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PREFACE,

The main purpose of this book is to provide' background

_ material ih gedmetry for teachers or prospective teachers who

know little or no geometry. It is desigiled for use in courses

and in-service type training programs for teachers at the junior

high school or upper elementary level It'should be suitable0 '

-as a text for a one-semeste 'freshmar2 college course for
/-"

prospective tealphers at such level. This book is not designed

to train teachers to handle'SMSp tenth grade geometry but it

might be used.for background ififormation and points -of -view.

Volume II of this series, is designed with the tenth 6ade course

in mind.

If this text is used fot in-service progras for upper
1. .

elementary teachers, then some selectivity of subject matter

)woula be called for. Chapters 1:-8 probably should be:used

'with some sections oC Chaptls 7 and 8 taken lightly: The

"proofs" in Chapters 9 and 10 might Lje omitted. The elementary6 00
portions of Chapters 11, 12, and 13 might well be Used. .chapter

,,_ .14 is primarily' intended for junior high school teachers who

will be using SMSG materials.

There will be considerable review of geometric ideas but

the review will be phrased partly in terms Of Present day'-'set"

J
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language. 'Where possible and appropriate,'both traditional4'

language and set language wile used to -clarl0 .each other.
It is not intended

ti-kt) this 'book give a completere%iew.

or cover all details mentioned .in the experimental SMG junior
high School tcxts.

It-iintended that this book stress basic
understandings of ideas, concepts end points-of-view. In

particular/ emphasis is put on
the.interrelationshipsbetween'

the concepts of and use of measurement, congruence, ehereal'
''number system, and.various geometric systems. The author hopes''

that the broad outlines of. "good" mathematical developments will'
come through.

.

Clear-cut Zeftlitiensind explicit assumptions are made
\

A . .
where increased unaerstanding will result. Bat the 'author-has

L, ' .,

, ,.'ied t6 keep in thind,ithat this is not a treatise on abstract
(Th

r

.

- Reometryg, The intuitive -end informal approach is emphasized
-7

4 , ,

, v .7htroughout.
-,:.

One body-.QC thateriXthat has.been omitted from this books %. .
ete- e

.
1is that dealing with sets of concurrent

lines.assaeiated wih.16
.

.

triangles: Mtdians', ankle bisectors, etc. Some People
teaching

-

rom thisvolume thay want t(5 uae such material ('or

..
. .

, ',
- .

..

special projects or thelikel,
. , ,

4'.:

StUdling this material, .one should ,have la lenci,l, and:
,

.

,
plIpell harkly Id I5e,prepared

-

tsi draw figures-to help;understWla
.P " '

1 :
"the develAilleAts. The reading of mathematics is not like the

41,
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readitg of novels.

times to understand

section o! 'chapter

One aUthor,and

the)suitabilitk_Or_

One may have to-read the material several

rt. Some prefer a, "light" reading of a

to gkt general/ideas before\detalied. study.

SMSG will appreciate suggestions regarding

non-suitability of this volume .for 4her

purpoSg-s sugges t e ablave. It it the
. _

-

be later 2eorod4ed in revised f'orm,

the revision are we

O

.

y

intention that this volume

Suggestions ...concerning
*

lcomed and shoUla_be sent to

School Mathemati.cs Study Group
aper 2502A, Yale Station

N w Haven, Connecticut.

L
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Chaptei. 1,

Introduction

Geometry is, oncerned with the study of spatial relationships.

This'study, of course, includes what is usually called "plane

geometry" for a plane (a flat surface) is regarded a-s 4, part of
'

c

space. Traditional tenth grade geometry is more than simply a

study of spatial or planar ielationshipi; it is the setting for the .

.118,

development of a mathematical logical or aiiomatic.system.

ti In the dMaG materials, the 'geometry which is found 'in- ther,,

Junior'HighSchool texts is intuitive geometry, the development of

geoMetric (spatial) points of view and thought and the understanding,

spatial relationships. It is not axiomatic as such. . Questions
.

of informal-deduction naturally arise and-awhere appropriate are

. dealt with byinformal arguments.

In the past, geometry has, been a vehicle for teaching accuracy

of language) expression and thought. To some extent the 7th and

8th grade geometry is dedicated to this end. In particular, set,

language simplifies mathematical vocabulary and at the same time

forces both considerable precision of expression and emphasis on

. the meanings of concepts. Traditional Euclidean geometry went part

wayin this direction. The SMSG materials (both Junior High and

j
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1.2,

10tth grade) go considerably farther in making clear cut definitionps

and in making some distinctions which were only implicit in Euclid.

The consistent use of set language ,in geometry has three,
-

other important values to the student. First, the set point-of-

view is of fundamental importance Ln much of prbsent day mathe-

matics and an appreciation of it helps produce a certain amount

of mathematical maturity. Second, set language itself gives

students a unifying thread which runs throilgh much of their Mathe-

matical studies. No longer will it be true that students view 9th

grade, algebra and 10th gradk geometry as essentially unrelated.

subjects. Third, use of set language actually should make many

ideas of mathematics substantially easier to grasp for-the student.

Set language Simplifies rather than complicates. It frequently

forces attention on the proper'concept.

It should be' riointed out, however, that the set point-of-view

i -s no panacea by itself. Mathematics will remain a very sub-

stantial subject. Furthermore, it is not proposed by SMSG (or

Almost anybody else) that set theory as such Yoe taught to high
. .

school students. It is proposed that the language of befs15eri'ised.

The language of sets is rather straightforward and simple- -once you

get on to it--but theosubject of set theory gets deep and delicate:,

rather quickly. Set theory itself should probably be left to

professional mathematicians or to'thosewho are thinkineseriously.

of/becoming such.
1,:;

10



1.3

Let US illustrate'some of the ambiguity in traditional

termiflology and notatin--and our attempts at, eliminating it.

One of the often remembered properties of Euclidean geometry

is that .1a straight line is the shortest distance between two

points". NoW, really, there are at least three different eoncepts

which are confused in this sta..trent. We discuss these concepts.

(4) /IrstraiglA line is,Usually thought of as a set of points

(the set or collection of points on it). For any two points there

is exactly ones straight line containing them (i:e., two distinct

point'determine a straight line).

s' ./
The straight line containing A and
\

, El contains some points (like P) between

A and .33, and some points (Pike Q) not'

between A' and B. We shall denote. the

line :AB by B. A straight line as stch

does not have length--it can not be measured.

(2) A segment is a part of a straight line. In%particular,
1

the segment AB (denoted AB) is the. set of points consisting of A

and .B and all paints betweeh A and B. A segment has length

--it can be Measure'. The length of AB, is denoted by AB'or some-

times by m(0).
I

(3) A distan,eeis a number (or a number of. units). In

geometry, for any two point'sthere is a Kiistance between theM

--the distance being the lellgth of the s gment-joining them.

Is

4a



1.4 4,`

Whatever is customarily meant by straight line- -and geometry books

are vague on this - -a straight line is not a distance.

The statement "A straight line is the shortest distance

betwee4 two points", then, confuses the concepts of straight

segment, and distance. However, the statement does communicate

something of what is intended. But simpler and more precise

language would make for greater clarity. We could say "A segment

is the shortest path between two points". This statement is an

_ improvemen,t on the earlier. It would/be better, however, if we

had defined or explained the meaning of the word "path". In,

Chapter. 9, the "triangle inequality" property does clarify the

meaning of the "shortest distance" statement. In other chapters

Of the book,''Onsiderationsof the type suggested here will be

greatly amplified.

Having made the observation that terms used in mathematics

should have explicit and clear-cut meanings, we agree that we

Cannot achieve perfection in this respect. In particular, there

are several terms which are consistently Used with dual meanings

but 'for which the particular meaning intended is almost always

clear.' Examples of such terms ar- "radius" of a circle which means

a number (ustrally) bUt sometimes, set of points, "side" of a

triangle or polygon which means either a number or a set of points,

and "base" and "altitude" of a rivire which also have similar dual

meanings. ,These words are so widly used_and well understood that

it seems inadvisable to insist on one meaning ,er the other4 .

k,
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Chapter.2

etsf

1. Terminology.

One of the important ideas of mathematics is' that of "set."

Synonyms for,the word "set" are "collection", "family", and
4 '

"aggregate." The term "set" is used in Fithematics in much the

same sense as it is occasionally used in ordinary language. In
/

,

....

..geometry we 'Speak of a line as -a set of points. Or we may, speak
.

N
of the set of all lines which contain a given point. In arith-

Ft
t. ,

-4%-metic, liespeak of the set of all positive event numbers,

that is, 2i-

In everyday language, we talk about 'the set (or collection)

f--

of, books ip the city library, the set of pupils in the seventh
.

grade of a school, or the` set of all- red-headed children less than

'twoyeais of age.

In order fOr a set to be defined or understood, 'there must

be some clear -cut criterion for deciding whether any particular

object is in' the set or is not in, the set. We speak ,of the,

objeCts in a given set as the "elements" oi" "members" of the set.

For instance, consider the set of pppils in the seventh grade, of

West Junior' High School. An object,is an element,of this set"if'

(and only if) the object is registered as a seventh grade'student

- _in:West Junior High School. Therefore, we can teil whether a:.

given object is in the set..

`
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2:2'

Notation. It is useful, to let symbols denote sets. We fre-,

quently use capital letters for this purpose. pus, when,con-

vtnient, we may let "A" be the set of all positiVe every whole

numbcers, or "M" be the set-of all'grade school aiildren who can.
swim. Braces, ( ), 'are frequently used in describing sets. Thus

-

-33 = (Mary, James, William) describes the set B whose elements are

Mary, James and William. Or C'= (1, 3, 5, 7, 91' describes the set

of odd counting numbers less than ten.,'Note that in.each ofIthese

latter cases we have actually enumerated the elements of the set

B or C. We.ute three dots to suggest "and-so on"., For example,

the ,tet A of positive even whole numbers(is sometimes written /

"ry

In Set notation as in "other mathematics we use the. symbol
o

(evais or- s equal to j mean 'lie 'the same as."' Note that above.,
) ,

Band (Mai" William) are different names for the same set.

A = (2, 4, 6, ... ) .

Subse s. 'Let Y be the set of states o: the. United Stat s

which contain cities east of the Mississippi. Let Z be the s ates

Which were the original 13 States.. Then dvery element of Z is an

1.

element of Y. We'taystAat Z is h subset of Y (or Z is con ained
At
Y."in Y). We may write ZCY and we read it "Z is contained in y.'

We may also say'Y contain's' Z, or YD Z. Notite that the open part

of the symbolCorD is toward tIe set'which contains the other as

alwA subset.

'4
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In general, the set R is a subset of the.set T if each

element of R is, an element of T. Ne,may obserthat each set is

A subset 'of itself; in notation, if X'isiny set, XCX (X is con-

tained in X).
-

Let U be the set of all classrooms in your school.. Let V be

the,set of all classrooms in your school With women teachers.

Then VC:U, i.e., each element of V is anelement of U. If your

.school has no hen teachers, then also UCV- i.e., each element,

of U is an element of V. Ip this case, ,V =, U. 'In general, we can

say that if is a se;, and -B is a set; and-if:ACB ar BC:1, then

A =B, i.e.; 1A and Blare simply different names fbr the same set.

Intersectlons of Sets. Let G be the set of all girls who are
.

pupils in your school. Let R be the sedt of x.11 red-headed people

in the world. 'Let W be the set of all rea-headed girls in your

school. Then W is a subset of R arid also of G. In fact, W

consists exactly of those elements which are in R and are also in

G. We speak of the set' W as'the intersection of the sets R and- G

and, in notation, we write W = Ri1G. The symbol."(1" is called

the intersection qmliol. We read Rr1G as "R intersection G" or

"the inter-g-Action of R ancip.1)

Let A be the of all positive whole numbers. Let B be the

set of all real numbers less than 8. Then Arl.B is the set of all

numbers- which are in A 'and are als1 in B. In other words, A(1B is

4)



2.4

ors

the' set of all objects which are

(1) positive whole numbers and

(2) numbers less than 8. f.

Clearly then

Ana . (1, 2, 3, 4, 5, 6, 71.
.

.Definition. If X,dna Y are sets, then the intersection of X

and Y (in notation X(IY) is the set of all elements each of which

an element of X and is an element of Y.

To determine whether an object 1sin XnY is simple: the

ob ect must be in X and must .also be in' Y.

s)

Exercises 2-1

Where apprOpriate, use brace notatibn to write bu.D ydur
answers.

1. Let X be the set of letters of the alphabet which prgeede g.

Let Y be/the set of vowels which precede i.

(a) X= ( ? 3.

(b) Y = ( ?

(c) XnY = ( 3.

-2. Let H be the set of
. ypes (sizes) of silver coins in circu-_

lation in the United. States. Let KO)e Ple)..get,of7types .off...-., s,..,,,,-- - -
).

coins in circulation in the UnitedlKates.
.

.

(a) Is HCK?

(b) Is KCH?
.

(c) What ,is HilK?

*

16



3. Let P = (3,

Let Q. = (1,

(a) PnQ`.

5 g 7,

4, 7,
?.

2.5

11,13;117,
10, 13, 16,
)

19)

1)4)

. 6

(b) c! Is P,N, a subs,et of Q?

itr. Let -V be the set of positive odd whole numbers Let Wipe the

set of'*-pog,itive whole numbers dgs than 20. Le X be the set
of whole numbers divisible by 5.

(a.)" ITN°. ( ? )

(b) WO = {.? }

(c) (1711w)n X ?

Note; that Vn-W is itself 4a.; set and the intersection of

this, set with X is what is meant by (vnw)n X.
at

'5. ,Let A be the set of meta who have of the United.
.

States at osone time since 19 ." Let B be the set of meWwho

have been Vice-President some time since 1922:

?

AFB, =( ?

Show that B t contained in A; i.e., exhibit an
elment of 13 which is not an element of A.

6. L the set \of pco*sitive whole ntilnbers.

'Let H e. the set` of '-milltiplesof '6';

LetNC, be the set of multiples of 3.

.(a)- .H ( ? )

' , (b), K ( ? )

i!) MO K ?

i

14........... %%%%% 1,4.

O 0.

1

17
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2.6

(d) Show that H Is not contained in K.

4e) ( )

(f) is.(HriM)

2. Union of Sets.

Let A .. (1, 5, 9) and let B = (2, 3, 4, 5). The intersection

of A and B A(1B) is the set (5) consisting of the single .

elelilent 5. How are we going to re Ter to the sets 2, 3,74, 5, ,9)?
)7,4

In other words, whit' yill we. call /the ,set whose elements are, the

elements of tortr with the-e/lements of B? We use the word

"union" in this sense. itesuggeste the combibdng or uniting
, .

the sets.' Thus (1,, 2, 3, 4, 5, 9) istthe union of A and B. In

potation; we write AU B, (the "union of A and B" or,"4riion

Similar notation and termilholowgis 'Used for any pair of sets.
t

Let X and Y be any sets at all. Then XUY (th\ union-of X and Y)

is the set 'consisting of the elements of' X toge her ,with the

elements of Y.

To determine whether or.not an object is an element of XUY

is eimple. The object is in .X11Y provided it is in X or it 'is in

Y. It could be in both.

. Let. M be the set of people. in your school with last name

Ari"Smith." Let N be the set Of-people, in your school with first

name("John." Then MliN is the set of all people in your school

A

18
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2.7

Who qualify on either o two counts: for a person to be in MAJN,

either his last name mus4 be Smith or his first name must be John;

either the person i in M or he is in N. (Any person.naMed

John Smith, qualifies on both counts.)

Empty Set. What is the, set MinN (the 14tevection of M and

N)? TQ be in Mf1N, a person in your'school must have last name

Smith and first name John. Thus.'MIIN is the set of "John Smiths"

in your school. Now suppose your school doesn't have anybody in

it named John Smith. Then, the set' M(111, (M Intersection N) doesn't

have iby elements in it. .1n this case, we say that MI1Nis the

empty set (or null set). Some' people would claim, that M114isn't

a set if it doesn't'contain any elementsj4Eut mathematicians

generally find it more convenient and useful to use the concept

of the empty set. Then if X and,Y are sets, ;a-1Y is a set. And

XillY is empty if and only if 'no element of X is an element of Y.

The empty.pet, thus, is the set with no elements in it We use

he symbolO to denote the empty set.

Sometimes in describing a set, we may not know, at first

ance,"whether or not the set has any elementsin-lt. If the

contains no, elements then we.are simply describing the empty

se'. 'For example, if your school has nobody in it named Smith,

the i M would !be the,empty set.

4
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2.8

ExercideS 2-2

Use brace notation where possible and appropriate.

1.. Let A = (I, 3, 5, 7? 9)
- .

13. (1).2, 3, 4; 5)

C'. (2Y4,,6,.t; 10)

Find:

(a) AUB

(b) AnTzr*

(c) AUG

(d) a.AnC

2. Let X be the seti'e5t* tates of the Unite tates whose, names

begin with a directio (e.g., We rginia). Let Y be the

set of states which 'OTT-the Pacific Ocean.

Find:

O

(a) ,X

(b)

(c) UY

(d) xnY
b

3. Let M be the sOrOf point's on or inside the square'. Let N

be-the set of points on or inside the circle. Dr w similar

figures and shade

(a) 14

(b) N

(c) MUN

(d) MnN

20 ,*
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4. Describe two sets H and K such that

(a) K is empty, and

(b HU K .34( not empty. _

5. If A and B are sets', -An B is empty and (AU B)C A, what can '

you conclude abOut B?

6. If. M is a set and K is a set and if (M(l N) = (MUN), what can

you--conclude?
4.

fLbe the set,.9,f aWpositive even whole numbers.

Let S be belle t of all./positive Whole numbers divisible by 3..

-'t(a) . -Describe Rn s

(b) List three positive whole numbers not in R1.4

8. Explain why fOr any sets X and Y, (XUY)D (X0 Y)

.
3. One-to-one,correspondinces.

Let CC the Greek letter alpha) be the set of capital letters

in the English ',alphabet. Let (the Greek letter beta) be the

set of lower case letter

(A, B, Y; 2)

(a, b, c, y, z)

Nowthere a natural way of associating the elements of ot With
. .

the, elements of/3 s that each element of CC corresponds 'to exactly
a

one elemeht of

/B

and each element ofie to exactly one element of

d under this same -Association.

21
F.
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Each capital letter is to correspond to its lowercase Vetter.

We use the syMbol.1-4.o , as appropri0e, to indicate the mat b=

ing or correspondende. Thus,

A B Z

a b z

This is an example of a "one-to-one" Correspondence between:

7"the sets GC and B. There are other one-to-one correspondences t

"°- between and/a. Thus we might let Z correspond to "a" and each

other capital letter correspond to the lower case letter following:

Thu.s

A B --Y Z

r r -i
b c -------z a

In manycases in life, we are interested in two sets and the

existence or non-existence of aone-to-one correspondence bettieen

the two .sets: Insome instances, we are interested in a

particular matching process (one -to -one correspondence), not just

any one. If you are giving a theater party for 10 boys and 10

girls, your set of tickets should be in on correspondence
4.,

with the set of peopl'e going. If the seatS.are rese vedit

probably makes a great deal of difference what one-to-one

[- correspondence you set up as you pass out the tickets to the

various members of the party.

r
4.9 F r ,



2.11"

A one-to-one correspondence between two sets M and N, then,

is a matching of the elements of M with the elements of N so that
--

under this matching each element of eithtr set corresponds to a

particulai, element of the other (which in turn corresponds 'to it).

No .element of either set can be left over.
I

In most homes, .there is a one-to-one corrtspondenCe between

the set of chairs at the dinner table and the set of members of

the family. Furthermore, 11,,P are especially aware of that parti-

cular one-to-one correspondence which matches each person with his

ownchair.

One-to-one correspondences areof fundamtntal importance in

the process of counting.'-A person.learns to count--meaningfully

--when he learns to match the counting numbers in order and up to

a certain number with the objects he is trying to count. The

process ofcotanting is a processof establishing a one -to -one

correspondence. Even before-children learn to count,,
1

they are.
' .

frequently aware of one-to-one correspondences. Take four small

boys and three ice cream cones. Cen,,before'the cones,are passed

out, s,4t boy may well have mentallx.matched the set of boys With

the set of cones and anticipated certain difficultied.

In geometry the notion of one-to-one correspondence arises

nurally and significantly t Consider two congruent triangles

as below. C F

' Let Pot-5.D

B4-10.E

GHQ

42 3
do
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7

Under this correspondence of the set (A, B, C) of vertices of

, the left triangle with the set (D, E, F) of vertices of the right

triangle the.twO triangles seem tb be congruent.

But tinder the correspondence

A .e).D

C< E

the triangles do not seem congruent for the side AB is not the

same length as the side

Exercises 2-3-

1. Is there a one-to-one dbrrespondence between-the states of the

`United Bfates and cities (in the United. States) of .over

1,000,000 in populatiori?: Why? / .0 '

2. Consider, the triangle'in the

figUre. List all six possible

one-to-one correspondences be-

tween the set-of vertices (A,-B,'C)

and the set of sides (a, b, c).

...3. If set R is in one -to -one correspondence with set Sand set S

with'set T, is there a one-to-ohe correspondence betWeen set R

and'eet T? Explain.

Os:
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F. Describe'three different one-to-one correspondences between

the set of digits (1, 3, 5, 7, 9) and the set of symbols

(n ,U D 4-1'4

`5. Describe a one-tcironecorrespondence between.the set of

positive integers and the set of negative integers.

0-

,

2)

J

)
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Chapter 3

Logic!and Geometry

1. Statements and Implications'of.Statements.

When we write a sentence, me make a-statement. Thit statement

may be true or it may be false or it may be meaningless. Examples

of meaningless statements are:

(1) 4badab diaha loween-syman.
.

(2). Horses and chairs ride honor aMbng windows.

Ip (1) the "wbi4s"16nit even make, sense. In (2), while. the

words all make sense theigtntent. itself does not; (2) is in the

form of a sentence but it does riot have meaning. For the yurposes
,

of the discussion of this chapter we want-to conaldei, statements

that are not meaningless.

411

So we restrict our attention to feaningfulistatements. There

is another distinction we would like to make. When ohe makes a

statement, he is, trying to communicate information (valid or

invalid). Many statements that aa made in,everyday language are

true in spirit but false as actually stated. Th'ey,communicate a

valid idea but; are not technically- correct. For many purposes

technical correctness is not especially importaht.

But in subjects like mathematics,we have to beGconceAed with

the correctness or non-correctness of the specific statements ws.
,

26 '
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make. It is in the nature of mathematics that precision of

language and thought is important. There fore it is necessary for

study\the significancedf statements, their meanings and

their implications. We shall assume that statements mean what

they .say and not merely what we might wish them to. ay. However,

statements are usuallymade in.conjunction with other statements

and also on the basis of tacit agreements which have been,built up

in general or in the particular discussion., In Chapter 7'We

discuss this aspect of language further. Here we cite an example.

The statement, "I am not going to eat breakfast," usually carries

with it a tacit time understanding. A person who made this state-
- AP

ment.on getting up in the morning and then ate breakfast that

morning would be considered as having made,an untrue statement,

Furthermore, if be did not ,eat breakfast that,a4Tning, but did the

following morning, his\original statement would be considered to be

correct. It would normally have been understood that he was

referring to breakfast the day he made the statement unless the

contrary' was specified. hus we agree that individual statements

should be understood to be in context, more to restrict or clarify

their meanings than to "change" them.

It isconvenient to letsymbols like A, B, and C denote

statements. For instance, consider A tobe the statement, 'The

weaker is not clear today," and consider B to be the statement,,

"I am:going to stay home." We can make (further) statements using

statements A and B lad"building blocks".



3.3

Example 1. A is true. In our illusiration: this says "Tile

. statement ,The.weather is not clear today,' is true." But this

latter assertion means nothing more ,nor less than the original

,. statement "The weather is not clear today." Either-statement is

true provided the other is. Thus we conclude that "A" and

"A is true" really mean the.,me thing. '

Example 2. B is not true. 'IA our illustration this says

"The statement am going to stay home' is not true" or in other

words "I am not going to stay home." The statement "B is not
. al

true" is called the negative of- B and can frequently be achieved

by the insertion of the word "not" in the proper place in tills

statement: B.

Example 2. "A and B" (or what is the same, is true

and ,B is true"). In order for statement "A and B" to be true,

both A and 13 individually must be true.

Example 4: "A or B". The statement "A or B" will be

true provided at least one of the two separate statements "A" and

trues In other words, "A or B" is true unless both

"10 and 1B" are false. The statement "The weather is not cleAr

today or I am going to stay home" is true unless (i) the weather

is clear today and (ii) I do not stay home. (The statement "A or

B" has meaning but in our i lusstration, it is not the kind that

is ,made in ordinary speech, as .the statements 'A and B themselves

arenot."natural",alternatives.)

1
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Example "If A, then B. " In _,our illustration, "If thg

weather is nqOpclear.today, then I a going to stay home." This

is known as a statement of implicat on. Another way of mak

this
/

stabement is to say "A implies B". The statement me ns that

it cannot be, that A is true and B is false. The' statement says

nothing about B in the event A is not true. Consider our il-

lustratlonn the event the weather is clear today, ram at

,liberty to stay:home or not as I see fit. The original statement

of implication does not restrict'my behavior if thet'Weather is

clear. In the event A^ is not true, the statement "If A, then

O
B" has meaning and is certainly, not false. Thus, in this event,

we must consider the statement of implication to be. true even

though it does not contflbute infdrffiation about B.

The Contrapositive. Statements of implication (If A, then B)

are of great importance in mathematics. They are widely used.

"If x is divisible by 4, then x is divisible by 2." "If

4correspondft sides of two triangles are congruent, then the two

-triangles are congruent." Any statement of implication can be

,made in a variety of ways. We have already noted in Example 5,

that "A implies B" means "If A, then B. The statement "If B

is false, then A is false" is called the contrapositive of the

statement "If ,A, then B." A statement of implication and its

contrapositive really mean the same thing. We can see this by'

considering the following table.- In this table we have listed

-1

)
2 9, ,
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four statements across the top: "A", 1B", implies B", and

"B is false implies A' is false." In the left two columps we

have listed the four possibilities. .for statements A and B. The

bottom row, for instance, lists A' as false and B as false.

A B If A, then B If B is false, then A
is false -

T

T

F

F

\..

T

F.

T
.

F

.4

.

T

F

T

T

'

J,..

T

F

T

T

.00

.

.i

*

.In the third and fourth columns arelisted T and F according-
.

as the statement at the head of tl°1e'drtiCular column is true or

false for A and B as listed in ihe same row: Thus they state-

ment "If PC, then B" is shown as false for A "true" and B

"false". :So also is its contrapositive as listed at the bead of

the fourth column. If B is false, then A cannot betrue.

Because the third and fourth columns are alike,"we conclude that

the statement "If A,then -B" and its contrapositive have thp,...

same meaning. If either is true the other is. If either.is

false, the other is. The contrapositive is important, inT:art,

because some statements of implication are easier t? recognize'ap

true (or false) when stated in the form of the contrapositive.

Equivalent Statements. A statement of implication and its
11F

contrapositive are examples of equivalent statements. SO Tare the

'30
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statements: "A ilisqlreg--B"dhd ,"If A, then 13",. in general, two .

statements, P and Q, are said'to be equivalent if P implies

Ca and . Q implies P. In other words, if either statement is

true, the other must, also be true.- Looking at
f

may say that P and Q are'equivalent if they are different

ways of saying the same thing. Let us give an example; Suppose

4
M and N arelsets.

Let P be .the statement: M is a subset of N.

Let Q be the Statement: Each element of M is an ellement

of N. Then F and Q are equivalent for
. .

k
(1) If 'P is true, then Q is true, and

(2) If Q is true, then. P is true.

Or we can say, (1) P implies Q and (2) Q implies P.

Wmlighi note that equivalence has the following property, If

each of two statements is equivalent to a third, then they are

equivalent to each other."

The Converse. A statement of implication has a converse,
, --

which, in general, is not eqUkValent to the statement. The converse

of the statement0 implies Ei" Is the statement, "B implies A".

Clearly if the statement "A implies B" _and its converse are both

true, then A is equivalent to B. The' converse is particularly

important irl geometry. We make a statement in the form "If A,

then B . Wd are frequently also Interested-in the statement

"If B, then A".

4
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Consider the following valid proposition of geometry: "If

two angles are vertical to each other; then they are congruent to

each othe ." This is sometimes stated in the form "Vertical angles,

are congru nt." The converse of this statement would be:
.

"If two
.

(

angles are Congruent to each, other, then they are vertical to each

other." This converse is not a valid proposition\of geometry (i.e.,

is'ot true) for we may exhibit two angles which are congruent to

each other but which are not vertical to"each other.

Exercises 3-1

1. Let P be the statement "6 is an even number," let Q be

the statement "all whole numbers between 5 and are even".

Write out the statement indicated (whether or ) t such is true).

, (a) P and Q

(6) P

(c) . If 0P, then. Q

(d) Q is not true (be careful how you .do this)

(e) If t4 is not true, then P is true.

2. Tii'each of-(a) through (e) of.l."-1. state Whether the statement
J% t `1* ' -Sr

-given is true.
4

3. Explain why1it is true that if. each of two statements is

equivalent, to a third, then the twd statements are equivalent

to each other.

7
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4, Suppose x" and y are numbers. Consider the statement of

implications If x . y is positive, tlign x

(a) State its converse.

(b) State its contrapositive.

(c) State which of (a).and (b), if either, is ati:ue statement.

5. Give an example of your own of a statementof implication

d(a) which is true.

(b) which i
\,)

(c) which is true but whose converse is false.

d) whose converse is true.

(e) whose contrapositive is true.

6. Ifyou are at least vaguely familiar with the notions of

congruence and vertical angles, draw two congruent angles which

are not vertical thus justifying the last statement preceding

the exercises bf this section.

2. Postulates and Proof.
.

In.any discussion, we assume a good many things. We assume

that specific words mean what we understand them to mean. We

assume the properties of elementary logic--that.sentences mean ,what

they are supposed tok for example, that the statement "If A is

true, then B is true" is equivalent to its contrapositive: the

statement, "If B is not:true, then A :is not true.". We also

have to assume some properties of the particular subject matter

L

-83
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under discussion. In Euclidean geometry, for instance, we

usually assume that a line is a set of points and that for any

two points there is exactly one(straight) line containing the,

two points.

The assumptions we make are, so to speak, a poilt of departure

for our further study: In formal geometry, we usually call the

assumgions "postulates". And we try to write down specifically

what we are assuming to be true. Othrwise,we would have a rather

fuzzy base of operations. On the basis of our assumptions we can

then draw certain conclUsions by use of elementarplogic. We

sometimes call conclusions we can draw "theorems" or " ositions".

The justifications for the various conclusions ate balled proofs:

A Proof of a theorem is an explanation of why the statement of the

theorem must be true (or cannot be false).

It is necess= to make definitions of words we use if the

meanings are 't already clearly and unambiguously understood.

Ihuoltords 1 ke, "angle", "triangle", and "circle" should be

defined in eometr. Words like "and", "is", "there"; and "or",

are considered to be understood. There are some words for-which

wt,do,not or cannot give explicit definitionq. These w311 be the

so-called undefined terms of our system. In gepmetryo "point"

"line" and "plane" are examples 'of undefined terms or concepts.,,
\

The postulates tell us what we assume to be true about pointt,
',ix.

..

lines, and,planes. The thebrems- tell us what we can conclude to

be 'true.

;,7
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Geometry, like other mathematical subjects, ts not just a

formal system of definitions, postulates, theorems and proof:Pt°

Abe stw3'i.ed, 1 arned, memorized, and (if possible) understood. The

. development o irituition and the janderstanding of ideas is at

least as imp° ant as the "proof" side. of geometry. Geometry in
4

the junior high school is particularly concerned with introduction

of terminology, the understanding of spatial concepts,'and the

. development of more geometric intuition. Understanding refers to

comprehension, of ideas and language. It involves learning of

facts together With interrelationships of these facts. It is not .

simple memari ation. intuitibn refers to the_antAcipationof

facts and i-as before these are pointed but by others. A perso

with gooegeometric intuition can frequently decide for himself

what a facts are and what the theorems ought to be. Naturally,

at the junior high school level, only a small amount of this type

of intuitian4anbek.expected.- V'
While proofs such are not stressed in this-took, some ex-

planation of the form and methods of proof is called for. Let us

consider an example. Suppose we have statements A and B and

we wish to' prove that A implies B, i.e., that the statement'

"If A, then B" is true.-We tall "A" the hypothesis and 1B"

the conclusion of the statement.

Sometimes B as a statement is simply- a rewording of - A (or

is immediately implied by A) in which case the proof might
0

-
0

occasionally properly be stated as "obvious ".

01
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More often, however, the ,statement "If k, then, B" is not

immediately obviously true. One possible method of proof is tO

find intermediate steps in a "dtrect" type argument. Ferhaps'we

can find statements, C and D such that
. 4,

A implies C,

C D,

and -D implies B.

Then we may conclude that A. implies B. For, note that if A

is true, then C must be true, hick eans that D must be true,

Which meansithat B must-be true (which is'what we Wanted to

p

,show).

When the proof is in the form. of a sequence of statements .

like the above, it may be that ea step can be'justified by one

known rop'erty. If so, the'argumen is usually easy to follow.

But it may be that each_§,t,010.neecis p4.4,irly lengthy proof

itself. In such cases the form of the argument may get complicated.
c2)

But the ,idea of the argument may still be simple. Ai:

Another method of argument is' the so-called "indirect method ",,,,,

or argument byontradiction., Suppose we want to show that "If A

is true,-then p is tr.ie ". If this statement were false, then r-

(1) A would be true and

I

(2) would be.false.

86
a
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We ,suppose both of these are so. Specifically we suppose B to

be false. If'as a,tonsequence of A being time and B being

false it follawtthat

false, then we haveQS

cannot' logically arise
,

some (other) statement is both true and

contradiction, i.,e., a situation that
n.

-Hence our-assumptions cannot all be

true. Therefore pit cannot be that A is true and. B is false.

..
,

-Hence cif A. is true then B must also be true which was what we

wanted to show.
, . .

Examples oflindirectsrguments are scattered throughout the

r
.book. We give an elementary example of such an argument here. We

.
,

.

regard a stratght line as a seVol poirits. Suppose we have given

1
the .roperrty that for any two distinct points, there can be at most

one straight line containing them. We wish to prove "If two

distinct straight lines intersect, then their intersection cannot

contain two dis6nct points". The proposition is of the form

"If A, then B". We suppose B to be false. 1.e., we suppose '

the intersection 'aoes contain Iwo distinct points. Then

(1) each, of the two distinct straight lines of Our
r

r

hypothesis does contain the two distinct points.

