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- Preface )
Part éf the activity of the échool'Mathematics Study Group
SMSG) 1s ngoted to the preparation of experimental, mathematics
textboogs/for seconoa&y schoolsa//This set of notes, the third in
a senI%s, 1s intenoed to explain the approach adOpted by the writers /

of ‘the textbook First Course in Algebra (SMSG- F). It is expected a

th\t these notes may be used 4in the Summer of 1960 by teachers who
rare studying SMSG-F and who are familiarizing themselves with hew

s .
P .

teach}ing mater€ais in algebra, , .

It rust be understood that this book 1s not a ninth grade text- -

book or a teacher's commentary. The ldeas presented are far too.

difficult for mpst beginning students, but these are ideas which we

‘belleve teachers should master, The terminology and notation are
s . ‘ . .

the same as; but the topiles do not closely parallel, those of the ’

. SMSG-F textbook; hence, 1t is unsuifable as a manual. ‘The notes del&e

into the foundations of algebra, the structural prbpertIes of ele-
? . .

mentlary algebralc systems, but are not concerned with the routine,,
4 . N

° [}

"pkills and manipulative aspects of algebra. It 1s assumed that the

teacher is alneady a mast®r of these skills. — %= -

In short this book is not designed to explain how one should
ﬁeach the SMSG—F materialé but rather to explain what is éeant by

3 "modern al ra" ’what concésts qnderly the SMSG-F materials, and . (
) what is e spirit of the mat rials. It is believed that a’ teacher
~ . 2 /n ' . & °
¢\ d . i + . .




. structure of algebra.

J
- ) —
4

. - N .
who understands-these underlying concepts will be able to use tH@

textbook effectively and to‘stimulate mathematical curiDsity in his

S

students. ’ k .
-

2 R . - 4 - ‘ W

N
In particular, it should be pointed out that these notes are

. > -
abstract algebra course, since they are geared

qnot Intended for an
Idirectly to- SMSG~F. ) e v

' The instructor of a summer course for teachers will probably

. )
find that ghapters 2, 3, % and 6 form the heart of f,he study. ©€hap-

-

ter 1 can be read quickly as an introduction, but Chapter 5 may be
rough sledding.
results of Chapter 5, and other may be challenged t low the °
proofs in detail and t;y their hands at. the problems?‘gzi\khgpter
2 we discuss‘the questions, "Wnat 1s a proof?" and TWhy bothers.

»
3

" Certain readers may want to read only the summary

‘-

with proofs inLalgebra°" ': ; ) . . .o
« .It is7in Chap‘er 3 that the teacher comes to grips with the

]

O

»

field (the set of ,real numbers 1s the most familiar model of this

3

system) and study'its propertiest Theorems.marked with a star * _

& are left to.the’reader for proof these ‘are.essential to the devel-

opment and should bPe regarded as strongly recommended exercises.
g
Then in Chapter Lk the various subfields of the real ﬁumhers are

examaned putting them in'perspective-with each other and with the\

>

reals. In Chapter 6 we summarize the relations, Operations and ex-

1 -,

pressiOns of/algebra by unifying them under the concept oﬁ;function.

~ The outline for these notes was drawn up and the resulting
.manuscript waﬁxread by'an advisory committee consisting of:

&;C.W. Curtis, University of Wisconsin,

¢ .M B.J. Pettis, University ofl North Carolina,

/ F o 11 :
B e -, W ' ¢
‘e . ' §~’w~: N -t ce "

- 7 S <«

Here we oostulate a system called an ordered

+

L




H.O. Pollak, Bell Telephone -Laboratories;
A ,~l C.E. Rickart Yale Uttiversity’

The author is indebted to this committee for its many valuable

suggestions. A

v :
The" instructor should feel free o cdhsider ‘topics 1in any
order and to supplement with ideas and problems at will. No
: A N

. attempt is.made (or 1ntended) to freeze the approach to,

elementary glgehra in the present mold. There is a healtﬁ&

—’debaje going on as to the best way to design a first course in .

~

-algebra. It is' hoped that some réaders will learn enough about

‘ the issues so that they can .enter the debate on one side or‘the
other. With the goal of superlative teaching anhd learning of

algebra in the schools, the reader is invited to convey his

comments'anq criticisms to | v o
., ‘ . -
{ : . School Mathemgtics Study Group
Drawer 2502 A Yale Station ‘ .

New Haven, Connecticut
®

-

. 111 ' '

[
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N . .Chapter 1

HISTORICAL BACKGROUND

) ’ v

1, Classical Algebra, What is the genesis of the sc¢hdol book
algebra as it 1s now taught in our schools? How does 1t differ ' '
from. "modern alggbra" of 20th century-mathematics? In what re-

»

spectsuhave the two parted company, and w?yz We might find answers

e

t® these questions in ashort historical‘sketch. ®
N Somewhefe in the,eaze of pre-history:a passage was made from

aJ d -,

the coﬂcrete to the abstract. The 1d€a of ."two" as a characteris- , &
tic of each pair of objects must have taxed the primitive mind, ' ]

Just as 1t eludes the mind of the very young child,

-

Numbe{ sense came slowly, 'As systems of notation were inven- o
’ ’ ’ :
v ted, the meaning of number became clearer, Histories ‘of mathema—

- tics* trace this deVelopment along with a g%owing serise of spatial -

form, through the early emergence of arithmetic and geometry in
AL o P . ¢ , ' T ]
. . ' Ty ' ‘ I

* CF : D E. Smith History of Mathematics, Ginn, 1923;~E T. Bell,

The DeVelopment of M&them&tics, McGraw-Hill 1940; D.J. Struik,

t { : - ./

A Contdse History of Mathematics, Dover, 948 or other histories

-.by Cantor, Hofmann, Eves, etc. '1 11 ' -, {j : .
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Babylon and Egypt, ta the amazing Greek period of deductive reason-’
ing in geometry and the invention of some algebraic symbolism by

the Hindus,

, Somewhere “n this fumbling for satisfactien of man's curiosity
) . y T X
\g\\;/ about numbers, another ste9 was taken, OCertaln symbols, or

"numerals", had already been used to stand for certain numbérs,
- |

guch as the Persian notation of | for "one", V for "two", IV for -

"three", etc, If a number, not known, was observed to have certain
" - >
relationships to known numbers, this fact could be descriped hy

representing the unknown numben by still another kind of symbol.

o

Consider’ the problem- some number symbolized by oL is such that

oL multiplied by o« and then diminished by [ yields M. _what num-
+ * Q L]

ber is oL ? The solution of such a’ problem, the bringing together

v M of the known and unknown parts, was called al-Jebr in Arabic, and

N v

algebra in medieval Latin, meaning "reunion of parts,"

- . Centuries later, European mathematicians would write this
‘e N . Q/3
problem in the form of an equation to be solved:

A Y

-~

X2-1‘.=3.‘ K ) {

-

But having found one root, 2, they were momentarily satisfied, It

. was, nof until after 1600 A.D, that -2 was reluétantly given the
status of a number and admitted as another root. ‘

The more general quadratic equation ' : -
s - ] f -
. c. . o ‘x2 + bx'+ ¢ =0,

where b and ¢ are any ratiqnal-ntmbers, was. "solved" in 1519

- - . . 2 1

] .'- ; 10. 2 . “.. w‘\.
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" .,k - : N e Q
by Ferzo of the University of Bolpgna (anq\as early as the 9oth
century by the Arabs, 1t 1s believed). ‘The cubic and quartic equa-
tions were "solved" before 1545 by Tartaglia, Cardan, and Ferrari |,
»  (leading to a dispute as to whether or not Cardan filched. the
procedure from Tartaglia)., None of these solutions inferred any

e . . AN .
understanding“of hegative or imaginary roots. y

. We must stop here and examine the meaning of "solution.". T

2N

.Among the possible humerical values of the variable  x, one which =%
»~
[ . f
makes the equation a ﬁrue‘sentence 1s_called a root of the equation,
” W - * .

"Solving" an equation then means finding the set of all roots of
: o .

P

»

the equation. To mathematicians of the 16th century there were two

distinct meanings. . . . .~

g:_LL Approximate solution. . Given the mumerical coefficlents
. o r " " ' *

} ' . ' >
of the ejuation, construct a numerical approximation to a root of
: ) A = RN Y

the'equation either by geometric cons;ruction or*by successiVe'

N

refinements of an original estimate of the root*., The Yhinese are

' a

believed to have effected approximate solutions as early as the l3th
‘s o 1’ . -

century, Such a solution i1s always possible for a ponnomial equa- !

+

© tlon of any degree, if it has a root and this fact is of 1mmense
importance to applicatidhs. oL e L
» . . ‘ .
LT - ' o 3

* For example, we estimate that a §oot of x3 + % ~1=0
is agproximately .7 because (.7 (.7) = 1 = ;043 and
v (.6)° 4 -,184, This suggests the rofined estimate
.68 because (. 68)3 + (,68) = 1 = ~,006 and (. 69,P + (.69).~ 1
= ,019, etc. Horner's method, Newton's method, dLo others, are
- . examples of such approximate solutions. . . )

. 4

L
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¢2) Solution by raditals. Given the rational coefficients

of the equation, say, a,b,c,...,k, and given the set of operations
v X >
+, X, -, %+, and extraction of roots, construct by mears of a finite

number of these operations all expressions in the coefficlents which,

satisfy the equation.,” Thus, the quadratic
- . »

o 3 . . M “/-1 \l ’ C ) )
X - o\ xX° + X+ c=0 O

can be éolveg by radicals, because the expression in b,c,

b k.£b% o her ) -
. 2 ‘ ’

. ¢ .
satisfles the equation and 1s constructed by means of only a finite

number of elementary operations on b,k and c.

It was in the sense of solution/ﬁy radicals that Tartaglia

and” Ferrari solved the cubic and thé quartic, respectively**, Their

solutions weére sheer monuments of ingenuity, for.there were no

underiging pr{Fciples on which they proceeded. imnediatel; tnere '
began a flurry of effort to solye the quintic.” It was perhaps
natural (although incorrect) to suppose that a solution of the
huintic'by radicais amaited the.man clever enough to discover 1it.
But ingenuity could not prevail and throughout the 18th centpry

-

the problem of the,quintic remained unsolved
/ . b '

*¥ The cubic\x3 +ax2 + bX + ¢ = 0,1s solved b% substicuting
=y - (a/3), yilelding thqsreduced cubic y° + py + 9@ = O. Then <
the subst;;ution V=2 -~ p/3z2yreduces this %o

28 N\az3 - (p%/27) = 0, which is a_quadratic in z3, Thus, the

i

cubic is reduced to a'quadratic., The quartic 1s solved by re-
duction to a cubic. See a text in theory of equations, such as
L.E. Dickson, First Course in Theory of Eq;gtions. ‘
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In the meanwhile some mathematicians were beginning to examine
the methods of constructing solutions, ‘For example, in 1770 v
. Lagrange showed that the method used to construct solutions of the

quartic by radicals could not be extended to the solution of the

-~

quintic. There the matter stood until 482k,

£ 3 ‘ -

In summarﬁ; at the beginning of the 19th century algebra con-

sisted.of a set of\r-ulesmand devices for performing formal opera- :
£ v . ,

tions on real numbers and_symbols represepting real numbérs

(manipulations of,algebraic expressions), solutions by'radicals of

<
o~ i .

4
.polynomial equations up to the fourth degree, and approximate,

v selutions of pqunomials of any degree, This we think of as . ‘ 4
’, . . < . > -« 3

~classical algebra; it 1s the algebra presented today in traditional

L, ' / ‘

elementary textbooks,

©
+

. 2, Transition to Modern Algebra., There was a growing suspi- ‘

e B
¢ D

" cion at the beginning of the 19th century that the quintic may not
be solvable by radicals. Possibl& there was something inherent in

the structure of the rea] numbers which made the quintic essentiany
differentgfrom the quartic Then ‘in 1824 a Norwegian, Niels

" Hendrik Abel,dbroved that 1t 1s impossible to solve the general
quintic by rad?cals, And in 1830 the Erenchman, é;ariste Qalgis,} |

discovered necessary and sufficient cdnditions for the .solution by |

radicals ‘of a any polynomlal equation. At first. thought, one might
/\
be tempted to undejstand the premious sentences to mean that every

possible device for solving the quintic was trieq\and found lacking

3 . -
~

-
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--hence, a solution is Impossible. But since thére are a finite

humber of opérations allowed, aﬁzer n ‘such operations there“is‘
’ always Bn (n+l)st operation possible. Thus, Galois and Abel coulq,
not have exhausted every combination of operationsl
Instead, they searched-for properties (characteristics, de~.
scriptions) of the equations which isolate the nature of the a
equations independent of the specific’ numerical coefficients
Galois set for himself the general problem of determining when an
arbitrary polynomial equation with rational coeffioients could be
solved by radicals. He™ gave a complete solutﬁon to this prob&;g f
as an applicqtion of a‘'general theory.of ' groups (We sh “
examine what 1w meant by a group of elements in' the next section )
Differences in groups were:found to depend on the relations among
~.  their elemeﬁts rather than on the elements themselves.  Thus,
Galois could then make statements about roots of equations. by ;

-

Tnoting properties of certain corresponding groﬁps.

<

- R * At this point we shall not try to explain how Galois
construct d groups corresponding to equations. "Thé point ﬂé that

om the classical algebra. It was finally

realized that fiore could be learned about the nature of algebra

by studying the structures of mathematical systems, such.as groups,

than by trying more manipulations on more symbols with more

. ‘<

operations. ) o ' > o

3. Structure. In the ‘Mreceding paragraph we useddgeveral new

. words whén we. indicated that é~ group is an example of a '

. "mathematical system" whose "structure” needs to be studied.

Before defining these words, jé; us gain some preparatory
) N . . v

,
: i . M Y »




. X 1.7 ’ .
experience with the ideas involved '
P

. Consider the set of’ four integers {0,1,2,3]. ((Notice tnat-
the word "set"-has the usual meaning of collection, class or )
aggregate of'elements; we nsualiy indidaté-a‘§et of elenents by
' enclosing the elements in bracketé.)\-Select any elenent of this
'set, %ay 3, and then agaln seléct any element, say 2. ﬁow let us,

assbciate with this ordered pair of elements a num J‘%Zér in the

following way. Determine the sum of 3 and 2, divide the sur by

¥ -
ﬂfour, and find he remainder. Let us indicate this result by
i v /
writing ] .
- ¢ ' % * o * : ’
Q 3(j)2 = ‘ :
(We use "=" to mean that the-symbols "3@ o 'a.nd "t represent the

ot

same element, ) In 'the same way, /

. 1@2—3, 2@2=o, 3@1_0;,7 ete. ‘
" Here we have defined a binary operation C) on ordered pairs of
elements of the set_ {0,1,2,3], we say . ' :

- ‘-
. «

a binary operation on a set is a rule whereby to
each ordered pair of elements of"the.set there

. ‘corresponds exaotly one eYement.
. [}

>

... . For the above example we can show 'all the results of the
v - . . ‘ b

operation () in tabular form. " S .
* ’ . R M 01 '
_ © ~ ®]lo 1 2 3 ; ‘
. MR o]0 1. 2 3¢
e » S .‘. » , v ¢
. G 1.1 72 3 o
v - - i
C 22 3 o 1
c. 313”0 1 2.,
\
- 2 *
) ' { 15
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where, the first element is chosen From the ‘left column, the second
. X .

. e,lemeht from the top row, end the result of the operation in the_|
C 0 . .

correspon;iing row and o]‘.tmn of the table.. ' T

If the operation fissocia-tes with each sing]'.e element of a sét
e;cactly one *element, v;e say the operation 1is M Pamiliar .
examples of binary operations are ord’inary addition and. multipli-

. cation; some common unary operations are S'quaring and doubling.

The above set {0,1,2,3} with the operation @ is an example

‘of a mathematical sys'tem.

3

A mathematical system consists of a set of elements °

and one or more operations on the elements. o,

If'we denote the set {0,1,2,3) by t'he fetter T, then the above . ..

mathematical system may be denoted by (T, ®).
Let us examine some of the propei’ties of (T,®). (By.
property we mean a relat,ionshlp among elements and ‘operations which' B )

is true for all the elements.) _ » ’ -

- 2]

1) The first thing we notice is that every entry in the table .is -, °

an element of T. More precisely, if a, b are afhy elements
. »p
of T, then a®b 1s an element’ of #. We say in general

AN —

that " ’ e

o

“ 7

o \".i ."v\,g

a set S 1is closed%{dér a binary operation #* if

4 °

for any eignents X,y in S, .x*y 1is an element of 8.

E
-3

We also notice a symmetry in ‘¢he table. This 1is the result/{f‘

a property of @ that can be described as follows: if a,b
are any elements of T, then ,a@®b =b@®a, We say that an

operation having this property is commutative.

»




19
3) The reader should verify that the blnary operation () Is also

4

. assoclative; that is, for any elements asbyec 1n T,
i 2@ (b@e) = (a@b)@c .
Among the elements of T we call the element 0 an identitx
element for @ because O@a = a@o = a Yor any element

- “in T. That is, any*element of. T is left unchanged when
operating with the identity. In general,

o

an element 1 of a set S is an identity for the
operation * if x* = i*x = x .for every x

"in S. . )

1

Inspecfion of the table shows that each row and each column
ccntains,the identity element exactly once. This follows from
the fact that each element of T has anrinverse uUnder (@ :

to each element a in T there corresponds an element b

ip T such that a@®b = b@a 0. 1In general, w‘

hd

“if 1 1is the identity for the.opefation *. in a set /

S, then x and 'y are inverses under * 1f

.x*y:y*x=i. »y w

of cqprse} in a system the” elements may be'any objects
whatsoevér and the operations completely arbitrary. Algebra is
concerned not Qith the elements or the symhols for the elements
of a system; it is interested in the structure df the system as
described by the basic properties which its operations pessess.
=3 The e;ements of T are quite‘specific in our. minds the
1ntegers 0, 1 2, The operation C) is_aisorspecific because it

'involves tbe familiarﬂoperations of adddtien and,dividing by 4,

a
\J
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[ C
| The resulting system (T, C)) therefore has properties which are
. not surprising to us; in fact, we are led to these properties by v
w s " our intuitive notions about integers and about addition and dividing
gé% . by 4. To avoid the preJudices of intuition let us try to forget the -
S&ﬂb meanings of 0,1,2,3 and %f? Instead, let us write, respectively,

ﬂgﬁﬁs m,t,r and *. Then the table looks like this.
w

a

.
~
=
*
[}

m t »r ’ .

s m t r N

]
m|im ¢t r s
t

. . ri{ir s m
- . I3 -
. o

The resulting.system is abstract in the sense that the symbols are
undefined and the operation ¥ has no méaning other than that
given by the table.  Let us call this the abstract (8,*) system,

Relieved of our pre-set ideas about integers, we might be able
s \

" to discover hidden properties of the (8,*) syst n that are inherent
in. the table. Then since the table for (T, C)) has exactly the .

. same form as the table for (S,*), that is, the systems have the
v /

o

sajb structure, what we discover about ¥(S, *) must alko be true}

(T, ®). In this way ‘we may discover properties of a

f/
familiar system that we{never suspected through the device of

R studying the structuré ofpan abstract system. Z o 7 o

, Ve say that thﬁ@épe@ific system (T, C)) 1s a model of the
T abstract system,ugﬁwff Many other models’ can be formed merely by
;‘if" g;ving other sp;cific meanings to s,m,t,r Qand . Thys, a systam
: ’ T omay admitdof many. different models, each with the same structure as

-ithenﬁxﬁtemnﬁhich iﬂ is modeling. But two systems are differept
&= . Ki
! . . . . .
J ~ ”;‘
. . ‘e L T ;/‘"’"“ 7S TP I R -L”;:’ -

Q ‘ . - 1 ' PR

[ . : T
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\,only if their-structures are different.

‘ This coneection between systems, models, and structure can be
'further 111ustrated by more elementary examples. It 1s easy to
1;vent an abstract system by choosing any set of elements: writing
out a double entry teble and)filling in the cells arbitrarily with
eleﬁeqﬁs. Then an operation o 1s defined from the ?able by *
letting xoy be éhe element In row x and colﬁmn Y.

But the systems that people eonsﬁfuct are usually chosen
because some specific models of the system have gppeared elsewhere
in mathematics, in physics, -or in somé other field. As an exemple,

. let a set have two elements: a, "the action of reversing an
electric switch," and b, "the act}on'of not'reversinggﬁhe swi?ch."
If the operation o 1is defined so that, Xovy is the action whichi
has the same result as performiniaotiem x,»anda-tﬁen—'-pei”f‘eﬂningw 5@

action y, then the system 1s dexcribed by the table: ¢

7. . : & .;%

o e
a
b

1

Note that a o a means "reverse the switch and then reverse it
"again," which has thé same result as b, "not reversing the switch."

In the same way, a o b = a, etc. This switching‘system has Epe

~ Same properties that we observed before. For example, in this
" system thelbinary operation o 1is commutative; that is,

‘ -, ‘ X0y =yQXx -
‘ J

for any reilacemeﬁt of X &and ¥y ’By a or b, The reader should

ﬁdecide whether the operation is a}so associétive, that is, whether

‘“

a”';¥19%(y 0z) =(xo0y)oz;

[N
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\t is interestinéxto note that, b 4s an identitz element for o .

o T —
.« in this system, becaus&\ a R

boa=aob=a and, bob=b. * . ®°

°.. e - ~ .
Does dvery element of this system have an inverse under o ? What ’
. is tHe lnverse of a- under ‘o ? .

. ' . \ ' S

ﬁnot'er simple system'can be constructed out of the arithmetic

of o0dd and dyen integers. Let .K, O Dbe the elements of the set,

e ‘.

A

. . N ‘
.and ‘let + s ;boltfe the operatio

S 3

s
-

"étc. Here ‘the OpgratioQ‘ + 1is not Au}te the
addition of nugbérsl'“uo; are, E 3gnd 0 n r4 themselves; the
are symbols ror.classes/of ﬁq@befs. T eqdétion\\E + 0 =0, for

Zany- even and any 0dd numbers is

some odd number.) 1548 1ert for the reader to verfry that the

. properties of t m are exagtly the same as those of hé ) .

really are two different models of on

system of switching act;:

+
t
t

abstract system consisting ogia set of fwo elements and one binary

, These two systehs

operation defined by:
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: Q‘: .
where e and f are arbitrary symbols for the elements and *7?

Bt

for the binaryzgﬁeration. What is of élgebraic concé&n here is

not that the elements and operation.can be given various phﬁsic

al

or numerical intemprebations (although.this is\interesting), but

rather ﬁhatj?he three tables have identical structure. Hence,

whatever properties we discover in the abstract e f— s&stem

are guaranteed to hold for any model of the system.‘ ', |
The abstract systems He. used as examples were selected to

ot

illustrate the type of abstract’ system called a group.

Given any set' S .of elements aﬁd one binary
operation * on elements of S, the system (S, *)
- is a ggggg if 1t has the following properties'
(l) For’ any elements x and y in S A\x*y is
in 'S. (S is closed under *.) )

(2) For any-elements x, y and =z iﬁy S,

3 .?- 4 ,.‘3;— . ' x*(y—iz) - (x*y)*z. y
. 4 ¥
{* is associative.) * . . ] }
(3) There is &n €lement 1  in S .such that >
K : X*1 = 1¥*¥x =X ) .a
, - for eve}y X ~in S. (There islah,identitx
4\ 1 i:or’ *.)\ N
e s R o\ s e . f
t «(H}—-Corresponding to_each element 'x in -S there
« .1s an element x' 'in S such that -
. ) ©ox*K! = x'#x =1,
2:;; ‘P‘J; B {: } . 1 ‘= ‘ ' .
- 3%'3s.!. | (Each élement has an inverse urfler *,)
i #
RS ‘ |
4 .\:f&'p \ .

B}



Thus, “the first system we‘studied, (T ()), is a[group; T

'

it also has the additional property of commutatiVity and 1is called

L4 o

‘"a cofmutative, or abelian, group. " The system, consisting of the

. [1

E
‘ Set of all integers and the binary opefatio f addition ‘is also
an abelian group, ‘as. the reader should verify On the Other hand,

the system consisting of thé set of all integers and the operation

of multiplication is. not a group; it lacks-e%e of the required o,

/

properties. (Which one?) . o .,
Later we shall encounter systems with two binary. operations,. ) }
such as a ring (see Problem 8) and a-field (see Chapter 3) The°
study oﬂ‘the properties of'a field is central to the understaﬁding A
of elementary algebra )
In a rough sort of speaking we can say that before the l9th£$??"
: century, thematic;ans were concerned with finding specific l
entries in tables (studying models, particularly numerical models)
This activity took the’ form of operations on complex combinations
of elements, usually algebraic expressions. Since that time most
significant disgoveries hame been made in algebra byNstudying'the
structures of abstract systems without regard for the models
suggested It is almost paradoxical that the latter approach

turns out to be the most “practical" in eévery sense of the word.

- N , ’.sf,,*
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. : '
. Exercises . '

'}. ~ Consider, the set of elements (E, 0} and the binary

dperatione +y X defined by: Y ! -

o +1E 0  x]E 0 ,_\" .
' E|E O E{E E )
© olo & o| & -o '

[ e e

Show that thewoperation X 1s. commutative. Is there an
identity element for x in 'this set? 'Determine whether
X is,distributLNe through +, that 1s, whether

x X (y+2) = (x xy) + (x X.z)

"for any replacements of E or O for X, y;;z. Is +

f

alstFibutive through x L e

4

2. Consider the system consist;ng of the set of elements

{r, s, t)} and the binary operations o, * defined by
. . , -
. the tahles: oo - * 4
-~y s - . ) ]
.o+l r.s & x|l r 8t "
r r S t r{t s r :
S s‘% t r S r t s i
¢ o o . N
L t t r s .t s r, t
. B | !

. i P -
gs the set closed under 0o? Under *? Is the operation 5
- commutative° ;s * commutative? Is.there an i?entity for
0? ‘For *? Is o distributive® through *?2 Is * .

. NS VA — .
kwbdistributiveﬁéhrough 0? Does every element have an inverse

’
»

- mder 6? ) . ' '
L . .

PR ——— | ! 4 -




3t L |
A
1 .
T h
?.
- »
1
E -

.iet X o y be the actlon which has the same result as first

- system?

" A commutative group? . .- "
M 1

1.16 .
. i
P . iﬁ%»${
Let the elements of a set of actlons be: - ?E%
A: rotatings an equilateral triangle 120° clockwise -
--about 1ts center 1in 1ts plane . . .
B: ° rotating the equilateral triangle 240° clockwise

about its center 1n 1ts plane

.
* : . )

C: riot rotating the triangle.” -

pefforming action x and then performing action vy.
Construct a table showing all results of the operation.
Does thils set and this binary operation form'an'algebraic'

if so, 1s.the set closed under o? Is the operation,

o commutative? Assoclative? Is there an- ldentity element

for the oﬁeration? >Eoes every element have an inverse under

0? Is thié,syste@ > grOup? Is _it%a commutative group?

Consider a set\of four éctions 6bhsisf§hg of the four

;rotations of a square analogous UO those of a triangle as

descpibgd in Broblem 3. Is the resulting system a group?

«
! hd 4
’

Consider the set {1,2,3,4} and the operation‘() defined lfn -

a(®b 1is

the remainder upon dividing the product of a and b by 5.
34 =2, 4O4 =1,

system a group?

as follows: for any elements a,b 1n- the set,

For example, etc.” Is ‘the resulting v

y d

. v
~7 . v
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Determine whether the set {a,b,c,d} 'and the operation * ,

] tla .b ¢ 4

. al b d a ¢
. bld ¢ b a

- ce \} b . d

. c d]c a 44 b

If'nbt,.whét properties are- lacking?

Detefmine_whether the set {r,s,u,v]

as defined by the following, table, is a group.

+#+]r s u'v
. ’ ’ r r -s u v
: s|s ¢ .V%.,u
~ulu v p r
» ‘ * V
. . - v u s s
/ o

If not; what properties are lacking?

N

tpe?’the system ‘(S,*,0) 1is called a ring. Is the set (E,0}~
—N

¢

2

* binary operation on. elements oft S such that o 1s

" as def%ped by the following “table, is a group.

.

and the operation +,

¢

I

<

. & ’
ir (S,*). is a commutative group and if o

is another
»- 1]

> S . .
' assoclative and o is distributive through * (see Problem 1),

/

and the operations +, X, as defined in ProMem 1, a ring?

-

P

ety

PN
i T

L4 .
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10.

12,

Consider the set I

ordinary addition + and multiplication X.

(S,+,%)

x?

it a commutative ring (that is, is' X

v

Consider the set

defined on this set’as follows:

a@®b
- a®b

-

Decide whether

Prove that the

(Assume two

and show that this assumption leads to a contradiction.)

Prove that for a given element ..x

is a unique

(a)
(b) Do the
(c)"Dg

Do the

the

a ring?

Does every element of I have an inverse under X?

}ntegers of the form 5k,

1.18

<

of ali integers and the operations: of

. Is the system

In this syétem, is there an identity\fdr "
Is '

commutativey?

and the operétions.C) » O

.

{0,1,2,3)

t

is the remainder upon dividing a + b. by 4,

3

is the remainder npon dividing nb. by 4,

A cohmytative\ring.

~

this system is a ring.
) \ )

identity element of a group '(S,*) is unique.

differen%\}dentities for *, say 1 and it, s =

.

of a group

. (§’*) there
inverse ynder *.°

Pl

éven integers form a group with respect to addition?
odd integers. form a group with respeqt to addition?

where k 1is an integer,
« L4 LY -

.form a group with respect to additign?

(d) Let a*b.— a -'b where a,b dre integers. Do the
integers form a group with respect to *?u
“(e) Let. a()t> be the remainder upon dividing ab by &4,
- where a,b are in the éegv {1,2,3}. Does this ﬁet form
" a group with respect to (72 - ; .

: 26 .
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5 N ) A , .
o~ b, Teaching of Algebra, It is unfértunately true that the

» ¢ T T
- ®
. N

degcription of a specific model of an abstract system‘brinés little

. understanding of the system. Yéugg\§§udents learn nany facts about

B

'fzgi”numbers -- this is an impbrtant part of their educdations -- but

>

W these facts in themselves bring little understanding of the real

>

~number system. . o ‘o,
Even though the break-through to modern algébra‘came’a hundred

years ago, for most school children the word "algebra" still means

a collection of isolated tricks -- to each sf%uation a device for .

handling it.

. ¥

The standard textbook is full of symptoms of this:

There are, for example,'boxes which emphasize the "how to", or hands
i/

i

pointing to the ruie that must be remembered.

And

Some students see for

.themsgelves a bit of the structure undiflyiné“éhége tricks.

¢

others enjoy the sheer fun of getting the right "answers" to the

v-
manipulatiéns. But for the vast majé%ity it 1s a matter of memoriz-

. F : '

ing a set of symbolic commands, oft7h in the form of "four: step"

°
-~

- -methods ori"rules_bf signs", etc. % .
. [’

"symbol pushing" fof his later mathematical studies.

d

the skills of

content drastically. The point however, is that every bit of manip;
< .

.ulation which we teach and @hich the}student must bé able” tqwdo, is

e 7

v et ?

valid, for a reason, " There is a mathematical truth about say, real

LI

D("’ -

v 0

o “
\“R,.QJ{‘“} - _",/

§e
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-

numbers, or about polynomials, which 1s behind every symbol we push.

-

excliting to the student, Thus, a new program must aim npt only at
the usual skills bu¥ also at an understanding ‘and appreciation of

And we need to teach these truths to make algebra meaningful and w
— - .
the structure of the real number gystem, and to a lesser l

extent, of polynomlials, .A'hultitude of egercises is still ébgglute-
1y necessary for gaining manipulative facility, bupvphese tecH;iques
must be tied to the.ideas from which they ée;ive their validity.

The writer of new materials and the teacher of these materials

. . bl .‘ "
must ask the questions: (of himselt', not his stgdents) vihat 4s the

\

> 4

abstract system of which the set of real numbers mith .addition and i
multiplication is a model? Vhat arglthe‘stractu i1 propertiés of

this s&stem? gow do thesg properties ‘“iiate and- unify the solu-

L \Es P 49
s

. (- '
-tions of ~equations and 3p€?&t&ons on algebralic expressions and

Jfunctions? Ve shall try“hoégrobide some answers in_succeeding o

{
Yy ’ . ©
chapters.

The teaching of algeBravggﬁébnly must give the student a glimpse

-

of the structure of the subject but must also tredat the language
with éreat care. Statements which f;cord the pr-nerties of a'mathe-
matical system depeénd on concise language. difference between

Mand"™ and "or", ™" and "only 1if", "not" and "none", etc., can'ﬁeig
the difference between understanding and misunderstanding. More of

these matters in Chapt§% 23 ’ . . .

Languagekglso involves cholce of descriptivé words. Unlike the

' ]
’
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cheist? who uses long compound words to describe‘his materials,

—
.

'thé mathematician often selects ¢ommon wor@s to describe uncommon con-

-

cepts} The teacher should beware of d}ctionary meanings for words

such as rational, rezl, imaginary, complex, group, ring, field,

‘

limit tern, ﬁactor, domain, range. When these words are used as

’

mathematical terms, -they do not have‘the meaninés cdommonly ascribed
i | /c-——-—v ‘ y , -

to then, I .
/l - . \, *

5. A Program for Elementary Algébra. This study is designed
v N

to explaln what the writers of the SMSG~F (Firetmcedrse in Algebra)
4
Ky

had in mind and Wﬁat teachers should keep in mina as they teach the

!

F materials,

-~

We shall be coﬁcerned with the precise structure of an

abstract system called an erdered field, because this system has

"as a model the real number system. Then we shall disgect this
system into subsystems and examine each in search of‘i?eirelations
to the system and’ to the other subsystems In tmis{m%;kwe may begin
to see what,ugder;ies elementary algebra. e 2 . ‘.

» . ¢ .

~ ‘ ) R :
,/ s
. o I
. - ) ¢
.. s
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| . Chapter 2 .

"\ LANGUAGE , . .

1

1. Sets. Much heat has beeﬁ generéted in arguments concerning

the role of sets in teaching elementary algebra, Some would con-

.

" gider a ‘course in algebra to be "modern" if it mentions the word -

"set"; others maintain that sets are an unnécessary confusion,.

‘Let us take the middle road and agree that tpe study of sets

"for their own sake probably does not belong in an elementafy

-

course, On the other hand, the,simpig languggé of Seés.can greatly ‘
] - a © v N

enhance the flow and increase the,interactibn of tobics in algebpra,
[ e

A set 1s a deceptively simple concept: It is merely a collec-
tion of obJjects. nThe Sbjects, or elements, in.a set have at ieast
one common charagteristic -~ the characteristic of belonging to the:

- e

same set. This is not double talk. For example, if the set is "my

P

family", 1t is significant to say that a person x beldngs to my

;
- ¥ <

4

famlly, The set of integers

-

~

{2’ 4’ 6’ 8) ‘ - :

~

has four elemehts\each of which happens t6 be an even integer; But

these four numbers constitute a set merely beéause—%hey have been

——— . ,A,_.P,___;___J - - 2.1 . - !

>

-

| 30 . L
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w——- llsted together. The 'point 1s that often we are concerned with a .

“set rather than with its individual elements. \?hus, a line is a

._“‘uv-ﬂ- “ . , \

T - . 8€t of points, but we may think of the line as one entity, or even
\ . . ' \ i -
’ as'an element of a set of lines. In fact, much of mathematics deals

-

- with sefs of sets of sets of sets ,¢o,°

)

\kﬁz_, Y Just as 1t 1s .posslble to describe a number wlth various names,
\;‘ -

\

K such as .
5-2=3.=g= J9 = ...

-

so 1t 1s possible to describe a set in different ways:

\
. {2,4,6,8) = (4,8,6,2) A: the set of even posit&ve~ )

integers less than 1C B: the set of positive mulgiples of 2 !

4

j which are less than 9. \ .

The "=" sign means "i1s" in the same sense that \
- \ ~

"6 ||6 ‘ )
5= /T" means > 1s the same number as ./9';

-

N and for sets A and B, * : oo \\\
"A = B" means "A is the same set of elements. as B?

\

A

If a\seg A 1s described by listing 1ts elements 1n a roster we

enclose itS'éleménts within braces, If A 1s described by stating

aarp—

its characteristlcs we must bé certain that/the description allows
us to determine without ambiguity whether or not an element belongs

: . ) . |

to the set. "All the whole numbers I can write" does not suffice i
. ) . -

to define a set unless it is known how much energy and time "I have, i

I

I

e o

how long my writing equipment will hold out,‘and in what order

- ‘ - ' ° .

v i ! - N

= =
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I propose to 'write them down. "All the whele numbers greater than ’
[.d

3 and less than 4" does define a set, namely the null or empty set,

the set with no elements, symbolized by &, T ///‘“
; Beglinning.algebra students bring with them a good deal of infor-
ﬁetion about two’sets: the set A of numbers of arithmetic (the non-
_negétive real numbers) and the set P of points on a line. Each of

these has interesting subsets. - . .

.
v

If every element of a set S belongs to

a set T, then S is a subset of T, and
we say that S is contained in' T, written
S C T. v ‘

Thus , the set W of whole numbers {0,1,2,3,...} is a subset of the
set A'of the numbers of arithmetic: W G A. It should be poted

N \
that a set is always a subset of itself. Cor .

S is a proper subset of Tif S C T, S # ¢ and 'S #T.

.

1

Let us consider a line- d two dlszé?ct points 0 and U on the
i
line with U to the right of' 0. Then take the distance between 0 and

U

U as a unit measure and mark all points on the line to the night of

’

U and unit distances from each other.
0 7] - ‘

.
4 4 —t + ! ce .

The set M of points so marked is a subset of the set P of all‘points

on the 1ine. An important fact in algebra is that there exists a

e{;tionship between the set M of equispaced poig%g,and;%he set W of
I whole numbers. We say that there is a correspondence between

.‘2 4

these two sets. 1

32

-
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' Then we say that each marked point has a corresponding coordinate,

2.4 .

Given two sets S and T, whenever tpere is a
well-defined rule which associates pairs of
elsments, bhe first element of the pair from
S and the sedond, element from T, there is a

correspondence between S and T.

We can define, in fact, a correspondence between M and W which 1is
oné—to-one; %hat is, to each‘point of M we can asSociate exactly
one number of w and to each number of W exactly one point of M.

Let us make the association as in the following figure°
g 0 U o

+ $ N +
+— + t g u

0 o 2 3 4 5 6

} +
T t
-

.

the whole number associated with the point. -
N
Although it is convenient to speak of these pointqund numbers

interchangeably, such as ""the point 2" when we mean "the point

o’

whose coordinate 1is 2", it must be remembered that the set M is not
equal 1 to the set W. They are quite different sets. But the fact

that their elements can be palred off, one~to-one, enables us to
' . « ' f

carry over to eitner set phe properties of the other.

"A correspondence between 3 and T is said to be

one-to-one if each element of S 1g associlated - .

r - 4G

A
with:* exactly one element*of and each element

of T with xactly one elemefif of S. "

N %ﬁf ' X . ..

