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Preface

This volume contains the eight chapters: t'

(1) Arithmetic Functions I - The Number of Divisors of an

Integer

(2) Arithmetic Functions - II - The Sum of the Divisors of an

Integer

(3) Arithmetic Functions - III The Distribution of Primes and

the Function v(n)

(4) The Euclidean Algorithm and Linear Diophantine Equations

(5) The Gaussian Integers ,

(6) Fermat's Method of Infinite Descent

(7) Approximation of Irrationals by Rationals

(8) A New Field

These supplements were written for students who are especially

good in mathematics and who have a lively interest in the subject.

The author's aim in (1) and (2) is to lead the reader to discover

for himself some interesting results and to experience the thrill

of mathematical discovery. The others are more expository in

nature, but they contain exercises to clarify the material and to

give the reader a chance to work with the concepts which are intro-

duced. It is suggested that the supplements be read with pencil

and naper at hand. All questions should be pondered and answered,

if possible when they occur.' A casual reading of these supplements

is, in most cases, unprofitable, and in some cases impossible.

Answers have been provided. However, it is suggested that

these answers should not be consulted until the reader has finished

working through the unit or until he reaches a point where he needs

an answer in order to proceed.

For the most part the units are independent of each other.

However, some have somewhat tenuous ties with certain chapters of

the 11th grade material of the SMSG, (Intermediate Mathematics).

In particular, Sections (1) and (2) may be used at any time

after the student has completed Chapter 3 of Intermediate Mathe-

matics. While they are independent, Section (2) is'tasier and more

meaningful if Section (Whas been done previously.



Seetion'(3) may be read also after Chapter 3 of Intermediate

Mathematics. However, on the last page logarithms are mentioned

and for this reason it may be more useful after Chapter 8 of Inter-

mediate Mathematics. (logarithms and exponents).

Section (4) may be used at any time after. Chapter 2 of Inter-

mediate Mathematics(in which linear equations are discussed).

Section (5) is designed to follow Chapter 5 on complex numbers

and also to pave the way for the section entitled "A New Field".

Section (6) naturally follows Chapter 9 on induction.

Section (8) assumes familiarity with Chapters 5 and 15 of

Intermediate Mathematics.

Suggestions for further reading are:

The Enjoyment of Mathematics by Hans Rademacher and Otto Toeplitz, .

Princeton University Press, Princeton, 1957.

What Is Mathematics? by Courant and Robbins, Oxford, New York, 1941.

Number Theory and Its History by .6. Ore, McGraw-Hill, New York, 1948

1922:1:20--1



ARITHMETIC FUNCTIONS.

1.

,

Leopold Kronecker-, one of the great mathematicians of the

nineteenth century is supposed to have said in.an after dinner

speech "God made the integers; all the rest is the work of man."

The basic role of the integers in the development of the real

number system lends some weight to Kronecker's statement. In

your work with functions the domain of definition of the func-

tion has usually been the set of real numbers or some subset of

this set. There are many interesting functions, however, which

have for their domain of definition the set of positive integers.

Such functions are called arithmetic functions. In the units

which follow we will consider several arithmetic functions which

prove useful in stating and answering many questions about

integers.

I

THE NUMBER OF DIVISORS OF AN INTEGER

Some people from time to time advocate changing the base of

our number system from ten to twelve. To say that our numbers

are written in the base ten means that we interpret a symbol

like 312 to stand for
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2

3.10
2 + 1-10 + 2.

If we were using the base six then 312 would stand for

3.62 + 1.6 + 2 e

which would be 116 in the base ten.

In any number base, b , we would need b symbols for the num-

bers 0, 1, 2, . . . , b-1 . t

In particular if we used the base twelve we would need two new

symbols, say t and e for 10 and 11.

Then 312 in the base twelve would represent

3.122 + 1.12 + 2

cir 446 in the base ten.

The symbol 4et21 would represent

4.12
4

+ 11.12
3 + 10.12

2 + 2.12 + 1 ,

which would be 10 347 in the base ten.

The claim is made that the base twelve would make arithmetic easier.

The fractions 1/3, 114, 1/6, and 1/12 instead of having repre-

sentations .333 ... , .25, .166. . . , and .083 . . .

would have the simple form .4, .3, .2, and .1 .

Whatever the merits of this proposal, it seems unlikely to be

adopted. However,,it does suggest an interesting mathematical

problem. Suppose we wanted to find a number with a large number

of divisors, but which was not too large to serve as a base for

system of numbers. The advantage would be that the more divisors

the number has, the more fractions would have convenient finite

representations. As a start we might make a table for the first

few integers.
.4
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Integer

1'

2

. 3

4

5

Divisors

1

1, 2

1, 3

1, 2,

1, 5

4

Number of
Divisors

1

2

2

3

2

Extend this table for all the integers up through 30.

Which number in the table has the smallest number of divisors?

If we extend our table will we ever encounter another integer with

this number of divisors? Why not?

Make a list of the numbers in the table with two divisors.

The numbers in this list are given a special name; they are called

ri numbers.

OW list the numbers with three divisors. Do you notice any

property which they have in common besides that of having the same

number of divisors? Are there other numbers in the table with. this

property? Try to state a theorem about all the numbers with three

divisors.

How many numbers in the list have an even number of divisors?

Which numbers do not have an even number of divisors? Check this

list with your theorem. Can you guess how many numbers less than

fifty/have an even number of divisors? Less than 101?

Which numbers in your table have a prime number of divisors?

Do you notice any other property that these numbers have in common?

.Could you make a guess about the form of a number with a prime

number of divisors. How many divisors does 8 have? 32? 27?

64? 2n? 36? See if you can devise a theorem which states exactly

when the number of divisors is a prime.

Makb another table showing the number of times each integer
4.

\
appears in the number of divisors column of your first table. That

7

is, how many integers up to thirty have one divisor, two divisors,

three divisors, etc. We can see from this new table that most of

the numbers up through thirty seem to have an even number of



divisors. One of the distinguishing traits of a mat

his tendency to generalize his results. This means t

has solved a particular problem, he begins to think o

class of similar problems. This tendency to try to se

nal problem as a special case of a much larger problem

ference between a mathematician and a person who likes

problems. In the light of the information we now have

divisors of numbers, see if you can generalize your theo

the numbers which have three divisors.

The starting point for our discussion was the proble

ing a number base which was not too large, but which had

hematician is

hat once he

f a large

e the origi-

is one dit-

to solve

about the

rem about

m of find-

many

divisors. From this point of view ten has as many divisors as any

other number up to ten. However, the restriction that the number

not be too large was designed to keep the arithmetic simple. The

smaller the base the easier the addition and multiplication tables

are to learn. Taking into account both of these things, six would

seem to be a better choice than ten. It would then be unnecessary

to learn such troublesome parts of the multiplication table as

7x9, 9x6, etc. Unfortunately, for this base there are also dis-

advantages., Large numbers would require many more digits in their

representation than they require in the base ten. So we are forced

to conclude that ten isn't really such a bad number base after all.

Suppose we pursue our aim of finding a number with a large

number of divisors, even if it isn't the most practical number base.

Which number up through thirty has the largest number of divisors?

Up to fifty are there any numbers with nine divisors? Ten divisors?

More than ten divisors?

Of the numbers less than 100, which one has the greatest

number of divisors?

If you have an answer to the last question, you are probably in

a good position to devise a formula for the number of divisors of

any particular integer n . (If not, try to consider some special

cases. For example, we know how many divisors any-prime has. How

many divisors does p
k

, a power of a prime, have?) The usual

notation for the number of divisors of n is 't(n) , where 't is

the Greek letter tau. Try to write out an explicit expression for

Z(n).

It

ti
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If you are having trouble actually writing down the expression,

you are probably being handicapped by a lack of a suitable notation.

While this has nothing to do with the idea which enables you to

determine the number of divisors for any particular integer, devis-

ing a suitable notation turns out to be of great importance in many

parts of mathematics. Lack of a suitable notation for numbers is

thought by many to explain the Greek preference for geometry and

the relatively small amount of arithmetic and algebra they were

able to develop. Perhaps if you write n in the form
m m2

m
r

n = pl
1p2 ...pr ,where the Ws are the distinct prime divisors of

n and the m's tell you how many times the prime is a factor of

n, you will find this notation helpful in writing our your expres-

sion for 'r (n) .

Find all the numbers less than 100 which have six divisors.

Find the smallest positive integer with fifteen divisors.

Find all primes that are one less than a perfect square. One

less than a perfect cube. One less than a fourth power. How many

primes are one less than a k
th power? Why?
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ARITHMETIC FUNCTIONS

q II

THE SUM OF THE DIVISORS OF AN INTEGER

In the beginning God created the heavens and the earth."

The Genesis account of creation goes on to tell how God labored

for six days, and on the seventh day He rested. As early as the

sixth century B. C. the Pythagorean brotheithood classified integers

into deficient, abundant, and perfect numbers according to whether

the sum of the proper divisors of the integer was less than, great-

er than, or equal to the integer itself. Proper here means that

the integer itself is not counted as one of its divisors. Thus the

fact that 6 and 28 were perfect numbers, that is, 6 = 1 + 2 + 3

and 28 = 1 + 2 + 4 + 7 + 14 , gave them a special significance.

The ancients saw in the number six a symbol of the perfection of

the creation. The discovery that the phases. or the moon repeat

every 28 days may also have had a part in the designation of these

as perfect numbers.

Can you find any other perfect numbers?

Euclid includes in his ELEMENTS a rule for obtaining even per-

fect numbers. Before we consider Euclid's rule, let us take a

detour and consider the problem of finding the sum of the divisors

of a number. The sum of the divisors of an integer is an arithmetic

function, that is a function defined over the positive intergers.

We first note that the sum of the divisors is equal to the sum of

the proper divisors and the number itself. -The usual notation for

the sum of the divisors of n is T(n) whereOris the Greek letter

sigma. To try to find a formula for T(n) directly is not too easy.

However, we can usp the approach of the experimental scientist and

collect some data. Suppose we make a table for 0-(n) .

n

1

2

3

4

5

Divisor-, of n

1

1, 2

1, 3

1, 2, 4

1, 5'

P(n)

1

3

4

7

6
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Extend the table for all n le% than 31 .

In our notation a number P is perfect if AT(P) = 213 .

Mark the integers which are deficient with a D , those which are

abundant with A , and ose which are perfect with' P .

,A How many of each ki d are there in your table?,

You probably have al ady noticed,that the easiest numbers for

,which to compute or(n) were the primes. (A prime is a number which

. has exactly two divisors.)

Complete the following theorem: If p is a prime,

(TIP) =
The easiest case after that o: the prime is probably that of

an integer which is a power of a prime.

What are the divisors of p
k

? Can you find the sum of T(p )?

(HINT: xr+1 - 1 = lx - 1) (xr + xr-1 + . . . + x + 1) .

proveprov'e this simply multiply out the right hand side.)

Now suppose that n = pkq where both p and q are primes.

What are the divisors of n ? How many are there? What is their,

warn?

Now suppose n = pkg2 . What are the divisors of n ? How

many are there? What ip their sum?

If n
pkgs

, can you guess what Gr(n) is in this case?

Check your answer in a few cases and see if you can prove it.

Now it shouldn't be too hard to devise a formula for 0-(n)

'for anyyl , provided we write n in the form

m m
n = pl 1 p2

2
. . . pr

r where the p's are distinct primes and the

m's tell us how many times the prime is a factor of n'.

Use your formula to compute cr(6), 0-(12), 0-(18), o(24),

q128), 7-(3o), cr(144) .

From your table of or(n) list all n for which 0-(n) is odd.

Do you notice any property these integers have n common? Complete

the following theorem and try to prove it:

If or(ri) is odd, then n is



9

Let us now return to our original problem of finding perfect

numbers. We remember that in order fdr, n to be perfect

/

Gr'(n) = 2n . Euclid arrived at the following rule: n = 2m -1(2m - 1)

is a perfect number if 2m - 1 is prime. Use Euclid's result to

find other perfect_numbers. 0 Try to Kove Euclid's theorem:

If n= 2m-1 (2m
\

- 1) and 2
m

- 1 is as prime, then n is a perfect

.number.

As you can see from your computations with Euclid's theorem,

one good mathematics problem often leads to another. Euclid's

theorem tells uS that 2
m-1

(2
m

-41) is perfect it 2
m

- ] is a

prime. So that we can find as many perfect numbefrs as we can find

primes of the form 2m e- 1 .

Suppose we consider this problem a bit. If m is 2 ,

2
m

1 = 3 which is a prime. This gives the perfect number 6

If m is 3 , 2m - 1 = 7 , which is also prime This gives the

perfect number 28 . If m is 4 , (2m - 1 = 15 , which is not

prime. For m = 5 , 2m 1 =, 31 , which is prime and you can see

that the perfect number which corresponds to m = 5 is already quite

large. Test values of m up to 13 to see how many more perfect

numbers you can find.