(2) at Most one straight line can-contain the ,two

points as is known from the given property)...
.

Statements-Wand! (2) contradict 4ch other. We have a

'6

contradiction. Hence the statement 1B is false cannot be true

0

(if A is true). Thus "If A ts true, then B is,true" as

414to be shown.

a
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.In traditional 1Qth glide geometry, proofs are usually given

in a form of
,

(1) statement (1) reason

(glellstatement (2) reason

II

H I

I

(k2 ) statement (k) reason

Q.E.D.

The final statement (k) As usually the assertion of the conclusion

of the, theorem; i.e., "that which was to be showni'lLor, in Latin,

"Quod Erat Deplonstrandue. 4;

In actual practice in mathematics, however, proofs erealmogA

never given in this,form. A proof is written out as a paragraph

or several paragraphs. The formal presentation J.n geometry texts

is designed not as the only way to present a proof, but rather'as

a means of emphasizing the significance of implication, the de-
,

pendence on previously established results,, and a logical step-by-
.

'stei) procedUre,, In jUnior high school geometry, a more casual

form for a proof seems called for in those few cases where proofs,

as such, are needed. The critical,aspect of any proof is not its

form but its validity,, i.e., its logicar soundness.

1.

P4

O
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Finally we ask how we might sho that an "alleged" theorem

is false (or not valid). We might be given a "proposition" and.

be asked to determine whether it is true or false. If the
*

"proposition' asserts something to be so for all cases of a

certain type, then we can disprove theTopoaition by exhibiting

an example of this type for which the assertiae.is not so. Con-

sider the statement, "All primei are odd Tumbers." Wtcan
N

disprove_this statement (show it false) by exhibiting the number

2 which is a 'prime and is not an odd number.

3

Exercises. 3-2

1. Write out two or three °lithe postulates of geometry (as best

you-pan remember them).

2. Recall (as best you' can) some proposition of geometry that we

havenItmentioned. Write it in the "If--then--" form.' Write'

its contrapositive any its conve se,if possible. (For some

propositions ,these are rather tricky:).

*Ite

3. Write,three "theorems" about numbers (in theq"If--, then--"

form). Write th-eonverse of one of -these and the contra-
.

positive of another.

4. Write out an "alleged" theprem of geometry which you can

disprove by example.

5. Explain-why the following two statements_are not, 41 general,

equivalent.

(a) If A, then B

(b) If A is false, then )3, is false.,

I
4
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__Chapter 4

4
Abstractions and Representations.

I

For almost all people who study any mathematics, the subject

smatter is properly regarded as a tool for use'in problems.that

everydayarise in e living: Some of these problems are technical or

so

scientific in nature but most are applications of arithmetic.

The problems of arithmetit usually deal with counting or with

mea.surement or with bbth.

The system of numbers which we use is, however, an abstract

system. There are infinitee7.y many counting number8,

but in applications We neverlcountever more than a rather small

finite number of object in he world about us., It turns out that

assuming the existence of finitely many counting numbers is

extremely useful in mathe tics whether or not the numbers can be

'considered to correspond to concrete objects in our universe. It

is me4tematically (but not physically) unimportant as to whethef

or not there are infinitely many objects in our universe; But the

mathematics we get from the assumption of infinitely many counting

numbers alge of tremendOus importance in the scientific world of

today. There would be no modern science or technology if such

basic assumptions in matnematids had not been made a long time ago._

h
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Hence, we should be prepared to accept mathethatical systems

(like the number siStem) as a/bstractiois of phenomena in the

° everyday world. Abstract mathematical systems have helped us and

will continue to help us understand our environment.'

6 The basic concepts of geometry are also mathematical ab-

stractions. A plane, for instance, is a mathematical abotraciion

.
of a flat surface. When we want to study the common character-

.

istics of ,flat surfaces we study planes. We sOcify properties

of planes by thinking of common properties of flat surfaces like

walls, flooi's, blackboards, .etc.

Por any two poilp (of a plane.) there is a.poin? half-way

between them. This property or planes (or of lines) suggested by
44.

f

thinking about flat surfaces leads to a distinction between the

Mathematical abstraction and the physical reality.

A B Bik
3 2 1

B4

On the mathematical plane there must exist the point B1 (halfway

between Asvand B), the point B2 (halfway between -A and B1),

the paint B
3

(halfway between. A and B
2

),*and -so on. The
a

"halving the length" process can be considered continued indefi-

nitely.. In the mathematical abstraction this seems reasonable.

But on any flat surface such a process could be performed only a

very.smal number of times before the "points" would be

41

ti



4.3

st
indistinguishable. Try to think of it being performed even 50

times for instance. Evdn wi'tifthe sharpest instruments it would

not be possible.

Where do these considerations leave us?' Concepts like these

'concerning the mathematical plane have turned out to be extremely

useful in helping us understand not onlimathemati4 itself but

also many applications of mathematics. Even though the mathe-

matical abstraction does not seem to give a "trite" picture of the

physical object, i,t frequently is of great value. A well-known

example of this type of reasoning ,is the use of maps for the

surface of the earth. The usual. (flat) map of the earth (Mercator

Projection) involves considerable distortions in extreme latitude

and does not correctly indicdte "shortest" paths for long distances.

Nevertheless, such maps are widely used and make possible better

understandings of the surface of the earth: The atstractions from

the surface of the earth to the surface of a sphere and from the

surface ,of a sphere to a flat surface ,such as a' map are important,

valuable, and practical.

It is interesting to note herttoegifference between pure and

applied mathematicians. Pure mathematicians study mathematical

systems as such whereag applied mathematicians study applications

of such systems to various problems that arise ix the world about

us. Both groups of people are important. Some of the really

important scientific advances have come as results of pure

A
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1
N r kmathematicians' better understanding of mathematical systems; The

development of analytic, or coordinate geometry (discussed in

Chapter 12) was a result af pure mathematics--an attempt to under-
' J.

stand relatiQnships betWeen mathematical systems. Without some-
/

thizIg like analytic geometry we probably would have no modern

science:,

There is another side to the loin of abstraction. While

mathematical systems are abstractions of physical phenomena, we

frequently study the mathematical objects by considering specific

representations of them. A blackboard is a representation of a

plane. A drawing.of a line is a representation of the line; it is

not the line. We often can'understand mathematical systems better

by considering concrete representations of them. In fact, much of

our intuition about mathematical systems comes from considering

representations of them. Our.intAtion about geometric space

--space as a set of pointq--comes'from our natural awareness of

physical ,space--the three-dimensional environment in which we live.

But we should not confuse the mathematical system with its

representation. We may think of the walls of a room as planes.

However, the walls are not the planes, just models of them.

SoMetimes our language leadg to confusion on this score. We

should try to think, speak, and write with clarity and precision

Cy

9
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The statement 'Traw a line" really means 'Traw a representation of

a line." While for simplicity we may use the expression ITravra

line" we should keep in mind what is meant by it.

Because we shall regard drawings as representations.of

abstract mathematical objects or entities, it really is not im-
Q.

pOrtant mathematically'how "accurate" our drawings or sketches are.

Drawings and sketches are to'sugge Whether we "draw a

llne" frefhand or' with a straightedge makes no difference- mathe-

matically, the thing drawn is only a representation of a .line

anyway. Whether we make drawings freehand or with instruments may,

however, make some difference pgdagogicallY. The nature 8f the

audience And the uses to which a drawing is to be put will

frequently determine the type of drawing to be made. We should

be sufficiently careful in sketching to get our ideas acrbss. We

should not be so" meticulous that the processes of drawing either,
.

interfere with the effective communication of ideas or replace

mathematical concepts with artistic ones.

In classical geometry, the unmarked ruler and compass were .

the g"tools" that were allowed. Questions concerning geometric

.constructions using only these "allowable tools" are legitimate
.

ones in geometry. These questions can be (but usually are not)

phrased in terms of aSstract concepts and processes.

4
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Exercises

1. In your own words describe what is meant by a mathematical

system as an labstrarioe.

2. Explain how the symbols used for numbers may be regarded as

"names" or "representations" of the numbers,.

3. Without looking ahead to the next chapter, describe or define

a "triangle". - Keep your definition for comparison with that

of the text.-

4. Without looking ahead to Chapter 5 aneChapter 6, describe or

define an "angre". Does a triangle "have" any angles by your

definition? Re-examine your definitions later.

0
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Chapter 5

Non-Metric Geometry. .

l

1. When we say non-metric geometry, we are referring to that
. _

part of geometry which does not have to do with measurement. We

might call it no-measurement geometry. In this-chapter we shall

be reviewing and restating several of the itriportant.facts and

points oi-view of-tr'aditional EUclidean geometi,y. But in ac.7 4

cordance with the chapter title we-Shall concern ourselves with that

fragment of Euclidean geometry which is independent of measurement.'

Very little of the terminology of this. chapter, will not.be familiar

to most readers. We shall,, however, give, special or restricted

.

meanings to a,few of the words.

'We consider space (an abstraction of ordinary every-day thr9e-.

dimensional space) to be a set of points. Intuitively speaking,, a

point represents and is represented by a position or location in

space.

\We shall give some of the basic properties of space and its

' subsets. There are certain subsets of spice which tfoLiof funda-

mental importance in Sliclide geometry. The mosttimportant of

these are (straight) lines d planes.. Each (straight) line, is a

set of points of space and each lane is a set of points of space.

We shall understand that each line extends indefinitely far in

both directions. Later, we shall specifically think of portions
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of lines. In,geometry, we study such things.as properties of the

set of'all lines in 'space or the set of all lines it a plane and we

study prop'erties'of the set 018.11 planes'in space.
_

We intuitively understand a line to/be what we 'plink of.as

straight and a plane to be./what we think of as a flat surface. Ta

study ffat surfaces, we abstract the notion of flatness and call

the mathematical flat,surfaee a plane. To study pPoperties of

planes, we think of properties"roperties Of flat surfaces. If we wish to

draw a picture of a plane we draw'something suggebting a flat ga.

)surftce.

Possibly the most fundamental 'property of the set of lines in

space is what we shall call
' _S

Property I: For any two distinct, points in space, there is

one and...only one line containing the two points.
---IrT,5-.4

We' ay think Of this property the "straight string"

litt5.property or the "line of sight" pro . For any two points
. C

,(Rasitgehs) in a room (with no obstructions), a suing can be

'-s

/0!ptched between the two points (there is One line containing

the two points). Any other string stretched between the two points
stf

would occupy the same place as the first string (`there is only one

line containing the two points). If A and B are points, we use

'the symbol AB to denote the line containing It and B:

We might note here that another important property follows

from our Property I: i.e., can be ProVed on the basis of Property

I.
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'-Property I-A. If two distinct lines intersect (havers. non-
.

empty intersection), then the intersection is exactly one point.

Proof: Suppose the two distinct lines Y1 and ,e2 are

*such that ,q) S2 contains the two distinct' points P and Q. By

Property I, only one line can contain both P and Q. Therefore

51
1
and 22 must be the same line; i.e., 1, and

2
must be different

names for the same line. This contradicts the fact that,Ql and ..e2

are distinct and therefore completes the proof.

We next state a property relating the set of all lines with

the set of all planes.'

Property K. If a line contains two points of a plane, it

lies in the plane.

We could alternatively say that the line is a subset of the

plane or is contained in the plane. This property Practtcally

despribep what we mean by a surface being flat. We might pay that

a surface, is flat if, for each pair of points of it the line join-
.

ing theIt1ies in the surface. "
0

Note that any plane must extend-indefiniteiy'far,*forit

Contains lines which do.

Property II gives us a property of the set of planes. . It.

tells us something about what planes are, like (in terms of lines):
0

It does not say what will determine aplane. To assert what is

sufficient to determine *41,1a114 we have

Property III: Fdr any three distinct points not all on the
,

,

Same line, there is one and only Cheoplane containing the three

points.
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Note the similarity between Properties, and III. Property I

says that if A and B are points and A is not the same as B, then

there is a unique line containing A and B. Property III says that

if A, B, and C are -points and there is no line containing A, B,

and C, then there is a un que plane containing A, B, andC.

Property III might e called the "three-legged stool"

property. If you hold a three-legged stool up in a fixed plac ,

a flat surface can be held against the three tips of the legs

(there is one plane containing, the three points). Furthermore,

any flat surface held against the three tips must coincide with the

first one (there is only one plane containing the three._ points).

There is an interesting property which follows from Properties

I, II, and III; i.e., is implied by Properties I,R II, and III.

Property III-A. If theSintersection of two distinct planes

containstwo distinct points, then the intersection muSt be a

line.

Proof:, Let M
1

and M
2 ,be the distinct planes such

-min m2 contains the distinct-points P and Q. By Property I,'

Vhere is a unique line (call it X) containing P and Q.

Property II, (' is a subset of Mi andalsoiis a subset of.M2.

ThereforeAaM2_contains-the nal: If m,n M2 contained 'any

Point R not onde, then P, Q and R would be three points not

the same line PC. doesn't contain all three and any line,othen

y

4 9 .
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cannot contain even P and Q). Then Mi and M2'would be distinct

planes containing the three points P, Q and R and Property III

says this cannot happen. Therefore, NyYM2 not only ctontainsde

-t but is X; the intersection is a line. Thus Property III-A is

proveq,
1

Another useful property follows from those we-have stated.-

Its proof is left to the exercises.

Property III-B. If k is a line and P is a point not on ,R,'

then there is one and only one plane that contains P and 1.,

Exercises

1. Suppose P, Q, and R are three distinct points and are all in

each of two different planes. What can be said about'P,

and R?

2. Suppose points P, Q, and R are in only one plahp.. What fan

be Laid about the line containing P and Q ?,

V,T (a) Suppose, three points are not Ali. 0)Psame line,.1flow

many differ'ent lines, contain at least twl$ of tIrm?-;,,,,
6-

(b) Suppose foUr points are.n t all in the sake Plane.
th,e4

many different planes contain at least three cethem?
,

,(c) In (b) how many different lines contain at leas woof

them?
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4; (a) How many different lines-may contain one point?' Two

distinct points?

(b) How many different planes may contain one point? Two

distinct points? ree distinct points not on the same

line?

5. Prove Property III-B.

2. Intersections of Lined and Planes in Space. On the basis

of Properties I, II, and IIT'We are able to arrive at some con-
'.

clusions concerning the n ture Of intersections of lines and

planes in space. In fact, operties I-A and III-A embody just

. such .conclusions.

Case I: Intersection of Two Distinct Lines.

Let X1 and denote two lines with /el
2

(a). Suppose An 22 0, e.' '

/1022 is not empty. Then

Property I-A, fin ,e2 'is

a set consisting of a, single

point. We shall show that

,e1 U12 must be a subset of

one plane. For let P be the point of -inter-

section of A and 12. Let Q, be a point,of 11

-other than P and let Q2 be a point of 12 other

than P. Then P, Qi, and Q2 can not be on 'any

one line and thus there is a unique plane

.61
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-containingP, Qi and Q2. But by Property II

this plane must contain j, (sin#it contains

P-and-W "and must contain ,e2 (sin'ce it-con-
.

tains P and Ur. 4

(b) Suppose ,t1r))2'. 0, i.e., Y1r),2 is empty.
,

'Then one of two situations,ii true

i) -Y 1
and Y

2
are subsets

XZ
of the same plane. In

1 this event, Si and/2

are called parallel-lines.

ii)
1

and
2
.are not subsets of the same

plane. Then Si and S2 are called skew

- lines. Many pairs

of skew lines' are

suggested by objects

in a room: A "north-

south".line-on the

telling and an "east-
Plane M

west" line on the
M:DS

2'
£1 pierces M.

.

floor are skew.
,e
1
and 2

2
are skew.

X1 1
Wer might reorgaraze Case I as follows: If X' and y

2

are -distinct lines, then either

1) i11j12 is not subset of any one plane.'

In this event, Si and ,q are skew and;
a

ein,e2 = 0 or
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flUAl2 is a subset of some plane. If

0, thenQ1 and 22 are parallel.

If tin 22 0, then An /2 is one point.

Case II: Intersection of Two Distinct Planes. ,

Let M1 and M2 denote planes with M1'/ M2.

(a) Suppose MD M2 = 0, i.e., M1, and M2 have no

points in common. Then. Mi and Magare saidAto

be parallel. Usually,

Planes of tope flOor

A

and ceiling of a room

'are parallel.

(b) Suppose M1 n M2 0, i.e., M1 and M2 do inter-

sect. We need one more property of tile'rt

of planes in space to handle this case cont-
,

pletely. This property like the others is

intu vely rather clear.

Property IV. If two planes intersect, the d,ntersection

contains.more than one point.
.

Therefore if Mtn 0, m
1
rim

a
must contain more than one

point. Thus by Property III-A, the M1 Mt

intersection must actually bt a

straight line. Two positions of a

door represent planes whose'inter-
c"

section would be the line through

the hinges of the door.

5.3

t,
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We may summarize CaseII,

mi(rm2 is empty. 'Then Ml and M2 are parallel.'

ii) M1CIM2 is not empty. Then M1(1 M2 is a line.

'4'.
Case III: .intersection of a Line and a Plane.

Let M be a plane and let ,f be a line.

(a) Suppose Mfg = 0, i.e., M and do not.

intersect. We say that M and are parallel

or that the line ,e is parallel to the plane

44

M. Any line in the plane of the ceiling is

pas,tallel to the plane of the floor-.,

(b) Suppose mile 0, i.e.M and )2 do intersect.

Then either mnR consists of exactly one p,
-.-

or Mlle contains more than one point. In e

latter case, by Property II, ,e must lie in M

or, in ,othe94.saords, 2CM.

, 5 4



We may sulAmarize Case III.

i)'Mn2 is empty.

ii) m(IR is one point.

iii)

Note that in all gf these discussions we have not used the

concept of dibtance or measure at all. We have been concerned
-

with what are called "incidence relations", i.e. intersections

of lines and planes.

In studying and understanding geometry considerations like

pose of this section,-the teacher or student ought to think in

terms of.the geometry, that is, typical representailions at the

'mathematical objects. He ought not to memorize facts as such,

' but rather he ought to,get the geometric point-of-view through

' visualization. If he dins, then he will know the "facts" without .

further effort becausehe will understand the intuition and

spatial relationships behind this aspect of geometryd
3 , ,

Exercises

1. Describe two pairs of skew lines suggested-by edges in your

room.

_ Hi .4-- , , . _.

2. ,On-your paper, label three- pbinte- A, B-, and (C so. t t AB is 7

HP, , f
4E-30,

. 4-310 , H.
not AO; Draw the lines AB and AC. What is ABM AC?

3, Carefully fold a piece of paper in half. Does the fold

suggest a line? Stand the folded paper up on a table (or

desk) so that the fold does not touch the tablet.' The paper

55
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makes sorts of a tent. Do the able top and the folded paper
, . \

suggest three plahes? Is any point in all three planes? What

is the intersect "on\ of all three planes? Are anytwo/of the

planes parallel?

4.& Stand the folded paper up on a table with one end of the fold-
.

tOucNing the table. Are, three planeseuggested?"' Is, any 6
point three planes? What is intersection of the

three planes? t

5. Hold the folded paper so that just the fold is on the table

ebp. Ae three pl'anes suggested? Is any point in all three

planes? What is the intersection of the three plahes? .

6. In each of the situations Of Exercises 3, 4, and 5 Considei.,

only the line of, the fold and'the-plane of the table top.

What are the,intersections of-this line and this plane' You1'
should h e three answer), one-fort ell of 3, 4, and 5.

A,

7. Conside three different lines in plane. How many pointd0

would there be width ,each'_point Oh east t *o of the lines?. .

Draw fpr figures Awing how 0, 1, 2, or 3 might hiVk been

your ahswer. Why could, not your answer have been 4 pants?

8. Consider this sketcI of .a house.

56
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We have labeled eight pofnts on the figure. Think of the nes
d

and planes suggested by the figure. Name lines by a Dair of

points and planes by three points. Name:

(a) A pair of parallel planes.

(b) °A pair of planes whose intersection is a line.

(c) Three planes that intersect in a point.

(d) Three planes that intersect in a line.'

(e) A line and a*plane whos4Optersection is empty%

(f) pair of parallel lines.,

910
kg1 A pair of skew lines. .(

(h) Three lines that intersect iec.al)oint.

(i) 'Four planes that have exactly one point 'irk common.

r- 3. Betweenness,Segments and Separations:

If P, Q, and R are 3 Points of a line then it is intuitive

that one must be between the others two.' In the drawing. P is r
between Q and. R. er.

0

, -' : R

We shall,assume betweenness prdtberties bf sets of points o n
6

a line without explicitly stating these, properties. An example of

h fan assumption would be that astin the figure'below, if C As'

between A and D aid B is between A ancIC then B is bettteen A and

Y

D and C is between B anAkiD.
4

A

A B

-5 7

C
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Euclid did not fully appreciate he significaricd ofbetween-,

ness properties. It remained for geometers of the last hundred

years to emphasiYe the fundamental nature of betweenness and its

associated concept of order of points on a line.

It is not the intention of.this book to give a complete

treatment of the foundatiOns of geometry.ather, here, we-simply

note the importance of the betweenness concept and tacitly assume

what is geWetrically evident about betweenness.

Let be a line and let P and Q be points of ,Q: Then the

12
a

Q i
. ,--:-

Set of all points which are between P and Q together with the
.; .

points P and Q is'called the segment PQ. We use the notation: PQ

or Q7 to denote the segment. Note that F-7CV (the segment PQ is

S subset of the line Pa). Thep will be many rtexts in geometry
4-)

when we will find it useful to talk about segments, and it is

frequently necessary _to distinguish - between a line and a segment

which is a part of it. -

We next consider an important relationship which has three

Similar manifestations.--

4 '(.) If I is a line and P is a point- of ,e then P sepatates

,into two half-lines. The set, of points of .the line
%

other than P is the union of these two half-lines.

These.two half-lines- do not- intersect. We call P -the
. .

tioundary on .Q of each of the two hall'- lines.

4.
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/
(b) If M is a plane and ,e is aline -inine-in M, then I separate; M

into two half - planes. The set of all points of Knot on

fl is the union of these two -half- planes. These two

half-planes do not intersect. We call ,e the boundary

in M of each of the two,half-plane;.

(c) If S is,space (the set of points of space) and M is a

plane (in S; of course) \hen M separates S into two

half-spaces. The set of l points of.S not in M is

_the union ofthse two hal rspaCes. These ''two half-

spaces do not intersec.0 ; r

We-
eft
call M-tfte a P-mndary-in S.of-each-of the two halspacalb

4

Let us think of an*eicample. The plane )of the floor separates.

set bf''points above the plane from the .set of points below the

-,
0

One of the properties of these separations can be stated in

terms of betweenness, We state -it. the case of, a line

separating a plane (Case B).

.02
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Let be a lipe in the plane M. Let P and Q be points in

different half-planes determined by,Q. Then there is a point of

2 between P and Q.

Let X and:ZYbe points in the same half-plane determined by.e.

)s.

Then no point of .R is between X and.Y. In'other words, we have a
.0'

criterion for deter ning whether two points of M not on 2 are in

the same half-plane bounded by,e. They are in the same half-Plane

if and only if no point of I is between them.. Analogous statements
t *

can be made in Case A of a point separating a line and in Case C

of a'plane separating

Sometimes in' -Case B of a line ,Q separating a plane M we Call

,,;.....phe.,-hilf-plahes bounded by the sides of X (in M) and we denote

:the :sides of 2 by names of points in the sides. In the figure

---.4balie'We say the P -side of .Q, thek-side of X, the Y-side" of 2 or
Via, n

the Q-dide,of A. Note that the first three of these are different

names for: the same set. The P-side ofkia the X-side of tiff

our example. We alsosomeVliies call the Q,-dicle-_of £ the "non-P-,

side ofle".

60
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Finally, we wish to introduce the term ray.'' Ift,E.is a line

and P is a point of ,e then P separates I into two half-lines

(neither containing P): A set of points consisting df, 'either of
a

these half-lines together with P is called a ray of the line.

The'point P is ca4ed the endpoint Of such a ray. We denote. the

ray as P where Q is soMe other point-of the ray. In'our.

notation P (TP.

Note'that for the line in the figure:

PQR
(1) XP =X .

(2). ye-Pn 151 Ty.

. (3) 5EPn.i-,I.:M
(4) is the point P itself.

(5) fn 154. = PQ (or QR, etc.)
.24

r
Exercises "54...3

1. Draw a hortaltal line. Label four points on it P, Q, R, and

S in that order fran left to right. Name two segments.

(a) whose intersection is a segment.

(b) '.whose intersection is a point.

(c) whose intersection is empty.

(d) Whose union is not a segment.
w

°
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2. Draw a line. Label. three points of the line A, B, and C with

B between A and C.-

(a) What is fl ?

(b) What isTerffn

(c) What is '0036?'

(d) What is 'OUT&

It. Draw a'segment. Label its endpoints X and Y. Is there'a pair

of points of XY with Y between them? Is there a pair of points
*nip.

of XY with Y between them?

4. Draw two segments AB and 75 for which 1-Enn is empty bUt
Ho 4-,
403(1CD is one point.

5. Draw two segments P and TZ for which TOTO is empty but

. Let A and B be two_points. 'Is it true that there is exactly

one segment containing A and B? Draw a figure expllni,ng this

problem and your answer. 40

7. In some older geometry books the authors did not make any

distinction'between a line'and a segment. They called each

a "'straight line". With " straight line" meaning either of

these things, explain why we cannot say that "through any

two points there is exactly one straight line'."

8. Consider the figure at the right.

(a) Is the R-side ,o0 the same p.

as the S-side of

62
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(b) Is the R-stde of) the same.,

as thelsidl?'

(c) Are the intersections of X

6
and PQ, ) and TS empty? o&

(d) Are the intersections of ,e

, and Qom, ,e and PR empty?

(e) Considering the sides

4

are the previous two answers

what you would expect?

94. Draw a line containing points A and B. What is nri?
What is the set of points not in A? -

10. Draw a horizontal line., Label four points of itNA, B, C, and

p in.that order froM left to right.
a

Name two rays (using these points for their description),:

(a) Whose union is thelinei

(b) Whose union is not the line-but contains A, B, C, and D.

(c) Whose union does not contain A.
, 4

(a) Whose intersection is a point.

(e) Whose intersection is emp0.

11. Does a segment sepaiste e--lolane? Does a line separate space?

12. Draw two horizontal lines k and .e on your paper: These

lines are parallel. Label point P on ,Q. Is every point of

I on the P-side of k? Is this question the same as "Does

the P-side of k contain /"?

0'0

-

O

t
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13. The idea of a plane separating space is related to the iclea.

of the surface of a boX separating the inside from the out-

side-. If P is a point on the inside and Q a point on the,

outside of a box, does PQ intersect the surface?

l4. Explain ihow the uhioll of two half-planes might be a plane.

15. If A and B are points on the same side of the plane I (in

_space), must It ri M be empty?, Can AB fl M be empty?

line.

4. Angles and:Parallel Lines.

Let A, B, and C be three points not,all on the same straight

Then by Property'III of Section 1, there is a unique plane which

contains A, B, and C. By Property II of Section 1, the plane

-which coPtainp A, B, and C also contains the lines 11-, BC, and

AC and of course, all subsets of these lines.

The set glif (the union of the ray BI and the ray M is

called the angle ABC (or Likpc).-r,'08, is called the vertex of the

angle. The letter designatingpthe vertex is -always- written as

thmiddle of .the three letters denoting the angle. . We note that

LABC = LCBA'but LABC t LACB. By the definition above an angle is

'14
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a set of points And is a subset of a plane. In Chapter 6 we-
.

shall deal with measures of angles but for the time being we are -

only concerned with an angle as a set of points.

We could have, equivalently, defined an angle as the union

of two rays not on the same line land with a common endpoint.

No4 that this definition rules out "straight angles" and

"zero-degree angles" as angles. Some people (and some mathe-

maticians) may object to this restrictive definition but because

of its simplicity, the useful purposes this definition serves, and
.

the difficulties inherent in other possible definitions, we choose

to use it. In Chapter 11 (on the circle), arcs and central angles

of various degree measures are discussed.

An angle (like a line) separates the plane of° which it is a

subset into two parts which are called.the interior and the

exterior.of the angle. The angle is not in either part. The

shaded portion below is the exterior, the unshaded portion the
_

,
interior of LXYZ.

Q

6 5
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To be preise, we define the interior of the LXYZ ab the
1,>

->.
anintersections of the two half-planes, the Z-side of Xd the

ofZ.

<-Y

In the drawing the point P is in the interior of

the angle for P is on the Z-side pf XY and is on the X-side of YZ.

The exterior of the angle pYZ is defined to be the set of al]:

points of the plane which are not on the angle or in its interior.

The points Q, R, and V are-all in the exterior of the angle.
4

Two angles are said to be vertical if their union is the

union of two lines. Two angles are said to be supplementary

(or supplement each other) if their union is the union of a line

'and a ray. (In other contexts, it will be convenient.to say

that two angles are supplementary if the sum of their .degree

measures is 180. They need not be "aNacent".)

='\

Suppose AB and TIT are,two segments as in the figure. We

suppose PB-HAQ ds the point O.

We wish to establish a 'one-to-one correspondence between the set,

of points of AB and'the sei4of points of K. For each point X of

TB, let X' be the point of WI on the ray O. For each point of n
there is exactly4,one such ray and on each suph ray containing'a

66
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0

point of AB _there is exactly one point o PQ. Furthermore each

point of PQ' is on one such ray. Hence..b use of these rays

through 0, we have a one-to-one corres dence.between the set

of points of AB and the set of points of PQ.

We might also note that the consj.deration above also gives a

one-to-one correspondence between (i) the set of points of the'

'segment 173 and (ii) the set of rays each of which has Its end-
,

point at 0 and lies in the set which is the union of LBOA and its

interior. We might describe the correspondence thusly:

for x any point of

Parallel Lines. It has already been observed in Section.2

that if two lines are in the same plane and do not intersect theft

they are said to be parallel. The concept_of two lines being

parallel does not involve Measurement;It involves non-intersection

of the pair of lines which are in thP sAme,plahp., However; most

criteria for determining whether two lines are parallel involve'

Conceptsof measurement: of equal distances or of congruent

angles.

Historically, Euclid stated his famous parallel pdstulate

'which,'rephrasea, asserts

Property V: If R is a line and P is a point, not on ,e,.o then

in the plane containing P and 2 there is one and only one line

, which contains P and does not intersect Q. .

4

I' 0

67 ,
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,

In Euclidean geometry, this property is regarded as intuitively
r

clear.

We may deduce several other properties from,Propexties I - V.

Property V-A. If /I and 22 and k are three distinct lines.

in a:plane M, 21 and g_ are parallel and k intersectdthen k
e

intersects 22.

jr

10,Proof:" Let P be the point or intersection of 21 and k. Then

by Property V, there is only one line ih M which contains P and

does not intersect Rg. But g
1

is such a line. Therefore k must

intersect 22.

We might note that if 4'1 and are parallel itnrsand k is
le

a line in space Which intersects g1, k need nOVintersect '2 for

and 22 plight be skeW°1ihts..

Property17-B:, If T
,
T2 and k are three distinct lines in a'

plane, andd .11E2-parallel and jc is parallel to /1,then k is

parallel to 2
,1....- 2'

681
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Proof: IfIk'l.nte Acted', then by Property V-A, k would.
c,

intersect.ii also and k is gitren as parallel to

A property litre V-B but without the restriction that the

lines all be in a plane is also true. The argument is more

complicated than that given. For instance, it is necessary 4o

prove that k and /2 must be in the same plane.

There are some contexts in which we want to talk about 'seg-

ments or rays being parallel. Tw,o segments.pr a segmeht and a

ray or two rays are 'said tp be parallel if the lines containing

these segments or rays are parallel. A parallelogram, for

instance, isa simple closed curve which is the IlKon of four

segments With'each parallel to sbme other. Sometimes the symbol

"11-" is used to mean "parallel".. For example, AB II PQ means that

the segments It and PQ are parallel to each other. *The symbol E7

is used to depote a parallelogram in the same sense that is
I

used to denote a triangle.'

. Exercises 5-4

,l. Label three points d, 1, and Z not 'all on the same line.

(a) Draw LXYZ and-XZY., Are they different angles? Why?

(b) tLX different from both t e;;T:s you have drawn?

2. If possible, makegketches Fn which the intersection of"two

angles $

.

(a) the empty set. (c) A segment.

(b) 'exactly two pointso (d) a ray.
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3: Draw two ang1/710such that the interior of'one con Gins the

other.

4. (a) If angles have a vertex and ray in common, must

r interiors haveia Aon-empty intersection?

(b) f three angles have a vertex and ray in.cotmon lpt

the interiors of some two of them have'a non-empty

intersection?

51 In the figure, what Are the following?

.LABCU AB.

LABCn AC.
4c--> 4->
BA I I AC .

LABc U BC "WO*

6. (a) Express the exterior of

LAW in the figure as

the'Union of two half-

planes.'
.Q

Draw a figure like that above

then. the other of the two half-plane"6 Whose'unfon is

.the exterior of4eABC.

(a) Into how many sets does the union of two arallel lines

E

and shade first- one and

separate the plane.

(b) Describe,the sets of (a)

in terms of half-planes.

You may think of the figure

to the right.

. 70 ,
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Using lines suggested-by edges of a chalk box, give an

example of two parallel lines and a line which Intersects

one but not the other. ,

9. Consider a set M of lines consisting of all lines in a plane

parallel to (or the same as)a given.linein the plane. For

example, M might be the set of all horizoptal lines on the

plane of a chalkboard. Describe

a,one-to-one correspondence be-
e

tween M and the set of points of

a line 2 which intersects each

line of M.

10. ,Using the figure on the right, list.

(a), all pairs of vertical angles, ,

*(b) all pair-s of supplementary

angles.

line.

,e

5. Special Subsets of Planes in Space.

Let A, B, and C be 3 points not all on the' same (straight)

The triangle ABC (or , AEC)

is the union of the segments If,

M and M. In notation,

A, ABC = IT3UTUUTZ.

'

s
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Thusa triangle is.a set of points and is a subset of a plane.

The points A, B, and C are called the vertices of the triangle and

the angles PBC, LACB and'iBA8 are callethe angles of the

'triangle ABC. Note that an angle, of a triangle is hot a subset ,

of the triangle. An interior of an angle is .hot a subset of the

angle nor the boundary of a half-plane a subset of. the half-

plane. It is very common in mathematics as well as in ordinary

language to use terminology` like this. For example, we say "a

radius and a center of a circle" but neither is a part of the
,o

circle. We speak, of a triangle having an area but the area (which

is a number of square units) is not a subset of'the triangle blit

,

rather a number associated with the triangle. Thus our use of

language is'beinsirent with--preVious usage.

