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1. Why Should Applied Mathematics be Taught in the High School?
. .

Jacobi (1804451), speaking forthe pure mathematician, claimed that the

motive for mathematiCal research'is "the honor of the human spirit." The same

could be said of playing ches.s: there is no denying Its aesthetic and ittellet-
.. .$-

tu$17.4ppeal. So why is thq youth who takes his chess as serinsly as his math-,-

ematics thought to te.misguided? Is there such a difference between moving

INTRODUCTION

. .

. ,
pieces of wood about on a bodrd and manipulating ink marks on paper? .

$

,) , '" - . . '

g Chess, flr all its excellence, is merely a game; unlike mathematics,,it is
...'k7

,- ,elfcations.,
without Applica The miracle of mathematics is that paper work can be re-

...

v.
,

. lated to the world we liVe in. With pen or pencil me_canhitch
s
a pair-of scales

.
. - , ,

).

to a star and weigh the moon. Such ppssibiliiies give applied mathematics its

vital fascination. Can any subject give the 'would -be mathematician --initially,'

'

at leagt,-=a-stronger and more naturarkerest?

ma what about thee nOn-mathematician? Deny"him introduction to this sub-
,

ject,pand his appreciation of our cultural heritage must inevitably be filed-

equate. For matheMatics 'in the broadest sense is instrumental not only to our

runderstand but also to our changing the world we live in. And are'Weno?

a changing society-in a,changing world?

. .

2. 'Difficulties of Teaching Applied Mathematics in the High School.

In our high school systems the teaching of science and the teaching of

mathemaIips have become estranged. To. apply mathematics there must be some-
,

thing'to apply it to. To apply it thei'e must be.a field of application evenv
though there is nothing which you can count as common scientific knowledge among

your students. Yet you cannot squeeze many lectures on phiSics or chemistry

or biology inte) your'Mathematics course. This is your first`diffiCulty. There

is a second.' The bulk of mathematics which
4
does apply to other fields is too

you, would- be talkang-above their heads.advanced for your Studants;

1 .

8
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3. What is the.Wayrround This Dilemma?

- Go back to the/beginnings of science, to Archimedes, to Euclid and Heron,.

'to Galileo and Stevin,us, when things were very obvious, very simple, and could

be exiiainki. fkwyords.. Thus, applied mathematics in the narrow sense of

the term, i...., m chanics, is the, ideal topic with which to, begin, and is,ac-

.i.'

,

.

.

. .

cordingly, the subject of Chapter 1. For the same reasons, in Chapter 3,.I take

optics to illustrate thp role of mathematics in formulating scieritifilc. theories

0 .4

and begin° witIrEuclid's. And although in Chapter 2 (which illustrates impor-

tant applications of functional and recursive equations to groWth problems)
.

a things are not always so obvious and simple, and so concisely explainable, the lk
, .

same principle is nevertheless adhered,to. Here, its application is slightly

less stringent. .

\
4. Rejection of the "Modern" Altroach.

Many eyebrows will rise in horror at such a proposal. Modernists will

pxcla , "Here we are living in the apace age, yet you propose to teach the -.

mathematics of antiquitY." Such people never tire of pointing out that whereas
r

today's college courses in the sciences cover twentieth-centui-y science, to-
,

-day's college courses in mathematics deal with eighteenth-century mathematics:

. They infer-that the mathematics currently taught is necessarily out off' date.

The emergence of such a conclusion in aitechnological*society is under-

standable; the inference is none the less fallacious.

Edison's phonograph, Ford's Model T, and the Wright brothers' aeroplane

are out of date. But such machines are notmut of date because they are old;

they are out of date because, of rapid technological progresa; they have been

superseded by more efficient ones of'better deSign. The pyramids of Egypt, al-

though
...

though old., are not out of date; progres,s in the pyramid building line is slow

these days; the Egyptiap variety, although old, has yet tote superseded. Super:-

session is not necessarily entailed by newness. Beset by the fad of modernity

we must be ever mindful of Aladdin and the.cry, "New lamps for old."

9
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Technology and science advance hand in hand; each help's the Other over

obstacles to progress. Likewise,. the rudimentary chemiitry and biology of the

eighteacth century is now, in large measure, out of date. But not, m4k you,,

out of date because, like the pyramids, it is old: out of date because inad-
,

equate theories Aave been superseded by more adequate ones, So we see the sense

in present-day college teaching of the sciences giVing"eighteenth-century develop-

ments scant attention. The diligent' reader will how exclaim, "But surely twen-
.

tiethcentury mathematical, developments supersede those of the eighteenth cen-

those-of antiquity." Such an exclamation indl-tury, and a fortiori, supersede

cates grave misconception.

Mathematics, is different

superseded by better 'ones., are
. .

conserves, seldom. scraps. NeW

than the old Superseded by the

t
011 scientific theories, like old automobiles

relegated to the scrap heap. Mathematics usually

L

mathematics is superimposed upon the old rather,

new. As with the successive cities of, Dalascus,

4,

the old is the foundation of the news Mathematics is cumulative. .C.cncepts

thousands-of years old are still in use today. Old bricks are used tomake new,

buildings.
7

. .

' The mathematics most immediately applicable to the sciences is mechanics.

touggbutconcisely put, mechanics is the alphabet of 'science. To spell out

new theories we need new words, not a flew alphabet.

.5 Mechanics'; The Alphabet of Science. )

Our children are both the beneficiaries and the Victims of a techno-.

logical age. Pull a switch, "Dress a button, or move a lever, and a complicated

. .

mechanism is set in motion. Turn a knob, and we see and hear the President

/
making a speech in Washington. How does the mere, turning of%a knob result in,

the presentation of distant events? With the tremendous jump from the 'simplic-

ity of primitive machines to the,tomPlekity of modern mechanisms, connections

are lost sight of. The great illumination of understanding a simple machine,

the insight orgrasping, say, that the principle of the lever underlies prying

10
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off tile lid of a can, i lost to the modern child. His docile nonunderstanding

oaence is limited to ccepting the pronouncements of the white-coated,

bespectacled man on,TV, wi 11 his solemn, "Science has proved that :..."

Understanding science starts with'mechanics. And mechanics, to borrow a

4=
phrase from Polya, starts wit the "congenital or inarticulate" - physics we all

acquire, willy-nilly, crawling from the cradle: the experiential facts of.

pushing and pulling, the properties of sticks and stones; mu: unavoidable in-

troduction to force, m ss, weight, rigidity, flexibility,
. Here is a

p, e.

common background of knowledge for the teacher to exploit. His business is to

make'this knowledge articulate.

The brilliant, very simple, very obviouS, coneisely explainable mechanics

of Archimedes is the natural articulation. Of4course, I danot suggest that the
r'

,

law al" the lAter can lead In three easy less6ns to showing how a TV set 'works.

Thereis. no denying the chasm betweealevers and,electi-ohics. Yet innovatots4

,of both had..compon habits of mind --the peientific attitude. Something 61' this'
e

attitude can be inculcated by showing how the painstaking appllOtion and re-
.

appkiration'ef a simple, seemingly trivial concept, th e lever, can lead to
,

something complex'and deep, the theory of mechanics. In teaching mechanics we

'.iqaxe a decisive step toward bridging the gap.

6. A Question of Rigor!

Idealization is inevitable in the app lications of mathematics. By this

,-device the complexity of a physical situation is reduceid to manageable Tropor-
e

tions. A storia becomes a point,, a lever a line; knots in beams are ignored, and

the wood is prestmed to be pa-ecisely,homogeneous. At this age justification

is practical'rWer than logical. And oceasi nally in teactring we introduce an

additional assumption with an "It is obvious that ,... or a wave Of the hand,

and meet altoo fussy objection with a shrgof the shoulders. Partial artic-

ulation. SUch reasoning was good enough, initially, for Arclam%Ses, for Galileo,
r*N.

and' for Newton. 'Surely it'is good enough for your students' hig) schoolini-
ir

. ,

1",tiation. Or, do
.

yoU presuft. your students abler than Archimedes? f
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The mechanics of antiquity is not antiquated: its perennial yvith is as

young a s, today-and a s modern as tomorrow.

Liktn applied mathematics to a car. Insight, intuition, imagination are

its matory its driving force; rigor, its trakes, the \Logical checks,that con-
,

trcl it. Of ccUrse a car without brakes is dangerous; imagination must no- t be

a3 owed to run riot. We need to control imagination and to direct insight. But

a car without a motor is useless: We need to drive .a little before we need to

,brake alittle.

But axiomatics are the disc brakes of mathematics --the very latest, up:-

to-date-estv most rigorous of logical checks. So why content ourselves by

teaching mecionies with only an axiom or two? not give a full-blown axio-

matkc treatment?

The,object of axiomatics is to find explicitly the absolute minimum of

assumptions necessaryipp a theory. With axiomatics we lat,gy deep enlightenment;

the price thett mus't, be paid is sophistication beyond the novice. An axiomatist

is aman who finally ties a bow tie with the'otherhand behind his back. Oh
, .... ,
,1-:.:

I. yes,, it can be done with-one hand; ob to, its.tannot be done with less. Beginners
,

best use both hands.

Development of geometry did not patiently wait several centuries for
Xe

Euclid's axiomatization, nor did it wait mope than twenty succeeding centuries
/

. '4, .,0' 4 (1

after Euclid for Hilbert's final dotting of the aogical i's and crossing out of

the illogicalat's. -Partial articulation of inarti6ulate experience necessarily

preceded c ete articulati6n.

TO teach,disastrously, teach with a level of rigor inappropriate to your

students or your subject.

,., % ,
.0

i

.
'1

' ..
a \

I, hope to have persuaded you that sone
/

'Understanding of applied mathematics
.

,- - -
1

(espe,cially mechanics), liberally conbeive4Ought.to be part of the very fabric
0

of educated common sense, not exclusively the prerogative of the would-be math-
.

s -

ematics or science specialist.
1 '4°



Being teachers, you knotr full well that teaching is an art; that to

teach effectively you must have the Greek sense of theater, the ability to.tit.

illate or Irritate the imagination of yo r students, to make them articulate

their experience,
.
so that they would hit 1h scales to a star and weigh the moon.

Allow me to give the baterialT belieVe-important to present.
,

Only you

can bist kn6w hoW to present it. Teachers are apt to be overawed by university

peopll. While the latter can probably decide whatsmaterial is imp6Aant, it is

the role of the teachgr to decide what aspects can be taught in the high schoob

419 it ca'h be taught, and how best to teach^it.

..

V



ChaPter 1. MeChailibS; --Por'the'High School Student.

1.1., Archimedes' Law of Ih Lever. -

iele start with the simplest maoilline knownto. mankindy the lgver. Supposedly,.

ever since man developed beyond the level of the ape be hasAsed sticks.to lever

" e
. _

stones. The Egyptians in building their pyramids used elaborate machin6s con-
.

sisting of a combination of levers;' yet their knowledge of levers appears. to

have been largely inarticulate. We ..all know that in pushing a door shut, the

' , "qtat

nearer the pqint at which we push is to the -line of the hinges the harder we
0

need push. Yet how many of us realize that this common experience exemplifies
0,

the law of the lever? The hinge is the fulcrum about .whiCh the turning moment

of oar push counterbalances the opposing_turning.moment of friction_at the hinge:

We have experience but not the articulation,

It seems that Archimedes (287-212 B.C.) was the first in history to ask

for the precise mathematical formulation of the conditions of equilibrium of

Mk
the lever. To ask his qustion was itself a tremendous step --to ask for math-

,

ematical laws for t e behavio ombinationof stdcks and stones; for here

is a crucial novelt at number plays a role in understanding and predicting_
t

.

nature.
4

We now retrace the essential steps by which Archimedes derived his for=

mulation. Be started with the -simplest case.; a lei ties with equal

arms su,spendirigequal weights. ,See Fig. I...

Question: Which weight sinks? By thelaw of insufficient reason there i no
)

Fig. 1.

I

3
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,

more cause for the left -hand weight to sink than the xight; by the 4..aw of suffi-

cient reason there is as much reason for the,left not to sink as for the right;

the figure is symMetrical. That is, the lever does not move at all.

We cannot prove this by mathematics. 'Resort to the Ift.of sufficient

i(or insufficient) reason is, really an appeal to .our common experience. So, with

Archimedes, we take it as axiomatic that a lever as illustrated in Fig. i is ill

equilibrium, We shall refer to this as Archimedes' Axiom.

:At first sight such a beginning seems too trivial to be capable of devil-

opment. And yet
0

9 Consider Fig. 2. F

E
2

...-:.

Fig. 2

Here, a homogeneous beam of constant cross section is suspended by a string at

each end El., E2 bf the lever. If the lever tilts about its fulcrum the team
s

tilts with it. The same argument is again applicable: by considerations of
i

symmetry there is no'reason why the,lever (and with it the beam) shoubiitilt,
. I

either way. We have equilibrium.

Next, consider carefualy Fig. 3,'a odificatia,of Fig: 2.
;

1-4 /2.11

Fig. 3

E
2

What changes have bpen made? The beam is now suspended by strings from A.

k r

, --1

A2 (where.tiAi. = Li, A2E2 = X2), instead of from the ends of the lever
7 ,...._-_--.:7,77,7- -7 . , f 7

,
.

F12 J3:27 But, deSpite these changes, equilibrium of lever and beam remain.
--------=--=.--cN , 77'01 . .

.."

interdepender4likthe' lever tilts then the beam must tilt with it; if the beam
.15 r
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does not tilt the lever cannot tilt. The difference is that the modified figure

is not symmetrical --unless Ai, 'A2 happen te6e'sYmMetrically placed with

respect -Co F (i.e., not unless Li = At At this stage we,need introduce fur=

ther idealization; suppose the strings by which the beam is supidorted at A1, A2
A aw

to be weightless. Thus4,conceptually, we regain symmetry, and consequently,

equilibrium. With weightless strings, we have one lever -cum -beam,

symmetrically balanced about its fulcrum F with respect to"external. forces..

Whether the tensions in the strings (internal forces) are equal is irrelevant.

Next, we introduce an element of specialization. ,Study Fig. 4 an4 under;

stand it. A1

El
r

A2

F ,

-1.11,

O

Fig. 4u A
We take any arbitrary point' E Or1%.EA Nand select Ai, A2 to be the sped'

--.

;' points such that Ai is the midpoint'of FIE ,and A2 the midlioint of
,f

Since EiAl r2 ii, A2E2 = i2, it follows that E
1
E = 2.e

1'
EE

2
-: 2i

2°
d since

,k

' / a

E1E 1 EE2 = E1E2 = ?A it follows that , /

4

,

But,

and-

+ 2.22 = 2.2

i
1
.+ i

2

.A1F = ElF"- E

A2F = E2F

/

Hence, by (1).

(2)

This result lea
/
sltV of.Fig. 5.

1 6
4N:41441'
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Here we conceive the beam to be dissected by.the/verti plane through

Iddaily, we suppose there to be no loss of material. in cutting the beam, and,'
,

consequently', no.,loss in weight. Thus, pxovi d that there is no change in

.--
distribution of 'Material --which woUl r suit in a change in the distribiltiOn

,i5 weight --equilibrium will still: tain. That is, equilibrium still obtains

provided that the parts,pf b cut beam retain the positions they had prior to--

the cdt. Were tfiese Totate in vertical planes about their points of guspen- °
0.

sion, the dist ution.of weight Would be changed, But-since Ai, A2 are the

midPoi ElE and EE2, we see that these are symmetrically placed with

spect to their suspending strings and will remain in equilibrium. Thus the

...4.",/rios6Nm.of lever-va-two-beams is in equilibriump. .

Since the woodit supposed homogeneous, we mar, without loss of generality,

suppose it cif' unit density. Thus we -}lave aJw4ight t2.81. suspended' at

terbalanceny a weight l21-2 suspended at A2. That is, by (2) a weight .2/1
. .

acting at _a distance from the,fulcrut:counterbalances a Weight 2.2:

ing at af&istane'e
This Situation is illustrItede by Fig. 6.1

A1

w
2

A2
r
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*What are the conditions for equilibrium? Obviously

s

Let W
1
'=

or

22 -.#72:= 222 -.21.'

;0

22, ,0and we.have

(1)

right weight2<length o fight arm = left weight X length of ft arm. The

product of,the weight and the length of the arm is a measure of, e tendency of

/ 6

the weight 'to turn the arm about the fulcrum. W121 is said to be the moment of

W
1

about F. So, alternatively put, for equilibrium
.,

'

Iri: t ha,nd moment = left hand poment.

.3

This is Archimedes' law of the lever.
.

Ihave shown you ow Archimedes' law is devised from "congenital or in-
)

articulate", physics. Ac ually, this original..treatment was somewhat more Complir
. N ._

sated; what I have given ou is a modiiication dile to ,Lagrange (17JO-1b13)
I

ear19' in the last century 'When sush mathematics was not below the dignity of

.

mathematicians of the firs rank.' r,... .

.

A..
. ,

\hing advanced applied mathematiceat Stailford 'last

\this parti,cular proof of Archimed,i' law of the

' lever that he spent twoiect\ e_ periode d scussing just the Wciomatic impiica-

' tiOns of this kind of proving.) This invo ves explication f the notion of sym-

,A colleague, when tea

1

quarter, was so.intrigued b

. Met , the diAinction betwean forces external to and internal to a system,

t nothing is changed by cutting-the,beam, and many other considerations.

We could, for example,, give an alternative proof, by considering the beam to be

f .. . 1" ./
susp4nded by four:strings, one at , two at and one_at E2, instead of

.--

_by strings at Al, A2. Then a new Flg. 5 won d comprise two beams each susp'411ded
. --"

-_-from a single string at its midpoint, i.e., strings at A
1
, A

2
would replace

by strings at its end points; oie suspend from E1 and ..E, .the other from

E and E The final step would be to replacgthe suspension of each beam
2'

.1. 8

/ .k., ,.....0--
...-

. , ,

.2

..
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strings at El, E and at E, E2, respectively. This is an alter :tive way of
4

obtaining the original Fig. 5.

.1-mention these matters only to show that the mathematics of chimedes

is not trivial, despite its antiquity. Here there is enough fdod to .atisfy

the hungriest thinker. (I have already pointed out the unsuitability f

blown axiomatics for,the beginner.) This is how, starting from "the ob ious,"

the inarticulate physics about which there is common agrelcnt, we build, up

ourmathematicg in a cumulative way. I shall further illustrate this cum lative

process by making applications of Archimedes! law.

1.2 'First Application: The Centroid of a Tkangle.

We consider an idealized triangle, mll.de of rigid but weightless material

'lying in horizontal plane; with aweight W suspendea from each vertex. Our

yroblem is to find the point' at which the triangle can be supported withON6

tilting from the horizo4tal. See Fig. 7.

A

,Fig. 7.
tk

But_how are we to Contend with three forces all at once? We.Must use

that we know, yet the law of the leyer is applicable only to two forces-.- That

thisj.av may be applied, we
4must

eliminate the effect ofisthe tbIni...;weight,.sayt"
. .

the one at A. Aie,achieve our purpose by introducing a support at A., Now,
4\ '-

,
. .

considering A", the mid point Of ,BC, astte fulcrum of BC, *e have a leve

f

with equal7weights suspended fr4 Omequal arms. Thus if the triangle is also

supported at Al, the points..A., A',,and:consequently the line

41' 1

ti9.r

AA' (a median;



of the.trianglel are fixed, so that the only motion possible is a rotation

.

about AA'. But the forces at. B, C counterbalance, ,so thst,th,g,,triangle.is1, .4
equilibrium, .

. ,

, , A ,

Obviolislty an upwai2d.force of 11 at ,,,A will coupterbalancethAt of the
_................. ., .

k weight suspende d there. What upward force at A! will counterbalance the
.

,. . .
-----",...:

downward forces of W tict ,A arid 'at ,IVI When standing on the platform of a
.

. o ,
..

weighing machine, your . wezght, ,at indicated by-the machine, is the same no

makter whether you stand on,oneleg or both. The°tptal downward force is 2W,
.

so we reqUire 2W acting upward at ,A'. In short, in so far as equilibrium

..\

,.
. g.4., . .

is concerned, the original forces are 'equivalent to dowmiard forces of W at
\( .,

la,

A and 2W at A'. Ile'haNi..rzlacsi a problem of three forcesito a problem

of two forcet. See Fig. 8,

ti

The rest is east, for the _law of the lever is immediately applicable to

this pair of forces"Let G be the point on AA'

so that

AG = 2 A'A

such that

W` AG = W (2. A'A) ='2W A'A.

Thus the triangle is in equilibrium when suspended at G. This solveg our

'

problem. Additionally, we may.`, remark that, sinc9 the total of the, downWard ,

forces at A, A' is 3W, we have that the effeet,of the three equal forces

4

of W at the vertices is equivalent to a force,of j0 at (:;.

2 0'
4.,

a



14

f

Articultion of our common. experience and painstaking application of the

law of the leverihas solved our problem; yet we have"by no means eThausted the

results inherent in this problem. The argument by which we conclude thatthe

point of suspension for equilibriumis G, two-thirds the way down the median,
. _

'iS equally applicable to the'other two medians. There are no.grounds for pref-
a

1 I

erence. Yet thefofces 6onsidered- can have only one resultant, consequently
1

three medians must be concurrent at G, a point two-thirds the way down each

See Fig. 9.

ng. 9'

In this short deduction we see thelinterplay between mechanics and

geometry. Not onl?can we use mathematics to deduce lays of nature; we can

use ld4s of nature to deduce more mathematics. Here is an art of which
O

P
Archimedes was a master,

4

Another result.' Nowsupposethe horizontally placed triar1e of Fig. 9

to be a lamina of homogeneous material. From a simple application of similar,

. ..4

/
triangles it follows that any line segment B'C' parallel to BC is,bisected

by the median AA'. Consequently the thinner we make.a strip with B
1
C
1

as

one- edge, the more nearly rectangular it will become, and the more nearly its

geometrical center lie on the median. And with homogenious'qiaterial a rectan-

,

gu14r lamina would, if, suspended at its geometrical center, be in equilibrium.

Thus we may conceive of the triangle as made up of indefinitely-thin strips,

with the equilibrium poidt of each -t and therefore the equilibrium-pointW all

conjoined?-- lying on this median. See Fig: 201
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Fig. 10.

/

-But for precisely similar reasons the equilibrium point must also lie on

-
the other two medians, so by the foregoing result this point must be G. Thus

,thetriangle, horizontally orientated, could be maintained in equilibrium by a

force equal to its weight acting vertically upwardsat G. In short, the multir 7°
\11,

tude of gravitational forces toting on the Aribus.bits of the lamina'act as if :

.

,AmmTmmill

a .

O

,they 'Were all condentrated at G. For this reason G is knownagthe center
.., s

. .

of gravity,, or centroid, of the triangular lamina.

i".---
M

.-..

1.3 Second Application: The Area Under a Parabola.
i

..._

Archimedesr'predecsssors and contemporaries had tried, unsuccessful

, -

compute the area of an ellipse and the area under a hyperbola. Charact isti-

cally, A;mhimedes tackled the othe; conic section -- the parabola --and-was 4

'successfV1.His success
4
caused a sensatron,as well it might, for his method

lies at the threshold of the integral calculus. .1

Unlike Archimedes, we have the notational conv,eniene afford by analyt-'

ical geometry. The problem is to find the area under the, larabOla y = ax
2

between 'x = 0 and x =.h, i.e.;the shaded area OAB ofgig. 1: By con'S'id.era.-

tions of symmetry it is visibly obvious that this is one-half the area OBB1,

v'

one-half that between. the given parabola and its mirror Image Ox, y = -ax
2

CarefallY. compare Figures 11 and 12, To any vertical strip PQ (of length

ax ) at a distance x from "0 in Fig. 11 there is a:corresponding vertical

- ,

strip
.

P'Qs (of leilgth ipx) at a distance x from 0', in Fig. 12. As the'
midpoint of FQ moves from 0 to A, and to use a favdrite expression of

22 , .

--

I is

..



, Fig. 11
r

ic)1

16

rax2

2

' Fig. 12

a

B. ;

Archimedes, "fills" the area OBBJ, the midpoint of

-A' and "fills" triangle O'B'Iy.

i)

y= ax

=- ax 2

y=ax

4

moves from V' to

Now study the conjunction of these figures in a vertical plane given by

Fig. 13.

a.



17

The lever .OA' has.fulcrum at, 0', where 00' = 1. We suppose the correspond-

ing typical strips ,PQ,.151Q° to have the same width c, and the homogeneous

material of both bodies to be of unit density. Thus ele weight of the strip

PQ is 2ax
2
.E:1, 'and the weight of Pt Q' is 2soe1. But, obviously the

Venter of gravity* of PQ lies vertically below 0, so that the moment of PQ

about 0' is

And since

Thus,

ps Qs

,

.00'.(2ax
2
.c.1) = 1.(2ax2 .c.1) = 2ax2c .

is at a distance x from 0', its moment about 0' is

x(2axc.1) = 2ax
2

.

# '

t

moment of PS.about 0' = moment of P'Q' about 0' ,4

and the corresponding strips counterbalance one another. But this result holds

.. for each and every 'corresponding pait! We concl e that
. -

Moment of whole body

' \

out 01 = mentof 0B' B1' about 0' .

Let. W be the weight of 'OBB1. 'B1' has height OA' = h and base

r

B'B
1

' = 2ah and therefore weight -2abol,= ah
2

. This weight acts as if

coRentrated at G, the centroid of 6.- By a previous result G is' two-.
,

. thirds the wn4(along -.OA', and our st equation becomes'-

2 . 2

,........

..._4...

..- nah .
__,

,Air
.

,/- r
SO., remembering that our materi are of-unit density, we have

..,

, .7.,,,...

ea OBB 12
_-

2
1,. 3

IL,

and, remembering the?eymmat

We conclude with the eleg

See Fig.,,14:

under the parabola = 1"ah3 .

result that

ea OAB =
1
rectangle CABC

2
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h

Fig. 14

dK2

Ar-3(

a

Of courae,this proof is not completely rigorous, since the strips

'PQ, P'Q', of thickness E, are not precisely rectangular. Yet it is intuitilWy-
4

evident that by making E sufficiently small we make the errors of these ap-

proximations as small as we please, so that for sufficiently small E the

difference between the moments of -PQ and' about 0'- may be Made aybi-

A,
trarily small. FurtlIer articulation would necessitate explication of the notion

of limit. To say this is not to'sneer -at Archimedes' proof bylis "mechani-

cal method, 0 as he called it: to Ile contrary, it is to suggest thatqntuitive

proofs are often indispensable stepping stones to better ones. .ArchimedeS was

Zoo good a mathematician to rest contecit with this pAof; he subsequently gave

$0.
a completely rigorous one by the "method of exhaustion." The discovery

1
(by

his mechanical method). of what was the right"formulawas necessarily prior to'

proving it right. Toirook, firSt"-dafkeh your hare.
' -l- - -......).,:,-

-.- ,'f
.

Archimedes rigorousiproof for the area under_theiRarabola, together
.

with a dozen or so other proofs, including,thexolumeofthesphere, were

knowzi)pemathematicians of the Renaissance. That he had initised a

"mechanical method" was also known, but not the details. His cooking tiord--,

-.nothing of his catching. Cavalieri (1598-1647) devised a way, based on the ,

intuitiveonsideration that-if two figures have equal corresponding strips or
P

cross sections (e.g., PQ and P'Q' in Fig. 13),then the corresponding total

areas (or volumes) are equal.' It was not until 1906 that a palimpsest giving

the details. of Archimedet-techanicaltethod was discovered in Istanbul, and

translated by Heiberg (18511928), the great Danish, expert,on-Geek mathematical
_
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. .,

texts. had this been available to Cavalieri, his develqpment, and consequently
. -.,.

)
.

that Of Fermat,. Newton, and Leibni4, would have been radically different.

I

Let us recapitulate. lie "began, wiA,the 4quesibn, "What is the law of

t' ,

the lever?" Geometry, with "inarticulate" mechanics, enabled us to find this, 6`

law; successive applications of it, reducing a problem of three forces to two,
.

to one, determined the centroid of the triangle :and gave us, incidentally, a

theorem of geometry, The notion f centroid with, yet another reapplication

of the law.of the lever gave us the area unler a parabola. This is typicil

of the way mathematics works: beginnings almost too, trivial to take seriously,
vw,

lead, w.of reheated applications, to new insights and new discoveries, which,

with repeated application,yield yet further insight andrdiscoverly.,

1.4 .'Third Application: The Law of the Crooked Lever.