We'haveyavoided the necessity of listing a roster of the ele~- -~

ments of W by writing

. M
4

= {0,1,2,3,000} -~
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. 2.5 =
to indicate that each element has a successor and, henEé, tﬁere-;sdﬁ
no "last element" ;f W. This is an ekamp;e of an infinite set, - -
where we intuiti\;iy think of "infinity" in terms of "r;c'epd".“

But intuition is not to be trusted. It would be better to '~ -

ggscribe an infinite set in some manner which does net involve 1ts

elusive "no end". This we shall do as follows. Note that E?ere 15 &

- A

a proper subset of W, the set E of ail even whole numbers
- - E = [0:2;4:6:‘---},

which is in one-to-one corrédspondence with the se”vw._‘We indicate

the pairings of elementsﬁpf Eﬁis‘one~to-one correspondence as

. ~follows!i
. R «E ¥ .o
i .
i
- A 0<«=>0
“ v, ! , :
. o, 2€>1 :
-
: h <> 2 X
B 6<«>3 ’ !
F
& ) ; - ‘

S of T such that S and T are in

AY

C . R = N

Il
B ~
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finite set cannot be put in one-to-one correspondence with a proper

»

subset of 1itself.

Now that we have established_ that the set W of whble numbefs is

P

infinite, we can show that the set of points M 1is infinite as a con-

‘
IR
-

sequence of the one-to-one correSpondence between W and M.

[

Some infinite sets have the property of being countable, that is,

.of being 1in one-to-one correspondence with the set of counting num-

.

bers. Latér we shall deal with infinite sets.which.are not count-
able, such as the set R of all real numbers,
- ~ . ‘ . "
Much of our attention in later chapters will be dlrected to the

fundamental one-to-one correspondence between tne set of all the

points of a line and the set R of all real numbers, Thid corres

pondence ig at the heart of coerdinate geometry'-- the progerties‘

-

of points on the line suggest analogous prOpgzyies of real numbers,

and vice versa.

“~

In order to cash in on .this intimate relgﬁion bétween sets of ’

points and sets of numbers we use Special language “and symbolism to
. » e
connect them, The number corresponding to a point’ we have called ;
L o , .

the coordinate of the point. The set of points COnreSponding to a

certain set of numbers we.cali the graph of the 'set of numbers.,

For example, ‘the set of points indicated by heavy dots in the“fqllow;c
. f . ;
ing fdgure ] * : . {

—9 V o e —+ o o+

18 ‘the graph of the set {2,3,5,6) . The graph of A, where

' .
.
s ° ) o

35

t”
e




2.7

A = set of all real numbeérs,less than 5 and
- L4 N

gheater than or equal tq 2/3

1s indicated by a“*heavy line and solid dot in the fi%ure below.

¢

0 1 . :
' . .~

Exercises . . s

1. Givén the sets ‘ ] ’ .

£ w9 |

)

it

¢

= set of all negative integers greater phan 3.
= éet‘of all whole numbers which are no% multiples of‘3.. :

= set of all rational numbers between 1 and 2 written with

denominators between 1 and 4.\\“’//, 5 ) )

™

© S ' , S

set of all ratiopal numbers between.l and 2 written with

—~ i

numerators between 1 and 6. —

;= set of gll(&hole numbers which ;kg/multiples of 3. v

= set of all numbers x such that x2 + x = x. ‘

= set of all numbers of the form 3x + 1 or 3x + 2, where x is'
any whole number., . ' ) ;

.

Decide whicﬁ of these sets are equal; which aré in one-to-one
‘., -r - ! . \

PN

~ - ‘-

. correspondence,

2, Which of ﬁhe sets in problem 1 are pfoper subgets of the set W

Y

' -of whole numbers? of the set ¢ in problem 12

\

3. There are varipus types of cofreSpondences between sets other!



T,
PR

4,

~(a) Set C of Broblem 1.

:'1 28 . ;. .

" than one,gp-one. ‘A many-to: ~to- one corraipondence between S and T

associlates each element of S with exaebly one element of T’bgt

at least one element of T with more than one element of S. A

manx-to-manz correspondence is defined accordingly. For each

of the foleWing pairs of sets a rule of correspondenee is

,glven; decide what type of correspondence it 1is.
e .

’

(a) S.= I (integers), *T = I; 'to each x fn S there corresponds
~x.in T. %

(b) S=1I, T=1I; toeachx in S'there corresponds x° in T.

(¢) s * (real numbers), T = R; to each x in S_there

corresponds y in T'such that x+y =1T7.

-

(4 S=R, T =R; to edch x-in S there corresponds y in T
: 2 2

such that x~ =y . .
(:;\\ £I, T=1I; toeachx in S there corresponds y in T

such that x2 y3. .

(£)" S = {1,2,3,..,313, T = {Sun., Mon., Tues., cees S2E.),
with the correspondence given by thg calendar for July
of this year.

Which of the following sets are infinite?

~
N

(b) Set Dof Problem 1.

(c) -Set of all positive rational numberé/:ritten with
denominator 3.

'
3

(d) - Set ofall riumbers of the form "a'JE; where a 1s an

° ¢

lnteger. . :
We may show that a set S 1is closed under a pinary operation *
as follows: Construct'the set T of.all elements of the form
x*y, wherer x and y- belong to S. If T 1is a subset of S,
then S ig closed under *, kIt is not necesgary that T be

a propgr subset of S.) Decide whether the following sets_are

r s . (\ 4 . ~.

37 - :
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L. closed under ‘the indicated operations B ' o ' .
. %ﬁyka) All whole numbers which are not : ¥
multiples of 3.ﬂ~ K - ltiplication
© 7 (b) All whole numbers which are not . . -
multiples of 4. ‘ ﬁ , multiplication
. (¢) {O,lj ' @ ﬁ multiplication
o \(Q)‘ {0;1] . ' addition
(e) LAll positive intégers. subfraction
(f) All positive rational‘numbers.: division ~ .
(g)- A11 positive integeps. ) half the sum- ’
(R) All even 1nte§er % . . half the product
(1) a1l sduafes/of_dntegers. *" ’addition

(Jf "All rational numbers between O and 1.

With what mathematical, facts do you'associate'the,answers ‘to

multiplication

(a) and- (b)?

\ e

A wnary operation is performed on a single element Decide -

/
' whether the sets are closed under the indicated unary g
© operations . B
% :‘(k) . Al11 posifive rational numbers. . :zéuare rogt
(1) A1l integers. \ squaring °
(m) A1l even integers. half the square ’
6. Draw the graphs of the sets:
(a) Dof Problem 1. ‘
.~ (b) Fof Problem™. - . \ .
N - BT . - . )
C» , -
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, 2. Sentences. The properties of an abstract system could be

. - ,

described and recorded in terms of English sentenceg., .1ut there I®

much efficiency and avoldance of ambiguity to be gained by abbrévi-

' ating’gpglish sentences,inéo mathematical Sentences. Thus we

abbreviate the sentence . BRI
‘ "Fiv¥e plus three is nine,"
to . ) * .

1 J 45+ 3=.9, N ..

i
B
|

N

"meaning, of course; that "5 4+ 3" and "9" are different symbols for

ar

the same numbef. There i1s no doubt that we habe wriyten an English

Qentence, but thére may be some doubt about the corresponding math-

é;aticalmsentence. It.1s a sentence, even though the statement itf
makes 1s false., We shall be concerned with Sentences or statements
which weé assume are either true or false, but not both, and have

a
meaning and content. Any statement to which this assumption does

.

not apply shall be excluded from our discussion. ‘Fbr,éxample,
" o= g t?ianglg," is without meaning and will not be considered as

a sentence, Also, "3t - ( ) =2/ " @aﬁes'no sense because 4t
does not conform té accepted mathematical grammar, On the other

hand, "Every positive even integer is the sum of two primes," 1% a

.

" sentence because even éhoughqnq one knows whether 1t 1s true, we

are willing to accept ;t‘as either true or false, The assumptions
e - ! - N -
hat a Sentence is either true or false, but' not both, are often

" dalled the laws of contradiction and the excluded middle of logic.

3
. “

39

@

) - »
Simple sentences concerning numbers may involve any of* the verb
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L symbolg‘cf, < »# # 4, 3}, which have the usual meanings of

equality and order and their negations., Compound sentences are’
constructed from simple serrtences by conjunction, disjunction,

or conditional.’ R

’
. '

\ . If A, B are sentences, then fhe sentence

A and B ‘conljunction)

is true if both A and B are true; otherwise it

-~ is false/. The sentence ol
’ A orB (‘dis junction) 3
is -false 1f bqoth A and, B are false; otherwise >

o it 18 true. ’
8 ? “

v

For example, the disjunction C
i ' 5¢6 or 5= 6 (abbf;eviated 5<6) -
is true becax‘.xse‘at least one of the ,sente'nces, namely . "5 < é",

is $rue. But the conjunction

- £ and =6 o ’
_ \ 5<6 and B w s .
is false because at least one of the sentences, namely "5 = 6",
1s false, . ‘
.k .If A, B are sentences, then the“sentence :
~ if A, then B (conditional),

1s -false 1f A 1s true and B is false; otherwise,

it is true.

Y Eﬂ example, the conditional
‘ ~

if 2+3 =5, then 3+ 4 =6

is false because the sentente A: 2 + 3 = 5 4s true .and the

sentence, B: 3 + 4. = 6 1s false.. 'On the other hand, the o
. v R - s g ¢

¥

PR 10
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conditional LA “\

&

‘49 o+ 3 =14, tHeh ~3~+/#'~ 7

-

is true because "2 +'3 = 4". 4s false and "3 + 4 —W7M 1s true.

At this p01nt it is instructive to.list the possibilities

t

which according "to the definition, yleld a true conditional.

. _A B Af A, then B
True  True - Tégf \
False True - : ) Trde
False False True

The remalning possibillty, namely A true and B false, 1s the only
one for which "{f A, then B" 1s false.
At first thought this definition of a conditional seems to

L ’"‘

violate the.common meanlng of "1f°A, then B". Actually, this

definition is motivated by our desire to express any valld reason-
&

ing" leading from a sentence A to a sentence B Certainly, if A 1s
B
true, then any reasoning pracess that 1s valid will lead us from

-

A to a true conclusion B. This 1s the first possibility listed

in the above table. But we must also acknowledge that 1f we argue

@

from a false premise A and proceed by means of valld reasoning

to a conclusion B, then B may sometimes be true, sometimes false.
k.

The emphasis 1s on the validity of the reasoning. For example,
1f we tege as our premise A: 5 = h we may add 3 to both members
to obtg%n B: é =T, which/is false; we\?ay, Instead, remark
thet "5 = 4" and "4 = 5" yield B: 5 ;:u = 4 +.5, which 1s

t/v

qtrue. In each case, the reasoning/was'ﬁhifﬂvffﬁgnce, it 1is

s .

-t

’
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suggested that our definition of a true condition ( include the -
second and third possibilities in the table. Oﬂ:dburse, after
we agree on a definition, we must forget the motivation'which.
suggested.it and accept the form of the conditional even when
there ¥s no apparent relation between thelsentences A and B
in the sentence "if A, then.B". -

We do not allow  the fourth possibility to occur 'in a valid.
reasoning process. Thus we call the conditional false 1f a true
"A leads toQa false B. 'This can be summed up by saying thst the
conditional "if A, then B" is true 1f A is false or B is true;
it is false 1f A 1s true and B is false.

We write the sentence

A, 1if and only if B (biconditional)

as an abbreviation for the conJun?tion

o (1f A, then B) and (if B, then A).
Thus, a bjgonditional is *true if both A and B are true or if
both A and Btare false. .

X The question arises: Is the following a sentence?

X+ 3=5, 0
¢ \.The answer depends on the meaning of the symbol X. If we
require\khat X be a symbol for a numbeg without our stating
that numhep_sgegiﬁieally, then "x + 3 = 5" is an open sentence
in the sense that the question of 1ts truth is left open until
we specify what number, x is; The particular set of numbers

from which x 1s to be chosen is called the domain of x.

e
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Here we have the first example of aAyériable; a more detailed
discussion will be giviﬁﬁén Chapter /6. ‘
“ﬁhere is a close tile between open sentencés in one* variable,
sets of real nu%bers, and sets of polnts on the number line.
For example, if the domain 6f x 1s the set of all integers,
then the open sentence ( .
. _ "x>1 and x<5

i}

_(which 1s usually abbreviated to "1 < x < 5") 1s true when

X 1s chosen as any element of the set

7

N {1,2,3,4].

' And this set has the graph

i

5 6

.-

+ @ . 2 4 L
0 | 2 3 4

It 1s natural to call - {1,2,3,4} +the truth set of the sentence
and the graph of this set the graph of the sentence.

€ y
' ‘ ; The truth set of a,ignten¢erin one variable'. .
is the set of all numbers in the domain of the
"¢~; h ; variable, and only those numbeis, which make )
the sentence’ true.
Thus an open seﬁéence in one variable 1s a sorter which separates
. the domaig of the vayiable 1nt5 two subsets, one the truth set Sf
, - 'the sentence, and the other the set. of the'remaihingvnumbers.
- N S .

R ’

LN
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. . Note the_ importance of specifying the domain .of the variable.
If for the sentence "x > 1 and .x < 5" the domain is, instead;

L

the “set of all real numbers, them its graph is

»

-

———— EEEEEE—————)——— —— .

"

- v o ' 2 3 4 5 6 ©le

-
{
.

It 1s instructive to cbmpare the graphs of the three sentences .

"x > 1", "x < 5", Ty >1 and x < 5", "where the domain of x ///////

*is, say, the set of all positive real numbers.

o

; d -
! x>1 —+——®=
gy o 1 2 3 4 5 6
x<5 & —————
. o 1 2 .3 4 5 6
- \
ox>1 and X <5 A m— o—+— -
. 0 1 2 3 4 - 5 6 - )

We' see that the graph of "x > 1 ‘and x < 5" consists of all the
points which are in both the graph of "x > 1" and the graph of
"y ¢ 5" ’ : ‘ ‘

l)

- If S and T_aré sets, the set of elements

each of which belongs to both S and T 1is
the-intersection of S and T.
. —_—

. ) . »

Consider the sentences -"x < 1", "x >'5", "x <1 or x> g,

where the domain Qf x 1s the Set of all real numperq.
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L’ 4 <
x<1 ———— — e
0 1 2 3 4 5 @ \ »
. 5 x> 5 + + ——t — P 4 >
!r, ) | 2 3 4 5 6
’ \ 1t - /’ ‘1
<1 or x> 5 ey o— } { De—r—
; - 0 I 2 3 4 5 -6
//\ FiaSdiad

‘The graph of "x 1 or x> 5" Tontains all the pointsiwhich. .

belong to either the graph of "x < 1" or to the graph 6f "x > 5",

v
o)

The set of elements each of which b%longs
to either S or T is the union of S and T.

As another example consider the open sen ence
¢ ’ " °
if y <3, .then y > 5, y any integer. ' ¥
The truth set of this open sentence must contLin all the integers

% ;é"' (

greater than 3 (since for “these integers thﬁgsentence "y £ 3" is
Jslse), it must also contain all the integers greater than 5
(since for these integers the sentence "y > 5" 1is true). Hence,

the truth set is the set of all integers greater than 3.

Consider the open sentences L
(1) if r< 3, then 4 _cé r any integer
and - -8 ' '
(2) if 3 = 5, then d‘= 1, : 4 any integer. .

Since in sentence (1 B: 4 =2 ,;s false for all integers, the
conditional is true only for thoséxintegers for which A: r < 3
is false, i.e., for r > 4, In sentence (2), A: 3 =5 1is false

for all/integers° hence, the conditional is true for all integers.

w

\7-

¥
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A sentence’ in two ordered variables has a truth set consisting

r a set of ordered Eairs of numbers, the first number of each pair

corresponding to the first variable and the .second number to the
second variable, such that these pairs and onlx these pairs make

the sentence true. For examplé, if x (the first variable) and

[

y . have ag domains the set of positive integers, then the.sentence

~

= : s X+y=5
has the truth set ((1,%), (2,3), (3,2), (4,1)}.

The graph of a set of ordered pairs of numbers is the set of

points on a plane located with respect to two perpendicular number

lines as follows: If the‘numbyr lines~coincide at their O points,

f
V

the number pair (a,b) corresponds.to a point P whosé projection

o £ . .. ,
on_.the first line has coordinate a and whose projection on the
other line has coordinate b. For example, the graph of the
sentence

x<y and y <1,

where the domains of x and y are the set of all real numbers,

-

is obtained gs follows. The trith .‘ y

. i
stt of "x < y" 1is the set of all(

¢
ordered pairs of real numbers fo/r, ) 2

which the first number is l;ss than

the second;. the truth set of "y'< 1" ' 2l ]

is the Set ofva?I spderad pairs for

which the second number is less than

1. In the adjacent figure the graphs
of the separate sentences are snown
‘wifn dif ferent shadings, and the graph of the conjunction

"X <y and y < 1" 1is shown with douo}e shading. (Of course,

46 A

.



" 2.18
the shadings terminate at. the edges of the figure because of limit-

ations ef space and not because the graphs terminate there.) A

¢ ' . These_are the building blocks of algebra: S
(1) Solving an eqnation in one variable is nothing more than
determining the truth set of the open sentence The solution*
depends on the set of mumbers available for the domain of tne |
variable -~ for certain domains the solution may be the null set, A |
* vwhereas for other domains its truth set may be non—empty )
(2) Stating a property of.an algebraic system is a matter of
writing an open sentence which is true for every element of the

system. For example, the distributive property of the system
of real numbers can be stated as:.
’ : »
A

v oL For any real number 3&%%nd any real number
. .

y and any real number zf, the sentence
Taaad .
x(y + 2). = xy_ + xz,
. & — : ’ . ' (
7 _<ds true. :
This we usually abbreviate“to: :

For any real X, y, 2, & ) ' .

i ‘ x(y + 2) = xy'+ xz. ‘ . A

. . <
As another example, let A be a variable whose domain is the set of °

all sentences. Then the law of contradiction Jf logic can be

stated as: ‘ o
!

.
-

*We often say solution" for "truth set!, particularly if the |
sentence is an eqliation.
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For every A, the sentence

»

_1s true.

»

A or notLA

7
And the law of the exeluded middle is:

"

N >
- ]

'y

., “* For every A, the sentence

A and not-A

is false.

%,
.. . Here ¥e use 'the notation "nét-A" to denote the negative or denial

of A, that 1s, the sentence|/which is falsd-when

N

\ +

true when A is false. {

3

1. If T denotes "true"‘ahd‘ﬁ "false', £i111 in the following tables

\
’ (
U Exercises

g,

-

-

Aistmw,&m

-
¥

o

with T or F, if possible, where A and B are sentences.

s (a) ﬁq B |A and B|A or Blnot-A| if A, -then B | not-A or B
/) oo |- \ a
I , :
T | F . :
© F|F ' ° | > '
. s {b) A [ B | A and not-B | if not-A, thean if B, then A
co "m0 ) .
T |F f "
. 1 I R . :

Ly

AR
3R
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(¢) A|B| 1f A, then B | A or B| A and BY{ A and.not-A -

/

F

F T

2. Let the démain of t be the set,of positive integers. Then
. £ind the truth set of each of the sentences:

(a) 8+ t<12 or 54+ 1£6 ] -
(B) 8+4£<12 or 54+ 1=6 ‘ .
(c)‘;8 +t <12 and 5+ 1#6-

(a) 1fh-8+t<12, then 5+ 1=26

() 1f .5+ 1 # 6, . then 8+ t < 12
(f) 1f 8+ t <12, thenm 5+ 1'# 6

¢ (8) t+2=4 or t+2#4
(h) t+,2<4 and t+3>4 ,
’ (1) (b+2<% or t+2%5) and t+2> 3

() t+2<h Tor (t+2<5 and t+ 2>3)

'3, ‘Let the domain of t be the set of real numbers. Then draw

the graph of each sentence in Problem 2.

.‘4. Find the truth set of .ecach of "thé following sentencés, where

. X 1s the first variable, for tne indicated domal R of i
;c. , and ¥y k .
- (a) X = y2’ . * R = (L’2’3’.00’36}

‘R = (1,2,3,.0'.}.

L}
4=
-

(b) x+2=y and x+y

]
(o)}
-

v o “{e) x+y=5 or 2x+y R = (1,253,.}.h

i . Y
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(d) x+y=5 and 2x+y =6, R=setofallrealn~umbers..

* () x<3 and y>1, ‘R = {1,2,3,4,5)

(f) x+2y>0 and = + ¥y < 0, R.=-set of all integers
between -4 and 4.

A

«5. Draw the graphs of the following sentences for the indicated

¢

-

domain R of each of the variables: (Consider x as the

first variable.) . . ’ .

(a) x+y=3 and 2+ y =5, R =set of all real numbers.

. (bY x+y 3or“’2x;;+y='5,R
’ Ll X .

(e) 1 < x° + y < h . R = get of all real numbers.

)
(d) x<3 or y>1, set of all real numbers.
(e) X>2.,and x<1,

set offall real numbers.

t

set of all real numbers.

°

™ W
[}

(f) x<y and” x <'-y, = set of all real numbers.

+ ) . M I; - : )
3., Logkc. In Chapter 3 we shall prove the following

property of real numbers: o — .

4
For any real numbers a and Db, ab > 0 1if and .

only if ‘(a > o¥md b > 0) of (a\< 0 and b < 0).

LI
: 3

How do we know this sentence is true for any fwo real nugbers a «

and b?

-

Is 'this a rule laid dowr arbitrarily gg.athemamcianso S

Or did this property arise thro‘ugh experience with numbers by

9 » S,
N -’ , - % .

trial,and error? whee - . R
M . - ] $ @ o I
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ki)

;t hapgens that th}s property can be proved as a consequence
of other more fundamental properties; that is, it is a theorem.

But what about the other properties from which it is deduced?

. Are tpey also theorems? This line_of‘questioning would eventually

lead us back to a certain basic set of préperties of real'numbers:
No‘property included in this basic set of properties could then
be deduced,froﬁ the other proﬁerties_in this set. We aré then

léft with a'get of properties that cannot be proved. ]

©

Even the'wqrds and symbols used %n the above property give ﬁg
trouble. What ;oes the'symboi ;<" Qfén? When we define its
meaning in terms,of'other words énd syhbols, we?will again be
squeezed back to a set of we;ﬁs and symbols no one of whicﬁjggn be
dérined in terms of the others (unless we QQeltempted to define

these basic words in terms words already defined ~- a circular

" . kind of definition which is mathematically taboo). :

1t
Y

Thus we musﬁ begin a study of any mathematical system with a
set og undefined words and symbols. Although no attempt 1s made to

define these words formally we always have in mind one or more rep-ﬁ*“

resentations of the words. In a gtudy d} plane geometry, for

¢

example, we begin with undefined words 3uch as "point", "line",

f1 it

. _ .
, "equal”, but we may visuallze "point" as a spot of.ink on a

- )
paper, "line" as a streak of ink, etc. In algebra we can bqéig,uith

the undefined words "number", "sum", "product", "equal”, "less than"

.

on

b4

51 - |
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and symbols representing’ these wg;ds. it is possible ?o think of

s

many kinds of "numbers" and sums and products of numbers as repre-

& i

. sentations or models of these words, but any logical deduction from
. \ -

these words must be independenlt of the particular intirpretations

“that might be attached to“them. :

C

It should be understood that the set of words left‘BﬂSefined
is somewhat arbitrdry and is determined partly by convenience
{or convention) and by the amount of rigor demanded. A smalldy s
set of wo}ds may be possible, or even a different set. Then the

others are defined in terms of this set.

>

Having decided upon a basic set of undefined words, we next

agree upon, certain properties thaé we shall assume these words obey.

These broperties afe stated in forms of open sentences, and they im-
pose conditions upon the undefined words. That is, we do not

define the words but we assume they satisfy certain conditions. f
!
These assumptions we call axioms. They are not "self- evident" or

obvious.” They are properties,which are assumed to be true. The

axioms chosen are often suggested by our experience with the model

N

we had in mind for the undefined words. We must, nowever, regard'
_the axioms as independent of any empirical considerations. In this

« Way we hope, by deduction, to.make discoverles withoutﬁpxplicit X~
&
perience and then to use these new facts as a check on our experi-

i
1

s
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ence, and vice versa,

e . . :

After we select a set of axioms, ‘that is; a set~of>properties

*

which we assume are obeyed by 7ur gset of undefined terms, we" may
e
then prove theorems. These are sentences which can be proved true

- ! » o 2
in accordance with the laws of logical deduction on fhe b%sis of the
-3 \
§ooepted axioms. 7In this way we build a body of knokledge about a
5

mathematicdl system. In summary, first assume a set of axioms to
be true. Prove that !f the éxioms are true, then certain theorems

are true. Then prove that 1% these theorems and the exioms are

-
. '

!

true, then certain other fheorems are true, etc, In the process,
from time to time we define certain new words and symbols in terms

) of the basic set of undefine& words and symbols, and then other
2 :.34':* P
words in terms of these words, ebc, At no point in the process may \
we useany information other than that obtained in a prior theorem,

. a prior definition, or the.axloms. . .

Thus, all the procedures'and rules 'of algebra can be stafzk as iﬁi
theorems which car be derived from a small set of axionmis. We shall

RN

e 1list these axioms in Chapter 3. " }

/ "
At this point an objection might be raised. Why can't wé avoid

2N
/
. /

all this bother and simply take all the results in algebra as rules /

/

without worrying which must bﬁzﬁrawed ‘and Which can be assumed? In

fact, why prove results that seem obvious anywayv‘
. i ;
There is§” d%pger inherent in accepting a l1list af<rules without ¥

0y
Ve

proof. How can 4 given rule be tested with respect to its validity?

?

7/
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We cannot check its truth for every value of the variables in

general, And 1f the rules are not.derived from some basic set
° . L° °, . ¥ . ¢
of rules, we willl never have assurance that they are consistent -
. 4 T—_

with each other. We say that two statements are inconsistent

if they\pontfadict eacﬁ qther, that 1s, if they lead to a statement
of thE.fo%m "A and not—A". T As notéﬁ‘earlier, such a statement is
false for every sentence A.

Nete that it is easy to see‘how to prove the incoﬂsistency
ofxa Set of statements, the existence.of one counter-example _a
specific cogtradiction, is enough. But proving consistency is
another matter. Regarqless of how hard one séarches for counter-
examples, the mere fact thatf none has been .found &oes‘not guarantee
ponsisteﬁﬁy. When the search 1s called off, the very next example
might haveﬁ;ielded a counter-example. The only way to guarantee
consisterley of a set of Statements is to prove that they are logical
consequences of a set of consistent statements, ﬁamely, a set of ’
consistent axioms.* - :
“ Now ‘that we have discuSsed the need for proving the results kA
of algebra, the qpestEH_remains° What do we mean by a proof‘"‘7 ,
Too often a result is considéred proved if it is "believed"“lor
if 1t is’ plausible, or if it 1s known to be true in‘a few cases,

. L .
Having faith in a statement is not enough. 1In tpe latter category

18 the sqacalled "proof” by induction:** "It has been observéd
L d L ’ ) ‘
*The problem of proving that 3 giveh set of axioms is consistent is

a fundamental and difficult job not tooéﬁ\tackled here., Indeed, .
in some ‘cases possibly it cannot he profed

**Not to be confused g/tt mathematical induction, which 1is a power-

ful and valid method of proving special types of statements.. ¥
(See Section 4,1, )
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that the result has held true in n trials in the past; hence,
it will continue to hold true in all cases. ‘

We need not belabor the fact that this 1s not a proof. ‘Of
course, by indnction one may arrive at a conjecture-which can then
be proved by deductive methods. G. Polya has written a fascinating

& ~N
set of books on this subject, Mathematics and Plausible Reasoning,

Princeton University Press, 195& in which he investigates how one
discovers what statements are worth trying to prove and what
- suggests such statements inthe flrst place.

- In algebra, theorems are written as conditional compound

sentences of the form "

if p, then 4q,

W

where * p @nd q are open sentences. \Thus we mean by_th% proof of
a theorem the prqcess of showing that a conditional sentence 1s true

for all values of the variables (let us call such a conditional

. true, for short). The sentence p 1is called the hypothesis; it

is known or assumed to be true. The sentence q 1s the conclusion;

—— -

i1t must be proved true. There are several methods of proof™
N : \\ﬁ/,
available. :

* >

Direct proof. A basic rule of logic is the law of transitivity

of conditionals:

If the conditionals (1f A, .tnen B)
and (if B, then C) are true, then
the conditional {if A, then C) ‘Is

-

true. ‘ " N )




(A true conditio@él is often called an imglication.) Then the law -~
becomes -
’ . N )
. ) (A==>B and B >C) (A >C), _
- N L 2
and the transitivity of the implications 1s more apparent. ’-
AN .
A direct proof of the theorem "p==>q" 1s usually effected -
L4
by collecting known axioms and theorems in the following format: o
p==>r, r=—=s, s ==t, cer & U =g, $
~ ’ g
Then, by transitivity, p = q: . .
} : ¢ 4
For example, sgnsider the theorem:
If a="b, then”a - b =<0, .
Here we must prove "p— q", where p is the sentence ."a = b" - .
- & r .
and q is the sentence "a - b = 0", Let us assume it has_been
established’previou%ly that
a=Db=>a+ (<b)== b +-(~b) .
and o~ ' . | e
. . . Lr
- a+ (-b) =b + (Jp)=>a - Db & 0. R j\ .
_ Then, by transitivity, MU ) J i
: , A S
- «)» - 4~«:.‘~ a =.b ga~- b;= O. . X ‘
\ o. hd \- : iy
T A T\\ l 9 - - 3 B
. % , in] -
> i
;‘ aﬂ-l. ) -
Sy
;‘ " - -“_—
; L
‘!f . - v « P
“‘Ar" , - < -
¢ ® N ®
l Coe
G- : ‘ A s
\) 4 56 - './ o < f
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This law .can be stated more compactly by writing the.true conditional

implies

A.f—?—b B. &

"ife A, then B", read "A

~

1, .
BY, as )

W
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In passing, we should note the many forms 1n whicn the

(Two open sentences are equivalent if/tgeir truth sets are equal.)

(if p, , then tq) is true

p=>q . :
3 ~ . ) .
) qQ, 1 p .
.o p; only if q ’
o . " q 1s -a necessary condition for p
p ' ' . b 1s a sufficient condition for  q
® " 1f not q, then not .p. R ‘

«

¢
v

It staﬁes that if q 1s false,? then p mﬁst also be false.
<3

. As Yas mentioned before, the sentence p, Af and only if q
-~ is really a statement of the conJunction of two conditionals
' (if p, then q), and (i€ a, .then' p). . . : (. .
Thus to prove a theorem of the form "y, if and only.if q", we
T mst teally prove two/tneorems: ’ . ' (g. '

. \b ==>q and q ==>D.

A Indirect proof. . This méthod is often called "proof by
¥

contradiction . By a.contradiction we mean a Sentence of the ’

‘

form “A, hnd not A" We assumed earlier (the law of contra-

¥

- diction) that such a sentence is.glways false. . el RN

implication is written in mathematics, all of which are equivalent:
e 1 '

Thg last of these Is called tqi'gontrapositive of the.implication.,.

2

~
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For example, let us prove tHe theor;i: - o :

“ri ) ‘ . . y
If,a 1is an integer and a® is d‘i’{isible'by "
2./ then a 1s divisible by 2. - o y

] ¢

The hypothesis 1s: a“ = 2¢c, for some integer | c. Let s

e AL
. +

.a4d to this hypothesis the denial of the conclusion% a=2d+1
. 4 - 4

- for some-integer .d. Now our new hypothesis 1is: ‘j '
.,

e

=2  and .a =24+ 1, for some integers c; and d.

: By squaring both members we have

- a =23 +1==3° =42 4 4bg+ 1 = 2(24° + 2d) + 1.
a:‘»The { - ’ i “ ). !
. ANy < : 2 2 2
a 2¢c and a =2d +.-1=>a" = 2¢c and,ka® = 2(237 + 2d) + 1.
- The latter sentence 1is a contradiction because a2 cannot be twice
7 2

- an integer and at the same time one more than twice an integer.

Hence, the assumption that a 1s not divisible by , 2 “led to a.

- contradiction, therefore, a is divisible by 2 '/ Here ‘we took’

as part of our hypothesis the assumption that~the conclusion q
. 1s false. From this hypothesis we derived a se tence of the form

VA and not-A", that 1s,  "A is true and A false and. ye .
thus proved that our assumption about the conclusion was invalid -~
hence, q is true. . ' : . ' ' \
- : . . . P ’,
¢ .. ‘ ‘ ‘; ) i - n o '\
~ - . .
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* The method of indirect proof consists of
proving ﬁ¥==: q" “by proving that "p

\ _ and not q" implies a,contradiction;
. N . "
/. that 1s, , L
.‘ ’ ‘ .
(p and not q) =>r, ’ o,
where r 1is a contradiction. ' <
. - - . A . i
. There 1s no-general rule which tells us how to arrive at a*,
:( - -

contradiction.\ This comes only with experience. Nevertheless,
the indirect method often provides an attack on an ,"obvious"
theorem which eludes the- direct method. This 1is particularly
true when the theorem 1s a statement‘about all the elements of a

/ PR
‘set; then an indirect proof deals with some elements not in the

=

~ B “ﬁ-’-‘\

set. v

Since the statement "not-q = not-p" 1s equivalent to
¢ - o o N

“p===$,q@j another indirect method of proof consists of proving

)

the contrapoéitive/qg<the theorem. In the preceding example,
another indirect proof would be obtained by proving the contra-
' 4positive, namely, "If the integer a 1s not divisible by 2,

[N
-

then a% “1s rot divisible by 2." : -

H /
s ) The question pertinent to this stddy is: How much of algebra
\ \, ')/
should be proved in a first course° A considered opinion is that

-

the student should'be asked to prove very few theorems, but that

ML -5 s -~ - - _,;‘ \.__‘;A "a
h%,should be exposed to enough proofs in various degrees of

, Y . ' 3 * . .

. - ’

< s . . - ‘ . N 1
L .
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|

compietenégs to show him methods and necessity oflproof'and the

,

Jéysfof devising and underséandiné theorems. Tﬁe student should
. - 1
‘become convinced that it is. desirable and necessary for the rgsults

he is wusing to be broved rather tﬁan accepted as rules, evén though

T

he is not mature enough to carry 6ut such a program in detaill.

¢ He should be made to yealize that one could prove the various .

-

prOpertie§~as consequences of basic properties. . He must aiway§

be”told the truth about a result -~ that it can be proved and is

being accepted temporarily without proof. 6ccasior3ally,_ the

outlines of proofs can pe carr out until he eventually acquires

‘a feeling for the meaning of proof. By‘the end of the course the

more able students should be ready for a discussion of, the |

axiomatic basis of algebra. But it is not‘;écomménd?d that su??%;\‘ -

.a course be started from.a formal list of axioms. ) ) g
On the.otﬁer hand, the teacher should have a clear idea from

the very beginning of ppecise}y what Qtsumptions underlie the

algebra that 1is being taught. Although it is a long, exacting

task to develop all the results of algebra from the axioms, he

should bg‘familiar enough with this developmeqtlfo understand it§

framework and 1ts methpdology. Portions of Chapters 3, ¥ 'and 5

-

will be devoted to this.development.
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1. Two compound open sentences are e’guiva‘lent if their truth sets
are equal, provided their varlables have the same domain,
Equivalence can sometimes be shown by means”of truth tables !
For example, consider the open sentences "if A, then B"

and '1f not-B, then not-A" (called contrapositives), where

« A and B are open sentences, g“or any common value of the
variables there are certain possible cases of A, B true or

false; for.each cage we determine the truth or the compound

rs

" "*'“Senteneg,ﬁt‘v a; follows: ‘%
A B if A4, then B| not-B | not-A if not-B, then not-A
- plel 0 o - ® | F ‘ g
F|T - 7 | F T T
| F F 7 F F-
F|F T 7 o T

.

Since the truth tables for the two compound open sentences

sre the same 1in every case, we have shown that the sentences
. T odre e‘t;uivalent“ In symbolid form‘,‘ o - oo <t
V A —B not-B‘ﬁ=>not-A ) Con
By means Mruth tabbles,, decide which of the following 4pairs
of open sen’cenc@es are equivalent. ] .
(a) 1f A, then B; not-A_or B, {

. (by A or not-B; not-A and B
y . ~

61 ' S



(e)
(£)

(h)

- ‘Lat

[N

of

, (a)
© (b)
(o)
()

3. Find
(a)
(v)
(c)

(g)

o ) . ' -

DT 2.33 : ‘
1f " A, then _ﬁi/ ir B,k—tgen A (These sentences a

converses.)

X

if A, then B; if not-A, then not-B (These Sentlences
are inverses.) T "iﬁ%;
not-(A' and B); not-A or ;ot-B :
not-(A or B); not-A and not-ﬁ

not-(if A, then B); if A, then not-B

jot-(1f A, then B); A and not-B

2. Write in symbolic foqmuthg facts about certain pairs of

equivalent 'sentences learned in Problem 1. In particular,

o

’ - " - {».
is the negative of a conjunction, of a disjunction, of;
. o J

a conditional? Use these results to write the qontrapositive,,

% *
if (A or B), then C
4f A, then (B and C) ’
1f (4f A, then B), then (C or D)
if (A or.not-B), then not-(C or D) .
bounter-examples to disprove the statements:
If x Es a real number; then «/ x2 + 1 = ¢+ 1. e

;oo .

« “h e e g

If x is a real number, then 3x° + 4% = 4 - 2x + 5x°,

1

If- n 1s a’positive integér, then nZ2 - n + 41 1is
a prime, . ‘ '

<

| aenmad

PR P

-

-
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(d) If x 4s a real number, then «/x2 = X, S ¢
- ' ) If i 1 number, th 2 -1 =x+ 1 ‘
e ‘ {e) If x is a real number, then Fo1- x + 1.
(£)* If- x 1s a real number, then % = 1.

* (g) If x and y are ndn-ngzztive real numbers, then

L 3

x+y>2 Jxy. - E

U ' Decide which type of proof 1is best suited(for each of the

=~

following theorems., "Then prove the theorems.

(a) If the integer a .is divisible by 2, then a® is
L divisible by 2.0 | u 7
(b) If _a is an integer and a3 1s divisible b§ 2, then
a 1s divisible by 2. .
(c) TIf b 1s a prime and b is greater than 2, then b
is not divisible by 2. 2"
' , \ :
° L - N \ A [
‘¢
kK - : L)
L . s ~ ey S )
: L f ) . ¥
- » N - %
‘ , ]

-
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SPRUCTURE :OF THE REAL NUMBER SYSTEM

>t -

‘ " '
o ! .

)

Eoa 1, Axioms for an Ordered Field. Much of elementary algebra 1is

, 4 ¢ ' -
" concerned with the system of real numbers, How does the mathema-

3

tician‘study a specific model such as the set of real numbers? He

forms an abStract sysfem or'undeﬁ;ned terms and oberétions and .
assumes that this abstract system obeys the properties ;hgt the
. . -
,model 1s known_ to possess. Then he studies the abstract system,

4
~

forgetting that it has any commection with the radiliar model., In

this way he may discovgr structural properties that he did not

I
K

notice in the model.

- .
~

We shall form an abstract system; called a'complete ordered

L4 4

gield. Tts elemon%éuand operations will be left undefined and its
[ ]
axioms are suggested by our knowledge of real numbers. For conVena(

ience, let us gall the underined elements numbers",,reméhbering
&

e P

that this is merely a name. (

{

Qur apstract system ‘then considts of ™4 set of ‘undefined




. A . o |
- eléments symbolized by a, b, ¢, ..., O, 1, ..., with tWo
- r - -~

undéfined binary operatioms (called addition and multipé;cation,

and - ). In all our work the symiol not gg
. . ‘,\ a
an abbreviation for "is" and 1s used to assert the fact that two

symbolized by +__

particular symbols represent the same element of & set.
/

The basic properties, axioms;/which'wq shj}%/assume for the

sys tem (gf, + -} are listed in three groups/ "The first cgnsists

o ) . = .

of the field axioms; any system with two operations which satisfiles
———— A ——— - i

these axioms 1is called & field. Then we sg 11 1list the order

¢ N /
axioms,fwhich endow the elements of with relative size.
——-tz’lf 7 %

Finally, the completeness axiom will guarantee that there are

elements in the system so_thaf it will have all the
» 7 °

propertiés of the real number model. The latter axiom and its

3

implications will be dealt with/in Chapter 5.

