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. . PREFACE .
. . W R * g ) - / T '
“ ~ Most of the mathematical techniques-that are in use today were devgloped
to meet 'practical needs. . The elemehtary arithmetic operations have obvious .

uses in eve;ryday life, but the mathematical concepts which are introduc<

1

:di{l,

N the junior high school level and apove are'not as obviously useful.

The School Mathematics Btudy Group has been exploring the possibility

‘of introducing some of the basic concepts 6f mathematics thrdugh the ude of

some simple science experim;nts Several units wére prepared during ti e i oL

. summer of 1963 and were used on an experimental basis in & numfer of c.ass-. ’

& A S On the basis of the results of thes tri‘als, .
these units were Tevised during the summer of 196k. .

This text is designed to be useble with any mathematics textbook/in common

rooms during the following year.

use. It is not meant to replace the textbook for the course, but to upple- -

'ment it. Previous acquai_ngwh sc«ience_Qn the part of~the studdnt is -

N ,u.nnecessary. The, scientific principles involved are fairly simple ang,

00'59 explained as much as iswneéessa,z;y in the text . Each expenme-rrt opens a door -
inear fu.nctions 2 graphs, translation .of

# axeg, the distributive property, a:cxthe solution of equations

that student learning and understandin§ will be improved through the use of

this material“' v R

° into 8 new domain in mat}rematics!
We hope -

. °

7 * -
- 7 ° B -
The experiment# have all been dong in actual clagsroom situati-ons.

.,....m.,\

E\rery >
effort has been made to make the’ directions for the experiments as clear and s‘

gimple as posslble. The_apparatus has: been kept to a minin;um .« ! * ) "“
9 » H . s
) ) The writers sincerely hope that this _approach_ to mathematics will prove
Y both useful and interesting-to the student, = . °
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N - N Chapter 1 ’ T
' : OPEN. SENTENCES AND BQUATIONS , T
~ . ' -
oo . ! ‘ "o
. 1.1 ZIntroduction . o . L3
- ) -~ : WL Vi

In this chapter we shall pérform an experimént to .learn how to solve . <
problems by expérimentation. E'very'v'one Hes played on a seesaw at one time qQr- —
another. You know that a small boy sitting at one, ‘end of a seesa¥ can balance
a big boy who sits closer to the fulcrum ort f.he ot,hep Bide. The fulcrum is

v

the point at-which the seesaw is supported. . .

»

3

Can you tell exactly how mhch closer to the fulcrum '"b-heh'big bo;' must sit
to balance the mass of the sma’ boy at the other end of the seesaw? Do you'
thifik’ that the masses of(the ‘boys and their distances from the mlcrum are )
lrelated somehow? To be able to answer these questions properly, we must knowcw

El

..ore about the geesaw. -~ Lo ;-

. * v ‘ W ;‘M’: “’e
® . In our first experiment, we will set up a miniature seesaw. In observiné %“
how the seesaw operates, we will discover a rule which will %ain the way it -7
works, and then try to state this rule in mathematical fom. [

'e‘
. . A J . Kt
- : LA

1.2 The Seesaw Experiment R

.
A simple model of a seesaw can be constructed from-e meter stic}?; spring

clempy triengular file and Dixie cups. Make a supporteby placing twg six-

ounce Dixie cups upside down on & blpck which is about 8 inches long. *In

order to be sure that the meter stick is supported'at its midpoint, clamp a

spring paper clamp with the 50 om mark as close to the center of the cleamp as

+  possible. Insert’ a. 5-inech triangular file in the hole of the clip 'so that one -

_.edge of the file is in the upright pdsition. (S/ee Figure 1.) . ,
- - ¥

, .

» sy,

> m:mmm;nwmfﬂ
351:453r :

‘e e - . " - -
- ~ ] » O NN *
ERIC BRI R .o
.
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The cups serve as-a support when' the triangular file is placed across N
then. (See gure‘:z +)’, The stick should settle in a horizontal position. If ~*
it does not, place small pieces o;t‘ modeling c;l,ay on the end of the lighter
" s¥de wiffl Yt doks velance. Tlet us agree that the meter stick is balanced
vhen it comes to rest in a horizontal position. We need some device to indi-
_ cate when' the, stick hes i;et}urned\g_thyﬁ‘ orTzdntal position after having been

L ‘.
oy, - L, 1

=" | W,

A J

. 7

. . ‘e Figuree
‘ “~ v I3

To determine when the stick is horizontaa., we shall use two g - inch .~
dowels which are at least 8 inches 'lomg and two chunks of deling clay. -

Stick each dowel into one of the chunks of clay so that the dowe]s stand ina -

.v5ertical position. (See ‘Figure 3.). Place one of the upright dowels behind
the balanced meter stick near the right-hand end of the meter stick _flace

N . Figure 3 -

the other upright dOVel in a sim.ilar position near the left-hand end of the .
,meter stick. RNow place a small pencil inark on each dowel stick 80 \that the
pencil mark and the top edge of the meter stick are in a horizontal Line of *

o - ’ ~

. ) ) , .

. .




J' sight. Measure the distance from the table top to the i>encil mark on each
dowel. When thesesdistances are equal, the meter stick is horizontal. Bend .
. Daper clips to serve as hangers for the weights. Open the paper clips so |
they will 'slide easily on the meter stick.” For ‘ch:.s par’c' of the experiment .

we shall need'10 grams (2 Afeignts), 20 érams (2 weights), 50 grams, 100 grams,

200 grams (2 weights). -

Begin the experiment by hanging a mass of 20 gm on each side of the ful-
crum 30 oy from the fulerum. (See Figure 4.) Does the stick halance? Slide
€ach 20-gm mass to a position 10 em from tlie fulcrum. . Does the stick balance
again? Now move each mass to 40 cm from the fulecrum. you. notice that when
we rplace objects with equal masses on opposite sides of the fulcrum at, equalg
distances from it, the st:.ck always ‘balances'? . .

% . . |‘—p-—-50€n\' + . 30em ﬂ & .
i o
. ' . '. 20.gm ) % 209,.‘ . Lo

47 ; . -

.

‘¢ Figure k4

}An eicp%rimexiter may wonder, however, what might happen i the masses on
v eithéf siZle_ of ‘the fulerum are not equal. To\’_answer €his question keep the
"20-gnt tmass at 30 em from the fulerfim on the Tess side. Attach a 30-gm mass
‘on the Tight gide, 30 em from the fulcrum. (See Figure 5.)" There is no belance
- now—,"since the right side of the stick tips down. Can you eyxplain why? -

:' Nm:.d-ewthe 30—gm mass closer tm the ﬁllcrum u.n‘cil the s;cick is bal-
anced. A% wha‘c‘*&lstaqce d0€s the mass ‘of 30 gm balance: the mass of 20 gn v .
- placed 30 ‘em’ from ‘the fulcrum" Do you find that the s%aller mass placed )
farther away from the fulcrum balances, the laggger mass placed closen to the ¢

ﬂlom?

P

" ERIC | . w oo

TS * - A3




\7 Choose two objects with different masses and place oneg mass on each side

., of the fulcrum. Now slide them back and forth until you get a balance. For

[

instance', use 20 gn on one side*and 50 gm on the other. Did you notice thai’
‘no matter what pair of masses you use you éan always balance tl?é stick by

*

S placing the masses at “the right distances from the mlcrum? o

. Thebe observations lead to the conelusion that hanging objects with
equal masses on .each side of the stick at equal diftances from thé fulerum
v_ill make the stick balance. Different distances are needed to achieye a

, balance.when the masses are unequal.
”

Our purpose is to find a genexal rule which describes the relationship
between the mass and the distance from the fulerum so we can tell in advance

. o where to place one object of known mass to balange another object of knowm

mass.,

- To estgblish this relationship, further experimentation is needed.

.

/ A -
To keep the experiment simple, use the same object (200 gm) in al2 the

Therefore, perform several trials (experiments) in a variety of situations. §’

trials at a fixed distance (6 cm) to the qright of the fulc xum. (See Figure 6. )

Then balance it in turn on the left-hand side with 120 gm; 60‘ng, 30 &m,

/ 1+0 gm and 200 gm. ©Slide each object on the left back ‘and forth until the
stick is balanczed ’ LN
For convenience, let "m" represent the mass of ahy object that is hung’

.on the stick and "q" $he measure of the distance from the mlczq,un

Perform the first trial. Remembér we place 200 gm at 6 cm to the right
" ‘of the fulcrum. (See Figure 6.) Hang the 120-gm mass on{the left-hand side.

‘Siide it back and forth until you find the distance from the fulcrum at which °

the stick balances. Then read this distance to the nearest cm anci record it

- in the first row of your teble. (See. TabJ.e 1 ~) I B
Lo oy L 3 R )
/ffzmm /Jf . 7 xeq distonce écn. -
- ‘. . »

-
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_ I .
R Balanced Meter Stick .
- T — — : e
. Left sige - -~ Right side
_ Mass in Distance from Mags in ° Distance from °
| Trials ) ‘grams fulcrum.-in em ™ grams fulerum in em
) m Y | o m a .
_ oo . .
T oIx ) '§o : ' < 200 6 - T
-| 30 - " 200 ‘6 :
w o} ko 1 200 6 '
: 7. . . :
v 80 _ : 200 6 .
o« - . . - . C e
. Table 1 ¢

. . . . .
In the second trial, keep the 200-gm mass at 6 cm from the fulerum as
. was done in th§ first trial, and hang the 60-9:1 mass on the left side. 60
grams 45 helf the mass of 120 gm. How far my from the.fulcrum msgt the
60-gm mass be to get a balance? Check you.r guess by reading off the distance.
Ehter this distance in the second row.

Repeat the same procedure with 30 gnm, 1+O gn and finally with 80 gn. Be
“ sure the stick ‘.ij exactly in a horizontal position before you read the dis-
tance on the left-hsnd side.‘ As you perform the last three trials, do not
forget to read the corresponding distances snd récord then in your tablé’.

23

s Study the numbers recorded in the left side of you.r ta'ble. Is there any
connection between the mass of the obJects -and, their corresponding dists.nces
from the fulcrum? Ccmpa.re the mass and distance in the first row with the
’ mass and distance in. the second row. Notice that the value of m decre&sed to
one hglf its origixial mass, nimely from 120 gm to 60 gm, and at the same time. '
, the value of the corresponding distances doublcd from 10 cm to 20 em. Compare .’
the numbers in the second .and third trials The distance dfchanges as the
, mass was decreaséd from 60 gn to 30 gn. What is the ratio between the’ masses ;
" what is the ratio between the mstching dists.nces? o ‘ o, "' L

)

- - e ¥

The table shows five different pairs of masses andndistances which make
. the #tick balance. For ingtance, in the first trieal the mass of 120 gm at
. 10 cm hag the, game effect .28, _the. mass .of 2607gm at 6 em. How are the nunbers
s 1n thegé pairs related? You might guess that the product of 120 X 10 equals =
theproduct of200x6 or,'l20><10‘ 200X6 R

o~ )
In the’ second trisl the mass of7\60 gn at 20 cm has the same effect ag -

. o
hd - . ’

,
n
Juae

3
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themassofEOOgmat6cn. Theproduct6Ong20cn=2005n><6cmagain.

\

1\

Do you find that the product of the mass and its distance on one side’' : .
nmst be equal to the,product of mass and distance .on the other whenever the . - 7
: - stick balemces? , ‘ ’
- + Let's check: Co " ‘ ! .o
P ~ .
‘\ Left 'side {Right side -
"1 eeial’ . ‘Mass - “Distance . Mass . Distence.
. T S v
. II1 : | 307 40 = 1200 200 X 6 =
e . 0 ™~ g ‘.4
Iv » 4o x 30 = 1200 ... 200 X 6 = 1200
o v .l 80x15 = 1200 g A"joox_6=1200
3 : After proceeding down the table ¢hecking ‘all entries, we conclude -
< "the following: "Whenever the stick balgn@es, the product of'mass.and dist " o

. tance on one side equals the product of mass and distance an the other side."”

e B In this experiment, 'wheneVer. the stick balanced, the. product .of the

" messes and corresnonding distances was elways 1200 ¢ * The table verifies this
* result. This resu.fca-n be put in pathematical forn by the sentenge

ot uaXd = 1200 w“nere Tm" represents the mass of the .object on the left-hand
A " end of the me‘cer stick and R represents i%distance froa the ﬁilc*'tm

In the exoeviment , the product of the measures of.the mass and its .dis-

. tance was 1200 in all cases because we vere always balamcing objects on the
" lert side with, the mgss of 200 gn at 6 cm’to"the rig‘ht of the fulerum. This
- meant that when an obJect was 3usnended on the left side, it was nece,ssb.rx to

Rl ’

siide this object along the%eter stick until the mass of the obJect times
. ".its aistan became equal to 1200. : A
- - Ve e .

. ! Our represénts only one example of how to balance a seesaw. ’"'
“Am( two obj can be balanced on a seesaw, provided thHat the product of the
f méss and the distance on one side is equal to the product of the mass and the o,
: distance on the other side. 'I‘o verify fhis statement, consider the fo]fé'd'ing
s iy Pmblans e - ’ ’ '. ' ’ 3: o ¢ 'J
DU ﬁ’{s (l) At 10 em frcm -the fulerum, how large a mass will balance a mass
] el - of 30 gn which is 20 cinfrom the mlcnnn? —

. e Y
Lt Eollowing 053' rule: 30.X 20 = ? X 1(. . This is satisfied by a
mass Of 60 gm. Check it on yoir meter stick instrument.




. > - ¢ b R
. . (2) Where should ve place 300 &1 to balance 90 gm placed 20 em from,
the mlcnm? Find the di-stance by susperding 300 gn from the §
7
- : stick on one side ?d 90 gn 8t 20 cm on the pther until you get

_ & balance. ' The distance is obviously 6 cm, since 90 X 20 = 300 % 6. °

In sumhary, ve conclude froh our experiments that i the product 6f the
mags and distance on one side of the fulcrim is equal to the product of the
. mesé and distance orr the other side, then.the seesaw ‘ba.lances. .

Exercise 1 ' .

. 1. Below is § table of values {rom &n experiment vithea seesaw. Masses vere

s o L hung or the right-Hand side
. Left side Right side to balance the 6 pournds at
— . - e Distance 8‘cm to the left of the ful-
, ' Mass of frem the | « N
. ’ objects fal enm. Find vhere we should
. N in pounds ‘in e . Place the masses shown.in the
) B d @ = LR , table to balance £ pounds ’
6 8~ 122 - k " placed at 8 < frem the
' _ | 6 8 2 . tulenm. /
. ) .
6 8- 8 ‘ 9
J 6 8 . 2k _ )
16 8 | 16
6 8 . 6 . '

‘\

2. Find’ the values for the masses 'and dibtapces in th'e given ‘table if you
vant to balance 20 gn at 1k < frcm the fulcrum on the other side.

) ngn 20 - k0 0 . 50 [

R -. ‘4 =, e . 15 30

o . .

-~

23 " How far frm«;the fulenm sbould 8 20-@: nass be piaced on the left
. side to ba.la.nce a ho-g:::,mafss placed 20'cm fram the fulerun on the
\ i right side? )

, k, A boy, vhwe nass is 70 lbs, rode a seesaw u;i.th his father, vhose mass
is 175 Ips. Ifjthe faxher sat b.ft frem the ful'cnm, where must the
. ‘boy- si‘c to jbalange the seesaw?

a -
- “Find the nissing values\in Pro‘blens 5, 6 and 7. .
’_:.‘n o '\\‘ - . . .
- ' . ‘ * * N . :__, -
e — s 2~ 3 . :.'\:\"’ .

‘ . . 7
d . . 7 - - Ty
' i Q) ;




? P
—

’

30 gm . . 60 gm

-—12 P B———r— 7 ——,

N T

250 &

f

Is there a place on the seesew '-mere 8 sihg.e nass can be ‘v_aced end 2
balence obaa.ned" 4 so, whet. is ;.ne distance of the mass, "ran the
mlcnz:zz T e ‘ . ¢

e W

- [

/1.3 - Kumber Sentences

' In. the gz_'evigus secticn we Zound how one c;an balance 8 'seesaw supported
at its cemter.. ‘Dif‘fe_rent messes were belenced with & 2ixed ness of 200 gn at
6 @ froo the fulerun. The resul‘ were *ecorded in tabuler "o*-.n @‘i'nen,
fron this table, @ rule ¥as developed and expressed {a the mathenaﬁical form_
' . m Xad = 1200 .7 e
vhere "n" represents the mass o; any objec‘ that is pl&ced on the stick and
"3" represents its distance frco the f‘ulcrun

‘ ° - - ..
The-‘mathematical lamguage which uses the number sentence to sfate re-
':lationsh_ips is the language used by the scientist, engineer, mathematician

and others to commicate ideas to one another. The numbeér ‘sentence

S O . % -

. e m X d =1200 . *
is 'an 11lustretion of this forn. This form allows great quantities of in-
- formation to be stated in a simple mamner. For exemple, mxd= 1200 15 e ;5.
-~ ‘zepresentatiqn of. gll the dte Tour T thE Previcus experiment amd in
Exercise 1. Furthermore,' it vas not necessary: to set up an experiment for '
ead‘quro'blén in Exercise 1 dfter the re}a 1onship was detemined Fote, too,
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that in writing this sentence qniy.five symbols are used,,“m" "'x"c:’ "gif';'":“l .
and "1200". S oLt N
. - . s .

Just as sentences are used in. talké.ng and writing to discuss our every-
-day experiences, sQ\sentences are used in science and mathematics to, describe
and explain. For instance, you are familiar with tHe following sentence
The diameter (D) of & circle equals twice.the redius (r). This can be stated
in mathanatical form as "D = 2r". This is Just as good as “Johnny is sleepy
today”. The former sentence states the fact that in_any cifcle, the dismeter
_is twice the rediis. The latiez; sentence states the fact that Johnny is

sleepy today. ~ . A
ST

There are meny other séntences that ma?ke statements ‘a:bout numbers and

ERE

quantities. However, not all sentences make statements about qii’anf.ities ‘that

g,re equal For example, "Five is greater than three". As-a number sentence

thds is, mtten 5 >3. The symbol > is read "is greater than". ¢ Likewise, the

symool < is read "is less than" and is used in mmber sentences such as

Three i§ lesd than five", written 3 < 5. Another symbol scmetimes usé&d is'

read "not egual to", and written #. The set of symbols, =, £, >, < are the

A

-t

, These sentemces are examples of mutber sehtences.

P
e 2

verb ohrases commonly used in writing mathenatical sentences. "’hese verb
pnrés&s s\,ate '€he reletionship involved bet’.reen the word phrases~ “You are
familie: witn sentences such 3s "The'sum of & mumber, x, and eight is twelve .

t.i.s verbel sentence can be stated in mathgnatical form by seying x * 8 = 12.
Similarly, ’

. q . - -~
*,, Nine is grea¥e? than *he sum of three and four: 9 >3+ 4
The product of three and five is fifteen: s 3°5=15 "
« - Tventy-one is less than the sum of eight and fifteen: '21 < 8 - 15

The product of & certein number y and three is not ' - R

equal to six: - ’ - yx3£6°

A

. . . .
For exsmple, the first gentence, x + 8 = 12, consists of twp expressions,

"y + 8" and "12". These expressions are not sentences, they are onl:,LpBrts

SN

bf a gentence and are ce.LLed p ases. Then the difference between a senténce
and a phrase is tha‘. a nhrase does not ‘make a statement buf -2 sentence does.

. % .
. L s .

.
. . -

1.k Fumber Phrases -

Iet us return to the first two examples of phrases, x + 8 and 12. N#tice

that m.represents only; cne specific number whereds x + 8 can represent §ay

’ R ? .
P ¢ .
,, I . . , : - .

.\) ) . . - ‘

E

.
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number, depending on the‘value of x. For instance,

-,

P

¢ . " s e g
; if x is 3, then x + 8 represents 11 ~
if x is 8, then x + 8 represents 16.

A number.phrase is a name for a number. \If thé phrase represents a *»
specific number, it is called & closed number ;ghrase‘(or more simply, a closed
phrase. For example, 19, (3 + 2), 38, 2(3 + 0.5), (h X7 -1), ete. are
closed phrases. 3 . s

* 7/
Number phrases which do not represent a specific number are cailed open -
» number phrases, or more simply, open phrases. The value of the phrase de-
pends on what number the symbol in the open phras:e represents. For example,
3x + 2 represen’ts 5 if x is 1, but it repregents 14 if x is 4 and 32 if x is
104 . : o :

»

v

\

L3
. Exercise 2

1. Translate each of the following number phrases in‘co mathematical symbols:
' A(a) The sum of the Zgmber x and l5 N > -
1. "(b) ‘The product of 8 and FO . ’
(¢} One fourtk,of the humber x. . ’ ,
. Sd) A number which is 4% less than x. . .
(e) The aivision of 18 by x. P
e (£), ‘I'hree greater than x. . .' . . ‘ "»s ’ :‘._,;’
(g) One less than two thirds of x. ‘\) .
(h): The number x less' than 23. ’ s

2. For each of the number phraseg in Problem 1 find the mimber repfresented “ -

. -t ®

' iy by the phrase 4if x = 12. g

- . “

: . .- , I,
P . )

~ ) . N [ ,' l'" s ; ~
1.5 Parentheses /, . . . & o °

Assume you are faced with a problem such as the following:
"Find the number represented by the open [phrase 6 +8n, if n is hot
Then, replacing 4 forn we gét 6 +'8 X 4. This is a numerical. phrase. What
number does it represent? If you look at it one way, you might say, o ', ‘ e
. 6+ 8 is 14 and 14 X 4 15 56. .
"I'herefor’e, the numerical phrase 6 + 8 X 4 could represent 56 . However., if we
look at the phrase another way, reading it fram right.to left,’ -
8 X k=32 and 6"+ 32 = 38. A :
Thereforé, there seem to be two possible answers. In order to elimina.tf the

> ‘
P - ' , 7 .

’ .. ' . 18 lo < 0»4 .
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poss'ibiﬁ’ty of calcula'ﬁ\ng the value of an open phrase in various ways, the
following mathematical rule is defined:

. ; "In dny given expression where there is a multiple operation,

RS

< we agree to multiply and divide, before we add or subtract."

N o Applying this rule to the: above example, we find the value of 6 + 8 X &4,
by first multiplying 8 by 4 which is 32%and then adding 6. Therefore, the
correct answer is 38.°

Tilustrative examples: " ) <. . ) .
1. How would you' find the value of 8 - 12 £ 2? Here the division is done
before the subtraction, so 12 +2 = 6'and 8 - 6 is 2.

N . N 3 . .
.

-] e. Find the valu€ of the closed phrase 4 X 3 - 6 =2 + 1. Remember in this

case the multiplication and division are done*irst. Therefdre, ‘
b X3 =12and 6 £2=3. So4x3-6%+2+1 can be simplified to S
12 - 3 + 1 which is 10. PY
3. Consider a problem from arit.hme‘cic.. Subtract 2-from 15 and add 3 to ‘cl‘qe

difference. Translated into mathematical form, 15 -2+3. This .
problem involves only subtraction and. addition (no multiplicatlon or ’

FIRY

- "+ division in it). Im,s:.mphfyu.ng, you can take you,r choice. ;Q: can ‘

read from left to right, 15 - 2 is 13 and 13 + 3 1s 16, or you
start to réad from . right Jto Jleft, -2 + 3 is +1 and 15 + 1 15716 BotlL

N . 'ways give the same number, 16. . e . >

; , S
\ . - '
In working with the phrase 15 - 2 + 3, we must be careful to sibtract P

» only the 2 from 15, apd not the sum of 2 and 3. To avoid similar confusion,

., 'we use symbols "( )", called parentheses. This meens tlffa‘q_when we enclose L

»

"(5 + L)" ve treated as .a s:.ngle number. For example, to subtract ‘che ‘sum .
of 1& and 3 from 18, you write 18 - (% +3). Th'at is, (& + 3) is treated as
a sfngle number, 7, and subtractlng the 7 from }8 ve get ll ’ . ) a

o>

Using parentheses, there should be no ,difficul‘cy translating the follow-
ing problem: "Multiply the sum of 2 and 6 by Ln in‘co the symbolic form
“(2.+ 6) x k. Treating (2 X 6) as a single number, you get 8, and-8 X k is 32.

On the other hand, working with a phrase like 2 + 6 X L, parenth.eses are
npt needed since we agree that multﬁsplication comes first before addition.
Therefore, thé product of 6 and 4 is,24, and 2 + 24 = 26. Notice that the two
phrases, (2 +6) Xk and 2 +6 Xk, represent two different numbers. The first
is 32, and the second is 26. 'One final note: a numerical ‘phrase like . ',
(2'+ 6) x k1is often written without the symbOl "x", as in (2'+ 6)4. Here"

< . -

. St o1g o S R

a1 w

, *a numerical phrase suchas 5 & in parentheses, we intend that the phrase ' - \( o
|
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L i the operation of multiplication is implied . ., .
SIS S ’ 5
) - ” . These expressions are but twa methods ised for indicating the operation
) i . of,multiplication. We have already seerr this done in such expressions as 2r,
e & :

‘which Is reéd, ntwo times the number represented by ", Similarly, When we
:“"wri.te (5.+6)k4, it ‘is understood that 14» is multiplied by (2 +:6).

3 * . N

X o Thie most commoti, forms for 1n‘dicat1ng multiplication are as. £61Lows :
- o4 A . . »
3 oo D e ek -
e LT (b} S '

.. et T C (o) a(r) ‘

.o L. > ' . 8
ST e " _(d) 2 7r . i (o
A
R Forn b) 1s noy acceptable when r is a numeraln. For ex ple, 28 means twenty-

eight, not 2 i:imes 8. The dot of form (d) srould be us®j in this case as 2° -8.

In Section 1. 3 the: number sentence m X ‘4 = 1200 could have be'eh‘written’

< 'md = 1200 if form ‘r;) is used, .. 7 e

o . There are, fewer expressions 'used for division, only 3 forms being co
used. EVeryone i.s familiar with the form r & 2, which is Tread, "th number

; ,represen’c‘,ed by . &ivided by 2". 'The other twq fo:rgs use short line segments.
One is 2 and. the other r°/2 . ! '

i A B -

e o =
1. Which of ‘he folld ng closed phrases name the same number? R
' - . 1 9

(a) 2+U4x5a d§22 . : .

S .2 (b) {2 + k)5 and(30 . :
\,, *.u"«;r (e) 2+ (kx5) a : -
) (@) b+3x2ama %+ 32 - .
.. . p \
(e) 5%8+73aa (3 803 . -
. .
L. (D) 32—:—8-i+and Xh+s S
- 2.. Place’pareni;heses in the following so that -
. ' -3 2 o
= a) 2 >< 3 + 1 represents 8 )
- ——zﬁ-(-b)- __&J L3 represents o ‘ -
‘; ” _ {(c) 6 X 3 -1 represents 17 ¢ ae
i ., . (@) 12 -1 X2 represents 22 - .
e . . Py . <
: ) (e) 18 - 6 + 3 represents 16 , . . . .
. L ) . ‘

o o > : . <L
ERIC. - . 7 -

A

e




,:i e A . . ) ' o o o . . i .. ”
Z 3. Find.a ’num'bex.{it for each numer:l’.ca]: phrase : ) ‘ T '
: s

(a) 5x8+7 C (0 (a7 - 6% . o, .