A . 4 We suppose a homogeneous bpam to be freely' pivoted in a vertical plane

about a (iiiT rizo nt al ) nail through its geometrical center F, with weights

W1' W2 suspended from .it as illustrated by Ftg. 15 and such that

(2)

The homogeneous beam being symmetrically placed about F, its weight has

* . .
no effect in the equilibrium of 14 W

2
; the whole figure is in equilibrium.

----ea- - ,
.........z..th,a1chajiges 17*Y we PaJte an the suspensionof W1 without disturbing

. ,i -:.,

gquilibriuml ,Supposing Wr.to be a constant weight, A1F must remain un-

eianged, for otherwise the turning moment df Vi out F '_would be altered.
,

13tii we all know that the vertical pull of_ a weight, on tits point ofsuspension
,

I 2 6 , i
. ,
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is unchanged by shortening or lengthening the string by, which it is

if the string itself is of negligible welght-i- Clearly; W: may be

lowered; what matters for equil4bil.um is that its line o?actiOn,
, .

ing string, passes vertically through A1. See Fig. 16.
.

,

Study Fig. i6. Does it matter4at Wl, W2 are nowstspended from

Al', A01, respectively, instead of from ApA2? No, for the lines of ac%pns

of the two forces (and the forces themselves, of.course) are unchanged.

But what is the role. of.the beam in this seheme-of±-things? Being .

raised of

its support -5

'homogeneous and suspended about its geometrical center, it has no turning

.
moment; it'is, in effect, weightless. Its role is given by its rigidity, whereby,

the turning moments of W1, W2 with points of application A11, are just

the same as if these points had been Al, A2. It remains merely to idealize a

4 little more to reject its substance while retaining its rigidity. In short,

equilibrium is

*ere

Al2

W
VA

I W
Fig. 17>

a

.hs 2,

A1'FA21 is e..crooked, weightless, rigid lever.

.

.

-.27
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Hence,.i:f al, a2 are the angles which, AltF, A2'F make with-the

vertical, we have,

and, by (2),

1
. sin a

1 = '21 , £2' . sin a2 2
,2

W
1 1

sin 016.. = W
2 2

' a2
'

(3)

the law for crooked, levers. That is, the turning moment of a force is now theAA.
product of the force, the length of the arm, and the sine of the angle between

them. The factor -sin a is the price we pay for,,crookedness. 'Note that when

are'each 900, since sin 90
o

= 1, (3) becomes

1

al' a
2

Wi 2l' W2
22

Characteristically; our new result inclUdes that from which it was deduced.

Let us turn to her developments.

1.5 Galileo: The Law of the Inclined Plane.
404.-

Galileo (1564-1642) was interested in the mechanics of the inclined

plane. He asked and answered the question:, Given.e: weight. W on a friction-
:

0.40-less plane inclined at an angle d to the horizontal, what force w acting

up_the plane is, necessary to, prevent, W. from sliding'down2 See, Fig. 18.

-

Note tHat the precise formulation of the problem is itself a Step toward solu-

tion. The inarticulate physics of bicycling makes it obvious that the steeper

'the incline the greater the necessary restraining force% Clearlyrw is a

maximum when a = 90°, and must then, without any help from the'inclihe,support

the'full weight of W;, otherwise w < W. Thus it is aPpropriateto denote the

0

.
28 . ,. .

.
t...

a

V
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restraining foroe by the smaller letter. This consideration suggests the quei-
. _ !

tion: Is the designation of the angle of incline by "a" entirely fortuitous?

Consider the notation of (3) Can the iiolution of Galileo' s, z-oblem be con-
'

f-as an-spri71111MITra'ile law of tile crooked leve r? Yes.7,-given th

7.
-- ingonit4bfel5021eo. '

I-

First, since vertical forc?S are better understood, Galileo converts

acting up the inclined plane into abertical force by infitOducing.a friction-
.

r

less pulley wheel and a weightless string, thuse

Fig.-19

This sti-ategen may not appear at first sight to advance solution of the problem.

But what is the problem? What weight w is needed to counterbalance W? If

these are in equilibrium,there is a certain constraints between them. The

col-meeting string being inextensible, if W moves up or down, the incline af
distance .d.,°then w moves vertically up or down the same distance.. Galileo

had the great insight to see that this constraint could be realized in a dif-

,ferent way - -by the introduction of .a crooked lever. See Fig. 20.

0

V

Fig. 20 ,

/

A1FA
2

is an equal- armed, crooked (and rigid but weightless) lever with ful-

crum is the center of gravity of W, and FA is perpendicular to

the inclined plane; ;;A:1; anppois , int oil -the lipe of action' of and FA2
.

is horizontal. To satisfy Ouri96ives that a point F. satisfying these
_ ."

..,
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rements exists, it is sufficient.to note that the bisectoo*.angle

is'the loCuaof points equidistant from A,y and A.2.

If the lever is rotated about F in a vertical plane, since the lever

is equal-armed, /Li, A2 trace out arcs of equal circles. The smaller the_."
. t

rotation the more nearlythese arcs approximate to straight lines,

for infinitesmal rotations the displac4;ment of---A, (the center of gravity of

W) along the inclined plane is the same as the vertical displacement of A2,

and therefore the same as that of w. Thus the constraint realized by striqg

and pulley may, alternatively be realized by the crooked lever A1FA2. But

we know the conditions for-equilibrium with crooked levers, so that the problem

is, in principle, solved.

Now, the details.

From Fig. 21 it is clear that the angle. between the arm A1F and the vertical

line of action of W at Al is a. So, by the foregoing considerations, we

see that the conditions for w to maintain W in equilfbiium on an inclined.

s
A- .L;-

plane of angle a are equivalent to those for equilibrium in tieµ following

situation.

t

Fig. 21

o

Fig. 2

30
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By the law of the crooked' lever,

. since w2 P sin 90° = w2. 1 ,`w2 W.E sin a

so that

w = W sin a

This is the lays of the Inclined plane.
9.

1.6 Stevin: The Law of the Inclined Plane.

A_ --
There is another proof, a most elegant proof, due to a Dutch,mathematician

Simon Stevin or Stevinus (1548-1620): Although bte a40as one of the most bril-
. - 4 _

liant applied mathematicians who ever lived, he is less well known than alileo;

he was not threatened with death by, burning at the stake. He invented the first ,

4
b hoi-seless carriage, a sailing carriage for use on the dunes ofthe Dutch. coast;

he constructed famous dikes still in use today; and feeling practical need for
r --k .

the facility of det1mR1 fractions, he invented them. For him, mathematics, to
_,..,r.

be any good, tad to be good for something.
.4'

.
0.....

Let -us see how he proved the°1aw of the inclined plane, that the force

acting down itdue to 17, when the angle of inclination is a, is W sin a.

His proof is based on the following figure.

- D -

Fig. 23' i f'
Stevin was so pleased with his proof that this diagram graced as vignette, with

the inscri3 on,"It looks like a miracle, but it is not a is tke1
, -

O

0

31
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title page of his treatise on mechanics. He had good cause for his pleasure;

how4the law of the inclined plane follows from the equilibrium of a heavy rope,

with joined ends, w1en suspended over a triangular prism, is obvious onlyto a

man of his, genius

uppbse the hepOry rope to be in motion initially. this sup osition raises
7-

the question, when Will t stop rotating?/ Its rotation is caused b the forces

acting uph-h4t__ But, fort every particle fof rope that goes down, say, at'

an identicArparticle moves up at A.-_Thus the configuration of the rope re-

mains Unchanged, and consequently the driving forces which'initially caused

motion still-persist. Theref re, since itytis rotating initially, it must con-
,

tinue to rotate forever., We have a perpetual motion machine and ca use its

power to drive a-dynamo.

We feel, as Stevin felt, that this conflusion is absurd. eith the

heavy rope is in equilibrium or it is not. With him, we have no ter ive

but to conclude that the rope must be in equilibrium.

Undoubtedly the portion of the rope hanging below the triangle hangs

symmetrically; the downward force at A is counterbalanded by an equalAown-
,

ward force-at C. Thus, since the rope ABC' is eqUilibr before the re-

moval

4
."' .

maval of the portion ADC, it must remain in equilibrium of er its,removal.

That is, th4 force acting_down the pne incline due,to.the eight of the rope

BAG counterbalances the force acting down the other due o the weight of the

rope BC. See Fig. 24.

B

...

,e.: - Fig. 24

The force F neceiSary to prevent a weig W from sliding flown an in-

clined plane of angle 6,,,, depends on 16'. F ilicreases as 6 increases,
, .4

'decreases as 6' decreases; that is, .F is a function of 6, say,. f(6). Also,
... ,

-5,'

.., 32
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of course, F depends on W. If for a given incline W is 'doubled then F

Is doubled. F' varies both as W varies and as e varies, that is,

F = w(i(e))

The probldm is to specify s(e). Se Fig. 25.

e.

Fig. 25

(3)

Let p be the density of the rope, i.e., the weight of unit length, so

that the weight of the rope AB is ap and that of BC is bp. Then, since

AB 'is inclined at angle a to the horizontal the force F1 to prevent it

slipping down is given by

F
1

= ap f(a.)

Likewise, the force F2 to prevent BC slipping down its incline of angle p is

F
2

= by f(P) .

But since the rope .AB counterbalances the rope BC
. .

so, by (3), .(4), and (5),

Fi"= F2

ap f(a) = by f(p)

and from the geometry of Fig.
c

24,

a
sin a
h

7 b =
sin p

a3 s7t

(5)
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so that
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sin a p f(0) =
sin P f(P)p

f(a) 1'(3)
sin a

,

sin-a

Bit Stevinis argument is applicable to any arbifrary,:triangle ABC. No

matter what non-obtuse angle de we have selected for the one incline, we are

free to select p for the other incline independently. of our first choice. If

we take another case of Fig. 24 with angles a, p, we similarly deduce

giving, with. our

f(0),

he.' sin 0 C,

in (3), we have

f(a) f(P' )
sin a sin/a'

first result,

f(a) f(P) f(W)
sin a. sin p sin (p' )

uti

,

is ailtonstant, And any non-obtuse angle 0. Hence,

F = W C sin (6)- -
A
4

rT

P.

-It remains o determine Cr When 0 = 90°, is as if suspended adjacent

to a vertical wall, and clearly f'=W, substituting in (6), we have,

refore,

and

) W = W CYrsin 90°

C = 1

F = W sin 0 .

34
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1.7 In conclusion.
..:

.

4 .

Although I have made thiA derivatfbn much longer than need be, 1 feel it

't

well' worthwhile td teach. It has the advantage Of introducing the notion of a
4

function in a natural way: I know it is "modern" to teach children that a rune-
.

tion is an ordered pair, and that a nine-fear-old sounds so sweet when he tellsr.
you so. 'Wouldn't it be nice if the nine-year-old knew what to do with an ordered

pair? Matherhaticians evolved the notion of function because they had a need;

it enables them to cope with situations in which this depends on that. That this<
.

,
i

___aits=that enWts up4i same logical tree as the son-fatney relationship
,

comes much later. In teaching, neverzut.logical carts before h uristic horses.

f4) 4 .

Do remember the inscrilition Stevin gave his diagram: "It
os

lodkswl/ke a'

miracle, but it is, not a.miracle." The endless rope which does -not slide upon

' the triangle .contains; so,to speak, the law of the inc'tr plane. Stevin's

achievement was tp make this unanalyzed, inarticulate knowledge, articulate.

What at first sight is apparently miraculous, we see subsequently to be no more

miraculous than other items we, regard as self evident. His work is characteris-

tic of the first rate in applied mi-thematics.
fr

The law' of the ?Aver has many other applications, but I have no more time. .

I hope I have given you some insight into the driving force.of mathematics and

sdme4dea of how good mathematicians go, initially, about their business.
.

, ,.

\

work have we considered? Archimedes' as simplified byl,tagrange, then
4 ,

Galileo's, then Stevin's. The sequence is not entirely fortuitous. Mankind has
.

found its way by groping, by trial and successive correction, by cloSer approx-

imation to the truth. Oh, yes, there have been tremendous blunders in the

devAtopment of mathematics and science, bud broadly_speaking the work of first;

rate men of one era,has been used as a foundaiton for their work by the first- 4'
-6

V
rate men of the succeeding era. Mechanics, as we have saia, is the alphabet of

of science. Thus the sequence in which fruitful concepts-evolved is a first

indication ag.the 'sequence in which to teach them-. 'The history of ideas concerns&

itself' with all concepts, good, indifferent, and bad. the contrary,/the

3 5f#
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method concerns itself only with the good ones,. except insofar as

their contrast with bac ideas can serve to show what makes better ideas .better.

Tcteconclude this 1 cture may I remirld.you that the initial development of

meckanice was not, a full blown axiomatic treatment. Are your students abler

tl

than, Archimedes?

lit t

C

b
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4
.Chapter 2.. Growth Functions.

i;

fiats, th'ereforehat 'egs; growth, therefore growth functions. What could

.

.; be amore natural introduction to, the'concept of function than growth problems'*

In the fist section I show how the exponential law of growth is deriVed from
...

-a functional. 'equation timitaises naturally from its context. In the second

Li
/4

section wellonsider an application by'MaxWell
.

of this result. Next, intcopsid-
,

Bring popu1 4tion growth we, are led from functional to recursive eq uations.
. -

Their Use is further elegantly exemplified in the fourth section by considering

the "growth" bf the number of_sides of a regular polygon of fix- ed perimeter;
_ .

thereby giving Cus s' formula for m.

2.1 The Exponential-Law ofGrowth. L

How much timber is there JA a forest/ Trees ,aow. The older the forest,

the bigger the trees. The.bigger the trees, the greater the amount of wood:
1

Provided that there are no forest fires and no trees die, the volume of wood

increases with time. The volume of timber depends upon when the forest was

afidnted; it 'Is a function'of the time for which the trees have een groWing.

Doesn't this situation invite introduction of a mathe tical notation?:

We introduce one. "N(t)" is to be read as "the volume of timber (in cubic feet,

say) in a given forest t years after it was planted." Thus N(0) is the

volume of timber in the givpn forest 0 years after it was planted, i.e., N(0)

,is the volume of timber initially.

But the volume =of timberNin the given forest after t years, N(t), does

not deperid only upon the time for which it has been growing; als?, it depends

upon the'size of,the forest originally, .N(0). And how does N(t) depend upon

i(0)? We take it as obvious that if,a forest had originally been twice as big

____ then it would now be_twite_as big as it is; if originally three times,the orig-

''insl size, now three times its present size; if originally four times theorig-

nal size, now four times the present size; and so on. More precisely, supposing'
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that tfie gi n forest hastbeen growihg for t
1

years, i present volume of

timber'wou be N(ti), or 2N(t0, L-Or 3N(ti), or N(ti), or whatever,

according s its original volume was N(0), or--2N(0),: or- -3N(0), or IT(0),

'or whatev it was, respectively. ---Thus the relation betweel N(t4) suoIN(0) is

such that

N(ti) N(ti) . 3N(ti) --4N(t1)

TOT 2N(0) 31181/ 4N(0)
. where' ki is a constant

N(ti) = k1 N(t).. (1)

. ThiS is the mathematical statement of the assumption that the present (at time

t1) olume of- timber is directly proportional, tti the original amount. This

ass tion merely amounts to assuming.non-interference of different trees in the

for st, one with another; they grow independently.

If, alternatlyely,,we had supposed the forests to grow for t
2

years, life

would have bonclUded that

N(t2) = k2 N(0) (2)

.

where k2 is some constant. This raises the question: Does.ki = k2? Well,
. .%

suppose them equal. What follows?'

N(ti) = N( t2
8

i.e.,that the volume of timber in the given forest is the same after t2 Ayears

as itti was after. t
1

years. The consequence is that there would have been no

'growth at'allfor t2 - tl years.

.But with'forethought we could have foreseen this consequence. (1> or (2)-
.

tel)sbut half the story; the present size of the forest depends not only on its

OriSinajrgize, but also on the time for which it has been growling; N(t) depends

t. as well as on N(0). So, to"tell the whole story, ki din (1) must de-

pend
- ,

on, or be a, function of, tl, and k2 in (2) must depend on,or be a function

3 8-
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of, t2. That is, (1), ,(2) must be exemplifications of a JAW_ of the, pattern ,

N(t) = k 1(0)

where k depends on t.

, . %.

Although we know that k depends on tv':ife dosnot know how k depends
',v -.::

--
on t. o we must leave the nature of the relationship unspecified, and write

"N"--

that k =-f(t), giving

N(t) = N(0) f(t) . ..(5)

Note that putting t = tl, t = t
2

, successively, we get

N(t1).: N(0) f(t1) , N(t2) = H(o) f(t2)

so that ki = f(ti) , k2 = f(t2)

so that ki, k2 are constants as required by 04,(2); but that k is fixed in
,

3

>4ue for a given ue of t is not to imply that k has the same fixed value

for different val s of t. ;

With hindsight, we can now see (3) as obvious. If f(t) the yolume of

timber in one tree after t years of growth, then N(0) trees growing for the *1'!

Same period have a total valueVtimber of N(0) f(t), the volume of the_

forest after t years, N(t).

We must use (3) to specify f(t). Suppose for ease of exposition that our

forest was planted atothq turn of the century. Then 5 years later, in 105, its

size N(5) satisfies the equation

N(5) = N(0) f(5) : (4) ,

What is its size in 1911? What, in other words, is the size (5 46) years

4 .
0

after planting? Two ways of answering this question now present theiSelvei: the
, 1 .

one
.

in terms of its.growth since it was planted in 1900, (5 + 6f years ago;
, Nv . .

the other in terms of its additional growth since 1905, 6 years ago.
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By N the first answer is -

I

34

N(5 + 6) = N(0) f(5' +,6) . (5)

=

The second answer is sligh ly less obvious. We now consider our forest as.if
- ,

it'had been planted-in 1905 tathe initial size

[N(0) f(5,),) -- see (4) and had grown for only 6 years. 'By (3), we have

N(6) = (N(0) r(5)) f(6) %(6)

, ° (the bar in '.c.g(6)" is used ta remind us that "6" refers to 6 years after 1905,

not 1900) .°

But tEesextwo answers, given by (5) and (6), must be the same, for N(5 + 6),

the volume of wood irk our forest (5 +.6) years after 1906,is the volume .of

wood there, '-i(6), 6 years after 1905. Consequently,

JR2-

N(0)- 5 + 6) ,(11(0) f(5)]

'which gives the functional equation

4*.
f(5 + 6) = f(5) f(6)

f(6)

. :

The specific periods, 5 and 6 years', Mere used for ease of exposition.

. - 4
The argument may lie repeated with the unspecified t1, t2,

giving

f(l t2) -= f(t1) f(t2)

the func onal equation that the function of,the-sum is,_equal to the product

of the functions.

I

7)t

Note that to deduce,this equation I didlnot need any techniAl knowledge

of' biolvgy or forestry. That I merely made articulate what we all know even

-,thousb'wenever stopped to tkink_about it is evidenced by your immediate

acceptance of my premlbes:,

04 m
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6

Let us use the functional equation, (7), to specify "-)i"-(t): putting

= t
2

=

f(2t) =f(t) f(t) = f(t)2 .

and with t
1

= t
'

t
2

= 2t, .,

f(3t) = f(AI) f(2t) = f(t) f(t)
2
.= t(t)

3
.

. A

These results lead us to suppose that

- f(n-1

the consequence of which, since

= f(i)n -1

C
4*

f(nt) = f(t) f(p-1t).

is that ,e

4. f(nt) = f(t)-411,

But f(1t) = f(t) = f(t)1 .\,,,

. /
so that (8) holds when. n = 1, and conseqUently byre principle of mathe-

,,.

imatical nduction (8) holds for every positive integer n.

,

Thus) weehave ,-- ,
. t'

°. e

-f(nt) = f(t)n (8)

-\

by ,

1(8)

f(mt) = f(t)M ,D. (9)

0
0 , -

where n, m are positive integers.

. -4.

s
1 . 1

Flitting t = in (8)

111.

TO.king the nth root

f(1) = fWn.

-.--
1,..

3 .

f(1),... - ,r,
il f0

n
_.\

tiisi.nsi to- the*, mth power, <,.

=°..-
n

6 ,--
.. f(1)Z =

1

But, pittirtg.,
, 1

in
n.

O

\

, r



Therefore,

Putting
m
n

t

1
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(111,1) fOm

m -,

0n .'f(1) 7-1,

"....__./

and f(1) = a,
.

-we obtain specifibation of f(t),,
,

,

v

f(t) at

namely,

(10)

Where a is a .constant since f(1) is-a constant, and t is any positive

rational since m,n are arbitrary positive integers. This is known as the

exponential function.

. ,

Hence, by (3) the law of growth for our foreSt becomes

N(t) =N(0)-at (10).

the value of a depending upon the kind of forest considered.

(Strictly speaking f(t r has been defined only for rational values of

t; but if it is conceded that a forest'growi continually, then obviously (10)
111.

is to be accepted for all (real) values of t: this point should be

discussed or not discussed depends upon the maturity of ydUr students.)

We have answered the question: How much timber is there in a foret'.4

Yet it takes but slight reflection to see that the,.law of growth need not be

applicable solely to forests. Of course, it is applicable to any phenomenon

whose erowth occurs as the growth of trees occur.. And how do trees grow? Trees
4000,At

grow in such a way that the amount of growth madein any period is proportional

to the amount of Wood growing at the beginnidg of that period.

It is important to, be cl4r on this point.. Part of our', inarticulate

common knowlegey7it is readilyiarticulated by, the law of grOWth. N(t + 1),

NW+ 2) beingthe volumes of 40ber in a given forest at the end of

t + 1, t + 2 years, respectively, N(t + 1) - N(t), N(t + 2)1- N(t + 1) are

the amounts of growth in the (01)th and (t + 2)th yearS. By (10),
0

N(t + 1) - N(t) = N(0) (atifl_a) 40) at(a,_ i)
N(t)



37

0-

N(t + 2) - N(t a) = (a -:1).11(tN. 1) .

In words: the amount of growth in the t
th

year - 1) times the amount

) available to growth at the beginning of that'year,'and the amount of growth in

th.
. .

the (t + ) year is (a - 1) times the amount available to gmwt,hfat the

beginning of that yedi. But that t is measured in years is irrelevant; we

could have, measured t in seconds; we could have taken one-millionth of a

second to be our unit of time. It follows that, the amount of.gowth in any

0

instant is proportional to the amountl of Material available to growth at the

'beginning of that instant; i.e:,thattheinstantaneou8 rate of growth is propor-

tional to the amount of growing material.

- What grows in this way, as trees grow? If.in (10) a were less than 1 the
OW-

treep would gxpw It'is known that the rule of decay of

radioactive material is proportional to t4e amount of material available; con-

sequently the law of growth applicable. When a ray of light passes through
,sor

an absorbing medium, the intensity of the light is weakened,by the passage; the
w

weakening is'proportional to the intensity. Ti thelaw,of growth is also ap-.
o

plicable here. Weave

I(x) = I(0) ax

where I(0) is the intensity of the incident light ray at the surface of the

absorbing medium, I(x) the intensity at a depth x within the absorbing

/

medium, and a (less than one) the absorption factor.

Compound, as opposes to simile, interest is another example. With simple

. ,

interest the rate of growth of the investment (supposinginterett to be left on
e

deposit) is constant and is proportional to the capital invested initially.

The amount of interest earned in the thirtieth year is the same_as that earned

in the third: year,. If, to the contrary, interest payable on capital ispermit-

ted to accrue as additional capital and the total dhpital to date (i.e.,initial
. 4 4

4 3 "f
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'iiiirestment plus accrued interest) grows at a rate proportional to the total 4a.

capital to date (not-proportionally to the capital initially), then interest

is said to be compounded.

1f interest is permitted to accrue as capital at yearly intervals, the in-

terest is said to be compounded annually. Of course, in this event the amount

of interest earned in the thirtieth year vastly exceeds that earned in the third

year, for the capital grows with theinterest. The formula is

Cn = CO a
n am

(il)

where CO is the capital initially, C. the total capital at the end of n'

years, and a a constant depending upon the annual rate of interest. -If in-

terest is compounded at more frequent (or less frequent), regular intervals,

then n is to be taken

accrue,as capital, Cn

constant depending upon

as the number of times interest has been permitted to

the total capital after the n
th

increment, and a a

the rate of interest for the intervals in question,

wiannual, quarterly, or whatever it may be. With this application of. the

law of growth there is merely the difference that n is restricted to integers.

Interest could be compounded daily or at'farmore frequent intervals.
,

Though your bank manager might,ngt agree, you could argue that an instant after

investing your capit ou should be entitled to an instant's interest. Of

course, calculated pro rata with the annual rate this would be small. ilevgr-

theless, with your money growing continually you might be tempted to suppose

that you would become infinitely rich in a year or two you tempered

your wishful-thinking with the somber reminder -'that this growth would also be

governed by the general law of grOwth. It turns out that if yourcapilaal Co

was invested at 100% per annum compounded instantaneously, then your total eap-

ital Cln' at the end Of n years would be-given Ly

Cn = CO en
,

where e, A number of great importance in mathematiCs, i6 the base of Naperian
y ,

logarithms. This formula was first d uced by'Bernoulli. Note that it exemplifies
')

14
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the general law, with a = e. The only difference is that since the increment

periods are instantaneous, n is not restricted to integral values. Putting

n =-1, :we conclude that in the time C would double iCself at 100% simple

interest, wit' the interest continually, ,compounded it becomes C
0

d. Approxi-

mately e = 2.718, so, investors please note, while the one way $100 becomes

$200, the other way it grow to nearly $272.

To recapitulate: I have shown how the concept bf function and the barest

rudiments of functional equation theory may be used to deduce the exponential

law of growth,and I have indicated fields of application.

2.2 Maxwell's Derivation of the Law of Errors.

In this section we consider Gauss' law of errors (Gauss 1777-1855). We

shall find that Maxwell's (Maxwell 1831-1879) ingenious derivation of it depends,

upon the solution of a functional equation. This solution is an application of

the exponential law functional equation considered in the last section.

When at the beginning of the last century astronomers, physicists, and

surveyors started to make very precise measurements, it was realized that there

is no such thing as at absolutely accurate measurement.

First consider the question of a single observation. Astronomers chart

the stars as accurately as they know how, yet two astronomers seldom observe

the same star as being in the sama, position,--though it is inthe_ssme

tion. The figures expressing their measurements, are apt to differ in the last'

decimal place or two.

To come nearer home, the spring in your bathroom scale becomes fatig-ued.

and loses a little of its springiness. With changes in temperature bits of

metal alter in length and so modify its mechanism. If over-conscientious about

i

your weight,you may evade many ofithese contributigns to inaccuracy by,resort-

r

ing to an equal-v arm balance of appropriate dimensions. But even the arms of
.

\

balances become tired and droop d little. Better designed and more carefully
4

constructed instruments measure more accurately, yet it is always a question

45



4o

more or less b etter; there are no absolutely accurate measuring devices. .We

include the human eye reading a pointer against a graduated scale.

We suppose you; afflicted by a weight-reducing fad, weighed yourself on

three bathroom scales this moaning, their'reaaings.being 20i, 207, .204 pounds.

Your problem: What was my weight this morning? Possibly you would, in the
. k.

absence of a known weight with which to test the scales, take the arithmetic

average, 203 pounds, as correct. You would conclude almost with certainty that

you did riot weigh 3- 0046unds, and think it very unlikely that you were-as much

as 250. Surely tie further removed the estimated figure from 203 or1there-

abouts, the more unlikely its correctness.

.Uninvited, the notion of probabilitS, intrudes upon the scene. c rtain k,t

of the correct figure we cannot be certain of the error of meas ekread-
.-

Sing; the most we can ask is such questions as,"What is the -ikepalood that-the

observed reading n does not differ from the actual measure by, say, more than

1
you n?" The general answer to questions of this sort is called the law of errors.

With this answer we shalPbe presently concerned:

Secondly, consider the question of the cOmbination of o rvations. Al-
.

.1' -
though hundreds of physicists have made measurements from which to deduce the

4
velocity of light, no two physcisis have obtained exactly 'the same result.

deduced number being dependent upon several measurements, each subject to errors

lb .

the final result necessarily incorporates a combination of these,erroiz.

