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INTRODUCTION®

The text Anal_yagic’f;mx_-;} had its beginnings in 1962 when a small

committee of mathematicians and teachers met to discuss the question as to

1
whether there was a need for a new text in analytic geometry for high school,
and whether the School Mathematics Study Group should underteke 0 write one.
Since the conclusion was affirmessve, some guidelines were prepared to indicate

Q -

the form and content desired.

In the summer of 1963 an experimental text and gccompanying commentary

Ng’ere prepared by an SMSG writing team consisting of university mathematlcianq
and high school teachers. During the fotlow1ng school year this text was used
by about 30 teachers in schools distributed from California to New England,
but mostly in 2 centers where the teachers had the benefit of conferencés
with each other and with an interested eol ge professor. The complete re-
vision of the text and cemmentary in the summer of 136k took into account both
the comments and criticisms of these teachers, and the recommendations of an
advisory committee of the SMSG Board. We are deeply indebted to those who
helped with suggestions, especially to the teachers who used the experimental
text.

Analytic Geometry is intended for use as a one-semester course in the 12th

grade. It is expected that the students would have completed OMGG Intermediatg
Mathematics or the equivalent. If it is planned to use Llementaiy Functions

with the same class, it is suggested that that text be used befoxe the Anslytic
Geometry. However, knowleige of Elementary Functions has not Leen assumed in
this text. e

The suggested time schedule here is only tentative; the teacher will adaé%
it to the particular class. Certain topics are presented here ror complete-
ness; for example, some of the work on forms of an equation of a line, on conic
sections, or on vectcrs, will have been studied®previously by- many classes.

Very little time neecd be spent on familiar work, giving more time’for new

topics or ror supplementary work. e ~ df;

We believe that a reasonabl, well-prepared class of the studeuts who _elect
12th grade mathematics can complete our basic text (Chapters 1 to 10) iu a
semester. Tre material in the supp ypentary chaptqrs was placed there because
it was not felt essential to the cozzgnuity of the course. Honger, we feel
that this is important andvinteresting material; we think that it is within

\She gravy of able students and will broaden ftheir mathematical background.

RIC ’ : 1 ~ ’

s (}




-

It is hoped that good classes and individual able stu’cats will use the supple-

menfary chapters. .

Following the opening remarks for each chapter in this Commentary, you
will find running comments keyed in the margin to the peges of the student's
text. These ;ontain further explsnation and beckground which we hope will be

B

useful to you.

o
A WORD ABOUT THE EYERCISES

Come of the exercises are designed to provide Jjust exercise, but you will
find thet some others are far from routine. Within each set of exercises the
arranfement is usually from the more routine to the more complex problems.
The most difficult problems are listed separately as "Challenge Problems"”.
A few problems have Y%een included which extend the material beyond the regular
textual treatment. Wwe advise you to look at each such problem betore assign-
ing it to a student so trat you may ascertain whether it 15 appropriate and

how much time it will consume.

- t
We ca..0t suggest appropriate class assignments since they will vary with

the preparation and avil.ty of the class. ~f course, enough drill wori should
be included to fix the fundamental skills and concepts. In the case of a
well-prepared class, the dr:ll-type vroblems might be omitted entirely on any
topic previously studied. While the particular problems assigned will vary
with the class and perhaps even with the individual pupils, it is hoped that
all students will be assigned some of the problems which may be more time

fonsuming but which will show them some of the "fun" of Analytic Geometry.

Solutions for the exercises appear at the poiut in the running commentary
N \
corresponding to the placement of the problems in the stydent's text. Any
given problem may have several acceptable solutions; therefore, the solution

presented here should not be considered as the "right", or only, solution.

The student is encouraged frequently to use his own Judgment in pursuing a

solution; hence, if he presents a solution Waich is correct, it should be -

accepted.
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‘ A SUGGESTED TIME SCHFDULE

. The basic text (Chapﬁers 1 to 10) was designed to be covered in one
semester of eighteen weeks. The timé\schedule given below is the result of
combining the opinions of the authors with the experience of the teachers who

used the'‘preliminary edition.

¢ <

If you find that your class is falling behind the suggested schedule, i
you may wish to compensate by treating scme topics in less depth or by assign-
ing fewer exercises. _If this procedure is not satisfactory, you probably

should consider cutting short, first on Chapter 10 and then on Chapter 2. The

. text was designed so that the 1least loss to the students would occur in this

circumstance. (\\“‘

"Chapteér » . No. of Cunmulative
Tays © Total
1. Anslytic Geometry - - 1 - 1
2. Coordinates and the Line 10 11
3. Vectors and Their Applications . 12 23
. %k, Proofs by-Analytic Methods 8 31
5. Graphs and Their Equations . .9 Y]
o 6. Curve Sketching and Locus Problems 11 51
7. Conic Sections 9 60
8. The Line and the Plane in 3=space 7 67
9. Quadric Surfaces . 10 "7
10. Geometric Transformations 8 85
A
‘
Qo ‘ ‘
: 38

2 0
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Chapter 1

* ANALYTIC GEOMETRY
. < ' .

Chapter 1 is a brief introduction to the text. It is intended to give .
the students au idea of what analytic geometry is and~to show-them they
already know something about thé subject. If possible, they'shoulf read it
before the first méeting of the class dnd reread it at intervals during the
course, ~ ¢
} Singftcoordanate systéas are so important in énalytic geometry, it is

advisable™o discuss in class some of the examples mentioned. The students

3

should be asked to explain latitude and longitude, which are mgntioned but
not defined in the text. They might be invited to suggest other coordinate
systems for 'a line, a plane, space, a spherical surface, and a to;us. How-J
ever, the coordinéte svstems which are important in the course are treated in

detail later, so not much class time should be spent on them at this point.

Chapter 1 also includes a discussion of the reasons for studying analytic
geometry. It is felt that students should know something of the'role of
analytic geometry among the various branches of mathematics, and that they

should realize that their main goal is not information about the particular

topies studied, btut rather understanding of and ability to use the techniques
of analytic geometry. N

Analytic Geometry really began when it was realized that every geometric
object and every geometric operation can be referred to the number system and,
hence, to algebra. The most significent steps in this arithmetization of
! geometry were taken by two French mathematicians, Pierce Fermat {1601 - 1655)
and René Descartes (1596 - 1650). Fermat begaa work on analytic geometry in
1629 but his treatise Ad Locus Planos et Solidos Isagoge was not published

until 1679. Chief credit, therefore, is given to Descartes whose Geometrie
. was published in 163 and who influenced the work of many m~thematicians. In
the Gédmetric, one finds the earliest unification of algebra and geometry.

'Apollon;us and other Greek mathematicians had used coordinates to locate points

in a geometric figure. It was Descartes who introduced the algebraic represen-

tation of a curve or surface by an equation involving two or three variables.

s
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DescarteS' booTLiiff’Pbt contain a qutemattc development, of the subject
such as you find inlWhis text, The method must be cons! ructed from isolated
statements in different.parts”of the treatise. It is interest ng tl\t Fermatts

., 2 2 2 2 +
work included the equations, y =mx, xy =k , xX~ + y~ = a ¥ g“ X

for lines and conics.

\ .

Many m&thematicians extended Descartes? uork Among these were John
Wallis in his Lractatus de uectionibus Conics and John DeWitt in his

Curvarum Lifearum. Most of the work of Descartes and bxs decntemporaries

concerﬂed with the geometry of Apollonius. Newton worked with algebraic
equations in" his study of EubicK::rves in 1703. The first analytic geometry.
of conic sections divorced from

in nis Introductio in 1748..

e work of Appollonius was developed Ly Eulet

Since that time the methods of Analytic Geometry have become the most

significant in the study of geomeir,. 1In more advanced mathematics they have

essentially replaced the synthetic method. More recently vector methods have \\

been incorpOrated in Analytic Gedmetry and are being used more and more
widely 1n mathematical applications,

s / S
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Tegchér's' Conune’utary
' Chapter 2
COORDINATES AND THE LINE .
N .

'I‘his chapter is fuffdamental to the rest of the book, In ;t we d.iscuss
coordinate systems for a line and a plane. We also\treat the a‘nalytic .,
geometry of lines in a plane, A good deal of,'the material in the.chapter -
is familiar from previous courses; it is repeated here for purposes of ) ,
review and completeness, You will probably find tha*; the material of Sections
2-1, 2-2, 2~3, and 2-5 may be covered very qQuickly, It is likely that the
material on polar coordinates, diwection on a line, angles between lines, and
the normal and polar forms of an equation of a line will be ‘new to most
students, The majority of the class time should ve spent on these topics.

‘Many examples have been interspersed ihroughout the text. Though thege
increase the number of pages in thé& ch;apter, ,hopei‘ully they will help the
student to proceed more rapidly and decredse the r'!‘éed for classroom explanation

. .'gnd discussion, Many more exercises have been %n’c-kuded. t‘:han any given class
might be expecte'd to dg. You will probably find it ad\;}sable to break the
chapter into two units for testing pu'rposegs. Fgr ‘this reason, a set ofreview -

o exerciges has been included after Section %,5. -~

DL RS

T-15 If ‘the students are to get anything out of thi's section, they must

"understand clearly the treatment of distance .n SMSG Geom°t£y By the
Distance ?‘ostulate, to every pair of ‘different -points there corresponds a
anique positive number, It is called the distance between the points because

‘ 1% is the.'official™ version of the intuitive notion of distances The Ruler
and Ruler Placement Postulates enatie us to make any point on a line the
origin of a coordinate system, and to mak: either direction’'from that point
the positive one. However, we can gg}_ choose ‘the scale. It is already there

in the geometry. Betweennéss and congruence are defined in tems of coordin.

; -EMSG Qeometg.
Nevertheless, intuition tells us:that scale doesn't really matter, If

> as their lengths expressed in feet are equal. Let a, b, and ¢ be the
- 2 2 3

[l{[C My ' i

PR~ v vt Provided oy eric:

ates, and thus coordinate systems are fundamental in the development of the '|

.two boats are equally 'ong, their lengths expressed ia meters are équal just ,
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‘coordinatessof the points A, B, and C- on a line, in a certain coordinate
systcmy, and & < b < ¢ . Then if we change the sizec of the units (but nothing
else) in our coordinate cystem, and atf, b), and ¢! are the new coordinates
of the same pq}nts, we should find that at < b? < c! . We have not attempted
to prove that we do have this frcedom in the text. In order to get started

on the task before us, we hgve offered cxamples illustrating the ways in which
we normally assume thiff freedom in applying geometry. The examples themselves
are trivial in difficulty and were deliberately chosen so; their purpose is

to illustrate the many assumptions we make in solving cven a simple problem

as wcll as the importance of these assumptions.

The techniques of analyt.c geometry are more saleabie if we exploit to
the fullest the freeaom to choose various coordinate syétcms. When the
occasions arise to mention this freedom, we shall make much of it, usually by
invoking a grandiose principle as we do here in tue Linear COO;dinate System
Principle.

In this principlé\we are actually postulating a theorem we could prove,
but the proof is difficult for mast students. We have included material in
the supplement to Chapter 2, for able students who arc well versed in SMSG
Geometry and the concept of function, and who arg interested in the deductive

nature of mathematics.

Note that the symbol "d(R,S)L is defined in terms of a fixed coordinate
system. It would be nice if'our notation showed this, but that would make
it rathef’complicatcd. It is advisable to stress this point when thc symbol
is intro%uced, s0 the ctudents will be reminded of it every time they see it
later.

The definition of ;‘directed segment will probably seem rather unnatural
to the students. They will feel that the idea of the segment AB considered
as ruming from A to B is quite clear and they will wonder vhy we give
this strange definjtion. It may help to ask them to try to define 1he concept
in terms which are "official" in our formal systcm. They will find that any
definition of this kind, and no other kind is permissible, seems unnatural.

This is not the first time the students have seen such a definition.
3
They undoubtedly felt they knew what the inside of a triangle was before they

)

studied geometry, and most.of them were probably surprised to find out how &
much trouble it was to give an acceptable definition.

°

-
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2-1

Exezcises 2-1

There should be some agreement between the numbers obtained by comparing
these measurements and those numbers in the text. However, the degree
of agreement will depend upon how well Lhe subdivisions of the units are

estimated. The constants of proportionality should be consistent.

The side is measured to 2 place accuracy and the results are correct

to 2 place accuracy. The discrepency between 2.53 and 2.54% is

not significant because %hey are the same to 2 place accuracy.

Hopefully, students will be able to anticipate that the proper units
are feet; the computéd answer (12r ft. = 37.6992) seems so idealized

to be meaningless. o

The answer will depend upon the source of the information as to the
distance from New York to San Francisco. The answer should be close

to %00 miles to the inch.

.

1 inch represents sy 330 miles; the "line" from New York to San Francisco

would be approximately 9.2 inches long.

The bicyclist travels at the rate of 8 mi/hour. The friend travels

at the rdte of 32 xm/hour or' s 20 mi/hour.

a) B8t - 20(t - 2) = distance apart at time t . One hour after the
friend begins (t = 3) the distance apart is % miles.

b) When the distances both have traveled are equal, 20(td— 2) = 8t

1 .
and % = 3= hours. The distance is (approximately) 27 miles.

3

Rate of bicyclist A is 4 miles/hour.
Rate of bicyclist B is 5 miles/hour.
- Rate of preposterous bee is 10 miles/hour. s
a) 20t + 5t = 30
’ . 15t =30
t =2 hour
Distance bee traveled = 2 X 10 = 20 mi. ’
b) . bt + 5t = 30 !
9t = 30
t ; %? or 3% hours
gt

Total distance bee traveled = X 10 or 33% mi.’

3

[} «

> 913
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The stateme?t of the Linear Coordinate System Principle clearly indicates

that the measures of distance are proportional, but it is perhaps not so
clear that the criteria for order, or betweennesé, also carry over in the
coordinate systems which we consider. It is not a trivial matter to show
that it does. Unfortunately, any numerical examﬁfé would be hopelessly
artificial. - An illustration of this idea can be found in physics. The
boiling point of alcohol is between the boiling point of water and the
freezing point of water. The relationship of betweenness would hold for the
corresponding temperatures at these points, whether indicated in the
Fahrenheit or the Centigrade scales.

The notion of a point of division may be extended to include the endpoints
of the segment and points external to the segment, but directed disteance

should be used in this case in order to sssure uniqueness. If in the equation

-»>
a(p,Xx) r . i
+—— =1, we define d(P,X) to be the directed distance from P to X and
da(p,Q)
o>
d(P,Q) to be the directed distance from P to Q , we may write
. X-P_¢ .
qQ-P .

In this case, when 0 < % <1, we still obtain internel points of division.

N

When t = O, we obtain the coordinate of P ; when t =1, we obtain the
coordinate of Q. When t < 0, we obtain the coordinates of points in the

~ ——
ray QP which are external to PQ ; when t > 1 , we obtain points in the ray
- * .
PQ which are external to PQ ,

If your students are like ours, they will comprehend the notion of a

'weigﬁted average even more clearly when it is applied to test grades which

are "welghted"” in calculating the final average.

There is aaditional material on linear combinations in the Supplement
to Chapter 3 and in SMSG Intermediate Mathematics on pages 374-376 and page
yin

The parametric representation is eguivalent to the extension of the
notion of point of division given in the note on page 18, If the SMSG
Geometry with Coordinates is availlable, you may wish to look d% the material
on pages 107-111. )

R

The material on the analytic representations of the subsets of a line is

. more important as an introduction to later work than it is in itself. [t

provides a review of the notion of the graph of an equation and a reminder




2-2

that conditions other than caquations also have grarhs. If the students are
not familiar with the properties or inequalilles, it may be necessary to

spend a little time on them at this point.

1 Exercises 2-2
(2) -2-1 01 2 (3) -1 o0 5
I I | L1 [ | | ‘ | | | || . | |
| L L # 11 #*l T &1 IR j
(b_) 01 23 45 (k) 0.4 0667 08 1.0 12 La 1579
e
{c) 01 3 5 (1) 5§ -3 -1o12 3 s 7

(a) -3-2-10 1 234567 (m) -2 -l -3 0 ! 2
| I T |
Attt e
(e) -3 0 (n) 01 2 c
et ¢4 9400400000494
T 1 LR )
(f) (0) } ] . ]
-6 -4 -2 0 2 4 0% X 27 ¥3
I B
(g). (p)
-6 4 -2 012 4 6 -3 -2 0 2 3
(n) -~ (q)
-6 -4 -2 o1 2 4 6 1.99 208 238 285 278
[ D " I N U I N | nH_H+
4‘+‘+‘F+‘¢"F4'Q‘+‘F4‘+‘+‘f LI 20 HDt R S M M R |
(1) 0 (r) -3 -is -




(a) 3<xgh . (£) (x+2)(x*l)(x-1)(x-3)-(_y(:_"]]:)So

Alternative (x- 3)(x- 4)<0
(b) -2<x<2
(c) if b > a:
Alternative: < x <
x>a+2b-.a)=2b-a - -

+}-(X-x (h) x<3

(@) x <%y + 5(x, - x))

(1) sinn x #0
(e) (x+l)(x)(x-l)(X-3)§- <0

>0
Mternative: -1 <x<0 (3) sin 2

or 1<x<3

(a) 3a , -3a
(b) ALl values of x such that O <x<1.

(a) :
() ; b

b
(a) b
=,4 b:g
7

4 1
f = - - b = - o
( ) 3‘1‘ ¥ 35 o T 35

—-2‘ 2- l 2- :3‘- 2-
-3(r -r)+3(s s) b 3(1‘ r) +

-32-'(82 - s)

1 2
b =>r + s
3

3

=P
X 1is between
Q 1is between
P 1is between

Q 1is between
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26 The teacher will have to use his own Jjudgment as to how much time chould

be spent on coordinate systems in the plane not of the type we define.

For exemple, if we consider two mutually perpendicular lines and on each

oi them a perfectly arbitrary liuear coordinate system, then by the mcthod
described In the text there is established a one-to-one corresponden:e
between the points in the plane and the ordered pairs of real numbers.
However, many things become more complicated. The distance Letween two
points, for example, is no, longer given by the usual formula. Probably

no nore than a few minutes should be spent bn this in class, after which
Challenge Exer.ise 4 on page 5k can be assigned. (See Supplemént C for

more on this subject.)

27 We may, of course, extend the notion of point of division as we did on
page 18. _
29 If the SMSG Geometry with Coordinates 1s available, you may want to

look at pages 5k3-550, where there is an alternative development of the

parametric representation of the points on a line.

Exercises 2-3

1 (a) M=(3,8) :
A= (2,3) |
B = (2‘)6) s \\
1 .
4 A= ()‘)6) l ’ .
B = (6)9)
(c) M= (5%)2-%—)
1.2
A= (55{5?) . <
2 2
B = (55;'3-)
1 1
(a) u= (-25,33)
1 1
A= (' §) 1‘3‘) .
I L ¥4
- (- 3,4

Q 1.23 ._
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2-3

h. If, in equation (2) , x

Simplifying,
or

\ These are conditions de

or x-axis respectively.

(0]

J

]

|

[
o

scribing points on lines parallel to the y-axis

5. (a) substitutinglinto equation (1) we see that ad
- ’ 7-(-3) 0-(-6)
22 - (-3) ~ 9~ (-6)
o 6
5 15
2 2 C oo
5 = 5 ..Points A, B, C are collinear
Check: #
a(a,B) = G - (302 + (0 < (-6))2
= Y136 = 2/3%
a(,0) = H((-3) - 222 + ((-6) - 9)°
= VB850 = 5V3% '
a(A,C) = f(? - 22)2 + (0 - 9)2
= /306 = 3/3%
4(A,B) + d(A,C) = 23K + 343K = d4(B,C)
J. A, B, C must be collirear
-1 - 37 b (-1h)
(v) 8 e d i g 1
- E% ! %? not collinear
Check: d(é,B) - sz_l) _ 3>2 + O‘ -(-lh;F
. = /360 = 2/85 '
a(B) =/G - (52 + () - (S6)2
= '[138 - 8‘/5 -
a(a,0) = /(1) - (9)2 + (b - (-6))?
= ¥592 = 437

d(A,B) + 4a(B,C) £ d(a,C)
This verifies that the points are not collinear.

i




P ey

6. Given that: A(y,-1),
3 [
. B (%,7) , and
P (h,'3)
1o -1-7 '
n-4T 3.7
-3 .8 '
h-54 -I0
-8h + 32 = 30
. -8 = -2
1
h = T
30-38 Polar coordinates are a new topic for most students and care must be

3l

3l

32

35

‘corner lots bear this out, too.

2-4

taken in their presentation. The primary difficulty is the multiplicity of

the polar representations of a given point.

Other examples of the physical application of polar coordinates occur
in air and sea navigation. The path of a racing sail boat beating up to a

mark may appeal to some students. The paihs across newly planted lawns on

In(the definition of the polar angle it may be necessary to stress that
the terminal ray of the angle need not contain the point. This is a recurrent
pitfall in verbai descriptions. The angle POM is not the only pola> angle
of the point P ., _

N

The fact that (r,8) and (—r;é + 1) both represent ‘the same point
is worthy of emphasis. A student of the calculus must exeréise particular care
in the use of polar coordinates. If a curve is symmetric with respect to the
origin, it is all too easy to sum up the area bounded by the curve on one
side 9f the origin--and at the éam§ time subtract away an equal area on the

other. A Judicious use of symmetry and boundaries is essential in such cases.

Once agaiz we want to stress the freedom to choose our analytic framéwork
in any way which wili make algebraic manipulation as painless as possible.
In general, if P and Q are any two distinct points in any plane and if
(pl,pz) and (ql,qe) are any two distinc® rdered pairs of real numbers,

there exists a rectangular coordinate system in that plane in which

P =‘(pl,p2) and Q = (ql,qg) . Furthermore, if we let (rl,el) and (r2;62)
be Y

any {wo distinct urdered pairs of real numbers, there exists a polar

coordinate” gystem in the plane in which P = (r,el) and Q = (r2,§2). (Note

that ‘the, change™{rom (pl,pz) ﬁnd (ql,qe) to (rl,el) and (r2,62) was




*

o

[

2.4 v

unnecessary; any two distinct ordered pairs of real num.ers may te coordinates
of P and @ in coordinate systems of each type. If at least one of the

points is not on an axis, the coordinate system is unigue.)

35 A moment®s thought should convince you that the usual equations relating
polar and rectangular coordinetes are completeiy dependent upon a particular
orientation of both coordinate cystems in the same plane. If either coordinate
system should be introduced differently into khe plane, we would haye to

develop hew equations of transformation.

36 The ordered pairs (r,8) satisfying équations (2) descrive two distinct
points, but once the student las developed some facility with polar coordinates,
it will be easy to choose the appropriate ones. If the students are ?amiliar
with the inverse trigonometric relations, they may prefer some equivalent of

the follwoing definition,

VAN y#0,6-= cos™t

* 3 '1
sin

1

P={(r,8) : where r

5

"=

u

Hi<

where x2 + y2 =0, r=0 and 6 is any real number.} Hopefully, a student
will ask what to do when x - G, since one of the equations of transformation

is not defined. GSome other studen® should be able to point out that in this

case 6 = % + nn , where n 1is any integer.
37 'Example 5 ;5 worth some attentlon, for the application of the ﬂaw of
Cosines as a distance formula in rolar coordinates is often convenient.
Again there is a loophole, for it may not be apparent that the Law of Cosines

still applies if 61 & 62 + nx , where n is any integer. In Section ?-7

we shall have oczasion to point out that the relations! 'p described still holds

even when the "vertices of the triangle" are collinear.

%

38-Lo There is a wealth of practice exerclses liere. Exercise 5 would require
seventy different answers if all parts were done; Exercise 10 has over thirty
answers. You will probably want to pick and choose within this set of
exercises, but there is plenty of extra drill available for students who need
it., X

o ‘

[E
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Exércises 2-4

(5,135°)(-5,315°)
. (5,495°)
(-5,-45°)

(2,90°)(-2,270°)

(2,450°)

(-2,-90%)

(-4,45°) (4,-135°)
(1,225°)

) (-4,%05°)
(3,-120°) (-3,60°)
(3,240°)

(3,600°)




2 e
2.4 :
A N
- 3.
(r,120°) N ‘ .
NS> *
- O -
‘ /
(r,240°)
b —

{umhe=4y}

s{tnor:r=a}
4

!

/ 2 3




L4

A(2,270°)¢ T (2,-90°)

B(3,300°) (3,-60°)

c(4,330°) (4,-30°)

0(5,0°%) (5,-0°)

E(6EJ\L\/ (6,-330°)

F(7,60°) (7,-300°)

6(8,90%) (8,-270°)

E(9,120°) (9,-240°)

1(10,150%) - ) (10,-210°)

32, 180%) (3,-180%)

K2 ,0°)  (2,-150°)
. €

L(%f,2h0°) (%, -120°)

4(5,285%) (5,-75°)

N(6,315°) (6,-%5°)

(a) (0,0)

(b) (l)'l)

() 2,2/

(a) (%,0)

(a) (V2 45°)

(b) (2/2,315°)

(¢) (p,0°)

(@) ~a, )

3ny

('2)900) (2,—2’2‘ i
o (-3,020%) (3,37

/ O ™

\’!‘)150‘)

(-5,180°) (5,0)

(-6,210°) (6,3

(-7,240°) (7, %)

(-8,270°) (8,3

(-5, 300°) (9,59

(-10,330°) (20,2%)

‘-2, 0% (2,5

(- 2, 50°) 2,10

(-1,60  d,m

(-5,105°) (5,55

(6135%)  (6,1%)

(e) (-x,0)

(£) (0,/2)

(&) (-1,-43)

(n) (42, -¥2)

(e) €2,150°)

(£) (2,240°%)

(g) (/29,22°)

(h) (17, 166°)

v
21 25

2-h

" (‘2)900)

 (-3,120°)

. L4
(b, 25 "9(;1,150%)

(5,0%)

(6,30°)

(7,60°)
(8,90°)
(9,120°)

(10,150°)

—
L}
M ol
- -
gs o
(o) ~—
~—

—
]
[RVIEN]

-
2y
[e]
~

(-5,105°)

('6)1350)




()

(a)
P (b)

(a)

.

d(A,B) when A« (2,150°) and B . (h,210°)

222 4 () - 2(0)(8) eos (C10° - 150°) = of3

Using rectangular coordinates

A= (2;1500) in rcetangular coordinates. (-/;’l).c
B= (!&,{_’100) in rectangular coordinates {-2v3,-¢)

a(A,B) = A-A3 - (252 + @ - (-2)?

- N2+ (302 - 23 -

Usirfg rectangular coordinates: "
A= (5, %n) in rectangular coordinates (- %/5,- ,—?/5)
B = (12,%n) in rectangular coordinates (64/2,-6/2) .

d(A,B) = '/314-

A= (2,31°), B = (3,200)

a(A,B) = &+ 9 - 2{2](3) cos (100 - 37)'

a(A,B) = V& + 9 - 12(.h5%)

a(A,B) = Y+ 9 - 555 = /7.55 = 2.75
a(A,B) = /53 ’

a(a,B) = /T T
l . “~ *
a(A,B) = ¥
d(A)B) = '5‘/5 .
r
(/"‘ ¢ . .
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< (10, 120%

P

A0.09

F (10,300

" BF CF CE BF BE ED b A
| - \ c ¢ (33,507 (5,60 (%9/5,90°) A
o~ - 0 (5:1890) 5,0°) 0 D )
(.L%@- 210°) (g‘,3€_>p°-). ’}/E. '?.‘;' (%‘5’3233‘0% E, //
n_: " s, 126°) (%/5,150"7 : % e 3)// . :
(5,240%) - | o7~ B B / S

(2273, 30%)
(%%/3, 210°)
(5,0°)

(5, 180°)

(%9»/5 , 90°)

<l39/§, 270°)
(5, 60°)

(5, 240°)

This chart shows the puints

‘of intersection of the dfa-

gonals of a hexagon inscribed -

= b
"CF. F S . in circle with radius 10
A LU one vertex et (10,0°).

The twelve irterior points of intersection different from O are’ %

(——»/"30 3, 150°)

(273,33 .
(5, 120°)
(5, 300°)

.

27

e



. 2-5

1. (a) ((-1)*‘ro,(e0+mok)°) ‘
B k -
. (m) ((-1) T, ’60 + nKy

K1-49 Students chould find .little if any new material in this section. It ir

* iacluded for review and completeness.

iy

L1 The geometric form ls useful in developlng equations for a line, since

it is closely alllied both to the geometric picture and, sincé the denominators
are direction ndimbers for the line, to the parametric reprc.:ntation for the

line. It corresponds . to the symmetiric equations for a line in 3-space.

43 Inclination is defined geometrically, since our point of view is
geometric. This definition may alco preparc the student for the definition

of direction angles in the following section.
Lk Note that inclination is defined even when slope is not.

k9 Since the general form of an equation of a line does not reveal
immediately the geometric characteristivs of the line, 1t is worthwhile to

develop facility in interpreting tlie geometric properties from the coefficlents.

£
Exercises 2-5
1. y+3=2(x-2) 2 -y-T1=0 p=T1 Q=3
2 , =1 -
, g2-_y-5=-§(x+3) P=-6 Q=-3
. )l’°~ -b ':
' 3.,y =3x+D p=73 g=1 +b ’
ok oy - 5 = %(x -y " Tre two line$ are perallel.
. 5. ¥y =k(x - a) ‘ y-intercept, at (0,-ka)
6. ax +by =0 - a,b fteal numbers.
. 5% +3y = 0 contains (-3,5)
7. Slope of O0A is 3 slope of OB 1is - gﬂ‘
' "*Two lines are perpendicular if>ana>only if
(a) the product of their slopes is -1 or
(b) one has no slope and the other zero slcpe, e
‘.‘ X+8_y-8 L --. N
8 =73 : . ' s g-

ERIC 20 : .
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10.

11,

12,

<

) 2zk _y:-8 (5) =

X
F TS T
(2) 5x+6y-28=0 300 . ’ \
I3 3 - <
(3) y-8=-2(x+¥) ©) y'8=2+h(:&+h)
1 ,:2+J; _
W) v=-2x+ 3 M e300 -8
Slope: - % x-intercqpt: %? y-intercept: %;
K a ) c v
Ve-p*ty

(¢) If b =0, ac# 0, line is vertical, through (- -3, 0)
(b) If a=0, bec# 0, line is hori.ontal, through (0;- %
() If ¢c=0, ab {0, line has slope - 2, through (0,0)

7

(a)y=-§><+5
(b) y=x-5
. .2 17
(¢) y.= - = X + =
(d) y=-x-2
() -y =Bx + Bz
X-3 y-2
(@), 775 =53
(b) The midpoint of BC is (g »3) -

dledian from A can be represented by

; = 1 = g :5;%% sor 1l0x -y -1:2 =10,

!

(¢) - The midpoint of AC is (%, 1) . And from (b) midpoint of BC

is (%, 3) .+ Line joining these two points is represenﬁed by

\

x - =

2 -1
T1 = g — s OF 2x -y =0.
272 .




>

13, Given the conditions of the problem, it appears that there are.thrce

- possible soletions. .(sketch below)

—— \ '\(o‘toz) " oo -

]
(5,8)

-

(0,0,)

- B
(-b,,0) é o (d;,0)

P - e (b,,0) AN

" / 0,-0,) .

Triangle (:): This triangle is not’ satisfactory, since its area must
be greater than 40 ; that is, its area includes that of the rectangle

with O and P as opposite vertices, and adjacent vides on the axes.

_ Triang.: (:): The area of the triangle is %zagbl . The slope of

BF = slope of 1B and -

Sclving for a, ,

[
~/

Substituting into -;-a?bl , we find that the positive root iz 5(b, = 5) .

‘ 8b 1

c-" = Ty 1 = ' -
Ugng a, =35 we find a, b

1
The'equation of the line through (0,%) , (-5,0) , and (5,8) using
the |symmetric form is

|

| §+2=FTg,or lx-5y+r0-0. -

ERIC o R
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j&iang&g‘(:): Area of triangle‘ 3 is 582b1 .
A . Slope of PB = slope of AB
S S

T , 5 - b1 0y

Solving for a, , we see that

\a - 8bl
2750
20 8 !
Substituting in area formula, b1 =5 and ay=0.

The equation of the line through (0,-8) , (%? » 0) and (5,8)

symmetric form is -

y -(-8)
8 -(-8)

x -0

55 sor 16x - 5y - 40 =0 .

~

‘ y =%§x + 4
s

[ .

2.4

in

Since this is such a long chapter, you may want to test the students at

this point.

challenge exercises from which selections may be made.

Review Exercises - Section 2-1 through Section$2-5

1. (x: 1<x<2)
[ O |
-2 - o ; g 3_4 L]
. 2. {x: (x-1)x+2) =0}
1 EEE | S
. s e SR S S R
Qo ) ' . '

s - ..

B

With this in mind we have included a copious set of review and




.' ~ ! 1 t 1 1 A \ o
— - =4 g-——a~-1—~——o———--;~—2—?§-- S
oo (x: |x - 4] >2) ) . :

) Sh] S G S Y Y G}
Ot 234867

-

-

5. One-space: A point four wnits to the left
of the origin.
Two-space: A line parallel to the y-axis ) —

four units to the left of it. ’ L

‘ -4 -2 o0 £
- ¢
6. The empty set.
oA
) . - . .‘ -
7. éOne-space. A segment of the x-axis Loy o e
between, but not including the .points 0 -3 .4 - X <
‘ =2 and x = 6. :
—_— , yp o Ry
2-space: A portion of the xy-plane ";bgwxi;ﬁ:g@agg
S
between but excluding 1:nes x = 2 :\;%1 .
\\,:}:-.:\ A .\*.gs) 7,
and x = 6. ) : ) :,?}‘x:i' i’“ﬁ\;s}; .
0 PR X
~ ) :i%@;@ﬁ%f\’gs .
AR
R
N R ‘f'ﬁ-{;‘i .
8. Qne-space: fThe portion of the x-axis :iw;@
- to the right of 2 including x = 2 -
and to the left of and including x = -2.
2-space: The portion of the plane to the P A S
. -2 o0 "2
. right of and including the line x = 2 and
the portion of the plane to the left of and y )
. including the line x = -2.
- S ’
) Y Z %

JRCEURSUPNETE N .

L3




3 9. One-space: A segment of the x.axls be-

_tween and including the points -x = 6

and x = -6.
2-spece: The portion of the plane
between and including the lines

x =6 and x = -6, o

10. Let m represent the midpoints and tl , t2 represent the trisection

points.

(a) m= %

1. (a) (2,3% (a) (v13,236°) , approximately

( ) (l,o) .
®) (2,3 ) .

(¢) (5,-53°) , approximately. .

12. (a) (2/2,2/2) (8) (3/2,343)
T (38 (e) (2E, 25
() (/2,/8) o 323 N '

13. 3x + by =14

1h. 8x - 1ly + 46 = 0

15, 5x -2y +10 =0




l?. Y = 6 .
18. X =k . N .
- .
19. The equation for AB is y = -¥? x + 63 .
- .
The equation for BC is y = s¥3 *
- 1
The cquation for ™ is y=Bx+ 63
. The ‘equation, for *E is y = -3 x -6
The equation for EF is y = =337 -
: ' " The equation for FA is y=7Rx-6R%

P -l
. 20. The equation for AB is Y3 x+y - 6/3=0 y
: -
The equation for BC is y - 315 =0
The equation for D is Bx-y+6B=0
-
The equation for DE is Y3 x+y+ 6/3=0
-
The equation for EF is y +3/3y=0
The equation for FA is 3x-y-6/3=0
- X = 6 N
21, The equation for A3 is —e— = ——
- B33
<. ‘ -t
.The equation for BC 1is not-defined
- x+ 6 y
The equation for CD is 3= T
3/3
’ The equation for BE* is 5%—3- = w -
33
B
The equation for EF is not defined
The equation for FK is X-3. 9% 33
3 33
22. :3-{3- is the slope of ac . g
- -
-3/5- is the slope of BD .
%5 is the slope of ?A.E .
-/- te -
Q -'3-3' is the slope of DF .

- C e s




.

N

Let t, snd t, represent the trisection points.

1 2
For B, t, = (5,/3) eud t,= (42/3) .
For EC , t) = (1,3Y3) and t, = -1,3v3) . ‘ . "
For CD, t:l = (-4,2v3) and t, = (-5,¥3) . t
For IE , t) = {-5,-¥3) and t, = (-4,-2/3) : . ?
For EF , t = (-1,-3/3)} and t, = (1,-3/3) . .
For FA, t, = (4,-2/3) and t, = (5,-¥3) .

24, (a) P= (4,273 ) or (8,-2¥3)

(®) a=(3,35) or (21,3/3) e
13 53 ‘ ;
(¢) R= (- -3-3 ,23—-3-) or (9,15¥3) ' : ’
- (o]
25. The inclinatibn of AB = 120
<~ )
The inclination of AC £ 150°
The inclination »f Zﬁ = 300
- o
The inclination of AF = 60
26. Symmetric form.
displays direction pair does not exist for lines
parallel to either axis ;
General form.
always exists conceals infberceﬁts

displays direction p'air
ease in computing intersections
ease in telling if . L contains (0, 0)

Point-slope form. ) .
displays siope does not always exist
ease in testing if P ison L

Slope-intercept form.

displays slope and intercept does not always exist
- lntercept form. '
displays intercepts does not always exist
displays a direction pair )
Two-point form. s ,
o usual way of finding line must be used in different form
, through two points if I?]?Q is verticel
Q determines slope
ERIC ., | 535
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(a)

general: form

(e)

-

slope-intercept

1

(b) intercept form . (f) symmetric @
. (c) general farm (g), symmetric
(d) slope-intercept form (h) symmetric
. 27- A square gs shown in the figure “
’ y
\ .
P - h «

-

’

. o
28. It is interesting to have students note what happens as the constant
term shrinks to zero. At this instant the square shrinks to & point.

The teacher might ask what happens when the constant is negative.

~

29. The half-plane gbove and excluding the line x -y = 1.
30. The half-plane above and including the’line x -y = 1.

1. The "trisngular" portion of the plane below and excluding the lines
3

¢

’

X-y=1 and x +y=1.
Graph for Exercise 17.

Cross hatch shows intersection set

s -

. o
. ERIC
- R
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32.

33.

3h.

O

ERIC

PAruntext provided oy enic [

The graph of Rl in 2-space is the vertical strip of the plépe between

and excludingythe lines x = -4 .and x = k.

)

-

2%,

K I ' 1 1 -
The graph of R2 in 2-space is the hgpizbnfﬁf‘strip of the plane between
and excluding lines y = 4, y = 4. The cross-hatch in the graph

haatd

represents R, N R,.. ] "

In one-space Rl “is a segment between and excluding points x = 4 and

x = <45 for R, the same situation prevails on the y-exis.

(The line for points y may be any line.) Rl(\ R2 is a single point,
provided the x-axis intersectsfthe y-axis.

‘-

In 3-space we can visualize R, and R, as the path of the 2-space graph

1 2
for each separate set as it moves perperdicular to the plane of the page;
le\ R2 as & rectangular solid perpendicular to the plane of the page.

The bounding planes are excluded from the graphs.‘ ¥

If < 1s replaced by < the graphs woulé be as in Exercise }8 except
the boundaries would be included i; every case. For Rl U R2 apply
definition of union of sets. The instructor may very well use this .
group of e%ercises as an informal int%oduc?ion to families of curves.

Note the role of the parameter.

-

Use two-poin® or point-slope or otherwise to obtain F = gc 4+ 32 and

C = %(F - 32). Science students need not memorize the formula; they can
derive 1it.

33
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35. The separate graphs Rl to' R6 are labelefx(ip'the figure.
R'hﬁ Rsﬂ R6 is the set of all points on the triangleand its interior
as shown by:the cross hatch.}.:\- . ¢

’ .~
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Good students should enjoy this confrontation with ideas that go beyond

Chailenge Exercises

LY
<

<

the routine.
(a) Set of lines parallel to y-axis through points (x, O) where x
ranges q;er the integers. !
(b) Set of lines parallel to the x-axis through goints (0, y) vhere
Yy ranges over the integers. -
(c) The set of all lattice points of the plane. -
(d) Includes all of R, R, R3. A grill such as paper ruled in
cross section.
(e) Boundaries on the heavy sides are included.
(1) Same graph moved k units to the right.
(g) and (h) Notice effect of placement of minus signs
(a) R = ((x, y):(x] = (L) R, = ({x, ¥):ly] = ¥
. Y ‘ Y
B - 5
a2t
, 2
't 7
32 Ao |7 |2 P x 3 2 /0| s 2 3
i ]
2k > -
31 ‘ 3
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<

(c) R, = ((x, y):lx]

3

)0 ((x, y):ly)

S

v}
b4

?
. ° o 3¢ [ . [
. e o2 . * o b
] . o /4 ° o. o
-3 -2 -4 O /7 2 3 X
o o4 e o o
. . . (] =2 [ (] ]
. [ ] ) =34 [ ] [ ] [ ]
* ’ -
(&) R, =RUR, (e) Ry = ((x, y):lx] = [y])
Y Y
3l . T l‘%ﬁg
Z B ¢ " “3'-:":.;-\?-
B
7 / r\_‘\g
=3[ 2] J| o 72 x =3 -2 -/Fhe] 1 2 3
N -»’\?'55‘. e
“/ ;‘g:‘g -l
v
= ) o0 -2}
A
b.50E
1 -3 -3r
(£) BRg= ((x, y):lx] = [y + x]) (8) Ry = ((x, y):[x] = [-y]]
y y
s g
% iy . o [ -
IR i § !
P . R
- A !?;Qi
- &y N e N 1 I
PSSR % NN 3 -2 -/ OF74 & 3
-3 -2 - ofsit 2 3 X oo
L . "l
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[dotted line accounts for negative values of r]
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Aruitoxt provided by Eic:

' 4

2
h. (a) a(P,P,) J(xg - x1)2 +_(§) (v, - y1)2

P)
(v) d(Pl,%e) = /2§> (x5 - xl)2 + Ay, - yl)2

- -
(¢) PQ and RS must qither be parallel or have supplementary

inclinations.
let @ = E . From part (a) we know that for d(P,Q) = d(R,S) we must
2 2 2 2 2
have (p1 - ql) + o (p2 - qQ) = (r1 - Sl) + o (r2 - 52) . .

).

- 2 2 2
talso (p; - ) + (p, - @)% (r) - 5))° + (x, - 5,
2 2 2 2 )
Thus (1 - o )(p2 - QQ) =(1-a )(r2 - 52) . Since T s, we

know o #1 . Therefore, 1 - o # 0 and we may divide by 1 - o .

From the result we see that the distances in the y-direction must be
" equal. But then the distances in the x-direction must be equal. These
conditions are.satisfied only when @ and RS are parallel or when

they have supplementary inclinations.

5. y The line may be written

-

in a simpler analytic

\\\\ _ representation. ’
bx +3y -5=0.

(4x+3y-5)1=0

v

k -
6. The graph of (ax + by + ¢) = 0 is the same as the graph of

ax + by + ¢ = 0. A simpler representation is ax + by + ¢ = 0 .




y
:’n(-tZy-léo_l '/(ABy+2=O
(=73.13) N :

8.
y
N\
o \ X
(3x + 2y - 1)(2x -3y +2) = 0
9.

(x+y)(x-y)=0

39 43




"10.

11.

12.

13.

ERIC

Aruitoxt provided by Eic:

xy = 0 .
- -
I\*
(a) rational
+ (b) rational
(¢) real °
(a) complex
1
(a) R may be any line containing the point (- L
L= ((x,y) : x+y+1=01}.
(b) S may be any line containing the point (-
L=((x,y): 3x-2y+2=0]}
(¢) T may be any line containing the point (-
(a) U is the whole plane except for the voints
L= ((x,y) : x+y+1}
L 1
other than (- =z ,- =) .
S
(b) V is the whole plane except for the points
L=((x,y) : 3x-2y+2=0]}
L
other than (- =, - %)
(¢)” W 1is the whole plane.

it
-
Uil
A

)

Ui &+
Ui

(O] =
-

1
-
o

except

except
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14, There are two possibilities: Ly = {(x,y) : 8% + by + ey = 0 }

.\'

/

15.

a

“and L = ((x,y) : a,X + by + c

1=0 } may intersect at a point
(xo,yo) . In this case, .

(a) R may be any line contéining (xo,yo) except L ,

(b) S may be any line containing (xo,yo) except L
(c)

T
(d) U 1is the whole plane except those points of L,
(e) v

s

0 2
is the whole plane except those points of Ll other than (x

0¥o) -

other than (xo,yo) ,

may be any line containing (x ) , and

0’Yo

(f) W is the whole plane.

LO and L, may be Parallel. In this case,

(a) unless R 1s empty, it is a line parallel to L, and L, except

*
Ll , when k=0, R = LO ; when 0< k R 1is between LO and Li H

when -1 <k<0, Lo is between Ll and R ; when k =-1, R is

empty (the null set); vhen k < -1 , L 1is between L, and R.

(b) The same argument holds for S , but the roles of L. and Ll ‘are

0
reversed,

(c) T 1s the whole plane except Ll .

(d) U .is the whole plane except Ly -

(e) unless V is empty, it is a line parallel to Ly and L . When

n=0,V-= LO ; when m=0, V= Lo .

(f) W 1is the whole plane.

(a) the null (or empty) set.
(v) the whole plane.

We include a copious set of Illustrative Test Items from which we may

wish to make selections.

)

Aruitoxt provided by Eic:
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Aruitoxt provided by Eic:

[

Illustrativg Tegt Items for Sectians 2-1 through 2-5

. . R /
If P and- Q@ have coordinates 3 and -5 vrespectively in one linear
-2 and 3
respectively in a second linear coc.dinate system, what are the

coordinate system on the line and corresponding coordinates

corresponding coordinates of points with the following coordinates in the

firsc coordinate system?

(a) © (&) - 12 .
(b) 1 (£) -13
(c) -1 (6) 1
(a) -% (h) 10 °
P~:~\\__\_’g,//f; M, A, and B are the midpoint and trisection points of q R
) find m, a , and b when
() p=3,4q=12 g
() p=-3,4a=1
(¢) P=-2,4q=13
(d) p=2r+3s, q=3r - 2s i

3. If the coordinates of P, Q ; and R are 2, x , and 12 respectively,

<  find the value(s) of x such that -
() A(7,Q) =3 a(B,R)
(v) a(r,R) = 2d(P,Q)
(¢) a(p,Q) = 5a(P,R)
(d) a(P.Q) = 2d(R,P)
() a(Q,?) = 34(P,R) ‘

4. If M, A, and B are the midpoint and trisection points of P4 ,
find the coordinates of M , A, and B vwhen

(a) P= (2)1) F) Qr = (',“)'2)

(b) P= (7}1) ) Q = ('2)1)

(C) P= ('2}5) P Q = (7}12)

(d) P= (pl’pE) , @ =, (ql’q?)

() P={,r),Q=(s+r2s ~3)

o

ko

46 S




5.

6.

T
F

8.
£

90

, Q , and R are points in a plane with a rectangular coordinate

system. Determine whether the three p01nts are colllnear if
(a) (5,5),Q-(00), R = (7,-7)
(b) (-1,5) , @=(8,-3), R=(-7,-6)
(C) P (1 2) ) (9)1U) ) R = ('3)'2)
(d) (9)"10) ) Q = ( 8 5) ) R = (0,-2)
A line with slope - % passes through (-3,4) . If the points (p,7)
and q .

and (5,q) are on the line, find p

Sketch the graphs of the sets of points on a line with the following

analytic representations.

(8) [x: -L<x<b]

() [x: |x-5|<2]

(e) [x: (x-1)x-3)<0]
(a)

[x: x(x +2)(x - 3) =

Find analytic conditions which describe the illustrated sets of points.

(a) 11y g 1 L1 1
-7 -6 -8 -4 -3 -! ~| 3 I 2 3 S 6 7
(v) 1 1 i 1 ! | . . | ] i1 ! Il
-7 -6 <x5-4-3-2-] 0 | 2 3 4 5 6 7
(C) ry
4 1 1 { i i [ | I ] ] 1 ¢
-7 -8-5-4?*-2 -l 3 l’ 3 4 5 6 1
(d) - ‘
R I WY S W B Ao 1} N S T T W
‘-7 -6 -5 -4 -3 -2~ 0 | 2 g 4 5 6

Find three‘polar representations for the point with rectangular

coordinates
(a) (3,373) (e) (h4,-4)
(o} {-2,-2) - s
(¢) (-1,73) f3
(a) (-2/3,-2) (g) (6,0) .
L (n) (0,-12)

b3 -

47
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10. Find rectangular coordinates for the point with polar coordinates

(a)

(b)
(c)

(d)
(e)
(£)

(4,0)

(Z,55°) T
(6,-120°)

(5,
('3:' %‘ﬁ)

(‘h:" %ﬂ)

11. Without chaﬁging to rectangular coordinates find the distance between

the points whose polar coordinates are

(a)
. (b)
(c)

(a)

(e)
(£)

¢
» >

(5,0) end (12,3

Y

(6,0) and (6,-x)". .
(4,45°) ana (5,-135°)
s on ony
(3,5) and  (4,57)
('61' 'E) and (5)%)

(-;,-9o°) and (6,90°) .

12. Find an equation in the indiéateq form for the line which

(a)
(b)

(c)

(a)

(e)

o (f)
: (g)
(h)

(1)

(3)

b (k)
(1)

(m)

(n)

contains (7,-2) , slope

contains (5,3) "and (6,4) ; symmetric form.

contains (0,4) and (3)0) ; intercert form.
contains (7,-6) , slope - % ; poinﬁislope form.
contains (13,-6) and (-2,12) ; general form .

contains (O,-5)', slope % ; slope-intercept form.

contains (9,10) and (-J§,h) ; two-point form.

contains (-5,12) , inclination %? ; point-slope form.

contains (5,7) and (5,-3) ; two-point form.
contains (3,-6) and (-3,3) ; intercept form.
x-intercept 2 ; y-intercept L4 ; general form.

x-intercept‘ 5 ; inclination 60o ; slope-intercept form.

contains (-5,7) , slope g ; symmetric form.

contéins (-5,-4) , inclination h5° ; general form.

é% ; symmetric form. '

48"




o) containg two-point fo.m.

(-3,2) ;

contains -2 ; intercept form.

o
~—

(-2,5) ; slope-intercept form.

B
~—

9,3) and (9,12) ; general form.

and (-7,3) ; general form.

contains

AAAAA
o)
ta

(
(
contains (6,1) and
(
(

s) contains

(t) contains (-5,4) , inclination 2? ; point-slope form. -
. o

Show that the triangle ABC is a right triangle if

A=(1,-3),B=(11,8), and C= (-3,4) .

-,

Find an equation in general form of the line containing the median
to side BC of triangle ABC if A = (-2,7) , B = (3,4) , end
c=(1,-2) . .

Find the area of the triangle determined by the lines

L = {{x,y): 2x-8=0]},
L, = ((ny): 12x - 5y - 53=0) ,
Ly = ((x,y): bx - 5¢ +19 =0} .

-

. In triangle ABC , A = (0,0) , B = (6,0) and C = (0,8) .

(a) The bisector /[ A divides the segment BC ia what rstio? y

(b) The point D at which the bisector of [ A intersects BC?
(c) Find d4(B,D) and d(c,D) .

Fin®@ the ccordinates of the points in which the line that conteins
(-8,3) eand (3,-2) intersects the axes.
. . s

Answvers

—
-
—

)

(e) 1
(r) 8
(g) -7

(n) -63 .

Ca
o
1
w o

—
[¢]
~—

O NI

NS
o]

4




[ 4 l
b “(a) M= (-1,- -2-) = (0,0) B = (-2,-1)
1
(b) M= (23,1) = (4,1) B=(1,1)
1l L
(C) M= (251 8'2') = (1;7" B = (,4 9-) .
@ M=(pl+ql Pt ) ( i - *qe) B_('Pl*aql P +29,)
2 3 3 7 3 }
(e) M = r+s +1 r+2s-3\ +s+2°r+2s-3 B=”2.’¢'+2s"+l r+hs6\
2 3 .3 ' 37
5., (a) Yes ’ Netermine the distances between the
(b) Mo pairs of points; the points are collinear )
(c) Yes ) if and only if the sum of the two shorter
(d) No distances equals the longer. Xore simply
) b

=

50

use slopes; the points are collineax if
and only if the slope of PQ equals the
slope of PR .)

- 3
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| WL VU | i | IV U D N |
8-4-3-2- 0 | 2 3 45
O .
. S S TS T, W S S S N S .
0 1 2 3 4 5 6 7 8 9% 10 .
: /

(c) ‘ ' <

11;1*__;_*;114
-3 -2 - O 2 4 5§ 6 7

(d)

S N A ER

() (x: -2<x<W), (xr |x y 11 <3), {xt (x+2)(x -4 <o),
or the equivalent. )

X

(b) (x: -5<x<1}, (x: ;(:—]1_|x+2|53],[x: x-1
LoD

X

7{x+5)(x-1)<0),
or the equivalent.

(¢) (x: x(x +‘3)(x - 2) = 0} ,(-3,0,2{ , or the equivalent.

(d) {x: xg-2 or x>3}, (x |x- %I > 2%] , {x: (x+ 2)(x - 3)>0],

™~

or the equivalent.

(There are, of course, ugplimitcd possibilities for the answers to this

question; we give only a few.)
. - ~)
(2) (65), (-6,2), (6,60°), (-6,240°) .
(v) ‘,(27’5,%), (-0, §) , (2/3,225°) , (-2/3,15°)
() (25, (-2,25), (2,12¢°) , (-2,300°)
(@ &), (5%, 4,210% , (-4,3°)
(e) (ur, %), (WERR) , (WE,315°) , (-4/,135°) :
(£) -(—, ), (-2, (2%, (- £,210°

A SR & 7

3 3
(8) (6)0) ) (’6)“) ) (6)0 ) ) (‘6)180 )

(h) (12,%5) , (12,3, (12,210°) , (-12,90°)

| v 51
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0. (a) (8,0 S (@ (.2;'_5,‘2%)' ~
() (1,1) N o (1 ) L.
> e =y — Lt . e .
(c) (_"3:"3)’5) BB . , .
. () (-243,2) ' v
1. (=) 13 , (a)” /A3 - " N .
(o) 12 (e) VBT ) A
(e) 9 (£) 3° . .
. e .
. x-s_y-3 " . . . ~
. F12. (a) m-m ; . ;. '
5 y-‘ ~ ')
(b) 3+H-1 .. -‘\‘3
() y+6=-2x-1 .
(d) 6x + 5y’- 48 = 0] . ’ N .. X
3 - ‘ , L LN
(e) Y='2'x:5 o
(£) v-10=-210(x.0g) o
XN _@_9 . -
(@) y-12=-1x+>5) ' i
N S, ]
35 ! . . N
h - o eee—— - - . - 7
()'x _3_,7(y 7) . . , .
X N ‘ i .
(i) _I+-—5-=l . ‘ .-
2 . & .
(3) Wx -2y -8= . ) - _
(k) yv=x-53 i » .
xX+r>o_y-17 ‘ : *
1) FF5=137 -,
m) x-y+1=0 - e
X-7_ y+2 o
() Fo7=5+2 | :
(o) y_+5=“§—f%(x-6)-
. ' ) )
(p) -5-+-1‘Y5= : - )
(q) y=--‘1,§-x+h .
(r) x=9 .
(s) vy=3 .
() v - k4= -fB(x+5) '




.- L 2-6
) @AE)% = (-1 - 1)+ (3 - 8)2 = 265
(8,02 = (11 +3)2 + (8212 < 212
. '(d(IA,C))a = (14324 (3-4P2-
. Stnce (@(a,B))2= (a(a,c)? + (a(a,c))? , by the conversc of the

Pythagorean Theorem triangle ABC 1is a right triangle with [ ACB
the right aﬁgle. -

(b) - If you ‘perm:.t students to use, the fact that the product of the
-1
fOllOWS more readily from the fact that

lepes is’ 133 end only if lines are perpendicu.l.ar, the proof

’

I .

. m_~m_ = (- —) ( ) =
R AC BC / . .
14, 3x+2y'-'8_—. o . ( . L
15. 20 '
. t ‘ )
. 16. (a) 3 to b4 o
" (b) (3—,37) R
9.
() a(B,D) = 45 ; d(c D) = o
| ?
|
17. The line intersects th:e x-axis at (-.% ,0) ; .
TR 7
the lipe fnte-s?ctq_st y-axis ?t (0,- ll) . .
- ) E :
. | .
57-63 Most students will probebly believe they havg a clear intuitive under-

standing of the idea of the: two directions on a line and may feel the

discussion here is pointless. As with the notion of a directed segment, it

may help to ask them to try to explain whst they mean accurately, using

terms with clear geometric meanmg.,. When they find that *his ¥¢ .0t at

all easy, they may be convinced that our approach is worth studying.

|
57 The open question of lines_without slope is considered-in Exercise 5

At this poinf we asbume that the student recalls that parallel,
In Pection 2-7 we shall reafirm this

on page 64,
nonvertical lines have the éame slope.
fact. L

57 We shall use the idea éf equivalent direction numbets for a line a great
) ' . .
deal; if a student does not ‘kgrasp this idea now, he may find it a frequent
stumbling block. ! A

D3 :

k9
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2-6 .

58 You may well note that had we chosen directed angles to describe the
lines in the plane, a single angle would suffice. However, a pair of ‘
nonnegative ang}es is conventional end leads to symmétric representation; it.
is also desirable, §ince a triple of direction angles is much neater in .
3-space. fhc extension to spaces of Ligher dimension is immediate with the

« approach adopted here.

3
59-60 The fact that the pair of normalized direction numbers and the pair of

direction cosines are equal is extremely convenient.

61. The context which specifies a direction for a line varies and is, of

csyrée, frequently quite colloquial, as "the line from P to Q".

, Exercise 6 on page 64 asks for a‘Juctification that the alternative .
Y ’ direction angles for a line are respectively supplementery.
S(o
\’ . 62 The information developed in the solution to Example 4(b) is quite
:; useful. The student should develop facility in extracting from a‘genéral
form of an equation of a line dirc:tion numbers and direction cosines forxr
the line.
63 The importance of Examplg 5 may not be apparent. It provides what little
initifal motivation there is for the normal form of ihe eqﬁation of a line.
64 Exercise 7 might well be discuesed oriefly even if it‘is not assignea,
for it develops a relationship whicl. iz useful in relating the equations of
i a8 line in polar and rectangular coordinates.
Exercises 2-6
1. (a) (-3,4) or, (3,-4)
(b) (4,1) or (-4,-1) R
(¢} (0,6) or (0,-6) « ’
-~ [
() (-5,0) or £5,0)
(e) (1,1) or /(-1,-1)
(£) (2,2) or (-2,-2)
(g) (-1,1) or (1,-1) .
*(h) (-4,4) or (4,-4)
] , -
Q v

ERIC
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3} 3 _%
(-5,5) or (5,-3
SUBEE SR SIS )
7T 77 T
- -
(0,1) or (0,-1)
(-1,0) or (1,0) )
E,L) or (-&,-4
2 2 2 2
(X)) or (- oL )
Z 2 2 .2
(- 15 or (&1 "
2 2 2 2
1 1 11
(- —==) or (=,- =)
vz /3 7z ¥z
a = 1270 ; B= 37° ; or a= 530 s = 11',30 (approximately)
a=76, p=1°; or a=10°, B =166 (approximately)
a=9°", p=0"; or a=9", B=18"
a=18°,8=9°; or a=0", @=9°
a=4°, p=4"; or a=13°,p=13°
50 _ 19 . _ o _ o
a’=4", B=U" ; or a=135 , B=135
a=135°,B8=4°; or a=14°, p=13°
6=135°,8=4°; or o=04°, p=13°
(3;!'1) (210) (01'3) ('112) ("2:1)
- -3i 0 not defined -2 - -é
(%" g) , or any equivalent given by (g—c, - %c_ ,cf 0.

a=5°, p=13;or a=121°, =37

(1,0) , ¥ any equivalent given\lii le,0) , c £ 0.
a=0, B=9°; or a=180° , p=90°

{0,-1) , or any equivalent gi\;é&l by (6,—c) ,cfo.
a=9°, Bp=18P°;o0r a=g®, p=0°
(- _J___‘_g_) , OY any equivalent given by (_y 9—,29- s, e 0.
55 ! 55
a=117,p=27°; or a=63°, p=15°
(~ -1/2—5,—};) , or any equiv&:ent: given by (- -1/—5,—‘/%) , C
a=153°,p8=63°; or a=27°, 'p=117

51.
85

8,




E

(¢) ana (a)
y y g 9" y
/I B
8 B B a
N N N e
a X a X N X X X
) t
5. A pair of direction numbers determined by Po and Pl are
(zl’ml)= (o’yl-yo);ml=yl~y0¥o’ .81:0.
A pair of direction mumbers determined by Po and P2 are
 (omy) = (0y, - vg) s my=y, -y #0 and £,=0.
Since m, £0 and m, £ 0, voth
- m
Cl = —2 and c, = ;lr‘ll
™ < M
are defined and not equal to zero., Thus,
(clzl’ clml) = (zey m2) and (czze: C2m2) = (ﬁl’ml) .
. (O,Y]_ - yo) and (0,y2 - yo)
are equivelent pairs of direction numbers for the vertical line,
6. cosa:——-—j = cosﬁ:%
£ +m V [¢ +m
cos a' = cos‘ﬁ' S
VLS +m VLS +m N
So cos a' = - cos a cos B'= - cos B )
Hence w’ = +a + px ﬁ'= + B +at ©p, 9 odd integers but a, a’,
B, and B’ are between O and x, so the only solutions are
B+ B =x, a'+ a =x.
O

RIC

Aruitoxt provided by Eic:
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70 (a) 1,
f;
2, |
3.
L,
(b)y 1.
O

ERIC

Aruitoxt provided by Eic:

In the Figure 2-13a
. . 7
sin w = sin (5 -B)

equal to the cosine

sin

| In Figure 2-13b ;W

sinw =

sinw =

sinw =

sinw =

Inmgure2-13c,w+£2+a=180+2m and <2 - B F2m .

