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PREFACE(

’

The main purpose of this book is to provide background
, material in ge6metry for teachers or prospective teachers who
know little or no geometry. It is designed for use in courses

and in service type training programs for teachers at the Junior

,.

: high school or upper elementary levél. , Itc should be suitable

°as a text for a one-semest%} freshman college course for
~ o a g
prospective teayhers at such level. This book is not designed

to train~$eachers to handle ‘SMSG tenth grade geometry but it
might be used for background information and points of - view.

Volume II of this series, is designed with the tenmth grade course
in mind. . ' |

-

If this text is used for in service progra%s for.upper '
elementary teachers, then some selectivity of subJect matter .
}woulu be called for. Chapters 1-8 probably should be used
‘with some sections of Chaptgrs 7 and 8 taken lightly:. The

"proofs" in Chapters 9 and 10 might Be omitted. The* elementary
& %5

portions of Chapters 11, 12, and l3 might well be used. Chapter

\\4114 is primarily intended for Junior high school teachers ‘who

- kS

will be using SMSG materials. - ' T

o

There will Dpe considerable review of geometric ideas but

¢ €
7

f
the review will be phrased partly in terms of present day set"

’

o
° .
s

o 5 3




language. Where possible and appropriate, both traditional - /

language and set language will‘%e used to*clarify each other
It i§ not intended tH&t/this book give a complete reziew

. or cover all detalls mentioned .in the experimental SMSG Junior _(/
high school texts It'{s"intended that this book stress basic
understandings of ideas, concepts and points-of- view In,
particular, emphasis is put on the interrelationships between
the concepts of and use of measurement congruence, ﬂhe ‘real . >t

¥ number system and various geométric Systems. fThe author hopes"

that tne broad outlines of, good’ mathematical developments will

. 4

come through, K ~ o ,

°

L - ———

Elear cut def nitlons and explicit assumptions are made
where 1ncreased unoerstanding will result, But the author: has.~
#ried to keep in mind sthat this is net a treatise on abstract - "ﬁ/"

7

geometry‘ Ihe 1ntuit1ve4hnd informal approach is emphasized

. Ad e
throughout -

One bedy- of material that has<been omitted from this boow

-
~ L

!
is that dealing With sets of concurrent lines. associated with @

triangles mEdians, angle blsectors, etc, Some people

teaching rom this, volume may want to use such material(}

Special progects or the liké S . &~ '

studying this material one should Jhave a pencil and”
p&per handy pd be prepared to draw figuresvto help>understand .
‘“°ﬁhe deVelopMentf The reading of mathematics is not like the

[
.




. e
reading of novels. One may have to read the'matfrial several
‘ EY

times to understand it., Some prefer g "light" reading of a

S ‘ "C t ) ’ - .

section g’ chapter to ggt géneral,ideéas before\detalied study.
ﬁhe authozzand’SMSG will appzeciate suggestions regarding
. §.

the ,5uitability or non-suitability of this volumé .for &he

'purpos§s sugge%te5~abpve._ Itﬂ;% the Intention that this volume

. . 5 *
be later feprodﬁbed in revised form, Suggestions concerning
¢ ~ . 3 L
the revision are welcomed and should.be sent to ‘ﬁ

. S

‘

School Mathems tics Study Group
D{awer 25024, Yale Station
New Haven, Connecticut.
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- . - Chapter 1.

Introduction ' )

*s

Geometry 1s~concerned with the study of spatial relationships.
This’ study, of course, includes what 15 usually called "nlane

 geometry" for a plaﬁe (a flat surface) 18 regarded as 4 part of '
o
space. Traditional tenth grade geometry is more than simply a ﬁg

study of spatial or planar relationships; it is the setting for the
——

evelopment of a mathematical logical or axiomatic. system. _

@*@5 In the SMSG materials, the geometry which is found ‘i thed |

sa
Junior High "School texts 13 intuitive geometry, the development of

~

geometriq (spatial) points of view and thought and the understanding

[ v oo

—

} { spatial relationships. It is not axlomatic as such. . Questions
of iInformal-deduction naturally arise andowhere appropriate are

v N <

- dealt with by- informal arguments? . ;

In the past, geometry has. been a rehicle for teaching aecuracy
of language; expreSsiph'and thought. To ‘some extent the 7th and
8th grade geometrQ 1s dedicated to this end In partieular, set,
language simplifies mathematical vocabulary and at the same time

‘forces both considerable precision of expresslon and emphasis on

the meanings of concepts. Traditional Euclidean geometry went part
wayin this direction. The SMSG materials (both Junior High ar;?’

)

’

/




10th grade) go considerably farther in making clear cut definitions
and in making some distinctions which were only implicit in Euclid.
The consistent use of set language ,in geometry has three
other important values to the student. First, the set point-of—.
vied is of fundamental importance in much of present day mathe-
matics and an appreciation of it helps produce a certain amount
of mathematical maturity. Second, set language ltself gives
students a unifying thread which rung through much of their mathe-
matical studies. No longer will it be true that students view 9th
grade,algebra and 10th gradg gegmetry as essentially unrelated
subjects. Third, use of set language actually should make many-
ideas of mathematics substantially easier to grasp for thé studpnt.
Set language simplifies rather than complicates. It frequently
i forces attention on the proper’ concept. o, . 'Y
It should be\ﬁointed out) however, that the set point-of-view
is no panacea by itself. Mathematics nill remaln a very sub- ‘
stantial subject., Furthermore, it is not proposed by ShSG (or

almost anybody else) that set theory as such ve taught to high

L

school students. It is proposed that the language of 3éts be’ used.

Kl

The language of sets is rather strailghtforward and simple--once you

get on to 1t--but thes subject of set theory gets déep and delicate-

. rather quickly. Set theory itself should probably be left to

professional mathematicians or to’ thbse who are. thinking’seriously

n - B
2 f P ~ae A
. . ————

of*becoming such.




‘ .

Let-us illustrate some of the ambiguity in traditional
terminology and notatianand our attempts at eliminating it.

One of the often remembered properties of Euclidean geometry
is that “a 8traight 1line is the shortest distance between two *
points"”. Now, really, there are at least three different eonzepts .
which are confused in this sta\ement. We discuss these concepts.

62) straight line is usually thought of as a set of points
(the set or collection of points on it). For any two points there
i8 exactly oner straight 1line containing them (1:37’ two distinct
points determine a straight line).

The séraight line containing A and Qf

‘§$ contains some points (%ike P) between
A and .B and some points (Xké Q) not?
between A° and B. We shall denote the
' 11né™AB by AB. A straight line as stch
does not have Zength-—it can not be measured. .
(2) A segment 18 a part of a straight line. In»particular,
the segment AB (denoted AB) is the, set of points’ consisting of A
and .B and all points betweeh A and B. A segment has length
--1t can be measure&. The length of AB, is denoted by AB’or some-‘

Y ’ . * v
times by m(AB). ‘ ¢

4 v
(3) A& distance is a number (or a number of units). 1In

¥

geometry, for any two points there is a istance between them

--bhe distance being the lenhgth of the s gment Joining them.‘

)
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/7 i » .
Whatever is customarily meant by straight line--and geometry books

are vague on this--a straight line 1is not a distance.

e

The statenient "A straight line is the shortest distance

3
v

hetweenltwo“peints", then, confuses the concepts of straight lihe,L“
segment, ané dlistance. however, the statement does communicate
spmething of what is'intended. But simpler and more precise
language would make for greater clarity. We could say "A segment.
is the shortest path between two points”. This statement 1s an
- imbrovemenx on the earlier. It would be better, however, if we
had defined or explained the meaningoof the word "path'. ih,
) Chapter 9, the "triangle inequality" property does clarify the
meahing of the‘ 'shortest distance"/statement. In other chapters .
° of the Hook,'éehsiderations_of the type sadested here will be
- greatl& amplified. . )
' Having maée the observation that terms used in mathematics
“8hould have explicit 'and clear-cut meanings, we agree that we:
cannot achieve perfection in this respect. 1In barticular, there

.

are several terms which are consistently used with dual meanings
! )

but ‘for which the particwlar meaning intended is almost always

clear.’ Examples of such terms are- "radius" of a circle which méans
a number (uséally) but sometimeszé»set of points, "gide" of a

triangle or polygon which meahs either a number or a set of points |
and '%ase"and "altitude" of a figure‘whichAalso have similar dual
meanings.  These words are so wide}y used and well uhgerstood that

. - ‘ -

it seems inadvisable to 1insist on one meaningQQr the otherk

¢

12




Chapter.2 ‘-

*
v

T Z;etsf

1. Terminology. ~
One of the important ideas of mathematics is’ that of "set "

Synonyms for the word "set! are collection,, “ramily", and
aggregate. The term "set" is used in mathematics.in much the
same sense as it is occasIonally used in ordinary language. In
-geometry we Speak of a line as a set of polints. Or we may, spegk
of the set of all lines wirich contain a given point. In arith-
~w>metic, W%‘Zpeak of the set of all positive eveniwhole numbers,

that is, ﬁ?w ete. s ‘_ TN o

) In everyday language, we talk about the set (or collection)

8
of books in the city library, the set of pupils in the seventh

grade of a school, or thé set of all red-headed children less than’

‘two yea¥s of age. . ° Lo T ) .

) In order for a set to be defined or understood,‘there must

be some clear-cut'criterion for deciding whether anﬁ'particular

" object 1s in:the set or is not in the set. We speak ,of th& .
obJects in a given set as the "elements" or "members of the set.

FOr instance, consider the'set o? pppils\in the seventh grade of ‘%

West Junior High‘ School. An ogj’ecff is an eleme.'nt*of this set’'if - h

(and only 1if) the object 1s registered as a seventh grade student

T

“lw__l"in.WeshlJunior High School. Therefore, we can tell whether a .

given object is in the setz




2.)2¢ too.
é .
1t 1s useful to let symbols denote sets.

}

quently use capital letters for this purpose. ;hus, when con—

Notation., We fre—

venient, we magﬂlet "A" be the set of all positiveleven whole

- numbers, or, "M" be the set -of all grade school éhildren who can
< 4 \ ) ¢
swim. }, %are frequently used in describing sets.

Braces, { Thus

-

[Mary, James, William] describes the set B whose elements are
 Mary, James and William. orc'= (1, 3, 5, 7, 9}F describes the set
of odd counting numbers less than ten., ' Note that in.each of “these
_tatter cases we have actually enumerated the elements of the set

B or C. Ve. use'three dats to suggest "and-so on"., For example,

°

L)

-

Il
J

[2 4,6, ... ).

-

the‘%et A of positive even whole numbers/is sometimes written d

. e
7%
-

.

In set notation as in other mathematics we use the symbol'@!“

)
(éqgals or 4s|equal_to)

) A 3
. B.ahd (Mak

: SubseTs.,

which contain cities eadt of the Miss*ssippi.

an s 'the same as."

} 3

Note that above,

William} are different names for the same set.
‘Let Y be the set of states of the.United S‘t'atls'

Let~Z be the states

!

@

. yhich were the original 13 8tates. Then évery element of Z 1is an:

‘v

element of Y, We say. tﬁat Z 18 & subset of ¥ (or Z 1is cong;ined
. e - )

- 4in ¥Y). We may writeZC:Y and we read it "Z is contained in Y."

@

We may also say'Y contains Z, or Y:)Z. Notice that the open part

of the symbolCor D 1is toward the set ‘which contains the other as

a subset. »y K




)

'

In general the set R is a subset of the.set T if each ,

element of R is a.n element of T. _We‘may observé\that each s_et is

’. & subset ‘of itself; in notation, if X‘is:.a'.ny set; XCX (X 1s con- .
tained in X). ‘, . ‘ N
Let U be the set of all classrooms in your school. Let V be
‘the' set of all-.classroorr‘xs in your school with women teachers.
Then VCU, i.e., eagh element of V is an“element of U, If your '

- school has no ken teache}'s, then also UCV, 1;.¢., each element . )

*

of U is an element of V. In this case, V = U, ‘In general we can

"L say that if A(Qis a sef and ‘B 1s & set] and ‘iffAC.B;KBCA then
13 K o

A =B, l.e.; and Bp.re simply different names 3r the same set.

Intersec’cions of Sets. Let G be the set of all girls who are

pupils in your school. Let R be the selt of\{l red-headed people
in the world. Let W be the set of all red headed girls in your_‘
b school. Then W is a subset of R and also of G. In fact, W

\\
consists exactly of those elements which are in R and are also in

. G. We speak of the set‘w as 'the intersection of the sets R and G _l' -
. and, in notation, we write W - RNG. The symbol "MN" is called
the intersection sy'mbol We read RﬂG as "R intersection ¢" or
"the intersection of R and G. . _ _ ¢

Let A ‘be the set of all poesitive whole n}imbers. Let B be the oy
set of all real numbers less than 8. Then AAB is the set of all "

- o 1

. Rumbers which are in A ‘and are also in B, In other words, A B is

-




the set of all objects which, are . . -
(1) positive whole numbers and

‘ . (2) numbers less than 8. : ve .
Clearly then : - . : ‘ S e

ANB = (1, 2, 3, 4, 5,6, 7. - .
Definition., If X #&nd Y ape sets, then the intersection of X

and Y (in notation XNY) is the set of all elements egch of which .
! N

1« an element of X and is an element of Y. . . i

To determine whether an objecth‘in XNY is sixhple: the % /‘

-
’ .

objec»‘; must be in X and must also be in‘yY. | . /

L] \’ P .f
» ” ) a M ' :/
't . Exercises 2-1 : .~ [
Where appropriate, use brace notation to write ouf yéur,. L'ff’
answers., , : % S

>

1. Let X be the set of letters of the alphabet which" preeede 8. s

Let Y belthe set of vowels VWhich precede V.

4,)

(a) X=( 2 e . N . .
(b) ¥Y=1( = }." - ‘L . e T T
(e) xNy=( 297 e
" 2. Let H be the §et of@ypes (sizes)~ of silver coins in circu-
. . .latlomin the United States. Let K, be thes s"et of ; types of L
S o g . .
coins in circulation in the United ates.
(a) Is HCK? - o e )
22 (b) B KCH? - s Lo .
.y (c) What 1is HNK? o o o B
? : ‘ ’ J . - . I‘
L. ) -

P o “ o ) . i'\ ‘ '




A A

2(/
¢

—~

-

L4

3

Let P

(3, 57 7, 11,.13Y17, 19)
Let @ = (1, %, 7, 10, 13, 16, 19)
- (a) PNQ’= [ 2.
(b) Is PﬂQa subset of Q27 °

Let 'V be the set of positive 0dd whole numbers
set }positiv.e whole numbers l‘é%s than 20. Le
of whole numbers divisible by 5.

/ - - A

(a)"

L

. 5, Let A be the set of men who

(b)
(c)

;wfjx =( 2
(VAW)NX =

N
© this set with X.1s what” is meant by - (v w)N X.

\;Zte bee?/fresident of the United,

States at Some time since 15 B be the set "of me'who ’

vw= ( 2 )
}

{ »

}

.

Note: that~VAW is itself ‘a1 set and the intersection of

Let B

have been Vice- President some time since 1922.

(@) a2 2 7V
(-b) ANB = f
(‘q) Show thatB

«?

.el ment

Le%\M beg the
EEEVE QN

‘Let H

e-the

Let X be

(a)*
(b)),

<
e w5 -

K

]

the
{,
{

g e
get' of mﬁltiples of B>

'

ot contain\ed in A; 1.e., exhibit an , -

,.
“

of B whicfl is not an element of A.

set \of pOsitive whole ndmbers.

Let W'be the
X be the set

Y

AN

L4
Iy fe

>

- g

N

set of multiples of 3. N

2 .]

‘Q’) MNK = {>

___"Mhsww-w.«v-

|
\

20 3.0t

)
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W . - . X

' (d) Show that H is not contained in K. .
" {e)HNK=( 2 } . ]
e (D) Is.(uNM) e . . .
B T LA ’ . >
e 2. Union of Sets. . i
Let A =.(1, 5,'9) 4nd let B = (2, 3, I, 5). The intersection

of A and B (1.4, ANB) is the sét (5 consisting of the single

efer to the setﬁ[l, 2, 3 4, s, 9)?‘

,element 5. How are we going to r f
what will we call 'the set Mhose elements are the

In Qther words

-

elements of 'A- to ether with the-71ements of B? We use the word
S~ :

- . B \‘# RO
"union" in this sense. It*suggests the combifding or uniting of .«

Thus (1, 2, 3, 4, 5, 9) isi'the union of A and B. In
notation; we write AUB (the "union of A and B" orf“A/&ion B").
Similar notation and termfhology,isﬁlsed for any palr of sets.

(
Let X and Y be any sets at all. Then XUY (th

" the sets.

.

t\?\union “of X and Y) B

is the set consisting of the elements of'X togei?er with the

>
¢ ’ t I
- J

elements of Y. N =

-t

To determine whether or. not an object 1s an element of XLJY 3

is simple. The obJect is in XLJY provided it is in X or it'is in

Y. Tt could be in both. )

.Let-M be the set of people. in your school with iast name °

L} v ~
"‘“Smith." Let N be the set of 'people in your school with first

name’"John." Then MUN 1is the set of all people in your school

. . / !
v ‘ i
4y - i . %
> -~
.




\

\
\

who quallfy on either o two counts: for a person to be in MUN,
either his last name mus be Smith or hls first name must be John;.
i.e., either the person is in M or he i1s in N. (Any person named
John Smith, qualifies on both counts.)

| Empty Set. What is the.set M/N (the aqtex;_section of M and
N)? Ta be in MNN, a person in your ' school must have last name
Smith and first name John. Thus M/NN 1's the set of "John Smiths"
in your school. Now suppose your School doesn't have anybody in
it named John Smith. Then the set‘M/N (M intersection N) doesn't‘
have éhy elements in it. ,In this case,.we sey that MNN 4s the
empty'éet (or null set). Some people wouio claim.that MY isn't
a set if it doesn't contain any elementsfa’But mathematiciqps
generally ‘find it more convenient and useful to use the concept
of the ehpty iet. Then if X and.Y are sets, Xf1Y 1s a set. And
Xf]Y 18 empty if and only if no element of X is an element of Y

We use

Sometimes in describing a set we may not know, at first

lance, whether or not the set has any elements in/i'. "If the




-. v ] °‘_/.\“ e )
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b ) Exe'rci.‘Ses 2.2 -~
Use brace rr.o,tation'whelre pQ;sii)le and a{ppropriaté. *
LIet A= (T, 3,5 7,90 - - , o
Cbemeans BN
“c= (2%, .6,.8, 10} SR '
Find: l"‘ ) . . ’
(a) aUB . K . . . S
(b) ANB\ &\ B .
| (e) aUC - - S o " o
(@ anc -t - . . L
1 2. Let X be the qset;i’g'n‘:% “tates of the United States whose. na.;r‘)‘es ’
begin with a di‘rectio (e.g.; We rgigia). Let Y be the
set of states which & omr the Pacific Ocean. |
. Find: G . 3
(a) . X
_ () ¥ * ) .
" (o) xUy ) ' S ]
(@) x0y AN -
3. Let M be the sqr'c)i‘ poinrt’s{} on or 1ns:1de the square. Let N
'bg'the set of points on or 1h§1de1the circle., Draw similar
figures and shade — : ‘ ' i )
(2) M ;74 — A S ;
| (b) -N el | i
; (c) MUN ‘
. .. (a) mNN )
T . .
kS . ¢ ’
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Describe two sets H and K such that

(a) .HNKX is empty, and
(b)X HUK 15 not empty. _ -
If A and B are sebs)-ANB 1s pty and (AU B)C’.A what can
you gonclude- about B? e .

. SN )
If, M is a set and N 15 a set and if (MNN) = {(MUN), what can

yos-conclude? !

. .-Let R be the set_of Lalggpositive ever; whole numbers.
Let S be .t‘h}eet of ally positive Whole numbers divisible by 3.‘
"y(a) . Describe RﬂS o
(b) List three positive whole numbers not in RS,

Explain why for any sets X and Y, (XUY)D(Xﬂ Y)

&
-

- Y *
3. One-to-one,correspondgnces,

Let « (the Greek letter alpha) be the set of capital letters
in the English ’alphabet. Let/B (the Greek letter beta) be the
set of lower case letters/\ i .
P « = (A, B, c,,\\... Y‘z}

' o ' /5 (@, b, C, eee y, z}\\_

Noirfhere ‘is a natural ~wa{y of associating the elements of & with

»

’ . )

»

the, elements of/B s& that each element of o co‘rresponds ‘to exactly:

one elemeht of/S and each element of/a to exactly one element ‘of

. ot under this same ~association.




. .
5 . . : -
R . .
’ . .
ki . . ; .
. . . ' a
! . MR &
- ' - , “e 2,
. , ",

Each capital letter 1s to correspond %to its loherrcese Tetter.

- We use the syﬁbole—»or‘I R as appropriage, to 1ndicate the mateh- ¢
. . . . (N v
ing or correspondence., Thus, . . N ST e
\ kY » -, e

A B———— ‘, “

. 1 I_._____I S

a b_——-'—‘ ’ ‘ - ’D .‘.
. z SR
" This is an example of a "one-to-one" correspondence betweén:
o .

the sets &« and /B There are otlier one-to-one correspondencevs T

A

betweeng and /9 Thus we might let Z correspond to "a" and each £ -
' %, v

other capital letter correspond to the lower case letter following '

-8 '
. . R y v,
1t. Thus : E -

In many. cases in life, we are interested in two sets and the. L
existence or non-existence of a one-to- one correspondence betWeen
the two, sets. In- some 1nstances we are 1nterested in a C-
particular matching process (one-to-one correspondence), not Jjust AA
any one. If you are giving a theater party for 10 boys and 10

girls, your, set of tickets should be in on

correspondenceQ N

with the set of people going. If the seats are rese ved it v L
Fﬁm ..Probably makes a great deal of difference what one-to-one ' . = ¢ .
. correspondence you set up as you pass out the tickets to the ' .

2.8 * B
- various members of the party.
"o - » ’ R . - ¥
‘5 ‘ ) ‘
‘f“”’/f‘ 7 - » ¢ ’ :»1’
P> > o . ¢ :"Jz"»
. - . ] R <. <
e 3 e B oy ‘ ‘@_ 1 \. -

;R '
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A one-to-one correspondence between two sets M and N, then,

"is a matching of the elements of M with the elements of N so that

under this matching each element of either set corresponds to a

particulat element of the other (which in turn corresponds ‘to it).

No .element of elther set can be left over. ¥ e’
+

.In most homes, there is a one-to-one correspondenée between

the set of chairs at the dinner table and the set of members of

. .2 . > B s
the family. Purthermore, 4’ are especilally awaré of that parti-
N : « ) -
cular one-to-one correspondence which matches each person with his

own.chair. . .
: Ty
One-to-one correspondences are¥of fundamental importance in

a . .- -

. the proceSs of counting. "-A person. learns to count--meaningfully
--when he learns to match the counting numbers in order and up to
a certain number with the obJects he is trying to count. " The = L

process of}counting 1s a process of establishing a one to one

A

correspondence., Even before'children learn to countf they- ara }%ys‘

frequently aware of one-to-one correspondences. Take four small

M ~ R N i -
boys and three ice cream cones. vert before’ the cones_are passed,_

4 T

- out, s&me boy may well have mentallx matched the set of boys with

the set of cones and anticipated certain difficultied

In geometry the notion of one-to-one correspondence arises

- | ¢

ngturally and significantly.) Consider two conéruent triangles

as 7elow. <o
! Let AesD T
’ /
. B<>E %
.I ~
CedF , .
[ / ; * .
\ * :
- 1]
Al ‘{2':7 “ " / N
- =23 ° -
N ’ a . B . M




~—

N y 2012 J ' y
\’ v ) M . : .
Under this correspondence of the set (A, B, C} of vertices of

. the 1eft triangle with the set (D, E, F} of vertices of the right .

triangle the two triangles seem to be congruent.

\

. 4 «

But under the correspondence . ' '
&  Ae—D -~
. Be—3F ' .
' C«—>E
the triangles do not seem conéruent for the side AB 1is not the .
same length as the side«DF. ' S . v : /
L’ ' Exercises‘2-3” - “

1.

Is there a one- to oneicorrespondence between- the states of the

- e

4,
'Uhited States and cities (in the United. States) of over

3.

1,000, OOO 1n population" Why? T
COnsider the triangle‘in the

.

figure. List all six possible

cne-to-one correspondences be- o

tween the set of vertices {A,*B,:C} )

and the set of siées {a, b, c}. . fq .

If set R is in one-to-oneecorrespondenqe with set S.and set S ' *

witn'set T, is.there a one-to-onhe correspondence between set R )

and 'set T? Explain. . - I ' ' :
Ky o
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L. Describe’ three different ome-to-one correspondences between
» ks .

the set of digits {1, 3, 5, 7, 9} and the set of symbols

CNLU DL+ ’ -

5. Describe a one-tq—onelcorrequndence between‘the set of

positive 1nteger§ and thelset of négat;ve integers.

- B
. .

Aruitoxt provided by Eric:

1
.

K,
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- Chapter 3

r*"

Logic ‘and Geome%?y . .

1.

g Statements end Imp;;cations'of .Statements.

When we write a sentence we make a-~statement. Ths statement
may be true or it may be false or'it may be meaningless. Examples
of_meaningless statements are: ’ . ¢

(1) §badab diaha loween-syman. { " - . t?ém

.

»~

Ip (1) the "words'ﬁ%on't even make sense.

words all make sense the sentenca 1tse1f does

form of a sentence but it does not have meaning.

-

/ o
that are not meaningless. Y

? 1 . hd

So’we restrict our attention to peaningful statements.

is another’distinction ye would like to make .

(2) Horses and chairs ride honor ambng ‘windows. .

-

In (2), while the

not; (2) is in the

For the purposes

. K) . - 1/
' of the discussion of this chapter we want to consider statemertts

There

-

When one makes a .

-

statement, he 1s trying toscommunicate 1nformation (valid or

1nva11d)

“l

true in Spirit but false as actually stated

Many statements{ that are made ;lr; everyday 1anguage are

They communicate a

valid idea but. are not tecnnical;y correct.

For many purposes

-

14

technical correctness is not especially imPortaht.

But 'in subJects like mathematics . we have to be concerned with

the~correctness or non-correctness of the specific statements we,

>

r

7

AN
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_make. It is in the nature of mathematics that precision of

: Ianguage and thought is important Therefore it is necessary for

~us- to study Whe slgnificance of sfatements, their meanings and
their implications. We shall assume that statements mean what
they .say and not. merely what Wwe might wish them to-say. However,
statements are usually made in conjunction with other statements
and aiso on the basis of tacit agreements which have been,buiit up
in general or in the particuiar discussion. . In Chapter 7 ‘we
discuss this aspect of language further. Here we cite an example,
The statement, "I am not going to eat breakfast," usually carries
with 1t a tdcit time understanding. A person who made this stste-
ment ‘on getting up in the morning and then ate breakfast that
morning would be considered as having made an untrue statement,
Furthermore, if he did npt edt breakfast that Jmorning, but did the
following morning, his‘Priginal statement would be considered to be

" correct. It would normally have been understood that he was

.

referring to breakfast t e day he made the statement unless the
. t

contrary was specified ‘Thus we agree that individual statements
‘ should be understood to be/gn context, more to restrict or'clarify

their meanings than to "change " them.

© It 1s-convenient to let\symbols like 4, B, and c denote

statements. For instance, conslder A to be the statement '@he
'_weanner 18 not clear today," and consider B to be the statement,

"I am ‘going to stay home." We can make (further) statements using

statements' A and 'B‘;as-"building biocks".

“ N ‘ . z




Example 1. A 1s true. In our illusfration this says "The
. statement 'The .weather is not cIear'today,' is true." But this
latter assertion means nothing more,nor less than the/ogigindi )

\
statement "The weather is not clear today." Either.statement is

' true provided the other is. Thus we conclude that ."A" and

S/
"A iz true" really mean the same thing. ~ /} .
0, Example 2. B is not true. °In our illustration this says /. .-

“The statement 'T am going to stay home' 8 not true" or in other
words "I am not going to stay home." The statement "B is not
t e"™ 1s called the negative of- B and can frequently be achieved
by the insertion of the word "not" in the proper place in th\,
statement. B. ' ‘ : . .
Example 3. "A and B" (or what 18 the same, "A 18 true
" and LB is. true"). In order for statement "A and B" to be true,
both A and B 1nd1x{1duall$f must be true. .’ .
' Example 4; % op B". The statement "o or B" will be
true provided at least one of the two separate statements "A" and
"B;UA;s truet In other words, L "A or B" is true unless both
"AY% and "B" are false. The statement "I‘he weather 1s not cledr
today or I am going to stay home" 1s true unless (1) the weather ]
1s clear today and (i1i) I do not stay home. (The statement "W or
B" has, meaning but in our 1?%ustration, i't is not the kind that )
1is.made in ordinary speech, as “the statements ‘A and B themselves

a

are not.'natural® alternatives.) .o
>

T

LY




Example 5. "If A, then B." 1In our illustration, "If the -
weather is nofifclear.today, then I ai going to stay home." This

is known as & stdtement of implication. Another way of mak

this statement is to say "y implies B'. The statement megns that

«

LS

it cannot be\that A 1s true and B is faLse. The" statement says

nothing abgut B in the event A is not true. Consider our il- "
lustration.; In the event the weather 1S clear today, I'am at
.liberty to stay‘home or not as I see fit. The original statement
of 1mp11cation d;es not restrict my behavior if the;heather is

_ clear. In the event A’ 1s not true, the statement "If A&, then
B" has meaning an& is certainly not false. Thus, in this event,
we must consider the statement of implication to be. true even

O

though 1t does not cont¥ibute 1nfdrmation about B

‘ The. Contrapositive. Statements of 1mpJ1cation (If A, then B)
b are of great importarnce in mathematics. They are widely used.
W "If x is divisible by 4, then x 1is divisible by 2.” nIf
| «correspondfhg sides of two triangles are congruent then the tuo
triangles are congruent. Any statement of 1mp11cation can be
made in a variety of ways. We have already noted in Example 5,'
that " implies B" means "If A, then B." The statement "If B
is false, then A 1is false" is called the contrapositive of the
statement "If A, then B." A statement of taplication and 1ts
contrapositive really mean the same thing. We can 'see this by’ ,

considering the following table. ~ In this table we have listed




>

]
¥’

four statements across the top: "A", "B", A implies B", and

’::f( "B is false iﬁplies A 1s false." In the left two columns we
© have listed the four possibilities, for statements A and‘ B, The

S W

bottom row, for instance, d1ists A’ as false and B as false.

A " B m If A, then B If B is false, then H
‘ - is false .t ‘
T T T T 7
T P F oo F )
PN T T g T .
F P T T

+

,IA the third and fourth columns are: listed T and F 'acéording-

. as the statement at the head of tﬁe'pgrtiéular coiumn is true or
false for A and B as listed in the same row. Thus the state-
ment "If A, then B" is shown as false for A ‘"true" and B

"ralse". So also s 1ts contrapositive as listed at the head of
.o : -

the fourth column. If B 1is false, then A cannot be ‘true.

P *

Because the third and fourth columns are-alike,’we conclude that

‘the statemeént "If A, then.B" and 1ts contrapositive have the. .

]

-

same meaning. If'eigher is true the other 1§: If either-is
false, the other is., The contrapositive is important, 1n'pért,
because some statements of implication are easier t? recognize‘ag

true (or false) when stated in the form of the contraposi{ive.~

: Equivalent Statements. A statement of implication and its

= . .
contrapositive are examples of equivalent statements. S0 are the

t 7

7 -

N - . . .

. .
30 \\\
RS . A N ¥ e

] \
N \
e AR » 3,5‘ ) = \ i
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statements’ "A IFPIIEE an=§ nd "If A, then B" In general, two
statements, P and Q, are said to be equivalent if P implies -
@ and. Q° implies. P. In other words, if either statement is

L%

true, the other must also be true.- Lodking at this—informallygqe
may say that P and 'Q are‘equivalent if they are different

’ Y . -
ways of saying the same thing. Let us give an example. Suppose

M and N are;sets. - o -

Let P Dbe.the statement: M 1s a subset of N.

’ ' ]

let Q be the stétement;\ Each element of M 1is an edement
of N. &hen P and Q are equilvalent for

(1) I ‘P 'is'true, then Q is trué;‘and

(2) If Q is true, then, P 1is true. )

Or we can say; gl)’ P implies Q and (2) Q implies 'P.
Wg\might note that eQuivalence has “the following property, "If
each of 'two statements is equivalent to a third, then they are
equivalent to each other. . ) , .

= Fs

The Converse. A statement of implication has a converse,

which in general, 1s not equ&valent to the statement. The converse

of the statemenQ\WA implies B" is the statement "B implies A",
€learly if the statement '% 1mplies B" .and its converse are %oth
true then A is equivalent to B. The-converse 1s particularly )

importazt/iy geome try. We make & statement in the form "If A,

then B é are frequently also interested in the statement
"If B, 'then A", Y . N °
- ’ & S
N L
w NM}‘\;N»«,\\-K/)E {
- 3}
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Censider the following valid proposition of geometry: “If

two angles are vertical to each other, then they are congruent to
each othe .". This is sometimes stated in the form "Vertical angles
are cengru nt." The converse of'this statement would be:o "If two
‘angles are éongruént to each other, then they are mertical tb _each
other." This converse 1s not a valld proposition\of geometry. (i €.,
is ‘not frue) for we may exhibit two angles which are congruent to

each other but which are not vertical to each other.

Exercises 3 1 - ,
1. Iet P be the statement "6 is an even number," gnd let Q be'
the statement "all whole numbers between 5 and }-R are even'.

Write out the statemént indicated (whether or not such is true)

. (a) P and Q - . . B
(b) P of-Q » 4 - o .
(¢). If «P, then. Q S . =

(d) Q is not true (be careful.how you ‘do ‘this)

’

(e) 1If ,Q 18 not true, then P .is true. - s

’,

2. In each of (a) through (e) of. ’1 stateighether the statement

PATNEN S

.‘\.\ R }‘N-——"‘\\AXQ.. -

"given is grue. - 3 .
ha ‘
3. Explain why it is true that if.each of two statements is

equivalent to & third then the twd statements are equivalent

e

to each othepr.

4
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4, Supbose' X and y are numbers. Consider the statement of
Eﬁplicaéiqn4 If x .y 1s positive, then X 18 POSLELVEs s oo

. (a) State its converse. ’ '

(b) -State its contrapositive.

(¢) State which of (a) and (b), if either, is a true statement.

¢

5. Give an example of your own offa statement ‘of implication

. «+(a) which is true.

(b) which 1
(¢) which is true but whose converse is false.
(d) whose converse is true. '
(e) whose contrapositive is true. ) .~
6. If'you are at least vaguely familiar with the notions of
, congruence and ve}t;cal angles, draw two comgruent angles which

€

are not vergical thus Justifyiné the last statement preceding

.

the exerciseg of this section. ° .

2. Postulates and Proof.

In.é@y diEcussion, we assume a good many things. We assume

that spécific words mean what we understand them to mean. We

v

assume fhe'prqperties of elementary logic--that.seﬁtences mean what

they are supposed toj for‘example,‘that‘the statement "If A 1is '.

true, then B 1s true" is equivalent to its éontrapositive: the

-

statement, "If B 1s not true, ther A 'is not true'. We also

have to assume Ssome properties of the particdlar subject matter

-« f
PR . . ‘
. - . [QEPNT S
N ‘
R +
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under discussion. In Euclidéankgeomefry, for instance, we
,usﬁally assume that a line is a set of points and that for any

two points there 1is exactly one .(straight) line containing the .

two points. i . K
- - »

Thg assumptions we make are, so to épgak,ya p°11% of departure
fqr‘odr further ggggy: In formal geometry, we usuaily cqll the
as;umﬁﬁions "postulates". And we q:& t§ write down specifically
what we are assuming to be true. Oéh\;wisg,we would have a rather

~ .

fuzzy base of operations. On the basis of ouf assumptions we can

.

then draw certain conclusions by use of elementary.logic. . We

»

s . . . . &« !
sometimes call conclusfions we can draw "theorems" or~£anQg;itions".

The justifications for the various conclusions abre called oofs:

A ﬁroof of’a theorem 1is an explanation of why the'statement of the

-

theorem must be true (or cannot be false).
to make definitions of words we use if the °

meanings are t already clearly and unambiguously understood.
;o i
.+2hu® words lfke '"angle", "triangle", and "circle" should be

: i .
defined in geometry. Words lifke "and", "is", "there";, and "or", .

are considered to be understood. Theie are some words for- which
, » . v .
we, do .not or cannot give explicit definitiong. These will be the.

so-called undefined terms of our system. In geometry, "point"
"line" and "plane" are examples of undefined terms or conceﬁts.,

The postulates tell us what we assume to be true about points,
b~ . ) X

lines, and planes. - The thebrems tell us ﬁhat we can conclude to

-
- a

be true. ‘

I
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Geometry, like other mathematical subJects, 1s not Jast a .

~

 formal system of definitions, postulates, theorems and proofs to

' *nbe studied, lfarned, memorized and (1f possible) understood. The -

development off irituition and the.pnder\tanding of ideas is at -]
least as imporkant as-the "proof" side of geometry. Geometry in B
the Junior high school is particularly concerned with 1ntroduction

of terminqlogy, the understan?ing of spatial concepts, and the

development of more geometric intuition. Understanding refers to

At

comprehension of 1deas and language. It 1nvolves learning‘of ¢

facts together with 1nterre1ationsh1ps of these facts. It is not .

o

_simple memori ation. Intuition refers to the_anticipation of

facts and igeas before these are pointed out by others. A perso

 facts are and What the theorems ought to be. Naturally,

. >
with‘good'geometric intultion can frequently decide for himself Sj\NQ

at the junior high school level, only a small amOunt of this type

of 1ntu1tioniéan;baoexpectedu~- P S

: N

While proofs .a# such are not stressed in this’%ook, some ex-

N

planation of the form and methods of proof 18 called for. Let us SN

[ *"H»‘[\»"‘*- tn!“

.
consider an example. Suppose we have statements A and- B and
we wish to prove that A implies B, i.e., that the statement S
"If A, then B" 18 true.' 'We eall 2 "A" the hypothesis and "B

.
2 i

the conclusion of the statement.

¢ Sometimes B as a statement is simply a rewording of“A (or
1s 1mmed1ately implied by A) in which case the proof might v

occasionally properly be stated as "obvious". i : “

«

N
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More often, however, the:stetement "If R, thén B is not‘ﬂ
1mmed1ately obviously true. One possible method of proof 1s to
find 1ntermed1ate steps in a "direct" type argument. Perhaps ye
can find statements C and D such that : '

"
[}

* A 1mplies c,
o implie\, D,
and "D implies B.-

Thén we may conclude that A . implies B. For, note that if A

is true, then C must be true, QEEEB/éeanS that D must be frue, .-

-

which means that B must be true (which is'what we wanted to .

,show). :

.

4 When the proof'is in the form. of a sequence of statements .

( ~— .
like the above, it may be that eaohljfep can be’ justified by one

’ ‘ 4 . 7 Lo
known TvOperty. If so, the’argumen is usually easy to follow.

But 1t may be that each step .needs a ggirly lengthy proof ~

1tself. In such cases the form of the argument may get complicated
But the idea of the argument may still be simple.‘ﬁg v,

1
:

Another method of argument 1s the so-called "1nd1rect method"

or argument bxﬁoontradiction.a Suppose we want to show that "if A
v (\\‘ . .
is true, then B is true". If this statément were false, then ’//
)
(1) A would be true :

I

(2) B would be_false.
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_We.suppose both of these are 80, Sﬁecifically we suppose B to
be false. If as a,consequence of A being trué and é being
false it follows that-somg (other) statement 1s both true and

i false, then we haveQa_ contradiction, i.e., a situation that

cannot’ logically arise. -Hence our-assumptions cannot all bé”

. .

true. Therefore it cannot be that A 1s tyue and\ B is false.
-Hence if A, is true then B must also be true which was what we

wanted to show.

.

Examp es o% indirect arguments are scattered throughout the

14

book. We give an elementary example of such an argument here. We

regard a stqgight line as a seggof points. Suppose We have given

.

the broperty that for any two distinct points, there can be at most
one straight line containing them. We wish to prove "If two

distinct straight lines intersect, then their intersection cannot

contain two @isfinct points". The proposition is of the form

"If MA, then B". We suppose B to be falseyi.e., we suppose

the intersection does contain two distinct points. Then

+ (1) each, of the two distinot\sgraight lines of our

hypothesis does contain the two distinct points.
(2) at most one straight Line can-contain the two
points (as is known from the given property).

