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.., FOREWORD

. .

The correspondence between graphs in the xy-plane and relations between

x and y was one of the profound discoveries of mathematics. In particular,

if no vertical line cameet a graph in more than one point, then the graph is

that of a function f : x -)y; that is, for .each first coordinate x of a

point on'the graph there is a unique number y such that (x,y) lies on the

graph. A central purpose of this 7.5:t is to study the'relatiOnship between
1

.

graphs of functions and'tbe expresSions which ,Define these functions. We, shall

concentrate our attention on functions defined by polynomial, trigonometric,

exponential and logarithmic expressions,, or by combinations of such expressions.

These functions are usually referred to at elementary functions4

We should expect that properties of the graph of a function are related

to the expressioh which defines the functions. F ' example, by analyzing the
.

functional expressiqn we should be able to determ ne the location.of high and .

low points on the graph, and in addition answer q estions about the shape of

1 the graph (such as illitervals of rise or fall and .ow the graph bends). Further-

more,.if the function is related to some physical roblem involving motion i7

seems reasonable that an analysis of its expressi should enable us to deter-/

mine such aspects of the motion as velocity and ac eleration. Likewise,, ry

might expect to be able to determine from the func iopal expression such/pr

?

-

perties as the average value of the function and,t e area of a region b un d ed7. .

by the function.

r

04.4: aim is to develop some of the concepts and techniqqes.w*ch/wi 1

enable us to obtain important information about gra of element ry functions.

Theprimary et:Incept which we develop in Chapters 2, , and 6 is t t of the

tangent line at a point on the graph of a function. This tangent'line is des -

' cribed as the'apraight Line which best fits the grap near that/ ,point. In

- particular, formulas are developed for finding the sl tes of tangent lines to

t14-graphs of various 'elemeneary functions. Fora gi en function f, such a

formula defines a, new function called the derivative f. /Values of the

' derivative give 'a 'measure q the rate of change of the graph. In particular,

such aspects of .motion as velocity and acceleration ar descrh bed.by the

derivative.' Furthermore, high and low points of the g =p of f can be V,iven

by,zeros of the derivative, while rise or fall can be d e ined by thesign

of the, derivative.

0

0

. .

,
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Our fir4t task to analyze the simplest kinds of elementary unctions,

namely polynomials, the sine and cosine functions, and simple power, exponen-

tial and logarithmic functions. These are discussed in Part One, while the

,more,difficult techniques associdted with various algebraic combinations

(sums, products, quoNents, composition) of these, basiC.functiorls are left

to Chapter 8 (in Part Two). In additiond the concept of antiderivative

introduced in Part Two, the aRtideriptive of f being a function whose

derivative is f. "We shall show how antideri4atives can be used to calculate

areas'and to solve such.prpblems as determining velocity given acceleration;

Furthermore, this relationship between antiderivatives and area provides us

with aowerful geometricIool for analyzing and approximating functions.

. .

Chapters 1 and 2 discuss polynomial functions, with Chapter 1 Concearat-

ing on,definitions and simple algebraic and geometric properties: The .concept

of tangent line at a point oncthe graph of polynomial function is introduced

in Chapter 2 and formulas for the derivative of a polynomial function are
.

obtained. Applications of the derivative to graphing (such as finding high

and lbw points and intervals of rise or fall); its interpretation as velocity
; -

or acceleration, and its use if gpproximationare also discussed .in Chapter 2.,

This same pattern is followed in the remaining four chapters of this volume.

Definitions and simple properties of the sine and cosine functions and the

power expohential and logarithm functions appear in Chapters 3 and 5, respec-
,.

tively, while Chapters 4 and 6 discuss derivative formulas for these respec-
,

tive classes,,as well as applications to graphing and approximations.

FOr their tlioughtful comments we are grateful to Frank F. Allen, Lyons's
., 4

, TOWnShip High chool; Leonard Gillman, University of Texas; David-W. Jonah,

Wayne State Upiversityt; Albert W. Tucker, Princeton University; 'and the pilot
I

. _, .^
teachers and students at.Cubberley, Gunn, and Palo Alto High Schools in Palo

Alto; California; St. Mark's School.in Dallas, Texas; .and Simon's Rock in
.,

Great BariOngton, Massachusetts. .

We are also indebted to previous SMSG writihg,teams,whose materials WO
t -

considerable influence pn this text.' Many ideas and exercises were taken,

directly or ada'ped from two earlier MSG texts: Elementary Functions and

Calculus. In the first pgrt ofthis text. we borrow heavily from SNSG Elemen-

tary Functions; Appendix 2 of ,this text contains Sections 2-12; 2 -6, 2 -8, and

2 -9, of Elementary Functions, Appendifes '1, 3, 4, 5,, 6,.7, and 8 wgre adapted

from SectionsA2 -1, 6; A3-1, 2; 10-3, 4, 5, 6; 6-1, 2, 3,.4; A6-1, 2p

3-2, '3, 4,;A1-1,,,,,2; 5;3; and Alf-5 of SMSG Calculus.. .

t ft

we%expresq appreciation to Nancy Woodman, whose function as a

'typist was transcendental..
' iv
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Chapter 1

POLYNOMIAL FUNCTIONS

This is the first of two chapters.on p7olynomial functions. Here we An-

centrqte on the deinitiati and simple algebraic and geometriF properties:of

polynomikil functions, leaving to the next chapter a discussion of tangents to

polynomial graphs.

Our.concern

function and the

easy to describe

is with the relationship between the'graph of a polynomial
.

- -i- '

expres;ion which defines the function. This relationships .

for Onstantand linear functions for these correspond to

nonverttcal lines (Section 1-2). For quadratic' functions the graph is a

parabola whose locatioh and general slope can be easily determined by using

the quadratic formula. In fact any quadratic graph is just a transfationor

scale Change o the graph of thesquaring function Section 1-3).

After discussing these familiar cases we turn to polynomial functions

of degree three or .larger. Here the situation becbmes lass routin Syn-

thetic division serves initially'as a tool for plotting points (S tion 1-4).

Later interpretations Chapter 2) are more profound. 'The general relation

between zeros end factors of the pblynomial is.discussd in Section 1-5. In

Sections 1-6, 1-7, and 1-8 we discuss methods for locating, determining; and '

.

approximatlnK zeros ofgpolynomial functions. The final,section of this chapter

indicates some of the kinds of information about the graph of a polynomial

function which can be quick1ybbtained from its expression, includtng the

important result that the degree is'a bound for the number of iines its graph

crosses the x-axis. Further algebraic results are discussed in Appendix 2.

We begin our'studyith'polynomial functions because they are the simp

lest Cf,the elementary funci'ions. The theory, and techniques employed in

Chapters 1 and 2 are fundamental to the rest of the text. Not only will
. -

ours approach to the analysis or.polynomial func9tons be useful as we de31

yith oder functions; but the polynomial functions themselves will serve as

,approximations to other functions 'we shstll study.

1



1-1

1-1. Introduction and Notation

In this chapter weshall be concerned with functions that are defined by

expressions of the form

*IN

E1.4

0
+ 8

1
X + 8

2
x
2

+ + anxn

where n is a non-negative integer and the coefficients a
i
(i = 0, 1, 2., 3,

n) are real numbers. Such expressions are called polynomials, and the .

functions they define are called polynomial functions.

We commonly denote funttions by a single letter f, using the/symbol

f(x) to denote the value of f at the point x: Thus a poiynorhial function

f is a function whose rule is given by a

f(x) = a0 +a1
-2

x+ x
2

+ +anxn.

)1/4*

This notation is particularly useful when we wish to calculate various values
, 4 4

of ,f) For example, suppose f is given by ,

.. ,

.. .

(0f(x)

.

= 2+ x.- x2.

,.4The values f(0)., f(-1) and f(2) are then given by

f(0)

f ( -
2
)

=

=

=

2

2

2

+ 0-- 02 = 2

+. (-1) - (-1)2 = o

1 2 1 .

+
2
- - (-2 ) = 2 . .

7

We can sUf)stitute other letters or.expressile for 5c; for example

f(t) = 2 + t - t2,

f(2 - y) = 2 + (2 - - (2. - y)2

= .3y
2

f(a + b) = 2 + (a 1- b.y - a +

ti

= 2 + + b - a2 - 2ab

We may asso denote the function d
4tined

In (1) by

(2) f : x -*2 4 x - x
2

,

A tv, 1

thus ,gtregsing thlit f 1,,is an opetation or association. We frequently intro-

duceanother variable to stand for f(x). This is especially convenient for

graphing.) For example we may rewrite (2) as f : x -*y, where

,

2



(3)

I

y = 1 + 2x

y = 2.+x-x2 .

The graph of a function,

4

y = 1 +x2

Figure 1-la

f is the set of pairs

1

y = x3 '

(x,f(x)) as -wel.pieture

them on a plane, say the,xy-plane. (In Fivre 1-la we sketch the graphs of

thred polynomial functions.) MuCh of our effort in this and the next chapter

will be'directed toward quickly obtaining sue picturps. The graph (a model)

'can help us t6 examine the behavior of a function (which may itself be an

tdealized matepatical alodel of some physical situation). Polynomial func-

tiOns,often arise in applications., We give here two examples.

. . _
. .

_ .. Exambl.o.1-1a. If we say "the volume of a sphere is a function of its
,

t

,redius" we meah that if f is the volume function and r is the measure of
. .1

the lius then-,f :,r -)11, where AT is the measure of the volume. In

particular-we know that
.x.. .

(4) .V =
3
-1; nr

3.

The expresion
3
nr is, of course

,

volume ft5totion r -41T is, however,

iadius is doybleid we can

f(2r).= 1. n(2r)3

which tells

, defined for any real number r. The

defined only when r > 0.

write

- nr3 80- itr3),-.
3

Us that doubling the radiudMultiplies the volume by eight.

S

4
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Example.1-1b. A ball is thrown straightup with an initial velocity of

64 ,feet per second so that its heiglit s feet above the ground after t

)
seconds is given by tie function,

A
(5) . = 64t - 16t2.

(We shall later derive functions such as this as a consequence of various

physiCal assumptions about velocity, acceleration and gravity.) This 2.unctin

can bnly serve as an idealized model of the physical situation over a particuliir

ihteval of values for t. Since s = 0 when t = 0 Or t 4, the function

serves as a mathematical model over the interval 0 < t,< 4; the ball is in

the air for 4 seconds. To' find how many seconds it takes for the ball to

reach its maximum height we can (by completing the square),write the function'
.

0'
4

in the form

t )2 '4- 64.

The quantity ,-16(t -.2)2 is negative unless t = 2. Thus s cainot exceed

64 and equals 64 only when ft = 2. Therefore, we conclude that the ball

reaches a maximum height of 64 feet after 2 seconds.

height of
ball after
t seconds

.

.p71'.

64 ft

s feet

(i)

ground

While we picture (Figure 1.3.b) the motion.funciion (5).as a parabola-
we think,of the physical. motion of the ball itself as vertical (i).

4



1-1

'Exercises 1-1,

1. .In Example 1-la we expressed the volume of a sphere as "a function Of its
. .

radius." txpress the volume of a sphere as Nt'function of its diameter'."

2. Suppose that a vellet is projected straight tap"and after a while comes
,

straight down via the same vertical path to the place on the grotind from

which it,was launghed. After t seconda :the distance s feet of the

pellet above the ground is described by the equation

s 160t - 16t
2

,

which defines the/function
'1'

f : t -41.60t - 16t2.

Za) What is the value of s when t = 4?

(b) Evaluate f(6),

(c) How high above the ground is the pellet after 4 seconds?

(d) What is `the height of the pellet after. 6 seconds?
)

(e) Compare your answers for'parts (c) And (d). Explain on physical

grounds.

f

How many seconds is -the-'pellet in the air?

(g) How long does it take the pellet to reach, its highest point?

'(h) How high does the pellet go?

.A
Tom is .standing on the top of a railroad car which is moving at a speed

' of 32 ft. /sec. as it passes a. station. As he passes Dick on the station

platfori Tom throws a-ball straight upward with an initial speed of

64 ft.isac; After t seconds the ball is a horizontal distance of x

feet and a vertical distance of y feet from.a ,point opposite Dick.
te,

The distances x ft. and y ft. are given by the-equations.

A

x = 32t

and

y. 64t 16t2.

(a) Does Tom have to move tocatah the ball?

(b) What.is'the path Of the ball as Dick sees it from the platform?

(c)- Write y 'iriterms of X.

4N

I
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IV

(d) Name the curve that is the graph of your equation in part (c).-

2 Ox ,

(e) Sketch the graph of y = 2x a."

-(f) For what 'values of .x does y = 0?

(4) What is t when x = 128?

(h) After how many' seconds does ToM catch the ball?
. .

ci) How far down the platform from Dick'does.Tom catch the ball?

e
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1-2. Constant and Linear Functions

1J2

The simplest polynomial functions are cbnstaRt':futictions. If c is any

real number, then the function* f which associates with every real number x
fi

the value .c, k, .

f : x -)c,',

is called a constant function. The graph'of such'a'fUnction is a line parallel. .

to.aAd .jcl units from the x-axis. Some examples%of constant functions are

graphed in Figure1-2a.
.

o4

5

.0/ Figu e 1-2a

y - 2,

Constant functions are quite simple, yet they occd?frequently in mathe-
4

matics and science. A physical example of such a function is

f : t
re

Here the constant is the acceleration due to sravity,.that is2the constant
..,

.-,,,

amount by which the velopity of fall increases each secoAd. n distance is
da. ,

'measured ill feet and tie in seconds, this constant is very nearly '32: at sea

level. In other wordS7thevelocity of a falling body increases 3 feet

ter second every second.
-

A simple principle will later be useful when we encounter constant func-

tions:

(?-).

then f(x)..-. f(a) for all x.

/

%if f is a constant function and the value 1.(a) is known,

For example, if we know that is 6 constant' function and that

f(0) ;,-,10, than we know that f(3) is also 10. Clearly, (1) is just a

restatement of the fact that if f is a constant function then all values

oP f`are the same.

7 1 7
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. ,

A linear function f is a function defined by .an expression of the form,

mx + b; that is, f is linear if there are numbers m and b such that for

all x

(2) f(x) = rot + b, m f 0.

If m = 0 tlen f is a constant function. The graph of (2) is a line wihich

crosses the Y-axis'at the point '(0;b), since

i(0) = b;

b is called the yam- intercept of 'f. The number m is called the slope of f,

and gives'a measure of the steepness of the graph. FoUr linear'functions are

sketched in'Figure 1-2b.
. . i

/

/

y Y
/

y y

/ \

/ \
/ / . \

/ /

-4 \ \
.

/ /

( 3)

/

/
-1

x y sx x = 2x + 1,

I
n

Figure 1-2b

f is linearsadd x
1
/ x2, then the slope

f(x2) - f(xl)

m -
x - x

1
'

1 ,

t
x

2
= - x y = -x + 2

m is given by
4

that is, m is the tsngent,(telgonometric ratio) of the angle of inclination

X (

of f. (See Figure 1-2c)..

(x2,f (x2)

- f(xl)

- xi

angle of inclinatibn

Figure l -2e
A



The ratio (3) is, of course, a simple consequence of (JI since

f(x
2
) - f(x1 ) (mx

2
4- b) -

x2 - xi x
2

b)

It will often be convenient o use a slightly diff rent.form o the

expression (2). This is c9ntain d/in the following:

ne/through (h,k) with slope mThe equatIon'of the 1

Example 1-2a. Find the quation of the line throu (1,2) and

1 2

The slope of this line

2
-

3 ,8

3.- 9 '

(- F)

$o, using the point (1,2, the form (4) Ives the equation

y = 2 +
8

- 1).

,

, 1 2
Using the point (- 7

Simple algebra

equation

The graph of this

gives the quation

y - - §-(

1-2

shows that these- two equations are just d fferent forms of the

fi

8 10
3r/;=

9
x + .

line s shown in Figure 1-2d.

y

Figure 1-2d

9

19 ;
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a

A number of very generE4 concepts have sim-ple.and usefUl formulations for

constant and lidear functions. -0.f these we shall now discuss slope as velocity,

o inverse linear functions, translation and scale change, and proportionality.

Slope as-relocity

The slope of d linear fUnction,hat various physical interpretations. For

example, suppose a man walks north alOhg a long straight road at the uniform

rate of 2 miles per hour% At some particular time, say time t = 0, this

man passed the milepost located One mile northoi Baseline Road. An hour

before this, which we shall call time, t = -1, he passed the milepost located

one mile south of. Baseline Road. (All hour after time t = 0, at time t = 1,

he passed the milepost located three miles north of Baseline Road. (See

Figure 1-2e.)

position at t =

o

position
at t = 1

BASELINE ROAD

.K

position at t =

Figure 1L2e

In t 'hours, the man travels 2t ,Singe he is at milepost 1 at

time t = 0, he must be at milepost 2t + 1 at time t. Us4ng f(t) to
#

represent the directed distance (in miles) from Baseline Road at time t

hours, we seethat

f : t -of(t) = 2t + 1

, describes the man's moidft.
to

The graph of f shown in Figure 1-2f thus plots

the man's positioil versus time: ;

20
I

10



distance
(in !ages)

f : t 2t + 1

slope = 2

\ .

1-2 ,

.velbcity

(in mi/hr)

. g :t 2

- .

1

time (in hours) -1'

'Figure 1-2f

1 time (in hours)

..Figure 1-2g'

In Figure 1-2g we plot the man's velocity versus time. For all values

of t 'dining the time he,ls walking his velocity is ti miles perhour.

Hence if g(t) is his speed -at time t then

-g : t 2,

that 'is, _13 is a constant function. In this case, the slope function 'g 'of,

the position function f can be interpreted as velocity. We shall encounter

this relationship again.

Inverse Linear Functions

.

We recall that the rule for converting from Centigrade to Fahrenheit is

given by the formUla

(5) F
9 C + 32
5

and the rule for converting from Fahrenheit to Centigrade is given by,tbff__

Vbrmula

(6) 32).

*That speed is the absolute value of velocity is spmetang that we shall
emphasize later.

e0

2i

e
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`Since each of these formulas is useful, it is important to be eble,;to get,
6s

say 6) from (5). in (5) to get from- C .io F we first multiply by and

-then add '32. Starting with F we must', therefore, first,subtract 324 and
9 1Fthen divide by . That is, to get qi we first find F - 32 then
?

9

5.

5/ .,
?

N a.%,. t' . ,'
'or- -1F .)/i whence C = 2(F - 32) In our next example we shall study two

9
functions suggested by the foregoing formUlas.

1

Example 1-2b. Consider the function's f : x
5

x 32 and

g : x 7)
5-(x - 32) land their graphs, sketched on one set of axes'in Figure
9

,We observe immediately that the slope of f is

g is the reciprocal orthe slope of f.

11P

y

= f(x)

100

5
and the slope of

Y = g,(x)
47

Let us

Figure 1-2h

100 x

make some further observations to see how the functions f and g

and their graphs are related. Consider the equation y = f(x) = x + 32.
5

-To-n,find the value of y for a given value of x we first multiply x by

---failid,then add 32; i.e., on the graph (Figure 1-2i) we.first"go up" 2 x
, !

5

e

4!
re

a



to the Jotted line and then "garup"

32 more. Finally we "go across"

to get y =
5
9- x + 32. To go from

y back to- x we just reverse the

arrows of Figure 1-2i. We first

subtract 32 to get' x and then
5 ./

. divide by-1 to get x; i.e.,
/. .

/

32 /

, ''.
. .

y - 32,,5 r
P* ..x = 9 x

55

,Let x- and y exchange roles and

. compare this form of the egtation

for f with the- function g.

o

/

.

/

Figure 1-2i

1-2

The two functions f and -4,_a_re obviously closely related. In general,

if m /'0, we say that the, linear

1 b
g x x

m

is the inverse.of the linear function

f,: x -)mx + b.

The slopes of g and f -are reciprocals of each other;-that is, the

product of the slopes is '1

The graph of 'g can be easily obtained, from the graph of f. Suppose

. s ' that (C,0 1 es on the graph of f, so that

d =f(c) = mc * b.

4.

Solving for c, we have.

c=
1

d -
b

g(d) .

Thus (d,c) lies on the graph of g. The converse of this statement can be
.t

`similarly established. We,summarizepi.n (7) .'
.

If g is the inverse of f, then (c,d). :lies

on the graph of f ,if and only if (d,c). lies .(7)

on the graph of g.

er
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.
. .41. /

Thus the gphs oll and its inverse g are symmetric with respect to

the line given by y= x. This has a simple geometric interpret ion, for it

says that the graph of tie inverse g can be obtained from the raph of f

merely by interchanging the coordinates of each poirit. This s gests the

following wayto obtairilthe graph of the inverse g from that/of f. Merely-.

trace the graph of y = f(x) in slow drying ink and then fdld carefully along

the line given y = x. The wet ink will then trace the graph of the inverse

of f. (.Consider this mechanical procedure for the graphs of y = f(x) and

= g(x) in Figure 1 -2h.

Translation and Stretch

Let i be'the line given by the equation y = x, and consider the effect

on i of replacing x by (x - b). The new equation is y = x - b, which

represents.ths line 21 having the same slope as 2 and ilterseeting the

x -axis at the point (b,0):

Figure 1-2:j

4

Hence, replacing x by x - b translates or slides 2 b units to the

right without changing its slope (Figure 1-2j).7

44,

2-4

11,

AN.



pgssing through the'origin.
0;

4

1-2M
r

Now consider the effect on 2 of replacing x by mx, m / 0.' The new

equation is y = mx, which represpnts the line 2" having slope m and

2"

Figure 1-2k

Note thaiif m > 1, replacing "x by mx (or equivalently, y

*4 steepens the slope of 1, while if 0 < m < 1 the new line 2" -is-ilore

Norizontal than 2. What happens if m < 0?

Thus, if m > 1 the effect of replacing x by mx in the equation

y = x is equivalent to stretching the ordinate (y) of each point on

It !:
Figure 1-22

15 ze--\c:
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If*,0 < m < 1, each ordinate is
"contracted." , Notf that conceptilally,

'"stretohing each
ordinate is no different in this case from

"shrinking each -0

abscissa"; the resulting 2" is identical,.

Y'

4

o

Either 1.47' we think about it-, the slope of 2. is--c aged under such a transfor-

mation, and
algebraically the stretch can be obt=iiined mereky by replacing

by mx (or' y by 4) in the equation of 2.

m

The graph of any line given by the equation y = mx.+ b can be obtained

from the graph y = x by such translation and/or
stretching.' For example,

to obtain the graph of, y 7 5x - ffrom y = may' first stretch each

.

ordinate of, y = x by the factor 5 by replacing. x by 5x. The equation

becomes y.= 5x, and its graph is 2' shown in Figure 1-2n- Then 2: may

be translated
units to the right by replacing x by x - 5 in the equst- ,

tion of 2'.

I

26
16
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4- .The equpion bedomes

i or
,

4
Y = 5(x 5 )

y = 5x - 4
.

z$-
as desired, and its graph has been obtained from the y =x by .A.4
translating and stretching. Alternatiyely.fwe may first translate the graph 4

units to the right 'by replacing x. by x,- 4.' The equatron.becomes y = x - 4

and the graph is shown in Figure 1-2o. Then we may "shrink" each abscissa by

a factor of 5 by replacing x by 5x. The, new equation is y = 5x - 4 as

_before; only our way of thinking about, the transformations is different.

4-.

4

O

t
o
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.`$

4

I

/

Figure 1-26*

,

x

Proportionality .

.,,

I
Ns -,

The concept of proportionality is very useful in physics as well as other

parts or science. We shall use the idea frequently in this text. To say that

y, is proportional to x means that there is a number m' such that

y = mx

for all numbers x._,The number m is called the constant elf proportionality.
4

Note that if y is proportional to x, then y doubles when x is

doubled. The,same relationship 4o1ds for tripling; halving, etc. In science

,7

the experimental observation that y doubles, triplz1 halves, Ate., when x

does the same - 'usually leads to the hypothesis that y is proportional to x.

Further observation is then'used to test such an hypOthesis and if no contra-
/

dietory evidence is found this proport4nality is usually stated as a,law and
,

th&elfter systematically used. For exaMid1e, if air resistance is neglected

it is usually safe to use the assumption that the velocity of a freely falling

body is proportional to the time it

28
1.8
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Example 1-2c. Assume that -the velocity of a free falling body is directly

proportional to the time it fOas. Suppose that a ball is dropped from the top,

of a building and attains.a velocity of, 64 ft./sec. after 2 seconds. Hoy
fast be falling after 5 seconds (assuming that it,hasn't hit the

,ground then)? .'

Sincthe velocity v ft./sec. is'directly proportional-1 the time t

sec,,we have v = mt, where m is the constant of proportionality. If

v =.64 when t = 2, we get m = 32. WA Otain the linear function

t -) v = 32t. When = 5, v = 160; therefore,'after 5 seconds the

velocity is 160 ft./sec.

4

VAL

19 29
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Eke raises 1-2

1._ gee'r to Figure 1-2f .
,\

(a) What .is the /slope of the Linear function t -9 2t + 1?

(b) What are'the units of "rise over run" in the graph of t -9 2t + L?

(c) Compare the number and units.of parts (a) and (b) with the consilant

function and vertical units of Figure 1-2g.
0

2. (a) On separate sets of axes ,sketch graphs of the functions

g : t -9 32t and "g' : t 32.. Indicate vertical and horizontal

units appropriate to Example 1-2c.

(b) What is the slope function of the linear function g : t -932t?

(c) What are -tie units of the slope of your "graph of g : t -) 32t1
NO.er .

(d) Compare the .vertical units for your graph of gl : t -9 32 ,..14th

your answer to part (c).

(e) What word from physics is commonly asso.4.eted with the xatio. of

units you found in response to paii, (c)?

3. Assume (as in Example l72c) that the velocity of a, free fallingbOdy is

directly proportional to the time it falls. Suppose that a penny is

dropped from the top of a tower and attains a velocity of 48 feet per

second after 1 seconds. Determine the'impact velodity if the _penny
2

hits the grounp4fier 4-
1

seconds.
2

4. For the function f : x -92x + 1, find

(a) f(0)

(b) f(1)

(c) f(-1)

(d) for h / 0, f(x +'h) - f(x)

k

(e) for x / g,
f(x) - f(a)

x - a

5. Find the slope of the- graph of the function f if, for all.real

numbers x,

(a) f(x) = 3x - 7

(b) f(3c) . 6 - 2x

(c) 2f(x) =3 - x

(d) 3f(x) = 4x - 2

3020



6. Find'a linear' function

./(a) f(1) = 4
,

(b) f(0)

( c) i.43),=

. ( f(8) = -3

1-2

whose graph has slope -2 and 'such that

7. Find the slope of the graph of the linear function' f if f(1) = -3, and

(a) f(0) = 4

(b) f(2) = 3

(c) f(5) = 5

(d) f(6) -13 , /(

. 8. Find a function whose graph is the line joining the points

(a) P(1,1 , 02,4) e. tr

(b) P(-7,4), QC-5,0)

(c) P(1,3), Q(1,8)

(a) P(1,9, Q(-2,4)

9. Find the linear function g whose graph passes through the point With

coordinates (-2,1) and is parallel to the graph of the function

f x 3x - 5.-
11,

10. Given 1' x - -3x + 4, find a, function whose graph is parallel to the

graph of f and passes through the point

(a) P(0,)

(b) P(-2,3)

(c) 1,(1,5)

(d)

11. If f '14 a constant function find .f(3) if

(a) f(1) = 5,_

(b) f(8) = -3

(c) f(0) :714

21
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12. Do e.points. P(1,3), Q(3,-1), and S(7, -9) all lie on a single line?

Pro e'your aasertion.

13. The ,graph of a linear fuhction f ,passes thrOugh the points, P(100,25)

and Q(101,39)., Find

(a) f(100.1)

(b) ,i(100.3)

(c) f(101.7)

(d) f(99.7)

I-

14 The graph of a linear function f passes'"through the points P(3,25)

'and ,Q(54,:19).Find

(a) f(53.3).

(b) f(53.8)

(c) f(54.4)

(d) f(52.6)

15. Find a, linear function with graph parallel to the line with equation

x - 3y.t'4 = 0 and passing through the point of intersection of the '

lines with equatibns 2x + 7y + 1 = 0, arid x -.2y + 8 = 0.

16. Given the points A(1,2), B(5,3), C(7,0), and D(3,-1), shoW tha

ABCD is a parallelogram.

17. Find the coordinates of the vertex C of the parallelogram ABO if AC

is a diagonal and the other vertices are the points:

(a) A(1,-1), B(3,4), D(2,3);.,

(b) A(0,5), B(1,-7), D(4,1)

18. If it is a real number, show that the point. Pct + 1, 2 1) is on

the graph of f : x -)2x - 1.

19. (a) If you graph the set of all Ordered pairs of th- form (t 1, 3t + 1)

for any real number t you will, obtain the gr ph of a linear func-

g tion f. Find f(0) and ,-f(8). I

6 /
_,,, .

(t) If yo graph the set of all ordered pairs if the form

(t - t2 + 1) for real t, you will ¢btain the graph of a

function f. Find f(0) and f(8).

32 22
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20. At what temperature do .Centigrade degrees. equa1 Yahrenbeit degrees?

21.. Ifsthe slope pf a linear function f is negative __that if
X1 <

2
.then f(\xi): > f(x2)

"-

22: Consider the linear,6nctions f : x nix + b and g : x + f3 such

that m y 0 and p = g(q)- if' q = f(p) for all real numbers

p land q. What is the relationship between m and 1.i?

23. I40 f x -)mx + b, m '0 find g, the inverse of. f.

24. What is the equation of the line perpendicular to the. line given by

. y = + b, / 0, at the

25. If f(2x - 1) = 4x2 - 8x + 3, 'find f(2x).

R

7
.

23 0,5

tt

o
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1-3. Quadratic Functions.

As we discuss the.behal0.or of polynothial functions

f : x -)ao + alx + a2x
2

,71- + anxn,

we shall use soc conventional terminology: If a
n

/ 0 we say that the degree

of f, is n. For example

f : x 11
1

has degree 0, while-

2
f : x -'2 - 3x + x. - x5

has.degree 5. This convention assigns no degree to the zero function

(1) f : x -)0.

Thezero function should not be confused with the zero of a fUnction.

We say that a-number r' is a zero of the function f or a of of the

equation f(x) = 0 if f(r) = O. For example, 3 is a zero of t e function

f : x -)2x
2

- x 15

or a root of the equation
- A

since f(3) = 0.

2x
2

-,x - 15 = 0,

xt

If r is a'zero of f then (r,0) 'lies on the graph of f; that

the graph of f crosses the x-axis at the point where x = r..

4 ,

Polynomial functions of degree 2 are known as quadratic functiOns. Let

us review some of the properties of quadratics. The zeros of

f:x-,c+bx+ax2, a/0,

are given by

(2)
-b + O

/2
-Itac and

-b - -

2
-lac

r
1 2a -2a

If b
2

- 4ac < 0 these roots are complex numbers. Real roots occur if

b
2

- 4ac > 0.

34
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---If b2 ac = 0 then r

where
r1 F2 =." 2a

b

to obtain

, (4)

\.

1 -3

and we can factor toobtain
co.

If b - 4ac 150, then
rl

r
2

and we can fbctor
ti

f : ,x -q(x - r2).

In the following three examples \ we illustrate the graph of f for each
of these cases. In the final example\ we review a method for graphing quadratics

by translation and change of scale.

Example 1-3a. Graph f x + x + x2.

In this ,9ase a = b = c = 1, so

----
b
2

- 4ac < 0

and f has no real zeros. We should expect that the'graph of f doesn't

cross the x-axis. In fact, the graph of f lies entirely above the x-axis.

We caA show this by "completing the square" to obtain
_ e

1 + x x2 = + x 4- x2)

5tnee x)
2

> 0 unless x = -
1

we see that
2 '

f(x) > I x - *I°

'1
. while

f
a f(- = i..

Thus the-graphof f lies above the line given by y = i, touching

1 3.-this line at the point (- Dv. Furthermore, as x increases the

1 I ,1
\ Al

value x = -- .2.- , the quantity Vz.'4. x)2
2 becomes very large as ''x becomes.

large. Also as x decreases (to the left of x =
2

- 2:.) the quantity (-1 + )2 )2-
. 2

inOreases, becoming very large.as we assign numerically large negative values

to x. Thus, without plotting points other than (- i,i) We,cat conclude

that the graph o' f appears a's shown in Figure 1-3a. 0; course, a more
r,

-.%

1

25
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6

accurate picture can be obtained 'by plotting some points .(x,f(x)).

becomes large
as x moves

f to the left

c6,

becomes large
as x moves
far .to the right

tpinimum( 74

'Figure l -3a.. f : x -41 + x + x2

Example. 1, Graph f : x -4 4 - 4x + x2.

In this case c = 4, b = -4, t= 1 so that

b2 - 4ac = ( -4)2 - 4 (1)(4) = 0

and f has the single zero x . 2. Therefore, we can write

...

The quantity (x - 2)2 > 0 if x / 2 so that we have f(x) > 0 if x / 2 (\

and f(2) . 0. Therefore, the graph lies above the x-axis, touching this axis

at the point (2,0). As x increases to the right of x ='2 or as
.

,,

decreases. tOthe left of x 2
2

x - 2)the quantity ( increases, becoming

very large ,as x moves far away frOm x = 2:' As in the previous example,

this gives us enough ,information to quickly sketch the graph of f, lhown

in-Figure 1-3b.

)

O
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becomes large
as x moves
to the left becomb; larg

as x moves
to the right

(2,0) 'Minimum

Figure 1-3b. f x -)4 - 4x + x2

Example 1-3c. Graph, f : x -71 x - 2x
2

.

Since c = 1, b =4'1.1, a = -2, we have
4

b2 - 4ac =.(-1)2 - 4(-2)(1) = 9

The zeros of f are

r1 '=
-(-1)+

- 1 and r2 - -(-2)4-

we can write f in the form

f'` x -' -2(x + 1)(x -

x

173

1The graph of f crosses the x-axig atthe two points (-1,0) and (IF, 0) .

1If x < -1, each of the quantities x + 1 and x - -f is negative. Upon

'multiplying by -2 ,we see that °

f(x) < 0' if x < -1.

Similarly, we could argue that

f(x) >0 if _ -1 <x <
1

2
s,

f(x) < 0 if x > .

27
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as

Further arguments show that as decreases to the'left of -1 or increases
r 0

to the right of , the ualtie f(x) decrease, getting far below the x-axis

as x moves far to the right or left.;

'In the interval -1 < x < , the graph of f lies above the x-axis.

We can "complete the square" to obtain

= -2(x2,+ 2 x 2)

2 . 1 1
= -2(x +

1
x _ _

= -2(x + t)! + g

a s,

a #'
0
0

.1 1 9.
This expression has its greatest velue when x = E. so that (- v,v is "

e

the highest point on the graph ,of f. (See Figur? 1-3c.)

,e-

y

maximum

(1, 0)

(-1,0)

far below x-axis
as lc moves left
or right

9

Figure 1-3c. f x - x - 2x
2

.

Translation and. Stretching of Parabolas

Just.as any line with Ositive slope may be obtained from the graph

y x by appropriate translations and streAkhes, any parabola may be obtained

front the graph:Of y = x2 ,by similar transformations.

x

For example, to obtain the graph of

of y = x
2

we first rewrite the equation

the square as follows:

y = 14 + 12x.+ 2x2 from the graph

as y = 2(x +.3)2 - 4 by completing

10 + 12x -4- 2x = ,t 6x '+ 7)
t

= 2(X2 + 6x + 9 - 2)

= 2(x + 3)a:- 4.

28
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In this form, the apOopriate translations

mined. First, translate the graph-of

y = x
2

three units to the left by
. , ., .._...

replacing x by (x + 3). The new
, 2

parabola has the equation -5-f = (x + 3 ) . ,
i

k
(See Figure 1 -3d.) , /

/

'Then stretch" each ordinate of \
x /

/

to graph of y = (x + 3)
2

by replacing '\ //
.' .y by X . The graph of r, y = 2(x + 3)2

2 .

2 -3 ...

is shown in Figure 1-3e. ,

\..

Figure 1-3d

1 -3

and stretches are readily deter-
-

y = 2(x +
2:

Y

! 2 i 1 0
/ /.k -1/ e-/ Ii

Figure 1-3e 'Figure 1-3f

Finally, die more translation, 4

desired graph:, This is achieved by replacingy by (y + Id in the.equation

'Ty = 2(x 4/8)2ek See Figure 1-3fAfor the graph of y-= 2(x + 3)2 - 4.

If the coe ±ficient of the x
2

term inyte original equation had been

negative, as in'Example 1-3t, where y =x1//- x - 2x
2

, one more transformation

would have been 'required to obtain the graph from the graph of y = x2. Com7.

pletingythe square gi'es y = -2(4 + .)2 + g and in this form we see we must

first translate the graph of 5r= x2, unit to the left by replacing x by

1
x + , giving the graph of y = (x + )2 . Then stretching each ordtnate by

Units down is required to obtain the

7

s

4AV
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.r.

replacing y, by 'produces

4. 12
the graph of y = 2(x

.

.

elbw the extra transformation,.

rellnilag the graph 141-Che

x -axis by replacing y by 40,

gives -the graph of y = -2(x +

teehis is physically equivalent to

f.44ding the graph along the x-axis

or'"clipping" the graph about theme

exit. Finally, translating this

graph bt units' -up by replacing

9 v.

by;, y - g gives the desired

7,1

rap&

In general, ..the graph of. any'
I. a.

quaEattc function can be obtigped
`*-

m the `graph of y x
2

by such

Translation

O

r r51.

a sequence of trapslations, reflec-.

.tions and stretches. Hence, any

quadratiC function f : x bx + c

represents merely a translated;

reflected, and/or stretched image

of the standard, parabola given by

the equatiob y = x
2

.

y

Reflection

X

414
O
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1. Consider the function

Exercises 1-3

f x ax
2
+ bx + c.

Name the type of function f is,/if

(a) -a = 0, b =0, c #0

(b) a = 0, b / 0, c = 0

(c) a = b 0, c #0

(0) a / 0, b = 0, c = 0

(e) a / 0, b # 0, = 0

(f) a / 0, b, # 0, a 0 t1 0

2. Aristotle claithed that the speed of a free falling object depends on the
-r

weight of the object as well'as the length of time it falls. Galileo

discovered that the need of a free falling object depends only on how

lo'ng it falls, and,in particula4r, that speed -v ft. /sec. is directly

proportional to'time' t :seconds.

(a) A ballis dropped from the topof a building and attains a speed of

64 ft./sec. after 2 seconds. How fast will it be Balling after

51..seconds?

(b) ,,,.4.11,,fe raft is dropped,from a helicopter and hits the water after

10 seconds. If the raft is falling -at a speed of,,64 ft./sec. after

seconds,, determine how fast it is.going,aS it hits the,water.,

,.
'

. Galileo:discovered that the distance traveled by a falling bogyHof any,

weight depends only on the length of, time in which it has been falling.

Specifically it was discovereqrthat the number of feet fallen is directly

proportiohal to the square ofthe numbel- 'o,f seconds elapsed.%

(a) Suppose we timed the fall of a ball rom the top of a,builldiUg 400

.feet'high and discovered ti the `x1/1 it the ground after ,5'

secondiTt Find how long it Wouid take for the ball to hit the ground

if it'were dropped from a gUilding 144 feet high.

(b) ,Suppose that d ball is dropped'from a television tower and hits the

ground after 10 Seconds: 'Previously we discoverg that the ball

hit the ground after 5 Secongs,when it was dropped from a building

400 feet high.' How high is ,the television tower?
. 4.
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4. For each of the following pSirs of functions, (u,v) is on the graph of
..,,

f and (u,w) is on the graph of g. 'Determine which is correct:

v > w, v = w, v < w.

(a) f x --)2x2

g : x -)-2x
2

(b) f x 1 x2
2

g : x -) 2x
2

(c) f,: x -
1 42

'2
g : x -2x

5. On the sear set of axes sketch the graphsof the functions
1

x
2

, and To x2.

x 5x
2,

6. Describe the location of the.points (p,q) and (-p,q) on the graph of

y = ex2 , relative to each other and the coordinate axes.

7. A pall is dropped from E; 47th story window of the Time-Life Buiiding in

New York City. Its distance s feet above the Avenue of the Americas

after t seconds is described by the equation

which serves
% .

s = 576 -- 16t
2

,

to define the function

f t 576 - 16t2.

(a) Determine how many feet above the pavement the ball is after falling

the first second_

(b) WA/ high above'the ground is the ball after zero', seconds of;falli4g?
*WO-

t'.
(c) How'eigh above the-Avenue of the Americas is the 47th story window

of the Time-Life Building from which we dropped the ball? \

(d) 'If f t .4576 16t2, evaluate f(4) .

(e) Four seconds after it is dropped 'from the 47th story window, how

( f)

(g)

Tar is the ball from the pavement?

,
Find the value.of.t for 'which lot = 576 and t > O.

Determine how long it would take for a ball dropped from,e 47th

story window of the Time-Life Building to hit the pavement below.

42
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8. A ball ii dropped from the top of the Fidelity Union Tower in Dallas,

Texas.' :After t seconds the height s ft. of the ball above the

°ground is'given.by
1

s.= 400 - 16t2.

1-3

(a) What is the height of Fidelity Union Toirer?

` (b) How long does it take for the ball to reach the ground:

9 The Woolworth Building in New York city is about 784 feet high. A ball

is ,dropped from the top of the Woolworth Building so that its distance s

feet above the ground after t seconds is described by the equation

s = at
2

+
.

c.

(a) Relating your experience with other problems of this type to this

problem, try to determine appropriate values for a and c.

(b) How long does it take for the ball to reach the ground?

10. The vertex of.the parabola given by y = ax
2

+ c is the point

If a > 0 the graph of the function x -*ax
2
+ c opens

2
(upward,downward)

and the vertex of the ,parabola whose equation is y = ax + c is the

point.
( ighest,lowest)

The graph of the equation y = ax
2

+ c, where a is a, non-negative real

number and c > 0 is always a which is symmetric to the

, congruent to the graph of x -*ax2 and c units

-Ae>pait'bola given by y = ax2.

11. A flowerpot falls from a'75th story windowsill of the Chrysler Building

in New York City. We know, that,after t seconds the height s feet of

the floWerpot above the'grokind is given by the equation

(above,below)

's,= 1024 - 16t
2

.

(a) How long does it take for the flowerpot to7hit the sidewalk at the

corner of,Lexington Avenue and Forty Second Street directly beneath

the window?

(b) The distance from the 75th story windowsill to the roof of the

, Chrysler Building is 22 feet. How tall is the Chrysler Building?

33
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12. Suppose that a ball is thrown straight up from the ground with an initial

'speed of 64 ft./sec. and is not acted upon by the force of gravity. What

is its height above the ground after .10 ,seconds?

A ball is thrown from ground level straight up with an initial 'speed or

64 ft./see. Its distance s feet above the ground after t seconds is

described by the equation

s = 64t 16t2,

which specifies the function f such that s = f(t)k..

c'; .7(`1 ,Whatcis the,value df; s, when -t =,1? ,; "

(b) Evaluate t(2).

(c) What is the height of the ball above the ground after 3 seconds?

after 0 seconds?

(d) Sketch the graph of s = 64t - 16t2.

(e) *What is the path of the ball?

(f) What is the name of the graph-of the function f : t -16t2 + 64t?

13. Suppose that.a pellet is projected straight up and after a while comes

straight down via the same vertical path.to' the place on the ground from

which it was launched. After t seconds the distance s ft. of the

pellet above the ground is described by the equation

s = 160t - 16t2,

which defines the function

f : t 160t - 16t2.

(See Exercises 1-1, No. 2.) Sketch the graph of4 f on the interval,

0 < t < 10.

14. The product of two consecutive integers is zero. What could the

integers be?

4A



15. Suppcie that you are standing close to the edge on the top of a. building

80 feet tall. You throw a ball upward wipl an initial speed of-:64 ft./

sec. in a nearly vertical path. After t seconds the height s feet of

the ball above the ground is given by the function

t s =.8b + Olt - 16t2.

(a) ,How long does
:

it take for the ball to reach the ground?

(b) How high above the building is the ball after one second? after

three seconds?

(c) The ball passes the edge of the top of the building from which it

was thrown as. it falls to the ground. ,After how many seconds does

.this occur?

(d) After how many seconds does the ball reach its maximum height?
,

(e) How high above` the building does the ball go?

16. For each of the following pairs of equations, given that (u,v)s is on

the graph of the first equation and that (u,w) is on the graph of the
f".

second determine the values of u for which v < w, v = w, v > w.

(a) y = 3(xi- 4)2

y = -3(x - 4)2

(b) y = 3(x - 4)2

y = 3(x + 4)2

17. Compare the graph of x -,-0x - 3)
2

+ 2 ,with 'that of x --).-
1
x
2

on the
1,

listed characteristics by completing the following chart.

Function x -4--
1

x
2

2

, .
x -5

1
--pc - 3)

2
+ 2

2

(a) Media of graph
,

(b) Opens (upward or ,downward)
.

(c) Equation of axis.
.

,

(d) Coordinates of extremum/point (vertex)
,

.

(e) Type of extremum (minimum or maximum)
,

.
.

1 , 1, .
113. Sketch the graphs of x -, x

2
and x -52 --kx - 3)

2
+ 2 on the same set

. I

of coordinate axes. Check your answers for Number 17 against yur gra

35
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19. (a), Using one set of coordinate aXes plot the graphs of the following.
t

(i) y = -x2

(ii) y = -x
2

+ 4x + 5

(iii) y = -x,
2

- 2x + 3

(b) On one set of,coordinate axes quickly sketch the graphs of

(i) F x -x
2

(ii) f : x -(x - 2)
2
+ 9

(iii) g : + 1) + 4

20. Consider the functions f : x -*ax2 and g : x -4a(x h)2 + k. Let

(p,q) be a point on the graph of, f.

(a) We know that f(p) = q. Another equation relating p and q is

q =

(b) We want to show that the point (p + h, q + k) lies on the, graph
.

of g. _Show that g(p + h) _= q 4--:k.

4(c) To every point t(p,q) on the graph of f there corresponds the

point (p + h, ) on the graph of g.
o

(d) 'In particular,.we see that the vertex ( , ) of the parabola
4

..4.4en by .y = ax2 corresponds to the vertex (
t ) of the

parabola given by Y'"gliCk,,,/,h) + k.
(.. .

,,,_
21. Determine the coordinates of the vertex and the equation of the axis of

,---

the parabola given by each'of the foliOWiiig equatio'ni.

(a) y = 2(x - 3)2 + 4

(b) y = -2(x - 3)2 +4

(c) Y = (x 3)2

(d) y = - 1(x - 1)2 - 1

(e) Y = 3(x 4- 1)2 2

(f) y = 1,(x - 2)2 - 3
5,

22. Determine th ext mum point'of each graph, in Number 21 and tell

whether it4ia or minimum.

46
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For. For each of the following pairs of equations, given that
(lio')

is

on'the graph of the first equation and (u,w) is on the graph of the

second, determine the values of u for which v < = w, y > w.

(a) y = 2(x - 3)2. + 6

y = 2(x - 3)2 - 6

(b) y = 2(x- 3)2 + 6

y = -2(x - 3)2 - 6

(c). y'= 2(x - 3)2 6

y = 2(x-+ 3)2 + 6

1

24. Write each of the following equations in the form y = a(x - h)2 + k.
JA

(a) y = x
2

- 6x + 9

(b) y = 2(x2 - 6x + 9)

'(c)' y = 2x
2

- 12x + 18 - _

(d) y = 2(x2 - 6x + 9) 4

(e) y = 2x2 - 12X+ 22----

2
(f) y = -2(x2 - 6x + 9)

(g) y -2(x2 - 6x + 9) + 4

(h) y = -2x
2

+ 12x,- 14

2
(i) y = x. + +9

(j) y = x
2

-,2x + 1

(k) Y =
I 2

- -2- x + x
1

2

x + x

(in) y = x + 2x + 1

(n) = 3X2 6A + 9

(0) Y 3x
2

+ 6x + 11
=

(p) y = x
2

- 44x + 4

(q) y = 2.-(X2 - + 4)
5

x
2

4 11
(r) y = 5 x

es*

37
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25. For the function f : x ax
2

+ bx + c, a,41' 0, prove that if

f (xi) = p(x2) = 0, then

o

-b t - lac.
.x

1
or$ X2 -

a

Q.

4 04-)

ti

mo
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1:h. Pol nomial Functions of Degree Higher Than One

Most alf our initial work w4h polynomialrfunctions will be concerned wit})

two related problems:
4

Problem 1. Given a function f and any number x in its domain,

f(

Problem 2 Given a function f and any number y in its range, find

all numbe s x' such that f(x) = y; in particular, find those values'

of x 'for which y = 0, i.e., the zeros of f.

Later we shall study the second of these two problems.

Soon we shall also develop techniques for determining maximum and minimum

points, intervals of increase and decrease and behavior for large values of x

for polynomial functions of degreehigher than two. As in the quadratic ex-

amples of the previous section these techniques will enable us to sketch

graphs of higher degree polynomial' functions very'quickly. For now we con-

sider Problem 1. To graph polynomial functions and find the sOlutions of

polynomial equations, it is important to evaluate a given f(x) for different

values of x. For example, to graph '

f : x -,)3x
3

- 2x
2

+ x - 6,

we may want the values fCx) at x = 0, 1, 2, 3, etc. Of course,we may

obtain thtse values by dirrect substitution, doing all of the indicated multi-.

plications and additions. For most.vplues this i& ;tedious. Fortunately,

there isan easier way which we, shall_ialitsynthetic substitution. To under-
,.

stand the method, we shall analyze a few easyi,examples.

.Example I a. Find the value of

f(x) = 2x
2

- x + 3-'at x = 4.

We write

f(x) = (2x - 1)x + 3
When x 4, this becomes 4

(2(4) 114 3 = 31.

Note that to evaluate our expression, we can"

i

r.

40'
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(i) Multiply 2 (the coefficierit-of x2) by 4 and add this

product to -1 (the coefficient of x);

(ii) Multiply the result of (i) 4 and add this product to

3 (the constant term).

Example l-4b. Find f(3), given

We may write f(x) as

or

f(x) = 2x3 - 3x2 + 2x + 5.

(2x2 - 3x + 2)x + 5

i (2x 3)x + 21x + 5:

,

To find the value of this expression when x F 3, we may start with the

inside parentheses and , \
.

a> ?
.,

(i). Multiply 2 (the coefficient of x3) by 3 andedd this product:
, .

to -3 (the coefficient of ,x2);
e

(ii,) Multiply the result of (1)-by avid adiA this product to 2
. -

coefficient of x);
../

, -,

,'
. ,. r 64 .

4...
,

(iii) Multiply the result of ( ii ) by 3 and add thiS produkto

(the constant term),

The result is f(3) = 38.

These steps can be represented convenient

consists of the coefflcien f the successive

order: (The number at the far ght is the pa

substituted.)

2 -3
cy

(0?..3) 6 (3 '3) = 9 (11 .3) = 33 e A

2 3

,/
' 11

,/
38

-. .

,.:,. .-Ar, -
.

b a able whose fiFst row

owers, Of x .n depcending

,yalueii5f, x being
a

.4 so°

When this tabular'arrangement is used, we proceed from left to right. We

start the process by rewriting the first coefficient 2, in the thiid rows".

Each entry in the second row is 3 times the entry in the third row of the

preceding column. Each entry in the third row is the sur,s_of the tyg,entries

gbova it.' We note that the result 38, can be checked by direct substitu-

tion.

50
40 I
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Now let us consider the general cubic polynomial

.46

f(x) = a3x3 + a2x2 + alx + a
0,

lit

When x c, we have

which may be written

f(c) = a
3
c3 + a2c2 + ale +

0'

4

1-4

f(c) = [(a
3
c + a

2
)c + 8 le + '

0.

Again the steps employed in the procedure can be represented in tabulal form:

a3 a2 al a
0

a3c (a3c + a
2
)c [(a3c + a2)c +

1
]e

As in,/earlier examples, the number'teing substituted is written to the right
/

of the entire array.

a3 a3c + a2 (a
3
c + a

2
)c + a

1
I f(c)

Example 1-4c. Given T(x) = 3x
3

- 2x
2

+ x - 6, determine f(2).

14*, -6 1 '2

6 8 18

3 4 9 I 12
.

Now 12 is the result sought, namely f(2). This may be checked by direct

substitution: '

f(2) =3(2)3 - 2(2)2 + 2 - 24 - 8 + 2 - 6 = 12.

Example 1-4d. Given f(x) = 3x
2

+ 2x - 5, determine f(3). Note

that a
3

= 0 and that this number must be written in,its appropriate place

as one of the detached coefficients in the firstrow.

1 0 -3 2

3 9- 18

1 3 6 20
4,,oW

r5

° 60

1, 55'

Thus, T(3)i= 55,whish..as.before, may be checked by direct substitution,

With a little care and practice, the second line in' the above work cart.,

often be omitted-when c -is,a small integer.
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Example 1-4e. Given f(Z) = x4 - x3 - 16x2 +.4x + 48, evaluate f(x)

for x = -3, -2,,-1, 0, 1; 2, 3, 4, 5.

,, We detach the coefficients.
.

In order to avoid confusion, it is sometimes

convenient to write them down at the bottom of a sheet of scratcli paper and

slide this down, covering pt` each steget446he work previously done. As suggested

above, we omit thasecond line in each evaluation and write the value of x

we are using adjacent.to the answer.' The results appear in Table 1-4a.
.

0

The .last Two columns now bec e a table of f(x) and x. Note that the

row that corm sponds to x = 0 as the sup entries as the, coefficient row.

Table 1:4a

Coefficients of ( ) = x4 - x3 - 16x2 + 4x + 48

1 -1 , 41.6 b 48

/
1 -4 .

4
I- 4 16 0 -3°

1 ...3'7:'. /..10 24 0 -2

1 -2 I -14 18 30 -1

1 -.---,,,-1 - -16 - 4 48 0

' 1 ON., -16 -12 36' 1

1 -14. -24 0 _ 2

2 -10 -26 ' -30,1
.

'1 3 - 4 -12 0 44

1 4 4 24 168 5

''.... f(x) x

Themethod described and illustrated above is often called synthetic,
4

substitution or synthetic division in algebra books. The word "synthetic"

14tera3.ly means "put together," so You can see how it is that "synthetic

_$9,1)stitution".,is appropriate here; later we shall illustrate'why the process

is also called "division." The meth°, gives a quick and efficient means ofTh

evaluating .f(x), and we are now able to plot the graphs of polynomials more

easily than would_ be the case if the values of f(x) had,to be computed by

direct substitution.

52 ..
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Example 1-4f.- Plot the graph of the polynomial function

f x Sx2 - 12x + 13.

We prepare a table of values of x and f(x) by synthetic substiv/
tion, and then plot the points whose coordinates (x,f(x)) .appear in Table

1-4b.

J Table 1 -4b'

Coefficients of f(x),---- 2x3 - 3x2 - 12x + 13

2 -3 -12 13

it
2 -9 15 -32 -3

2 -7° 2 9 -2

2 -5 -7 20 -1

2 -3 -12 13 0

2 \-1 -13 0 1

2 1 -10' -7 2

2 3 -3 4 3
I

a 2
5 8 45 .

x

From the table we observe that the points (:c,f(x)) to be plotted are

(73,-32), (-2,9), (-1,20), etc. These points are located on a' rectangular

coordinate system Ers.shown in Figure 1-4a. Note that we have chosen different

scales on the axes for convenience in plotting.

o
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f(x)

11 WV

fi

(4,45)

( 3,4)

ee

SOme Points_on Graph of

2r x_2 2x3 - 3x ; 12x + 13

Figure 148
4

Now'tht problem is how best to draw the graph. We shall assume thwt the

graph has no breaks. The question remains whether the points we haV'e already

plotted are sufficient to give us a fairly accurate picture of the graph, or

whether there may be hidden "peaks" and "valleys" not shown thus far. We are
. -

not in a position to answer this question categorically at present, but we

can shed "further light on it by plotting more points between those alrm4y

located. By use of fractional values of, x and the method of synthetic

substitution, Fable 1-4b is extend as shown in Table 1-4c

5 4

.

44 .

r
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Table 1-4c a

Coefficients of f(x) = 2x3 - 3x2 - '12x + 13

2 -3 -12 13

2

2

2

2

2

2

2

-8

-6

-4

-2

0

2

4.

8

-3t

-10 -;r-
t

-13

-12

-7

2

-7

35
2

18

2

r5

9_
2

20

5

2

_
2

1

1

2

3

2

5

2

1
2

t(x) x

When we fill in these points on the graph, it appears that if we connect the .

j points by a smooth curve, we ought to have a reasonably accurate picture of

the graph of f in the interval from -3 to 4. This is shown in Figure 1-4b.

e,
r, I 7
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Exercises 1-4

1. Evaluate the followineggtYnomials for the given value% of x.

(a) f(x) = x 4 + x - 3; x = -2, 1, 3

(b) f(x) = x2 - 3x3 + x - x -= -1, -3, 0, 2, 4

(c) g(x) = 3x3- - 2x2
+ x = 2

1 1

(d) r(x) = 6x3 - 5x2 - 17x + 6; x
1 1

2
2

(e) s(x) = 6x3 - 29x2 +. 37x - 12; x 3, 4

F(x, = 3x - 97x 3 + 35x2 + 8x + 2; x =

ti

(g) G(x) =_x10 - 4x3 + 10; = 2 ,

h

2. If f(x) =2x3, - kx2 + 3x -' 2k, for What value of k will f(2) = 4?
4

3. Ifa f X) = x3 + kX2 3x, for what value of _ k will f(2) = 2? -

4. Flind the value of each of the f011owing functioons when x =

5

(i) x -3 2 01

(ii) x -3 2x = 7

(iii) x -3 2x2 7 5x. 2 7
,..,

(0) ° x -, 2x3 3x2 - 1.2x + 13

(b) Plot the graph of the function-.

x -) 2x3 - Rx2 + 20',

(c) Compare your:sketch of part Op with the graph of
f x 21.3 - 3x2 - 12x 4-13 in F,j.gtire 1-4b

t

(e) Find the value of each of the
.

: x `-3 2

x A 2x + 10

following functions when x = 1.
,

x 2x2 - x 13

(iv) x -2x3 3x2 - 12x + 13

(b) Plot the graph of the function

x 2x + 3x - 12x.
,(c) Compare yotir sketch Part (b) with the graph of

f 2x3 - 3 - 123c + 13 in Figure1-4.b.

3 2
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6. Plot the graph oft each of the following functions and compare eachgraph

with'the graph of f x 2x3 - 3x2 - 12x + 13 in Figure 1-4b.

x - -2x3 + 3x2 + iPx -.13

(b) x 2x3 - 3x2 - 12x

7. Plot the graph cd4each of the following functions.

(a) x -)x3 AD

(1>) x ) + 4

x -)(x - 2)3

8. Plot the graph of eadli of the following functions.

(a) x x3 +' 3'x2 4: 4

(b) x -) x3 + 3x
2

(c) x**-4(x + 1)3 + 3(x +
1)2

9. Sketch the graph of each of the folldwing functions.

(a) x 2x3 - 12x +

( b) x 4 2x3 2 12x

.

(c) x 3)3 - 12(x - 3)

10. 'Sketch,the graph oft x -)x
4

over the interval -
3

T2 . 47

11:
0 .20,0

Plot the grap o ,each of the folloling functions.if' i
(a) x-) x4 7,2x..- 5x2'+ 6x

(b) x 74 -x4 + 2x3 +,5x2 - 6x -,

. .
;

(c) x -) x4 + 2x3 -.5x2 - 6x

12. For f :: x-+44 + 4X - 13x2 .1- 18x3 i 9x4 we give some of the functional
_

r
i '

i

values in the following table. 1

'4

-2-1 -

-1 .

1 7
2

''''''.."5

'y

f(x) -304 0 . 44. . 0 -304

4

(a) From the table, estimate the vat,ue or- x for which the function has

a mgXigium-value.'
.

. i

4 -4'
.7. . 1, '

(by Sketch the graph of e, 'with special care given to the interval
P

"4.
44

U < ,C<' lr s -4

4. 4 . j

44 '
1"--1 ' t

13. Approximate-0,e.maxiMtun value of the tunctipn
- , 144

f' : x-)39 - 640x2 - 10;c.) - 640x4:
i

53'
48v
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1-5. Remainder and Factor Theorems

momentarily we shall turn away from graphing and take another look at the

process W5 rescribed in Section 1-4, in order to develop some theoremrthat4

will be useful in finding the zeros of polynomial functions. The synthetic

substitUtion used,to determine f(2), given

x -)x3 - 7x2 + 3x - 2

will be the basis for this developtent, so let us examine it closely.

1 r -7 3 -2

2 -kp -14

1 -5 -7 -16

We'rewr/te the first row in the synthetic substitution as the givenmelra

nomial by restoring the powers of x), and then attach the same power of x

to each;entry in a given column. Thus we obtain

1x3 -7x2 +3x

2x
,

-10x -14

.
1)(3 -5x

2
-7x , -16

,

The polynOmial in _the third row tis the Sum of the two&preceding polynomials.

S1hbe f(X) = x3 - 7x2 + 3x - 2 and 1(2) ,;=. -S, the above addition can be

written
. .

, t

.

, f(x) + 2x
2

- 10x 1. 14 = x 3 - 5x
2

- 7x.'+ 1(2)."
. .

By factoring, we May write

;# 0

''
4p f(x) + 2(x

2
- 5x - 7) = x(x'" - 5x -,1) + f(2).

Solving for f(x), i./e have <

f(xl= X(x2.- 5x': 7) - 2 2_7 5x - 71-+c(2);

or f(X) 2)(X2 - 5x f(2).

The form of this expression may look fa4iar. 'It is, in fact, an

example' f the division algorithm:

Divldedd =(Divisor)(Quotien + Remaindel;.°

our:example, if (x 2) is, the divisoi, ',then

q(xY=-x2 -

/i

49
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is the quotient, and f(2) is iWremdinder. This result may be generalized.

t is of sufficient importance to be stated as a theorem.

REMAINDER THEOREM. If f(X) is a polynomial of degree n > 0 and if c is

a number, then the remainder-in the-division of f(x) by x c' is

f(c). That is,

f(x) = (x - c)q(x) + f(c),

where the quotient q(x) is a polynomial of degree n - 1.

1

Proof. We shall prove the theorem only in the case of the general cubic,

polynomial,

f(x) = 83x3 + a
2
x2 '+ a

1
x + a0.