The primes of the form 2m - 1 are called Mersenne primes

after a French monk, Father Marin Mersenne (1588-1648), who listed

eleven values of m less than or equal to 257 for which he

claimed 2m - 1 was prime. Modern digital computers have been em-

ployed to check and extend Mersenne's results and it has been found

that two values 67 and 257 which Mersenne stated gave primes, do

not, and that there are three others less than 257 which do give

primes and which Mersenne missed. Your own calculations have prob-

ably convinced you that for large values of m it may be hard to

tell whether 2
m - 1 is prime or not. However, we could decrease

the number of trials by noticing that if m itself is not prime,

then 2m - 1 cannot be Therefore we have to test only 2P 1

4
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where p is prime. Tb' ik this over and see. if you can prove the

statement: If m is not prime, 2m 1 is not prime.

The Mersenne primes with M less than 2300 are now complete-

ly determined. The values of m which give Mersenne primes are

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203,

and 2281. Accordingly seventeen even perfect numbers are known.

The last five of these were found in 1952 by S4AC, the digital com-

puter at U.C.L.A. The Mersenne prime 2
2281

- 1 is also the largest

prime known. It has at least 686 digits and gives a perfect number

with at least 1372 digits.

. There are still two unsolved problems concerning perfect num-

bers We have shown a number in Euclid's form 2
m-1

(2
m

--1) is

perfect whenever 2m - 1 is prime.- It can also be proved that any

even perfect number mist have this form Try to prove this for

yourself. (It is not very easy.) Howevef,, it is still unknown

whether there are a finite number of even perfect numbers or infin-

itely many That Is we do not know whether or not there are infin-

itely many Mersenne primes.

The other problem sounds easier. Find an odd perfect number.

At the present time no odd perfect numbers are known and many mathe-

maticians think it likely that none exist. However, no one has been

able to prove this The best that is known is that if an odd per-.

fe'dt number exists, it must have at least six different prime fac-

tors and cannot be less than 1.L-x10 .

4

There is one result about perfect numbers which is true whether

the perfect number is even or odd. Prove that the sum of the

reciprocals of all the divisors pf a perfect number is 2.

(HINT: Call the divisors d1 , d2 , dk and notice that for

every divisor d1 , 1-11 = d1 , is also a divisor of n .)
1

We have been able to restate our original problem of determin-

ing perfect numbers in terms of the function 0-(n) . But this

arithmetic function is useful in other problems besides that of

finding perfect numbers. If you have read part I of this unit, you
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may remember that we found an expression for the number of divisors

of an integer n , 't (n) .

m
1
m m M

r
If n = pl p22p3

3'
pr, , we found that 1r(n)" = (m1+1) .

(m2 + 1) ... (mr + 1) . In this part we found that

aln) = (1 + pl 4- p! + (1 F p2 + p2 + + p22 )

mx
... (1 -I- pr + + pr

r
) . If this expression for' 0"(n) is

multiplieq out we get a sum which contains as summands all the

divisors of n and each exactly once. Hence if 1..a replaced each

summand by a 1 we would get for the sum exactly 1.(n) , the

number- of divisors of n . This is easily seen by replacing each

p in thetormu1a for Cr(n) by 1 and then the formula reduces

to our formula for t(n) .

Thus we can look at T(n) as a generalization of 15*(n) .

This is sometimes indicated by writing q;(n).= t(n) , the sub-

script zero indicates that we are taking the %sum of zero
th

powers

of the:divisors of n . 07(n) = T(n) is the sum of the first

powers of the divisors of n . Similarly mathematicians found it

natural to ask for the sum of the k
th powers of the divisors of

n . Try to devise a formula for the sum of the
h powers' of the

divisors of n .

m
1 k,(1k pk 2 k k

(HINT: Cflk(n)
1 -r (P1)

k
(P1 ) ) (1 P

m

(Pr) (Prr)k) Simplify.)

O

it"
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. 3.

ARITHMETIC FUNCTIONS

III

THE DISTRIBUTION OF PRIMES AND THE FUNCTION,r(n)

One of the ost interesting problems in the study of the

integers has to o with the distribution of primes. A prime is an

integer which has exactly two divisors, 1 and the integer itself.

The firet'few primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31.

In the supplement entitled Prime Numbers several interesting facts

about primes are discussed One of these is that there are infin:

itely many primes It is also shown in that supplement that there

are arbitrarily large gaps,in the sequence of primes. On the other

hand, primes can be as close together as 2 and 3 or 3 -and 5.

It isn't hard to see that no two consecutive integers can be prime

after the pair 2 and 3 . Why not? However, as far as the table

of primes has been extended, we still find pairs of primes whose

difference is 2 . Such primes are called "twin primes". The ,

first few twin primes are 3 and 5 , 5 and 7 , 11 and 13 .

Exercise 1. Make a table of all primet less than 100.

Exercise 2. Find all pairs of twin primes less than 100.

One of the famous unsolved problems of number theory (the
, 0

study of properties of the positive in1;egers) is the question:

"Are there infinitely many pairs of twin primes?"

Another unsolved problem is that of finding an expression for

the n
th

prime number. You can see from your table of,primes that

the distribution of primes seems to be very irregidar. Since mathe-
<,

maticians have not succeeded in finding a formula for the next prime

after any given prime, a related question could be asked: "How many

primes are there less than or equal to a given integer n ?" We

might give a name to this function which gives the number of primes,

< n . It is usually called r(n) .

Exercise 3. Compute r(n) from your table of primes for

n = 10 , 20, 30, 40, 50, 75, 100 .

You can see that finding r(n) for large values of n is

quite a job. In fact extending the table of primes gets to be a

formidable job. To decide that a given integer n is prime, we

8



need to be sure that no integer less than n divides n, except 1

of course. After a few trials we notice that it isn't necessary to

try as divisors all integers less than D . If '42 doesn't divide.

n then no multiple of 2 will either. If' 3 doesn't divide n

then no multiple of 3, will. We could continue' in 4ke way and it

quickly becomes evident that we only need to try as divisors prime

'lumbers less than n , and not all of ese. If we don't find a

prime < which divides n ,'then0n must be prime. We can

restate this fact as a theorem.

Theorem. If no prime < A/H divides n , then n is a prime.

Exercise 4. Prove this theorem.

(HINT: If d divides' n , then -1-1 divides n also.)

Exercise 5. Determine whether 1781 and 4079are primes.

With this theorem, we have considerably reduced the work of

deciding whether a given integer is a prime -- we need only try as

-divisors, -pr mesLL Which are...< Vic . 'For large n this is a great

help. However, it only tells us about a particular integer n ,

Eratosthenes (c. 230 b.c.) devised a method, which we now call the

sieve of Ertosthenes, for sieving out all primes less than a given

integer if we know the primes up to . It goes like this.

Write down all the integers < n . For example, take n = 25 .

1 a 3 4 5 6 7 8 2 lo 11 12 13 14 15 16 .17 18 19

20 21 22 23 24 25

In this case V25 = 5 The primes < At/25 are 2, 3, and 5 .

Underline all multiples of 2. Then underline all multiples of '3

Then all multiples of 5 . (Note that some numbers will be under-

lined more than once.) Now all the integers which are not under-

lined are prime These numbers are precisely the primes greater

than 1/25 and < 25 .

Exercise 6. Use this sieve method to extend your table of

primes up to 225.

If we return to our problem of finding r(n) we may use the

idea of the sieve of Erathosthenes to devise a formula for w(n) .

What we actually did was to take o the integers which were not
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15

prime. There were n integers in our list. First, we took out the

multiples of 2 . There would have been 2 of these if n had

been even. Since n was odd, ri was not an integer, and in that

case we took out a number equal to the greatest integer less than

1
, that is

n-. Similarly when we took out the multiples of 3,

we took out,a number equal to the greatest integer less than 12
3

,

in this case --
1

7-- . We see then that it would be convenient to

have an expression for this number of numbers which we sieve out

each time. Let us define, then, the function [x] to be the

greatest integer < x . Some examples of this new function are:

[3] = 3 , [2.61].. 2 , [ -5.1] = -6 , [ \] = 1 , etc. It is clear

that [x] takes on only integral values, although its domain of

definition is the set of real numbers. Strictly spe ing, then itk

is not an arithmetic function, but an integral-valu d function.
,

,

The number of integers sieved out each time is now repretented by

E31 , [5i , etc.

What we have in mind is to devise an expression for v(n)

. like n - - - 151 - . . . - [1-115 I , where -pk is the

largest prime . There are two difficulties with this

method. In the first place, 6 was underlined twice in our siev-

ing process. It was taken out as a multiple of 2 and also as a

multiple of 3 If we are counting the numbers taken out by our

sieve, then we only want to count 6 once. We have taken it out

twice. The same thing happened to all multiples of 6. We can

remedy this situation by adding back in b] = [5] , the number

Of numbers < n which are multiples of 6 . Adding it in insures

that 6 is taken out only once. However, the same sort of thing

happens with other numbers like 10, 14, 15, 21, etc. In general

if an integer m = plp2 , where pl and p2 are primes, it will

be taken out when we sieve with pl and again when we sieve with

p
2

So that in all such cases in order to have the integer taken

out only once, we must add it back in once. A better estimate of
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(n) would then be an expression like

n - - pfl - - [k] + [4512] + [F122.d + + n
-k-1Pk]

Even this expression wonft quite do. We must ccnsider numbers of

the form.,p1p2p3 .
These numbers will be sieved out 3 times; when

we' sieve by p1 , by p2 , and by p3 . Then they will be added

back 3 times when we add back the muptiples of 1)1132 , plp3 , and

P2P3
So these numbers haven't actually been taken out at all.

Consequently we remedy this situation by subtracting
[P1P2P3]

If we continue in this manner-cen-take out all multiples of

1V every prime once and only once and the number of numbers remaining

will be given by the expression

n
.1+ ]) (H

k P2 n.P2
I

P1P3
+ + +[

Pk-1Pk1)

I)aP1P2P1
n 1 + r n 1 + ip n (. . .)

11311321)41 I n-2 k-1 k

(. .) etc.

This expression seems to go on indefinitely. However, as soon as

< i , [Ill = 0 , and the complicated expression actually has only

finitely many terms.

We said that there were two difficulties. We have fixdd up

the one of these caused by sieving out numbers more than one time.

The other is that we have taken out all multiples of the primes,

including the primes pl , p2 , . . pk , themselves We can

correct this mistake by writing r(n) = M + ir( VIC) - 1 .

Of course 71.(1/-6) = k . So that the above formula becomes

r(n) = M + k 1 .

The - 1 comes from the fact that 1 is not a prime.

The primes <03 are

r 251)
L2.5 j

2, 3,

1i(25)

Let us

and

25

try the formula

5 .

(p_51 [2.5]

2 3
3

for

[21
5

- 1

n = 25 .

([ 251
23j

22::53.5]+

z
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125) = 25 - (12 + 8 + 5) + (4 + 2 + 1) - 0 + 3 - 1

=.9 .

Exercise 7. Compute y(150) using the formula above. y(225).

Exercise 8. Find tne number of primes between 100 and 200 .

The formula we have obtained is an improvement over the origi-

nal method of actually sieving, but it is still very time consuming

for large values of n Mathematicians have succeeded in showing

that for very large values of n, r(n) is asyptotically equal to

lognnn
r (n)

, that is approaches 1 as n gets very large

log n

(log n is the natural logarithm of n ). This theorem is known as

"the prime number theorem". Until 1948 the only proofs of this

theorem which were known involved some of the deepest and most dif-

ficult mathematics An elementary proof was found in 1948 by Atle

Selberg. However, this proof is very long and complicated and

elementary only in a technical sense.

Exercise 9. r(10,000,000) = 664,580 . Compute (1 111)

log n

for n = 10,000,000.

(HINT: log n = I log
10

n , where M = 0.4342945...)
M

. 4
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THE EUCLIDEAN ALGORITHM AND LINEAR DIOPHATINE EQUATIONS

At some point in your mathematical experience, you have un-

doubtedly encountered word or story problems. Here is one taken

from the Ganita-Sara-Sangraha of Mahaviracarya, a Hindu writer of

the ninth century. "Into the bright and refreshing outskirts of a

forest which were full of numerous trees with their branches bent

down with the weight of flowers and fruits, trees such as jambu

trees, date palms, hintala trees, palmyras, punnaga trees and mango

trees -- filled with the many sounds of crowds of parrots and

cuckoos found near springs containing lotuses with bees roaming

around them -- a number of travelers entered with joy. There were

63 equal heaps of plantain fruits put together and seven single

fruits. These were divided evenly amoung 23 travelers. Tell me

now the number of fruits in each heap." If we translate the prob-

lem into ordinary algebraic language (it is a shame to do such a

thing to so beautiful a problem, but it does help to simplify the

process of finding a solution), it looks something like this:

63x + 7 =23y ,

where x is the number of fruit in each heap and y is the number

each traveler receives From the nature of the problem it is clear

that only solutions in positive integers are acceptable.

The question now is, how do we find solutions in integers to

such equations.