Statements -{ 1)’ and (2) contradict €ach other. We have a

contradiction. Hence the statement "B 1is false cannot be true

. - .
(¢f A 4is true). Thus "If A 4s true, then B is:true'" as

s ~ §
W\to be shown.
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.In traditional thhngréde geometry, proofs are usually given

in a form of

P -

e L SRl
- (1) statement (1) reason
. (2)//;tatement (2) reason
‘ . " 4 e’ n T
1 ' n s
"o Lo
) (E> statement (k) reason . s
) Q.E.D. ’

2t/

. . ]

The final statement (k) 4s usually the assertion of the conclusion

of the theorem; i.e., "that which was to be shown® or, in Latin, .
'‘Quod Erat Demonstrandum”. ;‘

In actual practice in mathematics, however, proofs are almoét

-

-step procedure, .

-never given in this_form.

or several paragraphs.

is designed not as the

a means of emphasizing

pendence on previously

form for a proof seems
e .
as such, are needed.

form but its validity,

> -3

. [
-

A proof is written,out as a paragraph
The formal presentation in geometry texts
only way to present a proof, but raﬁher’as
the significance of 1mplicafion, the de-
established results, and a 1ogicai‘s§e§;5y-

In junior high school geometry, a more casual

called for in those few cases where proofs,
-

The critical aspect of any proof is not 1ts

i.e., its logical soundness.
¢

-




Finally we ask how we might sho that an "alleged" theorem
is false (on not valid). We might be given a proposition" and-
be asked to determine whether it is true or false. If the .
"proposition” asserts something to be so for all cases of a
certain type, then we can disprove tne_proposition by exhibitingl
an example of this type for which the assertiorn. is not so. Con-;A
sider the statement, '%11 primes aré odd humbers." We can

disprove_ this statement (show it false) by exhibiting the number
6

7

2 which™is a ‘prime and is not an odd number.

¢ ~

» . Exerclses 3-2

\

Write out two or three of the postulates of geometry (as best

~

you-gan remember them).

~y a .
Recall (as best you can) gome propositiion of geometry that we

z s

haven't ‘mentioned. Write it in the "If—-then--" form. Write-

its contrapositive aéﬂ_i&i‘ionxg;se,,if possible. (For some

propositionsfthese are rather Qricky.), - -
- . ) 4
Write, three "theorems" about numbers (in thes"If--, then--"

- * b - P - N ‘
form). Write the-eonverse of one ofathese and the contra-

k)
™

positive of another. ‘ Y
Write out an Yalleged"” theorem of geometry whichﬁyouﬁcan

disprove by example. - F .

Explain why the following two stapements_are not, in gegeral,

-
\

equivalent. K ’

(a) If A, then B . - .

»

(b) If A is false, thén B, is false.,
] .

4L
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._Chapter 4 ‘
G b
) Abstractions and Representations T,
. / e ' |’ - d

. b
For almost all people who study any mathematics, the subject

‘matter is properly regarded as a t00l for use“in problems.that

arise in everyday 11vtpg: Some of these probiéms are technical or
ecieﬁtific Th nature but most afe applications of arithmetic.

The Rroblems of arithmetib usually deal with counting or with .
megﬁurement or with both. . .

®

The system of numbers which we use 13; however, an abstract

system. There are infinitelly many counting numbers, {1,2,3,...)

?

but in applications we never\ count more than a rather small

finite number of objectd in khe world about us, It turns out that
assuming the existence of finitely many counting numbers 1s

extremely useful in mathemdtics whether or not the numbers can be

'conside;ed to correspond to concrete objects in our universe. It

B

is mathematically (bﬁt not physically) unimportant as to whether
or not there are 1nf1n1te1y many objects in our universe: But the
mathématics we get from the assumption of infinitely many counting
numbers 8 of tremenddgg importance in the scientigﬁ% world of

. & \
today. There would be no modern scilence or technology 1f such

pasic assumpfions in mathematics had not been made & long timé agdtﬂ

13




Hence, we should be prepared to accept mathematical systems

(like the number sy%tem) as a%stractions of phenomena in the :

° everyday world. Abstract mathematical systems have helped us and
will continue to help us undergtand our environment.
> The basic concepts of geometry are also mathematical ab-
stractions. A plane, for instance, 1s a mathematical abotraction
of a flat surface. When we want to study the common character-

- istics of .flat surfaces we study planes. We specify properties
,of planes by thinking of common pr0perties of flat surfaces like
walls, floofs, blackboards, etc. o

‘ . _ For any.two poings (of a plané).there is a-poiﬁ{ahhlf—way

between them. This pr0perty o? planes (or of lines)™suggested by

7
thinking about flat surfaces leads to a distinction between the

~mathematical absfraction and the physical reality.

3

B B’
3 2 1 . >

On the mathematical plane there must exist the point Bl (halfway

between A®and B), the point B (halfway between ‘A and B ),

2, "
. the point B (halfway between: A and B ), and - ‘80 on. _ The :
"halving the length" process can be considered continued indefi-
nitely "In the mathematical abstraction this seems reasonable.
But on any flat surface such a process could be performed only a

very.small number of times before the "points" would be



3 4’3
’ 2

indistinguishgble. Try to think of it being performed even 50

1
s

ai

times for instance. Evén wfﬁh‘the sharpest 1n§£ruments it would

«
n

i not he possible. ) . . .

- .Where do these cohsiderations leave us?’ Concepfs like these
‘concerning the mathematical piane have turned out to be exiremely
useful in helping us understand noé onl§imathemat1c% itself but
also many applications of mathematics. Even théhgh the mathe-
matical abstraction does not seem to give a "true" plcture of the
physical object, it frequently is of great value. A well-known
example of this type of reasoning-is the wse of maps for the :
surface of the earth. The usual (flat) map of the earth (Mercator
ProJect19n) involves considerable distortions in gx%reme latitudes
and does not correctly indicate “shortest" paths for long distances.
Nebertheless, suc% m;ps are widely used anq méke possible better
understandings of the surface of the éarthi; The abstractions from
the surface of the earth to the surface of a sphere and from the

¢ ¢

surface of a sphere to a flat surface such as a'map are important,

valuable, and practical. P

°" It is interesting to note herﬁﬁgw@ifference between pure and
applied mathematicians. Pure mathematicians study mathematical
systems as such whereas applied mathematiéians stuq& aﬁblieayions
of such systems to various problems that arise in the world about
us. Both groups of people ére 1mpo¢fant. ‘éome of the really

important scientific advances have come as results of pure

.

e . : Lo
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mathematicians' better understanding of mathematical systems: * The
development of analytic, or coordinate geometry (discussed in
Chapter 12) was a result of pure mathematics--an attempt to under-

stand relationships between mathematical systems. Without some-

thipg 1ike analytic geometry Wwe probably would have no modern

[N

sclence: ,&
+

~ There 1S another side to the éoin of abstraction. While
mathematical systems are abstractions of physical phenomena, we
frequently study the mathematical obJects by considering specific
representations of them. A blackboard 1s a representation of a g
plane. A drawing of a line 18 a representation of the line; 1t is
not the line. Ye often can’understand mathematical systems better

by considering concrete representations of them. 1In fact, much of
our intultlion about mathematical systems comes from considering '
representations of then. Our-intuiﬁion about.geometric space . :
-~-Space as a set of points--comes from our natural awareness of

physical space--the three-dimensional environment in which we 1ive.

But we should not confuse the mathematical system with its

.

representation. We may think of the walls of a room g€s planes, %,
However, the walls are not the planes, just models of them.

Sometimes our language leads to confusion on this score. 'We

should try to think, speak, and write with clarity and precisidn

. - . /
.
v /A « /
. i
i .
.
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The statement "Draw a line" really means '"Draw a representation of
a line." While for simplicity we may use the exﬁression "Draw ‘a

line" we should keep in mind what is meant by 1it. J

Because we shall regard drawings as representations.of
— - o

abstract mathematical objects or entities, it really is mot im-
< . * . -
portant mathematically how "accurate" our drawings or sketches are.

L .
?rawings and SketChif are to suggesQ\ié?ﬁs. Whether we "draw a

fiﬁéﬁ%ffééﬁadéﬁsfﬁwith a straightedge makes no difference mathe-

matically, the thing drawn is only a representation of a line
4 .
anyway. Whether we make drawings freehand or with instruments may,

however,  make some difference pedagogicallj. The nature 8f the
_audience and the uses to which a drawing is to be'put wiiﬁ
frequently determine the type of drawing to be made. We should
be sufficiently careful in sketching to get our ideas acrbss. We

should not be so meticulous that the processes of drawing either

€

interfere with the effective communication of ldeas or replace

ma thematical conéepts with artistic ones. {

« 2

In classical geometry, the unmarked ruler and compass were .
. y * e
the ,"tools" that were allowed. Questions concerning geometric
.constructions using only these "allowable tools" are legitimate

ones in geometry. These questions can be (but usually are not)
s .

phrased in terms of abstract concepts and processes.
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Exercilses

] -

In your own words describe what 1s meant by a mathematical

system as an 'hbstra’tionﬂ. , -~ -

Explain how the symbdls used for numbers may be regarded as
names" or representations" of 7the numbers., ) B

W1thout 1ook1ng ahead to the next chapter, describe or define

a "triangle", - Keep your definition for comparison with that

of the text.

w1thout 1ook1ng ahead to Chapter 5 and’ Chapter 6, describe or

define an "angle". Does a triangle "have" any angles by your

definition? Re-examine your definitions later,
. . p
<
1
L]
N
)
- - .
- ’ '
J . .
" . .
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Chapter 5

Non-Metric Geometry.

\
1. When we say non-metric geomatry, we _are referring to that

)

part of geometry which does not have to do with measurement. We

1

might call It no-measurement geometry. In this'chapter we shall

be reviewing and restating several of the ilmportant facts and

poings %f-view of ‘traditional Euclidean geometry. But in ac- 4

cordance with the chapter title we 'Bhall concern ourselves wilth that
fragnent of Euclidsan geomstry which 1s 1ndependent of“yeasurement.

Very little of ﬁhe'terminslpgy of this chapter will not.be familisr

to ist readerms, We shall, -however, give speclal sr restricﬁed

. \.,\.“_\
" meanings to a.few of the words. . Yo e,

N 4

4 oenmy te

" We copsider space (an abstrﬁffioﬁ of brginary every-day thrge-.
' dimensional space) to‘p; a set of poings. Intuitively speaking, a /
point rebresests and igs fepnesented by a position or‘iocation in
space. * ' . . ‘ ' \

_ \We shall give some of the basic properties of space and 1ts
subsets. There are certain subsets of space which g?egpf funda-
mental importance in Edclide: geometry. The most\important of
these are ésffsight) lines afd planes:. Each (straight) line is a
set of points of spase and eac lane 1is a‘set Sf points of space.
_ We shall understand that each lihe éxtends 1ﬁdefinitel§ far in

both directions. Later, we shall specifically think of portions

e "“V
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.

of iines. inigeometry, we study such things as properties of the |
set of‘all'lines in ‘space or the set of all lines ifr a plane end we ’ i
stud&‘propErties‘of the set of"all planes ' in space.

We intuitively understand a lime torbe nhat we think of,as
streight and a plane to oe%yhat we think of as a flat surface. To

study flat surfaces, we abstract the netion of flatness and call

L4

the mathematical flat surface a plane. To study properties“of ,

pienes, we think of properties of flat surfaces. If we wish to

draw a picture of a plane we draw something suggesting a flat -

. 7
surface. '

Possibiy the most fundamental broperty of the set of limes in ,

N . B
space 1s what we shall call v ' ;
‘ v,

. Property I: For any two distinct points in space, there is

‘one andﬁonly one line containing the two pointst/m\ . n .

. ‘ i
'\7, ~e » Mevpay think of this property ﬁe_ "straight string" . N
D

k Fns‘

A property or the "line of sight" pro /. For any two points

i (positrﬁhs) in a room (with no obstructions), a string can be-
‘;ﬁ&etéged between the two points (there is o¢ne line containing .
/  the two points)t Any other string stretched between the two points
"would occupy the same place as the first string (there is only one :.'
line containiﬁ@ the two.points). If A and B are points we use
the symbol AB to denote the line containing‘A and B. .
We might note here that another 1mporuant proper ty follows

from our Preperty I: i.e., can be proved on the basis of Property

Io ! . * . ": < .
“ . - )
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““Property I-A. If two distinct lines intersect (have'a non-

©

empty intersection), then the intersection is exactly one point.

Proof: Suppose the two distinct lines 21 and £2 are
“such that £)N 4, contains the two distinct’points P and Q. "By ,
\Property I, only oné line can contailrn both P and Q. Therefore \
21 and 22 must be the same line; 1.e., fl and 22 must be different
names for the same line. This contradicts the fact that ﬁl and 12
are distinct and therefore completes the proof. .

We next state a property n?lating the set of all lines with
the set of all planes.

Property ILX.If a line contains two points of a plane, it

lies in the plane. . ) -

N °

We could alternatively say that the line is a subset of the

plane or is contained in the plane. This property practically

describe; what we mean by a surface being flat. We might Bay that
a yurface, is flat if for each pair of points of 1t the line Join-

ing themﬂlies in the surface. s - . o

L4

Note that any plane must extend-ingefinitely°far,°for'it

gontains lines which do. ) e b it

Property II gives us a property of the set of planes. It
tells us something about what planes are like (in terms of lInes)
It does not say what will determine a. plane. To assert -what i;
sufficient to determine Aplar® we have . Lo

Property III For any three distinct points not-all on the

Same line, there is one and only onesplane containing the three

) Qoigts.




. Note the similarity between Properties and III. Property I

AY

says ‘that if A and B are points and A 4s not tﬂe\same as B, then .~ '
there is a unique(line containing A and B, Property III says that
- if A, B, and C are points and, there is no line containing A, B, I
_/”'gnd C, then there is a unjque plane containing A, B, and' C,
Property III might e called the'"three-legged stéol"
property. If you hold a three -legged stool up in a fixed place,
) a flat surface can be held against the three tips of the legs Q\\\
(there is one plane containing the three points) Furthermore, ‘
apy flat surface held against the three tips must coincideanith lhe ‘
first one (there is only one plane containing the three points). . -- 9\&
/,s There 18 an interesting property which follows from Properties

I, II, and III; i.e., is implied by Properties I,%IT, and III. .

. Property III-A. If the’intersection of two distinct planes

- contains "two distinct peints, thenh the intersection must be a «

line. ~ . v

i

) Proof.t Let M, and M2 be the 'distinct planes such that -

~M r)M8 contains the distinct points P and Q. By Prope ty I,

_ $here 1s a unique line (call 1t ) containing P and Q.

- Property II, f is a subset of M and also is a subSet of M

Thereforij%l]Ji?_contains the linng Ir M rlM2 contained any
point R not on,e then P, Q@ and R would be three points not -

the. same 1ine (£ doesn't coritain all three and any line. other ah

)

X

N o 0

EAN
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"4 cannot contaln even P and Q). Then M; and M, would be distingt *
pXanes containing the three points P,'Q and R and Property III ﬁ
says this cannot happen. Therefore, Mir\Mz not onl&-eontains,e;

« but is £; the intersection is a line. Thus Property III-A is

proveq,e KT ’ , e

Another useful property followé from those we-have stated.”
Its prdpf is left to the exercises.

Proper%y III-B.

then there 1s one and only one plane that contains P and.[

e . v

’ ‘ ® i
Exercises T N
. TTT— -
Suppose P, Q, and R are three distinct points and are all in

each of two differepnt planes. *What can be said about-P, Q,s

and ‘R? \\\

Suppose points P, @, and R are in only one plane.. What(pan
. ¥ ‘.
be sald about the line containing P and Q2. . - .

o - N
« -

(a) Suppose three points are not a;§¥§% the" same line. Hoﬁ

many different lines contain at least two'of tg§m°~

Suppose four polnts are n§t ald in the Baﬁe plane. “How,

many different planes contain at least three of them° o .

In (b) how many different lines contain at leaeg %&o gi\:\ﬁ\\
them? ,’5;’ J(/%

\ | \ e




. 4
[

4, (a) How many different lines may contain one point? Two

distinct points? .ot . N .

- '

(b) How many different planes may contain one point? Two

distinct points?/—ll‘t{ree distinct points not on the same
‘ . . 4 -

line? \ ' . A

5. Prove Property III-B. <{ .

<

* .
4

2. Intersections of Lines and Planés in Space. On the basis

of Properties I, II, and IIT we are able to arrive at some con-

clusions concerning the nﬁe of intersections of lines and

planes in space. In fact, opé}-ties I-A and III-A embody just

< such .conclusions.

€

Case I: , Intersection of Two Distinct Lines.

LetXl and Xa ‘denote twd lines with Xl ;4/(2 *\

b

* (a)- Suppose /elﬂfe £d, Lee, "
/()1012 is r;oj: empty. ‘Then “

by Property I-A, /lﬂ)ee:’is

a set’ congisting of a_ single
?

point., We shall show that #

, flU/ee must be a subset of .

one plane. For let P be the point of dnter. -

section of £ and f,. Let @, be a point.or £

“other than P and let Q, be a point of 12 other

than™®. Then P, @, and Q, can not be on any

[}

.  one line 'and thus there is a unique piane ‘

el

.




‘ -conta;ning’P, Ql and Q2 But b\y Property II
. ' th.is plane must Eor;tain ,(1 (si_nyé‘ it contains
. P-an(l,@l) ‘and must contain ,Q.z (since it -con-
) tains P and %)' ’ ) »
(b) Suppose /? ﬂf = ¢, i.e., Q ﬂx is empty.
‘Then one of two situations . is true

1) 'Ql and 122 are subsets /Z

@

of the same pluane. 'In j
!/ thils event, 11 and 12 £
- are called parallel. -lines.

.
i ’ -

’ 11) Xl and 22 ‘are not subgsets of the same
. plané. Then f‘l and ,Qz afe‘qallegl skew
lines. ’Many pairs ‘
of skew lines are ,
suggested by objects \jl :
in 3 room. A |,'nor‘t:h- - \
“ 1 4
A + south" line-on the x
. . t‘
) celling and an "east- - A
Plane M \
’ . west" line on the
’ : Msz. ﬂ pierces M.
floor are skew. '
. 11 and 22 are skew.
Ver might reorganize Case I as follows: . If £] and £, .
are distinc® lines, then elther
1) 1 Ul’ is not'a subset of any oné plane.’
) In this event f and f are skew and,’
9
uiln!iz =¢0I‘ . " oof
” “~
& . . .
» é
re - 2

(9] §
K




_2) flLJX% 1s a'subset of some plane. If
Xlﬂ.fz =g, then<(l»and Ié)are parallel.
If Ilﬂ 12 # &, then Xlﬂ ]2 is one point.
' Ca§e'fE:- Intersection of Two Distinct Planes. ...

g
Let M; and M, denote planes with M # M.

\ *

(a) Suppose M ﬂ M, = ¢, 1.e., My and M, have no
points 1n common. Then-Ml and Mgugre said.to

be parallel. Usually,
—Planes of {fe floor ///'

and celling of a room

“ are parallel.

T

Suppose'MlﬂM2 # ¢, 1.e., M; and M, do inter-

sect. We need one more property of tﬁe‘?jt
o

of planes in space .to handle this case com-
pletely. This property like the others 1is

intui&ively rather clear. T

Property Iv. If two plahes intersect, the Lntersection

contains.more than one point. ’ L e- L .

Therefore if M r\M2 £ @, M r\Ma must contain more than one

.3,

onint. Thus by Property III- A ‘thée N N M
intersection must actually be a .

straight line., Two positions of a

door represent planes whose lnter-

r -
section would be the lime through

- the hingeé of the door.
;




- R
.3 -
@ q _ V . s . \
. . -
, . 5.9 '
] ‘ . .
We may summarize Case‘II,,, . * o
* ° ‘ d ' A
5 - > .
. i) M1Qb12 is empty. 'Then M; and M, are parallel.
* 11) M;N M, 1s not empty, Then M;MM, is a line.
’ ;'Cas'e III: .Intersection of a Line and a Plane, Py ) -
[ - Let M be a plane and let £ be a line, —
i - . ’.‘
. (a) Suppose MNL = &g, i.e., M and £ do not
* intersect. We say that M and £ are parallel
- or that the line £ 1is parallel to the plane
- M. Any line in the plane of the ceiling is
<
) parallel to the plane of the floor.,
U . o - s

%

A

i \ ’ *
M _ .
(b) Suppose MNL £ 0, 1i.e.,.M and £ do intersect.
. Then elther Mﬂﬂ consists of exactly one %ﬁ
or MN{ contains more than one point. 1In ’é-
1dtter case, by Property II, £ must 1ie in M
" or, in pthep/words, ACM.
| M
- | /’P ;.
-
2 4
H e
e :
N 54 — ' . 3
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!5' | 510 . .

. We may sunmmarize Case III. '
1) "MNL 1s empty.

11) MNA 1s one point.

111) Mo 4.

o ]

. Note that in axl of these discussions we have not used the
concept of distance or measure at all. We have been concerned
with what are called "incidence relations , 1.e. intersections
of lines and planes.

In studying and understanding geometg¥b considerations like
ghose of thils sectlon, "the teacher or student ought to think in

terms of. the geometry, that is, typical representations of the

. mathematical objedts. He ought not to memorize facts as such,

l§

but rather he ought to, get the gepmetric point:of-view through
visualization. If he does,ithen he will know the "facts" without
further effort because.he will understand the intgition and
spatial relationships behind this aspect ot geometry.

< Vs 3 -

H
Exercises -

-
~ -

- 1. Describe two pairs of skew lines suggested by edges in your

roome.

2, .0On" your paper, label three points A, B and(C so’tﬂét 'AB is”"

not AC. Draw the Iines AB and e What 1s AB N 182
3.. Carefully fold a piece of paper in half. Does the fold

suggest a line? Stand the folded paper up on a table (or

[

-
- ‘ P . )

desk) so that the fold does not touch the table.: The' paper

-




“w”

T

©

P

- t
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.. N

»

makes sort' of a tent. Do the;') table top and the folded paper

»

. ‘ N
suggest three plahes? Is any point in all three planes? What

L
.

is the 1ntersectﬂg3xof all three planes? Are any ‘two sof the
planes pafaiiel?

Stand the folded paper up on a tab;e with one end of the fold~

t?ucﬁing the table. Are three planes<suggested?“ Is any ¢

point 1ﬁ/gil ﬁhree planes? Whéf is the intersection of the

three planes? o

-

Hold the folded paper so that Just the fold is on thé table

top. Agé three planes suggﬁsted? Is any point in all three

planes? What i3 the intersection of the three planes? .

In each of the situations bf Exercises 3, 4, and 5 Consider

only the line of. the fold anq:the~plane of the table top.

What are the3%nter§ecxions of this line and this ﬁianeg You .

should have three answer}a, “one “for eagp of 3, ¥, and 5. "
e

. LAY T .
Consid hree giifferent“‘liﬁxes, in 4 plane. How many points
- ’ ) ’ ) :
would there be with each’point on east two of the lines?. . *

Draw fogr figures é%owing how @, 1, 2, or 3 might have been

- your answer. Why could, not your answer have been b points?

Consider this sketcl of . house, LT

* ;o .: //E, 7\
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e

and planeg suggested by the figure. Name lines by a pair of

-

points and planes by three points. Name:

‘e (a) A pair of parallel planes.

5

.

(b} -a pair of planes whose intersection 1s a line. )

(c) Three planes that intersect in a point. y

- I8 -
(d) Three planes that intersect in a lire.:
\ . N
{e) A line and a° plane whosé‘ﬁptersection is empty. .

(£)- A pair of parallel lines.; ® 3
RS- . ¥ /' 7
!e(g) A pair of skew lines. f .. o :
- (h) Three lines that intersect in’ a’point. B )

(1) 'Pour planes that have exactly one point'im»common.

’,

.
*
¥

-

3. Betweenness,Segments and Separations.

‘e

f
If P Q, and R are 3 points of a line then it is intuitive

that one must be oetween the othen two.’ In the dnawing P is”
¥

‘between Q and-R. 4.

We shall assume betweenness prdberties bf sets of points on

a line without explicitly stating these, properties. An example of

jbh 4n assumption would be that as.in the figure oelow if C %s
between A and D and B is between A and C then B is between A and

2

D and C 1s between B andD, > . e \ .
1 U . g
C,' « 6'
" A . ‘ N
. . R B . e c
- > \ ! ‘, . <y
A W )
. "/- - - .
v o . N ~
s

We have labeled eight pofnts on the figure. Think of thegggnes‘

@

—.
ra
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Euclid &id not fully appreciate ’Q’ze significancé of:between-.
ness properties, It remained for geometers of the last hundred

yéars to emphasi‘z'e the fyndamental nature of betweenness and its

.
' a

. assoclated concept of order of points on a line.

It 18 not the intention of- this book to give a complete
treatmént of the foundations of geometry. "Rather, here, we -simply
note the importance of the betweenness concept and tacitly assume
what is geOm’etrically evident about betweenness. :

Let £ be a line and let P and Q be points of £+ Then the

P .

- @ J-

- , - /‘ -

. Se‘c of all points which are between P and Q together with the

points P and Q 1s’ called the segment PQ. We use the notation. F'
or QF to denote the segment. Note that PQC(—Q) (the segment PQ is
a subset of‘ the line ?(;—Z)) The;-e will be many éontexts in geometry
when we will find it useful to talk abotit segments, and it is

-—

frequently necessary to distinguish between a line ‘and a segment

. -

.

which is a part of it. . ~ .. v, o

™

We next consider an important relationship which has three

.
.

 similar ma.nifestationsi LT - - - . ‘*"Lw e

-

‘(a) If A 1s a line and P is a point of £ then P separates L

- into two half lines. The set, of points of the line h,

boundary on X of each of the two halI‘ 1ines.

other than P is the union of’ these two half- lines. ' ]
These two half- lines do not intersect. We call P -the Lt




' N . ! 501”’ .
foo f

b) If M is a plane and £ 1s a line in M, then / separates M
. A [l Y )

o

-

into two half-planes. The set of all‘points of M not on
fgis the ﬁnioﬁ of these two half-planes. These two

t.
half-planes do not intersect. We cgll ﬂ the boundary -

in M of each of the two.half-planes. - .

. " .‘

(¢) If S is,space (the set of points of space) and M is a
plane (in S; of course)'ﬁpen M separateé S into two
half-spaces. The set of éi% points of .S not in M is
« !

- . _;he union of‘th§se two hal zspaq%s. These “two ha}g- -
g a
z

L

B " spaces do not intersect., : #
-;»OWebééll M Enhe bdundary-in S of-each-of the two halfagpaqu?

< Let us think of an*exampie. The plang;of the floor separates?%hé

set of-points above the plane from the set of points below the .

4 N M % e -

’Iil&h‘ej. "“_a . . ] T . o S

-

One of the propert;es of* these separations can be stated in
térms of betweenness.. We state -it. for the case‘oﬁ a line

separating & plane (Case B).
i

) " .

s . °




i

R

.-

ot

-:v~1,:>hewh:§lf‘-plahes’bounded By A the sides of £ (in M) and we denote

Let f be a line in the plane M. Let P and Q be points in
different half-planes determined by ,Q Then there is a point of

f betweel:x P and éz. .
Let X andlY be points in the same half-plane determined vy X.

\Then no point of £ 1s vetwéen X and Y. In other words, we have a

. - '
criterion for 'deteﬁ>ning whether two peints of M not on /Q are in

the same half-plane bounded by f They aré in the séme hal_f:-blane

if ‘a.pd on.ly .Lf.‘ no point of £ is be}ween them. Analogous statements

can be made in Case A of a point separating a line and in Case C

- B
of a’plane Separating space.’

Sometimes in-Case B of a line R separating a pl%.n_e M we calls

-

fthe-.sigies of K by names of points in the sg.des. In the figure

. “‘faBél\'r‘e Wé say the P-side of ], the 'X-side of £, the Y-side of £ or

¢

. -l:’: A!! . .
the Q-s’idgi of »/Q. Note that the first three of these are dif{‘erent )
names for the same set. The P-side of £ 1s the X-side of £ i

P

our example. We also‘spmetfl.ﬁies call the Q-side'.of X the "non-P- .
- .

side of 4", ) . . -
; g .

8 . 2

%
1

ST SN




Finally, we wish to intrdduqe the term‘ray;” Ifze.is a line

and P is a point of £ then P separates 1 into two half-lines

(neither'containing P): A set of points consisting of ®either of

these half-lines together with P 1s called a ray of the line.

The point P 1is caljed the endpoint of such a ray. We denote.the .

ray as §§ where Q 1s some other point of the ray. In' our

-

notation Fﬁ # Qﬁ. ) ) |
Note' that for the line in the figure:

= s
(1) -3 - - '
(2) TN BF =TX. -
. (3) BN ‘6:‘6 - | - e
(4) BXN B4 is the point P itself, ’ ’ :
ffi) Bg = ;a (or a;, ete.)

(5)

’ e Exercises B3

.

1. Draw a hori“tal line. Label four points on it P, Q, R, and

S in that order frdm left to right. Name two segments,

(a)

".whose intersection is a point.

&
whose intersection is a segment.

v . -

‘whose intersection is empty. ‘ .

hhose'union i1s not a segment.'




.ABﬂCD is one point.

‘these things, explain why We cannot say that "'threugh any

- T saT ' !

.
o

Draw a line. Label three poilnts of the line A, B, and C with
B between A and C. .

. (a) What 1s TBNEC?
" (b) What is AENEC?

(¢) What 1s EUE”
(d) What is TBUZAC? _
Draw a segment. Label i‘ts endpoints X and Y. Is there’a palir
of points oi‘ XY with Y between them? Is there a palr of points
of XY with Y between them?

. -

Draw two segments AB and TD for which ABNTD 18 empty but .

]

Draw two segments 'P—Q' and RS for which PGNRS 1s empty but .
§3 18 g. . - i . '. ' ‘ * .
Let A and B be two points. Is 1t true that there 15 exactly

b <4
one segment containing A and B? Draw a figure expla ing this .

@ e
“

problem and your aqswer T & . e

In some older geometry books the authors did not make any ‘

distinction-between a line‘and a segment. They called each )

a "straight line". With "straight line" me’aning elther of

two points there is exactagr one straight line."

Consider the figure at the right. ‘

(a) Is the R-side of £ the same
.as the S-side of £? S

x -




’

<

(b) Is the R-side of A the same . . -

as the YQis1ad?’
(¢) Af; the intersections of £ - v
and PQ, £ and RS empty? ~»
(d) Are the intersections of £
. and G5, A and PR empty?

(e) Considering the sides of'ﬂ,

are the previous two answers
s - \

what you would expect? v

‘-

Q. Draw a line containing points A and B. What is ABNBA?

10.

11.
12.

’

-

. (€) whose intersection 1is empg§. . .

What i1is the set of points not in Eﬁ? -

Draw a horizontal lihe,: Label four points of 1it™4, B; C, and

- ; :

P in that order from left to right.

Name two rays (using.these points for their description):

.
(a) Whose union 1s the 1ine; .

(v) Whose union is not the line ‘but contains A, B, C, and D.

-

(¢) Whose union does not contain A.
; R :

(4) Vhose intersection is a point. L .

Does a segment sepéfate a“plane? Dbes‘% line separate space?

Draw two horizontal lines k #nd A én your paper: These -

lines are parallel. Label point B oh,f. Is every point of
{ on the P-side of k? Is this question the same as "Does

the P-side of k contain {"?

“

¥
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: s ‘ - ' '
13. The idea of a plane separating space is related to the idea

J of'the surface of a box separating the inside from the ouf-

{-side; If P is a point on the inside and Q a point on the.
outside of a box, does PQ intersect the surfai??

1%, Explain how the uniorf of two half-planes might be a plane.

15. If A\apd B are ;oints on ‘the same side\of the plane Y (in

) » pre .
_ space), must Xﬁ A M be empty? Can AB,\ M be empty?

v

4, Angles and Parallel Lines. . , ¥
~

Let A, B, and C be three points not-all on the same straight

line.

Then by Property‘III of Section i, there is a unique plane which
\/ r
conggins A, B, and C. By Property II of Section 1, the plane

o : <>
-which contains A, B, and C also contains the linesﬁﬁi BC, and

<>
AC and, of course, all subsets of these lines.,

The set BEUBC (the union of the ray BR and the ray BE) is

_called the angle ABC (or /ABC).¥ B, is called the vertex of the

angle. The letter Qesignatingpthe vertex is-always written as
tqivmiddle of the three letters denoting the angle. -We note that
/ABC = /CBA'but /ABC # /ACB.- By the definition above an angle is

k) v

e -~
P . . .
. 14 ‘
, . .
» . - M i

pt
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a set of points and 18 a subset of a plane. In Chapter 6 qe: ;
shall deal with measures of angles but for the time being Qe ere?
only concerhed with an angle as a set of points. y
We could have, eguivalently, defined an angPe as the union
of two rays ng:mon the same line‘and with a common endpoint.
Note that this definition rules out "straight angles" and
%ero-degree angles as angles. Some people (and some mathe-
maticians) may gbjJect to this restrictive definition but because
of its simplicity, the useful purposes this definition serves, and
the difficulties inherent in other possible definitions, we choose
to use it. In Chapter 11 (on the circle), arcs and central angles
of variohs degree measures are discussed, o ,
An angle (like a line) separates the plane of’which it is a
subset'into two parts which are called_the interior and the

exterlor . of the angle.; The angle is pot in either part. The

'shaded portion below is the exterior, the unshaded portion the
.. » <

. .

interior of ZXYZ.

¢

-
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To be pretise, we define the interior of the /XYZ aB the
1*' 2 -

intersection of the two half-planes, the Z-side of?ﬁ?'and the
X~-side of’%ﬁ?. In the drawing the point P is in the interror of
the angle for P is on the Z-;ide of }Y and i8 on the X-gide of XZ.
THe exterior of the aﬁgle ZXYZ is defined to be the set of all

points «of the plane which are not on the angle or in'its 1nteyior.

The points Q, R, and V are-all in theJexterior of the angle.

<

. ) Two angles are said to be vertical if thelr union is the

-

union of two lines. Two angles are said to be supplementary
* A\

(or supplement each other) 4f their union is the union of a line
‘and a ray. (In other contexts, itlwill be convenient .to say
5 that two angles are supp%ementary if 'the sum of their degree
measures is 180. They need not be "agjacent".)

Suppose Iﬁ and PQ are .two segments as in the figure. We
<> rud
suppose PBf\AQ 4s the point O. :

", We wish to egtabl}sh 5 one-to-one correspondence %etween the set‘
N ’ ’

‘of points of AB and ‘the setsdf points of PQ. For each point X of
e . .
B, let X' be the point of PQ on the ray 0X. For each point of &B .

there 1is exactlysone such ray and on each éuch ray containing‘a -

»’.»




S

L

point of Kﬁﬂ\there 1s exactly one point off PQ. Furthermore each

point of PQ 1s on one such ray. Hence: by use of these rais
through Oy‘ we have a one ts'one corres dence between the setc
of points of AB s?d the set of points of PQ . ’ .
We might also note that the coqsideration above also gives a
one-to-one correspondence betwee; (1) the set of points of the’
segment AB dnd (11) the set of rays each of)qhich has ‘1ts end-
point at O and lies in the set which is the union of /BOA and its
interior. We miéhtédescribe th correspondence thusly:
for x any point of Kﬁ;' )
‘x{——)'dxf

\

- ~g
Parallel Lines. It has already been observed in Section: 2

that 1f two lines are in the same plane and do not intersect thef
they are said to be parallel. ~The concept_of two lines being
parallel does not involve Eeasurement{‘it.ihvolves non-intersegtion

. K
of the palr of lines which are in the same, plane., However; most

%riteria for determining whether two lines are parallel involve-

. 4
concepts of measurement: of equal distances or of congruent

a

angles.

Historically, Euclid stated his famous parallel pdstulate

~ e -~ - -~ .-
y

which rephrased asserts o ’

}

., which contains E.and does not Intersect g, .o

e | °

>

¥




.In Euclidean geometry, this property is regarded as intuitively _
L € ' Do -
clear. . . : .

We may deduce several other properties from Properties I - V.

) . - . .
- Property V-A. If ﬂl and 22 and k are three distinct lines-

N 4

in a'plane M, {, and £, are parallel and k intersects £, then k

intersects f2‘ . . L\

i A,

°

}%

,

" Proof: Let P be the point ot intersection of f and k. Then
by Property V; there is only one line in M which contains P and

does not intersect Ka. Butlkl is such a line. Tpereﬂore.k must

’ e

intersect f ’ T i

We might note that if £, and Z are parallel itnex*and k 1s

a line in space which intersects f s k need no%® intersect.f for
"7 K and £, might be skewlimes.. ° .

.

~ Property’ V- “B: - I1f fl, XQ and k ‘are three distinct lines in a

CRA

plane, ﬂ and. {, are- parallel and is parallel to Xl,then k is

parallel to 12.
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/ - b Al . A
- — _ _ | \
. _ Proof: If Y inte sécted.l then by Property V-A, k would
- intepsect f also and k is given as parallel to 1&. - .
//A property lilke X;B but without the restriction that th@ ‘A‘

. 4

lines all be in a plane 1s also true., The argumént is more
complicated than that given. For instance, it 1s necessary)to
prove that k and f must be in the samg plane.

There are some contexts in which we want to talk about 'seg-

-’

ments or rays being parallel. Two segments or a segment and a \

B}

ray or two rays are 'sald to be parallel if the lines containin%'//

these segments or rays are parallel. A para{lelogram, for

1nstance, i1s.a simple closed curve which is the ﬁﬁ/on of four

-

segments with'each parallel to sbme other. Sometimes the symbol
"IV is used to mean "parallel" . For example, AB || P& means that
the Segments AB and PQ are parallel to each other. ‘ﬁhe symbolZ:7

i1s used to denote a parallelogram in the same sense that 'A is

*
used to denote a triangle.* : T

’ ‘ - . - .
" . ¢ . * \_)
) Z . EXercises 5- h -

- -1, Label three points X, & and 2 not all on mhe same line.

(a) Draw ZXYZ and 4xzy.\ Are they different angles? Why"
(b) . Is Z&X? different from both the angles you have drawn?

2. If possible, make-sketehes in which the intersection ofttwo
.~ angles 1% E I
) _ {a) the empty set. f (c). a segment: N .
. (b) ‘exactly two points: (d) a ragi . .

L] ~

e e ¥ . . . . B
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3% Draw two angﬂ?’such that the 1nterior of’ one con§ains the

/ . o

@+

, “the intﬁeriors of some two of ?:he'm have’' a non-er.npty ".
integge-ction?

5, In the figure, what dre the following?

(a) ./aBCy TE. | '

(b) /ABCNEAC.

() BANAC.

() /ABCU T vppaopte

6. (a) Express the exterior of

. /ABC in the figure as

« the union of two half- )

planes. . . Q. c

\LTU)’ Draw a figure llke that above and shade first- one and
then. the o\ther of the two half-planes whose Lmion is
the exterior of /ABC. - " -’ -

7. (a) Into how many sets does the union of two parallel lines

' separate the plane. _ E .
(v) Describe. the sets of (a) A B
; in terms of half-planes. . I , .
‘You may think of the fiéure .- C < : D
’ to the right. ) o F
N . . ¢
| o
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. o : -
*' 8. Using lines suggested by edges of a chalk box, give an

]

example'of two parallel iines and a line which fntersects

one but not the other. .

~
-

9., Conslder a set M of~liqé§ qopsisting of all lines in a plane
para}lel to (or phe same as)-é giveh.line_in the plane. For
example; M miéht be the set‘qf all horizgntal'lines on the'\
plane of a chalkboard. Describe

4
> a one-to-one correspondence be- -
. 2 ;

tween M and the set of points of

- a 1ine { which intersects each

- -

line of M,

10. . Using thé figure on the rikht, list
"(a) all paifs of vertical angles, .

"(b) all pairs of supplementary

“

angles. ,
- PR ;

£ ¢

-

'5. Special Subsets of Planes in Space.