2. Field Axioms. IlLet assume that for any elements

a and in¢9f, there 1is unique element ‘a_+ b and a unique
"

: /
element &°b in;?p such fhat the following are %rue: |

=b+a and a°b = b-a.
¢ in" 57,
a+ (b+c) and (a*b):c = a-(b-c).

.c in;?p,

= (a*b) + (a-c).




R,
’
°
£3
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3 I v 3.4
; between the operations; multiplication is distributive through

- ) additﬂon. Let it be agreed that multiplication is performed before

addition, except where fndicated otherwise, then we may writé the

‘x& ' —
distributive préperty as ’
’ ) ' - ° )

' a(b +%) = ab. F ac. .
Each of the operations is assumed to have an identity (or
negtral) element. In FU the symbol "o", zero, is used as the

identity for addition; in F5 the s&mbol "1", one, is taken as,

>

the identity for multiplication.' Nete the important assumption.

-~
. 'in F5 that 0 # 1; this "obvious" fact does not follow from the
' other axioms and most be ass ed, q
i F fally, we assume That each a iﬁ:?f’has an inverse under
addition, -a, ;rd that each non-zero b inﬁ?p has an inverse 7
- under multiplication, %. "_a" 15 pead "the opposite of a". ‘
S L " - " N .
— We call 5 the "reciprocal of b".. . S
- Before we begin to deouoe new properties of the operations
from the field axioms, let us make some remarks about the equality
relation, ‘Since the statement "a = b" means that a and b, are
//)symbols for the same element, then 1t folYows immediately that if
.i_LA.‘éN b, c,ro are any elements of Some set,. then . oo -
£ ' a=a ) ’
LRIt a=b, then’ b - L
e Eé B ﬁf ra =D and\ b= c, then_ e‘=’c. . )
. Eh If a=b and c ="d, then a+7c=D>b+ d. N
ES 4 I% a=b and ¢ = d, then ac = bd:
. i | op
B - =




[ 3 ’ ) ‘ \
) '?hefejis an’elemeﬁt in‘jfi{ jdenoted byﬁ!“o", such that
‘ a+0=0+a-=a2a ,§ t
for eve‘ry 2 in }a o ' ., o
. There 'is an element'incjt’, denoted by "1", different
from’ Qj <such that . _ ’ ;‘ L~
. ‘ lea ="a '

a*l =

for every a in .

1

< ~

".a"' such that
“a+ (-a) = (-a) +a =0, Y
For each 'a incﬁf , except 0O, there 1s an element in
o Pt
o?f denoted by '% such that ]
X .
a-z = ara =1,

We note certain familiar proéerties among the field axioms.

+"  (addition) and under

First, 7 1s closed under

-

(multiplication) because we assume for any pair a,b in;;f’that

there 1s a unique sum a + b in;?P and a unique Eroduct a*b .ein

‘
i

write

(We_shall_omit the + wheneve? no confusion is caused and

"ab“ ./)

»In‘Fl we assune that both binary operations are commutative,

Up to this point the two

and in F2 that both are associative.
operations have symmetrical properties, in’ fact they could be

interchangéd without any effect. But in F3 we assume a connection

e

. ( ] - : .
_For each a inf there 1is an element in(?p denoted by .,

4
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These'five statements sTmmarize the various consequences of
having differeﬁt symbols avallable to represent a single element of

A

a set, For example, if 4. and b represent the same element, and

~ .

b and ¢ represent the same element, then, because b can %epre-
sent only one element, these are the same. is fact stated in E3,

is called the qgnsitive property of equality. In the same way, E4

and E5 stdte th@'hmnediate facts that the sum and product of two .
- .
elements, being unique, cannot be changed by representing them with \qg

different symbols, The boint to be emphasized is that a gi&en

. o

syfbol in a given discussion will stand for one-and.only one element
and when various symbols represent the same element eny one of}these

symbols’may be substituted for any other‘withoqt altering the truth -

-

of a sentence,

°

Some writers would prefer to leave the symbol "=" undeﬁ;sedfani

impose/the conditions El1 to

|

resuI%JL’ achieved, although this approach is.concerned with lan-

E5 as axioms of equality. The same end

. ..

guage rather than mathematics.

¢ .

The familiar manlpulations of algebra are now consequences of

F1 to F7. Ve shall consider 3 few such consequpnces (theorems) Fwey ~
;«‘5) ~

pLSCN

- Some “will be proved and others, marked with *, will be Jefe-as ex-

ercises for the readern‘ As an example of the style “of proof to be g‘
p ‘

used, we prove the theorem: If a, b,oand ¢ ar€ any elements of

&, then ‘ o {4
3 :@ . . . '

T A

~

5 (af:7%) +¢=Db+'(c+a).

L 4
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Proof: We want to show that the number obtained as the sum of

‘and ¢ TS the same number as obtained as the sum of b

We know that )

N +b) +c=c + (a+Db),

by applying FY to (a + b) and:c, since (a + b) is in 57 ;

also
- >

¢% (a ¥ b)= (c + a) +Db,
. by F2,. Hence, E .
- (a2 +b) +¢c=(c+a)+b,
.by the transitive property of equality, E3. Also
J (c +a)y+r b="n+ (a + a),
by appiyihg Fl to (c + a) and "b; hence,

(a +Db) +c=b+ (c+a),

by E3.’ This is the desired result. -

e

In subsequent proofs we shall abbreviate thHe work as in the

o
following: T

(a + bJ’+~c =¢ + (a+Db), Fl

RN

= (¢ +.a)-+ Db, . F2 .

) . = b,+.(c + @), . Fl’

¥
Where closure under addition and the transitivity of equality are
)
Y ~ -

- used withéut mention. LT e \4
’ i

. Theorem 3.1 1If a and b are any elements in ;f’such that

. a+b=0, %hen b = -as

w .

1
}




the first one presented to étudents in SMSG~F.
.

3.7 -

. Proof: By hypo?he§1s, a+b=0.
Then ﬁ : . ' '
‘ (-a) + fa + D) = (-a) + O EY
and . , ! ,
T ((—a) + a.) + b = -é“, N l Fo-amd 4
and. ) _ | - P ',
. . O +Db=-a, : F6
and e
b= -a, B

Note that F6 assumes the existence of an additive inverse

°

_ inverse of a.

This proof that the additive inverse 1s unique is

\ ‘//' - .
Theorém 3.2 (Cancellation property for addition.) ,
If a, b, and ¢ are any elements in 27 such tha
a+b=2a+c¢c, then g’:,c. (
e Proof:

We know that -a =

-a and a+Db=a+ c, by
hybothesis. Then - .
. . Al ¢ -~
(-a) + (a + Db) = (-a) + (a + ¢), E4 .
v [(-a) + al'+ b = [(-a) + a] + ¢ F2.
. x _ , . o
Then Coy
- ! 0+ b =b+0, o~ ) . F6 . s
L * A , . . .
' b = ¢, : Fh,
- { -
. ‘ ' /
0

. -
5 @

N ’
L} -

'

(-a) of a. Then Theorem 3.1 shows that there is only one additive , —
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e L\ 38 Tt
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T%eorem 3.3 PFor any .a in 5> , -
I3 = -.-(—a).
Proof; - (‘-7) + a = Os, ’ Fb.
Hence, N -a), " Theorem 3.1,
Theorem 3.4 For any a and b in &
s 1]
(-a) + (~b) = ~(a + D).
Proof': . ;0 {
(a + b) + ((-a) + (-b)] =" [(a +Db) + t-a)] + (-b) , F2
= [(~a)+ (a+ b)] +(~b) , F1
= ((-a) + a) + b) + (-b) , F2
< = (0 +Db)+ (-p), F6 -
' =b + {-b) , P4 ‘
. =0, L - F6,
: -/
Hence, (-a) + (~b) = -(a + b) , =\ . Theorem 3.1.

'Theorem 3.5 The equation a + x = b has the uniqq; soluti

(~a) + b;° that is, therelis one/;né on .
. number x stich that a +{x = by, namely,
* T h
) ‘ x = (-a) + b. .
' ‘ - - v, ~
Proof: First, we.verify that if x = -a) + b, then
' : e
a + x'=)b; that 1s, we verify that (-a) + b is a.
¢ solution., If X = (-a) + ﬁ, then "
. . - A
a+x—=a+[(-a,)+bJ ’ E4
= [a + (-a)) b, Fo
= 04Db , T8 L
. ' = b, F4; ,
- ’ /_'\/ ¢ g
. ¢ ‘ ‘ 7:1 , R
«5\‘.'?;%? . -
ATty
s i \ R . .
v ® . M ,\::U ~




N

solutions x 4nd X'

: . a+ Xx=>b and

3

- and

.

ar?

+ Then

1

a + X

© X

a + x' =Y,

]
=

309

. ,
Next, we show that this solution is unique,

o

a + x!',

xr ,

Thus, there is only one éblutionQ

~-

v

A5
Mipta
4

e ey
“a W

st
gy i

4
T

"
Suppose thefe are two

A ¢
T s

" E3

Theorem 3.2,

In these proofs we see the interesting and powerful way in

.

-

-

’,which we use the uniquenessmof the additive inverse, )

Each of {he Theorems 3.1 to 3.5 6 involves 6n1y the operation of

-

~ proved by the simple device of replacing + by ., O by 1, -a by 5

Notica the paralel among éhe followjng: (a_@nd b any elements inF)

Theorem 3.1

a+ b=0=>b

Theorem 3,2 ¢
Theorem 3:3

a=-(-a)

’

¢  fTheorem 3.4

(-a) + (~b) =

a+b=2a+c= b=c

«

(a + b)

Theorem 3,1

ab

*Theorem 3.2

ab = ac and a % 0 =f7'b

*Theorem 3 31!

a =

9

*Thedrem 3. 4"

l=>b=

additibn. Corresponding theorems involving multiplication are

1

~

-

J L

1

il
)

-

R




3.10 " .

Theorem 3.5 - *Theorem 3.5!
q
a + X = b has the unique ‘ax = b, a # 0, has the unique
. solution (-a) + b. “ solution (2)b.
a .

~

We shall give the proof of Theorgm 3.1' and leave the rest for

. ¥

°

the reader. If ab = 1, then a # 0 (why?) and - Lo ;
(2)(ab) = (¥):1 ., ES5.
* a a .
On the left, (-l-)(ab)‘= (l'a)(b) , . Fo
. a a -
v = 1*b , F7 :
l = b, o +, F5.
g&;}’: p )
On the right, -l-)(l)f ‘e L . 'F5 .
K ) a a / e P
H \; 7 ’ -y b 1 y E3
enCe, = ; ’ \ <
" Theorem 3.6 For any _ a iny ,
a0 = 0ra = 0, °
Proof : =a and 1+ 0="1, F4,
. . “a(l + 0) = a-l , E5
=a , F5
= a,._+ 0 > Fu
. . . 5
Also a(l + 0) =a-*l + a0 ; F3
» .; X = a + a.o ’ FS. ”
Then ) a+ a0 =a+ 0, E3
g -~
aO =0, Theorem :3.1.
Also ™ 4 0.2 =0, ' Fl1.




.

)

//Theorem.3.8 For any a and b, in &,

<

5 .
g 3.11

-
.

.L _The réader should not b'e misled _by the apparent ddality of the
opératio_ns and _identitles which occurs in the two sets of Theorems
‘3;i“t 3.5 aﬁd 3.1' to 3.5'. This duality is not a universal "
prois?rty of the §1ements of a rield:, as can be seen by forming a '

“statement correspéﬁ'ding to Theorem 3.6, namely, a + -1 = 1, which

is certainly .ot true for some elements il .

*Theorem 3.7 For any a, b and c¢ in %,

(a + b)e = ac + be.

) . -, (=a)(p) = »(ab). . __—
N N . * [.‘ ( v
" Proof: ab + (-a)(b) = [a + (~a)]lb, "Theorem 3.7
) = OOb, R 76 N .
. =0, y Theorem 3°.6.
Hence, (~2)(b) = -(ab), Theorem 3.1.

*Théorem 3.9 For any a . a/.\nd b in &,
Lol (-a)(-p) = ab. '

i
S

-3,

i

*Theorem 3.10 For any a in %, (-1)-a

@

New operations on elements 3f a field are now defined in terms

»

of addition and.multiplication. ‘.
‘.‘,_ﬁ@ ., Definition. . Fop anyg a and- b’ in & '
(1) the numbér a = b, called "the g
~ result of subtracting b from a" ,
[ ]
or "the difference of a and b" _ .
. is defimed as - «
] ' g NN
. a-b=a+ (-b); ;
I ) ’ .- ) '
P ’\ ~



i
» 1

3.12 '

- |

) (2) the number %, b # 0, called -
. <

"the result of dividing a by b"

or "the quotient-of a and b",

“
) is defined as - : .
.. W 2- a.(%). ‘ :
The difference a - b 1s unique .because 1t is defined as the sum
of a and (-b), which is unique. The quotient %, b #0, 1is
) unicque because it 1s the product of a fand %-, which is al’go'
) ‘unique. 7 \
< Here we can quickly clear 'up ‘the question of division py'; 0.
By Theorem 3.5' the equation ax = b has the unique solu’qis;n';
- (2)b, which by definition is D, Nowlet b=1 and.a=0
so that % = %5 _ Assume that %5 is the solution of Ox = 1, But

by Theorem 3.§, Ox = 0 for every x in 5%, “Hence, the e‘quation

0x = 1 has no solution, Thus, % is not a symbol for any element

in ¥, and aimilar argument shows that % is not uniqu’e:ly
.

++ . defined for b in ¥ . In other words, we have shown that

‘0 has no “reciprocal in . In our subsequent development we

shall always assume that for an element of the form %, b*;é 0. <,

) N ’

' . ’ -~ L . s
Among the many theorems that can be proved, we choose as »

examples the following:

. - z

j ¢

*Theordm 3.11 . . *Theorem 31.113' ' !
- . '
fog=a) + a=Db 2)a =b .
e, 3 a
° Irif‘ ‘4"0 ] I3 . 5
g - - v %




*Theorem 3,12

o
O

3.13 !

" #Theorem 3.12! ‘

a-(b+c) (a-b)-c : _g___‘_(g_)kl)
be b" ¢
. / ~F
- Theorem 3.13 a(b - c) = ab - ac : 'J
i Proof: Since a = a apnd b-c=Db+ (-c), e . R
- a(b = c) =a [b+ (-c)] , E5
<
= ab + a(-c) F3 '
[] .
. !
- * = ab + [-(ac)] , * Theorem- 3.8
- - = ab - ac. .
*Theorem 3.14% If ab =0, thena =0 or b= 0. (Do not con- ,
] 3 - . s
fuse with the converse, "If a = O Qqr b = 0, then ab = 0," which
. e - ‘ '
is A2 resta‘gement of Theorem 3.6. )
*Theo’iiem 3. 1’?’ *Theorem' 3.15¢
C T A 7
. d-b c-dif*" 352 4f and only I . i
3 “and offly 1if ‘ : " ad = be. .
. . » ’ ) & .
% asdzbas+oec. ? & :
*THeorem 3,16 . *Theorem 3,16!
. e .
a-B)+(c-d) =, (a+c)-(b+d aj(e) = ac
(251 (5-0) 3y (ave)=(ord) L (B)(E) = 2
Theor%1 ,.(17 ad
o 5 2.b_ _. &
w cb T ¢ ) S
«%" g
X L4
: Proof: 2 L - K
®(ab)e = a(bs) , . ) F2 )
- i - ‘ =)
- v = (bela , Fl
s cblar ,° . Fl.
ra (ed)ar "\ - . .
/4 _ _ , o - . . i / .
. 4 kL B




Since {ab)e = (cb)a,
ab a :
Pl ? . Theorem 3.15',

Theorem 3,18

a,c_hdy+ be -
”S‘As‘x‘ b d bd LS D
’ Proof: . 2 .
a _ad ¢ _be, % Theorem 3,17, Fl.
= / 5%bd ™ 57 1a :
S
a ¢ ad be
&, _ax be 4
. ’ b ¥ 3 bat b3’ E

-

= ‘(,gd +_bc7(5%) » Theorem 3.7 -

|
\
|
|
|
1
|
|
|
|
i
\ - =ad(gd) + be (D , Definitioms . ‘
r R a 1

. Id
. - ~ad +bc , perinstion,
& bd .
*Theorem 3.19 a i =
. b - _ ad \
. c be v
. d '
. \‘ . R
‘ Exercigses < ' .
i ' /\o - - ‘
It a, b', c, d are in% , prove the statements of Problems H
; ’ s
1to7,. - -
N ’ .
1. (-b) + f&Db) = a ' 7
2, (2)(ab) = a ’ .
b * ‘ . . ;ﬁ'
3. (-1) + b(a + %) = ab oo ]
. . . ’ ¢ ’
4, If a = b, then -a = b, - ..
: P
W5° -0=0 . / ) :
.6, Ifa=Dbandc=, thena ~c =b ~ d., N
2 - . Al

."g - v _ 77




XS
N

12.

'
/

13.

15.

16.
7

Assocjative?

o

14,

R AR

by
Py

e Ny

3:.15 ‘
.9'“‘" ' v :
a - (-b) =a+ b, ’ “
Solve the .equation: x + a => +¢c for xia, b, c, x in;??.{i f
~ - x /-\ l ] +
Solve the equation: T Oy for x 1ing . R i

Is the binary operation of subtraction commutative?
, . . ]

If not, give counter-examples.

X . -~ . N .

A field is an abstract gystem with two binary operations which °

<

satisfies the fileld axioms F1 to F7. Verify that a commutative

group wider addition whose non-zero elemeﬁts form a commutative

group’under multiplication such that multiplication 1is dis-
trifutive through addition, is a field.

“Gbnsider the.set of integers (0,1;2,3,4) obtained as

/

fremainders after dividing any inyegérs by 5. Define the sum
. LY .

a + b and the product -ab of two elements of this set as

the remainders after dividing the usual sum and product by 5.

"fhus, 3+ 4 =2, L4} =1, etc. Declde whe

and these two operat ield. If¢so, what is the

additive .inverse of 3? The multiplicative inverse of 32

Same as Problgm 12, except. divide by 6. ) s ‘
Veri%y that the set (E,0} and thé operations + and X as
defined in Problem 1 on page 1.15 forms a field.’

Prove %hat in a field the identitles for addifion and
miltiplication are unique. - - ’ ,
Prove that O is the dnly element in ¥ with the property

tgat 0 = -0.

- ¢ y

Y

#




N
~

3.16

" Consider the system (S, (j y®), where S 1s the set of

¥ all elements “(a,b), a and b integers, and
\ . r(a:b)C‘D(c:d) = (a"“?: b + d)
. - 4 )
(a,b) ® (c,d) = (ac,bd) .
(a,b) = (c,d)=>a =2c and b =4,
i Show that (0,0) and? (1,1) are identities for ® and ),
respectively. Is’ (S,®,®) a f1e1d? ct
, - ~—
? ’ . , .
3. Order Axioms, A second, additional, set of axioms will
C

¢ be assumed for the elements of 7. ‘These will imﬁose‘on the
- elements of F an order. A field which satisfies the followihg
) .
axioms will be called an ordered field.

]
of equality, we introduce a new

In addition to the relation
relation denoted by the symbol "<". The statement "a < b" 1is

read

[4
?":"‘:’:):

e relation "<" and satisfies the

a 1s less than b".~ We assume now that the system

in addition to béing a field, has an order v

f' N

Order axioms ’ ,

01 If a and b are any elements in %,

then one and only one

of the following is true: .

a b, a<b, b<a.

:

e




S T .
o Lo
- / . 3.17

B ", ’ ) ,
f &, Db, ¢ aré any elementsin, % such that a < b and

L}

<

I
b <e¢, then a<c.’

v

03 If a, b, ¢c*are any elemehts in & such that 8 < b, then

) a+c<b+e.
i

C, ok - If a, b, ¢ are any elenadts in & such that a < b,’ and

;J/ 0<ec¢, then & . i .

ac < be..

.

As a matter of notation we‘agree that "a < b" and. "b > a"
are the same statement, where the latter is read "b is greater
than a". fhus the order axioms may be rephrased in terms of

the relation ">". We also recall that

i

a £ b means a<b or a=;b

and’ ' ’ . ;
2 ) ’
a {Db means. a 1is not less than bD.
In the light of Ol; - - ) ’
. ad{db means a=b-or a>b
;o a-nd ,.t’{*_- )

a{b means a > b. .

.

We say that "a is positive" when a > 0 and "a 1is negative'“
~ when a <%. L .
< ' .

4



PO TI
’

. ~Note that the truth of "a'< b" 1s not ‘altered by using
®

different symbols to represent a and b. This fact oan be

-
3

stated formally as e

E6 If a=c, b=d and a <b, then c < d.

<

Somé copsec}uencgs of the order axioms ;??stéted in the .
/ following theorems: 'l Yo
’ Theorem 3.20 For any a and b in;‘f, / ’ -

<D ifandonlylf 0<b - a, ’ ’

Proofor a<b=o<b-—a

. . ¢ a <.by « \ ‘ Hypothesis
. ) ; -
a + '(\-a-)—{\lg‘t(-a) s . 03

/ - \ ‘ 0<b~a, - , - Definition, F6.

v

Proof eof €<b'<=o<b-a: : B N

[ . 0<b =~ a, Hypothesis
° o+a‘<(b-a.+a, - 08
: .
0+a<b+ [(-a)+al, Definitlon, F2
' . a < v, F6, Fh, <
] R .




e

W <P

»

S
Tad
=

el

A

e

.

Joint subsets:

of the| sets

- both Sositive, then sb are

dwhe other is negative, then théir product 1s negative.

, 3.19
N .

= *Corollaries to Theorem 3.20

N e

y ( iy n
. .(1) a > b*f and-only if a -
y & b ¢
itm ! : ¢
! ' (2) b <0 if"and only if b
(3) b >0 if and only if b

!" By means of Ol we can sort all veal

o
°

A4 »

1) The set P of all positive real

{0}

2)

P, [O}, N.’ /

-

3) The set N of all negative real numbensa‘“5‘

virtue of 02 to O4 we are assured that if a

a + b and ab.

ﬂ v

~* Be Q

R > 0, :
- v

> 0.

< 0.

° N

numbers into three dis-

numbers,

and b a%e

L3

If both

’

then

Hypothegis; -
03
il ;

Hypotﬁes;s

*

Ir one is positive and

a

el
\, o :
,? @nd b are negative, then a + b is negative and ab is positive,
w8
_Stated formally, we have
; ~ Theorem 3 21 If a >0 and b > O,
B4 ﬁgw
%;,i'-,g a+b>0 and ab > o0.
Al *
BN T .
! Proof: ,
a>0 and b =27 3
. : . a+b>04+b,
’ a+b>b,
./ff - b >0,

a+b>»0,

02.” |

[,




3.20 :
- ~
Also, if a 0 and b > 0,. then »
) ab > 0b , s o4 .
.3b >0 Theorem 3,6,
*Theorem 3.22 If a >0 and -b < 0, then ab < 0, s
*Theorem 3.23 If a <0 and b < 0, then ' . .
. a+ b <0 and ‘ab'> 0.
Theorem 3.2% If a + ¢ < b + ¢, then a < b, .
$ . )
1
Proof: a+c<<b+ec, Hypothesis ;
) ) 0 < (b+c) -~ (a+c), Theorem 3,20
T ) * .
’ (b+c) ~ (a+c) = b - a, (why?)
o<ba, E6 )
a<b, N ’ Theorem 3.20.
Note that Theorem 3.24 is_the converse of 03. ) s
*Theoyem 3.25. If ac <ch and . ¢ > 0, then a < b.‘. '“*_..q
- Note*the relation between Theorem 2.25 and 04, ~ o
*'I"heofem 3.26 For c <O, - . -
’ . a ¢<b 1if and only if ac > bc.,. .
\‘—.‘.; * - [} ‘ » .
: *Theorem 3.27 If a # 0, then a2 > 0. ' - -7
It was assumed in F5 that 1 ¥ 0. Now we.can use Theqr;é;ﬁ{- 3.27
' to prove . * l ' ] r r‘f‘o‘
' el SRR
Theorem 3,28 10 | . |
L . ’ i . N X - . . ” . 4‘
Proof': 141, | / / o I ,
. ) . | | ’r‘; et e -+ 3
. - . 1 O , -j' %75 '% - . '..:_
. o j"mll >0 5. . '}‘h’eorem 3.2’?t %
| / 1>0 , . E6. N
.. ) a7 B ) M - . ‘<. H p |
) - ‘ . ‘E
e r (
. ' ,, 2 ‘
i - Tk .l - /
- o'&x;‘ J ‘}i N R




\ - a2 o .
" Theorem 3.29 . - ’ . e .
' J ab>o<=>(a>0andb(>0 or(a<0andb<0) {s

-

‘Prodf of => : ab‘$ 0, by hypothesis, If either -a or b is.

Y

.zero, then ab = 0, which is contrary to hypothesis, Hence, neither °

A nor b :;Ls°z"ero. VIS ei‘x;her' a or b Is positive, say b > O, ,
%»% ‘then 1if a <0, ab< 0, contrary to hypothesis., ~Hence, if either a .

. or. b 1s-positive, the other is also positives Finally, if either

a_ or b 1is negative, 'say b < 0, then 1f a > 0,'alb <0, contrary

to hypothesis. Thus, if ‘either .a or b 1is negative, the other

-
o

is aiso r}eg;’tive.

Proof of g5 : This follow immediately from Theorems 3.21 and
3.23. . S I — \{
*Theorem 3.80 - _ ‘ '
+ ab <0=>(a > 0 and b ®0) or (a<0andb > 0)

*Theorem 3.31 4, Cr o ’ :

§'>o.=.ab>'o . : ,

0 7 - . L

4 2
) ‘ ; S
.

The order axioms and .the consequent theorems form a basis for

the solutions;zbf inequalities., We shall- illustrate with several £X~

L4 - -

/ S . * H ’ —, .
amples, .
é,,f p_1e 1. Find thei truth set or B E ‘ , , ;o
2 ° - s
| | x’t4<5x.+3 "x mgi . g
,We/’know.that . » ] I - ; . g
s a<besat+ccbtrc '’ : ! o a0 -
o . ~ . <, ‘ . . . . . . B
i by 03 and Theorem 3.24, .Hence R Lo N
S 2x + 4 ¢ 85x ¢+ 3e=> -3x < -1 : -
; ° . - -
. - T s ) . /
= - R L 0",
° ° v T
P .

I h‘ ‘b‘ oo -
P - R o




4%y
€%
&

E

N,
-~

. by adding -5x - 4 to\‘pth -sides of the inequality

fun

: - .

- - Kl
. . = . 3 22 T L
v ,..'r

This means thé‘t )

——1'2x + b < 5x + 3" and "< 3x < ~-1" have the same truth set. We also ]
< " know from Theorem 3,26 that for c¢ < 0, .
st L a<b_'<=> ac > be, -
' ‘ ‘ ” : oL %
Then Y, : . T T
) 3 Cml e x > l’ y ~‘§‘¢,€<. 7"'
‘ ~ ¢ ; o . PO ] i (‘.
' - by multiplying i)y (-%). By /transitivity of ineqpalities, 02 t’vhe .
s 1 : * ! i f
i .o . . K ’ ’ / * .
e sentences "2x + 4 ¢ 5X,+ 3," and "x > %" have gxa_btiy,'the same tyuth
- ‘ ” -‘ N N
set. Obviously, the solution is .the set of ali’ x in& such
) hat x>2, < e .
12 > 3
s ’ . . "@ ;‘X‘
SR Example 2. Solve . (x-~ 3)(2% 3x) >0, x in S, .
. By Theorem 3,29, i _ - -

’

The 'set of elpments 1n3‘ that are, both greater than ‘3 and less

than 2/3 1s the null set HenQe, the desifed truth set 1s the

set of all x ine?‘ sufh that » A
" x'<3.and x > 23/3, S . Q‘ ol
at 1s, such that - . , , Co ::,,‘ -
PR 2/3 <X KL 3. . “ .; :'3 ’
. s 'ﬂ'ﬁ 'L:‘ . “': a, 1"“‘
- Example 3. Solve - ' MDA S
X + ! O A
1 < O, X in y. . : .‘:'f".:d“; .-
By Theorems 3,30 an 3.31, '
/ - R “ ‘o
AT
. M ’Q
. 4 - 85 7 g ) :}"‘ ‘- L_\
A vt y &’ 1 i '}’ & 3 -




- 3.23 . " ‘

<0 (x+1>0 and 1-x%<0) or (x+1<0 and*1l-x>0)

g

e—m(x > -1 and x>1) or (x< -1 ,and x < 1) -
e—=(x>1) or (x<-1),

B .
A .
s o «

Hence, the solution ds the set of all real nufbers less than g-i .

7 . r

or greater than 1. ‘ .
\L . .
R . ) ® - - N
Le(gﬁ:?r',mheorem 3.27 we know that a“ > 0 for every a ing . Land
) . denote the non-negative element whose square 1is a2 by . .’
the numerals ' . Y 4

' : - , \ '
. ’ BV a2 = lal. . _ .
The symbol \/— is read "the principal (non-negatlve) square root
of a° and lal 1is read "the absolute value of a". Sinc’e
. lali> 0 forsevery a 1in ¥, we may write '

. ,‘"azg’&——-:lal =a, a<o0 =>la] = -a.

Remark: .Two common errors occur frequently on papers of
. . - n . n

. -
algebra students:

B 6 ROV (2) «/'lf’=i'2 N

The first statement is true only when x > 0. If x = =2,
‘, for e};ample, then the statement would read S = ‘but
Vs by definition a non-negative numt}gr,‘ The student : -
- may then argue that «/_ is either 2 or -2, as in the & >
. s second statement. The explana)éi.gn i,s that evéry numeral

[ : represents exactly one number, and we |[défine Vi to meap’ 2, f (
4
- Then the student may reply %:hat the square of Ezither 2 or,

-2 is 4, We agree, and we designate the non+negative square

root with the symbol v 4. and the negative square root by

I

2

Mo v,
Ve,
527

2
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e
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On the m.}mber line,

1.

\

2.
. 3.

'u.’

>.5.

' ) 3.2k

Example 4. Solve |[x - 2| <1, x injf"‘;

Ix - 2]

\ 'y
represents the

. ey
/ .
By-definition, X - 2> 0 == |x - 2] =x - 2,
. 'Y . ‘ : .
: x-2<0=|x—2.l=—(x-2).
Hence, "|x - 2|-< 1" 1ig equivalent to ;
. X -2<1 and -(x-2) <1, ‘)
‘t_)mat I3 to v . ¢ ’ , ’ .
oo e - : e,
; o, x<3 and x>1; written 1 <x<3. .

distance between the -

points x and 2. If this distancé is to be less than 1, then

X must bA;a_ggint between 1 and/ 3.
- M .[ T r—

.
S

5 i X r-lx-zr-a‘

2

-

! Iox

»' *

-0 +

led - \

* Exercises

Use Ob and the definition of ">"

If ‘a >Sb and 0< ¢, thn ac > be.

Prove that 1f .2 < b -39 b < a, then a

Prove': é’< b if.and only ithheqe is. a positive numbe

such that a'% ¢ = b.
MRS

This property ¢
to -the 6Q$rationfof addition. .

Proves For 'a> 0 and-b > % .
a° s b2 | if and only 1£; 1> b,

) - . t

(Hint:, a° -/b° 2 (a - b) (4 + b).)

¢« Prove: * If  a < B, then a < 2_%;2 b
o’ - v “~ -‘2 ' :2.
Prove; If.a # 2b, +then -+ b° d.ab.
Prove: If- a2 > 0, then % > 0. )

o

~

to verify the statement:

wd

—~—

v

= Db,
-
r.c
leayly relates '"<"
L ; 0/
.
A

et
kS o
? g’a'x:vr e
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0% . . » -
a 8. Solve the. inequalities: (x inZ¥)
"(a) X -4<Ex -7 .
(b) 5x > -3x + 8
2 .. . )
\ () x=1>3 D g
L - . I
(@) (3-x)(x-1)<o0 ‘ : )
‘ 3+ x ' A ,
(e) B+ 10 _ , :
Cox -1 )
‘ (f) -1 < X¥I <3
(‘g) x(x+2)(2-x)>0 T
9. Find the truth sets of the following sentences, where the .
+  ‘domain of x is,}’ o o~ » -, v e .
(&) Ix-2l+1=0 -
) “xlx = 1) >0 \V
- N W
() Ix=-3l.>2 - "
(@) Jx+1] +2=23" . .
(e) x° - x + 3<0 . : ' 2
(£) lx-2>0. N
(&) x'-82+1550 o R
. (h) |x-1]<1 and |x + 1] > 1 : ‘
] o
: .. (i) x2 +1'> 2x i
. ; P « -,
10. Find the truth set of each of the following sentences, where
- -
., X 1s the first variablf for the indicgted domaln R of
RN . .
" x and RE oL _ 2 .
. T (a) le +y = 1% "R*= set ‘of all integers greater than -4./7 -
K - S o el y
(O (BY Ix + yl = Ag R = set;_o_f all:integers greater than -4 B
- o 2 AR N
f?" e) Ix] + lyj =, ,W all;integey}. ~ -
h . TR R S e oy
i ta I 0’.: e ,‘-.’.._: . / -~ g « 5
N N DA I S L L 4
:,‘": B ‘ E - ! ; N .:' 8‘8)L‘ " ?‘ N " - ! o ) oy
.7'.,-._' .f: . - e~ :?—‘5"‘ 'v,.". o ~ \ “f‘ “ . \&,) .
O Y R P s TR X : LN
- ‘n X . A =
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. \k;; (a) lx\L‘- 3 and x+y=1, R=(1,2,3,..].
\ / " (e)\jr,l.x] <3 and x+y=1, R =-{1,2,3,...}
) T4y (ke y)ly-2) <o, - R = (0,1,2,3) ‘
‘f: . 11. Draw the %aphs of the following sentencés for the indica‘ced
' domain R of each of the variabﬁ (Consider X- as the
* :"“i first variablgw) ' |
' (a:), Ix| +y = 4, R = set of all real Qi).mbers.'
(b) |x] <3 and lyd] <2, » R =set of all integers.
(e) “Ix| + Iyl < 1y - ¢ R= suet of all real numbers.
‘. (d) =xy > 0; v ’ R = set of all integersi
- (e) (X -y)y < 0, R = set of all real rumbers.
ey Ix - vl (bx - 1}>0, R = set of all real numbers.
‘ L '(g) (x + y - W) (x - y) <0, R= set'of'aii real ynumbers .

v

125 Consider the field described in Problem 12 on page 3.15,
. ’I'f the usual order for'.posi'cive‘ integers is‘ 'cak’e‘n as 'che‘-.
order for this fileld, veﬁlfy by finding counter-examples

N that the order axioms are not satisfied.

13, _Define an order { for & by 'che'definitio‘n o
e o "a{ be=>|a| < Ib|], a, b inG. - — —
b, )
- Ty With» this definition, do the order axioms hold? -
. s - » . '

414, Let us take a differen'c set of order axioms.

- p i .

Lo here existh a subsbt ofq?f qalled Qosaivefnumb'e’r |

- - ' 1 . i ‘ . }‘
. g .

(1) for each 4 in & xactly one of ther following,
| v "

.

is true f

51‘;; R - ‘i3 positive, a4 =0, =-a is"pos‘ tive;

P

' |
e- . P
A . - -
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¢

(2) if 'a, b are positive, so are a +'b and ab.

Now déffne a>0 tomearn "a 1s positive" and a < b

. to mean "b - a 1s positive". With these akxioms, prove
that O1 to O4 follow as theorems. - .

s B
au;,\ v

C R
> L3 a

4. Development of the Real Numbers in SMSG-F. The preceding
LI b

sections outlined an abséract development of the structure of an
ordered field from a,set of axioms. The real numbers are a model
of such an ordered ﬂield; that is, tne elements ofé?f may be.
identified with real numbers., The rational numbers also satisfy
the ordered field axioms. This sort of development ‘gets to tne'
heart of.tHe question: What is elementary algebra made of?ﬁ’It
1s the kind of development that a teacher of algebra should'
ekperience and understand, if possible. ,i .

But hou should the properties of the real number system be
presented to students 'in a first course? Certainly not apstractly
from a set of axloms. )

The writers of §MSG-F assumed that a typical student brings
to 3 first course a r£1r1§ extéﬁ%ibe set of facts about the non-

' /
. negative real numbers, the so-called numbers or arithmetic. To

be sure, Mis lkmowledge may include very little about irrationals, he

e
!
I

] : -
may be able t perform the operation of extracting the square oot )
H - T

E- 4
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of 12 to a given number of digits, but here he probably 'thinks in
terms of an operatﬁion on an integer rather than the approximation o

* an irrationayn%ber. Considering only the numbers or his experiéﬁce,

he 1s led to "di¥cover" the dommutative, assoclative and distribu-

tive propertles. These are then assumed true for all numbers of '

1l’and the four order propertles. In the process, he
p ;

good deal of review and reexamination of arj’hmetic'?: ?i’\ "dis*;:‘o"?rery

periencei a

is °enkced by associating the non-negative reals with, thefpoi;;tss o*
a half~line, and the operations and ord%r relations ape given - ’
geometric meanings in terms ‘of points on the Qumber line‘fﬁq’ L

1‘ Now the stage is set for the crucial’ step. In orrder:"ho com~
plete the pilcture of the real number system, the ne"ative reals

- mus 'k somehow be introduced and their properties establ_ﬁshed. It 1s

|
|
|
1
|
I
aa*i\tnmetic. The same procedure establishes the prolertiles of O and ‘
|
|
|
I
|
I
|
|

qui?e atural Zor a student to accept a set of numbers corresponding
¥ L
to poin on the left half of-the line. It 1s also natural to

T

the non-negatiwves. e ; . . |
C - ) |

This presents a problem. Is there a way to define addition

d multiplication £ Z f new numbers,_$o.that the tot:f set ws
d field? Is/ re ‘only one wayl?

P

he axioms of an ord ‘
) . . W e =¥ . |
We first show thak there is a way to,do this. ¢ *f &% L~
' |

|

~
<

The negative numbe
e

-

are defined by a one~to-one correspondence

v



D
4
. ) \\
.
..
, . .
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[

with the positives, marking the negati;es at corresponding diétances{".
. to the left of the 0 point on'the line.‘ Then'the resulting numbers
are found to have the same orde\\properties as the positives widsh
. respect to the number line\if "greater thap means "to the right of".
Now the student is told that ‘the tatal set of, numbers, which

[ gorresponds to the set of all the polnts on the number line, is the:

[

set of real numbers. These numbers obey the order axioms Dl and 02,

LAs far as the student is concerned; 03 and. O4 have no meanings
until addition and multiplication of these‘numbers are defined.)

It remains to define ’a + b and ab fofr all real numbers a and’
'b ixnsuch a way that all the field axioms are satisfied {again,
tbe student?does not think in terms of axioms, but of familiar
properties). There 1s no problem when & and b are positive

or zero»* Students already know how to, add, subtract and multiply
such numbers, This suggests the possibility of forming general
definitions ,of sum and prodquct in terms of operations on the#non-
negative numbers. There i . a pitfall.here that must be coped, with
Unfortunately, the set: of numbers of arithmetic is not closed under
,sybtraction. So weQmust use care in applying subtraction in any

definit&on. At this point a student can determine %?- b for
a>b . s

numbers of arithjetic only if
o
' d

Here the 1dda of the ppLsite of |a numbér in introduced. | (This

‘word 1s selected instead of the usual negative, because it does not’

’

have ‘ambiguous meanings; too often a student insists that the nega-

.
>

e

B



tive of a number must be a negative number.) The opposite of a.
k I'

‘ v
Teal numb # 18 defined to be the number on t e opposite side of the
h .0 point on the line at the same distance from 0. Thus the epposite
. > w?-\'!"'-.. -

il‘here is (o] confusion between the symbol for:the opposite and the

£ " e~
. \_‘ symborl indicabing a negative number. Note that "-3" representsq

{ n;gative num\ger, it also represen}:s the opposite of "3' Also, , 4
L- 4

" ( 3" represents the opposite of the opposite of 3 as well as the.