- B+ 2nn « Therefore

o=

y W =

but since the sine of an angle is

of its complement,

w= cos B

=B - -’2-(- + 2un. Therefore

sin (B - %) .
sin [- (-;- - )]

cos (-B)

cos B

2

The result is the same as part 1 above,

In Figure 2-13d, w - B =

Therefore sin @ -

,sinw.—.

Since >

sin

.n
sin = =1 and cos

b14 b14
=+ 2an and = =
2 w=73

X

sin (5 + B)

X

> sin B

Iy
cos B + cos 5

= 0

[pS1 3=

sin - cos B

"‘B+2.‘Tn.

2-6

If the positive ray lies on the positive half of the x-axis,

®=2m and B =

Since we wish to show that

and see that

sin 2xn = cos

X
2

=0

[pS1 3=

53 5%

sinw = cos B , we may substitute

«




24

If the positive ray lies

w=x+2m and B =0

[av] B

30
w =1+ 2nmn and B.= % and sin
4, 1If the positive ray lies
L. - in X
v W =5+ 2mn, £ =n and sin 5
8. (a) (-2,2)

-2 -1

=,

B h

a=153° g = 117° .

() (-2,1)

(<£,2)
a =153° , ¢ = 63°
(c) (6,5)
(__6_,_.5_)
6L /BL
a =4°,6 =50°

—65

slandards of precision require that we take account of the fact ti.at at least

four angles are formed when two lines intersect.

guished in a diagram by various methods, but all of these methods must induce

a sense along each of the lines.

ERI!

Aruitoxt provided by Eic:

54

o=

= ¢os

If the positive ray lies.on the negative half of the x-axis,

It is traditional to talk about the angle between two lines, but present

These angles can be distin-
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67-68 The second solution to Example (2) is given as a suggestion to the

student that once he has recognized the form of the equations of the lines
noxrmal to a given line, he may write immediaiely the eguation of the normal
containing a given point.

68 Spmetimes the results of our analytic approach describe additional
situations not usually approached in the sam. way gebmetrical]y. The

situation here furnishes ,a nice example of this..

69 Example 3(b) is also offered to show the student how he may use an
equation of a given line In genemal form to write immediately an equation

of a parallel line containing a given point.
70-71 Since (bl’-a’) and (bo,-éq) are pairs of dircction numbers for the
' - -~ s < B

lines L1 and L, respectively, we also note that
[

lez + mlm,-J

cos O =
2 2 2 >
12 1 me '/22, + m2
or; cos O - %1%2 PR, .

In Exercisc 12 on page (4 the student is acked to develop this relationship,
It has some merit when the lines Torming [ 6 ware directed lines, In this

case [ & 1is the angle formed by vocitive rays of Ll and I? with
A1

enipoints at the polnt of intersection (if any) cf L, and L, . Exercise
15 on page 87 also calls for such an interpretation,

TL=72 Example & 1s really a lemma to be used in the development of the normal

form of an equation of a line in the following section,

Exercises 2-7
1. (a) a(a,c) = a(s,c) + a(a,s) , by the derinition of Letweenness for
voints, This is equivalent to
a(A,B) = d(a,c) - a{s,c) ,
which implies
, 2 W2 N
(a{a,))" - (ala,0)® + (a(B,c))” - 2a(a,0) a(B,0) ;
. 0 .
since cos C = cos 0 = 1, we may write

(a(a,B))? - (d(A,C))2 + (d(B,c)>2 - 2a(A,C) a(B,C) cos C

ERIC 5 59.
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Aruitoxt provided by Eic:

(b) Here we have

(a)

a(A,B) =

which implies

(a(a,B7)? = (a(a,0))?

since cos C = cos 180° = -1 , we may write )

(a(a,B))° =

/

d(a,C) + a(B,c) ,

+ (d(B;,C)>2 + 28(A,C) d(’B:C) 5

Equation (6) states that

cos 3 =

a,a. + b.b

172

172

cgs 6 =

a(a,c))? + (a,c))? - 2a(a,c) a(B,c) cos C .
(ata,c))

Let <« be the inclination of L. . Then the measures of the

angles

[¢]
o]
1]
<
i

o]
<]
©
(oo
I

and b 2

2

This is equivalent to

and

6 between L

cos (90° - q)

cos (90° + a)

sin
have tan q = sina | =
cos a
b, sina = -a
2 2

sin2 a=a
!

i

cos® o= a,)2 (1 - si

and L

2

(] . o . N
cos 90 cos o + sin 90 sin o

0 . o .
cos 90° cos a - sin 90 sin a

. 2
sin” a =

2

are 900 - o and 90o + Qe

&

b2

cos a,

2
n

a) .

sin a

- sina .



o

. a.a
(v) - cos 6 = 12 H

"8.2 8.2
i B
6 =0 or 180°, which is the case for parallel lines,

3. L2 .and LS are the séme lines

~e

Ll and Lh are the same lines

L3 is perpendicuiar to Ll and Lh

'

ho (a) e = 7
(b) 6 = 90°
(c) 6 = u5°
(d) 6 =.83° .
(e) 6 = bo. (lines are parallel),
(£) 8 = 90° :
5. The slope of OP is -E ané. the slope of OQ is -:% .
Since m_em__=-1, OP|0Q .
OFP 0Q
6. (a) 2x -3y =0 ’ ,
(bv) 3x+y-8=0 . /
(¢) 3x+2y-27=0 -
(@ x-3y-5=0

T. (a) 2x -5y + 31
(b) 2x - .y +17
(e¢) 16x - 6y -13 =0

(@) y=17
(e) x=5
. 8. D = (h‘,'8) * ,
3 possibilities; (12,2) and (-2,12) are the others.
9. The slope of Ll is &
3

y+as= %(x - 1)

61

57

2-7




10,

11,

-b- P

() AB ;. 2x+ 7y -17T=0
-
BC: x+y=-1=0
-l
CA:3x*8y'-23=O

(v) m"=-$

mgg = -1
— 3 .
MCh < "B
(e) .7 m /CBA = 151°
<0 s -
cos 61-1 2+ 1 = = 874
L +1/h + 59
5 _ Q
61 = 29
N : 0 ) o)
_ The angle desired is the supplement of 6, or 180" - 29° or 151
m /BCA
-’-
, cos 62 = ——ﬂ—= 910
- A+1BFoh
62 = 24° .
m /CAB =
i cos 8, = 6 + 56 = 997" . .
3 AT 9 T6R
. . o
93 =5
(a) Altitude to side AB )
Tx -2y +29 =0
R
Mtitude to side BC
Xx-y-h=0
-

Altiti"e to side AC

8x -3y +25=0

i

(a) Ll’ {(x,y): byx - 8y = 0}

Ly = {(x,y): byx -ay=0]

]

|
|
|
1'

. .
8,8, + byb,

A;e + b12 /4122 + b22

(v) S, cos 6= and using Fquation (6),

62 8 , |




12,

(a)

(b)

(c)

cos ¢ = i : :
K02 + (- b2+ (wa)) /

. cos @ = cos ¢

blb2 + ala2

¥ L' is 1 to L aud L, is 1 to L, , then the measure

of an angle between Ll end L, 1is equal to the measure of an

2
[} 1 M '
angle between Ll and Le. . .
L= (%7)t Ax+ iy +e) = 0)
L, = ((x,y): Ax + Wy + ¢, = 0)
M g,
cos 6 =
2 2 2 2
Al i /"2 il
2 2 2 2
.blut 7\1 +“’l =7\2 +|J2=1
cos 6 = 7\17\2 g, \
If cos @ is positive 0° 464 90° and /8 is the least angle
formed by Ll and L2 .
Assume L, | I, )
= - 7\1 and = - —7\3 and
! oy M T
‘gg - n'llme = "'l .

YR \
so (- [%)(- é) = -1 and

Mg = - it or

L

0

Conversely assume 7\17\2 ks

cos @

but 7\17\2 g, = 0

and cos 8 =0
S8 = 90° and

A Ll_J_Le'u
s9 63
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75:78 The normal form of.an equation of a line is troublecume tc develop, for
students have usually not considered the characterization of a line by a
-~ normal segment from the origin. Therefore, the arguhcnt for bothering io
develop it at all must rest upon its applications; it 1S not at all a natural
extension in the students? eyes. With this in mind, befo;é beginning this
section it might be helpful to challenge the students to find the distance
between a line and a point not on the line. Once.they have becen forced to
the trou%le of.finding (a) the slope of the perpendiculars to the given line,,
(b) an equation of the perpendicular containing the given voint, (c) the
upoint of intersection of this perpendicular end the given line, and (d) the
distance between the point of intersection and the given point, they may bg

more in & mood to pursue & development which solves this problem more easily.

6 The conventional notation does lead to confusion here. It is easy for
.the student to confuse the coefficients in the normal form with the direction
cosines of the line itself. Emphasis on the reason for the name "normel
form" may shorten the period of confusion. Then, too, an oral .drill on the

following information to be gleaned from the normsl form may help.

If A> 0 and > O, the line extendé above the origin from upper
left to lower right; if A <O and > O~, above the origin from lower left
to upper right; if A < 0 and | < O, below the origin from upper left to
lower right; if A > 0 and p < O , below the origin from lower left to
upper righte If A =0 and W =1, the line is horizontal and above the
origin; if A =0 and p = -1 , horizontel and below the origin; if p = O
and A =1, vertical and to the right of the origin; if W = O and A= -1,
vertical and to the left of the ori@in.

[ A
To make sense ol this information a student will have to keep in mind

that (A, ) is the pair of direction cosines of the normal segment.

T The fact that authorities differ in the case of lines containing the
origin has a backhanded sort of significance. There seems to be little
reason to recognize a difference which does not make a difference. E.g.,

1.0 = O.§ ; ‘There is no numerical difference.

78 If your students are already versed in the parametric represcntation

of lines, there is a neater approach to the problem.

- -
The line FPl has the parametric representation
i
= +
X=X At
O y=yl+ut‘

ERIC o '
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With this representation Itl is the distance between (x,y) and
Pl = (xl,yL) « In particiilar, if we let F = (xo,yo) , for some t : F
has a representation . —~

+ Rtl

+ utl .

Rtl
=u-tl ’

«“y

aR,,F) = 2 = e ))? + (e

Since the point F = (xo,yo) satisfies the equation X rpy -p =0,
we have

7\(xl + 7\.tl) + U-(yl + U-tl) =P = 0 2

which is equivalent to
2 2
}\xl+wl-p_-(7\ +u)tl
Thus, “

ey F) = || = [ +wyy - pl

With this approach we do not have to consider the five different cases.

79-82 The amount of classroom explication necessary on the polar form will
depend upon the students? background in analytic trigonometry. Some
familiarity with the addition formulas is essential. These are developed in
SMSG Intermediate Mathematics, pages 605-61C, and, of comrse, in any standard

trigonometry text. i /
|
79 At this point youmay wish to consider that since P = (-r,6 + ) , the
line also has the polar representation ' '
-r cos (é +(t-w)=p.
This opens a question to which we shall return in Chapter 5, when we consider, -

related polar equations,

80 Although the polar angle which contains the normal segment to L 1is
the same set of points as the direction angle o and /w = /a , our

conventions for measuring these angles are different. The measure of A»

ERIC - §
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may be any real number, while 0¢a<n (or 0<ag 180°) Thus, even if
we choose an /o such that |w| is minizal, we sti1l are assured only

that |o] =a, or w=? a. However, since w =+ a+ 2nn for any integer
n, in, the case we describe, we do have cos w = cos (2nn + a) = cos a t

The test should read ® = t a + 2nn "for any integer n .

81 Students may not be familiar with the technique of "normalizing"
coefficients in order to rewrite

2 cos 6 +bsinf as va> + bo sin(6+o.l) .

where
: sino.l:———g—— andcosol=——b—,
. j’?—_e 2 ,,2
. a +b a +b
or as Ya” +1b" cos (6 - B)) , vhere
a E b
cosﬁl=——and sin B, = —— ',
.1 r—s
° ¢a2 + b2 ~'a2 + b2

Therefore, you may wish to consider other examples than Part (e) of Example 5.

8485 In assigning exercises you may well wish to consider Exercises 7 through
9, which suggest a further application of the normal form, and Exercises 12
through 17, which furnish’ practice in transforming equations “rom representa-

tions in one coordinate system to the other.

These last exercises open questions which will be considered in detail
.in Chapters 5 and 6. In the algebraic manipulation of polar equations we
may frequently do some rather wild things which would'get us into trouble
in rectangular representations. The freedom we exploit stems from three

o considerations: ;

i) the multiplicity of the polar representations of “a point, L
ii) related polar equ'ations, (See Chapter 5.) ’
ii1) ‘“factoring" equationss (flee Chapter 6.) ‘
For example, in Exercise 13 we suggest multiplication of both members of the
equationby . r « In re’ctangular representati.ons such multiplication by a
factor containing a variable is quite likely to add points to the graph, but
here the points (0,6) , which might be added, are already included by the

original representation as (O,(n + -;—) ) , where n 1is any integer.

ERIC 66 2
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I
i

|
In Exercise 12 we first ob]tain

36,or r2-36 (r-6)(r+6\—0.
Now the equations obtained . by setting the factors of the left member equal
to zero, !
= 6 and r = <6 . M
are related polar equation;s (as defined on page 167 of the text), for they
each have the same graph as = 36 « Since each is a simpler representation

of the graph, later on we shall prrefer either one to the first equation,

] L] s

In Exevcise 17 we first obtain "

(r2+rsin9)2=r .

1 , Y
If we divide both membexrs by r? , We obtain -
( ; ‘ ‘;(r+sin9)2=l,
but we have not lost any péints from the graph, The pole is the only point
we might have lost, and it is still represented by
I

(0,(n + ) ,

where n is any integer, lThen we may factor to obtain

(r+sin@-1){r +sing+1)=
the equations ‘

Ct . 1-?s1ne ahd r=-(1+sin9)z
which are suggested by the factors of the original equation, are related
polar equations. Their graphs are identfcal to the graph of the original

equation, and eithexr one«is a far simpler representation.

9 In sumary , multlplica)tion or division of both members of an equation
by a factor containing the variable and taking the square roots of both
members of the equation, are techn.iques which are fraught with danger and
seldom desirable in rectangula.r representations, They are more frequently
acceptable ang even desirable in polar repreaentations. .

However, we are not suL;gesting that the teacher sbhould open these questions
nov, They will be consideréd in Chapters 5 and 6, To discuss them now
would probably only confuse the students, We prefexr that t"\e angwers to tle
exercises here be left in the original form obtaiined withouy any altempt at
simplification. Rather we 1nclude this discussion to alert the :eacher to
the questions laid open and to prepare him or her for the questions that may
arise from curious and inquiring students,
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Exercises 2-8

! .
1. (a) -%X_+-5-y-3 (e) %x-%y:O
(8) Zx+ i3y -¢ =0 Som y-8a0 \
% ] ‘6 ) . ‘15
(@) x-2y .51, (1) -x-2=0
g 3 /3 ?
=5 3 12 5x 12y 60
d —— - ————— T AN T = T T
() @;p@:y = 0 G 3-13-3=0
B, -1, 1>, 120 _
, .(e)',fl_ox /l_oy_ e 0 (k) XY - 37 =0
' 30 _ S S
(£) 17x+ y 7= 0 (1) gx-zy-£=0
‘2. (a) 17 (v) \‘\Y
s, 5F
1 4_ 4~
3t 3L
2. 3
’ - “le
, s )
n 1 2 L #l L 1; 1 dn i 1 1 P
// of s+ 2 3 “x ol 7 2 3 4 “x
. hx-3y+l5=‘0 5% + 12y - 65 = O

Of'coursg this is not an efficient way to draw the graph. The
exercise was put in to help familiarize the students with this form

of equation for a line.,

-

3. (a) rsing=1"h . " (e) ~ cos (6 - 300°) =%
(b) rcosO=14 (£) 6=1°, or 9=§
) n
(C) 2] =.60 s O 0 = 3‘ ' (g) r cos (9 _ 1500) =
(d) r'cos {6 - 315°) = 3 ’ (h) rcos (6 135°) =2

b, (8) wcosO-4=0 -

ﬁ)/}’sm,e +heo0
/ ’ n

(¢) 6-90°,0r 9=2

2
(d) rcos@+rsing+2=20
(e) 3r cose-er sin9+6=<&; g . .
(f)rcose+/_rsina-2-0’ ,‘ !
Q (g) 15¢ 51n8-8rc058+3hﬁ—0 e . *,
o |

- . -
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(a) 1If P, ison L, then |%x1 Uy, - p| = 0 . But the distence

from P1 to L 1is zero when P1 ison L.

(b) P1 is on the same side of L as O ; P1 is closer than 0 to

L. Inthis case A(P,}) =p-p = [N +y, - p

(c) P1 is on the same side of L as O ; P1

from L+ In this case Ll contains the origin, P = 0, and

and O are equidistant

a(P),F) =p-p = I+, - bl -

—
[+
-

ll\) F—‘I\J\

N wjce

o\
o

e
° aPk al

A point P, = (xo,yo) on the bisector if the distance from P to I

L

is equal to the distance from P to I, .

2
Then from our distance formula, we have
§
3 L 12 5
Zx - =y + 1] = =5« + 2y - 1]
I5% - 57+ 2 = Igye s g3y - 1

Taking both choices for the signs yields the two desired equations:

2lx + 77y - 130 =0
and [l
Ll -3y =0

X + 9y - 152 = 0
and
99x - TTy - 1kh = 0

|)lx iy - pl = [Aex *uY - p2| gives us

0 and

(A = 2%+ (- )y - (py - p,)
0.

(A + 2%+ (uy +my)y - (py + )

%6 g




2.8

lo. X"3'—"0 /‘ /

11, rcos 8 -rsiné@ =0

12, r2=36//

13, r =14 cos 6
r2=1+rc056
(x2+y2)=1+x

xe-'hx+y2=0

When 9 = lgt' , r=0, Thus the pole is in the graph of the original

/
equation, One must make this cneck because hoth sides of the equation
have been multiplied by r ; r = 0 4is then a root of the new equation,

14, r =28 cos 8 /
Note that the pole is in the graph of the equation, Then r2 = 2ar cos @

oxr x2+y2=2ax.

15, (a) y="3x

(») y+4=0

x2+y2=25 ;

16, (v)

(e) »/x?w‘_;?=5
1
l
|
i
i




17. (a) © - hr cos 6 =0

~ -
N

(hQ\\Note that the pole is in the graph of the equation. Then
2 .
\\ r = 5r cos 6 - 3r sin 6

o

X +y° o 5x+3y=0

Review Exercises - Section 2-6 through Section 2-8

1. dlrection numbers direction cosines direclion angles
(approximately)
10 (¢]
(a) (7,-10) —7—,- —) a=5°, B= 145
Vilg Y19

( 25 24
J
Y1201~ V/1Zol

a= b° = ug

(v) (25,2%)

(e) (-6,5) (é,%) a=140°, g = 50°
(@) (1,6) %,ﬂ%) o010, o kP
(e) (3,-3) (%2,- —/lg) a=14",8-13°
(ry (4,7) (—Jg—E’ é) a=60°, B=30°
(6) (1,2) %,/35) a=6°,p=2"°
) (2 (“—é, %) a=153, = 63°
-
71




2. The points are collinear if {wo line segments determined by the points

have the same slope.

() Ey-E-es
11-1-%) 15 7 5
13 -5 8 " points are collinear
11 -1 10°5
2 ~-T7T_=9 3
(v) 1-(-5) 6~ "2
- (-12) 1o - po'.nts are not collinear
1 - G E
(c) 17 - (-2) 18 3
23 - (-1) ~ZF T %
' 17 - (-13) 30 3 points are collinear
23 - (-17) "k~
(’i) -k - 8 _.:_lgz-l;
0- (-3} 3
oo (-11) 7 points are not collinear
0-5 -5
3. d(a,B) = /1 a(a,c) = /53 a(B,c) = 2/10
k., AB: ix - 5y + 17 = 0
AC:2x+ Ty -1=0
BC: 3x+y-11 =0
. 19
5. length of altitude from A : —
VY10
—
» ; 38
length of altitude from B : —
53
. : 38
length of altitude from C : —
/EL

6. area (AABC) = 19

T (&) x(2/FT - W53) + y(T/EL + 5/53) - (VB + 17/53) = 0
(b) x(WI0 + 3/B1) + y(-5/10 + VHI) + (17V10 - 11/FL) = 0
(¢) x(2/10 + 3/53) + y(7/10 + /33) - (/10 + 11@_3) =0

68

~3
Do




10.

11.

13.

1k,

() a(a,L,) = == a(a,L,) = a(,L,) = X
1 /3 2 5 3 5
(v) a(B,L,) = = aB,1L,) = a(B,L.) = -
1 /3 2 5 3) /5
7 Y 10
(e) a(c,L.) - ale,L,) = = a(e,L,) = =
1 /3 2 5 3) /,)?
(a) x(10 - 3VI3) + y(-15 - W/I3) + (30 + 12/13) : O
x(10 + 3/13) + y(-15 + W/I3) + (30 - 12/13) = 0
(b) =x(2/5 - /I3) + y(-3/5 + 2/13) + (6/5 - L/13) =
x(2/5 + /13) + y(-3/5 - 2/13) + (6/5 + W/13) = 0
(c) x(3/5 - 5) + y(b/5 + 10) + (-12/5 - 20) =
x(3/5 = 5) + y(W/5 - 10) + (-12/5 + 20) =
6 11 6
(a) — (v) =+ (¢) —
/13 2 5
&1 % 8 .8
PyT7s 7) Pyl 17017
o, 82°
6, 98°
Ll may be written 3x + 5 - 1y = 0
L, may be written 5x - 3y + 7= 0
Ir 8,8, + blo2 = 0 the lines are perpendicular
Substituting (3)(5) + (5)(-3) = 0
and L lr,.
Find the angles tetween Ll and L, , where L1 contains the points
(3,4 , -1,-1" : and L, contains the points (-4,6) , (3,0) .
H s U - . «
Solu ., Cince no sense is imposed on L, and T, we will find their

1 2

\

angles of intersection.

We nay take as direction numbers for I, , {4,5) and for Ty s (-7,6) .

‘9

73




15.

16,

(Why?) Therefore:

(W)(-7) + (5)(6)
AZ 4 52 /(_()2 ) 6°

. ez 88°

Cos 6 - x ,03h

We may, most simply, find the other angle of intergection as the supple-
ment of g, but it is gnstruct.ive to use equivalent direction numbers
for L: vhich have the effect of reversing the sense induced by the
first choice, We use now {-%,.5) , and (-7,6) as pairs of direction

numbers and get

cos ot = (WD + )6 o o
M2+ (52 A2+ 6
otz g

which 4s, as we expected, supplementary to 6 .

(&) (EE)

FL1EE

cos 6 = % =047

A=(3,4) B=(-27) C=

]
—_
o
-
\O
~




18.

19.

20.

(¢) x - % =

»
(2) r cos (6 - 60) =1 . o
{(6) r cos 6 = -k
(c) 6=147°
(8) B xty=-5
(b) 3y - hx =12
(a) r (8 cos 64 7 sin @) = 56
(b) r (15 sin & - 8 cos 8) = - 180
Challenge Exercises
o1 - . en 8 .

3x ty + ¢ = 0 or ax tby + ¢ 0,mhb :33.
) . a 4
ix + 3y + ¢ - 0 or ax+by+c:0,mth’3=-§. L
ax + by =0

v
y-3=m(x-2)
¥ = %( - %) . (Fixing the value of m reduces the family to one member.)

»

+ b (a pencil of lines.)

~<
i
[
(o)
~

Let Li:ax+by+c=0 and L, :mx+ny +p=20 be two intersecting

2
lines. The equations of the lines of the angle bisectors are then

a m b n c b

X - + N4 - + - =0
/8.2 + b2 \/m2 + n2 v/za.2 + b2 /“:2 + n2 /a2 + b2 /me + n2

x a + m +y b + n + c + 2 =0
‘/8.2 4 b2 \/me + n2 v/a2 + b2 /m2 + n2 /5.2 + b2 )/m2 + n2

3
<
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B

m»’a2 + bg - a/m2 + n2 -m/a2 + b2 - a/m2 + n2
J

b/mg + n2 - n/a2 + b2

Their slopes are

2 2

bm2+n +n/a2+b

2, 2 2 2, 2 )
The product of the slopes is —= (8% +b%) + a%(m +n?) . -m°b° + 292

2, 2 = =-1

b (m~ + ng) - ng(a2 bg) nobe - an?
Hence, the 1lin.s of {he bisectors are perpendicular.
L= {(x,y): ax # Dby + ¢ = f(x,y) = 0} and ’

- M + 1 = f =
b - (xy): axy + by + e o= £(x,y,) = 0
The direction numbers of each line are (a,b) . Therefore the lines
are parallel.
Given OABC with vertices A(0,0) , B(1,0) and C(a,b) .
To prove that the altitudec are congruent at a point H and find the
coordinates of H .
Cla,b) the siope of AB is O
the slope of AC is 2
the slope of BC 1is
/ -
A0 - - ——BHO})——— T T T T T T
. . a -1

The slope of the altitude from A 1is - 5
The slope of the altitude from B is - %
The altitude from A 1is represented by y = - a; Ly
The altitude from B is represented by y = - %(x - 1)

. - a
If the altitudes are concurrent, - & 5 E X = - -t-)-(x -1)

and x = a and y;_a_(zab_-l_)

the equation of the altitude from € 1is x - a and tae point of
intersection of the other two altitudes is clearly on this line.

72 o
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10. The midpoint of AB = (5,0

The midpoint of BC = (& ; 1,2—)
. . v a b
The midpoint of AC = (5 ,5)

The median from A is represented by

b
Y= (; + 1)x

The median from B is represented by

b

y=g—3 (x-1)

These two medians intersect at the point

a+l b
( 3 }3’)

The median from C 1is represented by

g
i
o
Ly
=
1
ol Ko

811 by ;5 contained in this line.

373

and the point (

+
Therefore the medianc are concurrent at °(a 1 b)

LT ! 3’3

11. The bisector of JA_is given by

_ bx - ay

and solving for y ,
y/2 .2
a + Db

Y

bx
y:
¢;2 + b2 + a
The bisector of /B is given by

_b-bx - (1L -a)y

y and solving for y ,
Jge + (1 - a)2
y = b(l - x)
Jﬁe + (1 - a)2 -a+1l
Q . ) 73
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12,

Equating (1) and (2)

bx ) b(1 - x)

-/a2+b2+a Jge+(1-a)2+l-a
Solving for x we get,

Vaa + b2+a
-/ge + (1 -q&e +]_+au/a.2+b‘2

Substituting x into equation (1) ,

X =

b

£2+(1-a)2+1+1/a2+b2

y =

[} N
So the point of intersection is

¢a2+b2+a b

% s [l
~,£2+(]_..9,)2+1+/ae+b2 E+(1-a)2+1+»‘a2+b2

)

C(a,b)
D F
A(0,0) E B(1,0)
o . — & Db
Midpoint of AC = (5, 5) =D
Midpoint of BC = (2 ; 1,%) = F
)

Midpoint of AB = (%, 0) = E
Slope of AB = 0, :
Slope of AC = %
Slope of BC = b -

a -1

7h




Equations of perpendicular bisector through D =

2
a a b
< yE-gXtmte _ (1)

.
<

3

Equation of perpendicular bisector through E
l -

Equation of perpendicular bisector through F

1

2
. . a-1 a_ -1 b
o y == b x + 2’b + 2 (3)

If x= % is substituted into ~quation (1) and (3) the values of y

are the same. Therefore the perpendicular bisectors are concurrent at

. (1 a2-a

b
2w T2 :

13' H=(a,ﬂ-'1-b;§'—)-) .
. a+l b
: ¢- 0573

- l a2 + b2 - a)
2’ 2b

a-a .>b 2 .2
The slope of HG = b 3 3??; %Ei); b,

a a + b -a

- a% 2 .2
The slope of TE = —2 2 = 3a(5a3i I;bb i

Therefore, the points are collinear. An equdtion of the line is

(3a2 £ b2 - 3a)x + (2ab - b)y + a - a3 - ab® = 0 .

' ’

=

L I T P LA

: 5
- I"‘(~ .
9
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L}' of

\

Find

(a)
(b)
(c)
(a)
(e)
(£)

Find
(»)
(b)
(e)
(a)
(e)
(£)
Find
(a)
(v)
{c)

(a)

]

Illustrative Test Items - Sections 2-6 through 2-8

a pair of direction numbexs for the line BE . *
P=(2,3), a=:(45).

P (1,-4) , Q= (7,4) .

P=(-2,7), Q= (43).

P=(-2,-3), m=-1.

P=(-1,7), a-=150°

x-intercept U4 ; y-intercept 3 .

a pair of direction cosines fo: a line,
‘ EAN
L={(xy): x-y+.2=0).

containing (3,5) and (1,7) .
with slopé 3. )

with inclination a = 30° .
parallel to the x-axis .

perpendicular to the x-axis .

.

direction angles for . , .
the line containing (;1,-3) and (-3,-1) .

the ray emanating from the origin and contairning the point (6,-6V3) .
the line with equation Y3 x +y -7 =0 .

the normal segment to L = [(x,y): x + V3 y+7=0}.

.

Which, if any, of the lines with the given equations are parallel?

perpendicular? the same line?

+
“Ll:
.

b
L3:

Fipd

indicated equétions.

(a)

.(b)‘\

(¢)

_l/’» 2
1.2 5 . e, .1
y-1l= 3 (x + 2) L: y= 3% -3
X, Y. L x*t2 _y-1
Tte=1! Lyt T53=3T71

Ve

3x +2y +3=0

-

the cosine of the least angle between the pairs of lines with the

!

Xx+3y -1=0; ex + 3y -7 =0 .
3x +bhy-1=0.

5 + 3y + 12 =0 .

2x + by -5 =0 ;

X-y+13=0;

. ‘ 80 76
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1

. 6. Let L= {(x,y): 4x = 7Ty +13 = 0} . Write an eyuation in general

form of a line !

(a) parallel to L and containing the point (3,2) .

) (b) perpendicular to L end containing the origin.
(c) parellel to L end with x-intercept 4 .
(d)._pgrpeﬂaicular to. L and containing the point (3,2) .

- S ’ —
7. Find an equation of thé perpendicular bisector of AB , where
A= (1"3) 2 3 "‘ (7’1) .

.

- 8., let A= (,1), B=(83), and C = (5,8) . Find the area of
’ triangle ABC . - . .

. Al il
9. A line L makes an angle whose cosihe is = JB with
! 5

L, = {(x,54: 2x +y - T =0} . Whet is the slope of L ? Find

1
> an equation of Ll if it contains the point (-4,2) .
—-/\ ("
' S .
10, Find the!normal form of each, of the following equations. ’
. {a) 3x - by +15 =0 .

- 11, Find the dis

. (a) P[(S,IO) 5 L= {(x,y): 3x-lby+10-0}. ° "
¢ () P=(5,-1); L= {(x,y): 12x - 5y + 26 - 0} . .
/ (e) P=(6,4); L= {(xy)s x+2y-4=0},
o (@ P=(7,-3) 5 L= {((hy): 2x-3y+5=0).
, _ ¢
* /

ERIC

i e ) . !
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12.

1.

15.

Find cquations of the lines bisceting the angles formed by

(a) L - ((o¥): 3x - by 4o "0} and L*- ((x,y): ox - 12y + 26 = 0}
(v) L = ({x,y): x4+ y-1=0} and L2 « {(x,y): 8x - 1% + 3h - 0} .

Write inh pplar form {he ecquations of the following lincs:

(a) parailel to the polar axis and 2 unitc above it. .
(r) perpendicular to the polar axis and 3 units to the vight of the
- pole.

3n .

. P . On . . R
(¢) containing the point (-Q,T) and having inclination I

(d) through the pole with slope -1 .

Transform cach of /uw following equations into polar coordinates.

(8) 3x -2y +5+0 ' // .
(b) 7x + 8y - 956 = 0

o]
(¢) x2+y" = 28

\J

(d) y - x v bx + 4

e
Trancsform cach of the followiy equations inte rcctangular coordinates.

(a) rcos 6=4h
(b) or cos 8 +<51‘ sin 6 = 6
(¢c) »=3sine

(a) r cos (6 - %) = A . L ‘
e

Let the vertices of the triangle ABC be A = (-4,2) , B = (6,6),
- 7

C = (4,-4) . g

(a) Find ihe iengths of the sides.

(b) Find the equations of the lines containing the sides.

(c) Find an equation ol" the perpendicular bisector of side AC .

(a)

(e) Find the length of the altitude to side AC .

(£f) Find an equation of the line containing the median to cide AC .
(g) Find the length of the median to side AC .

(h) Find the arca of the triangle. . 5

Find an equation of the line containing the altitude to side AC .

(i) Find the centroid of triangle ABC (interscction of the medians).

(§) Find an egation of the line containing the bisector of /A .

78




Answers

1. (a) (2,2) , or equivalent pair (a) (1,-1) , or equivalent pair.
(v) (6,8) , or equivalent pair (e) (-¥3,1) , or equivalent pair.
{c) (6,-4) , or equivalent pair (£) (-b4,3) , or equivalent pair.
2. f(a) (.1_,_1._), or (- i}‘ Ly (a) (,ﬁ,%) , or (- -{—g, - %)
. 2 2 2 42 “ ¢
11 11 }
b) (=,=), or (-—=—=) {e) (1,0}, or (-1,0)
(‘ @) -/5 ’ ( /5)/_2_ | \ M) ’

1 3

(@) G2, or (- (£) (6,1) , or (0,-1) /

.

o3
~.
f\)lwl
~—

0 -0 . .
30 (2) @=135°, 8=145 ;or a-u°,pg135° .
(b) a-60°, B - 150" .
(¢) a=120°, 8=30";0r a-5°, @150 .
(d) o= 120°, 8 = 150° .
b, LJ. and L. are the same.
LJ. > L, , and L5 arc parallel
‘ L/ and L3 are parallel )
Ll , Lh , and Lﬁ are perpendicular to Lf'g and L3 . .
11 1l 1
5..(a) — \b). == (¢) —=
/130 55 T

6. (a) hWx - Ty +

tu

-0

(e) bx -7y -16-0
(@) Tx+ by =29 -0

A+ by b0




Ihx + 8y - 65 = 0 and 6hx - 112y + 195 = O

x(17 - 8/2) + y(17 + 15¥2) - (17 + 34/2) = 0 and

| x(17 + 82) + y(17 - 15¥3) - (17 - 5&/?) = 0.

n
r.cos (4 - 3) =2

rcos € =3

(c) r cos (6 - %) =2

(d) 6 = %ﬁ . -

(a) 3rcos 6 -2rsin@+5- 0

(b) Tr cos 6+ 8rsin 6 - %6 = 0

() - 25

o
(d) r sin 6 = r° cos 26+ hrcos 6+ 1k = > 08 0+ 2)2




15.

o
~— ~— N

X =4

2Xx + 5y = 6

ey o3y \
y:h j

d(A,B) = 2¥29 ; 4(B,C) = 2/26 ; a(A,C) = 10 .

-

AB: 2x -5y + 18 =0
gE: 5 -y =24 =0
KE: 3x +hy + =0
bx -3y -3-0
bx -3y -6=0
46

5-.9.2
Tx - 6y -6 =0
/85
L6

)
(2,3)

x(3v29 - 10) + y(4/25 + 25) + (425 - 90) = ©

81
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<

Chepter 3

VECTORS AND THEIR APPLICATION

3

3-1. Why Study "Vectors"?

.

In the opening parasgrarhs reference is made to the increasing importance
cf vectors and vector methods in the fields of applied mathematicus, science, .

and engineering. You need only pick up any text in these subjects to be
agsured of the accuracy of this statement. Most récent booﬁs irn calculus

(e.g., Calculus and Analytic Geometry by G.B, Thomas) make considerable use of

vector methods, You may like to read Analytic Geometry: A Vectour Approach by

Charles Wexler for an extensive treatment of this subject.

It is quite likely that most of your students will go on to study calcu-
lus and more advanced mathematics. Most studenis in science and engineering
are now encouraged to take courses in vecfor analysis and linear algebra. The
latter course starts with vector algebra and uses it to approach the subject
of matrices. 1In this context, a vector is a row por column of a matrix. Our
approach is from the geometric point of view (as is vector analysis) but the

two are clearly closely related.

The beginnings of this subject can be found in the writings of Aristotle,
and later in the works of Galileo (1564-1642, Italian). However, serious
study of the subject began with William Rowan Hamilton (1805-1865, Irish) and
Herman Grassmann (1809-1J77, German). Their wvork was dependent upon the
earlier development of analytic geémetry. Hamilton was inspired by problems
aricing from Newtonian physics and astronomy, In solving problems related to
the motion of particles, Hamilton needed a non-commutative algebra. The

2 2
guaternion A = a0 +al+ a2j + a3k (where ie = j‘ =k =1,k = -1 and

the a's are real), provided the answer since, for example, 1. j=-j.1,
The quaternion led to the vector and, in the cross-product of vectors,

AX B=-BX A, (See this Commentary on Section 3-7).

Crassmanr. approached the subject of vectors from the algebraic point of

view. He was seeking an algebraic method of extending geometry from three

into n dimensions, A vector in two dimensions is defined as an ordered

lz:i(:‘ 83 53(3




M 3-2 . ) )

pair of real nurberg and in threc dimensions &g an ordered triple of real
< .
numbers. In n dimensions, a vector is an ordered n-tuple of real numbers.
' This is the approash used tod.y in the study of voc:orHSpaces iy modern
algebra. . ' . . ' |
4 . |
If your studunts huvr already studied vectors in SMSG "Geometry with *

' o .3 N P N
, or "Matrix Algebra", a large parg

) Coordinates”, "Interméiiate LﬁtlémaLi;S
of the material in this.chapter will\;ch( a5 a reviews Some time should be
. .
. spent, hcweyer, in‘anulyzina,{hc d{fferent approaches to the subject. In this
Way Ll students will review the topic from another point of view. OSome of .
the subject maitcr and many of the problems are new to\éll. -

3-2. Directed Line Segments and Vectors.

& For mcre information regarding idirected line segments, you should read

the SMSG "Intermediate Mathematics", p. ~29-7 ¢k,

Probably the most distinetive part of oux approach to the study 05 vec-
tors 1ies in our definition of & vez'or. Uince there is no way to distinguish
any directed line secgment from another with the same magnitude andvsonse of
direction, it is therefore reasonatle tc¢ define a vector as an infinite set
of equivalent directed line segments. Any member of the sel can be used to
represent ihis vector. The oriyin-vector fa new term crecated here) is very
often used to represent the set because of its convenience in geometric

proofs and in the study of vector components.

Unless specific geometric conditions ottain, our approach to the subject
also gives us the freedom to use free vectors or bLound vectors as we choose.

The "Origin Principle" on page 93 and the "(rigin-Vector Principle" on page

96 are carcfuily and explicitly stated to make this point clear.,

93 The question of equality or inequality of vectors refers only to sets.
When we say "two vectors arc ecqual" we are only talking about Lhe same in-
finite set of directed line segments. Thus "equality" really means "identity".
The use of the term in this sense is consistent with its use in all other OMSG
texts., For example in carlier texts, if AB = CD , then AL and CD are

identically the same segment, with A =C and B = .

However, in applications of ventors, it is convcnient to use the term
vector, as we state in the text, to mean a single member of the sc’ We con-
sider it proper to do this when there is no danger of ambiguity. The students

‘ will then be on more familiar ground when they meet vectors ... other courses.
O

ERIC ' 87 & '
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96 The discussion surrounding the origin-vector principle is of greatest
importance, You will have many occasions to refer to it in the succeeding
.
sections, particularly in Chapter h, where many proofs of geometric theorems

are discussed.

. Exercises 3-2

1. - : .

adn —

— —— i oy — — =
2. FE and JI ; LK and U? ; QR , OP and MV , QS and TV

Each set is a representation of the same vector.

3. DC and AB
0 C 65 and §Kl
EB and §E
BZ and EE
A B

(a)

Pf o)}
n
=} ) o} 3}

h =
(and others)
(») a=-1
T-c
. -
\ W= f
Q 5 (and@ others)
| 83

D




[E

9(

98

99

O

3-3
5.
A
L bl A
1 - 3
ciNd
m

‘

6. Motion of a car, winds, weight, momentum, angular momentum, electsical

and magnetic fields, etc.

3-3. Sum and Difference of Vectors. Scalar Multiplication.

The definition presented on this page is concerned only with the sum of

two non-zero vectors not lying in the same line.

If A and .}; lie in the same line and have the same sense of direction,
then -.E + § is a vector in the same line with the same sense of directiocn and
with megnitude |A] + |B] . If A and B have different senses of direction
end, let us say, [A] > |B] , then A + B, will have the direction of A and
magnitude |A| - [B] . 4

By part (2) of the definition of the sum of two vectors, PT+7 isa
vector with magnitude twice the magnitude of P . Similarly (P +F) + P is
a vector with magnitude 3 times the magnituc‘]e of -1; . 'Thus the definition
of r; generalizes naturally from what we think 2-1»T and 3'17 should be

(neither being defined at this point). ‘

An emphasis on subtraction of vectors defined in terms of addition should
be made. This should be done not only for purely algebraic.reasons, but alsol
to simplify finding the difference of two vectors in a vector di\agram. ’

v
N

- /7
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(b)

(a)

Exercises 3-3

-
C
c
E (requires assumptions that vector addition is associative and
*hat diagonals of a parallelogram bisect each other)

2 (roquires second assumption in part c)
c
€= -2
-l i
d=-b
- - =
e=3a +Db

- ) -
(1) e=a-4d
(1i) F=8+7D

pe =N e -l
(iii) e=b - ¢

- Y el
(iv) e = -2 -4
(1) 0

-
(ii) ©

a b .
o
3

-
- ol -
b+ c c

b
»
b-c¢ ’ /?
-~ e
- ¢ =< LY
\\\ PR

N R \ \\b\\é\ S
c-b <

oF



3-3

-;+b=c
It can a2lso be seen that -a +?=—‘5 .'.3:?-:
! 3 N
\ 5. {a) 5 (q) n
) 3
(v) 2 (e) 5
(¢) -1 £ -2
( 5
5. b
d T A
c
a
From the diagram above_,:;=b and -g=-d~
also -1;+-5=? and §+-€=-€.
.'.-2;4*_(;:-1;1-5
7o |8A] = 12
|-54] =15
- |54 = -5 "

8. Since @ -% ) 2 and b are representatives of the same infinite set
of equivalent directed line segments. Thus
2] = |b| eand al|o

My ‘ -~ . . - - ol b
Now ral|la and ra is r times as large as & . Also rb||b and
-t

is r times as large as b . Thus

']

A
|raj = |rb| and ra||rb .
-
.oras=r
\
9. |kb| is equal to the magnitude of a .
%
(< N -
91 |




s o) aj@p T} o)

27

- e e
(b) 2 -% =D

- [
g +b =ai+mn
- e e ey
2 -c 4y 0
'-h . - —
h+n=24+%k
- ol D
b te- - 2n

e abw el
e + h - -a

(and others)

(4,6)

One example: One could follow the path from P to R, from R to S,
from S to Q. )

v

12. (a) not necessarily ”
‘b) yes ;
p |
Qo . H ’ .
|
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13,

. _“‘ . ("\r_,
. ja] is-.length of a - )
[o] is length of b
|2 +b] is lengthof a+d
Since ¢ is equivalent to a’, then |¢| = |a| .

Since ihe sum of the lengths of two sides of e triangle is greater than

’

or equel that of the third, we have

>

- NF Bl met] .
A DR
] ¥
. B -
. -1 H
Ip] = 25
5 is the resultant
e 11t
|C§ = 113; , representing approxi-
mately 3% miles in the
direction indicated,
} Ny
. W
Q \
ERIC 93 39a
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15, Let the speed and direction of thg
current be represented by T along _ II,\C'
the y-axis. Let the actual speed
and- direction of the boat be repre- -
sented by R, We want to find the
vector -I; representing the boat's
motion in still water which when added

" to C represents the combined ef- 0
fect of current and engine on the
s £ S S
boat. R=C +B. |R | represents

wy

6 m.p.h. at /ROB.

18,

21" Ibs !

~400ps . ¢ /!

~26° . !

0 30 Ibs B

17, X and —I; ave distinct vectors .
Let A have coordinates (a,h), B coordinates (c,d)
Then ' ~B has its terminal point at (-c,,?i)
and A has its terminal point at (-a,-t) ,

Thus % -T has its terminal point at (a - ¢, - 4d)

=

and B - A has its terminal point at (¢ ~a,a-b),
Cage one: b £ d

. - 4 .
Then slope of line K’B is given by

a - c

(b-a) -0 b -

<
and slope of line OC is given by Ta

Therefore the lines are parallel.

RIC 0 9.4

Aruitoxt provided by Eic:

-c) -0 "&aa-c¢




18,

- ERIC

Aruitoxt provided by Eic:

. ' ) 3-3
Case two: b =d. T
<——
Then line AB has no slope defined, but it is parallel to the line

x = 0, which is the line OC.
The proof that B-A lies cn a line'parallel to the line through A

tand B i% similar. ’
- b
c - a
(¢ = b) - O d-b
and m( OB ) = o= a; =0 "o %

If b4£d then m( AB) =

i
- So ﬁhe lines are parallel.

(TN

- <>
If b=4, then AB is parallel to the line x = U which js OD.

| .
Alternatively, we meed not use coordinates:
* ' - - = -
Let D=.B and E=-A, A-B is
the vector determined by the vector
»
opposite O in the parallelogram
formed with OA and oD "as sides.
- N —
Hence F = A - B. But d(F,A) = 4(D,0)
and d4(D,0) = 4(0,B) . So
-
a(F,A) = a(0,B) . Because OD
- <
and FA || OD, we see that.
/ FAO = /BOA. With d(O A) = d(A oy
we now know that A FAO = A EOA

We get d(F,0) = d(a,B) which tells us that OFAB is a para]]elogram
|
|
\

i

0B

since we already have d&(F,A) = d(0,B) . So F=h- B 1lies or a line
- .
parallel to AB .
. " i Dl i i
Given thit a , b, ¢, and d , are confeutive vector sides of a
qaadrila%eral. We wish to prove that the figure is a parallelogram if

and only if b % d =0 . We must show that:

r-h o ey
(1) irf \b +d =0 ’, then the quagdrilateral is a paxallelogram and that

(2) if the quadrllatera] is a parallelogram,\ then b + d =0,

t

]
Proof': !
(1) Assume b o+

'
1

-
=0

o'} ay

= =d

. Mg and 3 are parallel, have the -ame magnitude and are

opposite . ides. .

. + !Quadrilateral is a parallelogram.

(2) Assupe the quadrilateral is a parallelogram. Then the ovposite
sideL must be equal and parallel; i.e., b = -5 .

~ e
. b+ d =0,

. .91 /e
; | . E)i) |




, CD =
(2)

The diagram above shows 1abe£Xng vhich leads to a simple proof.

. +
To prove: The sum 2f six vector: drawn from the center of a regulur

L]
heQagon to its vertices is zero. '
t o R . D — -h’ -~
| a+(-8) +d4 (B) +c4 (-¢) =0 .
20. K ¢
(
\7

A}

T e e - o —
Let AB=2a , BC =D C, «.c , PA

=p,
Note that for triangle ABO , we have

AB-{EB:--O—‘A. \
... ﬁ+§34a=6

ERIC
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S (B)

(AB + BO + OA) + (BC +'CO + OB) +
But 7\5:-53,?3?)

Then if we divide our polygon into triar.-les as shown, we have
—
= -DB , etc. ..
a+b 4 e

. +A0 =0,
C4 ..o +P=0, 0or BB +BC+.

..PA=0.
925)(3 “




3=, Proierties of Vector Cperations.

1ok The purpose of thi: section is to develop come algebraic structure for

the operaticons of vector addition and scaler multiplication.

Perhaps the best way »f shomng the associative property Ly means of
Fidute 3-2 is te ;onsw‘.er the auadrilateral v.ho°c vertices are the terminal
voints of 5 ?’ + 5 Q + R and (P + Q) + R Il is a parallelogram since
each of a pair of oppocite sides is parallel tc _I? and has length equal to
‘ the length of R. Similarly the ter.inal voints of R P+ E ,-(3 +R s
and :‘; + (E + -ﬁ) ara vertices of a parallelogram \opposxte sides equal in
length and parallel to T’) Thus the two parallelograms are identical and

the fourth vertices must coincide.

le A nicer proof depends on the onc-to-onc :orrespondencce between poimts in
the plane and ordered pairs of real numbers. Tt appears in the solution in

Exercise 17, Section 3-8,

THEOREM 3-k. The vectors (rs)T and r(sP) both have tcrminal point X
such that a{0,X; - rs a(0,P)

Exerciscs 3-h4

1. {a) Show that: B4 oim - -
i B (K-8 =h, _ ,
then B+ (-8B

w2 E
2p ) 2} Bh >}

andg

Since this last statement is true, the steps can be reversed to

prove that B + (A - B) = A .

- b) 1If (% - ) +B -1 s
then t ( 4 ) s k
and A K. (Jee remark in part (a))

e Yy
R




<
X is on AB when the sum of

p+q 1is 1.

Aruitoxt provided by Eic:




N

(b) A-B=r(B-A) for r=-1 =

°

Let O be the origin and points P, Q,R determine vectors .1;, a and §o
Let A be the vertex opposite O in the parallelogram determined by
R and a,i.e., K:?«ka. ” . - ’
Let BJ be the '\;ertex opposite O in the parallelogram determined by
. @ and R, i.e., B=Q+TR.

— = = > 3 B =
Iet T=A+R and T =P+ B
:(-I;'{"a)'*‘? =F+(5+R)

We wish to prove T =T, It is enough to show that T and T' coincide.
By using Exercises 3-3, Problem 17, AT || OR || @B and,

a(a,T) = a(0,B) = 4(Q,B) .

Thus ATBQ is a parallelogram so BT I QA and d(B,T) = 4(B,T).

By construction of A, OP || Q& and d(OP) = a(QA) .

By construction of T', BI' || OP and d(B,T*) = d(0,P).

Therefore BT |} BT" eand a(B,T) = a(B,T').

So we must have BT = BI'. |
Whence T = T' and T =T Q.E.D.

ERIC
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6, If (-v)F = r(-P) ,
then (-r)F = ,r[(-1)(P)]
(-r)F = (r)(-1)(P)

and (- I‘)-I? (-1‘)-1? .

Since this last statement is true, the steps‘can be reversed to prove
-l

“that (-r)P = r{-P) .
(9

3-5. Characterization of the Point on a Line,

-

109 In the proof of the distritutive laws (Theorem 3-6), we left two items
- as unfinish@d business. The first was the proof in the case where P and a "

are collinear and have opposite senses of direction. ——

"

In this case, assume |P| > [Q] . Then:

(1)' By the same definition we used earlier, P + Q has the same direc-

tion as P and has magnitude i3] - |q

(2) If r >0, then “r(-I? + Q) has the same direction as (P + 5) ,

and, by (1) above, the same direction as P . The magnitude of -

r(P+Q) = |r( P+ Q | = r|;+ -§| " and is, by (1) above, equal to
’ r(|F| - |Q]) . The distribative law gives the magnitude as
r[?} - r|Q

(3) We now consider rP and ra, which, since r >0, have the same
- directions respectively as -1? and Q . By our hypothesis, P and

waf, -

@ have opposite senses of directions, and therefore so do r-l? and
rQ . Since we have 23sumed || > |Q] , we have r|P] > r[Q ,
and, therefore |rP| > |rQ]

_ o

" ERIC 5 \
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-
3-5
(%) Our defini.ion for the sum of vectors now requires that P + rQ
- .
have the same direction as rP and thi. is the same’ direction as
? . The same definition requires that the megnitude of P + rQ
be |rF| -|r§l ; but thic latter expression can be writtzn as

([P - Q) .

{5) Since we have shown that the vectors r(-f’. + -5) and rP + rQ have

the same magnitude and the same sense of direction, we have shown

that they are equal,

3

The second item we did not discuss concerned the proof when r <0 . 1In

this case, our figure must be changed to the following:

wh =}
¥

-~

Since r <0 , rP and rQ have directions opposite those of P end Q
respectively. The proof for the case r > 0 1in the text will need to be
modified as follows in order tn hold when r <O,

In step (1) , since r 1is negative and the absolute values positive,
| (Al = -r|q] ena B} = -r|¥] .

In step (2) -]%l-:il—zl-:-l%l-.
Q (Al -rfal Q]
ERIC ¢
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-y iy . P .
AB = {X:X = oA 4+ gB , where p+q=‘]} . Let p:-;-,q=-3-. Then

i - 2..

> 1
)&--3-A+3B.

-~
2

A and -,'-i and verify, by
2

]+

Take any vectors A eand -1.3. . Find the sum of

-

and

W=

—_ 1
construction, that X 1lies or AB . Then let p = % and q = =~

see if the statement still holds.
£=e

Such experiences will help the students visualize what is really taking
place.
111 In Chapter 2, a formula was developed for finding the coordinates of a

point which divides a line segment in a given ratio. A comparable result for

vectors is derived in Theorem 3-8. It may be of interest to the student to

<

compare the derivations and the applications of the results.,

<
Exercices 3-5

1, A c 8

>
o}
@y

In step (5) , 4(0,D) = |ra(0,c)| ,
— Ip| = |xc] . .
In step (&) , since the vectors are in opposite directions, D =1C .
11¢ When teaching this section, we would recommend that at first specific
) numbers e used for p and q . As an example, consider the line
=

Qy =} >}
ap af
it
By &y
‘>

]
(a) 1if is the zero vector, = g8 and
if is the zero vector ) A W
) (b) if C=A,p=1,q=0- p
o .
ERIC el 02 .
r .




(e) (1) if p>0-+ and g >0, the terminal point of C lies
- in AB .
. -
(i) if p <0, the terminal point of C lies on B but
- not on AB .
(iii) if p=0, C=qB and C lies on OB . - .
T(a)
A AY
1 2
(i1) =353 . o
B
sa C_--"7
””; \\\\ prey
- , B
A_-- /
/
/
A *

El{llC ' ' ' 103 99
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- .

x‘ -
s 1 5
{iii) P=-%,a=%
.
4
/ N
/! 4
.
-
7
///’ ’
. 4~ /
N /// b /
//// =y ¢ l’
/’. B /
/
\ /
- /
/
A ; .
/
/
/
\\’/'
. 3 1
iv ==, Q=-=
( ) P 5 C >
-
44//’/
//‘ ////
~ -
/ S /”
/ \\\ //
FA =z
-
/ // -l
/= A 8
whny
. ~ C
~
~
N
\\\ // . -
\\ ’
~ /
\\\ ’/
~
\\J
2
(a) n=£ and mes3
5 5
. 5 3
bp) m=%= and n=-x
(o) 2 2




-
a
st

E

MC . 1 0 ~ 101 . )

Aruitoxt provided by Eic: -
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k., Prove: (r + s)?: rP 4 sP
We note tkat (r

+

Case l: r>0, s>0.

<

- r>0,s>0 imply r +s >C . Thus (r i 's)P and rP + 8P

have the same sense of direction, and ‘

- e

[(r+ s)P| = (r+ s)|P| = r|P| +s|P| = |rP| 4 |sP] = |+P + sP| .

1]

Case 2 r>0,s<0. r>]|s|

- Then r +s >0 and |(r + s)P| = (r 4 s)|P| = (r - Isl)l-}:l =
- L e h adoa -
r|P| - |s|P = |rP| - |sP| = |vP + sP| .

Case 3: r>0, <0, r<|s|

7]

Then r +s<0 and |(r + s)P| = -(r + s)|P| = (-lx] + |s])|P| =

“olr|B s |s|P = -|rP| + |sP| = |xP + sP| . ’
Case b: r>0,s5<0, r = |s|
[(r +s)P| =0 and |rP + sP| = 0 ’

Cace 5: r=0 or s =0 The proof follows from the definition of
scalar multiplication.

3-6. Components.

.

113 The notation introduced in this section si-plifies vector manipulations.

A component is itself a real- number and not a vector.

What is actually done in this section is to establish an isomorphism
between vectors with certain operations and ordered pairs of real numbers for

- which certain operations are defined. This leads eventually to vector spaces

-
.

Q < :

J




whish are chiracterized abotractly by postulating the uasi® properties’ ex-

- PR
hitited in this treatment, A sct of postulates, for a vector .jpa\‘(‘ can be

found in JMSG Intcrolediate Mathemutiss, pagee v, /8-t8> or any, lext on modern

. LY -
. . . N M
algebra or linear “lgebra. ) ' - * , v
- . - . -

Since the'origin-vector is urique, the wvector Ja,b] ‘equa}s the vector
© ° -

e

. S o .
[c,d] if and only i’ a = » and b - d ., This Qesaription of cquarity is N

used throughout: the rest of the text and in many probl'ey\st “a
- b4 . o M

115 Part of the naterial presented ea'x-lier on the topic of. Linear ‘combiﬁa- .
‘tions (Cee pages 101)-10‘)_) is espécially pertinent here. ’ The unit.v'ectc;rs
i5[1,0] and j =g[0,1] in two dimensions and i = [1,0,0), § = [0,1/0]
and k - [0,6,1] 1n threc*dimensions are used in most eapplications of vector

aralysis. The i, j, k vectors are discussed in Chapter 8.

.
. . N .
. . . . ?
<

Exercises 3-6 < ~
Lo (a) [7,3] L (e) [-5,-¢) v )
T(v) [-1,-1) . () [-5,-6) " .
(e¢) [20,24) (g) [10,9] S
% (a) [-20,-28) . - (n) {14,-3}
2, (a) (1) [1,5) %) [2,-16] -
(2) {]-11‘8] (5) ‘[12:‘22] R
() (1) X=2+B-C = [0,-2] ;
2) X =%+ 3B - kC) = f-1,- E]
X=0-2ps8F-(-2 3
(3) =C-3A+3B=| 30 3] )
..._i . - -~ _ g l]- .
(23) X = 3(8 + C - & {' 3 3]
(5) X =-2C - 3 -(-1,-24)
> s, 12 1 4 :
(6) X=--§A--2'B=[-'2',-§]
0 &
b (a) 73 ‘
( 5
(e) Ae_+ B> ! . .
(a) 1 L ¢ - .
Q v ) - .
ERIC -  las S
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3.6

A - :
i(3,2) . AWMy
\\\p . ; s Beai-J
— \ P=B2R=(5-k)i+(-1-2)j
8 . =i -
: (5, -1i , 3
6.(‘)=OOX+O¢Y \ “ - ‘
- 7. The midpoint of the line segment™joiring (2,5) and (5,8) 1is
7 13 ’ ¢ " s
'f;:li +§’
a 2 > J
" a Ji 1 - B- . ’
8. (a) p = i+ §J
¢ - ’/§ 1 .
(b) Q=-51-3)
a h 3 -
= =12
() ¥=3 =9 " o
9. (a) X = '-%—3- Yy = -263 .t
-1 h .
(b) x = 5 y = 5 ) . ,,. .
. 27 _ 8 . *
(e) x= 13 y =13 ¢
(@) x =1 - y = —12' L for each regl number. The resal numbers
v fo;'m &n infinite set.
10. *(a) [a,b] = a[1,0] + b{0,1]
() [a,b] : 2220,10 + 252,
’ 1, 1
(e) [a,®] = -b¥2 [-=,2 =]+ (b - a)[-1,0]
/2 2 :
11, T, =25/3 1bs. = 43.3 1bs. | T, =25 lbs.
L3
¥
] 1
107 @ .




b

/\{etting 1 1b. lorrespond to 1 unit, set up e coordinate system. -
) N A= [I'\X,Ayl = [|&] cos 37°, [A] sin 37°]

13.