One way might be to draw a graph of the straight line

ax by = c and see if it passes through any points with positive

integral coordinates. This particular equation does. Di'aw a graph

of the equation. Can you find a solution from your graph?

Suppose our flowery Hindu problem had translated into the

equation 3x Cy . 13 . Does this equation have a solution in

positive integers? Why?

Solve 3x 4 6y = 24 for x and y positive integers. Is

there more than one solution? How many are there? For what posi-

tive solution is x smallest? For which positive solution is y

smallest?

Consider the equation 2x - y = 6 . Find a solution with x

and y positive integers Is there more than one such solution?

Z,;
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How many positive solutions are ,nere?

After the last three examples, it would seem that an equation

ax + by = c with a, b, and c integers may have no solutions, a

finite number of positive solutions, or an infinite number of posi-

tive solutions. Can you tell which one of these cases you have by

looking at the graph of the equation? From your consideration of

the graph of the equation try to write down conditions on the line

which will cover all.pussibilities for the number of positive solu-

tions.

If the numbers involved are quite large finding solutions from

a graph might be very difficult. Fortunately we can completely

solve this problem of finding integral solutions without using

graphical methods at all. To do this we need to be able to tell

when a solution exists; and if a solution exists, we would like to

have a method (besides guessing or trial and error) whiCh will

always lead'us to a solution. Finally it would be nice if we could

devise an expression which would tell us all possible solutions in

integers for the equation. All (these) things are possible for

those who like mathematics.

First-consider the following equations:

( 1 ) 2x 4- 3y . 5 ( 4 ) 4x + 6y . 9

(2) 2x -r 4y = 5 (5) 4x 6y . 8
,

(3) 3x + 3y = 5 (6) 2x 4y = 4

Which of these have integral solutions?

Look at the coefficients of x and y and the constant term
*

in each of the equations for which you found a solution. Is it

true that any number which divides both the coefficient of x and

the coefficient of y divides the constant term? Do you think

this must be true of any equation which has a solution? State this

result as a theorem and write out an informal proof for the theorem.

(HINT: Call d the greatest common divisor of a and b . Tf we

used the notation ccd(a,b) = d , then gcd (2,4) = 2; gel (9,12)=

3 ; gcd (2a,3a) = a ; gcd (abc, abe) = ab, etc You can see that

this is a very ci,Imsy notation. We might abbreviate, when it is

clear that we mean the greatest common divisor of two integers, by

omitting the letters ccd Then (q0,24) = 0 means gcd (,0,2-r)= s.

...
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Unfortunately, this notation (a,b) is used in several different

ways in various parts of mathematics. However, as we have noted

above, if a and b are integers and we write (a,b) = d for the

greatest common divisor it isn't easily confused with the other

uses of the symbol.)

This theorem which you have arrived at states what is callei a

NECESSARY condition that the equation ax by = c have a solution

in integers. This is a reasonable use of the word necessary since

the equation cannot have a solution unless (a,b) divides c . The

condition is truly necessary foz a solution of the equation.

Mathematicians love to find a neat condition which is necessary

and which also insures that a given problem has a solution. That

is, it would be nice if two things were true -- (1) that

ax by = c has no solution unless (a,b) divides c and (2)

that if (a,b) divides c , the equation always does have a solu-

tion in integers. You have met this idea before in Chapter I where

the phrase "if and only -1' was used. We could restate our hopeful

statement above as: The equation ax by = c has a solution in

integers if and only if (a,bY divides c .

#

Look again at our six equations above. Does it seem to be

true that if (a,b) divides c, there is a solution? We shall

now try to devise a way to prove that this is always true.

How do you find the greatest common divisor of two integers?

In all the cases we have considered, it has been easy to do just by

looking at tle two integers. How Jid you do it-in the seventh and

eighth grades when adding fractions with different denominators?

One way of course is to write out the factors of each integer and

pick out those which are common. For instance, to find (248, 312),

we write 248 = 23 31 and 312 = 23 3 13. Then clearly

(248, 312) = 8 . However, suppose the numbers are large and it

isn't easy to find the factors of either number :Tor example,

suppose we are asked to find (762, 3315) . The usual method works

of course, c;t is not as easy as in the cases we have previcosly

encountered. Another method which solves this probleL. is attributed

to Euclid (who lived ar(y_lt 300 P.C.).

)

*lb
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It goes like this:

3315 = 782'4 + 187

782 = 187.4 + 34

187 = 34.5 +

34 17.2 + 0

Euclid's method (or algorithm) gives 17 , the last non-zero re-

mainder, as the greatest common divisor of 3315 and 782. That

17 is the greatest common divisor can be proved as follows. First,

proceeding from the bottom to the too, we can see that 17 divides

each number on the left hand side as follows:

17.2

17 (2.5 + I)

17 (2.5 + 1) 4 4- 17'2 = 17 ((2.5 + 1)- 4 2)

17 ((2'5 -1- 1) tr 2) 4 + 17 (2.5 + 1)

= 17 0(2.5 + 1) 4 + 2)4 + (2.5 + 1))

Thus we have shown that 17 is a divisor of both 3315 and 782 .

It is, then, a common divisor.

Now let us show that it is the greatest common divisor. We

do this by showing that any number d* which divides both 3315

and 782 must divide 17 . Then if an integer divides 17 , it

cannot exceed 17 . Hence 17 must be the greatest common divisor.

To prove this we simply reverse the process of the preceding para-

graph. Suppose d* divides 3315 and 782 ; then it must divide

3315 782.4 = 187 . Why? Next if d* divides 782 and 187 ,

it divides 782 - 1874 = 34 . But then if d* divides 187 and

3, =

187 =

762 =

3315 =

34 , it divi,..ies 187 - 34.5 = 17 . So we see that any number which

divides both 3315 and 782 must divide 17 . Therefore 17

must be the greatest common divisor of these two numbers.

You may have noticed that we have used repeatedly a very

obvious fact, namely, that if an integer divides each of two

integers, it divides their sur ,,nd their difference. This is a

trivial but extremely useftl tneorem. Write out a proof for this

theorem giving reasons for each step.

Supr.ose we try D,clidls metho'l on 253 and 122.



253 = 122.2 + 9

122 = 9.13 + 5

9 5.1 +
5 = 4-1
4 = 1.4 + 0

The greatest common divisor is 1 , the last nonzero remainder.

Such numbers which have 1 for their greatest common divisor are

called relatively prime. Check that (253, 122) = 1 by factoring

the two numbers.

Find the g.c.d. of 1596 and 96 . Find (418,.1376);

(365, 146) .

To prove that Euclid's method always gives us the greatest

,common divisor for any two integers a and b , we can proceed as'

follows:

-'(Suppose a > b.)

23

a = bq, + r,

b = ri-q2 + r2

r1 = r2.q3 r3

r2 = r3.(14 + r

rn -L= + rn , where rn is the

last non-zero remainder. (Is it clear that there will always be a

last non-zero remainder? Why?) To show that r
n

is the greatest

.common divisor, we must show that r
n

is a common divisor; that is,

that it divides both a and b . This is left to the reader. He

can argue in exactly the same way that we did in the first example

with 17 , 3315 , and 782 . Then we must show that any common

divisor of a and b divides r
n

. The argument again is the

same as in the example.

We now have a fool-proof method for obtaining the greatest

common divisor of any two integers. Actually we have done a good

bit more: Not only can we find d = (a,b), but we get as a bonus
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a Solution to the equation ax + by.= d . In the case of 17,

3315, and 782 we are in a position to solve the equation

3315x + 782y = 17 .
The solution is as follows:

Euclidean Algorithm

3315 = 782.4 + 187

782 = + 34

Solution of 3315x + 782y = 17

187 = 3315 - 782.4

34 = 782 - 187-4

= 782 (3315 - 782.4)4

= 782 (1 + 4.4) - 3315 (4)

17 = 187 34.5

= (3315 - 782.4) - (782(1 + 4.4) -

3315(4)).5

= 3315 (1 + 4.5) - 782 (4 + 4.4)5)

= 3315 -(21) - 782 (89)

So that if we set x = 21 and y = -89 we have a solution to the

original equation.

You will remember that in the beginning of this discussion we

were trying to find solutions in integers to equations of the form

ax + by = c . We 'found that in order for the equation to have a

solution at all, (a,b) = d had to divide c . The claim was made

that if this happened, there was always a solution in integers for

the equation. We are now in. a position to show that this is.true.

Suppose you stop reading at this point and try to find out how to

get-a solution from what we have done so far.

Check your method with the following. From our discussion

above of Euclid's

algorithm, it is clear that we can always solve ax + by = d where

d = (a,b). To find a solution of the original equation let

c = dc, . Now take the equation ax + by = d and multiply both

sides by c' We get

a(xc') + b(yc') = do' = c .

It is clear then that xcl and yc' are solutions to our problem.

This is really a nice result. We have a method for finding a

solution to any equation which has a solution.

There is ,;ust one thing -- the solution we get may not be in

positive integers x and y .
Of course there may not be any

solutions in positive integers, but in our "beautiful forest"

prob]em, clearly only positive solutions are acceptable. While it

187 = 34.5 i 17
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is wonderful always to be able to get one solution, a real mathe-

matician, at this point, would certainly wonder "Isntt tnere some

way to find all the solutions?". Try to find a way, to find another

solution from the one obtained by Euclidts algorithm. Can you now

. find all solutions?

(HINT: Suppose xo and yo satisfy the equation, i.e.,

ax
o
+ by

o
= c = and suppose x and y are any other pair of

numbers which satisfy it, so that ax + by = c . Then subtract

the first equation from the second, divide both sides of the

-resulting equation by d transpose, try to see what can be said

about (x - x0) and (y - yd.)

When you have made as much as you can out of the "hint",

check your results with the reasoning in the answer sheet. You

will find there that the general solution may be given in the form

x = xo + t

y ayo - t where t is an integer t .

It is easy to check that for any integer t the x and y given

above do satisfy the equation provided xo and yo do. Check

this for yourself. It is clear from this check that this x and

y will satisfy the equation for any value'of t . Is it also

clear that any solution must have this form for some integer_ t ?

Try to show that this is true.

We are now in a position to find all the positive solutions

for our original equation if any exist. Let us take the equation

3315x + 782y = 17 again. By our method we get the solution

x = 21 and yam= -89 . Are there any positive solutions? Well if

we look at the general solution obtained above, for this equation

it assumes the 'form x = 21 + 46 t , y = -89 - 195t . To find

positive solutions we must have t which satisfies x = 21 + 46t

"> 0 and y = -89 - 195t > 0 . However, if t satisfies both of

these inequalities it must be an integer. > -21/46 and at the same

time < -89/195 . There is no integer satisfying both of these at

the same time.

moN
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(Plot these 2 numbers on the real line and look for the integers

to the right of -21/46 which are also to the left of -89/195.)

Consequently there are no positive solutions. Of course in this

particular problem this is clear from looking at the equation.

However, the method we have used will lead you to the values of t

which give all positive solutions in any other problem.

Now you are in a position to find out the number of fruits in

each heap in our original problem'. Go to it.

What is the smallest number of fruit there could have been in

each heap? Are there infinitely many positive solutions? Write

out the general formula for all solutions.

Here are a few more problems which you can solve using the

methods of this unit.

1. 16x + 7y = 601.

2. Fipd the positive solutions for the equation 101x + 753y =

100,000.

3. Say-quickly, mathematician, what is the smallest multiplier

by which 221 being multiplied and 65 added to the

product the sum divided by 195 becomes exhausted?

(From the Lilavati of Bhaskara (1150 A.D.).)

4. In the forest 37 heaps of wood apples were seen by the

travelers. After 17 fruits were removed, the remainder

was divided evenly among 79 persons. What is the share

obtained by each? (Mahaviracarya)

5. 14x - 45y = 11 .

6. 40x - 63y = 135 .

3 0
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5.

THE GAUSSIAN INTEGERS

In order to be able to find solutions to all quadratic equa-

tions ax
2 + bx + c = 0 where a, b, and c are real numbers, we

found it necessary to extend our number system to ...nclude numbers

whose squares are negative. In fact, if we adjoin to the Get of

real numbers a number with the property that -its square is -1 ,

define addition and multiplication for this extended set, we

achieve a new number system in which every quadratic equation

(oi, more generally every polynomial equation) with coefficients,

in the new system has solutioriS.

This extension of our number system consists of the set of

all numbers of the form a + bi where a and b are real num-

bers and i is a number with the property that i
2

= -1 . This

new system is called the field of complex numbers. Most of our

work in mathematics in grades one through eight is arithnietic.

Let us now investigate arithmetic in the complex number system.

In ordinary arithmetic we were mainly concerned with the positive

Integers. The question naturally arises "What are the integers of

our new extended number system?" To try to devise a reasonable

definition, we try to generalize some property of the ordinary

integers in the system of rational numbers so that these "rational

integers" will still be "integers" in the extended system, and so

that as many characteristics of the ordinary rational integers as

possible will be retained.