0ppoSite of '-34 both of which .are 3 B} :,;,. ) . s - <

3 &

Now we deffine the absolute value of a number to be the larger

of the numbe.r_:_r “and its opposite: ,; N
. ) ; 4 a
S absolute value'of a = |a| = larger’'cf 4. and -a

Q
Since one of. the numbers a and -a must be positivé or‘”z:_r&(< and

, ’ a positive 1is larger tﬁan a nega,tive, it =:tu‘rns oyt that |al 2 Q for .'

.,

_any. rgal number/ &: T‘Irr other words, for any real mb r"a, |a| is

? - >

. & number of arithmetic. Now we are x:eady to define a. . b for ‘any

Lo real numbers a “and.* ’b - & :{‘ <7 )
: - G e Ve :
N The student . ed‘ into the definition of the sum of two real‘
/}‘ " nunibers by having him co ider gaims and losses fin business trans- ’
'x, L3 ’ ee e ' )
2 s . actions’ Ouickly he catcheg on to the inten’c o the def nition.
! * ! ,
x " Then after many exerc¢ises he is invited to di.scover hé d inition
SR Ly PH -,
: ( i ﬂg .{:-\'.,‘-,.-“A ..'-,:.. Ty
‘ formally, as follows. . [ C e, z.:"‘.;g. T f
- : ‘ i ('w} i

| ) \‘;‘ .
e N .
S If a and b are positive\or zero, a +b :les_ t;he Jsual sum of -

A D b e Bors
- e . , l 41w . : R
. numbers of arithmetic, | - ) .\;g ’ .
@ . . £ s , s . K .' . .
- \ } . s j‘,;“: o, o, S
| .
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*the"student, to show- that . R
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-

+

©v etle, hence, a negatlive number.

Otherwise, if |al| > |b}|, then
p . " .
' ¢lal - |b] 1if a>0and b <O
- . _} a + b = , .
- -(lal - |v]) if a < 0 and b.> O:

» if bl > lal , theg. /\a \

{ ~(Iv] = lal) 1if a >o and b <0
(/\ a+b‘= ) ( ~ ’
. bl - {al 1fa<§andb>o

r

{ \

.

addltion, permissible subtraction, and opposites of numbers of

arithmetic only.

e

‘ o ! \J
¥ ac<0and b <0, thena + b = ~(]a] + [b]); that is, the

~sum 18 defined as the opposite of the sum of two numbers of arith-

Thus, we have succeeded in defining a + b in: eaeﬁ case .as a number

of a tic or its o osite where /the definition has utilized
o r:Lth.umj pp ’

Now'it is a straightforward matter,jalthough too tedious for

1 3 i .
. a+b=b+a and (a+b)+c=4a+ (b+c)

for gl1 possihle cases of a, b positive, negative or zero., Hence,

N

the operation is commutative and associative. Furthermore,

undque humber’ -a, 1its,opposite, such ‘that o )
. " ;

. - a+ (-a) = 0; -

»
a+ 0=a, for everp a,

- ]
It remains to define ab for any real numbers a and Db,

. / ! gl SN

-

a:[ordiﬁé to This definition, for each real number a there 15 a



G g ~
TGN
s R 3.32 L.
We are motivated by the fact that we wgnt the commutative, assoclae
; . . ° - . . - . 0
.. tive and distributive propg‘rties to continue to hold., For examplle,
'. _ what should be the meaning of (3)(~2)2 of (-2)(-3.)? We kKnow that
0 = 30 c .
N e = 3(2 +.(=2)) '
L G ’ . A
A = 3(2) + (3)(~2) if the distributive property is to hold
0= 64+ (3)(-2).
. , e - ’ ,
P We already have that -a is the only numbe\r,-ﬁx such that
o a + X = Oo N ‘ L, . 2
‘ - . o // ‘
” . Henge, we must take (3)(-2) to b/ef ~6 1if the distributive property - °
. , / ‘ . N R .: v
ts to hold, 'Continuing, =~ )
K ) ° 0 = (-2)(0) 4 "1 the property a.0 = 0 is to hold,
= (-2N3 + (-3)) R
4 l . - .
= (=2)(3) + (~2)(~-3) if the aistributi\ve property is to
‘ g - ’holdl} e . » .

— . . 5

i e

0 %% (’-é) + (=2)(~3) 1if the previous result is to hold.

. v
Hence, wé must define (-2)(-3) to be ~(~6), that is, 6,

g ) “ Theﬁrexlampies suggest the definition: , ]
o~/ -
o T lalfb]l- 4f a > 0 and b > 0, or a < 0 and b <0
) aly = ‘ . -7 . . -
*“k,L ~flallv]) 4f a >0 and b < 0, ora < 0 &and b,> 0 /
% - 0 4f a=0orb =0,
RN . o , ’ e
Again it is easy, but detailed, to vepify that N .,*/ 5 /’v'
. . . - L s [, .
. o ’ ' . - . ‘
g« ap = ba and (ab)e = a(be) . IR
LENRN \
s for all possible [cases of a, b negative, zero or prsi%ix?é‘.“
G : i . -
4 _ L { ‘ R 4 ‘ "
s ry ~ ) ““"\J { - .
~ ~ iﬁe/ .
k ;95 & |




3.33

’ a(b + c) =ab + ac
for all possible cases, Aiso, a-1l a for all a, ‘and, for each

;7’\ A 0 there 1s a unique reciprocad such that a~§ =1,

s -
Dy

Thus, the set of numbers consistihg of the set of numbers of arith-

' @
netis and their Opposites satisfies the axioms of an ordered field.

It is recommended(that tea‘hers carry out some of the proofs-

4
mentioned in thegpreceding paragraphs. The vast maJority of stu~

; dents will be willing to accept the fact that such theorems can be
h » * ) {.

proved, but the more alert ones may want to try the proofs themselvas

» R . .a.
g,‘and may need some guidance. . .

» . ¥
.

) ‘e, L= 3

) We have shown that'there is a way to define order and operqtions
2k \
i, on pairs qf negatxve numbers 80 that when the\gegaﬂives are attached
- - % N

to/the non-negatives the resulting set of real numberS‘has the de-
- ';,,i»\\_/\ Pt ‘
- sired field properties. It remains for $Q_show that given the

wholeISet of non-negatives “and u@’ativec, along with the known prop—

e <

.- /
erties of the non-negatives, there ls only one way to define order
. R o

= and'the operatiogs'of addition and mqltiplication so that the\\\ole
.pL'SetAof qumhers satisfies the axioms of =n o dered—fieid.‘ L .
Let us‘be'carefui-here to lay outnsxac ,uhat is k own andqﬁhat;P\
is to‘gf proved We are given the'num-ers arithmetic'éthe non;

; .. L

negaxiVesb and the meanings of +, +,.<|for any pafl of- these numbersé'

We hen_attach to the non-negatives a get of-numb ‘called negative
, )

num ers ang write




: ® , 0, e

v to indicate any arbitrary' meénings of additioln, multipli‘clat:.Lon and

.. . order of pairs of numbers. The negative numbers a‘re thenvd’efined
in-ter’ms" of the basitiveé: Corresponding‘to each posltive number

a there ﬁ.‘s a negative:\ number -a such that a @ (-a) = O; ~We \aé-

V3

sume further that @ , ©, < have the conventional meanings of

i

+," + , ¢ for palrs of non-negzitives and that subtractlon of non-
[ L

i I g

G .
negative& 1s defined as

. ' a-b=a @ (-b) for C b a. -

— . ) o !

With the assumption that the,total set of ndmbers is an ordered

f101d under ® S~ @ ,- {, What must be the definitions of these
symbols? -

FProm the first i1t 1s evident.from our assumption that for any

Ay -

two numbers of arithmetic, a é‘nd‘,‘b, (0 <a and O ¢ b), we have - °

- ' a@®b=a+b, «Ob=ab, a{ b g=> a'<b,
i’ ' N . { .
That 1s, @ , O , { have the conyentlonal meanings for palrs of
. N ] O
non-negatives, Iggfparticular-, note that 0 § a<= © < a and
] > . . . ) . s - o '
__(_a) = 8‘..' o ‘s n,

P e
PR » y

’

va'v what' :L's the mea{ning of x ¢ ¥y for any real numbers X and y°

r

‘' Consider‘the case of X and y negative:

L




e

Y

In particular, for any negative number x, its gdditive inverse, ‘i-x,

is positive and 0 < (-x); then . L

-

a

-

2 .

, L 3.3 T : )
x{"y = x@.(-x) { ;y@.(-x) , 03 :
et 04 ¥@ (=x) F6
. L. . Ll ) 5.0 . ° ..
= 0@ (V) IV ()] @ (-)s 03 -
i ; . - ‘.: (‘Y) ~< [Y® (."Y)] @ ‘(‘X),v‘ L Fl: FE, F‘{-, . !
'~. M ) ’5. "‘,’* -.. e
) - = (~y) ¢ (~x) , . F6, P4 i-, -
o= (-y).< (~x) , since O < (-x), OH_<,, (=¥). 7~
] . . v 7
But by.Theorem 3,20, with ¢ = -1, wé  have &
: ' N
) (77) < (=x)e= x <¥, - : j .
. ‘ . - £
so that = 7 ' ’
.y L Xt ys> X <V L o ‘

v
¥

»
» L

. _o<(-x)<=>'xs;04=>x<0.

\

Next, consider the case of X negative and y non-negative: -

x{ ye=>x@{(-x) { v (=x) , - .03 .
N 0% y® X-x) , Fe

4 ¢ .
= - 0<y# (~x), since 0 ¢ (~x), -0-< ¥,
@ X < v. ‘,W.T. !

1 ~

'Finally, for the case of X nop-negative and y negative:

‘X¥y<=XC*%(;y)€ YO (-y), " 03

» l
> - N
@)(@ (—y) { O s ' ,'.{ F6 . ¢« 7 '.‘.
#x + (jy) 40, since Q(S:X and -O L (-¥), -
x4+ (-y) <o, | , : o
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. . B4
PY .

But x + (-y) 1s non-negative. _This contradiction shows. that X4y
& - N - ‘ .

\

canwgot be true for x non-negative and y negatdve. ’ﬁhus, any ar-
. » .

biltrary ordér { must have exactly the meaning of the ‘eonventional

“< for all real numbers. =
. 1 . ‘ s

-~

~

Next let us shéw that for any real‘numbers x and.y, x(9y must
N * ' ] I -
. . . N ”
have the same meaning as xy:.

~ o

.

Consider the case of x non-nega_‘cive. and y negative:

0= y® (=) T F6
QS =xQr® ()] 85
S 0= xQr®xO(-y) - F3

o O'= x@y@(x)(-:y): since- Oéx and 6_<_(-y).

Hence, , ,
x@Y = - L], .
. Cmousiwn ‘
= Xy. e ?

.

The case of x negative and y non-negative is handled by o}zserving A

Aat' xOy =yQ®x forall real x and y, '
" » .

_’I‘here remaips OI"llY jch“e case ojf. 5 ar;d ¥ nega‘ti-vef , -
S 0=y @), - F6 ‘
- xQO0=xQly®(-y)) , - | E5 RO
(X(0) = xQT@rO () , B
) _ 0= xQy@®- [(~-x)(~y)) > by the previous result.

- . -

[N
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Heflce, !
C xOv = L VE6. BLT L
’ T o= (X)) } )
-
= |xllyl, S '
’ < _ XY.N ] ”"v ’ - .
Thus, for a1l real x and y, xQOvy = xy. ) a
,‘ There remains the opewation (B . 'We shal‘l, show that®*it must X ’

. ‘ .
have the conventional meaning of +. First consider the' case in

which' x and Yy are negative: w

x@7)@ [(-x) ®(-¥)] =

.

. =0@®o0,
, =0, ..
Hence, x@y = =[(-x)® (,:y)] ,
S
e ' = -(Ix] + 1]

-But this is the definitioh of x + y for x and y negative,

8

Hence, X @y =X+7Yy, for xand y negative-. ,

For the case of x non-negative and y negative we need ‘1:6~=

) .

P iaad

i

.. recall that 1f 0 ¢ b < &, then a @ (-b)

~
der two subcases: ,
4

= a - b; and we must cons¥.

iy

-

o

" F6

[N

r

L

[X® (-x)1® @ (v 1‘;1, F2

-

3

3.

(why?)..

F6

s

1

N

(1) ¥y <0 <x and |yl g<x: " "
x @y ",= x@® C=lyl), (af y/< 0, theny = -lyl)
. = X « |YI "V N ‘ \
~ ' = X +Y . "‘ - )
. v - '
LN 100

4

-

-~

a

4

(-y)], since O { -x, 0 £ -y;,

2

S




ok )

(2). y<Cgx and x < Iyl ‘/W' '
o @y = x@(-Iyl) , - | | T
= -[(-x) @ Iyl] , since -(a@®D) = (-a) @ (-b) ,
] =~[|y|@'(->c)} ) .  F1
Syl Sw) o
= X + V. . .

£

Finally,. for x < 0 < ¥ we use the same arguments as abovéf‘ '

knowing that x @Dy = y@® x féy/all real x and y. Thus for any real

humbers,x and y it must be tiue that . ' '
. \ x@y Fx+y.

’
! Exercises ',

1. 'Show that the definiéion or$la| given onfpagé 3.30 1s equiva=

lent to: K ] o ° o, .
- : -, : (a ifa >0 . : .
. fd] = . ]
’4 -a if a < 0, ° :
h) . ) .
2. Prova: (a) Jab| = jallb] ‘
v .(b) '__aL:"a" . .
. c¢)i-lal i« a al - ) )
(.)t | |:,$ /ﬁl | )
‘ ° (d) If b >0, then"|la} ¢cbe>_b <ca <b, ° "ot
S q 2
° 5 5, " y
, ' ~
) ’ o
’ L)
T
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L R . , -
v (d) Ax +2] = x LI . b *
j
. (e) Mx=2] <1 .and |x + 1] <3
g (f)/ |Ix + 2] <3 or Ix=1|<2 ‘
- 'T(éﬁ/ lx - 212+ |x -2 =2 ' 3

(hy l2x + 1] > 2 and |x+2] <1 .

l

By copsideringAall possible cases, prove the commutative
propgrties of addition and multiplicafion, assuming yhey L .

e i
are true for non{negatives and using the definitions ;?

addition and multiplication given on page 3 31 and page 3.32.

Show that a*l = a for every real number a, assuming it

_true for non-negatives and using the definitidn of

s multiplicatlon on oage 3 22.




Chapter\u £

SUB-SYSTEMS OF THE REAL NUMBERS - -

\-}\\ A ’ . ’ ~ 7
. Before completing the 1list of axioms that describe the
-t . . i \

L

abstyact system whose model ‘is the Set of realfnumbers (this will
.be.done in Chapter 5) let us’ show why the‘list is not already '
’ loomplgtgf"To do this, let us take a different view of the‘re“l
knumber‘model\ lnstead of 1ooking at real numbers eN toto, it
, will be instructive for us to consider certailn sub—systems of the

‘reals. and study the. properties of these smaller systems In the,
. L
process we ihall find onqlproper sub system of the reals which

.

itself is an ordered field thus, the axioms ror an ordered field

do not gompletely distinguish the system of real numbers from one -
J 4 - . N
of its proper sub-systems, L o ' .

1. * The.Natural Nimbers. ‘If Wwe identify the set & withﬁt@e- '

"set R of real numbers, then R 'cont'ains the element 1, by F5. :‘!
We also know by Theorem 3. 28 that 0 < 1; that s, 1 1is a

2 positive real number. Then P+ Oy< 1+ l, by 03. The re’l

4 .
numbér "1 + 1" is called "o, (This is strictly a derinition, o

. - -
L - T E

-an aréitrary new symbol to abbreviate.the“symbol "1+ 1".) Thus,
B . . / 14 ; ’ ' .
~"1<2, byV2, and 0< 1< 2. In the séﬁ%’way we find that

s - ’ "t v

o .
1+1<2+1, and, abbreviating_ "2 f.l“‘ to” "3" we have® * | ~

., 0<1<'2<3. This process 1is conignued by abbreviating L ’
. ' * . - ot ' . ' . ’
4 R ' _
e . S | S R
. owa

[
-
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~
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M3e 1M g yw L to M"s", 'e%é., So thdt :
‘A ,_’ » - ~
’ 0<1<2<3<¢h<5<.,, .

! v
' !
The real number obtained by adding 1 to n 1s called the
) successor of 'm.¥%., - 7 . 3' ~ .

‘- The subset N of K consisting of 1 and every reel‘

~ ' number which is the successor of a number in N, and
s e ' no other real numbers, 1s called the:set of natural
: numbers . \ a
&%nc; 1 is in N,‘so is its successor, 2; since 2 is in-N,
. .sc“is its successor, 35 etec. Thus l )
A N=(1,23,...0., .. . °
.; The geader should prove to_his own.setisfaction thet there is no
T great;st erement in' N. (Show that the assumption of a greatest
. element leadg ;o a contradiction ¥ I
- Note that the natural numbers are, ordered,_an& eec% ls a
positive reai number. Since there are real numbers which are not
n;tural numbers, such as =1 (Why”) then N % R; hence, the set -
of‘matural numbers'is a Eroper subset of R. 'The rollowing‘is a
,‘i ‘ i}s.t'or some.o‘r the properj;ies. of Nin
. -‘,f‘ ‘ ‘(l)t Closure: The set N ®s closed under addition\end o f

”multiplication. It is not closed under subtraction or
division. The reader should verify that (1 - 2) and

%, " for- example, are not natural numbers,




'l%

(2) ' Finite inguction. If a set S of natural numbers contains

’ 1l and if S contains‘ n + 1 whenever it ponﬁaiﬂs n% ¢

then S = N. This property of the natural numbers,

. called finite induction, is a direct consequence of the

definition of N and describes genditions under which a
LY . - _:\‘x\
set of natural numbers contains all thé matural numbers.

(3) well ordering. ,Every natural number_ie-greater than or

’

equal to 1; that is, 1 is the least element of N, An

ordered set, each non-empty subset of which has a least

7
i €lement, 1s called a well ordered set.- Hence, the set
of natural numbers is well ordered. This property off

the *natural numbers follows from the principle of finite

induction. The proof is left to the reader.’

{ 4

. (4) Unique factorizetion. We define & number D, in.N to be

‘a prime if p.> 1 and 1f_‘p cannot be written as the:
» . product of two natﬁral numbers between 1 and p. It
can be shown that every natural~number'greateruthan 1

« can be wri?ten, in only oni-wax, as the product of primes.*
&' | This fundamental property is called unique factorization.

The set N.is infinite, since there is a proper subset of N L

whose elements are in one-to-one correspondence with the- elements
H ‘ / -

" of N. . (Describe such a proper subset of N:) We say fhat a‘giéen

‘

*See pag% 23 of What is Mathematics, by Courant and Robbins, for,a

careful proof of this property. Notice how the -fact that N is well |
ordered enters Anto the proof.,

4

N




4.y ) .

‘+

infinite set is countable or denumerable if it is in one to- -one ,

- cOrrespondence with the set N. Thus, for example, we shall shoi’

in Section 3 that the set of rational numbers 1sbcountab1e.'

As a coﬁsequence of these ;roperties we Observe, first, that
~£ the set N 1is offlittie use in the sglutions of equations. Since
N lacks closyre under subtraction, not even the equation a+ x=b,
and b

where a are in N, is guaranteed to have a solution in N,

On the other hand, its property of finite induction leads to a

‘e

technique of proof which can be

Principle of Finite Induction.’

-

stated as the: -

with one variéble n, If
, (1) s(1) -
. . n=1, and :
T (2 S(l:) Yrue == S(k + 1)

the sentence for n
truth for n=k + 1,
"then the truth set of S(n)

natural numbers.
» o, L]

Prove:

Examéleblf

For any natural number n,

Proof byxfinite induction:

any nat%ral number .k

Let S(n) be an open sentence
\’ ‘
\

- i}

1s true; that is, if the sentence is true 'when

true; that 'is, if the truth of .

implies its

]

- 4 -

‘ Let. s(q)j be the sentente:
S(l):z

s g | Sk):

) - . S(k + 1):

’
.

is the.set:N, the whole set of
. v :
. oo
2
{ .
n>o. - . . -
n> 0. Then' .
1> 0,
k> 0, T
+1>0. "
6 ) Co

L3

t




By Theorem 3.28 we know that S(1) 1s true. Hgncé, 1 is in the

Next we 'prove that S(k)=> S(k + 1). 4

truth set of S{n).

k+1>1

k>0,

k+1>0+1,

and 1>0==>k+15>0, .

by hypothesis),

- 03,
02.

-

~

Thus we have also Shewn that 1f k 4s in the truth set of S(n), -

then so is k + 1, Hehce, the truth set of S(n) contains all ,
the najupal numbers, and the theorem’is proved.
s - )
Example 2. Pfove: | -
X . \ . .
For any. natural numbe\\ n, 2" >n. .
Let S(n) be the sentence: 27> A. Then )
. ! s(1): 2t »1 ' »
. ~ ]
. s s): 2>k \
C .; 1 s ' r k>
\ - S(k+1): AN ) 3
“First, we observe that S(1) 1s-true. Next, assume 6 S(k)' 1s
/
tmémdﬁmt@s@@%tmtswﬂ)imhwn ‘
B :"@ K - - ' . .
. 2° > k, hypothesis v
s W - 4
;"\ 3 .
; ' ’ 29> 2%,  ,  om O »
4 O . T ¢ .o ) M
Now, 2:2% 2! and 2>k +1, - , (Why?)
Hence, \4 ) g > o+ 1, o ‘ ..
This completes the pro%f. . :
- » - s
1 The fgct that a patural number’ can be factored into pr?mes,in '
X S .

- only one way is used constantly in arithmetic compuﬁétions.
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» * For example, since N . \ o - o V
108 = 2-2-3-3*3 = 22.3° and 360 = 2-2-2:3-3s5 = 2%.3%.5, ‘
2 . we may wiite ‘the sum o I ‘ |
. - 1 \+ 1 . 1 ; 2.5 N ‘3 : ‘ ,;
108 * 360 © ‘2—3 3325 B335 | 3.5 / i
\ . L . . j . ‘ ‘1
L = oo. 13 13 o =
. : 23.3%.5 1080 : -0
. ¢

A

Notlice how ‘the "least common denominator" of thé fractions 1s ob-

. tained in terms of the prime factorizations of th%denomin&tors.
‘ In general we say ‘that for» a and b in N, a 1s a factor _

‘of‘ b 1f there is §me natural number ¢ such that ac = b.

Thus, 3 1s a factor'of 12 becausé 3-4:12.5,.,5@.‘3 15, At
/

factor of b, ‘we say that b 1s a multigle of a, Thus, 12 [*1s
< a multiple of 3.

Yy
& L

. ) . 0 - '
, If a 1s a factor of b, we say-that a divides. b; 'Some- ’

-

’ <

T tifes written "a|b". It follows that ° 7~
e .. ‘ . AR <
( oL alb and alec == a|(b + ¢)' ’ ‘
and ‘ ’ - nhEn !
P cL a|b or alec = albec. -
\‘ - ‘I‘hese, and other results which the reader can provgf, are useful, -in
\ the factorization of polynomials. (See Problems r9--ll )y © -
o s Many interesting questions about }Jrimes have been answered
RPN \

IR

and some still defy solution. For example, it wé#shown by"Euclid* i

. .that the set P -of primes 1s infinite. The proo&;i.s easil'y

. |
ob%’ained by contr&d:tc‘t-i:%-“‘—-ﬁut—ft—ts-stﬁ-rm known whether T

.
. |
R |
. . u—n& ’ i
. ‘v : J
. . [
- ry . - . -
.

Y L .
*See A Mathematiclan's Apology, by G.Hr Hardy, Caml%ridge, p. 32.

. - : e 4
. . \ . LR r;-'? -
- - . . . i <

\ U :

. v
e #
.« > . . - . | -
v - - perad .
. . .
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every even natural number can be written as the sum of two primes;
, ’ ’ft no one has found an even number which cannot be written as
e%ch 1&2

68 =
primes occﬁr in pairs as consequtive odd numbers.‘

sum .61 +‘7, etc. Also, certain”

3,%; '5,7;

23, + 19,

ete. It is not k:nown whether the set of

' 11 13; 17,19; "29,31;
such prime pairs is infinite. - "~ " | )
|
"In. summary; NC R, N # R; and N has the properties of

'closure under addition and multiplication, fipite induction, #éll

¥

natural number n:

[N

ordering, 'and wrique factorizabion, i .\ ’
o "l - .
t, i ‘».Eer'CiSA S K - * )
& . 7 . | \/ rd
‘1. -Prove in-any way that each of the followiné is true for every
[ .

N

-

. . ) 2
. (a) 1+3+5+7+...+(2n-1)=:n.
.:‘ (b) 12+22+3 +42+.:.+n’=n(n+1)é2n+ll' .
e/ 5 ‘
(¢) n“+1xn.
,.i-i'__‘(_d)‘ 2 1is a factor of ‘n° + n.
¥ ) ) ‘:u
o (e) '3 1s a factor of n® - n+ 3. ‘
(f) 4 is & factor -of . 3n, l_' P .-
‘ (Hint; 7KL 3k+1 - 7k+f ~ 3'7k"‘+ 3.7% _.3k+1') LT
B ) . : ¢
(g) 13+23+33+...'+n3=&(sfl+2_+3+...+n)2
. o, S '
¢ 2. Is the set N a group under addition? Ugder(' multipliaation?
Lt . " - $ o
If not, what is lac\:'king?"’\l .
l: - . . Yy
. R . .
-

-
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3. If 2 is a factor of a natural number ‘n, we Say that n 1is

’

E

even; otherwise, n 1s odd. Prove that.for naturai ﬁumbérs

. T ra dﬁd“”b*” oo ‘ 3 o .
(a) If a is even and b is;odd then a + b 1is odd
- . - .

i . and ab -1s even.

A

-

¢p) If a 1is odd and " b- is odd * then” a+b 1is even ands
& . .
gé iis odd. ’

¢

»

(¢) If a is even, then e "1s even, -

®

v
(a) I a® 1s even, then a 1is even.

4. -Show that if a 1is in N. and 1f 3 1is a factor of - a2, -

4

then, 3 1is a factor of a. ( . RS

. 5. 2 Show that 1f a 4s in N and ‘b is a real number not in *

>

N, then .a+ b is not in N, L
- iﬁ . e
6. Prove there is no natural number between 'O and 1. (Eint:

naturalgnumbers. ) /

. Prove, by finite induction that S(n): n > I 1is true for all . l

)Efggﬁ*by.finite indudtioﬂ that N 1is well ordepgg% that is,

that e&erf noﬁ-empty subset of N has a. least element. al

(Hint:‘ﬁLet . S{n) -be thessentenece "Any set of natural numbers
.- e . . . . . o

that contains a number less than orequal to n has a least BN

~

elémenét")N . - o v - .




o L (a) product is 24 and sum B‘ lh ' . ‘
» \; l';- -
N (Let bc = 24 and b+ c=1b, Now’ 2b = 2.2.2.3%
) ) ‘ Since 2|24 and 2 1is prime, then 2fb. or 2lc.. If
2|b” and 2|(b 4+ c), then 2]lc. Hence, 2|b, and flc
o T Since 3|24 and 3 is prime, 3]b or -3le. But a
°3f(b + c);. hence, if 3|b, fhen 3fc, and if 3¢,
ot - 4 , .

- 4 ‘then 3,&9. ‘ Thus,*both b and ¢ contain a factor .2,
- " . ‘bBut only one of\‘b_’, ¢ contains the factor 3. We v
. - conclude —that- either ) . .o p

Y 3 B N "y N )

St ' ; b = 2.3 7and c =22 or b=2.2.3 angd ¢ =2 -

< v ' T ; ) . -

. The second of these possibilities gives b + ¢ = 14,)

R S q; ¢ . ’

‘ ()" product is ‘72 and sum is 22,
* ." ° . -\ . - i T . -
. 'S [
¥ ~ . A '\> ~ o
- N ' ! “ \& . N v

*' - . contains- 1

— —— ot in S..

]
,
1

- ‘u'og «. - S‘A ‘
8. Prove that 1if. N is well- ordered then it has the property of

* finite imduction. Hint: Let S 'be a subset ofc N ' that

N 2
and contains 'n + 1 whenever it contains n.

Let 8' be the subset of N containing-all elements of N

Show that S' is empty.

N

9. Prove the following, for a, b, ¢ S N: -

(a) ‘aIb and alec == al{b + ¢c) ‘
. (b) alb. or '.alc ===> a|bc’ w0 - i
_<('c) alb’ and .al(b +c)=>alc
~ 0 (q) a&b" and af(b +c) =af ¢ a}'c mea.ns that a 1is,,
not @ factor of c.) "Rint: Prove the contrapositive.
(e)\' For' p .a prime, fplbc ——:-——:’;p.lb or ple. - ’ ." >
10.

o %
LY ’

Use | the results of problem 9 anq.uniq e factorizatlon to find
hose

v ~ two natural nmmbers . b, cx ) if \oossible,

5 . RS




product| 1s 150 “and sum is 25.

fbrodgcf\is. 84~£and sum s 24,

Use the tecHJXques of Problem 10 to factor the following

A

polynomials, If possible, 1nto~poiynom1als with coefficlents
\ : )
\

1n\7N, . S
(a) x%+ 8x +\12 b
N e i

' i

(b)) x% + 15x +156

\
(¢) x° + u5x + 180

. &
(d) x° + 32% & 252

§
§

== . .
\ . \ . N 3

2. The Integers.\ The set N can be enlarged by attaching to

P

1t the real number O and the additive inverse of éach of the

elements of N.

& ) M - .\w

-

The subset I oﬁ thé real numbers consisting of all
1 S

the natural num?ers, 0, and the additivg‘inverses

of all the natu%al numbers, and no others, is
. . ‘ :- ‘v
called the set or integers. ?9

~

Tﬁe system of integers 1is ordered; f@5>;§ knbw‘that
2>1 and -1 < 0, so that- (-1)(2) < (-1)(1) by Theorem 3.26,
“and, hence, =2 2 -1 0. " In the same way wé }ind that -~ ~
\3 < -2'<

=1 < 0,, and in general .

%

R L P 73 < -2 < -1<0<1<2¢3K u <P

/\

‘

of I which has no least element, chh a subset 1s‘the set

’

2

But I 1is not well ordered, since ,there 1is a non7empty subse@‘




. -
L} ~
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-

négative integers. To show this we need only note that 1f n 1is

A

in this subset,"then n - 1_1is dlsb,’,and n-1<n. - : .

-

. ' There are Treal numbers which are not in I, such asl %.
This seems obvious, but it must be proved: The trick is fe show

thaQ:-% is greater than;eveny‘negative integer; is not zero, and / :ﬂ

K}

— ¥ w - .
_1s less than every positive lntegér, and; -henee, is not-in L.

B3

To see this, note that 2 > 0=>3> 0;. 1< 2 =>(1)(3) < (2)(3)
:===»% < 1l; and % # 0. Hence,\:é is not a riegative integer, :
-since it 1§ greater than 0; % }s not zéro; and % is got'a

natural number (Sbsitive integer) giyce it is less than, 1. ’&hus;

] wé'cénzlude'that'-% is not in I and that I 1is a proper subset
7 o N °
bf Rt NC IC R, I #R, I#N,

The set I with the oﬁération of addition 1is a system with
fhe properties of a commutative group. The reader should verify -

this fact after iev;ewiné 4he definition of a ‘group. The set I .

o

with the operations of addition aﬁd\mulplplic&biontmoreover is a
¢ gystem which has the propefties of a oommgpatiVe ring. Again the
. reader should ve%ify this. The fing of integers has the following

@ ~*"\ - - °
properties: e, T\| "

- (1) Closure. .Thé set I is closed under a&dition; suﬁ%raction
| and multiplication. It 1s not closed under division. Thus,
in the transition from N to I we gained the.préperty
of closure under gubtraction. Now for any a and 1b in

I, there ‘is a unique solution of a + x'? b in I, but

-’

\

. o not of ax ='b. T




(2)

(3)

v

> ’ =

\ 4.12 ' a“ ’

‘Unique factoriza&ion. Each integer other than -1, 0, I,

can be written as|'the product of prihes and 1 or *-1

" in only one way; that is, integers have the property of

L

unique factorizat on. ' .
T Ny k3 »
Countability. The|set of. integers is countable. To show.

-—-—7fi;_ﬁthia,_we_gétahxigh a one-to-one correspondence with N

in the following ma o 7T -

5, .etec.

Division alggpifhm. If b 1is any integer,nthe ihtegeré

ceey "2b, "t’ O’ b.: 2b) co e Ty

are multiples of b. | Glven any integer a; 1t ;F eiﬁher
equal to oné of.the mult%ples of b or it lies between
two successivé’muitiples of b, In the latter cade, we

4 -

mean there is an int%ger ¢ such that (for b, positive) ~

bec < a < b(e+1);° . -

that is, e

-~ 2 -be>0 and a - be < Db. ¢

Thus, we may set a % be.+ r, where r 1is anvintéger i

such' that. 0 < r < b. If.a 1is a multiple of b, then

.. 4 L)
a=bc.+r, with r =0. If b 4s any integery we dee
that there is afl integer c¢ such that ’

.a ="bc + r, where 0 < r < |b].

2y .

&

r

R .

%
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Heré we have the important divisiol algorithm whych
’ guarankees that for any two integers a and D thére
7 "1s an ;nééger ¢, called the guotlent, and a non-negative
integer 1r, called tne remainder, such that ‘a = bc + r
y _and 0<r< [b]l. For exdmple, if a = 21, b = -5,
; we may write .21 = (=5)(<) + 1. If a = -2, b =5,
then- -2 = (5)(~1) + 3. If a=-21, b =7, then
C = (T)(3) +e0. ‘

B
B

, (5) Decimal representation. The division algorithm for

inéggerq allows us to wrlte any integef in a decimal
representatiBﬁ?;//biven a positive Integer d,- there

4Eh are Integers o Cqys Cps ves Cp from the set

2

{0,1,2, 3,...,9] such that

- 2 n -
d = o + cllo + c210 + ees + cnlo . .

The c's are called digits, and n 1s séméﬁnatural number °
b

A

¢ . . S, )
or 0. To show that such a representaggonlis always possi-

' . 'ble, apply the division algorithm to d and 10, obtain- T *
' ing s . -t
. : -
. . d =dq10 + ¢, 0<.¢c, < 10. | e ( o,
, If dl > 9, then apply the algorithm again’ to dl and
10, - giving S - . .
. GO ey 0K
¥ o Continue this’ process until a quotient d less than 10 °®
‘:L_ . . ‘3
*4 representatibn ?f ﬁ number is a maanr of naming the number,
e L,m‘?f‘*- , Ve :
Y- iR . ‘ o® ' . : e

- e W - ST LT

I
1
%‘:
A}
3
Y
‘



f

\;\<;i¥\\if (p-1)%;-
B LY -

[

. is obtaihed (why will this happen in\a’finite number
] of steps?): ° ' \
dn-l = dnlo + Che1? 0L e,
dn i Chs 0 < ch < 10.

. Then, updn eliminating d

te

l,
ecuations we have

R 2 !
; . . ) d = cQ +¢,10 + 0210 + o0+ C 10\

3

. “
representation.qf |d} by -=1, \

L

B [ N "\ ! .
Although it is Sgstomary to restrict the\:igits to
.+ 1integers from the'set {0,1,2,...,9} we may let the

' S

diglts be taken from any set of the form {0,1,2,3,...,

with p > 1 an represent d as

the digits from {0,1;2}. rThen

hd 23 = 3-1 + 0; hence, o y
11 = 2 ; Q-3 + 1032,
> - of
. -, * " -~ N
we aobreyiete to (loe)threef.read oqgroh-two,

1

Ll - ’
\

- ‘ : { I K
In supmary, ihen we extend the set N to the set I we 1ose

certain properties and gain others. The properties of finite

inductlon and well ordering are 1ost " On the other hand;,we gain

¢ <

the important p;operty of closure under subtraction It should be

noted in passing that computations With, and, representations of,
c ¢ S

L 116

BN
4

o e
If d is a negative integer, mdltiply the decimal A

. base fthwee™. \ o \

-

3
1
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natural numbers are extremely cumbersome w\thout the services of

the integer 0.. Without 0 any form of representation must be

~—

accumulative, ,such as the Roman numeraisg, Only with the intrO-
ductionvo 0 can representation be positional, that is, in terms
or coefficlents of powers éf some. integer, The fact that every
integer can be written as, a terminating decimal is of great
importance.in oalculations. (By "terminatin;“ we mean only a
finite number\or coefficient digits is required\in the represent—-
ation ) The sludy of integers and their properties called the

theory of numbers, is one of the oldest and most fascin iné

“areas of mathematics. - . N
- .
3
Exercises v .

i

1. If for Lntegers we take similar definitidns of.factor and

‘ -

multigle as for natural numbers, then the integer % is,,
even if there is an integer ¢ such that a 2c~»1
: « °

-
.

ta) Is 0 an even integer‘> i (B 4

(b) If a 1is an odd integer and - b is an odd 1nteger, is

an

. .. ’ab jdd integer” . : ‘ * _ :
(¢) If & ﬁ;s an integer and .a° is ‘even, prove. that a #
. ’ o . . v
is even. ¢

- L4 > 2
N B

2- For inﬂﬁgers a and b, -reeall that alb means "a is a

factor of b". Define the greatest common divisor of a .

~

and b; written (a b), as: the greatest positive integer d
. such that dIa and d] (Note that for any e such that
‘ela and e[b, we have el(a,b).) -

.’ N . . ra
. o ’ - * .o .

) ’?i * ) ) ' - . " e
;.
‘ . ) . E
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3.

L.

(a) compute. (-360,90)3 (30,54); - (73,-162).-

(b) .If a> O// prove_that (ab,ac), = a-(bse).

Is the set of negative ntegers clOsed under addition°

’0" g

“subtraction? Under multip ation?

By (326),,, We mean 6+ 2:10 + 3.10°.,

Convert (4152) . fo the "ten" szale, that is, to” .

v

~

decimal representation. .

Convert (101100)t to decimal representationi

. -

scale.

-

Convert’ (3é6)ten to the "nine" scale.

‘tzs.
K

Is the set. I a group under addition? Under-mqé;ipli;ation°
If not, explain what is 1acking. T N gg §T

‘ t
Is the set I with addition and 52§%iplica & ﬁield°

-

If not, what is: 1acking°

3
Ve

A,:( N
Explain the usual algorithméjfor adding and multiplying

integers, "earrying", and subtracting integers in terme of

A4

decimal représentation. Con e .
With the ordering given by the axioms 01 to O4 the set.of
integers is not well ordered. Define a different ordering

of I for which I .is well ordered. - .- }='

Consider the set of intege(i::ﬁ:j:%: 7,10 13, 16,...,3k+1,... .
)

Let us define a prime in this set B be an’ element that ganno

be obtained as the product of two elements in T. Thuys, .

[ 7 . { .