Let A, B, and C be 3 points not all on the' same (straight)
. 4/1;. .
line. .- ¥

- The triangle ABC (or A ABC)
18 the union of the segments AB,
BC and AT. In notation,

A ABC = ABBUECURC. =




ety
A

¥ ~

- Thus' a triangle is.a set 9'f points_ and 1s. a subset of a plane.
The points A, B, and C are called the vertices of the triangle and
the angles [ABC, /ACB and ZBA(S are calle|d'the angles of the
':criangle ABC. Note that an a:igle‘of a triangle is hot a.subset
L/ of the triangle. An interior of an angle 1s hot a subsef of the
“‘angle nor- i& the boundary of a half-plane a subset.of. the half-
plane. It is very common in mathematics as well‘ as 1n‘ ordinary
] language 'to use terminology l}ke this. For example, w‘e say "a
radius é.nd a cehter Qﬁ_é cirgle‘: but neither is a part of the
¢ cirglg. We‘speak, of a’ triangle ha’vin,g an‘area but the a;rea (which
is a number of square units) ié not a subset of the triangle ‘r;u't
r!*a\ther a number assodclated with the triangle. Thus our use of

] Lo .- -l
language 1s\consiitenu with“previous usage.

.

. It is j.ntuitively rather clear what we would mean by the .
s 1nterior of theAABC. The interior of A ABC can eas(y be defined
as the intersectlion of the three half-planes: The A-side of BC
the B-side of RE) and the C-side of EB->. The “interior uis a set of
points.\ The intersection of a ?riangle and its interior is
empty. The exterior ‘of A ABC 1s the ée'd of all po‘ints of the
plane containing A, B, aI"ld C which a{re-not on the tri’é%gle or' in,
its 1nter16r. We could aldo say that ~the exterior of: the A ABC is
the union of the non C-side . of AB thé non A- side of BC and: the non

, -
¢ B-side ‘of AC. . . 4
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In geometry, there are many other gigures, like triangles,
which naturally arise. You are familiar witn quadrilaterals,
pentagons,'rectangles, circles, etc. Note that the latter two .
of these involve concepts of measure. The(rectangle involves tHe
" concept of a riéht angle (measurement of an angle) and a circle‘
ipvolves the concept of a 1ength (the radius) and hence measure-
ment of a segment. ;t is convenient to have one term which refers’
to all figures like those mentioned in this paragraph. We use the.
expression simple*closed curve". An gccurate definition of o

"simple .closed gurve" involves concepts beyond those we choose to
introduce here, 3§gt"for\our=purposes \\may th?nk of a simple
closed curve in a plane adgg set of points which may be represented
by a figure drawn in the plane without lifting the pencil with
the first and last points drawh coinciding but with no other (

points coinciding.i : - .

. Yy .
Examples of figures which represent simple closed curves are

the\following;

A

Examples of figuresswhich do not represent simple closed

curVes are the following: >

5@'@@




One of the importaht geometric theorems of the past cehtury
; .
18 the sheorem that every simple £losed curve in a plane geparates
the plane' into two sets, an interior and an exterior. The simple

closed curve is the bouhdary of each. We call the interior or
. . ~ ., ’ o
the exterior (or a similar set) a region in the plane.

.

A polX gonal path (or broken- line path) is a union of segmerits
porygonal

R

Ty, TQ’ -— Tn such that each has an endpoint in common witA the

_following one and there are no other 1ntepsections. Examples of

polygonal paths are:

-

Note that 1n either figure below, it is not easy to telliwhether a

point 1s 1n the Interior or the exterior or even 1if t ere 1s an
interior or an exterior.- One can observe the interior or exterior
- .
o

T

‘by shading or coloring near the curve without croésing the curve.

For»any simple cLosed curve J in thg‘plane, the plane is the

‘v&
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union of 3, sets no two of wh;ich intersect: the set J,, the
interior of J and the exterior of J. We can recognize whether two(
points P and @ not on J lle one in the interlor and one in the
exterior.by the following. criterion.
If .every,polygonal path (in the pl‘ane) f"rom P.to Q intersects

. J, then one of P and @ is in the .interior and one is. in the , ‘
exterior., On the contrary, if some polygonal path from P to Q
&x the plane) does not intersect J theri P and Q are both in the

~ interior or are both in the exterior.

L&
* ' Exercises 5-5 . . &
1. Label three points A, B, and C not alil on the same.line.
Draw AB AC;. and 3. A é. : _ .
/ (2) Sh‘e the C-side of AB. Shade the A-side of §E. What .
*" N " set is now doubly shaded? . . BN '
¢ (b) Shade the B-side of AQ. What set is now triply shaded? .
2. Draw a triangle AEC. o - .

(a) In the triangle, what is ABM7AC? i

(t;y) Does the triangle contain any rays or naif .s? ¢
(.c) In the drawing extend AB in both directions to obtain ﬁ.
.\ aWhat is TBN AB? —_ 3

(d) What is ABN A ABC? '. ' .




~
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-

.

Refer,to.the figugp on the
I’igﬁto o -
(a) What is TWN AABC?

(b) Name the four triangles  © . ¢ YOS
( in the figure. .
(c) Which of the labeled points, X .
if any,\ are in the interior , - ’
of any of the triangles? . . , ¢
il

(d) Wnich of the labeled points, if ény, are in the
" L.
‘exterlor of any of the triangleg?

. € .
e) Name a point on tM same side of WY as C and one on

Q

4 -+ the opposite sidé. .

5

raw a figure like that of Exercise 4. 7

(a) _Label & pdint P not in the interior of any of the
* triangles, . ) . ‘ .

(b)Y Label a point Q inside two of the triangles.

(¢) Labvel a point R in ‘the interior of AABC but not in

the interior of any of the other triangles. (It can

be done. ) . - . .

If posfible, make sketches in which the intersection of )
triang¥eés 4s: -

(a)” the empty set. - -

L 4

(b) exactly two points,
(c) "exactly four points. : .
. E 4

(a)

5 @ oo -
¢ * *

2

A4

o . - <

—
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Draw a figure representing' two simple closed curves whose
1nter‘section 1s exactly ty‘fo polifits. How many simple closed .
curves are represén'ced in your" fig’\.}re?l L
In theA-fig}lre on the righ)c, deScribe_ 1Y

R !
the region between the simple closed Y, »
t ’ 4 v

curves in term§ of intersection, in- s .

terior and exterior. o s ‘ .
» Q\

8+ Draw two triangles w'hose intersection is a side of each. 1Is

9.

10.

- (b) Draw a'figure and shade the@

(c) Describe, in terms of rays the

. the- 1nteri'or, of J. Z

the union of the other sides of both triangles a simple

.closed curve? How many simple closed curves are represented

in your -figure?

£}

Think of X and Y as bugs which can crawl anywhere in a plane.

. List three different simple sets of points in the plane any

‘e

-

one of .v{h‘ich willl provide af%oundary between*% and Y.
The line £ and the simpl; closed -
curve J are as éhown 1'n the figure.' ) ) ’r
(a) . What 18 JNA° - ””,;
intersection of‘ the 1ntqr1951" - |
of J and the C-s3ide &f £ A

set of points on £ not in - -

1
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{
Draw two™simple closed curves whose interiors intersect in

'th‘ree different regions.

’ .

Explain why the intersection of a simple closed curve and a

line cannot contain exactly three points if the ‘curve crosses

the 1ihe when it intersects it. '
In the (plane) figure on the
right dgécribe a one- to one
correspondence between the ‘
set-of rays with endpeint

at P and the set of points

.

of the triangle. : .

s L Y
Descﬁibe a oﬁé'to'one'correspondence betwgen” the set

" of pqints of the trianglé\and the set of polnts of the

othen simple closed curve.

Draw two éimple closed curves, one Iin the interior of the

other such that for no point P do the rays from P establish

a one-to~one corgespondence between the two curves.

foe !
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» Chapter 6 \

. Measurement BN

3. Continuous Quantities and Length.

Ay

There are some numerical questions for which the correct
answer, in the nature of things, must be a counting numeer or
zero. -How many children are in the 8th grade at your school?
How many automobiles are registered in your state? In either'
case, a numerical answer which is not a whole number is ridicu-

1ous.' A quantity for which a counting process as such is

‘“\appropriate s called a discrete quantity. —

N

There are some quantities--called continuous quantities--

_which require measuring and.for~wh1i$rcountiné as such is ins

appropriate. How long is the house? How hot didﬁit get yester-
day? -What is the area of the rug? Questions of this type have
numerical answers which are obtained by measuring (or eBtimating
measurements). Answers may be given in terms of whole numbers

or they may 1nvelve rational milbers or fractions. Answers. that

are given are not absglutely precise as such. The accuracy of the

number used is usually restricted by unevenness in the ébject

measured, by the measuring instrument we use, and by our own

”

intention in approximating an. answer. -




In Chapter 7, Wwe shall investigate accuracy and precision of
measurement in more detgga In this chapter we confine ourselves

/J/ to the meaningéof measurement. ) ‘)

Among quantities we measure are length areg, volume, éngle
J P
gize, temperature, speed, “voltage and duration of time (to K
mention only a few). In this chapter and book we are primarily

concegned with the measurement of geometric quantities like

length, area, volume and angle size. Many’of our observations are
epplicable to consideration of other quantities but wexstress,the
geometric aspects. : ) ‘
In the previtus chapter we observed t%at geometric space and’
its subsets like lines and planes-were abséractions of physical
objects in’ the world about us. In particular, lines were
abstreq;igag~3£ straight edges (but withou% limits op endpoints).
A segment (wnich is a‘Subset ef a line) is §n abstraction of‘seme-
thing like an edge of a box or a taut string stretched between two
. 7 obJects (points). If we want to measure the}iength of something
,/in the physjical™world we have an analogous geémetric problem of
measuring the length of a se nt. Thus in studying the process
of measuring.thehlengths of physical objects we tudy the process
of measuring-segments in geometry and, .even\more 1mportant we
study the meaning of 1ength in geometry (of distance between pairs i
gf points), Our study of length in geometry, ‘then, éives s in-

0

sight and understanding of the measurement of length of any
J
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straight object in ihe world about us whether tPe object be a DiQL,_J//

-

a house, or the_straight line path between two sthrs. . .
In what follows we try to develop fundamentalg?elationehips
ur

between the idea of congruence, the process of mea ement, and

the ' coondinatization of rays and other geometric sets. The

approabh is one of emphasizing concepts and developing under-

standing. .

W 4 '."';,Q'

Length, Let AB and PQ be segments represe ‘b8 below. .

" .
\ ~ __P,//—’Q‘.'

Our first consideration may well be to ask "Which is longer?" ¥

Later ‘we might ask "Which is longer and by how much?" There 1s ‘

something intuitive about comparing two segments te see which 1is

1onger.‘ But let us be more specific. "By what device can-we )

.

compare them?" ‘ i
\\) 1

-

In traditional Euclidean Geometry, there 18 a postnlate to
the effect that a geometric figure can be moved withofit changing

its size or shape.  This

ally think about 1t, is a

rather vague way of”“expressing an idea. What do Wwe mean by

"moving" a metric figure? For a ségment, we think of using a
-

+

compass or a palr of dividers to "move" the eegm:Z:. But even so,

the motion--tne process of moving a copy of a se nt--isntt
N o

P

actually what we have in mind. A better'ngy,of describing what

is meant might be to say that we can construct a copy of the

- A
4 « ‘
. - \ /
) P
g
¢ ) _ q.&'
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ka
figure (segment) near}’on, or in relation to some other figure.

Even this isnt't really what weamean.. From some points of view,

P

. . 3

% the construction process” is not important. What is 1mpontant is X
that there exlsts a copy of the figure in any’ other place where we
;want it to be., ' ' T '

\\/éf?Now what do we'mean by a copy of the segment PQ? We mean a
segment P'%//ﬁﬁich is congruent" to PQ, i.e., a figure of the same
size and shape. In this treatment of geometry we choose to start
with certain postulates about congruence which are assumedqxo Re
*true. Our congruence postulates'(properties) will concern seg-
ments andcaggygs This 1s more elementary than having congruence

\
postulates concern all sorts of figures., We use the symbo} "”" to

5

mean "is congruent to".

S— S— — — t——— —— Sv—— — — —

» there exists exactly one point X on the ray ﬁﬁ such that AX PQ.

.A . /Q/~ | 4\?

Notg that this property is a somewhat more explicit way of telling ~

us that th@ segment Pq may be freely moved without changing its

slze or shape. Later, we shall see how using this property, we

can stgte a more genkral property about moving any geometric' )

figure. ) : . ‘ oo
If,- as in the case of our 1llustration, X is between A and B,. -

_then B is longer than AX and hence longer than Pd., If X were B

4 ~




«. shorter than TFQ.

| S

.

- (1.e., X and B were names for the sa‘rpe;boint) then BB and TQ
would be equally long.s If B were hétWeen A and f(, then ‘AB would

X s )
be' shorter than AX and as X ¥ TG we would say that KB would be

A . ‘ B .

) ~
-

,"Thus P-roperty'I lets us compare any two segments as to

lengthf In'aﬁfu.ll traatment gf' geometry, we should have to state
_ other assurﬁptioné about comparing segxhents 1nc1ud1ng,' i"o;

_instance, that if PQ 15 longer than A5 and 5 is longer than RS -
then Pq is longer than F3. this book, ‘we shall tacitly assume
such further properties wé‘zt listing them. These properties
conc@rning comparison of 1ntervals are exactly what one w0u1d
expect. . . :

One other example of what wé accept 1is that we can compare *

.- TB with PQ or compare TG with T8 giving the same result

’,

v (1) We lay BB off on PG. : :
Q ’ A . L. ,

| , \a N
‘ P x . . ;. R :
&S R -

4

Theref_qre ] 1s longer than AE.
(2) We layﬁoffdnlrﬁ A ' .

-

* P . - l

.y @ ¥G. ‘Therefore_niﬁis;shérten/than..'m B
o and hence.TQ 1s longer® than A, N

o

&

~




6.6

)

Exercises 6-1 n

List five "continuous quantities" not given in the text.

With a compass (or pair of dividers) c’/ompare the segments

below with respect to length,
(a) : ' g

'(n) /

-
.t

Is T B of the same 1ength&s 1B?

Describe the process of comparing BB with itself. .

a

Try to describe in your owns,vords what is meant by saying
‘that AB may be "freely moved". (Improve on the text if “you

can.) ' ’ ’

- °

- ” /

PI T °.

3 i K} .
2. Propertl€s of Length. . °

et 'P'Q bé~a segment. 'I‘here exists a subdlvis}ion of TQ into
two segments PX and\m so that PX.% T. This observation is

) tanta.mount' to 1etéi?g X be the midpoint of T§° (and’ asserts that .
' such 4a"§nidpoint X exists) - Our intuition tells us also that
there exists a subdivisieh of PQ ,intb three non- ovérlapping .

,congruent segments whose union is FQ, (;’he segmen‘ts are ca11ed

(4 1 4

o

k -
non overlapping if no two have any interior point of;either

-

1 » o '
1n.common. : o ! o“/ e o~
N | ° . - R

/
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property should be true in geometry. ‘ .

‘

Pfoperty II.Q,Let ?Q_Re any sggment. Then for any counting:

number'k,’there exist k nonaoveriapping ségments whose,union is
4
b and such that all k segments are congruent to each other.
2 L
‘ In dealing with the.%ecimal representation of the real number

system, we are particularly intérested in the subdivision of a
segnient into '10 congruent subsegments,’ .e.% segments.which are '

subsets of the original. For.now we can begin to see how to.

L}

assoclate real numbers with Segments. The real numbers'will

represent lengths of segmgnts. We think of the segment"? below

.
as subdivided in%o 10 congruent non- overlapping segments.

LS
./“ f—BZ,
T eeiess,ene

.?'p.l_/?a 2 P B B Pr R OUP I

~

. We may think of the segment Tﬂf as having length 1.. The segment

PP 1 Wwould have length 1/10 and'FFs, for instance, would have

hd ¢ < ?

. -

length 6/10. 5 ]

Now each.of*the segments of length -1/10 indicated may be
‘d\psider d as similarly subdivided into 10 congrient subsegments.
. Thus, we ghave segments of length .01, ;02,_.03; «es and so on.,

For' exam le, thelsegment PP.., ]
-8 2 ':_,
icitw

Let us note a fundamental distinction in two different ways -

[

of saying something. If we say "Given a segment, We may sub- e

s I

“divide it into 10 congruent subsegments’, then we are forced to*

4 ] G -

r




L, -

.

think of the process of subdividi‘ng‘ a segment. We maﬁr feel that .

.

. we could perfo¥m the process only a certain number of*ime‘s'. There

v

* Mell be some last occasion at.which -;}e could perform it.
Howéver, if we state the propefty in the form "Given a tfg-
2 Iment, there exists a subdivision of it into 10 non-overlapping
congruent sgbsegfnents" then there is no 'process 1.nvolv1ng' o.ur; own
aétio’n or any time element. The subdivision exists whether or

not there 1s any practicable way Por us to do the subdividing.

Thus we may speak of the number .3333 ---- (which is -§) as
being the leéngteof the segment from P to that point

(a) whjch is in the segment from P- to P , .
hd A 03 ou

- which s also -in the segment fmom P to P v
.33 .3

which is also in the segment from P to P R
_ , .333 .33 .

and so on. .

-

,hmgjarly the next subdivision of any such segLent into 10 congi'uer{t

subsegments yieids ‘accuracy "to the next decimal plage. Thus the

point P . should exist and the length of the segment from
763333 ~—--




- 6 > - P
~ 2 @ .
6. . . . . &
- 9 . // '
. [T, ’ ’l ° . ‘ ) ﬂ;(
PtoP . is 3333 --- = T .This point happens to d)’the )
03333 - 7 . . ?
] g
Same point we get by subdlviding’ P *? into 3 congruent subsegments. -

g
A We have interpreted the positive real nnmbers less than 1 as
lengths of segments laid off from P. Tt frequently is convenient
'to think tead of éach point of the segment as corresponding to
areal ‘numbe --that number which represents the length of the
Asegment from P to the point. By also using numbers gr%ater than .
{\ :_l We can similarly cqrrespond the points of a ray to¢ the positive
. (or zero) re3l numbers.
Another way of describing this ‘point of view is to say that
wWe are coordinatizing" the ray. We are establishing a one-to-

Y

one correspondence between the set of points of the ray and the
4

set of positive real numbers/and zero. The point P corresponds
& N ¢ ~ .
+ to zero, ~ - - v , - .

In order to asSert the existence of the one- to one corre-
<

Spondence whieh we are describing we need to note another baéic -
~

property of g ometry. " l o N fﬂ .. .. J
’ . . . . ! 0~0
= Let XY bl a.ray and let 7B be a'ggment. Let X, e the
. - ' point of X¥ for which° XX, ¥ B.' Let'X, be, the point 3f' r which

3

. .y . ;
bdijlx 2 1B iB. (hy considering the ray 41 h' endpoint at X ) Similarly
let X 3 be .the point for Which Tx = 78, A-—';f—.—-s

,,‘

>

p
s
.
&
c—_—
.
—_—
4

»
~
4
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-

In this way points Xl’ xza X3, Xu; .e. May be considereo.as

existing.

>

z ' 4
Properiy III: The ray XY is the union of the segments XX,

% T X. ¥Ix N ;
xlxz, X2X3’ X3X4, .oot .

.

This property says that each point the ray is in some ¢
segment X 1+1 or in other words that the successive reapplication
' *of the segment B to ¥ covers all of %Y.

Thus we see that the one-to-one correspondence between the

"

_set o§~;31nts of the ray and the set of positive real numbers and

' : . S /
zero can be set up as follows.. X 0 ) . <
xlera 1. ' .
' Xpe22 P 2
. * A

The points of iil corregpond to~the real numbers from O to 1,
- the points of'izfa to the re§1~numbefs from 1 to 2, etc. The
‘humbers. ang called the coordinates of the points. . | w

The rather 1mportant o Servation,we are now‘ akiné is that
for. any posfitive (or.zero) eal number (i.e., a number Which'can-
be represented as a decimal expansion) there is a c%rresponding

point o# the .ay, f? and - for any point of the ray there 1s a.d>-

corresponding detimal expansiop. a6;> ¥
The positive (or\Zeroj‘reai\nggaers caf ,be thought about in

either of two equivalent ways- :

v )

&

¢
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h (1) as denoting points of thg‘ray f?, or

(2) as denoting lengths of segments on i? wlth one end point
- “of each at X. - We Jlet XY or m(XY).denote the length of XY:
In (1) we are coordinatizing the ray. In (2) We are setting up

.

the principles of measurement oT length.

a -~

]

‘(. The coordinatization of the ray (or its analogue in (2))
involves three basic properties. . S _
(a) Order is preserved, If P, Q, and R are 3 points of the
(r’; ray and Q 1g between P and R, thén the coordtnate of Q
’ 1s between the coordinates of P and R (as numbers)
. (bl: Distance 1is preserved JIf 1B and:gp are on the ray and. °
B %7F§, then thejdifference in the coordinates of A and

¥'< B is'equal to the difference in the coordinates of P,

4

and " Q. . . ) . v
1¢) Dpistance isnadditivei If B is between A and C, then o
. w+ﬁ'm - | .
ﬁ°, The development we. have here may be looked at in another way.

ray can ge coordinatized? and thus can be used as afruler.. Hence

MY

1t says that & ruler exists and can be uied..

N

 The length of. a‘segment is tho%ght of as a number--the unit

e
in the geometric plane being understood. Note, then, that,, =~
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wifﬁogt reference to a unit. But 1n"ap§1y1ng our knowledge of the

N s .
principles of measurement to the every’'day world we are, in the

nature of things, Qitally concerned with the unit of measurement.

_?he_unit of *measurement should alwayé be specified 1n,pract1cal:

problems. We think of a length of a physical-object as a certain
Q . s

number of units and the unit is specified. The number ma& be

called the measure of, the length of the physical object.
In light of these first two sections we now can observe that
L]

the statement "AB ¥ PQ" is equivalent to the statement "AB £pq".

In other words if tyo segments{are eongrusgt; then their lengths
are equal; and if 6ﬁo segment#’are o} equdl length, then tﬁey‘are
congruent ' We can use either type of language as conxenient.

- Note, however, that the statement'qr' " means something quife
different ‘from the other two. BB = PG means that 1B. $¥:} Tq. As a

¢
* o~

consequence, A is P or Q and<B is the other.

! -

Exezcises 6-2 . , ‘
» . i ¢ h ) .
1. Graphically describe the location of m to 3 decimal  places.

Brégyet'v between succes8iv Anteéers, tenths, hundredths

R .
_and thousandths. -
Do the same for /2. . ' ?,/i
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- ‘.
3. (a) Using the figure below, give an example of statement (a)
v . . about order being preserved. ‘ .
’ P Q R S- S
P ry 1 Py L 4 L . ‘l I Py . ~
.o A M v ' B Rl S
0 l‘ 2 ’ 3 . 4‘. 5\ﬁ
(b) Using the same figure, give an example of sta emerfé (b) &

S about distance ‘being preserved. .
I3 ~ ; A4 o
(c) Using the same figure, give an example of statement (¢)
L)

about distance being additive. c - '
4. If we subdivided seggents into just 2 ‘subsegments at each
stage we would have a process suggesting the oinarx
" representation ofﬁthe'real;numbe& system. Explain and draw
‘figures. '(This problem 18 designed particularl§ for those .
‘who have some knowledge of/the binary system. .It could be

used to develop such knowledge ) L .
“

/
- Ll

3. Angle Measure. . S

ey,
* In ‘the previous chapter we,have defined an angle as a set

of points, specifically as the union of jtwo rays having the same
ERR endpoint and with theltwo rays Fot being 04 the Fame lhnec In

the previous section, we introduced the concept of length or.
’ mehsure 6t a segment, Iﬁ
. . . T )
concept offmeasure of an angle. £

+

this section,we similarly introduce the

Ih order to have & notion of size-of angle (or angular

¢ . .

$casure) We first must have a notion of what we/ﬁean 3y saying

-

-,

3
- / Ve | .
1 -
! i
K s
.
B . .
h -, K ‘ A ‘. -
. . . . «
- .
- ) e B . = e 4
N - ‘ ;,}2‘ {;A e . F "\?
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o

that two-angles are congruent (or have thelsame'size) or that one
anglé is larger than the other. We could tazk about noving angles
‘ around or'conétructing copies of them but as before, we'find it
more convenient simply tpfassert the existence of certain angles.
. Property I-A. ‘Let /PQR be an a&gle. Let B be a ray and

let D be a poinﬂ'not on the line AB. Then there exists exactly

-

one angle, ngc, such that [ABC £PQR and C and D are on the

N (in the plane-containing AB and D).

B

same side of the line B

4

In old-fashibned terminology we can think of movihg /PQR

80 that ray éf falls.exactly on. ray EK and ray éﬁ falis_éxcept
R ) <>
.for Q on the D-side of line BA.

be ﬁEz

properties of traditional geometry.

Then the ray’égrered by &R would
q
Thus Property I-A is s"ﬁ to be both intuitive and .1ike .-

.
.

-

)

E%A are quite similar. Each asserts’the
[}

‘existence of exact%y one_figure of a given size starting from a

*‘Properties I and

glven refepence object (point or‘ray) and dn a, given "direct%on"
Property I-A tells us In effect how we can compare two

- . x

¢+ , angles 'to see which/is lerger.

-

s
T

Yrom such reference object.

.~

Y

.
1y

¥ \

1

Ay

DR T A SO ]
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‘Referri g\to the figune above, there is a copy of [PQR, such,
thatﬁ is’ a ray of the copy and the other ray ﬁ lies (except for
Y) on thé X-side of ¥2. If X is,1n the ix}terior of /FYZ then
/PR 16 larger than /XYZ. If X 1s on the ray TW then /HoR 3 [xvz.
And 1f X'1s in the exterior of /WYZ then /PR 1s ‘smaller Ypan /XYZ.

*

s )’roperty‘ II,A Con
Then there exist k congrue ’6 angles which édbdivide the\ihterior

C .
der JABC. k_ b any cdunting number.

Ry -

'*:\ -./v

|of YABC as follows ( e j’ . ¥
e rr— .31’ 2R .. LR .
i-\ IS X AT )
(1) Each angle has B as a vertex, TN
\“ "V

(2) /The interiors of the a.ngles of the subf

f \‘-\:'..\:'-\\.
intersect. - LD el

| o
(5) " The- unfion of the angles and theﬂr{interio&s is ZABC

"

;' toget}‘[er with 1its interior, / A ';-'5;_

)
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, Using this property, we can coordinatize the family of,rays

2
which have endpoint at B and lie on ZABC or in the:interior of

-

\

/ Finally we have a property which is like Property III in gome

mBC. Thefocess 1s like that of‘ coordinatizing the set .of points

of a segme

respects but different in others. ' ’ L
Let 3K be a ray and let /PQR be-an angle. Let 8k, be a ray

such that /A;BA is congruent to /PQR. .

A oo - R.

" Now cogsider ray EK ard let EK be a ray with A, and A on
" opposite.sides dof BAl such that 1}2 1 = Z} BA = Z?QR Similarly
- there exists a ray ﬁKs such that 4}3 5 = /PQR and ‘A, and Al are
- <> g ’
on opposite sides of BA,. Thus there exist rays ﬁKl, EKE,‘ﬁKs, . .
EKH, eso Wit similar .properties. o . ; , . i
nof

' Property III-A. There 1s some nunber n such that A is

I e on the Al—side of BA Aut all points A1 .;., n-1 2re SE.EEE' I
1—side of BA. Furthérmore theri is some angle such that the \\—//)/w
point A2 of this coristruction is on the line BA (but not on the T

I‘ay BA)q § ‘ \ . ‘ e
The first part of|this, prerrty says that fﬁ you reapply any

r
angle endugh times, yop will "get past" the other ray of the line !
; J - . . . ;

you started witﬁ% . ' , {\\J
' Ve
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The eeconq part.of this property asserts that thére is a

- -

right angle, 1.e., an angle which 1s‘congruent to its shppiementf )
- ‘ ‘
We say that two lines are perpendicular to each other if the

union of two rays of these lines 1s a right angle. We use the

L4

. 'symbol | to mean "is perpendicular te",

-

EY . - . ’
As In the case of parallels, it is con?jhient to talk about
lines, segmentsband rays be%pg perpendlcular to each other. For
~ " ‘
. - rd
gxample, two rays or segments are perpendicular to each other if

the lines containing them are. B

From Property II-A, a right angle may be subdividea“}qge 90
congruent ang}es wh&se interiors dontt overlap. Wﬁ,ﬁpeak of an”
angle of such a‘subdivision as an apgle of one degree (or 1° in .

<

4
symbols). It folloys from gonsiderationé {1ge tho'se for segmen

that any angle can be measured in terms of an angle of 1° ‘and

. that the "degree measure" of an angle will-be a positive number

- .

between.0 and 180,

~_ . Important AgPeement. We agree to use the terms "degree

measure of an angle" and "meagure of an angle' synonymously.

TQe

measure of- an angle, then, is a number begtween O and 180 and

the

1 O n

'degree symbol

to use the degree symbol

n O n

"L

n%ed not be used.| However, it is not Mwrong"

and /otRers may sometimes use it

for emphasis or clarity. In notation we write m(/ABC) ab the

© measure of /ABC.

An angle is
than 90 and to b

90.

o

|

|

B

aid to be acute if its (degree) measure dis lees

obtuse if its (degree) measure 1is greatef’than
! .

k..




-

" are sayin

-

¥

P - ‘6.18 ¢ “ " -

It is not difficult ti“see that in applying Property II A L/t_ﬁ‘
—we could have used a subdiyision ofa right angle into any. L
particular number of congruent angles. It is something of an’ 37
historical accHdent that degree measure 13 used for~ enpressing o ;/

4
the slze of an angle, We could ‘Just as Well have used any angle-

<

as our basic unit (or reference) angle.

~

-

{.
Another way of looking at the result of the coordinatization\ESzQ'
L 3
of the family of rays emanating from a given point and lying on

one side of a line is to yiew the rays as in a protraotor. WQ

that an (abstract) prétractor exists as an instrument élg\ .

\ . / Ce .
ang]eso : :. . > a ri y \? )
Th re are SeVeral important properties of geometry w@ich mgy' -~

Y

3¢ sidered ag following from ourjg\gumptions <here. . : o

) (1) The sum of .the }egree measures of an angle and its

5 T

-~ . 4 .supplementyis 180, . ’ .

- v )
(2) If two angles have the same degree measure, they are

. ‘ o - ) ' \;~ o “-‘
v congruent, . ’ R °

- - . .
»

-

. ! . .
(3) Vertical angles are congruent (for they are supplements

L of the samg, angle and hence by (1) haVe the same degrbe

X \ o
. measure an by (2) are, therefore; x ngruent. PO A
(4) If two ang es are congruent,lthey e "the same denge
\ measure. . . ' - - S

s

., (5) Angle measuré‘{s additive. 'If'D’
is in the interior of#/ABC, then
m(/ABC) = m(ZABD) + m([DBC)

»

——
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.Exercises 6-5
Draw two angfes and compare their'"siées" by the process of
the tex?. . ; o |
‘2. Draw an angle abput like the one
in’theifigure. Subdivide it into
. 6 c$ﬁ§§ue5t angles as in tne text.
,You may use a protractor dr dd‘it
approximately, The- "size" of'one\
of the angles of the subdivision
bears what reldtion to the "size"

of zﬁscv

Draw an angle about like that 1n

the figure. Draw a ray.\ Use the

J
procedure of Property III-A and

llnll

find the numﬁer for this-angle,

4, Try to wrestate Property II-A more simply.,' ‘

r

;
/ 5., Try to restate Property IIIPA more simply.

6. Illﬁstrate by a specific mumerical example whaf is meant by

. t""Angle -measure ‘1s* addzziue. -7

~

*

' ‘& Area. . . . L

In the previéus two sections we have developed the notions of

linear measure (length) and.angular measure. With respect to6 a

standard segment fén angle), as a unit any segment (or angle) can

‘be measuned. In thig section, we consider another type of

L
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geometric object--a closed region--and try to measure it with
respect to a standard closed region. Our early discussion Is .
concerned with various types of closed regions. We lay ‘down
principles we shall want to use_ in later chapters. However, in .
~th1s section we shall develop formulas only for rectangnlar regions.
Any simple closed eurve in the plane‘Ts thedbounda?y ofyits
interior. The interior 1s sometimes.called a region. We shall

call the interior'k@gether with its boundary a closed regiona

Another way of saying this 1is that a closed region is the union of

~
LYY

- a simple closed- curve and its interior. . -

»

N |
%// 25—

e

. The figures above reyresent closed regions. How can we
0
tompare two of them to~?ee which is'.larger? The situation is not

« *- quite as simple as in the case of a segment or’angle becauge the
. - . \ . - N
. figures are not all directly comparable to each other. But we

Al

shall see in this section and in Chapters 10 and 11 how we can

get around.this difficulty; v N . !

\
i ‘
We shall use the-term "area" to describe our idea of the

7 R 4 \ . N f
"size" of a closed regién. The area of a closed region will be a

' . U
" number (or a ‘number of standard units).

.
.
N o s s .
. A ¢

*
.
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. . . £ - .
As in Sections 2 and 3 coneerning congruences of segménts and

-
B .

’angies we make a numoer of~fairly explicit assumptions about

closed regions and area, All of the properties we shall state

at our intuitions tells us to expect. M

Property IV. Given a_closed)region, there exist. closed

' ‘regions congruent, to it where appropriate\\:.el, the ‘closed region
dtialld

may bg "freely moved" in the plane. ; ' o

. In Chapter 12,using the coordinate plane, wé shall clarify
y ;

the phrases "where appropriate" and Wfreely moved". For now we
regard them merely ds suggestive&of the . key idea.:

Property V. If two closed regions are. congruent to each

gther; then they have—equal areas:.
. 5 " T ,

Al

Property VI.'fShppose:a.closed region is the union of non-

overlapping closed regions. Then “its area is the sum of tge'areas

7 ~

“of the non overlapping Egosed regions of which t 1s the union:

* Now we come to the question of what we ought to use ‘for a
+"standard” closed region. ‘Several possibilitles are represented

in 'the figures beleow.

S
\\
N

N

-
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In the case of length. and angular measure, all of the obJects we

’ .
were measuring. looked comparable so this question d{d not arise.

A fundamental'criterion of a “'standard" closed region,for

’

. \ , .
area ought to be that the closed region can be expressed as the

union of "small" congrpent non-overlapping closed regions of the

same general type.’

If a closed region satisfies this criterion then we. may
break it up into small non- overlapping pleces and we Wwould know

how to break these pleces up into even smaller ones. A closed
]

circular region is not suitable. We cannot easily break it up

. -

into smaller non- overlapping closed circular regions. Try it.

A rectangular région would satisfy the criterion.

T :

i T————-t———_—

. |
—————

[

o P

— '
g
R YN

There are many d;%%%rent waysz ) 3 can express it as the

“union of smal%er non- overlapping rectangular regions all congruent

to each other., In fact the, rectangular region is delightfully

suitable for‘olr purposes: and we shall use it. But to make things

even easler, for our unit we shall use a special kind of rectangu- -

lar region-~aks\uare region. We want the sides to,be of equal

4
-

tlength. ‘ .

The square (or rectangular) regioh has another fortunate
N }

characteristic. It eurns out that we can describe the area

\

j : ) T




as the prodyct of two lengths whi

measurable.

..
b

Thus‘we-can redu

.areas %o problems of lengt

There is another

out.

-
e

: many(problems of computatioﬁ of~

sumption about area tHat we want to point

are readily observable and
! : TVabLe &

.
-~

Property Vi With respect to a given rectangular region as

-~

-2 unit, theri, £or any other closed region

> dr this oth¢/fregion.

;hi property says that we must get th& same answer no matter

there is_a_unique area

-~ <

5 . how w- fuse our given §guare or nectangulaf region as a unit wifh

resmect to Properties IV - VI. We shall find-~it convenient to

o ,:é one Rarticular procedure.
o, /,’5‘ '} -

/ that which we would get by different but legitimate procedhres.

The answer we get is the same as

-

It ¥s very common and convenient}to talk about the area of

?: rectangles,‘triangles, circles,_and the like instead of talking

. ¢ PEORS . - IR N ! ¢ 'Y
“4pbut® the areas 3f rectangular régtens, f‘or‘examffm:v~A:~:«5’rJuon'g’«':tesw#'«"‘q‘‘\N

we' are aware that it is the regﬁon>(and not the simple closed

curve) which has the area there\seems little confusion in using

)

+ the traditional language. In what follows in this book We shall ° 5

-o‘

use\Eéyh types\of terminology upon occasion, using the region .

. languaae when there is need for emphasis on this congept. °

LIS

The Area of a Rectangular Region, In dealing with U

rectangular regions we assume a\unit length (or segment) t6 be e

given. The*rectangular regionkhas four:sides. OppoEite sides are

% . . .

- N ~ ° N K £
s , ) . o n /

k)
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of equal length. We may describe the rectangular region by giving

=

two numbers which represent the lengths of adjacent sides. We use

' the notation (a by b) to denote a rectangular region with® lengths .

off adjacent sides a and b. The pr@pdrties of rectangles we use

hére and which we have not yet developed- will be explained‘in _ BN
Chapter 9. P o ‘ ' l‘”a:

I

; . bz5
° 5
° A A [ -
'\

?

-Suppose we . havp a rectangular region which 1is b by h.
the figure b is the base and h i; the height. We seek to express
the area in terms of square°units, i.e., in terms of a.square

" . ~

region whpse side is 1 unit. s ;

3

i Ir b and h "COme out evenly" in terms'of whole n mbers of
l

our linear unit then the problem is easy. We tan de ompose the

e
rectangular region into beh non- overlapping squarg unit reglons

(all congruent to-eakh other)? In ‘the figure b ¥ 5 and-h =

the area i1s b -.h_or 15. ° .

’ . Our intuition*is based on’ the "whole'n ber" situation we'

have Just consi ered Ir, however,,the base or the height is

not a whole nugiber of units the logical argument ﬁor the area as

b, h isqmore domplicated. The result hoWever" is still the

> -

A . -
’

l‘j/ustify 'theyéla for any‘b and any h. -

same. We seek to

¢ 3 »
.

&

In - ..

o
T




»

I 6.25’\ ‘

a“

.)“?l

In the general case we are given two rectangular regions R{“
and R2 We wish ‘to expréss the area of R2 in terms of the area

of Rl (Ultimately we are, interested in considering R as being

!

l

S

s

s . this assumption beingfade until later.) ’

‘a unit square region %ut 'ﬁe érgument 1¢ simpler without

./-n

%

°

Y

~

4

S0

T
(NG
R

.

)

4

We tonsider

\

\
N

Rz

v .

t

v

more complichted problem to two easy steps.

this pro}lem in cases and in thls way reduce -a.

~

-4
>

. ‘ Case I. Suppose Ry and R, have a side of each equal to a -

L AR side of the other afd further suppose the other side
~ .
. . . of Ry 1s of Yength 1. \Rl is (a by 1') %nd ¥R2 is
{a by b). e | ‘%ﬁ o
- v , . "3 &g .
a n L
’ -
Y N Y . ’ o] R t
v ,Rl (z’ N 2
) e v s e , - . K
. \ . ..
' TR . P b Qo e
. > ”

From Properties V and VI we know that if we regard R1 as the

union of 10 non- overlapping rectangular régions each being
x D 4 A

‘!.

-

.3




(a by lo) then the area- of any one of these 18 = (Area R ), (for
the areas of these 10 regionSAmust be equal and the sum of their

areas must be (Area le x .

’

. Similarly, the area of a ‘mectangwlar region (a by IUU) is

<

1?56 '(Area Ry ), and so forth.'

<

) P6 ds coordinatized With unit length 1. Hence PQ = b.

-

Now if Pvand Q "are vertices of the base of R2 we may regard

" Consider

the process‘gf laying off non- overlapping copies of Ri on R2

. starting from the left.hand edge and then, having 1aid off all the

1

£

P
>

..

P o Q <
copies of Rl thattare possible, we lay Off coples of an (a by T—)
rectangular region int what is left of R2’ and then copies of an
(a by léo rectgngular regién, and $o on, . This process is
exactly equivalent to the process of finding the coordinate of Q,

namely b, ‘ih terms of the unit length. In other words, {Area Re)

\must be b (Area Rl) ' -,

s

. "Case II. Suppose R; is (1 oy/l) and Reuis (a.by b). We

wish to express 'R, in terms of R;.

. .o
. " ¢
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B

\
’ e -’
v »

We consider a rectangular region R3 which is (a by 1).

Now from Case I,'considering R, and R4

(Area Ry) = a * Area Ry, ° . b

»

and consldering R, and Ry . - " .

.

Area R, = b(Area R3)1

But then = ’ Area B, = b(a ¢ Area R;) o

=b + &+ Area Rl.
IP we now agree to adopt a (1 by 1) square region as our unit
then Area R, = (b » a) in terms of this unit. In our other

symbolism, Area R2 =b « h,.
A

. N .

Note that this gives us the usual formula for the area of a
rectangular region .in terms of the base and altitude (or height)

of the reglfon. .

