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,
ORD TO Fr.Fif

.

In Chapters 1, Q, and., u, .t I wectudied polynomial,.circvlar;

exponentia , logarithm c, and power f.meti..ins. As 'we saw in Chapters 2 and

many pro erties of the graph J c,'te obtained from the know-

ledge of the derivative .;re= the fur.otio, :inc, tip., value of LhC deriiative

can be interpreted os - Je.-e t'v tanse,r.t line at a ppirit. Foe' poly-

' nomial, and circular 4h. ..,ne we we'sa to ,.d 'derivIltivec, which wEe

then used to dete-1, d corcr,wity, velocitwi and

45.
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studied fur.ctIon,-, !nd t:e differ-
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flinctions.
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0 4

In Chapter zd: sf :leo under the glaph of a- I

si :12, e,-,:. te. ar..41ated to that

T.e discvc.-,, of the relationship

between these t,,o ooncept,. w°:., Jne .o.: _ ,--re t treAtroughs an mathematics,

funeidn. The !e,

of the elope o: , n,j,_ l_ne

'first noted ('

9g

boullIded by the graph of

given ny F(h) w

result ie 2t.--

as ,,the Fund-rnt',1

Chapter i t-t%

(that i., tehe

vide a furth,er ror LeL=Jiol of func,t
tions:

1, to -h)a that th. arei 4

d ve'ftioel ot a ,hd ,3

e f.

pfound :el.tion.hip'known

to tr.od s, d , Tcnti tire; 91-ze-
,

Lgncept:

thre prb-

IntegratLri r: further in:Chapter ?,

' whic *-

tatior of,tht, of 'Ir.-.1-rr volume,: of .

solids of revolution, , and b ai-1,cutsion of remainder esti-

mates for Taylor atT-,roximtion...
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The appendices are intended to fill logical gabs'in the's intuitive

dozvelopment df the text and to extend the material of the text, concluding

,with Appendix 9 in which logarithmic and exponential functions are viewed as

so'utioks of simple differential equations. It is shown how the ,expression

of_ the
i
logarithm as an integral can be used to 6btain the properties of -

r---.

logarithmic and exponential functions. .. 1 NI
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, Chapter 6

k .. -

DERIVATIVES OFIEXPONENTIAL AND RELATED FUNCTIONS

. .

, e . o
. ,;!

, . . o

Thp derivative ofa polynomial function is again'a polynomial function.

Furthermore; the derivative of a circular function again aff9i'rcular func-
, N

tion. This kind of repetitive property appears in a very strong form for %
4

expoqential functions, for the slope of the tangent,line at a point
.

on the

,r.graph of an exponental function is proportional to the ordihate of the ,point.

The constant of propqrtionality is the slope.of the tangent,line at thelpoint'

where the graph crosses,the y-axis- Thenumber e is defined as the base

' for which the constant of proportionality is 1, from which it follows that
. ....

the derivative of x -)ex is the'same function x -)g
x

. These results,*
. . .1,

e§-tablished in the first two sections of thil' chapter as consequences of thy'
'..

laws of exponents and the assumption that x -)2x has a derivative
f

at x .... 'O.' '

Logarithm functions' were defined in Chap' r 5 as,- inverses of exponential

0 'functions. This inverse relation enables us to differentiate a logarithm

function

function

are then

by a folding process (Section 6-5). , Using the fact that a power

can be expressed in terms of exponential and logarithm funCtions we

able to find a formuil for the derivative of'a power"' function (Sec-

tiop 6-6). The concept of polynomial approximation, first discussed for

circular furctions in Chapter 1+, is then extended to exponential, logarithm,

and root functidq.s (Section 6:7).
a

6-1. The Tangent Line to the Graph'of x -)ax at -.(0,a0)

\ c.'
Now we wish to find the slope cirthe tangent.line to the graph, of

,,7 at some arbitrary point on this curve. Ou

and'for the circular functions was to first find the

. tangent line at ,the point where the'curve cfosses the

translate to obtain the corresponding results elsewhere. This procedure will.

,also be-followed here. In1oir previous discussiohs we found the'tangent as

the'line °X best it we then showed that the slope of the tangent at a'point

ocedure for poZynomials

uation or slope of the

ertical axis and then

is obtainable as the limit OT' slopes of lines conneWng the point under'con-

.)kideritionto nearby points. ,We_shall follow this Litter limft proCess here.

it
% '

4 ,

407
?

4 / \' I g
1....

4 .

: \
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.

To be concrete we first consider the problem of finding the slope of thq,

.tangent-to.the graph.of x --)2x at.the point,ohere x = 0. If, Ihi is:small

, .

the line connecting A(0,20) to Bkh,2
h

) will approximate the slope of the

tangent line at A(0,20 ) . (S§e Figure 6-la)

s.

= 2
x

//I

tr,
(h,2 y

/

,, N
.$/

. , 1 Figurg'6-la . . :
44.

If ,B 4 close to.%A, the slope of AB app ciprmates

the slope of T, the tangent at (0,1).

«.
The line AB has slope

We want to find

2 h. - 1 .
1 .

.. :

h
,

v

the number this ratio approximates when Ihl. 11..small.

, .

1;08 1-1
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, 6-1

Tdble 6-1

oh- .

--Values of t-
1

= small h '(correct to 3 places)

h

..

2h
,

. -.2.h

h
2 1

h

.10 1.07177 . .0717.7 - .718.

. ,05. 1.03526
. .

.03526 .7,05

-.01 1.066,9556 .0069556 .696

.005 1,0034717 ',, .0034717 .694

.00l 1,0006934 .:0006934 .6-)

-.05 .96594 -.03406 .681 ,

-.01 .9930925 .-.006907.5- h.691..

-.005 .9965402 :'-..0034598 .69f,

-.001 .9993071 -.0006929 .693

Table 6 -1 indicates some of the values of (1) for `small h. It iappears from

the table that

(2)

.

if Ihl is small, then

2
1r

- 1

where, to three places, k is 0.693.

1

While ty25is approximation to k is correct, 7e need more than ataLle of

vllues, no 'matter how complete, to be certain. Unfortunately, 'We have no

simple algebraic device for deterMi.ning the limit of this ratio as
. -

approaches zero. We'are assuming that the graph of x -32
X

has a tangent

at (0,1) and that the slope of (this p4enQ
2

h
1

s approximated by .

.'We shall assume that (2) is true and qoncent'rateitin the consequences of this

assumption.

a

If (2) is true we have that the slope of the tangent line to .the graph

of *x -42x at (0,20) is k. At (0,20) = (01) the equation of the

* tangent ls

(3) y 1tx.

For Ixl* close to zero we' have
,

.
.7,.. ,

4., ,

(4) 2
x

:".. 1 + kx.
. .--t: -...

. .-

119

1
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Now consider the function

1 t'

. a...., .

7

_
.

x -)a
x

where a > 0, a / 1. .

- .

In Chapter 5 we'saw that we can express A. as a power of 2. If a = 2.
a

we

can write

. (5) a
x

2
ax

If we.asume that Ixr is so small that krki is small,, then we can

replace x by ax', in (4) and. use (5) to obtain

( 6)

a

a ',T. 1 + k(ax)

In other words, the line with equation

= 1 +.(ka)x

4

6 is the tangent to the graph of x --)ax at'tlie point .0,1). The coefficient

of x gis the slope of this line, so the slope of,the tangen-Vto x --esa
x

at

x = 0 is %a.
.

.

. For example, since 4 = 22, the tangent line to the gl.aph of x 4
x

at x = 0 has the equation

y 1 + 2kx,.

Also, since = 2
-1

, the tangent to the graph of x x at X = 0,

VT

has the equasti9n

y =
k

-
-
.

O

The respective slopes of ties lines are 2k and -
k

.

2

In our di$cussion of the circular functions'we sgw that we could select

our' scale (using.ra4ians, 'rather than degree measure) so that the slope of the

tangent to y .,sin x at; x = 0 turned out to be 1. Similarly here we shell

obtain considerable simplification in our formulas if we choose- a in (6) 'so

that ka = 1. With ka = 1 we have a = Thus if a = 2
1/k

then our
1

result (6) gives'

,ax T 1. +.x, if ix', is -small.; '`e

that 1,s, the slOide of the tangent to x -)ax, at x = 0 is 10.

....vmnowns4.4,4,,64-mPS n

/ n -1



A AI

The' number' 2
1.1k

is so

=6-1

important that a special letter is assigned to it,

namely, e. We can approximdte e by

e.. 2
lik

, .where.

This gives the, approximation

(7)

$ .

e
x
»'l + x if lxi is small.

A
If .1bel is small then the -slope ofthe tangent to the graph of x ex at

(0,1), is. J

h
- 1 6e

h
;. 1.(8)

The,use of e in this sense olay be traced to the Swis.s mathematician

L fonard Euler (1707 -'1783).''Nlost of Euler's mathematical life was spent in

St. Petersbuxg,.Russia. His work is still being collected'and at present

numbers more than 80 volumes. The number e ranks in importance with the

number n- and is, curiously enough, closely related to m.

ifwe use 0.693 to approximate k we obtain

1
1 ' 1x443

so' that

e =
1/k 21.443 2(20.4)(20.04)(20

4031

2: 2(1.320)(1.028)(1.002)
AP

: 2.72.

Closer approximations to k will obviously improve this approximatiod. In

recent years, high speed computers have been used to obtain the decimal expan-,

sion of e correct to 2500 places. For the record, we note that the first

15 places are given by

2.71828. 4284 59045....

For our purposes either 2.72 or 2.718 'will.be good' enough.

The number p has been shown to be irrational, just as is *Z. In fact,

a 'much stronger result has teen established, namely it has been shown that e

is not the root of a polynomial equation wit rational coefficients.' The same

is true for IC. (The number V-2" is such a root; e.g., it is a root of

a.
x
2

- 2 ='0.) .

There is an important method for approximating e, given as follows

) 1

(1o) e (1 + )P for n large.n"
411-

14
I P
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,Exercises 6-1

1. Given the function ai

f x -tax for a = 8, .

6h

(a) Find the slopes of the tangent at (0,1) to the graph of the func- ,

tion for'each value of a
h..

(i) in terms of k, where ,k
% h %for small H..

\
(ii) as an IpprOximate value, using k 0.093.

(b) Find the equations of the tangents, for which the sloped yere

obtained in part (a)

(c) On one set, of axes for each value of a given abOve, sketch the

graph of

%
(i) 4the function;

(ii) the tangent obtained in part (b).

2. Given (1.8)5.

(a)- Using the table for va4ues of 2
h

,

(i) expresa (1.8)5 a's a power of 2;

(ii) approximate the value of (1.8)5 from 2a(i).
,

(b) Using the table for ex and ex

(i) express° (1.8)5 as a power of e;

(ii) approximate the value,of (1.8)5 from 2b (i).

,3."Folleit,the instructions of Number 2 for (049)5.

0. .8
4. Follow the instructipns of Numbgr.2 for (1.02) .

5.. Obtain bounds for (1.01)1°°, iff'ing the table for Va.ues of 2h as
.

ollows:

(a) Write

4 .1

)1°° as an inequality

a 100 0.00- a2
(2 1) <0.:o1) < k2 )

100

1°Cia
1

100a

(b) ,Evaluatel 2 and 2
2

, thereby obtaining upper acid lower

bounds'
(1.01)100.

6. Obtain bounds for
_(0.5)-12,

using the table for ex and e-x,, ,and

following a procedure similar to that of Number 5 k6

1

-

t

4.
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Consult the' ketch to write

the slope mc;-bi Lihe L.

.,o

xi
y =, e

4h,e,)
h.

a

(b) Write an expresOon fo;.: m0 :1. and h / 0. .

e, , oft

(c) Use your expression,from part (b) and binomial expansion

approximation for e t6 one 6ecimal place if hc.01.

the result of part(q tq show that e

-
of (1 +

1 n
as welet, n grow,large

n

(d) Improve upon

As. the limit

8..Whiph is larger 1001
1000 or

'Show that at ;x = 0 the slope of

the tangent ;to the graph- of the

10
1001 7

function

3x
x --> e,

is clo e to 3 when ihl is clOse

toe o; byecompleting the folloW-'-

ing ables.

1.

A

II Y

x

to give an

may be defined

withOUtbound.

B(h,eh)

y
3x

.4

4

6
s

h
i

3 e
3h

, ,;..

e
3h - 1

\ e
3h - 1

.20'

:15

05

.01

.0$ I. ,

.

, %

,

.

-

.

'

1

4

t
4,14

Or' e

4A



.10. Stow that at x = 0 the slope

the tangent to the graph of

1

the functfion

x/2
f x e

I
lose to 7 when 111.1 is

.clo e to zero, by completing these

tabl s.

.1 . 4

1.2

2

6-1 g

B(h,eY2)

A(0,1)

, 4 t
4 .6

a

I

h
t

. 7b e
h/2 h/2

e 1
e

2
-

h

59
.4o '

39
.2d

.10\

.o6

.0? \

-

Ii.

)

.

.

.
h

.

11.0 Show tht at x = 0 the slope
.

of the t ngent to the graph of

the function

f : x e-2x

is clqs,e to -2 when 1111 is

close to ,zero, i9y comple,ting

the following tabled. .0

1 .

1.6
.

.

1.4 t .

A(0,1),, *
\

.1P
NMI

111M

.

IIIik B.0126(21
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h
,

2h
.

7

-2h
e
-2h

- 1
e
-2h

- 1

h

,.20

.15

.10

.05 ,

.02

.,01

.005

,

.

.

. %

.

.

I

..

'

a

-

.

12. In one of the ploblems of Number 1 we round the slope of the

equation of the tangent at the point (0,1) to the graph of the func-
r.

tion

f : x -4 8x.

In terms of an inequality, approxikate this slope to fOursignificant

figures after filling in the following tables.

(In the first table, -h approaches zero through positive values from

the right, and, in the second table, h approaches zerothrough nega-

tive values from the left.)

h 3h
3h

2
.

2
3h

- 1

.

2
3h

- 1

h
. . ,

.20
.

.15
.

,

to, .10 .

.05 .

.

.

.01 t.. _

.006 . .

.!,

.0006 ,
-.20

-.15 .

-.10 . 4

-.01'.

-.bo6. . ,
. -

-.0006

. 416
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,

6-2., The. Tangent at an Arbitrary. Point

.cf

In the previous section we obtained the result

. l.

(1) . a.' ;--: 1.+ (ka)x,- for !xi small,
,

.

h4
r 0

. 2 -

Where a = 2
a

and k. is the
. 1
limit of. as h .approaches 0.

11

e .

,

1

With za,..-.,e we have the' simpler result'
.

e

ex z 1.+ x.

We shall now 1.thow, that. the tangent, line to the graph of

t

f x sex

P(a,ea

D

6-2

(2) y = + ea(x ; a)

o
4 that the slope of.th-e graph at P is e

a
, :the same as the ordinate e

a
.

,

(bee Figure 6-2a.)

'\

Figure 6-2a

Graph_of v = ex with tangents T
1

and T2

. 417
.
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6-2

L
Then

(3)

J.

result \48' put
'

x = a (x - a) in ex.

ex = ea+(x-,a)

. a

= e e

r

)
If x is close to a, x, --a is close to 0 and hence,

, r` 0 1
').\ .

)_._
V

X-8
e 2: 1 + (X - a) . -

.. .0. e

Substituting this result in (3),, gives

The tangent

y= ea +e (x- a).
a

ex r. + ea(x

to the graph of x

(5)

'
As

- a).

at (a,ea) has the equatiOn

,
At the point (a e

a
) the slope of tAe tangent to the

traph of x e
x

is
, ea,. /

IL

in our previous discussion, the resulting "slope, function is called

,the derivative. That 1.s, the dertivatiye of ,x ,,-,) e
x

is the function whose
, 1 ..,,,

value at ),%-wtis the slope of the tangent line at (xiex). We restate (5)
using derivative terminology. .

-
.-..:

. ':.

(6)

A
If f : 'x e

X
then the derivative is 'given -by

f' c -) ex.

''' In particular,

(7)

",

f : x ex is a solution lio- the differential equatiorT4-, .

f' f. ° ' *

LEXample 6-2a.. Find the equation of the:tangent to the graph of f : x

at the point (3,e ) .

For f : ,x ex we have the derivative

f' : x

so that f7(3) "e3. The tangent to the graph of 1". at

e3 has the equation

y -e3 + e'(x 3)a

148

21
t

with. slope

ex

77.
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3: Write an equation of the tiangent to the graph of f et,each point

(x,e) .given in Number 3. ,I)
24. (a) Thpough the point (3,4 ) .draw a line L1 with slope m = ..

(b) PlOraw a line L which is symmetric to L
1

with respect to the

y-axis.

(c). What point on L0 corresponds to the point (3,4) on Li?

(d) What 'is the slope of* L'o?

,(e) Consider the,general case: line L drawn through point (r,$)

with slope = m, andline L2 symmetric to L1 .with respect, to

the y-axis. 'What point on L2 corresponds to point (4,$) on

°. L1? at itsthe slope of
.
L2?

5 (a). Plot the points (x,ex) for, which x = ;2.0, -1.8, ..., 0.2:0.4;

1.6.' '.

(b) Through eacY of these points draw the graph of a line having slope
.x

m = e . °

x'.(p) Show that these lines suggest the shape of the graph of f : x 4.

6. (a)' For each point plotted in Number 5( a) locatt the corresponding point
.1 .

which is symmetric with respect:..to thej,-axis; then through these

points draw lines symmetric to those of Number 4(b) with respect to

the y-axis.

Chow'that each point located in Number 6(a) lies on the graph of
-x,

g : x -4e e

(c) Compare the slopes )f the lines drawn in Number 6(a) with those of

NuMber 5Zb).

7. (a) On one.s4..- of coordinate axes draw the graphs of f-: x *ex 'and
-x

g : x )e t

(b)" Compare the slopes of the graphs drawn in (a) at x = 0, +1, -1.

(c) Compare the slope O'Nthe graph of g at x = h 'with g(h).

I.

gio

, .
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.

6-3. Appiicationli of Exponential Functions.

- :
Exponential functions arise.in practice in the studyrof groNtla or decay.f

We discuss compound Interest in this section and give ther applications

in the exer4ses.

Compound interest.. Suppose that P dollars-is)hvested at an annual

rate of interest of r per cent or
100 '

and iat tle end of each year inter-

est is compounded, or added to,the principal. Afte..2 t years the total amour* o

A
t

on hand is given by ,

r
At = P(1 + y55)

t

However, the interest may be compounded semiannually, quarterly, or n times

a year. If interest is, added to the principal- p times pe.r..year, e rate of

r 0 , '\th.

interest is 5755,71. per period, and tg nuthber, of'periodt id t years is nt.
-

. 4
.

,

Hence, the amount Aht, after nt. periods (that is, after -t years) is

.
. .

(1) +
r Int'

nt 10On'
4 .

c
.

. .

The more often you compound interest, the more complicated tne'calculption be-

. comes. On the other hand, if we let n in (1) get larger indefinitely, we

approach the theoretical situation in Itihich interest is compounded continu-

ously; we shall see that the resultobtained Will enable.us to find easily a

A

very satisfactory approximation for the amount of money on band at the end of

a reasonable period of time-.

To study this idea, let,Tiv - h sd that n -
1(40h

Then, (1) bec

( )

At = + h)
rt/100h

-
h)1/hirt/100

)
.

. . .

For large n, ttie value of h approaches zero and the right side of'(2)
,

approxifnates N

A = Pe
rt/100

3

4/0

514

/

the theoretical amount that would be obtained if interest were comp&nded con -'

tinuouslyat r per cent. Thus

I

A = Pe
rt/100

a

421
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, f

. 11/4

Example 6-3a. If $100 is invested at 4 percent for 10 years, com-

pare the amount after 15 yeIrs when interest is compounded continuously with

the amount after 10 years it' 1,nterest is compounded only annually

. We have P = 100, r = 4, and t = 10 (years). If interest is compounded

continuously, (3) gives

A = 1 00 e0.4
/,

which is aloproximately 149. - .

To compute interest compounded annually we substitute the above values of

P, r, and t in (i). This gives

--Alo
no( . o4)

lo
.

)

MTImay use a table of-common logarithms to estimate A10; thus

A10
100(1.48) = 148. i

The results, $149 and 4148, differ by a, surprisingly small amount.
4.

A

422

025

C

4
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t

1. When hrsisOn Jack-wa

education. Intergst

How much money will'

--' eighteenth birethday?

2. Using 2 vg e0
.693

, find how many years it takes to double a sum of

. invested at- 3 per cent compounded continuously.

_

N

Exercises 611

6-3 *.

4

borniHMr. Toffey invested '11000 for JIck's college

is compounded continuously at a rate.of 3 per cent.

Mr. Toffgy have for Jack's education on Jack's

money

3. lack Toffey (of No. 1) earns a scholarship and elects to wait andto

e" withdraw his father':, investment when it has doubled. How old will Jack

be when he withdrq0s the $2000?

Determine ho'- many year: it 4111 t4k0 to double

at

(a)

(b)

5;0 The

one

6 pdr,centcompounded continuously;

n per cent compounded continuously.

a sum of money
a

I

invested

9uantity (1 +
1 n

can be interpreted as the Value at the end of

year of a deposit of one dollar left to acquire interest at an

annual interest rate of _00% compounded n times a year. If the ft.;

terest is compounded continuously, that'is,,if.the interest 10 caLculated

,;s the limit in which the number n of -Iiiterest periods approaches

infinity, the value of the prihcipal st the end of ope year will be ,e

-dollars, $2.72.

(a) A California savings and loan association Qffers an interest rate of
f 1f

".4.85% compounded cont;.nuously. 'What is the equivEilent annual

interest rate for more' left on deposit one year?

(b) Uow long does it take for an amount of, money at the same interest

rate (4.85% compounded continuously) to doubly itself?

6. At h kilometers above-sda level, the pressure in millimeters of mercury

is g1ven by the formula

/ P = P e
0

-o.11445h

where P.
0

is the pressure at sea level. If
-

.4. is the pressure 180 millimetert of mercury?

A,

PO =`760, at what height

423

264



6-3 '

7. A law frequently applied to the healing of wounds is expressed by the

formula

-nr c
o Q=Q

0
e'

where Q is the original area of the wound, Q is the area that
0 0

remains unhealed after n days, and r is the so-called rate of

healing. If r = 0.12, find the time required for a wound to be

half-healed.

8. If light of intensity I0 falls perpendicularly on'a block of glass,

its intensity I at a depth of =x feet is

= IOe
-kx

If one, third of the light is absorbed by 5 feet of glass, what is the

intensity
1 1?

u,

10 feet below the surface? At what depth is the intensity'

i

424

27
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6-4. The Derivative of a Logarithmic Function

The graph of the logarithmic function

x -4 loge x, a > 0, a / 1,

can be obtained by folding the graph of

x
x -44

over the line y = x. Just as in the previous section we can 1.1se this folding

Trpcess to find the deriyatiVe of x log,ds. We discus fir,t importan:

case when a r e.

Suppose ( c,d) is a point on thu graph of;,

f : x log, x

o that

(1)

so, that

/

loge c = d. Hence,

= ed

(d,c) lies on th4graph of

g : x ex.
11

The tangent line L
1

to graph of g at tke point (d,c) has slope gt.(d),

where gt is, the derivative of g.. Since

gt x,)ex

we have gt(d) =.ed, the slope of the tangent L
1

to the graph of g at'

(d,c). he process,,of folding over the line given by y = x carries L1 in-

to the to entjline L to the graph of the logarithmic function f at the

point , ) (See Figure 6-4a.)

5

1.d
425

28,



;

Tangent-1,0e, L
1

folds over the line given by y = x onto tangent line L.

The slope of \L is the reciprocal Of the slope of L
1

-so that

the slope of L =
r

.

e

The slope of L is the value of the derivative of f : x )loge x at the

point where ',1x = c. Tjs

426.

29
A
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6-4

To express this in terms of c, we use (1) to replace e
d

by c; obtaining

(2):

In general we can say, f_sylr

ft(c).= .

x

if

then

f :

ft

x -4 19ge x

: x -4
1. "

X

We can rewrite.S2) as

D(loge x).-=

* !

The tangent line to the-graph of _f at the point (c,d)' has slope' ,

ft(c)' and passes through (c,d) = (c, loge Hence the equation of

the tangentline is

y = loge c + 1j..(x - c).

If x is close to e the tangent line serves to approximate the curve and

we have .

(4) loge 5: tt.loge c + la(x -

Or
i

The derivative of the general logarithm function loga gn be obtained

by aoprocess similar to that which we used to,derive (3). It is also a simple
. ,

consequence of a relation,derived earlier, namely 4
log

a ,

x

loga'x if a >,0, a rl.
log

e

fi

In fact

1
p log x =
. a log

e
a x

-Os

427

30
N-
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6.4 A

Example 6-4d. "Find the equation of the tangent line to the graph,of
A

X -4 loge x; at p- oint where x e.

4

Knowing that log e = 1, we see that (e,l) lies on the graph,of
.A.

x -41og
e

x. Since D log
e
x =

1
-, the slope at
x

tangent at:..(e,l) has the%equatiOn ,-,

1, %

y = 1 + -e-x - e).

4 The 'function x -)log
e

x is referred- to in Most 'advanced works as.the

logarithmic function and denoted ',Amply by log without sub.;cript. Common

logarithms (1.3garithms with,base 10) are still useful for hand computation

but with .the advent:yr machine computation, they have lost much of their once

great importance.-"`The logarithms used in anagrsisare almost invariabl

logarithms with base e and.are xe2erred to as "natural" logarithms.

(e,1) is
1

Hence the
e'

In most elementary texts logl-''Mean8 logio x and x means floge x,

in most professional literature log x means loge x; in this text we 'shall

try to avoid ambiguity by specifying the base of a logarithm unless

A

the' con-

text makes the base Perfectly clear.

John Napier (1550-1617) is justly regarded as the inventor of the

lo rithmic function. Although the basic idea was definitely "in the air" of

his times, he was the first to publish a table of a logarithmic function

(1614) and his idea's bout logai.ithmswere more iksightful and efficient for

the construction of tables than those of his contemporaries. Napierian,

logarithms, usually thought to be logarithms to the Lase e, are in fact

given by

Napierian log x = 10
7

logife (217).
10

Henry Briggs (1561-1631)'was largely responstb.le for the introducti-c\fiof 4

logarithms -with base 10 for the purposes of computation.

A table of natural logarithms (logarithms(logarithms to the base e) is

in,the accompanying Booklet of Tables (Table 6). We can use this table to

compute logarithms not contained in it, if we apply the properties of logarithm

functions.

, 0

ir-



example 6-4k

6-4

Find.44. 1.44. Since. 1.44 = (1.2)?
..

log
e

1.44 = log
e

11.2)2 = 2 log
e

1.2

2('0.1823)

0.3646.
I.

We can also perform computations using these properties a-nd t4e,Table.

Example 6-4c. Compute lq. approximately,

loge lq = log
e 2

31 -1/2 = log 3 . -..

e

1
z . 1.0986

.5493.

Since. loge 1.7 Z 0.5306 and loge 1:8 z 0.5878. I is between 1.7 and

t.8. Interpolating,

"

.6

r

a

11;
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,\ Exercises 6-4

1. Using the table of Natural logarithms find the approximate numerical

value for each of the following:

(a)

(b)

(c)

(a)

loge(1.96)

loge(2.03).

loge(0'.52) in

(i)

(ii) loge (0.52)

loge (0.052)

two wags:

loge (0.52)

(e) loge

2. Using the

-value for

(a) /27,

(D) 3 Fri

( 7521200
39,000,000'

=loge

loge

[Hint:

[Hint:

(3.9)
7.5

1.96 = (10)2] t

2.03 = (2.9)(7)]

tables for natural logarithm's find the approximate numTcal

each of'the following:

3. For some x close to

loge c - c). Using,

loge 2 .6931, find the

(a) loge (2.01)

(b) logy (1.g6)

4. Using the results

the follOwing:

(a) (2.01)5/3

(b)
6
1/1.90

5.

t

(c) '(94)2/3

(d) (100)1/2

we have by (5) loge x approximated-by

only this formula and the table value,

following logarithms:

(c) loge (2.03)'

(d) .loge (1.91 +)

3,-find an approximate value for each ofof Number

() (2.03)°.6

(d) (1,94)1'1

is the x-intercept of the following?

x 2;R 1g 3x

x.--) log
e
2x

(iii) x -) loge x

.4

430

33

x -) loge3

x loge

: . . .. .........

"+,



(b) Given: x loge kx, 1t(constant) > r.

The x-intercept'aiu'et-- be- in what interval?
_

(1.1) As k gets 'very large, -what does the. x-intercept approach?

6-4

(c) Given: x log
e k
- --k(constant) > i.

(i) The x-intercept must be in what, interval?

1

- .
(ii) As k gets very large, what does the x-intercept approach?

6. (a) For a given absqssa, -what is the vertical distance between each

of the followingi -- --'4-
.

(i) 2: 4 loge 2x and x.. 4 loge x

) (ii) x .-->. loge 3x and x 4 lolit-X
e

.(iii) x loge 4x and x -loge 3x

(iv) x loge (k + 1)x, and x lode kit (k > 1)

(0 In Number 6(a)(iv) above_, as k gets very large, that effect does

this have on the vertical distance?

(a) For a given abscissa, what is the vertical. distance .between each

of the following?

X
X -4 1S2ge x and x 4 loge

(ii) x loge -f and x 4 log -
e 3

X X
.e". (iii) x 4 -5loge and x 4 loge T

(iv)
x

x -4 loge it- and
x

x -4 loge
k + 1

(k.> 1

(b) In Number 7(a)(iv) above, as k gets very large, what effect does

this have on the vertical distance?,

8. (a) Find the derivative of the following functions by using (14) and the

property, log ab -4. log a + log b. [Hint Refiember that the
.

derivative. of a constant is zero.)

(0 x loge 2X (iv) x 4 log
e 3
A-

z A-
(ii) x 4 log

e 2
- (v) x 4 loge kx, k > 0\

(iii)' x
I
4 loge \Sx \ (vi) x 4 log i , k > 0

. '
(b) Find the slope of each, of the curves represented in part (a) Of

.

Number 8 at the point where" x "=e ..
.

r"*-^
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6-4

ti

+) Find the coordinates of the on each curve above where x = e.

(d) Find ehe equation of the tangent line to each-of thecurvts at' x = e.

,,(e) What are, the.y-intercepts of each tangent?

-> , A (ii) Show hat-the y-intercepts of the tangents to x :9 log kx

and x +ebloge (k > 1) are symmetric with respect to the

or . A'

I

"1\

-q

(f) Sketch arefully. the following on one graph using the same'set of
Aik

axes, or the regron: Q < x < 3.5, -3 < y < 2:

s : x -4log
e

x, and its tangent at x = e;,

f : x :4 loge 2x; and its tangent at x =,6; and

f x -4loge 7 , and its tangent at x = e.

Indicate, (where possible,)

x- end y-intercepts of logarithm curves

xi and y-intercepts of tangent lines

parallelism of tangents

vertical distance between tangents

vertical distance between logarithm curves.

log a
b

= b log a.9 Using the law of Toga

(a) Find the Wivative of the following

(i) x -)1e5g
e

x
2

,

(ii) x -)log
e
x3

(b) Sh?.R/thpt

(1) n n..

e
D log x =

.x

(ii) D log
e

96T =
nx

(iii) x loge Tc

(iv) x log 3iT,c

,
,

(iii) loge(cx + d)n -
cx

nc

+ d

(iv) D loge nr7-czic) n(cx d)

J+

I)

43..?
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X10. Using the results of Number 9 above

functions. [Hint: 1,111en,fox.mula, aoo not

of logarithms: log ab = log a + log b,

.

log a

7
find, t'he de riutive

seem to apply,

log
a
- = log a

x

= b log at log
1

= -16g a.]

*log (5x + 1)3
e

-)log e(4x`n 167)

-) loge' x(1 - 2x)

) loge x2(3x - 1)

s

6-4

:

of the following

remenr the laws

- log b,

(e) x -) loge (loge 9x]

(f) x 4, loge (sin

x -
(g)i'x -) loge

2

2x

+

1

1

fr-T-7,
(h) x -) loge

1 - x

s.

Find the equation of the only tangent to the graph of .t - loge x that

passes through the origin. Comp your equation with"the resLzlt of
.

,Example 6-4a.

I

1

O

4.

4
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t

6-5. .Taylor Approximations to the Function- x
x

.

The derivative of x )e
x

is x 4 ex. Thus the second and higher derive-
_

x'
4

tives of x )e
x

..are also x -.)e
x

. Id other words, iS f(x)'= e , then

(1)* ex = ft(x) = f"(x) = f(n)(x) =

Just as-we,did for the sine function we -now seek to fixed polynomials with the

same derivatives as x >e x. More specifically, we wish to find a polynomial

p such that

(2) "

(a the degree of p does not exceed n

(b) ; p(0) =.1 =
e0

(c) the values of the first n degivatives,at p and

x e
x

are the same for x = 0..

For example, consider the case for which "n = 3. We put

p(x) = a + bx + cx + dx
3

. We have

4

so that'

p'(x) = b 2cx + 3dx
2

,

plx) = 2c +

p'"(x) = 6d;

p(0) = a,' p'(0) = b, p"(0) = 2b, p'"(0) = 6d.

Suppose f : x )e,, so that

f(0) = 1, f'(0) = 1, f"(0) = 1, f'"(0) = 1.

Hence, if p satisfies (2),then

1 = a, 1 = b, 1 = 2c, 1:= 6d;

so that p is necessarily given by

(3)

'In general, we have

p(x) = 1
2 3

x x x

x 2! 4- 3! 4. n!

I

as the unique, polynomial which satisfies (2). These polynomials are called
*

the Taylor approximations to e
x

.

Brook Taylor - English 1685-1731.
43/4
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In Chapter 9 we shall use area principles to establish the result:

2
x
n

e
x

= 1 x t
x

+ + -- +
n.
r

n'

I

.14here the ,mminder term R
n

satisfies the inequality

M n +1

(5) R
n 1)1
< if 0 < x < M.x

+

°'-filitieTrftgra:imple, if 0 < x ,< 1, then

- where

2 3
x x

e
x

= 1 x + R
21 3: 3'

i4

e x
R
3
< 77- ,

4.

._ )
X
2

X
3 4

.. And e
x

= 1 + x + 7.7 + + +
d. 31..., !,

' e its
where R

4
<

51'

.r
. . ' 1

. .).

Fdrmtiol,as(4) and (5) are useful in constructing exponential tables. We

R
4'

observe that it is necessary to find e
x

only for 0 < x .Larger powers

can Oe calculated from knowledge of these. For example, if we know e
0113

then we cdifind e
2.13

by using the relation

'2.13 2 0.13
e 7 e e .

Negative powers can be obtained by taking reciprocals. Thus e
-1.3

-
1

e
1.3

Suppose we wish to construct tables of ex for'.0.< x < 1, rrect to two

decimal place s. We first choose n large enough so that the error term R

cannot affect the first Iwo places. We observe that OQ [0,11, e
1

< 3, so

that formula (5) gives

e x
n +1

R <
n (n + 1):

<
(n + 1):

We can therefore estimate correctly to two decimal places if we choose n so

.large that 3 < 0.005.

Rewriting we get
(n + 3 1)1 . 105 or 600 < (n + 1)1.4.Since 6: = 720;

we can choose n = 5 and then know that using the formula g
.

436
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1

2 3 4 5

ex xi 1 + x +
x 4x xx
2! 3 't

will give answers correct to two decimal places for 0'< x < 1.

Example. Find e0 .1 correct to three decimal places.

We first estimate (5) with M = 0.1. We know that e'l< el < 3, so we

need only choose n so large that on (0,11

We have

Yr e0.1 xn+1
3 10411+1) <

Rn + 1): (n + 1):
.0005..

r

10714 = 0:125 x 104 < .0005.

Thus we know that, correct to three decimal places,
_

e
0.1

P4

=

1

1

+ 0.1

1

(0.1)
2

+
(0.1)3

+
2:

1 1

756.

3:

1.105.
200 +

We,can also.use (4) and (5) to obtain limits as x approaches zero of

various expressions involving ex. The next example illustrates this method.

Example 6-5b. Find the limit of

(1 - ex)(1 - cos X)

x3

-1

as, x approaches zero.

We shall do this first in a rough way.

x x
2

Since e 1 + x% and cos x 1 - --
2: '

a
'2 3

(1 ex)(1 cos x) =
2

x.

(1 - ex)(1 - cos x)* 1
Hence,

x3
P 2

and the-requif'ed limit is -
1

2.

d

More precisely we can take account'of the errors made in using the

approximations to e
x

and cos x if.we use the rema]indera R
1
.and R

2
in

437
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Then

exe = 1 + x +

2n
cos = 1 - +,R2

2
ex)(1 - cos x) = (ix .f R1)(E2- -.R2)

x3 2
= x R2 - 2 R1 +

3. [ .1.
2

, R

x2

R

2x

R R J

x3 j

2
ex

Since 0 R
1 2:
< for x on [0;11 and

44114 4
0 < R < r-

2.

then
,. 2
R R R_R7 ,

i
and approach 0 and lim1 2

Akt x 11 ., ..
x -.)0

s:
(1 - ex)(1 - cos x) 1

x3
f

The result (4) can also be used to shOw that if x is large enough,
,

x
e > x no matter how large the exponent k may be (k a positive integer).

FKom (0- := for any x > 0,.

Let tit= k + 1. Then

....

and

This means that, when x..>

4:4

that, is,

n
ex >x.--

n:

k+1
x

e
x

--r-
n.

ex
1

xk
>

'

- ,

I x
e >,xk.

fe,

, 438
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Exercises 6-5

1

1. Write the first four terms of a polynomial approximation for each of the

following.

(a) ex (d) cos x

'(b) -ex (e) -cos x

, (.c) 1 - e,X (f) 1 - cos x

6-5

-- For Numbers 2 through 5 consider thei,graphif each function. Write the poly-

nomial function, which serves as the best

(a) linear

.(b) quadratic

(c) cubic

approximation to'the graph of the function near the y-axi.

f x -4y = a0 + alx + a2x2 + a3x3 + a4x
4

3. g: x -4sy = sin x

4. F x = cos x

G :x = e
x

6. Do You suppose that there are polynomial functions that can serve to

approximate the graph of

f r x = loge x

at the y-axis? Explain;

'0
7. Compu'e 21 places. Obtain the value of.01

r

each term to six,,places, contin!ing until you reach terms which have only

zeros in the first six places, add, and round off to five places. How

many terms did y?u-rteed to uSe? No that even though the remaining

terms are individually less than 0.000001, they might accumulate to

moo
give a very lhrge sum; inthis particular case, they do not.

/*ion to e by computing successively

e0.2 (e0.1N2 eO.4 (.'S =.(9.2)(e0.8).
,

8. . Qbtain,..en,ap

s

r.;

Use the estimate e
0.1

1.105 of Example 6-5a.

439
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9 ; Suppose

2

,P(x)=1+x+x +
n

1.7

.that p17.1 (x) = pn(x) - )1iT

(b) Show that 41 (x) < pn(x) if x > O.

(0 Deduce from (b) that pn(x) < ex if x >,0.

(Hint: Observe that at x = 0 both functions start`the same.

Then determine what affect the slopes have upon the graphs when

x > O.)

10. Suppose. 'c > 1 and

2
3

2 3

g(x) + x L! cx
330 = X

x, x

(a) If x > 0 show that: g(X) >153(x).

(b) Show that if 0 < x < 3 (c 1), then g4 4x) > g(x) for x > 0.

(c) (i) If x = 2, then c < 2 <-3(c
c

1) . *What is the smallest'

integer
s

which satisfies this conclusion?

(ii) If f : x ex show that g(2) > f(2).

(d) 'By an argument involving the comparison of the slopes of f and g

show that g(x) > f(x) for 0 < x < .

11. Let

2

p
n
(x) =l+x+x +

n

2 0n-1
gn(x) = 1 + x + + + x

(n - 1)! n
where c > 1.

Show that

n(c - 1)pn(x) < e x < gn(x) for 0 < x <
c

(Hint: See Nos. 9, 10, above.)

12. Using thea...lunctions pn(x) and qn(x) as well 'as the results- of

Numbei- 11, deduce that

ex'
n!

- pn(x) <
(c - 1))J1

if' 0 < x <n(c - 1)
c > 1.

13. What degree must the Taylor approximation be to give ex for IX I 4(.2 .
reorreet to two decimal 'places? three decimal places? (Use the estimate

,e
2
< 9.)

449,
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6-5

14. What degree must the Taylor approximation be to give ex for

Ix' < 0.5, correct to four decimal places? (Use the-estimate e().5 < 2.)

0.001
15, Find e correct to five decimal places. Do the same for e-0'091.

.es

-11f.1 (a) Replace
.ecx

by cx to obtain approximations to of degrett

<5.
2

(b) Find-a polynomial approximation to e
x

of degree < 8

17. Find the limit of each of the following expressions as x approaches 0.

2

(a)
(1 - e-x )sin x

x
3

(b)
ex - cos x

x

(c)
cos x - e

x

sin ;3

18. Find 'lib. e el

x -41

C

oas

9

CZ>

ft.

441
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6-6

r-S\ The Power Formula

The result for the derivative of.x -)e
x

tives of the so-called power functions-

f : x xr,

enables us to find the derio-

where r is any real number, ration91 or irrational. We know from Chapter 2

that if r = n, a positive integer, then

f': x nx
n-1

.

It is remarkable that -f' is given Fy tk-corresponding'formula for any real.,

'number r, so that

r -1

We shall prove this important result:

If f x -,x-
9

.

then f' x rxr
-1.

We start with the remark that for any positive number z

If, inparticular, z - xr

Since

loge z
= z.

.

log x
r

= x .

A

loge xr = r* loge x

r log x

'(2) xr = e
e

."

For ,x need' some number, say b, we have the hest linear approximation,

log
e

x z loge b + (x - b).

Multiplying by r, we get

r loge x r loge b +

442

Oil
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From (2)1 we have

Thus,

log
e b

b +11(x - b)

x e

r
.2r log

e
b -r-(x - b),

x e e r

6-61 \

r log b log b
r

according"to the'elaw of exponents. Since e
e .

=
e

= b , we can

'write

Now for Z.-(x - b) near '0
b

'
and. thererore xr

J

'11

xr z br eb
( -b)

b
1:(x - b)

e 1 + (x - b)

is approximately

r

br(f +
br r

I

br br-l(x

r,
.tTh , y = b

r
+ rb

r-1
(x -.b) b) is the equation of the tangent line to the graph

ofjy = x
r

at (b,b
r,

). . The slope of the tangent is rb
r-1

. This is the

value of the derivative at b.

Welhave)%therbfore, established (1) for the case 'x > 0; that is, we

have shown at
m

(1) if f x -4xr, then f': x --)rx
r-1

.

This is the case which is mos t important' in prastice:' The formula (1) is
*

also correct when 'x = 0 if r > 1.

m
For x < 0, f is undefined unless r is rational with r = , m and

n

n non-negative integers, n odd. In this case, (1) holds but we shall not
_...

prove this statement here.

Example 6-6a. Find the derivative tf

We can write

f(x) = =

and 60 (1) to obtain the derivative

'iZ"---)21 defined for x # 0.

1 443
1 1,
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ft: x T-4
-2 1

= - '
x2

valid for any x / 0.

Note that the. derivative of x -4 - is always negative; that is, any ...
tangent to its graph has negative slope.. Intuitively it is clear from this

that x --4
1
- is a decreasing functioh for all x # 0.

The derivative in this case can also be obtained by using simple algebra
1, %

The line. connecting (x , -) to (x + h -- has slopeX)
' x

.1

+ h
)

. t.. :.

1 1

h 3:7-' 1 I.

-4 '
h-- hxth x

This difference quotient approaches

1x - (x +
h(x + h)x

h

h + h)xJ

-1

(x + h)\

1
as h approaches, 0.

Example 6-6b. Find the equation of the tangent to the_graph of
°

f : x -4 x3/2 at the point where x = 4. \

Formula (1) gives
,

------L.a /
f'(x) . i x2 -3 x

12
:

\
- 2

il..

If x = 14, then I

and

f(4) = 43/2 = (117)3 . 8

f = 4)11/( =
2

117 = 3.

The equation of the tangent to the graph, of f at ,,(4,$) is

y = (x - 4).

I

)44411.i.

4.,
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Example 6 -6c1. Find the derivative of x -)x .

Formula (1) gives the derivative

X 2 /2-

6-6

Since Iff,:> 0, this is valid for x > 0.

ak( A

'Example 6-6d. Find the derivative Of x lc'. Since
1.; xj1/2,.

°have from (1)

112 1 -1/2 1 1

;3772

valid when x > 0.

r ,

This result may also be obtained from the definition'of the derivative

1/T-TTE -D Vi
;7

h -)0

4717
if we transform the difference quotiep by multiplying by

G +

4747-171.'- h) - x 1
Then The limit is

1 1

IfTc 216-c.

h(Vx + h + 7) 1- 1T-177 + Vi

I

We can generalize the Power Formula tp enable us to

(a) ultiply by anyconstant k,

(b) dhange x to x - a, where a is a constant.

We shall show that

(3)

and

pkx ra = krx
r-1

'PO Ik(x di kr(xL a)r-1.
.a.

Hereafter, we Alan rifer to (4) as the ower Formula. Previ sly, we

have used this term for the,special case, k = 1 and a = 0.

1

h + 16c
40.

A

To establish (3), we let f(x) = kg(X). Then

0 f(x + h) - f(x) kg(x + h) - kex)

a

h oh

g(x + h) - g(x)
h

44,5
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Allowing '11 to approach 0, we have the result

(5)' Df(x) = krg(1) .

If.in particular= g(x) ='xr, we have.established
a.

and

To establish (4), we let

Dkicr = krxr-1.

h : x - a)r

f : x,-kar.
rt.

The graph of h is the result of translating the graphof f by the

amount a. (See Figure 6-6a)

At the

point Q(x

T
1

and

(6)

Since

y = f(x) y = h(x)

Figure16-6a

-The result of translating the'gral:th of" f.

point P(x,h(x)) the tangent; T has the slope h'(x). At the

- a ,f( - a)), the tangent T1 has the slope f'(x - a): Since

Therefore,T are parallel, the two slopes are equal.

104x) = f' (x - a).

f'(x) kExr-1.

f'(x - a) = kr(x - a)r-1.

Hence,' finally,

446

49.

Y





6-6

Exercises 6-6

1. Find the derivatives of the following functions.

(a) x -)-x3l2 (0 x -)
4

3

...

6
r(b) x .(g)

li 2x ,
(c)

5 x2/5
2 (h), x -4 20(1:147)

(a)
,

x
(2L)1/10

(1) x -3 2 31'z [Hints Simplify first!rstl]

4.

a

x

IfEc

4 1

3 x

2. For what values of x are the above functions (No. 1) defined?

. .

3. For what values of x 'are the derivatives of the above funct,ions (No. 1)

defined?.

4. Find the slope of the curves -(described by the (Uhctions of No. 1) at

x = 1, and at x = 2..

a.

5. Which of the functions in Number 1 are defined at x = 0?

6. Which of the derivatives found in Number 1 are defined at x = 0?

7. ,Find the,derivative of the following functions:

(a) x Ix 1

(b) x 3 )17-77.

(e) -.) I2x 1.7 = /2- X-7474
t

(f) x _,___-..,4717f

x
F)9----
- 1

(g) x
b

b, c, d positive constants
sf77----Fdc) N..

.

AP`

--,\

' 8. For what values of x are the above (No. 7) functiohs defined?

9. For what values of x are the derivatives of the above functiOns (No. 7).
4

defined?

, 448
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10. Given: f x -)21177
4

(a) Find f: Then find fC(-8), f'(-3), f'(2).

(b) f is defined for what interval of x.

9
(c) f' is defined for what inItedal of x.

(d) For what interval of x is f increasing? decreasing?

(e) Find the equation of the tangent to tht curve at x= 0.

(f) Sketch the curve, and the tangent at x = 0.

i

3/7
11. Given: x

(a) Find f'.

(b) When is f decreasing? increasing?

(c ,Find the &illation of the tangent at x = 1,'

(d) A tangent to the curve is parallel to 'x + y,= 2.' Find the equa-
.

tion of this tangent line.

(e)Is there a tangent line at x = 0? If so, what is its equation?

(f) Sketch the -graph of the curl?, and the tangent line at x = 1.

12. Given: f x
1

-'x - - .

O

For what values of x is f increasing? .decreasing?
I

What happ"ens to the curve when lx1 getp larger?

Find the equation of the tangent(s) parallel to.the line-5x - = 0.

If the curve is tangent to = mx + (m# b, constants) at some

point on the &ve, find the values which m can assume.

(e) Sketch the graph.

(a) Find the first three derivatives p', p", p'" of the polynomial

function

(b)

(c)

p X 4-

x2 0 xit x5 x6 x7 x8 x9 x9 JO
4" x + 5-i +8:: +91 +91 +3.o!

Evaluate p(0), p'(0), p"(0), and p'"(0}/.r.
Guess the derivative of

2 3
x

f x 1 + + + + +
x

+
1 a3! q.

449.
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6-7. Approximations to Logarithmic and Root Functions

As we try to list pOiYTIOtial functions to approximate logarithmic and

power functions a new situation arises: the functions we try to approximate

or their derivatives may not be defined'at x = 0.. Our usual procedure of -\,,

first considering the graph of a function at the y-axis may be inappropriate.

We can avoid this problem by considering approximations to such a function at

other points, or we can find the appropriate Taylor approximations to a trans-

lated unction.

Approximations to loge (1 + x)

"At x = 0 the function x -olog
e.

x is not)defined, so we shall consider

' tee translated function

x -0 loge (1 +

Thig4process gives the subsequent derivatives:

f(" : x.4-2 x 3(1 + x)-4 _ 31

. '(1 +

f(5) : x -42.x 3 c 4(1 + x)

(1 +

_

:/ f
(k)

(- 1)k -1(k - 1)!(1 + ;)-k _
(-1)k-1(k - 1)t,

(1 + x)k

..)
where 'k is an integer greater tan or equal to 1. We let x = 0 in each

of thee to obtain the values
I

and in general

(1)

f(0) = 0, ft(0) = 1, f"(0) = -1,

fm(0) = 2t, f
(4)

(0) = 3t, f
(5)

(0) 4t,

f
(k)

(0) = (-1)
k-1

(k k > 1.

Suppose n is a fixed positive integer !and that

P (x) = a 0 + a 1 x +.82x2 + + anxn.
.

As in Section 6-6 the values p
n
(0), p'(0), ..., are given by

53
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Pn(0) = a0, 41(0) = al, p;;(0) Nx.2a pr(0) = 6
a3

fi

and in general

(2)

If
Pn

must have

so/that

(
p
n

k)
(0) = a

IC

is to be the Taylor approximation to f : x )log

pn(0) ='f(0), 41(0) = f*(0), p;;(0) = f"(0),

a

In general we

so that

Therefore,

(4)

1
.= 0, = 1, a_e = - , a =

1 , ai4

equate (1) with (2) to obtabn for k > 1

kt a
k

= (-1)-
k-1

(k - 1)!

(1)k1

1,

C

ifo k > 1.
k ' .

2
x3* x4

p
n 2
(x) = x - L --r+ +

1 xn;..

We can use (4)'to give the Taylor polynomials for

x -31pge.(1 + x)

677

t

to any prescribed accuracy. In Section 9 -5 we shall show that for. x > 0 the
__

error R
n

satisfies the inequality

1) xn +1 .
1(5) IRnI n + 1

Xn +1
t/

If' n is large and 0 < x <:1 177717 is. very small. Thqp, we can

expect the error estimate to be small in the interval 0 < x < 1 if we use .

high degree polynomial approximation. For x > 1, powers of x becbme very

.large so that the error estimate gives a large error., (Of course,,we cannot

then conclude that Rn .is large, only that the estimate of R is large. ,

It is, however, true that R
n

isverrolargaywhen x is larger than 1 and

So)

n is large.) 4

451

54-

CO



,

,
) ';4'

t i"
.,:.

Example 6-7a. Use Taylor approximations of fifth degree to estimate

og
e

2
:

,
, . <----

4,

,With n = 5, the Taylor approximation for x '1
e
(1 + x) is

. .

2
x3

4 015
x 4. x

r

log (1 +.x) z x- + ----. - -,-
e 2 3 5

and for x'> 0 tile error R' satisfies'
,D

We let x = 1 to obtain

log
e 1

2 Zn. -

6
< .

22

1

3

1
6 ;

10.th error at most -- =
1

This is not very good. To guarantee accuracy
%

to within 0.005 we could use (5) 'to.show that we must choosy n to be at

least 199

Example 6-7b. Use Taylor approximations of third degree to estimate
%

loge 1.1.

For x = 0.1 and n = 3

(0.1)
2

(0.1) 3
, .09533log

e
1.1 2: 0.1

2 3 '-'"

with error at most
'

(0.4 1)4
.000025, so that the estimate is correct to

4 places. *:

Approximations to, 1117,777c.

At x = 0 the derivative or they function x.--))/7 is not defined, so

we consider the translated function f : x 1/17--7. The power formula (1)

gives the iUjeetsive derivatives

1. 1, ./
x + x)

-12

x 2)(1 + x)-3/2

2)(1 ÷ x) -5/2

. 4'.
pc p(l+-x)-7/2.,f

(4)
: x

frn
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e

1

To slIggest:a pattern we rewritethese in the form
1

n
1 -2

.
r : x --)2(2 ; 1)(1 + x)2

e 1
11 . 1 ..1 -3

!tit : x --)e ^ 1)(-2-. - 2)(1 + xi

f(11): x ->2(2 1
1 ) - 2 ) - 3)(1 + x)2

so that,' in general, for k > 1,

- f(k) x
1 1

- 1) ... t2 - (k - 1)Y1 +

These give the voalues,

f(0) = 1

f' (0) =

f"(0) = (- 1)

ful(0) = - ,1) (2 - 2)

f(4)(0) = -2(-2 4-1 - 2)(2 -' 3) 4
1 1

ph and, in general, for 1> 1,
-1.

(6) f
(k) 11

(0) = -f(-f 1) ... (-12L - k + 1).,

p(x) = a + a1x + a
2
x2 + + a xn

4it

Suppose

so that, as we found in (2):

(k)
p (0) = k! a k =o, 1, 2, ...

Equating p(OY= f(0), p'(0) = fl(0), p(n)(0)= f(n)(0) gives
-A

J
/4

a
0
#= 1

r\ :\PLA'Et.11=' 221
.

1 1-4 - )1,

1
r

2 2

2!

1,*(t - 1)(1 - 2)

83 = =-7

24
2 2 2

1)(1 0(1 3)
2

al4 = -
41 1204,

453
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6-7

and; in general, for = 2, n

(7) a -
... - k t 1)

k!

These give the coefficients of the Taylor approximations to x -.
For example, if n = 4 we have.

p(x) =
1 1 x2 1._3 5 4

1 +
2
x IT X + 3.7-6 - To x +

as the polynomiaLWhich agrees with if-717- at x = 0 and whose first four

derivatives agree ,with the first four derivatives of x 17-77i at x = 0.

befordr for each positive integer n, we let p(x) be the corres-

,ponding Taylor approximation to itx The remainder 110 is then
n

:given by

R = - p(x).

Estimates for R
n

are usually somewhat complicated.

With stating one result:
.4

(8) -
o IRn1 < ia

n+1
1 xn+1, if

where

ye,
We content

-Nt

,0 4 x <

.

s

, -7 1(1 - 1) ... 'n)
2 2' `2

a
n+1

-
(n,+ 1)!

.. ,

el .., , .
. o ,

Example 6-7c. Use the Taylor approxiMatitwi,th" n = ,

117 .

-,
'

t

We have,- $

,
4* '-'9"1.

.
,_ - ,

where

Setting 'x:= gives

lar

< 1851x5, 0 < x < 1..

(1 - 1)' ... - 4)
2 2 7

,5!%
_2-5g

4

454;
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with!error;

.
6 -7

_ _16 .2241
32 12d 2

1

Thus, correct to two decimal places

0.001.

2
374 1.22.

; .
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-6-7

Exercises 6-7

1. Using 6) show that

['loge 2 - lori(1) I < 01005

O

if n > 199. How large must n be in order that
.e

pn(1)1 < 5 x 10-10?

2. Estimate loge 1.2 correct to two decimal' places.

3. Haw large must n be in order to use the Taylor approximation- ta'find

loge 0.9 correct to one decimal place.' (Hint: loge 0.9 = lloge

= -log(e (1 +

4. (a) Use the 'Taylor approximation with = 5 to estimate log; 3.

(b) What doed (5) giiIe as the maximum error in this case?

(c) Compare yckur result with the value / of loge 3 in the tables.

(d) Now use n = 6, 7, 8, 9.

(e) What do you'think happens to loge 3 _1pn(2) as n becomes large?

5.. Find

loge(1 + x)

':. (a) lim
Z -40 - x

(sit: i)(log-41.+ x))

(b) lim
, e

,(1 -; cos x) ,

. .
_

6. Find the Taylor approximation of degree 5 to. x --t, ----T-- y. Use (8) to

estimate R5 for 0 < x 1.<
.

..'
lb .

..,

. i

. '7. asithe Ta§/.approximation to X ''-) s,T4777 with = 4 to estimate ,

_ -/g. iihat is the maximum error? Repeat Aor _n = 5. (See No. 6.)-!-

8. Usq the Taylor approximation to' x -'.A71" x with- n. :4! 5 to- estimate 4'

f'lla. What is jhe maximum error? Repeat for n = 4.

..
,

9. Use the Taylor approximation to x -P A17 with n = 4 to estimate

ir7 ,. Compare your result with the estimate

411P

= TP 0.707,

,

59. 4#56



10. Find

(a) lim
x

(b) lim

x -40

cos x - if-477
log

e
(1 + x)

2

e
x,

- 47)7
(sin'X)

4"

6-7

11. Find the Taylor approximation of deb,' e three to each of the following:

(a) x 3

. (b) x.,(1 )05/3

4

a

C.3

e.-

457
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Chapter 7

AREA AND THE INTEGRAL

Thit; chapter begins a discussion of the concept of area of a region

bounded by the graph of a function. Atfirst glance, the idea 9r area appears

to be entirely unrelated to our discussions of'derivatives in Chapters 2, 4,

and 6. Upon closer inspection. however, we shall discover that these two ideas

must be related. Suppose A(x) represents the area of the shaded region shown

in the following figure.

`,

As we move x. along the horizontal axis, the axea A(x) of the shaded region

Changes. A measure.of the rate of change in A(x) is A'(x), the value of

the derivative of the area function atx. The change in area is also related
4'

to the he "ght- of the graph of f At x, that 16, to the value'f(x). Con -

sider ;for example, the case when f(x) is large.

1_ A

this region has

area "A.( + h) - A(x)

= f(x)

If we move a small amount, say h units, to the right, the area

-increases fairly quickly,' so that the additional area A(x + h)- A(x) is

fairly large. If, towever,. f(x)' is close'to the x-axis

459 6 1
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-

this region has

area A(x + h) - A(x)

y = f(x)

x

'then the additional area A(X(+ h) - A(x) will be fairly small.

These considerations lead us to. suspect that there must be some relation-

ship-between the rate of chaige of the area function x -41.(x) and the values

of f, that is A't(x) must be related to f(x). In this chapter we ahall

show that for the functions of interest to us in this text, the derivative

At of the'area function is f; that is, A1(x) =-: f(x).

Of course, it is not immediately obvious what the area bounded by a graph

should be, particUlarly if f is not a constant or linear function. Therefore,

in the'first section, after considering constant and linear cases, we deal with

an approtcimatiod procedure for obtaining thp area of a region bounded by the

graph of-a nonlinear, function (Section 7-1). A proof of the relation

Ao(e) = f(x) is given in Section 7-2, and extended in Se.ctiOn 7-3 to estab-

lish the so-called Fundamental Theorem of Calculus; with the geometric inter-

-.pretation:that thearea bounded by the graph of f, the x-axis and vertical

lines at a and b is given by the difference F(b) - F(a) where F is any

antiderIvative of f (that is, ' = f). Further notation and properties are

-,introdirced in Section 74 and the results are extended'to signed area in
.= 0

Section 7 -5.

The 2ina3- section discusses the--usehof*antiderivativP ft:it-mules in calcu-

lating areas. Furtfier,antidifferentiation methods are discussed in Chapter 9

and Appendix 4.
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7-1

- 7-1. Area Under a Graph,

We first attack the.general problem of finding the a ea of a region

located in the first quadrant, bounded by_the graph of a n egative function

f, .the x-axis, the y-axis and a second vertical line, ac in Figure 7 -la. We

shall not specify the value of the coordinate x at which the second Vertical

lihe cuts the x-axis. This will allow usto find general formulas rather than

particular numb'ellf. We shall denote the desired area by A(x).

Figure 7-la

Area under a graph

Frequently the first step a mathqmatician to

lem is to investigate a few special cases of the

initial investigation very helpful in setting his

eral solution. In.this spirit we begin withkthe

tions and, examine the area under the graph of the

kes in attacking a new pra-

problem. He often finds this

mind working towards a gen-

simplest of polynomial func-

constant function,

f : x c,

where e is a fixed positive number. This case

fact, since we know that the area of a rectangle

its base. ands its height, we see that the desired

A(x) = cx.
. '

(See Figure 7 -lb.)

0

is very easy td handle. -In

is equal to the product of

areas

.x

Figure 7-lb

The area of the shaded ;region is cx,
461
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Note that the "area function"

.

A 1 x -4 cx

is a linear function w/se derivative At is

/

.

% S., /
f : x ) c.

0 .'

The next case we examine is that of a linear function

, f : x .4 mx + b..

The area we wish to find is that of the shaded region in Figure 7 -lc.

Figure 721c

Area under f : x nax + b

= f(x) = nix + t

This case is also ea to handle since the shided region is a, trapezoid.

1
We, recall that the area o a trapezoid is -2- the sum of the parallel based

J

times the height. In Figure 7-le the trar4zoid is.lying on its side, its

"bases" have lengths f(0) and f(x) and its "height" 0 x. Therefore,

tie desired area is ,

f(0) + f(x) .
A(x) =

(m,- 0 + b) + (mX + b)

2

mx + 2b
2

2
_ MK + bx.

We .observe that the derivative

X

of the ."area functionl'

462 ,
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is the linear functiOn

2
A : x

mx
+ b x

f : x mx + b .

After the constant functions and the licearfunctions,' the next simplest

polynomial functions are the quadratic functions. Even though these functions

rseem to be but a step removed from the, linear functions, we shall see thit

they introduce an entirely new order of complexity. The reason for this '1s
o

. that tkoe graphs-Of quadratic functions are curves, and we have no formulas

for palculating areas of regions bounded by curves (except, of course, when

the curves are circlet*. Hence, it will be wise to move more slowly, and

first stiftN very special case--say the function f : x -.)x
2

. (See Figure

7-1d.)

x

Figure 7-1d

Area under f : x x2

A

If it were possible to cut/ the region up into a finite number oPrectangu-
,

lar or triangular parts we'could add the areas of the parts to obtain the total

area. Of course, we cannot do this. The best we can do with such a method is /

to approximate the area. We scan cover the region with rectangles and obtain as

the sum per their awes a value that is somewhat larger than the one we seek.

On the other hand, we can pack rectangles into the region without overlapping,
-

and obtain in the sum of their areas a value that is somewhat too small. In

this way we may at least hope to arrive at an approximate value that we might

be able to use in constructing our area function.

Our procedure is to subdivide the line segment from 0 to x into a

large number of equal parts, then to use theubintervals as bases of rec-
.

tangles interior.and exterior to the region. To illustrate this procedure

we examine a case where the number of subdivigions is small.

-

4'63
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uppo we divide the<ine segment from 0 to x unto' 5 equal sub -

intervals. Each of these subintervals will be the base.of an interior reor

tangleithe largest rectangle that can be drawn under the curve with this

subinterval as base (Figure 7 -le). Each of these subintervals will also be-

the base of an exterior rectangle,-the smallest rectangle that can be drawn

above the'curve with t4is rectangle as base (Figure 7-1f).

.Figure 7-le

Area approximated by

° interior rectangles.

x 2x 3x "4x x

5 5 5 '5-

Figure,7-1f

Area approximated by

exterior rectangles.

We see from these-figures that our desired area A(x) satisfies6the two

inequalities

(1) A(x) > the sum of the areas of the interior rectangles,

(2) A(x) < the/sum of the areas of the exterior rectangles.

Let :7 calculate the sums-of the areas of the interior aAd exterior rectangles.

If we split the segment from 0 to x into 5 equal parts, the length of

4,

each part will be 5- and the endpoints of-the parts will

( 3 )
x - 3x 4x 5x

0, , ,
-

, S,

From Figure 7-1g we see that the heightjof ari interior rectangle is f(a),

where a is the left endpoint of its base; the height of an exterior rectangle

is f(b), where b is the right endpoint its base.

_ 66
O



Heights of interior and exterior rectangles.

7

'Using thesubaivisions (3) we know th\t the heights of the (five*) inter-

ior rectangles are

f(0), f(n f(2x) foxl f(11x\.
5/, 5 , 5 5/,

the hetgfits of the corresponding exterior vectangles are
.

f(22-(5), v21-'5 ), f(5), f(-5-5x).

Multiplying each of these heights by the common base Itngth J, we obtain

the Area' of the corresponding regtangles. The sum-of the area ofithe-interior

rectangles is y'

*(D) f0) f('221) f(I-4) f(122`-)1.
5 5" 5 5

. The sum of the, areas of the exterior rectangles, is

14f0) f(2'1) f(2)!) tf(1A f(22)l.
5 5 5 5 5 5

Since f : x x2 we have

The,leftmost "rectangular region" has zercvprea.

°
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The

0

ib

2 2x I3x. 9x
2

f(0) = 0,A354 =
x

ft-0 = 75 = 25 ,

4x. 16)?
?

5x. 25x
2

f(-5-) = and fk -

25

sum of the areasof the interior rectangles)

x[ x
2

4x
2

9k
2

l6x2]

5 ° f5 25 4. 25

.21. +
5 1.25 40- 25 25J

6x3

.pro.

The sum ot the as of the" exterior rectangles
,dooN

3 r 1

5 1.25

1 1x3

25

4 9 4°. 16

25 25., 25 25

Our desired area A(x) lies between these two quantities; that is,

25 < A(x) < .

0

This i certainly not .a.very accurate estimate of our desired area. , If

however, w use a larger number of subdivisions we may hope to improve our.

estimate.

To obtain a general estimation formula, we let n denote the number of',,

subdivisions of the segment from 0 to ,x. The length of each part will be
X

and the endpoints will be

0, (n -

The-heightsof the interior rectangles will be

f(0)
, f(n), 1.'(-27-)1(), r((n"-tr)..

The heights of the exterior rectangles will:be

f(), f(=-21) f(2)n' ' nn,

The sums of the areas of)the-interior snd exteridr redta4iXes

respectively

4
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f(0) f(i5) +. f(4

X X. f2X.
,Alts,s\

n n

'Since f : x --x
2

, we have.
'0

n

f(-nr)].

o e 7

..../ .11(0) t.(2S) 2L. ,(2x) 4x
2

-.

-. 2
.

e

. n 2 ' '\-1E1
n
2 .

n

and, in-: general
'

2 2
f(_kx)

2

k x,
;. k 0, 1, 2

, , nn '

.
e

-The interior sum (4) can then be rewritten as

2 2

n .2 -2
[o +- x 4x

45 +
/ (n - -1)2x2] 3x_10A+ , i ,

J. -i- 4 + + (n -: 1)2]
. .n . n n2. nil`

To Simplifthis we Use the formula for the fi

.
+ + (n - /)

2 1,
=

) .

.

We can thus rewrite the ImteriorsAm 14) as

3 3 3
v x x x_

3 2n 2

- 1) sqftres

.77c1-.4' I\ 1

79
1

6n . -

A similar process applied to the exterior sum (5),gives the sum of the

areas of the e*xterior'rectangles. (..-.-

x3 x3
3 2n

6n2

Our desired area .A(x) lies between these two quantities; that is,

x3 3 x3 x3 x3it_ x x3 +- x

6n

,

3. 2n
6n2

3 2n(6)4

*
See Appendix 3.
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1

This must be true for each positive integer n. If x is fixed and n is

.rery large compared to x each of the terms

x3 x3 x3
7 2n / 2n

and -7
6n

.

must be very cloSe to zero. This process suggests that the only value that

x3
the area A(x) can have is

3

We summarize: if f x --x
2

and A(x) is the area of the region-

,bounded by the x-axis, the y-axis, the graph of f and the vertical line

units to the right of the origin, then

A : X -) x

Note that the derivative of the area function is

3x
2

f : x = x
2

;

3

that is, A' = f.