=) o6+ 1 T @R s R
. (¢) (9 +1)(3 +4)y - . . - .
. (@) 6+ 2 h - (h) 9@ *3) - (8 +.2) PN ~
> (e) lh - 3,‘x 2 ’ (1) o(v “"“3')‘”-"'8 + 2 : - , .

" b, Using parehtheses, rewrite the following closed phrases so they repre-
sent the same number. For 1nstance, 2X5 + 6 X 2 can be written

-

(2 X5) + (6 X 2) and both represent 22, - N -

(a) 3+8-4 ' .
(b) % X6+ 4 ! \I o T
. N -~ . »
(e) 3'’x5-bkex2 - " <. ) .
(@) 36+9+5-2. | . CooLR .
o ot . i SN
v - ¢ ' -t @
1.6 Distributive Property of Numbers A . B
- N H
. N Another property of numbers can be described by using parentheses. How -
would yotf solve the following problem in the simplest possible way? T
’ : " A peat markét sells steak for $l.29 a pound. A woman B

bought two“steaks; one vfeighed 3 lbs, end the other, 2,
» 1bs. The total cost of the two steaks can be computed

t - ..

in two ways:

(1) 3 x $l.é0 = $3.60, the cost of the larger steak’ . <
‘ 2 x §1.20 = $2.40, the cost of the smaller stesk
, ’ $6.00, .total cost ) " T
or, (2) Teke the total weight, which is (3 +2) pounds, and T e
T : multiply 1f by $1.20 . L, o BN o

3+2) $1ao) 5x‘$1ao $6oo

Do you agree that in computing the cost, , the second method ’is simpler?

- 1T .

Two strips pf a carpet,. one m suring 3 ft X 8 ft _the

Consider another problem: \ . - o

bther 3-ft 5('12 i‘t, ‘are se'wed together to make one runner; “K
- - . N WPl ~ - - s T T o~
R -- or a-single piece. " How many square_ feet are "there in the
5 l . runner? - . . ) ‘
- - 0 N
‘ 1 b <
- x " - 3
ad . A T ¢
' 3, 3

. . " ; K . : ‘
FRICe .0 o R . .
. ‘ oy, Lt ! o .

¥ - .
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*
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| 3 284 ag0¢| + | 36 sqfevd = 3 60 sga =T .

AP ~T§=ef§_—q‘ L —12f — T)-— (8”2)’% ——qn '

. . . ~ - ’ v ¥ 2 hd

L ‘ From the 1llustration, it can be seen that the sumx‘ ) T . |
: ‘f‘:'\\‘,‘«;ﬂ,'..‘ = of the .two pieces 'is equal to the {mal pieces, . :” ) "
. - ;'ﬂ"“' * . 3x8+3x12—3x.(8+12) L. -

) ' that is, the area of the first piece plus the area of T Y ' %
s » . the second piece is equal to the area<of the runner. R

. T s
\J T T Y

Thése problems 1llustrate the distributive property of multiplicationg
oler addition. This property .can be further 1llustrated by the following ey

.t X

. product:  ~ ~ - . - ‘M: - ?. N
. - ’ ‘ / . :f

T X 13 This may- be written as v . . “f.i

~o7(10 + ;3). ) Notice that 10 + 3 in the' parentheSes E @ Q‘:- .‘.

. . . requires multiplication of the sum. - ) Q -

o ) This product is * o, 1
’ . =7Tx10+7Tx3 . Co e

. . This indicates that the multiplication LT

* =7+21 has been distributed over each temm in R “N
la thé sddition. . ‘ : R

Z

w o - - ',;.
’

w7 - The neame “"distributive property of multiplication over addition® is ’,." . ;23
d usually shortened to "distri'butive property". We can state 1t in a general .,.%
‘ i form as follows : "For every ’number 8 and ev'ery number -b and every number <, ;
) i‘ a(b +,c)9—axb+a><c . Y
v . ! " LN
U ‘ Study the folloving examples carefully. In one of them, ‘the distribu- e,
e “
i “tive B property applies; in the other, it does not, .« . e
FoT --8(3+2) =¢8x3)+ (8x2) ® Here the dist Yroperty ?7 *
3 _— ) ET P Rl
N - ) does apply. 'Nﬁtiplicat on is LT
-{"? - ?"; i ) . Fhad \\

distribyted over addition. B (,';'_.

. VB 4 (3 x 2) }\‘(8\+ 3) X (8 + 2). . Hére the distributive’property . e ,,-, 1oy .

—
T
St

does not apply. Addition is not .
distributed over mult,iplication.

. \ N
. J \
2 ) \ “

’Ihe distributive property of multiplication over addition is frequently used
in matnena&ics 1\




o : . 5
In the following examples , to further your understanding of. distributive

property-, compare the v\'l.ue of the indicated product with the value.of the

indicated Syt ' . N ' )
Indicated Product © . Indicated Sum , R
T, 8(4 + 3) = 8(k) + 8(3)
- 3(200 + 20) = * 3(100) + 3(20) > R

, ' 5(26) - ., = 5(20) + 5(6) - . .

Do 6 x 5% - " Els) + 63 [ —

‘Thissillustrates the changing 6f an indicated product to an indicated sum.

* Here ig another exa;nple:» L o - ; - :
4(10 + 2) =’l+(1q) + 2). a ’ I

It is alsp correct .tcachange an 1ndicated. sum to an indicated producj; by use
of the distributive propem‘,y. %;For example, N . ,3, e - Co

' T Mo ) S k02T Lt g

% ]

Again, compare the value s therind‘icated sum with that. of the ﬁ.ndica;ed pro- X

Jduet in the following' & s L. R N ¢, —
~ . Indicated Sum , " Indicated Prodiict o
. L . .
_ e : ) . <
e 15(8) + 15(2) = 15(8+2p - e -
a7y +21(3) S o=t a7 +3)” . . c
. , . . \ 13 . . Lo —
T - Exertise L U . 4
1., *Wnich of the foll;wing problems are indicated sums and which are indi- T4
. ca‘&ed products? a : . L -
e g™ 5 . . , ) s
(a) " 3(8 +5). L @ M3+e T v "
“(b) «3(8) +3(5) (&) 7+(3x6) - A - &
(8) 2(6) + 2(3) Ao e, Co
2. Ibcpress the following indicated products as indicated sums and indicated -
- sums ‘as indicated products: A « v . ke . d; "1
a . . .\ L) . N . }
3‘ (8)"4»()4-7\" 3) 3 ’ ‘ A : S " . R [ -
(®) 9(34 + 6) co S . .
~ . . ; , |
2 2 - . |
. + S(4 . . .
* <\(?) §(8) 3( ) . - . . - , |

"oo(a)- 18(3.2) +°28(.8) , . K




your method.

7

3. Perform the.indicated operations the easier way. ShoWw
Illustrative Exsmple: . v ‘

t

110(8) + 110(92) = 110(8 + 92) or 110(8) N 1fo(92) = 880 + 10120
e C - 110(100) = 11000
, > = 11000 ' . ' ..
. 12( 9 - ' . ‘ o
3 .. —(%)4— 5 %) .. o ) . .-:.:T,;
Si1 +9) - ' o .
.’ . {a) 0(’1‘7_? 83) | L : \ e
= (e) —(o’r9) . | o
§, . Show how you could use the distributive property ‘co perform the multi-
: p]_icetion mentally. - . . -, v /
£ o - ° Examp]g: . R - . " '
- ‘ 6 x 28 = 6(20 + 1) A I T
- ' " e=6(20) ¥ 6(k) ¢ . s
e u A /,f = 120 + 2k
".:'; . - B . | ‘ -k ‘ ’ :
A " A ro ’ / .
- (8) 1(22) o ' ' ‘ |
) v (b) 12(33) ‘ ’ .
" o(e) 15(36) R T o
¢ .

< -

. . )
s * 1.7 |[Translation of Open Fhrases to Word Phrases

- o
3
. ‘. ?

. Nutbers are often used in talking abdut things . For instance, the num-
ber three can refer to 3 books, finehes 3 3 apples ; ete. This does no‘c mean

that "3 books" is a number. In the same way,’any number, n, can be used to
4 b ta:;Lk about thingd like n books » 1 inches, etc. Remember when we say *'n books",
4 ¥e mean thatfin is the number of bocks. Similarly, the transletion of an open
phrase like 2x + 3 ‘to a,word phrase depends on what meaning we give to x. The

;’ ¥ number 3 must be given the seme meaning 'as that given to x. For instance, the’
i *' . phrase 2x + 3 can be translated\ in the following ways g ,
:;'- * - - | P _
:{3'; . } | 7
~~ %?’l e \‘J ’ ) 4
’ « ‘ Wi ! » * i . b
\ ! v . /

N Y S
. H - 7~ ) 4 ¢ s R ¥ )
: e 24. 16 . -
. e .- - 7

H I
Al ¢ <




" {v)

2x + 3

(a) nuiber of points
Mary made in a geme

number of poihts
Sue made if she
mede twice as meny -

as Mary

. .

,pumber of points

Sue mede if she
made 3 more than
twice as many as

Mary

number of bocks
Jim has i

¢

" mmber of books

.S

Peter has if he

. has twice as many

as Jim ddes

»

,

number. of books

P;eter has if he

has 3 more tﬁan

twice as many as
Jim does

As another exemple; the phrase -]-‘-a

BN a

, 2°

&

- 4 can be translated as follows:

%a-h

(e} length of s,
rectangle

the length of'r'a‘ o
rectangle if its

+ length is-helf that
of the original
rectangle

o

"che length'of’a -

ney rectangle if its
length is L units
less than half that

_of “the original

rectangle

(a) \ distance frem
city & to
city B

»

‘distance‘ from city
A'to ity C if

its dgistanée is
half that of the
distance ';’rcm .
city & to city B

d.i{tance from e¢ity A

to city D if its

distance is 4 miles
£ ' -

“less then half the,

distance from city A
to oity ‘B

L3N g

Thege ‘are the two translations of each of two phras%s. Many mqfé trans-

f‘ilations are possible for each phrase.

P

T s

7 .
- .

<

c you think of-a different way to translate the phrase 2x + 3 into a

word phras gt .

‘Exercige 3 -

,

How mény “trenslations of 3x - 5'can be made? ‘Give examples.

-




- ,:\ ‘,\‘ K i 3 ¥ o —' - . :
NN . R . e
n L. In the \following prob].ans s wﬁte a transla‘cion of the phrase to a <.
o o . " verbal phra . E
T @) e g IR
Y & - (0)on:6. at+l ‘ ey
. % (e).an _ ( 3 . . .
(@) 2n+1 : 8 x+hm e -
’ ) . T we 3 "Et'.-‘?‘?.
. Lo , . »f: oy -
: u- 1 8 . Trafislation df.Word Phra es Kzo %r:ses b . »
s . In the last secti\on-oben phrases ere ‘tranSla‘ced in‘co word phrases. We
) 5&’"’: notic%i ‘c\hé.t there.was not a single translation but, many possi’ble translations.
e For ’instance, the translation of the fﬁlrase 2n + 3 depended on thg meaning as-
) sigr{e@ the symbol n. - T .
"} It is also poisible to go the "‘Tother way, “and ,tr;an.sla‘ce word \phr‘ases into i
open phrases. ‘ . ’” . -
“Suppose you waﬁt to talk about: your age 5 years from now; 'l‘hi's is easy
. since you know your age. You might-reason as follows: ‘o .

- e The number of years in 1}\1y age_ﬁow is 13; then 5 years

- ' from now ﬁxy age will be 13 +-5 years. So, I can say
that in 5 years my -age will’ 'be 18 years.

t Let us say you want to talk a’bout Bill’s age 5 years from nowv. Suppose‘
ou do not know his age for su.re- Then you would say that the number of years
* ‘in Bill's gge nuw is x; consequently, the number of )Zears in Bill%: age 5

a

B

\‘-of years, in Bill's age 5 years from now. In this problem a word phrase has
:/" ‘been tranSlated (‘che number of years in Bi].‘l.’s age 5 years ,from now) into the
ymbolic phrase (%X + 5). - -

L hd

é‘\ o N
) h How would.you translate an expression such as "four more then a number

) y' into & symbolic phrase? In thinking about this ex'pression, you could say
. that we begin with a number y and add % to it. This suggests that ve'write -

4 -~ -
s

é-r.“:. y+1¢.‘ . - . . .

Cpnsider the ,following word phrase; "A link segmemrt 3 feet longer than'y®
another l:Lne segment n Our purpose is to write this word phrase a\s an open
pi?!‘ase. The number of feet in the first line _Begment is unknown. .Det "f£" re-
T resent the num'ber of feet in “the first segnent. Then "f + 3" geprgsen‘cs the
. - numbe;"of feet in the second segznent. vt

. ) ‘
- 18 BV

- years from noy i, x + 5 years. Notice the ghrase ' x + 5: represents the number

2




Translate the following word phrases to symbols'

(a)

(v)
(e)
(a)
(e)
(£)
(g)

Translate each of the following word phrases to symbolic pflrases:

(a)

(o) -

(e)
(d)
(o)
- A1)
(&)
(n)

For each

P
Write open phrases o represent each of the following: ’

(af

(o)
(e)
(d)
(e)
(£)

(g)

Ir thejsum of the numbers t and 3 is doubled, which of the followirxg
phrases would be a correct neme for the sum?
2t + 3 or 2(t + 3)

"If the number of years in Bill's age is now K wh'a‘c is the
of years in B:.ll‘s age 7 years. £rom How?

The number
The number
T}'leb number
The -number
The pjmber
The ilfuzber

The sum of a numbér X and 2

The number x decreased by 8

The number x subtracted from 15

The product of 7 and x

The quotient of a number 3 divided by x
The number X increased by 6 '
The number x divided by 2
One third of a number X

‘I‘he sumof an even number and the next even number
One half of the sum o‘f a number end 6
Séven less than 3 tlmes a number
Twice a number increased by 3

Twice the sum of 7 and 2

Find the total age of Mary and Sue if Mary is 5 ‘cimes as old as

Sue is.

{Hint: Let % represent the number of years in Sue's sage.)
The number of cents Mike has, i,f‘ he has x nickels and twice as

.many, dimes as nickels

-

-

Exercise 6

of cents in x_quarters_ _
of cents in X dollars

of years in Sam's age 3 years ago

of years in'John's age 4 years from now :
of feet in ¥y yards
of inches in b yards

of the numgev' phrases in Provlem 1, find the mnnber represented
by the phrase if the unknown, number is: 2k,



4 P

.

6. If 5 is -add.ed to twice certain number n and the sum i.s. dividéd by 3,

a
. . 4 . c,
> vhich phrese is the correct name for the guotient? . b
. 1
2n +.5 ° 2n " .
or - o=t . ' .
3 3t
7.  If one fourth of & certain number x s edded to cne third of four times

T

the same number, which phrdse'is the correct nzme?

. %(hx) + ;:—(x) ’ or é(x) + %(x) '

3 -
8. If the number of gdllons of milk purchased is y, which is the correct
4 @
i

- phrase for the fumber o quart tottles that wi

‘ Ly or L 7

. [N .
'
9. I7 & is the number of feet in the length of e certain rectangle and b
* .
> is the number ¢2 Zeet in tne wid:ih of ine same rectangle, which phrase
h :/ i{s the correct neme for the perimeteril. a
)
\ 2(e - o)- or et
- P11l in the blanke in the Zollowing predblems: ¢
. ? ® . M %
10. I2 x represents & mumber of kilcmetelers, th the phrase
represents the mumber of nmeters in % xilcmeters.
. -
il. A methemsticel phrase indicating the numter o dentimeters ip s zeters
| i N 8

) s . 1/ . .
12. Given & symbol & representing the pmuzber ¢? liters in a container, the
» . phrese represents the nmuxmber of =millimeters in thet con-

teiner.

13. The number of grems in p milligréds is .

N 1k,  The mmber of grems in t jilogrems is . )
“ . » .
15. Therefore, the sum of ¢ kilcgrems end w grems would be
grems. )

. .

16. The number of céntimeters fn k metez:s end n centimeters would be

A .
. - .

“ 4
. 17. ° Adding t centigrems to s grams would result in e sum of
] . . - . v
- - grams. . .
. > - ’, .
i .. 18. In a mixjure made up o? oxygen end niircgen, there are L times as many '

* . - . »
oxygen molecules &s nitrogen moletules. Write & methematical phrase
LI .
f for the number of oxygen molecules i1f there are b molecules of nitro-
4 s

gen. .

: ’ '}é
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- 1.9 HRunmerical Sentences ] )

’ In ..atnaat" cs we use senge'"cec ¢ mexe stetements atcut pumbers. For
*  instanee, co "der the Zollcwing exarmplies: = .
o, .~ ) X - =30 ‘ .
B a3y £ .
i >3
i All oi_’ these sentences invelve cnly nxtters. Sentences whlal msXe statements ¢
. about mmbers are called numericel sentences. ’
’ ... For éxmle, :‘r,e Zirst sentence "8 X - = 30 - 2" siates thet the mumber .
1 represented oy "8 X <" 15 =he seze gz the T=zer represenzed Ty "IC - 27, 'I:‘
is reed "8 X "- is egual W 30 - 27, end It ls e it¥ue sextence. .7
On the other hend, "3 = £ = 1.7 is elec & sentence. Tric sems grnce~=eXes
the sratement ket the nimber (3 - £ 25 l.. It is evsersny” :.'::stii:fé =9
© end certeinly Is met I-. Eowever, "2 - € = 1-7 g still & perfectly g .5en-
tence, tat 1T is e-Zelsesenverce. ’ -t
p . ’ r \‘ - N .
. L3
) ‘ Sxereise 7 )
- Indicate -'he"-e*-_ac.. o" <ne Zcilcwirg seztences is true or false;
1.0 (o) _3(z3) = 3(20) - 33 S . .
L o ) H(8) = s(2) = s(o) L
{c) 2(2-3)=2(2) -¢ .
5 P . .
Toa) BA(tx =3 L ‘
: (e} 5x6-3=5x"-8 ,
- (2) 32:x5-3=2x6-~ '
(g) »3:-8-£x8=18x7-23 - A
(2) 32x23--2x" = (27 x8) - 7I£) , ‘
3 N ' - e <
° . (3] . - . . v

Z
1,10 Open S,entez;c& . . -

¢ Consider the Zollcowing:

. . {e) is a studemt iz cur cless.
. S

-

.. - {2) is & seescn of <he veer. ' s

. (c) The coler cf ner hair is . ' .
(@) The su= of . and 7 is 1B, c e
4 7 P .

Y

These inccoplete sentences are exsmples c¢f cpen sentences. '.':'.;ey are

7 -
" .
. ERIC o .
e

. -




- - "—L>‘-‘»_
. [

. nedther true nor false until the sentefice fs completed. The set of elements
"that may be used ty.ccmﬁlmén&e is celled the damein of the open

. 4se’ntenee". Por example, suprese <hes the dcmein cf (g, is the set of nemes - -

‘of students of our cless. Tnen, when <he tiep:

member of the demain, we

g
-t E el & -'< - - ~ -
“deefin”in (t) is tHe se: (spring, surmer, Septemter, winter). Ifetke dlank
T

- - - - .
4n (t) s replaced by "Sepiember”, we get a “sise senzence.

demain Jer

-~
1%

- - - - < - - - - . = - e -‘. >

“--- $€ T2 SDecCla_ luteress., -T 18 comvenlent ¢ isg & symIi<., such as x or ?
o

l&re st

L
C
)
).
i
ot
n
.

thienerr 4 »
felse il x is replaced by & zecter of the domein ¢ tze cpen sentence. A

- - * . - - DR - = A Ce
sy=tel, such 28 x Or ¥ or =Pcr & tlemk, which cen te replaced Ty any member

cf &2 given set s called 2 ver

the varietle

e
, thet I Ig In the trush set. IT we replace y ty 3, do we

e ot

g
- Oziicusly nct, Teceuse 3 = € = 1L is e.”alse stetement. A Jew trisls wil

coavince yTu thet tne truth ser’ conteins caly the number 8.

— . - - - - . U .
e trath set ¢f en cpen sentence fs also called the.scMutidn set.
! L]
. - -~ - - 7 s - * - .
- Thus, the scluticn set of the Cpen sentence ¥ - = 1. Is the set whose only
. \ - ¢ -w - - . - - 2 - . - .
mester is the mimter 2. We shall alsc say zhet 8 is the 'solution of the
4 . - N = ~ - ‘
equation ¥ = © = l-. . .

~ Suppese we want e solwe (¢ Sind the truth set or soluticn set) of
? the open sentence x = L > 5=. If ve sssume x is a verfdbtle whose dcmein is

the set of ell reel nimters, the cren sentence would state that e numter x
N

Qo . 39 '

ERIC - -

Aruitoxt provided by Eic: ’ N




’
-

Az .
increased by one{8 greater than 5-;-' For what numbers does the open sentence

beccme a true sentence? .Test to seg 1if’ L— is in the solu‘cion set. A little
thought us that-it is not, because the statement L— +1> 5— is not true
Certainly, any number less than h-— will also not be in the solution set. How-
evez:, any number greater than hl will be in the solution set because if it is

increased by one, the sum wiXl be greater than 5- « For exsmple, 4.6 is &
solution because i -

. =1 ’
N ' S 6 +1>5 > .,
is a true sentence. Therefore, the set o; numbers greater than h-— is the

solution set of the .nequality x+1> 5

Open sentences afe not completely specified until the domeain of the
variable is given. Since in ms‘ mathematicel questions the domain is the set
of alil real mmbe*s, we shall --equen‘ ly cmit meking eny spec-;-c statement
about the demein. We meke the foliowing agreement +IZ-the domein is not speqi-_
fied, it is unders.»ood to be the set of all real numbers.-

nb.yéical proolems, the dcmain cemmot be thé set of all real numbers.
For exemple, in the seese.:-r problem we found md = 1200. Here, the demein of
-d is the set of positive numbers between 0 ang 50, because the distance from
the fulerum can be et ‘é‘ne zost 50 cm. For instance, if in the o riginal seesaw
experinent we asked at what distance from the “ulerum should a 20-gzn mass be
placed to balance the 200 gnm at € em, we might do this: Let 4 be the distance;
then® ’ )

‘20gm><dcn-=200gn><6<:n=l290@n><cn. ,

It seems that d = 60 cm. - However, this enswer is lclear]\y nonsense. It is im-
possible to balance & 20-gn mess on a meter stick ageinst a 200-g1;; mass placed
at 6 cm frém the fulerum. The mathematics gave a nonsensical answer because
we did not specify the domain of 4.

N~ or

In sumary, a number.sentence 1% °

" (a) en equation, if the number phrases are comected by the symbol
"=", meaning equality;

(b) ‘an inequality, if the number phrases are connected by any of
the s.ym!;ols, #, >, <; these symbols ave verbalized "is not

equal to", "is greater than", "{s less then"., -

The set of x}mnbers Which meke an open sentence true is called the truth

set or solution set of:the open sentence. To solve an open sentence means to

find its entire set of solutions. The set of solutions of an open sentence

-t
L4

Aruitoxt provided by Eic:




1

m&y contain one member, or it may contain seversl members . ) e

.

- ”~ - !
* - r
,

- When the sét of solutions of an open sentence has been found, we say _
¢ N \ pt

t

that we have solved the problem. ‘ -
& Y M R Y
- ! Exercise 8 .
1. In the following prozolans assume that the dcmain of the variable is .
the set of all real numbers. Use your knowledge Qf arithmetic to -

fird -the solution set for each of the open sentences.

(a) x+3=5 : .
(b) y+3>5 \
(c¢) 4x =12 *
(@) b {12 '

'

.-

(e) %=2 . . -
(f}- b'+8<lO' ..

2. Replace the box ﬁth & number that will make the sentence true.

() T} #+3=12 J ) L .
(0) a+ O =8 / ' ‘ . .
23 : . “‘( ‘ . )

(¢) ¥x d+2-=
(a) +x OO '

3. In each of the following examples , select those eleménts of the domain

which make the open sentence true

- (a) x+ 21= 12 (8, &4, 6}“.}.&) is the domain of x w ~
(b) 3x=12 {6, 2, 4} iS the demain of x o
(c¢) 16 -.y =10 (8, 10, 6§ 15 ‘the domain of y

@) . P +h=8 "o, 2, 4} is the domiain of x

L o

b, Let n represent the number of pecople that g?! & the local movie on

- ‘Saturday night. What is the domain of n? ¥ an1 tickets cost $1.3%
each, and tile total collection for one nigh‘c is $235 25, ‘how many people -
bought tickets? <

N .
«

5. Let g represent the number of gallons of gasoline you buy at the filling
station. What is the domain of g? If eaax gallon costs 30]5 and you pay
$2 76, how many gallons did you buy? '?;t "

6. Let P represent the number of people whowgo to ; dance at which only 30
couples are admitted. What is the domain of p? If each couple must be
accompanied by a chapercne what is the domain of p? '

¥ 3
. 2)4' s$ * N -~ * e
~ 32 .
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¢ 1.11 Eguationsg and Inequalities -

The previleus section dealt with open sentences. 'These senteénces in-
cluded relations between .quantities which were equal, unequal, one greater
or less than the other. Because of its freguency of use, the class of rela-
tions that are equal are called by a special” name, Word phrases ‘
connected by, the word phrase " = " state this kind of relation.

entences gtating equality between numbers.or quantities are called equaticns.

equations .

Therefore,

The relation between the _values obtained in one of the Balanced Meter

Stick experiment was

2

120 X d = 200 X 6 .

5 .
The value d was obtained experimentally.by sliding the 120 gm mass to bring

the meter stick in balance. The yalue of d was found to be 10 em. This value

of d is the solution of the equation

-« : * 120 d

1

200 X 6

.

If the ;é, >, or < relatlon connects the word phrases, the sentence is
called an’'inequality. S}lch ‘a relation éceurs in the precedlng experinrent if
the meter stick is not balanced. if the 120-gm mass is placed at a distance
greater than 10 cm from the fulcrum, the relationship can be deserlbed as ’

120 X d > 1200 .

Likewise, if the mass is placed closer than 10 ‘cm, the relation be,cdmes
120 X 4 < 1200 .

Both relations are described by the statement
' ~ 120 X d # 1200 .

These are examples of inequalities. The important.thing to notice is that .-
"any statement which indicetes that one number or quantity is not equal to
arpther is called an inequality".

- , s

/ 7

Exercise 9
Express in equation form the followiné : ¢

1. Assume the cost of gasoline is 32;5 per gallon, and Cyreprese/nts the
' total cost of gdsoline in cents. Write an equation for the total cost

of n gallons of gasoline.