1%,

15,

16,
17,

. ERIC
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)
(208,20 8

B - [Bx,By] = iiglcos(‘-300) , |B]sin (-30°))

V3 1
=[30%, 30(- 3)] -

A+ B =116,12) + (153, -15) = (16 + 1573, -3) = k2, -2] .

(a) ’21&0 , below x-axis in Wth quadrant. The components of the second
vector, B = [26,-12] B
(b) 3.'20 from y-axis in 2nd quadrant. The components of <he second R
vector, B = [-16,30] :
2k%30t -+
(a) 21.3 1bs.vacting 3° north of west. .
(b) 31.3 1bs. acting 2° north of west.
In part {a) the components are [(-15V2,15/2 - 20)
In part (b) the components are [-10 - 15¥2,15/2 - 20]
14,6 1bs, \
THEOREM 3-1. Let P = [a,b]) Q = [c,d)
$+a=[a;c,b+d] and 643'.-[c+a,b+d]
But addition in the real numbers is commutative so a +c =c¢ + a,
b+d=4d+b°, Therefore [a +c,b +d] = [c +a,d +Db] which
‘ means P +Q=Q+ P,
THEOREM 3-2. P = [&,6] Q = [c,d] R = [e,f] .
: (P+Q +R=[(a+c) +e, (b+a)=r]
Pe(Q@+R) =[a+(c+e),b+(a+1)) '
But addition in the reals is associative whi~h means
[(a+c)+e, (b+d +f) =[a+(c+e),b+(d+7F)].
Hence, (P+Q) +R =P+ (Q+R) .
- )
THEOREM 3-6, r and s are real numbers. P = [a,b] , R = [c,d)
(1) r(P+Q) =r(la+c,b+d))
= [ra + re, rb + rd)
= [ra,rb] + [rc,rd]
= rP + ra
0

. 10108,




A ]
. 3_6
(2) (r +s)P - (x 1 s)[a,b]
= [(r + s)a, (r + s)b)
= [ra + sa,rb + sb] .
= [ra,rb] + [se,sb) T~
= P4 5P~
18, THEORXM 3-10. If X = [a,b] and r {s a real number, then
< X = (ra,rb] . .
Case X3 =0 . Then X 1lies along the y-axis. By definition, rX
lies along the y-axis also with teiminal point at rb . So
> = [r.0, rb] = {ra,rb] .
Case 2; b =0 . By same argument rX = [ra,rb] . &,
P A r . / D o~ -
. fase 3: a £0 and b £0 . _, Let T ek,
We get A OXA ~ A 0ZC X % = (a,b)
and A OXB ~ A 07D . i
- 5o 400,%) _ d(O, N (o B) 1 A ¢
aro,z) - a(o,c) - alo,p) T T :
But d(0,A) = a  &0,B) =D
Therefore a(0,C) = ra  a{0,D) ='rb =~ and % = (ra,rb) .
(alternatively)
- If X = [a,b) , define A = [2,0] B = [0,b] so that X : A + B .
. = #A + 1B -
By Cases 1 and 2, A = [ra,0) , 1% = (0,rb] . )
. So = [ra,0] 4 [0,1V] - {ra,rb] .
19. The vector rcpresentation of each set below is written so that if r =0
we obtain K é.nd if r =1 we obtain E .
(a) {[2-6r,34 2r):r is a resl number)
-
(b) (14 2r,3 +6r) :r is a real number)
(¢) €[%,-7T+9r]: r is a real number] —
. (d) ([24r) :r is a recal number) it
(e) ([-3 +bhr,2-hbr]:0<r<1) . . .
(£) ([1+r):0<r<1) .
(g) ([3-5r,k-r]:0<r<1]
~ (n) (v - br, -2 4.4r} 1 0< r}
(1). ([2 - r] :0'< 1)
(J) ([3-5r,k-r]:0<r}
(k) ([-2+5r,347r)]:7<r) 3
Q ‘
. ERIC W
’
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3-7

. ) (f2-r):0<r)
(m) {[3-5r,%-1r]:0 >r)
(n) ([-3+hr,2-kr)]:0<r <1}

0. (a) ¥=1(3,6),7T =(2,4), T, ~ [4,3]

o) W= if,-9, 8 =13,-0, 7, - &L, - &Y
- + a b, = b - 2a, +b 2a, + b
(C) M=[a122’ 12.2] Tl=[33-’ 23 2] .
-~ 8 + by a, + 2b,
T2 = [ 3 P) 3 .
2. (a) [2,8]
() (7]
(c) f[o0,0]
\d) [%)%]
(e) 3% 22 26x + W3 ] S

26(V3 + 1) 39(/3 + )
() (7}

3-7.\ Inner Product.
121

\1though it is desirable algebraically to have some kind of vector
multiplication, it is a little more difficult to introduce in a geometric
framework. It would be possible to start by simply defining the inner product

of two vectors by
[al,ae]- [bl’b2] = alb1 4 a2b2 .

This 1is dhite satisf~ctory from the algebraic point of view, but does not
connect very well with our development of vectors to this poinf. Hence e
geometric approach is used by applying the law of cosines to the triangle
formed by ﬁi ang, ??. The definition of inner product is then made in terms
of the resulting expression. The physical concept of work is one of the
simplest applications of the inner product. I+ is included here ,to show that

the inner product has relevance to a practical problem in science.

123 Theorem 3-13 establishes the connection between the geometric definition
of inner product and its representation by components oi the vectors. Either

form can be used as indicated by a particular situation.

5 g
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3.7

124 We did not present the vector product {or cross-product) a X b because
some limitations had to be set for this chapter. The magnitude of
2 x%b = |a]|b| sin 6 ; its direction lies along a line perpendicular to the
plane determined by 2 and b 3 and its sensc of direction is determined by

the motion of a right-hand screw when s is rotated into b .

"

Cl-“

1 -
&'

You should note that '5. X -‘5 = -1; X -5. because the sense of direction is

reversed. Thus the commutative law fails. 1-5 x?l is the area of the

parallelogram with 2 and b as sides.

Your interested studentr may like to invectigate this topic in a standard

on vector analysis.
Exercises 3-7

(
(

) ©
) -7
)

ERI!
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MOB is a right A .

/1( ,6) If C 1is as shown,

S C-B-% )
B8/ 1. C=1+7j
e

[}

!

1

A.B= |kl -|B] cose

B
\\\
\\ -
\
\
\-.
. A
(a) BB = (2)(-2) + (-3)(1) = -7 - :

*rom \Kﬁ = |A||B| cos 6 , we find that cos 6 = -.863

+ + © 1is approximately 150o

. " (b) Since W=F.S and F =A =21 - 3j
' ‘ §=B=2+0j,
we have W =F.8 = a8, + b1b2 , and -
Ww=(2)(2) + (-3)(0) = 4 (in proper units).




a) 9%C ft, 1bs,
Y. 8660 ft. 1bs.

) 10.v ft, -
(b) S88.2 ft.

i
>

4

. e 2 2 -~ 2 ‘s
va) Al = cos“ 6+ sin“ 6 =1, |B1 = ¢OS ors$n2’¢=l,and

A.B = |A]|B] cosy where ¢ is the angle between A and B .

(b) In this case ¥ =24 - 6
e A*B=|A}lIB) cos (¢ -8) =1+1¢cos (o -6) =cos (9 -6) .

Using components AeB = cos ¢ cos 6 + sin ¢ sin 6 .

Thus cos (& - ) = cos & cos 6 + sin ¢ sin 6 .

To show -15%51'. .
x|« |y >

-

This expression is defined only if -}?;43 and Y# 0 + In this case
X+ Y is defined as !il !YI cos 6. Now -1 <cos 6 <1 for any angle,
x0Y , JX||¥| £ 0 so we may multiply through by

1'=-1§U%l getting -1 < E'_Y_ <1.
- fxj iyt x| 1Y}

There is no associative law for inner products. The inner product of

two vectors is a scalar,

‘

3-8. Laws and Applications of the Inner (Dot) Product.

Most of the procfs of geometric theorems have been left for Chapter L.

"fiese two proofs are given here to demonstrate that an abstract concept, such

as the innér product of vectors, can be useful. The proof of the concurrence

of the altitudes of a triangle is, we hope, impressive.

JAruitoxt provided by Eric
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129 A bright student may «sk why , B must interscet, OF or why AH must

e
intersect BC . ™ie answer is far from simple and involves a number of
theorems involving the concepts of order, incidence, and betweenness, £
careful treatment of such questions is given by k.F. Moise in his book

Elementary Geomctry from au Advanced Viewpoint. A careful non-vector proof

of this theorem is in OMSG Geometry with Coordinates, p, (00-601,

131 A second derivation of the formula for the area of a triangle,
1 : N
Kb- 3 I:Llye - nyll s as fol]ow‘,.f 3

y X
>/
X/
% Y

Y
0 X
(1) Consider AOXY ahd the realted non-zero vectors X - [(x,,x,] and

[yl,yg] and the angle 6 Dbetween them. Apvlying thc trigo-

nometric form for the area of a triangle, we have \
K =% IXHY| sin ° . ]
=, -
(2) Since X+Y = [X]||Y| cos 6 - we have |X||Y| P s ; , and
K=3X-Dano,64L \
v 270" ? 2 . \
(If the vectors are’ perbendicular, K = %I-ﬂ IYI)

(3) To write the result in terms of components, we observe the following:

~
o

(a) XeY =xly1+x2y2
N *c-.-' Yy : X .
(b) cose=_}£.Y_= N o
[x] 1] /xlE’ R x22 /y12 .2
(:'cly1 + x2y22
(c) sin9=f/1_co, 1 ,
. (ﬁ 4x)(yl +y2)
xy, - x25'1 +(x]y2 - %¥,)

] 2, .2 X
R AR Y2 Il

.. 1
1 = = -
1 (k) Thus X = 2I:»cly2 N

[l{lC ’ 130}

b ’E
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XY = t(Xe9) = X)- (

Exercises 3-8,9

X=1(2,4) Y=10-1,-3], t =5

£Y)

5([2,4)« [-1,-3]} = [2,4] - [-5,-15]
5{-2 - 12} = -10 - 60

-70 = -70

f10,20] « [-1,-3]
-10 - 60
-70

~

If X = [}L‘L,Xel-' and Y = [ylye] , prove that

(t-}a- Y 2 X. (tY) for any scalar + .

Proof: (tX).Y =X (tY) if
[ex,tx,0 e [yyy,) = [x,%,) [0y, ty,] or

R ST~ R A TS TP
Since this last statement is true, the steps can be reversed to

prove the original statement of the theorem.

To prove:

Xe(ay + b2) .==3.él(-}.(.<- ?) + (X Z) , W note

Ny

that X« (aY) + Xo (bZ) = a(Xe ¥) + b(Xe 2) (Theorem 3-1ka)

S‘l)

(Theorem 3-14b)

-

and a(X - ?) +b(X- 2) = a(X+- Y) + b(X-
() A+B)eE-B)=@+P.5-(R+%)-3 (Theorem 3-1ka)
(ReR)+(BeR)-(A+B)-(B-B) (Theorem 3-1ka)
A

b

| [2 - |§l2 (Commutative Property of Irner
Product and the fact that
RE-RP,3.5- 159

(b) Construction: Two lines are perallel or intersect at a point.

-
‘

(1) Theorem 3-12 and Theorem 3-lka .

(2) Same reason.

(3) Equality of real numbers and the commutative property.
’ (%) 'Additive property of equality.

{5) Theorem 3-1ka and Theorem 12,

. . . i
(6) a 1lies on AD and (¢ -b) 1lies on BC .

115 111 .




8
,4(2,6)
!
!
!
!
!
[
' rd
[
0 \\\\iA
(3,-1)
AL
5
7/13
- 552

x direction, 15*/5
y direction, 15V2
26.0
29.4

1
K = 3lxy, - %y,

1
= E|18 + 2|
. 1 _
= §|z_'o| = 10

Check by alternate method : 67\1@

since 5K is the negative

reciprocal of mw . .'. OB is
altitude of AOAB .
d(0,A) = YI0 and d(0,B) = V&G

A= %(fl‘é)(/%) = 10

136
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CHALLENGE FROBLEMS

wet H, §f’, &  intersect
- sides @, Ké, by respectively
at points @, R. S.

(A,8) a(B.q)
. To show T"Y—y T l-,-)- W

|
1. Let' P be any point not on A ABC.

Take origin at A. ’ x |Al
: 2 a{AR) = = d(A,s) > . 3
— Then R = 'a"A G C,s-= (A, B B
H - - i
CS contains points xC + (1 - x)S =xC+ (1 - x) d(ﬁ: }83) B (1)
a(A,R) =
>
. dlA
- For intersection y = (1 - x) ——(W (1 -y) —%7\‘:%;- .
. a(a,R) + a(s;B)
vhich reduces to x = 3(A,B) - AlK,C) = alA,S)+ al(A,R)
cy = a(A,s) - a(R,C)
. . a(A,B) » a{A,C) - d(A, )+ d(A,R)
Thus P a{4,s) « 4a(R,C) =
= AA,B)- AAC) - AAS) - WAR °
a(a,R) + 4a(s,B) = '

oK, B+ AlA,C) = a(A,8) = a(A,R] © T

But Q is on ﬁ, so for some t we have -
3 = a(q,B)

.=B+W(C-B)

, a(a,s) + a(R,c) a(B,6) - a(Q,B) © a(Q,C) /4y
whence t ( )) d(B,C) = d@,c) (3)

a(A,B) - T-KC) - d(A S) « a(A4R

(AR)°GSB) acq,B)
and t\g\(A,B) ala, T- a(A,s) » d(Aﬁ) W ) (%)

-

«
v

Substituting the expression for t obtained from (3) into (&) and l

simplifying we get !

a(A,R) » a(s,B) +a(q,c) » a(B,C) - a(8,C) » a(A,S) + a(R,C) - 4(Q,B) 1
|
|
|

a(A,8) - a(¢,R) « a(Q,B) _

. which gives Gretmy amaya(q,0)

B o
BR contains points yB + (1 - y)R yB + (1 -y) _(ﬁf c (2)




Consider A& ABC

2.
BT :
P 1is a point cn CD
L ol
‘PB intersects AC at N
X b9
A % intersects BC at M ,
- .- : D, B e TS
Take origin at D, x-axis along AB, y-axis elong CD.

A=[a,0] B=[b0] C= [0,e] P = [0,p] .
(This exercise considers only the case D strictly between A and B

so that a <0 <b and 2{%)

[ o > ¢
1f (x, y) is on AC, then ¥ :—E(x-a)

-
1f (x, y) is on PB, then ¥y % (x - v)

Solving these to find coordinates of N we get

fab(p - ¢) epla = b) | _
N=l_ap-b2 ’ zp-bc —[Nx’Ny]

- ¢
1t (x,y) is on BC, then y =% (x - b)

-«
1f (x,y) -is on PA , then ¥ =-_% (x - a),

wa

Solving for'the coordinates of "M we get

ab(p - ¢) aplb - a)y _

bc - ap ' be - ap ) = [Mx’My]
[NDC and [MDC are smaller than 900 angles they are

|sin  jMDC| for which it is enough that

v

M=

Bécause both
\ congruent if |sin [NDCl2 =
|sin [NDC|2 = |sin [MDC|2 But this follows from

2 5 '
|2= I, | - a22(c - p)° ) (be - ap)®
ae@o)  (ve - ap)2 a%b(c - p)2 + cep'g(b - a.)2

|sin [NDC

>

- azbz(p - c)2 . (be -»a:p)2 .
a2b2(c" _ p)2 + Cepe(b - a)?

2
||

2 X
i MDCI™ .= =
wa  foin el L0p)  (bp - ac)?
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Let ‘t’;e any line which does not pass
thro any vertex of_ 4 ABC. ,Z
intersects Q,Ké, 5 at P,Q,R,
respectively. . (This contains implicit
assumption that ./ is parallel to none
of the sides of A ABC.)

Consider B ags origin.
- e - -l
P= A R = c

~ - - =
Q is on AC so for some X, Q@=xA+ (1. x)C
- -~

« e .
Q ison PR so for some ¥, Q@=yP+ (1 -y)R -

’ | = E_"—Td(g,i) A+ (1 - y)g(g’g) c
Hence x = y'g(g’i) 1-x)=( - y) 27(%-"%)-

From these we get

- d(B,P) » a(8,c) . d(B,R) - a(A,P) T
~ d(B,C) - d(B,P) - d(B,A) + d(B,R) d{B,C] « a(B;F) - 4(B,A) a(B,P

(1)

3 is a defined point only if the denominator is not zero, which is the
condition that excludes A Dparallel to a side. - )
Similarly we may write .

3.4(8,0) ~ a(g,a) ~ . B
Ao v I o vy A (2)

' . N -~ .
Then the coefficients of A and C in (1) must be equal respectively

to the 'corresponding coefficients in _(2). From which we fing

- 4(A,Q)  a(c,R) a(s,p)
a(Q,C) " A(E,B) " Wp.A) = L,




2 2, 2y, 2,.2 =
4. (a) To show (xly1 * ’*23'2) < (xl * Xy )(yl *Yp )
. 2 2 2 . 2. 2
(ryyy *+ x¥p)" = %)%y ™ + 2y, + x5y, :

2) 2, 2 2 2 2. 2. 2

2, . ¢y, 2 ) 2
T N A R R T R P

Thus we need to show that <
’ . L2 2 & 2.2 ) .
PN XY S X Yy X7y - )

But this is true because we always have

-

2 2 2
.- ("1y2 - xeyl) xl ya T 2K YoXaYy XYy 20 .
(b) Let X = [x,, yll [).2, ¥,] 1in 2-space. o i
- - - . = |
Then we write (X - Y)° < |X[2 . |Y|2 |
T T2 22l e : .
. (e) (X: 1Y) = |X|° - |Y|° if aud only if X\¥, = Xy, that is, if
and only 1f X=1Y, rf0 |
Review Exercises
1. (a) X=A+B-0C= [o -2]
(b) X =224 + 33- 5E) = (-1, - 5
5 5
. - 2=~ o~ ‘ 2 31
X=C-2A+%B=[-2, 22 :
(c) 3A+ 3 [ 3 3] -
~ 1 -~ - 2 14
X = =(B -R) =([-£, 2
(a) 3( + C ) = [ =, 3] .
() X=-2C- 3B = [-1,-24] . ,
> 1~ 1=~ 1 4 )
-=A-=B =[-=, - =]
(f) X=-34-3 373
2. Prove: K +-X~=-6 is satisfied by .
‘ - X= (-l)-ﬁt = -K
Proof': A+X =R+ (-13) ¢ (Subst:'itution)
. =A+-A (Definition or «(21)A)
=0 . (-.E is additive inverse
- - of K) .

3. (rs)P = r(sP)

- Proof: (rs)i; and r(s?) are parallel and have the same sense of .

. direction.

[(rs)P] = |rs|[P]

ERIC - " x '
| 190 o

[elsIBl = I=llsB] = |x(sB)] .




(v
(c)

[1£:'3;
[-7,16)
[-2,17)

[-€,-2]

17 12
['5": - ’—']

5

2(2t + 33) + 3(31 - 23) - (-1 +3J)

“Ti o+ 36
21+ 179
sr—"

i + 10§

218t by

(4)
(e)
()
(d)
(e)

f)

(g)

(n)

117

(6,0]
{14,10]) T4
[-18,-4] -
[0,- 2

{-7,0])

13
()

-38
2h3
-l

-192
-11

52

14 - 33

bi + 63 + 9i - 63 +1 - 35"




(8) X =6i- 23

@

2(21 +39) + 3(31 - 2§) = B(-1 4 33) 4 2(xL + x,0) "

i 4 65 + 91 - 65 = -hi 4 12§ + Sx]i + 5%,J
. <

171 - 12§ = 51 4 5%,

Snc1 = 1/

gi+33+2(x114x23)=31-2‘3-j43J-x]1-x?J

AL +3F ¥ 2x11 + 2x25

31-23-i+3j-xli-x23j

I e

0l + 2§ -3x11 - 3x2j

_13,

(21 + 33) ++(31 - 23) = (2)(3) + (3)(-2) = 0
2(21 +35) « 3(3¢ - 23) = (b1 + 65). (91 - 63) = (4)(9) + (6)(-6)=0 -
o ) ..
-36
0 .
-38
(3(21 +35) + 503t - 29)) - (303t - 23) - 2(-1 + 33))
(61 + 95+ 158 - 105) + (91 - 65 + 21 - 63)

(201 - §) » (111 - 12§) = (21)(11) + (-1)( 12) = 243
-4
-192
36 : . ’ . . .

) oo ub22




(a) m /ABC

n
[oN
=
[o7]
[

®r
o]
[(4
(¢
[2]

S

m /BCD = 100 /
m /CDA = 55 /
m /DAB = 115

{b) Area of AOAB = 9
Area of AOBC = 8 . P
Area of AOAC =7

n

,(c) Area of AABC = Area of 20AB + Area of AOBC - Area AOAC

= & + 8 - 7 =
a '3
b (b,,b,)
- \\
- (C' ,Cz) —: - \\
\\ \
\\\ \
™ \
~ \\
P Iy \\\
T B- ol
N ) (a,,q,)
I A. -
‘o RS ._' " r , ,‘-o . , . ]
- > 7 O P
[y _’ ; . . * N ,
. AR .
L] . ._' -
Area of AAOB = | l 2, 2b1|
.Area of ABOC = §|b102\ - b2c'l| '
;\.rea of AA(;C = l| c‘ - ac | ' \
L =31%% - 89
- . . 9
From the diagram'sbove: Area of AABC = Area of AAOB + Area of
' p : ) ABOC - Area of AAOC .
. 1 1 1
.Area of AABC = §|a.lb2 - | + 2 | 1% - 2cl| - '5!81‘:2 - a201|
1 %
Arefff AABC =, |81b2 - aeb1 +byc, - bye - ac, +ac |
®»

123 s




1
Area of AAOB = E|alb2 - a2b1|

1

Area of BOAC = 2(Area of AAOB) = Ialb2 - ag

Tk, (a) [-%,7)

(v) [-4] \
. 1 9 11

fc) 5,-5_.:?]

(@ (15,2

15. (a) oABC =ABUBC U CA
={(2-3r,3-1r):0<r<1) U{l-1 +ar,2+2rl:0<r <1} .
Ul{r +r,3+r]:0<r<1)

Region ABC = {£+r(X-B)+s(E-£) :0<r<1,0<s<1l,r+s<1)
= {[-1+3r+2s,2+r+2s]:0<r<1,0<s<l,r+s <1}
. Int.(Reg.ABC) = {B+r(a - B)+s(c;§):o <r<1,0<s<1l,r+s<1)
' = {[-1+3r+2s,2+r+25}: 0<r<1,0<s <1l,r+s<1l}
- . -—-‘“H-&\‘:\
(b) [1,3) = [-1 + 3(%) + 2(%) , 2+ (%) + 2(%'-)] where we certainly have
0<r=%<l,0<s=%<1 , and r"+s;.=~3-<1
, ‘ So [3,1] € 1Int.(Reg.ABC).

(e) [1,1] =[-1-+3r +25s, 2+ r +2s] if and only if r=-3,

s = - 15; « So clearly [1,1] does not satisfy the conditions to

be in Region ABC .




16.

18.

19.

(d) sSegment 5@?; ={{t,1+2t] :0<t <)

From graphical considerations, we show Fx?c intersects AB which
v

is a subset of AABC . The conditions
<1,0<t<1l,{2-3r,3-r}=[1,1¢+2t] aremet for

0 <

o2l S/ I, 1

t = , T = % . Hence the segments intersect in the point (1, %] .

Region ABCD = Region BADURegion RDCURegion BAC
= [-;3+r(.7\-;3)+s(6-§)+ t(D -B): 0<r<1l,0<s<1,0<t<l, r+s <1,
. s+t <l,r+t <1)
= ([-1+3r+2s+3t, 2+r+2s+2t): 0 <r<l, 0<5<1,0<t<l,r+s<1, .
- s+t <1, r+t <1}

Note: the commas indicate logical conjunction of the eix individual

conditions.

Region ABCD =

(B+r(A-B)+s(C-B)+t(D-B): 0<r<1,0<s<1,0<t<l,r+s<1,
s+t<l,r+t<1)

b~
&
Q
1

&

b~
&
oo
n
=
(L)
\J

[SRQ = 135

B~
E:
[
&

[e]

Trapezoid

125 o
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Chapter &4

PROOFS BY ANALYTIC METHODS .

This is the first of what some students refer to as "fun" chapters.
There is nothing new to learn'in the sense that there are no new theorems or
definitions. The students have accumulated a variety of tools; now they will
set how these tools may be used. In spite of the groans and complaints one

hears from the class, most students thoroughly enjoy this type of thing.

Our primary concern‘in this chapter is that each student develop a
systematic approéch te solving problems.by coordinates or vectors. We feel
that a satisfactory beginning can be made by writing analytic proofs of
familiar geometric theorems. It igyalso our aim that, while he is operating
with these analytic tools, each student realize and appreciate the power
available in thée application of these tools. These methods represent a
tremendous advance in mathematics, and the students shoulé be aware of their

heritage.

After a discussion of three methods of proof--by rectangular coordinates,
by vectors, by polar coordinstes--the chapter culminates in a section whe;e
the student must make a conscious choice of method. In order that the stﬁdent
not be denied this valuable opportunity to develop mathematical maturity, the
teacher, must avoid the.temptation to decide for the student. Every student
is entitled to learn what happens when he makes a poor choice. Furthermore,

his choice may be, for him, the best.

The exercise solutions are given in the form we think 1» ilue most
natural; but, to follow the spirit of the text, the teacher should accept
any pre%gntation which is mathematically sound. Then if the teacher feels
that the student could have produced a simpler or more direct proof by using
anotherimethod, this could be pointed out. A

3 - ‘
|

.
|

i
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4-2, Proofs Using Rectangular Coordinates.

*

This sectidn, which is concerned with proofs using rectangular
coordinates, may be skimmed or swiftly reviewed if the class has already
covered this matgrial in anolher course. Some time might be saved in this
way since the time allotment for this chapter assumes that most of the

students have had little or no experience in this area.

The techniques we recomhend sre developed by means of examples.
Following Eﬁample 1, we have suggested a short outline of systematic steps a
student may follow for the problems which seem particularly suited to
recténgular coordinates. To facilitate the study of the examples, we suggest
that each student copy the fiéure and supply coordinates for it as the prqpf

proceeds.,

Among other things, Example 1 {llustrates a rather delicate choice the
student must make. On one hand, he must select coordinates which make the ™™
figure perfectly general; on the other hand, he should choose coordinates
which make use of the information given in the problem. If he does this
improperly, in the first instance he may have a proof which is valid for
only a speciel case; in the second instance he may have a very complicated
proof wﬂére a simple one would suffice. Example 1 shows how the choice of

coordinates may be improved without losing generallty in the figure.

We use the fact that d(A,C) = d(B,C) to show that CD has no slope.
/ge + c2 = 4?5 - 2a> c' ’ .
2
or b = b - hab + ha
Therefore, had = ha2 ,

and, if a £ 0, then a =b and CD is vertical.

Regarding the choice of coordinates for A and D in Figure h-h, we
déliberately chose "-a" to the right of "a" so that some students who need
the reminder may note that -a does not necessarily represent a negative
number. It means the opposite of a; hence, when a is negative, -a is

positive.

"

To show that C 1lies on the y-axis, we note that
d(4,c) = d(B,0) ,

or »/(b - a)2 v 2 - \(b - (-a))2 + 8 s -

\(o 127 |
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: 2
or b2 2ab + a” - b?

e
+ 2ab + a .

Therefore, 0 = lLab, “t
and; if a £ 0, theuw b =090 . \

We justify the choice of abscissa for point C in Figdre,k-b in the
_following way. Let D= (b,c) and C= (d,¢) . Since BC||AD , their

slopes are equal. Thus

‘;(a;ld),

<
b
d-a,

s =a+b .

We are dealing with well-krown and previously proved properties of
geometric figurec; therefore, some confusion may exi.t in the class as to
wh;ch of these properties may be assumed in choosing coordinates for the
fiéure. Although the teacher is at liberty, of course, to cet up his own
"ground rules", we recommend that only thode properties ascribed to
geometric figures by their definitions or by the hypothesis be allowed wher
sclecting the coordinate;. For the purposes of this section, we have alco
allowed the theorems (after proof) of Exercises 4-2. The teacher is not
bound oy th%s. Qur reason for the exception is to make it unnecessary for

& student to prove the same thing in two separate exercises.

14l To complete the proof of Example y
3, we note that for the conclusion,
d(A,Cc) = 4(B,C) , to be true, we must

have

/ﬁae + hc2 = Jﬁbe + d;E .

This will hold fé 32 = b2 . From the

hypothesis, we have d(A,N) = d(B,M) ,

c=(0,2¢c)

or
Jo - 222+ 2 = Jzb - a) 4 2. A= (20,0) B = (2b,0)
This s}mplifies to Figure 4-6
b2 - Lab + ha2 + c2 = hb2 - hab + 8 + c2 ,
or 3a2 = 3b2 s ’ .

from which we have 32 = b2 as reguired.

128 125 _ .
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We include a sample’éynthetic prool’ for Example 3:

T lep——
+ 1hb
Hypothesis:
BM and AN ere medians.
- BM = AN . :
Conclusion: “ b
AC = BC .
f 1. Bi and AN are medians.
a 2. M 1is the midpoint of AC;
’ N is the midpoint of BC.
et T oo
3. Mu||AB.
L. Introduce MD and XE
<>
perpendicular to AB.
)
5. MD = NE.
6. W :AW
ABMD and AANE are right
triangles.
8. ABMD = AANE.
/DBM. S /EAN.
10. AB = RB.
11. AABM = ABAN.
12. M 2 BN,
13. d(A,M) = a(B,N).
14, d(A,c) = 4(B,C).
1. AT = E.
/
s So \
T e
e
O

ERI

L.

i

Hyvothesis.

Definition of median.

The line 5oining the midpoints of
two sides of a triangle is parallel-
to the line containing the third
side.

There is a unique perpendicular to

a line from a point not on the line.
Parallels are everywhere
equidistant.

Hypothesis.

Ferpendiculars form right angles.

Hypotenuse - leg theorem.
Corresponding angles of congruent

triangles are congruent.

Ref'lectiye property of congruence
for segments.’

11. S. A. S. theorem. . -

12. Corresponding sides of congruent
triangles are congruent.

13. Definition of congruence.

14, Definition of midpoint and
multiplication property of equals.

15. Definition of congruence.,
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Exercises -2 to a single student.

items.

4.2

-

It is not anticipated that the teacher will assign all of the parts of
The excecs exercises may be used for test

It is suggested that exercises 10, 13, 16 be assigned to everyone.

These theorems are proved by vector methods in the next section, and the

students may profit from a comparison of the two methods of proof. ..

Exercises 432

essentials of one

L . 1. M=(a,e); N= (v,¢).
- Slope of HMN = 0;
slop¢ of AB = O, ’
S| | BB
M a(M,N) =/(a-b)2= la - v].
a(a,B) = /(2a - 2)° = |2a-- 20|
= 2‘8 - b‘ .
- 2. M = (a,c); since~.

- MP |[AB, P = (x,c).
~»P lies on BC; therefore, slope

of PC = slope of BP;.that is,

-C

. =-c _ -C

X 2b - x
Thus, x = b and P
midpoint o.f BC.

(v,c), the

L]

3. Part I. "If d4(A,P) = 4(B,P), then

-[(x +’a)2.+ y2 = :»/(x 4 é)e + y2 s

- x2+2ax+a2+y2=
and lLax = O.
Therefore, if a £ O, then x,= O
and P lies on the y-axis, the ‘
perpendicular bisector of AB.

2 2 2
X -2ax + a +y

possible solutién for each problem.)

(Note: Formal proofs arc not presented here. _ We merely indicate the

y
\ C€=(0,2c)
M N
: X
A=(20,0) B=(2b,0)
y
C=(0,2¢)}
M P
Az=(2q,0) B=(2b,0)
y
P=(x,y)
b
A= (-qa,0) B=(a,0)

Part II. If P 1lies on the perpendicular bisector of E, then x =0

and d(A,P) = /;2 + y2 = /-8)2 + y2 =

" ERIC | |
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da(B,P).
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32

L.

slopes are egual.

~¢ﬂ4«~—

— o e—

c b -

and b

a(s,c)

a+c .

7

and d(c,o) =

2
c

By definition OC ||AB and their

Thus

,(a,l.b),

Therefore,

= d(4,0)
2

+ 4

= a(B,A).

C={c,d)

B=(b,d)

0 ‘ A=(a,0)
because
and BC ||OA. c=(c,d) B=(a+c,d)

a . ~
C

5. B=(a+c,d)
a(s,c) = a(0,A)

Slope of OC = — = slope of AB;

—

oC

&l

. therefore,

6. Midpoint of OB

‘midpoint of

e
ince 212 = > 23 ’

and d = e. B

b=a+c

4 This satisfies the conditions for

the theorem of Exercise 5.

» 7. Since OABC
- may have coordinates as in
a(0,B) = a(A,C),

is a parallelogram, it

Since

= /(a , Cc=(c¢,d) B=(a+c,d)

o ~ ) -
- % + 2ac + e+ & = a° - 2ac + @ 2 s s

Exercise 5.

(a. + c)2 + d

-

and kac = O. ) ; x
If a /0, then c=0 and B= (a,d); -7 ~
therefore, [OAB 1is

; right angle.




take &ccount of the fact that a
rhombus is a parallelogram with

congruent sides.

[e 2
a - c -

The slope of AC is c < a
. — a2 c2
the slope of OB js P

~

The coordinates shown in the figure

;

The product of the slopes is aq S)
¢ - a”
perpendicular,
9. The slome of AC = T the
. = d
slope of OB - —— , Since
, a t ¢
A d S d ,
ACL0B, o5 e - oL
Therefore, d° = a° . , or
> >
e - ¢” v " Hence,
a2
ol < 7+ d® < a(0,0) - a(0,a).
10. “P = (&,0); Q = (a + v,d);
R=(b+c,d+e);s- {c,e).
7 Slope of PQ = slope of RS . §3
~ r;' i oy
slope of PS .= slope of RQ = E‘%-E .
11. P = (a,0) ;Q = (a+b,d) ;

R=(b+c,d+e); 8- (c,e) .

. Midpoint of RP - (e ha g * c, d : <
e == a+b+c ad+
midpoint.of 5Q = ( R
K] ‘\

ERI

. Aruitoxt provided by Eic:

(o) A=(0.,0)

= -1 ; hence, the diagonals are




12. a(a,C) = e - a)?+ & y :

5 5 C=(c,d) B=(a-c,d)
= J(a‘ - C) + d
. = d(0,B).
° x
13. D= (c,d); E =(a + b,d). A=(a,0)
Siope of DE = 0 = slope of OA : ’ :
—_ - y .
and slope of BC. C=(2¢,2d) B=(2b,2d)
d(0,A) = a(C,B) = 2a #+ 2b - 2¢ A .
=2(a+b-c). 5 .
: apE)=a+b-c. | STTTTTTT
o : Y A=(2q,0
1%, D= (c,d); let E = (e,d). - 10l
Since E lies on AB, the slope y _
— — C=(2¢,2d) __ B=(2b,2d)
of BE = the slope of AE; hence,
4 d
—— = ———>-, 2e = 2a + 2b,
. - e e - 2a o/ . £ ,
and e = a + b, Therefore N
E = (a+ b,4d), the midpoint of AB.
- o
15. Let the acute angle be at 0.
(a(a,8))% = (b - 2)% + <7 y
= be - 2ab + ae +\c2.
o o)
) Mso (a(0,8))° + (3(0,8))°
. - 2d(0,A)b
- = (6% + °) + 8% - 2ab .
—be-eab+ae+c2.. 0 b
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Aruitoxt provided by Eic:

R r =y

17.- Since AP | BC, the clope of

ERIC

The point (a + b,c) divides each
of ﬁ, ﬁ, and AL in the ratio
2:1.

o’

AP = —; since BQ | A, the . -

[¢]
-~

slope bf E:% ; '
- * b .
AP = ((x,y): v = o(x-a)};

<

BQ

(69 v = 2(x-0)) .

Since the intérsection must lie on

the y-axis, x = 0°, and.the poin% is =
(o, - ab A=(0,0) O 8=(b0)
s c -
> 18. In the solution of this exercise we wish to make use of the

"propositioq: The cegment joining the center of a circle to the midpoint

of a chord of the circle is perpendicular to the cﬁord.‘ Ye. dispose of

this proposition first.
Since d(0,A) = 4(9,B), y

/bae + b = y/l:b2 + b s
2 2 2 2

or a.+c¢c =b + 4 . o
X = _ & -4
The slope of AB = Peae~
= c+d
the slope of OM = P

— . The product of these slopes is

c2 _ d2
<35> and, since
a =~b RN

a2+c2=b2+d2,c2‘-d2=b2-a2.

A=(30,0) K B=(360) |

X




"

’ .
We return to the first problem and select a coordinate system as

depicted in the figure.' We nave placed the origin at the midpoint
B , and wve let M = (x,y).

+ -We then have d(P,M) = ¥(x + 8)2 t y2 ’
» am,c) = Hx - &) ¢ y?

2
and 4(P,C) = 2a .
] By employing the Pythagorean Theorem in APCM we obtain

o) 2 a
(x + a)2 + y2 +(x - a)° +'y" = ha® ,

[N

x2 & 2ax + a2 + y2 + x2 - 2ax + a2 + y2 = kae s

2x® 4 2y° = 222 . .
or D . N y2 =8,

We recognize this:as an equation of. the cirgle of radius a which has

its center at the origin. Hdwcver, the entire circle is not the locus

in the case we have depictea. The locus is the arc »f this circle which

iscontained in or on the fixed circle, This is the case for which £hg

radius, r , of the fixed circle is less than 2d; the point P 1is exterior

to'the fixed circle. If r = 2a , P 1is on the fixed circle; if ¥ > 2a PN
\\P is inside the fixed circle. In both of'these latter two cases, the

2 2 2

entire circle x“ +y a“ 1is the locus.

Aruitoxt provided by Eic

4

+
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k-3, Proofs Using Vectors.

’ B . R ~
The purpoze of, thig wectlon i1¢ to stow another method of provinu N

geometric porrocition.. It 1o an}rxu‘rxa»o to zay that ong method is upcrior_
to anotlier. For a rartisular ;"wblom, vne metnod may be simpler than an&tber '
' methed, but the jolnt wre 1o to incrense the diversity of available methods.
Using ve:tors hﬂy be, an approach whi h, though new to muny students can be of
consideratle interect to tiem. TIf the Leacnor (or any student) w;shes to.
pursue tuis topl- of vestor. airlied to bcometxy, he may .onsult Elementary

Vectox Geometry by Seymour S;husuox .

.

147 A reference to tne ds.cus.ion of Fipure 3-8 in Chapter 3 may help some
students to underctand tie vector addition performed in Exemple 1. Thig

’ example is Excrecise 1: of the preoceding cet.

An application of vector zddition

which may interest some students involwes

oy

tne sum around a vlosed region. For
- N - DS i -~ -~
2a+b+c+ 20

o)

On& of
Kirchnofft®s Laws, which is widely used

in deeling with elec: txiral circaite, .

-tates that -the sum of the poteatial d °° - .
(voltage) drors around a closed .ivcult

is zero.

147 . The students should \x~;ov~1 that altering the dlrc;xlon, of any of the
veotors in Figure -3 will nou couertially change the nroof--only some details )
i}l te modiried. The student. may ‘cncounter some dlfficulty, however, if

t?ey are carelesé in the way they latel %he vectors. For exa@ple, since E

is the midpoint\qf' AD and we close a to designate the vector from A %o?

E, the vector from E . D is also labeled &. But if we used the vector
from "D to E,”it would be labeled -&. '

LY

148 Example I is Exerclse 10 of Exervises k-_. We have suggested to the

student,that he cory Figurc 4-. We should like to emphasize this shuggestion.
Yle think this"dll hely + student to sce that the choice of an origin is
uompletely arbitrary, and the drawing of the origin-veétoru as the proof ¢

proceeds may aid in viaua1121ng the steps of the proof.

149 * .Example 3 is Exercise 16 of Exer:ises 4-2. Note that a particular
choice of orlgln (aided by a gprior knowledge of the result) greatly

v s*mbliflea the proof .

>

~

o .
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In solving any sort of problem it is difficult ig general to tell

berforehand what will ' ’

'work" and what will not. This is true of the more
complicated exercises wher? a particular choice of the roigin may give

simpler calculations than occlr with another choice. In Zeneral, an origin
should be selectéd which allows the hypothecl. to be expressed simply. It
should also be chosen so that the number of independent weviors needed is as
small as possible; Apart from this, experichee gained frofn {rial and error

is a valuable nelp. If calculations btog dovm with one choice, perhapc another

¢ choice should be made. - However, come proposition: simply do ‘not cossess short, .

elegant proofs.

151 The centroid of an area or a volume can uve defined in mathematical terms
using integral calculus. The center of gravity of a thin umiform sieet or,or

a uniform mass is the centroid of the correspond’rg mathematical area or

volume.,

Physically, the center ot gravity of an ooject will always lie on a

P -

<

vertical line through a point of suspension of the olLje:t. Thuc the center
of gravity of a triangular object can also be determined experimentally by
suspending it from -2 different points, say . vertices, and then determining

- where the lines of suspension intersect.

151 There may be some mystery surrounding the clicice of unit wectors in
Example 4. Of course, we always can say, "It works!" But we can ,ive a more
sound jusi.fication. The fact that we need an angle bise.tor could'léad
someone to think of the diagonals of a rhomtus, and the congruent sides of a
rhomtus ,could lead .emeone to think of unit vector.. Ctudents {and teuchers)
should not be discouraged if they o not think of ithings like thls; years of

experience and/or a little luck play & large part in these activitics.

Y
153 Exercises 5 and € of Section -3 are tlie same theoremc used In Examples
3 and 1 of Section 4%-.. These may be assigned ror purposcr of comparing the

two methods of proof.

rd
Exercises k-3

(Note: Formal proofs are not presented here. We merely indicate the

essentials of one possible solution for each problem. )

ERIC ' 187 |
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Aruitoxt provided by Eic:
'

\ N

— D b V¢
Let E be the midpoint of DB.-
We have ;;E«L-n? and o m E
E:H+§;theref0re,'§_~'§ s E ~
and point E bisects AC. .p.
A T B
A Y c Consider the diagram at the left.
A = YC [
We wish to show that OY and OX
X trisect AB, eand that AP passes

through points of trisection of OY
and OX.

0 B
Any point on AB can be represented by zA + (1 - z)g, 0<z< 1.

Any point on OY can be represented by yi 0<y<l.
—— -
Any point on OX can be represented by xX, 0<x<1.
We wish to find values of x and 2z 'such that zA + (1 - 2)B = xX.

But we &1so know X = %(C +B) and C= A+ B
so we want zA + (1 - z)-};: —é—x(z + B+ :Ig)
A+ (1 - z)ﬁ-’:%yI«L xB

1 2
so we find z = = X = =

3 3
Thus the intersection is at %—A‘ + %§ = ‘;-f
We find by similar computations that AB intersects OY at §K+ %—i:

This means OY and OX trisect AB and also that AB passes through

points of trisection of OX and OY.

21

138 13

o
=Y
3




Y

4-3

3. Using A as the origin, we have ) .
i 1 i .- - .
P = "2'(B + C), ’ 8
7
i 1 el
Q = "2' c/)
- l e
R = 5 B.
. . - R P
The intersection of meglans BRBQ .
.and CF can be located by finding
the values of x and y which ) -
- solve x
B+ (1-xq=y0+(Q-y)R. A Q ¢
i re lja
Substituting, we obtain Figure %-12
- l-n 1 -y - —_— -l -
x.‘t3+2 -ExC=yC+§B-—2-yB.

Equating corresponding coefficients, we have

X -2 -y) and y=-§-(l - x),

from which we obtain X =y =

Wi

This tells us that the intersection of BQ and C_R- is %(B +C),

which is ;gtrisection point of each of these medians. A trisection

voint of AP is

¢ v E=2'3(B+0) -840
e D -

(W)
wolrs

d(C,P) 1

4, Since m =2 the vector
b

from C to P is o =

of
o
o

o

The vector from C to A is
(a - -1;), and we wish to find
n(a -b) =4 , the scalar multiple

of it. The vector from 0 to Q

may be expressed as ('S + a or 0

o
»

’ as a scalar multiple of the vector

ERIC 1439




N - L}-3

Ll’ . We therefore have

-

b 'r-c?.:m(-l:r'c.),
b+ n(-;-F);m(S+%:€),

-

i e b -l m
b +#+na-nb-mb +-£a.
Equating corresponding <oefficients gives us
m
n-7 and m={1-n);

1
r+1°

- - ac,q) . 1
i I L (v Bl

~  for these equations we find n =

Therefore,

-~
’j:

¢

5. From the diagram we see that the

vector from N to A is 2';-_1?

o}
a4

and the vector from M to B is
26 - &, Since 4(M,A) = a(M,B),

we have |22 - B] = |2b - &].

U
oy

Using the Law of Cosines, we may

write this as

R I - N -
This equation simplifies to

w|all [5)°

h

Lpl® + o],
-0 -2

or 3la]” = 3[v]°.

‘From this we see that 0~ |a| = 2|D|, and AABC is isosceles.

This vector proof of Example 3, Section 4-2, is somewhat artificial’
because of the use of the Law of Cosines. It may be profitable for the
students to compare this proof with the rectangular coordinate and cynthetic
proofs appearing in Section 4-I of this commentary. It can be noted that
applying vectors t_o equal leugths may become awkward if the vectors are not

parallel.

' ERIC ' i%
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be expressed as

the vector from A to B may -

be expressed as b - a . The

g
o]
<
o
et
ot
o]
=
©
(o8
[
of
o}

product of these

TS
(v -a)-(§a+§b)
ry

]l oo - S 1 . 1l &= = @
= -2—‘8 b - E a + ES b - -; a.b 4
=3 (IB1% - [31°) .
Since the isoceles triangle has [a] - |U], the vector product is zero,

and CD | A8 .

Let ABCD bve a quadrilateral; i.e., A, B, C, D are distinct.

ﬁ: i(K+ -B.) ) ﬁ=£(‘?+-c-) . )
2 2 .

= 1,> -~ - 1,=> -,

P-E(C+D) Q_§(D+A)

—
M, N, P, @ are the midpoints of the sides.

We wish to show MP bisects ﬁfl
Points of MP: xM + (1 - x)P 0<x<1
Points of NQ: yi + (1 - y)Q
Intersection requires that
M+ (1 - )P = yN+ (1 -y)Q
1r 1= ’ 1x . 1= 1= 1= 1=~ 1
x(EA’+ EB) + (1 - x)(é-C + -§D) = y(EB + EC) + (1 - y)(-éD + EK)

1

1 .1 1 -1
so Ex-e(l-y) and 2(l-x) = ¥
x=y=-§.

hence

Thus MP intersects NG in a point which bisects both.

]

o

N
»
i
o
-
o]
51
bl |
1
S

=
h\w
[o2]

te




~de

9. (@+%): (v - %)

=a+b+b-b-a-a-a+>
-2 -2
= p|° - l=l° .

since [3] = IB] , [B1° - [31%= 0

10. As in Example 4, we use unit
vectors to express the' angle
* bisectors. Then, taking the

¥ vector product, we-obtain

- -l - -t

L .2, > &

o mOEC W
a5 _b'b aa a'd
Il * o, D - -2 Ty o,
[al o] [6]°  [=]°  [e]{v]
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4-k., Proofs Using Polar Coordinates.

Polar coordinates are not particularly adapted for proving theorems of
» the type we have been discussing. The beauty and usefulness of this form
will te more apparent in later chapters. Exercvises ucing polar representation
are, therefore, deferred. We rave included two examples to illustrate the
rossibilities for poler coordinates at this point of our progress and to

set the stage for the next section.

4-5. Choice of Method of Proof.

Tpis section, which contains rather specific directions for problem
solving, should be Qarefully read and discussed. Most of the Review Exerclses
which follow may be used to give the students experience in choosing and
follo@ing through with some particular method. The solutions we precent are
merely the ones which occurred to us; they are not put forth as the only
ones available or even the best of the many pocsibilities. As was vaid before,”

any mathematically sound presentation should be acceptable.

»

Review Exercises

»

1. a(o,u) = /a2 + bF . y
bl il B
N a(a,M) = d(B,M) = J(za - a)° + b° ) (0,2b) .
VAR M
(a,b)
0 A=(20,0)
2. Let the fixed points be on the )
X-axis, as Indicated in the figure. y
By multiplying the slopes of the
sides of the angle we have
(x,y)
’ y .Y .,
X -8 X+a-
| z 2 2 2 .
‘ y = -x +a ,o0r x +y =a

/(—0,0) (0,00

LRIC 143 -




C
(q,b)

(s,0)

a(0,¢) = /a° + b° and a(A,B) = Ya© + b°

L. v
' Y1 c=(b,q) B=(a4b,d)

2

: ' o A=(a,0)

The coordinates of B eare (a + b_q.).

(d(o,A))?‘ + (a(A,B))2 + (d(BZC'))z + (d(c,o))2
a4 (02 +d%) +a°+ (024 a)
2

2(a2 + b + d2)

(a0,3))% + (a(a,0))% = ((a + 0)% + )+ ((@ -7+ &)
= 2(82 + b2 + d2). Pl
5. D= (a,0) ; E= (2a = c,d) ;
2 F = (a,2d) ; G = (c,d) .

From Exercise 10 of Exercises k-2, y

we know that DEFG 1is a parallel- C=(2¢,2d) B=(20-2¢c,2d)

i

ogram; from Exercise 9 of Exercises F l
4.2, we know that DEFG 1is a : -k
rhombus if TF _L GE. tt is evident '
from the coordinates ofi,the miq.po;nts

that DF is vertical shd GE is \
horizontal.

D A=(2g,0)

-

1h1

oy
TN~
.




D= (b,d) ; E=(a+c,d) .

It is evident from the coordinates
that OA , BC , and DE are
4

; C =(Ze,2d 8= (2b, 2d
horizontal and, hence, parallel. - (2¢,2d) (2b,2d)

a(o,A) -~ a(B,C) = 2a - (2b - 2¢)
' =2(a-b+c). -
a(D,E) =a + ¢ - b.

Ll - =

A o G ©a B
- e "
The vectar from D to G is a - b ; the vector from H to B is

ey - - - | - .
-a=3a-b; hence, DG||HB . The vettor from A to E may

=

28 - b
~ be represented by xa + (1 - x)b or by y(Pa +7b). Setting these
equal we have )
xa + (1 - x)0 = 2ya + yb .

Bquating coefficients results in x < 2y, y = 1 - x . Solving these .

Wi

equations together gives us y = The vector from A to F may be
represented by x(Ja) + (1 - )5)('5 +3) or by y(’a +Db). Equating

these, we obtain y =

wlre

Aruitoxt provided by Eic:

€

i S - - - -
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At -

10.

Let D, E, and F be the midpoints

aof the sides, and let the perpendicular

bisectors of AB and BC intersect
i,
at the origin. S8ince D ic

perpendicular to the vector from A to

%(Kr'ﬁ)'(g- -IT) =0, or

%(-!;- B - A X) = 0; therefore

by

|3|? = |X'|d . Similarly,'lﬂ‘? - |-(,~|2
Since F = %(K * a, %(X+'c.)-(;T- )
1~ -n-T
= E(A A - C-C)
1, >~2 =02
= 3177 - [61%)

But since [A|° = ||, 2(JR)? - |€1®) = 0, and

-

F

~
is perpendicular

to the vector from C to A. Consequently the perpendicular bisector
of AC intersects the other two perpendicular bisectors at O.
Let M and N divide AC and BC C

ey .
in the same, ratio, r + Then, M - I

=(rA+ {1 -1)C) - B+ -1
= 1A - ."E:r(-lr-‘).

-
.

E

O

RIC

Aruitoxt provided by Eic:

]

Y Y]

-a+d-(-b) .

Adding, we obtain X =




We are given parallelograms ABCO, AEFD, FGCH.
Define numbers d, h such that D = af; H = nC.

We will express everything in terms of 4, h, 7&, C and assume all points
are distinct.
The line thraugh DE contains points xD + (1 - x)E
) or x(dA) + (1 - x)(A + KC) .
The line through HG contains points yH + (1 - y)G .
or yhC+ (1 - y)C+ ar) .

For these two lines to intersect, we must have '

(xd +1-x)A+ (1 -x)MC=@Q-y)dh+(yh+1-y).. \
Thus we must have :
vyh+1 -y =h-xh . L%y

xd +1-x=d-yd,
Solving this system we get, under condition that h ,1- 1l -4,

__d-1 __h-1 ’
y"«___hﬁd-l x-————hf\d_l ’ . .
which puts the intersection at X such that
.a.._ hd - ha - _ ha - .
¥egvaT ¥ ¢+ Fva-3l = mracT B+0.
From this we see immediately that X 1ies on the line coitaining OB
since K + E = —E I

The restriction h # 1 - 4 arises.because in the case h =1 - d, we

get -l%—l— =h=1-4d-= l—h-{-gl which makes the parallelograms similar

and the diagonals parallel.




\ N .
da
12. Since d(A,P) - d(Q,B), P can .
be rdbresented by A+ ?(E - A

and @ by B+ p(A - B). \/
- - - - - - X
X K+k(C-%) and X- oF, A g

<0 that

-/T t "{(-5 - m - q? )

. -IT+R(-IT+.§--IT) q;’\—lp(ﬁ--ﬂ)), 2 Y
kaﬁ_q(L-;>)'K4q1;I?. . 0 B -
Equating coefticients, we have |

. L=gq(l-p) end k- qp;
thereiore,

k-—2— and X A+—E-TF.
- L-p : L-p
. "A similar /argumont gives us Y B+ l_?—’f; K .

Thus, X'Y’A+L-pB'B'1-pA_

p e - .

. (L-l_p)(A-B),
- >
- hence, XY ||AB .
(2b,2d)

13. The sum of the squarc: of the y ( |
2c,2e

lengths of the four sides is

{20,0)

2 < . 2 2 2
(Qa)2_+ (b = 2a)° + (0d) + (Su - 02) + (0d - ) + (2‘c)2 + \20)')

;785‘_ i 8 + 8c2 + 8d" + B - 8ab - 8be - 8de

The sum of the squarcs of the lengths of the diagonals is
N .

(2b)° + (2d)° + (fc - 2a)" + (ce)°
2

e » ol 2
= ha” + " + he' + hdT + 4eT - Bac .
Subtracting these sums, we obtain, ’
2 2 2 2 2
ha™ + Ub” + ke + 4d™ + ke + Bac - 8ab - 8bc - 8de -
’

z 2 2 2 2 ., . P
= W@ + 1" + " +d° + ¢ + 2ac - 2ab - 2be - de) .

The square of the length of the line segment joining the nu‘.dlzoints of the

¢

diagonals is )
2 2 2 i .
(a+c-b)+(e-d)2=a2+b2+c2+d + e + 2ac - 2ab - 2bc - 2de .
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PAruntext provided by enic [l

l 1
_midpoint of PP, is. (5: 5) ;

We select coordinates for thne

two rocks end the tree as shown

in the diagram. After marching R=-5,0)
thenrgquired &istances and directions
from the rocks, éhe'positions

Pi 5nd P2 are loegted. -The

" Py=(14b,l-a)

T =(0a,b)

therefore, the buried treasure is
located gt the center of the square ¢
whose side 1s determined by the two |
rockss (The location of the tree

is unimportant.)

149

R,=(0,0)



j Chepter 5

- GRAFHS AND THEIR EQUATIONS

. The material of this chapter starts with familiar content including much

that has been encountered ia earlier courses. The treatment is broader and

deeper here than before. It is broader because we now have analytic repre-
sentations in rectangular, polar, vector, and parametric forms. It is deeper
because Wwe take account of some troublesome details and special cases that
are not adequately treated on a more'elementary level. The work is conse-

quently a bit more difficult, but also more rewarding.

We call part&culaé attention to the treatment of related solar equations,
an¢ of paths, as distinguished from curves. Neither trecatment is met in a .
traditional first course in analytic geometry, but we feel that they illumi—
'nate some signifiuant mathematical content that is appropriate to this work.

There aré many exercises, but, as has been mentioned before in \iis book,
they need not all be assigned. We particularly.urge the teacher to exploit
a viewpsint we recommended to students. Stress the dynaﬁic aspect of the
. relationship between geometry and algebra. Come apprqpr*ate questions here .
. are, "What would be the effect in the graph if we changed this % to -5%";
. "What change would we nave‘to make “in the equation if we wanted to raise the
“graph 3 units?; if we wanted a larger circle?; if we wanted only the portion

4n the first quadrant?"; "What kind of graphs would we get if we replaced this

6 by a variable m , and then took larger and larger values of m ?".

Exercises 5-2 .
- M . e

3. y=x and y = -x ; or 2 - y2 .

b, y=%2x; or y2 = bx®

5. 01 ; or x2 +y

it
©
n
©
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X = -1

3 -7y - 1% =0

‘/5!9(+y-2'=*/§|x+2y+2|;or
(/5 +42)x + (V5 + 2/2)y - 2/5 + 2/2 = 0, &nd -
(/5 -V2)x+ (V5-2/2)y -2/5-2/2=0.

2
y~ = 8x

If P=(%y) i%a point,of the locus, then the distance frgm/-,P “to the

line is lex +y + 2| , and from P to the point (2,0) -is
5

/(:( - 2)2 + (y + 1)2 . The statement of equality of these twb distances

’

yizlds our equation: X - hxy + hye L Bx + by + 21 =0,

.

9><2 + 25y2 = 225

12 - oy? = 63

1,8’(2 + W8xy + '(ye - 156x - 68y + 1h2 =0

5% - 6y + 17 =0 . 5
A 5 '

<(x N x1)2 + (y - y1)2>6x - x2)2 + (y - yg)") - x° , k > 0

-3 <y <3 /2l

2y s 2

-1 <x<1

(x-1)2+(:\;-3)2522,or xe&y‘?-”x-(»y+650'

y >3

x2+8yzl6 1 \

y2_<_ 100 - 20x

6 <x<6;or x| <6

\

24 y® < (8.09)°%; or %+ y? < 65,0960




Parametric Representation.

The content and treatment ot the material in this section are closely

related to the physzical and scicntitic applications that pupils will meet in

other classes and in later worh.

shown this section, and their couperation so'icited in devisioag laboratory

experiments along the lines suggestod,

ERIC
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kxercises 5-3

R
Gelence teacbers in the scehool should be

.

t 0 1 2 3 4 SN g 9 10
X 0 2 8438 | 3 =0 o o8 fiee | 200
vy | ¢ 3l {2 e | s [y [ oo | ous | 300
t o 1 2 : 4 5 ¢ 7 - ) 10
x o1t | 350 [oas | roh 80 1090 Fiesp pakos | ansh 1160
vy | € o o 1 Ik ] ose | WO 5.0 JSh 1ok fo1nan | eco
X = 5t
{ y =2 .
X o= =0,

3 14 ght
Y - 5 .

Eliminating thne parameter gives y

the axes this means that the point starts from rest at the origin and

moves steadily to the right as it moves more and more rapidly upward.

)
= x~ ., With the usual placement of

Its path is along a parabola whose vertex is at the origin and which j3

concave upward.