1 o




4,17 : B

. y, 7, 10, 13, 19, 22 25, 31, etc., are primes in T, whereas
16 28, 40, ete., are composites in T. Can every composite

S Hl in T be factored uniquely into products of primes in T?

' -~
‘ . . [

T
—

3. 'The\Rational Numbers. The. system of integers can vé

.

extended to a-larger system as .follows. Consider any integer q

"in I sich that q # 0. Then by F7 there is a number % in R.

4

If p 1is an integer, ‘the pﬂ:duct p(%) = % is a real number,

since the set R 1is &losed under multiplication. d '

1

The subset of R consisting of all real numbers

that’ can§e represented in the form QR, where p ' ’
and q. fre integers, g~ % O;‘istcalleq the set

% F of rational numbers. ’

LT . >

" The” adjective ' rational" here implies 'ratio", and not the usual

.

, dictionary meaning reasonable or sensible . B

’

‘Here we should comment on the uses of thé words “fraction
.. and "rational mimber” , It mist be\remembered that 2 fraction is,
; ‘not awﬁhmber; it is a'symbol which represents a number. By
definition, a fraction’hasvthe\form %, vy #0, for any ‘x and .’ Ce

; x;\\that is, it indicates a division process. In partieular; if
. -, ‘. N
X and ¥y represent inteiers, then the resulting fraction
L italt
represents a rational number. -For example, the fraction %

u ‘\/— "

[}

~

represents a.rational number, whereas,

represents’ a .

~

number which=we shall show is not rational. Notice that since

1 1! ' (I
the fraction 3£§ represegts the same number-as the fraction

12

b
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RN \
--% » 1t represents a rational number. The point is that certain

. fractions name rational numbers and others do not,.but all rational

e

numbers canr be represented as fractions.

"

"Let us shdw that the set F of rational numbers includes the

‘+

integers as a proper subset, Qertainlb, % is‘a rétiona} number{
but not an integer. ' Thus, F # I. -Furthermope, any integett .n
. may be written as n = n.J =‘Efl = $, which by definitionds a

‘' N

rational number,” Thus, I C F.

We see also that every rational number is a real number.?
e “Thus, F C R. Moreover, if r and s are in F, so,are r+ s,

’

r-x, rs and & (if s #0), by the reSults of Chapter 3.

"Thus, the elements' of F ‘satisfy axioms Fl to F7, and - (F, T
. vt ' > x
e is a sub-field of R, It remains to_Fhow that F % R, that is,”
o

there ‘are real numbers which are not’rational This 'is the
' R 1 ' e
problem that now coifronts us. - - /

LAt this point in the dévelopment We cannot find any difference

'rkd between the rational and real number system&&we&eh is an—ordered
-'-.\ig‘ Ed *

T field But we want the reals to correspond to the whole set of

pdints on the number line, whereas we shall\prove shortly that the
4
rationlls cannot have this property. The distinction between the

reals and the rationals will be made Ain Chaptér 5 by assuming a

’

final pioperty of the real number. system. Seo= L
. Since F is an ordered fieid it must be possible ‘to determine-

which of two distinct rational numbers 1is greater.' -
- o - M’-—oﬁk P ~




v _ To do this we need the | . X o | .
. - ¥ ) \ . X . . ‘

Yot 4 B S ‘

©=> ' Theorem k,1 If a, b,.c, d are real numbers such that

AR ° b >0 and ‘d > 0, then : b

2 <'%¢=> ad < be. ~
\~
Proof of e===>: ’ \ . . .
Since b >0 and d > 0, it follows that pd > 0. Then .

[N

v

x .%<§=><E)(bd)<(a)(bd), o . ’

Theorem 3.12!

. ¢
LT ~
. f

The proof of €= 1is left to the reader.

o oo ) Ve ad < be, - Theorem 3.17.

This thedﬁrem provides a technique far ordering the rational
" numbers. Note first that if a, b, ¢, 4 are integers, then they

.»

are real numbers. Note also that if the rational number P- has -
“ %

p e
o q negative, we can always write it as & * . . -

(B = (;)(P-) = /

.

- whera noy -q 1is a positive integer. Hence, 'I!heorefn b1 owill ) SR

apply to a'nji two rational numbers,, Now we can determine the

] .
=T > 5 because (=6)(29) > ,(..8)(2:3)’ "

relative order of any two rational ‘numbers by comparison with the b e

x‘;A - , » ‘1
ordering of two integers. For example, . - ' . “
tone 6 -8 ‘
- |

that/is, because -<17# > -18k, ‘ o



. 4 .20 :
Let us list- some. properties of the ordered qﬂld of rational

numbers: - - % e .
. - | 4

' . S :
Closu?'e. The set F 1S closed under addi’d,ion ;ubtrac“on,

and multiplication. The quotient of a rational number by’

-

a non-zero rational .number is a rational Znumber. .,Thus,

with division by zero excluded, F is alsq Qlosed under .
division. In the extension from the intégers to the e
rationals we galned a new closure propm. Now for

T

any a and b in F there is not only a unique soluti‘on,,@;f
\ .

-

of a+x=>b in F, but also a un‘ique’sé;lution of

ax =b, a#0, imF. . B |

/s , ’ - + <€

o

(2 ountabilitx The 'set F 1is countable. fo esteblish;this

fact let us write the rat:Lonal numbers the following
\array: (Reca.ll that any rational number may be written
$
. with a positive denominater v

-ll(__ — 0*

;l

s

Ui ams
|

“
- B
R EF= BTN E=

-

1 .
Pe . ¥
uﬁﬂb jariem . Ofé0 g.

‘a’!‘:? A
1




v . »
EY

Then, moving in the array as indicated by the arfbws,
starting with T’ we must eventually traverse every
rational number whose\numeraton fs an integer and whose
denominator.is a ;gsitive integer. [The on;-to-one
P ) carrespondence between N and F is formed as follows,

; -skipping a rational number if it has been encountered .

préviously (circled):

% ewee

In this way we are certain that each rational number will
corpespond to Some natural number, and no rational

numbers will be overlooked in the process. ) ’




-

. ~\ M ,
N . . Ut 14\322' ) c

- - N
)

(3) Decimal representatibn: Every rational_number r .canf.Q

be represented as a decimal. To illustrate the meaning
. — o — .

o . of thiglsfatément let us obtain spch.a repfesentation of .
} ) the rational numbéf ;%. By the division algorithm,: ] ’
... T3=81+5,-5¢8, “
| 5.10 = 8.6 + 2, 2<8, - .
N ’ - p10=8.244 b<8, . o
‘ . 4.10 = 8.5 £ 0. '

Upon dividing bz 8 and successive powers of 10, w2 obtaiﬂ

, 13 _ 5 . . e e
’ g.' —g_l-*'g‘ % -
N 5 6,2, 1y, 13 _ 6 , 2, 1
g - Bt *EW
2 2 4, 1 13 6 2 4, 1
= + (‘ )A =1+ o5+ +"‘( )
Bo T 52 “B 2 T8 107 102 7 8192
' &,
e A S R 13 140428, 43
10 8 7 0577 1Y
and from these equalitiés the set of inequdlities:
6 13 _ 6 . 2, 1 T
l+ms—g—l+-i-6+-g(rm)<l+m .
6. 2 13 6. 2 b1 "6 3 \
1+ + = =1+ + + (=)< 1 + +
0T 2ST8 T T T0 N2 T B2 0742
- 6, 2 5 13 d
1l + == + + 2 .
.t T07 158 T8 8 ,
- ‘We abbrévidite this to:
T 13 -1.6e5.. . et
£ o
$




-

‘e

-

-

“ 423

JUN

o,

oW

-— M

Notice that for this rational number, one.of the

remaihders in thg divi§ion algogithm %s 0 and the éecimal‘
'represenbaﬁion therefore terminétes; thaé is, the set of"*
inequali?ies terminates in an equality. Of c;;rse; the
"whole process can be shortened to the familiar form:

. "1.625 <
§/13.000 - -

The readér may wonder whxmﬂg»ppfhered to write the set . N
of‘1nequalities above,'egpecially since the decimal
'reﬁfésentation terminated. Another:example will show ‘ .
the need-for ineéualities; let us attempt to represeqt
© the rational number T% as a decimal. Again, by the
division algorithm, ' ’

11-3 + 7,

. belo= 7 < 11, e e ——
70 =11.64+14, 4 <11, . )
o k10 =11.3+7, T7<11,°
Y 7.10=11.6+ 4, %<1l T

Dividing by 11 aﬁd successive powers of 1q,

]

-

<
g

-

>




“ , §.24 { .
. Y 3, 7,1 ’ . . ‘
| T = 10 * 1) ' , \
) 7 .6 1y b3, 6., N 1 -
. T En g ae
y .3 +_z(1);_u=_'_3_+ 6 3'+ 7('1‘)(
Com Tt I m e e T
’.» 7 =.6' + 4(1), )4= 3+ 6_-u+ 3 + 6 + 4(‘1)
S TI000 =~ 1oF "IT P W TI0 " 52 T 108 L 10F | ot
?ﬁ‘i‘iﬁmﬂ:—n:\‘m;::‘:*~ N L * - = /

3

.
. e . .

Notice that the remainders repeat in the pattern 7,&,7,4,:..
and no remainder can be zero. The resulting infinite set

9’ . of equalities gives rise to the corresponding infinite

- set of inequalities:

. . 3 4 Y
N <1TI<TO .
K T - * ST e e e
3., 6 4y 73 7
3 ] +'—'§< < +-_§
10 10° =1 Ij 10 ;o
3. 6. .3 Y 5 3. 6 y -
— + £ < + + -
T A A AT
3. 6. 3 6 y , 3. 6. . 3 7 .
— 4 + + < < + + +
10" 72 103 107~ T0 7962 T 103 T 10" .
@ o SRR - /
a ?
) When we say that i% is represented _X the infinite
- 4
decimal .3636... we mean that 1T satisfies every
L, ‘< inequality in the above infinite set of inequalities.
“ &3 . ¥
t . The fact that the remainders in the above divisibn

.

' algorithm repeat with a fixed pattern leads us to calI

thé.reSulting decimal representation periodic, and we

[
D 4
!’ _ e — O |

e L
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-—— g w2

ihdicate the ée%ﬁof repeating digits by superscript

4dots; for .example,
£

oo vl ‘ 4 .
: ) . ’Il-= .3636... = .36.~
e - A -, '
' As we have seen, some rational numbers have infinite

éeoimél representations; -we shall how show that if the. -
T decimal"representation of a ratfonal number is infinite,
» R .
it is also periodic. Consider the positive rational
+

number %, wheré p and q are positive integers ]
without common factors. The division algorlithm guarantees

the existence of integers ¢ and r, such that." )

\! ' 0 ..

, p =qc + ro, 0L ro < q. .

- ‘ s
‘ Dividing by q, we havéﬁa ’ é;%@
a . r rs : %éd% .
‘ R = C + -—O .—9— l. . -~ M\'}'
a 3’ 0 < 3 < > )

i .

Vo ~ TR
————— - - ~Now apply the algorithm to the positive integers Tbro

Al i

. and q:

. - ’ «lOI‘O = qgl + r1’ ,,O S rl < q, ! " \:

for some integer d,. Since r, < U 10ry = qd1+1ﬁ_510q

/ implies that d, < 10. ‘Again, dividing by 10a, |

. r d ‘r d r
- o, h. o p_ ., .
q .. 0 10qg aqa - 0 10q v
.\ . - i . .
Now if r, = 0, the decimal representation of 2-
. o 1 e q yd ~—
. ’ e ‘ r
¢ terminates. If. 7, £ 0, then —= < 1 and
EUE & vros E o
4 5 a4 r d;+1
- c + 5\o] _<__ q = Cc + 10 + ———loq <c¢ + T
;). . 3 p A '
- . 3
OP, o ho

L]
-
-




'

Now apply &he algogithm to 10r; and q:
Al
10rl = qd2 + Ty, O‘g.rg < 4q, ,:

‘for some integer d2. Again we can show that d2 < 10

and that :
rl d2 r dl

. 2 B
= + H = C + +
T0d " 102 " 10%g @ by

I
‘Now 15% <1 and

B N 4
d; 4, d; 4, T, dy. ‘a1

9 . 1
C+-E+1——2S_%—C+m+.-£-o-§+m<cfm+-]?—.

TIf f2 £ 0 we continue the process until some remaiﬁdéf‘

v .

r is zero or until some remainder Ty is equal to a

i
previous remainder ry J < k. Thus must occur if mo

Ty
\ .
possible non-zero remainders n division by q. In

-is zero beause there are no more than q - 1

~

this case the decimal represepdagion of % will never .

terminate and the set of d ts d ‘Ywilg

TSRl
repeat without end. . o/ T
; - ‘ . >

Thus, if a'ratiénal‘number r has an infin;gendécimal
representation It is periodic’, where we mean by a decimal

* representation of r that for every natural number ,k,"

r- satisfies the inequalityi . e
d d d 4, +1 -
C“’*'].%"*' o 00 +""Ek _<_'I'<C +'ré‘+ s 0 0 +_‘_—k15, - \
.10 DT 10

“where each d; 1s some integer in the set
N _k +

' {0,1,2,...,93.




e

———————r

\

-
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Again we should point out that the’ digits of the

representation of

r may be restricted to any set of"

i

\
EH

»

~

9

the form -~
B A - ’ -
{o,"1, ..., (b-l)},

The developmentﬁof tne representation given above for

b > 1. !

b =

10 is quite general and does not depend in any way

,—m e em ncsarmem eI, b o T BT WS XY

on the scale or base

s

P

e KO

of representation.

For eXample,

the rational number § may be represented in the, "five"

scale as follows* ‘
4 = 31 +1 ==r3-= 1l 4+ %-=>1‘S-§ < 2
5l=34 2= =gy =>1+ELF< 28
' 2 3. 1 . .1,.3°.14 1y
52=33+1=x=¢c+gx=1l+x+ Lx<1l+x+
: 375%353 5+ 2L3 S*3E
*  Hence, . : : .
, y R ek . -
5= 1,1313... = l'lsfive’

v

>

(%)

.

periodic decimal represents a

five
. wIt can also be shown (see Appendix~A) that eQery

tional number and oﬁlyi

K
/%he rational number. ‘ > e

Density.

for' any two rational numbers-

The set of rational numbers is dense; that is,

u and v, there 1s a-

e

rational number w such that u < w £ v. Viewed on

" the number line, this property asgserts that any two

»

points with rational numbefrcoordinates, no matter how
. . ) ) a - - > - ‘I . \




,;. then

T . 4,28

;w Fas B
close %ogetger, have a point bé%keen them with rational
.8

coordinate. But there is no end to this argument; this
implies that _between any two rational numbers there are
infinitely many rational numbers. The proof of this

B FUR

property follows immediately from Problem 5 on page 3 24,

If a and b are rational numbers such that a < b,

I3
A

a < 55%—9 <b, - : '

84D 4s also rational if "a and b are - |

rational, the density property is established. ~

Since

A - .
. i ' . N,
1 P v

At first thought, one would suspect that the set F, being 7

'dense, corresponds to the set of all points on the number line.

4

[

There would seem to be no "room" between the rationals. This is

not the case. ,When we introduce a final axigm for'the real number
Y 4 . ‘

system it will be possible to prove; for example, that there 1is a

positive real number Xx such that x2 = 2, that is, JX = 2.

We shall now prove that there is no rational ‘number x such that

N

. -
.

Theorem 4.2 There is_mo rational number x such that .
x2 =.2; that is, there do not exist two

integers a and b without oommon‘factors
such that x2 =‘(%)2 = 2. o

s

° v 2

; ‘ , 130
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~

)

\
\

_Then

‘We now have a? = ¥c2 and a

s

‘Proof: We shall use a proof by contradictibn. Assume as part

of the hypothesis that there are two integers a and b, without

common factors, such that (5)

‘

"without common factors" because by Theorem 3.17 it 1s always

By the result of;?roblem l(c) on°page 4,15, a 1s also an even

~

integer; thus, we’may write .

a

i

2c, ,for some integer c.

e
a =0c => a° = k%, - ¢ i

2

= 202, so that 2b° = 4c% that

' ,is, hg = 202. But c2 1s an integer, so that b2 1s an even///
| integer.g This me%ps that b 1is also an even integer. We have X »
. arrived at a contradiction, for 1Y a and b “are both even
integ%;s they must have the ‘common factor 2, contrary to our
originalfrequirement. Thus, there 1s no rational number x such
that * x° = 2s o B -
Real numbers that are not rational are 9a11eé irratlonal
numbers . Thus, ' +v2 1s -an frrational number.

S ' Let us summarize what has been founq. In the.trangition from
the int;éers to the rational numbers,‘weulost some propertiest For
.one, we do not have- unique factorization of rational numbers. If
r and s are any non-zero rational numbers, then r isra factor

B

~
———t

We underline the restriction .'

Y

! n
. . . - »
possible to reduce a rational number % to such a form. Then
(%) —_— a2 = 252. ( . . _' .
- ’ !
Since b 1s an integer, so 1s b2. Thus a2 1s an even integeg,/"/ -

~

>

g0

R
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. x€ = a has a solution im R if a >Q. The most'imﬁortant new .

o
.
2

. 4.30

B
o

(=3

~
'

1‘ ' 2 . R oo . . D 8 o
of s and s 1is a Pactorof r; that is, there exist raﬁion 1 -

/ numbers u and v such that s =ru and r =,éfi m&nothér

’

~ property we lost.is that of %erminé?ing decim@lmréptesentation‘

But we gained the -important properties of closure under divisidﬁ.ie

* (0 excluded) and density. ’ L ’ "(.“
This concludes the discussion of three proper suyb-systems of
N . . * ‘ g H':: N ‘;' J' d
the rea%s: . . ‘ - BTEA : - “
. NC ILC FC'R. N/ ' a
4 & - .

Which properties of F are shared by R? Certaiély R has the” ‘
same closure properties as F. But it will be shown (see fAppendix A)
that R is not gyuhtable. R 1s al&o dense, aﬁd its elements can 5q :

represented‘iﬂ pecimal form, although these decimals will be.shoﬁh

to be non-periodic iftizfzyal. . o P S
) What new propert oes R have? It will be shown that the :

1

., M l' .
set of positive real numbers 1is closed under The extraction.of a

root. This means, for example, that for a in R the equaéion .
A .

property, from the standpo nt of anilysis and geometry; is the fact

that R is cdmglete.' This will be the theme of the next chapter.
T« : . .

-’ e . :

N r

-~ i : vy o &£
| N \

7N,

Sl
4
o'l
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Exercises ‘ N
1. ,Determine the relative. order of the rational numbers
= ' Coer ~-37 L ~12 47
. ' S-S -5 - Co
4 o > . . .
3 : T '
. 2. The rational number (TE)ten can be represented as the
k9 7 . /
. ‘ decima -I-O- ——-g + —-—3- + = ( 1875) ten
; g lO 10 s
(2) Write the number (. 302)four in .the form of a rational
) number in base ten. h
{b) “Convert (1.5),., to a decima} in the four scale. '
3. _Prove: There is.no rational number ~x such that x° = 3. *
ﬁf\\ Prove: There 1& no retional number x such that x3 = 2, }
5. Show that if n is a natural pumber, then 0 <‘%<S 1., Co-
6. Show that if n 1s a natural number, then O < i
' C e . © Y ,n2 =n

Te Consider the set T of positive rational numbers, with an S RS
1 ordering given by the axioms 01 to ok, e . .

KY
%
8

-~
—
[o4
~

Prove that T 1is not well ordeped; that is, there is a
subseqeof T which does not/ngfe a least element.

7 . . .
(b) Aré there.rational numbers which are less than every

element of T? .Which of  these 1s greatest? . v s
8: Using the divisigm algorithm, develop the decimal represéntatiqn
of -%. T




©

-

”,9'.

10.

11..

»

Find the truth set of the. sentence

[T S L
CY
“

: (x - 1)(x + 1) (2K .-3(x2-2)=o
if the domain of x’'is the .
(a) .set‘of natural numbeprs, - | —
(v) SEt of integers, .
(c) set of rational numbers, g )
(a) ';85 of real numbers. lﬁfh
Factor the polynomial <t - 9 into polynomials with
ooefficients ‘ ‘ .} - . '
'(a). in F, s(bj in R. o ~ I

.
« . - .

‘l
For the elements of the set of positive rational numbers, let

s

us define a prime p to be a number that oannot be obtained

as the product of numbers in- the set that are all less than

p. For example, % ‘is prime because 1f ab = % and a,.
b are positive rationai numbers, then elther a or b. dis
ogreater than 3 On the other hahd, % is comnosite, since

4 8 : .
3 3 7 and 6’ 7- are each less than -3 With this .

" definition of a prime, show by a counter-example that the

’

positive rationals do not have the propernty of unique

°

factorization. ' ‘

Pe




Chapter 5

\

. 'COMPLETENESS OF THE’REAL NUMBER SYSTEM

’
A . f ¢

1z The Completeness Axiom. Our attention thus far has been

on the axiomatic development of an abstract system whose modei is_
the real number system. Before we continue tnis development:and
‘bring it to a satisfactory conclusion, it will help to review some
'geometric ideas. In geometry it is assumed ‘that the points of a ™~
life satisfy a certain set of geom%;ric,axioms.f One of these
states that a 1ine'contains at least two distinct points. Another
assumes that to every pair.of points A, B there correspopds a’
hunique real npmber called the measure of the distanee between A

. . ) )
and’ B. A third axiom says that given two different points A and B

\
,on_a line L, there is a one-toaone correspondence between the points
of L and.the real numbers such that .

. (1) A corresponds to ‘zero;

b
(2)~ B corresponds to a positive number, ) -

{(3) 1ir P and Q are any pOinQQhon L and if P corresponds to bd

”, and 'Q to ¥, . tHen the measure of the distance between P

and Q 1s |y ~ x]. . ‘ .

L

With A corresponding to zero, let us mark thé point'ﬁ to’ the
right of A so that the measure of.the’distance between U and A is 1

- ¢

*See Volume II of this series of Studies in Mathematics: Euclidean
Geometh_Based on Ruler and Protractor Axioms, by Curtis ﬁaus,
and Walker. .

: 5.1

’
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- . ( . ; A
e - s.e 0 B L
G . then assign the numbér 1 to U, It 1s:now possible o,
. ! o A U X ';

’ ) ‘1 O . I'" v :’. ~ . ‘
. h - * . k- ) S L d
., -prove the theorem: If three distinct points X, Y,.Z of the line

-
s .
W

have coordinates x, vy, z, 'respectively, then\é is between X and 2
1;‘andonlyrfx‘<y<‘}orz<y<x.» S :; " i
It is now apparent how (and, why) we may fom the uniqae dorres-

-c

‘ &
pondence between the rational numbers and points off the number 1line,

/ "The rational number % ,» pand g in I and, q # 0, 48 assi%né\d_ to a
“* " point as follows: Determine the point R to the“%?éi\& A such

’ PMhe measur_e__o.ﬁ_the,-distance__betueen.ﬁ and A is IRI : Then K
L assign the\ﬁositive rationaa. number IR] to the Mt R and the ct

., negative rationdi number: - J%‘ to the point R' on £he qJ.eft of A and

v

d at the’same Jdistance from A, < «‘m )
. '_.. '- " "’he constructien of the point R ‘on the 1line is accomplished as :
' follows By dividihg the segment AU into }ql eg-ua—?e parts, deter-
. mine the. poinft Q such that” the measure of. the_ d}i&n’ce‘petween A
/’ *and @ 1s l-]. (The reader should récall how thrs"":és ddng with ° '

straight edge and compass. ) Then lay off Ipl oﬂ_tégse distances ,

~ .from A.to the right terminating at a peint R. ;Th-& distance between

g H

_A and R then has, measure IRI, and we assign the“b'm.tive rational

_ number l%l to R, ‘ , O
- ~ A g - .
- > 5 +

A

.. ’ It follows from the stated geometric%axioms““&hd theorem and

the orientation of the rationals on the line that¥f r and s are

LY
.

the coordinates of R and S, respectively, then

- . . - o .
v . . - . = —
- 28 - Lo n &

*Theorem 4.1 on page 4'3ls0f Volume II',‘ 9Stp”§!i°es‘TrT;§’Mathemati~cs—. /o
» t g1 A ot 7 A *‘f‘
& v - - R —aut ] a;;r

1

k N c' . ,a‘ " . ‘ P %_
S 2 136 = BSECo byl
EMC— L v ’ A




r <s =, R is to the- left of S.

To prOVe —5 we cons der the three cases (1) r 2 0 and s 2 O

s

(2) r < 0 and s <0, 8) r<o and s > o, In case (1) R and S
are both to the right of R. Then, since 0 { r < s,.1it follows that -
either R is between A and S or R coincides with A% In either case,

5
R 13 to thealeft of S. In case (2) r.< s < O inmplies that R and S
are both to the left of A, and S is between R and A. Hence, R is

to the left of S. % In case (3) r <0 <s implies that R 1s-to the ’

left of A and §'1s eithér to the right of A or colncides with A.

In either case, R 1s to the left of S. The arguments:are easily re-

vised to prove o— . ;

-

The Greek mathenatician Fythagoﬁas reasoned that the length d of
ot the’diagonal of a gzh;re with side of length 1 satsifies the equa-
| tion 0% = 2. He concluded that there 1s a” "number" g satisfying

this eqhation bécause dfmeasures a length. On the basis of our
geometr.ic axioms thexehis a .real “number d measuring the distance

between the Opposite vertices of the unit square.

Q Q

4

-

th—the $ame way we find a real number, which we call w, which
measures the distance bizween the beginning and ending points of

stangency as a cirble off unit diameter rolls through one revolution
-on a line. Byt Pythagoras belieVed that all numbers 4re rational,-—~\\
. ' ’

the ratios of integens. When he finally proved that there is no




o
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rational number whose square is 2 (in essentially the same way it

was proved in Theorem 4.2) he found himself in a dilemma., Later,

the number 7 was also rounsto be not rational. . .
- It is precisely thls same dilemma that faces us at this point.

L4

We have assumed the existqnce of a set of elements called real num~-
bers which satlsfy the axioms of an-ordered field. But a proper sub-

system of the realg, the system of rational numbers, satisf;gs the samq

axloms and apparently has the same properties as the reals, We have
: N .

established that the rationals do not include numbers such as x,

where x2 = 2, On the other hand we can find a point on the number

line the square of whose distance from O 1s 2. ® That 1s, there are

points on the number line to whlch no rational numbers can be

_assigned."
Oyr objective, then, is to complete tﬁe description of. the
syqpém of real numbers in such a way that to each point on the num-

\». .
ber line there’W&l}'be assigned exactly one real number.

v,
Tven,

*Before stating the axiom which will complete the description,

we need the

.
4

Defiﬁition. A'non-ehptyuset”s of real numbers is bounded.

\

"I above if There exlsts a real number M such

1

3 ’ .
that 's < M for every s in S% The number M 1

_called an upper bound of S. 'A real number L

1s a least upper bound (lub) of S if ¥
(1) L 1s an upper bound of S, and
(2) for every upper bound M of S, L < M.

For example, the finite set T = (1,3,5,8,17) has 18 as an upper

bound, In fact, any number 17 or greater serves as an upper bound

L)

.
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of T, Obviously, the lub of T is 17. The infinite set

vt U= (1/3,2/5,3/T,4/9s00us__ 0, ...}
. ’ 2n+ 1 - : i
W s
‘has 1/2 as an upper bound, since
< e . e f
| 0 \

>
a1 < é for every n in N, (Prove this,)

It can also be shown that no real ndmber c 'less than 1/2 is an upper -~

ey

bound of U. Hence, the lub of U is 1/2, In this case the lub of

the get is not an element of-the set,

» 2y

Ir ue restrict our attention to the set F of rational numbers,
. the ouestioﬁ arises: Does every bounded, non-empty set in F have a
9ieas§ upper bound in F? Consider, for exampie, the set S of all
posiﬁiVe rational numbers s sueh that s2 < 2+« This set is not empty
- (since 1 1is 1n S) and 1t has an upper bound- 2 in F (8ince s2 <2 -
and 2 < 22 s §° < 22— g i 2 ). It will turn out that this 'j

boundéd set in F does not have a least upper bound in F,
Heré we have the basic difference between the ratichals and
the reals. It is stated as our final axiom,

« C (Completeness axiom) “Every non-empty set of real numbers

A}
3

- which has an upper bOund in R has a .

-

4

least upper bound in R ;
The least upper bound guaranteed by this axiom is unique, jﬁb
/ show, this, assume the non-empty set S of real numbers is bounded
abome and has two least upper bounds L'and L;. Then .both L and It
are upper bounds of S, By definition,.L' S.L,'since L 1s.a lub o}
) S.‘ For the same reason; L < Lt. Hence, L = L', and the'lub of S

is unique. > -
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With axiom C (sometimes caflled the contihuity axiom) we shall

be able to prove that, for example, /2 1s a real numher, 'In other
C :
> words, there 1s a real number x such that x° = 2., Furthermore, we

can show more generally that the equation x2 = a, a > 0, has a solu-

-

tion 1in R, a

. Exercises , .

T 1., Give two upper bounds and the lub of each of thé following Sets
(a) (-—. 2_, "%) 5] P

“e '

(b) ( 3.6, =3.62, 3,615, ~3.654}
2., Let T be the set of all real numbers t less than 1. ~Prc°>ve that f

l is the lub of T. (Assume some real number c, c <1, is an
AN a+b

upper bound of T, Then apply the inequality a <

. 'c and 1, and show there is a real number in T which is’greater

than c,) . ) - ) Lo

<b to:
|
|

3. Write a corresponding definition of ajlower bound of a non-empty

, set and greatest lower bound (glb) of the set.: {

v

4, Prove Every non-empty set or real numbers which has a lower

1 "'**‘

‘bound in R has a greatest lower bound in R' (ﬁet s be any ele-
L

ment of a non-empty set S with lower bbUndfm, thenﬂ',~~~ .
#p"’l

S 2m—> —s.g -m, Hence, tho séBSt of ‘a1l opposites ®s of ele—
G
ments of S has upper bound -, ,Apply axiom C to S' to obtain

' the lub of St, say -L; then show that L must be the glb of S.)

¢ » ~

. 5, Find upper and lower bounds of the sets:

2 s 00 LI
(a) (_. 3’ %’ ’ n.l:l ’, J} R
; 4 *» 00
ORI O FURE B
- 1, 2, _3, _4, ... n_, . N
. (C) (_.’ Lo ’ —3 S0y "]’ ) . '\,
// e 5 10T 02 4 1 . o
/ N , A )

C 140 .
, ' J




o (d) {g' %’ 'l'g‘: i'{, s o0y n_;_l, ‘---} )
N . ‘ i ~
6. Eind the lub of the set (a) and_the glb of each.of -(b)," (c),

’

(d) in Problem 5., Try to prove these results.

et - ‘ Y
qu exampleI~;;;ngb of ‘tife set {%,‘%, LIREE n ; l; eed)
is l. To prdve this, we show that l is a lower bound of the

't TLEY

\. .
, TN ek
4 3

\

2
2
]

oo

. \ .
For every natural number n, n + 1 > n (why?) and, hence,

- < n\+ 1 5 1,

»

That 1s, 1 4s a lower bound of the set. Consider any number
: ,

greater than 1, say 1 + e, where e 1is an arbitfrarily small

- positive real number. By means of the computation

' 3

n+ 1 _ 1
. n

=%<e<%=>n>%,

EX

we see that by choosing a naturalinumber n such that n » %,'

1 S n + 1
n

n + 1
n}-e-=>-r-1-<,e=> L r =

-l‘£e=§ <1+e,

<~
&

that 1is, there 1s an elemenx‘bf the set that 1s less than

1+ e: Hence, 1 is the élb of the set. It should be pointed
e 6ut that we assuhed intuitively the ;xistence of a natural

numbér éfeater than %. We‘shaIl brove this in the next

«
- section. )

s

Ve T Prove that if an element of a set 1s an upper bound of the

set, it must be the lub of the set.

1

ERIC | tar . 7
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2. The Existence of +/2 1i R. We know that the equation

- xe = 2 has no solution in F. It 1§ our‘purpose_in this section to
» show how the comoleteness axiom guarantees that x2 = 2 does have'?

-

a solution in R. An outline of the proof is as follows:

. - - >
' 3
> .

’ ~( Consider the set T.of all positive real numhers t -
such that t° < 2, and show that'T has a lub, say - .
x.' Then exactly one of the following must be true:
i / x < 2, x > 2, x2 = 2, .

« If we can sho that the rirst two cannot be true, we Have

. the_gonclusiony x2 = 2, - :

*

.

In preparation for the proof we need three supporting theorems.
The rihst says that for any two positive real numbers there can be
found a natural number multiple'of one number which 1s gfeater than
s the other. This result 1s then used ‘te prove the second and third.
j The 8econd states that for any positive real number whose square‘is
‘ . less than 2 there is a greater real number whose square 1s also
1 less than 2. The third asserts that for any positive ;eal number
whose square 1s greater than 2 there 1s a lesser posifive real num-
i . ber whose square 1s also greater‘than 2. A moment of reflection

will show that the second and third theorems, wherxiiroved, will rule

out the possibilities of x <2 or x > 2 1f x ‘is the lub of .

the set of positive real numbers Wwhose squafes are less than 2. . .




A d

Theorem 5.1 For every two positive real numbers a and b
. there is a natural number n such that na > b.
Proof by contradiction: For a given pair of positive real

4

" numbers a and b assume ther4¥is no n in N such that na > b.
o)

”

Then the set U of all products the form na has the propertyr

that’ na < b for egegx’ n ‘'in N. Hence; b ‘is an‘ppp%r bound, of
U. Now since U is non-sempty, we know by axiom.d that U has a lub~
in R, say ¢, such that every elemeﬁt 6% U is less than‘or equal
to c.: Since n+l is in Nif n is in N, the nuﬁ32§7 (n + lja.
is in U. Then '

(n +.1)a‘5 c:’

ng + agec \\ ’

/ (nag_c-a/) foreveryninN.

. Thus, ¢ -a 1is an pper bound of V.- But c -a< c, since.
e > 0. Here we have a contradiction, for we cannot have an upper

boind ¢ -‘a. less than the 1udb c. @ence, the theorem is proved. L

02

An ordered field which has the property of this theorem ig

called Archimedean. Both (R, +5 <) and (F +, *) are‘Archimedean.
‘ < . *

We use this result to prove

Y

Lemma 5.2 If a. is positive real number such that

. L3 Py

2% < 2, ‘then there exists.a real number b

. 2 9 N . /
such that b > a and b= < 2. :

Proof: Given a in R,; a > 0, a2 < 2, 1let us construct the

real number . o - *
b =a + & ’
n’
3
!

where n is in N and’ show that fer some n’

a b > a and b < 2.

’

~ o443
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‘ * \'w~ ' ‘ T L
Forany n_ inN, a +«% > a. (why?); hence, b > a for every n
in N.,’ 4
- A ” 'S
Now we compute, for any ‘n in N,
2—_(-(a+3)2—a2(1+ 12 ¢ 22014+ 3), ‘
. (Here the reader should pause and verify for himgelf that '
. ’ o l 2 3 . . , .
y . (1 + 5) <1+ for every n 1in N.)
On the other hand, ' ’ ’
. . a2<2—__—_->_2§>1=>._2§_1>0..
’ a a I v ~
Since g§ - 1' 1s positive, so 1s 1ts reciprocal, and by Theorem 5.1
B a , ‘e . 8
\Qﬁffe is some n in N such that -
) ‘ . 1 1 . )
. n(g) > r—. 5 -
: . -1
. a
. Then, (
. o ; . .
. : 5< -1 (why?)
a )
. .‘-.‘3‘ 2 o' a
.K-{- 1< —é X
~ a o
‘ a2(1 + %} ¢ 2 for some n in N;
» -, -
. * Putping these inequalities together, for sgme n in N,’ ’ \>,
Ej - , . )
p [
. ) 2¢a?@+d) ana 221+ d) c2=2rP<o.

! This concludes the .proof.
. ’ 'Y . * kol -
y Lemma 5.3 If a is.any posigivg real number such that

(4

éhen there exists a positive real

Y
<

y a2 > 2,
number . ‘o suel that. b < a and b > 2.

Proof:

»

real number

The proof follows that of Lemma 5.2,

-

Construct the

"

»

.

~




N
D)
,

>

where n is in N, and “show that for some n} .

”

ad

Fa

ve
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] . . >

b>0 b<a: >2. - ) -

~— 'The reader can’ show that b > 0 and b < a forany n 1n N n>1,

’aa(l - -ﬁ-) > 2 for some n in N,

b22a2 (2 -

and the theorem 1s proved,

. . Then by Theorem S.l‘there is an n 'in N such that

Then by transitivity of :Lnééﬁéﬂ.ities, for some

. Now compute
' b? = (a - 322 2% - 12 38701 - B),
\s ® ! 5 '
Also, . . (
‘ ' 2 2 ’ ‘
’ @ > 2= 1=>1 - 5550, -
’ . . a a- -

- l l t <«
n('2-)> 2 .
la./-—e-
N a N
T, “ 2 2 - .
. - =<l = ,
. n a2' .

n in N

2) ana é?(l -2y =152, s

* <

’I‘he stage 1s now set fnr thekin theorem of the section.
” 2

;_) Theorem' 5.4 (Bxistenc: of in R) There is a positive
' SN . real number x such that ,x2 = e /
) .Prodf: Consider the sét T ofy all positive péal numbers t such
that t° < 2. Certainly 1 1s in T, since 1% < 2{ also .
n t2‘<2.and.23<22=>t2<2_2 = t n
end wWe see ‘that 2 1is Jan upper bound of. T. i Thus by
T has a lub, say x. Now by Ol we are assured that exactly one of
< the following sentences is true: a “
) x2 <2, x2 >2 x2 ol2,
Z,a We shali rule out the first two as follows:

“?‘Q:u_ (4 N . ” .. I‘
. s .

-y

145, coL .
L2 A

e

Y




- | . 5.12 . )
e . N '
(1) Let x be the lub of "I and assume that x° < 2. Then

Lemma 5.2 asserts that there i a positive real Aiumdber b such that

N

b »4and b <2, . L
;s . ’ ’ Lo ,
Thus, b 1is in T (since b2,< 2)..,” But this is a dontradiction, for

we cannot have any element of a set greater than its lub. . Hencey

.-e\ B =
”
®

tx® < 2" is false. . ;-
» * re

(2) Let x’ be the lub of T.and assume that %° > 2.. Then

Lemma 5. 3 exhibits a positive real number b such that
) b < x and b¥ > 2. S
Now for‘any element t of T, 2 < 2; so-that ‘
t2 c2and 2 < b2 => 2 ¢ b2 = ¢ ¢ b, . -
Tﬁus» b is an upper bound of T. This is a contr;diction, for b~

is less than the lub x, Hence, y2 > 2" is false, and we have re- ’

ny? = 2", This proves the' theorem. .

maining only the sentence
,J

The reader may think that\a\§reat deal of effort has gone into
a simple result. On the conkrary, we have opened a.yast ddmain of-
new numbers. It is now a. simple matter to rewohrd Lemmas 5.2, 5 @

and Theorem 5.4 by replacing the number 2 by any positive real num-

ber c. The result 1s Lo ] . ; - F

. !

*Theorem 5 5 If ¢ is%any ‘pasitive real number, then there is
b g te S R . ..

a unique positive real number ﬁ'Such that x° = o o I

7

It is more feddous, but possible, %o go eien farther and prove

l,:

g .
that ifnc ks any positive real number and n igPany natural number,

.5, -
. '
K

then there exists a: positive real number x spch that %" "”4,
. &
Detrinition. If a. is a positive real nquer;;:Zeiuﬁasué

.Qositive solution of x = a is ¢ d the sguare
L

. . root of a “and denoted by Ja ége other

. 4

. . . |

‘ A N N .