Consider, for simplicity, the following example. A square lamina of 'side

5 units is measured as having sides 5.1 and 4.9 units. So whereas the actual:

area is 25 square.unitb, the area deduced on,the basis of our measurements is

24.99c Although -there is a 2% error in each

1,
a --- of WerTce in 'the final result. One25

our measurements there is only

peasurement.was too big, the other
1

too small, so that each error tends to annul the inaccuracy due to the other.

But this oversimplifies; the point being that, we never know with certainty the

actual, errors. A more realistid question If it is 95% certain that the
,

error in each of our measurements does not exceed 2%,what is the probability
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that the error in the area calculated op the basis of these measurements does

not exceed, say, 1%2

We have briefly indicated the kind of problem this line of thought leads

to: now we must return to what it leads from, the probability of quch and

such an error in a single measurement., As we have said, the general answer to

this latter question is known as the law of errors.

The law was first derived by Gauss in the masterly way characteristic of

this great mathematician; but his 'approach to the problem was so abstract that

Maxwell, among others, was only partially convinced of the correctness of his

derivation. It lacked that down-to-earthness found in, for'example, Stevin's

deduction of the law of the inclined plane. Maxwell was led to examine Gauss'

. proof when he needed the law of errors to further develop statistically the,

kinetic theory of gases. He was concerned with the down-to-earth conception of

the behavior of a gas as that of billionsof molecules'darcting to and fro,

pushing against the walls of their enclosure, So it is perhaps not too sur-

prising that he came up with a marvelous, immediately-graspable, proof.. Yet

. .. .

on second thoughts it is most surprising; many contemporary physicists shared

his dissatisfaction, but none his discover4 Su is the prerogative of genius.

From.the problem of molecules impinging on the walls of their enclosure,

Maxwell turned to that of bullets hitting a target. Let us consider his deri-

vation of the law of errors.

Consider the marksman who misses the bull's -eye. Typically, the (printable)

phrase he uses to describe his shot, is one of the following sort: to the

right of center; on center, but too far to Ithe left;' on'cnter, but tbo high;

.. , iir 't"&.
i''

, ,

to the right of center end too high; left of center guld low,- He rgfers to.
1

, r

,
.

bullet's position as a combination, of two errors;_a horizontal and a!'"Vertieal

l

, ,

deviation from the bull's-eye. Taking our cue from lim,we,introduce rectangular .

, .

coordinate axes wiikorigin at the bulk's -eye and x-axis horizontal., !H(x,y) ,

is the position of his hit.
,

4 7
4-
ve

;
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If a marksman is standing in a fixed position at a certain distance from

the target, what is..his probability of hitting the bull's-eye? First, this

will depend,upon the size of the bull's-eye. 'Surely we are agreed that, if it

is no bigger than the point of a pin, then at is practically impossible to hit;

and that if it is conceived of as a mathematical,Point, then the probability of

hitting it is zero. Thus we must reformulate our questions: instead of asking,

"What is the probability of hitting (0,0)?" we mudt ask, "What is the probability

of .hitting the target within the neighborhood of (0,0)?" The general question

is, "What is the probability (when aiming at (0,0)) of hitting within the,neigh-

borhood,of (x,y)?"

Obviously, the probability will depend upon the size of the neighborhood;

take the whole world for the neighborhood of (0,0),and the marksman cannot miss.

The neighborhood must be specified. It is natural to take the rectangle of

_,,,sides 4x, 4,', centered on (x,y) as the neighborhood ot (x,y). See Fig. 1.

*

Ay '4

Fig. 1

x

4

Yet there remains a question. What, eXplicitly, do we mean by "probability"? '

If a marksmenhin firing his first 1000 finds at the bull's-eye hits,its

neighborhood 60 times, dOes theaame thing with his seconc1,10d0 Acts-, with his

third, and fourth thouLnd, then we wouid,say, that his probability of a bullls-

100

. ,

60
0

eye is .'"But it is a commonplace that performance varies, even for an en-

thusiast whose mark6manship does not imi5rove with practice. It would be more

realistic to suppose his successive scores 60, 57, 62, 59, . To fudge his

. '

4 8
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expedtation of a bull's-eye; werwould consider his perfOrmance in the long run.

More generally,'the probability of a shot hitting illneighboihood of (x,y)

will be said to be p, if he has hit this neighborhood 'ph times with n shots,

where n is very large.

Clearer as to what we mean.by "probability," we-readdress to ourselves the
a

t

question: "What is the probability of a hit in the rectangular Ax x6y neigh-

borhood of (x,y)?", For brevity, we put'this symbolically, P(x, y, Lac, 6y)?

But aren't we really asking two questions? Or, to be more precise, are there

not two (easier) questions on which the answer to our original question depends?

(1) What is the probability that a hit will lie in the rectangular strip of

width £x centered on x? Symbolically, P(x, Lac)?

(2) What is the probability that a hit will lie in the rectangular strip of

width Ly centered on y? Symbolically, P(y, 6y)?

Study the-conjunction of FigM., 2(1), 2(2) to give Fig. 1.

Y

x

141-11,

Fig. 2(1)

\X
I-

1 1

1
1

1
I

I

Fig. 2(2)

Does notthis make it Clear that our original question may be construed as

What is the.probabilitir that a hit will lie in both strips?

HdW, specifically, does P(x, y, Lac, 6y) depend on P(x, Lox)

The depehdencemay be illustrated by a problem of throwing dice.

and P(y6y)?

Suppose that the probability of throwing a with a given die is
1
.7 an

'that bf thr;wing;a'4 with a second die is also ; , what is the probability of
N

'

#

throwing 4 3 with the first and a 4 with the.s cond? In the lbng run 3 turns up

. 49
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with a frequency of '7
1

, so that if We consider 36n throws) where n is large,0

6n. of these pair All have a 3 uppermost on the first die (and the other 30n

pairs will not). Of these 6n Aire, since the frequency of a 4 with the second

1
die is. r , ihdePendently of the first result, just n of them will have a 4 .,...,.

,
.

uPPermea, Thus, just n ofthe 36n pairs will have a 3 uppermost on the first,
L. s,._

and a 4 IlippermOKOn the 's econd. In short if two independent events have prob-
.-:

'''' 1 r,
ten 1abilitieAlof T and , then the conjoint event has a probability .of x .6.

4

More'ge rally,'if pl, p2 are the probabilities oetwoindependent events,

.

then the prob'-- bility of the combined event is pl X p2, the product of the in-

dividu6 probabilities. It follows that

P(x, y, Atx, 6y) = P(x. Ax) x 15(y, 6y) . (1)

It *6 as ripen mathematical secret that with two, questions to answer it is

"-74_,_
best to answeh.\them 0ne at a time. What is P(x, Ax)? If a barn is five-times

. .

p %
-,

as4'-iaigle as its door, then surely the chante of hitting the barn is five t,imes

,

6,
, . . osi. .. . .

that of 4ting the do r. Or, if the door is fixed in position (i.e.
2 the

[position x,-.01"lts center line is fixed, say. x = xl) but its width Altx ;varies,
.

f .

,'*{

takethen the -Prcbibi/ity of hitting it varies directly as i* width. ,So, we take , 2,
-

c:6

it that for a vertical strip whose .center line Is x :

'

.

P(xl, Lx). k Lx

where is a constaht with, respect to Ax.

trOa t'valp *
.

r
C

alr

But, although the "'constant of proportionality" is independent of hde
..-

-, .61,,

width Ax of the vertical strip, it is obviously not independept of the-posi-

tion of the strip (i.e., the x value of its center line). Consider, for c
example, a barn with'two doors of the same size. Surely the chance's of hitting.)

the one we aim at, straight in front of us, is greater than that of the other.
'.

The farther.to the side the other is, the smaller its chance of5being hit. Thus,

reminiscent of (1) and (2) of the. last'section we will have

1*

#

5.0
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P(xl, &) F

P(x2, 6x) = k2 bx

P(xn, 6,x). = kn, ,e1x.

1,

where k
n

although unchanged by changes in Gix, is dependent upon, i.e., is

4 function of, x
n

. In short,

P(x, 6x) = F(x) Alx .

Suppose a barn to have three doors of the same size, the one to the left and the

one to the right being equidistant from-the one straight ahead of us. Surely''

the chance (when aiming aE tie middl -one) Of hitting the one on the left is'-he,

t.v.!

.

seal- as that of hitting the one on the ight. The chances of a "left" error are

the estate as.ihose of an equal "right" error. Mathematically,

Bence, by (3),

P(x, 6x) = p( -x, Aix) .

F( = F (-x ) ;

that is, F(x) is'a symmetrical function.

Since (x)2 = (-x)2, clearly the simplest unspecified symmetrical function

is f(x2). 'There is, for example, no'gaih in generality in taking f(x4), or

f(x
6
), for these are also of the

tively. Thus (3) becomes of the form

f(X2) 'with X = x2, XiL x3, respec-

P(x,. Ax) = f(x2). Alx (10

which indicates, for example, that the probability of a hit in the left -side

strip of Fig. 3 is the same as that of a hit in thelright-side strip.

The nextnext question: -P(y, 6y)? Again compare Fig. 2(2) with Fig. 2(1).

What differences are there? If x = y, Ax = by, the strips are of the same

size and at the same distance from 6. the only difference is that of direction;

51
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.

the one is above; the other to the right of, 0. And what role does difference

play? We are agreed that a hit,"(say) 3 inches left of center has the same

probability as a'hit 3 inches right of center; is a hit 3 inches above center

more likely than 3 inches below center? Right of center was given n6 prefrence
**

cover left of center; why should above center be given preference over below
0

center? It is natural to consider them-equiprobable. This leads to another

question: Is a hit 3inches to right of denter more likely than, say, 3 inches

above,center? Consider the circle of radius 3 inches with center 0, illus-.,

trated by Fig. 4.

')

Fig. 4
9 ,

;

In firing at 0 (the immediate neighborhoody9f),Which point on this circle

has the4reaiest6,probability of being hit? Has the point at :1 ot4lock" more

4
or less probability than that at nro'clock"? We suppose the probability of hits _'to

1

,

,
,.

,

at any two points on a circle to ba equiprobableOlo direction is supposed toi

.o..xdOhave preference. ,
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Ditection being considered irrelevant, it follows that the strips of

2(1), 2(2) (with x = y, L1x = 6y) are not only of the same size and at the

same distance from 0, also they ttre similarly situated with.respect to 0 in

the probabilistic sense, Thust P(y, 6:0 is determined by precisely the same

function as P(x, Ax). SO, by (4)

and hence by (1)

P(Y, = f(Y2) 6Y (5)

P(x,y, Aliac,,Ay) = f(x2) f(y2) Ax Ay (6)

At this stage Maxwell displays his ingenuity. He introduces a rotation of.

axes. 'See Fig. 5.

Fig. 5.

L

cr 4.* His ingenuity is that the ordinate of H illative t the new -axes is zero, for

H lies on the g-axis. H(x,y) relative to the old a es is H(g,0) relative

I

to the new. And since the probability of a hit within tkie neighborhoodof a

point is ind4endent of the direction of the axes.to whic iI,is referred, the .

\

probability'of a hit within the immediate neighborhood of H is given by

.'t
i, ?,04 64, AO = ,..i t2) if(0) A on ' \ (7).

1

,.,.1: 1

as well as 1)5,(6).r From (6), (7), we have, l''

1-- f(x2) f(Y2);. ',6,: AY A: f(61f(0) ,,e
At Al

. ,.,

14.-.

and since the immediate geighb9rhood of H is desc4Sed both, by Ax Ay' and
r ; t.,1

.

by Ag All i these terms cancel and imply that
. . i
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. .

f 2)

:2

for

:

= f(0) F(g2)

By Pythagoras' Theorem, g = x + y , so

f(x2) f(y 2) f(x2,4. y2).

(8) is a functional equation of the foi-m

f(a) f(b) = K, f(a'+

(8)

where f(0) = K. Here we may indulge in wishful,thinking, for we recall that the

functional equation for the law of growth is of the form

f(a) f(b) = f(a + (.0)

If K were equal. to 1, then the law of errors would have the same form of

functignal equation as the law o?gromp, and consequently the solution

would likewise be an exponential function.

It turns but that (8) can be reduced to the form (10). We,put

so that

Substituting in (8)
;-

WO) g.(x2))' (f(0) g(37)] = f(0) (f0) ) 3.g
2

If-

2

4
1 p

1

fig) g(X2) ,

f(x2) = f(0) g(x2)

f(y2) = f(0) g(y2)

x
2

+ y2) = g(x2 +

of
44(8),

7'.

2
Y )

A

Dividing by [f(0)] 2, we obtain,

4
g(x2) g(y2) = g(x2 + y!)

-

4'
the'functional equation of the law 0 growth. Conseq4ently

'2
-2

g(x ).= a
x
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so that

and, by (4)

49

f(x
2

) x
2

f(0) a.

2

f(x2) =f(0) ax

2

P(x, 6x) = f(0) ax bx" .

'And finally,for brevity,,putting f(0) = A,

0 2

P(x, = A ax Aitx

a

This completesMaxwell's derivation of Gauss' famous law of errors.

We discuss this law briefly. Since the chance VaLa large deflection is
2

obviously smaller than the chance of a small deflection, a < 1. Plotting a
x

as a function of x, we obtain a bell-shaped curve typicalof symmetrically

deviated errors. See Fig. 6.

fl

i

vs,

This 'is the starting point for-the development of the whole theory of the error

of combinations '-of obserVations.
_

b4

Differential.liersus FunctiOnal Equations.

Generally speaking, scientific Taws are deduced from differential, rather

than functional, equations. Why? Differential equations are easy to set up; ,

,,they are the mathematical answer to: What is the instantaneous change Of a given

. .

state?. Functional equations are hard to come by; often, genius is required to
, .

._

. find them... I would prefer to use differential equations; your_ students cannot.

..v

In onsequence, my hands are tied; so, let us see what else we can do with the
..

'.. fun tional variety. t . -

D)

fl
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2.4 The Problem of Predicting Population Growth.

, ,,; ". ,

What is the.law of increase of human population?. The simplest, plausible

i

assumption is the-tithe number of people ol'.1`the (n + 1)
th

generation, x -
n+1,

will,be directly proportiotAl to the n
th

x
n

. Symbolically,

.t
x
n+1

q x
n

On this basis, if xi is the Population of the first-generation considered, the

poPUlation of successive generations will be

2
x1, qxi, q, x1,

-
so_ that .xn = q

n-1
xi .

.

.

1

If q > 1, theikpopulation is increasing. Again we hive an exponential law.

This formula was stated'in words by, Malthus (1766-1854): p6alaiioris
/.

of countries increase' in geometric ratio. It is interesting to note that Malthus

42)

tr

was led to his formulation by inspection-of the census records of the American
.

people, which showed adoubling'of population every 50 years. His statement,

sinlole as it is, crude'es,it is, hal a tremendo S i(fluehce on the whole of

social philosophy in the 19th cehtuy.
11

The social philosophers of the French Revolution argued that it was man-
0

, 1,

kind's cl.l.tty,to ease the hardship of the poor, and to abolish pestilence, plague,

fazaine, arid:wa, so that every-One could rive happily till death of old age.

Malthus thought this view,gre4tly mistaken. What would happen with neither -

pestilence nor plague, with neither famine noriwar? 'The Apulation, increasing

in geometrical ratio would dna few years, he argued, becoge sevast,that the'

earth could not feed it. The Manchester industrialists used this arguirent to

prop up their policy of free enterprise, to increase trade while leaving the

world4at large to sort Itself out.,:. There could be no obligation better the
c,low

lot of the poor nor attempt to prevent famine or war; for these t

were evils necessary to prevent overpopulation, Malthe law became the arith-
,,

metia.of.human misery,. ,.,
r

t

)

,
5 13
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Darwin also thought about the consequences of a populatibn increasing

geometrically. For him.the problem had,a wider context. It was as much, if not

nim.re, interested in the increase of aocolony. of sea birds as in the Manchest

birth rate. What,je asked, controls population? The dinosaurus has long been

extingt; the whale Mb survived: Ultimately, he gave an answeri his theory of.

= 4
naturpi selectiOn. There followed his theory of evolution of species. What is

mania obligation to man? Is one to succor or to starve one's neighbor? The
. .

fall of the Bastille and the dark Satanic mills gave contradictory answers., By
...

the middle of the last century even some industrialists began to questiOn whether
.

.
.:..

the evil of overworked and underpaid factolithands, living4underfed in over-

crowded slums,-was a necessary evil. Couldn't.there vbe a better arithmetic?

lee Belgian sociologist, Verhulst, made an important Observation. Cates:

trophies, 'tiers, and plagues have occurred l'rom.time,to time, not all the time.

'Between any two successive caiastroihies there, was a period of'fitranquility, say,

typically, that of two or three generations. This period, had. the law of increase

belpn geometrical, would havegiven the _population ample time to regain and,sue-

hrpass,befbre the next catastrophq; As size beforelthe last. We illustrate with ,

-71,G7TO:

(

-0.

.

I

a

;

successive geneTationsv- d ,e1

7

Fig' 7

But mankind has inhabited the earth for thousands of years, do that although we
3

do not know the value ttf n, Where x
n

is the present (11 geheration) popula-

tion,, we 651now that n is large. With 'large, andsthe populatioA before
V

,imminenicatastrophe greater than that before the previous one, surely the world

.
#
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would now be overcrowded. Verhast concluded that the geometric law does not

give a- correct account1 of the faCts.

Discontent with-it he old arithmetic was the first step towards the-new.

'Verhull replaces
4 I

by

1-*

.

(1)
n-ir xn=

2
x
n+1

q xn - r xn .

What is the effect of -r x
n

2
? The larger, xn becomes, the larger x

n
becomes

relative to x
n
, so that the larger the.population the greater the braking

effect of -r x
2

on its rate of growth. A vast pdpulation canonly increasen
t"

very slowly. To say that -r e x2 is a "slowing up" factlr is to describe it
/

1.
. n

in terms of its "consequences; Vsphulst did better. His factor is the outcome
- .

of a more painstaking analysis of population growth; he described it in terms

of what causes the-slowimg.up:, competition.

Man's activities are of two kinds, cooperative and competitive. A marriage,

is the
,

outcome of successful competition by a an against other men for a woman
e'

a child is the outcome of successful cooperation by;a man with awoman. Farm-

ers and biochemists cooperate to produte'greiieiie3AS-Of wheat; bankers anh

bank robbers compete for the customers' deposits. Soldiers cooperate as armies
..

__.
- .

tc? compete against other soldiers ;cooperating as armies, _Verhulst.took tlie,t,
<'. .

view that In the main cooperation tends to increase, and competition tends ta .

detTeage, the population.
--AL: ,

... - . _

..

How is the intensity of the struggle for family existence to be measured?
a

%

...I,

Competition occurs Uhen each of two or more people wants exclusively the same
.. , .

/
_

thing. -Wen, for example, two married men Wantshomes,and only one holase'is
.

1

available : WHat'iS the probability that two mbn of a poOlafiOn xn both want
e 4

the ,same house? If p is the probability of either wanting its p2 Is the

probability.of both wanting it. But the'larger
A
x
n the greater the ,chances,.-

-

of A man wanting it. Tat to double x
n

would be to double p is a plausible

58
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ler
suPposition. 'Yet, if :p is directly proportional to x

n -
then p2 is directly

prOortional to. x
2

. Thus it is not to taken r x
2

as ai measure

ofthe c petition.

It discerning, you' may observe that we have neglected,to adka competition

factor, -r1 xn, t t for three competitors,'and a factor -r2 xn4 , that for

four Competitors, and so $n. True. But it is useless to set up equations which

completely fit a situation if this leaves us with mathematics too difficult to

handle. In applying mathematica.to reality there is always a compromise: by

introducing an element of idealization, or by ignoring less important factors,

:what is too complex'Is reduced to what is manageable. Often; the proper question

/ is not;'"Ii a given formula dead accurate?" Tut rather,"Isit a sufficiently good
. , .

approximation for the present investigation?". Is (3) adequate for population

'investigation? I am anxious to answer this question, for in so doing I shall
,

i

Mve opportunity to exemplify that quite intricate problems can be dealt with by
ca,

mere high school mathematics.

If r = 0, the competition factdr -r x.
n

= 0, and wa.,find ourselves

considering a soci with the tranquility of lotus-eaters. With no competition

4,3) reduces to'"(1),'so,that (3) is-.a better formula-in'the sense of including
-. .

,

.

A

ev454ne
s ,

(1) as a limiting 'case. ' Turn frorM the .,UfttniNility. of lotus-eating to

0

, .

the desperation of sat-tlotating at all. :We all know whachappens ifcompati
s ,,.404., 3tioi is so severe that there.are

.

More hands than jobs, andnaore mouthq112,tee4,

than food to febd them: life is brutal, and for many, short._ That

x
n 1 Could be smaller than x

n
is obvious. But, what answer does (3) 1,ive?

,

We write it in the form

.Se?.
IP

,

= x (a- - r)
,,

x
n+1 n x

'-% select r suchLt)at (1- - r) is 'arbitrarily small. Consequently x can

' immediate answer to the question: Does (3) also give xn+2, correctly?

bb-made as smallas we please and,li fraction, less than x
n

. But there is no

, ...

)

: '

.

59
.

.

,.. n+1

I n.

. .* .
This form makes it clear that when,-for any given q, x is specified, we cars

0 _ 11
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2 q
x x (

n+2 In+1 x
n+1

-------. ,

t

where the 'previous factor (-3 .. r) is now replaced by ( q r). The dif-
x
n xn +l t

ficnity is that the denominator of q has been changed. Since x
n+1

< x
n

, it

follows that the factor (-x -1- r) > (-2 - r), but this is, of itself, in-
.

n+1
x
n

sufficient to determine If x
n+

< xn+1 .

However, that;(3) can be used to describe correctly the population at

least one generation ahead in extreme states of society gives us tome expectation

that it will serve far ahead in intermediate states, neither completely tran-

4
quil nor thoroughly brutal. At,least it does merit more systematic examination.

First we further reconcile the complex with the manageable. For interme-

diate states of society the change ip population from one generation t%the next

will be so slow that x
n

x
n+1

will be _A good approximation to x
n

. Con-'

sequently, we may consider

x
n+1

= q xn - r xx
n n+1

(4)

. % . .

instead of (3)7 without introducing any rdally significant change.in the popular

,

tion law. (4) is preferableas this makes for.much easier mathematics. .

(4)4is a mixed equation; x1.1.1.1 occurs on both sides of the equation:'

Making ,x11:4,1 the subject of the formula, we haVe,

__2 xnx
n+1 1 + rx

n

We observe that whereas with Malthus' law eX
n

has ejector q, with (What is

(5)

_

essentially) Verhulst's law the factor is
1

q

+ rx
the growth factor is no

n

longer a constant, but depends on x
n,

The longer x
n

ecomes,'the Smalle' the

growth factor. The population il l self-regulating; overpdpulaiion is prevent

Verhulst's law echoes hia original observation.

Our Problem is to find x
n+1.

in terms.of x
1.

was easy. Indeed, the textbooks are crammed so full with geometrical

With Malthus' ''law this

6O
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is
' progressions that the student is apt tosuppose there are no other Wrieties.

Real problems, alas, seldom have the neat arLd obvious form of school exercises;

to the contrary, they often come in ugly and forms. How toPtransfoimi

the latter into the former is an essential part of the art of doing Mathematics.

,
i

cAlthough the student cannot reasonably be expected to have the foreAight to see

that (5) is in essence geometrical, he can reasonably be required to have the

hindsight. .

'Taking reciprocals in (5),

n 1 11
1 + rx

r_ +,--

-
x
n+1 Axn q xn q

That the recipTocals, xn
+1'

x
n satisfy a simpler law, invites thessub-

.
stitutions

which give

= I I' 1
=En+1 xn+1 ' En xn

,

1
En+1 Eq n q

-Aoi, . __

But for the constant term we would have the form.of Malthus' law.
2,......- . -1- -- E .1, '4) A ,,,,.:.J.,' '' J,-' -1- ,- -

is father of the wish. Substituting

of. 6

, . En +l in +1 '

--

where a is an arbitAry constant) wet,have,

*

IX
7 q (71n a)

;.

so that,"

'-

En In

1,

OMM Ma

The thought ',

Since a is an arbitrary constant,we are at liberty to give it whatever spen-
T --

1ification we please. Rgt we wishthe constant tepu of the equation to be zero;
.

accordingly, it Rleases us to define a 106r I

I t
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G.

whiCh gives
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a r

q
-a=o+,

q

a + r = qa

provided q I 1 .

The condition that q > 1 merely implies that when r.= 0, i.e., when there

is, ComIDetition, the population is increasing. This supposition is acceptable

and meets the proviso that q 1. Consequently, we take a to be

infer that

r

q - 1
and

r-

In+1 = 7:1 In

We have transformed the form of Verhulst's law to that of Malthus': the laws

. themselves are, of course, distinct.
,; , sh.

. -.....,,

Since (6) is of the same form as (I), we have, as an analogue of-0). !

1 n 111 lr
3'., OW

/nil =ji) 11-
r

,...,
( 71 ..

it i.einatils merely to reverse var transformations td obtain
.

x
n I

as a fUcion-
N.

of x
n

. Thereis a gain of notational compactness'by delaying the substitutionion

for .a until the end ,.
.

,

-7- -;-T137EA-9-ve-go.14.4 lc 1.T.9171,tpp. ile_s to the...g's. _Since:,

; .,-.
.

lt

n+1 = In+1 + a

by (7)

1
tbn+1 = n 7 11 a

q

.

=
+a ,

6 Z
4'

4.
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iso that .

1 1
I.

1n) _..

t
1

+ (q 11-1)a
,

tn+1 17t t1i- a° + a "-- -E't1
+ (1 -.

n
'''' q " 1

; q - q q -,

)

Second, we go backfroM:the g's to the xis. Since,

1 1

1-1+1 x
n+1

51
1

we have,

a
4. _1%-(qn

x 1 + (qn-1)a x1

x
n+1 qn q

n
x1

and taking reciprocals,

Finally, since

we.have,

Conmion prudence demands some check on our waA. Substituting n,= 1

n
x
n+1

x
1

1 + (q
n
- 1)a x

1

x
n+1

1 + r x
q - I

d r
q - 1 '

n
q.

Its

War

7

in (8), we ,have

. .

#
,

s .

. The same substit4tion in (5) gives ite same result. It checks.
4. OK"

,,,

' By a judicious use of the fact that (2) is a consequence of (1), we have

deduced a formula for x
n+1

when subject Ito Verhulstis law, in terms of

xi, q, and r. What is its significance? We suppose q greater tgre but

close'to, /, and r very sMall-indeed. .._,
, ,-

First we investigate the consequences of n bell-1g 'small also. Since
, .,

la
q -1 =

_ 1 + q + q
2

+ ... + q .. n (q --- 1),
q -1 ti

;-
1 + rx

4
63



q
n

- 1
Tx will be small compared with unity when n is small. Thus, wi h-

;- 1 1

out cerge of gross:neglect we can ignore'he second term of the denominator of

(8) when considerfng the first few generations. We have

n
x
n+1

q x
1

.

i.e., that Verhulsils law appfoximates to Malthus'.

4
Next we investigate the consequences of large n. When n is large and-

q > 1, it follows from
q
n

- 1

A 't11.A.

q
n

- 1
rxi is.large compared with

unity.' So without Foss neglect we may ignore the first'term of the denominator

of (8), giving

qn X1 q
n

q-1x
n+1

(
qn

-1)
r N r

q-1/ 1

But, With 4e]. 51, the larger n is, the larger ,. qn' and the nearer tli

q
n
-1

° 1. Consequently, the nearer xtria to r1 Yet in neglecting the first term

of the denaminator,we overestimate x
n+1/

.so that no matter for how many gen-

erations the pobulation continues it will not exceed . Observe that this

upper limit to the size pf x
n is independent of the size of the original

- _ 4
Isn't this astonishing?populati:.