Ih keeping with our interest in solving equations, the property

of the rational integers that we choose to generalize is the prop-

erty that they are solutions of linear equations, x + a = 0 ,

with rational integral coefficients. For our purpose it is con-

venient to restrict our attention to a subset of the complex num-

bers, namely the set of numbers (a + bi) where a and b are

rational. We then define Gaussian integers to be those complex

numbers a + bi , a and b rational, which satisfy an equation

of the form z
2

+ mz + n = 0 where m and n are ordinary

j.t
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rational integers. These new integers are called Gaussian integers

in honor of Carl Frederich Gauss (1777-1855) the German mathemati-

cian who is ranked with Archimedes and Newton as one of 'the three

greatest mathematicians of all time. Gauss Was the first person

to systematically develop the properties of these new integers,

and, in particular to show that the Fundamental Theorem of Arith-

metic (Every integer can be written as the prOduct of primes and in

essentially only one way.) holds for these

Suppose we now consider the form which the new Gaussian inte-

gers must have. We remember that the definition requires that they

be numbers of the form a + bi a and-b rational, which

satisfy an equation z
2 + mz + n = 0 , m and n ordinary ration-

al integers. If b = 0 ,the Gaussian integer is a rational number

a = . Suppose that 2 has been reduced to that p and" q are

rational integers with no common factors. Thence since a = q

satisfies z
2 + mz + n = 0 , we have

,2
g-+ mg + n = 0

p
2 + mpq + nq

2 = 0

p
2 = .q(mp nq)

q then divides p
2

. But since p and q have no common factors,

q must divide p and q must actually be 1 . (If not q is a

common factor of q and p .) But if q = 1 , then a is actual-

ly a rational integer.

There remains the case when b 0 . In this case from the

quadratic formula we have that if a + bi is a root then a - bi

is Also.

.Accordingly

(z - (a + bi) (z - (a - bi)) = z
2 + mz +,n

z
2 - 2ac + a

2 + b
2 .= z

2 + mz + n

and m = 2a

2
2

n = a +- b .



Then

(1) a = ,and

(2) b = +1)/4n - m2
2

Since b is rational

m2 c2
, where c is some rational integer.

Substituting (3) in (2) we have

.(4) b = c .

2

The equation (3) can be written 4n = m
2

+ c
2

This means that m and c are either both event or both odd.

They cannot both be odd.

Exercise 1.

Prove that the sum of the square of two odd numbers is not a

multiple of 4 .

Therefore both m and c are even and a and b are rational

integers.

We have then in both cases that a -and b must be rational

integei.s and we are now able to say that'the Gaussian integers are

complex numbers Of the form a + bi where a and b are actually

rational integers.

It is easy to check that the sum, difference, and product of

two Gaussian integers is a Gaussian integer.

Exercise 2.

Show that the sum, difference, and product of two Gaussian

integers is a Gaussian integer.

We see then that our new integers behave at least in then

respects like ordinary rational integers. When we come to division

we must look a little more closely.

Exercise 3.

Is the quotient of two rational integers a rational integer?

Justify yOur answer.

Exercise 4.

Is the quotient of two Gaussian integers a Gaussian integer?

Justify your answer.

t) i.)
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The previous exercise shows us that division

possible in the set of Gaussian integers. ,Let us t

division for Gaussian. integers precisely. We say t

integer a is divisible by the Gaussian integer (3 if

Gaussian integer 2r such that as =pa-

is not always

hen define

hat the Gaussian

there is a

Example 1.

Is 2 + 3i divisible by 1 + i ?

SOLUTION:

If 2 + 3i is divisible by l+ i , then there mu

Gaussian integer x + yi such that

(1 + i) (x + yi) = 2 + 3i .

Then (x - y) + (x + y) i = 2 + 3i 4, and

x - y = 2 ,

x + y = 3 .

x = , y =
1

.

st be a

Since these are the only possible values for x and y if

x yi satisfies the original equation, and since these are

rational integers, our answer is "No, 2 + 3i is not divisi

by 1 + i ."

Exercise 5.

Is 2 + 3i divisible by 2 - 3i ? by i ?

Exercise 6.

not

ble

Is 3 + ili divisible by 2 + 3i ? by -i ?

We have seen that the conjugate, a - bi , of the complex

number, a + bi , is useful in many questions concerning complex

numbers. We use the conjugate to define the norm of a complex

integer. The norm of a + bi is defined as (a + bi)(a - bi) =

a2 + b
2

. We immediately notice several things about the norm of

a complex integer. In the first place, it is a rational integer

since a and b are. In the second place it is non-negative.

If b = 0, the nor.n of the rational integer a is a
2

. These

properties prove very useful in trying to settle many questions

about Gaussian integers.

If'we look into the divisibility properties of the Gaussian

integers, we are led to consider the integers which correspond to

3 t:
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1- and -1 among the rational integers; 1 and -1 are the only

rational integers which divide every rational integer. We call

these numbers the units of the system of rational integers.

Similarly we define units for the Gaussian integers to be those

Gaussian integers which divide every Gaussian integer. We can

determine the units for the Gaussian integers quite easily by

first using our new notion of the norm.

We first need the preliminary theorem or

Lemma. N(01,13) = N(00 N(13) , where N(c4 ) denotes the norm

of e4 .

Proof: If we let oc be the conjugate of ok and (3 be the

conjugate of 112

N ( ° ' ) = 01. ;k-

w ) = i3"

N(ct (3) = '0(0

= rt
=(diz)(
= N(0( )N( )

Since 01 p = 0( p

The lemma can also be proved directly from the definition of

the norm. Let a = a + bi , (3= c + di and write out the details

of this proof.

It is now easy to show

Theorem 1. u is a unit if and only if N(u) = 1 .

Proof: If u is a unit, it divides every integer and in

particular the integer 1

Then 1 = uv for',some Gaussian integer v

By the lemma, N(1) = N(u)N(v) .

But. N(1) = 1 = N(u)N(v) . Since the norm of any integer is a

positive rational integer N(u) = N(v) ='1 and the "if" part of

the theorem is-proved.

Now suppose N(u) = 1 .

Let u = e + fi . Then e
2

+ f
2

= 1 and either e = 0 and

f = +1 or

f + 0 and

e = + 1 . .

Hence if N(u) = , u = 1 , -1 , i , . But 1 and -1 clearly
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divide any. Gaussian integer a + bi . Also a + bi = i(b - ai)

and a - bi = i(-b + ai) . Hence these four integers divide every

Gaussian integer and are therefore units.

q.e.d.

We have as a bonus from this theorem, the

Corollary: The units of the Gaussian integers are 1 , -1 ,

i , and -i .

When finding the divisors of a rational integer n , it is

only necessary to consider positive divisor: of positive integers

n , since for any divisor d of n , -d is always a divisor of

n . Similarly if n is negative whenever d `divides n so does

-d . We could describe this situation by saying that n and -n

are associates; i.e., the associates of an integer n are integers

obtained by multiplying n by units. In the case of rational

integers n has only the associates n and -n . If we extend

the associates of of to be the Gaussian integers obtained from CC

by multiplying Ck by units. Thus the associates of any Gaussian

integer Ok are. oic , , lc< , and -Jo( .

If we now consider the divisors of a Gaussian integer, 10(.,

we need only concern ourselves with divisors which are not units

or associates of 0( .

Exercise 7.

Show that if a and 0 are associates'their norms are equal.

We are now able to define a Gaussian Lil.me as a Gaussian in-

teger which is not a unit and which has no aivisors except units

and its associates. Several interesting questions can now be asked.

1. Are rational primes Gaussian primes?

2. Are there infinitely many Gaussian primes?

3. Which rational integers are Gaussian primes?

We can answer the first without much trouble. 2 is a ration-

al prime. However 2 = (1 + i)(1 - i) . Since 1 + i and 1 -

have norm 2 , they are not units. The associates of 2 are 2 , ;

-2 , 2i , and -2i . Therefore since 1 + i and 1 - i are

neither units nor associate3of 2 , the rational prime 2 is not

.a Gaussian prime.
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Exercise 8.

Is 5 a Gaussian prime?

Exercise 9.

Is 3 za. Gaussian prime?

Let us now look more closely at rational primes of the form
4n + 3 . Suppose a rational prime p = 4n + 3 = 04(3 . Then
N(p) = N(% )N(0 ) = p2 . If p ce4not a Gaussian prime, then
there must exist of and such that N(0( ) j 1 and N( (?) / I.
In that case, N( CIL ) = p and NO ) = p . But if oc = x + yi ,N(m) x2 y2

p = 4n + 3. This is impossible for no intege.r
of the form 4n + 3 is the sum of two squares.

Exercise 10.

Prove that no rational integer of the form 4n + 3 is the
sum of two squares by considering all possible cases for x and
y (both even, both odd, one even and one odd).

Since the norm of 04. and (I cannot be p , the norm of one of
them must be 1 and that one is a unit, and the other is an'asso-
elate of p . Since p has no divisors except units and associ-
ates cf p , we have proved the following theorem.

Theorem 2. Every rationalprime of the form 4n + 3 is a
Gaussian prime.

This proves also that there are infinitely many Gaussian
primes, since in the supplement Prime Numbers it is proved that
there are infinitely many rational primes of the form 4n + 3 .

And we have thus answered question two in the affirmative.
Exercise 11.

Is 1 + i a Gaussian prime?

Exercise 12.

Is 1 i a Gaussian prime?

Exercise 13.

Is any composite rational integer a Gaussian Prime?
From the preceding discussion and exercises, we have the re-

sult that the only rational integers which are Gaussian primes are
rational primes of the form 4n -r 3 and possibly some rational
primes of the form 4n ± 1 .
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To settle the question about the existence of rational primes

of the form 4n + 1 which might also be Gaussian primes we need

two results. The first is a theorem which is rather easy to prove.

Theorem 3. If N(0( ) is a rational prime, 0( is 'a Gaussian

prime.

Proof: Suppose 40` =

Then N(0( ) = N( )N( ) .

By hypothesis N( ) = N( )N( ) = p , where p is a

rational prime.

Since N(0 ) and N( ) are rational integers, one of these is

1 and the other is p . The one whose norm is 1 is a unit and

we have the result that oc can only be written as a unit times an

associate of 0( . Therefore 0( is a Gaussianprime.

q.e.d.

The other result which we need is that.any rational prime of

the form 4n + 1 is the sum of two squares.

Exercise 14.

Wtite the following rational primes as the sum of two squares.

(a) 5 , (b) 13 , (c) 17 , (d) 29 , (e) 101 , (f) 1721 .

Since the proof of this result requires more machinery from

the theory of numbers than we have available, we will not give the

proof here. (A proof can be found in any elementary number theory

book.')

We are now in a position to settle the question about rational

primes of the form 4n + 1 . Suppose p 4n + 1 = x2 + y2 . We

can factor p as follows:

p = x
2

+ y
2

= (x + yi)(x - yi) .

Then the Gaussian integers x + yi and x -yi have norm p and

by Theorem 3 are Gaussian primes. Since the norm of p is p2

and the norm of x + yl and x - yi is p , by Exercise 7 the

primes x + yi and x - yi are not associates of p . Then p

is the product of primes, which are not associates of p . We have

therefore proved
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Theorem 5. No rational prime of the form 4n + 1 is a

Gaussian prime.

The answer to question three, then is: The only, rational

integers which are Gaussian primes are the rational primes of the

form 4n + 3 .

Actually, it can be shown that the Gaussian primes are of

thi,Fe kinds:

(1) rational primes of the form 4n + 3 and their

associates,

(2) 1 + i , 1 - i and their associates,

(3) integers of the form x + yi and x - yi where x and

y are positive, x is even and x
2

+ y
2

is a rational

prime, and their associates.*

*A linen manufacturing company: N. W. Linnenfabrieken, E. J. E.

van Dissel and Zonen, P.O. Box 272, Eindhoven, Holland, makes a

tablecloth 28" x 28" in which the Gaussian primes form the woven

design. It is available in red, green, blue, and yellow at $2.00

each.

:3 :)
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FERMAT'S METHOD OF INFINITE DESCENT
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The theory of numbers (the study of properties of the positive

integers) is a fascinating and difficult branch of mathematics.

The Fren..th provincial government official and amateur mathemati-

cian Pierre Fermat (1601?-1665) devoted much of his leisure time

to systematically cultivating this branch of mathematics.

One of the baffling aspects of number theory is the absence

of many general methods for attacking problems in this field.

Fermat devised an ingenious method which he called the method of

infinite descent" to handle certain kinds of problems. It is some-

what like mathematical induction in reverse. Instead of showing

that a certain proposition, P(n) , is true for n = 1 , and when-

ever P(k) is-true, P(k+1) is also, we begin at the other end.

We first suppose that P(n) is true for some integer. We then

show that if it is true for any particular integer, it is true for

a smaller one. Since on the one hand this argument can be repeated

indefinitely and on the other hand there are only finitely many

positive integers less than a given positive integer, we have a

contradiction. This means that our assumption that the proposi-

tion is true for some integer 1,s wrong, and we have the result that

the proposition is not true for any integer. In this form it would

seem to be especially useful for; disproving theorems.