. , . -
2. Write an equation for the cost 4 in dollars of n gallons of gasoline at

324 per gdllon.

g
N

o ’ ) . )

- ¥
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| Write in symbolic form the following statements:

Ze *,
e .".3. . The diameter (D) of a circle equals twice the radius' (r).- -
. ‘o k. The perimeter (P) of a triangle equals the sum of its sides.(a, b and c):‘ .
. 5.  Wnich of the following sentences are true and which are false?
(a) 5+(8+3) = (5+8)+3 ‘
(b)) 6+ 4 f2(k+1) '
v r (e) 5 +2=3+14 . s
. (@) 3.5 -2.9¢f23 ) . R
X . . . ;
(8 83 A8y T
) ’ 1,11 o . .
‘ () 3%F 232 : . ‘ : )
‘ ' 6: ‘ Write five true s-ent‘ences involvir;g each of the symbols,‘ .
! X < > k)l *} ;

7. Write five false sentences involving each of the symbols in Problem 2.

Q. JPut a numeral in placé of the symbol D so that the sentence in each

 case will be true. - -

“(a) O +1=7
A . () O -3¢s ¥ e .
) (¢) 3x O =22 - 4

‘(@ 6+ 0 <2 ‘ o

9. How far from the fulerum should you place a 20-gm weig}it_ on the left

) + side to balance a 40-gm weight of 20 cm from the Wight
‘ side of the stiek? (See illustration.) , s

} : 740 —\——+\—Zoom.—>| :
' L l _ ] v ]
L '1‘ e 2. ) /- ZOW ; ) o # . /-ﬁg}; . Wy ,' . ,.

-

- E . ° R .
10. "How far from the fulcrum should you place & 20-gram mass on the left
side of the stick to get the following inequality: T

‘ "ﬁ.‘\
, . " 20gn X ?em <40 gn X2 cm ? R
% Cob
- t Toget 20 gn X 2 cm > 40 gn X 2 em ? iy -
'\'Jg . e
) ‘i Can you get more than one answer? : - o IR
- 3. . s e
, .
- * !
1 N . . ‘l
- N ' 26 A .
O ' M

/..7‘ | i - -, |
‘ ‘ . ' 3‘{. ‘ ) I v .




1.2 Finding Unknown Masses by Brperinent " : ¢

The balanced meter stick can be used in performlng other experiments. ¢

' Recall the rule that was obtained with the seesaw experlment. If the
product of mass and distance on one side.cf the fulcrum equals the, product of
mass and dlstance on the other side,. the meter stick is in balance. This

rule can be used to measure the mass of any object, for example, a piece of

s

’ &
* - rock, -

. - . £
[N { ’ i ’ .-

Start by setting up the meter-stick‘instrument Just a5 was done in the
3
seesaw experiment. (See Figure 7.) . .

»
i
N

»t

\‘ | : . Figure 7 / ' o
“ b

) At{ach a piece of string to a small rock so that it can be hung on the
e paper clip hooks. * Have the standard masses at hand.. Time can be saved if a
- standard mass with approximetely the mass of the rock is selecte&. Hold the,

rock in one hand and a standard mass in the other. Select a standard mass

¥

v

which is approxrmately the mass of the rock. .

Hang the rock of unknown mass at a convenient distance from the” fulcrum
on the left side. Use any convenient distance such as 20 om., Then place the

selectgd standsrd mass en the other side at about the same distance from they
fulcrum (See Figure 8.) ' , D

[y

'r—Zom—-lr@:—MS.fmce»{ AU
[ l . 30 — ] . 7o [ i L] I .

o Nt s T . B gn s
.'u ° ’ \ ' °
. s v
“ 2 Figure 8 . .
< ' -l ' . - :
\:1 ] . . .3 ¥, ' ) . ’




[ S \
L g ' ° )
; DIM you get a balance? ' ' o S N

. v

_ Follgw the procedure used' ine t% seesaw experiment. S}ide the standarr}"
© - “mass closfr to or further away from the fulertm until you get a balances Then
. Vo
o read the distance to the nearest cm between the standard mass and th*!e%;ulcrum.
Write it down on & sheet of paper. Suppogg it turned out to be 18 cm gnd the
! standard mass 100 gm. If thé rock used 45 not exactly the same as your part-
- r;érs’, the'distance”‘;;:g@f;ead off will also be different. Co

o L -
*, ' The 'next proble'%fis to find the magnitude of_ thé mass of the rocﬁz&
[ Actua"\l‘ly, your balariced% meter stick is* an excellent i\llustr’atioﬁ of a ph;r’s;Lcal \_
’ model of equality. Whenever the me’te;' 'stick balances, the product of the mass
- on one side of the stick and its distance f:tom the' fulcrum mﬁst be equal to

the product of jMe mass and its distance from the fulerum on the other™®dde, *

regardless of the masses used on either.side. This physical model of equality ¢

can be deseribed mathematically by an eguation. In this case, the equation is )

- , mX20 cm = 100 gn X 18 em . . . :

m" is a’‘symbol that represents the mass of the object. What is the value of

R If ‘( . —
o mX20 cm =100 gn X 18 em " -
then . » )
. - ' ) mX20 cm _ 100 gm X 18 cm .
. o 20 em 20 cm . 7.

’

If two quantities are equal, they can be divided by the same magnitud’e and the
quotients are still equal. For instance, if the mass of 40 golf balls is equal
‘to the mass of 30 tennis bdlls, t;oth masses can be‘'divided by 5 and the -
quotients renain‘equal: the weight of 8 golf balls is equal to ‘the weight.of

3 g
6 tennis balls. By the same token, L. .
. AT X 20 em = 100°gm X 18 cm, then , S '
— g . L s . — i, e - . - P €« " .
. m X 20 cm _ 100 gm X 18 cm Simplify both sic%sg(. + Any number or
20 cm 20 cm ‘ magnitude \divided by itself is 1. -
- 100 gm , ¢
, mX1ls= X 18
' 20, . 20 , com 5
_ 50 X o - l, or 5 =1, .
~ - - m=5gnX18. . . .
) £ G0 gm " ’ e‘cé._ 13<zr1=m .

"The mass of the object is then 90 grams. To check t’xa‘c this answer Is correct,

substitute 90 grams for m in the equation. '

) "g

(W)
<o
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100 gm X 18 em

N m X 20 cm

1]

90. g X 20 cm = 100 gn X 18 cm ‘ =
. . 1800 gn X'em = 1800 gm X'em

“ This shows that m = 90 gn is the solutlon of the\equation. If these values R

‘'  are used in the seesaw expemment‘ the mass of 90 grams at 20 om from the * ‘)F
3. ﬁzlcrum would balance the mass of lOQ grams at 18 from the fulerum. Could K)
- any other answer except 90 grams fulfill this cond tmn" . d

-2

, Suppose we want to éﬂ nd .the mass measure of a\piece of rock. To simplify
, %he amthmetlc ‘involved, hang the rock o urrknown mads at 10 em from the
fulerum and us¥ a 100-granm slldlng mass an the other $ide.

Then the sliding mass may be moved back and forth un‘sil the stick settles in -

a horizontsal Z)osi_tién. Suppose the distance frol the fulerum measures 6 om.

- Set up the equation: . * m X 10 .em
. "\ s

Divide both sides Of the equation m X 10 cm _

by 0 em - <0 10 em

Using the associative law,of multi- m

plication ' <!

, .
The mass measure of the rock is 60 gnm. e

1

X . A o,

) . Exércise 10 * .
oL - . Cf
N - “Find the mass of a stone by using the meter stick instrument. Use a

}\/ procedure similar to that Jjust described. Place the object with the unknown .'
mass on ‘bhe right side of the stlck at 10 cm from the fulcrum and hang the 100~
’* gn sliding mass’ on the left side. Read off the distance when the stick is in

A ( A h ‘-1
’ . ' 29
| ) '

EIK\[C - ) ¥4 ' ' o,

- s . o -
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balance to the nearest cm. Determine the mass of the .objecf in grams. Repeat

o~

this procedure using three other unkhowm masses. ! ' -

- ' s
.

. 4

1.13 Multiplicative Inverse

"

-

Suppose we have the problem of finding the mass of enother object. After

?’)
’ comparing its mass with that of ‘the standaerd mess, it is found that the .mess .
- . *
of the object is approximately the same &s that of the 100-gm standard mass.
, It is necessary, to find the actual mass of the object. .
Place the objedt .4t 7.5 or -1‘25— cm on'the left side of the fulerum and the
100 gm at about the same distance on' the®other side of the fulerum. (See
Figure 10.) ' : .
- A
- '} * <
, i " /5 - .
, , 30 40 P 60 70 ’ .
: ) & /\ [] 70 gm .o )
wgnonn mass F : :
\ . \
Figure 10
After sliding ‘che’.lOO'-gm mass back and&‘orth, syuppose we get a balfapce at
) 6 cm. « R - ) .
. I‘.et X.represent the mass of the okject. ' Then, using our rule, set up_
an equation as follows: . .
£
. N —lg—cm'XX=6cleOOgm ’
In" this problem we are supposed to divide both sides of the equation by 5 .
'I’his ey seem to be a complicated computation. However, mathan&tici‘dns
have a be‘cter way of solving this type of equatlon by using the multi«plicative
inverse. Let us eon51der this concept. ,
’ Perform the multiplica‘cion» of the indicated numbers:
o~ R & N
4 . 1
AN -2- X 2= , .
a2 3 i
S 2 .
372 $
. 1 .
N x el —
,- 3 . 5 5 '
\ B .7 § ) . . -
« - BX7" .. & ‘ 3
30 .
O

ERIC
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. Do you see any pattern in perfonning\%b\e\x'_nultiplication? ’ '
d . ]
* Look at these problems closely. - Nogice that in each 1nstance we multi- % -
plied the number by another number such that the product is always 1. This
pattern leads us to another property of numbers, namely, "For every number, . ,

except O, there is another number called the multipllcatlve inverse, suc¢h tha‘c

> -

the product of these numbere is always 1.," For example, - ,
o ’ él-><2=1_; o .
hemee;y 2 is the multiplicstive inverse of. % . In the second problem,
R T -V | N

3 X3 =1 @ v

.
. -

Another name for the multiplicative inverse of a humber ig the reciprocal of
a nuznber, for example, instead of saying that 8 1s the multlpl::cative mverse

. of ~8, we can say that 8 is _the reciprocal of ~8 Also, -2: is the reeiprocal

of % Finally, it is tr-ue that the product of reciprocals is one. The re-Y
e . - . EY “ - .
ciprocal of 1l is l be_qause'i X'1l=1. . ~

What is the mul‘clpllcatlve inverse of 07 Do you.know of any number that

: ‘multiplied by O equals 1? Let's see® s T
. '5X0=0 ©
) - 0 X200 = .

.
.

In fact, we know that the product.of O and a‘ny, number is O. Therefore, O has

« ® . I} ‘ .
no multiplicative inverse. :

1

) Examples . State the multiplicative inverse in each of the fo“'.l.lo»ﬂng:“w -
, : ) ~ 1 S

XT7T=1 , Answer: ,-7- ;

. . - §
g X =1 . Ansver: g '
Y v .
T * e . R l . " Me-
’ a X =1 * Answer: 2 if a is not O

Py

" In summary, every number except O has an inverse with respect to multi- ",

plication. We ecall this the multiplicative inverse. In 'the nex‘c section we

will show how-the multiplicative inverse can be used to solve an equation. °

- 4

7

.

-
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(e) 776

()] (1) 3
§< -8 - - ’ 3
%0) i (£) X. ‘ -
h: ? 1%. «t.' . l .8, (J) a+1
(c) ‘Ej" ‘ : (8) 3\/ > i 1
(@ . S (m) b - (k) 5‘2'
d 1l * (h .
8 . - . (1) 1 3
p ; o T (1ice)
. S e
1:1% Solving Equations‘ . r b
’ uvwm.u"i'ffe ‘problem in the prev:tous section stated )
.. u' '~.> lazanx‘x=6cleOOgm. .

This~equation is solved when X stands by itself on the left-hand side of the

", 1 -
equation. To obtain this 1 -2 sem b .
q ! ’ m‘g}i%p V2 Y 5 em ’

the .multiplicative inverse of “1‘22 em ;

15 &n '
.. 645 m) % = IX. .
.To keep our equality, we mus‘c multlpl'?“tkle other side of the equa‘clon by
-2

5 om also.

et
,,7;'4'"" ~

The equation then becomes v ) )
h - 15 am
| . 15@) X = (°) 6 m x 100 gu
2 I C‘m = - 3 )
i (l5cmx_§—‘—._;)x "(1 X 6 em) 100 gm
: 1y - 12X 100 m
.- H - . 4 15
f P ‘ X = 1200 an
15 . <y,
" ) . & 3
: X =80 gn
s mean L 12
This means that 80 gm at 5 om from the fulerum balances 100 gm placed At
6 cm from the mlcrmn. -Check it on your meter stick. .
Exam Rles Find the solution of each of the following open sentences,
.then check your answer. . . i <
T ¥ ' h !
.
- - ~ 1Y

4

LN

- Y
\
. e

”
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- Illustrative Exemple:

£x =60 , o
b 43 4 Multiply both sides of the ‘ <
| (3)'5 X = (360 . eq’uation by L -
. o ¢ ¥ 3 0 the mt;lti
L 3., _ 240 plication inverse of
(5 X H)gc = &2 i

3. , .

E)
j
>

I}
&

-

3

/ Check: , If X = 80, then the left member is -5(80) = 60, and the right member
is 60. Therefare,, 5(80) 60 'is & true sentence, and the solution
PN . <
« . is 80,
Exercise 12
1. Solve the following by use of the multiplicative inverse.

< () 12x=6. Aa) 15'=%y . (&) .§.a=% '
' (b) 7x =14 (e) -

L ek

=2 St (w) 1m=§
=t (1) 2.3y = k4.6

. e
. ¢ W . ‘.

_' 2. Translate each of the 'foilowfng sentences into symbols g.nd then solve
" the, equation for the unknown. - e . )
7 (a) The mumber x pyltiplied by.5 1s equal to 30. e x
- . (b) When a pimber ¥ is divid& by 4 the quotient is 9.
A ) (c) The product of ’-,27 and the ntnn"t>er a is. 28. L.
S () Jane ‘bought x stamps for 3£ each. How many stemps did she buy
o, if she paid 60f4 altogether? 3

% (e),nHow 0ld is Susan if 9 times her age is 637 o,

d’;l" B8

. . . a ’ .
3. Fin’g the missing values in each case: ‘

. 7 '

A —_**_””'_7i1 o
SN Ty S T
e - qu———!#——ﬁ“—5ﬁ“*—FH
7//5 o . 304s.
ﬁ" dow — 7
T i

{‘i;; . Wl &g ), ’ F im ég .
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Do you suppose a 90-pound girl could ever 1ift a 1000-pound box? Justify
. your answer. ' ; . ' ) "

A child whose weight is €0 poﬁnds aske@. his father, whose weight is 180
. pounds, .to ride a
, balance the child if she sits 6 feet from fulerum? ‘

N

seesaw with hin. Wnere should the Zather sit to

A bar 6 feet long is being used,‘és & lever to 1i®t a stone. Wnat i

*
the weight of the stone i? a boy weighing 100 pounds. pushing dowvn
one end of the bar which is L faet frem the fulenm Just balances

ston® on the other emd? c— .

1.15 Summary .
¢ 5 AT R v \ -

£
this chapier provided daze

The experiments in
could be determined for talencing e seesew. To ©ind <his relation, i< wes
necessary to learn ebout nutter phrases, word phreses and vert phreses,

- - . ° r - . . »
word phreses and vert phrases gave us en open sentence which was the mathema-

. ¢ - L .,
ticel expression of the experimental deta. It was' Pound thet tfhe open sentenge .
stating the condition ¢? talence 0 the seesaw wed en equality tetween two

quentities end, therefore, an equetion. telence,

woen the seesaw wes Dot in

the open sentence was an inegualfzy’

Wnen the mess on the seesew was en un¥mown, the truth set or soluticn

set of the equation wes not ctvious. It wes necessery ¢ solve en equetion

s

to determine the velue ¢f the mess. The properties of the multiplicative

inverse and equaliiy were used o £ind the sclalation o?
4
] i

the equetion. .

-

X

2 . e eem - - -

.’P-
Y]
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¢ AW TYPEROMERTAL APPROACE TO LINEAR FURCTIORS .
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o
-
5
3
&
ty

gz

At this time we vill investigate the bending ¢ e Teex es the Zoed upon

. i% 15 chenged, We will use the seze teex thrcughclt the experizent. It wil

be clemped in the szme position end elweys loaded Srom the seze nXint. By

2ixing the beez in thi :az‘z.e:-, we are ir g positicn ¢ é:::-:l;-' <ne releticnshin
between the bending c? the Teex and the emcunt cf loeld. This

factors Srec entering direetly inic the experizerz

. used as a pes=. Tpere skould Te e szall hcle in the ruler eboul cne ineh

Zrom the free e.:.»: Testen 2 plece ¢ sircng threed I the ruler end pess the
free end through toe hole, Tme threed will fe ised for erteciing loeds 2o -he
bee=. Tc meesure the tending of e tesm, we will sizply recg:-i tbe cherngling
. positice ©f the free end o2 the tees es the lced Is chenged. - You zey ind thec
scme form of e pointer srrangesent, such es ? streight pin festened ¢ the ’

. -

~“ree end, will Te nelipdl. . x =

o

Support & zeter stick rerpendiculiar s the
h .

. . s P
fioor so thet the positlicn of 2

®
®
B
O
(27

H . - -
the tek= can'te reed ¢n the.Scelie &s the lced
tharnges., The smeller mz=rers on iie n}er

stick shculild Te et the tcD. (Figave

s

i
.
'
(VY]
\ I
o
Nt
’
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First teXe & reading '0? the DOS

on o the heen with no load attached.

Hov hang a 30-grem ness i‘rcz’: the load point and seke a aew reading of the

Posiiion of the'end 02 the beem. Continue in this vay, adding 30 grems each

- - - - . -
time, until you have at lees: <en readings, Be very careful in reeding the

- - - M
position of the free end 92 ihe Tesm.

in the seme vey. Make your posision
>
neten.
.
Tou should ‘record your deta in

-1
velues erd the positicn readirgs you

"sight" along she pointer

tre neeres: temth of & centi-

erly Zeshion., Alcng with €he lcad

vee ©

such things as the type o?

extends cutwerdi Srom the tebl
icn ©f the enf o che teas <hatz

t

=
.
Tvpe ¢ tes=
woet
rd
’ \
\Erems;
°
8]
3
. . .
o
. .
v —

. .

ficw go back end —unm through ke

e 60-gre= =ess end continue Ty edding

Al

deast Ten reedings. Récord :these reedings

table aside for later reference Iz Sec:i

) -

2.2 Creghink the Sperizental Pains

N\

-«22 ve pow-exp=ize <2 Jszis’ we sse

P S

- .

teble peirs up & certain




value for the position (p) of thé end of the beam with a certain vilue (f) ot
the load. The table shows that there is a certain relationship ’t/etween ‘the
A 1cad and the position of the end of ’the beam. The value we 0‘0”tain for the
phsition of the emd of une beem depends or the loed that we hang on the end

of the beem. In other '-'ov'ds, our data is & set of ordered pairs. ‘As we have

seen before, we can represen ent ordered pairs of numbev's oy using coo*'d*r‘ate
paper. In doing the experiment, we have Geciged wnat losds to heng Ifrom the
besm. The resulting position of the’ end of the beam hes denended on this load.
The gene*‘a" practice is to meXe, tne first element of the “ordered n{a-.. the

—-- - ~messure -that.ve controlled. Thus, Zor this experiment, the first element in -
. * the ordered pel ;:'.l te the loed velue, and <he second element will be the
posizion reeding esso cieted with this loed value. Our ordered pairs Deccme
(1, p) peirs. Iz will de'helpful o lebel she horizontel exis the "[" exis

.

loed) end the verzicel exis tne "p" axis (posizion).

A sample o2 the ordered pelrs '-micb you might get Jrom <his exne*men:
= could lofk like this: (0, 20.0) (30, 20.5) (120, 22.0) (300, 2%.0). We
ent fret sp uniocaded beem to & Deem supporting & loed of 30D grems. t the

seme time, t‘ne pointer only moved Ifrom <ne 20 c= merk %o the 2k om merk.
-
L. '.7

We ‘ e going <o use the graph of these ordered pdirs o help us meke

. deé‘lsions a..ouu +he tenavior of ithe bending veam. In order for the grarz to °
give & good pleture of the sctuel experiment, eppropriate scales should ve
chesen 2or toth axes. In this perticuler case, the norizontel scale should

. g0 Srcm 0 wo 300 while tne verticel scale extends frem O %o 25. Once the .

Ge®s is proited, you probedly -1l have scmething which locks lixe Mgure 2.

. f

! ) 25 rl'—_."--————_——-——— =
{ez) | OO @) l
> © 0 1
I '®) O . o e
) = o) C
o bl —
~ !’ og. .
> “. ) 0 ‘300 ’ ‘
. ! 5",- - L . “ l (sm) i o
) A Figure 2 . ,
- ‘_ _:\';,‘_.‘_ _ ' L ”~ ' .
: - - 37 :
Q . ) L .
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'i'he only éection of‘the cooxdinate plane which is of‘interes\t'to us is
.that enclosed by the dotted line in Figure 2. We can z'nak;.even greater us.e
of the coordi.nate Paper if we use only that part of the graph enclosed by the
dotted lines. N v

.

e < g hortsontyl ara vértidal Tihes drawvn on the graph Paper are calleq ° +— =

‘ séales. These scales are not necessarily the axes of the cooé*dinate plané.
In Figure 3, the horizontal seale is a line above and parallel ' to the hori- *

zontal axis. The verzieal scale, however, isg part of the vertical axis. The

o

intersection of these two scales 1s not the origin but the point whose coor-
dinates are (0, 20).

. ; . ) - )
Whenever you plot data, you should follow, a method similar to the one

Just di'écussed. It is not necessary to draw two or more\éeparate graphs to
do so, of eourse. Examine your deta to decide upon a good scale to use for.
your grapn. Decide just where the graph falls in relation to the entire
coordinate plsne. Use only this part of the entire plane for Your graph of
the data. o e

— .

2.3 Connecting Plotted Points - .

”

Once the scale_s have ,been set and the data Plotted, we have the probleg
of intedgreting the meaning of the space’between these points. Examine the
set'of points you have Just plotted. Does their arrangement suggest anything
to yéjwf Suppose that during the experiment more load-position neadings were ‘.
made. , I; we had increased the loag by one-tenth of a gz:am each time, instead
of by 30 grams, we wqpld still find a new Position reading for each load.,
Actually %reading the change in position for such a° small load change may be
difficull‘a,lbut the fact that there will ke a chiange should be obvious. We
x;ow, have to decide how th_e posftion of the end.oi‘ thé beam would, vary with

e
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changing load. The variation is probably quite regular each time the load

is igcreased. Let us guess that’ the position would ;:hange only half as much
if th‘é increase in load were 15 grams instead of 30 grams There is no
reason to suppose that a regular change of position would not oceur between
Our first guess, for a model of the behavior of the end of
“the beam with changing load, would then' be to join our experimenta:l,points

with straight line segments. This procedure will give us something like the '
“graph shown in Figure 4. -

theg e points.

- The Best Line ‘ '

- -

This method of Joining our experimental points is ﬁerhaps not the best

2.4

model we can construct. Wmen we say that the beam behaves exactly like our

3d1ngs are exact.
think of any errors in your data” This graphvis also the result of a single

experlmental pomts, we are saylng that our Can you

trial of the experiment. 'The errors which ca&n occur may be great enough to
maeke this model meaningless. .For this reason, scientists and mathemati!ians .

do not like to draw conclusions on the results of a single trial.

If we were to repeat the- experiment a nultber of times and graph each

set of data on the same sheet of coordinate paper, you would probably arrive

at a figure like that shown in Figure 5.
our ability‘ to reproduce the experiment.

This figure shows us something about

(Do we obtain ",about" the same

ordered pairs a second and third time?) ' It also suggests that the '

'spread”

of the plotted points may be due to.certain inaccuracies involved in the

measurements, either in the J,.oaq value, the position vglue, or both.'

Perhaps




B the plotted "points" should not
é be pc;in‘cs at all, but small areass * ' -,
) Tt_m‘.s"last statement illustrates
that measuring instnments are .
\‘ not perfect. In fact, instruments‘
;‘. } designed to measure the aame thing,
p may differ among themselves. The
new ordered. i)airs that we get when
" we "reproduce the-experiment” point
ou‘-c that a single\person may get s
« different results even when using
- 'tihe same instruments for meking . ¥
repeated measurenents-
. . Figure 5 We can sui up the preceding - )
. : 0é}iscusslon by saying tha‘c there are
) at least two classes of error that must be considered when we meke any
sort of measurements, namely, instrumen‘cal errors and human errors. We can
’ cut down the magnitude of these errors by maklng our instruments as accurate
. " as possible, and then by using them as carefully as we can. However, we can-
notvelix;xinate the errors completely. Therefore, we should keep their existence
in mind as we interpret the results of our measurements., In this way; we can
. . usually see wha‘c fundemental rela,tions there are be‘cween1 quantities, in spite \. .
of unavoidsble errors. Lo ™, =
i ’ °What we are calling fundemental relations are the results e weuld pre-
e . \Eiict i;f we could be sure no errors in measurement had been introduced. L‘e‘c. .
. us cail an experiment-which introdyges no’error en ideéal experiment. We a,;;q'w*u“
. led tc the conclusion that the results.of an actual experiment, and the results ¢
of an ideal experimen‘c using perfect equipment and exact measuranents are two,
- : e.ntirely different situa‘cions. In our experiment we have a relationship be-
g . tween position’ and loed in the form of a data tabie and in the form of a
S gragh. What we desire now is a phy_sical model"“‘co explain the behavior of )
‘ " the besm.. The data from each trial, and tHe braid arrqngément of the data, ‘
' as shown in Figure 5, seem to suggest a straight 1ine. .'You mey not be able to " )
?"’ ) e . find a straight line which will connect all the poin‘cs for any one trial, but 5
'j ‘: " with a little practice, you sheuld be able to find a line which seems” to "best'; E
i.‘»‘ represen‘c all of- the data. This "best:h,straight line" w:ill be our phxsical <y
- model of a relation we'have "guessed". This line represents our model of an
. ideal experiment,, . ‘ - (I“ ‘ ‘\" | H ] g
. B - P
N . . . )
. Qo ‘" I ‘ 4 8 ) . : . , .
ERIC . g | : =
S . . R e 0w




"Once we :have decided to depart from .the experim_ental "facts" and draw b ¢
a pingle straight Vline to reﬁresent,op.r'data/, we have a graph sfmilar to} ) ' -
that in Figure 6. This graph Eives a pictorial relation of load and position. |
) Our problem now is to find a mathematical representation of this relation. '
‘ We now have a relation betweén load and position in terms of recorde;i dats
and a graph of this data. ‘We have also formed & physiceal model to represent
an ideal experiment suglgested by this da;ca. We now want to obtain a mathema-
tical model“which will describe the position of the end of the beam in terms ‘

‘ of load. This is our third step in the analysis of the e:_gp:eri;nent.

P ’ ' . s »In coz’nparing the physical model
. _you have constructed with those of’
- othet students, you mey notice that:
‘ different groups of students will Have .
graphs which start at different. points,
or differ in their/"steepness",~ or both, '
Can you thipk of any reason for these
differences? Check your data. Recall
how much of the beam extended out. from
the table edges. Did -each student "
have the beam extend out from th.e -
tabl& edge by the same amount? 'Was
. Figure 6 L —= the beam you L;sed exactly like the

- ) . beam used by other students? What was "
‘your "zero" x"eading, i.e., your reading when there was no load on the beam?