Following the pattern of the previous example, to determine f(c) we trite

the synthetic substitUtion

a3
a
2 al a0

8
3
c (83c + 82)c (a

3
c2 + a2c + a

r-

4

(a3) (a3c + s2) (83c2, + a2c + a1) (83c3 + 8.2c
2

+ ain + a0)

As before, writing in the appropriate pd ers of x, we get

8
3
x
3 . +41

2
x
2,

+ 8
1
X + a

0

+ a
3
cx2

2
a
3
c + a

2
)cx +

3
+ a2c + a

1
)c-.

1

a3x3x + a
3
c + a

2
)x

2
+ (a

3
c
2

4- a
2
c + a

1
)x + (a

3
63 + a

2
c
2

+ a
1
c + a

0
)

.0,
_

.
,

We note that the polynomial in tilt third row is the sum of the two preceding
..

polynomials, that the polynomial in the first row is f(x) and that

Ta c3 +la
2
c2 + a

1
c + a

0
) is f(c). .Hence we may write

1

f(x) + C(8
3
x2 + (a

3
c + a

2
)x'+ (a

3
c
2
'+ a 2c +

x(8
3
x + (a

3
c + a

2
)x + (a

3

'

c
2

+
2
c + a

1
)] + f(c).

Thus we have

f(x) = (x - c)(8
3
x2 + (a

3
c + a

2
)x + (a

3
c2 + a2c + s

1
)] + f(c5

fr

or f(x) = (x - c)q(x) + f(c).

50
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The process is the same for higher degree polynomials. It gives

f(x) = (x c)q(x) +, f(c),

where q(x) is a polynomial of degree n - 1.

1-5:

If the remainder f(c) is zero, then the divisor x - c and the quo- 11

tient q(x) are factors of f(x). Hence, we have as an immediate consequence

the Factor Theorem:

FACTOR THEOREM. If c is a zero of a polynomial function f of degree

n 0, then - c is a factor of f(x), and.conversely..

We know from the Remainder Theorem (applied to a cubic function) at

there exists a polynomial, q(x) of degree n - 1 such that

f(x) = (x - c)q(x) + f(c).

I -171k a zero of f, then f(c) = O. and

24- 4ik

y , f.(x) 4 (x - c)ii(x), .

Hence, x c is a factor of f(x), by definition.

Conversely, I c is a factor of (x)°, then by definition there

is a polynomial,- q(x) such that" .

= c, we obtain

f(x) =,(x - c)q(x).

f(c) = (c - c)q(c),= 0,

and hence c is a zero of, f.

Example 1-5a. Find the quOtient and ,remainder

is divided by x - 3.-

Hence,

and

.f(x) =42:0 - 6x2 + x - 5

2

q(x) = 2x2 + 1,

-2

f(3) .= -2,
,

- -

2x3
, 2

2x - 6k + x - 5 = (x - 3)(2x2 + 1) 2.
,

\
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Example 1-5b.- Show that- x - 6 is a factor of

f(x) = x3 - 6x + x

and find the associated q(x).

Here,

1 -6 J.1 -6

6 0 6

1 0 1 0

f(6) = q(x) = x
2

+ 1, and

f(x) = (x - 6)(x2 + 1).

'..

In testing, for the divisibility of a3polynomial by ax + b, a / 0, we

. .write .

. ,

.ax + b .= a(x +
b
--) =

: a

b
afx - (- --)]

a

and see whether f(- 12-) = 0. By the FactoryTheorem, ax + b is a factor of
a

, b. b
f(x) if and

A

only'if f(- -a-) = 0. (Note that - is the root of, ax + b = 0.)
a

In applying the Factor Theorem, it may sometimes be easier to compute

f(c) by direct substitution, rather-than by the Method or synthetic substi-.

tution. Thus,, to show that x - 1 is a factor of

faft= )2;73 - x37 = 1,

we note that f(1) = 2 - 1 - 1

, Evaluating f(1) by the synthetic substitution method would take considerably

longer.

er.

At this pointyou imay wonder what to do when confronted with a polynomial

such as
;5,

8x4 - 28x3 -62x2 + 7X + 15,, .

dor which you might like to factor. Note that the Factor Theorem id only a testing

device. It does pot locate zeros of polynomial functions. (Methods, other

than blind" guessing, for doing this will be developed. later.)

-7.
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Exercises

1. Find q(x) and f(c) so that f(x) = (x - c)q(x) + f(c)
*N.N.

(a) f(x) = 3x3 + 4x2 - 10x - 15 and C = 2

(b) f(x) = x3 4 3x2 + 2x + 12 and c = -3

(c) f(x) = -2x4 + 3x3 + 6x - 10 and c = 3

(d) = 2x
3

- 3x
2

+ 5x - 2 and c =2

2. Find the quotient and remainder when,

(a) x3 + 4x2 - 7x - 3 is divided by x - 2

(b) x3 + 3x2 - 4 is divided by g + 2

(c) 3x3 + 4x2 -.7x + 1 is divided by 3x - 2

3.A If fn(x) is divided by gm(x) # 0' so that a quotient q(x) and a

remainder ,-r(x) are obtained', what is the degree of q(x)? of r(x)?

4. Give a linear factor of each of the polynomials.

(a) r(x) = 6x3 - 5x2 - 17x.+ 6 ti

(b) s(x) = 6x3 - 29x2 + 37x - 12

5. Consider the function f : x -tx3 + 4x
2
+ x - 6.

(a) Determine f(-3), f(-2), f(0), f(1), f(2), and f(3).

..(b) qt.Ctor f(x) over the integers.'
-

6.' f(x) = 2x3 + x
2

- 5x + 2, determine f(x) at x = -2, -1, 0, 1, 2,
1

and 73. . Factor k(x) over the integers.

.7. If f(x) = x3 + 3x2 - 12x: k, find k so that f(3),=

8. Find a value for k so that

x3 - + kx

is exactlyedivisible by x - 3.

9. Determine f(1) if f(-1) = 0 and

x -)ax5 + ax4 + 13x - 11x2 - 10x - 2a.

53
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10. (a) Divide
x5 4..x4 5x3 x2

+ 8x - 4 by x - 1.

(b) Find g(1) if g x -4.x4 + 2x1- 3x2 - 4x + 4.

(c) Determine a, 0, and r if

x5 + x4 - 5x3 - x2 + 8x - 4* 2
+ + r.

(x - 1)3

(d) Determine. A, B, C, D, E, F if, for all values of x,

(x - 1)3(x + 2)2 = Ax5 + Bx4 + Cx3 + Ent2 + Ex + F.

0

11. Consider the function f -) x3 - 3x. We submit a table to show three

_successive synthetic divisions of f(x) = x3 - 3x and, resulting quo-

. tients by x - 2.

1 -3 o

14 2

1 2 2

1

8

9

2

1 4

2

1 1 6

(a) Determine g(x) and f(2) if

f(x) = (x - 2)g(x) + f(2)(

(b) Determine p(x) and g(2) if

g(x) = 2)p(x) + g(2).

'(c) Determine q(x) and, p(2) if

p(2) .',

, J

(d) What is q(2)?

.(e)7 Show that,,forall x, we can-write

f(x) = (x - 2) {(x - 2)[(x 2)q(2) + p(2)] + g(2)) + f(2).

6 454
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.

In Chapier2 we shall find it useful (for analysis and translation)

to be able to express a given function in terms of x - a. We have

already developed the equipment necessary to do this for a simple

polynomial function such as f : x --4x
3

3x, with a = 2. Using

the.results of,parts (a) through (e) of this problem determine A,

B, C and D if, for all x,

..-
2)2f(x) = x3 3x = A(x - 2)3 + B(x - 2)' + C(x --2) + D.

41114k

(g) Sketch the graph of the function

f: -)x3 - 3x.

(h) Sketch the graph of the function

o .F : x -4x3 +6x2 + 94 + 2.

C

r

4F
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1-6. Locating Zeros of Polynomial Functions

FrQm the discussion in the previous section we khow.that a number r is

a zero of a polynomial function f if f(r) = 0. Furthermore we know that

the zeros of first and second degree polynomial _functions can be found by

solving linear and quadratic equations, fat which there are simple formulas.

We know how to find the zeros of polynomial functions of the first and

second degree.

If f : x mx + b,
b.

/ 0, then f(- = 0.

t
If f : x -)ax

2
+ bx + c, a 0, then f(

-b c)

2a

Upon examining these solutions, mathematicians noticed that the zeros are

expressed in terms of the coefficients by formulas involving only the rational

operations (addition, subtraction, multiplication, division) and the extrac-

tion of roots 16f numbers, and believed that it might be possible to express ,

the zeros of functions of higher degree than the quadratic in the same manner.

In the first half of the sixteenth century such formal expressions for the

zeros of the third and fourth degree polynomial,functions were obtained by

Italian mathematicians. Unfortunately, these formulas are too complicated to

be of.practical value in mathematical analysis. Mathematicians usually find

it easier even in theoretical questions to work with the polynomial rather

than with any explicit expression for the zeros.

While these explorations prod, ced some significant, if largely peripheral,

results, they wer later abandoned to be replaced by better procedures. Having

rejected the purs t of formulas to solve equations of higher degree, mathe-

maticians came to believe that perhaps the most fruitful path was to guess at

the solutions.
. _ -

J .

.:

Inspection of the x-intercepts of graphs we have sketched in earlier'
..,

sections enables us to approximate zeros of polynomial functions. But plotting_

graphs is,time-consuming, and there are better methods. Inherent inAe pro-
, ..

cess of preparing a table for graphing, however, is infoNmation that helps us

to make intelligent guesses about the zeros. This information is contained in

the following theorem.

66 56 .
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THE LOCATION.THEOREM. If f i, E7i.polynomilaffunction and if a and b are

real numbers such th2t,e(a) and f(b) have oppositesigns, then there

is at least one zero of f between a and b.

Geometrically this theorem means thAt'the graph of f from -(a,f(a)) to

(b,f(,b)) intersects the x -axis in at least one point.

In Figure 1-6a we illustrate the

Location Theorem wit?! the observation

that f(a) and f(b) are' of opposite

sign so that f must have'at least

one zerebetween- a and b.

The Location, theorem depends upon,

the fact that the g aU of n polynomial

ftnction has no "gas ", and hence can-
.

not have both positive and negative

values without crossing the x-axis

0

f(b)

Figure 1.-6a

b

t gtween. A complete proof of this

makes of a suitable formulation of the fact thqt the real line has no ,

:zr

"gaps" and 0.11 be discussed further in the appendices. Since the Location

Theorem seems intuitively plausible we.shall,assume that It is true and con-

... centrate on its consequences.

°

Example 1-6a, Given that the polynomial function

'f x - 12x3 - 8x2 - * 14

has three real zeros, loCate each of them betweentwo-Consecutive integers.

..
We use theLoca'tion Theorem to search for values Of fM that are
Ak

opposite in sign. It is convenient to do this in.a systematic, way by'synrm,_

thetic substitution, setting down the or as ip Table 1t6a.

a, '

57
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Loat g the

12 -8 -21

12 -8 -21

12 1 4 -17

12 .46 .111

12 28 63

12 -8 -21

12 -20

12 -32 43

Table 1-6a _-)

Zeros of f x --)12x3 8x2 - 21x + 14'1 ''"

14

14

-3

36

203

0 Location of41.:7.-__

402ero
1 a.

40

3

3.4

15

-72

0

f(x) x

WU=
The intervals that contain the real "zeros of f are indicated the

arrows at the right'in the table. Thus, we see that the real zeros .or...;'f

are located between 0 and 1, between 1 and 2, and between-s2-,-,and

We hasten to add that it is entirely possible for f to have zeros

between a and b when f(a) and f(b) have the same sign. We illustrate

this possibility in Figure 1-6d.
c f(x)

O

Figure 1-6u

a , b

Since the problem of locatirig zeros of a polynomial fUnctionf-s-eSseh

tially a matter of trial, We should ask the very practical questionHow

far sliould we extend the table of ac and .f(x) when we search for the loca-

tions of the-zeros of fe,, In Elyample'1-6b this question arises.

'-
)

I.

58 4
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Example f-6b. Locate 'the real- zeros of f -.2x--- x
2

7 2x + 6.

.

We repeat a procedure similar to EVIIple 1-6a and

''Table 1,6b

'?Ib'
Locating the Zeros of 4.,; x --k2x

3

2 -1 6

2 -1 -2 6

2 -1
, 5

2 3

2 .45

. 2 1 -2
^.

2,
-j 5

-5 8. -io

2 .7' 19 -51

r(x)
1

1-6

compile Table 1-6b.--

- 2x 6

1

2

3,

x

440

The Locatiod Theorem tells us that there is at(leastoone real zero r

between -1 and We can then write

f(x) = r)9(x)

where q has degree 2, say

ex) x
2

+ bx + c.

%

Depending upon the sign of t - 4ac, .this will have two distinct real zeros,

one repeated Veal ''zero or tw.:,) complex zeros,'. Thus,:there are fir

(1), there may be one, t. , -or three real zeros, all contained in the

interval between -1 'and -2, ."

(2) two zeros maybe complex, in which case there is only one,real

I.

one-or-two real zeros may be in some other inter;ial of the table

between successive-integral values of x, op

(4) one or two real zeros may be in intervals outside the values of x

shown in the table.
.

(3)

zero,

1

.

59
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While it is difficult to rule out the'possibilityof complex ieros or

zeros between other entries Of the table we can at least show that no roots

can occur outside the interval -2 < x < 2.

.Possibility (4) appears unlikely for the simple reason that when we

evaluated f(2) = 14, all the entries in the corresponding row of Table 1-6b

were positive. They will be still greater for ereater values of, x; the

table shows this for xr- 3,

it appears that for x > 2,

a zero of f greater than 2

and you can check it yourself for x = 4. 'Thus

f(x) must be positive, so that there cannot be

. We shall prove this, as well as the fact that

9agrxe cannot be a zero of the given polynomial less than -2, by application

. of the following, theorem.

UPPER BO,UND THEOREM FOR THE ZEROS OF A POLYNOMIAL FUNCTION. SuppcAel f is a

polynomial function with f(a) > 0 for a > 0. If

f(x) (x - a)q(x) 4-.f(a) and if all the coefficients of q(x) are

poitive, then all the real zeros of f are less than a
*

Wethen

3 call a an upper bound for the zeros of f.

Proof, For x*.-. a, f(x) = f(a)- > O. For x > a, by hypothesis,

x_T - a, q(x)? and f(a) are e-all Positive. Thus, x > a is not a zero of

f, and all real zeros of f must be less than p.
.

..../
. .

Now you will 'see from Table 1-6b that 2 is an Upper bourfd of the zeros

, . r
of the given polynomial. We really did not need to evaluate f(3Y.

..... v..
0

.

What about a lower bound for the zeros? Since any negative root of
,

.

t f(x) = 0
,

is a positive root of f(-x) = 0, if we find an upper bound for

the positive roots of f(-x) '= 0, its negative will be a lower bound for t....

0 ..- .

. 'theilegat.t.ve roots of f(x) = O. Let us "apply this test to our example.
,

.

From the given polynomial

we find that

Olt

f(x) = 2x3 - x
2

- 2x -I- 6,

f(-x) = -2x3.- x2 + 2x 6.

Since we are,trying to find the roots -of the equation, f(-x) f 94 it will
o

ble less confusing to multkay each' member of this equation by -1 in order

.-r

to have a tive coefficient for the third degreeterm. Irhus,wehave

4 :v

-f(- 2x3 4- x2 , 2x.- 6.

10 6o



Using synthetic substitutioni we4obtain the results. shown in Table 1-6c

for positive values df x.

,

44.

Table 1-6c

Ewalluatlig -f(-x) = 2x3 t.x2 - 2x - 6

2' 1 -2 -6

2 1 -2 -6 0

2 3 1 -5 1

2 '5 8 10 2

2 7 19 51 3

-f(-x) x

°

This table tells us two things. Firdt, a poSitive root of ..-f(-x) = 0

occurs between 1 and ay which means that a negative root of f(4.:-=0

Occurs between -1 and -2, as previously shown in Table 1-6b. Secondly,4

2 is an upper bound for the roots of .-f(-x) = 0, and gence', -2 is°a ,

lower bound for the roots of f(x) = 0. This is,the conclusion for which we

have been searching. in actual practice, however, it is unnecessary to

evaluate -f(-x) to find a lower bound for the 'zeros of .f. Notice in

Table,1-6b that thesYnthetic(substitution for x(= -2 gives, alternating
-signs for the coefficients of, q(x) and f(-2).

Suppose a negative number a is substituted (synthetically) in f(x).

If the coefficients of q(Z) concluding with the number f(a) alternate In

sign, then all of the real zeros of f are greater than a. We say that a.

is a lower bound for the zeros.
.

1 ..
In -EAmple 1-6b, we have found that 2 is an upper bound and -2 is a

lower bOund'for the real zeros of the given function. Hence, all the real
4

zeros of f are contained in the interval -2< x < 2 and we have found,

that one zero lies- between -1 ,and ,

Methods for showing that, ip fact, If has only one real zero (which we

know'must lie in'the interval =2 < x < -1) are beyond the scope of this

section.

r

.
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1

4,

_Exercises 1-6

1. Find intervals tetween consecutivevintegers that oontain tne real zeros

of f, given that:

(a) f(x) - 3x2 + 3'

(b) f(x) ='3x3 + x2 + x = 3

(c). r(x) 9 - x - x2 - x
3

(d) f(x) = 3x3 3x 4, 1 (Hint: evaluate f(2).)

(e) fM) =°2x3 - 5x2'- x + 5

(r) r(x) - 3x2 + 6x - 9

(g) f(x) - x4 - 6x3 + x2 + 12x - 6 .
0

2. Determine the values of k far which f(x) = x3 2x
2

+ 3x - k has 'at

*least one real zero between

(a) CI and 1

(b) 1 and

=3. In Example 1-6b we located at least one zero of

.

f : x - x2 2x + 6

between -2' and 71 (Table 1-6b). While that example ser ed priMarily

as a vehicle for the development of larger considerations we afford you

the satisfaction of completing it here.

(a) EvaluateEvaluate

(b) Divide 2x3'- x2

1

- 2x + 6 Eby x +

(c) For what values of x does 2x2 - 4 + 4 = 0?

(d) How many times does the graph of f : x -42x3 - x2 - 2x + 6

cross' the x-axis?

( (e) How many real zeros has the function f : x .242x3 - x2 - 2:fe+_6?

Cr)
,

What are the zeros of f x 2x
3 - x2

- 2.x 5+ 6?

.

.
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(a) Locate real zeros of each of the following functions.

(i) f x -4 x
3

- 3x
r

(ii) F : x x3 + 6x2 + 9x + 2

(b) Factor x3 - 3x over the reals.
48?

(c). What are the'zeros of each of the following? (Consult_Exercises

174, No. 11.)

(i) f: x x3 - 3x

,
(ii) F : x -4 x3 + bx

2
+ 9x + 2

5. Use the Factor Theorem to find a cubic equationwhose roots are 1,,

and 3. 4

You are familiar with the fact that for the general quadratic, equation
-

'8X
2

+ bx + c = 0, the sum of the roots is -
a

and the product of the roots

is
a

. Similar relationships exist between the roots and the coefficients

of polynomials of higher degree. The following problems (Nos. 6, 7, and 8)1

are intended to illustrate:these xelationships for third-degree polynomials:

6. Use the roots of the equAion given in Number 5 for each of,the

parts:

(a) Find the sum of the roots. Comparethis result with the coefficient ,

of x2 obtained in Number 5.

(b) Find the sum of all possj;b11 two-factor products of the roots.

That.is, find (-2)(1) + (-2)(3) + (1)(3). Compare this result'

with the coefficient of x obtained in Number 5.

(c) Find the product of the roots. COmpare this result with the con-

stant term obtainedin Number 5.

7. If the roots of a 3rd-degree polynomial equation are -2,
1

and 3,

find'

(a) the sum of the roots,
-

(b) tlietsum of all possible two-factor productp of the roots,

(c) , the product' of the roots.

t .

'4 tdy Using the results of (a), (b), and (c), write a polynomial

..eqtiation of 3rd degree having the given roots.

.(e) Check your result's by using the Fablor Theorem to obtain the equation.,

63
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1-6'

8. (a) Using the Factor Theorem, write in expanded form a 3rd-degree poly-

nomialequation having the roots r1, r2, and r3.

(b) From the result obtained in part (a), and from the fact that any

polynomial of 3rd degree can be written in the fOrm

a
.

3
a
2 2

a
1 0

8
3
(x + -- x, + -- x + --) ,

a3 a
3

a
3 _

a a
1 a0

find expressions for the coefficients --
a ' a a

3

, and -- in terms

3 3

of the roots
-1'

r2, and r3.

9. Find the polynomial function f of,degree three that has zeros -1, 1,

and 4 and satisfies the condition f(0) = 12.

10. There is a theorem known as Descartes' Mlle of Signs that states that the

number of positive roots of f(x) = 0 cannot exceed the number of varia-

tions in sign of the coefficients of f(x). A variation in sign occurs

whenever the sign of a coefficient differs from the sign of the next

nonzero coefficient. Thus_ x
4

- x
3 + 2x + 5 has 2 variations in sign.

.

Since the roots of f(-x) = 0 are the negatives of the roots of

fx) = 0, the number of negative roots of f(x) =,0 Cannot exceed the

number of variations in sign of the coefficients of f(-x). Thus

f(x) '= x
4

- x3 + 2x +,5 has at4most 2 negative roots, since

.f(-x) = 7
4

+ x 3
. - 2x + 5 Nts 2 variations in sign.

Find the maximum number of pbsitive and negative roots of each of /

the following equations.

(a) x3 - x2'- 1167 24 = 0

(b) x7 - x4 + 3 = 0

3x4
x2

2x - 3 = 0/

(d) x5 - l'= 0

(e) x5 + 1 = 0

(f) x5 =0

p

64

'7 4:



1-7. Rational Zeros

If f(x) is a polynomial anxn + a
n-1

X
n-1

+ + a
1
x + a0, all of

whose coefficients an, an,1, ...,:a0 are integers, then we may find all

rational zeros of f by testing only a finite number of possibilities, as

indicated by the following theorem.

/

If the, polynomial

(1)

,

f(x) .4 . a-

/ ;(' n

+ a
n-1

x
n-1

+ ... +-lx\-as + a0

has integer coefficients an, an:1, ..., ao, and' if f. has a

?ational zero F # 0, q > 0, expressed'in lowest terms (that

is, p and q are integers with no com* integer divisor

'greater than 1), then p4 is a divisor of a
0

and q ,is. a

divisor of an.

i

We use the following argument to establish the 'theorem:.

If
. ..* .. .

is a zero of f, then f(), = O. By Equation (1)

f(2.) . a (E)n + a (E)n-1 + a (E) + a = 0;4n q n-1 q 1 q

or, when cleared'of fractions,

(2) a
n-

n
-+ a

n-1-
n
n-1

q + + alpq
n-1

a q = O.

Solving Equation (2) for a
0
qn we obtain

aoq
n

= .481
n
pn a

n-1
pn-lg n-11

= -p[a pn-.1 + a -n-2
n-1

q 8'1(1

= pN, . r.

1-7

where N =
, n-1

an -1P
,:nc1-2

n
p j is an'integer. Hence p

.

divides 6
0
q
n

4
a whole number, N, of times. We wish to show that p divides

a0. To do this, we appeal to the Fundamental,TDeorem of Arithmetic,, that the

factorization of positive integers is unique; namely, we note that since p

and q have no common integer divisor greater than 1, neither have p and
4
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1-7

q
n

. Hence, all the factors of p are factors of a0, and p is a factor

of a0.

To prbVe that q divides an., we write Equation 22 in the form

(3)
r n-1

anPn = -11.a n-1
p + + a

1
pq
n-2, 4-a

Then we reason that since q divides the right-hand side of (3), it divides

the number a p
n

. Again, since p and q have no common divisor greater

than 1 neither have q and pn. Hence; all the factors of q are factors

of an, and q is a factor of an.

The'foregoing result may be easier to remember if we state it in words:

If a fraction in lowest terms is a root of a polynomial equation with integer
o

coefficients, then the numerator of the fraction must divide the constant term

of the polynomial, and the denominator must divide the Coefficient of the

highest power of x. To keep things straight, we can always see how the

theoremwoits for

mx b = 0, m / 0.

4, only root is - ; the numerator -b divides bk1 while the denominator

divides m.

If the polynomial has, fractional coefficients, the theorem can be applied

after the polynomial has been multiplied by a non-zero integer 'to clear of

fractions,' because the roots of f(x) = 0 and the roots of k['f(x)] = 0

(k / 0) are the same.

%.

0, .

,Example 1-7a. What are,the rational roots(of

1r .1W ' 3x3 - 8x2 +,3x +,2 = 0?

It is clear that 0 is not a root. If is a rational root, in
q m

lowest terms, then

The possibilities are
,

,s

so that

-p diVides 2, q divides 3.

t 2, (1411 1, 3,

I. 4. 2_ +2
q-

_ , or, _3.

We test these one'by one and find that the roots of the given equation are
1

'1, 2, and
3

76_
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;

(Note that in the statement of Theorem A2 -2a, rye specified q > 0, ,,..soP

the potsibilities for q are all positive. There Zs no point in testing both .

1
-and

-1
)

. 0
-,- ,' ..-...5 ...

,r

Now,

if and only if either

or

(1+)

:e ra ional roots4of

4
- ox- 3x

2
+ 2x = 0.

4 0
,f(x) 3x - 8x- + 3x- +'2x

= x(3x3 - 8x2 + 3x + 2).

f(x) = 0

x = 0

3 2
3x ox + 3x + 2 0.

P*41ft

1By Example 1-7b,'the roots of Equation (4) are 1, 2, and -
3

. Adding the

root: 0, we see that the roots of f(x) = 0 are 0, 1, 2, -
1

. We, can use our Rational Zero Theorem to establish a corollary for

integral ziotros. 44.

If the polynomial

f(x) = x
n

+ a' x
n-1

+ a
1
x +

a00

has integer coefficientswith the constant term a
0
4 0, and

with the coefficient of the highest power of x equal to

then the gnly possible rational zeros of f are integers that

divide a0.

We establish this corollary with the follOwing short oof.
. -. le**

Suppose (in lowest terms), q > 6 is a'zero 'Of f. Since

7F0 = f(0) / 0, / 0. By the Rational Zero Theorem, p divides a0 and q

divides- 1. Therefore, q . 1, an4 £ = p is an integer that divides ao.
. q

67
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1-7 .

Example 1-7c. Find the rational zeros of

f: x -)x 3 + 2x
2

- 9x - 18.

By our corollary, the possible rational zeros are integers that divide

- 18, namely , +he ?Pros of are

- 3, -4, and 3.

After we have found one zero of a polynomial function, f we can use

;--a special device to make it easier to find further zeros. By this device,

we can cut down the number of possible zeros we have to test, and sometimes
4

we can even use it to help us find-certain irrational zeros.

We know from the Factor Theorem (Section 1-5) that a is a zero of 'f

if and only tf there is a polYnomia.1 q such that

(5) f(x) = (x - a)q(x).

Since the product (x - a)q(x) is zero if and only if either x - a = 0 or

q(x) = 0, it follows that the set of zeros of f' consists of a together

with the set of zeros of GI:

(6) (x : f(x) = 0) (x x = a or q(x) = 0) T

Moreover, the degree of 1 is one less than the degree of f. Thus, if we

can find one zero of f, Equations (5) and ,(6) allow us to reducethe problem

of finding the zeros Of 'f to that of fteding the zeros of a polynomial q

of lower degree. Naturally we may repeat the process, with q in place of

f, if we are fortunate enough to find a zero of q, say b, for then we may

apply the Fa ctor Theorem ,to q and" write

and

q(x) (x b)r(x),

(x : q(x) = 0) = (x :x.= b or r(Y) = 0)

If we are successful in repeating this reduction until we have a quotient

which is either linear or quadratic, we can easily finish the job by solving

a linear or quadratic equation.
I



Example 1-7a. Find all solutions of

(7) 2x
3

- 3x
2

- 12x + 13 0.

tirect'calculation'show.s that 1 is a solution of Equation (7). There-

fore, x - 1. is a divisor of 2x 3
.- 3x

2
Al2x + 13. Performing the divisioh,

2 -3 -12 13

2. 71

2 -1 -13 0

Thus

2x
3

- 3x
2 A- 12X + 13 = (x - 12x2 - x - 131,

and the solutions of Equation (7) are 1 and the'solutions of

2x
2

- x - 13 = O. n

By the quadratic formula,
(1 +

/1. 55) and
4

f.15

areLthe
(1 - i5)

solutions of Zquation (7).

Example 1-7e. Find all zeros of

f : x -'12x3 - 8x,2 - 21x 14.

-1. 'f

This is the same function that,we considered earlier in Section 1-6,

Example 1-6a. At that time we found that there are zeros between 0 and 1,

between 1 and ,2, and between -2 and -1. Thus, we know that there are

three real zeros, but we do not know whether they are rational or irrational,.
/

If all three are-irrational, the best, we can do is to find decimal approxi

tions. ,Butifat least,one zero is rational, then we can Obtain a function

reduced degree -- in this case a quadratic -- that will enable us to find the

exact values of the remaining zeros whether rational or irrational.

If the function has a rational zero, it will be of the form 2 , and by

theRational Zero Theorem of this section the possibilities for p are ! 1,

t 2, t 7, t 14, and for q are l',' 2, "3, 4, 6, 12. Thus, there appear to be-,t-

a good many values of 2 to test as possible. zeros of the given,function. Butq

since we already know something about the location of the zeros, we need test

.only those'possible rational zeros p. between 0 and 1, between 1 and 2,
q

and between ;2! and -1, - until a zero is found.
.1

69 .
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Now the possible rational zeros between 0 and 1 are

b

1 1 1 1 1 2 7
2 3 s

By synthetic substitution, we find that f(-2 ) = 3. Since f(0) = 14 and°

1
f(1) = -3, the zero lies and 1. Hence, we need riot test the

)

1
,
1 1

A
1

12

1
values

3
, and This is a,good example of how the Location

Theorem (Section 1-6p may save us unnecessary wor). -

1

Continuing, we knob 2that the only possible rational zero between and

7
3

.2N

1 is
2

or Testing these, we find that fkt = 0, and we have found
12

the rational zero 7 .-.By the Factor Theorem, x -
3

is a divisor of f(x),

_.

and the quotient,
2

obtained from the synthetic substitution of , is

q(x) = 12x2 - 21.

The ,zeros of q are the roots of

1/7
which are -7 and

VT IT

17 .

' '

12x
2

- 21 = 0,

Thus, the zeros of tile given polynomial are

78
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Exercises 1-7

Find all rational zeros of the polynomial functions in- Firxercises 1

and find as many irrational zeros as you can.

0 1 . (a) x 2x" - '3x - 2

;1-4 2X3 3x
2

- 2x

2. (1) x x3 - 6x2 + llx - 6

(b) x x14 - 6x3 + llx2 - 6x

3. (a) x x3 - 2x
2 + 3x - 4

(b) x -3 x14 - 2x3 + 3x2
-="'4

4. (a) x -.2x3 -- x2 2x 1

(b) -)2x4 - x3 2x
2

+ x

5. x -)12x3 - 40x2 + 19x + 2,1

x 3x 3 - 10x2 + 5x + 4

'7. x 4x3 - 10x
2 + 5x + 6

x x4 -12x
3 - 7x + 8x .4-128. 2 ,-,

9. x x4 - 8x2 + 16

10. x x4 - 5x 3 + 5x 2 + 5x -.6

11. x -3 x5 + 3x4 5x
3 15x

2
+ /pc + 12

es'x -).3x4 o- x
3 - 28x2 + 64x - 15

13. Show algethaic'ally that the equation +
1

x -- =
x

if n is a real number such that In j < 2 .

Ni.

o

4

n has no real solution

You are familiar with the fact that for the gdneral quadratic equation,

ax2 + bx + c = 0, the sum of the roots is -
a

and the ,product of the roots

is
a

c
s - . Similar relationships exist between the roots and the coefficients of

polynomials of higher degree. Thesfollowing problems are intended to illustrate

.these relationships for third-degree polynomials.

71 1
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- 1-8. Approximating Zeros
0

o

Methods for finding rational zeroTof, polynomial functftion:, are discussed

t

in Section 1-7. A simple method, known as the method of repeated bisection
N.

canQbe used, along with the°Location rfleorem, '''c) approximate roots (either,
%

< rational or iTational). This Methodis easy to desbrzbe and i3 simple -bb

>"

v.; frogram on a computer. The arithmetic can Lecome very complicated, however, 04

and the method is fairly slow. (Another, more powerful, method is described

v.;

in,Section 2-10.)

COnsider fhe polynomial function
-0

At

f : x -)x 3
+ - 1.

Since7'f(0):, -1 < 0 and that f(1) = 3 > 0, we know (by the Location Theorem)

that there is at least one zero between 0 and 1. We take the average of 0

" 1
and, 1, namely

/
and find

1 3
r(7).= 7 + , - 1 >

t
Q.

1 1
Th01,thereisazerobetweellOarld,.We average again to obtain -7- .

r....--7

,:'
4

Srnce

1

, f(;) 1 < 0,

1 1
7rwe know that thereis a zero beteen 7 and . Averaging these we'get

1 1

+ 2 3

-2 -. 7

and since

.1)

(4)'= +
1 >0,

".

we have 0 ated a zero between and
3

. For convenience we now use

decimal: n ta ion and average again to obtain

0.25 + 0.375
- 0.3125

2

/

Since f(0.33Z) < 0 we knoW :that there is a zero between 0.3125
C

41
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.b

f

We could continue the process

zero is between 0.31 and 0.35.

the zero is 0.34. correct-to one

A 00,

1.8

to show (Exercises 1-8, No. 1) tha,the

Having done.this we could be certain that

decimal place.

Sorpbta_ining zeros of fu9ctions to some prescribed degree of accurac

the method.of repeated tisection is often

the process is easy to program,

.sad on high speed computers since

,

Without -a computer we try to speed the

example, we might obser1Athat

iS DO.Fiti')V for x > . x

x
3 - 3x -1

X' 4 ,X - 1

process by shrewd guessing. For

>
1

, n.ive

> (7):)3 3()- I > 0.

We could thentest 0.333, ,0.332', -'8.331-, 0.330, 0.329, etc. until ,we

obtain a-negative value; and then average to obta.in further accuracy.
7 _

this really speedy the process?'

4
°

'

S

.IP

r

\
I.

73r
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Exercises 1-8

1. Show that a zero of f : x -)x 3

2. Extend the method of repeated bisection started in this section for the

+ 3x - 1 lies between 0.3 and 0.4:

function

f : x -gx3 + 3x - 1

to locate a zero of f between 0.31 and 0.35; ,

to show that a zero of f, correct to two decimal places, is 0.32.

3. Find correct to the nearest 0.5, the real zero of

f : x =ix3 - ix
2
-- 2x 5 that lies between 3 apd

4._ (a) Find, correct to the nearest 0.5, the real zeros of

f : x -)x
3...

2x
2
+ x - J.

(b) Find the zeros correct to the nearest 0.1. *.

5. (a) Find a solution of

Cor Find this solution

6. Find the real cube root

the equation x' = 20.

p.
x
3 + x = 3 correct to one decimal place.

correct to two decimal places.

of. 20 correct to two decimal places by solving
2 J

8

a
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1-9. Degree of Polynomial and Behavior of Graph

Suppose f is the polynomial function
0

x -;a
0

+ a
1
x + a

2
x2 + + anxn, an

,

0.

1-9.

What kinds of information about the graph of f can we get easily from this

: expression? FOr example, note that

f(0) = ab

so that the constant tern a
0
0 is the y-intercept, that the graph crosses

the y-axis at the point (0,;0).

This observation is, of course, quite,timple. In the next chapter we

Shall show that the coefficient a
1

is' the slope of the tangent line to the

graph of f at (0,a0). The othef coefficients of f will also be of signi-

ficance .as we try to determine the b.ehalhoi: of f near the point (p,a0).

rhe degree Or f can also give us useful information.

Suppose we wish to knoow how many,times a lie4 given by g(x) = mx + b

can intersect the grgloh of a polynomial function

f :x_)axn
+a an

-1

n-1
a
2
x
2

+ a
1
x + a0.

0

".

x

I ...

i

Figure 1-9a

';;.

...

-111;?" '"4 f 6, on "

%
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1-9

.That is, for how many values of x is it possible that f(x) = g(x)? In

other words, we are asking how many roots the equation f(x) - g(x) = 0 can

have, or the maximum number.of zeros of the function

( 1 )

: x -,anxn + a
n-1

xn-1+ + a
2
x2 + (a

1
- m)x + (a

0
- b) .

too**

We assume (without proof here):

111

if f is a polynomial function of degree > 0, then- f

14;has at most n 'real zeros.

Since F is of the same degree as f we know that F has at most n real

zeros. This means that a line can intersect a polynomial curve no more times

than the degree of the polynomial.

The x-axis is a very special case of a line given by y = mx+ b, where .

m and -c are both zero. Therefore, as a partibular consequence of (1) we

have:

0

if f has degree n >-0, then the graph of f cdn cross

the x-axis no more than n times.

the expression for f(x) also determines the behavior of f for va

of x far from the origin. For example, consider the function o.

f : x -4 1 - 3x + 2x2 + x3.

If x is far fromIero (that is, Ix' is large) then the cubic term x3'

dominates the remain;ng terms. To show this we can rewrite the expression

for f(x)

-/

as 'XI _increaseS, the abs lute value of eachlpf he terms

I

I
1 - 3x + + x3 = x3 ( 1 _ 4. 2

c5, 2 +

decreases so that

7 and
2

x ,

1 - + L+1 is close to 1
A 3 2 x1

when Ix! is very large.

X x

6'1 1/416
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By_this kind of reasoning, J\ could show that for any polynomial function

f, the term of highest degree will dominate all other terms when x isfar

from zero. This means that4the sigrrof f(x) will agree with the sig of the

term,of highest degree for Ix' large, and hence the graph of f wil

above or below the x-axis according as the value of.this term is positive or

negative. .,1
I

.

4 We combine this information with that previously garnered to sketch

the possible graph of

f :x -41 - 3x 4- 2x + x3.

We know that f(0) = 1, and that the araph of f can cross any line, and in

particular the x-axis, at moss three times. Furthermore, the ter x
3 ,domi-.

,
\ ,

nates when Ix' is large, so that forA x far to the right the graph of f

mustRte
1

far above the x-axis and for x far to the left, the graph of f
-.-- ,-

.-

lies fa-belbw the x-axis. In partibu.1,ar, the graph of f mu ' cross the

x-axis to the left of the origin (since f(x) < 0 for x far ft and1
if(0) > 0). Some candidates for the graph of t are sketched in Figure 1-?b.

Further information is needed to show which graph mightbetan accurate pic-

ture of f. In the next chapter weistIll develOp thethods for determining the

behavior of graphs of polynomial functions (e.g., locating maximum and minimum

points). For now we can eliminate five of the six possibilities pictured: We
--r

eliminate:-

(i) and (iv) because to line shouldobe able to cross the graph

' more than three times;4

(!iii) because fl(0) must be positive:

(ii) and (vi) because 4k-11 must-be-gzeater tha f(0).

A

/

, 77
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( i)

Candid8tes

e .

for

(7i)
.,.

FIgure 1-7c.
. -.

_ .

trkg grapti of x :41 3x + 2x2 4: x3 .40,

9 -

78 ,

I
a
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Exercises 1-9

1. Plotting as few points as possible try to sketch the graph.of

y = 3x. . +
, 4x 3

- 12x
2

+ 5.

2. Plotting as few points as possible try to sketch the graph of

f x -) x5 + "x4 - 5x3 - x2 +. 8x - 4.

3. "If f and g are polynomial functions and f(x),= 0 if and only if

g(x) = 0,- then f and g are identical.polynbmial functions." -Refute

or defend this statemen

4. Suppose that-there.are o ly a finite number of selected points shown for

a number of polynomial functions. One could only gueat the complete

graph. In each cage indicate the minimum degree that a polynomial func-

tion migirthave-ar:d still be satisfied by these points.

(a) (f)

4!

- (b)

(c)

Is

aA

(d).

I

"(g)

(

4

79

-:8 9

OM-

.

It

.4

4



1-9

tc5. Suppose that f -is a polynomialfun6 on of degree n and

-g : x -)f(ax + b), where a and b, .6 e constant, a O.

(a) Is g a polynomial function?Itg. If so what is its degree? If

not why not ?

.

..
(b4 If a = 1 how ii=The graph of g related to the graph of f?

(c) If b = 0 how ere the, graphs related?
a.

(d) Use parts (b) and (c) to indicate'the relationship.between th.
: .

graphs of f and g for general., a and b. Consider

g(x)
.

f(a(x -:- 12)) and g(X) = flax b).
a

4

tI

a

;1. 90
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Chapter 2'-
) '

THE DERIVATIVE OF A POLYNOMIAIANCTION

Having discussed polynomial.functions in Chapter 1 we now turn to one

aspect of the calculus of polynomial functions. The two basic ideas of the

elementary calculus are derivative and integral. We can appreciate these

ideas intuitively and understaAd their usefulness- before we formulate them

precisely. We begin with the idea of derivative.
, 5

1
..._.

If we select any point P on the graph of a polynomial. function and,-
't

draw a line through P with a ruler, it will be possible choose the
4

direction of the ruler so that very close to P the line s ems to lie^altvpg
...

the graph. When this is done,
.-_-

if we stay close enough to P,

'.it will be impossible.to dis-

tinguish between the line and the

curve. We may appropriately refer

to.the straight line which has this

propeKt.y as the best linear approxi-

mation of the graph It P. The

straight line is also said to touch

or....12e-tangent to-the graph at P. .

In this chapter, we shall be concerte'd-
ir 4

with the precise determination of the direction

point of a polynomial graph.

te that our use of, the:sword "tangent"

meanie in the elementary geometry of circle

Graph of polynomial functions mdy lie en:tir

one of their tangents, as i circles do, but th
es

. .

The derivative will help us to determine the direction of such tangents, and

.

Of the tangent line at any

here is consistent with its

, but it, is al'S7o more inclusive.

on one side or the other of

y ay also cross their tangents:

,' also the shape of the curve.
-- ... -

t .

--7--- \

A .4tfr'

81 10
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2-1

Once we know how to determine the tangent and the shape of the graph we

shall be in a position to find any points on a polynomial graph at which the

tangent line iS horizontal ,and the graph nearby.isentirely above or entirely

below the tangent. Such points are called minimUm and maximum points, res-.

pectivelY.

min., point

max. point

The problem of finding the tangent to a polynomial graph at a point P

and the shape of the.graph nearby is particularly simple if the point is on

the y-axis.

inspection.

special case,

As we shall see, in this case the result can be written by
r

At first we shall, therefore, confine ourselves to, this easy

and later turn to the case in which the point is not on the

From these considerations we shall obtain a general' formula for the slope

of the,tangent to the graph of a polynomial function f at any point .

(x,f(x)). The general result will be expressed as anew function, de'Aved

from f, sometimes thoughtf of as.the slope function of f. It is` this slope

function wjiich we call the derivative of the function f. In the final sec-
-

tions of,this chapter we shall apply.these ideas as weCamine the behavior of

polynomial functions and 1; later chapters we shall see that the same basic

concepts can be used to discuss functions other'than polynomial functions.

12 -1.
The Tangent at the y-Intercept of a Gr4ph

I

I

.
,

. In this section we shall illustrate, the method of obtaining an equation
. ,

of the tangent to a polynomial graph at its point of intersectio with the

y-axis. As indicated in he introductidh, the tangent we are seeking is ,

defined here to be the straight line most closely approximating the durve at

a. given point.

f
For a polynomial, t

degree is higher-than,on

0

*

method coral-es merely of omitting every tet1TWhose

.02 '82
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Example 2-1a G of f : x 1 4- x - lx intt,r;;.-ct, the

y-axis 17 .P7(0,1),. The tangent T to ("4; it P h:1,4 tne ,:quation

y--14x

obtained ty -omitting the se' ond degree :ern:: is easy to draw

from its equation.

Figure
- 4

G is -Che gra of x -41 4- x -

is the.'graph of y's-= 1 + x

r
4

Moreover, since the omitted term -1.x- is negative for- all

except, G lies below T exc

2 .*. I.--; ,. 'Ellample 2-1 . The graph` G o f : x --) 2 t x1 "-.'itreIlse st1.4": y7,axis+cat :,
; ' '.;:i .;:,,

p(O,2). If we it the x2 term and write y = 2 wecip.:!,,,1"1,... fie' equa4i.on of
1 . ,, f..

the tangent T . through P. ' Inthis, case the tangent is, p'4 1 to' the x-axis..
;,,,, -

Since x is positive for all x. except zero, all pints *,-, 1:%ex-cept 1:%:,,

,.. e
7i lie above the tangent_ line T. 0.... -.,:f.,s.

1
.. - / ,

'4 -I :
..4.

,4\4: . 4 -,

Because P is the lowet point on G, it is called the milimum point.;
,.

.

of the .graph. (See Figure 2 -lb.) .) ,,,,74'
iq_ ., , -,

.

at P . .)

4
'

t

v.

4r

values of

2-1

.83 9,

ti
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Figure 2-1b.

G is the graph of f : -42 + x2 ,

T is the graph of y = 2

Ample2-1c. The graph of
f : 7-4 + x3iintersects the y-axis
at Q,0). T,heequation.

y = x

of the tangent at P .is obtained 'Cy
omitting the x3 term. Since x3 is

positive for positive x and negative
for negative 5i, is above T if

'x > 0 and below T if x < 0. (See

Figur. 2-1c.) he graph G therefore
rouses from one 'side of the tangent

,o the other: P is called a point of
_inflection of the graph G.

The

Figure 2 -le

1% the graph of f : x -4 x + x5

T is the graph erf y =, x

pictures for Exainples 2 -la., by and ce seem to indicate that the pro-
cedure of omitting, -every tbrm whose degree is higher than one does indeed

,
prodre the iequatibn of ple tangent o a polynomial graph at Its y-intercept.
T explaip 4hy, retuzn to Exe,mple 2-1a. We obtained the equation
y/= 1 + 5: of the tangtht to the graph of

I.

.1*

c

I



1) f : x 7-4l+x-4x
,

at 4(0,1) by omittif.g the term

2-1

-4x
2

. We wish to justify this procedure by

0 showing that the.'1,,lhe obtained does represent the best linear approximation

to the graph.at the,poiit P. This will entitle us to call y = 1 + x the

equation of the tangent to,the,graph at P. 7

From (1) we have

0
1,41 + .01 and 1 -.01. These lines have the equations

which may be written a's
p

(2)

f(x) = 1 + x - 4x2,

f(x) = 1 + (1 -16)x.

t

If x is numerically small, the expression 1 - 4x in parentheses is close

to 1. In fact, we can make 1 - 4x li-e as close to 1 as we please by

making x numerically small.

'Specifically, if we wish 1 -4x to be within .01 of f and hence to

lie between .99 and, 1.01, it will be sufficient to make 4x lie'beiqween

-.01 and .01, and therefore to make x lie between -.0035 and .0025.

'ThiAesult has a simple geometrical interpretation (see Figure 2-fa).

Let us consider,three lines L, L1, and L2 through .P(0,1) With slopes

L2

L : y = 1 + x

L
1'
.,y = 1/1101x.

L2; Y 1 4...99x

I ,

n.0025

A
.0025

0

iyare 2-1d

t

85

B

L,
L
L2

J
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2=1'

I

.4,Pleir slopes are so nearly 'egual that the differences ca e shown on

Figure 2-ld only by distorting the scale. Let, AB' be the interval

-.6025 < x < .0025. .dn this interval AB, the graph of 1': x -31 + (1 - 4x)x
-1.4s between L

1
and L2 and, hgnpe,,in the 11itchedregion.

The numbers chosen were merely ilrustrative; They were degigned to give,0
N

.
a certain concreteness to the picture. We can make 1 - 4x lie between

. .

1 + -c and I - c for 'an arbitrarily small value of c, merely by. choosing
e c

x between - r and -,-; . We did not need to chodse c = .01.
..

'''. "

1
Geometni-cally this means that if we keep values ±o x clo e enoughto

zero the graph of f): X -'1 + (1 - 4x)x:, lies betwee two lines. f

y = 1 + (1 + c)x

L
2

: y = 1 + (1 c)x
s

s

which differ in direction as little as we please.. The 0111p-straight line

which is always included between gucp. lines ° Li and L2,is

L y = 1 + x. gt

Hence, tie see that L can indeed be regarded as the best linear approximation
..12 1

to f:x-4 1 +x- 4x at x=.0.'"

We can confine the-graph G of f : x 1 + x - 4x
2

to a smaller part

of the hatched region in filsre 2-1d isy noting thet. ,d lies below. %except

at the point P. Hence, on the interval AB; lies between L- and L2

to the right of P and between L and L
1

to the left of SP. (See Figure

I

e
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Exercises 2-1
.1. For each of the following

(i) write the equation or the tangent tothe graph of the
function at the poiktk of intersection of the graph of
the function with the y-axis;

(ii) thaw the ) angent line and sketch the shape of the graph
hear its y-intercept.

(a) x>1 - + (f) x 1 - 3x. x

(b) x 4 - x2 (g) x - x3 -.

(c) 3x - 2x2 (h) x 1 + 2-x + x
"Po

(c1) x 3 + 2x + x4 (1) x x5

(e) ) 1 + x + x3 (j). x x4

2. (a) For If : x + x + x2 'show -that if -.01 < x < .01, then
.

1. -4- .99xe.:4(x) < 1 + 1.01x;

(b)' Strengthen ths, result of part (a) by showing that

(i). 1 + x <f(4) <1--+ 1.01x, for x >.Q, '
(ii) 1 j- x < f(x) < 1 + 99x, for x <f0.

Show the impl-oved results on a diagram.

(c) Show that the results of pant (a) can be obtainers more simply by
, noticinq,that except at=the 3t- intercept, the graph

f : x + x + x2 must lig above the graph of y = 1 + x.
;

Sa
,3. In Example 2-lp -we could write f : + x3 as f x (1 + x2 )x. .

(a) Show that

(i) x < f(x) < 1.01x, for 0 < x .1

°, (ii) Lax < f(x) < x, _.for 0 > x > -.1

(b) Draw a figure to illustr;tte the geometrical meaning of the results
Ort h,-( a) arid (b)..

A
87
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4%,* th.,2 function f : x

' (a) At what point does the )f the functt3n ,ro"."o the f?-50' axis?
t

show tat if Ixr..< .01,

3.01 -x ) 2.99

and that fex) lie :etween

3.01x and
.

(c)0 P-aw a figure to illustrate the' gsom,trical meaning.
t ,

jtr-Agthen ;he re alt of -:,mte'r 4 noticing that the graph -of the

function lies :Pio', the graph .?f the ,traig;nt.lin-

, c.,hat.dditional refinement made in tne figure assopiat'el ith

N.mcer 4?.

Consider the function

-

f': x - x - 1 - + (-2 -

snow that if '0 x < .01,, then the graph of f lies between the

ltnes who,e equations'are

and

= -1 -=2.01x

= -1 - 1.99x.

/

/- (t) D.aw a figuf to show'the geometrical interpretation of this result.

'''t

7, w
Consider the function ',f.: x -)3 - 5x - 4x

2
:
'-'

-,. .

(a) F.:-:r -.02 < x < .02 determine the s/oltes of.the lines between_

.(b)

which the graph'of f lies near the point (0,3).

If it is desired that, near (0,3) ttie graph of f lies between '

the hra4ht lihes y = 3 - 4:998x apd y = 3 - 5.002x, *what .I.

value's may x assume?

4

'I



8. If. f is a polynomial function of degree

quadratic (or parabolic) approximation to

found by omitting every term whose degree

'higher than '2, they bes

f near its Y-intercept

is higher than two. Thus, the

qua-di:atic approximaticrn to'

f : x, )1 - x + x2 -2x3,
-

is , F : x 1 x + x2.
I **"

(aT On' the sam.. set Of axes draw the graphs of f and its 'best linear

and bestlquadratic approximations near the y-intercept of f. ,

(b) If = compute f(x) - g(X).
-r

(c) If g =,0.01, eompute f(x) - g(x).

f(x) - g(x)(d) 'As x approaches zero, what value,. if any, does

x2
`-.

9. The best cubic a roximation to a polynomial functi6n att,its y- intercept

approaoh?

is found by o t ng ,e,i)ery term whose degree is higher than three.

(a) Determine the best, linear, quadratic, and cubic apPAqoximationeto
1 . 3 4 5

f x x 4; 2x - x near its y-intercept e(0,2).

(1;) Graph f near 13(0,2), -making-A of the' informatibri you can

glean from its best linear, quadratic, and 'cubic approximations

near there.

(C.), Let i(x) be the value of the best cubic approximation to the

graph of near -its y-intereept. As x approaches zero, what

value, if any, does,
f(x) - g(x)

approach?
x3

7

.89 99,
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2-2.' The Behavior of the -Graph Near an Arbitrary POint

In Section 2-1 we restricted our attention to the behavior of the graph of

a polynomial funct,io;nnear its ynintercept. Noll We shall generkiza our-dis-
. r

mission to include,the behavidr If the graph of such a function near any point.

In Section 2-1 the behavior near the,point for which x = 0 was determined

from,the expression for a:10 in ascending powers of x. The behavior near

the point for which ,x =,a, say, can be determined if we have an ex&essidn
4

'for f(x) in ascending powers.of x - a.

Totiegin we consider 4 specific function, f.: x - 10X + 4x2 at a '

articular point, where a = 1.

Example 2-2a. Determine the behavior of the graph of the function
a

x - 10x + 4x
2

near the point P(1,3).

Writing f(x) powers of (x - 1) le find

(1) f(x) = 3 - 2(x1) + 4(x.- 1)2.i

.

, (Soon shall see how to derive such'an expansion for f(x),. but for the

4,

4

A

,g moment merely check that

.
*

3 - 2(x - 1) + 4(x =;1)2 = 3 2x + + 4x2 - 8x + 4 = 9,- 10x + 4x2 . f(x)
41

as desfred.)

In this form (1) the firaph of f' may be inteqleted as the result of
A ,

translating the graph of the,function g x - 2x + 4x
2

one unit to

right. .(See Section 1-3.) Hence, the behavior of the graph of f near

X = 1 is identically the same as the behaVior of the graph of near

x = 0. Y

o , .

s

0 .1

Figure 2-2a

ti

.
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.

Since the'tangegt to g at x = Os .given by a = 3 - 2x, the tangent

to f at .x =1 is given by y = 3 2 2(x - - \:

Since x2 > fo1Call x/ 0, the graph or k3 1 ?x + 4x2 lies

above its tangent line y = 3 - 2x, except at the point_of tangency Q(0,3).7
In the same.manner, .since (x - 1)2 > 0 for all x-i ',theegraph of

f x - 1) + 4(x-- 1)2 lies above its tangenty = 3 - 2(x %- 1)

except at the point of tangenoY
o

The foregoing discussion a sumes that since or = 3.7 2x is:the equation

of the tangent to gat x = , then the equation of the translated line,

y = 3 - 2(x - 1), will reire ent the tangent to f at x ='1. 'Without trans-
.

lating the graph of g we can verify that.the line given by y = 3 + 2(x - i)

is the tangent to the graph of f At ,x = 1, in filch the same
0

,V'ried out the argument in Section 2-1 for tangents at the y-,intercept.

way that wet/

Writing (1) in a factored form

f(x) = 3 + [-2 + 4(x - 1)1(x 1),

we note that if'x- is near enough to 1, that is ff Ix sufficiently

small, the expifssion (-2 + 4(x - 1)) is arbitrarily close t. -2. In other

words, for any e, however small, f(x) lies between

3 + (-2 + e) (x - t)

and 3 + -2 - g)(x 1)

provided that Iii(x %. 1)1 < e, that,is, that Ix < . `Hence

3 - 2(x'- 1) is the best linear approximation to (x) near x = 1 And
T'is thetangent to the graph G at the point P 1,3).. It should be noted

that we have followed the same procedures as before with x - 1 in place of
x.

I

4
Thus, to describe the behavior of the gr ph of a function'

,s'f.: x -4 13
0

A
+ blx- + b2?c2 + bnxn near e po;nt where x = a, we need

only express f(x) in the form

- c
0
4 c

1
(x - a) 4: c

2
(x - + c

n
(x -,

The test linear approximation, to f a ,x = a is then :y = co + ci(x - a),

'the equation of the tangent to f a x= c. The best quadratic approxima-

.tion (See...Exerciees 8
1

and 9, Se.ctio 2-1) is given by
1

y = c
0

+ c
1
(x - a). + c

2(x
-'a)2, d so Non.

IN

91'4.'
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Now consider the problem of expanding a giVen function in power's of

(x a) for some a. We want f(i)
9

+ c
1
(x a) + c

2
(x -

.
.

+ cn(x Note that upon dividing ,f(x)' by (x - a) the q'uotient is
40/

[c 1
+ c2(x - a) + +,,cn(x -.8)n.-11 and the remainder is c0. Hence, to

'find the first coefficient c0
of the desired expansion we divide f(x) by

- a) and record the remainder. Similarly, to find c
1

we divide the

votient. 0 °

[el + c2(x a) + c3(x - a)2 ... cn(x - lei)n-11

, by (x a) agaih. The remainder will tie c
1

at\if the (second) quotient k.41.11

[-c2 + c3(x -.a) + + c n(x - a)4 -2 1.

Continuing in this manner, we can find the coefficient c . for eacti power of
\ Is i

, fx - a) in the, expansion of f(x). \L. .

\
,-

For example, to expand f(x) 4 4 - 3x 1- 2x2 in powers of (x - 1) we

dividei 'f(x) by (x - 1). By synthetic division we have \

indicating- that

2 -3, 4-

2 -1,

7:717

,(2) , f(x) = 3 + (2x - 1](x - 1)%I. .

Now we divid the quotient (2x - i) py (x - 1) win:
-I '-1

t.2

.

.which.taillsus',that (2x - 1) = 1 + 2.(x .7 1)'.

k Stkbstituting in (2) we have'
-..:? .

:

f(x) = 3 + (1. + 2(x - 1)](x - i)

' or f(x) = 3 + .1(x - -F. 2(x - 1)2.

Note that the coefficients '3, 1, *Id 2 are precisely the remainders under

repeated division:by (x n 1) .

1,0 2 92
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o

.
(.

/ t
, If f(x) were .15n exprgssion of higher degree, the process would ,be con-

. '

tinued. We simply divide each Successive quotient by (x - 1) and record thq,

remaind4r, until f(x) iscampletely expressed in- powers' of (x - .1).

4"74.

Example 2 -2b, Determine the behavior of the grath of
11' -

f : Z 2 :4- 3x + x2 - x3 'near the point at which -x = 2.
' .

... -- -We need to expand f(x) in powers of x - 2; that is, tntfind the
, ..

coefficients in ,

f(x) ="c
0

+ c
1
(x - 2) + c

2
(x - 2)V+ d5 (x - 2)3.

As before, if, f(x) is.divided by (x - 2) the remainder is co and

.
the quotient it ci. + c2(x - 2) + c3(x - 2)

2
. I this quotient is divided,by

x.- 2, the remainder is c
1

and the new quotient is a2.-}.-+ c
3
(x - 2), A

. .

further, division of c + c (x - 2) by x - 2 gives the remainder c' and2 3.- , 2
the final quotient c3. We proceed to carryout tIese divisions synthetically.

e

Dividing by x - 2

-1 +1 +3 +2 1 2 ,

-2 -2 +2

-1, 1 1 4

We obtain ;the first remainder co = 4 and the quotient
A

= 2x - x + 1.

Dividing this quotient by x - 2

-1 -1 +1 12 .

2 -6
-1 -3 -5

gives the remainder c1 = -5 . and the new quo'tient -x - 3.' Finally, diyiding

this quotient by x - 2,' we ha'

the remainder c2 = -5 and the quotient -1. The buccessive coefficients in

the expansion of f(x) in powers of x - 2 are the successive remainders

obtained: co = 4, cl = .62 = -5; the final quotient. c3 = Thus we

can write

f(x) = 4 - 5()c - 2) - 5(x - 2)2 1(x - 2)3.

93
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2,r2 ,

g

n

Near the point where x q 2, we conclude that:,
s'

4't

,,(1) the value of the function is 4;

(2) the equation of the best linear approximatiori.to the graph

of f is y = 4 - 5(x - 2), thus the direction (slope) is

-5; and

(3) the equation of the bes-d quadratic-(parabolic) approximation
" .

to the graph of, f is y = 4 - 5(x - 2) -'5(x - 2)
2

, thus

the graph lies below the tangent on'bcith sides of the point

under'consideration.

104 94.
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Exercises 2-2

1. For each orthe' following express f(x) in powers of the given facto'r.

(a) 'f(x) 5x: (x - 2).

(b) f(x) = x3 -'7x2 + 3x + 4) ?x - 2)

2. (4)

(c) f(x) = 3x3 - 5x- .+ 2x + 1, (x + 1)

1- 4

(d) f(x) IL, x3 - 2x2 + x- 1, (x +.

2. For each of the following function's

powers of x - a and determine the

of f at -11e point (a;f4a)):

write the expansion of f(x) in

equation of the tangent to the graph

(a) f : x -4 3 + 4x 4- 2x2 + x3,. a = 2.

(b) f. : x -4 3 + 2x3 + 4x2,- a ; -3 di
I

-

(c) f : x -4 4x3 - 3x2 + 2x + 1, a =
t

-14

(d) ,f : x -4
5x4 3x2

. . s

(e) f : .x -4 4x3. + x2 + 3x, a = 3

(f)- f : x -4 2x3 + x2 - 16x - 24, a .-- -2

3. For eacli 'of the following write the' equation of the tahgent at the"
. t /

specifilnd point and sketch the shape of the nearby. 4

(a) x -4 4 + 3x - 7x2 4x3 at (2,:110)

AIP

(b) x -4 3C3- _60XF tt 1 at (3,-109

(c) x -4 3x4.- 4x3 - at (1,-1)

.(d) t -4-20 - 40 - 5t + 9 at (2,-1)

(e) x 2x3 - 3x2 - 12x 14, at (1;1)

(f) s -4 2s3,- 6s2 + 6s - 1 at (1,1)

4. (a) f(x)' = x3 - 3x fn terms of asbending powers of x 2.

cs

h 0

(b). Write inequalities to show the relative values of (x 7 2) ,

(x - 2)2, and (X - '2)3: near the point where x = 2. (For

instance consider' x = 1.9 or x = 2.1.)

