi%.,,
5

.

This stands for all the'elements of A which are nl. in B. If B)is a subset of

....- ,...

, "'f .
s

A and A is a finite set, the number of elem nts in A - B is the number of
.. ,

elements'in A minus the numbe . Thu elative -complement has a close
.

confiection with subtraction. Notic( that
d

A - B = A

1.

if A n.B = 0 and only in this cased; It is also true hat
-

. ( f . : - B) UB=AU )3:
. ..

4

Another relationship is

(A -,B) U (B - A.) =AUB -A

'that is, the set of elements in A or- B but not both.
,

The cartesian product of two sets ,A and B is the set of all ordered

.-pairs(a,111whereaisan,element of A andlb an eleient of B. We; have

considered such a product when'A and B are both the.set of while numbers-
.

these are coordinates of lattice points', If the number zero is.exlu

the set
,

B, the.rionneg tine fractions fo tha elements or a cartleli

luetion. ,

i

o . d.

.

many'situtid ithe importdrice of sets these days is some over-,

The language of sets is useful'because it serves to focus i eas i

d from.

produ

. , $. ..

are common prt mrty.' From the author' s pant of views 'it is,out of pl ce to
. _. .-

try-any detailed study Of'sets dt the secondary School level or beioreff The
%t.

lsinguaie snduld be used where it is.convenient a d-, where the properties of

_sets are like those of the numbers, they should idedicribedandidealthyit

,

1 References
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(Chap. 6), 8 (ChaEl 1), 22 (Chap.r2 ).
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Appendix 2

COUNTABLE SETS

. 4

The title of this ,appendix is in mathematics a technical term. If a s

can be put into one -to-one'correspondence with a subset (of course thi ludes

the possibility of the set itself) of the set of natural numbers it is called

a countable set (or denumerable,). Thus the number of sands in the sea ig a

,
countable set _though: ire oanlibt count them. The set of even numbers is countable

_ t
,since we can set up the one correspondence n q-42n, that is, 1 corres-

ponds to 2, 2 to 4, 3 to 6, ... ,any integer to its double.' The integers.

form a countable set for we can set up the following correspondence:

.

Thus each integer would be asSociatId with a natural number.

In fact, the Same can be done for orde7d pair where the numbers are,
' -

for.instance, natural numbers.. Heig it is a little easier to to the

:o

1 2

-1

3

-2

5

3

6

-3 ,

7,

7.A

8 9

ordered pairs as fractions and Use thefollowing scheme
I-

,

'where the cuivc
, .

that the set of

..#
- . 4 .

taken. showsindicates the order in Which theyLare to b

fracJionp is countable. By'cliscardi
... ..

-Nt

hat the posit'lVd rpo..4diona1,nuirabeF

such

arise, we 4also sho

,

;,..

g,dUplicates as they

.

.,.7
.?-



In fact if
V'
c and T are -04o countable seta, we can show that the set of

ordered pairs (s,t) where e 1.770 element'of S and_ t ai6 element of T is

ordered: first by associating the first numbevs of the paire,44Ith the natural

numbers, then similarly with the second numbers of the pairs, third using the

ordering Of the pairs whtcl_ we designated for the lattice points.

In a similar fashf-),I. It would be easy to show that the ordered triples

.(a,b,e) where a, b, are natural numbers is a countable pet.

With this dis..sionA-is aaittle hard to imagine how one could find a

set of numbers wt._ _ is not countable. A most remarkable fact is that the eet

of real numbers notes untalle. Thebproof is simple. It consists in assum-
=.1

ing th4t we 4aive the real numbero associated in one-to-one fashion with the

natur_il number: ,and -ten showing that we have not Included them all. Suppose*

we hal such f,m orde4ring.of the real numbers in decimal formbetween,zero and

1. Let the first four numbers be:

'a1a2a3a4a5'"

.bbbbb
4 2 3 4 5***

/, .cic2c3c4c5...

.d d d d d
1 2 3 4 5

Q

%At

A.,where the letWrs stand for the digits in the decimalrepresentation.
. .

listing would continue like this indefinitely. Now we show that. there is

rea 'number not.,in the List.' It id

where a, the first digit

is different from

is different.froM a1
and 9; b, sedond digit,

4.:

*
b
2

and 9; c, the third digit, is differeq
I

from c
3

and

1

.:,
.:.

i

,

7.; d, the fourth digit, is different.from
.

A4 and 9, and so forth. (We avoid

II ? : . .
. 1 1

7 so as not to h ve two decitalke ansi ns representing the same real, number.

'
.

See . Thiss number 0
1

44., . .

I

a.

.abc

184
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,

is not equal to the first number' in the above list, since its first; digit is

different; it isi,L1t equal to the second because its second, digit is-different,

etc. Thus,- whatever ordering one has, that is, whatever way the one-to-one
:

,* A

correspondence is set up, We wi1,1. have/left out one number and hence not

included them all.

We, have 'thus shown that the set of realdlumbers is not.,countable. This

showS that'we cannot get, the real numbers'by .considering pairs, triples,showy

quadruples, or in fact n-tuples of natural numbers since 'all these "tuplesTY,

would forli-i'0 countable set.

-

O N
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Appendix 3

COMPLEX NUMBER§ti

, .

1. IntroduA-tion.

11
-10Doking back over our development o? the number system you will recall:

4

thaVeach enlargement was ir-esponse to a need.' For the rational numbers we
e40,

-wanted to solve the equation ax = 1-when a / 0 and so we invented numbers
a

which satisfies this eouation. We needed to solve a + x = 0and,so we invented

the negative numbers a We ,seeded to solve x- = and like equations and so

we invented the real. numbers. In each ,case we made the invention so that as

man,/ as pbssibtu-of-the i)revious properties would bepreserved.
**It

-.,

%I

A

There are still equations left to conquer- -that is equation with real ..:: 41
..

.

coefficients which have no solutions in the set of rearTmffEers. 0 e such 7*

mr...Vuation is x
2

- 71. We fill tNts gap LA the invention of a =new kind of num-- 4*
0

ber which Is called a complex number. We begin by designating a number which. .

1

is a Solution the equation.x = 1 --
denote one such number by the

V'.
lett'pr i. And with this we add a whole set of numb written

A

a + bi

.t1
. .

her a and 16 are real numbers. Just as for .fractions, we mus ;define

hzirgelmean by equality of two such numbers, then their suitizind fi lly their/`'
. ,

p
?product. We accor4Ingly give the-fiLlowing de,finitions:

. .

° 7('1. bi = c + di lip:pM only if a = c, and b = d, that 14,o y,if
f .

4two parts of each number are the same. Thus 2 + 3i = +31
64;

Jb cAuse 2 = p Butis?'+'31.1/ 3 4- 2i, since the correspond ng,parts
.

,
.

)afe not7eqtal. This implies 2 +' = x + yi for X land real

i

=.,

-

Only if x = 2 and y = 3.

4187
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2. (a + bi) + (c + di)" =.(a + c) + (b + d)i. In other words, we add

cor esponding parts'of the number tolget ;1:..sum of two such numbers.

. , MV" ,
:'

, One reason for defining the sum this way is that the commutative and

distributive properties are preserved.

3. (a -1-,bi)(c + di) = ac + EMI + bdi
2
= ac

0

- bd + (ad +'bc)i

because i is a root of x
2

= -1 and thus i
2
= -1. Also we want to

°

have the usual properties of product and sum preserved. 4
,,

..0
..

In all of these definitions of course, all, the letters except i are

understood to stanrfor real
?

Apibers.

The set of,all numbers with the above definitions is called the 'set of

complex numbers. gnumber a 4 bi where t / 0 is called an imaginary number.
a

Thus the complex number3 are divided ixto two categories: the real numbers

(a + bi with b / 0). In fact,(a + bi with b = 0) and the imaginary numbers

ih the comple1 number bi, "the number a often called the real Tart and

%

bi the imaginary part, or, more strictly
spec

ing, the'zine imaginary part.

2.it The Properties of the Complex' Numbers.
z

We shall not here take the time or space to develop s;stematicall1 the
..

set of complex nuMbdi's. If we were to do is we would have tp show tliat this

set-has all the-properties of a field defined in Chapter VII (Section 7.9)

+till only
.
show that division is possible,

1

except by zero in the set of coM-
1

f ,
plex numbers. To do. this we want to find real numbers x and y such;

.

,.. ,

c I 1 ..

This means that ax.+.bix + aiy + yi
2
;= 1,'that is,

,

,

, .

:.ft
(fix by) (bx +, ay)i = I, + 0 .1.., .

,

. ,

s, by the-definiti n of the eqUality of two complex numbers we have two

tions -6o,tolve.

do'

i

. t)188 88
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= 1

bx '4 = O.
to

vDsing the technique Kleleloped in Section 9.7 we multiply the first equation by
.,

b and the second by a' to get 4.. :(

bax - b2y

of 2
ab; + a-y = O.

A

.
41f we subtract the upper from the lower we have

) 2 .'
0 a y + b . , 3 r = -1)1

, `I 2--,,- . 6i2_ )y .'.

I. ,
./ '-\lii .Thus if a2 + b2 p 0, we.can solve the last equation for y and have ',

. ', \, .
-....., 1

4

(1) y - -b
(e2 )2)

--.

v
Sd find the value of x, we may substitute thifl value of y in bx +,..ayl= 0 I..
or" start' again with the given equations,_Mpltip_ly the first by a, the .second .,

. .I

by b0 and add. In either case we wi'L have/

(2)

Thus we" have shown- that if
1 -.values of and h'4, satisf

v
, . 1

_

,: f (a . .b
\ -,`

It remains to sh

x= a

(a2 + b

4`that i , a + bi =
I %-'

th- fo116

4 equatitins. (1) and. (2) give..

a

1:30:

tion:

and oily if a and

e zero with / 0.,
.

;

I.
-

b are/b§Wforgi7_

Tp

f a r i al reunber, a-, is / This

0 ,with a idd b /14 kes b = 0 and
Ps

owns at., unless -± {.1) Ithe equatiorp:

solutiory in real x and y.
, ,s

Y



This process is one which we wiwIld not like to hwee toorepeat for many
of

divisions. Io find a shorter way, let us write down in another form, the

number x-+ yi which we just fourid. It is

a' bi
x + yi -

a2 + b 2

'1 a - bi
a + bi

a2 + b 2

,

1----- Mere we notice that we could-have obtained theright__p_ide from the left by
to .

--......m.ii 2

multiplying both numerator and denOminator by a - bi since

/

4.
.(a +.1)1)(a - bi) =,a + bai -.abi...- b2 i2 = a

2
+ b

2
.

.--
\ w

There-is one difficulty in connection with the complex numbers which

should be discussed. It stems i
2

from the fact that not only is equal to

-1 but'(ri.)2 as well, for'(-i)2 = ( -1). Thus there is really na
A

way to distingdishAetween i and We only know that the equation
1

.x2°= -1 has two.roots, i and -i. Then the question rises: what is for

instance? From the notation it must be'a root of x
2

= -3, but which root?
.--

To avoid ambiguity e make the agreement that, in terms of our chosen i,

ThL choice gives

.. .

1,7 =

s consistent r sults beca se then

()::DX-4D = i)DOID = i2(ID2'= -3,

4it ir #
.

which is wh6tt it should be. Also

Y
I f

.

Note that for complex,numbers ,

/ :/ET- / A-31(-2). .
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A fundamental fact about the set of complex numbers is that all the roots

of polynamiarequations with complex coefficients are complex nUmbers. That\.)
.

not only are equations like x
2

= -2 solvable in complex numbers but every
,,,.

-
..

equation Of the following form as well

.
n

a
xn-1 n-2

+ an
n -2

.. x ++ a 0n n-1 ao -

where the a'.s are complex numbers. This is much too difficult to prove here. '

Because ofthis'property.the set of complex numbers is often called an algak

braically complete number system.

w.
3. Comfiex Numbers as .Number Pairs.

You may recall that in previous work we noted that a rational number could.'-...

t r
be considered

.

as an ordered pair of integers (a,b) which corresponded to the

a
fraction

b-
Similarly nil,- negA riive mberethe number a - b could have been

v f f .
rmade to correspond to the, number palNa,b). Each of these would` have its own. r 44.4.

(4initions'of equality; additioe.anekultiplication. -Sq, with a sidelong look

i.
at the previous section; we have for complex numbers the following corresporiding

..

definitions for the number'pairs:
I

.

a-+s....oi form number pair

Equality: a +- bi = o + di if and , (a,b)= (c,d) if and only j.fil

only if 9 a = c and b = d

I alf c and 11 = d
. i

.

Addition: (a + bi) + (c +fli) &a,b) + (c,d) = (a + c ,b + d)
f

, :

= (a +,c) + (b + d)i
dy

Multiplication:' '

.

... (a + bi)(c. + di) , (a,b) (c,d) = (ac - bd ,bc + ad).`f l' . 4

= ac 7 bd + (bc + ad),--2.----
4

.

These definitionsttake on special signifibance when .wie look.at.them from
4 '-, .

7\ a graphical obit of.vidW. Here instead of t e ,x and y axes, we have a

ho ilzOntal a is which-We call the axis of rea a acci the vertical aiii which we
;law

1
-,4.

-..,

O
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As
/

p

call the axis of pure imaginaries. Then the point (a,b) corresponds to the

complex number a bi. Every point thus has a single complex nivber as its

coordinate. Two points are the same if tnd only if t orresohding complex

numbei's are,epal.
*

4

110

Next, what the geometrical significance of the sum Of tVo complex

numb Here the reader should .refer (back to Section 7.7 where the sum of

two number.p irs was defined in the same manner as here for complec numbers.

(Though equality and the product were differently, defined, this makes no
A

diffeAnce to the geometrical meaning of the sum). In that section and the.

6

solution -of one of the problemS, it was shown that the geometrical meaning of

e sum of- the numbers a + c + di is this: Associate with each bf these
e,

s the vector from the originvtatil number. Then the,vector whiCh is

- . \ r
the resuitant of the -Wo other'v tors is that from"thporigin to thb sum: °,

,

acteC + (1) + d)i.: In otherords, if 0 is `the point 0, A the point a + bi.

.

'8101 B A oiit c + di, then the poin t a + c + (b + d)i is the fourth vertex

, or . 1

ralletogramtwo of who sides are OA and'OB,'as shoctrIn the answer

to prmblem 2. of ectioh 7.7. This is:the re son for one use of complex-num-
_Lir 4

.r-

14

hers in physic's.

'
The product .f,two complex numpers also has a geometrical significance

which we sally establish in the two theorems below. Consider,the complex"

1..,
6,

numb .x. a +Ibi,Ithe coordinate of a point A. We call the distance' QA the

abso ute xalue of the number a
t
+ bi., Using theSame notation we used for teal

10 ./ --: Y"")
numbers, we have

1 fr'.7,s
la + bil = 'a + trg .

Also assoel with a + bi'is an angle. Let T" be the point with foordixate

A

.S ,;

1, then the angle TO?1 measured in a counterclockwise direction Is called the
.

emplitUde:,,of the' number a + bi.
I ,

O

e we may write'.

amp + bi) = LOA.

,

192 s. 4
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1

A: a + bi

b

0

Figure 1

Notice that a complex numberis determined by fti absolute valuk and amplitude.

(If.b = 0, the angle TOA is the zero angle and has zero measure.) We now stake /

T: 1

two theorems:

Theorem 1. The absolutirvalue of the product of two complex numbel's ism

equal to the product-of their absOlute'values, that is1 if

then
. .

(a -f'bi)(c +.311i) =.r

tat is

la + billc + di' = sil
,

"

47-47-17 )277 = dr2 +,s2.

- /Theorem 2. The measure (Sn'degrees) of the amplitude of the'product of
. * al.' q I.

q e% ..,.
two complex numbelks is equal to the sum of the measures, of the amplitudes of

. , f

x
t:

the separate numbers or 360 less-tatthisllUm if the 6uM is greater than j60.

To prove Theorem l'notice that the conclusion is equivalent to - ',.'

2 2 2 2., 2 2%r + s = (a + b + d

.1 9 3

"" .

,



Nod {a * bi)(c + di) =ac -bd + (ad + bc)iand thus

Rik ence we wish to. prove:

r = ac - bd ands =, ad + be.

-(a6 - bd.)
2

+ (ad + bc)
2 ,a2 .2\

= + +

The left side is equal td:

a
2
c
2

- 2abcd +.1)`d
2

+ s
2

2abcd + b
2
c
2

=
9

a2:4c? + d2) + b2(C2.' d ) = (a2 + b2)(c2 + d2)

..

and our proofis compute.

The second theorem we rove only foidthe case when a, b, c, 4 are

IV positive numbers. Fir we neei an auxiliary result Which is not sabjedt to
.

.

-.:ti,,fse restrictions. ' ,, ;f1

.)

',- Lemma.. Le'- pgints*A, B, C have coordinates a, p, and a 4...p where a

and
r
0 are cO lex-numbers; let points Al!, )p, CI have coordinates pa, 4p, and

. . : ,t

4(a + P ere IA / 0 and is a.complex number. Assume that A, B and 0, the

origin, re distinct. Then the angles
f

LAOB and LAIOBe
u

e congruent.

.Proof: OA = lal ,A0B 101 OC Ia + f3I r

141 OBt =' 1461 a 11,.11P1 , oGi = 'pct.+ 41 = Iµ1Ia + f31

by Theorem 1. Furthermore OA = BC and OA' = B'C' (see the figure). Thus if

. , we considtr.the triangles 0BC and OBtCt we haVe

Id(oB) = op= , 114(oc) = oc= ; 11.11(Bc) =,B=c=

1.q4



,

Figure 2
1

which shows that the two triangles are similar. Th,ts implies that the angle
0;

OBC and OB'C' are congrueht aild so 47,e their sikplements, angles AOB and A'OB'.
4 II

This completes the- proof oil the lefilma.,

'40

. a' : , ...,

Now for the proof of the theorem. Assume c ord,nate's as follows:, .
.