* .- ' Exercise 1

/s - s

l'.‘ Referrifig to your final graph of load-position pairs for the load

o ) 3 beam, is the horizm‘cal‘scaleﬁ drawn aldng the horizontal axis?
¢ )
° . Vvertical scale drawn along thé vertical axis? .
2. Give a. good reason why coordinate axes do not always appear én our .
" eoordinate paper. - . .

3. On a shee‘c'of coordinate ﬁaper, draw horizontal and‘ vertical axes with

‘. the origin at' the lower left-hand corner, Number the horizont'al axis
S " from O to 200. . Number the verti cal axis . from O to 10. Plot :che follow-
ing set of ordered pairs relating tenperature and time:

i ((160, 8.0), (170, §.6), (180, 9.1), (150, 9.4), (200, 9.9))

) X . 58 o AR
,-J AN .
y . < s 40 .« Y &7
P L e, V. . % -
O . AR 5 W,,am - {
[MC - . C e Ww."(ﬁ.w«wwm(. PAvs e, !
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v 5 Draw your "best" straight line through *f;he pointa plotted in Exercise k.-

-

-

i ' -
k, Make a neﬁ gi*aph of the points of Exercise 3 in such a way that the

graph nearly "fills“ the coordinate paper. Label both the horizontal

and verti cal scales.

<t

Why do some of the points fall off the line?

IfL the horizontal coordinates are the temperatures of’an JAron rod in
'deg‘rees' Centigréde, and the Vertical coordinates are the corresponding
times in'l-ninutes, is the drairing of the line Justified? @ ‘ o

6. Referring to the exercise above, what is the time correspohding to a
temperature of 165 C? What is the temperature corresponding to & time
of 9.3 minutes?

i

T. For each of the following, plot the points whose coordinates are given,
and then draw, what you judge to be the best line. Read, the y—value of
the point at which your line crosses the y-axis and compare the results

with your classmates. A

(a)\ (15: l7-5):
(15, 37.5),
(

(125, 52.5),

(25,020.0), (45, 27.5), (55. 30.0)
(80, 40.0), (100; 15.0), (120, 50.0), . -
(135, 57.5), (160, 65.0)

(0.2, 12:5), (0.4, 12.0), (1.0,°11.0), (L., 10.0), ~ .
(1.8, 9.5), (2,8, 7.5), (3.6, 6.0), {(Iey.k.5),
(5‘2} 3‘0), (5‘8J 155)

(8, 29), \

(0, 0), (1, 5), (2, 9), (5, 18)3(6, 22) ,
(9, 34), WO, 37) . “ D

.

(150, 33), (300, 31), (40, 31), (600, 32), (750, 31),%(00, 34),
(1050;" 33), (1250, 32), (1300, 36),,(1500,°33), (1650,%32) .- - |
2o Slope R g e
' You may reecall from your study of tﬁhe number line that the dis%a*e
. from one point 1o apother is the coordinate of the one point minus the cpor- T A
dinate of the other. For example, the distance between the points wh?seB e
‘ ‘ : coordinates are 2 and-T is 7'~
If the points‘ are not -on
the numher line, but. are points on[‘
the coordinate plahe, tlie question ofj

. _finding 'the distance betweensthese

dr 5.

w
o
—~
of
al, .

1+2‘ -

. L
53 ,

.
-

)




“ERIC

BAFiext provided by ERC

i
r

5

eSS

-
.

o | T

points becomes much more compli'cated. There are some cases, however, which

If the straight line which connects

are not too difficult to de&ermin;
the two points is elther horizontal or vert‘lcal then the distance

°
~

:;f:/
the points is again only the matter of.subtracting one coordinate - )
other. S . . :

We will first consider the case,of a honzontal line.

If every point
of a line on the coordinate plane ha; the same second element, then we define

this to be a horlzontal »line. ﬂI‘he line illustrated in Figu.re 8 is an example,

',/
v - -~

o of abhorizontal iine. What, is
- q,,r S L ‘ the. distance between ‘the two
. . points whose coordinates are -
I ‘7 k_ =4 (3,,2) and (7, 2)2" Let. us define,
) S s+ - the distance between two points
(1,2) -3,2) " - (7,2) '

4

: . on’a horizontal line as' the. first
L ' . - element: of one ordered ﬁair'sub-
- : .. tracted, from the first element

. K -7 ©Of the other ordered pair; that is)
X

o 7 - 3. Therefore, in this ex-

“ AT - . o ample, the distance between the
Fiéﬁfe 8 ° two points is L.

. . N S

For a vertical linre, we shall follow a similar procedure.
PO N

! If the or- )
dered pﬁlrs descrlb'ilng the points of a line on the coordinate plane all have

the same girst element, then we define this line as a vertical line.

The dis-
tance 'between/any two points ‘on & vertical line is the second elanent of one

ordered pair subtracted from the second element of the other ordered pair.

It follows, then, tha“r? the(g_,sjance between the pointsi whose coordinates are
: R

.. . (31)5ndj,35)155-lor)+
"T— (3,5\-).\\‘1 “,’,

o If two points have coordinates @
sieh that the first elementg™of °

. (3,4) each are different and the s;cond

’ 5 1= 4 ) ’ elanents are also different thah

the line drawn through these

N °

points is neither horizontal ner

2 13,1) vertical. The ordered pairs (2,3) -
s .

< and (7,4) determine"isuch a line.
As we scan this line (Figure 10)
from left to right, we notice that
T it slopes up. We might ask, at

..
-
J

5y
Pt

v

aw

s
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this time, if there is any way “to

compare ‘the, "steepness" of-the

slope of such lines which are

peither horizontal nor vertical.
Before we *ac‘cually answer .

this question, let us logs a

‘at the line drawn in Figure 10. e

If we draw a horizopfal line .

through the point whase coordinates o

are (2,3) ‘and a vertical {ine

through the other point (7,%),we

/
have two new lines which intersect
at \a new point. This'poin‘c is a
point of a vertical line which )
passee'through‘the point (7, 4).
By definition of a vertical line,

< - i
. . n \ tal t
.«//r.(éﬁ) i I(7’3) the horizon coordina ?'Of this
- new point is 7. .The point is also
' : o a point of & horizontal line, which,
. by definition, must have a vertical .. -

coordinate of 3. Therefore, the

. ] . coordinates of this new point are
Figure 1l ’ . (7,3).

The distance, on the vertical line, between the points (7,4) end (7, 3)
is b -3 = 1., This vertical distance ts often referred to as "risg". The
distance, on the horizontal line, between the points 2,3) and (3,3) is .
7,-2= 5. This horizontal disténce is referred to as "run": o, The ratio,
of the "rise" to the "run" is called thé s -]£2.. of the line. The slope of the
line'in this example is % . - / ’ ’ ‘

For a straight line the Usteepness" is th‘e same ’;long the total length
of the line and the slope will be the same between any two pdints we might
pick‘ The letter m is usually used for the slope. Thus, or a straight line

h .
L- e - i;e )

H

m= = a constant. b -

:

We note that in finding the rise. we subtracted 3 from k. These numbers
were the second elements of the original ordered pairs which we used to find




H}
*» >

the line.- The'rundwas determined by subtrgeting 2 from 7. These numbers
were the first elemeh@s of the original ordered pairs. From this it éppears
that 1t is not actually necessary to draw in the horizontal and vertical

lines through the points in order to fimd thexglope of the line. "

’ The slope of a line through'the points whose coordinates are (a,b) and
{c,d), where the second. point is tolthe right and up from the first point is

d - b-
e - a’

[S

- N »
As we scan this line from left to right,

»

we find that it slopes up.

. As an example of this procedure, suppose that tug points have the coor-
dinates (8,18) and ( (16,28). ( Figure 1e.) The rise will be 28 - 18 and the
run 16 -,8. The slope of this line will thep be o

o 285,18 10
. ‘ R T I E  T
. T +
S 7 .
- 28 . | \ P 16,28) 4'5
> ) d ’
24
- P
. 20 e B . ‘ :
- /%L' ST
. ’ (8,18
% 7 (8,18)
pd :
12 /r . /‘)
. M ] - »
” 4
8
e I} - M
0 2 4 6 8 10 12 14 16 18 ‘
3 o -
’ ) Figure 12
. : Exercise 2 ) -

q ,} . - “ .
Y Which of the following two ordgred pairs determine’ a hor}zontal line,
a k)

a vertical line and a line which'is neither. K
1t - (a) €3,2),(5,2) (1) (2,3), (2, 2y .
: () (0,0, (7, 0) -1 (g) (561, 10), (562, 11)
© T (e) (10,-4), (4, 10), (n) (3, 14), (6, 28) .
‘ (a) (5, 6), (6, 7) - (1) (9, 8), (9, 1)
-, (e) (2,8), (4, 8) (9 (Q,8), (0, 5) ,
v _ 7 . -
.o : . .h5 ' - | L s
Q v : A . . . . .
ERIC - -, o o
: . . - -
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We know that thetratio of the rise to the run (the slope) will be’ the same

for any. two points on the lihe. #f we know the value of the, slo;ge’of a line
and select the point at which the line 1ntersec‘cs the vertical axis wyith
coordinates (0, b) as the fiyst point -then,

with coordinatess( f, , p) we havé™ - : - :
‘ bt -1 ”
Since fJ - 0 is the pame number as [ s ‘we could rewrite this sta‘cement R—— =M.
Mul‘ciplya.ng both sides of this expression by f we get ] 2
. X le_ =nj a0 x
But - {is the same.as 1, so we can again rewrite to get P
< B 1
- > - . L - ¢
. P-b= mf ‘
and finally -~ e N ) 3

was derived from our definition of slope and the statement that all portions
.0f the line have the same slope.

of this’ equation, you will recall that we began with two ordered ;pairs, one
. of which yas, of the fom (0, b).

1s a poifit. on the vertical axis.

. Tun, for the line determined by these points. S s ¢ ) ®
‘,(8.) “(2) 5)) (h’) 8) ¥ , “(f) (763) 763) (25, 25) N ) )
(®) (3,79), (2, 1): ‘ (e) (8, 7), (2] 5) .
() (8.5, 73 (9, 9) . “ (n) (8, 10), (0, 10) -
(a) (20, 10), (25, 17) v (‘i) (3 7, 12.6), (5 2, 13.1) e
(e) (5) 3)) (5)°986) . ' (J) (H: 2)) (E R
o
Determine the slope of the line connecting the po:.nts in eath part of
. Problem 2. ! ‘.

[ <.
. Y :
For each .of the following two ordered pairs state the ris'e and the . '

.

@

N

.

Equation of a Straight Line - Slope-Intercep‘t Form ’ . )

The starting point of the graph of the loaded beam relat:.on may have
differed from group to group.

vertical. axis.

Every straight line,
of this form.  The equation, - .

This is the point where the line intersects the
Thus, the "horizontal" coordinate of this point will be'zero. )

for any arbitrary _second peint

L1}

mf +bv. A % B . .

exc‘ept a vertical line, can be éiyex; an equation

o

.L'\
¥

N S

_amz +b

If we look.more carefully at the derivation -

This point has a special significance. Thig "

Since we have already said that this li’ne




-

cannot ﬂ a’'vertical line, we know that it can cross the vertical axis-in
" exactly one point whose coordinates are (0, b). This point is referred to as
the intercept. Looking again at the equation in this form, we note that the

factor m 1is the slope of the line and the term b is the intercept. Hence,
- this form of the equation of a straight line is called the "slope-intercept"
' Porm of the equation. ‘ : g .-

-

In Figure 12, we determined that the value.of the slope of the line was
E From the figure we see that the coordinates of ‘the vertical intercept are .
(0, 8) and

and the equation of this line is ‘ .
‘ .. PF % L + 8.

With this equation. we can predict position of. the pointer for any given load. -

What position would you predict for a load of 162 (Inﬂthis -case, ‘
. : I
. ’ “p = E.( 16) + 8 _ % '
or ' , - . ~
5(4) + 8 =28, ‘

?

The graph dld have an ord.ered pair (16 28) and we\ﬁee that this equation does
give us a method for fi nd'lng ordered pairs that are the coordinates of points

on the line..

If we refer back to the set of ordered 'oairs presented in Section 2.2,

we can derive an equation for the graph of the best line determined by thesé
i ordered pairs. Graphing these ordered pairs ({0, 20.0), (30, 20. 5),

150, "2, 0}, ‘and (300, 24.0)} and drawing the "best line" would pro'bably give

a graph like that in Figure 13. The ordered pair (30, 20.5) fails just off

: - | the line and we migh‘c Justify this
o4 — . on the basis that the second element
' i v of each ordered pair was measured to
23 // -«1: ; the nearest 0.5. In this case the in- |
’ ,/ — 2 tercept is 20 and the slogg is , 4
e ' AT 11T 17T ggo-_ag -—--3-'53‘ or % © Heice, b =20
_ 21{ ’/// i _ * . and m = 7—5- so thi'e?‘;xor; é'f’our "Bﬁ’s{
. - yd - \ . line"‘is p= %[ + 20, Iy
‘" E.ioo 30 150 - 0300 + We now have. a ni'athgatical )
o, : model vhich can be used s, If we in- .
. ‘ JFigure 13 sert vg],ue_s for the load iLn the
: s, s .
. \;1 ’ -7 ‘ T ! 5.3 - i
» LRIC. L - -.

N
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eduatioﬁ we can now calculate & correspo'nding pési’éion li}alue. If we calculate
posi‘cion values for loads which were used in the exne A iment, we can find hov,
closely our model aZrees with our actuaJ obse"‘vat" ons,. ‘Q*eovev-, we can Jse
“ this model “to predict position values for loeds ’-mic}* were nos ectuelly ased

.in the experiment. Try this. Pick a load not prevf.ouslf us,,ec. tut in tetween

the extreme values. Use your equation to predict vhe position cf <he end of
the beam, and then find the position for t’nis‘ loed §éxpe:"‘_:ema'.l;r. Jo the
predicted and o'Sserved values tend to egree?

Can we 81so use this equaticn to predict deflecticn *eedine,s Zor loeds
—

outside the range used? We have to Te cereful in usirg this prceess. Ihe
ourside

equation sgems to give us velues for the positicn cf the erd

upward’ bending, and for loeds which Zar exceed the "treakirg t

beam. Thus our equation muss be iimized tc val.es ¢ f

terval frem O to 300.

We have now achieved \he ain o? sie-expeniment. We

investigate the possible varietles and ncw wc is€lzte and

are of particular interést tc u§'. We fcund °-e'.v-e.a:ic:: tetw
tion both in termMwof tabuler deta and e -*an.. ¢? the dete. We then zade &

physical model of the experiment oy represefiting tre date as a "test” straight
.

line. Finally, we 2ound e e thematicael *e“*esen’a:i"‘_ﬁ%" this physicel model.

In future experimeénts we '-ril. _use trese £onCeTTS egain end ievelcr new tech-

niques, both exoe*'imenta’ and ...a\...?ztica., tc help explain cur paysicel
, R
surroundings. —

—

. 3
-

Exercise 3

1. Tabulate ‘hﬁ coordinates L the . 10
_points P,"Q¢ end-R, shown %

accompanying graph. Calcuiaate the, 8

using the

slope of line £

.l,l

points P and Q. Do the seme

for points-"i’ and R and agai.n.

for Points Q ‘and R.

B 1| 3 ’
s Referring to Figure 1k, ‘what are

the slopes and vert{cal axis in-

tercepts of lines 12’ '13, * and

Zh ? 4: -




u

‘. line to dis

% .

3. _Find the slope end 4n:ercept o?

lines l.. end [6\.-gu:el) 6

Ko i‘p.au -do you need o ¥now about &
tinguist it from any

othrer 1ine? '

- oo 5

Write the eduatichs Zor the lined

L, 1

Pl

]J) o
/

VY

— i3. . 2
:
e
5. In the lceded Tesr exterizent,
L A :
wZat is the gignilicence ¢ <k

A d

A Bard a s e g -5 o
Dostion exis intercert thet you

-~ ” .
2 7 L T mpee Wams - mnm o
a'a\-.....n LB LOUETLCIS R
N ;
e Tave seer that-sicoe ‘s “g very im
. - ~ '
zerematicel descéripiicn 27 g iine. ‘wWe
] * . :
using the eoccriizetes oF twe 2istines min
- )

P -
=CsitTion oo

low rmeview The verii.s

pcss;:;‘.i:iﬁs discu

shows & generel end B

< wan -
slTagtlen
.

Sy

zeve

Ter .-é'.‘.&.
:'c&se <

ussed Lere. " Zach

Ll o

. i " I
"
- T ’1/. ‘
L .
™
; D L—':

AV

'oc*ta..‘, cc“ce“t in c‘s‘cz.ss...g a"’e

..e--..e:: the siope of g line b

s oz the line. Tie Siope of &
. .

c® peints used to determine
Poinss. "'ne exe=pl es be-

0?2 the e&cz‘a’-es \.

5

'specilic exemple. ' ’

Gl
.

A RNV K
H

=
o
1]
2]
—
Q
ey
(1
Pbe
73
%’
.-
ask

']:K .
S
5 {oo

< A . an ) < ™™ L
-, ottained? ‘weuli.e different ~ ST S 5 <- 6-
- . . e - 3 = P
§ intercept nave given wou g Ai12- N . .
- : M ‘
v 2eren< s.orpe? . . Pigure 1S
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Example 2. PI“

and P2

- N 2
have the sgme vertical codrdirate. . )

. ERIC.

50 . -~

. . et ’
[§ ' - -
- N . Y .
. L] - ~
B -~ - t + + + —_
. — ) ] R
a A . . »
s . - ’ )
. 3 .
- -~ -~ - - ¢ -t _—
- B ’ T T T - - -
. .
- Figure 17
* LJ - e -
J - The slope is zero® The line {s horizontel.
Ld . . '
, . . ‘g
. © Exgmple 3. ?1 and P2 have the seze horizontel coordinate. <
P ed * ‘ .
. - ’ 3
- ! - A
. . ]
. S .
i x * 4 c
. o1
. . - - -_-...3__
. . - "3 3
] ] . - ; - :
: , P’ 4 4 (3,3) - 5
- . t - .
: y - RIS . o . 3 undefined
v T
S R . . . + . . o
. A . e .
Y - - N -
R P2 4 , (3,1) ¢
- . - * ’ - - e
. L 4 ] B R . ]
. 5 : . 2 . . * )
- i . + v + -t
- . v '/ r..
. ) . . - . .
P Y. ., s
. . .
. . . - . LI ~ i N
- . L
~ P . - 4 “ o4 )
cu . . - ‘ . e . .
) R Figure 18 ) . .
s L 3
EEEN The slope i3 undefined. The iine is vertical.. : ' >
- . [ PR - . . - . ’
4 Our discussion of slope has ignored one,gemeral situation tha: may.de-
vel That is whé - to the right ofy P . b e .
3 op. ' wheén P, is below and :.o the .rig.u. of:.l, as ‘grovn in Figure 19.»
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. . : . Flgure 19.
ikeis e

Cm

We will reserve discussion of zhis situation for a later course.

e “We may summarize the preceding result® as follows.

. - .
o - - .

if = >0, the lihe rises to the right.-

[
vy
H

A S * 12 =2 =0, the line is horizontal. ¢
’ ) I2 n is undefined, the line is vertical.

. . " b -
. . .
SN e

. We heve seeén in the logded bean experiment that we can derive the equa-

v

'; tion of e straign® line Zrag the grarh by using the eonce'pt of slope and the
coord.ina:;&s of the point at which the line intersects the verticel axds. HNow

- ¢ let Us see how the slope and verticel intercept can.help us to draw lires.

\, Suprose a line has slope %— and a vertical intercept whose coordinates are

77 (0, 6). Le% us draw the lire as well ‘as write its equatigp. To draw the
5 gyanh; we start“et the intereept (0, 6). Then we use the sjope to locate

he. voints orr ‘.ne iine. The ZHét that the stie is positive tells s that

2 ’ ?

‘the line lri.ll rdme 8s Fe go to the right, and nymber = tells us ‘how N "

AR £, e TRk ¢ o FRTONTy 0P ORR, D, RN ST P ) 4
b - "Tfast” tpe line rises. Be'qreen two_certain points on the line, mge vert»ical Tt .

T gha:nge will be two unit _"up" for a horfzontal cha.nge of three- to the "right".- :

& If we take,the point vhidk ve kmow is on the line, (0, 6), as one of the%wo. ’ '
?:ﬁé}'\: noints, 2 oen- find another point “3 units to the right end 2 units up. We N '
ﬁ 45<:z:‘1,;1,rep this DProcess as often as we wish, and quickly get several points ‘.

£ :thr ““hich we mey drew the line. ("‘igure 20.) "~ -

. . ' . .
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. Aruitoxt provided by Eic:

Vertical
intercept:

’

Ly

Since we now have m =
line &8s y = 2 +6.

. 3

1., Calculate the slopes of lines ﬁ

.

Exercise b

2,

]may write the equation of the

° and [ in the accompanying

z ' figure dsing in each case the \two points indicated on the lines.

3

4

-

4

/

L~

3

4‘4,

|

* ..
B
.

-

2., What is the slope of a horizontal exis? A vertical a.xisy

With reference to a set of ooordinate axes, select the point (4, 3) and

through this point

(a) draw the line whose slope is 2 What is an equation of this line?
(v) dray the line through (6, 3) which hes a slope of zero. What is an

equation of this line?
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4. Twraw the following lines.
- }

(s) a line ‘through the poin‘c (1,5) with slope % .
“(b) a 1ine through the point (2,1) with' slope_g‘. . ) -
(c) @a line through the point (3,4) with slope 0 .~ :

. -

(d) a line through the point (%,3) with slope 2 .

.+ (e) a line through the point (3,4%) with slope undefined.. (What
type of line has no defined slope?) ‘

5. Consider the line containing the points (2,3) and (9,5). Wnich of
the following points is on this line? ({Hint: First determine the
slope of the line containing the poimts (2,3) and (9,5).}

(a) (30,11) ) C (@) (23,9)
- (B) (7,4 (e) (19,58)
(c) (22,9) . (£) (58,19)

é. Write an equation of each of the following lines
(a) The slope is % and the y-intercept number is 2. (The y:intercept “hum.
. ber is the vertical coordinate of the point at which the line crosses

& the. vertica axis. In this case, the coordinates of the in‘cercep‘c
' “are (0,2). ) ’ . , 4 . .

(b) " The slope is 3 gnd the y-intercept. number is 0, : - ° -

(¢) The “slope is é and the y-intercept number is % .

(d)" The slope is 37 and the y-intercept number is 5.

P

-

7. . 'Whaﬁ is the slope of-the line containing the points (0,0) and (3,4)?
What ,is ‘the y-intercept.number? Write the equation of the line

8. Ve;‘if{'that the slope of the line which con‘cains the poin‘cs (0,5) and
A x ST T . et
(8 13‘7"15 1. If (x,y) is, aapoint on this same line, the slope could

%%

' be wri‘cten as | =
/ W____z or T om=YXoi3.

.. X =0y
“Show that both expressions' for the slope give the same equation for

the line. T .
Lt 4 : - ~
H . K T *
9. Write the equations ¢of the lines through the following pairs of points.
Use the method of Problem 8. -~ . .

. (a) (0,3) and (5,12) - (e) (3,0) and (6,3)
' (R (5,8) and (0,4) (£) (3,3) and (5,3)
\ (e) "(0,2) and’ (3,7) () (3,3) amd (3,5)
" (d) .(5,8) end (0,6) () (4,2) sma (3,1)

'
* o .
. p)
’ .
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2.8 Relatio'ns and Fo.nctions

" 5 In the experiment which we performed we collected a series of order
pairs, In each of these ordered pairs, we noted a given, load and a : ing "
position of the beam. We might have thought of a set of ordered pajrs,
(position of the beam, load), bif in order to avoid confusion, we nmst) always
agree to state our ordered pairs in the same order. We consider load as the

first element and position the second element of this set of ordered pairs.

-

e .
However, & single ordered pair does not tell ‘us very much. In fact, »in
order to get the complete picture, the mathematician and the scientist would

J

,prefer to have the total set of ordered pairs. . .

®

Any set of ordered pairs will be called a relation. The set of all
first elements of the ordere)d pairs in any relation is called the gglﬁilg_ of
the relation. The set of second elements is called the range of the relation.
V!can say that a relation matches each element of its _G’CM to one or more

ments of {ts range. In the experiment with the loaded beam, the domain
of the relation was ’t;he set of all possible loads while the range of the

- relation was the set of all possible positions of the pointer. s
N . In Figure 21, we haye a graph of & set of'ordered Pairs. This graph
’ (5,5) . displays every ordered pair

" of the set and, hence, is a
Jpictorial representation of
a relation. If We check all
the ordered pairs of this

’ _ relation, we note that the ”
| (0,0) - . (10,0) ,first elements of these ordered
T o . il pairs ecan-be-gply real numbers -
. Figure 21 - ; o
from O tprough 10. This is the

domgin of the relation. The
‘second elements of the ordered
pairs are real numbers from O
through 5, which is the range
of the relation. The domain of

. # the relation which is indicated
along the horizontal faxis is,
sometimes aﬁphasized by ‘the use;

' L of & heavy line, as in Figure 22.

. . 'jr Ramgé is 1ndicated along the ver-
,! ‘ z ¢ ‘: g ticdl axisv and may also be em-
. A ’ Filgure 2 ‘, haeigpd x:ith a heavy ggrk line.
. : ) - : ..C& . ;
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3If we lo;)k iea‘c the relation in the experiment a little more critically,
we«w:tll notice that it has some special, properties. One of the properties
1eads us to predict that each time we load the beam in exac‘cly the same yay
we will always expect to ge‘c exactly thessame amount o‘f bending. What does °
“this mean in terms of our relation?, Simply this, each load results in &
single definite bending of the beam. Any time we have a relation which .
matches each element of the domain with exactly one element of the range, ;ve
give it a speeial'name. }Ie call this type of relation a function. Now then,
to summarize what we have Just said: a function is a set ‘of ordered pairs

such that each element of the domain appears in one and Bnly one.ordered I;air.
[ B4

Figure 13 gives a pictorial display of the ordered pairs which we pre~
dicted for this functitn. These were taken fram experimental data. Again
we embhasize the domain of the function which is indicated along the hori- \)
zontal axis with a heavy line. In a si;n'rlar manner, we can empha%ize the
" range which ‘ij; indicated along the vertical a:;is. (See Figure 23.) .
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In Prebléms 1 through 5

oW U O

} .. | Exercise 5 e
N YL -

I

(a) Graph the ordered pairs given below, state the domain and the :
- range and tell if .the relation Ls a function. ‘ . !
<
(v) In each case form a new relation by ifnterchgnging the first and i
" ‘second elements of the ordered pairs. Graph this relation, ﬂr
state the domain end range and tell if it is a function. (R
Fxample: Given R = {(0, 0), New Relation: {L'
(1, 2), (2, ), (3, 6)) s = {(0, 0), (2, 1), (%, 2), (6, 3)}
o, : 4
\ .
. , 6 7
>
. k
. 3 .
[ ke 2 P . [
.- 1 . ’
o Ay
0012 3ks56 0.123 456
° -~ )

domain {0, 1, 2, 3} new domain {0, 2, L, 6} .