The argument can be modified, however, to prove positive

statements. Fermat said that h used it to prove that any prime

of the form 4n + 1 can be written as the sum of two squares. For

instance
22 12 22 32 42 12 22 52

Exercise 1.

Write 37, 41 89, 101 as the sum of two squares. Can this be

done in more than one way?

I t )
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Fermat's argument goes as follows. Suppose an arbitrarily chosen

prime, p = 4n 1 , is not the sum of two squares. He then shows

that there is a smaller prime of this form which is not the sum of

two squares. Continuing in this way he arrives at the result that

5 is not the sum of two squares. Bilt 5 = 2
2

+ 1
2

. This con-

tradiction means that there was no prime of the form 4n 1 which

was not'the sum of two squares. We do not have Fermat's proof of

this theorem and in fact it was not until 1749 that the first

rigorous proof was given by the Swiss mathematician Leonard Euler

(1707-1783).

Fermat discovered many deep and interesting properties of the

integers. Very few-of his proOfs have come down to us; however,

his method of infinite descent can be used to prove a special case

of one of the most famous theorems in mathematics, Fermat's Last

Theorem. In a margin of Bachet's Diophantus,' Fermat made his

famous mite regarding the problem of finding rational solutions of

the equation

(a) X
2

+ y
2

= Z
2

"On,the contrary, it is impossible to separate a cube into two

cubes, a fourth power into two fourth powerls, or, genscally, any

power above the second into two powers of the same dedee: I have

discovered a truly marvellous demonstration which this margin is

too narrow to contain." Mathematicians are uncertain as to whether

Fermat actually had a proof; however, no proof for all powlrs

greater than 2 has yet been found.

The equation x2 + y
2

= z of course, does have solutions;

for instance 3
2

4
2

= 5
2

. In fact we now obtain all solutions

for this case as follows. We first note that we need only look for

solutions x , y , and z which have no common factors, since if

x
2

+ y
2

= z
2

, then certainly '(kx)2 + (ky)
2 .

= (kz)
2

, and converse-

ly.

Exercise 2.

Show that if any two' of the integers x , y , and z in (1)

have a common divisor, d , then' d divides the third.
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Accordingly we will consider only solutions which have no

common factors. In this situation not all three integers x , y ,

and z can be even. Why not?

Exercise 3.

Show that not all three integers x , y , and z in (1) can

be odd.

Exercise 4.

Show that it is impossible for two of the integers x , y ,

and z in (1) to be even and one A them odd.

The preceding exercises show that the only possibility for a

solution to (1) is for one of the integers to be even and the

other two to be odd. Suppose x is even and y and z are odd.

Let

(2) x = 2u . Then (1) becomes

(3)
2

y
2

= Z
2

or

^
41.1 z

2
- y

2

(4) 4u
2

= (z y)(z - y)

Since z and y are odd, z y and z - y are even. If we

consider any common divisor of z y and z - y , it must divide

their sum, 2z , and their difference, 2y . We know that 2 is a

common divisor, but if there were any other besides 2 , it would

have to divide both z and y . However, we excluded this case.

in the beginning.

At this point we must pause to prove

Theorem 1. If the greatest common divisor of a and b is I

and ab = c-
9

, then a is a square and b is a square.

Proof: By the Fundamental Theorem of Arithmetic (see the

supplement entitled The Fundamental Theorem of Arithmetic), we may

write c as the product of prime factors pi p2 , . . . pn .

Then

c
2

= (pip2...pn)
2

= ab .

Clearly p1 divides ab . If
p1

divides a it does not divide

2
b since a and b have no common factors. In this case p

1

must then divide a . If p1 does not divide a , then It must
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divide b and similarly in this case p
2

will divide b . We

can make the same argument for each prime. pi : Hence if any prime

,divides a , so does its square; and this prime does not divide b.

The same statement can be made for b . Accordingly, if we let

pi be the first prime that divides a , pi the second, etc.;
1 2

p be the first prime that divided b, p be the second,i

k+1 -Lk+2

etc.; we must have

a = Pi
2

Pi ...Pi
2

= (Pi Pi ...Pi )
2

1 2 k 1 2 k
2

2
b P2i Pi

2
= (Pi Pi )

k+1 -k+2 -n k+1 k+2

q.e.d.

We now return to our problem of finding the solutions to the

equation x
2

y
2

z
2

. Since the greatest common divisor of

z + y and z y is 2 , we can write (4) in the form

4112 = 2 2
4ZY ,

where the greatest common divisor of Z and Y is 1.

Then u
2 = ZY and by theorem 1

Z = v
2

and y = w
2

and

z + y 2v
2

z - y 2w
2

.

Exercise 5.

Show that v. and w have no common factors.

Then substituting (5) and (6) in (4) we have

4u2 = (2v2 ) (2w
2

) or

112 = v
2
w
2

and

(7) U = VW
Substituting (7) in (2) we have

(8) x = 2vw ,

2
((5) - (6)) gives



(9) y = v
2

- w
2

,

((5) (6)) gives

(10) z = v
2 + w2 .

Since y and z are both odd, one of v and w is even and the

other odd.

In the beginning we supposed that x, y , and z were any solu-

tion without common factor- and we have found the form which they

must assume.

We have then

Theorem 2. The solutions of x
2

+ y
2

= z
2

are given by

x = 2kvw ,

y = k(v2 - w2) ,

z = k(v2 + '142) ;

where k is any integer and v and w are any integers chosen

so that they have no common factor and so that one is even and the

other odd.

Fermat's Last Theorem can be stated as follows: There are no

integers x, y , and z for which xn + y
n

= z
n

if n is

greater than 2 . The proof for the special case n =.4 serves

as a good,illustration of Fermat's method of infinite descent.

Theorem 3. There is no solution in integers for

x
4.;

+ y = z . As above, if the equation has a solution x , y, z

and any pair of these integers has a common factor, that common

factor then divides the third integer and both sides of the equa-

tion can be divided by the fourth power of that common factor. So

if there is a solution, we can assume that the x, y, and z are

relatively :rime in pairs; that is, every pair has greatest common

divisor 1 .

We also notice that if we can show that x
4

+ y
4

= z
2

is

impossible then so is xLi- 1 y = z , since if the sum of two

fourth powers isn't a square, it certainly can't be a fourth power.

We therefore prove the simpler statement that x
Lt

+ y = z
2

has no solution in inter-ers. The proof by infinite descL-t follows.
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Proof: Suppose there is a solution x , y , and

ly prime in pairs, say -x + y = z2'. This equation can be

rewritten

relative-'

(x2)2
(y2)2

(z)2

However from Theorem 2 we,know"that

(11)

2 Ax .=2ab ,

y
2

= a
2

- b
2

,

z
2

= a
2

+ b
2

;

for some integers a and b with greatest common divisOr 1 and

one of these even and the other odd. Suppose that b is even.

Sinde x
2 = tab = a(2b) and a and b have no common factors,

by Theorem 1, 2b is a square and a is a square. Set

(12) 2b = c2 ,

a = d
2

From (11) we have that a
2

= b
2

+ y2', and again by Theorem 2

b = 2rs ,

2
(13) y = r - s ,

a = r
2

+ s
2

; where r and s have no

common factor. But from (12) and (13) we have

2b = c
2

= Ors .

2
r = X

1

x4 4 and since by (12) a = d2 ,

1 1

we have x
1

4
+ y

1

4
= d

2
, where 1 < d < a < z .

By Theorem 1, then

But now we have a solution x, y , d to the equation

x
4

+ y = z
2

in which d is less than z . What we have actually

shown is that if x
4

y4 = z2 has a solution we can always find

another solution with smaller z Bzt this is impossible since

there are only finitely many positive integers less than a given

integer z .
Therefore there is no solution to x yk = z

2 and

4 ,)
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4 4 4 )

consequently no solution to x + y = z .

Fermat also used this method of proof to show that if both of

the legs of a right triangle are integers x the area cannot be a

aquare. The proof of this statement is similar to the one given

above.
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7

APPROXIMATIONS OF IRRATIONALS BY RATIC'NALS

In Chapter 1 of your text you learned that a real number can

be represented by an infinite decimal. The main featurei of this

representation are the following:

Let the Pealnumber be g + ac , where g is an integer and

0 < ok < 1 . Since the integral part g offers no difficulties,

we can consider only ok and write it as a decimal: ok = O.a1a2a3...

(1) Each decimal section is a rational number. 09y the nth

decimal section of the decimal 0.a1a2a3..., we mean the number

O.a1a2... a
n

, i.e., a
1,

+ a
2
710 2 + a

n
/AO n

. )

(2) The difference Id - 0.ala2.. an' can be made as

small as we please if we choose n large enough.

(3) Ok - 0.a1a2...an S 10-n .

(4) The denominator of each decimal section is a power of

10

You may not have noticed property (3) before. It is easily'

proved, for a - 0.a1a2...an = 0.0 ... 0 an+1 an+2

n

< 0.0 ... 0 99 = 0.0 ... 0 1 . (The numbers under the braces

n n-1

indicate the number of Ots .) Of course, (2) is a consequence of

(3).

Properties (2) and (4) seem to be rather special; they arise

Iom the fact that we are using decimal sections to approximate 0( .

There seems to be no particular reason to do this, and in fact we

might get better approximations if we used general rational numbers

p/q as approximations.

Before doing this, however, let us realize that there is no

particular point in approximating rationals by other rationals.

From now on we shall assume that of , the number being approxi-

mated, is irrational.
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It is very easy to produce rational numbers p/q for which

toff - p/q1 < 1/q . Suppose 0( lies between the'consecutive

integers m and m+1 . Let q be any integer > 1 , and divide

the interval (m , m+1) on the number line flit° q parts or sub-

intervals (see figure) Each part

ok

fft's Art 1 m AIN

is of length
1 the points of subdivision are then

m +
1 2, m + , m . The point which represents 0(

will.fall inside one of the subintervals; it cannot fall on an end-

point of a subinterval since 0( is irrational whereas the end-

points are rational. If 0( falls in the subinterval whose left

endpoint is m + i/q then clearly

m + i/q < of < m+1+1.
so that I of - (m + i/q)I < 1/q , or

(1)
I <

where p = qm + i .
Since-this .process can be carried out no matter

what integer q may be (,as long as q > 1) , we have proved this

result.

Theorem: If

there corresponds

Let us check

r = 3.14159265...

333/106 , 355/113

0( is irrational, then to every integer q > 1

an integer p such that (1) is true.

this result with some famous approximations of

which were known to the Greeks, namely 22/7

48
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i/q

22/7 .00126... .1429...

333/106 .0000832... .009434...

355/113 .000000266..:. .008850...

These approximations are considerably better than what would

'be expected from the Theorem! Is a better result than (1) pos-

sible? .

Before trying for a better result, let us spend a few words

trying to make the whole'concept of approximation more precise.

If 01/4 is the number being approximated and p/q is the approxi-
,

Illation, then certainly we want,to make ok - p/ql "small". But

small - compared to what? We can make Icy. - p/q( as small as

we please provided i.e can take q large enough, as Theorem 1

shows. If we want to have ICA - p/q( < 0.001 , we have only to

choose q'> 1000 . In other words, we Can make' I 0( - p/ql small

but we pay for it by having to use a large denominator q . This

suggests that we might try for a result in which 0( is still

Approximated by p/q but the denominator of the right member of

(1) is larger than q .

To get such a result, we shall introduce a completely obvious

but very important principle:

THE BOX PRINCIPLE. If n + 1 objects'are placed in- n boxes,

there is a box which contains at least two objects.

Even though this theorem is so obvious, give a formal proof of it.

You probably feel that nothing of any importance could possi-
bly come out of anything that sounds so trivial as the Box Princi-
ple, but wait! Let n be any positive integer. Divide the
interval 0 ... 1 into n equal subintervals; these will be our
n "boxes" .

Now for each integer in the range 1 < j < n 1 , let p,

be NI greatest integer less than jo( , that is,
---

0 < Jd - p. < 1 , -1 1, 2, ..., n + 1

(Note that jc( - D. cannot be either 0 or i , for joc - p,

is :irrational.) Consider the n + 1 numbers
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pl , 2 oc - p2 , , (n + 1)ck -D
-n+1 ;

they all lie between 0 and 1 and so are distributed among our ,n

boxeS. Hence, according to the Box Principle, there must be two

of them, say rot - pr , sof. - ps , which lie in the same box.

If this box is the subinterval 4,-/n ( i + 1)/n , we have
.

+
< rok

1

< - ps < =n1

The second inequality may be written

+ 1 _sot, <-

Adding the first and last inequalities, we get

: (2) -1/n < - s) -(prtlo- ps) < 1/n .