Cince we assume

right half of the parabola. 25.9

152 wmo

t » C, the point travels on ounly the

units,
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For the line hx - 3y + 2 ¢ * have Jdirection numbers fc: the normal,
(h,—3) . Therefore we may take direction numbers for thc line as either
{3,k) , or (-3,~-%}. Since no sensc of direcction along the 'ine is
specified we musl consider hotli. If we use direction consines then the
displacement along the line will ue one unit for cach unit interval of
the parameter t . Oince the given rate is 10 units per secoud we
must now. take direction numbers ten times the direction tosines, f.c.,

. } .
(lO(%)l,lO(é)) . Bince the point goes through (1,2) at thc time when
3

the elapsed time aftor that s indicated by L - 2. Ve have,

in the fivst case, theretore,

- T E 3 -
{X»lvtu J), or {1( ]1[i-,
vo-ooeelt - 3) A N .
X - 144,
and in the second casc, { Y
v o= 8y,

In the first case, wnen t - C  <thc porition i -1 ,=-"0)V , ane when

t = 10 the position is 43,%3) . 7 the scrond case, when t - G the

position is (1),™) , and when * '  the positlon is  =hl,= 4% |
Refer Lo the solution of ~ ) avovc.
1{, '\l)
X = o4 bt X -—t
13 , A
ot
Lo v
Y -0 e —t , G e——t
A /7
Assume L, ™ b . Irection numt crs for the Tine arc O N U
. . . SRR qd -t
and Jirection onine, - y .

- ) L hl
ﬁc -y o (a - /C - u) 4 fu =)

The v« o0cily of the point:alory the ine is T T ,
O

and this is the teor ry whi v we mast m.abip' - tlo dlrection fosineg so
that unit intervais of the parametcr 1 corrdéspond properly to dis-
placements along the line. ince tle point pocs throash (a,b) at time

to we indicate with our parameter t the elapsed vime since then,

t - t. . Therefore we have the paramctric cquations:

153
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x:aw/(c'aéji'b) . c-a (L= t), .
o T 2}
5 1 0 J?; -a)" t (a-b)
2 2
b Je - a) v (a-b) d-b o
t1 - tO = = 0
- Je - 1 (a-0)°
These formidable equations become: )
x - a ?;i—f—%—(t - to) , : .
1 0
1 0
Yoa may easily verify from these cquations that when t - LO the posi-’
tion is (a,b), and when t - t, ‘the position’is (c,d)
Assume t in seconds. The point moves from the point (1,0) to the 4
point (-l,O) and back again, making a round trip in 2x geconds, It

starts from rest at (1,0) , increases its speed until it reaches the
origin, then slow~ dcwn until i; comes to rest momentarily at (-1,0) ,
then reverses tne process endlessly. Its maximum speed occurs each time
at the origin., (By methods of the calculus this maximum speed can be
shown to be cne unit per second at.that instant.) Ouch motion is called

a "simple harmonic motion" and has many physical applications.

t]0 1 2 3 L 5 6 L 8 9 10

x {1 ].540 | -.418]-.990 [-.652|.287].961].752| -.150] -.913 | -.836

At the end c¢f one minute t = GO , and Table II does not give éorrespond-
ing valuaes for cos t . We use the fact that cos t is periodic, of
perio@ 2x . (These matters will be develored further in the next

chapter, )

We =xpress 60 as & multiple of s =and a remainder less than Ty
which we find by dividing 60 by a suitable decimal equivalent of «n .
Tables I and II are given correct to three significant figures and
a careless student may then take 3.1% as a proper equivalent of «n . v
However, any inaccuracy in this approximation will be multiplied by a

factor of about 20 -and will give us a seriously inaccurate answer,

It is not our intention to enter into an extended discussion of
significant figures and accuracy of computation, but in this execicuise

we caution that we must choose an appropriate approximation of = .
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5-3 .
We assume t = 60 = 60.0000 , and use n = 3.1416 and obtain
€0.0000 = 19n + .3096 , which we write briefly as 60 = 197 + .310 .
Therefore cos 60 = cos(19n + .310) = - cos .310 = - .952 .

In the same way we assume t for one hour to equal 3600.0000000 ,
not 3600 s and then take the proper approximation, s = 3,141593 . Then )
3600,0000000 = 11451 + 2,.876015 , or 3600.0000000 = 1146y - .285578 ,

" which we write more briefly as 3600 = 1146x - .286 . Thus
cos 3600 = cos(1146x - .286) = cos(-.286) = cos .286 % .959 .

You need not belabor the details of approximate computation, but
this is a good place to show the need for a proper approximation for g .
It is also a good place to show that when we are working with measure-
ments and we add zeros to the dividend in division we are assuming more
and more accuracy in its determination. A measurement of 10. inches is
less accurate than one of 10.0 inches which is in turn less accurate
than a meaéuremenp of 10.00 inches. We particularly warn against the
error of dividing a 10 inch length into three equal parts and writihg
the length of one part as 3.3333.... inches!

12. The motion could be that >f an object dropped from -an altitude of 500

feet, in which case we assume no air resistance, and a value of 16 feet

. per second per second as the acceleration due to gravivy. A value of y
represents the altitude, in feet, above the surface of the earth, at
corresponding time t , in seconds after the irstant of release. The
change of sign of y 1in the interval t = 5 to t =6 can be inter-
preted to mean that the object reaches the surface of the earth in that
interval. The negative values of y afte;wards would indicate the depth

below the surface, if the fall continued down a vertical shaft.

t | o] xf{ 2p 3| %1 sy 6 71 81 9| 10

y 500 | 484 | 436 | 356 | 24k | 100 | -76 | <284 | =524 | -796 | -1100

13. (Refer to the solution of Exercise 12) This equation could represent
the motion of an object hurled upward at 64 feet ner second from an

altitude of 120 feet.

t o]l 1 2y 31 4l st 6} Tl 8] 91 10

y |120[168 184 {168 )120| %o |-72 | -216 | -392 | -600 | -8k0

‘ O

| B ) [
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L {Kcter Lo the so' tion of Pror~isc P, This cquation coild describe a

! simpte harnonic motion with these -oneitions: The point starts from a
. . . C o . 3 .
position of rest at the ovieing moses, in the next g seconds, Lo its
, +
\

farthe L richt poiition at () wherc it halts womentarily and re-

virses livection to move to ita farthest.lott oosition at (4,05,
. . . . s i N 1]
arrivine bhere in an awdditiona! = seconds, It aceelerates from ,,0)

Lo whe oririn where it attaius its maximum veloelity, then decelerates

. . 3 i I - . .
from the origin to -k,0) ) and 5o on mel i a round trip inow seconds.
Guch equatlons off rosions eear in bho Ltuly ot vibrations, and or varia-

,

tion: of an alternatinge current, T
' t10 1 ’ - 3 o a2 ’ o 7 e
N (S ERITT R P URTe S ENUUT PRPRIVEN EaPh I Y PP 21, 09 =m0 50 ) 3,068
N

i,. ‘Refer to the sotwtion of Fxercise Y The point now starts tres
“1,0) and moves to 5,07 cmd Back, ws taiore, marlne the round trip
in v s conds,. :

\ : . . . .

o, We must cssame they stort oot Jhe samc instant, in whict case the

varinble t  bas the same inverprcbatior 1 both ecquations, Thercfore

205 L - - cos t o, from which we tct ees b and t -0, 2, b,
: .

ves o Por throe valucs o Lo, v ', thererore the points start

together at ' 1,0) , and wendervous tree oevery n seconds thereafter.

5.),, rsaramelrie kquabtions of the Cirelc and the R11ipsc.
2 i Of ine Lire e ane Lhv S P

Foral phenomena are familiar «cnouwsh to yhysies, but it is interesting
to sec how the associated mathematice) analysis can be uscd in other situa-
tions. Authors in recent publications have applicd these concepts in such
areas as: cpidemiology, 1o study the spread and -~ontroi of diseasc; deimno-
graphy, to stuay the dislributions of sroups of people; bacteriology, to
study the spread or control of bactcriaf ;rowth; communication theory, o
study the distribution of "information", and 50 ‘ou. Ve leave thesc for later
years, and concern ourselves now with the simplest and most natural of the

applications of paramctric cquations ot the circle, that is, circular paths.

ERS 1585
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* visual aid: , The essential features are

_ two movable radii OA "and OB mounteu
on alpane1 of suitable size. Two students
can thén give independent motions to points
o the rim of the circle. This model will
be particulaily useful when you get to

problems of "meeting" or "overtaking".

1.

2.

O
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The teacher is urged to make a simple

Zxercises 5-4

10 cos 6 ,
10 sin 6 .

ly

We assume t in seconds. A clockwise rotation means that as t in-

creases from Q , 6 decreases from O , and in this case & rate of &

rps gives the angular displacement, -8ixt . The equations are

{ x = 10 cos{-8nt) ,
¥y = 10 sin(-Brt) .

Consider x =7a cos{b +ut) . Since the radius i5 ¢ 1inches, then
a~ % and we are'committed to inches as the measure of x .

Since the numbers O and 60 are assigned to the 12 o'clock posi-
tion the units of rotation in this problem are intended to ve minutes.
The angular position of any point on the rim can be given in terms of
these m-units, measured from the 12 o'clock position, or in terms of the

usual 6 , in radian units from the polar axis. Thus the 2 otclock posi-
. . . hid
tion can be described b, m = 10 , and also by € = K Since we rotate

clockwise at the rate of one rotation in 40 minutes we have «w , the
1i-..cted rate of angular displacement, ecqual to 1 m-unit per minute,

- . .
—= radians per minutes.

30

1 in the eq.ation x = a ~os/b wt) we use radian units for b .
we have b = % , since we start from the 12 o'clock position. Finally,
o

since we are asked fo the path during one hour, we take 0 < t < 60 .
The result ul' 211 this @iscussion is the following pair of equations:
x=f oslk - Qétﬁ ,
{ S ( t<o0.
v =6 sin(E - §5t) s
t 1is the time in minutes, x and y are in inches, and the angle is

measured as usual in radians, coun%srclockwise from the polar axis.
) ol
15&.1) {
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5.4

. (x=4+ 3 cos 6,
X i y=3sin6.

it

5. {X:hé\ose,
y=6+ksine.

6. gx.= L 4+ 3 cos{- % - hat),

- in(- % _ 1
3 sin( 5 int) .

Npte: These equations supply inforiiation about the starting position -
(=

(- %) , and the dfrection and speed of rotation (-kx) , but for purposes

~<
|

of computation they may be replaced by the equivalent equations,

kg
i

=L 4 cos(% +hnt) ,
y = -3 sin(% + I5t)
These latter equuations show that the path of the point P of
exercise 6 1is the reflection in the x-axis of the path of the point
P* vhose equations are
' x! =k +'cos(% + hnt)
y' =3 sin(% + hint)

The point P! starts at the highest point of its path and moves counter-

clockwise, as.we should expect thg reflected point to do.

7. X

4 cos(% + 6nt) ,

y=6+4 sin(% + 6rt) . ,

8. The point moves around & circle whose center is the origin and whose

radius is 4 . The point starts from the 3 o'clock position and moves

counterclockwise at the rate of % rotation per. second,

9. The point moves around a circle whose center is the origin and whose,
.
Y

A radius is 6 . t starts from the.12 o'clock position and moves clock~ -

wise at the rate of % rps.

Note: In Solutions 10-16 the paths are all circular, and we shall
condense the information which could be written out in full as in (8) and

(9) above.

\)4 : ,\
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12.
13.

14,
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Circle; center, origin; r 8 ; start, 2 o'clock position; direction,

%]

clockwise; rate, % rps.

Circle;. center, origim r

10 ; start, € o'clock position; direction,

counterclockwise; rate, % rps.

Circle; center, (u,o) ; radius, 1 ; start, 3 ofclock pdsition; direc-

tion, counterclockwise; rate, 3 1rps.

Circle; center, (0,-3) ; radins, 1 ; start, 3 o'clock position; direc-

tion, counterclockwise; rate, 4 rps.

Circle; center, (2,5) ; radius, 1 ; start, 3 o'clock position; direc-

tion, counterclockwise; rate, 6 rps.

Circle; center, (a,c) ; radius, b ; start, 3 o'clock position; direc-

tion, countercldckwise; rate, 1 rps.

Circle, center; (p,r) ; radius gq ; start, at the angular position
- o on the circle; direction, ‘counterclockwise if n < 0 , no moticn

at all if n =0 ; rate, n rps.

(a) Circle;,center, origin; radius, 6 ; start, 3 o'clock position;
¥ s’ s’ s’

direction, counterclockwise; rate, 2 rps.

(b) |t 0] 0.1} 0.2} 0.3 0.4 0.5} 0.6 0.7 0.8] 0.9] 1.0
6.00]1.84 {-%.88|-4.88} 1.846.00]1.8%4[-4.88 -h.8§ 1.84(6.06C
y 0]5.711 3.4%9[-3.49-5.71 015.711 3.49-3.49(-5.71 0

(e) ) x = 6 cos(3z + hxt) ,

y = 6 sin(Z + hnt) .

olR iR

’

{a) {x € cos{-2nt)
. y = 6 sin(-2xnt) .

{e) GCince the first and third points move in opposite directions, they
will meet when the sum of thelir angular displacements equals their
original separation, and, after that, when their additional angula;
displacements add to an integral multiple of 2x . That is,
2nt + bxt = 0 , since they start together, from which t = 0 , and
the points are at (6,0) . After that, ont + kxt = 2x , lix , 6n

1
= % , % , 1, % sy ..+ o The points start together,

second thereafter. The corresponding points are

, that is, t
1
3
(6,0) , (-3,-5.196) , (-3,5.196) , €6,0) , (-3,-5.196) , ... .

4

and meet every

156
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(£) As in the previous part, we add the angular displacements, and find

the first meeting point whken this sum is equal to their original

: n
angular separation: that is, when 2nt + hnt = = . Thus they meet
:

.
t

fivst when ¢ = 1% , at the point (5.190,-3). Then we find, as

. . 1 - :
abovec, their subsequent meetings take place every 3 second, which

should be expected, since the first and scecond points ave traveling

- at the same rate, ‘the meetings t‘herei‘ore take p]aéo when
1 5 1 o -
t =15, fé ) % ) T; y eee yoat (50196,-35) , (-9.196,-3) , (6,0) ,

(5-1%,-\3) y eee .

1 7 ?
v 18, (a) x:;;')—r-cos(gn--jn L),
A:; 1 N *
y:-;;(—sin("ﬂ-_g‘ﬂt) . N
X ~,,in-cos(l6£n-lp:rt) R
B:;v-l—“'n(i—l-rr—ln t)
ST BT3B ’
1 1 e
zx =-E’-(C00(Eﬂ é,gnt) 3
C
o1 2
3:-2—noln(2n+5nt).
' ' o /3 )
{b) A: Vhen t =0, 3, 6, 9, position is ('H"TG)’
: ]
When t =1, 4,7 , 10, position is (O,—?‘:) ;

73

When t =2, 5, 8, position is (m,-ﬁl?) .

- /3 1° g
B: When t =0, 4 , 8, position is (n%,-m;)i )

V3
When t =1, 5,9, position is -(-,l-,-n%);

ro

When t =
. 13
When t =3, 7, position is (m R h—?—:-) .

C: When
When
When
When
When

, 1¢ , position is (0,.159) ; .
(-.151, .0k9) 7;
(-.09%, -.129) ;

position is (.O94 , -,129) ; .
(.151, .0L9) ;

, position is

-
-~ O\ U

, position is

ct t o+ ct ot
"

w n H O
-

-
O &®
-

, position is

O

ERIC . 160 151 .
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R

(¢) By the methods of the solution of Exercise 17 we find:

(1) A and C meet when t =.625, at (-.112,.112) ;
(¢) B and C meet when t =1.480 , at (-.152, -.046) ;
(3) A and C meet when t =2.500, at (0, -.159) ; )
(k) B eand C meet when t =3.700, at (.159, -.008) ;
(5) A and C meet vhen t =14.375, at (.112,.112) .
(@) By the methods already reterred to we find that A and C meet in
g seconds and every %;2 seconds thereafter, That is, their
. meetings take place at times t = g + }sép ,‘ wvhere p 1é a positive
. : 1
integer. In the same way, we find that B and C meet in -é—?
seconds and every -292 séconds thereafter. That is, the B and C
meetings take place when & = —;79- + ?90q , where gq 1s a positive

integer, If A, B, amd C are all to meet, there must be a time
at which the A, C, end the B, C meetings occur Simultaneously.
That is, there must be positive 1ntegra1 values of p ‘and q such

5 !
that % - }8?p= -5% + .29_9.q, This equation is equivalent to ’

8lp - 96q = 3/ . 1In this equation, however, the left member is \
evenly divisible by 3 but the, right member is not; therefore
there can be no integral values of p ané q ta satisfy it. There-

fore there can be no common meetiné of A, B, and C.

Since the points move in reflected paths with respect to the y-axis,
the second point must start from ,the position symmetric to A , that {s,

.at  (-n,0) , where the angular displacement from A 15 5 . Therefore

the equations-for the second point'are , -
{x = r cos(n - hnt) , 'y !
‘ ¥y = r sin(x - hnt) , |

(a) Assume & unit circle, time in seconds, and angular velocity in

‘radians per second. The 10 o'clock position, T , has an angular

dispYacement of \%’5 . Since point -—Q

P arrives at };osition T in 10

seconds, its angular velocity is T \
%g— or 'i% .» In the same way the * r P
angular velocities of Q , R, and i X

S are -15 3“5 and - 3—5 or - 1% . ~ S

R '
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(b)

1

Therefore, as before, the equations of motion are:

3

n
o gx + COS i?t" ,
y = sin f%t ®
xkcos(%ilt) .
a 2'30
‘ ¥ o= sin(E 1 L)
] ‘ 2 30 ¢
n
o ;x - cos(n - BEt,),
n
’ = sin{n - t
Y nin %0 ) p
1
3x = cos@é? - {%t,),
S: y
“ly = sin(3E 0 X
NS ‘.An(g ]5t) - .

By the methods of the solution of the previous exercise we find
that the meetings of the following pairs take place at the indicated
times (vhere a , b, ¢, d , are positive integers):

. i

Q end R , when t, =10 4 4oa ; .
- Q and S ; vhen t, =10 4 20b ; ’
P and R, when t3 =10 + 20c¢ ;
. ko
P and S , when th =10 + ?rd .

- -

"t
We verify that when a , b, c,d areall zero, the values of®

8oty b3,

th , are all equal to 10 , as required by the
statement of the problem. If there is to be a cimultaneous meeting
at another time, theTe must be values of a , b, ¢, @ other than
zero for which these times are equal. Clearly, if we take 4 =3
or any multiple of 3, we can find such values. When .d = 3, then

th =10 + 40 = 50 . Successive multiple% of 3 as values of d

give values of t) : 10,5, 9,130, 4.. , and these are

-

clearly possible values of t t2 , and t also. That is, the

1! 3!
simultaneous meetings take placerevery 40 secohds after the first

such meeting. The angular positions of these.meetings are found to

be % 2n  15n  130r B
A AN N A T .
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Questions of_meeting or overtaking on circular paths are related to
important vrotlems in spagce exploration. Consider the complications that
arise: the paths in space are not circular but essentiafly elliptical; the
paths are not along the same cllipse, and the different ellipses are not
usually in the same plune, so that we must not consider the meeting points
(they would be caﬁastrophic), but the points of nearest approach; the veloci-
tier along these paths are not uniform but variable in very complicated ways.
The solutions to the exercises in our text are essential first steps in
arriving at the level of ability needed to solve the difficult problems of

astrogation that arisg in space travel.

¥

5-5. Parametric Equations of iae Cycloid.

The physical applications of the cycloid are interesting indeed but
) \
theirwanalysis is beyond the scope of this book. Ctudents who are interested
in photography can make photographs of a cycloid by taking a time mxposure of

> a f]ashligh% attached to an automobile wheel as it rolls along the road.

We give another derivation of the equations of the cycloid which uses
the idea of a transformation of coordinates. You may wish to leave this
derivation until you have reached the more complete treatment of transforma-

tion in Chapter 10.

-

—— e o =y ar —— -
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N
Since d{0,T) - length of TI = a8 , the ,coordinates of the center of

the virete are (af,a) . We take this point o5 origin bf en x'- , y'-coordf-
"

"

.+ nate system, hence P {x,y) becbmes
.

) Poo(xt,y'),
' . . x = x' 1 a@ ,
- . vhere { <L
Yo vb ot oan
. N
But in this new coordinate sy:stem e
L L. \ . B
, x' - @ cos ¢, C \
5 { '
y' -~ asing .
-~ H in ;
Sincé ¢ = <= « 6 we have | \
cos o =-3in g wnd sine -cos 6,
(S '
S L ) %' : -appin 6,
therefore { ' -
: . y' - -a cos 6, N
, .
Therefore, l'im{uy . s .
’ % - »2 sin G-+ 06 , v - a{6 - sin @) ,'/ )
. o -
’ y - -a’'cos 81 a y - a{l - cos 8) .

[

. Exercises 9-5

s 1..{X::Q-sin6,

y=1-cos 6. ’ -
- The intervals suggested ‘indicate degree mt.a.,uxe t, it would be an - |
’ error to use Lhcse&mea sures in the equations abuvc, nce the quations
were derived on the busis of radian measure for . (We may revide the
formulas to suit ‘egrde measure, or convert the inte s to radian .
measure. The latter proded.re is the easier and the o e ve follow . (j
~ ' 1 ¢
6 degrees | 0| 30 60 | 90| 120150 180| 210 | 2ko | 270 | 300 | 330 | 360
nl n 1’ 20l Y i {x] | 3ni 5n|1ln ’
6 radiar')s 0 3l 3 5 3| B " z 3 -2 Checall o 2n
x ol o].2} 6]r.2) s 322|515 7]6.1°6.3]6.3
S y of.1].5[1.0{1.5|9]2.0}1.9}1.5]1.0{ .57} .1} o],
o~ ] . .
Q I : ' ¢
. ERIC s L
. s 1 3] /2161 . !
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i

The values of x and y ere computed to the jearest tenth, and

the graph is sketched below, i

-

2. The height of the rectangle is the diameter of the genere’lug circle
vhose radius is therefore equal to 3 . The base of the rectangle is
a3 long as the circumference of that circle and is therefore én . The

equations of the cycloid are

{ x = 3(s - sin o) ,
y = 3(1 - cos o) .

3. We have a = 3 1inches, and equations for the graph,

{ x = 3(e - sin o) ,
y =3(1 - cos o) . ~
The anguler velocity is given as 4 rps which neans that o = 8x

radians per second. Since @ = wt the equations above become

|

\

|

}
{ x = 3(8xt - sin 8xat) ,

y = 3(1 - cos 8xt) . l
|
|
|
|
|

t .1 02 03 0,4 '5

X 5.77 17.93 19.75 28.38 37.68

oy ode | 208 2.08 | s.k2 0

To compute these values we had to find functions of angles whose
radian measures exceeded 1.60 , which is as far as our Table II goes.
We must use the procedure exp.ained ii the solution to Exercise 5-3,
Number 11. Thus sin .8% = sin 2.51 = sin(x - 2.51) = sin .63 = .589 s

’ il

and so on,

P will reach its first high point at the end of the first half turn

which will occur at the end of the first % second. When t = .125,

o P=(9.1,6) .
ERIC 195



L. (a) All cycloids have the same shape, therefore an accurate scale
drawing requires any carefully drawn cycloid and a properly chosen
scale. The width of one arch is 2ra , and the height is 2a ,

where a 1is the radius of the generating circle. Tn this case the

=

base line represents 66 inches, or 2ra . Therefore

\
a = 105 inches. We suggest a scale of 1:12 which means that

the drawing should be 5—;— inches across aad lﬁ inches high.

_T /

“ 1—3- inches .

) D 521'inches —ﬁl X

(b) We have
x = 2ale - sin o) ,
Ly

a(l - cos ¢) ;

We must correct the linear rate of 30 mph into an angular rate

of rotation for a wheel witt 66 inch circumference. A rate <f

_30+5280¢12 . _ 65280 .
30 mph = % inches per minute = %5 rotations per
minutc = Zlé%—o an radirans per minute. Therefore w = 181560 and
i
6 = _10_??_9 nt . Finally we have the equations of motion with values

for x and y 1in inches, and t in minutes:

_ 2 10560 10560
g X = —2(—""‘_11 t - s _ll ﬂt) ;
21 10560
Yy = ?<1 - COS l; nt)

You may wish i)o present the following '"paradox'" and solicit explanations

from the class:

ERIC 166 '
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Juppose a nickel and o dime are firmly attached concentrically, and the
~ <
'ﬁiskel is reclled one full turn without slipping along the line AB . Then
d(A:EQ is the circumference of the nickel and since d(A,B) = d(P,Q) the

circumfgrences are equal. Aren't they?

Answer. {Don't tell the cluss too soon.) Of course the circumferences

o
are not equal. If the nickel doesn®t slip along AB then the dime must slip

. -
along PQ .

Challenge kxercises for Sections 5-3, H=h, H-5

~
l. From Figure 5-15, since d{0,G) = length of FC = as , the coordinates
of C are (az,a) «+ If P ={x,y) is a point of the locus, then :

X = ay - b sin

{ y=a-bcos g .

Tn Figure -1 the point o less coordinates (O,k) . To find k

we first find -+ from O - by - £ sin ~, We can do this only approxi-
B}

mately, from the tables and the fact that sin s - =9 . From Table II
2

we have sin 1.90C - 0.7, and sin 1.48 0 0.%7r . A reasonable estimate
gives o = 1,5C , within the limits of accuracy ot this table. Therefore

rxhood o5 1.0 or M- 0.0 . LT, g s 0,500 ).

AS Lorets larper in comparison with 2 the lower 1o0ps et
relatively targer, amd the Jrapi. look. as It it were being compressed
horizontally. The rower loops will irtcsest ara overlap and tne sraph

will look more and more lile n plun: ofertion of a tickt he 1:al spriwes,

or lire¢ an elacorate docdic.

Z. Thao drawine should mare celeoar y

Lhe relations:

The equuations tor trig ~urtate
»oagelold are cxat iy tue same o,

N

or the wrola‘e oyclold.

ChOee
thoue |
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The distinguishing feature for their graphs is in the relative

sizes of =z and b , as indicated in the text.

(aw,a+b)

~~
(Refer to Figure 5-15 in the text.) Cince length of AB  length of
We have 20 - b6 . Also, C = ((a i b) cos €, {a+ 0) sin 9) . It
P . (x,y) 1is a point of the locus then
x = a(0,E) - a(P,D} = ‘2 + b) cos 6 - a sin y ,
{y alC,k) - a(¢,d) = f(a +b) sin 6 - a cos y.
Since 6+ o + y = we have sin y = cos(§ + o) , and

~0s g - sinf + ) , thus we may eliminste ¥ from the equations above

and write

- {a+b} cos § - acos(@ - ~),

{a +b) sin 6 - & sinl + o) .

Firally, since -39 we may eliminate ¢ from the equations above
and get

(a + b) cos{6 +-29) s
¥y = (a +b)

These are usually written

x = (a + b)

3y-—-(a*b)

ERI
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L, The analysis here is closely related to that of the previous solution.

P We turnish a diagram and essential steps only.

ao-:be.

o+¥-6=13%
a(P,D) = 2 sin ¢ ,
d{C,D) = a cos ¢ .
P = (x,‘.)

i

{x-:(b-
y = {bt -

b
]
—
o
1

Symmetric in y-oxin O vy o a2, x covers ull reals asymplotic O
x-axis, tungent Lo v W . o et the analytic representation, connect
points D, A . Druw I | ‘o thc x-axis. Then in 'Z,(‘l'

(fsoD) - 6 - m'/1AC) 5 v db,) d'0,1) sin 6 3 A0, woain 6 .

theretore, y ~ "a sin 6. Li.o o» 't osot & . These are parametric

equations for irc rroph,

{X Ja col 6 .

2 ¢ - [
o eliminute nhe vurameter we muy Sguard votl members of the 1iro!

equat io, ance vy D x.\inc with thé sccond to of tain cventuall,,

¥ 4 by o= N

LRIC 169 .
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10.

11,

Choose coordinate system so that

P, = (b,0) , P, - (-b,0) . Then y ;::)
- [
we get the condition -

¥ory? o o v L 1r al < |vl

AV

2

< there ar. no points in locus. If ///;’—N\\\\\
|a| |b| » the locus is the point \\\\;~_’////
(0,0) « If Ja|l > |v| , the locus
is a circle with origin at (0,0)

= .
and radius va® - b° .

Square (a,2)(-a,a)(a,-a)(-a,-a) , constant Lk 5 X2 y2 = ka -

2 2

If k- <2a” , locus is empty set. If k2 = 2a2 s locus is point at

(0,0). If k° >2a° , locus ic a circle with center (0,0) and radius

> 7
k™ - 2ad . *
. 2
Same squarc: side x =a , X =-a ,y =&, y = -a , constant Lk~ ,
s .
=+ y2 S 2k% - 20% . 1r k8 < , locus is empty set. If K2 = a° s

locus is (0,0) . If K > a? , locus is circle with center (0,0) and

L=

radius /&ke - 2a
{2e)x + (a + b)y = c(a + b) (The sides of the triangle may be extended to

allow values of y and x ou.side of the triangle.)

y2 + (x - 3)2 = (%) .  Q does lie on the locus.

~

(Refer to Figure 5-17 in the text.)
a(p,s) = a(0,R) = 2a cos 6 , from right AOAR .
d(0,8) = 2a sec 6 . Therefore
r = d(0,P) = a(0,8) - d(P,5) = 2a(sec 6 - cos 6) .

This is a polar equation for the graph. An equivalent form for this
equation is . = 2a sin 6 tan 6 . To change to rectangular coordinates
it is convenient to multiply both members by r and obtain

= 2a(r sin @)(tan 8) , which yields X 4y =

y
%3

2a ~ X

be written, x(x2 + y2) = 2ay2 , or y2 =

H
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The procedure of multiplying

both members of the equation by
r 1is convenient, but we must check
that the graphs of

r=202asin 6 tan 6 and

¥~ = Jar sin @ tan 6  are the

\J

same. The only points that might
be on the graph of the latter but

not on that of the former are

4
points for which r - 0, dbui the
vole, which is the only such point,

is already on that graph. The

equations therefore do have the

. NS . N : .
same graphs, The iden will escape ithe studen.s unless they think about

such simple examples as x  y  and xT y , whose riaphs are different,
The situation for polar cug. ditatecs can be stated as £ollows. uppose

the pole lies on the rraph of the equation f£(r,8) - O, Then the graphs
of that equation and the equn‘ion rf'r,8) . 0 arc identic:', The same

thing can occur when we ure dealiny with rectangular coordi: ates, For

example, the eqguations x X and x< x v have the same graph. The
expl-v ation iu essentiul , the same =g 1Y was for polar ccordinates. All
the points which would ¢'nervise have heen added to the graph when we
multiplicd Loth memters ct its eq.uation oy %, were already points of

the yraph o x Y.

crer'er 1o Pleure -, oo Lhne fexn,)

(28
. . . . i .
A polwr cquation ror the lowus o ! 1 Therefore
* c05 8
equations ror the 'o'f of T aund P' are
v 2 oy
con & :
°-

The “rivection of 'n angle ic one of the yreal classical problems in
mathematics under the usual conditions, allow.ng only compasses and
unmarked straightedge, the problem is provably insoluble., (See g,

What 15 Mothematles, Courant und Robbins.) However, by the use of
—

special curves which cannot be drawn solely with compasses and unmarked

straightedge the problem can be solved., Any such curve used for this
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purpose i3 called a trisectrix.
To show thie use of the conchoid
as a triscclrix we proceed as

follows:

We are given any ZABC .
—

From O , any point in BC , draw
m— g
OR | AB . Construct the left
branch of the conchoid as in the
text, using da(Q,B) as length £ .
(This is the step which is barred
under the classic restriciion.)
Now construct a circle with B
as center, and £ as radius, to
cut the conchoid at F ., Dravw

i

OP tn cut AB at ., We assert

that - [00A)  Sm ([0BA)

Proof: Draw PB . Then, from
isosceles triangles PQB and
PRO we can verify the relatious

indicated in the diagram.

Note that if 7 1is greater
than the distance from the point
to the line, then the left branch
of the conchoid has a loop, as in
the text, If £ cquals the
distance from the point to the
iine then the left branch has a
cusp as in the illustration here.
If 2 4is less than the distance
from the point to the line, the
left branch will have an indenta-

tion toward the fixed point.




13.

O
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.

(Refer to Figure 5-19.)

Through T draw lines parallel y
to the axes as indicated.
a(P,T) = a6 ;
x = a(T,M) - a(o,N) , T
{y = d(P,M) + a(T,N) . T
I
, |
s x = ag cos(6 - 5) + a cos(n-6), I .
[ ' A
) n a singi
y = ag sin(6 - 5) +asing . :
BEET
Therefore N 0

{ X =a cos 6 + af sin 6 ,

y =asin 8 - a6 cos 6 .

Students sometimes refer to ihis
preblem as the "hula-hoop" provlem.
Figure 5-20 in the text contains
lines which are not pertinent to
this solution, Flease ignore them

and refer to the figure at the

right:
alc,t) = a(c,p) = v ; alo,T) = a;
0,C) =b - a, '
-~ — a
AT =P ,20=b ,0=56.
P = (xy) . .
{x = a(0,F) + A(D,P) = (b - a) sin (¢ -¢¥) + b siny |
¥ = aD,C) - a(F,C) =b cos ¢ - (b - a) cos (o - ¢¥) .
Cince @ =0 - ¢ 4 % , we may eliminate ¢ : “
sin{e¢ - ¢) = sin(g - %) = -cos 6 ,
cos(o - ¢) = cos(g - %) = sin @ ;
sin ¢ = sin(y - 6 + %) = cos{¢ - ) = cos(@ - o) ,
cosy = cosle - 6 + %) = -sin(e - 8) = sin(6 - ¢j .

. 110173



Therefore, = - a)cos 6+ bcos(f - o),

Yy =b sin(6 -~ ¢) - (b - 2) sin 6 .

Finally, since o =

olp

X = -(b - a) ¢os 6 + b cos \b ; zlq) s

. win (D - a
Yy = -(b - a) sin 6 + b olﬂ( b 6) .
< s

5-6, Paremetric Equations of a Straight Lines

The material in this section uses methods developed in this chapter to
extend ond apply the content introduced in Chapter 2. Ve recommend here and
throughout the book that students be required to refer Lackwards and forwards,
To prepare for this section students should be given, in the preceding few '
days, some home-work exercises from the latter half of Chapter 2, and that
you continue giving some home-work exercises from that chapter as you go on
through this section. A systematic overlapping of such assignments is a

feature of what is called "spiral" assignments, which we recommend,

The geometric version of the assumption that x1 = xo is that the two

peints are equidistant from the y-axis, the geometric version of the conclusion

(that the equations are x = Xg s ¥ =Y, + mt) s 15 that the line through these

points is parallel to the y-axis. In the second case the assumption is equi-
valent to saying that the pointc are equidistant from the x-axis, and the
conclusion is equivalent Lo saying that the line through them is parallel to

the x-axis.

It makes no difference what letter is used for the parameter in
parametric equations for a line. Thus we could have represented the lines

Ll and L, of Example 2 as follows:

>

o

%& i x =4 -2t ) L2 P X = -3 -t

y=2-6t y = -1 + 3t

i

If a student asks whether the t%o t's are equal, it must be made clear

that the question is meaningless. They are botl, variables and can take

any real value. Suppose we had used the representations above and had then
tried to find the intersection of the lines by splving the simultaneous
equations / ’

H
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Ll '

5-6

© 4.2t =-3-1t
.2~ 6t = -1 + 3t,

-

The question we would really have been trying to answer is whether there are
any velues of t which give the same point on both lines, and this is not

the question we started with. This poinf; comes up again in Example .

’
Exercises 5.6
. (a)"{x=5-3t x = 2+ 3t
y = -1+ Lt {y=3-ht
(b){x=0+1+t x =4 - bt
Ay =0+1t {y=1-1t
(c){x=2+0t {x=2-0t
y=-3+6t y=3-6t
(d){x:-l-‘it x = -6 +5¢
y=4+0t {y:h+0t T
(e){x=1+1’t x=2-1.t ‘ )
y=1+1¢+t {y=2-1°t
(£) jx=-1+2t x=1-2t
{y=—1+2t {y=l-2t
(g){x=1-l’t {x=0+1ot
y=0+1+t ° y=1-1-:
(h){x=2-1+t - {x=-2+ht .
P y = -2+ ULt ) y=2-ht °
2. (a)
=0 '(71,7)
(8:’5) t=2 (8:’5)
Q . TN

S .




. 56

(v)
o e
< n.G
7 o (2.9)
0-..
. , <«
Lo 4in,3) T
] 1 3 I | t O (2’3)
¥ L] T i T
t o] ¢(2,-3) gt
6k T4 | g(e,-3) .
) b (2, -0) T
t - -1 G
<o (2,-9)
(a) y , " :
(-11,4) (6,4} 1 4 (4, k) (-11,4)(-6,4) (-1, %) (4,h)
- - - — - - >
2 t-1  t0 t-1 t -1 t=0  t-) 42
ot 1
// . - i
F——t ————— —t+—+
q 2
1 t=a
, v (3,3)
.-- t=o (2’2)
t -2 T (1’1)
“ 44—+
(d,0 -
P76




&
T - \
1=2 (3,7) T 3,3
[E| lt: .(lfl)L t-0 (1,1)
Tt=0" (-i,fl)—' } "t=1; 1_1%’_1"\ f
t=-1 t-2
-3,-3 . (-3,-1)

2)

(0,11,

.

(-14,21)
The lines are parallel; their pairs of directlon numbers are
equivalent: (6,-4) = (-2(-3), -Q(?))

The lines are coincident; thieir peirs of direction nwmers are

equivalent and they have at least one poimt (-5,3) in commorn.
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pE xl: = :‘2 =E(tl = t2)) yl - yg - m(tl - 1‘f))

«<
]

ing po?zts (1,1)(h,2) onmthe line Lt Px = 3y + 1. 0O,
o .
. - T+

~»

2 o K 2
a(py, ) =VpR(ey - )7 1wl < L)

—

. »
o "v\/(t2 - tl)e . Vi e

o, ix = 16 + t(-24) ) '

2+t\(\ld5 ’ . > ; Lt

7. (a) Substituting x =At, y -put dinto ax” &by - &7  uives

a)\gt + b;uzt‘a = aeba ’

t2(u.)\2l 4+ bue) IS .
/If‘ a)\2 4 by2 £ 0
. P . a2b2
ir a’ + b >0 , -

._ t_+__ab .
‘—\4;\ + bu

hence line intersects figure at points equidistant from O under

conditions mentioned, )
»

Putting x = At , y - pt into y - ex’ , we get t antd . If

a>0 for i / o0, / O and considering bnly t / 0 we get

2 = ——L-% . ’ .
aA .
. v 1 Sy .
If perA>0,t = /e and’ intersections are symmetric.

-

If we A <0, there are no intersections for t /0,
Thus the origin is the center.

‘(2) a<0, for w /0,270 2nd considering t £ O we get
}'2 L >

a?«3 ‘ s

.
—

H

-

et i
-\'{
cC




If w+2>0, there are no in rsectl for t £0.
If y«AN<0, then ther;/ure intersections for

Y a% -

Again the origin is tﬁe,center.

(¢) Putting x

At, y="wt into vy = 5
X -1

we get u t = —E—;EE—— which is not defined for At =1
AtS -
m?t3-,,t= “3t3.
Itu £0 A
-~ if t£0 >\2t2-1=#2t2;

202 - 3 o1 .

Ifue}é)\e tt:ﬁ

If xe > ,;2, then the line intersects the curve for

t =+ /_—E_l___E s that is, symmetrically. “
AN - M

There is no value of t if )2 < u2 . Thus the curve has the origin

as its center.

8. We suppose that a bounded set 5 has two centers, and show that we get

3 a contradiction. We call these centers O and I and establish a
coordinate system with origin at O , with x-axis along 65 ,and I as
the point (1,0) , If O and I are centers then O has a symmetric

imege, 0, in I, and O, = (2,0) . 0, has a symmetric image 0, in

0, and 0, = (-2,0) . 0, has a symmetric image 03 in I, and
O3 = (3,0) , and so on., The points 0, , O3 , 05 s +es , are all members
of S and their coordinates, (2,0) , (3,0) , (%,0) , ... , indicate that
they are further and farther from the origin. Clearly they cannot all
be enclosed by an finite rectangle, which means that § cannot be

bounded.

The statement is not true for unbounded sets; for ex-..ple any point

of a line is a center of the set of points of that line.

s 1 7;59
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9, We express the line in parametriq form using direction cosines:

When t =1, (%y) - (5.8, 8, ;
when t - -1, {w,y) = (W0, b)),

10, {X=O+31,,
y=94kt,.

Tt is simpiest here to use d(A,B) units along the line. When 1 - 5,

(%x,y) = (15,29) ; when *t = -5, (x,y) = :=14,-11) .

Review Lxercises

In the answers to these exerciscg we supwly, in most cases, the simplest
and most directly achieved answer, It is always'to te understood that a
given graph has infinitely man, amaiytic representations, Come of these may
be trivially related as: y - % and "y = 10 ; some non-trivally as:
X+ 2y -11L =0 and

x =5+ kt, -
{y:B-pt-

The teacher is particularly urged in this chajpter to consider carefully any
pupil?s answer which may differ from the one presented here. Tt may be
correct, but written in unfamiliar form, and tiec student may, with benefit,

carry the burden of showing the equivalernce of the twe.

When we are asxked for an analytic description of a sct, for example,
2{a) below, we will usually write our answer in the form in which it appears

in the literature:

it

X-hby -7 =0,
instead of the longer form:
{((x,y) : x-hy+ 71 =0}.

1, (a) The lines: y =x and y = -X ; Or y2 = %X .
(b) The line: x =8, '
(¢) ‘fhe line: y =4 . N
(@) The line: 3x -4y -8 =0,

e

(e) The circle: (x - 5)2 t (y - 8)2 = 9, which can also be written:

x4+ 3% - 10x - 16y + 80 =0 .

(f) The lines: x =2 and x =8,

-~

il

177
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(1)

(o)

The lines: y =1 and . = -©

The lines: 3x - 4v + 22 =0 and 3x - 4, - 8 =
The lines: x
The lincs: ¥

kK+h and x - K - h .

qQt+tp,y=q9-p.

el 8]
If ax + by + ¢ = 0 represents a line, then a” + L~ { 0 ana the

distance from P = (x to this lines is given by

oY)
Iaxo + ?yo +ocl

d = This equation is equivalent to

f + O P
axo + by0 c o= . d¢%‘ + b~ , therefore the locus of all such points
P = (x,y) [is the pair of lines represented by

uX + by 7/c + d/ge + b2 =0, and ax + by + c - d#g 4+ b =0 .

The distance from P = (x,y) to A = (5,0} is (x - 5) 4 y2 .
and to B = (11,0) is ¢(x - 11)2 4 y2 . The condition is

equivalent to; VQx - 5 . ¢F¥ - 11 t yd . This equation

is an answer to the exercise, but it can be written more simply as

2 2
x4+ y" - 26x+ 143 =0,
Y

y [»] sl
or as (x - 12)" 4 y° = k. This last
equation yields the additional information that the graph is a

cirzle with center at (13,C) and with radius 4 .

[»]
The condition yields directly: y = va -5 v (y - 8)P or more
o]
simply x~ - 10x - 16y + 89 = 0 . This can also be written

(x - 5)2 = 16(y - &) , which can be interpreted to be an equation:
of a parsbola with vertex at (5,4) , axis along the y-axis, and

open upward.

As above, we get the parsbola: y2 - 8x+ 2k =0,

The distance from P = (x,y) ‘to D = (%,3) is /(x - 5)2 + (y - 3)2.
The distance from P = (x,y) to the line 3x - 4y +7 =0 is

lif_:_ﬁl_iill . An answer to this exercise is given by the state-
ment of equality for these two distances,
)2 3x - by + 7

32 N u2

vhat more simply as 16x2 + 24 + y + 9y2- 292x -9y + 80L =0 . We
state that the graph is a parabola with an oblique axis perpendicu-~

This can be written some-

»4x -5)2% 4 (y - 3

lar to the given line, but we leave any further discussion of this

equation and graph for Chapter 10.
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(p)

(a)

(b)

(e)

(d)

(e)

(1)

(g)

(n)

(1)
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.

As in the previous exercise, an answer is given by:
-

fo i r)2 i (y - 5)2 _ lax + by ¢ el

.

(ax + by + )?

2
a

2

<

nomial in x and y :

%2

X

o+ (a

2

2
r+a

s +br

+ b

= (&% + b°) (x - 1)

4 b252

2

+ (y - s)

- 2abxy + ae,yC -2(ac+ a2r+b2r)x - 2(be + a2

2.2 2.2 . c2) 0.

2

, which can be written also as:

, or, as a poly-

We state again without proof thet the graph of this equation is a

parabola with its axis perpendicular to the given line,

X

. In (a) - (1)

forms; either or both may be uged.

we give our answers in both rectangular,and parametric

by + 7
hy + 7
by + 7
2y - 11
oy - 11
2y - 11
y +h =
y o+ 4=
y+h =

=0 ;

1]
(@]
-
t
(W8]
1A
=
1A
w
-

»
1A
[ d

1582

or

or

s Or

or

or

y Or

or

or

or

et S e T s T et T o L Ny
A T T A T

—-—
»

<

1

12t

- bt
+ 2t

- U4t
+ 2t

- It

=/i/} 2t
=f1 - It

- bt

- kbt
- bt

- bt
- bt

3B,

-3+ 8t
1+ 2t
3+ 8,
1L+ 2%,

A

v

1A

v

1A




This, and ;the next fo r~ parts of this exercise are rrios‘i: readily
done with parametric representa- ’

tions or vectors. The interior
of /ABC can be described as
the set of points of the in-
terior of all rays 5; , where

P is a point of the interior
of CA . 1In that case .
P = (x,y) ; where ;<=1-1;t,y=5-l+t,0<t<1 , from (1)
above. We need another parameter to give us the interior of EI: .
Thus direction numbers for BP are (L -4 -5,5-h4 -3),
or (-4 - Ut , 2 -4) , Thus, for a point @ = (x,y) of the
interior of RP we have X = 54 g(-b - bt) , y =3+ s(2-ht),
s >0 . We present this answer more neatly:

{((,y) : x=5-hx-kst, y=3+2s-kst ,8>0, 0<t<1},

In vector form, if- P 1is an interior point of CA then,

- - —
[

+t(z-¢),0<t<l. If Q is an interior point of BP ,

then E:gv{»s(;-%) , 8§ >0, In terms of Z,_ﬁ,_c?, we have
=S+s<€+t(§—g)--E),Ez(st)'5+(l—s)‘g+(s-st)'5,
with s >0, 0<t <1l . HNote that the sum of the scalar multi-
pliers is 1 ,

Q

We can show the equivalence of the vector and parametric forms
by expressing each vector in terms of its components and then com-
bining, retaining the parametric conditions s >0, 0 <t <1,
Thus: q = [x,y) , &= (-3,1] ,% =1(5,3) , ¢ =1[1,5] . Then
(x,5) =st[-3,1) + (1 - s)(5,3] + (s - st)[1,5],

[x,y] = [-3st +5 - 55 +5 - st , st +3 - 3s + 55 - bst] ,
[%,y) =[5 - 4s - bst , 3 + 25 - hst] .

[f]

Therefore

5 - hs - hst ,
3+ 25 - hst ;

IX
ly

and these are the parameilric equations we found before.

If P is a point of the in%erior of ZAB , then
P=(-3+8t,1+2t),0<t<1l, Proceed as in the previous
solution and obtain the ansver,

((x,y) : x =1 -bs +8st , y=5-ks~ 2t ,5>0, 0<t<1}.

In vector form p=a +4 t(b -38) ,0<t<1l, and q , the vector

to any point Q of the interior of [BCA is given by

180 183
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T+s(p-2) , >0 . This can be“written in terms of |
, b, < as was done in the previous sol:tion:
(

o) o} ol

s -st)a+ (st)b+ (1 - s)T, §>0,0<t <]
Note the resemblance to the result in the previous gxer‘cise. a
The component forms of these vectors can be uged to relate
this result to the parametric equation round a few lines
earlier.
(Refer to the two previqus solutions.)
c

+t(g-g),O<t<1;3=§+s(5-3),s>0.

D=
E:(l-s)'§+(st)'€+(s-st)z',s>0,0<t<l.

The parametric form is

[(x,y):x=-3+hs+hst,l+hs-23t,s>C,Oq<t<]].

The interior of AABC 1is part of the interior of [ABC . If
we refer to the soiution of part (J) of this group we need
now use only the interior points of BP where P 1is an 1.n-
terior point of AC . We can effect this result by a simple
change on the parameter s which we now take 0 < s <1 . Our
solution in vector form is therefore: ° .
E:(st)3+(1-s)'5+(s-st)?,wlth 0<s<l,0<t<l,
We could use the results of (k) and (#) above, and obtain
(s ~st)a+ (st/B+(1-8)C,0cs<cl,0ct <l

(1-s)8+ (st +(s-5t)8,0<s¢l,0ct<]

N-Y J-1
1

The similarity of these expressions leads to & more
symmetric formula, if we note that the scalar multipliers’ are
nor-negative and have the sum 1 . We may write & vector
formula for the inter'or of AABC thus:

q=qa + Fd + ‘Y?,where a, B, v are non-negative and

a+ B+ Y =1. .
x+2 +1 =0,

XxX-y=-2=0,

X -4y +19 =0,

2X -y +T7T =0,

x+y-8=0,

hx+y -9=0,
X-2y +5 =0, ®
y=3. W)
131
181,
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(vy x=1." ' ’

(w) The line y =1 1is parallel to the x-axfs, and the line

X = -3 1is parallel to the y-axis. - ©

{(x) x+y-6=0.

(y) ex-y-2=0.

(z) If the center of the circle is at {u,v) then
(1-m24(5-v)% = (5-02 + 2-9)% = (3+w)2 4 (1-v)2 = 1P

Solving these equations gives the coordinates of the center,

| pr—e
(%, %) , and the length of the radius, —}ég . Thus the

. 1 7

circle has the equation, (x - %)2 v (y - %)2 - lég , which

5
may be written also as 3x2 +3y° - 8x-hy -5 =0.

The abbreviated sketch we supply for each part of this exercise
should indicate the answers requested originally. Other brief

comments are supplied as seem necessary.

(a) {e)
A
line pair of
vertical
. lines
0 3\ ‘ -4 of 4
I
C) . \ (a)
25 line circle
4

: ' 4%
T\ NV

185

182
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ellipse
4
3
TN
hyperbola
\\ //
N4
Nt/
-4 S \\ &
7/ AN
7/ AN
7/ AN
7/ AN
parabola
-l "4
2
parabola

%

(same as (g)
turned 90°)

B}
wld

Pl B

- 186

ol2f 8
(x)
|
|
]
|
|
|
-9 -5 -]
|
l
(2)
|
i
|
|
1
0 a-b [a+d
:
[}
t 1
(m)
ol
(n)
o v —
— T2

Pair of
vertical

lines

The region
between but
not including
ithe vertical

lines,

The entire

plane except.

The x- and

<

y-axes,

The two iines
in?fcated
x =1, and
Yy =-2.



x2 - 3x - 10

(x-5)(x+2)

il
(@]

The pair of vertical lines.

The region below the line y = x .

N

The shaded region between the

lines y = x, as shown .

x2 < x2 is
equivalent
o ;7 to
N 2 -0
\\\\ X - X 3
) or

x(x -1) >0,

This inequality is true for all
x except for Q <x<1. The

graph 1s the entire plane except

region between the ver ical lines.

N
N

We do not supply full answers here, but only en -ugh in sketch or comment

to make contact with familiar material.

.

(a) Circle with radius 3 and center at the pole.

(b) The-interior of the circle in

(c) Since there is no negative restriction on r

above,

, the set is the

entire plane. If O < r < 3 the set would be the same as (b)

above.

(@) The plane outside the circle of

(a) above.

-

e e L e . L ~ PR s Tigm p = e — P TPty gy E
&y 40T LA LC L vWsa LIE pPoat Ladily Weulo LTHE pladi GXRiIo Gl GNgLT Ci

measure 2 .

(£) Sincé there is no negative restriction on @ the set is the

v entire plane.

(g) If r >0 the graph is a spiral siilar to that of Figure 5-% but

opening more rapidly.

(ebscissas)

It contains the pole and crosses the polar
axis to the right at 4x , 8¢ , 12¢, ...
-2r , ~bn , <10x , ...
symmetri¢ image with respect to the pole of t@e path just describeld,

, and to the left at
£f r < ¢ the graph is the

thus the entire graph is a double spiral opening counterclockwise

b , 6n , ... .

and crossing the polar axis at (abscissas)

183l 87

0, 2n, 21, bn, <hn,
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The entire plane., Compare the polar and rectangular conditions:

X =y gives aline, and Xx <y a half-plane; r = @ a spiral,
eand r < 6 the whole plane.

Two lines through the origin, € = 2.1 and € = 1.9 .

The annular region between two concentric circles of radii -

4.9 and 9.1 with centers at Lhe pole.

In the next few solutions we supply a familiar equivalent equation in

rectangular coordinatles related in the obvious way, to polar coordinates.

The graphs for parts (k) ... (q)- are all iiner, and in each case the

s

absolute value of the numerator is the distance from the pole to the line.

-

The line y =6 .

The 1ine x = -3 .

The line x = .2 , Uy
. N

The line x =9 , .

The line through (v2,0) wish sloﬁi‘ 1.

The line through (-4/2,0) witlf slope 1 .

We teke 0 <b < éer . If b =0 the graph is the line

Yy -~2a;if b = 2n the graph is the line y =-a . If b = Z

2
or %; the graph is the line x = -a or x = a , respectively.
If. b has any other value in the indicated domain the graph is
the line throuéﬁ (-a cse o , 0, with the slope tan b .

Polar inequalities must be carefully analyzed. In this case
if 0 <8 <n the graph is the region above the line y =1 .
If 6 =5 there is no value-of r for which

since is not defined then. If n <8 < 2n

Y Gy
then the graph contains every point which is below the line
Yy =1 and on any line which intersects the line y =1 and
which goeé through the origin. That is, $his part of the
graph 1s the region below the line y =1 , excluding the two
half-lines along the x-axis: y =0 , X>0, and y = b ’

X <0 . To summarize, the graph of

r >'SI%”§ is the entire plane except the points of the line

1 and the points of the two half-lines along the x-axis:
0,x>0,and y=0, x<0. Itis instructive to

/]

Y
Y

4

investigate, but we will not, the relation between r < Tin 6

and r sin 8 <1 , noting that this second inequslity is

related to y <1l . ‘18‘5188
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We consider O < 8 <2y . If 6 = C the graph is that part

0w
~——

of the x-axis to the left of x = 2. If 0< 6 <

~
cos 67

between the y-axis and the line x = 2 . Tor this game domain,

ol

we get,

tor O« r< Lhe vertical strip sbove the x-axis and

ir r_ 0 we get the orisin and all points in the third

3n

quedrant. If < 6 < - we get the region to the right of

1)

~

the iine x - 2 . JOince is not defined for 6 =

2
cos &
i . . )
== chere is no value of T defined for these values of 6 .
3 2
f =<6< and 0 <1<

R cos 6

.below the x-axis and between the y-axis and thk line x =2 .

we gel the vertical strip

Lo

For this same domein if r < O we get -the origin and all
poinvs in the second quadrant. To summarize, the graph we want
is the entire planec except the line x = 2, and the two half-
lines along the y-axis; x -0,y >0, and x=0,y<0.
Tt is instructive to investigate, though we will not, the

2

cos &

yelation between I > and r cos 6 > O , noting that
’ g

; : tieu s & .
this s~cond inequality is related to "x > 2.

(t) The pole.

In the discussion of ;clated polar equations in Section -2 we used the
fact thal the poini P = (r,8) has also the coordinates (-r, 6 +n) .
Thus, if P is on the greph of T = £(g) we must also have P on the
graph of * -1 - £(6 + 1) . Then we obtained the equivalent equetion

r= -t16 % ) , but this step cannot be carried through so easily with
incqualities, If she point (r,8) is on the graph of I > £{6) , then
that seme po'at, row indicated vy (-r,6 n) , is on the graph of

-+ > t(6 s n , but this last inequality is equivalent to r < -f(e + n),
and this i¢ %\ rclated poler inequality of r > f(6) . However, the
%priéinal inequs:ily can frequently be written in the form g(r,6) >0
for which, t:hc velated polar ineguality is gl-r, 6! 1:\) >0 and is

usually easier ‘o handlé.

fa) v~ -9
(v) r2 <9 {
() ¥>-3 ‘
(@) r<-Z

ERIC



6=2-g

n
9<-§
r=-2(8+z5)
r> (6 + 1)

'lein-2|=.1
[ - 5] <.,

or |r+5]<.,1

6 /
T =sn o
_ =3
&"cose
r= -2
cos 6
. _5_
r cos 6
I = 1
cos(9+1’%)
I = 8
sin(6 - b)
1 -
r<s;1.n§
2
>
r cos 6

27 = x + xy

X=y2+)ql

y=x2-2

2 2

X .Y _

5 &16 =}
(z-2)%, (y =02 |

9 25 -

2 2

hy% = x°(4 - x%)

1 1

—_ 4+ — =1

22

“ 160 ye)(1-2§2)2
x=3-2¢, .

-7 .k
y=1 St. ) “
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= 8kt s ’
y :288t .
When t =3 ,'A=(8,0),B=(-1,1k), a(a,B) = Y277 .
When t =5, A=(14,-2),B8= (-5,16) , a(A,B) = V&85 .
When t =2 I;}=(x1+221,y1*2m.l) s P2=(x2+£’f’!2,y2+
ap.p.) = fx - x4 2 - 2002 4 (v, - v, + 2m - )’ '
1ol = A% Xt ey 2 1"Vt e o) .
(a) x = cos(% + Ght) , ¥y = sin(%;+ 6nt) . ) N : [
(v) x = cos{- 12 - h,;t) , ¥ = sin(-‘%'- hxt) . X . | ¢
, . . . \
{¢). x = cos(- % + 2nt) , ¥ = sin(-% + ont) . § -
() x = cos{n - Bat) , ¥y = sin{sx - 8Bat) . , )
(e) x = cos(%— + k) , ¥ = sin(%1 4 nt) . . ‘

>

We give, the time in seconds and the angular position in terms of 6
.l ey .
only. The rectangular coordinates of the Dosition .are (cos 87, sin 6).

1 11 \ -
(-ay 1—0‘ ) (_I'_OE) (f) %y (O) M s
2 1 3Iin
4 5 . /
¥ St { n
() %, (39 » ) g, () S
~ -
, n 13n L n
(@) =, (D) (1) =, (B)
' T) 10 3 2
5 . (In 11 30n
(e) g7 (TE) . ¢3) o5 0\ ()
Assum{? that it starts from its farthest right position v
H . . [ 3 .
i : {x:,h+3cos hnt ,
[ . e .
; y =5+ 3 sinbnxt' :
I¢, wen t =0 it starts from the angular posiyion 6 relative to its
i v . .
then-the equation$ of mbtion are

L +3 cos (bxt + 6) ,
5 + 3 sin (bt +6) . |

»

{ X =
- v

Y

Assumd it starts from the angular position 6 relative to its center.
Then - ’ .
2.
{x=-1+2cos(()-2nt), . / .
y = sin (6 - 2nt) . : :

'18B91




Yo

15, These are al) «circular paths with center at the center of the clock. We

\ar

- give the rudfus, angu

vosition of starting voint, direction of rota-
v tlon, and angular velec

—
o
b
-
4
-
<
<
£
.3
-,
PR
e3P
-
o
G
&
)
-

rpm.

~ .

»

~~
ool
A
bl

I E:

, counterclockwise,

¢) 10, n, clockwise, 5 rpm.
. a
(a) 8, «, counterclockwise, 2 _rpm. N »\
{e) The given equations are equivalent vo .
L 1
. x =2 cos (& - pnt) ' . .
i <
’ égyazsihf%-i}nt), ,
. . \ <
. .. therefore the métion is as above: 2 , 2 s clockwiise, 1 rpm.
- . . D ’
16, (a) {X:f}cos,e s
» ¥ 3sing. )
. i
o (b) {x:zcoue,
kY Yy =4 sing, .
(7 | -
‘?‘ {e) { %~ /5 cos 6, %3
/ 4
|

“far. Za) The path of P 1is a cycloid with para.metric\ equations

i

a{6 - sin.g) s
ali - dos 8) . /

.
——
< X
u

We\agsume the following: a = 12 in‘ches; the wheel rolls fwom
Yeft “to right; x 1is measured in inches along the road to the
rig‘ht from the :‘1.rs,t contact point of P ; y is measured in
'\ inches above the road; @ 13 the engle of rotation measured °
‘ clockwise from the 6 otclock peaitior to the pési:cior'x, of P ;
- /9 =wt where t is measured in seconds end ¢ =3 rps = bx

‘ 'radius per second. Our equations are:

,

{X
) Ny

(b) 'The path of Q 1s a vurtate cycloid whose ‘equations were derived
. in the solution to Challenge Exercise 2 on page 18,

12(6nt - sin 6rt) |,
12(1 - cos 6xt) .