. - . .

. . f 1. . > % .
, i i

. R . Co. . .
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: \ " solution of x° = a 1s therefore -4vf3:. In&%ener- °
’ al, if, a 1is'a positive-real number, the ugiqqp , . ..
positive solution of X = a, n in N, is cailed
) : the nth raot of a and denoted by \?f' S T

. g A, IR
) - n ‘ . Mi

&

~ . A8 a consequence or ‘the above definition we have )
< .

2 - -~ . r N

* a = 'al' ~ , . A

)

.«For example, (- 3) |-3| =3 and 4/ (x - 1)2 = Ix - ll, '

where the absolute value notation gudfantees that the squaré root . i

1s positive (or zero). = * ° , r.
Real numbers that are riot-rational are called irrational. . |
Thus, v 2 1is an example.of an irrational number, But not alil

o - L

o »
Iirrational numbers are of the form n a, Other real numbers such Lo

as .7, which are n&?;folutions of polynomial equatiqns,;aré‘irra-

tional. (See Appendix C.) Our task is not completed with the

proof of the existence of ?/a, a >0, in R, We still need to show

thét to every point on the number line there corresponds a real

.
., . 4

“ number, , . N -

>

“ . P

Exergises .o . .

- . .

1. Prove that there 1s.a positive real number x such that x> = 3.

2. Show that there 1s a positive rational number & such’ that

. i ) ’
c D == 100 and .c < 2, ) .

>

3. Show” that there is a positive rational mumber d such that - |

‘ 4
d < iog

s 4.} Rrpvea If a 1is in F and b is irrational, then

v . . ‘ : W

and d > 2 : . o '
! ‘y(a) a + b 1s irrational, . . , \
{(b): ab is irrational, . - . , ) L

-

-
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vr H
‘1 s oo
(¢) § 41s irrational. - ' |
3 © ) : C e
?
5. _Pfove- The equation x2’+ bx + ¢ = 0,7 with p and c¢ - in
- R, has a solution in R if and only i b2 - 4o > 0; . there
. " are one or two distinct solutions‘according as‘,b2 ~bc =0
. - .6r be-hc>0. @ ‘

- - 6. Prove the corollary to Theorem 5.1:‘fg§r any two positive

real numbers’ a and Db there is atnaiural number n such
/ g . k RN
that -

. - ~ o

- b 'b
o 1’1>5'

and o <‘a.

7. Use the corollary in Prohlem 6 to prove the ‘existence of a

natural number n such that n > é for any given positive

-
e, ‘! y
‘.

\

* 3, - Co;g;eteness of the Set o _g Reals. In ‘the previous

-
v

section we proved that certain numbers, such as V2, ere'ip R

K even though not in F. Tt remainsg to show that every point on the

T

" number line can be assigned a real number coordipate in only one

A v
- L4 1
-
way. o \ . ) . * ’
LY ~ '

Agaiﬂ we need three preparatory theorems, each “of which is

.

used in the prqof of the succeeding the@?em. -

v
LY

»
Lemma 5.6 Given a non—empty set S of real numbers with

»

lub X in R, if a is any number in R such

. - ] « that a < x, then there is a number b in.

4

S~ such that b > a.

“

~
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. .Discussion: It is Instructive to view this theorem on the mumber

‘ - )

. line:
’ i x{lub) . ' @
. a . .
- / v Al l. L]
! . - b(ln S 1
r‘ ' v"
" It says that for any real number a less than the)j

t

’ . lub x of S (no matter how close a 1is to - x)

R +  there is a nufber in S which is between- a ,and x.'

]

Proaf by égntradiction: Assume there is no element of S
. ¢ - ) ' )
greater than a. Then every element of S 1s less than or equal to
"a, and a 1is an upper bephd of S. This is a contradietion: for

a<x and x is the lub”®f S. Hence, there is an element, say

vy N, 0w -

‘b, of S greater than a." .

- -
This lemma is used to prove . /.

.t . . . ] \
Lemma %.7- For a glven number a i@ R let S be the set of

‘43 all rational numbers x“ such that x < a. Then

LY

' a 4is the lup of S. .
T

-

L

Proof: Since x < a for ali\\§ in S, a 1s an upper béund

N

6f S. By axiom C we know that S has a lub, say y, such that

y < a, Ifwe can sho¥ that y&{ a, theﬁ y.= a and the theorem

is proved.

h 0

-

' d
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4 m,-xe

Assume that--y.< %, ‘that 1s, a - y >’b Tﬁén by Theqrem Sfa

+ . there 15 an 7 in N such that o o
% . . n(l} "> a—}_—yv .
S .z . 7
y + -3'; < a. .r"

F)

*  that
o . B 1
. . ¥ -5 <.z and
Then . '
. . Vo~5<2z2Ly=>y<z2
S ond .
’@i' “ . i * 'y
s PR . y<z-g-—<a.; ‘ % - L
cL: i .o . ) Pl b k3 -
This is a contradiction, because z + “ls in‘ﬁ:&»is a r'atIZ

number less\“chan a) and cannot be’ grea’cer than, f&,«;, i the lub of

No'cice how the theorem looks on ’che number 1’1ne.

. - . o 'r»' .
.‘ F ! —_l_' 1 - o . . ' ;- i
; y, n A P & “g? w®
. 2 yllub) y +-::1- ; L : N ff
. ' L4 4 ."’“"3"3%— = - <
d If. y 1s less than a, -then there is some:inm&w«- % g
. - - - {4:,,
‘ ‘such that z+—>y. - _ U
- < W \a
. The final brepara’cor'y theorem states ‘that between any“"c G‘t&%& -
’cinc'c real numbers 'cbere ies a rational number.i, In rgther wo 8 , ] v
, . . :11 f_ ; . :;- v) e 1
‘ | H=E AP
. we - .
% [y E_: v [
£~ 4 .
-t - %31 B P g‘ggti-:-wl_.
- ; . B -
150 o
. St | wqg
® ' ‘ v iy
: . T g,
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the rational numbers are dense in R.

Theorem 5\8 If a ‘and b are any two distinct real numbers

“ -
.

qu such that a < b, then there is a rational number

N

i ¢ such that a ¢ ¢ ¢ b., l ’ &

. Proof; Let S be the set of all rational numbers 'x sueh that

&

X < q Then by the previous lemma, b is the 1lub of S, Now by

Lemma 5,6 v s

s

a<b=’>c>aforsomecin8. -~

’

a

But if ¢ is in S, then ¢ ¢ b. Hence, - e,
t

3

3_~<C<b:

swhere ¢ 1s a rational number.” .

WA

o~
‘.

number is in ei?

‘Assume that a < b, Then by Theorem 5.8 ﬁherefigba rational number

Now we can prove the main theorem,

1

N Theorem 5.9 Corresponding %@ each point P of the number line

there 1s exactly one real number X,
- 5

Proof: Let P be. a point on the number line to which no ration-

al number has been assigned We shall show that there 1is a unique

real number x corresponding to P.

&

Let L be the gkt .of all rational numbers corresponding to

xl/
X Loints to the left/ Uf‘? and let R be the set of all rational num-

P

er L or R but not both, - ‘ “ed .

b

,Vx
bers correspondizé to points to the rigg of P, Mow each rational

+  Let %a be the lub of L and b the glb of“R. Then either .
B

“a < boras=ho,
. STy -
¢ such that a ¢ ¢ ¢ b, Hence ¢, being rational, is in L or R, but
not bofh. ‘This 1s a contradiction, for ¢ cannét be in L (being “

greater than a) or in R (beiné less than b). Thus; a & b, and we

- .
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fl .+

, have.shpwn that ? b. Since the lub.of a set 1s unloue, there 1s -
exactl§ one real number X=a=»> corresponding to P. . -

With thils theorem we have finished the description of the

\

!

quences. are far-reaching in many flelds of méthematics, cn 3as

. \\’ ¢

analytic éeometry, calculus, numerical analysls, to name only a few.

system of real numbers as a complete ordered fleld. The 2onse-
s

But one of our priﬁery obqectives is stild'notpéttained; we
) have\no dssurance that the equation x2 =3a, a in R, hes a solution
in R, (Only if a > © does it have a solution in R.), “hen one
thinks of the great variety lealgeBraic equétionsathat'mab be erf-
cogntered, 1t 1s questloned wnether we can euer develop a number ﬂ
systég sdeouateito provide solutions for all algebrai% equations. -t

Fortunately, only one more extension 1s necessary, an extension to

. . ”
<

’ the complex number system, to guarantee all such solutions

-

A first course 1s uspally not concerned with complex numbers,

/
thus ’the extension to the complex number system and a discussion of

-
the propertie$ of thege numbers is deferred to Appendix B.Q , T
How may real numoers be represented?  One of the congequences ’
of the theorems }f this'sectiop 1s the fact (see problem.4) that -a
glven 1rrational snumber may be approxinated‘as closely as desired
T by a retionaﬁ'number. A discussidn of representation is gibéﬁ'ih"jfi

>, [N
° - ~ :

“Appendix A, . . o : ,,

7 How much of the theory of this chapter should be includea in )

F SN Jx?lt("'f' -

- ( a firdt couféeo Very little. The purpose of the chapter was to

i

o

' provide a clear understanding in thg teacher's mind of ;he”napure .

* and chaf%cter of the real number system. Only then can he trhnsmit
2 LY

a conrect intuitive picture of‘real numbers to his students
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"Exercises

1. Prove the counterpart of Lemma 5.6: Given a non-empty set T
| of real numbers with glb ¥y Fn R. If b 1is any real number
such that b > Y, _then .there is a number ¢ 1in Eé such

% : .

that ¢ < b’
- °

‘2. ':Prove the counterpart of Lemma 5.7: , For a given b in R let
‘ T be the set of ali racional numbers 'y such phat ¥y > b.

. Then b 1s the glb of T. - ' ' :
3. Prove the statement made "In Section 1: fhe set S of allx

h ﬁrational numbers> s such that s < 2 does-not have a lub

) in F. (Between thevreal numbers “a and +v2, a <‘JF:; there'

-, 4 '
’ .

% Is a rational numbeﬂ&'By THegrem 5.8.).
y, Prove If £ is any given arbitrarily small positive real

. nymber‘and _a ‘is any glven real number, then there is a ..
‘ ‘rationai ﬁuhber"x‘ such theé Ix - al é E . (Thet.is; any
. neal number can belépproximated as'clo;ely as desiréd by,a

e ; rationallnumber. Since a-£<a-+ E then between ar- &

" \
‘and a + & there 1s a rational number, by Theorem 5. 8 ) .
5., Let In be the. set of~numbers‘ X satisfying “ S ‘
oLk < \
) , ;A <X S.bn: a, < by

v -

Al M .
! N~ e . s ‘ . .
- ’ AN

_ 1
b o <b,, and if:\pé-- a; = T then the

Ll
It ap < 240

set fIl,~I e I, ';..}" is called a nest of intervals. . o

ﬂ Prove that under these conditions there is exactlz one real '

number which 1s in vegx I . (Show that the set-

~

[al, a2 e dey & ’...? is bounded above; hence, has.a unique

o - Ve wm

n,

i

1w a. THen sho that a 1s in every I.. Finally, show "
- %§\ ~ 91

o

- that 1f c, !g in-every' I and c°#~a, thepe is a contradicqion.)




Chapter 6 . 8 /.
\ " FUNCTIONS ‘
N
1. Variables. In our discussion of the real number system we
wrote statements such as: .

(1) For any, a and b in R, a+b b+ a.

In other contexts in algebra Wwe see statements such as the formal

ﬁ

equation, . 5 ¥ e
) -.r _ - - r
(2) - Vo X+ 2" 2. . L
] . . U

In these sentences there eccur symbols x,y{z,a,b,cf... eng num-
bers rrom some_seb of numbers.\ We usually refer‘ﬁ%‘euch simboie as
variables, using the word loosely. But it 15 not clear that ;ari-
ables play the same role or have the same(meaning In each of the
sentences (1) and (2). .In (1) a and b represent any, elements

in R; in this context a variabl is a guantified aymbol represent-

s "‘.4 N

ing'an element of a given set. The quanﬁifier in' (1) 1s any ..

s ~ s [P S

In the sentence,,"The integer a is even if there*is some~&nt§§grb

N éve

such that a=2b," the quanb;{ier is "SOme , meaning "at %eqst
; ° 'V Z x 3 = £
one. . . . v '} ""E‘}?s X &;q-

T Ton ﬁheigﬁherQhendwthere aré\noﬁquanﬁifierﬁiin ( 2). Here the DN

symbol x has not been resfricted in any/@ay.. In this context a

} variable is an 1ndeterminate, an unquantified symbpl which has no

meaning until it 1is agreed what properties it e Joys Indetermi-

nates were wsed in thls way for g long time before anyone sucdreded '

- -
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in clarifying their significance.

s ¢ .
Are these two meanings of variable" compatible? How may these

meanings be used interchangeably in algebra without confusiono Ang
most important how may all the concepts of variables, operaftbqs,

relations and correSpondences be uniﬂied in a gebrao These ques-~ ’

[

tions will be considered in the following Section&. T
\.

2. Algebrailc Expressionsr We devoted much of ' our consideraa
‘ t

'tion in this study to the algebra of the real number qystem, in

which 'variable 1s used in the sense of a quantified symboI"
representing an element of R or of one of the subsets of R, ‘Now

let us develop, 1f possible, an algebra of indeterminates. Then we '

shall show how these two meanings of variable complement and abet
each other in much of the first course in algebra. )

+ Flrst, we fix our attentign on a set S of numbers and the set

of four binary connectives +, -,X,+. The set S can be any subset
of R, or possibly the set or complex nhmbers (see Appendix B). The
coOnnectives, when applied to pairi of nombers in S, are the usual
field operations. ‘Now let us attach to the set S any,indeterminate

symbols, say X, ¥, 2, a, b, ¢, ... . From this enlarged set we

build algebralc expressions over the se€u§_by the followind
i : ) .

efinition e . 2 S

\ \ » % - LN

i

(1) -Each of, thé symbols -and numbers is an algebraic
- expression..)" o \ A
iilvm'“(é;i Given:anylyﬁo algebraic éxbféséisﬁs*A"aﬁa-B ah& ajjr'
' connective * from the .set oﬂ’comnectives; then A*B.is
an algebralc expression. . -
(3) If Ais an aléebraiclexpression, then WA 1s an alge-
'braic expression, wherg n 1is in N. B |

- .
.
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o

; (4)i Any finite nymber of operations (1), (2) or (3) results

-

R ‘ An an algebralc expression. ) T,

Thus, algebraic expressions over S are those which'can ‘be construct-.
" ed from indeterminates and } numbers in S by the above rules of‘forf

mation, somewhat in the same way that Engllsh expréssions are

fornted from Words by certain rules of gyammar:. For example;

u L)
.-\/x..x -
’ 2X + 3 )
1s an algebraic expression* over I. (The reader can verlfy this . Y

by tracing the sequence of operations which generates ‘the expres -t e

. sion from the symbolsjx, y and numbers from I.) "
On the other hand, -
Vx - | - d
+ 3 , \

1s not an 2lgebraic expression because it does not conform to pre-

sertbed mathematical "grammar"; whereas

’
H

sim x . . -~ . N

U

— 18 not an algebralc expression because it requlres an infinite

sequende of permissible opefations for its representation: -

N 3 5 7
) - sln X = x - %3 +: ;, %} + .. -

Now consider the system of all algebraic expressions_over the. '

seét R of all redl numbers and the binary operations of adoition o )

+» and multiplication. By definition, corresponding to each element‘
A of this ‘system’ there is an element (-l)A and-an element 1 - A

in the system. Let us agree to abbreviate "~ l)A" to "-A" ahd

My . g M nln . N e C . e
1. - ‘A to A . R . -
*We agrée that "A : B" may be written "%". ) T
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With "A-SB" meaning "A 1is the'same al%ebraic‘expression as B", let

us define subtraction and division by.{\\ .
A-B=A4+(-B) and A : é = a@) S |
Here we are again in a familiar position AWe have a system of

elements and two binary operations such that for any two elements .

A and B offthe system, A + B and AB are unique elements\ of the

system. But certain elements of this system (the real numbers)

already bave thelr . properties prescribed under_the operatlions, so

that we are not free to assume properties of algebraic expressions

arbitrarily. Instead we shall extend the definition of equality of

-algebraic expressions in such a way that the field axioms Fl to F7

bold: That 1s, 1f A, B, C are any algebraicﬁexpressions, we define

AyBangB+ £ 'to be equal, AB and BA to be equal, (A + B) + C and

A+ (B+ C) to be equal, etc. It can be sHown that this definition

of "=" for algebraic expressions fhas the desired eguivalence
properties: . ' . ¢ .

A = A; A=B¢=',B=A; A=BandB=C==>A=_C.
The result 1s a system of algebraic expresslons, over R with the

.}-S
. structure of a fleld.
/

_After this stateméfit has been verified we have a-list of |
th ms ready made concerning operations on. algebralc expressions,, i
‘They are the theorems derived from the field axioms, with real
number"%%eplaced by "algebraic expression.' Such theorems are the.
basis for all formal manipulatfons of algebraic expresslons. ¥From

)

them we obtain such rés;lts as:

.~

x% -.2ax + a®n b2 ! (x - a + b)(x - a - b) ., ,

. _ g
7
¢ Ay
Y 3
- Ll - \ / . -
? 2
: , ! . \

. . T




: v ' 6.5 : , . - ‘);\j r,
o -———uj- x° -//p((x + 42‘) N\ | o ' '
X -2 - i . . .
: i ‘ . . »
‘ 1 L2
. Ix:+~§f - X+ a .7 ' s . ) -
Xy ' 3 _ o o=bx 4+ Ty ote )
Ry? _ x2 “x+ 2y T x2'— qu ’ ik
This is the bread and butter of elementé}y,algebra;.it involyes
- = i < \. N z ) ) i . ‘
the skills that every beginning student should acquire., There is a
basis for these manipulations ~~ they constitute the art of "symboi
pushing" with a purpose and for a reason -~ which should take them
out of the realm of mechanical busy work for a student. That is, .
"symbol pushing" is really concerned with the structured the field
of algebraic expressions. - -
Just as the system of real numbers has intefesting subsystems, .
so has the system of algebraic expressions over a set 5, *
Definition: The sub-system of algebraic expressions over S
: , obtained by applying only operations (1), (2),
- . (4) of the definition is called the system of ,
rational expressions over S. w ’ ’
For exampl’é, N " . s
3x% - xg : 2 . ® . ' .
. and, 5xy - ab+-7w
v x PR - L s T
" ane fationéi’expressibns 6vei/§(ﬁhéreaé 3 - . 1\ . ’
" - \ - - . N ~ .’ —-:ié-b——-— - - ) ~
SN A S A - X"-a ° 1,'
. 4 - , L]
;is an algebralc expressign over I which is not rational because it
involvqs operation (3),of extracting a root. o
*Notice,tha€~/§ is an element of R and 1is not thought of as requir-
ing operation (3) of the definfition,
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T y ‘ . & o .
. Definition: The sub-system of rational expressions over S
. ‘ ; obtalned by using only the subset of conneetives'
: . ) . +, ~, X 13 caled thé system of golznomials over
A - S. A monomial is a polynomial obtained by using

-

only the connective X.

. For' example,q. ‘ ) g . ’
y L 3x%a - byb 1s a polynomial over I, ‘ Rl .
- . . ( . - -
s E% + §éﬂ2£ 1s a polynomial over F, amd )

JZ x° - 5 "is a polynomial over R.

+ Of gpecial inteﬁest are polynomials.in one indeterminate over

R. These are of the form \ ' ’

- , - n
ao+a1x+|a2x +»...+anx, -,

-

whete 8y, @1, ..., @, represent elements in R, a '% 0, and n is a °

positive integer. A good deal of attentlon 1s given to such
. polynomials in a first course. A student l\arns to add and multiply

polynomials, making use of associative, commutative and distributive
. ki X

properties. When,he learns to factor polynomials’(that is, into’
products\of polynomials) he rinds that he must be careful to specify
the set over which the factorization takes. place. For example, the“*

IV N M . ‘ﬂrr
polynomial over, F . : S A
. " 2 1 . .

8 o . X -
«’. ‘. - E’ - £
'

is not ractorable.into polynomials over I, but is factorable over F;

. B
~ . e

whereas the polynomial over I, -
Py ' 2 R '

yi S ,
*The rational numbers g’and % are multiplied by other expressions

- and: no division is inVOlVed ) ’ ) .
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is factorable into polynomials over R but not over F or I. To
1llustrate the necessity of specifying the set over which factor-

|
ization takes place,.let us find the factors of the polynomlal

. v A -, l“u °
' X = 'g. . \
-

(a) It is not factorable over I.° . ' i

(b) TIts factors over F. are (x2 = %)(x2‘+ %&.

(c) Its factors over R are (x _«/(gs(x;+\/§5‘x2 + %X'

v

(d) TIts factors over the set of complex numbers are
(x - Plx /Pl - 1/ P e 1«/%).

As & student works with polynomlals he notices thelr similarity

-

to integers. Like the integers, the set of polynomials is closed-

i ’
under addition, subtraction and multiplication, but not under

-

inision. ‘And also like integers, they have the property of unique
P
writers call polynomials integral expressions. . \
t.

prime factorization over a given set. This~suggests why s&he
N

/
/ If A and’B are polynomials over S, then thelr quotient E is
. :,certainly a rational expression’over S.. Conversely, it can also be /ﬁ.

shown that every rational expression over S can be represented as .
the quotient of two polynomials éver S. She analogy with rational

nugggrs suggests the adJective rational" for such expressions.

. oy . .

r } » - - . - .
" g Exercises ‘

<t
7

-

1. Identify each of the following expressions over S as polynomilal,

rational, algebraic, and specify, the set' S: -.

3
.




i

+ i

- I yi\

S Lo ;tﬂ o
v

\." }. R y-—é ., ﬁ‘_\ ' . ‘- 2. .
; - 18 - | T g
ﬁ . ‘(c) J_Tﬁ?ng . . (£) xxg a ypg 1'%

.2. Represent each of the rational expressions in Problem 1 as

]

\ * the'quotient of t%o polynomials. . Y,
3. "If *A 1s an algebraic expressith, explain why A - A =0 .

- X :
and -E'-= 1. ! .
- 4. Use the field properties of algebraic expressions to prove:’

Tr

(a) E—Z—%E = -(x +.2) . . ’ ) ’

|
|
|
i
|
\
o

X -
. ayé'_ x2 X+ 2y . .xﬁf_ #y2
3 A : ®
x* +2 _'.2 - - 1 :
(C) ﬁ—l—x -X+l+x—+I
5. Factor each of the followingvpplynomials, 1f possible, over/
t' I, over F, over R: N\) ’ . |
3 -2 A S
i (a) x° - 7t e 12 (¢) .y° -2 + a® - 2ay |
3 ' ) . ~ |
B DN o o . ] |
-+ e y 3 6 2 . - 4 P e \“\)4
’ /ﬁ% XD -+ x (@) a"+ 4 |

& . . : .
3. _ Open Se tences. Why do we bother to construct the system

of algebraic expnr ions &ver R? . What good aré they‘> Here we

To observe the reason for demanding that algebraic expressions satisfy .

) the field axioms. For if we substitute real numbers for the in-
. determinates of an algebraic expression then the expression represents

a neal number (barring divisionwby zero and roots of negatives)

\



Hence, with certain restrictions, we may shift back and forth be-
tween the indeterminate meaning of "variable" and the quantified
rmeaning with certainty that no confusion will rqsult -—- under both
meanings the structure of the resultiné system is that of a freld.
" The power of our algebr§3c manipulations comes from the fact that ;
we may indiscriminately put on and take off quantification of the
/variables, in the one case talking about real numbers and in the
. other about indeterminates, respedtively. Thus, what might appear
to be laxity in an\aggh“ent is- reéﬂly our assurance that operation-

ally the next line of the argument will be Justified whether.the\\

‘ -

“var les are quantified or not, This\is the Justification of
' : ?
-~ -
"symbol pushing”; the power of symbol pushing comés from this

- freedom from specification.

The compatability of the meanings of "variable" leads to a

~ successful marrlage of thelr uses in algebra, Consider fiirst the

problem of solutions of‘sentences;
- v - } . )
If an algebraic expression has its variables quantified with

respect to the elements of a particylar set T of real numbers, we
' 'say that the" expressipn is an open p rase whose varlables have
domain T, As a special casé we ‘consider any element. of T to pe an

. oepen phrase. “From open phras s we construct open sentences

, !
s N r X

Definition: If A a d B are open phrasés, then
£ "B £ BY, ";',\ < B" are open
sentgénces . 'If P, @ are open sentences,
and q", "p or’ q", \“if P,

are open sentences,




Since open%phrases are symbols for numbers in a given set, an open

sentence is a statement cpncerning equality’or order of numbens in

this set.. For example, %: ' ’ S~~~

o

Ne N e - 2j(ex + 1) - - 0 . x inF,and

()N  2y<5r.%x, x dnd y idaN,

are Open sentences, the firstﬁin one variable and the second in two.

<

Notice particularly the quantifications of the variables, (1) .is a

statement(about equality of rational numbers, and (2) concerns the
.order of natural numbers. ;a < - ’

P

For given values of the variables an open sentence. becomes a

statem%nt about numbers which 1s either true or falﬁerbnt.not botha,;

%
-~ ~

If x =--2, { then (1) is a false statement; if X‘*'-E' then'it\is

a true statém nt. If x=2 and v =1, then (2) is a true
c ) statement»wwhe aé if “x"= 1 and ?&=\2,\\it\is a faflse statement.

&

ﬁ number“in F which x may represent to ma&; (l) a ‘true state
ment is called a solutign of (l), the set of all solutions of (l)

* 4

1s called the truth set (or solution set) of (1).” (& discussion of*

truth sets of sentences -in one variable was given in Chapter 2.)
Thus, the truth set of (1) is {mﬁ} Notice that if °x had instéad
the domain R, then the truth set of (1) would be {-?, f 2, -2},

Before we can define the tiith set of a sentence in two vari-

°

ables we must agree upon an order of the variables and we mdst °
o

construct a set of ordered pairs of numbers. In sentence (20, for, .

~

e;ample, x _1s glven as the first ,variabie and y - the second. .

"?urthermore, since x and y have domain N, we must construct the

',,éét of allipossible ordered pairé of numbers in N& ‘ o
((1,1), (1,275 (1,3), ...5 (2,1), (2,2), (2,3}, ..., (3,1), (3,2),

(3,3), ~..}. We call this set the cartesian product N x'Ni Now

163




1 . '
-

' * T —sa1

i =

an element in N x{N (an ordered pair o?ﬁmx&,@a&rmbws)lis a .. i
;% }\:ﬁ@ ';M’?:;f >4:-: d

solution.of (2) if when x represents the rirst numb f the 5. ,W, e
Soluvion oo drroz
of‘dened pair and, y the second, the resulting statemé{v:t is tmerz-%-av o
The set of all solutions of (2) Is its truth set™ IR the trut% =E
. B e T -7
set.of (2) 1s the set -of two eleme‘ ts {_Q:_;l«_)x iﬁ‘:“ﬁ“‘ @“‘ B
~ . L AW oo o e
> ; | ‘ - S ; === .7
S Definition: Given a sentence in ‘wes.or_dered:lgiabies X ‘,
- - \:5 i el = e , 55}:‘-
- and y with x in § and-_y—dn T, Torm t}Te **‘3"::{ -
& . g - b "é:k> m”'ﬁ.‘ o
v TSet S xT of_ all ordered pairs, the first 4 .
- - PRSP R D B
. . element of each pair being .an. eleme AL S andgi“} s
ca ey - ot
the second an glement of 2% .TlIgI_L_. ) element . B
xT 1 lutd T q..r;;is;
of SXT 1s a so ut on‘ of the se%}&m > &
A when X represents the first elem ) -
: %%% ---- —
. * the second, the *sentence Is = tement. e
) The set of all solutions 18 the @M‘Sf’*& "‘f‘-::;

the sentence,

-

R e
< u-—h._‘

In Chapter 2 we found that graphs of sets ar’? ué’eful in rind-

¥ 1ng‘ and expressing truth sets of sentences in one valiiable-.« ”‘W‘e““fcan .
e et o ranhnd anes Fe qhtadn orabhs SPEATE _ o ) - ’
%é{rgd- pai@ A

extend these techniques to obtain graphs 6f—3é
. of numbers where the first variable has . a value cgrresponding tg?

point on a horizontal number line and th second able to a peint

ML~ .

on a vertical number line, forming the- well-m%ca tesian co—
, i

hdinate system on the plane. Then each ordered pair oi' numbers e

-

© corrésponds to a unigue point of the plane. For @;@@ple, the” et o

x> o

{(1,1), (1:2)”: (2,1), (3:1)] ha:s the\graph- -

*

,
-

&

X

)

oh o
Cenmepes &

@«
I
o=
\




: . ; - \

' N .
if the-variables have ‘domain R we can also say that each point of
the plane corresponds to a unique ordered pair of real numbers.

A
This one- to—one correspondence between the set R x R and the sét

%y

of all points of the.coordinate plane 1s’ guaranteed by the complete3
neSs of R, and this fact is the basis for analytf/)geometry of two,

¢

dimensions. .
‘ ) It is an eagy transition from two to three ordered variables
and from two to three dimensions.‘ The reader ls invited o describe
* the set R X R X B of all ordered £¥iples of real n::jérs and to '49'
define the truth set of a senﬁencé’iny/hree ordered " riables, "
. glying an appropriate description of the graph of such a trutg Bet,

Before beginning a formal discussion of solutions of s/ntenoes

we should point out the role of quantificatién of/tnex ariables.

P - N ~ .

Consider the sentence . B I . /// -
. - £5-x and 2y £2x+5 and/ vy 2 O, ) >
where x and y .are guantified as folloWs v "
- L ) 4 ‘ )
. (2) %= in N and y in I,///// e
L d -~ :.
(b) x»in -I and v in :
R )1/ s N .

- . (c)x‘inIandy/i’nR,'o ‘
%(d) % n R and ¥ in I, .- ~

A%*

R}tfiyinR.
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,catlon.

set.

" truth set is

L2 + s ; -
sentences Decome more complex.
., v M .

P
a

RV I

»
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-

In each case t&e truth set of the sentence depends on the quantifi- .

. :\‘, T
of the sentenges are: < ! :

(b)

1 I

The graphs
} py

F e =
Z >

(a) G

3
s

, . ) ’ . o
An example of the interplay of the algebras of real, numbers and

glgebraic expressions 1s found in solving sentences in one varlable.
By golving a‘sentence we mean the process of determining its truth
By éF!U!ﬁtion of a sentence we mean an element of its truth
set. It requires 1ittle insight for @ student to see that 2 is a

solution of "x + 2 = = 2X, X 1nR " That 2 1s the only solution can

be shown by a simple argument: forTany x greateb than 2,

X + 2 <,2x, » for any x 1less than 2,

X + 2 > 2x.

Hence, the

{2}.

But such arguments become more difficuit as the

‘ Having found solutlions by trial and

error, how can ong be sure he has found gl;ithe~solutions?

[y . ~
. Consider, for example, the sentence . -
(3) -3x% + bx #,Jké -5 ~ 3% = -X° + 5%+ hx° - 7, x “in R.
. ".ézm;‘ N q_ : ‘ . / P

p

»
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“‘f Ir we regard each member of e equation as an algebraic_expression,

we may, w%itehformélly
23x2 & Ux + Tx2| ‘ - 4x° + x - 5,
7-%? ¢ -7 =3x° % 5% - 7.
- SN

Then (3) 1is true 1f and‘onlykif

‘f”) 4x2 4 x - 5 = x’2 +.5x - 7, x 1in R,

is ;fue. We are essgred.or his because we used cerfain field
pererties 16 simplifying thle algeﬂraic expressio S and these same .
properties- hold for all rea nembers. Thus the truth set of (4) is
the same as that of (3).. ‘say that two _sentences are equivalent
Af they have the same trdt set. Now we shift back to quantiried
variables and remark that N addingy/k - 5x + 7), x in R, to
both members of (4), the T sulxing ‘sentence ‘
(5) , %x° - bx f/é/; 0; x 1in R,
.1S e&uivalent to (4). (Wh'lisetﬁis true?) Then back to ;nqﬂanti-
fied variablee to faet6§/t e ‘left megber: h n

/hx4 = x% - e b 22

(X'— 2)-2 = 2

']

a = (x22- j/E)(XA= 24 V2),
giving/;pé/e;eivafent senEe ce’ « ‘ ‘
(6) - {x -'-2~«/"§)%x-2+‘/— =0, x in R.

'yex% we use the theorem cbncerning real numbers (quantified vari-
]

/ « -
. yables): s/ and.b in K, ab=0<=> a=0 or b=0"
p .
-//

_.41
’
-

.to write the. equivalent gentence = - .
’ ! .

(7) Ax-‘2—«/§=0‘or x-2+~/f’ 0, x 1inR.

It is an easy step to t ; final equivalént* sentence
B , . %

(8) T x =2+ 42 or.x=2- yf-, x in R,

whose truth set is, of course (2 + v2,72 - J/2}.

/_"\-./ 4
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This solution took us through sikx sentences, each equivalent

'to the others, until we arrived at one whose truth set is obvious.

) In some steps we dropped the‘huantification and performed formal
operations on algebraic expressions. At others we picked up the’
quantification and applied theorems concerning real numbers. Alwa&s

s

we were assured of an equivaIent sentence because the field proper-
-~

ties we used hold tnue fTor all real numbers as well as all algebraic

expressions. ' X . : .
The preceding solution is not intended as a model to be follow-
ed. «It 18 a typical example in which we spell out the shifting *
between the two meanings of "variable". It should be noted that
the factorization oVer R leading to (6) is accomplished by the
familiar ' completion of the square"
&:t allvoperations on‘algebraic expressions lead to equivalent

sentences. Notice that the sentence ~

(9) ‘ . x"in R, ‘ 1&\

has a null#truth set {no value of x in R makes this sentence

true). But 1f we drop the quantifier and writge

Lt ;’
. _ 2 :
' - '3?“”? =X + 2,

the resulting sentence .

(10) X+ 2= %, x in R,
has truth set [2} In this case, (9) and (10) are not equivalent .
sentences because the formal operation, when qﬁantified, becomes

x2 - 4‘

r—x—_—é\X"l’;Q and x;!2;
S .




e

o
.

b

A BB

i . . - N

6.16 ° ’

that }s;’we'must prohibit division by 0. Now the sentence

-y v by

£
(11 , x+2=1»4 and x#2, xinR, \\\, .

is equivalent to (9); 1t also has a null truth set
4]
Thus, formal operations on algebraic expressions lead to

equivalent sentenqes if the results of the operatlons "are then

i

broperly quantiried. We assume that when theorems on real numbers

i}
%

are used to obtaln new sentences, the quantifiers will be carefully

retained.

Of course, séme theorems ledd to new sentences whose truth

.

sets 1nclude those of the original sentence as proper subsets.

This sometimes’ happens when we use the theorem: "a and b in R,
and a = b==2° 2 b2, Note that the converse of this theorem .
is not true;' For-example, thé sentence - :

5 {12) Lo . © J2-x=x, x 1inR, o

has 1its truth set included in %he truth set of ,

.

(13) ' 2-x=x% x inkR

The truth set of (13) 1s (-2,1}, but -2 1s pot-d solution of

(12) " _ Fhen we apply a theorem that does not guarantee an equivalent
sentence, that 1s, whose converse 1s not true; ‘we must check individ-
fually each member of the resulting truth set in the original sentencef

On the other hand, someatheorems may wresult in new'sentences with
/ . .
smaller truth sets than the original sentence (such as "a and b

inR, a b’==* 2 = 2", where ¢ involves a variable). It is

" best to avold this situation 1f, for some x, ¢=0., " )
orf primary importance to a student 1s his understanding of the

réle of equivalent sentences in solving a séntenceand the. typés of

opgratfons and theorems resulting in .equivalent sentences.h Equiva-

1§%ce is a- two-way affalr. It :e///ﬂtngt every solution of the

-,
~ ’
r

1

‘ . l L. f[\( LS i
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Draw’ the graph of:
(a)
(b)
o)
()
(e)
(£)

4

3
A

%2

.3

n Xy = 0, (le)
3x ~2=0 and y =4 -1, (my) in F X F,
< / .

'+ ‘the second is a solution};g;‘ the first.

3y < bx + 6. and y < 2 and-'_2y>i
3y < Ux + 6 and y <2 and 2y > x,

e

¢ Centmn

g . B

3.
’ *

[

. . ) - L . N ' ’ .
*first sentence 1is a solution of the second, and every solution of

If he sees how operations . .-I‘

\or{ algebiraic expressions aid him in this procedure, he will not be
- V\tempted jto ‘treat such operations lightly. '

. -
°

Exéreises B P
Solve each of the follo'wing sentences: . -7
- ¥ i
(a) (x +3)(2x - 1)(x2 - 3) = 0, Xain I ‘
(b) (x+3)(2x -1)(x® -3) =0, x in F. ’
(o) (x+3)(2 - 1){x%-3) =0, x 1in R. ¢
\(d)-3x-\/h_<_x, J‘c(in N. E , ;
“(e) 3y<6 -x, x+in N, y in N.
’ . - ) B T4
(£); 3y <6 -x and y<x, (x,y) .in N X N. ‘ R
(g) Vvx =8 =14 +/%, x in R. ‘ 7 4
. (’h:) X2 _>’__‘.1$(x’ -1), x in PF. N .
T (1) J»xx—'_'—%-l- = lA,or x> 2, ‘X in R. - ' L ‘!"’/7 ,

'

@

in RXR. .

« >

(x,y
X,¥)' in R,X R.

in I xR, !

(44

x| + Iyl <% (xy) in IxI. . "
x° + y2 <4% and” x>y, (%,y) 4n R xR. ° . N

Q -y ! . . ’
¥ e 9.
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3. Solve (by constructing a sequence of equivalent sentences)
(a) 4 + 3;3 - 2X + 5x2 - x3 = 3x + 2x3 + 2 + 2x, % 1in’R.
(b) . (x + 1)(x° -1) = 3(x%

vl 1 1 . ‘ .
(¢) *+1T=x+T5% =0 ¥ inR, , ,

- 1), x 1inR.

(@) (2P -1) =0, x R, S
' g 3

-2 .
(e) X = + x 1in R.
x° - x -6 x2 -4 2(x + 2),

. { . .
b, Functions. Running through all our discussions or.opera-
—_ s .
tions, correspondences, algebralc expressilons, and open sentences
- ' /

* 1

" there 1s a common idea which was hinted at many times but never
stated explicitly. This 1s the concept of a function. There are
sharp differences of opinion on the question of introducing'func—
tions'at the beginning of a first course versusdnding a first
codrse with runctions. Sortie writers believe that all terminology

te

of operations, correspondences, etc., should be abandoned and these

i as unified from the very beginning in terms of funcﬁions, The
Writers of SMSG-P, on the other hand declded to lay the groundwork

~
for functions and then culminate and_summarize the eourse by showing

how functions can unify the preceding idegs. The question has by
no means been $ettled, and the reader 1s invited, after réading

thig chapter, to enter the argument, elthet pfé or con.

.
D) . .

g o
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If we review the nejor ideas of algebra, we recall such state-~

L

ments as . ' N

1 -

(1) Operations:, For each pair of numbers a and b in R ‘there

4
1s a unigye number a+b in R. [ 2
This operatign assigns to each pair of elements_in‘R exdbtly ’
one element in R« . . Y
¢ - . o
N Each element a in N has a unique reciprocal

' 1

N 'é- in’R. - g | Ef

This operation assigns te each element of X exactly one

N
.
;

element %-in R.