11411.4h of (8), known as

by Pig. 8.

tic or flying S curve is illustrated

rig. 8

n

,.'how in actual gractice, do we apply (8) io predict thetpopulation of,
, - _

.

say, the United States, ?. decade of a century hence? (8) gives the number of,

1
people who belong to the (n+-1) th generation

/' 71+1'
in terms of the number of

& 4

people who belong to the first generation considered,' x1.1 But how long an4

64,
1
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interval is there between one generatiln and the next? Every minute several

people die and several are-born. Who belongs to the present generation? lb be

.precise "the present generation" refers to an overlapping of nhy generations,

those generated in the years 1900, 1901, 1962, 1920, 1921, among others(if still

siurviving). As statistics are usually taken on a yearly basis, it is convenient

to consider the population in successive years as successive gederations, to

take x
1

as the poplttion for the first year consmered and x
n+1

that n
.

years later.

Let us take 1959 as the first year and obtain the actual figures for xl,

x2, and x3, the'population of the U.S. in 1959, 1960, and 1961, from the

available table of population statistics. Substituting the figures for x
1

and

x2 in (8), we obtain a first equation relating q and r; substituting the

figures for x2 and x3, we obtain a second. We now have two equations in the

two unknowns, q and r, sufficient to determine them. (8) has been tailored

to fit the facts; the growth coefficient a and the comp r

are chosen so as to describe lorrectly the recent population history of the U.S.

lf in (8) we write the figures for q, r, and x our formula is ready for

. use Substituting n = 5, we predict the population for 1962;1substituting

h we predict that for 1965:

Would it be rash to take the result of substituting n = 100 as more than

a very tentative prediction of the population for the year 2d59? Typically,
_

growth and competition remain steady, so that a formula that has accurately
, -,- -

described the last two years may reasonably be expected to describe the next

two. But over thespan of a'century'the growth and competitive factors have

more time in which to alter, so that the long term predit,ion shoj114 be more.

cautiously regarded.

We have seen that three successive years' statistics are sufficient to

determine q and r. Had we used all the statistics, of the last decade, the

eight-ieriods*1952754, 1953-55, 1954-56, ,..,1959-61. would haCe given us eight

determinations q, q and. eight of r. Had thbse differed in, the last decimal
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place or two we would have struck the typical figure which would give the best,

overall description of the decade. What fits the facts for the ltst ten years

is surely more likely to fit the next hundred than that which fitted merely the

last two.

Is Verhulst's formula reliable? Around about 1850 he mad.6:.a careful pop-
,

Illation study of several European countriesand,o the United States. Te,used

his law to predict their populations as far ahead.as a'cntury.' Some of his '

predictions are famous, and justly so. For example, he calculated that Fr
aVe

him

e

would reach a maximum population of 40 million in 1921; the event proved

correct. Despite the,evil War, .hLk prediction for the U.S. population in
aA

was less than a million outs But ironically, his law.applied to his own c

1940

ountry,

Belgium, did not work. -Belgium's population curve for the century is given

Fig.. 9.

P

How did Verhulst's prediction go wrong? Belgium switched from agricultur

J.,,

to,-,industry and 6olonized the Congo. This.,distinat. sociological change,_par.,
t '1 7.

manently altered the growth and competition coefficients. His application

. of his law continued to describe the growth of Belgium as agricultural when it
4 '... -

was in fact industrial. Observe that the Belgian population curve is a com-

by

e

bination of the parts of two S79.11rves, the earlier with agricultural, and the

later with industrial,cQnditions obtaining. How then, it may well be asked,

.

'was his prediction for the United States successful despite the Civil War? Of

course,Verhulst could not know that the Civil War was going to break out a de-

cede or so after he made his population analysis and so he could not take the 1.

changed values of the. growth and competition coefficients into account. The
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1

1

point is that these changes of coefficients, unlike those due to a switch from

agriculture to industry in Beliium, were merely temporary: soon after the Civil

War his coefficients wi e again accurately de criptive. With people killed in

the war his 1865 population estimate,was high' but his' estimate and the actual

population of that time both.have growths asy ptotic to 51.. ;n the long run
r

his prediction would have beent,porrect; the run tq,1940 was long enoughfor It

to be correctWithin 1 million. .4

As promised, I have shown you that quite intricate results can be Obtained

ithout using differential equations. Actually formula fo/ xn+1 for any

specified n' can be obtained from (5) by using only the very simplest of'al-

gebra. Putting, n°= 1, 2, successively, we hAve

°1
so that

x2 144
q x
+ rx1

x3
1 + rx

2
xi

x3 _
qx1 1 + rx1 xl

1 + r(-17F,E)

Multiplying numerator and denominator of right side by i + rx1 ,

.1?
2

2
x3 c1 +rx1)-+ r(qx1) 1 + (q+1)rk1 1

0 ,
--.----7. '-` 1;1Proceeding in this way x4, x5,0... can be .obtained from ,z: ..__Ige go step by, -,,7T--.

.

1 ,
.

step along 9adventurous path to find where it leads us. After patient travel

the way the road runs being ,glearly discerned, the more ambitious student may

prove the formula for x
n+1 by mathematical induction.

.5 Cusanus's Recursive Formula for v.

r
... .

Men, as in the last sbction, xn, a member of a sequence, is defined in

0

-47, s A
terms of erlier members of the sequence, it is said to be defined recursively"

oe
,

41W
This terminO.ogy,acknowledges descriptively' that the sequence4refers back to

a 0 1 .
. . .

0

. .

itself; it so to speak, a Snake bitlfg its own tail*.
0

1 ''' k
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We now consider one of the most elegant recursive formulae in mathematics,

namely that given by Cusanus (14011.64) in about 1450. Even though it,wasethe,

first to facilitate the calculation oft it bettelythan Archimedes' formula, it

is not widely known. Already more than five hundre' years old, perhaps it is

40
too modern for the "modernists." With this formula we have a hint that there,

, .

was, contrary to popular historical misconception, tremendous intellectual activ-

40....

ity before the enaissance. Despite what the history books failto say* without
.

Cusanus ancC his ilk Galileo andt Newton could not have inherited the groundwork

they did in fact inherit.

t p
Cusanus',calculation of rt. It reaily'is obvious that if a l'egular poly-

7'1

41 0

gon of Perimeter p is circumscribed by a circle of radius R tpen th more

numerous the sides of the polygon the cloer the approximation of p to 2gR
L'

,

and -1.71. to Tr. Surely thousands of persons before and since Archimedes must

have thought of .this; p yet how many have found a met hod of effeptively exploiting

it-to calculate T? Archimedes-.considered an.unending sequence of regular poly-
,

gons, each polygon with more sides than its predecessor, each circumscribed by
I

the slay circle; CusAnus considered an unending sequence of regular polygons,

each polygon with more sides than its predecessor, .but all of the same perimeter

and therefore circumscribed\by differenrcircles. Whereas Archimedes found the

. , .

limit of p .with--"Con,Stant R, tCusanus found the limit of R with constant. p.

-°'' -'2'
A , , , " A. , -. , - 1:-A

Bolh,mghldpiaree egant-. Encourage the student who finds CusatIt7tsiZgance
.

.
.. 1

; exciting to study 1.xcnimedes' for himself. /. . - 0

How, specifically, did Cusanus explOit his idea? -He did so in the follow- .

I.

ing-way. From a given circle C
.

of radius .r
1

circumscribing a regular poly- I,
-L,

......................1

gon of 6m sides and pePtgRter k, anCACcircle t
2'

of radius r
2

cir-
4

..

..0
cuMscribing a regular pOlygon of double the number of sides; but with the same

perimeter, is aonstructk By repetition of the procedure 'n times ,there,

4 'it " '''
1.

obtains a sequence of circles 411k C' '-C 6 of radii r1, r2, I.'
0

I
1 9

' 2- 3'.." n+1'
A

e

1' 2' 3'

circumscribing regular polygons with constant perimeter k, of
.

.,.,,rn+1,
,

m, 2m)
'

2
2
m 2

n
m sides, re,spectively. It is intuit5Z7 clear that ,r

7 6 8
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1/*

A,.$ .(Since we are now consider/ing a sequence of circles of constant perimeter we
:,

.*
use the letter It in preference to '13,) The real problem, of course, is to

? '

+1n
determine r he way in ithich

.e
C2 is constructed from C

1
determines the..

.

. . -. -

.,

relation between r
2

and r
1'

But £3 is constructed from C
2

,as C
2.

from
3

.

C
1

so that
3 r2 , 2

r has the same relation to r to r1, and for similaDon P

2

63

l r
n+1.where R

11 -4

im

00 )

reasons r)4. has the same relation to r
3

as r
3

hap to, r2. Thus r can

determined in terms of r , while
3

can be determined in terms of r2,

and r2 in terms of r1, so that finally r4. can be determined in term s of

rl. More generally, rn
+l

is determined in terms of r
n

, which in turn is

determined in terms of Its sequential predecessor, which in turn , so
t

'that finally rn
+l

is determined in terms 9f rl. The formula is recursive.
, -

Now for the aetaiis.. What, specifically, ie the elation between

and r1? Fig. 10 illustrates the essentials of what we are given: the m-sided

-circumscribed polygon being `regula, it is sufficien,t /-6o consider jUSIt one of'

its sides.

4.

.

J

Fig. 10

69
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We make the construction illustrated"bytig. 11.

/

NW.

)

E .00ip

Fig. 11

Since, as Euclid tells us, angle subtended.at circumference is one -half'

A

4

angle, subtended at center,

1

4B1A2B1: = 2 LB1L1Bit

Consequently 2m such triangles as BiA2B1' fit together to form a regular

polygon with .perimeter 2m x BIB,', which is circbmscribible by a. circic C*

with center Iv and (shy) radius r.g. Fig. 12 illustrates the essentials.

Retaining A2 as center we now shrink Fig. 12 to half size. We now have a

circle C2_,...circilmspribing a regular polygon with the same perimeter as, but
.

twice tlie,num;e) of sides of, that circumscibed by 'Cl. See Fig. 13. Compare
V".

Fig. 13 with Fig. 10.

,

0
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Fig.`an

The problem is to find r2 in terms of rl. To do this we first consider

the geometry of Fig. 11. Since, as Thales tells us, the angle included in a

semicircle is a right angle, A2)31! is a raght angle,(it is su4ended at the

circumference of Ci by diameter A2E) Thus triangles A2B1E, A2B1D1 are

both right triangles <the latter is right angled at D
1
) and gdditionally-have

a conmon angle B1A2E. .Therefore these triangles are similar, and consequently

their-corresponding sides are proportional, so that

Thus
it!

' Biz t *

.

A2B1
p'

21
A2D1 A2131

r * 2r
1

* r *

(r2*)2
?r1

h2* .

,
)

is an uninvited bedfellow and is-speedily to be replaced:

72
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h2** .A2f1 = A2A1 A1D1

412 * rl hl
(2)

We have related the measurements of Fig. 10 to those of Fig. 12; we wish

to relate them to those of Fig. 13. But Fig. 13 was obtained from Fig.. 12 by

/e
reducing everything to half size, so that

Hence, from (2) we have

and from (1),

so that

Ps

1
r = r
2 2 2

h2 2 1)2*

+ h
1

2h2

(3)

(4)..

'

-
2

2 1 2 7,

r2_ = .v (r2*)1 -z .4. _2ri

1)1-772

This derivation discloses our motive for using-a star notaElon: to emphasiie the

:transitory role of r2* and h*.

(3) and (4) giva r
2

in terms of r
1

(and h ) The intrusion of the -

'fi's__is an incidental complexity must not be permitted,to obscure the
',.

leading ideal/in specifying the relation between
.2.2

.

and r1 (and hi) we
.--$. '

. have reached the heart of the matter. In repeating our proepdure * o obtain Ct'''. C3

from C
2

as C
2

was obtained from C
1,

x
3
''Will have the same relation to

,
,4

-
r 2 as r

2
Ids to r1, and In obtaining cit froM C

3
, r4 will have the same

relation to.' lc' as r
3

hhs to' r, and
2

has to r
1 . Consequently, for

-

haire

.r
n

+ h
n

,. , h
n+1

=
2

7.3.4 .

1
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r
n+1 =

rn h
n+1 (6)

4. .

It us recapitulate. To avoid.the verbo.si.ty of saying that hn is the
.

altitude of any triangle whose vertex is.the centerof C
n

and whose base is

one Of the sides of the regular polygon circumscribed by Cn, let us refer to

h
n

as the altitude of C
n

. Then, if C1 is a circle of radius r
1

and al-
4111.

itude h
1

.circumscribing a regular polygon of m sides, and perimeter k,

by repeating times the process considered above we form a-sequence of circles

Cl, C2, C3,...,Cn+1 of radii r1, r2, r5,rn+1' ( and altitUdes IL 4 11
./ 3,,

:'nn+1) circumscribing regular polygons of m, 2m, 22m,...,2nm sides,

respectively, where hn+1, rni.1 satisfy (5), (6), for n = ID, 1,

To calculate' i.e.,
2R'

it merely'remains,to determine R, where

R Kn+1 It is convenient to take C
1 as circumscribing a regular hex -

n -403

agon, i.e., to take m "= 6, and tx take r
1

= 1. See. Fig. 14.

t

r

14

Here 111 is evidently-the altitude of an equilateral triangle of.unit side.

4

The reader is, now in a pobition toBy sirriole 'Calculation we find hl = 2-

,
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calculate a sequence of successi4e/y better approximations to R, and hence,;' .

to IT.

This raises the question of the accuracy of approximations. It really is
. ;

intuitively obvious that as n increases the angle at the vertex of each

triangle constituting the regular polygon circumscribed by Cn will get smaller

and smaller, and therefore r
n

and h- more and more nearly equal, giving

lim rn = lim hn ,

n..4 co n co

i.e., that r
n

and, h
n

both converge to R. And since the hypotenuse is the

greatest side of a right angle,

See Fig. 15.

rn > hn

Fig. 15

Li.

Copsidering the polygon, h
n

is the radius of the circle it iriiicrAes and r
n

.
.

is the radius of 'the circle circumscribing it: ultima.telY, in the limit surely
- -

these circles coincide. This it seems reasonable to suppose that r
n

decreaseg,,
/ 75 .



gio sive use of Cusanus' formulae) worried overmuch'about convergence: they were

h . increases and

t A'

70

rn >R >hn
. ,

The astonishing thing is thaewe'are,able to anticipate that, for example,'for

the liexagon with r
1

. 1, and so perimeter k 6, .the repeated applications,

6of (5) and (
en

6) will converge to =, 2
i.e., to .

.

,. 4
4.

We may add that neither Cusanus nor tescartes (1596-1650) (who.made exten-

confident of their intuition.

With no more than an elementary knowledge of inequalities we can prove

convergence. The crux of theoMO.tter is that the difference between rn and h
n

gets smaller and smaller: But having the abhorrence for square'roots that

Pythagoras had for bean eating, we refer to consid4r the difference of r
n

2

2and h
n °

By (91 '6)/

hnlr
n

+

-------

r
2

- h
2

= r -fin+1 n+1 n n+1 2 I-

rn hn
Out by (5) r (h ) = rn n+1 rn 2

SO

Thus
4

and

-
7 Ar

2
rn + 2

rn+1 = rn 2 2

4

r'

rn +

2 rn

+ - h

2 2

1 2. 2
-= T; (r,

"
h; ) .

,
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2 2 1 '2 2 \
r3 - h

3 42
= kri - h1)

Proceeding in this way, after 'n steps, we'have

2 2 1 , 2
r
n+1

- h
n+1 0= kr

1
-

But ,r
1

the hypotenuse of the triangle is greater than .h
1

the altitude (see

Fig. 10), so'ihat r2 - h2 is positive and hence

I
> h ..r

n+1 An+1
(8)

1

Consequently r
n

- h
n
> 0, so by (5)

and therefore

h
n+1

- h
n

11.11

+1
> h

n

Squaring (6) and dividing by r r
n n+1

by (8)

7 hn)

r
n+1

h
n+1

r
n

r
n+1

h

1 >
n+1

rno.
1 4.

1 >
r
n+1

r
n

°
,

r
n+1

< r
n

.

ct '(9)

Arithmetic confirms intuition. (9) shows that successive values of h
n

-

Increase (so that if there. exists an R, shn < R), while (10) shows that

successive values of

e.

4'

r
n

decrease (so that if there exists an R, R < rn) and

.77

..

A-
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(7) shows that if either r
n

or
._,

h
n

converges then both converge to the same

limit. Conjointly these results imply Ghat there is an R such that for all
, 4 .

(
lien h

n
'N R . lim r

n
.

m n -400 n -t co it,

'n, hn < R < rn, and that

Let's be specific. Taking the hexagon as our initial polygon, with

r1
3

1 and (consequently) hl = , by (7)

*so that

,,2 3) ,

r
2

- h
2

- ki - _
1

n+1 n+i hn 4 4n+1

/

- h
1 1

r
n+1 ri+1 4n+1

+1
+ h

n+1

But, by (9) hnia > h -1rE: and by (8)
1 2'

r > h >irf
n+1 ,n*1 2'

so that r
n+1

+

5'h
n+1

>1/ and
o '1 , <

r
n+1

+ h n+1 3'

Therefore,
a

1 1 , 1
, - h P

n+1 n+1 4n+1 ,i3 4n+1

That is'to say that the:difference betwden the radii of tile, circumscribing and

inscribed circles of the.polygon obtained-after n steps from the initial hex-
0 c. t

.0
agon is ---- Convergence is rapid.

-
<:

41-

1

1.

Since 2nR F 1 and in this example the perimeter of the hexagon is 6
,

(as remarked earlier), R = fTt
6 3

. = -77, so tt the successive values of h
n

0 1 .
cincrease to ,--

3 while the successive values of r decreaSe to it. That is,,
.n

_ .

so that

h -3 < r
n g n

3.g <
r

< g
hn.

n

3 , < .
r
n

h
n
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Even the case n = 1 is interesting

5 3< <
1

3 < g < 2 iT 3.4.°

4

Surely the reader will want to work out n . 2, 3, 4 (afidcmaybe others) for

himself.

f

Finally, with the suggestion that the reader take a second look at Fig.

15 and the reminder that

Tlim sin 6 _

0

he is urged to prove that in the general case the limit of r
n

and.the limit

of h
n
, i.e., R, is given by

R
111 ,,

EUT.CQS
r
1

r
1
2 = h

1
2

2.6 Arithmetic and Geometric Means.

MA the arithmetic mean of al, a2, is defined by

a + a + a + 1 + a
1 2 .3 n

MA n

M
G

the geometric mean of these quantitiet 'is defined by

M
G

= 1:1/a

1
a
2

a
3 n

Thus0'"or example, (5) of the lat"section states that h
n+1-

ii'the arithmetic

peen of r
n

,and h
h
, while'(6) states that r

n+1
is the geometric mean of

and h
n+1.

alliithe quantities, al, a2, a3, ; are ..equa3. then
'y

7 9



O

74

4a1
M
A n

= = al and MG = n al al

so that MA =. MG. 'If not all thorrantities are equal then MA > MG. This is
4.

very easily proved in
.0

the simple case n = 2. For the two quantities a, b we

/-Cave

therefore'

1 2m _ m =- (a + b - 21c17) = ((IC) *- 21C ie+ 6/13)2]
A G 2

1 r- 2
(Ya - YO)

4

but 4 (. - ,63)2 > 0 unless a = b. This proves the proposition.

What are the uses of these means? lIf.'n independdnt measurements are

made of the same quantity, if, for example, al, a2, a3 ,an are the

numbers kndeSttgataxobtained for the distance of, the sun from the earth, then

the arithmetic mean is the most reliable estimate. Gauss' argument to this
4

effect is well known. Less well known is his application of the geometric mean.

1119 follows.

V
How is a welght W to be accurately determined by using badly made scales?

How, for example, with scales of which one arm is longerthan the other? We

A
suppose that W, when placed in the right and left pans, counterbalances weights

W 1, W2, respectively. .What is the actual weight of W? Study Figs. 16 and'17.

For equilibrium in Fig. 16 we have

Fig.. 16

(1)
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J
4

and for equilibrium in Fig. 17,

W- = E W
1 2 2

Now we come to GaUst' important obseryation. Multiplying (1) by (2)

so' that

1 2 1 2 W22

.\

W = 1,177171 .

1 2

,(2)

Thus W isindependen4t of the lengths of the arms. Use of the geometric mean

rectifies this imprecision of the scales.

8 1

0

vi

'



Chapter 3. The :Role of Na cs in

Pa mathematics in the construction of theor-

ie's in science, I wish to cons der the development of optics.
A

a
by

o

. : .

Euclid's Optics.

We beginwithf&clid (c. 300 BC). Not unnaturally for a geometer, he ,

"0 0

yished,as'doubtlessly had many geometers before him, to apply-geometry to optics.

Unlike the others he was successful. Conceiving light as propagated in straight

lines enabled him to pply geometry to optics. dh.second thoughts this state-

ment cannot stand. Until EUclid had applied geometrye,to optics there was, t6

tse the Irish idiom, no such sui5ject as optics. NOwadays,when using diagram

is an ingredient'of educated common qense, of'course it is obvidis that light is
.,4%.

propagated in strdight_lShes. If. light' rays could not be-represented bylines,
- k

optical phenomena could not be illustrated by diagrams. We, with the arrogance

of hindsight, cannot begin to understand Euclid's foresight in making his basic

assertionhat light iarectilinearily propagated. When the needle in the hay-
, 1- >

..dhck has been pointed' out to us, we tare prone to suppose that finding it tra's

no prdblem at all.

Physical objects that more or less crudely apprpximate to straight lines

readily come to mind, for example, a taut wire. But surely a shaff,gf sunlight

piercing'the shutters of a darkened room is singu]'ly apt*.4Isn't this the-'per-

fect example? Apclid utust have been well pleased with hib observation. Yet

ote that hit basic assertion embraces metaphysical speculatiOn as w11 as

physical observation. We see Only the shafts of light at which we lo6k; we do not

e+

see the shafts with which we look. We cannot observe the rays with which we db-

yettuclid claims all rays to be propagated in straight Tines. Such meta-

physicassumptions regarding.unobservables are acceptable in so far as they

facilitate understanding of observables. Is his...postulate obvibus? Your answer

depends upon how much or how little you think about it.

82
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.);., ,

..;.,,.. -

,,.
yrbelief. He held a possibly only half -artiaulatehki.:e

certainly deep-spate
, ,

7

?
i, 1

,

. -
1

..
- _

,

elief 'about thee nature of thfngs; that Nature
'not,..fbrtiiitans4,-that her laws

t .,-.

4

.

- 4

Given that rayre-ef light are straight lines, haw, - Euclid asked; is the

direction-of a ravv_striking the-surface of a=plane mirror.relatedto that of

the reflected ray? See Fig. 1.

Fig. I.

t. . .

.This Figure reduces optics to geometry. The lines 21, 22, 1.1, represent'the.
. .

Incident ray, the reflected ray, and the normal to the surface at the pointof
incidence, respectively. The angle a between incident

ray and normal is termed

the'angle of incidence, while the angle p
between,reflected ray and normal is

termed the angle of reflection. What thCrelation between A and a?

. Euclid found by experiment thitt
lies in the plane dptermined by 21

-and n . Thus 2
1,

n
'
and 22 in Fig. 1 may be considered to lie in the plane

of the loafer.' To determinV' 22 uniquely, it remains to specify, p. As the
.result of many experiments Euclid found 'that p . a , 'i.e., that angle,of re-

ftection is equal to angle of incidence: 'Tits is the famous law ofreflection.
.

,,t
0 formulated by him in his Optics.

Uthough this law was based on a largenumber of experiments we must 're,

member that Greek technology
was rudimentary,, their measuring instruments im-

.

,prise, and their
lane,mirrors imperfect. ,What assurance had Eu lid that pu.

was precisely equa to a? ,He had the, comforting security
of experiment backe d

witZ have simplicity and elegance. With the co age of'convictdon he asserted.-- ;i:A., .

his law tohold exactly for perfectly plane mirrors. Ent Irmaly-of Euilid's

1.,

I
contemporaries, eyen_if equally courage

s,-blad.grave doubts-whether,h s law.
..

. ..-is right. Some wift,differeakmetaphys es doubted whether there'Coul be
.

aws

,

ii,,,,-.- 4,-,:-1,.

f -.

.,o nature at all. '-,; '' ' '

.--

ct.

P
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I

3.2 Heron: lbeShortest Path Principle.
a

Tq add groundg for belief we introduce Heron of Alexandria who lived a

generation:or so after Euclid. (His birth end death dates are uncertain.) A
,

who played a far greater role in the development of science than tht

usually ascribed in the textbooks, he built the first automaton, made

the first attempt at building a steam engine, developed trigonometry and applied

it extensively. A man with both feet on the ground, he was torever stressing
c e

the possibilities of applying mathematics.

Heron 'gave a,proof of Euclid's law of reflection. His proof consists of

showing that-both ofEUclid's laws, that

El Light is pallisgatedrectilinearily

g2 Angle of Reflection = Angle,ofIncidence

-are consequences of the'principld proposed, by Heron himself, that

Light. the .shortest patftpossible.

Here we hav9what_is probably the first example of the unifying trend so charac-
A4

teristic of science. Surely either of 41, E2 could be true without the othei.,

, .

o Is it not perfectly reasonable to conceive of light being propagated 4n straight

lines without p = a , and cnryersely? But H could not be true without both
9 . . O.

,
being true. Whereas belief in the truth of both, El, E2 merely affords grounds

.

for believing H,'beliel7ing H necessitates believing both El, E2., Moreover,

\
' 0 4

the Complete formulation of E2 is complicated, while H, like El, is simple. .

Is
.

not easier to believe one statement of a dertairi kind 't 11° an twenty, tw
.)o

, i

.

.
r * 1---.,

.

a he same or a more complicate kind? It is in this sense that Heron "proved" .

!

.

. .

Auelidis*lawof refledtion. .
9 4 ''''

'') , ' ,

The proof that 2.1 follows,from H is Avious. Since the shortest,. ,d S-

,0
tanee between any two points A anq B (in free space) is the straight li

..,

o '

op 'that-joins them, light, in moving from A .to B by the shortescpath

A

4..

essarily propagated i.ectilinearil . Fig..2 is. self-expiana ory:

A '

B

0
0

O
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The proof that follows frog' H ii, not obvious..- Wp suppose light
, - 2

,

travel from A via some, point P in Vie, mirrdr surface to B. PN- is the

normal'tO the mirror surface 'at F. gee Fig. 3.F.

A

If'the light did not become Incident to the mirror surface,tlien the light could
. .

I

Fig. 3.

not be reflected from it. in asserting that a ray takes the shortest path

. .

possible erom .A to B, we cannot mean the shortest of all possible paths (the

straight line AB), we must mean the shortest possible path via the surface of

the mirror. Thus to prove that E: is a consequence of H is to prove that,

if - APB is the.shortest path possi (via the mirror surface), then the angles

made by the straight liter s AP, PB wi h ,M-are equal.

First we show that the lines AY, pp.,,,:. cannot be.wigkiy. The distance from,
,

,.,..s5,..4

A to B via P-, will te a minimum when-"--Ali and PB are both minima; for.if

'both were not mintma'their sum could be!decreased. But the minimum distance be-

tweefi any two points is the straight line joining them, so that the distanse

from A to 118 via P can be a minimum only4if- AP and PB are both straight

lines. Accordingly, we exclude wiggly Ines from furtther consideration.

proof. What is the position of P suchleads^us t the crux o Ahe

1
that fhe sum of the straight link distnces :AP, PB is'a minimum? At t is,

stage we avail ourselves of Her
.

thgenuity by introducing an auxili point

B', the mirror image of B. Th t is to say.13'. 'is the point on the normal
, ' i

from B to the mirror as far, below the,surfai,as B is above . SeeFig. 4...
,..

, Since MC is perpendicular to BB' and C is the midpoint of BB', MC
. ) i . 1 I

cu I.is the.perpendilar bisector of BB'; .b., ,MC is/the locus og,points equi-
11

: 4-:,-

4.
dis t' from B ang. Bi,. Theiefore,nomatter What point, P it on MC;

4 4

1PB St '
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and consequently

Fig. 4

Ap+c.a+pv.

The former will be a minimum only when the latter is a minimum. But the shortest

distance between A Uzi B' is the straight line joining them, so that the

latter, and consequently the former, will be minima'when is collinear with

A and B'
t's

It remains merely to show that when APB' is a straight line, the es

made by AP and BP with the normal at P are equal. Study Fig. 50

4'

N

-.4

. 0

Fig. 5,

Since' APB' is now a straight line, MPA and BIM are ye

angles, so that

ZMPA Z.33.' PC i
I

,

I

Z WPC

8:6

ically opposite

4
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by symmett, (and also.bc congruence of triangles PBC and PB'C, from two sides
r

and their included angle, PC = PC, LPCB = 90° 4:PCB', CB = CB'),'

so that

7 LMPA = LBic .
...

Therefore the gamplement Of ,the former is equal to the complement of the latter'
.