4

range (0, 2, 4, 6) . ' new range {0, 1) 2, 3)

“relation is,a function

oo

Q
T

,new relation is a funetion
((2n3), (2, W), (2, 5), (2, 6)) - '
+ ({0, 0), (1, 3), (5, 5), (9, 3), (10, 0)]
(i », <§, 2), (1, ), (2, 3)

1
'2' ,4(1‘” H)}
(s, 3), (8, 3),,<11; 3), (1%, 3), (17,3))
“‘?<o, 2), (1, 1), (1, 3), (4 0), (k, 1))

ilo
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| 56. . y




—

. e
AT

R R e
Lo

¥

R

M A v Provided by R

O

»

s *function?

L

1

Which of, the
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Exainple: ’
(1) function
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(a)
T
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(a) T
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1
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hs of the ;'glatidns shown below are graphs fof &

(2) not a function ) (3) not a function
. “ .
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7. In the¢ loaded beam exper‘iment the data in the table forms a relation.
: (a) F}haf are the,domain and the range of this relation?
: {b) Is this reldtion a function? ? .
- . 4
. 8. Does the "best straight line" describe a\i\mction? >
. 9. - Are the damain and, renge of the "best straight 1line" relation the same
s ,u as the domain and range of thé"data relation"? Explain. s
10. Are the domain and range of the equation found to represent the ﬂbes't . Ny
straight line" the seme as the domain and range of the best straight .
line relation? ’ -~ > !
. . » 2 .‘)
- . N
2.9 The Falling Sphere 4
p 3
This experiment continues ou]@cussion of linear functions. We will

encounter mgny of the concepts learned in the ‘previous section. In addition,

we will extend our knowledge of linear f‘unctlons.

You may have learned ¥n your study of science that all bodies take the /
same,time to fall any glven distance 1n a vacuum. You know, however, that .
an -iron ball and a feather dropped at ‘Ehe same time from the "séme height will
- not reach the floor at the same ‘E,Lme- Unless we drop objects in a vacuum, °
.these obJects always encounter some form of resistance from the medium through
s which\the object falls. In a medium such as au: o:;' wvater tfris resistance 1s
not cormx’a;l‘c , but.increases with increasing speed. BEventually a point is
reached when thé upward resistive force equals the downward gravitational
/pull on the object. From this point on the obj.ec‘c will fall at a constan‘cy
B Qpeeds This speed is called the terminal Veloci‘cy‘ A man ,jumpiﬁg from a
plane will reach a terminal velocity of about 120 miles per hour. A “sky

diver" ﬁ‘ch proper control of his body can lower this figure to about 50 miles

. . . [y
e . per hour. #&n opened parachute encounters a much greater resistance and lowers

on g terminal velocity to a point of relative safety, about 20 miles per hour.

~ S A -~ P
—~

, To investlgate the phenomenon of terminal Velocity, a small ball-‘b-earing
‘ *:l;s allo_w‘ed to flell through a thick ;‘luid (Karo syrup) The ball-bearing will M
. reach its*terming velocity in the first few millimeters and then the ball
. ‘.will continue to f 11 at:a constant speed. '

3

As in all experlments, we now have to think of all“the possible condi- — |

tions we are likely to meet, and decide how to handle than., Since our inves-,

. tigation will center around the speed at which tl\le ball falls through the syrhp,

>
g T P

L \ \ 58 ‘41
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} we- ;mu&t de;emine those condxcions which influence this speed.,
2
« To<tedt the influence of the size’of the object upon the termiygl vel-

OCity, we can drop ball bearings of different sfhes into containers of tbe
same size and shape, all fi lled with the same kind of liquid. - T~
- " To test the effect of the Jar upon the speed of the falling ball, we

can drop the same bal{' in different size containers filled with the same type "
of liquid. . » B
L LS
* To test the influence of the liquid itself, we can drop ball -bearings “

“of 'the game size into containers of the same size and shape b‘ht filled with

different liquids. . - . . - °

If you notice any difference.sin the tez'mina".L velocity of the ball in
* any of these situations, then the factor that changed is a variable in which
| we are interested.. Can you think of any other variables which may influence
the experime@;\. Does the temperature of the liquid influence the speed of the

ball in the same way that it affects the speed Qf the hot fudge moving off the

o top of an ice cream sundae?

s o

2 Once we have our list of ‘these conditions we must determine an experi-
mental procedure in which we can control their influence oh the terminal vel-

0 ocity. We will pick one container and one type of liquid and always have the

a

ball fall in the same portion of-the jar. r >
¢ ~ b . :
R : . . 7
The tefminal velocity of the baﬁéﬁowever, cannot be measured directly.
What we must do is to measure the distancg the ball will fall during some i

‘time interval. For example, to find-the speed of an automobile, we haye to

ﬁknow the distance traveled and the time taken to travel this distance.

[ = i .
s 3

}
e

In this )experi‘ment we will us_e metronome as a tim‘ing device, thus
providing an audible signal for selected time intervals. In this case we pick
the time intervals, and the distances covered by the falling object will then

< depend on these time intervals (distance 15 a function of time).

-

. ) To record thg position of the ball &s it falls through the syrup, fasten - - ;- -
a‘ thick paper tape to the side of the cylinder w:Lth cellophane tape. (See
Figure 24.) Drop a ballr ~bearing into the cylinder so that 1t falls along the
wall of the cylinder as close to one edge of the tape as possible. +Since the
velocity of the ball will be quite small, only a little prgctice is needed ‘to
follow the path of the ball along the edge of the tape and mark its position -
with a pencil.each time you hear the eclick of the metronome. The metronome
should be adjusted to clickvevery second. "Make a mark ever)lr other second.
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! 'g' A ks‘ 11 ;égﬂet will be necessary to get-the ball in position along j:he N
( f . 'L; \ ‘ edge of the tape before releasing
‘ () it. ‘I"t is alsd used to bring.the ¥
s . . _Béll back to the surface for 5§§> .
Y ’ future trials.. You do not have "G’
w ) ) " to mark the peth of %:he 'ball for
‘ its,\xn:i\r;‘fall. Ten position . g;
i marks Megken at two-sécond inter-
: vals will be sufficiJ(ent' fp;r; eacﬁ;‘:“" .
§ . - trial. @: . .
' - At least four separate trials‘
‘ of the experiment should be made. *
using & new tape for°éach trial.
~ Mark the trial number on the tape R
and indicate which ehd of the tape - i
Figure 2k was at the tpi) of the cylinder. '
It is not necessary to make the first mark in the seme place each time.” The
-first mark is taken t8 be the position of the ball at "zero" seconds, the o«
second merk the position at the end of two seconds, eté. ) '
) \‘ ' ' T - . ‘ T ~ Rt
' 2.10 The Graph and the Equation
Mrter completing the four trials, f;as‘ten each tape i\n turn to & centi-
metéf‘mler S0 that the "zero" time mark coincides with one of the ruler marks.
*  Measure the distance in millimeters from the "zero"smark to the first mark,
o ’ ‘fr‘féﬁl“the' "zerc"wark to the sécond, etc. (See Figure 25.) .Record the. data for N
all four trials in tabular form and Plot the resulting time-distance -
[ . ' ey ¢ ’ . -
%" 7 a . . —— N
S 2 N E: b FALLING ~ 3PHERE = e ° TRIAL 1 - .
e N L G U S
LRLLFALIL: LRUIBLERRT LARRNIRLEY 21T LALAS M
ST R S S ¢ Q7" i '
R R i ) a : . s
- i .
= - . . Figure 25 - ’ '
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on a single sheet ofecoordinate paper.

Since we have conducted .

‘

3

o pre e
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the experiment in such g way that the distante traveled depends on the time
1 3

.

intervak, we will ageain follow conventibnal pract’ice and label the hori.zontal
“axis- "time in seconds" and the vertical éxis "distance in milTimeters . Re-
member to calewlate the domain and the range before setting the scales on the
paper. We again want the graph to "fill" the pan‘er as much as possible.

’ If you make f,he "braid" arrangement discussed in the loaded beam experi-
~ %N
meng, all of the po:.nts shouldl fall in some fairly,narrow bend\(Figure 36). ._

- Do you think ‘cha‘c if you e to repeat the experiment- under the same condi-
* tions that your new points would = . SRR
e fail within this band? - . ) C ! -
) We ‘obtain a band rg‘c:}?e{/ . '
~ than a line because of the _ ) . ,/ ‘ ’
various errors in measure-. . g. - ﬁ(/l’ y '
ment and the inflyence of § 4 /,//‘
/" variables Sther than distance A -

. and t;me. The details of this %

/

Yy
. analysfs will be reserVed for \ ' . ///‘//
%&‘ - . - “. + A /

-a future course. v 7

/, 11 -
- / -‘ N

There‘ are many straight

' lines we could select to repre- - Time

sent an ideali”‘zed relationship ! X :
between time of fall and distance. Figure 26 ’ : . i
Draw what you consider to be the"’best" straight 1ine-to represent the data. -
Remember to include the (0, 0), point in your line. The manner in which we
performed the experiment tells us that at, "zero" time the bell hes faT len

"zero" distance. Thus, even though there are many lines to choose ‘Prom,

- every otné of them sho ld-Pass through the origin.

s N

,have to build a ma‘chematical model 6f the physichl relation-

/s ip shown in our, "distance versus time" graph. We can do this by repea‘c%
the procedure learned in, the loeded beam experiment. The slope should not be
da.fficult 0 compute at thn.s stage.™ We '’know that the line must pass througﬂ
the origin, hence the coordinates of] the "y" intercept” are (0, 0)." The equa-

..tion_ which’ describes ‘che motion of tle falling sphere is’ therefore quite simple.
Calculate the slope using ar:itwo poikts on the line. Then, using the origin

.. as the first point, and any_sdbitrary point on you® line with coordinates

(t, ) as your second, we have \ . i
. AN
" -7 da-o0_ a _
K e A
7 TR - .
. 5 / .
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. . ) - +
. end - . *
’ . . . d = mbt. T
Wa
v Tne slope in this exne*iment has-a speci -gnif‘fcence. In calculeting
the slope, the vertic dis.ence Srom the Zirst poi‘n: <0 the second is & number
. f ‘of m;l..imetev's while the &t o*‘izome- difference is e numce*’ o? seconas. Tne
B - ‘ v

slope theérefore will.be exnressed in "'”‘_mete_- ver second, end thus is &

- nmeasure of the velocl «.y of the tall. Sipce '-'e have Zoand thet. the experiment .
4 b4 . . -
N 5

y*e.ds e straig. 11 ne, the slope, and therefore the velocity, is & constant.
. €

Our initial cofmen<s are thus confirmed -- ¥y the time we' Tegin texing dete
0 - f

. the bell has elreedy reached.its terminel velcecitiy and fells at e constant - ,l *
. . )
Yrate. @ . ‘ 3

. . .
. . .

S
-t

eprodace tne Test siraight line” you have drawn ¢ represent the date

',U

1
f‘ of this experiment on a clean sFeet of coordinste’paper. TeXe«the four

~

N

: » N - ces Aot - .
vieces OZ pe‘per Tape used IC DRErk Tne posilililion oI tne fa.. &and errange .

.
- . them so thet the zero marks ere in lipe (Pgure 27). On e cleen %%k

v tape, mexe g mark o indicate & "zero" peosition end align &hls merk with

P
(1]
%
I
o
o]
(1]
X

. ‘© L Figure 27 i .

h the cther zero marks., The other: marks on your tepes will not ve "in line",

ouu should tend to center in g*cuns acou\. é numbe*' of imeginary vert: cal lines.

* Make a mark on the clean tepe‘to indicete your guess' es to the pogition

. . which best ep*esenus each verticel set of marks. Using the fif%h tape as it
“, it were & new triel, mark your measurements in the usuel way, enter .the data
in your table, and. gz:aph the ordered peirs. Do, these DOinuS come closer o

forming a straight line then ény of your four trial runs? how does this line

H

ccmpare with the "guess,' you made fram the "braid" arrengement? . -

- »
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2. Fron the data of ymu- ?ou.r $riels, find the ave"a‘ge @i stance traveled
by the b/a._l"in each iime. -ntev-val. V,alre e nev column’ inlyour table, ..
3 . "Aversge Dis»ance (m)" and now plot m-/\ergge d*kuance'fve*sm vime on
.
the sﬁe sheet of coo*u..,a‘.e peper used for Exercise * How c.ose do | ;, .
! Xhese points ccme tor forming a sa'a_s... *ine? You now have t‘nree lines
: on this sheet of coordinete paper. The Sirst is,the "‘bs} straight line"
. h - “ - -, M -
from your ov-*g inal deze, the econd is the line ottained in Prereise 1,
)7. - - ~ - g -
- end fne third iine is' the one ottained by the process of a‘er&g}m
L] * v (3 - - 4 ‘ 1 .
How do these three lines cacpare? T . .
- .
: 3. Drew a grapa using a gcale o2 I second for each horizontel divisiocn
and 1 mil millirmeter for eech vertzical division. Drew a line which pesses
R through the crigi end hes 2 sltpe of 1—=/sec; 2=/sec; ard 3 =/[sec.
‘ label these li:os ¢ ~
Y .. . v ' *
b, Repeat the 2bcve exercisé wizh a herizomsel scale o 1 second ber divi- L
o 4
sion but with 2 verticel decale 02 0.5 =2llixmeter per di¥%ision. Are the
. ’
H two siopes the s!s::e? <
. . ',c_‘_ it
' + . ~
. ) ‘ e N . . ,s . h
< : ‘ ‘ ]
1) 2.1 The Peint-Sicpe o : Lo
o
' , Wnen the date Zronm the Loeded 3eek Ixperiment was plot eﬁ on coord dinete
DEper, a graph wirich resecpled that in-Figure 28,a) resulted, and we “ound |
. L
thet an equation o? the form ¥ = 2x + © could bte used s a repres tion of
- . iris grepa. In the Falling Sprere
. experinent, the grepnicel repre- ov
.y ’ . ' * semtation of the ddte pessed )
‘. - Ty = O s {. 8/—)} 4
- torough the origin {FPgure 28(v)},
- - > erd we Zound thet.ell%grephs of
| I . " 115 type could be represented
; T -
b/' ol - Sy - o P [dd ‘.
- x 0y an equation of the fom .
> s e T .
/ ¥ = =x * G sinece.tire graph pessed
. / - ..+ through" the origin. & simpler . .
- a - - — P PP “q : . *
* (O,b) " form of this eguation is y =X
3 -
r 8 ’ ’ . S
N - - . - , » m
- T - Suppose, héwever, we are to ’
3 .
v + ‘. - . ’
Ty ; - . arrive ay a grepn which looked
P R - . .
(a) : : X iike thet Pigure 28 (c¢).
a . ’
L - ‘ ithis case, if our cigmai’n is limdited )
- . ' to values greater than or equal %o s
*
. »
- ) . .
-~ - ‘/_.\/ Q.
. 5 . . 63, . . )
] 1 . . ~ " - . . . 1
\ (S - ¢ .
CERIC . C P
‘, =i R - - | .
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i RSN - : / e, end less then’or equel fo c,

¢ LT ; g

‘ . : A ve will not have & "y-intercept".

s A C < .f“—"” - . .

. —t = -~ The slov€, however, can still be

~ s - L - : ¥
. & . — 7? &H ~——- calculeted in the ususl way by . »
) -4 . z ; N - o o . -

3 5 2 ~——> - selecting any tvo qunts on the .
" e / . o N PR - iy
- . — . graph and 2inding tkhe ratio of -
DZA thesverticael distance tetween
- Ad -
. } L these points to the norizontal
s L] .
- . - - .
i () L = - dlszence between them, The slope .
‘ {0;0) X i5 the same Por sny two poihts on
. * ‘ z .
g WA 2 stradght lfne. 7o ogtein the
A - ", .
. N - et £ epig ° -h 3
[ ] - A : // ] egueticn of this -;‘t.e, thé end
. — / - peint of de segment which has
i—‘ } is zaxen es
L9 -~ !

. en for any

' goordinates
H

- ’ Ld .
"o . 'Y .

- t -

—3 . e
< v

3 L L . .

- : , P + ——+> % Tris i3 the third of three "spegial”
. {e + P .
: —1 , forms of tre equetion of & straight 4
Figure 28 line. This equaticn is Xncwn as
s the "point-sicpe” forz of the eguation of & strsight line,
N - °
~ ° v .

. . ' Exercise T -,
, i. Write the equeiions Of the lines 2.‘, 12, end 13 using the two
- ’ -

: points indicated In the Tollowing gra?h. ” PR
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Write the equation of the lines
dicated in the followihg graph.
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Using & pelnt nct on the Lertica;

eguation TC yepresent the test st
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the loaded
with the
thet

lent Y0 tne equetion obteined, using the slope-intercept

State the sliope of

the coordirnates of

()

%+ bk, 3 -
() L2 - 3
() £L222- 1 - ‘
(@) 22 -8 -'

(e
(<)
(g)
(n) =—¢ -

three points on the greph of. each. .

o

.

slope,

28

teen experiment.

23

&

-

7

nd the

this is equive-

form.
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the greph of“eacn of the following equetions. Give
k4
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i siope'of a straight line was defined as

2.12 Swedary 4 s

In "’_chis chapter, we developed the concept of drawing the graph of the

"pest Iine" from experimental data. This "best line" graph was called the

physiqal ﬁiodel,of the e;cperiment. A mathematical equation, called the
mai}h‘natical model, was then derived from the physical model.

N .In this particular chapter linear physical models were discussed. The

rise s

" Three forms of a linear equation were devploped:
- (1) Equation of a line passing through the origin,

¥y = mx.

The slope-intercept formm of the equatfon of e straight line,

-

(2)

. . y=‘mx*5-.‘ b

.
(3) The poins-siope form of the equation of a straight line,

-y-% _

X -~

2 —mforx#

.
S

r , T
’ . { /
A reletion was defined as & set of ordered piirs. 'The set ofiall first

elements of these ordered peirs is the domeain of the relation and the set of

'
¥

-

all second elemgnts is

A set of ordered

the range 02 the relation.

°

peirs, where each element in t#ie domain eppears in
-exattly one ordered peir, defines & function. | .

-
. -
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."Q‘ . Chapter 3 ' A
TRAMPOLINES.AND GASES - . . "

2 Q . . N .5
3.1 Introduction . . . : S ..

. « : u

Many times, even though the data in an experiment is ndhlinear in ‘char-
Jacter, i is possible *0 compute new data which is of a linear-type.'s The R

following experiment on uhe trampoline is an example of this type of, experi-

went. N ) “\

*At one time or another you may have had the opportunity to Jump on a
trampoline. I? so, you know what fun it can be. The \fprlnglness of the .
trampoline permits you to execute flips gnd turns not possible under other
circumstances. The question now is: Do jou suppose it would beqp0551ble tq_

make a mathematical analysis of your behavior ‘on a trampoline? .
* . .

As with many other physical situations, .this one seems much too difficult

N

to handle. A person on a trampoline not only bounges from the canvas, he .
ﬁ_\asually.jumps at the same time to give his body extra height. He also twists

. pis body and sw;ngs hid arms in a way that will produce phe maneuvers he de-
sires. All this 1s extregely complex behavior. ) . ‘

. -
8

If we are to learn anythlng at all about a trampoline, we must somehow‘_
simplify matters conazderably Perhaps we could eéventually learn about one's
entire behavior on rqmpollne through a series:of expefimenté, each one, .

designed to examine#®ne aspec¢t, and one aspect only; of the entire situétion.
. ; . : R
4 A . . \‘

£

< o1 < . . . ‘-
3.2 The Trampoline Experiment z . ¢ . *
‘. g - . -
For our purdose a %»inch glass ball (marble) will be dropped on a minia- :
ture home-made trampoline. We will carefully examine the way in which the ’
ball bounces., There will be no flexing of one's legs or flailing of arms, N
' &\st a *imple bounce, bounce, bounce,'... on the trampoline. . ’ >

A suitable trampoline is made by stretching é ten- or fifteen cenv bal-
loon with its neck cut off over ag- or 10- inch pie plate. This forms a highly-
strétched elastic membrane that serves beautifully as a trampoline for the

* ~

- glass ball, Co ) . - e

~

‘e

2 After dropping the ball a few times on the tranpolinq,from a height of
about 50 cm, the basic behavior of the ball is clea#ly seen. The ball will -

- ~

% FRIC . o
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With each bounce the ball will rise-to g maximum height that is somewhat less

-

bounte 25 to 30 titmes before finally coming to rest upon thé rubber membrane. I
|

than the height to which it bounced previously. If this motion were to be

3 ~ .
“stretchtd out" sideways on a flat surface, it would appear as shown in
M -
Figure 1. \ :
% ’ .
’ bounce number O ’ -
{point of relesse) : . L ] S
.o \ ) e ' ' ‘
' : Tty B . .
‘ -
A
i . . .
» A J ’,
s, v
<

bounce number "%

bounce number 2

°

bounce number 3

- . ' >is
. Pigure 1. Path of a bouncing ball v * . * 7
{ ‘ S .

Even witn the uramp011ne situation 51mplif1ed'to the pq1nt of .using a

- ba*l in olace of “a human belng, the bounecing of ¢he ball is still a rather
complicated affair The hall picks up speed as it descends, makes a small
dimple in the trampo*lne as it hits, and then flie§ upward with ever-dimin- ) }
ishing speed until it’ reaches the top of 11§ bounce, and begins the seguence . . |
all over agaln Affalrs can be simplified still furtiter by fixing our atten-
tion only upon th e max1mum height to which the ball ascends with each bouncigﬁs

e choose to ignore the qondition of the ball at all other times.

We have, sele‘&ed for stuydy a limltea part of the entire behavior of the
bouneing ball. To what maximum height does the ball rise with each bounce? -
+ =~ + As before, we will attempt.to list all e vatriables which might conceivably |

.. influence these heights, .end then permit one and only one of these variables .
: * . oo
! s 2

*

(A

ERIC LT e
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o A " C o i
! %o change dtiring the experiment. Certfinly the height fz%dni which the ball is
dropped will influence the height to which the ball rebounds. The mass and
size of the “ball itself may also influence the situation. 4nd then of course
the nature of the rubber membrane and how tightly it is stretched will also
jnfluence the maximum heiéhts to which the ball bounces. Can you think of

any other ‘influences?

LR

|

h All of the variables mentioned can be kept constant as the ball bounces =
-- the height from whicﬁ'the ball is dropped, the size and mass of the ball"
and the condition of the trampoline itself. Andf&et under these conditions .
the'height to which the ball rebounds with each bounce still é%énges. What
variable, then, influepces thig height? in,case you've missed it up to now,
it is_the number of bounces the ball has taken. In other wordsk the maximum
1 height to which\the ball rises ¥ith each.bounce most certainly depends upon

'

P the number of bounces the ball has wmade. . )

. The experiment can now be designed”in a wayethat wiil permit us to uaké\
fairly gccurate readings of the maximum height of the'ball with each bounce. ‘_
This height can be read more easily and accurately by using a shadow of the
ball rather than the ball itself. A lﬁq% or~200-natt bare bulb should be
pladed four to six meters from the t}ampoline so that the shadow of'the.ball
will be cast in a nearly horizontal direction. The buln should be placed at
a height whihh is close to the middle of the bounce heights that will be

L AP [N i ey
d

V' recorded.

The shadow of-the ball will be proJectedion a,white card upon hhicn a

centimeter scale is drawn. The card shouldee;placed directIy behind Lt
trampoline. 'The card should be as «ide as thg pie plate and at leas 50 em

- in height. The rulings should be drawn carefully across the entlre card for
each.centimeter of height. Every fifth line should be d;awn darker for

easy reading,and marked. With this arrangement one should be able to read.
the position of the tdp of the ball’s shadow to ' mm (one-tenth of a div181on)

The entire experimental arrangement is shown in : 2. K P

ERIC - © - - .
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Cwill make this adjustment eas*er

!

ERI!
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9 . Figure 2
v - N
The pie pléte must be accufately‘lévél or the ball will bounce ;ff the
Three smell pieces of modeling clay placed beneath the pie plate
Place the ball on the trampollnc and , .

trampoline.

adJust the ple plate until the ball will not roll off in any dlrectlon. (a
small blbple level could slso be used.) A ring stand equipped with a bunette
» clamp is used for releasing the ball from a height of about 50 ‘em. Be sure
“the clamp is rubber-covered, énd then tighten it until it will just hold the

ball., A The position of the clamp

over tre

slight push will now sepd it on its way
ine must be adJusteo so that the ball will continue to bounce

trampeli
Some final levellng of the )

from the trampoline for at least ten bounces.

pie plate may also be needed.

!
Now we are ready to record data from the experlmenﬂ

column on your data sheet "bounce numbex (p)" and the second column "height
The first recdrded bounce number will be number O.

Label the first

in em (h), trial 1".
Thel corresponding helight wilh be the height of the ball at the point from

which it is released. The initial position of the ball is found by observing

the shafow of the ba¥l when it is Stll%'ln the clamp. Be sure that the ball

r \

is in the position it occupies just before it slips out of the clamp.
only the bottom of the ball casts a shadow, observe this height and add the

S

ball's diameter.

e




'\ .4 o .

Corresponding to bounce number 1 will be the maximum height of the ball
”““”after the first bounce. Make four observations of the height of the first '

bounce before,contlnuing to the height readings of the second bounce. * Record

these four trials in columns 2 through 5. Starting with the ball at the same
point of release, now let the ball bounce twice and make four observations of
" the second bounce height. Discard data obtained uhen the.ball obviously takes
& bad bounce. Also, do not beginrto record data until the approximate height
of rebound is known. 1In this way you will accumulate four readings for each
of 10 bounce numbers (see Figure 3).

Average your four height readings for each of the 10 bounce numbers
and place each aversge in column 6 of your data sheet. If your centimeter
scale placed behind the trampoline rested upon the désk, &ou must now sub-
tract the height of the trampoline above the desk from each of these averages

(and‘from'the release height) to obtain heights above the trampoline membrane.

’ Place these "corrected heights" in:column 7. - )

»

. The 4ata function obtained now consists of the ordered ggiré displayed
’in columns 1 and 1. The first elements of these pairs are the bounce numbers
while the seoond elements are bhe maximum heights above the trampoline. Be-
fére attempting to analyze the situation further, display these points on a

. sheet of coordinate paper plotting bounce nuuber (n) along the horizontal

axis and héight (h) along the vertical axis. The graph obtained should

appear similar~to the graph shown in Figure 4.