This samd relationshipA! = f was true in the case of constant and

linear functions. We might conjecture tbat it is always true. In Section.

7-2 we shall show that it is indeed true or a wide class of functions f,

a.class which includes most of the functions of interest to us ip this boWs.1

'.

04.

1.

AP,

+0.
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kExercises 7?1
a4

1. We showed in thi-, -,ection tOt the region ,bounded

= x2, and a vertical line at x,
-

of the interior and the* exterior r/ ctangles:

he coordinate axes*,

as an area which between the sum

This inequality (6) was

4., x3 -(1:
2n

% ?

1 4.'1,) <./A.N)
6n- 6n

<--.0 CI
+ +

11

,kri 2).

A .

(a) It follows that /
I

1/

3 211
-it) < A(1) : 13(1.-,- 4-

i 2n
1 - 7. 4-3 (1 1 1 12 \

6n ' 6n- i

Express this rela.tiln when

n =, 5

n = 100

(b) From (6) we know that

23
(1 1

2
\ 3

< A(2) < 23(Z 1 J-
\

2n 6n
2n

§n
r'

I-

Using directly the results of part (a), with minimum computa-

tion, express this relationship when

(i) n = 5

(ii) n .100

1
(C) I.Xing A : x --).:T x

3
,for the area function associated with the .

function, f : x >x2, find the area in'the first quadrant of the
..,

region bounded by the coordinate axes, y = x2, -and:the vertical

line at

!line x; 7 .

I(ii) x = 31:T
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2. If'f :7X 74)(3 (

and A(x)..is the-

area of the region

depicted: in the

sketch to the right,

show-that the area

function is

4
A : x

x
,

using the meth6d of ,

this section for

finding the area

function of x x2.

[Hint: The sum of the

cubes of.the.first

n - 1 integers is

((n 1)n\ 2.1
2 )

equal subintervals

of
n.

. 1 ,
x

2
x / x

4
x

n n n n
7

Equal ,sub - intervals of

(n -1)

n

X

x
n

x

. (a) First, show that the sum of the areas of the interior rectangles is

x ( 2 1
IT -

(b)

()

Second,find the sum of the areas of the exterior rectangles,.

showing that

x.4
7.- (1 12) < A(x) <

and as n -400., A : x -)Tx
4

)(4

(1 ,+
2
n

1

2) '
n-

7

Next, using the 'inequality of part (b) above, and letting x = 1,

find an expression for A(1), when

(i) n =5
(ii) n = 100.'

(d) From the expressions found for A(11' in part (e) above,,-find, with

'!. minimum computation, an expressio for A(2), when n = 100
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ro

7 -1?

(e) Using A : x --) x
4

for the area function associated with the

furtAion, f : x >x3, find the -8...r.e,a in the first quadrant of the

region bounded by the coordinate axes, y = x3, and the vertical

line at

(i). X = 0.4

(ii) 51

3; Find the area of the region in the

first quadrant bounded by x = 0,

y = 1, and y = x 3
.

[Hint y =,1 and y = x3 inter-'

sect at (1,1). The shaded area

eqn$11 fi the -area under y = 1

minus the area under y = x3

(betw4en xc= 0 and x = 1).]

*WE

.4. Find the area of the region in the

first quadranffrbounded by y = x

and y = x
2

.

. ,

° [Hint: Find the intersection

points; find the area under each

curve between intersection points;

find the difference between these

areas.]

5. Sketch y = x3 and 2, [- < x <

Fn a similar manner to that of Number 3 and Number 4, -.find the area

between the two cunves.

=x

4r15

O

-4\
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we

7-1

the ,41rea in quadrqnt one

bounded by the quarter circle

(witn cestAr at origin and

radius 2); the line

- 2y 4- 4 = 0, and the

vertical line tangeat to the

circle. 14

. [Hint: Find intersection

points;, find area of quarter

circle by, geometry;, subtract

areas . I

7. Find area of region bounded by

y 0, y and

y =6 - 4

[Hint: [Ise symmetry.:.

4.

V

(a) 1or the function f : x x-, we developed .in this section

inequality for the area function:

x3 3
Cl

71-1

1

2
ArX) < 311 +

2n
3

2n

12.

..-

Stiow that if we average these sums of areas of interior and
17

exterior for n 5, we.have A(x)
50 x3:

. ..

.(b) Now estimate A (x) for the same function. by connecting II (0,f(0))

tn PI , f(:)) , OS. f(21) to
(2x 4,121

and, summing the. \5 5y 5 ' 5
, , k 5 , .,

resulting. trapezoids.

74 172
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is
71

(c) As a third estimate, sum 5 rectangles with equal widths along the

the x-axis, and heights erected at the midpoint of each interval;
x

i
'
e
'? ,

the'width of .each rectangle would be 7., and tie heights
7

x ,L
,would ,be 175; ,

)

(a) :11'nich of these three estimates above is the closest to the exact
1

area of --
3

x3

N
iso

14

473

73



' 7-2. The Area Theorem'

In Section 7-1 we found some formulas for he area of the region in the

first quadrant bounded by the graph of a function f, the x-axis, the y-axis

and a second 'Vertical line, x units to the right tf the origin, such as that

-shown in, Figure 7-2a.

Figure 7-2a
f."

Ares Under a Graph

Calling the indicated area k(x) we obtained a function 9x -4A(x), which

we called the "area function." The results obtained in Section .7-1 can'be

tabulated as follows:

Function

f

Area function

A

Derivative of area function

A'

....
It is impossible to miss the similarity between the first and third

V .

columns ofNlis table. Sincqethese two,col&ns are identA ical except for
.3 ,

headiiig we are ppactkally compelled to suspect that there must be some rela-

tionship between f and the derivative A' of its area function A. We con -

jecture:`, .

If A is thd1area function associated with a function f,

then A' = f.

474
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7-2

We shall Owe this( result with the following assumptions on f

/ (a) f- is up Freasing filytion; that is,

(2) f(c) < f(d) if 0 < c < d.

(b) The graph of f has no "gaps" for x > 0. V

Condition (b) means .ehat'if x > 0, lim f(x + h) f(x). When condition

h

(b) is satWied we say that f is continuous for x > 0.

To prove (1) we must si(oW that

lim
A(x + h) - A(x)

h

that is, that ithe slope of the line through P(x,A(x)) and Q(x + h,A(x + h))

atil-oaches f(x). As 4 approaches 0. Since the indicated limit is just

A'(x), which' is the slope of the tangent iCie at 'P(x,A(x)),. -we shall then

know that A' (x) .f( ). (See Figure 7=2b.)

y = A(x)

x

,

the slope of the tangent
at P is the limit of the

. slope of PQ as h
approaches 0.

Figure 7-2b

Grpph of the A: Function

Let us'first suppose that h > 0, 'so that the graph of f is something

like that shown in Figure 7-2c. The two quantities A(x) and A(x + h) are
.11.

the areas of the regions bounded.by the y-axis, the x-axis, the graph of f

and the vertical lines which are respectively x 'and x + h units to the

475
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right of the origin. Hence, the difference

1

represents the area of the shaded region shown in Figure 7-2c.

A(x + h) - A(x)

6 O x xi+ h

Figure's7,-2C'

4(x + h) - A(x) = Area ofthe shaded region

Since we have assumed that f is. increasing, the shaded region. of Figure

7-20 includes the smaller rectangle TUWV and is included in the larger rec-

tangle RSWV. These rectangles have base length h and the respective heights

f(x) and f( + h). Thus

,hf(x) < area of shaded region < hf h);.

that is;

hf(x) < A(x + h) - A(x) < hf(x + h).
) X

This inequality used the assumption that h > 0. If we divideby h \we oitain

(4)
f(x) A(x + h) A(x)

< f(x + h).

From (3) if lk approaches_ 0 then f(x + h) approaches ex). Hence, if

h is positive-end h approaches 0

+ h) - A(x)
approaches f(x).

. Comparable argam is will give_ the same result if h <-b, so that, indeed

A x + h - A(x
f(x)z that is, At = f, if the assumptions

h 0
(2) 'hold. We can, of course, replace the assumption that f is increasing by

the assumption that f is decreasing. This will. invert the inequality signs

.in- (4) but will not change the conclusion.
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III-the above Proof we used the fact.tha(

A(x + h) A(x)

is the'area of the shaded region shown in Figure 7-2c. This will also be true

if the lower limit is taken to be any number a < x. In other words we can

let A(x) represent the area of ,the shaded region shown in Figuie 7-2d. The

diffei.ence

will to the area of the darkly shaded region shown in, Figure 772e.

A(x + h) - A(x)

a x

- 44;

Assuming that f is increasing for x > a we could, repeat the foregoing

Figure 7-2A

a

Figure 7 -2e

arguments to conclude that

f(x)
A(x + h) 1 A(x)

and

< f(x + h), if h > 0

A(x + h) - A(x)
f(x) > . > f(x,d-h), if b < q.

f

If we assume that the graph of f is continuous, then f(x + h) approaches

f(x) and

lim
A(x + h) - A.(x)

h 0
h

as 11 approaches 0. Hence, A' = f.

.

ti
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7-2

This fact that the derivative of the

to as.the Area'T heorem.

area function is f will 'be referred

AREA THEOREM. Suppose is nonnegative and increasing on,the

interval a < x < b and that the graph of f has no "gaps."

Fob each x in this interval, if

A(x)

is the area bounded-by the y-axis, the graph of f and ordinates

at a and x" (a <75-c <la} then

AF(x) = f(x).

The same result will hold if f is assumed to be decreasing.on the

interval. In the appendices it will be shown that the thebrem remains true

under more general conditions.

The Area Theorem doean't yet tell us how to find the area function

x -+A(x). It'only tells us that the derivative> At must baif. Consider,

for example, the problem of finding the area function A it f x -,x3.

We know that the derivative of

4
x

is the function x )4x3
, so if We divide by 4 then the derivative of

X 4t X4 is X ,X3.
/\le

1
We call x --4 x

4
an antiderivative of x -4x3 . Thus a good candidate for

A is

.A x-)Tx4 .

Note, however, that the derivative 0

1 4
x x + 10

is also x, x3. In fact, if C is any constant then the derivative of

x x
4

+ C is 3
x 14:

4

*
.

This is also sometimes known as the Fundamental Theoremof Calculus, a

subsequent theorem which can be established analytically without area argwepts.
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72
0.4(1

. -A

so that any function of thtype x x
4

+ C is a candidate,fqi A. °For-
*,

tunatelY, there are, no other possibilities for A. This, is a 'ccn.-.,eguence of

the following theorenf.

.THE CONSTANT DIFFERENCE THEOREM. If ;'(x) = F'(x), a'C x b,

then there is, a constant C such that
S

4C

4
0(x) = F(x) C, a < x < b. d- .1

. <

We shall give an intuitive a;rgument. A more complete proorwill be found

--in"-Chapter 8,

'Proof: If G' (x) = F'(xl, the graph' of F and grapj; of u.<3 haVe

the same slope at each x on the interval ra,bi. This can happen only, if

either the graphs are the same, `G(x) = F(S)) or if one graph can be obtained

by raising or lowering the other a certain amount '0(x) = Ft(x) + C fer.some

4.00,
constant c)` (See Figure '7-2f.)

When x = a,

Therefore, Ithe Constant is

)

a x

Figure 7-21

;(a) = F( a) +

C = 0(a) = Va.) .

14.79

ogee!

11,

t

Ir

t).
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gxa mp le: 7-2a. Find' A(x) ' .if -14' xv. . 0 t. . ,
It .1 4We kncrthat F : x , then ; =

that Al' = f. From'the Constant Difference Ttieprein,, .
must be a constant C such that '

/44(x) = F(x) + C., .

To determine C, we need to know A(x)

say =' 0. Since ° F(0) = A(d) = o

.x 0 o=o+c
and C = 0. Therefbre,

,40

A(x) = 1 X4.

4

t'/graph of f x -4 x2 + 2x, th-e

4

The
tArea Theorem tells us

since A' = F', there

-F(x) ,ar one value of x,

Example 7-2b. Find the area between

x-a3is and the lines x = 1 and x v2.

' V A'( ) = x2 + 2x.

x3
2 2"= 7.+ X F' (x) x + 2x.
.

By the Constant ,Differenft Theorem

A(x) = x2 1+ 2x +C

for. some constant C. Since A(1) = 0

0 = 1 + 2 + C

and C = -3 and

Then

A(x) = x2 -1-2x - 3.

A='A(2) = 4,+ 4 - 3 = 5

We-need a natation. for the area

the graph of f and the two vertical lines given by

(See Figure 712g.)

is the required area.

A of) the region bounded by the'x-axis,

x = a and X = b.

O

I 9

C

480
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4'40

a

-Figure 7-2g

Area under a graph.

The usual symbol for this is

b
f(x)dx

a

e 7-2

suggested by the procedure (described in the previous section) bf approximating

sums for finding areas. The symbol " " (a modified letter .'S) indicates

summation. The f(x) is meant to suggest the ordinate of an outer or inner

rectangle and the "dx"-- (am indiviiible symbol) the-difference in the x%S". at

the ends' of the base of a rectangle.

4
The symbol f(x)dx may be read,"The integral of f from a to b."

We shall sometimes vite this Nintegral more briefly f.

a

44

0



7-2 .

In Section 7-1

.r

Exercises 7-2

we obtained the estimates

°

x3 5(3 'x3 ,3
X3 X3

3 2n
+ 7 < A(x) <

3 Tri6n 6n2

- for each positive integer n, where,

A(x) = f; f :_x -4x2.

. Averagthese to' obtain the general estimate

A(x) tt x3 3

3 6n4

Use this estimate for A(x) in order to calcu,late approximations of the

following quantities when* n = 10.

(a) .A(2)

(b) A(2.1)

(c)
A(2.1) - A(2) .

0.1

(d
°

)
A(x A(x)

for general positive x,

(e) Let 2h approach, 0 in (d) and use this to est:if:nate A'(x).

2. Suppose f : x2 +1!1; Find

c
1+12. 4

".. .(a) lim f(x)dx
h '-4 0 1

l+h

lira(b)
1

m
--' -h-40'' 1

I

f(x)-d.x

(c ) Did you need to calculate

and (b)? Explain.

14-h

f(x)dx in Orde.r
1

t_ 1

482



<4

x

3. Suppose AN) = f, where f : x -4

2'

(a) What is A(2)?

(b) What is At(3)?

(c) Did you need t'o find an antiderivatie for f in order o answer

(a) Or 4)?

O

.
7-2

4. Find two'idistinct functions g such that g' is the function x -43x2.

How are your functions related to each other?

5. Find the area bounded by the coordinate.axes, the line x.= 2, and the

grapfi of the function f, where

r; ..a ( a ) f : x -4 x2

(b) f : x -42x + 1

(c)' f : x 4x + x

6. (a) Sketch the graph of f : x .-4 x2 + 1.

(b) Mark the region bounded by this grkph, the coordinate axes, and the

x 1.. Find the area of th1s region.

(c4* Mark the region bounded by yourograph, the coordinate axes, and the

ling x = 2. Find the area of this region,.

(d) 'Mark the region bounded by your graph, the x=axis, and the lines

x = 1 and -(7 2. -How is this region related to 411e regions you

marked in (b) and (c)? Find its area.

'Sketch the graph and find the area bounded by the graph of
-

f : x -416 - x2., the x-axis, and lines x = 2 'wand x = 3.

Sl,4etch the graph and find" the area bounded by the graph of

-44x3 - x,. the x -axis, and the lines x = 1 and x = 2.

-4 (x - 1)2 show how the .interval 0 < x < 3 can be, subdivide

so/that on each subinterval f is always increasing or arways decreasitig

Sakea sketch.

8. For

4

4830
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7-3

P 7-3. The Fundamental Theorem of-Calculus

The following theorem summarizes the method for fiudtng area functions

explained' in the previous section. This theorem is generally refer;ed to as

the Fundaittentel...in.40.rem_slf..CaleatiirS'crftlfrVigra1:;?c, for cal -

culating areas by using. antiderivatives.

THE FUNDAMENTAL THEOREM OF CALCULUS. If f is nonnegative,

twincreasing and its graph has no gaps on the interval a < x < b,

and if F is any function whose derivative is f on this

'interval,

x'
f.= F(x) - F(a), a < x < b.

Proof. The area function

+ x

. A(x) = f

a

9

ii a function whose derivative is f t'rom the Area Theorem). Furthermore,

A(a) = 0. Since the functions F and A have the same derivative, f, the

Constant Difference Theorem implies that there is a constant C such that

Then

Since A(a) = a

= -F(a)

and A(x) =F(x) - F(a).

A(xp ) = F(x) + C, a < x < b.

C = A(a) - F(a).

x

That is cf = ( ) - F(a), 1

a

I 1L,

Remark. This' theorem will still be true if f is atsuAd to be 'decrees-.

j/ ing on the interval, for the Area Theorem will remain true and the above proof

can be repeated verbatim. The theorem ,is easily, extended to{ the ca e when the

interval can be subdivided into smaller inte'rva s, on each of which) .VIFicreaT

ses or decreases. For example, suaose.thati F = f and that f increases

for a < x < c' and decreases for tg. < x < b. See Figure 7-3a;) Now

0

*
It relat s differentiation and integ ation. .

484
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7-3

*b

f = A +
a

c b

B =y f +

a

f.'

.e P
.0..-

1e apply the Fundamental , orem to e h term id obtain

cc

f F(c) - Fka),
,,`

When we add the two integrals the term
, a

We have

f = F(b)

F(c) drops out.

,S"

'...re

l'b If = F(c) - F(a) + F(b) - F(c)

= F(b) - F(a).

Figure 7-3a
I,

Area of Shaded \Region = Area of A + Area of B

\

When we deal with.speeific functions we shall use the longer notation for

integrals Thus, instead of writing;, ,

we shall write pimply

(1

/ In this example
1

tells us that

4 4

f °where f x ex,

x.

e dx.

Pr

x,
F(x) ex and. the Fundamental The rem

I.

.A = e
1

- e0 = e - I.
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Since we can describe f equally well by

we could replace (1) by

( 2 )

f : t -4 et

A= et dt. 102

L t
Because De

t
= e`', Fit) e and by the -Fundamental Theorem

A = el - e° = e - 1

exactly as before. Because tIle result does not depend on the letter used,

the 'letter x in (11 is called a dummy variable.

.

Example 7 -?a. Find A(x) dt. T'ne derivative of t t' is

t - > . Hence t're derivative of F t 1 t' is f : t t . By the

undarnental Tfeorefi,
- 4 VA(X) = F(X) - F(2) 1 F x'

r 772
Example 7-3b. cos x dr.

32
- .

I

TI"le sine function F': x sin x is.a function whose derivative is f.

The interval can i.)e subdivided into two subintervals (namely - < x < 0

and 0 < x < ;) so that f increases on the first subiniterval and decreases

on the second interval (see Figure -3b). We can, therefore, apply_ the remark

following the Fundam'arital TheOrem to conclude that

O

1

F(7-1) -
2

= sin -

-° (.7.1)

6 = 2.

,11011$

\'!\

r.

it)

ti

a
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IT

Tr

2

increasing decreasina

.0
A function=-F whose derivative is f is._called an antiderivative

(or integraa'of f. It is also common to use the notation.

F(x)

b

for F(b) - F(a).
a

The Fundamental Theorem of Calculus may be stated in the form:

(3)
cb '

f(x)dx = F(x) = F(b) - F(a),
a - a

where fF is an antiderivative of

For example, since the derivative of

we say that x x3
3

I -I

1
x x

3

is an antiderivative

2a3

3 2
25 x

of ex

1 3 br 3

3

2

31

3

and write

*
Ft = f

11.!

'1, .

487 , 89
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4

Example 7 -3c. Find t dt

First we find an antiderivative of t -4 t5. Differentiation of*polynom

t
ials reduce the degree by one, so ntidIfferentiation should raise the degree

by one, If'we recall that the: func ion

a t t
6

'has the deriVAiv$rft )ot 5 , we can see that

t t6

is an tantiderivative of t
5

. Therefore, we have

y4

t5 dt

4
40951

- = u = - _

Example 7Ei. Find the area of the region between the x-axis and one

arch of
..o"

the sine curve given by Y = sin x. We want t? find (Figure 7-40.

c

y
4

sin xdx.

y = sin x

The derivative

'tion so that

Figure 7 -3.c

- sin x dx = area of shaded region.
O "

of the cosine function is the

/'

90 )'.COS X

ro

488
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negative of the sine func-
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6

.is an antiderivative of X --!sinx. We have

sin x dx = -cos x = -cos it + cos, 0

0

Example 7-3e. Find

c0

7(11) + 1 = 2.

(x2 + 23c+ 4)dx.

We could find an antiderivative of

x --3-x
2

+ 2x 4- 4

a

7-3

directly ind use (3). .An alternative approach (which amounts to the same

thing) is to remember that the integral of a sum is the sum of, the integrals,

so that we can,wri)e

The funttions

3

(x2 + 2x 4-- 11)dx = x
2
dx +

0

2

0

x x2, x 2x and x -414

have the respective antiderivatli.Les

so we have,,

x x
3
, x x2 end x 4x;

-1

(x
2
-+ 2x + 4)dx

()

3

= 30.

3
2+x

0

3

+ 4x

0

4dx.

0

-
Q3) (e 02)

3

4 3

- r

4

Example 7-3f. Describe the area of the egi'on between the graphs of

y = & and y = & a's the difference of two integrals and evaluat .

' 489
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7-3

,The area of region A in Figure 7-3d is

1

1dx -
0

dx.

0

B

1

Figure T-3d

Area of A = Area of B - Area of C
Q

To find antiderivatives of x 3E
and x we first write

= x1/3' and12' ATc- x12. and then recall the power formula

DSca = axa-1.

Here differentiation amounts to multiplying by the exponent and 'reducing the

exponent by 1. Then antidifferentiation amounts to raising the exponent

by 1 and dividing`by the new exp'onent'. Thus, we,.-have

3 4/3-
-e rid

2 3/2
x a -x x

4 3

as respective anAdeLvatives of x 3)/3-c and 40x Therefore, OUT

desired area is I

.

*am

1

Example, 7-1g.

'

o

x4/3 Il

1

12

rt

Evaluate !sin xiclx:

-11/2

- 92
.1,

\*
#.

.490
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0

Ih Figure 7:-3e we indicate (by shading) the region

integral we wish to, evaluate:

7-3

whose area is the

Figure .7-3e,

We know that the area of region B i 2 (fro in Example 7-3d) and we

should; suspect that the total area of x.ego?ons -A and B Is 3. We can con-

firm this. suspicion and gain additional' eXperience using antiderivatives. By

definition of absolute value we have

)

sin 'x, for 7 sin )e > 0ris
x -4. 1An Xi' --=,

,'sin x, for ' sin 'x < 0 ,..

.
. ,-._

We express our integral as the sum of two integrals:.
.e ..... t- t 4 ;'

,..

Co
......, ,,,r

.(4) .,

le

I sin x clx = kin xlilx + , kin xjdx -,

. ,.,

.:.,
; . - ' .

...,,,_

..
. . e.. 0 l

= ,C-fp '_.'n x, )c)dx it sin ..i dx .

illi. v .../2

Antideriptives

are, respectiivelyr

.
4:?/ '%

x -sin x and x 7in x
. .e

to
.,

x --) cos x and x --) -Cas x.

Theifoe, we have T.

t >,
', i'-.1-, ,.

'sin xjdx = cos x os "x),' ..
. 10

, 'N'{' : ''' Q
,!_

e
= COS 0 -COS( -.X S.tCOS, V) -( -cos 0)

s

..... ,V'
. 1 O + (-(-1)i1,44-1)

:

. :,....

..-
.

.

. ,, . //I ,..
'

I
1 , t..

,...;.

,
-, .. 191

r P. ii -. -*

...; ',.: t r,±, t' , , "
i

, 4'
:

O. ,'",
I ' r

i . ' ij 1
' '''1) II

1 .

r

.!
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2

Example 7-3h. Evauate f(x)dx if

0

=

, for 0 < x < 11
f(x)

(2x - 1)
2

, for 1 < x < 2 .

The area, of the shaded region in Figure

wish-to evaluate. Note the break in

the graph.of f at x = 1. In order

to able, to apply the Fundamental

Theore of Calculus, we first break

our in rval into subintervals over

Which the gra of 'f has no gaps:

2

f(x)drF 1;7 dx + (2x,- 1)2dx.

0 0 1

Antiderivatives for x :4 11.7.17 and

.
x (2x - 1)

2
are respectively,

3-{-3 x3/2 and x -)4(-P$(2x - 1.)3.
3

(CheCk by differentiation andesee

Exefcises 7-3, No. 5). We theriPre

have

.

2
1 (2x 1).V2if 3/2 +.

f(x)dx
_,2i

3 0 .

6
0

I 312 312. 3 3.
-0 )+T(3 -1) 4=

+ 13

3 Figure '7 -3f

7-3f is given by the integralswe

y

,-

492
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Exercised

I1ind each of the following integrals.

2

.(a) (x2 + x + 3)dx (S)
J

xn dx
0

7.-3

CO L 2
ex

dx(b) (x
2

+ x + 3)dx (k)

--2 1.-1'. . ,

(c) f x2 +- x ,+ 3.)dx . (2)

J-i

2

(ex + 1)dx
-2, I

/3.'
.r

s 2

+ x)dx) (

.--4,

(d) Cos x' dx

2 j.2 % . 2

(5x + 3x2 + 1)d)1-4:(e) ix" dx (n)

0 1

1
,- 4, rt

(sin x + ,cos,x)dx(f) (ix + gx)dx 7 (o) ,

1'1/16 -+ it6
1111/3 °x

(p) (e_ + sin x)dx
(g) 111/2

3x12 dx
t,

-Cr-

(h)
*.c (5x- + x )dx*

-2

(q) .f 3 (x2 + 2x 1 dx+ 5,
-1 ; 6 2%

3
, _. .

-'-' dx (r) . 3:° tan z dx

(1) 1.1 x. 10 -

2 .

2. Sketch the regions bounded by the x-axis, the curve y = f(x) and the

vertical lines -x = a and x = b. Then find the areas .'

(a) f : x -)x3 + 2x + 1, a = 1, b = 3

(b) f : x -4 ex, 8 = -1, b 1

(c) f : x -4ex + x2 ,. a = -1, b 1

k

(d) ; x in x Cos x, a = 0, b = 121-

4
(e) x x.+ cos x,

a 2 '

-10; .1 , 1
f) P.: x -4x -

(g)

. $

a 4

f -) 3fg
x ; a = -I, = 1,

a
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7-3
ti

. Sketch the regioki bounded by the -)Axis, y = f(x) and the given

vertical liner; then find it.: ,ire,a....".

le

(a) f : x --) !xi; vertical line., z = --,-!, x - 4

(Check your result by elementary ometiv.)

x --4 r4x31; vert,ical linesat x - -1,, x - 3 ./

y 4x
(c) ': x --, !co, xl; vertical line

3
at x .. - -. , x = 7 ,-

4- ,-
.(d) f : x

' 1
- sin xi; vertic1 lines at x = -y, x = 2y

0

(e) -f: x --) ;1_ , il; yeftical lines at x,. 0, x = 4

I (b)

4. (a) Eval_uatt , 3./7c) and (x- 31/7 + 50).'

1 - w_ 1

(b) 7(r) - (1(x +,loge wl-ere 0) = 1, t(1) = -1.

Find
G(x)- 11

0

5`.

- (c) Nat 15 F(x)

a

G(x) if

a

F1 = G'?

(d) F-nd an antiderative for each of tlie

f : r (x - 1)3

(10 : x 3x
2'

f 3%

g 4 ,X Sx' - 12x. 4- 6x - 1 '

f G : x > - 1)3'

D

following functions.

{Hint: G in thprform a(x - 0) 1.10

(b) Compare tin(; fanctions F with f and G with g. Compa're the

N.

antiderivatives.

6. Find an antiderivative for each of the following functions* .

0

4 f : x -) 3(x + 1)3

g x
3

Cl
7. Find (3x + 14)5 dx

t'4

(a) by first carrying ob e indicated multiplication,

(b) by Ming the method ifounin Number 6. 0

494
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0

b

. Which of 1.1e following integrals are the same as t
3 dt?

a

b

dy
a

(c)

7 -3

.s .) ,
.

a a+1

b
y

b+1
(t a; 3

(b)
3 dt (d)d) . - dt

.
.

9. Eyaluate,the following integrals using aelihe of symmetry appropriate
. .

3 2
to the problem. [et.g., x dz: = 2 3 x2 dx = J(3 3 = 18.]

-3 ( 0 3 0

(a) 7t/6

n/6

fc)

coo x dx

(1 ' 6x1di
-2

.40

(d) sin x dx

'r
.

10.. Find the.area,of the region bounded by the x-axis, the given curves

and tie given vertical lines. (Sketch:fi;St.)

-x3 0
vertical lines et

-x2 + 2, 0 <)x < 1 / x = 4
t cs

x , I < x and .x = 4

0 <x <3
vertical lin9s at

x <0
x = - 1 and

...
2

x > 3 Q
at x '

e 0 2

- ,

r.

4

In Prcblems 11-12 deduce part (b) frOm the solutions toppart (a).. (Sketch

each first.)

. 0

t 1

f

1

X
2

dx11. (a) (i) 'Find .(8 - x
2)

dx (ii) .

r

2
(b) Find:the area of the regiOn bpunded above by y ='8 - x, below

by y = .x
2

, tp the left by the wertical line x= -1,' and to the
...

ht by the vertical line x ---- 1.

. . ,--'

495 ' ",..-.'
e
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7-3

12. (a) (i) 'Find

(b) Find the are

13, (a.) Find the solution of Number 11(b)

of'Number 11.

(b) Find the solution of NuMber 12(b)

of Nthather 12.

2

(8 x2)dx; (ii)

0 A'

2

x2 dx

a Of the region bounded by ,y = 8 - x2 and y = x2.
*

dire tly Without using part (a)

.. \ ,.

directly Vittlout using Part '(a)

=
v..

sin x, y = coa x, x fib, and x .

.
.

14. Find the area bounded by y'o=

.4*

,o

1/(Sketch `

ti

4

I

9136

(4,

ti
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1

See Figure 7-4.)

. )

7-4. Properties of Integralb

We have seen that the integral

.
b

a

(or f(x)dx)
a

can be interp'reie4 as the area; of the region beloW the graph df f, above

the x -axis and between the ver4ic61
/
lines x = a and x V. Certain pro

, ,

7 -4

pertieb of integrals ate immediately suggested by this area interpretation.

Since the area of a region like that shown in Figure 7-ka'ahkild be a

nonnegative number; we have the result'

If fx) > 0 c
b

for a 5 x < b, then f _> 0
P

Figure 74a
. '

b'

Area under a graph.,

x
11

.

Also the area' of a?egion should not exceed the area of$any lai-ger regioh.

.Aeful formulation of this idea is'the following:
.

"(2) . ,
If:711?(4 < g(x), for a < x < b, 41e1-1 , . 4. .

V
/I

t

b
f < g.

a a-

a.

497 -
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b

eFigure 7-14b

The mrea under f_ does not

exceed the area under

1
.

Figure 7-4c

b

m(b - a) < f - a)

. ,

An applicatitn of the inequality in (2\ -gives bounds.'for the'area in terms of
0

bounds for f. Supi5ose M is a corist4t and f(x) < M for a < x < b. With

1 :-'

--)M we _can apply (2) to obtain

b

P I/ .: . !

1

f <
b

g A M(b - a)..
1 . -

a a
.

1 .

Similar argt.mients can be dpplied if m < to obtain m(b - < f.

a

(See Figure 7-4c.) In summary:

(3) if -m < f(x) < M- for a < x,<*b then

b

0 m(b - a) < f < M(b -
a

A line has no width and hence, hag te area. Thus, if we take b = a,
..

we should expect, the area to be zero, that ,

,a

(11)

i

f = //

/

P , /

1.
This is consistent Ti t h the res.ult (3) for f 'Ae'takm b = a wed obtain

..-

a

.

.

0 = m x 0 <ca f <M \x q =, O.A

r.

CI -
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14

%

If we multiply ordinates by a. constant factor then we/expect the area to
,

be changed by a corresponding factor. 0ne useful conseg ence Ofthis:

(5)
If g(x) = af(50, iseF A < x < b, v

Y
re a is ,a

positive constant, then

-( See Figure 7-4d )

a
a

a

Figure, 7 -4d

The area under g tis a ttimes the area pander f.

If one region is the union of two non overlapping regions we'expect the

area ofthe firs't region to be the sum of the Leas 'of the subregions. This

adaftivity prY.nciple'has two useful consequences, (6) and (7).%
(6) c lies between a and b, then '

.

f,= f +
cb

a f;

.4t ' b c

cut'the'region under f by a vertical line, then the 4.(rea is

two resulting areas: (See Figure 7-4e.)

of

x

\

0
that_ is, if we

the sum of thes

ti

'

Figure 7-4e

The area of the region under the graph of f

between a and b is the sum'Of the areas

of regions A and B.

.

4

iv
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7-4" '

.
.....

,. .

.: A seciond.useful formulation of additivity is obtained for the sum of
=t

two

graphs. The sum f +
,

g is defined as,the 'function whose veLe at x is

1.647+ g(x);, that is, the;graph of .f + g." is obtained .by adding. the ordinatas

of the:g aphg of f and g. We nave

cb'
(7)

b

a a ,

. . ,

(See Figure 7,-.400

b

a

I

The area of the region under the. grapl of6 plus.

thearea of the-region,under the.graph of g is

the sa:4'of the region under the graph gf f'+ g:

Each o These principles can.1De deduced froM the Furidamental Theorem.
. .

We,proVeseveral of them here, leaving the otheri as exercises.' .,

Example 7-:4a, Prove that

f(x) '>.0 for .a < x: < b then f > 0.
a

1 'Let Fi(x) = f(x).

Since '11,(x) > 0

F1(x) > 0

and r- Increases on the interval

for a-< x.< b

for a< x < b --

ia,b1.' Hende/.

F(b) >'F(a).

.*\ .% b
,

Then - Jo
? f F(b).- F(a) > 0.:

a

500
0 2

:1
e

.0"

44.
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Example 7-111D. trove .that

( 5 ) if 'g(xi) = af(x) fof a < x < b

where a' is a positive constant, then
Ve

° rb b

. c

1(x) = g(x)'

and:. F'(x) = f(x). -

Then. (XF(x))' = af(7) = gx).

Since G arid, aF have *the tame derivatives

G.(x), = a'F.(x) + C.
4,

t

Now . g = G(b) '-G(a)

= TaF.(b) + - r,:aF(a,) C]

.
= ocr:F(b) - F(a)1

f.

Note:' This prodf is equally valid if, a is a negative constant.

1

1,

.

t

501
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1: Proye that is

r.

txercises'7-4

c = 0:
a

.1

4 .," a .%

N
4

.1. b b o

2. Prove (2) bytisin'g the fact that f < g ,is equivalent to
a a -

a .

,(i3

r
and then using (1). , .0

.
3. Prove that. D f = f(x) Hint,: Let F' = f ar.d apply the Fundamental ,

a
Theo?em.

X x x

4: Prove (7) bY showing that f + g and 'f + g have the game

. c a S'a

deri7atiVe and that they are equal at x = a. Hint: Use Number 3.

5. Suppose f x x2, g : x 2x '+ 3.
'10

. (a) Graph each.

(b) Show that .f(x) ex) for 0 < x < 3.
3 . 3 '

(c) Verify f < g ,

0

6. Over the indicated interval for the fo owing functiotts: graph the func-

, tion; find the maximum (M) 'fplu'e of th function;, find the minimum (m)1
I

.o value of the funciion-t and, using' these, express with an inequality the

lower and upper bounds of t:he in:teg1 expression for the area. ,(Hint:

See Figure 7-2c.]
6

-(a) f x 1, 0 < x < 1

(b)'' f : x .-4.x2 - 2x + 3, 0 < x < 3
.t,.

.7. For x 3x '-r 2 and g = f find g and verify that

5 5

f 10
f.g =

4. 5, 5 . ,

104 5d2
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8. For f : x + 20 and g : x
_

-) -2(x - h) + 20.
-

(a) jF, nd a,suitable translation such that f(3) = g(0), show that

f(7 g(10. Graph f and g.
.

CO Find,3 . l'4 c7
and verify that

a 4

0 -JO H 0
f = ' f*+ 1,0

9
..c-0 -

Tilus . _

: 7
0 0 3

f.

9. , For x 3x + 5, g x x tand h : -x -41 verify that

b

.-- 3 g '4- 5 h.

a " :a
, . .

.

19. Find each of the following integrals) after first graphing. the given

function oven the interval. 4'. '

(a) .r(x2 x)dx
1

(b) 4x+ 5)dx'
1

(c)
fx2

. 1

(d) (T x.
2

+ 7
t

- i)dx-

;
1 ''

:

2

4 11.. Suppose ,f : x' -4 px 1+ qx + r whei:e p, q and r .are noaegatjive

conaants. '

i'

. , (
t

(a) .4ta F-: ax.
.
-) 2 x-3-4: x2 4- rx and show that F' =f.

2 ')--'

. .

-N.

ft'

2x + 31dx_ 1

(b) Show that if 0 < a < b then-

(Hint:

00

cis

b a

J0 0

, 503_ .

105
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7-4

12.. In Exercises 7-1, *umber 2 'it was showC4at for

1+

f - 7x ,io.r x >O.

Suppose g : px3 ¶ .q.x2 +

teive cbtastants.

rx' s, where T,

Suppose also that

f,

r Find s 'are nonnega-

x 3 x4
3

x3 4. x2 + sx.
4

..,,

(a) Sow that G' = g. .
b

ri,CO ifShow that 0 <a <, b 'th4 g = G(b) - G(a)..
.6 _

,
.1)

a . ,
,

;. ,

.- 13. In Number 11 p'ut (1(50 = -F(x) e+ 1000 and show% tlet f = G(b) - 0(;).

S. -.%

,).. .

, 1,

; a
114.0;-.2.I'..d F. !X - 2.rdx. "4int: f? gra p- is, of course, ',alp ul.)

. _.
A. 0

-- 15. 'Find
-3

x2 dx.
-10

..._

. ,
16. Fintthe area and graph of t' e region bAnded by y = 2'x - 5)2 -,2

' 'and y ''; n. (I-11.nt: Translate and grapy ti.e area_into t'e first quadrant.)

111. Find*ithe area of the region bounded by y = -(x ,- 1)2 +1 and y = x.
1.. , 4 .

I

4

4

.11

fref

5C.*

A



7-5

7-5. Signed Area

Until now we haye.discussed the integral f ar f(x)dx only
a

'in cases for which 'a < b and the interval from a to .b could bea'subdivided

sO that in each subinterval the function f Was nonnegative, always increasing
.

/'( T always decreasng).and its,graph had no gaps. We now extend our discussion

o include situations'for which a > b or for'which the graph of f may con-
,:

tain portions below the x-axis, preserving, if possible, the result .

irb
f.(x)dx = F(To) - F(a) if F'\ = f.

a

7 ""' b ', c
- ....,.

This can be accomplished by suitably interpreting fCxIdx as zigned area.
. .--,

a
. .

-

First conlieer the casegfor which' f .is nonpositiveon the interval
i . * .- .

a < x < b, and F' = f fn this case -f is nonnegative and has antideriva-

'tive -F so that 7$
f

, -f(x)dx-= -F(x)

a

' = -F(b1 + F(p)
' 71

1

This can-be tn erpreted as tWarta of the shaded region of Figure 7-511. Note -

that this is the seine as the area of the shades region of Figure 7 -5a.
. .

Iv

y = -f(x)

Figure 7-5a

ti

ot
=f(x)

a

') Figure 7-5b.

If the. Fundamental Theorem is to h8ld we'shauld have
r

f(x)dx = F(b) - F(a).

a

Referring to (1), we seep that this requires that

."

f4x)dx = -

b

E-f(Xl]dxc
-

a.

Fes.

o5 . .

3.0 7
L

.4o.



7 -50- .' ).

..

,

#

, % #1# 4

b
that is f(x)dx mdst be defined as the negative saf the area of the shaded

a

region of Figure 7-5a.

)
= f(Z)

Figure 7.75c,

Now suppose the graph of ::e-looks like that shown in Figure 7-5c and

that F is an anti:derivative of -f. W;,have

4###, c
1

-f(x)dx = F(-c ) - F(a)'area of Al

area of A2

a, .

,f.

c,.)

= , /-f(x)dx

0 ,..,..

1 '
1:

1'.

F(c1)
F(02)

. .
.

area clf A
3

= .f(x)dx = F(1;)- - F(c2)

t

c
2

Now note that,,,

, F(b) F(a) =" F(b), - F(c1),+ F(b1) - F(c2) F(c2) - F(aD

[F(c1
,

)r- F(a)] - tF(c
1
1 F(c

2
[F(b) F(c )]-

-(area of A1) - (area of A2) + (area of A3).

Ivjer words, if we wiLh

a

f tg be F(b) - F(al

- then we must have

'1

, .

b

a

f = (area of A1) - (area of A2) + (area of A

).



(2)

then f will be the total area of the regions bounded by the Hgracl, of f

a A

b

In summary, if a < b, F' = f, and if we. di'ine c f by

b

f = F(b)

a

which lie ;above the interval mints ti e total erea of t'l e ,regions bounded by
r , , ..

the graph' df f which lie below the interval. Ti s is called the signed area
..

. ..> .

determined by ,,f on the interval from a to b. .. .

.4

It is als8 common practice, to remove the restriction tl at °a, < b, by

defining
: ,

,. .
a

f = - f if b < a.

a b .

.

The ,fundamental re1'ation (2) will still hold,ipr4 'if b '< a and F' .= f then
. .

? ',0%*,.,,,>

b

,

411,11*

b

,c;

tea

14 I

. , -Lz.. Fjb) - F(a.5 .
ti ..

b .

%

The properties of the symbol
a

f discussed in Section "-4 also hold
..

,4 ,
-

for signed area: .
...,..

,

b b b

(3)
a a

(f + g) r f f 4- g;

a

(4)
b b

a a

f, where a is any real number;
e. ..,,

.

i"

I'
b ' c b'

s

(5) - f = f + f, where a, b, c are my real numbers.

a a c
4

.

4.4

Notice, in fact, that (4) now holds without the restriction that a be non-

negative and (5) dbesn'A require that a < c

Of courses if a b and f(x) > 0 for a c x < b then

.
b.

f(i)dx.-> 0,

a

One conseqiiencel of this is the fact that

,909



7-5
. .

.

. r
b ' b

(lit)
e(x)dx < f g(X)dx it' a < x < b and .f(x):< g(x).'

a
i.

7.-For-We-then_have __g(x) f(x) > 0, so that.

b*
Adding f(x)dx

a

A

to both sides, we obtain (6).

1

ExaMPle 7-5a. Find sin x dx.

(

This integral can be interpreted as the signed area of the total shaded

region shownin Figure 7-d. Since the regions above and below'the x -axis are
1

0

I
Figure 7-5d

' y = sinx

ke4

the same, we should expect that the signed area is 0. The defining r0.ation'

(2) should cOrrobotate our expectation, In this case

F.: x -;-cos x

A
is an antiderivative of x 74 sin x, so (2) giyes

v . .v.

%
1.

1
sin x dx = -cos x =''( -cos 10 ( cos(-v))

_

& 134,

=. -( -1)) -(4)) = 0.
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N

Example 71D. Sketch the graph Of

7-5- .

f : x -41 - x2 for -2 < x < 3.

61 1 3 .

-2

.a C = [-f(x)]d .

1

Find Pif' = [-f(01dx, B f(x)dx, hd

the fundamental. relation (2) to show that .

\ ) ,

The desired graph is shown in Figure 7-5e.

40.

Figure 7-5e.

y - x2.

,t6

-,<-4/ /
f

vir

66.

A

g/



7-5

1
Thd function. F': x -4x -

3
x3 is a antiderivative for f (as

easily checked by showing that Ft = f). We have
. ti

3
C- area of

-1 -1 -1, ,

2

1 1 1
1,

3 '3 1-1 3

f(x)dx = . (1 - x
2
)dx =.x - = = area of A

2'

3 .

,

. , 3

[-f(x)idx = f.

1]
(x? - 1)dx = P-(--,3

he fundamental relation ,()-givei

..i. ..i.

3

x = 7 = area of A3;
ao

1
.

f-3
f(x)dx = F(3) - 47(-2) = x -

2

which is the same as

x3 I 3 '20 .

3 3
-2

-(area of Al) + (area of A2)
o

- (area of A3).= -

a

0

i

a
Examplp 7-5c. Fad . x7 dx and - x

2
dx.

1 0

We have

2
1

2 x
3 1

dx = - x dx =
0 3

1

3
x

Example 7-5d. Find the area of the region enclosed by the graphs of thee

two functions

o.

A

f :

2
6x + and g °X' -g -x2 + 7x - 11.

A 's etch of the region whose areais sought is given in Figure 7-5f.

o

510
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a

-I

$

ti

(2,

1

,?t",

-5f

We shbil show th,ot the desired rea is given tv

r
'?/2

(g(x)

2

First we note that

9/2

(7) g(x)dx = -(area of A
1

)

2

(41)dx.

rea of A
2

) +

I 1

(area4f A3),

where A
l'

A
2

and A
3

are the regions indicated in Figure 7-5g,

v

/
/ t A3

\ 1

(2,1) /
%

t/ \ I. 1

I \ / ..- %

/ %./ 1

: 1'

Figure 7-5g

,/

efl

7-5v

c.

"1'13

Figure 7-5h



7-5'

Then we observe th'at

(8)

/

.2
/ \

Where region A4 is indicated in Figure 7-5h.

Subtracting (8) from (7), we ot4tain

. 1.2 2 c 2

9/2 . .9/2 .

g(x)dx - i f(x)dx = (area of A (.area of Ali),

....)

l

whichlis the area we seek. Sipce
. .

.

P

9/2
g(x)dx 1

1 9/2 ,;.

f(x)dx =
9/2

(g( x) -f(x))dx,

.

61 2
7 2, --',),---

'`. 9/2
we eatabliAt that. . (g(x) - f(x))dx.. determines he area of the region

2
,

between the graphs of g and- f. A simplae calculati n now gives

f(X)dx = -(area of A
1
) - (area of area of A3),-

9/2
(dal - f(x))dx = nl

9/2

(-2x2 ,4- 13 - 18) dx
.

2

= - x x -
2

2 3
+

13 2 1,0 17/ 2 12-
2

512
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'Exercises 7-5

1., (a) Sketch the graph of the function

f x -ax
2

- lc, x.< 2.
.

(b) Evaluate 4( - 1)dx.

0

(0 Find the'area of the region'bounded by the x-axis and the graphH

0 the function, x x
2

- 1, between the vertical liries at x'= 0
iw -

and x = 2.

2. (a) Sketch the graph of the function

f i x x3, lxl < 1.

1

(b). Evaluate x3 dx.

(

(c) Find the area,of the region between the graph of the function,

x -4 x
3 and the x-axis,, where Ix; < 1. '

(d) Find b (b > 0) if
b

x- tix = - x dx. Sketch.
c- 0

1 .c- 2 3

2
0

1

3. (a) Evaluate x dx.

(b) Eva uate
xisi- -1

(c) S etch and then find the area bounded by the x-axis, 'xi = 1,

d y = x.

(d) ketc4 and then find the area bounded by the x-axis, ixl = 1

fid y = Ixl.

4. Sket h andthen find the area df the region.bounded by the coordinate

-eie and the curve'

046 1.

Ca you identify the curve?
A

r

5.
r-tch and then find the area of the region bounded by . - 4 and

.

2 = y
2

. .

6. ketch and then find the area of the region bounded by y = x3 , y = -2x
2

1, t -C
between the vertical lines x = 0 and x = 1.

A

513
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7-5

)

er

4

Find the -,.rea of the re,--ion. b.ounded by y X and x + y = 2,, indicated

in the figure above. t

ts:

(t)

For'the. 'fir6t method the required region intq smaller regions

which can be evalda'ted as follows :
4-

1 L 2 4 r
013-c

dx '-(-47:)dX Is (-x +2)dx f [ -TX-) 1dX [ + 2) 1C1X

1 1 2

QI
AII

AII; + [ A IV A
V

1

'hi mailer region with their respective integrals.

!.. idi"ng the required region into different smaller

regions $,h eh re evluated as follows:

A

0

4-

.11

-y 4. ) dX -:

...

1: - ( -ITO )dX,, - F4[ ' ( -X + 2) la]
N J2

A I- A 1

Y 4Z W

h their respective integrals.

('.c) Show that th,- expre tons: of area in part (a) apd part (b) may be

to the, follow ing stPtement.

4

,

f;c. dx ( -x + 2) + &idx

0

,,ro$A point oat the relatiomihip of this expression for the area

and the figarF repre,enti% the area? Could you have arrived at this

exp. e.,s Lon without going through the smaller sub-regions .of parts

(a) and..('.)?

(d)' From tne expression for the area in part (,P) find the area of -the

region indicated in the figure.

5l4
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13; (a) Express an .integral represent-

ing the area of each of the '

following regions: (DO MT

EVALUATE.).

(1) Region I: bounded by the

)-

X-Fixis and

.y = 2x - x
2

(ii) Region II: lounddd by

y = 0, x = -1,

and

y = 2x - x
2

.

(iii) Region III% bOundeld y y = 0, x =.3,

(iv) 'Region IV: bounded by y = 0, y -3, x = -1, and x =

(b) Combine the. integrals of pa'i't (a) and show that the area of the

regioh bounded by y = 2x -.x2 .ancl y.= -3 care expressed by'

,af
7-5

and y = 2x - x
2

.

3.

the integral, ,

A =
3

(2x - x
2

+ 3)dx.

/ '

(c) Find the area-
:
of the region described in part (.b).

. 00a bounded only .by
1.1k

y the graphs -Lethe functions

.. f : x ,-) cos x Ai''
',,

f :' x -) -sin x .

_Az_

is restricted to'the closed intei'7NT -n < x < no Sketch the

fl. r 37.c/gr

', ;-'
, , (b) (i) Evaluate cos x dx.

..__.:7_0 .

....

,--- ----0-."'

(ii) Evaluate

3n/4

(-sin x)dx1

',/,

1 -n/4

;

\ ts IL (iii) Evaluate r 3/(cos x -.sin x>dx -,.''

\IN i -n/4

,..

'(iv) Interpat parts (i), (it), and (iii) geometrically. e-
_ .

if x

curves in this interval.

A

.%515
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7-5
11.

,..,.

10. (';) Use a .geometric argument to find
, 4

.',

a' : 0. p

fa, 4,

. .' .0

f if f as an odd Function (1'.e:, f(-x) = -tf(x)).
. . I, ,

f_

a a's

- (b) Show that f if- f is ,an even function_ (1..e.,

f(-x) = f(x))a

. 5
(c) Evaluate '(x3 3x)sin dx.- h ,

.

11. Show that i,f F' = f, G! = g, and f(x)'<'g(x) for a < x < b then- -
F(b) - F(a) <G(b) - G(a).

12. Verify co5). (Hint: f = F(b) F(a).)
a

.._

il* '. x
13. Suppose F(x), = f where f :-x 4 e,.

.

..x

(a) What is F(1)? ...
. ,

(b) Find an expression for F(x). ...

,..
(c) ijse part (b) to find F' (x) .

b

.'(d) In general, suppose G(x) 7. g. Can you find Gt(x)?x. .
114. (a) Find the area bounded by the x -axis and the curve y -...x2 x3.

. ' N-. , -, "7
Sketch. , , ,

,..
.

..!
(b) ,Find the area bounded by the y-axis ,and the furve x = y2 - y .

3 ;

Sketch. (Hint: Note analogy to pprt (a).) o ..
# .

. .
_Z , i

d x

V
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776,, Integration Formulas

.

Y 7-6,

We -have seen.that the integral f(x)dx can be evaluated, if we can

4 1-a

find a fActit144 F such-that Ft for then we have
c-A4`

b

f(x)dx = F(b) - F(a)f.

In general we find antiderivatives ty one or a combination of methods.

A method may consist of recalling a differentiat9on formula, judicious guess-

ing, or using tables of antiderivatives. In this section we review some of

the basic formulas used previously, give some additional formulas and discuss

the use of tables. TecOr-ques for 2xtendi8g tie scope of our formulas will

be discussed in Charter 9, where we also discuss methods for obtaining approxi-

mate values for integrals. Other integration methods are discussed in the

appendices.

'The common notation for an Etntiderivatfve of

If(i)dx,

whfCh is also called the indefinite integral of f. This symbol is cl4te

'similar to

b-

f()dx
a 4

the integral of 1'. from a 'to b. 'The symbol -N

ff(X)dx

4defines a function, namely, a functiorahose derivative is f. The second

.symbot

4.

f(x)dx
a ,

4
\N....

.

represents a number, which can be interpreted as the signed area determined

by f between a and b.

517 .1 1 9



. 7.6

for

s,"

*4. -

Integration fOrmulas are obtained by reversing the differentiation proces

4

,

. f(x)dx = F(x) means that DF(x) = f(x) .

For example,

3
.

2c2pci3Visince D 3 = x
2

Of course,.if- C is-any_constant, we have

v3
+ C) =

2
x ;

, 3

more precisely we have
;,./

2
x3

X UX =
3

,,

.

z
. ...

'In' fact, we linow,from the Constani Diff rence Theorem (Theorem 7-3b) that all '
. .

4 .

. .

g ,

antiderivatives of .-3,x
2

have -t]
,

. '

,

.,

x3
.-:

'

,

3;_-----
. x -3. + C

'

w ere C is a constant.

, ,

In some books this facti's stressed by writing
, .

44,

f(x)dx =F(x) + C,
t

where C 'is a constant and DF(x)% =:f(x). For"conveniei.ceiwe fblloW the .

simple practice of ignoring this constant C in our formulas, each integre

tion formula giving only one function wh&se derivative is f. Other's are

obtained by -adding constants to' our antiderivatives.

The Power Formula .

Recall that if a is any reel number the

If a / 0, we can write.

Dxa = axa-l.

D(-}1". = xa-4,

120 . 518
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so that ; x
1

x
a

.fs a function whose
a

that .

sr

;0

For convenience we replace. a by p

p # -1,' to obtain the fb,rmula

1

In other

arl
derivative is x x .

7-6

This tells us

x
a,

if a / 0.

+
0
1

' (

where p is any real number except

. r

P
+1)/1 0 A t

xP dx = 17q. , p / -1.

words, an, antiderivative of a power function x x -1,

is obtained by raiins th exp(5Feivt "ty, 1 and divid;e1g by the..rfew exponent.

1
ISuppose = -1, then our function X

x-
n Section 6-6 we obtained

"IN
,

the formula

This gives thesintegration

Circular and

From the

wa obtain the

Since

1
loge x = , x > 0.

x

f(

.cl

dx = loge x, 'x > O.
x

Exponential, 'Functions

'formulas

C

ein x = cos x; b cos- x = -sin x,

integration formulas

t

S

cosCos x dx = sin x; Isin x dx = -cos x.

x

di

we have the formula

ilex dx - ex.

51121

;4(
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653

It is a simple matter to extend these formulas to the case n x is

replaqed- by the lirtea,r- expression ex + d. For' example? we know at

D sin (cx + d')" -='c,cos (cx a)

that .

c.cos (cx + d)dx (cx + d).

rf we can write

' 4

Pos (cx d5:dx.. sin (cx + d).

tr

i

.
Analogousdifferentiation formalas_were discussed in Volume One for poly-

.

ngmial,
)

exponential and ?.ogarit1amiC. functions. In Chapte,; 9 we shall discuss
..

the formulas resulting from nquIinear substitutions. Here, we state the general

result .foT linear replaeementA

If irf(x)dx :F(x) and c / 0,

then j'f(cx d)dx = F(4x + d).

For easy refernce.w lts'e summarize current resu in Table 7-6.

J

Table 7-6
/

Some ,Ihtegration Formulas

(1)1-
x+

1

a+1

xa dx =
a

)
a / -1

, .
.

i, s

1
(2) -; dx = loge x, x > 0

(3) f cos x dx - sin x,,

(4) ;in x dx . -cos kf \

i( ) 'ex dx = ex

Vc

1
F( cx(6)

1
fox + d)dx = Fkcx + d) *Pdg.C,

441S
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. Example 7-6a. Find
T3/ 1.

dx.

j 1 x2

444

\
The power formula (1), with a = -2, giyes

Z
1

dx = x
-2

dx =
x
-1

=
1

;-
4. 4

I

3/2 3/2.
dx =

11 x

I
4

Example 7-6b. Find 1)c dx.

2

.

1 1 1
) ( -1 ) =3.

2

1
The power formula (1.), with a _. , gives.

23/2Ilc dx =
f

x1/2
x

dx =

so that

2x
3/2

dx

.

'Example 7-6c. Find

3

4
2 V2 3/2

= 3(4 - 2 ).

2

16 - 4,12-

3

(sin x - 3 cos 2x)dx.o.
We have, from and. (3),

.s I'sin' x dx = -cos.'x and cos 3c,dx, = sin x.

''

Relilacirig x V 2x in the latter and using (6), we-have

w;

t
. cos 2x dx = 22: sin 'tx.t.

41,
Therefore,-.we .conclude-

4

1

J.

1



7-6

-

0

(sin x 3 cos 2x)d).c
0

),

Example 7-6d. Find

sin x dx - 3
r

cos 2x dx
J

_J-,_
= -cos x In - .--2-'2 sin 2x

0
2

0

sin 0), -(cos n - cos 0] - I sin n 2n -
2

= -1-1 1] - r; 0,- i 0] = 2.
`.

. r

-1

J

2 e% dx.

-10

We use (5) to obtain

:10

/-1 -1

2 ,ex dx =2
-10

ex dx 3 2 ex
c

-1 -10
= alp 2e .

1

Example 7-6e. Find 2x dx.

We first convert to base

Now we use (5) o obtain

2x = e wherex, c = loge 2.

fex dx =
i

ex '.

We replace x by cx, so that (6) gives'

cx
e ilx =

cx

,

where c = loge 2. Converting to base we have

1
dx

.:*

It
log 2'

0X7

#,4

1:424,t 22

ire



so that

1

2 'Ax
1

(lo-
'be

1 211

1

0
g 2

1 e
.2

-

7-6

0
3Example 7-6f. Find (x + 1) ax.

-1

We card evaluate this integral in !Lwo ways, we expand to obtain

e
(x + 1)3 x3 + 3X: + 3x

so' that

We apply the power

1r0
(x + 1)3dx

1

o
(x 1) -dx

-1-

3X" 4- 'X 4 111d>

formula (1) to each term to obtin''

+ x3 +
3x

+- x)
0

_1
- F1 - 1 + 11

'4

Alternatively we qan recognize tht the powel' formula (1) gives

f

1
, x-

4
dx = 7 x

and the linean substitution formula (6} gives

r(x + 1)3 dx =

(x

+-'1)4:

Therefore, we conclude that

0

-1

(x + 1)3 dx,,=(x + 1)
.4

0,....
,

.
-I.

. r ..:1,-,

The second method ts c thinly quicker.
_ .

1

r

r

..523
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1.

1

Example 7 -6g." Find

J

sin
2
vx dx.

We have not yet obtained a differentiation formula which xesults in the

square of the sine function. We use the fact that

thus, we have

sin2 vx
1 - cos 2vx

=
2

1

sin2
22 cos 2vx.

sin vx dx = )dx-
2

0 0'
2

1

=
1f 1 dx - g
2

0 0

cos 24tx. dx.

To evaluate this second integral, we combirie the cosine formula (3) with

the linear substitution result (6) to obtain

)

We can write or .

-0..c 1

. I
1

- 1

cos 2vx dx ='
2v

sin 2vx
0

= JL(sin 2i -sin 0) = 0. ,

2v

210.
cos(2vx)dx = -- sin(2vx).

Since the second integral is 0, we conclude that

Ss

sin
2.
vx dx = g 1,dx - 0= 7

1 I.

x =,7 .
a1 1

Op

EXample 7-6h. Show that the area of the shaded region of Figure 7 -6a 1s

twice that of the shaded region of Figure 7-6b.

a'

12.6524

-r



1=
X

7 -6

1 2

g: Figure 7L.6a Figure 7-61)

-

4

et a dx and 0 =
2

1
x

dx. We wish to show that
1

1

'''''
Formula (2) giv s

dx = log. x,

a
= 2.

4
.

a = dx = loge x = log
e

4 - loge .1 = loge 4;
1 x

4s' 6
1 .

#

s. 2 2
0 =

1x
dx.=' loge x 11 = loge 2 - loge-i =.1.og. 2:

.,.

Thus, we'conclude that f

The Use of Tables

a .log
e

4 log
e
2 2. loge 2

log
e

2 log
e

2
.

log 2.
2.

e

A longer 40D.Ip of integrals s given in a separate booklet (Table 7).. As

'More differentiation methods e developed, we shall see how to construct these

'tables. The following examples make use of these tables.

N.

I

-525
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_

Example 7 -6i. Find xe
x dx.

0

Formula 16 of the tables gives

so that

Alm

Example 7 -6j. Find

Forniula 16 a the tattles gives xex dx = xx - ex. We replace x by

x x
xe dx = e - e

1
xex dx = (xex ex)

1

0 10

(lel :el..) ..(6e0

1

0
xe3x dx.

e0)

1

3x anti use (6) to obtain

s3xe dx =

so that

3x 3x
3xe - e );

1
3

=x e .x . ax

0

Example 7-6k.

(3xe33c -
3

Find

e3x)

1
log

0

1

23-(

0

(1 + x)dx.
e

e3) - 2:(0e°
3

1

- e°) .=1-e3
3

+
3
1 0.

We use Formula 7 o'f the booklet tables; loge x dfc = x loge x x.

Replace x by 1 y x and use (6) frbm this chapter to obtain

1 1
(1 + x)dx [(x +.:(1)1ogx + 1) - (x + 1)]

0

S

(2 loge 2 - 2) - (1 loge 1 - 1)

(.7
= loge 2 - 1.

- 52'6'
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A-1418.,

g
Example 7762._ in sink x\c.

Formula 28 at the booklet tables gives' that
L..

f
n-1 x cos x n- 1

sin n x dx =
sinn -1

n
sin x dx.

With n = 4, we have

4sin x dx =
-sin3 x cos x 3

4

2
sin x dx.

To find this second integral we can use a trigonometi'fc identity (as in

Exampg 7-6g) or we can use Formula 28 againewith n = 2 to obtain.

2

cos x 1-

2
sin

2 sin x
x dx = 1 dx

-sin x cos x 1

2
+

2
x.

Therefore, we have

N,. .

I 71' . 4 '

sin x dx - k
,-sin x cos

4

x 3'sin x cos-x 3xr
8 711

-g
t

Since sin it = sin (-y) = 0, this becomes

3x I

7- -
.. -g

Example 7-6m. Find
2

e
-x

dx.

.0 r ,...

i

2
.

- -

The tables give no formula forte , e-x dx. There is a good reason for
4

.

this: it is known that there is no elementary, function whose derivative is
2 r

x --/e-x . Our integral, therefore, canIibe.found by using the Fundamental

Theorem of Calculus and we must resort to some approximation method'in order

to estimate this integral. We shall have more to -say about this in Section
, .

9-4. *

,-

'01.

(1g)) =

0

7-6'.

527
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Exercises 7-6
.

For problems 1 -15 find the Following indefinite integrals.

1.

f
(x2 + 1)dx

2. + x + x4)dx

x

5. (1 ; x)dx, (x > 0) [Hints Write as 2 fractiSns_.11

goo 6. I tin 3x dx

7. cos(2x - 5)dx

CS

8: (-sin 2x )dx

9. I [-cos(3x-J)]dx

J, e
e

10. cos 3x dx

C . ,

11. 2 in x cos x dx [Hint: Use trigonometric identity.]

.

12.

.

(3 ;in 2x - 6 cos 3x)dx
.

l
-

13. f e2x dx

141 1 ex/3 dx
.

'15. (ex + e-x)2d* [Hint: Remove parenthesis.] t .

528
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,11., V 3

For problems 6-25 find

Iffien neceqsary).

16. ir x
2

ex dx

.
- .

Jr_., -17. x3 ex dx

,

18
.1 4 x

,x ...e dx

O. x,
2

loge
y.

20.

J

x3 log
e

x dx

the following indefinite integrals, (iis.ng tables
...

J 21. x4 loge x dx

i* . 22.- x2 sin x dx

I.

's 23. x3 sin x dx

-I
24.:I e x sin iix dx

1

x dx 25.

For problems 26:31, sketch a graph Of

of the indicated

v
26. I (x

\-

integral.

28.
2

sin x)dx

-x
e

dx

the relevant

cos
3x
-- dx"
2

regiori and find the value

+1 x e-x
2 . dx

2
-1

e
2 log x

31.

, .yr)-c

e dx

lie
2

For problems 32-33, the following.instructions are to be followed (linear

substitution: translatlon).. In this section we were given an area represented

by:

0

A.= f (x

-1

P
By replacement

,..1( by x - 1),

of limits, we

for the area.

we have

)3+ l) dx.

of + 1 by x,

and appropriate .chadge

Aincl, an equivalent. exkpression

After the linear substitution,

A
L

= x3 dx
A . -

and

529
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rx

evaluating the two equiyalwit forms of

the area: .

A =
10

_1(x +.1.)3dx 4(x +1)4.
0

= r

-1 4

ds
ALTS.

1
x 3

d _x = x
4

1

=

0

1 1

we see that they tre, indeed;

. the same. I i .

X

In the following two problems, follow the format
:
ab ve: Sketch the area

defined by the integral, make at appropriate linear substitution, sketch the

equivtlent area, and evaluate each.

4

32. A =
. 1

2
dx

3 (x - 2)

2

33( A = x(x - 1.0 cbc

Fot problem 34:35, follow the instructions of problems 32 and 33, except in

this easethe linear substitution is a scale change instead of a translation.

Drag two graphs asbefore.

nj2

34. A = sin 2x dx

..f.

4

35. A = 15 dx
1

36. (a) Show that if x < 0, then

D log (-x) = .

e
f I

(Hint: Sketch f : x 7) loge (x), x > 0 and g x loge (-x),

x < O.)

(b) Use part (a) to find

and sketCh the area.

)

-1

-3

1 dx

1530
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3

(a) e4n you apply the Fundamental Theorem to

,

do so. If not, state reasons.

-70:0 3------

n *".

1
1

lim dx = 00
/ x

Use part (b) to discuss what area, if any, you think sholkd be

assigned to the region bounded by y = ; x / 0, the x and

(c)

7 -6 '

find 1 1 ".dx? If so,

i 0 x

O
tfi

axes and the yertical line x = f.' .4.

(d) What answer seemcs reasonable to you for

.

. 1
dx? With whatx

/
,..

. a

properties of areais your answer consistent? inconsistent?

y

ti
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Chapter 8

DIFFERENTIATION THEORY AND TECHNIQUE

o .
In Chapters 2, 4, and 6 we shorted that the derivative of a polynomial

function was also a polynomial
,

function (of one lover degree) and established
it )

. t

I

for certain transcendental 'functions the formulas: .-

D(sin x) = cos x D(cos x) = -sin x

D(ex) = ex
1

D(log
e
x) = .

X

These a,re the.baslc.differentiation formulas. Our primary purpose in this
.

chapter is to obtain formulas for differentiating variouealgebraic.combina-
.

tions of these functions and to use these aerivatives to discuss graphs and

motion.

The first section of this chapter includes a review of the, terminology of

derivatives, as well as an introduction to the relationship between continuity

and differentiability. Various geometric properties of graphs of continuous '

functions are illustrated in Sectiqn 8-2, where the Intermediate Value Theorem

and related theorems on maximum and minimum values of functions over intervals

are introduced to establish the connection between derivatives and the shape

of the graph of a function. The Mean Value Theorem and applications are dis-

cussed in Sections 8-3 and 8-4. a. special case of the Mean Value Theorem,

Rolle's Theorem is left to Exercis 8-4, Numbera. Derivatives of sums,
7*.

multiples and products' are discussed in Sections 8-5 and-8-6. Functions which

are composites of simpler functions are discussed in Section 8,-7 and the

important "chain rule" for differentiating such functions is given in Section

8-8. Special cases of the chain rule, which enable is to differentiate powers,

reciprocals and quotients are described in Sections 8-9 and 8-TO. A general. ,*

discussion of the,"folding" process used in Chapters 5 and 6 .Eo define and

differentiate ,root and logarithmic functions is contained in Section 8-11.