It is 1.ntuitively rather clear what we would mean by the

interior of the'PABC. The interior of A ABC can easily be defined
dia

as the intersection of the three half- planes: The A-side of BC,
4-> <-->

the B-side of AC and the C-side of AB. The:-interior is a set of

points. The intersection of a triangle and its interior is

empty. The exterior of A ABC is the set of all points of the

plane containing A, B, and C which arenot on the triangle orin.

its interior. We could a o say that the exterior of of.the ABC'is

the union of the non-C-si e,of AB; the non A-side of BC and the non

B-side of AC. .

72
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In geometry, there are many other figures, like triangles;

which naturally arise. You are familiar with quadrilaterals,

pentagons, rectangles, circles, etc. Note that the latter two

` of these involve concepts of measure. The rectangle involves the

concept of a right angle (measurement of an angle) and a circle

ijnvolves- the concept of a length (the radius) and hence measure-

merit of a segment. It is convenient to have one term which refers-

to all figures like those mentioned in this paragraph. We use the.

expression "simple closed curve". An accurate definition of

"simple,;closed Curve" involves concepts beyond those we choose to

introduce here. or ur-Turposes -we ay t nk of a simple
. ,

closed curve in a plane adka set of points' which may be represented
4

1:15'r a figure drawn in the plane without lifting the liencilb, with

the first and last points drawk coinciding but with no other

points coinciding .L
.

Examples of figures which represent simple closed curves are

the following:

Examples Of figures which do not represent simple closed

curves are the following:

73
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One of the important geometric theorems of the past century

is. the theorem that every simple 4losed curve in a plane separates

the plane'into two sets, an interior and an exterior. The simple

closed curve is the boundary of each. We call the interior or

the' exterior (or a similar set) a region in the plane.

A polygonal path (or broken-line path) is a union of segments

T
1,

T2, T
n

such that each has an endpoint in common wi't4 thc,

following one and there are no other intersections. Examples of

polygonal paths are:

Note that in either figure below, it is not easy to tell whether a

point is in the interior or 'the exterior or even if t ere 'is an
. .

interior or an ekteMor. . One can observe the interior or exterior

4
by shding or coloring near the curve without crossing the curve.

For'any simple closed curve J in the plane, the plane is the

74
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union of 3 sets no two of whfich intersectl the set J,, the

interior of J and the exterior of J. We can recognize whether two

pointS P and Q not on J lie one in the interior and one in the

exteriorby the following criterion.

If every polygonal path (in the plane) from P_to Q intersects

J, then one of P and Q is in the interior and one is in the
,

exterior., On the contrary, it some polygonal path from P to Q

the plane) does not intersect J then P and Q are both in the

interior or are both in the exterior.
4

Exercises 5-5 411

1. Label three points A, B, and C not all on the same line.

E-,
Draw AB AC). a5d BC.

4, 4-a
(a) Sh e the 'C -side of AB. Shade the A-side of BC. What

set is now doubly shaded?

(b) Shade the B-side of AC. What set is flow triply shaded?

2. Draw, a triangle ABC.

(a) In the triangle, what is lanwn

(111) Does the triangle contain any rays or half-lines?.

(c) In the drawing extend AB in both directions to obtain n.
4,

What is TEn AB?

(d) What is Alf 0 A.130?

a

4

.64
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3. Reiersto.the figure on the

right.

5.31

(a) What is wn &ABC?

(b) Name the four triangles

1 in the figure.

(c) Which of the labeled points,

if any, are in the interior

of any of .the triangles?
-a*

(d) Which of the labeled points, if any, are in the

'exterior of any of the triangles?
f

. s) Name a point on A same side of WY as C and one on

the opposite sidL
%

4. raw a figure like that of -xercise 4:

(a) ,.Label a pdint Pnot the interior of any of the
4

. triangles..

NY: Label a point Q inside two of the triangles.

(c) Label a point R inthe interior of AABC but not in

the interior of any of the other triangles. (It can

be dohs.) ,
. .

.p.
. .

If possi
4k
ble, make sketches in which the intersection of took

. gib

triang/es ks:

'(a)r the empty, set.

(b) exactly two points.

(c) 'exactly four points-.

(d) exactly five poin

76
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VI

.6. Draw a figure representing two simple closed curves whose

intersection is exactly two points. How many simple closed

curves are represented in your figure?

'T. In the. .figure on the right, describe

the region between the simple closed

curves in terms of intersection,

terior and exterior.

8e Draw two triangles whose intersection is a side of each. Is

the union of the other sides of both triangles a simple

.closed curve? How many simple closed curves are represented

in your ,figure?

9. Think of X and Y as bugs which can Crawl anywhere in a plane.

List three different simple sets of points in the plane any

one of ..which will provide an?>bundary between'X and Y.

10. The line )2 and the simple ,closed

curve J are as shown in the figure.

(a).What is J(1 g?

(b) Draw a'figure and shade the

intersection of the interior

of J and the C-4ide of Y. ,

Describe. in terms of rays the

set of points on R not in-

(c)

thee interior, of J.

77
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11. Draw two`simple closed curves whose interiors intersect in

'three different regions.

12. Explain why the intersection of a simple closed curve and a

line cannot contain exactly three points if the curve crosses

the line when it intersects it.

13. (a) In the (plane) figure on the

right describe-a one, -to -one

Correspondence between the

setof rays with endpoint

at P and the set of points

of the triangle.
1k

(b) Describe d one -to -one correspondence betwwithe set

of pnints.of the triangle` -and the set of points of the

other simple closed curve.

14. Draw two ample clo'sed curves, one in the interior of the

other such that, for no point P do the rays from P establish

a one-to-lone correspondence between the two curves.
1

iC



p Chapter 6

Measurement

I. Continuous Quantities and Length.

There are some numerical questions for which the correct

answer, in the nature of things, must be a counting number or

zero. -How many children are in the 8th grade at your school?

How many automobiles are registered in your state? In either

case, a numerical answer whiCh is not a whO1e number is ridicu-

lous.' A quantity for which a counting process as such is

---appropriate,is called a discrete quantity.

There are some quantities -- called continuous quantities--
. ,

.which require measuring and.for-whigcounting as such is ins.

appropriate. How long is the house? How hot did it get yester-

day? -What is the Area of the rug? Questions of this type have

numerical answers which are obtained by measuring (or estimating

measurements). Answers may be given in terms of whole numbers

or they may involve rational numbers or fractions. Answers, that

are given are not absolutely precise as such. The accuracy of the

number used is usually restricted by unevenness in the 6bject

measured, by .the measuring instrument we use, and by our own

intention in approximating an,answer.'-

,

4 . -
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In Chapter 7, we shall investigate accuracy and precision of

measurement in more det:cle In this chapter we confine ourselves

to the meaning of measurement.

Among quantities we measure are length, area; volume, angle

size, temperature, speed,#voltage and duration of time (to

mention only a few). In this chapter and book ve are primarily

concerned with the measurement of geometric quantities like

length, area, volume and angle size. Many of our observations are

applicable to consideration of other quantities but we stress,the

geometric aspects.
; .

_

In the prevs chapter we observed tiat geometric space and
i

its subsets like lines and planewere abstractions of physical

objects in'the world about us. In partiou i ar, lines were

abst'rasp.4.4eof straight edges (but without limits or endpoints).

A segment (which is a Subset of a line) is 4n abstraction of4some-

thing like an edge of a box or a taut string stretched between two

' objects (points). If we want to measure the length of something
//
in the physlcalLworld we have an analogous geometric problem of

measuring the length of a segment. Thus in studying the process

of measuring theAlengths of physical objects we tudy the process

of measuring-segments in geometry and,,evenmore important, 'we

study the meaning of length in geometry (of d

pf points). Our study of length in geometry,

sight and understand14 of the measurement of

?t 80

istanc6 between pairs

then, Gives vs in-

length pf any

O



9

6.3

straight object in the world about us whether the ob.,ject be a

a house, or the straight line path between two,7St rs.

In what follows we try to develop fundamental r lationships

between the idea of congruence, the pro,cess of mea urement, and

the "coordinatization" of rays and other geometric sets. The

approach is one of emphasizing concepts and developing under-

standing.

Length. Let AB and PQ be segments repreyted hs below.

P Q

Our first consideration may well be to ask "Which is longer?" 's"

Later'we might ask "Which is longer and by how much?" There is

something intuitive about comparing two segments to see which is
6

longer. But 19t us be more specific. "By what device can we

compare them?"_,

In traditional Euclidean Geometry, there is a postulate to

the effect that a geometrid figure can be moved without changing

its size or shape. This ou -ally think about it, is a

rather vague way o expressing an idea. What do we mean by

"moving" a :,-metric figure? For a segment, we think of using a
..,

compass or a pair of dividers to "move" the segm t. But even so,

the motion- -the process of moving a copy of a se nt--isnst

actually what we have in mind. A betterw#y;of describing what

0 is meant might'be to say that'we can construct a copy of the

I
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figure (segment) rear,'''on, or in relation to some other figure.

Even this isn't really what wenean. From some points of view,

the construction processris not important. What i2s important is

that there exists a copy of the figure in any other place where we

-want it to be.

Now what do we mean by a copy of the segment PQ? We mean a

segment MI i h is "congruent" to.1% i.e., a figure of the same
V

size and shape. In this treatment of geometry we choose to start

with certain postulates about congruence which are assumed4po tie

'true. Otir congruence postulates (properties) will concern seg-

mentS andsang This is more elementary than Having congruence

postulates concern all sorts of figures. 'We use the symbol. "I'" to

mean "is congruent to".

Property I: Let A be a ray and let PQ be a segment. Then_ -
there exists exactly one point X on the ray a such that AX PQ.

X
8

Not that this property is a somewhat more explicit way of telling '

us at the segment PQ may be freely moved without changing its
41.

...

size or shape. Later, we shall see how, using this property, we

can state a more geribral property abbut moving any geometric

figure.
, .

If,- as in the case of our illustrktion, X is between A:cand Bp

.then n 5.,s longer than 17 and hence longer, than N. If X were B

82
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(i.e., X and B were names for the sahePoint) then AB and PQ
, ,

would.be equally lOng.>- If B were between A and X, then 1-1-3 would

be shorter than AA and as t7 .217-Q. we would say that 1Twould be

shorter than P.

Q

Thus Property I lets us compare any two segments as to

length. In a full treatment of geometry, we should have to state

other assumptions about comparing .segients including, for
, .

instance, that if 154 is longer than 115 and WE is longer than IS

i/h

then PQ is longer than T. this book,'we shall tacitly assume
- .

such further properties w thout listing them. These properties,

concerning comparison of intervals are exactly what one would

expect.

I
pne other example of what we accept is that we can compare*

:-:173- with -M. or compare PQ with .0 giyihg the same result.

(1) We lay AB off on PA.. .

41.

Q A'

Therlefgre 14 is longer than A.
(2) We lay Ira off.dn'n, A

Therefo e,

%

B.

shLrter.../tha-TZ

and hence.ra is longer* than ,73.

a

V
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//7
Exercises 6-1

1.. List five "continuous quantities" not given in the text.

2. With a compass (or pair of dividers) compare the segments -

below with respeCt to length,

(a)
T

U

V

R

w

S

3. Is TB of the same length was ITN

Destribe the process of compartmslUifwith itself.
,

4. Try to describe in your ownivoxda what is meant by saying

'that At may be "freely moved". (Improve on the text if'you
a

can.)

f

e

2. Propertf6 of1,ength. i
.

.,etT4.b-a segment., There exists a subdivision of 74 into

It 'segments 157 and-1N so that 1570-;'. Mi. This observation is

tantamount to let in X be1 the midpoint' of 74'(and
.

asserts that,
1

such .allidpoint.X exists). Our intuition te).ls us also that
1

0 . ,

there exists a subdivision of 'M Anib three non-overlapping .
1

.
1

.

congruent segments whose union is Ri. (T4e segments are called _

II non-overlapping" if no fwo have any interior poin either .
. 0,

in common .1)

O

O
0

r

er
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Tri-ftrdt -our AhriAton further tells us that the following

property should be true in geometry.

Piopertyp..,Let Irq be any segment. Then for any counting,

number k,'9-lere exist k non - ,overlapping segments whose,union is

Nand such that all k segments are congruent to each other.
A a

1

° In dealing with the decimal representation of the real number

system, we are particularly interested in the subdivision of a

segment into'10 congruent subsegments, 1.e., segments.which are'

subsets of the original". For -now we can begin to see how to

associate real numbers with degments. The real numbers will

represent lengttls of segm nts. We think of the. segment TribeIow

as subdivided inty 16 con ruent non - overlapping segments.
. P

J .2 .3 .4 . .7 :8 - .9

We may think of the segment_ 151s1 as having length 1.. The segment

77.
1 would, have length 1/10 and 715 for instance, would haye

.6
2

length 6/10.i,

!

. ,

NI* each of,the segments' of length -1 /10 indicated may be-

!

Alsider d as similarly subdivided into 10 congruent subsegments.

i
II

Thus, we have segments of length .01, ... and so on.,

For' exam le, the-segment T-C, sis of` length .82. 1,

Let us note a fundamental distinCtion in two different ways
A

of svi g something. If we say "Given a segment, we may sub-

divide .t into 10 congruent subsegmente, then we are forced to' r

Q.

s8'
Sr
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think of the process of subdividing a segment. We may feel that ,

we could perform the process only a certain number ofItimes'. There

miglYt well be some, last occasion at which we could perform it.

However, if we state the property in the form "Given a g-

4 ment, there exists a subdivision of it into 10 non-overlapping

congruent subsegments" then there is no process involving our own

action or any time element. The subdivision exists whethei, or

not there is any practicable way. or us to do the subdividing.

1
Thus we may speak of the number .3333 ---- (which is 7) as

beingthe1 ngtbilioP the segment from P to that point

. (1) w ch is in the segment from P,, to P
w ft .3 '

(b): which 1-; also in the segment from P to P
.33 .34

'(c) .which-is also in the segment from P to P
.333 .33

(a) and so on. .- ..-,...

p
.33

xp

arly the

subsegments

point P

P

.333

.

.4

334

next subdivision of any such se ent into 10 congruent

yields'accuracycto the next decimal plate. Thus the

should exist and the length of the segment from
--

r. 86
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/

-.1.

P to P . is .3333 --- = 1.. This point happens to 4 45
the .

,
' 1

---

.3333 --- w

.

same point we get by subdividingjlr into"3 congruent subsegments.
4 1 Oe

We have interpreted the positive real numbers less than 1 as

lengths of segments laid Off from P. It frequently is convenient

to think tead of each point of the segment as corresponding to
1 .

arealonumbe --that number which represepts the length the.

segment from P to the point. By also using numbers gAater than

1, We can similarly correspond the points of a ray tot the positive

(or zero) real numbers.

Another way of describing thispoint of view is to say that

we are "coordinatizing" the ray. We areestablishing a one-to-

one correspondence between the. set of points of the ray and 'the

set of positive real numbers and zero. The point P corresponds
Vto zero. ,

In order to assert the existence of the one-to-one corre-

spondence which we are'describing we need to note another basic

property!

1

of g ometry. 0
,

1 .1.,

Let b a.i.ey and let 7 be a Tgment. Lat X1 a the
.

point of 21'for whilclOYI ;141-13":- Let be, the point tf r 'Which
'I .

(1772 :';AB- (by consiaering_the ray iyendpoint at X1) . Similarly
, ......3

.let X3 be the point for Which 7731' WE.
A. 8

,
4,

J.

X X
1

X2 X3 _ X4' X5

.8
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In this way'points X1, X2,, X3, X4-, ....may be considered.as

existing.

Properly III: The ray XY is the union of the segments

X1X2, X2X3, X3X4,

This-property says that each point fthe ray is in some

segment 27i4.1 or in other words that thesuccessive reapplication

of the segment TIN to X covers all of

Thus we see that the oneTto-one corresliondence between the

set ofpoints of the ray and the set of positive real numbers an

zero qan be set up as follows..

The points of XX
1

corre pond to the real numbers from 0 to 1,

the points of,X1X2 to the rea ers from 1 to 2, etc. The

'numbers.arocalled the coordinates of the points.

The rater Important observation we are now raking is that

11

. q.

fork any pds tive (orzero) eal number (i.e., a n ber Which 'can.

be represented as a dedimal expansion) there,is a c6responding

point o t4 ...5r,f and .for anypoint of the' ray_ there is a

corresponding detIMArl expansion:

The pOsitive (dr

either of two equivalewt ways;
, ..

d

':: *,° ';

-.... '.- , .

-;,
A
:,

,.....; .

' 5) ,
*

num rs c ,be thought about in



r

V

(1) as denoting points of thtibray if, or

11.

(2) as denoting lengths of segments on if with one end point
.. ,

...._:.

'of each at X. .WeLlet XY or.m(XY) denote the length of XY.

In (1) we are coordinatizirig the ray. In (2) we are setting up

the principles of measurement di' length.

The coordinatization of the ray (or its analogue in (2))

involves three basic' properties.

(a) Order is preserved. If P, Q, and R are 3 points of the

ray and Q between P and R, then the.coordinate of Q

is between the coordinates of P arid R (as numbers)_:;

" (b) Distance is preserved. If NE And are, on the ray and

AB .=..PQ, then thejdifference in the coordinates of A and

B is.equai to the difference in the coordinates of P,

a

and.Q.

(8) DAstnce itadditive. If B is between A and C, then
tib

, AB + = AC.

* The development we,have here may be looked at in another way.

It asserts the existence 'of a' "ruler" .in geometry. It s at a

ray can be "cOordinatizee and thus can be used as a ruler.... Hence,
-5

it says that a ruler exists and can be used.,
k

44\ The length of.Wsegment is thought of as a number- -the unit

in, the geometric plane being under toad. Note, then, that

lengths can be added (because 1 gths are numberd and numbers 'can'

be added). We study measureme t of 1 gths of geometric objects ,

°

89
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Without reference to a Unit. But in' applying our knowledge of the
. , ...

-4 ..-
,

principles of measurement to the everyday world we are, in the

. 6

nature of things, vitally concerned with the unit of measurement.

The unit of%measurement shotild always be specified in practical

problems. We think of a length of'a physicalobject as a certain
o

number of units and the unit is specified. The number may be

called the measure of. the length of the physical object.

In light of these first two .sections we now can observe that

the statement "70 PQ" is equivalent to the statement "AB Irk".

In other words if two segments'are congruent, then their lengths

are equal; ancl. if two segments/ are of equdl length, then they 'are
/

congruent.' We can use either type of language as convenient.

Note, however, that the statement 'A = PQ" means something quilte

- - ,

different from the other two. AT = PQ gleans that 70N.is W. As a

consequence, A is P or Q anchB 'is the other.

..

Execises 6-2 .

Graphically describe the location of r to 3 decimal. places.

Bra4et r between succeesiV ,integers, tenths, hundredths

and thou3andths.

2. Do the same f Or Vg.

(

A

6

, t
*.;

9 0
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3. (a) Using the figure below, give an example of statement (a)

about order being preserved.

- P 0 R S
f'

I ' fv, I + I .

F 2 3 . 4ma
IF

5

(b) Using the same figure, give an example of sia

'''.----- about distance being preerved.

>\

enier (b)

(c) Using the same figure, give an example of statement (t)

about distance being additive.

4. If we subdivided se4pents into just 2 'subsegmenf,s at each

stage we would have a process suggesting the, binary

representation of ple'realnumbdr system. Explain, and draw

figures. (This problem is designed particularly for those

who have some knowledge of /the binary system. II 'could be

used to develop such knowledge.)

S. Angle Measure..
.

. .
. , .

,In the previous chapter wenave defined an angle as a set

.,,'of points, spetifically as the union of ,two rays having the same

endpoint and with the 'two rays of being or the Isam-lkne% In

the previous section; we introduced the concept of length or.
i 4, ,

.. , ,

,.. ,ta a segment. In this sectionpwe similarly, introduce the

concept ofimeasure of an angle.
f.

,

kl

e

T
..,.

tIh order to have a notion of Sizeo angle (or angular
.

teasure) we first must have a notion of what we wean by saying '

1 ..

A
4-

,
I ,

.
.,
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that two,anglap are congrunt (or have the same size) or that one
i 4

angle is larger than the other. We could talk about moving angles

around or'conStructing copie's of them but, as beforer wefind it

more convenient simply to/assert the existence of certain angles.

-Property I-A. Let LPQR be an angle. Let g be a ray and

let D be a poinit not on the line IA. Then there exists exactly

one angle, ,[ABC, such that .611C LPQR and C and D are on the

same side of the line A**,B (in the plane containing AB and D).

'

B

A D
C

r

In old - fashioned terminology we can think of moving LPQR
. ,

so that ray Q falls exactly on:ray g and ray &A falls, except

Then the ray'APvered Py &A would

to be, both intuitive and ,like .'

properties of traditional geometry.
- -

`Properties I'and. JA are quite similar. Each asserts he

4-31.

\for Q on the D-side of line BA.

be g. Thus Property I-A is see

existence of exactly one figure of a given size starting from a

given reference object (point or ray) and 4n a, given "direction"
*

TrOm such Tefererice object. *

F!roperty.f-Atells us in effect how We can compare two

1 in ledto see which, is larger.

ij
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s

1

lieferring\to the figure above, there
,

is a copy of ZPQR, such

,that YZ is a ray of the copy and the other ray 'q;
X(
flea (except for

. .

Y) on the i-side of YZ. If X istin the interior of ZWYZ then

ZPQR is larger tIlan ZXYZ. If X is on the ray V thera2 QR :-.=ZXYZ

And if Xis in the exterior of ZWYZ then ZPQR is *smal an ZXYZ

.Thus Property I- lets us compare.two Angles with espect.tosize.

e
Analagous to- operty II we havethe follo ing.Picoperty (b(but

/

it.has to be stated bit differently than was Property II).

A .
.

C'

4

v fropertY,II7A. Con= der ZAI3C. 'Let,k.:be'any caintIng'humber.

Then there eXist k congrue tanglee which 41.1bdivide thilterior
.

..- . ..of 'ABC as follows: i
7' 0'

(1) 'Each angle has B, as a vertex,

(2)

'Each

of the angles of the
,

,

intersect.-

.;

sion do,,not

\
(8) ;The- unf on of the angles and the interidr is ABC

1

r

i

together with its interior.

j
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, Using this property; we can coordinatize the family oft rays

which have endpoint,at B and lie on ABC or in theinteriorlof

2011c. The ocess is like that of coordinatizing the set.of points

1rof a segme
.

Finally we have a property which is like Property III in some
'K

respects but different in others.

Let ft be a ray and Lett LPQR bean angle. Let ftl be a ray

such that LA1BA is congruent to LPQR.

A2

A R.

'Now consider ray ftl And let B1 be a ray with A2 and A on

opposite,sides bf BAl. Such that LA2BA1 = LA1BA = LPQR. SiMilarly

- there exists a rays 5.13 such that LA3BA2 = LPQR and .A3 and Al are

on opposite sides of BA9. Thus there exist rays g1, ft2,, 543,

ft4, ... wit1 similar .properties.

Propdrty III-A. Thei,e is some numbe n such that An is 221

'-on'the A1 -side of BA 1:lut all points A
. P A

n-1.
are on the.

,

Al-side of BA. Furthermorether§ is some angle such that the )/

<-* N....../_

. point A
P

of this construction is on the line BA (but not on the
--7---

ray BA) , i / ....

The first partof this,property says that 4 you reapply any

11

/

ang.e enough times, yo will "get past" the other ray of the line

you started with ,

94
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The second part,of this property asserts that th'ere is a

right angle, i.e., an angle which is'congruent to its supplement.

We say that two lines are perpendicular to each other if the

union Qf two rays of these lines is a right, angle. We use the

.'symbol i to mean "is perpendicular td".

As in the case of parallels, it is contAient to talk about

lines, segments. and rays being perpendicular to each other. For

example, two rays or segments are perpendicular to each other if

the lines containing then are.

From Property ID-A, a _right angle may be subdivided ito 90

congruent angles whose interiors don't overlap. A -,speak of an'

angle of such aosubdivision as an angle 0-f/ one degree (or I° in

symbols). It follows from gonsiderationd dike those for segmen s

, that any angle can be measured in terms of an angle of 1° 'and

that the "degree measure" of an angle willbe a positive, number

betwee41.0 and 180.

Important Agfeement. We agree to use the terms "degree

measure of an angle" and "measure of an angle" synonymously. The,

measure of an angle, then, is a number between 0 andA80 and the
.

I

L

'degree symbol " 0 " n ed not be used.. However, _it is not ."wrong"

to use the degree symbol " ° " and/ot ers may sometimes use it

for emphasis or clarity. In notation we write m(LABC) a' fhc

r measure of LABC.

IAn angle is aid to be acute if its (degree) measure is less

than '90 and to be! if its (degree) measure is greatePthan
I

90.

CD.
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,

-
,

--,i..'
R.

. ti
, = , 1..,It is not difficult to e that ih,applying Property II-A

..,...'-'

, . .we could have used a subdivision of ,a right angle into any *,
l

Yr
0

particular number of congruent angles. It is something of an;
4

dt..historical gccieent that degree measure ih used for expressing ,,, if
4

the size of an angle. We could just as well have us4d any angle.

as our basic unit (or reference) angle.
tt4

Another way of looking at the result of the coordinatization4

.*of the family of raw emanating from a given point and lying on
.

.
sone siaa of a line is to ,View the rays as in a protraotor. We

. . .

are sayin that an (abstract) protractor existdfas .q.n instrument
_____,.....f t

angles. ' > ,
40 ., ..

.

re are several important properties of geometrywiich ply

sidered as following from oupr.Asy.amptions.here.

(1) The sum of .thefrogree measures of an angle and its

.sUpplementfis 180. ,

(2) If two angles have the same degree measure, they are'4

congruent. ,

(3) Vertical angles are Congruent (for they are supplements
-

angle and hence by (1) have the same degree4
of the sam

measure an by (2) are, therefore; ngruent.

(4) If two angles are congruent,they

measure.

'(5) Angle measurefs additive.

is in theinterior of,;ZABC, then

m(LABC), = m(LABD) m(LDBC).

4-

6

-

$
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.Exercises 6-3

1. Draw two angles and compare their '"sizes" by the process of

the text. .

2. Draw entangle abput like the ,one

in'theifigure. Subdivide it into

6 congruent angles as in the text.

You may use a protractor dr do it

approximately. The "siZe" of one`'

of the angles of the subdivision

bears what relgtibn to the "size"

of LAW?
. ,

3. Draw an angle about like that in

the figure. Draw a ray.' Use the

procedure of Property III-A and

find the number "n" for this-angle. Q

11. Try towestate Property II-A more simply..

/ 5... Try to restate Property III,A more simply.

R

6. Illustrate by a specific bumerical example what is meant_by.

- "Angle measure is'additive." /, -f

Area.

C

In t1e previous two sections we have developed the notions of
, -

linear measure (length), and Angular measure. With respect to a

Standard begmentArangle), as A unit, any segment (or angle) can

be measured. In thin section, we consider another type of

r

97
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geometric object--a closed region-:-ana try to measure it with

respect to a standard closed region. Our early discussion is

concerned with various types Of closed regions. We laydown

principles we shall want to use in later chapters. However, in

this section we shall develop formulas only for rectangular regions:

Any simple.closed curve in the plane-le 'the boundary ofilts

interior. The interior is sometimea,called a region. We shall

call the interior /together with its boundary a closed.regione.
4

Another way of saying this is that a dosed region is the union of

a simple closed curve and its interior.

The figures above rwresent closed regions. How can we
.

tpmpare 'two of them to-144 which .is' ,larger? The situation is 'not

quite as simple as in the case of a segment or'anle becaup the
.

figures are not all directly comparable to each other. But we

shall see in this section and in Chapters 10 and 11 how we can

get around this difficulty: ,

We shall use the,term "area" to describe our idea of the

"size" of a closed region. The area Of a closed region will be a

number (or a number of standard units).

;

. 98
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* -

As in Sections 2 and 3 concerning congruences of segments and

angles we make a number of- fairly explicit assumptions about

closea regions and area. All of the properties we shall state

416 ae8ur ihtuiftionotells us to expect.

Property IV. Given a closed region, there exist closed

'regions congruent to,it where appropriate t_ i.e., the'closed region

may be "freely moved" in the plane. 6

In Chapter 12,using the coordinate plane, we shall clarify

the phrases "where appropriate" and "'freely moved". For now we

regard them merely as suggestivetof the:key idea.t

Property V. If two closed regions are. congruent to each

,:
other; then they haVeequal areas:.

Property VI. Suppose,a closed region is -the union of non-
.

overlapping closed regions. Then-its area is the sum of the areas

of the nOn-overlapping c4oped regions'of which t is the union:

*. .

Now we come to the question of what we ought to use 'for a

;"-standard" closed region. Several possibilities are represented

in the figures below.,

- t

99
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In the case of length.and angular measure, all of the objects we

were measuring. looked comparable.so this question d2d not arise.

A fundamental criterion of a 'standard" closed region,for

area ought to be that the closed region can be expressed as the

union of "small" congripent non-overlapping closed regions of the

same general type.

-94

If a closed region satisfies this criterion then wemay*

break it up into small non-overlapping pieces and we would know

how to break these pieces up into even smaller ones. A closed

circular region is not suitable. We cannot easily break it up

into smaller non-overlapping closed circular regions. Try it.

A rectangular region would atiafy the criterion.

11111111111111111111111=MEI
There are litany d

union of smal er non-overlapping rectangular regions all congruent
, .

, .

to each other. In fact, th rectangular region is delightfully
.

rentla0*,..,.:which we can express it as the

suitable for o r purposes and we shall use it. But to make things

even easier, fo' our unit we shall use a Special kind of rectangu-

lar region--a sduare region. We want the sides to be or equal

/length.

The square (or rectangular) regiob has another fortunate

characteristic. It turns out that we candescribe the area

1 0 0
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as the prochIct of two lengths whi' are readily observable and

measurable. Thus we-can redu many problems of computation of

,areas to problems of lengt

There is another Vthption about area that we want to point

out.

Property VI, With respect to a given rectangular region as

-A unit, then, or any other closed region, there is a unique area
0

orthis ot r region.

;Jai property says that we must get th6 same answer no matter

./
how w use our given square or rectangulat region as a unit with

e
res ect to Properties IV - VI. We shall find'it convenient to

e one karticular procedure. The aoswer'we get is the same as
cs.

4

that which we would get by different but legitimate procedures.

It very common and convenient to talk about tqle area of

4
rectangles,'triangles, circles, and the like instead of talking

4abbut'the ai.eaS'otiri-eciangulaiti;4givn,s;for .Asseliong-as,"""

we are aware that it is the reglion\(and not the simple closed
c /

curve) which has the area there\seems little confusion in using

the traditional language. In what follows in this book, we shall
4

use hbsth types. of terminology upon occasion, using the "region".

language when there is need for emphasis on this con'qept.
%

The Area of a Rectangular Region. In dealing with

rectangular regionp we assume °a\unit length (or Segment) to be ®,
.

given. The rectangular region has four, ideS. Oppotite sides Are,

. , /
/

-)
.6
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of equal length. We may describe the rectangular region by giving

two numbers which represent the lengths of adjacent sides. We use
$the notation (a by b) to denote a rectangUlat region with lengths

of, adjacent sides a and b. The prbirties of rectangles we use
,

° he,re and which we have not yet developedwill be explained'in

Chapter 9. $,

h=3

tv5
.4. 4.

Suppose 14ehavfe a rectangular region which is b by h. In

the figure b is the base arid h i the height. We seek to express

the area in teems of squareeunits; i.e., in terms of a square

region wh
-C
ose-side is 1 unit.,

; If b and)) "tome out evenly" in terms'of whole n mbers of
4 f i 1

-

our linear unit then the problem is easy. We can de ompose the
r .-

/

rectangular region. into b. h non-Overlapping squar unit regions

(all congruent to-eabh other)4: In'the figure b 5 and-h.. 3,' so

the area is b hor15:

. Our iptuitionls based on' the "whole' ber"situation we

have justconsi ered. If, however,jthe b se ,or the height.is
, -

not a whole nu ber bf units.the logical argument for the area as

h isclmore eomplicated: The resuIt,.hoi.tevero is still the/

same. We seek'to-dusitify,the for ula for any'b and any-h.
.

162
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In the general case we are given two rectangular regions rt,...
4 '

and R
2'

gWe wish to expi4ssthe area of R
2

in terms of the area

OCR
1'

_(Ultimately we are interested in considering R as being\l ' V
'a unit square region,-Iout iearument is/Ampler without

.

this assumption being,ade until later.)
/.

f
4,4W

R1 R2

r

We bonsider this prok1em in case's and in this way reduce -a.
4

- more complicated problem to two easy steps.

Case I. Suppose R1 ° and R
2
have a side of each equal to a

. .

side of the other an further suppose the other side

if
0, . 4

of'R
1

is of Xength 1. 'R1 is (a by 1
2

) and R' is
. .

.(a by b).

a

t

R2

L

b

4

From Properties V and VI we know that if we regard R
1

as the_

union of 10 non-overlappibg'rectangular regionseach,being

r

gg.

sr
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(a by 47) then the areaof'apv one of these is45 (Area 111), (for

the areas of these 10 regionsluist.be equal and the sum of-their

areas must be,(Area R1).

SiTilarly, the area of ayectangular region (a by 1100)is

100,.( Area R1), and so forth.

.
N9w if P,and Q'are,vertices of the base of R

2
we may regard

coordiRatiied Ath unit length 1. Hence PQ b. 'Consider
'
t
the proces6,pf laying off non-overlapping copies of RI on R2

starting Thom the left;hanA edge and then, having laid off all the

t.

copies of R1 thatare possible, we

rectangular region in'what is left

(a by
lou rpAngtilar'regiim, and

9

lay .off copies of An (a by 40-)
4

of R2, and then copies of an.
O

so on, This process is

exactly equivalent to the prodess of finding the coordinate of Q,

namely b, *in 'terms of the.unit length. In other words, ,(Area R2)
,

\must be 1:. (Area R
1
).

'Case II. Suppose R1 is (1 by, l) and R2. is (a.by,b). We
.

wish to express.R2 in terms of R1.

R1

k

a R3

1 04

a R2

b
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We consider a rectangular region R3 which is i by 1). -

NoW from Case I, considering R1 and R3

(Area R3) = a Area R1,

and considering R2 and R3 ,

Area R2 = b(Area R3)k

But then Area E2 = b(a Area R1)

= b a' Area R1.

ir we now agree to adopt a (1 by 1) square region as Our unit

then Area R2 = (b a) in terms of this unit. In our other

symbolism, Area R2 = b h.