. .e ,

,.i.e.,

L AR! = z

This complete proof that .E
2

is implied by H.

The critical,r ader may well ask,'How did Heron hit upon the idea Of the
d

auxiliary point_ B'?" But haven't we all seen swan and reflection fldating

double on a placid lake? The,svaiN, image is the *same size as the Rwa, but

upsite do ri. in terms of Fig. 5, if MC represents the lake surface and CB

the swan, then CB' represents the swan's image; in particular B' is the im-

age of B. To an obServing eye at A looking along' AP, B appears to be on
, ..

.
.

AP produced at B'. To see B "in " ,a reflecting surface is to see it as if

it were at B' and there were no reflecting surface. The concept of mirror
. ,.r

1
.

image, enables us, in effect, to throwaway the mirror and reduce the probleM of
., .

a reflected ray's pdp to that of a nonreflected ray. By` El the path of
,,

light from A to B' (when no'mirror intervenes) is the straight line ,AB'f' the
T.

Shortest path possible. We can but suppose tat Heron had such,consideratidis
.

itese mind when he pondered the p Fblem; *f..9 ponder th problem he did.

I °

, -

:-
. ,

,.

Ptolemy and IlIefracionl.

T f f e / her a e b e l o i n i e n t if- optics leads us'to the work of the great
.

.,. ,

..v

Alexandrian astronomer; Ptolemy, who flourished 12.7 to 14 I.151 AD. Shortly

'after the time of Heron deep interes0h astronomy. rased other questions con-

cerning the,nature of light. ,PtoieMy found from }}is observations bf the stars

that the propagation, of light near the earth's surface is not precisely rec

.

.

linear, but slightly carved. On the analogy pf aestraight stick parieially im-

41u
\ .

mersed in water, appearing bet, he ascribed the curvature of light to papsage

87 ., --- .
5:,

... P
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through layers of air of diffetent density.

Textbook writers would have us believe that the Greeks were interested
. .

only in the things that they could see but not touch. To the contrary, a vast

amount of experimental work was done in Alexandrian times: .Ptolemy, to better

understand the of ect of change in density on the bending of light rays by the

atmosphere, con ucted experiments to measure the deflection of light rays in

passing-from air to water. See Fig. 6.

..Po "---, -,- - WATER
yc

cv

.<,. .
.

Qt.
Fig. 6..

/Upon penetiating the surface of the water the incident ray does not con- A

tinue along AP (produced); but at at angle.to it. The deflected ray, is said,

to use the commonly accepted term, to be refracted. Possibly the reader is

disposed to take LBPA' as a measure of .the refraction. Ptolemy did not do

thii. iefracti4, is sufficiently.esimilar to reflection to merit analogauNer-
..,..:

. .
.minology. With both phenomena there is a ray incidentto a surface, and there-

s

fOre an angle of incidence:, The only difference is that whereas with refleCtion

I
, 1

,

the ray after incidence is determined above the _surface, with re4action it'lls,

deflected below 4. Is4it not therefor'e natural, to in6asure angles 'for both ,(6 _.

..

1.4.:_,phenOmena with reference to the normal tO the s 'face; to sethe taae ,defini-:
.

.
.

tion of angle gf'incidence for
t .-

inc a ray deflected unwads is Mel':; an

ured against the upwaPti.",normalOo meallye againsiAed;nward normal a ray.,
.

' --- ; .1

ter:
..., '.*:,....-

deflected downwards? '111Us in Fiv. 7,,k,4.s sa*,to helle.ngle of-incidence
fel 0 ' 9

'a}ud the-tangle of.;r'efiscti9k
g ,

-!',',A, v ""t...

,,,,," .-,,.."-_-,"-..--_. --, - -.---- ----..a"-",::"-""-
-., : -,! . .... ... ° . ,, 1^ . t ,... i . ' ... 1..4 V; -

4

r

.-.

Lq
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Fig. 7.

Ptolemy found that a depends upon a ; a change in the angle,of incidence

44°
-6

.

results in a change in the angle of refraction. Mathematically pUt, 0 is'a

function
or
of a , say, 0 = f(a).. As a fir1% st step toward specification of f(a)

. .

Ptolemy .made extensive tabulation a the ordered pacts, a with the correspon4-

ing 13:-Despite more and yet more experiments, with extensiii and Jet more ex-
,, ,

..

, .

tensive tabulation, the'law of ordering continued to elude him. Finally he had

to give up.

3.1 Kepler and Refraction.

_More than' a thousand years later the problem was tackled by Kepler
Q

genius at finding functionalwho had
,. .

.
, ---,*

. .k4

0-571.:

relation s

his capacity.

YearYear er year he 'Worked awly, conjecturing
/--

he.hit upon hypotheses that lit his observational: ta.

.planet describes an ellipse having the sun at' one of its

ecalcitrant of ordered.pairs. mow me to illustrate

d cheCking, until finally

He-showed that each

foci, and that the;

areas described by the radii drawn fiom a planet to the s n are proportional to
,p ,

the time taken by the planet t10 describe them. Fort each

'

,-
Maximum distance of its elliptical orbit from the sun, and foi- each he calcula, '--

V k

lanet he knew r, the

e etELry-l7LF T,. the,time.it
e

e.04T and r. He, a6ked hivelf!-ta

the-'ans*er.
1:6

takes to cAmplete a fullorbit,k
t! A

' I't

Whatlifi-the functional,,'relation between
IU



.

Not obvious, eh? Alas, to find is to seek successfully. After hours or
I

. .
.

days of unsuccess we likely concede that such problems demand a Kepler. But

,,
.' ..-

.

these are neat and tidy figures, tailor-made for the occasion; devoid of messy
..

decimals, bur tabulation has none of the more7or-less-ness of the observational

85

That he y have some measure of Kepler's achievement, the reader is asked

_I'

eI.q\seek the relation of T to r for the following tabulation.

rf

'2875496% 484 '
..

1,601,613 1,521.
&

.

2,146,689
C

;.,849
. ,

4,251,528 2,9a6

4,721,632- 3,156

7,414,875 4,225

. .

9,261,000 4, bo . ,

i.
..$ i'

data of Kepler's problem. His was difficult. /

. .

A hint. Our r column contains nau t but perfect squares. js.the rela-

ii .

.

tion of T to' r now obvious? No,.tri ilobvious"°eonjectUre,is wrong T is
. ,

<' not-also a perfect square.' No, neither is T the(sumOf two perfect spares.
.

T, it so happens, is a perfect eube. Advantageously we rewrite our tabulltion.

/ 1 ,.
.

r

I 1

.

66
,3 'I

22
2 °

1173.
392

1

129
3 ,

162"
3

168
5

195
3

21Q3

432

542-

62

f65
-70 1

eldtion between T and r nowappalent o you?

/. /

upon your d cernment'. Perhaps you notice that neglecting'e
1 .

.

number of
etch

ordered pair isthree, times the second, that

1 -
__I t..

((

1

That depends

nents the first

,9 03 .

.

-

.1

a ,
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Thus, for'example,

86-.

66 117 129
. 3

66. = 3.22

r

so'-that ehe entrr'for T withexTonent is
,

. .

663 = 53q223) . .'

What a pity the 22 is cubed instead of squared. Thinking wishfill ., WeryTite

4(663.)2 : (33)2.(222)2.(22)2 .

It is left to the reader to shothat

T2 = 729.r3

satisfies'our tabulation.

p.

Kepler's tabulation; though diffi611t, was, governed by the saMkproportion-
.

allty, He found that

T
2

= k.r
3

where k is a constant: Thisis his famous third law that the square of the
.

time of revolution of a planet about the Slip is proportionalsto the cube of that
. .

planet'smaximum distance from it. Although our.tab4lation with nice whole

numbers devoid of observational error inadequately illustrates his achievement,

it doffs afford some hint why Kdpler's discove cost h

cessacnt toil. I

nearly a decade of

O

With,equal enthusiasm Kepler turned to the refraction pidlem of specifying

A in terms
-7

of a . Kno ng his ability, we anticipate his success. His for-

,mul works wellbfor sma ta, but the greater Ociecomes the greater-it

aCc acy-. For a greater than 15 its inaecuracy/is unacceptab]e. It is a/
mak Shift affair; even Kepler was unsuccessful.°
4

.13.5 Ltillt

r ,

The Quickest Path Principle.

I

Alth
,.. ...\:

gh the reader is un atandably impatient learn t ecorrect for-
'

'mule., the' development of science i not to be hhrried. Solufio f long\!tand...
k

1 f

4

-- , 4/'"

Ing problams/ is attendant upon the winds of fresh discovery;tha new ideas of a A.

.

491
, r> it - 1
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' .

lively intelligence, stimulated by the intellectual ferment of its day. The

(

AP

lively intelligence was Fermat'sl(Ferc:Zt 1601-1665); the intellectual ferment
, .

It- . .
..!-:

of its day, the question, "Does light have a velocity oris its propagation .n-

stantanepus ?"

Possibl3i Galile7 '(lik41642) wasthe first to,tackle this question experi-

mentally. At night on a mountain top he signalled with a lantern to a colleague

on an adjacent mountain. His colleague, on seeing tie light of Galileo's lantern,

uncovered his own. Galildb tried to measure the ,interval between dispatch of

4
'his signal and receipt of his colleague's. As near as he could tell,,,light is

instahtaneous:? To us the experiment is incredibly naive, but Galileo did not know
.'"

that the title for say, two 10-mile light journeys, is of the ord er of one ten--

thousandth of a second. He experimented to find out.'
4 a

This live issue captured Fermat's attention. Suppose,.he pondered, light.
.

is not instantaneously propagate , but has a velocity., Further suppose this veloc-v "
ity to be constants What then? Time is distance divided by veldcitY; the short -

\

\

nest path is the quiCkest. Thy supposition thdt light takes the shortestitimehas

frecisely the same consequences as Heron's principle'that it takes the shortest

path.- But alternatively, suppose that the -velocity of light whre constant for

,
any giyen m cri ifferent for different.media. In particular, suppose that

-_, il

! light-in er'has'a el.pci y different from ght in air. What then? Wi!...'
;gravel in Moth air and vaterthe shortest pat conceivable is not the quic est..

I

,

A bentjine is onger than the straight, line between the same end Point simply'

h

. ,

because a refra tecbray 16 refracted it cannot take the shortest path: Noes it
. .

* .

take the quick t? If so, the conSequencee of Heroii::shortest path principle
.

stillhold, an per&ps refraetion is also explicable,
. -

. .-;
, rlkher t ought gives'this cOn'jecturt futther plausibility. El could bp

. t.

eXpressed'as a minimup principle. A straight .line bends..fteither tp the one

/

, side or the other; it has zero curvature. So, instead of'saying.4tl1at light is
i

, lc. .

,
. .

,propagated recti/inearily, why not say that light takap thepatfi of minimum .

.,
I

.

. o

curvature?" HeroWs minimum principlt that, light takes the s(Eortest#path is more
f

,r . ,*
, I 40

!
.

. . .

',

r. -9-2/ ,
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embracing and covers reflection as well.as E
1

Why not an even more epbracing
.... ,

minimuintiriciple 'Oat Covers refraCtion as well as reflection and El?
. ... ,

'Fermat's conjecture explains at least as much as Heron's. Does it explain
1 ..

,
:---

more? What preciielY are the implications for refraction of the minimumzrorin-,,,/
,-:.t .

4,-.-: ' . ., _
' ciple hat.,lighttaies the quickest' path possible? What is the quickest path?

.

A Cider the plight of Et' golfer-1-hp in driving from th9 fairway at' A, hooks'- 1
. ,

'(not slices - -the golfer is left4landeU) his ball into the.boat ,B.ISee fig. 8.x
/

,-..
.

.

I " .:2t-,.. .

, *1 ,

. )

1

Fairway

o ,

/
How best can he retrieve his ball? Not by taking,the sDortest,route APrD,' but
. ,

by taking the route AP"B. Aich minimizes the amoupt:a4.-bogthat he,.' frantically .
-4-

. -
, 12-, `ft,

.
..

determined as golfers are, : uust flounde through waist deep. Clegirly thisie the

PI

Bog

Fig. 8.
.4 P.

quickest possible route.

I-

AY° across the jPairway 'There

mos a menute r two

two of floundering.

is neg4ible compared

re it, fOi eXample,'"withAP'B.- His longer Valk

ing4 easy and th refore rapid takes.him a

sholtest bog route P".11.saves 4i an hOur o
. -

t 0
The extr time spent in TbakingL4!.e.94er ,71p Qsg. the f irway

: . A

with the time salted from.battlinVArd

st4any other routg. It is fh41.1

r atinglY slow that as: increase

more, but hi

AP"B compares favorably again

0 ;",
that floundering is so,exaspe

:0

bog" °Similarly
?' -
1".'

`vvely evident.
,

flouhderifig

.- ...

. .

distano;g cannot be compensated fOr by the coiT4sponding,decreadtin fafrWe
."-Ii

.' `
.

,
-.

.travel. - erefore the 'quickest route hai the minimumsof bbg'trYel i.e..ithat ..

in which P" is.perpendicular to MP'. - We ha've Solved; e quek

--it very largeb,lem in the ,extreme' case where the4golfer°6 fairway:velo

'compared.,with (since

4,ta-- 7
st path pro-

._
,b

___

almost zero), V 2t -nisog velocity. :.
' , - , ..1:

4' ' ' ' 11, i
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What is the other extreme case? Tha inowhich bog is replaced by fairway,

so that V2 is, increased to V1. Then,of course, the quickest path is the

shortest path AP1B. And-what about intermediate cases? Surely the quickest
1

. v
route from A to B is, APB where P moves rectilinearly from P' to P",/

as V2 _decreases from V1 to nearly zero. 0

Suppose the.bog eplaced by Uradken and gorse. Off the faii.way the going
.

. - , ".

is nod desperately bad as floun4ering throuA bog, but more .arduous than fair-

wayway walking; we expect P to be Intermediate between P' and P. Were the
.

.

going rougher than it is off the fairway, our golfer would go farther out of

his 'way (i.e.,deviate farther from the shortest route APtB) to cut down the

amount of rough, time- consuming, terrain he need travel across; were it less
. .i

T

rough he would go less far out Of his way. Less time-consuming terrain would

necessitate a smaller, more time-consuming terrain,a greater, deviation. It

..,

is intuitively clear that as V_
2

decreases from V1 to nearly zero, the quickest

route isSuch that P moves from P' to P".
.

..,

We suppose APB to be,the quickest route from ,A on the fairway tc B

in the rough. .See Fig. 9

°

Fairway,

\
nOUgh

if

Fig: 9. BAL.

Let us compare AQ1B' with the quickest route. f11

our golfer has less faikway to stride acloss,' namely AP-AQ' , 'so that his:time
,

-
saving on fairway travel is

AP AQ'
. But with less fairway travel he has

Vi
1

more'of'the6rough to cross, namely BW-BP, so that his -tra timIlspent in the

BQ' - BP t, Y AQ1 .

00;rougkAs Although he gains . in st iding across they
.

.,,.,

*2
184 ,.u.r,

. vl , , .-

fairway, heXoses ---=,' in strUggling through the rough. Yet alltold, he
.. :V_"14 /

e s_ .
must lose more time than he gains, for otherwise the latter route could ngt be

'

I,"
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the quickest.. That is to say, :
.7*

BQ' - BP , AP - AQ'
- t' ,

(1)
V2 . ' V1

,

*where t' is the time,by.which rtate, AQ'B exceeds the quickest. Moreover,
N ,

4") .
the closer-the-ro te

7

AQ(1 to the quickest, the quicker it becomes) that is,. ,
,.i.,*,
? -

the closer Q alipro!mates to P, the more t'

short; (1) ssuchi tha sitive t' tends to zerotas Q' tends to P.

',""-----...
, -

'r Next let is compare "B with the quickest route:ilkith the former route
4

II:. . . i .
'

aur,golfer,hae.:-.4441 T, AP ofextra fairway travel, which loses him
. '.

---,-
AQ'V" - AP

'brat
JO

-BP-ar less struggling in the rough, which gains him ,BP
V

BQ"
But

12

all told he must lose more time ttan he gains, for otherwise the latter could .

decreases toward zero. In

. .

.,.. .

not be the quickest route. That is to say
..1

........,

, ,',"AQ" "- AP BP - BQ"--
t

,,

(2)
e-- 1 , 1

V V
2

11 , .

where t" is'the
i

time by mhich route, AQ"}g exceeds *the quickest. And as with

---7--7"4' . , . , N

the previftt cbmparisono k2 is such that positive t" tends to zero as Q"
;

ends to B.

7,
Lab us Compare the left side comparison AQ'B of the quickest route with

the right side comparison" AQ "B. The condition (2) is equivalent to

AP - AQ" BQ" --BP
-----77T2 77-, 'CI,-

and consequently, gbivalent to 1 -

. _. ,

... BT , BP AP - AQ"it_ -
-"" (3)

'-'

V2 Vi1/, t"
i,, . , ,.- 7 ..- ..,

,

Compa.fe (1) With (3T.

...,,,o.

We observe that heformer;when Qt = Q d. t' ke.t ,

3 )

and the latter; when .Q" ='Q and t" =,t,-is the condition
.,,

, &

1, 413Q-- BP AP - AQ
V2 V

1
t ' ( )

It,

6

wheTe
L
poSitive -t tends to zero as Ja, tends o P. That i& to say,the,rela:

-. '.,1'

tionb4tween AU ad tile-quickest
,

route is overned by (4) no matter4Cether
11 1 ;,..3 1

41 is o the left br O'the,right,of We ha answered, e question, 'What
-3

0
44,..33, ;-1 .

tie e t
_.

pat APB s suah that mpared with
.%.

I......i,
-;- e'...4,-. r . iv r.. 21

...
\ VC?: . ..` . a ,, .

,

,,-,2i.L.,----,.;,,v,:411:1::''''''%
ly, -- F ,-ri' 4)i,' ti- -..e' A- :_,..., ,.. .,,. ...,,f.- , --;, r:.- , A ,.. 4. . '''''-' 4 .-.' 4 , J

.
t.3
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any other path AQB, condition (4) is satisfied.
--e

.

`Few ma aticians, even among " hpese of tfirst rank, could claim inven-
t

4

tion of the calculus. Fe'rmat is 6ne of e few. To.splve the problem of the
, ../

.,C

qui Kest path he invented the methodjof the is of variations. To the
. IF

0

_c idea ofthis methpl, the reader has,,in followingethe plight of our golfer,
,2. 4

been afforded an intuitive introduction. With the fair*ay replaced by air, thy"
. ,.

,
.

rough by water, and our golfer by a ray of light, (44 ) is immediatelyiapplicable
...

toithe problem of a refracted ray-taking the quickest path possible.
-

See Fi.g. 10.

A

46.

,

\**,

N
-)

arc radius AQ ,0

center A
. ,

4

- B

i

.
00051.g. 10.

'1°4.

Tfie circle with center A. at radius AQ cuts AP in R, and its tangent at
. .0., 11 ,

e '''' . <
Q (perpendicular to. AQ, oT course) guts k, AP ,in R'. Z. Fqp, = y. T\

1

What happens , moves closer and closer to P, i.e., aas
t

o s Q -4 I/ Since
...

exteri angle.of triangle is equal to

ang4s

14,

the...leu'Ofitq two inter or opposite .

)

= 90° LQAP-'

But, as Q -413 , clearly L QAP 0, so that L Q2Rt
A.

Q.? 'sin y. Moreover,...as Q P, RP -/RrP, i.e.,
,

-consequently; AP - AQ --*QP sin.y. Therefore,

"

AP -AQ sin y
79 .' QP ' V

1 .v,

as
1 ,

. ,

Next, study Fig. 11.

96

3
Al

1

! ,

and consequently,
0

4
AQ -4R'P

.

;
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92 .r

arc radius BQ
'center B

Fig. 11. ,

t .The cirdle,with -center B and radius B
P cuts BP (produced)'in S, and its

tangent at Q (perpandicular to BQ, of course) cuts BP (produced) in S'.

z p9,7 =s,, .
F

It is left as an exercise 'for. the reader to shOW in a precisely similar

_
I'way that ,

.
l

By (4)

so that by (5 ),and ()

BQ - BP sin
-4 QP es Q -4 P . (6).V

2
V
2

BQ - BP AP.- AQ
-40 as Q -413 4V2 V

1
'

oT

sin 6 sin 6
--

QP QP -4 0 as Q 4P
V1 ..

that is to saithit,when'the routes AQB, APB are arbitrarily close,

difference., t "
.

{sin 6 in yt'
QP v2 r

is arbitrarily small; the closer AQB is to,the quickOst-route, /the morenearly
.

true that
r

sin sin67
-/

v2 vl

1

In other word r thaiquickest route equa'ity holds; i.e.,

, sins v
2

,

...-

1
(7)sin y V A .

,

.

Since in the limiting position the routes AQB,ldi3 are arbitrarily close,

4! QB1P; differs from a right angle by an arbitrarily stall amount, so that

I.
'9 7

r
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,pheisituaticin of Frg. 12 obtains.
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41.

Pig. 12.

Thus a, the angle of incidence of the light

PN, and y are both complements of ZUR''. Therefor

= 7 (8)

Similarly, in the limiting-position.the.situatiaof Fig. 13 obtsins.
Yer'

with the' normal

Fig. 13.

Consequently, 6 and LS'PN are both complements of LQ,ES',-and the latter-

is verticallyopposite'to 4BPN' , "the angle orrefraction p. Therefore
,

(9)

Substituting-(8) (9), ih (7), we have

.!...

sin p
v2

.

( sin a V (10), ..

,

This is Fermat's law of refraction, which may be alternatively expressed

V
. ,, sing = sin n a , where

K
(11)

4 i l. . A

i.e., that sin Ais directly prcportional'to sin a , where the constant of
,

propoitiona.l.iti is
'V
,.......

1

5

,- 8:
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Fermats law was later rediscovered independently by both Snell and

Descartes, an was used by the latter to explain the phenomenon °X the rainbow. %,

It( won rapi& acceptance with contemporary scientists. From (10) we have

1
V
2

/

= arc sin sin.ct ) .

3.

,

That Kepler fail4d to conjecture such
rcomplicated functional relationship

'0 s.
betweeri p and a occasion's no ',surprise. What is Surprising is that he was

't 1

so successful as to find a formula of tolerable accuracy for a < 15P%

3.6/ Newton's Mechanit is Theory pf Light.

/

With ewton (1 -1727) science came of age. Understanding:the starry

heavens was within man's grasp. It waseA almost as f Newt-00With his three laws.

and few axioms could, as Jesus, with his twoI/loav s a4eive fishes, work

miracles. Hez-explained the ebb and flow of the waters of the deep and the
14,

passage of the fiery bodies in, the firmament above. ,Nature lost her mystery;4

man hi's imPOtence., The solar -system is a gigantic piece of cl'OCkwork, and

Newton had discoyered how it ticks. Newtofi's mechanics is the key to every-
O e . .

thing, around the sun; must it not be the key to everytAing under the sun? To
0

the egthusiasM borh of hit' sucess, his laNis and axioms were as clear as day.
. .

'The minimal Pathirin_s.ipl:ed of Heron and'Fermatwere still darkly mysterious..
4r r ,/ ,

Burely the optics "of Euclid, Heron, and Fermat could be explained mechanisti-

cally:,Newton thought .so.

'
44

'Newton4;;egindat the beginning. 'The.first thing to, explain is the recti-
.

linear propagation of light. His first law states that'a body moving with uni-
,. ,

o

'fort veloeiti in a straight line will Conti to do so unleSs acted upon by

extermal forls to change that motion. Are not EUclid's and .Newton's first
/ . 1

- -

.,

/
,

. .

laws remarkably-similar? Wit)s,charaoteristic ingenuity Newtch2 Makes the ,fprmer
* /' , . ,

,

4
,...

1.

as an, immedi5te consequence of the latter bry introduction of 'thee supposition
*

' - a 4V

oMt
1

,

fthat a ray of light cists of,minut4 bodies, particles, or corpuscules. Be-

'I,

caute of this supp4sition Neyton's theory of light'is knownas the corpuscular

/theory.
.4;

9 9

o

',4



How does Newton acc t for

cdiTuscular theory, an incident

sion

mirror.

95

Euclidi-s law of /r

ray O"?`,1).ght ia

'/

ction? AcdordiniStihis

ected becaue of the colli-

of its constituent particles with ,those stituting

It is,of.course,sufficient to co Eder

particle, for all the others will behgvg in the

stances.,-

First, let us consiOtr a specia, case, that

the mir55.Zi7 See Fig. 14.

the surface odthe

the file.v.254....Wle inc ent

same way under similar circum -

1 ,

of an incident ray normal to

)

t

I f

. .What happens when
) .

_

P? Its.attem to penetrate the surface MM' perpendicula4rly downwards is .

ely la forces actingilerpendicularly upwards, (due to the constituent

6 of the mirror surface iStthe 'Ehb7rhood of P). -Consequently the

icle returns along the normal. t

/L..We now turn to the general case. It is tor.sumed that V
1'

the velocity of

&light ray, in air,is constant irrespective of its lirection relative to the
i

l
. .

mirror. Thus the problem'is the followlAg. A particle travelling with velocity
of

along AP at an angle a to the normal is reflectedWith velocity V1
1

along BP BP which makes some angle p with the normal. What/,ythe relation

Fig. 14. '..(N

a constituent particle of a ray trav ing along NP reaches

re xsted s

v
1

between f3 and a ? Q-See Fig. 15.

V. sin a

Despite tue .fact
.

A

s ina

""\
that the particle at P now attempts to pe trate MK'

P

.Fig. 15.

100 /
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.

obli'04.y, ewton insists that the structure of this surface is such that the

c
, .

,

reS64, ce to penetration i is solelY(by forces acting perpendicularly upwards-- ,

,.',jus.0a. tin the special case considered above. What are the dOnsOquences of his,,

1-
insister*? Forces acting in the direction, PN have ho components in th-
'

direction' MM', so that the'forces (if any) acting in this direction on the

particle at P *before impact are unchanged by impact. Therefore the velocity
,

of the particle parallel to MM' when part of the reflected ray, is just the
. i ,

,
.

same as when part of the incident ray. Motion parallel to the surface remains

0 ; unchanged. Equating*mponent velocities parallel to MM', we have
, .

0?

c :. - V
1

sin p = V
1

sin a
,o

\But, by hypothesis, the resultant velocity of *the particle when reflected is.,
...:

V
1

at an angle p to PN. Hence it is clear from Fig. 16 .hat ,p = a
0 0

1

°V. sin&.

14
VI

4

Fig. 16.

Next, refraction. What is the difference between reflection and refraction?
0

Whereas in the latter the incident ray is successful in penetrating the surface,

in the former it is not. Newton treats, these pherlomena similarly.. No matter

whether or not penetrationNis successful,
Newton continues to insist that the o 0°

only forces opposing penetration, even if oblique, act perpendiculsAY:to the
°..

,

'surface. Consequently, for refraction as for reflection, motion parallel to

0,36

the surface remains invariant% And whereas the refracted ray differsfrom the '-

reflected ray by being propagated in water instead of Air, so that it. coinponenti...
:velocity parallel to MM' is V

2
sin 93 '%ihstead ot VI sin P,:the inciderrJ

.

Lray is the same in both cases. See Fig, p. % e.,

. A.

1. 0 l
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V sin u_ -
AIR

P

- - -
V2 sine

Fig. 171

WATER'.

Therefore, equating component-velocities Parallel to MM' ,

. I 4

.4 V
2

sin p = V1. sin a ,

01

', giving ' ,. ' ,

/-'
rt,.. - . V1

sin p = K2. sin -a , . where K
2

= -- . (12) .t .-

.V2' , .
...,

.. 11.
1.

.3.7 Fermat Versus Newton:qxperimentum Crucis.

Thus Newton, like Fermat, concludes that sin f3 is directly proportional '

tb sin a. However, compariwn of (11) h (12) also shows that,althOUgh

t 00!
their formulae havethe same form, Newton's

reciprocal o t's., And'it is an ex-Peri

is bent tiwardh the =pal, 'it.

a formula of the form

s

constant of.proportionality iithe

ental fact that the'refraCted ray

(3 < a , so that sin < sign . Consequently ;*

Sin sin a
.