Y

* O . . '
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: M THE TRAMPOLINE -

" ﬁou:gci ' Height in cm () o Average Corrécted
T s "e & ¢ height height ,
,- (1) n (2) trial 1 (3) trial 2 (b).trial 3 (5) trial 4{(6) h (7) n, @) b,
-0 ) (obtained from shadow) ¢ . " a ‘

1 ' ' '

\
. t % N
\O o« - [ )WV ]
°
N

10 .. . .. . )

7 . . Seo - ;
7. o oy )
" §-inch glass ball (marble) (diameter 1.4 cmf O V4
_— light source = 4 meters distant *
- . + . "
e - - Vone . . . o, K
P " U N :  Figure 3’ 4‘ .
o Fud . ]

" - M . ! ,
li‘ MC - .
5 E ‘ .
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, . . -
. . THE -TRAMPOLINE ' o .
. Average . Corrected ¢ Calculated
Helght in cm (_h) height height | heights
(3)- trial 2 (4) trial 3 (5) triad 4 [ (6) i () n, 8 n 1) n
1 ~ "
(obtained from shadow) |- '
’ -’. . '
’ : / = Ve !
. L4 - g
B . -
’ . e .
' 3 N . . ‘ [
, —J_. . .
. ) N , - r
. ] p o
(marble) (diameter 1.4 cm) -
ters distant R ) ) ) .
. Figure 3. ° ; .
O
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3.3 Functigh of Tntegers =~ 50,
33 Punctigh of Tmiders © . <
The function displayed ° . o

in Figure ltafis a physical L ~ 1 .|

L2 e
.

ok 1\%% ‘@gﬁ@

,,,.,
B
.

model of the experimental ' . ’ ’ *
situation, for it is ‘noh- - - . B ) ®

ing more than a graph of , °

» ‘thé data function. It re- ) , .
’:m'ains to find a.suitable 5 o L. o

.- " mathematical model to ig_j__ . —F_T :

represent the trampoline 3

A

L5

A
N

2 . Dbehgvior.

curve" through or' near the

£

o, - 2 .

Did you draw a “best ; % 20 &
B2

points'l’ This may have be- v

a

come a habit ‘arising from *. . ——g

A 4

FaaY
A %4

. past experience. . .10

» In many experimental’

situations, the drawing of

a "best line" or curve is L ‘ - .
*  cempletely justified. In . 123 k5 6 7 8 9 1
. © Bourice Number . {(n)"
Figure 4

these cases we could assume
+  that values jn the domain . ° _ R
of the function could have been selected which would yield corresponding

termediate values in the range of the function. ) .
2, B B *

The values in the domain of our trampoline function, however, are the

o
Syt

so-called "bounce numbers Can we have a bounce number. 2.6 for instance,

and will there then be a corresponding meximum height to which the ball bounces!
‘I’hink about this gquestion for a moment, and xefer back to Figure 1 where

.. the general behayior, of ‘a bouncing ball is indicated. : B

' ; Will you not agree that the peak heights to which the ball bounces from

e trampoline correspond only to the integers, and not to intermediate num- <.

.

" ) erical valug's‘I The demain of our function includes only the integers O, 1,
2, 3, «we 5 but the range of the function includes positive real numbers
which-are not necessarily integers. ~ We choose {:o call this kind of rela-

’r‘

! ‘ ’-—o tionship a function of integers. . & . P

- E, ..
*r If you fell into the trap and drew & "best line" or curve through the

- points, that line must now be erased,. for it has no significance.

- N ~." -
Y PR v
: ; . 1 . N .
~ » o . hd

;',.',«73~,, , -
. - .
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ience, and in formalized physical science.

the range of the function may also be 1ntegers.

T -~ —

n Exercise l ) - . .
1. Can your graph of bounce number (n) and bounce heiEBt {h)‘be used to .

interpolate values of thé height for non-integral values of ,the bounce

number? Explain. .

‘ L ]

2, ' Why can your (n,h) relation be referred to as a function?
3. De you think that the (n h) graph can be .extended to find values of - e

the maximum bounce heights for bounce numbers greater than 10?7 If .

8o, to what value of n would you be wikling to go? e

N~ A
- - . a . 7’ . /

b, Construct a graph that shows roughly the time of sunset for each day . ”

of this week. <

A .__«‘“ -~ fL‘ \ . -
- e . \ .
o » -
\ . ¢ . » ' . 4
/ ) -. .

3.h Mathematlcel Trémpollne Nbdel : - ~

3 ' : ) S '
o : ;

’ . ¢ ¢

There- are many, examples of functions of 1ntegers boﬁﬂ in eve;y?ay exper-

In nost cases, the integers are

thought of as belonging in the domain of the function, but in certain cases

The times of sunrlse, sunset, e
moonrise, and moogset fqr a given locale are functlons of integers (tke day

‘ The
height of a building may be expreSsed as a function of the number of stories.

of the year). The thickness of a book depends upon the humber of pages.

ot -

The trampollne function is a functldn deflned for boynce nuubers (or
integers) and presents a mathematlcal situstion which differs from previous -
‘situations.’ For thls reason, the procedures we have used before may be of

little help to us in this situation. we need a new procedure.

- .

- As is so often the case, the hints we need to develop the mathematits

- Of a particular experimental sltuatlon can be found from an analysis of the

experiment itself. In thls case we,need
the trampollne to glve us clues as, tg\the

might de\relop. o
¥

to amine the pounclng from
marner in which the mathematics

-
-

The ball was relEased fropt

“</)nmximum height, bounced again, rebounded [to ahother maximum he ght@'and so

e 6%. We might well ask the foilowing question What is the physical dis-
- tinction between the first. bouncé'and the second, or between,the secend °
boynce and .the third? 'Af}er the ball bounced once, for exanmple, we could
have cangn% the ball at”its maxinﬁm height and later :eleased it at this
k / [y i ) ‘/ R Th . - v ‘ ‘ )
¢ M ] LS
ERIC S5 -
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a fixed heighi, bounced oOnce, nose to a : i
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.i?:;f"‘ o 1 a s
‘same height. This would, in a sense, start the experiment all over again,

{
the only Qifference being that this time the ball would have been released .
at a lower height. .o b )
~ ) There’ must, then, be sou{e relat *on be‘cween the height to Which ‘che ball

bounces lnd the height to which it bourced Ihe time before.. Sunpose that the &

- point of v~elease the size and mass of the ball, and the properties of the
trampol* ne are a_l held flxed It then seems reasonable to assume further
that’ the neigh‘c to which tne ball bounces depends only upon- the p*‘evious

ounce helgnt and nothing else. 9re two preceding stquetpents‘ are extremly

important ones. In effect, they‘cons‘ci‘cu‘ce a hypothesis about the physical

behavior of the bouncing ball. . ’ .
' Our search for a mathematical description o- the bouncing ball ean now |
. y g 2 2 - L) ‘e
be concentrated in a single direction. We seex a relation petween successive
bounge heighns. ° ' -
p .
Before pursuing the subject further, it will be helpm,..to‘mwtmmmm?'g -

ot

some new mathematical hotav‘o*x Call he height to which the ball rises e, o
aftetr counce{%umoe“ n me height np. The small subseript-‘is the bounce %"‘J(’ﬁ
number n.o*'resuondl‘%uo the n615 ‘t, and serves as a -reminder as to which of ' ~
the meximum heights we zefer. For examc"e, hy is the heighf for the zerot‘n
bo‘nz\ce (the point of re"ease), is g.he height corresponding to the f‘irs»

bounde, n2 is ube neo.ght corvesnoncwng %0 g.he second bounce, and so on.

-~

« Tne *e"at:.on we wish to find caXpow be resta‘ced using this notation. .,
er seek the relation between hL £ (any maximum bounce height corresponding * '
to the bounce number n+l) and h (the hegght of the previous bounce). In .
. o‘cher words, the e*gh of the 8th bounce, h8, depends upon the heignt of

0 the. Tth bounce, '7, llkewise the helgn‘c of the 3rd bounce, h 3’ depends upon - )
the height of the 2nd bounce, h2. For these relations, n =0, 1, 2, 3, >
ceey 9- ' s ,/ . .t . . °.
. ;.!: . . . . .
Let us su.mmarlze the state of affairg at the ‘moment. We, have already R

e .obtainec exnerlmente]l. a reflation betweeq h “(the valuL in coi 7 of

Pigure 3) and n (tHe values jin column 1 of Figure 3),’ and this relation was

disglayed on coordinate p7per (Figure k). -We found it fto b8 & "function of ' . ,
we wish to find.a new sef of ordered bairs. The .

L S‘first elemen‘c is h and the second element is h £ For example, if n = 6,

“‘fthen n+l T and h6 is the heigh‘c of*the 6th bounce and 'h7 is the height of o . -

N
" the Tth bounce. TQe ordered rpair (hn’hn-t-l) w&lld be (h6’h7) in this-éxample.
. ' * .

in‘beger/s Now, however,

ERIC [* . S -
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The reladions of, Figure 4 and the ordered pairs (b 0 h ) are different,
but both are,part of the same over-all problem. The second relation is the

N

one indicated by the ordered\pa%rs shown below,

(hyshy)
(h),b,)
{hgyhy)
(h3,h,+-)
(a),h;)
(hs,h6)

(h6:h7)

(ngonig)

(h91hlo)

.

by . K

si~n<;e ve éiready have all the first elements in the above relation tabulated
ﬁnﬂcolumn 7. Al we need to do nov is to tabulate the second “element in col-.
“umn 8 of Figure 3. Once this is done, blot, these ten points on a clean sheet
<')f coordinate paper. Plot the values of hn along the horizontal axis, and

the values of h) ., along the vertical axis: e T :

. The éraph may surpgf'se.you. Pon!t you find that thets.e poih‘ts, allowing

0

for some experimental érrors, are arrayed fairly well aleng & life? A typical

.result is shown in Figure 5. . .
’

kS
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. Did you draw a "best straight line" through the points? Perhaps not,

- for now you may be & little suspicious of sucn's procedtﬁ'!. By drawing in
the line we may be suggesting that there are %eaximum bounce heights corres-
- »

"ponding to eny positive number, not Just to the integers.

It is true that in ouwr exgeriment there were eleven hp

¥ 's and_only
eleven, with no heights ir tetween.

o Lrel

_ooxed at more broadly, however, the

is 2 relation between eny bounce height andé the

8

cecing tounce could have hed any
neignt of the release point ‘:’or

Thus tlg ele-’

) i ne depein of the relation (the h, véives) could assame any value,
- p oy Pard .

-

the tall azd tne ch¥Pacteristics of the trampoline surface.

there would be u corresponding element in

therefore, Is & procedure®that is Justified in

sure that iour test line tasses tnrough the origin, for most certainly e

[o}

ounce nedght of zero will rroduce a zero neight

n the next bounce.
-
3

JFrom our test lirne we cttrin the eguation

H
where n is <Re reaswr

0
et
Q
" 1
14
(e}
Y
ct
vy
11
}—
(B
33
1]
3
ot}
1]
o
(1
VS
0
[+]
=}
[+)
3
IS
he]
5
>
0
[+

interpreggtion o tne slope of )s
: fn«} . N

n-i . . . -

T ; e seé znat tnhe slope is the rati% of any maximum bounce

Deignu to the height of the previous bounce.

°

obtein m =

The value of this ratjo (slope)

the rarnge of the relation {an h__, ). ’ Y 4
-Ta ¢ .
& Moz y~ 2 : ‘ 1t
Filling In wre Zire",

. id rot ‘Gfew this line tefore, draw it now. ' Make

v

v will getermine how quickly the successive bounces of the bal

1 from the tram-

v

+ . poline will "dle awey". . .

We must rememter thet in the sbove equation, thervalue ho has been

determined by <he experimental arrangement. hO” together with m, are the

two constants we need to calculate any of the bounce heiﬁ“'cs corresponding

-

¢ %o bo%nce numbers 1, 2, 3, ...-, 107is indiféuﬁdf below. : o
” ’. . . , ¢ /)
o - — H
; , L S J
\ ‘ . h2’= mhl & :. . .
‘ ) ° 1\ - : ‘ 0y . »
- hy'= mhy
“ s A * Oa .
\ C
. . '\ ‘ h9 = mh8 .
. h - J .
; \ hy 5= mh9 . |
\ ) (O
; e € » ) - “
’ / . - * ' .

N c - { ‘
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Bach right-hand of an equation is obtained from the *‘ight member of the,

preceding equa—tion py multip lying by.m. The process can be repeatec}, there-

£3;e, to give h

0. ’ . IR N
By, = mhg = m(ung) = ma(m-n7) = w3 (ang) - m‘*(m;q,j') - (m,) = m6(mh3)
<¢. N X T
2 ul(an, ) = o’(ah) ) = o (u)
10.

that” is,’ « hyg = o ng. : .

Similarly, we can find all of the ten bounce neights once we know the two

4
constants m.and ho. It is easy to see that agsingle equation can be Written
- doa o
Fid { -

a for any n: 5o

.,.
Id

(=2
.
[}
B
=]
,,,t
-y
o] N
51
=
1
o
-
g
-
n
-
-
\Ve)

To test whether,this equation is, in facz, as good as the previous ten equa- .
3
tions, we have %0 set n = @, for example, and £ind that Nip*= m"OhQ.
- )
‘ © . 4 . )
For n =3 we wguld hgfe R, =m ho . Since n has ten velues, we have tenw

equations.

& * The proeedure we have used has turned out ir 2 most interesting way.

UEMC
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We startea with the egu&tion ‘1 ‘L = m-hn . Tnis eqation represents e linear

relation between h anﬁ h The equation we” have now ootained is quite

n+l’

different, for it contalns buftche h-value. t is an equation which expresses

t})e relation between h( and h’h.I

- It is certainly not a linear equation. It
is the‘rolation that we are seeking f’:g*om the very beginning. We have.elready
graphed the experimental ;'e;gtion betweeh n and h (Fig;re 4) and now we = _°

. z;t long last have a mathema‘tical model’of %his relatiop. £ ‘

> o N 1 . -
« Use the eq\?ation hn+]: = mn'{"‘hO to caleulate lnew values of the heights -

corredponding to each bounce number and place these in column 9 of Figure 3.
Now plot these on your graph (similar to Figure 4) and compare the values
predicted in this way. by our equation with the values obtainea exnenmentally)
The two sets of points should agree rather well. ) [ )
:"“ Let us assume hg =}27.7 cm and h) = 23.0 cf, Then o = h—h = S% g ::1 =
0' 830 where = mea,ns approxima‘tely ‘equal. _As a reshlt we }nay take m '_;‘{q &

‘ as a value for computation Since ho =5.0em ., 7 $

£ (0.8)*°(50.0 cm)”

. IR h

o ' + Byp
)

n -~ . hio {0.1)(50.0 cm) where (0.8)1(:) = 0.1

therefore :hl(:) £ 5.0 e (calculated value)

» [ -~

% ‘:,
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‘ iny one consideration remsins. In tbe experiment only 1O bounces were
observed. We found a mathematical expression that accurately describes the
bounce heignts that were obtained. Will our equation continue to describe
the heights to which the ball ascends .after 100 bounces, 1000 bounces, or - /
éven more° One does not have to look”very far to £ind the answer. Ihe ball
will not continue' te tounce indefinitely. Our equation must at some point
" cease to descr*be the situation, Physically we can lay blame onsthe evar-
-Dbresent frlction between the ball end the trampoline. The frictional forces

nresent oring the bouncing To & sTop. L. -
s

We see that ‘ﬂe/doma*n of oounce heights cannot be extended indefinitely.
Tre domain *ﬁcludes 10 tounces ana no more. A new experiment would hdve to
"be performed to determine wrether our eguation properly predicts the behavior

of the ball for a greater number of bounces. ..

» 3.5 Ekperime tal Extension . -,

Now that en anslysis of the trampoline f‘u.ncti‘bn,,_l;m»s’ been made ewe must
rememrer bwe éntire problem utrilized the data obtained with the glass
balL. We have not faced the guestion as to whether a dlfferent type of ball
would give different resuits. It is most interesting to replace the glass

ball, with & nylon bearing of sbout the same size and repegt the experiment. -

- Using the same experimental ayrangement and procedure that wa;?used l
bePore, adjust the level of the tramnollne so that the nylon bearing will
continue to bounce from it for at least four or five times when released

) from az height of about 50 cm. Rebord the data just as you did before, but

on a new data sheet. When you graph the relation between h and h il this.

time, however, you will find the sl lope to be somewhat lower than it was for

_ the glass ball. -~ ha

: =]
L

o 'The slope’that s obtained is sonenow a characteristic of the ball that
is usged, for one value is obtained for the nylon bpll and another for the
glass ball. The differente An behavior for the two balls is immedately
evident from the way they, thunce on the trampoline. The glass ball will
continue to bdunce @ vety: great number of times (if it doesn't yjump off the - ;7 1“
trampoline) compared to phe number of bounces for the nylon earing. . '

P
e .

- Be sure to plot the (n,h) data pairs for the(glass ba¥l on thd same
coordina%e paper used to represent the data for the~nylon ball. Can you . :
+ now anticipate about, uhere .the p&ints woﬁld fall 6n this graph when s .

«\\

’ =,50 cm and m=0. h,,.am = O.é' ‘cSr eveh m .-- FQ? o o [
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% . Exercise 2 r

h MR |

SO ” Y. Referring to your graph of the (h h ) rela‘clon, what is the domain
" and range 9f the experimental da‘ca" What restrictions, 1f any_ would you
4 .
o place upon tig® domain and range of the mathematical equation found fo
represent thé line? A} y '
. \ EN
. 2. Suppose that s : - ]
RS -(os)“*l T
Sketch to the same s(:ale a series of (n h) pom‘cs for hy = 10,50 and -
’ 100. . L, . L. .
3. Suppose that “\,S\ -- . . o .. ‘.
e n+l v ) .t
; . hn+l =m « 100 - .
. ) Sketch to the same scale a series of (n,h) points for m = 0.3, 0.6 and
0.9 . . : ' .
. Tk, ‘Maxe a possible internreta‘clon of the s:Lgnlflcance of the equatlon
’ n+l .
’ i = (0. 5) + 100 \ ’ . t '
for the case n = -1 . . )
. A .
5+ Why did the domain of the relation . a N
%
. n+l ﬁ ’
Bpap =8 Ry
~ .
inclide the value n = 9 and not n =10 ? ) |
o . o . . . ‘ - |
6. What is the physical unit of the quantity “m" in the.equation |
Y - . —_ . -
LN _ n+l : . Tl
B hn+l =m ho ? .
: . " <‘
q, 1. Do you think -it, would be p0551ble to find a value of m greater than =
or equal to l 7 Explain. R -

.
. v s, ¢

J ! ‘ - 4
' 3 6 G -Luss“ac 's ' ' - . - .

Sc entists are of‘cen prone to state thejir dlscoﬁ‘erles in ‘cerms of "laws

Ma‘chematicians, on ‘the otl:er hand; discover "tﬁeorems . e présent experi-

v

ment has Jl',o do with gases apd gas pressures. The physical law that is in- f\
volved is not important for our purposes, but the mathemstfics that’ stems [/\
. , ¥

- frox}x an anglysis of the eXperiment, is.

- - .
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» v . ~ -
L N . { . .
B - N - *
i .
.
.

El{fc /5 BT R

BT :
FoTn roied by GG f
B . . ' W




ey

” Y immerse the[bulb in watér.

e
. - ? “
= o e . ; A
- >

.

The apparatus that will be used to investigate gas pressure is an

extremel& simple one. The equipment is shown in Figure 6. ,It'consists

.

of a- copper bylb connected through
a.small pipe;fosa pressure guage . o
at the top. The system was- sealed
Tygsf'at & time when 1t contained : . .
ordinery-air at atmospheric pres-
8ure. The guage is numbered to
. .read pressure th oounds per square
inch. The pressure reading corres- -
ponds to the pressure.of the air _
w1th1n the bulb, nothing else,’ for
this air is comolete ¥y sealed o“f - .

from the outside air.

Whether you allteady know about

. gas pressure or not does not matter.
-4
In this experiment it will $imply ‘ .

be a number read from the guage. Figure 6

-

. If the pressire within the gas enclosed by our apparatus is to be
measured wve must find some way to influence that pre%sure before we can
learn somezhing of significance. Perhaps we can squeeze the copper cham- -
ber. This exterhal pressiire might caléthe pressure within the gagy to
r‘se The metal bulby however, is a fairly rigid‘contaxner %nd we would
have to damage the bulb-before we could gét a measurable pressure~change
indicated on the guage. (If we’@ere to change the temperature of bhe gas
within the copper bulb, on the other *Hhnd, the, change in temperature of

~the g&s mignt very well chanée the pressure within'the gas. Since copper
is a good conductor of heat, the gpparatus seems ideally suited for con-
+ ducting hea} either into or put of the gas. |All wé need to do is to

, , ; Ehatever the temperature of th7 water, the ’

e

, temperature o# the gas inside will soon e the sdme.

?
i

‘I‘hlsfﬁ hen, /is ‘the design for an‘experiment. For eacn temperature of‘

. the gas we will read a corresponding pressure. We may find as many ordered
. i .

pairs as we wish and the set we collect will then be ‘a function It is
convenient to .collect data at’about ten~degree tervals between 0°C and
100°C. -A thermometer placed in the water shrr unging the bulb measures

these® temperatures. The "C” stands for "Centigrade" reqdings, and the

two extreme tempe ratures correspOnd to the freezing and, boiling temperatures,

'y

v -




A ° / . )
t - -

. x .
respectively, of water. This procedure gives us ten or eleven ordered pairs

(C:P), that is, Centigrade temperature - pressure pairs.
L4

~ It is important to note that in this experiment, the gas is influenced
only by the temperature, nothing elsey For example the volume of the gas .
’ , . is‘held conszan‘ roughout. vlﬁ would be difficult to change the volume
' _even if we wish:dt:i;do so. Can you think of other possible influences

upon the pressure of the gas? - : ‘

Record the Centigrade temperatures (: the first column of your data

' sheet and the corresponding pressure readings in the second. Be sure to
label the pressure columri with 'pQunds per square-inch", for this is the

If you help ¢ oipuct the experiment,

gst tenth of the smallest diVisﬁon,

both on\the thermometer and on the presdure gauge. If the space between

unit of pressure "read from the gauge.

be sure to estimate a reading to the fe

the smallest diviSions on_the pressure gauge regresents 2 poun@s pPeTr square .
inech, a tenth of this division wihl then represent 0.2§pounds per square
inch. ,This tenth's rule is a good "rule-of-thumb" to follow. With prac-’
tice you will be able to make readings to the "nearest tenth" in nost cases.
. Be suspicious, however, of a ;;rson who claims to be szble to read more

.closely than this. . LAY

. -
-

As alwvays, we Wlll want to gyaph our function before we éttempt to, .
analyze it further. Sigge ‘the temperature readings are. elements in the
" domain of the funétion, and the corresponding collection of pressure '
readings constitute fhe’range, plot Centigrade temperature along the hor-
izontal scale and pressure in pounds per¥square inch along the vertical
] scale. "Select temperatuf? and pressure scales that will maké fhe graph
- as large as possible. Allowing for some inaccuracies in the data, we -
see that the points lie on or near a straight line When you draw this

BN

mediate between those ac ually taken, andj that these would t

»

' . 'line, you are assuming that we, might have selected hny tempe;ature i?ter-

en determineA“ﬁ ‘

-

corresponding pressure readings

Although the same data’is .used by everyone, the line that you draw
to represent the experimental function will most certainly not be the

same line ai that drawn Ry someone else. This 4s as it should be, for

. ; your judgment as to the "best" line will @iffer from his.
- - The graph of the relation .between temperature and pressure obtained
a .
ot will look something—like the graph shown in Figure 7. N .
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e relationshlp shown has a special name -- Gay-Lussac',s Law.’ ,;n worgs
it can‘be s‘ca‘ced as follows: For a gas held at constant volume, the

- pressure of the gas varles 1inearly With the temperatu.re

E

»

Mathematicallly, ‘we have le rned to e'chress this linear ;'elafcionsh p
in the following way: <

-

. /.
. P = m(C -c). L
"In this expression,” ¢, 4, and m are constants that we can determine
. A n -
from the graph. : ) . . !
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of .our linear function has been set by/‘éhe conditions of

The domain we have used is the set of all temperatures ¢
1 4

When'we predict a pressure correspondina

If ve attempt to predict a pressure that cor-~

_ is one, of .ip erpolation o

— responds to a tempera‘ture outside this interval at either end, the pro- \. A

- cess is one of extrapolation. ° \ v o ' N ,
] ’ . : .

L

This hexper" nt provides us with a gdlden opportunity for extrapol-

,Notice that within the domain 0 < C < 100, the pressure diminishes

ation.
Do you suppos‘e it would be pos-

. Tlinearly with a drop in the temperature.
i sible to xeduce ‘the* temperatu.re by such a large vaIu’e that the pressdre

would actuslly dro to zero? Although _you have no way of knowing,the
proper resp6nse to this guestion, we can find thé temperature, at wh:l.ch

the pressure woul’dd fall to zero IF the gas continues ’so behave in the
The) "IF" here is a

<

same manner in the.temperature' region belov’ O C:

very big one. .
A%

G
v To extrapolate graphlcally to lower temperatures (that 1s, to exten
the domain of the functlon), meke a new plot on a ‘fresh shget of Loordinate’
~

. paper The teumerature scale must span an 1nterval of about k! O G, from
:’I’he vertical

) .Aa negat:we 300 c on the left to ‘a positive 100 c on the right

z
. sgale of pressure must now extend upwards from a. ‘pressure of O to the maxlmum

pressure previously obrtalned Graph your original ordered ‘pair.; on t’his new

Now draw a line "throug’h" these pou.nts downwardfénd to\the left until
The ‘temperature valye of this p01nt of

sheet.

- it intersects the horlzontal ~;ax:l.s
o). w!fl':ll repyesent the temperature of the gas that

This new graph should

intersectlon (pressure =
would, presumably, reduce’ the gas préssure to zero.

-4
% . 1look something ‘likethe one” stown in|Figure 8. |
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-300°¢ ' -260°¢ ~100°¢ 0% 100°¢C *

N ) * Figure 8 >

v 3
Gl -

Tne "magic" temperature as determined with extreme care by research ' .
chemists in-the past is very near -273 C. If you obta:i.ned anything between .
~260 and -285 C your work has been excellent' Surprisingly,. some real gases o
almost behave in the manner suggested. It is almost, but not quite, legi‘c:i- -

_mate to ex’cend the temperatu.re domain this far in these few cases. Most
gases liquify first, and if not , Other effects come in‘co p;ay which make
low-tempei'ature gases behave somewhat differently than high-temperatu.re ones.,

. . - . \ . :

Y ¢ > . N R
. - .
) Exercise 3 -
ESs L A

k-3 - . ‘:

1. The tabJ{e below shows the speed of sound in air at various Fahrenheit
temperatures. The absolute zero of temperatupe on the Fahrenheit scale is

| ~ug0® SR .
! ) : . »
" | gemp. (°F) -30 | -20 0 20 50 [ 80 | 110
. - -| Speed (ft /see) 1030 | 1040 | 1060 | 1080 | 1110 1@49' 1270 *
%
%i(a)e Drav a graph showing the.relation between F and speed of sound (s). -
Make _tempergture values the domain and %et the origin, represent. .
& o lOOO on the vextical axis. . ‘ }
(b) Wri‘cer the equation for the relation between F and S. o e - g
' ? ' - . .\x ! I
. - £ . . ] R .
\ - r T
* - ' - 4 1 ﬁ - A .~
- N \ ’%é" 85 L3 8




* . . 9 #

-
2. The relation between-Centigrade and Fahrenhelt temperatures is expésssed
d in the equation C = 2 (F - 32). ; ; -
) Write/the equation obtained by reversing the variables. ) . i
4 3. In an expemment on Gav -Lussac s Law, a student found that the pressure
. of»the gas vas, 7.5, lb/sq in at 20°C and 9.5 1b/sq in at 100°C. _ S
& ) Graph the relation. '

(b) Write the equaticn representing the relatlon between the pressure
(P) and the Centigrade temperature ( ).
. v (e) At what temperature would the pressure of the gas be 8 % 1b/sq in?
(d) What would be the pressure of the gas at 50 c?