1

. equations of the path of Q are .
. {x=12(6nt) - 6 s5in {6xt) , .,
, ¥y = 12 - 6 cos (6nt) . -
Qo el )
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Chapter 6

CURVE SKETCHING AND LOCUS PROBLEMS

)
« -

This chapter explorcs in detail the relation between a curve and its
analytic representation, We present some methods of curve-sketching which
are probably new to the students, particularly the addition and multiplica-
tion of ordinates and the addition of radii. These relate the graphs of

certain types of equations to the more femiliar graphs of simpler equations,

We then discuss some geome%ric properfies of the curve and see how they
can he deduced from its analytic representations. We see how the choice of
' coordinate system casts its particular light on our analysis, and explore the
- advanteges and disadvantages of each in a variety of situations. The geo-
metric properties we consider are symmetry, extent, Periodicity, intercepts,
and asymptotes. The treatment is careful but not exhaustive, and students
should be eneouréged to see any open questions that we leave, and to try to
supply some answers. This is the essence of research, and should be so pre-

sented.

- We suggest some topics that may be explored as extensions of the content
of this chapter: asymptotes which are oblique lines; asymptotes which are
‘other curves; "phase displacements”, which may be considered additions of
abscissas; properties of families of curves; enJelhpes of families of curves;
self-intereecting curves; extensions to three or more dimensions; abplications
of this content to physics, particularly to periodic phenomena such as radio
broadcasting; the relations among period, frequency, velocity of prepeagation,.
end wave length; resonance and interference, both in sound and in light; the
Doppler effect in sound and in light; and so on. Students are pleased to
recognize the Doppler effect in the changing pitch of an automobile siren as
it approaches, passes, and recedes from them, They are also pleased to ob-
serve the interference of light as they look through an almost closed space
between thumb and forefinger.

«'The teacher is referred to any recently written text in physics, and
particularly to the members of the science department in the school., The

topics mentioned are suitable for Joint investigation through experimental

O

ERIC 193%

R v

Ao e o . —— T L




[E

6-2

»
and theoretical approaches. Both students and teachers can benefit from a
systematic investigation in depth of any of the topics mentioned, and the

opportunity to check experiment with theory and vice versa.

The sire curve is particularly suited to exhibit such matters as bounded-
ness and periodicity. The polar graph of r = sin 6 exhibits boundedness in
L
5 .
periodicity is shown by the fact that as © increases without limit, the

that it is entirely contained in a circle of radius more than The

pointa P will go endlessly. around the circle as shown. -
£

Exercises 6-2(a)

It is to be understood that when we ask for bounds for a greph we want
the "best" bounds, that is, the most restrictive, Thus, for 1(a) ,
= 2 sin x , we certainly have bounds } 10 ; "better" bounds are ' 5, but

the "best" bounds are ' 2 as indicated below.

1. We use the fact that 0 <sin <1 and O <cos 6 <1 for any 6 .

(a) -2<vy< for any X . '
(b) -1 <y< for any X .
{¢) 1<y< for any X .

2
1
3
(a) -lgys—lé far any X .
<sin § <1 forany 6, wehave 0 <2 sin(3x + %) <o,

and -2<y<6.

(f) Ve know O < |0.6 sin x| < 0.6, and O < |0.8 cos x| < 0.8
therefore we have bounds O <y < 1.4 ; but we can do better, since
the two terms in the sum, being related, do not reach their maximum

(or minimum) values for the same value of X .

Note that (.6)2 + (.8)2 = 1 therefore We.may take 0.6 - cos t
and 0.8 = sin t , and write y = sin x cos t + cos x sin t , with
't as sbove. Therefore y = sin(x + t) and we now have

-1 <y <1 . These are the best bounds, and the solution to this

exercise.

O
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(g) Yy=2=rinx+ 3 cos x = V2
= /2% 4 3% (sin x cos t + cos x sin t) where cos t = —o- ,
3 -
and so on,

Since y = ¥I3 sin(x + t) we have the solution,
-3 <y <13

X /2 2 8 . b
{h) y=asinx +) cos x = Ya* + b ———— s5in X 4+ ———— (05 X

1 . el
a“ b2 Vae + b2

. . —
= /a° + b~ (sin % cos t + cos X sin t) = v/a2 + b sin(x + t) ;

«as in the previous solution. Therefore
- &

(1) o<y<t .
- .
(3) ¥y = sin"x - cos"x = - cos 2x . Therefore -1 Sy <1
2. Bounds: a - |b] <y <a i [b

Period: Since sinlcx 4+ d) = sin(ex 4+ @ + 2nn)

o)
= si’n(c(x~ + -’-‘—Z—n) + d) , there «will be no .
.
change in y if % is increasec by ;’éﬁ for integral n . Therefore

the period is _2c_n .

6-2(b), Symmetry.

We desal only with point and line symmetry. The content of this section
is essential to some important transformations of the plane, which will be
dealt with in Chapter 10 and its supplement, Students should be cautioned
against replacing the phrase "symmetric with respect to the x-axis", by the
non-equivalent, “"symmetric with the x-axis". Come authors use "wrt" to
replace "with respect to". We usually confine the domain of & thus:

0 <0< 2r, since the generalization beyond this domain is usually simple.
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Exercises 6-2(b)

1. This question repeats. Numter £ of Section 5-6, to whose solution you are

referred.

2. An ellipse, or a rectangle which is not square; ¢1 equilateral triangle;

a square,

3., A circle, a line, the plane, a half-plane.

4, Yes. 1In review exercise humber 17 at the end of this chapter we ask for
the proof of = somewhat strouger statement, that symmetry with respect to
both of two perpendicular Jines*requires symmetry with respect to their
intersection. A

3

€. Ve sunmarize the results by tebulating for parts (a) , (b) , (c¢), (d),

5, No. Consider t'.e grsph of xy =1, or y = x or the letter S .
J J

(e) , (n) ,-(i) , (J) , the answers to these guestions: Is the graph
symmetric with respect to the x-axis?; the y-axis?; origin?; the line

y = x?; the line y =x?

(a) No, yes, no, no, no.

(b) Wo, no, yes, no, no. N

(c) No, yes, no, no, no.

(&) No, no, no, no, no.

(e) No, no, no, yes, no.

(f) This equation is equivalent to (x + y)e +2(x +y)41=2 or

(x +y + 1)2-= 2, whose graph is the pair of lines
x+y+11 /2
with respect to (1) “the line midway between them: x + y +1 =0 ;
(2) cach point of this line, that is, each point

((x,y) : x=-t ,y=t -1, forallt]};and (3) each perpendi-

0 . These lines are parallel and sre symmetric

cular to this line, that is each Yine of the family x -y +k =0,
&) This equation is equivalent to (x + y + 5)(x 4+ y - 2) = 0 , whose

graph is the pair of parallel lines: x + y + 5 =0 and

x +y - 2=0, They are symmetric with respect to (1) the line

midway between them, x + y +% =0 ; (2) each point of this line,

that is, each point {(x,y) : x = -t , y =t - % , for all t ]} ;

and (3) each perpendicular to this line, that is, to each line of

the family x -y +k =0,
(h) No, no, no, yes, no.
Q \ 198 (\
ERIC 19

Aruitoxt provided by Eic:




(1) Yes, no, ro, no, no.
(3) If n 1is even: yes, yes, yes, yes, yes;

if n 1is odd: no, no, no, yes, no.

<

For parts (k) - (t). We consider only symmetry with respect to the
pole and any line through the pole. We present our answers in this
order: -
Is the graph symmetric with respect to the pole?

What lines th?ough the pole are axes of symmetry for the giaph?

n
(k) Yes; 6=0,6=3.
(£) No; B~ 0 (since the related polar equation is r = - sin2 8,
n
. 6:5. IS
(m) No; 6= % . (This curve 'is an ovaloid through the points (2,0) ,

(1,5),(2,1),(3,3).)

(n) No; 6 =0 . (This curve is a parabola,)

(o) No; 6= % . (This curve is en ellipse. It has symmetry with

reé%ect to its center, the point (%, %) , @nd the lines along

its axes., These lines are most easily represented in rectangular
coordinates: x = O , which has already been found, and

Yy = E . Thi§ last result could be fo@nd by polar methods but

will not be discussed further.)
{p) Yes; 6=0, 6 = % . (This locus is a pair of parallel lines and

has, beside the axes of symmetry already mentioned, any line
parallel to the polar axis, that is, any member of the family

a

T = Sin 6 °

(q) Yes; 6= ﬁ , 0 = %§ . (This locus is a double loop in the first

and third quadrants, cfossing at the pole.) :
o at 1
(r) No; 6= Z > 6 = %; » 8= 3 . (This locus is a three-leaved

rosette, with loops out to (2,%) s (2,%;) , (2, %;)-)

[l{fc 197 195 7
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1,

2,

Y

(s) Ne; © =.% . (The graph is an ovaloid .curve throu.gh the points
(3,00, (1,5, (3,0, (5,3).)

(t) No; 6 = % . (The graph fg an ovaloid curve th?ough the points
(2,0) , (a + o ,%) , (a,m) , (a -1, %;).) )

Challenge Problems

Given a point P 1in space znd a plane M which does not contain P,
The symmetric image of P with respect to M 1is the point P?
that M is the perpendicular bisector of FP? ,

suecn
The question of figure-
The fact is

that there is a top-bottom reversal, as is seen by the reflection of a

reversal in a mirror can raise some interesting problems,
mountain in the surface of a lake, We could easily see the top-bottom
reversal in our persons if we stood on a mirror, or sat at a mirror-top
desks

plane of reference, usually the perpendicular bisector of the segment

Our normal position of viewlng establishes an unconscious vertical
Jjoining our eyes. When we lie on our sides this plane is no longer
vertical, and the reversal is now from top to. bottome Ycu may grasp
th%ge ideas more clearly if you close one eye to help remove the un-
cbﬁscious vertical plane of reference and then consider various relative

positions of the mirror, the eye, und the reflected object.

The problem is trivial if L is horizontal or vertical, Assume that it
is neither. L 1is the l bisector of P1?2 , therefore the midpoint of

N

fx, + X Y, +V
P,P, must be on L , therefore a(xl—e-2> + b<1—g> +¢=0, or

1°2 2
-~
ax, +ax, + by +by, +2¢=0. P, P, | L, therefcre

r——

fzi;ljﬁk =2 thus, b - bx. - + =0 We sol these two

X, - X, &, “uS, 0% Ty TR =0 solve

2" X >

equations for x, and Yy, , and find ;

2 2 2 2 At
- . (e - b )x1 + 2ab y, + 2ac 2ab x, + (b° - a )y1 + 2bc\
= , -
2 a2 + b2 a2 o+ b2 /

-
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-2(c)s Extent.

The discussions of the examples in the text are done in sufficient detail
to meet the requirements of a text at this level. The ideas of this section
are a good foundation for the topic of continuity whiéh is so significant in
the calculus, We do not discuss functions whosé graphs have serivus dis- -
continuities; nor the "pathological" curves of higher mathematics. However,
it vis salutary for the class to discuss the graph of, say, y = (--_1)x whicﬁ
is totally discontinuous and consists of an infinite number of the points
of the lines y =1 and y=-1. .

In this chapter (Page 214), the term "asymptote" has been Lsed ;ith
reference to a line to which the poinis on a graph approach more and more
closely, but which contain no points of the graph. This is always true
of the vertical asymptotes, i. e. the y-axis or lines parallel to tne y-axis.
In the second example (see Figure G - J), we note that the x-axis is crossed
by the curve at (0,0) but acts as an asymptote éJr the points of the graph
where x >1 and x < -3. In common practice such a line is also reférred
to as a horizontal asymptote. Ho rer, it can be proved that such horizontal

acymptote méy he®® only « Tinite number of points in common with the curve.

It is also important to note that it is possible to have asymptotes

which are not lines. For example, the parabtola y = x? acts as an asymptote

2
to the curve y = x" + % « You may like to assign this to your better

students after discussing the @raph of y = x + % on page 220.
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6-3, Conditions and Graphs {Rectangular Coordinates).

" We have taken a good deal of %ime and space to show how to sketch certain
graphs which are related to familiar graphs. .tudents soon “catch on" and,

quickly develop a fine.competence in this part of their work, often reporting

, later that this was the most useful part of the course in later applications.

We suggest again a dynamic approach to graphing. Typical questions'are,
"How could we chaage the equation to raise the graph 2 units?" , "What
happens to the graph if we reverse these signs?" , etc. As in.all exefcises,
the fore, thegbetter, but please do not assign all tiie exercises of Exercise

6-3. You may, of course, uSe some of them for test items.

Ctudents are always interested in applications of these ideas that come
within their immediate experiénce. You should point out that the graph of
the equation y = a + b sin cx 1s a simplified version of broaacast waves
that are received by their radio and television sets. An ihcrease in a has-
tne effect of raising the "bias"., RKoughly this is what is done on the TV set
vhen we increase the "brightness". An increase in b has the effect of in-
creasing the amp’’tude, On the TV screen the lights would get lighter and
theﬁdarks would get darker. This is what is done when we increase the

N .

"contrast". .-

The equation y = b sin ¢x also represents roughly the motion of a point
on a vibrating string. When we strike a piano key lightly, then heavily we
increase the loudness but not the pitch.. This situation would correspond in

the equation, to increasing b , but keeping c constant,

When we strike two piano keys evenly we have the same loudness but
different pitch. This would correspond in the equation to keeping b constant
but changing c .

The relaiionships among mathematics, physics, and music were investigated
¥y the great Greek mathematicians. We leave for individual investigation the
extension and development of these ideas to include harmony, resonance, inter-
i, ence, beats, etc., all of which are referred to in any current book on

physics. ’
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Y-intercept: 2

x-intercept: none

I\
e
+»
T

-] 4
24

-3

Y-intercept: -3

X-intercept: none

¥-intercept: none
x-intercept: -1

Exerdises 6_-_3_
b, x =4

5.

6.

201

199

Y-intercept: none
x-interéept: 4 °

y=-x+3

y-intercept: 3
x-intercept: 3

y=2x-1 Y

y-intercept: -1

x-intercept: -é—

£




10. i+%=1 J

O

*,

y-intercept: -‘5
*x-intercept: -3

8. 2x +3y -5=0 ‘

y-Intercept: %
. - N
x-intercept: =
2
X _¥Y_
9. 5" 3 1
¥

y-intercept: -3
x-intercept: 2

3 \

24 .
o é\ X

y-intercept: &

x-intercept: 3

.

-

y-intercept: % - :/’
x-inte}cept: %
S
12. y =~ 5 X 2 :
) y
. 21
\1 PR T 1

y-intercept: @

-4

ﬁ;intercept: -4
13. (x-2%+(y+1F =1

. . y

) y-interceppz none
x—intercépt: 2
center: (2,-1)
boynded

.




15.

NS e e A e L

) 2 2
(x+12+y° =y 17, xS =(y Ay - 1Ny - 8), -
y y
> T~ I
\X : — 34 :
. o / 2 X C .
. Pt Y
‘ . el S 5 X
b * y-intercepts: -1 , 1, b
y-intercept: + /3 ¢ X-intercepts: -2, 2 .
. x-i?tercepts: -3,1 curve is not connected = >, ;
S \ .
center: (-1,0; - . symetx::c in y-axi£ ol
bounded s no g.sympu')tes E
(x+ D%+ (y-1%=0 2 o
. 18. xy° -2y -x =9
wiichis x=-1 and y =1
y
Y .
a--
o ¢/ ' 2 .
— L4 x
e -/ o x ————————— r——.—-—..—-—\-—
The- locus is a single point. y-intercepts: 8) .
x~-intercept: O
y2 = x(x - 2)T% - 3) not conne~ted’ ‘ .
. ) y symmetSic in point (0,0) .
. ) asymptotes:'y:l,y‘=—l,x=0
’ 19. y = sin 2x |
2 |
) ** 0 2\ 4 X
y-intercept: O
y-intercept: O .
1
X-intercepts: 0, 2, 3 x~-intercepts: n3
curve is not connected Slsy <l
symmetric in x-axis
no asymptotes ) . . '

203 =




3 + 4
. 23. y=1l+ec {/
/Qb y
p / 2
(i (/ l -Tr
e .
X
- ol 1 2 X
. y-intercep*s /ﬂ
: B -int t:
x-intercept: O y-intercep 2
1<xxl x-intercepts: (2n + 1l)x
24, y = tan &x y
2. y =2 sin x | .
|
- Y i : al ; :
| 1 2 /1| I
) 2r b ab /| |
! R +
. - N . 'ﬂ I o I3 f I
-0 2 x : | 1K | I
| | |
% ~ 8 | I I | .
N §
- -intercept: O 1)
- y-intercept: O y P
-int ts: nx
x-intercepts: nx x ercepts .
2n + 1
-2<y<?2 asymptotes: Xx = =—75—x
» 3
22, x = cos Y y . 25. y = oX
2\ R
! \ é
4 .
o 1 X 4 .
‘
. ° 2 .
< = .
y-intercepts: % + i .
¢ : y-intercept: 1 “
x-irtercept: 1 ) x-intercept: none
. . asymptote: y = O "
n
" . . 's / ]
o o 04




[~

o 2 4
; y-intercept: 1
xsintercept: none

acymptote: y =0

[4

y-intercept: 1
- : x-intercept: none

symmetric in y-axis

~

3

X

28. y =3

y-intercept: 1
%-intercept: none

ERIC .
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30.

31.

203

y-intercept“:t none

‘x-intercept: 1

y = Inx®

y-intercept: none“
1, -1

symmetric wrt y-axis

x-intercepts:

Yy = 1cg2 x

y-intercept: none
x~intercept: 1

asymptote: X = O-

P‘?




6-3 ' /
2 2
R 32. y=5%-1 and x >1 35. X"+ y" o=
. y .
6
4 N
Y 3 4 X
2
a2 4 x
o intercepts y-intercepts: 4 , -4
no points in left or below (1,4) x-intercepts: 2 , -2
symmetric in both axes B
33. xy =3 y - <y <h os2<x g2
4} 36. x=3cos39 y=3.sin39
2 2
21\ x2/3+y/3=9/3
Y
- ) 2 4 . x .

no intercepts

asymptotes:- x =0 , y =0

— 2 y2 _ 22 y-intercepts: 3, -3
) x-intercepts: 3 , -3

A

4’ Y symmetric wrt both axes
tangent to axes at corner points
2
['\ . 37. x+y=1 OSYS]-
(JZ 4 X ’ vexst
y-intercepts: 2 , -2 4 N ¢ ’
x-intercepts: 2 , -2
center: (0,0)

symmetric wrt any line through O .
y-intercept: 1 &/\/
‘:' Q . x-_intercept: 1l
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y-inte_-cept: none
x-intercept: 1

NI restricted to first quadrant

symmetric wrt both axes

2)% <o(x + 1)

unbounded region .

synunetnric wrt y =2

(x +2)2 r (y+3)% >

unbounded region
center at (-2,-3) .

2 = ?3 5
y - y .

3

42.
2
39. > X
¢ /
AT
% 7
“ R. &.' ’I
1SS DY
\\ . .{I
AN I .
¢ o 2 4+ X
symmetric wrt y-axis
unbounded ’
2 2 43
X N .
= +
4o. 5 -H-' <1
. Yy
2
‘a"' '“‘s\
,l’ ] \\‘
L3 N Y 1 el ‘.
- -3\-2-10} ¢t 2 '13 X
\-\s /~’
DI UL g .
bounded

y-intercept: O
x-intercept: O

symmetric wrt x-axis




y-intercept: O y-intercept: O
; x-intercept: O x-intercept: O
symmetric wrt x-axis asymptote: y = O

symmetric wrt origin

-1 1
' * FIVIE
) n
L5, x3 +xy© - 35 vy =0 47 xh Fyh = aLh
Yy Yy
2 lal

y-intercept: O y-intercepts: lal , -lal
x-intercepts: O , 3 x-intercepts: |a] , -|a] .
. asyrr;ptote: x = =1 symmetric wrt both axes

6-4. Graphs and Conditions (Polar Coordinates),

The use of an auxiliary graph in rectangular coardinates, z;s shown in
Example 3 is probably .new to the ciass. It is a useful technique and should
be practised in a fev exercises until it is understood and becomes a familiar
tool, The same may be sa'id i‘or the technique of addition of radii, shown in
the same example, We may think of tflis last technique in a dynamic way,
considering the radius, r , as changing, or modwlating, as 6 changes, Thus,
in E"igure 6—29(a),qas the ray OP rotates counterclockwise the Q-points along

: ;
s, 09 ‘

e - e . L Sl . e e e LY
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6-4

that ray also move counterclockwise, but have an extra radial rotion, the
modulation of the radii., 7The class might discuss the graphs of 1 4 3 sin 6 ;
L +bsiné; 2+sin6; a+ sin 6 ; and finally & + b sin 6 , for changing

values of a2 and o .

The speciol ambiguily in the polar coordinates of the pole is an extra
ingredient to consider in di:cusﬁing {hc intersections of polar graphs. The
situation has a geographic analog which students find interesting, If you
are at the north polc, which direction is south? The answer is more semantic
than factual. If by "south" we mean directly toward the soutu end of the
earth's axis then the answer is: struight down along th;t axis., If by "south"
we mean an available direction of travel uliong the earth's surface, then the
answer is: any direction, If "north" and "south" mean "directly to the ends
of the earth's axis", thewn an object dro;ped.to the surface from a point above -

the "north pole" will travel simultaneously both north and south!

Exercises 6-4

1-1':3’]':-3‘ 2. 1‘:-2’1‘:2
Circle: center O , radius 3 Circle: center O , radius 2
x2 + y2 -9 x2 + y2 .

O ‘ 90 G
. [EIQ\L(: “ zz{j .i. 207 s ‘ .
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6-4 .

3. 6 =-’é , 8 = Zg‘. 5. r = 3 sin € , related equation the
Line through O same
y = ﬁx Circle: center (%,%) s radius%
3

* This circle is described ‘twice as

the radius vector rotates through g

2
Line through 1

k. 3“,9=-% 6.r=sih29,r=-sinée

The graph is a four-leaved rose.




<kt

1.

r=co5 2%, r=-cos 28 9
Four leafed rose
Symmetric with respect to origin

. 1
end lines f =0, ¢ = T a =

1=

(@ + 933 - (2 - )2

r = sin 56, related equation the 10.
same
Five leatred rose -

Symmctric‘with respect to oriéih'
nn .
and lines € =15:1=1,3,5,7,7 .

2

2 2.3/2 -, 3
(=" +y )“/ s'5xby - IOXQyJ +

271

recos £ - - 3, related equation

the ¢ame

Straig¢ht line

x = =3

r cos (0 - 150°7)
equation the suwe

Straight line

y_:/g)(-%()

- 3, relatea
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11.

3

r

"1l-cos6?*¥*

-3 .

1 + cos 6

M
~"}.‘fﬁ.rgfmol.a.: focus 0 , directrix

X = =3

Unbounded. Symmetrie with respect

to polar axis

y24= £x +9

13.

r=2(1+¢cin®), r = 2sin g - 1)
Cardiod: Bounded
Symmetric wrt 6 = 90°

(24 y2)2 - Pa - y) - “y3 =0

0/ 2/ 3 4

Q -

-9

r=h—5’cosé’r

Hyverbola with e = £

foci at O and
Center at (5;%m) .

"% 45 cos 6

2

( 10,n ) k
Unbounded . )

Symmetric with respect to center,

line x = -5, and polar axis.

90« +5)2 - 16(y)?

The asymptotes are:

= 1hk

y

i
=
—
=
+
\J
~

]

y = - 2(x+5)

1h.

r =2 tan 6 r=-‘2tan9

"}Eappa Curve" so called because of
1ts resemblance to the Greek
letier k_ag;ia:, X ‘

Unbounded. Symmetric wri origin,

6=0,80=9"°.

Vertical asymptotes x = * 2

!
x' = y7(h - 5F) ‘

|

"
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4 -4
5. r= IRl -preep
Spiral. Unbounded.

(Solid line corresponds to posi-
tive r)

Not defined at 6 =0 or r =20

——

[

17.

r=2-3 cos
Limacon. Bou

6, r
‘ed.

-2 - 3 cos 6

Symmetric wrt 6 =0 .

(L+ )2+ 6B +yP) +55° - WP = 0

16, r=2cos -1, r=2cos O+l

18.

r=2+sin 6, r=sin g - 2

Limacon. Bounded. Cardiod. Bounded.
»Symmetric wrt 6 =0 Symmetric wrt 6 = 90° ’
(PP Br P 3R Fa0 (ErPP- P+ ) - <o
% % ; \>\ .
> : ' L>
I / 2 3 l ’ pe) / 2 3~




19. r° = cos 26, related equation 2l. r =k tan 6sec 6, related equation
the same

Two leafed rose *
Symetric wvrt =0, 6= 90°,
Bounded, restricted to segments.

the same
Parabola. Unbounded.
Symmetric wrt 6% 9o°
2

1
Y = gx
-45° < 6 < 45°,135° < 6 < 205° ¥

r=2(1+ sin® 6), r=-2(1+ sin28)
- . Bounded.

20. r” =k sin 26 , related equetien Symmetric wrt 6 =0, 6 = 90° .
\ ~
the same 2 . 2\3 2 2
Two-leafed rose (xT +y5)7 = M(x" + ¥y + y)

Symmetric wrt 6 = 45° an§ o
Bounded, restricted, to N : - ]

0<6<90°, 180° < 6 < 270°

(xe #5212 < By




[N
H

23 YT TTcoe A2 T T Cos Z -1
Parabola. Jnbounded.
Symmetric wrt 0 =0
X = -O.Ly2 LIPSt

. o

(1')6)

pressed with negative r .

ERIC

Aruiton provided by enic [
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The whole blane; every point

in the plane may be ex-

25,

26,

Ir] <2, related equation the same

Disk, boundary included.

Bounded. Symmetric wrt O .
o Lo
X" +y <h

2<r<3,-3<r<-2

Annulus, boundary not included

Bounded. Symmetric wrt O .

) 2
16<x‘3+y“<9




8

é?- 0585%’“595%- 28. 0595;:- and r >0, .
Unbounded. Symmetric n<0< %2 , aﬁd r<o,
wvrt 0 an? li?e 6= % ) Unbounded . S&;metric
) ) wrt line £ = % ‘ :

6-5. Intersections of Graphs (Rectangulur Coordinates)

.

I3

This topic has been met in carlier course

s and {5 here treated with a
little more genefality.

The method of lincar combinations of runctions is
used briefly here and more thoroughly in section (-1, The exercisés are

limited to linear and quadretic equations only and present no speeial dirfi-
culties, Higher éegree equations have more complicated graphs and present

much more difficulties when we consider their intersections,

The order, n , of a curve is the maximum \
tion that it may have with a streight line, _Stfidents may enjoy céiscussing

the félIOW1ng questions about the orders of curves:

mber of points of”intersec-

What is tne yelation

between the order of a curve and the degree of an equation of 1t? (Note that

we say "an equation”, because ye have olready seen that, a curve may have more
than one equation.) What is the maximum number of intersecctions
curves of orders

between two
m and n ? Discuss the order of a closed curve, g seclf-
intersecting curve,

»
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7. The points of intersection are (1, -1) and (-1, 1).
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11, The points of intersection are (1,1) and (-1, -1).
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6-5
For Problems 17 to 19, the intersection is the shaded region.
7. ((x,y) : ¥y > x2 and y <x + 1)
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6-6. Intersection of Loci (Polar Coordinates).

Ahy adequate treatment of this 'topic must give careful coﬁsideration to
the special situation at the pole; and to the multiple representations of
polar graphs. We have done this in the text, and found the concept’of re-
lated polar equations particularly useful in finding ell intersection points,

Intersections of the graphs of polar inequalities are not treated here
because they lead into content beyond the level of this book.

"\

Exercises 6-6

1.

Related equations are r = - —2 and 6 = 210° , ' '
1 - cos 6




=

The r

(0;9)

Related equations are the same,

-./-* Jfﬂa

. ,“
elated equations are r = - T-sing end 6 = 3150 .
¥2 o
Ye 1

y=25n8

re=2dawsé

The related equations are

r=cos§d and r = -1 - cosd .




_The related equations are r

5. (0,8) ([-39;,3o°) (-’2—', 150°)

-

7 }E=$W726

- r=cosé Ir'=/+Cosé
N ’ r - cos 6 -1

cosg and

i

The related equalions ure

-l -5in @ and

frsing
6G-T, Fumilics ol Tirves,
. ’

=1,

This tople is u nceessary foundation for parts

COUL'GEH,

families ol curves morc generally,

We expanul the idea of linear combinations

A one-paramcter

of the ususl calculus
of functions and treat

family is related to the

. N

b ﬁ)

sy
t
4

» = =oiu 28
‘) ‘ \ , .
4 1 0 1 0 ' r’/-t'o.f&
. 6. (3, 307) (3, 1507) 1
T = ———m—m———— -
v . i . . 1+ cos @ L
S grsng =/ i '
z -, T
r=/-Sn8

physicar concept of onc "degree 9f freedom” and so on. It is instructive to
develop thiis briefly, showing how the restriction of cach degrec of freedomd
is cquivealent to the assignment I a spceific value to one pm-ametrer. Thus),
drawing a cirelc one the blackbuard involves three degrees of freedom: locate
it horizor{tully, locate 1t vertically, dctermine its radius, These determina-
tions arc made, and the degrees of freedom arc kﬁ\tricted, by assigning
gpeeific volues respectively t. a , b, r, in the\a\ tlu'ee—parameter family:
S CRY LR CR L .
- \ \
The method of choosing a particular member of a family is often more
The' particular

member may be determined by a condition whose application may be quite in-

complicated than assigning nuncrical values to thc parameters,

direct, There will be future applications of the methoci shown for picking

\

N




»

out a tangent linc, by imposing the condition that such a line has a c.]ouble
contact pointe. Algebraically this means that thc‘%quation wiiich gives the
"abscissas of the interscction points must have multiple roots, If the
cyuation 15 quadratic, as in the text, this condition means that the \discrimi-
nant o!' the gquadratic cquation must cqual :ero. - ’m}is is what gives us the
cquation from which we pick ocut the values of the parameter for the Tembers |

of the family that satisfy our condition,

The roview ezercises at the cnsl/oi' the chapter furnish many oppoi‘tunitie\S . ;
to writc fomilics of curves, mos4T¥ lines and circles, We did not include ;
exerceises in which the student is asked to pick out a particular member of ‘
the family to satisfy a given céndition. These are simple to improvise, end 1
may Lake any of the following forms: Find thc member of the family which
goes t.hrougix a given point; find the member of the family that has a given
slope; £ind the mémbu‘ of the family that is tangent to a given circle; ete.

It is instructive to consider cach family as a sct of curves; then the

quostion of finding a purticular curve that satisfies two conditions is
cquivalent to the gquestion of finding the intersection of two sets of curves,
Hote carefully that we use the word “intersection” here to mean the curve T

(o1 curves) common Lo the two scts of curves that comprise the two families.

. Excrcises 5-7

= 8. »

1. x . ,
2e y =48, .- \« «
3. y+1=k(x-2),
b, y=kx+bDb s
5. (x+1)°+ (y-27%=4
6. (x-a)+(y=p)P?=16
2

8. f’fy*‘k=o.

|
70";'(.:)"»0 7 - {
9 x -2 +k=0. _ R

10. Axcosm\'t +ysint-5=0.

'
p

11, xcos:t tysint-p=0,p>5. , |

12, x2 +y2 - hx - 2y =0, h° + kK2 =36 ; or ' > |

onx - 2/36 -y -0, ' '

=

*

<
'

- ’

. ' 227
P 229 -
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lh/
. 5

13,

16,

17.

-

(x-n)% i (y - K)®

2 2
=1, h 1 ¥ >,
y =hx-12.

3x -3y 420 =0,

hx +5 =0, . .

The famil@”of all lines through the Interscetion of' the given lines is

represented a(x - 2y 4 3) ¢+ b(x 4 3y - 2) = 0, Picking a and

that (1,1) 1lies g the line and simplifying we get y =1 .

(a4 b)x® + (a b)y2 -.2(a - b)x + Wby - 35a - Wb = 0

Fof cach pair (ea,b) this cquation rcpresents a elrele through the
interscetion’ of the given two, The whole family of eireles is called

a coaxial family, Their eenter£ arc all on the parpendicular biscctor.
of the common chord of any two of these eircles, If a=1, b= 0 we

get the first circle; if a=0, b =1, we get the sccond cirele; if

[E

O

= b we getia line, the line along this common chord. This line may
be considered a degenerate ecirele, It has the property Lhat {from any
point on it thg tangents to all members of the coaxiel family have cqual
lengths, '

x +3y -7=0.

3x+hy -15=0.

Yy -5= :Zg(x - 2) a represents the x-intercept.: %? s the y-intercept.

’

15 the slope, and %(a) %?) the arca of the triangle in the

first quadront.,

-

x =5 and 3x - by + 25 =0, Any line through the interscetion of the
given lines can be represented by a(y - 10) + b(2x - y) = 0, that is,
by 2x + (a - b)y,- 10a = 0, The distance from such a line to the
[2b(0) + (a - b)O - 10a] that'is |10a|

'lstbe +(a - b)° fe? - 2o0b + 5b2

If this distance is 5 then |2a| = /o - 28b + 5° . Thus

30 +2ab - 502 =0 . Set a=tb and we get 3t + 2t -5 =0 and

origin is

t=1 or - % . These give us the solutions above,

T €) )
v geé,d(o.. .

DA v 7 provia: X i
.




-
le
*
L 4
>
.
. -
1
.
i
: ¢ 20
-
B
d
3e
*
.
.
.
b
-
-
.
'. . 1Y
O

- ERIC

—~

Review Exercies

‘

Fired, we riad the coordinates of the intersections of the two agiven
oe

lines with 211 lines parailel to the x-axis, For ' iine parallel
1

to the x-axis, the y-coordinates of the two intersections arve the same,

. i y
Thus we have y.l-Bz-yl and d.}Q-l:_y?:yl, or x,_,-—]e--_--gl--
xRy ey
Adding gives 5 ‘= T o Hence the equation of the desired
5, ¢ -
171 -y

locus is x = —p—= or y = bx + 17,

a
In the same manner as in 1 above we find the cquation

- 3

N Fad
w
[SIE]

—————e

a) &(P,A) = Y(x 1 W)° v y°

13

n 2>
23(p,B) - 2/(x - 8 4 y° which gives

" .
us upon simplifictaion 3x2.+ 3y© - h0x + %8 = 0 which ik the

. equation of a circle,
2' ~ ) ] . y") 2
(v) v/(x + W) 4y »/(x - ) v+ y© 10 which gives -—,;)— 4 -% 1
« e

which is the equation o1 an ellij -,

. . o
(e). 7[( + ")2 + Z{e - Nz - ")2 ¢ y? = 2 which gives % - 3—{-5 =1

.
\

which is the equation of a hyperbola.

{3) 1If the lines are perpehdicular, the product of their slopes is -1

- ¢
therefore . o
v - " - R « D 2 S o
i+0h "‘z ?""1’ Cey w2 x0,0or Xy =16,

This is an equation of & ci{'cle.

-0 -0 . s+
(e) {,—'—-;;—"«3‘1_‘, oy =0 0r w12,

The-locus is the pair of lines whosec equations are given above.
-0 y -0 ° .
(r) _—h .=1+—T.:(- 7 » therefore xy - by = %x° =16y 4 by .

N

This equation may be written x2 t 8y « Y. - 0, and is an equat;on

of" a parabola.
. .

6-7
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(g) Tet, @ be the inclination of PA and A be the inclination of
?’5 . If m , m, are their respe‘ct}lvc slopes then 3 .
[} & * '
tan /APB = tan(B - a) .
- y __Y - .
. 1__.2 ml oj 1_)("" x-]‘ _ By
o ~1+m2m1 l —]+ y . —)(2-1(’)+y2‘.' \
" X +h X -5
This equation may be writfen more simply as x2+ (y - !&)2 =132,
,and is an equation of a circle, ’ ) "
(h) 1In the same way s in (g) above, we have . - {
m - - ' t
tan /APB = tan 60° = V3 = ]2+ mml == By 5 » This equation s
’ i 2™ x© - 16+ y - !
2 2 8 .
mey be written x“ 4y~ -« —y =16 and is an equation of a circle,
: 3 ' Tea ot
? ) .
(1) Avea =Zhb; d(A,B) =8 .. n=20 .. n=5, , - g

Since the distance from P to the x-axis must be 5 , the locus of
€

P 1is the pair of lines whose equations are y = +5 , y = -5,

(37 Mx b)2+y2<¢(x- ’l)2+y2 means that x < 0 . -

‘ - x + 6 + 0
Let M = (r,s) be the midpoint of AP, Then r = - 5 3 8.5 ~y—é—— H

fo Xx=2r-6 and y=2s., Since P =(x,y) 1s on the circle

2 +y2 = 36 , we have (2r -“6)2 + (Es)é-.f 36 or 2 .6r+9 +67 = 9,

. 2 .
This may be written P +s%-6r=0 or x2+y'-6x=0 and is an

v

equation of a circle, which is the required locus, .

r;O,y=$~2¥5.‘81nce x2+y2=25, -

Let P = (r,s) , Then x =
! « ’ ‘ 2 .

oo (%72?(2-"—;—-)-)2 =25, or 2+ (s + ) = 100 , This.eguation may

be written x2 + y2 4+ 10y = 75 = O and is an equation of a circle, which

.

is the required locus.
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6. Let B =(x,y), E=(20,t) and M ,.the midpoint of DE = (r,s) . From
. ¥
M t LY 30y x + 20

similar triangles, ——7—=p7 = ?5 sy o o t=" 0 We.have r = ’
A AP ) 30y -
S =55 +.X= r - 20, y=25s - t = 25 - %~ + 10 ° These
" equations yield x = 2(r -10) ,y = Egié_%6él . Since D is on the
etrcle 2 + 32 =100 , e have' (2(r - 10)2 + (22E=5))2 100 o,
2 2 -
f‘ (r - 10)2 + E—LI—:—Q%— = 25 . This may be written
: (r +10) '
(r - 10)2(r2 - 20r + 100 - 25) + 52(r - 5)2 =0, or,
\r + 10)2(r - 5)(r - 15) + se(r - 5)2 = 0 ; which is equivalent to

‘ {r - 15)(r + 10)2 + (r - 5)52 = 0 ., Therefore an equation for the

_ required locus is (x - 15)(x + 1002 + (x - 57 = 0.

. However, a much simpler solution is available in polar coordinates, Take
the pole at C and the polar axis to the right along the x-axis, Let
D=(p,6), E=/q6) , and M, the midpoint of DE = (r,8) . Then
2 L
20 2

Therefore ar egudtion for the required locus is r = 10 cos f + 1% sec 8 .

= cos 6 , %? =cos 6 and r = 1(p +q) = =(20 cos 6 + 30 sec 6) .

T2

We may show the equivalence of these two solutions by using the relation-

ship: r2 = x'2 + y'2 , cOsS B8 =

o~

| BERY

X ; and x'=><+5.,y1=5-

x'2 . y'a . ‘o
fhe conputation is elementary but tedious.

’

. Any line parallel to y = 3x + 5 has an equation Yy 3x +4d , and,will

intersect the circle x2 + ye - kx + 8y = 0 in two points whose abscissas
Y .

2

are the roots of x~ + (3x + 6)2 - bx +8(3x +d) =0 . If the midpoint

of this chord has coordinates (r,s) , then r = the sum of the

ol

abscissas of the endpoint, that is, % the 'sum of the roots of this

equation, and this result can be found from tL-~ coefficients directly

without solving the €quation. Thus 10x° + (20 + 6d)x + a° +8a=0,

10 + 3d . 30 - d
10 ’ 10

these two equations yields r + 3s + 10 = 0 , therefore an equation for :

and r = - . S5=3r+d= - . - Eliminating ‘d from l
|
|

the required locus is x + 3y +10 =0 .

é‘i’i“, T T T e o T "’ T - - ’“’,‘2‘3" . ‘ - “'_,"',‘



In the same manner as in Exercise 7, we find x - 9y = O as an equation

far the locus. -

(a) The line

’

X
=+
a

o<

X + ay _

" the problem requires that ab = * 24 . Therefore S-7; =1 isa

()

(c
(a

)
)

(e)

(g)
(n)

4

~—

pair of equations representing two one-parametgr families of lines,
the solution we require. Of course a £0 .

y

As in 9(a) , we need g +$=1 and a+b =6, that is

g + 3‘%’; =1 with a # 0, 6 . We may consider that a line
}
parallel to an cxis has just one intercept whose "sum" is itself;

in vwhich case we may include in our solution the lines x = 6 ; and
y =6.
2 2

) )2 = &?

(x ~a)*+{(y-b a

{x = a2+ (y-1)° =12

. . \
The distance from the center (a,b) of one such circle to the line

ha + 3b - 2
5

problem, equals * 1 . The centers must lie therefore on the lines

hx +3y -2 =0 , and, by the conditions of the

bx +3y. -7 =0 and Ux + 3y + 3 = 0, which are parallel to the
original lines. The families of circles are therefore

(x - a)2 +(y « b)2 =1 where (a,b) must satisfy one of the

equations of the lines just found. In terms of a single parameter
7

. 2 4 .2
tre answers are ‘% - ' 4+ (y - = +=a) =1, and :

33
(x « -} - (y +1 + %3)2 =1 .

; 2
The two families are (x - a)2 + (y - 25_%.2 + %?) - ,

5r - 2 + %b)2 - r2 )

(x-0)2 4 (y + 3

(x - a)2 +(y - b)2 = 36 where % + b° < 36 .

(x - a)2 +(y - b)2 a2 +b° .

The distance from P = Xx,y) on the circle to the center (a,b)
must equal the distance from (12,5) to the same center. Therefore
the circles we want have equation:

(x -a)2+(y-10)2=(12-8)24+/5-1)2.

- B

=1 has intercepts a and b . The conditions of



2 5
(3) (x - a)2 + (y -‘b)e - ° vhere ag 5w .
2 2 z 2 .
(k) (x-2)" 4 (y -b)° =25 vhere a” +b” >25.,
. , e 2 D
(1) The two families are 2 1 (& LA bb i a%) = a®
a® f “2 4+ ¢t ah
and (x - n) (? 4 2 2 ) q° where g and h

are arbitrary,.

the equations

X-y+2-=

BX-’+y+:”>=

3x - by + 5 = hx -3y i § ;-and

hx + 3y -9 ; that is, x y + b =0, end

(n)

|

[P U VU

(Note that these lines are perpendicdiar to each other.)

Therefore b = -a -4 , or b=a4+ 2. The families of circles:
(x - a)% 4 (y - b)? - r° , become /
7 /
(x - )2+ (y+a: '4)2=(-‘-)a P 252 5 ana
< 2
1
(x-a)2 +r(y -a- 2)% - (+a 4 é)g .
2 J / -
/
2
{as +b.h 4 c) ,
The families are (x - g)2 4+ (y - h)2 -1 1 1 where

2 +b 2

/’ 8 )
a8ty B c1

Jgee + b 2 JC{E + b

+o//a

and for the other family

0'28+c2

h =

2 2
fo® s

b b
2

+
'Jg;2 +b 2

/;12 + b e

1

Gy
3_30233

(m) A point (a,b) on a bisector of the angles formed by the two lines
must 'be equidistant from them, therefore .
- 5 ha - .
'38, Eb t o = a 3+ 9 These bisectors have, therefore
5 5 b ’




(o) (x-a)2+(y-b) = r° .where b <rt.

2 2
(p) (X—a)2+(y-b)2 r% where a°> r

g
M
"
"
3
1]
=
o
&)
o
-+
o
c
)]+
1
[¢]
| AE
\4
=
.

‘ () (x-8)°+(y-n

\
¢ .

2 /2 .2
2 re 0<r, and a2+b2~»r<1o.

[}
o’
S
"
=
[¢:)
]
]

(r) (x-a)+(y

(8) (x..a)2+(y-b)2-_r2 where r >0 and Ir -1l </a +'b25r+1.
d
(t) ex +by +d =0 where ———— <1.
° 2 2

{u) (x-'a")e+(y—‘o)2=r2 where D <a, 0<b, a+b<10, and
r < the smallest of (a, b,-la_fM]-) .
2

(v} (x - a)2 + {y - b)2 r2 vhere r° > 2° + (10 - b)2 ,

[»]
r >a2+b2,and r2>(a—10)‘+b2.

n

(w) (x - )2+ (y - )% =12 vnere Yo + v 4 r =10,

]
(x) (x-a)2+(3r-b)2=r2.where ¢a?+b'-r=10.

(y) (X-a)g*(Y-b)2=r2 where x‘—-/a2+ 2=10. ’

(z) (x- g)2 + (y - !\.)2 = R° where lag + oh + c| =R and ..
® /2 2
a~ +b \

2 2 2
(r -g)+ (s -n)*=R",
10, (a) o
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The given condition is equivalent
to xy+2x-y-2>0 or
{x - 1)(y + 2) >0 . Therefore both

factors must be positiv’e, or both factors

Q must be negative, These conditions require x> 1 and y > -2 ; or .

P

EMC x<1l and y < -2. é’iil
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6-7

(h)

Fromy =

SRR ]
S e apomg e - e e -
R 1
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t2 b t =+ d + 0 0 d
we have =+ y and x >+ 2y. There y >0, an

our locus is the set of all points above the x-axis and to the right

of ecither branch of' the parabola x2 = b y. Tt is sufficient to take

all points which are both above the x-axis, and to the right of the

left branch, as shown.
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: 6-7 ’

’ 12, (a) ‘
; v

A

r=cos 2 8. Four leafed rosé, symmetric with respect to the pole;
and with respect to the lines 6 =0°, 8'=90°, 6 = 45°, ¢ = 135°.
Symmetry with respect to the lest two lines can be shown if we use

g the related polur equation, thus: the points (r,45° - @) s

J (?,h5° + @) are symmetrically situated with respect to the line
6 = 45° , but cos 2(45° - a) £ cos 2(45° 4+ q) However, the point
(r,héo + a) 1is on the curve for which we have %he equation
r = -cos 2(A - 180°) , and we now have
cos 2(45° - @) = -cos 2/45° + o4 + 1800)', as can easily be shown.
In the same way we could show symmetry with respect to the line
6 = 135° by showing cos 2(135° - o;) = -cos 2(135° + a + 180°) ,

Q ’ )
B .
- 252




r = cos(6 + 2) .

1 1
Circle of radius 5 with center at (‘2' ,=2) i
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sin {6 - %)

Circle of radius

- cos 6

2

1 with center at (%, n) .

.
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S

/

Three leafed rose symmetric with respect to 8 = 30O s 6 = 150o
and & ='2700 .

This last line has also the equation 6 = 90O .




r=3sin2é6
Four leafed rose symmetric with respect bo 6 = h5° , 8 = 135°°,

6=0" and 6=90°, It is also symmetric with respect to the

pole,



(£)

r=1+sin 6

Cardiod symmetric with respect to
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r=2-cosé

Limacon symmetric with respect to 6 =0

0]

N



! \Z ‘
. V" ] 2 3
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L} . .
A }
r=21+2 sinf Do ~

Limagon symmetric with respect to 6 = 9° .

2587




It m>n

. for ]xl <l,x

;D
2m < x._n )

/
for Yx‘ S1, x2m S £2_
D e y=X3 y=x5
§| ..
o 6- -1'
. 4-
A .
IS4 1 [
) 0o 2 4
. e
Q A
. ERIC
: gmiéﬁﬁﬂ' ' \

A T 4 S 4 -

Generalization,

Let m , n Yte odd integers,

O<¢n<m,
Then for
x < -k vwe get At < X < -1
X = -1 et s a1
“1l<x <O Aexted™co
r=0 e A" =0
0<¢x<l 0¢x"¢xt ¢l
x =L xm'= X' =0
< x 1ol
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\ a
\

-

A
- ) 4
¥y = 3 sin x + 4 cos x mx:‘)cosx)

“We know that sin (X + B ) = sinel cosﬁ + sin B cos«.
Tet arce -;- g= 53° .

Then sin (x +8) = ;3-5 X + = COS X.

I

Soy =5 sin (x +8)»5 sin (x + 53°)

If y =a sin x + b cos X we may write

,J Fb/ sin X +

f =)
or letting = 4rcces

Vag + b2

¥y =4/a2 + b° sin (x +8)
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17.

tax +by+c=0
/
: -bx +ay' +d =0

Pet Ll

and La

be two perpendicular lines. Let
S be a set symmetric with L

J
B .-~
1 -
and L, . Si 1;
\ 7
L, ¢
P

X
Denote the intersection of L1
and L2 by Pi .
P - bd - ac -ad - bc ;
i _ <a2 . b2 ! a2 . 2 >
We neeld to show that for any PO in § , its reflection in Pi

'

also in S, /

If Py = (pysqg) s in S, then the reflection Py = {p;,q,) of

P. in L. is still in *S . Since L; | L,

o 1 1 5 the point P, 1is

1

determined by equations

(1) apy + bql +c . ap, 3 bqO‘A ¢
= 5 »
. /a2 + b2 ,n“ b e
/
(2) -bp1 + agy + d -bpo + apO[P 4
2 = -

2 ) 3 0 '
/\/ a~ + b Aa”™ + b
i.e., the conditions, d(Py,L;) = a(p,,L;) and P, , Py

and d(PO,LHJ = G(Pl’Lg> and Pl , PO on ume

Solving these we find

2 2 -
p.(b° - 37) - 2ac g (a2 + ba) - 2be
0 0
2 2 ’ 2 2
a

P, = (Pl,ql) =

1

+ b . a t b

of P in L, is in

Since P, is in S , the reflection P .

1

- IS

>

Setting up and solving equations analogous to (1) ani (2) we
1

(bd - ac) -be - ad
Py = (py0p) = <2ﬁ BRI o

a + Db a” + b~

Recalling some theorems ot earlier chapters, we cee that Pi is

the r . . in P is
ofo s hence that the reflectiom of PC in P, 1

Thus for any P in S its reflection in Pi is the reflection

midpoint of P

of the reflection of P 1in Ll , and is therefore in § .

e@Z@Z

is

{

silde

I
[PRY

f'ind

the

5 .
iu

on oppocite cldey,

L
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CHALLENGE EXERCISES

The graph 6f y = sin bx sin x may be thought of as a "rapidly"

*

oscillating sine curve. y, = sin hx, modulated by a “slower"

oscillabing sine curve, Yy, = sin x . Then, as in Example §, the
-3 2 ’

‘graph of y = MRL will be constrained between the graphs of

Y5 =sin x and. y_ = sin x . ?T})e graph of y will touch the graph

3

of Yy whenever ¥y =k 1l , that is, when X = % , %’1 , ox

The graph of y will cross the x axis when either y, ory, ' equals

b1 3n

zero, that is, at 0, % s 3 e The graph looks like this

]

(aifferent scales on the axes)

&

\

/\J\/\« "/'\

/'\ ’ ,
\ ’ \ 'h’\ ,2"\
\ \
\ .S \
AR i N
N Vi N

- -

b
<.
3

s




T . . - . st
. . . . s

..z

- - - -
. N . Y
-1
v

<
The greph of y = (6 + sin x) sin 2 x is also a rapidly oscillating
curve y, = sin 12 x modulated by a slower oscillating curve
¥, = 6 + sin x . The graph of Yy is a sine curve elevated 6 units

above the x-axis. It is bound between 5 and T , therefore the graph

of Y=y, is constrained by symmetric curves yl =6+sinx and o

y3h= - 6 - sin x which bound a horizontal strip of periodically

varyiﬁg width, narrowest from 5 to - 5 and widest from T to - 7 .

The rest of the analysis of the graph is similar to that d} the previous

‘paragraph. The graph is drawn below (different scales along the axes).

- - -

P ——
/F “\ . -7 ~ -
e ~ g \\ Vs
v, ’1\ L N /7
S y " s
1~ 4 ~ i
~
» N fn ~ s
by —r‘ .o
TH
N
——s
.
<
<
R 4
s
i
“#)-
7 ¥ '-L\.u ,’——“s\
914 ~ ,/ ~
7 ~ -, ~
B U » ’ ~
. N ) ~ ’ ~
P ~ P ~
~J h P S o .7
J <V, 3 S

. Q . ) 269 fr' <
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~ there,

The graph of y = sin (1000 7 t) sin (1000 0007 t) will not be drawn
but it may pe analyzeé in the same ya& as the others. We have a,
rapidly oscillating curve, Yp = sin (1000000mt) modulated by a sslower
oscillating curve vy = sin (lOOO;;). Physicists would say that the
first curve has a frequency of 500,000 cycles or 500 kilocycleé’or

.5 megacycles per second. This 4s a reasodﬂble radio frequency (RF).

Y,

. . b
The second curve then has a f;equéhcy of 500 cps which is a reasonable

audio frequency (AF). A further discussion of cycles and frequency

would lead us too far into physics, and is left for further investigation

] .
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’ * Peachers?! Commeniary
. ‘Chapter 7

CONIC SECTIONS

The student of Intermediate Mathematics has studied conic sceti us witn

equations. given in simple form in rectangular coordinates, here we Legin w1th
sométhing differert. After taking up the introductory material in Section 7-1
and 7-2, if you feel that there is time, you may want to take next the first
five sectlgns of the Supplement to Chapter 7. In this you will find a Lareiu;‘
development of the geometry of .the plane sections of a right circular cone.
This gevelopment relates the geometric properties of the conics to the cone,
the cutting plane, and the sphere tangent to both of them. It is shown that,
for a givep conic section, the ratic of two cosines is a conslant; this raillo,

of course, is the eccentricity.

Section 7-3 develops equations in polar form for conies with focus at the

pole, first uith directrix perpendiculer to the polar axis, and then with

;Qirectrix parallel to the polar axis. (Cases in which there is rotation about

the pole will be considered in Chapter 10.) The polar form emphasizes the
essential similarity of the locus conditions for, the ellipse, hyperbola; and
parszbola, Transformation of polardequations to familiar f_rms of the cquations
of the conics in rectangular coordinates is dealt with in Section 7-k., The
exercises in both of these sections provide desirable review of polar coordl-

nates.

-

The fouw positions of a conic considered in the text of Section T7-3, in

@

Examgle 2, .and in Exercises 9 and 10, give four forms .of the equation which we

summarize here, * : -
. . > ‘ldirectrix " | polar axis
< ep .
2 =3 ~
S R arervrar + if directrix contains f(p,o)
- if directrix contains  (-p,0)
directrix || polar axis i
'“ - i
— p <Y : 11(.
T=y 5nP + if - directrix contains (p, 2)
= 'if directrix contains (-pa %
In all these cases the focus is at the pole. . °

271 %




The opudenta should ve urged, in doing Exercises 7-3, not to use point-
by-point plotting alone. If they first rewrite the equations in a standard ’
\ form, as indicated in Examples 3 and L, they can tell vhat. kind of conic sec- N

\ tion is ?epresented. Then they should find iﬁté&pepts, a few more points, and
- \use symmetry. ‘

\ For’ the convenience of the teacher in making asslgnments, most of the
xercises in this chapter are arranged so that’. even and odd exerci ses are
T ughly comparable, This es not include the gppli'catlons toward the end of
certain sets, or the challe problems. In the case of ”exercises such as
2 of Exerclses 7-6, or N and 2 of the Review Exercises, with long N

lisfs of lettered parts, (a) , (eN\, (e), ... are comparable to (b), (4) ,

'
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ERIC

B
N %
/ 3
- 1).
8. o 1 - cos & . J
Parabola
[
i R
4 8
4" s
a
20. The path is an ellipse with egquation r "T“‘{?LTE"é . Two points of
I - ¢ 05 -

: 3,0
the path are givens 000, 10T and (€GO, VUO) . ¥e substivute

these cosrdinates in the ecquation and solve the resulting equations '
simul taneously to obtair e ., p 50,000 . 7The least distance is \
o] N
“C00 mi.; the greatest, when 6 (7, is -0 mi. \
} £ ‘
‘ v " .p-‘
t

In Jection -h emphasis is ou the algcbra fnvolved in transforming from

olar equations of the confe coctions to the correspoudine rectanazular
In the text. we squarc Loth mamters ofsan cguut’on.to obtain Equation
Ao e s . L€ R

(2) ¢ Jt is importunt that stldents understand wly*this Ts permissible; no

| : . .
dpubt they heve Leen warned that 50 dofng may introduce points not in the

graph of the origina. equation., The justification in thc text depén&s on
shoving thut squaring, in cffeot, introdun%s a ucw cquation which is the re-
lated polar equutionlﬁf theqorininal cquation and hience has thic same graph,

You might prefer a diffecent proot, soméwhat as follows,

7

’




Ea

. , . X
Parabola: Sinece » =71 cos 7, ros O = T
_ N
’ * v
D
Then ‘ - i
1 - coy O
. - 4 -
° D
becomes o " :
. L 22
I °
' m
T - L -
This is the case if ‘r-x p -,
’ .
or ro. i p.
, (It would appuar that we have divided thirowrh by r b thi. oeint. This
, would mean that we would lose Lhe solution r - O . However, rince
A" . . . . .
cos ¢ = -!- , and conccguently 1o not defined ror » 0 . thir yilue was not
included in the ori inul rquation. In the illowin Ltop ve are in effect
muliiplying by «n altornative equation with the #eene raphl)’
We square both rides to «brain
. ’ r Xt pn ot p . -
- L]
Al ‘W
. and substitute T2~ ' {o obtain
i
R , .
X t.y X ¢ pv bop
or
4 B . -
. vooe ople v =)
which is a recoynizable form for n parabdla with vertex at (- 2,0} |
s .
Ellipse: If
£121°7DSC
L ¢p .
Y —-']__em, where O < e <1,
9
then Ir = ox
S . .
. r
ern
» or r =
r - ex
(Wad B
e -
O
FRIC 9T st
275




This is the casedif ~ >

3

r - ex = ep

or _r=e(x+p) .

-~ o

(Once again we have removed-the solution r = 0 which did not satisfy. the
_original equation:, In the following step we are again multiplying by an

alternative equation with the same graph.)

We square both sides to obtain o )
r2 - e.?(xe + 2px + p2) (
- and substitute- for r2 to obtain , . .
Lo . 2 2 .

x“ +y =e2(x2+@x;p2)

This is Equation (4) in the text.

“

We call your attention to the way in which directions “for Exercise T-h4
have, been wri‘:ten.“ Depending on wh’at kind of practice your class needs, you
would assign all of parts (a) , (b) , and (c) , or just the parts you wish
to emphasize. oL ’

Exercise T-h .

The graphs are routine and will noi be drawn.

o
3. (x - 1)2 +y" =1, related equation the same,

L, x2 + yP' - x -y =0, related equation the same.

2 s
5. ¥ =l6+8x,r=ms—e
2 _ -3
6‘3('"9"6}(’1"'l-cose
(x.+2)2 y2_ -3 o
7. 1 -?'3’rcl+2cose
A (x-2)2 y2_ _ -6
; 8. I +'1_5"1"""2+cose
| &
| O . -
. L ‘ i Y
278
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- ' | | 7-]’
, . ¢ ¢ . ./’;
A e ‘ |
. (x - 2)_ M i~
N =5
/{ . ? 9 ==l Y 533556 " - ?
. 2 - ’ g
100 3 vt - 325 ' |
s F =L, 2+ 3 cos @ |
2. (2 y2 -x)% = %P y2 cardiod curve, r = cos § -.1
) . v .2 A < -
12, xT =4 - by | r=m N .
0T 13 e . tax - =0, 1 s H—+-§2W'é L
s 17 oy . 16x2 - 200y + 400 =0, r = 14__:)_22”1_6 -

Students of IMSC Irtermedlate Matnematlcg will have cwvvered most of bhe

. material in Sections 1-5 through 7-8; it is in thlS text for convenience of "
reference. Ease in handling thie simple forms of the equations of the conics

is an important skill. ) .

With able and well—prepgred students, only a b;ief revigw of the Lex{ oi
these sections will be necessary. However, a number of the exercises should
be done, both to reinforce previous learning and to develop further some of
the propérties and applications of conic sections. With such groups the
teacher may want to take up the sections of the Supplement to Chapter | which
\\\ deal with the general second-degree equation. -

-~

If the students are not familiar with the equations and basic properties
of the conic sections summarized iﬁ the first paragraphs of these sections,
the teacher will want to take time to develop this materisl with the class.
Intermediate Mathematics would be helpful here. ] .