Since r and s are both integers between 1 and n +

but are not equal, we see that jr - s1 is between 1 and n ;

1 1r - s1 < n . Set q = r s or s r , whichever is posi-

tive; p=p p -p if r-s>0, p=p -p if
r r s s r

r - s < 0 . Thet"'i < q < n , and (2) becomes -1/n < qoc -

p < l/n , or lq pl < l/n .

Hence,

(3)
1 _ 2i

ql nq

This gives us the thecrem:

Theorem. For each irrational number 444 and each positive

integer n , there is a rational number p/q :sue., that

(4) _ El "r
nqql

with 1 < q < n .

Of course, (4) is considerably better than (1), simply

because 1 /nq is considerably smaller than 1/q when n is large.

We can obtain a more useful form of (4) by noting that, since

n > q , nq > q
2

, so that

1 °L. -p/q 1 < l/nq < 1/q2, or

(5)
I c

q
1 <

2



,So far we have shown the existence of only one rational

approximation p/q with the property (5). Actually, there are

infinitely any such rational approximations, as we now show

Choose an J7Teger nt < n and find, by the last theorem, AT

rational ptql such that

of - ptgtl < 1/h1q1 , with 1 < 41 S nt .

Now 01/4 - p/q is not zero, so there must be an integer t for

which

(6)
I °( P/qi > lit

We shall increase t ,.if necessary, to make t > n (this only

strengthens the inequality (6)); then'we can use t for the nt

above.

So now we have the following:

kg I > - I 1
n ' q <

1

<
1

71-

This shows that p/q is not the same as pi/q1 , since the first

is,further from c( than 1/n , whereas the second is nearer to 04

than 1/n . That is, pt /qt is nearer to c4 than p/q is.

Thus, pt /qt is a new approximation to 0( , and moreover,

of - (11- <
2

PT 1 1

q!

so that (5) is satisfied. Now starting with pt/q1 we could

produce a still better approximation pti/qt, to ek which also

satisfies (5). We can continue this process indefinitely. This

proves the following theorem:

Theorem: For each irrational number 0C there are infinitely

many different rational numbers piqi , i = 1, 2, 3, ... for which

9,

1
(7) - -- <

2
1,

.

Cen we do better even than (7)? Is it true, for instance,

that there are infinitely many different p/q for which

I
- p/ql < 1/q3 ? There are infinitely many irrationals 6( for

which the last inequality holds, but there are also infinitely

many °( for which it does not.

5
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We shall give an example. Let ok = A/-. Suppose we wish

to approximate A/f- by a rational number p/q .

Case I. p/q < 1/ff-. We have dt/q > p , and

2q2 - p2 = (q p) p) > 1,

because 2 q
2

- p is a positive integer and so is at least

Hence, remembering that p/q<1/ff- and < 1.42 ,

we get

1
>q 1/ff-- p>

q q q 2 4q

and-since q > 0 ,

Case II.

- = > 41ql

1

p/q > 2 . Since A/r< 1.42 ,

A/--
>.0.58 > > 12

4q

since q > 1. .

Case III. Air< p/q < 2 . Then p2 > 2q2 and pa- 2q2 =

(p-q A/ff-) (p + q '\/ff) > 1 ,

or

11/ff 21 > 11q
1 1 1

>
1

q 2 + Vff >
q
2

2 +. 4q2
q

There are no more cases, for lif-- y p/q . (Why?)

In all cases, then, we have:

If p/q is a rational number, then

(7)
I I

24q

Equation (7) shows that the approximation (6) cannot be essential-

ly improved for all irrationals 0( . We can express this by say-

. ing that the approximation of a general irrational by a rational

is measured by the square of the denominator of the rational.

Can you generalize (7) to other irrationals than ? Can

you give an infinite set of irrationals for which (7) is true?
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8.

A NEW FIELD

The field you are most familiar with is the rational field,

but you have also studied the real field and the field of complex

numbers. If you read Section 5, Gaussian Integers, you learned

about the domain of integers in a certain subfield of the complex

field. Here we shall study a new field which shows some differ-

ences from the fields you have studied before.

Consider the subset K of the set of complex numbers consist-

ing of all numbers of the form a + b A/75 (=a + ib A/5) , where

a and b are rational numbers. We define two elements of K ,

a +1) A/75 , to be equal if they are equal as complex numbers,

i.e., if and only,if a = c and b = d . It is easy to check

that K is closed under addition, subtraction and multiplication.

(Do this.) K contains 0 = 0 + 0 \/-5 and 1 = 1 + .

The set consisting of all non-zero elements of K is closed under

division. (Check.) Moreover, all the rules of calculation are

satisfied in K since they are satisfied for complex numbers.

In short, K is a field; it is a subfield of the field of complex

numbers.

Call the field of rationals R . In R we singled out cer-

tain elements which we called integers. Denote the set of integers

in R by I . It is a ]ittle hard to see how we can define

integers in K , but experience has shown that the following defin-

ition is satisfactory.

First, notice that every element GL = a + b 7115 of K

satisfies a polynomial equation of degree 2 whose coefficients

are rational numbers. Indeed, write

P(x) = (x - ) (x - C.( ) = 6x-a) - b v/75) ((x-a) b \775)

2 5b2 x2
tax 4 a2 + 5b2

Certainly P(x) = 0 when x = and the coefficients of P are

rational numbers. :'-)tice that the coefficient of the leading- term

is 1 : such polynomials are called monic. When b = 0 so that

of = a, the equation becomes (x-a)
2

= 0 ; hence is a root of
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the equation of lower degree,

P(x) = x - a = 0

The number c( satisfies many polynomial equations, but

P(x) = 0 has the smallest possible degree. This is obvious when

b = 0 since P(x) is then of the first degree. When b 0 ,

P(x) = 0 must have the root c? = a - ib if it has the root 0(

(Chapter 5, Section 6), so P(x) = 0 is at least of degree 2 .

However, there might be more than one monic equation of lowest

degree satisfied by of . Obviously this cannot be if b = 0 .

If b 0 , any quadratic equation Q(x) = 0 satisfied by of

must have the factors x - c and x - c( and no others. Hence,

Q is of the form c(x-p( ) (x - ) , where c is a real or com-

plex number. But since Q is monic we must have c = 1 and so

Q is identical with P .

So we see that each element c4 of -K satisfies a unique

equatioq P(x) = 0 which is either linear or quadratic. Of

special interest are those elements of K whose unique monic

equations have not only rational coefficients but rational inte-

gral coefficients. (We now have to say "rational integers" to

denote integers in R because wa are going to define integers

in K .)

Definition. An element of K is an integer in K if and

only if the unique monic equation which it satisfies has rational

integral coefficients. We write J for the set of integers in K.

Is an integer in R (rational integer) also an integer in

K ? What monic equation does it satisfy? This shows that I is

a subset of J , or as we write it, I J . Algebraic structures

like I and J which are closed under addition and multiplica-

tion, which possess an additive identity (0) and a multiplica-

tive identity (1) , and which satisfy the associative, commuta-

tive: and distributive laws and the cancellation law (oh = ac

and a / 0 imply b = c), are called integral domains.

Let us consider an element = a t b 1/77 of J The

equation which satisfies is, as we have seen,

x
2

2ax : a
?

, '.3t) m: 0 .

Since of E
2 , 2

, we have that 2a and a 1- ')1., belong to I ;
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hence, - (24)2 + 4(a2 # 5b2) = 20b2- I . BY= this you will

be able to deduce that 2b 6 I , if you remember that b is

rational. (Do this.) So we have that 2a and 2b are rational

.integers; write a = a1/2 , b = b1/2 , where .a.1 bi E I .

Let a
2

+ 5b2 .c,cEI. We have 4a
2

+ 5.4b
2

=

a,
2
+.5b

1

2
= 4c . Now 4 c is divisible by 4 ;hence so is

a
1

2
+ 5b

1

2
. But the square.of any odd integer has a remainder 1

when divided by 4 . By trying out the four possible cases

(a, even or odd, bl even or odd), we see that a12 + 5b12 is

divisible by 4 only if a
1

and b
1

are both even. Therefore,

a E I and b E I . The integers in K are the numbers of the

form a + b /5 , where a and b are rational integers.

We can now do arithmetic in J just as we di& in I . We

shall use Greek letters oi , PJ , to denote elements of.

J . We say (X 'divides C5 if there is a X E Josuch that

If c.,( divides (5 and ' , then (A divides e)4y
and X (Even though this is obvious, give a proof of it.)

In I we had two special integers 1 and -1 which divide

all integers. We call such an element a unit: a unit is an

integer which divides all integers. There are two units in I .

What Are the units in J ?

Let X be a unit in J . Then >\ divides every element of

J and, in particular, )\' divides 1 .

Before going further, we introduce the very convenient notion

of norm: if K , 'che norm of of (written Noi ) is mere-

ly the product of 0( by its complex conjugate CW . Writing

= a 1- b -D , we have N = (a±b \,(75) (a-b v/75) , or

No? = a
2

+ 5b
2

.

In particular, if 0( J , we see that N d is a rational

integer whicn,also, is positive. There is no difficulty in check-

ing that

(ly N 6 = N01\ I \1(5

(Do this. )

)



511

Let us return to the matter of the units of J . If ,X is a

unit we havdr = 1 for some integer ?fE J , since we have

seen that )\ must divide 1 . Using (1) we get

N N = 1 .

This shows that N = 1 , since any norm of an integer in K

is positi7k/e. But, putting

= a b 5 , we have

N X =a2 5b2 = 1 .

The only solutions of this equation in rational integers a, b

are a = = 1 , b = 0 .

What we have proved is that if A, is a unit of J , then

A t 1 . But obviolzsly -4- 1 are units of J .

Hence, o 2 res,lt: The _nits of J are - 1 .

We notice that :1 A = 1 if A is a unit. The convere is

also tr e: if N = 1 , X is a Lnit. You will have no diffi-

culty in proving this.

We can now define prime: a prime in J is an element of

J , not a unit, whose only divisors are - 1 and
±

ar. This, of

course, agrees with the definition of prime In I .

For example, the integer 3 is a prime in J . Consider a

factorization of 3 : 3 = 0(5 , where d E J, eje J . Then,

by (1), = N A :13 = N3 = 9 .

Since :10( is a positive rational integer, we have No( = 9, 3 ,

.5

or 1. If N = 9, N() = 1 , and (3 is a unit.

If N = a2 ,
2

= 3 , we have a contradiction, because this

equation cannot be solveJ in rational integers. (Prove this.)

If lie( - 1 , 0{ is a 'Init. Therefore, 3 = 0(6 implies that

either c,( or (3 is a snit, which shows that 3 is a prime in J.

In the same way, prove that 7 is a prime in J .

(These statements can be generalized. See if you can prove

that any prime rational interer of the form -tr: - 1 is a prime in

J . If yo,1 nave read the S,plement Prime Numbers, yo will kr,ow

that there are infinitely many rational irimes of the form ,11 - 1.

Conclule, there:ore, tnat nor'' are ir.initely many cri:le:; In j.)
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Besides--certain of the rational integers, there are other

integers in K which are primes. .1r example, 4 + andand

4 - v5 are primes. (Prove.) Other examples are 1 + 2 V.75 ,

2 + 3 V-75 , 6 + v75 .

Of course, the importance of primes is simply that they are

the multiplicative building blocks: every rational integer not a

unit is a product of primes. (See Chapter 9, Section 3.) Is the

same result true in J ? It is.

To prove it, let S be the set of non -units in J which do

not have factorizations into primes. If S is empty our result

is established, so we assume S is not empty. 'Let N be the set

of positive integers which are the norms of elements of S . Then

N is a non-empty set of integers > 1 (because S contains no

units); as such it has a least element a (Chapter 9,'Section 3).

Every element of J whose norm is less than a (and > 1) does

not belong to S .

Let c; be an element of S such that N = a . Then q

has no factorization into primes. If c( is prime, we have the

trivial factorization = of ; hence, o( is not prime. It

follows that , where neither 6 nor d is a unit or is

of . Since No( = N5 N' , so that N 6 divides Nck , we

have 1 < N < NG( and also 1 < N/ < No< .

This shows that (3 S , for N S < a : Hence, (3 has a

factorization into primes. By the same reasoning, ?; has a

factorization into primes. Multiplying these two factorizations

together, we see that c< has a factorization into primes. This

contradiction was obtained on the assumption that S was not

empty; hence S is empty and our result is proved.

In the rational field, factorization into primes is unique:

no matter how we factorize an integer we always get the same

primes, each occurring the same number of times. E.g., 60 = 30.2
-

= 15.2.2 = 5-3. 22 , 60 = u.10 = 2.3'2'5 = 2
2
'3,5 . Only the order

in which the factors occur is different. But this is not true in

every field.
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Consider 21 as an integer in K . We have.

(2) 21 = 3 7

21 = (4 + /75) (4 - /75)

As we have seen, the integers in the right members are primes in

J. Furthermore, they differby more than just units, i.e., 3 is

not equal to any other factor times a' unit. ,Here, then, we have

two essentially different factorizations of 21 in J . Factoriza-

tion into primes in J is not unicat.