(c) If y = f(1) = x3 - 3x write the value of _y when x = 2.

(d) Write the equation of the best linear approximation to the graph

f : x -)y = x3 - 3x near the point wh:te x = 2.

05

4

q.

00
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(e) What is the direction (slope) of the (tangent to thy) graph of

f x -)x 3
- 3x near the point where x = 2?

(x)

(g)

Write the equation of the best quadratic approximation to the graph

of f x -4y = x 3
- 3x near the point where x = 2.

What is 'the coefficient of x
2

in the parabola which best

represents the graph of f x --*x
3

-.3x near the point where

(h) Near the point where x = 2 is the graph of f x -4x3 - 3x

flexcl (concave) upward or downward? Why?

(i) Compare the behavio?.of the graph of f 1 x -*x3 - 3x near the

point where. x = 2 with the behavior, of the graph of

F x -42,+ 9x+ 6x
2

+ x
3

at its y-intercept.

Again consider the fundtlon, f x -4x3 - 3x,

(a) Beginning withthe simple statement x = a + (x - a), express,

. x' and -3x in terms of -X-- a. Write x3 - 3x in powers.'Of

x - a.
`

(b) Make

x3 -

a table to indicate three successive synthetic divi;iolls of
6

3x and resulting-quotients by x - a.

(c) 'Use your table from part (p) to write x3 - 3,t in powers of x - a.

(di) Write inequalities to show thexelattonships between (x - a

/(x - a)2, /and (x - a)3 when x in .close to a.

(e) If f x 4x3 - 3x, find the value of f at a.

(f) What is the, linear function that best approximates the graph of

f. at a?

(g)' What is the dillectionlope) of the (tangent to the) graph of f

) near the .pint where x .= a?

(h) Foi what .values of a does a tangent to the 'graph of ft have

zero elope?

(i) At what points is the tangent

46). (J) What is the

to Ae graph of

quadratic function that best approximates

f hor,izontel. /

f near the point (a,f(a))?

the graph of '

(k) What is the Coefflicipnt of x
2

in the best Paraboric representation

to the graph or-f near the point .(a,f(a))?

1.0 (i 96
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(i) For each of the points found in part (i) determine Whether the

(parabolic approximation to the) graph of f is flexeA (concave)

downward on upward.

(m) Decide which of the points found in part () is a relative maximum

and which is A relative minimum. t

2(n) If the coefficient of the x in the parabola which best represents

the graph of f near some point (a,t(a)) is neither positive nor

negative, then the, graph is neither flexed,upward for downward at

that point. (We refer to such a point as a point of ,,inflection.)

At what pant on the greagh of f : x -)x3 - 3x does this

-phenomenon occur?

(o) Use information acquired in other parts of this problem to quickly

sketchlthe'graph of f x -;x3 - 3x.

4

)

r
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2-3. The 'Slope as Limit of Difference Quotients

To find the equation of the tangent line to the graph of a polynomial

function f at the point (a,f(a)) we expressed f in terms of powers of

x - a, andalkhen omitted the terms of degree larger than 1., Thus, we wrote

the function

as

f : x
0

+
1
x + b 2x2 + + bnxn

. .

-f-: x c
0

+ c1(x - a) w`c'2 (x + c.riCx

to obtain the equation of the tangent line

y = c
0

+ c
1
(x - a)

4 . 4"...
to the graph of f at the point (a,f(a)).

. )l''

We now.describe an alternative procedure.for Tinding the slope c of
,. .

a 1

Wa tangent line., a
. . . ,

.. .

Let P(a,f(a)), be a .point on the graph of f and, let Q(x,f(x))' *be a

nearby point on the same
N.../
graph. See Figure 2-3EoWhere Q is to the right of

P.. i

.

'" ',W.4., .
.'

As

Figure 2-3a

98
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:*

\The line that joins , ands, Q has the slope

\ f(X) -.f(a)
. k F

t
1 ' X . a " .

,

Consider what happens to this',"difference quotient" if we chobse ,Q on the
A '

graph-closer' ynd closer to P.'

2-3

.
.

, .......

. Figure 2 -3b shows intuitively-that the slope of therseeant PQ is4 r,
1 .

,approaching the slope of the tangent PT.
)

.
, .

'.4.

kk.

Figure'2-3b

-TO take a speeific,,example, let
,

f f x 4x
2

and let P be the pant (0,1).:zThen

A r ,

c

4 ,

?2)

=_X.

99 109
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The slope of PQ is

4, -f(x)' f(a) x - 4X2
P x -

Since x 0, we aey divide and obtain the result

sloPe(PQ) = f(x)
- a

f(a) - 1 - 4x.
x

If x > 0 the slope of PQ is. less than 1, and if x <0 the slope
,

of PQ is greater than 1;

To take Q closer to P means to take ,x closer to/zero, and henge to

4 '
',take 4x closer to zero; and 1 - 4x closer to 1. In fact, wecan mike.. . . #

1 - 4x differ from le by as small amount as we p/eake by choosing lx)
,

imall enough.

In ft; if x.< where e isa positive 5umber no matter how small,7
. r'..4, I 4

then t -

4

1 - 4x >1 - vp = 1 :., e.

/

Siniilarly, if .x ,Pthen

. 1 - 4x < 1 - 4(- i) + e.

.Since the slopt of PQ is 1 -4x we_conclude

1 - e < slope(PQ) < 1 + e

. ,

e e
;

e
provided that -

4
<x '

4< that is, if 11c I < V ;

.,'
'. II ........ . .

For smaller and' smaller choices of e (> 0) the slope of the secant PQ
.

1

is thus brought arhitrarily close to 1. We have'learned to describe this by

saying that slope of' PQ approaches 1 ss x approaches Olt In this example
0

we shall call the number 1 the limit, of slope of PS as Q approaches P,

or as x approaches 0. In Figure 2-3b the line 1Yr with this lithiting

slope is the tangent to the graph -at the point P.

.745',*-10410"16'

/

Gen4alizgliffrom this example, we introduce at definition.

The slope of the tangent to the graph af f at the point

is the limit of

as .x Thoaches a.

f(x) - f(a)
x

P(a,f(a))

110-
100
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A ,convenient abbreviation for this phrase is

slim ,f(ix)
- f(a)

x - a
x a

-
to be read "the limit, as x approaches, a,1 of f(x) - f(a) divided .by

.
a."

We illustrate °this 'definition- by using. the same function

,f :x-41+x- 4X f.

2-3

but a different pc:dr ,P(1',-2) on its graph. Let Q be the ppint (x,r(x)):

0 f(x) - (1)
' Then .slope(P

- 1

, (1 + x 4x2) - (-2)

x - 1,

3 + x - Itx2

1

4x2 - ,x 3
x -

(x`- 1)(4x

= -(4x 3) [since x A 1]

Now lim -(11x + 3) = -7' which is the elope of the tangent to the graph at
x 1

. '

, We, illustrate the use of our definition_ with two further examples.
I
ii

Example 2-5a.. Fird the elope of the tangent to the. graph of

''; f : x 2x - x3

at the point P(a,f(a)). The slope of the line through P(a,f(a)) and

'QCx,f(x)), x a, is given by the , diiference quotient

f(x)- - f(a) (2x - is) -.(2a - a3)
x - a x a

2(x - a) - (x3 - a3),
ax - a .

X= _a - x a

X +ax +e ), x a .

6

J 4

101
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As x 'approaches a the difference quotient approaches

We conclude that

, 2
a2)2 - + as + a
2
) = 2 - 3a

2
.

2,- 3a
2

= slope of tangent to the graph of f at P(a,f(a)).

..,
'

Example La. Find the slope of the tangent to

f x 1 - 2x + x
2 - 3x

at the point P(a,f(a)). a

The desi;ed slope Val be the limit of the difference quotient

f(x) - f(a)
as x approaches a.

x - a

Using the expression:for f Ire'have,

f(x) f(a) - 2x + x
2 ,

- 3x - k1 - 2a + a21 - :3E;14:)

,x -a x - a

,74.

= 2(x +
- a x a

3(x

14:

a )x - a : x - a x - a

i,= 2 + (x + a) - 3(x3 + ax
2

+ a
2
x + a3 .

As x, approaches a,

and

x + a approaches 2a

,
4 .

2 2"
-3(a373(x3 + a.x + a3) approaches -3 + aa

2
+ a2a + a3) = -12a3

so that
i

tif(x) - f
0 . .

approaches + 2a - 12a3 ,' the desired slope.
x - a .

4. I
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1. For each o

difference

Exerdises.,2.-3

the following functiona,, assuie, 'that

quotient

'f(x) - f(a)
a.

in simplest form.

(a), f : -) x

(b) - f : x
2

3
(c) , f : x -> x

(d)d f : x

2-3

" r

rte the
1

,t

7

o

2. For each of the functions in Number 1 evaluate the limit 4s x approaches 4
a of the difference quotient r(x).

, .
. r

3. Find the slope- of the. tangent to the graph of each of the 'functions in
.

Number 1:at the point _'(a,f(a)-)... .. # 1
A.;;4,-

4. Find,the slope otthe tangent to, the graph of each of the funCtions in

Number 1 at the point (0,0). .

.
5. -Write the equation of the tangent line to, the graph' of each of the P

\ ' ftinctiong in Number 1 at the point (a,f(a)).
I
.

. ......

-a.

or each of the following functions, assume that x / a and write the,
I

i ference quotient

. .

f k(b f : x =)Ax
2

+ Bx 4- C

I 2 ' I
A : x -ritx

3 + Bx + Cx + D,c)

each of the functions in,Number 6 evaluate the limit as x apprOaches

the difference quotient r(x). 1

the s1ope of the tangent to the graph of each function in umber 6,

.(a,i(a)). c'

of the tthge-i-rt te,the graph of f : x -)20x - 3x
2

at the

implest form.

f : x -) mx + b-

r( x) - f (x) 1(a)
x 6

7. Or

6

8. ind

, jle point

9. Mud the slope

pdint (a (it) .

103
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IL;

10 Consider the function f : x -) 1 - x3:

) -

-

f

x

(x)

-

(a) Evaluate lim
f(z

; i.e., determine thel limit as z .
.:

z
z -; x

I

o f ( X )approaches x, of the difference quotient
i(i) !Ii..

z - x

(b) Evaluate litn
f(x + h) - f(x)

h -) 0

kc) What is the slope of the tangent to the graph oftWat the point
4 ,

(x,f(x))?

11. Consider the function

f x 1 + x - !ix

(a)' Find the limit as x appropches a of the difference quotient

f(x) - f(a)
x - a

.$

(b), What is the slope of the tangent to the graph of at the point

(f(a))?

(c)' Find the limit as h approatches zero OF ence quotient
,

'f(X" + - f(x)
. ,

(d) 'What is the slope of the tangent to the graph of at the point

(x,f(x))?

1 ,.1,4b4

t

6
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2-4. The Derivative

Consider the function

ti

(11
L 2

f : x -,1 + x - 4X . ..
.

nr the previous section we showed that the tangent line to the 'graph of f at

(a,f(a)) has slope;' 1,- 8a. The slope of the tangent to the graph of f at

the point (x,f(x)1 isiven by 1 - 8x. (See No. 10(c), Exerciadt 2-3.) e

ti

The function/
,

(2)' x 1-41. - 8x

,

is sometimes called the slope function for f : x -,1 + x - 4x since its

value .1 - 8x at a point (x,f(x)) gives the slope of the tangent line to

the graph of f at the pint (x,f(x)). The function (2) is more commonly

known as the derivative of f and usually denoted by f'. Thus the deriva-

tive 'of

is the function

f
4
1 + x - 4x

2

f :.x 1 -

The value f,(4.- at a point (x,f(x)) is the slope of the tangent to the

graph of f at (x,t(x)). For brevity, we will often refer to this value

ft(x) as. simply the slope of the/graph of f at- (x,f(x)).

Our purpose in this section and the next is to Ob'taina formula for the ('

derivative f' (that is, the slope function) of an arbitrary polynomial 41

function f. ,In the previous section we defined the slope of (the tangent

to) the graph of f at the point (a,f(a)) to be

(3) f'(a) = lim
f(x) - f(a)

x
x - a

a

An alternate form will be more convenient here. If we write (x + h) in

place of x in (3), and.substitute x' in place of a, (S) becomes

f'(x) = lim
f(x + h) - f(x)

(x+) -2x (x h) x

which .simplifies to'

oo1*
The name is reserved for this very special function, in spite of the

fact that there are many, functions which could be, derived in other ways from.
.

a particular function under consideration.



s.

2-1p

'fqX)
f(x h) -f(x)

h /-4 o h, ,

Note that
f(x + hh ). - f(x) dca still be interpreted as the slope of a secant

. 1 .. A

PQ,' where P has coordinates (tft(x)) and Q has coordinates

(x + h. , f(x + h)), (See' Figure '2-4a .)
.

O

Figure 2-4a
4

It is clear from Figure 2-4a that the slope of TZ is f(x h)
h

" ffx1
- e

As in the-last section we define the slope' of the tangent to,be the limit of

this differerice quotient as Q ,approaches P, that is, in terms of the new

expression (4), as h approaches zero. We are denoting this limit by f' (x)

and calling f' the derivativi of f.

piyeAsthe_function_f _x 3x2 -2x+ 1, use (4) to

find f'(x), and the slope of (the tangent to) the graph of f at the point

(2,9).

f(x + h) = 3(x +h)2 - 2(x + h) + 1

= 3x2 + 6:th + 3h
2

- 2x - 2b + 1

f(x) = 3x? - 2x + 1
4

f(x + h) - f(x) = 6xh + 3h2 - 2h

f(x + h) - f(x)
6x + 3h - 2

lim
f(x + h)

h
- f(x)

'f6x - 2 =''x)'.'.
h 0

The slope of the tangent at (2,9) Is f' (2) = 6 2 - 2 = 12 - 2 = 10.
-1

J

4



.

Example 2-4b. Tofind the equation of the tangehtto the graph of

J

at (1,1).

f x -)x3

ft (x)\
+ - x3

h -*to
h

(x + h)3 = x3% 3x2h + 3xh2 +h3.
0

Hence

+ ;03. + x3 =

(x + x3

h

and

3x2h ,+' 3xh2 + h 3 ,

3x2- + 3xh + h2,

fqx) = 3x2

The required tangent hsis die equation

y = f(1) + f.(1)(X - 1)

= 1 + 3(x - 1)

or

y = 3x - 2.

This solutionhas the advantage that it enablei utto obtain tangents

at other points with little extra work. Thus at (2,8), the tangent has.
the slope f'(2) = 3 .22 -= 12.

.1

107
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Exercises 2-4

- ,
1. Consider the function f -4x2 - 1.

(fi) Find' 1im
f(x + h) - f(g)

h
11, -.0 ,

4

(b)' Firid f'(3) from part (a)...
.. 0

i

(c) Find f' (3) as lim
f(3

' h

-1: h) - f(j)
. -

i
h -4 0

k

)
.

(d) Construct a table of values for
f(3 + hh f(3) using auccessively.

h = .1, -..01, ..001, and also h = -.1; -.01, -.001.
.

..

2. Use the definition

.4;(x) = lim

h -4 0

41e

f(x + h) - f(x)
h

to find f'(x) fpr each of the following:

a) f(x).= x2 - x + 1_ ,

(b) f(x) =.3x2 + 14

(c) f(X).= 2x2 - x +

3. If f : x ax
2

+ bx + c where a, b,- and.- c are constants, show 'that

-'f': x 2ax + b. v.,

14. Use, the definition

f' (X) = li'm h) f(x)

h 0

to fl.nd' --the deiivitive 'each`ok tkie following:

(a) "f(x) = x3 + x

(b) f(x) = x3; -3x

(c) f(x) = 2x3.+ x
2 6x + 3

5. If f(x) = ax3 + bx 2 + cx d, show that fqx) = 3ax
2

+ 2bx + c.

6. If f : x

(a)' f'(a)

(b) f1(0).

(c) fl (2) :

2x "- xr2 ,evaluate



tc.

2-4

7. If f : x -4 I + 2x - x , find the slope of the tangent'to the graph of

f at, each of the following points.

(0 (a,f(a))

(b), (df(0))

(c)

(d) (1,f(1))

(e) (710,ef-l0)).

. If f : x x3 - 2x + 1, find all x such that

(a) f'(x) =
-

(b) (x) =.22

(c) f'lx) = 0 `.

(d) ft(x) .F

9. Determine each of the following.

lim
(x + Ax), x3

,6x Oi
DX

x - a
4

(b) lim
x - a

X )4
,N404.`

5 -
(c) lim z5 - x

z - xZ )X

(x + h)6 x6.4 (d) lim
h

0

Ant

(TheWrbol/"px," reid "delta )7."

often stands for "change in x." It

is merely another name for the quantity

h in (10.)

10. What is the slope function of f : x -4 X
3.
?

(b) What is the derivative of f : x -4x
4

?

I z.,-(c) What is the slope of (the tangent to) the graph of f : x -4 x5

:::
"

at the point (x,f(x))?

v.

What is ff(x) if f x -4 x6?

11. Find fr if

(a) f : -4 (X + 1)2

(b) f x -4x(3x + 1)2

(c)" f : x (x2 + 2x)(3x - 1)

J
0,7

(vria*'-
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2-5. Derivatives of General Polynomial Functions'

IneExercives 3 and 5, Section 2-44 you were asked to.show that if

.,then

f x -%ax
2

4 bx + c
.

f': x -e2ax + b,

14

g : x -+ ax
3 + bx

2
+ cx + d

g': x 3ax
2 + 2bx + c

2-5

Such general,expressions allow us tb write derivatives of specific quadratic

and cubic functions by inspection. For example, toobtain the derivative of

the function ' :

g : x --t 5x3 - 7x2 - i1x + 13
".

. -

we merely obserye that this,. is the above cubic polynomial .with a

c:. -11 aAa' d = 13, so we know ihmediately that

ti(x) 9 3(5x2) 4:?(-7x)°. t (-11)i'= 15*2 14x - 11. .

O

. -7,

These exa7led, and othet'exercises in SectiOri 2-4, suggest the following

general.expressions for derivatives of polynomial functions:

(1)

ro
(2)

The monomial

sQ
f : x --t bxn

has the derivative

f' x -+ nbxn-1

The-polynomial

f -4 170 b
1
x + b

2
x2 b

n-1
xr1-1 + bnxri

A

has the derivative

ft: 2b2x + 3b
3
x
2

+ + (n-1)b
n-1

x
n-2

+ nb
n
x
m-1

;,4(2'

ecause derivatives are calculated as 'limits otdifference quotients, tHe

ocess of obtaining the derivative of'a function is called differentiation.

Observe, that (2) states..that the'derivative of general .nth degree

polynomial can be obtained by differentiating each term in the sum, according

f

.44
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.
to (1). We are claiming t 'hatthe derivative of such a sum of terms is simply

;the sum of the derivatives of the terms.

Formulas (1) and (2) can both be derived bywriting the expakions f6r
f(x + - .f(x)

h
using the Binomial Theorem, and taking the lirt as h

approaches zero. We shall derive (1) 'this way. Fortunately, however; we can
deduce (2) from (1) wirout a long algebraic argument by first justifying the
claim we made above, namely,that the derivative of a sum of functions Is the
sum- of theii-' derivatives.

To show (i), let f' : x bxn. Then according to the Binoinial 'Theorem,

f(x + 11) = b(x +

brxn +flxn-lh +n(n - 1),xn-2h2+n(,n 2T) (,3 -2)
2

. --

f(x + h) - f(x) = 'tinxte h +1 n(n - 1)
x

n 2
+ + hn1

and )
- Pi

(3)
f(x +`4h -

1)(n)th -1 +ri(n
2

+ + .

_ 0-1. ..

n-10,Note that every term in (3) except the first term, bnx , contarns II at
( w,

least once as a eactor. Hence, as h approaches zero1 all the terms in (3)
of - ..-

.except bnxn-1 also approach zero. We conclude that .-°

pr
t;-

lim f(x ,;I- h) - f(x) unxn-1

h > h0 , u

- ,

and therefore, that the derivative"of f : x -+ bxn is f':.x bnx
n-1

Now to see that (2) follows' from this rasa t we must fiiSt see why the
of derivatives mentioned above holds true

l
v alue s(x) eQuals fcx), 4- gx), wnere

(For exatnple, if ,f; x > 5x and :13.1

general property
a function whose
functions of t x.

. Suppose 's is .
f anti' g , Eire'

x -4 13x7, , then

s : x 5x + 13x7.) Re may calculate the derivative.. of .s in general
'directly frozethe definition, as follows:

and

so

, s(x h) - s(x)
lira

h -40 h *40

s (x + ,h) = (x + h)+ g(-X

s(x) = f(x) + g(x)

A

112

122
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'-Therefore

... n :

P-,
, 1 i

s(x) = 1:(x + h) - f(x)+ g(x h)c - g(x)

s(x + h) - z(x) ax h) - f(x) g(x + h)' - g(x)
- h

in the lizni as h 7aproaches zero, it can be sh3041.4that° (4) becomes

carthe-d.:-
'

The argument could easily be extended to sums, of three, four, or any

numbqr of functions. 'Hence, we'see that we can differentiate the general

polynomial function

5

.f : x b0 + b
1
x + b

2-
x2 + +, briX

n

1 .

term by term since it can be thought of as the sum of (n d- 1) functions. /

From (1) we conclude that
A

f'(x)
1

+ -a; x 3b x2 ... 4; nb'xn-l'
2 3

Translation and the .Derivative ;

Nowlet, us consider what happens to our differentiation formulas if we
.

replace x by x 7 a. To be concrete.we considet the function

f x -42x
2 - 8x +

whose derivative is

f' x -4 4x 4 8.
=

- .

Let g be the function

g : x -42(x - a)-
2

- 8(x - a) + 9,

that is, g(x) = f(x, - a). If a = -6, *t4 graph Of g. iS obtained by
a 40*

translating `the graph of f six units to the left. (See Figure 4-5a.)

O
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Figure 2-5a
-46

f : X -4 2x
2

- 8x + 9

g : x (2x + 6)2 = + 6) 4 9

4
""?

If = 7, g becomes g : x 2( X 7)2 8(-x - 7) + 9 and its graph is

obtained by translating the graph of f seven units to the right. (See

Figure '2-5b.) ;

g

-4-

Figure 2-5b

f : x 2x? 3. + 9

g : X -4 2(x - 7)2 8(x - 7) +.9.,
1114 ,

X
;

S

4
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Now under a-translation a line is carried into a parallel line,
.
and thence, the

slope of a tangent to a graph is unaffected by ranslation. (See section 1-2.)

- a), /that is, the graph of 'g is the result of trans:

1Pting the_graph of f, then the slope-Qt-tha-gi"aph of g, at the point

(x,g(x))
:

is the same as the sinper-of thegiaih 9f f at tile corresponding

gs" point (x - a ,Ox - a)). For example, the slope of the graph of

g x - 7)2 - 8(x - 7) + 9 at (10,3) is exactly the same

,slope of the graph of f: x -'2x2 - 8x + 9 at (3,3), as shown

2-54 since Tu is the image of T ander a translation 7 Units to the

right. -

a"

as the

in Figure

Since the slope of the,graph of a function is giv'en by its derivative, we have

concluded that

(5)

4

Figure 2-5c
...._

if .X
4

,t4-f(x - a), then gr() = f'(x - a),I

This conclusion en les us to differentiate, 'g in the above

rather easily. For the function

we find the derivative'

and replaci x by x - a

o.
f x 2x

2
o- 8x + 9

f': x -44x- 8

to obtain

x 4(x - a) - .8.

115
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For example; if Aa = -6, we have

g : x --) 2(x' + 6)2 - 8(x + 6) + 9

and

Pt

/
. - '13': x --> 4(x + 6) - 8 . 4x + 16. 4 ',.

.

11
.

. k
We can also justify conclusion (5) algebraically using difference quo-

.

tient'g. .,..

We know that

(6) f'(x) = slim
f(x + h) - f(x)

h
h

Replacing x by x - a in (6) we obtain

f(x - a + - f(x -.a)
f'(x.- a) = lim Y

h 0

Nov/ if g(x) = f(x - a) we can rewrte,this as
.

limb
+ h) g(x)

f'(x- a) = lim
h 0 1

and the right-hand expression is simply the defiriition of g'(x). Hence,

In general then,

fqx - a) = g'(x).

The polyriial function

g:x4c0+c 1(x - a) c 2(x

has the derivative

g': x
1
+ 2c

2
(x - a) + 3c

3
(x

t

02
+

a)2

+ c
n

+ nc
n
(x -

con=1

Example 2-5a,. Given the, function f : x, 3x2 - 2x + 1, use} (2) to

-find the derivative f' and the slope of the graph of f at the point

(2j9) .

Using (2), we obtain f': f -1(2)(3x) - (1)(2) = 6x - 2; f'(2) = 10.

The slope-of the graph of f at (2,9) is 10.

a



I

.Example 2-5b. Given x
5-

- 3x
2

+ x - 6, find the equation of '

. the tangent line to the graph of f. at the point where x = 1.

Sind f(1) = -7, the tangent passes throper (1,-7). The derivative

of f is .

f' A -45x4- 6x + 1 '

4.

so'that the slope of the tangent at (1,-7) is f1(1) s 0. Thes the tangent

line'at. (1,-7) is Horizontal and has the equation

Y = -7.

Note how74Ch easier it is.to find the equation of this tangent by using

the derivative formula (2) to, obtain its slope at x = 2, rather than using-,

themethod of expreglang f(x) in powers of x - 1 as we did in Section 2-2.

Exam 1 2-5c, Finethe equation of.the tangent to the graph of

y = -.4x3 x + 1 at the point (2,-45).

It is common to denote the expression for the derivative by y', so that

(2) gives

yt = -12x
2 - 7

This is the slope of the taftgent to the graph at any point (x,y). To find

the'slope of-the tangent at the point (2'-45) we, replace x by 2 to

;

obtain

-12 2
2

- 7 = -55.

The equationof.the tangent line is

y = -45 - 55(x 2).

Example 2-5d. For f x --)x
3

- 3x
2

and x -if(x find

gi(1)
4

'We have

so that

: X -4 3x2 -

. x -4 3 - 2)2 - 6(x - 2)

127
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and hence

gl(1) = 3(1 -
2)2

- 6(1 -

J-

' Example 2 ..21. Suppose f : x -t(x + 1)10.

t.ngent to the graph of f at the point 4 ,102hid

the equation of the

1024).

We could use the binomial theorem to expand (x + 1),1° ands then

differentiate. However, it is easier.to use (7) which gives

so that

, ,

tfe x 10(x + 1)9

1 P(1) = 10 x 29 = 5120.

Hence, the desired tangent has the equation

y = 1024 + 5120(x - 1).

0

1161 2 8
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Exercises 2:2

1 (a) Find f' if f : x x2 .4- 2)0+ 1-, using (2)-.

(b) Find g' if g x (x + 1)2 using (7).

(c) Compare. f' and

2 (a) Find the deriVaiive of each of the following functions.

(1) f : x -) 2x
2 - 8x + 9

(ii) g 1: x 2(X + 6)2 " 8(x 4-,6) + 9

(iii) g2: x -) 2(x . 7)2 - 8(x. -; 7) + 9

(b) Find the slope of the tangent to the graph of each of the functiOns

in part (a) at the point: indicated:

a (i) f 'It (3,f(3));

(ii) g1 at (-3,g1(-3));

(iii) g2 at (10, g2(10)).

(c) Show that the tangentssto the graphs of f, g1, and g2 at the

points indicated in part (b) are parallel lines.

(d) Indicate the function obtained by shifting the graph of each of the

functions in, part (a) as prescribed:

the graph of f two units to'the left;

the graph of g1 four units to the right;

the graph of g2 nine units to the left.

3 (a)) Find the derivatives of each of the following functions.

(i) F : 2c-) x3 -43x

N
(ii) f x -4 (x - 2)' + 6(x - 2)2 + .9(x -p2) + 2

(iii) x -) (x 1)3 - 3(x + 1)2 + 2

(b) Evaluate:

(i) (0)

(ii) ft(0)

(iii) gt (0)

(c) What is the equation of the tangent to 'the graph of' each of the

functions F, f, and g at the y-axis?

11129
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(d) Compare the functions F, f, and g.

(a) 7nd the derivative of

F : x )x
3

+ 6x
2

+ 12x + 8.

(0- Determine f' if f : x > (x + 2) 3. -

(c) Evaluate lam
(x + 2 + h)3 -.(x + 2)3

. h )0

,4 .

(d) Evaluate F*(1).

(e) Evaluate ft(-1).

(f) Evaluate lim
x,--> -1

(x + 2)3 - (-1 + 2)3

x + 1

5. Consider the. function f ; x (x +
1)10.,

(a) Find ft. 1

(b) Evaluate *f(0) and tt(0).

(c) What is' the equatioh of the tangent to the graph of f at the

y-axis?

(d) Evaluate f(-1) and ft(-1).

(e) Find the equation of the tangent tothe'graph of f at the point

,where x = -1.

(f) Evaluate f( -2) and '.ft(-2)._

(g) Write the equation of the tangent to the graph of f at the point

where x = -2.

6. %Consider the function f : x ;(x - 2)15.'

14,

1

, (a) Find the derivative of f.

(b) Evaluate' ft(1), ft(2),' and f!,t(3).

(c) Find the equation of'the tangent to the graph of f at.the point

t
(4 ,32768).

.D

(a) Find f' if f : x )3(x + 2)2.

(b) What°is the derivative of g : x >3x2 .7+ 12x + 12?

(c) Compare f with g, and ,f* with g'.

(d) For F : x 70(3x + 6)2 find F'.

(e) Determine the derivative of G : x.>9(x + 2)2.

P.
.

Compare F wi G, and F' with G'.
,

(f)

'11

120
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8. Find f,1- cif

2
x x
3* 4

9.

10.

11.

(b) f X -) +

+ +.57..

x3 x7 x9 .

31.) t

" -2 4 8x x
(c) x ) 1- +

-x
+. +

x
+

(Note: "nt", read "11, faCtorial," is the product of all the integers

from 1 through the positive integer n.

= 1 .2 .3 ... .(n - 1) .n.,
11Z.

For example, 5: = 1 .2 .3 .4 .5 = 120.)

(a) Find two points where the slope of the grAeph of-

k : x -,2x3 - 9x2 - 60x + 5 is zero.

(b) What dOes the graph of f look like at these two points?

Consider the functions

_

f x -)x
-3 - 3x

2
+ 1 g

2
x. 2 2x 7 - - 6 .

(a) Find the. associated slope futIctio(! f' and g2.

(b) Evaluate fl(1) and e(1).

(c) It each case write an equation of the ]tine tangent to the graph of

the function at the point where x = 1.
_

(d) What is the relationshipof these tangent lines to one'ano;theri.

7 -.)

(a). Using x = (x - a) + a and the Binomial Theorem express x' in.
bt

pok.;ers of x - a.
. '

i

7
- a

(b) Using part (a) determine
x
x - a

7
for x / a.

(c) Evaluate lira
x7 - a

X - a
x

(d) Determine (10
7xfbr

& / 0.. (See No. 9, Exercises 2-4.)



2=5

(e) As x increases by an amount &c, the change in y is

(x + 6x)7 - x7. This quantity is often labeled "4,," representing.

'"change in y." Determine
OP.

ti

r

s. 40 7

(This limit is, of course, the derivative of y = xer
, and is often

'
,

symbolized by y' or 3Y. .1
dx 1

,) 1

6

. 122
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2-6. Applichtions of the Derivative to Qraphing

e ,
*The derivative, f' of a polynomial function-- f very "Afful for

, obtaining information'about the graph of f.- In particular, the sign of

f' (x) will enable us to determine exactly the int,ervari- over which the graph

of f is rising or falling and to locate precisely the high and low points
- 44

of 'the zraph.

To be specific, consider the function-

f x 2x
3 - 3x-

2
-12x-i. 2.

. .
.

Its derivativeig' given by

°
f': x 7)6x

2
.- 6x - 12.

The value f'(x) can be interpreted as the. sioPe of the graph o.f

point (x,f(x)). In factored forin

f' (x) = 6(x -1- 1)(x - 2),

' 4

from which it fpllows that

ft(x).>` 0 for x < -1,

f'(x) = 0 for x =

p(x) 0 for -1 < x < 2,

ft (xi = 0 for:" x = 2

and f'(x) > 0 for x > 2.

See Figure 2-6a for the zraph of .f : x 2x
3 3x

2
- 12x + 2, together with

these facts.

123 133
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, fl(L1)

.

fr

f'(x) > 0 i',(x)<o-4.4.1(x)

(2 -18)

Figure 2 -6a

p

0 ..

,, The graph, of f : x -42x
3 - 3x - 12x + 2.

.
....

Note that as X increases, the graph of f rises over the intervals 4n

which f'(x) >0 and falls over the-Intervals in Which f1(x) < 0. Tat; is
41.

as we
.

might expect from our experiencesAfith pOsitive and negative slopes or

lines. -

. ,

We now show, for any function f, that if f'(a) > 0, the graph of: f

is rising as x increases through a.

124

134



:By definition,

Figure 2-6b

f'(a) lim
f(a + h) - ffa)

h -4 0
h

Hence, if f'(a) > 0, then

life
f(a ± h)* - f(a)-

> O.
h -40

This limit can not be greater than zero unless

(1)
* h) - f(a)

h

I

for 6.bfficienty small values of Suppose we take h positive and small

enough so that (1) holds. *Then multiplying by h ip (1) we have
.

or

(2)
0

f(sy- h) - f(fa) >0

f(a + > f(a),.

This inequality (2) hays simply that the graph of f rises immeditptely to the

right of a. (Sea Figure'2-6c.)'

125
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a a + h

Figure 2-6c

f(a + h) > f(a) for h sufficiently small and positive'.

0
Similarly,. if we take

becomes""

Or

4

h negative in (1), then o4m1tiplication by h, (1)

f(a + h) - f(a),< p

f(a + h) < f(a),

which says that the graph of f falls away immediately to the left of a.

(See Figure 2-6d0* L

i y

f(a + h)

f(a)

co,
f

..-

a + h q.k a

Figure 2-68 .

f(a + h) < f(a) for -h sufficiently small'and native.

126 1 .8 6
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We 'have shown the following.'
I-

If fl(a),..> 0, then f(x) :increases at the. point

(a,f(a)), and the graph of f rises as x

increases through the value x e a.

NI'S A completely analogous argument.may be carried out for the case in which

ft(a) < 0. We merely state the result. . '

(5)

If ti(a) < 0, then f(x) decreases at the point
.

(a,f(a)), and the graph of ,f falls as x

increases through the value x = a.

A simple but impbYtant corollary of (3) '4nd (4) is the following.

The graph of f is horizontal at the point (a,f(a))

only if f'(a) =10.

.

For if the graph is horizontal at (a,f(a)1, then f(x) is neither- increas-

ing noX decreasing at x = a, qc 1'1(0: can neither be greater than zero,

according to (3), nor less than zero, according to (4). Hence, f'(a), must

be equal to .zero.

Returning.to the function f : x -)2x3,- 3x
2

- 12x + 2 we note that we

could ha4e predicted its intervals of increase and decrease without having

seen the graph in Figure 2-6;. Furthermore, we could have pinpointed exactly

the to of the poZt (-1,9) where the graph of this particular function

ceases'to rise and,begins to fall (as x is increasing). Such a point is -

c lled a relati maximum of the'function f because the value of f at that

,poin

ow
ban all the,values of f nearby. The point (2,-18) is

a, relative minimum.
./

(a,f(a)) is ellela&A, maximum of f, if and only if in some

the graph 'of f..4Xi es for x < a, and falls for x > a.

similarly calle

The point

interval about a

Ixpother,,w,ords,
.

(iV(a))1 is a.relativekInfaximum if and only if
,

e)Ipoint

(i) f'(a) .= 0 i

.(ii). i.,(x) > 0 for x < a and 'close to,

,

a

, (iii) fl(x) < 0 ftir x > a, and close to a.
..

,

12 b

'
,01F14.r;4..



The point (a,f(a)) is a relative minimum if aid only if ,in some inter-

val about a the graph of f falls for x < a and rises for x > a. In

other words,

the pointoint (a,f(a)) is a relative minimum if and only if

(i) f' (a') = 0

(ii)= f'(x) < 0 for' x < a and close, to a

(iii) f'(x) > 0 for 4 > a and close to a.

. .

A final word about notation: in discussing the intervals over which a

function is increasing or decreasing, it As convenient to .use the symbol

[a,b] to represent the closed interval from a to b, including the end-

points a and V. That is,l[a,b] is the set of all x such.that a <x < b.

Often it is necessary to distinguish [a,b] from the open interval, denoted

(a,b), whglech excludes the endpoints a and b. That is, the interval (a,b)

is the set of all x suchthat. a < x < b. Note, for example, that the

derivative f' of f : x -42x 3 - 3x2
- 12x + 2 in Figure 2-6a,is strictly

less than zero on tie open'interval (=1,2) while in the closed, interval

[ -1,2] this is ndt so':

Example 2-6a. Determine the relative maximum and minimum as well as

intervals of increase and decrease for -f i x 41-+ x - x2 - x
3

.

,
We have

j,ft : x -4 1 - 2x - 3x
2

= -(3x - 1) (x +.14)
0

"r,

1The graph of f has a horizontal tangent when x = -5 and when x = -1.

Examination
0
of the signs of these factors,leads to the conclusions:

Qr.

_044 f' (x) < 0 if x < -1

f'(x) >'O if -1 < x < 1

f'(x) < 0 if x >

1
Thus, f decreases if x < -1 or if ,x >

3
and increase's when x is

1
between -1 and . In particular

and

3

f(-1) = 0 is a'r'Aative minimum

f(4 = .3-2- is a relative maximum.
3 27,
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This information ehables us to give a quick sketch of the graph of f,

shown.in Figure 2-6e. Of course, further accuracy'is obtained by plotting

`,more taints, but Such quick sketches are often all we need to have.

falling

J, 31,
27), a relative maximum'

rising

-2 (-1,0)

a relative
minimum

a

Figure 2-6e

f : X -)1 x - x2

4,

falling

400

, .

Example 2-6b. *The zeros of the derivative do not always lead to relative

maxima and minima of a function. 'Consider the function-
:.

f : x x3.

Its derivative is

f t : x 3x
2,

whigh has the zero x = 0 of multiplicity 2. The graph of f, therefore,

has a horizontal tAitent at (0,0) but thispointisnot a high point or a

'low point on the graph of ,f. In fact, the graph of f crosses its tangent

at (0,0). Such a point is called ajpoint of inflection: (See Figure 2 -6f.,)

In this ease s'

ft(x) 0 if x < 0 or if x > 0;

that is, f is increasing on either side of the origin.

1.29
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=x3

increasing-

graph crosses its
tangent (which is
the x-axis) at
this point

increasin

Figure'2-6f

r.

This example serves to remind us that to determine the relative maxima
f

and Minima, we locate the critical points (that is,-the zeros of ft) and

test the sign of f* on each side of a critical point to determine if that

point is a relative maximum, minimum, or point of inflection.

Example 2-6c. Graph f x + 4x - 13x2 18x3 - 9x4 first by

plotting points from the table below Figure, 2-6g,andconnecting them with a

smooth curve, then by finding the critical points and intervals of increase

and decrease.

1,

X30140

a

0
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. from the table

Figure 2-6g

'Plotting points for

(3,-.304)

f : x -) 44 + 4x - 13x
2

+ 18xr- 9x
4

' -2 '-1 0 1 2 3

"f(x) -304 0 44 44 0 -304

X

0

We have plotted st,few points and connected them with a smooth curve in

Figure 2-6g (using a compressed vertical scale for negative values of f).

The graph suggests the possibility of a

and (1,44). The derivative of, f is

relative maximum point between X0,44)

f' x -a4 - 26x +54x2 -

We suspect that f'(x) will be zero somewhex'e in the interval 0 < x < 1.

Testing x =
1

indeed gives
a

2

so that

= 0'

factor of ft( Upon, factoring x -

.
f' x

2
A- -3ox2 + 36x - 8).,

131
141

1
we obtain
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We can factor further to obtain *<.,

f : x -36(x - P(x - i)(x -"f)

Note that there are three critical poiRts between (0,44)1i and .(1,441.

The product of three factors, will be positive if and only if all three factors

are positive, or exactly one is positive. Therefore,

We conclude that

while

1
fl(x) > 0 if

3
<

1
f'(x) < 0 if

3
< x < 1

J
1f'(x) >0 if
2
<x < 2

2
f' (x) <

3
0 if x >

,

3

t 1 1 2
f is increasing for x < and for < x <

2
f is decreasing for

1 1

3
< x < and for x >

In summary we can say that the graph of f orises until it reaches

(1 i(1))
3 ' 3

then falls to the point (1,r(2)), rises again to (2 f(2))
3 3

and falls beyond (i, 4). In particular we know that

f(3)
4

9

' 2 t, 4
) = 44 and f(-3 ) = 44 7 are relative maxima, while

- Y

i(1) = 44 i is a relative minimum.

We conclude that Figure 2-6g correctly indicates the increase for

x.< 0 and, the decrease for a > J., but is incorrect for the interval

0 <'x < 1. A more accurate representation of f on this interval is sketched

in Figure 2-6h. 1

I

t

132
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f : x "4 44 + 4x

1 I.

3

FiguYe 2-6h

- 13x2 + 18x3. - 9x4 for 0 < x < 1.

4.

tr
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Exercises 21,6

1. Make a careful sketch on the interval [0,1] (i.e., 0 < x < 1). of the

graph of the fuection'f x -41 + x - x
2,

- x
3

given in Example 2-6a.

Does the graph confirm the conclusions of the text?

2. For each of the following functions locate and characterize all extrema

(maxima, and minima). On what intervals is the function increasing?

decreasing?

(q f 14:x4 8x2

(b) f : x - 4oc3

3. Prove that, for x 5 01, f : x 14x2 is an increasing function. (That
%is, let xl > x2 > 0 and show that xk > x22 .)

4. Employing information gathered by procedures suggested in the text,

sketch the graph of each or the following polynomial functions over the

interval indicated using convenient scales.

(a). f : x -4x3 - 3x + 1, -2 < x < 2

(b) f.a x -4x3 + 3x + 1, -1 < x < 1

° (c) 'f : x -4x4 - 4x3 - 8x2 + 6:, -2 < x'.< 5

5. (a) Describe the behavior of the graph of f -12x
3

- 3x
2

on [ -1,27.

(Maxima? Minima? Intervals of increase, de eRse

(b) Sketch the graph'of f : x -42x3 - 3x.2 op J-1,
C

.O
6. (a) Describe the behavior of the graph,of- f : x

4
+ ox

3
on J-1,31.

(b) Sketch the graph of f x -4-35E4 f 8x3 on [ -1,3].

p.

7. Determine the maximum ialuk of the function f : x
8

.
k= x

2
- le.

8. What is'the greatest possible number of points where the tangent to the

graph of a quadratic function x -4Ax
2

+ tx + C may be horizontal?

G

7



9. Consider the function

f x -4 Ax
3

+ Bx
2

+ Cx + D, A / 0.

(a) Find f'.

-(b) What is the maximum number of zeros thet f' can have?

(c) How many relative extrema (maxima and minima) can f have?

(d) If the graph of f has a relative maximuth point, must it have a,

relative minimum point? Explain or give. examples.

(e) If f'(xl) = fqx2) = 0, determine

10. Consider the functions

X
1

x2

2

f : x -4(x + 1)3(x t 2)

and
c

g : x -4(x + 1)2(4x + 7)'

.t(a) How are the functions related?

(b) Sketch the graphs of f and g on-the same set of axes.

11. Suppose that x
1

and. x
2

are zeros of tts

f x -4Ax
2

+ Bx + C, A > 0. r
4

Show that f has a minimum at

x1 , x
2

x -0
2

12. Determine the relative maximum and minimum points of the graph of ,

f N/43x
4

- 12x
3

12x
2

- 4.

2-6
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2-7. Optimization Problems a

The post office limits-the size of a parcel post'package

that its length plus, its girth, may not exceed 72 inches.

by requiring

Is there a package, subject to such a restriction, which has greater volume:

than all other such packages? If so, what are its dimensions?

In this form,'the Problem is hard to hpdle. Suppose we simplify it try
-

asking ifthere is a (rectangular) package with a squai'e'cross-section which

has maximum volume subject to postal regulations.' If we let x -represent &-,

the width in inches of the square cross-section,,then the girth of the pack-

age is hoi: inches and its length is it most 72 - 4x iriches, accor4-ing40

the post office.

J

4

°
0

4'

14 4

t,

,e

S

V.;
e
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Hence, the volUme in cubic inches of the package is at most V =x '(72:-.4x).

This f4rmulg. defines a polynomial function

(1) V : x -472x2 -'4x3,

and we wish to, find its Maximum value. Note that V(x) has no maximum if .we

do not restrict x: if x < 0, V(x) is positive and gets arbitrarily large

as x.'becOmes negatively infinite. Hqwever, this causes no difficulty because

we are Interested only in values of 'x between 0 and 18, because only in

thiinterval [0,18] are all the dimensions of the parcel post package sen-

sible positive lengths.

Hence, our idealized model of the probletris: 0

Finthe maximum value of the function V : x -$72x2 - 4x3

for x in [0,18].

The desired maximum may occur at one of the end points of the closed interval

fr 01
1.0,1uJ, if for example, the sxaph_of

in Figure 2-7a.

Max. in

V looked 'like one of the curves shown

18 0 18

x = 0. Max. in [0,18] at x = 18.

o Figure 2-7a-

,--

'However, if the maximum value V(x) occurs between the enaioints. of the .

. .,J

interval [0,18], i.e., for some x = a in the open interval (0;18), then

the remarks in Section -..6 Show that V'(a) = 0. If V'(a) > 0, there ould

be higher points immediately to the right 6, 'a, and if V'(a) < 0, th e

would be higher points4iffiediately to.thp lerLof _a.
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Thus the maximum volume for our parcel post Package occurs where

V'(x) = 0, or where x = 0 or x = 18.

If V'(x) = 12x(12 - x) =0 then ,x = 0 or -x = i2.\'

The possible maximum volumes aie therefore

V(0) = 74292 - 4(0) 3 = 0

' V(12) = 72(12)2 r 4(12)3 = 3,456

V(18) = 72(18)2 - 4(18)3-= 0.

Clearly, V(12) is the largest of these and-by the above ymarks.it must be

the relati

)

e maximum of A on the,ifterval [0,181.' Hence, the dimensim ns

of the most) vOluminous parCel of this sort acceptable tro the post office are

width = ?C inches = 12 inches,

height = x inched = 12 inches,

length = 72 - 4x inches = 24 inches,

and its volume is 3,456 cubic inches'.

The folj.owing examples do not begin to indicate the wide range of

possible applications of the methO used above. v.
.4

Example 2-7a. A man proposes'to make an open box by cutting a square

from each corner of a piece of cardboard 12 inches square and then, turning

ups the sides. Find the dimenSions of each,square he must cut'in order to

obtain a box with maximiim volume.

Let the side of the squarjbe cut out be x inches. The base of the

box will, be 12 - 2x inches on each aide and the depth will be x inches.

11"- the volume V in cubic inches will be

V = (12 - 2x)(12 - 2x)(x)

= 144x - 48x
2

+ 4x
3

Figure 2-7b'

138
'148
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We suppose that 0 < x < 6, for otherwise V will be negative. Our problem

is to maximize

f x -4144x - 48x
2

+ 4x
3

subject to the condition 0 < x < 6. The derivative is
TMe

ft x -4144 - 96x + 12x2 = 12(6 - x)(2 - x)

-tgo the ,zeros of f' are 2, 6. We know that this maximum must occur at one,

of the points

'

c = 0, = 2, or c = 6.

We find that f(0) ..4f(6) = 0 and f(2) '> 6, so that f(2) must be the

lnrgedt iialue of 'f on the'Uterval 0 < x < 6. With a 2 inch square_cut

from each corner, the box will have dimensions 8 x 8 x 2. Since

f(2) = 8 x 8 x 2 = 128, the maximum volume is 128 cubic inches.

Example 2-7b. We wish to plant one square and one circular flower bed,

surrounding them with *15 yards of fencing. What shodld be. the dimensions

of the two' fences so as to contain flower beds of greatest posbible area?

Let ,s be the side of the square bed and r the radius of the circular

bed. Denott the suns of the areas of th,p two beds by, A. Then

(2)

and

( 3 )

A = s + mir
2

454 2vr = 15.

Figure 2-7c

Solving (3) for s and substitUting this into (2) gives, our. area in terms of

the circular radius r:

S

sit
A /12_121EN2.1. gr2

/

2
= (14q)r2 - r +

Akt

139,

149
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We can suppose that

L
_

< r<
3

the endpoints of this interval corresponding to the respective situations of

no circular bed and no square bed. Thus we seek to maximize the function

6'

over the interval

Solving f'(

Iv
2

+ /4vN 2
f r ---E---ir - r +

1

12o <.r < . The derivative is.
2v

gives

2 ,

2

+ 4v)r 15v

. '

1
r -

5
+ 8

1.2

Hence, ,f must hive its maximum value on the interval 0 < f < amt one

of the points

0, c -
1

+5 or c
2o

We examine the values of f for each of these values of c:

f(0) 277 z 14.06

I

and

e.

1) f(2g9 8) 7- 7.88.

4
f(224t) sz

We see that the maximum' value of

...;(v
2

+ /4v)r2 lin
f : r

*.

15
subject to the restrict Ion r < is attained at the right endpoint -g

2v

Our conclusion is that the problei has no solution in the terms posed; a

square and a round flower bed together will never encompass as great an area

as a single round bed Whose perimeter equals the total length available,

4
,

S
1401

1 5 0
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Similar problems requiring the minimization of a functiog over an inter-
,

val often occur, and can be solved similarly. If f is a polynomial function
s

defined on some interval ',[a,b1, the minimum value f(x) occurs either'at

x =' a, x = b, or where, f,' (x) = 0. To ,justify this claim gyre need only ob-

serve that if the minimum occurs at'f x = c, a < c < b, then if f'(c) > 0

there are lo wer points immediately tp theleft of c, and if f'(c) < 0

there are lower points immediately to the right of c.

Example 2-7c. What shouldbeithe dimensions Of theqrlower beds in

Example 2-7b so that the leastpossible area is encompassed?

f

Following the analysis of Example 2-7b, we wish to minimize the function

,.

v2 + '4% N r2 221. NI f : r (-4----ir - , r +
16-

:'.--
. 4

12, over the interval [0 4]. f(r) is minimum either at r = 0,r ,.--. or
an

where f'(r) = 0. In Example 2-7b we fOtand that f'(r) = 0 if and only if

15
r

+ 8

Hence, the possible minimum values for f are

. f(0) v. 14.06

f (2v
15

+ 8
)1.- 7.88

f(12i) = 17.90

.We-see that the minimum value or f occurs when
15

8 . Hence, the

combination square and circular garden surrounded by 15 yards of fencing

has the least area when the circle hits radius r =
2v

5

+ 8.
= 1.05 yards and

the square has side s =
1
.(15 - 2vr) 74 2.10 yards. -

I

Example 2-7d. Find the point on the graph of y=irk 2 that is nearest

the point A(3,0).

Recall that the distance between (xl,y1) and (x2a2) is

0,2

- x2) (Y1 Y2)
2

;

,
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The distance from A(3,0t to a point P(x,x, ) on the.graph of y = x
2

is

thus given by

AP = J(x - 3)2 (x2)2.

Our prdblem is to choose P so that this distance AP is least.

(x x minimum dibtance
. -

A(3,0)

Figure 2-7d 1

This expression for the distance AP is not a polynomial so our tjchni-

ques cannot be directly applied. Note, however,, that

(AP)2 = (X - 3)24 (x2)2

=9 - 6x
4,x2 x4

'Which is a polynomial expression. Furthermore, if x is such that (AP)2 is

least, then AP will also be least. Thus wq,,aeed only choose x so that

f : x 9 - 6x
x2 x4

has its least,value.

The derivative of f is

ft : t4 -6 + 2x7-13

The factor 4x
2

4.. 4x + 6 is

,square to 'obtain

= (x - 1)(4x2 +14x + 6).

always positive, since we can complete the

4x2 + 4x+ 6 = 4x2,4- 4x 421 + 6 -

4 .tr

Nx + + 5 > 5.

152';

C
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(x)Thus, (x) < 0 if x < 1 and f ' ( x) > 0 if x > 1. Therefore, by the
remarks in Section 2-6 weJAnow that, f has a relative minimum at x = 1.

.Hence, the point (1,1) is the point bf the'graph y = x which is sest
to A(3,0).

Exercises LI
1. Consider the funct).on

f : x + 4x3 - 12x2 :1- 5. ,
9

Determine the behavior and sketch the graph of f.
2. Find the pxtrema (maxima and pinima) of the funcL tion

if :07x 44x5 - 5x4 - 40x3 + 100

on the 'interval -3 < x < 4. Sketh the graph of f .
.
t seconds3.:. A ball is throwen upward so that its height

above the earth, where

s =96t 16t2.

What is the maximum height the ball will reach?

; 14e

later is S' feet

t ,4. Shdw that of 'all the, rectangles having a given 'perimeter _p, tie
square alas the °largest area. , .

,
5. Sketch the graph of the function V.

'

A

f : x 4--Ix3
-4-n72x

2

. ,
over the inte'r`val (0,181, indicatingy/extrema..

t. - ... ;
, 6: A Tectangutlarbox with square base and open top is to be made from a- ,

..-
0 ft. square piece' of cardboard. What is the maximum volume of such

, .
L. \ 'a box? "

.
7. A rectangular field° is. to be , adjacent to a river and is to have fencing

..
, on three sides, the 'V.de'on the river reqUiring nO' fencing. If 100

yards of fencing is-available, find thelimerisions of the field with
)largest area'.

4 , ...,
- .

8. The sum of two positive. numbers is N. -1.......termine the' numbers so_ that..the product of one and the square of the other will be a maximum.rt, , ... .7

9. A wire24 inches long- is cut in two; and then one part is bent into .-
.

thex shape of a circle acrd the other, into. the,shape of ,s3 square. aw
should it be cut if the sum of the area is to be a minimum?

1143

'153
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10. Given the requirements of Number 9, determine how the wire should be cut

P if the surN the areas is to be a maximum.

A fpur-ft. wire is to be cut into two pieces: one piece to become the

*Perimeter of a square, the other the circlamference of a circle: Determine

hot it should4be cut to enclose.

(a) minimum area;

(b) .maximum area:

114

12. 'Determine the dimensions of the rectangle with perimeter' 72 feet which

will enclose-the maximum area.

13. Determinetheradius and eight. of the right circular cylinder of greatest

'volume that can be inscrib ight circular cone with radius r and

height h.

14. A man has 600 yds. of fencing which he is going to use enclose a
3,1

reanguler fieldand then subdivide the field into twodots with a
,

fence parallel to one side. What are the dimensions of such a fieldiif

theencloseddarea is to be a maximum?

. An open box is-to be made by cutting ouysquares fromthe corners of a

. rectangular piece of cardboard anetheeturning up the s If the

pipe of cardboard is 12" by 24", what are the dim hsions of the bpx

of largastvolume madeein this way?
,

4 r

16. A rectangle has two of its vertices on the x-axis and the other two above,

ithe.axiston the graph of the parabola, - x2. What are the

sions of such a rectangle if its area is to be a max.imum?
./ 'e

17. A stone wall 1Q0 yards long'stands on a ranch. Pail or all of it is to
4 '

be used in forming a rectangular corral,, using ay
,
Viditional 260 yards

of fencing for the other threepsides Find the maximum area which can

ge so enclosed.

18. Find the point on the graph,of the equation y2 . 4x which is nearest

to the point (2,1). _ *

19. Find the dimensions of the right circular cyiinder of maximum volume
' 0

inscYibdd-in a sphere of-radius 10 inches.

A a,.

.a). What number most exceeds its square?

v .4,44

154
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.

4.
121. Suppose that the babe of the parcel post package mentioned in the text

1is taken to be stilare.
Ad

Find.the package of this shape which has maximum volume subject to the

postal restriction,that the sum of its length and-girth may not exceed

72 inches.
,

22. A rectangle has two of its vertices on the x-axis and the other two

above the axis,on the parabola y = 6 - x
2

. What are the dimensions{ of

such a rectangle if its area is to be a maximum?

23. A rectangular sheet of galvanized metal' ip bent to form the sides and

bottom of a trough so,that the cross section has this shape: U

t, If the metal is 14 inches wide iloweep must the trough be to carry

the most water'?

24. A rectangular sheet of iplvanized metal is to be made into a trough by.
i

-nnd ing it SQ that the cross section has a ' 1 I shape. If `the metal
i L___1

-is 10 inches wide, how deep must the trough be,to carry the most water? 0
'44144

25. Pro/0 that with a fixed perimeter P the rectangle which has, a maximum

area is a square.

26: Determine' the area of the largest rectangle that can be inscribed fn the;

,region bounded by the graphs of y
2

= 8x and x =_4.

27. Show-that there is=no on-the ellipse given by x
2
± 4y2

to the point 11,01i that (3 ,
1

1
3

'28., Find the alti,tudelif the one ofMaximum
,.,

a ..sphere,Of r,idiuS" r.

volume that

145

1,5 5
7'

closer

can be inscribed in t

a
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29. A rectangular pasture,with °lie side bounded by a straight river, is

fenced on the remaining three sides. If the length of the fence is

400 yards, find the dimensions of the pasture with maximum area.

30. A farmer plans to enclose two chicken yards, next to his barn with fencing,

Ihs shown. Find

(a) the maximum area he can

enclose with 120 feet of

fence;

(b) the maximum area he can

enclose if the dividing

fence is parallel to the

barn.

Barn

Chicken Yards

0

In the follqwing problems (Nos. 31-35) meaningful replacements for the

variables are obviously restrieted to'positive integers, but we must consider

the functions to be continuous in order to apply the techniquts of this

chapter.

31. A printer will print 10,000 'labels at a base price of, $1.50 per

-thousand. For a larger order the base price on the entire lot is

decreased by 3 cents for each thousand in.excess of 10,000: For how

many labels will the printerts,gross income bele maximum?

32. A manufacturer can now ship 'a,mgo of 100 tons at a profit of $5,00

per ton. He estimates that by waiting he oan add 20 tonsper week to

the shipment, but that the profit on all that' he ships will be reduced

250, per ton per week. How lOng will it be to his advantage to wait?

33; A peach orchard now has 30 trees per acre, and the average yield is

400 peaches per tree. For each additional tree planted per acre, the

average yield is reduced by approximately 10 peaches. How many trees
e.

lier,acre wile give'the largest crop of,peeches?

34. A potato grower wishes to ship as early as possible in the season in

ordeg to sell-at tbe best price. If he ships-July 1st, he can ship ,6

tons at a prof of $2.00 per ton. By waiting hesestimates he can add

3 tons per week to his shipment but that the profit will be reduced by

15 dollar per ton per week., When should he ship for a maximum profit?

I

f

11.65 (3'
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35 A real estate office handles 80 apartment units. When the rent of each

unit is $6o.00 per month, all units are occupied. If the rent is in- .

creased $2.00 a man-ti, on the average one further unit remains unoccupied.

Each occupied unit requires $6.00 worth of service a Month (i.e.,

repairs and maintenance). What rent should be charged in order,to obtain

the most profit?

36. A right triangle with hypotenuse k is rotated about one of its legs..

Find the maximum irblume of the right circular cone produced.

37. Determine the dimensions of the rectangle with greatest area which can

be inscribed in a circle of radius R.
P

38. Determine the dimensions of the rectangle with greatest perimeter which

can be inscribed in a circle of radius R.

2.47 157
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2-8. Rate of Change: Velocity and kccelaration

The derivative ft of a polynomial,function f 'has been defined as the

function whose value at a is the slope of the tangent line to the graph of

f at the point (a,f(a)).

In many physical situations thejwillie f'(a) can also, be interpreted as ,

velocity. Let us loolOat an example.

Suppoie a solid ball is droPpAd froM a. 2000 foot tower. Let s denote

its distance (in feet) from the top of the tower at time t (in seconds) after

it.is released. Experimentation has shown that s is approximately related to

t 1Dy the equation

s =

Thus, we sometimes say that the fallen distance (s feet) isa function of
e

time (t seconds). More precisely, the equation s = 16t
2

specifies the

function f t -)16t2.

2000 ft.

= 400

1500 position at :V= 5

s = 1600

-

500

position at t = 10

Figure 2-8a

We wish to formulate a suitable concept of velocity, so that we can

answer questions such as: How fast is the, ball falling after it has fallen

5 seconds? To do this we first define,the_average velocity in the time inter-

val t
1

< t < t
2

as the ratio
- -.
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I
f(t

2
) - f(t l)

1

t t
-2 1

O
,

This is just the ratio of the distarice traveled in the time interval to.the

length of the interval.

For example, in the time interval [4.5,5] (i.e.,- 4.5. t < 5) the

feet/second.

ratio is

.,. -

16 (5)2 - 16 (14:.) 400 324 152.
5 4.5 .

s
0.5

, .

Therefore, the average velocity between 4.5 and 5 seconds is 152 ft./sec.

In the time interval 0525.2] the ratio is

16..5.2)
2
- 16 (5)

2
4 2.64 '0_13.2.

5.2. 5 0.2
,-....,

Whence the average velocity between 5 and 5.2 eeonds is 163.2 ft. /sec.
''''

,.... .. . 1...... ...... .._...........

suppose that li is a small positive quantity The average velocity in

the time interval' 5 < t. < 5 + h is then

ti
f(5 h) f(5) ftilsec

This is just our old friend, the difference oott t used in approximating the

-derivative. We know that.asthe time interval becomes shorter, ,h Approaches

,zero and the ratio expresing average velocity approaches, f'(5), the value

soff' the.ddrivative-of the distance function f at ='5. We therefore, adopt

the, following definition:

The (instantaneous) velocity of a body whose position

after t seconds, s given by f(t), is ft(t).

In our example, f' : t --)32t, and f'(5) = 160, so that the velocity after

". 5 seconds is 160 ft./sec.

In summary, the function

f t a s = 16t2

describes thepostficin of the ball at time t, while

f': t = 32f

describes its veldaty aetime t,

lilt 59
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Velocity is a measure of how the position of a moving body changes over

time. It is often' characterised as a rate of change of nosition.,with respect

to time. The acceleration ofa moving body is also a rate of change -- it ,,

measures how the velocity is changing over time.

' Acceleration

We,haVe.seen that velocity, like distance, 'can:be exl?ressed;as flpo-

tion of time. As st,solid ball falls from a tower, for example, *ts 'velocity

(in ft./sec.) after \t seconds is given by

y = 32t.