These results are applied, in particulaF, to the inverse trigonometric func-
,

tions. The final section of this chapter gives a special techniqUe for differ-

entiating functions Teich are defined implicitly by relations.
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.1

Differeritiabil

We have often found the derivative of a function. Let as recall the

definition

f'(x) lim f(x + h) --f(x)

h -) 0
h

aK

As you know, f'(x) represents the slope of the tangent to the graph of-

f at the point (x,f(x)). A few examples will freshen our memories.

Example 8 -la. If f x
2

, we have

f'(x) = lim (x h)2 x2
e

h 0

tie0

41,

4

In different notation; we write

lim
2xh + h

2,

h -'0
h

= lim 2x + h

h 40

= 2x.

2 = 2x,

which we can read "the derivative of x
2

is 2x."

Example 8 -lb.

f : x
1
-
x

'(x) =
x-40

Since
1 1 - (x + h) -

X +'h x x(x +

1 1

x + h x
f

h

the numerator can be 14ritten as
x(x

h
and the difference quotient

+

1

MO.

(h /-0) becomes

obtain

and conclude that

1

x(x. + h)
Taking the limit as h approaches zero, we

f'(x) = - (x / o)

(0) L-_ (x / o).

.

x x2.



Example f : x

f' (x) = lim
h 0

We transform the difference quotient by multiplying by,

.40
`which is 1 in disguise......Tkren

o7-471-7 +

IT4-7 +

x + h) x

h

11(47717 + ,r)0 )./77+ h + -6-c,..
, ..

If we let h approach zero we obtsiri 1

h(AT4. h + ITO

1

otherwise state

v(x) = 1 _'x +fix 2,6"c

1

Di- 1-
21;

Example 8-1d. Let f : x sin x. Thep

f'(x)
sin (x - sin x

limy
h -4 0

lim
sin x cos h + cos x sin h,- sin x

=
h 0

,cos 10; - 1% /sin h%
-= lim + cos k )------

\h -) 0

= sin x .6 + cos x 1

= cos x,

where we'use the fact that

lim
;os h - 1

- 0 and lim
sin h

h 0 . h 0
h

We' can write our result as D sidx = cos x(

535,
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,Does a function f have a derivative for all values'of x for which f..

is defined? Since f'(x) represents the slope-of the tangent at (x,f(x))
O

the question is.this: Can there be points dri the graph of f at which either

there is no tangent at all or a vertical tangent? (We remember that the slope

of a vertical line is undefined.) It is not hard to see that the answer is

that there can be such points,

or example, the graph of

f : x -4'167

has a vertical tangent at the origin

and therefore f has no derivat ive
0

when x = 0. This appears from the

expreetion for

D= 1 , x / p.

2,67

1
Since --- fails to exist when x = 0, ue say that f is differentiable if

2i& C.
0 0

..x > 0 but not differentiable .at x = 0.

A more interesting example'is furnished by the absolute value function
0

Recall that

a. -4x. 1x1.

x if x > 0 .,

.1xi. =
tx if x < O.'

foot.

Its graph consiste*of two,half.

lines, one of which bisects the arst

quadrant and the other the second Oa-

' (Flgure 8-1a). Hence, there is

a corner at the origin.

Is there a tangent to .the graph

at the origin? That is, does fif0)

exist? For x = 0, the difference .

, quotient is

to + - 101

.h h
,

h > 0; Ihi = h and = 1.

536,
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8-1

14The slope o R is .1. If h < 0, 1111 = -h and
h h-h= = -1. The slope

41-0

of PQ' is Ll. The situation is exactly the same whether Q ,and 0' are

close to p: or not. If there is to be a tangent it the origin he difference

quotient must epproach a single limit whether h approaches zero from the

right or the left. In this case, therefore, there can be no tangent. Inspec-

tion of the graph makes this result reasonablehere isno single line

.through P which filithe graph closely on both side In general, a func-
.

tion'will faq.'to be differentiable at,any point where its graph has a "corner."

Consider the function f whose

values are given by

1 if x> 0,
f(x) =

if x <0.

The graph of f is.sketChed in Figure

8 -lb. Note the "jump" at x = 0. 41e

say that Tis discontinuous (that is, '"

not continuous) at 0, off' that f

has a discontinuity at x = 0. At such

a point there cannot be a derivative.

AJvii
y1

1

x

0

-1

Figure 8-lb

Tp see this, consider what happens if we join P(0,1) to Q(h,f(h)) ,whire

h / 0. 747 h f(h) = 1 » and Q. is (h,1). The slope of PQ is zero,

whether 'h is large or small. If h < 0, f(h), = -1, Q is (h,-1), and

' therefore, the slope of PQ is

-1 -1 2

h -h

e z,
.

If we take- h to be successively -0.1, -0.01, -O. 1; ..., we obtain the

JPslops 20, 206, k00, ... . Clearly, -'fl. incre es beyond all. bounds as

h approaches 0 through negative values. Therefore, fl(0) does, not-exist.

We generalize this result

In order that ft():_shIllexlst, it is necessary that f

be -84Wntinuous at a.

How can we show this? So far we have not said, exactly what we mean when

we,say that f is continuous at x = a. We have ,been content to say that

, there i no "gap" in the graph at, x = a. We can now be more precise and

adopt the following definitidh.

537

X38



8-1

A function f said to be continuous at

if

(k) f(a) is defined

(2)
lim f(a + h) = f(a)

h

That is, f .must have a value when x = a and moreover this value,

f(a), -11.14at be approached as h approaches 0, that is, as xr approaches

a. .tetAts illUstrate.

r 1
° Example 8-1e.

.,

If f : x -43-c-, f is not continuous at 0 'because

is not a number. [f(0)4 does not exist: there is no such number.) This is

enough to establish the conclusion. 1111
.

1 1
However, for good measure we'see that f(0 + h) =

0 + h h
does,not

approach lay limit.

Example 8-1f. Let

1, x > D-

e

f(x)

-1, x <0,

so that the graph is that shown in Figure 8 -lb. If our definition is any good,

it should tell us'that f is not continuous at 0. Let us apply the tests.

(1) Is f(0) defined? Yes, f(0) -='1.
i

ii

(2) Does f(0 + h) approach 1 as .h approaches 0? No; in fact,

if h < 0 f(0 + h) = f(h) = -1 and no matter how close to zero

h may, be chosen, f(h) = -1 is no clober to 1 than 1 L (-1) = 2.

Now that-we know what it means to say that f is continuous at a, we

are in a positidn to justify the statement (1), which we 14epeat fOr convenience.

(1)
In order that ft(a) shall exist, it Is necessary that f

befcontinuous at a.

To say that t
f(a + h) - f(a)

exists means that approaches a

limit 'ft(a) as h approaches zero. Then

That is,

(f(a + h) -
h ( f(a)) approaches 0 'f'(a) = 0.

a,
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and hence;

f(a + h) - f(a} approaches 0

V

f(a + h) . approaches , f(a) .

-But-thra. means that f is continuous at a., ,

co

Exercises 8-1

8-1

Find any values of x for which the following functions are not differeriti-,

able. Give reasons and sketch the graphs.
;

: t -4 lx 11'

2. -f : x --)
1

x + 2

3. f : x --) 'sin xl.

4. f x
1

5. f : x x32

6. f : x X2/3

7. Let f x -a 4.in x- , x > O.

(a) Find n a positive_ integer,

(b) Find f (2-\
\ /

, f (-51;-)) ))

2 2 2

2*

3..1 '

,. .' ,. 1,

(721 (12111)

...

... 0.1.

(e)

Find f(13 )

.
t

Is there any way to define'
tr

f(ii so that lim f(h) = f(0)?

.-.....w.-

tr

1
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8.2
,3

8.2 Continuous Functions

In the previous section, we showed that a function f must by continuous

at any a for which f'(a) exists. Since a polynomial function has a deriva-

tive at each value of x, polynomial functions are continuous everywhere. If

f ts a rational function
1 ,

where p and q are polynomial futctions, we know that f ii not defined

for any value of x for which q(x) = 0. ,such an x, 1f iSIherefore

disContinuous. We shall learn that for all other values of x, the deriva-

tive f'(x) exists. Therefore, we can conclude that f is continuous when

q(x)( 0.

x + 3
For example, f : x

2
is continuous everywhere since x,

2
+ g is

x + 2

never zero. However; f x
x + 3

is conttkUous.except at x = 1 where it
x 1

is discontinuous. f Yi

The function

sin x
f x

x

is discontinuous at 0 since f(0)
es

does not exist. If we define f(0)

tole 0 (see Figure 8-2a) the func-
2rt

tion is still discontinuous since

(from Section 4-2)

sin h
lim - 1 # f(0).

h Figure 8-2a

In fact, -f is discontinuous at 0 unless we take f(0) = 1. In this case,

f is continuous everywhere. -

There are two important theoreks'about functions that are continuous at

all points on an interval (a,b)- which includes both endpoints, that is, an
.

interval, a < x < b.

The Intermediate Value Theorem

THEOREM 8-2a. If f is continuous on (a,b) with f(a) = A and

f(b) =.B and if C is a number between' A--and theb th6re is

at least one number c such that f(c) = C.

540

141' A



'A special case of this theorem is

the Location Theorem in which f is a

,polynomial function; A and B have

ti
opposite ` signs and C = 0 (see Chapter

1).

We illustrate the theorem for a

few examples. We shall not prove the

. .theorem here.

Example 8-2a. Let f(x) - 3

x- + 2

with a = 0, b. = 2: and C = 1. Here

8-2
A

Figure 8-2b

2
f(0) = i = A and f(2) = ;. acid

;
there=,B. Since C Is between 3

5

should be some c for which f(c) = C = 1. To see what it is, we note that

I
J

*o
c 1-3

c
2

+ 2

irhen c
2
.+ + 3, that, is, when

The possibilities are

A ;

c
2 -c 1 = 0.

c = 1+ 15 and .1

.; 2 `2

1

)1

The first lies betweehi a hnd, b, that is, between 0 and '2, as desired.

as

Example 8-2b.° Let f(x) = 2L1-1-3: with a = 0
x 1

before. We have f(a) = f(0) = -3 and f(2)

C = 1

= C = 1 is between

-3 and 5. Doe6 there exist a number c, (eci< c < b) such that

That it possible that

This- equation is equiyalent to

/

which is 131-valent to , - -

1

.1



which is false. Hence, there is no possible solution c. This should not

surprise us. The7deorem assumes that f is,contintous on [a,b] = [0,2]

Howeve , for our there is a discontinuity at 10
,

'
l NO"'

sin x

-fExample 8-2c: Let f(x) =

) , x 0
x

with a = 0,b = , C = -
7c 1

-1 , x = 0

Alth64h C is between A = -1 and B = 0 it is impossible to solve

1
f(c) = - ,-f. Of course, f is discontinuous at a = 0 so that the theorem

does not apply. Ifwe define f by .

sin x

f t x -4
r 1 )c.,10

ft

and choose C = we-have better luck: In fact, C is between A = 1-sand

B =.f(2) = 0; and

#

sin c 1
_

c 2

does have a solution since f is continuous (0, 7,4].

I

c

A second theorem about functions continuous on an interval Ta,b] 1.

guarantees the..existence of maximum and minimum values.

THEOREM 8-2b. If f is continuous on [a,b] there is at least one

number c on [a,'b],, (a < c <-b) where

(1) f(x) is`a maximum, M

and at least -one number d, (a < d < b) where

(2) f(x) is a minimum, m.

Here (1) means that for all x ion [a,b], f(x) < f(c) and (t) means

that far all x on (a,b], f(d) < f(x).

A maximum or minimum value ttly.ocurSaetl.i-een a and b or at an end--

point. figure illustrate some of the pOssibilitigsl

1'0' 4,

.41542
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a

O

Figure 8-2c

8-2

yl

4

r

Figure 8-2d

a

We have the following theorem. a

If

THEOREM 8-2c. If a maximum or minimum occurs between a and b

(that isif it ii not at an endpoint) an4 if

then f'(x).= O. .a.

f'(x) exists there,

. -
,

For definiteness let us consider the maximum f(c)

ir

where ,e < c <1).
, ........._

.

f,(e) -06, there woad be higher points nearby on the right, If` fs(c) < 6,

there would be higher points nearby on the left. Since both of tbe7e'posgibi-

lities must be excluded, the &Ily remaintng possibility 1.S7f1(C) = O.

AI*
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81-2

The argument for the minimum value f(d) is similar.

:Re givethree examples ofthe use of this theorem.

Example 8-2d. Find M and m for f(x) = x3 - x + 2 on the interval.

[-2,2]. Since f'(x) = x2 - 1 = 0 at x ='1 and x = -1, we should find

= and f(-1) = 1 . At the endpoints, we have f(-2) = 131 and

, 8 , 4 8f(2) = . The minimum-value m -s- and the maximum value M = -3- . Each

occurs at an interior point and also at an endpoint.

If the inter/al were [ -3,3], we would have f(-3) = and f(3) = 8.

In this case, m = -4 and M = 8 and both the maximum value and the minimum

value occur at the endpoints.

sin x
x #0,

'Example 8-2e. Let f(x) = ) , and let, [a,b] = [0,v].c

As we know, f is nou continuous-on the whole interval [a,b]. Hence, the

theorem does not apply. In fa-et, f'(x) / 0 at all interior points There

is a minimum value m = 0 at v. There is no maximum value.

If we change f so that f(0) = 1, f becomes continuous on [0,v].

f(0) = 1 is now M.

Example 8-2f. Let f k Ix' and let [a,b] = [ -1,2]. There is no

point where f'(x) =.0. Turning to the endpoints f(-1) = 1 and f(2) = 2,

we might be tempted to say that m = 1 and M = 2. Actually 110) = 0 is

the minimum value.'. It occurs at a point where f'(x)' -does not exist.
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1 I

Exercises 8-2

,

Apply the Intermediate Value Theoll68-2a yhere possible. If the theorem does

.; not apply, 'explain why not.

f x x3 - 3x -a -1, b = 1, C = 0

2. f x Ix' a = -1, b = 2, C.=

3. f x x3 - 3x a =*-1,%b = 1, C =

4. f x
1

a = -1, b = 0

5. f : X -4 sin x

. 6. f ; x x

1, x > 0

7. x
0; x < 0

a= 0, b = C
1

a= 0, b = C = 2

a = -1, b = 1, C =
1

Find and M for each of the following funqtions on the interval indicated.

8. f x -4x3 - 3x [-1,1]'

9. x - 11 [ 0,2]'

10. f : x x3. - 3x C22,2i

11. f x ''
1

[ 1]1i4
X

12. f : x - 4 sin x ' , [0 , 2].

13. i -,.:0x ,
.x >0

0, x <0
, 4 [ 1.41. ]

e I
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8 - 3

8 -3. The Moan Value Theorem

.

Consider the graph of f x
2

with the points P(11) and Q(24).
4 - 1

-The slope of the chord PQ .is F7 57 - 3.

.

. The tangent to the graph at (x,x
2
). has

the slope 2x. As we follow the arc from
A

P to Q, this slope changes from 2 to

4, passing through the value 3 when

x = . At R( ,)therefore,
2

the

slope of the tangent is exactly equal to

the slope of the chord and the tangent

is parallel-to the chord.

We",can generaliz-e-this idea. Consider

the graph of any diffevntiable function f,

and let P(a,f(a)) anT Q(b,f(b)) be two

points on it. As we go from P to ,Q along the arc it seems reasonable to

assume that somewhere between P and Q the tangent is parallel to the chord.

Figure 8-3a ,

Let us consider other examples.'
:-

Example 8-3a. If f -x3 with P(0,0) and Q(2,8), the slope,of

= = 4. At (x,x3), f'(x) = 3x2,, which equals 4 when x2 = 11' and

x - 1/7 z 2-(1.73) z 1.15. The tangent at R 8 ) is parallel
3 3 31q

to ,PQ. (Of course,is = - -?- is outside the interval [0,2] from P tq

. )

Example 8-3b.- With-the same function f : x -, x3 and the points

P(-1,-1) _and Q(1,1), the slope (PQ) = 1. Now

3x
2

= 1

pnd x = - -1 or x= 1 .

Thus we find two efferent points R, R' at which the tangent is parallel

to the chord. ,(See Figure 8-3b.)

r647
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Example a-

Slope (PQ) =
3'

dt. 0

j.,6t f : x Ix! and let P = (-1,1) and Q = (2,2).

Is there any place
4
R

on the gr0h between P and Q for

%
= --

3

1
which f'(x) ? The answer is *No."

If x > o, ft(x) =\1 and if x < 0,

f'(x)"= -1. At x = 0,, there is no

tangent.

This example shows that the prin-

ciple,.thatwe are investigating. may not

) hold if the function f fails to be

)11, differentia6 at some paint between

and Q.

8-3 .

Figure 8-3c

.,*

ExaMple 8-3d. Let f : x --) lq. with P(0,0), Q(4,2) Theslope of
1 1

. .

R = !". Since f' (x) =
1

, x / 0, we 'have ___ = _ when A- = 1,

21/x 24-c 2

that is, when x = 1. We note that f is not differentiable at P(10,0)

which is atone end of the chord ....However, .f is continuous at P.

4

bse

NI/
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.

le 8-3e. The graph of *f x -.x2 is a semi-circle with center

at (0,0)\and radius ,1. Any' eh-grit is perpendicular to the radius. Hence,

the slope at ankpoint.is they negative

reciprocal of

The deriVative is therefore

f': x

Notice that
l

fow'(-1) and ft(Z) ,fail
s
to exist. The tangent is,vertical in

each case. The function f is con- ',

.inuous at P and Q. If we chocise

P(-1,0) and 4Q(1,0), slope (RD = 0.

.(1 at which f'(x) = 0? .0f course, since
*

Is there

(0,1) is such a point.

Figure 8 -sd

a point R between P and

We are now
(re

dy to state the theorem suggested by these examples.

(..-

THEOREM Li. If f isOifferentiable for each .x be4een -a and

b, (a < x < b) and if f- is continuous at x = a and x = b,

then there is at leastRne number c between a and b,

(a < c < b) such that

ft(c) -
f(b

.

This is usually called the Mean Value Theorem because
-f(b) - f(a)

b - a

is the average or mean'alue of f'(x) on the interval fi'om a to

'b.

We shall notprove the Men Value Theorem, but.shall use-it in the next

section to dralA certain important conclusions.

.548
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Exercises La Ti;
6

1.GiVen f x -4:5
2

+ x- arid the points P(0,0) and Q(1,2). 'Find the

' point w.herethe tangent isTrallel to the chord ,PQ.

2. Where must we choose Q on the graph of x -so thq4owitn P = (0,0)

the chord PQ is parallel to the 1: ngent at (2,4)?

8-3

4
Where is the tangent to y x parallel to the chord from (-1,1)

(2;16)?

4. Suppose ethat you drive fromSacramento (elevation 200 feet) to Loggers-

Station Camp Ground (elevation 5480 feet). The map distance between

'the two piints is exactly 100 miles. Was there some time during the

trip when you tlere_on a portion of road that had a slope of exactly 1?
..0"4

Give your reason.

5. Suppose you drive from New York to Chicago, sometimes stopping and oth

times driving as fast as 70 miles per hOur. Is there some time during

the trip when yo speed is '50 miles per hour? Give reasons.

6. Two cities are 200 miles apart. Starting from one you drive continually

to the sther in 4 hours, then stop.

(a) 'Is there some place on the trip where your speedometer reads 50?

Give reasons:

(b) Is there some place on the trip where your ac eleration 14.@,s_, 0?

Give reasons.
ii

7. 'Given f.: x -4
i

is, there a pOint where the tangent is parallel to the I'

x
\ 1;

chord PQ where 1q1,1), Q(2 , i)? " If so,, find it

1
8: GiVen f : x -47c- i4 there a point where f'(x) is equal to the slope of

PQ where P( -1, -1) , Q(1,1Tj Explain.
4

,. , 6

I t
9. Let f': x ) 1 if x > 0 and let f(0) = 0. With P(0,0) 'and, Q(1,1)

x

ib thert a point between P :and 'Q at which f'(x) = slopeil(RD?
4

Explain.' 0

a.

1

1 50
54 9,



8 -4

8-4. Applicatioms of the Mean Value' Theorem

If we up,e the Mean Value Theorem (813) we can now prove'certhin results

that we hav&;opreviously.taken for, granted.

THEOREM 8=4a. If f'(x) > 0 when x is between a and, b

(a <,x < b) and if f(x) is continuous at a _and b, then

f(x) increases uniformly on the interval a < x < b.

(We include the requirement that f be continuouat a and b in

order ttrbe able to apply the Mean Value Theorem.)

By this die mean that for all nrers

xi and x2 such that a < xi < x2 < b,
a

f(xl) < f(x2). (See Figure 8-4a, 14here

xl thay coincide with a or x
2

with b.)

Proof. According to the Mean Value Theorem

Since this means that

1 i i i

X' i.c
1 'r.

x
2

...

Figure 8-4a

f(x
2

) - f(x
1

)

f'(c), (x. < c < x
2

).
- x

1

c < b

it follows that f'(c) > O. Hence,

f(x2) -f(xi) = fi(c)(x2 - x ) > 0

and f(x2) >, f(xl);

that f(xi) <',f(x2).

In the same way we can easily prove the following theorem.

TlitOREM 8-41). If f'(x) < 0 when \a < x < b and if ,f is

contivous at a and b, then f decreases uniformly on the

interval a < x '< b.

What can 1ft conclude if f'(x) = 0 for all x between a apd b? In

thiS case, for all 4x1
alld x2

such hat\'a < x < x < b,

,

1 2

.

t5i 4



and

f (X1)
f (C) = 0

X2 Xi. 4

(x2) f(X1) 0,

f(x2) f(x1).
...

Since this is true for all xi
1

and. larger x
2
(on the interval [a,b], f

16 a constant fUnction on this interval. .

/

THEOREM 8-4c. If f'(x) .0 for a < x < b and if f is

continuous at i and b, then .f is a constant function on

fa,b].

What can we conclude if we know that the derivative f' increases

(decreases) uniforMly.on an interval [alb)?

,

Let c be any-number between a and b' (a < c < b). If x > c
. ,

f(x) - f(c)

x - c 4

where c < d < x (see Figure --41p).

But 111,1(d) > f'(c). Hence, -

f(x) - f(c)
x-c

Then

f(x) - f(c), > ft(c) (x - c)

and

1 1

c x

Figure 8-10

8-4

1

f(x) > f(c) + f'(c) (x - c).

This means that to the right of c the graph of f lies above the tangent\, 4

at !C. (Figure 8 -4c).'

551 ,152
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Similarly, if x <c

Figure 8-4c

c - x
f(c) - f(x) _ < e < c:

Hence, o `-:

finally

Again toe

If a

,f(c) - f(x) <fi(c)'C - X

f(c) - f(x) < fi(c) (c

f(x)> f(c) 7.1"(c) (c - x)

f(x) > f(c) f1(c) (x - c},
4-r-

grlph of f lies Bove 'the 'tzilgent at c. ,

41.1function. f has the property that its grapt s above
4

gent whok point of Contact lies within an inter61 fa,b) (except at the

point of eontact),
A
then we say that f is convex-od. (a,b0,

If we Apiece "above" by "below" in this stateme, "convex" is replaced*

by "concave."

t
THEORM 8,4M If f' iq.ncreapA (ieCreanes) un4forml4O6 an

Anter44 ia,b4--f--is donvex4onctive) on,-l[a,b]i ).
.

"?

24.
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Exercises 8-4
-

. . .
.

1. What does the Mean Value.Theorem become if f(a) and f(b) are.both
. N.

equal to zero? The result.is called Rolle's Theorem.

_2. __Sup se that for a function f we know that f" > 0 on an interval

a < x <:b. Show from the theorems of this section that f is convex

on the interval.

IPA f' (x) > 0 fOr a < x <b- and p.(x) <-0 for b < x < c while

fs(b). = 0, usethe theorems of this section.to draw an appropriate

conclusion.

4. Suppose that f'(x) = g'(x) for all x on an interval [a,b]. Show

that 'f(x) - g(x) = C on this interval where C is a constant.

Hint: Assume that [f(x) - g(x)]' = fqx.) - g"(x) and use Theom

This is the important *Constant Difference Theorem of Section 7-3.
.

$

5.53. 4

4

0
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8-5

. 8-5. Stints and Multiples
a

,

The remaining sections of-this chapter-discuss methods for differentiatidg

various combinations of known functions. In this section we examine sums and

-multiples of functions.

:/Functions which are the sum of other functions have been previously en-

countered many times. For example, the graph of

f t 3 cos gt + 4 sin gt //,

was obtained in Chapter 3 by adding the corresponding'ordinates (Figure 8-5a)

of the two function's

u : t -)3 cos Trt and v : t -44 sin rut

( .

at each value of t.
p,u,v

.
(0.29, 5)

1

IS

a.

(2,3)

' /

(0.79,6

1

)(
(1,-3) '

,
1.5, -4)

(1.29, -5J

0

(1.79,0) t

7

0 rr.

Figure 8-5a

217

1



Here we say that f is the sum of the two functions u and v and write

f = u

This means' that for each t, the values f(t), 140 and v(t) are

fit) =Il(.t) tev(t).

8 - 5

related by

The differencerof ,two functions is defined analogously; for example,

f = u - v,

if, for each x, the values f( x) , u( x) and v(x) are related by

To be more concrete, if

f ( x) = u( x) - v(x).

f : x 2 sin 3x 3 cos 3x

we can write f = u - v, where

u x -4 2 sirr 3x

x 3 cos 3x.

The functiat : x N 2 sin 3x is a multiple of the function

: x sin 3x

in the sense that the vlalues u(x) and g(x) are related by the equation

u(x) = 2g(x). The graph of, u is obtained froM the graph of g by multiply-

ing the corresponding ordilnate of the graph of g by 2. (See Figure 8-5b,)

s

Jor

555-
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81.5

.U

`LA

t

A-

-1

u( t 2g( t )

\
-2

,.

Figure 8-5b

where Id : x -4 2 sin ax; g x -4 sin 5x.

The basic rules for derivatives of sumsO-id multiples are easily obtained

d simply stated: .

(1) if f = u + v, thaX f' =u' + v';

and, for any constant,.....,,a,

( 2)

then

For iample, if

if f = ag,` -then f' = ag'.

f = u where

u : t -43 cos ht and V t '4 4 ?It vt,

.

u v ;

556
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that is, for each. t,

.

fl(t) = +

=.-3v sin vt-1- hv cos nt.'

615

We also made use of (2). For example, that u'(t) F. -3v sin vt makes

use-of the fact that D(3 sin vt) = 3D(sin vt).-

We can use the concept of approximation along the tangent line to the

graph of afunction to show that (1) and (2)'hold." For example, suppose

f = u v, .where u and 'v are each differentiable at a. For the best

linear approximation to the graphs of u Act v respectively we have-
.

(3)
u(x) u(a) + i(a)(x - a),

v(x) v(a) + v'(a)(x - a),

,
if x is close to a. Adding, we have

(4) u(x) + v(x) m u(a) + v(a).4- (u'(a) + v'(a))(x - a).

Now we use the assumption that f ..-tt + 4 to obtain

...
.1

.
8 f(x) z f(a) + (u'(a) + v'(a))(x - a).

. .

For x / a we subtract f(a) from both sides and divide by x - a to get,

T(x) - f(a)
tt

x - a
u'(a) + v'(a).

We take the limit as ':44 approaches a to obtain
A

lim
f(xx

- a

) f(a) (a),1

x-4 a

We conclude that o -

'fl(a) = u'(a) + v'(a).

Theteasier intuitive argument which establishes that if f = ag then

fl = ag' was given in Chapter 6.

Wecan combine results (1) and (2),to tlifferentiate T.= u - v, for we

can write

f = u + w, where w = (-1)v,

sp that

f' = u' + w' and w',.= (71)0 =

.Thus, as we should expect:

(5) fl = ut v' if f = u - v.

5571 5 8
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8-5

Example 8-5a: Find the derivative of' f : x -)x - sin x and diS.-dug§

its graph in the interval -2g < x < 2r.

We can let u : x -4x and v : x x, so that f = u - v. Since,

from (5), ft . 1 - vL and

cp
e

we have the result

: x 1, vt : -4 cos x,

fqx),_= 1 - cos x.
. .

For all x, fl(x) > 0, since .dos x < 1. This tells us that f is an

increasing function for all x. Furthermore, the graq of f has a horizontal

tangent at each of the points (-2x,f(-.27)), (0,f(0)) and '(2r,f(2,)) since'

f'(-2r) = f1(0) = V(20 = 0.

Let us differentiate again. Since

f' = 10

we can ripply (5) with ,f, u and v replaced by f', 10 and 'NO to obtain

the result

f"' = u" - .

1

Making use of (6), we have

u" x -40 and v" -sin x

so that

ti f" : x -4 sin x.

.

The function f" is nonnegative in -..the intervals

(7), -2g <.x.< 75, and 0 5 x <

and nbnpositive in the intervals

(8) < x < 0 and r < 2g.
.

Thus, the graph of 'fisis convex in the intervals of (7) and concave in the

J intervals of (8).

The graph of f (Figure 8-5c) is obtained by making use of this infor-
.

`1.oration and plotting a few points.
44:

11

WO'
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re

y:f

3-

2-

1-

8-5

j,, Figure 8-5c

y = x - sin x

Suppose a part.cle moves along a, horizontal line so that

its distanceqrom tht origin at time t > 0 is given by 8 = t +

the- motion, -

%,

559
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8 - 5

If t is close to 0, then s is nearly equal to and slightly larger

1
1

-
than .T. , which is very large. If t is very large, then T is very small,.

so that s is nearly equal to but slightly larger than t. Geometrically

these observations mean that for t >TO the graph of; s = t + i approaches

the

t,

s-ails as t approaches 0 and approaches the line given by s = t as

t becomes lar
1

. In other words, the vertical line given by t = 0 is an
41/4.1t

-asymptote for the raph of s = t + - as t approaches 0, while the*line
t

iven,by S .F t is an asymptote for the graph as t grows large without bound,
0 _ .

through positive. values, .

p

The derivative of t
1- can be obtained using the sum formula (1).

We have

'aft 1. ,1% , -1.
D(t + - Et + Elk-) = Et + Dt.t ).

t

SinCe Dt = 1 and lit'
1

= -lt
-2

= - , we conclude that -s--

t

f

D(t + =1 - .

t=

The value of the derivative t -)sl
1

1 - is the velocity at time t. Since

< 0 if t < 1 and s' > 0 if t > 1, the function t +t- decreases

in the inteTial 0 <'t <41 and ipereases in the interval t > 1. When t = 1,

the valve of the derivative is 0 and 2 is the minimum vane of s. This

means that the particle moves toward the origin as t increases from; 0 to

1, is closest to the origin when t = 1 and then moves steadily away Trom

the origin. , ,

The second derivative is obtained by using the difference formula (5)

and the power formula:,

-
2
) = t 1 D(t -2 ) =

t
3

t

Thus, the.acceleration is always positive (since t is positive), is very

large when tt is close -to 0, and approaches 0 as t grows large without

bound. The second -Miyative

2t -)
3

t

560
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8-5

4

Exercises 8-5

"1. Find the derivatives of each of the following

(a) y =-11--/1)- 3x-2/5
ex e2x

+ cos x

(b) y =x2 + 2 sin xi ' y = - 3e-x

(c) Y'= (3x2'+ l)(x4 + 1) (g) y = x + log
e

x2 log
e

x

- -
. .

1 1
(d) = (1 - 2x)(-7 + Tc.)

(h) xe +oex

x

2. Sketch graphs of f : x
1

+ - , u x I X and v :x -)-
1

for
x

0 < x < 1 What is the equation of the tangent line to each at the
, -

. s point whearZ x =
1 0

? How'sare these tangent lines related?

,

3. (a) At what points on the graph of

y = sin x - 1/S. cos x

is the tangent line horizontal?

(b) At what points on'the graph of

= 2x - 2x

is the tangent line perpendicular to the lig whose equation is

y = 3r 2?

(c) Suppose the tangent lines, to the g.cfs:tphs of y = 5f(x) and y = 7f(x)

are parallel and nonvertical at the int where x = a. ShoW' that

these tangent lines must be horizontal.

(d)--NShowethat-if, u, ,and v are differentiable at x = a and.the ,

graphs 9f f : x -)u(x) 3v(x) and g : x -,u(x) - 11v(X) have the

same slope at the point where x = a then v hEis a horizontal tan-

gent at '(a,y(a)).

4. Show that if a and b are constants then

D(au + bv) = a Du + b

562
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z.

a

lb

5. Analyze

'increase-dec.ease,

ir (ii) convexity-concavity, and

asymptotes of any)

for each of the following functidns on the interval givey. Sketch graphs.

(a) f : x -) x - cos x, 0 < x < 2g

(b) f x - 2x, 0 < x < 1

..(c)
f : t -) t2 + , 0 Qt

(d) f : .x 0 < x < 2
a

$1-

0

b .r

6. (a.) Show that D f(r)dx= -f(x).

b 1.2

(b) Find D e-' dt.

7. Show that the acceleration,pf a particle whose equation of motion is
2

s(t) = 2 cos t + t- is always nonnegative.

8. Suppose you know only that the rules of this section hold and that

Doc
n

= nx
n-1

. Can you find the derivative of a polynomial?

"9. Consider g : x

(c)

Sketch the graph

21 - xl.

of g.

aly

Define g(x) explicitly in terms of linear functions for all real

For what values of x is the derivative not defined?

210. (a) 1 + x+ x < ex < 1 + x +..x , 0 < x< 2
2

ex 2(Hint: Put f(x) =
2

-+ -- and find the minimum of f.

Proceed in e,similar manner for the right -hand side).

6
(b) Show that if u(a) < v(a) and irt(x) < vt(x) for x > a then 111,

u(x) < V(x) fbr x > a. (Hint; Consider' v u.)

(c) Show that if u(a) <y(p), u*(a) < vi(a) and u"(x)<,v"(x) f6r

x > a the u(x) <.v(x) for x > a. (Hint: Use (b) twice: First

show'that ut(x) < vt(x) when. a < x.)-*

1
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8-5. o';.'
.4. -

res
J , ? ,

' 1.1 (g) Shot./ that -if y = u and 7 = v are dol,utions to the equation
- ---1e.

,,A y". - 3y1 +.6y = 0, then so' is y .= 3u +\ 8v.
- -,,,,1. ..... .

(b)" Show' that
ex e-x

and r-= e
x

- e
x

are each solutions to

a. the equat y'14..- y. If a - and 13 are constants is
, ,

'___--X

y = ct( ex e-x f.3( ex -

also a solution to y" I

OP"
Suppose u(x) v(x) 4,1ax + b, 'where

(a) IAThat'is u'(x) vi(x)
1,tb

(bi) °Show that u" = fir..

a anct b are constantp

(c) Prove the following conver'se: u" = then u - v a linear

function.' (Hint: Use tShe Constant Difference Theorem twice.)

"13. Suppose' u and v are continuous at \x = a: Is = 2u 3v also

continuous at a?
I

14. Suppose f = u + v and f is differentiabI and thus continuous at°

nd thus continuous at,

.

x = a-. Must .0 and v als be differentiab

give an example..

A
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.8-6. froduets

Each value of the functiorf

I

is just the product of the corresponding values of the two functions

that is,tfor each x,

u : x x and v x -4 ex;

f(x) = u(x)v(x).

This relationship can be used to obtain the graph of f from, thegraphs of .1.1.

and v, for the ordinate of a point on the graph or f is the product of the'

corresponding ordinates of the graphs of u and v. (See Figure 8-6a.)

ft

y = v(4

y = u(x)

= u(x)v(x)

x u(x) v(x) f(x) 7 u(x)v(x)

-2\ -2 0.14 -0.28

-1 =.1-jp,.38 -0.38

-0.5 -0.9(0.61 -0.30

0 0 1 0

-.0.5 0.5 1.6 p 0.8

1 1 2.7 2.7

1

/

6/
/

Figure 8-6a

x
y = xe



S -6

In general, We sgy that ,the funct4on f is theprbduct of the two funcid

tions u and v an write
,

ddit
f = uv

if for each x the values f(x), d(x) and v(x) are related by

(1) 'f(x) = u(x)v(x):

A formulaAr the derivative of f = uv in-terms of the derivatives of

u and v can be obtained by using tangent line approximations. Suppose u

and v are each differehtiable at x = a so that, if we take x close to a,

we have the best linear approximations

u(;) '.I1 u(a) + 1.0(a)(x a)

y(x) v(a) + vt(e)(x', a).
,

For the product 'we get

u(x)v(x) u(a)v(a) +[u(a)0(a) +v(a)1.0(a))(x -a) +u'(a)v'(a)(x -a)2.

Since f.= we can rewrite this as

f(x)\ a f(a) + [u(a)v'(a) + v(a)u'(a)](x a) + 0(a)0(a)lx - a2

so that, for x / a

f(xx
-

f(a) [u(a)vt(a) + v(a)0(a)] + 0(a)0(a)(x - a). .

a ,

It follows that

zk"
(2)

lim f(x) - af(a)
u(a)v:(a) ; v(00(a).

x
x -)a

Thus,, we obtain the product rule:

ft(a) u(a)vi(a) -+ v(a)ut(a)

This formula is sometimes written in the form

Or

(4)

or expressed in words:

(5),

io

(uV)1 = uv' + vu'

D(uv) = uDv + vru;

The derivative of the produet of two functions is the

first tithes the derivative of the second plus the second

times the derivative of the first.

566
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4

r .

. For example, f : x -4 x
r

x is the product of
,e

u x 3: and v x -4 loge

% 1
Since. 11!(x) = l' and vi(x) = , the product rule gives

f' (x) = x
1

'

+ (loge x) 1 = 1 + loge x.X,+
A

As another example we consider the functiom

i4

which is the product of

f x e
3x

sin 2x,
1

.0 : x -4 e
3x

The .productlfrule gives

)

and x sin 2x..

f'(x) = e3x* (2 cos 2x) + (sin 2x)(3p5,x).

0

P 0

Example .8-6a. focate the intervals of increase and decrease, convexity

and concavity for the-graph of the function
-;

f : x -4 xex.

The function f is tha. product 'of

so that

u : x 4 x and v : x ex,.

f'(x) = U(x)vi(x) + v(x)11160

= x ex + ex .1

%

(x.+ l)e
x

.

This will be positive for x > -1 'and negative for x < =1 so that the

graph of f fall's until it reaches '( -1,- .1e.".), and rides Ater that point;

The function f' : x (x + 1)ex is the product of.

,e

u : -x x + 1 and v x .e
x

so the product rule gives

,;;.

J
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r(x) = u(x)vt(x) + v(x)0(x)

1)ex ex

= (x + 2)e
x

.We conclude from this that the graph of f is concave for x < -2 -and

convex for x > 2. An extension of our sketch (Figure 8-6a) should reflect

these conclusions. We should also note that as x moves far to the left

Af(x)'= xe
x

approaches 0; that is, the negative x-axis is an asymptote for

the graph of, f as x grows large without bound through negative values.

Example 8-6b. Show that if f : x eax sin bx, then

f"(x) - 2af'(x) + (32 + b2)f(x) = 0.

The product rule gives

eax
Disin bx) + (sin bx) D(eax)

= eax(b cos bX) + (sin bx)(e6x)

= eax [b cos bx + a sin bx].

Again we use the product rare (as well as the sum rule) to 'obtain

eax r
D[b cos bx + a sin bx] + [b cos bx + a sin bx]D(eax) *-

ax .2
= e L-b sin bx + ab cos bx] + [b cos bx + a sin bx]aeax

eax((a2
b2)sin bx 4=2ab cos bx].

Therefore,

(a2 b2)f(x).. eax((a2
f "(x) - 2af'(x) b2)sin bx + 2ab cos bx]

- 2aeax.[b cos bx + a sin bx].

eax[(a2 .2.
.?

)Siti bx]

eaX (es<0; -2a2
+ a2 +b2)sin bx]

+. e
ax

[ (2ab 2 2ab)cos bx]

e.

= 0.
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A

,, Example 8-6c. Suppose f is a polynqMial function and that a is a
a.

-. \
. zero of f. Show that them4tiplicity of. a -is water than 1 if and.only

.

% 8-6

if a is a zero of f'.

If the multiplicity of a exceeds 1 'then (x a)2 is a factor of.'

f x) ; that` is

..f(x) = (x - a)2q(x),

where q As a polynomial function. Applying the product tule we have

.

f'(x) = (x - a)2q'(x) + q(x) 2(x - a),

so that indeed

f'(a) = 0.

If the multiplicity of a is 1, then.

f(x) = (x - a)g(x), where g(a) / 0.

The product ?hie gives .

'(x) + 1

A

f'(a) = g(a) / 0.

In other words, if the multiplicity of a is 1 then a cannot also be a

zero of fl.

so that

g(x) ,

Ple

*me
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Exercises 8-67

1. Let y
1,

= a
1

+ m
1
(x - a) be the equation of the tangent line to the .

grapfi of u x ->x2 oat (a,a2) and y
2

=,a
2

+ m
2
(x - a), the equa-

,

tion of the'tangent line to the graph of v : x ->x3 at (a,a3):

(a) Find
al' ml, !12' m2.

(b) Form the product of ;he expressions for y
1

and y
2

, and omit the

term involvin
a

g (x - a) . The resulting expression is linear in

(x - a) and hence defines a line. Show that this line is the

tangent line to uv = f : x -)x-5- at the point (a,a5).

2 Finethe d rivative of f,
,,

/Vhere f(x) equals

(a) x(2x -1() (m) x
2

log
e

x

(b) (4x - 2)(4 - 2x),
, (n) (x - 1.)

1/2 e-x.

ft

x 2

(c) (x2 + x + 1)(X2 - x + 1) (o) ic Is e-t'dt
0

xix sin t"(a) I (ax + b)3 (P), e

1

dt

!

(e). L "3--,`--:) (q)
x.

x e sin x
x

.(f) -. (5x + 2) (r) (loge x)(4x2 + 2x) (cos. 2x)-
.

..

(g) x ex (s) 2 sin x cos x

°IL,
x7/2,

x > O .(t) x ex fbge(2x + 1)(sin-x)

.
4

i,

1
x - -- (u) x2

. Z
(j), 3x

2
(x

2
- 5) (v) x log x + 1)

- '..

(k) i:7-c- cos 2x (w) x
e

e
x

(Q) e3x sin (x + 1)

)

or

9



L.

r^
r

(4) 'D(X( 1)2)

(e) ,D(x 2x--)2

012 '')(1/2 -1/A
(f). E'cr x )

( g) 'D ofc - 2,r +
1-Cc

4. (a) Suppose f(x).= [u(x)] . Show that f'(x) ='2u(x)ut(x). (Hint:

Use the Product Rule.)

(b.) 'Show that D(u(ic)-1341 3(u(x).]2.uqx).

(c) Show that D[u(x)]4 4(u(x))30(x).

(d) Make. a conjecture about Dfu(x)

(h) D(ex sih(1 - 2x)Y

( i) D(v loge x)

(,3) 15( x

,
'1(k) Dkx

2
cos X

,:

(2) D(sin x,

log

8-6

5. Use the results of Number 4 to find, y' if

e (a) y = sin
2

x

(b) y = cos3 (4x)

(c) y = (loge x)2

(d) y'= (ex)4

(e) y = (x2 q)2

(f) y = sin3 (-2x - 1)

=

x

(f sin t2 dt)4
1

6. Combine the 'method of Num1r 4 with the Product Rule to find' cdY_Ic

x2(x24. n, 2

(b) y= x +1)3(x2 - x * 1)

(c) y = (ax2 + bx + c)(dx2 +lex + f)

(d) y = (ccs2 x)qn_ 2x
4 et

(e) y 'ex sin"- (ax + b)

5Th
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0-6

(

(f) y =

x

et

2

dt)`

,

0

. (g) y = x3(loge (x + 1)13

7. For each ofohe following functions, find the intervals of increase(or

J decrease) and convexity (or concavity). Sketch graphs over the intervals,

indicated.

(a) ly = x loge x, '0 < X < e (c) y = sin3 x, 0 < x < 2o

(b) y = loge x, 0 < x < e2 (d) y = x2 1p 0 < )C <

8. Show that each of the following is an increasing function

(a) x -4 ex, x > 0

x

(b) x -4e , x >

ex
(c) x-)

)

x>a> 0
- .

x

(d)'x-4xsin , 0 <x<1-'2(-

9. Show that if f(x) = (X - a)2g(x) where g is differ- tiable and

10.

g(a) # 0, then f/(a) = 0.

Show that if a is a zero of the polynomial functi

,greater than _2 then f"(a) = f"(a) = 0 m

is.a zero of- of greater tgan 2?

11. (a) Show that if y = eax cos bx then y" - 2ay' +

4f*

(b) Show that if y = x2ex + 2xex *then - 3y"

'12. (a) Show that

*1

(uv)" = uv" 2u'
I I

(b) Use (a) to find the second derivative of

f : x x2 cos x.

( c) What (uv) "' ?

n f of multiplicity

st it be true that a

a + Y = 0.

3e, y = 0.

(d). Does (c) lead 'you to a conjecture about the nth derivative of uv?

572
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8-7. Composite Functions

The function f :_x .477-7. is not a polynomial, circular, power,

exponential or logarithm function; nor is it a sum or product of such functions'.

The verbal description of f can give a blue as to.how to treat such a func-

tion. Verbally, the rule for f is

(1) . "the square root of the quantity x squared plus one."

In other words, first calculate the quantity x2 +1., and then ,ake the square

root Of the result. The operation defined by f is.composed of two simpler

operations, finding x
2

+ 1 and taking square roots. In this and the next

two sections we discuss functions which are compositions of other functions.
4

,The statement (1) can be trdhslated into a symbol* form which will dis- A

play the fact that f : x -)g71. is composed of the two operations,

x -4x
2
+ 1 and taking square roots. Let g(x) = u.= x

2
+ 1 and h(u) = 47,

so that

f(x) = h(g(x)).

To evaluate f(x) we first evaluate g(x), then evaluate h(g(x)). For

example, if x = 3, thdA

u = g"(3) = 32 + 1 = 10

and

f(3) = h(g(3)) = ti(10) = 45.

In general, we say that a function f is a composition of the two func-

tions h -and: g, ifwhenever f(x) is defined, so are g(x) and '11(g(x));

and then

f(x) = h(g00)..

The idea of composition
4
has been previously used implicitly. For example,,,_

the function

f : x (2x27N43-r7

is a composition of the functions h : -) sin u and g : x -)u = 2x + 3; .

that .is',,

f(x) = h(g(x)).

;le
.

Also.,:use has been made of the fJct an' ; the general exponential fu4cti-on

41v
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A

f : x -4/Et
x

is agcomposite'function since we can write a = ea. If

h u
u

and g : u, then

f : x = h(g(x)) = eax,.

Facility with composite functions depends upon ability to write compli-

cated expressionsias,composites of simpler expressions. Some examples and

practjce exercises are provided to help you develop skill at doing this.

Example 8-7a. Express x -sin 17 as the composite of simpler functions.

'Since sin 17 is usually read<the sine of the squ root of x," the

function x 17 is a composite of the sine and t e squareroot functions.

If we let u = g(x) = 17 and h(u) = sin u, we have

sin 17 = h(g(x)). fib

-:-.

,. --
Example 8113. Express x 3

-1 as the composite of two simpler func-
,

tiohs in two ways.

(2)

or

'(3)

The expression x
2/3

can be read as

"the cube root of the square of x"

'

"the square of the cube rootof x."

Put g(x) = x
2

= u and h(u)'= 3/-yu = v. In symbolic form (2) becomes
1

(4)

while (3) becomes

= h(u) = h(g(x))',

(5) ,
)g3 = ev) = g(h(x))

.

In other words, in this case, it doesn matter whether we square first

and_ then take the cube root,-or take the cube'groot and then square. It should',
, .

however, be noted that generally the order o compositiOn is important. In

the Example 8-7a we had

since = h(g(x)), wher ) = 17 = u and h(u) = sin u.

.Reversing the order of comp sition? we have

1 g(h(x)) =

which is 'ce;tainly, not th- ame as in 17

4
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.It should be observed that there are other ways of expressing x -4X2/3

as a .Composite. For example',

( 6)
x2/3

f(g(x)),

where g(x), (x - 1)1/3 and f(x) (x3 + 1)2/3, singe

f(g(x)) = [(x - 1).4. 1]2/3 x2/3..

.',

Exercises 8-7
. ,

.

i 1. Express each of' the following as a composite of two functions which are
A,

polynomials', exponentials,,logarithms, power, sine or cosine functions.

(a) x A---7x2

2(b) x ex

( c) x. cos' (3-- 3x)

(d) x
1

1 + x
2

(e) X.-410g; )7717

(f) x -4(21- ),

(g) x -)(2x2 - 2x + 1)-1/2

(h) x -) loge, (sin x)2

2_)ecosx

. x.,_;3e2 sin x,

(k) x -)2
(x 01)2

O

2. Express each of the following as the composition of three or more simpler

functions.

(a) x -4 loge 18x
2
+ 5x + 21

-(b) x -4 1 -+/ 7 cos x

(c) x -4cos(sin(cos x))

(d) x -4 (x-+ 1)3/5

(e) x '4 11 - (log; x)

(f) x -4
1

6*.
e2x

3. jbcpress x lx1 as a composite of the function x -4x
2

and some other

function.

575,,
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0

8-7
PI

4. (a) Show that the coMposite ofitwo linear functions is linear.
> t

(b) Exhibit the comNsie of two quadratic functions. What-,isthe degree

of this composition?
'

(c) Is the composite of two polynomial functions a polynomial f.linction?
I

<t\''.<;

If'dO, what is its degree?

If u : X ;-4x and f, : x -) u(u(x)) what is f(3)?
114.

4' 1
0

Suppose u : x -) Find an expression for f, the function'dtfined

by f(x) =',u(u(x)).

6. (a) Show that composition of power functions is a commutative operation,

- that is, if u x -)xa and v : x -)xl) then '11(v(x)) = v(u(i4).

(b) Is the result of part (a) true for u : x cos x and. v : x.

(c) Is the result of part (a) true for exponential functions

u x -) a
x

and v : x -)b
x
? (a, b.> 1)

.0.-

(d) Is the result of pert (a).true for ,u x -) ex a

v -)1Oge x?

7. Express the following as a compoVetion of two functions

2

(a).. x t2/?. dt

-2

Cl
(b) x et dt

stn x

x

x
2

e
-t

2

dt

0
I

8. What is the .domain of the function'

x (loge x
)

2
?

i

r ,
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ie"' 14^3 0 4, ,q.
0 ,

.% 8-8Q
0

I..
ci..8. he Chtgin Rule° '

t
--, .

% 4 0 t 4A

- Suppose we can .eVtes; . as a coNosite of4twp '1" rictions, g and
e

whose derivatives axe known., The derivative of can then be expressed in
le. f'-..

.

,., terms of the derivatives of l' g and .t.

;

If ;(x) = g(Lc))

then f'(x) =igl(h(X))hl(x),

. .

This,resuf is usually known As thp chain rule.. We have used the chain

rule for particular functionsin the base where h is a lirltar function..

Fbr exaMplesuppose
4 -

f x + b)

f(X) = g(h(x))

where g u -0 sin u and h x -) ax + b = u. Since g' : u -) cos u and

x -) a, the chain rule (1) gives

fqx) = g'(h(x))h'(x)

=[coS(ax +b)a

= a cos(ax + by

which agrees with our previous result.

The general result for linearsubstitution is as follows. Suppose

f(x) = g(ax + b) Let h(x).= ax + b. The chain rule gives,

f'(x) = g'(ax + b)10(x)

that replacement

multiplies the derivatively

,

A .spetial case of 'the chain rule was used in Section 6 -7 to differentiate

a power function. Suppw f : x--> xr. We.can write f(x) = g(h(x)),: where

g': u
u

and h : x -) r log
e
x = u. The derivatives of g and h are

1101

given by

gl : u -) eu and h' : x

= ( ax + b)

of x by ax + b

a.

in 'a general function

J

571 78,
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...

i . 0 4. .0

The chain rule gives .

W AP 111/4 t

ft(X) = gt(h(Xl)h*(x) =1 gt(r loge i)

r log
e
x

r
= e

x

r r
= x

x

r
x

\*.

r-1
r x . e

`tat us now prove the chain rule by generalizing the tangent approximation

arguments,used in Section 6-7. Suppose that f is related to g and h by

composition

If h is .ft

,can write 4
(2) +111(a)(x - a), for x close to a,

and4414*-*

(3). g(u) = g(h(a)) +51(h(a))(u - h(a)), for u close to ii(a)%

In particular, if .x. is otose to a the second term of (2)' is clope to

zero so that h(x) is close to h(a).

We can replace u by h(x) in (3) to obtain

g(h(x)) g(h(a)) +.0(h(a)).(h(Z71-E-(a))..' -I-

f(x)'= g(h(x)).

4.fferentiabIeset 'a and g is'differentiable at h(a); we
o2-

P
which will, hold if x is close tb a (so that h(x) ci h(a)). We now use (2)

again, this time to replace h(x). - h(a) by ht(a)(x - a). Thus, we have

(4) g(h(x)) g(h(a)) + gt(h(a))ht(d)( - a).

'By assumption- f(x) = g(h(x)) so wecan rewrite (4) as

f(x) f(a).+ gi(h(a))h*(a)(x 2a)

then, subtra f(a) nd diviideby x - a to obta n .

f(x)1; - f(dY
:41gt(h(a))111(a).-..1

p

Theref re,'

x - a
lim f`aiv _ it(h(a))ht(a),

x a

whten'establishes the chain rule: $
`II

fl(a) = gt(h(a))h1.(a)

578
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The Leibniz notation
dx

for the derivative provides

device for the chain rule. Suppose y = g(h(x)); that is

y = g(u) 'where u = h(x).

8-8

,

a convenient mnemonic

flE du
We can then /rite . The chain rule can then be

du ' dx

expressed

1E - 1Z du
dx du dx

Example 8 -8a. Find the derivative of x -+/7;3.. , ..

A ,

k)

1Ext g(x) = x
2

+ .1. = u and h(u) . iti so that

4

= h(g(x))

Recall that ht(u) _1 and that gf(x) = 2x. The chain rule tells us that

2V

,D(47+;) = ht(g(x))gt(x)

2x

2g 47,

Example 8 -8b. Find D(esirilx)

To express

put

1'

0 that

and

e

e chain rule gives

Dk
,

e
sin x

sin x as acomposite of functions with known derivatives,A

O

u = h(x) = Sin x, g(u) = eu

e
stn x

=g(h(x))

hqm) = cos x,: e(u) = e
u

0

= g/(h(x)) 1-11(x

x
cos

579.
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Example 8-tc.
.

Fosr f : x -4(x2+,x + 1)1°, find ft(-1).
O

We could expand and then differentiate.% Obviously, such a procedure would
10be quite lengthy. Instead we let h(x) = +x+.1 = u and g(u) = u , so

that

Y°
f(X) ='g(h(x)).,

Me have ht(x) = 2x + 1, g1(u) = 100u99, so that (by thechaih rule).

ft(x) = 100(x2 + x + 1)99 '(2x + 1)'

Thus ft(-1) = -100.

Example 8-8d. Use the chin rule to show that D(loge (cos xg-: -tan x,

thds verifying integrtion formula 12 of the Table of Integrals:

i^1

.

tan x dx- = -1o0 cos X).

f Put h(x) = u = cos x, g(u) = loge u,. so that

A N.

and hence

1

-r
/

x)
/ Nlog

e
(cos xl = gkhkx)) ,

A , s

C9D(log
es

(cos x)) = g.'(h(x))h'(x)

Exam le 8-8e. Find 5.-/Z if

,=-

,

_

dx

' 2
We let-u = x and v = 1 +

du ,
' gi= ex, cos u, and

dx du dv
, 4

fore,

1 \
,

= T sin x)

sin x4

cos x

-tan x.

1

sin (X2)°

.

-whence y
1 1

1 4: gin uf

dv du
We have

dy.

dx .dv du dx

1,

580
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d ( 1) 0k- .7)(c s u)(2x)

( 1 - 2) (cos u) (2x)

(1 + u)

2x cos (x2)

'(1 + sin (x2))2

2
Example-81R: Analyze the graph of y = xe

-x
.

4.

The product rule gi

2

D xe-x = xD e

2

_= xD e-X- + e-x .

2

Applying the.chain rule to e
-x

, we get.

( 5)

F6).

-x
2

e Dx

2 2

2,2 D e-x .= e-x (-2x) = -21-x :

We note that y' will have the same sign as'

Q

.-2x2+ 1 - -2(x

The graph falls until it reaches
( 1

(--, -- e -1/2 )" ! then falls.
1 1

ig IE

a

then rises to

1/4

8-8

Tospinalyze convexity we find the'second eri.vativ . Apply the product

rule tto/(6)- to obtain

y" =D [(-2x2 + 1)e1

Now use (5) and the fact'that

= (-2x2
1)15(e-x2 2) x

D(-2x2 + 1).

D(-2x2 + 1) = -4x' to btain

581
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.., 2 2

.- y" = (--2:4- 1) (-2Xe-X ) + e-X (-4X)

a N :IN
, = (20(3 - 6X)eirX .

. ..,

The-zstcond derivative y" has the same sign as
14

4x3 7 .6x = 4x(x -- 14)(x + .

The graph is convex for - < x < 0 01'.. < x, and concave efql

x < - 1 or 0 < x < )77 . We can shdw' that if I x 1 is large then
2. 4*

2 I./
xe

-x
= 0, so that the x-axis ,is an asymptote. We know that ixie-lxi

.

1 ,

approaches 0 if 1x1 is large. Then noting that' -x
2

< - ix 1 if

2

ix i > 1,, we have e
-x

< e
ix I , since x -) ex is an increasing function..

....

Therefore, we have

2
14x

ixe-x ix e 0, if !x1 is large.

See (Figure 8-8Et for the graph of y = xe .

dcmcave

Y

convex

I.

(

I

-/S IS e-3/4)
'-7- , --f-

concave

Figure 8 -8a

-x2
,y = xe'

1 1 -1/2( e )

0

con/ex

4 .4 e-3/4)
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Related-Rates

8-8

0

In Section 2-8 we discussed the distance, velocity, speed, and accelera-

tion of a particle moving in a straight line. The distance traveled s

depends on the time t) ,according to some law which defines a-function'
ds

= ft(t)f : t -)s = f(t). We have thought of the velocity

rate of change of distance with respect to tithe.

as the

As we know from Section 4-4, We,are not limited to particles inoving in

a straight line. Furthermore, 14 can consider their. relative motions, as we

did in Section 4-4, with point Q moving along the x-axis as point P moved

around a circle.

Example 8-8g. If a helicopter rises vertically from the surface pf the

earth at the constant speed of 20 mi./hr., how fast is its line-of-sight

to the horizon increasing after 6 minutes? (Assume thatthe earth is a

perfect sphere with 4000 radius.)

fr

4

Since the line-Of=sight is tangent to the earth-at the hoizon,. it'is

perpendicular to the radius of the earth there. At time t (/n hours) the

height of the helicopter'is 20i (miles), and so by the Pythagorean Theoi'em,:o

; = A20t + 4000)2 - 40002,1 .

where s represents th lengkh of the line -of -sight to th horizon. Differ-

entia ing with respect to ti'e,

V
ds

=
1
,[(20t + 4 1 - 40002)Y (2( of + 4000)(20))

et dt e
1

'

_ 20(20t + 4000)
.

4
. f(20t + Lq 0)

2
40CC

2
]

1/2 >

1
After 6 =minutes, t . (hours)," and 0

o

7:171 1 '..
ds1 0(2 + 4000) : 80040 80040

t= . [(2 + 4006)2 40062)172 (160C4)172 77'.
583
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8-8

Theref.ve, ne-of-sight is increasing at a rate of approximately 633

10.5 mi./min.
r4

Example 8-81-1, For the last 3 minutes of its flight prior to splash-

down, the
r
moonship Columbiaedescended at an average rate of 20 mi./hr.,

approximately. The aircraft carrier Hornet was steaming directly toward the
di

point of splashdown at the constant rate of 30 mi./hr. If the carrier was

9 miles from the point of splashdown at 9:47 a.m. PDT July 25, 1969, how

fast was the distance between the carrier and the Columbia decreasing at

a.m., -1 minute before splashdown?

Let t represent the time elapss41 after the point 3 minutes prior

to splashdown. If t is measured in hours, the distance Columbia falls is

20t and the di%tance traveled by the carrier is 30t: At t = 0 the

Columbia is at an alttde of 1 mile (the distance it falls in 3 minutes),

and the carrier is 9 miles away from the point of ,ulashdown, sb at time, t.

1 - 20t

9 - 3 Ot

.

Columbia is (1 - 20t) miles abtve the point of splashdown and the carrier

,is (9 - 30t) miles-away. The distance between them et time t is

=41 - 20t)2 + (9 - 34002

Hence,

ds

ars 2t(-
20t)2 + (9 _

-20(1 4 200 ... 30(

g .
((1 7,20t)

2
4-(9 -

.

30t)21-]12(2(1 - 20t)(-21

I- 300
ct)ail /2

1

-1
One minute before spla4idown t = so

1

4

1

584
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t= 7

20
-20(1 - 35)

4

30- 30(9 - 35)
20.2

f(1 - 7.5 ) 30.2.172
(9 30) 1,

t
20 fp \
-3-

9

-246.6
ri 641.1/2.

1

z -3o.8.

Hence, the distance between the Columbia and the carrier is decrea

approximate rate of 30.9 mi./hr. at 9:49 a.m., one minute before

8-8

1

I e
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Exerc4es,8-8

1. Find the derivatives of each of the following by making an appropriate

substitution:

(a) X -4 1 x

2

(b) x -4e
x

.

(c) cos (x3 - 3x)

(d)

+ X
2

(e), x loge x-1 4 1

(f) x -4 (2 --3x2)1°°,'

(g) x -4(2x2 - 2x

(h) x:4 loge (sin

2cos x
x e(i)

. (i) x
2 sin x

(k) x 2(x+1)2

. 4,

2. And the derivatives of each of the following functiogs by making one

or more substitutions.

(a) x 1 + cos, x

(b) x 11 - (log; x)2

(c) X -4

1 +.e
2x

1

$.

\(d) X -4 cos(sin(cos x))

3. Find the derivatives of each of the following functions by using the

chain rule, along with the sum and product rules.

(x2 1)1/2 (x2 +.1)-1/2

(b) X -4
/x2

2 2 1/2r 2 2 -1/2
- [x - a ix + a 14

s r

x2
+ a2

,

x xt2x
2

+ 2x + 1)

X -4 X
2
si=c

x -4 sin
2
(e

x)

x 4 ex
sin x'

x loge (Ix- cos, z)

-1/2

,586 .
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log
e
x + cos x

(h) x

4-

(1) sin x cos x 16ge

(j) 1-) cos
2

(log
e
x) + sin

2
(16g

e
x)

4

if g(x)

4. .(a) Show that If f(x) = h(t)dt then f'(x) = h(g(x))gf(x).
a

.11

b-
(b) Deduce from (a) that if F(x)" = f then F'(x) = -2x f(x2).

x

x
2

(6) Verify (a by evaluating sin t at and then calculating its
c -IT

derivative.

5. Find the derivative.s of each of the following functions

0 ;
x
2

(a) t2/3 at

(b) x

sin
e dt
t

x2 2
(c) x e dt

0'

t

.

6. (a)
x

Find the derivative of f : , x > (Hint: Write
x log

e
x ,41

x = e

What is the minimum value"of f. r 40

Find the second derivative' ofe-llqrnifhow that the graph of f is

convex.

.-
..-- 7. Determine interval of

. b
eincrase-decrease and convexityi-concavity Then

sk tch a graph.
.

,

.* f : x -)
x
---- - [x(x

2

1

- 11-1T
x - 1 ,

..
(b) f : x

1x

2

(c)' f log
e

-1 < x < 1
1 + x

2
1 - x



;---

8. Find the equation of the tangent line to the curve a t the point indicated:
put".

'2
(a) y = xe -x , x = 0

(b)= , x= 1x = 1

(c) y = sin(n x2)32, x = frr

. 1
(d) y ,,loge (--77-. x2) , x = .--

x 40. -

-(f) y = (ex)1T, x = e

9. If f(x) = (Ax-+ Bain x + (Cx + D)cos x,

A, B, t, D such that_for all x, f' (x) =

1

determine the value of constants

- 4.

10. If g(x)' = (Az
a Bx + C)sin x + (Ex-

2
+ Ex deterMine the value

of constants , B, C, D, E, F suchthat: for all x, g'(x) = x2 x.

The notation
dx! ?is sometimes. used for the value of the derivative

x =a V

of y at x a 14 This notation is used in the following problem's.

J :'

F -
.11. Let y = in x and x = t

2 1
+ .E Find 1

dxdt
and- al

_ _ _. _ . __ . tpl X.=2'e' '

12. Let y = i'(x) and x = h(t). Express _ 443 in.terms of t.
, . . . .

"` t=t,.,` '''-vV; .'...
":: .

. . :- ..

. 13 .* Let y = .f(x), x' c h(t), . xo 4:51-1(t0). Show thiit/ .11

. L \ . ,

t az
cl:t

I

I t=t
0-#

,

_

dx
, f'X=X

0 dt 4

-
dx

t=t ''''r -,

'1

. 114- . 'Find the follo4ng:

(a) D sin x x=v
+ D sin xi

x=11/14

. (b) D(.x2 + -sin a' sin
x=57(/3 ,,

it)
588

1$9 i i;

?

!'



8-8

(c) A.(x2 - a2)I
lx=a

(L.1 = -D)

(d) D(f(a)sin x + f(x)sin a + f(x)sin x
)1 x=a0

A
A spherical balloon if being filled with helium at the rate of 100

in.3/min. How fast is the radius increasing when has reached the

value of 5 inches?

16. A car crosses a railroad track moving perpendicular to the track at the

rate of 40 Mi./hr: One guarter hour later a train crosses the same

intersection moving 72 mi./hr. along the track. How fist are the car,

and train separating one hour after the car passed, the ijitersection?'

17. A 'small rocket is shot s raidht up frog a point 75 feet away from any

observer'. If the roc et,t/=avels at the constant rate of 100 ft./sec.,

how rapidly will,it be receding from the observer 3 seconds later?

.04

7

.11

4

4

Sa.
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8-9

8-9. The General Powei and Reciprocal Rules

A 'speciLal case of the chain rule, known as the geheral power rule, occurs

so frequently that it is worth discussing separately.

Suppose the values of the function f can be expresped as

f(x) '= (h(x)) r

where r is a fixed real number and h is a function. In other words, ,111

f(x)= g(h(R)), where- h x -4 h(x) = u and g : u u .

If h is differentiable at' x and if r(h(x))r.1 is defined (that is, if -8.

.t
is'differentiable at u), then the chain rule gives

ft(x) = gt(h(x))ht(x)

Since g' u - ru , we can write this as

(1) 4 f'(x) = r(h(x))--'he(x)

This is the general poller rule. Using the D notation it can be

expressed as

(2)

For example, suppose

r' r-1
Da ,= ru Du.

f : x -* sin3 x

f(x) = (h(x))3, where h : x -.sin x.

The power formula (1) gives .
a

f'(x) = 3(h(x))2h1(x)

= 3 sin
2
x cos x.

.

an example of the case when the exponent r is not an in eger, con-

the function
1.6

e power forthula gives
. -

a

,

: x -4; x + 1 = x
2

+ 11
1

590
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D[(x2 + 1)1/2] 2(x2 1)-1/, D(x2 1)

1.(x2 .) -1/2
2x

2

11

As an example

fUnction

t.70

x

)7-7-7

of he case when r is a }negative integer,-conider the

. -

: 41
.

.

f : x -) . - (log!kx)
-2

.

(log
e

x)
4

-

The power formula then gives
N

. The

fi(x) = D(Q-9ge 7'-2tloge x)-3
e

x)
X .