A a =; + bi / 0 ; B" :

.
K. = c ÷ di / CP

-1. .
43

(See-the figure). ;From.the lemma we know that a
v

B `; -2tt ; Bt :1 ; :

les AOB and A'OB' are

c.



,vngruent since we get the ordinates of At and/Bt from A).nd B by matiplying .

by p. Furthermore, again ?_om the lemma, angles BPBt and BLOB" are congruent
\

ince weget the coordina es of Bt and B" from those of,B and Bt by multiplying

by p. Thus:

But

re. IBOBtm- ami0,,'2010A = ampa , atOM = ampV.
..._

BOB'4 + LIMA LBOA

.

and we have amp +.ampa = LBOA = ZBIOAt. ,

This shows that th sum of the measures of the amplitudes of a and is the

measure of the litude of a0.. This completes the proof. Notice that ini.e. .
the figure we have made use of the, restriction that a, b, c and d 6e .

positive. Tt is possible to extend the proof to establish the theorem without
, u

ea
,

the restrictions imposed but'we do not take the, space for it here:
:v--- .

..

Theoreth 2..can be used to prove twe'important formulas in trigonometry.

', ., . .2

For the benefit of tposewho know something of this subject, we now indicate

how it goes. FroM Figure.,1 it is clear that if r is the abiolutevalue%of

tha complex number a + bi, and 0 its amplitude, then

cos
a

= and sin e =
r '

a

in other word",

Thus

ie

= r cose-arid-b = r sin 9.

1

a + bi = r cos 0 + it sin 6 = r(cos 0 e).

ti
Similarly the complex number c + di may be written:

is 'c + di s (cos
0 i;sin 0)

where s is.thebsolute value and 0 the amplitUde.

196' 196
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O

Taking the product, we have
rt.

(a + bi)(c + di) = re[cos e cos 0 - sin 0 +i(cos e sin e cos

But rs is the absolute value of the product and it can be written

s(dos Y + i sin Y)

where I' is the amplitude of the.product. We

Y = e + 0. Hence we have the two formulas:

cos(e + 0) = cos e cos 0 -

,'
N 1 .? 0 Sine + 0) = sin.e cos w + cos e sin

...
.

. .

. These-axe t4 yo important formulas of trigonometry. In the usual treatment
.

. . ,
-- .

they are derived f)Fst anda result equivalent to Theorem 2 (De Moivre's
';,-.s .

... .. .

,
Theorem).. is, shoes 1 to be a consequence. ,*

-.
,.

. ...

.

-". .

1
.

Imola' from Theorem 2 that

siA 9 sin 0

7.

- Problems

.

1. We!defined absolute value for real nutbers. Showthat this consistent

wl.th Our aefinitior of absolute value for complex numbers.

Fi.nd a condition that the vectors cOnnecting the poihtsa + bi and

1

c di to the origin be perpendicular.

4

.

References

6 (Appendix:33) , 12 (Chap. 7) , 21 ,(Chap. 2).
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'Appendix 4

THE STRAIGHT LINE

_

s - -, .,. -.

2.4. introdt,lekon;

.
.

_
We-.astumed in 'various, places in this boo. that all the points (x,y) whith '

\C.--.-1 satisl'y'a given eauation df-theform ax + by -I- c ----0 lie o n a straight line.

0;/..

-

Before brefing this we should first r8call .a few geometrical facts. Two tri-

angles ABC and A'B'C' are said to be similar)if a I to r correspondence can be

.

set up between-the-vertices of one and,the other so that.corresponding angles

correspondence is: A *-0.A',.B444Bf, C 4 C',
'4

are congruent. Tha£1;is, if the

4

thenthe following, pairs of nagles arpcongruent: A and A', B and.B',C and C'.

If the two triangles are similar then it is true that, the lengths of correspon-.

ling sides are Icroportiona4 ThUs if°the correspondence is as indicated above
,

°
.

if the triangles are similar then: 1

AB .AC- BC
' , AiBT BiCt

t ) A
where AB 4.ndicat s the length -of theside AB, etc. Conversely,

sides are proport na, the irj, les are similar..

dr e

.t

if corresponding

-- s ,2. ' Slope. .
..

a
,

We begin b,,,defi-°,;,.. uAer,,Fhich we ca1J s(A,B) associate:a win every

.
.

:-

pair of pants of the plane ot.oa a vertical iiA.
T
Wezhall show that this %.

-

.\n uAiia depends only on the ne deter/vaned by the points' and noton the points
$.

- % : i,--,\
. - ithemselves: We wil.1 then justify our calling it the slope of t 'he line. It is,..

.
- i, . ---7-rt . : ,

4. ...f''tin v.! , he.matip'of tile rim-to the horiZcAal;distanor the line. Let-A

Aec6ordidates ).4d ..the Coordinates (b b ) We define'.1. 2 l' 2
4

a
2, 2

s(A B)
e 1

b

a
- 1 1..

.



,C

4

ta.

4,

,
. h ,

J . ; 4
Notice what this means in terms of the .figurg. Singe A .and B are not on

O

t -tjte same 'vertical line, b
1

&l. and the denominator of s(A,,B) is not zero.
.

..., , ,
First, s(A,B) = .S(B,A) since

.

. 4 ,
, 4 . '.'" `b2 1 a2 a2 - b2

.

b
1

- a
1

' :al -1)
1. .

.
as may be seen by multiplying the nunirator and denominator of the .left -hand

fraetibn by .-1. We now need the following theorem: TN1

Theorem 1. If A, B and.:C are tree coi.lpear points, no two ,onlhe same

.
vertical line, tkeh

s(A,B) s(A,C).

."

Proof: Because of tlie s etry of° s We may asgume without loss hat

a

b2.> a
2.

Let B' and C.1 e the feet of the perpendiculars from B and C res-

pectively onto the horizon,tal line through A. 'Let° the ray AD be perpendicular.

-
to the line AV./- and above it, and let. C have the. coordinates (c

1
,c ') .

2cio'

_ -



\

Si

, 4->

AB is horizontal,' then AC is also Furthermore a2 =2:1 a2 c2 and
2 2' 2 2

s(A,B).-F s(A,.C) = 0. ''Thus the theorem holds in this Case,

b-4
Now the point B is either tqjthe right,o4the ray AD or

We'cOnsider.tke former case, and leare the latter as a problem.,1

!

thethe /eft of
.

4

The point '

. C mey,be abovekr beIlcilw the ho6zontgf line thtough A. Hence we have. two

cases to consider.

..
]FirsVVh7nooqd B is to the right of AD and C is abOve the horizontal

,

line ttrough-4. Then, since we have taken B also to be 4bove the line AB',-
;

we have
- ..., ' .,

..,) ..:

b >. a , c2 .> a2 .

. 21 2 2- ' 2,...
l .

-
-...

. ,
.. , . . t4. .

1 Furthe rmore, Since BC intersects AD in:the point A, thenB and 9 are an the

4

4-> H 4
tame side of AD and hence C as wailas.B is to the right of AD. This means

> a -c > a .

1 1' 1 1
O

This impiies theuplapwing equalities:

B'B.= b2 a2, AB' = b
1

- a
1,

C1C =
.

- a
2'

AC' = c
1

- a
1.-

. .
.

° f-Now the triangles AB' and ACYCal.e angle A is common,
4

ang/eS AiPp.and ACIagare-r' ht angles add the turd angles are congruent_
.

.
s

siner the sum of tip measures of thZ>angles of a.tiian41.4 is 180. Thus
.. o

',". ' .

.

. BIB'C... .- -:. - __._
. AB'A
AC1

=

Using,the eipresstons above for the distances, we See that this equality is .

. ,

,equivaIentytto:

.'.

.

.

Now the rig}} side

complete for this case.

e 4.-
.

c,L,L a2. b2 a2

cl, al b1 - al'

. .

1.sis(A,B) and the leftp s(A,C)., Hence cur proof is

0 0

ot.
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I
.. - . .

--) .

Secone,--tuppo8e B is to the right of AD and C is below the horizontal4
. .

,fine through A., Then, i

b
2

> a
2

and c
2
< a .

pa

In this case'B and C are on,opposae sides of AD, and hence is to the left

of AD and

b
1
> a

l'
c
1
'< a

1
.

,

Then BtB ianu Ait have the same values in terms of the coordinates as Lefore

.and
i

CGt = a, - c2, AC' = - c
1

.

However, the ratio --- is the same as before and we have again
ACt

the

s(A,B) = s(A,C).

ti

Thus our proof is complete for'the case in which 3is to the right of
$

line AD. As we noted aLoVe, we leave the other possibility as a problem.

'-

To complete our'disciAssion we-now prove a converse of Theorem 1.
:1

Theore 2. If s(A,B) = s(A,C), then the points A,.13. and C are collinear.

Proof: Using the'sad.e.notatfon as for the previous theorem, let"Cusbe the

.4 1t>
-.point of intersection of the line CO with AB. Theh, by Theorem 1,

0(A,B =s(A,C"),r
and by the hypothesis of this theorem

Hence

s(A,B) = s(A,C) .

s(A,C) = s(A,C").

Since C" is on the vertical,line through C, its first coordinate is the,

.".
same as qat,of G, namely c1. Call c t its second coordinate. Then the last,

equality can.be written,

;

4

2c2

9

".

O



c2 - a2 c2 - a2

.1 rt

.

Nc...1 .l
al

91 - al ..

k 4 # ..
i .mills implies o,,,1-; c ' anl:kpce C =:,,,C" ,which completes' the proof...-1, 2 . .

. .
, . $

% ,

Problem

a
,

PrcA Teorem'l fir, the case in which the point B; is to the
. t- I

,

the loine Al$ ' .
.

: )

.
.

1

4 I

'
,
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U l'

ice
- rx + sy + t = 0.

O

Here -e assume that r, s, ',:- are teal numbers and not both r and s

are zero. ',.-,need to chow that all points kx,y) whose coordinates sa>isfy

f
this'eouation lre on a straight line andthat every Foint on this straig4t

4 ia

line has -!oordinates which satisfy the equation., In other-Wards, We. want to
.

.,

.

A s'ho'w that the set of'pokts (x,y) whose coordinates
satisfy the equation is

t
the set of points on a straight line.
. .

coordinates satisfy the equation is the set .of ppints on a straight line.

First suppose p is a line which is not perpendicular,to the
,

x-axis.
,

or

.1t hiis a slope which we may call'. ni., Let (a,b) be some point on this line.
, .. .

.
.Then for all points (x,y) on this, line the slOpe i.: ,

..y. - b) - *
A

-4

( ..
.

A ,.e
)

This equation is equdvalient to

Or

y- b m(x a)

y + (ma b) =

203p U 2



.1

t..

a
f

_ .
e .

-if x i a and is satisfied by thg pair (a,b). wThis' is t fornm of the giyel
re----

. . equation, where s ; r = -m and t = ma - b. Hence
.
we have shown that every

,7,
. .

point ok the ,line p has coordirfates which satisfy the equation.

ConvergCly suppose (x,z.).isa pointwhose coordinates satisfy the equation

rx + sy + t 0 and consider theAcase when .s: / C. .Then'this equation is
. .

equiyalerlt 7b:

y (- )x + = 0.
/s s .

0

If we'le ms= - and = -c, the equation becoMes

s

y = inx + c

. .

. which/may be written Y - m. Thus for all points whose coordinates

satisfy

x - 0)

fy ttie ei.ati,onr, the slope of th2 line connecting (x,y). with (0,c) is

line.the sane'. Thu; the NI% of points is a l e0
: il

7 /

p

Finallywesneedtoconsidderthecasewhens---0. Then the equation

,

rx + sy + t = 0 reduces to rx + t = 0. Then if r / 0, this is equivalent to

. ,

.4.

This is a straight fine parallel to the y-axis 1.here every point of this i.rie

t ..,1

has first coordinate - . LorAprsely, if a line is parallel to the y-axis
r ,

it will have an equation

prodif is complete.

Ai

0.

x = v which again is

C.

Reference

8 (Chap 7) r"

of the foam desired. Hence our

p

. 204 2 0 3
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Appendix 5

MODULAR ARITHMETIC

1. \ The.,;Nhimber:Sytem Modulo Twelve.
\

\Here we give briefly two

ent frna- adystudied, elsewhere
..-
\

in sommon with the familiar number systems. An important

o.

.

examples of dumber systems which are quite differ-
,

in this book, though they have !wily properties

difference is that

each contains only a limited num ber of'elements but we shall discover some,other

difference: as we41.0otice that' we here write of number systems - not numeral

systems. The difference ia not a matter of notation as in Chapter I.
-

On the faelt of maniclocks only tile natural numllvs frOm 1 to 12 in'Elusive

Each hour of the day is one of these numbers. Four hours after eleven
1appear;

iS:jtftiee: No matter how many hou?s we add to a given hour, oug-answeris,one

of the nuabert,of the set from 1 through 12 inclusive., So we shall consider

a number ,system. S, containing just 'twelve numbers: 1, 2, 3, %, 12 with a

different kinof'addition and multiplication. In thissystem

0 ,.11 + =,3; 7 +8e= 3,-9 +7 =4.
- .

The sum of tyb nutbers Of S is again a "member of S. We get tha.all in this.
4 Jr

system by'adding in the set of intege*, dividing by 12 and WritIng th4 re-
,

nainder as the sum in this,syAem. We call this theinumber s n modulo 12. '

The-addition table is easily constructed as filows:

Oh



Soo

Addition:5dulo 12

r ,
J- 2 3 4 ' 5 6 77 8 9 10 11. 12

A. , 2 3 4 5 6 7 8 9 10 11 :12 1

2 3 4, , 5 '6 7' 8 9 .10 11 12 1 . 2
. .

it

3 , 4' 5 f 7 1; 10 11 12 1
. 3

..2
4 - 5 6 '. 87

,..

9 :1.0 11 12 1 2 3 .4,

. - . .**

1.
,5 6 m7 8 9' 10 11 12 1 2' 3 4 .., 5

-. .!

... j -.6 ,7' :8 9 10 11 .19 1 2 3 4 5 6.
,

1W.'.,,. . ,

7,. 8 9 1'0' 1 11 .12 1 9 - 3 n 5 6 7
, , .

( .
. , . 8 19 10: 1,1 12 1 2 3 4 5 6 7 8

,. .

. 9. 10 .11 a2 1 3 4 5 6 7 '8 "9 A

A
10 11 12 1 12 3 4*.:, 5 6 7 9 10

11 12 1 ,2 3 4 5 6 8 '9, 10 11.
4 0

-. . ', ,2 1 2 . 3 : 4 5,, 6.,.., 7 -9 Q. 10 11 12
A

..
, 7:1.T..

d
..----- f

This system satisfies the usual Properties or ad dition:
, ',

, n

1. Closure.- '(The sum of two Miters in S is in'S.)

..- 0 ; ,,

2. Commutativity: (Since a + 1;5-= b fr a, the remainders

numbers are_divided by 12 -are the:same.)

3. Assodiativity . (We assume this, though it is not'hard to,grove).

these two.

.11 Existence offan identity element. Here't4 additive identity is
. :rNta.. q. . , ,r-

12.

..

because 12 + a = a'.= a t 12: (We could make the analpgy Closer

a
:

...i !

.. by replacing 12 by 0.)
Ci ',et

.
L ,, . 7 ,- , ,!,

5. E20.stence of an additive inverse. If a is a number S, than 12 a
,,, / . ,

. 44.
. .

is also a number of S and it is the additive inverse because ' ,

..,

,C 1

''.
.: (12 '-'a) 4 a = 12,

"which is the additive identity.

O



We can summarize this by say ing, that the set Of numbers modulo 12 forms

an abelian group under addition. (See Sectibe 7.6.)

TATe can also define multiplication in the system modulo 12.- qolfihd a

1prbeittet sytem, we first find tie product in the set of iniegers ancl

call the product modulo 12, the remainder When the ordinary prOduct is divided,

6.
:cv. 12. For instance 7, 87-= in in the system modulo 12 because 7 8 = 56 and

the remainder when 56 is divided by 12 is 8. 13;1mewls of this

the product'of any pair Of numbers of S is again a member of S. Here the

multiplication table is;

6

Multiplication. modulo 12 *44-

I
s

e ,

X, 1 2 3 4 5 6 7 10 114 12

"3

. 5.
6

7

8

?

11°

11

1 2 .3' 4 5 6. 7, 8 10 11 12
';.

2 4 - 8 10 12 - 2
f

4 6 8 10 12
40k

3 6: 9 12 3 6 12 3 6 9 12

8 12 14' 8 . 12 4 8 12 .4 8 12

5 10 '3 8 1 6 4 9 2 7 12

6 12 6 12 6 12 6 12 6 12 6 12

7 2 9 4 11 6 1 8 3 10 5. 12

- 12 8 )1 12 8 4 12 8 4 12*
AP-

9 6' a 12 0 6 3 12 -9 .6

10 8 6' 4 .k 12 8 6 4 -2 12'1
11 10. 9; 8', 7 6 5 4 3- 2 1:

12 12 C-112 12 12 12 12 12 12, 12 12:,12

......._ .
,

it is easy to verify that. tiplication also has the first four pro- ,

Perties which we ligied for addition. Here the multiplicative ideritity is
.t. _ .

..

.i-- -

But when it comes' to a multiplicative inverse; we run into
'

trouble...We

can see from the table that 'no multiple. of 8 is 1 (there is np 1 in the 8-row)
6

and hence 8 has no multiplicative inverse., To .consider 'tfie general case,

207 /20G



."
; .

suppose e number, b 4n S Its a multiplicative inverse. Theci.for

.

x and ..y.-ye must hal&

This .is equivAlent.to

.

bx = 12y + 1 .

of.