This formula "Specifies a velocity function

g : t 4 32t,

and Allows us to determine how"the velocity of the falling body'i3 changing

over time. The rate of change of velocity with respect to time is called

acceleration.
4

Just asoie4efined.average velocity over a time interval, we can define

average acceleration over a time 'interval ft
l'

t
2

i as the ratio of the

40change in velocity to the length of time t2 - tl:'

I

g(t2) - g(ti) <' ,

, , ?

t
2

- t
1

.

In the time interval J4.5,51 the ratio is

32(5) - e(4.5) 32(0.5)'

1111gt 5 - .5 . 0.5
32.

Hence, the average acceleration of a falling body between 4. an ,5-

seconds of lewd time is 32,^ft /sec. per sdcond. , /

In a short time interval [t,t + hi, the expression for the'averages:

acceleration is

1(t h) - -g(t).

h

c

..,,

As the time interval becomes shorter, ;11 approaches 0 and,thd ratlp
l 4

,, expresaing average acceleration -approaches gt(t),, the derivatle of the
.

44. -:.veloci.:ty, function. 4As before, we therefore define-:

I
-e. ' The (instantaneous) acceleration of body whose velocity,.

ajfte6r t" secondS,is given by g(t), is g'(t).

.4 .:,
_

,
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In bur example, g t and g': .t -4'32, indicating that the accelera-

tion of a falling body in the absence of air resistance is a constant appraxi.

mately equal, to 32 ft./sec. each second.

In Chapter 7 we shall see - that constant acceleration of an .object

(e.g., a = 32) guarantees that its velocity is a-lir-lb:1r function of time,

A -(e.g., 32t) and that the Aistarice At travels is a quadratic function of

time, (e.g., s = 16t2).

ligte

Example 2-8a.. gh""ii-ti..ietre velocity of the ball dropped from the top of

° the: 2000 foot buildpag,akt-the time it strikes the ground.?

r

The distancefunction

f : 16t2

andthe baIl.iskdropped from a,height of 2000 feet. Setting

we see that the ball strikes

16t2 =: 2000,

the ground when

=
i5555 )t
-----55.

Since the velocity function is

ft x 3?t,

we find V(515) 2,357.8. Therefore the (impact) velocity after 5/5 dec.

is approximately

0
357.8 ft/sec.

,

Example 2-8b. A car is being driven at the rate of 60 jmi. /hr.

(88 ft./set) when the brakes are uniformly applied until the car comes to a

complete stop. Suppose that the function

2
f : t -4 k t - 7.-

10)%

describes the distance s = f.(t.)- in feet traveled in, t seconds after 'the

brakes are applied.

(i) How many feet doei the car move before it stops?

(ii) .Show that the acceleration is negative and oonstant.

.411
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The velocity function is

-6 4 88 - -E-88 t

and the car will stop at the point where the velocity is 0. Solving ft(t) = 0

gives t = 5. -Since f(5) = 220 the distance traveled in 5 seconds is 220

feet:

.

The derivative of the velocity fUnction g : t -488 -
88

t (renamed for

convenience) is the acceleration' function

g': t -
88

Therefore,'
88

the acceleration after t seconds is - feet per second per

second, which is indeed constant negative acceleration (deceleration). , This

refle,pts the physical fact that the car is slowing doyen due to the applica-

' tion of the brakes. The,fact that the acceleratiori isaonstant is based op

the assuAption that braking is uniform. (rue to brake fade, the pressure'

applied to the brakes must increase to maintaina-uniform deceleration.)

It is often useful in'other situations to interpret the value of the

derivative as a rate of change. Given a polynomial function f : x -4f(x),

the average rate of change of f in the interval [a,b) is defined to be

f(b) -, f(a)

,b - a.

Since the.limit of this as the length of the interval approaches zero (b

apprOaccies a) is f'(a), At is appropriate to refer to the deriVative f1'

of f as tti (instantaneous) rate of change of f at the point x = a.

This is consistent with our interpretation of ft(a) ...as the slope of the

tangent line at x = a, for the slope of a line does measure its rate of

rise (or fall). The tangent line is the line of "best fit" near (a,f(a))

and hence its slope (rate of change) gives a measure of the rate of change

of f at that points

ry

152

162

tO



2-8

Example 2-8c. The volume pi' a sphere isa function of its radius. Find

the rate Of change of the volum4' with respect to the radius. What is this

rite of change when the radius is 6 inches?

Letting 'V' denote the, volume (in cubic hes) and r the radius (in'

"inches),,we have
.

,

4
V =

a vr3
. O 0.

In Other words, if we let f denote ehe function f : r -4-
4
vr

3

' the volume
3

V, is given by V = f(r) (in cubic inches). The,derivative of f is

ft : r >(li n)(3r2) = 4nr2.

The rate of change of the volume V, with respect to the radius 'r is thus
2

Ltvr ; when r =

C!
; the volume is changing at the rate or

146 ire/ unit changy in radius.

, Speed

We have defined velocity as the (instantane4ps) rate of change: of the p
position of an object with respect to time. This definition implies that

'velocity hes direction, because it involves not only how fast the object is

moving, but, also from where to where. For motion along a straight line thgn, A,

the velocity of a moving object is a signed quantity: it is positive if the °

motion,is in the direction we define to be positive, and it is negative if the

motion is in the opposite direction. What we intuitively think of as the

speed of the object is independent,of direction. We define speed to be the
. - V

absolute value of velocity. The following familiar example (Exercises 1-3,

To. 12) will make the distinction clear.

O

Example 2-8d. Suppose that a rock is thcdwn straight up from the ground

. with .an initial speed'of 64 ft./sec. Contrary to our analysis of the ball 4. J.

4,

2000 foot tower, let us take "up" as the positive direction

negative.direction. Hence, the inAial yelocity.oi' our rock
.

.
g

.

4 ,
.. I

dropped from the

and "down" as the

' is +64 ft./sec.

We know 'that if
.

the rock were not a cted upon,4 gravity the pAitfon- of

the ro* after t seconds would be given by the function

f, : t 64t. AZ' .

153 .
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But the force of gravity acts on the rock, just'as on the ball dropped from

the tower, adding a downward (in this case, negatiyj component, -16t
2

, to

the position of the rock at time t. Hence, the function

f t -464t Ot2

describes the position of the rock at time t, and

f': t -> 64 - 32t

gives the velocity-of: the rock after i seconds. We note that,

for

for

and for

t < 2; f'(t) > 0,

t = 2, f'(t) = 0,

t > 2, flt) < 0,

indicating that between 0 and 2 seconds the rock is°rising (moving in the

chosen positive direction) while after 2 seconds have elapsed the rock is

falling (moving, in the negative direction).

At t = 1.5 seconds the velocity of the rock is

f'(1.5) ft./sec. = 12 ft./seg.

At t = 2..5 seconds, the velocity is

f "(2.5) ft./sec. = -12 ft. /sec.

We conclude that the speed of the rock is the same at t = 1.5 and t = 2.5,

namely' 12. ft./sec. Similarly, the initial speed and the final (impact) .

speed of the rock are the same since the inittal-ve1ocitrls--164 ftisec.

Jr.

al/

(up)and the impact velocity is -64 ft./sec. (down).

Renaming the velocity function

g r t -* 64 - 32t, .

we see that the acceleration of the rock is given by
111

gl: t -t-32, . -

,

indicating that gravity accelerates the rock at the rate of 32 ft. /sec.

eachsecondlOk downward,
.

of course. Note that this negative acceleration

detreases the rock's velocity constantln.on the 'way up the;ZeC-i-easq in
VIP

velocity-amounts to a slowing of the speed of the rock, while on the way i
.,

down the "decrease" in velocity (becoming more negative) creates an increase
- ...

. -ipthe-speed of the rock. . ., :,,
.

4

tP'
,= .'

)
I.

i

y
II

,
a
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Exercises 2-8

Determine the rate of change of the area of a circle with respelIK ,
.,

to its radius r. Compare your result with the formula for the

circiiittfriide C 4.0f a circle in terms of radius r. -.

.

2=8

e
_

(b) Wbat, is the rate of change `the volume of a spher with respect
;6
L' -to its radius 'r? Cot are this resul\with the formu a for the r- z.,.11.1-

,
surface area s iSf a sphere 'in terms of radius. r.

2 A certain motion is described
?

from the time t = 5 *until the time
3- L'4'

.4

' 't =.8, by the equation r
.

s = f(t) r 2t3-- -39t2 252t - 535.

(a) We subinit tliat f the distance s at time is given by

. °s f(i) = 2t3 - 39t2 + 25 t - 535,

"hen the velocity v .at 04the t Is

v =6t2 - 78t + 2

Explain why :this is, tr ue.

(-b) 'Sketch the graph of th'e ;unction

4C
&

f : t -4 s = 2t
3

-39t
2

+ 252t '- 535

on the interval 5 < t <e.

(c) Sketch the graph of

ft ; t v = 6t2 - 78t + 252

on the same interval p5,81.

DetArmine the zeros of ft.

r

14

(e) ' When does the ptxticle whose motion Is being describedcome to rest --

for an instant,as it shifts direction?

,(f) Whenis the particle the ,greatest distance from its starting point

,on [5471?

,
(g).,..1.114at is the greatest distance Of the patticle from its starting

4

point on (5,71'1.

(h) When is the next time on [5,8] when the distance of the particle

from its starting point is as great as its greatest distance on N
,

(5171

4
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et) When is the particle the greatest distance from its starting point ,

/

on [5,8]?

(j) When is the speed of the particle the greatest on (6,7]?

of the particle whose motion is3. 'What is the acceleration at time t

considered in Number 2?

4. 'Hecall Example 2-8b

1

(a) For a cat traveling at 60 mi./hr., how'many seconds are required
4

after the brakes are applied (and held) before the car comes.to a

. complete stop?

(b) How far will a,car traveling at 60 mi./hr., go after the brakes.are

applied?

(c) Suppose at time t = 0 the brakes are applied on 11 bar moving at

" velocity 60 mph and kept on until the car is broaght to a stop

(a)

producing.a constant deceleration

ft. /sect. Given an approximation

wi4 continue to travel only

Ustig your approximation for

tarice the

mph.

100

a

(negative acceleration) of a
for a ,to ensure that the car

f . after the brakes-are applied.

from part (c), determine the dis- a.)

car would require to stop if it were traveling at 30

is projected straight up and after awhile,

same vertical path to the place on the'ground

After t seconds the pellet is' ;s 'feet

.../.4

5 Let us assume that a pellet

comes straight down via the

from whiCh it.was launched.

aPoveth ground. Some of the ordered fairs (t,$) are given in the

followin table.

t 0

0

1 2 5

144 256 336 384 400

6 . 7 8 I 9 10

384 336 0

We shall intentionally avoid certain physicefl considerations such asair

resistance. Moreover, we shall deal with simpll numbers rather than

qtantities measured to some/prescribed degree of accuracy which,mfght
. .

arise from the data of an actual projectile prOletlin engineering.

''(a) Interpolate from'tqe data given to detefmine the height of the

projectile efter eight and nine

using syminetry as your guide.)
4

of s 'for, or t =11

After how many seconds does the

seconds respectively. (Guess,

Does extrapolatiO;1 to find values

make sense_on physical ground's?

projectile appear to have reached

its makimum helig? What seems to be the maximum height?,

156
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(b) Doe's s appea to be a,function of t? so, discuss the domain
,

and range, takin ,physical' considerations into account.

(c) If wewere to plot a graph of s = f(t),

(11) is it, plausible on physical' grounds to restrict our. graph to

the first quadrant?

(2) Does 'the dat4 suggest that the scale on the s-axis (vertical)

should be the same as the scale on the t-axis (horizontal)?

-

(d) Keeping in min your responses to part (c), plot the ordered pairs

(t,$) from the table. Connect the points with a smooth curvy..

What is the name of the function suggested by the graph? On

physical grounds is it feasible 'that there would be a real value of

s forfevery reaAnumber assigned to t over the interval

0 < t < 10? Were we probably gistified in connecting the pointsR

a

(e) Assuming that the equation s = f(t) = At
2
+Bt + C was used to

develop the entries im our table, find- values for constants A,

B, and C.

(f) Sketch the graph given by the equation s = 160t - 16ta over the

interVa41-. 0 < t < 10., Using a more carefully plotted graph of the

above set, connect the point whei-e t = 1 with the point where

t = 2 with a chord. What is the slope of this chord? Estimate

the,slope of the curve at t = 1 and t = 2.

'(g) If the units of s preTeet and the units of t are seconds, "Ale't

are the units of slope? What word is .commonly associated with this

ratio of units? What would you guess are the physical interprets-,

(h)

tionsof positive,

Draw the graph of

Compare the values

your estimates for

pgA (f).

zero,_ and negative values of this ratio?

v = 160 - 32t over the interval .0 < t

of v for t = 1 and t = 2 respectively with

.the ,slopes of the graphs of s = 160t - 16t2 .in.

X767
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ci)
Average the values of v for t and i.= 2 an compare this

average with the slope, of the chord connecting the points where

t = 1 and t = 2 in part (f).

(4). If. the units of .v are ft./sec. and the units of t are seconds,

f what are the units of 'the slope of the line v = 160 - 32t? What

word from physics is commonly associated with this ratio of unite?

Does the minus signalong.with the particular numerical valUe of

this slope have any special connotation from your experience?

6. Aoprojectile is fired straight up and after awhile comes straight down

via the same vertical path to the place on the ground from which it was

launched. After t- seconds the projectile is, s = 160t - 16t
2
ofet

above the ground.

. .

(a) After how many seconds,4oes the projectile strike the ground?

(b) What is the velocity of the projectile after t seconds?

(c) What is the initial velocity?

(d) What is the tmpact,velocity?

(e) How high is the projectile after 1- .seconds?

s

(f) How high is the'projectile after 6 seponds?

(g) After how many seconds does the'projectile reach its maximum height?

(h) How high does the projectile 'go?

(i) How far has the projectile traveled after6 seconds?

7. A ball is thrown upward from the ground so that after t,seconds its

1

height 's feet igiven bythefuriction

-4
.

, ,
f : t -4 s = 96t - lot

2
.

(a) The path of the ball,is straight up and straight down. What is the

of the functiOn f?
. .

(b) What is the derivative of f? What is the velocity function?

(c) How high is the ball after,on& second?.'

(d) How high is the ball after 5, seconds?

(e)` How far has the ball traveled after 5 seconds?

(f) What is the initial velocity of the ball?

5
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(g) How long is the .tell in the air ?'

(h) What is the impact velocity whep the ball strikes tha ground?'

(i) What is theconstant acceleratiOn acting upon the ball?

Give a distance function g

feet above the ground after

tion if the ball were thrown

city of 96 ft./sec. from a

: t;-' where s is the number,of

t :,seconds, appropriate for the situa-

stVaight upward with an initial melo-

to9er 200 ft. high.

4,

2 -8

(k) Give a'distance function G : t *4s, where s is the number of

feet,:above the ground after t ;seconds appropriate for the situa-

tionif the ball were thrown st&ight downward with an- initial

velocity of 96 ft,/sec. from a tower .200 feet high.

(2) Give a distance function q' t where s the number of

feet displacement from the top of the tower after t,rseconds if

the ball is simply, dropped from the-top of a tower.

,8. The velocity Of an object, whose location on a straight line at timer

t= t is given by s f(t), is the limit of the ratio

. f(t) - f(to)

t - tO

as t approaches, to. This limit is the value of the derivat/v ft at

t = to. Experimentally it has been established_ that the distan ,covered

in time t by freely falling body is proportional to t
2

,

fore it can be represented by the function ft : t wher c is a ,

0 positive constant. Show that the velocity of a ireely felling ody is

t'directly proportional to the me.

Suppose a projectile is ejected th initial velocf.4roof

second, at a point P which is 20 feet above the ground

friction and assume that the projectile moves up and down

eet per

eglect

a straight
pf

line. Let f(t) denote,the height (above P) in feet tha the projectile

attains t seconds after ejection. Note that if gravitar onal attraction

were not acting on the projectile, it would continue to m e upward with

p constant velocity, traveling a distance-..of v
0

feet e h second, so

. thatits: height at-time t would be given by f(t) = vo . We knowthat.

the force of gravity acting on thietprojectile causes it o slow doWn anti

qstvelocity is zero and then trayel_baek-to r-the earth. On the basis of

.
I

4 0, 159 ,

169



2-8

'1"

physical experiments the formula' f(t) = v0
g

t- at2 , where g represents

the acceleration of gravitOs used to repreSent the height (above P)`of

the projectile as long as it is aloft. Note that f(t) = 0 when t = 0
2vo

and when t = . ,This means that the projectile-returns to the initial

2v

20 foot level after
0

--- seconds.
g

(a) Find the velocity of the projectile at t = to (in terms of

and g).

(b) Sketch the s vs. t and the v vs. t graphs on the same set of
$.

axes.

(c) Compute (in terms of v0) the time required for the Velocity to

drop to zero.

(d) What is the velocity on return to the)nitial 20 foot level?

(e) Assume that the projectile returns to earth at a point 30 feet

below the initial take off point'-1). What is the velocity at

impact?

10. Show that if a ball is thrown upward with an initial velocity of V0

. V2
0

ft./sec., it will reach a maximum height of feet.,

11. ''Elsie Can throw a ball -148 feet straight up. How fast does it

* go when it leaves her hand? (Assume that when the ball_ is released her

hand is .4 ft. above the grounds)
4

12. A ball is thrown upward with an initial speed of 64 ft./sec.

Simultaneously a ball is dropped from rest at a height of 128, ft.

When} does impact'occur and how fadis each ball going dt the time of

impact?

13. Determine the average velocity of a car for a total trip if,it averages

60 miles per hour going and. 30 miles per hour retjUtning.

14. Find the velocity of an object whose location along a straight line is--

deacribed.by.the.equation s = 128t - 16t2. Sketch the graphs of s vs. t

and v vs.t on the isme set of axes.
.

(a) During what time interval or intervals is t400object moving toward

the location s = 0?

(b) What are the values of v and t when s is a maximum?

160
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41015: A ball is, thrown upward with a velocity of 32 feet per second. Its

height s in feet after t seconds is described by the, equation

s = 32f - 16t2.

(a) What is the velocity of the ball when its height first reaches.

12 feet? When it again reaches 12 feet?

(b) 'How high does it go, and how long after being thtlOwn does th,e ba

reach its highest pos.glon?

16. An object is projected up a smooth inclined plane in a straight line.

Its distance s in feet from the.starting point after t seconds'is

described by the equation s ='64t - 8t
2

. After the object reaches,its

highest point it slides back along its original path to the starting
.

point according to the equation s = - t
n

)

2
Here s is the dis-

tance of the object from the highest point and to is the time it takes

the object toreach the highest poidt.

f
(a) Determtnejhow long it takes for the object to make the up and down

trip.

(b) Sketch the s vs. t graph for the up and down motion using one set

of coordinates. Do the same for the v vs. t graph'. ,

4

4
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2-9. The Second Derivative

In the preceeding section, we found that the flunction expressing the

acceleration of an object with respect to time is derivative of its

velocity function, which is in turn the derivative of the function f des-

cribing the object's position at time t. Hence, e acceleration function

can be obtained by differentiating' f twice. For any function, f the

derivative of f' is called the second derivatiVe of _f....--The-second derive-

tive,.denoted by f", gives us valuable information about the graphs of both

f" and f.

.Consider the function

f x -' x3 - 3x.

Its first derivative is

x -4 3x2 - 3,

and its second derivative is

f":

# Since f" describes the slope of the tangent to the graph of and

'since f"(x) -7, 6x < 0, for x < 0, then f' is decreasing as x < 0

increases. Now to say that f', the derivative of f, is decreasing over

an interval, is the same as saying that the slope of f is decreasing over

that interval. From the .T
1

sketch of Figure 2 -9a we

see that if,the slopes of
I

successive tangents to the

graph of f are decreasing,

the graphza f ii "bending
4WA,

down." Hence, we are led to

believe that the'graph of the

function

f x -)x
3.

- 3x

T
2

I

2", 3

Figure ?-9a

is similarly "bending dowh" as x < 0 increases, since f"(x) < 0 for x < 0.
.474a,

43.4o,

7 2
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In like manner, since f"(x) = 6x > 0 for x > 0, the slope of f ,f

given by fqx), is increasing

for x > 0. Figure 2-9b indicates

that in such a situation the graph

of f his "bending up." Putting

these two pieces of information

about the graph of f : x -) x
3

- 3x

together with what the first derive-

.tive, f', tells-us about it, we

obtain the following graph of f.

2-9

Figure 2-9c

x

1

The 'second derivative, f"(x) = 6x, indicates that for x < 0:, the graph of

is bending downward, and for x > 0 the graph is ben upward. At

Aa
f

x = 0, f"(x) = 0 and the graph is apparently 'Changing m one to the other.

The first derivative, f':"x -) 3x
2

- 3 .r. 3(x , 1)(x + 1), indicates that the
e -

slope of the graph is zero at x = ± 1 and from the way the graph 14,bending

we conclude that f has a relative maximum at x..,= -1 and a relative
-

minimum at x = +1.

/
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A more rigorous interpretation of "bending - upward" or "downward" uses the

notion of the convexity and concavity of the function f.. We say that a func-

tion is convex in the interval [a,b] if its graph inthis interval lieS.,
*

above each of its tangents in the interval. Figure 2-9b shows a function

which is convex in the'interval shown. Similarly a function is said to be

concave in an interval [a,b] if its graph lies below each of its tangents

in that interval. See Figure 2-9a for an example of a concave function.

s'

Some texts use concave upward in place of convex and concave downward in

place of concave. The ideas of convexity and concavity are said to describe

the flexure (bending) of curves.

e intuitive remarks motivating the use of f" in graphing

f : x3 - 3x lead to the characterizations that:

(1) a function f is convex in the interval la,b1 if and only if,

f"(x) > 0 for all x between a and b (a < x < b).

and

(2) a function f is concave in the interval [a,b] if and only if

f"(x) < 0 for ail x between a and b (a < x < b),

An important consequence of these two characterizations is that if the

grgph of a polynomial f crosses its tangent at the'point of tangency

p(c,f(c)), then f"(c) = 0.

Figure 2-9d

The graph of f crosses its tangent at P.

nt,

The reader familiar with convex regions from g geometry course will
observe"that we are defining a function to be convex over the interval in
which the region above the graph of f is convex.

4,
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'For if the graph of f crosses T at (c,f(c)) then7'near x = c (see-

Figure 2-9d),'the graph must lie.above the tangent on one side of c and

below the tangent on the other side of c. Hence, e(x) > 0 for x

'one -side of c and (x) < 0 oh the other. Thus, f"(c) = 0 since a

polyAomial function must pass through zero as it passes from positive to

negative.,

If the graph of 'f, crosses its tangentatpoint of

tangency P, tHen P is called a 'point ok

of k.

The above argument shows that 'if _P(c,f(c)) is a point of inflection

of f, then f"(c) = 0.

The converse of this may be false, however. It is quite possible that
P, .

f"(c) = 0 at points (c,f(c)) where the tangent does- not cross the graph

of f. Consider the graph of f x
14,

at the origip. (See EXehises

'2-9, No. 2.)

To summarize, it, is instructive to view the graphs of f, fel, and f"

together to see how the zeros of 0 and f" affect the graph of f. To.

show the relationships most vividly, we illustrate the graphs in Figure 2-9e

without y-axes.

165
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maximum
1

1

1

1

point of

i flectilrom

f"(# 6x

31
0

3.661:7G

a
X

Figure 2-9e
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ik
Note that a relatie maximum occurs at (c,f(c)) when ft(c) =$0 add

e(c) < 0, since the tangent to the graph of f at x c must be.hori-_

zontal and the graph must be concave. Similarly, a relative miamulioccurs
Altwhen f'(c) = 0 and f"(c) > 0, since the tangent muse-behorizontallas

before, but here the gra'ph' must be convex.
.

A point of inflection occurs'at (c,f(c)) When f"(c) = 0 \and cf"(x)

is positive immediately to one side of x = c and negative immediately to

the other side of x = c.

Example 2r9a. Determine the intervals over which the function

f : x x , 2x
2

+ 1
.rooffodi,

is increasing, decreasi g, convex, and concve, and ate all relative

maxima and minima, and hll points ofinflectione

Intervals on which f is ivreasing and decreasing can be determined by

the sign of the derivative

f' : x 4x3 - 4x = 4x(X-+ 1)(x - 1)

'The critical points (points where f'(x) Cs 0) occur where x = -1, x = 0,

and x = 1. ,

f'(x) < 0 for 10 < -1

f'(x) > 0 for -1 < x < 0 (3

ft(x) < 0 for 0 < x < 1

f'(x) > 0. for 1 < xt 1

From these signs we conclude that-as x increases the graph of f4lfalls for .

X < -1, rises between -1 and 0, falls again between 0 and 1, and

`finally rises again for x > 1.

I

-

Intervals, of convexity and concavity can be determined by the sign of

the second derivative

f": x -,12x2 - 4 = 4(3x2 = 1) = - 4)(xl3- + 1)

IF
4 /

f"(x) = 0 if and only if x = I
T
= or x = - 11-71- f"(x) < 0 if and: only.
3

.

if (xlq - 1) and (x13- + 1) have opposite signs, which happens if and only

if (x-.1-3- + 0 and (x13- - 1) <00, that is, if and only if -
1
< x < 1 .

,167 177-
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0
. .

Similarly, f"(x) > 0 if and only.if' (x,/ - 1) and (x5 + 1) have the

same sign, which happens'if and pul?.y if ,

. ft
r. ' a2 S -.

),st
.. . .

.10

-,.. ,.

x,q+ 1 < 0 or x)q - 1,> 0,

i.e., it and only if

.

<',x ,,-
1mor x > 1

. We conclude,that f is concave

4

over the interval -
1
-- <

1
x < --,, and convex for all x < 1 -1- or all

'...

4. N.,

x. > -2- . The graph of f thus has points of inflection at x = =.1. and t

)q ,

41/..

0 - ) ..

x =
1

r
(I. 3.

since " = 0 and f is convex on one-side of each of these .

point and concave on the other side. Together with the information that the

Wirst derivative of f is zero at x = ,:1, 0, and :1, these intervals of

_convexity and concavity show that

f hese relative minimum at x = -1,

f. hes.a relative maximum at x = 6, t

and f hag a relative n*1imum at x = 1.

and x = -1-Finally,he graph

3
of f has poi is of inflection at x = - -1-

4,T 1,T

,since f(! -- = 0 and f is convex on one side of each of these points

IT
and concave on theolher,side.

tion.

o

In Figure 2-9f we sketch the graph of f using the foregoing informa-

Figure 2-9f

f : x'73 x. - 2x
2

+ 1

0
168

. 17 8



Exercises 2 -9 *

1. Determine the second derivative of the function
r

f t -,2t
3

- 39t
2
+,252t --535.

2. Characterize the origi&for each of.the following functions (by deter-

mining whether it is a relative max. or min., or poirii of inflection):

(a) f : x

(b) f x -c4 - 4):3

3. Consider the function

f x -)4x5 + 5x4 - 20x3 50x
2
.- 40x.

.

(a)" Find fl(x), and e(x).

(b) Characterize each of the points f(-1)) tnd (2, f(2)) as

maximum oAminimuni.

)(
,Consider the function ,f

2x3
-4

5 3

(a) Determine fl(x).

(b) Determine f"(x).

(0' Evaluate- f'( 1).

(d) EValuatete(-1),

+ x on [-2,2).

(e) Describe the behaviok of'f on [-2,2) -(by determining Sub-

intervals of increase, dedresse, convexity, and concavity, and by.

locating-relative maxima and minima andpointq of inflection, iftr

any of these occur).

Sketch the graph of f on [-2,2).(f)

5. Determine the relative maximum point'and relative minimum point of the

graph -of

f : x -)(-x 2)
2
(x - 2) .

I

6. Sketch the graph of

f : x Ifrx + 5x4 - 20x3 - 50x2 - 40x.

(See NO. 3.)

7. Sketch the graph'of x - 3x2 - 12x + 2,- indicating relative

extrema (adxiMa an minima) and points of inflection.

4_1 -

169

4'
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8. The.point (1,1) lies on the graph of each of the following

functions: For which is this point (Wa relative maximum, (ii) a.

relative minimum, (iii) a point of inflection, (iv) none of these?

(a) x - 6x2 + 6x - 1

(b) x 2x3 - 4)e,+,5

( c) x -4,2x
3

- 3x + 12x - 10 q

( d ) x -*2x3 3x2 - 12x + 14

9, Consider the function f x + x 3 - 2x - 3x .over the interval'

-2e< x < 2...

(a) At what points is a tangent to the graph of f horizontal?

(b) What are the relative minimum points ?,

(c) What is the minimum value of f?

(d) What is the maximum value of f?

(e) Sketch the graph of f..

10. Claspify each of the points (1,0)) (2,12), and (3,-4) on the graph

of x 3 - 6x2 + 9x - 4 as a relative maximum, a relative minimum, a

point of inflection, or not' bf these.

11. The figure at the left stows four

polynomial graphs and their common

tangent yi'=3 at '(0,3).

Match each graph (A, B, C, D)

with one of the following equations.

. (a) Y = 3 -

(b) Y = 3

x
3

x

(c) ,y = 3 :,4 + x2 ,

x
,(d) y = 3' c-,-; '4- X3

%..

(e)

(f)

x
r= 3 4-

Y = 3 +

x3

2
x.

(g) = 3 4- + x
2

(h) y . 3 + + x3

I-

'110111011
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12. Classify(see'No. 10) the (2,0) for each of the following functions.

(a) x -,(x - 2)2

(b) x -.)(2 - x),3

(c) x -)(x 2)4

15. Find an classify each critical point (local extremum or point of

inflection)' for each of the following functions.

(a) x -)2x + 3x2 12x - 7

(b) x --)x
3 - 12x + 160

(c) x -2x 3
+ 3x2 + 12x + 7

(d), x - 1)2(x + 2)

/14. Consider the function, f - 9x2 + 24X - 18.
$

(al Determine

(b) Loca4 the ralatiVe maximum and minimum points of f.

(c) Determine f".

.(d) What is ae point of Inflection of the graph of.f?

(e) What is the slope of the tangent to the graph of f at (3,0)?

(0 Determine f'(3 + k) and f'(3 k). 4.

(g) Sketch the graph of f.

(h) Discusp the symmetry of the graph of f.

=
15. SIT that;the graph of a cubic function must have a point'of inflection.

16. (a) Sketch the graph of

f : x
ox5 + x

4
5x - x.

2
+ 8x - 4.

Respond to each of the following by inspec tion of your graph for 'part (a).

(b) What are the zeros of f?

(c) ACe9cribe-the flexure of the graph of

f(4 . 0.

at the points where

(d) Describe the flexure of the graph of f at points for Which

,4.2(x) = 0 and f(x) > -5.

17. mine those points on :He graph of f

e flexure is neither upwarld nor downward.

'A

G

X5) _ 2x
2

rs- x at which

O
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18. Characterize the point - on the graph of

f -,x4 2x3 - 7x2 + 10x 4210.

19. Characterize the points ,(0,0) and (-1,-11)_ on the graph of

+ 3x5 + 10x.

,

20. Consider the functions : x -,(x + 1)2(x - 2) and

g : x -,3(x + /)(x - 1) .

(a) What is the relationship between f and gr'_

(b) Characterize each of the following points on the graphs of f and

g.

(i) C-1;0)

(ii) (0,f(0))

(0,g(0)),

(iv) (1,g(1))

(v) (1,f(1))

(vi) (z,f(z))

(c) Sketch the graphs of f and g on the same set'of axes.

21. Consider the function f : x 3 - 3x + 2:

22.

o
(a) Locate the zeros of f..

(b) Locatthe relative maximum, relative minimum and point of inflec-

tibn.

(c) Sketch the graph.

Consider the function f : x -, x - 3x
2

4..,
'3

i

f

(a Locate the zeros,of f.

/,
y kb Locate the relative maximum,

i (c) Sketch the graph.

23. Show that the grail of f :

inflection..

reiative minimum and point of inflection.

/Bi + C, A F 0,---has no point of

24. Find an equation pf /the tangent to the -ographf f : x x3 + 3x2 - 4x -'3
1

at its point of inflection. ';

4 15.

41.

t4

'?



2-10. Newton's Method

2-10

In Section 1-8 the method, of repeated bisection was presented as a means

for approximating zeros of a polynomial function. In this section present

another method, known as Newton's method for approximating such zeros. This

method makes use of the derivative and is more efficient than repeated bisec-

tion. ./

Newton's method proceeds as follows. Suppose''.f is the given polynomial -

function and we wish to approximate the real zero r. By inspection of the_

graph of f, synthetic substitution, repeated bisection, or some other device,,

we obtain a first-approximation of r. Let us call this first approximation

1

O

4

Figure 2-10a

x

:

If the graph of f looks like thatMlown in Figure 2-10a, we should:

expect that the .tangent line at (xl,f(x,)) will intersect the x-axis at a '

'

point `x"
2

which 4s oser to r than i x
1.

The tangdnt line at

(x1,f(x1)) has the e uation

y = f(x1-..Y + fl(x1)(X - xi):

This crosses the, x -axis at .(40); that is,
4:

0 = f(x1) +ft(x1)(x2 -x1). 1'

,

itstuningthatmo/ 0, we cansolve for -x2, obtaining the formula '

-

-,(4
5 I

i

1

\.

' SI

..1 i i. lh

f?x
1

)

X2,7 xl

..=1

173 183

/ a

t
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We can now repeat this process, using x2 . instealdof x
1-

, to obtain the

new approximation

f(x2) °

.x3 x2 TTTT2Y

(See Figure 2-10b.)

Repeating &pill, using x3 in place of x we obtain the fourth approxima-

tion

.
f(x I-

- i

x4 x3 .

.

.,..

.

I

.

]

'Thus, equation (1) it the basis for an iterative process; havin 'arrived at

!the approximation xn, w define i.new appr&imation x
n+1

by

, .

)

I f(x )

I' (2) . x =x - m
n+1 01 ! ft(xn) r

.

/ it

. .
Example 2-10a. For the polynomial function'

.,4

.

. ----f : x --.0 x3 --F. f
2:+

x - 2
0

/

..

i -;,-.
.1

eLmate the value of the real zero which lies be ween and 1.
141

4. .1;
...(

A method o
/
f CallilaIlOn which consists of the repetition (iteration)

of a basic process, especT7lly useful for writing a program for a compulkg

machine%; , -

174
. 1 ...

i

i I, , 1,84 1 t

/V J
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Since f(0) < 0 and f(1) we know that-there is at least) one

real zero between 0 and 1. Further calculation shows t t
.

f(0.8) < 0 and f(0.9) > 0,

so that the de4red zero lies'between 0.8 and Le' us take x
1

= 0.8

.7' as our initial estimate. We have f(0.8) = -0.048. Since

we have

ft x 3x
2
+ 2x + 1, "

f'(0.8) =

whence formula (1) gives the second estimate '

-... / i
)

= 0 81.x = 0.8 ,

2
, % .47?7

olts

...

Now we calculate to obtain

and

We use (1),

f(0.81):= -.002459

ft(6.81) = 4-.5883.

with x
I

replaced by x2, to obtain the thii.d estimate

x3 =-0.81 - 9

3
o.81o5..

Correct to two decimal places the zero of f, is 0.81.

Example 2-10b. Use Newton's Method_to estimate 313.

4

Since .q i's a 'lot of thp equation x3 = 3, must be a zero of the

function
/

3
-f : x

.

3. .

Since, f(it)' and f(2) 'lave apposite signs we take xl = 1.5

approximation. The derivative of f is

f " 3x2

*so that (1) gives

f(xl) o (i.5)3

x2)%x1
f'FT,c3.,,,,-,

1.5

,3(1.5)2

t 1.444 z 1.44.

Using :1.44 as our second approximationrrwe obtain
0

1
A A

°
--1

/75 8

as our first'

No-

f
A

,k

A11
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- 1.44. '4(1'44)
..- f't1.44)

tt

.Correct to two places

f-

1/ » 1.44'

4 t, Exercises 2-10 .

1.442.

1. Use Example
a
2-10a to respond to each of the following.

.
(a) What is the slope of 'theftngent to the graph of

f x -.x3 t'x2 + 2 at the point (0.8, -0.048)?

(b) Write the equation of the tangent to the giaph of -f.-at t1 point

(0.18, -0.048).

(c) The line tangent to the graph of f ,at the.,point (0.8, -0.048)

intersects the x-axis at a point close to the place where the graph

f drosses the x-axis. ,What is the x-intercept of this tangent

line?

2. Use Example 2-10b to -respond to each of the following.

(a) -Find the slope of the tangent to the graph Of f x -.x3 3

at the point ( -.5, 0.375).

-
(b). What is the. equation of the tangent to the graph of f at

(1;5, 0.375)?
,

(c) Find the value of x at which the tangent of part (b) intersects

the x-axis.

3. (a) What is the positivezero of the' function f : x x' - 2?

(b) Show that a zero of f lies between 1 and 2. .

(c) Use Newton's me od to approximate If to three deci

Consider tkii\function f x x3 - 12x t 1.

(a) Show that there is at least one. real number r such that,

and 0 < r < 1.
ti

lb) Find fl.

4

(c) Evaluate f(0) and fl(0).
h: 'f(xl)

(d) To two 15140,mt..ajpaces apprOximate x
2

if
9.xl

xi = 0

(e) Use your estimate from- part; (A) o dhow that

4).040512
a .e

and.

.L5
- ;

f ( x2) = 9,308.

es.

f(r) =.0



(f)

2-.10

Use Newton's Method and the results of parts (a) through (e) to

compute the zero of f between 0 and 1 to three decimal places.

.5. Calculate to two decimal places the zero of

f a x ) x3 - 3x
2

+ 2.

which is' between 2 and 3. -.

6. Find an approximate solution of

x-
2
+ 3x = 7

correct to twOrdeAmal places.

7. Suppose f is a polynomial function and f(r) = 5, < r <I5'.

(a) If the derivative f'(x) changes sign over the interval*.-N,b1,

it is possible that Newton's method will fail to generate cloier

and closer approximations to r. Sketch a picturesshoWink such a
I °situation.

,
(b) If f "(x) changes,sign over the interval [a,b], then even if

f'(x) does not change sign it is possible for Newton's method to

fail. Sket a picture showing such a situation.

(c) In vid (a) and(b), what precautions should you take in applyink

Newton's method?

. '

''*7

il

J

a

SS

I

'14

4,



2.al. Higher Derivatives and Notation
0

1

We have denoted the derivative of the function f by the symbol f'.

There are other notations in common use. In graphing f, we often write

y = f(x), so it Is natural to write

I

=

for the value of f' at x.

Andther alternative symbol for is

This notationallows us to abbreviate such statements as

'^by'writing

The symbol

R

- if f : x -4ax2 + bx + c

then f'(x) = tax + b,

2
D(ax + bx + c) = 2ax + b.

sLY
dx

bj
which was introduced by Leibniz (1646 - 1716) to represent 14(x),,is suggested

by the'difference quotient used to calculate it. 10.have defined

4

e

'
f'(x) = lim

f(x + h) - f(x)

h 0

If we replace h by the symbol "Ax" (read "-delta x ") to j1i

ence in x-coordinates, the difference quotient becomes

Th

A

ressio

y coordinates,

f(x + 6x) - f(x)
6.x

icate a differ-

(x + 64 - f(4 ..stands for the corresponding difference in

so we write
,

+ 6x) - f(x)
6x bx

This prompts the hotation

= LI.L4
. Ax dx

f(x). The-symfor the value of the derivative if

*r.

dv ° k /-
is not a ratipl

p



it stands for the limit of a ratio. It is a tribute to the genius of Leibniz,

c:Iyeyer, tigtha.4-9'a notation which, as we shall ste, anticipates some
732
properti6 of, derivatives which permit us to handle their valdes ps though

they were common fractions.

Corm,sponding the foregOingtsymbols ?Or the first derivative, we have

the following symbols for the value of the second derivative!

2 /

f"(x)or", D2f(x),
dx

a2

The Leibniz notation `-'=-,Y= is again suggested by the difference quOtient and
dx

.

the A symbo\for "difference "

ALL.
f'(x + bx) - fqx), "'dx)

bx
.

.

..

d(c(ii)
d(dy) *-To symbolize the limit as & -)0, we write in theshort-

, ..

or
dx dxdx

2 .. , .

.1
. ,

, *

:
, .dx

2

We have seen how to diferentiate'any polynoMial function of the form
..,,

- '

: x -)a + a
1
x+ a2x + . . + a ijY''-'

0
F.'

.

. .

Since the.second derivative of f is still a poLynomiallwe may compute its,
.J.,

'derivative and call,it6,..the third derivative of f,_ denoting its value by any
. ,

__...........-

of the symbols. ..
-,:

- (.

1 I
1

f
4

d
'"(x), t"', D3f(x) t --.-

) ..,.,,,,l.. .,

.. de ' *.
' 11 '4

14(. t'. 'r.'' , '
4N

Similarly, we could find the fourth rivatf4e.bf-f . y ditfer,entiatinf.he
;;,....

third derivative, and so on, to fifth, sixth, .014,,tir higher derivatives.
.1.r1W - _. ,

Geometrically, we have seen that f'(x) can "qep. f rpreted as the slope

of the tangent to the graph'of ,f at the point (x,'1" c and that' the second

derivative cab.be'interpreted as an indicator of, the vQ mature of the grtiph.
t..4: ,

High derivatives do not have such vivid gponietrii.intedriretations:Tor
h

but 4hey do have. important algebraic relationships tethl coeffictents of the

term of f. '

i°

,11.1,
y

I

179`,89

( r

lc

4
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To be concrete let us look at a general third degree polynomial function
.

(1) f:x-4a
.0

x+a2x2.+a3x 3:

We observed in4the first chapter that

If we obtain the derivative

we observe that

f(0)-7 ao-.

`ft : x -4a
1

+ 2a
2
x + 3a

3
x
2

ft(0) =.a1.

We. differentiate ft to obtain the second derivative

f" x 2a.
2
+.2 3a

3
.x;

, .

and observe that

- f"(0) = 2a2.

0.

If we difTereptiate f", we obtain the third derivative

In this ease

. f"7 x -4 2 -.,3a

fm(0) = 2 3a3.

We summarize:. for the cubic polynomial function

I I .

f :x-4a
0

+ alx + a2x2 + a3x

th coefficients'are related to the values of f and its'succe sive deriva-

tiv s ft,,f", and ft"- ateo-x = 0, by the-formuIab:
1

a
0

= f(0)

r 9

a

a
1

= ft(0)

a, = 7 f"(0) 0

a3 r75- ft"(0).

180 . )

1,9

`k 4
a

4
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Now we express f in terms bf powers of x - a:

4

(2) f k 7./20 + bi(x - a) + b2(x - a)2 + b
3
(x - a)3.

Such an expresioll for f can be Pound by synthetic division as in Section

2-2. We can sholfthat the coefficients b0, b
1,

b2, and -b
3

are given by

'b
0

= f(ael.

bjc- ft(a)
(3)

= f"(a)

V
To show that

obtain

b = --1 fom(a).
3 2x 3 /

b
0

= f(a), we let x = a in the expression for f(x) to

f(a) =b0 + bi(a- a) + b2(a - a)2 4-1)
3
(a - a)3 =.bo

. .

The remaining results (3) are almost as easy. We'differentiate/f to obtain
,the derii/ative

a'
whence

.
: x b

1
+
A

2b 2(x - a). + 3))
3
'kx a) 2 , '

ft(a) = b
1
+ 2b

2
(a - a) + 3b

3
(a - a)

2
= b .

1,

'Differentiating -f' we obtain

x
2

.3b
3
(x a

Therefore, 4have

ftt

,r(p) =
-

Another differentiation gives'

so tht

f'": x --) 3b3

fni(a) = 2 .3b and hence 'b
7

3- 3

1

)

1 "
= f' (a) .

r

int(

r

(

wt 1
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Using the foregoing proces for a fourth degr e polynomial function

.111.

4
: x -' b

0
+ b

1
- a) + b

2
(x

.

b
3
(x a)3 + b

4
(x -

we could obtain

10

O

b
0
= fea)

(4)

b
1
= ft(a)

= Vi(a)
'2 2 ,

b
3

=
2

1

3
fm(a)

X

" 1
b - fins (a)
4 2 >- T(

whereftf" is the fourth derivative of f; tihglt is,

of f*. It is common to write

;
(4)

, rather then f"

ft"t is.the d#rivative

v

,'
)for ihe fourth deritrative of f; similarly we use the notation f

(5)
, f

(6
.10!..

..., for the fifth derivative, the sixth derAVative41, etc. It is also Common
. ,

to use the factorial notation '

*ea' ..
7 ....*

;-)

k!= 1 x,2 x 3 x'4 x ... x k'

with the convention that 0! = 1.
N

i
0

..- .

Our results can be generalized: A polynomial functidri can be

where.

(5)

and '

(6)

f x bo + b1(x - a) + b2(x - a)2 +

b 1 f(k)(a),
k k!



. /

Example EXpress f ; x 3 - 2x + 7x
4

in terms of powers of

x + 1. We have the successive derivatives:

f'

f"

fen

f:(4):

x -2 + 28x3,

x --)84x2,

x 168x,

X -4 168.

2-11's

Since x 1 . - (-1)7 we need to find the values of these functions when

x = -1; we have

7

Thus, we can write

f(-1) = 12; b0 =

fl(-1) -30; b1 =

1

0!

1

1,

X 12 x- 12 ,

X,(-30) -30

f"(-1)'f 84; b2 = x 84...42

ft"(-1) = - 168; b3 = x (-168) ._-28

J4)(-1) = 168; b4 = 1.- x (168) = 7

,
cs,f : ;re-t 12 - '30(x + 1) + 42(x + 1)

2
- 28(x + 1)3 +-Y6c-r 1)4.

The same result can, of course, be obtained by synthetic division. .(See

Exercises 2-11, No 6.)
,0000!%.

e

183

193

ti
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Cs.

Ecercises 2-1a:

fi

1. How many nonzero derivatives can an n-th degree,pdlynomial functibn'

hai/e?.
-

2. If we write a fifth degree polynomial function in the form

f ! x b
0

+ b
1
(x- - a) + b (x-- a)2 + b

3
bc°6- a)3-+ b

4
(x - 04 b

5
a)5,

then 'b

5
= k f(5)(a) What is the value-of k?

3. We.rel:leat Tertsof Number 11 of, Exercises and again

tion f : x -+X 3 , 3x. We submit a table to show three

thetic Divisions of f(x) .and resulting quot

l' 0 73 0

'2 4 2

1- 2 -1

1 2

1 4

1.
8

9

consider the nine-.

successive synl

ients by,

l 4

2

1 6

(a) Determine g(x)" and f(2) if

.

f(x) = (x, 2)g(x) + f(2).

(b) Determine p(x) and g(2) if

g(x) = (x 2)p(x) +.g(2):

(c) Determine q(x) and p(2) if

p(x) = (x - 2)q(x) + p(2).

(d) What is q(2)?

(e) Show that, for all x, we can write

f(x)'= (x - 2)((x - 2)((x - 2)q(2) + p(2)] + g(2)) + f(2).

(f) Using the results of parts (a) through (e) of this problem determine

A, B,.C, and D if, for all x,

1

f(x)= x3 - 3x = A(x - 2)3 t B(x - 2)2 + C(x - 2) + D. .

(g) Find the first, second and third derivatives of f : x -x3 73x.

7



'1

(h) TI,vluate f(2), f'.(2), f"(2), :and f"1(2).

'f(2) 4 f'(2) f"(2) ftst(2)
(1) Evaluate and

0'. ' ' .3!

(.3) Compare the results, cir- parti (f) and (i) .

n

14.,,'Consider the functions

4
G. : x x3 .- 3x

f x 42

g x -42 + 9(x - 2)

h : x -42 -,-.9tx + 6(x - 2)2/ .

F x -4 + 9(x - 2) + 6(x -
2)2

+ 1:(x - 2)3.

(a) Find the value of each of these functions when x = 2.1.

(b) What, quadratic function best ,repreents the cubic function

G : x x3 3x. near the 'point where x = 2?

(c) What fiction as) as the best linear approximation to G near
a

the point where =2?.

"(d) What function se4yes as the best quadratic appr.oximation to
.

near the' point : where x = -1?

(e) What .function serves as the best quadratic approximation to G
near the point where x= a?

5. F.'ind the first four derivatives of each of the following functions
: 2 3 14 5

4,x x

3 ,5 7 9 11xx x x- x
(O. f x. # 7.! + 9! 11?

1 X2
x4 x6 x10

(C) g

G

6. .(a) Compile a table similar' to Number 3 toindicate four successive'

synthetic divisions -of 7x4
- 2x + 3 by x + 1.

00-

Us-e. the table of part a) to. write- f : x 47x4 - 2x + 3 in terms

Of' powers'of + 1. Compare your result with the result of

Example 2=11ab.

.185
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° ,

,

(c) Write the functions which give the best lineal:, quadratic and cubic
. - 7

apprdximatiohs to the'graph of f : x -Ox
k

- 2x + 3 near the point
.,

(-,1,12).
.. .

(d) At the,Point (-1,12). is-th6 graph, of f rising or falling? Is

us .
the graph.of f f/tpted upward or downward near the point .(,-1,1_2)?

7. Show that the third derivative of the function

is the. zero function,.

f ; x -->ax
2
+ bx t c, p 0

/

tb

r

r

.90

j ;

'

- ' is
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Chapter 3

CIRCULAR FUNCTIONS

Unlike the polynomial functions we have considered in the first two

41apters certain functions have the property that their function values repdat

themselves in the same order at regular intervals over the domain. Functions

having this property are called periodic. Included in this important class

are the circular (,trigonomerc) functions.

The simplest'periodia motion is that of.a wheel rotating on its axle.0

Each complete turn of the 4heel brings it back tp the position it held at the

beginning. After a point of the,,wheel traverses a certain distance in its

path about the axle, it returns to its initial position and retraces its

course again. The di ante traversed by the point to a complete cycle o1' lts

. motion is aga' a period, a period measured in units of length instead of

unity of time., If it should hipPenthat equal lengths are traversed in equal

times, the Fotidn becomes periodic in time as well and the wheel can be used

1 kas a a oc .4

The model of a wheel rotating provides a basis for our definitions of

the sine and cosine functions, whose values are defined as the second and '

first coordinates', respectively, of points on a circle of radlus one. These.

definitions are compatible with those of ratios of sides of right triangles.

By defining the sine and cosine, functions 1.n terms of a unit circle, their

periodicity is immediately evident'. Furthermore, we can use the geometric

properties of circlesto obtain the properties and graphs of these circular-
. 9

functions (Sections 3-1, 3-2, 3-3).

These definitions and'results are applied to uniform circular motions
.

('such as rotating wheels) in Section 334.d The basic addition formulas are .

. e

deriv4 in'Section 3-5, again by making use of the geometry of circles. These
.

'Rre applied in the next section to the study 6f pure_weves, the simplest type.

.. vof periodic motion, 'While the final section points toward some of the ways.

114044 lle. lrcular functions can be used to analyze more general periodic

7phenomena*.

. tg

se.
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3-1. Sine and Cosine Functions
)

We assume that.you have0some familiarity with the sine and cosine func-

tions, so that much of the material in this chapter is review. You may have

previously defined- ese functions in terms of ratios of sides 9y right tri-p

angles. We prefe nstead, to define the sine and cosine as functions of arc

length on a circle. The usual angular definitions in terms, of degree measure-
, 1

.ment can be obtained frot our dvfinitiou by a suitable change of scale. . Our

.definitions, in terms of the circle, have two great atyantages: first, we

can easily read off many properties of sine and cosine from pr,,pperties, of the

circle; second and more important, our choice of scale will simplify our

dtZferentiatiOn formulas.

For convenience of definition we use the Aide With center at the

origin and radius 1;, the unit circle whose equation is
1

u- +.17
2

= 1.. -

m
The circumference, of the unit circle is 21t units. For any real number x

We measure 'x units around this circle heginnif at the point (1,0). If x
4

is positiv4 we meaeure i-na counterclockwise direction and if x is negative

we measure in a clockwise direction. We obtain in this way a 'paint P with
,

coordinatts (u,v) on the circle given by u,
2

+
2

= I. The first coordi-

nate of P is called the cosine of while the second coordinate of P°

'is called the sine of x. (See Figure 3-1a,and 3 -lb.)

14.

ylgore 3-la

7

40 3'

14

Note that x > 0' and we

measure in a counterclock-
:Wise direction, obtaining
P(11,v) with = cos 8,

v = ain 3



Figure 3-lb

3-1'

V

Note that x.< b, arid we '

measure in a clockwise
'direction, .obtaining P(u,v)
with u = cos(rl), v = sin(-1).

Two functions, cosine and sine (abbreviated cos sand sin), are defined

as follows:,

(i)

cos : x = cos x = the first coordinate (abscissa) of P

sin x = sin x = the second coordinate (ordinate) of P.

The values of cos and sin are easily obtained in certain cases:
- . !

,For example, referring tQ Figure 3 -lc, we see that'since P' is the point

(1.,0),,, we have, by definition

cos 0 = 1 and .sin 0 = O. vf4110

Since the unit circle has-circuldiference 2v units we can measure 2v units

around (in either'direction) to obtain again the point P. of Figure 3-1.

Thus

cos 2v =' cos(-2v) ='1.

sin 2, = sin( -2n)' = 0.

'74.!

(1,0)

To meahlre 2v units
around fran- P, returns
us to P.

This point
has coordinates
'(l4)

Figure 3-1c

189
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3-1. A

To traverse one-fourth of the way around, the unit circle is to thrive ,

'

2 2

.
, thro'gn

2y
units. -Thus-if x = - we'have with coordinates (0,1),

k

so at a

Ise

.
cos = sin

if x = - then we get P2 with coordinates- (0,-1), sO that

cosy(* = 0, sin(- T -1.

(See Figure371d.) .

A Figure 3-1d

. d

Further calculations are indibated at the end of this sectibn a d in

the exercisei.
1

0 . Y

The sine and dosine are often defined in terms of ratios of sides of

right triangles. In Figure 3 -le, the sine and cosine of angle' AOB are

defined by

(2)

.4,

sin LAOB 2
opposite AB

hypotenuse OA

_,OB'
cos LAOB'-

ad acen
hypoten se OA

hypotenuse

A

adjaceht .

Figure 3-le

B

opposite



3-1

44.

To relate these definitions to our,YiarlierIones, we can place the u and v

axed as shown in Figure 3-1f, letting ,.x denote the.distance along the circle

trom:,R(1,O)' to P. The coordinates of P' are (cos x, sin x).

Figure 3-1f

Whether OA > OP (as shown)or OA < or, we(have, by similar triangles that

.0Bccsr-x = OQ a cos aoB

and

AB
f

LAOB.
OA

. ,

Ms the angle AOB corresponds to an arc of length x and cos x and
,

sin x are respectively cos LAOB and sin LAOB.

The right,tNengle definitIonS are somewhat restrictive as the angle

AOB must always be between the zero angle and aright anglerthat-is, the

arc length -x- must be between 0 and . Our definitions (1) involve no

such restriction and ertle us ta define in x and cos x for itU real

number x. Thus (1) gives us anaaturain extension of the definitions (2).

t

p

1..



3-1

Angular Measure

"N.

It is also common practice to measure angles in degrees`.; Degree measure

is established by dividing the circle into 360 equal units, measuring an

angle AOB 'f/ the number of units of arc it includes. For example, if LAOB
1

includes ;. of the circumference wt would say that the angle measures

,
X

o
3600 = 60

We can also measure angles by grs length.

Figure 3-1g (

Note that LAOB determines
the arc length x units
(on the unit circle).

(1,0)

In Figure 3-1g angle a cuts off an arc of length x -on the circle given by

. u
2

+ v
2

= 1. We say that a measures x units. Thit type of measure is

Called radian measure, its unit being called .Qkradian. Figure 3-1h we

illustrate an angle of

).

.1 radian.

Figure 3-1h

192

202

. .

No 'measures 1 radian.',-

oMINowli
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A moment's'''tchaug tndi-cates the relationship between radian and degree

measure. Cleeti.ly, if the radian measure of an angle is doubled, the degree

measure also.doubles. The same result is Qbviously true for halving, tripling,
c A

etc: In general, we have that the degree measure M of an angle a is

,y directly croporticV1 to the radian measure x . Thus.

M = kx

."'

where k is constant: Since M= 360 when x = 2n we have

;360 = k(2n)

ao we must have k =
l70
-77 . Thus

It

(3)

We thus

scale.

x radials corresponds to
180x

degrees.

cc that degree'meksureis obtained from radian measure by changinE

..
, 4 ,

We note the following cqnsequences.of (3).
.

' , '

i lib
(4)

180 ,
1 radian corresponds to ---

n
a 57.296 degrees

11 degree corresponds 'Co I7 = 0.01745 radians.

In working with radian Mea,Sure,,it is customary simply to- write, for

example, S. When we mean 3- ,radians. With degree musipc we shall always

use the degree symbol, such As 90 0, 45 0, etc.

Example 3- . Evaluate sin 00°.

We see 't t ,990° corresponds to

745 X'990
11

radians. we measure

11
,units around the unit circlq in

a counterclockwise direction. If we

= (27t) '4- 3a
2 7 2

we indicate two times arbund the circle

plus a urn, suggesting arritpl at

the point (0,-1).' (See Figure 3-10

Thus sin 9900 '.

ni

r"
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3-1

o

_ -
n'

'

;Example 3 -lb. If x is any multiple of
3-

determine 'COS x and sin x.

\

Solhion. The arclength -
,

7
1

th of a circle and hence corresponds
:.

60 °. At Figure 3-ij shows we thus know that_ angles ioQ and

OQP are equal and hence that OR has length
2
- and PR herd length. .

to an angle, of

p (_._
2

-1,0)

p (.1
1 2' 2

P (1,0)

s'fb.?
Figure 3-1J

Thus P has coordinates's,'

Measurements of

n 1.
cos

2n 3n 4n as °,;TY 3 f 7 f Q f
. a J

13
5)

P
6.

of Figure 3-1k., The coordinates of thqse points are easily.found using

the same techniques as above. This gives us enough information to find nos x

**and sinx. for x any integer multiple of for example, if we wish to
n.

. 3

find cos(-111),
3

we obsel..ve that .,.

.-

- 12
P -
4

(
2' 2

and An

Figuge 3-1k

give the respective points P
2 ,

P3, P4,

-1n
3'

- 57(
3

We measu in 4,pinckiwise d4eCtion first' 5y then, - units to obtain the
n

3

point P2. Thus cos(
1.6fn

-)
1

, the first coordinate (abscissa) of P
2.

--Throughout our'discussion we make use of the facts that.

f. ( 9 ;
sin(x - 2n} = sin 'x

cos. (x - 2n) = cos x

The general'form is stated (5) inSectiod 3-2.

298 4
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A

Exercises 3-la

Change the following radian

(a) 2.1-r

(b)

(c) -27t
3

(a);

- (e) 2v

(r) g

'5.;1-JEA-Aela.following degree measure to radian measure.

(a) 270- (g) 810°-.

'(b) .30o .

(h) :190°

(C) 135° f / (i) 18°

(a) la° {-3) o.4°

measure to degree measure.

. (g)
8g

18g
(h)

3-1

4

60: 195° (k) 1620°

(f) -105° (2)
180

Express the following radian measure, in terms of the smallest positive

angle:'

(a) What'is the sula of the measures of'the angles of aAriangle?,'

of a'rectangle?

(b) Given:'4'a polygon of n sides. What is the sum of the

of the interior angles? of the exterior angles?

0

measure

(c) The smaller of the two angleS between the hands of a clOck at:

11:30 has a-measure of

(d) Over which part of a radiate. does the mi to hand of a clock move

in. 15 'minutes? in 25 minutes?'

.e 1(e) itoW many radians does the minute-hand sweep out in 1
2

hours?
,

in 3 hrs. 50. Min.?
e

195'
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it.,



3-1

44 Give the coordinates of the point on_the'unit circle corresponding to
$

.(a)
3000

A

(b) 12000

5. Express

. between

. (a) 13

(b)

6. 'W4te

'(c)

(d) 15g

each of the following angles in terms of a positive angle

0 and 2g radians.

g
. 16

/ 7 g

4 . 11
(d) 17 g

(--,-/.
two equivalent expressions for each of

3n

the following angles in

terms of o 4

(i) n (2g)' + a n integer, lal < 2g

n (g) +a n integer; kd <

(iii) n (2) +a n integer, jai <
2

241v.

In
, 1.. 12

7.. (a) :Extending the information readily

available from the 30-60-90P ;

tri6ngle in

cOs x and

multiple of

unit clrcle

to the Fight

a, -coordinates

. ,

For 91, Q2,

to,ngure 3-

Figure 3-,13, find

sin x for x, a

2

by drawing a

similar to the one

and labelling the

(cos x, sin x).

(similar
9i2

lk)."

28g

'5

2gg

s

lN

O.

'eco

(b) Which of these points duplicate multiples of IL in Figure 3-1k?
3

(c) Whiich of the points

multiplies of
2

9.

.44

Qi, Q2, 411.2 have coordinates for thee

4 196
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° (d) Since is midway between and
3

,

.

conjecture whether
.

cc.

3-1

or not

T
Y y

3
you can deduce cis T by averaging the value of cos ; and cos ?

.

' Can you make a general statement about reading off values of such

functions fromthe drawing

it it

4 -, 2

ta) Using re'ationships betWeen the

sides of a 45-45-90° triangle,

find cos x and sin x for x,-

a multiple of , by drawing

a unit circle similar to the one

to the right and labelling the

coordinates k (cos x, sin x) for

,Ki, K2, eee, K8.

cos 41 &)S
3

K

2

- A

91 3

K
2
1.d

A

(b)' 'ro4 this circle read off,the following values:

(,1) sin 4:1 . (6) cos 135°

(2) cos 1-1- (7) sin 315°

(3). sin 41 (8) -cos (-225°) .

JAI. _cos
72

i ' (9) -sin (-135°)%.

(5) sin ( - 21f-). (10) cos (3 .360°-+ 45°)

it 0 7

./



3-1
a

. Using the coordinates of the point

indicated on the unit circle to t

right answer the following:.

(a) Find the value of

sin

COS

&51
sin

COS

14-

v
sin ;

3

v.
cos .

3

Wat is the relationship

between

sin .and cos
V

.

ir v
sin -5 and cos ;.1?