4

-2

x(loge3xi

0

r

casiwhen r = =l is so important that it deserves sp4Cialj.considera-

. s

tion. Suppbsp theevalues of the function 4f cap'be expresse6 as'.

-
f(x) = ,

where g is a fun6tion. We can then write
2

f(x) = Ig(x))-1 ' r

and apply the power formula to obtain

f'(x) = D((g(x))'iliff. -(g(x))-2ag(;))

=.-(g(x))-2 g'(x)

(g(x))2
-

4.
s willvhold,p ovided g(x) PO and g i differentiable at x.,.Inl

...i /

words; the derivative f the reciprocal ,of 'a fuicti n is e,negative of thee:

de!ivati've of the function times the reciprocal of t

' Using D notaiion4 we summariie:'?

119,01t

1
1 -D g(x)

.7;71
[g(x)_l2,

. t.7

59

1 .9 2

1

O
re of t e function.

0.
.

. ,

A .
- oe...

7.

0

sr
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,

3.

We shall refr to this as the recinrocal rule.'

For example, Suppose

o .

. . .

T6 reciprocal rifle gives

4'

. ..:

,

A ldifferentiation formula for the secant function can be fouild using the

reciprocal rule. ,The, secant function is defined by -s

.
I

'
a

f : x
1

x2 + 2

2
+ 2x

2

) ..

x) =
r -1-F--"-)

-
x(22(2

X 4-2 (x + 2),;
r

-2x

47

'sec: x
cos x

The expression
e..os

is not defined cos x = 0, 9lat 3.7s,'if is
x

anodd multiple of . Thus the secant' function is defined only for th

$

.values` x which are not odd multiples of . The reciprocal rule gives

derivative 1

D(sec x) = -
D(cos x)

cos x
cosy.

(-sin x)

r
cost x

. ,,.
. 4

s
, sin 30b

cost x

ni x 1

cos x

-

, Since tan X = and sec x - this result is usually expressed as
xs x

01- P. D(sec x) s.ec x tan x.

r

o.

A corresponding f9rmuia for the cosecant function is given it the exercises.
,

. ... .o. -

.
... ,,-

592
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Exercises 8-9'0

8-9 %

the power frgniUla to find, the dexlvative of .each of the' followingl

(a) x -)1T17.1 x .

0

Use; .the'reiprocal rule to find

(e) *51

331 -'x)2

(f) t 4 (1 4)4/3

(g) v co s10 2v

(h) x

dy

dx
if ,

x ,12

0

t + 1 dt)

.
-

(a) y -

1

' 1x2 (d) y = + log
e

x)-1 ,

f.
.

,

(b) y -
( 11

2)

5 (0 ,'Y
1

0 \ 1 - x
Tc

»/---4-a'''-
.. ..11x

qc) .,35,-= 1
, . 1 + e2x

3 Find an equation for the topgent linp to each of the.follOwing curves at 0

the indicated point.
/

-(f) y.= sin x 41cos x)-1

.

t

q (a) y = sin3/2 (2x), =
4-

\

(1?) y'=
x

( 4-
2

dt)
2

f = p

0

.(e) s.= t
r

. For each of the following

4 I

- (i) state where defined,
t *

4

(ii) find the intervals of increase- decrease,
. ,.

(iii) convexity- concavity,

(iv) asyniptotes ( if, any) , and

(v) sketch.

1
(a).*.sy =

2
1 + x

(b) y= ;117r-T-:).7

,

.... ',, .593
0194,

4 .
.



5. Show that each of the following is 'an increasing function

'

(a) x 1, x > 0?
1 - ex.

3 10

6 Find expressions for the'derivati.ves if

1
,. ,

(a),

,

y .= sg)x,.=
.-cos x

(b) csc x
1

(c) y = an x

(41°)', y cot x -

sin x

sin x

in x

cos x

,cos x

(sin x)(cos

Use the results of (a), (b), -(c) and (d) to obtain the following:

kel D(trIn 3x)

(f) :Ditan 2x

D(sec2 .x2)

0

1- (i) Disersc x) i
, .

.

7. In what ititiervls is the scant function increasing?. *convex? Sketch

--

its graph.

8. (a) /5:471.10 - .D( sec x csc x)
1

(i) in terms of sec x and csc x

..

(ii) in terms of. tan
,

x -;pd cot x ..

(iii)'' in terms of csc A and cot 2x e'

0

(b) Find . 0.

, ( )
D(tan, x cot x)' .- . ,

(id) D(ain x cscx) , ' =r,
*6...--___--

(iii')' D(cos x sec x)
4

(c) Find t

d . ' 0
e e

(..1.) .0D(sin x cot x)

4.1i) D(cos x tan x)'

,e ,

. , .



et . Show that

ni(k+1)If (tax x)

_,tan
sect x, k

(b) D(t csck x) = -csck x cot x, k #,0

, .

x)-.. , J (c) D(cot
2

x) = D1/4,csc
2

x) .. l
,

101_ (a) Use the product and rdc.ip`rapal-rules to show that
. .

P , ,

.0 ...-- 7 r
(b) Find D (x

2

+

x)

I

0

p

/ 1

I

r

.

595.1.96r.
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8,10 "

8 -10._ .Ths. Quatient Rule

By combining the product rule and the'reciprocgl rule we can obtain a rule

for dbfferentiating Tiotients of functions. Suppose the values of the function

f - can be exiSte''sfieci as

P(X)

f(x)
cluc4.1\,.

where p and q are functions (Nand, oficourse, ,q(x),/ 0) . lit is:theA

common to write f = 2 and call f the quotient oe p and q. SinCeigeo

can write
ti

'f(x) p(x) ,

.
-

the -function is just the product of p ; and the reciprocal of q. If p

and 9 'are'differe tiable at x and q(x) / 0, then the product rule gives

f' (x) = D(P(x)

1 ,1
= p(x) D(n7r) +

tilx/
D p(x)

.
The reciprocal rule gives, P'

I Tic 1 ) -q'(x)

/ 777 (q(x))2
CC\-

4*. -

.. to that

ft(x) (1312S.11 4. 1 pt(x)

Wx.))2 clCxj

p(x)q'(x) + q(x111(x4
2

(q(x))

w

),This i,s u uaily written in the form

(1.)

1,

'fr(x) q(x)Pi(x).- p(x)q1M

* (q(x)2)2

/

t
. .

and is refrred to as the'quotient rule. With D' notation it can be Written

as

°
(2)

o,

.

'`

.

596



.
-1 1

alk

A 4.

11n words, the clerivatiVe of a.quotient is, the denominator
tive of the numerator minus the, numerator,'"times the derivative
ter, all over, the square, of the deriominator. '

.

8-lo

times.the derive-
=of the denomita-

, Example 8-a0a. Uge the 'quctient rule I° find the derivatiy,e of thetangent
fUnction and discuss .its -graph in the intert

2
al - < x <'

2sr

Thitangent function can be expresled as

..
-tan. : x

s in x
cos x .

. 1. ,. - .
This function is defined for thos_e x for which cos,x / 0; that is, the

v

*
tangent function is deeknedIonly when x is .not an odd multiple' of-' 2

11 '. '1.Tbe....9uoiient rule gives the 'derivative
. ., :

7 ..,

D(tan i) =
.

D(iza xl cos .x p(sin x) - sin x D(cos x). ,,
`cos x,c., 2', .

_ cos x . ,.
r

cogrx(cos x).- (sin )1)(-sq.n ,x)-'1/4, '
,

2cos x , 7 , 0
...

,

Since

. ,
(3)

cos2 + sin x -

.cos A cos 2
x

*,sec x 1
C OS X

* .

The function x

that , ;

this is,u$uell.y expressed as
,

,
=D(tan x)+ sec2 x.

, COS X is not zero in the interval

-'

-
2

< x so
-,

sec2 x > 0, if - 2 g< x < 2
. - , i`,reforepthe tangent f4nction ,isen imoreasing functl.on in the interval. In

-fact the tangent function is stAttlyincreasingYon tAig interval.

.. Let us4denote the second derivative of y = tap x by y "..
.

w have
'A. .z...

A ' .

y" = D( see2 4 = 2 sec .x 15(_s7 x)
' .- o

a

a I. . . t

1 . = a sec x (sec x tan X) .* ..
X7` -

1 = 2 4 sa2' )( :tan )1 o
o o

ie ..., aj.../.4
when w'e us'erthe pbwer rule and the fact-t--(Secpon. 8.9; (1t, that,

,,l' ''''''pcsec x)..1- sec x tan.x. '..
, ' .

:
o to , . '' a ''

%0 o- 'S ,
fo '? '' o 597_

, . ,

. i 1,", 8
.

, -
o4
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-

- The ;'iec

-154x.< 0
funtion'is

- .

,
and derivative yr = sect x tan,x 14111 be negative for '

find, positive fort 0 < x < ; thatis,"*.the graph of the tangent
cohcave. in the left interval and-convex in thr-Night interval;'

.

10011x, approaches cos x
Y.

1. -Thus the ling giVen by. , x = 2

large withou
/ague that

x approaphe

'interval, -

I
I

.

approaches zero while sin x approaches
, ,

is an asymptote and,. y = tallx baaoraes

t 1potgid as - approaches -1 from the left;.. sfrailarly`we could

y = tan x grown large without-bound_throughaegative talues ps'
s - from the right. A graph Of 'the tangent function in 1.1e

.. ...
Ir. rr7. 7x < is. given in Figure 8 -10a. ;

. .
.,

.)

o

Y.

.

Figtre 8 - 1 0 a

= tan x

.

598
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1 .I .
8-10

\.. .
...

t Rational function's, the:C.1.s, quotients oS polynomials', can lie differ-

eiAiatad Tsing the quotiedts/lUle. Such a function ls discusdd in the follow-

.ing, exampie.', 4* 140 .
Z:'

. ..

-

.s ' ,

s
.

&ample 8-10b. pisUcss,the graph of the function
4

f : x 3
'3 2+ x - 1 "2

X 1

This function is not defined when x = + 1. As x approaches
9

the -1 4 the n;merator.dpproaches 1, while the denominator is negative
r 1

. o 't. .

' .. s
.

near zero. Thus 14(x)1 be omes large and f(x) , negative as x iipproaches,

+1 'from the left; tbat.is,' ''(xl 'grows large without bound through negative
f

,r, vaiues. Similv.argiimentS'show, that f(x), grows large without bound .13hrOugh

+1 from

and

poSitive 'values as x approaches +1 from tl:ie right.

,1-Suppose "x. approaches -1 ?rom

while the denominator is positive. and

-1 front the left, f(x), grows urge

To discuss the behavi r

f('x)" as

when 1*
f

.

the eft. The numerator approaches, -1,

approaches 0. Thus as x approaches

without bound through negative values.

is, large We 'rewrite the- expresVion. for

1 1
1 + -

x3

1
X

1 X
1 .

5

If 1x1 is laege,'the expression in the parenthesis Is nearly

behaVes4ke x for large vadlues,'positive or negative.

,Note 'that f 'is Continuollexcept x
,

For example, if

a # ± 1 theria's "i approaches r, a, the numerator,apprdaches a3 +'a 2

- 7'.

1. Thus f(x)

while-the denominator approaches a - 1. Thus f(x)
1

2 ,

.,42

Ja3 4. a - 1 ,

2
f(a).. This'is illustrative of the fact

.

, .! ,e, 1'
. . .

%'41.s coptinigius e)tcept at the"zeros of .its denominator.

We,now determine the intervals of increase and decrease.

1.,.

approaches,

that a rational,function

rule 'gives:

I

o

The quotient

4

9,

ti

4
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.ss

.

ft(x)
(x2 - 1)tr(3 + x2 1) -1,(x3 + x2 - 1)I(x2

. . i
,'2.

41 kx 7:
1)2\.

1 2 .°(x 27 1)-
,. .

The .derivative, ft. 16 'Trational function. (Infaet, the dprivatiye of a '

function.)

+ (xl +
x2

I)(2x)

(x
2

- 1)2

1)

rational functiOn is a s a rational

ft(x)
!k2(x - ')(x

-

ix + 1)2

In factored form, we have

,
_ ..

from whiah,we see that thd sign of ft is determtned'bythe sign of
.

(x . )(x 4- V). 'We concluae'that,the gropph of f- is: rising when x,< -I
,. ,_ ! .

or Y.> V3 .and ls 41),ing when_ :,,43 <x < -1, -1'<x < 0, o< x < 1 or
s ..

1 ,< x < V-5.. .. ' -

, . ,. .1
,

L.

A d

\.

0

t

p`91 3:15
-1 (IS I.)/ 2

-1I t'' 0 11

1,.. ;

(-)/s,
2

+1.)ir1 .

Figure 8-10b

x
3 +x2 - 1

GraphJ?f y

,600

2

.

16.

cs.

3

f
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I

1: Evaluate

(a)- D(:)-c.-21-1)

-4 .

2

(11,) D x*
)

1 + x
. -

1
( c) - 1

(d) D
(3 4.* 2x2)',

5^ 2 - x2

(4) :1)(, + 5471

(e)
1 +.x2

4 (g) D ( 1 )

yg/

(h) x

, -1

.41

X2 4" 1.

1

. . \..
3 8-lo 1

e \.(
e Exercises 8-10.

(i)
D(1 sl1----t),a)ri x)'.

D\c. ex' 2)
"1 4- X

x loge

(k) D (

(i) D(Cos x sec, x)

D
ex -ex

x -x
e e

InrDF(1 + 1.1(1 + log
e
,x)]

log.'
(0) D e

7T-1,
4

2
Shbw that D( cot x) = -c.sc x. -

4

' ---

3.' Dispuss the graphsrof etach of the 'following; as in Example 6-10a, b..

Sketch. #
. .

i

(P/

II(

(c)

Y=

j =

y =

x
2

,x - 1

1
X

e

+ 1

-2x

1 x

.., FFind

(a)
.r.'1.14 see x dx

0
* 4

(p)
0

sec" x tan x dx

lit43

^....

.-
,.. / 601. ,..

. lik. --, . 202.
__ , 1 ,- ..,

i . .. -;- ..

I

I

4

O

,A.
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5. Let y = f(t), = g(t), t = h(x), =
I

dy
dt(a) .Using Leibnizian notation,. in terms 6f

dt , 7-3.t. '
and

dt -

I. dx

.(b) Using (a) expres
dz

.dx
X Xo

a
a

'4

.r

ti

in terms of

.

4
602

ft, g', and h'.

/

a



*- 8-11. Inverse Functions

Let us review our dt4cussions of Section 5-1 and 641 where we defined the

square root function and found its derivative. The funcion.°

-44,4,;

g : x --.,x2, "x' .'6
,

_,.. !
is a 'strictly increasing function and its gr.aph meets eachhorizOntal line

$

Kiveriby y = c, c 0. In other words

g(X1) < g(x2) if
0,< .x < x

J
116k

. 1 - 2

...

and each nonnegative number c is in the -range of g; i./., c = 4(d). The

function

is defined for each nonnegative real number c. by

f(c) d if g(d)_

that is IC is the nonnegative real number d such that ,c ---'d-. This de-

fines, unction f, since for each, o ?P0 there is a unique d > 0 .such that

c
%
d
2

This follows from the fact that g is strictlrincreasing.

The graph of f is obtaiiied by folding the gr4h g over the line

y that, is

(c,d) lies on thq-graph of f if'ind only if (d,c)

lies on the graph of 'g. .(See Figure .8-11a.)

Figure 8.11a

.603'
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8711

The tangent to the graph of 'at (d,c) is given by the equation

/ c
.

.
,,,

.i. , %

""'` N.,A,., -s , ----) v y = g(d) + gi(d.,),Cx : d) = e+ 2d(x _ d).
.

. c > 0 then .d must alSo be ipbSitive and this line folds overthe line
a

' given by y = x iny the line whose equation

y = d + -

, A 2d
. . ,

...

This'is-the tangent to the gfaph of f at the point .(c;d). iRepla,cing d by

...

.

- I.',E, we see that the tangent to the graph of f at (c,d) has the equation

.
. d.

t
.s-

. ..lifiL ,

,y = -/ + 1---,(Z - C) . 1.' I
/

"A
: 21:C. - . .

The coefficient of x ;s the derivative of f at 4o, so that .

(2)

. .

?his same method was used to dafint

t(c) = 1 , c > o,
1/.

#
f : x -loge x, x > 0

'

)

in termsofthe function g : x
x

and to obtain the derivative formula

1
1'2 : x .

x =,

4
In this s.gction we discussa general form of the folding process. Suppose

t he function 4g is defined for those numbers x in an'intervp1 I, which may
A

be tife,entire real number line (as the case'g:x-4 g
x;4atray

(as in the

case g : x -) x
2

x > 0), or a line segment. Suppose further that g is con-

tintuous at each point of I and that g is strictly increasing; that i6,,,
A

(a)' g(x1) < g(x2)' if .P.R.;* and x2 are in I and xi < x2.

If we fold the graph of g oveY the line given by y = x, then we obtainwthe

graph of a function f. -The function is called the inverse of g and is

defined by

f(c) if g(d)

t at is,' f(c) is
)
den:led for those numbers range of g (meaning

-that .g = g(d)- forsOme d in I). This defines d' function singe for a num-
.

ber c in the domain of- f there is exa43.y one number d in I suc hat
4

e(d) = c.- This follows from the assumptioh,(3) thfrt g is strictly increasing.

That the domain of f .is an interval is a consequence ofthe assumption that
4

604
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8-11
"

g is continuous. It the-'appendices, it will be shown that the inverse -f is

.continuous atb each pbint of.tts domain.

The graphs of f. and g are related by the,. condition

t °

(4)
(c,d) lies`on,the graph of f .if'and Only if (d,c)

It

1lies on the gtaph of g;

that is, the graph of-the inverse it" can be obtained by folding the eaph of

,g, over the lime.given by y = x.

The folaGg procese used-to finci"the derivative of the 'square .spot func

tion also works '14 the general case. Suppose f' is the. inveirs.v Of Vie conr

tinuous function -g and that g(d) > 0. The tangent to the graph of g at

(d;c) has-thre 'equation

y = .(d)
(

This folds over, the line given by

+ - d).

y = into the line whose equat'ion is

1 4
y = d (x c),

\ 0 ....-
.

``__the equation -of the tangent line to the graph of the interte. f at the point
r
\c,d). The value ft(c) is the fnticoeffice o x, -

1 ,I.

1
.

,f1(c) = 03-dy , if gi(d) ? 0.

/,
.-

-

To obtain formula for ft(c) in terms of C, we replace d by f(c),

to obtain the inverse function rule,:

(5) ft(c) if gt(r(c) ) > 0.

The geomefically'intuitixo folding process can be justified by rigorous

arguments; In the appendices it is shown that limit concepts give the same

results; that is,

lim
f(c + - f(c)

h )b h
.

is indeed equal to
1

.

Definitions and derivativesibf trie inverse circular functions can be ob-
.__

tat:led using this process.

."" a 0.4 ,

05

, 0 6

O
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r

The Arcsine Function

H.

we restrict the sine function to an interval in ftich it is strictly

inc4s4g 'then the methods we. have been using. can be applied to obtain an

inverse function. It is conventional, to use the interval - < x < . The

Kunction g : x -)sin Z is strictly 'increasing on this interval. Its inverse

functi,pn is usually called the arcsine (or inverse sine) function,, and

.denOt'ed by arcsin. The ranieNof g is the Interval -1 < x < 1 so that7 ,
, f x -)arcsin x

is defined for -1 < x < 1. Its value at C, arcsin c, is that real number

d, sugh that

In other words,

(6) . .1(c) =

For example,
_

so that

sin d = c and - - < d < 2 - .
- -

if and only- if Idl < and sin d = c.

sin' 0 = 0; sin(- 1)8= - -11-
'

sin 1 1
)- .4 2 2

arcsin 0 = 0; arcsin

e,

- T ; arcsin 1 = 2 - .

4

The graph of f : x -)arcsin x can be obtained by folding the graph of

g x -)sin x_ over.:the line given by y = x, as shown in Figure 8-11b.

y = arcsin x,/ y = x

41

'/

31

2

y = sin x

2

Figure 8-11b

606
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Using the inverse function rule (5), we can express the derivative of the e

arcsine i'unction f -in terms Of the sine function g. We have

..

1h this case

and we have .

gt

f'(c) - NS
g (f(c)) 7

: x cos x, so that

if g'(f(c)) > 0.

gt(f(c))= cos(arcsin e)

f'(c) -
1

cos(arcsin c) '

Referring to Figure 8 -lib we see that

cos(arCsin c) = 11 - c 72

and hence we haye

f'(c) 'if 1cl < 1;

)1- 7-77

tHat is,

(7)

if cos(arcdin c) > O.

Figure 8,-11b

26king the Chain Rule into account, we write the more general result:
r

Du
D(arcsin u) _ , lul < 1.

The graphhe arcsin function has a vertical tangent at x =+ 1.
vt .

This seems reasodalbe if we recairsh%faot that the sills function has a,

horizontal tangent at, x =
No=

The integtation,,formula corresponding to (7) is--

1
dx.,= arcsin x, 1x1 < 1.

A- x2

) y y

2
Thus for

2
lal < and -1b1 < the Fundamental Theorem gives

6o7

20.8
4

s's



8*11

ei T k

are& b --arcsin a . dx.

I.

.. 2
.

,.' . /

Replacing Nb by t, b by 0, ,and using the f ct that arcsin 0 = 0, we

haye
Q

(9)
, rg----.c

arcsin t' = , 1 dx;

. ,

0
,

i
/ - x

I.

The Arctangent FunctiOn

The function g

*

Ats

defined by,

g(x) = tan x;

Itl <

y 4

7,.7 < 'f <
y

,
,

'is strictly increasing and continuous., i,arth411;nve-, the range.of 'g is the
/6

/ a

, k

entire rea'l line; that is, if c is ny req. number,: then there is a number
mo x. ,

2

x-between - -§ and , such that g(d) ='c: The inverse function f,

known as 'the arctangent function, is accordingly defined for all real numbered,
, . !

1,

c follows:

(10)

Graph of

f4c) . iki!'ctan c is the real number d between

2 2

x it..;

and ,such that 'tan d . c.,

Y =

1

I

arctan x and y'= tan x pre sketched in Figure 8-11C.

k

0

y arc 'tan
......

(c, d)......

c )

Figure '48-11c

698 , 0 9
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The inverse function formula (5). gives

gt(f(c)) 2
sec (arctan'c)

since D tan x = sec
2

x. Referring-to Aure 8-14d, i,./e see that

and hence

'his fraction

c
2A 4-

,

Figure 8-11d

;

s. ec. k
2,

arctan' c) = 1 + c
2

ft(c) =
. .1 C

2

is always positfire. In summary, w'e have

D(arctan x) =
1

2 '

1 + x

and the correspOnding integral form

(12)
1

2
dx =arctan x.

1 x

ti
Taking the Chain Rule-into account, we write the more general result:

4
bu

D arctan u

V c'

81%

S.

A

I
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Exercises 8-11

,Determine the domain and range and draw the graph of the function

(a) x arcsin (siri.x)
(b) f x -4 sin (arcsin x)/,'

(c) x --)arcsin (cOs`x)/....

(d) f cos (arAin x
(e) f x arc-tan (tan xh

2. Derive the formula

3. De x ive each of the follo

rccos - -1

1 - X

ing formulas.

1(a). D arccot x -
1 +

(b) Darcsec x
1

/-5"
1

(c) D arccsc

4. ,F,Ivaluate:

-1

lx I 1x2

fa) -D arcsin x t arccos (d) D (arcsin x)3

(b) D (x
2

arcsin x) (e) D (.
+ arcsin x )

A

s. ' 2
, x arctan x)

(c) D
arctan x (f) D (II: + arctan x

5. Find lim
arcsin h

h
(H t: What is,the definition of the derivative

h -) 0 .

of f(x) = arcqn x, at x 0 ?)

6. Find IL if.
dx

(a) y = arcsin x2 y = e
arcsin x

(b) y = arctan (3x -1-" (d) y = e
2x 'arcsin

ti



4'
7. Elialuate

-

1

(a)

0 I + x

1
dx

2

r y/6

------- dt
-y/4 F-7

111. -

8. Find F'-(x) 'if F(x0 is

ir

X 4
'2

dt

0 1 +1 t."

3
x

0 )27-7J
,

..

-.,Q 1 + t

sin X
1

:S

dt
.2

What is lim
n

given

n
- 1

dt?

il0 1 + t

by

10.. Show that each of the folldwing functions

find the derivative of f. ,

1 x
(a) g:x x > -1)

1 + x

(b). g : x -)xlx! (a sketch is ,helpful.)

4

g has an inverse i and

8-11 ,

11. Show that if f iS the inverse of4-g' 'then f(g(x)) = x for all x in*

'the domain of g. 'Assuming that f and g are differentiable apply the

chain rule to obta'na

as the rule (5)?

12. Suppose fl and

g be the functi

(a), Find an exp

(b) Use this m

4 (c) What is th

formula for'the derivative of f. Is this the same

'.,

f
2

are the respective inverses of

,defined by g(x) = i(g2(x)).

\-
ession for the inverse of

hod to find the inverse f

1
and g

2
. Let

g.

,

of a -)(3x + 2)
2

derivative of the function f of'part (b)?

4

611

2

x >
2

3
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1.! 811PPO-''.,

a

as

invtrce of g.

dx I' '

dy

,Put y o(x),, x = f(y) .

1

dy

dx
x=f(a)

Show that

4'

(The symbol
dt

means the value of the derivative of s, considered
.

tax 1
as a function of t at the point where t = a) . This is the basis .for,,the

mnemonic expression of the inverse rule:
dx

=
(IL)-)

dy 'dx1 .

1 4 . The notation of N.,a;Ier i< gi es a method for finding derivatives.. For'

example if are : x, then x =sin .y
odx

so =cosy and' hence vf

(L= 1 1 , 1

dx cod y co3 ( arcAlri 4

P. A`

tl.il method to f:_nd the der'ivative of a

se.

(), . 'irctln x . (c) y = x '

(b) : loc x (d) y =
.

x-
n

l
/.

t

4
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8-12. Implicitly Defined blinctions
.,, A function which is described in tetra's of .rational orations on, and-

.

..-
t i

compositions 'and inverses Si , known functions is daid to be deftned. explicitly.
g:b / 4i.,,,' For example, if

e. .' '..- '''- i

.(1) y = f(x) i25 - x2, 5,

f is defined explicitly.

It often happens that- a function is, lefixed. indirectly or im plicitly.
Thus

(2) 2 2y
.

with the restrj.ctionithat 'y

' . . /
f : x -9 21511-.

, *
.. . ,

. .

If we adt no restriction, the graph of
(2) is the &circle. with radius 5 and

Q, defines the same function .as

,;
center at (0,0). Only th& upper half
of this circle is tie graph c:4'

y 2177(2. (The lower half is the
graph of y = -1-25 - x2);

,

We T1..1, of course, find ;fi-(x)
from (1,). In fact,

(3)

cr

2 2
+ y2

-2x -

V.25 - x x2
. .

Hoyever, we can also find the 'Slope of the graph frofia.(2) without solving for or
A First of all,' Dx

2 _= -2x. When we come to y2 we note that this is ,Z _" . '1 'really MX)] so that by the Chain Rule, its derivcive _at --x is

Hence, we have

and; therefore,

2 (x) fi(x).

2x + 2f(x) fi(x)= D(25) = 0

f;(x) = 472:c - (.f(x)frx

-13. 2 14-



8-1?

Usually we simplify the notation and write

2x + 2yy' = 0

Y / 0)

1

4

._._,leaving the result in terms of x and y. Of course, 'since y = X25 - x

on the upper semicircle, (4) is'equivaleht to (3); Often, however, we leave

the answer in the- form (3). Ifwe wish the slope at (3,4.); say, (a point

which is surely,on the upper semArcle), we obtain

3

Note thee the tangent is perpendicular to the radius whose slope is

-Which agrees with our geometrical knowledg.

. k
There are many casesin which it woul4 be difficult.f. not impossible to

4

solve explicitiyafor y in terms of x.

"'Example. 8-1.2a. Given . I
.

t 3 t 3: .

..-,

!" --- '
, x + y- F. xy ..

.
.

..

with the point .(1,1) onits grail: We an find the dope y' there with-

:
- out difficulty but would find it very 'aard :to:no explicitly. We have

.. .

.r

4.

3x
2 -4-3y

2
y' = xy' + y.

Hence, '

(3Y
2

- x)Yt = Y - 3x
2

:

and
57- 3x

2

3y2 - x

3y
2

- 0:

1 3
Yi = 1.

3 - 1

1

614 2 1 5
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Ex&unple {3-12b. g.J.ven y2 = to find .574 at the point (1,2),./
We find , 'P

x yt + jx y + x 2yyt + y =
3 2 2 r

ogg

Thn
tyt

. 11b..

(x3 +, 2xy)3r1* = -(3x2y y2),

YI = -(3x2Y Y2)_.
, .x3 + 2xy , 1

At (1,2),

t; possible

-10yt = = -2.'5
tosblze or y by the quadratic formula. Thus

-X3
2x

+ 24x 1.

Which sign must we choos so that y = 2 when x = 12 We forbear t1

y', 4since from here on /the direct method becomek too painful.

Implik differentiation, often simiplies the calcu7ations iheolved in
Problems about reiatLT rates (gection 8-8).

. . .... , .
Example 8-12c. Re.call Example 8-8a. Let s 'be the length of the line-