° Whilq the emount of time that should be devoted to these sections will
vary greatly with the trainingland ability of the class, it is urged that the
time be sufficient for the students to develop some facility both w{fh use of .
- th@floCUS definitions and with the standard forums.

I

i The answerg for Exercises /-5 through 7-8 do not, in most caseé, include

4

t‘e sketches .the students are asked to meke. However, use of the listed in-

f}rmation about the curves will mske it easy to check the students! sketches.

’

o

G

-

S o
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e AN \\j‘: .Exercisés\ 3,-»5! . 4
s SR
1. Edation™ Vertex/ . \chus’ Axis ,\Iﬁrectrlx )5’\ \:z,u{«‘z}
d 7 > 1 2, e
¢ Se : : . . 7 3P ERnX
Wz (a) o =u(R 00 |ow) T Hxeolr-w TR
> _, 1 T £
\};&\ g (®) ¥ = kfh)x 0,0) (4,0) ly =0 |x =-b X
2 ’ ; ~
»—‘-ﬁ;.k.( ) R =4y 000 |lod) feolv=23
\3- -\ ‘
e 532 89y 1,89 5 153 5 U5 TS
(‘@f)‘f (y- 5). b —) X~ @;) (51;;'5 (@;;5) y=5 %= ‘@-L “
() Ye,- 22 4@y - 1) {(2,1 2,1k xeely=2 N/
] \‘\'(:. '8) -'-) ) . '8') ‘ y B / ~_
\«TA -~ 2 i
b Lac- b b hac-be b hac-bFel ._ b hac-b"-1
(£) (ogg) =l )‘\ [ poian el (o T ESS  LA Taa
‘:—— \:’:‘. \}{k‘ e 52
2. (a) Case (a). Equagl,on x> = 0 . The y-axis. ‘
Case (b). unatlon )?‘4‘- h)2 = 0 . A line parallel
i to the)y ams /\ v

g \/\"r &.sg (5\)_ /1on o, y 3 8\\ "Ij{\e x-axis.
b A TR

’\Zb) These cg

OCAY % ,.;hen/\'ﬁ*e‘ outting plane vou tains an element of

»

l' the coye # ";’:,: e ,*,:;' L&.’
& e -)(.,_-*{
3. a) Sy +2)2 = o6(x - B
s Y & ]
“ AN \7';\\“ l”\
(b) (x + 1)< 2 wE)
(c) y2 = ~20x
2
@) (y-5) 2h(x-1h)
k. Same answers as for Problem 3.
5. (a) ¥ = -l0x
2
(b) (x - 2)° = -12(y + 3)
) ¥ =Bx ‘ -
(@) (x+2)° = -16(y - 3)
Q ’ ‘ :
‘ERIC 2182 3 ()"
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.

The equally spaced rulings permit locating points thgt‘are eyually

distant from a fixed line (LO) and a fixed point (FQ - Thus P, ,

is two units from LO (since it is on the second ruling\iYay from LO) !

. \ )
and it is two units from F (since the radius - zed to detcngine 1L°was

twb units, with F’ as center).

For every pdsition of the pencil point P , the distance from P\\;e
the fixed line (L) 10 eqial to the distunce from P to the fix \\
point F . ) <

Challenge Problems

A N
The focus of the parabola is F = (o, %) ¢ the slope of the line contain-

ing P and F is &EHE:_l . Using this and the slope of the tangent line
éz .

To avoid the problem presented by a vertical line, we use the fact that

‘the angle between the tangent 1line and the parallel to the axis of the

parabola is the complement of the angle formed by the tangent line and

(2a) , we find that the tangent of the angle these lines form is 1

the x-axis; tangent of this last angle is 2a ; hence the tangen* of its
1 N
complement is Cre . 5 .

(a) The tangent perpendicular to the line y = 2ax - a2 must have

1 . . . 1. 1 1l .
slope - 55 + therefore its point of contact is P~ = (- ) ig;z)
A test for collinearity can then be applied to the coordinates
of P, Pt, and V.

- <

(v) Using the prev1ous results, we obtain the equation of the tangent

at Pt: 8ax + 16a y+1=0. Ve apply a test of concurrency to
this equation, the equation of the tangent at P, and the equation
of the directrix (by + 1 = 0) .

-

.
|
. 1

2 8 1." 279




7-6 .
. &
Example 2 of Section ;-6 will give an opportunity to review with the
. students the technique of completing tlie square. Here the coefficients are
numerical; when the method was used in Sect’on 7-4 the coeff’cients were
literal. Since the tegh\nique will continue to Le useful here and elsevhere,
we recommend that the teacher check thabA the students have facility with it.
The
" in the exercise set), bvt also ones like 1(g) , (h) and S(c) of this set,

and 3(g) , (h) of Exercises 7-7.

Y

should bel able to handle not just tle simplest cases [like the first ones

‘ . . Exercises 7-6
oL (a) (x-1)2+ %o ¢=(4,0) r=k
) (x-37+(y-572%=1 c=(3,5 r=1-
(¢) (x - 2)2 + (yr+ h)g =0 Locus is the point (2,-k) .
(@) x+77+(y-22=3 C=(-1,9) r =i/
(e) (x-%)gk (v+3%=% - C=(3,- 3 r = 2/2
(£) (x-2a)¥+(y-b)2=o0 Locus is the point (Q,b) .
8 <x-§>2+(yf§>2=% cz(g,-é)“;/;
" (x_é)h(“g)?:iﬁ;ﬁ C=(g-9 r- 252

2, (a) x2+y2-6x+10y-15=0

(b) x ;y2+10x-214y=0

2

(¢) «x +y2-6x'-hy+9 0 and x +y2-6x-vhy r4 =0

(d) The center is (2,1) .or (-1,s) . ‘

Equations: x2+y2-l+x-2y-l+=0 and x2+_y24?x-8y+8=0.

(e) r = -15—7 . Equation: 25x2 + 25y2 - 506 - 100y - 164 = 0

[l . N )
\ (f) If equation is written x“ 4 y2 + Dx + Ey + F = 0, substitution
"\ of the coordinates gives equations 2D + 3E + F +13 =0,
~ .
SD+E+F+26=0, 3E+F +3 =0. PFinal equation:

x2+y2-5x-y=0

CERIC e

Aruitoxt provided by Eic:

»

o




tew

Q

" ERIC

BA i text provided by ERIC

()

()

(c)

'Xlx * Yy

(a +b)x° + (-10a + Wb)x . ? ] .o .
Thus the x-coordinate of the center (whiqp we know is -5} 1s

5:—;5‘3 . From this we find 10a = -3b ; we let a = -3 , b =10 .

Using these values, the equation is ?x2 + 7y2 + 0x - Shy ~ 385 = 0. ;

v

[ ";;i

i

. ﬁ?-’"f

T

» ?i‘~

. ! '
Slope of radius to (3,-&) is - % ; thegefore slope of tangent -

is % . DBquation: 3x - 4y - 25 =0

Proceding as in part (a), equation of tangent is

2 2 . .
x," +y," . Since (xj,yl) iz a point of the circle ;

2 2 2 ‘

1 + Yp = thus the desired equation is X)X+ fly = r2 .

Since the centkr (0;0) , the point (3,7) , and a point of
contact of the tangent devernines a right triangle, the Pythagorean
Theorem can be used. ILength of tangent = V58 - &5 = v33 .

't (: D_E 1, 7
[See pax (r*l)] C(' ‘R,j E) , T = E,/DL . E2 - hF
2. Dy2 E2 1
V5= (xy +5)7 + () + 2 - E(D?‘ « B2 . n) B ) B
c" X e + e 4 Dv —
S RS TR ST O A 9 :
I t°=0 , the point (xl,yl) is a point of the circle. If

t2 <0 , the distance from the center to (xl,yl) is less than
the radius; hence the point (xl,yl)\ is a point of the' interior

of the circle.
a(x2 + y2 - 10x - 2y - 35) + TP y2 +hx - €y -49) =0 °

¢

Substitution of x = 0 ,y=-0C in (a) gives 13a = -23b , If
we let a =23 and b =13° an equation is. -

5x2 + 5y2 - 1hx + 16y - 8% =0 .

-

The terms conteiring x in the equation of part (a) are

. 283%™
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6. Let the circles have equations (x - h)2 + (y - k)2 =r° and

J 2 2 2
N (x-hl) +(y'kl) —rl.

s

Then an equation of the radical axis

is (x - h)2 + (y - k)?' - 2. ((x - hl)2 + (y - k1)2 - r12>= 0.
For either circle, the square of the length of the tangent from the
point (x,y). to the circle is the square of the distaence from the
point £o the center, minus the square of the radius. The condition

that thése two lengths be equal is’ S
2. p2
1/ " h

But this is eiactly the condition shown above, that the point (x,y)

«

< (x - h)2 + (y - k)2 - r2 = (x - hl)2 + (v - %

4
is on the rgdical axis.

7. As shown in Problem 6, .the rgqui;ed point must be on the radical axis
4 of each pair of circles. We find equ;tions of two of the'radical
axes (say 6x - y = -8 and U4x - 3y =11) and solve; the point is
(- 2,-7) . . . -
2
8. Using the circle. with eguations in Protlem (, clope of line «f centers

kl -k

From eguation of radical axis (also Problem &), slope is

o

, the negative reciprocal of slope of line of centers. (1t

hy =h , first line is parallel to y-axis and second to x-dxis, and

alsoithey are pexﬁendicular; opposite case if k] =k .)-

-

. ' 2 2
1 2_1'31"“?1
4

9. For the first circle, we have C

[

.
2

2

o
pet
\=]
(]
1

<

. (.2 _ 2
for the.second, 62 = Z 17D ) ) r2

By the

definition of orthogonsal circtes, r, +r 3 this condi-

2 2 ;
- . - )5 + -} - n
tion is el Fl + % *o 2 . Ei i l—):)2 + (- fi i Eg)e
Y o i [N 2 2 -2 ‘

Wnen simplified, this is the desired condition.

17, Use the condition in Troblem 11.; in {b) both memoers of ‘the equations
must be divided by 2 bvefore the condition applies.

-2

b8 (Eguations must be rewritten in proper form, )

, 11. {a) k
(v} «x

3

Y

\‘1 - R . .

ERIC o 81 . L.
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. Challenge Problems

- Y

1. Let the equations.of the circles be -
C1 : x2 + y2 + Dlx + Ely + Fl =0 )/
02:x2,+y2+D2x+E2y+F2=O

- . C3 : x2 + y2 + D3x + E3y + F3 = Oo. .

Then equations of the common chords of C

1 and‘ 02 , C, and C

2 3
and C1 and C

are, respectively,

3

i L -

‘ i Ly e (D1 - D2)x + (El :.Ee)y +F -F, =0
- L, : (D2 - D3)x + (E2 - E3)y +F, - F3 =0 .
L3 : (D1 - D3)x +.(El -E3)y+Fl -F3 =0

The family of lines thrdugh the intersection of Ll and L2 has as an

equation ’

: . ‘
,aQDI_DQx+(E1-Egy+pl-FQYIBQDe-D9x+(E2-EQy+FQ-FQ =0 ..

v

For the values a =1 and b =1 this equation becomes k

{D, - D, )x + (E

1.7 73

- E3)y +F, - F, =0.

3

But this is exact%y the equation we had for L3 3 hence the lines are
corncurrent. . . 3

” (Note: This is, o course, not the only way to make this proof. 1% is
possible to assigr. coordinates to the vertices of the triangle, and iiIngd,
in terms of these coordinates equations®of the common chords and coordi-

--nates of their voint of intersection.)

, \ )
2. The proof given here for Challenge Problem 1 also polds here; so would

any other that did rot use the fact that in Problem 1 the cir¢£§?
N .
intersect. ‘ . N LR,

+

N ’

Te sy ek o



, -= R T T T 7
‘; 1 \ , R E‘
: 1-1 ! ’ ©
-yt y . = . . £
~ ) . . /
) The studerit is asked to explain the variation in shape of the ellipse ,
from the fact that b = a/l - e2 . He should be able to see that the nearer ’
%._he velue of e 1is to zerc;, the closer (/1 - (‘;2 is fpl 1 ; in such cases the . ' ‘
minor axis differs very little from the mejor axis, But if values close toi, 1 -
(but less than ﬁi) are selected for e s Y1 - e2 canl be mz;de as small as one ’
h wishes, and hence the minor,aﬁs can be made small as compared with t';he major
* I3 oo ) i “‘ -
. . }
' Exercises 7-7 - 3
. ‘ 2 2 A 3 / |
X - - 2 \ .
1o B3l 2l g xsh25,2), 11 L 262), W9s2) ..
. v1(-3,2) ; x=3+-3£~/"5'-: e=§~ ) i
. =2 3 i
2 2 ‘ ‘
X N 2
2, =+ & =1 .
'9 5 8
) 3. Equation e F,F ‘AL Directrices
oL 2 1.2 ' Y
x= yF /3
‘ ()2 + 5 -2 |03 [(02),00-2) |y =5 .
~.2 2 " - I DA e
. x yo o 1 . .
- (b) gg + -2§ =1 L == (+/2T,0) (35,0) X =+ SSI/?I
—?-\“‘\( NI y2 /3 - \
o c) + =1 = |(0,+1) (0,+/3) y = 43
o (ZF (R . A A =
- 5P Blin 5oy 1’ 3 -
& Waerazct L [F|eT9 7 ez X=raggh ot
;‘D"' ek 2 . - 3’ e ° - + . /‘,
. \" [ * . 2 ] \\ 14
o 2 s - .
Ty x = W) + - 1| /TE ; .
(e)]- ) + 4y ] 3) =1 - (4,-3 & YIT) [(},3);(%,-9) Yy =-3a %%/II .
. 5 6 ' ’ N - J;
o 2 2 . .
i [G +5) +1 5 , : . v e
(f.)a 32 + (v 22 ) =1 % (-5 * '/5'-)"1') (-‘i:—-l),(-S,-l) X =5+ %/5" .
e A . 3
N, Lo T2 2 ‘ . - . T
T (x - 2) A5 s a .9
O S e b L (O NN [CEINERES i P B
> B l 2 2~ ) ., 4
* 1 (x + l) ( - f—
: . (h) 22 =t L L}25) =1 _23' (-1,5 * 2/3) ('1:9))('1)1) y=5+ g@ !
. . / - ’I N 2 2 .
- . - l . . -
:/ff ‘(i) (x = ) + (y :23) -= 0| Locus is the point (1,-3) ... . .
i:’ O . ’ A o . .» . '
| : \ . . H
: BLL2HEG AR




H - . °

. - \

5 The laws rectum of an ellipse is elther of the two chords of an ellxpse

5 N
perpendiculer to the major axis at a focus =
\ If in -Equation. (e) "of Figure T-4, ve set x = ae , wve find '
& -, * 3
St 2, 2 \m 2,
. y=%uvh - e =t L’a ; thus, thé length of a latus rectum is -g-z—- .
: a - . %
(The'sgme result is obtained in each ofw the'other'form§.-) Ve
, i }
: - ' 22 2 « -
R 6. ‘For the ellipse with equation — + —_Y -1 5 / '
2 2 2 . . .
a a®(1 - e%) .
P . t ' . .
2 . . 7 4 R -
R T Jx + a6+ 9% 0 .o '
. . : e N .
- * [ N
, = /(% - aLe;)2 + (1 - e‘?)(a.2 - xg) + J(x & ae) + (1~ ¢ )(g_?
» l ' .
i =»/a “’éex+e7 +~A +2aex+edx2 . . N S
:_ =a-ex+a+ex M . o -
t" . - =28 . . ' ) - Y
« .« - It should be noted that the first ra,dical express:.on is equal to ' a - ex
) rather tha.n ex 4+ & because the’ .La.rgest poqsible X.is a, and e
. is less than éneJ hence ‘a - ex is positlve. . N .
?. . « T. If P(x,y) is 'a{y'point on_the ellipse, the fixed points are N ‘
et r(c 0) ] F'(-&,0) , end the constant is, 2a(a >c) , ‘then | oorens
, . , : AR :
A: . N 4 . #
. y (1) - PF + PF' = 28 K 5
i ) - x-c) +y.—g-/(x+c) +y =28 . / .
; »
S 1 JAfter eliminating radicafs in the usual way, this becomes -
L (-a-c2>v.+“— 2(s% - 7). A “
’ - - - a
‘ - ] ' - o Q‘ *
. . . . o \
N . \
‘o« \)‘ | . . 1 . ." . X
.ERIC .- ‘ ‘ , : =
ARG e




r 9,
A

1L,
\

: poin*'s'/ (&) is a constant (the length of VW' , greater than the

. -
the live x = - % = - ’22 are also e focus and directrix of the ellipse. . i
N ’ ’ * - ( - - )l'
"(See Figure 7-4 part (a )) .. - ‘ ; f
N : { 1. i
v ' (23
/, + i
* N 1] \\ : .
- . o / L/ : , e ‘e
» » \ i

(2)=er .

This sketches ‘l;he proof that if the coordinates of a point sn*isfy (l) R
‘they satisfy (2) For the converse , we retrace our steps, but must

‘use both signs when the squa.re root is taken, so that there are four

equations, ~ . ., “ oot

‘o +v/(x-'c) +y +‘/x+;°) \*y =2a. ‘ ' ‘*'

»

It can edsily be suuwn, Jbevause of ‘th requirem\.nt that a >c and
the fact that the dwo radicals repres:.nt two sides of a triangle of °*
which the third side has length 2¢, "that only the pos:.t_;ive signs
L Yy A PR

can be uged, ' ; - Ce .ot

i

is located so that the sum of its J'stances from the fixed

Each po*].}u;‘I s 1 , e

' . f

length of FF') > . ; /
/
See Probler 8. As the distance between the tacks inn1eas°s the ellipze 2
o
becomeé more elongated; as it decreases the ellipse becomes more like a
circle, . . ;! . *

@) 5x2+9y2~14_0x-51&yf116r=0 . | ,
cb)'.82<2'_’*w+5y2.-‘38ic-58y*21&2=0- ) ) g )\

e = 0 ; the foer -directrix definitifn* cannot be used for a circle,

i

“

. 2 2 > ‘ .
The ellipse has jquation ~x-é- + 2-2- 1 and is symmef;r»ic wlth respect to f s 4;
. a® b . L

- o

the crigin end to both of the coordinate axes, Therefore {-c,0) and

Al

<. ) . ' SN . ! ; e
g « . -~ 2 N . N . . :
1 SR 2666, ”/ N oo w’/
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.

-

b . . .
=5 dos & %% an equatjon of an ellipse, and rewrite

-
- . . ~

the equation in x-ectangular form for the purpose of discussion as in

We may recognize r

" Example 1, Inst.ead we shall carry. out the discusslon in polar coordi-

nates in crder tq illustrate the procedure in that system. We may re-

write tle equation as

1
16)

1
1-§cose

- r =
‘o

and see that the graph is an ellipse with one focus at the pole, with

>

eccentricity e =%
-et

directrix six units to the_left of . <

, and with . @

the pole and perpendicular to the f £

line ‘aflong the polar axis. From the Q v e ? “"'i V2

definttion of éccéntricity we have

(rl,rvl) d(’Fl,Ve) ] _ -

‘}- = = = .
€=3 a(v,,Q)- ~ a(V,,Q) R

Since d(Fl,Q) = 6 , we have d(F )Yy, ) =2, dr ,Va) = 6 ., Therefore
the vertices are V, = (2,x) 'and v, = (6,0) . Since

,.d(Fa,\'Va) = d(F}l,Vl) = 2, we have the coordinates of the other focus,
Fy = (%,0) . Since the center’of the ellipse is the midpoint of FF,,

we have C = (2,0) . We readily find the major axis, 2a = d(Vl,Va) =8,

-and the focal distance, 2c = d(Fl’"Fa) =4, (We verify that

.) Prom the relationship b~ = a“ - Ke , we have

l\)h—l

2
=5 =

'nlo

%
b =4 - 2° =12 and b = 2/3, which gives the minor axis, 2b = W3 .
The length of a latus rectum (only one, RS, is drawn in the figure) can
be found from the fact that it is twice the polar distance to the point

R, for which 6 = § . Substitution in the original equation gives for

this distance .

* 6
: a(FR) = ———— =3
hid
2 - cos E

“e

therefore each latus rectum is of length 6 . Using these values, ve

complete the sketch. *

289




oy

1k,

L3

8 2 2 m
Using the representation 55 + 5 y 5T = 1l , the desired proportion
a a“(1 - )
is . .

-

2ae 1. 21 =2a : 2

olp’

This can be verified immediately.

[

"

In the first‘four pioblems in Exercises 7-8, you will notice that the

louation of the transverse axis has been specified, but it has not been

indicated which of the lengths given for the semi-axes is that of the trans-

verse axié. This is deliberate, and it is suggested that you not make- any

additional spec1f1cat10n in assigning the problems to the students. They‘

-should dlscover for themselves that two different hyperbolas meet the condi-

tions in each problem, and should realize how this case differs from that. of

the ellipse, where the lohger of the two axes must be the major axis.

Aruitoxt provided by Eic:
.
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Exercises 7-8

-

3‘1*--1’9—=1 @,v(?,o),v'(eo),ﬁ'_(/ﬂo), 1. = (-¥13,0)
4

D:x =—i§3T§ , Dt s x= - I—JI?

————{e3al

[

o
—
'd

¢ =332, v(3,0) , V'(-3,0) , F(¥I3,0) , F'(-/I3,0)

D:x:i%r,n';x.:-%_
Ays= %x ,A' iy = -‘gx ]

o

i




1

| 2
2 :F+!§‘=l.
} " e)'i/gr': v(0,3) , V'(0,-5} , F(0,Y13) , F(O"’/—)

y= B3, 0y = G .

A;y:%x,A':y=-§x

, &x2? (y-3)
Il 9

e,,=15; , ¥(2,3) , V¥(-6,3)

F = (3)3) s ('7)3)
D :"X =§°; X = '“%é

A:3x-by+18=0

t . 3x+by-6=0 °

A s
. k V‘ -5 -4 -3 -2 <

or

x+2° @-3°_,
g BT
e=%,V=(13), Vi(53), F3,3) , F'(-7,3)

‘1 19
D:ix=-2,D":x=-3
4 X 5, x 5§

s hx + 3y -1

+17 =0, A’




_. 2 2 i * *
KT Ax.+2)° (y -.3) _ ¥
%' - 1% + 5] =1 . - §
. ]

e =2 ¥(-2,6) , V'(:2,0) , K(-2,8) , F'(=2,-2)

. 2L
D:y-= 5 Dt sy = 5
A i3x-by +18 =0, A" & 3x +\hy'" 6=0 ’

or

(x+ 22 (y.-3°_
- 5 + 15 =1

€ =15T i V= ("2}7) ) vi(‘g;‘.l) i Fo= ("2;8) ) F'(;Q,-Q)“

;3}.

D:y-= 5 Dty = -

I =~

Aibx o3y +17T=0,A" :x+3y-1=0

5; -See thé néxt pege:

6: ~(a) :-xe-l:ye = . . ) ¢
[ . ’
(b) ¥°C§% =h T ’
(c) =if +9y° = 36

. (a) .25x2 - iby® = 3600 .

(e) %% =hy? - lx + 2hy - 48 =0

7. i6x2 = 9y° = 1k

8 o2xy=1je= V2 °

9. It wiil be easier to do this proof.if the coordinate systém is- chosen
in such a fashion that.the origin is the midpoint of the line segment
detérmined by the two fixed points.

10; The lafus rectum of a hyperbola is either 0f the two focal chords
2

perpendicular to the transverse axis; its length is g%é .
11. The pOints lpocated by the construction lie on a hypetboia becausé the
construction determines each one so that there is a constant difference

(2a) 1in its distances to the two Tixed points.

2

12; Timination Of the parameter gives ié Y=,
a2

c'r\)!%f\)

\ TR e

£33 .
Y, » \

LYl




B
« O - - - x L, ;&‘ t ‘ '\\
~ 7 l ' ‘ \
L 5 el alb c F Fr v ';r'? - | . oD’ ) % |
{e7V2]2 [2 [(0,0) |(2V%;0) (-2v2,0) |[(2,0) 1(-2,0). x = +/5 Yo \
(0)[/2 |2 |2 [(0,0) [(0,2/2)  [(0,-2/2) |{(0,2) 025 -y = . ;
- i 7. 5 i ) . | : \:i
(c) ll; 3 |2 [(0,0) [(VI3,0) (-¥13,0) [(3,0) (-3,0) X = i%fﬁ y= 1.§x |
' ‘ 7‘ L \
. - ) ) - o ‘ l\ \\
N 7 \
(é) ?3 5 |12[(0,0) |(0,13) (0,-13) (0,5) (0,-5) y = 1% 1y = i%x § \ ‘ \
7 . - : ‘ ' 7 ‘ \‘ . k
[ | \ ‘ \‘ X
(e)[5 (2 | [(3,3) [(2,3+25)|(2,3 - 25)|(2,5)- - [(31)" y=3i§5 e |
” ,
. | ' \‘?‘
~
. . ﬁ‘ '
h -3
| ‘ 294
- ! ° .
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13. Draw concentric circies, center Ty NP
© (§,0) , radii a and b, any ‘
. angle 6 . Draw tengent at B _
(intersecting G at C) and / D
tangent at D (intersecting
x-axis at E) . From C and
. B d:ra;g parsllels to the x- a.n(}__ )

] y-axes respectively, intpr-
. © ssecting at P(x,y) . Then

X = OE'=- séc § and °°
y=CB=btan 9.
) 2 2

‘Hense x—--y—=sec29--ta.n26=l. N
33 ,

o

a

(a) X = -21

(b) -x®+y% =10 N

Locugs is & pair of intersecting lines (the asymptotes of

©

LR ]

Review Exercises

(a) Circle with center at pole and radius of -§- .

(b) Circle with.center at (1,0°) and redius of 1 .

»




Parsbola with vertex at (4,x) , focus st O and directrix

perpendiculer to polar axis and 8 univs to left of pole.

Hyperbole with eccentricity -of -% , center at

20 , vertices at (3‘-, 180°) and (-4,0°) ,

5.
b 52 -
gnd directrices r cos @ = - 3 and r:cOs 6 = =~ E . -

N

at (0,0°) and (-




-

- - 1 i o
(e) Flipse with eccentricity of 5, center at (1,07) , foci at -

(2,0°) and (0,0°) , directrices r cos § =5 and r cos 6 = -3 ,
oy o ‘
vertices (3,0 ) and (2,180") .

P

i
'

‘ .
A{r) I’kai-é.bola with eccentricity of 1 , focus at pole, vertex at [2,1‘800), .

-9
and- directrix r gos @ = -k .

~

\ . )
- _ L]
. - i
A +
@ *
24
- 4
. P
] o
N
:
' e e o
o O »
-<
5
- M
“
- -
.
s
sy
. -
- - ¢
* N v S
7 ¢ -
- 5
wt ¥
-
+
v o
(%
.20
- et ;




| - . 5 R = ’ 7-8
i . . 3 72 .oy -
“ (g) Ellipse with eccentricity f.» center at (-:-?—, 0"), foci at
\ h » " b - - ’ A
| " ) ;
r (0,0°) eand (l’;—lﬁ ,_Oo) , vertices at (24,0°) ana- (%—‘,’1800)‘ s T
\ . . . ! ~ " .
. the léngth qf the minor axis is -lé » and the directrices are °*
A 200 .- i ‘
B ’ rco§é=T and 'rcqs_9=-8. L .- "
» ©
< . * * -
. . :
- b
L4 [
«@
N i . ’
- e
' by t ) “ '
) . . .o . - N
- v ¢ - .
. .
N N N N . ¥

« »

(h) Parabola with eccentricity O , vertex (2,96C) , focus at the pole, -
and- directrix.the line r sin 8 = & : - .

.
~




CIIE

20 - - S . R -~ ——

,1 "_ - "'»-i

(1) Hyperbola vith eccentricity 2 , center at. ~(2,180°) , vertices at

“(n)

foci at (-2/1‘ A1 ,-4) , eccentricity of -@ , and directrices

(1,180°) and (-3,0°) , the fout are at (%4,180°) and at, the pole, -

and the directrices are r cos @ = =

3
2

=2
and r cos 6 = 5 -

3 v o -~

, The graph is the point ('2, -3.) . . .

Hyperbola with center at (0,0) , vertite¥ at (v3,0) and (-¥2,0) ,.
el s 4 . s ’

foci &t (¥5,0) and (-/5,0) , eccentricity of fg , directrices .

-~
X = and X =',- T/% , and asyng)totes y = w/—%x and y = -'\y/—%x‘. )

Sl

0 -

. . . .« » N
Farsbola with vertex at (-2,3) , focus at (-h,3) and directrix

x =0, N

. Ellipse with center at (-2,-B)\_/Ve&rtices at (-8,-4) and (h,-4) , -

a

X =- -2 + _3‘6' .. - .
Ellipse with ‘center at /1,-2) , verti'ces a{ 114, -2,
.eccentricity of g , foct at (1 % 42,-2) , and directrices
;=l+-§— and x=1-2. : -
/2 12 ‘

The graph is the point (3,-5) .

-

] . < , ' 4,{2 9‘9 . ; N
_ ?96 T *

f o
. . . 4




S¢

3

Hyperbola with center at. (-%,-1) , vertices at (-h % /27, -
foci at (2,-1) and (-10,-1) , eccentricity of -i—_ , directrices
. Y3

3

x=% and x> - = , and asymptotes x + % ¥ V3(y 4+ 1) =

-

Hy‘perboﬁz with center at (-2,3) , vertices 2t (3,3) ena (-/,3),

13

ecc'eritricity of =&
.. N <

\

, foci at (11,3) and (915,3) , dircct‘}'ices

and x = "153 , and asymptotes y = 1—2x +32 ana

5 5

Y X ’ -
(a) -5
(v) . (x - ’.’) 32(y - 6)
(¢) Four circles, centers (¥ 3,7 +5),

Equations; xe + y2 -10x Floy +25=0, © + y2 + 10x * 10y +25=0,
() » = 3., —Equatit}p: X2 4 y,2 -22+ 8 +9=0
(e) C'=(O-,h) , ¥ = 2/5, Equation: 4+ y° -By— b =0

('f)~x2+y2-12;c+8y-l+8'=0

=1

.o 2 - 2
(S) (X;AQ) + !}(yg; 3)

2 2
(n) L& + 3, b : 3)° _

.
s

(x - 22, (v -1
Th — .—~5 -

2
(J) :'9)( o 16y =1

319 © 7319
(k) 28~ x-y+5=
2 - ’ ’ - - -
(x +1) = :.L6y ° . - - .
'(,y(-i- 1)2= = -i(x - 2) . Each cente\r‘ is equa y distant from a i‘ixea
point (1,-1) and & fixed line (the line x & 3) . .
[ . . Y . X . N ‘e .
2 _ . P
s : - . . * . .x2 ya , - e
Elixnination of “the parameter gives "5 + -—2 = 1
» g, h Y
se ) # .
’ ‘ i .. -o « 0,

+

A,

. L300 A

<. PN




« b i) ’ . - B RS .,%; '
PR £ o -
- 7/“2+3y +6x—l!+y+6 oy -
V s{ - ’?‘ N
¥ 8 Clidose axed 5o that equation .
‘ .- A -
4 . ‘of curve-is b2:r<2 2y2 =*a‘“b2 3
e —— - (J' "
. then..asymptotes are y = % Zx -
5. ’ Then write express:.ons for,dis- ‘ P
oo “tanees from P = (x,Y) to N / N ’
~
i > . 3§ .
;a . asmtotes * R +
= bx - 8 bx + a, -
S ameaipm o pxoel xs el
. A - / o '2‘ 2 2
. K a” + - + b
\ lbe 2 - a2y2| i f‘éab_g /\ s
\\ a2 + bg. . 9,2 + b2 ' . ) :
o 9, (a) If B =2, b=2a. Then e = /a—, :;bi = 28. =5
}S}g’;"‘ ,.' S a . R T
o e (b)‘“ ‘In similar i‘ashion e= VL + ko '
' . ‘ -x;"ﬂ ?-:‘};x. 2 % } ’
T N ,,\.4; . P
B ~ 2 - . 2
20, .(a) Since X% y2 “r + -: e geb xé + y2 =T o
<7 3 > 't . > N ,
; 5"’;;’,'}0 - l + : F‘
o . (6)- If only positive (6r only negative) signs are used, the graph is
3" " - -oply one-fourth of a circle; which part, depends on the -signs used,
) and also on. whether r and t are positive or negative. If '+
S -2 signs are used, and r and t are both. positive, it is the part
e - “in the first quadrant, if + signs ace used a.nd r>0,t% ‘20 s
| -it.is. the pa.rt in the second quadrant; and so on, . i
a - _— e ?
: (&) 1In order for % to bé +4r , —t -4, This is impossible,
) ! . - = - = SRR 2
. for A+t =t onlyif &z 0% and then x'=0 ! Thus to be:
‘ . precise ve. would say that the parametric equations represent a
} ,w,circle with two points missing.
N b .
ERN it . / . ‘ -
; EJ -2‘5' 2 :2‘ '2
; 1L e =A—+b- , el = var + b .1 + L 8.2‘ + b2,
. : - ) bs ¢ T2 ¥-A 53— 3B = 1
i . ° € e ‘a” +b
é—‘,‘, K ¥ ’,,; : ) ) -l
i I ) ‘
\%,g,- / -~ Lo - - .
e so1
- N ;298 it o .
i b e s . o e e e i e oo e ereeien e s otonem ik e ot ¢ Ao et o e ." I

iy NI,

e ge e v S
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[ . 7_8
. 2 2
N 12, (x 5 a);, + (y 5 t,)) = 1., This is a circle with center (a,b) and
k - K ’ . :
’ réddius- |k|-. ‘
If k were zero, then the locus would be reduced to the point (a,b) .
13. Computed height .at eige of road is 203‘/5 ft. (% 1b.9 f£t.).
1. 20 feeb ’ .
A ] - - 7
o i N - e 2 2
45, Let the equation of the hyperbola be x~ - y~ = a~ ; then e = 2,
F = (ae,0) , F' = (-ae,0) , and for a point (x,y) on the curve,

r = {/(Sc - ae)aj_ + y2 = ‘/(;- a»’é)2 PN ae = »/(éxa + a—e), - 2a/2 x
similarly S . ’ ’
S rv ‘=’3/(2x2 + ae)"+ 2a/2 x

e xi =_ilt/( 2% 7+'a”2)2 - 8a%%° .
'—h__j:.’ - — T
; = Mixt - hax + a
.o =|2i?-a2|=2x2-a2. : -
The 'square of the distance f"rom the point to the center (0,0)“ is
'x2+ye.—:x2+x2-ae=2x2‘-a2 : |
: ' 2 2 ® ’
16, (a) One possible form is =+ ’131—2 =1 )
| =" a” Zza ~
- - , 25
» @ !L 2 y2 7’
; X .
-~ b — =1
o ®) 25+ %
N y 22 . ”
(C) -2—5' -+ —J.}z =1 . . . (0,0
. 17.~ (a) fThe equation of the circle is M z ::» N
;62 + y2 = a° and the equation
. ' .of the chord'is y =p . 1If
) y:p,then:x2=a2-p2 or
ib ? fr—— -
j> .. 'x:f-/ae-p2
oo
L. 2 2 2 2
Then d(B,N) = /a2 - p2 and d{P,M) = Ja° - . -

\.1 Tk ~r ¢

ER




. 78 .

() Ly’ =a 7
L . a(p,N) = &% = p°, a(M,P) =a - p,
. . and a(P,Q) =a +p . (a,0)

a(m,p) _ a(p,N) '

" Then FEW T ARQ

(c) Let (0,0) be one point and P = (p,q) be the other.
P - 2 = -
Jix - 22+ (y - 02 = AP - §P

(k2 - l)xe_ + (k2 - 1)y2 + 2px + 2qy =”p2 +‘q_2

2 ‘2
q )2 k(p2,+q)

2
p ) )2

(x + 2 )2+ (y +
K -1 R (k% -1
This is the equation of a circle.

We must restrict k so that is positive and not equal to one.

—t

Challenge Problems .

2 2 .
. l. TLet the hyperbola have equation % - % =1 . Then the equations of
a b .
. . b “a T VI
B . the three lines named are, in order, y = X, X=g, V"= -S(x - ag) .

These lines can be proved concurrent in any of a variety of ways. | A
2. If- P = (x,y) is the point where the explosion tgke.s place, the 5-second
“ time difference at A and B. gives the-condition .

"~ s X

FE o y® e - 2By = 52)

4
- which becomesl (—):i)f - —y—e—- =1 : ‘ . { ~
. > .25 .15 ‘
mhe 8-second difference at A and C gives the condition
e Mk ly -wE=82),
. - - 2 2
. . (y - 2) X
which becomes _ yan " 336 ° l. /£
n
If we write equations of the appropriate asympftotes (the ones we want
- i
. have positive slope), we have y = ¥3(x - 1) and -~
Q i ' ’ ' . .
ERIC 5 803
: 300 9US

e
. ~ R » .

T L I - . . 5




y = ./_2:x + 2 . Solving these equations simultaneously, we find that
2l

the point of intersection is approximately (2.9,3.3) . VWhile-a point
of intewsection of the asymptotes is not a point of intersection of the
curves, it is probably sétisfactory here since there was only one

significant figure in the times given.
3. If the suggestion is followed, the condition is

a(P,H,) - a(B,W ) *> 20

which is /(x + 15)2 + y2 - /(x - 15)2 +-y242 20 .

2 - :
This becomes 100 - Tyﬁ >1 . The locus has as its boundary the part of ] )
the hyperbola for which x is positive. y ‘

4, ZFrom the statement of the problem

and fhg diiagram,i we must show
m<OPQ =c. Bat m<@PQ =@ - 0.
3t N

Therefore we must show a =6 -a or .

ae

* e

6 = 2K, Rectangular coordinates of
P are (r cos 6, sin 0) ; the
T equation of the parabola in

rfectangular coordinates is Q'
o .y‘ = 1?@x+ 3), ,Thekpoint~sl‘op<-‘:
form of lthe;gquation of a line
through P "v:‘riwth slop'e m is )
.

- y-r"sin9=-frl(>i-lt.00,iie): ’» \
. . oY . 1 + ;2 -

5 . ) .
¥ “ ¥ =mx +.v(8in 6 - m cos )", \
' .

This line will in general intersect
the parabola in two points, but 1if . .
it is.a tangent line thgre will be Just one such poi’m;. The coordinates

of the intersection points can bet found by solving simul tanegusly the
_ - N Pl POS )
L@ equations of the line and parabola. '

- .o

s

Thus by substituting we get a single equation §9r the x-c&ogrdinate, ’ :
. Ré ;‘ .
. (mx + r(8in § - m cos &))2 =12{a+ 3) , ./ :"

i‘ » * (0 o . gg;é ' . qé’)\ - ) .o i




4

maxe + (er(sin_e - mcos 8) - 12>x + re(sin 6 - m cos 9)2 -3 =0,

Tangency requires that the roots of this equatlion be equal; therefore,

" the discriminant of the equation must equal zero. Hence

‘ (émr(sin 6-m cos"Q) - 1.2)2 - ’+m2<r2( sin 6 = r cos 6')2‘- 36) =0 .

e This equation can be eventually simplified to
h 3n3

-m{sin 6 -mcos B) +3 =0, 9

X ) But for this parabola r = l_%s—é ; substituting this‘ in the equation

just above, we obtain, with some more simplification,

. -

' (1 + cos @)m® - (2 cin @)m + 1 < cos 6 = 0 .

A3

\

. . . sin 6
. Solving this for m gives the single valug, m = T +cos 6 °

But ‘this is identically equal to fang . Since m is the tangent of
’ g - T

the dngle of inclination, [/ , we have a = % or 6= 2aq, vhich i8
< . = I =

M -

" - C

what we wanted tr prove.
i Ay
B=(0,24)

N PR
~ _ 5. We indicate here one possible position
" of the triangle, and indicate a method

of proof. There are many other

s

possibilites. -

In triengle ABC -, we select
one altitude as y-axis, and pla'ce )
e " the origin &t the foot of the
altitude, Then let the vertices
be. A= (2e,0) , B =(0,2),
C = (2¢,0) . The midpoints are

AI

o
l A" =(c,b) , Bt = (a+c,0);
:CY = (a,b) . v C:(Zc,")
Altitude CF lies in the line .
.:‘~ . with equation
l H ) IS y = %(x - 20) . .

P

R i -




i wand

2.

3:

(b) Y =

It intersects altitude BO in point H = (0,-:%&1:) . Hence the midpoints

of T and Mi are R=(c,7p°) and P= (a,-%"),
‘o . ‘e \ X
The center of the circle through R, P, and C! would lie on

the perpendicular bisectors of RP and PC' ; the point in which they

-

intersect is o

N = (a +,c~’

Now we verify that the remaining six points (0,D,F,Q,B',A') lie
on the same circle. One way would be to find the radius,.

= &= Na® + )P 4 D),

and.verify that it is equal to the distance from N to each pf‘ these
points. - .

+
H
Y

Illustrat ive Pest Items

£

Identify and sketch the curves whose equations are

(a)r-5—0 ) (g)’x,;ky-k"o

(b) T =2sing > (h) 15x° 2 25y = 40O ” \

2

;('c) r=l_-‘.~_2—os_9 (i_) .9x2+1+y2-36x+32'y1~100=0“

Y - 2 2 *

(a) (3). x= - 25y + 2x + 100y - 99 =

2 -cos 6

(e) = h_-_gco_se . (k) £6x2»- ‘9y? + 32x + Shy - ?09 F0

;

2

3

k3

) W AmEe12 T (3) 9x°+ by® - 18x + 16y - 11 =

Sket¢h the graphs of the following polar equatiéqs.‘ ~ 7.

Write the equations in rectangular form. | »

(6) 26 -7=0 C(e) F-rsing-2=0:

((i) Y == 2 i

—_3 2
1l -2cos @ 3 ~2cos 0

Iaent;ify the following conic sect}ons; give the eccentricity.

(a) 1‘='3—‘_‘§Te' . (c) 2;9-_5=0 ) T -

(b) 2r~ 3r cos - 12 =0 (@) r=hir cosd

o

‘ S

< . -
- - Y 303306; . e h h
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-
- »
T

.. i -
"4, The directrix of a parabola is the line y = x , and the focus is .

(4,-4) . What are the coordinates:'of the vertex? -

5. The eccentricity of a -hyperbola is 2 and the-distance between the foci
is 8, Find the lengths of the semi-axes.-

g
S 6. Write an equation of the: tangent to the circle x2.+ y2 =2, at the

point (-3,4) . .
- T. Tind an équation of the radical axis of the circles with equations

(x-%) +(y+2) =k .and x2+y =9,

8. Whet/kémd of symmetry do the graphs of the follewing equations have?
If there is point-symmetry, give the- coordinates of the point; if _line-

symmetry, give an equation of -each axis of 'sy'mmetry. .

: : ' 6 o202 : u)a : C e
: (8) r =335 (a) >t
- . 2

: _ . - (x»/) Ly -u"
' (b) r = cos 6 + sin 6 (e) e T =1, ‘

: . s - SN
(e) 4,253:72 - hya = 100 (£) %% - 6x - y+T7=0 s
9. Write an equation of a circle with center (3,-1) and tangent to the

o " . line with the equation 2x +5y - 5 =0, T ) R

10. The axes of an ellipse have lengths 10 and 6 ;. what is its

eccentricity?
. <
11, Find' the distance,beuween the foci of the conic section with equation
2. - A ]
2. . L =1 . . -
T i : . -

5 -

12. fThe vertex of a parabola is. (1 5) and the focus is, (h 5) . What 15 *

\>‘-
..... - \-v._.. [

an equation of the. di;‘ectrix? ? “', ]

13.. The directrix of a parsbola is the line with equation 'x =2, and the”
. endpoints of the latus rectum are (6,6) and (6,-2) . Write an
equation-of this parabola. ’ )

- 1k ‘Write an-equation-of the circle having the segment with endpoints -
Ty (-1,3) and (3, -3) as a diameter. g
7

? s

15, What is an equation of the conic with eccentricity of and foci at . $

mlg»

-

(3,8) end (3,2) 7 ' ' -

o wwie b

= "

Q ) : o / . ) .

*.ERIC s 8gT . o

. . * - - [l a‘g««“f“f; L
E % L ) [ - - S _ B hd e e e ran— o F = x . .




AN
16, (a) Write an equation of the family 6f hyperbolas with center at (2,-3)
o1 . 1

>

» . -

and esymptotes with slopesi—a- and - % :

(v) Find an equatlion of the member of that family Which contains the
point (22,7) .

P ] .
Answers for Tllustrative Test Items Lt )
’ ¢ 1.’ (In some routine cases the graphs are omitted.) . <

(a). CGircle, center (0,0) , radius 5 .

(b) Circle, center (1,%) , radius 1 .,
/ . !

. .3 . | . .
(c)' Pall'abola T =T 5556 :

L

-
A - -
-
] -
s
.
-
.
-——— E
3 -
A
78 §
b r
B
> - '-‘.9
i / o
H
. 4




2

(@) mlipse T =755

“ .t
) s _ 1.5 .
(e) Hyperbola r = T 55058
i "7; >




e > ~ x y =
® f) “Hyperbola - — + =1
. (£) yp 3 i \ ) »
%—-—A—.’— .
- ‘_"“
. - v
< N
L] » M
- ! e -
» ¢ ) N
2 - .
(g) Parabola x“ = Wy + 1) .
P . .
x R * - )
<. ’ . .
N -~ had K
* - ' . - ::
-a ) ) A Kl N * .
. e - . .
- * . r i
: A N : ;
N - N ’ i ’ .- .
- - «H al ,'
. t NS
O L . e
’\ . ' » " e
7 4 * =
. 7 N B he
- < .- - v
. - * ‘ L]
4 v R = . .

»
N N L] . .-
-
. . -
. . 5 ¢
. . e
[Pl S N ’ . R
- . - .
* [ “ -
. N R
" * 1 .
“ : N ~ 4 S
. . :
- .
. " .
. :
- 3 N -
-2y '
h e X ~ N
i
: - N
’ -
L .
- .
9 - - N »
. . 4
- -
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SN X S ) s ] :
; - 2R )
: (h) Ellipse BT =1
. » '“T‘ ]
- - N |
i ' ’ ’
B - .2 ©
. - & N
I X
) N ) X
.

RSN

— (1) 'Poix{t-euipse (2,-4)
ox -2)% + by + %)% =0
(3) (x+ 1)2 - :25(3/ - 2)2 =0 or (x * .Syh - 9)(x - Sy +_ll)‘= 0

- .

- N .

- (x) Hypérbola

(x + 1)° Ay - 3)2 -1
9 16 -

2
.~ .
v )
N .
e
t
: ’
»
s
t
Ta
- ®
-
‘ -
- ” ey
VT . .
s, e
Ay
Wi e .
LY
o
- w
o
EXN ’ *
R 2
-,
* . b3
v
W~ .
P .
- - -
- s n
o
-
- -
*
- 3 .
- . ;“ N -
- h . %
' U 3 1 '
oo - 8 - Ll €,
- . 300 . ~
L

o e e . o o~ L » -

Two- lines, equations X ot 57 - 9 =0 and x = 5y + 11 =0."°

W
S




. -

2, (a) :Circle; *2 4 y2
(v) Hyi;;erbolg; -
M K

{x + 2)—2 } ﬁ _
1 3

5

-
.
13 .
. -
.~
.
. .
L]
.
..
.
»
.
»
.
- >
.
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78
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4

(c¢). Circle; no eccentricity {or

e =—0)..

(d) Parshéla; e =1
%

N

L




NN - = - - LR
- _ , ¥ C
= - T-S
1] 3 e A.O
B b, v =(2,-2) g
5. g.=2,b =2 - .
6-y-h=%(x+3),or 3x-l&y+2>s -
7. 3x -2y -9-= .
8. (a) Parabola; line symmetry,‘) 6=0
{v) Circle, point symmetryj ( > H) line symmetry, every line -through
‘; . ‘ -
fhe ‘center. .
(e¢) Hyperbols; point symmetry, (0,0) ,‘1ine symmetry, x =0 and y =0 .
i ’
".(a) Ellipse; point symmetry, (2,-i4) ; line symmetry, X = 2 , ¥ = < .
(e) Hyperbola: point symmetry (-3,1) ; 1.ine symmetry x = -3 and
’ > ) .
Y o= r, -, i .
() ”Parabola, line symmetry, X = 3 . v .
q ¥ 3
Tl f
¢ 2 2 ¢ -1) -
9. (x=-3)+(y+ l),2 = (L(3) + 5(-1) - 5| ) 29 “
* H oo Y, ¥ 25
, g . ‘ .
2 oa5y? - 1 ¢ sy + ‘ :
_or 29x° 29y - 17hx + S8y + 274, = 0 - -
i N} . )
0. e=2 - N X N
. 5 - 4 A"‘:‘f‘ e .
* 11, 28e = 2/T3 - L s
~ - ~ c e e LR »
12, x = -2 . .
. » " l' v
©13 (3 - 2)%% B(x - B)a )
JWe=(3,0 57 =3 Ve e N
(x.: 1)2+y% =13 oo o " ’ )
P * - M 4 p;
15, Hyperbola, ae = 5 ,a=2, b'= ;e =(3,9) .
T =
Clx - 3)2 (v =52, ™~ :
) ” b R iy N "\ ?‘J.. hd J ")’
- x-22 (3?0 5 A
160 (8.) - - -y D =k - z ) *
2 s - - 4 . )
a " b o N ES
(b) (x ; 2)2 - _(_\V"*' 3)‘ _: _9 - ¢ > ';A 2
25 Q h ‘ .
« . 4 o » 1 ';‘:
; . o, . 1




o - mhn o R e e
.o . ‘ ¥ o, 8=1
h . ~ : A\ ; :-réé."crieij;sf éd.rjﬁmentm_f o -
, ' Chaptér 8
Lo e

: .- » i HINE AND THE PLANE I 3:SPACE °
Payts of thi&. chapter will be familiar to. spmé classes, Time saved -when.
¢ thi§ is the cése may permit study.of some of the supplémentery chapters. '
Many teachers have a favorite, method of teaching 'studénts to miake slgetg{hes
- &fsolias. . If ydu do not have such & ! ,
. ¥ pneferred -methpd; -you mlgnt 11ke to try 7 '
;;:' - thls. Have theé students use squared K ’ ’
o - na.per, “tell them to drav OF horizental, ISR SOV M| S © s SO
e Bg vertical, afid OX ‘&t én angle of W_AM; . N 2w R

_#'4}50 vith the negatlve énd of the y-akis: ) : 1. S
e Choose 8- sultable length for the unit on- = ER 4 '»M,i. N ~- o F
- the y= ‘aid 2eaxis, ahd on the ¥=axis let’ ) . ":“,;_.. | D I D
7:: K the~ diagonal of the uiit Square measuré ~ _—-—": Mlv / ”o 'T——g -3‘y :
wo wiits je—aconvenient way of P 2 “:‘1; ______ | S
getting units, ‘and makes a rather b :f,?’-;.g B
_ . -satisfactory drawing. ) = *s“ 4; == T
S 6,/ S N v U

LT

‘ The formulad FoF point of division in Séction 822 -apply for both intérnel

s and external points of divisiéns. In Exercise 9; parts (b) o (£fY ; of”
Y Exercises 8-?, the aistances are ¢onsidered to be directed and two pdints are

found; . . Lot "‘

v - f ‘! PO
’ » : ‘e~

[ * B P ’
- N ‘ . Exerciges 82 . -
SRS ¥
- -
) : ) )
- E lC' CatE g ’ D
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—P=(-5,4,-3)




; "“ - _ ; “.vr‘»v_‘\r\‘-—wt
AR & ’
; i Y
4 l". (b) Projections: P P,
i ‘ on, x~axis (2,0,0) » (-1,0,0)
v, $ -
- - on y-axis (0,-3,0? (0,3,0) ..
: . i on_z-axis. (0,0,) (0,0,-2) -
. ' on xy-plane (2,-3,0) (-1,3,0) ~
: ! on yz-plane (0,-3,4) (0,3,-2) ‘
) ' on xz-plane (2,0,4) (-1,0,-2) -
e LC) ) *6(131,1?2) =9 - a
‘ ».lengths- of pro.jectﬁzions . -
: . ‘ on x-,y-, and z-axes: 3,6,6
‘ on xy-, yz-, and xz-planes: 3¥5, 6/2, 3/5 . :
8. (a) .
¢ - . .
; ! it
':’ l e — R Y ¥
, A e ke . H
- ! - P|=('3,5;7)
’ |
, J s I B
- % L2
: NG !
, : » I s
: I t- = k
e N |
; : | )
] ! A+
- VA EE )
Sy / 7/ '
P )7
[ \ ‘\ 4 N e
;‘ . - P2=.(3,0,-3)- ’
; o \i “
» (b) ‘ JOC}ZIOI’I“ Pi P2
. » n x-axis {-3,0,0) (3,0,0)
En y- axzs (0,5,0) (0,0,0)
- . n z-axis ” (0,0,7) (0,0,-3)
cgn Xy~ plane (-3,5,0) (3,0,0)
: n yz-plane - (0,5,7)- . (0,0, -3) .
; o dn_xz-plane v (+3,0,7) 43,0, -3)
) - ’ \ ’
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+ ERIC ..

Aruitoxt provided by Eic ot
ra L

319/317 :

' . ‘ 2
< B L . R
(e) a(P, P,) = V6L
= N EL 24 .
N ad
5 -lengths of projections
- o on x- , y- , and z-axes 6, 5, 10 ’
- on X, y- , and xz=-planes Y81, 5Y5, 2/3% R
P . l 2
9; (?’) (_, - _ ) N '
i - f
, RO 1") or (8,1, ¥ T .
, (c) (%A, : 5 '81’ 3) or (—2—, - %, 18) - ' )
" oy . »
1 3 . 19 277
: (a) (- 1) or (-=,%, -1k)
; N ] "'8, B PR
B 1 6 b1 sh ~
O (e) (0,5,3) or (6,-5,% I —
: I
T '“('—)“W(?’lk“- Mo e ( or (- 1623 - 22) b
: 3773 3737 3 . .
: 10. da(4,B) = Vik - .
e o a(K,0)= V3R :
LT ame) = i
- . Right™triangle.. ;
. . o (1
T _ Challenge Problem
The ql;est;ion of how we know there are three mutually perpendicular-lines ‘
tflrough a point in space is intended as a warning to the students agé.irfst the .~ =
; I {
. uncritical.use.of intuition. It is nét a trivial question. In terms of the
H development in the SMSG Geometry it can be answered as follows., By a postu-
late, there are at least four points in space, so we can select Q and another :
point P . By another postulate there is a unique line Ll s contalning 0
” ) and” P. By a theorem, there exists a unique plene o through- 0 peérpeniicu- .
; lar to 6-1: . By a postulate there is another point @ in a . By a postulaté ' N
: [} K N ]
’ there is.a unique lf.ne L2 through ¢ and Q , and it is perpendjcular to -
35 . Finally, by a,‘ theorem there is a unique Iine in o through O perpendi- ;
3. - ' ! -
N cular to L2 , and'by another theorem it is perpendicular to Ll too, _.
P . T . - o
.9
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f'.l'he argument by wpich the parametric repr’esentation is -obtained is

NS

rather tricky and should probably be gone over in class very carefully, It
" . may help to show that * )
' z=‘zQ+s(zl—zo) . Y
for suitable § by noting that zl - 2, £ 0 and hence s = ﬁ
will do. In the final step the argument is that from the parametric equations
for Lt and L' we_see that’ - - =
¥ =3+ sy -yp) n ‘

for suitable

-
®»
-

t and that
y=yg+ S(Yl - yo)
,,4.%“

. y - 3’0 ’ A
3= et

P

_for suitable. .s.— ‘S:mce_*y:L

-~

P

s

Students are often intrigued by ‘the ides of e —HTEnsional space, SO

RS

ER[

A uiToxt Provided by ERIC

~They ney enjoy our brief discussion of the notion.. If it is taken up, you

should try to make it cleay that we are not .mtroducing a coord.lr'ate system
into-d space which is given (by a system of po.:tu.atés) tut instead are ,

"space"” which is in many ways like the space of ordinary geometry.

defining a

+

In 3-space, as in 2-space, & line lLas not Jjust one, but many representa-

- g -
tions. Only one is given in this connnéntary except t_where the direetions

R RN U

specif' ¢ally -ask for two. A student should be alloved to write any correct
representation, but should be able to show that his representamon is equiva-

Yent to any desired representation.

In, Exercise 2 of Exercises 8-3, you may wagt to have the students con-
sider rurther the cases 1n vhich symmetric representation is not possible.
In part {a) , for e*(amnle, since cne of the direction numbers is zero,
can be eliminated and

syrnnxetri:c equations cannot be written. However, t

-

.

the equations.of two planes containing the line written: 2 -1 =0, L
}c 4+ 5 +13 =0, In part (a) , with two direction numbers equal to zero,
w2 have at once the equations of two such planes: y =2, 2z =3 .

23 ”

" _ -
5 i* "
Q .
<

[C 318"3%-!).0 * ’
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- B 4 ‘s v - g - .
- AR LT 5
] . . e e 8(_3 - ._;.,._
. C N Exercises, 8-3 : .
* =1+ t(1) x =0 + t(5) -
; { =.2 + t(0) { = 0.4 t(<1) ¢
é =3+t(0) z_0+t(0) -
\ - = (v) =.“3¢+ £(0) x = 0" #%(1) !,'
- [ = -2 + t(0) {y_0+t(2) - “r :
., =1+ (1) 2= 0 +t(3) !
) x =1+ t(-h) x =1+ t(-1) f
Il [ = 2.+ t(-4) {‘y =2+ t(-2) & . L
=3 + £(-2) 2z = 3 + t(0) ‘ |
L x = -3 + £(5) x =1+ t(5)
) l = -2+ t(-L) {y =2+ t{-1)
= R
4/ =1+t(0) - 2 = 3+ +(0)
oy ST
" _(e), X2 0+ t(-h) x =2+ t(-h)
1. {y=0+,t(h)_ [y—-3+t(h)
P Lz =0+ t(-2) 2 =1+ t(-2)
1, ’." o ’ e
¥ ‘2, The symmetric form exists in parts (e), (e) , (g) and ‘(J)
x~-~l_y-2_z-§ -
(C) _u - ‘_u_ T -2 . .
; BCIERESE: -
X .y 2
' (8) 1<35=3 ‘. o
- s vad aii
. xX-2_y 2 -1- :
‘ (p PR, Q
3. (8) (1,0,0) ) <
“(b) -t0,0,1)
2 1 .
(c)i(-'g,-,gf-g ‘ .
(@) (=, 2=;0) oo X
g - 2 2 1 .
S (e) (~3,-3,-3) f
: 1 - '
; (£) (2, - ==,0) S
: A




2
)y (« =, - 2,0
55 .l
(1) (=-,<-2,0) . .
l. @: @; .
;2 2 1 .
. (J) ("5:"3':"‘3') X
bo () " =1+ t(-1) X =0+ t(1) (-1, -3, 0)
y =1 +¢(-2) ? =1 + t(2)
- 1z = -2 + (1) = -1 + t(-1)
(t;)’: x = -1+ t(-1) x = -2 + t(1) (-3, -1, 3) °
¥ = -1 + t(0) ;y -1 + t(0) ~
Az = 1 + t(2) z =1+ t(2) - ST ER——
— - E— % =& F 1t(-3:)‘ x =1+ t(3) (-2, -6, 7)
;y =2+ t(-4) W"‘u’y Entacd %‘("‘)‘"'J .
z =1 % t(3) Z—h+t(3) e
(@) «(x = -3+ (k) x =1+ (k) (5, 3, -3)
. d§y=1+t(1) y—2+t(-1) . .
ot Tl 21 g(2) = -1 +'t(2)
.5-“ (=) '%-, :/—g ,t%): 111fro 145° 66° . (% 2 % , %); 66° , 35, 114° .,
L0 2y 0,000, 2% (A, 0 2). 60 o, 158
(b) 5, 5,/.5_)) 1 :9 . (5,7./-5-,./-5-,): 63 :'90 :153
o) (B, 31201 30 b 23y 0 g0 1m0 |
. (c? (@; "TE TR 33°, 59°, (@I 7% @I), 59" 47 ,121. .
" 1 -2 o (b -1 2 ) o o«
) (=, =,<=); 2 1167, (— , =— , -==); 151 10 6k
() (w/ﬁ"/ﬁ"/ﬁ) 9’77’ (E’E’Jﬁ) 5 ’,3" ) )
6. x-exis (1,0,0) L - L
. y-axis <(0,1,0) B
N z-axis (0,0,1) ¢
1 1 1 : )
7. (=,=;=)
BB .