- v
IT

&/-..
1sin and cos

In this first qpadrant, what is the sign of the sine? of the cosine?

5v 3n 2v
(b). Find the value of sin , of sin iT,, an1_ d_of sin 7 ; _

5n 2v
of cos 7-6- , of cos ,-3n7 , and,of cos'--

3

In this second

cosine?-

quadrant, what is the sign of the sine? of the

7v 5vFind the value of sin , of sin --17 , andof sin T ;
0. 4

L

4v
of,: cos , of cos , and of. cosIT

In this third quadrant,, what is_thesighiofthe sing? ofithe

cosine? %

11v , 7v
(d) Find the valde of sin -g- , of sin ,,, and of sin 5v

;

11v 7n/ t. 57(
of cos , of cos T , and of cos --i-.. ',

In this fourth'quadrant, what is the sign of the sine?, of the

cosine?

198-
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(e) (i) In which quadrants Wsi/le positive? sine n gative?

(ii) In which quadrants is cosine positive? cos ne negative?

(iii) In which quadrant is,shie persitive and co'ine negative?

sine nega.tive. and cbtine positive? ,bot positive? both

negative?

10. (a) What are the coordinates of P,

indicated onthe,cii:cle to the

right, if the circle has a radius

of l?' 2? 1:47::T? R?

(b) What are the coordinates'pf' T,1

indicated on the circle to the

right, if the arc measure is x

and the radiug is 2? 7?

11. 'Given a circle of radius 1:

An arc which measures 1 radian has

length 1;

.an 9, which measures x radians

has length x?

Given a circle of:Adius

3-1

An arc which measures 1 radian has

length R;

an arc which measures x, radians f

has length xR. -

(a) Shona by similar triangles that the length of the arc is proportional
C

to the measure of tp,earp-,.,and the constant of proportionality is

the radius, or s = Rx

9V 9



3-1

Hi- The minute hand of a clock is 4 inches long: Approximately ho\

far does its tip travel,in ''1.5 minutes?

(c)"A Circle has a radius of 15 inches. How long is the arc which

measures 60 ? 72 0? a

(d)1 What, is the radius of the

circle to the right if the

measure of AB is ;

and the length of AB is

(1)
A 4

in.

(ii)
3

in.

(iii) 10 in.

(iv) x in.

(v) , 3x .in.
1

(e) What is"the radius of a circle if the measure of Al, is x,

the length of AI is x? 2x? lOx?

(f) If an arc of length A has a measure of 14 , what is the le gth

of an arc of a semi-circle? of one-third of the circumference

12. From geometry we know that.ip any circle the areas, of tw sectors 0

circle are proportional to the measures of their arcs; for example:

lea 'sector AOB x

Area sector AOQ '

2

i.e., -Area sector AOB
2x R

2
R
2
x

=
A

2002:14),..

, r

C

a,

I r

Li
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(a) This formula can be re-stated in this way:

In a given circle the area of a sector

AOB = constant x arc measure AB or A = kx, where

the constant of proportionality, k, is ; that'is,

.1
R
2

= ac

What is this constant of proportionality for a circle, of radius 1?

2? 4? ,
\

(b) Ih a circle of radius a, if a given arc has axeasure m, what is

the area of the sector?

(c), In a given circle, how is the area of a sector 'affected if the arc

' measure is doubled? halved? tripled?

(d) In the beginning of this problefwe stated that the area df sector

AOB is proportional to the arc measure. Obviously, the area of

sector AOB is also proportional to the arc.length. What is this

constant of proportionality?

(e) Wha4.is.the area of a sector of a circle of radius 18 inches if

the'arc of the sector is 12 inches long?

(f) How is the area of the sector affected-if the arc length is doubled?

halved? tripled?

13. (0 Illustrate (6) geometrically; that is, show

(b) ShoL that

sin (x -2n) = sin x

cos (x - = cosix.

sin (x . +"2n = Sin x
,

cos (x + 2n 7r) = cos x

where n an integer.

20r- -4- 1

4.1



The Use,S Tables

In a separate bookletewe give tables of approXimate values of cos x

and sin x' for decimal values A ,x up to 1.60 which.is slightly more
t

than . (The number x, of'course, represents the measure of arc length

on the unit mircle, iie., radian measure.) More complete tables: tables in

terms of degree measure and tables for converting from radian to degree mea-
.

aUre are also foundvin the Booklet of Tables.

t,
The ,following,examplesindicate some of the ways of using these tables:

Example" 3 -lc. Find, sin .73 and cos .73.

We simplyrel;d from the tables the values

sin, .73 .6669

cos .73 0 .7452.

Exarti le 3-1d. Find sin 6.97 and cos 6.97.

e our tables do not include 6,97, we do knew that

.

Using

and

- t

sin x.=sin(x. - 2v) and cos x = cos(x - 2v).
. a

6.28, '11e. have A

sin 6.97 p sin .69 0 .6365.

cos 6.97 cos .69 0 .7712.

Exam e 3-1e. Find sin

Using v ss 3.142 we have

- The tables t Lve

.tz

,,Interpolatin , we obtain

sin .524'0 .4969 + 10 (.5055 - .4969).

v 0 .524.

sin .52:0 .4969

sin .53 0 .5055

202
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1

Therefore, sin .5003.

Oficourse, we can observe'that

'1i (radians) corresponds to 30 0

and.read the result tin i

from Figure 3 -12.

and

.3

_1
- 2.

'4

3-1

Example 3 -1-f. Find x.--r..1<-1 that 0 < x < and sin x .885o.

From the, tables we see that

Interpolating we get

7 sin 1.08 ;4 .8820

1

sin 1:09 Ps .8866.

30 ,
x 1.08 + (.01) 1.0865

Example 3-1E. Find sin 2:

Referring toFigure 3 -lm we see that

14,7!.
sin `2 = sin (It - 2)

\I\
t q sin (3.14 - 2)

= sin 1.14

.9086

203

3

'Figyre 3 -lm
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.To

Find sin 100.

.To find where the sin 100 is,located

on the unit crcle,we ask how Many times

2v divides 100. Since 2v p_6.21g3 we

guess that
1007= lo. In, fact'

4"
16 x 2v 16 x 6.283 m 100.528,. so that .

100 = l6 x 2v - .53. We show (Figure 371n)

-that point P is 100 units around the

unit circle (counterclockwise) from ,(1f0)

or .53 units short of 16 revolutions.

The tables give

sin.:53'm :5055

in 100 m -sin .53 m

Example 3-1i. Find cos 2000°. °-

sin -653.

100'

Ptcos 100,sin :00)

'Figure 3-2n

4

Since there are 360° in one revolution,we write , - %

2000 = 5 x.360 + ;- x 360 + 20. Five and one-half counterclockwise revolutions
,.

plus .2.p
0

gives a point on the unit circle 20o - into the third quadrant..
4 o.

We have cos 2000° = cos 200°,= cos(180° + 20°) =,-cos 200. We use the ;-'
.

.

table of No.
.

5 of Exercises 371b to find that -cos 20° m -.914C). To use our

radian tables we first note that '20°, corresponds to .35. (approximately)

s6 that

o-

.,,

cos 2000
o.

-0.9394.

$

204,
21,4

e
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Exercises 3-lb

'3-1

For problems 14 2, 3, 4 use Table 3 in the Booklet of Tables

1. Find sin x and cos x when x is equal to

41(a) 0.73 (c) 1.55,

(b) -5.17 (d) 6.97 (Hint: 2y .1 6.28)

2. Find x ,when 8 < x < and, .

(a) sin x 0.i098 (c) sin x 0.6518

(b) cos x a 0.9131 (d) cbs'x v. 0.5403

3. Using x 314, .approximate the following, interpolating where

: necessary.

11
(a) in -37 (c) sirf 11.5's;

(b) cos :IT
5

(d) cos 417°

Find' x where 0.< x-< 1.57

(a) sin x

Cb) cos x

.

5. Bela/ is a

4.

= 0.2231 --,-(c) sin x = .8714

= 0.7135 (d) cos x =..1759
.

,-:.

table giying values of sin x and cos x hen x is given

in degrees, .Sin'x° and dos x° for angles between

read from the top and left, sin x° and cos x° for

45° and 90° are read froi the bottom and right.

Pi 20° = cos 70p = 0.342.

4

Y r

x

00.

50

10°
150

20°

25°.

300

35°

, 40°

45°

2sinc'x
0

COS' x

0.000 1.000

0.087 0996

0.174- 0.985

0.259. 0.966
/
0.342 0.940

0.423 ''01.90e

0.500 o.866

0.574

0.643- 0.766

0.707 0.707

0° and 459, are

angles between

For example,

":"



a

Using.4the table above find the

(a) sin 75° (c) sin .!;80?

(b) cos 140° (d) cos( -460°)"

6. Using the table itTNumbCr 5, find two values for x in degrees

0° < x° < 360°.

valiteof the following:

vt

(a) lin x = 0.574 (0I sin x = -0.8194

(b) cos x = 0.643.
1

(d)\ cos x =*-0.087.

. \

N
A/

\

4

a
11.

ro
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'3-2. Properties of the Circular Functions

We have defined the circular functions, cosiie and sine, by-measuring

arc length along the unit circle u + v
2

= 1. Many properties of these two - .

functions are'easily derived 'from this &efinition. In this section we der've

11111

a few of these perties.

....,

The valu cos x and sin x

were defined as the coordinptes (cos x,

sin.x).:0 a point P on 'the circle
2 ,%2',.

u -1-1, . 1 such as in Figure 3-2a. ,

Therefore, the coordina,tes.of P must

satisfy this equation, that is:

(1)
2 - t 2

.cos X + sin. x =1

4

This identity will often be useful.

We have followed the usual convention

'of writing cos
2

x rathen.then
2 '

(cos x) , in x rather than

(sin x)2.

Since a square is never negative it f011ows that-

and

v

P(cos x, sin x)

Figure 5-2S

COS*.2AX < cos2 NI- sin
2

x,

sin
2

x < cos
2
x + sin

2
x. .

Combining j.hese with (1.) givesfthe two inequalities

. cos
2

x < 1 and sin2 x < 1,
Ns

which can be rewritten as

(2)' -1 < cos x <1 and -1 < sinex < 1.

Another_covequence of (1) which will be -useful in our approximation

disddsslons in the next chapter is the inequality
1%40.

(3) .

x2
0 < 1 - cos x <

2
.

4

2c2

u
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o t

*4, '

r ,

To establish (3) we uses the familia_r distance, formgla to get (in Figure
»

3-2b) the distance from 15 to Q:

4

. - cos /C) sin2 x

Figore 3-2b

P(cos x, sin .x)

As. u

....

...( . '''
.3."` .;

This distance can li-t exceed lx10, s,rjee,the shorte4distance Letween two

points is measure -along the straight i&ne joining tl4kit.4 Thus.

A..
. i . ' a

' /(1 1 cos x) 2 - sin2 x < lx)

S thcluating and en multiplying out cos x),2 gives;
/- t

2 cos x 4- cos 2 x 4- sin2 x < x2,

and .hLnce (1) gives:

. . -" ' 22%- 2 cos' x < x .

4111*

2
0.41400

Di
xviding

by 2, 7we get 1 - cos x < ., jioting tkt cos x < 1 and hence

1

--,

0 < cos x, we complete the proof of auk .

.
X2

...

.. 0 < 1 -- CO s X < 2
.

-7

4.

f

\ (3)

2082 s8 f
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Periodicity and.Related Results

Thee are several formulas which '

relate the values sin x and cos x

at different points. For example, if

we traverse the unit ..circle #2g, units,

we.arrive at our initial position, since

the circle u
2

+ v
2
= 1 has circumference

2g. (See Figure 3-2c) Thus we have

'(4)

sin (x + 2g) = sin x

cos (x + 21) = cos

3-2

Figure 3-2c

-Functions which repeat their values at equal intervals are said to be

periodic. In general, if there is a number, a > 0 stichthat
o

f(x + a) = f(x)c for all x?

then we say that f' is periodic with period a. Thus the functions sin

and_ cos are periodic with period '21c. As consequences of (4) we have

sin (x + 4rt = sin ((x + 2g) + 2g)

sin (x + 2g)

=sin x

and

(5)

.
sin (x - 2g) = sin ((x - 2g) +'2d)

= sin x

.In-fect, for.-any'integer nl we can make the general statements

sin (x + 2ng) = sin x

cos (x + 2nd) = cos x.

Other useful formulas can be "read qff" from the properties of the unit
. ,

,

circle given by u
2
+ v

2
= 1. For example, the points' (u,v) Apnd *(u,-v)

are symmetric with respect to the u-axis. Consequently, we'see (Figure 3-2d)

that

cos (-x) = cos x

sin .(.J1) = -sfn x

209
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(7):

P has coordinates
(cos X, sin x)

, Q has coordinates
(cos(-x), sin(-x))

-

Figure 3-2d

Using the unit circle we can also derive the two familiar formulas:

,g
sin(-

2
- x) = cos' x

cos(1 - x) = sin x
2

It Figure 3-2e triangle OPR is

congruent to tr angle OQS." (Why?)

Then P(u,v) an Q(u1,v1) are

related so that U = v1 and y= 91

It follows that

cos x = Oi = QS 7sin (i - x)

and

sin x = PR = OS = cos (i - x)s.

'

'210

229



The useful formula

cos x = sin (x +
Q

Ji

dan also be derived,by geometric arguments using the unit circle. Here we

,derive it Using (6) and (7), as'foll9ws

cos x = cos(-x) = sin (- ;-x)]

= sin (x +

3-2

.

We have given but a sample of the relationships which can be derived' from

the unit circle. Other such results will be derived in the exercises and, as

we naed them, in SeCtions 3-5and

ti

221
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, Exercises 3-2

1. Using f(x + 2nsc) = f(x)',. and f : x cos x, find

(a) f(31) .1 f(?-567-1)

(e) f(171c).

(f) f(_ 121.c.)

3

2; If 'f x xj find the values of t in Exercise 1 above.

3. For what values of x (if'any) will
t

(a) sin x = cos x?

(b) sin x = -cos x?
0,,m40110

(c) sin x = sin (-x).?
1(

(a) cos x = cos (-x)?

Hint: USe the fact that (cos x,. sin x) repi.esents a point on the

unit circle.

4. (a) Using only the definition that sec 6 and csc e are reciproc als

of cos e and sin e, 'respectively, show that the expression

sec e sin -

is identically equal to
sec e - csc e sin e - cos e.'

(b) Adding to the definitions of part "(a) the definitions that tan e
A#

sin e
is and .cot e is the reciprocal of tan 9.

cos 9

(1) show that the expression

to
1 + sin e

cos
2

e

(ii) show that
1 + cot e

csc e
and

to sin e + cos e ; and

tan e + sec e -
can be changed

sin e c6t.8

1 + tan e
sec e

can both be changed

show that sin e csc e, cos 8 sec e, and tan 9 cot e

are all equal to 1.

212
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5. (a) Formula (1) sin
2

e + cos
2

e = 1- can be used to an advantage in

changing the form. of many trigonometric expressions. As_ing -this

relationship,

show thdt cos2 e sin2 can be written as 2 cos
2

- 1

or _1- - 2 sing 0;

(ii) show that tan e-+ cot e -can be expressed as- csc e
cos 0

-(iii) shOW that'
1 - cos e 1 +- cos e

can be expressed as

2 csc
2

0; and

.

(iv) show thEZt'Qth cot csc e and
1

sec 8 - cos e

are both equivalent to
cos 61

sin
2

e

(b) is simple to prove sin e cot e = cos e and cos e tan e = sin e.

(Why?). With these relationships, those of Exercise '(b)(iii), and

others developed earlier, prove the following:

(i) (1 -;lin2 0)seC2 e = 1

(ii) (1 - cos2 e)csc2 e = 1

(iii) coe e (1.= cost e) = cos2 e

(iv) §eq2 e (1 - cos2 e) = tang e

2 26. (a) Starting with the relationship sin e + cos e = 1, prove analyti-.

2cally that 1 + tan e = sec
2

e.

(b) By considering iAT and.

the unit circle to the right,

prove geometrically that

1 + tang e = sec
2

e

DW

213
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(c) Startitlg with the' relationship, sing e + cos2 e = 1, proVe

analytically that 1 + cot
2
e = csc

2
e. ,

.

(d) Adding the relationships posed as problems in parts a, b, c to the

earlier ones discussed.

(1) show that
sec e 'tan e .

identically 1;
cos 0 cot e .

ct

(ii) establish that sec
2

+ csc
2

6 is equivalent to

sec
2

e csc 2 0 in two ways; and

(1
,

(iii) show that sin
2
e kl + cot

2
9) + cos

2
Okl + tan

2
e) is

always 2.,

(a) Using the figure to the right

prove sin(x + h) - sin x < PQ.

(b) From this restlt prove that

Isii(x + h) - sin(x) <1h1 .

.Again, using the, figure to the

right prire that

'cos( x + h) cos( x) I < Ihl .

P(cos x, sin(x) and

Q(cos(x +7), sin(x + y)) are

indicated on the drawing to the

right.

(a) By the use of similar tri %ngles,

read off the coordinates of Q;

)

i.e., prove

cos(x + y) = -cos x, and

sin(x + y) = x.

(b) Similarly, prove

,

.

cos(y - x) = -cos x,

sinfy x) = sin x.

214

224

and



4

9. (a) Using the figure to the right

read off the coordinates of

Q' to show that

cos(x = -cos x, and

sin(x y) = -(sin x.

(b) Use formula (6) to extend the

results of (a) 'to show that

(i) cos(x - y) = cos(y - x) = -cos x,

and

(ii) sin(x - 1)-'= - sin(x - x). = -sin x.

10. Read off the coordinates of R to show

cos(x + 71).= -sin x,
2

sin(x + ,cos x.

4

f4

11. Using the relationships (6) cos(-x) = cos x, sin(-x)

(7) - x)
2

= cos x, cos(
2

- x) = sin x,

(a) prove cos(x+ 2) = -sin x;

(b) prove

(i) cos(x + y) = -cos

and

(ti) sin(x + y) = -sin x;

(c) prove

(i) cos(x y) = cosky,-
411

x) -cos x

(ii) sin(5V y).. -sin(x - x) -sin x
)

P3-5

225

= -sin x; and.
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2----1- 2.---The-1 equality 0 < 1 - cos x < 7- was established as formula (3) in

phis- /section. By numerical substitution of various values of x, let

us n w investigate this relationship

Using the table which gives the cosine of angles expressed in radian

measure, complete the following table.

X
(in radians) cos x 1 - cos x

2

2
x

o

0.1

0.15

0,36
0.5

I0.6 ' .

Q.7 .

0.8

0:9

1.0
.

1,42

1.5

2

4

6

i

(b) ,From the completed table, conjecture for

inequality is most usefUl.

which values of x this

13. We know that the functions x cos x -and x )sinx have period 2v.

Find the period of the functions x -4

(a) sin 2x (c) cos 4x

2
(d) cos 2.x

1
(12) sin --x

1

14. Show thqt the functions sine and cosine have no positive period less

than 2v. .

216
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3-3. Graphs of the -Circu r Functions

The sine and cosine functions have been defined in terms of arc length
on the unit circle give by- ua,+ v

2
1. As was the case for polynomial

functions, the graph f these f tions prOvide another geometric device

for understanding their behavior. At,this point for nonpolynomial functions

our primry procedure for graphing is the plotting of points. Fortunately

we can make use of the results of the previous section to simplify pur pro-

cedures.

We first plot some points for

(1) .y = sin x, 0 < x < A.

Tale" 3-3a lists some values of 'sin x which were obtained in .the previous

section. These

Table

,Values

x

points are

3-3a

of y = sin x

y = sin x

plotted

I

in Figure 3-3a.

0

ir

A

V

A

3:

rt

2

2A

3

3g
I--

5A )*'::

*-6-

0

1,
2

--ig- = '71
2

If 874., . 7

1

.17 2.. 87
,e .

, 17

"7 .71

1.
2

0

0 A A V

..11

Figure 3-53a.

'V 2A 3A 2.1!:
2 -3 b

Values of yt sin X) 4

plotted from Table 3-3a.

Figure 3-3b

If we connect these points

with a smooth curve we ob-

tain the graph shown in

Figure 3-3b. A more com-

'plete, picture can be obi

tained.using more points

but this will suffice for

rt
o'ir present purl:loses.

217
t )9 .



%

.3-3

Now we can make use of the properties obtained in the previous section

to extend our graph beyond the interval 0 < x < yr.-The, identity ',

- _,-

.(2) 11

tells us,thatthe graph

graph contains (-x,-y)

called an odd functtOn.

function by a polynomial function with o ly odd degree terms.)

t enables us to obtain Figure-3-3c froM'Fi re 3-3b.

sin( -x),= -sin x

is symmetric with respect 1.o_the origin;_that is' the

if it contains --(x,y). (Such a functionAl also

Later we shaIl show how to-approximate the sine
. ,

Equation 4

-n

-

(3)

We call this, one cycle of the
sine function.

Figure 3-3c. y sin x, -n < x < n

Next we use the identity

sin(x + 2ng) = sin x, ,

a

which holds for all integers n and all real numbers x, to obtain the 7'

graph shown in Figure 3-3d. The identity states algebraically thatthe.graph

of,thesine function coincides.with itself under a tranalition-Of 2ny nits'
. . _

(to the right if n is A negative integer and to the left if n lea posi-

tive integer).
..,

't.

Figure 3-3d. y = sin x

218. 228 ,
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The gra'ph of the cosine function can be obtain n.a ..-aimilar. manner, ,
. .

. ,for we knowthat , - -,0,,,,----44-........=..=-J-- .,,

3-3

(4) cos x = sin (x + 2) .

Thus we can picture a shift of the graph of thei;ine funcion

ta graph of the cosine".functiolf.'

x
2

units to

In Figure 3-3e we indicate this relationship by superimposing on the same

axes the graphs ig the sine and cosine functions.

cos

sin'

4

Figure 3-3e

Translation and Stretching

We havebbserved that the Cosine .functioh can be obtairied from the sine

function by translation;' This process generalizes. The graph of
A

-y = sin (x + C)

where C is a constant is easily obtained by,suitsbly tratslating: *le graph'

of y = sin x on the x-axis. We can think of shifting the graph (in Figure

33d) ICI units to k the right or left according _is negative or posi-
A

tive. For example, in Figure 3-3f we show the graphs of 3,-= in (x + 2) *and

y = sin -(x - under the .graph of y = sin x, to show how .each can be ob-
.

-.tained from the graph of y = sin x by an appropriate translation.

1 ,.

r

219 .2 6



.0"
.....

Figure 3-3f

= qin(x + 2)

....

In Figure 3-3g we picture the graphs of y = sin x, y = 2 sin x, and

y = sin 2x.

"o

y =sin x

y = 2 sin x

y = sin 2x

er-,---

Figure 3-3g

We can describe the graph of y = 2 An x ,ad being obtained from the graph of j

y = sin x by "stretching" each ordinate by factor of 2, and similarly; the

graph of y = sin 2x being obtained by.'"shrinking" each abscissa.



M3-3

The graph of

y = A sin (Bx + C),

called the general sinusoidal curve, can be obtained by combining translation

and scale change. FQr example, to graph

(5)

we observe that

y = 3 sin (2x + i)

sin (2x + ir) = sin (2(x + V)
1

so,that the graph of (5) can be obtained from 5;16= 3 sin 2x by shifting the

graph units to the left. The graph of y = 3 sin 2x can be obtained

frorn'that of y = sin x by "stretching" each ordinate,by a factor of 3 and

"shrinking"4each abscissa by a factor of 2. (See Figure 3-3114)

y = sin x

y = 3 sin 2x
1

.........

y = 3 sin (2k + .11)
2

Figure 3-3h

ti
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Exercises 2:1

For egth of the following, sketch the graphs bf the three equations on

one set of axes over the interval(s) indicated.

1. (a) y = 2 cos x 0 < x 2v

(0) y = 3 cos x, 0 < x < 2v
,

(c) y= 2 COS X 0< X < 2v

2. (a) y =

(b) y =

(c) Y =

cos 2x

cos 3x

cos
1

X

3. (a) y = cos (x

(b) Y = cos () -

(c) y = cos (x +

4. (a) y = -cos x

(b) y = -2 q.b,rx

(c) y = -cos 2x

5. -(a) y = -sin 2x

(b) y = -2 sin 4x

(c) y =- sin
8

x

'7. (a)

(b)

(c)

ye=

Y'=

Y =

-cos (x -

sin (x + 7t)

6os (x + 2)

y - 1 = cos x

y + 2 =sing

I
y +

1
=
1t'in

2x

CJ

'V

0 < x < 27'

O < x < 2v

O < x < 47(

-
2

< x < 37(

< x < 3v

-7( < x < 37T

O < x < 2v

O < x < 2v

O < x < 27(

O <x<2n

< x < 2v

O < x < 2v

O < x <.47(

O < x < 476.

O < x < 47(_

0.< x < 47(

-0 < x < 47(

.0 < x < 47( .
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,

A-

.

0, 0 3-3
*

8. (a)' y = Isinxl

(b) y o= ilsin 2x1

4
(c) y = iisin 5 xl

.9. (a) Y =

'(b) y = Isin (x - i)I

(c) y = !sin (x - 2)1

' 1

-Icos xl

. 0 < x < 2v-

O < x <.2g .

O <x <2n

O < x < 2v,

0 <.x < 2v_

IcOs xl
.

0 < x < 2v

10. (a) y = sin
2

x 0 < i < 2v

2
(b) y = cos x 0 < x < 2v

(c) y = sin
2 2
x + cos x 0 < x; < 2v

O ,

CO.

I

41,

.s.

x
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r
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3-4. Uniform Circular Motion

Let us now consider the motion if a point P around a circle of radius

r in the uv-plane, and suppose that P moves at the constant speed of s

units pr second. We let P
0
(r1,40) represent the initial position of P.

.
After one second P will be an arc-distance s .units away from P

0'
after

2 seconds I) will be an arc-distance 2s omits away from P0; and similarly

after t seconds P will be an arc-distance is units from its starting

point (r,0). In Figure 3-4a we show a point P(u,v), which is st units

from P
0

(measured clockwise if ,st > 0) around the circle given by

2 2
u + v = r .

p

Figure 3-4a

We wish to describe the coordinates (u,v) of P in terms of values of

the sine and cosine functions. Since we defined the functions x -*sin x and

x x in terms of a unit circle, we also drat the circle given by ,

u
2

+ v
2

= 1 in Figure 3-4a. (While we illustrate the case where r > 1,

our reasoning will also hold for the case where r < 1.) The line OP crosses

the unit circle at the point Pi(cos x, sin x).

° We can express. these coordinates in terms,of t instead of x. What

happens to st and x if t is doubled, tripled; halved, or multiplied by

some constant factor 'k? What is x when st = 2Ar? We know that st is

directly proportional to t. It follows that x. is directly proportional to

224

23i

(



O

3-4:

t; that is, if k is a constant, x = kt. When P has completely traversed

the cirdle given by u2 v
2

= r
2

, then st = 2or; it follows that when
.

,st = 2nt we have x = 2o (since the unit circle has circumference 2o units).

Tthes.we have

,2or.
'2y = kk---),

s

e from which it follows that k = . Alternatively we could reason that

Since x = kt, we get

st x

2o

st. kt

2or, 2n ;

whence we arrive at the same result: k = .

r

To summarize we can say that the coordinates (u,v) at any time t

seconds are given by

'and

u = r cos (2-)t
`r

s.
v = r sin ()t.

The constant of proportionality k = r is commonly. denoted by w and

is called the angular velocity of P. It is called angular velocity because

the measure of central angle POOP (Figure 3-4a) may be written as

w = . In t, seconds OP rotates through an angle measure of wt as P

moves an arc-distance of st units. If we let w = , we can write

u = r cos wt'

v = r sin wt.

When wt = 2y, P will again be in the position Po. This motion of

the point from Po back into Po again is called a cycle. The time inter-

val during .which a cycle occurs is called theperiod; in this case, the

perivd is 21 . The number of cycles which occur during a fixed unit of

time is called the frequency. We give a commonplace' example of frequency

when we refer to the alternating current in our homes as "60-cycle", an

abbreViation-for "60' cycles per second." .
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Example 3-4a. Consider the motion of a point P around a circle of

.radius 2 in the uv-plane. Suppose that P moves at the consta t speed of
s

3 units per second. Since w'= =
3 3

, the angular velocity s units

per second; the coordinates of P(u,v) are given by

u = 2'cos (i)t and 'v = 2 sin (i)t;

2 , 2g 3
the period is TT

g
= = ; and the frequency is .4;7 .

v

To visualize the behavior of the point P in a different way, consider

the motion of the point Q which is the projection of P on the v-axis: As

P moves around the unit circle, Q moves up and down along a fixed diameter

of the circle, and a pencil attached to Q will trace this diameter4repeatedly

-- assuming that the paper is fixed in position. If, however, the strip of

paper is drawn from right to left at a constant speed, then the feribil will

trace a curve, something like Figure.3-4b.

4- Figure 3-4b. Wave MotiOn

An examination of this figure,w111 show why motion of this type is called

wave motion. We note,,that the displacement y of Q from its central

position is functionally related to the time t, that is, there is a func-

tion f such that y = f(t), By suitably"locating the origin of; the ty-plane,

we may have either y = cos wt or y = sin at; thus either of these equa-

tions may be looked upon as desctlfoing a pure wave or, as it is sometimes

called, a simple harmonic motion. The surface of h body of water displays a

wave Motion when it is disturbed. -Anothet familiar example is furnished by

the electromagnetic waves used in radio, television, and radar, and modern

physics has even detected wave-like behavior of the electrons of the atom.

222 6
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One of the most interesting applications of the circular functions is to

the theory of sound (acoustics). A sound wave is produced by t rapid alterna-

tion of pressure in some medium. A pure Musical tone is produced by any

pressure wave which can be described by a circular function of time, say:

(2) , p = A sin at

where p is the pressure at time t andthe constants A and !o are

positive. The equdtiot (2) for the acoustical pressure, p, is exactly in

the form of one of the equations of (1) even thoUgh no circular motion is

involved; all that ocwirs is a fluctuation of the pressure at a given point

df space.* Here the numbers A and w have Asect musical significance.

The positive Number.......Ae is called the amplitude of the wave; ,it is the peak

pressure and its square is a measure of the loudness. 'The number a) is pro-,i,

portional to the frequency and is .a measure of pitch; the larger a) the more

shrill the tone.

The effectiveness of the application of circular functionqlto the theory

of sound stems from the principle of superposition. If two instruments

individually produce acoustical pressures pi and p
2

then together they

produce the pressure pl + p2. If pl and p2 have a common period then

the sum p
1

+,p
2

has the same period. This is the root of the principle of

harmony; if two instruments are tuned to the same note,,thOy"will produce no
4o

strange new note when played together.

Let us suppose, for example, that two pute tones are produced with

individual pressure waves of the same frequency, say

u = A cos mt

v = B sin at

,where A, B and w are positive. According to the principle of superposi, r

tion, the net pressure is

p = A cos at + B sin mt.

What does the graph of this equation look like? We shall aqpwer this question

by reducing the problem to two simpler problems, that is, of kraphing (3) and

(4) above. For each t, the value of, p isobtained.from the individual

graphs, ,since

The acoustical pressure Is defined as the difference betwetn the gas
pressure in. the wave and the pressure of the gas if it is left unOisturbed.

22737
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u + v.

To' illustrate these ideas with specific numerical values in place of A, B

and w; let

A = 3, B = 41 vw =n.

Then we wish to graph

(5) p = 3 cos,nt + 4 sin .nt.

Equations (3) and (4) become

(6) u = 3 cos itt,

(7) v = 4 sin nt.

By drawing the graphs of (6) (Figure 3-4c) and (7) (Figure 3-4d) on the same

set of axes, and by adding the corresponding ordinates of these graphs at

each value of t, we obtain the graph of (5) shown in Figure 3-4e. You will

notice that certain points on the graph of p are labeled with their coordi-

nates. These are points which are either easy to find, or which have some

special interest.

2g0
-2" 2 J

;,.

0 311

2 n 2

Figure 3-4c. Graph of Figure 3-4d. Graph of '

v = 4 sin.gt.u = 3 cos itt.

228
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The points (0,3), (0.5,4), (1,-3), (1.5,-4) and '(2,3) are easy to

find since they are the points where either u = 0 or v.-2.0. The points

(0.29, 5 ) and (1.29,-5) are important bqcause they represent the first .

maximum and minimum points on the graph of tp, (0.79, 0) and

(1.79 ,0) are the first zeros of ,p. To find the maximum and minimum points

and zeros of p ipmplves:the use of, tables and herice we shall put off a dis-

cussion of this matter until Section 3-6, although a careful graphing should

produce fairly good approximations to them.

,/

6-

5-

4

3

2

p,u,v

0.3)

1-

-3-

-4-

- 5-

-6-

(0.29, 5)

(9.514)

ee
%

\
% (2,3(

%

i
\

%
s

%

\ .

%

%

% /\' %

(1.79,0)i
0.791i\

1% A\ , /2
,
, / il

V

6

0

/11
/

\. .r%\ /
(1,-3)

s. .

(1.29,--5)

5,-4)

Tr j

t

211

Figure 3-4e. The sum-of two pure waves of equal period.

Dashed curve: u = 3 cos yt. Dotted curve: v = 4 sin yt.
Full curve: p = 3 cos Itt + 4 sin yt; 0 < t < 2. (The scales
are not the same on.the two axes; this distortion is intipduced
in order to shoW the detaili more clearly.). '

229 .
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4 Exerciges 3-4

1. Sketch graphs A' each of the following curves over one complete cycle;,

. and state what the period is, and what the range is, if you can.

(a) y = 2 sin 3t `

(b) 7 = -3 sin 2t

(c) y = 4 cos

(d) y = 3 cos (-x)

(e) y = 2 sin x - cos x

r

I

2. (a) Find the length of thdarc traversed when co = 3 rs= 3, if

(1) t = 4

(ii) tom= 2

, t = 6

(iv) t = to

(b) Fora given w in a circle, how is the arc length affected

if the radius is doubled? tripled?

3gIIN irFind the length of the arc traversed when w = , t = 3 if

(i) r = 5 (iii) r = 10,.

(ii) r = 3. (iv) r = R
. - *

/
(d) For a given w and a givemtime, how is the arc length affected

if the radius is halved? doubled? ,...

/ .

(e) Find the length of the arc traversed under r = 10: = 42-. if

0

.

o
. 2

(i) cIS = g (iii-)
3
--

..

. 2

(ii) 5-

3
(iv) a

(f) If theotime is given and the circle fixed how is the length of the

arc affected if W ''.ia'doubled? quadrdpied?
J J.) ). ) . _.. -i 5 _ , ,),

. -Foe the following, sketch and identify the

(i)- period. :.

('il)* location of maximum point(s) and

(iii) minimum points. in this interval 0 < x < 2v.

(a) y = - 221 sin 2x (c) y = 2Icos

.0

(b) y = 2 cos 4

-; 230-,
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4. (a) On one set of axes, using the same scale over the interval

0 < x < 2v. Sketch the graphs of

(i) y = sin X

(ii) y = cos x

(b) (i) Using the sketches and the scale in part (a), sketch on the

same graph y sin x + cos x.

(ii) From the graph of y = sin x + coS'x, conjecture the period,

and the maximum and minimum point(s).

(c) (i) Sketch y = I cos(x using same scale as (b)(i).

(ii) Sketch y = sin(x using same scale as (b)(i).

(d) Compare the,graphs of (b) and (c).

Have you any conjectures?

to.

tt,

a ,
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3-5 The Addition Formulas

In Section 3-4 we added the corresponding ordinates of the graphs of'

t -) 3 cos it and t.-4 sin it at each valve of t to obtain the graph

of

f : t -) p 3 cos lit! 4, sin nt

over the interval 0 < t < 2. We could have obtained the graph of f more

easily if we had been able to express f in the form

f : t -)p = A sin (lit + a) .

In this section we shall derive formulas Which will enable us to show that,

for all real values of t,

3 cos it + 4 sin it = A sin (lit + a),

where. A = 5, cos a = 11, and
5

sin a =
5

.

The formulas that we shall derive will also hepo us to discuss tangent

lines to the graphs of 4trcular functions and areas beneath them.

We begin by deriving the basic formula

cos (a - 0) = cos a cos 0 + 'sin a sin 0. .

Q(cos a,sin a

cos 0,sin

V

_ _ _

b o "

o

Yoll may have derived this formUla En an earlier course. To begin our deriva-

tion we refer to Figure 3 -5a. (We,illustrate the case for whibhO < 0 <

The distal-de from P to Q is r

232
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(2) PQ = Acos, 0 - cos a)2 + (sin 0 - sin a)2 .

We now use the principle that arplengthon a circle"depends only upon the

unit of measure and not on the choice of axes. If we choose the u' and v'

axes (Figure,3-5b), we see that P now has coordinates (1,0) and Q has

the coordinates (cos(a - 0) ,sin(a - 0)) .

Q(cos 0) sin(a - 0))

P(1,0)

(

Figure -3-5b

In Figure 3-5b the distance from P to Q is

D

(3) PQ = 141 -4os(a - 05)2 + (o - sin(a -,,0))2 -,

We,equate this with (2) and square both sidesto obtain

(Fos 0 - cos a)'4- (sin 0 - 0110)2 = (1.- coS(a- 0) 12 + to - sin - 0)12:

Expanding and regrouping, we get,on the left
!' I i

(cos2 0 + siri2 0) cos2 a + sin2 a) '7, 2(cos 0 cos a + sin 0 sin a)

and oh the right

V._11.11,1 ',1,4-JcOs26Z - sin
2
(a - 2 cos(a - 0) .

233.
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Sines, for all real x, sin
2

x + cos
2

x = '1, we have

.

1 + 1 - 2(c6s a cos 0 + sin p sin a) = 1 + 1 - 2 cos(a- - 0).

Therefore, we conclude that (1) holds; i.e.,

cos(a - 0) = cos a cos 0 + sin 0 sin a.

While we could use a similar argument to derive the formula for

cos(a + 0), we elect to use (1). Replacing 0 by -$ in (1) we have

cos(a + 0,)= cos(a - (-0)

= cos a cos (-0) + sin a sin(-0).
... .

Sine

)

cos(-0) = cos 0 and, sin(-0) = -sin 0 owe have

..

....

( 4) cos(a + 0) = cos a cos 0 - sin a sin 0.

*.t

Earlier we showed that, for all real x,

(5) sin x =, cos ( - x) and cos x = sin - x).

We cap use (1) and (5) to obtain

sin(a + 0) = cos - (a + 0)]

*CP
cos a) 13]

= cQs - a)co 0 + sin (2 - a) s in' 0
4

ox

(6) sin(a + 0) =
)

sin a cos 0 + cos a si

,Replacing 0 by -0- in (6) we. get

sin(a - 0) = sin a cos 0 cos a sin O%
A

The following examplleshoW some of the many fordulas which can be

deril/ed froth the foregoing addition (sum and difference) formulas.

,ExamPie 3-5a. Show thatfor all real x,

(8) cos x
2 . 1 + cos 2x

2

We use (4) with a = 0 = x to obtain'l

cos 2x = cob x cos x - sin x sin x = cos
2
,x - sin

2
x.

1 \

Since cos
2

x +
I

sin
2

x '= r,' can r,Oritee this as
11 }

St,



cos 2x = cos
2

x -

Solving for cos2 x we ,get (18).

- cos2 x) =2 cos2 x - 1.

Example 3-5b. Show that for ali real x

(9) sin (x- + = sin x + cos x

4

We use (6) with a = x, 0 = to obtain

Since

we get

sin ,(x + ) = cos x sin + sin x cos, r .

x n
cos '' = sin -.=

1

J

cos, x t sin
2
x

3-5

Thereforej sin x + cos x = sin (x + ). A slight generalization of this

processkyill be used in Section13-6 to rewrite. (from Section 3-4)

3 c s Itt +,4 sin nt
.

as 5 din Ott + a), 'where cos a = 11. sin a = 2 .

5' 5

Example 3-5c. Show that for all,geal numbers a, b, and

(10) sin ax cos bx = ifsin ((a + b)i) +,sin'((a - b)x)].

We let a = ax and f5 = bx to obtain

(11) sin((a + b)x) = sin (ax +1'bx) = cos ax- sin bx + sin ax cos bx.
go

Formula (7) gives:

(12} sin((a - b)x) 4 sin (ax - bx) so sin ax cos bx,- cos ax sin bx.

Adding (11) and (12) we get

sel((a + b)x) cos((a + b)x) = 2 sin ax cos bx.

'Dividing by 2 we obtain (10):

235
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fi

Exercises 2:2-

1. Show that for all real x

(a) sin 2x- = 2 sjn x cos x

(b) cos 2x = cos
2

x - sin
2

x

= 2 cost x - 1

= 1 - 2 sin
2
x

(c) si-,2. 1. - cos 2x
n x

2

2. Sketch (0 < x < 2n) and show that

(a) cos x- + sin x = if sin (x + Ii) = 1ff cos (x - li)

= c os 4. -741)

*(b) cos x - sin x = if cos (x + p = -4 sin(x -I)
= ,r2 s in (x + 341)

3. Using formulas (1), (14), (6), (7) and Exercise 1 show that

tan a - tan 13
(a) tan (a r3) 1 +'tan a tan (3

.
) tan a + tan 0

(b) tan (a 4.-43' 1 L tan a tan (3

(c) tan 2a -
2 tan a

1 - tan2 a

(d) tan
a =-
2 1 + co a

1 -'cos a sin a
sin a 1 + cos a

14. Use the law of cosines to derive formula (3).

Show that for all numbers a, b, and 'x

c(a) sin ax sin bx = 2-1 cos(a,- b)x - cos(a + b)x]
2 1.

1.
(b) cos ax cos bx = --LcOs(a 2 b)x + cos(a 4:. b)x)

2

236 6
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6. Using any of the formulas developed in this chapter, find:

(a) sin (Hint:
1 ir Tr.

sin
12. 12 4 ,0

(b)
1

;COS 21'
fl

(d) cos .15-
(

..lig

..

.
7. Using Iiriy of the formulas delloped

t

in this chapter, show that for all

values where the functiondare defined the following are identitiesj

it

(a) cos4 e - sin4 e = cos 2e

(b) tos2 31 e
tan e + sin e

2 2 tan e

, 1 1
(c) 1 + sin a = (sin -a + cos -a %2

2

(d) (sin e' +, cos e)
2

= 1 + sin 2e

(e) sin 2e _
2 tan e

+ tan
2

e

()
+ cos e sin e
sin e 1.+ cos e sin e

8. You derived the formula:

cos 2x = 2 cost x 1.

(a) Solve this for cos
2

x thus expressing

function of 2x.

cost x as a linear

J

(b) Consider cos4 x as (cost x)2 and. by the-iame methods as used
---, ,

in (a) show that

1
._ ,..

cos
4
. x = 5.0 + 4 cos 2x + cos' 4x) .

9. "-Using the forthulEi cos 2x = 1 - 2 sin
2

x,,..derive the formula for

sin
4

x: . ,.

(''''''

1- or
..-,_._.., 4 1,

Thin x = 513 - 4 cos12x-+ cos.4x).

(.. .

.
- f,
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10. Show that the f llowing are identities: that is, they are true for all

values for whi the functions are defined.

Aft

(a) sin 2e co cos 2e sin e = sin' e

(b) sin(x - cos z + sin(y - z) cos x = sin(x - .z) cos y

, . , d< 1

(c) sin .3x sin 2x =
1-kcos

x - cos 5x)

'(d) cos e .7. sin 13 tan 2e
cos 36

cos 20

("0sin3 6 114(3isin 3e)
144

(f) sin x + sin 2x + sin 3x = sin 2x (2 cos x + 1)

+ tank \ 2 1 + sin 2x

1_ 1 - sin 2x

2° 238
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3-6. Pure Waves

We promised thatformulas derived in the last section would enable us to

write

(1) .P = 3 cos nt + 4 sin nt

in the form

(2) p.= A sin (at + a).

We apply the formula'(6,of Section 3-5) for the sine of the sum of two

numbers to (2) to obtain 9

A sin (wt + = A sin at cos a + A cos at sin a

= A sih-a cos wt + A cos a sin wt.

NoW if this ins to be the same as (1). we must choose w =
.

n,

(14)

A s trr a = 3

A cos a = 4. .

To find A we .take ifie sum of the squares irk' (3) to obtain

A2
2

A2
2 L2

,sin a + A costa = 3, +, 4.A

2, -2 N.

A.

A ksin a + cos a) = 25,
.

A2%., 25.
.

Thus we can choose A= 5 aqd then choose- a^ so that

air; 6 = and cos a = . v

From tables we get a g .643.

..
We have..seown that, for all-'real Nglues of t, we can write

b S
o'

(5). fr : 3 cos nt + 4 siti nt = 5 sin(nt + a) ...
r

...

.r
-

where a .1: .6143. . :.'

.
-: ,

)

,.
We can use the same procedure which we have followed for' our articular

.

numerical example to express any equation of the type

.

(6) y =,B cos wt +46 sin at

in the foria

(7) .

.a

"A

,y = A sin(wt.-.)

ti
By using the such formula for sin(wt + a) we obtain the two equation

4.4

A sin v = B, A cos a = c,

r , :4 "

?39.,

,
r
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which can be solved by putting

(8)

d choosing a so that

(9)

We can choose exactly one

that

t.

so there is a unique point
. .

by u
2

+,v
2

= 1. There is

d.

A'=

sin a = cos a.= -
-A A

Neer a such that

. 2_

+ (1A-3) '=

0 < a < 2y. We know from (8)

C %

P with coordinates
13

(-
A A

,-) on the circle given

then a unique a on the inl-erval 0 < a < 2y so

that P is a units around the unit circle from (1,0);

(9) hOTds.

Consider thefunCtion.

(10) f x y = A sin (wt + a),

where A > 0 and a <7a < 2n. The graph of f
.

f
' sine outve)." We call A the amplitude; to, the phase; and

of the wave. The amplitude A is the maximum vallie of

MiniOnvaque.of f. The period is the distance between successive

(9r minima) We can rewrite the eglAtioli_of (10), as

that is,, so that

1

is called a pure wave (or
2y

, the period,

and -A is the

(11) P

Fr,om this,we see, that the

(12)

by shifting the y-axis
a

.w
1.rated in Figure 3-6a for

1,*

y = A sin (w(t 4.»
C.

maxima

graph-9f (10) can be obtained from, the gr&ph'Of

y= A sin cot.

unitsto the right. 'his ibformation is illus-

the
,
graph of la = 5 sin4(Itt + 0, where 4a .643.

4
.

sc .

a

24.0;
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Maximum the period is` 2. maximum 44

minimum

Figure 3-6a

y = 5 sin (at + a), a .643

E' We have seen that ingeneral thgre Ts a better way to sketch the graph

4y,= B cos &V+ C sing than to_add the ordinates .octhe.graphs of .s
-

y = B cos wt and y = C sin at. To discuss a fUnctiOn t .defined by a
4 4 V4

y = B cos wt + C sin ut

expediently aid to be-able to graph it quickly, we can write

y = A sin (at + a).

If we write the function in this form we can tell by inspection the period

(-1), the amplitude (IA1), the maximum and minimumvalues (tIAI). Since
O

A sin (wt + a) = A sin w(t + 2),
,a)

we can obtain the graph by shifting the, graph of

y = A sin wt

p a
ve_units to the .eft or right according,as is,positive or negati.w

.

2241-,1,-,1
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-ft'wou10 be just as convenient to express y = B'cos wt + C sin wt in

the form y = A cos (wt 0). We leave this for the exercises.

Example 3-6a. We wish to discuss and sketch the graph of the function

given by the equation 4

(13) y = 2 sin It - 3 cos*2 t .
2 2

We want to write (13) in the form

y = A sin (it + a).

Our addition formula enables us to write

A sin (it ;I- a) = A sin it cos a+ A cos t sin a.
2

For all real values of t we require that

3 3A sin t cos d + A cos t sin a = 2 sin 3 3t - 3 cot t
a.2 2 2 2

Therefore, we must have

A cos a = 2' and A sin a,= -3.

Following our earlier procedure we write

2
12 ,...(cos a + sin

2
a) = (2)

2
+ (-3)

2

whence we get A =
2

A7. Referring to the unit circlp of Figure 3-6b, we see

that the point ( .= 2 lies in the fourth quadrant.
il3

a

o
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1
Figure 3-6b4.

We/now find a' so that cos a/ =
'---2

and sin a/ = .831. From

our.talaes we get at 7,1 .98. Since a = 21t - a' wehave_

4'

_a s", 6,28 - .43 = 5.30. A
. - _14

Therefore, we can write (13) In the Convenient form

(14) , Y4,71.447 sin it a), where a *60.

att.

By insp ction we can'tel that the 241.
period is the amplitude

3.
2

is 1/1.5, the phape is 5.30. A sketch appears in Figure 3-6c.

"3
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Figure 3-6c

Graph of y = 2 sin 3. t - 3 cos 21t = sin (1t + a), where a L. 5.30. -2 2 2

'nercises '

1. Sketch each orf-the following graphs-over aeleagt-twóOeits Periods.*

Showtheaoplifude And period_of each.:_ _

(a) ,y = 2 cos 3t

(b) y =2 cos (4)

(c) y = 3 cos (-2t)

(d) y = -2 sin (i-)

(e) y = -2 sin (2t + v)

(f) 'y = 1 cos (3f +

O

244
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4,

2. Without computing the value of a, find the amplitude and the period of

eadh. ) --- '

.

/

(a) y = si:;*\3t + cos 3t
,,,

.
i,:

(b) y = -2 cos itt + sin\yt
I

(c) y = 2 sin
2 2
t - 2 cos lt

(d) y = 8 cos + 6 sin ICI
3

(e) y = 6 sin 4'1', - 2
2

2t
cos

(f) y = cos 2.1iL - 4 sin
57rt

3 Express each of the following equations in the form of. y = A sin (x + a),

(where 0 <'a.< 2n):

(a) y = sin x + 1/ cos x

(b) y = -sin x + cos x

(c) y = sin x - cos x

(d) y = sin x---cos x

4. Express each equation in Number 3 in the form y = A cos (x + a),

(where 0 < a < 2y), by two methods:

(1) Use the formula for the cosine of the sum of twoangles;.i.e.;

cos (0 + cp).

(ii): Convert the answers of Number 3to A cos (x + a) by the use of

trigonometric identities, suchas sin 4:p = cos (- - (p),

(a)

sin (e + 2n) = sin 0, cos (-e) = cos 0, etc.

Using the addition formulas, show that y = 914T sin Tit- 3-16 cos ni.'

may be put into the. form of any one..of the following '(0 < a < 2y)

(i) y = A sin (at + 0)

(ii) y = A sin (wt - a)

c (.ii) y = A cos (wt - a)

(iv) y = A cos (wt + a)

(b) By the use of trigometric identities show that the four expressions

of part (a) are equivalent. r.
Sketch the graph indicating the period :r the amplitdde A,' and

(using the form y = A sin (wt + a))1 indicating the phase.,
...



3-6

,6. Express each bf the following equations in the form y = A pbs (nt - a)

for some appropriate real numbers A and a. -

(a) y = 4 sin nt - 3 Cos nt

(b)'y = -4 sin /ft + 3 cos nt,

( c ) y = -4 sin /ft 3 cos nt

(d) y = 3 sin Tut 4 cos rut

(e) y = 3.sin /ft Ycos nt,

7. Without actually computing thagalue of a, show on a diagram how A

and a can be d---rmtwi...frO the coefficients t and C of cos at

and sin at if each of the fo lowing expressions of the form

B cos at + C sin at is made eq '1 to A cos (at - a). Compute a,

*
and find the maximum and minimum values of each expression, and its

period. Give .reasons for yotir ansWers.

(a) '3 in 2t + 4 cos 2t

(b) 211in 3t - 3 cos 3t.

(c) 7sin + cos (2)

Verify that the superposition of any two pure waves A cog (at - a)

and B cos (at - p) is a pure-wave of the same frequency, that is,'

that there exist rehl values C and y such that

A piwt (at - a) + Bcos (at - p) = C cos (at - y).

9. Show that any wave of the form

y p B cos (gt - a), (g # 0),

can be written in the' form
$.

y = A cos (at - a)

where A is noprnegative, 'd),, positive-and 0 < a < 2n.'

a

246
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3-7. Analysis of General Waves. Period

2vWe.have seen that the superposition of two waves, each with period --

s1ich as-0those given by

y = B cos at and, y ='C sin at

gives a pure wave

y = A sin (at + 0)
AKOh

of the same period. Now.we direct our'attention to the superposition of two

waves with different periods. Suppose, for example, we had to deal with

11,

(1) y sin'3x - 3 cos 2)1.

. av
,The period of sin 3x is -- the period of cos 2x is -- = v. At this

3 2

?1(

Point a simple observation is, helpful -- namelypif a is...a period of f

then 2a, a, 148, etc.,are also periods of f. For example,^V4 know that
.

.

sin 3(x + 21) = sin (3x + 2v) = stn 3x
3

and hence it follows that'

sin 3(x + 2(4)) = sin 3(x + + I)

= sin [3(x + 21) + 2v]
3

2v%
= sin 3(x

- 3
+ --) = sin 3x.

In general, we must have4for each'integer p

. foe'
,27(

sin 3(x + n( --)) = sin 3x

and

cos 2(x + rig) = cos 2k:

In particular, we have:

sin 3(x + 2v) = sink

two

cos 2.(x + 2v) = cos 2x

so that 2v is a period for both sin -3x and cod 2x?- Thus the function

defined by (1) has period 2v. The number 2v is the least common multiple *-

of the respective periods
2v

and v.
3

247r,
z. 5'T
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ow.

- In general, suppose that
=4_

27t ,2t
Suppose a b but th t and have a commoh%multiple, that is,

'4 a

there are positive integers m and n such that

(2) y = A sin (at + a) + P si bt +. (3).

9

If ,a = b, we.can proceed as in the prey us section to express y as a

a
pure Wave With period . If a /.- then y may still be periodic but

a v,- ,

is no longer a pure wave.
;

(3)
2n 2n

m
a

= n b .

We can then choose m and n so that they have no common factors and (3)
2n

holds. In this case, the relation (2) is periodic with period m . This
a

is exactly the situation in (1) where a = 0, a = 3, 0 = - 2, ,b = 2 and

we can choose M = 3, n = 2 so that

2rt tic
m a n 17

(2n) ,
The period of (1) is then m

2n

a
- en,

2n . 2n
Of courser it may be that and have no common multiple, in which

a b

case (2) is not periodic. For example, the function

y = sin nx + cos x

notp ;periodic. This is/difficult to proVe and ita proof is omitted.

Theeriodicity of (1) is thus easy to determine. There is little elise

we can conclude ih general-about (1). About all we can do to simplify matters

to.sketch separately the graphs.of

u = 2 sin 3x, v = 3 cos 2x

4
and y = u - v. The result is shown by the three curves in Figure 3-7a,

As

2 5,, 3;

O



y, u,v 1
I

1

f , 1

I . 1

u =2

1

2 'TT ?(

Al

v =3

'At

* 3 -7

1 1 1

1 v=-3 t%

I \ 1\ \

Figure 3-7a

u = 2 sip 3x,,,,y = 3 cos 2x

y = u - v = 2 sin°3x - 3 -cos 2x,

0 < x < 271.

The-superposition of sine and cosine waves,of different, periods can

produce quite complicated curves. In fact, with only slight restrictions,

any periodic function can be approximated arbitrarily closely as a sum of a

finite number of sines and cosines. The subject of harmonic analysis of
tt

Fourier series is concerned with approximatingperiodfc functions in this
way. The principal theorem, first stated by Fourier, is that a function f,

of period a cap be approximated arbitrarily closely by sines and cosines

for each ofNwhich some multiple of the fundamental period is a. Spicifically,t
`oi

' o
f(X) AO + (Al cos

211x
+ Bi

2eX
a

47tx+ (A2 cos
a a

+ B
2
sin ax)

(1) ,

44g+..

2n7tx e 2nxx. 4.

+ (A
n

cos + B cos *--). .--1
a n a

'and the more terms we use, the better is our approximation.

21'259 b



J
As an example, consider the function depicted in Figure 3-7b. This

function .efined on the interval -n < x <11 by

(2)

For all other values.of

f(x) =

0, ife = -n

1:00 if -n < x < 0

0, if i= 0

1, if 0 < x < v.

.r
x we define f(x) .by the, periodicity condition-

.

f(x + 2n) = f(x):

This function has a particularly simple approximation as a series of the

form (1), namely,

( 3 )
x

+
sin 3x

11' 1 3

sin 5x
4 + +

5

t.

sin(2n - 1)x\.
2n - 1 '

0 0 0

O

0

4 Figure 3-7b h

Graph of periodic function.
.

0, if x =

1,.if 0 < x < v
x -4f(Z) = °

0, if x = 0
f(x + = f(xr..

-1,, if -v < x r 0

qi

Fourier series.
4 s

+
n x iinja sin 5x ....4..,.sin(2n 1)xN.

3 5 2n - 1 "

As an exercise, you may graph the successi'e approxiMations to f(x) by

ttaking.one, then two, en thine terms of the serieb,epd iet-how the succes-

sive.graphs approach the graph of y = f(x).
Q.

250
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...
. ---NN, Exercises 3-7

,

:-
. 6

1. Without setcfling, find the periods,of the functions defined by the
. . .

following expressions

:.(a) 2 sin x + cps"gic ' .

-

.

e

-

6 (b) cos i -,sin
. - x

71-(c) -sit; gx - 3 cos ItX 1r
.

1."1.
3j cos 12x,- 2 sin* x

(e) 1 - 2 sing x + 2 sin

...(f) Icos xl + sin x

(g) +

(h) 41simp4 - 11cos 4v xl:
3

2. Sketch the graph of

cos
x
2

x

2

y.= a sin x
/

by Urst-ketching y1 = 2 sin' x,4 then y2,= sin 2x on the same set of

+ sin 2x

ti

rr

axes for the interval 0 < x < 2y.

'3. Sketch graphs, /or 1x1 < v, for each of the following curves.

n
(a) y = - sin x

. r
(b) ;

sin x
+

sin 3xN
. n 1 3 '

-,

= 4
...(_-_ +

sin x sin '3x..4. stn 5x)__
v 1 . . 3. , 5

6

'4. (a) Find 4e periods of each of the successive terms of the

namely,
0$ 1.

sin ..x
sin-3x sin 5x

, ,.

3 5 '

series (13);

(b) What terms of the general series (1) are missing? From the symmetry

properties-'of the fl.petion f defined by (2) can ypu see a reason

fdr the absence of'certain terms? 40

.251
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5. The symbol [x] stands fOr the greateStinteger less than or equal to

the real number' x.

(a) Graph the greatest integefunction x -,[x]..
(This function is sometimes called the "integer part" function.)

.(b) Graph the periodic function x --4x - [x].

Indicate its period and its maximum and minimum values.

(This function is known as the "fractiobal part" functiOn.)

(c) (i) Graph the periodic function x -4(x), where tx)

sents the distance from x to the nearest integer. Indicate_

values of the function.

.

(ii) Sketch the graphs of x -4(2x) and x

On each graph indicate period, maxima, Oidlminima.

(iii); What is the period of x -,(nx)?

What are its ...maximum and minimum values?

6.
.

Graphtthe periodic functions defined below in the interval, 0 < t < 2.

[Note: See No. 5(b) for definition of l Best integer function.]

Ca) f(x) = [sin tocl

(b) f(x) = [cos tx]

(c), f(x) = [2x] - -2[x]

7. The function f defineXi by the equation below is periodic. Why ? -

1, x rational
f(x) =

0, x irrationala

4'

4
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Chapter 4

14

DERIVATIVES OF CIRCULAR FUNCTIONS

In Chapter 2, we discovered that the,derivative of a polynomial function

is another polynomial function (of one lower degree), which can be obtained

.algebraically using the idea'of limit, We can show that the derivative of a
.

Icirculaifunction is another circular function; Using simple geometric

arguments we shall show that the derivative of the sine function As the cosine

function and the derivative of the cosine function is the negative of/the sine

function. The first section of this chapter indicates how to obtain these

results for the particular cases at x = 0, using the same wedge method to

find eqUations 9f tangent lines employed initially for polynomial graphs.

These resultsoare interpreted in terms of limits of difference quotients

in Section 4-2. Later hey are extended to pure waves and interpreted in

terms of motion. In Section 4-, the idea of approximating circular functions

hoy polynomials is introduced, The resulting approximation formulas are useful

for constructing tables and finding limits.

4-1. The Tangenc'at the y-Intercept

As was our approacil with the polynomial functions,, we begin our discus-

sion of the calculus of the circular functions by considering the behavior of

.$'° their graphs near the First we want to find the best straight line

appro;imation to the.graph of y = cos x at the point'where x = O. Since

cos 0 = 1, we are talking about the point X0,1). We conjecture (from

Figure 4-1a) that
*,,

the line given by y = 1 , is- tangent to the

graph of y = cos x at the point (0,1).

(1)

253
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Figure 4-1a.

Since the curve is symmetric with respect to the y-axis it is sufficient
. .. -

to consider positive values of x. We know, for .C.< x < 721 , that

(2) cos x < i

and hence the curve lies below the line given by y = 1 .in the interval

0 < x'< 2. We now wish to show that near the y-axis the curve lies above

'the line given by

(3) Y = EX

where E is some positive number. (See Figure 4-1b.)

Y

I,

a

Figure 4-lb

Obr x 0. and near zero the graph of

Y = cos x lies inside'the shaded region.

254
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(4)

To establish this we use the inequality

1 - cos x <
x2

2

4-1

which we established in Section 3-2. For x / 0, the quantity x
2

is larger

2than ; so we have

This can be rewritten as

(5)

that is,

1 - cos x < x2, if x 0.

cos x > 1 - x
2

, if x / 0;

cos x > 1 + (-x)x, if x / O.

It 0 < x < e, then we have

+ (-x)x > 1 - ex;*

whence we, have

(6) cos x > 1 - ex for 0 < x < e.

In summary, we know that-Tor any positive number E the graph of the

osi,ne function liesinside the wedge of Figure 4-lb on the interval.

0 A
a where a is the smaller of e and . Since we can make E

as small as we please, we conclude that the line given by y = 1 is indeed

the tangent to the graph of y = cos x at- (0,1)-. Conjecture (1)-is

established. The line given by y = 1 is the best straight linelapprdxima-

tion to the cosine curve at the y-axis.

Having established conjecture (1), we now consider-4ie-problem of finding

the equation of the tangent line to the graph of y = sin x at (0,0), its

point of intersection with.the y-axis. We conjecture' (from Figure 4-1c) that

s.
,

the line,given by .y = x is tangent tq the

graph of y = sin x at the point (0,0).