P.

A.

some integers

,bx - 12y =.1. .
.., .
,

., . . (

Let g denote the g.c.f. of, b and 12. By, Section 4., x rand IY

integei-s implies that g is a factor oil l. Hence unless.g = 1 the equation.

has'no solution.- On the othei".hand, if g = 1? Theorem 4 of Section 4.4 shows

that there is a solution. Thus, for this system, the only ;numbers which have

multiplicative inye4ses are those having no factors

with 12, that is:-6

..1,t, 7, 1l.

This can also -be- verified from the table.
,

greater than 1 in common

Notice that.froM the table, 12a = 12 for all pumbers of S. Thus 1.2
0

has another property.of zero.. The reader 'Imlay discoverIngny interesting pro-
,

1

perties of this table.

. 2. The Number System Modulo Seven
r

..

Another-example of a finite numbev.Ostem is
.

I

the, 'week. if we numbei. them: ,

. .

pf:1, 2, i, 4, 5, 6)
i, ,

ehere 0 corresponds to Sunda y,..1 to Monday, etc., tnen,.since Tuesday

threp days after Saturday,_weAave , i ,

OP ' T...

V .... .
. 6 + 3 = 12

.1:,-,...,......
. . . . ..-IT , -- i

Herd'ye find the sum by taking the remainder after dividlong by seven, As

i

.
...

above we can Construct the asiditionana multiplication tables as follows :
'

given by the seven, days of,

(

V 1

.14

k
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, Addition MOdulo7

0, '1 2' 3 4 5 6

0 0 1 2 3 4 5 6

1 1 a '3 ;4 5 0

2 2 3 4 5 6 o 1

3 3 4 5 6 0 1 2' 4

4' 4 5 6 0 1 2
*

5 5 6' 0 1 2 .3 4

6 6 1 3, 4 5,0 .2

Multiplication Modulo 7

1, -3 5 6._

1C.;

0 o,

o

o

1 i

. o.

2 1--'3 "4

o 2 4' 6 1 5

1

ryFJ
4

0

o

3

4

6
1

,2

5
5

2

1

6

4

3

5 3 1 6 4 2'
6 '..o 6 5, 3.4 2 1

Just as before we can see that the set of numbeis T., modulo 7, ha*s the

properties of addition which make it an Abelian group. And also the first

four propei-tieS hold for multiplication as for the system modulo 12. 'But

then there is Ei'fundamentEil difference. Sup&se,.as before, that b is an_ .

element 4T; then it will have a multiplicative inverse if and only if

)

bX F 7r+ 1

is salvable This equation is :equivalent to

N I).

OM 4

bx 7y =1,,

-209 208
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.
1k

i//:'

Here 1 is the g.c.f. of b and 7 unless b = 0, because 7. is a.prime number',
I

All.th 'natural num erS less than 7 satisfy the required condition' ,So fo

this n ber mstem we have a multiplicative .inverse except for zer For
:4

,both these systems, the distributive property hAds. Thus the number syptem

modulo 1is a field (see Section 7.9).

3. Conclusion.

It i easy to see from the above that the nu

a. field if' and o

er systelOmodulo:m. forms

if m is 'a prime number. m is composite, we.ho only
,...

\ 0 . ,lip

\

.

fail 'to haVe a multiplieatiVe inverse in many/cases, bat we also haVe produc s
\ , t

of two non -hero numbers eaual to zero. For instance, in theiyAem modulo I,
t

I

6 4 --,-, O. Thus the numberys-.;em modulo l2,.does

'

not even forth an integral

I

domain ,(see.Secion 1.6). Thus, it appears that a number ,ustem modulo m, is

. 9
,not an integral domain unless it is a field., It turns out to be true tha:t

'every integral domain with a finite number of elementi is a field.
. '

It can also be shown''4at if F is a field with a finite number of

elements ttlenthe number of elements in F is a power of a prime number.

.

However, it should be noted that :ft,,,p numbers modulo m where m =_pa for

instance, p a.prime "lumber, is not afield since in this system the number

s.no.,multiplitative'lmverse% One has to use a,i'differeAtIme-dbod'oi'

construction when m is a power of a priMellumber but not k prime number.

) This method may be found in'some of the refetensfT below.

O r
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In many of the books in the list above

so dealt with in

E. Mitchell and H. Cohen

;Kgerences.

r

y be found additional .

213

1

a



4/04.

- - 4.- t

Answers to Problems

I-Section 2.7

4

1. The firs card will contain those numbers whose last,diglit in the binary

system is 1,'that is, the.odd numbers: 1, 1, 5, 7, , 29, 31: The

second.card will coxatainothose whose next to'ihe last digit is 1: Thus

the tinary,representation will be of the farm: abcld where the letters

,a, b, c, d are arbitrary. Thrs,number is: a(two)4 + b(iwo)'3 + c(two)2 +

1(two) +-4,.where each of a, b,' d is either 1 or 0. Thus the number
.

will be so/me multiple of 4 plus 2 plus either zerciror 1. In other words

4
4:1ne numberik'on the second Tio,r4

e
wiil hd 'of the orm: 4n + 2 + d,where,

d = 0 or 1. That the form must be 4n 2 or-4n + 3. So on the

6
second card the n ert will be; 2, 3; 6, 7*; 10, 11; 14, 15;'18, 19;

22, 23; 26, 27; 30 31 where ,the first two are"foir n F; 0, the second two

A

for n = 1, ,etc. J

The third card will contain those whose third from the last digit is 1,

4- that is those numbers of the form: e

___,,,--74. , ..... , .# , ,

'------,,--,....,14, 0-8ni..+'#14, + e , "

_..,:

where e is a number between 0 and 3 inclusive: thus the tnimberS.-

en -+ 4,'8n + 5, 8n + 6, 8n + 7.
, .

Here the numbers will be:
.

.
..

. ', - .

.. 4, 5, 6, 7; 12, )::3, 14, 15;'20, 21, 22, 23; 28', 29, 30, 31
.

where again thegroupingiis according to the value of n.

The fourth card will contain the numbers,which, in thb binary system .
4

ss,

have second digit 1, that is those of the form 16n + 86+ f where f. is

a numberbbetween 0 and 7 inclusive, that, is, those 9f the forms:
,

0
215
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., , ,,, ,.,..., ..... ', _ ...._1,6n +8, 1611'4 9, 16n,t1.01 I6n -4.
=

.

. . . / ,

Here the numbers will be then:

!ic

'4

.4

.16n +12, 16n +13, 16n +-14;, 16n + 15.

.
.$

8, 9,4,10, 11, 12, 13, 14, 15'; 24, 25; 26, 27-, 28, 29,.30, 31.

Finally, the fifth card will contain the nUmbrs-from t6 to 31,inclusive.

If one is to weigh one ounce:, he must have a weight of 1 ouhce, and for

'two he must have a weight of two ounces. Nov, by combining the twd'he

can weigh three ounces. He needs a four-QunCe weight and with this he

can by various combinations weigh'4, 5, 6, 7 ounces. He needs an eight

. Ounce weight and with this he can weigh up to 15 ounces. So this may be

continued. Weights are.needed.fpr the powers of 2; for a given weight

t )
. . .

those which are used correspond
t

to the digit 1 in the binary system,
.

much the same as in the problem above.
,

It.

1 -
3: The-weightd.bf:the cups will be T, 1, 2, 4, 8 ounces respectively. These,

6 -
together with the Innermost weight wi1l4suffice to Weigh all multiples of

one-half.up to.and including 16 ounces, that is, one pound.,-

Section 3.2., a.

1.''Suppose r > s and t > s, the fourth case. Then if r > t, t is between

r and s. If t >14', then r is between t and s

2. Since a is between b and ,c, then either
e-.1

i) b <a < c or ii) c < a' < 4...
, .

, ...

si:r1914' cis'between a. and d, then eithe

iii).a <c <d or iv) d <c <a.
`Thus if c < a, conditions ii,) and iv) must hold and d < C.< a < b. If

c > a, condition i) and iii) hold and b < a <(c < d. In both cases a

and c ara'between d and b by the transitive properg; .

7.
t '

k

'Co



3. By the definitions we have:

A R B and A R C; B R C and B R D; C R A and C R D.

This contradicts property 1 of an order relationship since A R C and,

A. Between A and C there are two elements, B and D; between B and

A there are C and D. Similarly we have such relationships for al- pan S.

Hence this set has the prOperty of betweenness as defined above. It is

also dense because between any twp there is a third.

-- 4

.
Section,.3.3,

a

If p,n element is-in A but not ion B, it is counted once on -both sides of

-

the equation given. If an element isin bah A and B it iscounted twice
AP

,

on both sides.* Hence the equality holds.
;,

2. One interpretAtion Would be: if,; (A) = n(C) then
irs

110)* n(B) = n(C) ,+ n(B).

Consider the arrays

(6. **)
where the number of dots in the respective arrays is a, b and c. The

associative property ofadditioNis illustrated by the fact that we pay

count first the number of dots in the first two arrays and then.APse in

it
..the, last, ,or..wezay count the number of dots in the last twoand add this 3.-

to the number of'dots in the firSt: AS'ifi 6aSeal:A.;-ha/e,tht same
i.s

1.4,,

number of dots. ,

J." -:,...:,1

. <"\ 4

,

Section 3.5

-
t'

lr
/

1.. 1) abl+c = ab + ac would imply c = ac. .(We are here using the can-

-cellaticm property in Section 3.7 but this property ia familiarto

.
. -

!
, a
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you.) Now c'= ac if p.= O. Otherwise a must tie equal to 1.

_Hence the only two possibilities alot: c = 0 or a = 1 or both.

,

(ab)(ac)
, , .-'2) a = alh(ac)) r p((ac)b) =

,

ua-)c)b = a
2
(cb) using

:the-commutative and associative propertiefor multiplication. Then
.

a2(tc) will be equal to a(be) if.a = 0 or a =_1_ dr bc = 0.
J A

3) (ab) + (ca) = Cab) + (ad) = a(b + by the commutative and distri-

butive properties for all values of a,.b and c.
_

2. For the proof we may start with the left side of the equation:

4111:t .

a(o c 1-10 = a(1, + c + a) where the underline indicates.thai b + c is

to be thought of as sing1Prumer, using. tlie associative property for

Then a(b. +'c + d) a a(b + c);+ ed by the distributive property.
.1

Using this property again we have (ab + ac) ad.. By the associative

property this is equal to ab + ac + ad.

'Now- 23 .)78 = (20 t 3)(70 +.8) = T20 + 3)70 +:(20 +, 3)8 =20. 70 a- 3 .7o

+ :s0 .8 1 3 :8, using the distributive property twice. and Che associative
..

.property for addition. This. then is equal tQ:

1400 + 210 + 160 + 24.

By the decimal notation'hnd the commutative property this is equal to:.
41,

. 1400 + 200 + 100 + 10 + 6o + 20 + 4,

Uskng.the distributive propert we have

(14 + 2 + 1)'(100 (1 + 6 + 2)10 + 4.

which is 1794% For the product 78 .23 the order of numbers in each pro-

.

;duct is_rever_sect,
.. 1.4%... e

4. Dividing by 7,:tlien by 11 and finally by 1 is eqletivalent to dividing by
....... ...

-----...v.- ,,7 .11%13 = 1001. 01-,1 the othe..
-, .--

....I . . ,

. .

.327,327 =-- .327,000 + 327 = 327( 1000)
. c: -,, f .. - --.. , , ,

, The saA.N.Q4a4uaci tor AJle:Inxmber db&, abc..i, .

,

3 1 = 327(1090 +11) = 327 .1001:

;,218



1. If b > c, then b

'But, by the well
1

'4

,Section 3.6

\\
= c + x for some counting number x. Then b - c = X.

defined property fon multiplication,,b = c + x implies-

ba = ea + xa which giveb us .on the one !hand that '''i

1 ba - ca =.xa.
i ; ,! , __.,J : a,j,i

and'on th other lhat.(b - c)a = xa.
t,

2. Let ;-) - c = x;Iwe know that x is a counting number. Then

a + (.b --c) = a + x

by the well:.defined property for addition,. Now, x + c = b. Hence

a + - c) ± c =. a + x +'c = b.

Hence, if we add c to a + (b - c) we get a + b. This means thlat

a + (b c) must. be equal to- (a + b) - c.

3. Here the equality is not true, fa*, let a 5,.b = 3, c 1. Then

V

1.

It

a - (b + s) =5 - + 1) = 5 - 4 = 1 while

- b) + c = - 3) * 1 = 2 4-'1(= 3

Section 3.7

Here ca = cb implies ca - cb,= 0,

c(a - b) = 0.

' *
But the product of two whole numbers can be zero only if 'one is ze

Hence c.= 0 or a - b = 0.' Thus, if- c / 0, a i b.

4

r.

1 '

43.
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1.

SeCtion 3.8

(2,)

(12)
Via.

= t Zit. These
O

.a

only iif;

that is

(ca)(ba) =lac,

two fractions will .be -equivalent,

a2(bc) = (bc).

"7" : 2
Thus the. equality will hold only if bc = 0 or a = 1) For instance, one

set of values for which the equality does not hold is c =.12, br= 6,
v.

< .

. , -
a = 2. Here the left Side is equal to 4 and4the right to 1.

b a

c c + bc) '
.

.

2:° Here since +
(ca

b
, thethe two fractions ar trivalent only if .

-,../,

. .4
. s

.
& ,

' ,
Nalq*

2
.

-

,
' abc = kb,+ a'),(ca -4-,,t,,o) = abc: + ac + b c 0: abc,

, Since all the leWers stand for wbolc numbers, the only'possibility for 4,,
-.. .

:.,

equality is that a
2d,

b.c and abc are all zero: This will happen if
A

, . .

c is zero:or if both a and b are zero. One example of inequality

2

. ,

-' '1
is' for a = ,b = c'= 1 when ie left side is

,
equal to and the right to

0 ,

2. "If . a . 6 or b = ot the given fractions have no meaning.
It

1 'A 1

3. This equality holds .for all number by the distributive Property:
q

4- , % c A e(.1)
+ b(1) - ( C + b) .

.

a a a a .. a, < . ..,

,"

4. Here let c b' --t: x, a whole 'number. :This means that c = b + x. Thus

b)
--la

O (b + x) b. x
_ + -and Ce b) = Ic". The previous eq4a4ty then r.hows

.. a a .a a a

b x c

a a a

x c 4
40

V .

that if we add to we get which means that -it- is equato - - .

a

220 9 18
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,
..- 0i"

Th linequalitya+c<ttc impl the existence of a counting number

R x dell that (a + c) +; . b(14-' c. "Then, from the associative iind commu-
.

r p.

tative properties: (a + x) + o . b I. c. The cancelletion property for

I addition shows us that a . b wh),ch,is equivalent to°a < b..11

.

../1

.2. Here an indirect roof s s better: We know that if a < b is false

Section 3.9,

I

then one of two nags can happen: a = L or a >.b. In the former case

ac = tc and in the latter ac > F.c. Bac!. of these denies ac Hence

a <1 cannot be false, thus is true. The same kind of artfument could

have been used in the solution of Problem 1.

Section 4.i2

A... ,s
l: .Suppose in I) = cq + r, b kpd7r. are veuntingnuMber4,q is a whole

number and r is a whole number less than''e. Then the,point corres-

pondingponding to b on the number line Le between j.1=4t, corresponding to

' eq and c(q-+ 1);* In fact it will ber units to the right of cq.

..-

.0-

. ,

Graphically to determine q and e, dhe-'6an "lay off" the number of
.0!.. /

units correspopding to c ajzaiLin and,again until we haves' a point_to the
V

'riat of that corresponding :t:15 b. Tic multiple before that wi4. give "

4 the number_ q and r will be b cq. If -b 'lsla,multiRle of c, of

course r willbe zero.

,Property I:, r a factor of s implieg-rx = s for a counting number- x.

.

Also s a faptor of r implies sy .rfor some counting number
'k\

y.r

Then, ty the well-defined property fok. multipliication we may replace r

by sy ,in the equatidn ref = s and 444
)

.?,0 . ',
1

I

' (sy)x .-= S-.

By the associative- property we then have

2ai

4



ea?

s(yx) = s.

Since s is not zero, the cancellation property for multiplication

implies yx = 1. 'It is rather, obvious that if the product of twg whole

numbers is 1, they both must be 1, but we can prove.it using the proper-

ties which have been discussed. Suppose y / 1. Then y > 2 which implies

xy> 2x. But x > 1 implies that 2x > 2 by,the well-defined property for-_
. .

multiplitati,on of inequalities. This means that,yx > 22 which is false.

Thus y = 1 and x = 1.

Property 2. Here r a factor of s and s a factor of t

. .

implies that rx = s and sy = t for couhting nujnbers
_

sir
x and y. Thus; (rx)y = t, or r(xy) = t which shows

".

-that r is a factor c t,.

Property 3. Heie rx'= s and ry =t implies

s + t = rx + ry = r(x + y)

st = rx ry = r(rxy)
7."

.For the final case, suppose s - t = u. Then rx - 11.= u, and by the

1013,

Section 3.6r(x - y) = u which shows that r is a factor of u.

3. Using the results of this section, we see that for cefUnting numbers x

and 'y- we have:, x = sq + r, y = + rl where r and rl are the

remaipders when x and y .are divid' by s. Then

.

x y = sq + r - sq' - = s(q - ql) + (r - r').

If r = ri, then x - y-= S(q which shows that -- y is divisible'

by s. .`.

4...,

4. We can use the same notation here as in the previous problem. But in
. -

.