' . ‘ * Exercises ‘6-4 o ,
1. Explain the distnctdon between an "area" and a "reglon". .

2, Which of the figures-below are the boundaries of regions
which they determine°

TON D

3. If possible, express a. triangular region as the union of four

non-overiapping triangular regions all "congruent" to each -

. other., (You will‘have tpémake a~lot of implicit assumptions,

some of which we will Jjustify later,) , .




¢
»
. o

" ™ ’ -
4. Supposg b.and h are not whole numbers.
‘ ~

-

~

Explain in your own words why the area of a'rectangular

. region (b by h) must be b - h.
. . T8

. .
° - B P
L -

5. * Volume. !
In the preceding section we have observed some of the ideas
- underlying tne concept of area. In this section we note that
analogous considerations are applicable to the concept of volume.
A region in.géometric space 18 the interior of a sphere (vall)

[

or cube or such object. A closed region in space is the union of

such a region and its boundary. The figures below can be éon- -

.

sidered to represent closed regions in space. ) t/

\ 4

Associated With a closed region of such a type is a number (or-a

number of cubic units) called the volume of‘the region. In

- geometry the volume is a numbgr whereas in practical problems a

. , L . . -

Jvolume is expressed as a number of cubic unifs, there being some /

80lid cube which is regarded’as having unit ¥olume. . ’

) . '
. )' . - . .

. 1t S : '

[
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Our first concern about siae (volume) of two closed regions

is to compare them to see whithis larger. Comparisons of closed
4- ""i Q‘
regid%s in space are even harder ‘than comparisons of«clOSed regions|

, in the plane because of a greater diversity of types of figure.

HOWever, as in the area case, it turps out that a rectangular
[ 4
figure is easiest and 5est to use for d\reloping both the concept

of volume and the putation of it. We use a rectangular

woew

parallelepiped (or box) for this purpose and ultimately use a cube

abﬂthe simplest type of rectangular parallelepiped -

-

Technicalfy the terms cube and rectangular parallelepiped

refer to the surfaces,of solid objects in the same sense that

square ,andvrectangle refer to simpte closed‘purves. But analogous-
L] LY

r to the language for area, it 1s commow and convénient to refer to

Y

the volume of-a cybe (or parallelepiped or sphere or pyramid or
‘guch) instead of saying cubical‘region or spherital region, for .
,example. . Thug, when weqsay the vqlume of a cube we reallp'meah ;
_the volume of the closed reglon in space bounded by the cube.
We have propertdes for volume analogous to those we have
mentioned for, area. . - ~

Property IV-A. Gdiven a’closed;region*in space. There exist

.closed’ regions congruent to it where appropriate; f.e., the clesed

" region may be "freely moved" 1n space. J.
- - L
. Property V: If two clOSed regions in spacegare congruent to
°- B
each other, ,then they have equal volumes. . .- -
- . . ~ . ! ) -
. \n . . - v .
. . 2
1Y N - » I L
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Property.VI-A. Suppose a closed region in:spaée is_the N
union 2£ non-overlapping closed regions. Then its volume if the
sum of the volumes ég the Egn-overlapping closed regions 9£ which
it is the union. - ' )
Property VII-A. With respect to a closed rectangular space
region as a unit, any other closed spacé-region Qgg the flgi.ﬁi
.are considering) has a unique volume. - ) ' «

‘ ) ) v,

The:Volume gf_a Rectangular Parallelepiped Region. The con-

siderations here are like those of the preceding section with a
cubical region of side l as our unit of volume. '

_ ‘A rectangular parallelepiped can be described by the lengths'
of three of its edges (no two of these thrge being parallel). We‘
write (a by b by ¢). If each of, a, b, and ¢ is a whole numbep then"

by use of "building blocks" it is easy to see that the volume is

o

,a «be.c or is h - B where we interpret a as the height h and B

as the area of the base with b and ¢ as the lengths of edges of

AT |

,fthe. base.

™

¥ +—
i

|

i

I

]

-

Clearly there are,~in the figure 8 unit §90cks in each of three

levels (tiers) .and thus the volume is 3. 8or 3 « 4 2,
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Theﬁformula V=ac+ Db, ¢ is what is usually used for com-
puting the volume of a’rectangulap parallelepiped. The-formula

V ="h -+ B is what is generalized to formulas for volumes of prisms,
cylinders nd the like. ’ ) ¢
We now give a general proof of the formulé V=a-+b. é;
We are given twé Yectangular paréllelepiped fegions_Rl ‘and R2.

.

We wish to express the volume of R, in terms of the volume of R,. ‘

[y

. . ”k . '& ’a’ "o
Case I. Suppose Bl and R2 have two sides of each equal to.

two sides of the other and that R, has its other
< . .

' - side equal to 1, ~ ' . z
!éga.wdht*‘ PR s
, 4 J -
#f N

S o 1 O

b . e 1 b. ”
i R N e b A o . . . i .
¢ S P Q. .
e e oA — i AT o BT -
-, 2 - Rl s (a b¥ b by 1) A o ,
- R2 is (a2 by b by ¢) - R o
e ‘ . 3 . ' . ® —— o T i a T T e
-~ - - - e T .
<
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. From Properties V-A and VI-A it follows that a region RA( .1)
of'ﬁides (a by b by .1) has vVolume equal to == 0 (Volume Rl)’ a oL

s region R ( 01) of sides (a by b by .01), has volume eQual o I
100(Vqume Rl) and so on., Hence in regarding R, as the union of
copies of Rl (starting from the left hand fgce) and then copies

i

I

of.Rl(.l), and so on, we have that

<

“~

(Volume R2) (Volume Rl)

.
vt -

for the process is equivalent to that of laying off the unit

-
h

segment Jm measuring PQ.

Case II. Suppose’ Rl is (1 by 1 by 1) whereas R2 is
™4 (a by b by c).
;,’:. / - ‘*
° ; . . - .
.\‘;2 . N N .
o~ y L
v R
. > /C c 2
. ) . ¢ -
"M A "3 | Ta : .
- VA : b . b

-We nOquse “two intermediate regions R3 and Ru_wth R3 being,

-

(1 by 1 by c) and Ry being (1 by b by c) : ¢ .

From Case I cons}dering R, and Ry, - : .

Volume Ry = a » (Volume Ry),’




considering Ry and R,

. Volume Ry = b + (Volume R3),

énd’considering R, and Ry Y

Volume Ry = ¢ * (Volume Ry)

Volume Ryga (b + (Volume R3)),,

a « b « (Volume R3)

I

a+bec . (Volume R{)

=a-b.'-c

)

if we agree "c.o use Rl as having unit volume.

Exercises 6-5

.

Explain the distinction between 2 "reglion in the plane" and a

region in space' 1 ! e ce -
' 3
Explain why it would not be convenlent to use a spherical

. closed region; '1.e., the surfa,ce,-oi' a ball and 1_1':5 interior,

as thé unit of. volume. (Refer ‘to. Section 4.)
Suppose a; b, and ¢ are not whole numbers. Explain in your
own words, why the volume of an (a by b by c) rectangular

L4

parallelepiped region must . be a . b *.Le

PN
;#1




~information. We usually have three objectives in mind:

information.

Chapter 7

Accuracy and Préﬁision”

o

«

1. The Significance of Numbers.

When we make a statement we try to convey some sort of
» M 7

7 /
. (1) to make a statement of some sighificance, ) i%//
" (2) to Tmake a statement which is valid, and
® (3) to make a statement which is. not confusing; specifically,

to-make one which does not contain uselessly detailed or irrelevant

/
] . : / Y
°Unfortunately,‘it is frequently necessary to .compromise e

‘}am(u

between these various conslderations. ' This is even true aboutggh

statements involving numbers used to describe "counts“ or

'“measurements" in practical situations. Furthermore, in making

‘ statements about counts or measurements we use many tacit under-

A
standings--some quite subtle- -about what the numbers we are using

-0

mean. Many of these tacit understandings involve ba ic simple
common sense. In this chapter Ne discuss common senee interpre-
tations of the accuracy or precision of numbers;as used bqth in .
counting and in measurement. The roie of cemuon.sense_in under-

standing the_use,and significanbe 6f numbers in counting and

s

T g

' . EYY
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I

mea surament cannot be bveremphasiged; 1t is impossible to lay

y

_down consistent, useful, haTd-ang-FZsé rules fegardlﬁg the mdaning

"

of ‘numbers and their significance.

s

Here we want to draw a ‘clear-cut distinction between thel|”

-~
s ey

principles of ﬁeasurement in the abstract geometric plane as
’etudied in the last chapter and the application of these
principles to measurements in the everyday ﬁg;ld In Chapter 6 we
have done "abstracm“‘measurement ‘to make it possible for us to
understapd basic concepts. In this chapter we‘restrict qur§e1vee
to statements and computations dealing“with practical measurements
(or counts) In Chapter 6, we could assert that the area of.a
geomeﬁric reptangle was equal to the product of the base. times

the height (Area = b - h). The numbers concerned werée precise.

In this' chapter we can dedl only with approximations and to

emphdsi%e this'we shall use the symbol " a" to mean "is approxi-

.
-

mately equal to." - !
Most statements 1nvolv1ng either counting numbers or measure-
ments are; in’ the nature of t?ings, not intended ?o be‘“precise“
or "accurate. \In.many Lnstanceé, they cannot be; 1f\they are
also going to be valid. _Whileifhere may abstractly exist a
-precise count of a set of_objects there may be ﬁo practicable way~”
for humans to know what such co?nt,is. Consider questions .
1nvolving : ‘
H ‘(a) the human popula%tion of the world (at this instant),

" ! . -
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(b) the number of dollar bills in circulation, or .
(¢) “the number of grains Qf sand on Waikiki beach. /

Clearly we cannot give completely precise and valid answers to
such questions. Furthermore, attempts to gire completely precise
answers would not only be incorrect but would also cause conquion
and probably would lead to unnecessary and irrelevant arguments.

In the case of measurements we have an extra complicating

.

LY 4 M , )
factor.” Practically, there is no "exact" measurement. Consider,

.

for example, the length of a table, the area of.a rug, the
distarice to the moon. The "objects"'to be 'measured" aze uneven

and must‘be. Even the standard "meter" in the Bureau of Standards

1

1s accurate only to a few decimal places. So Me recognize that .
any numerical measurement given must be in the nature of things,

an"approximation".[ :

,

In spite of such limitations of applications of our number

system to problems of both counting and measurement, we st111%re

-

ledvto understand a great deal about the physical world by our

study of the "abstract" number system and "abstract" geometry

X
e
= Y

—_—
.and their uses in everyday life. .

&

. With oonsiderations like the foregoing in’mindhwe caéybetter
understand(our use of.numbers in bothlcounting and measurg%ent.

. Wetégrn our attention specificafly ‘to measurements with the g
observation that our remarks restricted to whole numbers apply

o .
also to "counts". / . /T

. )
. 4
» ! R ¢ I
A . i .

114 Lo o

="
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Usually when we usSe numbers in measurements, we use them in

\“\.

P ione of two senses,

(a)' at least this much, or
(b)' closer to this number than to any other comparable one.
Examples where measurements may well:be used withgfhe tacit

\ understanding, of "at least this much" are . .

M.

,

(1) 1 pound of hamburger,
gi})$ a 15' pole vault,
‘ggﬁgj a 6' man (in some senses) and
" (iv) a 1000 temperature (1t was a hundred today). .
Examples where measurements may well be use@ with tpe tacit "
understanding of "éioser to this numbef than to ;ny other ;

> . . ? EY
comparable one" are

. (1) a 6 table,
(11) a 5'10" man, C -
- . . I ,
(111) a 15' room, ° .

(iv) .a 98° temperature (it 1s-98° outside now).

Dépending on the cantexts in which particular measureﬁents

»

* are used, there may be differences of 0p1n10n a8 to ™the" proper

‘ tr ’

\segfe in which the number is meant. -
In mgny 1nstances, where numbers are used in-the "at least

'\

\
this much" sense they are used as 1solated numbers@ggd coﬁ%htations

are not made with them. If computations are going to be made--to

¢ find awerage§ or complete areas, for example--the measuréments are

4

918




: ) 7.5
: l : A .a P
‘usually intended in the 'closer to this' number than to any other
comparable one" sense: .It is convenient for our purposes to agree

+ - ¢

on a conYention concerning our. use of numbers; With the full

knowledge that the convention We adopt is nOt universally appli-

cable, we agree to usa the closer to this number than to aQ&

~ ~
. W
.

other comparable one" meaning. o o e

Greatest Possible Error. The greatest possible error 1n a 2

measurement refers to e largest amount by which the given

5 4
measurement differs from| the "true" measurement of the object.

i//ﬂnstruments. )

Xpress our

In this discussion we asSume proper use and reading

i b‘.f\
The "error" comes from the way

choose fo (must

answer numerically. If we say is 8¢ long, we mean

usually that i1t is closer to n to 7" or 9'. In other words, :

we mean that the "true" length is betweeni7.5' and 8.5'. In this ,
or 1/2 foot). The %}

' / ¥

arid the "true" length isg,

t in this case).

Agreement. Unless the contrarw is

possible error of a measurement given in




t 7(6 e

Let us consider some examples, .

Numeral& -, Place value of last digit Greatest possijle - -,
- used for a purpose other error :
than locating the decimah‘ :
' point .

t . 48.6 - S R .05
9800 : 100, . '50
. 054 .001 . .Q005
830.00 .01 ' 005,

Most readers probably have little question about the first

and third’ examplesr In the Second, the two zeroes are considered

used simply to locate the decimal point and hence neither is the
"last digit to be considered". In the fourth example, the second

and third zeroes are not used simply to locate the decimal point

¥ They could be omitted. Pence they are considered used to indicate

precision and the agreement glves .005 as the,greatest possible

. «
‘error. - ’ - )

"For numbers given in fractional form, the greatest possible

L

« error is understood to Be 1/2 of 1/n where n 1is the deneminator
’

of the fraction. Thus aV;ength of 6 7/8 inches is understood to

have a greatest possible error of 1/16.

- _ - 4Exercises T-1 ‘ ’ T
1. Give three examples (of your own) of "cdunts™ which tanndt be- ..

preeisely known. P

2: Give three examples (of your own) of measurements wsed in the v

"at Jeast this much' sense.




Give two examples of . measurements used in a sense other than
elther of the senses (a) and (b) of the text,’ (One examplé.
might+be "the 4 minute mile")

‘Discuss the fo&lowing answers to the question "What was the

population of New York City ‘in 19509? wilth respect ‘to

conslderations (1), (2) and (3) at the beginning of this

¢hapter.

a). 7,891,957
b) 7,900,000
8,000,000
d) 10, ooo 000 ,

\

e

(the census figure)

»

(
(
(o)
(

(

e)

Give contexts in which ggz, (b), (¢), and (d) would be

greater than 1,000,000 and less than 100,000,000~

reasonable answers.

Find the greatest possible error of each of the followipg

measurements: ’ ’ S

a) 93,000,000 miles R ’

b) 80.1" » ' <

¢) 16 1/4 inches 1’ (:;:::::%\
)’ 3.460 miles - & . ' ' ,

e) 71'yardé S .

L]

28 462 1nches wide." Ty

-
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Explain how our convention on the greatést possible error of a

measurement helps statements about numbers achieve some of the

objectives listed at the beginning of this chapter.
. P i
Explain how 125,000 might be cpnsidered as having a greater

possible error than 120,000. +“As’'a population of a city 1t

1
>
! \

probably would be so considered. Hint: 25 is 1/4 of 100.

2. Precision, Tolerancé, Si ficant Digits, and Relative

Ay P ' -

Errﬂr. '

In the previous section, we- have explained what we mean by
the greatest possible error of a measurement. The prEcision of a
measurement in decimal form is the place valug “of the‘digit we .
used in getting the greatest possible error. In other words, the

precision is simply twilce-the greatest possible error. This

»
<l

:5 technical meaning of the word precision.agrees in principle with
the everyday usage of the word. We might speak of a measurement
which is precise (or accurate) to the.nearest tenth of an‘ineh,
for example. (I2ter we shall give a technical mean}ng of the word

" maccurate “.) We speak of a measurem'ent sf §.24" as more p'recise

.than;gne of 63.9". If we were to ask, "Ho& precisely dquou wang
this.measured?" we might expect an answer llke "To the neArest
tenth ofan inch" or "o the nearest 1/4 of an inch®.

There are many instances 1n which our agreement of the

//' previous section on the greatest possible error 1s not suitable or
N

How -

convenient to describe the actual greatest possible error of &
» . :

S

\ B
,‘7!;}“.5?/\/ N d*-ﬂ,,”f’/“"/\y) \,r““"""'/‘r\)-» ,_,»)w,_‘_,-,..-wf‘ T “‘»#’w«-«»‘ °"“&
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‘84.32", The. 02" is sometimea.called the tolerance of the measure- ‘

»

\ ; » / ’ .

particular measurement. In such instances we may‘indica e the

‘greatest possible error by stating it explicitly. Thus we might

write 84.3" +.O2".‘ We read the symbol " +" as "plus or minus“;
and we are saying that the "true" measurement 18 in between °

84.3" - .02" and 84, 3"+ .02", therefore, between 84.28" ,ande

’

ment. When the tolerance is important (as in machine shop work)

it is very common to give it explicitly (even when it agrees with
the convention we have establisned) ‘One might write 3/8"+ .001".
This indicates a measurement of 3/8 of an inch with an error of

not more than a thousandth of an inch.‘.we can conveniently éombine.

) fractions and decimals in this wi? and It is commonly ddne.

. Another ingtance where our agreement on the greatest poss*bIe

.

error does not always adequately deal with a situation is where

several termlnal zeroes are usedoin a_ numeral representing a whole:
number. Consider 180,000. Our agreement asserts that the greatest
possig}e error is 5,000 (half of 10, OOO) But we would write the
numeral exactly the same way 1f the greatest‘possible error were
500 50, 3, ‘or. r5 -We are saying that we can't really tell if | .
some or all of the zeroes are intended to do more than just locate

-

the decimal point. Sometimes the context of a statement tells us

""what,is intended. We may use a bar ever or under the right—most

zero &Q}cb {s intended. to be precise( Thus.180,000 or 180,000 ..

- has a-gréatest‘possiﬁle error of 50. ~ ‘ ’ y

« T . ’ 4 ’\/

Lt
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The considerations of‘thg”ﬁreceding paragraph suggest ancther
conecept that niturally comes up concerning numbers used in
measurements. This contept fs*that of "a significknt digit" in
thé decimal form of the number. A digit in a decimal numeral is
spoken of as being a "significant digit" if it serves a purpose

other than simply to locate (or emphasize) the decimal. point.
Some exampleg will clapify ‘this: ; .

Numeral T \  Significant digits (in order) -
‘ 48030 \\/ 4,8,0,3
’ . 61.20' -~ - N 6, 1,2,0
o 8n N _ . 8, 41
0.00k29 . o T, 9 7
6.0031 ~._'u,6ooa, -

' In u803o, the "o between ‘the "8" and the "3" is significant,

the othex "0" is not, it fimply 10cates the decimal point

(understood), In the numeral 61,20, the no is significant ‘ B

T

because it is not necessary to have it to locate the decimal’ )

point. In 0.00429, all the zeroe§ are used simpi& to Jocate or-
emphasize the decimal point with, the undefstanding that ‘the left-

‘most zero may or may not be written and if written s simply for

clarity in/{ccating the decimal point and,reading the number, it

- ] .
makes the decimal point stanq‘ou . N s .

.
N . -

- ’ ° a
N - -
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We are sometimes askBd to count the nuimber of sigpificant

digits in a numeral. We can be ‘given instructions to."rbund off":
numbers (i.ei, numerals)‘in cne of two ways; fcr‘instance,
(1) Round off a numeral to the nearest tenth, or
(2) - Round off a numeral to three significant digits.,
Consider 58.108. With respect to either of the instructiohs -
above tne "réunaed off answer" is "58.1". . Rounding off the same
,‘numeral to,four significant digits would yield "58,11", In the
rounding off process we stgé% from the right- and move left. Thete
mgy be ambiguity if the right -most non-zero significant digit is a,

tive. Then we®are at liberty to round off eithér to the lower or

3

'higher figure in the digit to the left of such five. We always

ought to use adl the infonmation available in rounding off.. For

D

example, 3pnsider 437.496. ¥ Rounding off to 4 significant digits
s yields 437.5. ;oupding off 0_3 significant digits .ylelds 437,
for the value of .496 i$ less.than ".5", $- .

«

Relative Error. The. concept of* relative error is the

concept of the relationship (specifically,”the ratio) of_ the
greatest possible error (sometimes called the absolute error) to
the size of the number itself. Specifically, relative error is
greatest possible error . The relative error 1s sometimes ‘ .
measured value ° L. - ) F-
technically called the accuracy of the measuremen€: The moye

-~ - ' FARN
accurate the measurement the smaller the relative error. ILet us

ALl




. T.12° . @ ‘ -
5:0nsi<§er two exanfples. ‘ .
T “9310'0(5,'000 miles | ) .03". 4 .001"
relative errorg: = 9—35’8—86-% |1 relative error = % :
§ . _ o
& .005 ’ . N 3%
- o &' .03 )
We can see that while the measurement on the right is far e
more "p;ecise " (.001" %o ’500‘,00'0 miles') it 15’ about 6 times. less <
accurate (.03 to .605) than the other measurement. T
‘ The disginction between U"gréatest ‘posstble error® and - °
"relative error" is an important one. The.one we want to use
. depends on the con\te.xt. ' ’ ’ i
. zﬁxercisa 7-2 N e s
Jf Assume our agreement on grfatest possible error. Exp?.ain the
staten;ent, The more éignificant diglts there are in a numeral
. the less the re'lazft.'gve_ er:;ror:. " Use examples in your explana-
‘ tion if you wish.'_ ‘ '
2. State which of the following tw.o measurements is more precise;
is more accurate. & . i ‘
. (a) 68.3% and  12.34 ¢ 3 " . .
, (b) 82.01°  and 0.04° '
(¢) 16,000,000 1ight years 4nd 1760 yards ,
. (d) 184 .3 and .84 .02
’ ’ hd
., M . ) .
. 123 7 -, “
-~ TrEsor - - b T 7. 1
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3. How many significant digits are there in dach of thé following

numera 1s?
(a) 14 Y082 " (d) 19,414,500

. (p) 9.600 N (e) 16,000 -

“(¢) 0.0316 | (£) 0.00024
Round off to 3 significant digits
(a) 4.86496
(v) 13.021
(e) 77,455,000
(d) .0152897
What would be meant by the per cent of error in a measurement?
How would it be related to the relative error?

Explain a situation where you would be interested in the

relative error of a\keasurement.

Explain a situatlon where you would be interested in the
/ <

greatest possible error of a measurement,

3. Precision and Accuracy in Computations Involving Addition.

We may frequently use measurements in various computations

Each number we use haszga certain precision and a certain accuracy.

-

We _ask how precise or accurate the sum,(or the produet) of such

. 4 |
numbers will be. The situation getgﬁvery complicated very -rapidly.
The best we can do here is to give some*examples and suggest_ some

reasonable’ "rules of thumb". Some understanding both of the

nature of the problem and the limitations of our "rules" is

i

‘necessary. . .
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~4 : 1. 4 —~ Y- . B
Suppose we want to add two numbers like 18.6 and 23:9. The
greatest possible error is .05 in both cases. Below We/have made -

some computations revealing the greatest pbssible error of the

4 -

sum. ’
least values. . Greatest ralues '
18.55 18.6 " 18.65
23.85 23.9 23.95
. k2.%40 42,5 . 42,60 )

Thus the sum 42.5 really has a greatest possible error of 0.1;
i.e., we know only that the "true" value 18 somewhere between

42.4 and 42.6. We could have written our computations as follows:
. )
18.6.+ + .05
23.9 + .05 :
42.5 + .10

> In effect, Qe add’the greatest,possible érrors of the addends to
find fhe greatest possible error of the sum.

’ “ ... If We hdd three numbers 18.6, 23.9 and 41.2 to add together,
then the greatest possiple error of ‘the -suit” would be 0.15. The

v

more numbers we add together the less precise the answer can be

f
4 . L . [ . b

asserted to be. However,.it is Impractical and ineonvenient to ;‘V
state explicitly the greatest possible error of the sum. So as

in the first 11llustration above, we would write our answer as

42.5 with the standard agreqment that the "greatest possible

grror" is ,05 but with the clear undergtanding that: we gannot be
acertain about this much precision. 1In a sense we are'"caught“;.

we have to compromise between tedhnical validit& of our state-

«

ments and gixing too many details.

¥




ae= v ' If w@ have several measurements to add‘together,'then_the

« 8

"law of averages" makes it unlikely that we will get the largest

1y

possible 1naccu;acy ;n‘each number in the same direction. In
fac?, we expecp‘the "deviat:ions"I of the "true" measarements from f
the measurements we use to compensate for each other in part.
+Thus our use of the answer we get by Qrdinary straightforward
qaiculation is really the best we can do and is 11ke1y‘to be
féirly close to the "true" value. ?

Suppose we want to add 86 to 18.48. Here it simply does 9ot:
make sense to write the answér as 104.48 for in so doing we are ‘1
implying precis%on to the nearest .01 whefeés the 86 presumably
wRs precise only to the nearest unit. Thus we ought to write our
answef as 104 or po§sibly as 104.5 with the .5 interpreted more as
1/2 than as 5/10. The "true" value is quite likely to be some-

.

where between 104 and 105 and thus 104.5 seems like a reasonable

.- e . - . A\ i

answer. . . -
4}

2

" In bank statements and other financial accourts, a figure

like $86 frequently means $86.00 and thus it ts reasonable to

*
]

add to the last cent if desired. ’ . :

\‘D The qﬁestion of accuracy in _addition of measurements 1s even

N
more complicated than that of precision. The sum 1s customarily
. - . /

.more accurate than one of the addends and less accurate than tﬁel

other. [Consider the illustration: - . .

&
pA
Exd * -




7 104 '
¥ j + ‘25 . ‘
‘ 129, '
v - o v
1.0 n ‘
. -I-2—-9— ~ .01

This indicates that the ﬁccuracy of the sum is about :01
+ which is between the computed accuracies of 25 and’ 104.

. In subtraction problems, qhe accuracy of'the difference

v

may be far. less thap.ghe, dccufacy Qf. the bther numbers used.

(In other words, the relative error of the difference may be fa¥

greater than the other relative errors.) Consider the example <

below: : . / B ]
v . 62 " .
- 8 ! 2 ~ .01 \
i s l; & o
R ' é el .01 .
1.0 !
o - -E: R .25

Here the relative error is large because the difference . .

(under subtraction) is a small number. T

2 " .
’ Exeﬁgises.7-3 <\
1. Find the greatest possible error of the sum of
§ T
(a) 180, 160, 140, and 80.
3

(b) 16.8 +.001 and 12.5 + .002. ' :

. :[‘:\4,

o —
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. | . ) .
2. Work out the*aqtuég greatest possible er}or in (86 + 18.48)
as in the text. kﬁint: write 86 as 86 + .5 and 18.48 as |
18.48 * .005.) S “ |
3. G;ve an illust tiéﬁ explaining the greatest possible error
in a subtrgction problem. Are the considerations like ghose
.for addition? \ ‘
‘4, Find éhe felative error of the éum §f
(a) .023, .060, and .055. '
(b) .28 + .01 and .42 + .02.
5. Find the relative error of the difference of
(a) .34 and .24.

(b) 160 * .1 and 100 + .1.

y

4, Precision and Accuracy ;g_Computatlons Involving .

. 7 . . '
Multiplication. ‘ < \ .

The situations relative to the greatest possible error-and
the relative error in multiplication (and division) are even less

satisfactory than those in addition and subtraction. It might be .

r

observed that-the subject of "error theory" is one which is being

4

studied by mathematicians at the present time. The wide-scale .

use of computing Machines makes “error theory" of great importance
k' R

’ ? T 7
today. 2 . X

-

If we multiply two measurements tbgether, what can we say ” .

about the pf@pision of the product? For instance, how many square

b4




by 18 ££.? Most of us

feet are there in a room whiéh is 16 ft.
would’ say "288 sq. ft." but how precise ig our answer? We assume .
* (by our agreement) that lgﬁanqaiehare precise to ‘the nearest unit.

Consider the compuﬁhggpns below. .

) Least values ¥ . Gredatest values
2 7.5 1&63 ' 1&63.5
' 15.5 - 1 16.5
. © .2T71.25 288 305.25

Ih other words the "true" afea:can differ from 288 by as much as
about 17 units. Béing explicits the best we could say is
’ 288 + 17.25 IR
where actually "16.75 1is phe correct greatest poséible érror in the
negative girebtion. The size of the greatest possible error has
" been massively magnifieg in the process of multiplication. We can

see this geometricailx by considering the Tigure below.

/




-

[ -

. .should get 56 every time. - Any,anéwe% other than 56 is simply -
\ ‘ . ( A

-~

7.19 | N “\ '
r,- ™

.
* TE e - \

The 2 by 3. region is enclosed by the heavy segments. The 1 1/2 by

3

2 1/2 posé}pility is indicated on the inside and the.2 1/2 by
3 1/2 'on the outside, A e
QOihg back to_phe.2§8 + 17.25 éése discussed above one -
might Qéli‘ask; "How should the answer be Writtén if we don't wish
to 1nd1cd@e\§he greatest possible error explicitly?" There is ﬁo
clear-cut aﬁswer. Some would prefer 288 but clearly this 1ﬁplies
much greater précision than is present. Sbme would prefer 290.
Here the "true" value would be indicated as being between 285 and
295 which, while not necessarily correct, seems not dhpeasonable.
The figure 300 is far too imprecise for mést purposes. .On the
basis of the three obJecéiyes for stgtemeﬁts listed at tlie begin-

-

ning of ‘this chaptery;, it might beiar%Ped that 290 would be the
v Ay i C R
'%o liKely to be invalid.

be st answeét. The usual 288 seems ¢t
However, for.most pufposgs the answer of 288 is used.

At this stage ;e can draw a distinction between what miéht be
ga1led mumerical fiflelity” in érithmgtic'and preciseness of
météém@tical statepénts. When children multiply 8 by 7 they
wrong. '"Numerical fidelity" is important in arithmetic. But 2n
answer of 56 sq. ft. far the .area of a room 8 f£t. by 7 ft. is

./ i
we assume an answer 1s expected

justifiable primarily because
to e'nearést squag§1ggot, and‘%hen 56 8q. ft. 1s the best we '

can iol The answer 56 sq. ft. is misleading in its implication’of Vs
- ). . ’

-

.
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precision but other possiﬁle answers have their defécts too., If
* R <

is important to understand the limitations of our language and_.

vty - e - > I 8
? 3

conventions,

¢

" We return to some exémples involving computatioqs. Let us
ask how precise linear measurements should be in order for the
product of fhe linear measureﬁents*%b be precise to the\nearest |
unit. Consider an example. s ) |

We want 10 X 20 = 200 to be precise to the nearest unit. i
Iet t Dbe the‘greatest possibli error for each of 16 and 20.} Tﬁeﬁ

we have A ‘
. " . Least values Greatest values -
20 - t . 20 + ¢t ’
-10 - % . . 10 4+ ¢
' 200°- 30t +t2 - 200 + 30t 4+ t2

Now if t 4is small then t2 is much smaller. So let us |

. consider only 30t. Then 30t should be less than .5." In other.

r > ”»
words, . .
o T 1 A -
-~ —— t .Ol.
30t < 5 or t < & or < 6 \
This we See thdt in this case if & < .016 then the greatest Y
pbsgiJle error of the¢ product is about .5. Our méasurements 107

and 20 have .to be very precise for the .product to be reasonably

precise. " v \
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Q}naliy, let us make some obéervétions about .the relative
'ér;or of a product. Hene, in our example, things do better.
P _7_8.85_,‘,“

4

—ia:
16

2 -
18 ) . . . ~

We hdd the relative errors to get the relative error of the .

product. ILet us Jjustify this. Let N and Na be the numbers

mulﬁip‘lied together. let t; and t2 B

greatest possible errors., Thus N

ir respective

.

N ~ . +

-

" ang ts
n
> N
) 2

“are the original relative errors. Now \\//

(N+t) (N+t,2)—N -er_(t-Nm: N)+4¢-

and
bR N

-2 w,2-. PRI e 2 e o s et et T T

(Nl -t ) (N ,-t2) =N, . N, -(tl.N2+t2.Nl)+ tt, S .

‘ .

If ty and t, are small, then t1-ty 1is very small and we

ignore 1t (t; .ty was the .25 of our example). Hence

6 -Nz:!-t2 ;Nl is.(approximately) the greatest possible error

4
in the pfodhct. . Hence

‘relative error




%

- = the relative error

4

)—-'zl)—'
+
=

2 ~ L/

.

and the right hand side 1s the sum of the relative errors of the
two factors. \\\ . : ' '

Exerclses T-4 <

¥ 12

1. Find the greatest possible error and the relative. error of the

prodlfét of
“(a) 12 and 25. . S C -
(b) .8+ .01 and .6 + .02.

IS !

*-2. PFind (apﬁroximately) the greatest. possible erroi/jy the
factors 8 and 12 if the product is to-have a §

/‘ L
. (a) greatest possible error of .1l.
(b). relative error of .l. ' .

(Assume the two factors have the same greatest possible error. J
3. ,A house 1is advertised as 30‘ft, by 36 ft: but each measurement
1s'réally almost’6 inches shorter than the figure given. The,

t

' buyer thought he was getting 1080 square feetgof hougpé. How

much was he actually getting? "
- ‘ ' N - . ) ¢ / '

. .
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A}
error in

Whét 1s.tpe greatest po$siﬁle
given as 6" by 8" b& g"e '
Find the approximate greatest possible

error of the quotiiif/pf 35 divided by

the volume of a box

— s —

error and relative

7.

[3 . .
.
s
.
- -
.
]
S
%
.-
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Chapter 8 : - .

. ‘
: Congruence

2

1. . Informal Constructions.,

In Chdpter 6 we have stated some basic properties about the

exlstence of segments congruent to a given ségment and of angles,

congruent to a given angle. In this section we discuss the 5t

’ geométric constfhctién of such segments and angles and later of
. . . ‘ © 3
' triangles. For these constructions, we assume we have available

+ an unmarked ruler (a straight-edge) and a compass. These were

“the classical Mtools" of the Greek geometers. If we.wanted to
make drawings 6k sketches as distinct from geometric constructions
we could draw figures free-hand or use marked rulers and pro-

. tractors. Heré'we limit ourselves to the classical ™tools". N

Segments. Given a ségmenf 78 and a ray XY¥. How do we find

-

' a point Z on XY such that BB 2 XZ2? . e

~

— i - >

We can adjust the compass so that with the point at A-thq pencll
tip will fall on B. Then with this setting we can put’ the point

at X and mark an arc of a circle which crosses X¥. Call the

’




J

. - : 0

point of intersection Z. Then B ¥ XZ. (We could also mark the

NG R
straight edge--or note a marking on it--and use the marked straight'

edge to find the point Z.)n_Usua!ﬂy in geometry we prefer td use

the compass foy/thié construction whereas in measuring 1eﬂ§ths

in the evgryday world we use the marked straight edge method.

‘ Angles. Given an angle /ABC, a ray X¢ and a point D not on .
the’ line . How do we find a point W on the D-side’of %% such

. that /ABC-= /WXY?

-

" We ¥now such a point exists (from Property -E-A of Chapter 6),
The questiofl is how do we use a ruler or coﬁpags (or goth) to
£Lind 1t?’ With the compass point at B mark off an arc of a circle

intersecting rays B—K and EE. Call the points P and Q respectively.

Mark off an arc of a circle as indicated with center at X, and
with radius edual to BQ (or BP).

Now set the e@mpass to measure the length of Tq (the segment

Loh ,
PQJg!és not'peed to be drawn). With this sgtting and with the

point of the compass at 2 draw an arc 1n%ersepting the are¢ with

K Ay
£y {_‘
. “
\ B

&

- .

’
S
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:zfjgr at X which has already been drawn. Finally if we call

o

ch a point of intersectipon W thenithe angle /WXZ T /ABC. At
-least, 1t looks as if /WXZ should be congruent to /ABC. 1In

Section 2 of this chapter &E pin down the assumptions that let us

assert such to he true.

2

Congruence of Triangles. (Informal). In traditional

geometry, some of the principal theorems deal with congruence of

triangles. We begin our study with some intuitive ohgervations.

Suppose we have givenA ABC. How can we construct a triangle
L.

congruent to AABC by use of a ruler and com§5§§7‘*“““ ——

‘We lay off on the line 53 a segment ATBT which is congruent

2 v

to-AB. (We put the point of the compass at any poilnt A!' and mark
. L 3
an arc. of a circh crossing fa at a point we call Bt,) With A!.

as center we draw a circle {or an.arc of a circle) with radius
equal to the length of AC. With B! as center we draw a cfrcl§ 5
(or an arc of a_ circle) with radius equal to the length of BG..

The two circles we are consldering intersect in two points. Call
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these pointsA(‘:' and C"'. They will be on opposite sides of the
line Q. Then AABC ¥ AA'B!Cl.and\also AABC ¥ AMBrer, If
we were 'tvo try to 'superimpose AARC 6n. AA'B!C!, for instance,
everything would fit. . ) o
We could begin this way. Lay AB on A!B! with KA? on &t (and
.~ hence B on, B!'). Then C would have to fall on tHe circle with
center at A' and radius the length of AC. Also C- would\havb to
fall on the circle with center at’' B! and radius equil to the length
of BC. Therefore C would have to fall on the point C! (or the
point C'!') as these are the only two points on both circles. Now
we could require that C fall on thé C! side of 0 and thus C must
fall on C1t, Therefor:e our congruence seems 1'20 be es;:éblished.

® . A

Similarly AABC = AA'B'C!!'. Thus using a ruler and compass we.

N
have seen how to construct a copy of a triangle.

~

Let us conosider a similar problem. Suppose We ape given

three segments as follows.

A B
¢ D
E F - N

____Construct a triangle whose sides are congruent to AB, CD and EF.’

. ’fhe construction wo(ild go through like the one above. We would

»

138 B
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lay off ATBY with AB We would construct a circle with [

center at A! and with radius the length of TD.

= 'A'B!,
We, would construct
- a circle with center at Bt and with radius the length of EF. Then
1f the two ciqcleswintersect in two points, say X! and Y!, either

X! or Y! may be taken as the third vertex of the desired triangle.

It is interesting to note what would happen if AB = + EF
[or in the other notation if m(AB) = m(CD) + m(EF)]. In this

case the two circles would intersect in Just one point (the point
\s

of tangency) and that point would be on A'B!'. ‘Hence no triangle

could be formed.

\

* Finally 1f AB > (cn + EF) then the intersection of the two

., circles would be the empty set and again no triangle could be

formed. In Chapter 9 we shall note such a relationship again, .

the so-called triangle inequality. In any triangle, the length
of any side is less than the sum of thefiengths of the other two.
* . N i4

Exercises 8fln
1
Draw a ray.

1. Given segments AB and CD below. Label it BO.

With a compass find points X.and Y of PQ such that TX % BB
. °

and'i? = TD. .
.A - B .
C D
, #
/‘
. .. /
/ ' \

139 ;
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" /PQR I /WXY.

8.6 .

Given angle ZPQB below. Draw a ray Y54 and a point Z not on ﬁ.
Construct an angle /WXY sucH that W is on the Z-side of X¥ and

(a) Suppose we have given two segments and one angle,

K P
A B

. : R
Constriict a triangle with two éides congruent to AB and
and CD and Q%th the angle included between these sides
congruent to /PQR. . i . ‘ .
(b) Once the angle and two sides (with the angle between
them) are ksywn is the triangle completely determined?
(¢} Can anybody give ‘two segments and an angle for which

this construction is impossible? Explain.

(a) Suppose’we have given two angl'es and one segment

Construct a triangle with a side congruent to DE and the ° .

two angles adjacent to such side congruent to /ABC and -

/PQR. A



s

)

(c)

5. . (a)

{3

(o)

* Once the two-anglés and the ‘side between them

-3

4

~

are known

“1s the triangle completely determined?

Can(énybody give two angles and a ségment for which this
construction 1s impossible? Explain.

Suppose we have given two segments and one angle

. B
C - D

Construct a triangle with two sides céngruent to.AB and
CD and with an angle not igcluded,between them cdngruent
to /PQR.
congruent to AB. -

Require this angle to be adjacent to the side

The same as (a) except require this angle to be adjacent
to thé side congruent to TD. 1Is the construction
possiblé?ﬂ

Ir Kﬁ were enough longer could the construction of (b)k

>
be done in two different ways?