,

255
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/
sin

Figure 4-1c,
V

First we shall consider only points to the right of (0,0); in particu-

lar
2

.lar we shall restrict our attention to the interval 0 < x <

To establish our conjecture for x in the first quadrant we shall need

two inequalities for the sine function:

x(1 - x2) < sin x < x.

We canderive'these inequalities using our unit circle definition of sine.

Since, for the moment, we are only concerned with the interval- 0 < x < ,

we picture only, the'first quadrant.of the unit circle in Figure 471d. .

4

..
D(1

sin xc

cos x

sin x

cos x

cos X IA

. Figure 4-1d

Part of the Unit Circle

256 .
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The line trom B to C is perpendicular to the line from 0 to A and

hence is shorterthan the arc AB. If the measure of the length of the arc

BA is x, then,the measures of the lengths of segments BC and OC -are--

sin x and . cos x, respectively; therefore

(8) sin x < x.

This means that, in Figure 4-1c, the graph of the sine function lies below

the line given by y = x to the right of (0,0), as we have indicated.

Our second inequality uses an area argument. Referring to .Figure -1d

again, weychoose D on the line through 0 and B so that EA -is perpen-

dicular to OA.. The first coordinate Of D must be 1 (the measure of '

radius
sin x

OA). Sidce OB has slope ----- , the Second coordinate of D must
cos x

sin x
be ----- . Thus the region enclosed by triangle OAD _has area.cos x

(9)
24010(AD) 2(1)/sin

xl

2 "cos xl.

The area oc_ztp circular sector OAB is proportional to x; that is
\

the area of sector OAB is given by mx, where m is'constant. To deter-
t \

mine m, .we note that if x = T. , then the sector OAB is.one-eighth of

the area Of the unit circle; thus
i .

1 .2.
8(71(1) )

. ,

jso that m =
1

Thei.efore, the area of sector OAB is 2 x. Since the.

area of the sector OAB is less than the area of triangle Ot tihst

aince. the region of 'sector OAB is within the triangular region ,ODk), the

area of the' sector is less than the area of the triangle; that

1 1 sin xx <
2 2 cos x

The cosine function is positive for 0 < x <
2

so we have

(10) sin x > x cos x.

We know .front (5) that if x0 then

cos x > 1 -'x
2

.

4

We use this'in (10) to obtain the inequality

(u) sin x > x(1 - x2), for 0 < x < 12 1- .

257
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2.*

With-inequality (11) we can show that y = x is indeed the equation of

the tangent to the graph of = sin x at (0,0). Suppose, for some positive

value' e, we have the line whose equation is

y = (1 - e)x.

If x
2

< E and 0 < x < 2 , then we have 1 - x > 1 E. Therefore, we get

sin.x > (1 - x2)x > (1 - e)x-.

In summary, the graph bf the sine function, to the right of (0,0) and as'_
---J

close as:me please to zero (that when x
2

and 0 < x <lp must lie

between the lines-given by y = x and y(1 - e)x. (See Figure 4-1e.)

s.,

Figure 4 -le

The graph

lies in here.

X"

The case when x < 0 is now easily handled since the graph of the sine

.function is symmetric with respect to the origin; that is, sin(-x) = -sin x,

so,thet when re- < x < 0 any points (x, sin x) must lie between the lines

given by y = x and y = (1 - e)x. (See Figure 4-1f.)

258
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4-1

Figure 4-1f

We have now ettablished both conjectures:

(10: the.line given by y 1 is the best straight line approximation

to'the graph of y = cos x at (0,1);

(7) the line given by y = x is the best straight line approximation

to the graph of y = sin Z 0).

°'296.9



Exercises

1. (a)f,a, Write the equation of the tangent to the griph of y = cos x at

(0,1).

(b) What is the slope of thetangent to the graph of y = cds x at

(0,1)?

(c), Determine lim
cos (0 + h) - cos (0),

h
h -40

2. (a) 'Write the equation of the tangent to the graph of y = sin x at

(0,0).

(b) What is the slope of the tangent to the graph of y = sin x at

(0,0?

3.

(b) Determine lim
sin r(0 + h) - sin (0)

h -40

Use the results of 1 and 2 to determine

(a) aim
cos h - 1

)

h -40 t

h

sin hh
(a) To the right is a portion of

the graph of y = cos x near

and to the right of x = 0.

P is the point on the curve

where x = 0;- Qi(i = 1, 2,

6) are points on the,

curve where x = .5, .4, .3,

.2, 11, -ftir--FffrTRe slope

of !!Q1' PC42; ' PQ6 U
the table provided.

(b) lFind the equations (in the

form y = b + mx, whard b

is y-intercept and m the

slope) of each of the lines

determined,by PQ (i = 1, 2,

4).

1

Had Cos Sin

.5 .87758- .47943

.4 .92.106 .38942

3 95534 29552

..2 .98007 09983

.01 .999995 .ol000

A



5. (a)

4

To the right is'a portion of

the graph of y sin x, near

and to the right of x = 0.

.P is the point on the curve

where x = 0; = 1, 2,

..., 6) are points on the

curve where x = .5, .4, .3,

.01. Fi9dthe slope

of PQ1, PQ2, PQ6. Use

the table provided in Number 1.

,.
4-1

(b) Find the equations 'of each of the lines determined by

PQi (i = 1, 2, ..., 6).

Assuming the following relationships established in this section
P

x
2

1 - dos x <
2

() cos x#>'1 - x2

(8) . sin x < x
,.

(10) x dos x,< sin x
...

show that the following inequalities hold: *

(a) xcos x < x

(b)
1 -

< x > 0
cos x x
x 2

1 - Cos x
(ii) >

2
x <0x

(iii) xi <,s
x 0

I

a

x3
(c) sin x > x - 7- o < x <

sin x
(d) - < I - cos )5. o lx1 <

1

ti

.1 0
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4-1
4t

7. Given (from Section 3-2)

and (from Section 4-1)..,,

0

show that ,

4

0 < 1 - cos
h
2

h < 7

h cos h < sin h < h, for 0 < h <
2

1 -
h
2

<
sin h

2 h
for 0< Ihl <2.

8. Using the premises of Number 7, show that

- cos hi

'

for h / 0.
h I

4

c
9. Use the results of Numbers 7 and 8 to estimate

sin h
and

os h
r h

1 -

for h = 0.01 and h = -0.001.

10. Use the results of Numbers 7 and 8 to determine

(a).
sin h'

h --,0 h

(b) lim 1
cos h

h --)0

27142

1
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4-2. The Derivative as the Limit of a Difference Quotient

The deriyatives of the sine and cosine fundtions are, res

cosine and the negative of the sine functions. These geweral

obtained by first finding the equation bf tangent lines to the

sine and cOsihe".functions and then discovering the slope funct

tives). We shall, however, obtain these derivatives directly

certain difference quotients.

First we shall show that for the sine function

f x -) sin

we can obtain the derivative

by considering the

f': x -*cos x

given bydefinition of f'

(1) f'(x) = the limit of sin (3. + h) sin x
h

4-2P

ik
'1

pectiv4l1, the
iCe

results Trft

graphs'of the

ions (derive-

askmit;'of

as h approaches

4

The geometric interpretation is that for some fixed Point (x,f(x))

graph of f, the difference quotient

sin (x + h) - sin x

h

AA

is the slope of the line passing throughhe points

(x + h1, sin (x + h)) and (x ,

(See Figure 4-2a, where h is shown negative and rather large.

tangent
line

slope = doses

10

zero.

on the

x + h, sin (x + h))

s

slope sin; (x + h) - sin x

iv)

Figure IP-2a

j63 .
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r

0:
1+.2

a y;

We wish to show that
, J r-.4. .

(2)

.

h)
.i. -.., sin kx

)

h) - sin x
- cos x.

h -)0
h

iThis c n. be shown:13y arguing (as we did in Section 4-1 for,x = 0) that the

graph of the sine function lies inside any given welge about the tangent when

ilif
.
is small enough. We shall use a more direct method An which we employ

(6)the results of Section 4-1. We begin by usAng the addition.formula (6) se

Section 3-5. Wa caniwrite

Il sin (x +'h) - sin x sin xicoS h + cos x sin h - sin x
h h

0
sin.xk

h,cos - 1% n
) + cos x

sih h
7, =

h
. -

We must now show that as h approaches zero, the first term approaches

zero and the second term approaches cos X. In other words we moist show that
w

lim
cos °h - 1.-

0
'a 'nod

lim Lii....12, 7 1.1
h

.. h--) 0 h -i0 4, t

In Section 4-1 we showed 'the horizontll line given. by y =i1 is

the best straight line approximation to the graph of y.= cds x at (0,1).

Since the.slope of the best straight line appro44mation (horizontal tangent)

to the graph of y = cos x of x = 0 is zero, we have

Therefore,

lim
h -) 0

cos (0 + hr- cos (0)
h

cos h - 1
. lim - o.

h -40
h

°

A
In Section 4-1 we also showed that the line given by y = x is thg best

straight line approximation to the graph of y ='sin x at (9,0). ,Since the
c,

1 ke of the tangent to the graph of y = sin x at x'= 0 is one, We have

lim sin (0 + h) - sin 0
1.

h --) 0,w

a



(2)

Now we can conclude that

sin (k + h) - sin x
lim cos x;

h -) 0

We have establiihed that

(3) D(sin x) = cos'x.

.44-2

The derivative of the cosine function at any point (x ,cos x) can be

obtained by calculating the limit of the difference quotient

co§ (x + h) - cos x

h

as h approaches zero. We leave it to the exercises (EXercises 4-2, No. 1)

to sivi; that

I

4

...,0000m0.000 D(co; x) = -sin x.

sin h
Example 4-2a. Find the limit of as h approaches zero; that

.11, evaluate
*

lim
sin 2h

. _

h 40 h

We can argue that since

sin h
a 1 for small 1h1,

.
it follows that

sin 2h
ts 1 if 12h -is small.

2h

sin 2h sin 2h

We can write

- 2
h 2h

g.
. If Ihl is so small that Ighl 7iiil small, then

sin 2h
a 2.

h

- \

Alternatively, and more directly, we can say

a

c

I-

-sin 2h
- 2 lira

sin 2h /
.

h
h -to 0 h t40

{ 2(1)

s

= 2.
*

,

i

J
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Example 4-2b. Find the equation of the tangent line (best- straight line

approximation) to the graph of the sine function at the point (a , sin a),
It 7( 7t

'when
a =

We can write x =.a + (x - a).' so that sin x =sin [a (x - a)]. Using

addition formula (6) of Sect n 3-5 we get

sin x = sin g Cos_f_x -J.0) + eos a sin (x- - a).

If we let x approach a then x - ,approaches zero. We can replace

cos (x - a) and siiit (x - a) by their best linear approximations:, cos (x a)

by 1, and sin (x - a) by - a (from (1) and (7) ..f Section 4-1). There-

fore, as we let x..approach a, t14 expression which gives the best linear

approximition t'o. sin x is

, sin a(1) + cos'a(x - a);

that is, the equation"' of'the tangent line at the point (a , sin a) is

When a F.

y = sin a + cos a(x C a).

the equation of the tange'nt to the sine curve is

When =
e

7,t71 the equation of. th tangent is,

y=1;

A
that is, -the tangent to the sine curve at

It
,1) is horizontal, When

a = the equation of the tangent is z

C'

1

(
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16

3:k

It

0

57t

y = 1 - the tangent,at

sif
7 + 7`x - Td_7,-- the tangent at

1 5y.
y = -

1/

- ... the tangent' at

Figure 4,2a

Tangent lines to the graih of y = sin.x.

Note that the slopes of-these three tangent lines are
-AO

.-.-

-
15 respectively. As we should expect, these values of the derivative,
2

could have been obtained by direet substitution in (3).

o, and

1 p;

c
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Exercises 4-2

1. (a) Use Addition formula (4) of Section 3-5 to show that the difference

quotient

cos (x + h) - cos x

doo.,

can be written in the form

(cos h - 1.
cos x k ) sin x(2411).

(b) Show that D(Cos x) = -sin x.,

2. (a) Assume (from Section 3-5 ) that

Sin (a + 0) = sin a cos 0 + cos a sin 0

sin (a - 0) = sin a cos 0 - cos a sin

TAgt ,ei.j;. 0 = x + h and a 0 = x.

Show that e?

sin (x + h) - sin x = 2 cos (x

f3

Isin (13).

(b) Use part (a) to show that D(sin x) = cos x. L-

3. (a) Given (from Section 3 -5):

cos (a + 0) = cos a cos 0 - sin a sin 0

cos (a - 0) = cos a. cos 0 + sin a gin 0;
0

4
, .Prove;cos(x+0-cosx=-2sin,kx+-h9sin

2.

0.

(b) Use part (a) to show that D(cos x) = -sin x.

c

4. I 1
sin (.01)

.s/ From the inequality 1,. estimate sin (.01).

.011 1

1)1(b) From the inequality 1; cos (-.00
0005, estimatq

cos. (-.001).

h
1

n
5. .(a) Using the i

h
2

quality 1 <
Isi
777- < 1, estimate

(i) sin ( 1) 'Op sin (.001)

(ii) sin ( 01) (iv) 'sin (.0001)

h
2

(b)' "Using the i equality/ 1 - --f- 5 cos h <1, estimate

cos (.1) (iii) cos (.001)

i )1.) cep i.01)
).

(1-v)
cos G0001)

... 28
(

.
.
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6
,

a)
,

Using 1

11
1

hi
< h 0,

ILL'
and the results of Number 5(b) find. (a) t

the value of
11 - h

i for
, .

. ,

(i). h = .1; h = -.1 (iii) h = .001; h = -.0Q1 4.

(ii) h = .01; h = 7.01 (iv) h = .0001; "h = -.0001
eS

2

(b) By the use of the inequality 1 - 11 <J-222-1 < 1, illustrate that
2

sih h
the difference between --,E-- and 1 becomes smaller and smaller

as the values assigned to !hi decrease.

Show this for the following values of h:

(i) h = .1; h = -.1 (iii) h = .001; h = ;.001

(ii) h = .01; h.= -.t/ (iv) h = .0601; h = -.0921

)

sin h i

,,

't

-7. The limit of --rs- as h tends to zero is one.- This may be stated

hn .

- lim LE 2It symbolically as lim
sih

1. .Find the by two methods:

h -)0 x -4 0 li
.

.

(a) by u se of the inequality 1 -

(b) by direct applicatioh

/) \

h
2

sin h
h--

h
< lo

lim
sin 11

- 1

h -) 0
h

. 8. When appeOpriate use

sin

h
h . 1 - cos h _lim - 1 and lim

h
h 40 - ' h 40

in evaluating the following:

(a) lim sin x
3x

x 0

(b) -'lim
sing x

x -)0

Jam 1,
'x

(d) lim
h

' sin h ,-
-

(f)

lim sin 7x

x 0
sin 3x

lim
cos 7X

X -4 0
cos 3X

F

0

(i)

lim 1 - cos, e

e e
2

tan 2x
sin x

lim
X -4 0

lim
sin 2t

t- 02t2 +t

lim edot 2e
e 0

(2) lib
x 40

cos e

e

sin 5x - Isin

xl
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4-2

9. (a) Evaluate lim
sin x - sin a

x - a
x a

(b) Usk the result of part (a) to show that

lim sxX_1.
x 0

10. (a) Find the slope of the line tangent _to the graph of y = sin x at

the point 'where.,

(1)
IT

X =

(ii) x 3

(iii) x =
3v

(iv) X = V

(y) X =

(vi) x = 0

(b) Write an equation) of the line tangent to the graph of y(= sin x at

each of the points in part (S). 0

11. (a)a) Find the slope of the line tangent to the graph of y = COS X at

the point where

(i) x = (iii) x -

,

(ii)* x 21 (iv) x =0
3 .

. 4

- (b) Write ari equation of the line tangent to the graph of_ y,=- cos x

, at each of the points in part (a).

12. (a) .For what values of x does the,graphof y ='sin x have a

.fiorizonta tange t line? 4 '',S1 %
ft

'r

(b) For what alueso x does the graph of y = co: x have a

horizontal tange t line?1,1

4'13. (a) For w t values` of x does the graph of y sin x have the

.tange line given by y = x' or a p iqa lel to the line given

by y = x? a

/b) Answer the above question for the graphlf y = cos ,x;

14. .(a, For what values of x dOes the graph of y = bin x have the 0

tangent' line given by y = -x or a:line parallel to the line given
.S

. by y = -x?

( ) Answer the abo qubstion/for 'the:graph of y = cos x.

I

4

t I 270
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4.2

15. (a) For what value of x does the graph of y = sin xs"have the

tangent line whose equation Is 2y = x or parallel to that line?

(b) Answer the above question for the graph of y = S x.
tt

16. , (a) If f : x -+ sin x, ,then f' : x -, cos x. Find f' (640n),

. f!(-200% - i) , f' (60n - 4) .

(b) If g : x -)cos x, then g' : x -o -sin x. Find .0(600n), ,

g'(-200n - g.), e( og - iL).

17. (a) If f : x 11n x and 'f' = h show that h' = -f.

(b) If f : x -o sin x, g : x -o cos x and f'..7 h, g' = j, show that

h' = j / and h = -j'.

18. (a) In the interval lx1 < 2n for

what values of x does the

function, f x -0 cos x,

increase? For what values

does the function decrease?

(b) Sketch f and f' (on

different graph's but uqing

the same scale) to illustrate

your answer.

-2n

-27t

f
I

x

x

-n

-1

-

n 2n

-y
-1

2:t

19, Without fihding'its'derivative, determine, for. lx1 < v. TO?kAshich
. ,values of x the function f : x -*cos 2x increases and for which

.'g43.

this funttiOn"decrea es by the'fol owing two protOOliresv
t

, -

(a) Extend th solution of part ( ) of Number 1 to the pres nt problem.

(b) Inspect the graph of the function

f -0 cos 2x.
e4 ,

20. In the intervalerval ILI determine 'by the following two procedures the

values of x for which the function f : x -0cos(2x increases and

for which it decreases.

(a)

(b)

.

o
f

,,
Extend tile' solution of part (a) of Number

Snapect the graph of, the function,

I

I f 1

n%
x -* cos(2x +

2, 4

4
I

\ 271
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21.

22.

For what Value:, of x over the 'I terval 0 < x < 2y do the'sine func-

tion and the cosine function both ncrease? For what values of x do

both functions decrease?

For chat veil/es-of x over the interval d < x < 2y do the following

. functions al? increase? all decrease?

(a)' x -*sin ac-
2

(b) X
0 ,

x

(c) x -) sin 2x

23. How large must the constant a be for the following functions

increasing?

24.

(a) f : x ax - sin x

(b) 'f : x - ax + cos x

(a) demonstrate the concavity (downward flexure) of the graph of

x -sin x at x = .4 by showing that at x = .3 and at x

the curve lies below the tangent to the curve at x = .4.

(b)
IsDemonstrate the convexity (upward flexure) . of the graph of

x -*sin x at x = -.4 by showing that at x = -.3 and at

x = -.5 the'curve lies above.the tangent to the curve at x

'282.
j
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4-3. Linear Substitution

4-3

Now we" urn to the problem of determining the derivative of a function

specified by an equation of the type

= k sin (ax + b).

Such*E1 function is obtained from x = sin x by linear substitution; that

is, x is replaced by the linear expression ax + b, and y by .

To detetmine4 DEk sin (ax + b)), we try to obtain the limit, as h

approaches zero, of to difference quotient

k sin [a(x + h) + .1)3 - k sin (ax +io)

A

which can be written as

k sin [(ax + b) + ah) - k sin (ax + b)
h

Using addition formula (6) from Section 3-5, we can express the n

the difference quotient as,-

k sin {ax + b) cos (ah) + k cos (ax + b) sin (ah) - k sin (ax + b).

r of

',7actoring, we obtain for the numerator
a

k sin (ax + b)[cos (ah) - 1) + k cos '(ax + b) sin (ah).

The difference quotient can be expressed in the more useful form

k sin-(aZ 0(cos Tah) - 11
J +-k cos (ax o[sin (ah)1.

As we prepare to take the limit as- h a proaches zero wm make one further

change (suggested by Example 4-2a and Ex rcises 4-2, No. 8) n the form of

e difference quotient: t/

-

l 14,.

ak sin (ax + bfl.
Ell -.1
ah "

l + ak cos (ax +
, .,-0(sin (ah)1rcos

/ (ah)0a

As h approaches .zero, ah approaches zero; ancrwe know (from (1) and (7).of

Section 4-1) that
cos (al - 1

approaches zero and
sin (ah)

approaches one.
,

(ah (ah) 411
.i

We conclude that

1D(k sin ax + b) = ak sin(ax+ b)1 Lim
cos( .-ah

ah).
+ alc co-s ax + 1)) sirx(ah)

h (, ah)
n's

in(ax+ b) 0 + Eik cos(Eix;+b) 1

= ak cos(ax+b) .
./

213 2 8 3
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4-3

6

We can express Our result in the form

14)

3.<

if f x )ic sin .(ax + b),

then x ak cos .(a)t + b).

Similarly we 'could show that

(2)
if g x k cos (ax +

then ,gt : x sin (ax +

Using cly and (2), we can obtain the slope of a tangent to any sinusoidal

curve directly.

Eiample 4-3a., If f x 3 sin 2x, find f' (n) . From- (1) we have

ft x ) 3(2 cos 2x) = 6 cos-2x

so that

f' (n) = 6 cos 2n = 6. ,

Example 14-3b. Find the'equation of the tangent line to the graphof

.ty = cos (x + at tti9 point' (7-1- , 2). Using y' to denote the value of

the derivative, we use (2) to obtain

6

.
At the point (37i- ,2) the slope of the tangent to the graph is

.
-sin (fik + ) = -sin i = - I-3- The equation of the tangent isa

, I .
1 L, II Ir. / I.,

.e> ' Y

1

2 Id'

We can use the - graphs of y =,
1

cos (x.4 .) and y = cos. x to give one

geometrical interpretation of this result. (See-s-Exerciees 4-35 NO. 8.)

Example .4-3c. Use (1) and the facts (from Section 3-2) ;that

(3) cos x = sin - x) and sin.,x = cos (ir- 7 x)

to obtain the derivative of the cosine -function. / /?.

We ha e from (3)

cos: 'x -

f

J

4

alt"

-



.1

11

We use (1) with k = 1, a = -1, and h = i to obtain the derivatilie

Exarftple 4-3d.

cos': x (-1) cos (i. - x) = -sin x.

4104

ind the derivative of

f : x -4 sin x
b

1

The function r sometimes written

f : x -) sin
o-

x,

is the functim wholue at x is the siile of x degrees.

we carp express f as

Thus, formula (1) gives

..
2y

x
o

x radians,
300

fit x icos x).

Since

.

The primary justification for defining sin x in terms-o'fferc length

rather than degree measure, is that we then obtit the-simple formul
....

%
4:..D n x = ,cos x

4 .6.%'1

.

If we had used,degree 'asure then we would htive had the 14s satisfactory
.

4 formula , ...

silof

l): = Scos4 .." \

. '
...-,.,..

.. .:',

, .o.

/ Cif:

10*

.
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4-3

Exercises 1111

Using formulas (1) and (2), find the following.

(a) D[sin (3x - . (a) Dr5 -cos (i ;I)).
,

(b) D[-2 cos,
x

3)] (e) D[l sin (-x + 721)]
2

(c) D[-Ain ( - ) ]: (f) D[-n cos (2n - 2x)]

I

2. For the following functions determine

(a), the slope. of the graph at 'the. point indicated for each:

. .
77(

(i) f : x -4 cos (-x + 71-) x = - -- ,
3

(ii) f x -4 -sin (2x - . x = g ,

(iii) f : x 3 cos + 2x), X =

3n x.
(iv) : x

1
sin ( - ) x = 0;

2 2 72-

(b) the equation of the line tangent to the graph of each function in

part (a) at the point indicated. .
s ,

\.... If two functions f and g are directly proportional; we mean that

there is a ,constant c such that g(x) ...cf(;). . .., 1

.6 (a) Ijow are their derivatives related?
/ . '

(b) Illustrate your answer to part (a) when f(x) = sin 2x, and

g(xi = -2 cos (2x - 7;).

4. (a) (i) For what value(s) of x over the intP'rval 0 < x < 2n does

tie graph of the function

f x -*sin x + cos x

have a horizontal tangent linefr
I

OA), ;Give the equation(s) of the tangent lineks).

(b) =Answer the- questions, of.' part (a) for the function

g: x 4 + 'a.. cos

; 4

off'
.

(c)." Answer-the questions or (a) for tile function
,7 4

Ai-,
h 4 ; X -4 3 sin (2x 4- T) ,,4 3 ccs (2x + .

4
\ ) .

1 2+6

4



5. Show that if

f : x -"k cos (ax + b)

then

f' : x --ka sin (ax + b),

Employ the method of linear substitution used for the function

lix,-ksin (ax .+ b)

at the beginging of this section.

, 6. In Example 4-3c we used the facts that

cos x = sin (1 - x) and sin x = cos (i x)
2

-4-3

a

to obtain the derivative of x x. Uge the same method to fihd the

derivative of

x k cos (ax + b),

given that D[k sin (ax b)) = ka cos (ax + b)

. (a)
'sing

o_

Find the,limit of as a -'approaches zero..
a .

(b) Find the derivative of

'f : x -)cos x°.

8. (a) On one set of coOrdinatir axes sketch the graphs of f : x -)cos,x

and g : x -)cos (x + r

1:)) Show that th tangent line to,the graph of f at the point

(11- 'f0)) is parallel to the tangent line to he graph of g
3 3

at the poi (12
12-r,

g(21-),

9.. Use the difference quotient1definition of derivative as it applies to

the sine and cosine functions tOevaluate each of the following

h(a) lim
sin (x + 11), - sin x

h -)0

(b) li cos x cos

(c) lice cos (3, + h) 1 cos 3x

h

W."

witot

I .

, .5



4-3

-3 sin 4,4-
4

+ h) + 3 sin

* (d) lim

h -4 0

+ nl

(e) lim
sin

k 0

(f)

»COS
lim

(n + k)

. k

x n
2

+

sin (i)

h) 4. cos k
2h o4

h 0
6

s
10. Sketch the graph, of each of the following on the-- val' [ -n,n].

(a) y = siryx

'(b) y = sin (x -

y = -sin x

y = sin 4-x)

- (e) y sin - x)

,
Y = cos x

(g)
Leos (x -

(h) y = cos (JX) ..-."

(i) y = cos ( -
2

11. Find
dx

for each of the following.

y = sin x

(b) y = sin (x

(c) y = -sin x

(d) y (-x)

(e) = sih, - x)

(9 y = cos x

(.,g) = cos (x - 721)

(h) y = cos (-xt

-"y = cos (12-1 - x)

4

4

I

b 4

.1A

II`

.

Olt

..'*
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24-4. 4Velacity and Acceleration

In Section 3r4 we discussedkotion
,

FigUre 4-48.) If lobint P is moving'

countercloCkwise _starting at A(1,0)
.

he 't = '0 and if the aA- is,

covered at the uniform of 1

unit pAsecond-,. the coordinate6 Of

P at time t are A

X = cos t

y = sin t.

'Let us draw a line thTugh P

perpendicular t,o thel5c-axis.

Q be the foot of the perpendicular.

We shall study the motion of theipoint

Q as t increllvs. Wh

B on the y-axis and': 9

moves from 0 to A' (-1

back to O. At' t = 2n,

ands forth on tile rx-a3ti s

in a circle with

A ( -1 , 0 )

radius 1. (See

Jr; ;
4

B

x

11

0 cot Q * (1,6)

Figure 4-)la

en t = (a* quarter circumference'', P ,hasqenhed .
4has reached 0. As t increases from to n, Q

,0) . Er'om t = n to t =
2

, Q moves from AT

.

Q is back at A. As we see, Q oscilla/es back

This motion repeats b..t time intervals of 2n.

Let us find the velocity, of point

we take the derivative of the functi n

(1)-
.

which- represents the

. derivative of f is

f : t -) cos

poaritift of the point

Q at any time To-do this

Q at time t. As 4e know, the

t.

(2) "4 t.

During thi first halrrrevolution, -(0 <, t 'n), the velocity is negative

.which shosfs that Q Is moving to, the left.". The velocity is

and . t =-Tr. At t = 5- then Q = 0, f' (i) = -1. The sperm,

' absolute value of the Velocity, has its maximum value when. t

N

ao,

0 at t 0

which the

4
=

During the qecond half - revolution (n < t < 2y), Q is moving td.the

fg h t (31) = 1 is the maximum velocity and speed during th'; time iner-
2

The motion relleatt6.* after' t

2789 A.
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4-4

-What is the acceleration,of' Q at an3/ time t? The acceleration is the

,derivative of the, velocity 'ft, that is, the second ilorivative f" f.

In this case, sitce

(2) f': t to

(3) ' t -4-cos t.

bl

. The velocity decreases when the acceleration is negative and increases

wnen the acceleration is positive. Let us lee how this works out. During

the.fi.rst quarter-revdlution, f" is negative but f' is also negative. A

decrease of f' means,an increase in its absolute value, that is, an increase

in:Speed.

Between t = --
2

and t = cos t is negative .and ;sin t is positive.

Hence, f' 'is'negative and f" is positive; f' increases from -1'-to 0

ancrthe speed decreases from 1 to 10.

Between t = * and t = 21
'

sin t and .cos t' are both negative so

that both f' and f" are positive. Both velocity and speed increase from
° t
0 to 1.

Finally., for . /1_ < t < 2y, f"

Q slows down again to 0.

- .

is negative and f' is positive K, that

xample 4-4a. Show thp't f"(t)0= -f(t). In what quadrants is f"

' (a} positive?

(b) negative?

and.

4

(more

Since

,
briefly,

.

fu _f).

f"(t1 = -cod t

f(t cos t.

fi(t) = -f(t)

Hence, .f"(t)p'.is positive when` f(t) = x is negative, that.is, in

quadrants II and III; f" is negative when x is positive; that is,

drants I and IV.
v-

cf

280
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Example 4-41o. To find the position, velocity and acselera pn of

wheri t =
3

. Wes have

)

.

cos

. f'(3) = -sin
3 2

- --". -0.86'
o

1
% f (n) -.cos -5 -

lc ; 1H
3

enee, after seconds, the point Q is at xf

,/".

Theleft at -- distance units per second. h acceleratlon is2...

units per second each second, which means that the velocity 1.-s decreasing at. c

and is
90-

moving to the_

.1 .
-
2

distance

1
the date of

2
unit per second per second. (The speed is increasing at this

rate.)

4%. .

We cin'generalize oar discussion 'by considering uniform motion on a circle

of radius r Where the point P moves the

diatine4 k in ,to
)

seconds. (See Figure

4 -.4b.) Let 9 be th4,Meisure of angle
.

AOP in 'radians. Then

kt' .

e =
r

As in Section 3-4 we let 1;'

.

ci)

The coordinates of P are

x =

Y =

We 'let
46

r- cos at

r sin wt.

so that

Figure 4-4b

(.4) f t r cos wt. 6

o /

-If Q' is the projection of P. on the x-axis, then the velocity and accelerao
..1-_ , .

tion of Q are given by the functions
.

v ..()
1:.

f': to-4 -wr sig,at

.
a

and

(6) f": t ) -2r cos wt.
.

4-- ..
. -

. ,

t..

281
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.' . .

respectively, Now Q o?cillates between'' A (r,O) and A' (-r,0)* The time

requtred, for One os,cillation back and forth.is obtained by. using the circum-..... .

ference 2nr Ids the arc, so that kt'= a thisWe call ths time T\\.:the 'period
., .

'4-of the motion. ..Then .
.

r
2nr"

=
2n

k

Note that

(7) f" =

%ff

. \

which is called ,r; differential equation.. We say that f(x) = r,cos tut is

solution'apf this equation. .
4 r (I

7

Example 4 -4c. A point P moves on a circle of radits! 10 feet a the
,r

rate of 2 feet per second. Find the position of its projection Q and the

. k
velocity and acaeleration of 'Q after -5. seCondi .tince w'=

, 2 1

- \,
.r. 10 5 1.

1 N .i,

t"
f I

.
f t -410 cos 5 ' . .,

'and ,

For t = 5 we'have

since

and

f' t 10 k- =:72 sin ,

t -
5

cos t
5

f(5) = 10 cos 1:=

fe(5) = -2 sin 1 -1.68

0 (5) =
5

cos 1...;z

`cos 1 tt 0.54

sin 3. 0.84.

When t = 5 seconds, cQ is about 5.4 feet to' the right of O. .It'is
. .

moving to the left a 1.68 ft./sec. approximately. The velocity is decrees=
, . .

in g at 0.22 ft./ . each second so 'that Q Eli speeding up ,at this rate.. . ,
t:

. r,

. ..

"Ow
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4-4

/ .
.

Let P move around the cir.C1e-, of radius, 'r as in Figure 4-4b but this

1 time let 'us study the motion of the projection R" of P' on the y-axis
.

(Figure 4-40. The point R is at,

y = r sin 8 = r sin'cut..

.If g. is the functiOn

(8) g t -)r sin wt,

then
4'

(9) rm cop

and

/
(10) g11-: t =no

2
sin cot.

v

O

The point R starts at = 0
. . s

A

at the point and. oscillates up

and down on the y-axis between B '

and . B' . It completes an oscillation

0
2n

after the time -- Note that

"*.11
?ej g"(t) -tc2 g(t)

or more briefly

AI

We have discussed 'd-the

in Figure

However, we may, interpret ft(t)

g"
I ..c02

V.gure 4-4c

motion of ecil of the pointiR
i %%ZI

and g' (t) as the horizontal and

vertical components of the 'motion of

P itself. Notice that

f' (t)/ = -closet),

A

r
r

.

x

Q and '11 indicated

4Q\
\ -,4 ,,'\,

, 14- 4( ,,

g'00 = co f(t)
.

.. \ t

, '
\ -i.,

Ilkkt

'

IF;
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4-4
.4.

The poSition and velocityof Q at time4 t are giAn'by.

and of R

= r cos wt-

ft(t1 = -ru) sin cut;

o g(t) = r sirr cat

'
: 0'0 rco cos wt.

The actua velocity 'of P is feund using the Pythagorean Theorem in tri7

Sngle PQ :

Since a.) =

k at "which ,t

that "the dire c

motion Of P

. .

liff'(t)12.4-,[gt(t))2.

= 42[g(t)I2t+ 2[f(t)

cbi g(t) )2 -4-(f(t))2

cur.

au =.k; ' so that as we iight expect, v is the constant rate

e arc is changing with time. You can easily convince yourself

ion of v is perpendicular to thi radius OP, so.that the

s in the direction of the tanvpt, as,it must be.

If we work with the horizontal and vetica compoli accelerationof accelerpton

of P in' the s Me way,.we find that

,

'

a =If"(t))2 )2

= 14-032i(t)]2 + g(t1)2

car'

and that the dire ion of the acceleration is toward 0.
.

irf.t) 12 4= [g(t)?

9

.P284'
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-Exercises 4,4

e
.

1. Suppbse P move's around the circle at the rate of . It arc Onite. perIi
-

second- 'Find-£%le horizontal and vertical position, velocity, and
" ....6.

acpeiti-ation when the following values 'are &reit tM Adius and time.
,

. .,
'(a) r = 1

°
', .

. , ..

. P

(I) i t = 0 0 iii) t ,-- 1.,

t .(ii) t = 1. . . : . - iN0 t = 2
, 4

. .

' % )

(t), r = 2 .

,,

(i)' t =0

(ii) t ='rl .

(c) r 6 ,

t =0

t

(iii) t = 2

(iv)' t = 4

't

(iii) t

(iv) t = 3

010%.

.
A .

Iting the result's of NuMber 1 compare the 'position, the horizontal

and the vertical Alocity, and the horizontal and the vertical accelera-

tion of the following if

(a) r anis t =y

(b) r =2 and f.N.-1;. and

(C)' IL= 6 ana

3. Using the results dumber 1 compare the horizontal 'and vertical

position, the horizontal and the vertical velocity, and the vertical

acceleration when t = 0, and again when point. P has traversed 'the

entire circle far,

(a) r' n at t = 0 and at 't = 2)

(b) TS irk.=2. , (i.e.,' at t = 0 and at' t = 4)
,

{61 r = 6. (i.e.o; at t = 0' and at t =.12)

, 4. Show that the square rOptIof the ,sum of the 'squares. of the acceleration

components is the product of the speed and the angular velocity;
4

prove that -Ar(t)12-+ Eg"()12 = s- a), where sr is the speed And 'co

<'..the angular velocity. .t

.e

'

I

28
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--.

5. Suppose a massis atached to'a spring as

wall

spring

mass
r surface

s -"' 1 T T 1 I

GD .

4

. s.
. ..

' When ti-ip spring is unstretched,!the Pointer i,s at 0 on the scale.

Suppose that wee'movethe mass 3 unitsto,the right and release it.

t

C

1,

11,

The mass wil4 oscillate back and forth, It aan be shown that the spring

acts fn such away thai the position of the pointer is given by

f(t) = A cos Pit

where A is a certain number and and m are doniants that measure,

the stiffness of the spring and the mass the cart.
.

5

(a). What is 'the value of "A? ./.

(b) 14hatlis the'periad.6i the motion?

(c) how that f'01 = 0; that is, the initial velocity of the sring

is zero.

(d) Show thj f"-(0)_ 1r! ...,Interpret the negative sign.

(e) Show that f is a-solution to the differential equation f" = .

ms

_AO How far left doeb the - pointer move? -

(g) Show-that at title t = li 11 the'pointbr crosses the point

,
What,are its velocity and acceleration at this time? In what,

.

direction is the,mass moving at this time?-
4

i

(h) At at time does the pointer cross 0 again? Find its velocity

and acceleration at this time. In, what direction is theIlass,

e

i
moving; at thia time?. ''..)

.

4 '1
.

s

6. Draw a figure to
,justify the,atatement that in the case of 'uniform motion

4.0.

in a circle, the acceleratton is toward the c enter. (the'? arrows to show

the horiiontal,and vertical acaeleration;of P.)4 , II.

.
.

28t
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4-5
.

%*

4-5. .Higher Derivatives and Approximations
,

,..

- When we,differentiated
4 a'polynomial function (Chapter 2). we got another

polynomial function. We discovered that if we took the first, second -and-

'higher derivatives of-a-zpolynomial function, we eventually gota deHvative

with value zero for 611 values of x. Th6. will not be the case for a circu-

lar function, since the derivative Of'a circular function is a circular func-

tion.tion. We shall see the if we take the derivative of a circular funCtion, and

then the, derivative of he derivative, etc., we will ?
. . .

Soon obtain the
.

very func70
*

.

''tic)* with which we begA. _/:
0,

For example, if we begin with the function

we get:

. l t)pe `second derivative x -4 -sin x

the third derivative x -' -cos x

f : x sin,x °

tlie first derivative at -4 cos x ,

and tin fourth derivatTrve x -4 sin x.

- .

,

As was the case for polynomial filnctions we can write ...Q9 = f', D
2
f = f",-

Of
=
f4,

=
fiv,,D5f

=
fv,

etc. The Roman superscript notation becomes :

.. .

cumbersome for high orders and it becomes more convenient to use-Hindu-Arab i'4
,

- numerals parenthetieally as D
13
f = f

(13)
. ,Thus the nth derivative* of f ',-

a ,. n-
R

Ls written DfFf(n)
., (It is also a, usIful convention to define the zero-

, - order derivative of f as' f, itself: ,f°) = f.)
e

...

If we take successive derivatives`-of the sine function we get
;,', , 1 , , ,

ft : X --4 cos x

(1)

.
. *

. %.,

Since the fourth derivative is the original function wecan see the pattern

,

1

f" : x -4 -sin x

fm: x -0 -cos x

f_

(4)
: x .4 sin x.

4?

In Leibnizian notation we write 1 r

Dny = (-1:)

n

y =
i
--2. . " 4

dx
dx

n
.

This can be further,atbreivated: we write y
(n)

', when' we mean D
n'''

y.
.4 ,

' .
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4-5

--- -(1a)

4

f(4)
(8Y

f.= f = f =

f= f(5) 2 p(9)
0

f(6) f(10)/
flit f (7) (11)

= f = etc,

4
This result is sdnetimes summarized by saying that each function x

, here y = sin x, cos x, -sin x or -cos x is a solution of the differential '.

equation

.

(4)(0 y/ = Y,

where y
(4)

represents the value of the fourth derivative of x

We know from our polynomial discussion that tale process of differentiation

lowers the degree of the pqlynomiar function., .Thus; if f x --vy is a poly-
.

nomial functiOn of degree n then f(x) is a solution to the equation

e-- (4.1)
(3)

-

Y.

n
,= O.

The first derivative can be interpreted as the slope of,a tangent line

or as velocity; the secondderiyative can be thought of as the rate of Olehge)

of,the slope function or as abcele'ration. While physical and geoilittrical

interpretations of higher derivatives-are more difficult to contemplate, higher

- :derivatives ere useful in approximation discuisions.

Approximations

We want to find a polynomial,function which approximates the sine fac-

tion. To do tiis we turn to the problem of finding a polynomial function

whose firstand higher derivatives "fit" the sine function near zero. More

precisely for each positive '//integer 11 we shall show that there is a unique
.

polynomial function p which satisfies the conditions:

to

* (a). ,the degree of .1) < n . *

,,,,..

(4) (b) p(0) = 0 = sin.0

-tc)" ,the values of the first n derivatives, of p and.the sine function

are the same for x = 0.
. -

(
To construct such a polynomial function p we need to find the coeffi-

cients: a0, a
l',

a2,
' n

for

(5)
. 2

p(x) = a + a v+ a x- + ..; + a
n
x!t.

. ',.
0 1, 2

Since conditions (4b) and/(4c) determine the-values

.

o

,

288
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p(0),, 15'(0); p" ((S),, p(n) (0),

. we need only shold that these values 'determine the coefficients of

(5). ",

P(x) -in

First try .to' approximate the sine functioK by. a first degree polynomial

function;. i.e we suppose that n = 1 so that

and

-
i

Therefore, we have

(6).

,For f: x ---) sin x,

we hate

(7)

p(x) -7 a + a x
0. 1

.

p' (x) = al

/ p(0) =a0 and pt (0) 7 al.
1

f(x).= sin x and f 1(x) cos x ;

f(0) = 0, ft(0)-=

.
If tthe polynbbial function" p is to satisfy the conditions of (b) we

require that ' ,,, -

p(0) = f(0) and p'(o) fig). .

Combining these requirements with (6) and (7), we conclude that

4

1
a0 0 and al

, .

Thus there is exactly one polynomial function p of degree ri < 1, such that

= f(0) and ,p' (0) = fq0); and that functiop is given by p(x) = x.

Consider now the case when = 2 ' so that 13. has the form

,

p(x) = a0 + a
1
x + a2x

2
.

, . . /
In this case, we have

pi (x) = al + 2a'2x and ph..(x) = 2a2

,.

,p,0 that

(8) 'p(0) =° ao, p'(0) = a-1 , p"('9) 2a
2 -N

Sitice f : x -+ sin x, wec have (from (1))

289
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. .

f(x) = sin x, fl(x) = cos, x, f"(x) x

so that.

.k) fq0)= 0, f'().= r, f"(0) =

If p is -to satisfy the conditions of -(4) with 411 = 2 we require that

. (10' p( 0) f(0), p? (0) = ft (0) p" ( = f" (

4

Combillingthe reqUArements of 10) .with (8) and (9), we conclude thti

Et

0
0, a

1
= 1, .and 2a

2
'=

The cases n = 1 ,and n = 2 result in the same polynomial p given by

p(x) = x. This result is not surprising since the Second derivative of.the.,

sine function is zero when x = 0. Now turn to the case for'which n = 3;

i.e., we suppose that p. is'a polynomial function of degree 3 given.by

1 2

2
R

.p(x) = 8
0

+.8 X 4 8 x + 8
3
xJ.

Differentiating, we get

and

For x = 0 we' hale

(11) p(0). = a0, p'(0) = a
1,

p"(0) 7 2a2, and "1(0) = 6a.

.pt(x).= a
1

+ 2a2x + 3a
3
x2,

p"Tx) = 2a
2
+ 6a

3 4
x.

et(x) = 6a3,'

. .

Using (1) for x = 0 w,p obtain '. "k

.,f(0) = 0, f'(0) = 1, fill)) 's 0, and 44"(0) f -1..

1 .

Comparing these values with (11) under the requirements of (4)., we get

a
0

= 0, a
1
= 1 2a

2
= 0, and 6a

3 °

= -1.

Therefore, the only polynomial p of degree 3 or-less thich satisfies the

conditions of (4) is given by
,,

p(k) = x x
3

AS we attempt to express a result for arbitrary n we shall use factorial
. 1 ' . ' 1

notation

We can show thai if'

V

,kt = 1 2 3 ...k and Of = 1.

. 290.
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A

then' we have -

.
'4-5

p(x) = a + alx + A2x
2

0

p(0) = =(09a0

Z4b p'(0) = al = (11)al
g

-p"(0) r 2a2 (29a2
,

p"(0) = (2 3)d3 = (3)

+- a nx
n

,

(4)(
0) = (2 .3 ,4)a: = (40a4

"

p(n) (0) = (2 .3 rt)a
n

= (n! a
n

.

If f.: x0--,sin x; then, 'from (la), we can write

%k % (4) . (8) N
9 46f10)da0 = f (0) = f (0/ = ;.

N _i (5) 1 ' (9) \1 =)ft OCI, f (0/ = f - (01 ,..;

'0 = f°(p) = f
(6)

(01 = ji())(0) '. ..

0-1 = f'''.(0) fkm-479Noryfk,1 (0) =
,.....1..! , -.,

. ..--, .

To satisfy 4) we must have . .

., .

v(0) =' ,f(0);.k,pq0) = fl(0),''13"(0) = f"(0),

Nowwe observe that

(13) -all the coefficients Ofterdts in P of evenIdegree are 0..

The ocid.degree coefficients are

(14)
1 1 1

al = 1, a3 =,- , a, =

For exaniple, the polynomial p ,of degree 10 or less which satisfies'

the conditions (4) iS given by

'

.

x tx3 X5 A. "5(9
p(x) = - -37 +51- - 71,4-§t

x3: x5 x7 'x9
= x

120:: 5E76 + 362,880

In summary, for each positive integer n there is precisely one poly4omaal

function p of degree not exceeding la, such that p andits f st n.

to
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4-5
a

4 ,
derivatives agree t x.= with the sine function and its first n. derive-

s

tives. The polyp ials p are known as the Taylor approximations at x 0

to tie sine function.

. . , . .

A similar process will yield the Taylor approximatons to the cosine
. .

-1

' factiod:
it

-
x
2

x
2

x4
1, 1 -2:' 2: 41'

r

)
In Exercises 4-5, Number 8 you e asked to obtain these.approximations.

. .

Approimation Error
4

- Now we wa nt to determine the accuracy of successive Taylor approximations.

The.approximations,

x3 x3 x5 x 3 x5
x7

y = x, y 7 x- , y = x - + 5T , y = x ,3 ,

and .
.

, - x3-;1 ,t5 x7 x9
,, .

Y = x -r 7 -7 + -T
. . 3. 5. 7. . 9.

to' y = sin x are graphed in Figure 4-5a. Note that as the degreeOncrease0 s,

. the Taylpr approximations become better in the sense that subsequent approxi-
, .

mationsdmprove the "fit" near zero and also give better approxictions

further away from zero.

0 10

4

P
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Y1 x
Jr

) -pi y., = x

i .
/

1 -- I

I ' ;4
/

I

II I

/
II. / I

S .... ...."

I

/

3 5 x7 9x x x x

+

y = sin x

t.

3. ° 3 \I V \
X

\

' X \
\ \

X
\\ ,

X3 \
\

Y2 'x 3t .\Y

X
X3 X5

+ --- -
'51.

X7--
7!

Figure 4-5a

Wye shall prove in :chapter 7 that these approximations are alternately to

large and small. In fact, for ,x > 0,

ti
. -ix.> sin x,

-. ' x3"
x - -- < sin x,

. 3.

3
5

.

x x
x - + > sin x,

Hence, the error made in using any oneof:these approximations is easy tcs

estifate. For example, if we use the,approiimation
.

4 x,-
'sin x r.. x , 7.,

v .

. ,

the 'result is too small Py an amount which is less than 5 . In practice

x -is.less than 1, since there is no need to compute values of sin x to /.

%

.. .
. .

11

X > In this case, each of the successive terms

e?

4.
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.

53 xx ' k7

3'. '
t

n
-

is smaller than the preceding one..Mo
x

rreover, since r <
17 when x < 1,

' we can approximate sin x as closely ds we please by choosidg n large

enough!
4 ' -k

;Similarly, it will be shown that the approXimations
, .

..

1, '

2 'It

to cos x are alternately too large and too ,small so that, for x > 0,

. .1 > cos x,

2

1
x

- < cos x,
2:

2 4

1 - FF+ u>,cos x,

mo9
. .

fir
, 2 ,

,Henge, for example, the error in using the approxigtion 1 -
2:

is between

O

0 .and
x4

Example 4ta. Use Taylor approximatiohs to estimate sin 0.5.

Let us begin with the approximation

sin x 2 x

which gives sin 0.5 z 0.5. The result is too large by an amount less than

3x .0.125' 0.020833...

If wd use the approximation :-

"\;

we obtain sin 0.5 2

sin x z x
x3

0.5 - 0.020833:.. = 0.479166", This estimate is too

x5" 0.03i2 5
small by an amount less than Tr. =

120
0.00026. We can therefore con-

cludp that to 3 decimal place accuracy in 0.5 Z_10.479.

2914N



4-5

. 2

3 Example 4-5b . Use the approXimq ion 1
,x

2'.
for cos x. to estimate

cos 0.2. Also estimate the error pommitted in using this approximation.

(0.2)2' o.o4 1

cos 4.2 %. 1 . 1 ,27 7 0.

.

0016The error is less than
x 0.

- 0.000067:°

' It is often uleful to irite our results in thrms of a remainder R. Pot
example,,

3',

lo sin x =yx
x

where °
0 < R< ,

2and ' co s x = 31-- + ,

2

where d < RI < rx
4

We can Use,the Taylor'Etpproximations to determine certain limits.. Let

us beginwith some familiar ones.

sin x 1 - cos x.Example 4-5c. To find lie and lip
x .

x-->0 x-0 x.

We can write A

sin x = x - R, where 0 < R < .

3 t

sin x,-
1 -

"x

R' x2
Since 0 < --- we conclude that

x 2:

approaches '1.

Similarly;

Hence,

2
. x

cos x = 1 - + R',

I

A -

approaches zero and

2
x

1 '- cos x= Tr
4 .

, r

29g0.5
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0, -and
1 - cos x x R' .

x x

R'
Since

2i
and -- both approach zero

x,

lim
1 - cos x

- 0.

x 0
x

Example 4-5d. To find lim
1 - cos x

sin x
x 0%

. x
2

Since , cos x = 1
'.

+ IV
' .

(0 < R' < E-)

° 3
(0 < R <

)
0

and sin x = x 7 R,

and

x2 , x R'
-- - R'

sin x x - R
1 - -

' ,
.

The numerator approaches 0 and the denominator apprdaches 1. Hence,
. (

the required limit is zero. -.

This prodess can be abbreviated by:recognizing that

x
2

cos x 1 - 2-

ti
sin x = x.

Therefore,

_,,X2\ x2 ,

1 - cos x
2/, _

1

'sin x x x 2 '

which approaches 0 as x approaches 0.

re

296
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4-5

This example may be done in still another way. We may write

1 - cos x = 1-- cos x x

A
simx x sin x

FVom the previous example
1 - cos x

approaches 0 and
sin x

approaches

1. We can multiply these two limits to obtain the required limit.

It can be shown that the Taylor approximations are the best polynomial

approximations near zero. For example, if f : x -'sin x an p : x -

then

f(x) p(x)1',.

3
approaches 0

as x approaches 0; and p is the only pblynomial of degree 3 or less

with this property.

I

V

x3
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4-5

I

f : -' sin

f (x) :(i)'
(.1)

,
(ii) f(1°)(x)*

it

Exercises 4

x, determine fr, ), thin find

(ii,i) f
(35).

xi'

.(iv) f
(18) (x) :

(b) Given:, g -) Cos x, determine g', g", gm, g(14), then find

(i) 8(31)(x) g
(20)

(x)

g ( '

(42).
x)

g(101)(x)

-2. (a)" f x x, deterdine the value of

(i) (iii) fm(ii)

5g.(ii) r(i) (iv) f
(4) (-6-)

(b) Given:' g : x -) cos x, find

(i) gt(i) (iii) 011(1) .

8"Pir-) (iv) 8 (--(7)

(4)- 5g

3. (a) given: f : x A sin ax, find

(i) f'(x) (iii)

(ii) f"(X) (iv)

(0 'Given: g x-4B cos bx, find

-" 81(;)..-

(ii) g"(x) (iv)

4 (a) Given: f : x ->3 sin nx, find

(it) ,
g (*)

(i) ft(x) (iii) fftl(x)

(ii) e(x)

(10) Giventz .g f 2 cos -
x

2

(i) g*(x)

g"(x)

(iv) fiv(x)

(iii) gm(x) 1047

(iv) giv(x)

298
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5. If f : x -) 3 sin (i + , find

(al f(0)

(b) ft(x)

(c) (i) f"(x)

(d)
' (i) fm(x)\

(e) (i) f(4)(x)

6. If g- x -2 cos (2x + 'find

4a) g(Q)ti

().) 7,(,i) g'(x) g'(v)

(:k1(1) 811-e (:) (ii) g"(-
12

(d) ii). g"'(x) (ii) g'"(0)

(e) (1.-) g
04)

(x),

-

8()*
7. Find a formula for the nth derivative Of the' sine function.

8. Show that the Taylor approximations to . x --t cos x are given: b3

2 4
x2 x x
2! 2! +-7

and, in general, by

4
k xnx

2

1 x - + (4'1)
n!,

where n is even,and k =

4-5 .

$ N , $ I. 1

For Numbers 9, 10, and 12, use the Taylor approximation for sine aria- cosine.

9. (a) Calculate iin(0.2) using n = 4. s-.

1.

...t ;,

1. (b) Estimate the error. `. .
. .

10. (a) Calculate pos(0.2) using n

r (b) Estimate the error.
.

¢4 k -
a
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11. (a) "Calculate cos
1

using'
2

(i) n = 2

= 4
'(iii) n = 6

I

O

In each case estimate the error, ascertaining the number of places
.

of accuracy in the approximation of cos
1

. a .

Show that the sine function is not equal to a polynomial function onlpany

interval; i.e., given a < b and any polynomial p, there is a number
.

x such that ., , 11

.

a < x"< b and sin x # p(x).,

(Hint: Suppose sin x = p(x), a < x < IS and differentiate 'several

times .)

3 Find the limits of the following expressions as x

(sin -

(a)
X

(b).

2 2 x6,
sin x - -

4x2 .sin. 4x
2

(c)-7 6

te 3x - sin 3x
. 6x

2
1 - cos .x

x

(f)
1 x3

K

1

approaches 0.

r-

(Let x2 = and find the limit as ),0) /

{Let, 4x2

(Let ....3x .= t)

300
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14. Use Taylor approximations for 'sin x and cos x to evaluate each of the
,

following limits (if the lithit exists).
NN ---

''''''-' sin'x
(a)

x

lim

0
cos x

-4 7-
x - sin P
x

(b) lim
x -4 0

X cos

(c) lim
x

4.4p+

(Note: 4x )0+" means that x approaches zero from the right only.)

15. Find the limit, of each of the folloying'expressions'as x approaches 0.
C_

I

sue_x
(a). 1 x_

(b)
sin x
- cos x

nt
x sin x
2

i
2

(c)

(1 cos X)2

r

16. Show that the Taylor approximations to xl )sin 2x can be obtained by

replacing x by 2x inthe approx4tions fox x x.

17. Taylor approximations at a /,0

-t

(a) Show thpt for each positive integer n, there is a unique poly -

nomia4 p such that
.

(i) deg p n

p(a) '= sin

(iii) the first n derivatives of p have the same respective

values at x = a as the first n derivatives pf

f : x 1-4sin x.

These polynomials are called the Taylor approximations of

the sine function at x=ja.
' I

(b) Show that for n

n

!

p(x) g +'n a (cos Fa)(x -,a)
si

(x, -.a
2

a

(c) Show that, in general, ' 1
4

*

t

(n)f"(a) 2 * f (a)
(x - a). + + (x.. a)n..p(x) = f(a) + fT(a)(x-.a) +

it

d) Derive a formula corfesponding to that 4n part (b) for .the cosine

Taylor approximationS.

V
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Chapter 5.

EXPONENTIAL AND RELATED FUNCTIONS

Ak.

5-1

the preceding four chapters we studied polynomial and circular func-

tions, the former being defined algebraically, the latter in terms o& arc

lelith bn the unit circle. In this and the net chapter we take up the study

of exponential functions'and several otherfunctioni which can be described

in terms of exponentials. In brder to define an exponential-function, such as
-

x
x

,., we must showhpw.iptational powers are defined. Then we must obtain

the properties of these functions.
. ,

In order to provide a basis for our'dvelopment of exponential furictions

and their inverses, the logarithm .functions, we beginAhis chaptei- with a

Peview of thailaws of exponents..To assist us Pin our discUssion`of exponen-

tial functions, we Show in Section 5-2 how.the function x -uN2
x

_serves as a

model for growth. The laws'of rational exponents and the fact that 2x-
increases as x (rational) increases are established in Section-5-. A

method fon defining irrational powlSof 2 is indicated in Section 5-4,

4 where,it is noted that laws of exponents for arbit*ry real numbers hold and

that the graph'of the resulting function x -42x is rising and has no gaps.

These facts are used in Section 5-5 to obtain-the definitions and propertiet

of the general exponential function. The final two'sectiOns use the inverse

eoncept to define and analyze the logarithm functions.
'

-1. Exponents '

You are doubtless familiar with the,behavior of exponents. Since, how-
.

ever, we shall need to use them extensively, it seems wise to put our know-,

ledge of theM in order.'

Le s consider the sequence of.numbers

2,*2 X 2, 2 X 2 X 2, 2 x2,x 2 x 2, ...

which we abbreviate as

(1) 2
1

, 2
2

,,o2s
3
, 2

.4
,

,using thel'exponents1 1 2 3, 4, to indicate the number of equal factors.

4

3,01

I.



Can we give meaning to

2
0

, 2
-1

, 2
-2

,

or to 2/2, 22/3, t

Certainly we cannot talk sensibly about -2
1

equal factors or equal

4fdtors0

If look at the list (1) we note that aftiltion,of '1 to the exponent

results in a multiplication IL 2. Thus 24 = 23+1 = 2 23 We can restate

this principle by saying that subtraction of 1 from the exponent gives a

result which is
1

the otiginal one. Thus,

23 = 1(24),.2.2 = 1(23), .
2 2

What number 20 represent? We can get to 20, by subtracting 1

from the exponent 1 in 2 Therefore, if we are-to'maintain the principle,

we should have

]..;

2
6

=
2

.=

Subtitcting another / from the exponent, We get

1 0 1
2
-1

= -fke

Continuing in this fashion we find successively

and generally'

,for every positive integer n.

2
-2 1

=

=3

4

1
2 , g= ,

- 1
2 = 7,

1
=2

-n

2n

'

-t

1

.
.

To interpret 2
1/2

we shall assume that equal increasmin
%w7

the exponent
- .

correspond to equal ratios of the numbers. With integer expoffents this prin-

ciple takes the form that each incr.ease'of 1 in the exponent cotrespondi to
- 1

a ratio o,' 2. What ratio corresponds to an increase{ of ? Let A call

this unknown ratio r. Then
. .

. ;

304
Q

j-

(.1



° t

and

/But

r t t
21/2 =' r 2° = r 1 = r

2i1 +1/2 1/2-_ r2r 2 r

21/2 +1 /2- 21

916

Hence: r
2

2 '>
4 '

r.,,

. and 1.- = /E.
., -

.... \

. r = -1/ which would-not t nicely do the. We reject the possibility
.

grapild (See Figpre 5-1a.) I

0

Po.

3

FigUre 5-1a ,

Powers of 2

4.4

,

A similar argument shows that to maintain regulartty we should take

21/3 = 3AT

22/3 . 3.
andso on. Generalizing, we are led to define

2=p /4 12 /75

5-1

a

where-,p and q are positive integers.

1%0
We can reverse our principle and say that every time we st.lberact a given

amount from the exponent we divide theaiiimbelby a fixed amount. Then we con-

clude that

t

.3953 i4

.

61.



5-1

2

-1/2 1 0
=
, 1 -2/2 1 -3/2 1 1*

2 = 2 , 2 - 2 =

ig JE
' c

'2 : 27-..:::--

end so on.

`--. ,,
..,

ac

With these interpretations of negative integral exponents and functional

exponents,, we see that if r and s are any two tational
g

numbers then_. --a g
. .. .

.

2r 2s =
'

2
r+s '

1

and

(2r)s 2rs.

4
, More geprally, if ,a is any positive number and if 'r 4,0''s are two

rational numbers then it turns out that

(2),
'

eras = a
r+s°

and

(3),

4

4 c(ar)s. arS.

These equations express the familiar laws of exponents.



Elercises,5-1

1. Write each of the following as a positive power of one number

(a)

(b)

(c)

(d)

(e) 23/4 814/3'

x5 x.?

.169 10-7

)

a3/5. a5/3'

2 24
2 (73-).

2

° (a3/5)5/3

) 62/3 '
(g)4 ;TLIU .

1/2
3 .2 --

(h)

(11
o

2

0

ti

1/2
32

32 22

i(i)

r.

2. Find the value of m if:

(a)

(b)

(c)

(a)

.

'3. Eva ex. 100018-2/3) , 3(9)-3/2.

O

1.1

(J) '25 2755 (125 )-2/3

8rn = (23)2;
14m-r _442/3;

8m .=
2(32);

/ if) 571 = 0.2;

o
2(45) = 16m; . (g) (pm = I;

(24)5 = 16m; (h) 17m = 1

-)4.- Area ge the following in order of magpitude:

22/3, (45/2)0-1), (1)=riti; 2-3, (2 -2/9)9

5. Show that if x = 22 ..7
, then 7x = 4

. .. 10,--7,-

.,..
. P .

. 6. Carry out an argument, like that
.0.-

31/4 41/31.