The central theorem used in the proof of unique factorization

in the rational field is the following: if a prime p divides a

product ab , then p divides either a or b (or both). This

theorem, however, is false in J . For from (2) we deduce that

4 + V77.25 divides 3.7 (since it divides 21), but it does not

divide either 3 or 7 . If we assume, e.g., that

(4+ 1 1 - 7 5 ) 0 ( = 7 ,

we get, taking norms,

21Nol = N7 = 49

so that Nok is not a rational integer. as it has to be.

Unique factorization can be restored to K by introducing

certain new elements called ideals. Every non-vnit integer in K

is a unique product of prime ideals. You will learn this beauti-

ful theory if you continue your mathematical studies in college.
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ANSWERS TO QUESTIONS

Arithmetic Functions I

Integer

1

Divisors

Number of
Divisors

1
1

2 1, 2 2

3 1, 3
*

V 2

4 1, 2, 4 3

5 1, 5 -) 2

6 1, 2, 3, 6 4

7 1, 7 2

8 1, 2, 4, 8 4

9 1, 3, 9 3 /

10 1, 2, 5, 10 4

11 1,1 11 2

12 1, 2, 3, 4, 6, 12 6

13 1, 13 2

14 1, 2, 7, 14 4

15 1, 3, 5, 15
)

4

16 1, 2, 4, 8, 16 5

17 1, 17 2

18 1, 2, 3, 6, 9, 18 6

19 1, 19
. 2

20 1, 2, 4, 5, 10, 20 6

21 1, 3, 7, 21 4

22 1, 2, 11, 22 4

23 1:23 2

24 1, 2, 3, 4, 6, 8; 12, 24 8

25 1, 5, 25 3

26 1, 2, 13, 26, 4

27 1, 3, 9, 27 4

28 1, 2, 4, 7, 14, 28 6

29 1, 29 2

30 1, 2, 3, 5, 6, 10, 15, 30 8
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1. No. All other integers will at least be divisible by 1

and the integer itself. Hence the number of d

greater than or equal to 2 .

2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

\ 4, 9, 25 . Yes. -,They are all perfect squares. Yes. 16.

,very number with exactly three divisors isa perfect square.

25 numbers have an even number of divisors. 1, 4, 9, 16, 25

do not.

42. 90.

The 14 numbers 2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23,

25, 29. They are all primes or powers of a prime. Guess: It

must be a power of a prime. 4. 6. 4. 6. n + 1. n 4- 1. The

.number of divisors of an integer n is a prime if and only if

isors will be

n = q
p-1 where both p and q are primes.

Number of times n
appears as a numb'

n of divisors

1 1

2 10

3 3

4 9

5 1

6 4

7 0

8 2

The number of divisors of the integer n is odd if and only

if n is a square.'

24 and 30 have 8 diyisors, Yes. 36 has 9 divisors.

Yes. 48 has 10 divisors. No....
60, 72, id 96 a11' have 12 divisors.

m
-114.For n

Pm
1

2
pr

r
, r(n) (m

1
+ 1) .

1

(m2 + 1) (mr + 1)
.

-.a

12, 18, 20j,..28, 32, 44, 45, 52, 63, 68275, 76, 92, 99

144 .



3. 7. None. At most one. Since x
k

- 1 = (x - 1) .

(xl(-4 + ,

if x > 2 the number is not a prime.

0

,r1

4'

.1

1k,

59-

vb.



6o

Arithmetic Functions II

The first few perfect numbers are 6; 28; 496; 8128;

33,550,336. The first four were known by 100 A.D. Until 1870 only

four more had been found. Between 1870 and 1950 four additional

ones were found.

n

1

Divisors of n dln)

1 1

2 1, 2 3

3 1, 3 4

4 1, 2, 4 7

5 1, 5 6

6 1, 2, 3, 6 . 12

7 '1, 7 8

8 1, 2, 4, 8 15

9 1, 3, 9 13

lo 1, 2, 5, 10 18

11 1, 11 12

12 1, 2, 3, 4, 6, 12 28 A

13 1, 13 14

14 1, 2, 7, 14 24

15 1, 3, 5, 15 24

16 1, 2, 4, 8, 16 3l

17 1, :1.7
18

18 1, 2, 3, 6, 9, 18 39 A

19 1, 19 20

20 1, 2, 4, 5, 10, 20 42 A

21 1, 3, 7, 21 32 D

22 1, 2, 11, 22 36

23 1, 23 24

24 1, 2, 3, 4, 6, 8, 12, 24 60 A

25 1, 5, 25 31

26 1, 2, 13, 26 42

27 1, 3, 9, 27 40

28 1, 2, 4, 7, 14, 28 56 P

29 1, 29 30

30 1, 2.5, 6, 10, 15, 30 72 A
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'23 are deficient, 5 are abundant, and 2 are perfect.

If p is a prime .d.(n) = P 1 -

1, Py P
2yyP

pk+1 - 1
p - 1

1, p, p2,...,pk, q, pq, p
2
q,...,p

k
q . 2(k + 1) .

(1 + p + p2 = + pk) + q(1 + p + p2 + + pk)

= (I + q)(1 + p + + pk)

k+1
= (1 + q) P

p -

2 k 2 k, ,2 2 2 2
1, p, p yo.eyp y pq p q,...,p pq p q

pke I

3(k + 1) .

0
1'

,k+1 3 k+1
e)(1 + q + 1 g=I- , P 1

p - 1 q 1 p - 1

k+1 +1
p - 1 qs - 1

p - 1 q - 1

/
m
1
+1 m +1

(n) = P1 1 P2
2

1 . .

Pr
- 1

P1 1 'P2 1

m 1
r+

pr - 1

6 = 2.3 ; d(6) =
2 3.4 = 12 .

12 = 22.3 ; Or
23 2

1 3

3 - 1(12) = 7.4 = 28 .

- 1

2 ,.3

18 = 2.32 ; 6(18)
2 - 1 3 - 1

2 ..,

24 - 1 32 1 15.4 = 60 .24 = 23.3 ; 6(24) 2 - 1 3 L
--->

- 1
28 = 22.7 ; (28) =

23 72
2 - 1 7 -

1

1
7.8 = 56 .

2
- 1 #-'

2
- 1 3

- 1 -5-7-T

2
- 1 5

2
- 1

30 = 2.3.5 ; d(30) = 3.4.6 = 72
2 , 3

144 = 24.32 ; 66 5144) = 22 : 1 3: : 1 = 31.13 = 403 .
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Arithmetic Functions III

One of any two consecutive integers must be even. Therefore

aside from the pair 2 and 3 , any other pair of consecutive

integers must contain an even integer greater than 2, which is

composite.

Exercise 1.

The primes less than 100 are 2, 3, 5, 7, 11, 13, 17, 19,

23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Exercise 2.

The twin primes less than 100 are 3, 5; 5, 7; 11, 13;

17, 19; 29, 31; 41, 43; 59, 61; 71, 73.

Exercise 3.

r(10) = 4 , v(20) = 8 , r(30) = 10 , r(40) = 12 , r(50) = 15 ,

r(75) = 21 , r(100) = 25 .

Exercise 4.

Proof: Suppose n is not prime; then n = pq where p is a

prime 1 < p < n . By hypothesis p > . But then q <

(;:therwise n = pq > = n) . Therefore q must = 1 ,

since if q 1 it has a prime divisor_which...is.._<..0"7._ _

Therefore q must = 1 , since if q 1 it has a prime divisor

which is < and which divides n , contrary to hypothesis.

If q must be 1 , then n is prime. q.e.d.

Exercise 5.

1781 = 13.137 ; 4079 is prime.

Exercise 6.

The primes greater than 100 and less than 225 are 101,

103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,

173, 179, 181, 191, 193, 197, 199, 211, 223 .

Exercise 7.

r(150) = 35 ; y(225) = 48 .

Exercise 8.

r(200) = 46 and (100) = 25 . The answer is 21 .

Exercise 9.

ir(n) 664,580 664,580 664,580 1.07- .

n
- M 4 342945 623,278

log n 10,000,000 7 7
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The Euclidean Algorithm and Linear Diophantine Equations

63x + 7 = 23y

No.

No. 3x + 6y = 3(x + 2y) 13 . Three does not divide

thirteen, so that there are no integers x and y for which this

equation is satisfied.

3x + 6y = 24 . Solutions: (4, 2); (6, 1); (2, 3) . Yes.

Three solutions. (2, 3). (6, 1).

2x - y = 6 . 4, 2) . Yes there are infinitely many.

x = 4 + t . y = 2 + 2t is a solution for any integer t . Any

non-negative t gives a positive solution.

Yes. If the slope, -a/b is positive and there is a solution

at all, then there are infinitely many positive solutions. If the

slope is negative and there is a positive solution, then there are

only finitely many. An equation may have solutions, and yet if

the slope is negative it may have no positive solutions. Then of

course there may be no solutions in integers at all.

(1), (5), and (6). Yes. Yes. If ax + by = c has a solution

in integers, then (a, b) = d divides c .

Proof: Let a = da' ; b = db' . Then da'x + db'y = c .

Hence if there is a solution d divides c .

Yes. For (1) . (2,

solution.

For (5) . (4,

solution.

3) = 1, 1 divides 5 and (1, 1) is a

6) = 2, 2 divides 8 and (2, 0) is a

(5



For (6). (2, 4) = 2 , 2 divides 4 and (2, 0) is a

solution.

Factor each number. Take all prime factors common to both

numbers. and raise each to the smallest exponent to which it appears

in either number 4-

See proof which follows.

Theorem: If d divides a and d divides b , then d

divides a + b and a - b .

Proof: Let a = da' and b = db' . Then a +'b = da' + db'

= d(al + 1:0) (Distributive Law). Therefore d diVides a + b .

a - b = da' - db' = d(al b') (Distributive Law).

Therefore d divides a - b .

253 = 11.23 ; 122= 2.61 . (1596, 96) = 12 . (418, 1376) = 2 .

(365, 146) =13 .

Yes. Given any positive integers a and b with say, a

greater than b , then there always exists integers ql and r1

such that a = bq
1
+ r

1
with 0 <f. r

1
< b . Similarly

b = r1q2 + r2 with 0 1- r2 < r1 . Continuing in this way we lave

a decreasing sequence of positive integers. There are only b 1

positive integers less than b . So that after at most b - 1

steps the remainder must be zero. If a and b aren't positive

integers, we can still find their greatest common divisor by using

the algorithm on la) and lb' , which are positive.

If x
o
and y

o
is a solution then x

o
+ b and y

o
- a is

also a solution.

General Solution: Suppose xo and yo satisfy the equation

and suppose x and y are any other solution. Then axo + byo= c

and ax + by = c .

,
.,

If we subtract we get a(x - xo) + b(y - yo) = 0 .

Divide by d

a(x - x
o

) = -o(y - y
o

) .

4(x - xo) = 4y _ yo)
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Since a/d and b/d have no common factors, x -,x
o

must be

divisible by ab ; let x - xo = ab t . Then substituting we hay.

a bTIT-t = (y yo) , and y - yo= - t . Consequently

x = xo + t

y a yo
a

t ; is a solution for every

integer t .

CHECK:

a(xo + d. t) + b(y0.- = c .

axo + by() +
ab

-
ab--at = axo + by() = c.

Yes, it is clear that any solution must have this form since

x and y were assumed to be any solution of the equation and it

followed that they had this form for some t .

5. Yes. x = 5 - 23t, y = 14 63t .

Answers to Problems:

1. x = 3 + 7t , y = 79 - 16t .

2. x = 170 , y = 110 ; x = 923 , y = 9 .

(x = 923 + 753t , y = 9 - 1010.

3. 5 and'6 (5 + 15t , 6 + 17t).

4 4 (9 - 795 , 4 - 37t).

5. x = 4 +45t , y = 1 4-14t .

6. x = 27 + 63t , y = 15 + 40t .
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Gaussian Integers

0

Exercise 1.

Let the numbers be a = 2n + 1 and b = 2m + 1

Then a
2

+ b
2 = (2n + 1)

2 + (2m + 1)
2 = 4(n

2 + m
2 + n + m) + 2%

Therefore for a and b odd, a
2

+ b
2 leaves a remainder'2

when divided by 4 and consequently is never a multiple of 4 .

Exercise 2.

Let the Gaussian integers be a +:bi and c + di ; a, b, c, d

rational integers. (1) (a + bi) + (c + di) = (a + c) + (b + d)i .

Since a + c and b + d are rational integers the sum and

difference are Gaussian integers.

(2) (a + bi)(c + di) = (ac - bd) + (ad + bc)i .

Again since ac - bd and ad ± be are rational integers the

product is a Gaussian integer.

Exercise 3.

2
No. 7 is not a rational integer.

Exercise 4.

No. 2 and 3 are Gaussian integers and -`- is not a Gaussian

integer.

Exercise 5.

No The quotient is 4i which is not a Gaussian integer.

Yes. 2 + 3i = i(3 - 21).

Exercise 6.