*
this case X - y is given to be a multiple of s. Then by Property i

.' . .

above-r - rl must be a' multiple of s. If r > rl then r - r' is a tole,

Ilumber 1 ss.t1 an s, since r 'is less than s. But the only multiple

f s which is leSs than s is zero; hence in this case r - rt.= , or

r = rt. If r < the same argument can be given. This completes hee

02,!'proof.'

222
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' Section 4.3

"Here it is perhaps more instructive to consider the general case in

terms of lettez=s, Suppose n is.a counting number which is equal to the

,product of'two counting numbers t and u. Let r be the square root of 'n,

that is,the number r(we assume the existence of. such a number) so that r2 = n.

We can'show that if t > r, then u < r, in other words, if n has a prime'

factor greater than r, it has one less than r. To prove this suppose

t > r and u > 4.

Then to >' r r = n which, contradicts to = n. Thus if, t > r, u < r and i± t

is a prime number, u iseither a prime less than r or has a prime factor

less than r. This means that if.we are searching for prime factors of a

given number we need only look as far as the square root of the number. In

the case of 4501, 672 < 4501 and 682 > 4501.. Hence if 4501'has no prime

factor lessthan 68 it is a prime number.

Section 4.4 '

. A

1. Given 1,,,o'sets, A'and B. There is one common subset which any pair of

sets has, the empty set, or null set. Hence two sets having no.elements,

in common is the situation which corresponds to two numbers havingOnly

the common factor 1.

2. The same argument holds here as for the usual euclidean algorithm. Any

common factor of 299 and ga will be a factor of 78, any common factor

of 221 and 78 Will be a factor of 13. ,.Conversely, 13 is a factor of 7$,

and, by the second equation, is a factor of,221; by the first equation it

is also a factor of 299.

-s



.
3. Here the calculation is:

.st. = 1 55 34

55 = 1 34 + 21

.4.
.34 = 1 21 + 13

21 = 1. 13 + 8

13 = 1 5

8 = 1 5 + 3

5 .= 3 + 2

3 = 1 . 2 + 1

2 = 1 01 4- 1

Here ell the quotients are 1. This means.that the procesg. is as long as

-lit can be for the size of the number§ involved.

4- S44pose g divides a and b. Then by the divisibility properties, g

divides Conversely if g divides r and t, .it divides a. Hence

the common factors of a and b are the same as the common factors of

b ,grid .r. This shows that the g.c.f. is the same for both. Hence, in

the process of the euclidean algorithm,'-the g.c.f. of the p4Idend and

divisor is the same in all the equations. Hence in the last'step, the

di /isoi is the g.c.f. and hence is the"g.c.f. of all pairs, including the

original pair of integers.

. ,

5. If g is the g.c.f. of 'a and b, then we might write a 7 gal and
yi'

b = gbl, where, by Theorem 2 of this section., °I is the g.c.f. tlf a2 .and

\
b'., -Then the following three equations are equivalent:

ax+ by = g, ga Ix + gb y = g, - tx +.4).1.7 = 1

and the last eqUati,n'is solvable in integers by Theorem 4.

£24
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1. The 1.c.m. for,two nUmbers considered to correspond to the union
0 .1. Y.

If two sets. The union is the smallest set which includes both.

.

2. Using the zero exponents as Mthis Aection we see-that

7 (3 - 70 11)..,. -7525 4455=-( 3 : 5 e-11 )4 5. P`

-end
f t 4

(g.c.f? (-1:c'.m.)41--: .3'. 5.772 110 34 5 7 11.. ,
.A.

For the second equation we have just a rearrangement, of the. exponents.
.."

sAv
For first part, that is,- the gPd.f., we use the smaller of the two.

.`
t exponents for each prime-and for the second part, that is, the 1.c.m.,

"

we use the larger. -From-this it can be seen that the two products will

be always the same._

To shorten.the prose's we -co.u1d find the g.c.f. of 525, and 4455 by

f the euclidean algorithm. Then divide this g.c.f., 15, into each of the

numberS, having:

25 = 15,. 35. and 4455 = 15.297.

Then, using the ahove'result, we have ,

.,,

525
e

4455. = (15 35)(10 297) = (g.c.f.)('l.c.m.)
i-)

....
= 15(1.c.ml)\.

, , . ,. -,--
. This imples that the'l.c.m. is qbalto

- -,

:'..--_,-,4 t t4.

15. 35 297...>,,

From this point,we can proceed as above. Doincit this way we do not

need tb factor any of the numbers involved.

3. It may be verified that 3 is a common factor of 23,082 and 155,925.

Since the second is divisibie by 9 but not the first (we could use results

of the next section here) 3 is the highest power of this number which 0

divides both. Loqting at the factorization of 135,925 we see that the,

,,

only otheF,possible pride common fattors are 5,.7 and 11, with 5 easily

excluded. Now
a, S.

23;082 =. 1, 297 +,,57 35;.

22



The number 7 divides the second term on the right but not the first,

while 11 divides the first but not the second. Hence neither 7 nor 11

can divide 23,682. This shows that 3 is the g..c.f. of the numbers

23,082 and 155,925. _

)

4. Irbell A rings every A4 minutes it will ring at times 12t minutes after
1

.
,

. noon for any whole number value f t.,. Similaarly bell B will ring eve'ry.. 'f -, -
15uminuteS er noon. If they i"ing.together we would have

. --
12t = 15u,

that is,

4t = 5u.

, This means that t _must be divisible by 5,and the least such counting

number .e is 5 itself. ,Hence they will both ring together 12 , =,64

minutes after noon, that is, first at one-olclockaAeach hour thereafter.

5. For this, usin the same notation, belt A will ring at 12thihuteg after'

noon and bell B,15u + 1. Then the eq

,12t = 15* +

This is impossible be-Cause 12t - 15u is divisible by 3 but 1 is not.
.

Hence the bells willnev r ring together. There is a further question

in this caoq, Suppose both bells ring together at noon and each at

IregulaIT-intervals thereaft- er. (In all cases.will they ring together again

sometime? r,

6. Replacing.15 by25,would give the equation

12t = 35u +:1.

This equation iq equivalent to

12t - 35u = 1. ,

By Theorem 4 of Section 4.4 this.hap solutions. ,It can be seen by trial

that one solution is t = 3,1u = 1.

44.
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To find the other possibilities consider the two equations:

- 35u = 1
4

12 .3 - 35 =1.

.Subtracting.the second frdiri-the first we have
.

_

12(t - 3) - 35(u - 1) = 0

which is equivalent to

,12(t - 3) = 35(u - 1).

Since 1 is the g.c.f. of 12 and 35, ,t -1 3 Must be'divisible byp35, that

'is

t 3 = 35n.

Replacing t - 3 by 35n we have

12 o 35n = 35(u - 1)

'or
4 12n = u - i.

. >

:0-ombtning these results we have-

t = 35n, u = 1 + 12n.

When_n = O we-have the values we started with: t = 3 and u = 1; when

n = 1 we have the next pair: t = u = 13. So we may` get all the

timeS,wEen t e ring together.

a

7. Suppose the times wJiich bell A ring are an + c minutes Sf-Fii.1-16-0-n-;there___
--.:,-----,

.

n = 0 .1, 2, 3, ... and for B the times are bm + d where m = 0,.1, 2, ...

.
_

Then /e consider thew equality s
A

an +c bm + d.

If a and b have a g.c.f. greater than 1, it must divide d - c. It

is true that in this case there is always an infinity of soiutions.

Proofs of this may be found in books on the theory of numbers.

r.

4.

. ;

at
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Section 4.6

1. 4The five digit number abcde denotes"the

a(104) + b(103) + c(102) t d(10) + e.

,

This can be writte

a(9999 + 1) + b(999 + 1) ,+ c(99 + 1) + d(9 + 1) + e =

9929a 999b +, 99c + 9d + (a + b + c + *,e).

Thus the given number differs from (a + b + c + e) by a multiple of

means that the remainders when the number and the sum of its .

e,,-

e&ts are divided by 9 are the same. (See Problems 3 and 4 of Section

4.2.)

2. Consider the smile five digit number as Above except that in the second

line we, write it in a little different way:

a(104) + b(103) + c(102) + d(10),+ e =

a6999 + 1) + b(1001 - ±) + c(99 + 1),+ d(11 = 1) + a.
-?

Our reason for writing 1.t. thia way is fha he numbers 99.99, 1001, 99, 11

are all multiples-of 11.i Thus .inste of the hum of the digits t.re'U'se

the expression

a - b +

LIt is this which has the same .mainder when.diVided by 11 as the, given

number.

Thereisanalest, writing the number in another way,

follows:

a(9999 + 1) + (10b +'c)(99 +1) + (10d + e).

This differs f m a + (10b + c) + 0 by a multiple'Of 11. IHer

we add the di its two at a time. For instance, the number'is
I

234 7.

Then we form the sum: 5 34 + 2 = 83. This means that the r ers

are the same when 83 and 23457 are di '7ided by 11,

228
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3. The remainder when a number is divided Ly 9 depends only on the digits.

not on the order. in which they are written. Thus the two numbers of the
, -

track have the same remainder's when divided by 9. This means that their

difference is a multiple of 9, tAt is, ie 'sum of the digits of the

'difference is a multiple of 9. This knowledge will allow one to determine

themissing.digit of ;the trick unless the sum of all ,but one t61.vms out to

-----` a multiple of 9J

digit is 0 or 9.

thi's case.o9d.can on_kguess: whether the musing

4 The number 3 has the same test for' divisibility since ! 10 is 1 more than a

multiple of 3 as well as 1 more than a multiple of '9c-

Since 7 is 6 + 1, it-will have the-same charactScics. for base.6 and

divisibility as 11 has4for-bne 10.

r iS the-last digit of a numeral to ,the base' 6, the number will be

of the9 form

06n + r

where n isa counting number. Thus if one 'is to determine by looking at

r whetheror not there %is divisibility, this will be possible only for

divisors of 6. Thu"s if r = 0, 2 or 4 we know 6n + r is even; if r = 0

or 3, we know that 6n + r is divisible by 3; if r.=0 we know that 61-i+ r
V

4

is divisible by 6.-

1 ' 4
.7

-

9111

LSection 4.8

1. If n = 1, thenN =f2 +.1 = 3 and N is the next prime after ?. If n /

we havq.) n > 2 an thus

P1P2 PD-1 2

since p.,\.= 2. Thus

-1- 1 >,2pli.

t
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Hence, by Bertrand's postulate, there is a prime n ber.between -pn and

N. This shows that N cannot be the (n + 1)th prime number. 4.'

-:2:,,Each of the ten numbers exhibited is divisible by some one of the first

t,
five primes. For instance, n + 7 is divisible by 7 since n, is. Con-

'sider a typical mem4 of the set:

..\ nti, 2 < i < 11. --a
r .

. : Va

Each i, is divisible by some prime between 2 and 11, n is divisibleby.

. . -

all the primes.betwebn a and 11; hence n + ilis divisible by any prime

"which divides i. Also n + 12 is composite since n is. divisible by 3..

This example is more efficient than that given in the section because

2 .3 .5 .7 < 111
.

4 Section 4 . 9
.

,

z..

1. The set,S does not have the property described in the problem. A funds-, r

mental reason'is that if it did hold, there, would be a euclid a algorithm

4.
and this in turn implies a g.c.f. and the fundamented theorem of arithmetic.

But a simpler way to show that it does not hold is to give an example. Let

_ _a_= 60 and b'.= 8. Since 7 is,not in the set; the largest .q of the set

. for 'which . g = 6. For 'this q,

I

and 12 is greater than 8.

60 = 6 .8 + 12

2. First, the units are thosCnumbers bin simplest form for which
b

is also
b a

- .

in the set. This means that the units are the fractions of the form
a

,. where both a and b, are odd integers. Thus the numbers of the set

will bei

.."

u1, .2112/ 22u2, 23u
3/ '/

2 u
s/

. From this it may be seen, that the primes are



a

; .

rof

2u . , r

where u is a wait. Furthermore,, if 21%,is a number of the set it can

be written as A product of prime numbers as follows:

'v(
(40(2u2)(2ua) (2uk).

<IN
and this decomposition is, unique excel for changing the units.

Section '5.3

1. Suppose raj- = f)-, that is, the twO fractions are 'equivalent. Then by the

7_
,

definition we must have ab = b . But b is different from zero and

hence by the cancellation property of multiplication, a = c. Also if
.., r... ,,..

a = a then, the two fractio,pare equivalent because then, by the well
f-,'"'' . .

defined property for.multiplication, ab ='cb.

2. To show that the answer is "yes" when the words "numerator" and.'"denomi-

.

nator" are interchanged in the previous problem we would start.with

ba

a
= and use exactly the same,procedureu

c . . _

I

1. First we ,want to 'show that

Section 5.4

an,SS,,00s

r r.

f
are equivalent fractions. By 'Theorem 1 of Section 5.3 this is true

W .

rs = ar.
°

Second we need to_3rer

a
equivalent a

T) 7 implies 7 equ;valent to 17)

3

since,

Again, using Theofem 1 of Section 5.3, we see that the equivalence of the

first pair of,fractions implies ad =.bc which-, in turn, implies the equi-
.

valence of the seco nd pair.

44
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Finally we need to show that:

a
-

a r
- equivalent to - and - equivalent to , implies - and - are equivalent.

.b

The given equivalences imply: .

. . ad 1, be and--e_s=leld..

.

,_:474,Theri, using the well-defined property of multiplication we have

..)
\

, . ,
ads = be i.1

and the, Ccellation property implies as, = 4,r which, in turn;-2mplies,

4

i7 s equivalent to

2.A If tlere is a classific'ati3u satisfying properties lc, and 3c,.then

we ca:1 tqo elements equivalent if they are in the same clas s. Co lc

shows that A is equivalent.to itself, 2C.4.-hat if A and B are equivalent

(so ar B and A, and 3c shows the,transitive property of equivalence.

3- If he set of whole, numbers end. R is <, then the relationship

%, '7- is refleXTrergird-trahTitii4 bA not symmetric

1.
,

Let S ,_e tri 9 set of all people and Rtbe4-relationship of having one

, .

..--- , perent...i.i.-0.1p4o.a.t. "Then R is reflexiveand'sAilmetric Lut not necessarily

'

7 ,

ransitive, for a Gould have father A and mother B, b could have
1 i

OP

fatter A ani mother C, while c could have mother C. and father-D. -Thus

N and c Wduld not have a common parent.

/ Finally, let S be the. set of whole numbers and let a R b mean

that a = Ob and,b = Oa, thaCis,,fboth a and b are zero. Then 1 R'l

.

is fAlse. BU at R L=...40plies that a
4.,:: -

and b are.zero.and_henr b

- end a are zer.2 and b R a. For the trapsitive property we have two
%114.

hypotheses: EP and b are hero, b and c- are zero. Hence a and ,c

'would be zero. So this set-with the R ined has the symmetric and

transitive properties but, not the reflexive property.

. A
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Section 5.5

bd1. ,If b = 0 the left side of the equation (!)(!) = () becomes
as

right side becomes (2) = 0. Hende the
ac

(a)(a) = 0() = 0 and the

equality holds here also.

R

because abcd = cbad.

Section 5.6

a .bc abc c

-b ad bad d

Section 5.7

b d (bc + ad)1. If b0 0, then (-a-) + _0 +1) Also
ac

3

becomes
ac

which is equal to . The proof is similar if d = 0 or.'1).= d = 0.

Section 5.b6

° 1. Here we wish to prove that $((i)(f,)) = [(?)(i))(P. the left side is

equal to)(11WP =
ace

by the definition ofmuleiplicatibn of fractionsb df bdf
04

and the associative property of"multiplication. The right side will be

equivalent tothe.s.ame fraction.

2. Here'the need is to prove .

E + (1+ r
i,i) = (.

-s-
+ it-)

x+ .,
s 'u Y

It was proved above that the left side is, equal to
_

.

p

(ruY% 'sty +_aux)

o

t'



The right side becomes

(ru + st) x (ruy 4-sty -1-'xsu)

s1 'suy '

which by the associative properties of addition and miiPlication is

equivalent to theoprevious fraction.

eg

3. -Here we wish to prove tivdt.if 2 .9-

' s
- = then $(-1.-) = (S-)(E). The-last
b d .d s

equality may be written

ar cr
.

bs ds

'We then need to show

Nib

0 ards = cros.

a
But ad = cb, since is- and a- are equivalent fractions. Hence, by the

well-defined property of multipiipation, ards = crbG which shows the

equivalenoe of the two given fractions above.

14.r Here we wisli 'to prove:

JP

implies that'

We then have

a e
17 7 "7

(ad + bc) (ed + cf)
bd. fd

or

(ad + bc)fd = bdCed + cf)

arfd
2

+ bcfd = bed
2

+ bdcf:

0

By the associative and colgotative properties of tultiplication and the

of addition for Whole nuMhers this i
e-

cancella

f
ion property

ir

Since d2/ by of = be

.

afd
2 2.

and the fractions
a.

and --e are

234. 3

equivalent::

A



Section 5.10

As in the section we take r =
a

and;

with the same arunerators we have

If we write them as fradtions

bd dr =
ad-

a-- nd
s'

bb

i

and our equatiOn becomes: Al 0 .

..

bd
+

L
ad

x
cb*

,
Here we need to use a slightly different technique to eli,minate the frac-

**o
tions. 'The given equality will be equivalent to that obtained by multi- 0

plying both sides by the product abdd. This gives:

O

(161)(aticd) + x(616cd) = (1g)(abcd)

or (bd)(bc) + x(abcd) = (bd)(ad)

If we divide'both sides by (bd).wehave anequivalent esuatiot
A . a

. 4.
v bd +:x(ac)4=

This ie the same equation as (1) above and the rest of the proof is the

segue.
r

'However, notice that.

d,
.bilt*,

ad

bd ,
.-- So r = --

.
. a

, .-- ..of.*

o °if and .only if

ad

Hence if two fractions with the same numerator are to be compared, the.
-t-

lesper fractionlias4the greater denominators while.if the denominators

d

c brc

`;:vgftx-

. .are equal, -the lesser fraction has the lesser numerator:.