(b) 4-3 = 1

43

(c) 2:1/2 1

500"

in the text 0 show that
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7 -2

5-2. The Exponential Function, Growth and Decay

In this and the next three sections we shall be concerned with assigning,

a meaning to a
x

where a > 0 and, x is an arbitrary real number. This

will lead us to the general exponential function

x kax

'where k is a constant The number a is called the base of the exponential

function. f

An exponential function can serve as acidealized mathematical molel for
./

growth and decay. Let
/
us consider growth. Suppose a biologist grows a colopy

of a certain kind of bacteria. He wishes, to study, how the number, of bacteria

changes with, time. Under favorable circumstances he find:, that so long as

the food holds out, the time required for the number of bacteria to double

does. not seem to depend on the time at, -which he starts the experiment. His

hypothesis is that .the time required for the bacteria to double does not

depend upon the time when the initial count is made. 'This is one instance

of a general growth principle which 'is important in social, phytic0s, and.

biological science.

-r

(
, To be concrete, let us .suppose that on a given day there are N0 bacteria

presentsand that the number of baoteria doubles every day,' Then there will be

2N0 present one day later. .After another day the number of bacteria will be

0
,twice 2N

0
or 22Nd after three days twice 2

2

v
N.. ;or 23-..2,:. After n days

the number N(n) of bacteria present will be given by.tne';qs,tat'ion

ti
0

(2) N(n) = No2
n

,

__where n is a positive integer.

If we asamme that the number of bacteria increases steadily throughout
/ 1-

any given day,,ye might want to determine how many bacteria are present -f day

1 II*

after the s rt.o; how many were present 2 .f days before th'e initial &mint

was made.

To answer these questions we must generalize equation (2) to

N(r) = NO2r,

where r pity take any rational-values, positive or negative. If such

expressions as 2 and 271 are to have meaning, we must generalize further
J5.

to
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where x is an arbitrary real number.

5-2

Let As suppose that (3) serves as a model for the growth of the bacteria

colony. Can we 44duce from this growth equation that the time required for

the bacteria to double doesn't depend on the time. the initial count is made?

Since thiswas thgAnitial_hypothesia, it should be true if (3) is to serve

as a model. SinCeye_pan be certain of the meaning of -2 only, when x is

rational '(from SeZtion,5-1)we begin with that case to check the'hypothesis.'

Suppose we take a count x days after the 'start of the experiment and then

take another count t days later: Here x and t may be any "rational

numbers, positive, negative, or zero. From,(3) we have

N(x + t) = NO2x4t.

' _
-

m-Seet-i-on-5-1,-_tlie_exponent la ,(2r +s r
= 2 2

s
, for- -r and s rational)

gives

N(x + t) = N02x

Replacing N 02
x

by N(x) we obtain

(4) N(x + t) = *2tN(x).

t

414 In words, if 1N(x) isrthe bacterial count after .x days, then the

number N(x + t) of bacteria after x + t days is 2s times as great.,

The factor 2
t

does not depend upon x, the time of tfie,first count; it

depends only upon t, the time interval between counts.

For example, suppose that there are one million baiteria ruSent initi,a1g4r;

i.e., N0'= 10
6

. Then the number of bacteria one-half datlater is given by ,

N(2),=
106(21/2)

=10 .

Aftegone,and one-half days the number of bacteria in the colody is

;
N(p.... 106(23/2)

r-= 106
(21,2)

6 r-%= 200 Y2)
.

= 2 N(t)

309
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5-2

If we use (4) we obtain the same result:

N(i) t N(i" + 1) =2N(2).
ea:

Assuming that the conditions of growth were the.same prior to the initial

count, we Stu:mid expect, that the number of bacteria one day before

cdunfis taken would be

,t!(=1), = 1.06 , 2
-1

= 500,000.r

An exponential function.with any positive base can serve as

model. If,we-replacie the assumption that the number of bacteria

day by the assumption that the number changes by a factor of a_

obtain the model

N(x) = Noax.

the' initial

a griowt,IN

dolpot each

each day, we

Si ce the laws of exponents hold for rational exponents and an arbitrary

base w obtain the relation

,

N(x + t) = at N(x).

We see that it is also true in the general case that the growth factor

depends only-upon the length of the time interval (t)

observation time (x).

4

3100

(at)

and not on the first \,
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Exercises LI
In the first four exercises consider the equation

N(n) = 106(2n),,

-

where N,(n) represents the number of bacteria present at the end of n days.,

1. ) Plot the points for which, n =,0, 1, 2, 3, 4 and connect them yith,a'

smooth curve. (The unit chosen for the vertical axis may be one million.)

7-*
2. The bacteri'a count at theend of n + 5 day's is how many times as great

as the count n + 2 days after the beginning of the experiment?* -

3. Onp week after the inftial count was made the number of bacteria present .

was h& many tunes as great the number present three days before the

experiment began?

4. If there are bacteria present after ;.00 days, after how many days

weri there k present?

5. Suppose that in a new experiment there are 200,000 bacteria pFesent
1

at the end'of I4ree days and 1,600,000 present et the end of 47

days. Compute:

(a) the number present at the end of 5 days;

(b) the number present at'he end Of 1-
1

days;
2

,

(c) the number of days at the end of which there are 806,000

bacteria present.

Hint: issume that the number of baCteria present at the IINginning of

the. experiment is N
0

and that at the end of 24 hours the count is

a N0
.

. 1 .
6. The number of bacteria in a certain culture is obseryed to double every

day. If t reewere 105' present at the first count, the number of
.

bacteria fl.t after t days is given by N(t) = 105 2t.

(a) How many Were there after 2 -days? 4 days?

(b) HOw many were there one day before the count? two days before the

count?
.

(d) How many were there one-half day before the count? one-half day

aftpr the count? What is the ratio of N(2) to N(- 2)? ,

ti
,311 3 2 0
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7: Suppose `N(t).= Noa is 'the number of bacteria present at time t.

(a) If this formu a is to represent growth,- can a be-smeller tlian 1?
. 1 3 .Use the/for la with a = , a = 1, . and a = , to ;stetch graphs- - -'

illustrati g your answer.

(b) Calcula

(c)

N(t'+ 1) N(t + 2) N(t + 3)
NM' ; N(t + /) ' __N-(t f 2)

Ie general whbi is the value of MItr + n 4,1) 9
N(t +..n)

, ..... /
(d) Suppose that N(1) = 105 and N(2) = 106. Find _N0 and a,;/

_

' - . ...
. _

8. radioactive substance (such as radium) decays so that the amount
t

.,--

/present, N(t)A at time t is satisfactorily given by the same I

41, 77.7,

formula as growth:

N(t) = N
0
at, where- a is a positive real numberr-=- ,

(a) What is the amount present at :time t = 0?

(b) If this is to represent Aecay, can a exceed 1?

(c) Show that the ratio .of the amount present at time t + 1 to the

amount present at time t doesn't' depend /upon t and .is smaller

than 1.

lttt
No

If .N(t) = N0( --) find the value of t for' which 'N(t) =
2

.

J-
O

.7-
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'5-3

More About Rational Exponents

sr

Before attempting to define irrational exponents we shall further examine

.r:

the'function

r -4 a
r

where a > 0 and r' is a rational number. To be concrete let us suppose

a = 2; we consider the ?unction

( 1) r ) 2r, r, rational.

For r and s rational, the laws of exponents are

(2)

(3)

+s 2r2s

(2r)s 2rs 0-4_6
x

We can show that the function (1) is increasing; that is,

2
r
< 2

s
if r and s are rational and r <-'s.

We firsts observe that

if a > 1, then a
2

> 1, a 3 > 1, 4.., a
n

> 1,

where n is a positive integer.

Similarly we'note that

(4) if a = 1; then -an = 1,
/'

and

(5) if 0 < a < 1, then 0 < an < 1.

Now we assert that 2
m/n

> 1 for any positive integers m and n. 'If
m/n v woulda 2 were equal to 1, then 0) would leaa to the result an` =.2m = 1,'

which is false. If, on the other hand, 2m/fl were less than 1, .then,...(5..)

would lead to the result 'Ian = 2m < 1, which is also false'. Since 2m/fl is

neither'less'than nor equal to 1, it must be greater than 1.

Now let r and d be any.twp rational numbers such that r < s. Then

s -tis.a positive rational number . In conclusion we have d
/

-r m/n
2s . 2 > 1

2r(2s-r) 2r

2s > 2r.

32.3
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r -)2.,, where r Is rational,

is aryfcreasing unc ion.
... /

1
. .

'

If n is a large lager then certainly 2
n

is very large. Estimates
Ailk

'

. of the size of n
-

2 can be obtained by usIng the binomial theorem to,expand

(1 t f)n. .For example, we have, for' n >

(14- 1)n = In An In -1 .1 + n(n 1) In -2 12 +

All of these terms are positive, so if we cmit any terms we can-only decrease

the size. In partibUlar, omitting all but the first and second ms we

obtain

6,(6) 2n = (1 + 1) > + n.

Consequently, if-we go far-enough to the right the graph of

(7) y = 2x, x rational

must lie above any given horizontal line. An6ther consequence of (6) is the

fact that the, negative x-axis is an asymptote fot the graph of (7); that is,

the graph of (7) approaches the x-axis for k negative and Ix! large..

show this we can take reciprocals 1(6) to obtain
, .

:(8) 2** n 1 + n .0

- r 1

1 + n

-

Since
n

2
n

= -- and since approaches zero as Inl increases, then

.

1-:.g. y,= 2x

approaches zero as x becomes negatively infinite.

o

\In summary, the graph of y = 2x, x rational, increases from near-the

!x - axis (when x < 0 and !xi is large), crossing the y-axis at (0,1),, and

iises rapidly for x > 0.

.;---.-

tr.
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- Table 5-3. . Values of

a.

r ) 2-r

.001 1.000 693 4 . 0.999 307 1

.005 1.003 471 7 0.99 54o 2'

.01 1.006 955 6 0.993 092 5-

..02 1:013 96 )1
0.9voaz 23

.03- 1.021:01 - 0.979 42

.64 1.V 11 0.972 66

..05 1.106 26 . . 0.965 94 . -

.10 1.071 77 03,0.933
o

.15 1.109 57 0.901 25

.20 , 1.148'70 0.870 55

.25 . 1:189 21 0.840 9b

.30 1.231 14 0.812 25

.35 1.274 56 0.784 58

.40 1.31951 0.757 86

:45 1.366 04 0.732 04

.50 # 1.414. 21 ...0.707 11

.55 1.464 08. 0.683 02

.6o 1.515 72 0.659 75

.65 1.569 17 0.637 28

.70 1.624 5o 0.615 57

.75 .1 1.681 79...$ 0.594 6o'

.8o 1.741 lo ' . 0.574 35

_85 - 1.862 5o 0.554 78

.9o- 1.866 07 0.535 89

.95 1:931 87 0.517 63

1.00 - 2-.00o 00 - -6.560 00

Rational Values of 2r

to

5-i r,

Wile 5-3 gives rational powers of 2. Ordinarily it is sufficient.to

use the entries to three place accuracy. The laws of exponents (2) can be
used to find 2r for values not,listed in the table.

>

3!S2 4
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5-3 Y

DiT2212 5-38. Find 21'68.

O

We note that de

1.

000,
21.68 2(1 + 0.65 4 .03)

=
21 20.65 20.03

1..1 2(1.569)(1.0021)

Example 5-3h. Find 2r
0.57

-- write

2-0.31 =
+.0.63 .

2...(2o.6o oro.03) 11213.6o)

2 2
,

'U*516)(1.021) 0.774
I 2

EITIP12, 5-3" Find 43'21.

Note that. 4 22, so that

"43.21 (22)3.21 22x3.21

26.42 26 21374o 20.02>

64(1.320(10314) = 85.663.

0.03)

Later we shall be able to use Table 5-3 to maculate 8r, 16r and such

expressions as '3r. (In Section 5-5 we shall show how to define ax, tfor

general positive a, in terms of powers of 2.) - .

316
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Exercises 2:2

5
1. Calculate 2-/ 4

(a) by using the data in Table_ 5-3;

.(b) by noting that 2514 = 2 21/4 = 2 .

2. liding.the data in Table 5-3?' calculate

(a) 21.15

('0
.y.65

(c) 20.58

(d) 2-Q.72

3. With the aid. of Table 5-3, compute

0.
(a) 8

84
.

(b) 0.25-0:83

4. Extend Table 5-3 by completing the following table.

5-3

Table 22 (extended) Values of 2r

2r.i

'

-3.6
-3.2
-2.8

-2.4

-2.0 ft

-1.6
-1.2

P ..

1.4

'1.8
2.2 ' '

?6
3.0 4

Ak e

Plot the points (x , 2x) for the rational values of x shown in

p

1%.,._

Eibie 5-3 and Table 5-3 extended (Number 4). e

6. (a) For what positive values of the constant a is the function

f : r -tar

increasing? decreasing? constant?

317
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5-3

I'

(b) For whht positive valus of a is the function

0- 2
we.

f : r
r

increasing? decreasing? constant?

(c) For what positil7e values of a is the function,

2
f : r (a)

-r

increasing decreasing? constant?

(d) If + 3 for what values of b is the function

f r '- (2b + 3)r

increasing? decreasing2 constant?

(a) .ShowAhat if n > 2 then

2 >
n nkn - 1)

2 '

(b) Use (a) to show that

2
100

99
100 > 2 r

210,000
9,§99

(ii) 116,000 > 2

(e) As n becomes large does
2"

n

MO.

z.

become large? Justify your'answer.

3.
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5-4 Arbitrary Real onents

In the preceding ctions, we dealt with the properties of 2x and ax

for x rational. We want to give meaning to these expressionS-if x is

irrational. 'For example, we want to assign meaning to

4 , n , 3

0

To be specific, we want theexpression a
x

to be defined in a natural way for

irrational values of x; that is, we need to extend the function x -)a so

that its domain is the set of all real numbers x. To be concrete let us again

suppose a = 2. In the next section we shall show how to define ax, for

general positive a, in terms of powers of 2.

Of course, the meaning of

however, what we wish to do is clear. After plotting the points

"in a natural way" is ambiguous. Geometricqlly,

(X 2X)

for a large number of rational values x, then we just connect these points

with a smooth curve and oetain the desired graph of `

x --) 2
x

.

Then, for example, 2 2 is calculated by measuring the second coordinate of

t11, point on this graph whose first coordinate is (See Figure 5-48.)

(0,1)

Finding

"holes"

(2,4)

, The second coordinate of ,

this- point should be.,

2 .

- 1 if 2

Figure.5-4a.

by filling in the

in x 742x, x rationat.
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This graphic prooess js not quite satisfactory es it doesn't lead to pre-
.

cision as to the meaning of 2 . We shall outline an approximation procedure

which will enable us to define 2if and in general 2x for irrational x.

)

The function so obtained is increasing everywhere; that is

if u < v, then '2u <*iv.-

In fact, there is only one increasing function which has the values 2
r

for

all rational numbers r. For this function the laws of exponents

(2) u+r '= 2 u 2 v and (2u)v,= 2uv

hold for,all real numbers u and v (rational or irrational). The graph of

this function x -2x. has no "gaps"; that is..

for any positive number y, there is an x(3)..
such that 2x = y.

. In the sequel lie shall assume that indeed 2
x

is so defined that,

(2) and '(3) are true and examine the consequences of these assumptions.

Now we turn to outlining the process used to define 2 . If we wish the '.

.increasing property (1) to hold, then for all rational numbers r and s,

such that, .

we must-have
8,

(5) t 2F < 2 < 2s.

r< s

Obviously this places a severe restriction on the value we assip-to 2 and,,.:

as,we shall see", determines it completely. The ordinary decimal approximations...,
...

. to V give us_a handy .collection of values.f16r r and s; we know that.
'

,

. . ,-. ,4'.
1

. )..4

.

< 1f < 1.5
1

1.401, <12- < 1.42 - i

. 1.414: < 1 <'1.415

' ,1,414'2 < Vg,< 1.4143 !fit

_1.411121 < If <1.41422

and so qn.' The iriequa ities (4) and (5) then show that 2'7 must sattsfyethe

320
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5-4

1.4.
2

21..41

2
1.414

21 4142

1.41421
2

If 1.5
< 2 < 2

< 3
if

< 2
1.42

< 2
if

< 2
1.415

21rf 21.4143

if )
2
1.41422

< 2 <

0

and so on.

We replace the rational powers of 2 appearing in the last set of

inequalities by appropriate deciffial approximations and arrive at the following
.

estimates for 2
if

2.639 <
1.4

2.657 < 2
1.41

2.664.< 2
1.414

2.665 < 2
1.4142

< 2
if

< 2
1.5

<

< 2
If

< 2
1.42

<

< 2
1.415

<

< 2
,/,"f

< 2
1.4143'

<

2.829

2.676

2.667

2.666

and sa'nn. Thus;' if (1) is to hold, we know that, to 3 decimal places,

ff2
2
= 2.665 .

The pinching down process that we use to estimate 2
if

is indicated

in Figure 5-4b.

V - .

2
1.4142

2
1.41

2
1.41

.

21
4

.2.6

4

2
1.415

4 2
1.42

21

1
4,

2:7 2.8

Figure 5-4b
,,

Pinching down on 2'6.

TI:0 generalize to any real number x, we choose,any increasing sequence

rl, r2, r3, Yn, ofrationalnumbers all less than x and any

decreaSing sequence si, s2, 53," ..., so, ..., of rational number's all'greater

than X such that the difference s
n r l'i

can be made arbitrarily small.

,.,,
',

3?).
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r1 r2 r,

1.We:compute the sequence of numbers 2 ,-2 , 2 J, ..., 2 n, and the
. s

sequence of numbers 2
1

, 2
2

, 2
3

, ..., 2 n, and then look at the

,

s
intervals 2 < y

n
.

pinching down on

2
x

.

2

2

s
1

s
2

2
s3

2 q-

r
2

n
r
2

2

2

rn
fi t

s2 sl

crowding in on x.

41,

r
2

s
n

Figure 5-4c

Pinching down on' 2x.
a

It ip a, prdpertY,of'the,teal. numher.qstem tIlat as- x confined by

s
n

and to successively smal4r intervals, the corresponding intervals

on the y-a is pinch down to a uniquely determined number, which we shall

define'as he number 2x. The number obtained is independent of the particular
.

choice of the sequences ri, r2, r3, rn, ... and si, s2, s3,

x

n"
;..

3223



r'113
SHIM"-*1

... ........................ MSS

::: ::::::::::::
O S

S OY

11
113 1.1

sass.....
Is

.... ....

-...
T:fin:2112

" " .......
MEWL.
WRENN .....

NA: ::- .....:
.. '11::..... SS .........

31U. .......... . :
111

M

1:11:313:13

L..13:1111'11..

e:

OS.
SS SS

COO

......
1 :

SEIM r1

..........................

...........
....................:

I

WIN
e.

3111:1-'13111111:11:11........
................

....... elas
%SS..............Wan ...............

SW=

i..

.........

0 /Il :
.................... i

....... ............ 00

.....................:
.......................................

00 Of ......
..........................................

... . ..... ........
II ............................. gI

........1

.........................................

.......... :

......
RS

........................................ II 1/8



5-4

4 Exercises 2:4

1.. Use the graph of x --)2x t5) estimate the value of:

2
1.15

2
2.65

2
0.58

2-°*72

2. Compare your results in Number 1 with your answers to Number 2 in

Exercises 5-3

3. se the graph of x -)2
x

to estimate the value of:

17 f
(a) 2

(b) 2g

(c) -.2-g/4

4. Is there any value of

answer.

x for which 2
x

= 0?

r.
5. Use the graph of x -)2x to estimate the vilify of x if:

.

(a) 23c = 6
i

L 0:7'

'II. im

(b) 2
x !I= 0.4

. 1

(c) 2
x

= 3.8 --'

Gie reasons for your

(d) 2x = 3

(e) 2
x

= 2.7

324
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5-5

5-5 Powers of the Bape a as Powers of 2

We have concentrated on the function

f : x -)2x.

You are now familiar'With its graph andhave worked with a table of its Values.

We shall now study the function

f : x -)a
x

where a is any positive real number. Fortunately we do not have to start

from1scratch because we scan express a as a power of 2, as lie proceed to

show:
o

The graph of f : x -)2
x

lies above the x-axis and rises from left to

right. Also, f(x) = 2x' becomes arbitrarily large for x sufAficiently ,far

to the right on the real number line, and arbitrarily close to zero for all
. ..

x sufficiently far.to the left on the real line. The graph has no gaps. Con-
4 i r

sequently, if we proceed rrom left to right along the graph, 2
x

increases

steadily in such a way that any given positive.number a will be encountered

once and. only once. That is, there must.be one and only one value-of x, say

a, for which

(1)

(See Figure 5-5a) and therefore

2
a=

a

a may be expressed as a power of 2.

a

Figure 5-5a

Graph of x
x

showing that 2
a

= a.

325
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We can find the value of a by means of the graph (Figure 5-4d) or

Table 5-3.

Example 5-5a. Find the value of a. for which 1.11 = 2a.

We loo or 1.11 in the second column and read backward to find the

corresponding value of a in the first column. Thus, .1144 = 2
0.15

(approximately).

Exam le

Welhave 3.25

Example -7c.

Express 3:251in.the form 2a.

2(1.625) 21 (20.70) 21.70.

J

Find the'value of a for wh'ich' 2a = 6.

On the graph of x -.2
x

we look for the abscissa corresponding to the

ordinate 6. The result is 2.6 (approximately). '

./if we use Table 5-3 to express 6 as a power of 2j 4- first write
,

6 = '22(1.5). Interpolating in Table 5-3 between the entries for x = 0.55
. - . . Aand 0.60 we-obtain 20.58 m 1.50. !fence, o= 22 0..50) ,S4'22 k2

0.5 8)
4 d

2.58
.

Therefore a Z 2.58,' by itterpolation.

The expression. a for x irrational and a / 2 has not yet been

defined. We Could follow the Kocedure of Section 5-4 to assign meaning to

ax when x is irrational. Since we can write a = 2°, we can simply define

the function x -,ax by

{2) a
x

=
ax

where a =115.

The laws of exponents will holt

) = axa"and ( x)Y = PxY

and the graph of x ax will have no g

as is. the fact that

13)

p . These dre consequences of (2),

If a >1, thee X-*ax is increasing.

To prove (3), for ezamplei note that if. a > 1 = 2°' where a > 0,

(for 'if a <'0 then 2a < 1). Thus tf x < y then ax <ay so thatx
'2a1 < 2a7; that is, E9. < a

y.
.

c 32d3



(5-5

The graph x
x

is obtained from the graph of x
x

Roy changing

scale by,,the factor a; where a'= 2a. For example, if a = 4 so that

a = 2, then we just "shrink" the x scale by a factor of 2. If 0 < a.< 1

end a = 2a, then a will be negative. In this case the graph ,of x -*a
x

is obtained by changirig scale in x -,2x and reflecting the g'faph in the

vertical axis. /Three cases are illustrated, in Figure ,-;b. These considera-

tions will be useful in our subsequent discussion (Chapter 6) 9f tangent, lines

to graphs of exponential functions. I

N (i)x

x -)2x

Figure 5-5b
,

The following examples illustrate the use of formula ,(2) Table 5-3 in
0

' 4 4 4.calculating ax. i,

.

'
o

(0

Example 5-5d. Express 3°.7 as epower of 2, and

.

find the approXimete
.value of 3

0.7
. '

t

;:To in#d the value of 30T ''W first eZpi.ess i 3 as a power of 2. 'Thus,
1 1, 0.58 1.58

. . ,

' 3 = 2 (1.5) =.2 (2 ) -',2 (approximately). :(Verify :tili's from Figure ,

-\. -

5-4d.). 0

4

Now
'30.7 (21.58) 0.7 *106 21.11

a

.

m 2 (1+0.10+0.01) = 2
1
(2
0.10

)(2
0 01

)

m'n1.072)(1.007) = 2.159. ,'

327
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Example 5-5e. Calculate the value of (6.276)0.4.

We note that
//

6.276 = 4(1.569) 22(1.569) z 22
(20.65)

=
22.65

(Verify this from_FigureZ4d.) Hence,

(6.276)°'-!1
(22.65)0,.4 2(2.65)(0.4) 21.06

2
(1+0.05+0.Q1)

= 2 2 2
1 20.05 20.01

2(1.035)(1.007) = 2.084 (approximately).

Exercises LI

1. Express 3.4 in the form 2a
"A

o

2. Write 2.64 in the form 2.64 = 2a and then find the approximate value

of (2.64)°.3.1
.°

3. Find the approximate value of (6.27)0.6.

4. Find the approximate value of
(5.2)2.6.

5. ShoW that if 0,< a <%.,4 and v > u, then aV < au.

6. By finding a suitable value of d, express each of the following

function's in the form of i

(a) x -o 4x

(b) x (3.66)x

(c) x -3 (5.736)'

(d) x -3(0.420)x

X-) 2
QX

.

328

337

t



oV.

5-5

7. Suppose a ,and b are positive and different from 1. Consider the_
two functions: .

St k

8.

x ax and x bx

' ,

which cpn be respectively written as
,

x
_,2ax

and X .

(a) If a < b, what is the relationship between a and (3.

(b) Su pose a close to b. Is a close to (3? Illustrate your

ans er by completing the following table:

( For these values
of b .

4 3

Given: ax = 2
ax

(D) f x ax

(b) If x
Igt

a
x

---.1
2-.3 2.0/.44

is increasing/ what is the 'sign of a?

is decreaping, what is the sign of a?

(c) ShoW that f(xf,(+x)1) is independent of x.
. .

(1) If 10t > 0, what ban we conclude(about
'

the a*vtiuotientt
.) .

e ,44-1
e. 1

(ii) If q ,< 0, what can we ;c lude°' about the above quotient? `*z,

(d) If a > 2, :show that
a ,, .

' 9. (a) Where, does he graph_of x a Jai .> ,Q) .cross the y- axis?
,..,

your answer a?depend upon , %;
F

.7

J. '°,, ,
i- c ',t' . " )

,
(b) Find the' point(s) of inte_, ectTon,,if `any, of the two grapl2s.; ,

, . W, _ ,, .!

,

--
. .x 4 .

f ,,4 %,
x ) aZ and x -, 2(2a) . - I. !.'.. , 7 .

.,..

r.
,..

:,
(2

xs .for > 0.
4

Does 0

(c) Find the pctint(s) of' intersection, if any, of the

x -> ax' and x -,b(ba)X ,

two graphs:

(where is a real number greater than zero). ,

(d) ,Find the paint(s) of
f
intersection, if any, of tlft twographs:..

.

u.

l
es.

. ,
x -i4x and x -> b

n
Om)

x

(where b and p are real numbers, greater than zero),.

I.: -:' .'-
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5-6. The Logarithm (Ease_21
a

4 Since the exponential function x -02
x

is,increasiAg, its graph crosses

every horizontal line y = b where b > 0. Therefore, the inverse function
.

its gr .K h has no gaps, it becomes arbitrarily large as x be-
.

it comes arbitrarily close to the x-axis for x negative And

particular, if x > 0, there is exactly one real number y
t

...

is increasing,

comes large and

lx1 large. In

such that

2y =x.

JO%

This 'number y is called the "logarithm of x to the base 2 ".and is denoted

by log2 x. Thus the function

log2 : x log2 x

is defined-only fkz. x > 0 and is the inverse of the exponential function

With base 2. These two functions are related by

(1)

(2)

log2(c) = d if and only if 2d = c. '

In terms of graphs, this tells us that

If '(c,d) lies on the graph of x -4kog
2

x then

(d,c) lies on the graph of X' --'2x and conversely.

As was tha case for other functions and their inverses that we have

studied, the graph of x --olog2 x can be obtained by folding the graph of

x -32x over the line given by y = x. (See figure 5-6a.)

t -.

139
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Calculations involving log2 can be carried out using the relation,(1).

For example, since

and since

' 23 = 8, we know thAX log2 8 = 3;

y
-6 i 12 = , "we have .log2(.alo= -6.

In fact, any table of valuet..of the exponential.functton .6 the base 2 will

also give.4tUes of log2. For example, Table' 5-3 gives

so that

.20
2 = 1.14870

log 1.14870 2:

A number of useful properties, of log2 can be derived from propertiea

of the exponential function by using the relation (1). Some of these are

_

-331
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(a) , log2 1 = 0 °

(b) 1og,
c

2 = 1

(3) (c) log2 is an increasing function

((i) log2 x > 0 if x > 1

(e) log2 x < 0 'if 0 < x < 1.

The properties can be observed in Figure 5-6a. They can also be proved. For

example, let us prove.(c). Suppose x0 < xl. 'Put y0 = log2 x0 and

Y1 = log
2
x
1

so that

,

x
o
= 2Y and x

1
= 2 1.

If yo were not*fess than yl we would have y0 > yl. Since x
x

is an

increasing function, the condition y0 > yi implies that

2y0 > 2
y1; .

,) ,

.,

0 ?
x1.

This

i

that in,
5:

contradicts the assumption that x
0

< x
1

so we are

forced to conclude that log2'x0 < log2 xl. This proves that log
2

is an
)

increasing function.
\,.. /

The laws of exponents

2
x+y

= 2
x
2
y

and (255Y = 2xY

give rise to the following logarithm laws:

(a) log2 xy = log2 x + log2 y

(4)

(b)' log2 xY = y log2 x.

For example, to prove the first of the;e (4a) we let

(5) a = log2 xy, b = log2 x, c = log2 y

4g, ,

so that

2b, 2c.

Observe that xy is then also given by

so

so that

= 2b 2c =
2b +c

0}

2
a

= 2
b+c .

J
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Wp.conclude that a = b + c; that is (from (5)),

° log2,xy = log2 x + log2 y.

Formuld,,(4b) is left to Exercises 5-6, Numbel 3. These formulas can be

used with Table'5-3 to calculate logarithms of numbers not appearing in the

table. '

Example Find log
2

3,25.

Upon looking at the second column of Table 5-3 we see tOlt 3!25 doesn't.
4T

.appear. Note however that

so that

3.25 =2(1.625)

log2 3,?5 = log'114,+ 16g2 1.625.

'

Reading from t.he second .column to the first column in Table 5-3 we obtain

log2 2 = f, log2'1.625 r. 0.70,

so that

log2 3.25 z 1.70. .

. , . : z

. The next example shows how inequalities for the logarithm to the base

are obtained from inequalities for the exponential. .

EXample.5-6b). Show that if n is a positive integer then

-) lbg2 n < n.

Since.

and log2 is an increasing function we must trete

Formula (14b) gives

log2 2n >.log2 n.

-,

log2 2n = n log

Since log
2

2 = 1 we must have

-

S

-tr

n > log2 n.

,

--333342
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Example 2-6c. Sketch the graph of f : x -elog94 - 2x

1The function f is defined for 1 - 2x >0; thatj 5s, for x < . We

1.,
J

'''can write log2(1 - 2x). = log2 [-2(x - )J. The graph of1

LI
f : x -elog2 1-2(x - VJ can be obtained from the graph of g :-x -elog2 x

in four steps. (See Figure 5,-76b.) i

First, we begin. with the graph of

Second, replace x by 2x...

Third, fold the gfgph over the line given by x = 0.

' (the y-axis)

g

Fourth; shift the graph one-half unit to the right.

x log2 (-px)

x 1 og2

4

2/ .

T6g21- 2(x -22:-)

es

Figure 5-6b



Exercises 2.6

1. Prove that for any real number

/1%
that log2(X) = -log2 x.

Prove that for any real nurnber'xi > 0,

x
1

log2 (x2) = log2, x1 - log2 x2.

, %

x 0, log2(x -x1-) = 0, and hence.

x2 > 0,

5-6

38""ffProwe foimula 14(b): .log2xY = y log2 x 114,

4. .(a) For what values of x is log2 x less than 0? greater than 0?

.(-10,) For what values of x is y less than 0? greater than 0?

(i) y = log2 (iv) = log2 (1 7 x)

(ii) y = log2 (-x) (v) y = 1og2(gx - 3)

(iii) y = log2 (x - 1) (vi) = log2 (3 -

5. Graph the following functions

-5 < x-< 5.

X -4 lipg
2

x

x -4 log2 (-x)

x,-+Aog2 (x - 1)

6. On one set of axes

over the interval

x log2 x

x log2 (2x)

-4 log2 (-2i)

log (31)
2 2

x -0 lg2 (-

on one set of axes over the interval

r

X -4 log2 (1 - x)

x -4 log2 (x + -1)

x -4 log2g-(1 + x)1

sketch the graph of each of the following functions

< x < 8.

On one set of axes sketch the,graph of

over the interval < x < 8

(i)k: x -4 log2 2x

(b) -4 log2 (2x - 2)

0

ea

each of the following ftmcti6ns

(c) x -4 log2 (2x - 7)

(d) x -4 log2 (7 - 2x)

335
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Write each logarithmic statement in exponential form:

(a) 110i2

(b) 3 log2 x = 5k

;'(c)' log2-21+ log2 14= 4

(d) ;2 log23 = -t

. Write each exponential statement in base 2. logarithmic form:,

(a) 2x,= (c) (2)-3 = mn

(b) 4k =
5

{,d,) 2 = xy

10. Evaluate each of the following:

(a) log2 2

(b) log2 4

(c) log2 8

(d) log 16

(e) log2 1

(e) log2
1
T;

(8)
1

log2
4
7-

1 .

(fi)4 log2 g

11. Using'the results (and extensions) of NlaMber'10 abover bat without the

use of tables, locate the-values of eachlbf. the following between con-
. .- , A

stcutive integers (e'g., 3 log2 11 < 4, since 23,< 11 524).

(e) 1082 S. t( i)i log2 31
. '. .

. t:. (b)

y

log2,5, (j)' idg2 34- ,

q

e) log2 6. (k) log250 .. A

(d) ldg2 gip (.0, log2 99

4 A r;
.(eY 1-°82 2 (m)

(f)
log2 10 (n)' log2(i)'.;

(g) log2 13 (o) log2 (4)

(h) log
2

18 (p) log2 (0.18)
,

12. In evaluating the following, first estimate your answer from your

solutions to Number 11, then make a closer'estimate from the use of

Table 5-3.

(a) lOg2
. .

(b) log2, 5

/
(c) log2 131,

336.
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13. iUsing the results of Numbers 10 and 12, estimate

(e.g., log2 72 = 1og2(23)(32) = 3 loge 2 + 2 log2 3 z 6.28) each of

the following.

,(a) 1282 (f) log2 169

(b) log2 12
2 ..(g) 1282 54

-(c) log2 24 (h) log2 36

'.(d) log2. 9 log2 52

(e) log2 27

14. Eirid a 41ue for x which makes the following assertions true.

(a,) Log2 x = 0 (a) log2 x

(b) log2 x = (e) log2 x

1

2

(c) slog2 x = -1 . log2 x =

15. Show that, if ti >. 1, then

log2 n(n 1) < n + 1.-

( n(n
(Hint: Use the fact. that . 2

n
> - 1)

.

; s ' s

3,37
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5-7

'5-7. Logarithms (General Base)

If a >'0 and a 1 1 .then the logarithm to the base la; denoted by.'.
loge, is defined analogously to log2. Thus log

a
x is defined onl for

x > 0 and is given by

(1) loge x = y if ay = x.

The techniques and ideas of the previous section extend easili to this more

general case. For wthple, the graph of

x loga x

is obtained by folding the graph of x.-ax over the line given by y = x.

We summarize other easily obtained properties:

(a) loge 1 = 0

(2) (b) log
a
'a = 1

(c) if a > 1, loge is an increasing function and if 0 < a < 1

then loge is decreasing.

The laws of exponents

,JVC-Py axay, (ax)y axy%

-
.

give the correaponlifig logariithra'formulas
..- .

.
. .

.(a) log
a

my = log
a

x + log
a

y,; for x ).0 and y,> 0

(3)
(b) loga id' = y, log

a,
x, for , x > 0.

_ . .

o.

Logarithms tp the base 10 are very useful in-calculatfons, due t8Fthe,

act that our number systeb is the decimal sys1ei. Logarithms to the ,base

are of increasing importance due to the use of the binary/' system in computors

and in information theory. In the next chapter, our discussions of tangent

lines. will establish the importance of the base e, where e is the symbol./.

for the (irrational) number, which correct to two places, is giyen'by 2.72.

To-conirert.'from one base to another the following formula is usefUi. If

a, b and c are each positive and unequal to 1 --then
).

(4)

r. -logc b

log
e-

logab

To prove this wellet. logc; b so that

338
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r,

a
x

= b.

5-7

Now take the logarithm to the base c of each side. This gives

loge ax = loge b.

Formula 3(b) gives

loge ax = x loge a

ea that

x loge a.= loge

Unce loge a / 0 we can divide by'it to obtainv(4)-

Another formula of interest is

4

If a and b are both positive and not Olual to 1 then

loge' b =
logb a

The proof of this is left to Exerqises 5-7, Number 18.'

Exercises

1. Write each eiptession in simpler f

loga3
(a) a

7..",

2 logn3
(b) a

1/2 loga3
(c) a

log,5 .

(d) 8

log 2
(e) 16

log54.
(f) 32 '

2, What is She value of x -if 52-= 4x?

3. If a ath.= (a2)m, what is the value of. ml

4. Prove that for x any real.numbpr > 0,, loga(x

hence -loge x.

5. Prove that log (N = log x - lo
a x

2
a I r wa-x2'

. '339
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6. Show that loge a = 1. Write this equation,in exponential fdrm.

7. Express in exponential form

(a) log10 35 = y

(b) log2 25 = x

(c) 2 log10 5 = x

8. Given. log10 2 = 0.3010 find

1 128%
logio.5, logla(-5).

9. Express each of the following in logarithmic form.
.

.11

(a) 53 17 =

(b) 10-2 = 0.01

(c) 274/3 = 81

(d) '0.043/2 = o.o08

(e) 2

1

log6 (x + 9) + log6 x r: 2

Express each of the, following` g in terms o, r, s, "p,nd t, ig

r = log10 2, s loglo = log10 5.

(a) logia 4
i

(e) 1og16 2.5

(b) to o 6
(f) -kJ

(c) logio4
(g) j°gto 9 13" ,

(d) lOgio 10 . (h) log10 8 3,6535

14
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o
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12:- Write the_ following logarithms as numbers.

(a) log10 1000 (f) logo.

(b) log0.01 0.001 (g). log2 23

(c), tog3 (k) (h) logio Ar)

(d) log4 32 (i) log81 27

(e) ,(0.0001) (,j) log2 1
13. In each case determine the value of x.

log '5 log 5 log 3c
(a) 4 J

.

.
10810

logx5
=5

- 2 log10 (x - 1) = login 3

14. Solve_ the following equations.

(a) 10810 x = 0 (0)

}
(b) 10810 X*+ 1 = 0 (e)

-(c) 10810 x = 1 (f)
, - t'°°.

log
10

(x - 2) = 3

logio, ?c + 3 = 0

log10 (2x - 1) + 2 = 0

.1.5'. For what value(s) of x does it hold that

(a) :loge x= 0

(b) logx x = 1

logic
(c) x = c

3.0gx 2x =-2

16. (a) Show that if a > 1, then x log x is an increas.ing function.

(b) Show that if 0, < a < 1, then x -4 logs X, is a decreasing function.

17. (a) How are the graphs of x -'loge x and x logb x related?

(Hint: Use (10.)

(b) At what point does the graph of x x cross the x-axis?'

18. Prove formula (5) of the.text: if a. and- b are both positive and
\ not equal to 1, then

1log b
logb a ,

t
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Appendix 1.

FUNCTIONS AND THEIR REPRESENTATIONS

A1-1. Functions

,'1

,A1-1

The precise definition of function can be formulated in many ways;

as asset of ordered pairs (usually, ordered pairs Of numbers), as an pasocia-

tion or correspondence between two sets, etc. But no matter what definition

wg choose, for a function, three things are required: a set called its domain,

a set called its range, and a way of selecting a member of the range for each

member of the domain.

EXampleA1-1a. The multiplication of integers by 2 defines a function.

The domain of this function is the set of all integers; the range of the

function is the set of all even integers.

We choose to define a function as an association between elements of two

sets; thus the function of Example Al-la associates with 'each integer its

double.

If with each element Of a set A there is associated exactly one

element of a set B, then this-association is called a function, ,

from A to B. The set A is-called-the-domain -of the-funcLijn,

andthe set C of all members -of B assigned to members of A

by the function is called the range of the function.

In what folloWs we-shall be exclusively concerned with functions whose

domains are subsets of real numbers and whose ranges are also subsets of,real

numbers. More complicated functions (like 'vector valued functions;) may be

built fromthese.
c.:

The range C may be the whole set B, in which case the function is

called an onto function, or it may be a proper subset of B. Inany case,

we generally take for B the whole set of reals, because a function is

= usually specified before its range is considered.

343
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A1-1

It is common practice to repres

letters such as F, g, h, 0, etc

element of the domain of a function

the range which f, associates with
-7- -

AUSTotion f at x," or simply "f

used to suggest the association of

f :

(read "f takes x into f(x)").

function f or the element x; it

relation between 4 and f(x }.

1

(other
-

ent a function by the 1 er, f

, will also be used). If x is an

f, tten f(x) denotes the element of

x. (Read for f(x) "the value of the

'at x,' or "f of x. ")' An aiics.,C,cs

f(x) with x:

This notation tells us nothing about the

Is merely a symbolic description'Ofthe

Example Al-lb. C9nsider a function f defined as follows: f takes

each number of the domain into its square. Thus, if 3 is an element.of the

domain, then f takes 3 into 9, or f associates 9 with 3. Coltcisely

f(3) = 9, In general, if x represents any number'in the domain of f,

then f takes x. into x

lat

f :

2
or f(x) = x

2
.

lik .

,---The-function is-not adequately defined uttil we spedify its domain. If t

domain iS the set of all integers (..., -2, -1, 0, 1, 2, ...), then

the range is a subset of nonnegative integers, (0, 1, )4, 9, 16, ...). If

-we choose the set of all real numbers as domain, then a different function-is

defined, even thipigh the rule of,associationis the same; in this case the

range of the function is the set of, nonnegative real numbers.

1
Observe that a function from A to B is a one -way association;, the

reverse association from B to A is not necessarily a PUndtion. , In t

Example Al-lb, f(3) = 9 and f(-3) = 9, while the reverse association

would assign both 3 and!,-3 to 9, violating the definition of a function.

It is often useful to think of a function as a mapping, and We say that a

function maps each eldm4ntof its domain upon.one and only one element of its '

range. In t1is vein, f x---(x) can-be read, "f maps x upon, f(x)";

f(x) is called the image of x under the mapping, and x is called a ,

preimage of f(x).. This notion is illustrated in Figure Al-la, where

elements of the domain A and range B are represented by points au ,the
4,

mapping is suggested by Arrows from the, points of the domain to corresponding

points of the range.

8

r.
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. Al-1

AA.

Figure Al-le

Note that 'each element. of the domain is mapped into a unique element of the

range; i.e., each arrow starts from a different point in the domain. This is

the requirement of our definition, that with each element of the domain there

is associated exactly one element Of the l'ange4

definition of function contains the rather vague phrase, "there

is associated." The manner of association must be specified whenever wewe

. -In this cour , a.function will generally

value: for xample, f(x) = 3x - 5;

definin: function include verbal de-

'dealing with a particular function

be defined by a formula giving its

g(x) = x2 + 3x + 7. Other ways of

scription, graph, and table.

The notation f(x) is particul ly convenient when we refer to values
-t

of a function; i.e., elements Ln the range of the fdnction: We illustrate

(this in the next example.

'Example A$-le. ,Consider the function

f x--- -0-3x
2

- 5

who,se domain is the set of all real numbers.

;.(x) = 3x2 5,

f(-2) =,3(-2) 5

f(0) = 3(0)2 - 5

Then

=

= -5,

and if a + 1/17 is a real nUmber, then f(a + 4.) ,= 3(a +
A-N 2

5:
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We note, since x
2

3x2 25 > -5, and hence

y be any nonnegative real number, that;

e range of f is the set of ail real numbers not

less than -5.

a
As mentiviii earlier, a function is not completely defined unless the

lh
domain is specified -., If no'Other'information is given, it is a convenient

practice, especially when defiling with aNfunction defined by a formula, to

assume that the domain includes all real numbers for which the formula
ti

describes a real number: Fo4 example, if a domain is not specified for the

function f : , then the domain is assumed to be the set of all
x

2x
ll

-= 9

real numbers except 3 and -3. Similarly, if g is a function such theK

g(x) = -1x2, we assume, in the absence of any other information, that the

domain is (x. : -2 < x < 2); that is, the set:of all real numbers x from

-2 to 2 inclusive.

We note here that two functions f and g are identical if and only if

they have the same domain and f(x) = g(x) for each x in their domain.

The graph of a function IS-perhaps its most intuitively illuminating

-representation; it conveys importarit information about the function at a

glance. The graph of f is the set of all those points (x,y) for which .x

is in the domain of f and y = f(x). '

tr
Example Al-ld.' The graph of the function f x --spy = 47-7x7 is

the semicircle shop in Pigure Al-lb.* The graph gives us a clear picture

of what the function is doing to'the elements of its domain, and we can,

moreover, usually infer from the graph any limitations on the domait'and range.,

Thus, it is easily determined from Figure Al-lb that the domain of f is the
,

sdt of all x such that -5 < x.<:'5 and the range is the set of all y such

that 0 < y < 5. These sets are represented by the heavy segments on the

x- and 1-axis, respectively. 4

1

* In this figure a complete graph is displayed. The graph in Figure Al -lc,
as well as most of the graphs in the text, are necessarily incomplete.
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Al-1

Figure Al-lb

We remind you of the fact that not every curve is the'graph of a fundtiOn.

In particular, oar definition requires that a function map each element of

its domaincnto only one Element of its range. In terni's of points of-a graph,.

this means that the graph of a function does not contain the points( (xl,y1)

and '(x
1
,y ) if y

1
y i.e., two p nts having the same abscissa bat2' .,

diffeient ordinates. This is the a' s fJer the "vertical line test": if in

xy-plane 'we imagine _41 possible lines which are parallel to the ylvis,

'and if any of,,thete lineS'cuts the graph in more than onepoint, then the

graph represents a relation which is not a function. Conversely, if every

line parallel to the y-agis intersects a,graph in at'most.one point, then the

graph is thet,of a function. ,

t - 7

Example Al-le. The equation x
2
+ y2 = 25, whOse graph-is a circle with °

radiuS 5' and center at the origin, does not define'a function. On ike open
interval -5<_x<: 5, every vallie of x is associeifeci with `two different

. ..,

Wiluestd". y,--'cbht43.ry to the definition.Of functibn: Specifically, ,(3,4>, -
an (3-4) are two points of the circle; they determine.a line parnllel"t6

1#. .

9the y-axis and intersecting the 'circle intwo points, thus illustrating that
1 .

.)
t' he

.
the circle is the graph.oft. latioh that is not a We can, howevt,, '..-
,

-
separate the circle into two 1- circles- -the graphs of the functions ft.

.,,

i
'

o '
X- .. 4 5.-- , (Example Al-ld) and tc°° 127577 .... , ,,.

*
mi *

'-'i '",)

o ' ,.. a ' ,
' ^ . . -1, '

a

Throughout this diACussion we have used dthe letters x and 'y. . e

, N c'
',_represent elements of sets. Specifically, if f. ls therfunction

.

--
-

.,

f : x..? = f(), '
.. ,,-,.

, ,...k..-
14

Q .-----
. .4!

,
e ,

, e od ,
.

^

r TT tr
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.

then x .represents an element (unspecified, in the domain of f, and y

represents the corresponding element.in the range of f. In many textbooks

y are called variables, and since a particular value of y in the

range depends upon a particular choice of x in the domain, x is called

the independent variable and y
OP

the dependent variable. The functional

relationship is then described by saying that "y is a function of x."

For the most part this language is not used in this textbook.

. r
We =elude this section with a summary of several different special

functions; you 'are undoubtedly acquainted with some of them.

The Constant Function. If b is an arbitrary real number, then the

function f which associates with every real number x the value b,

f : is called a constant function. Morse generhlly, spy function

whose range contains exactly one number is a constant function. The graph of

a constant function, say f : x--..c. for ali real x, is a line parallel

to and icl units fro:1i the x-axis.

. 0
... -

The Identity Function. Let, A- be the set of all real numbers; 'With:

each number a in A, associate the number a. This association definei a
..

_ ... . A
function whose domain is A, and whose range is A, namely

f : x x

More generally[.for /any domain such a function is called the identity function.

If the domain is the set of all real.numbers, then the graph of f is the.

line with equation y = x.

\.
,

The Absolute Value Function. With each real number the absolute value_ TT
*

-function associates-its absolute value- :,. _ .

._.. -

'1
. . ° f' , ... ....x for. x > 0 ili

f 4 x---....1x1 . .

-x for X <'0;

- Alternative definitions: -

f x lxi = max (x,-x);

I

f : X --. Ixi = x..

3118
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The-graph o is shown in Figure Al-lc,

issuing f4qm the origin.

A1-1
.

it is the union df two rayS____/-

Figure Al-lc

The Integer Part FunCtion. Eve

the sum of an integer n and a real
110-

- .

For example,

a

x = n +

al number .x can be represented as

such that

1
and 0 r < 1. ,

5.38 = 5 +.38,
3 =.3 O.

-. + .6 . 1

We call nthe integer part of x and denote it by [x] = n ; it follows

that Ix] < z <[x] + 1.' Tliwe see that to each real number x there.

corresponds a unique integer part [x], and this correspondence defines the

integer dirt function

f :

0$

*
Sometimes called the greatest integer function.

"/
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A graph of this function is shown in Figure Al-ld; it is called a step graph;

i.e., the graph%of a step function.

Figure Al-ld

f : x

The Signum Function. With each pos.'iice real number associate the number
40#0.

+1, wiith zero associate_the number 0, and with each negative real number

associate the number -1. These associations define the signum function,

symbolized by sgn x. Thus

S gfl X 1

1, x 0,

0, x = 0 ,

-1 x <0.

We leave it as ah exercise for you to sketch-the"'graph of this function.

EVen and Oda FuncfrOns. Let f be a function whose domain ccbfitains -x

"whenever it contains x. The function f -is said to be even if,

f(-x) = f(x). For example,, the runction f with values f(x) = x
a

ip

%
even since ( -x)2 = x

2
for all x. Geometrically the graph of an even

function Ls, symmetriC with respect to the y-axis.

The function f said to be odd if f(, -r -f(x).,- For example, the

functiOn f with values .f(x) =X3 is odd. since (;x)3 t4. -x3 for' all x.

Geometrically the graph. of an odd function is symmetric with respect to the

'origin.

es
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Periodic Functions. 'Certain functions have the property that their

function values reptit themselves.in.the,same order at regular/ intervals over

the domiin (FiKure_Al-le).
'14

Figure Al-le

x

Functions having this property are called periodic; included in this important

class are thg circular (trigonometric) functions, to be discussed in Chapter 2

and 3.

A function f is periodic and has period p, p # 0, if and only if,

for all 4 in the domain of f, x + p is also in the domain and

(1) f(x + p) = f(x).

From the definition we note that each successive addition or subtraction

of I; bripgs usback to f(x) again. For example, -
;

f(x + 2p) = f (cxi p) + 4
= f(x p)

= f(x),

and

f(x - p) = f ((x - p) +

= f(x).

Ingeneral, we'infer that any multiple of a period of f is also a per

that is,

For a constant function

'f(X + np)c:_f(x)

f : , 111'

it is obvious that' f is periodic with any period

f(x + p) = c = f(x),
_.

351 .
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'It can be. shown that for nonconstant periodic functions (continuous at

one point at least) there is a least positiye value of p for which (1) is

true. This is called the fUndamental period, or simply the period, of'such

a function.

44' Example Al-lf. f : x-----wx - (4 x real, is a periodic function:
o *

.
If x = n + r where n is the integer part..of x and_x1 its fractional

*
,part, then

..-;t

and

f(x) = f(n + r)

= (n + r) - [n r]

=n +'r - n

= r,

0

f(x +I) = f(n + 1 + r)

.= (n-+ 1 + r) - [n + 1 + r]

= n + 1 + r - (n + 1)

= r.

Thus, as was asserted, f i6 periodic and its period is 1, gas shown in its

graph (Figure Al-if):

9

-- Figure Ai-lf rf

We note That since' f(x) ='r, the fractional part of
is sometimes called the fractional part function.

.k ,
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Exercises Al-].

1. 'Below, are given examples of associations between elements of two sets.

Lecid/w4ther each example may properly represent a function. This also

requires you to specify the domain and range for each function. Note that

no particular variable has to be the domain variable, and also that some

of the relations may give rise to several functions.

(a) Assign to each nonnegative integer n the number 2n - 5.

(b) .Assign to each real number x the number 7.

(c)' Assign to the number 10 the real number r.

(d) Assign tO-each pair of distinct points in the plane the distance

between them.'

(e) Y = -3 (for all x)

(f) x = 4 (for all y and z)

(g) x + y =4""2

(h) y = 2x2 + 3

(i) y2 - 4 = x

, y"< 2x - 1

(k) f(x) - 1/217
,x2 y2

16-

-2. Sketch the graphs of equationsl(e) - (i) of Number 1.

3. A function f is comp/4tely defined by the table:

I

ti

r

(a)

(b)

Describe

Write an

x 0 I 1 2 3 4

{

defines f

f(x)

th domain

equation with

-311

and range

suitably

5

of

restricted

9

_f.

13

domain that

4'. If f : x2 + 3x 4, 'find-

(a) f(0) f(I)

(b) f(2) (e) f(2 -

' t (c) f(-1) (f) f(f(1) (Hint:

of f

''This is the value

at f(1).)

ti
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5. If g is a function defined by g(x) = 2x
, find, if possible,

4-77
(d) g(2)(a) g(0)

(b) g(1) (e) g( -3)

*(c) (f) g(15).

6. Which o \the following mappings represent functions?

a
(a)

(c)

(d)

x
2

7. Given the functions f : x----x and 'g : x7-.... If x is a real
x. ..,

number, are f and g the same function? Why or-why not?
2
--:. 8. -,.

4
Given the functions f : x--. x + 2 and ,g : x--0. -11. If x ,is

,

x - 2
real, are f and 4 the same function? Why or why not?

9. What number or numbers have the image 10 under the follOwing mappings?

(it.)f : x I- 2x (d) a : x--. Ix - 41

(b) g : x---1- x2 (e) 0 : x----[x]
N.,

( 6) h': x --- ,1)711.;.

10: Which of the following statements are always true for any function f,

-asgumingthat xl and x2 atb...tin the domain of fi

(a) If xi = x2, 'then .f(xl) = f(x2).

(b) If xi / k2, then' f(xl) / 1(x2).

(d) If f(xl) = f(x2), .then xl = x2.

(d) If f(x1),/ f(x2), then xl / x2.

,
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11. If, 1(x) = Ix', which of the following statements are true for all real
numbers x and t?

A1-1

f is -an odd function.

1(x2) = f(x)2

f(x - t) < f(x) - f(t) ,

f(x + t) <f(x) + f(t)

12. Which of the followkfirfUnctions are even, which are odd, a4d which are
. neither even nor'odd?

(a) f : (e) f : x---4-x3 + 4
.

'.(b) : x 2x2 + (f) f : x-x3 - 2x

(c) f : x--..-x
2

- 4x + 4 = (g) t : x

(h) f
'

.

(d) f : x=---..- 2x,'+ 1
,

...
-

13. Which of the fo_lowing graphs could repesen't functions?

`-..) :

I-Y(a) ;
Y

(c)

-0

(b)

x

6

r
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(f)

14. Suppose that f x--e-f(;) is the function

Sketch the graphs of

(a) g

(b) g

(c) g

(d) g

15. A function f is defined by

234f(x) : {1
0

whose

y

graph is

for x /

for x =

shown.

Identify this function and sketch its graph.

16. Sketch the graph of each function, specifying iil''.domain and ranget.

(a), f : x Fc2 (g) f : x sgn, x

ir
(b) f : ixi (h) x St]

(c) f: x--.- il - xi (i f: x ---o....Ca
x-,,,

(d)' C : x--1- 1 -- lx1 (j) f :_sx--..x[x]

I

x21
(e) .f. 2 xo- ixi - x (k) f : xo- 11 - x2 1 ,

(f) .f x :--r,... -1x1 + ix -11 (/) f : x--4-1x2 - 2x:- 31
1

(Hint: Consider separately 4240,

the 'three :,possibilities:

x < 0, 0 < x < 1,, and
x > 1.)

I
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Sketch the graphs of the functions in Exercises 17 to 19. For thOse functions

-which are periodic, indicate their periods. Indicate those functions which are

even or. odd.

17. f : x - [c -

f : 2x2 - EA
f-: 2x2 - 42]

f : x 2x2 - 2[X]2

18. . (a). f ax Ca)2 a > 0

f : - [2x] _ Dx].

4f : x(1/5' + 1) - - [x]

f :

.1 + sgn x
This function is also called the Heaviside

2

unit function and is designated f :

(b) f + H(x - 2)

(c) f : x--44.11(x) H(x,- 2)

(d) f4 x (x - 2)2 4i(X)

(F) f : x --a. H(x) + H(x - 2) t H(x - 4)

(f) f : X H(x2 - 2.)

Ah .(g) .f x ( sgn x)(x - 1)2 t Egn(x 2)]x2

20. If f and g are periodic functions of periods m and .n, respectively

(m, n integers), show that alto and f g are also periodic. Give

. ,examples to showethat the peTni of _f + g oan either be greater or less

Ir

than both of m and n. Repeat the same for the product f g.

21. (a), Can a funCtion be both even and odd?

(b) What can you say about the evenness or oddness of the product of:

(1), an,eve!T'function by an even.fUnction?

(2). an 'even function by an odd function?

(3) an odd function by an odd functio

(c) Show that every function whose domain ontains -x whenever it

contains x can be expressed as the sum of ah evep function plus

an odd function./

357
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22. Find functions f(x) satisfying

2,(x) f(_x) = 1 (called a functional equation).

Suggestion: Use 21(c).

23. Prove that no periodicunction other than a constant can be a rational

function. (Note: A rational function is the ratio of two polynomial

functions.)
\

X

el

1

358:

a t3



4:2

A1-2. Composite Functions

Given two functions f and g with domai s whose intersection is non-

empty, we can construct new functions by usir any of the elementary rational,

operations--altion, subtraction, multiplication, division--on'the given

l'unctiona. Thus, the sum of f and g is defined to be the function

f+g x--;---.-f:),17.((.)x)

which has for dotain those elements contained in the intersection.of the

domains of f and g. Similarly there are definitions for the difference,

product, and quotient of two functions; there is, in fact, a whole algebra

of functions, just 8.6 there is the familiar algebra of real numbers.

In this algebra of functions there is one operation that has no counter-

part in the algebra of numbers: the operation of composition. This operation

isbest explained by'examples.

Let

Old

We observe that

/
g : x 2x + 1 4"

f : --4-x
2.

g(l) =, 3. and f(3)

g(2) = 5 and f(5) = 25,

and, in general, the value of f at g(x) is

f(g(x)) = f(2x + 1) = (2x + 1)2.

We have constructed it new function which maps x onto the square of'

(2x + 1).' this function}, defined by the mapping x---...f(g(x)) and denoted

by fg, is called a composite of f and g. Hereafter we shall usually

represent the value of the function fg, by fg(x) rather than f(g(4.

Either symbol means the'value of f at g(x).*

The symbol fg, denoting the composite of the functions t and g
must not be confused with the product of the funCtions. In this text we
distinguish the latter by use of t of for.multiplication; i.e., f .g.

3 6 7:



A1-2

An immediate question arises as to the

composed: is the composition of functips

general, are gf(x) arid fg(x) equal? In

that fg(2) = f(5) = 25, and we calculate.

gf(2) = g(4) = 9

Thil counterexample is sufficient to prove

The operation of composition applied to two

produces two different composite functions

order in which they are composed.

or in which two functions are

a commutative operation; i.e., in

the example above we have seen

gf(2):

fg(2)

that in general gf(x) # fg(x).

functions f and g generally

fg and gf, depending upon the

A word of caution must b /injected at this point. The number fg(x) is

defined only if x is in the domain of g and 4(x) .is in the domain of f.

For example, if

f(x) = -Li' and g(x)'43x - 9,

then

fg(x) = f(3x -'9) =

and the domain of fg is the set of,real numbers x for which 3x - 9 is

nonnegative; hence the domain is the set of all x > 3.

For the other composition of the same functions f and g, we have

gf(x) = g(-1/) =3IX'- 9

,which is defined for all nonnegative real numbers (x.

We define composition of functions formally. /

The composite fg of two functions f and g. is the function

fg : x fg( x) = f (g(

The domain of fg is the set of all elements x in the domain'

of g for which g(x) is in the domain of f. The operation

of forming a composite of two functions is called composition.

The definition may be extended to the composition of three or more

functions. Thus, if f, fig, and h are functions, one composite is
.

fgh ; x fgh(x) = (g(h(x)))

6 In order to evaluate fgh(x), we first find .h(x), then the value of g at

h(x), and finally the value of f at gh(x).

36o
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Exercises, A1-2 .

N -,

'a. Given that f : x---. -x 2 and g ': x---x 2
+ 1. for all real x, find

.

s

.,

le0 4F(2) + g(2) (e) f(x) .4.4.rgSx')., :

:(f) ff(x)

"°

l*
. ro

(b) f(2) g(2) g(x).
.

(c) fg(2). (g) -fex) . ..

(d) gf(2) (h)... gf(x)

2. If f(x) = 3x + 2 and g(x). = 5, find d u

(a) fg(x).

(b) gf(x).

3. If f(x) = 2x +1 and g(x) = x2, find'

(a) fg(x) (and gf(x). '

(b) A For what values/ x, if any, arf :fg(x) and gf(x) equal?

4. For each pair of functions f and g, find, the composite functions fg,

and gf and specify the domain (and range, if possible) of each.

( a) f :

x '

g: x 2x - 6

(b) f :

1
,

g : x-x2
- 4 '

x

(c) f : x , g :

x- ir
(a) f : x\--;.. x2 , g : x

(e) f : x2 , g, : x A - x

(f) f x 5(2- 1 ,,.g : X 16C

,

5. Given that f(x) = x2-+ 3 and g(x).= 1/)77.7, solve the equation

'fg(x) = grflx).

6.'' Solve problem 5 taking g(x)

7. Describe functions f and g such that gf will equal
'

(a) 3(x + 2) - 4. (a) x - 41,

-% '
(b) (2X 5)? (e) (42;

(c)
2x - 5

am=
J
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. `

,0

. For each Air or :fUnctions .f and g ;find the composite functions.fg

' and, gf and specify the domain (and range; if pPssible) of each. Also,r.
sketch the,graph of each, 'and give the period (fundamental) of those

which are peribdic.