Note that this gives us the usual formula for the area of a

rectangular region,in terms of the base and altitude (or height)

of the regron.

. Exercises '6 -n

1. Explain the distinotcbon between an "area" and a "region". ,

. 2 Which of the figuresbelow are the boundaries of regions

which they determine?

3. If possible, express a triangular region as the. nion of four

non-overlapping triangular regions all ''congruent" to each

. other. (You will have top=Take a-lot of implicit assumptions,

some of which we will, justify later.)

103
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4. Supposo b.and h are not .whole numbers.

Explain in your own words why the area of a 'rectangular

region (b by h) must be b h.

0

5., Volume.

In the preceding section we have obserVed some of the ideas

underlying the concept of area. In thXs section wenote that

analogous considerations are applicable to the concept of volume.

A region in geometric space is the interior of a sphere (ball)

or cube or such ob/ect. A closed region in,space is the union of

such a region and its boundary. The figures below can be don--

stdered to represent closed regionS in space.

'Associated with a closed region of such a the is a number (ora

number of cubic units) called the volume ofthe region. In

geometry the volume ii a numbgr whereas in practical problems a

/volume is exptessed as a number of cubic units, there being some

solid cube which is regardedas having unit dolume.

.

106
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Our first concern about size (volume) of two closed regions

is to compare them to see whic11`21-e larger. Comparisons of closed

regi q in space are even harderAhan comparisons of closed regions
r. ..

--, .--, ,

in the plane because of a greater diersity of types of figure.

However, as in the area case, it turs out that a rectangular
p

figure is easiest and 'best .to use for developing both the concept
'ARk

of volume and the linputatioh of it. We use a rectangular

parallelepiped (or box) for this purpose and ultimately use a cube

ai,the simplest type o1 rectangular parallelepiped.

Technically, the terms cube and rectangular parallelepiped
r

.. 1..

refet to the surfaces.of solid objects in the same sense that

, \
square,and%rectangle refer to simple closed,curves. But analogous-

. .

to the lang1.6.ge for area, it is common' and convenient to refer to

the volume of-a_ube (or parallelepiped pr sphere or pyrIamid or

such) instead-of saying cubical region ar spherikal region, for

example.. Thug, when we say the volume of a cube we really mean

the volume of the closed region in space bounded by the cube.

We have properteies for volume anaIogotis to those we have

mentiOned for area.

Property IV-A. Given Oclosed, region-in space. There exist'

.closedregions congruent to it where appropriate; i.e., the clIpsed

4, V

are congru6nt to

region may be "freely moved" in space.

Property V: If two closed regions in spaceo
each other,,then they have equal volumes.

1O7
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Property,VI-A. Suppose a closed region in, space is the

union of non-overlapping closed regions. Then its volume is the

sum of the volumes of the non-overlapping closed regions of which

it is the union.

Property VII-A. With respect to a closed rectangular space

region as a unit, any other closed space region of the type we

are considering) has a unique volume.

The si: a Rectangular Parallelepiped Region. The con-

sidergtions here are like those of the preceding section:with a

cubical region of side 1 as our unit of volume.

'A rectangular parallelepiped can be described by the lengths

of three of its edges (no two of these thae being, parallel). We

write (a by b by c). If each ofa, b, and c is a whole number pen

by use of "building blocks" it is easy to see that the volume is

is b c or is h B where we interpret a as the height h and B

as the area of the base with b and c as the lengths of edges of

,the, base.

.e)

Clearly there are,-in the figur-e, 8 unit Vocks,in each of three

levels (tiers) and thus the volumeig 3 8 or '3 4 2.

108
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(

The formula V . a b ,p is what is usually used for com-

puting the volume of d'rectangular parallelepiped. The formula

V = h B is what is generalized to formulas for volumes of prisms,

cylinders 'and the like.
4

We now give a general'proof of the formula V = a b c.

We are given two ifectangular parallelepiped regions R1 'and R2.

We wish to express the volume of R
2 in terms of the volume of 11

1 .

Case I. Suppose R1 and R2 have two sides of each equal to

two sides of the other and that R1 hds its other

side equal to 1.

4

. Rl -is. ta by 1? by 1)

R2 is (a by b by c)
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From Properties V-A and VI-A it follows that a region R.1(.1)

of 'ides (a by b by .1) has volume equal to it-) (Volume Tta), a .

region Rf(.01) of sides (a by b by .01),' has volume equal,t.o

1
100(NbIume Ra.) and so on., Hence in regarding R2 as the union. of

copies of R1 (starting from the left hand fve) and then copies

of. R1(.1), and SC, on: we have that
4

(Volume R2) = c (Volume R1)
e,

for the process is equivalent-to that of laying off theunit

segment ..±n measuring PQ.°

Case II. Suppose-Hi is (1 by i by whereas H2 is

0

(a by b by c).

We nowuse"two intermediate regions, R 3 an

(1 by 1 by C)eand R4 being (1 by b by c).

Rk with R
3

being,

From Case I considering R2 and R4,-
;:1

, Volume R2 = a (VOlume R4);'

1

110
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VolumeR4 = b (Volume R3),

dnd'considering R3, and R
1

Volume R
3
= C (Volume R

1
)

Thus

Volume R2 4 a (b (Volume R3))_

a t. 13 (Volume R3)

. a b c (Volume Ri)

c

if we agree Itpeuse R1 as having unit volume.

Exercises 6-5

1. Explain the distinction between a "region in the plane" and a

"region in space ".' .1r

4

2. Explain why it Would not be convenient to use a spherical,

/ ,closed region; i.e., the surfaceor A ball and its interior,

as the unit of, volume. (Refer 'to. Section 4.)

3. Suppose a; b, and c are not whole numbers. Explain in your

own words, why the volume of an (a by b by c) rectangular

parallelepiped region must,be a bi c.

ij n
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Chapter 7

Accuracy and Prision,.

1. The Significance of Numbers.

When we make a statement qe try to convey some sort of

,information. We usually have three objectives in mind:

.(Jr) to make a statement of some sighificance,

C2) to lake a statement which is valid, and

11. (3) to make a statement which is.not confusing; speclIfkcally,

to-make one which does not contain uselessly detailed or irrelevant

information. '

°Unfortunately, it is frequently necessary to .compromise

between these, various considerations.' This is even true aboutp,

statements involving numbers used to describe "counts" or

"measurements" in practical situations. Furthermore, in making

statements about counts or measurements we use any tacit under-'

standingssome quite subtle--about what, the numbers We'are using

mean. Many of these tacit Understandings involve ba is simple,

common sense. In this chapterwe discuss. common sense interpre=

tations of the accuracy or precision of numbers; as used both in -.,

counting and in measurement. The role of commonsense in under-

standing the use wand significance of numbers in Counting and

eV'

We,
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measurament cannot be Overemphasized; it is impossible to la

down consistent, useful, haW-and-fast rules regarding the m aning

of.numbers and their significance.

Here we want to draw a clear-cut distinction between the

principles of measurement in the abstract geometric plane as

studied in the laSt chapter and the application of these

principles to measurements in the everyday world. In Chapter 6 we

have done "abstract" measurement to make it possible for us to

understand basic concepts. In this chapter werestrict ourselves

to statements and compUtations dealing with practical measurements

(or counts). In Chapter 6, we could assert that the area of.a

geometric rectangle was equal to the product of the base,timee

the height (Area = b - h),. the nuniters concerned were precise.

In this' chapter we can de41 only with approximations and to

empha:siZe this we shall use the symbol "Fe" to mean "is approxi-

mately equal to."

Most statements involving, either counting numbers or measure-
,

ments are; in' the nature of things, not intended to be "precise"

or "accurate ". In many instances, they cannot be, if they are

also going to be valid. While there may abstractly, exist a

.precise count of a set of objects there may be no practicable way'

for humans to know what such count As. Consider questions
0

' involving

.(a) the human popultion of the world (at this instant),

)
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(b) the number of dollar bills in circulation, or

(c) 'the number of grains of sand on Waikiki beach.

Clearly we cannot give completely precise and valid answers to

such questions. Furthermore, attempts to give completely pilicise

answers would not only be incorrect but would also cause confution

and probably would lead to unnecessary and irrelevant arguments.

In the case of measurements we have an extra complicating

factor.'""` Practically, there is no "eXact" measurement. Consider,

for example, the length of a table, the area of.a rug, the

distance to the moon. The "objects" to be 1measured" axe uneven

and must be. Even the standard "meter" in the Bureau of Standardt

is accurate only.to a few decimal places. So %.,e recognize that

any numerical measuretent given must be in the nature of things,

an "apProximation".,

In spite of such limitations of applications of our number

system to problems of both counting and measurements we still are

led to understand a great deal about the physical world by our

study of the "abstract" number system and "abstract" geometry,
a.ti

.and their uses in everyday life.

With considerations like the foregoing in'mind we cabetter '

understand jour use of numbers in both counting and measurement.

Wern our attention specifically yto measurements with the

observation that our remarks restricted to whole numbers apply

also to "counts".

11 4
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(
Usually when we Use numbers in measurements, we use them in

one of two senses,

(a) at least this much, or

(b) closer to this number than to any other comparable one.

Examples where measurements may well.be used with4he tacit

understanding, of "at least this much" are

(i) 1 pound of hamburger,

(ii)* a 15' pole vault,

4) a 6' man (in some senses) and

(iv) a 1006 temperature (it was a hundred today).

Examples where measurements may well be used with the tacit

understanding of " (loser to this numbet than to any other

's

comparable one" are

(i) a 6,1 table,

(ii) a 5,10" man,

(iii) a 15' room,

(iv) .a 98° temperature (it is-98° outside now).

Depending on the contexts in which Particular measurements

`,I are used, there may be differenbes of opinion as to lithe" proper

se in ithich the number les meant.
'

In many instances, where numbers are used inthe "at least

this Much" sense they are used as isolated numberapd cot.ttations
[ ,

,

are nOt made with them. If computations are going to be made--to

\

i

. ./
/. .

find 4rerage9 or complete areas, for example--the measurements are

a
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/ 7
'usually intended in the "closer to this*number than to any other

comparable one" sense, .It convenient for our purpOses to agree

on a conyention concerning our, use of numbers. With the full

knowledge that.the convention we adopt is nelt universally appli-
A,

2,4

cable, we agree to use the "closer to this number than to any

other comparable one" meaning.

Greatest Possible Error,. The greatest possible error In a d$

measurement refers torte largest amount by which the given

measurement differs from the "true" measurement of the object.

In this discussion we assume proper use and reading of instruments.

The "error" comes from the way choose to (must xpress our

answer numerically. If we say t an is 8' long, we mean

usually that it is closer to n to 7" or 9'. In other words,

we mean,that the "true" lengt

case the "greatest possible e

difference between the asserted

is between'

',is 0.5

ngth 8'

7.5, and 8.5'. In this

(or 1/2 foot). 'The
acs

and the "true" length iati:

less than the greatest possible err in this case).

Agreement., Unless 'the contrary) is ecified, the greatest

possible error of a measurement given in deo3mal fOrm is under-
, 1P.

stood to be 1/2 of the place value of thl last'digit which is

decimal point.

116
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Let us consider some examples. .

Numeral Place value of last digit greatest possible -,used for a purpose other erroi,
than locating the decimaIl ,-
point

. .

48.6 .1
.

.059800 100 '50 -y.054 .001' .0005830.00 .01 .005,

,Most readers probably have little question about the first

and third examples,; In the second, the two zeroes are considered

used simply to locate the decimal point and hence neither is the

"last digit to be considered". In bhe fourth example, the second

and third zeroes are not used simply to Iodate the decimal pOint.

They could be omitted. Hence they are considered used to indicate

precision and the agreement gives .005 as the,greatest possible

error.

For numbers given in fractional form, the greatest pouible ,

error-is understood to be 1/2 of 1/n where n is the denominator
ib

of the fraction. Thus.ajength of 6 7/8 inches is understood to

have a greatest possible `error of 1/16.

Exercises 7.-1

1. Give three examples (of your own) of "counte'which.tanncit

precisely known.

21 Give three examples (of your own) of measurements used in the

"at least this much" sense.

117,
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7

3. Give two examples ofmeasurements used in a sense other than

either of the senses (a) and (b) of the text .I' (One example-
.

might,be "the 4 minute

4. -Discuss the following answers to the question "What was the

population 'of New York City ln 1950?!: with respect-to

considerations (1), (2) and ,(3) at the beginning of this

Chapter.

(a), 7,891,957 (the census figure)

(b) '7,900,000

(c)' 8,000,000

(d) 10:000,000 -( ti

(e) greater than 1,000,000 and less than 100,000,000-

Give contexts in which 4a), (b), (c), and (d) would be

reasonable answers.

5.. Find the greatest possible error of each of the following

measurements:

(a) 93,000,000 miles

(b) 820.11-

(c) 16 1/4 inches

(d) 3.460 miles

(e) 71 yard

6. Explain why you_should not make a statement like "This rug' is

28.462 inches wide."

4

4
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7.. Explain how our convention on the greatest possible error bf a

measurement helps statements about numbers achieve Some-of the

objectives listed at the beginning of this chapter.

8. Explain how 125,000 might be considered as having a greater

0
possible error than 120,000. ..Jks'a population of a city it

probably would be so considered. Hint: 25 is 1/4 of 100.

2. Precision, Tolerance, Sigyficant Digits, and Relative

Errpr.

In the previous section, we have explained what we mean by

the greatest possible error of a measurement. The pAcisiOn of a
. .

measurement in decimal form is. the place value of the.digit we .

used in getting the greatest possible error. In other words, the

precision is simply twice-the greatest possible error. Thls

4: technical meaning of the word precision.agrees in principle with

the everyday usage of the word. We might speak of a measurement

which is precise (or accurate) to the. nearest tenth of an'inoh,

for example. '(rater we shall give a technical meaning of the word

"accurate".) We speak of a measurement /iif £1.24" as more precise

than 'one of 63.9". If we were to ask, "How prec "Sely dopu want

this measured?" we might expect an answer like '*fp the nearest

tenth o n inch" or "to the nearest 1/4 of an inch'.

There are many instances in which our agreement of the

if .previous section on the greatest possible error is not suitable or

convenient to describe the actual greatest possible error of a

,

119
.1
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particular measurement. In such instances we may'indicat the

greatest possible error by stating it explicitly. Thus we might

write 84.3" +.02": We read the symbol " +" as "plus or minus''.

and we are saying that the "true" measurement is in between

84.3" .02" and 84.3" + .02", therefore, between 84.28" and.-

'84.32". The-02" is sometimes, called the tolerance 'Of the measure-

ment. When the tolerance is important (as in machine shop work)

it is Very common to give it explicitly (even when it agrees with

the convention we have established). One might write 3/8"+..001".

This indicates a measurement of 3/8 of an inch with an error of

not more than a thousandth of an inch.', We can conveniently eombine,

fractions and decimals in this and it is commonly thine.

'Another instance where our agreement on the greatest pos/ sibre

error does not always adequately deal with a situation is where

several terminal zeroes are used yin a- numeral representing a whole.

number. ConSider 180,000. Our agreement asserts that the greatest

possible error is ,5,000 (half of 10,000): But we would write" the

numeral exactlythe same way if the greatest possible error were

500, 50, 5, on.5. -We are saying that we can't/really tell if

some or all of the zeroes are intended to do more than just locate

the 'decimal point. Sometimes the context of a statement tells us

'what,is intended. We may use a bar ever or under the right-most

zero vw.op is intended, to be precise. Thus. 180,000 or 180,000
lc

has a-greatest possible error of 50.

120
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The considerations of thTpreceding paragraph suggest another

concept that naturally comet up concerning numbers used in

measurements. This concept fa4that of "a significInt digit" in

the decimal form of the number. Adigit in a decimal numeral is
. .

spoken of as being a "significant digit" if it serves a purpose

other than simply to locate (or emphasize) the decimal point.

Some examples will clayify 'this:

Numeral Significant digits (in order)

4.8030 \ 4, 8, 0, 3

.

61.20'
\\

6, 1, 2, 0

841 8, 4, 1

0.00429
.

4, 2, 9

6.6031 ,.., 1 6, 0, o, 3, 1
,

. -

,
.

In 48036, 'the "0" between the "8"and the "3" is significant;

;

the othe4"0" is not, it simply ideates the decimal point
. 40.

. .

(understood). In the numeral 61:20, the "0" s,significant

because it is not necessary to have it to locate the decimal
_...%.

point. In 0.00429, all the zeroep,are used simply to locate or
.

emphasize the decimal point with the undefstanding that the left-

most zero may or may not be written and if,writtert Fs simply for 1---*

- ,

clarity in/{ocating the deCimal point and reading the number. I_ t

.

makes the decimal point stand out. {C ,
-w

igo
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We are sometimes askk to count the number of sigpificant

digits in a numeral. We can be 'given instructions to, "round off"

numbers (i.e., numerals) in one of two ways; for instance,

(1) Round off a numeral to the nearest tenth, or

*(2) -Round off a numeral-to three significant digits.

Consider 58.108. With respect to either of the instructions --

above the "rounded off answer" is "58.1% . Rounding off the same

numeral to,lfour significant digits would yield "58.11". In the

rounding off process vie staWt from the right. and move left. ThAe

may be ambiguity if the right-most non-tero significant digit is a

Live. Then we are liberty to round off either to the lower or

igher figure in the digit to the left of such fiNle. We always

ought to use all the information available in rounding off. For

example, consider 437.496. Rounding on to 4 significant digits

yields 437.5 Rowding offAto 3 significant digits .yields 437,

for the value of .496 it less.than ".5". f.

Relative Error. The. concept of-relative error is the

.concept of the relationihip (specific9,11y,-the ratio) of, the

greatest possible error (sometimes'calledthe absolute error) to

the size of the number itself. Specifically, relative error is

greatest possible error . The relative rror is sometimes
measured value '

t

technically called the accuracy of the measurement. The more

accurate the measurement the .smaller the relative error. Let us

122
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consider two examples.

93-5-0o0,000 miles

relative error - 500,00
93,000,000

.005

relative error

.03",+ .901"

o

SC
.001
.03

1
3o"

t' .03

We can see that while the measurement on the right is far

more "precise" (.0011: to 500,060 miles) it is about 6 times less

accurate (.03 to .005) than the other measurement.
0

The 'distinction between "greatest possfble error" and

"relative error" is an important, one. The...one we want to use

depends on the context.

.-Exercise37-2
)

1. Assume our agreement on greatest possible error. Explain the
4

statement, "The more significant digits there are in a numeral

the leaathe rei.ailve error." Use examples in your explana-
.

tion if you wish.

2. State which of the fallowing two measurements is more precise;

is more accurate.

(a) 68.311- and 12.34

('b) 82.01° and 0.014°

:(c) 16,000,000 light years and 1760 yards

(d) 18 ±. .3' and .8,4 .02.

12.3
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3. HOw many significant digits are there in each -of the following

numerals?

(a) 14082 (d) .19,414;500'

9.600 (e) 16,500

(c) 0.0316 (f) 0.00024

4. Round off to 3 significant digits

(a) 4.86496

(b) 13.021

(c) 77,455,000

(d) .0152897

5. What would be meant by the per cent of error in.a measurement?

How would it be related to the relative error?

6. Explain a situation where you would be interested in the

relative error of akeaSurement.

7. Explain a situation where you would be interested in the

greatest possible error of a measurement.

3. Precision and Accuracy in Computations Involving Addition.

We may .frequently use measurements in various computations.

Each number we use has certain precision and a certain accuracy.

We ask how precise or accurate the sum (or the product) of such .,

numbers will be. The situation gets very complicated'very-rapidly.

The be&1 we can do here _is to give some'examples and suggest, some

reasonable "rules of thumb` ". Some understanding both of the

nature of the problem and the limitations of our "rules" is

'necessary.

124
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Suppose we want to add two numbers- like.f8.6_Snd. 23.. The

greatest poaSible error is .05 in both cases. Below we have made

some computations revealing the greatest possible error of the

sum.

Least values Greatest values

18.55 18.6 18.65
23.85 23.9 23.95

. 42.40 42.5 42.60

0 Thus the sum 42.5 really has a greatest possible error of 0.1;

i.e., we know only that the "true" value is somewhere between

42.4 and 42.6. We could have written our computations as follows:

18.6 ± .05
23.9 ± .05

42.5 + .10

) In effect, we add' -the greatest, possible errors of the addends to

find the greatest pos.sible error of the sum.
) ,

If we h6d-thl.ee numbers 18.6, 23.9 and 41.2 to add together,

then the greatest podsiple ei.i.oi-of-ttie'zthe would be 0.15. The

more numbers we add together the less precise the answer can be

asserted to be. However,,it is impractical and inconvenient to

state explicitly the greatest possible error of the sum. 6o as
/

in the first illustration above, we, would write our answer as

42.5 with the standard agreqiment that the "greatest possible

error" is .05 but with the clear underdtanding that we cannot be,
certain about this much precision. In a sense we are "caught";.

we have to compromise between technical validity of our state-

mentsments and giving too many details. .

1

1,25
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If wIt have several measurements to add together, then the

"law of averages" makes it unlikely that we will get the largest

possible inaccuracy in each number in the same direction. In

fact, we expect the "deviations" of the "true" measurements from

the measurements we use to compensate for each other in part.

,Thus our use of the answer we get by ordinary straightforward

calculation is really the best we ,can do and is likely to be

fairly close to the "true" value.

Suppose we want to add 86 to 18.48. jiere it simply does not

make sense to write the answer as 104.48 for in so doing we are

implying precision to the nearest .01 whereas the 86 presumably

was precise only to the nearest unit. ThUs we ought to write our

answer as 104 or possibly as 104.5 with the .5 Interpreted more asa

1/2 than as 5/10. The "true ".,value is quite likely to be some-

where between 104 and 105 and thus 104.5 seems like a reasonable

answer.

In bank statements and other financial accounts, a figure

like $86 frequently means $86.00 and thus it is reasonable to

add to the last cent if desired.

The question of accuracy in,addition of measurements is even

more complicated than that of precision. The sum is customarily

more accurate than one of the addends and less accurate than the

other,. ,Consider the illustration:



104
4. 25

129

1.0 RI 01
129

This indicates that the accuracy of the sum is about .01

which is between the computed accuracies of 25 and.104.

In subtraction problems, the accuracy of the difference

1 I

may e,far_less ,thaothe,dccuracy ot_the,bther numbers used.

(In other words, the relative error of the difference may be DA,

greater than the other relative errors.) Consider the example

below:

62
2

5

1.0

pej

'

Pei

.01

.01,

.25
,114c

Here the relative error is large because the difference

(under subtraction) is a small number.

Exercises 7-3

1. 'Find the greatest possible error of the sum of

(a) 180, 160, 14'0, and 80.

(b) 16.8 +.001 and 12:5 ± .002.

mi&

127 .
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2. Work out the actual greatest possible error in (86 + 18.48)

as in the text. (Hint: write 86 as 86 + .5' and 18.48 as

18.48 + .005.)

3. Give an illust tion explaining the greatest possible error

in a subtraction pr blem. Are the considerations like those

.for addition?

'4. Find the relative error of the sum of

(a) .023, .060, and .055-

(b) .28 ± .01 and .42 + .02.

5. Find the relative error of the difference of

(a) .34 and .24.

(b) 160 ± .1 and 100 +

4. Precision and AccuraCv in Computations Involving ,

Multiplication.

The situations relative to the greatest possible error"and

the relative error in multiplication (and division) are even less

satisfactory than those in addition and subtraction. It might be

- observed-that-the subject of "error theory" is one which is being

studied by mathematicians, at the present time. The wide-scale

use of computing 'machines makes "error theory" of great importance
k

today. ;T.

If.we multiply two measurements together, what can we say

about the precision of the product? For instance, how many square
. .

128-



feet,are there ina room which is 16 ft. 1418 ft.? Most of us

would'say "288 sq. ft." but how precise i$ our answer? We assume

(by out agreement) that 1 are precise to-the nearest unit.

Consider the comput* V ons below.

Least values Greatest values

17.5 18 18.5
15.5 16 16.5

4271.25 217 305.25

InCother words the "true" area can differ from 288 by as much as

about 17 units. Being explicit, the best we could say is

. 288 + 17.25 /

where actually-16.75 is the correct greatest posbible error in the

negative dire'ction. The size of the greatest possible error has
4

been massively magnified in the process of.multiplication. We can

see this geometricallx by considering the figure beldw.

129
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The 2 by 1 region is enclosed by the heavy segments. The 1 1/2 by

2 1/2 possibility is indicated on the inside and the.2 1/2 by

3 1/2 on the outside.

Going back to the 288 ± 17.25 case disdussed above one

1., might well ask, "How should the answer be Written if we don't wish

to indicdte the greatest possible error explicitly?" There is no

clear-cut answer. Some would prefer 288 but clearly this implies

much, greater pr4cision than is present. Some would prefer 290.

Here the "true" value would be indicated as being between 285 and

295 which, while not necessarily correct, seems not unreasonable.

The figure 300 is far too imprecise for most purposes. .0n the

basis of the three objectives for statements listed at the begin-

ning of.this chapter ,it might be.argued that 290 would be the

best answer: The usual 288 seems too likely to be invalid.

However, formost purpos s the answer of 288 is used.

At this stage we can,draw a distinction between what might be

palled "numerical f elity" in arithmetic and preciseness of

m tI tical state nts: When children multiply 8 by 7 they

should get 56 ev Ty time. Any an6wei, other than 56 is simply

wrong. tumerical fidelity",is important in arithmetic. But an

Answer of 56 sq. ft. far_the.area of a room 8 ft. by 7 ft. is

justifiable primarily because we assume an answer is expected

to e nearest square foot, and' hen 56 sq. ft. is the best we

can o. The answer 56 sq. ft. is misleading in its implication'of

t)

1 a 0
55 )
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precision but other possible answers have their defdets too. It

is. important to understand the limitations o our language and__,
- ,

conventions. 7-

We return to some examples involving computations. Let us

ask how precise linear measurements should be in order for the

product of the linear measurements'%b be precise to the nearest

unit. Consider an example.
,

We want 10 x 20 = 200 to be precise to the nearest unit.

Let t be the greatest possible error for each of 10 and 20.' TheA

we have

Least values Greatest valuez_.---

20.- t 20 4. t
10 - t 10 +t

200.- 30tAl-t2 200 + 30t t2

Now if t is small then t2 is much smaller. So let us

consider only 30t. Then 30t should be less than .5.- In other,

words,

30t < I or t <
2

60 or t < .016.

ThUs e see that in this case if t < .016 then the greatest ,,,,

possible error of the-product is about .5: Our measurements 16-

and 20 have,to be very precise for the product to be reasonably

precise.
..,
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Finally, let us make some observations about the relative

error of a product. Here, in our example, things do better.

17.25

424

:06

03

t,

288

16

18

We add the relative errors to get the relative error of the

product. Let us Justify this. Let N1 and N, be the numbers to

multiplied together. Let t1 and t2 b r respective

greatest possible errors. Thus

-
t
1°

and
1

are the original relative errqrs. Now

(Ni7t1) (112+ t2) = N1 N2 +(ti:N2-fu,t2: Nj) +

(N1 7t1) (N2 -t2) = N1 . N2 - (t1 . N2 +t2 . N1)+

If tt and t2 are small, then tr t2 is very

ignore it (ti .t2 was the .25 of our example).

ls,: and
,

tlt
2

small and we

Hence

t
1

N
2
+t

2
N

1
ie .(approximately) the greatest possible

in the prod'uct. .Hence

'relative error
t1 . N2 + t2 . N1

N1 N2

132
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1

N
2
+ t

2
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1
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2

N1
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N
1

N
2
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1

N
2

N
N22

7.22

Thu

the relative error'

t
+ .2_

N
1

N2

t
2, 1

N
1

' 'N
2

3

and the right hand side is the sum of the relative, errors of the

two factors.

Exercises 7-4

nd1. Find the greatest possible error and the relative, error of the

product o4

(a) 12/ and 25.

(b) :8 ± .01 and .6 ± .02.

74k.'-2. Find Aamiroximately) the greatest. possible error o the

factors 8 and 12 if the product is tohave a
/A. e

(a) greatest possible error of .1.

(b), relative error of 1
r

(Assume the two factors have the same greatest possible error.

3. ,A house is advertised as 30ft. by 36 ft: but each measurement

is really almost''6 inches shorter than the figure given% The

buyer thought he was getting 1080 square feettof hou?e. HOW

muckwas he actually getting?
- <
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4. What is the greatest possible error in the volume pf a box

given as 6" by 8" by 8"?

5. Find the approximate greatest possible error and,rplative

error of the quotie/of 35 divided by 7.

O

134
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chapter 8

dongruence

1. ,Informal Constructions.

In Chdpter 6 we have stated some basicpropertieP about the

existence of segments congruent to a given ,segment and of angles,

congruent to a given angle. In this section we discuss the

geou4tric construction of such segments and angles and later of
3

triangles. For these constructions, we assume we have available

an unmarked ruler (a straight-edge) and a compass. These were

the classical'"tools" of the Greek geometers. If we.wanted to

make drawings Mt sketches as distinct from geometric, constructions

we could draw figures free-hand or use marked rulers and pro-

tractors. Hereswe limit ourselves to the classical"toOls".

Segments. Given a sdgment AB and a ray 5ft How do we find

' a point Z on R1 such that AB ~?

We can adjust the compass so that with the point at A .the pencil

tip will fall on B. Then with this setting we can put'the point

at X and mark an arc of a circle which crosses Call the

(
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4

point of intersection Z. Then AB 1=7f. (We could also mark the

straight edge--or note a marking on itand use the-marked straight'

edge to find the point Usua.y in geometry we prefer to use

the compass for this construction whereas in measuring leegth's
sk,

in the everyday world we use the marked straight edge method.

Angles. Given an angle LABC, a ray 5f and a point D not on

e
the 1,ine n. How do we find a point W on the D-side"of XY such

that Z4BC-:=_ZWXY?

We know such a point exists (from Property-E-A of Chapter 6).

The questioi9 is Wow do we use a ruler or compass (or both) to

.find it?' With the compass point at B mark off an arc of a circle

intersecting rays El and DZ. Cali the points P and Q respectively.

Mark off an arc of a circle as indicated with center at X, and

with radius equal to BQ (or BP).

'ApNow set the 40mpass to measure the length of PQ (the segment

PQ;Toes not need to be drawn). With thiS setting and with the

point of the compass.at Z draw an arc intersecting the arc with

4r, r
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cent: at X which has already been drawn. Finally if we call

ch a point of intersectipn W therothe angld ZWXZ LABC. At

,.least, it looks as if LWXZ should be congruent to LABC. In

Section 2 of this chapter we pin down the assumptions that let us

assert such to Ile true.

Congruence of Triangles. (Informal). In traditional

geometry, some of the principal theo;ems deal with congruence of

triangles. We begin our study with some intuitive observations.

Suppose we have given&ABC. How can we construct atriangle
0

congruent to &ABC by use of a ruler and compass?

*)
`We lay off on the line PQ a segment A?Bt which is congruent

to=AB. (Wa put the point of the compass at any point Al and mark

aniarc_ of a circI4 crossing M., at a point we call B1.) With At

as center we draw a circle (or an.arc of a circle) with radius
,

equal to the length of A. With B' as center we draw a circle

(or an arc of B. circle) with radiUs equal to the length of M.

The two circles we are considering intersect in two points. Call

1'37
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these points C' and Ctt. They will be on opposite sides of the

line n. Then AABC AATB1CT.Ld\elSo AABC AATB6.4-. If

we were to try to'superimpose AABC On AATB1C1, for instance,

everything would fit.

We could begin this way. Lay AB onA1B1 with At on 10- (and

hence B on B'). Then C would have to fall on the circle with

center at A' and radius the length of AC. Also Cwould\have to

fall on the circle with center at Bt and radius equal to the length

of W. Therefore C would have to fall on the point C' (or the

point C!!) as these are the only two points on both circles. Now

we could require that C fail on the C' side of PQ and thus C must

fall on C'. Therefore our congruence seems to be established.

Similarly AMC AAWC''. Thus using a ruler and compass we,.

have seen how to construct a copy of a triangle.

Let us consider a similar problem. Suppbse we are given

three segments as follows.

A

D

E F

--Construct a triangle whose sides are congruent to AB, CD and V.

. The construction would go through like the one above. We would

13 3
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lay off A'B' with AB ='A'B'. We would construct a circle with

center at A' and with radius the length of CD. We, would construct

a circle with center at B' and with radius the length of EF. Then

if the two ciricles,intersect in two points, say X' and Y', either

X' or Y' may be taken as the third vertex of the desired triangle.

It is interesting to note what would,happen if AB = CD +-EF

[or in the othe,r notation if mat) = mfd5) + m(EF)]. In this

case the. two circles would intersect in just one point (the point

of tangency) and that point would be on A'B'. Hence no triangle

could be formed.

°Finally if AB > (CD + EF) then the intersection of the two

circles would be the empty set and again no triangle could be

formed. In Chapter 9 we shall note such a relationship again, ,

the so-called triangle inequality. In any triangle, the length

of any side is lessthan the sum of theiengths of the other two.

Exercises 8 :].

1. Given segmehts n and 75 below. Draw array. Label it

With a compass find points X. and Y of 174 such that' PX = 17-3

ancirt CD.

A

C

B

D

139
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2. Given angle,D0 below. Draw a ray RI and a point Z not on It.

Coristruct an angle ysu that W is on the Z-side of and

LPQR ~ LWXY.

3. (a) Suppose we have given two segments and one angle.

A

C

B

D

ConstrUct a triangle with two sides congruent to Z and

and C-5 and with the angle included between these sides

congruent to LPQR.

(b) Once the angle and two sides (with the angle between

them) are kiirn is the triangle completely determined?

(c) Can anybody give. two segments and an angle for which

this construction is impossible? Explain.

4. (a) Supposewe have given two angles and one segment

p

Construct a triangle with a side congruent to DE and the '

two angles adjacent to such Side congruent toLABC and

ZPo

i 4 0

)
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'(b) Once the two-angles' and the side between them are known
7

is the triangle completely determined?

(c) Can
c
anybody give two angles and a segment for which this

construction is impossible? Explain.

5. , (a)* Suppose we have given two segments and one-angle

P

fl

A B

C D

Construct a triangle with two sides congruent toAB and

Cr and with an angle not included. between them congruent

to LPQR. Require this angle to be adjacent to the side

congruent to AB...

(b) The same as (a) except require this'angle to be adjacent

to the side congruent to CD. Is the construction

possible?

(c) If werewere enough longer could the construction of (b)

be done in two different ways?