4 ._ '''.,":.
C. Firpt we sholAthatT 1. 1 -9-< Using the results of Section 5.9- we see .-t ta + d d

.that this inequality is equivaleht,to

°
O (15 + ,c)d < c.(13.-+ d

'1'7

c,



that is

bd + cd < ca + cd,

-r .bd < ca,

c ts
which is the condition that >

d

In just the same way it may be shown that
(1):+ c b) >la.

...4
r t ' (r + t)

3. If we defined 7 4,..,7 to be + , by the previous problem we would havd
S 'I' U

J
that the sum of the two fractions would be less than the greater of the

...-.4

4wp,which would be inconvenient. Also,i- =
sc
would result in

J

rc
+

t (rc +
,

sc u
_

ksc +

We shall show that in this case thb sum of the two numbers is different
,/

.

from that'in the definition - that is, the sum would depend on the frac-
,

tional form which we happened to use for the number represented by r.

Suppose

(rc + t) t)

sc +
,

s + u)

This would be equivalent to
,

tf'

(rc + t)(s + u) = -Se + u)kr + t)

or

rsc + ts + rcu + to = scr + Ur + sct + ut

or . ts + rcu = ur + set.

This can'be written

.",7 or

t..

- sct = ur - rcu

ts(1-=-0-44b(1.- C).

,

This ph be true only if c =.1 or,:-p.acking this, if

is

which is equivalent to.the equalit#.of the two given fractions°

T
and--u

'Thus, unless c = 1, our definition!-Would give a different form for the

-sum, assuming thatthe two%given fractions Were efferent.

, 2515.0,1



:ter

4`.; Herd it is a/atter of checking only. The proofs of these two properties

are given in reference 7.pp. 23-26.
-

5. We now wish to compare the two fractions:

a a + c

b + c

r""

a
If 7)-..= 1, then both fractions are

r

equal to 1. ,Otherwise, We know from

Problem 2 of this section that

In other words,

b

aa +
is between .1-1)- and = 1.+ c

P

i

a
< I a + C.

< 1,f
b '

then
b

a
<
b + c

a a +
+ c

c
> 1.if

b
>.1, then

a
>
bb, .

,
,

.

- Thus, adding a Positive number, c, to the numerator and denominator of..
a

a
1-;

the fraction 7 increases the number represented if < 1 and decreases the

a
number represented if 7 > 1. These results may also be proved directly;

-,-

, .see the solutionof Problem 9 of Section 0.2..

Section 5.11

1. The number
a

corresponds to the. pair (a,b).. he horizontal ray will
.

cVntain those points for which b = 0. But for b = 0 there is no number,
a

of the form
b.,

- .).
-

2. If (a,b) were'another way of writing a + b, then.4 will correspond to

the "set of counting numbers, a, b whose sum is 4. This set is
4

(0,4), (1,3k, (2,2), (3,1), (4;0).
--

This will be a set of five paint's on a certain line. The number 5 wil1 '7. , .
, ,. ,

, i ,

--,
.

, .correspond to those pairs whose sum is 5; the;grwill be six such pail's.
A,'

' For a sum n, there will In all ceases each set of points
i me-.4 1, rs,rI ",........cr--.....-4.0 ...ke.n.4.,,,,c,-41/40`4"*A..

. . ,.. . . 1 cts,

will be on-the same line. All the lines are parallel:.
I



3. If (a,b) represents ab, the points of the lattice which represehol 5

0

ci!uld be (1,5) and (5,1). The number 6 would be associated with a set

four pairs:'' 1

(1,6), (2,3), (3,2),-(6,1).

. Tie number 7 would have just two pairs associated with it.' In general

the number of pairs associated with the number Of n would be equal-to

the number of factors of n. These points would in all cases lie on a,
4*

curve but, except for prime numbers, not on a straight line.

4. Suppose (a,b) were to correspond with a - b. The points of the lattice

which would correspond to whole numbers would be those for which b is

not greater than a. The pairs corresponding to n would be:

(n,0), (n + 1,1), (n + 2;2), (n +

There would be an infinite number of pairs all on the same

+,;

1r

Section 6.5

ith
1. If 2 is a rational number, we find its decimal expansion by diViding p

9

by q: In the betinning, if p is greater than q, parts of,,the number

p will be "brought down" in the process of long division. But after a

certain point, the dividend at each step will be ,he remainder of the

straight line.

previous step multiplied by ten; and since the rest of the process tie -

pehds only on the,diVidend, if the dividend repeats so will the decimal .

expansion. But there are only -q possible different remainders. Hence

either the process of division stops or it continues without end, that -

is more than q different steps. This means that for the infinite

decimal expahsion, the remairters Must repeat,'hence the dividends repeat

and therefore in the expansion the same sequence of digits recurs without,
.

end. We illustrate this by the foIldwing example:



42.153846
13/ 548.000000

52
27a3 yr

. 26
20

12_
7G
6

50 -

110
104

-6700'

78

20

Here the first two remainders are 2 but.the repetition does not begin

until the eighth step since the 'remainders in the second and eighth steps

are both 2 and in bop these cases.zeroes are "brought down" in the process.

It is the -sequence 153846 which is the repeating pa'rt of the expansion.

2. In#tlie Process.oT finA 1ding the decimal expansion of 7,. the first remainder
I .

k...,

, .

1. is 3 and the second remainder 2. Since the',decimal expansion of is
7,

. ,

;,' -....4

42857142857.. ' '

,.41.
starting with ,the second step; the expansion'wou10 be

.285714285714....

2This-is the expansion of
7

t ''

3. If we prd the decimal expansion, of i each 'remainder will be 1; this is.,
,

. .
.

.

srcause 10 is 1 more than 9. It is this property which makes the sum of- 7

the'digits have the same revainder when divided by 9 as when the number
.

1/44",./

itself is divided by 9. For 11, the remainders are alternately 10,and 1.

Thus, for instance, 1367 = 1000 + 3(100) + 6(10) + 7

= (990 +10) + 3(99 + 1) + 6(10) + 7 1.

So the remainder when 1367 is. divided hy'll is the same as when the
. :

...

following is divided by 11: .
.,

lb + 3 + 10(6) + 7.

O9 2
.



For 37 these are three digits in'the repeating part. Thus

..027027Q27

37/ 1000010000 .

74

70
259
1

and the remainders are, in successloni 10, 26, 1. Thus, for instance

34578 = 3(10,000)+ 4(1,000) + 5(100) + 7{10) + 8

= 8.1+ 7(10).+ 5(74 + 26) +4999 + 1) + 3(9990 + 10)

where 74 and 999 are Multiples of 37. Thus the remainder when 34578 is
ti

divided by 37'is the same as when the following sum is divided by 37:

81 1 + 7 . 10 + 54 26 + 4 1 + 3 10.,,

ski

4. IT a rational tumber is to have a finite decimal expansion, some per

.of ten cultiplied by the number must be an integer. In other words,

if 2. has a finite deeimal expansion where 1 is the g.c.f. of p and q,
9

then,(2)10n must be an integer.' Thus

.-

.must be an integer. But since p and q have no factors greater than
. _

. -
1 in common, q must bp a factor of 10n . This means that the only pqme

factors which q can have are 2.and 5. Also', if q has no 'other prime

factors,,it will be a factor of S'ORie powerof 10. For instance, if

\ 4

5b then q is a facto' of 10: = fc -5c. where c is the greater

of a and b.'

% 4 .

,..
-'

7

1 .
5. In the numeral system to the base seven; .1 would Mean just as in the

....
.

.
1

decimal' system .1 meansy6 .

-

iThis s a terminating decimal. In the
, . ;

4

1
numeral, system to the base seven the expansion of 5 i§, as follows:

. .

4 I)

240 IA?
4 (4-

4



.12541254....

5/1000000

20
13

21.1_

3o

26
1

ly
This expansion repeats. In this system, moving the point one space to

the left would be equivall-At to dividing by seven.
. 40

16. Two decimal expansions for 7. are 0

7 = 425 = .124999..: :

However
3
has only one decimal expansion since at no point in the expan-

sion is there an unending succession of nines or zeros. To see this .

suppose we change one digit in the expansion of 1
For instance, cohere

. 3
(

333 with .334000.

WeY have the inequalities:

-1 --5 = .333 ... < .3334 < .334000 < ;331;,::._ e
when the remaining digits in the last number can be what you please.,

.-11
This shows that

3
and the last number must differ by,ai least .0006 and,

hence cannot be equal: The same argument could be used for .332000 in

place of .334090. Without a formal proof itia perhaps clear that the

only numbers which can have two decimal expansions are those which from

a certain point bn have onlY,dzeros in their deiimal expansipns or only,

'nines.
.

Our argument used in finding the fraction representing 5.234234... was,
:

based on the fact that this is a number - as wdladd terms in the.expansibn

we are adding smaller and smalleamourits. On the other hand, for
4



t

'4, 6

S

0

.t

I

,

x =2'1 4- 2 + 22 4. 23 + ... no number is represented by his infinite sum -

each time we add a larger and larger amount. All the =rgument shows is

that-if x were a number it would have to be -1.

Sect-on 6.6

1. *pose the populatibn of the city were 10,000. Th n,6% of this is 600

and its population at the end of the first year wo 'e 10600. Now 6% .

of_r10600 is 636. Hence the decrease of the second r would be 636 and

0

the population at the end of the second year be 9,964 which is

less than it was in the beginning. It can be see -rat for any popula-

tion the results would be similar since the 6% de rease is computed on

a larger amount than is the 6% increase. Had th decrease been' first
-

and the increase second, the final population wo d have been less than'

that at the beginning, namely, 9,964 just as befoXe.

2. Using 10,000as'the populations'of the cities, it can be seen that at the

end of'two years the population of.city A would be 11,200 while that of

B would be 11,236, whichs more.:

0
3. If the person were really paying interest at the rate of06% annually

.1,
or,1-=.1$ quarterly, a table of the interest paid for each quarter would-be

as follows: The first quarter he would be paying interest on.the full
/

14 .

amount: - 1-7o of 400 which is $6.00. The'secOnd.guarter having paidoff

$100 of the principal as well as the,. quarter's interest, he would haVe
6

interest to pay on only $300 which is $4.50. For the third quarter he

would bq paying interest Oh only $200, or $3:00, and for the last quarter
- x

the interest would be $1.50. Hence the total amount of /interest paide ,

under this zcheme would be $15.00, which is a little more than half of
0

.

the paid under thd other schemt.
..y.v ,

..
.

tr

4, 2142 9' i 0

. ,. I,



lb e

\Do.find the ctual rate paid under the bankls requirement, let r

be the quarterly r te,and see that the total interest would be:

400r 300r 200r 100r = 1000r.

If this is 24, r = .024 would be the.quarterlSr rate, This corresponds,to

an annual rake of 9.6%.

Section 7.4

1. If = s, then (a)(s) = as and ab = ((a)( s)) ='-(as) = as. Hence

both prod are equal. Second, write a = r and shave.

(a)(b) = rb; (ab) = (("r)(b)) = (rb) = rb.

- Finally if both a and b are negative we have

(-a)(b) = r( s) = ( rs); (ab) = (( r)( s)) (rs).,

a

2. In the respective cases we have

i) ('a)(b) = (a)s = (as) = a( s) = ab

ii) (a)(-b) = r( b) "rb =-(0(b) = ab.

iii) (a)(b) = rs = (O( s) = ab.

. 3. For the first let ,a = 5, b =f3, 1. Then (a'n,,- c = 2 =). 1 = 1

o while 'a - (b - c) = 5 - 2 = 3 and the two are not equal. On the other

. hand (a n b) - c = a b -c since if we add c and then b to

either side we get a. The same is true of a,- (b c) and (a - c) - b.

'Section 7.5

- If a and b are positive lal = a, Ibl =-1) and la' Ibi = ab =
.

If they are, both negative, lal = a, Ib = b and la'. Ibi = (a)(b)x--ab =[.abt.

If a is negative and ,b' positive, then

tat = a, Ibt = b, tat Ibi = ( ,-a)b =,4ab) = tab'.

Ez

4



Section 7.7"

Here we use the correspondence,(a,b) <4a - b. Hence if (a,b) corresponds.

to:the integer r, we must have

a L,b = r.

Thus the point (a,b) swill correspond to r if and only if a h = r:

s

All of these lines will be.parallel since

,,- b= randa -b =s
4

for a pair of,values a and b can 'hold only if r = s. Thus none of

the lines will have a point in common and since they -are -all in the same

plane they must be parallel.

2. 4 in. the figure, let A be the point (a,b) and B the point (c,d) with

0 the origin.-

4.

T

4 -
Let C be thelkint (a + c,b + d), Ala B' and. C' the feet of th rPetalk

.... :
,

diculars from A, B and C upod the x-axis, and D the foot pf tihe perpen- ,.6

.
. $4 ,*

t4 i
A ,

disular 4ram.B.uponCC'. Then OA' = a = BD, AA' = b = C1D, aridthq riglA c
,

. . - -:f't ,
i

.
, (°

'trigrigleS 4000 and CDB are congruenti showl.ng that OA T BC; SiMilarly,
H.6 H! 1

. I

1
.. I .

it pay be shown that OB = AC. Hence OACB 4% a parallelogram,and C it

. 4./' <4 P ,

the intersection of the line through B parallel to OA and the line throigh
- ,i

A parallelto OB. This is sometimes thought of as completing the

parkllefogram starting with the sides OA and OB. If OA and -0B- are thoUght7-

of as two vectors, OC iirtha resultant vector.



e

3. .TO.verify that -

-(a,b) = (CO) if and only ifa+d=c1- b

1

/

is an equivalsnce relationsPiip, we check the three properties In turn.

, (a,b) (a,b) since a + b = a:+'b.

a. ii) Here (a,b) =(c,d3 implies a+ d = c + b, that, is,

c + b = a + d, that Is, (c,d) =

.iii) Ih'thia case

(a,b) = (c,d) implies a +.d = c + b.

= (e,f) implies c + f = e + d.

This from the well-defined property of addition-

(a-47A) + e = (c + b) + e,

a;4- (e + d) = a +-(c f)',

When by the associative and commutative properties

a + (c + f) = ( c + b) + e,/

(a + f) + c = (4 + e) + c = (e + b).

and, by the cancellation property for addition,

a +-f = e + b,

which implies ,b) 7 (e,f).

(1)

eCtion: 7.9

,c,,

ir

j
We wish first ts?..show that in), a fikld in which'thewell-defined property

,, , r ',/

holds for addition, the cancellation property holds for' addition. ,That is,-

if e + b=-c + bOhan7R= c.. Thus results from adding b to both sides and

a% the associative property.'lior mpltilication we similarly'stErt with'.
,

417 = cb, b / 0 and multiply by,,t*multiplicattiVe
inverse t- of b.

245
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Bection 7.11
A

1

1. See the answer to'the,,problemPof Section7.9

*4,

2. The first part of the cancellation property f tipliCation`lind

inequality is .

As*
.`

0

If ac <bc then a < b if c is posits and a . > b'if' c- is negatii.e.

Now
1

is positive if c is positive and negative
%.!'" 0

c is negative.

Hence, from the well-defined property:

ac < bc kac7-5,(Tge)() or a < b, if c is positive. ,
1

1.
If c ia,negative then is negative and the proof is similar. If the

4. /1 ----
inequalitielgo in the Other 'clii-e-6tiOriEhe proOf is the sate/

I

3. P does not form a group because 2, for instance, is ix P but 2, its

multiplicative inverse isinot.1 The set P', however, does fort a group.
4.

Neither N noeNi form a group because the closure property is lacking+,0
%

that is, the Product of two negative numbers is not negative. The union

of P, and N does not form a group since again 2 is in the union but
1

' not. The non-zero rational numbers form a group under multiplication.

Theset of whole numbers,does.not since 2 is a whole number but
1

is

not.

2.

/ti
f 1 ' ) t

Section 7.12
...

I,
i

..,
or

,

1. property Z follows from the well-defined property for addition and

',inequality as follows:

: 1 <b < c implies a + d < b--7- d < c + d
-

and similarly if the inequalities are all<reversed.

2. For the proof Is.4.Property 2, one needs also t6 consider the case

> b > c. But the proof is the same - indeed one may merely inter-

4*w._

change a and c.

246 94 4.
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3. See Problem 2 Section 3.2.

Section 7.13 t

1. The conclusion does not hold, for ; 2 > -3but 2 2 <

,

....,

2. Here we consider. two cases. First:, if b > 0, then the previous problem.
r+ ...

implies that a2 > b
2

mid we have
.

a.' > b implies a .a2 >.a b2 > b b
2

> b
3.. 1'

If a is positive and b negative or zero, then so are a3 and b3

respectively,. Finally if both are,negatiye, a > b is equivalent to

a < b and by th4 first case (-a)3 <(-b)3, or (a3)1 (k3) which

;implies a3 > b. So in all cases the conclusion is justified.

From the triangle inequality we havz .

fa - bl 1101 > lal which is equivalent bl > lal lbl

lb al' > lbl which is equivalent to lb - al > lbl - lal.

But la - bj = lb - al and it is or equal to both lal - lbl

and lbl Hence it is greater than the abSolute_vaLue of this °a

difference.

-4.:': Singe both ;ides of the equality

1,. la +1DI r.-. le] + lbl

are pOsitive itt,is eqqiivaient to (a 4. be = a2 + 12abl

. 1

a
2

4i; 2ab + b
2

... a
2 1+12ab 1

'+ b
2.