. 8., (a) No

ot " (b) Yes , ]

. (e) Yes .
- (a) ’

Yes s

I

The z-coordinate of every point on L would be the -same number, so

2z =2 Thus _Bquations (3) would répresent the 1ine L simi.lavl.y,

"they would represent a line parallel to eit_;l}er of the other coordinate

planes, ‘

9. Lin€s with equations (a) and (f) are parallel; so are (b) and (a)
x-2 y-1_z+1 A x+1 _y-2 z-h
o’ = H = =
t R W wteba ol Lyt =71 2 1
-3 _¥y+t5_2 = -
. L = = .
- R R e
: I’h cannot be written in symmetric form. , . .
e - : " '
T4 ,P)_J[(x +zt)-(x +2t)1 +C(yo+mt)-(yo+mt)] + :
H
1 . ¢
: [(z +nt;)-(z ;i-nt)]2
L. Ve, -4t)% + (mt, - mt,)? + (nt -nt )2
. o Ro Rt R T~ M -k -2 1 2 .
- L \ -
- = \/(12' + 4 n2)(t,7.« t;e)_2 _ : N —
| JI2. .2 — / L
] . =»\[ “m +n |t1-,t2| 2 ‘ ‘ ’
The distance between any two-points-on & line with the’ given parametirc
representation is a Constant multiple (42 +m2 + n%) of the absolute :
velue of the difference of the values of the parameter that give the T
. poiﬁtéf ~ If the direction numbers-are normalized the distance is Pqual <
to the .absolute value of* the differerice of the parameters.
;- 12, ,§u'p‘pqg,g L 1is in or parsllel fo the xy-plane. In that plane, L would
Rave-'the parametric representation , ’ -
0 X=X+ U - %) .
. y=y +t(y'l-yo). e




« he

planes x =

dhal.Iexu;e Prob].ems

For dll values of t the x—coozdinate oI‘ the point on L will be 2 s

the line ig in the plane x =2 ,

in the plane 3y - z = -5 there is a value of t
and z =24 3%, ’
B L:x=2,y=-1+1t

2 and 3y = 2z = -

-1 . "

tlx - %) . - -

= J JO. V\Jl :7.0! ' ,
1z= 2g * t;(zl - zo') . ‘ .
A Y

; t('w;L - wg)“

If Pa( Xy1 Y53 %5 wa) is on L then there is a.number

( Xy = %o -i-i:a(xl - xo)
t
1 P I W A A

such ‘Lhal: Yy =

Similarly for every pomL P(x,y,2)

-1+t

, z =24 3t lies in the interseclion of the.

[o}

%

; 70 21 Yo’
t, £0 such that
= 2, - zo)
N,
Vo * ta(wl - wo?

N
i

iz

"But then

=y
i

X * (%2)("2 - %)

- 1, . )

%2 -
= 2, + (% )(z2 - zo)

—
]
n

x : \1w+()(w-)

4

So P

), 1s’on the line through P, and P, . ;

0 2

.~

On the coordinate axes, (xO,O

On the coordinate planes, (% ;yO,O, ),
’ 0,0) (OIyo, 0)\' -

‘(AOQV’ 9 0) (

¥

On the coordinate hyperplanes; ( Xgs¥ o2 22 ), 0,¥q zo,wo) , (§0,0

) (x ’yoyO’ )

0) , (0,54,0,0) , (0,0,2,,0) , (0,0,0,¥,) -

(0,}'0, .zoyo) ’ (0’()-,’20’“0) b )

222 )
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14 N ’, - . ° L _J » 8.‘1‘ i
NES '3 IS R :
N . ) -
S > . . \\ In 3-space V - E + F=2. where -
i - . a
. ! S~ .V is the number of vertices, E,
e o : the number of edges, F, the number
: * g “~ of faces.
huheiatial v inbaly’ \
\
T u /. *_‘M_;‘ .
- In 4-space the polyhedron is made up of vertices (0- dimensional), .edges-
(1-aimensional), faces (2-@imegxsional'), and hyperfaces (3-dimensional).
s — : . ) v
* In the picture the hyperfaces are represented as -truncated pyramids with
= ‘bases on faces of the figures that appear as inner and outer cubes. .
- ‘v E+F- H’ 0 T - T T
Exercises 8-4 -
lo 2x -y - hz + 6 = /’ [ -0 ' -
; 2. x+lby=52-6=0 )
o o 3 - intercepts" Tfaeee in T )
;? X y- P snr_n'l ane v—; n'l m;o — —yq,P'l n{\p’ -
(a)] 2 3 L 3x + 2 - 6= o] 1+y +32-12=0|2x+ 2z - k=0
(v)} 5 2 10 2x + 5y -10 = l Sy + 2 =-10=0f2x+ 2 -30=0
. € - 5 N - _| .,
X e) 2%_- -5 -2 2x-y-‘j=0 2y+5z+10=0'1+x-'5z'g;l.9=0:~
(-2 3 6 |3x-2y+6=0f-2y+ z+ 6=0[3x+ 2+ 620
—=|(e){4+ -3  none '3x-l+y,12,=o y+ 3=0 x- b=o| .
- ' . b . ‘Q hd ] B - H
. (£)lnone b ?2- yrh=0[5y-82+20=0 -2z & 5=0
- . No- . a + LA
_fte)fo 0 -0 x-2 =0 | -3y +'220]: =0 °
{th) |none- 0> -0 y=0 3y - 52 = =0
) R (€} néne none x-T7=0 Nnone =0
= -0 (J)|none none - —g none- 224 9=0 =0} :
o - e / ‘ «
; : . ;
— (3 = ’ - " ;
. ‘ -~ ' . ‘
N Y | -
- X .
1) * < 2 +
- - 03 , # i
o 320 _ _3_.1 ) -




B
. .
~ - -

* . ' :
e ‘ ‘ ‘ » . ;
& ; ) - ¥

Y 4 ‘\

. [ -
(a) 6x+ by »32-12=0 -

,

z A
&
"’&::‘ ,‘” “VM \‘"w‘
\ ' V
oo (b) 2x 45y +2-10=0 (&) 3xshy-d2=0

’ ) — i - - . & ,
? O ‘ . .7 N ‘ ° |
. ERIC - - B 826




e

{h) 3y -52=0

'("8,4.0)

+ (g) 3x-6y+22=0 .
.o = 1z

110,2,6).

(b) ecz+d=0
. A{e) ex+ a=0
(@) ex+by'+a
(e) by +cz+d

(£f) ax+cz+d

ax+by +cz=0

n-u
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&2

&
[

= ,(:3':’2;5)

; (7\,”.,\)) = (—

3 ! . /58’ 38 B
T 8 (gmm) = 08,m1,0) 5 () = (e
: A v~ R A7 A
o ) 14
; 9. (&) — .. (£) —
() 0 " , (&)
; . 287 . ’ 4
SR (e)s 2= (h) —
- S . N
C(a) <k _ (1) 8
:1,, ~ ]: ) .
() 2 : (3) 3
T 0. (a) .- . () =2
— Vo M
Soa 11 23
(p) — (8) =
R 1
. ' 3. ’ SN
- (C) —_— * (h)'.v'—'—'
Lo L@ e (1) 6
" ) . T
L (e) 5 (@ 1




%

i £ ) .f:’
: N - H
b 1L (a) Bx+3y-T2+23=0 : ” : aH
Lo (v) 2x-3z2-1=0 . 1t
N . . . ;_C“”%
12, (2) 3x-2r+z+h =0 S
: A (b)) x - 22 +5 =0 i %
“13.- Let the equation of the plane be ;Ax + By +Cz + D=0,
. “Since the plane contains (e,0,0) , {0,b,0) , and (0,0,c) , we have . :
: Aa + D=0 or A:-E, — )
a -
- Bb+ D=0 or B=-%, .
; - | b
- “and Cc + D=0 or C=-<.
Thus if D'= -1, an equationis >+¥ +S -1,
' a b F

: ) X 2L E2 )
. ('b) _2+5"+-3_1 -

- 15:' fa) x-12r +32~7 =0 o

- L 1

g AR, B By 22 1 15 = 0 o

~

16. One zi;ethod would be to find an equation of the plane determined by points,
’ A,B,C (2x-y +2-1=0) and then check that point” D is a point :
of this plane. .

17. (a) x+y+22-2=0
oL (b) 3y -2z2+1=0 S :
18. The proof given in Intermediate Mathematics may be familiar; it follows, !

Lgt P = (x,y,z) be any poin't on the plane that is the set of points
equidistant from 0 = (0,0,0) and Q = (ka,kb,kc) where

. Kk =——=2d - v

,‘
[
4
c
no
4
o

PR . &

.
Then, since d(P,0) = a(P,qQ) , . 1
|
’ x2+y2+22=(X-ka)2+(y-kb)2+(z-kc)a, |
~

., or 0 = -kax + K2a° - 2kby + kall)2 - 2Ke + K22 s

which becomes - 2k{ax + by + cz) = 1(2(15.2 + b2+ c2)
or ax + by +“cz=%(8.2 +°b2+c2) . -

., o w8830

M
alet




; ) . X 8-5 -

! By substituting the value of k , this equation becomes - i .

i“fv ~;:-‘ - - : ax +by +cz +d=0. f
Ny . 7 ’ P 2

& . .This srgument is reversible. This means that any point P whose T

; eoor@iﬁates satisfy ax + by‘+ cz +d=0 1is equldistant from the p01nts

5 7 ) 0 and b . Hence ax + by + cz #d =0 1is the €uation of a plane,_ 7};

Note. If d =0 , it follows that k = O ; the two points coincide,
-and-no plene is determined. In this case we use the symmetric points

(e,b,c) and (-a,-b,-¢) and carry through the same steps as above.

- - - > .
—

L - .
o

8 -5 The definition of ‘a vector as a set of equivalent directed segments

makes the extension .to 3-space almost triviel. Since any meﬁger of the set
'nay represent the vector, we are free to choose those representatives which
most simplify our models or diagrams. In Chapter 3 we stresoed the freedom,
but we did not attempt initially to pursue all the consequences of this
freedom. At this goint it may be helpful to review the earlier material

E briefly and to point out thaé all vectors which-ﬁave representatives oh

’ __parallel lines also have representatives on the same-line. Once this prbpérty

of vectors is understood, the .approach to_3sspace should follow more easily,

The broof of Example 1 assumes no more knowledge of prisms than the
.material presented in the SMSG Geometry. . If students have had sdditional
training in solid geometry, they should be able to develop a more concise

. ° .

proof.

v

- In Chapter 3'we approached vectors from a purely geometric point of view

% d

before introducing any analysis using compohents., Here we heﬁe adopted the
.same approach, but in almost any application of vectors it is more convenient

N

to use representations in-component form.

For simplicity we use 1., j , and k_  to represent basis vectors with-
out the usual symbols indicating vector quantities, Consequently it may be

necessary to btress that these are indeed vectors. .~
Q . ’ I .
CERIC - 831 529 R

s e R . : .

— -




L

. %

. Exercises 8-5

(e) 1 . —
(f) 1 -
(g) o »
(@) 1 (n) 7 )
2..(a) 0. - (e) ]
(p) o (£) 1
(e) o ’ tg) o : -
{a) 1 (n)* AT 21
~ 2@ or 6
3. = f%
(a) [14,-3,3) . (a) [6,0,2)
() [-1,18,-9] N (e) [1h,10,-2} .
W.._(_c) M[:Q,l'f, '9] \\ '{f) ["18:1 ";","6]
S \ .
5. (a) [6,-2,2] ' (@) lo,- 2, 0]
(o). [%1’ "1_521 %] . (e} [-7,0,1] N ~
() [-3,-3,-3 ey [-3,06,- gk
6. (a) -1 () -1
- "(v) -6 ” (g) 257
(c) 24 » . {n) &
(a) -50 . (1) 23 '
(e) © C(§) ke v

P N
7. A+R 1is a real number defined |A|[A| cos 6 where 6 1is the angle
. - > - o . S - - _52'
between A and A ; l.e., 6.=0°. So A-X = |a]-]a]l = [a]°.

-~ -3 : - '
|[A| and |A|® are real numbers. ~A- A.A is not defined unless.a

convention about the order of mut';liplication Jds made, but in any case,

P o ol
e.g., (K- A)-A = [A]° A, the product is a vector, not a number.

(‘/'
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10.

= —— i + § o+ < k',

|2 /a2 5 b2 & 8 ‘/32 + b2 4 8 /aa + b2 4 c° '

(o'o'(.') A vector-of magnitude c¢ne in the
] . . .
. — dlrec-tion ?f P, L .
;,l i . (0,4,0) ) _ . - i
(a.00)
é' k =- 'g ‘ - > *

-
v

s e b,

L ol iﬁ'\
B . But A - B i + 4j which lies in the xy- plane Hence AB :
. ¥8 narallel to the -xy-plane,

L
3
11. The ine“segment -joining the endpoint of K and -ﬁ. is parallel to ,
-
A -

. o
5
M

12, If- c_l_a and ¢c|b , we musTsl«\ow that ¢|(8 +T) or that c- (a +B) =
b

But ¢-(a+%) =¢.-8+¢C;b|. Since ?_l_g, c-a=0, and since

- -:_]_F ,eb v =0. Therefore, T‘; (8 +D) =0 and ':_I_(: + '3) ‘
ST . Y P,
3. [0,0;%1) or Tk. | o 5

-

14, -4 +6) -k
~ Tei - 6cj + ck , vhere .c £0 .

15. /A =128 ' ' i ;
(=3 .
— o4O T, ‘ )
» [c = 2u ‘ .

» ‘ .
16. P +‘,1"[0,'1,.- -E] is a parametric representation of a line through

"P= [a,b,e] # [0,6,0] vwhich is perpendicular to -I?; i.e., there is

such a line for each r . i - s

17. .We wish to proye that rA = [ra._L ) T8y, ra3] .

-
Since A = [al,aa,a3] , ‘ )
. el . * . -
. TA = r[al,aa,a ]l. R .

Does r[al, 2,a ] = [ral,rae,ra ] ?

If two vectors are equal, their magnitudes and directions are equal.

Yy




A

o
.

=

3, 2. 2 -
magnitude of r[al, 2183 a,] = |r|~/al * 8y +ag /

—

2 2 2 ] 2 2
vmagnitude of [ral,raa,ra3] = Jr7a, rTa,” + Y ag
/ . . - WAL 2 ‘ 2 - /
g |r~|‘/a Vo e

e

If, r is positive or negatlve the directions of the two ore equal,

'l‘hegréfore the vectors are equal.

18. (a) We wish to prove that . .
* -, > .= S e im -
X {Y+2)=X.Y+X-2 .
We expand the left-hand member to obtain .

f[xl,;cé,x?’] -,fyl + 2, ¥, + 2 ,5:; + z“3]
= xl(yi * {'7.1) + >c2(y2 + 22) + x3(y3 & z3)
= XYy F KT XY, o+ X p * X3 * X323 ‘
_x1y1+x2ya+x +xlz * X2, rx3z3

.ty -X. Y+X-2. : . -

v

-

This is the rlght hand sxde of the equatlon and the proof is
7 " complete. . ’ ’
() To.prove (tX)-¥+= t(X.Y).

" The left-hand member is expanded to obtain

Clexg g tagd e [y pyaval o o
. = txlyl_ + tx2y2 + t;x3y3
= t(xlyl XY, x3y3) . - ‘ .
N which, by Theorem 8-3, is t(X Y) o -

Prodf is complete,

" Corollary, To prove that

e e -
X ¢ (e +b2) = a(X-¥) +b(X-2) , .

-

]: lC ‘ence, the proof is complete,
P.834

'*‘l.we expand the left-hand member to obtain

[xl,xg,x?’l . [ay:L +.bz) + 8y, + bz + ay3 + b{]
ax]_y:L + bxlzl "y ax2y2 + bx z + ax3y3 + bx3z3]

a(xlyl + XY, * x3y3) + b(xlz + X2, * x3z3
a(X - Y) +b(X+Z) , or-the right-hand member.




8-6 Althdugh there are not many nev ideas in this sectici, some of the argu-
ments require close attention. The postulates and definition mentioned are
from the SMSG Geometry. < T

1
denotes an origin-vectér vwhich does not lie in M unle'ss M also contams
P the o‘rigin.

We note that ‘even though P and P, are in the plene M s P - Pl > -

v

Ebcample 3 through Example € are not essentiél fo the development but are
“included to show students that ‘entire regions or their boundaries may be
-described concisely with vectorsi ' ' ‘

, * . -

- . N R
» . .

Exercises 8-6

1. (&) Tx -3y + 5z =15, :

\ = .

2. We assume the plane in question contain.: tbe given poiz}ts in each of the

- . following. 2 - <!
L L (a) .2x -3y +.2-1 = . . .
. (b) 2x - by + Tz + 69 =0
i ) (C) 3% - 5y'+ Yz - 50 = 0. ) . :
(d);c:l-y_-A6z+3n.8-_:O L ' .
‘.31 (a)—f%ll'- or -5—{;5 . . n
W 8 W38 '
(b) -:/_—8 or 9
’*"‘(’-c)._if d=0:0 — -
. if a-fo: —lal _ , .
VAR N 2 ' '
Q B - .




T T S

X . A -

b, - A " * A,B,C, and D are the four vertices of
the tetrahedron and P,Q,R,S,T and U

and Ch re.,pectively.. Thus

e S - -
*=%(K+B) Q=J§(B+C)
Y -
F=1@F+1) § = 30 A)
‘-‘ - -L}“
' T-13+D) ._-(A+ c)

P
[

(a) To show that Q,S m , and PR are c'oncurrent. QS is represented

\ vy xQ+(l-x)S or‘—((l-x)A+xB+xC+(l-x)D) W s

S Y o

) . represented by yU + (1 - y)T or —(yA + l-y)B+ (l-y)c + yD) .
.For these to intersect there must be x and y such that

> ek -x) =y and (l.-y) =x., But x=y =% meets this

¢

1> > S -«» .
condition so E(A +.B + C + D) is on both QS and UT . But

H(A+B +C +D) ——(l(A +B) +—(c +D)) -—P + (l -—)R
which is on. PR . Hence the three lines are concurrent. . i o

(v), We wish to show that QUST and PURT are parallelograms. First

we must show that QUST and PURT are plane figures. However,
f.x;om‘ “(a). e know that ES’ intersects ‘UT 4nad that PR interuects
UT , so we have coplanarity.

. * Then a-b‘=l(‘§-7\‘) =-'i‘\-§\_,\so a(q,u) = a(B,a) ,,
. . Y S ’ '
" , and Q-T= —(c - D} = s sa +d(Q,T) = a(y,s) .

Thus QUST has two pairs of opposite sides of equal length and is
thus a parallelogram. We could not get from QUHBA and TSI IBA
to QUI lfrs without assuming or proving the theorem in golid
geometry that for any lines a,b,and c, allb and blle 1mply
‘ b allc . The proof ‘that PURT 1s & parallelogram procedes similarly.
PR intersects ﬁ, so P, U,R, and T are coplanar. We R

- iy,

1,~> = - .
show that P-T=§(A-D)=U-IR

IS - .

-

and P-U'=§(B-‘C)=T=R,

‘ so that - d(P,T) = d(V,R) and a(P,V) = a(R,T)
‘ Hence PURT is a parallelogram. . .,

(c) ‘Since in (a) we show,that x =y =% the point of concurrency

EMC” . is the midpoint of " the segments involved.

' 836 | -
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TR S T T T e e e
s - a
: : . ) »
! ' - ol
! RS 3 . .
: _\~ 5. Let D ‘e the normal vector from P, to M., -
s ) Bl .
Y)y D.=‘ [x~xl,y,- yl,z-zl] . s
. The unit.vector normal to M is ’ :
N ; Wt ) T - . ~
’ n = [>\)[J.)v] .
‘Then the aistance from li’l to M is found from 8
: | o o a. ' ] —_— *
d=|9°D|=|[7\,u,v]-[x-fxl, -yl,z-zl]|
M 1 . LT ) _
] ’;]7\x-7\;&+py-;apxl+x’z-\>zl| =|7\xl:l-uy1+v23_ -pl.
) . T .

= @ _ . o
6" (8) AB=(x:X=1[4,9-T,-2 +5. .
7Y (b)) BBe(x:X=1[3-5p,%-p,2+p],0<p<1)
() K_§={§‘,:3?=[3-5p;1#—p,,2tp],p20 ’
..o‘ - ) -h” N ‘s
. _ () BA=(x:x=1[3-5p,%-p,2+p], <0} .
w‘ . . . . . _-‘ ' i r) .
7. (a). Midpoint M = [3, 5!7—]251 ‘ -
txlisecti'on points —‘fl = V[2:§*',5] and 71\12 = [11»,8,10]‘ .
. ’ > 1,1
: (v) . M= (35, -4, 13] .
> 1.1 g2, . 2 2 ..
B8 e B, )
| (0F Twdiny #5004
- -l."' - . -
. ,t,Tl = —3-[251l + b.l »28, + by, 28, + b3] . and
- — 1 ) * . =
: N ifr2;»-§[a1,+2bl,a2+_?b2,a3+2b3]. ' -
] 8, (a) X = [0,0,0] -
: 1
. ' (b) 3{‘? [%': 25: :5§] v ,
. Py o= 1 1
5 o) = g, 3, 39) S
33
0335 " oo

=
v

?
- »
¥
.
< ncs——
b
s
N
- N
1 4
.




-

. (a) The trié}lgulgr region is ‘(! Y =[lL+pe-2q+ 2pq,

. h-p-2q+2pq,-2+3p+6q-6pq] where O<p<l and

o<q<1).

The interior is the same except 0 <p<1l and O < q<1l.
Thetriangleis (Y : Y [l+p-2q+2pq,h-p-2q+2pq.
-2+3p‘+ 6q- épq) where (p =0 and 0<q<1l) or (q= "0 .and

0<p<l) or (qg=1 and-0_<__—p_<_l)]. -

P

in the above gives -the-desired point 11,3,1) . Hence:

o ] o

(b) p=q=
[1,3,1) must bé an {htefior point. )

(c) If [=4,-5,-6) is in the .triangular region, then p - 2q + ép‘q = b
and 4 -p-2q+2pqg=-5, Ifwe solve this, we find p = 2 " and

hence [-%4,-5,-6] cannot be in the triangular region,

» " ' / N

5 :
Iy :
3 .
..--f"""'i‘
'; O ‘ ’ . . 338‘ o . i
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. . . 6

’ v Review Exercises.

5 S - N ]

i 1. z = 5 £ - . - k]

L o 71#.: y,2 +-z? .-=“1+ T 0™ - . A . "
5, x2 " y2‘+ za -—E-aa . . - . - éf .‘ | f
6. (x';-» 2)% 4 (v + 5.')2 * 28 :.Ta' | L

o , P .
T. ) (x-1)2 + (y.- 2)2 - ?&z +5=0"""

v

T W . ’

k4

8, X+y+2-6=0 - . . -

=~

9n xd4y-lk=0

. Los 2
H A . -
! - A~ <
B * P> < (A :
: X e Lt oo
) . 5 ‘
.
¢ > * - -
¢ ) : K'I
" ey - <
& . '
- +F I Al .
. e
N ~ P
LAl !
-, . _y A
b I
¥ A -

’ 10‘—22‘7"‘0 12, x-y+2+3=0
L. . .

“ERIC

- e




[

One-space: a point 3 units to . 1
i the right of the origin. v 4
2-space: a line I;erpendicular
' to the x-axis and 43 '
units to the right of
,the origin,

-

3~space: a plane perpendicular .
fo the x-axis and 3

. units in the positive

"Q N direction j‘z;bm the origin. -

E lC"r :., 3B




ey
-

- n3
. s
* «
) <
- e
Al
.
) .
+—— i X
<10 3
One space; a segment between, but not

. inEluding, the points

s " X=<1 and- X =3,
'2-space: a portion of the xy-plane
) ; between, but not including,

° .

3. '
& portiof of ‘space between,

the lines x = -1 and

X =

3-space:,
but not including, the

plapes X =

» (It may be visualized as the

path made by moving a plane

-1 anq x =3,

parallel to the yz-plane.)

4 X o
-3 0 3 . )
. . i
One-space:, two points, x =3 and,
' X =3 . : .
2-spacey two lines, x =3 and
. X = =3, ,
3-spacé: two planes,. x = 3 and
‘x = -3 .
4
~
L)
- £
* W ,3 41 = Y
. 3%

- r R P
o
v v
Y .
.
v
-+ R
J
e 1
) 1
. .
3 ]
Rl
3 (] M $d 1
Tt - ¥

R s sttt
-

ke r e o -

8-6 .

]
o y
A + “A
: 1 p
4 —+ X
-3 3.
v, v
by
v
N
. »
-
. , )
o




h -
T XN
% .
»
[
, -
i
[
T L]
.
~
‘;
-~
K
- . ;
M
. x
-~
-
A
.
19. -
L
,
X
.
: .
: »
) _.
4
*a
. %
i
i
4 .
T ’,

?;EK

P A 7o Provided by R
- '

3
Al

$ X

-
.3
-

Al - 4 -

the-pprtish o; the ;-axis Q
to the right ofl and including
x =3, and kg the left of
-3,

the ppriion of xhgﬂplane to
fhe right of and including -
the line x.= 3 ,\ and to the
left of and including x = -3.
tﬁe portioﬁ of spaég beyonb
{in the positive'di%ection)

and inclunding\ x =

and including the plane .
x = 3 , and the portidn beyond
(in the negative direction) and

Aincluding the plane x = -3,

bk

-

y
]
ne

v

One-space:

2-space:

3-space:

a.segment between and
i,pé]fllding the points

{:-5 md‘f;ﬁﬁ

a portion of the Xy-plane '
éetween and 1néiuéing the
5 .

a portion of spacé between and

-5

lines x =-5 and x =

including the plahes x =

,and.}z=5.

T

. I
ARy

g 7
W
3

. < &
° . ’ Lot

& J .

: Y
RN , "
. L 1 . S
- T— +—t resceanes
=3 300

“ -
.

- .
A' W b Ll
-_.5 Y
[

; .
i .o
- ",

.y «
-
‘\' .
- Y4
.
.
H
4
< b
:
‘ L]
'
| \
]
i
.
.
I
.
-
- Y
o y « -
. N
> n
~ o
<
M
.4 .
&
.
.
v
PR S S| WY SR LN SR | -
Y 4 T T T ¢, ¥v..%
'5 ~ cs
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N
]
“
-
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1
-
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.
-
.
-
.
?
©
.
.
L)

e
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o ————




20.. ) )
. : —+ 4+ ———X
: . -2 Q1L > .
: - . PR * -
. One-space: the points %= -2
. x=0, and x=1. ] o
-2-gpace: the lines x=-2, x =0,
TR .and “x=1.
- 3-space: - the planes x = -2 , N
5 , x=0, and" x=1. 4
] A. Ry = ((xy) : |x] <2y
L s . P
. et a1 x One~-space: 'a segment betsween but
; 2 0 2 excluding the points
: x=-2 and x=2.
Y
hd 2 - . ] " ] ,
v . . : i : 2-space: = portion of space between
SEn i, ; > but excluding the lines
g i '+
- 1" 1 x=-2 and x'=2.
: R -
: — X
o ‘ <2 .o 12
3 \ 1 N
! 4 | N .
1
l. NN ]
. . i - $
o, o 1. 1
? 2N 3-space: a portion of space between
fL but excluding the planes
- © ¥ = a2 and x =2,
: - - 1.,
o .
ERIC L gy




P ; ) ' ) : v R
< . . ) B v 2 = :;}
R ’ : ) . - ’ :i
Ry =/l(x,y) = ly| <2} | ;
< . , . ‘
One-space (if we _chOOSg the y-axis): - . }
2 y ¢ g a segmentsbetween but ‘
V4 ’ excluding the pqints ‘
. 0 - y=<2 and y =2, . }
- . ’ - .
“ H
5t y ! ’ - e
. ’ . 1 ;
- s ?- - - ' 2-space: a portion of the plane

< . between but -excluding, the
e i B s e o - =
4 lines y = -2 and y =2. ,

-, twy ey :2 ----- - - 'd
1 ;
ks - - \\ “
7. Al AN
Lo - .
. E : ! 3-space: & portion of spasce between |
\,F:-.-'-:O—:' but excluéing the planes N
WAl . ’ :
¢ oA y=-2 ahd y=2. -
11 - 9 ' :
< 3 .
J o) _l
s

o |
s |
N
v |
.
. - : ‘
. N
|
\ :
‘ o
~ ‘,i
~
N

P 3344, S




. Ry=RNE,
A

. ¥
One-spao::‘e‘:%’j3 is the null set

»

& \ Yy
. I r-—1--n -
< I i ]
!
;'2: + —il x
- 1 1
t : !
" el and
-2 -
-
. z
* . ) . A - \
7~ = — .
pa v/
L - /4
pra =
—— /
L
—
= FE |
_ —7
) .L/
1 R,
= —"

h

«

i

’\\\

N

N

DN

22.

or R, .

. include all points in Rl 5

ERIC ,
* v

2-space:

3-space:

Exercise 21, Rl U R2 is the union of the first two graphs‘and would
B N e

the interior of the square
bounded by x = -2 ,x = 2
y=-2,y=2.

<

the interior of' the prism
bounded by the plane
=-2,

X=<2,x=2,Yy

y=2.

If, in Exercise 21, < 1is changed to < the graphs include the points, -

lines, and planes which are only boundaries ar\ld\ are not included in

\\
N \

\\




z’ l) . '§__"6 X
23.
&
2
X4
2k,
e
. 25,
26.
P -
p

3 %

» , The g}aph of X & y2 i 22.5 1
represents a sphere with the center
at the origin and ,all the points
within the sphere. (Only a portion

. of the graph is shown.) If < is
~ changed to <, the graph includes
only the points within the sPheré.
<
? ’
Distance A B c D 0
7 5 2 17 )
(a) M 0 e —_— —= —
R VI, /T% R /&
3 A ~ :
o), e s A
. Y1k 1k /ik 1k i
(c) ;" 7 13 13 9 2
/i V1% M1 /1% Vik
< .
(@ M, S5 .5 1 3 4
A B B B B
’ x+1 _y 2z -48 X_Y-5_2z-=-h
(8) == =1="03 () 7="53 T
~ <
X_y-2.2z-2 x-2_y-3_2
(b)]i— T =771 (el =5 5 .. -2
T x -1 -2 _z X-2 y-1_2z-2
() == 3~ =1 (1) 5= =573
(8.') [XJY;Z] = ["1;1-10118] S t[?;l;‘?]
?
() Ix,y,2] = [0,2,2] + t[1,1,1]
« () [x,y,2] = [1,2,0] # t[b,-3,1] ‘
(@) [x,3;2] = [0,5,4] + £0-1,11,7]
(e) [XJYJZ] = [2:3:O] + 3[3:5}’2]
(£) I[x,y,z) = [2,1,2) + t[5,2,3] .
346




: . : ; 8-6 .-
: - - -
: 27. «One method is to find direction numbers; for AB and DX direction
numbers are (-2,2,6) , hence they are parallel, Direction numbers for
- S o .
BC end AD are {5,-h,-h) .
]
¢ 28, Parametric equations of the medians
: _frotnA, x=-tl,y=3tl',z=-tl. .
-fromB,.x=2-ht2,y—1f-3t2,z‘=6~10t2. v
: ) from C,k:-h*5t3,y-2,z=-8”+llt3.
. X ’ 2 2 R
N The medians are concurrent inm the point (- 3 2, - §) . '
29, a=7 .
’ 30,~ a8 = -3 -
- i ! .
< / o
< - ‘ hY
> ,
- A
. . ,:,,/ . -
3 L4
3
O

LRIC

347 3%/349




‘Peachers! Cdmmentary .

Chapter 9: ’
e - ' QUADRIC SURFACES " SR

.
\ » o @

Since many of the students who study this course are likely candidates

_ for college-level mathematics, this chapter has been included to give the

, students help in wvizualizing and handling the types of obJects they will en-
counter in later courses. Our sights are~particu’arly set on the calculus.
Even in the e;ementary applications of calculus, one encounters solid or
3-space, figures of the non-rectangular variety. It might aid some students
if you were to roughly describe calculus as a sortf super-algebra which
-enables us to handle areas of objects with curved sides and,volumes.of objects
_with curved surfaces. Ordinary algghra is éenfrally powerless?with‘onects )
which do not have straight sides or flat surfaces. Of course, this would not
be a complete description of the pover of the calculus,'but some such dis-

: } cussion could be used to motivate the study of this chapter.

. ’ . Except for the Challenge Problems and an occasional natural extension in
the Exercises, we have limited the discussion to very simple forms of surfaces.
In most cases the origin is chosen as the center o1 the figure, and the axes
or elements of the figure are oriented along some coordinate axis. This
simplifies the drawing techniques and the algebraic manipuldtions. More

complicated forms are obtained by simple extensions.

- >

among curves and next to the plane, are by far the’most important types of

’ >
- surfaces. . . e € "

Quadrics hold much the ‘same. place among surfaces that the conics occupy
. « .
It is usual to identify nine species of quadric surfaces, but in order to
keep life in this chapter simple we have presented only six of these in the

students! text. The other three types (numbers 5, 7, and 8 in the li:t

with an example equation for each. . -

.

-

’,EIC o L aan -
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_below) appedr in Challenge Problems. For completeness we list thebnine,species

)
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'3 2
.
N

X T 2 v2. 2 L
s al. Ell‘ipspid. v ——2- + -é + -—2- =1, . ‘
: . . a b ¢
. M ) ~ x2 -2 22 N ‘ 1 .
2. Hyperboloid of one sheet. L .2,
- 2 2
e . . a b c* a
y ’ R ’ Sl . - -
- 3. Hyperboloid of two sheets. S e-—_=1. .
X per 2 B3T3 T3 .
R . a b c - i
= ’ ’ 2 2
k., Elliptic paraboloid. X sL iez=0.
. . AT 2.2
=1, - . - . . a b K
) . S R .
5. Hyperbolis paraboloid. —_— - -c2=0. <. .
: - 272
: “ a b
. . x2 y2 .
6. Elliptic cylirder. v Sris=1,
¢ . a2 b2 i

' ! " 7. Parsbolic cylinder. . x“-cz2=0. ) .
-, ) -

: : 2 2 ~ .
RN 85 Hyperbolic cylinder. = .

LR

P 9. Elliptic cone.

s 1S

o
©

It is of considerable interest to note how the surface changes vhen the
equation is altered by changing a sign, or by changing the pover of & variable,
. or by changing the value of one or more.of the constants. However, we felt

that this material would make the course tou long, so we somewhat reluctantly

restricted the quadrics to the six simplest ones. !

For the sake of variety, some of the spheres in Exercises 9-2 have been
located away from the origin. If the coefficients of x2 R y2 , and 22 are
; all equal, then the quadratic represents a sphere. One may then complete the

square for each varisble and obtain an equation of theiform

- ' . - 2 2 2 2

g B (x = x)% + (y - yp)° + (2 - 20)" = x" . .
Lt . .

The point (xo,yo,zo)~ is the center and -r is the radius.,

s

J \)‘ R .
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.- ) . . Exercvises 9-2 *
( Y’ ks .: : ' \

'
N

A sphere.. ) .
. ' Center: k\)riglri =
Radius:
AY traces\ are_circles,
: “
. S
! -

\

A sphere.
’ Center: origin ) }
\ . | 3
. Radius: 3 w
3 ’ - t
. VS BT A1l traces are circles, .

e > 1] -




" .
. -
A point-sphere. ?

Center: origin | - *
Radiys: O i S
The origin is the only point

; of the locus.

{ . o
- - . A
‘ I
A
. &
h . > * b :
f} N -
* = ' .~ i
k. 2 " - )
- H
) - . . ¥
A prolate spheroid. "
L
. Center: origin )
. .
T The xy- and yz-traces are ellipses,
- The xz-trace is g, circle,
* > - N
A - i
“ N
3
d IR ¥
. .
N )
o ‘ .
; v o
by < + F
t - .
N t
H M - [y

Q . ’
:4 . R € k15
‘ - 0 35F LY

a e FL L o o e e e e — e

Pl




A ’E lk\l-c

JAruntoxt provided by exic Y

. Center:

. >

A frolate.spheréid.

origin ) .
The xz- and yz-traces are ellipses.

The xy-trace 4s a circle,

The xy~ and xz-traces are ellipses.

The yz—t%ace;ig a circlé.

)
-~ s
.
» .
. 0'
v
~ v
v
.
/
.
.
“
\
s
-
:
.
-
°
-

L2 ;.
e »
T
-~
«
. W
L3
; .
a3
A prolate spheroid. -
Center: origin ’ .

i




\ . -
\" ’
A
N .
\ v 3

An oblate spheroid.
e A . . .

. Center: 5ri‘g\in

The xy- and yz‘ytraces are ellipses. *,

The xz-trace is\\a circle. ™.

\ s

-~
-
-
-
-
5
L
7
you
o
2

An oblate spheroid.
Center: origin

Tne xz- and yz-traces are ellipses,

The xy-trace 1s a circle:

. "’\

-~

2> Ngd A




A prolate spheroid.
\
Center: - origin .
The xy- and xz-traceé are eliiDSes. '
-~ 7 . \

The yz-lrace is a circle.

An ellipsoid

. Center: origin

q All traces are ellipses,

Y .




v D N
An ellipsoid:
R °  Center: origin _
6 7 1 trates are ellipses. .
z .
% N .
. , n
L]
. ) \ .
)
. v A ellipscid, *
Center: origin .
All traces are ellipses,
3
£ .
9




Equation of the sphexe:

. ’ g ' 9-2
. - ¥ e .
. ¢ -
Y Y- T2 2 .
3«3' ‘/}:‘ - "\:-0) + (y : yoz 1 (Z - zo) =1, . S
' no - 2 2 2_ .2 E :
“or ,(x"‘o) #(y - yy)™ (.zsz) =r°. . ‘
2 . 2% 2 ¢ 2 2 2 2
) - + - . 3 - . -
1, x n_xxo’.l X 1Y myo 'j’Vo + 2 2zzo l' Zo 1 ,‘ .
. ; : > .
U *or X+ y2 + 22 -‘(2x Ix - (be)y - &Ez )z i (x 2 Yo -bzo‘ - ra) - 0.
» ) -
s Since (x ,yo,z ) r\.pre.,ent., any point and r >0, the given ‘equation
; represents a spheré with radius r and center at (xo,yo,z )
15, (&) 22 +,-y2‘-l 22 - hx -y - 62 211 = 0. s
. (v) x2-+y2+22-!:2y-’&z+l=0\'.~ B
" (e) :x2+&2+22-2x-;6y+hz+].2=0.‘ -
' L2z 2 2. T
\’ (vd)"x ":,y +z-§x +231—.z.43%’=0, . oo -
: 2 2 2 N .
X ) or 36x° + 36y_ + 362° - 2% + T2y - 36z % 13 = :
; 2y Ly w242 =
(?)A‘+y-z-x-2yszR_o, /2 ]
or \16x2 + 163(2 + 162° - 16x - 8y + 16z + 5 =
(£) x2+y2+z-3x+y-5z-.25_0 ‘
< or hx2+hy +l+z -12x+!+y-202-l‘=0. ,
. l' (. " -
16. (a) Center: origin. Radius: V3 .
" (b) Center: (1,-2,3) : Radiust 2.’
~ {¢) Center: (0,2 A1) ., ': ‘Radius: 5 .
r (8). Center: (-3,4,-T) ;- Radius: 2. - ° .
' (e) GCenter: “(-2,3, 0) ) Badius; 0 . (a point-sphere.) . o
(f) Not a s\phere.. N . ’ :
. ! . 1
. - (g) Cegte‘r. Z—, 3 -l) ;iad.ius.. 5. ) |
% . ',\ * R - N . ) + e
(h) Center: (H’ 2, -:-:-,'2-) . Ra’ius: % . ) f
17. Center: (0,1,5) Radius:, ¥6  ° ’ . "

x2+y2+za~-2y-loz+20

s

L]
(o]




S g ’ . :
2 ’ ) :
; 2 2 2 :
p . : R .
. 8 % + %9 + 2—5 =1, or 1225x° + 225y° + Wh1z2 = 11025 .

Challenge Problems L "
: 0 x=3? e n® (z-2P
e em T 36 16 5% - ©

or ¥x° + 9y2 + 22 - 2hx + 18y - Uz - 95 =0 , -
2, Substituting the coordinhates of the four points into the equati. . of

general form, x2 + ya 4 22 +Dx + By + Fz + 6>= 0, resdlts in

: (1) 3E+ F¢G=-10, :
E ' (2) . -2D o + 2F + G = -8 )
: (3) D+ E+ W 4G=-18,
(%) -3D+ 3E 1 OF + G = -22 , '

. From these ‘fe obtain !
; ) (2) -2+ 2F+ G= -8,
: (5) (1) - (%) 3D°- F = 12,

T(6) 3.(3) - (1) 3D + 11F + 26 = M) ,

,Then we have

(1) (6) - 2.(2) 7D+ TF = -28 ,

(8) 7+ (5) 21D - 7F = 84, and
(9) (7) + (8) 28D = 56 .
: Therefore, D=2, F=-6,G =8, £ =-h, and the eduation is ‘ 4
}7 o © 4 y2 v 2%+ 2x - by - 62 + 8 = 0 . This can be written
é,, (x4 1)2 + (y - 2)2 +(z - 3)2 = 6 , showing the center and radius of .
. the sphere. e > 2

As an alternate method, find the center of the sphere as the 1ntér§ection
of the perpendicular bisecting planes determined by pairs >f the given points.
The radius may then'be found as the distance between the center and one of the

Ao given points,

) » . ‘
Four points determine a sphere if the points are not coplanar and if no

three points are collinear. -

e . < . : :
F . 6 387 ~
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/ . :
. / :
< - . 9 :
i 7/ 3
: xercises 9-3 / :
€ ¥ e ————— — . - .
p L .
. i
; / ) _ . = A paraboloid of revolution. . /
: . i oo :
8 Axis: x-axis i ‘.
P /
- > Vertex: origin / -
' iy 9 The xy- and xz-traces are -parabolas. 3
! - Sections parallel to the yz-pldne are :
[ i
5 T + ‘. .
; _9 civcles. (These sections are /not
3 . A
! drawn because they interfere ith
; other parts of ‘the figure.)
: , . I/ e P P
/5 '~
:
: / -
B / v .
. / -
‘ [
/
B 2. 1 .
: A parzbolo’d of revolution. -
: Axis: z-axis !
= !
: Vertex: origin i
Es J
. The xz- and yz-tracefﬁ are paraboias.
[ GCections parallel to the xy-plane are
: circles (not shown).




A paraboloid of revolution.

Axis: y-axis

Vertex:

origin

The xy- and yz-traces are parsbolas.

L

Sections pgrallel to the xz-plane

are circles.

An elliptic paraboldid.

Axis:

Vertex:

y-axis

origin

-

.Cl

~ The xy- and yz-traces are parabolas,

Sections parallel to the xz-plane

are elli,ses (not shown).

359 4




An elliptic paraboloid.

Axis: y-axis

Vertex:' origin

The xy- and yz-traces are parabolas.

Sections parallels to the xz-plane

are ellipses (not shown).

An 2lliptic pnrabéloid.
Axis: x-axis

Vertex: origin

The xy- and xz-traces are parabolas.

Sections parallel to the yz-plane

are ellipses.

>

3

~

.
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e

A hyperboleid of revolution (one sheet). ‘i
'Axis: z-axis

The xy-trace is a circle of radius 2 .
The xz- and yz-traces are hyperbolas.

- -

/

A hyperboloid of revolution (one sheet).
Axis: y-axis
The xz-trace is a circle of radius 2.

The xy- and yz-iraces are hyperbolas.

*

- %0 841
‘ < L3




An elliptic hyperboloid (one sheet).
Thé xz-trace is an ellipse

The xy- and yz-traces are hyperbolas.

A hyperboloid of revolution (one sheet,).

Axis: y-axis
The xz-traceé is a circle of radius 5 .

The x#- and yz-traces are hyperbolas.

DRA i 7ext Provided by ERIC

I=y
.




9-3 ” .
. * ¢
An elli;:flc hyperboloid (-one®sheet). :
) The yzwtlace is an ellipse. -
) . The. xy=- and yz-traces are hyperbolas.
12, 4 o
A hyperboloid of revolution (one sheet).
Axis: y-axis
2 ] . The xz-trace is & circle of radius 1 .
L . iy The xy- and yﬁ—traces'are hyperbolas.
i \
¥ \ 14
) .
\ .
: . -
(2 [
E H

. ERIC o %2849
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13.

2 .2
In Section 7-7 we have e = ié——é—g— <1 as the eccentricity of an
ellipse. Applying this to the equation of the xy-trace of Equation (3),
2 2 - ;
%T + %7 =1, we find e = f% . For any section of the hyperboloid

parallel to the xy-plane, say when 2z = k , we have

2 2 2 2 .
X~y k- ~k 2 : -
Tty *® 1 5 Let 1+ 5 =2 q >'O , the equation then becomes
xa i y2 N
-3 - 1 . Evaluating the eccentricity gives us
)‘g 9q' . -
2 2 = .
e - /ou® - ug® _ S5
. 3q 3 )

. . raae
The Challenge Problems which follow contain work on hyperbolic paratoloids,

which were omitted from the basic text. An aia to identifying sevcral of these

surfaces is in their names. Tlhe first part of the name {an adjective) indicates

the .kind of sections we find parallel tO one coordinate ﬁlanc; the se-ond word

ERIC

A v 7ox: rovided oy Eric

(g noun' indicates the type of sections which are paralle] O the other two

coordinate planes.

Challenge Problems

{a) 1t will be noted that these 'saddle.

2 - shapes™ are difficult to sketch.

The yz-trace and the sections parallcl
to it are parabolas opening downward.
The xz-trace and the sections parallel
to it are parabolas opening uﬁﬁard.

‘The sections parallel to the xy-plane

are hyperbolas, which degenerate to a

pair of intersecting lines as the

4  xy-trace.




e
.

The planes shown in part (b) inter-

sect on the z<axis and are determined

by this axis and the xy-trace. These

~ planes serve in an asymptotic capacity

with respect to the hyperbolic
paraboloid. A section parallel to the
xy-plane (a hyperbola) will have as
asymptotes the section of these two

o
planes formed by the horizontal et

s

cutting plane.

If students encounter difficulty
vizuaelizing this surface, havé them
Yook at the region between two
knuckles of a clenched fist.

The sections parallel to the xz-plane
are parabolas opening downward. The
sections parallel to the yz-plane are,
parabolas opening upward.

The sections parallel to the xy-plane

" are hyperbolas, except for the

. xy-trace which is a pair of intersgct-

ing lines.

-4

. FRIC
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¥

We have purposely included in the basic text only closed cylinders,

9‘_’|A
The sections parallel to the xy- and
xz-planes are parabolas; the sections
parallel to the yz-plane. are hyperbolas,

except for the degenerate yz-trace.

-

Any curve (or line) may be a directrix..
Other

A cylinder need not be "round".

Lt

types, including sinusoidal ones, are found in the Challenge Problems.

Exercises: 9-h

Axis of revolution: z-axis
The .xy-trace anl sections parallel to
the xy-plane are circles of radius 8 ..
The xz- and yz-traces are lines

parallel to the z-axis.

N




ARG S - B
. i - - - = .
Fa 9 . :
b2 - N ] :
; .o z ’ . " Axis of revolution: y-axis
- The xz-trace is.a circlé of radius 5 .
S The xy- and yz-traces are lines
parallel to the y-axis.
T i .
3
g "y O e——
3. »
Axis of revolution: x-axis
The yz-trace is.a cincle of radius- 6.
The xy- and xz-traces are lines ’
2 parallel to the x-axis.
. , )
3
; :
« ‘ti
|
; . g
' |
: < ’
O
Q B o by .

. .
e S RS




9-h

"ok, z
] The xy-trace (and sections parallel .
C to 1t) is an ellipse.
i / The xz- and yz-traces are lines
. U
T Ve parallel to the z-axis.
. //
T -2 b
: <l ?
z |
- |
N AY
5. , .
2 The xz-trace is an ellipse,
] The xy- and yz-traces are lines
3 y A : parallel to the y-axis.
’ X ) ‘
7/
/
— — /' + e
| 2 | 4 ‘ .
4
A \ '
: z
: {

s [y

F

3
O

: ERIC
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The yz-trace is an ellipse,

ihe - and yz-traces are lines i

parallel to the x-axis.

The xy-trace is an ellipse.

The J?;- and yz-traces are lines

parallel to the z-axis.

CERIC | P

v B i
P .




[
~

The xz-trace is an eliipse.

The xy- and yz-traces are lines

parallel to the y-axis.

L3

Tne xy-trace {und sections parallel
to it) is a hyperbola.

L3
The xz-trace is a pair of lines

paraliel to the z-axis.

There is no yz-trafe, but planes

parallel to the yz-plane which

intersect the surface cut off lines

R URSY S ——)

parallel to the z-axis.




(b) =222 =36 .

(c) x4 y2=16.

-

1

2, 2 _

- a2 (a) yS S0

2 : (v) x2+z2='25,
; T () ReBan00.
; 13,88 + 28 =100 .

i W y2 + 25 = 14h
j‘j“ . 15, x2 + z2 =h .

16, 25y° + hz? = 100 .

The xy-trace is a hyperbola.
The xz-trace is a pair of lines
parallel to the z-axis, |
There is no yz-trace, but planes .
pacrallel to the yz-plane which inter-?
sect the surface cut off lines ’
parallel to the z-axis,

~
5

PR "
v

~y




2 Challenge Problems
ll \
i | ' .
1 // - JZ A pargbolic cylinder.
/\ ~ The elemehts are ‘parallel to the .
/[ il \ j[ y-axis. | ‘ -
4 A The directrix is a'parabola.
// . ; 1
9

A parabolic cylinder, ;
The elements are parallel to the
x-axis, ’

A

The directrix is a parabola.




Ll

A hyperbolic cylinder.
The elements are parallel to the x-axis.

The directix is a hyperbola.

A hyperbolic cylinder (only one

branch shown). ~

The elements are parallel to the
z-axise

The directrix is an equilateral
hyperbola,

.

Aruitoxt provided by Eic:

v Nt ke



z
/I\ A circuler cylinder,
- ~/ The elements are parallel to the
/ y-axis,
7 [ ]
,/ A'directrix is a circle of radius

i : having its center at (0,0,3) .

A / .

F3
6. . //—
/ /// A circular cylinder,
\.._ — /’ The elements are parallel to the
'// . Z-axis, .
/| A directrix is a circle of radius
/7/ > having its center at (-1,2,0) .
728 2 SN
Wl 4 ¥
l <
|
hY
. ‘;
€y 4
3 1".‘. \

373 \
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ST T EEge——n e e, - - ' - -
. L4 f
o .
S . 3
Y PR
- kY
. The elemerts are varaliel to the
PR . % " “y-axis. .. ¢
The directrix is a sine curve.
: < ~
0« X
<
. .
3 . :
' )
The elements are parallel to the
X-axis, 3
The directrix is a cosine (or
displaced sine) curve, )
. .
’ . N -
i -~
" 1 o .
“ERIC 7
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1.

¢

(y + 2)2 +(z - 5)2 =16, or -

y2 + 224 by - 10z + 13 <=0,

Exercises 2:2

Axis: x-axis
Intercept: origin
Sections parallel to the yz-plane
are circles. (One nappe only 1is

shown. )

376>
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- Axiss ylgxis
Intercept:\\grigin

.Sections parailel to the xz-plane

are cirecles,

\

Axis:
Intercépt: origin

y~-axis

Sections paraller to the xz-plane

are circles.

L}
s -
.
<
-
»
.
'
o .
s
.

- e. - v
v I3y} «
5163 4.7 '
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z Axis: x-axis -

. 1 Intercept: origin

\ - Sections parallel to the yz-plane

i are circles.

Lraontiw

Axis: z-axis
Intercept: origin
Sections‘parallel to the xy-plane

are ellipses.




o
Axis: y-axis

Intercept: origin )
Sections parallel to the xz-axis
are ellipses,

i

2

7. xe-lhy2+z =0,

8. I l+y2 + 922 =0,

2

9. 16x° + 16y° - 92° =0 .

10, 225%° - 1652 + 2522 = 0 .

2 2 .

" . 11, The section in. the pla_'ne ¥y =1 has the equation 3{;- + % =1. The

eccentricity. of this ellipse is e = E] ; i = 5 . For any section of

the cone parallel to the xz-plane, say when y =k , we have
2

-

1 . Evaluating the eccentricity gives

.




: , Challénge Problems

-

1. Since a=6, e =% = 3—%——29 ; therefore, the elljpse in the p\lane

2

- 2 2 2 2
: x = 1 either has equation %3 + -;—O- = 1 ;or has equation %—0 + 3 = 1.

The cone is either -180x2 + 5y2 + 922 =0 or -180x2 + 9y2 + 522 =0 .

2, Since a =8, e= -lé = —4é——-» H th.erefore, the ellipse in the plane
' NI 2 2
z2=2 <'g~1ther has equation 13" or has equatior3 ST Y 1.

The cone is either l}xe + 3y2 - 1482° = 0 or 3x2 + ’+y2 - h822 =0,

368 . An interesting oral exercise might be interposed in this section. Have * .
the students try to describe 'the surface generated by revolying about an axis
. of symmetry the printed capital form of certain letters of{thnglish
o, alphabet, . . - >
i% . Exercises 9-6 . -
s 1. A
¢ 2
. X + 2 =.8

. 2 : Y % .
(0,8,8) "

CERIC. S B8R0 ,

¢ e / - -
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oy =
Rty

€0.4.3)

x2+y2+22=

2
9x2 ¥ by® + 428

a5 .

=36,
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xe-hy2+z

24+16=0.
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T . 9-6 .
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) 9x +9y - 2 =360
< >
- H
[N . ) »
o o |
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\ \‘ =~ b ) .
. - A -
e \ - .
- \ z “ ; A
18, ] "
\ _ (o.2.€) ‘ <2 . y6 +2220. )

ES)

19. Since this is-a surf’;.ce of revolution about the y-axis, any section-
: ¢ parallel to the xzj‘fhne will'be a circle of radius k with equation
bc2 +2° = k2 . Th{k: ‘number k 1is the ordinate, z , of any point on the
- ,curve f(y,z) = O;Vain the yz-plane; hence, since %k = WA , the:
equgti'oz; of the Burface is f£(y A+ 2 ) = ‘
372 ‘ Projecting cylinders, although time consm‘gning to draw, can- be very .

helpful in locating a space intersection. Look, for example, at Number 48(a)

of the Review Exercises. We have the 1ntersection of a spheroid and a.
hyperboloid, ‘this is extremely difficult to visualize.

projecting cylinders, we see that the curve lies in a pair of pianes through

But when we-employ »

the y-axis and that its projection on- the horizontal xy-plane is a circle.

This is muc%: easier to visualize,

the .same intersection.

T a different pair of projecting cylinders than we have used,

‘By the way, ‘even if a student shouiq use

he will obtain




{a) 4 2% =12 R . A circle; radius , /i3 ; center on
. ey =-2 ., y-axis; parallel to and 2 units
i - - left of the xz-plane, )
. (b) y? +2° = -5 No ;r;te;'section. (This first
” X = 3. equatién represents an imaginary
: - cylinder, )-
(e) 2+ y2 =k, A circle; radiuq, 2 ; center at
- - z =0, - "origin, in the xy-plane.wﬁww -
\ )
. () 2+ y2 =k, \‘\ Same locus as part (c) .
z = . ' ) )
(Ke) <2+ 22 = 5, ° ‘ A circle; x‘adi-us, Y5 ; center on
Yy =5. y-axis; parallel to and 5 units
. ‘r right of the xz-plane,
. 1y _ .
' (£) = 25 , " A pair of lineg;(\parallel' to the
z = 0, y-axis; 5 units on opposite sides
. ——— v - -of the y-axis .in the xy-plane,
) (g) = 25, " A pair of lines; parallel to the
' Xx-y=0, zraxis; 5 units on opposite sides
i ~of the z-axis in the plane which
. bisects the first octant..
a . * “‘3 ’ -
e (h) x=+ 8 =16, An ellipse; ‘center on z-axis;
‘ 2 = _l . parallel to and 1 unit —abqve the
xy-plane., '
! () 3y2 - 42% 212 s A hyperbola; center at the origin;:
: X = 0. in jhe 'yz-plane.-
: .o .
3 (N 2y'2 + 82% = , i An ellipse; center at the origin;
‘ * ' x =0, in the yz-plane.
(x), < + 822 =0, The point (0,2,0) . (This first
y =2, eq_ua.tion represents a degenerate
elliptical cylinder--the y-axis. ).
__________:—-—v*-—- T T .
#3990

Exercises 9_-1
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A circle; radius, V2 3 center on th‘e

2-axis; parallel to and one unit above

the xy-plane. (Hint: subtract the

second equation from the first. aimd

zubstitute for

{c) .

- 3
e
.
. S
3}
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;
e e
-
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T

. 9-7 ) . . , A
z ’. . g - i . -
b, T _ The point is .14k units above the
f - Xy-plane, By eliminating x , the )
oo 1\ . - equation of the projecting cylinder .  *

" with elements parallel to the x-axis

is z -1k = 2y - 1)2 . The yz- |

trace of this parabolic cylinder is a - (‘
parabola, which shows the. projection .
a C
- ‘of “the highest point of the space .
> o
curve, (7!2'- »1,14) . Interested ’ .
-, ) o students may wish-t6 find this point
A by observing the projectioh in the
‘xz-plane. @ -
4 €
2 : ' z2_2,.2. ‘ )
N 5 . 2- = x" + Yy represents one project-

ing cylinder, and eliminating x from
the other eguation givesa

2% 2y = 0 , vhich represents a pro- ,*
Jecting. (paraboiic) cylinder with
elements parallel to the x-axis. ~The
resulting space curve together with

the xy-- and yz-traces éom’p‘lete's the :

¢

) ‘ . is,{

" -outline of thé?i‘igure."




| 7 8 * ~ 3 z . L4 . 4 ~ - . .9."8
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Y 377 .:.ir\ce cylindrical and’ ..phericai. coo,rdinates make use of polar torms, the ,
.- remarks made prtviou ly about. the-amblguity 01‘ this type of repres entation
3 apply hére as welI'." N N ‘.. 7

. " ve
-, . .
H . - -

'l’heré is nothing (except cu..t.Om) to prevent. u.. from applymg"dle polar,
des ignationu to one of ‘the other coordinaj;e plane... Thu.., in Figure 9-23, we
might have'designated the poipt as P = (7,y,9) or P = '(x,x,e\ ’

. We chose the form which is in comgnon, use,’ L e VT
'. s - > ~ :

- C, . Exercises 9-8 . o

I Lol Ll . . |
< le-.. ‘r = psin ¢ , : p2.,_='-" r2 + 22
: . e=0, or 6=26 N
=pcos i . _r

. o \ tan ¢ = 2 .

. .
’ . . e

These may be obtained ‘by. equating the cylindrical and.spherical 'i"Qrms .

in terms of rectangular coordinates. Fér_ example, A, 4 o
N . ' ) . . i .. ‘-, ) . 5 v
' ' Ycos @ =x=p sindcos 6, ~ . .
. r=p 5in ¢ . - *

. _Y _psin ¢ sin 6 L ) o

- . tan 6 =9 = ~poingcos 6’ - lgL

\ tan g = S10°6 (an identity); therefore .'“1

. cO8 e s ). s t

* - 6 = e .

LT ) (33 o,-%); (573,0,%) . " i .
‘,(c) (0,2,0) 5’(2:%:'9) . ‘
(a) (0.239, 3,354 , 2.160)-; (3,364, 3, 2.160) . .., SRR
X'\ . ) . N L
- 3. (a) 43,1,3) 5 (/I3,%,.59) . D '
: ) - I3 ? /
= P ’ § . f‘ ‘e . . . )’,
(6) (0,5,0) 5 (5,5,%) » | ) ;

¢~ :(9)3. (0:0:83 -5"(.8;%: O) .

i...;;,__w_._ (a). (2 160.,.3. 365”,"2)“; (25 1; 1,11) o e . "M,, ':' :

- PRoy ‘ ,




\
N
A2 £y

z. L

A\
() (f13,.98, 0)\, (f'3‘,.98,2; .

-~ .

" (B) (6, 353 (3¢§\ 2 1.112 .

/'ftan ¢ =

()b, ) 5 (3, 3 2, e

(a) (/IT, .2, 2) ; W, 12, 1.34) .