(d) Can anybody give two segments and an angle for which

neither the construction of (a) nor that of (b) is

possible?

4 f

0



8.8

2. The Meaning of Congruence.

In this section, we,try to give a more explicit definition.of__

congrhence and to show the relationship of/this definition ,Co

previous derstandings. We have said thafipro sets of-points are .

-
congruent if they havqthe"same size and shape". In traditional

terminology, this is interp eted as meaning "if either figure (set

of points) can be superimposed on the other". But as we have

remarked in Chapter 6, the process of superposition gets us in-

volved with considerations'of "moving objects around", and,,from

some points of view, the motion involved is irrelevant to the idea

of congruence. Also while we shall be primarily concerned with,

congruence between sets of points in a plane, the definition we

use is applicable to sets of points in space.' The idea ofsuper-

impoaing one billiard ball on another doesn't make much sense.
4

Yet billiard balls axe "congruent". The definition we give

should'help pin-point the basic idea of congruence. and emphasize

its. applicability to various types of figures.

4 If we look at it in a certain way, the idea of superimposing

one figure on another leads us directly to our definition of

congruence.

1 4
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Suppose APRQ.can,be superimposed on 0 ABC with R falling on

B, P on A and Q on C. Then there exists a 1-1 correspondence

between APRQ'and LS ABC, each point.of APRQ corresponding to that

point of 6,ABC which it "covers"wheniSPQR is pperimposed on

6,ABC. For example, the pdint.X would correspond to the point X'

under this correspondence. Butilt is not enough simply to say

that there exists a 1-1 correspondence between APRQ and t ABC.

Something else is also involved in the notion of congruence.

Distances must be preserved. Suppose APRQ is superimposed on
.10

0 ABC as indicated

P-4--4- A

R

.11111. C

then for am ,two points of ,APRQ, the distance between them, _(i.e.,

-

rHthe segment joining them) must be the same as the

itb4ween the points of AAX4Okich they cover, i.e.,

bet egh tl,f, wo points of 0 ABC which they correspOild t9,upder,414,--,

1- 1 corres ohdence. As examples, the distance between R and X
,,,

must be the same as the distance between p and X' (in other words,

RX = B*1),the distance between Q and P must be the same as that

between C and A(QP CA), and the distance IsecOn Q and X must

be the same as that between C and X' (Q* a CXI):

.These considerations lead us now to our definition:

Definition: Two sets of points sald to be congruent pro-__
vided that there is a one-tb-one correspondence between them

which preserves distance.
#04
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With this definition in mind let us go back to considerations

of congruence between two segments and congruence between two

angles.

i
P X Y : Q_

A X' V' B

Saying that .0 is congruent,to PQ means that there is a one-

-to-one correspondence between AB and PQ, (as sets of points) and

distance is'preserved under this correspondence. If we think

about laying off PQ on the ray ICE' as suggested by the drawing

above then P7=-7A, Q-1-4-B and for any point X of 7Q- there is a

corresponding point X' of AB. Furthermore, distance is preserved.

- For example, if XA,----4-Xt, and Y-.----,-Yk!he length of Y'Y is equal

toIthe lengt4 Of XIS. A statement of the existence of a 4

° congruence should be understood to imply the existence of a one-.,

to-one correspondence which preserves distance.

It is 'hard to check on whetheroall distances betweon.pairs of

corresponding points are preserVed.' We want conditions which' we
.

can Observe and which tell us that such a one-to-one correspondence

which preserves distance must exist.

It is really part of our basic understanding about congrlience

off segments that the for1o4* propFty holds. We understand

,JA; E0 to mean the set consisting of the fo elements A and B.
o

J
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Property'I: R, S, C, and D are points anc) S) D),

then RS ~ rr. Furthermore, there are exactly two congruences of

TDI with M)Which corresponds4R, S) with (C, D). One of these

corresponds R with C, the other R with D.

Ones thing this property says is that all segments of a given
c

length are alike. Any congruence between two pairs of points

-indUces a ynique congruence between the two segments having these

pairs of points as endpoints. In fact, if CR, S),=1' D) and

S40---D then there is a unique one-to-one correspondence'

between M and CD which Prerves-distance and corresponds .R with

C and S with D.

There is one and only one way of laying segment RS on se ent
o

CD so that 1174--41-C and

Welnow consider thecdngruence of two angles.

-A
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. The'angles LPQR and LABC are congruent if either cab be

superimposed on the other or, more precisely, if there exists a

one-to-one correspondence between them which preserves distance.

As, under these conditions, the vertices B and Q must correspond

to each other, then ray BI An be identified with rays 0 or with

ray (17L Eisther of these leads to a oongruenCe of the ts4o angles.

Let .us Suppose ray El is identified with ray 0. Then any point

X of g corresponds to a point X' of 0 and any point Y of 311Z to

a.point Yt''of id. (In the case of angles, the points A, C, P

and ;i.that we used to name the angles may not correspond to each
;'-' :1 ', ., ,s , .

other.) ,.

-----,---. ,

The implicit assumption about the congruence of*LABC'with

LPQR is that distances will be preserved under the one-to-one ,

, .0.

correspon ence which is \..t up. Thus in our figure 137 ;I Tal,

? ....'Q77T, and 77 ti XtYt. The last of these'is important to'note,

The distance betweeri any pair of points of LABC is equal to the.

'distance between the pair of corresponding points INEe-.` In , ,,
.*-

effect we assumed this to be so when we first gave our `tiesproper
=.10,

on congruence of angles. o

.
4 r $ ''6

N

, . . o'
Ct".

In the case of segments, two segments were congruent if thetrc, d
A .

C g01two sets of endpoints were congruent. A similar type of conditiol, ,,
,

,.

. .,.
.

1

is true for angles. We wish to state expli,citly our basic.under--
11, .

standing.

146
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.PropertY II: Consider LXYZ and..LDEF such that l Ts,
4 -1: IV, and 77 157. Then LXYZ = LDEF and with X.1D,

and Z-1----F there is a unique such congruence.

This property tells us that if we can find three,points of

either angle in the correct relationship to some three points of

the other, then the angles are congruent.

X

D

.11

This property gives us a criterion for stating that two

angles are congruent. It is, precisely this type'of condition

that we needed in-Section 1 of this chapter to assert that our

construction actually gave an angle congruent to the given one.

Property II really rather intuitive. We would- expect

o ZPEF to coincide with LXYZ if-we superimposed the figure ith

F on Z, D on X and E on Y.

Exercises 8-2

1. Ar and 'N acre given below as 'having the ape length.

A

Describe two congruences of AT and 74i, -i.e., describe two

one-to-one correspondences between It- and 17 which preserve

distance.

*a.
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2: In (1) above suppose X is a point of AB at of the distance

,,from A to B. Draw a copy of P and label as Y and Yl_t,*

points to which X would oormuond-under the two congruences

of (1).

4. Assume that the angles. ZVIIW and LHJK below are congruent.

Th

S

w

Assume ru W 110 If Tic and. VW c JM = UR.

(a) Describe two congruences of ZPVW with LHJK by matching

the five indicated points of, one figure with the five

M

the other in two different ways.

(b) In one of your congruences of (a) U ; d
,

What do we know about VW and. RR? About "glq and NR?

4e Consider the figures below

B121sin how by measuring three segments of each figure we

might pt6ve that LEFG is congruent to LXYZ (if it is).

148
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5. .Consider the angles below.

A

Suppose AY QP and r

11

If 16 is not congruent to PR, can LABC be congruent to LPQR?

Explain.

6. Tiy to state Property II more simply.

3. Congruence offiriangles.

What is usually meant by saying that E ABC ARPQ? In

traditional terminology one says that AApc can be superimposed

on ARPQ. In many geometry texts this is also taken to mean that

_cgrresponding sides are equal and corresponding
aq*,.p are equal".

4

Of course, in our terminology the sides and angles are sets,

of poin s and, hence the word "equal" would be, replaced by

"congruan ". Note that both of tie above meanings for congruence

of triangles involve a matching process or correspondence.

ao.
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Certainly the superposition requires a one-to-one correspondence

between the two sets, each Point of the one set corresponding to

the point of the oher'on which it is superimposed. If AB corre-

sponds to IfF and IT corresponds to PQ then clearly B = UnTd.

should correspond to P .ITurm. Thus the idea of "corresponding

sides" and "correspOnding angles" requires that the set of
#

vertices of the one triangle be in a particular one-toLone

correspondence with the set of vertices of the other. In fact,

the converse is also true; a particular one-to-one correspondence

of the two sees of vertices induces (or produces) a one-to-one

correspondence be,tween the sets of sides of the two triangle; and

a similar correspondence between the sets of angles of the two

triangles. For instance, if and B---P then 'Kg PP.

Thus we see that a key to the possible congruence of tW9,

triangles is a matching of their sets of vertices., In fact,

we have the following almost obvious theorem which we give

without proof

Theorem I: If CiABC APQR, then any one-to-one
A

corre-

spondence of the triangles_ which preserves distance gives a one-

to-one distance-presring correspondence of the sets of vertices

of the two triangles (of (A, B, C) with (P, Q, R)).

To make our notat on and language easier, let us agree

that writing

ABC XYZ

means. not only that the triangles are congruent under some

matching process but that they are congruent under a. one-to-one

,150
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correspondence which matches the vertices in the order, given. In
4,t1

other words, if we write AMC 2-= AXYZ then we imply that

1

B Y

and under the congruence we have in mind.

Similarly, let us agree that (A, B, C) (P, Q, R) implies that

B-0--en.Q, and C-4.----1R under the congruRce implied

between the two sets of three points each.

The converse of Theorem I, which we shall state as'Theorem II,

is also true but it requires some proof which we shall outline.

(We assume in Theorem II that (A, B, C) and (P, Q, R) are sets of

vertices of triangles.)

Theorem II: If (A, B, C) CQ, R), then AABC AQPR.

Proof: We begin by recalling what_we_mean by saying that

(A, B, C) (Q, P, R). A set of points is congruent to another

if there is a one-to-one correspondence which preserves distance

between them. Therefore, as A.4--1-Q, and we

are saying _that AB = QP, AC QR, and BC, these indiq4ng_

.~`the distances that must be preserved.

151
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But Property I ok the previous section implies that there are one-

to-one correspondences which preserve distance between

Ilr.and with-A-4.---P-Q and
t.

V' and 7\withA-41--4- Q and

and rd- and WI with and C R

Thus'we may consider a one-to-one correspondence to have

been set up between &ABC and LsQPR and this correspondence matches

A with Q, B with P,and C with R. i

What we have not.yet observed is whether or not all distancds

are preserved under the correspondence. For instance, in the
* 1 4t

figure below, if X -'-=X' and Y-*---41-YT, is AX = QXT? Is XY = )IYI?

B r

(
PN /N

Nix / Nix'o // // N /. N./ . N ' / . N/ , / , .
AL` - Qt._ \

1\
-C \ yi- ----_y --- -- \

4 ':,
.. _

The answe o each of these questions is "-a0 we use

Proper I of the previous section to see chat such should be -,the
'

We n ote that re ;"-M, 11U 2-..1711 and TB 7 and these tare just

what we n- eed to apply Property II. FrOm Property II, then,

LACB = ZQRP with A-41-0-Q, C6--b-R and and the "natural"

further .correspondence such as X-4,---01-Xl and 'But as

A Q, X X' and then AX must be equal to QX! and -2,

XY must be equal to X'Y' because distance must be''preserved under

1 6' 2
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congruence of the angles LACB and LOP, in this instance. By use

of this type of real ning Thedrem IL can be established on the '.

basis of our assumed properties.
4

Note that in this argument which we have sketched, we first

observed that' the corresponding angles were congruent (using

Property II). Then because corresponding angles were congruent

the various distances had to be preserved;

We now wish to,observe_the fundame4$41 theorem that if two

triangles are congruent by our definition? then -they are ty the

tradition definition.

eTheoremAII: If CsABC LSDEF, then the -corresponding .

and 'corresponding angles of the two triangles are congruerp.

Proof: SinceA:0-4-----4-D and B-:.-E.under our congruence, then

'Ai = D. Therefore AB If DE. Similarly AC DF and BC EF, and
\

the corresponding sides are coAgruent., What aboytZABC and LDEF?

\:-.. Ar the4 Congruent? The answer is yep; for

4 :
A

.

.1
, *

13A- '1' TV, EU :"-.' IF and 17'= 'ff as we have (observed en by .

/'

Property)II, LABC = zpEF under "a `'correspondence whidh AA1---1.D,
y .

B ..+--1.-E and CA."40.F. 'Similarly ZBA C 1' :ZEDF and LBCA l' LEFD. .' .-
... $1

*...4-.

.--
. K

ti

1 5 3
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Thus we see that in the case, of triar*es our definition of dton-

gruence implies the traditional one. then do we use it?

(1) It is more explicit and lead better understanding.

(2) It emphasizes the fundamental,idea of congruence and in

so doing is applicable to other types of figures (sets

of points).

(3) It does not unnecessarily introduce the idea of "moving"

sets.

(4) It gives another elementary geometric setting to

illustrate the important idea of a one-to-one corre-

spondence. Thus it helps give a unity to the language

of mathematics.

Exercises 8-3

1. Suppose' &ABC and APQR ,are as in the figures below with all

six indicated segments of the same length.
B 0

How many congruences are there between AABC and [SPQR?
4

List the matchingof the sets of vertices for all Of them.

For example, C-o---0).-would be one such.
P

I

, 1 54
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2. Explain why Theorem II is like the traditional side4side-side

congruence theorem.

3.- Suppose in triangles ZDEF and /OM that

DE is -.not congruent to IT

T5F is not congruent to TZ

and EF is not congruent to'M

Can LIDEF be congruent to Axyz?

Must the two triangles be congruent? Explain.

4. Suppobe D HJK AUVW as below, with L

List all the pairs of segments (with some of the indicated

give p.oints.as-endpoints) which you know must be of equal

length. You shoUld have 10.of them.0

. 5. Suppose LSPQiit o ABC.

Explaip how we know hat 2:1)R -1."ZABC.
)

p

4.1. Congruence or Triangles=-The Standard Theorems.r
We begin with the sss Theorem Side-Side,Aide).

155)
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Theorem IV: Consider 6, ABC and ,A PQR. If AB 15(1, BC TR,

and AC '1" PR then 6,ABC 6,PQR.

Proof: This theorem is essentially a restatement of Theorem

11.4 Let B--Q and Then this correspondence

is a congruence of (A, B, C) with- (P, R). Therefore Theorem,II

asserts that 6,ABC = CsPQR.

Next we state the SLS Theorem (side-agle-side).

Theorem V: Consi4ex!./IXYZ and CsPQR. If YV .=1" T14

and ZXYZ = ZPQR, then Pxyz 6pQR.

P

Proof: The given condition that the angles Zxyz and PQR

'are congruent means that there is a one-to-one distance- preserving

corresppndence between the angles. This correspondence can be

taken so that and But since all corre-

sponding distances must be equal, XZ = PR and then NY.1" PR.

d

1 156
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This together with the given congruences of segments auerts con-

ditions like those of the hypotheses of'Theorem IV. Therefore

A XYZ APQR.

We now c sider the ZSZ Theorem (angle-side-angle).

Theore I: Consider triangles APQ11 and AABC. If

ZPQR,24ZABC, QR BC, and LQ,RP = LBCA, then APQR ~ A ABC.

A

B'

Proof: Let X be a point on 9P such that 2:4 SA and X is on
44

the P-side of QR. From Theorem V, AXQRAI'' AABC. Thus by

Theorem III, ZXRQ = LACB. But by Property I-A of Chapter 6, there

is only one ray with endpoint at R and containing a= point 9n the_

P-side of g such that theangle formed by this ray and' n is

congruent to LACB. TkItiffore X and P must both be on this ray and
b

henceon the line M. Stit"X ind P are both on the line (#. These

two lines 'can have at mosttne point of intersection. Therefore
%

the point X is the point P and QP =: BA. Now the conditions for

Theorem V are obtained and hence the two 'triangles are congruent.

A triangle/is called equilateral if its three sides are all

congruent to each other. A triangle is called isosceles if some

1 57
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two sides of it are congruent to each other. We list two of the

most fundamental theorems about isosceles triangles. These

theorems are used to prove various other theorems.

Theorem VII: If two sides of a triangle are congruent, the')

the angles opposite these sideslare congruent.

It

We are given that PQ QR. We wish to shoW that LQPR = ZSRP.

Proof: We note that (P, g, R) (R, Q, P), for

PQ RQ

PR. PR (or RP).

--"Q17 7.1"

Therefore, byTheo;eM :II, 1PQR 1RQP. But LQPR corresponds

. to 4:QRP under this congruence and thus, by Theorem III, 4°

2QP1 Zt. 1.0P, as was to be shown.

Finally we state the converse of Theorem VII.

Theorem VIII: If two angles o1 a trilangle are congruent,

then the sides opposite these angles 24 congruent.-

We are given that LXYZ = LXZY. We wish to.prove that 77 74::

158
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Proof: Consider the correspondence as follows:

Under, this correspondence of vertices

ZXYZ corresponds to LXZY

7 corresponds tor?

LXZY corresponds to 2XYZ.

But it is given that each angle cited is congruent to its' corre-

sponding angle. Also It ZY by identity. Therefore the con-

ditions of Theorem VI are achieved. Hence AYXZ AZXY.

Under this congruence W-.1---0-XZand thus, by Theorem III,

YY Yff as was to be shown.

Exercises 8-4

1. Prove that all the angles of an equi1ateral'triangle are .

congruent to.eadh other.

2. 'Draw figures to show that the ,side-side-angle "theorem" is

not true. ,In other Words, exhibit two triangles which a./4"4
. *
t

. not congruent, but for which two sides and a non-included----_____

angle of the one are congruent_respeCtively to two sides and

a non - included angle of the othei.

. Give examples of two equilateral triangles which are not

congruent to each other. Hence show that the angle-angle-

angle "theorem" is not true.
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4. Given a quadrilateral ABCD whose opposite sides are congruent,.

. 1:e., AB 2-: CD and AD BC.

Prove LBAD BCD and

ZABC = ZADC.
4

5. Given quadrilateral PQRS with

2:-. TS and QR

Prove ZPQR,.:= LPSR.

166
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Chapter 9

Para],]els and Metric Properties of Triangles

14**,

1. TerMinology and Basic Properties.

Suppose a and tt aretwo lines in a plane and ttti is a line

different from IA and tt. Suppose n intersects both la.and CD

(in non-empty intersections). Then f4 is called a transversal of

the two lines.

,-Let the points of iDtersectionbe E and F as in the figure.

Assuming.,th24various points are located as above we call ZPEB

and LEFD corresponding anglps. .There are three other pairs of

corresponding angles in ur figure. Similar ones are 'toted in

the proof of Theorem below.

We call LAEF and LEFD alternate interior angles.-- There is

one other pair of alternate interior angles in Our figure.

Theorem I: If two corresponding angles are dghgruent to

each other, then so are the angles of the other three pairs of

corresponding angles.

.161



. -
9.2

Consider the figure on the

right and suppobe LXYB = ZYZD.

We wish to 'show that

LBYZ LDZW

LAYX LCZY and

LAYZ LCZW

D

0

Proof: LBYZ LDZW, supplements of angles given as congruent:

X

Similarly LAYX =I'LCZY, supplements of angles given.
.

.-...- as congruent.

Finally LAYZ 2:4 LCZW, surholements of_angles proved to
be congruent.

We next wish to establish a basic theorem about corresponding

angles\ We "are given a tranversal cutting two linos.

Theorem II: If a pair of corresponding angles are congruent

to each other, then the lines cut by the transversal are parallel.
,...........

We shall prove this theorem by COntradiction. (Some readers

may wish do use drawings of their own while reading this argument.)

We are iven linee a and ,-/ .
- P Y

,--..1', 0 0... 1
. ..

g
-

G cut by transversal n E /
4 A /

/ .as in the figure. We are X ....------ /.--_
-. ,/

further given that LPEB 1' LEFD,
....

F

(even' if it doesn't look like
. 0

it).' Suppose X is an element of -.n c. Let Y be a point on the

162
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9.3

ray 5 such that EY 20157. Thus Y / X and Y is on the D-side of

line PQ. Now consider AXEF and.AByF. Let ,

X <-4 Y

F 4-4 E'

E F

where the first listed points are thought, of as the vertices of

AXEF.

Now IT *-1" by by construction (i.e., defining Conditioh for Y)

EF TT by identity

ZEFX because supplements of congrdent angles are

congruent.
0

. . AXEF AYFE by the SLS theorem with the correspondence

between sets of vertices as above. Hence LEFY = LXEF (corre-

sponding angles of congruent triangles). But LPEB L XEF

.(vertical,angles) and thus LPEB ZEFY. Also'/FEB = LEFD (given)

and Y and D are,on-the same side of R. Therefore LEFY = LEFD

(i.e., they are the same angle) by Property I-A of Chapter 6,

which says there'is a unique angle congruent to LPEB with one ray

FP and the other containing points on the B-side of M.

Thus Y must be on the line 5. Therefore; line 5 and line

CD have the two points X and Y in common which' is a'cOntradiction.'

(Two distinct lines can have at most one pqint in common -- Property.

I-A of Chapter 5.) Hence, the assumption that AB and 5 have a

non -empty intersection is false. Therefore the lines are parallel.
4
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We wish to establish the conveise of Theorem II..
4:10

Theorem III; If two parallel lines are cu by a transversal,

then the corresponding angles are congruent.

Given parallel lines 414; and 51 and

transversal V as in the figure
-4

X

Y

We h to prove that ZXEB = LEFD. (Then, by Theorem I, the

angled of all pairs of corresponding angles are congruent)."

There mUstexist a ray 0. such that LXEQ LEFD and Q is on the-,

B-side of V. By Theorem II, t,Z

must be parallel to Pt. But there

is only one line through E parallel

to Pt (Property V of Chapter 5).

Hence t4. is n (_ n) and 0'

LXEQ is ZXEEr. Therefore LXEB

as was to be shown.

- Exercises 9-1

1. (0,- Prove that if a of corresponding angles are
it

congruent, then so is some pair of alternate interior

angles.

(b) Prove the cOdyerse of. (a).

2. PrOve Theorem I-A: if---J5wo'-alternte Ilnkerior angles are

44

congruent to each other, then so are the angles of the other

pairs of alternate interior angles.

lb

16 4



9.5

3. Prove Theorem III-A. If two parallel lines are cut by a

transversal, then the alternate interior angles are congruent.

4. Try to simpjify the proof'ofjheorem II.

2. The Sum of the Measures of the Angles of a Triangle.
,-

In this section we prove the following well-known theorem.

Theorem IV: If pc,, ,e and t(alpha, beta, and gamma) are

the (degree) measures of the the angles of a triangle, then

4 A 4 = 180,

Given

A ABC with oc= m (ZBAC ) ;

= m(LA13C) and

m(zAcB):

/

/

We wish to prove that cg..-+ 8+ = 180.

Let PQ be the line through C which is'par;allel to 5. We may

regard Q as dtothe B-side of AD and in fact, in the interior of

ZBCD. Thus, LQCD LBAC (cor'respondidg angles) 'and hence
se

oC= m(LQCD), for congruent angles have equal measure. Also

LBCQ = ABC (alternate interior angles--see Exercise 3 of

Section 1) and hence/4 = m(ZBCQ). . Now m(ZBqD) = M(LQD) + m(ZBCQ)

+,8 . But m(LBCD) t m(LBCA) = 180 (supplementary angles) an

(a +,49 ) +f = 180 or M -1-74 = 18Q as was to be shown.

165
40.
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We speak of ZPCD 4s an exterior angle of A ABC. (Note tIlt_

an exterior angle of a triangle is not a part of the triangle. It

won't be by almost any definition which is used. Yet it has long

been customary to use theexpression "an exterior angle of a
411,"

. triangle". )

We havie shown in the preceding proof that -m(LBCD) cc- +/3

and as oC 0 and ,A 0 then (sc.+ p >oc and oc:+f3 >ft . Thus we

have in eff6ceproved

Theorem V: Di measure of an exterior angle-of a triangle is

equal to the sum of the measures of the two opposite (interior)

angles-of the triangle and is greater than either of them. .

On the basis of these tems and of the theorems of

Section 1, we are now in a position to state and prove several

theorems about parallels and perpendiculars. We state some of the

theorems here and leave the others aria all the proofs for the

exercises.

Theorem VI: If two distinct lines (in a plane) are each

perpendicular to a third line then the two lines are parallel.

Theorem VII: If two lines are parallel, and one is perpen--

dicular to a third line (in their plane) then the other is also.

Theorem VIII: Given a line y and a point P. Then there is

exactly one line containing P and perpendicular to,
.

166
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71A,quadrilateral is a simple losed curve (in a pianel6which
.,4

is'the union of four segments (called the sides) but is not the

union of three segments. (Note that a triangle

is the union of 'four segments) and,As also the

union of three segments. A quadrilateral has

four sides and four angles. As in the case of

a triangle, we shall use the term "side" to

mean' either a segment or its length (as convenient).

A parallelograM is a quadrilateral in which each side is

parallel to another. A parallelogram has two,pairs of parallel

sides.

A quadrilateral whose four angles are right angles.i called

a rectangle. It follows from Theorem VI that a rectangle is a -

parallelogram:
. .

Theorem IX: The opposite angles iof a Parallelogram are

congruent to each other.

Thearem--X4----The opposite sides of a parallelogram are

congruent to each other (or are of equal length).

Theorem XI: The sum of the-measur of the angles of a

parallelogram is 360.

Note that from our definitions it does not follow that the

sum of the measures of the angles of any quadrilateral would be

4
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Two examples are indicated

on the right. The sum of cer-

tain numbers naturally associ-

ated-wit,h the angles of a

quadrilateral mIll be 360.

But these are not necessarily

the measures of the angles

of the quadrilateral.

) Exercises 9-2

Write out a proof (as in the text)

that m(LOS).-m0IPQ)-1'm(LPID11).

-2. How many exterior angles does a triangle have? How many

angles are represented in a figure which is the union of
.

3 lines having no point in common but such that each two
*.

-of them do have a point in common?

. 3. Prove Theorem VI. Hint: Use Theorem IV.

4. Prove Theorem VII.

5. Prove Theorem VIII. Consider two cases.: pile in which P is

a point of R, thelptherin which P is not f-a point oA.
1

188.
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6. Prove Theorem IX.

7. Prove Theorem X.

8. Prove Theorem XI.

ti

9. Prove that if the opposite sides of a quadrilateral are

congruent to each other, then the quadrilateral is a

parallelogram.

10. Show thp.t if a and areare parallel lines, the lengths,of

the perpendicular segments from the points of A to PQ are

all equal.

4 '
3. Some Inequalities Asibciated with TriarAles--The Triangle

Inequality.

In this section we list some properties without calling them

theorems.

1. Consider a triangle ( A ABC).

If At' > BC,

then,m(ZBCA) >-m(ZBAC).
.

Let D be a point of. BX such that

BC 24 BD. As BD = BC and BC < BA,

then BD < BA'and D is between B and A,

A BCD is isosceles with BC. -2' Hence LBDC = LBCD. Now

LBDC is an exterior angle of AsCDA and thus m(LBDC) > m(LBAC).

'a

16'9 0,
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But tectuse D is in the interior of LBCA, m(LBCA) > m(ZBCD). We

have. the following facts, then,

m(LBCA) > m( BCD)

m( CD) = m(LBDC)

m(LBDC) m(LBAC).

"Therefore, m(LBCA) m(LBAC) as was to be shown. Another way of

stating this result is If two sides of a triangle are of unequal

-measure, the measures of the angles opposite these_sides are

unequal in the same order".

2. Now we look at the converse

of'Statement 1. Consider a triangle

A ABC. If m(LBCA) > m(LBAC), then

A
AB Bt.

We prove this statement by exhausting

.possibilities. Either AB > BC or

AB . BC or AB < BC.

If AB = BC their the triangleAs--:T60s6eles, and ,A(LBCA)

which is a contradiction.

If AB < BC then from Paragraph-1 of this section, m(LBAC) > m(LBCA)

which is also a contradiction.

.blerefore, the only possibility left is that AB > BC which was
. t

to be shown.,

<

17Q
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3. We are now in. a position to establish the extremely im-

portant "triangle inequality" of geometry. The triangle in-

equality asserts that the length of any side of a triangle is less

than'the sum of the lengths of the other two sides.

In one sense, the triangle-inequality implies the "shortest

distance" property of geometry. The straight line path from P to

Q is shorter than the length of the broken-line or polygonal path

from P to Q by way of R if R is not between P and Q.

R

We may restatejhe triangle inequality as follows: If a, b,

and c are the lengths of the sides of 6ABC,-then a + b > c.

B

We shall agreethat a, b, and c are the lengths of the sides '

opposite the angles at A, B, and -C respectively. Frpm a,

construction point of Vfew the "triangle inequality" property is

Just what we expect. For if c > a + b then in trying to construct

0

the triangle_ starting with side TE the two circles with centers at

B and A and radii a and b respectively would not intersect unless

c = a +13 and then the point of intersection loroula.be on p.

171
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Now we give an
1
argument baud on our earlier assumptions.

We assume c j-a + b.

C

1111.

41)

IP

Let D be a point on ft suchthat BC 1.= BD. Then A BCD is

Disosceles and m(LBCD) M Din(LBDC). is between B and A.

ConAidering Li ACD we have that AD > AC (evenjif it doesn't

look like it) or AD = c - a-and as lk + b S c then b < c a.
o

But then m(LAC ).> m(LCDA).

Now mi(LB ) + m(LCDA) = 180

and m(LBCD) +111(ZACD) = mi(LieCA) < 180.

", Hen mi(L6)A) = 180 - M(ZBDC)

and m LACD.), < 180 - mi(LBDC)

Therefore m(LACD) < m (LpDA),

but this contradicts o1,111' earlier statement.

Hence it is not true that c > a + b.

Therefore c < a ÷ b.

'exercises 9-3

1. Given three points A, B, and C. Explain how by measuring 3

distances one can find out whether or not the three points

are all on the samenne.

0'
172
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TP
2. Suppose that R is 'a line and P is

I

I

a point not on Q. Suppose furtheilk, I

i

that B is the I

ie%foot of the perpen-
1 ,

/.

Bdicular from P to JZ and A is any

other point of 2. 1Show that PB C PA.

In other words, show that the perpendicular distance;is the

shortest'distance 'from a point to a line.

3, Let A,.B,
,

and C be the vertices of a triangle. Let P be a
A .if

point which is.not on the triangle but which is in the plane

of the triangle. Show that the sum of the distances from P. to

1, 17A, B, and C is greater than.7kAB + BC + AC), i.e., the

perimeter of the triangle.

A

ed"

-4
C.
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Chapter 10

Areas, Volumes, and the Theorem of Pythagoras

1. Areas of Parallelograms and Triangles. The Theorem of

Pythagoras.

We have seen in Chapter 6 that if%a rectaniae has base b

and height h (in terms of the same unit) then the area of the

rectangle _(rectangular region) is b -h (in terms of a square

region of side one unit).

h.. 3

b . 6

Area = 6 3 . 18

b

Let us develop the formula for thp area of a parallelogram.

B

:10.1
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We are given the basic properties of area discussed in

Chapter 6, Section 4. We will consider the Parallelogram to be

labeled as in the figure. Sides WE and M can be considered to

be horizontal with A and C as the "extreme" points in a hdrizontal

sense. (Draw a figure as you read this.)

Let P, X, and Q be the feet of the perpendiculars from A

and ,B to IZ:.and from C to V'respectively. The pointX,m2.ght be

. As AB and DC are parallel, it follows from Theorem VII of

Chapter 9, that AP I AB, BX 1 AB and CQ. 1 CD. Thus AP, BX and

CQ are all parallel. Hence AQCP and BQCX are both rectangles.

Now BXC .1" Li APD and thus from Property V of Chapter 6,

Area ( ,A.BXC) = Area ( A APD). From Property VI of Chapter 6, we

may conclude that

Area' (CD BQCX) = Area (A BQC) + Area (OS BXC),
.

and therefore Area (Q BQCX) = Area ( A BQC) + Area ( A API)).

Again from Property VI,

Area (MI AQCP) =,Area (aABCD) + Area ( A BQC) + Area ( A APD).

Hence Area ( AQCP) = Area (E7ABCD) + Area .(E)

or Area (aABCD) = Area (0 AQCP) - Area (E) BQCX).

From our formulas, Area (0 AQCP) = (CQ)(PB +

(CQ)(AB) + (CQ)(BQ)

and Area (Q BQCX) = (CQ)(BQ), ,

Therefore Area (L:7ABCD) = (CQ)(AB) + (CQ)WO 7 (CO (K)

= (CO (AB).

1.75
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This last formula asserts that the area of the pardllelogram

is the product of,the'length of he base times the altitude

is
.6V = h. This is what we wanted to show.

Note that either pair of parallefsides could have been

regarded as horizontal. From Property VII of Chapter 6 we conclude

that
4

C V .bh.b h
1 1 2 2

where
,

bl and b2 are lengths of adjacent sides and hl and h2 are

the heights to these sides.

From the formula for the area of a parallelogram, we can

very easily obtain the usual formula for the area of a triangle.

Consider A ABC. Let us

regard AC as the base. 7
Let D be the irtterUction /'

of the lines through C

1-4p-
parallel, to AB and through

B parallel tort.

(The assumption that the lines don't intersect means.that they

would be parallel which means that both AB and the new line

through B would be parallel to the nawline, throughG:t. But then

we would 'have two lines through B parallel to a given line, for
A,

1 the new line through B"cannot contain A dnd hence is. different'

from AB.) 4.

t
17G
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Now from the SSS Theorem, Ls, ABC -2', p DCB and hene

Area ( p, ABC) .1 Area ((:7ACDB)

. 7 (AC) h. -22.11) h

/I
where h is the height of theitriangle (and oe.tht parallelogram)._

As in the'case'of the parallelogram, the formula for the

area of a triangle can be used with any particular side as the

base.

The Pythagorean Theorem. The Theorem of Pythagoras has to

do with the lengths of the sides Of a right triangle. Since the
.

sum of the measures of the angles of

any triangle is 180 tlere can be at .

most one right angle in any triangle.

We call the side oppdsite the right

angle.the hypotenuse of,the right

triangle and usually denote its length by o. The other sides Are

called the legs of the right triangle. We denote their lengths

by a and b. The Pythagorean Theorem says that in a right triangle

c
2

b

the square of the hypotenu-- is equal to the sum of the squares of

the other two sides.

There are a tremendous number of "1:i-roofs" of the Pyth.#orean"

Theorem. .Even President Garfield once gave such'a proof. We give

one 4 the more elementary.keometric ones.