Can anybody give two gegments and an angle for which
neither the construction of (a) nor that of (b) is

-

possible?

.

P g

«




2. The Meaning of Congruence,

In this section, we try to glve a more explicit definition ofﬁa‘_na
congrience and to show the relationship of‘this definition €o \
previous fGnderstandings., We have said that‘tyo sets of points are
congruent if they have the !same size and shape".‘ In traditional

' terminology,‘this is inters%eted as meaning "if either figure (set

« of points) can be superlmposed on the other", But as we have

remarked in Chaptér 6, the process of Superposition gets us in-
_volred with considerations'of "moving objects around", and,.from

some points of view, the motion involved 1is irrelevant to the idea

adh

e

of congruence. Also' while we shalil be primarily concerned with
congruence between sets of points in a plane, the definition we
use is applicable to sets of points(in space.” The idea of‘ super-
“imposing one billisrd pall on another doesnt't make much sense.
Yet billiard balls are "congruent". The definition we glve |
should'help pin-point'the basic idea of congruence and emphasize

i

its. applicability to various types of figures. . Lo i?
4

]

‘ If we l\ok at 1t in a certaln way, the idea of superimposing
one figure on another leads us directly to our definition of

congruence, : . !




\

_must be the same as the distance between B and X' (in other words,

8.9

Suppose APRQ_can.be superimposed on AABC with R falling on
B, P on‘A and Q on C. Then there exists a 1-1 correspondence ‘
between APRQ'and AABC, each point.of APRQ corresponding to thz;t
point of AABC which it "covers" :when APQR is ﬁuperimposed on
A;ABC. For example, the point X would correspond to the‘point X!
under this correspondence. But?it is not enough simply‘to say
that there exists a 1l-1 correspondence between ‘APRQ and A ABC.

Something else 1is also involved in the notlon of congruence.

Distances must be preserved. ‘Suppose A PRQ is superimposed on
AABC as indicated
Pa——»r A

Qq—bc

LI ":{‘
wy

then for am g gwo points of APRQ, the distance between them, f.e.,

fthe segment Joining them) must be the sa.me as the

‘HL«

.
r%ag’{“q»&m:tween the two points .of. A ABCY ich they cover, i.e.,

P T e

Eet eﬁ tni?wo points of AABC which they correspond to, under i:he,.-*
1-1 coi(‘res ondence. As examples, the disthnce between R and X 1

RX = BX!),the distance between Q and P must be the same as that

between C and A (QP = CA), and the distance bé"t‘@n Q and X must
be the same as that between C and X! (QX = CX')‘.

. These considerations lead us how to our definition:

Definition: Two sets of points are sald to be congruent pro-

a

vided that there is a one-to-one correspondence between them

which preserves distance. 1 )

a




”,

’

N angles.

N

~Mhich preserves distance must exist,

L) ' . -
\ . .
. Ly
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’,

With this definition in mind let us go back to considerations
¢ g

3

of congruence between two segments and congruence between two

Saying that KB 1s congruent to PQ means that there is a one-

-to-one corréspondence between AB and FQ (as sets of points) and

distance is-preserved under this corresponFence. If we think

about laying off PQ om the ray KB as suggested by the drawing

above then P4, Q- B‘end for any point X of PQ there is a
corresponding point X' of AB, Furthermore, distance is preserved
For example, if X*——*-X' and Y-*Q——Y'&\‘ne length of XY 18 equal
totthe lengtg of X'YT, A statement of the existence of a a
congruence shonld be understood to imply the existence of a one-
to-one correspondence whicn Preserves dilstance.

. It is ‘hard to check on whetherall distances between .pairs of-.

o

corresponding points are preserved We want conditions which® we

cdn observe and which tell us that such a one-to-one correspondence

s ® - -
. v
o,

¢ . P

It is reailylpart of our basic understanding about congruence
oft segments that the fonowﬁ;g property holds. We understand
{A B} to mean the set consisting of the tWo elements A and B.

-

e ks
TNTT e 0 N e ! g 6N et e s “w"‘j{)
d

154{4 »
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Property " I'%glf R, S, C and D are points and (R, S} = {c, D},

then RS = TD. Furthermore, there are exactly two congruences of

« RS with CD“which corresponds -{R, 3) with {C, D}. One of these
. oL

corresponds R with C, the -other R with D.

-

One thing this property says is that all segments of a given

length are alike. "Any congruence between two pairs of points

-1nduces a unique congruence between the two segments having these

overeser vama

pairs of points as endpoints. In fact, if (R, S},¥ (C, D} and

R*e——(C, Sjﬁ;:>D then there is a unique one-to-one correspondence’

between RS and TD which re§g?ve8"distance and corresponds .R with

. 2
C and S with D,

@

There 1s one and only one way of laying segment RS on segfent

o

TD so that R<—~>C and S<——>D. . .

Wernow consider the congruence of two angles.

- A
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The angles /PQR and /ABC are congruent if either can be
superinposed on the other or, more precisely, 1f there exlsts a

one-to-one correspondence between them which preéserves distance.

As, under these conditions, the vertices B and Q must correspond

to each other, then ray ﬁK can be identified with rava—ﬁ or with
ray ﬁ. Ei,ther of these leads to a oongruence of the two angles.
Let us suppose ray BA is identified with ray QP., Then any point
X of ﬁ corresponds to a point Xt of Q—I5 and any point Y of ﬁ to
a point vt or Q_ﬁ (In the case of angles, the points A, C, P

. andgﬁ;,that we used to name the angles may not correspond to each

‘ e — oy

' .
o't . _‘_\M‘.w;
other.) , R A N S,

-~

. . . T .
The implicit assumption about the congruence of LABC with
[PQR is that distances will be preserved under the one-to- one .

correschAence which is\.:{t up. Thus in our figure BX = QXT,
BY X Q¥T, and X¥ 2 XTYT. The last of these'is important to -note, .

The distance between any pair of points of [ABC is equal to the,

¢

effect we assumed this to be 80 when we first gave our properties

s ; .

on congruence of angles. ‘ - - 3 o ﬁ g N

- o .
- 0 %} s,

In the case of segments, two segments were congruent if thei:r"'¢

" distance between the pair of corresponding pointsﬁ[?@ﬁ“ _I_n_ ) “,,""

.

o
two sets of endpoints were congruent. A similar type of conditior{ 9”. <

is true for angles. We wish to state explicitly our basic,under- -

standing. . / D) S |
|
1

)

. . B ) -
o ) ]
}
1

)|

i

t

. : : S
1 v a.’ \)

4, ' ; 146 \ ) - ‘%
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. Property II: Consider /XYZ and. /DEF such that ¥X ¥ ED,

YZ X ¥F, and XZ = TF. Then /XYZ ¥ /DEF and with X=—D, Ye—sE,

and Z-—-—-F there 1s a unigue such congruence.

}

This property tells us that 1f we can find three points of
either angle in the eorrect relationship to some three polints of

the other, then the angles are congrg\?t.

&y K
This propérty gives us a criterion for stating that two

angles are cong;uent. It 1s.precisely this type of condition
that we needed f?%Section 1l of this chapter to aséert fhat our
tonstruction actd?lly gave an angle congruent te the given one.
Property II fETreally rather intuitive. We woul§~expegt
/DEF to coincide with /XYZ if ‘we superimposed the fifgie;» ith )
FonZ, Don X and E on Y. ‘ T d

e -

<

.- Exercises 8-2 \ . M
1. TB and 7§ are given below as having'the samé length.
A B ‘ ) ¢

— . ~¢--g ) Q ©l . )

.

Describe two congruences of'Kﬁ and PG, d1.e., describe two

.
one-to-one correspondences between AB and PQ which preserve
. . : ) R
distance. :

%

L




- LN

2 In (1) above suppose X 1s a point of BB at %- of the distance

. .. - .from A to B. Draw a copy of F§ and label as Y and Y'_}x‘ﬁ
points t8 whiéh X would oorng:.;gond under the two congruences

. of (l). ' ’ 8 ’ L RN

3. Assume that the angles /UVW and /HJK below are congruent.

Assume VU = VT 2/HT X JK and V8 = W & TW = TN.
(a) “Describe two congruences of /UW with /HIK by r;latching

~

. ®
. the five indicated points of one figure with the five

‘ : the other in two different ways., .
(b) In one of your congruences of (a) U 0d W +—sN.

. I e
What do .we know about UW and HN? About SW and MN?
N . '\

4, Consider the ffgures below - - W -

[

. e
E&l‘ain how by measuring three segments of each figure we
.. . - ~
N might p'i""b've that /EFG is congruent to /XYZ (if 1t is).

e 7 -
3 L]
\ v7' ( v
\\ It
Al
" ~
;3% * (BN ? "
w i A N ° 4
5%’, pey
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.

i

5. .Consider the angles below. vt

.

" Suppose BB = QP and BC X, QR.
If BC is not congruent to PR, can /ABC be congruent to /PQR?

4

Explain, o - .
6. Try to state Property II more simply.
¢ f) -
S e 3. Congruence of Triangles. -

_What 1s usually meant by saying that A ABC ¥ ARPQ? In ,

.

traditional termi’nology one says that A ABC can be superimposed ,f)

on ARPQ. In many geometry texts this is also taken to meé.n that

»  "cgrresponding sides are equal and corresponding
angdQs are equal”.

- A

/ Of course, in our terminology the sides and angles are sets.

S i

of poin{s and, hence the word "equal" would be replaced by

¢ +

"cor{grue’n ". Note that both of the above meanings for congruence

of triangles involve a matchiné process or correspondence.

P . R

- R ) ; .
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Certainly the superpositioﬁ requires a one-to-one correspon&ence
between the two sets, each ﬁbint of.the oﬁe set carresponding to
the point of the ofﬁer'on which it is superimposed. If AB corre-
sponds to RP a-‘,l‘} BC corresponds to PQ then clearly B = 'K'Eﬂﬁ(')' .

should correspond to P = RPNTPQ. Thus the idea of "corresponding

-

sldes" and "corresponding angles" requires that the set of

. +
vertices 6f the one triangle be in a particular one-to-one

correspondence with the set of vertices of the other. In fact,

-~ -~

the converse 1s also true; a particular one-to-one correspondence

by -
e

of ‘the two sets of vertices induces (or prodpces) a one-to-one

correspondence bgtween the sets of sides of the two triangles and

a similar correspondence’between the sets of angles gf the two

triangles. For instance, if ;\*——-R and B<—-P then AB=<—Rp.
Thus we see that a key to the possible congruence of tv‘zg,«w

triangles 1s a matching of thelr sets of vertices.. In fact,

we have the following almest obvious theore'm which we give L

without proof.. .

-

Theorem I: If AABC = APQR, then any one-Eglone‘ corre-

spondence ‘o_f; the triangles which preserves distance gives a one-

to-one distance-presﬁrving correspondence of the sets of vertices
- = v~ - -

of the two triangles (of (A, B, C) with (P, Q, R}).

’

To make our nota‘t on and languageo easler, let us agree
that writing
AABC = AXYZ
means_nbt only tQat the Er.iangles are congruent under some

matching broce‘ss but that tfxey are congruent under a one-to-one

-
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correspondence which matches the vertices in the order“given. In
other words, if we write AABC = A XYZ then we imply \th'at
B ' y

A

X - —N7,

Aes——eX, B Y, and C<~—+Z under the congruence we have in mind.

Similarly, let us agree that {A, B, C} = {(p, é, R} implies that
A<«—»P, B*+—nQ, and C-<—=R under the congrue\ﬁce 1mpl::Led
between the tw? sets of three points each. .
The converse of Theorem I, ‘which we shall s}:ate as"I;heorem II,
’ is also true but yit requires some proof which‘we\ shal’l outline.
(We assume in Theorem II that {A, B, C} and {P, Q, R} are sets of
e vertices of triangles.) »
Theorem II: If (A, B, C} X (9, P, R}, then AABC ¥ AQPR.
Proof: We begin by recalling v:hat_ we mean by sa.lying that .
{A, B, ¢} £ {Q, P, R}. A set ‘of points is congr;uent to another

o if there is a one-to-one correspondence which preserves dista‘.nc"e

-

b§tween them. Therefore, as A=<—»Q, B =P, and C-+—=R, we
are saying that AB = QP, AC = QR, and BC = PR, these indi‘gg.r‘ng N
"“Tthe distances that must be preserved. ‘

-
3 3 ~

fo—y
Ot
j Yy
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But Property I of the previous section implies that there are one-

to-one correspondences which preserve distance between S~

-~

' 2B -and QF with. A<~—Q and §’<——>P : L
AT and QR \with A<+—= Q and C<—R
and BC and PR with B<—=P and ¢ =—R .

Thus we may consider a one-to-one correspondence to have,

4

been set up bétween A'@C and AQPR é.nd this correlspondence matcHes
A with Q, B with P-and C with R. - .
What we have not.yet observed is whethér or not all distances
are preserved under the correséondence. For instance, 1n\ the
-

figure below, if X =—=X! and Y +—=Y!, is AX = QX'? Is XY = )Z'Y'?'

.

w
"0

TAYE ==L 0N
BRI e S
. . ‘ ~-

o each of these questions is{'yes" 'and we use

- . 4

\.- / 7

We note that KC @R, BC :P_ R and B X TF and these are ,just
what we need to apply Property I'I From Property II then

/ACB = /QRP with Ae—s Q, C<—=R and B=—sP and the na’eural"

%
further-correspondence such as X=—X' and Y<—.——-X'. <But .as J

A<—eQ, X=—=X!' and Y=—=Y! then AX must be equal to QX' and o

12

XY must be equal fo X'Y! because distance must be“preserved under
L] : t N
B

., . . \.\ o /
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-

e

congruence of the angles /ACB and /QRP, in this instance. By use @

of this type of reasdning Theorem IT. can be established on the ‘e .

basis of our assumed properties.
Notesthat in this argument which we have sketched, we first .

observed that'the corresponding angles were congruent (using .

!

Property II). Then because corresponding angles were congruent
the various distances had to be preserved. - . ) . .
We now wish to observe. the funda.me%l .theorem that if two

trlangles are congruent by our definitioni then +they are By the

* tradition#® definition. . '

«Theorem 'III: If AABC ¥ ADEF then the corresponding sides )

and corresponding angles of the two triangles are congruegt.

o 3

+

" Proof': Since A=~—D and B +—=E, under our congruence thén

('\AB = DBE. Therefore AB ¥ DE,  Similarly AC 2 DF and B 2 TF, and

\
the corresponding sides are congruent., What about _/ABC and [DEF"

\ég’e they congruent? The answer 1is Jyesy for
A o

Property/&l [ABC = /DEF under a correspo’ndence whiéh A<—>D

B «—E and C-——F. Similarl’y [BAC = [EDF and LBCA = /FFD. .
A

A

-
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333
peh

Thus we see that; in the case of trian*g;\]:es our definition of cbon- .
] - -

gruence implies the traditional one. "then do we use it?

(1) It is more explidit and lead§¥gf! better understanding.

oy
YA -
CNER

(2) . Tt emphasizes the fundamental idéa of congruence and in

. ' so doing 1s applicable to other types of figures (sets

of points).

-

(3) It does not unnecessarily introduce the idea of "moving"

. a }4,
sets. ‘g‘

(4) It gives another elementary geometric setting to .
. 1llustrate the important idea of a one-to-one corre-
° spondence. . Thus It helps give a unity to the language

of mathemat ics. . .

(Y . . .

Exerciseés 8-3

1. Suppose' AABC and APQR ,a,refas in the figﬁres below with all

éix indicated segfnents of the same length, ‘e
v B ’ .

.
- - -

How’r'nany congruences are there between A4 ABC and APQR?
N ~

List the matchir;g'of the sets of verticeé for all 6f them.

-

For example, (A=—np, B R, C <Q)- would be one such. >
. -~ * R *

.




A

S

.

2. Explain /why Theorem II 1s like the traditional side#side-side
congruerice theorem.
3.- Suppose in triangles .ADEF and AXYZ that —
- DE ig.not congruent to XY
DF is not congruent to X7
and - EF is not congruent to’VZ.
Can ADEF be congruent to AXYZ?
Must the two triangles be congrt.{ent? AExplain.

4. Suppose AHJK X AUVW as below, with Le—X, MvsY,

I3

.

List all the pairs of segments (with some of the indicated
#£ive points_as endpoints) which you know must be of equal

' length. You should have 10.of them. o £

[

. 5. 3Suppose APQﬁ:‘ZTEC.'\ L.

)

Explaip how we know %hat /PGR /ABC.

4,1 Congruence 9_1_‘ Triangles--The Standard Theorems.

¥
We begin with the SSS Theorem (Sidg—Sideféide).

s~ 7
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Theorem IV: Consider AABC and APGR. If AB ¥ T4, B ¥ OF,
d AC >R then AABC APQR. ‘ ( .
Proof: This theorem is essentially a restatement of Theorem
II.. Let A P, B Q and C=—=R. Then this correspondence
is a congruence of {A, B, C} with (P, Q, R}. Therefore Theorem.If
: - ‘ :
asserts that A ABC ¥ APQR. - .
’ % P .
Next we state the S/S Theorem (Side-aggle-side) ‘
Theorem V: Considen AXYZ and APQR. If XY & ‘F‘, ¥Z =

and /XYZ T /PQR, then AXYZ ¥ APGR.

Proof" The given condition that the angles.ZXYZ and Z?QR

w4 -

‘are congruent means that there 1s a one- to one distance presegving

e

corresppndence between the angles, This correspondence can be

taken so that X- P, ¥ Q and Z-=—R,
sponding distances must be equal, ' XZ = PR and then Xz =

But since all corre-

PR;

-
. » .
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This together with the given congruences of segments agserts con-
ditions like those of the hypotheses of ‘'Theorem IV. Therefore
AXYZ ¥ APQR. ‘ ’ ) .
We now cgnsider the [S[’Theorem_ (angle-side-angle).

Theore I: Consider triangles APQR and AABC, E'
/POR.S /ABC, QR 2 C, _qn_g' /9RP % [BCAQ, then APQR ¥ AABC.
- i ‘
LN

B
Proof: Let X be a point om OP such that X T EBX and X is on
the P-side of GR. From Theorem V, AXQRZ AABC. Thus by
Theorem III,'[XRQ = /ACB. But by Property I-A of Chapter 6: there
1s° onla'r tone_rey“wiwt:,h endpolnt at R and contalning a point on the, ..
_P-side of &R such that the angle formed byi;:his ray and'®Q is
‘congruent to [ACB. TWfore X and P must both be on this ray and
- hence on the line PR, But X qnd P are both on the line sz? These
two Tines ‘can have at most Bne point of 1nte\section. Therefore
the point X 1s the point P and TP X EA I:Iow the conditions for
Theorem V are obtained and hence the two {1angles are congruent. s |

* A triangle-<is called equilateral if its three sides are all’

congruent %o each other. A trie.ngle is called isosceles if some

L -




: .~ 8.2 4 . )

two sides of it are congruent to each other. We 1list two of the
most"fundamental theorems gbout isosceles triangles. These

theorems are used to prove various other theorems.

Theorem VII: If two sides of a triangle are congruent then

— e—— ———— —— ——

oy

the angles opposite these sides are congruent,

Q

[y

P R ~
., .

TR. We wish to show that /QPR ¥ /QRP.

e

We are given that PQ

ne

Proof: We note that (P, Q, R} {R, Q, P}, for

) -P——-Q : .ﬁ-é : 3
PR.Z PR (or RP) _ .
W@,
. Therefore, by“l‘heorem II, APQR X ARQf. But /QPR corresponds

) B &
. to [QRP under this congruence and thus, by Theorem III,

~

- \

/QPR = /QRP, as was to be shown. ’

>

Finally we state the converse of Theorem ViI.

s

Théorem VIII; If two angles of a trib.ngle are congruent,

X

S - :
. Y =~ 4 /x

«

We are given that /XYZ ¥ /XZY. We wish to' prove that XZ & X¥.

wwy
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Proof: Consider the correspondence as‘follows:
' X=+—X
Yo——"e2
M Z—rY
Under, this correspondence of vertices ‘ Y
©  /XYZ corresponds to Z?ZY )
- o Y7 corresponds to 7Y% E ) .
/X2y corresponds to [XYZ.
" "But 1t 1s given that each arigle cited is congruent to its corre-
sponding angle. Also.Yf = ZY by identity. . Therefore the con-
ditions of Theorem VI are achleved. - Hence AYXZ = AZ?(Y.
Under this congruence XY -—=XZ and thus, by Theorem III, N

-

XY = XZ as was to_be shown. .

S . Exercises 8-4 'S

- 1. Prove that all the angles of an equilateral‘triangle are -

» »

- congruent to each other. - - -

2. ‘Draw figures to show that the side side-angle "theorem" is

twtr

not true. An other words, exhibit two triangles which are '’ ‘o
hot congruent but for which two sides and a non- included\\ii\\‘\

angle of the one are congruent respectively to two.sides and

a non-included angle of the other.

3.: Give examples of two equilateral triangles which are not

congruent to éach other. Hence show that the angle- angle-

cangle "theorem" is not true. i .




4, Given a quadrilateril ABCD whose opposite sides are congruent,'

5.

‘e

8.26

A 4
i

\
i.e., KB 2 TD and 7D ¥ .
Prove /BAD = /BCD and

/ABC T /ADC.
Given quadrilateral PQRS with
PG ¥ PS and X ¥ TS, | °
Prove /PQR = /PSR.

160

-

4
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N ,' Chapter 9

Paraliels and Metric Properties of Triangles -
: of

1. Terminology and Basic Propertfes.

4

Suppose Kﬁ and 65 are stwo lines in a plane énd ﬁa is a line
- different from Kﬁ and 63. Suppose §§ intersects both K%'and 53
(in non-empty intersections). Then $8 1s called a transversal of

_'the two lines.

-~

~Let the points of iptersection be E and'F as in the figure.
Assuming the various points are located as above we call /PEB

and'ZEFD corresponding anglgs,., . There are three other pairs of

corresponding angles 1n-6ur'figure. Similar oneé are foted in

the proof of Theorem T below.

We call /AEF and /EFD altérnate interior angles. There is

one other pair of alternate: interlor apgles in our figure.

Theorem I: If two corresponding angles are cOrigruent Eé

each other, then ég are the angles;ég the other three pairs of

corresponding angles., . . '

. . - - ' /

~




-

. 53 cut by transversal 53
4

o

.. .o% 9.2 ) -

Conéi@pr the figure on the e
right and suppose /XYB = /YZD.
We wish to ‘show th;t . ’
/BYZ = /D2M ) b
E [AEEX":‘ /CZY and ‘
[AYZ = /czw
Proof: %3YZ = /Dzw, supplemengs of angles given as congruent.
2
Similarly /AYX = Z@ZY; supplements of angles given' s
—~ ‘ . . as congruent.
- ’ Finally /AYZ = /CZW, suﬁblements of. angles proved to
N be congruent.

We next wish to establish a basic theorem about corresponding

angles

We 3re given a tranversal cutting two lines. "
Theorem II: If a pair of corresbonding angles are .congruent

to each other, then the lines cut by the transversal are parallel.

We shali prove this theorem by contradiction. (Some readers
may wish to use drawings of their own while reading this argument, )

We are given lines K% and

as in the figure. We are X
/7

further given that /PEB ¥ /EFD.

(even' if it doesn't look Iike

1t). " Suppose X is an element of K%INGB. Let Y be a point on the

- L
\ ~ .

~)




ray £B such that FY —\xp. Thus Y # X and Y is on the D-side of,
‘line PQ. Now considér AXEF and .AEYF. Let :
Xe— Y ™

s Fee— E"
¥ 4 - ° -
EHF Ten

o

where the first listed points are thought(of as\ the vertices of

-

'QﬂXEF.
~ ’ /
‘. | Now XF ¥ ¥E by construction (i.e., defining ¢ondition for Y) .
- .EF ¥ FE by identity )
s JEFX & AFEY because supplements of congruent angles are
- congruent. ‘
- oo (ﬁ ~g
o s AXEF = AYPFE by the SLS theorem with the correspondence .

between sets of vertices as above. Hence /EFY = /XEF (corre-
sponding angles of congruent triangles) ‘But /PEB = / XEF
. (vertical .angles) and thus /PEB ¥ /EFY, Also /PEB ’_—‘_’LEFD (given)
and Y and D are,gn‘t‘he) same side of f’_é. Therefore /EFY = AEFD )
(i.e., t{)ey are the same angle) by Property I-A of Chapter 6, -
which» says there is a uniciue angie congruent to ZPEB with one ray
FP and the other containing points en the B-side of 4.

Thus Y must ‘be on the line &b. There'fore,* line rB and line

.o ~ 5 .

) have the two points X and Y in common which is a’ contradiction.

»

- (Two distinct lines can have at most one innt in common--Property ,

N

"I-A of Chapter 5.) Hence, the assumption that AB and &D nave a

non-empty intersection is false. Therefore the lines. are paralle°l.

h - e
°

. . s °
. foe [ ’ ) -
. » ] .

3




We wish to establish the‘convefse nf Theorem II.g

Theorem III: If two parallel lines are cu by a transversal,

-
then the corresponding angles are congruent. . X

AN\ 5 -
Given parallel lines Kﬁ and Gﬁ and . E\>\ .
transversal X¥ as in the figurd. - e ‘ i D

¥

N

We\%ﬁsh toiprove that /XEB = /EFD. (Then, by Theorem I, the
angleé of all pairs of corresponding angles are congruent).’
There must,exist a ray EQ such that /XEQ = /EFD and Q is on the
B-side of ¥¥. By Theorem II, £
must be parallel to ¥D, But there

" is only one line threugh E parallel N
to D (Property V of Chapter 5), ) .o
Hence £Q 1s ﬁ& £3) ana ’ — 3
. /XEQ 1is ZXEB. Therefore /XEB ¥ /EFD ‘ \Y )
* as was to be shown, ° - o " . e
R .

.
t . .

- Exercises 9-1

1. (a)- Proviﬁthat 1f a pair of corresponding angles are -

congruent, then so is some pair of alternate fnterior

dngles. : £ C e
(b)) Prove the converse of: (a) ’
2. Prove Theorem I-A: If~‘gwo alternate i‘terior argles are

congruent to each other, then so are the angles of the other

pairs of ‘alternate interior angles. \\\\\\\/////‘ ‘
’ -




—
y .
Prove Theorem III-A. ?If two parallel lines are cut by a

transversal, then the alternate interior angles are congruent.,

’i‘f-y to simf)fify the proo\f"of\j'heorem II.

-

2. The Sum of the Measures of the Angles of a Triangle.

In this section we prove the following wellaknown theorem,

Theorem IV: If o<, &5 and » (alpha, beta, and gamma) are
\ -

the »(degree) measures of the three angles of a triangle, then

x+ g8+ 7 =180,
\Give_n‘ .
A ABC with'o<.=.m([BAC);
- B = m(/aBC) and
« ¥= m(/ACB).

We wish to prove that o+ G+ ¥ = 180,

Let PQ be the line through C which is’ parallel to AB. We may
regard Q as ontthe B-side of AD and in fact, in the 1nterior of
/BCD. Thus, /QCD 3 /BAC (corfespondir‘g angles) and hence

« = m(/QCD), for congruent angles have equal measure. Also

- /BCQ ¥ /ABC (alternate interior angles--see Exercise 3 of

Section 1) and hence,é = m(/BCQ) . - Now m(/BGD) = fa(/QCD) + m([BCQ)
=« +4 . But m(/BCD) + m(/BCA) = 180 (supplementary ’angles) angd
(x +& ) +7 =180 or« +& +7” = 180 as was to be shown,

~
9
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1

-

We speak of /BCD gs an exterior angle of AABC. (Note th%t
5 ~ l

an exterior angle of a triangle 1s not a part of the triangle. It

+ & ’
won't be by almost any definition which is used. Yet it has long

been customary to use the expression "an exterior angle of a
Q ‘

triangle".) o Lo
We have shown in the pfeceding proof that m([BCD) ‘e + 8

|
dasoc;éOand ,e;éOthen ®x+B >o< and “’“’",3 >B -« Thus we ‘
jhave in efféct proved

*

Theorem V' The measure of gg exterior ahgle of a triangle 1s

'
!

L3

equal to the sum of the measures of the two opposite (1nterior)

angles. of the triangle and is greater than either_g£ them.k. v
- : - ——
‘ On the basis of these ms and of the theorems of ’
Weswe th

. Section 1, we are now in a position to state and prove several
theorems about parallels and perpendiculars.. We state some of the

theorems here and leave the others and all the proofgs for the

i
«

exercises.

Theorgm VI: If two distinct lines (in a plane) are each
-

perpendicular to a third line then the two lines are parallel.

Theorem VII: If two lines are parallel, and one 1s perpen--

Theorem VIII: Given a line { and a point P. Then there 1s
Y = == - =

_ exactly one line containing P and perpendicular to. £ .

M




-

‘A,quadrilateral is a simple losed curve (in a piane?which
v :

ia'the union of four segments (called the sides) but is not the
union of three segments. (Note that a triangle
is the union of Tour segments) and.is also the &
union of three segments., A quadrilaferal has
four&sides and four angles{ Aé in the case of
a trianéle, we shall use the term "side" to
ﬁean'either a segment or its length (as convenient),
A parallelpgramvis a quadrilateral in which each side 1is

parallel to another. A parallelogram has two pairs of parallel

sides. ' e e sttt wreneniet  res on %
N4

A quadrilateral whose four angles are right angles%ys called
a rectangle. It follows from Theorem VI that a rectangle 1s a -

parallelogram.

.

+ i - *

Theorem IX: The opposite angles 4f a parallelogram are’,

bohgrueht to each other. - .

-

Theorem-#:---The opposite sides of a parallelogram are

congruent to each other (or are of equal length).

Theorem XI: The sum of the~measur%@ of the angles g£ a

parallelogram is 360. -

Note that froh our.definitions it does not follow that the
sum of the measures of the angles of any quadrilateral would be

360. - L

.
.




-,

Two example$ are indicated

.

" on the right. The sum of cer-
tain numbers naturally associ-
ated'Wiph the angles of a
quaf;ilateral-will be 360.

But these are not necessarily
f ) - .
the measures of the angles

of the quadrilateral. C

b} . Exercises g-2
. ®
.1l. Write out a proof (as in the text)
© that m(/QRS)-=-m{/RPQ) % m(/PAR).

e v

-2, How ﬁany exterlor angles does a triangle have? How many

2

angles are represented in a figure which is the union of . .

3 lines having no point in common but such that each two .

.
’

-of them do have a point in common?

3. Prove Theorem VI. Hint: Use Theorem IV. A

-

4, Prove Theorem VII.
5. Prove Theorem VIII. Consider two cases: Onhe in which P is -

a point of X, the pther‘iﬁ which P is not a point of A,
. rl -
¢ . p : 1

M .
- . . . [




Prove Theorem IX.\
Provg Theorem X. -
Prove Theorem XI. :
Prqve that if the opposife sldes of a quadr11a£eral are -
congruent tq each othef, then the quadrilateral is a
parallelogram. )

Show éh@t if A3 and §§ are parallel lines, the lengths of
thé perpendicular ségments from the points of Kﬁ tolfa‘are

all equal.

a

3. Some Iﬁéqualities AsSociated with Triangles--The Triangle

Inequality.
] In this section we list somé properties without calling them
theorems. ' ’
1. Consider a triangle ( A ABC).
If AB > BC,

then»m(/BCA) > m(/BAC).
.k ’ .

Let D be a point of,ﬁK such that -
BC ~ BD. As BD = BC and BC < PBA,

then BD < BA®and D is between B and A,

ABCD 1is isosceles with BC = ED. Hence /BDC = /BCD. Now -
' /BDC 1s an: exterior angle of A'CBA and thus m(/BDC) > m(/BAC).

§ 3




3
-
M
-
.
«
w
o
T S
-
“

9.10 . -

But ‘becduse D is 1n the interior of ZBCA m(/BCA) > m(/BCD). We

have. the following facts, then, }

m(/BCK) > m( BCD)
cD) = m(/BDC) ,

m(/BDC) > m(/BAC). ’ -~

* “fherefore, m(/BCA > m(/BAC) as was to be shown. Another way of

stating this result is "If two sides of a triangle are of unequal

’

" measure, the measures of the!angles opposite these‘31dés are
unequal-in the séme order",

2. Now we look at the converse
of‘Staéément 1. '

A ABC. If m(/BCA) > m(ZBAC)I, then

AB > ET. ‘

Consider a triangle
A

We prove this statement by exhausting

-spossibilities. Either AB > BC or

AB = BC or AB < BC.

If AB = BC thén the trianglé »:Ls**isOSceles .and.m(/BCA) = m(LACQ
. which

is a contradiction., ‘
If AB < BC then from Paragraph 'l of this sectlon, m(/BAC) > m(/BCA)
* which 1s alégia contradiction,
. Therefore, the only possibilit‘y left is that AB > BC which was
e % 2
to be shOWn.~, ﬁﬁg i ’ :
, SR L 2T . R
e Sy N -
SRS Nt
h ‘&’%&%\} ' »
B s -, "& N . N
e T et e
, IR
~ J

A

S
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3. We are now in a position to establish the extremely im-

-

portant "triangle inequality" of geometry. The ‘triangle in-

equality asserts that the length of any side of a triangle is less
than ‘the sum of the lengths of the other two sides.

In one senSe, the triangle-inequality implies the "shortest
distance property of geometry. The straight line path from P to
Q 1s shorter than the length of the broken-line or polygonal path
from P to Q by way of R 1f R 1s not between P and Q.

Q

. * . . . .
We may restate‘he' triangle inequality as follows: If a, b,

and ¢ are the lengths'of the sides of AMABC, then a + b > ¢,
. N . Q
i c .

c
We shall agrea that a, b, and ¢ are the lengths of the sides v
opposite the angles at A, B, and C respectively. From a
construction point of, view the "triangle inequality" property is
Just what we expect. For if c > a + b then in tryrng to construct
the triangle. starting with side KB the two circles with centers at
B and A and raQii a and b respectively would nct intersect unless

a + b and then the point of intersection would: be on BEK.

.
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A

Now we give'a.n 1argf1ment basped on our earlier assumptions.

»

We assume ¢ >-a + b, i

Let D be a point on BA such _that BC * ED. Then A BCD is
isosceles and m(/BCD) = m([BDC) ) is between B a.nd AL

Con,sidering A ACD we have that AD > AC (even if it doesn't
looklikeit) orAD ¢ - a-and as Q+b5cthen b<c - a.

But then m(/ACY) > m(/CDA).

. 'Now m(/BD§) + m(/CDA) = 180 . -
and m(/BCD) + m(/ACD) = m(/BCA) < 180.
Henbe_m(/CDA) = 180 - m(/8DC)
and m{/ACD)' < 180 - m(/BDC). ) .
Therefore m([ACﬂ) <m (ZCDA),

but this contradicts our earlier statement.

Hence 1t 1s not true that ¢ > a + b.

Therefore ¢ < a 331';-‘57b . .

@. ~

Yxercises 9-3

“

1. Given three points A, B, and c.” Explain how by measuring 3

distances one can find out whether or not the three points
are all ‘oon the same*line. = . - .
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1 P.
Suppose that { is a line and P is ' E
a point nof on 2. Suppose furtheﬂb ® E J .
that B is tie-foot of the perpen- L4L 1
dicular from P to £ and A is any ° A 8

-other point of £. Show that PB < PA. o 5
In other words, show that "the perpendicular distanceJis the
shortest "distance from a point fo a line". : .
Let A, B and c be the vertices of a triangle. Let P be a
point which is not on the tri;hgle bhf which is in the plane
of the triangle. Show that the sum of the distances from P to

A, B, and C 1is greater than-ﬁ(AB + BC + AC), 1. e.,-§ the

+ berimeter of the triangle.

W

.
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Areas, Volumes, and the Theorem of Pythagoras

" 1. Areas of Parallelograms and Triangles. The Theorem of

Pythagoras. N '

‘ — .

" We have seen 1n Chapter 6 that ifa rectangle has base b
and height h (in terms of the same unit) then the area of the

rectangle (rectangular region) is b --h (in terms of a square

\ -
region of side one unit). ‘ . -
1\ . ' .
h.= 3 ' . sy
. :
b=2©6 . o h 4 o
. . 4 i
. Area = 6 . 3=18
. -

[y

Let us develop the formula for the area of a parallelogram.

R R
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We are given the basic properties of area discussed in
Chapter 6, Section 4, We will considér the ﬁarallelogram to be
labeled as in the figure. Sides BB and DC can be considergd to
be horizontal with A and C as the "extreme" points in ; horizontal
sehse. (Draw a figure as you read this.) ‘

Let P X, and Q be the feet of the perpendiculars from A
and B to ﬁé?and from C to ﬁ)respectively,., ) The point X. might be .
D. . As AB and DC are parallel it fOIIOWS from Theorem VII of
Chapter 9, that AP l_AB, = l_AB and Cle CD; Thus AP, = and
Ea'are all parail;l. Hence AQCP and BQCX are both rectangles.

Now ABXC.¥ AAPD and thus from Property V of Chapter 6,
Area (.4 BXC) ="Area ( A APD). From Prdperty VI of Chapter 6, we
may conclude thalt-:. ) ‘

Area’ (J BQCX) = Area (ra }’3QC) + Area (& BXC), -
and theréfbre Area ([ BQCX) = Area ( A BQC) + Area f A APD).

Again from Property VI, }

Area ([ AQCP) =.Area (/[7ABCD) + Area ( A BQC) + Area ( A APD).

Area (/7ABCD) + Area {[] BQCX), .

Area ([J AQCP) - Area ([J BQCX).

(CQ)(PB + BQ} o
(cQ)(AB) + (cQ)(BQ)

Hence Area ([] AQCP)
or+ Area (/[7ABCD)

From our formulas, Area ([J AQCP)

and Area (CJBQCX) = (CQ)(BQ),
“Therefore Area (/Z7ABCD) = (CQ)(AB) + '(CQ) (BQ) -;'(CQ) (BQ)
] _ = (cqQ)(aB).
'(‘ ) .
* ’ ’ .

ad ‘iﬁw ﬁgfw



‘ Vi

This last formila asserts that the area of the parallelogram

- . I
is the product of the’ length of the base times the altitude.

V= -B/ ‘h. This is wﬂét we wanted to show.

s

Note that either pair of parallel sides could have been

regarded as horizontal. From Proberty VII of Chapter 6 we conclude
- -

that .
4

-

4 V=" : hlsz- h, where

bl and b2 are lengths of adjacent sides and hl and h2 are

—

the heights to these sides.

From the formula for the area of a parallelogram, we can
very easily obtain the uSual formula for the area of a triangle.
Coﬁsider A ABC. Let us
?egand.ﬂﬁ as the base.

Let D be the imtesdgction
of the lines through C

parallel, to &B and through A

B para%}el to i’. ) '

(The assumptidr that the lines don't intersect means.that they

would be parallel which means that both XE and the new line

through B would be parafﬁel to the new'line through~C’ But then

we would have two lines fthrough B parallel to a given line, for
) the new line through B'cannot contain A 4nd hence 1s. different’

from AB~0 ‘ - .-
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-

Now from the SSS Theorem, A ABC = A DCB and hen\ce

Area ( A ABC) 5 Area ([:7ACDB) ,

s 2(A) -h=%0b.n
.

i
where h 1s the height of the‘}riangle (and of the parallelogram)..
As in the case of the parallelogram, the formula for the

area of a triangle can be used with any particular side as the

s

base.

— &

The Pythagorean Thecrem. _The Theorem of Pythagoras has to

do with the lengths of the sides of a right triangle. Since the
sum of the measures of the angles of

any triangle is 180 t“ere can be at

most one right angle in ény triangle.

We call the side opposite the right

angle-the.hypotenuse of. the right
triangle and usually denote its length by c. The other sides are
called the legs of the right triangle. We denote their lengths

4

.by a and b. The Pythagorean Theorem says that in a right triangle

the other two sides. e . ; . ~

There are a tremendous number of "proofs" of the Pyth%gorean

Theorem. .Even President Garfield once gave such’ a proof. We glve

one of the more elementarylgeometric ones. €

A
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In this proof we assume some properties of rectangles which
%e<have not stated explicitly, but which follow from observations

. We:have made %n the previous chapter. n .