4,0 g.

cannot be c rreht unless the bonStayt of proportionality K 11,1ess than
. ..

, . ./'
... .,: ,

-Y2 . , - V - , -.. 'L.... , ,..404 -

unity. If (11) he correct, ,-- < 1; if1(12)., -"e: < 14 eriks ,

., ..,,. V
2 :

%
.

.

.,.

, Fermai's formAlae cannot be correct unless the velocity of light in Water is
,

, . . .

,less than the velgcity in air, Newtoh's,carpot be correct unlest the pitcig.

.. . %
4. .' . .. . . . .

,.
lop5Oite is the case. - ' .

. .-

, --,
.

wton.hadno diffitulty, in findtng an aguient to. vingcate his on
).

.theorlr., A be:rtieXe%bf light wilen,111 alr is traveling in a homogeneous e

-cI,,i, "` .- ' .4.4.,
. ' .10 * ( i

V, :A
,

X 0
- 1

.
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medium; so that the forces acting upon it are constant; there being no accelera-
-t

t.i.

tion the' net force mtst be zeros. Similarly in water. Bul when a particle is

passing4rom one medium to anotherthere is a ehange from one homogeneity to

anAher, so. that the forces acting upon it momentarily are not cpnstant. Water

.

r
has 'greater density thanzae4tits particles are more tightly packed. When a

t
, /-

particle e reaches the neighborhood of:the interface, aheadof it is an accumu-
4

A
V /

latiqn of matter,bdind it, a sparsity. Consequently, since the more the mass
k

4
.

ASO
, 7° 4. , . -

%'' the greater th?attracon, the particle has momentarily a terrific accelera-
-.: , -t_.' .

)
.

tiori and pLeeds up from! V to V,. Having passed through'the int4face, a% . t 1 i

once again there-is no net force and the particle continues with constant
,

.
..azelocity V2. 6 A

4
, .

It was a good argument as long,as itlasted; it lasted rather more than 4
_

4.0 f:

.
.

century. And then7technological advances made it pOsslible to show ekperimentally
. .%

that ?Aga is slower in water than in air. This was the experilwntum,grucis,

... The basis of Newton's'argyment, that light consists of pakticles, is untenable.
, "- , 0 '
O '

enunciated
... 1 ,, .

We must add that Fermat his quickest patfl principle a quarter of a
%

7 ,,(
century before it was known experimentally, that the 'psppagation of light is

i
° ,

not instantaneous.

3.8f To Recapitulate'.

k have traced the development of elementary optics over the centuries up

to the formulatibn ofFermat's and Newton's theories. Both e5cTlain rectilinear

'propagaton-of light; both account fOr the law of-ref3,ection; both give-the
.4, . ,

same kind. of formula for refraction: yet they are rivals. Rivals, for with

regard to refraction they differ in 1etail. Here is'a situation tlpica/ of .

.
,

t
/ ... scienv's historr-a conflict of theory'only to be resolved by determination

,fact. That is the role oftcrucial e periment.

, -

t when a consequence of a theo y ts in question, the basis otthe,t4eory

also in, question. In rejecting Newton's consequences for.refradtion as

contrary to fast, we must reject tie basis of these.consevences--the.

1'03
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.... . ,
.

., .

7tbOrpas"pular nature of light. That lermat's theory-could explain all the facts

vindicated his quickest path principle.. Later-this developed into the wave

theory of light -- 'that the constitution of light is not corpuscles, but waves.

Aighouth, space does not pe4mt consideration of further developments, I

hope tb have shown you something well worth showing of the role of mathematics
xe.

if the evolution of science. Mathematics pensFour seeing of logiCal con-

...
.

sequences an6focuses our attention on eavropriate experimentation; an, aid to

.
.vision, it is the eyeglass of the mina.

.

. .
. _

. . .

The Role of Science in Mathematics.
349 ---___

,,,, ,. .

rw46h to en& with a curious twist. From'the role of mathematics in
_ .

.

science, we turn to the
,
role of science in matheMatics; for despite an atun-

4
...

dance of,material, howscience gives grounds for mathematical theorems' .s
%. .

little known. Cpnvenient to our purpose is the problem of how to construct g'
. .

. . .

tangent to the ellipse.
. .,

/If two pegs F
l' 2

F- are hammered'into the wound and a, cord tied to both

of them is kept taut by a stick P, the movement of FL under this restraint

marks_oUt an elliptioal..flower bee. See Fig. l8v

9

.;

"

.

Fig. 18.*

,This method of construction exhibits thd usual., generative, definition of the

ellips,e.,TheSocus.of a point P ,such that the sum of its distances_fk t

04;

0.



fixed points

sold; when P

1

loo e

-410, 4 .4

1,
F2' (c'alled.ths foci) is constant, is said to be an ellip-

is restricted to off6-plane through F
1:

F2, its locus-is said

to be an ellipse. Traditional) the constant 'sum is tarn igo be 2a, giving

the equation\of the ellipse as

444

F1P = PF
2

= 2a.

Thecircle is a special case-of the ellipse, the ellipse a generalization

of.the circle. When F1, F2 become coincident

F1P + PF
2
= 2F

1
P = 2a

.

so 'that F
1

(and F2,) become the center of a circle of radius a. This suggests,

that properties ot.the circle will be limiting cases of properties of the

ellipse. What light does this suggestion'throw on the problem of constructing

A A.

a tangent at P to the ellipse? See Fig. 19.
i

T

4

-Fig. 19
'

The tangent at P to the circle with'center F
1

-is perpendicular to the

_ radius F
1
P. How do,we go from this limiting case to, the general? Equally

well we could say that the tangent is perpendicular to F2P , or that it is

.
perlendicular to both F

1
P and F2P. But obviously the tangent can be per-

pendicular only toone of these lines when they are nO longer coincident.

Which one? Surely they have equal claims. What is an acceptable compromise?

that equ*ally itialned to,the tangent, i.e.pthat 7 = 6 .1 2-

See Fig. 20.

105
\\
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N

Fig. 20:

This conjecture has merit, for it, is' consistent wi the lifaiting,case;.:When
4

F1, F2 become coincident 7 = S = 90°. ,put to s ppose.that 7 = S is equivir..

lent to supposing.their complemets to be equal, i.e., that a = p. See'Fig.

N.
. "*".

h .

Fig 21.

0

Are not the principal ingredients of his figure familiar.! Could it not be

interpretea as illustrating the law f reflection? We now use science to do.

mathematics. The phrase "to throw Fight," hitherto construed as a figure of

.

speech, is now to be taken lite y. Come to think of it, what more perfect
4

exemplification of a mathematics straight line than array of light is thei-e?

We suppose a ray of light ?IP t be reflected at P from'a mirror TT'. If

the reflected ray does in Fact Pass through F2, then

to the ellipse at .P) is the normal at P to the bisector of L: F
1
PF2 and

we have solved ourproblem.

TP' the tangential line
. .

Does the reflected ray ss through F
2
? We recall that reflection is,a ,

:Consequence of.tha shortes pfith principle: Thus, if Q is the point on the

4
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n

(mirror

from which an incipa_ray F1Q is reflected through 'F2, then F1QF2

1-1

s.t be the shortest path podsihl& (via the mirror) froms, F1 to F,. It re-
'

mains to show that the shortest path is such that Q ,is coincident with P,

the points at which TT'- is tangential to the ellipSe.

Consider Fig. 22.
T NNQ.

N

N.
N V

N

F1

Fig. 22.

p
N

F2 /

It-is evident-that any point Q (Rn TT'')' not coincident *ith P 'must lie

's_ outside the ellipse; therefore suppose F1Q to cut the ellipse at R. Since

RF
2 is the shortest path from R to F,

a
, 1-

!t....10.1.00
Qp:2 > RF2

Consequently, adding F
1
R to both sides of the inequality,

.

f RQ) FiR RF2
A,

-
P
1
Q + QF

2
>-F

1
R + RF

2..c.104;r47--

But R .is on the ellipse, so that by definition

F
1
R + RF

2' = 2a

I Therefore,

. t Q.F2 >

, whereas,, P being on the ellipse,r
, ,

,4*
F P + PF = 2a : e-
1 2

4.,

Since light takes thelhortest\path, it follows that Q must be coincident
.

with P. That is, a ray of light from one focus, incid.nt to a mirror.

. ; 1 0 7

S
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(tangential to the ellipse) at its.point of contact, is reflecteyhrough the
, .

other. This completes the proof ()Pour conjectured construction of a tangent

el

to the ellipse.

P4rmat was the man who first raised and substantially answered the wider

. question of how to find tangents to plane curves in general. To solve this

problem for any curve whose unption is an algebraic polynomial he invented the

differential calculus. Yet-it'f5 refreshing with the present density of

calculus textbooks to find that a construction for the ellipse can be estab-,

lished without resort to differentiation. The solution by optics, given above,
4* .

was the earliest. .

.

That in Fig. 21 a = p .has several practical applications. The ky td'
4

A
.

ihese applications is that'for a silvered ellipse the immediate(elliptical)

'neighb6rhood of P will reflect light as if it were the surface at P of

the mirror tangential to the ellipse at that point. tonsequentT, no matter

what its direction, a ray passing through one focus will be reflected at the

ellipse through the other. The heat of afire at F1 although radiated in all

,

directions will be reconcentrated at F2. If no radiation is dissipated en

route and none lost in coritact with the ellipses silvered. surface, F2

as hot as ,F1. A reflecting ellipse with a fire atone focal point has a fire

at bot4; Focus is the Latin for fireplace Or(hearth. Similarly for an audi-

torium with an elipsoidal cupola, F1, F2 acre known as the whispering points,

/

Since sound is reflected in the same way'selight, a dispersed and therefore
411'''

, )

.....

weakened whisper from F1 will
1

be inaudi)Xe in all other parts of the room

. .

except at F2 where the whisper is reconcentrated'. See Fig. 23.

p
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Thus, given a point source of light' at

T.oki

It is often instructive to go to the limit, We found it1Profitable.to

consider the limiting or degenerate ca 'e of the ellipse where F1 and Fa..

lemme coincident; Wenow,go to the other extreme and suppose, them to be as

far apaxtas'possible. With F1 fixed, the farther F
2

is moved from it,

..._

the moreelongatA the ellipse and the nearly parallel. PF,.,ta_,t.the

axis VF See .F.g. 24.
eaiv,..0

igc ,

,
, 1.

-....,...

4
1.....----- ,

. -..........

.-- ,..,..,
;

P , 4 \

\
4

,

4--
F
----------- - - - - --

F2 j -V 1
.

"--1-e. :i- >;;'

,./.,

.....----

------- . ). .

'./ .

Fig.. 24.

la.."..")"-as -
. .s..

Plhally, with 'F
2

at infinity, the ellipse has degenerated into what is.kno
;

as the parabola and 172, has become parallel to the axis. See Figs 5.

M

bt

/

. Fig. 25. n 1

.

'

a .

, the reflectibri frdm kAllvered

paFabola MVM' is a beam parallel toy-tile axis'af.the parabola VF
1

Rotation.
s'

the parabolic mirror about,its axis generatbs what is known as a paraboloid

of revolution. Itis,of course,reflects a solid.beam of light from ,a point

source at F
1

parallel to its axis, and is exemplified by the motorcar jlead-
',

ladp. And conversely, since the rays radiated from a distance source$areZalmast

109

r x4
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parallel, they are accumulable within the immedip..te neighborhood -of F A
1. ,.

paraboloidal reflection could with equal justice be termed a paraboloidal
A

accumu1ator. Radio rays,, individually weak, can be collectively magnified

into a strong signal. As we'll as essential to radar 1istenj5ng'devices,.the

-
parAbolaidal reflector is the basis of the radio telescope.

c
11

e

'.111114.
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Chapter 4. Applicatraris^ of" Matrfx'Algebra. -

. .
-

-------,-::-..--,-....... - ......._ _ 4.,

AlthoUgh my lotalio-ge-in thfe lecture is to 'show what matrices are good for,
. .

not to teach matrix theory as -such y-1: shall assume merely that you recognize a,
-

--Le. ,.

matrix when you see one an can readily-Perform matrix, row times column multi -

plication for very simple matrices.
_

My aim is two-fold, my lecture hat two parts. In Part 1, Mathematics

With7Matrices my principal objective is to convince you that matricesre mu ch

more than a kind of mathematical noughts-and-crosses designed to delight exam-

iners and depress examinees, that matrix technique really does facilitate doing

mathematics. In Part 2, Frdm Matrix Theorem to Relativity Physics, I aim to

show how Vlis'facility, used with bold imagination, devastatescom stable,

caimionplace'conceptibns of our physical world.

Part 1. Mathematics With Matrices

4.1 Itx-Use Matrices?

'Have you ever tried using a lump Of Ack.to drive a six-inch 'nail into a

Four- inch -beam? It is easier with a hammer. Easier because the hammer is de-

expressly for the job,Idesigned to have good balance, to handle well,' to

. -4
Affect a neater job with less effort.' Its design, deceptiyely simple, is depen-,

dent upon giv'ing much thought to question's of rigidity, distribution of weight,

'and'center of percussion. Hard thinking goes into its design; hard work is

simplified.by'is use.

Matrices; tpd, are deceptively simple. Some clever fellows gave much

thought to devising a notation that handles well and a tchnique that does a

tidier,,more effortless job. Yes, matA;es take the slog out of nailing equa-

tions. And, as with driving nails, there is no need to tape anyone's word for

it; experience is"codclus(ve. Presently, you will have the experience. Not tO

start our mathematical carpentry with rusty nails, we first review.-

ti A

4like

1.1 1



4.2 Rotatibn of.Rectangular Axes.

IGiven a plae_we introduce a rectangular coordinate system x,i wit

origin 0. If from any arbitrary po nt P(x y) ,wedrOP a. perpend* U18:14( o the

x-axis, then the length of this perpefdicti y f'l r is (the ordina e o, . and"'

the distance .f'om its foot to 0 is :x ( e abscissa of P). A di gram makes
4 ..,it clear that to any given point P there corresponds just one spt r of:cb0 i

nates (x,y) and, conversely, that to any given

-one point P. See Fig. 1.

(xTy) t ere .rrespo s jlist

Next we introduce new re

origin 0. AI'hou

lar coordinate system 7,i with the same

the po t of P remains Achanged, relative to the new

coordinate syp m, it has

P

I

Y 1

t

0.

112*
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This situation verynaturally raises the question, what is the relation

between the old and new coordinates of R? If.we are given P's

ex,y) then_ P is fixed and co.its new coordinated- (x,y)

old coordi,hates

must, in principle

at least, be determinate. Conversely, given- P's new coordiriates

A

__Ade its old.coordinates. (x,y)? _Nhat,is the transformation fiom the fono conr-

/,----

,y), what

dinste systei to.the othe

i Easy reasoning shows that the rule for going from the coordi tes in thea-
one system to those in the other, say from (x,y) to. fxjy),'must be a linear

trangformatiON That is to say, the rule must be a system of lin r equations

in x,y and x.,y of the form

1 ---..

-44-..i-4-1.4-.4.-4%...kss.---,--,, ,--- "-.....(.,__ x = Ax + By

:.'wherd A, 13,,C, and D

0.4

are numbers independont of x,y and x,y.

'-',.

Shy is this? 'Because this is the only sbrt-pf system which can be in-
.

xerted. Since P has Unique coordinates in both systems` the rmulae must/V?

also d40eyrmine a unique value for

4
If A, B/ C and D were, ,.

x and for -y when ;" and 'y are given.

not ,independent of .x and

complies 'terms in xktuadratic- or more

an y would not necessarily det

If tie reader will use those explici

explicit formulae for

14

x and- y, he will

y, then the formulae would

or y, so that given values

ine x and y. uniquely.

'f&VmUlaeor x and y

et formulae of the pattern

x = Ax + By

y + S

.

' where A, B, C, and D are expressed in terms of A, B, C, and
f.,

D.

, You know .Yell how. o solve a system of two simultaneous linear equations

inLitlie'two uqknowns x nd y.

'4

efpress, x and 'y in terms of
. 4 \. 7

StglitS if, li, C, and 15j means of A, D, C, and
,,, _ .

NN '; -..,, ,(....-
. .

exereise for you, fo carry Out, the calculation. ; We do

You will obtain the above two equations if.you

x and y. It is easy to express the new con-

D. It might be a good

nOt do it here because we

. 113



*".

x. x - -.7- ,,, M.:

__oinot need thee forimilae.
V

i,Of course,.. --ne)tt.,,questiqnil.s:,..What are A, B, C,/ and in Since-theyq
/

../.." . .,y
are independent of pie, c. idinateg' of P, they may be f9nd by specializilig. A

t -,..

z

'
/

well-chosen point Pti,..1.1...,. eobace. the, labor of calculation:,
i A., .,

Let tit take th Point on the x-axis at unit distlicefrom the origin.

This point, call i P
O' therefore has coordinates (1/Of in the old system'.o

See Fig. 3.

'4

;What are Fo's coordinates in the n system? ;its abscissa x is, of course,:

the distance from 0 to Q, whey= Q is the!foot.of the perpendicult dropped

from P
0 to the x-- 3.xis. So, king ourre4equation

4.1

with x = 1, y 4 0,

To.go farther w----eeato knoW th

zif r
this a. - `Prom'th obvious geometry of Fig. 3, since OP =

x .A,Ax.4. By "

4

b th -new axis with the old. Let

-

Cpasequely,

Sexi, what is

. _

At is the negative

CQ = cos a.

A = c9s.a.

the ordinate y of

f thelaerpendicular

1
P
0
? Since P

0 lies below the x-axis;

Pv A, that is,

Y =

114
I
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So, taking our second equation

-with' x = 1, y = 0,

111

Sr- = Cx + DY

-sin,a;--C1,+`DO=C.

Of the four numbers. A, B, 61:.', and D -in the transformation, we have al-

ready found two, A and C. It remains to-,t'ind,B and wD. And isn't it ob-
ksil

,

vous 4hat to do? The y-axis is just as good as the x-axis; it should be given

equal consideration. Sc, having taken a point one Unit along the x-axis, we now

take a point one unit along the y-axis. Let P
1

be the point with coordinates

(0,1) in the old system. See Fig. 4.

What are P
1
's coordinates

Fig. 4

in ,the new system?

t ',a...A ,

Its abscissa .7c of

course, the distance from 0 to .R, where R is the foot of the perpendicular

ropped from, .P to the x-axis. So, substituting x = OR and' x = 0, y = 1,,
el w

the fgE7t-et ingtig4,,,afthe,transfor+matiopt.-,-

OR=f,A0-FB1=B,..
, :$,

And since LOP
1
R and the angle a between OX and OX are, both complements

of ZP
1
d7, .40P

1
R7=- a. Consequently; with OP

1
. 1

OR = sin a

B =.sin a:

r%
Similarly, since y = .cos.cz, we obtain from the.second equation of.the



!.

.1:transformation that
*

p

112.

D = cos ce.

, . ..

, We.have'fourid A, B, C, and b...'We,conclude that the required transfor-'
..-.

, 1
f ,°:, .

.

pp in .
pl

....°

'"1

t

X = (cos'a)x + (sin a)y
.

( =Sin a)x t (cosa)y-

. .

/
Our refresher course is co pleied; we have. sCraped the rut off our nails. \

ZN.t..Transformat on liktt without Matrices.. °

(1)

get

We now use mat ix algebrall.to write (1) in a slightly simplified form. We

\cos a' a

cps

for multiplication of the-s tax on the right side by the first op the

'right -side gived a column trix whose terms are

and

cos a)x + (sin+a)y

(- a)x + (cds'a)`y

.

which equal x and y, respectively.

Zhe first,eleMentof this column matrixlts obtained, as the reader doubt-.

-

lessly recalls, by multiplying xii(the first element of the column of the,sec-

ond'matrix) by cos a (the first element of,the first row of the first matrix),
. ,' ,

by multiplying y ,(the Aecond,Aement.of the column of the'secondmatrix) by

sin pc (the second element of the first fow of toe, first matrix), and by adding

these prodLts together. Yes, it's easier to do than to state. The sepond,

element ;is similarly obtained by usingthe elements of. the second row of the

first matrix instead of its first row clements. multiply columns by

rows. .,,
. 1

- # , S ,

,

.
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To ;4e gain anything?

113

) does look a little more compact han (I). Is

amt.. less laborious to write\than an ,equality sign? Really, this is split -

-tits
,

matters is not so muc] how a tool look's, but how it handles.

How wel] does,it_handle7 Let us do some mathematical carpentry to find cut;

_letzus_deduce-- I beg your pardon, .let us nail hOme-- the basiC trigonometr4

angle sum formulae ,for cos (C4 p) and sin (a, * P). For comparison let us
. I

do'the job twice; once driving our nails with a hammer, i.e., .using matrix

transformations such as (1*), and once hitting our,nails with a stone, i.e.,

using non - matrix transformations such as (1).

Suppose that the x,y rectangular coordinate system is first rotated

through an angle a to give a second x,y system and then through an addi-

tional 'angle p to give41'third»
:1 c,

system. See Fig. 5.

Fig. 5
-

Regardingthetsedbnd system as the old and the third system at the new,

since the latter makes an angle p with the former, by virtue of (1), i.e.,

substituting p for

we have

and, by virtue of (1*)

a,. x X, ,y for y, and 'St for x, y for y,

(cos p)x (sink 0y

Y = (-sin p),Z + (cos ) 7

(21 (co g." f3 Sin

.7, -sin p cos p y

Next, taking the first system to be the old and the tfiird system to be the new,

since the latter makes an angle a + p with thg,gprier, by virtue of (1),

2!.



- --.
f u.....- . ... - ©'4. ..

0 .. a . .

.,.0.,14 -.
, . . ,

= --- .....__ -,
t i.e., substituting a +.p for a; x for x 514 for y,

.-- '
.for x, and y

------ ,

, 0

for y, we have '

7 = (cos a + 0)x + (sin a + 0)y

= (-sin a + 0)x + (cos 1777)y.

Similarly, by virtue of (1*)

.
1

a + srin a

y --sin a + p cOs

+

+ p

(3)

0

..,

Note that this far the differences are merely notational, but this Ys the part`

,.- ./*

ing of the ways. From here on the non-matrix method is more laborious:

.._ .4..._

P4

k cf44; 0.

First, we continue with the matrix method. Using'(1*) to eliminate 4

from (230, we have
,

0:4 4 ,

, 0,.

,(
... '

'' -1' 0 sin 'a 2 Sih a

y -sin p cos p , -.sin a sin a
.

x

(1V('')

Y)

. ! .1.16-.

. .

Hence, from (3") end (4 *), we-have, in vieli oP the associative law of matrix

multiplication,

cos a + p sin a + p x cos p sin p co,s cc,. sin a x
. ;-

-sin, a

so that

Ados a + p sin a + p cos p sin \ cos a sin a ,0

° (5**)
. -Sin p -cog Ft7T,FfT-- -sin R c8s-0

(5*) ,

cos a + p \y/ -sin p cos p -sin a ,;cos d y',"

.*,-'4*

.'

To_cletermtne,,cos a + p it remains merely to mu .41y the first row Or the

-'''L,
. r..,-t,..k,

... _ 4,

first matrix on'the.right side) into.the first-21:umgofthe second. Wegbt
. ,

cos a + p = cos p cos a + sin

which, to show -due resr6ct to the alphabetl,wp

(-si

cos a.+-0 = cos a cos p - sin a sin p.

multiplying th'e'firpt.row into the second column, we get

sin a + p = cos p in a + sin p cos, a,

118



i.e.,

D15

in a,+ 13 = sin a cps 13 + cos-a pin 13..

mr

-
Next, we continue with the non - matrix method. Using, (1) to eliminate x.

-and y from (2) is a much more strenuous affair than using (11ErtO eliminate

( _)from (2*). How much more strenuous you can find out only by doing the age-
x

Y
bra for yourself; your mental muscles' will not tire by watching me work. I'll

..
wait.

li'.Your labors'correctly completed, we both have -

.
57 = (cos a cos 13 - ,sin q sAn p)x + (sin cos p + cos ct sin p).y

(4)
7 = -(sin a cos 13 + cos a sin 13)x + (cos a cos 13 - sin a' sin13 ) y

,

Hence; from (3') and (4), we.have -

(cos a + 0)x + ( sin + 13)y

(cos'a cos 13- sin. a sin

^r,

13)x4 (sin a<cos f3 + cos a sin 13)y

,( -sin a + p)x + (cos a + p)y
.

-(sin a cos 13,+ cos, a sin c3)x + (cos a cos 13 - sin a sin 13)y*

And sinclatese equations hold.for arbitrary x and y, taking =1r Y =O,
..

ilc first gives:us immediately the formula for cos 'a + fi, the_ffecond the fur- ...

muia for ''bin a `3.
... .1

'
How much extra work does the non-matrix-mthod entail? Quite a,lot; we

1

.,(.1-,,'-i , 1,,,;,4- =4,---:." -Vs \t' i7- ` - -. ..., , .-..
7 have both done it, we know. , 4.6u let us see presl.sely what this -extra work is.,

-
- ---.2..-i-_,,,, ...., d , 1 ,'t do

(54-written directly in matrix notation ise
'

.

a +cos. sin a13

-s1/2n a+ 13
.

cos a+ p

cos. a cos 13 - sin a, sin Rp-

4 - bid a coll+ cos a sin
- i.

Notice anything remarkable? Well,' compare

that

sin a cos p +
I

cos a cos P

5') with (5:9,

6,, ,
-.1.1

2 .

(5')

)
cos, :a sin p x

sin 4: sin 0 (yJ.

We mast conclude

, 40-.. , i
...

a
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cos a cos p r sin a sin
,

sin a cos p + cos ansin

acoS p + cos a sin p) cos a,cos p - sin a sin R

(
p

,

cos p sin p cos a sin a

-sin p cos 0 --siu-acosa

But, (4 written 'directlY in' matrix notation is

) cos ,a cos p - sin a sln sin a cos p + cos a sin p x

-(sin a cos p + cos a sin P) cos a cos - sin a sin p) ,y .

/41111s.(4) is, fh effect,}4*) with the first pair of matrices on its right mul-

tiplied out. .314

4 4,

What do you conclude?' DWI* about it.k Whereas by using matrices, we ob-
. it

'tiiih-(5*) without Ilaving to multiply out the product

(5")

I

p sin a sin a

,cos p -sin a cos a),

to obtain (5) withoUt.using matrices necessitates multiplying out the non-matrix

equivalent of this/..product. Put paradoxically, whereas 'the use of matrices,

e

avoids,computatpn Of the matrix product,, the avoidance of matrices necessitates

it., Isn't it eaaier to drive nails,with a hammer than with a stone?

4.4 Orthdgonal Matrices.

nArder (5**). This is a curious equation. The multiplication of tvo

"matric

'

,cos e sifie

(-sin.e cos e

gives
14.,

gives another Matrix of the same form; they constit te a group. :The performanceA. -
'-4_____A-, ,,,, j- ?, ,. - e . cos ce- sin Ict x

of the operation ;7 on (see ''(1*)) , follod by the
a, cos a. , ... ,,:, cos 13 sin 13 -

mince of a second and similar operation, namely, ,on the result
, ' - i'siii ' Cis 43

of-the first operation (see (4*)), is.equivalent to'tbe performance of the

.120
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single operation
a + p sin a +

on (see (3*))f These opera-

,

-sin a + p cos a + p y

tions give the transformations of the coordinates of P for rotatiorisof axes

throUgh an. angle tea, an angle p following an angle a, and an angle a + p.

But, ofcoUrse' a rietatiori'drOUih° 'Ce followed by a rotation through 13 has

the same outcome as a single rotation through a + 0: This is the reasoning

underlying the creduCtion of (5*) from (3*) and (14-*). Isn't it obvicius from the

geourtricai point of view that rotation transforms must constitute a group

Of course, the transform for a'ratation e will have e for an ingredi-

ent, but why cos e and sin e? Of course, a, p, and a + p will 'be ingre-

,

dients of our transforms, but why their cosines and sines?