of-sigy to the horizon, sand h the height .of the helicopter. Then

```-s2 + 40002 = (h +°4000). t
. 1ifferentiating implicitly with respect to to wet obtain

(1)

When t = 10 : h = 2, an4

$O

ds )dh2s dt = 2(h + 4000 .dt

:2
s = 40022 40002 = 16002

s = V16002 z

ari= 20, the upward rate of the helicopter. Substituting in (1), we obtain

2(126.5) d1-1 = 2(4002) 20,
1

t =15

615
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and "
40coe'. 20 633

CIt" L 46.5.

7

. e i

Example 8-12d. Recall Example 8--81-i-- Let h represent the distance

ithe Columbia falls in t hours, and let x represent the distance traveled

by the °carrier in theslme amount of time. Then

. '

A - s
2

d h` +,x2.

A

Differentiating implicitly-with respectto t, IT have

dh- + 2x lx-2s 2h

or
ds dh'

s h
at

at. + x at

dx
-20 and -30, the velocities' of Columbia and the carrier, res-

pectively.pectively. Negative signs are included do indicate that h and x are

1

decreasing as. t. increases. One minute before splashdown, t and
3-0

ti

and 4

* ds

at 1
u =

30

1
(the

0

h = 7 h distance the Columbia falls in one
' minute)

1x= 9 -

s = 42 + ){.

41. 'h + x- (0at ) + 8(-30)
. r 3_ - 30.8.

Hence, the distance between the Columbia

' the rate of 30.8 mi./hr. at 9:49 EP.M.

)57.7
7 '

and the carrier was decreasing at

616
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Exercises 8-12

?
'4

I
e

i'.. For pos,itive x, if y = x
r

, where r is a rational number, say'
..

r = E' (p, q integers);then y
q

= x
p

. Assuming the existence of the
q

-0

1.>

8-12

. 0

-1derivative Dy, derive the formula Dy = rx using implicit differ-
,.

entiatia Ind the differentiation formula Dx
n n-1

, for integral n.

. .°

2. For each of the following, find. y' without Solving for y as'a func-

'tion of -x.

(a) 5x2 + y2 :-. .12 /

(b) '2x2 -y2 x- 14-- 0

,(c) y2 - 3x2 * 6y = 12

(d) + y, - 2'xy = 0

3. For 'soh of the fRilowing,use implicit di'fferentlation to kind

(a) x =
2 y --,, x

y41x

'5.
_

..

(b) x
2
y + xy :-.- x

3

(c)
,

xmyn = 10' On, n, integers)

Dy_

,
,)

(d) it7:Tc7 + x = y
-1

/-
41 For each equation, find the.slope o,1 the--eurv;eprisented, at the hated

i

point. , .

(a) 2x 2 + 3xy + y
2
-+ x - 2y + 1 = 0 at the point (-24)

(b), x3 + y2x2 '+ y3 1 = 0, at the point '(1;11_,)

(c) x2 - xJ - 6y2 = 2 at, the point (4,1) .

'
x cos y = 3x

2
- 5 at the point,..(V2-

.

17

a

ta

VID



8 -12 ,

45. For each equation, find the slope og/the c ve represented at the point

or pointsyhere x ..--.7A Give
,
a geometric eXplanation for these results.

(a) x3'- 3axy + y'-' =b

(b) xm + ym = 2

% 2 2
(c) + y = 2axy

6. Tylq' .y4 by implicit differentiation.

;+"--

(a) a sin 57,.+ b cos x_= 0

(b) * x, cos y +,y sin x = 0

. .2

(0) -iinxy = sin x + sin y

(a) cse(x y) = y

(e) x tan y - Y tan x = 1

(f) y sin k = x :tan y

(g) xy + sin y = 5
.

1
. .

7. If 0 < x < a, then the equation x
1/2

+ y
1/2

= a
1/2

defines y as a
,'

function of x. Assuming the existence of.the derivative, show without
f,

solvIng for y that ft(4) is always negative:
.

8. A gpherioal balloon is being filled_liith helium at the rate of 100

cubic inches/min. How fast is'the radius increasing when it has reached

the value of .5 inches? [Use:qmplicit differentiation.]

9. Wa r is leaking out of a conical tank at thd rate of ft.3/min.

The tank is 30 ft. across at the4op and 10 ft,. deep. How fast is

the water level dropping when the depth reaches 4 feet?

1
(The volume of a cane is 7(altitude) (arena of base).)

-, . ,-, .

10. A trough 10 feet long has a'cross section the same shape as an

,.....ilosceles trapezoid with altitudes 2 ft., upper base 3 ft. and lOwer

base 1 ft. If whter,isiollred in at the rate of 5 ft.3/min,, how

fast is the water level rising when the water is 1 ft. deep? '

11. (a). Find clY if x
2

+ y
2
= 2xy + 1.

dx

(b) Sketch the graph of
2

+ y
2

= 2xy + 1.

(c) Sketch the graph of ix,- Y1 = 1.
No.

12e Work'EXercises 8-8, Number 17 using implicit differentiation.

%. e

c e

618
0 1 9
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Chapter 9

INTEGRATION THEORY AND TECHNIQUE

We now-return to our study of "integration, begun in Chapter 7 We saw

that the area bounded biithe graph of a function f, the x-axis and vertical

lines Ertma and b, was'given by. F(b) - F(a), where F ,is an antideriva-

tive of f (the Fundamental Theorem of Calculus, Section 7-3). Various ele-
,-

mentary,antidifferentiation formulas and the use of tables were discussed in

the final-section of Chapter 7. In the first section of this chapter we pre-
..

sent a method for extending' the scope of these formulas and tables. ThisC

method is known as the method of substitutionandqs, in fact, the

entiation for of the chain rule.' By appropriate substitution many unfamiliar

integrals can.be converted into forms previously, encountered or listed in the

tables. More about the'method of substitution and otheim: athods of integra-

tion is contained in Appenatk 4. :

The FUndeliental Theory enables'us to calqulate areas (when antideriva-
; .°, tives'can be found). There are other interpretatiOns of the difference

F(b) - F(a) where F" = f. ,One of these interpretations is disCussed in
_

11this chapter. We show how the concept of average value-of a functibn is

related to integration (Sacs on 9-2). Then we show how the average value.

interpretation can be used tb calculate vblumes of solids of revolution

(Sectfon 9-3):

Numerical methods for approximating integrals are discussed in Section

Th se methods are useful, i:articularlY in conjunction with high speed

computer , inestimating,integrals when antiderivatiNies cannot be found. The

final sec ion of this chapter shows how we. Can- btain_Taylovapproximations

with error estimates by integrating inecatitiitie . r

9-1. The Method of Substitution,-

The scope of our integration tables can be greatly extended by using the

method of substitution. This methOd often enables us to transform unfamiliar

integrals into familiarones. It is ba4ed upon VII integral form of, the chain

rule. -

01.0" '

410

In terms of antiderivatives, we have learned to symbolize the derivative

statement

1(u)
du

619
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9-1..

by writing

(1) 'F(u) = -f(u)du.

If u is a function of x, the chain rule shou.s
/

that

d F(u) d F(u) du
f(u)

du

dx.(2) dx du dx, `

%%which similarly'justifies the statement that

(3) F(u) f (u) dx

Together, (2) 4nd (3) show that

4'

(4)

if u is a, function of x.

\'

f(u)du iiff(u)c-cti dr,

re 0

c.

4 .

., This equality (4) vastly increases the number of antidexivativciW-e may

determine. It often happens that we are confronted by a rather complicated

integral, in terms of x, say,-which becomes substahtially &implified,and

familiar if we can express it in terms of a suitable variable u which is a

.functi,on of x.

For example, suppose we seek.to'determine the antiderivative

If we let

and

then

Vcording to

i'2x cos x
2

dx.

u =
x2,

du
dx

= 2x,

-17 2x cos x
2

bix = cos u
du ,,

, with f(u) = cop u, ;de may conclude that

, .

du
cos u r dx = cos u du

f
,

62o



and We should recognize this antiderivatiye as sin tr. Hence,

(

2x cos x2 dx = cos u du = sin u

and upon substituting back u = x
2

, we find

2x cos x
2

dx = sin x
2

,

as desired.'

9-1

ayThe leibniz notation,
r

is more than a convenient device for

remdmberiAg the chain rule and the substitution rule (4). It prompts mathe-

laticians in practice to deal with the "numeratorr' dy, and the:denomi

nator," dx, as if
dx
LI were a common fraction. For example, equation (4)

suggests that operationally the symbol

may be- replaced by the symbol

du'
dx

dx R

du

when 1.4,0 perform substitutions to integrate a functioh t. The symbols "dx,"

"du," "dy," etc., are called differentials. In practice they short cut the

thinking required to evaluate integrals by the method of:substitution, as

the'examples below inniCate.

To find suitable substitutibris to reduce an integral to a known form is

no easy task and, in fact, May not be ivssible (see Example 9_la, below).

Practice is required to ob-tain,skill.at making appropriate substitutions.

2 110.

Example 9-1a. Find xex dx.

du
Put u = x

2
so that = 2x and hence,

dx

Upon writing'

1
du = x dx.

2 2

J
xe dx = e (x dx)

we can make the replacements
.

621
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I

I

I

to obtairt

\

2 1
u = x and

2
du . x dx

2 2

e
x j

e
x

dx = (x d.x) eu(.1.1 du)

.

ir u
=

l
e du

1 u
= e

Now replace u by x
2

to obtain

iy

L') irxe x2 dx = e
x2

The formal substitutions (5) and the equation

re

are- ist shorthand: for the

where u = x2.,

2 lr
x e

x

2
dx = e

u
du

4

statements

j
Example 9-lb. ' Find sin (.2x + 3)dx.

t,

=
x

2x dx = f e dx

2
lir u-du

Put

Make the substitutions

u
u = 2x

,
+ 3 , - =2.

dx

1
u = 2x + 3, du = dx

622
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sin(2x + 3)dx = I (sin u);-- du

f
ff" sin u du

.

.

.

.0..
,

,.. 0:

1
_ - cos u

.1
cos(2x + 3),

--/ In general, we have seen that replacingtx by ax + b ,multiplies the

dertyative-by a.--hus_replacement of
1

derivative by 2t.---F--that is

' (6)

x by ..ax + b multiplies the anti-
',

If F(x) f.(x)dx, then Flax + b) = ff(ax + b)dx
a

Example 9-%e. Find tan x dx.

$ince

sin x

cos x
D cos x = -sin xtan x =

it seems appropriate to try the substitution

u = cos x.

Then t = -sin x, so that -du = sin x dx and we have

I J7 1tan x dx =
cos x

(sin x dx)

= f

=
Cl

du

= -loge u, if ,u > 0 ,

= -loge(cos x), if cos x > 0.

e ,

The result

Jrtan x dx = -loge(cos x)

is formula 12 in the Table of Integrals. ,(See Exercises 9 -1, No. 9, for a
b .

justification of the absolute values sign.)

623
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9:1

Thus

1\

1
Example 9-1d. Find dx.

x loge X,,f

Put u loge x,s: so that

ix

du
=

1
that is; du = dx.

1

loge. x
dx

loge' x(x dx)
1 1

= f 1
u

du

= loge u, if u > 0

loge(loge x), 2',0if log_
e
x > 0.

Example 9-1e. Find sin2'x cos x dx.

; , We try

u = sin x, so that
dx
ILI = cos x.

theltsubsfitutions

thus gives

u =-sin x, du = cos x dx

2
sin x cos x dx = fu2 du

u3
"7"

sin x

r_

=
3

r 1,

Example 9-1f. Find I (1, - x2)5 x

0

One way to do this is to carry out the indicated Multiplications and

calculate

624
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9=1

(x - 5x3 + 10x5.- 10x7 + 5x9
0

Let us, instead; try the Substitution

du
u = 1 - x

2

'

= -2x, so that x dx = -
1
- du

dx

and we have

.
-

Hence,

f(1'- x2)5 x dx = u5( - du)

-u
6

(1 : )
6

12

1

(1 - x
2
)x dx -

(1 - x
2

)

6

12
0

- 1)6
2

1 - 0)6 1

0 12 12

Note that replacing x by 0 and 1 in the expression

,u = - 2x

gives the respective values 1 and 0 for u: and that

1 5 u
6

TE

o

f
1
u

du = -
1

1
+ rE

4' In other words, we can express the limits of integration terms of u and

complete our cilculation in terms of u The next example al o illustrates

this fact.-

15:ample 9-1g. 'Find the area bounded by
.

x = 0, x = 1, .y = 0 * and y = xlx2 + 1.'

In integral notation our problem is to find

1

x. + 1dx.

so that

2 , du 1
u = x + dx = 2x, du =x dx
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9-1

u= 1 when, x= 0 and u= 2 when x= 1.

Substitution ok thetse gives

A 0
X X + 1 dx

2 ip , 2 1/2
u u)d = u du

1

1 2 3/2% i 2 1 ' 3/2 I 2
=.i:-.3u = 7 u

1 -) 1 -7-:

.

3

1 3/2 3/2 1
--(a - 1 ] = -(212 - 1)

. 3

Example 9-1h: 'Find

1

,t
3

e dt.

10

Let

A

du
= ... -ff

1
u = -t

2 , -2t, du .-- t dt

Go that u -= -1 when t = 1 and u = -100 wheft t\\ 1.0

... -
----,,

-1
\'

(-u)eu(

::--------

e dt
.3 -t

2
=

1

t e (t dt) ) = .: .3ff du)2 -t
2

,
. -- --1

t

1. 10 10 -100

ar

The Tables give

= ueu du.

"?-°°

ueudu = ueu

,*,
1

0
tae

-t2

1

,

dt. =,:(iteu - eu)
00

1
= ff[(-1)e-3- - e-1) - ((-100)e-100

e-100)]

=-101-e-100
2

(,
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Example 9-1i. Find

If we put

so that

tt,

.A

1. 1 + 3x 2
dx.

+.x3 tat,

bz.

duu =x + x3, then = 1 + 3x
2

9.x

t.

1 + 3x
2

dx =
x +

' Example 9-1j. Find

1- 1 ` 2
+ 3x )dx)

x + x3

a.
du

= loge u,, if u > 0,' I

= loge A3(x ), -x > 0.

f .0a x6 1:15c''' 16-tj'< 1

x2

Let us try the substitution

du
u = x

6
, = ,6x5.

We can tiAn trite

x = (1 - u)
1/6

, so that x5 = (1 - u)-'
5/6

2 i1/3 1 5/6x = (1 - u) , and - -
%

= dx.

Hence

ft..

6
7.

dx J 1(1 u)1/3 ;(1 - u )
-5/6

)du .

2

i'lll - x
u
1/2

k

{
r'.

x , 1*

This lattir integral appears to be quite complicated, so. let us try mother
r.

_

substtUtiOn.

Put

This gives,

,

u = x
3

, = 3x
2

3
dx,

2
du = x. dx.

du
ax
- ,

. 627
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a3

dx =
0 A

- 3

(1 du)
1

u2

=

a3

- 3 arcsin u

aresin'ea

t

1

3

V,

lo 2

Example 9-1k. Find dx.

0 Ii77}.7

Try the stptitution

o ' -

to obtain

x2
dx =

0 IT
2 u2

- a; + 1

/'

u = + x, du = dx

2
u - Q.)2

1

/2 5/2 'u3/2
+
_1/2)

k5, u - u

4

yl

du =
1

14 16

15 15

2

1

Other substitutions'are also useful. For example, put

du 1
u = VT77

dx
2111-77

so that 2udu = dx, (u2 - 1)2 and

1,1Cl
x2

2 2
- 1)

dx
u

. (2u du)

1

or.

.C.

Ir-. 2
= 2 (u - 1

r

2(5.u5 -.- ?.3- u3 +

-1/2.
+ ,u )du

= 2.1 Va(u - 2u2 + 1)du

10 14 vE 16

15

, 628
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2
Example 9-12. Find e-x

We first try

obtaining

u = x
2
, du = 2x dx

ti

0

2 -u
e-x dx = e du.

21:

The latter seems to be more complicated. Searching tables of intvrals,leads

us nowhere for we find neither expression in our tablds. We could tr5Pother

substitutions, such as u = AT, or even make wilderfstabs, such as u = sin x.

In fact, no matter what substitution we trv:weshall get nowhere, for it

-x
2

was shown by Liouville in 1835 that the integral of. e, cannot be expressed

as a finite combination or composition Of polynomials, cirtular.fnnctions,

exponential functions, q,logarithms.

p

O

4
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9-1

vo
Exercises 9-1

1. Use, the indicated substitution to find each of the following: (Wherever

they appear, a, b, and .c represent non-zero constants.)

x2
(a) dx; u = x + a3 3

(b) f x37/1 - x4 dx; u.= 1 -

f (a + bl-X-)13

(d) s[ x

2

x

dx, b A 0; = +

1
ax; u = x - 1

fe) x
'

dx u = x2 + a2

x + a

sis

2

(f) clx, a A 0; u= 7-

(g) '(cos x)s sin
x

U = sin x

x

(h) cbc, c A 0; u = b + cex

b + ce
x

(i) r sec x dx; u ='sec x + tan x
1

2. Find each of the following integrals by making an appropriate linear '
. ;

substitution.,

(e-) I
2 3x

dx(a) e dx
I 2x 1

.

(b) _ (1 ... 1 ;)10 (32;( (f) [
1

dx

J 1(1 - 5x)3

(c) f sin ax dx- (g) f ---ix
1 - .a2

-,..5

(d)
4./5

-TT. dx (h) S tan(1- x - 3)dx

ti
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9-1

3. Find each =of the following integrals by making an ap propriate substitution.

(a) j- (4 3x2)° x dx ( 1)
sin x

f (a + cos x )2

dx

a

(b)-jr

.

cOs5 x sin x1 dx (i)

2

(4x3 -

dx

.

(c) r din
2

2x cos 2x lb: dx

,(
e
1

(k)
d

404.

(0.4777

. (e) j- x A + 4x2 dx (2)
x

dx

ir A - gx4 .

.(loge x)
2

° (m) sin x cos3(r) x
dx x dx [Hint: Write

/
cos3 x = cos xcos x

.

/
/

= (1 - sin
2
x)cos x.)

cos ,r2x-dx
(n) sin3 4x cos8 4x dx [Hint: :Re-'

11
write sin3 4x. )

.

( 0

4. EValuate each of. the following

1
(g)

1/2

(a)

2 f2x 1)
dx

0 °

(b) cos4 x sin x dx (h)

0

1/2
dx

-1/2

r
( ) i Tr/ 3 cos lor, dX (1) dx

2 log- x

1

(d) ° (2x +1)17 dx
-1/2

(e) f ° fr...7-1-dx

1

)

(k)

1
3 2

x 1 x dx

0

1
2

e
x3

dx(

r
, dx (t)

I .;
(r) x sin (2k2)dx

631
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ti

ea.

_ A -

5. Sometimes it is useful to reduce An integral to a known integral by

making two or more separate eub8titutIons. For.example to find.

2e
x

e2x
dx

p = e
x

° we might put du = ex dx to obtain

+ e2x
dx = du

- 4 + u

2ex 2

audthenputv=4i-1,2dv = du to obtain

= J7 uv
, 4 + u f 4 + 4v` 1 + v

2 1

Find:
a

(a)
cos.

dx

- sin2 x
.

2

2 + x

koarctan
§ = arctan

C

x

= arctan (
e

).
2

u

2

I

.17

(c) dx

AT + x
.

6. Find each of the following by making appropriate substitutions and then

using rf table of integrals.

(a) ][ x2 sin (x - 1)dx

(b)

f2
2x

x e dx

0

,(c) x--sin ojx. dx

0

r 5c3 e-4x

f(f) x ex2 sin 2x2 dx

(g) x loge (x_ + 1)3x

(d) is :ecos3 (4)dx (h) (sin x) Ibge cosS x)dx

632
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jel

x

sin( x + 1)coe(21 + 2)dx.
,x

dx
e

(i) f sin x
dx (2)

2 cot
2
x + cos x- 3

I ,dx
xA1

loge 502 + 1

9-1

1 :2
7. Even though e . dx cannot be expressed in terms of elementary func-

..;2

tions, approximate valued of the definite integral e dx can be

a

found (using for example, the method s)of Section 9-4). Related integrals

can then be.evaluated by appropriate substitutions, Suppose

Show that

(a)

(b)

ir1 e"4? dx = Cc.

0

r.-0 2

e

j -1

1 2

e-x
-1

dx = a

dx = 2a

(c)

(d)

e

-1

1 -x
e

(X..1)2

dx'=
4

dx = 2a
0 1X

(a) Use the substitution

x = sin u to find

J_ x2 dx.

0

Find f dx.
+ x2

Let x = tan u.

ft

*41k
A complete discussion of this,method of substitution is given in Appendix

4.

,
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7; 9-1

. 9. 4a) From Chapter 7 we kfiaoll that if x.> 0,

3. 4'

,

z

1
dx = loge x.

Shol4 that if x < 0, theri

dx = log Lx1

by substituting t = -x in place of

(b) In the Tam of Integrals the result of part (a) is given as formula

2: '

1
dx = loge lx1

e
--"

,
This formula can be meaningfully applied to calculate

f
1

dx
is

only if a and b have the same sign. Why? (See Exercises 7-6,

No. 37.)
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9-2

9.2. The Average Ordinate, or Mean Value, of a Function

As.iwe have seen, one possible interpretation of f is the (signed)
a

area A _shown in Figure 9-2a.

f

a b

Figure 9-2a

The average value of f(x) on the interval [a,b] is thought of as the

b
height of the rectangle with base (b - a) whose area equal's f. In

a

Figure 9-2b, it is denoted f(x)ay.

Thus, we define
f(x)ay.

by

Figure 92b

() (b - a);* 1(..x )ay.

a
f'

635
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9-2

If F' a f, then

and equation (1) )ecomes.

f =.F(b) - F(a.),

a

f(X

Fk) - (a)

)er10

lab

- a.

,

The ratio
F(b)

b
- F(a)

has been encountered previously as the
- a

of change of the function F on Oterval, a < x < b.

For example, if s = F(t) 4resents:the distance of a body from a

4

fixed point at time t, then .,
416) - ep

- a

,is the average velocity in the time -intent

F' = f can then be interpreted as'th4-

a < t < b. The A, ative

ty function of the Motion; that

is, F'(t) = f(t) is the velocity,gf he°160dy at time t. Thus the integral
,

,'

b - al b - a
-(!,,,iv, i_.,--

1 b ',.(b) - F(a)
, 'I' =.

is the average velocitytof the motira:- 'tn.-the time inter4a1 a < t < b.
..7,.

,, ..,trt 'c 4

In gAneral, no matter what:theinterpretation for a particular function'
.,, s ,,

f, the number

(2 )

is called the average value of

....-
,

1

:. 1,10

la-

interval. This interpretation of

b

f or the

.(2).iAery useful. In the next section we will see how the concept 61 average

value is related to volumes of solids of revolution. Averagihg ideas also lead
. , :

us to useful methods for approximating integrals (see Section 9.4).

.

Example 9-2a. SuPPose an automobile travels between two points, 100

,. miles apart, traveling at an average speed of -30 miles per hour for the

first half hour, then at an average of C miles per host for 'the remainder

of he( trip. What must C be in order that the trip shall take 'wg hours?

I
Let f(t) denote the velocity of the automobile at time t. While.we

A.
o do not know f explicitly we do know its average value on the interval

1
0 s t < 2 and on each of the subintervals 0 < t,< 7

1
5/, and f < t < 2 -

;': "
'These are respectively:

*
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C

and

1

2
100 -'g = = 5o

o
;1/2

f = 30-

- o

7
1

f = C =
[ 0

f -

.1' 0,

f

2

f = 15,

o

'2 1/2

Since fs'= 100 and'

0.
2, 170

C =
3
-00 - 15) = = 56..67

9-2

I

s

1
boutsHence,Ithe speed we must dverage in the lett 1

2
nours in 'order to average

50 miihr.,fd; the
tip

is approximately 56.67 mi., /hr.

Example 9 -2b, Suppose f : x -) sin x and that g is the '9onstant

function g : x -9c. What must c be in order that the area bgended by the

graph of f, x = 0, x = n an(' y = 0 is the salve as the area bounded by

g, x = 0, x = n and y = 0?

0

The situation is illustrated in Figure 9-2c. Our problen) is to determine,

the height c thethe shaded rectangle OABC so that its area is the same as

the shelled ewe under the curve y = sin x,

4'

= sin x

,

Y =c

'10 '"0,1

'ige 9-2

637 4
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d

The area of the shaded region under the curve y = sin x is

1

g

sin x dx = -cos x = -cos g + cos 0 = 2
0-,

while the area of the rectangle is

10 g 0

and-therefore, ,gc = 2, that is

The number

O

2

dx = c(g ,- 0) = gc,

2
c = -

g
.

is just-the average

l
slue ofl f:

'4

4

ta

2

g,

1

0

f.
a

PP
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Exercises-9-2

9-2

1. For each of the following sketch the graph of f. and find its'average

value do the indicated interval.

(a) f x ->3x2 + 7, 01 < 0

(b) f ,x->
1

)
0 < x < 1

. 4 + e
2

(c) f : s - se
s

-1 < s < 1

(d) f t - < t < 4
A

.2
1 ,

(e) f\)( x
3x + '

1 < x < 0
r

2. Find the average tralue of the siner function on each of, the following

intervals.

- (a) 0 <x <n (c) <x <_ _

(b) , 1 + 77r < x < 1 + 9n (d.) c < x < c + 2n, where c is any
- - _

number.

3. Show that if f is periodic and integrable with period' a, then the

average value of f on any interval of length Ex is a constant,

pendent of the location of the interval. (See Exercise

4. Find the average value of the slope of the tangent to the graph of

x -flc
2

+ 1 in the interval -1 < x < 3

5. Le t f
av

represent the averagd value of a function f on the interval
.

[0,1]. For f : x' ->x2, show that

(fav)2 (f2)ay.

. ,

6._ Suppose a particle moves so that its acceleration. time t J.; .

1
a ,,

.

a(t) = t3 + .4.-- . What is its average acceleration_ in the time ihterv'l

It
< t <

7. Shbi hat if f is linear then

a

[average value of f on p < x < =
f(p) + f(q) :

o

639
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9-3

9-3. Volumes of Solids of Revolution

a

, The Fundamental Theorem of Calculus enables one to calculate areas by

finding antiderivatives. Such techniques can be extended to enable balpula-

tion of are length of curves and,volumeS and surface areas of solid figures

to be made. A full.L.eatment of'these topics will be left to subsequent

coUrses. In order o give you an indication of the wide use of irit*Elifferen-

tiation techniques e shall discuss in this section the problem of finding

volumes of solids qf revolution.

Sdppose the region bounded by y = f(X), ,x = a, x = b and y = 0 is

revolved about the x-axis, as shown in Figure 9-3a and b, obtaining a .solid of

revolution, as shown in Figure 9-3c.

Figure 9=3a

y = f(x)

Figure 0131)

640. 241 .
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p

-A 9-3

.Figure 9-3c-

The volume of this solid can be determined by procedure similar to the

one used to estOlish the Area Theorem. Let V(et) be the Iliolume of the solid

obtained by revolving the region boupdea,by

y = f(X), x = a: x = rind y =00

about the x-axis. (V(t) is the volume of the shaded pOrtion of Figure 9-3d.)

Figure 9-3d
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TIV.8 defines the volume function,

V : t -,V(t), t < b.

Let us also assume that f is increasing on the interval a < x < b and

that f is continuous and-nonnegative at each point of this interval. By

using elementary properties of volume we shall thaw that the derivative V'

of V is given- by

(1) Vt(t) = ;(f(t))2, a <t <Th.

The Fundamental Theorem of Calculus will then give us

b
V(b) - V(a) = f a(f(t)), dt.

a

, for, V is a function whose derivative is t .4x(f(t))
2

. Since V(a) = 0, we
.

Obtain from this the desired volume formula: . t '
, s,

(2)

(3)

b ,

V(b) = It(r(t)) dt

a

Let us now prove (1). Suppose t is fixed and that h > 0. The 'quantity.

°V(t + h) - V(t)

,is the volume of the shaded region shown'in Figure 9-3e.

Figure 9 -3e

V(t + h) - V(t) = volumpO6f shaded region
) J,
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The function f is assumed to be (Creasing so that

(
f(t) < f(x) < f(t + h) for t,< x e t'+ h.

, f. .

Hence; the shaded solid in Figure 9-3e is inclUded in the cylinder CI.

,centered on the x-axis with radius f(t + 14 and length1. (See Figure

9-3f)- Furthermore, the shaded solid'of

. Figure 9-3f

&terior Cylinder C1

0

Figure 9-3e includes the cylinder ,C2 centered on the x-axis with radius

Figure 9,3g

0

Interior Cylinder C2

f(t) and length h. (See Figure 9-3g.) Recalling th0 the volume of'a

cylinder is

O we have

g X (radiuslength

volume Cl = g(f(t + h))2h
a

and

.%
volume C2 = g(fkt))

2
h.

Since the shaded region of,Figure 9-3e has volume V(t + h) - V(t), includes

C
2

and is incltded in C1, we have

volume C2,< V(t + h) - V(t) < volume C2

643
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9-3

that ,is

.

rc(f(t))2h < V(t + h) --V(t) < y(f(t + h))2h.
10 A
h was assumed, to be positive we pan divide through by h to obtain

\,.

(1:)
Ito,(0)2 v(t + h)1- v(t)

< yr(f(t + h))2,
'

. .
.

.

As h approaches- 0, f(t'+ h) approaches 4t) so that

y(t + h) - v(t) . ,,2 '

h
approaches n(ftt)) , as h approaches 0.

If h is taken td be negative, the inequality (4) will be g.e'versed but the

°conclusion (5) rem9ins the same. This establishes that, indeed,.,\

v'(t) = n(f(t))2

and completes the proof of (1).

Remark: The same result (2) will hold if f is assumed to be deCreasing

or if it is assumed that the interval can be subdivided into subintervals so

.* that on each subinterval f is always increasing or ways decreasing (see '

the Remark in*Section 7-3 after the proof of the Fun amental Theorem)..!-. The

result can also be Atablished using only the assumption that f is continuous.

Before examining some examples, let us intrpret.the formula (2) in terms

of the concept of average value. Consider a cross-section of the solid of

Figure 9-3d, perpendicular to the x-axis, cutting'the x-axis at (t.#0), such

as the shaded region R of Figure 9-3h.

Figure 9-3h

A cross-section R.
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.

.....1 ,
The region Al is circular and has radius. f(t) so its area is gcfkt))

2
.

W
For each, t, a < t < b, tharea C(t) of ghe cross-section throUgh (t,0)

D

therefore has aree t.

-
0* C(t) = g(f(t))2.

This defines the cross- sectional area'function C,

C:t-) C(t) = g(f(0)2.

The_average value of C on the interval a < t < b is

b

a

11" C(t)dt = g(f(t))
2

dt

a

The voluffie of the solid of-Figre 9-3d is thus

b b ,. ,

, (b - a) x C(t )dt

that is

(6)

= g(f(t))2dt,
a a1

volume = (length) x (average cross - sectional area). .

In other words the cylinder formula

volume = la
2
h = (cross,-sectional area) x (length)

can be extended to give the volume, of a solid of revolution merely by replacing

the cross- sectional. area (which is constant for a cylinder) by the average

Cross-sectional area. This gives a convenient device for reconstructing the

'formula (2).

EScample 9-3g. Find the volume of the solid of revolutiOn obtained by

revolving the regiod bounded by

jy = sin x, x = 0," -x = g, y ='"0
.

` ,about the x -axis.

, To find the cross-sectional area function C, lilt R be a crost-

sectIOn perpendicular to the x -axis through (' ,0). (See Figure 9-3i.) The

region R is a circle with radius. sin t. Thus,.

C t g-)g sin-2 t.

616
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The average value of C on the, interval' 0 < t < n

1
rcr n.

C(t)dt n sin
2

t dt

0' 71 0

o

so tir desired volume is '2"N

(length) X (average cross-sectional area)

ti

X

rg
1

I n sing t dt
TC J

2
sin t dt.

To calculate this integral one can use the tables or recall that

so that

. 2 t _
1 - cos 2t

sin 2

0

sin t dt =
2 n

2
0

(1 - cos 2t)dt

Atth ia our,desired volume.

2(t 2 '

1:

,

n it sin 2t \

2 ,.-

rc

2 '

- ,

Example 9-3b. Find the.volume of the solidtof revolution obtainld by

revolving the region bounded by x = 0, x y 0; y = x2 about

(i) 11,e

(ii) the y-axis.
.1

4

E44-6 47
.



9-3

In each case we shall find the cross - sectional area function and apply (6).

(i) Revolution about the x-axis s.

A cross-section perpendicular to the x-axis at (t,0) has radius

(see Figure 9-3j) and hence, the cross-sectional area function is:

C t ,tt

The desired volume is

'

(length) x,(average cross-sectional area) = 2 x
l

0°

. 0

C(t)dt

Y..:

4 - y = x
2

.

x

note scale

change

= It
2

t14. dt =
32

5

it

0

i
4

' 2
/ y = x

.

4

48.

t2

'
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)

(ii) Revolution about the y-axis-

Revolution of the region about, the y-axis gives the hollowed out cylinder

A;

c

,

Figure 9-3i

.1

\

0

fop' v lew
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9-5

In'thid case we take cross-sections perpendicular to the y-axis through (0,t).

The,crois-section is a circular ring with inner radius it"_ and outer radius

.1. (See Figure 9-3k and 9-32). The area of this cross - section is

A 12 - A(A-)2-= A(i - t)9= C(t).

C..' The average value of the area for 0 < t < 4 is

Hence, the desired volume is

, `b

f

4

C(t)dt . (1 - t)dt

2

)
A

t7 77- 7

(length) x (average cross-sectional area) = 4
n

= 2A.

0
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9-3

- Exercises 9-3 4,-0 e

(Note: It is essential inproblems of this type for your solution to be
0

a c compatitch,,1 -), ye,
'

, 1; Find the volume of the solid generated by revolving about the x-axis

the region blow the graph of each of the following functions and above

the indicated interval.

( a ) f : x -)3x, 0 < x < 2

(b ) f : x Q x < 1

(c) f : x x < f
(d) f x 1,x1,1 <x <2

(
_

(e) f x -(x - 1)2 + i, -1 < x < 2

(f) f : x )176-g7, 1 < x < 5

(g) f : -) 4 _ 0 <'x''<- 3

(h) f °: x -) tan 3c, 0 < x < I

4

2. Use the procedure of this secti.on to find_the volume ofa right circular
v.'

cone of altitude h and base of radius r.

4

3., Obtain thi formula for the volume of a sphere of radius- r by `first

showing ,that the sphere is a solid of revolutiag.

4.. Find thA volumk of theielliPsoid generated by revolving the ellipse
'2 2
x y-7 + 7 = 1 about its manor axis. (Assume a > b.)

_ ..,

a . L

5. Find the volume 'of the Segment of a sphereNzf ius j bounded'by twv-,,,er
parallel planes if the bases of the segment ar at distance a and b

from the cri:..tzifand are on the same side.I
A

6. Find the - volume of the solid obtained by evolving the region bounded

by .the parabola y2 7 , and the line y = x about the' x-axis.

7. A cylindrical hole of radius. 1 inch is drilled out along .a diameter of

a. solid. sphere of radius 4 inches. Find the` volume of the material

cut out.

8. Pind 'the volume of the portion of g sphere 9f radius *r remaining after
v

.

a

cylindrical hole is drilled out along its,diameter if the length oP

the h le is N. Check your answer by cOnsidering some special: cases.,

65d' ) re 0 14.
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9. Find the volume of the solid of revolution obtained by revolving the

region bounded by x = 0, x = 2, y -= 0, y = x2 about

c,

(a) the line y = 4.

11,, ,(b)) -ths4 line y-= -2.

(c) the line x -.1 2.

(d) the line x = 4'.

.

1

s

.s

,

do
,

r.

4

I

O *0

..

/

v ..a.,

651
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. 9=4. Estimation of Definite Integrals

The Fundamental Theorem of Calculus tells us that if f is continuous

then the integral f is F(b) - F(a), if F is raft antfderivative of f.

a

Thus the problem of calculating areas (or average values, izolumes'of-solids of _

,

'revolution, etc.) cabe solved if we can find an aritiderivatike for f. The

problem of finding sL,,::11 an L,ntiderivative.

not be solvable (see Exaiple 9-1.0.' Even

of the antiderivative may be incc.uvenient
.

for estimating the integral I f. With
a

these methods have Lome valuable means

to.area and related problems. such me

section.

in terms of elementary functions may

it the problem is solvable the fO*M

. Various,methpds haysibeen developed

the advent of high -speed computers

for obtaining approximate solutions
o

thods will bf discussed in this

Let us suppose that :f is increasing and continuous.on the interval
. ""b

a <
,

.

and that we see to estimate - f. The region bounded by f will
...-^r

' a

be cohtaineh in the rectangle ABCD and will contain the rectangle ABC'Di
, . .

0

(see Figure 9-4a), so that

("b

area ABC'DT < < f < area ABCf.)

J

,a

= .



9 -it

. The region ABCD has height f(b) and length b - a while the region ABM'

haS height f(a)' and length b = a, so that

If

fl

b

f(a)(b - a) '< f < f(b)(b - s).
a

we take the average of the numbers

a = f(a)(b-- a) and = f(b)(b - a)

we expect that this will give a better approximation to f than either of
s, a

the numbers a and S. ThisJtverage is

This leads,leads, thereaere, to the approximatiqn,

f(a) + f(b) i
2

kb - a).(1)

.

This approximation will, in general, not be very good. It is, however,

exact if f is linear, for if

f x cx + d,

. then

b
f _

a

c(b
2

- a
2

)
+ d(b

- 2

1

a)rca + d + cb + (13

2

f(a) + f(b)
2

The estimate (1) is just the area of the trapezoid ABED of Figure §-4a, that
P

is, thekestimate is the integral of the linear function obt;tinedAy connecting .

.(a;f(a)) to (b,f(b)) with a straight lipe.

Thp ystimate (1) does not, of course, require

,be used for more general functions. To Obtain'

b

integral f we can subdivide the interval

can

the

that f be increasing and

better approximations to

a < x < b into small

subintervals, calculate the average (1) in each of these subintervals and add

these together. Let us find a formula for this lapproximation in the case of

equal subdivisions. Suppose n is a positive integer, and let the points

a2, an_1( divide the interval [a,b] into h equal\sub-intervals

- , b f.
each of length

a
, as shown in Figure 9 -4b..

v,
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924

4 \
a
1

a
2

a
3

an-2 an
-1

a

a

Figure 9 -kb .

Then we have ,
i

;

b
al, a2

a3
. an

.

f = s,... f + f + f + ... + f.

a a4 al
4

.
,.. .Cf a

2 n-1

ai+1

Each of tice integrals

a.

rai+1
f(a.

a

f is then approximated using (1), that

+ f(a. 1)

2
(a

i+1
- a

i
), i = 0,

By adding these estimates We obtain

is

.

, n'-

1

b f(a0) + f(a31) (a2) + f(al)
f.

2
_tai} '+

2
(a2

al) ;1/a.
f(a3) + f(a2) f(s n-1)4 f(a n)

+
2

(a3 a2) + (a
n

- a
n-1

)
2

- '

Since each subinterval <
b a -< has length it follows that

b a
a a °J. =
i+1 i n '

Thus we can factor out
b % a_

and obtain

1

2, n 1.



f 0 -1!----((f(a0) + f(al) + (f(a1) + f(a2))'+ (f(a2) + f( a3)
b - a

a

+ (f(an.1) + f(an)))'

The terms f(a0) and f(ard appear once, while each of the' ms

f(a2), f:(an.f) appears twice, that is:

t

(3)
f

b-a.
-T17-

(f(a0)
2ffal) e2f(a-) +.* 2f(an-1) f

a

f(a )

'

This approximation formula is known as the Trapezoidal Rule. It approxi-

mates the integral by the sum of the areas,of the trapezoids obtained by

connecting (ai,f(ai)) to (a1.4.1,f(ai4.1)) by straight lines, as shown in

Figure 9-4c.

a a
i

a
i+1

Figure

An obvious question is, "How much error is.involved in using

I2n8(f(a0) + 2f(al)

fb
-.t

to approximate f?" It can be that-the error is at most

+ 2f(a2) + + 2f(an_i) + f(an))

Ito
)

a

M(b - a) 3

12n
2

where M is a bound for" the 'Second derivative on the interval, that 'is,'

(x ) I < M, a < x '< b

*
See Calculus, SMSG, p. 831

.4
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2

Example 9-4a. Estimate loge 2 =
1
- dx, correct to one decimal place

1

'be *using the Trapezoidal Rule.

First divide the interval 1 < x < 2 into two equal parts by setting

a 1 a -3 2.
0 1

-
2

The formula (3,) gives (with t : x -P-1 ,n = 2):
- ; x

-
loge 2

t

t

2
1 °- 2 1 17

1

dx z zff2) [1 + 2(-) + --) =77.
x 3 2

,..

1
The first derivative of f is f ' : x -P -

2
so the second derivative is

x

2
f": x -P . This function is 'decreasing' on the interval 1 < x < 2 'so its

x3
maximum on the interval is: = 2. Using (l) -with b = 2, a = 1, n = 2

and M = 2 the maximum error in the es 'cimate loge 2 PP
24

is
ti

_M(b - a)3 2 - 13 1

-27
12 n

In other words,

16 t< log
e
2 <

24. 24

18
.

-16 18
Since -,- > 0.66 and --r- = 0.75, this tells us that

24 24

0.66 -< log
e

2 <0.75.

'kr

1,, -.

Rounded off to one decimal place loge 2 tould therefore, be either 0.7 or

0.8 so we need to choose n larger to ob.tain assurance as to the first

decimal place iii. loge 2.,

AO" c . ,
Let us try *--= 3, which gives the points

4 51, a1 = - a2 = - a 2
0 ' 1 3 2 3,

and the estimate

- 1 + 3) + 1loge 2 =

2

x
- dx

2
+2() 2(5--- 7 )

e X40
1

,> '21
30
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9-4
4fr

The maximum error is obtained from. (4), with b = 2, al= 1, n = 3 and

M = 2:

_so that

M(b - 4)3 2 13 1

12n2
12 9

21
..

1 21
-I,

.1"7 < loge 2 < 35 .

21 1 184 21 1 194-Since 7 - 54. = > 0.68 and + __ . m < 0.72 we have
. r

0.68 <loge 2 < 0.72

that is, correct to one decimal place, loge 2 = 0.7.

'''1,-

Sitni:Isonts Rule

Consider the Trape oidal Rule in the case when n = 2:

b

f Al b- [f(a) 1. 211241) f(b)).
a

.

Divide through by b - a and write with denominator 3:

(5) 1

b - a f
a

f

3 f(a) f(a 423) f(b)
. 3

This relation expresses the average value of f over the interval

a < x < b as a.14'S'ighted average of the values of f at the endpoints and
3 6 3

7midpoint of the interval, the weights bein 7g , 7, . This approximation is

b+ +" bexact if f is linear on the intervals [a,
a7 -) and [a7---, b], but it

c

is not necessarily exact fo r non-linear functions. This raises the possibility/
that .ppme other choice,of weights might give a better estimate of the average

value of 47. In other words., we may be able tow choose a1, a2, and' a3:to
othat

. -

and

a1 a2 + a3 = 3
1 3

a1f(a) + a2f(-14-D) + a3f(b)

is a better approximation to the average value of f on the interval than is

(5).

657
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9-4'

a

.,at us 'see if we can choose weights a
l'

a
2'

a3 so that a
1

+ a2 + a3
-

3

and the approximation

(6)
, 1

.b a
1
110 + a2 f( 4. b) +-a

3
f(b)

= .

b = s
f

, / 3

,.
is exact if f

'is,
a quadrdtic function, say N

--,

In this case

f : x cx
2

+ dx + e.

b

a

f
3 2

+ ---+ excx
3

dx
2

1 a .

7=.

3
c(b3 - a3) + 1(b2_ o2 e(b - a) I

2

= (b-a)(3(b2+ab+a2) + 2(b+a)+e3

1240[ (ca2 e)+4(c(a--.}--.b ;2 4,d(ab,+p,
) ) + (cb2,,+ db + e.4_,_

2 '

' . .
to.

b - at 4±(a +2 b)

Thus, when f is a quadratic:

1

..1.. . __a + b. 1 ...., . l

b . fka). + 'erk-7) -ff IA n)

f- ., -.,

b --. a 3

1 1
In other words, the choice of weighfs a, = 77, a, = 2, a3 = .f will make °

1

the approximation (6) exact for quadratic functions. The resulting approxi- ° .

niatpon'

b - _,
b)

,
(7) r 4r(

a + b
+ fkon

a

is known as-Simpson's"Rule.

The approximation can be improved by subdividing the interval 'a .X <-15-

e ,

into smallsubintervals, calculating the weighted average (7) in each sub-

interval and adding these together , To obtain the general formula in the case %.

of equalisubintervals, suppose n is a positive integer. Let the points a, 0
a
2'

/
'

a
2n

be the endpoints of n equal subintervalS of (a°b1, each .

-
°

of length
b a

, and let the points a3, :a2n-1
be the reS-

1)ective midpoints. (See Figure 9-4d.) °
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a

We have:

Each of the integrals

14 6

9-4

8 2n-4

a7

"Figure y{-4d

n-

M. 2n-1

b
a
2 aL 2n

f = f +

a a
0

a
2n-2a2

a
2i+2

.a21

n

f.

f is then approximated using (7 ),

a
21+2

a
2i.

b - af a 7ri(f(a21) 4f(a2i+1), + f(a2i+2)), i 0, 1, 2,

Add these together for i = 0, 1; 2, ., n - 1 and factor out,

n -1:'

b - a
EFT

f a 11,-.61[(f(a0)-+ 4f(ai) + f(a2)) + (f(a2).+14-f(a3) + f(a4))

Maid 4f(a5) f(a6)) '" (f(a2n-2)

+ 4f(a2n_1) + f(a2n))]

Which can be regrouped to give

(8)

O

b a Mao) 4f(a1) + 2f(a2) + 4f(a3) +2f(alft!

-.. 2f(a2n_2) 4f(a2n_l)' f(a2n)]
,

NOte that the'coefficients of f(a0) and f(a2n) are each-- 1, the coeff,i,

cients of the remaining endpoint values f(a2), f(a24), f(a2n 2) are

each 2 and the coefficients of the midpoint values f(ai), f(a3),
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(2n
the e

(9)

7.,

-1

-1are each 4. The number

stiMate. The,formula- (8) is the general
-,

It can be shown

--

where hf...#1s

is 7.(x5.1

a)3

12n2

smaller than

-

that thaverror in using

the number of points used in

form of Simpson's Rule.

Simpson's Rule is at most

a bound for the fourth derivative f(4)

< Mi, a < x < Comparing this

see that
*d'
if n

1

.2

on the interval, that

with the trapezoidal error (4):,

is
1

enough the factor 7.4. in (9) is much

in (4) dndherice,:the approximation using Simpson's Rule

will usually be better than the approximation using the Trapezoidal Rule.

Example 9-4b. se SiMPson's Rule with n = 1 and' n . 2 to estimate

. "loge 2 =

: With It.=, 1, we have

ab = 1,

a (7) (which is (8) when

-log
e

?

The derivatives Of

9

V

f : x

n = 1) gives

I1 7 -7-74

2 --
1° 2 1 -

b.
1.25.

3
25

s

-. are
x

"
1
2 '

4)
: x -' -6 ,f

(

4
X

See Calcul,ts, SMSG, pp. 833-4.
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. ,

.The function f(4
) is decreasing on the interval. 1 < x < 2 so its maximum

,

(
is f 4 -)(1) = 24. Now use the error estimate (9) with b =.2, a = 1, n 1 1,

MI1 = 24 to obtain the maximum error . ' 1

Thus, we know that

Calculation gives:

so that

24(2 - 1)5 1

180 24 120

.25' 1
loge 25

120 jb 120

25 1 496
0.688

120

25 1 506

76, < 0.703120 720

0.688 < loge 2 < 0.703

so that,' correct to One decimal-place loge 2 = 0.7.

Noticte that by using the values of f at 3 points and Simpson's Rule

we obtained one decimal place accuracy, while the Trapezoidal Rule would not

guarantee this for 3 points (see Example 9-4a).

The case n = 2 will substantially improve the accuracy, for the errn.....,

estimate (9) (with b = 2, a = 1, n =.2, Mi = 24) gives

.

In this case

and Simpson's -Rule (8) gives

24(2 - 1

18o (4)4 1929

a '
0
- 1

.

3
a2 =22

_

.

a4 =2

a1 =
5

7
a3 - 7

fj2
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9-4

so that

11*

)1 i

6 ' 2
1 4 4 2 4

.4

log 2' = 1 tx = 2'7 [1 + 4(,) + ,2()'. +4]
e ..1,x 6 X 2 5' ----3- , 7

3/1747 1747 ' .40 .
. ,.

IP 210 / 2520
.

.

1747 1 1747 1
< log 2 < +

2520 1920 e 2520 1920

Let us use the estimates
O

from which we obtain

C

1
< .0006

1920

.17470.6932 «
2520

0.6933

if

0.6926 <. loge 2 < 0.6939.

Thus, correct to two decimal places loge 2 = 0.69. To obtain the same.

accuracy with the Trapezoidal Rule we need to use the value of f at 14

points of the interval!

c4-
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Exercises 9-4

4. 1f e

1.; Estimate .7, 1 dt using the Trapezoidal Rule with
,,. 041 + t

2

-

'(a) h = 2 (4.s., three p6ints)

(b)

Estimate
., .

the error in
1

`known value of
1

0 1 += t
2

dt.

each case. Also-, compare your result with the

2

2. Estimate e

72
dx using tables for e

-x
and the'Trapezoidai Rule

0

with n = 2' and n = 4. Estimate the error in each case.,

1

1

3? Estimate
1

dt using Simpson's Rule with

0 1 t

(a) n = 1 three points)

(b) n = 3
. .

Estimate the error in each case and compare with the known value of the

integral.

9-4

2 2

4. Estimate e
-x

dx using Simpson's Rule with n = I (three points)

and n = 2 (five points). Estimate the error in each case.

5. Show that Simpson's Rule is exact for cubics, that is

b

f
b -

1
---6

a
--(f(a) + 4f(ap)) + f(b)q

'\ if f : x
'-)Ax 3 + Bx

2
+ Ox + D. (Hint: It is enough to establish this

for the case B = e,= D- = 0 since it is known to b true for quadratics-)

6,
II

Suppose f is a convex function. Till the OPrapezoidallTae give too
---

large or too small an satimate-foi.- f?
_._.r;_______..

a

of
- .

' --7. --The letter n appears in (3) and (8). How is each use n related, to
.

the number of points psed in the estimate?

... , . :

8. How large should n be taken in Simpsobs.Rule to give

accurately to five decimal places?

b

663

264'

1
1

dt
0 1.+ t



9 -4

9. Use either Simpson's Rule or the Trapezoidal Rule to estimate' loge 3,

correct to four decimal places. Use the Reciprocals Table to aid in

computation.

r 664
c) 4.4;
v

7



9-5

sip.- 9-5. Taylor Approximations

In (6) of Section 7-5 we noted that

(1) 'I-1410dt < g(t)dt if f(t) < g(,O, a < t< b._
a a

1

, This inequality cpn be used to obtain the Taylor approximations for a given

function with remainder estimates.
.

We first illustrate.this process for the exponential function x -)e
x

on the interval [0,M], ,that is, for 0 < x < M. On this interval

1 < ex .

j In (1) we take f(t) = 1 and g(t) = et with wit = 0 and b = x. (She

Figure 9-5a.)

Then

Figure 9-5a

1 dt <
c

Carrying out the integrations, we obtain

1
665

e
tdt:



9-5

R

or

x.< e
x

- 1

1 x < e
x

.

Now we apply (1) to these resulting functions, again with a = 0 and

b = x,. and we obtain

(See Figure 9-5b.)

4

Thus

and

,o
(1'4, t)dt <

7 0

et dt.

Figure 97513 /

2

x ex - 1,
2".3"

'2

1 x
2

< e
x

.

Repeating this proces we obtain successively

ti

x
2

X3
x

1 x + e

2 3 ric.,

x x < ex
+,2! 3! 41-- '

4

666

207
I



xn
.+ < ex.

. 2! 3. n! -

All of those approximations to ex too small. To obtain upper

approximations, we use the fact that for 0 < x < M,

ex eM

(recall that f x -)ex is an increasing fun tion).

We use (1) with f(t) = et, g(t) = eM, and as before, a = 0, b = x.

(See Figure 9-5c.)

We have

Figure 9-5c

e
t

dt <
x

e
M

dt, ) -

0 0

that

Or

e
x

- 1 < eM x

e
x

< 1 + eM .x.

667

2G8



!, ;,
1.

With iitlt) = et and g(t) = 1 + . em t, (7.) ,gives (see Figure 9-5.)
*.;:" /

fti or

thEit is

Figure 9-5d

0 =10
et dt < (1 + eM t)dt

M
x2 44°-ex-1<x+e 7-,

x: M x2
,e + x + e

If we continue in this fashion we have

2 n M .n+1

(3) ex <-1, + x
x e xfr' - n1 (n + 1):

From (2) and (3;)

x2 xn
e. = 1 + x + --r + . . . + --r + Rn (x)

2. n.

668

2 69

O



0 <Al
n
(x) <

9=5

%'e ised this result in SecScion to estimate values of e
x

where we

chose the interval .10,1) so that M = 1

R (x) <
n (n + 1)!

e xn+1

The procedure used with f : x
x

can be applied to other functions.

The essential idea is to start with information about the derivatives of the

function on an interval, [0,M), say. In the case of f x -4e
x

, all

derivatives f', f", ..., are the same As f itself, so that to say,,

for example, that

(4) a < f(x) <13 on 10,M)

is the same as to say that

(5) a < f
(n)

(x) < 0 on [0,M).

The gene5alization that .1.4e require is not (4) but (5).

To illustrate the general procedure let us take n = 4. We begin, there-

fore, with

,

a < f
(4)

(x) < 0 on [0,M).

ye work first with the left inequality

and integrate from 0

a < f
(4)

(x)

to x, (0 < x < M). Then

I- x

a dt < rx f(4)(t)dt
0 J 0

and ax < frn(x) - fol(0).

Hence, « fm(?\;..co..7< ful(x).
. ,

Integrate agdln from 0 to x

ko,obtain

(f4*(0) + at)dt < I fm(t)dt
0 0

669
2



. 9 -5

+,

z and

2

f'n (0)x + < f"(x) - f"(0).

e
0 f"(0}-+ fn1(0)x + < f"(x).

a

Continuing

ii4sand finally,

2 3

If'(0)' + f"(0)x + f"(0)
2! +34_<fqx),. -

f(0) + ft,(0)x + fiTc + fn. + ax4 < f(x).(6)
2

If we work With

'4 in the same way we pbtain

(7)

, %

f
(4)kx)

< p

3 .,42

f(x) < f(0) +.±"(0)x +
x

+ Vet (0) .

Hence, from (6) and (7)
P

3
(8) f(x) f(0) + fT(0)x +'... + fin10).)3-iT + R3(x)

L.:
It ere-

ax
4

ax
4

,< R3(x) < IT

The bolynomial

4

p3(x) = f(0) + fT(0)x + f"2!"2

+ fnl3(0)3

is the Taylor approximation to f of degree not exceeding three as it satis-

fies

p3(9).= f(0), pt
3

(0) = f'(0), p"(0) = f"(0), and p7(0) = fin (0).
3

The 'inequalities (1(61 and (7) can then be written as

4 4

< f(x) - p
4
(x) < for 0 < x < M.

In general, if

A- v

f(n+1)(x)
la 0 < x <,M

670 ,

2 7 1

;



9-5

k (9) pn(x) = f(0) f,(0) f"( 0)x2
f(n)(

x
0, n:

2!
ne

then pn is the nth Taylor approximant to f and

axn +1
Ox

n+ 1

(10)
TR- +

< f(x) - p
n
(x) <

(n +1)!
; 0 < x < M.

7 7 1- - . - -

For nonpositive x analogous results can be obtained. For example, if

Ifn+le
(x) < K for 0 < M

and p
n

is the Taylor approximation (14) then

(U)
in+1r

If(x) - pn(x)I < K for 0 < Ix' < M.

Of course, all these results assume that f
(n+1)

satisfies the conditions of "

the Fundamental Theorem of Calcu/t's.(see Section 7-3).

,
Let us look at another example.

Example 9-5a. Find the third degree TayloXPprokimatipn to

f : x -,11-71 and an error estimate for 0 < x < 1._

Writing f(x) = (1 + x)1/2 and using the power rule (D1.1a = ca.P-1Du)

with p = 1 + x we o in the successive derivatives:

fqx) = 2(1 + x)-
1/2

= - + xY3`
0

f"' (x) + x)-52

x(4)(x) = - 14(1 + x)-7/2

In particular

f(0) = 1, f'(0).= f"(0) =- , f":(0),.

so the third Taylor approxi nt to f : x -4(1
)01/2

(12)
1 1 2 x3

p
3
(x) = 1 + x - + .

1 1 _3.1+ 1 2 + Tux.

671

72,



Abcording to (10) the error in p
3(x)

is determined by .

f
(0 (x) = - TE(1. + x)-7/2.'

1`
Since f is decreasing- on the interval 0 < x <

(4), (4) (4),
f > f (x) > f k0j.

t

Substituting we calculate
i C.,

'
0.- "'

1111

f
(4)

(1)-= .,.(1 + 1)-7/2
-15iff °. 15 . a

10 '
( 107/2 = .. .,;.

SO 14 < f(4)(X) < jg , 0 < X < 1.
0 ,

We oonclude from (10) that

and

(13)
x- 7 Tr < (1 + x) / _ /30 151 x41 2

< , 0 <`x < 1.
.00.0.

In particular, if x = 0.2

p3(0.2) = 1 + 1(o
2

- '1.0955,

which indicates that IT..2 Is approximately 1.0955; The error in this

go*

2)
U 4 0

approximation may be found by substituting x = 0.2 in/ (13):

I
15 ko.2)

4

-.00006 < - p(0.2) < -.000011

151.2" (0.2)4- 7. < 117g - p(0.2) <-

3t '
which works out to be

from which we conclude that

1.09544 < 11-.7 < 1.09549,

4

or PS 1.0954, correct to 4 decimal-place's.

The Logarithm and Arcteingent 1-Unctions

The above methods can,,be applied to give the Taylor approximations to

x loge (1 )C and x -is arctan x

with remainder estimatet. These results can be obtained in sharper form by

noting that

, 672 2 'I 3
r/..



o P Ft.#'
i. .

AI .
,.. .7=) ..

,.

e ; 0 : : a.
...q 0

S
0

1
44) : 0 P

1120. loge (1 + ) = 4 (17. dt, x > ;-1

1 ' J .0 ,2, 3
C I ,of ck

o
ci

and. '0'
53?

A ,, F A: i i .

. ..
ol. s a

x 1
(15).

,

° arctan x.= --n- dt
, 0 1 + t`

r-4.
and. Sinding suitable expressions 'for

1
and

1

1 + t
1 + t,

2
-

for the sun of a geometric prOgressiop,

1 '+ x + x2 +x3 + .°

n

.. + xn-1
1 4. 1 xn '

'1 -x ,1 -x 1 -x

1.te" obtain .., ..

t IP n
x1 2 3 n-1

+(16) , -1+xtx +x + .., + x
1 x - 1 - x

Ot

If
. 1 + t
x = -t, (16) becomes the desired expansion of ;

r

a

. 4
'I,

Q.; .,,

4'
1

9-5 . a

'.'r f
4 o A

From the fgrmula

(17) = 1 - t
t2 t3 (_1)n-lt n-1 (_1)n tn

If' x = -t
2,

(16)7'pecomes the desired expansion of
2 ;

1 + t

(18) 1 t2 tli- t6 (_1)n-lt2n-2,+ (...1.)n -t_72n

1 1 + t

Using (17), we obtain for x > -1.,. .. -
. .,

loge (1 + x )

..C. ..6

x
' (1 - t + t

2
- t

3
+... + k-1) t )dt + k-1) -i dt

0

t ,n-1 n-1,

k

, ,n
n

1 + t
0

t .

2- t 3 t4 n , x tn
= t - 2- 4.

-T, -7
t

+ ... +
n-1 77 + -1)n. C 1 -+ t dt

o J ' lo

x
2

x
3

x
4 n

= x - Nn-.L. x

7 4. 7 -4- + .. : +

A 0
1 7 \ 1 4- t (It.

ti

(18) we similarly obtain

673
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arctan );/=

7
I

!

t
0

x

(1

.

- t + t -'t
2 4 6 (..1)n-lt2n-2)at

t2n
dt

P 1 + te"

X3 X5 7 2n

=x ---+ _ +
2n-

We conclude tha t

(19 )

where

(20)

and

loge(1 + x)

-1)

x
t
2

d

.

x - x3 x4
+ _ -4-- +,

(:_i)n-1

n
n

,R
n

=(-:1)n
to

1 + t
dt,

3 x5 2n
1 x

+ . + 2+ Rnarctan x = x - +
5 n3 7

t2n

(22) Rn = (-1)
Ix

dt.

0_ t

and

then

In Section 6 -9 it was shown thatif

f : x 1.0 g ( 1 + )

2

x - + ( -

-n 2

pn(0), p(0) = pn(0), f"(0) = p;!,(0), f(n)(0 =

so that s nth degree:Ta lor approximant to

(23)giv an explicit f a for he error R
n

invo

approxi ,f(-X ) . rap can be easily es

For example, if 0 < x < 1, and we put

then

g : t >
to

1 '

f. Hence, (19) a,nd

ved in using pn(x) to

imated frgm (20).

I

-
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< .tn if 0 < t <

(,since 1 + t > 1 if t > 0) so that

tn+1
xn+1

t dt, n+l
0
- n+1

and- hence, _-

x +

(23) IRni = dt = g <
n

'

0 0
-
.

Therefore, the errorin using p
n
(x) to approximate log

e
(1 + x), for -

x

+ 1

n+ 1

n
0 < x < 1 is. at most .V This will be small if n is large.- _

--

Other intervals for x are considered in the exercises. In partfcular,

it will be shown that-if x > 1, then .R
n

will not approach -0 as n

becomes large, but in fact : ,

lim R = co if >-1.
n

n co

- .

Hence, for x > 1, the approximations p
n
(x)

f
differ substantially from

log
e
(1 + x) when n is large.

o

'the methods are easily adapted to show that (21) and (22) give the Taylor

approximations to the arctangen,Stand anexplicit formula for the error.

&ample 9-5b. Use inin (19) to' estimate loge -2.

Formula (19) gives6

wheie

Usin (23) we have

Thus, the estimate

- log
e

2 = 1 - + - + +

1 t5

R5 = - dt.

loge 1 51 I 1 ."
4- .= 0.783

O

675
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1 .
is within ;. of being correct. This is not very good, in fact, if we 1A,sh

to use (19) tp estimate loge,2 we must choose, n very large to obtain much

accuracy.. Clearly, Simpson's Rule is a much more useful methoeforapProxi-

mating values of loge..

,72
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Exercises 9-5

1. Start with the inequality -1 < cos x < 1, and by repeated integration

from 0 to x, x >,0 obtain

(a) -x <'sin x < x

(b)

2

2(b) , yx < 1 cos x < y
x3 y3

(c) - < x - sin x <
3! - 3!

' 4 2 4
(d) -Vos x -

2:'
IT(1 --L.\ < x

x5 x3 x5
(e) - < sin x - (x - 7T) <

2. Establish the inequalities of Number 1 for x < 0. (Hint: Rather than

repeat the integrations use the odd and even function ideas.)

f
3. Find the third degree Taylor approximation to x VT-Ti and an error

0. 4.

estimate for 0 < x.< 1. a
VI) Estimate the error in the third degree estimate for x -4.1177-7;:

in the interval -1 < x < 0.

(b) Do the same for the interval -.5 < x < 0.

rak

1
5. Consider the function f : x

-51 + x

(a) Show that the formula (17) gives the Taylor approximation to f.

[Z.e.,_ p
n-1

(x) =1 - x + x2 ... (-1)11-lxn-17?. is the (n -
ost

.Taylor approximation of f.] Y

(b) Assume that the error IR
n-2)

<
11 +

I

xl
Find a statement for

1

(c)

If x = 10 what iecthe error using D (10) to approximate --

I '

. -5 ir ?
1

,a) How' does
1 + x

D
n-1

---- differ froth (X) if\ x > 1 land IT is large?,
.

,
. . .

6. Find the Pn-ltx Y 'Taylor approximation,with an explicit remainder

formula for f : x 7)-
2
---

x
[ Hin

2. + x 2_
Hint ---- 1

x
] . For what values

-or.
+

. .,

of x will the remainder approach 0 as n ) co?

7. Da Number 6 for the function f. : x -41oge(2

677,
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) 8." Re 4111 that

. tan a t tan (3
Aan 1 - tan b tan

(a) Show that

1 1n

)7

= arctan 2 + arctan
3

.

*. .

(b) Find n, correct to two decimal places by using ) and formulas 0.p.

(21) ar (22). How many terms do you need to use

(11. (a) SO t. at ...

40
.

Tt 1 .411, 1.
7 . 4 arctan m- - arctan

,
S

(b) Use (a) to find It correct to two decimal places. How many.terms

do you need to use?

Using. this method_ n_ has been claculated on high spded computers to

more than 100,000 decimal places.

(a) Show thal/;., ,e1

loge 2 = -7
9 81

log + 2 log + 3 log
e 10 e 25

24.

e 00

(b) How many terms o the Taylor approximatiolito loge(1 + do you

need to 'use (a) o calculate loge 2 correct to 5 decimal

place6?

Find the Taylor approXrMants to

X -4 loge

with remainder estimate for 1x 1 < 1.

I

279



Appendix 2

MATHEMATICAL INDUCTION

A3-1. The Principle of Mather.atice." iuction

The ability to form general hypotheses 'n the light of a li,nited numbpr

of facts is one of the most important signs c6f creativeness in a mathematician.

Equally imoortant is the ability to prove these guesses. The best way to show

how to guess at ajgeneral principle fro,-.71irlited observations is to'gil.-e

examples.

Example (n>.c:er 2UTM.E e l_tegers:

=

3 5 -'-9 =
1'

Notice theft, in each case the sut.1 is the .s.1.,,az'e'of tne nunher of

Conjecture: The s= of'the first n odd positive integers is n
2

.(This is true. Car, you show it?)
, -

.Eample A3-lb. Consider the folimiing inequalities:

' . 1 <t00, 2 < 100, 3 <l00-, 4 < 100, 5 < 100, etc.

Conjecture: All positive integers are less tnan 100. (False, of

course.)

! Example A3-lc. Consider the numbel:7 of complex zeros, inciuding tne

repetitions, for Polynomials Of various degrees.

679
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A3-1

. .

Zero'degree: a
0,

no zeros (a
0

/ 0).

/ -a
0

.:.

First degree: a x + a -5" odczero at x = -- .
1 0 r a

1

Second degree: a
2
x
2

+ a1 'x + a0. two zero at

0
if.-

-a 4' 4? 4
1 1 8'6112

x - .

2a
? di

4-

Conjeciure: Every polynomial of degree -n has exactly n complex

zeros when repetitions are counted. (True.)

Example A3-1d. Otserve the operations necessary to compute the roots

from the coeff:., Exarlole

Conjecture: The zero of a polynomial of degree n can be given in..

terms of the it.fficients.ty a formula which involves only additick subtrac- '

tion, Multiplication, division, and the: extraction of roots, (False.)

Example A3 -le. Take any even number except 2' and try to express

the sum of as few primes As possible:

. C
. 2 - 2, 6 = 3 + 3, 8 = + 5, 10 = 5 + 5,

12 5 + = 7 + 7,. etc.

Conjecture: Every even number but 2 -can be expressed as the sum,of

two pries. (As yet, no one has been able to prove or disprove this conjec-

ture.)

Canmon to all these examples is the fact that we are trying to assert'

something about the members of a sequence of things: the sequence of odd

integers, the_seq,ence of positive integers, the sequence of.degrees of poly-
.

nomials, the sequence of even numbers greater than 2%%,Thesequential/atar-

acter of the problems natura.1y leads to thei ea of sequential proof. I.P.We

know something-is true fo the first .few members of t e sequenc, can we u e

that result to Prove its truth for the next member of the sequence? Havi

done that, can we now carry the proof on to one more ember? Can we repe

the, process inlpfinitely?
.;

0

Let us t y the idea of sequential proof on E ample A3-1a. Suppose we know

that for the,first k odd intoegers 1, 3, 5r ,..; 2k - 1, , IL

+ 3 it 5 + + (2k ::1) = k2,(1)

'4,

r
680
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A3-1

can we prove,that upon adding the next higher odd number (2k 4- 1) we obtain

the 'next higher square? From (1) we have at on by adding 2k + 1 on both

,

(1
,

+ 3 + 5 + + (2k - 1))),+ (2k\ 1) k
2
+ (2k + 1) (k +

, .

It is clear that if the conjecture bf Example A3-la is true at any stage then it

is true at the next stage. Since it is true, for the first stage, it must be

true for the second stage, therefore true for
\

the third stage, hence the -

fourth, the 4fth and so on forever.

p %, Example A3-1f. In many good toy shops there is a puzzle which consist,, of

three pegs end a se, of graduated discs as depict .1 in Figure A:-1a. The problem

posed is to transfer the pile of discs from one pe to ano-the under the

following rules:
. .

1.. Only one disc at a time may be transferr4from one p g to ano4her.

2. No disc may ever be placed over a smAr.ler dr.ksc.

Figure A3 -1a

Two questions prise njtUltally; Is it possible tip execute th task unc]er

t e l restricti ns? If it is possi le how many moves'does i take to

complete lhe trarisfer of the discs? If it were not for the idea o seqAentiaL-

proof, one might

1

have di
)1

ficulty in attacking these qu4tions. .L\.
As it is, we obse e tliat there is no problem in transferring one di,sc.,

\-.
i.

If we have to transfer two discs, we transfer one; leaving peg free for
.

.

:the second disci we then transfer the second, disc and cover with he first.
_._ 1

I F

,.......

Is

I



A 3-1

If we have to transfer three discs, we transfer the top two, as above.

Tbis leaves a peg for the third disc to whiOh it is the, molted, and the first

to discs are then transferred to cover the third disc.
a

The pattern has now emerged. If we know how to'transfer. k discs, we

can transfer k + 1 in the following way. Firsts we transfer k discs

leaving the (k + 1)-th disc free to move to a new peg; we-move the (k + 1)-th

disc and then transfer the k discs again to cover it. We see then that it

is possible,to move any- number of graduated.discs from one peg tg,another with-

out violating the rules.(1) and (2), since knowing how tomove one disc,

have a.rule which tells us hol, to transfer two, and then how to transfer, three,

and so on. A

To determine the smallest number of moves it takes to transfer a pile-of
. -

discs, we o'fterve that no disc can be moved unless all the discs above it have .

been transferreA leavinga free .peg to which to move it. Let us designate by 1/4

mk the minimum number of moves needed to transfer °k, discs. To move the .
..':

(k + 1)-th disc, we first need mk moves to t

er

sfer the,discs above it to
I

anoth peg. After that we can
;

transfer the + 1)-th dtscr,to the free peg.

To move the (k + 2)-th disc (or.to conclude the game if the (k,+ 1)-th disc

is last) we%must now cover the (k + 1)-th disc with,the'pAceding k discs;

. ,

this transfer of the k discs cannot be accomplished ,in less than mk moves.

We see then that the minimum number of moves for k + 1 discs is r

nik+.1 2111k + *1 .

Thins is a recursive expression for the minimum number of moves,rthIltis,

if the minimum is known for a certain number of'discs, we can calculate the

minimum for one more dipc. In this wa.4, we have defined the minimum number of

sequential moves: by adding one dia we-increase the necessary number of moves

to one more than twice the preceding number. It'takes one move to Tye* one

disc, therefore itytakes three moves to move two discs, and=swtn.

Let us make a littletable (Table A311a)..



Table A3-la

k 1 2 3 4 5 6' 1

mks 1 3 7 15 31 i,3' 127

r-

k = number of discs

mk = minimUm number of moves

A3-1

Upon adding a disc we yooug.hly double the number of moves. This leads us,

to compare tha number of* moves with the powers of two: 1, 2, 4, S, 16,

32, 64, 128, ...; and we guess that 1/11; = 2
k

- 1. If this is true for

some valA k, we can, easily see that it must 1)e trE, for th, next, for we

have t '

m
k+1

ank +

= 22k - 1) - 1

k+1
= 2 - 2 +

k
= 2

+1
- 1,

and this is the value of 2n - 1, for n = k + 1. 161know that the formula

for mk it valid when k = 1, but now we can prove in se4uence that it is

true for 2, 3, 4, and so on.

According to persistent rdMr, t4re is a puzzle of this kind in a most

holy monastery hidden deep,in the Himalayas. The puzzle consists of 64
. -

discs of pure beatign gold and the pegs are diamond needles. The story relates

that the game.of transferring the discs has been played night'and day by the

monks since the beginning of the world, and had yet to be concluded. It

gas been said that when 'the 64 discs are completely transferred, the4w id

will come't,o an end. The physicists say the earth is about four billion ears.

old, give or take a billion or two. Assuming that the monks move one disc.

very second and play in the minimum number, t moves, is there anyecause for

anic? (Cf. Pall, W. W., Mathematical Recre tions. New York:' Macmillan Co.;

947; P. 303 ff.)
1

The.principle of sequehtial_proof, stated explicitly, is this (First

Principle of Mathematical Induction): Let 'A A
2'

-A
3

, ... ',
'

be a sequence

of assertions, and let H be the hypothesis'that all of thede are true. The

hypothesis H will be accepted as proved if 0

-7-

1. There fs aveneral proof-to show that if any assert171'Ak is true,

then the next assertion A
k+1

true;.rue;

A I,



2, There is a-special proof to show that *.S is true.

,

If there are only a finite number of assertions n-thesequence, say ten,

then we need only carry-mit the chain of ten proofs expl itly to have a com-

plete proof. If the assertions continue in sequence endlessly, as in Example

:1, then we cannot possibly verify directly every link in the chain of proof.

It is.gust for this reason--in effect that we can handle an infinite chain of

proof without specifically examining every link--that the concept of sequential

,pro1)f:becomes so valuable It is, in fact, at the heart of the logical deyel-

opmeq of. mathematics. 4104

Through an unfortunate association of concepts this method of sequential

firk

proof has been named7Mathematical induction."' Induction, in its common
. . 1

English sense, is the guessing of general' propositions from a, number of
...

observed facts. This is the way one arrives at assertions to prove. "Mathe-

matical induction" is actually a method of deductiop or proof and not a proce-
1.

dure,of guessing, although to use it'ile-ordinarily must 'have some guess to

test. Thrs usage has been in the language for a long time, and we would:gain

'Inothing by changing it now. It us'keep it then, and remember that mathemati-

cal usage is special and often does not resemble in any respedt the usage of

common English.

A3...1a., above, the assertion An' is

+ 3 + 5 + (211 - 1) n
2

.

.
We--provedZ i-rstrthat if__Ak is true (G} at if the-eUm

odd tubers is k2) then Al isrtrde, -so that the sum of the first 1;+

ruodd numbers is (k + 1)2. Second, We'obsei'Ved that:di is true: 'I = 12.`

These two steps complete the_proof. ,,,--°
f . .'

:";.... `4116

...
Vathematical w,inductiois a method of proving a hypothesis about a list

:

or sequence of aspertions. -Unfortunately it ddesii't ..ell' us how to make the

,
of the fiTst k

1 -
4

hypothesis inthe.first place. In the example just considered, it was easy to
,, -$1...,

guest from a few specific instances that Ahe Sum of the figt xi- pdd numblrs

' is n
2

, but the next problem (Example Af,;1g- Luay not be Sofoblriods.

.

---(
,

1

4.:

EXamplL A3 -lg. Consider the maimfok t1 1'S es of the first .,.n positive

%.4 , . 1

.- . . 1. , 0

integers,
,:.1.e i..
M';, Ai

.
. _

1
2
+ 2

2
+ 32 + .s..,0'''

. ,, -% ------
:..,, A.:

...> .

. tk..
We find that when n = 1, the

.

sum is 1; whent n144:2,- the sum is .55L when
.

!..t:
, .

684
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.

_

n = 3, the sum is 14; ''and so on. .Let us make a table of the first few

values (Table A-1b).

Table A3 1b

n 1 2 3 4 5 6 1 7 8

sum 1 5- 14 30 55 91 140 204

Though somb mathematicians might be immediately able to see a forAa

. that will give us the sum, must of us would have to admit that the situation

is obscure. Wt must look around for some trick to help us discover the pat-
.

tern which is surely there; what we do will therefore be a personal, individ-

ual matter. It i a astake to-think that only one approach is possible.

Sometimes exferience is aiiseful guide. Do we,know the solutions to any

similar problems? Well, we have here the sum of a sequence, and Example A3a

also dealt with the sum'of a sequence: the sum of the first n odd numbers

is n
2

. Consider the sum of the first n integers themselves (not their \1

squares)--what is

1 + 2 + 3 + + n?

This seems to be a related problem,.and we can solve it witll ease. The terms

5 - form,an arithmetic progression in which the first term is 1 and,the common

difference isalso 1; t' he sum, by the usual formula, is therefore

2 + 1) F
1

n
2.
+

1
n.-

' So we have N

Ji

1 +.3

1 + 2

+ 5+ ...

/

+ 3 +

+ (2n.- 1)

1 2= 2n

= n2

1
+ n;

4

t

Is there any Nit-tern here which' might kp with our present problem? ..

These two formulas have one common feature:- both are quadratic poly-

ill

noMials in n. Might not the formula we want here also be. a polynomial? It

. .

seems unlikely that a quadratic polynomial could do the'iob in this more

complicated.iiroblem, but how about one of higher degree? Let's try a cubic: 110
....

.., :assume that there is'a formula, ..

.., 4
*

1
2
+ 2

2
+ ... + n

2
= an3 + bn

2
,,-4- cn + d,

---....4N

.s:
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where a, b, c, aYld d are numbers yet to be determined. Substituting

n = 1, 2, 3, and 4 -successively in this formula, we get

. I 1
2

= a + b + c +,d

'Solvingwe find

1
2

+ 2
2

. 8a + + 2c + d

1
2
+ 2

2
+ 3

2
= 27a + 9b + 3c + d

12+ 2 2
'32 + 4

2
64a + 16b ;- 4c+ d.

1 u 1
a =

3
= c =

1 ,
= v.

2

We therefore conjecture lat

12 22

4

2

3

1 3 1 2 1
n+ n = n + n +

1 t= T + .1./1\tnan I

This then is our assertion A
n

; now let us prove it.

We have Ak:

22 k2
1

1
2

+ 2 + + k = k(k + 1)(2k 4. 1).

Add (k + 1) to both sides, factor, and,simplify:

1 ,

1
2
.+ 2

2 + ..: + k
2 + (k + 1) 2 7= kkk-+ 1)(2k + lY + (k + 1)2

u

= (k + l)[a k(2k.+ 1) + (k + 1)]

1 ,

= Tk + 1)(k + 2)(2k + 3)., .

t 7

and this last equation is just .Ak4.1, which is therefore true if A, is true:

.-

"

Mbregver, Al,. which states - ....)0,
. .

As true; anc

2 1
1 = (1)(2)(3)

.A
n

is therefore true for each positive, integer n.

.
There is another formulation of the principle of mathematical induction

which is extremely' useful. This form involv s the assumption in the sequeh-.

:4.tial step that every assertion up to a.cert n point is true, rather than just

t

.\ I

1

.127
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the one assertion immediately preceding. Spepifically, we have the following
.

'(Second Principle of Mathematical Induction): Again let A
l'

A
2' '

A
3/

:..
'

be a sequence of assertions, and let 11"'6e the hypothesis that all of`these

are true. The hypotAis H will be acected as proved if