177'
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10.5

In this proof we assume some properties of rectangles which

we. have not stated explicitly, but which follow from observations

we'have made in the previous chapter.

S b A Pr ,-
°1 c -'

I

lb

I \ I

I \ C a-
1

16,

bl . Y
I .5'/' .

a

I' v.. ,,,,.
L.____... _\ef_. ____` _ ___J
R a D b" Q

In this paragraph we describe the figure above. We are given

the right triangle CiABC. k'There exi t lines through A and B

perpendicular to AC and CB respecti ly. Let P be the point of
Iso

intersection of these lines. APBC is a parallelogram (rectangle)

and hence AP = BC = a while FS = AC = b. Let Q and,S b7points

on PB and PA respectively as in the figure such that BQ = a and

= b. There exist lines perpendicular to AS at S and BQ at Q

respectively. Let R be their point of intersection. PQRS is a

re4gle wits adjacent sides equal in length. Hence PQRS is a

square. Let E be a point of 717 and D a point of F7 such that

SE B.6 .'a. Then it may be observed that ABDE is a square of

side c. We leave the proof to the exercises.
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Area (CI PQRS) = (a + b)(a + b).= a2 + 20 + .b2

Area (ED ABDE) = c2.
. 4

Area ( 6, APB) = Area (p BAD) = Area (p DER) = Area .( p AES)

= -12- a b

Area (t PQRS) = Area (CDABDE) A: Area (p APB) + Area (ABQD)

+ Area (p DER) + Area p (AES)

Therefore a
2
+ 2ab + b

2
= c2 + 4.(2ab)

a2 b2 2ab = c2 + 2ab

Hence a
2 + 1u = c

2
as was to be \shOvm.

Exercises

1. Find the area of the region

of the figute,on the right.

e

f

2. ,.Find- the altitude to the

hypotenuse of the right

triangle of the figure.

(Hint: Equate tlac expressions for

Exercises,3 and 4 referyto the descript

the area.)

on of

'the figure in the discussion about the ytha-

gorean Theorem.
e

3. Prove that the lines tnro-ugh A and B perpendicular to AC and
4.

nrespectively must intersect.

HP

179
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4. Prbve that ABDE is a square. Npte that the sides are of equal

lenh (from the congrdent corner triangles). Hence show one

of the angles is a right angle.

2. Other Areas and Decompositions.

There are various other figures for which we want to compute

areas. Some of these are more complicated closed regions in the

,plane and some are surfaces or parts of surfaces of solids. In

general, the approach computing the areas of such figures is to

'think of the figures as the union of simple figures.. Then we may

compute the areas of the various simple figures. -In some cases we

develop special formulas and use thelNor computations. But in

many'rhstadces,,It,.46 eaSjier tb4temethb the geometric qonsidera-

tions which lead to the formulas than t emember the fbrmulas as

"Lich: (An exception is the formula for t e area of a parallelogram,

which can be considered to be like that fo a rectangle.)
. .

A trapezoid is a\quadrilateralwith tw parallel sides such

that the other two sides are not parallel.

S : R

Q .

The area of a clo ed trapezoidal region

standard devices. We may decompose it into two right taangulal,

may be found one of7two

1

7'1
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and one rectangular region_as on the'left or into two triangular

regions as on the right. From either of these we can derive the

usual'formula for the area aslff4h(bi + b2) where h 'is the altitude

(perpendioulardistance between parallel sides) and b1 and b2 are

the lerigths ofthe Vases.

In applications of geometry, there are a number of problems

which arise as to the total surface area of a prism or pyraMid or

the lateral eurfape area of such. The distinction between "total

surface!' area and "lateral surface" area is the following: If the

solid concerned hasbases(one or two) then the lateral surface,

area refers to the area of the union o' the faces other,than the

base(s) whereas the total surface.area refers to the area of the

union ofall faces.

. 'Among solids that acre commonly deait.witti are prisms and

pyramids. A prism is a polyhedron (a solid with flat faces) such

that some two faces are congruent and are in 'parallel planes.

4,

°These faces are called the bases. The other faces are all

paralleldgrams (or rectangles for right prisms) and each of

41ese paralleNgrams has* pair of opposite, ed es in the two_

ibases. A triangular prism is a

,prism whose bases are triangles.

24k A

Mier figurekonnfripLI2presents

a triangular prism. The ,one below

it is a prism with pentagons for

asee.

181 6
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o A

A pyramid is a polyhedron with one face designated as base

and with all the other faces being triangular, having a vertf; in'

common,and aving the other two vertices Of each'on the base.

The figures below represent tPiangular and square pyramids

(the5l adjectives describing the bases).

g

A muctimore comprehensive treatment of polyhedrons is given
4'

in Chapter 14. The "solid polyhedrons" of this chapter are really

3- dimensional polyhedrons.

-Exercises 10-2'

0

t

po
Derive the formula for the.area of a trbpezoidal region by

. .

decomposing the region into two tri,, lar iegions..
( . N ../'

' 2. Derive the formula for the area of a rap+idal region by
-$

decomposing the gion into 2 right triangular and one

rectangular region.
,1

3. (a) Find the lateral surrace' area of a right prim-4.n terms. .
.

..
,

..

of the' perimeter of .the base and the height of the prism.

(b) Find the total surface area in terms of the result of (a)

and the areas of the bases.

It
1 8 2

I

1



c

4. Suppose a square

all congruent.to

(altitude of one

Find the lateral surface area.

Find the total surface area..

10.10

pyramid of side 8 has-ite triangular faces ?
each other. Suppose the-slant height

of the triangular faces) is 10.

3. 3.791.tmes.

:e. seek a point of view which} enables us to find the volume (. -
of a

complicated-,polyhedral region (i.e. interior of a polyhedron
together with its boundary). As Wore we think of decomposingthe solid region into simpler ones--i.e. we think ofexpressing
the complicated solid region as the uniorrof

non-overlapping
(As noted in the last section, Chapter 14 has

t.

simpler regions.

a mlph more
comprehensive treatment of polyhedrons!)

For volumes, we have available, so far, xhe volume.of a
'rectangular parallelepipedt It is either b d h (base x
_depth x height) or B h where B = b d and isOthe area of a

,

1
e.

rectangular region which is regarded as the ba
The point of view IL. B h s out to lie a useful on

It is'alsci
applicable toprisms'(and

to'cylinders a' discuss d
in Chapter 11).

1.8B fl

r.

0



Let us start with a triangular

right prism. By a construction and

argument like t,hai given for paralle1O-,

grams and triangles in Section 1-of this

:chapter'we can decide that the volume

of the triangular prism is that of

a rectangular parallelepiped whose bases

are rectangles of area twice that of the

triangular Wes., Thus it follows that the volume of the tri-
k

angular prism is B h. Now, any right prism can be decomposed

into non-overlapping triangular right prisms. We simply have to

decompose the base region into triangular regions. Then

volume of the prism is the sum

of the volumes of the triangular

prisms. For our figure

V. Bi h + B2 h+ B3 h

= (Bl B2+ 3
" h

4-
= B h: where

B B2, and B are the areas

the area of, a pentagon. Th formuj.a V = B
)

to oblique isms (pripmtthat are not, right prisms

height h i the perpendicular_slietanCe bet en th

the three base

contain the bases.

the
-7

les d B is J

lso applicable

The
i

anes which
::..
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. r

Similarly the volume of any pyramid can ile expressed as the

sum of the volumes of triangular pyramids by decpmposing the base

into triangular regions and using the vertex of .the pyramid as the'

vertex of all of the triangular pyramids., V

:Pyramids.

r 111111111111

The hexagonal pyramid of our-

drawing is expressed-as the

union of four triangular

B- C

We now seek the volume of a triangular pyraMid. The volude is

1 .7 (B h). A "proof" of the formula yses what is knowillas

Cavalierits Theorem and more mathematical apparatus than we choose

t

to use here. Rather we shall,simply.

try .to make it seem reasonable. Con-

sider lines through V parallel to tt
4->

and BA respectively. Using V,--->B,

and pdints U and W on, these lines,

here exists UVW wh ch is congruent

/ .1

to Li ABC and is in a p ane parallel to

the plf.ne of ABC.

. 18'5

C
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r'
Now prism (ABC) (UVW) can be decomposed into 3 triangular.

pyramids ABC, A..f- UVW and C AVW. 'The,base of the last of

these is not a base of the prism. It seems reasonable and can be

proved by use of Cavalierids Theorem that all three have the same

volume. Therefore pyramid V - ABC has 7 the volume of the prism,

but the prism has the same base - ABC - andthe same height as

the pyramid. Hence V
(pyramid) =

1
(B h).

Retiliing to the case of a general=pyramidTwenot-ethat the

altitudes of the triangular pyramids we get are all the same as .

the altitude of the original when we consider'them all to have

,bases in the plane of the original imse.

1 1 1
Thus V .-- -7(Bi. ,h) + -ff(B2 h) + X. + 7(Bk h)

* 1 1,....g(B1 + B2 + ... + Bk) h = 17,0 h).

.
.The formula V ..--1kB h) is the formula that-.we were seeking.3

4 .tt l'

Exercises 10-3 ,

1. Find thevolume of an oblique prism whose base is'a (2 by 5

2.

F

-rectangle and whose perpendicular distance

Find the vOlume of a pyramid 7,hose altitud

base is a regdlar hexagonal region of sidef

regular if all its side's are congruent anda.
are congruent.

it

iG
/

186'

between faces is 12.

is,8 and whoie

2 ". A hexagon ,is

all :its anglas j

1.

_ _ _



3. 'Find the volume of a right prism whose-height is 10 and whose

base is pentagonal as in-the figure:

4

\

Find the'` volume of a Pyramid whose height is 6, whose base

a parallelogram as in the figure.
4

Draw figures illustrating problems (1.) thtough (4).

A .
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Chapter 11

C'ir'cles, Cylinders and Cones'

- 7

1. Terminology:

For the first part tf this chapter we deal with sets in the

plane. the final part we shall deal with cylinders and canes

in space.

'Let C :be a paint and let r be a'nuMber. Then the 'circle

with centerat'C and radius r is the -set of all points (of the

plane) at a distance r .from C.

Let ,e be any line which con-

4.

tains C. On R there are twbi
40

rays with endpoint at C. On

each of these there'is exactly.

one point of the circle, for on

each there is exactly one point

at distance r from 'C. Any

find through C, ttleref ,

I

contains' exactly two points of the circle.
1 .

We usually draw a (representation of a)Pcircle by pee 'of a

compass. -We draw to circle in such a way thalk it fits our de-

scription .of a simple closed curve. We start drawing and without'

lifting the pencil draw until we return to the point we started

4
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. '

with. Except for he first point we cover each point only once.

Thus a 'circle 1,_ an example of a simple closed curve. We can, in
-$

th-e.,-case of ,a 9ircle, say exaaiiiiitiit we Meari.by its interior and
..

.. .

by its eXterior:
i

The interior of the circle with center C and radius- r is
1'

the set of all points at a
i

.distance less than' r from Z: The, I
)

exteridor is the set of all points at'a distance greater than r

11.2

4-,

from C. j

A circle is a curve. It is not the curve together with its
o

interior. A circle has a center (exactlytone,centek, in fact)
.

and a radius. Thdcenter Is a point but the radius (as we:have

used it) is a number (or length in some contexts).. Sometimes

the term radius is also 'used to denote a segment having o

0 point at the
e
centei of/ the circle and having the other endpoint on

the circle. In traditional terminology the term'"radius" is used
%

in both these senses. Little confusion' results fqom 'this itit is

usually clear which sense eAnt. We, too, shall use the term

radius with both meanings.

I 1 'L4t us n9,1 prove that,,a arc cannot have twocenters. *

Suppose C1 and C2 were distinct points and wererV, oth.centers

of ,the circle. The line 4:1L6'imust intersect the ciec.ie.X two
--;v.

points. Call them P and Q as in the figure with qt Oween

r,
Q and C2

as in the figure. v.

.!.t4

r,

.

I

f189-
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Now QC1 = C1P as Ci isa,center

of the circle, and QC2= C2P, as

C2 is a *nter of titp circle.

1so QC1<, Qp2 .

Thus we 'have CP = QC

QC < QC
1 2

QC C P
2

=
2

Therefore, CiP'< CO) but, froin the order of the points on the

line, C1P >C2P. We have a contradiction. Hence a circle can

have at most one center.

Let us consider another basic property of circles. Let

D-15e d circle. If A is in the interior of D1 and

the exterior then Tlri D1 is

prove this property. -However,

earlier observations about the

closed curie. The segment AB

exactly one point. We do not

let us note that it agrees with our

interior and exterior of any.simple

'is a polygonal path from A to B

and hence must, intersect the simple closed curve.

B

A tanglat to a circle is a line that intersects the circle in

exactly one point. It follows from our oliservation above about

rays that a,tangent to a circle cannot contain a point of "the .

inttrior of he circ e

190
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We state one of the standard fundamental properties about

0
circles and tangents.

Property 1: If D is a circle with center C and re is

tangent to D at point X, then 417e is perpendicular to ne...

Proof: There is a line) through C 'perpendicular to B

Let Y be the intersection of

AB and this line. 8uppo;e

/e.is not X. Now LCYX is a

right angle. The sum of the

measures of the angles` of

t CXY is equal to 180: There-
,

'* Tore m(LCXY) < 90. Hence

-----m(Z.G.X-1/)--4--m(LCYX). The side k,
B

opposite the .arger angle is longer than that opposite "the smaller

angle. Therefore CX > CY and hence Y must,be in the interior
"Vora

of D fdr CX is the radius. But, as we have observed, a

tangeritsto a circle cannot contain a point in the interior.of the

circle. Therefore our assumption that Y is not X is false...

.Y must be X, is *U";' and thus X> is perpendicular to AB..

Exercises 11-1

1. Prove that a 1 ne cannot intersect a circle-in a set consist- 4,

ing of three or more points.

4,

191
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2. A chord of a circle is a segment

(the circle.

the circle

the chord and

chord.

3'. Prove that if

ose endpoints are points of

Consider a chord that doesopt contain the center

Prove that the line containing:the midpoint of

the center of the circle is perpendicular tothe

.

D and E .are distinct circles then Dr1E

cannot bea set consisting of three or more points.

2. Arc Measure and Length.

Consider a circl,e'wfth

center C.IVt. TA be a'

Por oonvegience we ,

tialhk of 4or as horizontal

with' A to the right of 'C.

Let E be e-a

---->
not on CA.

A
pointno on

venience let

*--*
point of CA

1

Let B be a

CA. Fop con-

us take B

above the line CA. Now in

!ChapterN6 we sa that AtRI

family of a11= r ys with endpoint

the B-side of

to 180. ,We .ca

points

225

.0 +45
g-o

80 +90

at C and contain soinb

A could be coordinatiz- ed using numbs. from
.4. .

led, our unit a degree. For those, pays which contait

choose to coordinatize them~

.

on

on the'non7B-side of C
4-A -*

we

192
t
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11.6

//by adding 180 to,their degree coordinates which one would get

by starting with Ur as the reference (or zero) ray. The,ray

is considered asihavirig two alternative coordinates--0 or 360.

The ray n4.is'the 180 (degree) ray.

This coordinatization of the family of all'rays 14ith endpoinrt.

at C induces a coordinatizatlion of the set pf points of the

circle. Each point of the:cirOle is identified with the
u

coordinate of the ray containing ft.

Suppose P and Q are any

two points of a.cfrcl.g. The set

-0pA)-separates the circle into

two sets. he union of either of

these and Q} is called* an

arc of the circle. The symbol

PXQ is used to denote the a'c

which contains X and has.end-
.

points P and Q. Note'that
,

PXQUPYQ is the circle of ,the

figure above.

We can now define what we mean by the degree measure Of an

arc. We may consider the circle to be coordinat,5.2r6.6\as above.

/N
Case I: ,If PYQ does not contain the point with zero1

coordinate then the degree measure of PYQ is

e4k.positive difference in the coordinates of

P and Q.

c

1 C13_
.

<,
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11.7

Case II: If PYQ does contain the point with zero

coordinate and neliher P nor Q is such

point then.the-degree measure of, GI is

360. minus the positive difference in the

coordingtes of, P and Q.

Case III: If P or Q is the point with zero co- .

ordinate and the arc PYQ doe's not contain

other points with coordinates close to 360

then the degree measure of PYQ is the

positive difference in thecoordinates.of a.

P and Q With zero as the coordinate of

'P or Q,.

Case TV:, -if P' or Qt is the point with zero co-
.

ordinate amd the arc R does not contain

other points with coordinates c'tbse to zero(
then the degree measure of PYQ is the

positfVe,differpnce in the coordinates of

o

P and Q with 360 as the coordinate of

P or Q:* t'

,

The degree measure of an arc is not the "length" of the arc.

Rather it,is the measure of the amount of "turning" of the arcf

The closer the arc is to a whole circle, the closer the degree

measure is to 360,

194
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An arc of a circle With degrele measure less than 180

'determines an angle whose' vertex is the centei, of the circle and

whose rays contain the endpoints of the arc.' We call such angle
- . 1

a central angle. ,The measure of the central, angle is the degree

measure of the arc determining it For_some purposes, it is

convenient to think of any rc of a circle as determining a

"central angle" whose 41easure is the degree measure of the arc.

This allows "central angles" to have degree .measures anywhere from ,

0 to 360.

,Length. Intuitively we know that a ci,role must have length.

We can Wrap a string aPound a circular object and then measure it.

We. can mark a laoltu,t on a bicycle wheel tire at contact with the

0 groUnd and note the length of the path made, by rolling the wheel

until the marked point returns to contact with the - ground.

gxperimentally, the answer comes-out to be somewhat more than 6

times the radius (ig., 274. Sometimes'the length of a circle

iscalled its circumference.

'Noy, mathematically, if we

,want to measure'ine length of a

circle we can think about doing

it in the, f011oWing way. Start-
.

, ing from a point' P on the circle
I

&lay off the radius in straight

line segmente'lpix.times. Then the

so'

195
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central angle subtended (determined) by,each chord is a 60 degree

angle for we have equilateral triangles formed. )Hence we would

have inscribed a hexagon in the,Circle. The hexagon is called

regular in that all of its sides are congruent and all bf.ita

angles are congruent. It seems clear then that the length of the

(
circle is greater than six times the radius. But the number .6r

can be considered as an approximation to.othe length of the.

circle. Now we'can bisect each of the 6 central angles (by find-,

ing the midpoints of the chords if we wish) and determine 6 more'

pointS'on the circle. `Using the originc41 6 and the 6 additional

ones we could construct a regular 12-sided polygon. Its length

(perimeter) could_be computed Or measured) and we should have a

better.approxiMation for the length of the circle. The process

can be continued to produce a regular 24-sided,polygon, then a

'regular 48-sided one, ete. At each stage the length of the
SW.

polygon is less than that of the circle but close to it. The'

length of the circle is the, least numbers which exceeds the

lengths of all the inscribed polygons so'obtained. The ratio of

this least number to 2r. (twice the radius) is called 7r. .Thus the

length of the circle is 2m. It 'can be, established' that

7r=3.141592 . As .we ilaVe been led to expect, 2 Iris

somewhat more than 6

9 6
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The number, Tr, exi is in the nature, of things. Nobody has
4

any control over its va ue. We can think of it as being bracketed,

between successive who e numbers, then tenths, then hundredths,

etc. Thus

3< Tr < 4

3.1 < Tr < 3.2'

3.14 < Tr < 3.15
,

00 3.141 < Tr < 3.142

0 etc:

It turns oilt that tie decimal expansion for T( is not a repeati

decimal expansion i.e., Tr is mot. a, rational number. Sometim s

the rational num er
22

is used as an approximation for ir.
7

However, 22 is not Tr , it is simply close to ir. We mi t
7

write 7 22

7
Computations °fir to over 10,000/deci 1 places

4
have been ;made 4.n recent years'.

If a circl has length, then arcs of the circle s oulq. also

0 have length. degree measure)of an arc is a certa n number

between 0 and 60. In a sense, 360 is the degree me sure of a

. circle. Because congruent ares should have equal 1 ngth's a

becelirse two arcs of .the same degree - measure and on th

are congruent, we can say that

J

length .9.1c)

length (circle) =
de

ame clicle

e measure Earc)
gree asure circle),

1 9 7
..e.

0

O

0



In other words

degree measure (arc)length (arc) 27r.
asolw 360

Thus, for,:example, the' lengW9f a semi-circle s

1 27rr or n" as our

intuition tell us olIght to
be' C-

e,

Important questions crime up with respect to how touse.Tr in

computations. The question, "What is the length of a circle of

radius 10?"thas an answer which can be written in the fOrM 0 7r.

Clearly 2A Tris a perfectly good number. It is the product 20

times 7r tgmericaly it is between 62 and 63. A decimal approki-

mation f 20,Trao'curate to 2-41ecimalplices Is 62.83. We have
.

alread learned in Chapter'( that in practical probleMs, if the

radius of a circle ls given as 10, then our convention calls for

4nias ffip4ion of precision4either to the nearest 10 units or to

, the n arest unit. ,Thus in a practical problem, any answer for he

.

lengti Of the circle which carries more than two significant.

digi s is really essentially unjustified. We should write the

answer as 63 or* leave it ifi the form 207E.

In
0

t1e forbula, circumference = 27r the number 2 is regar:ded

mpl tely:accurate, Tr ag completely d6curate,'and. r as

a.

.

at

.$

.
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,

being as accurate as we choose to give it. The number of

significaritdigita we use for it should not appreciably exceed
_--

the number of digits to which r is assumed accurate.
, A 4

i ,f'--there itsi a, to, get
,

students to use several decimal
4 .

,-- .,_.
s.-

places of 7T for cosptv Onal practice, then
.

specifit instructions
0 .
, .

this efrect bah

of .an absw4 should

°12,/ the measurem4nts

,But in a practical problem accuracy,

nOre-belstated or implied beyond that justified

Concerned. To do the contrary,is to give a

-
wrong answer, an answer which is-definitelydeceiving, an answer-

r
which asserts precision which is simply not there.

Exercises 11-2

22
le Write out the first fbur places of. the decimal expansion of, ,

7

Compare with the value of Tti given in the text. Thus, show

:e 22
that --- * 7r.

7

2. Draw two arcs whose degree measures are each 60 Uut.sgch that
of

one is twice the length of the other. -What can you say about
-

the radii Of the circles which contaifi these'-arcs?
a ,

:3. Using the reTlt of Exercise 3 of Section 'l, explain why an

a,re_can be ords, if
.

k i
an arc is'/determined, the circle which contains the arc is*,L. ,

determined.

4. Give examples and draw figures:illustrating dI, III,

and )V for an arc.of degree measure 60.

p

T

'199

,4.
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Find the' length of an arc of degree measure 120..rf the circle
-

,

cont`aining -the arc has radius 8:

6.' In fin isng the circumference of-A-circle whose,:nadius is

measured as indicated, what approximation should you-use for
a

a and to how many significant digits should you express the

answer? (There may be questions of; judgment in some cases.)

(a) r = 8.;

(b) = 8.0.

4
r =

/tl
(4) t = 8.021.

(e) r = 8.0214.

7.

i

From the formul,..)4.eAgth = 211r it is possible to find either-

the, length" or, : radius if the other ;is known. Also as the

'!diameter" d s twice the radius, ,knowledgeof,the diameter

or radiusjiOlds knowjedgeof the other. Find the other two

of ,F 4 if ,

7(a) .e 20.

(b) r

(c) d

7-

200



3. Area ofa Circular Region.

Consider a circle with center C and radius r. The circle

is a simple closed curve. Let M

be the closed region bounded by

the circle. In Chapter 6 we hive

stated that with respect to 'a

given unit (square) region there

1 rl

is a nu ber which represents the
1

area of M. For simplicity, we I

'sometlm s talk about the area of a L_

circle a a mean the'area of the closed,

region bounded by the circle.

Our problem is to get an expression or formula for the area

of M. e might note as a first approximation, that the area is

clearly less than, 14r2, for M is contained in a square region of

area 4r2. We wouldlguess5 probably, that the.,area

.related to the'number 7r as introduced in the previous section.

To develop the formula for the area of M we use something of a

trick. We think of expressing M

as the union of noft-overlapping

sectors all .congruent to each

other. Let us suppose that~ we

have k of them'" and _that k

is an even number. 'We gall them

Si , S2 , Sk

201
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By Properties V and VI of Chapter 6 the area of each S, is
1
k (Area M). Now th6 area of the circular region M is clearly

the area of the region represented below.

`.

This region is bbunded by a simple,closed curve. It is somewhat

. like a rectangle or a parallelogram. However, the top andbo,ttom

are not segments but unions of arcs of c4ircles.. If k is a large

even number then the region is very much like a rectangular'reiion.

The area of the regiontwhich is almost rectangular should be

appreXimatelyfthe height 'times the length of the base. For large

k, the height is almost r and the length of the "base" is 1/2
7

'

the length of the circle. Therefore the area showld be approxi-

. mate/y as indicated

Area ,1=1 r 24 2//i.).,71r2
2

For very large 'lc, the formula is very close to, being correct as

the figure is almost a rectangular region. Hence we seem justi- .

fied in concluding that Area(M)=Vr2 'since the area of re is
'1

the area of each of these odd shaped regions we have been consider-

ing.

202
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Areas and Volumes of Cylinders and Cones. A cylinder, a cone,

and a sphere are geometric oksleets in space whose descriptions

either depend on or are like that of a circle. We shall investi-

gate the sphere in Chapter 13. Here we consider the cylinder and

the cone and we restrict ourselves to right circular cylinders -'

and right circular tenet'. The definitions given here are for

pplication to mensurdtiori formulas\Somewhat different definitions

y be given in other contexts.

Consider two parallel planes which we shall regard as

horizontal. Let D1 and D2 be circles in the lolpr adane as in

the f&g..ure..11.et D1' be a circle.in the upper plane with D1'

,

direetiy above D
1

(and congruent to it). Let P be a point in

the upper plane directly above the eenter of D2 .

203
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d

The cylinder with bases D1 and D1' (or4more prec isely the

closed regions bounded by D;rid,Dis) is the union, of all

vertical segments each of which has one endpoint in A andiZthp

,other in D1'.

The cone-with base D
2
and vertex P is the union-ef all

segments each of which has one endpoint P And the other in D2.

From some points of view it ±S convenient to regaixi the

"cylinder" and the "cone" as containing the.ciroular regions which

are bases .of these sets. With the bases inclUded, then the

regions bounded by the "cone" and the "cylinder" have volume.

' A cylinder and a cone each has area called its lateral

surface area. The sum of this area and the area of its,bases4

(or base) is calAgd the total surface area of the cylinder (or

cbne). There are very close analogies between a "cylinder" and a

;, prism and between a "cone" and a pyramid. In fact, the cylinder

and the cone can be regarded as "limiting cases" of a prism and a

,pyramid respectively by regarding the base circles as "limiting

cases" of regular polyg- ons as in Section 20 Thus it is reasonable

'to conchide that the, formulas for volume, lateral surface area,

and total aurface area are like those'for prisms and pyramids.

We consider h he distance betweenhe base planes, r the

radius of tne base circle, ad..e the length of a segment from P

to D
2'

-4

204
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a

Volume (cylinder) = h(1r2) =1t \r2h

Area (latexal: surface of cylinder) = h(2tr)` = 27/Th

Area (total surface of_cylinder) = 2irrh 21r2

volume ( cone ) =

3
)=J-- 7(r2h

Area; ( lateral,surface of cone) = 1427trjA!= 7rrl.
2

'Area (total surface of conel= gr." -11- Tr r14.

It is not impdrtant to remember these foimulas as such. It'

is important to be able to think of ttif geometry of the 'situation
and

1thus
to recognize what the formulas must be.

Exercis4

1. Explain why the figure of the first part of this section, would

be like a trapeioid if k were odd.

2." In terms of the prdperties of Section 4 of Chapter 6, explain
14,

Wyjulthe atea of t1 `Al the area of the odd-shaped figure used.79q!

3. The label on an ordinary tin' can represents a cylinder (the

way we have defined it). The label may be laid flat and forms -

a rectangular region. The area of the label is the lateral 6

,surfdce area of the cylinder-A- Explain the formula from this

point of blew.
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4. An ordinary conical drinking cup represents a cone (the way we

have defined it). ,If the cup is slit tO :the vertWx, the paper

may,be'laid flat forming a oircular

region with a sector removed. The
/

area of the paper is the lateral 4

surface of the cone. Explain the

formula'for lateral - surface area

from this point of view.

5. Compare the geometric points-of-view for area and volume of

qa) a prismiand (b) a cylinder.

6. Compare the geometric pointS=of-view for area and volume of

(a) a.pyramid, and 4b) a cone.

7. Find volume, lateral surface area and total surface area of a

"cylinder" height 8" and circumference of the base 187r.

8. Find volume later surface area and total surface area of a

4

"cone" of hei 8" and radius of .the base 6". (The "slant -

height%e,op.n be, found by use--af the Pythagorean Theorem.)
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-Chapter 12,

The Coordinate Plane and Graphs :

1. The Coordinate Line and the Coordinate 'Plane.

In Chapter.6 we have'observed that a ray may be coordinatiied

with any segment as a unit. This coordinatization of the'ray
,

gives a one-to-one correspondence between the set of positiVeal

-numbers and zero and the'set of points of the ray. We correspond_ .

zero to the endpoint of the ray.

Q R

4
I 1.. 1

6 L I

P

2 - 3 II

The,cortespondence preserves order in the following sense. If

'P, Q and R are airy three points of the ray with Q betWebh P and R

then the number corresponding to Q is between the numbers corre-
,-

spoilding to P and R. The correspondence also preserves distance
.

in the following sense. If PQ 1' RS, then, of course, PQ = RS and

.further, PQ (the length of P)is the absolute value of the differ-

,ence between the coordinates of 'P and Q, In the figure, PQ is

approximately .9.. A similar statement-is true aWit RS., To "

coordinatize the whole line we coordiriaiize iiiitty EA of the line.

with Let .0 denote apoint'of AA but not of EA. Then we

'-'8-6-6-r-cTrn-attiS"E-6 with the simeAtnii 'segment.
.

Now if we think of assigning' negative values to the points

of'E-6=instead of the corresponding positive values we have the

usual coordinatization of the line. In this coordinatization

12.1
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12.2

order and "distance" are preserved as in the case of the ray. We

customarily think of coordinatizing a horizontal line with the

points with positive coordinates being to the right of the zero

point. N9w by thinking of the line we
C B
-. i 1 i I

-3 -2 -I 0 I 2 3 / 4.

can easily tell what we mean by the statement a < b. We say a

is less than b or (a < b) if the point whose coordinate is a

is to the left of the point whose coordinate is b. For example,

- 2 < 16

-2 < 1

-2 < 0

- 2 < -1

-5 < -2
% (fp:

We also ay that b is greater than a or (b > a) if the point?
%

corresponding to ,b is to the right of the point 'corresponding

to a. We use the symbol "'>" to mean "greateD than or nual to."

, Note that c > d means geometrically that lithe point whose co:

ordinate is c is not to the left of tlie point whose coordinate

is d.

Having in min1She principles of c ordinatizatfOn of the line

we can now easily coordinatize the plan . Think of two perpendi-

cular lines, ,Qonsider one as horizont ,;414e call the point of

intersection of the two lines the orig n and label it by 0 ,(oh).
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Y
-3

-2

-3 -2 -I 0 I 2 3 X

--3
Coordipatize the horizontal line with positive coordinates to the

right and the vertical line with positive coordinates upward. We

customarily use the same unit for both lines. We call thetwo

coordinate lines the axes, calling the horizontal One'the x-axis

and the vertical one the y-axis. We may label the ales with our

scale and put the letters and y as indicated to the'right and up.
I ,

lrNow to coordinatize the plane we think of ordered ,(or sensed)

pairs of numbers. The "ordered" means that in general (a,b).is
'

not the, same as (b,a). Each ordered pair (a,b) is to correspond

to one point of the plane add each point to one ordered pair of

numbers. We set up the one-to-one correspondence as follows.

Y
-3

-2 P.

1 1 1
I

----* / -3' -2 0 I 2 3, .X

t --I X- COORDINATE OF P IS 2-2

--2 Y- COORDINATE OF IS IL5
.4

--3

..269



p.

12.4

For point P of the plane, the coordinate on the x-axis of the

foot of th,e perpendicular from P to the x-axis is called the

x-coordinate of P. Similarly the coordinate on the y-axis of the

foot of the perpendicular from P to the y-axis is dalled the

y-coordinate of point P. We write the x-coordinate as the

first number of the ordered pair, the y-coordinate as the second.

Note that they-co rdinate of any point on the x-axis is zero.

What is the k-coor inate of any point on the y-axis? The

coordinatization We'have described clear,ly gives us a

one. -to -one corresp ndence of the,type we seek. Given the axes,

for any point ther

for any ordered pa

the exercises we d

is a unique ordered, pair of real numbers,, and

r'of real numbers there is a unique point. In

velop this aspect further.

The union of the axes separates the plane into 4 sets of

points. Any one rbf these, together with its boundary, is called

a quadrant.' W designate the upper right hand-quadrant as the

first quadrant, the upper left as the second, the lower left as

the third andithe lower right as the fourth.

Having the concept of a coordinate plane we now can state

exactly what is meant by saying that any figure in the plane c

be freely_moved'WithoU/t changing its,eize or shape.,
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Let H be a.certain set of points In the figure H ia\the

12.5

closed region bounded by the simple

Al ,4AAim
4,0r4#7,4

closed curve.
(2,1)

Suppose we are given any point P and any two points Ql and Q2 such

that PQ, PQ2 . 1 and such that PQ1 is perpendicular to .

Then coordinate axes exist with P as the origin, Qi the point (1,0)

and Q2 the point (0,1). (We do not have further control over

positive directions.)

\P/
/t, Q

\ 2

\/ -
(2,1)/ , YI\

\
11"

.
/ X

Now let HI be the set of all points whol7 coordinates with respect

to the xt and yt axes are the coordinates of a point H with

e label the axes as the xt`

and yt axes (the,x7prime

aid y-prime axes).

xespect to the x and y coordinate axes. For example, the point

(2,1) (with respect to x and y) is a poi t*Of The4-diht (2,1)

(with respect to xt and yt) is required sa.be.,apoint of H. It

will be true that Ht is congruent to H. e haves "freely moyed" H

to Ht becatse we have -been able to choose the point P and the

4

9 1 1
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pAnts.Q1 and freely subject only tab the restriction that
44. ,.

PQ1 PQ2 1 d PQ, is perpendidular to PQ2. Note thatbecause

PQ1 = PQ2 = 1, w are saying that the unit distance in the

xtyA,plane is*the same as the unit distance in the xy-plane.