Reconsider lte derivatibn of (1*). Take another fook,atFig. 3.
$I

pla -

.
*0,

is to be the ; value of P0, by.definition P
0Q must be parallel to OY. Yet

JP
if dR; OX were not perpendicular, the angle at Q would not be a right angle,

so that OQ would not. be equal to cis a and P0Q would not be sin qr, Thus, /
.1

we come to see that

. ,
---,

(

cos e sin e

)-sin e cos e

0

ii TV .

is necessarily the pattern ofmatrices with which we can handle-trwisform ations
..----.

of coordinates induced bil rotations of rectangular axes. And since mathemati-
c,'

! ,

At.

cians Are disposed to use the word orthogonal rather than rectangular or Fight-

angled, matFices of this pattern are Lid to be orthogonal matrices. j

Right angles are very special angles; right-angled axes very special
,

axes;,we must expect orthogonal matrices to have very. special properties. They

Look at the pattern again. The first row is such that

(cos e)F, + (sin e)2 = 1,

the siond, such that

e)
2
+ (cos e)2 = 1.

121
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A

R.

118

WhAe adding theproduct of the elements in each column, we have

cos e'( -sin e) 4 sin eoos e = 0.
A

These properties are characteristic; if a matrix has

nal; if it doesn't, it isn't. Formally, a matrix

tA6-4401,Aru,

13)

4

is said to be orthogonal if and only

A
2

4-0,B
2

=-1

c
2 g

1

A0,+ Mt= 0.

,4.5 A Mbst ImEortant-Theorem.

Given that

them

A

it is orthogo:

e.

(c) B (x\ . ..

n
Y (C D)ky) -:

A Bissubject todthe'very special condition that _ is, orthogonal, ought riot

#r

.-

0
C .D ---

we anticipate some very speCial relation between the new all the old coordinates

P? Look'at the question geometrically. See Fig. 6.

:9*

Fig. 6 .
,e:S":

P lk A .1 *.... It.) '
a

/ ,

a,...,
Tfie4origl:rrTel.ikt'tlitnakh're'*'F -rgm'O.fh-fbied ho.'matter what the rotation

/-
M... ...-., a,- ...,......a.................t ' .

of the orthogonal aXg-,''solthat the distance OP remains unchanged But if
. A 41 ii 1

P41,:.. .:..- ,`.
,11' 422
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OP remains unchanged, so does its square. And we all 'remember One of the Very
Q

fiklt formulae we learned in coordinate. geometry, namely, tliat, the square.of the

_distance of a point from the ol.igin is the sum of the squares of its, coordinates.

Calculating in the old x,y coordinate syAem,

_
and in the new x,y system,

so that

We have the result:

Given that

.(02-.7x2 y2

/,

N2 -2 -2
(OP) = x + y

-2 -2 2 2
x + y = x + y .

A

*ir- .= C D y

(if

is orthogonal, then x
2

+ y
-2

= x
2

+ 7
2

.

C D
,

. Can. we say more? Well, we:can at least suspect more Puppose,that:tlae

,

pairs of axes to 1,)e oblique instead of orthogonal. It is no longer

general, that

._171N

or that

op)2 ÷..y2

N2 -2 "--2
(OP) = x + y .

true, in

2
Of course, it could conceivably still be true that, x2 + y

-2 =x2
ty, but isn't :

this most unlikely? We.conjeeture thatc, x
2

-f- y
-2

cannot (for arbitra u
i

y) be equal to x
2
+ y

2
unless

'C'

t\

D)
is indeed orthogonal.:,

1

,(The reader w o has Used oblique axes will recall that if the arigie'be-

tween them, is w, then in consequence of the Cosine Rule, calculating in the

old x,y system
ti

(OP)2 = x2 + y2 + 2xy'cos as

123`
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;1#nd-in,the new system

(01))2 = x + 72 + 27:7 cos''w.

.

-
----..Thus x, + y2 = x

2
+ y

2
,if and only if xy = xy, so that our suspicion is, seen

,

to be well founded.) .

.Combining fact with fancy we'aAticipate:
V

. Given that
.....

(71) .B

:

-2 -2 2 2x +y=x+y if and only if

(A,-

fs orthogonal. We have calimitted

ourselves toan opinion. Until we know whether we are right or wrong, how can

we decently rest?

We rewrite the given matrix equation thus

x = Ax + By

Cx + DY.

Squctring hoth equations and adding, we get

2 N ,x + y
2

= (A
2
x
2

+-2ABxy -1-'13/y
2
/*-1- tC

2
x
2
+ 2QDxy + D

2
Y
2

)

=,(1300e)x2 (B2 D2)y2
2(AB' + CD)xy.

A n
If _ is orthogonal, by definition,

AB + CD = 1, whereupon (6) gives

A2 B2 = 1, +A)24'.=

46r
x
-2. -2, 2 2

+ y = x y2.

(6)

Not surprising, but we would have been surprised at the contrary. The substitu-

tion does serve as some sort ofickleck on our algebra, doesn'i it?

If for arbitrary x,y
e-

,

x
-2 -2

t,;' -2.+ y = x

"(6) givet
.

.1, x2 + ry2 + 0 = (A2 + C2)x + (B2 + D2)y + 2(Ac=i- BD) .xy.

.124
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Equating coefficients:of this identity

for x,

*
for y

2
,

' ad for .xy,

.

sb that,

121

1, A' + C2

1, = B2, D
2

0= 2( 103 CD) .

0 = AB + CD.

,The matrix is orthogonal; our conjecture is, a theorem.

4.6 A Matter of Notation.
1

We have seen that some orthbgonal matrices are characterised by the pattern
.

(cos

0 sin 0

-sin 0 cos 0

To compute the elements of this matrix given cos 0, it is,qt, c,ourse,natural to

.
use trigonometric tables, If, for example, cos 0 = 0.3172, we use the cosine

table to find 0, the angle where cosine is 0.3172, and then the kne table to

find the sine of this angle. But tables are riot always at hand. How tan we

get along without them? Yes, by-using

sin 6,= - coe.

With cos 0 = 0.31172, we have,

Sin 0 =11 - 0.31722.

r

..,

.(

.
To indicate our dispensation from the need to use tabi.es, we put z

,.

cos 0, in
.

consequence of wIlich sin 0 = 11 -. cos20 ...- 11 - z2, and Write the above typical
, . /

,,,

',"-J ,, -40,-t ,
..- I .

orthogonal matrix with the notation
llif,t

....

r i ..--- '

0

ti
r .-- ' 4
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_.2

We have said the same thing, yet with a!d2fferent emphasis.

Has,now,every orthogonal matrix such
(

a representation by means of one
"T.

.

B .
21.
.

variable z? _Given an arbitrary orthogondl matrix ( , let us replace thb,
. .

.

B = IF:7 wheL theletter A by- z. Since A
2
+ B

2
= 1, we see that

isquareroot may be takenjeither positive or negative. Next, the condition.,

:AC +SD = 0 now reads z0 )1 - z
2
D= O., Hence, we find

D z
= -241.- z2; thia-

fact can now be stated as follows. There exists a constant a such that

,C = all - z2 , D = -az. Since; finally, C
2 2

= 1, we conclude ,

2,
a kl -.z

2
z2) = 1 and a2 = 1. This allows us two choices for &, namely,

a = +1 and a = -1. Hence; the Most general orthogonal matrix has the form

B z

117 z2
z

- z2

or

-z

z2)..,

(

t/1z

Ill - z2 1

Only the first kind of orthogonal matrices occur under rotations of -the-coordi-

nate axes.

%ow

What is the meaning of the second kind of orthogonal matrices?. Let us

,specialize and4P6hoote'he convenient value z = 1. Thus, we are led to the

matrix
0

which is of the exceptional form. As a matter of tact,.the
0

knowledge of this one particular orthogonal matrix allows us to bridge over from
_ 4.

all orthogonal matrices of the first kind to all orthogonal matriceS;of the sec-

and kind, 'Indeed, the rules of matrix multiplication yield the identity
. °

(1 0 z
z

0° -1 -)T-77 .z

(

)1

-

z . -z

as you may verify, as an exercise in matrix multiplication. 'Thus, each orthogo-

nal matrix_of the first kind becomes an orthogonal matrix of the second kind by

multiplic'ation with this particular matrix.

Let us now interpret the meaning of the transformation

14,
o()

O,7 111,3 (y
1.26 .



which takes, in non-matrix Form, e'following shape:

xi= x,
.

easily verify that this transformation takes place if we ketour coor-

. ,

dinate axes but direct the.poqitive y direction in the opposite sense. In'

othe words, we reflect tlie-Nraxis on the x-axis,as if the, x-axis era Mi

,

Clearly, under such a coordinate transformation the distdnce from the or

.

= -Y. 'az .

S..

callted a reflection.

thus,proved that every orthogonal matrix can t asked as'a matrix belonging
,

also preserved. The tranSformaltion contidered is

to a rotation or as a matrix which is the prOdull,.6 N.."uf t
.` '

1 0
r r

the special reflection matrix
0' -1

ry rotation an%Ii,

In general, the mathematician bewares of changes of coordinate systems

which involve a reflection. One is accustomed to drawing the y=axisnd x-axis/

in such a position that the first axis is obtained from the second by a rotation

in counterclockwise sense. This is the so-called positive-sense of rotation.
a , 1

v.,

If we, make a transition to a new coordinate system by reflection, we range the

orientation of the coordinate axes. They go nbw over into each other by rotat-

ing the x-axis in the clockwise (negative) sense.

We can assemble the insight obtained irithis section in the following

theorem

Theorem A: Given that

*t;

,

A

(-34 (C. D

is a transformation which preserve's the orientation of the ,coordinate areas and

preserves, the distance froM the origin
;K2 y2lr Te +52.

This hOlds if and la

only if

)

C D -11 - z
2

1
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Laziness.

now in a position to see how a man who knows his matrices can

4,5,a one to-one correspondencg between (Z3)" and

itth requir 4 :t/ion must be linear, i.e., of the form
A-7.,'

..! , ,'".
r

,

And siee"th entatqh n' of~ thg coordinate, xes is not.changed and the distance

c;

OP ' remains ,inv.griat j i- % ,,k

.
t 2 2+ y x

2
+ y

2
.

We -ohave iq consequence Theorem A )

.1()

(z.A.

- z
2

z

i.e.,
o's

x = zx +

2y=-.1-z x+zy.

To a Lgn geometrical significance to z, it is convenient

F
....7110, whereupon

.

.7 ..,/ x = z .,, .
..-- , 7 = ..)i - z2.-....,---- , It ,t4

-From Fig i it is Obvious that = cos a, y = -sin as (the minus sign because
1

to ,akg x = 1,.

0.

'Ct,P'

°
has

/
tile opposite sense to d7), so that

7-
1 ' z = c9s. a

7r:f,..

1 .:c7i. _ -...=iisi/V-a.
1 tt . 1 -'.sh. ..

Thus,. (1) follows immegiatel. -
,.

..._,,....,,,,,./ ,,- .1

EifOrtless? l'his isAbitting &nail with a power-driven hammer. For usi
4 '''''' '' ,. 1 !

muScle -driven
it

are a thing 'of the past. And bashin away with stokes?

128
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Oh, that sort of thing belongs tb cave-man mathematic.-

---
Although (11 could havelbeen deduced even more sucapitly, I have preferred

the preseht argument because it,is echoed -- albeit faintly -- in a subsequent

argument.

4.8 To:Stnn

i

if uncritically-held notions.

,

The -basic relativ y problem arises out of trying to state with niathemat-
, .:.

.

' ical precision what we an mean when we use the phrase "at the same'time" or

say that two events wer= simultaneous. And what on earth has this tog' dd with

matrix algebra? A good question, a very good question, but" let us at get ahead

,-ge'

. of ourselves. It is be ter first to appreciate how the problem arose; the

strangest motive for th= reception of new nations is the failure 0#' old'ones.

By considering_ orthogonal transformations in some detaWI have tried to

- -- - ;--------- ,-- 7 -. :=-77 --. ,. ., ., . .., . .....,_-

typify what matrices are good for in math4atico. And by emphasizing the rough

analogy between nailing jrWand withouthamm4z.s and doing algebra with and

Without matrices, I have t ed to, make it easier to appreciate the facility af

forded bymetrix technique But do not mistake analogy for mathematical appre-
;

ciation; in particular, th re is no substitute f9r warking out and pondring

over the mathematics of action 4.3 for yourself.

'--Mt-27--ViMatrix Theo em to Relativity Physics__

- .

Here my main ob6ec ive, you will recall; it to show how refati'Vity theory

arises out of matrix alg bra used with bold imagination. This part is more difk-

ficult, although not mor difficult mathematic411y. More difficult because,

unlike Part 1, it demand that you-- how shall I put it? - - unthink firmly- even

4.9, The Michelson-Mar Experiment.

A. A. Michelson ( 2-1931), awarded the 1907 Nobel Piiie tar Physids,,was

129.
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one of the worlti4: t's greatest experimental physii.sts.
, Hp is perVaisibest intro

'-duced by the following anecdote: Asked by a father if his son should be encour-]
i'.

aged to continue his studies to become a physicist, Michelson is said to have
/

replied, "No, i a
. )

,

Vise youi son not to study physics. It is a1dead subject.
-.:-"'

...,

What there is to know, We know-- except that possibly we could measure a few
\

-.

things
. to the sixth decimal place instead of the fourth."-
The irony of the story is that Michelson is the man whose e eriments led

to such a revolution that we have learned more about physics in the last sixty

years than in all the preceding centuries.

'Put his story is revealing as well as ironical. Michdison was a man with

a pas ,.'on for accuracy, a man who measured everything to the sixth decimal place.

He had, in particular, in ihp late 1870's, by most ingenious experimentation

measured the velocity of light with hitherto unheard-of accuracy. The velocity

of the earth in its journey round?the sun having been determined with fair ac-

curacy from astronomical data, MiChelson's next ambition was to reteasure,it

- himself -- to the.sixth"de imal place. With this eotive,in sight, in 1881,

assisted b'y Morley, made the experitent that was.to make them famous* the

Michelson-Morley xperiment.

The coRcep npop_which this experiment was based was simple. Suppose that
.

,

we put a gran tter T and a receiver R a certain distance apart on the sur-

face of the arth and measure the time takeh for a signal, a flash of light, to

go Ptom T to R. See Fig. 7.

-->

Directj.on

Earth's Rotation

Fig. 7. -

130
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The, signal sent from T with the elirmous velocity of light a has to over4aka

R which is moving ahead with velocity 'tt-, the velocity of the earth. Therefore

it has velocity c - v relative to R and in consevenca_will.take,,a,/ittly.

more time to reach R than it would if ,the earth were at rest, And i a re-

turn signal is se from R back to T it is approached.by T 1-as it approaches

,.

T, so that its velocity relative to T is v. See Fig. 8.

t

7

.1

V47
-- 47177-

DirectiOn
of

/ -Earth3s Rotation

,

Therefore the return sig, will take less time than it would if the earth were

at rest and still less tie than the, initial, outgoing signal does,..

4 t - I

Let us describe briefly the ingenious experimental arrangement to carry

out this observation.. See Fig. 9.

We have

tion of

ent and

Light source
.

Fig. 9

t

Zz--. -

G.(

a light source, L which sends a light ray in the direction of the mo-
,

the earth. This ray falls on a mirror M which ids p

stands under an angle oI' 45°. against the incoming

131

Bally trdnspar-

Thus, a part
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Itl

of the light'is reflected under 90° tO6a. mirror- M and a part goes, through.
2

.
,
,

c

-r- ,,,:-

to a mirror Mi. Obserye that the 14,ght ray has now been split, up into two
's 1 .

\

rays; one moving along the line M1M2, that is, perpendicular to the earth's

motion, and'the other moving along M1M3 parallel to the earth's motion., Both- .

rays are reflected again at the mirrors M2 and Mi And return to the trans--.
5, t; . o

...

Parent mirror N. Now,,paxt of the vertical light ray M2M1 passes through....
, .

.°MI and goes to the objective of an interferometer J. At the same time a part

of 41e- light ray M3M1 is reflected at N1 and also enters into the same.'

interferometer; Thus, we mix in J the'light of two different travel histories.

The two types-of light differ in their part by the difference in time which is

necessary to travel from Mi to .M2 and back ay compared to the time whichit

takes to travel from Mi to M and back. lou do not need to know the opera-
.)

tion of an interferometer. It is sufficient to know that such an Instrument is

sensitive enough to compare light rays coming from the same origin but having

spent different times in travel. Being mathematicians, we ,.shall rather calcu-_

late the expected diYference.in travel time w is the instrument will Meature."

,Letibethedistancebetweenthen
1%1d and .

M3 whibh,-as you see, we assume to be equal. The traveljtime.from'141 to 143

wand back is e'idently

i 2 2.EC` '

c - + v 2 2
c - v

since in the Forward motion light should travel with the lesser relative velo-

city c.- v and in return with the larger velocity c + v, as we discussed fr
before.

It is more difficult to find the travel time from Mi to M2,and

Let us look at the experiment from a point in outer space, so that we do not4

participate in themotion-of the earth. At'the moment when the.ray 'eaves the

point M
2
(1). ,But, suppose it takes the time it until the ray hits-the'mirro

2

4,..Rv*

mirror Mi, this mirror has the position, M1(1)
,

in space, and M
2

fits at the-

M Wring this tide the mirror M
2 has shifted in the direction of the earth's

132
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(
i.\ 2)

motion and sits at the point M2

A

e. It reflects the light back to

1
Ml; by reason of symmetry it will take the same time

to Mr But when the light reaches its position in space wild be at

141.1.(3). We know that the diftahce Mi(litto Mi

to retur from M2

(3) is given by

0,

is the. total travel time and since the earth moves with the speed On the
.

other hand, the light which-travels'iwith speed c had to cover in the time tt

the distance
( (1) (2) (3))

Ml(1) M2(2). Thus, in the right triangle M2

since 10"

Adl three sides are known, as indicated in Figure 10. By th Pythagorean theo-,

rem, we have

2 1 /

=
2kc 2

.

'The-travel'time T from MI to

M. to M
2

. The ratio of travel

.22 X.
- v2), tthat-is7 t

2 2

.
M3 -ie-not the same as that needed _td,..go-- fp*

times is,.

T t

7
c

t.

This square root which occurs here in_dur dlematary cohsideVatiOns.iS 'charadl.

teristic,for relativity theory and 111 occur later in quite adiffarent*

The above,-reasoning alloweq. Michelsoci.tOrediCta time differenCe'ln

_travel time and to, adjust his instruments in} such a way that the effect coul

b,safely meadued..,

*Although the idea behind this experiment
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necessary to achieve the accuracy that Michelson deman made the actual exper-
y

imental set-up a hive of ingenuity. As I have said, Michelson was one of the
4-

world)s greatest eXperiiental physicists. Indeed, he achieyed such accuracy

that he wou1d have been able to determine v,"the earth's velocity, even if it

4

had been moving phly one tenth as fast as it does.

"Michelson made t measurement and created a scandal in,pilysics. What .

value for v did he get? Zero. Yes, ZERO. The flash of light takes precisely
. ,

the same time to go from T to R as from, R to T. But this is preposterous.

Even the small boy who steals apples from an orchard appreciates the importance

of relative velocity-- even if he cannot spell the words. He Knows perfectly

well that to esqape a good hiding he must continue to run away from, not towards,

the wrathful farmer hard in'his pursuit. But surely there can be no difference

in principle between being chased by a farmer and a flash of light? The flash

is more fleet of footthatis all.

4h)

Physicists hould,not believe their eyes. The Michelson-Morley.experiment

was -Yepeated1
1

again and lagaiR. Again and again the answer was zero. This,was

against all understanding of physics. How, for goodness' sake, could the vela-
0.

city of light relative to a moving'object be the Same when overtaking the object

as when moving towards it?; Despite heated discussion, the cold. fact is, tht the

.veloeiWof Iight,ia Znvarianit. 1 .. . .

I

e

,, 4.10 What, Time 1is it? ,

After a discussion of the Michelson-Morley experiment and its conceawable4---....

A- _consequgnees 4.d been prolgnged-irt scientific, journals for 80me twehty'years,
1 .

Einstein came uivith a penetrating remark. "What," he asked, "do we mean by

saYin:cthat two events happened at the same time. How.do we know that every-

body aan agree what the time is at this very instant?"

Irrtnis age of ,jet travel it is a commonplace experience that differentwL

longitudes have different times. Atelephone- deal froin San Fra cisCo to New

York immediately confirms a differeAt clock reading there. This communication;:

134
*.
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made by electricity at the speed of light, i..Q.,sojapid that for all practical ,

) to

purposes the West Coast inquirer hears the East Coast answerer's reply at the

same,time as it is spoken in New York. At the same time the two clocks record

different times, yet neither clock is wronig. .Somehow or other clock readings

. are dependent upon an agreenvitiabout how we measure time. This remark is silly

)
or subtle, as you please. Doesn't it sound peculiar to say that at the same

time different clocks can correctly record different times? I am mindful of

the vigiting philosophy professor who, in concluding his discourse on Time with

'the remark, "So you see,-gentlemen, I do not know what Time is," looked at his

watch --and dashed to catch his train.

Even if we dismiss'the-different-times-at-the-game-time paradox as-merely
to. . 3 I

verbal, it is none the less a fact that with interplanetary travel a realistic

probability the business of synchronising clocks becomes of practical impor-
, ,

tance. And cosmic voyaging introducesa complication not encountered in terres-
,

tial travel. Whereas the time lag in hearing in San Francisco what is said,in

Newjork is about .55_
th

of a second, the time lag in interplanetary communica-

tion (by radiWwaves with the velocity of light) is a metier oftminutes, and

that between th% earth and"the stars, months.

Suppose, for eXample, that a radio signal sent by

earth, to A, an astronaut is miter space, 60'X...186,000

minute. If E sends his signal when hiS clock records

signal reaches A when his (E's) watch records 12:01.

E, an observer on

miles, away, takes

12 o'clock, then his

A, in receiving the

signal sets his clock at 12:01. To confirm receipt of E's Signal A imme-

diately signals back. And since the distance betwedn A and remains un-

changed, this return signal also takes 1 minute. Therefore g receives. A's

acknowledgement at ,12:02 by his.(E's) clock

This, you will say, is all vere simple. Surely there's

0.
. .

At 12:01 E says to himself,-"A is now receiving my signal

by my clock and setting his clock at 12:01, the same time as

.

no'difficulty.

gent at ;.2:00

{
mine." And from

E's point of view isn't his conviction established beyond doubt by his clock

:135
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4

. ,.

reading 12:62 when he receives A's return`signal?"..., $
...

The point is that whereas E knows that he himself. sends'a signal at

,12:00 by his clock and knows he receive," A's' coneirmatory signal at 12:02,
:, A.' e ,e$ in--!..
, . .

E does'not know that A received his (E's) signal when his (E's) clock read , o

Of
12:01. Q4yea, he is convinced, but he dogs not know. He cannot be.in both

places ate once to find out. He has no method of direct verification.
4.

To : synchronize clocks by means of light or radio signals, we must know

the, velocity with which our signals are transmitted, butito determine this velo-

Aty, we,must know how long the transmission takes. To attempt to, synchronize.

clocks without knowing the velocity of light and to determine the velocity of

light without using a cldck is just as futile as to try to produce hens without
. ,

eggs and eggs withodtehens. *

It is'arguable that if eyewitnesses to E's signalling A are separated
za,

by great distances, then they must report vastly different, yet equally reliable,
!

opinions of the time indicated-by his ('s) clock when his signal reaches A.

All very confusing. To go into great .detail is to invite great confusion.

Physicists went into very' great detail. Many on-paper experiments were made in

which people franticallY set their watches as they hastily got on and off

trains, trams,'boata, and bicycles, scheduled for immediatedepartUre at velo-,

cities near that of light. Scientific ,ournals were full Of these Wild

'excursions.

Of tourse, it is easy to poke fun. The phy sicists. were ate, serious-
,

e

'minded people, trying to figure out an important problem. Their-real difficulty

was cone aa,,rather_than,mathematicalj quite literally, theyldidff!t know what
Imo_

.

sreti*,,,were asking about. Whereas we all know well enough how to cause, the

cePt of time _in everyday conversation, we al at a loss when we come to Map its.

logical geography.
ft

136
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.1-11)..11 The Space -Time, Transformation Problem.

The'matter was finally cleared up in 1905 by Einstein. He did two- things

_,/f the greatest possible importance for physics: (1) He saw more clearly than

any.of his contemporaries what the basic, problem is and gave it precise mathe-

tatical formulation; (2) Hivolved it. The first is by far the more difficult

.

achievement.

This section, I shall devote to (1), the next to'(2).

Although Einstein -(18f511955) was an-imaginative thinker with his head'in

the clouds, he had both feet on the ground. He did not spend several years in /r

the Swiss Patents Office for nothing. A professor of metaphysics would have

t.

asked: "What is Time ?" or, "What is the essence of Time?" or more. recently,

"What do we mean by Time?" Einstein, on the contrary, asked: "If a happening is

observed by two persons, hov.are the one maeaanswers to tie querions,:;Where?',

!When?',related is the other's? He looked for an answer in terms of measuring
,s

rods and clocks, not essences or semantics. He was a professor of physics, not

metaphysics.

vg.

Alhough*Einstein was primarily interested in observers astronomical dis-
_

-,tatices aparti*more homely exposition results from bringing them down to earth.
)

S
0 ig'e man who is standing at a railway Amack in the darkness,of;hethe

night,' and T -is a tree by the side of the trackAistarice x in the positive

direction from ubo. See Fig. 11. The notation So stands for Standing Still

at tie, Origin of the Stationary System; "f" you can figure out for yourself. nn

.1" t
,

, 7( i

.,:; t.,'
.._,

, _ ... " ..._, ____.._.,..____ --,.".+ 'Moving
.. i,.-a 1 System

,, 'l
Flash of light 411----g. .,.k.-

,

-, Stationary

t)

1 3:7
)



134

4

M
0 is an engine driver or,motorman who drives a train along the track in the'.0

--epositive direction. He measures distances from where he sitV in his moving cab,

ahead positivROPbehind negative. And since he moves with his train, the dis-

tance x of the tree from him is, of course, changing as his eain moves along.

The notation M
0 stands for Motorman-Who is the Origin of theMbving System'.,

When Mo in his locomotive thundering along the track passes S0, they

synchronize their watches; each sets his to zero hour. So sets his t= 0,

and M
0 sets his (a different swatch, so we must use a different letter) t = O.

Also when M is passing him when t = 6, t = S
0 /

flashed a

powerful lantern in the positive direction of the track. Almost immediately'

the tree is made visible to both S
0

and -M
0 for an instant by the passing

flash -- just 4s it would be by a flash of lightning. So says that he caught a

glimpse of T at a distance x from himself at time t; M0 says that he

glimpsed the tree at a distance x from himself at time 1-k- Whereas So de- !

scribes that the tree was momentarily visible as the event (x,t), M0 describes

it as the event (3c,T).

. -

We' put Einstein's- question thus: "If a happening'is observed b two men,
I,

how are the one man's answers to the questions 'Where?', 'When?' related to the

other's?" It now takes on a more mathematical tone to become: ,What are x land

t 'in terms of x and t? Or, Mindful of nerices: What is the transformation

t

, 4k

r
from ° to ?_ -

..

.

t
°

. Very posgibly you are tempted tO pay that, whereas x and '; are differ-
s

i_ 1 '

'-'

ent because M6 isrmthing and 'S" iS Statipriary, t and t must be the same.. 0 0 ( :,
Y1

)v
(

Do not be intim
li

dated oy practical' concern with small scaleterrestial
1, C _.

.
experience. lf,

/0 .).
, i

, '''

,
t

And although not concerned with the color of the engine-diiver's socks,'
. . .

you may be tempted'at this stage to introduce v, the velocity of the train.

This would be al., 'Mistake; Einstein kept the problem Pimple. We all know the
.

maxim, "Put first things first"; he knew which thinks are the first.things.
- 1

.

,fHis thinking was incisive. t -,,
11

i

i 1 3 8- t
1 .,

,. ( .

r
...)
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What is is r4levant? Let us cast our minds back to orthogonal matrix trans-

formations. Our problem then to g o from : _); our problem now is

.

en was

x

to go from 0 to

T --

x
. There is'a similarity. e previous transformation

Y

..

is lineanbecduse of a one-to-one correspondence between x and x and y
.

and y. Yet for any happening, fo;'example, the momentary visibleness of the

tree T, hashas just one description (x,t) and MO just one description

(x,t). To the unique description of an event by S
0

there corresponds a unique

description of that event'by M0, and conversely. We must Conclude that the

0

required transformation is linear. It being understood, as previously, that the

letters A, B, C, and D stand for numbers independent of x,y and x,y our

present probledbecomes:

Given that ,= find .