1. There is a general pr.00f to sh w that if ew.pry prtceding assertion

A
l'

. Alt., is true, then the next asrtion Ak is true.

2. There i a special proof to show- that Al is true.

It is not hard to show that eith4r one pf the two principles of main-
.4 a

matica2 induction can be' derived fro. the other. The demonstration of this is
0

left as an.exercise.

The value of this second principle of'mathematical induction is that it

permits the treatmen of manyproblems whicli would be ',I-ite difficult to

'handle,directly;on the basis of,the first prinEiple SuCh problems usually
, ,

1 present a pre` yicomplicated appearance than the kin which eld directly to

/-", an attack by the first principle.
.

.
.

6

,

Example A3-1h. Every nonempty set S- of natural numbers (whether finite
,

oCinfinite) ,contains a,least element.
s

y

Prbof.' The induction is bgsed on the fact tgat .S contains some natural '

number. The'assertion Ak,,is that if k is in S, then S contains a

, .4least element. -. -

Initial Step: the assertion Al ins' that if S contains 1, then it
.

),
contains a least number. This 1.4,6ertainly true, since l' Is the smalleli

r,

natural number and so is smaller than any other member of S.

Sequential Step: We assume An is true for all natural numbers tip to

and including k. Now lei ,S be a set.&ntaining k t r. *herb are two

possibilities:.

1. S contains a natural number p less than k + 1,. Ih that case. is

less than or equal to k. It follows that q contains a least.element.
?

2. S contains no natural num r less than k + 1. In-that cav, k + 1

least% I

o, .

'

This example is 'valuable because it is a t.lair 'inciple of math tilatical
., .

.
.. ,.

induction equivalent to the other two, al! of an obvious one to
,

be sure. , t

An amusink example of a "proof" by this princi le `is given by $eckenbach .in
0

the American IMathematical MonthiSt, ol. 52; 1945 .

t
ir

687

283

"

414

°

a



THEOREM. Every.naturalnumber is interesting:'

Argument. Consider the set S of all uninteresting natural numbers.
,

This set contains a least element. Ahat an interesting number, the smallest , *7

in the'set of uninteresting numbers: So S contains an interesting number

ftet all. (Contradiction,)

troutle with this "proof%of bourse is th'at we.have no definition of °

"interesting"' cine'mans interest isanother man's boredom..

,
.

.,

A One of the most impor*t usesof mathematical induction is in definition
/

by recursion, that is, in defining a sequence of things as f011eows: a defini-

tion is eivemfor the initial object Of the sequence, and a rule is supplied

7 , t
A

so that if any term is known the rule provides a definition for the succeeding

one. ' . ,

,11.

. . For exal le, we colild.have defined (a / 0. recur

following way:. \',

. . I.

t . '0
Initial Step: a = 2

,

«

,

.r . \

.
.

Sequential Step ak+1. . a a
k

.(k 0, 1, 2, 3 , ...)
9

Here is, another usefuldefinition by recursion: 'let n: denote the

product of the first n positive integers. We can define n: recursively")
*,

as follows:
1

Initial Step: 1: = 1
.

Sequential (k + 1 ) : (k +.1)(ki) Ck = 1, 2 , 3, ...1

Such definitions are convenient in proofs by mathematical induction.

Here is an example which involves the two definitions we la1337e'just given.

.

000.,00n Example A3-1i. For'all positive integral: Vanes n, 2n-I < The

proof by matheMaiical induction is direct. We flaile the following steps.

Initial Step: 2 0 = 1 < 11 = 1 ,o, t '
. ,

...

S
Sequential Step: Assu ming that the assertion is true at the k-tli step,

we seek to prove it for the (k +"1)-th step. By definition, we have

4k + 1): = (k + 1)(k:).

Prom the hypothesis, > 2k-1, and consequently;
.. .

t ,

(k.+ 1): = (k 4.- 1)(M) > (k + 1\2 k-1 > 2 2k-1'. 2k
/

688

299

..

. %.
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.

.

since Ii > 1 (k is epositive integer). We conclude that (k + 1)! > 2k.7 e. ,

lahe proof is complete. ,-

L.

Y.Before ye conclude these remarks on mathematical.inductioft, a word o

caution. For.a complete proof by mathematical inductionit.is important'to

show;he truthof both the initial step and.the sequent141 step of the induC-

tion principle tieing used. There are many examples'of mathemgtical induction

gone 'aywire because one of these steps fails. liere are two examples.
r . .

.

Example A3-1j.0-
Assertion: All natural numbers are even-, a

Argument: .Fox the proof we utilize the second principle of mathematical

induction and te.ke for
.

A_ the assertion that all natural numbers less than
a

or equal to k are even. Now con er the natura4 number k + 1. Let i,

be any natural number with i < kJ The pumber ,1 such that i + j = k +1

'can easily be shown to be a natural number with j < k. But if i <k and
j < k, bath i and j are.even; and hence k + 1 = i j, the sump of two

evennuMbers,'and must itself be-evenr.

Find 9e hole in this argument.
o

t

Example A3-1k.

Assertion: All, girls are the same.*
I

Argument: Given girls designated by a and b,, let a = b mean that ,

a _and b are the samet,,Consider any set .S1 containing just one girl, .

Clearly, if a and b denote girls in Sl,'then -a = b. Now suppose it is

true for any set of k girls that they are all the same- Let S
k+1.

be a set

-containing k + 1, girls garg2, By hypothesis the k

girls, gl, g2, gk, are all the same, but by the.same arguffient_SO are

the k girls g2, g3, gk, gk.1.1. It follows that 1314 g2 =

gA = gk+1' We conclude that all girls of asset containing any positive,

integral number of them are the same. Since thereis only a positive integral,

nuMbet'of girls in the whole world, the assertion is proved.

_ Find the flaw in this argument.

*
We are not trying to express an overly blase/attitude abbut girls. The

original of tins eXi\mple.(aitrfbuted to the famous' logician Tarski) had it 1000,,
that 411 positive integers are the same; however, isn't it more interesting
to write about girlsT

6829Q
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Exercises'A3-/

1. ,g'rove by mathematical inductign'that 1 + <2 + 3 + + n =, n(n..+ 1).

2.\2. By mathematical iriduction prove the familiar result, er ing th sum of

an arihmetic,progreSsion to. n terms!

kr-

/
,. n

a (a + d) + (a + 2d) 4-, ... + (a + (n - 1)d) = [2a + (n :. 1)d]
.

.
. .

. , \
3.' By mathematical iliduction,prove the familiar result, giving the sulk of a

geo,metric progression to n terms: 4

n-1 a(r 1

- 1

n - )

a + ar + ar
2
+ ... + ar -

Prove the following four statements by mathemayical induction.

-4%

5.

6.'

7.

12+ 5? )4- .5-.

.
,

2n <,2n
.

If p > -1,

1 + 2 2+

+, . . + (2n. - 1)2 = 12: (4n3 - n),

.

then, for every positiAre integer 'n,

22 t + n 2n-1- = 1 4- (n - 1)2n

(1 + p)n

1

Prove the foil ing by the second principle of mathdmatical induction.

ue

8. For all natural-numgers :n7 the number n + 1 either is a'prime or can

be factored into pritAt.
'.

,

.,,,, . ..,....

.
.9. Fpr each natural number 41 greater thanone,. let U

n'
be a real number

.

with the propep that for at least one pair,of natural numbers 16,;- q

-f
. ...

,
r ..

nn

. ..;..

.

with D 4- 21 = , U
n

= U U 4
.

p .1q
,

s

When n = 1, we define-11i =At where' a is some given real number.
. . .

na for all n.'

,

,
4 a

,104 Attempt to prove 8 and 9 fiom'the first principle to see whatdifficulties.

l arise.

.

.

. Inithe next three problems, first disover a formula for the sum, and then-

.,

1.'

, ,

prove by mathematical induction that you are correct. . ..
.

4, . , ;

I

1 1 1 1
11. ---- + ----- +

. '1 2 2 3 '.3 .. 4 n(rr+ 1) ,

I

. ° I
. . .

sa,

690

2 9 I
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. , . .

1? 13 + 23 + 33 + .4: n3. (Hint:, Compare the sums yoU get berekwith ,

Examples A3-36 and A3-1g in ,,the text, or, alternatively,. assume, that the

required result is a polynomial of degree. 4.)

43. 1 2 + 2 . ,3 + 3 4 + ... + n(n + 1). (Hint: Comp-ire this with

Example )ttthi1 exA3 -lg n the .

: I.

14 Prove for all positive integers n,
F

(1 + + 175)(1 +
'

'

;.(3. 2n +

2

1)

In

15. Prove that (1 + x)(1 + x )(1 + x
2x 4) ) 1 - x2

+1..

' I - x
o

16. Prove that n(n
2

+ 5) is divisible by 6 for all integral '7i.

17. Any infinite straight lihe separates, the 'plane into two parts; two

intersecting Atraight lines separate ,the plane into four parts; and.

three non-concurrent lines, of which no two are parallel, separaVp'the

plane into seven parts.' Determine the number of parts into whic'h 'the
'

plane is separated by n . straight lines of which no three meet in a

single common point), and no two .e.e parallel; then prove your result.
. . .

Can -Tar-obtain a more general result hen parallelism is permittdd?

AlIf concurrence is permitted? If bcr are perniitted?*

.4

18. Consider the sequence of fractions

1 g i j 7 17 Pn

I ' ' 12 ' ' qn
,

where each fractioni is obtained from the preceding by the rule

rpn = pn-1 + 2q
n-1

A

r

gn Pn-1

Pt
* Show that for n sufficiently large, the difference between and

n 1.
1/.. can be mat as small As desired. Show also'that the.. approximation

to I is improved at each successive stage of the sequence and th.t

the error alternates in sign. Prove 'also that
.

and q are rela, '

. tively prime, that it, the fraction -- is in lowest terms.
gPnn

691 2 (,-)2
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,

,

.
'19. 'Let p be anypoIynomial'of degree'

9*

(1)

..CL:tq(n)"denote thg sum
a

q(n) i p(l) p(3) ; + p(p),

Prove that there is. a polyn,mal' q of degree m + 1 satisfying'(1).

p,,,
/201. Let the function f( ) be efined recursively as follows:

Initial Step: f = 3

Sequential Stec. f(n + 1) = 3
f(n)

In part lar, we have f(3) = 333 -J.

27
etc.

SimOarl g(n) is defined by

/Initial Step: g(1) = 9

Sequential Step ,g(n.4- 1) = 96(n)*

Find the minima. value m for each n such that f(m) > g(n).

21. Prove,pr',all naturaloumbers n, that (1 ,/.5)n (1 /5)n
r-

, 2
n

y5
, A

Ivan ihteger. (Hint: Try, to expjess x
n

- y
n

in terms of

n-1 n-1 n-2 n-i ''
x -y,x,y, etc:)

/
1.: /

-J

iP

i30



- A3- 2.. 'Sums and Sum Notation

(i)/ SUnt Notation -

In,t he preceding section we made frequent use of extended.sums in which

' 7

the terms exhibit a repetitive structure. For example, consider the stem

.. $ , . ).
-(1)

a4

1 .1 + g3
,

,,- 3 . 5 +. .....+n(2n - 1).

.

.

.
. .

4c We gTopt a,concise notation which indicates the repetition instead of spelling
. -

\.it Girt... In this notation the sum (1) is written
'

.,.

:
4,1] k(2k - 1).

0 k=1
-

)1

n

'Tilts symbol means, "the sum of all terms, df the form k(2k - 1) where' k

takes on the integer values from 1 o n. inclusive." The. Greek/capital ,.,_.

"Z" (sigma) corresponds to the iioman., *"S'ir/and is intended to suggest the word

"sum:"

14
d

Ilt

4,
The notation an be used more generally to express the sum of any quanti-

ties 0
k

where k _takes on consecutive integral 'values; we may begin with

any. integer m and end with any integer n where n >m. Thus
----- .

% . n ,

2 0 = 0 + 0 + 0 +

/' k-;--re

, k m m+1 m+2

./ .

p .

. n

(Note the trivial special cage, n = m, a "sue of one te.rm: E 0k = Om.)
11

..,, k=m

+0
n

.

is. EXample'A3 -2a: If each of the regions R.
x

in (1) i a rectangle With

height hk and width wk, the sum of the areas may we written

, - . n..
...a.

w h. +wh +wh + ... +wh' = 2:,w' h.".
. 1 1 2 2 3 3 n

k=1
n k x

% -

.Here are other typical examples: 0,..

,

%._ '1 ' ".

3*
_ ..i.k ..,,0 '1 2 , 3

z,
1

.

+ '

1+0 .1+1+3.--7-7 1.1-9
-,

k=0 et

it

-/

=5;1

693

,i

.

4 4'44.
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,

5
E,j+3, a 5 + 6 + 7 + 8 = 26.

.j=.-2

,combination 'of n functions :
*

7 n )1"
.

Dj A'jCx)
.
= a

1
f

1-
(x) + a

2
f. (x) + ... ,t

/ . j=1 ',
A polynomial of degree no greater than m:

c ./4 e. m . .

,*
,

. . ..E
e ix

1 =e
+,1
x+ex2 ...+

+exm

.

411 . ' 1=0
0

.. v . A

2 111-- -----..":

'# "

n t
Y '',..1. ...

Example A3.-2b.' A simple but important sum is E c,
j=1

constant, that is, a quantity independent of the index J
, : n

f
n
(x),

n

,quantity E c is the sum of n terms'eadh orwhich is_ _ .

J =1)
\ has the value nc.

. .
where ,c is 'a

of summation. The

c; it theregoe

In any summation/the values of the terms and'the total ale not affected
by the choice of the index letter; thus.

n 'II'
4

k=m :,. j=m ..
. .

We are free to- choose the index letter'aid Its initial valu t` suit our own-r /
i:conenienee. 1.

.. Example A3 -2c.___,--
2 , /' 3 2

(a)- E ai.,..a0 + al + a 2' = Eap -1=E a2-'n
- j=0 ' 1)=1

.
n=0

n n

(b) E it..n.-i = a + a =i P
'

n
0 E (an.-I

n
+ ain-1

.

i=0 j=0

1 .
A

_
a*

Summation. is .41 linear process; the proof is left as the first excercise
. i r ,

... .
bftlow. 0 -. , 1

;..,/

694
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t\
Exgrcises A3-2a

11
, .. 1 ,

E (afk + Pg ). = a E f .., 0 E g,
. . ik

->k

k=1. .k=1 k=1
o

2. Write each thp following' bums in expanded .Form and evaluate:
.

'5
(a) .

=1

2k

10

* (t) 1E 32
'1=5

3,

.(r2 +2- -.12)

tbefb

5

'(a) .E m(m - 1)(m

m=2

10

(e) E 2i 1

i=0

-,4

(f) r:(4 - r); ;

r=0

rig st ateme

usions.

10

(a).
='7

.=3

i=m

io .

(c). E.k2.= '10

k=1

1000. .1000

(d) E k2 = 5 + E k
2

k=1

rt

1)3
.. , E k3 = n3 E ..,(e

k=1 j=-2

10 10

trr=1

10 10.

(g) k3 (E
m=1

28
a

A72

are true and which are false? Justify

14((ri - m) + 1

r=3.

is.

,
.695 ''
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i

n-1, . n

(h) E icr- i)in - i) ...E ici- ...Ix. _
,.

'(----\.:. ti.. 1=2.

m I m

(0 -E f(am_k) . E f(.,)

k=o ,P k=0 .

,
% 2 n . n - ,n

--'--.

(t) --p E Ak - E k Ak = E ki,An_k

k=0 k=0 ,,,k=0).

.m ,/ 7

,/I .
m ,.

(k) E K
2
(Ak - A ' ).= In

2 E A - 2m E k A'
,,

nk m-k m-k

;- ` k=0 ' k=0 k=0 ,

,-,

.

4. Evaluate.
2:14 f(kN(b - a)

if -
'ni- n

f(x) = x2, a F. 0, Jo = 1, 'and

k=1

(a) 'n = 2

,(b) n

.5 Subdivide the interval 10,1] into n equal parts. In each sub.'.

interval obtain upper and lower bounds for x
2

Using signa notation

use these upper and lower bounds to obtain expressions fdr upper and

_lower estimates of the area under .the curve g = x2 on [0,11: If
.

you can evaluate these sunis without ,reading 1R1sewliere, do so.-

. (b.) Write out the sum of the first 7 terms of an arithmetic progressiOn

with first term a and coupon. dicference d. Express the same sum

in sigma notation.

(b) In sigma notation, 4rite the expression for the sum of the first n

terms of a, geometric progression with first term a and common

ratio r.

(c)Nn = 8

1

7.. (a) consider a fundtion f defined. by

f(n) = E t(r - 1)(r - .2)(r - -3)(; - (r -,5) + r

Find f(n) for n = 2,

(b) Give an example of a function g (similar -to that it (a)) such that

.
g(n) = 1 n = 12

g(),,0
6

+ O. ',I

) 696
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8...Write each o;Ithe ,following sums in expanded fbrm and evaluate.

4 3

(a) E E rr(n -

n=1 :r=1

N R

,(b) E E (rn

n=1 r=1.

n

9. ,The double sl'aml is a shorthand notation for

0 j = 0

or

E,.{F( , 0) + F( , 1 ) + + ;In)

F(0,0) + F0,1) s+ + F(0,n)

(+F(1,0).:4- F(1,1) + +

9

I
4 .

o 0
N

+ F(m,0) + F.(m,l) + ... + F(m,

....

2 3 , 4

In particular EE' . j !-. 1 . 1 + 1 2 + 1 3 + '2 1 + 2 '.

i=1 ,)=1 ,
,

_..

+ 2 3 =.18. Evaluate: '
,

. m, n m n .

* (a) ECE: k j
k(c) EEmEi.(i,J)

4. =1 j=1. i=1

,m A. m n

-(b) EE j)
(d)

1=1' j=1
/

i=1 j=1

..

10. (a) Show thitt
1 1

itk(k - 1) k = 1 '
I 0, 1. r

ib

' 1000 4 - C

) ip N7 -' 1 4
4

(b) Evaluate.
AL,/ k(k - 1) l

k=2
. .,

$ .

11,, If ,S(n) = IAE:. f(1), determine f(m) . in ;berms of the sum functidn '
.

.

. i= 1-
o

, '14

97
. .

o



4

12. Determine ef(m)
,: . .

iiiithe following summation formulae:
.

-..

n n
,.

(a) 1 .7 Ef(il ) (e) cos nx=Ef.(i) , 1'
.

. .

1=1. , 1=1 .
. ,

n .
. ' n

(b) n = E f(i) (f) sin (an 1+ b, =E fo..),.. ,,

i=1 1=1

nn
, . .,

tc) n
2 =Ef(i) 0 (g) nl =.1: f(i)

- i=1 1=1

(d) ant bn c = E-f(i)

1=1
I

h!13; Binomial Theorem: We define (111.) ,. where r, -n are integers
- r):n! .

}.._

e i , .
sush tliat 0 < r < n, Also 0! = 1 and (nr) = 0 if r > n. Show that

,

(a) (on) k (i;) = 1

1

(n
n

n 1-1 ;.) n `r + 11
01\ ( n

(c)- istablish the Binomial Theorem
,.,n

(x + f)n = E(111.)xil-1. n-1yr = x +

,r=0 %

n = 0, 1, 2, ..:,' by mathematical i auction.

(b) (111,) = rn
n

r)-

n-1'
+

14. Using the Binomial Theorem,, giye the expansions for the following?.

(a) (3c Y)3

(x y)3

(c). (2x - '3y)3

(x, 2y)5

. 15. Evaluate the following swig.
, n

.

'(a) 0'4- (n) 4 ...
1 triN =E (11\

1 ' `ni , `zi-
r=p

, 4

;

.
2

n
,,

(b)
4. (..1)n =,(..1)r (n) , ...

r
,..,

r r=6

698'
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.,40r n
-. ...

n . n

16.. aim E'r(111,1 .by.firstshowing ':E:(111,) 4 (n lin and'

--.:./

.

r=0
-:--

r.,0 r=0
. ..'''"'

using 15(a).

,p,

. thef*st twoterms telescope from'a,tum Of four numbers to a sum of two num-,
_

.1;64.). the first' three terms telescope from a sum of six numbers to a sumof

two mulOers, etc. Finally,'
1

the entire summation telescopes (or collapses)
', einto ,:a14n.nrof two numbersthe first number in the 'first term and the second.

number in the last term. Syablically, atelescopibg_sumhas the form

44.% ...,t

\
,

n ,
.

(1) f(k) - flk - 1)) f(n) - f(m - 1).

k =m

178 Rrji) denotes ajolynomial of degree n such that :-Pr;(x) 2x

for k . 0, 1, 2, ..:, n flind
n
(n 1).

. S..11Plination

Exercises A3,.1, No. ld illustrates a particularly useful Summation tech-

nique,'i.e., representation as a telescoping sum. It was possible to write

1000

k=2 /
in the form

1000

1 1 1 1 e 1'
k(k - 1) - T'7. 2 + 7:7 4. +1000 999

0

1. 1) (1 1) (.1: ,4 . '1 1 ) (

k 1 k' 2' `2 3' (75g -,,999' `9g9 1000)'12 ,
-

Each quantity subtracted in one parenthesis is,added baNk in the next, so that

1In the above example, we have, m.= 2, n = 1000, and f(k) - i so that. thq

sum telescopes to f(1000) - f(<L) - E05 + 1 = ?g :.

. ,
We now use (1) "to-establish %short dictionary o1 summation formulaeby

donsidering different functions f(k). AlsO, we let m q 1 without loss Of

/generality. Let f(k) = k, then

(2) -

k=1

n

E1 =

k=1

' 695
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7!rhie result is nothing rum. No let f(k) = k2, talen

n n n n,

Vk2I- (k - 1)2 = E'(2k - I) 2 E = n2

k=1 k=1- k=1 k=1
..

; or, equiyalently,
. :

n

' (3)
I E k = -t-i.,(n + 1) . -.

, . k=1, . . c

By liklearly combining (2)/ and (3), we obtain the sum of general arithmetic

progression-

'
n

- 1:1 ni'n(n + 1)1 ..

on .
2 '

k=1

sum E k
2,

- we let. f(k) = kJ

,'''n
,

-,,,4

. ( .,

To obtain'the ., Then,
...

i .

.
1

. k=1
:. --,..;'''

'

=2. k=1
s

.n

k2; - 3Ek+El=n3.
.

,

k=1 k-.4. k=1

Using (2) and (3), ide,obtain

E {n3 3n(n + 1) n(n 1)-(2a+ 1)

3 . 2
- -

6 ;

n

3k2 + 3k 4:1)

k=1

We now man establish

/

P(k) Whose terms are values P(k) .of a polynomial function. _Because a
4

polynomial a linear combination of poWers and summation is a linear process,

it'is sufficient to give a sequential method for 1: kr, r a n#nregative

..integer.
'k=1

a sequential method of obtaining sums of the form

r+1 o

Choosing f(k) = k in tiff,' formula (1) gives us

,r4 Dkr+1

k=1

Using the Binomial Theorlm, we 'obtain

kr+1 (k

700
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= .
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b
A3-2

where B(1y) is a polynomial of degree .r 1. Thus, the suis k
r

can

-

be expressed in terms of sums 6f lower aegree. Since we-already hare the sum
A

we can repeat the method sequentially,o Otain thefor r = 0, 1, and 2,

sum for any r (compare with Exercises, A3-17, No. 19).

We _can enlarge our summation table by choosing other

f(k), d.g., siif(ak + b). By (1),

n' /

(5)
11: {sin(ak + b) - sin(a(k 1)+1=

k=1

'Using the identity

: in Equation 6y,

6)

vt.!,

functional forMs

sin(an + b) sin b..
to

--, A B + B
sin A- sin B= 2 sin cos

A'

2 '

we obtain

Ecos(ak+ b

k=1

-a
If' b (6) reduces to2'

'CO .

'

sin

= 6os(b + "")

sin

an

2

a

2

all

cos ak = cos ((a. + 1) n) s'in"T
2 a

-2-

k=1
sin

If b = a + (6)reduces to
\

n an
sin-1T

sin ak = sin(b + an)
2 a

sin in

(8)
.

ByichOsing,other functions f(k),, we can enlarge our list of.summation

:formulae. We leave this for exercises.

- "

r,77`. 1,.7

y
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Exercises A3-2b ...
. ,

1. Write the following 'sums in telesCoping form, i:le., in the form
A %

' 116 I

Eiu(k) , u(k - 14 i and evaluate

r.-:1.. .

'n

(a) . Dk(k + 1)1

lord

(b) k(2k 1)

.
n

n

,(e) E k3'
k=1

n

Ea + 3..)(k'+ 2).k k
k=1

n

(e) E 2k(2k + 1, -,, (g) E k k:
I.

----N

k=1 k=1 '

...
' - .

.--....,

n 4, -..,,,,

..,,,

k=1 k=l
'''.------.--",-........ "'".°''c-.

n .
4 . .

2. Using Eiu(k) - u(. ....,,)}. u(n) =:u(0), estatlisli a short dictionary
.

k=1
..

of summation formulae .by considering the'forlOwing functions u:

(.a.) (a + kd)(*a + (k + 1)(1) + (k li,p)41)

(b) The reciprocal of

N.

(C) rk

(d). krk '
rat) kirk

(f)

(k.)
2p

(h) arctan k

(i) k sin k

3: Simplify:

I

ow

ti

.

sin x sin 3x + - 1)x
.

clot x + cos 3x,+ cos t(ink. a.-)xj
; s

702
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1

4, Another methbd for summing, Z P(k) (.? ;a polynomial) can be obtained by
N.

using a special case of problem 2a, i.e.,.

n 1
I . 1. . _

E/(, + 1)1(k)(k - 1) ... (k - r + 1)- '(k)(k - 1)(k..- ) 7,,:./(k.- 0)

,,,,'

-"'

d.."'

.."

It-.-.1

= (n.+ 1)(n)(n - 1) (n _

t
,

419 n
or 2: k(k - 1) (k - 1) -

k=1

1),

An,+ 1)( 1) (n - r + 1)

it + 1

First, we show how to represent,any polynomial P(k) of r
th

C(k.- 1) a
r
k(k 1)

(i) P(k) = a0 + a + t
2: -+

the form

If .k = than

It-e-r than a
2

egree in

(k - r + 1)

rt.
,,

.a0 .-... P(0) ; if k = 1, then al = P(1)
/

P(0) ; if

it/can be shown that

,

(ii) ain = P(m)- (11)P(m - 1) + p(m - 2) - ... 4-(71)mP(0),

= P(2),7 2P(1) +'P(0) '''In general,

,

= 0, 1, r.

Since both sides of (i) e polynomials of degree r and (i) is satisfied

for" m= 0,

ANow sum (k).

1

'nethe following sums:5. Using Prob.

n

(a), _Ek
101

n

it must be an identity.

a

(a) Establish Equation (ii) of Number 4.

(b) Show that a
m
,.is zero-for i> r.

.

703
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'Appendix 4 f

FURTHER 'TECHNIQUES -OF INTEGRATION

'A4-1.- SubstltutiOnsoof Circular FunctiodK

Although it is not always possible to, integrate a given function ,

terms of elementary functions, thereare important broad classet of explicitly

integrable functions. All powers- and,hende),...'clearly; all polynomials are

explicitly integrable. It.is not so clear but it is true that alf rational

functions-are explicitly integrable (see SeCtion A4 -3). It follows that all

integials which can be transformed by substitution into integrals of rational

functions -are explicitly integrable. In this section we shall show that an

integral of any rational combination of x there
. 0'1

Q( x) = Ax2 Ex' + -C,

can be transformed into an integral of a rational combination of circular

functions;:and further that an integral of a rational cdmbination of circultr

functions can be transformed into an integral of a rational function.

400.

We should consider the substitution of a circular function Nhenever an

,integrand is a combination of x and one of the expressions a - x
2/2

a .+ x2, x2 - a2, (a > 0) suggestive of the Pythagoreari expression for

one of the sides of aright triangle in terms of the other two.

Consider

,

We utilize the substitution

le

- t:

+.1 = '
a/2
dx

0
42 2

'

x =asine a -x =acos e 721) ,

dx = a,cos.0 de:

(See Figure' A4-1a.)`-Observing-that foe x = -E21 e = g, we obtain by the

Substitution rule

=

°Y /6
a cos e

y/6

1,,

0
a cos of

de =

705
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Figure' A4-la

Example A44-lb. For the integral

.1 1

dx
2/2

(x2 + a )
0

:

6

we mploy the substitution (see Figure A4-1/b)

x. .

= a tan.e

a

FIE; tire -.A4-lb

a3 cos

I =

a

cos3 e a

'sin e + c =
2

dx =
oa

2,

-
de

cos

142 + x =
2 a

cos e
f

Thus we obtain

= 2 cos e de
a

.a + x2

Example A4-lc The integration

I = f 1 dx
c2h2 t3,2

706

3 6
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performed with theN aid of the substitution (see Figure A4 -lc)

We have'

Figure A4 -lc

x
cos e

= a sec e,

i E
dx -

a sn Q.
de = a sec' e tan e de

cos2 e

x2 - a = a taxi e.

j(oS e), )

2. 'a tan e'
a

a sin e
de

cos2e

sin e1 1T-7728

a
2

= ---j[cos e =
a

+ =
2

a2x-

Exsunple ,Congider the integral

1

- a2

dx .

Using the substitution of EXamlile A4-1c we obtain

1 (a sift e-
'cos

a tan e 2
e

) de-- cos e de .

We can write

1 cos 19 cos O. cos e r 1 1

e
cos e

cos 2 ...

sin
'2e 2 s i n e 1 + sin el

.
L',-

With this much, as a hint we leave the integration as an exercise. (See also

Section A4-3.)

AYen
2

take 0 < e < for x > 0
,

\707

and
A < e < A for x < 0.



MECUM A4 -la. An integral of any rationarcombination of x and

IQ(x) iwhere

(1.) Q(x) = Ax2 + Bx

can be -transformed by a substitution x = f(e), where f is a

circular function, into an- integral of e rational combiliation,
'

f sin B anl cos 19...

+ c o

where 0, is

the standard

We

(3)

F

We set

Concerned witb4integrals.of the form

0( x , 1/Q,(x,

e rational expression and Q(x) 4 given

..4a.imlnaali;ieaF transformati

fo s of Examines A4 la ly, c.

"complete the squareto obtain

RC 312 VI *;x + 4)2 +

A 4A2/J.,

by (1). For the proof

to replace Q(x) by one of

0

b=--e= ITT,& and x = u b in (3)., and

4A
2A

tt.

separate the pro lem in .o three oases:

daze .

If A'< 0

Since. dk =

2
C B

and - - -n < 0 we have
\ A )+Jk

i4(x).,= c/87.77

the'substitiltion X = u - b yields

(4) 1,= b ,

Now,employing the substitutfon u = a sin B of Example A4-1a,

the integral into the fprm

'(5) I =a 0(a siP6 - b , c a cos 0).cogede , 0 = arcsin

gince 4 involves only rational operations, we have established the theorem

87:72)du.

We transform

x+b

in this case.

708
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Case 11114. r

If , A
C

0 and' r - ---f: < 0, the . substitution-

o 10.*
,,

.

x +b=u=atan 0,,

as...in, EX4mple.A4 -lb, confirms the theoremfol: this case.

Case

If A > 0 and o the substitutionA 33

)\ f4A2

x + b = u =
cos 0 '

a

as in Examples A4-14c, yield's the desired result.

A4-I

/' '

The integral (2) can be also transformed into an. integral of a rational

combination of sink t and cosh t by an appropriate transformation ,x = T(,t)

where.

(8)

1, nc ion. Theiproof isleft,as an exercise.
..

,ItEOREM,A4-1b. An integral of a rational combinatfon of sin

and cos x can be .Wansformed into an integral of tl.rational

function by a suitable substitution. *e 4

Proof. We consider integrals of the form

J*(sin x ,'co's x)dx

where is a rational expression. We, observe that ,sin x and . cot x are

rational expressions in t = tan
2

;.namely,

, 4

.(9)

FUrthe'rmore,

N.1%

(10)

2t
' 2

' 1 - t
sin x - , cos x = .

1 + t7 1 t
2

dx'= d(2 arctan t) - 2 dt,
1 + t

Contequently we may transform the .integral (8) into the integral of a-rational

04.

function by employing the substitution

(1.1.) = 2.arctan t;

709 ' .
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thus, entering (9).alid (10) in (8) we obtain, the in"the form

(2)

go/

4.:

r 4tr

;

1 - t 2
'

2(
t

f
1 +

0
2)) 2

dt'

1 4 t 41) ÷ t ,
.

e

, Theorems 10-3a and 10-3b do not necessarily Point the way to the simplest

method of integration for a functibn of one of the types considereg, ere; they

simply indicate.,a line'of approach which is sure to work but wv lead to`
. : , _ .

enormous complication, Often some special deiice leads tp the solu.gon 'far

more ,S-imply an directly./ '.

1.

. e

Exercises A4-1'

Integgate the folloiiing functions, the numbers and b being.positive.

./
. x x+

(h) x3,44 - x2)5

(c) x2
.

a - x

(d)
1

X x2 1. a2 4(e)
2 ,12

--7-2"lX + a-) x ,b .

(f)

1

2
x + ax + b

x2 :f 1

42x +x2

.1^'

Let 'R(x,y) denote a rational function in x and
4

following integrals to integrals of rational fun ctions. '

4

Reduce the

-,'

(a) 17--li(X , le; + b)d4, a # 0.

,,

(b) R(x ,

f
riac dx, n an integer,

7.

ad - be O.
.

+ b

710 .
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3. Usinglthe result of Number 2, integrate x

14W.T7T + ax +
.

,

Reduce to rational.fOrp

1/1-7T1 +.x 1 + x

5. jbspress as elementary functions

(b)
dx

r,
+

(c)
dx

.

1 cos 2x
'f

,
4'

hC 4

.40

I

6. (e) The integral P(x1
)

dx, where P(x);. is a polynomial. of

ax2 2bx--; c

degree n and a A 0 can be reduced to a ratpnal trigonometric

form as described in the text:. It can he also reduc ed to the.,

integration of , namely for some polynomial Q of
Itax2

1

+ 2bat c
degree (n 1) and.dOnstant k.

P(x)

VL2 +.21)x

Show how to

- D(Q(x)/ax2 + 2bx + c:)+

Aax'

find 4 and k

(b) ,Using (a), integrate

(c)

t5 - t3 + t
,

/37.7

Calculate tNntegial of (b) by using_trigonotetrIc substitutions,

and. compare the merits of the two methods.

1
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7. Integrate

(a). sin x

0

b)
F..

1
( cc

4

?

'c3

f Wit

P
(by a method other than that of Example '4-1d),

712
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A4-2. Integration hy Parts

integrate certain kinds of prodIL"-s. ;he method corresponds to the formula

Thebasic. formula. The !'thod, Of integration by part's is used to

- for thederivative of tt product.
,

.

THEOREM A4-2a.. If .f and g have continuous derivdtives over

a common interval containUg 4 and b then

b'
(1) f.f(x)131(x)dk = (f(b)g(b)- f(a)g(a)1,- fqx)exIdx.

.a

The'theorem follows directly from the product rule ((4) of Section 8-4),

and the Fundamental Theorem of Calculus.

0

In Leibnizian notation, for u = f(x) du = f'(x)dx and v = g(x),

dv = g'(x)dx we obthn fOI11.1!clqliAte_integralcurITFS-688ing to (1)r,_

.(2)' cu dv = uv - Sv du,

Integration by means of (21 is called integration IL parts.

. ,
. .

.Example A4-2a. To integrate x -4 log
e

Vserve that log
e

x has an
, .

especially si'Mple,perivative a5d.set u = loge x and dv = 1 dx. For v, .

then, we take * Nt = i., Consequently, from (2)

loge x dx = x loge x S dx
4,x

=x log
e

X

the formula we have already obtained.

ep

L

In application, (2) is us d as'above for the integralOf a product where
..

" the,product of the integral o on6 factor and the deAvative of the other is

t

formally integrable.

The 1,eibnizian notation in (2) was introdu6ed al, shorthand for, the

explic t formula But the notation suggests that we might interpret u as

.a fu ction of v, and v as the inverse function of u. This idea yields
40,)

ay luminating geometrical interpretation'of integration by parts. ,Stippose

that u = f(x) and 'v = g(x) where f and g have inverses. 'Then' we can

713

3.'3
er



write u =°0(v) and v = *(u) where 0 and * are inversest (The proof ''

i
is left to'Exercises A4-2, Nb. 2). Set u0 = f(a), u1' --2 f(b) and v0 . g(a)

.

v
1

= g(b). We hali u1:1 0(vi) and, inversely, vi '= *(ui) for i = 1, 2.

Now suppose 0 and $ are increasing and nonnegative. Then, from the
t .

familiar interpietation of integrtl as area (see Figure A4 -2a) we immediately

4

hE;Ve

O

0

0

) . ,

Figure"A4 -2a
. ,:

-......--

,-/

4,

v
1

11.

- .

.t

tray + - v du + u
0
v
0'

from which we at once obtain

v0 u0

v
.

.

.

. .1
Ili

u 6. = [uivi - uouo] -
.

v du.

. vo u0
..

From the Substitution Rule we immediately recognize this equation as a form
..,

of (I). .it like geometrical argument gives,the,same result when $ and *

are decreasing.

V

e

-r-

.

in general, this interpretation of integration by parts gives the formal

'integral. of any function which has a formally integrable inverse.
4.4e

"S.
04.
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Example A4 -2b. Consider

S xn arcsin x

Since the arcsin has a simple algebraic derivative we set u = arcsin
,x n+1

dv = kndx and take = Forthe domain '0 < x < /-1 we haven'

A4-4

(n integrali n j -1).

..= aresin 124-1,/(n + 1)v and v =
n 1

'sin
n+1 .

u. From Theorem 114-lb we know,,+

'that
5 v,,clu can be transformed into the integral of a rational function. -

As We shall see (Section 114-4),reiional fun ctions-ve always formally integrable..

It follows that sinn+1 u is formally integrable with respect \to u and hence
that xi/ Eircsin.x is formally integrable with respect to X. Reduction to

thd integral of a rational function'is not necessarily the most efficient way
to carry out theie integrations, but integration by parts can be used more .'

. effeCtively In other, ways to execute the integrations.a i
..

The idea of Emile A4-2b1 ,for U = f(x)dv = xr1 dx ,estalliehes the,

formal integrability of xnf(x) where f is any inverse circular

function,and in view of Example A4-2a, if f(x) = log x.
. a

-'Example A4-2c.'C,Onsidet
.

:1"IXr
x dx,log (r real).

_ .
Since log x has EC simple derivative, we set u = log x, dv = xrcix. If

r+1
,

r we take
x

+ 1
v = to obtdin

r

r+1
xr x

x dx = log x
r + 1 r + 1 Jxr dx

+1 -14-1-_,,_, .....,... _ xr
x= r-- 1013.1C -

Nr + 1
(r + 1)

2
..

.
If r = -1, we may take v =log x to obtain

'which yield's

x
dx = (log4c) - dx,x

!".1k:J
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-4'1---,--:.-------,..44.....
, ... _

-..-,,
fil3g fe klog x)

x
dx°=

2
,

)) .
-..

, \.2

+ C

.

a te-Sialt which4is obtained more directly frOm the sUbstiSution `log x = t.

A 4-

------------1,, ,The- method of Example A4-2G, *Dor u = fx) and dv ='x
n

x, exhibits...

the formal integrability of any faction of the form xn ffx) when n # -1, .

..- .. .

where ft(x) is any rational combination of x and IQ(x) and 'Q(x) is a
.

quadratic polynomial. Integration by parts expresses the given integral in

4'
r

,..70 n+, 1 ).

terms of the integral of ft(x) which may be transformed into the
.

,_ , .....

integral of 4, rational function by Theorem A4-1a. FroE the assumed-integrability

of.rational fuuctions,the result follows.- VIt follows as a Slight genera/a-
..

tion that P(x)f(x) is formally integrable for any polynomial function P.

From this argument we observe again that if f is a logarithmit or inverse
N

circular, function, then x
n
f(x) is formally integrable. In addition, for

h(x) = 0(xoiqx)), a rationed combination of x and. l(x), the expressions
n .

x Log h(x) and xn arctan h(x) and are all formally integrable since the

derivatives of log and arctan and are rational 'unctions.

Example A4-2d. COnsider the integral

jrx e
x

dx

We integrate by parts. Set u = x dv =.exdx and v.= ex. Then by (2)

.1.:( ex "dx = xe
x

- : l ex dx

= xe
x

- e
x

Integration by parts may be used toITroduce & simplificatiot; rather than

a final complete integration as drk'Exanple A4-2c when r = -1.

a

, '3 1 6



Example Consider

II = .I ebxj sin ax dx
..,

.

e
bx

bx.For u = sin ax, dv = e ' dx, v = , we obtain

whee

O

40.

1 bx a I bxI = - sin ax - - e cos ax dx

sbx

bx
e cos ax dx

.

t

resents the same difficulties of formal integration as I. HoWever, by the

same technique, we can express J in terms of I and hopefuUy.may obtain

an equation which can be solved for I. Now take u = cos ax and ,

e
-bx .

v =
b

in (2) to obtain -
#

J =
1

e
bx a jr bx

cos ax + 1-; e sin ax-dxb

1 ,

b

a
I

.-
.e = - e

bx
cos ax + -

b
,

t

Entering the expression for J above in the expression Stir I' and solving

1for , we obtain "
* . ....'

1 bx ,
I - e kb sin ax - a coq-ax).: 2i

a
2 +b

.11

2

f'

.*

(ii) Recurrence relations. The idea here is'to express an integral of
.

the general fcirni f
n
(x) dx in terms of irf

n-k
(x) dx,

717
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al

Example A4-21? Consider
,

t, to

.40 = J. xr{ 1 -
n

dx

.r+1
,

Set u = (1 - e , dv '71= x
r

'

vdx =
x
r +a4,

.

-
Then

4, > 0 r # -1) .

x
r+1,

kl - x

r + 1
+.

r + 1

f r+1,
x kl - x) dx

where,.for r = 0, the result yields, Correctly, In -

_that

a.

whence,

.
x
r+1

- x)
n-1

= -x
r
[(1 - x)n -

x
r+1

r + 1
,Now, observe

x)n-11;_

. x
r+1

(1 2 x)n
+

r + 1 [I nsr + 1 -1
- I

n
].

This equation" may then be solveSrfor In in terms of I__

or

I = x
r+1

(1 x)n
n n + r + 1 n + r + 1

I
n-1 ,

)

r
x (1 - x dx

.n x k>11r+1,
l - x

n +,r + 1 n 4 r + 1
n. r,

x kl x.

Now tills formula may be applied recursively to express I in terms of
4.

n-1,

-2
in terms of I

n-3'
etc.4 to yield

4
'I =

x r
(1 -

n(1 - x)n-1 n(n = 1) (1 = x)n-2
n n+r+ 1 n + r (n + r)(n + r iy

ll

n(n - 1) ,.. 1+ +
(n + r)(n + r = 1) 4.. +'1)

Sometjmes it is necessary to prepare for int gration by parts by some

preliminary rearrandment, as we show in the foll ing useful example.

718
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Example AY2g. Cor Eder

= cos
n

x dx

We write. posnx ='cOsn-1 x cos x; . set u'= cosn-1 x, dv =,cosiX

= sin x, to obtain

-

n.-
I = dose

-1
x sin x +'(n 1

.'-2
cos

n
x sir,` x dx

=
, n-1

x sin x + (n - 1) .1 -cos n-2 x (1 2
- cos x)dx.

_Thus,

os
n-1

,

xsin x + (n - 1)(In_= c

Solving for ,I
n:

We have

'11-1 1

x sin k n - 1
II

n
-

cos

o
n

, +
n n-?

.

ke-- -F.---.

Since the subscript is lowered by 2 at each step we observe for n even
that the rec rsive.reduction of the integral terminates at n = 0 with

. -..
I
0

= dx = x, and for u odd, at n =''l with

*=,f cos x dx = sin Y.

0

Often the principle'use of a recurrence relation is not to obtain the
$

fornfii 4.ntegral in terms of elementary functions (which May not be possible)

butto obtain the original integral in terms of a simpler integral.

- ""---P"

Example A4-2h. Consider

' 2

I
n
'= e-x dx.

I, y2
r. From u = x

n-1
dv = x e

x
dx, v.= -

1
we obta4n

or

I - xe+ xe -x
2

n -2
1 n-1 -x

2
(n - 1) .1 n-2

2
dx

719j



1 n-1 -x
2 n, 1

.

.:- x e '+ 7-- In-2.
n

2 7.;

. . .

If n
.

is
1

odd, the recurrence relation 'Oyes', In in terms of elementa

functions and I
1,

but Il = - 7 e
1 x

2

is elementary and I
n

is

formally integrable in terms of elementary funOtions. If n is even, hen-
,

the integration of I
n

is reduced to theintegration of ''

2.

I
0

= e
-x

dx.

.

This integral ia,not-elementary.,.Ho eber, it. is well known and much used\.

In terms of the error function erf (the area undvr the normal

curve) given by

we have

t
2

1
x 2-

erf, x = e
f§17 J.0

I
0

= r-t ere (-12-.) 4

The common tables of the error function enable us to work,withlt numerical1

just as convenienti as the circular functions.

1. Integrate the following.

(a) x sin 3x ,

(b) x 5x

-2x
" (.c)- x

3
e .

(d) IC log ax

(e) ,bx

(4') log3 x

,,s(g) rc cos 7x

(h) arctanJ

x arc tan x

.0

Exerciseq A14-2

(3)
arc cos x/m

1/.7771771

(k) x sin
2
x,

(i) x
2sin x

:---

(m) x2 arosin

(n) cos3 2x

(o) sin' x

(p) sin (log ax)

(q)' x tang is

(r) (arcsinx)2'

(s) sin ax cqs bx.

.720
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. t.

Support the geometrical inteiretation bf_integration by parts by
9

showing for u = f(x) and( v . g(x) where f and g have inversesl,

that ..,uv. 0(v) and .v = 111(u) where ,0 and * are inverse functions.
1

3. Verify as alleged after Example A4-2b that the method of, the example
.,.

does demonstrSte the reducibility of xn f(x)dx to the integral of a

rational finction if f is any inverse Circular function, or if f is
.

the. logarithmic function-r---------7'

b. Establish'recurrence relations fOr ach of the following in each case
m and n are positiventegers).

(a) sinn x dx

(b) x
m

log
n
x dx

(c)' . i sin
m
x cos

n
x dx.'

4,

(h) x
n
arc tan x dx

*.

xn ea4 dx

Sxn arc sin x dx

1
dx

sin
n

x

(i) x
n
Cos x dx

721

(Note the difference between

odd and n even).
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A

A4-3 Integration of Rational'Eunctions

The problems of. formal intfgration in the preceding sections of this ;

appendi,, x were often recast in the form of the problem of integrating a rational

function. For a rational function there always exists a formal integral in
. _

terms of eleientary functions. The formal integral is obtained by'reducing

the rational function to a sum of a polynomial function and functions defined

by the elementary forms

r

(x - c)n

px + q

[(x - a)2 + b2ln

It can lie proved that such a reduction is possible, eitfier,frOm the

FundamentalTheorempof Algebra which requires the theory of functions df-a

complex variable, or directly by new algebraic tecbniques. In either case ,

a complete proof would take us outside the frame of thistext.

(b > 0).

The reduction of a rational function into the sum of a polynomial and

terms cf.-the form (1) and (2) is called a decomposition into partial fractions.

We give one sirpple example?

a

Example A4 -3a. A common case is give; by the rational expression

1 .( 1

- a x- b x - a);
1

(x - a)(x - b)

From the decomposition (3) we immediately obtain the integr

'1 1 log(x - b) - log -

1(x - a) (x - b) 177=E7'

b

1

a
log (i--77.4).

-

)I)

a! b.

Let R be any rational function. By long division it i5 always possible

,to put R(x) in the form

Px)
R(x) = S(x) +

(
Qtx).

where S,T, Q are polynomials and the degree of P is less than that of

Q. Since the polynomial. S is immediately integrable, we may omit it frpm

consideration. It follows from the Fundamental Theorem 'Of Algebra (Appendix

2) that every polynomial Q(x) with Teal coefficients hase unique f8ctorizal-

tion of the form

722



A4-3

`'(4) Q(x) = A (x cl)ni(X ..0.,.((x2jti)24.b12;111.r/x._an2.1.b.211112-
..L\ 2, a

t
.

where the ek are the distinct real roots of Q,
.

andsa_ t ib
k

, the distinct
*-7 K _ .maginary roots (b

k
> 0).

-,.
,..

*
0. -

Now suppose that R(
P(x)

Q57 where the degree of P. is less than that

of Q, and that P and Q hae,no common factors. Then we aasert,that

R(x) is the sum of e)"Aor ssions ofwo standard forms; for each real root

C, an e')cpreesion-of-t-he.form.

( 5)
x1,*

ra,

, (r
n

/ 0)- (x ..
. (X - C)n

' where n the multiplicity of e : fareach pair of conjugate imaginary
",' roots a t ib an expression of the ,form

41
(t)

pe + qi
P2x, q2

pmx + qm

(x - a)2 + b2 [(x a2 212 + t
[(x = a)2 + b?]m"

gM2./ 9)

where, in is theirlcommon multiplic't We merely use this format as a /glide

without proof. In each particular case it can be verified directly that,the

decomposition obtained is correct. Since we have obtained and verified
, - .

correctness of the partial fraction decomposition we have reduced thd in e-
.

gration problem to that of integrating the simple form (1) and (2).

- BefOre we etbark,on the problem of integration let us see what is

involved in the algebraic probleM of obtaining the partial fraction decomposi-
v.

tion. The first pvieblem is to obtain -the'roots df the polynomial Q(x). In

general the roots of a polynomial cannot be obtained from the coefficients by

a formula involving only rational operations and rational powers. There are

such formulas for the roots of polynomials of third and fourth-degreev-but-----

these formulas are generally,useless. - For example, thd formula-for the roots
ti.

of epolyndmiel of third degree may involve complex quantities even when all

three 400ts are real. For 'computational purposes it would be sufficient to

estimate the roots numerically, but it is usually easier to estimate the

integral directly (see Chapter 9). Nonetheless, the method of decomposition

is valuable because often the factorization of Q(x) is given by con;

ditions of the problem and often the factorization is easily obtained.

723
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i.

Next, we= turn our

fraction decompogiiion'

Final we consider

position of r

attention to the igroblem of obta ning the partial

on.;the denominator is given iin factored form.

the problem of obtaining the partial fraction decom-
.

4

P(x)

Q(x) (x

P(x)

c
1
)(X - c

2
),... (x - c)

wherefthe Tootslof Q are all real and simple (ofmultiplicity 1) and the

rk -degree of P is less than that%of Q., From the foregoing, there exist.'

.constants A (k = 1, 2, n)

F(x) Al
Q(x)' x - cl

such that

Por x c we obtain on multiplicqtion

. .
I

F(x)(x - )

Al
Q(x)

n

)

) ( ci) = T(x)

where S(x) is the sum of all thepartial

neighborhood of .x = cl this equation state that the expression

defined,the constant function T : x Therefore

P(a)(X - ci)

fractions but the first. In a

whence,

(8)

Ai" 11M

"-) c1

lim'
(x c2)(x c

3
) (c - c

n
)

x -4/c1

P(x)

(c14

Al --(c
1

- c
2
)(c

1
- c31) (c

1
- c

n
)

Thidast expression can be written tidily if we observe that

lim
Q(x)

x -4 ca
(x - c

1
)

tblus A
,-6,FFIT.

Since

.T(x)

0

ih

.

ft 4

since_ Q(c1 ) = 0

Q(x) '" C(el)

lim CV(o
c

l).

X- C
1

1 '

a
1:41

isC
1.

simply a symbol for any one of the
.

roots,

discussion, We'have in general,

.f

it does not matter which for

(9) I

the purpose of this

P(fic.)

Ak ITTt *4
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Exwmas A4-3b. 'wa obtain the partial fraction decomposition of

:

X
2
+ x -1

(x. + 1)x(x 1)

has simple zeros at -1, 0, and 1. From

we have

4
P(-1) Pc0) -1 4
Qt(-1) 2 ' W(0) -1 ' Q'(l)

P(x) . 1 1
+

1
g(x) f5747717 x 2(x .1)

which is esipiy :verified to be correct.

-,

4

.denqminator

There tire general techniques for the case of mill.tiple real. roqs*or

"imaginary roots, but in such cases it is often easier to determine ,the

decomposition by the method of equate coefficieii2b!-- if

Ebcimple A4-3c. From

x3, - 1 r
p
1
x + q

1 132x q2_ + +

(X`0 .+ 1)2x(x
2
+ 1)2

x'
x2 + 1

4, we obtain on multiplying both sides by x(x2 +3.1)2

J

x3 . 1 = r(x4 K2x2 + 1.) + pi(x4'+'x2) + ql(x3 + x)

i
.= er + pi)x

4
+ qix

3
+ (2r +

pl +
p2)x2

+ (q1

provided x / 0." Now the coefficients of like powers on the right and left

must be, equal (Exercises A4-3, N0.3) Thus we obtain the equations

r + p
1

= -0-" '.

q1 =1

2r + p + p2= 0

q2
P

r = -1,

from which r = -1, pl = 1, ql = 1, q2 = -1, p
3

= 1. This yields

Also called the method of undeterMined coefficients.

:' 725
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x3 - f
, 2 ,2 x

xkx + 1)

x

x
2

which is easily verified t9 be correct.

Given the partial fraction- decomposition

complete the work of formal

standard forms (1) and,(2).

n >1, we have

A t -
(10a) f (x

+ 1 x - I

+ 1 (x
2

+ 11N

and if n = 1, then

(10b)

'

of a rational function we

integration. by showing how td integrate the

For (1) the integrals are already 'found. If

+ C

,x - 1
dx = r.log Ix -'11 + C.

For (2) we intr6duce the substitution

(x - a) = b tan u

where we assume ,b > 0 (compare Example A4-1b).

we 'obtain

Of the last

Using dx -

VX
k

V < <2),

b
du '

2
cos u

px + q p *tan u + pa+ a' b

[(x - a)2 + b2111 b
2n

tan2u1n cos
2u

du

A

b
2
--2

-1
-- cos211-3u sin u du +

b
2n-

922-1.
1
1 cos211-2U du.

n

o integrals,

the second- is given by the

as aaexelcise the problem

the first is immediatel/fqrmally'irrtegrable and

recurrence relation of EXample.A4-2i. We iepvq

of completing the integAtion and representing

fords,' integral in terms of

of the following types,

(11a)

1

The resulting integral is_ssum of terms

Ax t B

[(x - a,4. b21k

k is a positive integer, k <n,

V
N

. A log [(x - a)
2

+ b2],

'A arctan
x - a

726 " Is
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,..... , i'' 4 , A4-3
,\

Finally, we observe that if we, know the factorization of Q(x) we know

the fort of the integral P(1 from (10) and (11).eg Therefore 1t is
Cgx, . .

'sufficient to differentiate this form and determine the constants by the 44'

method Hof equated coefficients..

Example, A4 -3d: Consider

x + 1

x?(x2 + 4) v'

The integral must be of the form

. The derivative of

5,

,

a
X

log x +
,

+-a log' (x2 + ijj + 13 actan E 4- C

this expression is

h b 2ox (a.+ 2U)x3 + (213- b)x2 + 4ax - 4b
x

x2 x2x . x + -4 x2 + 4 x2 (x2, + 4)

.

-Since the numerator of this expression should be )6.+ 1 we have on equating
A -

coefficients ,.

, .

o a._-1- aa = o, 20. - b = 0, 4a = 1, -4b = 1,
-

whence
,

1' 1 1a = , b - (L:= p g
/

It is easy to verify that this yields the correa integral.

1. Integrate the following
.

x + 2
(a) 2

x + 3x + 1

Exercises A4-3

2

."te)
(x a)(x b c)

x3 x3 + 1(b)' (f)
'x + 3x - 10 xr 3, Q1

(c)
2

x3
(b > lel) .6 (g)

i x -+ 2a)i. + b
2

'x3

1

+ a3
. ,

.
(d) -x

2
+ ax + p

(h) SZ±122.__
(x - a),(x. -,b)

,

(Consider the cases

a i b and a = b)

*

x(x -'1)2

...
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A4-3

(i) --4---
x

_2

(j)
x - 1

(k)
"6

1
4

x + x

2. Prove from Eq ion (3) that if

4

(/) :t71

Q x) (x - si)(x a2) (x

1
a, < a

2
< < a

n'
then

fractiond of the form

3. Prove if

.

/OIL

where

has a 'decomposition into partial,

:

1
r
1

4- -4- -4-

r2 rn
...

72,77c .x - al x - a
2

x - an
.

.

a nxn + an-lxn-1
0

= bnxn + bn-lxn-1 + b0

fox'. all0but finitely many numbers x,, that the coefficients of like

,powers on the right and left are equal; i.e., pk = bk for k = 0, l

4. Verify that
px + q

b
.2,

j

'dx can -be expressed as the sum' of terms

[(x - a)
2

+

of the forms (11a, b, c).

8

to rt
ear
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4.4. Definite Integrals ,

In Chapter 9. and earlier sections of this appendix we addressed ourselves

:Pribfiarii -"ro the problem" of finding the indefinite integral of a,given function.
--,,.

In principle, this solves the.problem of evaluating any definite integral of the

function. In practice, it is of't'en desirable or necessary to ev:aluate_a definite
1

*integral, not by formal iltegratioU,'but by some other method altogether.
.

It may be impossible iactotain'an explicit representation.of the indefinite

integral in termssof elementary functions, yet'some,special symmetry may

41eld the value. or a given definite integral.effortlesaly. Even if the formal

.expression for.the indefinite #tegral is obtainable, the use of a symmetry

concetion may be(a worthwhile shortcut. Often the idea of integral remains

appropriate when the Riemann integral, as, strictly defined, does not exist

because the range or domain of the integrand may be unbounded. In these

cafes, we b,av(toeittend the definit of integral in a meaningful sway.411, All
.

these problems are treated in this s;Alon.

*.
(i) Symmetry. Watch for-symmetries; the observation that a symmetry

0
exists often provides a direct solution' to a problem,or an important simpli-

fication. We have already pointed out one useful symmetry in Section 6-4.

(1)

.

If f is.san odd function and integrdble pn C-a,a); then.

a

,.f(X)dx = O.
-a.

0

Example Consider Ti

Avoi. 4.
y 2

I -=,.. x e
x

sin
4

x dx.
A>

.-7(

,It is hopeless; to find the indefinite integral, and it, i ' t needed, since

I.= O. , :401.4
...---

..//

If f is an 'integrable even function on
t
a , a

c2) f(x)dx -= 2 f(x)dx.
-a 0

$

,

:729
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Ex, ple A4 -4b. Consider

= (a0
-x

+a1 t+a2 t
2

+ a
2n
t
211\

ldt.

The odd powers contribute zero and for the even.powers'we obtain

I =.2 (a0 + a2t
2

+ a
2n
t
2n

dx

.10

a
2
x
3

a
2n

x
2n+1

= 2 (ox + +
2n + 1 )

.0

Often an integral which exhibits no obvious symmetry can be'transformed

. into a symmetric integral. 'finis is specific for each case and no general rule

_for discovering such symmetries can be given.

Example A4-4c. Consider

Since the graph 'y =

u = x - 2 and find

=
5

dx

317-72 has a center of symmetry at
4

3 q

= U du = O.

-3

-;

N

we set

Another-important syMmetry of a'function is periodicity.

0 If the function f is integrable and periodic with period

p, then the integrals of t offer intervals of length p are

p11%the same; i.e.,

`(3)
a+p b+p

f(x)dx = f(x)dx

a.

for all/ a and Jn--

The statement is gepmetrically obvious. The graph y = f(x) over any

interval of length ;la represents the complete graph in the sense that the

picture,of'the function from a to p is identical to the picture from

*
kp to a + (k 1)p where lc' is a nteger. The entire graph can be

thought of as a sequenCe of identical 'pictures of width p, laid

end (Figure A4 -4a).; If a frame of width p is laid over the graph (the

730,

330
I

1,



1 la

JP
ti

. . .

a+(k-l)p b a+ky . b+p l a+(k +1)p

I-

+(k+2)p

Figuie A4-4a

733,
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,
,interval . (b,b + p) in the figure) then, the part of the total graph within:

the frame may be cut along a line a + kp d reassembled to -form the

original picture by interchanging the two piece formed by the cut. This

geometrical discussion is xs'tctly paraphrased by the analytical proof.

The proof is' left to EXer ses A44, Number 12.
i

Example A4 -4d. Consider

n4.144+

./

n st

I = (a0 + a1 cos 27tx + + a cos 2kyx)dx.'

0 '

Since the intdgrand is periodic with pe od 1,

I n1
v.cos

2vtx dx + av cos :2vIcx dx.

0 v=0 0 v=0 as

For v > 0,

At

and

Xoneequentlyi

*1 k

1
sin 2vvx

.

Itx dx - = 0
2m1 11

0
cos 2v

0

1/4 ' sin (Ill)

cos 2vrtr dx
2vn

0

.al\
I = tn + .71 a +0 2y -10n `. .

, -
(ii) Special reductions. The general form of a recurrence relation,--

I.

for a definite integral is
. ,

. .

. b p

i:

b'

fn(x)dx F g
n(x)1

+ c
a _

i. f (x)dx.
-- a
n n-3. .

,

Quite often speCific problems lead to integrals for which the "boundar y" term

b ,-.-) -, ,

, , A. . , r

gnZx) ="gn(.b1 r OA)

,

is zero for. n > 0, say. -If so, we immediately have
.

e

732
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1 b /

i, 1 n( 2;') 1, n n-1 l' f0(x)a
f

s c .c

.
I

. a
- 0

,ThUs IrC-Example Ali. -2f, we could conclude at once from .

Sxm(1 x)m+in
i xm(1 - x)m-4' dx

x 1 (1 - x)m ." n
ni;+ n + 1 ) n + m+ 1Az

. .

hat'',.
1

,

,
1

1
."J

xm(1 dx -
In + m+ 1)('n + n) ... (m + 2

x
m

dx
n(fi - 1) ... 1

1
- x)

n II

n n - 1 . .. 1

, /

Thus we obtain an important c nnection with the binomial coefficients:

n + m

it xm( x = {(n m + 1) (Ili I
o. m

-1'

EiaMple A4 -4e. A case f special interest is

0
cos

n
x dx.

From the result of Exatpl -2g, we haye ,

y/2-1
c s

v-1
x sin x v -
V

0

",

V
I
v-2

For v > l,' this yields si ply

( 4) '4%
v .-- 1

Iv =
v-2

For V even, V = 2i, we obtain

-41W0
(5a) %It

(2n -0.)(2n - 3) ... 1 y
.2n(2n - 2) 2 2

For v .4odd,.v = 2n + we obtain

2n(2n - 2) 2

n+1 -:(2n +/1)(2n - 1) ... 3

.733 '

333 t"

A4.-4



I

.From. (5a) and.(5b).there van be obtained a graceful represed-
It

"cation of
2

known as Wallis's Product. Observe that

2
2

4
2

(2n)2
' I2n

2 1 3 3 5 '5 7 (2n- 1).(2n+ 1)
12n+1

. ,

Now, since 0 <cos x < 1 on 1041 we have cosN*ix <cos9 x for

all v so thi.It' I < I. It follows that I- < I < I

J
' 2n

2n
*.1

12n+1'
\

2n+1 2n 2n-1'

and since '121.11 that'
1

I2n
1 <y---= + 1

2ntl

-

Taking limits we obtain lim 7
I
2n

---- - 1, lence
'2n4:1

2n

. ,

4 4
2

6
2

2 1.3 35 57

where by this infinite product, we mean simply

lim 2 4 6.
2 2 2

1 (2r0
2

n-4°° [1 ' 3 .3. 5 5 7 (2n - 1)(2n + 1)1

lim

n

.

122n. (n02.1 21

2n + 1 (2n)! j

The verification that the to expressions in tletese limits are equal
'5

is left as an exercise.
it

'John Wallis (1616 - 1703) nglish.

*. 734
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Exercises A4-4

Evaluate the following defipite integrals: *

99 sin99 )(

1.
99

-99
'x2 +'(99)2

g. 1x3 e
-3x

2

dx

o

3

4.

5.

e

log3% x

1

n/2

.

dx, (12,a positive 9.

integer)0

6.

/2
dx

'a + b cos x

smis

k. a >.b > 0

g/2
7, \

7
sin x cod x dx

2-8:_ . dx
rr

1 x + x-

ir/2

sin
m

x qOpm x dx , 10.

(m, a positive integer)
,

Ir

.

iv

)

- x
2

dx

a.

sins e + 1 .

a
2

s n
2

+ b2 cost e

a > 0 , b > 0

I

-a 0 _ ,

ii. Compare f(x)dx with f(x)dx -when f is even or ?aird to

0 -a -\

derive the resplts (1) and (2) of the text by a method other than the

one you employed for-Exerq.ses 6=4, NUmber 4. f T

e 1

12. Prove if f'

a and b

A

is integrable andperiodic of period

4-

a+p
f(x)dx = f(x)dx.

a b

13., Prove that if n > 2 then

14. Prove, that
I

15. Show

.500 <
dt

< .524,

1/F77

2x(1 + sin x) -2
dx =

,71( 1 + doS2 X

p, then for all

k ,

I

sr

22 42 62 (2n)
2 2n(no2

1 3 3 5 .5 7 (2n - 1)(2n..+ 1) 2n + 1 (2h):

-

,

tad

7350

335

!2



1

/

16. Determine the value exact to two decimal places of "

17. Evaluate

e36.1

1

sin(v log x)

1
x

411..

v/4

j -v/4 2
dt.

cos 2t

(Hint: Express the integrand as the sum of a s

integrable part.)

, 11111 etric part and an

J



Appendix 5
.

THE INTEGRAL FOR MONOTONE, FUNCTIONS

(
A5-1. Introduction

Area, as we treated the idea in Chaptyr 7, was not defined analytically

but accepted as a geometrically understoodrconcept. We did not question the

idea that a region with a curved boundary has a definite area but began with

the implicit assUmption that it does. Our intuition did lead us to the

Fundamental Theorem of Calculus enabling us to calculate areas by finding ,

integrals.- In this appendix we shall take the concept of area arrived at

intuitively am express it in precise analytical terms.

Underlying our method for determining the area of a regioh, there are a

few elementary ideas. These ideas are commonly accepted properties of area

which we postulate as the basis for the formal analytical definition of area.

The area function a which associates with each region R of the plane a

real number, the area of R, should satisfy the following properties.

Property 1. a(R) > 0

Property 2. If S. and T are two regions and if S is contained in T

(every point of S is alsoia point of T) then a(S) < a(T).

Property 1. If R is the union of two nonoverlapping_reilons Ri and R
2

(every point of R lies in Ri or R2 and only the points on

their occomon boundary lie in both Ri and R2), then

0(R) = a(R1) T g(R2).

4

Property 4. If R, is a rectangle of height 'h and width w then a(R) = hw.

° Property 2 is called the order property of area and Property 3 the

additive property. Properties 2-4 are illustrated in Figure A5 -la.

737

337

O



Property 3

Figure A5-la

Exercises A5-1"

1. Prove from Property 3 that if a, region R

lapping regions then

"so

Property ,4

is the union n nonover-

a(R) = a(Ri) + a(R2) + a(Rn).

2. Show that Property 2 is actually ,a consequence- of Property 3 ziiien that
.,area is nonnegative. lngorpebrate 'the, notion of, complementary legions.

Using ,the given f14-c3perties of area obtain the area. Of
AO,

by elementary geometrical arguments
lb the 'same, fora trapezoid.

4. If Property 4 is replaced

Property 4, The, area of a
6

Property COngruenp

show that tiNgrea, of a, squar

. Using the previous exercise, show
h and width w :is )11w:

:.,.. .
it 4!qtr is Dap. ° 7

:5 .
have, he same area,

t,,,,, .

aide ls of length a'. I.4 a?.

t tba area of a /..ectangle 9f,h.eigiq ,.
4 A % : '''' ,;: , k. .1 ' ! .°,

O

O

44. *.tif
4 A

!

tr

a



V
A5-2-..Evaluation of anArea

uic

This section describes, in general terms, the estimation prooedure of

Section 7-1. Let f be a nonnegative bounded function defined oh [a,b]. We

define the standard region R under the graph of f on [a,bl as the. set of

points bounded above by the graph of f, telow by t x-axis, on the left by

the vertical line x a 'and on the right by x b; that is,

R ..'((x;St) a < x < b and 0 < f(x))

(Figure A5-2a). To estimate the area of R we subdivided the standard region

into smaller standard regSons by subdividing the base interval [a,b].

o = x2 Nt-1

Figure

n-1

We subdividethe interval into n parts, setting x* = a, x
n

= b andt 0
choosing points of subdivision

_
xl, x2, 74., xn_i such that

. L * ....r
. _

x
0

< x
1
< x2 < .... < xn_l < xn.

On each inter-f6I--tik:IlTx0, where It-= 1, n, we have a standard

region Rk where

Rk = [(xfy) < xk and 0<y < f(x) ).
)-

We then estimate.-the-area:Wea.eh, subregion Rk from above and below by rec-

tangular approximations. In each interval/ .[xk,_1,xk]_ we obtain a lower,bound
. _

mk and an, upper bound Mk 'for f(x):

*
Thiszprocess is sometimes referred o as establishing the net.

739-
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ie.

mk < f(x) < Mk, (xk_i 5 x
'

The region _Rk is therefore contained in a rectangle of height Mk and,"in

turn containva rectangle of height m, on the Ammon base

, conclude from Property 2 and Property 4 (SeATOV.A5-,1), that

nt(xit xk-1) a(IV 5-Mk(xk xk-1)

Using the additive property, Property 3, we then he4e

It follows that

and

a(R) = a(R.04.,+ a(R2) + + a(Rn).

a(R) > (xi - x0) + md(x2 - x1),+...
mn(xn -Ixn-1) .

Exk-i,xkl. We

<'M1(x.1 - xo)

In abbreviated sum notatio'

m2(k2 xi) +

ction A3-2) we have'

X ) .

nik(xk xi-1) a(13) Nock
I

k=1 k=1

Let us review this method for the function x 4 x2.

Consider the region R under the graph y = x
2

on [0,1], (the shaded

region in Figure A5-2b(1)). Since f is an increasing function on [0,1] it

will be easy to-approximae a(R) from above an below in the manner of

Sgaion 7-1

4

We use a subdivision of [0,1] into n equal intervals by means of the

subdivision points x x On the=
n

0
=

1
=

n
,

n-1 = --=
,qtn

Ase.k-t inteiwalof the aubdi-loision, < x < xk, we have

f(xit_i) < f(x) < f(xk) since" f is increasing. '

4

VW.

74(16. 4 ;.)
. -



I

( I)

r

Figure A5 -2b

A5r2

.

We conclude that the standard region Rk based on the interval (xk_vxk)

contains the rectangle Sk of height f(xk..1), and is contained in the rec-

tangle:Tk of height f(xk), both on. the same base. The union of the non-
1 i 1 1 _:

6.reriapping reiangies dk- forms a region S which is contained within R,
and the union of the rectangles , T..

k
contains. R. From the properties,

-1 .

of area we may then obtain upper and lower estimates for the area a(R).

3"4 1



and

CIP

We have a(S) < a(T), where
ti R ti

V,

k=1

c=4).(?ck 'plc -1)

- 1\2 1

n 4c-

n

(k2 - 2k + 1)

n . n

1

n,
k2 (2k -

k=1

=

n

k=1,

n

145.71

o

=1.1L3

k
2

k=1
AO

We recognize the second sum in the braces within the:formula for a(S)

as the sum of an arithmetic progression, the first' n oad.,natural pttAers'',

whose sum is
l;

n2. The sum k2. of the first n squares appears in both

the formulit for d(S) and.that'for de(T). A general 'treatment of such'stOs

is given in Section A3-2. For this particuldr sum we have (Example A3 -1g)

1,d1:11eqt.terY,

,

S k2
.=

n33 + n2

- 2

k=1,

a(S) =
1 L1 1=
43 (2n 2

/1. on_

. 3 2'
1 1 1

a(T)
=

n
3'3 2 6 3 2n ,,2

on

Since S is contained in 'R, and: R is cogtain4t-in T, Property 2 of
, -

area states that

sr

-742 '
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a(s) < a(R) < a(T) ) t-

,

A'1- a.

3 _ '2,11+ 7 < a(R) '5.: + 'f17-+ ,

a.

As we increase the number'of

2 a
6n on

)

.

.

subdivisions n, both a(S) and
,,

a(T) become
1

*steadily better approximations to the number 3' and we conclude that
. .

1". . 1 ,\ ..

FikR) = . Fotmally, given any tolerance E >0 we choose n to satisfy

the inequality
o,

,1 1 s
'..4 t ° l

,.,., -.--.,-- -,-,,:;),...A-kw4,1....- '''
I. ..._.

,
then a(R) differs from a(S), oi' a(T) by at matt Ei NO the estimate

i
.a(s) from below and a(T),.., from above differ from each other by at most '2E.

.1Sp4cial sUmmation;techniques can be used to obtain the areas of standard
14.4,

regions ftor other functions. In Section A5-3 such summation techniques are.

used for the power Function x -)x
n

and the circular function x -).cos x.-

Often it is not convenient, sometimes not possible, to represent the area as

c'El' limit of sums which may be easily evaluated. The Fundamental Theorem of

CalcUlus offers simpler and more genet* techniques but these, too, may fail.

The idea of approximation is the fundamental one, and if alL else fails we

can always resort to obtaining approximations from above and below by the

Trapezoidal Rule or Simpson's Rule to find the area of a standard region.

1

713
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Aj 1
f

, l., Use tre

(a),f:x-4e,0<x<b,c>0.
1

(b); f : < x < b, c > 0.

(c)' f

,(d) f

1,

Exercises A5-2

summation (method to find the area of the standard region. defined

: x x2 + 2x, 0 < x < b.

: x sin (ax + b); 0 < x < c; a, b, c
ysin (ax. + b) > 0 on [0,c].

(e) f : x -4.cos2 x, 0 < x < c.

such that

C.

2. ,Determine the area of the standard region for f : x -416-c on [0)1].

(The summation encountered will be similar ihtl! thel'one encountered in this
saction.)

3. -0b5iin the result of Exercise 2 using only the fact that the area under
yn

-.the graph of f : x x2 on (0,1] is 1

' together with the basic
'properties Of_area, without resort to summation technitfues.

- 4. Show how the upper estimating sums for c ate related term-by.-tera to
the lower estimating sums for x2 ,

. klicint: Sketch a graph° of y = x2.

Use this graph and the y-axis to represent the standard region defined 9

by 4:-.)

5. If Sn
-= + 4 shOw that

- -

I
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InteEirstion SuMmation Iechniques
3.

(i) integral of a polynomial.

)

In Section 7-5 we noted that

integrallof,a linear cpmbinlItion

of theirlibtegAls:
----I

b
,--

(91f1(x) + c
2
f
2
(x) + ".

. a ,

integration is

of functions is

cnfn (x)]dx

b
=

a

c,

-4

fi(x)dx

s.

b

+ c
2

a

In particular fOr a polynomial, we have

n 0

f 1: crxr x = E aria xrdx.
a

r=v r=0

In.order to integrate a polynomial, then, it is

,1,ntegratepositive integral powers.

a linear operation, that the

the same linear combination

(x)dx + + cn fn (x)dx.

a

We here

sufficient to be fable bro

.0

ti

b
,*

a

fa f(x)dx__ f(x)dx_s,f,x)dx

provided that f is 1nteg lei over an interval containing the points e,
. .

bj c: (See' the discussionl)re-Ceedine,Example 7-5e.) In partiCular,-for, a:

polynomial ye have

b

,

b

:(x) .f(x),cbc., _fa f(x)./13c.
0

.

.
a

We need therefore consider only integrals of the type : f(x)dx.
0 /c.

the integrtil of xr, over 9[0,a]. Since
.

is incregsing on the interval. We:tall.e.a

- -*4 "71..

Considpr,
.
in particular,

. _--it/0 the-function -oc':r

partition a which subdivides the simterval into

,h v(a) =
'n

. we ford the upper sum

in web subinterval; tines-
.

/--

eq61,parts of length

U over, a using tht:mwsimum of x
r

75
3'4 '5
-

.p
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4.41,

where P is a polynomial of degree r -.1.

5

.

AcordingAto Equation (4) of Section A3-2 (ii)' have

411kr-41 1)r +1

k - + P(k)'
r +

- Ki(xk - xkli),

k=1

n

= (kh)rh

k=1

hr+1 -kr

k=1

It follows that

=,

r+1

.(2) U = 1=1. Lk
r+1

- (k 1)
i+1,

J + Q(h)
h 1: r

- ,

where.

0

(3)

k=1.

Q(h) = h
r+I

P(k)

k=1

and P is a polynomial of degree r - 1.
.

(

We recognize the sum in (2) as'telescoping (Section`

e
hr+.1., =,1( Tth)r41.

;' r r + 1 4

Since hh = a, we haye

r +1

- U r +1_ +Q(h).'

, .
.

We can show that Q(h)_ can be made closer to zero thaany given error
.

...

--i4eranc:e' using only-tfint.thedl qree PO is at most r - 1. We, set
I .

4

1)) and obtain

:ar

a

--I. a_

r-1
.

P(k) = Iliki; Since lk <'n it follows;

1=1
',.,

. p
...

r-1 r-1 : . r-1 : f . r-1 7r

,11)(k)1.5.. Z IPilki < Z' IP 'Ini <E ip ini-71<nr-i E- ipii,i i.
1=1 1=1 J.1. 1=1. ,

0

.
- . .

(
e 1, '
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1

In shi to we have found

°(5) . JP(k), < Cnr-a

where the constant C is simply the sum of the abso3_ute:values of
coeffiCients of P(x) Entering the result of H in (3), we have

n

''(6) 1Q(01 < hr+1 E ip(k)
k=1

n'

hr+1 E cnr-1
k=1

< hr+1 n(Cor-1)

< Car h.,

where agarp we use the fact that nh = a
lim Q(h) = 0.
h-O

It follows at once that

the

Wft-uld also form the lower sumi__L_nyer by taking the minimum value
of xr as lower bound in each r' 1

x In this way we could
obtain la result for L similar to (11) and so prove

(1)
a

a
1.+1

xrdx = r +, 1

,
' the details are left to the. reader.

._- .
(ii) A cosine tftegral

_ seet us attempt to find the integral of cos x over [0,81, where we
suppose a < vikso that's x is degreasing on the interval. We take a sub-

4
the interval Into n equal parts c aif length h = . Setting

'f"

we obtain a lower sum L over a

n

L =E -(cos
k=1

x
k = kh,

n

xk),(x.k- xk_i) h E
k=1

.4

4

(k=r, ? , n),
de,

cos kh



and' an' upperupper svM 'U ioirer a. ,
i

i li
i ,i..

.. 1

c
0 n

) 4

U = -17 E c,:,,s(i, - 1)11

k=1 i" .

= L + 11[1 '- cos .a] ;

Frot Equation (7) of Section A3-2(ii), on setting

n(a na
[sin(n-cos sin = + - sin

2
+ 1)

2

we obtain

(2)

2

n ,sin(n + -)z ,

Ecos k,2 = u(n) u(0) - 12
1

2 sin f z
,

Equation (2) permits us to evaluate the limit of the lower

k=1

in Equ'ation (1):'

ih 1

2 , 1
7*.i lim L = sin(a + h)

h
e 2h-O sin 7 h

sin uUsing the Pact that- lim
u-0 u

Since the diffrence

J- .

- 1 -we Alave

lim L = sin -a.
h-(2

sum given

between L and U has the limit 0,, we conclude that
.)

-- a
I cos ,x dx = spin a.

0

748
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, Exercises A5-3

1. hf subsection (i)jof this section we state that it follows "at. once" from

the inequality (6) that

lim Q(h) = 0.
11-0

Actually, what theorems on limits are beihg used?

2. Show simply, without repeating the argument of the text, that the lower

n
sum L over L .E xL1 (x- xk) also has the limit (7).

k=1

3. Employ Equation (8) of Section A3-2(ii) to obtain dx for
0

0 < a <
"

749
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-- 4 _

TheO6ncept of Integral. Integrals of Monotone Functions

befinition of integral., ,

In the compUtation of the area of the standard region under the graph of a

bounded function f on a closed interval we gave upper and lower estimates of

the area in terms of upper and lower bounds, fox f on each interval of a sib-

division. If the functiQn f takes, on maximum and minimum values on each

subinterval, as it would if f were continuous or monotone, thenthese would

give the sharpest,.possible bounds. When f is continuous it may be easier to

use °slacker bounds than to attempt,..tip determine the extrema. For monotone,

functions, however, the situation is especially simple: The extreme values

on an interval are taken on -at tit endpoints:

We may allow f to take on negative, values so that the interpretation of

the upper and lower sums as upper and lower estimates of an area may not be