2
>

(2) Correspondences: There 1s a one-to-ong correspondence between
: :

5o . anlli the set of even natural numbers and N,
.This correspondence assligns to gach element n in N exactly one
element 2n in N a@p'assfgns to ‘each element e in E (even natu-

-

* ral numberg) exactly one element n in N,

: + 1(3) Algebraic expressions: 3x° + x -‘gyg, (x,¥) in RxR. This

-

quantified algebraic expression assigns to each element ( i,y)

e

in RXR éxactly one element (3x + X -2y ) in R, I
(%), Variables: Let x be the number of feet in the ledgth of a . ‘
AN " . . . _ . ;
rectangle.- . . . / .
£ . N ]

The .variable x assigns to each rectangle in the set of'all

rectangles exactly one’number (of feet in its length) 1an. .
(5). Ogen sentences: ¥ —ﬂ/ X, X in N and y in R. 3 ’ -
Tpis sentence assigns to each element x in N exactléﬁ%ne ele- ’
ment y in R (for which, the sentence is ‘true). .
- L 4 s S,
: : ' v
1 - 7 4 .
weh - - . ’ / & ‘\
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(6) Sets of ordered pairs:. [(0,2),(1 2),( (4,4f2), 5,wn This
set of ordered pairs assigns to each element in {0,1,2,3,9;5}

exactly one element in R.

(7) Graphs of sentences: _ b l
'This graph assigns to each ‘ /’“(/Xy)
‘ element x (abschsa) %p R ' 3{:/>// .’
- exactly one element & o . sl [ .‘, .
) | ’(ordinate).in R | /

&

It is evident that a common concept runs through the above
examples.. In each of (1) to (7) some rule or operation or associa-
tion or correspondépce assigns to. each element 4dn a éiven set a

. unigue element in R, resulting igga pairing off of elementsﬂﬂrom the

two sets in such a way thatﬂ%? two distinct elements of the second

«

set are assigned to the same element of the'first set., To be sure,

_there are correspondences which pair off elements of non-numerical e
?

'S

sets, such as the correspondence of each himan being with a color
¢

(of his~hair) In fact, wherever "qf" or-a.possessive form of' a
H 4
- Zerb is used there isaa\correspondence between elentents of two sets,

ut in this study we shall restrict our ajtention to the types of

-

correspondénces given by . the T \»
Definition: Given : set of nquers and a rule which assigns to
each numb in this set exactly one number in‘R e
. ‘ the resulting association of numbers’ 1is called a

function. + The given set is called the dpmain of

. +
“deﬁinition of the function, and the set of assign-
@ [ 3 - . ) .
L | ed numbers in R 1& called the range of the
, function. ’ -0
o ,ti‘ ®
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. A function is usually designatéd by a létter, such as f; 1if ¢
' assigns to each element in S exactly one element in R, we indicate

this fact in various waysiy

'

. .
£: X—=~>y, X—>Y, £f(x) =y, - (x,f(x)); x in S, v in R.

_The third of these notations is most commonly used in a first course.
S

}t‘ is read 'f of, x 1is equal to Ra thatj.s, the number assign-
ed by the f-function to x 1s y. Notice that ' f(x) d4is not "f
times x", but rather f(x) 1is a number. The fourth notation
indicates that each x is‘pair'ed off with the unique number f£(x)

assigned td x by the f-function.

.

A
-

A common misconception among students is that functions }: t

be defined, in fact do not/xist, unless there 1is formula (algé-
% -

braic expression) involved eLn the definition. We must convince him
that a function 1s a concept “an idea, and not a formula. T\here '
are manygways of \representing a function. For" :xample , the function
descr'ibed above in example (5) can be r'epr'esentediva.r;iously by: '

A set of order pairs: '.[i(]‘.;l),(Q, v2),(3, «/§),((J,'§h),...] .

. A Verbal statement: To each x in N assign the number ./x in R.
5&% :An equation. y,—\/_,‘ )5 :Ln N, y in R.
’ A formula: %’ E in N. 6 -
" A graph: , ~ -
° . ’
' 2 R - Py ® 4 ’ ! * .
[ ]
I 2% [ ] . - A s ,
' ’ ’ i i " i 1 L | I -
. ’ ~L i 2 ‘

No one of these representa@ions is ‘the function, but each describes
the function. "The point is that a function does not depend for its
definition on its repr'esen,tation but only= on its domain ef definis -

tion arid 1its rule of assignment In general, two functions are )

- °

Y o ° ls

- .

-1
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egual if thFir domains are the same set and their rules of assign— .

.

ment are the same, regardless of the manners in which they are .
-represented. For example, consider the two functions:
B a —>2a+1, ainl R . L
. . g x°—> 2x +°F, x in R

These are diffeyent functions because they have different domains,

even. though their rules of assignment are'the same.
Frequently the rule of assignment is given for a fUnction

-

without mention of a specific dggain of definition In such a case
the domain is understood to?ﬁb the,largest set of real numbers to
which the rule can be app;ied sensibly Fbr example,‘if a function
1s defined %ﬁ? f x-e~> v(ET;-§; then unless otherwise stafed, the

domain 1is understoodato be “the setrof all real numbers greater than ‘

or'equal to -2. ‘* quﬁﬁﬁgg “ . - - ¢

i 4 ¢ et
Not all correspondences between sets of numbers defiline func-'/

tions. This 1s anotheeroint of confusion for students.¥ For

example, the equdfion - ) &
{ . y2 e,xandyinR 0

* -~

does not derine a function r; X —» § because to each element x in °

R this equation assigns two elements y and -y in R, Of course, e

»

may write
o N ]

Vo=Xx<e>y=%X or y=-xX

and regard the'equation as defining two functions. This 1s precise«

iy,how\we would handle this equation in certain situations in the
! ? '

I

calculus. On the other hand, the equation y2 = x, x and ¥y in R,

\ -~ -

does define a function ,g,\where g(y) = y2; .

Kl
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,  Som® functions may not be represenyed by formulas, but this
does not'disqualify them as functions.‘4Fof txample, the first
class postage regulations define a function: _to each rea;:numbe; .
x (in ounces) in the set {0 < x 320} the;g 1s assigned a natural

number y +(in cents) affofaing to the graph

- A
~ 6 -
y >

&
24 4+ o—e (11} .
204 o—e

. 16 + o—ae .
. 12+ o——e
‘ s BT O—e
N -~
4 Ho®
L}
- 3 4 + It i I X eee
1 2 3 4 5 6 t

We could also describe-this function verbally or represent.it\as*a
table of palrs-of numbers,, but we cannot finé a'single algebraie

’ R v
exprassion which represents yﬁfor a glven x. Ievertheless, there ,

1s a, function defined.

X Frmn our new point of view Wwe can say that an algebrale

{ expression, when its variables are quantified defines a function
. -

-

The graph of a function f is the graph of the truth«set of . the
sentence ¥y = £(x), with x in the domain of f. Thus, if a 1s in
the domain Ef £, then (a,f( ab) 1s a point on the graph of f. From

theldefinition of a functioh we see that “theré cannot be two points

on the/graph'of f with.the_sanm;ahscissa_and_distinct ordinates o b

This As the same as sayi ; that if a vertical line is drawn through -

the jgraph of f 1t will te“sect the graph in exactly one point,

\lIh s, the graph in fig (A) describes a function, whereas the .
. — -

- &

s not, - ¢ ‘ } «g&
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For a student the graphical representation of a function\is

" probably more informative\than any other.  For instance, figure (A)

’,

gives the grapﬁ of the absolute value funéiion defined by the equa-
tion ’ =
7 £(x) = Ix|. -

From the graph 1t 1is.easy to see-that another represeantation is
ngen by i " &

‘ " : X, 1f x > 0, o
N \N‘——‘~ Y f(x)I:’- ,
. . -X, if x < 0,

\

\\\ghich is a statement of the definition of le. \ »
The study of 1inear.and quadratic functions is ai¥ed by graphs

and the subtleties of domains ofy definition are often cleafed up hﬁ
graphical representation.

A final word to teachers.

' (Y
When students are introduced to

3

: \
~functions, the intnpduction must be clear and.precise.

It would be

bgtter to omlt: all mentign of functions rather than”
meaning of them,

tion 1s he can

g

S

\

1

-

presenti&iJM§&1~
"But if a student reaggy understands what a fune-
\‘\

e unity and“coherence of the variety

he studied in algebta. . V*‘\N““““w' - ,A: -

EXerciség B S S

-—..._.-—.,...-'—-,

Each of the following is a represehtation of a function; give

three other representationsmaaduéeﬁﬁgih_ii§§“gogain and range.
,.-A \“—-‘:‘ ‘ ‘e

Mg

’ ¢
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Rorn,
(a) To e@ch posi’cive integer ;. there s ﬁe:signed its? rlemé’jnder

gf

- ’ . after dividing nfby | © s =

>
b 4

(b) (1,5),12,8),(3,11), (¥514),(5,17),. 7 g
(e) £(x) =" [x# 2], x in (-3,-2,1,2}... S
H i - '-d
5 . QE ; )
- o ’; .
— —3 , 3 - N
Determine the domain of each of the functions defined as;r;b f
— e . LT i 3 b
. follows: = _ = P - e “W'i“ e
- s, - L, EE
(a) 'f(x) i SR F o
- - B = -X _;’("“'7 .‘-” s -
. g (x / 3‘"*‘ L (B, -
- 3. How are the functions in_each of the fa2lowing pairs re?ted‘> °.W#T'
.2 -
. 2.y
((a) £(x)-= x. =2, Bte) = 1;_4_\2 !
. . o SO
2 £ 1 - N
(b) glx) = x7 - 17 G(t) = S5 : R
\(&2__23\ $X~l)2 H(e)-=dt -2 T ;
m-wiLr—.Cangider the fur%n f defined by the rule ”,‘__—__h_ﬂ_g;i__' .
e I - 2 A
B T S1,4f A (x0T - R e er————
- S — f(x) = ) & ' ————
&uﬁwq x, 110 < X s, 2 —— te ) .“q.
=== "“(a) Mhat numbers are. represenbed by £( --—) ST(V5), f(%)‘? .. -
=3 (b) What is the domain of £9 R @ T e
c) What- is the range of fo Jp— “—T-ﬁ»r? - .
— ~{d)=VWhat-1s the truth set of the equation £(x) = x? ,E - T
L,___‘",“_L i (e) Draw the graph of the fruth set of the sentenc fi(x) < 1. . )
7 5 K Given the function g defined by L—/“ . Q——
- - 2 ' ' IR

MW‘ _ -g(x)_x‘-l, x in R. . L agp—
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\. , f(x) . o
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- N “ .

If t'is in R; what numbers are represented'by g(;&); -g(t), *
2 (t), s(26), 8(6-1), g(®) - 3, OE(4)), g(é(%)),*g(—%ﬂ)?n
Draw the graph of. a function T which satisfies the conditions
£(1) = o, £(2) =
andit(x) >O§‘or0<x<landforl<x<2" Is there only

f(—l) = -2, f(O) 2, £(x) < 0 for -1 < x< 0,

i

o

one‘?GZEZIbn satisfying these conditions? -~

\

Which of the following graphs define functions?

(a) ¢ (v) \ (o)
. 1} : - 1’ i
@ 4 ON ” (2) '

if a function f is defined by the following graph

draw the graphs

(a)
(

(c)
(4)

g

b) h,

k:
“t,

- - j_,lnj_z..::’ . ) .
of the followiTg functio}si

where
where

where

where,

g(x) = -£(x), 2<x<[3

h(x) = £(-x), -3<£<[2 5
k(x) = £(x) + 2, -2K< < 3 ,
t(x) = f(x +2), -b<x< 1.
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INFINITE DECIMALS

’

1. Decimal Representations of Real Numbers. It was establish-

a

ed in Chapter 4 that’ integers and rational numbers may, be represent- 3

«Q
M .

ed as deeimals, the former always terminating and the latter some-
times non-terminating (infinite) It was also shown that if a

-3

rational number has an infinite decimal representation, it 1is
.pe riodic in the sense that its digits repeat in a regular fashion.

ths_leaves unansweged the question: Is_enery periodic decimal the ..

»
o

representation of a rational number? After we answer this in the

affirmative, there 1s ralsed the néw question. What numbers, if any,

k2 .

.‘are T presented by non-periodic infinite decima1s9 3 g -

. r

Recall thatha posit*re number x 1is regresented by an infinite ;“ e
decimal if x satisfies everx one of the inequalities in the infinite .
' “ ] . € -
"set of "inequalities: Y ‘ ’ . o “J ’ //
3 : ¥ P N : o
%C S X S bk’ .ak <’ bk, . Qk - ak = ——Elo 9 k = 1‘,2,3}, e e F] ;‘ " / 4'
where -- i . * - N /‘
n dl‘ dk . nﬁ" . dl dk 1 . i f
ak =..‘.ci:’]_o Fooot cd +i;6T...+IEk, bk'= Cnlo -i-...-i-(!’o + T6+r..+FEI;E P) /’/
R ’ o R A . /
n 1§ in N, and each ¢, and-d, is some integer in {(0,1,...,9). The J

. N P} R e s ) A . . . . .

L .N‘ N N . / Y - . / =

we write x'=.¢n“}° . 1"‘dk“‘ _ . /
We hall show that all real numbers have decimal representations

L}
and all decimals represent real numbers. Then,- if” real number ,is,

1

a A

not rational its deqimal representation is not*ggricdie;veonv€rsei§,

i s LR ORI

-t

A Y “ d

‘ -




Y

v

since ever;\kational number is.represented by a terminating or a

l
<
!

A2

-
&

Y

periodic decinal, if atdecimal is neither terminating nor perlodic

it must represent a real number which is not rational

Here we have

a clear distinction between rational and irrational numbers -~ a

distinction of

Y. E______T__X

The above Temarks, need to be verifiled.

all decimals represent

real numbers.

X

eriodiLit of “their decimal representations.
First, let us show that

bf'course, if a decimal termi-

. rabes, then by definitfon it is the rational sum of a finite set of
b

. Thus it s séfficient

' the preceding.

ratiohal numpers each
- R

i
eilo

ot YL

real numbers, FOi

.23233233323333

ting decimals * L

1.2, 23&

or

d

s
10t

>

‘of the form

0<ey <%0

and the corresponding infinite set of termina-~

vy

$ di 9.

to show that all infinite‘decim 1s represent
exa/ple, consider the infinite‘deci al

\
“\. L.

« :

232,.2323,.23233,.232332,.23233 3,...}

which has an upper bou d

-

‘say 1.

‘ least upper bound which. is a real number.

Certa nly D1is a non-empty set of rational numbers .

Hence, by axiqm c, D has a unigue

Ve shall how that this

unique lub of D 1s thé ;§a1 number represented by th Anfinite deci-

mal .2323323332. .. r

|

i
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2 < .3
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.23 < %.24
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Since a, <b,, ay S an+1’~ P41 Sbys and an = ;BH’ for -
*
all¥n 1in N, there s exactly one. real number Whichwl tisfies \ '
/ every inequality, and this number is the lub of D. (See P‘ blem 5 o

_on p. 5.194)

d

d,d 2... e " ‘ :

| yenbs N . -
D= (idy,dydy, dydpdy, ey e dy . Gy, . ’
0 < dy <9 which is bounded above and has a lub which 1s trle uniq

3 real number represented by ‘the infinite deCimal._

Convebsely; every real number can be represented byia.decimaff

This has bgen

irrationals.

approximated as closely as desired by a rational number (see LT e

Problem ) An page, 5.19); for our purposes let us state this fact in

the fol‘!&viLg

rational number

Jx- such that

\ ”
Now it is po sible to generate a set of successive rational .approxi-
mations a, oA corresponding to the successive values of e:
1, l, .01, 001, ... . Hence, we hkve~a set of inequalities '
\
e A
. . 1 L
\ . al < < a'l\. + T(-)- - bl ‘!‘i
| ay < y‘?.a + —15 = by | -
’ 2 2
- 7 ” ‘ lQ
; N —
. —/ Lol . : "
. i s N l . {r N
and Yor every - k 11’.1 N, a,<y«< ak +‘ I—OE = bk’ " y - : .
| cf
O , )

A3 , ;o L

In general, corresponding to each infxnite deci,al

“ thére is an infinite set of terminating deoimals
’ ) +

,l’

shown for rationals; it remains to be shown for
; é
We first recall that any irrational numberamay be .

14

form Given any irrational number ¥y and any positive

e, no.matter how small, tnere,is h rational number

- . > . ~
Ay
'R ’

X<y x + e.
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N | : , { 1 ! | ,
> ' .qt ’l - "" A°4 . .Q
) ‘v{hefe“ak e bk,' a < a:k+1; bl‘c+11 -<-,-33k’ b - 8 = I)F%‘& This set of
. & rational approximations’ak will be boung?d agqvé{and wi@; have xﬂ§§:51
- its‘lub The corne\ponding i4finite decimal will représent y. ;
* For example, let us find the infinite decimal representation -
;*\ of theVirrational numbeg J2. Correspondin% to =-l, L. .
. - ‘1<f"<1+1 "since 1 < 2 < 4, .

\ ’ Corresponding toe=.1, v '

. ‘ 2
. PR VAR ¥+ 71, since. (1. 12 ¢ 2 < (1.5)%.,

le= .01 l.ul ¢V/Z'< 1% .01; since (1. 1)2'¢ 2 ¢ (1.52)2.
}

=7.001: 1.418 <3 < 1.414 + 001, since [1.414)2c2¢( (1.515)2,
. J ‘ N - . : ‘\1 ‘\’ -
ete, R Rl — |
The lub of the‘set {1,1.4,1. 41,1.414,...) 1s the irrational number
e \’» J , and is represented by the infinite decimal 1, 414... . *
LIt is nodt surprising that ¢he completeness axiom provides the

/ /
answer to the problem of decimal representat/ph of real numbers.

After all, 1t is this axiom which complete the characterization of

R. . However, 1&3562t be noted that we have sthted ah existence .
® theorem for decimal represeﬁtation of /an irrational number. It .
tells us there is a deCimal but 1t does not spell out a_ ‘method f/r~
fiqping the particular digits of the decimal" For;Square roots’

¥

there are algorithms of ya ous kinds which “exhibit the digits of

the repreSent%tion, but for'Luoh

4/

irra oAal numbers as v, ey log 2,

ete., we must develop special fethod for each number.

§ .
‘Now we are- assured that any inﬁinite decimal, say

3212121... 5 .321 I : -

N . ~ L3 v ®

.represents a real numberr It remains to: show that it is a rational

. S
'] « hd

M _number if 1ts representation is; pericdic. To ilﬁustrate thé

\
I 5 Y . i . o L . Py
. 5 - . 3 . / ¢ “
‘. . ‘ 7 .
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.technique we shall use, let us consider the periodic decimal .321.

K

- Let .212121,.. represent.a real number N so‘thet

(4

‘ 3, 0
. . .3e12121::. =16+ 10 : )
Now : . ) .
: N=.,2121... = ‘IQON = 21.2121... e
- '=> 100N = 2.+ N oy
. => 99N =21 - ot
’ " .= N=—Z‘.‘.
- ) 3 ;
3.1 3 ’ o
Hence, .3212121... =70+ 330 = 165 which is a rational number,

- Long division will verify the perfodieity.
It 1s interesting to study the decimal .999...9.:. = .9.

If.N = .9%..., then 10N = 9.999... = 9 + N. Hence, N = § and
N}E?f 1l . Thus we see that the rational number 1 can be represented
by elther 1.000... or by .999... . This cholée Of.two periodic
‘ decimal representations 1s posslible for every terminating decimal:
A7 T 385 = .325000... = .30999... = B ' .

4.728 = b, 7280 = 4.7279. Lo
’ The technique used qbove can be applied to any pefiodic deci- ‘

; mal as follows Let us assume.that the repeating biock of k digits
; fi:st occurs after the Jjth digit to the right of thg decimal point

e \X = n N lcoocl P 1 200. J\j""l J+2Qoo J+k/ | N
< : k digits |

¥ Tﬁen x 1s“the sum of‘a rational terminatingzdec@mal %ﬁdf periodic

“J-decimal o ‘f.:f u’ " :

L \ {

x(— cncn -...Cl(;o l eoood 7( dJ'hll 3+2000 :‘+k)c

WA Fl
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A.6
“Let .d J+léj+2"'.34§ JLepresent asreal number N, Then )
1o d a,’ 3 a ’
, S % J+l J¥ai e J+kﬂ JHL7 2 7T gkk A
+ ' k . . L .
@ 10N=dj+ld3+2...d3+k+1g ' ) '
) N = g I
-, hY 3 R
’ ’ lO 1 .

and lok 1

L 4

J+l J+2"' J k

(2) Every real numbexr has a decimal re resentation. - - .

‘ the infinite set D of rational mbers: - ‘ .
< o . . . ’ M
D= {.dl 2,.dld2d3,... ’dld2°"dk”°'} g\

o4, (3)- The decimal re.presentatioao a real number 1is periodic
‘» " 1f and ohly if 1t is a rational number (writing termind-
. - A ——— .

‘. - %ing decimals as periodic deci@als with repeating zéros).
¥ . *

»

(5) . The representation of a real number is non~periodic if

and only if it is an irrational nﬁmber.g
. B - . v > .¢
- is Nobt Countable. Now that we know all real numbers can be

-

represented as infinite decimals, we are in a position to pro@e a

plicity, let up.restrict our atten;Aon to the set Q of all real
numbeps x such that 0 < X <41. + If we cak.prOVe this set 1s not
:/ o -

statement made|in Chapt}er 4:  The sé%‘"' R is not countable* For sf,m ‘ i
o

I

eGUntable,’then certai 1y ? is not cou able.’ . '

©

Let us assume th negative, nimel , that the set?:wqgggll real
s E—

numbers between © and |1 is countable, and obtain a con radiction,
. e 7 . / ." '

P

.. j

185 o )




T ",I. i ) - - A07 ’ B , “‘\\
. . ’ '(z.b) ; ]
This me?ns we assume a one-to-one correspondence between the elements

‘

V/L N and Q. .Now every real number in Q can be‘written as an infinite

-
4 7’ s

decimal, where we may agree to write terminating decimals as period-

”icndecimals with repeating: zeros. - Then we form the correspondence.

B . - P

. N s & ‘ . _ K
“ RO 4 , - i
1 <> .alagaa... ak... o o .
e - [} .
_ 2 > 1blb2b3... bk”’
< : _ :
X 3 <> .c1c2c3... Cleo v
n  <— .ryr 2 3 co Tpees ' )
: ) : ) Lo I

. . . -
. I . . .
-

where all the digits are in the sét (0,1,2,...,9). By assumption,
every real number in Q,&s in this 1ist. To show a contradiction

let us construct a reai/ngmber x in Q which cannot be listed.

‘ - . ?‘ -
Forin . c Vo :
; - X _'tlt2t3...' ceey L. T

.- . o - -
f N - “ z P

‘with not all its digits 9, where tlis e;digithhifferent'from a;, by

)

is.different from b, té is different from ¢qs seee “t, 1s difrerent
£ ’:\"&,1-" o e * ) ‘

fﬁoMrr‘, Y.. . Certadnly, x 1s different from each real number

- &ﬂsted because 1t differs in at’ leagt one diglt from each of the

. numbers.‘ Yet x musF be in Q because it is repres

a i gg i
b *
¥
.
J
=4
’
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() 8 ) 0% () 6.3%
(b) .31 . (a) .1k2857 . (£) .09

N\
EK/Stermine the first four elements of an infinite set of termina~
t1 '

.4.

-

decimals whose lub is, -

where the number of O's between .successive 1!s increases as

(a) V3 7 (c),, vz <
-k a : ‘ |
AR5, . (@) S
Find a;terminating decimal. _ R ] |
' \ . ’ .
(a) between v/'5 and v6,. ' ¢ ’\ o -
(Hint: V5 < t<v/B =5 ¢ t2 <6) RS S
(p) between V43 and V#4 ' t, C. . ' / |
’ 3 32 * - 4 ‘i
(c). between 3> and 3% . . . o
" Prove that the infinite decimal . ‘
7161001000100001000001... = e
|

indicate’d,’ represents 7an irrational rumber. , : .

Explain why neither 3.1416 nor -2—.?- ‘represents the number 1r‘.,‘ —

A real number may be represented by an 1nf1n1te set of digits . J‘
‘" taken from any set o'f integers ‘of the form {o, l,...,(k-l)}, I'i". 1‘

k = 2, Yor.example, we have binary representation. Then . N J
. 1 1 a .«
- lO 11 = 1'2 + 01 + + - .-
~two 2752 . |

- »

Find the rational numbers in the bina:é’y scale represented by

1

. each of |the followi periodii binary forms

(a%’ g VoL (c) .110 3
(b) .0l (d) 1.0101 } o .
) 4 'ﬁ " . / \ -
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‘@; o, . .\ = v
. i COMPLEX NUMBERS °
v M v & »

)

There are some desired- properties that the set R of real num~
’ ’ . ® . ‘ .
bers does not have, For one, the equation x2 + l = 0 . does not

‘ have a solusion in R. As long ago as ‘the beginning of the 19th
century there'were dttempts made tq develop a number system in
[ ‘ ) .
which such equations have solutions. In the 1840's Hamilton intro-

- o

duced the complex number system as, follows. . a )

Just as each point of the number line is associated with a

real number, Hamilton associated each point 'of the plane with a K

-.r onom e

complex gk.ber denoted by an ordered pair of real numbers (a,b): o

His initial problem was o define equality, addition and multipli"
cation of these points" in such a way that the resulting systém of
complex numgers is ‘a field which includes the system of real numbers

as a proper’ subsystem. He was motivated in his @efinitions by the

.
f

'desire to have:the'Solutions of the equation x2 ="=1 in this
] ! ’ ! ‘ ' /
gystem and by the observation that compléz numbers should add like

- . L3

Jectors. . o -

¢

v ‘ {a+c, b+d) . T

. & s | .
:‘ ;? e ) (c’d.)c - h
N / . {0,b)
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. & by z?"‘% i )
' A BY :..;,. - /

. , . e, . (' " n\(»vf . '
“« Definition: Consider thé set 2 of all ordered pairs (a,b), a .,? ’

' « &nd b 1in R, with "SM, "4V, "' defined for . .
s these elements as f0¥iPWS= For a, b, c, d,'~ in R,
-t ; (a,b) and _(c,d) are in 2 and “é ¢ : ‘ <
) Ce (a b) = (c d) a=c and b =14
. o . (ab)+(cd)?:_+c,b+d), W oL
‘,:.°' N (a b)+(3;d) = (ac - bd, adj+'chf:?\ 7
o \ - The resulting system (z, *, :): is'calleditn i
~ comnlex number system. N -

The reader 1s invited to use the properties of operatibns in R.
to P vh that the set % is clobed under the operations +, *, as .
v defined above, that these operations aﬁe commutative and’ assoczatiVe; ’
. and'that' + 1s distributive thf%u?h %, Since’ ‘ ‘ .

(a,0) + (0,0) = (a,0) end (2:0): (1,80 (2,0) Vo

for 2all a, b in R, the system.contains)an adgitive identity s
(0,0) and a multiplicative 1dentity §1,0) Algo, since .
e s T, TUED) ¥ (-2,mb) = (a,k) Tfor a1X apT MR, T !
and , - e e f'. ‘ , L f
. ' . a -b c AT ' :
(@;,,b')-(—éﬁb_e,, ) = {1,005 forE11 (a,0) £ (0,0),
- ' . ) .

A}

the syste ontains an additive inverse. (4a,-b) for each element g§

o7 * (
A .

. " (a,b) and a m) tiplicative “inverse ’ ( 2 .2 42) for each |
7 ‘ on-zero Llement (a b) " We concigde that the ystem (2, +, -)' o
‘ ' atisfies axioms Fl to jors and is a field 2 1 the properties proved i
\ = for a field dvre enJoyed by the syst%mJOf&:omplex numberé ‘
» | It should be noted immediately!tha£,>n£ particular subset R!
t o of 2 consisting of- all complex numbers éﬁ;\"é form ’Ca 0)
"\mh very familiar set.” (Consider: the followingﬁproperties.

,“ , -’.J‘

TR 1189 fE

. S . . P LY N “‘ 5
e 70 .4 & : A
5 o o
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2o\ - . : :
- .« (a,0) = (c,0)<===> a=c¢ for “a, ¢ in R, S
.3’ ‘ T (a,0) + (c 0) = (a+c¢c, 0) for a, ¢ in ﬁ,‘
) . (aso) (c 0) = (ac,0) ‘for a, ¢ in R, . ’ )
oL : (a,0) + (~a,0)= (0,0) for all a 1in R,. o
o *(2,0)+(3,0) =(1,0) * forall af0 inR.
We conclude that ,the system (R', +, *) 1s also a field. In fact; .
g

\ it is 1 ree;pect Jdike the field of real npmbers, »for there is
a one-td-oné gorrespon ce quween R! and R in which the complex

» number (a, 0) correaponds to the real number a and in which the

?

operations are preserved~-

-

- L . (2,0} <> a

. (2,0) + (c,0) <> a +.¢c 4
R . - 0 (a,0)+(c,0) «> ac, for alli a,c in R.

Because of this operatiﬁn-preserving corresoondence and the

-

fact that the_systems have the sdme structure, we adopt the con-
vention that R' and‘R are the same set, and we write a 1n place ’
of ((é,o)a whenever convenient. In this sense we“have-shqwnithat .

.+ the set R of real numbers is-a subset of the set Z of complex numbers .

\ L}

Is R a,groper-suﬁset of 2? To answer this question in theﬁ

" affirmative let us concentrate on the'element (0,1) in Z. By-.

. ‘ .
Y A

. (0,1)-(o0, 1) (0 - 1,0 + O) = (-1 0) -1 ,;/_/3'.18

Mnumber -1, But we kndw that there is.no real nugpber whose square .

°is -1; 'w% conclude that (0,1) cannot be idenLified withxa ‘real \f

.number. Qhus,' R#ZZ. » ‘ e B ;_;.,
“‘ l > ’ - (' :i ’ ] ./‘"‘/

This |complex number (0,1) 1s calléd the imaginary unit and

is denoted by 1. Now we obgerve that

definition, . : ‘ A N

Hence, we have [found an elemtnt in Z whose ”square" is the real 1w




(a,0) = (2,0) + (0,0) and (0,1):(v;0) = (0,0 = 7.
implies . .
(a,b)y = (a,0) + (o,1\.(b,o) = a + 1b.

IS

The notation a + ib for a complex number is more convenient than

[

(a, b) because it gives us a device for remembering,the definitions
of addifion and multiplication o$ complex numbers . Making use of

the associative, commutative and distributive properties, we have

. ‘(a-i-wib.):l-(c+id)=(’a+c)+i(b+d),

-

(a + 1b)-(c + 1d)

(ac + %ibd) + 1(ad + bc)w

(ac ~ bd) + i(ad + be), ‘
X v we . 3_ vy gk
since w& have shown that 1% ="-1. Furthermore, 1" = -i, 17 =1,

215 =1, 1° =-1, ..., SO that every number of the form . : N

- .2

. c4N . £ '
N i ' - ag + ali f a2i +7 .. + ani . ———\\\\ . -
“— , oo~ .

where  ay {s id'R for each k=1, 2, 3, .,., n, can be expressed.

in'the’form a+ ib; a ana. b -in R. : - . ﬂ. v
] The 'set of complex numbers of thl form (a,b), b # 0,, is
’ dalled the set of imaginary numbers. Thus the set Z can be con- .
. sidered as-the enlarged set obtained by annexing to the real numbers
o (complex gumbers of the form (a ,b},, D O) the set, of imaginary
o umbers (COmplex numbers of the form (a b),' b # 0). N
’) \~. The set Z 1s associated with the set of points in a plane by

the simple device of referring tp, a pair of rectangular coordinate
: ,axes and 1etting each complex number “fa,Db) correspond to the|point

(a,b) 1n the plane, a ar?d b in R. .’
’ - /"

;@

Al " *
) ‘e ‘. ! %




’ \ &
. B
[ . N '
> o B.5 - : . ¢ &
1 -, ., ) A 1
- P - . . ©
' = .
imaginary axis
N ’ e ¢
) , ; -
" (O,P)',“ L O’(O,b)
¢ “«g . s
- ¢ 3 ,
: o Real " 0xisy e ML e @omy .
S ~ > m;. e ]
) .0(0 0) gyﬁ_ el T eomomgg

-

; Thus the real numberg correspond to the points on tzineJmI}mnt —
(real) axis,‘and the imaginary numbers correspond tt;g the points i 8 /
‘the plane not on the horizontal axis. It 'is clear ‘;hat the complete- \\:
ness of R guarantees that every .point of the real axis qorresponds
to a number of the [.t‘orm (a,O), thai: every point of,__the_vsrjc * N
(imaginar'y) axis correSponds to a number of, the. f.‘orm QO b), and,

e é,
B finally, that every point of the plane corresponds to a number ofr‘

ﬁw'am;;cﬂ A
ﬁhe -fox)\ \(a b). A‘ll these corresp@ences are .One-~ to-one 4

. - TN
4 ‘. e Nr e e

< Let us review the properties jof Z., R o
. ! "’ * ’ ’ ;‘) " ) g““‘“ T A
(1) Closure. The set Z _is O&Qged. under addi?mn,_subtnac‘t.ion.,\
. multiplicati;fand division (excluding dg.izision by‘\»,‘(OQO)LM “;
R Of prime importance is the fact that 1if. Wcmpﬁ?
. ‘ cr ‘numbe.r, then nj? is also” d comp-l-ex number for any n .
, /“
2 T " tin N. We shall not prove this here; the!pr:f involyes -
“* """ a differentirapresentatigmsST c complex nu.g\bers Th’e % ’
.t -F= —» .
equ¥tion =2, ,2 in Z, has a soluti@in Z aﬁ& more
. X N o' a
) generally, every poly-r{omial e ation ih one Jariable
:@;v P % . ~
R \0—-’4 oy N
4 ' ax® +a x1a +a .2.3‘1 »_o' e 9 s
o n n-1 RIRERST -f- ’ : .

? _ LY

J.

L , e .3 )
a; inZ, has a solution in 7.V This rema&:ﬁcah\:gr?m, s
£ .

called the" fundamental theorem of algebras was firbty

/ -
\U
—_————

%’ . N %
* N
5 .

’
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. e I v . ! i \ ’ . N
' proved by -Gauss*in 1799. Thus, no more extensions’ ’

beyond the cohplex number system‘are necessary for
- t . I8 ‘

solutions of po}ynomial‘equations.‘ A consequence of thé

L fundamental theorem is that every polynomial can be
VLTt factored over Z. For example, °
- %%+ 9 = (x4 31)(x - 3),
. 2 ’

CR 24 5= (x4 124 8= (x 414 21) (x4 1~ 21),

(2) Completeness. The system of complex numbers is complete

- only 2n" the sense that there is a one-tp-one correspondence

between Z and the set of all points in ths_plané. The

- A

axiom of completeness applies 6nly:to ordered systems;
and there Is no way to define ‘order for complex numbers

so that the order axioms 01 to O4 hold true. =« ,

. -
[
Lt

In Chapter 1 we remarked that the most 1mportant discoveries

in algebra have been made by studying Structures of systems without

regard for the models suggested:' For example, a large part of

1840's when "they lqeked at some known results of algebra from the
N ’Sz,,
point of view of structure. Their ork contaihed'one of the first

11lustrations of the possibility of|making significant new discovei-
I
ies in mathemafics.as a result of xamining the structure of kno

! ‘

_results. ’ N

Id

The known results at that t me were the properties .~“feal .

numbers._ It was knOwn that real numbers can be ass

modern abstragt algebra was motivated by Hamilton and Cayley in the /

v

4

L
-t




- A R
/

. If the real number a is positive (a » 0) or negative {a < O),

theri a® > 0. Thus, a$*+ad +1... +af=0 implies that - ‘
di =a, = ::..= a, =xO,' and -x2 = b, b < Oy has.no solution among
the real numbers. Gauchy, Gaﬁss and others* introduced & solution

5 .

i of the equation x°.= -1 and, adding, this "imaginary" number to

A}

the real numbers, saw that the resulting number system contains all

expressions of the form ) -

2 3

. " a4+ bi+ci+did+"...,

all of which simplify to » + si, where a,b;c,d,.l.,r,s are fea;
' ’ } .

numbers. Moreovern, ’
(a.+ bi) + (c +ai) ='(a + c) + (b £ d)1
and © o
. : \ 4 K ' . >,
,(a bi)(c + di) ="(rc - bqg) + (ad + bc)i.,
This was the situation when Hamilton came on the scene in 1842\‘\\

Pirst or 311 he looked at complex numbers, as numbers of the °*

form a + bl were called, from/the viewpoint of analytic geometry.

o

Just as a point on the line correspdhds to d single real number, so .
a point in the plane can be made to correspond to a single pair of -
real numbers (a,b) Thus,lﬁémilton thought of each’ point of the °

plane as a single dbmplex number which be denoted by a humber
v

couple (a,b). His problem was Can multiplication of points be *
defined in such a way that the 'system has the same structure as, the

real numbers, at least as far as addition and multiplication are
S o
concerned? , * ) : .
' A . . t
A vt . -~ . NG

- K] + - “’
; , .

*See E.T. Bell, Men of Mathematics, pages 232-23%.

94 Cy - .




. . . ’

He proceeded to define addition and multiplication of poilnts

/ of the plane, as was done earlier in this section, and then wps
/é 4
. able “to show that the.resulting system, like the real numbers, has

the properties of a field, and also contains a solution of thr\,
a equation %2 = -(1, O), namely, x = (0,1). ) ! )

1 N 4

QHe observed more.. The distance from the origin to the pqint

(a,b) 1is given by / a° b2 ; if g 1s the complex number
2

e

(a,b), we write |z]| = a® + b% and call |é} the modulus

»’

z. Now'every complex number z = (a,b) and its conjugate
Z = (a,-b) satisfy the quadratic equation with re;d coefficients:

' z2 - 2az + a2 + b2 = 0. :/// ‘ '
Aleo, . ' . ,/ S

‘ 27 = |z]|? = a?

[}
o]
+
[og

¥

and

-

‘3

2 2 2
EN N lzy2,1°. . -

Finally, if z; = (a,b) and z (e¢,d), then.
-

2

‘ (2% + 12 (c? + 6®) = (ac - bd)? + (ad + be)?;
_th;t is, the product of two sums of two squares cah be written as

the saum of two, squares. This ‘result led Hamilton, Grassmann and
others to ask: Can the prodpct of tyo sums pf n dquares be
. written as a sum of n sqdares? In other ords, for what values’
of n can we write® % . o
2 2 o Ry 2 e 2 2
. .Cal +a,” + ...+ oAy )(b1 +'b," + .. [+ b )

2 ' b2
=8+ AT,

where, Al; Aé, .l., Ah~ are certain sums jand products of

. \

- 3 2N B2 * N
X 3 ot <" ?
,417 S22 retr V10727 T N
t & . ’

/- %

.
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Here we have the $econd of two important problems.