,..

. ,

This holds if and only if 2ab = 12abl, in other words a
(

c!.. .; ( ..

5. 13y Theorem 1, the desfredinequalitii is equivalint to,

.

it-)2 > (1.7)2.
1

4That' Is:

,d > 2.89.
b
2

-247 245



° ° . l''
But certainly eitherb

2

b

Or is greater
'V
thdn or equal to 1 and hence

,,
.

the left side must be greater than 3 which is grater than 2.89. It i.4

a little harder o show the inequality with 1.7 replaced, by 2, the

. g
.

, value of the left-hand side 'when b = 1. ,

Section 8.2

-
1. SupRose ) were a rational ler whose spuare is 3. Then as n '

Section 8.1 we would have

3b
2

=

Then; at before, 3 will occur ac a factor of the left side an odd number

of times and of the right side an even number of times, which is impossiblee

,

b

a
were a rational number whose cube is 2, then; as before,

,

2b3 =

The number of times 2 could occur as a factor on the right side would

have to be a multiple'of 3, that is; One of 0, 3, 6, 9, ....On the left

the number of'times it could occur is one of

1, 4, 7, 10.

None of the numbers in the first set is equal to a number 'of the sec6nd
.

set and we again have a'cohtradiction.
y

.
, . ,

1;
. .

,

. .
; 1 . .

,

'3. SilppoSe r is a rational number different from zero, s, an irrational
i . .

.,

number and rs = t arational num r. Then
1

t woUtd be rational since
r I,r -,- 1

.

.4 ,l,it is the product'of .wp ratio al numbers. Thiswould be equal, kr)r-S=t
1 r

'which is irrational.' 'hip is a contradiction.

.

-

0

't

248 Z4 6
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t 0 ,7'...iie.....

.11..1-...., ......"1 e , ter,
l','_. 't1

^ i , 4
, I -g

. 1

l'.14. ....
', '

-4. Since ../p is i rational, the previoUs proble shows that.(s - r)( '

A 1 ,

. C...1

must be irrational as well as /Its sum with D. The ntmber is belweeniti; '--J
_ :: ;

; lk."... . .,

s d r since we have added-4.9.4r -oeontlArkint whieh is less than the
, ...,,,:.- 7. -;,Tt' t,. '-. I. .o, .

. , .

,

differenceleten s .and r. ti

5. A rational number between .;/E and --"E is 1',415. For,the rest, see

Section 9.1,.

1
6/.; Firsthedeci9a1 for Iris .090909...-:. Hence for this

Li = .0, L2 = .09, L3 = .2...09 9, L5 = .09090

u1 = .1, u2 = .091, u4 = .0910, u,5,= .09091.

NOtice that pairs of the Uts; are equal.

2
Second, ,the deOmal. for -5,is

'
.400000... : Here

. ,
A . /L = .4, L2 . .4.0 L .= .400 i., - ,L4000 t .40000 ., -.,..i 2 ' 3 . , 4 - , 5 ,--:..
:

..

U1 = .5, U2 = .41, u3.= :401, ult. ; .4001, u5 = .46002

Here allthe Lt's are,'equal.'f(We wrote thenn different form to em hasize
.

.

the means Of computation of theTts).

r,
Third; using 4e decimal for y to five places 3.14159

, 14 =43.141, S__.= 3,1,415_

u
1

= 4. .0
2 7

3.2 u
3

= 3.15 u4 = 3:142 u
5
= 3.1416.

.7. We found above,the twocsequghces for the decimal .400000.

.We now write them for the decimal :39999...

-

L1 ,= .3)1'1,2 = !39, L3 = 399,1,1t - .3999, L5 = ,39999,

U1 = .4, U2 = .4o, u3 = .400, u, = .400o, u5= .40000

Here ail the Uts are the ,same. Notice that the set of Uts for the decimal

-,-: 4p .3999,.,. is the same as the set of Lts for the decimal .4000...-.

4

f
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8. Here;it is well tmecall the result o;,Problem 5 of Section 5.19. This
,.

.

l' .

-.,-

,howl that since -f is leSs than 1theLls form an increasing sequence

and; since 3
- is greater thankl, the U4 form a decreasing sequence. This
2

sI
establishes Prpperties 1 and 2. To eslblish the other two we need to

show that for every po'Sitive integer -11, the following difference is

positive endthat t appraacheero as Al becomes larger and larger:

, 3 + i-..,
+n

2
`r tts U - L' -

414,*
i

n n 1 2 + n 2 + n 2 + n
, ( .

'41..

Thus the )iffrtenee is p sitive and as n becomes larger anclgrger, it\ f J.
. .

140'
,,-tecomes smair and smaller. 'The number defined by the sequences is 1.

I

Hence we have' established our desired results.

9. Here ire first need a result analogous to that of Problem 5 of Section .

1

I

5.10. 14 this case we slkrt with a fra.ction, add'a positive number rop

the numerator and twice that number to the denoTinatoi. Then the

-inequality:

c c + r<
d d + ar

---\

since all the letters stand for positive num

lr

rs, is equivalent to each

c4.of the following sequence of inequalities
a

1:.
c(d+ 2r) < d(c +,r)

2rc'<rd

d

(

. . ,.

Thk same results hold IT iall the ne4ualities arereversdd. 'Hdnc ,,4s'irre2,_/

1 1
mi- ..

"

. 4
is less than .-, the sequence of Os is an increasing, seguence and since

3 1
\ . f ' ,44,Rf ,

is greater than -, the seq4nce of Ills is a decreasing sequence.. Thus
2

the first two properties de4red are -trug. For'the'resetswelwOute:
,

3 + n 1 * n 2 '

U, - L =
moor n 47.71 2 +. n

250948

'



r-

\

,

l' \
1 I

, .
, 1 1. \ * , ')\ \, "'

This is positiiye{ and' approache's zero as n bedoMes larger
1

,

1The' number defined by the sequenoe is
2...,. .

Problem 5 of section 5.10. 0

) .4

nd larger.

See al.'s° the solution j of

Section 9.2

1. LetA and B stand for two equation and S and T their solution sets

respectively. Then A and B are equivalent if, and only if,S = T. Since
equaAty of sets is an equivalence relationship so must be equivalerice

bf equatiOns.- -..
... *, ... . 0. a

2. Here the two equations 'are equivalent except7olicrtA values, of -x for:V -- = - . . . .. which X - 1 = 0, that is, except for x = 1.. Hence the only possible.-

solutions of the given equation are x =, 3, the 'solution of the second
.

equation, 'and x= In this _case x = 1 is a- solirt4on of thefirsot.
eqpation. This equation may also be solved by use of the distributive
prOerty as follows:

is ivalen-# to
.J---

; \
(x 2) ( x - x 1 .

( x - 2)(x - 1) -,(xj- 1)-=,0.
'

,By the distributive property.; this, is equivalent to

(x - 2 - 1)(x - I') = 0, .

.- 1
. ' f

.- - ---, - I , ) ( X p )() : 1 = Pr'',1 I ' .which has theylutsions x =,3 ak:Id ) = 1.,

. ,. t- i . . .r, , . , v,t:,-,3.: `Here tb solVe the given equatitn. we tmerply first 1)y (x --.1)(x - 2)
Ili

er" T .'T'' _-,
., _, 0

.. as in44she.example 'in the section preViodsly.'sThiptyields

S

. x ..- 2 + 1 ,...- (x '- 1),(x - 2) ' , ,_

(2) - x - 1= (- 1)(x - 2). 1
.

This equati n is equj,,craient `Co tale, given one except nil those value" Of
, lr

, .

..tx--for-rwhi-61-. the-inialti-p-Rer is 0, that is, x =.,1 and x = 2. Now equittii:41; ,/ y 1
'... ; -,(2) is .the same as the one c9nsid.ersd in VrOblem.2 and we found that its. . . .,

°r .1/4- .53-2 4 9
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solutions are x = 1 and x;,= 3. Thus the solutions of the equation of

this.probiem are x = 3 and perhaps x = 1, hnd'x = 2. For the two last

values of x, denominators are zero. Hence the only solution of the

Wen equation is x = a.

,

-0

Sectiok9.3

Exactly the'°tA,woproof can be used here as in the proof of the lemmd of

this section.

' 1 --

Since D contains a number
1

as small as you please, we can use the same
2,

argument to prove the result required in this problem as for the density

of rational numbers.

3.4. Here we wish to choose q, an element of D, ;.8 19hat r satisfies the

conditions rhipbsed with r = a - bq. Thus we want

i) a - bq > 0 and ii) a - bq <c.

Theifirst ineiluafity is equivalent to,,

'a > bq a n4
a

q.

The second inequality equivalent to

Thus, since

- -
a - c < bq and

a c
< q.

a - c. a

b
<
b

o.

1
4. . , .

for 7a, b and C7-pos#ive, we want to find a AilliWi 'crib 'whit-iiT4 ,,

between
b b

J1-14 2'and Since from the previous problem We know that

<

there is'a number of D tetWeen any two.ratiOnal numbers, we know that
'

c
,

.-.
,

.i...t....r.A5,4.,z a.numter,of D which is between the two 'special rat ioAhl rip-liters
9 , . . , . .

.1.2

b
1 a

.

and b . This completes the- proof.
r,- , 4

-
.

,.

2 5 0
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, Section 9.7

1. It probably easiIst to consider this prublem by cases.

Case I. If aa' / 0, then the giveh pair: -f = 0,'ft.=,0 is equivalent

to each of the follow: g sequence of pairs:

felf = 0, aft T. 0;

atf - aft 0, f = 6

as was kshown in the previous section. The last pair above i
.

v. 6 .
al(ax + by + c) - a(atx + bty + c') = 0, ax 41 by + c = 0

(1) - b'a)y + ate, - ac' = 0, ax + by c = O.

Thus, is- -'b'a / 0, the first of these equations has one and only

one s ution y; and, using thiS value"of y in the second equation we

4Sed hat there Is exactly one value of x. Since this pair is 'equivalent

to he given pair, we have shown that if at', - b'a / 0, the.gixen pair
.

ha - exactly one solution.

. 1 .

On the other,hand, if a'b - b'a =-0the first equation of (1) has

no solution if ate - c'a X 0, while if ate - c'a = 0, any value of y is ..
',..

.

_i_t_.1.
%... -a-sdlutiok Which'-ih turnr-Ylelds values of x by means of the secondo

, f
11 atie on of-(1). Thus we have proved the theoremf6r Caste I. .

:% ----1.L..;. ,--- ' ,

..
.

Case U. If bb' / 0, then we may ufe the same proof.as.in Case I with
.

b and_ a, x' and y interchanged. Notice that this interchange does
110.".4 . .-. ,. . _...4 . .

'not change the condition a!b - b'a
7 .

,ease III. If a = b = 0 then eithv c / 0 when there is'no solution or

c = 0 when the p air of equations is in reality only one equation wpich.

.44 /

either has infinitely many solutions or none. Also for thi$ case,_

-atb - b'a = 0.1 The case at = bt = 0 ta..slmilar.
.,

CaseIV. If a / 0 = b, at, = 0 / b! the giveripair of equation's reduces

to:, . ,ax +e -0, bty + ct ,= O.
,..

Here the uniqUe Sdlution is x = -
a'

--y = - and ab' bat = O.

q

A
253 2 ti



.Case V. If a = 0 Pb and at / O.= bt, the pmdf is.the same as in Case

IV. We have' consideed all possible casesand the result is established.

2. Theanswer to the question has been given n the discussion of Problem

i.e., if abt - atb = 0,'then there is 9ither no solution or an infinite

number of solutions. Geometrically, this means,that if abt - atb / 0,

the lines intersect, While if abt - atb = O they either are parallel or
4

coincide.

3.. Hera we have two pairs of equatiohs to consider"I):

.,

and

f = 0, g = 0

4
4

rf sg = tf ug = O.

*
We know that any solution of the former pair is a solution of the

latter. Thus, the pairs will be equivalent if the` last two equations

hold only for f = 0 and 'g = 0. But we shOwed in the solution of

Problem 1 that the pair rf sg = 0, tf 4sug =-0-has a--single solution

(f = 0, g =..0) if and only if ru -'ts / 0.. Thus the condition that the

t1,4, pairs be equivalent is
X

-ru-- ts /

Section 9.8

1. Here let -k be the,amount of the 80% Java mixture. used,and :y. the"

amount of the
5
0p Java mixture used. Then the combined amount is to be '

five 1164
rgives us

x = 5.

The amount Of Javin the first is .8x and VI the second .5y. Thus

,

4x + .5y = (.6)5
el

*So we wish to sol;.re the pair of equhtions
ti

2511 9'52

r.
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x + y .= 5

.8x + .5y = 3.

To do this multiply the first equation by .8 to have

Subtracting, we have

Thus x

.8x + .8y . 4.

3y = 1,

10
Y = 3 s

=
5_- and this is the solution.

2. To justify the geometric meth9d use Figure 2, of Section y.8. Let A

be the point (5,3) and recall that.P is-the poNt where the line througn

A Paralle3. to J = .5W cuts the line J = .8W. Let C be the foot of the

perpendicular fromP on the W-axis, call x the first coordinate of P

(and of C) and B the point where the horizontal line through P cuts the

ve5.1Aal line through A. Since x is the first coordinate of P, the

distance CP is the amountoof Java Coffee in x pounds,Of the 80% mixture.

The distance BA is the amount of Java coffee in PB pbunds of the 50%

mixture, since die llne PA .ta,parallel to the line J The sum .of

BA and PC, namely 3, will be the amoun't'Sof Jaya'Toffee in 4i pounds of

-'..he'806triixtUre-plUS-PB-Pounis-6-fEe-5-0%
6

'Thus x you a of the 80% mixture plus Ili'pounds of the 50% mixture

give us,5 pounds of th

_of

mixture. That is, we must usre'-x.... pounds

the 80`%-mixture7plus;5,-- x youn
f

of the 60% mixture.

v

1/

the -50` mixture to-get 5,gounds

2552 5 3
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3. Here we wish conditions on A and B in

g + 2c = A

75g + 50c = B

so that the values of g and c in the common solution will both be'

positive. Multiply. the first equation by 75 and get

75g + 150c = 75A

75g + 50c = B

and 100c = 75A - B.

Hence c > 0 is equivalent to 75A > B.

On the other hand if we multiply the first equation by 25 we have

25g + 50c = 25A,

75g + 50c = B,

which gives ell&

' 50g = B - 25A

and the condition that g be positive is B > 25A.

Thus the condition _that both g and c be positive is

.

2,5Ar B < .W5A,

in other words, .8 must he between 25A and 745A.

.

25.E

10
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Appendix I, Section,;6

1. A and B are'sets of points. Their intersection can be the null set, in

'which case they are parallel; being.in the same plane. Their intersection 7'
4

can be a'single point. The only other'possibility is A = B.

2. Suppose Arand B are two null sets. Since thenulrset is contained in

every set, we have, A c B and B c A. ,This implies A:= B.

3. A fl B means the set of 'elements in both A and-B. ire4ce every element

of the intersection is in A and also in B.

4. Since A O'B contains all elemerffs 4n.either,A or B or both, every element-

of A is contained"in this union and similarly for B.

5. Since every element of the intersection of'two sets is in both, A fl B,= B.

implies theta is contained in A.

4
6. If A u B = B, then every element of A must-be containedin B. Hence A is

a subset of B.

fb\.
7. First: A U B is N he set of,,elements in.kor.B or both. This is the

O

same as the set of elements in B or A or both. Hence A U B U A:

Similarly A p B =.B fl A becal,ise.any,elpmet in both A and B 'is in both.B

and A. For the asL)eiative pioperty A U (B U C) is the set,of elements

in one or more of A:74B and C. Finally we want to show'

T
)5. u (B10 C) u g) .

i--T-/'

4,

YIN

.If an element is in B and C, it is in the set depicted on the left side; '

it x, also in A U B and A U C and hence
t
ih the set of the left side. If

an/ele ent.is'in A, it is in.the set of the left side and in both A U B

and A U C on the right. Thus every element in the s.et on the left is in

the set on the right. Also any element on the right mat be\in A or in

the intersection of B and-C. Thus the proof is complete.

4

} .257255
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Anpendix'III, Section

4
1. Suppose a.+ Li is a real number., Then I., = O. The absolute value con-

.

sidered as a complex number is 257. This is the same as the absolute
2

value of a considered as a real nuMber:since it is equal to a .if a

is positive and to a if a is negative. (Recall that 1F, mean the

positive square root )f b if e is a positive number.)

2. Let the point AthaveYche coordinate a + Li and B the coordinate c + .

- -We first show that the Aistance AB is equal to the absolute value of the

numter:

a - c +-(b - 3)i.

Let 0 denote the origin of coordinates and T the point where thp line
ra . ,, ro

, through 0 parallel to AB intersects the 7,ine through A parallel to OB,,

as in the figure:
A:a 4. bi

B:c + di

It _

Then the segments TOMWpd AB have the same length since they,are

opposite sides of a parallelogram. But the vector OA is the resultant

of the vectors OT and OB, that is, if x + yi is thescoordinIte of T,

)
!

, we have:

(x + yi) + (c + di) = a +, bi.

Hence,

x + yi = a^+ bi - (c + di) = (a - c)?+ (b,- d)i.

Thus we have shown that the distance OT, and'hence AB, equCb the
. .

*
Absolute -value of Ch - c) + (,b - d)i. Thus

4

*This formula was derived,in a different way in thcerciSe 2 ofirection 7.7.

258
`1-J b.
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A 4.

'AB = --C)2 + (b - d)2
Ii-1.-'

To complete the Solution of the problem, notice that by the

Pythagorean Theorem, o&p. is. a right triangle with, the right angle at:0,

if.and only if

Thus

(OA)
2

+ (OB)
2

= (AB)
2

.