-

In this paragraph we descrfbe the figure above. We are given

the right triangle AABC. VThere exist lines through A and B
Te> < S
perpendicular to AC and CB respectiyely. Let P be the point of
e
. 1nter§%ction of these lines. APBC is a parallelogram (rectangle)
and hence AP = BC = a while PB = AC = b. Let @ and, S e27points
>
~on FE and PA respectively as in the figure such that BQ = a and
AS = b. There exdst lines perpendicular to AS at S and BQ at Q
respectively. Let R be their point of intersection. PQRS is a
, ,’redgz;gle witp adjacent sides egual 1n length. Hence PQRS is a
square. Let E be a point of SR and D a point of RQ such that

"SE=RD < a. Then 1t may be observed that ABDE is a square of

-

™
N side ¢c. We leave the proof to the exercises. T




10.6’
(a+Db)(a+Db).=a® + 250 + b2 ‘ .

P
020 S

Area (3 PQRS)
- Area ([J ABDE)
Area ( A APB) = Area ( A BYD)

]

4
Area ( A DER) = Area { A AES)
1 :

—2-a-.b

. L
. |}

. Area ([CJ PQRS) = Area ([CJ ABDE) + Area ( A APB) + Area (ABQD).
4 . 4 : . - .
. , i - + Area ( A DER) + Area A (AES)

Therefore a2 + QaE + b2 = 02 + L (—%—ab)
‘ a® £ b° + 2ab = ¢® + 2ab
Hence; a® + K= c° " as was to be ghown.
.- P . .

“ ‘ . Exercises 1'(7/ A . ’
1. Find the area of the region - E e
+ of the frigufe on the right.

- [/ A ’ ' _‘ 1 ‘ [N
¢ | , =

o - " . N .

2. ~ Find- the altitude to the

» ~ nypotenuse of the right .

“triangle of the figure.
(Hirf :  Equate tw4 exp}ressions'for the area.)

J Exercises- 3 and 4 refer to the descript on of

’ the figure in the dIScussion about the Bytha-

] ies . -

gorean Theorém. Lo .

3. Prove/that the lines through A and B perpendicular to AC and
? respectively must intersect,

-

-n. " [ . ¢
. . . ! ’.-
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" 4. Prove that ABDE 1s a square. Note that the sides are of equal
length (from the congruent corner triangles) Hence show one

of the angles is a right angle. . .

.

+ 2. Other Areas and Decompositions.

’-

There are various other figures for which we want to compute

o
M o

areas. Some 6f theee are more complicated closed’regions in the

Plane and some ére‘surfaces or parts of surfaces of solids. 1In

general, the aﬁproach‘fg computing the areas of such f;ggzes is to i
‘think of the figures as the union’of‘eimple figures.. Then we may
compute the areas of the tarious simple figures. -In some cases we
develop special formulas and use the&gfor computations. But 1n

™ many fhstances, L pedd éaéﬁer to‘rememb the geometric considera-

tions which lead to the formulas than td \remember the formulas as

Such.’ (An exception is the formula'foq the area of a paralleloéram,g

°

which can be considered to be like that for a rectangle.) ..

’

A trapezoid is a\quadrilateral with twd parallel sides such
* 2

that the other two sides are not parallel.

P CHE
The area ‘of a clo#Ld trapezoidal region may be found b{\one of-two

+ standard devices. We may decompose 1Lt into two right triangula%
N .
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v .

and one rectangular region as on the“left or into two triangular
. N \

regions as on the right. From either of these we can derive the

usual’ formula for the area as §- (b + Db where h is the altitude

5)
(perpendicular distance between parallel sides) and b, and b, are

3

the lernigths of'the bases. ‘
Ny
In applications of geometry, there are a number of problems
which arise as to the total surface area of a prism or pyraﬁid or

the lateral surface area of such. The distinction between "total

surface,' area and "lateral surface" area is the following: If the

solid concerned has_bases'(one or two) then the lateral surface.

the faces other .than the

&

area refers to the area of the union oﬁ

base(s) whereas the total surgace area/refers to the area of the

. * . N
. AN
are/co;;onl;ddealt-with are prisms and

union of_all faces.

o  Among solids that

o

pyramids. A prism 1s a polyhedron (a solid'with flat faces) such

that some two faces are congruent and are in ’'parallel planes.
°These faces are called the bases. The other faces are all.
parallelograms (or rectangles for right prisms)'and each of
tLeseoparalle]hgrams has la pair of opposite edges in the two _

ases. A triangular prism is a !

. -

prism whose bases are triangles.

Eh figure\on the right represents
‘ T

¢ h triangular prism. The pne below .

¢ |
it 18 a’ prism with pentagons for . .

N |

-~
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A pyramid is a polyhedron with one face designated as & base

.

and with all the other faces being triangular, having a verﬂ@n in
common;ans/ﬁaving'the other two vertices 6f each”on the base.

. The figuresAbeiow represent tfiangular and square.pyramids .o
(the‘ adjectives describing the bases).

y

ol

. @ ' +
-
- . ° A mUch more comprehensive treatment of polyhedrons is given

in Chapter 1%, The "solid polyhedrons" of this chapter are Yreally

3-dimensional polyhedrons. o

5

// ) . Exercises 10-2° ' ‘
L * Derive the formula for the\area of a trapezoidal region by *

v ( . .

decomposing the region into tWo triazzu ar regions. ,
T 2. Derive the formula for the area of a

apefoidal reglon by

decomposing the gion into 2 right tr{angular and on
rectangular region. ) o~ {F )

- 3. (a) PFind the lateral surface area of a right pri#mnin terms ]

. i
‘

or the perimeter of the base and the height gf the prism.

., (b) PFind the total surface area in terms of the result of (a)

o o <.

“ f and the aréas of the b#ses. . . . o
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. * . 10010

. ,
°

b,  Suppose a square pyramid of side 8 has 1ts triangulap faces ? )
all congruent to each other. Suppose the -8lant height
(altitude of one of the triangular faces) 1is 10.

2 (a) Find the lateral surface area. ‘ .
»:‘ * (b) Find the totalas;rface area.. . K .
d ‘ v . 4 : . o T
b ’ . 3. Volumes. ¢ - ¢

8? Seek a point of view which erables us to fing the volume ¢ -

of a complicated polyhedral region (i.e. inteprior of 3 polyhedron

. together with 1ts boundary). As béfore We think of decomposing

the solid region into simpler ones--i.e, we think of expressing

the complicated Solid region as the union*of non- overlapping

simpler regions. (As noted in the last‘éection Chapter 14 has
<.
a mq?h more comprehensive treatment of polyhedron J) .

For volumes, we have available, 8o far the volume.of a

vrectéhgular parallelepipedi It is elther b . g . h (base X

. depth x height) or B. h where B =

b .4 and is”theqarea of a
rectangular region which is regarde a8 the base, 4 .
he point of view ¥ = B + h turhs out to be a ﬁseful'on .oy

It is;also applicable to'prisms'(and to'cylinders aj discussed

‘v,

4 N . . .
in Chapter 11). -/. ? i




[

o

\

;fchapter‘We can decide that the volume

" of the volumes of the triangular

V= Bl

.

v

10.11

°

Let us start with a triangular

v LY

right prism. By a construgtion'and

argument like Eha given for parallelé-,

grams and triangles in Section 1 ‘of this

of the triangular prism is %-that of

a rectangular parallelepiped whose bases
are rectangles of area twice that of the
trisnguiar hasgs.,
angular prism is B ¢ h,

into non-overlapping triangular right prisms.

decampose the base region into triangular regions.

volume of the prism is the sum

.

prisms. For our figure

. h;+ B, *h v

*h + 52 3

(B, + B, + ﬁgs - h

°- . —

=B « h Whére
Bys By, and By are the areas of the three base triangles
the area of, the pentagon. Th formula V= B * h is

to osl;qué§

Height h 1

the perpendicuiﬁn.distaggg\ﬂé?br

contaln the bases.

isms (prisms\that are nst right prisms e
en th

Thus it follows that the volume of the tri-

Now, any right prism can be decomposed

We simply have to
Then the .

LN

lnd B 1s.;

1so applicable

The
p \J

‘planes which
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Similarly the volume of any pyramid canMe expreséed as the

$

.into triangular regions and using the vertex of the pyramid as the

vertex of all of the triangular pyramids.

-

The hexagonal pyramid of our-

{
drawing 1s expressed- as the
union of four triangular

.pyramids. .

(/r

B™

We now seek the volume of a triangular pyramid.

1

Cavalieri's‘ Theorem and more mathematical apparatus than we choose

to use here. Rather we shall-simply .
try to make it sgem reasonable. Con-
éider lines throl:lgh V parallel to §5
anda respectively. Using V<—-—->B

and pdints U and W on these lines

tfhere exists A UVW which is c¢ongruent ~

o °
to A ABC and is inéa plane parallel to
the plg.ne 'of AABC.

-

sum of the vplumes of triangular pyramids by decpmposing the base

Ti'}e volunfte is

% (B - h). A "proof" of the formula yses what is knéw#as
3 . uta y .
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Now prism (ABC) - (UVW) can be decomposed into 3 tfiaegular,_
pyi'exnids V' - ABC, A.L UW and C - AW. 'The base of the last of
thege 13 hot a Base of the prism, -It seems reasonable and can be
proved by use of Cavalierﬂﬁs Theorem that all three have the same
volume. Therefore pyramid V - ABC has 3 the volume of the prism
but the prism has the ‘same base - ABC - and the same height as

the pyramid. Hence V(pyramid) = 3 (B - h).

- Returning to the case of a genen&;—pyramid——we—ne%e—%ha%—the --
altitudes of the trilangular pyramids we get are all the same as
the altitude of the original when we consider *them all to have

. . }‘ 3« -
- ,.bases 1n the plane of the original pase.

ThusV:-]é‘-(B + h) + (B, -h)+./f.+-1-(B . h)
# ' s 3 - S
» ‘=3(B +32+...+Bk)-h=—-(3.h) )
The formula V = 3(B . h) is the formula that we were seeking.
, . ., ,\'\.. ~
-k‘ - ' Exercises 10-3 .

~ . . -

o 1. Find the’volume of an 6blique prism whose base 1s'a (2 by 5)

-rectangle and whose perpendicular distance between faces is 12.

' 2. Find the yolume of a pyramid Jhose altitude is. 8 and whose .

basé 18 a regylar hexagonal region of side 2", A hexagon is : )
g regular if all its sides are congruent and all ﬁts ang;és J "y
. LR .- , : o
are congruent. .t -, )

A
4=

e

:‘ N - : k e 12;6 ‘ i ’ ."ﬁ

X
2
f




. ) \JB iO.lw‘ el
4 .
3. 'Find the volume of a right prism whose-héight is 10 and whose

base is pentagonal as in.the figﬁref
\ ﬂ,g.\ .

~

4, Find the volume of a pyramid whose height is 6, qa?se base is

a parallelogram as in the figure.
e .

v S~ .

57 Draw figures illustrating problems (1) through (¥).

L}

.




Chapter 11 '

. Circles, Cylinders and Cones
/

N

- * 1. Terminology. ' L . ¢

For the first part 8¢ this chapter we deal with sets in ‘the

[

plane. An the final part we shall deal with cy}inders and cones

_— . Y
in Space,

‘Let C ‘be a point and let r be a nuiber. Then the tircle
with centeraat "C and radius r 1is the set of‘all points (of the
plane) at a distance r f%om c. '
et £ be any line which con-
tains C. On R there are twL\

4 d

rays with endpoint at C. " On-:

each of these there is exactly. -«
one poing of the circle, for on

each there is exactiy one point

at distance r from 'C. Any .
' -~ 1iné through C, tl‘[erefo;re, ! _ ‘ : “
eontains exactly two points of the circle. ‘ /
i " We usually draw a (representation of a)’cirele by Wse ‘of a
compass, - We draw t?e cirgle in such a way thafy it fits our de-
scription of a simple closed curve. We start drawing and without

lifting the pencil draw until we return t3ethe point we started

)




LS

*Q and C

© 1l.2 . ’

with. Except for fthe first point we cover each pa}nt only once.

Thus a bircle i An example of a simple closed curve. We can, in

.
+
- SRR

the\case of ,a gircle, say exac%iy what we mean: by its interior and

L4

N

by its eXterior. . . ‘ . : .
,// 7 g !
 The interior of the circle with center C and radius’ r is

'the set of all points at a distance less than® r. from C" The 1

exteridr is the set of ali points at ‘a distance grqater than »r

from cC. X - 4/ 3 L
\’ N ~ .

» \
A tircle is a curve. It is not the curve together with its

~

. ' [ . . L4
interior. A circle has a center (exactly‘one»centek, in fact)

and a radius. Thé center is a point but the radius (as we'haue

v - ‘v
used it) is a number (or length in some contextsﬁ Sometimes
Q

the term radius is also ‘used to denote ‘a segment having (o}

‘point at the center of/the circle and having the other endpoint on

the circle. 1In traditional terminology the term’ "radius" is used

in both these senses. Little confusion results fromAkhis as it is

g3

usually clear which sense

radius with both meanings.
"
sy L&t us now prove that.a circ cannot have twp centers. > /

o, as in the figure. - -

o
-
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Now ch= ClP as Cl is Aa‘center

. of the circle, and QC,= C,P  ‘as

. 02 is a “nter of t? circle.

.
+ . ;

\ s, .
Jlso ch<, QQ2~ . -

T, Thus we fhave ClP = ch
y ' ) ‘.

¢
Q 1<7Q02

13

~

2 .
s ) ‘ .
Therefore, CyP'< CsP but, from the order of the points on the .

line, ClP >_02P. We have a contradiction. Hence a circle can
have at most one center.

let us consider another basic property of circles. Iet

Dl ”be a circle. If A ‘is 4n the interior of Dl and B 1s .Lﬂ

the exterior then AB N D 1s exactly one point. We do not

°

prove this property. -However, let us note that 1%t agrees with our
AY .
earlier observations about the interior and exterlor of any.simple

53 14

closed cu"rge. The segment AB 'is a polygonal path from A to B

and hence must. intersect the simple closeo curve, ‘ v

A tang,%nt to a circle 'is a line that intersects the circle ‘1n
exactly one point. It follows from our ohservation above about

rays that a tangent to a circ.le cannot contain a point of'\lhe .

-

1M§rior of ?e circile -
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We state one of the standard fundamental properties about

»

circles and tangents. “

Property 1: If D 1s a circle with center C and pN:¢ is

X, then i is perpendicular to XC.

’ .2
to AB.

-, tangent to D at point

Proof: There 1s a lineg through C -perpendicular“
%

Let Y be the Intersection of
“EB> and i:his line. ‘Suppo‘Se bq
#is not X.° Now [CYX 1is a

~ right angle. The sum of the
méa§ures of the arigles‘ of .
A CXY 1is equal to 180 There-
/

~ fore m(/CXY) < 90. Hence

— ——m( feX¥)—<- m(/CYX). The side
. R [ ] .
opposite the larger angle is longer than that opposite "the smaller

angle. Therefore CX > CY and hence Y must be in the interior

b ]
of D fdr CX 15 the radius. But, as we have observed, a

’

tange?t‘ to a circle cannot contain a point in the interilor.of the

circle. Therefore our assumption that Y is not X is false.

Y must be X, T is <CX,  and thus] “CX> is,perpendicular to ﬁ.‘

w . .
] Exercises 11l-1

¢ ]

Prove that a line cannot intersect a circle.in a set consist- &

»

" ing of thrée or more points. :

1.

. | | a |

\ ]

. » P '
. /




point-nof on <CA, Fop con-

K

11.5 _ .
‘ .

\ ’ . Q o . » - .

2. A chord of a circle is a segmen{ ﬁf;ose endpodints are points of

.( the/circle. Consider a chord that does, mt contain the center
]

the circie.
'
the chord and the cehter of the circle is gerpéndicular éo,the

v

Prove that the line céntdining the midpoint of
- .

-
A

3, Prove that if D and E .are distinct circles then -DNE
» “ . {‘

cannot be*a set consisting of three or more points.
[

-

..chord, ) . .

~

L 4 T
a
.

2.‘ Arc Measure and I;ength.

¥, e »

Consider a circle with . o ..
- 3

j ,

center C.*(et’ @%‘ be a » oQ

,ray.. :_For convenience we R 35 4 Bg

 think of “CA” as horizontal

with® A to the right of ©C.
. )
.~ Let E be‘a polnt of CA ’

5 not ‘on CA> ‘let B be a

/\ venience let us take B

% .
;;s above the line <CR. Now in . ?

L 5. 4
o Chapter~6 we say that the’ N B : 0 o

family of all'r !ys with endpoint at’ c and contain ;pgini:é on

the B-side of K could pe coordinatized using numb .fromoo

to 180. ,We callled our unit a degree. For those rays which contaiﬁ

points on the hon-B-side of CA we choose £Q coordinatize them 2

' .
i . >




£y

-

/

,/}by adding 180 to.their degree coordinates which one would get

~

.

{?,'Q}-separates the circle into

_points ?' and Q. Note that

11.6

'

by starting with CE” as the reference (or zero) ray. The.ray 'EE>\/
is considered as having two alfernative coordinates--0 or 360.
The ray CE> 1s the 180 (degtee) ray.

This coordinatization of the family of all rays with endpoint
at C 1induces a coordinatization of the set pf points of the
circle. Each point of the'circle is identified with the .
coordinate of the‘ray containing it..

Suppose P and Q are any

two polnts of a.circle. The set

two sets. [Ihe union of either of

these and {P Q} is called an

arc of 'the circle. The symbol

-
PXQ is used to denote the ayc

which contains X and has.end-

SN LN g ) :
PXQU PYQ is the circle of, the -

figure above, . ’

We tan now define what we mean by the degree measure of an §

arc. We may consider the circle to be coordinatid“d\as above.

- -

Case I: If PYQ does not contain the point with zero

VR
' coordinate then the degree measure of PYQ -is

s

ﬁh@ positive difference in the coordinates of \

2 35

P and Q.

-




.

Py . "
Case II: If PYQ does contain the point with zero

~

" coordinate and netther P nor Q is such
‘point then' the .degree measure of §§a is

360 . minus the positive difference in the

.

coordinqtes'of‘ P &and Q. .

-

If P or Q 1is the poin{ with zero co-

[

N -
ordinate and the arc PYQ does not contain

other points with coordinates close to 360
then the degree measure ‘of PYQ is the
positive difference in the_coordinatés,of{)'
P and Q with zero as the coordinate of

‘P or. Q.. .

o co . .

‘If P or Q¢ is the point with zero co-
ordinate amd the arc PYQ does net contain
other points with coordinates oTose to zero
then the degree measure of PYQ is the M”ii
positive difference in the coordinates of"

P and Q with 360 as the coordinate of-

P or Qf ' v A*
The degree measure of an arc 1is not the "length" of the arc.

r

Rather it 1s the measure of the amount of "turning“ of the arcr

The closer the arc is to a whole circle, the closer the degre7

[y

measure is to 360. ° . ‘
” . -

.
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4 ° An arc of a circle with degrée measure less than- 180 i

‘determines an angle whose vertex is the center of the circle and *

.

whose rays contain the endpoints of the arc.' We call such angle
b

‘a central angle. ,The measure of the centra1 angle is the degree‘

measure of the arc determining it. For_ some purposes, 1t is
convenient to think of aﬁy~a{L of. a circle as determining a
[

"central angle" whose yeasure is the degree measure of the arc.
1 - -

This allows "central angles" to have degree 'measures anywhere from .

0 to 0. ’
I t 3.6 ¢ ‘J . . : o
,Length. Intuitively wé know that a cirgle must have length. |

We can Wrap a string around a circular object and then measure 1it.
1

We.can mark a'point on a bicycle wheel tire at contact with the

. ground and note the length of the path made by rolling the wheel ’

until the marked point returns to contact with the ground.’ :

Experimentally, the answer comes out to be somewhat more than 6
imes the radius (i‘e., 2Wr5 Sometimes ‘the length of a circle

is. called its circumference.

;  Now, mathematically, if we

want to measure tHe length of a

circle we can think about doing

it in the following way. Start-
ing from a point’ P on the circle
+lay off the radius ln straight

line segments‘ﬁix.times. “Then the
oo ..
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central angle suybtended (determined) by,each chord is a 60 degree
angle for we have edhilateral triangles formed. /Hence se would
have 1nscr1bed a hexégon in the.circle. The hexagon 1s called
‘regular in that all of 1ts sides are congruent and all of its:
angles are congruent.' It seems clear then that the length of the
circle is greater than six times the radius. But the nuiber _6r
can be considered as an approximation tovthe length of the.
circle. Now ws'can bisect each of the 6 central angles (by find-,
ing the,gidpoints of the chords if we wish) and determine 6 sore '

points on the circle. ‘Using the original 6 and the 6 additional

-

oﬁ%s we cd@ld construct a regular 1l2-sided polygon. Its length
(perimster) coula.be computed (or\meashred) and we should have a
better.approximation for thellength'of the circle. The process

can be continued to produce a regular‘24-sided,polygon, tpen a,

Tegular 48-sided one, eté. At each stage the length of épe . ]
pélygoh is less than’tﬂat of the circie but close to %p. The’ .
iength éf_the clrcle is the least numbér‘whish exceeds the

lengths of all the inscribed polygons so'obtained. The ratio ?f
this least number to 2r (twice the radius) is calledTT .Thus the
length of *%the circle 1s 2np. It can be established that ‘ '

¢

TM=3.141592 . . . . . . Asuwe nave been led to expect, 2 T is
“ : / Ce
somewhat more than 6. N -

- N . -




LN

0.

.

°

.0

The number, TT, exifts in the nature of things. Nobody has
* : PN SN

any control over its vaJue. We can think of T as being bracketed

ete. Thus
3< T < 4
) S 3.1< T < 3.2‘l
3.14 < T < 3.15 )
o0 ) °'° 3.141 < T < 3.142 (
: — ete,” *

It furns ofit that [tHe decimal expansion for TT is not a repeati
"decimal expansion, Ll.e., T 154not_afrgtional ﬁ&mber.' Sometime's |
the rational number 22 is used as‘an appréximation for ir.
However, 22 ‘is/not TT , 1t is simply close to TT . We might
 write M =~ £=/. Computations o£,7T to over 10,000 deci i piaces

have been made 1n recent years. T
h [

If a circlp has length, then-arcs of the circle should also

. have length, e degree measure>of an arc 1s a certain number
Q +

between 0 and 360. In a sense, 360 is the degree me sure'of a -~

circle., Because congruent ares should have equal 1 ngths a o
bQEEFSe two arcs of .the same degree -measure and on/thg-fame circle
' ]

are cgngruent, we can say that L

" length (arc) _ degree m¢asure (arc)
length (circle) asure (circle) . -

°

3




In otherlwords

degree measure (arc)

360 i

length (arc) = © 2mr.

b
o

Thus, for¢ekample, the/lengt@i9f a semi-circle ds

: ' P
intuition tells/us it olight to be.w - o

) \M_\'NM"QXW"'.’;’“&?::" -
Important questions come up wivh respect to how tc.use 7r in

. / s R -

computations. The _question, 'What is the length of a circle of .

A
radius 10°"¢has an answer which can be Written in the fermx?X\

Clearly 2 7T1s a perfectly good number. It is the product 20

times T/  Ndmerically it is between 62 and 63. A decimal approki—

_mation of 20 Tl accurate to 2ydecimal places is 62.83. We have
already learned in Chapter 7 that in"practical problems, if the

radius/of a circle is given as 10, then our convention calls for -
N -
gnas mpqion of precisionoeither to the nearest 10 units or to '

the nearest unit Thus in a practical problem _any answer for the
1engt ofAtHe circle which carries more than two significant. 5

digigs is reaily essen:ially'unjustified We shOul? write the -1
answer as 63 or' leave 1t 1 the form 207T . - -

In t forhula, circumference = 27#r the number 2 is regarded

as complfétely -accurate, TT ad completely accurate,'and r as = _




. fo- 11012
* . .o N - P . . *’ ) N
\ o .
' being as accurate as we choose to give it. The humber of -
. significan‘t*digits\ we use for T should not appreciably exceeo

. . N /‘
the number of diéits to which r is assumed accurate,

AN

5 v )
t— — If there T aﬁs%to, get’ ‘students to use several®8ecimal

¢
b ? places of /7T for cotgpuﬁ

Ty

onal practice, %hen’ specififc instructions

. t'o this effect cah

. \‘

iven. .But _i_R a-practical problem accurdcy , -
of an answeg should n‘\bel stated or implied beyond that Justified

131 the measuremé'nts concerned To do the contrary.is to give a *
"v"_) wrong answer an answer which is-definitely geceiving, an answer
which ‘asserts precision which is si?npl.y not there. : ' LT
. Yo, Exercises 11-2 . i /'
‘ l. Write out t?’le first four places of the decimal ehxpansion of, 72 .
. - Compare with the value of TW¥ glven in the text. Thus, show - .
Firat _{,¢ T o e .

\ 2. Draw two arcs whose degree measures are ea.ch 60%@ such that -«
r - *”

one is twice the length of 'the othe'r.k ‘What can you say about
. " - Y } _’ -
tl'fe radil of the circles which contaiﬂ these “arcs?

- .3. Using the resz&lt of E;srcise 3 of Sectlon 1, explain why an

.arc can bef subset of only one circle. *In other words, if

v an arc is[determined the circle which contains the axnc is)
. 1 . 1 ”
determined. . . ' s

"4, Give examples and draw Nf‘i_gﬁres)' iklt\lnstrating—(:ases«.-, i1, 1II,

R ' [

and JV for an arc.of degree measure 60. : 4

]
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P Y .
.
s - ¢ ’ v,

e 11.13

\

v » -

Find the® length of an arc of degree measure 120.1f the circle

‘ conﬁainingathe arc has -radius 8.

In finding the‘circumference of & eircle whose. radius is

measured as indicated, what approximation should you-use for
3 ‘ v N

o . # N »
*" T and to how many significaht digits shouldayou express the

[

‘ answer?

(There may be questipns of. judgment in some cases.)

2 - ¢ ¢ .
() r= 8. ..
(v) '§ = 8.0. - ' ) -
{cY* r'= 82,

v'.. i N- N - .
(d) »= 8.021. [!r , : )
. % L. ey *
(e)r=80214/";,‘ -
J ‘ i

From the formul ileﬁgth = 2Tr it 1s possible to find either

'j radius if the other 1s known. Also as the

7 4

d / s twice the ‘radius, knowledge of, the ‘diametér

the length. or.
f"diameter

Fing the other two

or radius y%glds knowjedge . of the other.
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3. Area of'a Circular Region,

Wt

Consider a circle with center C and radius r. The circle

1s a simple closed curve. Let M o -
. r— — .j .

be the cibsed region bounded by
the circle. ';ﬁ Chapter 6 we have
‘étatea that with respect to ‘a
given unit (sduare) rég%oﬁ there

. is a number which represents the
E-Y

area of | M. For simﬁlicity, we

' sometimes talk about the area of a L.___

circle ahd mean the'area of the closed" : <
region boundéd by the circle.

L [
Ourﬁproblem 1s to get an expression or formula for the area

\

|

. ' ‘o .

|

; |

of M, ﬁe might note as a first approximation, -that the area is

- ~

+ clearly less than.4r2, for M is contained in a square region of
Y .

-

|
area 412,  We would, guess; probably, that the .area would be, , I

:rélated to the number T{ as introduced in the previous section.

-

To develop the formula fqrAthe area of M we use sSomething of a

trick. We think of expressing M ‘ ' ‘

as the union of non-overlapping'
* sectors all congruent to each
otherj Iet us suppose that’ we'
have Kk of thew and that k

“is an even number., We call them

>

S1 5 Sp 5 —, Sy -

*
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By ProPerths V and VI of Chapter 6 the area of each Sl is

k ' (Area M). Now thé area of the circular region M 1is clearly
the area of the region represented below, - )
. n *

¢ v

\

This region is bbunded by a simple closed curve. It is somedhat '

like a rectangle or a parallelogram. However, the top  and- bottom

are not segments but unions of ares of %1rc1es.- If k 1s a 'large

even number then the region is very much like a rectangular'rei}on.
The area of the regionwhich 1s almost rectangular should be

approximately the height ‘times the length of the base. For large

k, the height is almost r and the length of the "pase" is 1/2
\ nd the _

f
-

' the'length of the circle. Therefore the area shquld be approxi-

° )

mately as Andicated below:’ : ,

‘Aréa ® p -%(277'?'):\71’1'2. .
) . ,
For very large k, the formula is very close to, being correct as
the figuré 1s almost a rectangular region. Hence we seem justi-
fied in concluding that Area(M)=7r2 Ssince the area of M’ is N

the area of each of these odd shaped regionsbwe have been consider-
~ : ‘ B " / . '

ing. - :

LI
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Areas and Volumes of Cylinders and Cones.

A c¢ylinder, a cone,
© and a sphere are geometric opéeets in space whose descriptions

elther depend on or are like that of a circle. We shall investi-

gate the sphere in Chapter 13.

Here we conslder the cylinder and

the cone and we restrict ourselves to right circular cylindere

and ,rlght circular 9pnes

The definitions given here are for

.
-

gpplication to mensurﬁtioq formulas\\\Somewhat different definitions -
qx*"%ﬁﬁy be given in other contexts. ' '

. ‘L—

Consider two parallel planes which we shall regard as

Let Dl and D, be circles in the lower piane as in

horizontal.

the figure .slet D;' be a circle.in the upger plane with D

1

directiy above 7D (and congruent to it). Let P be a point in
the upper plane directly above the 3enter of D2 . : ‘o
~ - ]
.o - T e
. v . Lot N
. ’\\‘ )
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The cylinder with bases Dl and Dl (ortmore precisely the

closed regions bounded By D;\and~ Dy ') is the unioQ‘of all
vertical segments each of which has one endpoint in D and‘khg
s rother in Dyr. . ®

¥

. The cone with base D2'and vertex P 1is the union-ef all
, ' segmgnts each of which has one endpoint P 'gnd the o&her in D,.

From some points of view 1t Is convenlent to regaprd the

- . «
"eylinder" and the "cone" as containing the.circular regions which

are bases-of these sets. With the bases included, then the
reglons bounded by the "cone" and the “cylinder" have volume.

" © A cylinder and a cone each has area called its lateral

I's
surface area. The sum of this area and the area of its,bases -

~ (or base) is calgéd “the total surface area of the cylinder (or

cbne) There are very close analogies between a "cylinder" and a

1. prism and between a "cone" and a pyramid In fact, the cylinder
and the cone can be regarded as "limiting cades” of a prism and a

,pyramid respectively by regarding the base circles as "limiting

cases" of regular polygons as in Section 2a Thus it is‘reasonable

"{o conclude that the formulas for yolume, lateral surface area,

.

and total surface area are like those‘for prisms and pyramids.
We consider h ~*%nhe distance between'éthe base planes, r the
radius of tne base circle, and £ the length of a segment from P

L4

to ‘D, . o :




') “

- " Volume (eylinder)= n(7r2)=TT\r2n

’ Area (lateral sunface of cylinder) = h(2xr) = 2prh -
’ Area (total surface of cylinder)- 21rh + 2nre g
g ° ' ' Lt ‘
) Tr—f—_“‘””’ “ Volume (cone)- §h07r2) < T r2p : )
- Area (lateral surface of cone) = E(enr)( Ted A 5
,V: Area (total surtace of coneT 77‘:*,(7+7Z‘r2"J - i ¢ 7

It is not important to remember these formulas as such It

is important to be able to think of th@ geometry of the" situaxion

~.

and Ehus to recognize what the formulas must be. N

* ¢ ~

-—

.

- -

Exercisés 11-3

O .

.1. Explain why the figure of the first part of' this section, would
be like a trapezoid if k were odd.

2. In terms of the properties of S€ction 4 of Chapter 6, explain
wyggthe agea of M %& the area of the odd-shaped figure used.
iy
3. The label on an ordinary tin: can represents a cylinder (*he

way we have defined 1t). The label may be laid flat and forms -

a rectangular region. The area of\the label is the lateral ¢

3R

‘surface area of the cylinderﬁ— Explain the formula from this

]

- point of* ¥iew,

R "

NI 11,18 . L e
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4, An ordinary conical drinkiﬁg'quﬁ represents a cone (the way we

"

have definéd 1t). ,If the cup is slit to &he vertdx, the paper

»
‘ may,be'laid flat forming a oircular T
region‘with a sector removed. The l
af%a'of the pé;er is the lateral °. .
surface of the cone. .Explain the
formula for lateral -surface area <
from this point of view.
.- 5. Compare the'geometric points-of-view for.aréa and volume of
I f\"(a) a prism,-and (b) a.\cylinder.a . N "
6. Compare the geometric pqinfsiof-view fer area and, volume of
SRR (a) apyramid, and Kp) "a cone. ' ° 0

7. Find volume, lateral su%fgse area and total surface area of a .
eylinder" height 8" énd circumference of the base 18 TT.

8.' Find volumey later "Ep?face area and total §prface area of a d
"cone" of heil é" ahd:rad%g§ of the base 6". (The "slant =
height"Jﬂ‘éan be!found by usE;sf the Pythagorean Theorem;) o

i . . :
C * ¢ . ‘
) P ‘- . N
. ) | . .
. ' w e ‘}
. °~ , . LR g,i '
| — C B
. o
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' - c Chapter 12

.

- The Coordinate Plane and Graphs .

FO—

i. The Coordinate Line and the Coordinate Plane.

In Chapter -6 we have’ observed that a ray may be coordinatiied ’

with any segment as a unit. This coordinatization of the’ ray

v <

gives a one-to- one corqpspondence between the gset of positive&feal

ﬁnumbers and zero and the’ set of points of the ray. We correspond |

3 zero to the end ,polnt of the ray.. g
' ,_ P Q - R, = & -
0 1. 1 "2 . 3T - 4 N\5.
25‘ . .
The, correspondence preserves8 order in the following sense, If

&
a4

‘P, Q and R are ary three points of the ray with Q betweén P and R

then the number corresponding to Q is between the numbers corre-

&

sponding to P and R, The correspondence also preserves distance

. 2

D in the following sense. If Pq = RS, %hen, of course, PQ = RS and
further, PQ (the length of PQ)is the absolute value of the differ- .

-

/ ' ~ence between the coordinates oflP and Qq In the figure, PQ 1is

L

approximately .9.. A similar statement is trué abqut RS.. To

"

coordinatize the whole Iine we coordinatiZe a ray BR of the line
with B~——0. Let C denote a point of AB but ot of EK Then we
T coordTna%IEe‘ﬁﬁ with the same unit segment. '

4

_ ' Now if we think of assigning negative values to the poipts © ot

]

or'ﬁﬁwinstead of the corresponding positive values we have the

i

7 * . usual: coordinatization of the line. In this coordinatization .

.
vy Lt . o

- - 01201
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order and "distance" are preserved as in the case of the ray. We
customarily think of coordinatizing a horizontal line with the
points with positive coordinates being to the right of the zero
point.‘ Now by thinking of the line we . .

c ) ‘ B . A

———). " . b P
+ +

\j

-3 -2 - 0 L2 3 /4

can easily tell what Qe mean by the statement a < b. We say ‘a
is less than b or (a < b) if the point whose coordinate is a-
18" to the left of the point whose coordinate is b. For example,
-2 ¢ 16
2¢1 ., ,
-, ‘ , -2¢0 ‘,g o

S 2 ¢ -1 . )

y -5 < -2 : s

We also ‘'say that b is greater than a or (b > a) if the pointr - -%
corresponding to . b 1s to the right of the point corresponding

“to a. We use the symbol ">" to mean greater than or equal to." '!

Note that ¢ > d means geometrically thatithe point whose' co- =°

ordinate 1s ¢ is not to the left of the|point whose coordinate:

~ ) ‘ 4 .
ts d. B ; ﬁqz [ 4
\

Having in minﬂ”%he principles of cdordinatization of the 1ine

Qe can now easlly coordinatize the plane. Think of two perpendi-
cular lines. Lonsider one as horizontal. #We call the point‘of
intersection of the two lines the origin and label it by O (oh).

: | )

e f .

!




A

'right and the vertical line with positive coordinates upward.

coordinate lines the axes, calling the horizontal one’ the x- axis

’ i

~ . ’ .

’ - -3 N ) )

] & * '
Coordipatize the horizontal line with positive coordinates to the

AN

LA

We

customarily use the same unit for both lines.' We call the‘two

and the vertiqal one the\y axis,
L

i We may label the akes with our .

scale and put the letters % and y as indicated to the" right and up.

_Now to coordinatize the plane We think of ordered (or sensed) .

pairs of numbers. The " ndered" means that in general (a,b) .1s
, b
not the same as (b, a) Each ordered pair (a,b) is to correspond

to one point of the plane and each point to one ordered pailr of

numbers. We set up the one-to-one corpespendence as follows.
v
: +3 . /
H ’ at I RERY ,
-2 P " e
e BT, oy o T-_-_yl ‘ - v A
I' h' ': s‘,
]
- |
' : i, , '
ST /-2 7 00 2 30X , L
et AL X~ COORDINATE OF P Is 22 ’
N CIT ) -2 IV Y - COORDINATE 9F P IS l-g-
o 13 ~
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For point P of the plane, the coordinate on the x-axls of the
foo; of the perpendicular from P to phe x-axls 1s called the
X-coordinate of P.1.81mllarly the coordinate on the y-axis of the
foot of the perpendicular from P to the ylaxis 1s called the **

« y-coordinate of the point P. We write the x-coordinate as the

finst number of the ordered pair, the‘y-coordinate as the second.
Note that, themy-cocrdinate of any point on the x-axis is zero.
What is the X-coordinate of any point on the y-axis? . The
coordindtization process we ‘have descnibed clearly gives‘us a
one-to-one correspcndence of éhe.bype we seek. ,Given the axes,
for any‘poiny therg 1s a unique ordered pair of real numbgps and

.
for any ordered pair ‘of real numbers there is a unique point. In

the exerclses we davelop this aspect further.

7]

v

The union of the axes separates the plane into 4 gets of

'points. Any one ®f thése, together with its boundary, is called
a quadrant.' W/ designate the upper right hand‘quad;ant as the’
first quadrant, the upper left as the second, the lower left as
the third and/the lower right as the fourth.

Having the concept of a coordinate plane we now can state
exactly what is meant gy saying that any figure in the plane ¢
be freely moved withoué changing its size or shape.z -

o #‘ i e : ,

Nai”
T
L,
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Let H be & certaln set of points In the figure H is.the
closed region boun&ed by the simple

closed curve.

Suppose we are given any point P and any two points Ql and Q2 such

that PQl = PQ2 = 1 and such that PQl }s perpendicular to §62.
Then coordinate axes exist with P as the origin, Ql the point (1,0)
and Q, the point (0,1). (We do not have further control over
§d§££ibgmhireétions.)L . ‘
'Oé‘

e label the axes as the x*

and y! axes (the‘prrimeu

and y-prime a;es).

’

\

)

“to the x' and y! axes are the coordinatqs of a point.H with

. irespect "to the x and ¥y coordinate axes.\ For example, the point

S

of H: The,psint {2,1)

(2,1) (with respect to x and v) 1s a pol
(with respect to X! and y!) is required be:a%point of H'., It
will be true that H! is congruent to H. We have”'freely moyed" H

to Hf’because we have. been able to choose the Point P and the

&
<




: freely subject only §b the restriction that
d PQl is perpendicular ‘to PQ2 'Note that because

,7-

Thus distances wil be preSérved. e -

L.

‘ 8 e ' .

\ . Exercises 12-1 %

Draw a pair of p pén’dicularslines..r Call the intersection
the point O and 13 off comgon‘sca;eq on the two axes. . .

Plot the points whpse coordinates are (-2,3), (4,1), 6%,0),

what are the coordinat p : >
P, @, R, S, and T? What T |
are the coordinates of (oks ‘ \ 0 1 2 X

(We will have to estimate: 4 T T 'R

coordinaées that are not

clearly whole numbers).

(a) The IV quadraqt is the set of, all points (a b) for
which a >0and b ? 0. - - -

B e b e v

(p) Make similar stategents about the I, II,.and.III

quadrants. .

LARE S . ——

f
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.
~ .
- ] . . . o a

k., (a) What is the set of all points with x-coordinate gegatiye?'

“~{b) What 1s the sét of all points with y-coordinite greater °

. . 1 C T
than or equal t¢Q zero? . B

» -

[y

5. (a) PWhat 1s the set 9£‘3I1”points with x-coordinate equal

to 0? ' I
(b) What is the set of all points with x and y-coordinates\

both.zerof
(g) What is the set of all points with at least one coordi-

- nate zerg? . .ot

. Y
2. Graphs of Algebraic Statements or Sentences.