Thus distanCes'wil be preserved.

t.'
O

. Exercises 12-1

1. Draw a pair of p peridicular lines. Call the intersection

the point 0 and la off common'scales on the two axes. .

Plot the points wh se coordinates are (-2,3), (4, ), 4,0),

(0,-3) and (-7r,-70. ould be clear from a plAting

process that a unique point is determi by any particular

ordered pair of nutbers. ~ Q

2. In the figure to the ri ht
2

what are the coordinat

P, Q, R, S, and T? What

are the coordinates of 0,? 4 0 I 2 X

-R(We will have to estimate'

coordinates that are not

clearly whole numbers).

3. (a) The IV
th quadrant is the set of all points (a,b) ror

which a > 0 and b ? O.

(1?) Make similar stategehts about, ehe

quadrants.

-?12
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4., (a) What is the set of all

-(b) What is the set of all

ti

than or equal to zero?

5. (a) What is the set o all

to 0?

points with x- coordinate negative?

points with y- coordinate greater

'points with x-coordinate equal

(b) What, is the set of all points with x and y-coordinate;

both zero ?`

(q) What is the set of all points with at least one coordi-

nate zero?

2. Graphs of Algebr'aic Statements or Sentences.

Consider any statement about a number x and a number y.

Eiamples of such statements are x + y = 10,,x > y, x = 2

(this qualifies as such a statement because it says that x is 2

and specifically does not restrict y), y > -1, y = 3 + 2x and

y = x2 . Frequently, but not always, the statement is an equation

or an inequality. We call such a statement an algebraic statement

Out x and y. a- 1

Definition: The graph, of an algebraic statementabout x and

y is the set of all points-(in the plane) whOse-coordinates make

th5.statement true (satisfy the statement):

This is .a very important definition. It is the key relation =,.

ship between algebra and geometry (between algebraic statements

213
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/

or .sentences and sets (4 points). The,ormulatiqn ann cultivation

of the point of view leading to.this relationship between algebra 1

'and geometry is credited to the French philosopher and mathema-

tician, Rene Descartes. It it probably one of the most signifir

-tant scientific contributions ever made. Today 1de still speak of

rectangular coordinates (as in Section 1) as Cartesian coordinates

There are three main types of problems about graphs.

(1) Given an algebraic statement what can be said about

its graph?

(2) Given an algebraic statement, draw its graph.

(3) Given a set of points, what is an algebraic statement

.

Ne can give answers to these questions in many simple cases.

In answering the ,question as to what can be said about-the

'graph of an algebraic, statement we desire an answer in set

langtmge; i.e.-, a description of a 'set of points.. In (2) we

desire an actual picture or drawing of the graph where possible.

Note that there are two considerations in'deciding whether ,a

particular set M of points is the graph of an al statement.

(a) Do the coordingtes Of every point in the ke the

algebraic statement true?

(b) Is every point whose-coordinates make the algebraic

statement true in the particular set M pf points?

Let us consider a few elementary examples.

O
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.(1) x 0. The graph is, by definition, the set of all

points for which x is positive. This Will be the set of all

points to the right of the y-axis.

(i): Any point to the right of t}e y-axis has the

property that its x'- coordinate Ls positive.

(b) Any point whose x-coordinate is positive must-
_

be to the right of the y-axis.

Y

V <1-

(2) y = 2. The graph is, by definition, the'set of all

points for which y =.2.

The graph is the line two units above the x-axis. *Let'

us see why.

2
(a) Every point of that Eine'

has the property that y . 2. I

(b) Every point whose y- coordinate .

)
4

o
t

-X

ka2 (which makes y = 2 a, true

statement) is on that. line.

(3) x < 0 and y,='0. The graph,of this statement is, by

definion: the set of all points for which x is negative and y

is zero. Let.us see what the graph must be..

.

21,5"
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The set of points for-,which x is less thb:p zero is the set

of all pointsto the left of the y-axis. Call this set H. The

set.of pointg for,which y = 0 is the x-axis. Call this set K.

The graph we seek is the set 'of all points which-are in H and

are also in K; i.e., the set of points of HilK. This set is

clearly the set of points of the x-axis which are to the left of,
o

the y-axis. thus we have described the graph for

(a) Every point in this set (H(1K) has, coordinates

satisfying thd algebraic statement and

(b) Every point Whose coordinates satisfy the statement

is in thig set (H(1K).
Y

0 X

(4) x = a, for a any particular real ,number. Examples

arc -lx w, x = 6 -yrf, etc.

Any point P whose coordinates make the statement x = a

true is a point whose coordinates are of the form (a,y).

Graphically, it 1s a point whose projection on the x-axis is the

point of the axis whose-x-coordinate is a. Therefore the graph
,

we,seek is the set of all points on the line perpendicular to i

1

the x-axis,and "a" units away fro the y-axis. If a > 0, the, line
.

-44
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is to'the right of the -y-axis. If a < 0, it is to the left of

thethe y-axis. If a
.

.-0, it is the y-axis.
\.

-
(5) y = b for b any paricular real number.

,

From reasoning like that above, the graph must be a horizontal

line, b units from the x-axis, above, on, or below aS b is

positive, zero, or negative respectively.

$

Y

Exercises 12-2

Graph the following algebraic statements:
c

1.- x

2. y = xs

3. x.- Tandy =21
.4. x -1 or y . 2

5 x > 0

6. y < 2 and x 0

7. x y = 0

8. x

217
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Give algebraic statement'S of which the following-are

descriptions of their graphs.

9.* The'set of points to the of the .y -axis.

10. The set'of. pants not in the union of the II, III, and IVth

.quadrants.'

11. The origin.'

7,

3. Graphing TechniqueS.
.

The traditional elementary way to graph an, algebraic stater

ment which is an eqUation has been to "plot points". -Consider the

equation y' = 1 + x2 , for instance. We would Mmpile a table as

A follows: 7
When x = 0 then y = 1. + 0 = 1

2 wtien x = 1 then y. = .1 + 12 = 2
2

l 5 when x= 2 then
r
Y . 1+ 22 = 5

4 etc.

Then e would graph the points (0;1),(1,2) and (2,5) and possibly

some others and "guess". at what other points might be on the

graph. Th easy examples (lie thelabaVe) we were usually right.

Tut certainly-the "point plottihg" method leaves much to be de-

sired. It Wes not answer -our fundamental questions (a) and .(b)

of the preceding section about the graph.

3

218
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Consider the-epluatiavvy. 6.

Let ua plot points. For x AA:doesn't

for x = 1, y= 6

for x = 2, 2y.6'

Y = 3

X y
1 b
2 3
3 2
6 1

=2 . -3
-etc.

Y_

. -

work _

1.X

We plot the five points whose coordinates. are givenabove. NOW

how do we draw the graph? It is not easy or obvious simply from

these considerations. o

So let us stareOver again and try4o collect information

which will let us be reasonably sure that what we will draw will

look like the graph ought to look. We seek answers to some or all

of the following 4uestions. The answers themselves are not im-

,

portant. It'is,the use to'which we put tha answers that is
.

important. In a given prOblem, we answer the "easy" questions,.

first and see if we then have, enough information to help us

graph the equation...
_

.(1)- Is the .equation (or statement) oa type for which we

already know what the graph must be? If so, graph it and use the

other' qdestions only as a check. For instance, if the equation

is x = 3 we,kpow what the graph must be. It is the vertical line

units,to the right of the y-axis.

219

4Zte



12.14
I

' (2') For wheUt -lialued-of -x is there a corresponding value of

y? (What is theiset of all numbers."a" for which the graph con-

tains a wiih first-coordinate "a"?)

Consider yI= 3 + 2x donsiaer_x

41.nthis equationf it is clear that In this equation, itii

for any value of x there will be a clear that if x = 0 then

corresponding value of y. We can there is no corresponding

see this by just looking at the valu'e of y. If x 0 then

equation. Think of substituting there is a corresponding°

k a number for x; then y is 3 plus value,ofy (for we caii/then,

twice that number. solve for y).

What do these observations mean graphically? They mean that'for

any Olue of x for which there is at least one corresponding
. ,

value ory, there will be at least one point of the graph on the

vertical line determined by that value of x. By the same token,

if there is no corresponding value of y for a particular value

of x, then the graph can not contain any point on such vertical

line.,

Consider y = 3 + 2x.

Tire graph contain-Mt least one

point on each 'vertical line.

Consider xy = 6
1.1

The graph contains r point

on the y -ails (the line

41* x = 0).. The graph contains

at least one pointon each

other vertical line.

(2') The same as (2), but with.the roles of x and y re-

versed.

220
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(3) For a given value of x, how many corresponding values

of y are there?

r In both of our examples, there was never more than one

corresponding value of y for any value of x.. Graphically, this

means, for our examples, that neither graph contains two points

on any vertical line. (An equation like y2 x
2 + 1 would haVe

two points on each vertical line. For x = 0, for instance, y

could lie 'either +1 or -1.)

(3!) The same as (3) but with the roles of x and y reversed.

(4) For what values of x is y > 0? is y < 0? For what

Values of y is x > 0? is x < 0?

Consider y = 3 + 2x.

y > 0 whenever 3 + 2x > 0,

or 2x > -3

or x > - 3

y <0 whenever x < - 3

This means that the graph is

above the x-axis for x > -

and is below the x-axis for

3
<

221

Consider xy = 6

y.> 0 whenever x > 0

y < b whenever x < 0.

This means that the graph is

co ained in quadrants I and
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(5) If relevant, how large is y if x is a rarge number?

-H8w large is x Xf y is a large number?

Consider y = 3 +'2x.

If x is large, y is large, it is

3 plus twice x.

If y is large, x must also be

large (about half as large as

1Y).

Consider 'xy = 6.

If 'x is large, y must t-be sma11,

in ract,close to zero.

If y is large, x must be close

to zero. For instance, if

6x = 100,1y = 100')

Having collected information in answering some or all, of:

these questions, we then have the problem of actually graphing

the equation consistent with what we have learned.
. .

Finally in actually doing

some points. Then we draw the

basis of the other information

the graphing, we usually dg plot

graph- through these points on the

We have gathered. Having drawn the
7 /

graph, we should then Check to see that it conforms to 'our in-*
r 4

formation.

Exercises 12-3
4

1. Using thediscusaion in the text, graph y = 3 + 2x.

2: Using the discussion ii the text, graph xy = 6.

Discuss(with respect to our 5 questions) and graph,

3. y= + x
2

4. y . '2- - x

5. y x3

6. xy = _12

222
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4. Linear Equations.

We have already noted in Section 2,that an equation like

x L'a (Or y hA a graph which is a (straight) line.

In the figdre to the left

a = 2 -f
17

and the graph of

x = . 1 is the vertical

line indicated. Similarly

= and the-graph

of y = --5 is the horizontal line indicated.3,
410

There are other equations which have graphs which are

(straight) lines, In fact any equation of the form y = mx + b

has a graph 'which ds a straight line. An example is y = 5x - 12.

From the considerations of Section-3, even without knowing that

the graph is a straight line, we can immediately conclude that

the graph must cross each vertical like exactly-once and if

m 0 it must aleO'cross each hocizontal'line exactly once.

Clearly the graph of the equation y = mx + b pS.sses_through

the point (0,b) for b = m , 0 + b and thug (0,b) satisfies the

eq at ion.ion. Also the graph hag slope m; i.e., if you increase x

by k units you increase
<
y by m k units.

,

We explain: this idea
.1.

IDS'r an example.
,- ,

1

0

-

223
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Let us consider y = 3x - 2: The point

(0, -2) is on the graph.

creased from 0 too 1, y is increased by

3. If x is incr asea from 1 to 1.1

then y is increased by 3 1

10 or '3'

A proof.that the graph of y = mx + b is actually a straight line

depends on equality of ratios of corresponding sides of similar

riangles. We 'do not give the details here.

Using the information above, we can prove that any line

mustphave an equation of the form y= mx + b' or x = a.

line is vertical an equation of the line is of the forth

the. line is not vertical then the line must intersect y-axi

at a point whose y-coordinate we will call b. The line,must

intersect the line x = 1 at a point whose.y-coordinate we call

Now d - b is the increase in y when x is increased from 0 to .1.

The line whose equation is y = (d b) x + b does pass through

two points on Our given line, namely (0,b) and (1,d). Therefore

our given line and the line whose equation is y = (d - b) x'+-b

must be identical. Hence y = (d - b) x 4- b is an equation of L

our line.

If

Thus we have shown that every line has an equation of the

form y mx ,+ b or of the fo7 x = a.

224
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Linear Equations. An equation in x and y is sai to be of

the first degree in x and y if it can` be put in the fo 111

Ax t By + C = 0 where ataeast one of the numbers A and B is not-

zero. We not,_that x = xis of this form for 1 x + O. + (--a) = 0

is equivalent to x - a = 0 and 'hence to x = a. Note that\'A 1 and

hence A O.

We also note that y = mx + b is of this form,for

( -m)x + 1 y + ( -b) = 0 is equivalreAt to -mx + y b = 0 and

hence to y =" mx + b, Note that B = 1 and hence O.,O. Thus we

have shoWn that every line is the graph of an equation of the

first degree in x and y (for every line is a graph of an equation

of the form y = mx + b or.x = a),

Let us look, t the other side of the coin. Is it true that

every equation of be first degree in x and y has a graph which

is a (straight)liho? The answer is "yes" and we proceed to

. prove the assertion\based on our earlier observations.

Consider Ax + By + C .,0 with at least one tf A and-,B not

'zero. Suppose-B 0. Then it follows iirom elementary properties

of numbers that the equations Ax + By"+ C 0

By = -Ax - C

and y = (-31)x + (4)

are equivalent. (We say that such equatiorls are equivalent if

they have the same solutions; i.e., provided that if affY ordered

pair of numbers (x,y) satisfies one equation it also must satisfy

L
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the other(s).) Ifqhe equations are equivalent they must have

the same graph. Thus if B 0 the graph Of Ax + By + C = 0 is

the graph of y = (4)x + (4) and we have already agreed that the

latter graph is a (straight) line:- (We consider (E) to be m

and (_1) to be la).

Finally weask what the situation is if B = 0. Then A ?4 0

(for at east one df A and B is not zero) and the equations

and

Ax + C = 0,

Ax = -C,

(-C)

are equivalent. But the graph of x is known to be a

vertical line. Thus the graph of Ax + By + C =0 is a line

provided at least one of A and B is not zero.

We Ball an equation of the first degree in_x and y a

linear equation,beca a its graph is a line.

Whenever an e ation is given which is equivalent to an

equation of the Corm Ax + By + C = 0 (A or B not zero) we know.

Irgraph must e a (straight) line. We can graph the equation

by finding tw points on the line and using a straight edge or

rulerittoo draw the line. (We frequently find a third point just

to check our arithmetic.)

Important Concl4s1pn."'

. Finally we can well ask what the significance of this point

of view is. It is monumental.

2 2 6
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Much of algebra is a study of linear equations.in,x and y.

4
Much of geometry is a study of (straight) lines.

When we-study either (a) propertiesof lines or sets of

llnes in geometry or (b) properties of linear equations or sets

of linear equations in algebra we are really studying both. We

can learn about linear equations by thinking about lines. We '

can learn about lines by thinking about linear equations.

ExerCises 12-4 4

1. What is the gra"'of Ax + By + C = 0 if A and B are both

zero and C p 0?1
I,

2. What is the graph of Ax + By + C = 0 If A, B, and C are

each "zero?,

3. Graph y . 2x - 1'

4. Graph ?r = (-1)x + 3

Graph 3x - .2y-. 6 0

6. Graph 2x + 4y . 1,

" a
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Chapter 13

The Sphere

1. Properties.

The ordinary mathematical abstraction,of the surface of a 1",

/..,

rouneball is called a sphere (or a "2-dimensional sphere" in

some contexts). The sphere is also used as a mathematical ab-,.

tstractiori of the surface of the earth. _The fact that the .surface

of the earth is somewhat uneven and is tho ght to be a bit

j

0

flattened at the poles is, from many s of view, not important.

It is still useful to study the sphere and to regard it as an ab-
c-

Straction of the surface of our earth. A sphere like a circle has

a center.' In fact, given a positive number R and apoint C, the

set of all points,of space at distancet from C is called the

sphere of radius R and center C..

, Consider the intersection of a plane and a sphere. If the

intersection is not empty then it might be just one_point. In

such-cSe the sphere would be tangent to the plane. This situ

ation would be represented by a hard bald resting on a table.. The

surface of the balI'seems to have just one point in common with '*

the table top.

4
-
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If the intersection of a plane and a sphere is not empty and

contains more than one point, then it is a cia"ple. One sees an

illustration of-this by a slicing of an orange.

#There is a distinction made as to whether the plane which

intersects the sphere con4)tains the center of the sphere. If it

does, we call the intersection a great circle of the.. sphere. If

the plane does not contain the center then we call the inter7
....

section a small circle. Note that the center of the sphere is

also the center of each of the great circles of the sphere but it

is mot -the cdnte \\ of any of the'small circles of the sphere.

T

In the figure, PQT represents a small

D

rcle with center at V.

ABD represents a great Circle with center at C, the center of

the sphere.

Given any point X on the sphere, there is exactly one line

in space containing X and. the center C. This line must also-

iritersect the sphere at exactly one other point. Call it Xt.

(We read it "X- prime".) Then 'X and X' are the endpoints of a

diameter of the sphere and are called diametrically opposite

polnts.
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The north and_south poles represent diametrically opposite

points on the surface of the earth. The equator represents a -

Ere* circle. Let us note two fundamental properties of a great

circle. I

Property I. Ever/two distinct great circles on a sphere

have'a non-empty intersection and the intersection is a set of

two points which are diametrically opposite.

Proof: Each great circle is the intersection of the sphere

and a plane which cotains the center of the sphere._ The two

distinct planes which contain the great circles have the canter

of the sphere in common.' Therefore, their intersection is a line

which contains the center of the sphere. But this line which con-

tains the center of the sphere must intersect the sphere in

exactly two point's which are diametrically opposite. The inter-

section of the two great circles is iprecisely the intersection- of

the sphere, and the set which is the intersection of the two planes.

Hence,, the intersection of two distinct great circles is a set of

two points which are diametrically opposite.

Property II. If A and B are any two distinct points of a

sphere and A and B are not diametrically opposite, then there is
I ,

exactly one great circle of the sphere containing A and B.

ProorT-4,.A, and the center C of the sphere are not on the

same,straight-line (because A and B are not diametrically

opposite). Therefore, from.,ProPerty III of Chapter 5 there is a -

$

unique plane containing A, B, and C. But because this plane con-

tains C, it must intersect the sphere in a great circle and such

great dircle must contain A and B.
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If any other great circle contained A and B, the plane con-

taining that great circle would also contain C (of course) and we

would have two ,distinct planes containing A, B, and C. This is

'impossible and thus Property II is proved.

One of the interesting and important facts about Spheres is

that if A and B are two points of a sphere then the shortest path

on the sphere between A and B is the great circle path from A to B.

This fact is of great significance in navigation, both in ship

sailing routes and in'airline routes.

We may experiblentally anticipate this result by taking'a
3

globe and stretching a ,string between two points on it.

Exercises 13-1

1. (a) Make a drawing of a sphere

like that on the right.

(b) Label 4 points of the

equaator in diametrically

opposite pairs.

(c) Dot In the segments join-

ing the diametrically oP-'

posite pairs in (b).

'(d) Draw two_small circles, one Of which intersects the

equator and one of which doesn't. 'Label their centers.

'2. Draw a sphere and two great circles on the sphere showing*

their points of intersection to be. diametrically opposite.

0.0
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3.' Draw a sphere with its equator. Draw four small circles of.

the sphere each in a plane paralZoI to the plane -of the

equator.
45

4. Take a round ball or globe and stretch.a string between, two

points 6n it to check the "shortest distance" factlabout

spheres. Try this several times to help -your

5. Take an orange or an apple. and slice it to show great circles

and small circles.

6. Explain'why going due north would be the most efficient way
-

of getting to a point clue north of your starting point.

7. (a) 'Explain whygoing due ease is usually not the most

efficient way of getting to a point which is. due east

of your starting point.

(b) Describe special circumstances when it would Vd the most

efficient.

2. Coordinatilzation of the Sphere.

We have seen in Chapter 12 how we could coordinatiae the

plane.--driiiiitc4tperpendioular reference lines as the axes, we

could locate any point-by knowing the x- and y-coordinates of

the point.
4140

Hovido we 000rdinatlA the surface of the earth--a sphere?

Our ancestors set up a coordinate system. They were aided by

knowledge of the earth's rotation. The earth, of course, is
A

232
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c nsidered to rotate on an axis--the line containing the north and

south poles and the center of the earth. The set of points half- ,

way between the north and south poles andon the surface is called

the equator. It turns out that this set is h great circle. It is

reasonable to use the poles'and the equato' as reference sets in

our coordinate sy6tem. We call the great semi-circles whch have

the north and south poles as endpoints the meridians. As. each

great circle containing the poles intersects the-equator in two

diametrically opposite\points each meridian intersects the equator

in a unique point. There is a one - to-one correspondence between

the set of meridians and the Set of points of the equator. Each

point of the equator corresponds too the meridian which pntains

it. Furthermore, except.fpr the two poles, each point of the

sphere is on exactly one meridian, Thus if we coordinatize the

set of meridians we can use this coordinate to help locate the

point. Note, too, that if we coordinatize the equator we can

consider the set of meridians to be coordinatized by use of the

onetc-one correspondence of the set of points of the equator

with the set bf meridfans.

We have already seen in Chapter 1). how a circle can be
. 0 9-0

coordinatized in units of degree 4

45
measure. There are several

.11:30

options in some'details of how

we choose to,do such. We can ,

use numbers from 0.to 360 using
o

a counter-clockwise system.

233
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choose to measure from 45E

our 0 po nt both ways to 180, one

direction being positive and the

other negative (or what is'more

convenient for the equator on frf

the e4rth, one east and one wept).

We call the coordinate orthe

meridian on which a pointjles the

longitude of the pOint.

180 E
OR

ispw

90W

45W

Many years ago it was decided to call the Greenwich meridian

the zero (or prime) meridian. The Greenwich meridian is that one

which passes thtough a parti6ular point of the town of Greenwich,
.

England. The rest of the meridians are numbered east or west of

the Greenwich meridian. If we think' of looking down at the

equatot from the north pole then we woul -d, label points of the

.equator as in the figure above.

The 180th meridian runs north and

south through the PacifiC Ocean

and the e stern tip of Siberia.

It is used for;Auch of its extent

as the so- called International

GREENWICH

Date Line.i

Now to locate a point on a-sphere if we have poles and

meridians selected we need to know both what meridian the point is

S
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on and how far above or below the

equator the point is. The "natural"

way to cmeasure "distance" abb've or

lelow the equator is in terms,of arc

length( on the meridian. And this ids

what is customarily done.

The portion of a meridian from the equator to either pole is a

quarter of a circle. If"the point on the equator is identified

as the zero point on this quarter circle then the pole would be a

90 (degree) point and each other point-would-have a-coordinate

(called its latitude) between 0 and 90 and north or south as the,

pole is north-or south: The set of all points with latitude

equal to say 45 north is a small circle on thesphere. The plane

containing this circle is parallel to the plane of the equator

--hence the expression "parallels of latitude".

The north, and south poles, eqqatorNongitude and latitude

coordinatization of the sphere is used by zpathematicians in many

contexts quite apart from those related to the surface of the
2.`

earth. It Just happens to be the case.hat this system is about

as sitple, convenient, and useful as any that can be set up.
-o

One,of the interesting aspects of our coordinatization of

the sphere is that, except at the pOles,,"locally" it'is similar

to the coordinatization of a plane. What we mean'by "locally" is

that one can choose to think of only a smball'obrtion of the sphere.

Then the meridians, are like vertical lines and the parallels of

O

latitude are like horizontal lines.

235



13.9

,

Exercises 13-2
a

1. Describe the set of points of the sphere which have exactly

#

two different longitudes (as we have described it).

2. What is the set of points of the sphere each of which has.

more than two longitudes?

T-3. What is the set of points of the sphere ich have more than

one latitude?
()

4. Draw a sphere with an equator and with a meridian to represent

the Greenwich meridian. On your drawing label the following

points:

P:- (0 E, 85 N)

Q: (45 W, 10 S)

R: 0(90 W, 90 S)

S: (180 E, 0 N)

T: (25 E, 25 N)

5. Consider -a different coordinatization of the sphere,'ts

follows:

The set of meridians is to be coordinatized as before.

The parallels of latitude are to be numbered startilig

from the South pole as zero, with the north pole as 180 and

using arc length alOfti,',--mer,ldians from t4e south pole.

iiii-W;;Int of the equator wov,d have "latitude"

Every point in the northern hemisphere would have "latitUde"

greater than and less than

236
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3.' The Volume of a Spherical Ball and the Area of a Sphere.

En,this section we try to give some understanding of the

formulas for volume and surface area of a sphere. As in other

contexts the volume of:a sphere refers to the volume of the

portion (region) of space bounded by the sphere. The surface

area of the sphere is the area of the sphere itself. In terms

of practical problems, the volume can be regarded as the amount

of sand it would take to fill up a spherical ball whereas the

area can be regarded-as the amount of surface to be covered in

painting the, sphere.

We develop the volume formula, first. From it we shall get

the surface area formula4-4-Let4tA A I

think of a''gce-OWtained in the
0

interior of a cylinder which just

fits around it. Let R be the radius

of the sphere. Then the'height of

the cylinder'is 2R and the radius of

the base is R. ,Let Vs be the volume

of the,sphere and V
C the volume of

the cylinder. Thus Vs < VC and we

expect VS to be considerably less

thanIV
C' In Chapter 11, we have'developgd the;formula.

Z R

R

V = B H = (r R2) (2R) = 2r113.

Therefore the volume of the top half of the cylinder is rR3. We

seek the volume of the top half of the sphere--i.e., of the

northern hemisphere. The volume of the sphere is twice that of

the top half.

237
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Think of a plane parallel to the base of the-cylinder which

cuts through the cylinder and the sphere at a dist ce o1 h units

above the equator. Then the area of the circular region cut out

by the cylinder is rR2. The area of the cir = region cut out

by the sphere is rr2 (if r is the radius of the small circle on

the sphere). (See the triangle in the figure on the preceding

page.) But r2
h2

=
R2 by the Pythagorean Theorem. Hence

r2 h2. Therefore the area

of the ?arger circular region minus

the area of the smaller is

rR
2

- rr
2
= rR2 - r(R

2
- h

2
)
.

=
2

- rR
2

+ rh
2

rh2

The shaded region represents the
region of the plane'inside the
-cylinder and outside the sphere.

4,
Now consicietta cone (upside down) whose base is a circular

region, of radius R and whose height

is R. The area of the plane section

of thikcone h units above the vertex

is rh
2

since .the radius of the circu-

iar section at that level is h.

This means that the cross sectionirea of the part orthe cylinder

not in the sphere is exactly the cross section area of a cone as

described above. Therefore it is reasonable to believe that the

233
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top half of the cylinder minus the volume of the top

ere is exactly the volume of the inverted pone (for
.0

e sections have the correct areas). Note that

while we do not actually have a cone in the fiire with the sphere

inside the cylinder, we hav-an object (odd-shaped) whose volUMe

is he same as. the volume of the cone we have considered.

1
The volume of a cone is 7 the area Of the base times the

height., Hence the volume of the cone (Vcone) is4(rR2) R.

1
V ,7 -5trR

3
. Also Vs = Vc - 2Vcone (for we have two cones to be

considered, one for the top half and one for the bottom half of e

1the cylinder). Hence Vs 2rR 3 - 2 7 irR3
3
, which is the

usual formula.
.

This isql valid forMula for the volume of a sphere of

radius R. Now we are in a position to justify the fbrmula for

the surface area of a sphere. Suppose we wish to find the volume

of rubber in a rubber ball whidh is hollonside and which has'

only a thin rubber coating. The volume of the spherical shell is

the volume of.the outside sphere minusthe volume of the inside

sphere (the volume of the inside sphere is be volume-of the void

in the middle). Let ,r2 be the radius ckthpr'butside sphere and

r
1

lie the radius ofihe inside. Let VS.
S.

be the volume of the

spherical shell. Then

4'.4 3 ,4 3

4 I- 3 3k7 Tr kr - r,

4
. -Jr (r2 r1r2

I

s.
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This last formula follows b cause

(r2 - ri)(r22 +r1r2 + r12 ) = r2 3 - r1 3

as may be seen by multiplying the two factors on the left together.

But (r2 - r1) is simply the thickness of the, shell, i.e., the

thickness of the rubber coating. It is the outside radius minus,

the inside radius. If r2 is close to r1 (i.e., if we have a thin

,shell) thee the volume of the spherical shell would seem -to be

almost the surface area A of the outside,sphere times the thick- ,

ness of the shell.

and

(
Therefore we now have

4
Vs.s4 = 3 (r2 - ri)(r2

2
+ r1r2 + r2

2
)

Therefore

together.

° are close

,,Thus

HenC'e

V ZA. ( l ti.meanseans 4is approxi-S 2 l
mately equal to"._ 4

A ,
4 .
-xqr (r

2
+ rir2 + r

2
2)

provided r
1
and r

2 are closeS J .2

But,if r
1

and r
2 are close together, then r

2
2

and,r
'2

,1

together and r
2
2

(= r
2

. r 2) and r
1
r
2

ale close together.

,r
2
2
+ r

1
r
2
+ r1

2
3r2

2

^A

to-
S 3 ?22Y

ti 471-r
2
2

.

But r
2

is the ,radiUs-of the sphere, hence A hrr
2

and iate,

a
approximation can be made as close as we want. Thus it turns out

h 2 ,
.

that = wmr . This is the usual fqrmup. for the surface, area .

As -

sphere.
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Exercises 13.3

1. Find the volume of a spherical grapefruit whose "distance

aroundthe middle" is 1$ ".

2. Find the amount of .paint needed to paint the outside of a

spherical tank20tin diameter if one gallon of paint will

cover 400 square, feet.

'3. Find the volume of rubber needed to make 1000,hbllow rubber -

balls of outside diameter 3" if the thickneat- of the rubber

in each ball is to be .1".

as.

4. Three tennis balls just fit in a cylindrical can designed to

hold them, one above the other. Find the volume of the air

space left in a can full of three balls if the radius of a

ball is about 1.3".

,s4
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Chapter 14 ,.

Non-Metric Polyhedrons

The material of this chapter will be new to almost all people

who are studying it in this text. Most of it has been. tried (in

much its present form) in several eighth grade classes with rather

surprising success. There are a number of reasons for including

it in the eighth grade curriculum. Among these are:

1. It helps develop spatial intuition and understanding.

,2. It°emphasizes in another context the role of mathe-,

matics in reducing things to their simioleatelements.

3.. It affords other ways ot looking at objects in ttie..,

world abokus and raises fundamental questions apout

these.
0

It illustrates types of mathematical (geometric) eason-.

ing and approaches to problems.

It gives an interestihgfinsight,inio the'meahing ofd

dimension. o a C* 9.

tsA 1. Tetrahedrona and 'Simplexes. s

A geometric figure' of a certain type is called 'a tetrah drori:

A tetrahedron has four verticeswhich are points in space. The

drawings below represent tetr edrons. (AnOther form of, the woi;de

ntetrahedron0 is "tetrahedra").

14.1
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The points A, B, C, and D are.the vertices of the tetrahedron

on the left. The points p, Q, R, and S are the vertices of the

one ,on the right. The four ver ces of a tetrahedron are not in

the same plane.. The word "tetr dron" refers either tothe

surface of, the figureor to the "soltd" figure; i.e., the figure

including the'interior,in space.' From some points of view, the

distinction is not important. . Later we shall use the term "solid

tetrahedr7:yhen we mean the surface together'with the interior.

We can name a tetrahedron by ndming,its vertices. We shall

normally put parentheses around the letter's like (ABcD).or (PQRS).

, Later we shall use this notation to mean "-solid tetrahedron".

The segments n, wer, 115, BD, and 'c5 are called the edges

of the tetrahedron (ABCD): We sometimes will use theinotation
. .0

(AB) or (BA) to mean :the edge AB. What are the edges'of the

tetrahedron (PQRS)?,



14.3

N.
0

Any three vertices of a tetrahedron are the vertices of a

triangle and lie in a plane. A triangle has an interior in the

--0/plane in which its vertices lie (and in which it lies,. Let us

use (ABC) to mean the triangleIriC together4with its interior. In

other words,,(ABC) is the union, of AABC and its interior. The

sets (ABC), ABD), (ACD), and (BCD) are called the faces of the

tetrahedron (ABCD)., What are the faces of the tetrahedron (PQRS)?

You will be asked to make some models of tetrahedrons in the

exercises. In teaching, material like this to junior high school
6

students, the models are likely to be considerably important.

Prior awareness of and facility with models should increase

teaching effectiveness as well as.improve basic understandings.

The easiest type of tetrahedron of which to make a model is the

so- called regular tetrahedron. Its edges are all the same

.length. (We.introduce length or measurement here only for con-

venience in making some uniform models. This chapter deals

fundamentally with hon-metrft or "no-measurement" geometry.) On

a Piece of cardboard or stiff paper construct an equilateral tri-

angle --of side 6n, (YoU can do this with a ruler-and compass 'or

with a rulerand protractor.)

R

//

/

/,

/
\

/
/

Z.

/
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Now mark the three points that are halfway between the various

pairs of vertices. Cut out the large triangular region. Carefully

make thf'ee folds or creases along the segments joining the "half-

way" points. You may use a ruler or other straightedge to help you

make these folds. Your original triangular region now looks like

four smaller triangular regions. Bring the original three

vertices together above the center of the middle triangle. Fasten

the lAse edges together with tape or paper and paste. Ybu now

have a model of a regular tetrahedron.
-/-

How do we make a model of a tetrahedron which is not a

regular one?. Cut any triangular region out of cardboard or heavy

paper. Use this as..the.base
I

of your model. Label its vertices A,

B; and C. Cut out another triangle with one of its edges the

same length as Now, with tape, fasten these two triangles*

together along edges of equal length. Use edke (AB) for this, qr

instande. Two of the vertices of the secondtriangle are now con-

sideredllbeled A and B. Label the other vertex of the second

triangle D. Cut out a third triangular region with one edge the

length of andand another-the length of K. Do not make the angle

between these edges too large or too small. Now, with tape,;

fastenl'these edges 'of the third triangle to 7f15 and 17 so that the,
) '

three triangles fit together ih,space. The model you have icon-
,

structed'so far will look something like a conical drinking cup

if ydu hold the vertex A at the bottom. Finally Cut out a

V
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triangular region which will just fit the top, fasten it to the

top and you will have your tetrahedron.