Yes. 3 4 111 = (2 + 3i)(3 + i) .

Yes. 3 + Eli = -1(-11 + 31) .

Proof of Lemma: N( c(('S) = N( )N( 6 )

Let 0( = a + bi , = c 4 di.

Then = (ac - bd) + (ad +

= (ac - bd)2 + (ad +

= a2c2 - L212 - a2d2

= (a2 b2)(e2 d2)

= )N

bc)i .

bc)2

- L2c2
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Exercise

If 4 and are, associates, then OS = .u, where u i!8 a

unit .

Then by the Lemma N(e ) = N( )N(u)

N( )1 since n(u) ='1 by
Theorem 1.

= N( ) . q.e.d.
Exercise 8.

No. 5 = (2 + i) (2 - i) . N(2 + i) = N(2 - i) = 5 .

Therefore 2 + i and 2 - i are not units. N(5) = 25 and
they are not associates of 5 by Exercise 7. Therefore 5 is
not a prime, since it has divisors which are neither un!.,:l nor
associates of 5 .

Exercise 9.

Yes. For suppose 3 = a6.

Then N(3) = N(af )N(0 ) = 9 .

Then N(0( ) = 1, 3, or 9. If N(0.() = 1, is a unit.
If N(e ) = 9 , then N( .6) = 1 and 63 is a unit.
Hence N(d. ) must be 3 if 3 is not to be a prime.

,But N( 0( )
a2

b2 = 3 is impossible for rational
integers a and b . Therefore 3 has no divisors except units
and associates of 3 and is therefore a Gaussian prime.

Exercise 10.

We consider all possible cases for rational integers x and y.
Case I: x and y both even; let x = 2x1 , y = 2y1 .

x2 y2 4(x12 yt2.
) 4n + 3 for any rational integer

n .

Case II: x and y both old; let x = 2xt + 1, y = 2y' + 1 .

x2 + y2 = (2x1 + 1) 2 + (2y' + 1) 2

= 4(x12 + y'2 + x' + yl) + 2 4n + 3 for any
rational integer n .

Case III: one even and one odd; say x = 2x1. , y = 2y' + 1

x
2

= y2 = 4(x,2 + y12+ yl) + 1 4n + 3 for any
rational integer n . Therefore x

2
+ y2 4n + 3 for any inte-

gers x and y . q.e.d.



68

Exercise. 11..

Yes Suppose 1 i = 0(0
N(1 + i) = 11(0 ( )N(q )

2 = N( )N( )

But since N( o{ ) and N( ) "- are rational integers, one of

them is 2 and the other is 1 . Suppose N(c)( ) = 1 ; then of

is a unit. Therefore 1 i is a p/ime since it can only be

written as a unit times an associate of 1 + i .

Exercise 12. . ,

Yes. N(1 - i) = 2 and we can repeat the same argument given

in Exercise 11.

Exercise 13.

No. Since every rational integer is a Gaussian integer, a

composite rational integer a = be has as divisors the Gaussian

integers b and c which are not units or associates of a .

Exercise 14.

(a)

(b)

(c)

5

13

17

=

=

22

22

42

12

32

12

(d)

(e)

(f)

29

101

1721

22

=
302

+ 112

52

12

+ 402

;
N

.

4
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Fermatts Method (IX Infinite Descent

4 Exercise 1.

37 = 62 4- 12 ; 41 52 4- 42 ; 897- 52 + 82 ; 101 = 102 + 12 .

Exercise 2.

Given: d divides x , d divides z , and x
2
+ y

2,= z
2

Show: d divides y .

Let X = dxt , z = dzt

d2Xt2 y2 = d2zt2 ,

y2 d2(zt2 )02)

Therefore, divides..y2 anl d- divides y

Exercise 3.

If 4 number is odd its square is -odd. If x , y , and .z*

are all odd then x26+ y2 is even; but x
2 + y2 = z

2
and z

2
is

odd. This contradiction shows that not all three numbers can be

odd.

'Exercise 4.

If a number is even, its square is even; if a number is odd,

its square is odd. Consequently, the sum or difference of the

squares of two even numbers is an even number and it is impossible,
4

therefore for z2 to be odd. But if z2 is even, thenf'so is z .

Exercise 5.

Given: z and y have no common factors; z y = 2v2 ;

z - y = 2w .

Show that v and w have no common factors.

Suppose v and w have the common factor d

z - y = 2v2

z y = 2w
9

Then adli

S.utractIn

2, 2 2
w ) , z = V 4 W :

ft

,-;
,_ WI')

"*

l'.44 L-. 2 - w2

If 1 jiviies livides w , then 1 divides

v2 w2 = z an! 1 diviies v2 ---a2 = y , contrary to the hypoth-
,

esis. There ore an i w have no common factors.

(
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c

Approximation of Irrationals by Rationals
-..

1. Assume that no box contains more than one object. Then the

total number of ob,:ects is not more than n . This contra-

.

dicts the fact that n j 1 objects were 'placed in the boxes.,

2. Theorem: If m is a positive integer which is not a perfect

square, there is a constant c > 0 depending on m such that

1 7 - 21 <
q

1

cq
2

no matter what the rational number p/q may be.

Proof: Let r be the integer such that r - 1 < VE < r .

Note that r > 2 .

Case I. p/q > VITI .

Then m2q - p
2

= (q m p) (q ViT1 -, p) > 1 ,

VT.--.

1

.--"

_ 1 1 1 > 1

1 q > q2 E > q2
2 Vi 71 (2r+l)q2

q

Case 11. VT: < /q. < r - 1 .

1 1/7 . 7 --
2 2
, 1 1 1

q- V T. -i + , , -
r q r+r+ 1 (2r 1) q2
fq
;.. ,

Case III, p/q > r ,

V/7

3 fl. . :. E VT < I i; h:_ _c

7I ,, , .:F ..--1. : to _c

7

(2r

:-/q > r
,-,

1
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A New Field

1. (a + b V=71 + (c + d V(25) = (a c) + (b + d) vc7.5

= a
1

+ b
1

5

(a + b t) - (c + d V:=5) = (a - c) + (b - d) V
= a2'+ b2 V:75

(a + b v/75)(c + d I/7),= (ad - 56d) + (bc + ad)

= a f b3 1/7"--5

Since a, b, c, d are rational, so are a
l'

b
l'

a2, b2,

a
3'

b
3

2. Since

a +.b 1/75 ac + 5bd + (bc*- ad) 1/7-7
V7-7a

1
+ b

1
5

c + d C
2

4- 5d
2

1/15-

when c + d V-75 0 (i.e., not both c and d are 0),

we have a
1

, b
1

are rational since a, b, c, d are

3. An integer 0( in R is also an integer in K , since

c( satisfies the monic equation of smallest possible degree

x - 4( = 0 . This equation has s.oefficients in R since

c,( is in R.

4: Write b = where p, q are inte_- o common

factors (except 1). We have 20b2 = 5.4 p2 /q2 is a rational

integer. So q
2

must divide 20 since it has no factors
a)

which divide p
2

. q
2 -

cannot divide 5 because 5 has no

factors which are squares. Hence, q
2

must divide 4 ,

i.e., q
2

= 4 . Then q = 21 and 2b = 2p/q = p is an

integer, as claimed.

5. Let divide (3 and . Then 63. of) , 6-2
a

So 6 + cr; + + 4).
Hence, divides . Similarly, c9 divides 63 a(

I
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6. Use the theorem (Chapter 5, Section 5) that tye conjugate of

a product of complex numbers is the product of the conjugates:-
N(0( = (0() qe ) = 6)(cPr(3) = (0(0 )(ca) =
N of N .

7. If n = 1 , A = a + b , we have a2 + 5b2 = 1 , the

only solutions of which in rational integers are a = ± 1 ,

b = 0 . Thus A = 1 , so A is a unit.

8. Since a, b are rational integers, we have a
2

+ 5b
2 >

5b
2

> 3 if b 0 . Therefore, b = 0 . Hence, a
2

= 3 ,

which is impossible.

9. Let p be a rational prime of the form 4n - 1 , and con-

sider the factorization p =00 , where of , 661 Taking

norms we get p2 = Na' . N. Since Noe is a rational

integer, we have either N of = p2 , p , or J. . In the first

case we have N 6 =1 , so 0 is ajunit; in the last case,

cy is a unit. Consider N o = p and let G,( = a + b .

This gives a
2 + 5b

2
= p . If a2b are both even, the left

member is even. If a
2
b are both odd, the left member is

even, since a
2

and 5b
2 are both odd. If a is even, b

odd, or if a is odd, b even, the left member is- of the

form 4n + 1 . Hence, it is .impossible that n of = p .

Thus the factorization p = g is possible only if of or

is a unit in J .

10. If 4 + V= 7 5 = , we have 21 = N 0( N . Now

N 3 or 7 , for as we just saw, N = p is impossible

when p is of the form 4n - 1 . Therefore No( = 1 or

N 6 = 1 , so that either cc or C3 are units. Same proof

for 4 - .1/775
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1, 2, 4, 8, 9, 16, 18, 25 . They are either a square or

twice a square. If '(n) is odd, then n is a square or twice

a square.

Proof:
1 m2+1 mr +l

Given: (j(n) = P1
p2

I
Pr

- 1
odd.

P1 1 'P2 1 Pr 1

Then each factor of the product must be odd.

If pl = 2 ; then ml may be any integer > 0 .

If pi is odd, all the powers of pi will be odd. Since

1 + gi + pi + . . + pii must be odd, then mi+1 must be pdd;2

i.e., mi is even.' Let mi = 2ti .

m 2t
2

2t
3

2tr
Then n has the form n 2,

1 p2 p3 . .
-
n
r

and we

may write
ml

2 (2 2 p22 )- if mi is odd
r

n = m1-1
t t tr

(2 p2
2

p3
3

. . pr )
2

if mi is even.

q.e.d.

In the second case ns clearly a square. In the first case

is twice a square.

If n = 2m-1(2m-1) and 2m-1 is a prime, then n is a

perfect number.

Proof:

We need only show that (j(n) = 2n . The prime divisors of

n are 2 and 2m-1 . We can make this statement only

because we are given that 2m-1 is a prime.

2m-I (2m-1)2 1
Then Cr(n) =

(2m-1) - 1

((2m-1) + 1) ((2m-1) 1)-

(2m-1) ((2m -1) - 1)
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(2m-1) (2m-1+1) = 2m(2m-1) = 2n .

If m = 6 , Al is not A prime.

If m = 7 ,:2m-1 is a prime.

If m = 8 , 2m-1 is not a prime.

If m = 9 , 2m-1 is not a prime.

If m = 10 , 2m-1 is not a prime.

If m = 11 , 2m-1 is not a prime.

If m = 12 , 2m-1 is not a prime.

If m = 13 , 2m-1 is a prime.

If m is not prime, then 2m-1 is not prime either.

Proof: Since m is not prime, let m = m1m2 , where

m1 and m2 are greater than 1 .

Than 2m-1 = 2m1 m2-1 = (2
1

)
m

-2 -1 = (2m1 -1) ((2m1
-1

+(2ml )
P2-2.

+ + 2
m
1

+ 1) .

m
1

m
Since 2 4 , 2

1
-1 > 3 and 2

m
-I is not a prime. q.e.id.

....100121

Every even perfect number has the. form
m-1

(am -1) where

21!1-1 is a prime.

Proof;

(Lemma: 0(mn) = 0.(m) 6-1n) To9'prove this, one

only needs to write out the expressions for Cr(m.n) , (j (m) ,

and Cr(n). and verify that 64mn) = a(m) Oln).)

-Let n = 2mq , where q is odd. Since -n is perfect

(1) g(n) = 2(n) = 2m+lq .

But by the lemma, 61n) = .02m) Clq) . Substituting in

(1) we have

.(2) 0'(2m) 0'(q) = 2m+lq
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Now 61(2m) = 2m+1-1 . Substituting in (2) we have

(3) (2m4-11) Cr(q) = 2m4-1q .

From (3) we see that 2m+1-1 divides q . Suppose we set

q = (2m÷1-1)q-/ .

On the right hand side of (3) replace q by (2m4-1-1).q/ ,

and dividing both sides-'by (2m+1-1) we have

(4) 3(q) = 2m4-1q . But q and ql are divisors of q and

q q/
q' .2m +1

= (r(q) . Henc these are the only

divisors of q. and q must be a prime and q/ must be 1 .

Therefore q = 2m +1_1 and q is a prime. But then

n = 2m(2m4-1-1) q.e.d.

Let the divisors of n be d d
1

, d2 ,
k

1 1 1
dl + dt

2
+ + dl

k
Then +

a
1

8
r2

Since n is ,erfect. (It should be shown that all d
i

are

distinct and actually include all divisors of n and each

only once.)

Another way of stating this result is:

012. (n) 611n)

In fact a more general result holds: CT(;)
n,

k(m1+1)_1 k(m2+1)_1 k(mr+1)_1

P1 p2 Pr
k(n)

p
k

-,1 p2 1 pr - 1
1