C
<o 4

(a) f g x---4sgn(x - 2)

(b) x----s-IXI , g : x---4=2 sgn(x -
4,

2)-- 1

-9. What can yoou say about the evenness or oddness ofthe composite.of

(a) an, even function of an even function?

At(b) an even function of an odd function?

(c) an odd function of an odd function?

(d) an odd function of an even function?,

10. If the function f is periodic, what can you say about the periodic

character of the composite functions fg and gf assuming these exist

and, g is an arbitrary functiOn (ilot periodic)? Illustrate by examples.

11.' T? the functions f and g are each periodic, then the composite func-

tions fg and, gf (a,se?Imed to exist) are also periodic. Can the period'

of*either one be less than that of both f and g?

12. A sequence. at), al, a2, , an, ., "is defined by the equation

wher

and

an+1 f(an), n = (i) 1) 2, 3,

f is a given function and a0 is a given number. If ao = 0

.then

al f(a0) 11

a2 = f(al) = ff(a0) =

a3 = f(a2) = Mai) =,fff(a0) = )2 + 12717

Show that for any

(a) an < 2

(b) a
n

> 2 n > O.

.2
n-1 '

th

I

*.f

4'

N.
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se.

13. If c+1 = gan); n = 0, 1, 2,

of g and n, for tne folloNing

(a) f x a + bx.

(b) f xm.

(c) f : irxT:

(d) f :

(e) f : - x)-1.

z

e g,
0 ,

functi'Ons

find

f

..1.4
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all
V

a a's a function-
,n .

z

A1-2

b



A1-3

A1.3. Inverse Functions

Recall the vertical line test for the graph of a function (Section.A1 -1):

if every line which is parallel to the y -axis intersects p graph in at most

one point, then the graph is that of a function. Thus in FigUrp A1-3a, (i)

and (ii) illustrate graphs of functions, (iIi) is the graph of'a relation that

is not a function.'

(i)

1

(ii)

Figure A1-3a

This figure also illustrates an important distinction between two classes of

functions: for graph (i there is at least one line parallel to the x-axis

which intersects the graph in more than one point; this is not the case for

graph (ii). The latter is typical of a class of functions called one-to-one '

functions: each element in the domain is mapped into one and only one image

iii the range, and each element in tl* range corresponds to one and only one

preimage in the domain. In other words, a funCtionof this kind establishes°

a'one-to-one correspondence between the domain and the range of the function:
,

A function f is one-to-one if w enever f(xl) = f(x2):, the

xi = x2.

Note the distinction between the definition of function and this defirli-
-

tion. The former states that any function f has the property that 4

xl.,,='x
2'

then f(xly= f(x2), whereas the latter states that a one=to-one

.function f is such that f(xl) = f(x2) if and only if xi. =-x2. . .

The class of one-to-one functions is important because fo; each ember
,

of ihis class we can specify a function that, in a, loose way of speaking,
. ,

-----. . J
undoes #10-7a6V7:5-r7.70 Win 4unctI-64.--#04, fo4example, if f is the

II.- 3-1 0.1
, . .

g; i
04 ri,

, 4,

. ,, , . 364 ,
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function which maps each real number

g,. called 'the inverse' of f, which

number onto its half:: f : 2x;

If a. function f : x f(x)

A1-3

onto its double, then there is a function

reverses this mapping and takes each real
1

g y ,y
2,

is one-to-one, then the function

g : x, whose domain is the range of f, is called

the inverse of f.

The functions f and
0

g represent the same association but considered

from opposite directions; the domain of g is the range of f and the range

of g is the domain of f; Furthermore, g is itself one -to -one and its

inverse is f.

It Is instructive to lOok at the composites of two funbtions

inverse to one another. If f maps x into y, then g maps

into x; in other words, if,,y f(x), then x = E(y). Fgrice,

''gf(x)= g(y) = x, for all x in the domain of f,

and

0 fJ
fay) = f(x) = Y., for all y in the range of f%

/

Observe that thp restriction of the domain of g to coincide with the range

of f part of the definition of ,the inverse.

f and g

backy

Example Al -3a. Consider the one-to-one function f.: x--0. 2x - 3;

what is its inverse? Here f is described by the instruction, "Take a. number,

double it, and then subtract 3," In orderto-reverse this' procedure, we

must add 3 and then divide by .2. This'suggests that the inverse of f

.is tile function g
2

. to prove this fact, we nattst show that<, 1

satisfies the definition of inverse; i.ee, show that g `maps f(x) into

for all x in thd domain of f. By substitution,

1(x) = g(2X - 3)
(2x - 3) + 3

2

.4

g' is the inverse of f. Furthermore, in the Opposite direction,

fg(x) .'f(2472) - ' 3 x

-I--
for all x in the domain of g% Hence, f is t4 inverse.of the functi n

I .

g as expected. .

'
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Al -3 Insert page 366,
1

The graph bf the inver e g of a function f is easily found from the

graph of f. If f maps into b, then.g maps b into a. It .

A ,e,follows that the point (a,b) is on the graph of f, if and only if (b,a)
. .

is on the graph of g.. Figure4A1-3b shops three poidts (1,-3), (2,1), and

(4,,40) 01, on the gr h of a function f, and their corresponding points, obtained

1140/Pby intercha of coordinates, on the graph of g.

51

y

4

3

(1,2)

y =1g(x)

P /
;

/, (2,1)

-4 -2-3 \ -1 // 0 2 3 4

-1

-2\ o.

/0

-3 (1,-3)

Figure A1-3b

FroM this figure we see that the points (a,b) k and (b)a) are symmetric,

with res ect to the line y = x; that is, the line segment determined by these

two poin s is perpendicular to," and bisected by, the line y = x. We call

-(b,a) the reflection of (a,b) inthaline 1y ..= x.
,

mt5,

Example Al-; .Consider the functions f : x--... 17-77, .x > -2 and ,

g : x ---)..x
2
,.- 2. The function f- is one -to -one; g is not and, hence,

cannot be the inverse of f as it stands. This can be restri ted by restrict-

ing the domhin of g to, x > 0; i.e., the id;rerselof f is : x.X2 - 2,

xi> 0 (Figure A1-3c). The composite functions verify that, f and g' a'e
1

inverse to oge another:

(4,2)

= x

x

= f(x).

-Ye



fg x fg(x) = Ax2 - 2) + 2 = x > 0;

gf x gf(x) = (477)2 - 2.= x, x >c2.

, Y

/
x > -2

x x2 - 2 x > 0

-1 /

/ -1

//
O

` Figure Al -3c

The relationship between the coordinateS of a point ' (a,b) and the

coordinates of its reflection (1?,a) in the line = x suggests a formal

method tor obtaining an equation' of the inverse of a given function assume

that the in exists.

Example A1-3c 'Consider2the function
4

f ; x y = 3x + 5 for all real x.

Yf 'we

-

,d4tercigginge x and y in the equation

. -, .

(3.)
, r y = 3x 4. 5,

.
,

we obtair7 J

(2) 7
x = 3y + 5.

f" I

- For every 'pair of numbers (a,b) in the solution set o (l), a pair (b,a)

is,in the solution set of (2). Hence, (2). is an equat n defining -implicitly
441

the inverse of the given ,function f In order to obtain. the explicit .form,

we 'solve (2) for y in terms of x and obtain
1 e\ -

.1 367 0'17 rt) s)
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The inverse of f is, therefore,

g : x 3 5 for all. real- x.

You shopld verify the fact that gi(a) = a for any a in the domain of f,

and that fg(b) = b. for any b in the domain g (range of f).

Example Al -3d, If the given equation defines a quadratic function, the

problem of finding an inverse is
.

more coipplicated. In the first place, the

given function must be restricted to a domain which gives a one-to-one

function; in the second place, the technical details of interchanging the

variables x and y in the given equation and then ,solving for y are more
1

involved.

Consider the function
^

T f :

2
+ 2x + 3

whose graph is a parabola with vertex at (-1,2) and opening upward. If,

for example, we..restrict f to the domain (x : x > -1), then we have 'a

function fl which is one-to-one and hence has an inverse gl. The range of

fl is (r y =4i'1(x) 2: 2), and this will be the domain of gl.

61
nd We,int rchange the variables to.obtain'

,

We proceed to.find a formula defining

y = x
2

+ 2x + 3,

-= :pc = y
2

+ 2y + 3.

We are given

We now solve-foi y in the quadratic equation

y + 2y + (3 - x) = 02

obtaining

a.

,
y"'=. LI + )x -52 or y = -1.-IT72 .' ;e4

0 ,-

Which of these formulas defines the ation gl? Since y here represents

any element in tile range of the inverse func'tiox, and'sinde the rage must be

- I

the same set of Lumbers as t he domain of J fl, we see that .x > ,1, ig

required. 'Hem

4111

/4

1
ggf
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. /

r r
y = -1 + 167:7

defines the inverse function , 4

pEN=1=1.

.
A1-3

-

whosedomain is (x :x > 2). (Note, again,'that this is the range of fi;)

, -
It is helpful to sketch the graphs of the two inverse functions in Order

to see more clearly the relationships between their domains and,ranges. (See'

Figure A1-3d.) In fact, if you graph the original function f, you may_see4

more clearly ow its doma.n may be restricted in infinitely many ways to give *

as many diffe nt one-to-one functions,, each of which has a unique inverse

function.

4

;(
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A1-3

1. What is the reflectiOn'of

Write An equation defining

2. Which,points are their
et

own

grapheof all such paints?

.3. (a) Find the slope of the

the segment is

(b) Prove that th

line y = X.'

ria

/

e line y = f(x) = 3x in the line y :-.. x?

ercises

the inverse of f.

reflections in the

",/' Y 4

ling y = x? What is the

segment from (a,b)': to (b,a), and prove that

perpendicular to the line y = x.

segment from (a,b) to

4. What is the reflection of

(a) x = 0?

(b). y = 0?

_ --

(c) = -x?

(1,1) in thl line

(a) y

'(e) x = -3?

(b,a). is bisected by the

5. Describe any function or functions you can think of which are their own

inverses.

6. }in equation or an expression (phrase) 'is Said to be symmetric in x and

y if the equations or the expressions remain unaltered by interchanging

x and y; e.g., x
2
+ y ,= 0, x.3 + y3.= 3xy, lx - yl = lx + yl,

x -'xy + y. It follows thaegraphs of symmetric equations are symmetric

° about the y = x line. Geometrically; we can consider the line y = x,

behaving as a. mirror, i.e., for any portion

be a portion whichisithe mirror image.

4 4 4
The equation 'x + y =

is bviously symmetric with r spect

to the line y = x. What (4h r

axes of'Symmetry Zmirror type

does it have?

7. The expression

a'+ b-+ I

r.

of the graph there must also

/

- b + re.'+ b+ la - to! :ITC

obviously symmetric in

and c:

67104 six cases (i) a

ato.

Hint:

I

a and Show that it is also

b c, p.1)

' 370
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Fnd,the inverse of eadh ,function.
- ,

(a) f : x 3x + 6

(b) f : - 5

2(c) f : - 3

9. Which of the follOwing functions have inverses? Describe each, inverse by

means of a graph or equation'and give its domain and range.

,(a) "f : -x2 ( d) f x [x]

CP" (b) f : (e) 4: x---.-xixl

(c) f

4

A1-3

S.

10./As we have seen, f
2

Do the following:

(f) f sgn x

for all rea4 t does not have an inverse..
4

.

(a) Sketch graphs of, I', : x ---x
2

for x > 0 sand ,_f : x --0-x2 for

x < 0, and determine the inverses of f 'ane ft.
1, - 2

(b) What relationship exists among the domains of f, fl, and V?
2

(f1 is called the restriction of f to the domain (x : x > 0)
'

';

.

and 7,f
2

is similarly the restriction of f to the domain

(x': x < 0).)

11. (a) Sketch a graph of f : and show that f does not have

an inverse._

(b) Divide the domain of f into two parts such that the restriction of

f to eitAr part has an inverse.

(c) Write an equation defining each'inverse of part (b) aria sketch the

graphs.
1

12. DO Problem 11 for f : x--.- x
2

- 4x.

13: Giv9 that f(x) = 3x =72- and g(x) = -2x + k,, find k such that

fg(x) ge(x). For this value of are f and g inverse to one

another? 'Give reasons for your answers.'

14. Show that f : x---... x2 - 4x + 5 for x > 2 and gliix.. 2.+ 1/7:-.77717

for x _> 1 are inv'erse to one another by showing that fg(y) = y for all
. .

yl in the domain of 'ig, and that gf(x) = x for all x in the domain

f .of

15. If f(x) =12x-3 + 1 7 I find at least two functions su h that

'
/..

. )

f0x) = gf(x) e' '

371
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6 A1-4. Monotone Functions #

If we examine the behavior, for x increasing, oft&functIons
7olt

f : 1G and g :'x --b. sin x, we note that the values of -f increase

as x increases, while the values of g, are sometimes increasing and kme-

times decreasing. Geometrically this means that the graph of f is con- r

tinually qsing as we survey it from left to right (the direction of increasing

x), ,whereas the graph of g, like a wave, is now rising, now falling. The

graph _of a function may also contain horizontal portions (parallel to the

x-axis), where the values of the function remain constant on an interval. A
. .

function such as x illustrates 'this, and also points up the fact

that the graph of such a function need not be continuous.

Example A1-4a. The function defined by

-x
2

, 0 < x < 1;

h(x)

7-

1 < x < 2;

x3
2 x,

has the graph shown in Fgui'e
Ad

0.

1

4
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It is easy to see that the function decreases as x increases except on the

interyal (1,2] on which it remains constant.

Taken as a class, the increasing, decreasing, strictly. increasing, and
.

strictly decreasing functions called monotone (compare with- monotonous).; ..

becaesethe changes in the values of the functions as x increases are
.

always in one direction.irection.

Let f be a function defined on an ;interval I and let

yl ..f(x1), y2 f(x2) for xl, 2c2 in I. If, for each

'pair,of numbers x
1

and x2 in 'I, with x
1

< x.
'

the
2

corresponding values of

(2)

(3)

{4)

y
1
.< y

.2?

Y
1
> Y

21

Y1 < Y2,

y1 Y2'

then

then f

then f

then

y_satfsfy the, ineclualitY

is a strictly increasing function;

is a strictly decreasing function;

14, an 'increasing function;,

is a degreasing function. -

Briefly, this definition states that a function which preserves order
. .

relations is increasing; a function which reverses order relations is

decreasing. -Note.particularly that a Strictly onincreasing functi is a special,
;

'case of an increasing function; siMilarly"a strictly decreasing function is-:a

speciril case of a decreasing function. f

A funCtionwhich is either increasing or deCreasing is called

monotone. Wunction w is tither strictly increasing or

rstrictlydecreasing is e lled-strictly 'monotone.

I Of .k A
For examp the function h ¢f EXample Al-lfa'iss monotone over its

entire domain and ,strictly monotoiieori.:the.nosed.'interyal 02X: < 1 as

well as on the interval x >2.

must

The graph'of a strictly monotone functiOns

be one-to-one, hence must have an inverse;/4
. t: s.

Y
1

i ,1;. c.
'* . .

, In some texts the term "nondecreasIng" ,.s useo instead 46, "increasing";
"nonincreasing" is used instead df "decreasing4,.., ,ii Volume 1 'of this book we
usually drop the phrase "str,intly" from these defiriitions

Y ,u4ing (1) or (3)
'las the definition of "increab.ing." .

'
0, 1'. ...s..

:

;
/

' N J '

. .

the function

r

4.
/ .

03 3
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4
THEOREM If,a function is ,strictly monotone, then it has an inverse,

which is strictly monotone in'the same sense.

Proof. We treat tne case for f strictly increasing; the proof for f-

strictly decreasing is entirely similar. If x
1 ,

x2, take xi <'x2, then

f(xl) < f(x2); -'that is; f(xl) # f(x2). Hence, f is one-to-olie,-and f

has an inverse

g f(x)---44x

defined for all 4alues f(x) in the range of f.

Finally, g is strictly increasing, for if y
1

and y
2

are in the

domain of g and yl < y2, then Y1 = f(x1), y2 = f(x2) and x
1

must be

less than x2. (Why?) Therefore, g(y1) = xl < x2 g(y2).

Example Alltb. 'The,function
,-. ...-

, f : x .,--..xn, /76 (

.

n a natural number, is strictly moftotOne (increasing) for all real x > O.

Hence,' f. has the inverse function
, * r

g : x, 1K >0.
4

.which is alsq an increasing function. For an arbitrary element y in the

domaIh of g;', we denote g(y) by r147;: thus (1) may be rewritten\

(2) jg
y > 0.'

CoMpailng (1) and (2), we see that ri,g is the unique. positive solution- x,

of the equation xn = Yr; we call
n2`'

the n-th root of 'y for all real
'

T

If the natural number n is odd, then tlae function. f : is:

strongly monotone for all real x,. as is its inverse 'function. This means

that every.real number_ has a unique n-th root or n odd. For` example,,

' for n odd and a real,' /7171
. .

9

0 n
If n is even, f : x'7. is ddcreasing for all real, x < 0, and

incrtaginifor.all real x >0. If f
1

is the, restriction of f to the

dothaim x >0 and f2 is the rest iction of f "to x < 0, theh eaCh,of
I ,

these kunCtions has an ,inverse, n ily .



and

for n even and all real y > 0. For n *even,. the positive n-th.root of
a nonnegative real, number is sometimes called its principal n -1h root.. The,
symbol 9 always meacs,the principal n-th root.

n,-

A1-4

4 A

rr.
Exercises A1-4

1. Prove that f x ---a. x2 for ,x > 0 is a strictly increasing function-.
o' ' -(Hint: Let xi > x2 > 0;

2 2
x
1

> x
2

.)

then x - x2 >.0. From this shoW that1 2 ;

r ..

0
2. Which of the following functiOns are decreasing? increasing'? strictly

_ .

decreasing? strictly in easing? In each case the domain is the set of

7real numbers unless oth
1

ise restricted.

-441

(b)

:(c)

(d)

(e)

(r)

(g)

.f1 :

f2 :

f
3

f

f 5 :'

f6

f
7

x----a-c, c

x

& constant

x < 0

;
x > 0

(h) f8

(i) f9

(J) fit)

(k) .fis

(2) gl

(4c g2
A

+

+ IX'- I
--0,1x1

X-- IX

x f'3f4( )

x2

X.'-'6'f4f3(X)
x

.
4

3; For each function in Probla

into parts such thatIthe re

a monotone or strictly.mono

2 which is not monotone, divide, its

triction of f totany.of the,he parts,gives

onefunctiom4

4 ,



7

A1-4

4. We are given that the function.

4.

g,

is increasing,
#,

A

is strictly increasing,

14Aecreasing,

.g4
2

is strictly detrpasing,

,

in a common domain., What is the monotone, character, if any, of the

followingfunctions:,

(a) f
1
+ f

2

(b) f2 + gi.

(c) ,g1 + g,.

(d),, g2 4 fl,.,

(e) fl f2

(1.) f2

(g) ga. g2

-(I;) g2 fl or# if

.7 0

.

(k)

6(2)* glf#21.. s
a

(m).. glg2'

-Y g^cg
(0) g2fi.

(P) flg2',-

O

"

at

,.

. ...
. ,

C
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it has coordinates (r., e + g) also.

(rye)

(Lr,8)

(r,e + n)

0 = 0'

(rye)

0 = 0'

Figure Al -5b

In a cartesian
coordinate system every ppint in the plane.has a unique

pair of coerdinates (x,y), In a polar coordinate system, by contrast, this

is not tae; a given point in the.plane does not have a unique representation.

in,polar coordinates (see point P' in Figure A1-5a) In both coordi-

nate`systeTs, however, a given pair of coordinate's specifies a unique point in

the,plane.

A relation between x and y may be represented by a graph in a .

cartesian coordinate plane. A relation in r and e may be replesented

,by a graph ip a polar coordinate system; a point lies on the'graph if and only

if it.has at least one coordinate pair which satisfies the given relation:

We discuss the graphs of a few functions defined by equations. ifffiolar a

Figure Al -5b

In a cartesian
coordinate system every ppint in the plane.has a unique

pair of coerdinates (x,y), In a polar coordinate system, by contrast, this

is not tae; a given point in the.plane does not have a unique representation.

in,polar coordinates (see point P' in Figure A1-5a) In both coordi-

nate`systeTs, however, a given pair of coordinate's specifies a unique point in

coOrdinates.

'43

(r,e + n)

.370 8 (i

A relation between x and y may be represented by a graph in a .

cartesian coordinate plane. A relation in r and e may be replesented

,by a graph ip a polar coordinate system; a point lies on the'graph if and only

if it.has at least one coordinate pair which satisfies the given relation:

We discuss the graphs of a few functions defined by equations. ifffiolar a

.370 8 (i =
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, .

.....

i 1

IThere are infinitely many such angles for each point 47,;, 'if. A is one angle,

then 8,±.2ng (n = 1, 2', 3, ...) are the others. Thus; a point may be
,-

,

1

4entlfied by infinitely many pairsof polar, coordinates. For example

(FigureA1-5a), point P with polar coordinates, (4,21), also has coordinates

(4 , ZE), (4, .- 27-1), and,, in gener4 , 3 n.
(4 + 2ng) for any integer

3 3 -
,

The pole (origin) is a special.qase: to it we absign.as polar coordinates any

pair (0,A)°, 8 any real number. ".

e When we assign polar coordinates to locate a,point, it is customaty to

ff.119w 'r alp tobe negative. r > 0, the point (-1-,.8) is located

symmetrically'to the, point (r,A) with respect to the origin (Figure AL -5b);

it has coordinates (r', e + g) also.

(r,A + 1)'
Figure Al -5b

In a cartesian coordinate system every ppint in the plane. has a unique

pair of. coardinates (x,y). In a polar coordinate system, by contrast, this

is not tPUe; a given point in the.Plane does not have a uniqpe representation.

in,polar coordinates (see point P' in Figure A1-5a), In both coordi-

natessysteTs, however, a given pair of coordinate's specifies a unique point in

,e)

8 = 0'

the,plane.

A relation between x and y may be represented by a graph in a .

cartesian coordinate plane. A relation in r and 8 may be reprresented

iby a graph ip a polar coordinate system; a point lies on the'graph if and only

if Lt.has at least one coordinate pair which satisfies the given rethion:

Wd discuss the graphs of a few functions defined by equations, id1Polar

coOrdinates.

I

,AI
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The graph of the eqpation
,

r = c
.

' N A1:5

contairis:all point (cie), e anY'Nlleal, number; it is a circle of radius

hding 4t; center at the pole. The equation r = -c .describes the same

circle.

. The points for which

e = c
.

4 .

lie on the line'passing through the pole which formi an angle of c radians

with the polar''axie;-each point of the line has coordinates (r,c) for some
.

.real r.
.
For r positive, the points form the ray in direction e, for r

negative,' the ray has, direction 8 + It. The0line has infinitely many equa-
tions e . c + nrc,. n an integer.

.

The circular-functions of` e are 'especially conveniently represented in

polps'coordinates be use the entire graph is traced out,in one period. We
)

shall illustrate a ifocedure for 'sketching a' graph of such a function.-psing

.,.

polar.coordinate graph r.: Note that the function specifies the graph; aI 0

function however, cannot be recovered from its graph in polar coordinates:,/

Example Al -5a,.

. , Since r .is a

A- the 'correspond.ing

valUe '0 at e=

,

Sketch a...graph of the function def4ined-by-

r =4 cos e.

function of e, we consider values of e 'and calculate

valospf :r.- We,ktiow that the cosine increases
rt-f to '1 at e = 0 and then decreases to 0

from,the

at e =2.
Hence, in this.interval, r increases from -0 to 4 and,then decreases.tot:,

Since cos(e +.x) = -cos e, the point (4 cos(e 1) ,e) 'is the same as
(-4 cos 0,,e), and the curVefor - 5-< 4 < is the entire graph.2 2

4,

To 's16 1' the graith-ofsthe function, we calculate r for a few convenient. -

xvalues of :0 (
x

- T,E, etc.), locate the corresponding Points on polar
coordinatepaper, and sketch the graph (Figure Al -5c); it appears.to be a

1.

circle and we shall presently verify that it is.

b

.

4i
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(
Figure Al -5c

Since each point- P in the plane has both rectangular end polar coordi-

nates (Figure Al -5d), for r > 0, we

have froth the trigonometric functions

of angles

(1) x = r cos e, y r sin e.

We leave it to'you to verify that

equations (1) hold for r-< 0. Thus

the rectangulaand polar coordinates

of-eack-point in the plane are related

by (1). It folloWs that .

(2) 2
2 2

x y = r .

380
,388 .

Figure A1-5d °
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Now we re-examine the function defiried by r = 4 cop e (Example A1-4a)

and ptov6that its graph is It circle. We shall do so by transforming the

given equation into an equation involving rectangular coardinatqs and y,

Nbil the given equation r = 4 cos a has the same graph as the equation

(3) r2r = 4r cos e,

for if r 1 0, we may divide both members of. the equation by r to obtain the

given equation = 0 corresponds to the fact that the pole is on both

graphs. This may notle immed' tely obvious since only 'Certain pairs of.
..

coordinates representing the' le will satisfy the equation r'= 4 cos e.
e

Forexample, both (0,0) and (02) represent the pole; yet only the latter
0 .

of.these pairs satisfies r = 4 cos e.

We use (1) and (2) to obtain from (3) that

or . .

2 2 L
x. + y =

(x - 2)2 + y2 = 4,
911

an equivalent equation in rectangular coordinates,, We recognize this as an

equation of the circle with center at (2,0 and radius 2, verifying tne
r -

graph in Figure A1-5c.

Example Al -5b. -.Find an equation in polar coordinates of the curve whose.
I

(x2
y2)2 .equation in cartesian coordinate's is' kx

2
+ y

2
)
2

=
(x2

.
y2).

Applying Equations (1) and (2),weJnave

r4 ...a2r2(cos.20
sin2e)

e = a
2
r
2
cos 2e

o

This is equivalent to'
,

r
2
= 0 (th4cole) and r2 a

2
cos 29.'

Since 'r2 ,= a
2

cos 20' is satisfied by (9,t), a set of'polar coordinates

for the pole, we see that r
2
=\0 contributes no points not in the of

r- a
2
cos 2e. Hence', the latter lean equation in polar.form whie is the

2

I .

;

381
389

S

t



A1-5

lemniscate

of the given

of Bernoulli

one, The-graph of this equation is

and is displayed,ln Figure Al-5e,

caly the

Figure, Al-5e

We now develop an equation which, for suitable choice Of a parameter',

will represent either a parabola, an ellipse, or a hyperbola. For this
4

purpose -we need the definition of these curves (conic sections)' in terms of

focus., directrix, and eccentricity. Every conieCtion (other than the

,circle) maybe defined to be thetet (locus) of all points
s

F such thiit the
,

a fixed point F (the focus) to the

i (the directrix) is EipcNitive con-

x

. ratio ofthe distance between P and
.

;'distance between P and a fixed line

et:ant e;'called.the eccentricity of the conic section. _If

section is a parabola, if 0 < e < 1 it is an'ellipse,.and

a hyperbola *

I

In order to dgrive an evation in

polar coordinates of aconic section,

it is convenient to place the focus
. .

/ F at the pole (origin) and the

direetrio .12 perpendicular to the

extension of the polar axis at dis-

tance p > 0 ?from t}\e pole, as s own

in Figure A1-5f. (Other orients ons ,

-are possible; see.EXereises Al=5;

%
Nos: 8-104 P isaby

Of the conic section.

e the conic

if 'e > 1 i, is

1.0,COS*e

= o

FigUre Al-5f.

This Curve is defined as the set (locus) ofpoints''P. such that
product of the"distapces of P from two fixed points is the square. of
the: distance %etWeerrthe two f1Xed points.

f

382
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Tft lei (r,9) be a'n'y pair of'bolar coordinates of',P ifOr which- r > 0;

1,11A1 FP '= r' and DP + r cos 6 (Figure A1-5f). The definition of the
FP
Bis.conic sections requires that, e or

p + r cos 8

1.

6

A1-5

we 'obtain

e
(4)

, .
wilizh we take to

. .

' having focus and

ep,
r,

1 e cos 0

- e. SolV,Igg for r

be the standard form of the polar equation of conic sections..

directrix oriented as in Figure Al -7f. From Equation-(4),

if e < 1 (ellipse or parabola), then r > 0; if e > 1, (hgerboli), 'r

may b'e neggtive and these values give us the branch pf the hyperbole lying to

the left.of the directriSc.
. -

,,

. . \ \Example Al -5!'. Describe and sketch the graph otthe equation_....

16
,

5.- 3 cos e'''

114 may put this equation in the standard form

r

from which e = and pi=
'3

.

focus F1' at' the pdlesand Major axis on the polar axle:. By giiiing .9- the

values 0 ,-and g, we find the ends of thj major axis to be (8,0) and

2,n). Thus the length Of the major axis is 10, the center of the ellipse

16

r - 1 cos e
5

.

3 16.

5 3

1 -
5

,r)s 4

Since e < 1, the graph is an ellipse with

is the point (3,0).; and the
16 ?p =
3

(the distance betyeen.

ellipse); the equation of the
, 16pole is r cos e = - s(sge

3

other focus is, the "point F (6 0).- Since
'

a focus and corresponding directrix of the

directrix 21 corresponding to the focus at the-

Exercises A1-5, No. ea.), and the equation of

is r cos 9 =
3

. Uhen e =
3

end of the focal chord

the direqriX 12 corresponding to F2(6,0

,16 16 y,then r = , and we have the point (-5-, .51 at one

(latus

16 .311
(75 2 )f

\
rectum) through F1. The other.andwnt-has polar coordinates

:

these points help us to skdtch the ellipse,as shown

419

-4

'3&3 3p,
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Exercises A1-5

l'. ,Find all .polar coordinates of each of the following. points:

(a) (6 , i). . . (c) (62 - ?). -

(b) (-6 ,,'-i). (a)(-6, - 'i).
%

°A) -2. Find, rectangular 'coordinates of the joints iri Exercise i.

Find polar coordinates of each of the following points given in rectangu-

lar
.

coordinates: ' ea(

\ '
(a) (4, -4). (e) (.-3 , 0).

.
,.

(b) (:-2-2'a , i).,
,

(f) (-3 , 4).

(c) (-2 , -2iD. *(g) ( -1, 1)

(d) (9, -10) 7 , (h) (,/' ; -,/).'

,,
4. Given the cartesian coordinates (x,y) of ca point, formulate unique

polar coordinates (r,e). for Q < e < v. '(Hit:t: use arccos 1 ) Ane
,,' r.

5. Determine the polar: coordinates bf the three vertices of an equilateral

3

A1-5

triangle if a side of the triangle has length L, the centroid ot the

triangle coincides with tlie pole, and one angular coordinate of a vertex

is
1

radians.
-

Find equations inpolar coordinates of th,foidowing curves:

(a) .x = c, c a constant.

(b) y = c, c 'a constant.
,

%,

a-W.(c) ax +by = c.

(c1) x2 +.(y1 k)2 = k2,
..

10

r eaa
I

(f) x - .
x -

2
= 'a2,

7. 'Fineequations in rectangular coordinates of the following curves:

(a) r . a.

A

(b) r, sin:e =-5.

(c) 2a,sin B.

1(d) r
1,- cos e

(e) r i.2 tan B.

I-

385 ,
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8. Derive an equation in polar.coordinates for conic sections with a focus

at the. pole and directrix perpendicular tothe polar axis and p units
. .

to the right-etthe pole.

9. Repeat Number(8 if the ireetrix.is parallel to the polar axis and p

units above the focus at the pole.

10. Repeat Number 8 if the directrix is parallel to the polar axis and p

units below thg focus at the pole.

11. Discuss and sketch each of the following curves.in polar coordinates.

Example Ai.--5c and Nos. 8', 9, 10.)

8
r' 1 7 cos

12 "-

r 1 - 3 cos
.* 36

r 5 - 1.4. sin

16
5 + 3 pin 0-

sin = 1 - r

(d) "r

(e)

1.2., Certain types c7f symmetry of curves in-polar coordinate's are readily

detected. For example, a curve is symmetric about the pol4 if the equa-
_ .

tit?n is unchanged when r is replaced by -r. What kind of symmetry
1 J

occurs if an equation is,unchanged when

(a) e is replaced by -0?

(b) 0 is replaced by 7(- 0? CI

'N.
(c) r and e are replaced by -r and -e, respectively?

(d) 0 1.s replaced by n + 0?

13. Without actually sketching the graphs, describe the symmetries of the

(

graphs of the following equations:

. (a) r2 = 4 sin 20. ,

(b)-,r(1 - c6s19).= 10.

(c) ,r = cos
2

201

kIair
I

.

38 9
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Sketch the follol,iing curves in polar coordinates:

(a) r = ae. (d) r = a
2
sin

20
cos 8.

(b) r= a.(1,- co's 0). (e) re = a.
-,

(c) r 'a sin 20.
, A'

15. In each of the .following, find'all points of intersectiQh of the given

pairs/of equations. (Recall that the polar repiesentation of a point is

'snot 41.11..te.) x .
(a),` r= 2 2 sin 0, r = 2 2 cos. a

;
'r = -2 sin420, r = 2 cos 0

(c) r = 4(1 4., cos' 0, - cos e)

L

'p

f

3

L
38 395.
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Appendix 2

POLYNONIAIIS '

A2-1. Signiance of Polynomi,pls

Is.

A2-1

9

The importenceof,polynomials in applicatiots to engineering and the

'natural sciences, as well as in the body of mathematics itself, is not an

accident. The utility of polynomial6 is based largely on mathematicq proper-.

ties that; for all practical purposes, PermAt the replacement or much more com:-

plicated functions by polynomial functions in a host of situatfolls. We shall

enumerate some of these properties:.

(a) Polynomial functions are among tEe'simplest fudttions to manipulate

formally. The sum, product, and compositetof polynomial functions,

the determination of slope End area, and the location of zeros and
!k*

maxima andtnima are all'within the reach of elementary methods.

Polynomial.funotions are among the simplest functions to evaluate.0)1

It is quite easy to find:the value of ,f(x), given

f x -*a
0

+ alx + a2x2 .+ + anxn

k

with a specific 'set of coefficients a0, al, ...an and a specific

number for x. Nothingmore than multiplication and addition is

involved, and the-computation'can be shortened by using the method:

of synthet,ic.substitution..

The foregoing two properties or polynothial functionsare those that mate

them valuab 'as replacements for mare.complicated-functions.

(c) requently an experimental scientist makes a series of measurements,'

'plots them as points, and tiren tries to find a reasonably simple

continuous curve that will pass through these points. The graph, of

a polynomial function can,always be used for this purpose, and be-

cause it has no sharp changes of direction, and only a:limited number

of upA and downs, it is in many.ways the best curve for'the. purpose.
'4er

Thus, for the purpose of fitting a.continuous,graph to a finite number of

points, we wou\III, prefer,to#Nork with polynomials and we need not, look beyond

the polynomials, as we shall prove. We can state the prOhlem formally as

follows: A

o.

389
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Given n distinct numbers x1, x2, ..., xn and corresponding values

y1,
y2,*..., yn that a function is supposed to assume, it is /5ossible,to,find

-a polynomial,: function of degree at most n 1 whose graph contains the n'

'.points i = 01." n. Y4Ltshave already done this for n = 2: you

founda or(constant function whose graph contained two given points

(x3:,y1), (2,y2), x2./ x1. If y2 is also-differe'ntfrom. yr, the result is'
.

a linear function; if y2 = yr, it is a constant function.

4t, One way of doing this is, to assume a.polynomia1,9f,the stated form,

.
,4

f(x) = ao + alx + a2x
2

+ +
n-1

,

.

1 f
.,

. . .

. ,

and write the n equations \
.

f(xi) yi, i = 1, 2, ..., n. 1

.

'

'-o,$This giVes. n lineae equations in the n unknowns a
0'

a
l

... a'
4-1,

and
:

in these circumstances such a system will always have a solution.
%- ,,,

. ,

0 ft

Example A211a. Suppose that we want the graph of a function to pass
7 .

,

through the points (-2,2),'(143), (2,-1), and OM. We know that therys

a polynomial graph of degree no greafer tlian, 3 which gAs through these

poi&s. Assume, therefore, ,-

f(x) = a0 aix + a2x2 +-a3x3.

Then, if the graph of f is to go hrough the given points, we must have

f(-2) = 2, f(1) = 3, f(2) =,-1, and f(4) = 1; that it,

ao - tai +.4a2 - 8a3 = 2,

a0 + al + a2 + a3 =

a
0

+ 2a 14 "4a
2
+'8a3 = -1,

a
0

4: 4a
1

16a
2
+ 64a 0 to

3) P

I

A 37 and
11

Solving these, we find, a0
20 31

=
, al

a2
a3

Hence
4.

f(X) = 44160 62X 37X2..4

The labor of solving systems of linear equations such as thede can be

rather discouraging, especially if there are many equations. For this reason,

various methods have been worked,out for organizing and reducing labor in-

vplyed. One of the most important of these methods, called the Lagrange Intl"

pOlation Formula, is based On the fglloWi4 simple line of reasoning. We can
f
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A2-1

easily write down a formilia for a polynomial of degree n 1 that is zero

at *n - 1 -of the, xis.
s

ti

Figure A2-la

A set of values to be taken on by a polynomial function. Suppose, for

instance, that we have four points (xl,y,1); (x2,y2), (x3,i3) and (x4,y4)

as in Figure A2-16. The polynomial

(1) g
1
(x) = C,(x -,2)(x - x

3
)(x - x

4
)

has zerosat.i x
2'

x3' and x4. By proper choice of Ci, we can take

81
(x

1
),= y

1 .
Let us do so! Take C1 such that q

y
1

= g
1
(x

1
) = C

X2)(X1 x3)(xl
x4)',

4

that is, take

(2)
yi

Cl - (x1
- x2)(xi - x3)(xl - x4)

If we substitute C1 from (2)into (1), we get

(x - x2)(x.- x3). (x - xl;)

-(37; , 81(x) = y1 (x1 - x,c )(x, - x3),(x1 - x4)

It
y, If y

1
/ 0

/

Equation (3) defines a polytomial of degree 3 that has the value

y at XLI' and is zero at x2, x3, and x4. Similarly, onp finds that
-

.(x x)(x x4)
(4) f35(x) =

(X2 - xl)(x2 x3)(x2 - x1.4) '

40.

$

3

391

3 9 .

e

ti

4



N

A2-1

( 5)

and

. (6)

. (x - - x2) (x - x4)

g3(X) = Y3
(x

3
- x1)(x3 - x2)(k3 - x4) '

,.1- 3

*

(x - xl)(x - x2)(x - x3)

g4(x) Y4 (xi:- x15(x4 - x2)(x4 = x3)

are alsg'polynomitlp, ,each having ,the property tlot it is zero at three of the

four given values of x, 'and-is the appropriate y at the fourth x. This

is shown in the talplp below.

The Lagrange Interpolation Formult /Illustrated.

Values of x
.

xx
1 2

x4,-.-

Corr dingy y
1

y
2 Y4

Value of g
1
(x) Y-4. 0 ' 0

.

Value of
P2(x)

0 . y
2

0
. `N.

`Value of g3(x) 0 0
1

y
3

' 0

Value of g4(x) 0 0 -10
Y4

I '

F.

. If we form the sum
, .1; 4

'(T) g(x) =, g1(x)+ g2(x) + g3(x) + g4(x),
.'

L.
..,

then it is clear from the table that ,1 ,

g(xi) = ;Y1 + 0 + 0 +0 =,y1,
.-

g(x2) = 0
+ Y2 + ° + p T2'

g(X3) = 0 + 0 + y3 + 0 = y ,

3
g(x4) = 0 + 0 + 0+ y4 = y4.

. ,

41r. .,
I .--. _

From .Egillatlons (3), (4), (5), and (6) it is also dealt that g is a polynomial

in x whose degree is At most 3. Hence Equation (7) tells us how to find a

.*' polynomial of degree < 3, whose graph contain s the given points.
. .

Example A2 -lb. Find a polynomial of degree at most 3 whose graph con-

tains the points (-1,2), (0,0).1 (2,-1), and (4,2).

a

I

J

We find that
,-

(x 4) 2x(x - 2)(x.- 4)
g (x)' =

- 1. 2(-1 - 0)(-1 - 2)(-1 - 4) -1,

-g(x) = 0,

392 ,
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g3(x) (x 1)(1)2(x - 4)

g4(x) 2 (()14c ))((lct.

- (x t 1)(x)(x - 2)

and

A2-1

2
i

. ...-gfx),,,,, - 15 x(x - 2)(x - 4) + 1-(x + 1)(x)(x - 4) + 2,(x + 1)(x)(x - 2)
, 12 20 .

= -1".(x2 - ix). .

The right hand sides of Equations (3), (4),.(5), and (6Y have the
.

4
following structure:

; 4 , .

Ni(x) '

1
gi(x) = yi , i = 1, 2, 3, 4:

,....s,

,
-Tile numerator of the fraction, is the_product_of.41.but .one, of the factors

"(x 1 xi), (x - .x2), (x :: g3); and (x - x4),

and the missing factor is (x - x
i
). The denominator is the value of the_

numerator at x4t--...x

41)/.. N (x.).

This same structure.would still hold if we had.more (or fewer) points given.

(d) Instead of a finite set of pdints to whixh a Simple continuous func-'

tion is to be fitted, a mathematicitn4s_sometimes 2gonfronted with a

continudus but very 'complicated function that he. wOUld-14e-tA,,,..-

approximate by a simpler function. Fortunately,. there is an extremely

powerful theoresof higher,

aploliCation oflgiynomials
16;.i*

permits the "fitting" of a

mathematics that enlarges the breadth of

to this situation. In a_sense this theorem

polynomial graph'tb any continuous graph.

In'other words, any continuous function whatever can be aeproxithated

by a polynomial function over a'finite interval of its domain, with

preassigned accuracy. Mote specifically, if the functiori, x -4f(x)

is continuous over a < x < b, and c is any positive number, there

exists,a polynomial function g such that

If(x) - g(x)I < c for all x in a < x < b.

- -
Akt.
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/ -% ,;

/
/

t\C4

/
../ vs

//

.

Figure A2 -lc

A strip between f(x) - c and f(r) + c.

This is known as the Weierstrass Approximation Theorem. The febmetric inter-
..

pretation of the theorem ir indicated in Figure ,A2-1c Xhe graph of f is a

continuous curve, may 'have jarp corners or even infl.nitely ,many maxima

and minima between x= a and x = b. No polynomial graph behaves like that

But Suppose that we introduce a atci.p, centered on the graph' f,- extending

between the.graphs of the functions

and

x f(x) -.,c st

X -4.f. (X) +

where c is any preassigned positive number, however small. Then the theorem

guarantees that there is Al polynomial function

g : x -;,g(x),

whose graph on, a < x < b *lies entirely inside "this strip. This is the pre--
cise meaning of the statement: "Any continuous function whatever can be

approximated by a polynomial function over a finite interval of its domain,

with pfeassigned accuracy."

Exercises A2-,1

1. Carry out the computations in 'Example A'2 -la, above.

Simplifyl the expression for g(x) in Example A2-1b,.. above.,_

3. Find a polynlixiiial function of degree less than or equal to 2 whole

graph contains points (4,2), (0,-1),,(2,3).

4. Find a polynomial function whose graph contains the points (0,1), (1,0), _

(2,91-,---(3;307 and '( 1,6).

O7,
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A2-2. Number of Zeros

1

, A2-2 °

vt;

One could get, the impression that every polynomial function of degree

n > 0 'has exactly n zeros. This is 'not quite right4, what we say in Sedtion

1-9 is that every such-function has at most n zeros. Let us exhibit a poly-

.nomial function for which the numberof zeros is less than the degree: The
V

quadratic function

f x x2 -, 6x + 9 = (x - 3)2.

has only one zero, namely 3. But since the quadratic has two identical

factors x - 3, 14e say that the zero- 3 has multiplicity two.

Wedefine the multiplicity of a zero r of a polynomial f to be the

expogntof the highest power,of x r that diVides f(x). That is, if

f(4) = (x - r)
k

q(x), k > 0,

where. ,q(x) is a polynomial, and if x - r noes not divide q(x), then r

is a zero of f of multiplicity k.

The proof of the general theorem abput the number of zeros of a'poly:

nomial function depends on !She fact that every such function has at least one
.7.

zero. This fact, often referred tq as Gauss's Theorem, is stated as follows:

pie

The Fundamental Theorem of Algebra. Every polynomial function of

degree greater than zero has at least one zero, real or complex.

This is the simplest form of the Fundamental Theordm of Algebra. (As a

matter of fact, the theorem isicorrect even if some or all of the coefficients

of the polynomial are complex numbers.)

The first known proof of the theorem was published by the great.German

mathematician Carl Friedrich Gauss (1777 = 1855) in 1799. (Eric Temple Bell

has written an inteieSting'accoUni of Gauss. See World of Mathematics, Simon

and Schuster, 1956, Volume 1, paget7295-339, or E: T. Bell, Men of Mathematics,

Simon and_Schuster, 1937, pages 218 -269.) The proof was cdntained in'Gauspis
A

doctoral dissertation, published when he was 22. A translation of his second

proof (1816) is in A Source Book in Mathematics, by David Eugene Smith, McGraw-

Rill Book Co., 1929,pages 292-310. Gauss gave a total of four different ,.,

proofs of the theorem, the last in 1850. 'None of the proofs is sufficiently

9

.a
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elementary to be given here. There is a. proof in Birkhoff and MacLane, A Sur-

Lei of Modern Algebra, Macmillan, 19531 pages 107-109. A pro3f is also given

in L.. E. Dickson? New First Course in the theory of Equations, John Wiley and

Sons, 1939..

We now state and prove the general theorem.

The General Form of the Fundamental Theorem of Algebra. Let f be

a polynomial function of degree n > O. Then f has at least one

and at most n complex zeros, and the sum of the multiplicities of

the zeros is exactly n.

From Section 1-9 we know that f has at least one zero, 'say rl. Then

(recall the Factor Theore) there is a polynomial q(x) of degreern - 1

such that

k:I^e
(1) f(x) = (x - r

1
)q(x).

If n 1, q is of degree-zero and we have finished. If n > i, the degree

.o.fs q is n - 1 and'is.positive...Then q has at least one zero, r2 (it

could'happen that r2 = r1) and

(2), q(x) = (x - r2)s(x),

where s *is of degree n - 2. Combining (1) and (2) gives
1,

(3) f(x) = (x ri)(X - r2)s(x).

If n = 2, then s in Equation (3) is of degree zerostand we have finished.

Otherwise, the proCess may be continued until we arrive at the final stage,

(10 f(x) = (x - ri)(x r2) (x - rn)z(x),

where the degree of z is n - n = O. Hence, z(x) is a constant. Compari-

son of the expanded form of Equation (4) with the equivalent form

f(x) = anxn + a
n-1

xn-1 + +..a
1
x + a

0,

*shows that z(x) = a
n

/ O. Hence,

(5) ' f(x) =
.n
(x - t

1
)(x -'r2) (x - r ).

396
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Now, if we substitute any complex; number r different from 'r- r2,2"
r in.place of x In.Equation (5), we get
n

te

0 f(r);:= an(r.r r 1)(r - '2) . (r - r )..

Since every factor is different fr4m!zero, the product cannot be zero. Hence,

no number except
;

r
1,

r2,
' n
r is a zero of f, and f hasat most n
. .

zeros.

Since it is possible.that

zeros of f may be less,than

n factors of the form. x - r.

'of the zeros must be

`n.

.

soine of the -r is may be eqUal, the numbei. of

n.. ,But Equatioli 5) shows that f has exactly

and therefore the sum of.the multiplicities

Example A2-2.a..

f x -4x5 + x
4

5x,
2

+ 8x - 4

has zeros of multipli.city greater than one. Find the zeros and indicate the
-

multiplicity of each.

Since the coefficient of the term of" highest degree is 1, we know that .

any rational zeros of f 'must be integers thdt are factors of 4. (Refer to:.
'

Section 1-7.) Uiing synthetic substitution and the'polknomial of reduced,

degree obtained each time a zero is found, we discover that 1 is a zero of

multiplicity three and -2 is a zero of multiplicity two. Note that the sum

of the multiplicities is fide, which is also the degree of the given.polynOml:al.

It may be helpful to show a practical way for putting down the synthetic

substitutions by which we obtained the zeros and their multiplicities. This ,

-is.done'in Table A2-2.

Finding the Zeros of f

Table A2.-2

: x --4x
5

.4- x
4._

5x
3

1 1 -1 8 -4

2 -3 -4 4

ta, 2 -3 -4 4 , 0

1 2 , -a -4 4

, 1 3 0. -4

1 3 0 -4 0 ,

1 3 -0 '-4

e
3.- 4 4

1 4 4 0

397
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A2-2

The entries 1, ,3, -4, 4 in the third row, 1, 3, 0, -4 in the

.
sixth row, and 1,*4, 4 In the last-row are coefficients of polynomialsof

degreA four, three, and two, respectively. The quadratic function

x --4x
2
+ 4x + 4 has -2 as a zero of multiplicity two since'

2
x + 4x + 4 (x + 2)2.

Thus,'the zeros, of f are .1 (of multiplicity three) and -2 (of

multiplicity two).two):
iP ."

I
v

The graph of f is. shown in Figdre A2-2a in 'order to give you some idea

of its shape in the neighborhood of the zeros. -2 and 1 (points A and

f (x)

arc

Ffgure

2 8 L.
Graph_Of f :,x :4Z 4' X 4

398
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' . .-

, The Fundamental TheorelA of Algebra implies that the.range of-any-_-,poncon-
,

stant polynoMial function includes zero when its domaih is the set of ail cm-
.;

. plex numbers. The range does not always include zero "wh' en the domain-is the
-

,

set of real numbers.: For example, if

f :.x -*.y x2 + 1, x R,
p

-AT"
then the range of f is the set.

(y : y > 1).

When the domain of f is the' set of complex numbers, and the degree of

f is > 0, then its range is also the set of all complex numbers. Foe,

suppose that f' is a polynomial of degree n > 0 'and a + ib. is any com-

plex number. Then the equation

f(x) a + ib

is equivalent to

(6) f(x) a - ib = 0.
4

' 6

This is a polynomial equation of degree n; hence, by the Fundamental Theorem ,

of Algebra, Equation (6) has a solution. That is, th4re exists at least one

complex number x that is mapped by f into a + ib: '

f(x) = a + ib.

Moreover, there may be aa-many as n_ different' numbers in the domain that,

map into a + ib, and the sum of the multiplicities of the solutions of (6)

will be exactly n:

.1
The Fundamental Theorem does not tell Us how to find even one of the zeros

of f. Yt just guarantees that they exist. The general problem of finding a

cdmplex zero o on arbitrary Polynomial is ,quite difficult. 'In the '1930's the

Bell Telephone Laboratories built a machine, the Isogiaph, for

g

solving such
, -

problems when the desee is 1Q kr less. See The Isograph -- A Md6'anica1

Root-Finder, by R. L. Dietzold, Bell Labs ReCord, 16, December, 1937, page 130.

Nowadays, electronic computers are used to do this*job, and many others.

Numerous applications of computers in science and industry are discussed in a

series of articles in the book The Computing Laboratory in the University,

University of Wisconsin Press, Madison, Wisconsin, 1957, edited by Preston C.

Hammer.

'

The followyg quotation is taken from a book called Mathematics

and CoMputers,ty GeorgekRiptibitz and Jules A. Larrivee, McGraw-Hill Book

4.01Co., Net; York, 1957, page 37:

399 f
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,

"There is an interesting use for the roots of the 'characteristic equa-

tion' of a vibrating system in the dynamics of electromagnetic and mechanical

systems Where many.of the properties of amplifiers, filters, servos, airfo21s,

and other devices must be determined. If any one of the complex roots of V

-characteristic equation for a system has 0 positive real part,the system

will be'unstable: amplifiers will howl, servos will oscillate.uncontrolla-

bly, and bridges will collapse under the stresses exerted by the winds. The,

prediction of such behavior isof great importance to designers of the ampli-
..

fies that boost your voice-are ktdcrOsies the country over telephone lines,

and the servos that point guns at an attacking,plane."

Exercises A2-2

1. Assume that the equations given below are the'characteristic eqUations of

some mechanical or electrical system. According to the quotation' front

,-"tstabitz and Larrivee, are the systems stable or Astable?

(a) x
3
- x

2
+ 2 = Q,,

(b) x3.- 3x2 + 4x - 2,= 0,

(c) x3 + 3x2 + 4x + 2 = 0

(d) x311 x2 - 2 = 0,
"S.

(e) x3 + 6x2 +.13x + 10 = O.

12. The following equatiips have multiple roots. Find them and, in eachcase,'

snow trat the s.m oP the malti.%licities of the roots equals...the degree of

the olynomial.

(01 x3 - 3x - 2 = 0,

(b) x3 - 3X + 2 = 0,

x4 5x3 9x2
7x + 2 = O.

13

3. Find the roots and their multiplicities of each of the following equa-
,

tions. Compare the solution%ets of the two equations. '

. (a) x5 + 4x4 + x3 - 10x2 - 4x + 8 = 1

(b) X5 X4 - 5X + 8x -4 =0

0' 4 0,7



A2-2

4. A number system is said to be algebraically closed if, and only if, every

polynomial equatipn of degree > 0, with coefficients in that system,

68E: solution in that system. Which of the following number systems are,

and which are no:t, algebraically closed? Give reasons for your answers.

(a) The integers: -1, 0, 1, 2; 3,

(b). ThetrationaI numbers.

Thfreal numbers:

(d) The pure imaginary numbers b
t

(e) The complex numbers. os,

5, You may have heard that it was necessary for matheMatic4ans to invent

.and,other.complex numbers in order'.to solve some ,quadratic equatiohc.

Do you4suppose that they needed to inve.nt,something that' might be called

"super-complex" numbers t6 expressXach things ap Y-1, 6, and so ''

pp? Gives reasons for youransyers.

,,10.

1

- -
-14

71.1'

tw

1

0
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A2-4,

A2-3. Complex Zeros

(1).

We know that a iladraticequation

ax
2
+ bx + c = 0,

has roots given by the quadratic formula

4. -) t 42 - C
'(2) x- 2a

.

The coefficients a, b, and c if O.) are here assumed to be real numbers.

The quantity under the radical in (2) 16 called the discriminant-. Its sign a.

determines the nature of the roots of (1). The roots are .

A

r

real and unequarif bg = 4ac > 0,

real and equal if b
2

- 4ac j 0,

imaginary if 0 - 4at < 0.

EXagple What are the roots

The roots are4

-
cff x

2'
+

-1 + i 4 -1 - i 4
2 ' 2

= 0'? '

r

We notice that these roots are complex conjugates; that 1,e, they have the
.1,

form 1.r+ ty and u - iv, where .0 and v are real., In this example,

A
11

,/-

- and v=
2 ' i

,,

Is it just a coincidence that these roots are complex con:lugates? Let

us look at (2), and suppose thatfa, b,, and c are real nuottb76s and that the

discriminant is negative, say -d
2

. Then the roots of ax
2

+ bx + c = 0 are

b .d. b , d,
- + i(2a) and - - ik). Thes'e are conjugates. Thus, if a,
2a 2a 2a 2a

t.

b, and c are real and if the roots of (1) are imaginary, then these rbots-
.

are Complex conjugates.,,,TE/r3is true of polynomials of any degree, as we

shall now prove. (In the following theorem, the letters 'a and b represent ...1,r

.

4
the real and imaginary parts of a complex root of an equation of any degree,

and do ngt refer to the coeffIcientSin a Oadraticekpression.) *4.5106 :,.._

I

4
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A2-3'

Complex-conjugates Theorem. If. f(x) is a polynomial with real

coefficients, and if a + tb is a complex root 'of f(x) = 0, with

imaginary part b /-0, then a - ib is also a root. /

(Another way of saying this is that if' f(ac4-4) = 0, ,with

a and b real and b # 0, then f(p ib) = 0.)

We give two proofs of this result.

First PrQof. The key to this proof is the use pfd the quadratic polynomial
tt- ,

that is the product of x - + it) and x (a - ib). We show ,that it .

dies f(x). We can then conclude that f(a - it) = 0 and we have com-

pft-ted the proof.

Thd..3.- let

(3) p(x) fx (a + ib)][x- (a - ib)]

1(4 a) - it2lf.(x a) + ib)

;
K

.N

Note that' p(X) ic; a quadratic pAyhomial with real lioeffients Now whet

a polynomial ic divided by a quadratic, a remaindet of degree les, thab 2 is

obtained, Henc4, if f(x) is divided by p( ), we get a polynomial quotient

q(x) and a remainder r(o* xli= hx + ossi of dowiree 1 (but no greater),

Ats
'k .L,
where h, k, and all the coeffic are real. Thus,

(4) f(x) = p(x) q(x) + k.

This is an identity in By hypothesisa f(a + ib) = 0, and from Equatpn

p(a + 1.0 = 0. Therefors, if we substitute. a + ib for x in Equation

(4), we get

0 = 0 + ha + ihb + k.

Since real and imaginary parts most both be 0, we have

(5) ha + k

and

(6) hb = O. 0
* , 4 0 -P`'

-Since b / 0 (by,);lypothesis), Equation (6) requires fiat h = 0. Then Equa-

tion (5) gives k = 0. Therefore, the remainde7441ix + k in Equation (4) is

zero, and .

fr.
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172.
Since p(a - i

(8)

,
f(x) 4 p(x) q(x).

= 0 by Equation (3), it follows from Equation (7)/that
.

Second Proof. Let

f(a - ib) = 0.

f(x) = a xn + an-lx
n-1

+ +.a lx + a
0'n

and suppose that f(a

Equation (8), we can
.

mial Theorem. We can

actually carrying out

behave. Consider the

+ ib) = 0. When we substitute a '+:tb for x in

expand (a + ib)
2

, (a + ib)3, pnd sb on, by the Bino-

prove the complex-conjugatps theorem, however, without

all of these` expansions, if we observe how the terms

first few poWers of a +

(a + ib)
1
= a + ib,

)
.,:

(a +'ib)
2

- a
2
+ 2aib +

i2b2 ' ,

(a2 .2.
b ) + i(2ab),

(a iO3
a3

3a2ib 4:3a(i2b2),.4. i3b3

= (a3 - 3ab2) + i(3ab - b3).

Now observe where b 'occurs in the above expanded forms. In the real parts,

b either does not occur at all, or it)occurs only to even powers. In the

imaginary part40- b always occurs to odd powers. This follows prom the fact

that all evripowers of 'i are real and all odd powers are imaginary. If we
g

change the_sign of b, w:e therefore leave the real part unchanged and chadge

the signyof the imaginary part. Thus, if f(a + ib) = u +- iv, then

f(a- ib) = u - iv. tut by hypothesis,

so that

and therefore

Hence

o

'f(a + ib) = 0;

u + iv = 0,

.

u = V = 0..

f(a - ib) 0. r.

.404
4 .
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A2-3

,ExamRle A2-4a. What is the degree of a polynomial function f of mini-
/

mum 'degree if, 2 + i, 1, and 3 - 2i 'are zeros of f?
6

I

If it is not required ,that the coefficients of the polynomial be real,

then we may take

'f(x) =,(x

x3=

- (2 -4 i)1[ l][x - (3

+ (-6 i)x2 7 (13 - 2i)x 4- (-8 + i) .

In this case, the degree of f is 3. NO polynomial function of lower degree

can have 3 zeros, so 3 is the answer. However, if it is required that the

coefficients of f(x) be real, thert the answer to tile question is 5. For
41

then the conjugates of ,2 + i and 3 - 2i.. must also be zeros of f. No

polynomial function of degree less tan 5 can have the 5 zeros

(9)?, 2 + i, 2 1, 3 - 2i, 3 + 2i.

11But

(10). [x (2 + ink (2 i)][x - l][x -.(3 - 20][X, (3 2i)]

4 a polynomial of degree 5, with real ,coefficients, that does have the

numbers listed in (9) as its zeros.,

Exercises A2-3

1. Multiply the ,fa tors in (10) above to show that the expression does have

real coefficients. What is the coefficient of x
4

in your answer?
%-

What is the constant term? Compare these with the sum and the product

of the zeros listed in 4(9).

2. Write a*Iklynomial'function of mininillin degree that has 2 + 3i as a zero,

1

(a) if imaginary coefficients are allowed,

(b) if the coefficients must be:real.

J
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3. Find all roots of the following equations:

r,

(al

(b)

(c)

,

(d)

(e)

.
(f)

(g)

x3 - 1 = 0

x3 + 1 = 0

x3 - x2 + 2,C= 8

x
4

+ 5x
2

+ 4 = 0

x4 - 2x3 + 10x2.- 18x

x
6

+ 2x
5

+ 3x
4

+ 4X
3

x6 - 2x5-+ 3x4 - 4x3

+ 9 = 0

+ 3x
2

+ 2x t 1 '=-0

+ 3x2 - 2x + 1 = 0

(-

4. What is the degree of the polynomial equatoion of minimum degree with

real coefficients having 2 + i, -2 + i, 2 - 1, 3 + i, -3 + i as roots?
I

5. Consider-the set of numbers of the form arl- b1, where a and b are

rational\ Then a - big is called the conjugate surd ,of a + big. Prove

the follo4dg theorem on conjugate surds:

If f(x) is a polynomial with rational coefficients, and if

a + b1 is a root of f(x) = 0, then a - big is also a root. (Note

that if, u = v1 = 0, and u apd v are rational, then u = v = 0.

Otherwise, we 'could solve for v = - , the quotient of two rational

numbers. But we know that V is irrational.)

6. .Find a polynomial with rational coefficients and minimum.degree'hpving

3 + 2V as a zero. :

7. /State and prove a theorem similar to that in Exercise 5 abOve for numbers

of the form a + b 1. Is there a comparable theorem abOut roots Of the

'ford a + 1)4 ?" Give reasons for your answers.

8. Write a polynomial:function of minimum degree that has -1 and 3 -

as zeros, if

... ,t

('a)
,

) irrational oerficients are allowed;

(b) thecoefficie is must be rational.

4 0
9. Find,a,polynomial of inimum degree with rational coefficicents having

If as a zero.

10. What is the degree of a polynomial, of minimum degree with (a) real, and

(b) rational coeffici ents having '

(1) i + ig as a zero?

(2) 1 + i1 as a zero?

(3) if + as a zero?

406. 4 1 3
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