‘ . ' / ’ i /

, 3.8 Graphical Translation of Goordinate Axes

” 8 ‘

A non-vertical line drawn upon coordinate paper always represents some

sort of linear function. The constants ¢, d and m in the point-slope rep-
resentation locate the line. A second line will be described by different
values of these constants. “In other words, the fact that bothL lines reglly

N < *
are just that -- lines --,is an important consideration. Do you suppose

v that the two lines, really are the "same" somehow? Perhap we Have nothing
c more than two mathematical deecrlpuicrns of.a single line. ’ -
For many purposes 1t is very useful to think of alllines that can be .

drawn as different positions of a single l1ne. It is'qnly the mathematical

descrlptlon of the line that.differs. One p01nt of view v,zould be o think

of"’ the line as]-aving moved from ope pesition to another with respect “to the
>1nat axes. On the other hand, we may also think of the cOordlnate axes
as” havi shifted with respect to the line. Elther v1ewpom good as R

the other, but in the discuss:.on that follows wev will aIways consider motion

of the coofdinate axes with respect to the graph of the function. R

b a We have, then, 3 method for ¢hanging the descrlp‘ca.on of a l1ne s:.mplyf

, ;, ‘by moving the coordlnate axes with" respect tg fthat llne. ' i L.,
N EEC A ’ 1 o "' .
*. An & X 11 - inch sheet of ,frosted acefate pProvides an, excellent sufface

upon w‘a set of movable coordinate"‘axes may. be drawn. , These:' mqvn.ng
axes must carry the same.scale as those on your coordlnate paper Wherr this .

- plastic sheet igyplaced upon a regular sheet ‘of coordlnate paper that  carrdes

L‘

. R grbph of some sqrt the graph 'beneath is easily. seen through the frosted

i acetate. In this way the g‘;'aph ‘Gan “be readily 3

lated to, the ' "new" coordlnate

- . ¥ %
. . I’ ¢ '
> L ¢ - 13
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f ‘ N i B > 5, A ! J'
axes carried by the overlying plastic'MSe new axes may be posi‘cioned .
in any manner whgtsoever. B . ¢
. 4 . é— . - -
* The sheet of frosted acetate, the coordinate paper and, greph, and the
stack formed by the two are illistrated in Figure 9(a), (b) ap(f (cy
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Figure %(c). shows the coordinate axes X and Y. displaced upward wi‘ch res] pect 5 “
‘co the orlgln of the graph beneath. The frosted side of the ac'etate is up, ' -
¢ N . e
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coordlnate naper underneath ~

»

It must be realized that if we are to allow any kiné of motion of the
coordinate axes X and Y whatdoever, thls motion migh-'t be rather complicated.\.
Matters can be simplified, however, by recogn1z1ng that- any,complex motion
‘may be broken into two parts. One of these parts is simple stralght line
motion, and the second is rotation. In other words, the axes X and Y may be
displaced along a line, rotated without straight- -line motion, or a combination
of these.two\types of motion may be used. Only straight-line, or linear,
motion.sf these aies will be considered. This motion will keep horizontal

lines horizpontal and vertical lines vertical.

There is one other important point to be made. 4ny motion of translation
only can be consideréd as made up of two translations, one in the horizontal |

direction and one in the vertical.

* Suppose we start with the X apd Y axes on the plastic overlay c01nc1dent

with the x and y exes on the sheet underneath. The use of the capltal letters
X and Y on the OVerlay will help us to remember'that these represent the axes
that are moved, or "translated”. When'these axes are translated the entire ’
plastic sheet moves horizontally and vertically and is bot rotated. The X
axis must glzgzg remain paralIEl to the orlglnal‘x axls, and the Y axis must
alvays remain parallel to the‘ariginal y axis. It is a simple matter to
guarantee that no rotation has been involwed in the motion of the axes by

mainteining the X and Y axes at,alT timés parallel to the ruled”’ llnes of the

d e
.

s~ Figure () suggests one of the many_ ways in which the coordlnate axes

may be shlfteE The axes have been.moved upward untll the new Qriggn is

cornc1dent with the,original ywlntercept. Using thls-new position of the *

axes, the equation of the line.would nov be of the fornhY = mX, where before
it vas of the form y - @ = m(x - ¢). Notice that the slqpe of a line never
ehagges as the axes are translated. . This %s,an extremely important feature
o#*a linear translation -- a featyre that is not to be founé when coordinate

axes are rotated. .

.

The central idea underlyfhg the concept of the translation of axes }s

simply this: %t makes 1o real difference where the coordinate axes are placed Y

M

on a.sheet of coordlnate paper, for they may always”be moved <0 a new position
through horizontal,motion, verticgl motfun, or both. The placement of axes
“is a purely arbitréry matter, and in nractice, they are placed in one position

» ? . .
or another strictly as a matter of convenience. A given thsical situation

usually suggests a«,né%uralu location for these axes. ‘'
' -
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) “ We now wish to translate the axes for é‘particular physical situation,
namely, that of the Gay-Lussac's Laxrexperiment. Refer to your own graph-of
the terqperatu.re - pressure relationg similar to that shown in Flgu.re 8. It
is impd!tant to realize that Figure 8 shows the horizontal axis, but not the
vertical axis. The vertical line &t jthe left side ’Le merely a pressure scale

.

and not an axis.

If we now wish to translate the;e goordinate axes, one 'coéld. vell -ask:
Where do we move them and why? There seem to be two logical possibilities.

R We m;ght move the origin either to the point wﬁere the graph intersects the
(0la) y-axis, or to the point where it intersects the (old) x-exis. The first
intercept corresponds to the 0 C point, while the second corresponds to the

. zero pressure point. The temperatu.re can fall below 0°C but the pressure

cannot fall below zery. This fact seems to make the horizontal axis intercept

(zero pressu.re) the more interesting of the two.

- The des;Lred translation of the ax&, then, is indicated.in Figure 10.
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pOSIONE .Temperature .
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. ) i / ' Lo- .
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Figure 10 = .

.
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* In the figure, tne two /heavy dcts represent the initial and final i)osition of /
the axes. x and y label\thé initial positions cl;f the axes, and‘'X and Y label

o the translated axes. The dashed lines indicate };“He extent of your original

. . graph. B . , .
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It is important t0 realize that both coordinate axes have been shifted
here. One might be tempted to say that only the vertical axis has moved .
since the horizontal axis remains the same. This is not true because the
movement of the hqrizontal axis carries with it the zero point which mustgﬁ
always lie at the origin. Scales are not shown along the new axes €h Figure
) 10, but (0,0) must lie at ;he intersection of the translated’ axes X and Y.
In short there is no such thing as translating one axis without translating
the ~other. . )

’ For the translated axes in this example, we have established a new zero
for‘a‘temperature scale located at the new origin. The zerd of pressure has
remained unchanged. .The new zero of temperature is the tenperature at which
the pressure in a gas would also be zero. This new temperature scale is so -
important in both chemistry and physics that .it is given a new.name, the
Absolute temperature scalet Temperatures in this scale are indicated by
writing OK.‘ As indicated previously, this point on the Centigrade scale i}
falls approximately at -273°Cf Since the size of an Absolute degree is the
s&n@ ‘a5 the size of a Centigrade degree, we'find a simple relation between

°c ana %k, namely °c +273 = °k. ‘
5 : f M A ’ . .
To summarize, we have found that the trenslation of coordinate axes may

-

be accomplished easily using a transp%rent overlay of frosted acetate. The
new ageé-may be placed\anyxpere 80 lopgfas.the translated axes remain paral-
lel to their original positidn‘at all times. With the axes in any new
position, the graph way easi}y ‘e interpreted with respect to the shifted
axes to arrive at a new description of the graph. Thds is done visually ]
without fuss or bother. We see that in-this way of'doing things, it is only '
the mathematical description of _the graph that changes as the axes are trans-

lated, not the graph iﬂse&f. . . . - g

- - »

ﬂ‘ .Exercage & . .

~ Y

Find the load- position graph that you drew ij the Loaded Beam experiment.

Using g sheet of frosted acetate that carries coordinate axes X and Y,
translate the origin on the dverlay to the y- intercept on your graph.
What is the equation of. your “'best" straight line with respect to the

shifted axes? oot . . f
’ v

How could you perform the anded Beam experiment to obtain the equation

found in Exercise 1 directly?
)

- e

-~ Y
hY




Qraw

”~

the line in the first quadrant that contains the point (2,3) and

* vhose slope is %. ¥ Use yfﬁr plastic overlay to obtain the new equations ,
of this line when the origin is shifted s *
) (&) to the y-intercept; . ' - .
(b) to the left 3 units; ' -
. " (e) to the right 4 units and up 3 units.

4. Draw the line in the first quadrant “hich contalns the p01nts (1,7) and
-~ (7,5).

Use your plastlc overlay to obtain the nev equations of this

line when the origin is shifted ' . .
(&) to the x-intercept; »
¢ (b) to the y-intercept;

(e)

to the point (%,6).

3.9 Algebraic Translation of Coordinate Axes *

Althouegh the bathema@ical description 6f,a g}aph may be obtained easily
by the graphical procédure described in the preceding seétion, it is also
desirab}e‘to be gble to describe a graph a?ter the axes have‘been trans}ated
without Msorting.so the analysis of the graph itself.: “ \

i . .
We will discuss linear-ﬁpnctions only, and for this puppose we will use
! (

the so-called point-slope representation‘of a lihe.
‘. ) .

First it will be shown that the pPoint-slope representation of'a line
can be considered as one in which the coordinate axes have alréady been trans-
lated in both the hoxizontal and vertical directions.

'

. J - .
Suppose we start with a line that runs through the origin as in Figure 1l.

& 1y

Aruitoxt provided by Eic:
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Let us now translate the coordinate axes x and y both to the left and downward.

These shifted axes are denoted, as before, X and Y. This translation is shown

1
in Figure 12, . ¢ . R
\ . N . . .
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’ . & Since the point (c,d) is a pagidular point on the line, we can now
*, describe the line in the familiar point-slope form as ' . .
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'But if we now write ‘this same expression in slightly different forn/

-

-~ -

Y+(d) m[X+(<=)]

‘we may, drav a remarkable.cpnclusion. Sinde the qua‘ntities in I;a’rentheses
are the horizontal and vertical translation distances, this equation tells
us what the point-slope representation of a line is by setting the Y-coor-
dinate plus‘'the vertical transla‘cion equal to the slope of the line times
the quantity, X-cooi"dinate plus the horizontal trans];ation. The.transla-
tions involved dre those that carry the origin from a point on the line

to a point off the line.

S

Equation (1) is perfectly general, for %e could just as_well have
moved the origin from any po;nt' to any other point. . Conside'r'a_ second

translation of the axes as inflicated in Figure 1k. . .

t

Figure k-

e
T This time le‘t“, the lioi'i'z:énwéai translation be designated h and the vertical
translation be the’ symbol k.
are positive.
this second horizon‘cal translation to thé first one, and add this second
'vertical ‘cranslation ‘to the first vertical translation.

. -~

) Y+(d)+k m[x+(c)+~h]

&
&

3

*BSth of these quantities as shown in Figure 14
Since this is a second transla‘cion, abl we have to do is add

(1)

Vs

~

Doing this gives us
{2) -

1

otige thathquation (2) is .of .exactly ;the same form' as Equation(_})
both, -caseS' ve have.' . <o A )/’
R g S (,verxioal ‘translation) = m(X + (horizontal translation)].

- -
¢
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tions starting with the origin of the coordinate axes on the line. , ;

Equation (2) can now be used to represent the new quathemafical, descrip-
tion of a'line that reS‘L\ll‘tS from a tranelation of axes from any previous
poin¥ whatsoever. If,the Qriginal description of the line wes,
Y-a=mnX-:c) Equation (2) gives the new expression using “the two' old
constants ¢ and 4 and, in addition, inserting two new ones h and k %o rep-

resent the hor-izcntal and vertical translation distances respectively.
. . R <4
+ ,This final Equstion (2) represents analytically the same new descrip-

tion of a line that was previously obtained using graphic(al analysis with

e

«the frosted acetate sﬁeet., . . ' -

— . , Exercise 5
- =t
1. “When we extended the temperatv.re domain for the Gay-Lussac s Law -
experiment, we found:%hat the graph intercepted the temperatu.re. axig

*  near the (-273,0 ) point. Algebraicaliy translate the origin of your

are the new units of temperature, pressure, and the slope of the line?
4 o
2. Draw the line in the first quadrant that contains the point (2 3) and

1
vhose slope is 3. Write the equation ©Of this'line in point slope

" form. Obtain t}ele etﬁhtion of this, line algebx:aically wheﬁ the cxrigirr '
. k has “been” translated . s . ‘
) _a {2)-%td the y-intercept; © . o P SR
0 (b) to the left 3 units; ’ . ' .
' (e) 'to the rlght 4 units and up 3 units. , %\ . s’

Compare your results to those obtained graphically in Exercise 3, of/.

* i
- .

the previoud section. * '_ -
\

3: Draw the lina in the, {irst quadrant which contains the points (1,7)
and (’{,5) Wri:te the equation of this line "in point- slope form. s

? -

Obtain the equation of* this line algebraicelly when the origin has_

been translated . ,

(a} to the x-intercept’; 1 . . .
{b) “to the y-intercept ;. , ’
(e) to the point (&, 63 ' .. s

Compare yoyr results to those obtained graphica‘y in Exercise T

of ‘the previous section, : -

-~ Lt ¢

- k=% ' - - ' : ' .
| . . o

In each case the translations are the ‘total vertical and hQrizontal~ transla-

graph to this ‘intercept. Write the new equation of the line. What  ~ 7

~
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3.10° Sumarg” - . ‘ : . o

In thik chiapter we considered the ‘problen of de‘cennir;ing the betiavior,
of an object bouncing on & tranpoline. An experimental trampoline ‘was set .
up, consisting of & marble bouncing on a-balloon stre‘cched,over a pie p}a‘ce.
The heights of the sucqessive 'bounqes were 8 function ‘ot the 'bounce number
and, thus, were an example of a.function defined only on the 1ntegers

. The data whiche;esulted from this experiment did ,not\ exhi'bit & li~near

N

. relationship, but we found that, the graph of the height of a 'bounce plot‘ced

Aruitoxt provided by Eic:

ageinst the height of the previous bounceé’was linear. L
. . \ Y SN oo’ . N N

- \ ) . 4 4 -
Next ,‘ e considered the experimental relation between the temperature

-of § gas andl its pressure, This data also gave,z_; linear relation. We con-

sideféd the 'pos ibility of extf'amlatigg this linear relation to temperatures
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.. Each of these pairs of nu.mbers is .called an orderef gai ,Two numbers » ;
, are needed to locate the_particular seat, and ,the order of reporting the two - K
' o - : L ‘ i .
. * 97 . . rog ) -
'y I N * z
o .. ‘ 105 : .

RIC . 4 s
. ¥

.- . . .o ’ Appendix A

e GRAPHING EXPERIMENTAL TaTA

“ »

.A.l The Location of Points ir:l_;a Plane . -

+ There are a grea‘é many 1nstanees wt;ere a certain place can be located . l
by the use of ‘pa:irs of numbers. Road maps frequently are®divided intp Jsmall T
blocks by a ‘series of horizontal and vertical lines (Figure 1). The vertical
lines are then designatea by -the numbers_and the horizontgl'lines by letters.
A motorist can :cnen a:ocate_ a certain city by referring to a&able which will

. tell him-that the city is
b . / gapproxima‘cely) at the inter-
. A i Y +f section of - "Line D“ and "line
\' Z: . . 5", 'I'heatre tickets have the

4 N oW nu.mber and seat number

printed‘ on them so a pergon —

a m ) can find his seat.
2 . \ . " A convenient wg{ of refer-
’ \ . ring to a particular seat in a AR
tia 8 c D . E N

3
. classroom where the chairs are

/4 ' TFewel * \5’3 located in rows is based on .

] - - : assigning nq.mbers to each chair. .
7 ) _ A familiar pattern for seating e

<

in a, classroom involves®five rdws
of six chairs each {(Figure 2).
We ean r’efer to a paz:‘t;icular

(]

N

«
.

00 E OO0,

<

seat by naming the row and then

the éhair number in the row.

mDDr:_l[:lH'Ef

1. <In ou.r diagram wq show five °,° .

w

-

Tows and seats one through six ]

»
Aoy

0.8 0000

t
[

OO0 om

' in each row. .Sgab:Ads “row 2,

yoe

seat 5" while seat B is "row 5, ' = ° -

F000® 00

»

-

-G

seat 2". If’we agree to ~rei.'er‘

;

. . to a particular seat by first,
T Figu.re 2 o - naming the row and then the .

'chair nu.mber in the row, seat & can be indicated as seat (2,5) while seat B

. - .

- would e seat (5,2). . i . .

°
-
»
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: 5
numbers is. extremely important. What ordered pairs Kould you associate with
.points C, D, E and F in Figure 27 - -

In newspapers “and magazines, as well as in fé}?tbbgks , & graph of the

type shown in Figure 3 is often used to present data.

In collecting the data,
for this graph you would have
- to use pairs of numbers, one
- number for the row, and one
for the. number of protractors

needed. If we agree to state

N these two numbers in a cer-

tein’order, such as (row num--
ber, number of protractors)

we can represent our data as

a set of ordered pairs; ((1,4),
(2,3), (3,6), {&,2), (5,5)}.

This notation using braces
(-{) ) is formal mathematics
notation for a set of ordered

pairs. "You probably would not

.
’

Number of Protractors
Needed in Class

6L Y
) f N .

§ sf —
©
g . _

- £ ’
£7 )
A 3tk . 4~
~ QO "
0= .
L 2F *
'g v

0 -
e 5.
. e 7 Row Number )
,"'J:ﬁ" -
Figure 3

record the information-in this mannex:, however. Most likely irou would s:l.)mply
_a table like the ope shown below.

s 7

T

Row Numbers V1 2 3 _Lt 5
Number of B
-, Protractors 4 316 2. 1.7

1)

% d
X

In either case you have collected data and recorded it s ordered pairs.

A bar’ graph, such as that shown in Figure 3 is very useful for presen-

ting numerical information
in a clear 'and conrp}act way,
but the "bars" fn this
éraph are not really nec-
‘essary. We could just as
well use dots on a sheet )
"of graph paper to repre-,
" sent outr ordered pairs.

(Pigure 4.)

O

RIC, ., - '

Aruitoxt provided by Eic:

B 6 —9-
oy !
A 3 = ——
&~ O
o 2 -9
g 1 ,
8 0 .
= 0 1 2 3 4 5 .
- Rov.lNumber
Figure U )
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Scienﬁists,often make a graph of the observations obtajined through exvner-
1mentationu In the Pirst chapter you were asked to complete the following

table (Efercise ) fbr a seésaw experiment. All of the data is given in this
table. c | :

S { ) . L e
Mass 0 | 12 7 2 8 A2k 16 6 | 3
» Ipistance ¢ & | 24 | 6. 2 | 3 | '8 | 16
Another way of listing this data’is in set notation: (f12,4), (2,24), . '

. (8,6), (24,2), (16,3), (6;8), (3,16))., This set of ordered pairs can be
graphed in the same way as the previous example We again use a piece\ff
graph phper and begin with two perpendicular lines cdlled axes. We.can

. label the horlzontdl axis "mass in grams",and the vertical axis "dlstanqe

in em". . ' : s
N : . . d
o v hd .
¥ . N -
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Figure 6

As we have seen, a éet of ordered pairs of numbers Zéh be represented by~
a graph.
pairs.
pair (2 4) or the pair (4,2). /As you have probably noted, we needed to make:
The individual
numbers of the ordered pair are called the coordinates of the ppint The
member of the drdered pair which indicates how far te ‘the right of the zero
point the point is located is called the horizontal coordinate of the point.
The* member of the ordered pair which indicates how far above the horizontal
axis-the point Is located is called the vertical coordinate of the point.

¢

Each point on the graph represents one member of the set of ordered
For example, point A in Figure 5 could be represented by either the’

same decision as to the meaning of each member of the pair.

-

-

It is common practice in preparing graphs, to arrange ordered pairs 8o ,

that the first member of the pair represents the horizontal coordinate and

the second member represents the vertical coordinate
point -A-in Figure 6 wiI; have as its coordinates the orjered pair (2,4)
rather than (4,2). Point B ) described by the orderedrpair (1,7).
yrite the coordinates of’ points C,,D and E?' .

7

Using this convention,

P

Can you l

°



. . o\
' . ’ i ..

Exercise 1
st

’

Write the ordered pairs\of numbers which are associated with the points

’

i

Make a set of at least five orﬁered pairs tal sa.tisfy the following(“

-

A throlgh F in the figure below. ‘ -
- ’ 104 ° 3 ~ : i
o 9- \//
‘e 8"‘ : @ E \ *
4 . .ot . -
s 0 = - o
' 64 @ A K e D v
¢ , 5- = N
L h-"-. ) -
. 3" . '.‘
N 24 . B . o . F . , 4“( %‘\ ‘
. TS - e - ' . R
i 0123 45678910112 o :
~ - r - \\1' .
kg Grap’h.-the following sets of ordered ﬁirs n the same sheet of graph
. j . - P ) -
_ paper. : . o ‘
(a) {(0)9); (l;l)‘; (2)2); (3)3‘); ()’";)’"); (5)5)).“ ' ' ) i i ' i
() ((0,0); (1,2), (2,4), (3,6), (4,8), (5,20)} R
(e) ((0,0), (1,3), (2,6);“(3,9),’ (4,12), (5,15)) .
(@) (0,0, .(2 —), (2,1), (3,1 ), (8,2),, (5,2-)} . :
(e) ((0,0), (l l), (2 4)y (32(‘9% (4,16), (5,2’5))

!
’

. conditions. N . i Z i . .
‘(a) The or&ei‘ed bair; for which’ thée vertical coorqiﬁatq ‘is 6 times . ;, ‘e
the horizontal ‘coordinate.  * - . ' “ - oo
‘({b). The ordergd pairs for which'the vertical coordinate is 3 times_ .
. the Norizontel coordinate... - .- I~ . ' )
(¢) The ordered pairs for which the vértical cd'ordinate is 2 mo're . v
than twice the horizontal coordinate. .
(a) _'i'he ordered pairs for which the vertical coordinate is lthc;\ ) ’
’ st'luare root of the horizontal coordingte. P '
- (e) ‘The ordered pairs Yorx which the vertical coordinate is the .
4,7~ cube of the horizontal goordinate. BN :
j. . - AT R ‘
Co T . ) $

. . . >,
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Maké a-graph of the data recorded in each .of the tables below. In each

- .

case, the top row indicates,she horizontal coordinates;snd the bottom

row the vertical cgordinates, Be sure to label the axes correctly

(refer to Figure § in text).

. 1 1l
(a) Time (sec)/, 0 3 1 15 2 I
Speed (meters/sec) 0 % 2 14—12'- 8 18
. (b) ..y |Diftance of object (em) 30 {15 || 6 5 3| -2 1
Distance of image {cm) 1 2 3] 516 10, ] &5 .30
' I1-1 1] -1 .= TT ]
; i =43 = = =
.(e) . |Weight in oz ARIRS: 2|25 ~) 3133 4
Cost in cents s1s| 5w {w|is5]|15] 20
) \ # . -
S el > - , ’
__}‘W&f - - . s
- f A e
N ) . N
s
v v :
. {
w
[4 < *
. ' N L4
.o Yo% \,/.\ -
4 . \ N .
N A ) .- . ‘
. .
< . . ./
+ - - '
N / " ¢ ' s / - - Q
T * /// f' - ]
7 .
¢ v 'W f 4’. A
. : l \
! i " - LY ‘ ——
) i 102
. . - 117 .
y i

&, .
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. Appendix B
SR o SCIENTIFIC NOZATION

. B.l Bases and Exponents

Many of the Teasurements éiin the physical sciences yield numbers which >
. are ejther extremely large or. exf:remely small. For( example, the speed ::f
light is approximately 300,000,000 metets per second, and the ‘radius of the
nelium atom nucleus is approximately O. OOOOOOQOOOOBE’LL cm. ' Some method of
: _wri‘cing such numbers is needéd which .will make it relatively easy tB‘Eompare

LN

)

and work with these numbers. To introduce -puch a system.it is important
that we first develop the necessary concep‘cs and symbols . T

The pumber 625 can be represented as the product of four fivéé, that is
< ' - .

. : ‘625=5x5x5'x..5. .

' v ¢ ‘ /a'—-\_

I‘c is often copvenient to think of 625 as "four fives multiplied together",

! but this type of notation is somewhat incor;venien‘c because it is, so lengthy.
"You probably already know tha‘c 3 X 3'can be wri‘cten as 3 (three squared)
The "3" indica‘ces that we are going to multiply 3's toge‘cher, and the “o"
tha‘c we are going to multiply two of ‘chem . If we extend this notation t
a product such as 5 X5 X 5% 5 we can write it ds 5)+ The "5" means tha‘c
) e are going to multiply 5 s together, and the "L4" means that we are going
to multiply four of them. "Numbers written in thig manner are ‘called powers.,
For éxample,_iﬂis the fourth power of five. In a gi 1ar manner 93, the -
vcube of 9, means 9 X 9~>< 9, and 105, the fi th W of 10, means
leleleJ{)xlO .

¢ .. ) . In an expression like 5h, ‘the number which is t‘o be multiplied (in this
y case, "5") is called the base; . tbﬁ 4" which indica‘ces how many 5's ve are
gd{ng to multiﬁly is called én exponen‘c In:93 the “base is "9" and the
' exponent is "3.:'. How can you write the'expression 2 X 2 X 2 X 2 X 2 nsing
ﬁg&ponent}s? What is 'ghe base? What is the exponent? How would you read

such a number? - . : ‘ .
. .

. The number 288 can bg/written as 2Xx 2x 2% 2x 2% 3x 3. Using the

N . L
assoclative prope:jy of' multiplication, -

288 = (2x2x2x.2x2)x (3 x 3)

° ’. + Or-n expgnent form R N \ . )
’ ts, * 288 = 25 X 32
’ This expression would be read as "‘c:wo to the fifth power times .three squared".®
. R

Saan
~—~

S S R R i .
'EMC ’ > . . *
& ‘ - . v
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. Exercise 1 - . :

T v For each of tpe following, indicate "the base and the exponent.l

- Z)(a) e , (@) %° .
(b) 10° . {e) x2 ) s B
() 5o . ()

2. Using exponents, write each of the following ig;priefér form.

. ~ (&) 3x3x3x3 . ' : ‘ .
‘ () 10 x 10 x 10 ° . ‘ .
- (e 3x3x3x5%x5 . 3
Vs (@) 5.x3%x2xXx2X3X%X5 .
(e) *1.25 x'10 x 10 X 10 . -

1 N \_]
3. What is the value of each of the following?
. y 6

(a) 3 (&) 10° - :
<N L 2 ' (g) 3% +23 o
] {e) 9i , ‘ & 33422 - L
S (@5 o
. : ‘
In problems 4 - 7, tell which statements are true and which are false.
Exdiple: . ) . - ,
- p * / ‘ -
2 +37:=5 . . . -t
,123*:.33=(2_>1<2><'2)+(3>5:33<3) : C i
, 4 . = 8 +27 . e = > . 7

. . '\ N .
53 =5x5x5 .