104o,
b2) (c2 d2)' 42 02.

a
2

- 2ac + c
2

+ b
2

2bd + d
2

.

flhis equality holds if and only if:

aGrt td = 0.

Appendix IV, Section 2.

Here, using the notation of Section 2, B to the left of-line AD implies:

b ,< a
1. This, coupled with the assumption that'B is above the horizontal

74

lin 1;hrough A, gives

Thus

;%-

dna ABt"= al 7 b1.

J

(AB)'- a2 B;B
a
1,

- b
1

r
First, if C is above the horizontal line through A, it, must be to the

left of AD and

cic = c2- a AC = a -'c2r 2' 1 1.

c2 - a2

-aSA'C) -.a
1

- c
1

AC'

Thud

/

Then t14 equality of4the ratios
BtB

and 7.r'implies-

-s(A,B), = -s(A,C), that is s(A,B)

245 7
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Second, 4f ,C is below the horizontal line through A, it must be to the

a-a4

right of AD end

ptc = a2 - ACI,= cl - al.

These are both the negatives of tile Values of the previous case'and hence the

iThic; is th,, same and the rest of the prooffollows.

4

4.4

as
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Answers and Partial Answers to Selected Ekercisesi

0

2. 7
2

, , ,

3. c) ete01

Section'2.7

27

7.4. The multiples of 5 are: 5, 12, 17, .21/4;311, 36, 14:3.

The multiples of are: ?, 16, 25, 34, 43',52,

5. b. 11011111001 d. .001001001...

. .

6. Parts cd d would indicate that 111
1
would have the exp sion

1

.000100010001... and similarly for other denominators consisting of all
r ,

l's., 1

cl

o

7. Six dozen, in the numeral system to the base seven, is written 132.

Section .3

1;4

2. c) x = 2

The intersection of the two sets may not be tile null set.

5. One can add the first and the last, then the second and the next to the
t

.,, .

)

;, last, the thircleand the third from the last, etc. ,
..- Ji

,

., .:. . .r., ,..',. ..., ..,, ... .....,...:-,....,

6. :9 + 18 +. 27 + 36 + + 90 + 99 = 594

7. The uni..on of sets A and B you'd be the set of people who like ice cream,

---chocOl'a'te'or both efftthe-AntersectionitiWSAW:i2Oife'wHO like both.

The formula would then afrirm thatehe number of piOble who like ice

cream plus the number who tike chocolate is equal to the number or people

who, like at least one of the two plus the tumber.who like both.

.

O
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)

,.... > .

9. Property 1 holds becadse .f a and b are both odd ot both even the

relationship is an ordinOy inequality which has Property 1. On the
r-^

,other hand if one of a, b is odd and the other n, he relation R
.

holdt-117only one order.-

For Property-12, notice that if a, b, c are all odd we have'

ordinary inequalities and hence a R L, b R c implies a R c. Suppdte
wow -

. this is nO the case and first consider a even. ZThen, for
)

a R b to

hold, b- must be even and leis than or.equal to a; similarly for t R c

to hold, c must be even and less than orPequal to L. ,Second, suppose
410

a is odd and L even; tln, for h R c to 1191d, c must he even also°

4 and a R c is .true. Third, suppose a is odd, I? odd and c even;
i

. /.,
,

t en a R c. We have considered all cases. , L,"

j

,...

Section 3.6

1. a) - (5 - 3) = 6
44 ,

. Eleven different numbers:. 1,,3, 5, 7, 9, 13, 15, 17, 25, 29, 31.
, ,

4. b) Four different numbers: 2, 4, 5, 20.

50 ,Thl proper-Vs used are - the distributive property,,the,cammutative pro=

perty of multiplication and the associative property of addition.

. .

6. Since, from Exercise, (x -I- 1)2'- x
2
= 2x -I- 1 we see that.thefference

;......

,2 , -, ...
'bet'w en wbiSucCessive squares: x and (x + 1) is pne more than double -':

o

th first number e.g.,'19,is 2 -9 + 1 and the diiiferelice between °102

and lj is 2 *10 -I- 1 = 21. 0
#

.....7 1111 i0 .
7., Looking at the table for Exercise 6, we see that t,since 4 - 1 = 3,

1 +,S =.4. Ilsb 1 + 3 ± 5 = 9._ In general if we add 1 to the sum ofthe
44- 0 ,,5. 4 ,

0.

.number in the second row of the table, slikpintait some number, then this

.... ,

sum will be equal to the next number oft the line above.
. .

.

'!f
.

/.

.
262 --/- 6°
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VI

8. Here the differences-could be found!by calculating.

'..414..0

'4*Ay

10. mote that 73 137 = 10,001. . s

%
Section 8.8

2,<"14ben * stan 2or addition or multiplication, the equality follows from
el

the c tative ropereties for addition a multiplication.

If * subtraqion, we have on, the left

- (b - c) = a = b c = a 4- c' b.

On the right we bare
1.

C - (b 7 a) = c - b. a =. a 4- c - b,

and the two sides mre.ecidal.

3. First notice'that division ty 14either inside or outside of a parenthesis

Ces not alter the result. Hence we need consider only
4..

16 4. 8 4- 4,÷ 2.

.... " ........

.4
Since not only is the above symbol.embiguOUSbUt also 16 8 !..4 and

8 = 4 .11*.'2, there, must be a pair of'parentheses around two successive

numbers and there must be another pair,,'Suppose our final -symbol'con-,

tains (4 = 2). Then there ar8 two possibilities:
-

a) 16 ; [8 s (4 . 16- 4,= 4

b) (168)(h2) = 2 2 = 1.

If the final syMbol contairis'.(8 Olthere are tlio Possibili4es:

c) .116.1; (8 4) ] :- 2 = 8 ; 2-'= k
. ,

d) ,-( 16 [(8 4. 4) 4 2] . 16 1 = 16 .

.. =

.. ..

In ,ednclusion, if the final symbol ,contains (16 :. 8), then, in addition
-,

'to b) above we have:.
.

,..

e) [(16 -f,.. 8) ;,4] : 2 = (i)

Thfus we have four different possible anawers:
,

'261 61

1:

16,4,/1,

k;.,;:ff-4

4

J

I 0
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Section 3.9 "

.,
1. Using the second suggestion we have a < b implies a ct from the well-

.

defined property and cb < db from the same property. These two inequali=

ties, using the transitive property, imply ac < bd.

2. The same methodrmay be rased here as in Exercise 1.
. '

3. Since e.-< b, then a 1"../. = c for some natural number r.. Then a + c > h + d

may be writtena+c>a+r+dwhich implies

c >

and hence c > d.

o. for the first we must have a > c) ancl > C. For thc-econd a >

and a - t > c. Since a 3 t implies a > b - c, we have three conditions

a > b°>. c and a - b >,c,

for natural numbers. 'WM
0

Section 4.2

2. Suppose the factors of N are: 1, a, b, c, N
r 4

0 M. Then factors of MN are:
e

and thos 1 d, e,

24, a, bi c, N;, d, da, db, qc, dN;

e, ea,

If 1 is the only, common factor of ' nd N, then different
o

for different numb4s in the display above and similarly for the products.

eby M,.Na, Mb, Mc, MN.

letters stand

Hence tY:e number of factors of MN is the product tof the 4numbers of factors
.

in M and-11,,in thia-case 5 .4 = 20%

3. 416 L is a rector of c,'the = c for some integer x. Continuing

,
aloilg this ltne,4 the proof may be completed.

. We know that 1 = cq 4- r where0.< r < c,t.hat
,

b - cq r.

261i Gd
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' 1

: ,c c , c
If. r <

2
- we see that' cq differs fromi b by less than f . If- r -',f, the..

'

:Ni stik ,

equation is equivalent to
-

-
.

- /
.b- cq - c = r - c or

(q + 1)c - b = c -r .

But r'>
2
-

2
implies c - r < - and we see that (q + 1)c is a thultiple of

. ,

c 'which differs from b by less than . All thicis probably easier

to see graphically, since if b is betwep two successive multiples'of

c, it must either be at the midpoint of the segment connecting them or

-doe nearer to one end t5.an the other.

7. ..;If a t b and'a - o are aivisibip by ,73, .their sum, 2a, and their dif fer-
,

ence, 2b, must also Le divisible by 73. Since 73 is odd, this Shows

,

that 73 must bp a factQr of both a and b.. The c

the same for any oad number in place of 73.

8. If we use the factorization 15= 15 1 we have

x + y 15 :

y = 1 .

Adding gives 2x = 16 or x 8. This implies y'= 7. A similar procedure

gives solutions'for the factorization 5 3. There are no*solutions for
«

n = 22, for the same procedure would give 2x-or 2y an odd number which is

impossible for whole numbers x or y.

9. 1,7airtherema inders 0. 1, 2, respectively, the number being divided by 3

must be of the form: 3n, 3n + 1, or 3n + 2. So, i x is not diVisible

by:3 it has one of the forms.

3n + +

In the firs'f'eage x 1 = 3n, which is a multiple of 3, and in the second

. 0'
case a + 1 = 3p + 3 whieh'is a multiple o1 3. Thus, since either x -'1

. _
i:

or x + L is divisible by 3, their pnoduct is diisiblp by',3: Their
,i.

.

product is x
2

- 1.

. .2663
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Section 4.3

3. Since the remainder when n is divided by ? is one of 0, 1, n May

be written in one of the f.orms: 3k, 3k + 11 3k + 2. In the first case

4,t n is divisible by 3, in the Second case n + 2 is divisible by 3 and in the
1

third n + 1 is divisible by-3. Hence one.of tap three numbers x, n 1,

'
n + 2 is divisible by 3. If they are all' prime numbers,Dne of them

erefOre;oust be 3. Then form the sets:

n + a = 3, n + 2, n = 1 and 1 is not a prime,

n + 1 =,3, n +.2 = 4, n = 2 and 4,is not a prime,

n = 3, n +1 =4, n 4 2 = 5 and ,4 i ±not a- prime.

Tr-,.+.s no such set can consist of prime number:; alone.
I

4. nte.that, for!4,nstahee, 3 and 5 are prime numLers whi.411 differ by 2.

iS. The only one of these -which is a prime is 313.

. 2... The g.c.f. is 11.

Section i.4-

3. Since 11 is the g.c.f. of 17, 325 and 407; 11 divides the left side of

the equation 17,325x - 407y.= c and hence must divide

1

the right side,

i. x and y are integers. Thus; on dividing by 1 , we have

, c
1575x 37Y ,--. 371- .

f

We know from Theorem 4 that this iS solvable-if = 1, that is, p = 11.
11

Thus this value of c is thelIast 'for which there is a solution.

To find a solution, we perform the euclidean algorithm for the pair

1575, 37, as ;follows;:,

c.

\' -t.

37 = 1 21 + 16

21 = a. 16 5

16 .4 3 .54- 1

.
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A

a,

4 3i,

b', - -X

'Then, ,starting with the last equation ,we worn upward. The last equation

may be written:

(1)p 1 = 16 - 3 5 .

From the next to thejast eqUatiOh we have 5 = 21 - 1.16. Replacing 5

by this in (1) we get

1 = 16 -,i(21 - 16)'= (1 3 1) 16 - 3 . 21

(2)
1 = 4 16 - 3 .21.

The second equation'in the euclidean algorithm gives 16 = 37 -.21. Putting

this in for 16 in (2) wl get

4
= 4( 37 - 21) - 3 .21 = 1 37 - 7 21.

Finally,-using the first equation of the euclidean algorithm we find:

2i = 15 _ 37. c ire 21 by this in equation (3) we get

(after a liter pencil work):

which can be written:

.1 = 298 37 - 7 1575,.

1 = 1575(-7) -;37(-298).

Multiplying through by 11 gives us as a solution of

Lll 17, 325x h(gy

x = -7 and y = -298.

4. Suppose d is a factor of be a4d that d = fty where X is a factor of

ti

b and y of c. Let g be the g.c.f4 Of d and L.. .Since x
. .

factor of both b and do it is a factor 'of g and we have g:= kx for

some natural number k.
, .

First we shall show that k = 1. Now

d - d d 1 y'.= __ - _ _ =
g xk x k k

-... . * .

',

.

anc.T.h'ence k is a factor of y. But k is a fa-Ctor of g and hence of
,s-.. .

- b, while - -y is a:f*ctor of . c. Thus 1 the g.c.f. of b and c implies

. ':... ..that the oely!factor -of , b uhtph divides y is 1. Ithis shows that
.

,.. .
c7:

J.I
..k '-= 1 and g = 'k.. 'Thus.,:the conditdonsgiven

determine, x.

-..267 .265.
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*Then d a ilet6r of. be implied be = dh fo isome natural number

' Then, divi.ding-bpt

.
c.-

,:

C
I

o
Since 1 is the g.c.f. .4f -.and y, theorem "i 'mplidt that y,is ,§t factor

x

"bf c. This completes' the proof because we naye shown that x is tk;

, 6
c = h 'yb

X

determined being the g.c.f. b' and d, and y, determined by

= 4, is a factor of c.

,

5. Both questons can be answered in the affirmative. For instance,, if

b = 15 and c = 63, theanumber 35 can be expressed in only one way 'as a

product of a factor of b and one of c. But the number 21.can be

.written 1 -21 or 37 where in each. case the first member of tie product

is a factor of 15 and the second member a factor of 63.

6. Using the,%-ymbolism of Exercise 7, we have g = (a,b) and-h = (g,c) and
.. . , A

wish to show that h is the g.c.f. of a, b and c. Now since h

divides g which divides a Land b, we know that h divides not Only

c but also 'a and b. So h must be a factor of the g.c.f. of a, b

and c. On the other hand, any common factor of a, b and c must

divide g and c and hence h. So h g.c.f. of a, b and c.

7. Both sides represent the g.c.f. of a, b and c, by the results ,of the

previous exercise.

Section 4.5

1. In Exercise 2 of Section 4.4 it was determined that 11 isIthe g,c,ef. of

17,325 and 4,97. Thus, from ProLlem 2'of this section, the 1.c.m..of

,17,325 and. 407 is their product diVidediby'11-. . Thus, since 1./ 21 . 37 and
.

. 11
,

.

17,325
2---- - 1575, the sum of the two fractions.pf this exercise is
11 .

, .

79 37, 13 -1575

17,325 37 71r7775

and the denominators are equal to 641,025. ThuO.the-numerator is

268.2 G
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79 .37 + 13 1575 23,398..

398'The fraction 231 is in simplest form, incidentally, since 11 is not a,025

factor ofthe numerator.

2. One could find the 1.c.m. *without factoring, using the results of Exercise

3 below, put it simpliest too nbte that 185 is 5 37. Since 5 is a

fact 17,325 and 37 of 407, we see that the 1.c.m. of all three is the

same as the 1.c.mb of the first two.

,

3, 4. The same methods may be used here as in Exercise 6 Of the previous

section.

5.. Here- use Problem 2 a this section.

.
.1 .

6. The least common divisor of a pair of natural nUMbers,,is 1, There is no

g4kest common multiple for if c
4

is ,a common multiple, 2c is also a

common maltiple - in fact any mu l iple of c is a common multiple.

i .14 ..,

Section 4.6

.Since 1000 is divisible by d, and any natural number can be written in

the form 1000n + c, wheit a is a number less than 1000 which.is

represented by the last three digits of the given number, it follow

-that a number is divisible'by 8 if and only if the number consisting
t

of its.last three digits is divisible by 8. For ex-ample, 159,352 is

divisible by 8.tecause 352 is. To test fordivisibility by 72 we merely

test for divisibility by 8 and l 9.

41.3. IT the sum of.the digits is even, the number,is divisible'by 2, since

11is_1 more than a multiple of 2..
t-( 4 -, .

4. If the base of-the numeral system is even, one can test for divisibility
-1

bY,two by looking'at the last digit. If the base is odd, one adds.the

digttg

I 267269
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Section 5.5

c r t .

1. Here - - and.- = - imply ad =. c and ru =.st. Then (2-)(E) and
b d s. u L s bs

ct
(d )(u

du
) = --. These two fractions will be equal if and only if ardu is

bsct. But this lfollows from ad = be and 1-.) = 5 .

2: See the answer to Exercise 1 of section 3.9.-

(') x x
2. In the first case -1- is equal tol and in the second case is equal

z yr
(L)

.

,z, xz
to xk-) ..- . These are not in general equal.

Y Y

Section 5.6

4. Compare EXercise 2, Section 3.8.

s t.
Section-5:7

Z

1. Suppose p were a/prime.factor'5f Loth tLe numerator'and deneminalOr

tad + bc)
of the fraction . First, it might divide b. In that case to

'bd

divide the numerator it would have to divide ad + be and hence nd. But

p is a factor of u whiclf has!,no factors in common with a; hence p

divides d. But-this is imoossible since b and d -have.1 as their

g.c.f. Hence our assumption that p divides b and ad + be is, false.

Similarly we show that p cannot
qPdivide

d and the numerator. This

establishes our result. r"

'2. For the su'of fractions
a

and to be an integer, we would have:,

sod + be)

bd
Z,

with x an integer, that is,

`

N
2 8270



Mrs

This shoW5 that b., is a factor of ad and,.since.1 is the g.c4f. of a

and b, b is a factorof d. Similarly we can show that A' is a L.Actor

8f b. This implies that b and d 'are equal.

Section 5.10

3. Assume a > b. Then we may divide both sides by ab and get
f

a b 1 1
ab T, that is 17

4.

The given equation is equfyalent to: cx - by = 1.

1 ),5. They can ring, -th ofd an hour apart as may be seen by using the equation15

in the previous exercise with 12 = 3 and c = 5.
.