immediate. Still these upper and lower sums may serve as upper and adwer

estimates for some unique number which lies below all upper estimates and above

all lower estimates; Lf such a unique number exists it is called the integral
]

of f oven the base interval. The idea of integral has farms- reaching appli-

cations, and.its interpretation as area, although useful for visualizing the

concept of inttgral, is no necessarily the most important realization of the

concept.

We consider a bounded function f defined on a closed interval (a,b), a < b.

A subdivision of [a,b] into n interGals is defined by a set of points

a (x
0

x
1

x _ x
n-1

, x
n

)

2

where xo = a, xn and

x < x < x < ....< x x1. 2 n-1 n.
rt

1

We shalt call a set a of poind satisfying-Mese-requirements a partition

of (a,b1. On the k-th salantervaf Exk..1,xk] defined by the partition a,

_let mk be a lower bound, Mk_an,upper bound for r(x), 'so that

m' < f(x) < M
k

for all x in the subinterval. We define the lower sum over a for the lower

bounds mk as

759
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n

L = mk(xk

k=1N.
and the upper sum over a for the upper bounds Mk as

n

U =-14EN.Oxit.- xk.1).

If f is a nonnegati4e 'unction then the lower and upper sums correspond
,

to lower and upper estimates, respectively, for the area under the graph of f
on [a,b]. More generally, without restricting thelsignof f, we use the..

loker and upper-sums to define the integral of f, if it exists.

DEFINITION A5-4. Let f. be defined on [a,b). We Say that the-

number I is the,integral of f over *(a,b) if there exists

just one'number. I such that for each choice of partitions al,

a2 and all lower sums Li over al' and upper sums U2 over

a2, 'we have

L, < I <

We raise the question of existence of such a number I because it is

not immediately clear. It is possible to prove that no loWer sum is greater

than any upper sum. Still, there ay be a gap separating the values of the

upper sums from those 'LIT the lower sums. If so, there is more than one number,-
between-the lower and upper sums and the integral is not,defined, On the other

hand, if for each e > 0 it is possible to find lower and upper sums which

differ by less than e, there'issuch a number I which these lower and .

upper sums approximate within the error tolerance e; in, other words, we are

able to define I as the limit of upper and lower sums. We state the prin-.

ciaple result here as a thebrehl which we shall use. ;

THEOREM' A5 -4a.

every positive

lower and upper sums L and U over
than e, then there exists a number

Let' f"be a:bounded fundtIon on ff-fo-r

e there exists apartition of of fa,b) and

f over [s,b]. Conversely, if f is

_then there exists a partition a with

and U such that U - L < e.

a which differ by'less

I which is the integral of

integrable over f.a,b)

lower and upper sums L

(

751
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If f',,Inasan integral I over [a,b1 we'say that f ,is Integrable

over (a,b).

A5,-14e requires a verification of the con ions of

Definition A5-4. FirA we Must have a derricitistratiOn that ho uppell sum.is lessq

than any lower .swn. In that event, there.exists at least one number whidh is
.p:,A"
both a lower bound for the set of upper sums and an upper bourid for thetet

If lower sums (Separation Axiom). It must then be shown that there isattilost

one number I'between the upper and lower sums.. This follows from the exis=

tence df an upper and a lower sum which are diAer together than any prescribed

tolerance E. Thus the4integral ts determined by a squeeze between upper and

lower sums. For the details see Appendix 8. t

(ii) Integrability of monotone functions.

For monotone functions $'e' may choose mk and as as function values

- at,the endpoints of [x, hick]
and it is particlalarly easy to obtain an

estimate of the difference between the upper and lower the error

of approximations to the integral. We picture the situation in.terms

of the area of a standard region for a nonnegative increasing function f

xk .x.eb

-.

Figure A5-4a

In Figure A5 -4a, -the. shaded.re.jtangle over the inlerval [xk_12x0 -has height-

Mk - mk, where Mk f(xk) and
n'k= f(xk-l):

v(o)

1(b)- f(o)

The total are;, of the shhded rectangles is.the difference between the

upper an lower sums for the given partition.
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Since the function f is monotone we ,cat imagine sliding these rectangles
. ,

... ,

`0"14..**parallel to the X.axisinto an arrangement with their right sides aligned- In
)

.--,

this ch.Tangemen:t, the rectangles are contained Without overlapping in a single
) . .4 .

ree*igle.of height' f(b) - f(a) and base equal to the length of the largest
. H ,

y

illt4rai of the aubdiVision., The, length of the largest interval,

, .

, w( a) 4 7 - m a x - :x..k.:1),

is a measure of the,coarseness'of the subdivision and is.called the norm of the---
partiti9n,.., a. We have'depieted a bound On,the difference between the upper

and lower sums:

U - L < [f(b) - f(a)]v(a)Al*

Clealky, we can'make the 'difference between U and L leset than any error

tolerance E by making the xubdivision fine enough, namely, by choosing a

so that

v(a) <
f(b) - f(a)

,Since the area I must then lie in the interval of length at most e between

U and L its value cannot differ from either by more than, e andwe have

satisfied the condition Of Theorem. A5-4a.

AlthoUgh.we have obtainedphe last result by a geametrical argument we

Can obtain the same result analytically with ease. We now prove:

a finite monotone funption on a Closed interval is integrebl.

THEOREM A5-4b. If f is monotone on (a,b), then 'f' is integrable

overl4a,b] .

Proof: Washov'that for each positive e it is possible to find a

partition a of fa,13) fort which the difference between -the upper and lower

sums on the partitiontalrbe.made less than e:

. U. - L < e.

*
For'thisose_we_let____Mk be the maximumand mk the= minimum of

[x. x. ]. We shall prove that it is sufficient to use a subdivision a with
r. norm satisfying,

V(a) If(b) f(a)l

when / f(a).
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The case f(b) = f(a) is trivial since the function t must then be a

constant function. In this cage, we have Mk = mk and

- L = 0

for all sul2divisions a.

We consider the case of a weakly increasing function f (the weakly`

decreasing case is similar). The maximum and minimum on [xk_i,x0 are

given by the endpoint values

Mk = f(xkr and mk = f(xk_1).

Summing over intervals of the subdivision we have

n

Eu=I:lk(xit xk_i) =E fock)(xk xk_i)

k=1 k=1

Consequently,

L =Elnk(xk. xk-,1) =Ef(xk-1)(xk xk-1)

- k=1 k=1

,
U - L =E ,f(?ck) ,,.,_imck x,,,

,

k=1

:7
n

ft(xk) - t(xk_i)) (0

k=1

.

3 - , .

We observe that
-...... .,

k=1

n ,-

1:71(xk) = f(xl) f(x2) + + f(x )

n

Ef(xk _1) = f(x0) + f(xl) + +, f(xn..1).

k=1

354 O
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Subtracting the second of these sums from the first, we have

J.,

consequehtly,

faxk) - f(xk..1)] = f(cn) - f(x0)
f(b) f(a);

U L < v(o)[f(b) - f(a)]

A)-4

To make the difference less' than c we need only choose 'qo) as indicated

above. We have satisfied the condition of Theorem A5-4a and it follows that,

f is integrable over (a,b), . -

( iii) Riemann sums. Notation. °

We have employed a method for defining area by approximation from above

and below an extended our approach to define the more general concept of

integral. This method has the great. advantage of logical sImpilcity in the

derivation of prqerti,es of the integral.

A more dirlesc,t method, but one which requires somewhat more complicated

argument, is to utilize' values of the function in the int.ervals of a subdivision,

instead of upper and lower bounds for approximating the area. Thus, for a

function ,f defined on La,b1 -and a partition a = (x0 , x1 , x2 , ,; xn)

Of .[a,b] 'we introduce sums of the form

4
.(1) ,

R =,01E fk)(xk xk.:1)

-,

, Ak.1 e
. A

-where =E
x

is any value in: tbe'Ls4iiiterval [-X. -.X..]. These are called .

x-1'

.
Riemann sums . For a general Riemarin sum the 'rectangle over [xk_i,x0 will 0

usually not. include all of the standard region under the graph and will usually
. i

.
(,

include some region above the curve (Figure A5-'4b) %o that there will be a :

partial cancellation of errors. Sihce mk < Otk) < 14k, no matter how

_it' chosen, we see that the Riemann sums are sandwiched between the upper and
40;

lower sums

/'

;., .< R <U.

0

.

I
.

D

.

.
I... .

1,44

After Bernhard Riemann, a German mathematician of the early 19th century,

a Rionelir in the careful study 'of the concept of inktgral and. in other impOitent
N

areas,,:.- A .:..

-A.',

;... vs. ,
.,
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If f him an integral ,I, we can therefore approximate 'I, by Riemann sums.

In fact, the approximation'to I by liemannpums can be kept within any pre-

avribed tolerance of error fOr every sufficiently' fine subdivision s and
'15p,

corresponding choice-of tit. We shall then have determined the intggral,as

,a new kind of limit, a limit of Riemann sums:

c

. lim R.

v(s)-4 0

r

°:R

a
-

x
14-1

'Ck xk

Figure A5-4h. 1

- -..

. .,

..... .1
ser .. ..._ 7'

It is natural to suppose that if this limit of HieMannSul6 exists, then

so does.the integral I of Definition*A5-4, and to suppose that the tw6 are

the same. This is not an obvious proposition, butit is true. These \remarks

aresummarized in the folibwing theorem.

THEOREM A5`-4i. The value II is the, integral of ,f, dyer %eta],

in the senselg Definition A5-4, if and `Only if it is the limit

of Riemann 'sums,

I = lim R.

v(a), -' 0

The proof will be found in Appendix 8.
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.110,

The integval 71.- of f over [a',11] is pa9a14r written in the elegant

tOtati, on of'Leibniz. In Leibnizian notation, the Riemann sum (1) is written
I.

...

VIere .6De represents the ifference xk - xk.a.. In representing the 4
.0

1P
integral Leibniz used form,reminiscent of the Xemann sums,

,.
.../ Aft .

' . 1)

I 'S C1C6( x) dx.

.---Afthough) as we have seen, the Ceibnizian notation for integral nicely

complements the Leibnizian notation for'derivative, itstems from conceptions

'iit.whtch are difficat to make prebise. In the thinking of Leibniz and most of

the early 'users of the calculus, the integral sign
. ,.;

.

Roman vS"- is a special sumOtion -symbol which rleaces the corresponding
b

Greek. symbol .;'1.' The integral f(x)dx w ought of as the suo?of
a

the areas of the-inginite set of "rectangles" having nfinitesi*" or

"immeasurably smaIrotase dx an height f(x) for x 111 (tom Roman

"s" in'.."dx" replaces the Greek "A" Of the i e Riemann3sum). -
l

)

which is an elongated

V

k

V

6
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Exercises A5-4

1. By,using upper and lower 'sum estimates evaluate the integral of each -

function f over the indicated interval.

4f-
(a) f(x) = 2 - x

2 0 < x <1
s. 0"/

(b) f(x) = x' 1 < x < 2.5

(c) f(x) = 2.5 < x < 3

(d) f(x) 5 - < x < 5

2. (a) Find the min-i and the maximum values of f(x) 2 + 2x - x2 on

the intervit10,11, and use them to find tWo numbers respectively .

below and bve the-velue of f(x).,,dx.

0

(b) Che-ck yoUr result bir evaluating the integral.

3. Find upper atiT-
loWer sums differing by less than. .1 for

the; graph. Oef : x it on (1,2 .

I

et.

the area under.

V. Evaluate earth of the following integrals, using upper and lower sum

. estimates.

(a)

9

6. k function f deflOd on the interval [a,b] is said to be a step-

}

-..

function on [alb) ''-41Fifbr some Partition a = fx x ... x 2,f the t

O' 1 ns

;.z interval, f(x) is -ao4ant on each open subinterval' (xi;_i;:ck,)k ='1g.

2, ..., n. Thus sgn x is a step function on [-1,11., sgn x

ye 4'-++ is defined by
-1 , X < p

sgn x 0 , = 0 .
%

' e .-" 1 , x >.0
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A

.
7. Eyaluate each of

.
the'followineintegrals:

in Appendix 1.

#

-

3
(a) [3x + 4] dx

(.1))

°

[i] dx

N

8.A 'show that
a

a

f(x)dx = 0.

4

4

-1

"O.

1

4

).

4

, .

The gunct4ion (x] is defined

(a)

1r
[frxi dx

r

O

O

O

.



A5-5I v .14.4 \

4

s A5-.5i Elementary Proper es of Integrals
0

In Section-7-4 a ember of elementary properties of area'were interpreted
.

in terms of the - integral notation. .These red properties are, in fact, bimp?.e
.I.',

, consequences of the four proPertiet stated in Section 'A5.-1. Our purpose in I:.=

this section is to show that indeed these properties hold for the integral as

defined by Definition A5+ We shall make considerable use-of Theorem A5-114V

a

In this discuss,?on.1,,

Let f and g be nonnegatiVe,functIons with -f(x) < g(x) on [a,b].'
,

Since the standard region under the

graph of' f is contained in the

standard region undethe graph of g

Figure 5-5a

(Figure A5-5a), from Property 2 of

Section 6-1 the area of the former

must be no greater than the area of

the latter. A stmilar inequality holds

foxPintegrals in general.',

b
x

`THEOREM A5-5a. If f and g are integrable and f(x) < g(x)'

on [a,b] then

b
f(x)dX < g(Adx.

a a f*

Proof. Let ,I denote the integral of f, over [a,b], and J the

integral of g. We know (Theorem A5-4a) that for every positive e there
.

exist upper and lower sums and L for g such that U - L < . Since

L < J,< U (Definition A5-4) we conclude that U - < e. Thus we can find

upper sums as close as desired to J. At-the same time, every upper sum for

\J. is an upper sum for I since f(x) < g(x). We have I < J, for if we

had I >J we could bake e = I - > 0 and from U - J < I - J* -ft would

follow that U < I, *a contradiction, since is an upper sum for I.
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.1

0

Considerthe:decomposition

Y=49

ti

Of the Atanlard region over [e,c] into the

two'standard regions over (alb] and

,A.:(1,O] where a < b <c. (see,Figure

A5-5b). .The., additive property of area

A(Property 3 Of SeCtion A5-1),tstates,1

that the sum.of the areas of the two

-'-'subregions must be the.area of the

entire region. This corresponds to

a general statement for integrals.

2.A5 -5

x

THEOUNA5-5b. If f is integrable over

Proof. The proof this will make use of the following result,Which

will be established in Appendix 8.

If a < c << d < b and f is integrable on
(2)

[a,b] then f is-integrable on (c,d].

Let us assume that f is integrable on [a,b] and that a < c < b.

Then (2) tells us that f is integrable on [a,c] and on (c,bi, so far

e > 0, aabording to Theorem A5-4a, we can find subdivisions a' of

[aTb] and ei of [b,c] with corresponding upper and lower sums, U',

and U ", L" such that

..
II' - Li < e and U" - L" < e.

. .
.

Clearly, 'U = U' + U" and L = LI +1",..ale upper and lower sums over [a,c]
for -the partition a constructed by taking the two partitions al and 47"

ol

together as a partition Of (a,ci. Furthermore,

U (U' - L') + (U" - L") < 2e.

For the i.ntegrals I, I" overthe'intervals [a,c], (a,b], (b,

respectively, wehave
A

a, - I < 2e, 111 -I' < e, -U" -I" < el

'whence,.iar every positive

/ C.
a,.

...""A

-'y -

7613 6 1
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77177:6777,7-7777:7-6--77-
"

In,- = I(I! Ul) ;4-

< E.+ e +

..

I" - U ") - (I.-.U) I,

It follows that I' 4-.I".r I, as we sought to prove.

-

a

In ExerciseA5-4,,NuMber,8, we noted that f =0. By defining, for

b < a,

b a

1 f = - f

a b.

we then seesthat if a, b and c are any points of an interval over which

f is integrable, then
414,

-liJigea2tity Of integration.

b
f = f f .

a Ja

For positive constants a and p integratiOn is a linear'operation:-
i

ff r
[ce(x)

1

13g(x)]cl-x = 'f(x)dx + 3 g(x)dx,

a a a

fox if U' and L' are upper and' lower sums for f, Un and'' L" for g,

It is amediate that U = aU' + pu" and L = aL' + pp" are upper and lower'

sums for the linear combination 0f(x) Pg(x). This result does not depend

on the signs of a and 0- as we now prove.

.
.THEOREM 45-5c. If f and' g' are integrable over fa,b1 then -any

linear coMbination pg is-integrable over [a,b] and

a

rb
f(x)d:4. 13 Sb g(x)dx,

a a
.

To simplify the considerations which depend on the signs of a and

p we divide the proof into two part's.

6'

r
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P ,

Part LEI; If
.

f is integrable over ja,b) then for any constant_ -a-,- .''. e

the function af is integrablQ, and
p

I J

,
J

* b
. ....afT)Ox = a f(x)dx.

, ,----

a a

Proof. Let a be a partition of Pa,b) and take upper and lower .sums

over a,
:1

for which U - L < e.

°If a > 0, then

are upper and

n

U =E Nock ).cit_1)

k=1.

L =2>k(xk xk-1)'
k=1

Cdilic(xk xk..1) and

`.-)
lower sums, respectively, for af.. It follOwS that

4

k=1

aU'- aL < ae

(

"

..
and hence that the difference between upper and lower sumS for 4 .can -be

made 1.is than &ny desired tolerance. It follows that af is integrable,

Furthermore, for the" integral I of f and J "Of af over ..ta.-dsj we hive -, ...e.vo,
. .

U - I < e, aU - J < ae 7,
-..

4

'from which it ittlows that
441k.

1J' - all = - au) a(U'- 1)1

< 13 -QUI alu -
) < acce.

Since this result holds for all positive e, vwe conclude that

If a < 0 then aU is a lower sum and al, an upper slim for af

The proof is thus reduced iortihe preceding.!

If a = 0, the lemma follows trivially.

= aI.

44

763

363

To0o,-0.-0



5

Part
)
Cii). If f and

integrable over (a,b) and

. .

We make use o an auxiliary result (from Agg

tolerance, for any integrable function all suffic
I

.

_upper and lower sums closer then that toleran

! there .exists' some 6, such ,that any partition a
/^ i

and a itn,,r sumT L sat'

g- are integrable over (a/b], then f + g is

S
b

(f(x) + g(x)]dx

b
f(x)dx +

a
/".

ndix 8): Given any fixed

ently,fine partitions have

. ,Thus for each positive e,

will have an upper stun U

i whenever

fu - LI <e

v(o) < 8,

Let 5
1

be the controls gorreSponding to the given e for f

and g, respectivel and take S =6in(61,62).

with v(a) < 6. There then exist upper and lower and

L' for f, and U" and L" for g such that

Let a be any partition

sum's, over a, ir

Recall that

and

where

IU1 LII < e and IU" 111 < f.

/

4-J

U' =

un =E mk" ,

k=1

mkt 5 f(x) 5 Mkt. and

L" =21mk"(xx - xk_i)

k=1

tg(x) <M,".

+ mk" f() g(x)' < 141i"

it'followt that U = U' + u" is an upper sum and' L = Lt + L"

far f g over a. We conclude that

4

U - b = (y, L,) + (u" - L") < 2e,

"764
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I
11[and it follows that f + g ;$ inte/grable. ?urtheIrmore,for the integrals:
..

It% I" and I of f, g and f+ g, respectively.1 we have the estimate,

/ III, + I- - II . 1(I, - U') + (I. - un) - (I - 01
y), . < lit - IP! 4- li;' - Uni + II - Ili

:

< e + E + 2-
:

< 4e

for each positive e. It follows that i= I' + I".

The derivation of Theorem A5-50- from the Weeding is simple and Is

left as an exercise.

In one of the examples of Section 7=1 we used sums to find the Areaunder
2 -

the graph of x -ix . Employing Theorem A5-5c, we can .integrate any quadratic

function without resorting to estimates bg.upper and lower sums:

b
b

a(Ax2 +
+ C)dx A I x2 dx + B x dx + C dx

a a a

An immediate application of Theorem A5-5c dyes the area between the
graphs of two functions f and g on [a,b], where f(x) < g(x),, as the
integral of their difference. If f(x) >0 as in Figure A5-5a then the area
between the two graphs is simply the area of the standard region under the

graph of g less the area of the standard region under the graph of f,

thht is, - )
, -

b .

S i( x)dx

1b
f(x)dx b [g(x) - f(x)]dX:'..

There is no reason...to restrict these considerations to nonnegative functions,
for if f(x) <'0 for some x in [a,b] and m is a lower bound of f(x)
on bY,b]., we translate the x-axis vertic Im( units in the negative

direction so that

4-

0

cx,y) -x,y* (m1).
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es
.

lathe neV coordinate system the region lies between the graphs of the non-
. - '

negativE- ctions t ->f(x) Iml and g :,x -)g(x) + Imi. (Figure

A5-5e4). .

lak

Since i(x) -17(x)-= g(x) - f(x) the definition of the area of the region

between the graphs of f and ,g as the integral of .t fl function g - f is-'

clearly appropriate whenever f(x) < g(x) nri [a,b]. Thus, tHe area of the

standard region under the graph of F : x -,g(x) = f(x) on &a,b1 (Figure

A5-5d) is equal to the area of the_region between the graphs of f end g on

- I.a,bJ. (Figure A5-5c)



pxam,,ple,A2.21. Consider the area of the'region between the graphs of the
)

functions f : x-4 eos
2

xa and g : x -, -sin2 x on (0,4). (Figure A5-5e.)
0

1.

.

-N. , We mIght'attempt to represent the area of the region as. -tiie limit of sums
4

of areas of rectangles. en the.other hand, we know that the area is given
,
by

ti 4

f(x) - g(x))dx,

since' f(x) > g(x) for all x in the interval (0,4).

But (f(x) - g(x)]dx = S 1'3(1=7
/

since't 4
.

0 0

f(x) :-°g(x) = cost x - (- -sing x) = 1 'for all x. (The graph of '

F : x -,,f(x) - g(x) is shoWn in Figure A5-5f.) Id conclusion we note that
4 .

the area of the region shaded in Figure A5-5f is equal to the area of the

region shaded in Figure A5 -5e.

O

y=-sintx

If

Figure A5=5e

}1.

st.

.;

Figure A5-5t
(

o



Exercises A5-5

1. Exhibit the details of the proof of Part (i) of when a <0.

2 (a) If the graph of f is symmetric with respect to the origin, then .

f is odd. Prove that if f is odd and integrable on [ -a,a],

.'.
, then r

a

f(dx = 0

/,'.
(b) If the graph of f is symmetric with respect to the y-axis, then

f is even. Prove for sn even funCtion f which is integrable on

C:a,a] that
1

a ia

f(x)dx = 2 f(x)dx,
-a 0

Interpret this result geometOlcally.
.

- 3. 'Prove Theorem A5-5c as a consequence of Part (f) and Part (4i). Con-

y verseTy, derive theg_d-74as corollaries of Theorem A5-5e.

4. Prove: If f and g are integrable where g X'-4 If(x)1 ,on (a,b),

t the;
Ijrb - b

f(x)dx1 5 f If(x)Idx.
a a

5. Compute the values of the given integrals using Theorem A5-5c.

7- 3 t' (a) k3x .' 5x + l)dx

2
(b)' (x - 1)(x + 2)dx

(c)
3

(x + 2)(x 3)dx

. (a) Find the area of the region below the parabola

-the x-axis and between the lines x = -3, x =

(b) Find the area of the region between thelfraph of

-=f : x
2
*- x - 6, th x-axis, and the lines' = -2, x = 3.

First draw a rough sket h of f and indicate (by shading) the

region whose area isto be computed.

. Find all values of a for which

et

a

(x + x )dx = 0
0

2

768
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8. ,Compute f(x)dx where
0

f (X) =

2 x2 0, 0 <x <1, %

5 - II.x , 1 <x < 3 ..

,

9. Verify that the following property holds for f : x --ox
,

..
b

-

' c-a , r ,.o
0

f(c X)dx = f(x)dx:
a q=b

b

'

r
o

.

".

Explain the property geometrically in terms of areas. DoAggp think that

the property holds for other functions that are integrable? Justify

your answer.
.3, 5,

10. If a function f is periodic with period and integrable:for all x,

show tha#

a+n). a+T.

..i*x)dx = n 'f(x)dx,' (n,integu).
) a a

/
Interpret geometrlically.-

i

11. EValudte'(without using the,Fundamental Theor m Of Calculus)
1'
100/

S(1 + sin 2x)dx,

.0
12. PrOve that if f is integrable on [a,b] and if f(e' > 0 for alls

.

,x in (a,b), then
' °

\ b
. 0 N

V
f(x)dx > O.

c

.

13. Prove that if- f and g are integrable over [a,b), then

IS(g(x) - f(x).1dx j Ig(x) Idx +
a a 4 a

Let f and g be integrable-and suppose that f(x) < g(X) on [a,b].

(a) If the strong inequality f(x) < g(x), for,some e.> 0, holds

? on any subinterval of [a,b], proVe the strong inequality

4

sb b
f(x)d3c <, g(x)dx. S

a

(b) If f and g are continuous at x = u in [a,b] and

f(u) < g(u) prove that strong inequality holds as pbove.

769
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., , % 6.,

1.5.5if funOions f and g'are''.integrable, and; fk) < h(x) < gkx,-,on
. ..a. 0 t ....

tf. 1
1,bi, .dpigs it follow that .4

'

a .9. '' . ) o 7w

'i
- ",

b - b °-,

s
sr f(x),Ox < S h(x;dx< f g(X)dx?

.-, .
a , a, a

Illustrate by an example.

J /"..4.
°4. (a) Prove the)-Mean Value Theoi-em of integrbl calculus: If f is Ciill-

tinuous and integrable on [a,b],, then there exists a value u in

/the-operti.nterval (a,b) such that
/7.

f(x)dx = f(U)(b - a).

a

.e

(b) Show that the value f(u), in (a) satisfies

f + f + + f
0 1 11.f(U) = lim

n + 1
h-O

where h = L12-12
n

11 and f
k

= f(a + khm) for k =.0, 1,'2,

n. Thus f(u) can be interpreted as an <extension of the idea of

mean or arithmetic average to the values of a function'on an-interval.

17, If
n +

a

1
+

2
+

n.

0
a
1

a
n-1 .

1

n
= 0, show that

a
0
xn + a

1
x
n-1

+ + a
n-le

+ a
n

= 0

has atleast one root in (0,1),

18, Prove that if f(x), is integrable over [alb], then If(x)1 "is

integrable over (a,b). (The converse is not true. See No. 19.)

19. Suppose ,

1 if x is rational
f(x) =

-1 if x is irrational
.- .

-

Show that-if U and L are upper and lower sums for a partition of.,,
[0,1] thenpU > l and L < -1. Is f integrable' on [0,1]? gl.

20. If f and .g are integrable over (a,b), then bothwax (f';g) 'and

t ' ..,,,-,' min (f,g) are also integrable over (a,b].

. 21, ) Let f- and g be bounded and integrable over [a,b].

Prove (a) The function f g is integrable over la,b];

r's

(b) If g is bqunded away from zero, then
f
- "is integrable on (a,b].

sr
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22. If f and g are botindid4trId integr able, then S )
2(a f(x) + /3 g(x) dx

,#*-
to-

..

exists and is > 0 for, all constant a and 0.

Show from this that
b b
3f(x)2dx .g(x)-dx > r f(x) g(x)dx

J a a

with equality if and only if (for f and g continuous)

(x) = cg(x), a < x < b

2

23. If f is integrable and its graph is convex on an interval [0,a),
show that *

a
f(x)dx > af(24- 2 .

Interpret geometrically.

24. poll thato.
4- 1)(b2 4- l) > C if(x2

a2..2 2A 4- b ) dx
3 3 j

- : , 0

25. Show Ilthat

(a)

(b)

1 3/2-
g <

1 f
4.

3 .15A x dx <.
,2Or

1 215->
5

0 )(---75x

*
This is known as 'the BAniakowsky-Schwartz, Inequality.

. ,
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26. Find a continuously differentiable function F (i.e., F' is continuous)

in [0,1] which satishes the three conditions

(a) F(0) = 0, F(1)

(4)) 2dF(x) x = a , and .z.

0

(.c) F'(x)2dx dx is a minimum. .

1 -

0

O

4

e

0

O

1

4

772
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Appendix 6

INEQUALITIES ANf) LIMITS

A6-1. Absolute Value and Inequality,

The absolute value of a real number a, .written lel, is defined by

V

a, ; a > 0

lal 0, if a 0

-a if a < O.

If we think of the real numbers4n, their representation on the number line,

then lel is the distance between 0 and. a (Figure. 46-1). In general, for

any real numbers Ell and. the diStance between and. b is

C9

lb al .--: bl: If x- lies within the span -e .< e where e > 0,

b

.1a1 -1b1 ,

.
Figure A6-1

then clearly x. is no farther from the origin 'than

lxi < e. Conversely, if 1x1 < e, then -.c <
.

that

(1)

(See Exercises'A6-1, No/. 13a.)

Frbra the inequalities

we obtain

ithence

(/2)

%

-Ix' < x lxi..

and we must have

. It follmis potmetliately

..1a1.< a < lal and ';.1b1 <,10 <1b1
e

`f.

-(1a1 + + 1bl,

la + b tal fi; I I-
773
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(This relation is known as the "triangle inequality.") In words, the absolute

value of a sum of two terms is not greater than the sum Rf the absolute value

of the terms._ Sire any sum can be built up by successive additions, the

result holds in general, viz.,

We say that y

la +b =I(a + b

< la + b) + 1cl

lal 1101 Icl.""

is an wooer estimate foi x, and that x is a lower

+el

estimate for y < y. In (2) we have found an upper estimate for, the

absolute value of the sum a + b. "It is'often useful to have a lower estimate

which is better than the obvious estilhate 0. Such an estimate can be

obtained from (2) by the device of setting a = x + y and then setting

b = -x and b = -y,1 in turn. We then obtain

ix yi

lx1 ly1 5. Ix IA.

Since 11x1 - (y11 is one or the other of the values

we have

4- .

3). Ilxi IYII < Ix 4 YI.

Specip/Simbols:

The symbol` ciax(ri, r2,...., rn) denotes the largest of the numbers

r2,, rn;. similarly, .the symbol min(ri, r2, "" r
n

) denotes the

sm lest'of the numbers. 1

lx1 lit

Rs-

or lyl Ix',

ample A6.la .31

7.max(2, 8, -3, -1) = 8

bin(2, 8, -3, -10) = -10
.

mak(-a, 7 lal.

774
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Exercises A6-1

, 1. Find the absolute value of the following numbers:

Ak (a) -1.75 (c) sin (j)

(b) (d) cos (2)

2. (a) For what real numbers' x does = -x?

(b) For what real numbers x noes 11 x r = x - ?

3. Solve the equation's:

(a) 13 - xi = 1
svo

(b)` I4x + 31 = 1

(c), lx + 21 =x

(d) ix 3I 4

(; ) 12x + 51 + 21 =\0

(f) 125c+ 31'1=- 15 xl

(g) 213x + 41 + Ix 21 = i'+ xl

410'

4. For whlt values of each of the following. true? (Express your

answer in terms of inequalitiessatisfied by. x')

ta) 1x1 < 0
I)

60"
Ix 11 + Ix 21 =1

40 fX1 x

(c) IxI < 3

<d) 61: <

(e) Ix - 31 ? 2

(f) .12x - 31 <

(g) 1x-al <a,

(h). 1k2. - 31 < 1

(i)` t(x -'2)(X 3) 1 >
.

<j) Ix - 11 > IX -

lx - 5) + 1 = ix 1;

f

st

; t\

(m) 0 < I a21
.

(n) Ix - al < 8

O
(o) 0 < <S

(p) Ix - 11 < 2 an,4) Ix t 11 <

(4) Ix - 1 <,2 and I2x

lx YI = kel IYI, for, all y'

(s) Isin xI = 0

-(t) !sin I >

(u) 11 'II <1

.(v) > 1



-a

,

5. Sketcthe graphs of the following equations:

.(a) Ix - 11 + 1y1 =1

(b) ix + IX - yl = 2

(c) y = Ix - 11 + IX - 31

(d) y= Ix - 1 1 + lx - 3I +21x - 41

,
(e) y= 11 + lx -31 + 2k - + 31x - 51

6. -(8) Show that if ,ja > b > 0, then

ab
<

a + b
1..)

(b)-, ThUs, show that for positive numbers a and b, the conditon,

6 < min(a,b) is satisfied by -

7. (a) ShoW for positive a, b that'

/
a 4

2

, b
< max(a,b) if a ,L b.

/.A
(b) 'Prove for all a, b that

max(alb). = -(a

(c) Prove for all i, b that

8. Shows that

+ b + Ia - bl)

min(a,b).= 2a + b - Is - b1).

max(a,b) + max(c,d) > max(a + c, b

9. Sh w that if ab > 0 then

1 ,

ab VMIn(a2,102).
,

.

f a = max(a,b,4,, then -a = min(-a,-b,-c).

ab
+ b

81 82,

1
"b

2
' .. ' b

an
b

}

%r = 1, 2, ...,

,

ur'r

by min and similarly for max.

('

prove that

(

a
r

a1 + a
2 I

... + qi a
min 7 .45.

1.

+ b
r r 1

.. + bn :I max b
n ,...... _L-

r r

77 6, 1
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I,

1 1 4- 2

n 2
n + (n - 1)2 +22 +12

<1
;:

or n = 1 ,2 , 3 , . ;

13.. (a) Prove directly from the properties of order for E > 0 that if
.

,-E- < x <E then lxl < E. Conversely, if Ix < E then-

- <x < e.
(b) Prove that if x is an element of an ordered field and if lxl < E

Tor all positive values 4,t then x = 0.

14. (a) Prove that tab! = la lb f,

(b) 'Prove that It-1 = , 14 / O.

, ,

15. Prove that Ix y I < lx(
.

16. Under what conditions do the equality signs) hold for

Ira' la!

-
6.

17. If 0 < x < 1, we can multiply both sides of the inequality < 1 by

x to obtain x2 < x (and, similarly, we can show that x3 < x2 ,

x4 < x3 and so on). Use this result to show that if
°:

then ix
2 + axl < 31x1..

18. Prove the folleiwing inequalities:

(a) x +
1
> 2 , x > O.

x

(b) x< 0 .x+

(c) Ix +11 > 2 ;C/ 0.

Prove: x2 >xlxl

Show that if

for all

Ix.- al < then
2

< 312a

real x.

'al. Prove- for positive a and b, here a / b,' that

1

- al <a +b. r-a< lb - a,
2

(a + b) 2 847

Ot. 777

4 377.

o < 1,x1 <1,
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A6 -2.. Definition`of Limit of a Function

We have used the concept of limit of a function in defining derivative.

At this poin t we present a precis formulation of the limit concept and derive

the laws which govern operations with limits.

(1
.

Although the concept of liMit'of faction is more general than the
- ,-

idea Of derivative, our study of limits was initially motivated by the basic

. example of the derivative of a futction* 0 as the limit of the ratio r(x),

which- cep be written'
e

?. .

where

as

m = lim r(x),

x -, a

m = lim r(x),
x-:1

r(x) 0(x)
-

0(a)
x a

r .

In order to be sure that the description,of the deriVativlias the limit.,of

r(x) makes sense we must be sure that we have an ahequate set of approxima-
.

tions, that r(x) is defined for numbers x arbitrarily close to a.

UsuallYmotte dorLin of r will contain an entire neighborhood,of a

(excluding a itself) but either for theoretical or practical reasons it

is often useful to analyze the behavior of r(x) on only one-side of a.

For example7there is a natural, starting point in the motion of a rocket and

it is essential to know the initial directiop of the rocket in order tojeter-
\

mine -the rest of the-trajecto
A

,

In framing the general, efinitio/ of the limit of a function f at a

poirit a we theilrquire th t we hake an adetuate set of approximations.

Specifically, the definition marnot include the valuefka) among the

approximations, even if it shouid bOiefined, but it must involve values

f(x) for x close to a, For this purpose we introduce the deleted

lneighborhood,pfl a, that is, the set of all x for welch

0 < Ix - al <

As the set of approximations to;-be used in aefinj.ng,the limit of f at 'a

we take the set of values f(x) for all, X from the domain f in some

deleted neighborhood of a.

*
In some texts this important case i

tions of "right - sided" "and "left-sided" 1

778

3 7 8

en care of by separate efini-'

its. (See'Exercises A67:4 No. 16.)
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A5 -2

1
With these ideas in mind we are now able to express the Urea of limit

completely in analytical terms. If f has a limit L as .,x ..approaches a,

then for any error tolerance e we keep f(x) within e of L by.restric.C-

ing x to be any number from the domain of f in a sufficiently' small

neighborhood of e.

DEFINITION A6-21. Let a be a point'for whiCh every deleted

neighborhood contaille points of the domain of .f. The function;

f has the limit- L at a if (and only if) for each positive

number 6, there exists a positive number 6 such that

for every .x

If(x) - LI < e

In the domain of f which satisfies the inequality

O - aj < b. .

We then write lim f(x) = L.2
x-a

It follows from the definition of limit, since the value f(a) itself

does not lie in the class of approximations considered, thatany function

which takes on the same values as f in some deletea,neighborbood of a

. would have the same limit at a. For example, the two functions f and g

defined below have the same limit at every point a of the real axis.

4. l`

f(x)' = 1

g(x) .

0 ,

1 ,

'or any integer

fpr non-integral

x,

x.
.

=

Although we do not rei,y upon pictures tor our precise understanding,q,,

't4 concept of /iMit, it is desirable to have a geometrical interpretation ol'

"t

the idea.

ample A6-2a.
I

The graph of the functi n

f : x-.2x - 4

61
The.definition of limit can be recapitulated in terms of neighborhoods:

the nusib4 L is said to be the limit of f at a if every deleted neigh-
: borhood of a contains points of the domain of f and if for esich
e-neighbothood of L there is at least one deleted 8-neighborha% wherein f
yaps the points of its domain.intio the e-neighborhood,

2
We shall now make use of this =tation, rai erthan- lim f(x) = L.

e



is shown in Figure A6-2a. In order to show that

Iim .(2X - 14) = 2

x-3 iP

we must show, for every e> 0, that there, is a 5 > 0 iso 'that

1(2x 4) - 21 < e

.0

for all x in the deleted neighborhood 0 < ix - 31 < S. It is easy to see

from Figure A6-2a how 5 may be found.

t

=

= 2 .

ins

J-

-1-' .

1

1 1

1 2 3

Figure A6-2a-.
$

Given a horizo al band of width, 2e centered on-the line y =2,; we can

E =1= 1

E

4:3

find ayertical band of width 26 about ,x = 3 so t t the graph of f

lies entirely within the rectangle wliere the bands ov rlap. From the graph

';'". we.,;,infer that for es,--$ I we may take '6 = -32.:, fon- e = t , 5 = 4- / and farv

,z 1
. e = ,,5 = /p. There seems to be nR obstacle to..finding a S 'for axe' 4k,

no matter how. small, .but we cloexly cannot relk..,on pictures to do so.

Instead, we proces. analytically. If we
,

require .0.'< lx - 31 .<-'8, then



e",

1f(x) - 21 = I(2x - 4) - 21

1,2x - 61

= t2(X - 3)1'

= 2Ix - 31

e
,Consequently, if..we take

2
= the

If(x)'- 21 < e.

<28.

1The preceding example was made especially simple to reveal the basic

picture. We 11mi-explore the concept of limit in a variety of situations.

Example A6-2b. Figure A6-2b preseuta a graphs_ofthe three functions

gt4en by f (x: = sa (-1.) f (x)' x?:f 2(x) 41'

1 k! ,7-11 x2 ' 2 !

Y

Y = f
1
(x)

4

"x
0

er

f
1

x sgn(-L)
. 2

?c

;;,.

11

'

V

Y = f (x) .

.0

x tgn lc
2

- 41

c

,y,= i'(x),

t

* '1; if a > 0
sgn = 0 if a = 0

if a <0

'

1'

f3 x3 4,

Figure A6.121:.:"":

*Cr,.

1:!3:

N

I

'0"

. 4



i
1°'-Ottserve that x = 0 is a point of the domains of f

2
and f

3
but not of

, -
f
1'

\

For each of these functions,we. wish to consider the limit, if it exists

as -; approaches 0.

ince the threi functions 'coincide wherk x 0, and the value a the .

limits does hot depend on how the functionq are defined at x = 0, it is

clear 'that all -three functions, have the same limit. In each .case 1 is the

obvious candidate .,for the limitl, Verify that the conditions of Definition AC-'

are _satisfied by L = .1 at ,x = 0.

Observe - hat -there is a gap in the graphs of f
1

and f
2

at = 0,

and that the graph of.' fi is continuous, it has no gap. The function f*
1

has a limit at = bu-5 is not .defined there, f2 is defined at sx = 0

btft f2(0) is not its limit, f3 has a limit at x = 0 and the lirnit4iis

the function value.

Example . Figure A6-2d presents the graphs of the two functions

- given by

2
= x.- .+ ..lsgn(x - a)

= x2 + sgn 17=-7.

A

782

'3 8-2

t

1

x -4 x2 + sgnix -

X
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. .

Thei function g
1

is defined for all values of xt The domain of g
2

eon-
.

sists only of those values of x for which x > ai and on this domain it has

the -same values as g1. _It seems clear'froMthe graph that there is no single

number L which is approximated by the values g
1
(x)- as x. approaches a.

On the contrary, in any neighborhood Of a it is Possible to find valuesof
,

' x for which,_ g
.J-

(x) approximates . a
2
- 1 within any given error tolerance and

. ,

other values whlch apprdximate a
2

+ 1. Verify; then, that the conditions of,
.

refinitionA6-2. cannot be satisfied, that g
1

has no limit at x = a.i. t .., .
.

For the function g2, On the other hand, it appears that no matter what i

the error tolerance, there isa deletpd neighborhood of a wherein 826),

approximates a
2

+ 1 within the tolerance for all,
41

x in'the domain_of the

function.; ThiS is easily verifi/id. in a 'deleted sb-neighborhood of we have

e

O

,g
2
(x) = x

2
+ 1, for a < x < a + 5.

'We have forthe absolutt error of approximation

'

1g2(x) - (a2 + 1)1 = 1x2 - a21

- al Ix + al .

<5(1x1 t

< 51(lal + 6) + 'all
A

- -

< 6(21 al 6).

,

Tiais absolute error cah be kept within any given error tolerance 'by

reatricting x to a small enough 5-neighborhood of 'a. For simplicity, we

first restrict ourselves to neighborhoods_of.radius no large'r than- 1. Taking

< 1 in the inequality above, we obt n a simpler bdund on the absolute error

in terms of the radius 6:

.

I82 (x) - (a2 + 1)1 < 6(21a1 + 1).1.

Nbw if we choose 6 o that -
,

- .

then we have ensuredRthat-

ft

a a

c.
1g2(x) + 1)1- < e,

783,
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namely, that the error hb.s been kept within the tolerance e. Since this is

a proscription for controlling the error uLthin any tolerance e, we,hAve-
,,

accomPlashed our liurpos* and proved

r. \
lim g2(x) = a

2
+

, A.

completely. i the analytic terms oi.befiniiion A6-2.,

VP'

I

4

4
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Exercises A6-2

2-14 Show that if , 0.< lx - aj < 1, then 1,x + 2a1 < 1 + 31a1 .

2. Sh Ow' that if 0 < lx - al <1 then 1X3 - a31 <,( 31a21 - 31'81

3. Show thatAfki0 < lx - 21. < 1, then
1

< 1.

It!

1

0 Hint: - 41
lx

1; then < 1.
1

1

, .1
4. Show that if lx - al < , then

5. Show . that if ,0 < Ix - 11 < 1 then 14x + 11 < 9 and 1-4--1 < 1.
, x + 2

-
'i

.. lx + 2x + 4 -;

1
. 6. 'Show that f 0 < lx .- 21 < 1, then lx + 11 <: 4 ana' < 1.

,t . 4 4

.

'
\

7). Estimate how large x2 + 1 can become if x is restri,cte& to the'open

interval -3 < x < 1.

8. Use inequality properties to find a positive number M such that

O < 1,x - 11 < 3 for all x and,

Ca)

(b)

1x2,+ 2x +
* .

13x2 - 2x + 31 < M.

p\
9. (ak) Sho that if 0 < lx - 31 < 1

< E,
, -=

Show that t pair of inequalities < I and S .<...5 (or

",o0".%

and --z0 <'fx 31 < then

I

,6 minfl !)) satisfied by =$7 +E
10, Find a number M >.1, .such

,

li-cc141 < M for all' sx sucithat
.

O < Ix T 21 < 1. (See No. )'

11. For the given value of E, f nd a number 8 such that if
.

.

O < lx - 31-< 6, lx2 - 91 < °
(a) E = 0.1

(b) E = 0.01

,rs yoniechoice of 6 in (b) a ceptale as an answer in (a)? Explain.

85
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. , , : \
12. For the following functions, fibd the limit L as x ',approaches'. a.

.

.
For each value,

A
of e, exhibit a number 6 such that, s If(x) -.LI < e,

.1 -

.4 whenever Ix - al < S. '.

,(a) 1f(x) = 3x - 2, a =
1
2

r.

(1:)r f(x) = roc + b, (m 0).

CO. f(x) =,1 +" a = 0.

tl

I

.
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I
'' A6-3. ,Epsilonic Technique

: /
It is conventional 4.1.1 discussions. of approximations to -a limit to use.

.
. .

the Greek letter epsilon for the error tolerance. For this rea on the sub-

ject devoted to techniques for the control of error is colloquial /- called
(

ep-silonics. We shall make immediate use of epsilonic technique in deriving

Ahe limit theorems which follow this section. Eventually, in applications,
.

1

skill in epsilonic technique,,,will be extremely valuable for making estimates

when it is difficult to work with precise values. Tp develop this skill it .

.
fs helpful to set up a routine pattern in which to'present an epsilonic argu-

ment. We shall first describe the pattern in general and then, for several

examples', carry out the proofs as indicated in the ;pattern.

Statement of the problem.

To'pro've that lim f(x) = L:
x-a

For each tolerance e > 0 obtain a control 8.

Show: if 0 < Ix -fal < 3, then If(x -LI < e.

We have stated the problem in outline. The proof is based on Definition'A6-2.
We must coktrot the err If(x)-- LI within the error tolerance e by
restri,ctirig the values of .x, to a sufficiently small deleted neighborhood

'of a. The p of '1.1.completed by verifying for a imitable radius 5 that
i does give e desired degree of control. The crucial openquestion is,

. .

how do we ch oseNa suitable'

.

Step 1. SimgffiLtion.

Find a g(6) such that if 0- < lx -.al <'3, therk,'If(x) - LI "< g(5).

The idea here is i'eip obtain an upper bound g(5)' for the absolute error where
.

g(5) can be'held within the.tolerance e by taking sufficiently small values
`of 8. If we have g(8) <E, then If(x) - LI < g(5) < e andoour objective
is achieved. In some of the following examples the work of simplification is.
divided into-bigee stages: (a) f(x) is expressed in terms of x - a; 1
(b) from the Alwquality.. 0 < lx - al < 5 there is derived a inequality of
dbe form. If(x) - LI < g(Of (c) a b is chosen for each wE in such a way
(that 'g(3) < t, In general, g is to be a simple function; one for whiqh it
is easy'to find a 5 such that g(5) < E. More typically,it will even be

. .posaible to solve for 5. in tIcie equation 'g(E)) = e. For most of the cases
in this text it is possible to obtain g(8) =,c3 a pqsitive constant-of'
proportionality c. Mapipulations yielding a simple expression for g(5) -

are.illustrated in the Examples below.' 4

Step 2. Choice of 5.

-.Chooae 5 so that..g(8) < e.

This.ts the place' where the work.bf simplifi ation in Step 1 pays' off. In
e

,

7t57

3.87
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the most typical c a i e where, g(8) . ct. we m a y chockse 8 = 5- .

*
,

Steps'l and 2 show how the solution is found.u.. The next step is the
r

actual proof where we verify that the solution, hap been found.
.

. Step 3. Verification

Return 'to the ,statement of the problem From the given expkssion for

deduce the conclusion.

Fir
1st

we try out the methodrin a case where no complications arise, the

case of the general lineal function.

,

Example A6-3a.

Statement of the problem.

To prove that ,lim (mx +.b) = may+ b,. (m 0).

vx-a. 4

'For each e > 0 obtain' a 8 .

Show: if 0 < Ix - al < 8, then If(x)'- LI
.

step 1. Simplification.
)

(a) f(x) - L = (mX b) - (ma + b)

m(x a).

(b) If Ix- al < 8,.

If(x) - LF a)1

tt

- al

(c) Take g(8) = 11118:

Step 2. Obtain

To make g(8) < e, set

< Ind

e.
ITT

( allowable, singe Iml / 0 b assumption) .

Step 3. 'Verificatio

Enter the result in the statement of the probl

cation follows the pattern of Step 1 with one additional step

788
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If(x) - LI < Im16 ,

'' < 1ml -4-4.
11m5

< e.

Since there is a strong inequa ity in this chekin,, we have

lf(x) - id <

1

In the following examples we shall omit repetitiou's material.

'EXample A6-3b.

Statement of the Problem.

1
- To that 1.

.1%

S.

then

+11,z1-

1

1
< e.

Xf

4

prove lie
x-0

For each e >

Show: if b

Step 1.

-

obtain 'a

- Q1 <

1

1 + ixl

1, Ixl(a)
1 + l'x1 3. 1 +

(b) If 0 <

lx1
1 + Ix'

of < a,.

1 -.1x1
11 +1 'xi 11-1 11 Ix'

ix'

1+ ix'

< S.

(c) Take g(6) = 8:

(since/ 1 + 1x1 > 1)

t

Step`2. To Make g(b) < c, set

6

,Step 3. Set 8 = e. in the statement of t e probleM. We carry out the

ti verificatioh folloWing Step 1 where we set, 6 = e at the last line:

769`
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,.
The next example shows that it i-s--nOt_always sufficient to choose 5

proportional to ,e.:.

Example A6-1,3c.

Statement of the Problem.

Tb.prove that lim 17.=

x-a

For each e > 0 obtain a 6.

Show: if 0 < Ix - al < 6 then- IA - 15.1 <

'( a ->,0)

The choice 5) = where c is a poSitive constant, cannot

work when a = 0.° fil taiat case we observe that if 0 < x'< 6 = ce,
then iTc < 1/E "T. .. . 1.

We must then ma.ks IC Irj.'< c for all c,' no matter how

small. ft . '. . ._ .

;t-follows that we must find a positIVe number c satisfying

iC. < VT or, equivalently, e < e forailfpsiotlee e. No such

number exists; hence, 5 = cE cannot work. -

Step 1. From

11/7 - < PT(

we obtainlon.multiplying by -

.113-c- 4=71 < I x
,/

.

whence

Thus, if 0 < I

Step 2.

Step 3. Take

is a mecapitulAtion

0,-

]V7 - <

Ch oose b = e 2 .

,h71 (Section A6-1, Formula 3)

- a},

)

5.

6 = e
2

in the statement of the problem. The verification

of Stepl'llor this choice of 6.

It is often expedient to restrict 6 by an ctuxiliary condition in

Step 1. The following example's are"tepical.
7

,

,"
Example A6-3d.

.

' Statement of the Problem.
Ar----77--- r

'z

t

To prove that' lim (Z' - 5x -,1) = -3.
1

, r.-2%w 4 :', .

.1

141 ! ;"
4

i

V A
790
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,
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, A6-3

For each e > 0 obtain a .5.

Show: if 0 s I - .< 5 'then I (x3 - 5x 1) - ,1-3) < E.
1.10/111 ,

Step 1.

°
(a)' x3 5x - 1 x3 - 5.x +2

[(x - 2) + 2f x - 2) + 2

. -
= (x - 2)3 + 6(x - 2)2 + 7(x - 2).

(b) 1x3 - 1 - (-3)1 4---,,1\(x 2),3 + 6(x 2)2. + 7(x 2) 1

,
1(x 2)( (x - 2)2 + 6(x - 2) + 7)1.

= Ix - 21 1(x - 2)2 + 6(x - 2) 71

< 1-X - 21 (1x - 212 + 61x - 21 + 7)

'(c) For convenience' we restrict 5 by.lqqi-ring '5 .< 1. Under

< 52 + 6s +. 7) .--

(At the last line.we used, Ix - 21 < 5. )l

1.

this condition

1 - 5x - 1,- + 65. + 7)-
, ".*

<%5( 1 + 6 '.;-- i,),,,..
< 145

IS

In order to git tin upper bound in the simple form. c5, we put a constant

bound on the second factor in 5(52 +.65 + 7) by tricting 5. (The

particular value 1 in S < 1 is inessential. , e could have requiebd
. .

5 <.K. where 1C is any positive constant.)
/

Step.2.. We now wish to obtain a value 5 /satisfying two conditions
. . .

simultaneously: 5 < -5-1 and 5.< 1. One way of satisfying these conditions
.

,i; to set

0
-4÷-±'

where, we have chosen the denominator simply as a c.onvenient value which -is

greater than either 14 or c ( See Exercise, A6-1, No. 6a, b.)

Step 34 Set S = the statement of the problem. 'The verifica-
. A -

tion follows Step 1 through (b).' In (c)" we use 5< 1 and
- a
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A6-?3

to Atain

t
6 ts<

,1(X3 - 5x,- = (-3)1 < E.

Alternative Step 1.

(a) .x3 - 5x - 1 - (-3) .= (* - 2)(X2+ 2x - 1) -

Ix3 - 5x + 21 = lx - 21
2
+ 2x - 11 '

,

<'51x2 + 2)c - 11

5 3.45

Where, at the last line, imposing the condition 6 < 1 we
,

utilize the result 1 < x < 3 obtained, from.Ix - 21 <5 < 1.
_

-

'

..,,Alternative Step 2. Since we.do not use ths.foiMula for 5 in tie

verification above tut only the conditions' S < 1 and 5 <S',.it is natural

(A6-1) to.' set

= minh- ; 1).
.

,

Alternative Step 3, Set 5F min( ,l) iri the statement of the prob-
.

lem. The verification follows alternative Step.16aboye.
;

From"thespreceding example we see that we have great freedom in choosing

our control b. We can alwaysilise more stringent cOntrols,than necessary:

that is, given any deleted neighborhood of Ix al < 5, So chosen that

lf(x).- < E for any x in the' neighborhood, then for all x' in any sub-
.

set of the neighborhood and, in pairticular,-for any smaller deleted neighbor-

hood of. a, we satisfy the same inequality. In other terms, given any S

which keepsthe error within the specified tolierance,'any smaller value of 5

will certainly have the same effect. follows that we may impose the condi-

tion' 5 K where K is any convenient positive constant. Similarly., having

found a 6 for a particular E, we know that the same 5, will suffice for

any larger c. Hence Sae need concern ourselves onlyith these e satis-

fying, E < M, where M is any convenient positive constant.
4

( I

We.conclude the list of examples by applying the techniques of the out-
.

line to fina,some derivatives. For a given f, we Let

V
r(x),-

'f(.x) ,; :ba)
, x / a.

x - a



&ample A6-3e. f : x:41 ,x/ 0

atertftt of the Problem

prove for a / 0 that

1 1

lim r(x) = lim x
a ,, 1

a 2
' 4 X^11" X a

4
,

' For each e > 0 9btain a 8.

#.4

ShOW: if 0 < IX 7 al '< 6 then Ir(x).- LI e,

(0b6ervethat r(k) iribt defined at x = 0 ,or =fa:)

Step 1.

(b),

(1)

1

x 3'41
f(x) L =

x - a
a

.....-

a .

1 .1
= - + --

ax a
2 '

x a

ax,

. - a(Note that we used Ix - al > 0 in settIng

x / a.)
.1

1

-

(x a)

1 .for

1

air problem now is to obtain a Constant upper bound for the factor
1 1

= , It is sufficient to bound the demonimator away'

21x1 a' 1(x - a) + al '' 1

(from 0 or tit guarantee

,

Ixl = - a). + al > C >0, , s

for some number C. We hale. (Appendix A6-1, Formula (3))

1 = 1(x "a) 4' al 1 al ,- Ix- al--

793
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al,< 5 in this relation, we obtain

IX' Ix al > lal - S.

a
To obtain a constant lower bound C we restrict

* 5* l<

In that,case
2

l

_ and Cn121
o

I X I "> lad - 5 >-11-'1"- >0

la 1 2
It follows from 1-x - al 6, that lxk 1 >

l

lx
and 7T < . (See

1 1111

Exercises A6-1, No. 20). Consquently, 'frOm (1), we have

'Ir(x) - LI 28
a !XI/

2<s
all

<6
18-J3,

Step 2. The value of 8 is restricted by two conditions:

5 <

To katisfy -both conditions we take

and* -24 <-

$ A 3
5 = min( =1

' 2 '

*
Of course,,

way so that It,";

rt

in general, we could have restricted 5 in any convenient

lal For definiteness we took
...-

5 <12.1- 2:
2

,I

lo

4

719:1 .
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° Step 3. Enter the above value of E) in the- statement Of-the problem.

:The verification follows the pattern of Step 1. At the last line we use
.

ILL!
E

2

Ir(x) -;LI 5'E.

Example A6-3f. . f ITC, x > 0.

Statement-oethe Problem.

.--V7 - va , 1
To.prove fo a > 0 thdt lim r(x) = lim

x - a
- = L. 3 .

x-a . x-a - 21e. .°

Fdr ea h c >,0 obtain a b.

Show: if .0< ix - al < 6 then 1r(x) LI <

(-Oise

Step 1.

(a) r(X) -

e that 'r(x) is defined only for x->

a -

(Note that 17 is not defined for negattVe values, and there ore

we guarantee 0 < x by impodlig the restrictions Ix al < a.

For thig purpope we require S < a.)

-
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710 ,R,r71,11.1^. """"

$

:

. (b)

3

Ir(x) - LI -t a- 4 1

24.(4. + VR)2

a.-

- lx - al

5
, (from 'lx - al < 5),

M( /71 + "IX)2

> 0)

24:(1.g.)2

2(4.)3

Step 2.'1- Take 5 = min(26/a0e,

a

Step 3. For the above value of '5 every expression used in Step 1 is

defined or all x in the deleted 8-lheighborhood 0< Ix -, al.< 5. (This

requiies1 x / a and x > 0%) The veriffcatiOn.follOws Step 1. At the

last line we use 8 < 2(4Ti.)3e, to obtain r

I r(x) - Ll .< 6,

0')

In the preceding examples we have not always followedthe
outlthe to the letter but used it only as a serviceable guide.
Special difficulties are likely-to appear in Step land we cannot

anticipate all contingencies. The only absolutely general pattern '

the construction of a non-decreasing Chain of expressions.

. ; 460 < 01 02 < < con

where 00=, Ir(x) - LI,, = g(5) and Op.
°2' ...,'°n-1

may

involve both x and 8...To construct such a sequence in a particular
case may require the greatest ingenuity.

In these examples we have verified that a given value L I8 actually the

limit but have not shown how the limit L was obtained., In the next section

we shall develop general theorems which will enable us to discover the valUe.

of the limit and tdprOve that the value is correct. Epsilonics will be

,
.neaessery only to'prove the theorems, not to apply them.

7963(,)(i.,
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D.

Exercises'A6-3

A6-3

. . -

1. Prove lim (.Ag x - 3) = -1: obtaip-sa_upper bound g(b) for the absdlute- .
''x44 ---..-

----;-error and find 6 in terms oI' c. -------......
,

', k
r ,,

-..-----...............

2. Gi7ve arguments the' prove: A' .

a

fa) lim c ='c, c any constant. '

x..a

(b) lim x,. a. 4
-.-.

x..a
'

.. .,

.

,(c) ' lim kw = ka , k any constant. '
.,.,
. x..a .4

,

0
;,,, ( .

Oise the re§ults of Example A6-3a for parts b and .c.)
,-

3. Invoke the definition directly to prove. the existence of the limits in

.Nun6ir 2. . . , ,

-,-

4. In each of the following guess the limit, and then prove that your guess

.

it correct. ' ;

(a)

)

lim
1

x..0 1 + x
2

,x2tx =.3)
lim

x- 3

(e) lim x
2

4

x -.2
3

x - 8

(f) lim.x
3

3x 1 -
+ 2

lim
- 3x - 1

(g)

.

x + 2,

797
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777T A6-4
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4' A6-4. Limit Theorems

If the epsilonic definition of limit were required in every calculation

with limits, the development of thecalculus would be so disjointed and so

overburdened with elaborate detail that it could only be mastered by a few

devoted specialists. We need and we shall derive theorems that broadly cover

most of the significant calculations with limits. In the end it will only be

theexceptional cases for which epsilonic techniques are necessary.

The firgt general results apply to rational combinations of fpnctions,

that is, expressions formed from the functions of a given set by the rational
o

operations ofaddition, subtraction, multiplication, and divisi2n. If each

function of the given set has a limit as x approaches 'a,' then the limit

of any rational combl:nation of these functions is the same rational combination

of the corresponding limits (with divisions by .zero excluded).

There are certain special rational combinations, called linear combina-
7

tioni; which rew often in different contexts.4. It is worth distinguishing

them
A
as a class because of their importance. 'A ,linear combination is built

up by .addition of functions and multiplication of functions by constants.

Such g linear combination can be put in -the form

0 : x 0(x) --..cifl(x) +.c2f2(x) + ,cifIfn(x),

where c c.
? '

c
n

are constantt., In particular, a polynomial of
2

degree less than oggtlual to n 'can be written in the form'
;,-

4(

O(x) = c
0

+ c
1
x c

2
x
2

+ + cnxn'

and may therefore be thought of as a linear combination of powerslt, x,

2
x , x

The evaluation of the limit of a;linear combination is an instructive

instance o the general method of evaluating the limits of rational combina-

tions.

. Example A6-4a.
, ,

lim (61/3 + 5x + 7) = lim 6V3..+_lim 5x + lim it

x-4 '' x-4 x-4 x-4

. tlim 6)(lim 16) + (lim 5)(lim x) + lim IT

x-4 x-4 x-4 x-4 , x-4
4.4. .r,-.1.... r

et,, = 6 . lim 1/7<;+'5 . liM x + g.

. x-4 x-4
:I

,
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Note, that in the example we have sed three limit theorems without proof;

in essence,these are:
..

(111 The limit of the sum of two functions is the stim of the limits.

(2) The of ,the product of t o functions is the product of the

. limits.,

(3) of a constant is that constant.

Copsider'the statement )'

HA-4

liM c = c. >

x-a

Vote that the interpretations of c on the right and left of this equation

are slightly different. On the left, c stands for "f(x), where

° f : c

and on the right is the particular value assumed by the function for each

Value,of x. .With this in mind we have

0011.124A6-4a. For a constant fuhction f : x -4T,

"lim f(x) =
xa

proof. We have

f (x ) = It

for every positive e.,4ind every choice

trivial case, of. Course, but we include

K.

r

cl = 0 < e,

of . .(The constant function is a

it for completeness.)

TtE0ElitA6-4b. If lira f(x)*= L,
. xa

lim c f(x) = c
x-a

then"for any Constant c,

lim f(x) = cL.
x -a O.

; r

Eroof. We max assume c / 0, for if c = 0, the problem is reduced to

1%.
that of,Theorem A6-4a. Given any e > 0, we 'Wish to make

' lc - cLl

by restricting .x to adeleted neighborhoo
SN

0 < -

799 43 f3 9
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From the'hypothesis we know that for any -d we can find a S so that if
-

then

0 < lx - al <S ,

.If(x) - LI < E*,

lc f(x) - cri = Ici . - Lr <

E .

Accordingly, we choose E T-T, obtain the ppropriate value 5 for this
*

E , and set 6 = S

In the following theorems we require that in some deleted
neighborhood of a the domains of the functions entering the
combination all coincide. This requ'irement eliminates nonsensi-
cal Combinations Oath as f(x) + g(x) when, f(x) is defined
only for x > a 1 g(x) is defined only for x < a. The
likelihood of eve , oAking such' s. mistake is extremely small and
therefore we do not mention this restriction on-the functions
.explicitly'in the statements or proofs of the theorems.

THEOREM A6-4c. If lim f(x) = L and lim g(x) = M, "then

x-a
,

lim [f(x) + g(x)i = L + M.
x-a

,Proof. We must show.that for any given E > 0 there is some S such
/

that

if(x) +g(x).- M)1 < E

for all x fn the common domain o f and g Satisfying

Iq
0 < lx Dal < b.'

,- .

From the hypothesis we know that for any positive e
1

and e
2'

no matter how

small, we can f d 5
1

and 5
2

such that /

But

If(x) L11 < el' when 0 <>Ix - at < 81,

1` -1
Ig(x) - < e2 when 0 < lx - aJ <

k-

If(x) + g(x). - (L + M)l = If(x) r L + g(x) - MI

< If(x) - LI ± Ig00 141 .

1

,soo 400
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4 A6-4

1 c

,

1:

To leepiwithin the tolerance £'-we can choose e and to be nt' posi-

tive quantities whose sum is',,. Fo conveniehge,-we fiX

N .

E

..-

El= 62

,.

1!
6 .for

..

:. :-

Taking-Ithe apprOp;iatd values ,o these values e
l'

we set
;2

5 4 min(51,,52)

For this choice of 5, whenever . /

then

0 < lx <5,

If(x) + g(x) - (L +14)1 < + <-e.

(

$ince a linear combination can be built lip by succes ive operations of
4

addition of two functions and multiplication by a const ,. we obtain,

-/,,,z

//
4

Corollary, The limit of a 2ihear combination- of f ctions is the same

linedr combinsftion of the limits of the functions; i.e. if

lim,f (x) = 1* 2 ,
a

then'

lim[clfi(x)' + c
2 2
f *(x) + + cnfn (x)]-= c

1
lim f

1
(x) + c

2
lim f

2
(x)

x-a x -a x-a

, .. .

-.+ ... i. c
n

lim f
n
(x) =.c11

2
.1 + c' L

2
+ ... + cn n.

x-a._ _.

The proof is left as an exercise,-

For general rational combinations we have the further operations of

multiplication dna division.

Example A6-4b.
.

1 2 r.
lim - 2x ,fat]-= lim

1
- (lim2)(lim x2)(lim V)

x-4 x ' xL4 x-
1. >

2(lim x)(lim x)(11m VX)
1im.x

x.4 x-4 X-4
x-4

.r

= -2 4 : 4 3,4

4 01
801
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/1 c

a

IFor .0(x) =
1
- - 2x

2
vx let us see in detail, how

simple steps. We set

1Tc,
1
(x)

can be built up in

, ...

f2(x) = xf
1
(x

/

(multiplication)

-
/

f3(x) = xf(X): (multipll.cation)
.

/

I

, f4(x) = -2f3(x), (multiplication)

:g

5
(x) I 16°

:"FT37c
.. t

2

...!. w4ere f gl(4 7 1.
. . :

and '
L k(x) 1= x v

and then,'_ O(x) =f4( ) .4-'f5(x, (additio

(division)

It is, of course, tedious and unnecessary to decompose axy ratio al combine-
.,

tion into its elemeatary'building blo s; but'it is important to realize othat

it can be" done and t8 know\ how to do t. (For example, it would be necessary

to do so in wAting computer programs ) In the process we have een,that to
04

prove the general theorem concerning imits of rational combinati nt we no

need to prove only the two special theorems for the limits of the product and,

quotient of two functions.

'THEOREM A6-4d. If lim f(x) = L 'and lira g(x) = M, then
x-a x.a

N44) lim if(X)-"; g(x))
x-a

Proof. We with to estimate the difference f(x)g(x) - LM,, using the

knowledge of the differences f(x) - L and g(x) - M given in toe hypothe7

iis. Nor

f(x)g(x).-, LM =(f(x) - L(x) + L(g(x) - M)

= (f(x),- LXg(x) - M)+ M(f(lc) -,L)+L(g(x)- M);

8402
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hence,

(1) If(x)ex)- LM1 <If(x)- LI lex) MI IMl If(x)-1,1 +114 Ig(x) MI.

.

From the hypothesis we know that fOr any positive numbers c
1.
-Nand c

2Y
there

are corresponding controls 61 and 62 such that

A

If(x) - LI < el for 0 <lx al <
l'

Ig(x) - MI <,c2, for 0 < Ix al <

Thu's if we Choose min(61,62), it will follow from (1) that when

0 < lx - al < S then'

(2)" If(x),g(x) - LMl < cic2 + IMIcl'+ 111E2.

In order to keep from exceeding the tolerance E we shall choose c
1

and E2 so that

cle2 IUIC1 11'1E2 C; ./
I.

.... 0

this will then deter ne our choice of 6
1

and 6
2'

and in turn that 6,

For convenience; we equire that cl = E2 = V and that v Then

itie are now ready o choose v and verify (3Y. Let

V :r2 min 1, a. + LE I MI

oose -ihe corresponding 6 and -6- and_let 6 = mint6 . Then it

ollows from (2) and (4) when 0 < Ix al < 6 that

f(4g(X) -:11q1 < V(1 + Li + IMI ) < 6..

Since a polynomial p(x) is a linear combination of powers, and powers

are themselves products,



ro

. xk x x (k factors, >1),

we can establish the foll&ing corollary.

Corollary. 'For any polynomial fundtion

lim'p(x) = p(a)
x-a

e

The proof of this corollary is left as an

f(x)
TO prove the limit

prove the limit theorem;

tients then follolLfrom

exercise lExercises,A6-4, No. 2).

theorem for a quotient of , it is only necessary to

for a zeciprocal T57.: The rule for general quo-

, /

,f(x) 1

-P

1

iTR7-

f(x)r

iTR"

First we prove a useful preliminary result.

Lemma If lim g(1 = M and' M > 0, then
.

hood of a 'where 'g(x).> 0 for x in the domain of

there exists a neighbor-
,

g.

Proof, .Since g has the limit M at a, there is a 6-neighborhood

of a Wherein g(x) is closer to M 'than to zero:

.

In thid neighborho45d, .

5

=324- >g(x) >
2

> 0.

If the function 0 has a. negative limit at x = a then', upon app criTig---

Lemma A6-4 to the function 4, we see at once that 0(x) is negative in some

deleted neighborhood of a. As further

the following two corollaries.

Corollary 1. If lim g(x) = M and
x-a

a where 141 > I g(x) I >borhood of

Corollary

negative.

consequences of Lemma A6-4 we have

M /00 then there exists a neigh-

for x in the domain of g.

2. A limit of a function whose values are nonnurive.is non-

801.
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v
The proofs of these corollaries are left as exercises.

A6-4

Exercises A6-4, No% 3)

(2)'

J

THEOREM A6 -4e.. If lim g(x) = M and M A 0,, then
x -a

1
*lim M.
x-a

Proof, We have

14 ?x( I

ILT°.°1-8011

provided g(x) / 0. However, from Corollary 1,to Lemma A6-4 there is a _

&neighborhood of a wherein Ig(x)I .>-'14
.*

. Furthermore, for any E the
N.

n

A

*er

,

eighborhood can be taken so small that also .

\ / >5
(

.

r
Ig(x) - MI < e*:

, From (2), t refore, we have

1 1

irRT RI

where in the last line we have taken
t

*

114
imr

2

2E
<

e

M2

* M2e
E =

2

To complete the proof we choose the value of 5 appropriate to this e .

Corollary 1.

I-

If lim f(x) L and liT g(x) = M. ,where M / 0, then
x-a x-a

f(x) Llim=
x -a

ir(7)- -14

805 A r.;
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4

-

Corollary p2. If 106 and

e

are,DolynomialA and if

...,P(x) .42(a) 'e

x-a
q(x) -.-Ca)

t-

4(a) /, 0 then

In connection with these cOrollaries,,,we observe that if iim,g(x) = 0,
. x-a

have Under these conditions,
= f(xY

the quotient r-r may still
gkxj.

limf(x) = 0
x ..a

\f(x)lim F7
x-a

is a necessary but not sufficient condition for existence of

The primary example -is the derivative of a function exp'resseS.as

*(1

the limit of

zero. It is

of the limit

a ratio for which the numerator and denominator both approach

pot possible to make any general statement'about the exidttence

for such cases; itmis possible that ,lim f(x) = 0 and yei that'
x-a

the limit of the quotient does not exist (for example, lim ). (See
. .

x-O x?
Exercises A6-4f,Nos,,, 14 and 154 A

cit

In estimating lim f(x) we can often bound f below and above by
x -a

h which have limits as x approaches1 a. In that case yet\tions g and

expect that the limit

and h.

of f is bounded below and above by the limits

This result is a direct

A6-4f. If f(x) < g(xl in some deleted neighborhood

a, and lim f(x) = L and lim g(x) = M, then L < M,
x-a ,

consequence of the following theorem.

of-

# Proof: Singe g(*) - f(x) is nonnegative it *glows that

rim f(x),1 = M = L > O.
x-a

(Thsdrem A6-4c and Corollary 2 to LemmalA6-.4.)

Corollary I. [Sandwich Theorem.) If

h(x) <f(x)' < g(x)

in some deleted neighborhood of a,

lim h(x) = K
x-a

.and if

and lim

/ft

8.06

4 0

g(x) =

Sts'



them, if lim f(x) - exists,

x-a

K _ _< lim f(x) < M. .

x-a l
,

yaw%

,...

Corollary 2. [Squeeze Theorem.] If h(x) < f(x) <g(x). in some w-
deleted neighborhood of a and if

.

lim h(x) A lim g(x) = M,
''x-a x-a

then

.4 lim f(x) = M.
x-a

t

8d7
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Exercises A6-4

1. Prove the corollary, to Theorem A6-4c .

2. Prove the corollary to.Theorem A6 -4d.
-ro«

3. Prove the corollaries to Lemma A6-4.

4. grove the cOrollaries, to Theorem A6-4e.

5. Find the following limits, giving at each step the theorem on limits it,

which ,justifies .it.

lim (2 + x)

x- 3

(b) lim (5x -,2)

(c) lim'(T74417 - biT).:#dhere a and b are constants.
"

(d) aim
xa

6. Find the

it.

(a) lim
a x-1

(x3 + ax2 +, a
2
x + a3), where a is constant.

following limits, giving at each stepthe theorem which justifies

x3 - 1

x
2

-

xn
7. Find lim

x
x-1

2 1

- I

(p)

2

lim
;3 - 27

4

, for n a positive integer. Verify first that

, tc.

x
n

x - l

- 1 -1
- x

n
+ xn-2

'4.
... + x + 1_,

8. Determine whether the following limits exist and, if

their values.

l' +
(a) lim

1 - x,

(9)
x-. -1

Fim
n n%

Lx - a ); n is'a positive integer, a is /consta t,

xka

(x

they do 'exist find

lim
+

x

(d) lim (x-- 42)(c.

x
2
+ x - 2

(e) lim
x -.l

fr

8b8
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9. Using the algebra of limits show that' lim 1°)
- a

f(a) - L if and only
x-a

if lim'
f(x) - f(a)- L(x - a) I

O.
lx - al

d dm x-a

10. Assuthe lim sin x.= 0 and lim cos x = 1. Find each of the following
x-0 x-0

limits, if the limit exists) giving at each step the theorem on limits

which justifies it. 1
A

(a) lim sin3x sin x

tan x
x -0 A-0

(b) lim tan x (e).e lim
x-0 x-0

:(c)' lim sin 2x
x-0

x

cos 2x
lim

x-0
cos x + cln x

11. (a) Prove*Corollary 1 to TheoreniA6-4f.

(b) Prove Corollary 2 to Theorem A6 -4f.

Prove lim f(x) exists.)
.x-a

12. Foryhat integralvalues of m and n does lim + a
n-

exist?
x--a x + a-.

Find the limitfor these cases. A

'A
'13. Prove that'if liM f(x) = 0 and g(x) is bounded in a neighborhood of

x-a-

x = a, then lim f(x) g(x) = 0.

4

x -a

.14. (a) Verify that if lim T-,)) exists and if lim g(x)4=.6, 'then
x-a g x )Z-a

lim f(x) = 0.
x-a

(b) Describe functions f and g for which lim f(x) = 0 and
x-aAt . _

. ..
lim g(x) = 0 yet the limit of their quotiene'does not exist._.
x-a

f
. ----15. Prove. that if lim g(x) = 0 and lim f(x) &oes not exist, then the

... . ,x -a.

f)
limit of t e

g(x)
quotient does not exist.

(x

,

809
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16. The right-hand limit at a point

O

P(p,f(p)) q a function is the Limit

of the function at the,point P for a right -hand domain (p, p +

Similarly for the left-hand limit, the domain is restricted to
,

(P 6 .0. We denote them, symbolically, by lim f(x) and lim f(x)
.

x-p x-p

lim [x] = 2, lim .[x] = 1. Determine

k-2+ x:2

the indicated limit's, if they exist, of the following:

respectively,.. In particular,

a)(

Agir

x4:21'

2
x)

-
4

x

Ex,

- 4

4

x-2- x2 - 4

.1 lim
x-0-

lim
1/

x-0
47-7/i-- 2

(g)

I

r-

, 'a > 0 b 50

, a > 0, 1 > 0

4

810

4

Airmeg.

4* A, t



Appendi:X 7

CONTINUITY MORIN'S

A7-1. Completeness of the Real Number. System. TIE Separation Axiom

Simple algebraic and order properties do not'alone serve to define the

real number system; the rational,numbers satisfy the-same properties and so do

other systems. Although na physical measurement requires anything more than