Consider any statement about a number x and a number y.:
Examples of such statements are x + y = 10,, X > ¥, x =2
(this qualifies as such a statement beca;se it says that x is 2

and specifically does not restrict y), ¥ > -1, ¥ = 3 + 2x and
y = x2. Frequently, but not always, the statement is an equation

or an inequality. We call such a statement an algebraic statement

\abput x and” v ”fﬁfﬁﬁb; . * ‘.

n

Definition: The graph,of an algebralc statement .about X and

— T i c— ——— —— g et

Sistatement true (satisfy the statement) .

¢

- .

-,

This is 2 very important definition. It is the key relation:,

[T siere o

ship betWeen algebra and geometry (between aigebraic statements

4

e




.t . s ' % :4 : . &
or sentences and sets ox points). The Tormulatiqn an cultivation -

R/

of the point of view leading to.this relationsh%p between algebra '/‘*;

)

"and geometry is credited to the French philosopher and ‘mathema- . °

tician, Rene Descartes. It 1% probably one of the most signifi- . '
- cant, scientific contributions ever made. Today e still Spea k of ' J

~ .
rectangular coordinates (as in Section 1) as Cartesian coordinates %.

!

There are‘three main types of problems about graphs. !

(1) Given an algebraic statement what can be said about 7
\ ) ;1ts graph? ’ : . S ‘ ' "4D,
';' :(2) Given an algebraic statement, draw its graph ,~‘ ’ fé
‘f. (3). Given a set of points, what is an algebraic statement o "_j
," Tl o WhicH—FE™T3 ‘the “grapn? s e e e _ g
Awé can give ansgers to these questions in many simple cases., "
ln ansyepiag/thelquestion as to what can be said about ~the
‘graph o;)anralgebraic_statement we desire an answer in set ’ . h
langhage; i.e., a description of a 'set of points.A In (2) we
desire anh actual picture or drawing of the graph where possible.
Note that there are two’ considerations in’ deciding whether a
. \, ~particular set M of points 18 the graph of an al statement. ,
(a) Do the coordinates of every paint in tmke the  °
o algebraic statement true? - ‘ ' '
~ + (b) Is every point whosefcoordinates:make the algebraic - -. "
. statement true in the‘particular set M of points? ‘ e

Let us consider a few elementary examples. -




7 e ' ‘ ) ’ ‘* ° 1
"/ : : .
12.9 . !

*(1) x > 0. The graph is, by definition, the set of all
points for which x is positive. This will be the set of all

points to the right of the y-axis.

(a)‘ Any point to the right of the y-axis has the
property that its quoordiﬁdte 1s positive.
, (b) pr point whose x-coordinate is positive must-

- be to the right of the y-axis.

‘ ) 107 X
s . o / L

(2) y = 2. The graph' is, by définitlion, the set of all

Y

. polnts for which y =-2. . . .

The graph is ‘the line two units above the x-axis. Let

1

us see wﬁy. - ) o Y
(a) Every point.or that !l.ine ~ '. 2 <
) - has the pgoperty éhat y 2. . - .
} ‘ jb)‘ Every point whose y- coiidinate L 5 - %
is’ 2 (which makes y = 2 g true | .
;M ‘ statement) 1s on that. 1ine. ,.
(3) x<0andy =0, The graph-of this statement is, bé
definftion: the set of all points for which x 1s"negat1ve end y
is zero. Let;us see what the graph must be. .
~ !
) / >
¢ ‘* ' N . ~
i ' S
» 215 % |
B ?3‘“2‘2'8’;‘:« - . A )
G T ; /.
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The sek of points for>which x 1s less than zero is the set

of all points.to the left of the y-axis. Call-this set H, The

set.of points for.which y = O is the x-axis. Call this set K.

The graph we seek is the set "of all pcints which-are in H and

are dlso in K; i.e., the set of points of HN K. This set is

clearly the set of polnts of the x- axis which are to the left of,

the y- axis. Thus we have described the graph for .
) (a) Every point in this set (HNK) has'coordinates
satisfying the algebraic statement and
(b) Every point whose coordinates satisfy the statement
is in this set (HQK)‘. - ,
, - - . ’ ~
- o - x "

(%) x = a, for

a any particular real number. Examples
_ard) =1, x = -1, x = 6 -2, ete. - \
- - - S Y s .
. Any point P whose coordinates make the sfatement x = a

.

true is a point whose coordinates are of the form (a,y).
Graphically, it is a point whose projectlon on the x-axis is the

point of the axis whosé.x—coordinate is a. Therefore the graph

j we ,Seek 1is the set of all points on the line perpendicular to

- =
>

\thegﬁ-axis and "a" units away from the y-axis. If a > 0, the, line

-

%
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. \ |
i1s to>the right of the y-axis., If a ¢ 0, it is to the left of B
the y-axis. If a =0, 1t 1s the y-axis. - \

-~ L 4 - .
(5) y = Db for b any particular real number, . \
N From reasoning like that above, the graph must be a horizontal ‘
' ] . ’ .
line, b units from the x-axls, abow€, on, or below as' b is

positive, zero, or negativé'resbecxiyely.

» =< 1Y -

Yeig ' : -

} ‘ Ys=—=2 ) N

A N A

Exerciges 12-2

) -» , . ‘
Graph the following algebraic statements: .
%
lev x> % , — U
2. Yy =X- ' : Y
» f . . ‘2 ’ .
30 x = -l arld y = 2 ! . b

‘b, x=-lory=2

5. xﬁ>o' ‘ ) - -

6. y<2and x>0

Te X e y=20

. . ’ . j ]
) 8.‘ X oy¥\0
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Gtve algebraic statements of which the following are i /
descriptions of their graphs. !

+

9.° Thé "set of points to the left ‘of the y-axis,
10. The set-of points mot in the union of the II, III, and Ivth

.

. Quadrants,:

11. The origin. . )
SR § : 3

kY . , "

3. Graphing Techniques,

«

The traditional elementary way to graph an, algebraic state-

*
’ ment which is an equation has been to "plot pointd". .Consider the
equation y' = 1 + xe, for instance, We wouidkégmpile a table as -
Y
» follows: @ . . : 7 T
. X ¥y When x = 0 then y - l:+ 0=1
a ! . .
1l 2 .When x = 1 theny =1 + 12 = 2 ] ,
- 2 5 ' p I 5 <
- / - When x =2 theny=1+2°=5 + 2 {
. . . * . Y 2 + ) S—
A ‘ d etC. ) 4 ) d o x
»p\ y
Then We would graph the points (0;1)(1,2) aha (2,5) and possibly
&

some: others and "guess" at what other points might be on the

graph, . Fn easy examples (1ike the above) we were usually right.
‘But certainly the "point plotting method leaves much to be de~
Sired. It ddes not answer our fundamental questions (a) and {b)

' of the preceding section about the graph.
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. o . ¢ . - S
. : Y.. Py .
Consider the- eguatiqp X¥ = 6 , | ) .
Let us plot points.' For x = O} éaiﬁoesn't work ’ : J
x vy for x =1, y = § I . ,
’ . . -2 .
213 for x =2, 2y=6 |
¢ > g 32- s .
L2 )3 y=3 ' ol 2 R
- ete. ,
. ! .

We plot the five points whose coordinates .are glven'~above. “Now &éf
!

how do we draw the graph? It is not easy ¢r ogvious simply from
these considerations. e
’ So let us étarl’dver aéain and trysto collect information e
| which will let us be re§sgnably sure tpat what we will draw will
look like the graph bught to look. We Seey answers to some or all
of the following Questions,: The answers themselves are nét im-
portant, It‘is-the Egg‘to’wh}ch we put the answers that is :
important. In a given problem, we énéwer the ;eésy" queétions"
first and see 1f we then have enough 1nformation ta help us
graph ﬁhe equation. ... - .
(1) Is the equation (or §téteﬁent) oé‘a type for th?h we
already know what the graph must be? If so, graph it and use the
othef’q&estiohs only)as a checy.' For instance, 1if the equatioﬁ

Is x = 3 wenkpow whaﬁ the graph must be, .It is the vertical line

r i .
3 units.to the right of the y-axis. : <

¢+
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' (2) For wha& values of X 1s there a corresponding value of .

a 4 °
y? (What is the'set of all numbers "a" for which ‘the graph con-
tains a $oint with first coordinate'"a"°)
Consider y/= 3 + 2x Consider xy 6 I .

In this equation, it is clear that In this equation, it. is

for any value of x there will be a clear"thaérif X = 0 then

corresponding value of y._ We can ﬁthere is ng corresponding .
see this by Just looking at the valué of yo If x # O then
equation. Think of supstituting | there is a corresponding® - -
a number for x; then y is 3 plus valueroqu (for we caﬁ'then’ '
twice that number. . ot solve for y). .

’

What do these observations mean graphically° They mean that for
_any Value of x for which there is at least one corresponding
value of’y, there will be at least one point of the graph on the
vertical line determined by that value of x. By the same token,

- 1f there is no corresponding value of y for a particular value '

of x, then the graph can not contain any point on such vertical

line,, : S - B
.' L4 H ey
Consider y = 3 + 2x. : Conalder xy = 6 X, ' .

The graph containgﬁ%t least one The_graph contains Do point
point on each yertical line. | on the y-axis (the line
' » x = 0).- The graph COntains -
.,‘.. .
] at least one point: on each
other vertical line. L

~(2') The same as (2), but with§the roles of x and y/re-

versed. °*
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(3) TFor a given value of x, how many corresponding values

"of y are there? . . -

r In both of our examples, there was never more than one

corresponding value ofly for any value of x.. Graphicaily, this

means, fbr our examples, that neither graph contains)two points

on any vertical line. (An equation like y> 4 x° + 1 would have

two points on each vertical line. For x = O, for instance, y ‘
could be ‘elther +1 or -1.) S0

(3') The same as (35 but with the roles of x and y reversed.
(4) For what values of x 1s y > 0? is y ¢ 0? For what

values of y 1s x > 0? 18 x ¢ 0? e

Consider y = 3 + 2x. ' Consider xy = 6
¥y > O whenever 3 + 2x > O, ¥.> O whenever x > 0
or 2x > -3 ¥y < O whenever x < O.
or x>-2 - This means that the graph is

-

¥ ¢ O whenever x < - gu coptained in quadrants I and

:i:—r k2

This means that the graph s’ I

above the x-axls for x > - g

and is below the x-axis for
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~

7

(5) 1If relevant, how large 1s y if x is a large number? .

~ Héw large 1s x if y 1s a large number? . .

~ -
’ -

- . Consider y = 3 + 2x.

Consider 'xy = 6. '
If 'x is large, y must be small,
in Yact, close to zero. .:

If y is large, x must be close

For instance, if -

Having draWn"the

- - g

;-
L
s

’ -

3 + 2x.

»
// If x 1s large, y is iarge, it is
| 3 plus twice X.
If y is lerge, x must also be
lerge (about half as large as to zero.
'y). o x=lOO,\y=1—g—6.)
Having collected information in answering some or all of‘
these questions, we then have the problem of actually graphing
the equation consistent with what we have learned. .
'Finally in acﬁualiy doing the graphing, we usually do plot
some points. Then we draw the grap?.through these points on %he
| basis of the other informatic? Qe n?ve gathered.
h gfaph, we shculdﬂyhen check to see“that 1% conforms to ‘our in-
’ formation.
. e - ‘ Exercises 12-3
1. Using the discussion in the text graph y y
N 24 Using the discussion in ‘the text, graph xy = 6.

u‘o ‘ y = I2' - X ( »:gz .
5. Yy = x3

Discuss (with respect to our 5 quesgions) and graph,

=Ly,
o

1
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h. Linear Equations.

We have already noted in Section 2 that ah equation like

X =°a (or y = ha¥ a graph which is a (straight) line.

¢ Y, . . . B

1 X=2= ‘ In the figure to the left

, i . I a=2 % and the graph of
H\YNM:' . r“n,dﬂﬁ—* — 4 X .
X = 2:% is the vertical .|
ys-3 - ,

. * [ . line indicated. Similarly

b= - % and the“graph

of y = - 2 is the horizontal line indicated.
| » -

- s

- s

There are other equations which have graphs which are
(straight) lines, In fact any equation of the form y = nx + b
‘has a—éraphtwhichais 4 straight line. An example is y = 5x - 12.
From the considerations of Section- 3, even without knowing that
the graph is a straight line, we can lmmediately conclude that
the graph must cross each vertical line exactly once and if
m#£0 it must alﬁb*crqes each herizontal'line exactly once.

iClearly the graph of the equatian y ='mx + b paseee,through
the poiht (0,b) for b =m * 0 + b and thus (0,b) satisfies the
eq'ation. Also the graph has slope m; 1.e:, if you 1nerea8e X
zPth-unite you 1ncrea§e(y by me k units. We explain: this idea

by an example.

- » &

=y

Yz
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Let us consider y = 3x - 2. The point

(0, -2) is on the graph.  Ifiest~issins .. s
oo

creased from O to 1, y is increased by

3. If x is incrpased from 1 to 1.1

1

then y is increased by 3 - = or 3. /
. f

H
A proof.that the graph of y = mx + b is actually a straight line
depends on equalit& of ratios ;f corresponding sides of similar
~t}1angles. We 'do not give the details here. :

Us;pg the 1nformation_above, we can prove that any line

must,have an equation of the form y = mx + b or x

=ao I' el
line is vestical an equation of the line is of the form Qe 'If
the, line 1s not vertical then the line must intersect y-axi

N

at a point whose y-coordinéte we will call b, The line must
2

intersect the line } = 1 at a point whos§§§-codrd1nate we call d.

-

Now d - b 1s the increase in ¥y when x 1s increased from 0 to .1, -
The line whose equation is y = (d -b) « x+b does'pass through
two points on our given line, namely (O,b) and (1,d). bhergfore_~

‘our given line and the line whose equation is y = (d - b) e x '+ b’
must be identical. Hence y = (d - b) - x + b 1s an equation of h\
.our line. ‘ : E

»

Thus we have éhown that every line has an equation of the

¥ .

form y = mx + b or of the form x = a. - ‘ ’

' ¥

-
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Liﬁear Equations. An equation in x and y is sai- to be of

the first degree in x and y if it can’ be put in the fo h * -

Ax + By, + C = O where at.least one of the numbers A and B is not - >~4:

zero. We notg that x = a 1s of this form for 1+ X + Q- & + ( a) =0

o e e et

1s equivalent to X - a = O and hence to X = a. Note thag A =1 and

hence A £ 0. ' ' . |
) 4

We aiso note that y

L4 \

(-m)x + 1 . y + (-5) = 0 is equivalpﬁt to -mx +y -b=0 and

mX + b is of this form for

hence to ¥ = mx + b. Note that B = 1 and henceF £ 0. Thus we Q

—

have shown that every line 18 the graph of an eqiation of the

= \

first degree in x and y (for every line is a graph of an equation
N t

- \
of the form y = mx + b or-x = a).. T

\

¢

Let us look 4t the other side of the coin. Is 1t true that
-every equation of the first degree in x and y has a graph whicﬁ
1s a (straignt) lin\ Thé answeryis 'yes" and we proceed to \ ,
. prove the assertion'based on our earlier observations. . \
Consider AX + By + C =0 with at least one ®f A(and B not \

zéro. SuppoSe_B £ 0. Then 1t follows ﬂrom elementary properties

of numbers that ﬁhe equations Ax + By + C=0 .
- ' ' 7 ') ¢ By 12 = -Ax - C ‘ ¢ N
‘ © and y = (= )x + (5 <)
: ! B “/ ]
are equivalent. (We say thag such equations are equivalent if B

they have the same solutionsi i.e., provided thatéif aqy ordered

pair Of numbers (x,y) satisfles one equation it also must satisfy - :
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¥

the other(s).) Ifthe equations are equivalent they must have
LY, ST

the same graph. Thus if B A\O the graph of AX + By + C = 0 is

the graph of y = ( )x + ( ) and we have -already agreed that the

latter graph is a (straight) line:‘m(we'cohsider (Z%).%owbe m
- - gy Bl N
-Cy . — -
and‘(fg) to be b). . ‘ .

Finally we -ask what the situation is if B = 0. Then A £ 0

(for at Yeast one 8f A and B is not zero) and the equations

AX + C =0, i
. -C .
and i X = (—K)

are equivalent. But the graph of x ( ) 1s known to be a

vertical line. Thus the graph of AXx + By + C = 0 1g a line

E

provided at least one of A and B 18 not zero. . !

We ¢all an equation of the first degree inx and y a

linear equation‘beca e i1ts graph 18 a line.

Whenever an efuation is given which is equivalent to an

equation of the rm AX + By + C =0 (A or B not zero) we know

éﬁ&xgraph must be a (straight) line. We can graph the equation
by finding twe points on the line and using a straight edge or-
ruler "o draw the }ine.' (We frequently find a third point Just

to check our arithmetic.)

Important Conclusipn. CL . - .

(T ] N o

Z\ﬁj = Finally we can well ask what the significance of this point

.

of view is, It 1s monumentale

N -

? - A
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< . N
Much of algebra is a study of linear equations .in x and y.
Much of geometry is a study of (sfraight) lines.

IS

When we' study either (a) properties: of lines or sets of

+

lines in geometry or (b) properties of linear equations or sets
of linear equatlions in algebra we are really studying both. We
can learn about linear equations by thinking about lines. We '
can learn about lines by thinking about linear equations.
¢ e ' , B o\ R 5 Avo, b e Sl ey
. Exercises 12-14 ‘ - ¢ "
N . .
' 1. What is the grapb/of AX + By + C = 0 if A and B are both ,
. zero and C # qu; -
2+ What is thetgraph of Ax + By +C =0 &f A, B, and C are

each’ zero?N

3. Graph y = 2x - 1

4. Graph y = (-1)x + 3 ; -~ ¥ '
So Graph 3x - 2y = 6 » ‘ . *
6. Graph 2x + 4y =1 , - ¢ -
2 £
4 L 5




Chapter 13
The Sphere

1. Properties. . _ D

The ordinary mathematical apstraction,of the surface of &

round®ball is called a sphere (or a "2-dimensional sphere" 1nx

some contexts) The sphere 1s also used ‘as a mathematical ab-\

tstraction of the surface of the earth. ~-The fact that the surface

T

of the earth is somewhat uneven and is thqyght to be a bit

e

fiattened at the poles is, from many™ 8 of view, not important.
J;t 15 8£11l useful to study the sphere and to regard it as an ab- .
straction of the surface of our eagth. A sphere like a circle has

a cepter.' In“fact, g}ven a positive number R and aﬂpoint c, the:
set of all po@nts‘of space at distapce\%/from C is ealled the p
sphere of radips R and center C.. : '

Consider.thé?lntersection of a plane and a sphere. If the

tintersection 1s not empty then it might be just one_point. In

such- caée the sphere would be tangent to the plane. This situ-
ation would be represented by a hard ball resting on a table..- The -
Y

surface of the ball ‘seems to have Jjust one point in common with

the table top. }
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- T

If the intersection of a plane and a sphere is not empty and
4 A
contains'more than one point, then it is a ciﬁple. One sees an
A ] . ‘
illustration of -this by a slicing of an orange. . ’

M aiaia

& There 18 a distinction made as to whether ‘the plane which
intersects the sphere contains the center of the sphere. If it
does, we call the intersection a great circle of the, sphere. If

the plane does not coptain the center then we call the inter-

o W

" section a small circle. Note that the center of the sphere is

/ H

also the center’of each of the great circles ef the sphere byt it

1s.not-the centeX of any of the‘small circles of the sphere.

In the }igure, PQT represents a small lrcle with 9égier at V.
ABD represents a great tircle with center at C, ‘the center of
the sphere. . . ' -
éiven any point X on the sphere, there is exactly one line
in space containing X and the center C. Thls line must also-
intersect the sphere at exactly cne other point. ¢Call it X!. e
(We read it "X-prime .) Then X and X! are the endpoints of a

diameter of the sphere and are called diametrically opposite

" points. . “ 7
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The north and_south poles represent diametrically opposite
points on the surface of the earth The equator represents a
greq? circle. Let us note two fundamental properties of a great

L 2

circle.

Property I. Everﬁ/two distinct great circles on a sphere

have'g non-empty intersection and the interSectiog ig a set of

two polnts which are diametrically opposite. -

Proof: Each great circle 1s the intersection of the sphere |,
and a plane which ccytains the center of the sphere, _ The two
distinct planes which contain the great circles have the cepter
of the sphere in common.® Therefore, thelr intersection is a line
which contains the center of thée sphere. But this line Which con-
tains the center of the sphere must intersect the sphere in
exactly two pointé which are diametrically oﬁposite. The inter-
section of the two great ¢ircles is‘precisely the 1ntersectiOn of
the sphiere_ and the set which 1is the intersection of the two Qlane&
Hence, the 1htersection of two distinct great circles is a set of -
two points which are diametrically opposite.

Property II. If A and B are any two distinct points of a -

«  sphere and A and g-are not diametrically opposite, then there is

[ 4

exactly one great circle of the sphere centaining A and B.

' Procr*~£A B, and the center C of the sphere are not on the

samenstraight 1ine (because A and B are not Wiametrically

oppcsite), Therefore, from,Property III of Chapter 5 there i8 a -~
' ’ $

unique plane containing A, B, and C- But because this plane con-

tains C, it must intersect the sphere in a great circle and such

‘great c¢idcle must contain A and B. v .

4
» ’

- 1

230
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—— ’ / "

Ir any other great circle contained A and B, the plane con-

taining that great circle would also contain C (of course) and we
) .
would have two distinct planes containing A, B, and C. \This is

‘ impossible and thus Property II is proved.

One of the interesting and important facts about spheres is

that if A and B are .two points of a sphere then the shortest path

on the sphere between A and B is the great circle bath from A to B.

This fact is of great significance in navigation, both in ship
sailing routes and in airline routes. : -
\ a,
*We may experimentally anticipate this result by taking a .

globe and stretching a string between two points on it.

- i

e Exercises 13-1 N
1. (a) Maﬁe a.drawing of a sphere .
1iké that on the right. ' _ i
(b) LabBel & points'q; the - - .
equator in didmetrically
opposite pairs. o ) z
(c) Dot fn the segmenps join- J;>

ing the diametrically op-
1_=

posite pairs in (b). ;
(d) Draw two.small circles, one of which intersects the
. equator and one of which doesn't. ‘Label tpeir centers,
.2, Draw a sphere and two great clrcles on the sphere_showing’

their points of intersection to be_diametrically opposife. . .

’ ’




3. Draw a sphere with its equator. Draw four small circies of

the sphere each in a plane parallet to the piahe.of the - -.

equator., - S e e e . >
: & s
k. Take a POUNd ball or globe and stretch.a string between two

points 6n it to check the "shortest distance" fact”%bout

=

' spheres. Try this several times to help your intuition.

5. Take an orange or an apple, and slice it to show great circles

and small circles.

-

6. Explain why going due north would be the most efficlent way
_of getting to a point due north of your starting point.
7. (a) Explain why®going due east is usually not the most

: efficlent way of getting to a point which is due east

A

~ -

of your starting point,

(b) Describe special circumstances when it would be the most

efficient.

»

2. Coordinati'zation of the Sphere. ,

We have seen in Chapter 12 how we could coordinatise the

plane.* Given- two perpendicu;ar reference lines as the axes, we

could locate any point- by knowing the x- and y- coordinates of

the point. A ' ®
>

;" _-How do we ¢oordinatiz® the surface of the earth--a sphere?

‘4

~know1edge of the earth!'s rotation. The earth, of course, éé;
. &

Our ancestors set up a coordinate system. They were aided by

R

. _ .

A
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F//gznsidered to rotate on an axis--the line containing the qprth and
south poles and the cénter of the earth. "The set of pbin%s half-

way between the‘north and south poies and, on the surface is called
the equator. It turns dut that this set is & great circle. It is
reasonable tqQ use the poles and th; equatdr as reference sets In
our coordinate system. We call the greét semli-circles wh¥ch have
the north aqd soutp poles as endpoin@s the merldians, As.eacg
great circlé containiﬁk the poles intersects thg_gguator in two
diametrically opposite\ppints each meridian intersects the equatora
1n'a unique point. Thgr; is a one-to~one correspondence between‘

)

the set of meridians and the Set of points of the equator. Each
3 l!’ - . .

° N - y [ ]

point of the equatgr corresponds %0 the meridian which ¢ontains

- [

it. Furthermore, except:fpr the two poles, each point of the

f§phere is on exactly one meridian, Thué if we coordinatize the

°

set of meridians we can use this coordinate to help locate the

, point. Noté, too, that if we coordinatize the equator we can
‘ -

. consider the set of meridians o be coordinatized by use of the
'5&. ~ .
one-to-one correspgndence of the set of points of the equator

-

with the set of meridians.

We have alreédy seen in Chapter 1l how a circle can be

g0 ", .

coBrdiBatizqd in units of degree

" measure. There are several . %
M R

-’ (‘
_options in some *details of how [

80

we choose to.do such. We can

-

. use numbérs from 0 to 360 using “a

a counter-clockwlise systems. N
. MV’J_{( L _4
N

’ ¢

L

A4

A
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L -

Or we ¢ choose 'to measure from

our O point both ways to 180, one

180 E
OR 0

180 W

> direction being positive and the’

¢
other negative (or what is'more
conveﬁient for the equater on

45W

the earth, one east and one wqyt).'

. _ 90W
We call the coordinate of"the

meridian o which a poinp;iies the
longitude of the point. - '

Many years ago it was decided to call the Greenwich meridian
the zero (or prime) meridian. The dreenwich meridian is tﬁat one
which passes through a partiéular poiqt Sf/the town of égegnwich,

Englandf The rest of the meridians are numbered eadt or west of

the Greenwich meridian. If we think of looking down at the

equator from the north pole then we would, label points of the
s ¢

equator as 1n\the figure .above. GREENWICH

The 180°" meridian runs north and

south through the Pacific Ocean
and the eastern tip of Siberia.
It is uéezlfor;gyeh of its extent
as the so-calied'Internatio£él j
Date Line.:

Now'to locate a point on a-sphere if we have poles and

.

LANN

meridians selected we néed to know both what meridian the point is

L
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\

on and how far ébove or below the

equator theﬁﬁbint is. The "natural"

way to measure "distance" above or -
helow the equator 1s in terms, of arc ‘v .
-~ y

length on the meridian. And this is . T o

what 1s.éhstomar11y done. ' L.

The portion'of a meridian from the equator to elther pole is a

quarter of a circlé. ir the point on the equator is 1dent1f1ed

as the zero point on this quarter circle then the pole would be a

90 (degree) point and each other point would-have a-coordinate———

(called its latitude) between O and 90 and north or south as the,

pole is north’orf south, The set of all points with latitude

equal to say 45 north i8 a small circle on the'sphére. The plén%

containing this circle 1s.parallel to the plane of the equator

--hence the expression "parallels of latitude". ‘ |
The north_and south poles, eqqator\Klongitude and latitude

N

coordinatization of the sphere 1s used by mathematicians in many
contexts quite‘apart from those reldted to the surface of the

earth. It just happens to ‘be the CQSe.that this qz?tem is about

as simpLe, convenient, and useful as any that can be set up.

. One‘of the 1nt§resting aspects of our coordinatization of (

the sphere is that, except at the poles, "lecally! 1t'is similar % |
to the coordinatization of a plane. What we mean°by "locally" is

that one can céhoose to think of only a smhll'pbrtion‘gg the sphere,
Then the merldians are like vertical lines and the parallels of

i

latitude are like horizontal lines. ’

. . o - , -
¢




«

2.

-3

5.

R SN
using arc length aldngsmermdians from the south pole.

’ 1309 -
[ 2
Exercises 13-2

Describe the set of points of the sphere which haVe exactly

e

two different longitudes (as we have described 1t)
What is the set of points of the sphere each of which has. ~

-
P

more than two longitudes? - . .
What is the set of points of the sphere wrich have more than
one latitude? ‘ / .

Drawla sphere with an eguator and with a meridian to represent
the Greenwich meridian., On your drawing label the follo&ing

pé;nts: iy f
) (0 E, 85 N) .

e

. (90 W, 90 )

P
Q: . (45 W, 10 S)
R

S: (180 E, O N)

T: ' (25 E, 25 N) - ’ L

i d
Consider a different coordinatization of the spherezﬁs' £
follows: , 5 B

-

. .
The set of meridians is to be coordinatized as before.

- .

The parallels of latitud€ are to be numbered’starting

from the south pole as zero, with the north pole as 180 and

ﬁVéryP;bint of the equator woq\f have "latitude" L.
Every point in the northern hemisphere would have "latitude"

greater than and less than ___ .
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3.+ The Volume of a Spherical Ball and the Area of a Sphere.

In.this section We try to give some understanding of the

formulas for volume and surface area of

»

contexts the volume of .a sphere refers to the volume of the
portion (region) of space bounded by the sphere. The surface
area of the sphere is the area of the spHere itseirf.
'of practicai problems, the volume can be regarded as the amount
of sand it would take %0 fill up a spherical ball whereas the

area can be regarded-as the amount of surface to be covered in

painting the sphere.

We develop the volume formula first.

the surface area formula, “lettad .. o]
e

think of a sphé“e\cdntained in the

interior of a cylinder which Just

fits around it. Let R be the radfus

of the sphere. Then the:height of

the base is R. _Let Vs be the volume

of the .sphere and V the v61ume of
the cylinder. Thus Vs < V and we

expect Vs to be considerably less

a sphere,

%t

. ‘iv‘i\\“"*‘““« A

PO
,

As in other

In terms

From it we shall get
o \: ‘

LR/

tha.n‘Vc. In Chapter 11, we have’ developed the /formula

Ve

Therefore the volume of the top half of the cylinder is wR3.
seek the volume of the top half of the sphere~-1i

northern hemisphere. The volume of the sphere i1s twice that of

the top half.

&

=B - H= (7 R%)(2R) = 2rRS.

oeo,

of the

s



- the area ofathe smaller is

13.11 . . ',

- i .
Think of a plane paralle} to the base of the -cylinder which.

cuts thfough the cylinder and the sphgre at a distgnce of h units
above the.equator. Then the area of the circular gpeglon cut out
B& the cylinder is rRz. The area of the circud region cut out

by the sphere is wrz‘(if r i1s the radius of the small circle on .

Pl

the sphere). (Se¢ the, triangle in the fiéure on the preceding

page.) But r2f4 he

r2 = Rz/- h2. Therefore the area

= R2 by the Pythagorean Theorem. Hence .

of the ¥arger circular region minus

2 2

. TR™ - 1 = TR?

- m(R® - n?)
= TR® - TR® + 7h°

. ¢ '
This means that the cross section,égea of the part of the cylinder .

.

region of the plane inside the = |
“cylinder and outside the sphere.

/ . - & The shaded reglon represents the
r ‘ -
. Now considerra cone (upside down) whose base is a circular
region, of radius R and whose height '

1s R. The area of the plane section

of thi \cone h units above the vertex

is #hz since .the radius of the Eircu-j

t

h . , ﬁ
4 ) . .

lar section at that level is h.

!
not in the sphere 18 exactly the cross section area of a cone as

described above. Therefore 1t 1s reasohable to believe that the
. P .. ‘

§ ' :
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volume o M, top half of the cylinder minus the volume of the top

4

half of ere is exactly the volume of the inverted g¢one (for
N

the horizon ane sections have the correct areas)’ Note that
while we do not actually have a cone in the fi%pre with the sphere
inslde the cylinder, we have an object (odd-shaped) whose volume
is %he same as. the volume of ‘the cone we have considered.

The volume of a cone 1is g-the area Of the base times the
height.- Hence the, volume of the cone (vcone) is-%(sz)‘ R.

V= %WR .+ Also Vg =V, - 2V, one (for we have two cones‘to be
considered, one for the top half and one for the bottom half of ,
the cylinder). Hence Vg = 27R° - 2 - % TR = %@3, which 1s the

;sual formula. L Lo T § ‘

This is ‘a valid formula for the volume of a sphere of : i
radius R. Now we are in & position to Justify the formula for i
the surface area of a sphere. Suppose we wish to find the volume
of rubber in a rubber ball which is holloanside and which has.‘
only a thin rubber coating. The volume of phe spherieal‘shell is ’
the volume of  the outside sphere minus the\volume of the inside
sphere (thevolume of the inside sphere 1is ?he volume-of the void

1n the middle). Let Lo be the radius of\_}jfputside sphere and

, e the radius of"‘bhe inside. Let Vg g, be the volume of the

1
Vs - y

spherical shell. Then S e - ) 1L T
o b3 3 i DR '
Vs.s, = M2 3™ o
j _ 3 3 :
, (ry” = ry%)

N
o




i \ : v
. ) - y

4 " . 113013 o % v *

This last .formula follow;\zlcause * ‘
2 2 3 3
(r2 - r;l)(r2 + 7975 + 1) ) = ry” - g

v

as may be éeen‘by multiplying the two'factors on the left together. ]
‘But (r2 - rl) is simply;fhe thickness of the\shéll, l.e., the £
thickneés of the rubber coating. It is the outside radius mings-

the inside radius. If r, 1s close to r; (1.e., if we have a thin N
.shell) thea the volume of the spherical shell would Seém-to_bp

almost the surface area AS of the outside, sphere times the thick-',

-y

ness of the shell.

<

Therefore we now have
) : T 2 - 2
: Vs.se = ’3"”}(1'2 - v )(r," + vy + ry%)

. Vaoo ~Ag e (p,~ 1 ) where % means "ig appfoxi-'
. S+S. S 2 1" mately equal to". a

a El

'\au 2 2 7 .
TherefoF? QS N =T (?2 + rry + r,°) provided r, and r% are close
together. But if ry and r, are close together, then r22 aﬁd:riz

¢

- °are close gpgefhep and r22 (T r, . r2) and ryr, ate close tg?ether.“

e 2 . 2 ~ 2 @ . -
. . Thus Py  + DT + " ~ 3r2 . . )
® ? - ~ u 2y . ’ -
'~ ‘HenC% . _— . ) As ~ '5’71'{ (3;‘2 ). ¢ : . - t
. i ‘ | ~ un,r22. . ' - » i

But r, is the radius -of the sphere, hence Ag X 4rr? and éﬁé-

.approximation can be made as close ;2 we want. Thus 1t gufns out

thét:As - brr2, This is theé usual fQrmu}a for the surface area

\«\\\:f a- sphere. "’ o < . )
a « i g

°




Exercises 13.3

,

Find the_yo}hme of a spherical grapefruit whosé "distance
around- the middle" is 18",

o
Find the amount of paint needed‘to paint the outside of a '

.

spherical tank 20! in diameter if one gallon of paint will

§

.. ~
Find the volume of rubber needed to make 1000 hdllow rubber -

cover 400 square feet.

balls of outside diameter 3“ 1f the thickness of the rubber
in each ball is to be .1". . .

»

Three tennis balls just £1t in a cylindrical can designéd to ¢
led them, one above the other. Find the volume of the air
space left in a can full of three balls if the radius of a

ball is about 1 3"
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. Chapter 1L -

-Non-Metric Polyhedrons - )

The material of this chapter wWill be new to almost all people )
who are studying it in this text. Most of it has been. tried (in -
"* - much its present form) in several eighth grade classes with rather
surprising success. There are a number of reasons for including
it in the\eighth grade curriculum. Among these are:
1. It helps develop spatial intuition and ﬁnderstanding.

,2. It’ emphasizes in another context the role of mathe-,

—_— Y
matics in reducing things to their simplest.elements. )
r 3., It affords other ways of.loo&}ng at objects in the. . 4.
; %{( world aboﬁt\us and raises fundamental ouestions ahout -
. . these. S | DI

- . L o,
> 4, It illustrates types of mathematical (geometric) reason-. :

. 1] ¢ g S DA SR - ¢ « *
ing and approaches te problems. . @?5% G, YT

-~

5. It gives an 1nterest1ng 1ns£ght51nto the' meaning °§g ? y Fga '
. . dimension. L e e o @ :'/’ ~ :
. . - - ° . o a@é, T b
s 1.  Tetrahedrons and ‘Simplexes. - - - & : ;ifg

A geometric figure of a certain type 1s called a tetrathr '’

ofi.
‘ A tetrahedron has four vertices-which are points in Space. The,f?”{/z

y &

. drawings below represent tetr edrons. (Another form of the wora£~

.7 . "tetrahedrons! is "tetrahedra"). . U S St
’ ' Canl ol




The points A, B, C, and D are .the vertices of the tetrahedron

on the left. The points P, Q, R, and S are the vertices of ‘the
one on the fignt. The four veﬁziges of a tetrahedron are not in |
the same plane., The word "tetrahédron" refers either to- the
surface of the figure ‘or to the “sol;d“ figure; i.e., the,figuge’
1ncluding the’ 1nterior in space. ‘" From some points of view, the
distinction is not important, .Lgter we shall use the t?rm "solid
tetrahedron" when we mean the surface t9gethe;‘yith thg interior.
- We can name a tetrahegron By ndming-its verticeg. We shall )
normally put parentheses aféund the letters like (ABGD). or (PQRS).
Later Qe shali use this notation to mean "solid tetrahedron".
The segments KB, BC, AC, AD, BD, and TD are called the edges
of the tetrahedron (AECD): We sometimeé will use thé¥notation
(AB) oxr (BA) to mean the edge AB. What are the edges of the .

tetrahedron (PQRS)? \\ . . .
\ ’ [ '

\, | ‘
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Any three vertices of a tetrahedron are the vertices of a
triangle and lie in a plane. A triangle has an interior ;g the
plane in which its vertices lie (and in which it lies). Let us )
use (ABC) to mean the trianglekﬁgc together with its 1nteriori 3m
‘other words, (ABC) is the union of ZSAgg’and its interior. The

* sets/(ABC), ‘(ABD),'EE/D),. and (BCD) are called the faces of the
tetrahedron (ABCD). Qhat are the faces of the tetrqnedron (PQRS)?V
© You will be asked to make some models of tetrahedrons in the
exercises. In teaching, material like this to Junior high school
o students, the models are likely to be considerably 1mportant.
Prior awareness of and facility with models should increase

l
teaching effectiveness as well as 1mprove basic understandings.
o4 v
The easiest type of tetrahedron of which to make a model is the

N

. so-ealled regular tetrahedron. Its'edges are allvthe same

. length. (We .introduce length or measurement here only for con-‘
venlence in making some uniform models. This chapter deals
fundamentally with non-metrtc or no-measurement“ geomegry.) On
‘a pPlece of cardboard or stiff paper construct an equilateral tri-

angle-of side 6", (You can do this with a ruler and compass or

® .

with a rulerand protractor.)
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N .

. Now mark the three points tnag%are halfway between the various
pairs of vertices. Cﬁt out the large triangular region. Carefuily i
make thbee folds or creases along the segments Joining the "half-
way" points. .You may use a ruler or other straightedge to help you
make these_félds. Your eriginal triangular .region now looks like
four smaller triangular regions. Bring the original three

. vertices together above the center of the middle triangle. Fasten

the logse edges together with tape or paper and paste. You now

have a model of a regular tetrahedron. o .
. / .

- ! 4

) How do we make a model of. a tetrahedron which is not a

_reguiar one? <Cut any triangular region'gut of cardboard or heavy

' paper. Use thia as\thé-base of your modei. Label its vertices A,
B;'and C. Cut out another triangle with one of its edges the *
same length as Iﬁ Now, with tape, fasten these two triangles*
together along edges of equal length. Use egée (AB) for this, fqr
instance. Two of the vertices of the second triangle are now con- | \_
sideredtgzbeled A and B._ Label the other vertex of the second g
triangle D. Cut out a third triangular region with one edge the
,iength of Kf and another the length of AC. Ro not make the’angle
between these edges too large or too small. Now, nith tape,; ‘
fasten these edges ‘of the third triangle to AD and AC so that the,

\&9‘ y ! ‘ ¢
three triangles fit together 1in, space. The model you have ‘con-

‘\\structed‘so far will look something like a conical drinking cup .
i{ you hold the vertex A &t the bottom. Finally éut out a . >
o / . ‘ i o=
b
T IR 245 ,
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trilangular region which will Jusé fit the top, fasten it to the
top and you will have your tetra@edroh. ) .
. , -,
//)
\5 Exercises 1ll-la. ﬂ *
l._ Ma@%ﬁ? cgrdboarq or hieavy paper model of a ﬁégular tetrahedron.
MaAé‘ybur model so that its edges are each 3" long.
© 2. Make a model of a tetrahedron which 18 not fégular. ‘
3. In making the third face of a non-regular tetrahedron, whéﬁ
difficulties would we encounter 1f we made.the’angle Dﬁb toc™
¢ large or pﬁb small? . ©

.
-

Simplexes. A single point is probably the simplest object
or set of points you can thiﬁk\of. A set consisting of two
* polnts 1s probably thé/néxt most simpLd/;et of points in space.