The first

' U
can be generalized as f0llows: Call n- dimensional space the -

), where each x; 1is

oolledtion of all points (xl, x2, ..
a real numnber, and add points according to thezlaw
*

L] . ;
(al, a2, PR L)+ (bl’ Doy vees bn) = (a ay '+ by, .., 2+ bn)'

For what vaiues of n 1s it possible to define multiplication of

pofhts : !
L j \s
] (al, gy +wes @ )(bi’ b2, ceey b)) = (clﬂ oy cn) .
-~—*in'such a way that the resulting,system has tﬁe stucture of a
7o

~ 2 ~ # o 8 .
SHTER N :

Both problems were already solved for/ no- 2. tbamﬁlton made
the disoovery that when n = U4 the f‘1rs'c//i>roblem of defining .

multlplicab*on;of po hts in Y4-space 1is pdssible and the resultwng

o

3

«

: system, which he called guaternions had all the properties of a
field eXcepElfor the commutatlve propertY'of multiplication. In,

the process he also solved the second problem for n= 4. :

\gayley in 1845 showed that both problems have a solutgon for
= 8 . however, in bhis case nelther the commutatlve nor the )

assocfative properties of multlplication hold

Much effort was subseqpently expended on both problems. In

1898 Hurwitz proved-that ﬁhe,second problem has ‘a solution only for
n=1,"2, 4, 8. -'The'other”oroblem remained open unEll 1940 when
the Swiss mathematlcian Hopf used powerf{yl ‘new methods of algebra*c x

topology to~show that tne first problem has solutions only for n

.a power df 2," Then 1n 1957, using still more refined topological

methods, -a. solution was, finally given 1ndependently by M. Kervaires

i
'

and.l. Milnor. " .. s NN y C oy
g, v . ? | 71\" 4 -
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', The resdlt is that Hamilton and Cayley had found them all:

a

4
the only values of n for which we can successfully define multi-

K

‘”pligation of points in n-space are 1, 2, 4, 8.

\
K : © Exercises ) . .
i s ) Ce )
) - . 1l. - Using the definition of operations on complex numbers, prové
o-T T s that in the system (Z, +, -)? ,
. - (a) multiblication,i; assoclative, —_—
- (b) multiplication is distributivé'tprough.addition.
. " (1f wu = (d,b), v = (c,d), w= (e,f),- then
. . ) ) )
ulv + w) = uv + uw.) . . ’ e e
Q’ 2. Using the definitiog of .equality of complex numbers, prove
. that: o ’c
' (a). fa,b) = (c,d) and (c,d) = (e,£) = (e £)
SO * /
. (b) (d,b) =%c,d) == (a,b) + (e,f) ="(c »d) t, - (e £) .
‘ ¢ : .-
, (c) (a, b)«cﬁ(« d) — (a,b)-(e,f‘)‘=‘ (c,d)-(e,-f) _
3. Solve for x 1in Z: v 7 TTmmes UL .ih_;uu‘
P . (a) 2+ 4 =0 (c) 2x3 ~tyx? o 3x ' a
) ¢ T
) Frxeloo . T (x5 - 5)(E 4 9)
& h, Ify . u = (3,-1), V= (-4,2), ,ﬁ = (0,3),. compute
) T a) wa v () .Tu . )
° /ena - ( ' ) » R ' ;ég. ;
// (b),j% . . (£) Uve~Uqw -~ + ..% .
Oy ’ . S ° s
[ ey uly + W) o (g) u¥ - vE 4
o /’ P 4 ’ —_ = o ‘
Lo (d) v - = . " (h) UV w ’ N
[ e C L . ae }
. °° . o, _’“bn o e ) °K . .
. < T .. ‘
. s ¢ . T
‘ kS , ) s ‘ ,\ LT ‘ ° {q .
o700 w0 N e .
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‘ 5. We associated with each el'ertent' z = (é.,b) in Z a number \
- lz] = )a.g + b2 in R, ‘called)\ the modulus of =z, which
represents the distance/between the points (0,0) and (a,b). '
Showy that if u and v are in Z, then: !
.t i ¢ ’ v, ?
S @ alelel = fuevl . R . .
) Jugvlg e el 1\ - :
; (c'/ lu|2 = uT L Ye
. éd) If we estabdlish an orde# { among elemgnts of 2 by the \/ o
R R SN
.definition - .
. . . " . h * o -
R . . . . u.{‘v=> |ll| < |v|, . - , - .
N . . N . I .
S . . ¢ ‘ .
. which, 7if any, .of the order axioms are satisfied?
. R . E ~ L v - L |
. - * ¢ . -\
o i " o R - ) ) ¢
* » ' R \ 4 b € \ , ‘ )
o ° ’ . . ' .t .
_ - e Co. i
o N ¥ ) - g s e TS
. . 4. ° 3 . v‘ /r‘:‘ \‘3&’ - 2 B Y
o V! R ’ : % . .-
.’ , K . Ao _' - °_cf Y b
» 7 ° >"‘ .. 9 N ! ’ ) *
‘e ‘ E - \‘ » ‘
\i.« s ¢ . . ’ ¢ v
N s, ) ) N . ¢ ) -
- . PR Q ¢ ?
“) . " ) ' . N X //
4 V4 \ M [3 . - . P . .
XN ¢ \/ ’ [ - i . .
| - . T ’
L ‘ '
' -’ ] .
"“ : . v~ . ) A
[ . " . - .
A . ) ! -
~ ’ ° . » i J
- I
» ’u . ) . ?. o
\)4 . ; 4 -
\ ' . 198 : o




‘ ' ,',, S Iy
¢ \\ . ' ]
- e
- Lo & .
. - o° .« s ) ‘ . ) ' ' 2

' Appendix C , . —

o . ALGERRAIC NUMBERS .
- . v, . . . ] . y Y

* ’ < S N

S . 7 «“ ~

When a student visualizes the set R of/réal numbers-he usually
; : { , 01" rea b

,thinks‘of two.subsystems, the rationals and the‘irrabionals which
. . I * 3
are disjoint That is, a real number is either rational or irra-~ .
. .
tfbnal but not .both, _He is usually content to let the matter rest

there« . ) ; oL T, O _
But the nathematioian is forever ‘classifying. He knows that . “ -
the set of rationals is countable and’ the set of irrationals i1s not.
These questions naturally come to his mind~ Are there other possi- )
) ble classifications éf)the reals° "Is the set F of rationals th&. ‘

»

largest couhtable subsat of R? It turns out that his’ curiosity . "‘;

leads him t;\the discovery that%there are other classifications of

- 4

_the reals, and there is a countable subset of R-which contiins'F as .

v . .
L -

a proper subset, o . . “ . . N

«

These results.usually surprise a, student. Why should he‘be .

1

surprised? Possibiy because he has a limited experience with irrg-
tionals:( When® asked for an example of an?irrational he will probab-
LAy say, "~/—“ oR "Q/_ ' where x 1is an integer which is not a .

perfect nth power. When asked for an example of an irrational - ._ .
which is.not obtained as a root, seldom will he respond with 7,

Exen 1f he jias studied_logarithms_and..hrie;anomsm

to’ givs log 2 or sin %Bas an example. Somehowfor other he thinks

L .
M .
< o,
. .
.
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of’the values of logarithmic and trigonometric functions as "differ-
ent" numbers which are real but vaguely unrelated to the properties

.

of the reals, ' To him the bulk.of the irrationals‘is found among
the nth roots of integers. We shall show that thls is not the case..
> How can we characterize numbers which are obtained as roots?

| By definition, ?/5— is a solution of the polynomial equation

¢ x> -.320. 1+ 2 1is-a solution of the polynomial equation

x2 -~ 2x ~, 1 = 0, as the geader may verify. fhese and other_examples

‘ suggest a new classificablon of the real numbers in terms of soluJ
tions of certain polynomial equations. In the following, by "poly-
\.’fnomials" we shall mean polynomials with integers for coefficlents.

Definition: The number x 1s called.algebraic if 1t 18 a

; , . solution of some polynomial equation .
- -.n . . nl - -
1 - ax + an_lg + see alx + aO = 0, ‘
where each ag is in I and;n 1s in N )
et ' " If x 1s not algebralc, 1t 1s call4;’ T
- . transcendental. g '

RN : : "“
Let us here restrict our attention to the real numbers. Then a\real

*

" number is either algebraic or transcendentai but not both, depend-
ing on whether or not 1t 1s a solution of some polynomial equation.

what 1s to be learned from such a new classiflcation? First

N .

weé notlce that all rational numbers are-algebraic (being solutions
of ax ~-b=0,a and b 1InI, a ¥ 0) and all real numbers ofbthe
‘form 3/5} a inI, a > 0, are algebraic. ‘But some real numbers

of the form ,/ ., are not rational Thus, the'set of real algebralc

numbers includes F as a proper subset 'But-isdthe set of real ailge-~

>

bralc numbers countable? . .

-

4
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The answer isr'§es". We arrive at this result as follows: First,

let us accept without proof the fact that cérresponding te each
algebréic number A there 1s a unieue polynomial equation of loweet
degree n such that A 1s a solution of the equation,

For example, 1f A 1s the }ational number % : there 1s a unique.
equation of first degree, namely gx - p = C, which is satisfied by

"/Z, there 1s a unique nth degree equation, x" - a = O,

A. IfA
which 1s satisfied by‘A. In general we would follow the line of
reasoning used In the followlng example. Cdnsicder the algebrale

nu_mb er ‘:.lg'*-—_i 'll .

. —

Then 2x'+ 13 .= v115, and ¥x° + 52x + 169 = 115; thus o
2 .
2x° + 26X + 27 = 0

is ¢he.polynomlal equation of lowest degree, namolj 2, whose solu-
tion 1s ‘13'; Y115 | e see that this 1s the lowest degree

because we must square both members of the equation to obtain a

w.sivm Bt Sl a
polynomial equatilon, N ‘
f
Next, we define the 1ndex of the polynomial equation
h- 1, - '
. . anx; +oa, 1% vor F AKX+ aO_= Q

. to be the positive integer

.- ‘ho=mn+ Jagl + lag g1+ o0+ lagl + lagl

mial equations having index h., For example, there 1s exactly one‘

equation with index h = 2, namely, x% 0. ‘

There a¥d exactiy % equations with index 3. -

T “s

Now for each positive integer h there 1s a finite number of polyno- -

' 2
. 2x =0, x+1=0, xX-1=0, x" = 0, )

X ' 2101
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There are exactly 10 equations with index 4:

x+42=0, x-2=0, 2x+1=0, 2x-1=0,

‘ ‘ 3x = 0, x2 + x =0, xg'-;&-='o, x2 +1 =0,

?xg = 0, x3 = 0. ’ . -

' .

(Note that we‘eqe considering only real numbers and thus will dis-

card the equation _x2 4+ 1 = 0.) How many polynomial equations have
’ index 57 . .,
LY S

Now we have a scheme for counting the algebralc numbers. gyr *

- -

‘.

each successive value of h = 2, 3$‘M, 5, «.., there is a finite °

. “number of polynomial equations each with a finite number of roots
N

which can be listed in some order Thus, there can be established

a ong=to-one corresnondence between N and. the set of algebraic

,numbers. As a consequence, the'set of elgebfaic npmbers f1s count-

able-and has F-as @ proper subseth . BN -
: : . A
2. . —What =are .some properties of the real algebraic numbers? It

- ¢an be”snown that @ney satisfy the .axioms, for an ordered field but

not the completeness axiom. Also, since the sét of real algebraic

| numbers is countable, the eeé of real transcendental numbers is not

! countable. (Otherwise, if both the algebralc and transcendental
numoers were countable, then R-wou;d be cbuntable, contrgry to
fact ) Thus we see that the bulk of the irfationals is'found amoné

% the real transcendental numbers.
o s o= ¢
Here we have a strange situation. There are mora transcenden-

’

v

“tal numbers than algebraic numbers, but in our study we have not

even proved the existence of a single transcendental number. In

-

fact, such a proof is extremely difficuls and was not, a¢comolished

until the late i9th century.

i

N -

~
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The most familiar transcendental real numbers are 7T and e.
It was, not knetm until the 19th century that 7 1s irrational, ahd
not until 1882, with the proof by the German Lindeman, thal it is
also transcendental. Therc is & fascinating h1story of the growing'

understanding of w, the ratioc of the circugference of a circle to

1ts diameter. The Bible approximates 1t as 3; school children

rs
approgiﬁate 1t as 2;. For centuries it was assumed rational, and

a favorite unsolved problem was that of l‘squarin{g"'the circle --

b P s [

_ finding with ruler and compass a square whose area 1s that of a *
given circlgq. Since operations with straight edge and compass are

«analogous tj\solutions of first - and second-degree pOlynomial
equations, we\ncw krfdw that thé'circle cannot be squared" because

T 1s transcendental and, hence, cannot be the root qf such an

equation., - . ' .

fhe number e, which is the lub of the set
n

. 1,0
(1 + ) 1+7) e (L E), L,
v . . N
is repyesented by .7182818...;' 1t was encountered in the develop-

ment of logarithms and 1is used as the "natural}" base of logarithms.’

.In 1873 the Frenchman Hermite proved that e is transcenden%al.
! «/-é-

The transcendence of neal numbers such as 27 and }og 2 are
more recent YesUlts,* known only since 1934, when it was prov;d
o G’ g ' -

that « 1is transcendéntal if « 1is algebraic and & 1is algebraic

— 8 Ve
’//and igrational. This‘reiult establishes the transcendence of log r

if r 1is rational and l?g r 1s irrational: By definition,
» ¥ . >
. log r

- . 10 =1r.) ‘

*See‘%hapter 5 of the SMSG Monograph? "Rational and Irratfonal
Numpers", by- Ivan Niven, for a discussion of these results. Also 0
see Chapter 7 for a proof of 'the existence of a real transcendental

nunber. _ ® ' F
- 5 .

-
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Now 1f iog r were algebralc and irrational,.fhen x would be trans-

cendental, actording to the above theorem, But r is given rational}-
. L

hence, log r 1s transcendental. .o "

VIV AL 77 7777777
Ay 7777777

W VL LA ZAZZZ
I~
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To summarize, we dlagram the complex number system asg follows:
. Real

Imaglinary )
, .
Algebraic 42?22/ : T

Transcenigntal §Q§§§§ .
Rationél 000

\ _d
OAI]
)YONOAON

NN IONON
AN
O
~

T

AN
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N OIONON

A
y d VAVAVAD. ////7//1

N

hN
~

4
FAr4 AN
VAANA \NAN

Bt
A
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AN

AN
AW VL A NC A A 3

NAVAN

AN
I NN
N N

N
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i
v

4

yd
+r

+++
Irrational HH

VA AYAV4
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7

N
d

N \Tx\T\\V\
NE A WA W WL WA W W W

s LN N J o
Integers soe * NY

VAV AV A4
L 7 7 7

N
\
y
N

A
LA
%
?
//
L
¥
v
4d 14

A AV AR
/?'/"/7/'
il
Z 7

YA N

.
N
3

i
1
X

VA A AAVA

|
N
N

4
S .. WL VLY,

\

« (The relative areas of the reglons in the aboue’ﬁ//éram do not in

®

any way indicate the relative sizes (cardinalities) of.the various

Sets.) ' ¢ ) ' . .

Thus, we see that every real number is.either algebraic or
Ll - -
'transcendental but not both. Every real trahscendental number 1s

irrational but some 1rrational numbers are algebraic. Angd every

rationa} number 1s algebraic, but some algébraic numbers ,are 1rra-

8

tional, . o o \
Exercises v N
< » - | !“

If A 1s algebralc and T 1s transcendentalL”thenl

I - ~ ~
(a) A+ T 1s transcendental,

(b) AT 1s transcendental, MRS - _ ’

v (¢) /T 1s transcendental, - ’ ot

Is the set of Lranscendental numbers closed under’

)

(a) addltion, .(b) multiplication (c) divisiono

T



Answers to Exercises; pages‘l.15 - 1.18:

1. EXO=E, O0XE=E; 0 1s an identity for x.
X 1s distributive through +, but + 1is not
distributive through x. vy

2. T;e set Is closed under o Jand *, o is:commutative,

__gbut * dsnot. r 1s an identity for o. There is‘noA
-iden?ity for ‘*%. o is not di;tributive through * “and )
* 1s not distributive through o. Every element has an
inverse under o.

e T

o -

A

*1.
A ' B
B c

[

e

C
I
C

- C. A

This set and this binary operation form an algebraic
system closed under o. o 1s commutativé*and assoclative. .
C 1is an identity element for o and every element has an
inverse under o. The‘systeﬁ 1s a commutative grdgp.

a
The pesulting system 1s a Fommutative group.
” 1 )

Yes. . \

- Yes.
. N

Y

Thils 1s not a group since v does not have an inverse -
and + 1s not assoclative.since, for example, '
U H(uH v) =sudHr=u but (uru)HV=r+Hv =7V

» Ny fogs
Yes.. » AT

Yes, 1t 1is a ring. 1 1s an identit§ for X3 but.no
element of I except 1 has an inverse under, X..

-
4

X 'is commutative.

L.
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Ans.

Yes, this is a commutative ring.

2
2

° .
s <

(a) No
. (es ‘No
3
2.9:

v

.
¢ 0w

0
Cc, E, .G, H and J %Fe proper subsets of W. H and

d) - many-to-many> .

10.
13. . (a) Yes -
> (b). No '
(e} Yes
4 4
. . . v
Answers to ExXercises; pages 2.7 -
i, ¢=J, E=H A=D.
2.
’ E are proper subsets of (.
3. (a) one-to-one ' .
"< (b) many-to-one .

* (e) one-to-one
-»

.(a)_ Infinite.

(b) . Not infinfte

(a) Yes

(b) No - .
s . O

(¢) Yes

(d) No

(e) No .

3 1is a prime',bpt ﬂh is\not;‘that 1s - U ='22 is thé -
product of +two numbers Both greater than 1, but 3
s not and, hence, the difference in answer to (a) and

. (b) .\ ; a .
(k) No:
(1) Yes a i

e) many-to-bne

f) many-to-one ¢

d) Infinite

t) Yes
g) No
(h) .Yes
(1)7 No )
(3) | Yes . o

b d
/

(m)

Yes

X

Infinite . .




Ans. 3 A i
> - \— - fjf
2 ,- 4 . ?b \ [/
6. (a) o—¢—¢—— ¢ )
x b 3 > 5 2 /
3 2 - 73 ‘ . ,ﬁ '
i
/
(b) d’L - H‘ F * A ¢
] . 5 4 3. s 4 2
. L ) 3 2 3 . .
)/ . k4
1) - ﬂ,
A
. ~ . . //’r
Answers ngefcises; pages 2.19 -/%ﬁ/ ) ,),«
' e 4 R X
l-A‘ (a‘) “/:ff:‘"// ’ l‘ /
\--—""“‘M") - .’
A | B|A gnd Bj A or B| not-A| if A*then B| not-A or B
' - s 1 ’
- T|T T T F T . 1/7
N O
F T F T - T~ T T
T | F F T F F F
F F F .F T ﬁT T
? b '
() o - L
A.lBlA and not-B | 1f not-A, then B | if B, then A
T T F- T ' T
T |.F T T rooa T ’
F|T F T F ¢
J = 7 ‘
F |'F F F o ? %
fe) '
A | BJ|if'A, then B| A or B |A and B | A and not-A .
s {
; T F - T F F . - j
- --not; possible s - S
T T T T T F /
Flr| o P " F F ' / o
. ‘ ,/
I [y - /
- 207 .
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. . " Ans. 4 ’
- ‘ ‘- . z ™ /
(a) {1, 2, 3}. .
(b) The set of positive integers. .
" (¢) 'ﬁ‘f empty set. N o .
80 (d) The set of positive integebs. .
(e) The set of positive integers.
,(f) The set of posttive 'integers great?er than or equal
to koo (b, 5 o). ' ‘
(g). [1, 2: 3: u’, -\-]. T % N }
. (n) (2}. s
. (1) (23. ¢ /
- A R
’ («é) [1} 2}- ' - ’ T . '
. a) = o - .
. (a) 0 | 2 3 .4 ¥
(b) - .
& = \
B (c) # .
(d) == :
N (e)
°- Q -
(£) ~A+— —o-
gg?? | 2 3,. 4
« :1 ""‘ -
(g)* =
l' ° ~
«“L'_l~\'ﬁ< - "‘j ~ - * [ -
. ) -

- Z2u8 -




(1) (-1, 1), (-2, 2), (-2, 3), (~3,.2), (-3, 3)}. ~ * ..

(2)

e Om——
o 1 2 ‘

]
- O——— < .
0 | 2‘ ‘3 .
—- —— .
0 2 3. ’

. @

(1,

.

(1,
(2,

1), (85 2), (9, 3),

-

3)]. .

)4), (2, 3): (3) 2), ()4, l)‘, (é,‘ 2_)}. . . ) 2~$
. L e N
2)) (1’ 3): (1’ )4), (1, 5), (2" 2)’ (2’ 3) .

Y, (2 5. -

- 4

(16, ¥), (25,'5), (36,.6)}. ™™~

’

3

3T7. ,
i
F o2, . .
! -
' ’ I \ ? !
! 2 3
- 1
b
..‘
e ’\‘,1&5’
e &
. - [

-
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" (e)

C o (ay

3
»t
Ao Q”'"‘s ‘»‘
l’é% k3 v ,»?‘
' ?
(4N - N (e)
4
] -
! o
—
. -
L]
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L.
. Ans., T - { .
(f) . . . ol
» 1‘
12 :
“ 4 _
i + I |=|11 } $ I + ° . °
B 1114 R
Answers _§_o_°Exgrcises; pages 2.32 - 2.3h:
1. (a) ’ ' . _
) : . g
A "B vif A, then B not-A net-A or B.
™ T T 7 -F o \
& L Fo |7 T T T
T F P P P
' ‘P F T T T
Two statements are equivalent. ‘; )
“ b . t" -
’ ( ) o -~ ‘
A { B | not-A | not-B | A or not-B | not-A snd B
T|.T F F 7 T .
Flo T F F T
T|'F 1« T T F
. - LA
B F T T T T




Ans. 8
(0) . 1
A B 1f A, then B |. 1Y B, then A
T T T . T
F T ‘T F .
T F F i T
F F T T ©

Two statements are not equivalent.

(a) o (

A |.B | rlot-A not-B | if A, then B . if not-A, then not-B

T | F . w T T

FlT T F | T SRR -

T |'F F T F T
1 % .

F |.F T T T . T
Two‘spatemeﬂts are not equivalent. B T '
) (e) , | ;

A | B | not-A|not-B| A and B | not-(A and B) | hot-A or not-B

T if F F T , F F

F_ ?i T F F "r T »
LT P F T F T T

F | F T |.T F T « T

Two statements are equivalent.

1 4

{

-

4

a2
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Ans. 9 \ 3
Lo &
. () . \ SR
A | B Aot-a] not-B Q or.B) | not-(A"or B) | not-A and not-B
T|T| F F 'l o1 ] F v .
.’ F|(T T ‘F T ‘ F ) F \
T{F| F \ g T » F F <
Flr| T T - F T T
Two statements are equivalent. )
(e , )
A | B'| not-Bjf ir A, th‘erg B | not-(if A, thei B 1=f A, then' not-B
.TlT| F T. ¢« F R
F{T|"-F r F T
lel 7 f TR T T
Flr| ¢ T ] F- ) o
Two ‘st':ateme'nts are not equivalent.' ‘
C ) 3
Al B[ not-B|if A, then B not-(if A, then B) ’A' and not B
T{1| F T r - L F
'F 13 W . ] s F
T{F| T F T T
FIr| T e ) F F .
*Two s‘fatements are equ&valent. .

<




« l' . \
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»

2. A=>B<=>notLA- or B ,
not-(A- ‘and B)ﬁbnot A or not-B

noét-(A .or )3)¢=>not -A and not-B . /
not-(A == B)¢=>A and not-B - ' , NS
The onegatiVe o} L2 con,junction is the disjunction of the k /
By negativeg, the negative, of a disjunction is the conjunction /

*of, the 'negative%. ‘ The nggative of a conditional is a . /
. sconjunction. ~ . . /
& . # l ’ - : ¥ /
s (a) +If rot- C then (not-A and not-B). - .
S s (b) "1tk -A “or not-C) then'not—'A. B
*,(c) If (no T f! and not-D) then (A ar%d ‘not-B) . / ,
2(a) . o D) then (not-A and 15). ) .
2 9': A s f "' ’ . ’ ‘b,
. 3.§,°'(.a,)’ Any X ;4 ?) AT v g ’.\ . /
. Y I R . /
&(b) -Any x ;4 0 .and # 1. -0 //r - [ e,
) . .. &, ’ |
K 0‘3 hl, B82; ’ in fact 41k for -any integer k. / .
’ (d)\ any x 0. . |
) ' . [
(e) vio—- 1 ‘/J'. % ‘:‘ ‘/
(£) x=o0. - : o /
.y f«o
(g) (x=0,y=0), (x=1,y=1). Any pair (x, x).

4 .
/ .

4, - (a) Direc

(,b»), poof:by contradiction. . ™~ -




/ Ans. 11 /

" Answers to Exeréises; pages 3.14 - 3.16:

-

oo
"
I

(b +¢c)-a
9. X = l

10." Subtraction is not commutative, 0 - 1 # 1 - 0. It is
*  not associative, since (1 -2) -3 =-1 -3 = -4, but

1-(2-3)=1-(-1) = 2. '

Y2. 'The set is.a field.with these'%wo'openapions: The

addlitive inverse of ?' i1s* 2 and the multiplicative

inverse is also 2. ‘

- ~ '

13, This set is nbt\a field, since not all non-2qf5 elements -
have multiplicative inverses,

17. This is rfot. a field since some non-zero elements, such

“ as (0, 1), do not-have multiplicative ‘inverses,

Answers Eg‘ExercisesE pégeé,3.@h - 3.27: ‘é‘

)

* 3 1 1 .

8. (a) x>% . () x>-% or x<-3
(p) x>.1 *(f) x>0 or x< -1 .

T (e) 1<’x<=§". . " (g) (x>0 and x< 2)

or X < g2.
(@) x>3 or x« % _ .




10. °

(2)

.. (b)

(c)
(@)
(e)
(1)
,,(g)

" (n)

(1)
(a)

(c)

(a)
(e)

(£)-

—~ —~T \&.;\

'Ans. 12 Y ,

¢ . ' o ’ .
x>1 of x<O0 ’
x<1l or x>5
b B . »

X=0 or x = -2 ) . -
1<x</3
all x 1in Z» not equal to 2 . .
x>V/5 or x<-v5 or V3<x<V3
0<x<2
all x inA. | )

, ! v .
(,(O.) u)) (1) 3)) _("l) 3)) (2) 2)) (‘2) 2)) (3) l))
("3) l)) .(u) O)) (5) "l)) (6) ‘2)) (7) :3)}

»

.{(‘3) "1)) (‘3”) 7()) (-2’) ;‘2), (-2, 6),,, (*—l, —3‘);

(-1, 5), (0, 1), (1, 3), (2, 2), (3, 1), (4, 0), ..
(5) '1)11(6) '2)) (7) ‘3)} V '

{(’111’3)) (‘l) 3)) '(l) ‘351 (l) 3;); (2) 2))

<

(=25 -2), (0, 4), (4, 0), (-3, -1}, (-3, 1),

3) "1)) (2) "2)) (3)”1))'("2)' 2)) (O) "L‘)) (—u,O)).

>

(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), ,
2{ l)) (3) l)} o

i
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12,

4
13,
f
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. o . . ¢ .
01 and .02 are satisfied but 03 and ba ave not.
For example, 2< 3 but 2+2¢2+3=0; 1<4

but 1.+ 1¢ 1+ 4=0, and 2< 3, 0<2 but .
ye3=1., . . “ - S
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Ans. 15 P

Answers to Exercises; pages 3.38 - 3.39:

3 (e) 1<x<K2 - /
(b) x=2 ,or x=4 (£) -5<x<K3

. (¢) 2<x< ' (g) x =‘l;\gfy(x(; 3
(a) ¢ . (h) ‘-'3' < x< - % |

2

3.1 (a) x

~ 1

Answers té Exercises; pages b7 -~ 4,10: “

- v

2.. No. There is no identity for addition; .and under
multiplicat}on it is, not a groqp’since no element of
" N, except 1 has «an inverse.

S

a) b=12, ¢
b) b =18, ¢
¢) b=15, ¢ = 10

d) Impossible sincé if bc = 84 = 2+2.3.7 and
N p4toc =24 we have 3|84 and, hence, 3]b or
3lc. But 3|(b + ¢) and, hence, 3|b and 3|c.
But then 9|bc which is not true. : /

1. /(a) (x + 2)(x + 6)

///' (p) (x + 8)(x +~71 —
(c) Cannot be factored in N.

(x + 18)(x + 14)
: L
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Ans. 16

.

Anshers.gg Exercises; pages 4.15 - 4,16:

11. '

s

»

(a) 0 1s an even integer.
(b) Yes. .
; . .
- \ &
6, 1

(a) 90,

.

&&= ) !
\

-~ -

The set of negative integers 1s closed under addition
but not under subtraction and multiplication.

(a) (932) g, (e)

() (Wh)y,, (a)

(110002)tﬁr;ee

(uoe)nine

I 1is a groub under addition but: not multiplication
since- 1 and -1 are the only two elements of I

. vhich have multiplicative inverses in I.

T 1s not a field because oﬂlits lack of multiplicative

inverses for non-zero elements. —

+

can-be factored uniqﬁely into
For example, 220 is in T,

Not every composite tn T
a product of primes in T,

since 220 = 3(73) + 1, but
220 = 1022 and 220 = 4-55,
where 10, 22, 5, 55 are primes in T.




. ' ’ Ans. 17

Answers to Exercises; pages 4.31 - 4.32:

.37, 12 A b
L gt <

2.7 (a) (8o

element,

) (12) e

7." (d4) The subset of all x with 0 < x < 1 has no least

(b) Yes. 0 1is the greatest element less than<vdry

element of T.

oooooo

8 142857
9. (a) (1) ,
(6) (1, -1)

(c) (1, -1, 3)
(@) 1, -1, 3vz, VD)
10, (a) (x® - 3)(x% + 3)
(0) (x - v3)(x +v/3) (x2 + 3)




‘Ans. 18
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- Answers to ﬁxercises; piges 5.6 - 5.7%
| 1. (a) g, 1° are upper bounds, for example, and % is
L the: least ué%er bound., .. ‘
z (b) -3.5, \-3, O ‘or-any positive numbe¥ are upper ﬁ
o bounds and -3.6 is the, lub.” oo
N .’:}’«\f : s . . , . i 9?
!

3. A non-empty set S of realkpumbers is bounded below if
there exists a real number M such that syZ‘M for
every s in S. M 1is called a lower bound of 8.

. A real number L 1is a greatest ‘lower bound for S if:
(1). L 1is a lower bound*for § and
: (2) if M 1is any lower bound for § then M <.L.
o 5. (a) % is a lower bound and ‘1v 1is an upper bound.
" “ . .(v) 1 is a lower bound and 2 1is an,upper bound.
. ‘ . (¢) 0 4s a lower bound and '% is an upper bound. ’
i \ (d) 1 1is a lower bSER@ and 2 1s an upper bound. |
6. (a) 1 4s the lub. (e¢) o0
: y (p) 1 (¢) 1 .
| -
Answers to Exercises; pages 5.13 - 5.14: v
b - .
. 2, 1.M4> 1M but (LMo, |
oLt 3. 1.5 < 1.42 but- (1.415)° > 2, ' A
. |
» “‘
)l [ £3 "'.\
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. Ans, 19

to Exercises; pages 6.7 - 6.8:°

X.

- X X + 2y hye -~ x° <1 x + 2y x - 2y
T __y-x _3x-6y )
—4y2 + x°  x° - hyz
t ¥y - %X - 3x + 6y
) - 2 2 :
- .JAAAAA-‘?#’A" X~~-"l¥y‘ e -t B b PR NS
’ p = -4}( + 7 \‘\\\T\S
- l;.y C \‘\\
—_—
T

{a)
(o)

- (e)

(b)

‘algebraic over R algebraic over I

(d)
(e)

(£)

rajgional over R - polynomial over R

rational over I

3

algebraic over I
1

(% - 9)xy - Gy + 18x

X - 2

°iﬁ3w

(£)

v

We knéw that a -a=

and

,algebraic expressions we must define this to be
order for the

A
K

=AZA=A-

xy2 - 2bxy + aby
Xy - ay - bx + ab

a + (-a) =

A-A=A+ (-A) for arbitrary

0 in

having defined

field properties to be satisfied.

K must be l.

u-xQ;(e_x)(mg (1)(x J)(2+x)

0 for the real numbers

Similarly,

(a) %

-2

<4Me+m-§e§

X -y

(v) __E_Lé

= -(x + 2).

-1 3

x-2y

223
\:. ' TR e ucumytmm
. Cb
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Ans. 20

2

2__”x2(x+1) + 2 - X
1 X +1 -

- x2(x + 1).+‘&-x)(x +1) + (x+1) +1

x+ 1 -
.2 1 '
= X —X+l+m
1 | 37 o e L
5. i{a)” x(x - 3)(x¥- 4) over' I, F .and R.
(b) .x(x -%)(x -~ 2) over F and R.

(¢) (¥ +«/?-- a)(y - /2 - a) over' R.,

Answers{l:g_. Exercises; pages 6.17 - 6.18:
J1. (a) (-3) :
(b) (-3, 3]

(e) (-3, % V3 ~/3) ' .

a) {1, 2}

e) (1, 1), (2, 1)}

£) (1, 1), (24,°1))

g) The truth set is empty.
h), The truth set is F.

1

L)

)*All x 4in R with x>'l1. )

(a) (a2 - 2a + 2)(a2 +.2a + 2)' over I, F, R.




Aruitoxt provided by Eic:
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Aruitoxt provided by Eic:




°* “ Ans,

() -

23.

‘8. (a) (1, %1

L4

(b)/ {10 2} ‘.II
@ g
»

»

(a). {0, 1}

(e) .[1"-}-2 57: 1 —2@}

. !

"Answers_gg Exercises; pages 6.24 - 6.26:

range is the s€t

s D, (22 (3, 9), (5, ), (5, 9), (6, 1),

i
[ ]

- (7} 2)} (8’ 3)} (9} 4)} "',]'

B (a) The domzin i§ the set of positive integers and the

(0, 1, 2, 3, 4}.

As a‘graph

g8 910 Il



Gc)"/@he domain is’ the set

OV
&

4 =

s .
%17 iy 4 t ) ‘4

. R
[ . N 3
LI t. )

- Ans, 24

. : ’

The domain is the set of natural rumbers and.the”

»rénge is the set of naturl”numbers of the form
3n+2 'f(n)='3n+‘2

To each natural number n there is assigned the
number obtained by adding 2 +to
fnu—->5+3(n-1)‘ £

n a natural number,

'3 ‘times n.

{"3: "2), 3:, 2]"5
.range is the set (1, 0, 3, 4}.
"[("3: 1): ("2:' O), (l, '3): (2‘, ,4)].

&

! 4 ;,.
and ‘the

s
J
X J

g

£(x)

= «/(x + 2) .

\The domain is the set of all real numbers x
that 0 < x £ 3; the’range is the set of real

numbers y such that 0<Ly<gz2.
fix —> - x + 2. . ;
’ u'- ’5

)
y=--3-x+2

To each x in R between 0 .and 3 there is
assigned the meal fiumber y which is equal to

- 3 times x plus 2.

] ¢ »

such

[
0




Ans: 25

N

(a) 'A11 non-zero real numbers .

(b) . All real numbers less than or equal to -2 or
greater than or equal to 2.

.

(c;/ All real numbers x such that x> 1 or x<O.
R. ' .

(a

(a) The domain of F is contained in the domain of f
and for x in the domain of F, (x # -2),
£f(x) = F(x).

(b) g and G define the same function.

(¢) h and H define the same function. o .
1, - k
(a) £(-5)'=-1, £(v5) not defined, r(3) = 3.
- (b) The set of all x in R with -1 <x<0 or
' 0.dx< 2. . | . h

(e) The\}gngé of f 1s the set containing =1 and all
real numbers less than or equal to 2 and greater
than zevo. ) o
\ .
-(d) The set,of all x in R with 0<x< 2 or

A\

X '= ""l' \\ E]
\ \\

(e) —— ———— —
o o] I

'

L4
/ ]
o~
L] .




H
ct
!
[
I
1]
—
ct
~—

5. g(-t)
fogt) =1 -7
2g(t) » ‘
g(2t) =. ) : ,
T egEn = efeee | / S
R 2

é(‘t)‘ -1=t -2 /

I
(M
Lo}
ct
(M
s
‘e
g
14
]

]
=
ct
n
’
—
\\
)

. , 1.
- . elgrEy)

o

- \ s . . .
This'is the graph of one function satisfying the conditions.
There are infinitely many such functions.

&

7. (a), (e¢), and (f) define functions.
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" Answers to Exercises; pages A.7 - A.8: .
; v 41 T
1. -« (a) '3'3'3' = (d) ‘7‘ »
. . 194 635 .
(b) =I5 (e) 106
1 11 .
(e) =7 - (f) 155
5 -, | ‘ .
2. (a) (1,.1.7, 1.73, 1.732}
(p) (.3, .33, .333, .3333} ’ N
(¢) (I, 1.2, 1.25, 1.259) . .
* S ' - . . '
v o .. (a) ({2, '2?2,/2.23, 2.236) ; S
¥ - . . ~
3. (a) For example, 2.3, 2.31, 2.34%, ..., 2.4 or.any
terminating decimal between .3 and 2.4.. (i v oo
(b) 6.6, 6.61, 6.624973, ..., 6.63 or any terminating
e }decimgl between 6.6 and 6.63. \ - \
(¢) Any terminating decimal larger than 93 and .
.o . \
less than .96. For &xample, .9404%, .95, .95999, '
£ . 9 / \a‘Q
« / R . % "‘ .
s . i
- \\‘_ < N s %
- IS v . ‘
: | 232 . :
,\ ) )




Ans, 29

’
-3

| Wi
31416 22
13 not.
6% (a) 1 (c)
(0) ot (a)
N

are rational numbers and 7w

L
101
110

10011
1110

. . /"
Ahswers to Exercises; pages B.10 - B.1l1l:

3. (a) (21, -21}
) (- 5+, 3 By
o, 144D | Yo,

(@ (0 1+ 1 -5

(d) {3: \/g: "“\/5_, 3i, "31}

¥, " (a) (-1, 1) (e)
®) &g el (9)
(c) (-7, 19) ~ ()

10’ 10

a

(@) (-3, &)y & (n)

(10, 0)
.("7: "19) !
(-4, 10)

(6, 42)

Answers to Exerciges; page C.6:

2. The set of transcendental numberg is not closed under

addition, multiplication or division.

—/\\

<383

-~ L 4
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C.3

>

The angwer is '%es We arrlive at this result as follows: First,

let us accept without proof the fact that cérresponding tq each
algebréic number A there is a uniéue polynomial'equation of loweét
degree n such that A is a solution of the equation,

For example, ;f A 1s the fational number % ; there 1s a unique.
equatioﬁ of first degree, namely qx - p = C, which is satisfied by

Q/E, there 1s a unique nth degree equation, <N a =0,

1]

A, If A
which 1s satisfied by‘A. In general we would follow the line of

Veasoning used In the followlng example. Cdnsider the algebrailce

number )‘%_ C_IL_._E 'l . ,

Then 2x'+ 13 = + 115, and ng + 52x + 169 = 115; thus o

2 . - &
2XT 4+ 20x + 27 =0 .

. .

is the.polynomial equation of lowest degree, namelj 2, whose solu-

tion is =13 + V11

. . e see that this is the lowest degree

because we must square both members of the equation to obtaln a
v—-““‘-“’"’ LA e S NP »\‘
polynomial equation,

Next, we define the index of the polynomial equation .
h-1 ‘ ’ : .
anx; + 2y 1% vee b A4X + ao_= 0 .
t0 be the positdve integer

. ‘h =n + lanl + lag 1+ oo+ Lal! + laol o

Now for each positive integer h there is a finlte number of polyno- -

mial equations having index h, For example, there 1s exactly oné‘

- . ’ B © . -

- . - o
equation with index h = 2, namely, x% 0, ‘ . co, - o
There a¥d exactiy % equations with index 3: ) . )
A, o . . 9 .

; 2 =0, x+1=0, - 1=0, x" =0, .