the rational numbers, they are not adequate for either geometry or analysis.

Foroexample, the hypotenuse of a right trtangle with legs of unit length has

the irrational length v; thus the Pythagorean Theorem would not be true

if length were measured by rational values alone. In the rational field the

concept of infinite decimal would be limited to terminating and periodic

decidals; an infinite decimal like i5.1O1100111000... with chains of ones and

zeros of increasing length is uninterpretable in the rational field. The

system of rational numbers has theoretical gaps, but thi real number system

is complete in thatfreal numbers are adequa, te to represent all the points on a

line (lengths); and all infinite decimals. At the same time, it is posse le

to represent any real number by a4point on a4line.or an infinite decimal; in

fact, we use the concepts of poini,on the number line or infin e decimal as

synonymous with real number.

The completeness of the real number system, its lack of the cti!cal gaps,

=
is a,consequence of a geometrically plausible axiom.

The Separation Axiom. If A and B' are non-empty sets ofreal-numbera

for which every number in A is less than o4 eqUal to each number,in B,

then there is a real number, s which separates A 2nd B; that is, for each

x le A and y t13 we have x <es < y. .

In
. .

geometrical terms, if no point of a set A lies to the right Of lacy.,

point of a set: ,B, then there is a point s such that all points of A _(but

s, should it happen to be a point of A ) lie to,the left of s, and aid

points of B (but s: if s c B ) lie to the right of s (see Figure A7 -1a).

1,,

, 811
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A

Figure A7-la

A simple example of two'sets satisfyinthe separation aom is given by

A =. x < -1), B ( y : y > 1),

4

Clearly, any number in the interval [ -1,1] serves tseparate these

.sets.

If two sets are separated -by an entire interval, as in the preceding

example, then it is possible to find a rationalseparation nufter s, because

every interval on the nugber line contains rational points. The interesting

cases are those for which.tNre.are elements of the two sets A wand B

,closer together,thanany given positive distance. (Gaps in-the system of
,

rational numbers can be exhibited as failUfes4114,;the separation axiom for

such sets%. For example, let A be iheAtAgarositive rational numbers a
---

satisfying-- a 2
< 2, ,and, et B. be the set of positive rational numbers p

satisfying > 2. It,is possible to findrational'Values a an& A '

closer together -than any tolerance (see Exercises A7 -1, No. 18) but'a

separation number s would have to satisfy s
2

= 2 and no rational number
1

has that property (Exercise A7-1, No. 3c ). We can define J ,as the unique

'real nuibhr which separates A "'and B. In fact, any .real number can be

defined as a separationnuAber for suitable classes of rationals. More

general' , it Will be convenient for somet purposes to determine a real.number

as the unique separation number for two ,ets by the criterion of. the following

lemma.

Lemma A7-lr'l Consider tVo sets of real numbers A and B such that

x < y for each x,c A and each y i 'B. If for every positive' e there

exist a t A and p c B' such that p - a < e,, then the number s separ-

ating A and B is unique. Conversely, if thgA is just one separation

number s, then for every positive s there exist a And., p with

p - a < e 100C
. .

\

Proof. Let s and t be separation points for A

,

and B. Given e,

a t A , and p eB such that p - a < e, it follows from thefa,ct that s

-.mad t lie between a and p (Figure A7 -lb) that Is - tI < e: Since this

I d
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Figure A7-lb

. is true for every positive c it follows that Is - tI . 0 and hence that

s = t (see Exercises A7-1, No. 13b).
is

For the proof of the converse, let s denote the one number separating

A and B. For every positive 'e there must exist points a cA and

p t B such that

a s -
2

and 0 < s +
2

,

fbr should one of these inequalities fail, tlien we would have s - = or

s +
2

as a seppration number. We conclude that p - a < c.

Next we derive an important consequence of the Separation Axiom.

The Least Upper Bound Principle. Let A be a set of numbers which is

bounded above; i.e., there exists a value M such that a < M 4,or all
,

t A. In the set of al/ upper bounds of A there is one upper bound which

iS\Smallhan any other, the least upper bound. -

'Proof. Let B denote the set of upper bounds of A. The sets A and

B satisfy the conditions of the Separation Axiom. It follov that there

exists at least one separation number for A and B. ;Let s,be such a

separation number. Since s is a separation'nuMber i'tr,is.an''Upper bound of

A and is by definition an element of B. Since s' also,a lower bound

for B it is the least element of B and therefore thedeast wiper bound

of' A.

The Least Upper Bound Prindiple is also a. way of ekpressing the

completeness of .the real numbers; it is equivalent to the Separation.

' Axiom in t he.Sente that eithe4 may replace the axiom and that the

separation_p ert then follow.

*

This number is also called the supremum of A and is denoted by sup A.

The abbreviatkon tub A is also common.

813
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In order to verify that the Separation Axiom and the Least Upper Bound.

Principle are equivalent formulations of the comPlekeness Of the neat number_ '441.,

system it is necessary to prove that in an ordered field the Least Upper Bound

"Principle implies the Separation Axiom. The proof is left as an exercise.

Corolley 1. If M is the least upper bound of the A, then for

each positive c there exista an c t A such that a > M - c.

Corollary 2. A set Of numbers which is bounded below has agreatest

loxer bound.
Or

The roofs of these Corollaries are left as exercises.

There are, various methods for constructing t>e;realnumbers frolp the

rational numbers so that the usual algebraic and order properties and the

Separation Axiom will hold. These will be discussed in ,subsequent courses.

Exercises A7-1

Prove Corollary, 1 4,9 the Least Upper-Bound

Prove Corollary 2 to the Least Upper Bound

(a)

Principle:

Principle.

Consider the sets A of positive rational numbers a satisfying

a
2 <2, and B of positive rational numbers satisfying

2
,="2. Prove' if a F A -and E B that a < P-

.

for the sets A and B mustShow that a separation number s

satisfy s
2

= 2k i.e., s =

Prove that is irrational.

4. (a) Prove for every real number a, that there is an integer n greater

than a (Principle of Archimedes). =

(b) Prove that given any c > 0 there is an integer n such that

N

0 < 1,7 < c.
a..

814 4 t



5.- \ (a) We defizie infinite decimal

c .c c
0 1 2

c
3

where
0

is an integer, and c1, c2, c

the number r. where

are digits, by

c
1

t
2

c
1

c
2

c + 1
9
0 lq
+ + 0 +

n
+ < r <c

0 10
+ +

10
n10" 10 10

2

n

Show that the pregedirlg Aoes, in fact, .define a unique

real number.

(b) Given a real number r ve define its decimal representation

recursively-in terms of the integer part function [x] as follows:

co-= [r]

c
1

c2

2

cn = [10n.r - c0
10

10

ShoW that the inequality in part (a) is satisfied for this choice

( of, c
n

,1 Show also thit.decimals consisting entirely, of 91s from some point

on are avoided. (Thus, we obtain 2 = 2.000 ... but not

2 = 1.999 ...).

#

6. An' infinite decimal c
0
.c

1
c
2
c
3

.-,is said to be periodic if for some

fixed value p, the period of the decimal, we have c
n+p

c
n

for all

n, satisfying n > n0, wheie we require that p is the smallest positive

integer satisfying this condition. In words, from some place on, the

,decimal consists of the indefinite repetition of the same p digits.

Thus-

3

1
= 0.33333...

= 0:34090909...

are periodic decimals. It is convenient to indicate a cycle of p digits

by,underlining, rather than repetition; e.g.,

22
= 3.142857 .

7-
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g) Prove that every periodic decimal represents a rational number.

(Hint: Consider the decimal as a geometric progression.)

(b) Prove. that every rational number has a periodic decimal representa-

tion. (A "terminating" decimal in'which each place beyond a certain

point is zero is considered hi-a special case of periodic decimals.)

If r = represents a'rational nUxber given in lowest terms, find

the largest possible period of the infinite decimal representation

of r in terms of the depominator t.

From ,b we conclude that a decimal which ls not periodic represents ap

irrational number, -And conversely,

(c) Prove for every positive prime a other, than 2 and 5 that there

exists an iri4ger, all of whose digits are ones, for which a is a

factor; i.e.y- a is a factor of some number of the form A

lOn + 10n-1 + 10n-2 + 10 + 1...

7. (a) Considera polynomial with integer coefftcierrts:

anxn + a
n-1

x
n-1

+ + a
1

+ a
0'

(a
n

/ 0)
4

Prove that if is a rational root of this polynomial given in

lowest terms, then p is a factor of a
0

and q is a factor of

a
n

(b) Show that x
3 + x + 1 has no rational root.

(c) Prove that if I is rational then it is integral.

(d) Prove that - is irrational.

A
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A7-2. The Extr e Value and IXrmediate Value Theorems for Continuous

Functions

In Section 8 = we stated two theorems, which we reiterate here in more

precise terms':

pEOREC8-2a. The InterMediate Value Theorem.

Suppose f is co tipuous at each point of the interval a <,x < b

and that f(a) A f b). If d lies between f(a) and f(b) then

c between a and b such thatthere is at least on'point

f(c) = d.

THEOREM 8 -2b. Suppose f is continuous at each point of ;Ghe inter-
.

val a < < b. Then there are points and d, with a < c < b

.and a < d < b such that

f(d) < ffx) < f(c). for .a <x < b.

These two theorems will be proved in this section. Our proof of Theorem

8-2a makes use of the Least Upper Bound Principle and the following simple

lemma:

Lemma A7-2a. If lim = L and L > 0, then there is a positive
x 8

number S such that
a

f(X) > 0

if x is in the domain of, f and

0 < Ix - dl < s.

Proof. The definition of limit tells ,us that. for any

gin e > 0, there is a 8 > 0 such that

if.x is in the dom)in of

1,f(X) < E'

f and

lx - al< b.

By assumption -L > 0, so that, is also positive. Therefore, (taking

12.1) we can find a positive number 5 so that

(1) If(x) - Ll < 124 4

817
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f,41c is in the domain of f 'and
-...... _.

0 < lx - al <8. i

The inequality (1) can be rewritten as
. ,

- < f(x) L < -
2 2'

Adding L to both sides we have

L
+ L. < f (x) < +

N.

so that, in particular, f(x) cannot be less than L -
L-

L
= 0. 'This.

2 2

completes the proof of the lemma.

-

This lemma.has been implicitly used before in the form of the assertion

__Lthat if f(x)-, approximates a positive number as x approaches a, then the

Values .f(x) must be positive if x is close enough to a.

7 .

Proof of Theorem 8-2a. We give the proof for the case when i(a) < f(b).

e proof for the case f(a) > f(b) is analogous. Suppose that

< d < f(b). Our tiurRose is to show that there is a number c 'such that
4

< b' and* (c) = d.- Such a 'number can be found as follows: Let 'A be

the et of all n hers R in the interval (a,b] such thdt f(x) < d,

) 4.
-

&

e set A. y not empty (since a I A) and bounded above /by

b). e Least inciple implies the existenbe of a number c

such ghat

(2)

and

$(3)-

x < c if x CA

c < a if a 1s any upper bound for A.

- e shall show that a < c' < b and that f(c) = d.' First,we note that

a < c (since (2) holds and a t A) and that c < b (since 43) hblds and b

,is an pper bound for A). To show that a < c, consirnhe function g

define by

g(x) .'d - f(x), a < < b.'

By a4s option d > f(a), so that g(a) > 0. Furthermore,

lim g(x) = 13m d - lim f(x)

x -4 a X -4a X -4 a

= f(a)

818
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,since f is continuous at a. Therefore,
.

lim g(x) > 0
a

and we can apply Lemma 7-2a-to conclude that if x is'close enougb to a

and x > a then
6

g(x),> O.

tIn particular, ttir is an i in [a,b1..such that x > a and g(x) > 0,

that isn

.i. f(x) < d.
...

Ai
Such a x must belong to A (from the definition- of ,4A4) so'that (2) implies

c > x,> a. A similar argument (applied to h(x) = f(x).7- d,'instead of g)

shows tat c < b. This completes the proof that a < c < 'b.

41,
Now we show that c(c)= d. SuppoSe this is false, so that

f(c) 4 d or f(c) > d. Consider the case f(c) < d, and again let
...- , '

., g(x) = d - f(x),,,

Since f is continuous at c, we h

lim g
x c

lim d - lim f(x)
X -4 C c

= d - f(c) > O.

, 'Again apply Lemma A7-2a to conclude that,

t- g(x) > 0

if x' is sufficiently close'to c, and g(x) is defined.* Since g(x) 'is
,

defined for c < x <1) and b > c, there niut be a'poi t x, such that

c < b ant g(x) > 0, that f(x) < d. Such an x ust belong to' A

- so that x c (from (2)). This contradicts the fact that < x < b.

The assumption that 0c) < d has led us to a contradictio A similar,.

argument (applied to h(x) = f(x) - d, instead of g) shows that''t p assump-

tion tag) > d must also lead to a dontradiction. We are fOrced to conclude

that indeed f(cp = d. This completes the proof of Theorem 8-2a. .

Our frof of Theorem 8-2b will make use of the following lemma whose proof

_is a simple consequence of the definition of limit.

819 4 i.i



(Lemma f(x) = f(a), then'there a.number S > 0

X -4 a
Ask

such that ?"

-;4

If(x) I k 1 + If(a)-

for'all x in the domain of f such that ,*

a - 8 < x < A 47.,e,.

, .
116 t

,
. ,

?root. Since lim f(x) = f(a), the definition of limit tells us that

x ,4a '

for-any given c > 0 we can find a- 6. > 0 Au-a-that

If(x).- f(a)1_,< e

is in the domain of f and 1.

0 < Ix al < 6
,

In particular, we-%ircan find a positive number 8 such that '

.

- (5) If/x) - f(a)1

if x is in the domain of f and

<_1Ix - <
_

The inequality (5) -certainly holds.-if x. a,t (forthen

If(x) - f(a)1 = If(a) - f(s) F 10) (6) can be replaced by

(7) < lx - S.

(6)

. If x in the domain of f then

f(x) = f(x) - f(a) + f(a)

so that the triangle inequality gives

If(x)1 < lf(X1 - f(a)1 + If(a)1.

Thus, if x also satisfies (7) we- an apply (5)sro conclude that

If(x)1 < 1 4-1f(a)1.

This is our desired result for (7) and can be rewritten es

- S <x <a + 8.

82b
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Proof of Theorem 8-2b. Suppose f if continuous at each point of the

interval a x < b. We first show that f is bounded on the interval,

that is,

-(8)
there ia.a number M such that

1f(x) 1 < M for a< x. <b.
e

'Let A' be the set of numbers t, such that

a a <.t < b and f is bounded on the
(9)

_ _

interval a < x < t.

Certainly A is nit empty (for a s A) and bounded above by b, so it has a

4

least upper bound, say a. We shall show that a 6 A and that a =b. This

will establish that b c A and hence that (8) holds.

The number-a, being the least upper bound of A; satisfies. the two

conditions

(10v t < a if t c A (a is an upper bouhd for A)

and

(11)
if t-< 0 for all t c A then a < 0, (a is not

larger than any other upper bound 0).

Since a-6 A, it follows from (10) that a <a. Also since b is an

upper bpund for A, it follows from (11) that a < b. Therefore, f must

be continuous'at a, so that

lim f(x) = f(a).
x -)a .

Apply A7-2b o conclude,that there is a positive number 8 such that

(12) If(x)1 < 1 If(a)1

if .x is in the domain of f and

(13) a - S< x < a t

This will be used to show that a e A and that 'a = b.
2.0

To show that a 6 A, we first observe that a - 5 <a so that -,8.

cannot be an upper bound for A (from (11)). Therefore, there is at least

one t e A such thtt t >a - S. Such a number t 'cannot exceed , a (from

(10)). Furthermore, the values of f must be bounded in the interval

a < x < t "(fronv(9)), so there is a number M1 such that

(14) If(X)1 < M1 a < x <.t

'--- 821
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.Noti.pg that if , t<- x <a,. then

a - 6 < x < ct 8

(since d-8<t<x<a<a+ 8) we conclude from (12) that
4

Q

(15) If(x) < 1 +.!f(a)1, f t: < < a.

Let M2 e the larger of NL and 1 .1f(x)1 tl*n-(14) and "(15)-iell us

that

(18) Lf(x) 1 < M2, a < x < a,

so that f is bounded on the interval [ ,a1 and hence a must .6I-.1.9k2..k.7

411m,

To show that a -,b, we-first reca

mere trub that a < b, then since a <

the interval fa,b1 such that

(127) a < tl

1 that a <-b From (11)):" -If it

+ we can find a number t1 in

Therefore, if a < x < t
1

then (12) ives
- -

(18) Kx)I <1 + If( )1, if a <x < ti

. -

(since a - 6 <'a < x < t1 <a + 6, 'so that (13) holds): Let M
3

be the.

. °larger of M2 (of (16)) and 1 + I (a)I. Combining (16? and (18) we have

If(x)1 < if, a <x- 1 '

so that t
1

must belong to A, nd, hence, t1 <,a. This contradicts (17)
I

.
and we are forced to conclude tha a cannot be, less than b. This completes

, <_ the proof of (8).
! ,

e

We now complete the proof f Theorem 8-2b. Leto B be the image the
II

interval [a,b]. under f, th t is,

-1,-

B is the' set all numbers f(x), a <x < b.

,The set 3 is non-empty, (sin e f(a) E B) and bounded aboVe (from' (8)) so it

has a le. ast upper bound, whi h we denote by 'a. Thus

It S ,

(20) f(x) <a if a < x < b Ze iS an upper bound for B)

-and
/

fi

(21), if f(x) < 0 for a <x <b then a,< 0'

(a is not larger than any other upper-bound-for B).

A 2
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It will be shown that there is a number c in (,a,b1 such that

f(c) = a. , From (20)' we will then have

f(x) < f(c) for a < x < b

so that f(c) is our desired maximum value of f on the interval (a,b].

c
LrSuppose there is no .g in a,b] such that f(c) = a: . Since,

f(x) <a, a < x < b, ,jie must, therefore, have f(x) < a, a < x < b, so that

the function g defined,by

fi
g(x) - a -

1

f(x)

is defined for each x in [a,b] (for the denominator is not zero in the

interval). Furtheymore, for each t in, [a,b]2, we then have

1 1

'x t

lim g(x5 =
lim (a f(x)) a- lim f(xj

x t x

1

a - f(t) g(t)

so that g --ds
A
Continuous at each point of [a,b]. Apply (8) to g to conclude_

that there is an M such that

,
ig(x) < M, a <-x < b.

For each x in [a,b], we have: ti

g(x)
1

a - -f(x) °

so that

1
0 <

, a f(x) M.

Taking reciprocals we have
4

a - f(x) >

C -

that is;

M
1

f(x) < a - for a < x < b.

Hence, a'-- is an upper bound 'for B. This contradicts (21) since

a>> a -
M
- . This contradidtion was a consequence of the assumption that there

is no c- in (a,b1 such that f(c) = a. Hence, there must be such a c,

that is, there number c in [a,to] such thiit

f(x) < f(c), a < x < b.

823
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The proof that there is a d in [a,b] such that f(d) <f(x), -;

a < x < b is analogous. Of course,:now that .!!e know that,continuous functions

on [a,b] hive maximums, we can apply this to the function 41 A maximum for

will be a minimum for f so that continuous functions on closed intervals

must haye both maximum and minimum points.

0

v.

1

4 '1
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°1. Let

ir(x)

Exercises A7-2,

0

1
sin T , x >0

0 , x = 0

A7-

Show that f satisfies the conclusion of Theorem 8-2a on any interval

[0,b1, but f is not continuous at x = 0.
1

2. is continuous and'haa an inverse on ra,bi and

,f(e) < f(b) then f is strictly increasing.

3. Prove that if f is continuous on ra,b3 then the image of [a,b1

is a closed interval. (Hint: Use Theorems 8-2a and b)--:

4. Prove that if f is continuilio ip fa,b1_ and all values of f are in

la,b1 tlien there is an x in Ca,b1 for Which' f(x) = x.

j. Suppose
.

x
f(x)

x 0
'

0 , x = 0

Does 'fa satisfy the hypothesis of Theorem 8-2b on the interval °[0,1) ?*

COes (8) h8/d for f on [0;1]? on [10-100;1]?

6. Is the Continuity Of f essential to the hypothesis of,(8)?

7. Cab a discontinuous function whose domain is a lose interval be bounde

8. DolitiMbers 6 and 7 amount to the same question?

04. If-
9. Can a rionccibstant function whose domain is the set of real numbers bef:

44$.0: bounded? ce 44k

10. Show that a function .f which is increasing in a neighborhood at etch
1 .

point of an interval la,b7 is.an increasing foliation in la,b).

(Hint: Let. A
4
'be the set of alit, 4n N1,1)1 'such that f is

e. increasing in la,t1. Show that if Cc ,= lub, then a elk. and a = b).
. s

'function has the Property that for.each poin of an interval where it

is defined, there is a neighbot.hOod in which e fActiod is bounded.

,Show that the function is bounded over:the whole interval. (This is an,

, example as is Number'10 where ',' local pkoperty implies a global one. It

isfeclear that the global property here implies the,:loCal one.)
I, -,

/

1I
1

825
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. A7-3-

A -3. The Mean Value Theorem

In Section 8-3 we discussed the Mean Value Theorem,- We amplify that
I

discussion here,

The Mean Value Theorem.
.*

Suppose f is continuous at each point of the interval a < x_< b

.and differentiable at each point of a < x < b.'. Then there is at

least one number cy such that a < c < b and

'(1)
f(b) f(a)4:)f,(c).

b.- a

In this section we give a proof of this result, and show how it can be

used to obtaill error estimates rn ap

tions will be discUssed in the next°

In geometrical terms, the Mean

between any two points of the graph

a point where the curve has the same

and (q,f(q)) be any two points on

with p < q, say (see Figure A7-3a)

y

proximation formulas. Further applica-

section.

Value Theorem states that on the arc

of a differentiable function there exists '

slope as the chord.* Thus, let (p,f(p))

the grag} of a differentiable function f

I
P

Figure X3a

q

The word "mean" here signifies "average". The slope pf the chord is

interpreted as average rise in function value per rise in value of x. The

Mean Value Theorem states that this average is equal to a value of the

derivative at some point of the interval.,

826
is 6
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Ace&-ding to the Mean Value Theorem there exists a point u between p and

V

q , where

ft(u) -
f(q) - f(p)

10,

We can make the Mean Value Theorem plausible by an argument similar to

that by which we found that the slope of a graph at en interior extremum is

zdro. Take a parallel to the chord at a point (u,f(u)), which

}des on the arc at maximum distance from the chord. ,Since no point of the

arc lies at a greater distance from the chord, the arc cannot cross the

parallel. The arc cannot meet the parallel at an angle for then it.would .

cross; therefore the two must have the same direction at (u,f(u)). (See

Figure A7-3b.)

y

/
1 // p, f(p)) ,/ //,.. / /
_/ /
/ 0 /e__. -

(u , f (11))

(q , f( q))

Figure A7-3b

In order to derive the Mean Value Theorem we first prove it for, the

special case in whi,ch.the chord is horizontal.

827
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Lemma A1:2 (Rollets Theorem). If f is continuous in-the closed

interval (a,b), differentiable itthe open interval (a,b) and

f(a) = f(b) then there is.at least one c in (a,b) such that ft(c) = O.

1

7

Proof. If f is constant then this is certainly true for any c in

(a,b). If. f is not constant, then there is a point a in (a,b) such,

that f(a) / f(a). Let us suppose f(a) > f(a) (otherwise'we can apply the

same arguments to -f), so that if c is a_maximum pg,i.nt for f (which

. exists.by Theorem 8-2b)'then f(c) > f(a). Certainly c must he in (a,b)

(fqr f(a) = fN) and, hence, Theorem 8-2c implies that ft(c) = 0.

eic

so{Before proving the Mean Value Theorem 1 1 us examine some of the other
%.

consequences of Rollets Theorem (Lemma A7-3). *

Corollary 1. Let f be differentiable on an interval. Any zeros of f

within the interval are separated by zeros of the derivative.

Proof. If xl < x2 and f(xl) = f(x2) 4 0, the conditions of Lemma A/-3

are satisfied and there exits a value u such that x
1
< < x

2
and '

f.1(u) = 0.

4

As a Consequence of this result we observe further_thatj,in a'given inter-
.

val, a function may have at most one more zero than its derivative. From this

fact there follows a familiar. result:,

Corollary 2. A polynomial of degree n can have no more tha

distinct real,zeros.

The proof is left as an exercise ercises A7-3, No. 1).

ti

14

Example A7-3.

(i) Let us'apply Corollary 1 to the zeros'of" f(x) = x3 - 3x + We

know-thit ft(x) = 3x
2

- 3 has zeros at x = 1 and = -1. It

. follows that f may have as many as three zeros,, We observ4 that

f(-1) = 3 and f(t) = -1. By the Intermediate Value Theorem we

conclude that there is a z7ro of f between -1 and 1. Clearly

we can take f(x) negative for sufficiently large negative values

and positive for sufficiently large positive values. It follows that

f has a zero for x < -1 and another for x > 1: Specifically, we

828 4
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have f(-2) = -1 and f(2) = , so that there is one zero between

-2 and -1 and anothgr between 1 and 2.

(ii) The function f(x) = x3 + 3x + 1 has the derivative f'(x) = 3x2+3
which is alway's positive. Sinc-e the derivative.is always positive f

can have at most one zero.) Observing that f(-1) = -3 and f(0) = 1

we see that a zero exists and lies between x = -1 and x O.

Proof of Theorem 8-2g. The equation of.the straight line joining the

points (a,f(a)) and (b,f(b)) is

(2) y = 5.(z) = f(a) (x a) f(01) af(a)

It follows for any point x in (a,b) that the height h(x) of (x,f(x))

above the chord is given by

(3)
f(b) f(a)h(x) f(x) - g(x) = f(x) -"f(a) - (x - a)

G.

From this equation it follows straightforwardly that h(x) satisfies the

conditions of Rolle's Theorem (Lemma A7-3) on [a,b]. First, as you May

verify directly, h(a) = h(b).= O. Nexl observe that h(x) = f(x) g(x) is

the sum of f(x) and a linear function;_ since both terms of this sum are

differentiable on the open interval (a,b) and continuous on the closed

interval (a,b] it follows that h also is.differentiable on the open inter-,

val and continuous on the closed interval. From Eolle's Theorem, we conclude

that for some value in (a,b)

h'(c) = f'(c) - g'(c) = 0,

or, from Equation (3) for h(x) above,...)

vole

Linear Interpolation.' ,

r.,

f(b) f(a)
.1"(c) - O.

b - a

Line-arintenpolation is a useful method of approximation to the values otX

a function in an interval when the endpoint values are known. If bounds on the

range of the derivative can be qtained, the Mean Value Theorem gives a way of

estimating,,the error of approximation.
,

1

:#1

829
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Geometrically,, linear.interpolation consists of replacing the arc of the

graph of e on (a,b)* by 'the chord joining the endpoints. Thus, on (a,b)

we approximate f(x) by tile linear function g(x) given in Equation (2). The

error of the approximatidniiig(x; f(x) = -h(x) is given by Equation (3). For

dUr purposes'it is convenient to repast Equation (3) in the form

.g(i) - f(x) (x -

Now, by the Mean Value Theorem

off(a) f(b)- f(x) - f(a)1.

b - a x -

(4) g(x) - f(x) = (x - a)[f'(u2) - f'(u1))

where a < ul < x < b, a < u
2

< b. If the derivative is bounded in (a,b),

say ift(z)1 < M, for z in (a,b), then from Equation 4)iJ
-lg(x) - f(x)l < lx - al(lft(u2)1 + 1f2(u1)1) -

whence

(5) Ig(x) - f(x)l < 214.11x - al.
e

Example A7-3b. 'Let us estimate ii5 by linear,interPolation for the

function f : x Since 3.< .VD5 < 4 we take a = 9 and b = 16 .in

Equation e2) and obtain
22

g(10) = as our estimate for /O. On the interval

(9,16) , we have

% 1. 1 1gfs(x) = < < .

2IX 2V

Entering this bound in (5) we obtain

4
.

-

We observe, however,. that

124 - of < 3

22 2 484 6
V

and we suspect thatlour estimate of error ip rather crude.

0.

A '3 a' 4
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<1.

q

If on the interVal (a,b) ,ft has a derivative f", the second drive-

tive of f, tae may apply the Mean Value Theorem again to the difference

ft(u
2
) .- ft(u

1
) in Equation (4) to obtain

g(x) - f(x) = (x - a)(u2 - ui)f".S.v)

where v is somewhere between u
2

and u1. Since u
2

and u
1

are both

points of (a,b) we know that the distance between the two points is less

than the length of the interval:

u2 - u11 < b - a'.

Suppose, in addition, that.we have-a bound on the second derivative,

Jf "(x)l < M
2

on (a,b) . Then we obtain an upper estimate for the error in

terms of thq'second derivative: ti

(6) Ig(x) - f(x) I < (x - a)(b

,

Example A7-3c. Now let us use Formula (6) to obtain an estimate_ for the

error of approximation to AT by the linear interpolation scheme of Example

A7 -3b., We' have

hh,hrhhil
If.(x)1 ---7-3,2 < I ,4.9

I32

<
1

108

for x 'in (9;0).. Consequently, from (6),

1272
101 <

_

It fcalows.that

3.07 < 1/1715 < 3.21.

((-

We have obtained sharper estimates for 11.6 and now we can repeat

process to obtain still sharper estimates using a = (3.07)2 and b = (3121)2.

.

mot 1
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1. Prove

2. Sketc

Exercises A7-3

orollary 2 to Lemma A7-3.

the graphs of the functions ,in Example A7 -3a.

3.' Is th following converse of Rolle's Theorem true? If f .is continuous

on the closdd interval (p,q) and differentiable on the open interval

(p,q )I and if there is at least one point u in the open interval where

f'(u) = 0, then there are two points Jh and n where .p <m<u<n< q
such that f(m) = f(n).

Jr-

4. Ibe Rolle's Theorem justify the conclusion that 21 = 0 fOr sf., value
dx

of lx in the interval < x < ]( for (y + 1)3 = x
2
?

. n: f(x) = x(x - 1)(x - 2)(x - 3)(x -4). Determine how many solu-
.

tions fl(x) =,0 has and find intervals including each of these with-

outalculating f'(x).

..15. Verify that Rolle's Theorem (Lemma A7-3) holds for the given function in

the given interval or give a reason why.it dos not.

(a) f : x >x3 + 4x2 - 7x 10, . [ -1,21

2 .- x2
(b) : x 4-- ,

x .

7. Prove that the equation

f(x) = xn + px + q = 0

cannot have more than two real solutions for an even integer n nor

more than three real solutions for an odd n. Use-Rolle's Theorem.

8. A function g hds a continuous second deriyative\on the closed interval

(a,b1. The equation g(x) = 0 has three different solutions in,the':

open interval (a,b) Show that the equation g "(x) = 0 has at-least

one solution in 'the open interval (a,b).

9. Show that the conclusion of the Mean Value Theorem does not follow for

f(x) = tan x' ifi the jnterval 1.5 < x < 1.6.

432 .
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. 10. For each of the following functions show that, the Mean Value Theorem fails

to hold on the interval [ -a,a] if ,a > 0. Explain why the theorem fails..

(a) f : x Ix)

(b) f x

/

5 3
- 11. Show that the equation x + x - x - 2 = 9 has exactly one solution in

the open interval (1,2).

12. Show.that x
2

x sin x + cos x, for exactly two real- values of x.

13. Find a number that can be chosen as the number C in the Mean Value

Theorem for the given function and interval.

(a) f : x -4cos x, 0 < x <

(b) f :x )x3 , -1 < x < 1

(c) f : x x3 - 2x
2

+ -1, < x < 0

(d) f : x ) cos x + sin x, 0 < x < 2v

14% Derive each.Of the following inequalities by applying the Mean Value 'Jr

Theorem. o

(a) Isin x - sin yl,< Ix - yl

(12) < arctan x < x if x

1* x
A

1
15. %Ike the Mean Value TheOrem to approximate -A.008.

16. Use the Mean Value Theorem to approximate 'cos 61°.

17. 'Show that .a.(1 +. E < 14717+ < E )
n(an + e) !Tan

for e > 0, a > 1, n > 1 (n rational).

18. *Using Number 17, obtain the following approximations.

(a) 3 +.116- < 3-k/5 < 3 +

(14) 3 + < 5 < 3 +

(c) Show that the approximation

.

, 1 \ 5 r-rr

5(244) J 75, ,_o Y24

is correct to at least 5 decimal'places.

833 .
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19. (a) thaw that a straight line can Intersect tbe graph of a polynomial

of n-th degNle at most n times.

(b) Obtain the corresponding result for rational,functions.

(c) Could sin x or cos x be rational functions? Justify you answer:

20. Prove the intermediate value property for derivatives; namely, if f is

differentiable on the closed interval 4,0 then f/(x) takes on every

value between fl(p) and fl(q) in the open interval 1p,g)
Y

21. Estimatefor Newton/ s Method. (See Section 2- .) Suppose f' and f"

are positive, on [a,b] and that f(r) = 0, where r t [a,b]. Let

° x
1,
e [a,b] and put

f(xl)

x2 = xi .

Suppose ,

li'"(x) I < M and

(a) Show that

lx2

(flint: x2 r = x
1

-

r such that

Then -find

If 1(x) I > m > 0,

ri < 02 !

x2 - r = xl

f(xl) - f(r) e

a <x < b.

ft (x
Find

)
1

fl-g) (-x - r)
f,x1) 1,

between txi and

fqx-1 fl(t) 7

f! (Xi) (*X1 r)
li)

E. between xi id

f':(t1) ,'
.....

x,`
,

,,, - r = v k

, t.,
-'9 .

(b) If b --,,a < al k,
'

0 < k < 16 show .that I x -_,r1 a' k7
2 - ,-- M

.
e

4 7-ib .'.,,
; A

4;

.

-,,crfv-Section 2- .
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A7-4v; Applications of-The Mean Value Theorem

This is an extension of some of the ideas of Section 8-4.

THEOREM:A7-4a. If fl(x) > 0 for a < x < b; then f is in-
. :t

creasing on -(a,b); ff .f1(x) < 0 then f is decreasing.

Proof. Only the increasing case f1(x) > 0 will be considered here,

the case f1(x) < 0 is similar (or can be obtained by considering -f).

Suppose f'(x) > 0 on (a,t). For any two numbers xl and X2 in they
0 o

interval with x
1
< x2, the Mean,Value Theorem tells us that

f(x2) - f(x1) = fi(c)(x2f- Xi)

4,

for some c in (x1,x2). Since f1(c) > 0we must have

-f(x2) - f(x1) > 0, that is f(xl) < f(x2).

This proves the theorem.

44.

If we replace the weak ineqUalities (>, and <e) by the stronger

' inequalities (>, and <, respectively) the same proof yields

. '

THEOREM A7-4b." If f' (x) > 0 for a' < x < b then f is strictly

increasing in (a,b); if f'(x) < 0 then f is strictly decreasing.

. Theorem 7-3b-is a simple corollary to Theorem A7-4b, for if

Ft(x) = for a < x < b

then- (F,- G)' = 0 on 'a < x < b so that 1' - G is both increasing apd

decreasing and, hence; must be constant on (a,b), that is,

F(x) = G(x) + c, a < x < b,-

where c 11,a constant. This also holds at the endpoints a and_b, since,

F and G must also be continuous at a an b.

,

835
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THEOM A7-4c. If f"(x) > Os for a < x < b, then f is conve*,

on (a,b); if f"(x) < 0 then f is concave.

Proof. We discuss only the case f"(x) > 0, we wish to show that if x1

and 7
:2

are .in (a,b). and x
1

< x2, then

- f(x2) > f(x1) t fqx1)(x2 - x19

Aos

(See (3).of Section 8-2).' To prove this, we apply the Mean Value Theorem to

find a c in '('X x
2

) such that

f(x2) - f(xl) = f'(c)(x2 - x1). ;

f(xl) - fqx )(x2 - xl) = fqc)(x2,'.:-X1) - ft(x1)(x2 - xl)

. = (f'(c) - f'(x1))(x2 - xl).

Apply the Mean Value TheoreM to f'(c) - fqx1)."This gives a number, c
1

in
.,

(xl,c) such.that

Hence

f'(c) v(xl) e(c1)(c x1).

f(x2) f(;(1), f'(x1)(x2 f"(c1)(c xl)(x2 xl)

which is non - negative, since f"(c,-4 ) > 0 and c > xl, x'2"4> xl. Therefore,

f f (xi) (x).) (-x2 x 1.) > 0
4 ,

as (1),: A similar argument shows that*(1) holds if.

836
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A7-4

----7''Exercises A7-4

1. Let 'f be-differentiable on a neighborhood of a point a for which

f'(a) = 0. If f'(x) < 0 when x <a and f'(x) > 0 when x > a,
,

then f(a) is a minimum. If f'(x) > 0 when x < a and f'(x) < 0

when x >.a then f(a) is a maximum. Give a proof.

2. Let f be continuous on the closed interval [a,b] and differentiable,

on the open interval (a,b). Suppose u is the one pant in (a,b)
.

where ft(u) = 0. Prove that if fi(x) reverses sign_in a neighborhood

of u then f(1.Q is the` global extremum -of f on [a,b]- approp'iate

to the sense of reversal.

3. Given a function f such that f(1) = f(2) = 4, andSuch that e(x)-

exists and is positive thrciughtout t4 interval .1 < x 3.

(,a.) What can you conclude about f'(2.5)?

(b) Prove your statement, stating whatever_ theorems you use in your

proof.,

4. Let ,f be a 'differentiable function on (00). Prove that the require-

ment that f he increasing is equivalent to the condition that f'(x) _> 0

everywhere but Vat every interval contains poi4ts where f'(x) > 0:

5., A function g is such that g" is continuous and positive in the

interval (p,q). What is the maximum number bf roots of each of the

equations g(x) = 0 and gi(x) 0 in (p,q)? .

Prove your result and give so 41ustrative
_

/
6. Suppose that f

(1)
(a) = f

(
,

2).
(a) = = f

(n - 1)
(a) = 0 but that .'

(n) /
f (a) 0. Determine whether f(a)- is a local extremum, aid if it

is, which kind. (Hint: Consider separately the cases n'-even and n

odd.)

7. Prove that a necessary and

.differentiable function f

each point a in I, the

sufficient condition that the graph of a

be concave on an interval I is that for '

slope of the chord joining anoint (x,f(x))

4to the fixed point (a,f(a)) is aodepreasing function of x on I.

8 4a7
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8. (a) Let f be differentiable and its Wraph is concave'on an interval I.

Prove that the function
fi

o a
f(x) - f(a)

X 1 a

0(x) .
f'(a) , x-= a

* x - a

is decreasing, where the fixed point a is any interior point of I.

(b) From the result of (a), prove that a necessary and sufficient condi-

tion that the graph of f be concave on I is that f' be

C

decreasing.

9. (a) Let x and y be two points on an interval I in the domain of a

'function f. Show that a point is on the chord joining the points

' (x,f(x)) and (y,f(y)) on thgraph of f if, and ad;4c if, its

coordinates are

(ex + (1 - 0)y,ef(x+°(1 - e)f-(y))

some e such that 0 < e < 1.

(b) Show thdt a'differentiable function, f is convex. on I. if, and rs"*..1

only if, for all x and y in I and all e such that '0.< e < 1,

flex + (1 - 0)y) ef(x) + (1 - e)f(y).

(c) Use (b) to show that the graphs of the following functions are

convex.

(i) f. x ax + b

(ii) f : x 2+%x2

(iii) f : x

10. (a) Derive the following property of differentiable functions' If the

(b)

f,

graph of 12) is concave on an interval I, then for all points -a,
.

b in I and any positive numbers p, q

> Pf(a) qf(b)
.
*/1)4. /

In words, the function value of a weighted average is not'less than

the. weighted average of the function values.

Prove that this p.roperty is sufficient for concavity.

438:
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"11% Prove that if f is differentiable then,a, nec4sary and svfficient

condition for its graph to be'concave,is that

tf(---)
a + b f(a) +f(b)

2 2

A
12. The'graph of a differentiable function f is concave and.is positive

for all x. 'Show that. f' is a constant function.

6t
1. Under what circumstances will the graph of a function f and its inverse

both be concave? one concave and the other conveic?
1

1
14. If either of D

2
xF(x) D

2
F(-)d is of.one sign for x > 0, show that

the other one has the same sign. Interpret geometrically and illustrate

by..several examples.

.

15. If F(x) 'is concave and F(a) = F(b) = F(c) here a < b < c,' show

that F(x) is constant in "(a)c).

16. (a) Let a, b, and c be points in I such that a < b < c, and

suppose that the graph of f is-convex in I. Show that

f(b) <
c a

f(a)
c - a

f(c).

2

. (Hint: Usthe result of HuMber 13.); hence,

f(a) > f(c),

c a7 c7 7bf(c) > 177 f(b) - : f(a).

(b) If the graph of F is convex in a closed interval, show that F
:s!

4
is bounded in the interval.

(c) Show by-a counter-example that the result in (b) is not valid for

0 A

an open_interval.

839 '
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Appendix 8

MORE ABO6T INTEGRALS

A8-1. 'Existence of the Integral,,

The purpose of this section,i4to establish necessary and sufficient

conditions for the existence of '.'integral of a function f over [a,b]..

Recall that the integral is definpe the unique separation number between

the upper and lower sums. We nee" first to establish that the upper and

lower yams are in fact sdparatedthat every lower sum is le1;4 than or equal

to every upper sum. If it is pos§ible to find an ,upper :Aim and a lower sum

closertogether than any given fixed tolerance IL, than by Lemma A1-5 there

,exists a unique separation' number, a number I hick is the integral of f

.over ,[a,b].

Leihms A8 -la. Let f be a function defined and bounded on [a,b]. For,'

Any fixed partition a of [a,b], each upper sum U 'over a is greater

than or'equal to each lower sum L over 0.

Proof. We recall that the partition a is simply a set or points of

(a,b] which includes the endpoints and b. To construct upper and

lower sums, the points of d are arranged in increasing order; ile!,

a = xo < xl < x2 < <xn =.41).

An-upper sum U is defined as

U = E mijxk _ x,_1)

k=1

where f(X) < Mk on [x.k..1,xk], a loser sum as,

L = E .,(xk x,_1)

k=1

Where f(x) .> on [x.k..1,xk]. Thus mk < Mk and term- for -.term

Ink(xk xk-1) Mk(xk xk-1)
or

from which this lemma follows.

841
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4 AXk..1,Xk1 they are bounds for f(x) in each,of .the subinter'vals ,u ],
i-1 i

,= 0, .1; 2, p, (see Figure A8-1) If 'we form the-upper' sum
-

over the partitigkof 1;x0. using the upper bopd

It is necessary to find a, means of comparing upper and lower sum's for

any two partitions al and ForFor this purpose we introduce the joint

partition a = al U a2 which consists of all points of the two partitions

. taken together. Let U1 be any upper sum over al and L2 any lower sum

over a2. shall show that U1 is an upper sum for the joint subditision

a and that L2, similarly is a lower sum for . a. The resu t we seek will

then follow from the preceding lemma.

Lemma A8=1b. For any partitions al and a2 of [a,b] and any upper

and lower duns U11. L2, over' the respective subdivisions, I
,

?-'.L2
.

Proof, Let x. x
k

be a pair of cdneecutive points of subdivision

from al, (k = 1, .2, n). There may be points of the subdivision

in the open interval (kie_xk), say, ul, up_f With

)ck_i < u1 < u2 < up_i < xk, Setting uo = and ..\11.1) = xk, 1p see

..,,that the set (ui : i = 0, 137 is,a partition -of [:.1c.

Kj.
Further

...,;since Mit and mk are upper and lower b6unds for f(x) 'th all of

!'
Figure A8-1

,
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=Z Mk(ui - ui_

, n 4

E-uk

k=1

AtS-1

P

Mk E
dui ui.1) 7telk(xk-xkI1) . hus,the upper sum

i=1

for the partition also an upper,sum for a. Similarly

is a lower sum for both a
2

a is

and a. It follows from Lennie A8-la that -

L <1U
2 1.

Corpi!lary. If form Lny partitions

an upper sum U1 over
finC".r

A

16' '

1,*

a
1

and a
2

of [a,b) there exist

a1 and a lower sum L
2

U
1

- L < E
,

which has upper and lowerthen there exists a partition a

satisfying

over a
2

satisfying

U - L e

sums U and L

'4' Proof. Take a = a
1
U a

2' Since U
1

and L
2.

are upper and lower

sums for the'joint paltition, the result is immediate.

co)

THEOREM 6 -3a. Let f be a bounded functicin on [a,b). If for every
:( ,

. ,

positive e there -exists.a:partition a of [a, d lower and

471upper sums -L and U oyez, a which differ by less than E, then

therp.exists a mumber- I whiCh is the integral of f over ra,b].
. ,

"'Conversely, if f ip integrable over [a,b),. then there exist a
- .

partition a .and lower nne-upperputs L and U 'over a such -

. t

that U L < E.

A r'
Pr--_--oof. From LommIA8-ib every lower sum is lest than or equal to each

upper sum. If for every E >0 ,there exist lower and upper sums and U
satisfying 'U L < E, then ty Lemma Al-1 the nutber Separating the set of

'lower sums from the set of upper sumb is up4ie. By definition this

-separation number is the integral of f over [a,bj.

Conversely, if f,

'[a,b) 'exists, then by

''upier sum! in unique.

0

is lntegrabl , t * if.the integral'If f over :.
. .

definition the geparation'numbdc between lower and.

It follbws from the converse statement in Lemma A7-1
,

1843

442

C.

*



/

Iv

that there exist lower and upper sums, not necesSarily, over the same partitiOn,

Say L
1

over a
1

and..0
2

otter 0
2

for which
2

- L
1

< c. From the

corollary to Lemma A8 -lb, we conclude that there exists a single partition a

haSing upper and lower sums U and L for which U L < e.

/ Next we proVe a useful corollary to Theorem 6-2a.-'

Lemma A8-2c. If f is integrable over [a,b] then f is integrable

over any subinterval [a,13]s.

'

Proof. There exists a partition a of fa,b] for which U - L < es

her U an L denotl upper and lower sums over a. We may assume a

and p. are points of a, for if they were not so originally they could be

introduced without affecting the values of U and L (see the proofof

Lemma A8-2b). With 'a and 13 included in a, it follows that a contains

apariition a' of [aA]. Now in the sum

U - L E(1.1k - mk)(xk - xk_i)

all terms are nonnegative. If we let U' and IA denote those parts of

the sums U and L which are taken over a, it follows that

U' L' <U - L < c.

According to Theorem 6-3a, the function f is integrable over fa,P.1.

4, )7

<

/ /

1 4,

3
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Exercises A8-1

. ,Let f be a function whic17 takes on a maximum an minimum on every

closed interval (e.g., f could be a continuous ction, or monotone).

Let U (a) and L
*
(a) be the upper and lower sums obtained by

using the maximum aneminimuft values of f'x) as the appropriate bounds

in each interval of the subdivision.

Let a
1

and a
2,

be any partitions of' [a,b].

joint subdivision a = al U a2 that

Prove for the

u*(a
1
) >u*(a) > "(a) >1.*(a

2
)

In other terms, by adding new points to a subdivision we may reduce

the between the upper and lOVer sums, and we cannot

increase it;
4

2. Consider the function f defined on [0,1] by

0 , c irrational
4 f(x)

11 , x rational
=

Prove that the integral of f does not exist.

3. Consider the function f defined on [0,1] by

f(x) =
.

0 , x irrational(0

4

x, rational; x = in lowest terms.

Prove that t(le integral of fl over [0,1] exists and find its value.

4. Give an example of a nonintegrable function fg where f and g are,

each integrable.

v

4 4
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A8-2. The Integral of a Continuous Function

In this section it will be shown thatjf ...f, is continuous On the inter-

val (a,h1 then the integral of f exists, that is, there is 4a unique separa-

tion number between.the upperanclaower sums.

.
0 Suppose f is continuous on [a,b] and that x is a point of [a?b].

If a
1

and o
2

are any two partitions of [a,x1 with corresponding upper

sums
:
U 1 ; U

2
and lower sums L

l'
L
2

then we know that

. a

(1) L2 Ul.

In particular, if A denotes the set of all possible upper sums for al]:

possible partitions of [a,x] and B denotes-the set of all possiblt lower _

sums for all possible', partitions'of (a,x1 then (1) tells_ns that each

number in B is a lower bound for A and each, number in A is an upper

bound for B. . The symbol

I
x,f (read "the upper integral of f from a to x")

a

will denote the greatest lower bound of A. The symbol

e

x

.f

f (read "the lower integfal of f ,a. to xlif ';'

will dote the least upper bound of B. Since each Ti inn A' is an upper-

bound tor-":13' must -have

fa f < U
1

x .

SO that f is a lower bound for A andlbence cannot exceed the greatest

a ,, .

,

.4. T
lower bound -for A, that is ,

\...

rx

f.S',.,'=-.--.---.
-- -- .. ...,.-

(2), f < i f.

_J-a_ , a

(3)

Our purpose' is to show Mat

f

a a

is,Ihere is a unique separation number for the upper and aower sums on

each subinterval [a,x]. The method of proof is as follows: Let F encl.; V

8" 443
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be the functions- defined by these upper and lower integrals, that is

----eaves=e116.tie.",

.40,-

ti

Ai

"i7 ( X )

X

'f, A <x <b

x

F(x) f, a <x < b.
a

We shall show that F and F have the

their difference is constant (Theorem

the same (namely 0) they must_ Abe the s

A Certainly F(a) .= F(a) = O. (See

to shod that F' = f = Waishall

proof of F' = f being quite similar.

/

same'derivatives (namely f) and hence

7-3b). Since their values at a are

ame functions, which is statement (3).

Exercises A5-4, lb. 8), so it is enough

tahlish the fact that F' = f, the

In summary, we shall prove

THEOREM A8-2. If

F(x) = f, a < x 'then
a

f A.s continuous on [a,b] and

1,(1) = f(x), a < x < b.

The proof of this theorem is quite analogous to the proof of the Area

Theorem (Theorem A7-3a), with some complications due to the fact that f 'is, '

not assumed to be increasing. We first establish three lemmas.
A tt.

Lemma A8 -2a. If f is continuous on [a,b] and a <*c < b, then

l'f---faf-+Taf.
r:

o
,

Proof. ,Let
a1

be a partition of .(a,c] and
a2

a partition of

[c,b]. ,The union a
1

u
2

is a partition ta,b12 If U1 and U
2

deVote Upper sums for
a1

and 4:52 then U1 + U2. is certainly any upper

sum for [a,b]. The number

lab f

is the greatest lower bound of the upper sums of partitions of [a,b] so we,

must have

b
f < + 1J2

Y
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that is

4

In other words

rbj;f - U2 <U1 .

/IT

f - U2

a

doesn't exceed Ak upper.sunt \-U1 for any partition al of [a,c] and hence

cannot exceed the greatest lower bound of all such upper sums for all such

partitions of [st,c], that is

c

f - U <
2

a a

f.

This can be written as

17,

f < U
2

a

b e

which fells us, that f - f doesn't exceed any upper sum Apr,party

a a

partition a
2

of [c,b] and hence cannot exceed'the greatest lower bound of

such sums, that.is.

rb
J

-J
f.

f<J
a c

c

.We -have, t4erefore, established the ineg414.ty,
4

%(4) f f r f.

a. a c

4

To complete the proof df Lemma A8-2a we need to establish the reverse

inequality

(5)

1:;"

f> r f+
a a c-

To,do this, suppose a is a partition of [i,b] with a cor'respvonding upper

sum V. It may be assumed that c s a, for if not we can add c to a with,-

'out disturbing the sum U. (See the rofof Lemma A8-1b). Let. al 1);the

.)
"points of a contained in (a,c] and 02 the points of a contained in

[c,b]. Let U1 and Vi denote the pper sums obtained from U by including.
.

A

I

848
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' .

-onlrthe `tehntrof II which correspond to points of

, Then.

r" Since
'

U = + U2.

'

and.. a
2,'

respectively.

U
1

is an upper sum corresponding to a partition of [a,c] and

f is the greatest lower bound of all upper sums of all partitions of.
a

(a,c] we must tave

Similarly, we have

. .

so that (6) gives

In other words

f < U .

1

f < U
2

a

f + ) f'< U.

T

J

f+ fa1
c

4

O doesni,t exceed-gny upper sun U for any partition a of [a,b], so.it

cannot exceed the greatest lowbr bound of-such sums, that is

,
c

a

f + f < i f.

b
<

c , a
------:

This is the desired inequality (5), which-combined with (4) completes the

proOtila Lemma A8-2a.

.

'Lemma A8-2b. If f is continuous on [a,b] and if m, and- M are

numbers such that .t

then

m < f(t) < M, for a < t < b

,

b

m(b a) < r f <11(b - a ) .

a

J

849
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Consider the partition of [a,bV

al = (a,b)

and the corresponding upper and lower sums

U
1

a);= M(b - a). L
1

= m(b - a).

b

The number ,, f is the greatest lower bound of all upper sums of all

a.
A . -

partitions a 'of [a,b] so, since a
1

is one such partition, we must have

rb
jaf<U

1
pM(b-a).

The same argument also gives:- .,

b
f > m(b - a).

a

Recall that (see

b

_
a f< f

a
-al

so that _
b

m(b a) < f < f < M(b - a)

a a

which gives the degired result.

_The.observant student will note that the, continuity of f played no

*A. particular role in these lemmas, except to insure that f iS'bohAded so'

that the upper and%lower sums can be defined. Hence, both lemmas hold for

an ameitrary boznded function f. In our third lemma, the Continuity of f

is essential.

'kr

xLemma A$ -2c. Suppose 1' is continuous on ja,b.le and that x is a

point of (a,b1,. If e is agiven posVtive number thpn there ie'a positive

,n6Aer ,5 such that

p

where a and p are -khe-respective maximum and minimum viluq'sUNI.rgn the

clOed interval

(4,b1 n (x - 5,x + 5].

850
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(-:-

'Proof'.

, , ....,

The. That that

k 0 ti.

.

(a,b) n fx - 8,x + 81

r
,

is a closed interval of

A0-2

poaiive;length is easy to establish. (See Exercises A8-2, No. 1.) The lemma

**asserts that thedifferenCe between the Maximum and minimum values of f on

the interval -Ex --8,x + ,81 n can be made as small as we please, b'

choosing csmall enough. Its prgpf makes use of.the definition of limit and

Theorem 8- Since f is continuous at x, We
.

know, that: c

v
lim 'f(t) =

t -)x,

Therefore, if e
1 is any given poditive number, we can find a positive number

8
1

such that

(7) If(t) - f(x)I < el

if is in the domain of f and

(8) o < It - xl -<

The inequality (7) also holds if x = t, so.(8) can be replaced by

0 < It - xl <

If% e is a given positive number, let el =
e

. Choose 81 > 0 so that

(9) - f(x) I < el

if' t is in the domain of f and

o < It - xl < 8 .

*Let 8 be a positive number smaller than
1'

Thus, if a < t < b and
..,

x - 8 < t < x + 8 then t is in the domain of f and

< - xl < a <

sp that (9)*olds. Let a and p be the maximum and minimum values'of fo4

on the interval ra,b1 1-"8,x + 81 and choose points c and d, in this

*-AnterVtil such that

a = f(c); p = f(d)

{The existence of, c; d, a and g is guaranteed by Theorem 8-2b). Therefore,

If(c) - < el 'and If(d) - f(x)I < el
.

. so that

851 450 "



a - 0 = f(c) -f(d)

= f(c). f(x) - (f(d) f(x)).

The triangle inequality ((2) of Section A6-1) gives

a - 0 '< If(e) - f(Ix)I + If(d)_- f(x) I

\
. <

El el
+ e. '

This proves Lemma A8-2c.

-Proof of Theoregt A8-2. The function F is,defined by

x°
7(x) ..-, .1 f for x in [a,b].

..- a
,-,..

Our purpose is to show that PSX) = f(x), that is,

(10) lim
x

7(xt) 1(x) f(x); for 'x in (ail)].
-

xt-4x

If tf is a given positive number, use Lemma ;8-2c to find 8 >`0 so that

where a and 0 are the respective maximum and minimum values of f on the

interval

(12) [a,b] n [x . 8,x + 8].

Suppose x' is in the domain of F and

(13) .

0< lx' -x! <8
- 0

so that xl. is in ja,b] (slnce I is only defined on (a;b1) and hence x'

is a point of (12). In particular) if x* >x, then (x,x'l is a*subinter:

val of (12) (seeeExercises A8-2, No. 2) and so.

0 < f(t) <a if t,e (x,x1].

ff

Lemma A8-2b, then gives

\ x'

- x) < f < a(X1 - x).

Jx

In this case Lemmi A8:2a gives --- 1

f = f +- f
X

84,5.
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so that

P(xt):- F'(x) =

x x

f - r f =
J a J-a

and hence (14) gives

OW -

f

x) < F(x') - F(x) <a(x, - x)
that is since we -are here assuming that x' > x)

<
F(xl) -T(x)

a.
-- x! x

Subtract f(X) throughout to obtain

<Pixt) - F(x)
x' -

f(x) <a - f(x)
x

and now use the fact that

-f(x) < -a and -f(x),> -0
.

(siti'de x is in (12)) to obtain

- a <
F(x') - F(x) I1r0C, < (i( 0."'

4 Oft

Using (11) we conclude that if x' is in the domain of and (13) holds and

if ..xt > x then

17(xi) - F(x) f(x)1

A similar result holds if x' < x and we conclude that indeed (10) is true.

Th1 completes the proof of Theorem A8-2 and establishes that'the Integral of

b
continuous function on a'clOsed interval exists. The Antegral r f ,is.then

a

f
17

f

b
defined to be the common value of f and 'f.

4.
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'Exercises A8-2

1. Show that if x st(a,b1 an 6'> 0 t en [a,b]rt (x 8,x + 6) is.a

-slose'd interval, (Hintil.r Let hi, b the larger of a : and x 6,

the -sitna. a(' b.-vend. x + 6 and stow that

, (a1;b11 [a,b] [x - '6,?cs+ 6]).-

0
v °

2. Show that if x' > x and
oft.

. subinterv,1 of la,b1.

3. Show %hat

' 4 $

I. 'Deduce from Number 3 and Theorem A8-2 that F' = f if f is continuous
. . r

el
-

r ,
on (a,b1.

-.

I'''.

s 'continuous on ita,b44, then there is a number c in
...

x [a,b)

Ja Ja

then (x,xl] is a

5: Show that if

[a;b] such that

-
(Hint: Choose c

1
and, d

1
in [a,b

are the respective maximum'and mini

4t

N

ch that f(c1) f(di)

f f la ,b] Show -that .

b

Jfa
* f(d ) < f(c )

1 b - a
A

'and'apply the Intermediate Value Theorem).

r

6. Use the Mean Value Theorem tclow that Number 5 ii true. Can you then-
.

. ,

choose c so that a < c < b?

.7. Show that if f is continuous and nonnegative on (a,b] wiihi a <b

, b.

and if f(x) > 0 for some x 111 [a,b] then f > 0.

.1' a

9 :` (Hint: ShoW that there is. a _..5,:> 0 _ and in >0 such that f(x)
_--- 44

on (a] Ilvfx - 8,x +
-,_

7

8. Deduce from Numbef 7 that if fl(x) fof a <fr x <b and f' is

continuous on [a,b] then f is strictly increasing on (a,b1:

s

C
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9. SubpO'se

a
f(X)r-,

1 , 0 <X l
2 , 1 < x < 2

(a) Show directly from the defitlition and properties of upper integrals

that:

x 5 x ,0<x<1
F(x)

.0 2x - 1 1 <,x < 2-

(b) Does F have *a derivative at x = 1? Why doesn't this contradict

Theorem A8-2?

'10. Suppose f is bounded on [a,b], and l'(x) = f.. shoT thEit
a

is continuous on' [ a ,b] . (Hint: Make use. of Lemmas A8 -2a, b, which hold

for bounded functions.

0

4
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Appendix 9
' .44

.

LOGARITHM AND EXPONENTIAL FUNCTIONS AS LUTIONS TOIFYERERTIAL EQUATIONS

o

,

. A9-1. The Logarithm as Integral

The ZI;garithm function loge is the unique solution to the problem

(1)N,

and can be expressed in the integral form

x

(2) f(x) = log x = dt, x > O.
.

e .

Our purpose ilathis section is to show how the properties of,thy.ogarithm

function can be obtained by using the fact that it is the unique solutiOn to

°.(1) and that it is the area from 1 to x under the graph of t
1

.

In order noto be prejudiced by the known properties of the logarithm

let us use the letter L to denote the function defined by

(3). L(x) = dt x > O.

It will be shown that ,L has all the properties of the logarithm and_that it

is reasonable to write L(x) = loge x:

,N
Certain elementary properties of L are easy to obtain from (3). First,

note that

(4) °. L(i) o,
.
.,,1

45
since' L(1) = dt =. O. Second, the Area Theorem (Section 7-2) gives

1

(5) (x )
1 , x > O.

1
From (5) and the fact that :7 > 0 if x 0, we conclude that L'(x) > Caltand

(6) . L is a strictly increasing function.

In particular, since L(1) = 0, the valUes L(x) for 0 < x < 1 must be

less than 0, while.the values L(x? for x > l' must be greater than O.

That is,

,(7) L(x) < 0,' if 0 < x < 1

.

857 / "400



and

(8) L(x )" > 6, 'if x >

.

The secoW derivative of L is the derivative of' x -4
1

so that
.e4

(9) L °(x) = , x > o.

The:expression 'Ir1
,

.-- ds negative, ik x f 0, so that L' is a concave func-

tItn. Already we have'enough information to know that the graph of 'looks
, A

something like that shown in Figure A9-1a.'

V

N./

Figure A9-la.

The graph of a strictly increasing, concave

function, defined for x > 0, and passing,

through (1,0).

,

The basic logarithm property

(10) L(ab) = L(a) + LW, a ;Op b > 0

can be obtained by using the that L = i1 the unique solution to the

.problem

(11) f'(x) = X, f(1) =.0.

. .

For suppose a > 0 -and g -. is the function defined by

g(x) = L(ax) - L(a).

Certainly g(1) = 0. Furthermore, since L(e) is a constant

b

Dg(x) = D(L(ax)):

858
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A The chain rule (with "u = ax, ui = a), then:gives

1
DL(ax) =

ax
a= 1

In other.words, g is also a solution to problem (11). Since L is the only

solution to this we must have L = g, that is

L(x) = L(ax) - L(a).

Adding L(a) to both sides and replacing x by b then gives the result

(10).

The formula "L(ab) = L(a) + L(b) tells us that the area under t
1

from 1 to ab is the gum of the area from 1 to a andthe area,from 1__-
to b. (See Figure A9-1b.)

,

Figure A9-lb

The area of the shaded regiOn is the area

from 1 to a plus the area from 1 to b.

A

Frail (10) we have

L(a2) = L(aa) = L(a),+ L(a) = 2L(a) .41*

L(a3) = L(a
2
a) = L(a

2
) + L(a) = 2L(a) +1,(a) = 3L(a)

and in general

L(an) = nL(a) if n is any positive integer.

44
"Iithermore, if n -is aYositive,integer and

A

alin
a
ih

859;
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971

thin bn a

that is

so that

L(a
n.

) niAni

Wn) = 3;7; L(a) if n Jan positive integer.

si

Suppose r is a positive rationa*Mber so that r = where m and

n awe poldtive integers.. Then

L(ar) = L(amin) = Walin)7)

mL(alin)
n.

4 = -111 L(a)
n

that, is,

.

... L(ar) = rL(a) if r a positive rational 'number.

This result will, in fact,. be true for ty rational'hudber r. If r = 0,

then

L(ar) = L(a0) = L(1) = 0 F OL(a) =

If r < 0, then p . -r is positive and

so that

that is,

In summary:

.crap =

0 = L(1)= L(araP)

L(ar) + L(aP) = L(ar) + 'pL(a);

.

L(ar) = -pL(a) rt(a).

, 1'

(12) L(ar) = r L(a), if a > 0 and r is rational.

It will-now be shown that the range of L consists of all real numbers,.

and that L has(an inverse action. In other words:

(is) If c is,any red6humber, there is a unique.

positive real number d suchthat 11(d) = c.

/860
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4

. To prbve this we first show that for a given c theree positive

numbers d
1

and d
2

such that

(14) L(d1) <c < L(d2).

To do this, note that L(2) > 0 from (8)). Hence, there is a negative

integer n1 and a positive integer h2 such that

n
1

L(2) < c < n
2
L(2)

We Can then choose

d = 2

n
1

dand
-Jr- 2

=

It follows that

nl.
L(d

1
) =,L(2 ) = n

1
L(2)

and,

A9.-1

no,

L(d2) = L(2 ).= n2 L(2) >,c

so that d1 d2 are positive numbers which satisfy (14. The function

-13` is differentiable for each x > 0; theN.ore, it4is continuous for each

.x > 0 (SactiOn 8-1).. The Intermediate Value Theorem (Section.8-2)

implies that there is a pos/tive real number, d between d1 ;and d2 such

that

.84 L(d) = c.

4 Furthermore, d must be Vague since L is strictly increasing. This com-

pletes the proof of (13).

A
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ercises,A9-1

1. Use upper and lower sums to show that

1 1 %< k2) < +

2. (a) Show. that for each integer

1 / 1
+ < 1 + + + 1 +

n > 1

1
(Hint: Use upper and lower sums to estimate dt.)

1

10
100

(b) Estimate
ln

n=1 4P

(a) Show that if a > 1

1
1 -.7 <,11,(a) <a - 1.

u

(b) Show that if a > 1

L(2a) > L(a) +
1

2

(c) Show that if' a > 1 then

L(a) <

tHint: L(a) = 2L(4).)

i4,, Show that L 11lim ).tint: Use No. 3(c).)

x 03

5. Find fl(x) for each of the followi

(a). f(x) = IJ()P)

(b), ,f(x) = L(x

. ..
f(x) = L(L(x))

. Sketch the graph of x L(x), using its deriyative.

r
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eaX.ponential Functions;

Denoting the inverse of L' by 'E,

each real'humber c by

front ihich ye have

(15)

it follows that

E(c) = d if L(d) = c,

E(1(d)) = d for each d > 0

L(E(c)) = o=-each c

E is defined for

. The values E(x) of the function E are positive (becquse iA is the
e

inverse of a function whose domain consists of poSitive nuMbers). Further-

more,, E is strictly increasing

a strictly increasing continuous

the function E the two results

(16)

and continuous because

function. (See (3)ff,

toy and (12) now take

it is the inverse of

Section 8:11.) For'

the form:

E(a + b) = E(a) E(t).

r.
rEka = E(a)r for any rational number

Fbr example, to show that E(a + b) = E(a)E(b), we note that

+11

and that

1(E(a)E(0),= LW) + L(E(b))

= a +b'

so that L(E(a + b)) = L(E(a)E(b)). Since

have E(a + b') = E(a)E(b).

L(E(a + b)) = a ± b

e

It If r

Since L(ar

L is strictly increasing we must"

is a rational number then (15) tells us that

ar =*E(L(ar)Y.

= r L(a) we therefore

(17) ar = E(r. L(a)), if r is rational and a > 0 .

> 0 and x arbitrary byLet us now define a
x

for a

. 7 *

that is, by Wending (17) to all real numbers x,' We shall show that this

-definition agrees with the definition of a
x

used in Chapters 5 and 6.

ax = E(x L(a)),

864
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a.
,

The laws of exponents hold for 'our new definition (18). For example,

x+y
,` a = E((x 1-.Y)L(a)) = E(xL(a) yL(a))

so,tnat (.6) giv6s

. .

ax+Y = E(xL(a))E(yL(a)) = axaY.

We prove that
(ax)y axy

as follows. From (18) we have

(ax)Y. E(Wax)).

We replace 3 by E(xL(a)) to obtain

(ax)Y = E(YLN(4a))).

Now use the fact that

L(E(xL(a)));.-- x L(a)

Zan application of the second formula of (15)) to obtain

= E(yx L(a) = E(xy L(a)).

Now use the definition of powers (18) again to write

E(xy L(a))

We conclude that (ax.)Y = a Y.

4

Note that if a > 1, the function x -*a
x

is strictly increasing.

a > 1 -and
1
x < x2, then L(a) > 0 so that

.x
1

L(a) < x
2
L(a).

Since E is strictly increasing, we must have

a 1 = Ex1- a
-

< E
2

)) 6c L(a)) = ax2 \.\-

A similar argument shows that x
,

is strictly decrea\sing if 0 < a < 1.

The function ,x --,ax is continuous, for
.

axlim a lim E(x L(a))
x x

= E( lira x L(a))

x b

864(.....feef...
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A9-2

" -
(since E is continuous). Since, lid x L(e) = b L(a) and E(b 1)(a))x.= a.

x

we indeed:have

x

lim a = a.13`\

_ -

In summary, if arbitrary powers are defined by (18) then the 10; of

exponents hold, the furiction x
x

is continuous, and is strictly

\,increasing if a' > 1, strictly decreasing it 0 < a < 1. It appears that,

indeed, the definition (18)) results in desirable properties for exponential

functions.

The results of Section 8-11 enable us to find the derivative of E, and

hence, using the chain rule, the derivative of x -)a
x

Since the derivative

of L. is the function x -0-
1

, x > 0 which ha's only posi,t4ve values, we

know that
, .

E'.(x)

(See (0 ), Section 8-11). The formula L': x -4'pthen gives

so that

L,"(E(x)).-
a..

El(x) - 1,4(x)) - E(x).

In summary, the function E is, it,s own derivative. Therefore,

f(x) = E(x) is a solution to the problem

(19) f' = f; f(0) = 1.

In our preiious discussions (Chapters 5, 6) it was shown that if

2
h

1
(20) lim exists and is .k

h .0

and if .e is defined to be 21/1', and ex to be 2(1/k)x, then

x ,)ex must be a solution to (19):

We conclude that if (20) holds, then E and the function x -' ex must be the

865
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same function, that is

(21) E(x) =. , for all x.

In 'our setting, arbit;ary powers are defined by (18),.
(20) and (21) are true if we use (18) to define pbwers.

0

O

Let us show that indeed

First we use the result V E and the chain rule to find the derive-

' tive of* f : x ax. We have

) ax = L(a)) .`

Put u(x) = x Lea), g = E, so that

f(x) = eu(x)).

and, hence, .

f'(x) = rex = g'(u(x))u'(x).it
, Since g' = g = E and 1.0(x) = L(a) we have

De = E(x L(a)) L(a)

)
= ax L(a)

'that is

(22) f'(x) = ax-L(a), if f x -4 ax

In particular,

f' (0) = a° L(a) = L(a).

Expressing thedefivat,ive as the limit ofa difference quotient, we have:

ft (0) = lim
h=4 0

f(0 + h) - f(0)
h

0+h
- a0ar = lim

h

= lim
h--+ 0

a
h

- 1

h

We conclude that lim a
h."

1
indeed exists and, in fact

h -'0

L(a),= lim a

h

h 0 h

464



Put

h
lim

2 - 1
= L(2). 'and e 2

1 /k

h -40 %

that is, since we are using (18) to define powers,

e = E(1- L(2)) .

Since L(2) = k, this means that.

tbus;*indeed we have

1-

e E(1)', so that' L(e) = 1.

e
x
= E(x L(e)) = E(x)

Exercises A9-2

1. Use the definition (18) to find fl(x) where

(a) f(x) = (1 - x).

(b) f(x). = (L(x))x

(c) f(x) = xl/x

ir

0

'

2. Find the minimum value of x -4 xx.,

'3.
Show that if'yo = ay. where c is a coxstant then there is a constant

.41
K such that

y = KE(cx).
.

(Hint: PUt i = E(-cx)y and show that 2.4 = O.)

1

I

A
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'L s '
oS2; . a

4., Recall, that if x
1

is au initis4.est/mateSto Vzero r of f "then

Newto0A-meth od (Sectiony2-10), under, suitable conditiont gi.ges the,
;

better estimate
0

f(x l)
1

X -x
2 1 TITTY

1

and the subsequent estimates
0 >

. f(x )

f xn xn fqx
n
)

4

* - This can be .sed to estimate e, the zero of f(x) = L(x) - 1. -Using

x
1

= 2 and L(2) 4 0.7 find x2 and x3.

0

5. (at) .Show that

e = lim (1 +

h 0

(Hint: L'(1) = 1 =
L(1 + h) - L(1)

; -) 0 h

r
r

= lim L(1 + h)1/h)

h 0

(b) Show that e = lim (1 + 311)n

n

(c) Show that ea = lim (1 + a)/1 .

n

The Circular Functions . ,

The sine and cosine functions can be constructed as 'inverses of solutions

to
A ,

0

1
Yi

2

The followineexercises outline this construction. AS in our logaritM dis-

cussion we shall,introduce new symbols for these functions, then show'that they

desired functions. We let A. be the function deffnea for < 1--

9 X

A(x) =
1

dt.

J 0
1 - t

868 ,.
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6. Rind v.0 and show that-+

hence, has an inverse S.

7. (a) What is sS(0)T

(b) Show that

A9-2

a,is strictly increasing and continuous, and,

St =

byuting the formula for the derivative of the inverse.

(c) Whatois S1(0).2

(d) Show that S" + S = 0.

Let C = St and use Number 7.

(a) Show that C" + C = 0.

(b) Show that C' =-S.

\:(c) What is C(0)? C'(o)?

Show that [C(x)]2 + [S(x)]2 = 1.

9. Show that if y" = 0, y(0) = 0 and yt(0) = 1 then y = S(x).

.(Hint: Put z = y and use the fact that
;

0 = (z" + z)z' = 1)((zt)2 + M2),

and z(0) = zt(0) = 0 to show that z = 0.)

10. Use Number 9 to show that

S(x + a = S(x)C(a) + S(a)C(x)

if X!, a, and x + are 'in the domdin of S,
.

ce

Remark. The above defines the functions S and Cr only for x near

zero (that is, for x in the range of A where A `is defined on the interval

-1 < t < 1). The intuitive dscltissiort of Chapters and 4 sbovId that

y = sin "X 'ls'e solution to y" y =.0, y(0) = 1 W0) = 0 sO,we a e able

to colplude t t S(x) = sin x for x near zero "A Method for exte ding the

functions S and C to all x is discussed in ppendix 8, SMSG Cal taus,

Volume 2.
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