But any two diffefent points in space are on exactly one line and ®

are the endpoints of exactly one segment (which is a subset of

-
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°
-

the line). Thus, the set of two points determines two other simple. -
sets in spéce: a'line and a segment. A segment-héskiength bﬁ%

does n@t have ares. We speak of a ségment or a line as Being one-
‘aimensional. Eitherecouldlbe cénsidered aé the simplest one-di-

mensional object in space. In this chapter we want to'think
about the segment, not the line. ' ‘

A set consisting of, three points is the next most simple set

:of points in space. What do three points 1n space determine? If

the three points are all on the same line, theQLwe get Just a part

o; a line. We are not much better off than we were with Just two

points. Let us agree, therefore, that our th;ee points are not
to be on the same line. Thus there*is exactly one plane contain-
15% the three points and thgre 1s exactly one triangle with thé
three points as vertices. There is also exactly one triénguiar
region which together with the triangle which b;unds it, has the
SA three points as vertices. This mathematical object,. the triangle, =
together with its 1nter§br, is what welwant fo think about. It ’

has area and it 1s two-dimensional. It can be considered as the

simplest.two-dimensional object in space.

- N " - - v Il Y
3 S e . . g . . s 3
: . :
" N s Faw
‘ Q Y
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‘It seems* rathey clear that the next most simple set of points

in space would be a sef of sfour points. If the four points were “~

all in oﬁe plane then the figure determined by the four points
. ‘ . . ’-
would apparently also\pe 1A\Sne plane. We want 'to require that

phe four points are not all in any one plane. Thig requirement
also guaraqéees us that no three can be on a line. (If any three
were on a line thep\Fhere would bé a plane conﬁglning thet line
and the fourth point and the four points would be in the same -
plane.) We have four points in space, then, not all in the same

)

plane. Clearly, this sugge§§s a tetrahedron. The four-points in
space are the vetices of exactly one‘(solid) tetrahgdﬁon. A ’
solid tetrahedron has volume and it is three dimensional. %t can
be considered as the simplest three dimensional object in space.

Here we have four objects each of “which may be thought_ of as
the Simplest of its™kind. There re. remarkable similarities amoﬁg
these objects. They all ought tojhave names_thdt sound alike and
' remind us of their basic pfbpertiea. We ‘cgll each of these a

‘-

simplex. We tell them apart by labéling.each with its natuéfl‘

L
» Gimension. Thus a 'set consisting of a single point is called a
O-simplex. A segment is called a l- simplex. A triangle together

with 1ts intérior is called a.2 simplex. A s0lid tetrahedron is

A,

called a 3-simplex. : i .
. . ° . .o
» ¢ " > ’
l i s
Id
. —_— .
N v
K Ll ‘ ‘:
- o "7“ \’ﬁ. ) P
\‘ ' ‘/
e .,
\ 248 B
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. N\‘

-




1.8 . e

-

*Let us make up a table.to hglp us'keep these ideas in order:,, .

A set consistingpbf: determines: -~ which is called a:
. - R ) R W
i one point one point (itself) O-simplex .
JLwo points a4 segment l-simplex ‘ ¢
"three points a triangle together '2-simplex
not all on’ , with its interior * .
» any one line ‘
N four points a solid tetrahedron . 3-simplex .
¢+ not all on . (which includes 4its . ’ . :
. . any one plane interior) . N i .
~ There is another way to think about the dimension of these '

H
_ sets. «gIn this we think of thé notion of betweenness, of .a point

.

being betWeen two other points. .. N '.

a

o o . Let us start with two points. Consider these‘two points and: -

N all points between them. We now have a segment. ’ Now take the

1

! segment together with all points which are bétween any two ,Z

LN
points of the segment, We stfil have the same segment. No new . )

points were obtained by "taking points~between again.. The.
! process of "taking po{nts between needed to be used Just pnce.‘é,» e s s

-
]

*D We get. a one- dimensional ﬁet a I- simplex.

-’
T~

Next consider three points not all on the same line. Then

\

let us apply our - process. We tahe theé% points together with all

"points which are between any two of them. , At this stage we have i

1}
\ f
s
s’

a tr}hngie but not.its interior. We apply the process again.
We take the set we aiready~have (the triangle)stogether with all
-
& points which are between gﬁ& two points of this setsl We*get the

3

fe

Y . . L, o
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_union -0f the triangle and its interior. ° If we apply the process

o~

" agalin we don't get anything new,. We need use the process just

twice. We get a two?dimensional set, a 2-sinplex.

A . ' < A ) - -
. - first second ¢
process ) p{ocess
L 4 O( ’ .
I - C ° 8 . C B ]
d ) ‘ v < ' ~

Next_let us consider four points not all on the same plane.

-,

We apply the process of "taking points between" and get the union
>

of the edges of a tetrahedron. “We apply the process again and’gét
"the ‘union of the faces. We applyﬁit onhce more and get the solid
tetrahedron ltself, We appiy it againvand 8t1ll get just the

solid tetrahedron.’ We. need use the process just three times. Ve«

get a three dimensional set a 3-simplex. & R

.
Al

If we had just one point,. the application‘of the"pr0cess

+ would still leave us with Just the one point. .We need apply the -

H

process zero times, We get a zero- dimensional set, a 0 simplex..
(We mention this case last because we have to understand the
proeess before it can make much sensd.) o .o " N
; ¥Finally, let us consider a 3- simplex. Look at one of your -
: “mo ;&gﬂg;ftetrahedrons. It has four faces and each face 1s a 2-
N sim lex. It has.six edges and €ach edge is a 1- simplex., It has

four vertices and e€ach vertex is a O- simplex. ‘ . T -

- c ,5 . .
- .
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. Exercises .14-1b * N

1. (a}l'A 2-simplex has how.many l-simplexes as edges?

(h) It has how many O-simplexes as vertices? . ! 2

2. A l-simplex has how many O-simplexes as.vertices? 4
5 * . ‘.
3. Using models show how two 3-simplexes can have an inter-

"section #hich is exactly a vertex of each. ~ \
@ 0]
y, Using models show how two 3- simplexes can ‘have an intcer-

section which 1s exactly an edge of each.
5. In this and the next problem you are asked to do a bit of.
coloring. Mark three points not all on the S8ame line in blue.

Color red all points which are between any two of these. .
. . . .

Shade green all points which are between any two 6f the

' k4

points aiready colored.k Should there be any points which

are not colored and are between two of the colored points°

-

Starting with the three points, how many times did you need

v to.use tne process of "t@king pointsvbetWeen before you Were .

.. . M 7o .
finished? R ) e s Rt '\i%‘;_wxfi -~

T T " Ve

6. Use\your“modei‘or non- regular tetrahedro Tolor 1ts_

veptices blue. Color red the set of pll points each of which

is between two pf the"ertices. Color green the set of all

17| points each of which 13 between of the red or blue, ,

rcolored .points. Xou should*now have ydtur model colored.
‘What 1s the set of all points which either are colored or

t are betweeh two of your colored points?

. .
. v
. o \ ®
e .
. . . B
. .
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2. Polyhedrons. ) /

Model$ of Cubes. Most of you 'know that if'you want. to make

‘an ordinary box you need six rectanguilar faces for it. They have
to- fit and you have to put them together right There 15 a

rather easy way to make a model of a cube.
v .- 7 . y

v

4 < ‘

Py " <
s

Draw six équareg on heavy paper or cardboard as ‘iAAi the
drawing above. Cut around the boundary of your figure and fold
(or crease) along the dotted lines. Use cellulose tape or paste

to fasten-it together. If you are, going to ‘use paste it will be

necessary-to have flaps as 1nd1eated in the drawing.below. . :
e v &
( Y
l ; '
[}
3 \
I
[}
eyt s - 2 S LR LS SN A .
5 S {
kJ ' ') > “
) S

T

You will be asked to make two models of-a cube in- the A;'ﬁ

o= A T )
. ~ - 1 A}

o

exXercises.,
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. Can-the surface of a cube be regarded as the union qf °
2-simplexes (that I's, of triangles togetﬁ%% with their interiors)? j"

Can a solid cube be regarded as the union of 3-simplexes (that is

l

of solid tetrahedrons)? The answer to botH of these questions is
‘ 4 s

r

"yeB"

. £ .
We_ shall explain one way of thinkihg about these questions,

' .

Each face of a cube can be considereﬁ to be the union of two

2-simplexes. The drawing oh the left beiow shows a cube with

three of its faces subdivided into two 2 simplexes each. The face |

. ABCD appears as the wiion of (ABC) and (ACD) for example. The

other faces whichefe indicated as supdivided are CDEF and ADEH.

We can think of each of the other faées as the union of two
' /

2-simplexes. Thus the surface of the cube can be thought of as

’ yi

the union of twelve 2- simplexes, .

H E . .
|
£ — - s
D 4/ " -t - £
nba i° A e
3 el
ol e
i o
,( s ' / __q — F .
- \ /”’/ 4 ) b 0
Ve
B c & . .
S ———

.. With the surface regarded as the,ugion‘of 2-simplexes we ™"+~ - -

may regard the solid cube as the union of 3-simplexes (solid :

tetrahedrons) as follows. Let P be any point in the interior of

the cube. For any 2-simplex on the surface, (aBC),

-

for example,



. . g r”// , k—ﬁ\ v .
e -©1b.a3 S
| (PABC) is a 3-simplex. 1In the figur€ on the right above, P 1§
indicated as inside the cube. The l-simplexes (PA), (PB), and
(?Q) would also be inside the cube. .éhus with twelve 2-simplexes
on'the surface, we weuld have twelve°3-simplexes whose union would‘
be the cube. The solid cupe is the union of 3-simplexee in this
nice way. ) b o ; .
Now we ask another question: Do yeu suppose thék a 3-simplex
can be regarded as the union of a ceptain (finite) number of
solid cubes? Can we'find solid cubeé that will fit together to °
£111 up a 3-simplex? The answer to these questions is néi o
Suppose cubes could be fitted together to fill up a 3=$1mplex. . -
Then an& face of the 3-simplex would be filled up by square !
.regions which are faces of the cubes. [The square regigns have
'right angles at their vertices. /Any face of a 3-simplex is tri-
angular. At least two of the angles ofga triangle must be less ‘ ” -
than a right,enéle. "Therefore the square regions C%SPOt fit. A

v

3-simplex cannot be a finite union of cubes.
. & ) .
x’" ! ) L. ,

Exercises B e I - \wqw

f‘f°‘
“ Make two models of cubes out of cardboard or heavy paper.
{ v
N_Cﬂ‘ I BRI

. Make them with each ;edge 2. logg.-.
2. On one of youffmodels,.without adding any other vertices,

draw segments to express the surface of the cubé as a union

of 2-simplexes. Label all the verticed on the model
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A, ’B,,zc,‘:D, E, F, G, and H. Thifk of a point P in the -
iﬁtérior of the cube. Using this point and the Yertices of
the 2-simplexes on the surface l;st the twelve 3—simplexés .
,.v~\> whose uﬁion 1s the solid cube. ,;:
3. gn.the same cube as in problem 2, mark a point in the center
of each f§ce. (Eéch shéﬁld be on one of the segments you drew
in problem 2.) Draw segment8 to indicate the surface of the

cube as the union of 2-simplexes uéing as vartices tﬁe

vertices of the cube,and these six new points you have
marked. The surface is now expressed as the union of how
¢

many 2-simplex&s?

¥

4, Think about a polyhedron formed by putting a squére-bag?d .,

pyramid on each faceé of a.cube. ,L(The surface™of this new '
) * - .
polyhedrorn has how many triangular faces? Can you compare .

N . this new polyhedron vertex\ﬁbrAvertex, edg® for edge, and
5-simplex Tor 2-simplex with the surface &f the cube sub-.”
divided into 2-simplexes as in problem 3°? .

N . £

\ . . T

k - :
S . Polyhedrons. A n@iyhedron is the uriion of a finite number of
¥ ~ TN R -"“ “*‘;\ ) : .

¢

S éiﬁplexeéi Ipygohld~beyjdst one simplex, or maybe the union .of

~

“sevén simplekes; or maybe of 7,000,000 simpléxes. What we are
saying 18 that it is the union of some particular number of

sgmplexes. In the previous section, we observed that a solid cubse

PN .
s R . '
H

'

f

- '

I

(]

LA




. for example, was the union

14

assume a polyhedron is the union of simplexes of the same

‘one -whicl is the qnion of 2-simplexes.

.hedron 1s one which is the union of l-simplexes,

%

14,15
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of twelve 3-simplexes. The figures

belbw represeht the unions of simplexes.

’ . ’ -

Y 7IX

-
- 5

(X222
rosy

Y

The figure on the left represents a union of .& 1- simplex and ,

a 2-simplex which does not contain the l~simplex. It is there-

fore of mixed dimension. In what follows, we shall not be con-
cerned with polyhedrons (or polyhedra) of mixed dimension.
’ »

We

<

dimension. We shall speak of a 3-dimensional polyhedron as one

which is the unhon of 3- simplexes. A 2-dimensional polyhedron 18\
A 1-dimensional. poly-
(Any finite set
of points d%ﬁld be thought‘of as a O-dimensional polyhedron bu; .
we won't be déaling with such here.) . . . *
The figure on the fight abowé nepre;ents a pélyhedron which
seems to be the union of two 2Lsimpiexes (triangular regipns) but
they dontt 1n§ersect nicely. We'?rgfer to,think of a polyhedron

in the middlei

PR NG
» A 20
,

as the union of simplexes which intersect nicely as

-
—~—
,a
/
Y

-
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igures. Just what do we mean by simplexes intersecting

-

: ely? There is an'easy explanation for it. If two simplexes

of the same dimenslon intersect nicely, thensghe intersection must
be a face, or an edgé, or'a vertex of each. Mathematiclans wouid/,’
say that they intemsect "simplicially"; i.e., in a s:bsimplegc of
eath. ‘

Let us look more clésely at the union of simplexes which do
not intersect nicely. In the figure
on the right the 2-simplexes (DEF) )
and (HJK) have judt the ;;oint H in !
common. Thé} do not intersect niéely.

While H is a vertex of (HJK), it is

not of (DEF). However, the polyhedron

e

which is the union of these two 2-simplexes

1s also the union of thre¢ 2-simplexes

°

which do’ intersect nicely, namely, (DEH), - (DHF), and (HJK).

The figure on the left

9

represents the un;on of the
* Y

. " 2-simplexes -(ABC) and (PQR).
They do not intersect nicely.

Their intersectlon seems to be

a quadrilateral together with

. . its interior. s .
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On the right we have indicated ‘ . *

[

how tHé same set of points (the
same polyhedron) can be considered

to be a finite union of 2-simplexes

which do intersect ricely. The

.~ bolyhedron is the union of the

“eight 2-simplexes, (ACZ), (CZY),

v

- (PzW), (X¥z), (wxz), (BUX), (X¥R),
and (YQR). : -
These examples suggest a fact about polyhedrons. If a poly-

hedron is the union of simplexes which intersect any way at all

k-

~Lthen the saﬁe set of points (the same polyhedron) is also the

-

_ union of simplexes which 1ntersebt’n1cely.' Except for the exer-

cises at the end of this section, we shall always deal with unions

of simplexes which intersect nicely. We will regard a polyhedron

’

as\raving associated with it a particular set ‘of simplexes whith
- 1n€%rsect nigely and whose union it is. When we say the word.
"polyhedron", we understand the simplexés to be there.

Is.a solid cube a polyhedron, that is, is 1t a unioﬁ of
¢ /
3-simplexes? We have already seen that it is. Is a solid prism

a polyhedron? 1Is a solid squame-based,pyramid? The answer to‘ /
- I - - ' s

all bf theg; questions ‘is yés. In fact, any‘éplid obJectueachitj.
of whose faces 1is flat (that is, whose surface does not contain

-
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any curved portion) is a 3-dimensional polyhedron. It can be ex-

pressed as the unie:\of 3-simplexes. iy

kY

As examples let us look at a solid pyramid and a prism with . °

‘ a triangular base. . . ) .

. In the figure on the left the solid pyramid is the union of\? )
t:one two 3-simplexes (ABCE) and (ACDE). The figure in the middle® °
ﬂrepresente a solid prisﬁ with a triaggular base. ‘The”prismghas“ ¥
, three rectangular faces. Its bases are (PQR) and (XYZ) Here we
See how it may be expressed as the union of eIght~3-simplexes.e °
We use the same device we used for the solid cube. First we

P

‘think,é%oup the surface es the union oﬁ 2-simplexes. We already

have theé bas:Z as 2-simplexes. Then we think of each rectangular <
face as the union of two 2&simplexes., In the figure~on the right .
above the face YZRQ is indicated as the union of (YZQ) and (QRZ), .

for 1nstanee. Now thinkaabout a'point F in the interidr of the .

prism. The 3-simplex (FQRZ) is one of eight 3-Simplexes each with-
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with F as a vertex and whose union-is the solid prism. In the

I

exerclses you will be ésked to name the oths:w::?en.

Finaily, how do we express a solid prism h a non-triangular

base as a 3-dimensional polyhedron (that is, as.é_union of
3-simplexes with nice intersections)? We use a little‘trick. We
first express the baséyas a union of 2-simp1gxes and tﬁprgfore )
the solid prism as a union of triangular solid priéms. And w;

saﬁ then express each triangular solid'prism aB the unilon, of eight

3-simplexes. We can do this in such a way that all the simpf&zei’

Intersect nicely.

t

~
There is a moral to our stery here., To QO a hafder-lookiné
problem, we first tyy to brea& it up into a-lot of e§sy problems
each of wh}ch we already knoW how to do (or at least are aBTS to
do). ' .
. ‘ . .k ) ‘
f LN : - ‘

v, Exercises 14-2pb

-
3

- 1. Draw two 2-simplexés whose intersection is one point and-

» (a) 1s a vertex of each. ) T SR ot

4 e . T

’ a
~\(b) is a vertex of one but.nét of the pther.

2. Draw thiree 2-simplexes which intersects nicely and whose union

rd
is itself a 2-simplex. ~ (Hint: start with a 2-simplex’ as the
union and subdivide it.) .

—
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3. You are asked to drgﬁ‘var us 2-dimensional polyhedrons each

as the union of six 2-simplexes. Draw one such that

- .

- .. (a) No_ two of the 2-simplexes intersect.
(b) There is one point common fo all the 2-simplexes but
.no other point is commoﬂ'to any bair.
- {c) _ The polyhedron is‘a S§uare together with its interior. >
u./ﬁgge figure on the right represents
a polyhedron as the’ﬁnion of y
2-simplexes withéut nice inter-
sections. Draw.a similar figure
yourgelf.ana theg draw in three
segments to make the polyhedron

the union of 2-simplexes which
\ .

intersect nicely.

)

’

5. The 2-dimensional figure on the
right can.be expressed as a union
of -simplexes with nice inter-

L .
sections 1in many ways. Drgw a

v

similar figure yourself., ° ' f . .

{a) By drawing segments express it as the union of six
A2-simp1§xeé wi%hout using more vertices. . o ~

. v
(b) By adding one vertex near the' middle (in another drawing

’ . ’ 4 ﬂ(’
of the figure), express the polyhedron as the union of AR

<

° elght 2-simplexes all having the point in the middle

as one vertex.,
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6. .(a) List eight 2- simplexes whose o -

. union is the surface of the X > ; z ; - ix
trianguler prism on the righo. Y /// )
* (The figure is like that used ' yd :
- earlier.) Lo //.: . 4
+(b) Regarding F as a poino in the -~ p '{:_: AR R
. ™ linterior of the prism list eight
Q

3.

3-simplexes (each .containing F)
whose union is the solid prism.

The triangular ofism PQRXYZ is also the union of three

3-simplexes which intersect nicely. Name sucﬁ if you can.
s . " PN

' VRt -
Polyhedrons of Special Dimension. .

One-Dimensional Polyhedrons. A'l-dimensional polyhedron is

the union of a certaln number of 1- slmplexes (segments)

1- dimensional polyhedron: may be contained in a plane or. it may.

not be. Look at a model of a tetrahedron. The union of the
G . - :
%dges i3 a l-dimensional polyhedron. It 'is the union of, six -

1-simplexes and-does not lie in a plane. We.may think of éhe

figures below as repreSenting 1- dimensional polyhedrons that do ’ T

"lie in a plane (the plane of the page).

s




A
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' There are two types 6f 1-dimensional polyhedrons whiteh are

_of special interest. A polygonal path is évl-dimensional poly-

hedron in which the i simplexes can be considered to be arranged
in order as follows. There 1is a.first one and there is a last
one. Each other l-simplex of the polygonal paqﬁ has one vertex
in commén with the l;simpiex’which precedes it and'one‘vertéx in
common with the l-simplex which follows it. There a;; no extra
:intersections., The first and last vertices (pointp)'of the poly-
: gonal path are called'the endpoints.
Neither of the l-dimensional -polyhedrons in the figures
" above is a polygonal path. Buf each contains many polygonal paths.
The union of (AB), (BC), (cp), (DG) and (GH) is a polygonal path
from A to H. The union of (JD) and (DE) is a polygonal path from
J to E and consists of -just two 1- simplexes.
. In the drawing on the right of a . )
‘tetraheéroﬁ, the union of (PQj, (oR),
, and (ﬁg)'is a polygonal'path froq P Fo
(with endpoints P and S). The
1- simprx (PS) is itself a. polygonal
path from P to S, Censider the.
‘l-dimensional poiyhedfon‘which is the

union of the edges of the tetrahedron.

.Find three other polygonal paths from -

P.to S in it. (Use a model if it helps

S
y -

you see it.) p ‘ . .

P

w ke BRaC i
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‘polygon. But it contains exactly )

14,23 ° S

i

The union of two polygonal paths that have exactly their

en&poipts 4in common is célled a simple closed polygon (1t is also

a simple closed. curve)., Another way of describing a simp}e closed
golygon is to say that is 1; a l-dimensional poiyhed?on which 1is
in one plece and has the property thét every vertex of it is in
exactly two l-simplexes of it. A . b

The i-dimensfbnal pol&hedron on

the right is not a simple closed 8 '

one gimple chpsed polygon, namely » h |

the union of {AB), (BC), (CD),

and (DA). . ,
c ' D The union of the édges of the cube
l ) in the drawing on the left is a
B f E - 1-dimensional polyhedrgw. It
| 1 ’ ) v ) . el v
I . contains many simple closed
IH: F . . .
/)—--—-—- ; polygons. One is the union of
’
A G (aB), (BE), (EG), and (GA).

Another is the union of (AB), (BC),
. . R Py

(cp), (DE), (EG), and (GA). Can you give at least two more
simple closed polygons coﬁtaining (BE) and (GA)? (Use a model ’

if it helps you see it.) "

- .
B
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There is one véry easy relationship on any simple closed
polygog. The number éf l-simplexes (edges) is eqdal to the
number of vertices. Consider the
figure on the right.. Suppqse we )
start at some vertex. Then we
take an edge' containing this
vertex.f Nex% we take the other
vertéx contained 15 tﬁis edge and
then the oth;r edge containing
this secqnd'vértex. We may thinEA

VR

of numbering the vertices afnd

.edges as in the figufe. We con-
t}nue the process. We finisgﬂ° -

with the other edge which contains our original vertex. We sta}t
with a vertex and finish‘yith‘an edge after having alternated
vertices and'edges as we go along. Thus the number of vertices

is .the same as the number of edges. a

.

-

. Exercises 14-3a _ ' Y

%

1. The figure on the right represenés
a l-diéénsional polyhedron. How )

- many polygonal pgths does it con-
tain.with endpoints A and B? How

many s;ﬁple closed polygons does

At cgntain?,

-
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. 2 (a) The un}bn of the edges of a
| 3-éimplex (solid tetrahedron) :
- - tontains how man& simple * . -
J cl&sed polygons? ' R.
(b) Name them all.
: (E) Name one that is not coﬁtgined
in a plane. <
(Use a'modél if you wish.) N :
3. Let P and @ be vertices of a cube ‘

which are diametrically oppositel D . Q

b °

each other (lower front left and

’ upper back right). Name three c

o)

- . polygongl paths from P togQ each

of which contains all the vertices /

of the cube aﬁd is in the union of P A’

'the'edges. (Use a model if you.wish.) d
4, Draw a lﬁpimensional polyhedron. which is the union of seven

l-simplexes and’contains no polygonal path consistihg of more

than two of tﬁésé.siﬁplexes. . _ ’
5. Draw a simple closedabolygon og\;:e surface of one éf your

models of a cube which intersect@¢every face and which does

‘not contain any ‘of the vertices of the cube,

N

i
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Two-Diﬁ;nsional Polyhedrons, A 2-dimensional gblyhedrgn is. a
“union of é-simplexeé. As stated before, we agree that thgsé-sfﬁ% '
plexes are to intersect nicely, that 1s, if two 2-simplexes inter-
sect, then the.interifction is.either an edgerof both, or a
: }ertex of both. There are many 2-d1mensioné} polyhedrons; some .
are .in one plane but many are not in any one plane. The surface
" of a tetrahedrbn, for instance, is:not‘in any one plane. Let‘us l
first consider a few.2-d1mensig§al'polyhedrons in a plane. 1In
drawing 2-simplexes in a plane we shall shade their interiors.

EQery 2-dimensional polyhedron \ ‘ %
in a plane has a boundary in,:hat
plane. The boundary is itself a

l-dimensional polyhedron. The
. »

boundary may be 4siinple closed
polygon as in the figure on the .
. ’ A

right; In the figure on the left below we have iﬁdipated a poly-
PR 13 .
hedron as the union of eight 2-simplexes. (ABC) is one of ‘them., »

* The boundary is the union;éf
A two simple closed ﬁolygbns}r .
5 C’ ‘ the inner square an? éhe outer
square. These two’polYgong
~_ Eg? ' « do not 1nte;$§§t: i .
) H =] . . -
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The figure on the righﬁ.represents
a 2-d1mensiéﬁa} polyhedron which is the
uniof of six 2-simplexes. Tﬁ; boundary
of.this polyhedron, In the plane is the
union of two simple closed polygons

which have exactly one vertex of each

in common, the point P. . R
Suppose a 2-dimensional polyhgdron in the plane has a
boundary which is a simple*:losed polygon (and nothing else). Then
lthe number of l-simplexes (edges) of the boundary is équal to th
ﬂhmber of O-simplexes\(verticgﬁ) ofbthe bouﬂdary. rfqy haye
alreadyqseén, in the previous section, why this must’be trae.
There are many 2-dimensional polyhedronq which are not in
any one plane. The surface~of a t;trahedron 18" such a polyhedron;
ﬁhe surface~5f a cube is another (it may be considered to be\gg-
pfesseé_fq,a union of ‘2-simplexes). Here we have some 2-dimen-
sionél polyhed;ons which are thgmselves éurfaces'gr boundaries of
3-d%mensional pol’yhedr:onsT Let us consider these two surfaces,

the surface of a tetrahedron and the surface of a cube. .

- ] . N
.

I
. ) }___ | __
// . .
i
- / L «
v ‘ "'//,; - - .
4 .
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You may look at the drawings above or you may look at some
models (or both). Let us count the number of vertices, the
number of edges and the number of faces. But the surface of 2
cube can be considered in,at 1east two different way§¥' We can

think of the faces as being square regions (as in the middle

figure) or we may think of each square face as subdivided into two'

2-simplexes (as in the figure on the right) We will use F for
the nd’ber'of faces, E for the nufiber of edges and V for the
numberaof vertices. If you are counting from models and do not
observe patterns to help you count, it 1s usually easier to check

things off as you go along. That is, 'mark the objects as=you
count them. ) : :

N Let us make up a table of our results.

. Fo E v ;
. g 4 . . ,—\ -
Surface of tetrahedron ) -9 . 6 2,
- P . S
Surface of Cube (square faces) . 2 2 -8
R A ' .
Surface of cube (two .2-simplexes 12 - 2 - 9

on each square face) -

' It is not easy from Just these, threegggmmles to observe any -

nice relationship among these numbers. What we are 1ooking for is

a_.relationship which will be true not only for these 2-imensional
polyhedrons but also for others 1ike’the3e. Try and see'if you
can _guess the relationship we will be telling you about in the

Vﬂ—
. last section. ' )

. .
;’ ) . . [
o = .
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Exercises 14-3p

-~

Make up a table as in the text showing F, V, and E for the

‘2~dimensional polyhedrons mentioned there. .

Draw a 2-dimensional polyhedron in the plane with the
pglyhedron the union of ten é-simplexes sueh that
(a) its boundary is a simple closed polygon, <.
(v) 1ts boundary is the union of three simple closed
polygons kaving exactly one point in common,
e) 1its bsundary is the union o; two simple closed polygons Y
which do, not intersect.
Draw a 2-dimensional Rslyhedron'in‘the pisne with’the number
of edges in the bsundary. .
(a) _equal go the pumber of'VertiéesL A -
(bj one more than the number of vertices,
(e) two more than the number of vertices. : X
Draw a 2- dimensional polyhedron which is the union of three
2-simplexes with each pair having exactly an edge in fommon.
Do you think that there exists in the planelﬁ.polyhedron which
is the unfon of four e-simpleXes such that each pair have _ :
exactly an edge in comAOn? ) ¥
On one or your m?dels'of a subé, mark six points one at the
center of;each f%ce. Considerseach face to be subdivided into

four 2-simplexes ‘each having the center point as a vertex. !

' - - ©
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Count F (the number of 2-simplexes), E .(the nupber of

- .
¢

_l-simplexes), and V (the number of O-simplexes) for this Sub-
division of the whole surface. ‘Keep yaur answers for later-
*  use. ’ L 7 ;
6. Do the problem abdve without using a model and‘ﬁithgut doing e
any actual counting. Just.figure out how'many of each there

must be. For 1nstahce, there must be 14 vertices, 8 original -

777

ones and 6 added ones.

-

N\

‘7. 'Express the polyhedron on the

right as a union of

. .
2-simplexes which inter-

o

‘sect nicely (in edges

N
or vertices of each other).
‘ ~

NN

TR

4, Three-Dimensional Polyhedrons, Simple Surfaces and the

Euler Formula.

A 3-simplex is one 3-dimensional polyhedron. A solid cube
is anbther 3-dimensional polyhedron. Any union of a certain
number of 3- simplexes is. a 3-dimensiokal polyhedron. We will i .
’assume again that the simplexes of a polyhedron intersect, nicely. ,
That is, that if two 3-simplexes 1htersec% the intersection is.a
2-dimensional face (2- simplex) of each or an edge (l simplex) of
each or a vertex (O simplex) of each: )

3 . -
B

e
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,Any 3- dimensional poktyhedron has a surface (or boundary) in
space. This surface is 1ts€5k a 2-dimensional polyhedron. It is
/}pe union of sevenal 2-81mplexes_(wh1ch intersect nicely). The

surface of the 3-d1uensionai poly-.
hedron represented by the draying . \ ‘
on the right is something of a mess. .
It consiits of the surfaces of "three A
tetrahedrons which have exacﬁly one . 4
point in common. : ’ —
The simplest kinds of surfaces of 3-dimensional polyhedrons

are. called simple surfaces. The surface-~-of a cube and the

surface of a 3-simplex are both simb{e surfaces. There are many
others. Any surface of a 3-d1ﬁensional polyhedron obtained‘as’
follows will be a simple surface.. Start with a solid tetrahedron.
Then faste;§:§tzher to it so that the 1ptersection of the one you-
are adding with whét\z?u already have is a. face of the one yow <
are.adding. You may.keep adding more solid tetrahedrons in any
cgﬁhinat;on or of Eny‘size provided that each one yguiadd in turn
" intersects whaz you already have in a set which 18 exactly a -
_union of one, two, or three faces ?f the 3-81mpiex vou are adding.

The surface of any polyhedron formed in this way will be a simple

1

surface.




. Group activity. Take five models @fpregular tetrahedrons of

. kdges 3". Put marks on 4ll four faces of one of these. Now

l
fasten each of the others in turn to’one of the marked faces. The 1

marked one should be in the middle and you won't see 1t/ény more.

. The surface of the object you have represents 2 simple surface.

You can see how to fasten a few more tetrahedrons
and more pecullar looking objects. Suppose it is

ever you add a solid tetrahedron the lhtersection

on to get more

true that when-_

of what you add.

°

wlth what you already Rave is one face, two faces

or three faces

of the one you add. The surface of what you get will be a simple
~ . -

surface, '

- . J
4 N
One ‘can alsokfasten solld cubes together to get various

3-d1mensional polyhedrons. 1In fastening solid cubes in turn onto

~

what you éireEdy have, you will alWays wind up with a,3-dimensional

polyhedron which has a 'simple surface provided the following

-

condition is met. The intersection of each one you add in turn

with what you already have must be a set which is bounded on the

surface of tne cube you are adding by a simple closed polygon.

4  PFor efemple, the intersect e a face~or the union of two

adjacent faces of the

Finally we fiention an 1nterést1ng property of simple S

surfaces,
xi‘.
Then this polygon separates the. simple Surface into exactly two

Draw any simple closed polygon on a simple surface.

t sets each of which is connected i.e., 1s one pféce.

S ——————— - e -

—————
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*wilder the better).
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Gﬂoup activity., On the surface of one of .the peculiar

3-dimensional polyhedrons, (with simple surface) that you hdve con-
structed above, have somebody draw.any siqplé closed polygon (the

It need.not be In just one face. Then have

‘

somebody else start coloring somewhere on the surface but'away

from the polygon. Have him color as much as he can without

4

crossing the pdlygon. Then have another person start coloring

Qitg apother c9}6;/at any pre%;ously uncolored place. Color as

much as possible but do not cross the polygon. When the second

persoh has colored as much as possible, tite.whole éhrface shoﬁad

. .

°

be colored:

If.you den't garefully forlow the instructions for con-

structing a polyhedron with
hedron whose surface is not
fasten eight cubes. together
pedron looks sqmething 1ike

simple surface you may get a poly-

simple.' Suppose, for instance, you

as in the drawing-beiow. The poly-
i

a square doughnut. : Note that- in

f£¥¥ing the eighth one, the 1nterséc}10n of the one you are adding
with what y;au already have is the union of ’%wo faces which are
not adjacent. The bouédary (on the eighth cube) of the inter-
sectlon’is twqQ simple closed polygons, not Just one as it should
be. There are many simple closed polygons on this’ surface which
/ﬁ:'not segffate it at:all." The polygon J does not separate it.

The polygon K does.

e,

®
»

[}




. . y . 3 . -
. out crossing the iflygon. -You should ha7% the whole surface

-
———
°
'
L4
-
°

\Qts
~
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‘Exercises 14-4a
Using a block of wood (with géggcrs sawed off if possible?,

draw a simple closed polygon on the surface making it inter-

-

. sect most or all of the faces of the solid.  Start cdloring at

Ve

Eome point. Do not cross the polygon. Color as much as you

ban without crossing the polygon.' When you have colored as

much as you can, start coloring with a different color on

some uncolored portion. Again color as much as you can.wibh-

colored when you ‘

¢ .
1nish.‘ - . .o . S
Gowthrough the s#me procedure as in robJ/y 1 but with another
3~d%yensional solid. Use one of youj models or another block
o; wood. Make your simple closed,polygon as complica@ed as

xou wish. S s B 1._ ’ .1

. . "i 4
‘ {)7‘f
oy '() .
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Counting Vertices, Edges, and Faces——the Euler Formula.

/// In Section 14- 3 you were asked to do some counting. A few of
you may have discovered a xrelationship between F, E, and V.
Consider the tetrahedron in the figure below. Its surface is a
simple surface., What relationship can we find among the vevrtices,

o

edges, and faces of 1it?

There are the same num%er of edges and faces coming into.the
N . ] °
point A, three of each. One may see that on the base there are-the

same number of vertices and edges.'.We have two objects left over:

the verte@ A at the top'and the fdce (BCﬁ) at the bottom. Other-

wise we have matched all the edges with vertices .a'nd faces, So
4V -E=2. Nowlet|us ask what would be the ‘relationship if

*

one of the faces or the|bdse were broken up into several '

-

o .

2-simplexes. Suppose we had tfe base broken vwp into three
2-simp1exesaby adding o e‘Qertex‘P'iﬁ“tﬁe base. The figﬁre oﬁ. .

the right above illustrates this. Our counting would be the same

z ~ A )
o ’ L]
s A Y N ’ - °
TE L L ¢ ¥ < W
T - ) 3. : *
I I & 276 :
g » o
% :}' ’%‘ 575 2o - f" e B % L
k4 b3 / - i % ,
s A T ‘
kK - ’ H TN By -
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until we. got to the base and we would be able to match the three
new 1- simplexes ngch contain P with the three new 2- simplexes on.
" the base., We have lost, the face which 1s the base but We have
”picked up one new vertex.P. Thus the number of vertices plus the
.*number of 2- simplexes is again two more than the number® of
T simplexes. F+V-E=2, -

" Now le% us look at a cube., We have

a drawing of one on the right. The cube y

has how mary faces? How many edges? How

> many vertices? Is the sum of the number }____C: -

of vertices and the number of fa es’ two 4

more than the number of edges?,
Ssee why this must be. &) . o e

‘(1) The number verticei/ég the top face is the number of

..edges ¢on the top face.’ e,

(2) “The number .of vertices on thie bottom face is the number .
L]

. &
~

of edges on the bottom face.

(3) The number of vwertical faces 1s the number of vertical

. h'~i edges. ) . . ' '
|

vertical faces are now used up.. We have the top and .

(4)"All the vertices and edges are now used up. Alll the

n

- bottom faces left, .
SoF +V - E must be 2. = ' , >

What would happen if each face Were broken up into two 2-simplexes?

- For each face of the cube you would now have two 2-simplekeq. But,




for each face you wduld have one new il-simplex lylng 1n it.

14.37

.

Hence F + V - E is again 2.

r

-

Other

things are not changed.

('

Mo

*® .
Then do you suppose that

Y'+—z:9ppse we have any simple surface.
v 2? In-the exercises you will be asked to verify this,

]

formula (which As known as the Euler Formula) in several otheq’

oiler --was the name of a famous

examples. (Euler--pronounced

" mathematician. of the early 18th century.)

[
f

Let us now observe that the formula does not hold in general”

for surfaces which are not éiﬁple. Consider the two examples

below.

P 4 Z
2z

i

N * . i
. <= >
2 e . k .

In the figure on the left (the union of the two fetrahed;ens

. v

. v
~

NN\

) —
b~
\

\

T

,having exactly the vertéx A in commg }/V + F-E <2 Count, and

V+F-E.

s 1s 2. But

see., Use models of two tetrahedrons 1f you wish. .
should be 3.  On each tetrahedron separately the n:zber of faces.

plus the humber of vertices minus the numberer ed

the vertex A would have been aounted twiée.' So V 4+ F 1s one

f less than E + b, : : .
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The figure on the right-above is supposed to represent the
union of eight solid cubes as in the last;. section. ;[‘he pOSsi‘ple‘*
'ninth one in the.center is missing. Count ‘all the faces (of
cubes), edges and vertices which are in the surface. For this
figure V + F - E should be 0. (As a starter, V should be 32.)-

Finally we gut the.Euler .Formula in a more general setting.
Suppose we have a si ple surface and it is subdivided into a ' :
number (at least three) of non-overlapping pleces. Each of these
) pieces is to be bounded on the surface by a’simple closed poﬁygon.

We think of F as th€&€ number of these pieces. We require that if
.two‘of these pleces intersect’then the intersection be either one
point or a polégonal‘path. The number E is the number of these‘ﬁ

LAY

intersections of pairs of pleces which are not Just points. The .

number V is the number of points eéch of which is contained insat

-

least three of these pieces.‘ Then F + V - E k.2 ~

o~
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« Exercises IU-ub

1. Take a cardboard model of a non- regulgr tetrahedron. In each‘
face add a vertex near the middle. Consiger{the face as the
- union of three 2- simplexes so forme . Give the count of the

faces,‘edges, and.vertices of the 2-simplexes on the surface.
How do the faces, edges, and vertices of‘this polyhedron
compare with those ‘of, the polyJ:dron you ge 'by attaching
'four,regular,tetrahedrons to the four faces gf a“fifth?

*
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2. Take a model of a cube. Subdividevié as follow8. Add one
vertex in the middle of each‘edge;’~Agd éne_vertex in tﬁe ‘
middle og/each faée. Join’ the new vertex 1p the mlddle of
eégéif;ce with thé eighé other vertices no& on that face. .

You should have eight 2-simpiexes on eachf face, Compute F,
Vand E. Do you get F + V - E = 27 C
3. Make an irregular subdivision of any sfmple surface into a
\number of flat piece%. Each plece should have a simple
closed pqugon as its boundary. Count F, V, and E for this

subdivision of the surface. 4 k