- z , T =125 . ; X )
35 i8 not equal to 125, hence the equation is falde. e
- 23 X ‘33 = Zi - [ ’ “ . °

i L, :
s 23 %23 =% ‘ @ . - N
6 ) ' '
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B.’2 Powers of Ten . . . - N

. «

Our decimal system of writing numerals is based on the number ten.
Sbarting at the units place, each plate {0 the left has.a value ten times

as large as the place to the right.

10x1.0X1.0x1.0X1.0 10X10X10X10 10x10x10 lelO 10 .1

0
: E

Hundred thousands Ten thousands Thousands Hundreds Tens Unit‘sI

These numbers can be written using éxponent&s':

oo 100,000 = 10 X 10 X 10 X 10 X 10 = 10°
' 10,000 = 10x10x10x10 = 10°
1,000 = *10X10%x10 =107

200°= . 10 x 10 - 1oi

10 = T 10 = 10

In the above table each succeeding number is —1'6 of the previous number, and
thus each exponent i8 ¢one less than the previous one. In order to complete
the table the next number should be 1 and the next exponential form should

ve 10°. :

This pattern repeats itself for powers other than powers of ten.

— i —_—
Powers of two Powers of three bowers of four
6=2x2x2x%x2-= 2h Bl =3X3X3X3= 3h 256 = b x b xbxb= hh
8= 2x2x2 =23|27= 3x3x3 =33|6b= bxbxk =
b= .2xz =2l o= 3x3 =3%|16=-  wxi , =¥®
2=. . 2 = 3= 3 =3t »= =i
Esch number is !2'- . Each number is %: ~ Each number is %‘ '
of the previous 1 of the previous . of the previous

number. number. " . number. .

* -
-

In each case the next number will be 1, and the next exponential form:
will be the common base with a zero exponent.
0 . 0 . Ry

27 =1 ;3=l =1

- [N - - .
K,’Rrom this we can make the following definition:

For every number_ B not equal to zero ‘i
N -BO -1 . ;

-

The expression 00 Lsmallgg, ag indeterminant form and has no meaning.
Rz !

v "
& - 4 .

105 . ) -

4
s
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B.3 Negative Exponents

We dan also uge exponents to express numbers whigh are lgss than one.

In particular, we can express decimal

fractions in terms é} Power of ten.

v ”, ) l = l = L ’ -;
10 " 1ol v
A1 1 1l 7
i 100 102
) 1 1
* R 00l = s = *
' © 71000 T3
' etec. 3 -

’

» . :
In order to simplify these expressions we are forced to make another
definition. 1In mathematics we usually write a fraction which has some power

of a number in the denominator in terms of a "negative exponent.

N / .o N
J% = p™® (B not equal to zero) ) .
IB ' a .

( ! .

In this way L becomes 10'3;

103

1
10"

is 10‘1‘, etc.

©

Zero with a®negative
i

exponent implies;division By zero which is not defined.

”

Ina Ister course, when you study the varioué,operations which can.be
performed with exponents, you will learn how these definitions have come

about.

. -

. B.4 Scientific Notation

L.

+

A Y

<

r

. _Scientists hédve used the
sections to develop & method of

e of notation intreduced in the previous
riting extremely large or expremely small

gumbers.,

This method is called scientific notation, and allows us to expreéB

numbers as the product of a number between one and ten and some power of ten.

If you think back to the relation between multiplying or dividing by ten and .
., use your knowledge of the decimal system, you will be dble to see how the

Product of some integral power of\ ten with a number between one and ten can:

be used to represent any mumber.

v

P

..
eI

£ Y

X ‘1 L v 1.23%.10 =12.3 =1.23 x.10%: - ';3‘_‘{47;{5’ TR
g P N - - " U .
' 123x10x10=, 123=123x102 I K
= -1.23 x 103 .

1.23 x 10 X 10 X 10

1230°

: 106 .
Q . * 1“3
ERIC \ X Vo
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YV . ® “
_ . Now try the following,problems:’ '
. B 1 -1
) . 1.23 X = 0 .123 ;.1.23 X 10 .
JRRI o 123xl(l)o=.’0123 =1.23 x 1072 ’ ’
> 1 . -3 ]
, o L83 X g5 = 00123 = 1.23 X 1077 - ‘
V ) 'I:hese examples and i)roblems lead us to the following generlal rule. ‘
. . . Let a number be given in decimal form, and suppose we wish to
N multiply this number by some power of 10. To do this we merely need -
- to move the decimal point the same number of places as the exponent
of lO,‘ to the right for positive expopen‘cs, and to the left for neg-
‘\, ative-exponents. . N,
; © We can use'wﬁat e have jL\lS‘t learned to simplify measurements such as
-those mentioned in Section B.1l . For. example, the speed of light is approx-
imately 300,000,000 meters per second. This .can be written as ’
- ) " 3 X'100,000,000 meters per second
or, using exponents, o

“

3 X lO8 meters per sec,ond .

»

N A
The radius of the nucleus of the helium atom is approximately

0.0000000000002% cm

- ® -
which can be written as ¢
7. 2.4 X .0000000000CC1 cm
. .
which equals .
13 ¥

. 2.k x 107 . .

This ty'pe of opera‘clon is called expressmg measureneh‘cs in scientific .
notation! 'Here are some exafnples. Notlce that in eacl; case the measurements
are expressed as some number'between one and ten multiplied by some power of
ten. Notice also that when 3'fou write a number in scientific notation, ;che
exponent of ten will be positive 1f1!the number, is larger than ten, or negative
“if the number is smaller than one. The s,‘i‘z.e of the exponent is the number of
places the decimal point must be moved to bring it directly after the first

r 3
nonzero digit. - - .ot ; -—

N /

© 2540 mm = 2.540 X 1000 mm = 2.5%0 'x 163"mm

93,000,000 miles = 9.3 X 10,000,000 miles = 9.3 X lO7 miles
. 0.0683 meters = 6.83 X 0.0l meters = 6.83 X 10:2 meters, . '
0%000082}‘5 inches = 8.215 X 0.00001 inches = 8.215 x 16-5. inches

// N t

~107
o . - . 1 Ji (). o N
ERIC J . -
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RS Example 1: Write 978.23 in scientific notation.

¢
.

, > To change the number 978 23 to 9.7823:(a number between one and, ten)
;the decimal place mst bé moved two plates to the left. To festore

‘9. 7823 to the original form yould require moving the decimal point two
places to the’ right We have found that this can be done by multiplying

T R 102, , Therefore ye can.make’ the statement .
. < .9]8.23 = 9.7823 X 1og L . ’
+Example 2: ™ Write 0.0034 in scientific notation. ) : ? /

a

" ¢ . . N
. To change 0,0034 to 3.& (a,number between one and ten) the decimal

point must be moved threg places to the right. "o change 3.k to its
original form would regquire mov1ng the decimal point three Dlac!s to
the left. We have found that that can be done by multiplying by 10 3.

Therefore . . ' .

- 0.0034 = 3.4 x'T073

e

o

y - . _ .~ Exercise 2
B ‘ . ’

i I Perform the indicated multiplications mentally dnd write ycur ansvers.

* - Example: 26.3 X .lO .263
(a) 259.4 x 107 b YN
i () 3.258 x 205 = . (g) .0031 x 10° =
(e) .023 x 105 = ' (h) 29.35 x 2072 =
(@) 35.68 x 107" = (1) 3.05x107° = j
(e) 358.2 x 1o'3~‘ = (3) 3.05 x 106 =
P ‘ , . : .
2. Express these measurements in scient{fic notation. \

-(a) There are more than 4,500,000 ﬁed corpuscles per cubic mm of bldod.
(b) and (c) If a given sample of material contains 2,000,000 atoms of
38 in 1964, this same sample will contain 250,000 atoms of U238
- - in the year 13,500,001,964. {(Write the numbers, of atoms in scien-
tific notation.)
(a) The normal concentration of glucose in the human cell is .0007 .

(e) The distance to the sun ip l5O 000,000 km . ) ' -
v & ; . ’

t=
.
e #
-

EI{[CWV | . i
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o f . " Appendix C ‘
* METRIC = SYSTEM ‘ g

s

3

C.1l Metric Prefixes : . N : |

The defini’tion of measurehent states that it is a process in‘ whigh the
obJec‘c or event to be measured is compared to ‘che standard unit for the object
or event. The process of measurement of physical quantities begins with the ‘
establishment of ‘three primary standards, one for length, ore for mass, and
.one for time. 'I‘wo different observers will obtain the same result only if
they have agreed ‘co use the standards. Since length, mass, bnd time cannot

be defined, the measurement process for such quantities must be es‘cablished

by agreement. Certain fundamental units have been established by custom,
by national legislatior;, and by international agreement..

~

The most ﬁidely used system throughout the world is the met.ric system.
Except for the’English- speaking countries, this is the system which is in
general use in all major coun‘cries. It is also the syst'em ueed for scien-
tific work in all countries. s ' ' ’

’.Vr'xe metric system consists of & set of basic units originally established
by the F‘x.‘ench Academy of Science af‘cer the French Revolujcion.ﬁ This 8ystem
is a decimsl systenm and certain prefixes are used with the basic uni‘cs to

give new units. The prefixes are basea on powers of ten as shown in the

table below. . Yooan . o . .
Prefix . Symbol L ‘ Value ‘ '
micro ) = » ) = one millionth = p-00000L = 1070 . )
‘milli = (m) = one thousandth = 0.001 - .10-3 AT :
centi = (¢ ) =%one hundredth ' = 0.0l NG |
deeci = (a) : one tenth = .1 ‘= l?)_l ) ) )
BASIC UNIT = - one S SR T, L S
deka = (ak) = ten =30 = 10 i '
hecto T e (n) & one hundred . =100 d .= 10°
kilo J= ( k ‘) *= one thousand = 1000 = 10
L. | meas = (M) = one million "Ta 1,000,000 ~_= lO6 )
. ° - . -
- ‘ T N
. Co10 s et ‘.

MC u' ' , s V,‘ - “

PAruntext provided by enic [l1S
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\'lhe basic units used with these prefixes are °, . . s Y-

T b A | e ‘ ! - -
4 - s B g .

| N ‘> © 9 .meter - lengtho

2
»

T
T

¢ ‘\ . grem - mas§ . -
: v ‘ second - time fe Vv
~ : e & : )
" Some exsmples of the various combinations are shown below,
. " ‘ . . . . 8 - *
LT . 1 kilometer (km) equals 100 meters. N9 AR

. : . 1 NS &
R . 1 milligram (mg) equale Too5 &rem- - _

1 centimeter (cm) equals, Té—o- meter. b3

L 2N .
1 hectogram (hg) equals 100 grams.I P

. Not all of the possible comblnations are actually used.' A sc1entist
. would have little use é‘or a unl‘c such as a hectosécond. The table below lists
B . [} . .
same of the coanioinations which: are generally used. .

~ T

) « Length Mass Timege,

2% . . . mierdn microgrem microsecond :
. . t y millimeter milligram millisecond
‘ cen{:imeter . : .
. | meter® .| gram. 4  second . R . o
! kilometeir’ kilegram ’ : " . .
e -

.- ' Notice the first en'fry in this téble. Insteed of micrometer, we write

! . ! . P .
miecron. The special name is used because this unit is in very commun use in

certain fields and a shorter term is val‘a‘ble. The word micrometer is also
-, used for another purpose. (Do you know what? If not, look it up )
The following exemples will introduce you to the process of conversion.

; . . These prefixes are also wsed with other unidts, such as kilovolts and
LIS " microfarads in electricity. Have you ever heard ‘of a megaton? In jsh.e -English_'
system of units we have varfous uni¢s of vplume, cubic feet, quarts (both dry

and li»quid), etcs In the metric systeﬁ the unit of volume is the‘liter. The
liter is appro:d.me{'.ely equal £0.1000 cubic 9entimete;‘s$
1000.02$ -cubic centimeters). The prefixes are used with this

ctual 1it6éT -equals )

units such as milliliter, deciliter, etc. ety
,,u' L . ’ . a a% O " 33:
! ) . : * : ’ i” \“}
- _ 'Ce2. Conversion of Units - . “ s . i} Ve .
. i . ., \ :—’
,/ There ar® many times when it is necéssary or convenient to chan -

& one basic unit of measure to ano@cher of the same nature, such_as’ from centi- A
metars to meters. The process of changing fram one unit to another without
actu'ally‘geihg through the process of measuring with the new’ wiit is called

. ' .

H] . ‘ ’
. . el ome , :
. . , P R T . ‘
FRIC ~.© > I - )

. o '
. oo .
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"conversion of units". Since, by definition

lmm = -—l— m
s \ '_ M . - 1000 ' ‘ - ‘e
we can also say that ) ¢ v
v , * 1000 m =1 m .
v o - * ¢ -
In a similar way *— ) ;
1 meter = 10 decimeters = 100 centimeters ='1000 millimeters.
LR j ' . + A . .
With a little manipulation with numbers we can arrive at the following:
N . . - .
. 7 - * -
. Length Mass Volume -
* ) "10mm =1ecm 10mg =1 cg . W0m=1¢cl
4
10 em = 1 dm 10 cg =1 dg - 10 el =1dl
0dn=1m 0dg=1g | 10dl=12Liter |~
" - oo . ) -
? S . . S ~ ete.
: 1000 m =1 km 000 g 5L kg S L
. i} etc. X . ete. Ve
. . - >
[ . ~ N . v . . M
[} .;53 / © A
¢ , ‘
, / ’ 5 ’
e .cl
t ~ M . “; - '. PQ ’,
Example 1: o " .
Suppose , for example, we have a measurément of 1253 mm. To express
this measﬁrement in’ centimeters , we hote that !
/ ‘ J ~ 10m =1 cm T
- ’ 13
e ) ! .
AR ) 1 m =l—-:t}cm§ (2)
= Thé expression 1253 mm can be thought of a8 1253 millimeter units, or
> ' PRI .
. ' .- 12?3 (a imm) _(3)
\ .

'I'he conversioe\to centimeters can be made by refer‘ring/17§7 (2) and_re-
placing the (1 mm) with its equivalent ( Cm)
L4

Thus AN
1253 mm 3}233(1 cm) 125 3cm . '
‘ m, - .
o - 1 19 ¥ \ “\p
ERIC - o, o ,
. o ) . ‘
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In a similar way, we could find the decimeter measure and the meter
tegaure of this meadurement. We begin with the fundamental relation be-

-~ Y ' 1

o "tween the units ) ‘ N ’
\//_' lm"= 10 dm=lO£) cm 4+ 1000 mm
. and _r;earrange it so\\that '
! . .lunn=l—]b-cm=l—éb-dm=-wl(‘)6m.—'. “
Then the measure:n.men‘c becomesg ) ) - .
1 1253mm=125.3 cm=12.53 dm = 1.253 m .

Notice that the four measures are related to each other. One 'measu.re
-
can be obtained from the other by multiplying or dividing by some’multiple
of ten. The measures differ oniy_in the position of the decimal point.

Example 2: . . . ., .
[} . ' . 4
. -@ ° ° ( "
- Change 23.7 grams into decigrams, centigrams and milligrams.
- o, - 23 7 gn.= 25 7 (10 decigrams) = 237 decigrams’ , )
a . .. 23 Tem= 23 7 (lOO centigrams) = 2370 centigrams
[
@ 23,7 gm = 23.7 LOOO milligrams) = a3l7oo milligrams . /
& a
- v, ', o,
P . ® he . -
- ,' Example 3: B i " ' 0 . .
B . v L2 -
. » !
. oChange 50 ml to 1iters. B T
50 ml = 50 (—3-‘1- li‘cer) = .050 liter | ‘
-]
. ‘ . )
N - ' - . g » - x
. - . 4. l g . f:xercise 1 - p
1. lOO m= dm = “ cm ., .
2. 3%2m 4 &= kg .t :
3. 281 Jiters = ml . .-
¢ . % = K
b, 1285 em=__. 4. mp= m. o
1 ) N T
~ . .' AN ] ] .7__»—?
5. 0.155 gm = ng = T SR
T »
6. Change 500 milowatts to watts. \
- ©° A " . hd .
7. Change 900 deciliters to liters. . .
v . o . - . ,. . », » ~ .
f . - '
1 - d [ )
n' - 7~ '5 112 . . -
O - ’ , T ‘.":" . - .
ERIC L e o
. o 9. -1 29 - .
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. . > .

8. The frequency of radio station WICH is 1340 kilocycles. Express the ‘

frequency in cycles. ’ ‘

: -
+ 9+ Change 55 minutes to microseconds.

-

_ C.3 English System of Units ) . ! ,

The fact that we useé’inches, poundsy quarts, ete., 1n our everyday

measurements and the metric system in scientific work means that we will

have to learn how to make conversions “between these two ,Eystems.

e ' Although it is not well known, the United States adopted (in 1893) the °
International Metex and International Kilogram as fundamental standards.

« Our customary units, the yard énd the pound are defined in terms of these
standards. . - ) i

. The table below lists some of the coumonly used equivalents 'between‘ -
the 'two systems. These values have been rounded off to & convenient number ' ’

of "places. . . -

1 meter ig approximstely the same as a length of 39.37 inches.
1, inch is exactly the sameé as a le.ngth of 2.54 centimeters. .

S~ "] 1 pound is’ approximately the bame as the velght “of 45k ‘grams. -
’ / 1 liter is approximately the same as 1.06 liquid quarts. : -
- — - .
Example 1: - " .
» , . - | 34
Change 2(5*meters to feet. , .
) " M - . * . . - ' ”
- 20 meters = 20 (lbmeter) = 20 (39.37 inches) ¥ .
a =(78.7'+ inches ¢ .
and since . o ¢ -
12 inches = 1 ft . or limch:%é-ft . . e
. A Q. . - .. ~° ’
) ;78.74 irches =" 78.74 (-1-15 £t) ) d
. t = 6.56 £t .
5 i)"r -
. A / ‘ - L - .
Example 2: \\ ) - . - .
! v
* What mass in kilograms wouJ\.d weigh 3 pounds?
3 pounds = 3 (454 grams) co -
= 1362 grams
\ .which, of course, is egual to i g ) .
\ " S '
—— 1.362 kg .
h 3 ' . \ 113; o, 4 .
ERIC ~ s .

o a
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3 § .
) : . . ‘ _ )
. ) Exercise, 2 o -
3¢ . v’ - . . Y
[N , .
3ft = cm .

o2, 11k liters = gts = gal .

~ - . ¢
3. 27 meters = yards = o . X
¥i, 428 ml = ' cubic centimeters.: - o . PR
- " Y. - ’
.'%5. “6.5 £t = cm = -oom. . '
6. What mass in grams would weigh 1.5 pounds? ’
1. ;»What is the weigh'b (in pounds) of a T kilogram mass?‘
-
§. % ?;hanggr,l quart ‘co litérs. . o
9. .Change 1 yard to meters. : o . @
10. What is the weight (,j.n pounds) of a 1 kilogrg'm mass?
- Wy T v
. ,
¥ e . v
" ‘ D
@
. ‘ X «
) . - ‘ R
AN °.
* ) \ )
¢ ! d *
\ ‘ . $ .
J -
& >
- - s .
e
o
' N
r N L -
. N : .
~ \ : 0
=
L.“‘ggf‘ -t
. 114 2
() :)
el S
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S Loy GLOSSARY . ' .
' , Part II o

.

ANALYTICALLY --" A result is obtained analytically when it is obtained by

computation (as opposed to“experimentation) ¢ . 7 g
-~ t
ASSOCIATIVE PROPERTY OF MULTIPLICATION -- When three numbers are to be ’ '
[ 4
. multiplied in a stated order, the product is independent of the t t
. grouping. : That is, . S et T T T
) ‘ .. ’ ax (bxe)=(axbp)x '

\\ BASE -- Wher & numeral- is'given in exponential form, the number which is fo
be multiplied by itself is called the base. That is, 3h1means L
3X3X3X3and 3 is the base. ' ~ '

o

A

CLOSED PHRASE -- A closed phrase is a phrase which represents a specific - .

number.

COINCIDENT -- Identical; ‘having all points in common. ) ’

COORDIVATE AXES -- Intersecting lines used to locate poinys in the plane
‘e . ‘ )

by 'means of coordinates measured along the lines . .

’bOORDINATES ON A PLANE -- The numbers associated, as aft ordered pair, with 1‘
a point of the plane are called the coordinates of the point.

DEFLECTION -- The amount of bend (as indicated by a pointer relative to
a fixed scale). . S . )

¢

f «*

# N

DISPLACE -- When a directed movement of a coerdinate axis is made, we
say that the axis‘is displaced. .

DISTRIBUTIVE PROPERTY -- If, in a given maﬁhematical system, it is alwa;e e
true _that a X (b +¢c) = (axDb) + (a X ¢), where a, b and ¢ are any
elements of the system, thep we say that the given system has the

. aistributive property. This is the distributive property of multipli-

cation over addition. - .

DOMAIN -- The domain is the set of first eipments of the ordered pairs in

»

a relation or function N . .
ELEMENT -- A member of a set. - .
EQUATION -- An open sentence involving equalitpﬂ . . )
2 ' .
o : 5153
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FchgUM -- The point of 'support of a seesaw.

' . L EN o . y

& “ - .. . e .
L - - .
EXPONENT -~ The pérticuiar use of a numeral to indicate how many times a
. X % W
The expression 3 means

3 X3 X3 %3 and the 4 is the exponent.. | .

@ ®

certain number should be used as a factor.

EXTRAPOLATION -- To calculate values outside an interval.from values wi%hin

. the interval. « 0 . .

~

FACTOR -- One of the numerals in an ihdicated product is a factor of the

product. ‘ ’ . .

-~

FORCE -- Force is a physical-conéept which can be described loosely as

the push or pull on an object.

.

FUNCTION -- A function is a gset of ordered pairs such that each element

P,
of the dqqain appears iﬁ\one and only one ordered pair.
. . : N ’ e e
GRAPHICAL ANALYSIS --'To reach a conclusion by'thebuse of graphs. . S
HYPOTHESIS -- In ﬁéﬁhematics, an assumed proposjtion used as a premise
in proving somethiﬁé else. , .

In science, a proposition held to be probably true because its

conseguences are found to be true. &/

»

P-4

®

INEQUALITY -- Any statement which indicates that one number or quantity
is not egual to another is called an inequality.

" INTEGERS. -- The set of counting numbers, zero, and the additive inverses

of the counting numbers make up the set of intégers.
INTERCEPT -~ The ﬁoiﬁt on a number line at which & second line meets it.
INTERPOLATION -- To find an intermediate value between two given values.

LINEAR -~ Pertaining to straight lines.

MASS -- Mass is a fundamental property of & body. It is not the same as

the weight of the body.- On the earth's surfgce, the weight of an
; .
object is proportional to its mass.

MATHEMATICAL MODEL™ -- A mathematical rd&lation which represents the pliys-
ical wodel. In most situations %é‘will be an equation. '

1 - Ky

MAXIMUM VALUE -- The greatest value. s : ’ ,

/ .
MEASUREMENT -~ Any measurement is a process in which the_object or event »
being measured is compared to the standard units for that object or

.
event. -

116
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MULTIPLICATIVE.INVERSE -- For every number, excepf'zero, there is another .
number (called its multiplicative inverse) such that the product of the ﬂ_
E is the multiplicative inverse of

1 . 3 .
3 sifice 3 X §:= 1. . ;.

two numbers is one. For example,

1 1]
o NEGATIVE REAL NUMBERS -~ The set of real numbers associated with points to
: the left of zero on the numper line (where the unit point is to the~

; right of zeroQ is the get of negative real numbers.
—_ .
NON- IVTEGRAL —~ The property of not being an integer or not pertaining

to an integer. ° v ,

NUMBER PHRASE -- A number phrase is a name for e number. °

An expression thgt repryesénts a number.’ - . »
NUMBER SENTENCE -- A statgnent'about numbers and quentities.

VUMERICAL PHRASE -- A numerical phrase is any numeral given by an expression

involving otqer nunerals and signs of operation. .

NUMERICAL‘SENTENCE -- A sentence which makes a statement about numbers.

-

OPEN PHRASE -- An open phrase is a phrase which does not represent a

-

specific number ‘ .. . T -
y

OPEN SENTENCE -- A rathematical sentence which contains one or more var-

iables. - , : .
. J . N

ORDERED-PAIR -- A set containing exactly two elements, (a,b), in ﬁhigh one

element is recognized as the first element.
. ] . .
PHYSICAL MODEL -- A.single curve on a graph of the set of points which
¢ best represents a collection of data. It is an idealization of the \

2 .

behavior of a pﬁysical system. . N

POSITIVE REAL NUMBERS -- The set of real numbers greater than zero. Usu- .

) ally represented by,the points to the right of zero on the number line. >
. ]
POWER -- a" is called & power of "a". More precisely, a” is the nth power
#* of "a“.

.
-~ . .

QUADRANT -- One of the four.regions into which the coordinate axes divide .
the coordinate plane.

S
RANGE -- Ige range is the set of second elements of the ordered pairs in :

.

a_relation or function.

Q ‘ . :
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lipe A numbar which can be represented by a finite or infinite dec-

I -imal- expansion,‘ B = - :
- L AN e =Y

T RECIPROCAL =- Tﬁ@fﬁﬁltiplicative"inverge\gf a real number is called the N
reciprocal of the number. o
. The reciprocal of a reéi“number‘"a" (a £ 0) is the number é\.
§— mm‘"has no recipro cal. ‘ —

——tam i D~ . -

. REIATION -- A relation is a set of ordered pairs. When the pair ( x,y) is -

in the set and we use R to represent the relation, vwe say that x R y

~ -

is trué. . ,

RESISTA&CE -- The opposition to motion of & body by its surroundings.

SCALE -- In graphical representations the gscale refers to the ratio in
which the mapping represents the real situation.

o 4 SCIENTIFIC NOTATION -- The practice followed in mathematics and science

of writing-numbers as & number between one and ten multiplied by the

« —

appropriate povgr of teg ‘For examplez a v
16 = 2.16 x 10° T
» " 0.0043-= 4.3 x 1073

SLOFE -- The slope measures the steepness of the inclination of a line.
! It is the ratio of the rise to the rim.

. SOLUTION SET -- The set of elements in the domain of”an open sentence '
which make the sentence true is ¢alled the sqlution set of the open

- * sentence. Also called the truth set of the“open sentence.

SUBSCRIPT ~-- A small letter or numeral written at the lower right of a
symbol to distinguish it from other symbols of the same kind.

o TERMINAL VELOCITY -- When the upward resistive force eq@als the downward
* gravitational pull on the object, terminal velocity has.been reached. ‘

>

~
- TRANSLATION OF AXES -- Changing the coordinates of a set of points to coor-

-~ ., dinates referring to a new sét“of axes parallel to the original axes.

TRUTH SET -- The solution set of an open sentence is also called the truth
set of that sentence.

e, . See solution set. .

VARIABLE :- A symbol which can be replaced by any member of a given set. !~

Lt ‘ ’ . i 8 ¢ a
Q . N j_ ;f_lll .
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VELOCITY (CONS'BANT) -- The slope bf the line op a time- dis‘cance plot. It
distance
time

VERB PHRASE -- The phrase that states the relationship involved between
word phrases.

-~
.

) is given by

WORD PHRASE -- A mathematical phrase in word form.

-
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