A

Exercises 14-la

t

1. Mala cardboard or heavy paper model of a regular tetrahedron.
.11

maligybur model so that its edges are each 31ong.

2. Make a model of a tetrahedron which is not regular.

3. In making the third face of a non-regular tetrahedron,iha't

difficulties would we encounter if we madethe angle DAC too"'

large or too small?

Simplexes. A single point is pbobably the simplest object

or set of points you can think of. A set consisting of two

points -Is probably the-next most aimpirset of points in space.

But any two diffe ent points in space are on exactly one line and

are the endpoints of exactly one segment (which is a subset of

-T.
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the line). Thus, the set of two points determines two other simple,

sets in space: a line and a segment. A segmenthaslength but

does not have area. We speak of a segment or a line as being one -

/dimensional.
Either could be cohgidered as the simplest one-di-

mensional object in spabe. In this chapter we want to think

about the segment, not the line.

A set consisting of three points is tile next most simpre set

of points in space. What do three points in space determine? If

the three points are all on the same line, thore get just a part
o

of a line. We are not much better off than we were with just two

points. Let us agree, therefore, that our three points are not

to be on the same line. Thus thereis exactly one plane contain-
/

ing the three points and there is exactly one triangle with the

three points as vertices. _There is also exactly one triangular

region which together with the triangle which, bounds it, has the

three points as vertices. This mathematical object,. the triangle,

together with its interior, is what we want to think about. It

has ara and it is two-dimensional. It can be considered as the

simplest.two-dimensional object in spade.

A
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It seemsrather clear that the next most simple set of points

in space would be a set of four points. If the four points were\--.

all in one plane then the figure determined by the four points

would apparently also\be ii one plane. We want to require that

the four points are not all in any one plane. Thi; requirement

also guarantees us that no three can be on a'line. (If any three

were on a line then there would'be a plane con4ining that line

and the fourthpoint and the four points would be in the same

plane.) We have four points in space, then, not all in the same

plane. Clearly, this suggeOs a tetrahedron. The four. points in

space are the vePtices of exactly one'(solid) tetrahedron. A

solid tetrahedron has volume and it(is iihree-dimensional. Ito can

be considered as the simplest three-dimensional object in space.

Here we have four objecits each of:which may be thought,of as

the simplest of itskina. There re. remarkable similarities among

these, objects. They all ought to have name lis t sound alike and
4

remind us of their basic properties. We 'cell each of these a

simplex. We tell them Apart by labeling,,paCh with its natural,

..dimension. Thus a'set consisting of a single point is called a

11 segment is called' a 1-siMplex. A triangle together
Y

with itb-ifitei.ibr-is-called a,2-simplex. A solid tetrahedron is

called a 3-simplex. 4

248
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'Let us make up a t

A set consisting)f:

pne point

itiwo points

"three points
not all on'

, any one line

four points
not all on,

. any one plane

14.8

able to hplp us keep these ideas in order.

determines: -- which is calle4ca:

one point .(itself) 0-simplex

s segment 1-simplex

a triangle together 2-simplex
with its interior

a solid tetrahedron
(which included its
anterior)

There is another way to think about the dimension of these

sets. In this we think of the notion of betweenriess, of,a point

3-simplex

ti

4

being betWeen two other points.

.Let us start with two poihts. Consider these two points and

all points ,betweenthem. We now ha;.re a segment. 'Now take the

segment together with all points which are bdtween a.ny two

points of the segment, We,sti\11 hay" the same segment. No new.

points were obtained 'by' "taking poirAs-betwden" again.:, The.
r

I
.-prOcess of "taking pdfntS between" neededto be usedjust once,

4143, We get.a one-dimensional', et; a 1- simplex.

Next consider three Pointsnot all on the same line. Thep
, ,

let us apply our process. We take thedt pointstogether with all

'iSoihti which Are between any two, of them. , At this.stagei&Waire---
t

a "61gie but not,its interior. We apply the process again..
We take the set we afreadx-haVe (the triangle) *together with all

points which are between aid two p ints of this seta'. Welget the

44.
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.union -of the triangle and its interior. If we apply the process

'again we don't get anything new.. We need use the process just

twice. We-get a twoldimensional set, a 2-simplex.

C

first second
process process

1,

B C

Next let us consider four points not all on the same plane.

We apply the process of "taking points between" and get the union

of the edges of a tetrahedron. We apply the proceds again and -get.

.the'union of the faces. We apply,lt once more and get the solid

tetrahedron itself. We apply it again.and still get just the

solid 'tetrahedron. We,need use the process just three times. We,

get a three - dimensional set, a 3-simplex.

If we had:just one point,. the application_of the -Process

. would still leave us with just the one point. We need apply the

process zero times. We get a zero-dimensiOnal set, a 0-simplex.

(We mention this case last because'we have to understand the

process before it'oan make much sense'.)

4Finally, let us consider a 3-simplex. Look-at one of your -

o s tetr;ahedrons. It has four races and each face is a 2r

simplex. It has.six edges and each edge is a 1-simplex., It has

four vertices and each vertex is,a 0- simplex.
.

250

3

z.



14;10

1 /

Exercises alt.-lb'

1. (a) 'A 2-simplex has how.many 1-simplexes as edges?

(b) It has how many 0-simplexes as vertices?

2. A 1-simplex has hpw many 0-simplexes as.vertices?

3. Using models show, how two 3-simplexes can halre an inter-

.

X-

section which is exactly a vertex of each.

4, Using models show how two 3-simplexes can have an inter-

section which is exactly an edge of each.

5. Iri this and the next problem you are asked to do a bit of.

colOring. Mark three points not all on the same line in blue;

Color red all points which are between any two of these.

Shade green all points which are between any two Of the

'points already colored. Should there be any points which

are not colored and are between two of the colored points?

Starting with the three points, how many times did you need

to%use the-process of

finished?

6. Usb.your-moder-df a'n

points.between" before you were

Color its

r

°;"--

on-regular, tetrahedrOn.,

vertices blue. Color red the set of all points each of which

is between two,.10 the ertices. Color green the set of all

_

tpoints each of which iS between

1

T the red or' blue:

'coloredpoints. You should'now have your model colored.

What is-the set'Of all 'points which eitheriare colored or

'are between two of your colored points?
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2. Polyhedrons.
-

Models of Cubes. Most of you 'know that if' you want:to make

an ordinary box you need six rectangular faces for it. They have

tofit and you-have to put them together right. There is a

rattier easy way to make a model of a cube.

Draw six square on heavy paper or cardboard asAll the

drawing above. Cut around the boundary of your figure and fold

(or crease) along the dotted lines. Use cellulose tape or paste

to fasten,it together. If you are ,going io'udespaste it will-be

necessary to have flap's -as indicated in the drawing. below.

You will be asked to make two models of-a-cube in. the

exercises.
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,Can-the surface of a cube be regarded as the union cof'

2-simplexes (that is, of triangles togetnUr,;with their interiors)? f

Can a solid cube be regarded as the union of 3- simplexes (that is
A

of solid tetrahedrons)? The answer to bot1t of these questions is

"yes". We.shall explain one way of thidking about these. questidns.

Each face of a cube can be considereA to,be the union of two

2-simplexes. The drawing oh the left befoW shows a cube with

three of its faces subdivided' into two ?- simplexes each. The face ,

ABCD appears as the union of (ABC) andi(ACD) for example. The

other faces Whic4,...efe indicated as subdivided are CDEF and ADEH.

We can think of each of the other faies as the union of two
/

2-simplexes. Thus the surface of the cube can be thought of as

the union of twelve 2-simplexes,
/

A

With the surface regarded as the. unlon_of 2- simplexes we

may regard the solid cube as the union of 3-simplexes (solid

tetrahedrons) as follows. Let P be any point in the interior of
,

the cube. For any 2-simplex on the surface, (ABC), for example,
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(PABC) is a 3-simplex. In the figure on the right above, P id

indicated as inside the cube. The 1-simplexes (PA), (PB), and

(PC) would also be inside the cube. Thus with twelve 2-simplexes
,N

on'the surface, we would have twelve 3-simplexes whose union would

be the cube. The solid ,cube is the union of 3-simplexes in this

nice way.

Now we ask another question: Do, you suppose that a 3-simplex

can be regarded as the union or a certain (finite) number of

solid cubes? Can we'find solid cubeS that will fit together to

fill up a 3-simplex? The answer to these questions is no.

Suppose cubes could be fitted together to fill up a 3a-simplex.

Then any face of the 3-simplex would be filled up by square

.regions which are faces of the cubes: The square regions have

right.angles at their vertices. Any face of a 3-simplex is tri-

angular. At least two of the angles ofoa triangle must be less
f

than a right angle. 'Therefore the-square regions cannot fit.-'A
40

3- simplex cannot be a finite union pt cubed.

op

/ .
. .

,

A

, Exercises 14-44.--'-'"-.7----...,,r--,,*.;50---,c1
- '`' ".'

1.' Make two-models of cubes &It of cardboard or hebNy paper.

c ,

Make them with each h7edge 0,190g.

2. On one of youFmodels, without adding any other vertices,

draw segments to express the surface of the cube as a union

of 2-simplexes. Label ali the vertiee6 on the model

254
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A, '13,: C: ,D, E, F, G, and H. 'Think of a point P in the

interior of the cube. U8ing this point and the vertices of

the 2-simplexes on the surface list the twelve 3-simplexes

whose union is the solid cube.

. On the same cube as in problem 2, mark a point in the center

of each face. (Each

in problem 2.,) Draw

cube as the union of

vertices of the cube,

should be on one4of the segments you drew

segmentS to indicate the surface of the

2-simplexes using as vortices the

and these six new points you ,have

marked. The surface is now expressed as the union of how
1

many 2- simplex's?

4. Think about a polyhedron formed by putting a square -bad

pyramid on each face of a. cube. The surface-of this new

polyhedron has how many triangular faces? Can you compare

this new polyhedron vertex,for, vertex, edge for edge, and

2- simplex for 2- simplex with the surface 6f the cube sub,.

divided into 2- simplexes as in problem 3?

Polyhedrons. Aligkhedron is the union of a finite number of

simplexe it,4oUld-be jdst one simplex, or maybe the union of

7seve'nSiMPiekei; or maybe of 7,000,000 simplexes. What we are

saying ii that it is the union of some particular number of

simplexes. In the previoUs section, we observed that a, solid cube,

a'
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for example, was the union of twelve 3-simplexes. The'figures

below represent the unions of simplexes.

The figure on the left represents a union of -P[ 1-simplex and:

a 2-simplex which does not contain the 1-simplex. It is there-
,

fore of mixed dimension. In what follows, we shall not be con.:

cerned with polyhedrons (or polyhedra) of mixed dimension. We

assume a polyhedron is the union of simplexes of the same

dimension. We shall speak of a 3-dimensional polyhedron as one

which is the union of 3-simplexes. A 2-dimensional polyhedron is

'one-which is the union of 2-simplexes. A 1-dimensional,poly-

,hedron is one which is the union of 1-simplexes. (Any finite set

of points could be thought of as a 0-dimensional polyhedron but

we won't be dealing with such here,) 4

The figure- -on the right aboi&e represents a polyhedron which

seems to be the union'of two 2'- simplexes (triangular regions) but

' they don't intersect nicely. We prefer to ,think of a polyhedron

as the union of simplexes which intersect nicely as in the middle
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igures. Just what do we mean by simplexes intersecting

elY? There is an easy explanation for it. If two simplexes

of the same dimension intersect nicely, then the intersection must

be a face, or an edge, or a vertex of each. Mathematicians would/

say that they intersect "simplicially"; i.e., in a subsimplejc of

each.

Let us look more closely at the union of simplexes which do

not intersect nicely. In the figure

on the right the 2-timplexes (DEF)
4

and (HJK) have just the point H in

common. They do not intersect nicely.
,4004111011" ;--

While H is a vertex of (Hjk), it is

not of (DEF). However, the polyhedron

which is the union of these two 2-simplexes

is also the union of three' 2-simplexes

which do' intersect nicely, namea.y, (DEH),.(DHF), and (PK).

The figure on the left

represents the union of the

,2-simplexesBC) and (PQR).

They do not intersect nicely.

Their intersection seems to be

a quadrilateral together with

its interior.f.l.
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14:17

how the same,set of points (the

same polyhedron) cane considered

to be a. finite union of 2- simplexes

which do intersect nicely. The

polyhedron is the union of the

eight 2-simplexes, (ACZ), (CZY),

(PZW), (XYZ), (WXZ), (B IX), jXYR),

and (YQR).
4.7

These examples suggest a fact about polyhedrons. If a poly-

hedron is the union of simplexes which intersect anyway at all

,then the same set of points (the same pplyhedro0 is also the

union of simplexes which intersect nicely. Except for the exer-

cises at the end of this section, we shall always deal with unions

of simplexes which intersect nicely. We will regard a polyhedron

as\lavirig associated With it a particular-set'of simplexes which

intersect. nicely and whose union it is. When we say the word.

"polyhedron", we understand the simplexes to be there.'

Isa solid cube a polyhedron, that is, is it a unioi of

3-simplexes? We have alPeady Seen that it is. Is a solid prism

a polyhedron? Is a solid square-based,pyramid? The answer to /
/

all of these questions _'is yes. In fact, any solid objects each/'

of whose faces is flat (that is, whose surface does not contain

.7

2 58
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any curved portion) is a 1=dimendional polyhedron.

pressed as the union
\\

af 3-simplexes.

ti

It can be.ex-,

As examples let us look at a, solid pyramid and a prism with .

a triangular base.

In the figure on the left the solid pyramid is the union of
0

the two 3-simplexes (ABCE) and (ACDE). The figure in the middle'

represents a solid prism with 'a triangular base. The'prism has

three rectangular faces. Its bases Ape (PQR) and (XYZ). Here we

see how it may be expressed as the union of eiht 3- simplexes

We use the same device we used for the solid cube. First we

think e
4
bout the surface as the union of 2-simplexes. We already

have the bases as 2-simplexes. Then we think of each rectangular

faCe as the union of two 2-,simplexes..'In the figure'on the right

above the face MRQls indicated as the union of (YZQ), and (QRZ),
kaN

for instance. Now think
,
about a-point'F in the interior of the -

prism. The 3-simplex .(PQRZ) is one of eight 3-Simplexes each with
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with F as a vertex and whose union'is the solid prism. In the

exercises you will be asked to name the ot er seven.

Final how do we express a solid prfsms v7 h a non-triangular

base as a 3-dimensional polyhedron (that is, as a union of

3-simplexes with nice intersections)? We use a little trick. We

first express the base as a union of 2-simplexes and therefore

the solid prism as a union of triangular solid prisms. And we

an then express each triangular solid prism ab the union, of eight

3-simplexes. We can do this in such a way that all the simpkr

intersect nicely.

There is a moral to our story here. To do a harder-looking

problem, we first try to break it up into alot of easy problems

each of which we already knot how to do (or at least are sae to

do).

it

:'=,EXercises 14-.2b

1. Draw two 2-simplex6s whose intersection is one point and

w.

I (a) is a vertex of ekch.

(b) is a vertex of one but not of the other.

2. Draw ihiree 2- simplexes which intersectanicely and whose union
r

is itself a 2-simplex. (Hint: start with a 27simplex'as the

union and subdivide it.)

.0

I I

O

e'

-- cy
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3. You are asked to dr0-var us 2-dimensional polyhedrons each

as the union of -sic 2-simplexes. Draw one such that

No. to of the 2-simplexes intersect.

(b) There is one point common to all the 2-simplexes but

.no other point is common'to any pair.

- (c) The polyhedron is a square together with its interior.'

4. The figure on the right represents

-/
a polyhedron as the union of '

2-simplexes without nice inter-

, sections. Draw-a similar figure

yourself.and then draw in three

segments to make the polyhedron

the union of 2-simplexes which

intersect nicely.

5.- The 2-dimensional figure on the

right can .be expressed as a. union

of simplexes with nice inter-
4

sections in many 'ways. Draw a

-similar figure yourself.

A

B

H F

(a) By drawing segments eXpreSS it as the union of six

E

.?

2-simplexes without using more vertices.

(b) By adding one vertex near the middle (in another drawing
.,.

. , .,

of the figure), express the polyhedron as
.

the union of

eight 2-simplexes all having the point in the middle

as One Vertex.
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6. .(a) List eight 2- simplexes whose

union, is the surface of the

triangular prism on the right.

(The figure is like, that used

earlier.)

4(b) Regarding F, as a point in the

,interior of the prism list eight

3-simplexes (each .containing F)

whose union is the solid prism.

(c) The triangular prism PQRXYZ is also
/,

3- simplexes which intersect nicely. Name such you can.

the union of three

AMMO
3. Polyhedrons of Special Dimensiori

One-Dimensional Polyhedrons. A 1-dimensional polyhedron is

the union of a certain number of 1-simplexes (segments). A

1-dimensional polyhedron, may be Contained.in a plane ;or, it may.

not be'. Look at a model of a tetrahedron. The union of the

edges i1 a 1-dimensional polyhedron. It'is the union of,six

1-simplexes anddoes not lie iri a plane.. Wemay think of the

figures below as representing 1-dimensional polyhedrons that do

lie in a plane (the plane ,of tDe page).

o
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where are two types of 1- dimensional polyhedrons which are

of special interest. A polygonal path is P. 1- dimensional poly-

hedron in which the 1-simplexes can be, considered to be arranged

in order as follows. There is a first one and there is a last

one. Each other 1-simplex of the polygonal patiyi hap one vertex

in common with the l-simplex which precedes it and one vertex in

common with the 1-simplex which follows it. There are no extra

iniersections.,.The first and last vertices (points)
e
of the poly-

gonal path are calledthe endpoints.

Neither of the 1-dimensional-polyhedrons in the figures

above is a polygonal path. But each contains many polygonal paths.

The union of (AB), (BC), (CD), G) and (GH) is a polygonal path

from A to H. The union off' (JD) and (DE) is a polygonal path from

J to E and consists of 'just two 1-simplexes.

In the drawing on the right of a

tetrahedron, the union of (PQ), (Q11),,

and (RS)' is a polygonal path friom P to

$ (with endpoints P and S). The

1- simplex (PS) is itself a. polygonal

path from P.to S. Consider the.

1-dimensional Polyhedron which is the

union of the edges of the tetrahedron.

:Find three other polygonal paths from

P.to Sin it. (Use a model if it helps

,you see it.)

. 263
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The 'Union of two polygonal paths that have exactly their

endpoints -in common is called a simple closed polygon (it is also

a simple closed, curve). Another way of describing a simple closed

polygon is to say that is is a 1-dimensional polyhedron which is

in one piece and has the property that every vertex of it is in

exactly two 1-simplexes of it.
A

The 1- dimensional polyhedron on

the right is not a simple closed

°polygon. But it containexactly.

one simple cilesed polygon, namely 4.

the union of (AB), (BC), (CD),

and (DA).

The union of the edges of the cube

in the drawing on the left is a

1-dimensional polyhedr,w. It

contains many simple closed

polygons. One is the union of

(AB), (BE), (EG), and (EGA).

Another, is the union of (AB), (BC),

(CD), (DE), (EG), and (GA). Can you give at least 'two,pre

simple closed polygons containing (BE) and (GA)? ('Use a Model

if it helps you see it.)

264
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. There is one very easy relationship on any simple closed

polygon. The number of 1-simplexes (edges) is equal to the-

number of vertices. Consider the

figure on the right. Suppose we

start at some vertex. Then we

take an edge-containing this

vertex. Next we take the other

vertex contained in this edge and

then the other edge containing

this second vertex. We may think

of numbering the yertices and

,edges as in the figure. We con-

tinue the process. We finiar°

with the other edge which contains our original vertex. We start

with a vertex and finish with 'an edge after having alternated

velfticea and edges as we go along. Thus the number of vertices

is.the same as the number of edges.

Exercises 14-3a

1. The figure on the right represents

a 1-dimensional polyhedron. Hot./

. many polygonal paths does it con-

tain,with endpoints A andsW Hpw

many simple closed polygons does

it contain?

,
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2.. (a) The union of the edges of a

3-simplex (solid tetrahedron)

Contains how many simple '

closed polygons?

(b) Name them all.

(c) Name one that is not contained

in a plane.

(Use a model if you wish.)

3. Let P and 0 be vertices of a cube

which are diametrically opposite

each other (lower front left and

upper iack right). Name three

polygonal paths from P toAQ each

of which contains all the vertices

of the cube and is in the union of

the 'edges. (Use a model if you.wish.)

4. Draw a 1- dimensional polyhedron -which is the union of seven

1-simplexes and contains no polygonal path consist g of more

than two Of these simplexes.

Draw a simple closed.polygon the surface of one of your

models of a cube which intersect every face and which does

not contain any'of the vertices of the cube:

;- ',/,
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Two-Dimensional Polyhedrons. A 2-dimensional polyhedrpn is,a

union of 2-simplexes. As stated before, we agree that the'2-stm7

plexes are'to intersect nicely, that Is, if two 2-simplexes inter-'

sept, then the intersection is.either an edge of both, or a

vertex of both. There are many 2-dimensional. polyhedrons; some

are.in one plane but many are not in any one plane. The surface

of a tetrahedron, for instance, is:not'in any one plane. Let us

first consider a few 2-dimensioOal polyhedrons in a plane. In

drawing 2-simplexes in a plane we shall shade their interiors.

Every 2-dimensional polyhedron

in a plane has a boundary in that

plane. The boundailr is itself a

1-dimensional polyhedron. The

boundary may be 4simple closed

polygon as in the figure on the

ig

right. In the figure on the left below we have indicated a poly-

hedron as the union of eight 2- simplexes. (ABC) is one or 'them.,
s

The boundary is the union.bf

two simple closed polygons;

the inner square and the outer

square. These two'pol5tohs

do not intersect.

267
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The figure on the right represents

P
a 2-dimensiOnal polyhedron which is the

union of six 2-simplexes. The boundary

of this polyhedron, in the plane is the

union of two simple closed polygons

which have exactly one vertex of each

in common, the point P. /

Suppose a 2-dimensional polyhedron in the plane has a

boundary which is, a simpleclosed polygon (and nothing else). Then

the number of 1-simplexes (edges) of the boundary is equal to the

_.1

humbgr of 0-simplexes (verticOe of the boundary. ,You have

if

.

already Bean, in the previous section, why this must be trde.

Th re are many 2- dimensional polyhedrons which are not in
'40 p.

,,,

any one plane. The surface of a tetrahedron ire-such a polyhedron;

idne surface, of a cube is another (it may be considered to be,ex-

pi.essed as,a union of'2-simplexes). Here we have some 2-dithen1-

sional polyhedrons which are themselves surfaces'or boundaries of

3-dimensional polyhedrons. Let us consider these two surfaces,

the surface of a tetrahedron and the surface of a cube.

ar
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You may look at the drawings above or you may look at some

models (or both). Let us count the number of vertices, the

number of edges and the number of faces. But the surface of a

cube can be considered in, at leaSttwo.different way4- We can

think of the faces pe being square regions (as. in the middle

figure) or we may think of each square face as subdivided into two

2-simplexes (as in the figure on.the right). We will use F for

the nvberof faces, E for the nuAber of edges and V for the

number of vertices. If you are counting from models and do not

observe patterns to help you-count, it is usually easier to check
Y

things off as you go along. That is, mark the objects as:you

count them.

Let us make up a table of our results.

Surface of tetrahedron

F E V

-? 6 ?,

Surface of /Cube (square faces) 8

Surface of cube (two.2-simplexes _12
on each square face)-

It is not easy from just these,threeiramples to observe any

nice relationship among these numbers. What we are looking for is

a,relationship which will be que.nbt Only'for these 2-dimensional

polyhedrons but also for others like-these. Try and see-if you

can, guess the relationship we will be telling'you about in the

.last section.
.

:'

. o
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Exercises 14-3b

1. Make up a table as in the text showing F, V, and E for the

2- dimensional polyhedrons mentioned there.

2. Draw a 2-dimensional polyhedron in the plane with the

polyhedron the union of ten 2-simplexes such that

(a) its boundary is a simple closed polygon,

(b) its boundary is the union of three simple closed
#

polygons paving exactly one Point in common,

its boundary is the union of two simple closed polygons
/

'(c)

which do,not intersect.

3. k Draw a 2-dimensional polyhedron'in the plane with the number

of edges in the boundary.

(a) .eqUal to the number of,vertie ekt.

(b) one more than the number of vertices,

(c) two more than the number of vertices.

1 Draw a 2-dimensional polyhedron whicti is the union of three

2-simplexes with each pair having exactly an edge in 7ommon.

Do 'you think that there exists in the plane a polyhedron which

is the union of four 2-simplexes such that each pair have

exactly an edge in common?

5. On one of your models'of a cube, mark six points one at the

center, of teach face. Consider each face to be subdivided into
0 ,

four 2-simplexes 'each having the center point as a vertex.
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Count F (the number of 2-simplexes), E (the number of

1-simplexes), and V (the number of 0-simplexes) for thi's sub-

division of the whole surface. 'Keep your answers for later-

use:

6.. Do the problem above without using a model and without doing

7.

any actual counting. Just figure out how many of each there

must be. For instance, there must

ones and 6 added ones.

Express the polyhedron on the

right as a union of

2-simplexes which inter-

sect nicely (in edges

on vertices of each other).

original

4. Three-Dimensional Polyhedrons, Simple Surfaces and the

Euler Formula.

A 3-simpl.ex is one 3-dimensional Polyhedron. A solid cube

is another 3-dimensional polyhedron. Any union of a certain,

number of 3-simplexes is,a 3-dimensi al polyhedron. We will

'assume again that the simplexes of a polyhedron intersect, nicely.

That is, that if two 3-simplexes intersect, the intersection is.a

2-dimensional face (2-simplex) of each or an edge (1-simplex) of

each or a Vertex (0-simplex) of each
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,Any 3-dimensional polyhedron has a surface (or boundary) in

space. This surface is its' a 2-dimensional polyhedron: It is

t

P

e union of seveial 2-simplexes.(which intersect nicely). The

.-Isurface of the 3- dimensional

hedrOn represented by the drayring

on the right is something of a mess.

It consists of the surfaces'of'three

tetrahedrons which have exactly one

point in common.

The simplest kinds of surfaces of 3-dimensional polyhedrons

are-called simple al.Tfaces. The surface-of a cube and the

surface of a 3-simplex are both simple surfaces. There are many

others. Any surface of a 3-dimensional polyhedron obtained as

follows will be a simple surface.. Start with a solid tetrahedron.

Then fasten another to it so that the intersectIon of the one you-

are adding with wh you already have is ajace of the one you

are adding. You may keep adding more solid tetrahedrons in any _

coldpination or of Ihy-size provided that each one ypu add in turn

intersects what you already have in a set which is exactly a

, union of one, two, 9r three faces of the 3-simplex you are adding.

The surface of any polyhedron formed in this way will' be a simple

surface.
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Group activity. Take five models Lregular tetrahedrons of

. edges 3". Put marks on all four faces of one of these. Now

fasten each-of the others in turn to' one of the marked faces. The

marked one should be in the middle and you won't see it y more.

The surface of the object you have represents a simple surface.

You can see hoW to fasten a few more tetrahedrons on to get more
,

and more peculiar looking objects. Suppose it is true that when-_

ever you add a solid tetrahedron the intersection of what you add,

with what you already is one fape, two faces or three faces

of the one-you add. The surface of what you get will be a simple

surface.

a
One 'can alsovfasten solid cubes together to get various

3-dimensional polyhedrons. In fastening solid cubes in turn onto

what you already have, you will always wind up with a,3-dimensional

polyhedron which has a 'simple surface provided the following

condition is met. The intersection of each one you add in turn

with what you already have must be a set which is bounded on the

surface of the cube you are adding by a simple closed polygon.

For example, the intersect might 'e a fac- or the union of two

adjacent faces of the ne you add.

Finally we entidi an interesting property of simple

surfaces. Draw any simple closed, polygon on a simple )'.urface.

Then this polygon separates the. simple surface into exactly two

sets each of which-is connected`,' i.e., is one piece.

273
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Group activity. On the surface of one of .the peculiar

3-dimensional polyhedrons.(with simple,surface) that you hdve con-

structed above, have somebody draw any simple closed polygon (the

°wilder the better). It need not be in Just one face. Then have

somebody else start coloring somewhere on the surface but away

from the polygon. Have him color as much as he can without

crossing the pOlygon. Then have another person start coloring

with Another co r at any prevV iously uncolored place. Color as-T

much as possible but do not cross the polygon. When the second

person has colored as much as passible, tha...whole surface shoo ,.d

be coloreds

If.Srou don't carefully follow the instructions for con-

structing a polyhedron with simple surface you may get a poly-

hedron'whose surface is not simple. Suppose, for instance, you

fasten eight cubes,together as in the drawingbelow. The poly-
_

Wedron looks something like a square doughnut. :Note that.in

fitting the eighth one, the intersection of the one you are adding
J1k.

with what you already have is the union of two faces which are

not adjacent. The boundary (on the eighth.c4e) of the inter-

section'is two simple closed polygons, not Just one as it should

be. There are many simple closed polygons on this surface which

do not separate it at,a11. The polygon J does not separate it.
°-(3

The polygon K does.
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Exercises 14-4a

1. Using a block of wood (with c rners sawed off if posbiblei,

draw a 4imple closed polygon on the surface making it inter-
,

O

sect most or all of the faces of the solid., Start coloring at
.

tome point. Do not cross the polygon. Color as much as you

can without crossing the polygon.' When you have colored as
.

41,

, a
--...- much_as you can, start coloring with a different color on .

some uncolored portion. Again color as much as you can.with-
.;

out crossing the p lygCn. .YoU should the whole surface
r

F

colored when you inish.
-,

, ! ,

,:do through the s procedure az in rob e 1 but with'anotner 1

3-4Rensional solid. Use one of your models or anothan block
flr

of/ wood. Make Youi, simple closed,polygon as complicated as

.fyou wish.

2 7 .
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Cpunting Vertices, Edges, and Facesthe Euler Formula.

In Section 14 -3 you were asked to do some counting. A few of

you may have discovered a,relationship between F, E, and V.

. Consider the tetrahedron in the figure below. Its 'surface is a

simple surface. What relationship can we find among the vertices,

edges, and faces of it?

0

There are the same number of edges and faces coming into,the ,

point A, three of each. One may see that on the base there are°the
_ .

same number ofyertices and edges. We have two objects lefty over:
, .

the vertex A at the top and the tAce (BCD) at the bottom. Other-

wise we have:matched al the edges with vertices and faces. So

111

s-1- V - E = 2. Now let us ask what woUrd bd the'relationship if
.

.
.

one of the faces or the base were broken up into several

2-simplexes. .Suppose w had tge base broken tp inlet) three 0 4 ,
4 0

,. .

2-simplexes'by adding o e4vertex P'in the base. The figure on .

the right above illustrates this. Our, ,counting would be the same
,

O

O

O
0

too

0



14.36

until we, got to the base-and we would be 'able to match the three

new 1-simplexes rt.,. contain P with the three new 2-simplexes on_

the base. We have lost the face which is the base but we have

, picked up one new'veitex,P. Thus the number of vertices plus the

number of 2- simplexes is again two more than the number off

-simplexes. F + V - E = 2.
te.

Now letus look at a cube. We have

a drawing of one on the right. The cube

has howmarry faces? Hdw many edges? How

vertices? Is the sum of the number

of vertices and the number of fa es two

more than the number of edges?, et us .

see why this must be. c,

.(1) The number vertices ,6n the top face is the nUMber of

..edges on the top face.

(2) ''The number.of vertices on the bottom face is the number

of edgesori the bottom face.

(3) The number of vertical faces is the number of vertical

edges.

(4)'4A11 the vertices and edges are now used up. A11I the

vertical faces are now used up.. We have t,0 top and

bottom faces left.

So F + V - E must be 2.

What would,happen if each face were broken up'into two 2-simplexes?

- For each face of the cube you would now have two 2-simpleXes. But,

- 0,
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for each face you would have one new 1-simplex lying in it. ether

things are not changed. Hence F + V - E is again 2.

Sur se we
.0
have any simple surface. Then do you suppose that

V-+-F - E = 2? In.the exercises you will-be asked to verify this,

formula (which.i,s known as the Euler'Formula) in several other"

**examples. (Euler--pronounced "oiler " - -was the name of a famous

mathematician. of the early 18th century.)

Let us now observe'that the formula does not hold in general'

for surfaces which are not simple. Consider the two examples

below.
. a

In the figure on the left (the union of the two tetrahedrons

,hav4ng exactly the vertex A in commin)/V + F - E ='? Count,and

see. Use modeis'of /two tetrahedrons if_you wish. V + F - E.,

should be 3. On each tetrahedron separately the n ber of faces.

plus the number of vertices minus the ed ,s is 2. But

the vertex A would have been aounted twice. So V + F is one

less than E + 4.
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The figure on the rightabove is supposed to represent the /

union of eight solid cubes as in the last. section. The possiple

ninth one in the,cente'r is missing. Count all the faces(of
4

cubes), edges and vertices which are in the surface. For this

figure V +-F - E should be 0. (As a starter, V shouidlbe 32.),

Finally We t the.Euler.Formulkin a more general setting.

Suppose we have a si ple surface and it is subdivided into a 1

. .

number (at least three) of non-overlapping pieces. Each of these

ialeces is to be bounded on the surface by a'simple closed polygon.

We think of F as the number bf these pieces. We require that if

.two of these ppces intersect'then the intersection be either one

point or a polygonal path. The number E is the numb'er of these
4t

intersections of pairs of pieces which are not just points. The ,

number V is the number of points each of which is contained inlat'

ir'least three of these W.eces. Then F + V- E L,24-

1
- '

Exercises 111-11b
..

1. Take a cardboard model of a non-regul#r tetrahedron. In each

-face add a vertex near the middle. Consider /the face as the
t

union of three 2-simplexes so forme . Give the count of the
4 . , i

faces,'edges, and vertices
-

of the 2-simplexes on the surface.
. _

.

How do the faces, edges, and vertices of this polyhedron
.

i

compare with those of.the poly edron you ge ,by attaching ,

, .

founregular.tetrahedrons to the four faces 9! a-"fifth?

O
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2. Take a model of a cube. Subdivide it as follow8. Add one

vertex in the middle of each'edge: Add one,vertex in the

middle of/each face. Join' the new vertex in the middle of

-
each face with the eight other vertices now on that face.

,/

You should have eight 2-simplexes on each face. Compute F,

V and E. Do you get F V E . 2?

3. Make an irregular subdivision ef any simple surface into a

number of flat pieces. Each piece should have a simple

closed polygon as its boundary. Count F, V, and E for this

subdivision of the surface.

4
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