A

Section 6.4

1. c) 320,000 1'0-4

approximate relative ratio ot error is

.0001 1

32 3200

c)3. c) The greatest possible error is .000r feet.

5. The approximate ossible percentage of error in the volumes of a is

3Vvhen the perc tage of error in ih'e measurement of a side is).

Section 6.5

1. c) 1000 .102 = 105 = 100,000
Aggfog

f) 2p00,000,000

,11

.4 :

4. Here IL-3 =',076923076923... with 076923.the repeating "t. On the other
.

.2
,hand = .153846153846." with 153846. Also 1. = .230769230769... where13 4.13

1.the repeating part is a cydlic permutUpn o!, that,for T.5. Hair the time =Y, .
,,

,
.

the 1 k.repeating part will he related in this way to that for and the ,-,.1
13,,,,

other, .half to that for ---
. .13

271 2 6.9
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Section 6:6

2. The percentages of increase in successive years are:

6%, 5.7%, 5.1;%, 5.1%, 4.6%

3. The percentages of decrease in successive yearslare:

6%, 6.4%, 6.8%, 7.3%, 7.9% .

4. ho, except for the. first year. For Exercise
4
2 the percentages dedrease

since the numerical increase is the same while the population grows. For

Exercise 3 it is just the opposite.

5. For Exercise 2, the total j.ncrease over five years is 300 14.ch is a 30%

increase. For Exercise 3,'#e total decrease is 300,/that is a 30% de-

.

crease. These are the setae because they are baded on'the same population,

1000, at the, beginning. In the previous* exercises the changes are. Lased

on a changing population. Note that tO'divide 300 by 5 and say that 6%

4

is the average increase or decrease gives a figure which is not in any

usual sense the average of the yearly increases (or decreases) Since it

is greater (or less). than all but the first. Here, we use another kind of

average, the geometrical mean. (See reference 8,'Chap. 7, 4ec. 10).

/ .

1
7 Let P stand for(the,present population. Then,/-

2
P will represent the

<, 0 4

number of persons under 1a years of age. At the end of 16 years tlese
JJ

and theie- chi dren will amount to a populati n df P-+ 2(1P) = (2)15. At

the end of 16 yearathe'population'Of the o

. , 27
(_ 6)

P_ The sum of these two amounts is -- This means that the popula-
5 2

2 2 2

her half will become

04 ,. 16

tion will more't)A\doubleAfisixtsen ye rs.,

,11,;

Section 7.

/

x5. They cannot all be positive mor can actly two be negatiVe. One'or

three may be negative.

27)
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f

7. Thernumbers 5 and (-5 0- axe equal, -5

All the rest are equa3:---'

is equal to none of the others.

6. R5= s5 = -5, R(S5) = R(-5):= s(R5) = - 5 = R(S5),

R(R5) = R() = 5, i(S5) s(-5) 5. The interested reader might like5

to show that these two operations generate-a group.),
/

Section. 7.5

If Ibl > Icl and b < c then b must be negative.

6. DC .

Using the results from Exercise 5, we see that CB =
.

-- Hence there are

two possibilities: 1. B is.between C and D and one-third oI' the way

from C to D; 2. C is between D and B with CA three times BC.

Section 7.7
.

2. Th6 foriula follows from the Pythagorean Theorem since A, B and C are the

406vertices of a right triangle with the right angle at B. 'T<he Pythagorean

Theorem tells Us-that:

(AC)
2

= (AB)
2

+ (BC)
2

See also the answer to Prolllem 2 in Appendi.x III.

;

4. 'Dnder--the conditions given AB = BC.

5. Since (a.,1?) corresponds to-a,-, b, (a,b) will-correspond to 1 when a - b = 1.

,

Thus the hiunberpair (1),..+ 4:10-corresponds to 1, or, changing letters,

(y 1,y) corresponds ticty" Th6:4. .4'
f ' AK

'(a,ti)(y- + 1,y) = t+ "0",-4-b(r**Y-'-eray")".,

.--1. = (a +. ay 't by, b+7bY + aY..) o=4a,01,:-
,-,', -

the'last equality to)llowing fro;11aihe feet taat: ,
,N

a t ay + by + b = r+ 1:)Y,+ ay + a .it

273 271
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Section 7.12

4
1.If the point corresponding to c is between the points correspond=ing to

the points b and 'd,' then tone of two t S may happen:

b < c <.; or d < c < b.

In the f er case, lb - el' = c - b, lc - - c and the sum:

Lb - ci + lc - di =c-btd-c=s d - b

xhich is, equal to lb - dl. The other. case goes similarly.

2.,Let B, C acid D be tie points corresponding to the numbers b, c and d

respectively. Recall that BC = lb - cl, etc. Thus:

lb - + is - di = lb - di can be written BC + CD = BD.

We showed in Exercise1 that if,C is betWeen B and D, then BC + tD = BD.

In this exercise we are given BC + CD = BD and asked to show that C is

between*B and D. This can.be done by supposing that C is not between B

and D a61 arriving at a contradiction.

Now we know that one of B, C, D is between the other two by Section

. ,0 . .
. .

3.2. Suppose D is between B and C. Then by the previous exercise'with

the letters changed:

BD + DC = BC.

But we know/by hypothesis th4BC + CD.= BD. Thus, using the previous

equation we have:

BC + CD = BD + DC + CD ..BD.
A

This tells u f; DC +.CD = 0. But DC = CD since the distance between

/

D and C is t,hesstme as the distaiCe between C and D. Thus we have shown

that if.D is between B and C and BD-+ DC = BC, then CD = 0. This is

_false and hence Dicanftt be between B and C. Similarly 'we can show that

B is not tetween D and C. The only possibility left is that C.As between
r

B and D.

9
r-

5c47:71.10r
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3. For this note6tatthe three
expressions represent BC, BD, CD respectively'

-and that, by Section 3':2, one point must be between the other two. Then

use the results of the p/levipus exercises.

Section 7.13

1., Our results follow directly from Problem 4 if we write the giv4n equality;),

as follows:

+(-b) I =ski:4- 1bi
a

if and only if a(-b) > 0, that isp ab < O.

2. Yes.

3, Since a + c is positiveothe
given inequality is equivalent tf

(a + 6)2 + a2 > 2a(a + c) 2a2 + 2ac,

that is,

2a2 + aac + c2 > 2a2 +.2ac.

a' Wis, 'in turn is equivalent to

c
2
> 0

which is'true, and the equality holds only if c = O.
/ 6

4 The given inequality follows from the result of the previous exercise by .

taking 15, or -b equal to a + c. If we let a = 1, this gives us an

improvement on thetresult of Problem 5, in which 1.7 is replaced by 2.

This is the maximum number we can have for the:ineauality to hold, since

the equality actua /i/.y holds wEep b = 1.

,m

. Yes.

2. 'The procesSfor base seven is essentially tl}esame as that for the decimal

System. :For'example, ten is 13 in the numeral system t the base seven,
ss

Section 8.2

and tnp
/
division in this numeral *Stem will be:/

/' 4
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v.

It,
0

1.000000000

55
120

114

.. 30
26
10

0.*.'

the sequence of digits .0462 repeats in the numeral system to the

: .
.

..
f

al
,

ba.e seven. iThUs this corresponds to one-tenth n the decim system.

Simil'arlyto fend one one-hundredth, we note that one hundred is 202 in
N-

the system to the base seven the representation of brie one-hundredth

and

in this system is

4.

.003300330033...

where again it happens that the repeating part contains four digits.

4.: From the definition of,ti, 12 have

,
'L

(-1)n
t
n

t
n-1

=
n

Thus, if, n is even, the right side is postitive; in.fact for n = 2r

1
t

.1

t-'
2r-1

2
2r 1

that is

This shows Property 4.'

Furt rmore,

a

Ur - L,:
1

=
22r

(_1)2r-1
- t

2

+
2

2r 2r-2 °'2r 2r-1
, .

1 1 (1 - 2)

22r

whichiS negative. This shows that t
2r
, is less than- t2r-2, that is,

4.,

is less that Ur-1. Similarly it Tay be shown that L
r

is greater than

Lr-1..

To find the number represented we,1se the same'Lrick as that as in

Section 6.5 and write

6



2

1 1
.g 2

2
3

1

2+
12tn.= 2 -.1 +

23e

+ ..

+

t-1)11-1
% 1. +

.

(41)n+
12n-,

+
( 1)n

2n

2n1

, . .nNotice that t-1) n + t-1)--1 = (-1 + 1)(.-1)1171 = 0 ande add the tw6 ex-
.

4.,

pressions. Then

.

t +"I ret
n = 2 + 0 + 0 + 0 + ... + '

0
(-1)

n

n
2

thus

; a 3t = 2

2n

The second term on the right becomes smaller and smaller as n becomes

larger. Hence as n becomes larger and larger, Stn becomes clo.4r andfi,
'closer to 2. This m eans that .the numbei represented by the two sequences

must be
3

Calculating some of the terms will show that this is reasonable.

Section 9.2

2' j4`
1, c)

d) x = 2 ,ou'

. t,
.t.3.' If the given equation were satisfied by an integer X.the method X:,f the

previous' exercise would work: That is,, we note that the number 5 can be
, 4

expresed as a product Of two 'integers 14i 6,nat four ways, We could

i .

: 4 .Y '

. , l

,-
i

, .

'.4-71In case (.0 we :ara-Plfitt4; = 7'and:x =, which is impossibie. Similarly
....

the ot:her three rill be seen to , be impossible. 41 we:have shoWn by 4fli s
...

'Is'that thereilTs no integer velde of x lihi.ch, satisfies the equqion.

v
# 5\

:4C ,

try
e

7

.0*

,



ne.

4

The sequence of steps in the exercisqibelow shows that the solution.-; of
.

the given equkion aren fact irrational numbers.

Section 9.3

,

*1. d) io simplify thit inequality we want to multiply both sides by the

product'(x - 5)(x + 61. But the resulting direction'aV the

inequality depends on the sign or this product. Now, the product

will be positive unless one member is-negative and the other positive.

But if x = 5 is positive, so is x 4-* 6. Hence the only way theproduct
/

can be negative is. for x - 5 to be negative and x + 6 to be positive,
..0014

that is, x is between -6 and 5. So we have two cases:

'

0
.4

If *x is between and 5, then theproduct is negative and

the given inequality is equivalent to:

2(x + 6) > 7(x - 5),

2x + 12 > 7x -
A6

35 0

> 5x

IS > x .

. 4.7
betweenif x is beten -6 and 5 it is less than 5. Hence.l'fors--"k

.

this case the inequality holds.

II. If 4' is not tse't een"-6 and5, tle

the.above sequepc, of steps and. the

47
x.

inequali is reverse 4n
.

final indqu/lity0is

Here if x is greater than ii is not pet ten -6 ands- and. hence,

. . e <
for all such 't the inequality holds:

. .

Combining the two resul4 we have as the solution of the given 1

,

.0
.CP.

inequality: .,
I

. .

$ I,

4> or x between -6'and 5.
5

27
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3. a) will be a line segment with one end-point omitted.

b) ds two half lines, or two rays with end-pointsomttdd.

c) is the_wholeaine.

v

no points at all

I , Section 9.5
-

1. Since ax 4- by =°1 always'has'a solution in integers s pnd y when
0

a and.. b are integers with g.c.f. 1, it follows that on the graph of

this equation; there will always be lattice points, that-is, points biqh
" ')

of whose coorTtnates are integers.,

Section 9.7

1. d) Here there are no sol utions because the second-equa ion is equivalgnt

to 2x'+ 3y = 25 which cannot hold if M.;3y = 7 a in the.first

equation.

0

2. For a) and b) there'lAll be a V-shaped re.i4on of the plane. In

paq c) there will be 'no-points satisfying the two conditions. In

no

0

° part d) it will te the foortion,of the plane'between the two parallel

lines.

°

. The solufions 'are t e'p lis (3,0)

bylchanging,any o li of the sig

- y = b. .Then5. uppose-x + y =
. .

eans tilatNYiere will be 8 solution of

5,4) to$ther with thoSe obt fined

2x = a I

+.-bind 2y = Fa - b. This

the given pail" of equations only
- ,

- if both3b + b and.a - b are even.. Now if oneis.. even, then the other is,

" because their difference is 2bsfahich is even. Thus there is a solution

-cof

'

if and only if-

.

(X + y)(x = ab
- .

t i
,

+ b is even, that is,'a and. b' are both even or both
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odd. Thus if c. is 64; then the proauct I 64 will give no solutions

but the product 2 32 will: jlence if c is a multiple of 4 we.can ,

make bothftfactors,even, if c is tadboth.factors Nast be odd. The

difficulty arises when c,0 is neither a multiple of 4 nor odd, that is,107

c is 2, mor than a maltiple.Of 4. In that caseothere.yill be no

solutions. since in any xepresentatic.n as a product of two integers one

factpimust be and the other even.

Section 9.8

1. One M11.3t drain
7

of a gallon and replace by pure antifreee.

006' 2. They should buy 1.3 pounds of beef and .4 of pork.

coal

Yes,

lo
.

4. Referring to the solution of the problem we have now the equations

x y = 5

rx sy*= 5t.

g ( i)y =

To'solve for we multiply the first equation by r' ° Second from it. 'This ives r -
t

solve forfor x we may multip the first equation by s and subtract

(this frOm Ile.second equation to get (r -'s)x = s) or
.

x
c(t

- s

)!
Notice that to m ke sense x Land

''(r

Thi; will happen if < t < s orf s <t< r, in pi

between r and

and subtract the

(r' - t)
To

1"'TrI

;..mast be positiv

her words'.if t is

.

1
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abelian group, 92, 125, 207'
absolute'valuc, 124; 192
adaxtion, 88

algebraically complete number
- system,'191 v .

amount, 113
approximation, 107

archime4an property,
. arithmetic properties
associative property

4 for addition, 30
for multiplicatiOn,

axis

o," pure

of'reals, 191

158
4g

V,

33 .

,,192

"jiertrand's Postulate/ yr.
betweenness, 137, 25

Icancellation property; 126
for addition, 40

. for inequality, 134 ,

for multiplicatlon, 41
canonical form, 81 ;

.."artesian product; 101, 182 .

cateAorical sets, 1.32
classIfication,r82
closure property.

for addition 28
Aor multiplic ation, 33

commutative property
of addition,

of multiplication, 33
completeness postulate, 146
complex number, 187*,,,
Pure imaginary part -of, 88
read part Of, 1P8.'

composite nuMbars, 52
conditional equations, i52 '

'countable sets, 183
counting numberg, 2.3

decimal expansions, 110
convergence of, 14
of a real nUgiber,-147

I decimal system,r10
"decimals', 104, ill' \--

DeAoivre's Thedrem, 197
density, 95, 96, 27
disjoint sets,'180, i3
,distributive proPertr,.5

for whole numbers, 3
,

INDEX '
divisibility; 50
test for by 9; 64

division, 85,
divigor, 5d

duodecimal system, 12

eleMents, 179
empty set, 180

211

e uations' - -.

uivalent 152
___quivale,pt pairs of, 168
equivalence relatdon,.82

equivaleni,Tractions, 78, 79
euclidean algorithm, 56
even number, 4l

.

factor, 50 ,
field, 131
functions, la, 162
fundamental algebraic properties, 46
Fundamental Theorem, of Arithmetic, 53

greatest, common factei\,, 55

group under addition) 126, 207
Guatemala, 21

.

identity; 152
identity element

for addition, 29

2br multiplication, 34
imaginary number, 188
inequalities, 43, 132
cancellation property for,°134
deftnition of, 132 1
solution of, 1566"

'integers, 1 -

cancellatt propertipf, 126
multiplication of, 122
negative, 118
ppsitive, 118
.subtraction of 121

integtal domain, 126
interest,.113

compound interest formula; 114
.

ccAtinuous'interest, 115
intemectidn, 180
inverse 'operations, 37

.

lattiCe,poin't,'980'
least common.mulfiple,
lemma; 158
lowest terMS,:79'
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modular arithmetic, 205
modulo seven, 208
modulo twelve, 205

multiple, 50
Multiplication, 84
multiplicative group, 92
multiplicative inverses, 86

natural numbers, 23
negative integers; 1185
multiplication of, l2.

non-negative rati6nal .L.mbers, 90
null set,- 180 .;

number pairs, 127, 1)1
number systems, 5
number zero, 27
numeral systems,
the base of, 11
base-five, 16
base two; 13

''numeral zero, 27, 1/

odd numbdr, 51
one -,to -one correspondence, 6,.24
opposite number, 118
Origin; 99

pairs
ordered, 167, 98
of linear equations,- 168

percentage, ,113

periodic decimals, 111,
,positive integers, 118 '

prime numbers, 52
principal, 113
properties
ofequivalen relations,*
of inequalities, 43 ,,

of oiler, 25'

Of rational number system, 130

rational numbers, 77
be1ian group of, 191

/addition of, 88
divisior Of, 85
multiplication of,1F 84

non-negative017, 1181,
dubtraction ofj -94

ratios, 10Y '

, -real number
definition ,off 142'

reciprdcals, 86
re La t ions , 16? .

repeating decimals, 41
repend, 111

scientific notation, 107
sets

cartesian product -of, 18
disjoint, 180
-e/ements of, 179
'empty, 180 ,

o intersection of, 180
ordered, 25
relationships between; 179
-vniqiidat, 181

similarity, 199
simplest form, 79, 81
slope, 199
solution set, 152
subset; 179

7.

transitive_ property, 51,- 25, 82
triangle inequality, l38

union of sets, 28, 181
unit

in decimal system, 10
in other systems, 72

well - defined' property

for- addition, 30

for multiplieation, 33.
whole,naMbers, 23 -
fundamental agibraic propeities of;
properties of inequality of, 46
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