C- :1)0

A B

C D . !

x A

..,

BP,

)Yes, find . But subject to what conditions?' The only thing we

know from experieence is the result of the MiChelson-Morley experiment, that the

velocity of light is invariant. And how are we to make use of this condition?

We must inject it into the body of the iqoblem. ,

Refer back to
-N
Fig.11. First consider S

o
's 'stationary System. What is,

the relatioh between x and t? ,The flash of lit is at x = 0 when t = O.

,Where will it be after time t? Taking c, as is customary, tobeihe velocity

of light,

I x = #
, )

1 i

1
-I , i I

, 1 1

This; is
i

supposing, of course, that the-flash moves in e

°

positiA direction
t

along the.raillway track. But this suppOsition is too restrictive for, our pur-

'

4 ar 'I ,

poses; i could well be that S
o

flashed'his lantern in the opposite direction,

f; __

, to i.,41:.4 -1".---tee.Fig. 12.i,
,
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(7,T) M. * 0
41! - + Moving System

4-4, Flash Light

x

0

) Stationary.System
0

Fig. 121

If so, having due regard to signs, the velocity of the flash would be -c

1 . e

x = -ct

x + Ct = 1:4

4

Needful of-coping with either possibility, it is more convenient to handle them

conjointly. By multiplying the two equations together, we have

1

(x - ct )(X + ct ) = 0

x
2

- c
2
t
2

=...Ign

And since, if the vz..yt of two factors is 0, then at least one of them must

c"-be 0, this eqbation covers both the possibilities.

Next,. consider MO's Moving system. Because the velocity of lfght is

invariant, MO's movement makes no difference to the velocity with which a

flah reacheS him. In cCnsequen8e; similarly, x and ,t are, Such that

-2
x - c t

2-2
= 0.

From'ihe last two equations we have

-2 2-2 2 2 2x -ct=x-ct.
. , 4

This, is the condition to which the required transformation is subject. Thus,

-
the completely matheMaticaldformulation of Einstein's space -time transformation..

.problem is;

1

140



Given that

,.-

subject to the condition that

'find.

2x - c

'137

= x
2
- c

2
t
2

,

. .

A B

\C D

By discovering,thistransformation, Einstein opened up a new world and

change4,our ideas of space and time.
.

4.12 Einstein's Solution.

Recall Theorem A:

Civen.that'

preserves the orientation of the coordinate axes and the distance

=2 2 .2 2
x + y = x + y ,

it Maistneceszarily have the form

p 4 z 1 -
=

-1/1 - z2 zC D

,

) -

'.:,

.4W-

,There, is a,zimilarity, yet only1a partial similarity, between

and

2 2 2 2
x + y + y

- (c;)2 = x2 - ( t)2.

Also, just as we do not allow a transformation x = x,

.

7 -Y' wnidh de-

stroys the orientation, of Our coordinate system, we cannot allow a transforma-a
Lion' x p x, ct = -.,pt in spite of the fact that x

2
- c

2
t
2
Apkwuld be unchang

.
.. /7

under such a.substitutiont Indeed, the transformation t = -t would inte

141
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past and future and make clo6ks run backwards. It is a.--d5ep-philosogical qUes-
,

tion what makes time run in a unique sense and why we cannot change its course

by physical devices. We cannot diicUes this problem which has been the despair.

of wiser men. But,we,,ca4use the fact tilt-past and futurd -cannot be Inter-
ti

changed to exclude the Special transforms:0ton ,x = x, t = -t which plays the
:TT4

same role here as the reflection played in coordinate transformation.

Thus, had the minus signs been phi's with the substitutions ct = y,

ct = y, Theorem A woulcchave been immediately applicable and our problem solyed.

What a pity.

....../

.AVI -...

Still, wishful thinking has its uses. If we do not make\ a ris if ye do not
4 .

'have a wish to come true. How can we change . ;: .,

. ,

.: Os
x
2

- 'c2t = x
2

- c
2
t
2

I
,

\ 'IC

into

2 2-2 x2 2
x + t=x+ct2 ?

We cannot.. ,Jet if we cannot have all our wish, can we have a part of it? . We.

write

x2 c2t2 = l+.(-c2t2).

This is a little better; we have introduced a plus. And remembering conve

iently that i = 17., we have`

2
t
2=-1-c2

t2 =i2 c2t
2

so that

and, similarly,

Therefore the condition

2 22 . 2 /a N2
' x - c t ='4 + ct)

-'ct2 eo..(2 (ij)2.

go

-2
x . - c t

2-2
= x2 - c2 t 2

may be replaced by-the condition

Tc2 (icE)2 =

142
?-

e
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Thus it would seem that the best we can do is put

= ict, y = ict.

With these substitutions Theorem A becomes:

Given =

C

(ict)2 = x
2
+

if and only it

consequence

so that

We have

j

31 t x

Di \let

(ict)2 [i.e.,
-2

-
'

c t
2-2'

x - =
. ?

DB)

ict

z

Z.

2
z z

/
2

x - 22c t ;

- z

ict)

X zx + - z2 ict

= x + z let.

succeeded, at least in a formal way, in determining the necessary

transformation between x,t and '?c,t. We seemillowever, to have paid a heavy_

,, -, 0-..----,-.. .
,

price for -it; there is this wretched number i. Of course, a clock can xecor4

1

a time t or a time ct, yet no clock can record a time ict, filust we!con-
5,

elude these eqqatbils to be without physial significance?

Consider 1 This is a sheep in wolf's clothing. Since the notation

t

contains the letter i, it is natural to suppose -r-ot.i to be an imaginary

number, yet 176 i

formation equations

Writing ICE

r

z

= ;:,/(-6)(-1) real number. Are our trans- .
' ,

imposters, also? ,t.usounclotheythem to'finkout._
/.

for i in the first equation

2
X = zx + 11.,r 1-1 ct

zx + - 0)(-l)

= zx + /22,a 1 ct.
r.

1 .4 3

i)

m4

S
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40*
Making the same substitution in the second equation

c-7 = z2 x + zr-T. ct

dividing troth sides by 171

- z
ct x + zct

J1 z
-

?
x + zct

= dz2 - 1. x + zct. (2)

Real coefficients: Provided z
2
> 1.

Echoing the argument of Section 4.7, it xemains to determine the physical

significance of z. We return to the railway track. M speeds through the
,,-:

. .,

night sitting in his engine cab. He says, i"I do not budge an inch; I am x = 0";
1

no, to the contrary, you are moving very fast, you have the same
S0 says,

velocity

o

"Oh

v as your train." Putting = 0 in (1)

0= zx + -1 ct

x - ct.
- z - 1

z

s

And since, when. t = 0 x = (D this equation tells us the distance that M0

, has traveled from S0 in time \t (by S
o
ls latch). x, the distancetraveled,

) , ,' 0
'1 j -1 -\i ''\ . -V 2 . 1 . 1.

Z - 1is prop l onal to t, thq timetaken'by the factor .,,1 ., c. But, 4.s every; 1-,, .,; z
..1 ,

): schoo1bo owls, '.

°,

..

: ..,.... a,
' . -

, °''distance traveled = velociy X time spent traveUng.
3

,

144
i

,, .,,
, .

So? The velocity 'V df .M0 and his train relative to S
o

and the track is

given by

whete- v is zeal when the above condition'that z
2
> 1 issAisfied. We have

found the physical significance of a function of z. This suffices. ..

With the remark that it is convenient to begin by. writing- (1) -= and

mutatis mutandis the'fbrm

1
.

4 4
°

1111
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x ='Z {Z,,
)22 - 1

I leave it to the reader to show that

x - vt

v

c
2

x -

This is Einstein's solution.

(3)

(4)'

In brief: Given that c, thevelooity of light, is invariant, if So de::

scribes ari event as happening at a distance x from himself at time t_ by his

watch and M0, who is moving with velocity v, describes it as happening at ak

distance x from himself at time t by his watch, ,then the relations between

x,t and x,t are given by Equations (3) and (4).

We recall that the completely mathematical formulation of Einstein's prob-

lem-- expressed in matrix notation -- is:

Given that

°

is subject to\the condition that

- () (°-7 Q, D) kt

A Bx

find

-2
.x -4

c2t2
= x2 - c2t2,'

(c

B

.

4Ji

t.
It is fitting to conclude this section by giving Einstein's answer in the same

/ .4A
notation:'Amoment's thought will show that (1) ands+( may, be_writtep as

follows: ,/

145



°It

O

The matrix

142

/
Iv2

c2 c
2

2

o 1 - v2

1'

2

c
2

4

err.-

re

first expressed in,this form by the Dutch physicist-Lzrentz.(1853-1928),-is

known as the Lorentz matrix. Such matrices are analogous to orthogonaltatrices;
,

they constitute a group. The given matrix, ,when multiplied by a similar matrix,

with only V 'replaced, iVes another'matrix of the same form.

To consolidate this knbwledge you are asked to work out,for yourself an
4 ' ° .. , \

'
. t

- elabortition of Einstein's problem. We introduce a sect,

...5origin of the moving system acM -g,., who driyes hii r a
- -

,

.
eas M

0 drives his on a parallel trackr St:Fyg. 13:

,

Stationary
;System

1

When x = 0,
1

S0 ;when M
0 0

1

1.

2nd moving

1st Moving

(0

d motorman k, tlie
4.4... 1. 0,

4,0 .
n ih the., same direetion

. ,,, r.,,,,
.4 '

., ' 1,f,* ,

. r -C--;,---i: .. ."

.... . .4 .
I I 14-1 ' w ., i. (3c,i) ° 4, . , .-.,

System se--1--=° zilo-

, I: . -0--- - -, s.0 ,)' 4
1 1,(i.76-.) , i 4 '' erSyStem i--__...2____-,- _41......___.). 414I

.

V.

t = 0` 'and x = 0,

.?gt

does, and'all three

Fig. 13

t,= 0, a],so 3T.1.;t9, 1E.:,..0 (i.e.,

synchronize their watches). Given

146.

M1

that

passes
4

M1
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,- i

moves with velocity a .relative to M
0
;.by ustugloreAtz matrices in a role

analogous to that of orthogonal matrices-in Sectio0 L3, deduce formulae for x

and t in terms of x,t. Confirm your answer by considering the motion of NI,
.1.,

relative to S
o

.

4.13 -Einstein's ...Achievement.

I have taken great pains to try to make Einstein's formulation of his

*

..../
space-time transformation problem and his solutiodby matrix algebra readily

_ .

intelligible to the reader who will give than his serious attentidn. Being wise

after the event, it is difficult to appreciate the magnitude of his achievement.

Now that we have the comforting assurance-of a well sign - posted road that we

will, reach our destination, we forge that When there was no road there was noa

road to follow.. Yet, making the road2 s the easy part. We forget absolutely

that without a new destination, there could never have been a new road. Einstein

had to see that there was a place to go to before he could figure out how to get

there.

Analogy will help us to see his achievement in perspective.

Given a hammer, a bag of hails, and the instruction, "Get busy," What

does a boy do? Drive a few nails in the wooden floor? FUn for a youngster yet

unimaginative. Or, drive a nail in the door to improvise a hat peg? That's a

more intelligent thing to do. Orfldrive dozens of,. ails to make dozens of hat

pegs? The boy who does this runs stn of ideas.before he runs lout of nails. But
/,

what about the highly imaginative boy? He drives hia hat peg nails into the -

door up to their heads so that their points stick out on the other side. Why,

don't you see? Take the door off its hinges --and there's a fakir's bed of

nails!, Not every Tom, Dick, or Harry would think of that. It takes, imagination.

What's that you say? A crazy idea: Come to think of it that'A just what a lot.

of physicistd at first said about Einstein's 1905 Apace-time transformation

paper.

Einstein'*aw what contemporary mathematical physicists failed to see; he

1



N

11+4

isaw how to "get buy". He'did *1st his oontemporaries failed-to doh he used

matrices'wittPbold inaginatiaft:

4.14 _Important_ Consequences

Equations (1) and (2), (pagt1444,2, are the basis of Einsteip's Special

Theory of Relativity. We may or may not 13p,Idispfted to accept them. 1; whether

not-we like it fact remains -that these are necessarily consequences of

the invariance of the velocity of light.

P

In this, the final Section, we shall consider threellajor c nsequences of

these equations, consequences.that Shatter our complacency. To accept the basis

of the Special Theory of Relativity without accepting its consequences is illog-,

ical. If wetare willing to accept.the evidence of the Michelson- Morley experi-,

went/, we should ltkewlse treat its.logical consequences.,

ca.) Faster astronauts age more slowly.

,We return to the railway track again. Suppose that S
0

sees the tree.ty

the track momentarily made visible by the flash of light from his lantern at

IR

12:01 by'his watch, i.e., when t = 12:01. Does M0 see it before or after

S?liCIIICIaberPlattlICYSPIChr011ftedtheirlfatClICSWIC1114WELSEItS'In0 0

other works, is =t less than or greater than* t?

Since S
0 remains at the-origin of his system ,x = 0, so that (2) becomes

3 t
(1)

1 *- 3-r1

And since the velocity of the train v is, of course, > 0,

:Afte.

1 -
v

< 1, and
1

> 1, so that
c

111
C1LEZ

t. (2)

Therefore M
0 describes the event that the tree was momentarily visible as-

.
,

i
, .1_occurring later: 'Supposeyja,be definit M

0 saye that the-evedt.occurred at
t fiq

/N.

t
148
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12:02. What does S0 conclude? He says, 8n the basis of the event, timedtby'

his watch as happening at 12:01 and timed by the moving watch as not, taking

"blace until 12:02, that the moving watch runs fast and that events as described.

by the moving ban lag behind the same events as described by himself.

Although equations (1) and,(2) are simple, their physical application is

most difficult; it makes no concession to muddle-headedness. We must be clear

that t is the time recorded. by a watch that moves relative to a watch that

records time t.' (1) may be expressed

and (2)

moving clock time -
stationary clock time

72

4

moving clock time >,stationary clock time. (2')

suppose the stati-an master has a stop watch whose h4nd makes a full turn

in one second. The motorman would think that the stop watch is slow because in

_
his opinion the time t for such a turn is more than a second. But suppae he

is given an identical stop watch. Then he will now say that his own stop wa h

is correct and that its hand makes one turn per second. However, the station

master looking in will conclude that the engineer's stop watch is slow, since he

.

moves relative to the train and now his time scale is increased. Thus, the,to-

,tal consequence of (2') is as follows. A process ofephysics which woad take at

1

rest an amount of time t 'appears to an observer moving relative to it as longer.

If you ask,1therefore, who of two observers is more justified in ascribing time
z

to,a given physical phenomenon, we should say that that observer will have the
4

better judgment who rests relative to the apparatus or phenomenon which is to be

judged.

Equations (1') And (2') have most important consequences for space travel

at_vplocities near that of light.
,

. , ,
,

We now suppose M0 to'be an astronaut heading straight for a, distant star

......... .... _ _ . ..,

am the earth it So; When he is hurtling through outer space with velbcit, v,
_,.. __.

1 4 9 ,

. .
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ii` - .,

2

his clock, which measures time t, is at rest_relative to himi and they erres-

146

tial clock, which measures time t, is moving xelative «to him. This is the
.

crucial point: In MO's experience, t is his local or stationary clock time,
o

't is terrestial or moving clock time. And since he moves at velocity v rela-

tive to the earth, the earth moves at -v relatiVe to'him. Bur' (ny)F = v2,

,so thatby (1'), ;tor Mo

F.7
MO's time

terrestial clock.time -

v2

- ,

Suppose,to take a concrete illustration with easy arithmetic, that M
0

travels with ,r3EE the velocity of light. With v = ;722- c
v2

... 100 ' 2
,.

100
so100

4 -,- -:
.

that .
.

1

100 100 10
- .22:- II- 1l. .

,

and

t - t

10

A

t,

Thus the duration of M
O
' s experience in traveling from the earth to a distant -,

star at a velocity of
100 c is only one tenth that of the terrestial obser-

,

#

ver's experience..

quppose that according to So's watch Mo takes 200 years to reach the

distant star. Had Mo set out at the age of 25, his.body Would be 2--:years

. -old when he,reachetthis destV inatiod. Surely he would have arrived a corpse. .

.BO, t = 200 years is the duration of the flight iii .the experience of, S0 ,and j
-,.... - 'iv ,_, ..

his descendants, the people who stay at home. MO, the man who goes, lives his__ ,
% ..

, ___

150
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experience in his own time t, that of the watch he takes with him. When

1
t = .200, t = 200.= 20. will' be 45 years old, not 225, when he,10

reaches his destination.

`-That the faster an.astronaut travels the more slowly he ages gives us
;.

hope of men living long enough to visit the stars, all way out beyond the solai.

system. Yet you may. be disposed to retort: &fell subtle arguments are good,
S

.41 / to

-.clean fun, but would any hard-headed astronaut be prepared to set, out ()La

200 year journey because it had been argued by a few lone-haired professors that

he would be only 20 yea'rs older when he got there? Not very likely. If I

tear a page off my desk calendar and call today the first of September instead

rt.of the first of.Au st, it doesn't make me any older physically. Next you will

be telling me.that if I forget to wind my watch, then'I'llstop aging when it
.

stops -- and live forever'..

?, No, the,point isthat'each ph sical phenomenon runs its natural coursetin

the System in which it rests, and lif is a physical phenomenon. The moving

astronaut lives his regular life in s°space capsule: He does not have any
.

benefit from the fact that an obServer on a different system (which moves.,with
, Si

very high speed relative to him) thinks that-he lives very much longer. At this

moment there are Many galaxies which move relative to the earth 'with fantastic

Speed, nearly the velocity of light: If there werein such a galaxy a star with .

.. .
.

intelligent observers, they would think that we huaans are practically immortal.

This does not do us much good. However, for such purposes this digerice in
.

..
.

. aging is a great' use. While according to oursy.stem ot accounting, an astro-

naut might'need 200 years to reach a distant object, in his time scale he

would need only 20 years and thus be able to survive his trip.
, . , , , ,

You may be dilate bewildered and upset by'our argument. But remember that J
,. t\

andyour experience in life has been in systems of very slow motion, nd there.is

nothing which could prepare your imagination tb experiences of high speed travel

ih outer space. Wherever,experience,fails Us, insight and intuition will fail

likewise. air bnly guide is our reason stringyned by mahmticalrment.
,a
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t-We might be Wrong in our, extrapolations, buuntil now the predictions of sci-
f

l'

ence have been more frequently verified than falsified.*
.

I

i

I .

S .

;

) Do you, know what'aire:dioactive substance is ?_ It consists'of a large num-
,

'

1.
1

ber of atoms, of which, during a given pe od, a certain percentage disintegrai

or dies. Uranium atoms, hen placed in a cyclotron, are made to trava-at nearly

the velocit_of lig:ht.just as we suppose Mo to do. It is found that uraniuMi

,

subjected to such cyclotron experience decays much more slowly than uranium sub-:"

.

jetted to ordinary terrestial experience. Here is6iridence in favor of EinP
.

stein's time contraction formula. And isn't our aginga physiological process

whose rate is that at which tissue and that_sort of thing decay?

'
(2) No tra el' faster than light.

Using (1,4 and (2), we divide x Zly T. This is a.nite thing t do for it

eliminates the square root.
. _

'lc- - v
.,-....

x
_

x - v( t
- .

,

c
2

- vx v
t t - ,1 - x-

.. c
2 t

The algebra is very easy; the physical interpretation -- 'without which the alge-
1,',,I

bra is,pointless-- not quite so ob ious. . ,

i.; .. _,:_il . 7 _. - LI. ---.1 _.. . i , 7-4- y, J J , 1 , 1..JJ-J.-.

Once again we return to our railway tree A passenger, 7, traveling iiith-
.

out a ticket, is,, for reasons bestknown,tah running along the train (a(,

uniform velocity) from MO, where he was when MO pAsed So. See-Fig. 14.

Ciif
T --P X- .

,? -7- r-1,7,,-,
.

IF -). + Moving System

1

.
1 1 A.

> + Stationary
4

ir System
-

S
o

(x,t)

Fig.-I4

T . ',

-Since P has
,

coordinateh (x,t) on the train, he has moved distance x.. rela-
, .

3

Iroki.°- ."`.,, t ,

tive to M
0

i
kil

time t. Accol.dingly, M
0

says that: P's velodliy is
t

.

, .. il
t

And since P" Ilits coordinates (x,t), relative to Sdp6o says that P has
.1.-

\time t and 1°..0s velocity is . Formoved distance

. 4 2



'so fiat (3) becomes ,)

R e

We have a physical interpretation that gives P's velocity relative to the

- -moving train in terms offhis velocity relative to A fixed obperver. This is the

149

-vu =
1 - u2

1

O

famous addition law of velobAS,.

Whatare its implications? Could we, from a 'rocket g4pg at nearly the

. -. % .velocity of light, shoot off a rocket to go m neanly at the speed ofilight

and from thisshbot off'another to .0 even Morg nearly at the speed of light?
e

i 1.
s*By boosting y thisin ths way, couldn't we,achieve a velocity exceeding that

, ..
c .4 ,

.
.

. of light? let's use the addition law td find out. °

The best that we can do for u is to take v tp be a negative number.
4

,Replacing v by the addition fOrmula becoMos
1

uv)
.1-

uv. 2 *Cu(1
5- 'v u

so -Chat

41?

u - U

2.11 +
uv

. uv-
l'+

C

Y

C2

/

.

2

u). u provided that - 1 -
u
2

> b ..
- a c ),,

i.e., providLd that c >.U.
. ..

.

. ,,,.. ° : ,-'--. t-e-y- i -i- ..- ,.. , ., .. , :, !-- ,. , ..,--1,-,-,
11-r'*.

C,
2 ..

If c = u, then Al = u = c. AlternatIyely, putting u = c.in'
..
(4)

u =c .--1-- v.. - c. *
, y % .. P,

s C 46:4 0 .
' % '. i

1 + - . '

,
i . .Nr

A. .

We.must conclude that it is implgSible to exceed the velocity oFdlightl
_,,-- ..

.4

..a.1

(4) is of intrinsic mathematical interest. 'If .0 and Sv are two given
. - % .

c 1 -

,2 . 4 '.

:ireldpities, their combined velocity is given by the formula

f(u,v) = u v "

C2

.
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This function is a kind of genei.alized sum,of, u and v. It,satisfies the cola-

mutative and associative laws o, !f addition:

1 .f.

f(u,v) = f(v,03 . f(u,f(v,w)) = f(f(u$VI,w). !(5):
A.', .,,...t...,......., ....., .,.... ---..."1"''

each
t ,

If u -and v are each less than ip, the same will be'true for this sum velocity.

An.expe;imental verification foritis law of addition of velocities can be

found in pm experiment by Fizeau which was, in fact, performed before the theory

of relativity was even formulated. As yol4 probably KUiiiw, the yelocity cif light

in water u is slightly lower than the velocity of light in empty space c.

Suppose now that we send a ray of light through a body of water whiphmoves

"elf in the direction of the ray with the velocity v. According to classical

physics, the totallhelocity of-the light ray should be u + v since the ray 1

runs through the water with spied u, and the whole arrangement is carried for-
.

'ward with the velocity v. Fizeau carried out a very precise measurement of the

velocity of such a ray in a moving medium. But to his surprise he discovered.

the following fact. The velocity of the light in the moving fluid was

_2

U U V(1 - U
2

--)

.

Again, 14 is thg velocity pf light in the water and v is the. stream velocity, '

-of the water.

Consider now the addition law (4). .#01bsellre that the flow'velocity v' 1s

verApall_opiiargd,toL4e_velocityctlight--e. Hence'--,i- -is a very small

umber. We may use the geometric series"formula,to write ,

4 1 th tuvN2 tuvN3-
1 - + t--i - t--/

2
1

uv
c
2

c
2

c
2

We.connit a very small error if we put

Z. F..Y.

.1 + c
2'uv

c
.

..., .

Observe that with the approximation the addition law (4) beoomes the, formula (6)
. .

.. , k 1.
, ,. .

established by Fizeau. The error due to our
.

approximation is sO small that the

,,,,,,,,,,,, ,.........,,,...), P,....,...: A ' `,.......,,,a .... *,

4?
N,' 1a4
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1

experimenter could not possibly observe it.' Thus, Fizeau'S formula is a bril-
1

liant justification for the addition law (4) bf velocities.
. '

ii:

But now ire should.Ad a remark which shows particularly well the great'
, .,

/
\*.

.
0power of mathematical theory. Suppose a good mathematician had heard of Eizeau's

ti)

,
experiMentr and of hi formula (Co) but had never heard of relativity theory and

of the law (4) of additiotof velocities. He might loclk at (6) all muse about

%. its meaning. It is something like an addition law for u and v, but it does

not satisfy the commutative at& associatiye laws (5). The mathematician might

suspect that (6) is only approximately true and is a good approximation to an

/

addition law ,f(u,v) in the case of small Might than ask the question:

What_is the function f(u,v) which satisfies (5) and becomes very nearly (6)

for small values of v? It can, be shown that the only possible choice for

f(u,v) is' the function 14). Thus, the mathematician could have deduced the

correct law of addition of velocities from an approkiate experimental formula.

Think this over! You will understanciwhy scientists call mathematics our sixth

sense with which to experience reality:

-

A

(3) Energy has mass.
'

dynamics

,

Whdameata'tOthe study the most eiementiiiiiS Newton's.

..

9,
fr

famous Lay that.the force acting on a body is proportional t6 the mass times the .

. \
acceleration of the body:',. .

,

F,11 -a,

In consequence, if a given bo acted upon by a constant force, it has a don-
.

staq acceleration. But, if, its acceleration is constant, then its'velocity

.
continually increases, so finally it will gollasterlthari light. On the

other hand, if we accept the,well verified Michelson- Morley

velocity'of.light is invariant, we.are forced to accept its

result that the

logical donsectuencq

n to reducf:. thethat_taothing can go faster than light. SomethAng must happe,

body's acceleration at high velocities.

. .

To concentrate on the acceleration a, we isolate it by writing Newton's.

i**c
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law in the form

= a.
m

'

"7-

If -*

. Since a, must decrease for high velocities, so must the ratio 1.13. But, by

s

hypothesis, F is a fixed force,-so what do,you conclude? Yes, that for high

velocities at least m must increase as the velocity of the body increases.

However, it would be most odd if the increase were not continuous. In conse-

quence, the only explanation Einstein could find is thamas's must increase with

velocity. Mass must become progA sively harder to push with increasing Velo-

,city.

4 In his famous paper of 19C5 Einstein'argued that tocthe mass of a body at

1rest m must be added the energy, of the body times
0

gy 7 to give it mast-

m
v
, its mass at velocity,- v:

my m *1". .
,

But' he difference between masses m
0

and

itself mist be transformable into mass:
I

-2
E =-md

my ig surely a Mass, so that energy

At that time this wasa fantastic idea. Nobody had ever before thought

'that mass and endrgy'could'be eggs out of the game basket. Energy, is mass in

Inotion';,, mass itself is somethingitilat ,_qan he weighed, static, on a pair, of

) -1-
scales. Surely energy is not the sort-of stuff which an be weighed? Even in

,19C5 when Einstein wOs startled by his own idea he suggested that.a study of.

.

radioactive substances -- where tremendous energies are hidden -.would very

sibly show that energy can be transformed into mass and mass into energy.. Forty, ,

.

years later,.in 1945, this was all too dramatically verified; his thesis that ,
2

, -

- '---*-

2 . .
- ,

.

E =.mc was the basis df calculgitiOn for the atomic bomb as well as for atomic- -,
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4.15 InRetrospect. ,

Given the Michelson-Morley experimental result.Cwhat followsl We now know/

the more important consequences and the simple mathethatics used to deduce them.

to particular,we have seen what can be done with matrices when used with bold

imagination. Of course, whai was done elegantly with matrices could have been

done inelegantly without them; but, who wants to drive nails with stones? Yet

never forget' that it is the/man who handles the hammer that counts. Such,simple

mathematics enabled Einsteifn to change our entire conception of the physical

world and to make typredic ion, arty years in advance, that heraldecrnew mas-

tery of our world: This is an example, of the power and the glory of mathemat-

ics --and the geniloodt Einstein.

I
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