2 . A 2 .2 L
(a) r =v25,or.,imp1y r=\5;p 8in° ¢ =25 ,70n psino =5.

(b), z =4 tan @ ; P cos ¢ cot ‘e. h.
(¢) r=8cos@; psine =38 cgs 6.

(a) i‘2 =-32 5 p sino tan ¢ = 3 ‘-‘. ¢

£ +—y2 + g2 36 . '
R y2 = 36

x2+y2- (z _6)2‘=0 .

2 -
x2+y2+z“ 9. 2B

A cylinder of rédius 3 whose axis is the z-axig,

A,plz;.ne containing the z-axis and bisecting ghe first octant,

A sphere of radius 2 with center at the” origin.

A-circular cone-vhose vertex is ate the origin and whose axis is
the z-axisi™ /., ot
Iy plan;"parallel to-and” 7 unii'.s gbc‘n}‘e the Xy-plane.

A plané containifg the y-axis and bisecting the first octant.

A circular cone- whose vertex is.at the’ origip and vwhose axis is
the z-axis. - . . .

A plane parsllel to and. 2 units‘in .i‘ront of the yz-plane,

L4 rd




Lk

(a) Let the center of the.sphere be'therbrigzg and the axis.of the™ ~
' cglinder have rectangular equations x = 2 s ¥ =0 ; then the :
bounding surfaces are . s ) y )
' - ) ,”
. = £ & y2 + 22 = 16 y ’
(3]
(x-22+3% < 1,

(b) 22 + 3% =15,
o r=hkcoso.-
(c) p=h,
p sin 6 =k cos 6.,

. 4 R

- - . Reviey Exercises - /,,//”’

. A prolate Spheroid.
- s 4 s Sections parallel to the xz-plane-are

circ¥es; Sections parallel to the
other coordinate planes are ellipses.

-
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A sphere, Rddius: 3,

. A1l sections-are circles,

IS

- BN

. A paraboioid of revolution,
F  Sections parallel to the xy-plané
~are-circles,’ ) .

Séctions parallel to:the other

.. coordinate planes are paraiiélgé. ,
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An-elliptic paraboloid.
Bections parallel td the xy-plane

are ellipses,

S Sections parallel to the other
: coordinate planes are parabolas. -
¢
. , )
. &
e
ﬁ;&‘ P
B ’, - - 1
N z }
An elliptic paraboloid. .
Sections parallel to the w-glane - 3
are ellipses., .
i Sections parallel to the other.
:“ % ) coox_-'dinate planes are parabolas.
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An oblate spheroid. , "
Sections parallel to the yz-plane are
cireles.

Sections parallel to the other

coordinate planes aré'éllipses.

F

[y

3

N NI S




: * : — : 9-8

g .

© A hyperboloid of revolution (one
. sheet).
Sections parallel to the xz-plane

are circles,

Sections parallel to the other
coordinate planes are hyperbolas. .
. —y
“ P
_:‘ :Ex & ] - ) .‘::'.‘ )
. .. ’ &3 ]
. {" o
9. - . :
z : - .
i - N +An elliptic cylinder. _
R Sections parallel to the xz-plane . _ .,
5 are ellipses, =
- - R : L
0e.2) Seétions parallel to “the other
W o : coordinate planes are parallel lines, =
Sy h SR '
(300 ° . . -,
X < * N i
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4

A hyperbo]ié cy]'."i'.nder (two parts),
Sections pé.rallel' to the xz-plane are |
hyperboioas.

Sections parallel to the other

coordinate planes are parai},el lines.
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A pair of planes intersecting on the
» T - ¢ ~ *-
z-axis, . .
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- 1 9_8
B - - . o
12, .
o _An elliptic paraboloid, ,
Sections parallel to the yz-ﬁlanq
are ellipses. R
Sections parallel to the other }
; - coordinate planes are poarqbolas.
7 o
- , . i
Y
1 N o
A : '
N T . o A,
DS “ Y] 5
* o 1. (-: \
< :’ ¢ g o~
- - - -~ %, vy
. * - . ¥
: < \\
oo An elliptic hyperboloid ( one sheet).
Sections parallel to the yzvplane
" are ellipses,
- Sectigns parallel to,«ﬁ’he* o’cheii ,
" coordinate planes are hyperbolas,
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)
A circular cylinder; axis: x-axis;

v

radius: 10 . .

Sections parallél to the yz-plane
are circles, '
SectionS'parallen:to the other-

coordinate—planesxare parallel lines,

A spuere; center: (1,0,0) ;
radius: 2,




N - - @, . -
An‘elliptic cone, * -
- Sections parsllel to the xz-plane - >

are ellipses:
Sections parsllel ‘to the ofher

,~\\\\\;\_\:i‘~\§\;foordinatg planes are hyperbolas.’ ot .




R e e e S A

: - :
Y . .
: B .
: 18, T - : .
-Q
: : (x+ 82+ (y-3%+(z+5°=16. °
A sphere with rapdius 4 and center
) at (-4,3,-5) .
1 - o o
o ety
N 9 i "
\. .
g 325 '
X w
- . . . - T .
Lo . e P :
B !". & - :‘ " - ="
- Vo o i ‘
L2 " 190 N 2&:;, " N . . .:,: =
B T 4 ' . . :
- - ) (0.5, 6) . * An elliptic cylinder. o .
S 4 4 . Sections;parallel to the xz-plane AR o
<./l /1 are ellipses, : TR
B o 5 1 Y Sections parallel to.the other T
* - . - - . k4 N
: . . . . * coordinate planes are parallel lines. 7
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20. z '
. A circular cone, )
N : Sections parallel to the yz-plane

are circles,
Sections parsllel to the other

coordinate planes are hyperbblas.

(3,0.5)
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Assume that the ellipsoid has its
center at the origin,
x2 y2 z2

FBIBIBWE L

. I
or 100x> + Thhy® + 2252% = 3600 -,

.
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Z Assume’ the spheroid located as shown.
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F * 5
= =+ ’ x y2 2
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: Assume the spheroid located as shown.
; . ", .
: 2 r3;;+'-y—2'+-3'§-1‘. or
R .3 g =1l
i _ - s
3 13 . .
f L R A
* . . . o' -
i < .
+ < - ;
. . '
. . . ) . :
. ; v g y
¥ " . » " 4 . Y + »
. N - ~ « .
= - - " i’
~ . K s KY ..
. ) KD . - .
» 3 -~ * -
’ et - [P , ’ . "
- . -
f - ’.‘ o f e
* . . . - -
@ R ) . . ! ‘ ”
- . r -, .
.,; » ’
- » N - . N
4038 =
: (< ' - ‘ . N
ic - e hor -
= - S . - - . R ;




‘26'_. . ’ . Yo )
Cor S L, (0635) . 25x% + 162° = hoo. .
172 S
. . ’ )\/ " . * ‘.
N . . B
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A ‘A hyperboloid of: one sheet.
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A ‘pa'rabol,old.

x2+22=,‘y.
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¢ A hyperboloid of two sheets., -
X . 2' 5 K o S,
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h - - . - ;
: 25x° - 36y° - 3627 =900 ,
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e - " This is not a quediic surface;
‘ - 1 it resembles-Figure~9=19, w s
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A hyperboloid of one.sheet——- * - i
25x2 + 25y2 " 36:’.2 = 900 , ¢ ;i
- o - . {
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. Azeirculesxy cone, - - E I H
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e T A cirveulsr cone.
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25%° - 1692 + 252° =
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A circular cylinder,

xg. + y2a= y . :
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AN ,
i £ 5 v
! . .
9"’8 o ” . - - N
8 - ;,5"4\ ;8’ — - -
.:. 138? . "' A ¥ s
: o7, N : :
s '-2’ - A c':i“rcular cone.
: e
w . « Xa + y2 - hze = b . N L ._:
A / .):'”:.
”~ '; ‘., -
:\ ] =2
E _
. 47 I s .
F e . -
* N i
< : t
B T b .
: 39 x¥ iy 422 bxsly-22-86=0. _
. , o, ”
\71}0,A X, +2 = 25 - - ” .
' - e
b, y"+25=12x-36. 5,
‘ 1+2 " (a) Ellipsoid. - . i
’ - + (B) A point. . »
. " (e) No locus. . ’
k(qi)' ‘Elliptic hyperboloid of one .sheet. i
: (e) Elliptic cone. % ) -
: “ (f) Elliptic hyperboloid of two sheets. -
. (g). Elliptic hyperboloid of two sheets. -
.. (h) Elliptic cone. . )
: - i
(1) Eaiptic hyperboloid of one sheet.
y " S
. ' . > i
g o - 415 . ’
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< %
Tiet the points be A = (2,0,0) and
s B = (-2,0,0) , The equation is ) -

/(x- 2)2+ y2+ zaﬂ+ ~/(x+i2’).2+ y2+ 22 =6,

This -simplifies to

' 55:2 +.9y% +92° = b5, ' e
L .___an equation-of-aprolate spheroid. :
ek . . . I
2 - ' -
> oL . ‘
I . ) .
i , T -
o 7 ' - ' A
B -
L, R ’ . The equation is.-
~/(x-':2)2+—3;2 +2°- v/(x442)2+y2 +2° = 2,
. . "
kY 61‘ 3x2 - y2 - 22 = 37\’ , .ﬂ-'
an equation of a hyperboloid of two- .
© " sheets, **’ A ‘ o
9 Lt -
¥
e 7 . - o
' 2 —~ -'. e
' o= - ) :';:;, z
- ™~ : - 4:
. . L L . - -
1#5._ Since the blades Of the sharpener, generate & circular cone and the sides
of the pencil are portions of planes parallel to the axis of the cone, e
: the intersection will be, under ideal donditions, portions.of s1x :
" cbpgruénﬁ_—‘liiplrbolgs o v ' . = '
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; 9-8 K a ) N T Nl *
i . Y 2 N 'v’“: ¢
i o T ..«”fpy .
’ ,,,_!&6 ~ 2 . " . 'SifiGe the plané c’ontains the point
-i b : .
;7 . N (-]-é-, -]-é-, %) , the equation of/ Ehe plane \
A v . 4+ . YO :
. , . (Q/o")\' s + in normal form is. - .
’ . T ;_;_______-——-xﬂ-l‘y +—z—1;,or s ..
- 3 C’,LI) , - - e a8
: X+ oy + z»~=‘§- H The 1nt6rsedt:l‘.°o ,31%
- iy /] TR 2
3 o —— * 3¢ the cube is a regularfhexagon }rith
.1,0) - .1 e
: v e
: sides of length F¥B, T~ R
: (1.0,0) R ) " ) .
- vd". . -‘:1;
R :
o~ \ " T
- N i IS . :
% -~ " . > . B t i
: 47, ’ 2 ( The second equation represents. a ‘
—circular cylinder whose xy-traceé is T
: . shown, Subtracting the second
: T -e uation from the first gives :
S (0.02) % 8 S
) 2% 4 ky 4 ; this equation represents
T ‘& parabolié eylinder whose yz-trace A‘!
) is shown.. The.spage curve i8.'the
' intersection of the sphere and" . —:i- - {
. cylinder, ’ . -
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[ . v . % . 9«8 =
» L
487 -(a). 2 An oblate.sphéroid and an elliptic )
-7 i . . hyperboloid of one gheet,
g . Two-projecting, cylinders have
’ i equations = - - .
. ) . i 7 o
- -~ “ - ,x2 - 22 = 0 ,_,\xa ,+.y2 = *u . .
- ~-(2,0,2) \ : ' v
(0.2,0) :
9 =‘ > 4 e
T ) l LA J ) -~
) . - v
. & . . <
. 0 £ 2% ‘ ,
. . RS Y M. : )
, (b)e— An Oblate spheroid and an elliptic
A . N . - -
i@_g:?}' ‘hyperboloid of two sheets.
- J Equations\.-bf two-projecting cylinders »
- are * :
T o 3x? +3°=2, %%+ 322 =10,
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- - A. sphere and -an oblate spheroid.
These surfaces. do-not intersect, ~ ~The
sphere lies entirely inside the spheroia

S S - -
.' y . -
NEE
K A paraboloid-of revolution and-a R
(02.4) circular cylinder. Equations of two

pi'o,jecti’ﬁ& cylind_ers are

" J‘t2+y2 lb‘,“‘2=ll»'. . . -
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L Tl s - R - - - o z "%
‘}* y '\ . 1 ‘,‘ > ‘-I 3 L "
S )
_ _x _50, ,‘(Wa"). 2= 5;:'1-p«-cos~o‘:-~5~. L s - > -
ﬂ)’\ ; " - R o _— .
- (v) r 1&cose'fp sino—*h cose.
—p oy B o | :
: “(e) of 43P 1‘93'}’811’10—7. v \ - N
s a2 - o =5, ' :
B3 2 2 2 - )
o (e) XS+y i+ =93p=3. .
' F) 2263226, .
. (g) ,.ra;( cos 0 - sin2 g) = 16 ; p2 gin2 'y (cosa 9 - sin? §)e= 16 e . »’,.;.‘:
‘ ‘(n) x2'+ yo- 2x ;p Bin¢ =2 cos 0 .
(£)- x + ya £02 % r r2 =2z | . . .
B %
(3). x°. Zry¥=9;5r=3.
o (XY r=8;pslaec8, : 5 )
(£) X'=yz; z=cot @, ’ ’ .
R '
pT -3 ClidlYenige Problems:
. ) ) = : - . . ¥ .
: ‘l,' . . . ’ ’ ‘l ~ a .
: - A cylinder vyith elements parallel to-
: the x-axis and whos’e directrix is-a ‘
B sine curve, 7 *
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A cylinder with elements parallel*to
' the z-axis and vhoae\direéﬁrix is a}(f/?/ .
. cosine: curve, . 7
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a * . *
J> 0 4 - >
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g T T L 1 L .’ .
# ) B . 'y B RE4 .
. N v o ‘\ . e
i"‘b; " 3Q » Z‘ I~7 .’ T. R _ . - 1:‘
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Coow h . An-ellipsoid vith cénter at | 1,3;1) b
: X /T{:'zns parallel to the x-axis has
" lehth 12 ; the axis parallel to the .
) y-axis has length 8 ; the axis i
. parallel to the z-axis bas length 4. |
- ] 9 e -
: . 1‘ / . d -
l ? A -. ) ! ’ D‘ -‘ "‘:’ - :" / N -
: R * " - « ot
: R ’ . ) ;
. ; . o
_ S 0, T . .
: . A hyper‘oolo_-i} of revolution of one
S 2 sheet with center at (-1,-3;1) . -
R ) '
i " ' - ""."—‘ ° 1 "
HEN ST
N - ‘e o
. &y, -t "
- .
P ot -
12 - ,'/” i - |
W Vg , \‘
S A o o
"( -’ . )} + =
o ' g .
s N 4 N .
R / y; L} o ¢ \
/ / . :
' /7:/ . ;
- Y/ -
A 2 3 -
- - " t % . - , » .
X , :
N . o . '
o (' ,’ . ) ,423 ) - ) -
’ ¢ - " D




o - A ; ”
: ) 9.8
" . U .
T 6. _ . " This curious surface is a type of
s, ) o " ruled surface, It is entirely'con- ..
. ', tai"x}ed between j:h'e planes z =1 anhd ,
. - z.5 -1 , It can be visualized as
] . . . .
: being genexated by & line (minus the N
N .;point on the z-axis) which is always
"‘f::' perpendicular to the z-axis, "Starting
e ) in the plane z =1 -and parallel to * '
i . the x-axis, the line rotates as it - .
5 - C- i
™ drops until it is parallel to the.,
o Ty y-axis in the-plane, z = -1 ., The
. ’ line continues to rotate as it riSes ’ -
S to its original position, thus -
o compléting the surface, L :
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! ' Chapt er 10

’1 .
3 ’ vy

R o GEMETRIC mmspommnou .

10-1. gt_:;gsftuay Geometric Transformtions? Coe .

, . S €
o ( o+ Most of: this-chaéter is-an extension of Chapters 5«7 on-curve tracing

.and conicse Although the principles preaented in Sections 10-2 and 10-5
/ are applicable to all curves, ve emphasized the straight Yine and the conics!
' because : of ’cheir importance a.nd ‘oecause the -students are more familia.r wﬁh\l

- %o

‘ them. L . ". .‘,, .

. i . i . B}
’I'he treatment of geometric transformations in this text differs from- most

:“'other texts in that we lock upon geometric transformationg from two points of

viev. ‘We ‘first move the axes, keeping the figv:re fixed, then we move the

figure, keeping the axes fixed, ‘We feel that the student should become

) acquainted with both types. The point transformation ‘has- much wlder applica-

.oMg

fe tion than the transformation of -axes and Section 6 was included to ghow its

H -

. possibilities. R

kY -—

Groups of transformations are discussed in & supplementary chapter. You
will recall that in 1872 Professor Felix Klein (1849-1925) presented his
famous "Erla.nger Program” in which he clagsified a1l geometrics on the basis
of” those properties invariant under groups of transformations. M ntion 18
.made in this chapter of the gset of rigid motions vhich characterize
‘Euclidean Geometry vithout designating them as a group., You will find good
treatment of this su‘oject in Courant and Ro‘o‘bins’ book entitled What is .

Mathematfcs? e

‘w

e ES el

x

: 10+2,. Tra.nslations.

9 s

. ——i
. . ~Su1’ficient motivation may be provided for this section by requiring the
. students; to graph each part of the equptions listed in the first section.

~ -
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10.2 ; ) o - .
.- : . s &

You will note that there are two forms given for the equations of
& - . ’ *

- v Yxt"=x+h
translation, The form{ is more useful for the translation of axes
" \y*=y+k : .

(4

‘bepa[us’emore applications are similar to those presented in Examples 3 and 4.

B
f NO‘I'E . Almost all solutions for this chapter are presented w1thout
graphs since they are so familiar to you.
Lo K S < 7
: e .. Exercises 10-2 | .
m N u L. { X' =x+3
. P y' - y - l‘. 3 - .
N e, : $ N “ - . *
» . ‘O = (‘3,14‘) - .-
- - . X = *’ + 3 ’ .
. 2, -The equations of translation are l L
- ’ T < Ay =yt -2,
’ The new equation is: ’ -,
. - 2(xt +3)% - (y' - 2)% - 12(xt +3) - Wyt -2) +12=

» .
vhich simplifies to | 22 . yr2ap, S

v

3. (a) (x¥ - 12+ (yr - 6)° =12, This is a circle with the same

',

.- rhdius, and center at (4,6) . o
2 2 '
: o) WoWE G -6%
) a . b

This 48 a congruent hyperbola with its center at (14 6) and
with its axes parallel to the X~ and y-axes,

b Neither of the curves undergo a change. They merely have a
new equation relative to the new axes.
o ) xV'=x+4
4, The equations of translation are { « The new coordinates
. . - . H + 2
N MY y

of the vertices of the triangle are A = (5,2) , B = (9,0) , and
C = (7,6) with reférence to the new origin, Two suggested methods are:

(a) Application of the Py'thagorean Theorem.
0T - (b) Proof that the product of the slopes of AB. and i equals -1 .

, n - o 426 ) o

|, o itia ~ - ieon —— et i S
s N . B

P A e = A Ren Y
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5. .

_The transformation [

By completing the square, the equation of the hyperbola becones

<

(1) (x+5)2 - (y -22-16. ‘
Subétituting x* for (x +5) and y' .for -(y - 2) into (1), we
have ; : ’ . -

(2) . e i s xt2 - ytz = 16 . " ~

.

Equation (2) represents the same hyperbola with reference to the new
axes with origin 0t = (-5,2) .. . : ' S

To -graph, translate the origin to 0* . Draw the x'< and y'-axes

through 0' . Then draw the graph of Equation (2) with respect to the

x%- and yt!-axes,
¢ -
,

The students may select any three points, We choose A = (5,0) ,°

B = (3;4) , and C = (0,5) . After’'translation, the coordinates of
A= (4%1), B =(25), end € =(-1,6) with respect to the new origin,
The transformed eqration is (x* + 1)2 + (y* - 1)2'=\25 . The new

coordinates satisfy this‘-equation,

After the first translation, I has the equation 3x* - 2y! + 11 = 0

with respect to the x*- and y'-axes. After the second trauslation, L

has the equation 3x" - 2y" +13 = 0 with respect to tqé - and y"-axes,

x=x"4+7

would have the same effect as the two

- y=y"+7" = s .

successive ones, oo . ' -
‘There wogld be no difference in the final result if these transia-

tions were commuted. (This is true of all translations.) v

(a) Completing the square, the equation becomes (y - 3)2 = 12(x +1) .

The cquations of translation are thérefore:

xt =
> [y’ =

The parabola now has Ehe equation y'2 = 12x* with respect to the

. ¥

x+1

y-3
" new origin at 0! = (-1,3) . To graph, draw the x'- and y'-axes
through 0! and sketch the new equétion with respect to those axes,

The solution of the other parts is similar to part (a) . The
. new equations and origin are:

A
4

97

£
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10-3 ) f
. w2 g2 . ;e
(b) T "'x—?' =1; 0Ot = (l,-l) o y* T ~
1 2 _ 3.t .0t = 3 5y <
(c) x'. = 2y 2 O' = (‘" 'é», '5) . :
(a) xtyt =12 ; 0t = (-3,4) ,
(&), yt2 = xt3 o0 = (-2,-2) . ) “
! . X' .
The graph of . (e) looks like the
figure to-the right, It is called .
.g s.emiri:uﬁic parabola. There is -
no ‘asymptote,”- 2 ' .
7‘9. . . ’
o y y'r - N
° |
s 1 .
. B 1 P=1(x H
| . G P2 xy)
t . .p=(x,y)
| ; 4
y ‘ '
- \ : I ’ e r
1
’ ﬁ\ i x' | - - ?
TTTT T """x'"f'?"“"""“"“"&‘ ~ .
- Ly N :0 ={h,k) :
- k ' '
"éf-.i" 1 :
H ] iy -
; 5 — = <
{:”’%‘,'q:‘t, 4 X :
Rk <)
' A -: , N
‘ . (%X =xt+h x* =x-h ’
From the figure, ’ or R
) . y=y*+k "A\yt=y-k . | ‘
10-3, Rotation of Axes. Rectangular Coordinates, : L

“

Motivation for this section, as ,for Section 10-2, could be provided by
asking the students to graph the pair ‘of equations \ , ‘ . {

2

Erafixy -y =8 ena x%-yp¥ou,

-

"l"hen po:int out, to them or have them discover that the graphs are identical

5
7
$
]
N
i

-except for position, ; o . - .t

#




. You will note that we present two forms for the equations ef rotation.
The: form chosen for use in solving a given problem depeﬂds upon the nature
and fogm of tpe problem. The four examples presetted in the text should,
clarify ‘this point.’ o

Your better students should be encouraged to study the Supplement to
Chapter 7 where the topic is discussed in detail. Among other thingt, the
student will‘}earn how to determine the angle of rotation in order to arrive

at a new set of axes and an eguation containing no xy-term.

a -

ko2 The "digression" on this page, wﬁich diécusses the merits of Jne form
. ’ ..of an equation.-over another for the same curve «hen both are simple, has at
ulterior motive. That purpose is to indioate several scientific areas in
which the equilgteral hyperbola, in the form Xy =k, is studied.” As a
ruie,,students are more acquainted with the other conics.

403 We recemmend that the details of this rotation be carried out in,cla§5gziﬂ
by the instructor. The students may then carry out the details of rotatiﬁg
the axes through an angle of measure @ , and arrive at the equation of the

.

elrele’
~ . ° 1

2, Dx! + Ey* +F=-0 X

xie 4 y!

with respect to the new x!y'-axes. No x'y'-term should appear. A complete
2 -
discussion of the general equation of the second degree is found in the

£ Supplementary Chapter for Chapter 7 .

Because of the nature of polar coordinates, the rotation of the polar
‘éxis leads to a very simple result. Once again we have restricted ourgelves
to the conics. If time permits, you may like to diSbuSu the rose curves,

7

' ; olemniscates, spirals, and other curves. - ’ :

Exercises 10-3

. The eguations of

’

rolchy

1, Since a = 150o sy sina = % and cos a = -

e - K . - 1 . he

e i %t = ,_( -,/_x + y) | , . .
' rotation are ‘ « The new coordinates of the vertices.

¥y =-(- x -/3y)

efthetriengleare A_(...'/:. -._),;, (jf-2 -5+2f>
<-3/§+l+ -3-&»’5)
2 2 .

and C = Using the original coordinates, we

K 7 ha;i)29




H

have a(a, B) = V20 , ataye) = V20', & Area of AMBC = 10, 'Using

. the new coordinates, we have T
L wm [(FB Y (2B
}”.-f. ‘ = H-2v3 - 1)2 fb2+ﬁ)=35.
S'?mi'l‘i‘ly a(A,C) = Y20 ; and the avea Of MBC =
2.% §ince a i.',‘-3’0o , »éin_ a= -« % and!'cos. a = —g ." The equations of

rotation are therefores

{‘x' = %(»/i x' 4 yt)

1 sy
. ¥y = §( -xt +.3 A -
. » e o7
. The "équation of 'the line with respect to the .new a%es is:
1 - P
N %@xa+w)+u4:+3yu8
o~ i J-“'y—
vhich. simplifies to (3-/_ - 2%+ (23 + 3)y' - 16 .
The slope is - 3.”3 =2, 13’/§ :; 2h,
L 23 +3
3‘ %t cog o -yt sina=x .
A " | x*sina+y'cosa=y " E
N . M * ‘. « e
Se xt coxs2 & - y* sin a cos 0.5 X CO8 O '
I x}vsine'a+y' s}ng.c'os d=y sin a -
"\ Adding corresponding members, we have ’
N 2. 2 : ’
xt(cos“ a + 8in“ @) = x cos.a + y sin d
" or o . 'x'=’xcosa+ysina,.
. Likewise, ; y' = -xslnq+y cos a.
- ‘4, Since a = 1&50 ¢ the equations of rotation are
: . R
i ' SR B
e ) y E2(xt #yY) .
C , /2 '
5 * ‘:

, t . oyt) ' 1 .
The new equation is. (x 5 y') .= x’/_f Y- which simplifies to
' . -t ' ] 2 . Fd

MC 2("2 - 2x"y" +'y"2 ./; x' - 2 y' =0, .

- wogge

v




" 3 . . ;
i - . . :
- X .
A > 2y ) y .
""" 5, The solution is similar to that of Exercise (4) . The answers are: J
(a)\ xt% 4+ 5512 =6 .
(b) (Here sin 8 = i—g‘ , €C05:0 = %@)".. .
. 25x’2 + 13y:2 =25,"° .
() g2 =228, .- :
(@) x% =yt -
: 6. -After rotation, we have ]
’ ES "L.
. . 2 - . 2 2
: (x¥ cos @ - * sin a)® + (x* sin o + y? cos.q)” = r°, )
< v oF xt% cos® q - 2xiy? sin a cos a + y1° sin® q +
x’a,sin2 a +2x*y? sin @ cos a + y'2 cosg_ o= ° .
Thus, x'2'+ y’2 = r2 ‘.'
7o (a), r=r . 6 — ) re— 10 S
: . 2 - cos(6 - 607) . 57+ 3 cos(6 - 1207) ,
: .o
Ll
P
f“
: R

Povsinins
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. Challenge Probl‘ems ) "

H

. 1. The proof is as fol]ows' after rotation of axes, th'e new euntion is,

! tA*x*a + B*x*y* * oty 4 D’x* + E'y! + F* = 0 where
{al 2 . . 19

‘A cos. o+ B sinacosa+~§ sin‘ a
B<*‘=-2A.,inacosa+B cosaa-Bsinaaiacsinacos_a.
ct aAsin a-Bsinacosa+Ccos2a
oDi:Dcos-a+Esina_ . )

SE! = .D sin q + E ¢os o
F¥ 2 F '

When you, perform tle indicated operations and simplify, you find that
NP . >
- hA*c* = B - laC . .
3 ; —
2, x=x" cos a-y'sina=(x"cos @ -y" sin6) cos a . .-

. -(x" sin 6 + y" cos @) sin a

x"(cos 6 cos a - sin 0<sin o). - y*(sin @ cos a + cos @ sin q)

o x-‘x cos(9+a)-y sin(9+a) w
Likewise, ¥y = x" sin(6 + ) +y‘, cos(@ +a) -

-~

10-k, Invariant Properties.

-3 #
We have already touched uporn the signifrcance of the study of the

geometric properties invariant -under certain_transformations. When the axes

-are rotated or translated, and the figure remains fixed, the question of
‘.invarié.nt properties has mm only with respect to observers using
.different points or_ lines uf reference, —When we study point tra”ﬁ‘r formations
fin the next two sections, the question of invaeriant properties as many more. ’
. and varied aspects. When the points of a figure are moved e are frequently

not certain gbout, the- appearance of the image, it.may or may not be congruent
to the. original figure, :

¢

You may wish to omit the discussion following Theorem 10- 3. It is

‘ included to show a.second approach to the problem and to 1ead to an interesting

. 'challenge exercise, o o ] o

L

The e:kercises for this section were deliberately selected to point out

' properties other than distance and .angle which remain invariant under the set

of translations and rotations, We encourpge you to discuss these other pro-

. \ .
perties carefully on the basis of the exercises. The students should. be

encouraged to find more invariants .than are dndicated. ” ,




. ; Exercises 10-k4;

. i .
(e) 3x+2y-8=0 . \ y v
(b) The equations of trenslation are 4 . L

xt.=x+h {x-:x'-)} ;
. y' =y +6 or v = - 6 . ‘ ‘ - 1

_ Thus A=(6,7) and B = (1; 10) with respect %o the new origin, )
.Also, with respect to the new origin, the line hes the equation
3(xt « &) +2(y* - 6) < 8= 0, which simplifies to
3% + é\»yt - 32°=0 ’ * ’ ) :
(c) -a(a; B) -/i— with respect t0 either set of axes,

[} - 3

‘The equations of rotation are . . - N
-* - . x'.=xcosa+"y sin a = Yy . .

L B
- Yy} = ex cos @ty cOS Q= =X e .
Thus A= {1,-2) end B = (k,0) with respect to the new axes, ‘

d(A,B) = V13 vith respect to elther set of. exes.

'.A'
B

a
&5

Thge-equp.tions ‘of translation ere N -

‘xt=x+1 . {x:x*-‘l
El - or - ~
y' =y +1 — Y= y~, -1 ,
. ] . . . :
) m—— * . e
{a) A* =(1,-3), B* = (3, ~ —3-) ,and C! = (4,1) . ) v
N ’ .
. Lt 1As the equation 4{x* - 1) - 3(y* = 1) -12 =0, vhich - )
reduces to Uxt - 3y* - 13 = ° B p

{(v) B is between A and C since d(A B) + d(B c) =d(A ¢) . Bt is
between A' and ct since d\A‘ BY) + a(B¢, c*) a(at,ct) ,

(c) Since d(A*,B*) + d(B' ct) = d(At,ct) , the peints are collinear,

. Another way, 10 prove collinéarity is to show that, the slopes of
s ATBY W , end ATGT ere equel since B! is cofmon to . . .

ABT end BYCY . ‘ ‘ : N

A

(&) .The lines. are concurrent since the point (2,1) 1lies on all three _

o

lines, LI .

(v) The 'equations of translation aré: ‘ - - "
X' =xw3 - x =%t +3 ’ R

{' - . pr_ . i . hd - ;_,':

yh=y®wa . ) y=yt-2 . Ce T

\ \ . K

i B




‘ 10-h ’ v
{ . ¢
- ~— ) R
The cquations of the three lines with respect to the new axes are:
. . Y R
- Dyt oriixt - 3yt +13 =0
-i‘:a' Loxt -yt 7= 0 . o
. , . - .
P L3' : 3y’ + lil =0 ,
r {e) The line.. _are concurx'ent since the pomt; (-l 3) lies on all three .
l{.nes. . o
. ( d) Point (2 l) maps 1nto (-1,3) ‘under this ’cranslation.
‘ (e) When the axes are rotated through an angle of 45° | the -equations c
: -of rotation. are = ) ' T ’
"‘.~ Xt = -1-:- (x +y) - ' . 71X= L (xt < yt.). ‘
R }' 2 :
£ _ Ty or : _ : . :
A ’ -y? =,-l—~(-x.-§-y) . y:-'.-l-'—(x' +¥yt) . - :
: 2 . /2 i
< !
- . (1) The equations of the three lines with re..pect to the new -
: ’ ) uXes are; . i} N .
. L aptixt-TyresBeo - o : ;
L’:x’+3y’-—0 . o ;
2 % ‘e 2 . o -
T A 2t byt WER0 : ’
¢« . (2)" Thé lines are ‘concurrent since the potnt :
- 2 ) * ‘
= (=, - L) neg. on all three li'nes. :
. ’ ) V2 . :
L (3) Point (2,1) maps into” (—- - ---) under this' rotation. :
: 2 . N Ié ‘ Ié . R
: * -
1 ~5ur (8) m = =3 =5 e ]
o~y ml \" 2 ’ }?12“" ; _ 2 ;
: L LAy B T . g
ces 9 = — = -3 ' 5
: LTV ; :
; ml 2 H
. . ; = T " and its supplement 1s f -o ’ - ":,:*f'
A . . |
} : . A ¥ " < ‘,
Lol 4 T
Cop R _
3. ’; ,' ~ - \ o
. \)‘ B ! Y Xv3 . )
LRIC . 434 :
"‘i = et et m e e b o e e SN P o




newnrm e -

B ; . ) : T . L0Er m
* - . Ny 's? 1.0-1& . '
- (b) ‘l‘h: quations af translation are
" % ‘ . . .
RS ‘ X = x! 4 2
- e \ y = y.‘g + 2 R ~
- hiY - . \ .
- With respect to the new axes, the equations of the lines are: - . x
: ' aLl! t_é 3x' + a‘r! +2=0 1 L:“'x
N e . . - T . ." - ) s _ - .
- . ,_.... w o . L2 3 ox y 1 0 , N {
: . - 3 ! x 3y ¢ it
¥ t - -2 t .0t = . g
T Since m* = 50 Mt = 5,8 H(am; T) . o
Ao . : > .
M r ) - s - - [ "™ -
N - ¥
- ’ had A * o i - *
. . ‘Challengé Problem ’
CoT The proof that the measure of angle is invariant under rpotation may be
] presented as- follows' ‘ . N
.(I). Consider the angle between. the lines - i
R P L X +.8.y + 8y = 0 o
;,. ety * 1 al 2y ' \ .
S Lys BX 4By + by =0 0 s
It will be convefitent to uge the formula for ‘the angle between two lines
‘ N o =TTy - ‘
in the form: tan a,= ——= vhich is equivalent to the cosine form
el | Lmm - Mg
developed in this text? Thus: .
Py . T
e en o e 22 &by - 80y :
° ’ 8,0y &by + 8gby "’
1+ ’ -
o 820 ‘
- e .
(2), The equations of rotation are
a = x! cos 6 - yt sin 8 ‘ & ;
=x',sin6+y!"coé6 o .
R . » . ‘ ‘." N
. - ' Substituting in ‘Ll and L2 , we have .
: ) ) j\ ' . - ;
et Lty " .
: ) ‘3 . : . t g - . irt = 0; .
5o . A]'..l{\, (8 cos @ + 8, 8in 8)xt + (a, cos 6 - &, sin 6)1(7 +ay3=0 :
o - ¢ t . [ t i (b, 2z i = :
a ) , Ly* ¢ (b, cas. 6 + b, sin 8)x* + (b, cos 6 - b, sin Q)y + by ;'
4 L The angle betiween L and L, is given by - :
; - N ‘ . ' %
< N - \ " i -
T , \ N r-'
= ERIC 3 B30 s : :
HR e N y s A




(alco.,e-: a .,me)(b co.,e b sine) (a 056 - al.,ine)(b €080 +b sine) :

tan at-
(alcose+ aa‘sine)‘(blcose +b sinB) + ( aacose - alsine)_(b2c059 —blsine). .
.7 o . . .
(3) This complicated expression reduces to . RN
" ab, - ad .
R . .- 'tand':H:tan‘a- ’ T \
- : 117 %22, . Co ) -
after several a.pplication., of the identi,ty .,ina.a + co‘s2 a=1, ’—
] . . k4
'l‘hu" @ =+&! for the principal values of tan'c end tan o' , = ..
. N . (\‘ * .'
. . ~ B s,

'NOTE: Before offerini; this problem, you may wish to show. the \ec’;uiva.lence

1] m : . - m, - ) *
of the two formdas: cos a = n and tan q = rf“'m—l . .’
v/l o+ n\12 ~/‘L S m e ' meml
. The equivalence follows from the Pythagorea.n Theorem and the definitions of
o the trigonometric functions, . .
v ‘ / n ’ -
P 2 )
/ » S x” ’ :
= . .' . . J - ;
» . *
Cee . I+ m,’,mz '
. : 2 -
€ & (G mlm (lv " ml )(1,-*: m, ) . ;
. - ' Flm, - m) C .
Thus X = Tm, - ml) and tan a = T2 M » This formule gives us the
. “pe 2 v T 'k meml e .
angle and its supplement, We chose +(m2 - ml) arbitrarily, ‘ / L
. - -7 T o
10-5, Point?ransfomtions. ; T i

Most of the transfoimations studied by mathematicians are considered as
point transformations or- mppings. The reason .for dicussing the transforma-
tion of axes first is ths.t this’ type is most useful in reducing a complica.ted
equation to-a simpler form for sketching, Considerable care he.s been taken to
distinguish between the two sets of transformations a.nd to indics.te that

) t}'anslations and rots.tions can bé effected by either type,




The material included here on reflections relates so closely to the -

djscussion of é}mmetry .fn Section 6-2 that a review of that topic may be
appropriate before proceet\iinéx with this subject, o

Euclidean geometry in characterized by t};e fact that the measures of both
Qistance and angle are preserved under translation and rotation. In elementary ‘
geometry this statement is expressed in the "Postulq.te for Rigid Motion" which
states that an object m&v be moved in space without changing its size and shape.
Ve how see that all rigiad motion can be peri‘ormed by a séries of no more than

-~ = s

three reflections. : ___
The SMSG . Geo EY_ Appendix 8 has an excellent discussion on rigid ’
" motion. . oS

The stud.ents may wonder why the ,third rei‘leetion is necessary in Exarple
3. Twb -refiections are sufficient if the sequence of points cn the line is
not considered. You might label several points on A'B! , see where they‘fall
on D , and then observe what happens ai‘ter. the second and third reflections.’

An interesting result 1s ¥bbtained by sub'tracting the corresponding
members of the equations of ‘circles 'C and C! described on, this page. The

result is 8x + 12y < 0 or y= %x. This‘i.s the equation of the common

chord (or radical axis) shown.

A reflection is an example oi‘ what is ca]led an "involutory transforma-
tion", A trans i‘ormation is called an involutory transformation if it has the

"

property that, if repeated once, it produces the'identity transformation.

+ ‘ ]
This can be written analytically as follows: Let (x,y)—> (x’y )—»(x" ") .
If " =x"and y"' =y ) then the transformation is involutory.

¢ ° -
B . Y

ant Exercises 10~ 5
e ’ o
= (1,2) maps into A = (1 -2) and B = (3,-k) maps intd S
= (3, h) after rei‘lection with respect to the x-axfs, *+ ’ .

- “3e

N
" a(4,B) = 2/10 = a(at,B) . "
’ \(-b) A'= (1,2) maps into A! = (-1,2) and B.= (3,-4) mapsl.fnto
_Bt(-3,-4) after reflection with respect to the y-mxis.

v

: d(A B) = 2f" - a(at,Bi) .

‘
*
- . Al
1 ;.
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“{e) A 7 (1,2). maps into’ A! = (-l -2) and B (3,‘-15). ";nap‘ into

~

2?

_and ¢ = (9,0). Two. invariant properties are’the measure of distance

. 3.

v o= (-3;8) after reflection with respect to the origin.

. ‘d(A B) = 2410 = d(A' B!) .

-

(d) A=1(1,2) maps into At = (11, 2) and B. = (3,+4)* maps into ' -

. {Bfax (9,-14) after reflection with respect to the line x=6, .
R d(A\B) 2!‘ a(Ar,Br) ) . I
We choose the points A= ga,o) 5. B=(40),¢=(7,0) . Under this :
trsx'nsiform_a.tion, the images of these points are Al = (h,p), , B! = (6,0) , "‘,f .

and the order of the points on’ the Iine. The three points on the hne S n
also remain collinear (a third\invariant property). o ‘ :
Under the.transi‘ormation X', = 2x \ , the images of the.three points are '
A' =(4,0)., B! = (8,0) , and’ C? = (1k, 0) Three invariant properties 3
are: _ihe origin remains fd,xed i.e., (O, 0)-——»(0 0) , the. order of the
three points on the Q.ine, and c6ltineari®y. (Note that distance is not

-

an inva.riant property under this transformation.), . .
.h;- The an,gle betweén Ll and '},2 has measure us° v;nen both li:xes are : : :
rotated”through an angolepf measure -E- ’ the equation .of ,Ll‘ beéo‘mes ‘ - "
Nad = R and the equation of L2 beco;hes "x' =0, .'I'he angle\between
these “Lines alsc;. nas measure 5% . -
(«NUI'E This problem can, of course; be solved by using the 'equations of B
rotation. Since the lines are rotated through an angle of measure
. E ’ “the axestmust be ‘rotated through angle of measure ”- ~ % to achie\;e ) ‘,.
the seme Tesult, )s o o S >
5. The imeges ares ’ o y . _,
. (a) y2‘= ox // ‘ . ‘ . ! . - L ;
(v) & = ¥/ ) . :
(¢) ixy =6 " B
(d)" Jlta' Ya =1 - ' ‘;
(@) B+ P emulyshoo UL
S(E) g ’ L o
- (g) 1y='5{“‘x ' ' E
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) _‘be drawn ‘on the ‘same set- of axes., "

(1) ¥

_ In'this problem the points sve rotated sbout the origin through sn -

angle 6 such that. tan 6 =% » In 6rder to achieve the same result,

. Undef this rotation A = (-2,1_) meps into A! = (- F,° ) ,

SRR

(¢) , Area of AABC = Area of M'B'C! .

)

(h)‘ Yy - tah',x N :- . , ) ) P . ‘& N -

é-x

L

1

It is rc"ommended that the graph for the original curve and its ima.ge .

P11

.

we rotate the axes through an angle 6 such that ten 6 = = . Thus
8in 8'= - £ "cos 6 =.l—‘ , and the eqt;e,tions of 'rotation are

5 5

%

w

7

llx':=-5(hx—‘ %y) . . , —

R ¥yt = %(3;( + by) .

“

B = (5,-2) maps into B! = %6 , 7) , and C= (3,3) maps into

Invariant properties are:

(2). Messure of Distance. For example, d(A,B) =./58 = d(At,B') . o
(v) x.'ieasure-g_i_‘_ Angle. For example, ' ot
p—o.3 _2 _2 1 )
ME <7 MG T5o s A=, e wmheg .
‘ 9 23 : 1 , t - .
mETET =37 m——A,c,=TE,cosA'=7-2_,ar’xd‘mZA'=H. R

_Apply the formula s = ¥s(s - a)(s - b)(s - c) whete s 1is the b“]h
,semi-perimeter. .

We_do not present the constructioﬁs here since the procedurg is shown.in

the text. In part (b) , each corresponding pair of lines must be mopped

separately. ‘ ® S
- "t PR

“ v

» - . .

2

. P

o o H 'q,y‘“ ‘ -

s . 3 . . * r
. 2
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‘10"5'.1. ’ ".' - ' ."'.

= - X

<A 8. sipce the points on the curves are rotated through an angle of measure

. -’é.r , ,the axes must be rotated through an angle of measure - % + The

- L { . B
lequations of rotation are, therefore: «
7
x4 53 xt 4 yY) . )
no - ~ Lo s I3 vt » ’
i . o y = 3k-x' + 3y . )
.= . (a) The.image of the line 3x+ 2y - 8 = 0 1is

T %(1/3' xt. + y!) +§(-x’ +f3y") ~8=0 , which simpli,fie's to

(3/3 - 2)xt + (23 +3)yt -16=0,

- "/ ©
\ ! . , 2’ 2 2, .2
) . (b) The image of the circle x“ +y“ =25 is x*“ +y'“ =125,
T ( 2y
/ ¢) The image of the parsbola y< = bx is
/ .
/ x'2 - 21/3'x'y' + 3y’2 - 8/3xt . 8yt =0. ‘ t
[ ‘ . .
;‘i . (NOTE: You may wish to excuse your students from sketching this
—r __ . parabola,) .

9. Another way to write thfs transformation is

x = -y +3 x=y' -1
c & y'= x+1 or ,.=-x'~3.
X The images of the curves in Exercise 8 are: ’
(a) The imsge of the line 3x + 2y - 8 = 0 1is ,
3(y* - 1) +2(-x* - 3) -8 =07 vhich simplifies to Y
2x* - 3y' +17 =0 ., Note that these lines are perpendiculst.
{b). The image of the circle % +y% =25 is the circle g
-~ i - .
x'2 + y’a' + 6x? - 2yt - 15 = 0 which has its center at (-3,1)
oL »* - eand a radius of 5. .

(c¢) The image of the parabola y2 = bx is x'2+ 6xt - hy'+ 13 =0,

gy oo
+

T
ot

Al




10. Another way. to write this transformation is:

'
J¥ .
-

xt=k+y . "x=-§-(x’-+y')
ore < -

%, : 3
%3%-{"3,: =2x -y ¥y = %(2x' -y') .

1

1 ¢
llp :7 XV - 5y.! - 15 = O .
¢ e

The line L, : 3x « & -3 =0 maps into the line

g R
ﬁhehling L, : 3x =2y +5 =0 maps into the line

Lyt roxh a5yt #9200
; Tt v .
L,! | |L2' since they nave the same slope.

7
/ . (I .
;

/ . . -
10-6. ‘Inversions.
The -ju‘stifica“tionfor Section 6 was presented in Section.10-1 argé in
Scction 10-5 of this commentary. This transformation has been studied by
many outstanding mathematicians and plays a role in the Poincaré model of

non-Euclidean geometry. You will find an excellent discyssion of inversion

geometry in Introduction to Higher Geometrfr by William C, Graustein,

An inversion is an involutory transformation as defined in Section 10-5
E . of this commentary. If an inversion T carries P— P! , a second

apblication of T will carry P!—»P , -

You may like to point out to *he class that as point P approaches the
origin, the image P! will recede farther and farther out in the plane. For
this reason it is often stated that the center of the circle of inversion
corresponds to the "point at infinity" under the inversion. "This is a useful

concept since we can now, say that an inversion sets up a one-to-one

‘

\ .
correspondence between the points of the plane a(nd their images.
? s

3

\ -
One of the most important properties of an im\rersion is that it transe
forms straight lines and circles into straight line\s \and circles, Specifically,

we show that, after an inversion: ! - \

origin, although the points on the line are intérch\ahg\e\d.
2. A line not through the origin inverts into a circle thf‘ough the
origing h

441 R

- i1

1. A line through the origin inverts into the same line through the - ;1
1
|
|




~34 A éircle through the origin inverts into a straight line not
) f;hrough the orlgm. )
I, A circle not through the origin inverts into a circle not

through the origin. .

. You may want to precede Example 1 by a similar problem wherein the
constants a P b 4, ¢ are specified. You could then draw the unit circle
of mversion, the straight line; and its inverse on the same set of coordinates,

¥6u cdn thus verify that the inverse really doe., pass through the origin.

-

. This séme comment holds for Examples 2 and 3 . 1In Example 2, let
. x=’§1,x=f2,y_-l,y-“’”2 and observe what happens; Tt may also

_be profitable and interestmg to explore with your.class the inverses of a
family of circles concen’c:ric to the unit circle; for example

x2 + y —1& x + y =9, .4s . This could be-followed by a set of¢

~ concentric circles with their centers at (2;4) or sdme other point,

“a 3

If you have s&udied projective geometry or non-Euclidean geometry you
uhdoubtedly recall the qross—ratlo which &ppears in Exercise 9. The crosse~
ratio is invariant under a projective transformation and certain&qther
t’x‘é:hs'il‘ormations-as well &s under the inversion transformation. This property
plays a very important role in the proc:fpi’ the consistency of non-Euclidean

" geometry, If interested, you may like to read Chapter 4 of Founletions and
"Fuhdamental Concepts of Mathematics by Newsom and Eves.

<

4 .. v Exercises 10-6

1, The inverse of the line 3x + 2y - 6 = 0 is’

3X’, + Qy, 06"’"—-0 §

x,e + y’e x'e + y'e

. ’ : ! 1 )
which simplifies to x#2 + yt° o % - l3- =0 . Thig represents a circté
s ' ' -
with center at (11; R %—) and radius -—'/g . The dircle passes through the
origin: . .
- 2., THe inverfe of th> line y = 5x is the line y! = 5x' . The line

inverts into itself,

E kllC ) . i’ 44_2 :

-




Ak

3. The'inverse of the line y

3

! ’ *
—sY—75 =3 , which .

= 3 1s the durve
x4yt .
. : - [
simplifies to x'z + y‘% --%y* =0 ., It is a circle which has its . T
1

rcepter’at (O,%) and radius i _The circle passes through the origin,

(W2 ey D2 (P 4 yrd)

L, The inverse of the parabola .yzl; bx 1s the curve
———— ~ BT : 3.
vt liset L H
A - X ,:which simplifies to yfz =:i7%5ﬂ§7"

4
&y L J

NOTE: The graph of this curve may be left as a chailenge exercise, It

is a cissoid with: the following properties: . ot
(1)." Symmetry with respect to the x-axis.’ . .
(2) Interéept at '(O;O) . . y
(3) Asymptote: x! = % . . :
. -
(4) Extent: 0 < x'< -
The curve has this appearance -
o X

¥y

The inverse of the circle (x - h)a + (y - h)a =16 1s found as follows:

The equation simplifies to 2 & y2 -8x -8/ +16 =0. Apply the
: : > ,

transformétiop and obtain: . h
2 12 . 1 1 T
. ‘x' = + y 5] - 8x 5 - 8y '2 +16 =0
(xtz + ytz)d (xtz o ytz) xlz + yf %xt< 4 yt
- : 1 1 \
or . —5——p - 28x 3 - §z2+16=°
%xt= 4 yf xt< + yf x? + y!




or L. 8x! - 8yt 4 16 (5{12 + y!

’ .or S{'a + = 0 which represents a circle with center

5

2):0.

. .,

lat ’(]12,31;)_ and radius ]1;. ' S ,

¥ .
N . - L]

'Tﬁis problem is essentially solved in Exam'ple 2 of the text.

Thé inverse of the line T ‘3‘3x +/éy -6 =0 1is the circle

12 Xt . , .
t . oxt - e e = .
LxJ, 7 "3 -0 : .o
We. now apply the inverse transformation

3

Xt =
- X + y2 i , 7
’ ¥ to L% and obtain:
yr o=
x2 + y2
2 \ ’ iy 2 2 ~ a
} p.S + y - p.S - y =0
: -2\ 2 2 2,2 2 2 Fa2. 2,
o (F+ 732 (E DB ). 2P+ y®) 3(E 5P
:1 r o, 1 X, . y J
. or - — - -= 0,
; - ey 2P ey®) 308+ 8
or 3x+2y -6=0 , which we recognize as*-ti'\e original line L' .
/ A i‘easongb‘le conjecture is that a second appiication ‘of the same inverse"
i- . e . -
r, ~ transformation yields the original curve, This verifies the fact that
:» “’{‘r‘ an inversion is an involutory trans"forma’cion.-»_
oo . {
: 8. If we had not used.a unit circle, ve would have had d(0,P)- d(0,P*) = r°
Foe 2 ; S a
or d(0,P) = =t . - -
: A af o,P! ) .
. . . , 2 r ll -
e e a(o,P) _x __ r-7 2 2 .
:'.' Since W)‘—;‘; =3 3= r (d(O,P)) ’ .- . .
. . ‘ N '\d( 0, P' ) R
LAk . . ‘
pT 2, 2 ‘ SN
¢ - we have x = I X and x' =X,
. L2 2 2
¢ - x” o+ ¥yt Xy
) i 22 ) ray
s Likewise, y = —Z¥ _ and y' =2 —m——.
. 4 -, 2 2 2 ., 2
: x" + y! X +y

CERIC . | 444
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9. *‘Since r =2, the inverse trarﬁefom&tion is:

. . L . ¢
Tt N N P . Voo,
s ., . . R - . .h'-x
VR ) : e e x! = - ‘
\ - . T R ’ . - x r+"y' A A )
A 5'55-—2*1%' T 3

N 4 , x= + y L ) . ——— }

PR The :I.nverse roints -are as follows~

‘ - A‘ = (O"3) -—_’At =‘(O’ ‘h%)‘

B = ('J,,'-I)---»B' =‘~(‘2, -2)

R _ s c=q2,1) —e0ls (_g.,l;. ' -

~ . . ~ ¢ & ~

. : . 2
o opi33)— (5,9

a(a,c) = 25, a(A,D) = 3/5 , a(B,c) = ¥5 , a(B,D) = .

. 4(a,0) . tB 2B B Lk o . e

e a(3,D) 7 A(3,D a5 J“=3' .
a(ar, Cr) =- s d(A* D ) _...-/]__' , a(Bt,Ct) =?}/§ , d(B*’Dt). : -3&‘/_ :

8 ¢ - ' . f - ¢

dane) . s c*)'i’§~-2/§_h -
Ce m—'ﬁ“afr'ﬂ LA v R R S

= I - . Yo :
‘The. sbove verifies that an ir;version is 8 cross-ratio preserving transe ¢
formation. ) T . . <

£y . - 7 .

> ‘ ‘ b

10, The initructions for the construction are given :I.n the text, As in the
proof in the ‘text for the first constructiom

) " [oRP = [FOR = JoRR? .

P

. Thus- ARP'O ~ ADRP and ) < -
0,Pt)

i“~ '. rd ) ( _(.9&% 3 4 )‘ ". '
P a(o,R] " " a(0,P or 4(0,P) d(OP)”r ’ N

N
~ - :
‘ . . g -3
Rl [N . 5 ,:
f
. £
> ] i
L]
. i
L -
L] 4
. K
. "
-
v . . b -~ . ¢
B _ , - ¢
: o ’ . ) 1 A3 .
. R . .
: E lC i ) ’ L - (:
b . LY - . s L hl}s ]
1 * X . ;
- . i . A X ;
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L L. o ) Review Exercises \ . . e

EEEL L TNy . : ) . R

I “Before proceeding with ‘the solutions of this set: ‘of problems, we feel it
L important to point out that there are two ways to interpret the_mapping symbol
! .such as (‘gc,y)é-v'» (2x,3y) , .which ai)pears in the first exercise.

-In this text, we haye adoptea the convention.tj.hat (x,y) —= (’2x,3y) is

¥ merely afother way of writing the trapsformation \
§ . T - - —— .
; . . . : ‘ x! = 2x ~ s { X = 2 ‘,\ [
. Lo . Lt or -, yr !
.- ) ! - . = Y
i . . ) 4 ry' = 3y E . ) y = 3

A ‘Seéond interpretation, which is often used (but not in lhis text), is the
"foliowing: vherever an X appears in the, equation, replac\:e it by ,2x ;
wherever a y - appears, replace it by 3y . )

kR

A, The first interpretation leads '\to’the‘ result x'2 = -g-:;’, the second - -
- AR . - \ . = l
. interpretation leads to the result © = %y vhen applied to Exercise 1(a) .
Solutions ) .
1, (e) ‘xfe = -gy ! (see above) . e . ) ”_‘
L (b) The transforpation can be written as o L
£ - ‘ x'-x+2 oo fx=Xxt -2 - ’
. N * or >
- i o ly' = .f‘ = 13?' . '.2
L. N Applying this transformation to the parabola e 2y ; we have
S (xt - 2)2 =2 3— , vhich simplifies to 3x1° - 12x* - 2y’i +iz=o0. -
< * An invariant property of this transformation is that a parabola
"? ' maps intg a pa.rabola, i.e., the type of curve is 1nvariaht. -
ﬂ
= " (c) The transformatiOn-can be written as - i , . ,
S . o S S .
: vy N Tofxt =x-1 ° x=xt +71 . v
i <0 -or . ' !
s ) yt =y + 2 Vy=yr-2 .
' * The pa‘rabola x2 = 2y transforms into the curve: \
. (xt + 1)2 = 2(y? - 2) * vhich ve y@cWh jze as the equation o:t‘ the

same ‘parabola with respect to & ne g Foin at (-1,2) . \ -

2

H
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L 2. The mapping (x,y)— (kx,ky) can be written as the 1;ransforfna;.tion
R . g . . . ) T

- - - x! ]
I = . , = —
. ES —'kx lx ¥ }
A . . or it
. ! M 't é F = emu
A y' = K Yy =%

.

In this case, we let £ =2, Applying this transformation, in turn,

to each of the curves, we have:

7t (a) Theline 2x+3y -6=0 transforms to 2t + 3y - 12-= 0 ,
) ' "a line parallel to the original Line. - .
‘; 1 .(b)' The circle x2 + y2 = 25. transforms to x'2 + y'a‘ =100 , a - .
f{ cii‘cle, with the same center but with a radius twice as large, ..‘
. : (¢) The parabola .y2 = -bx transforms to the parabola y'2 = -8x 4

which is "parallel" to the original curve,

The title is well justified since a figure "similar" to.the original %
| i appea'r'é after the transformation, ' >
N . : - .

: ) ,’ 3. Under. this trax;sformatiqn, the image of L, is the line T
Loow 'LI;:x-5y-8=O,,and the image of L, is the line =« )
R S . 2
- ) B . - = LR ' = "
Lyt i5x+y-12=0. L, | L, since m'« m, R
L. Applying the transformation T to each of the curves, we obtain the
:»‘ following images: " , - a "y )
B A - N , ) ,.’
. ' (a) ]53x'2 - bxtyt 4 20y'2 - 20x' - 2yt +13=0. (An ellfpse)
' " (b) 65x12 & 172xtyt - BByt2 + 232xt + 112y' - 176 = 0 . (A hyperbola)
. : <\ .
‘ (¢) x+22y -28=0. 7 -
AR (@) x +.22y - 17 =
Yoo, - . T <
_ Lines (c) and (d) are parallel and their images are parallel, A
reasonable conjecture .is that an affine transformation preserves the

property of paralleliém. (It does. ) - N

5. The proof follows that given in the text for the mapping (%,y) —»(x,-y)

in Section 10-5,

- : 447
;; O ‘ ’ ’ "
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. Supplement-to_Chapter 2
. Exercised S2-la
-1, pr=8 @=0 O xteo
e seele preserving, order reversing ' .
3 2, pr=-22 TN =10 x! = 26
” .scale ‘decreasing, order, preserving - ’ . ‘
o 3, ét:-;‘ ) g =1 =2
S scale ipcreasing, ‘ordgi%preserﬁng :
. PRt N
- LN : : , ,
R T LA . q' = -9 ort =21 )
N : scele decreasing, orde;i! reversing .
‘ ; _'17 ' g 1.7 P A
0 P = V== L B
< ) 50- P - K \ q . 3_/ . r 3 N
a \ ,, scale increasing, order reyersing - )
’ . : . (I
6, pt =2 qt =10 rt = 1% o
scale preserving, order preserving
' 7. Let P* be the origin point, R the unit-pojnt in the original gystems
. . . '.iigt] P=0 9= 1, ) :
T (5) pt =3 gt =2
- 7(6) Pt =-2 gt =2 ™ ’
DR : S 1
.. . [ - ‘qt = =
chL el (7) p N 1 =3 .
i . a -.o. (8) P, - O g' = 9.3 4
. 7 5
H = e $ =
(9) »* =73 ¢ =35 -
(10) p*t =7 qt =8
. 443
. hh9 -
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11,

A\ . . _
Let P be the origin of the new system, Q- the new unit point; i.es, .
Nt . < "

pf =0 ¢'=1 =N
(5) p=3 qi= 2 . ~\\ S
1 -

6) p =3 q=¢ \ —

¢ 2 O T, . \ )
7). p =1 g=3

. 1l n :
(8) p=0 q=-% v \

- T 3 . ‘
) p=f  a-2 \ L

. ¢ .

(10) P =<7 q = %6 . ) ..
Suppose a'=0 in x' = ax+ b, ‘ \ ’

<t N ’ WY N } I oo A : ‘
Then £6r any roint P with coordinate p, we would get p!' ¥ 0¢p + b, R
So-every point in the new system would have coordinate bj; thugy'preservibg s
néitheér measure nor order nor betweenness. N SN o
x‘ = &2‘(3 +b . ’ . . \\ .
Iet p and p' be the imtrinsi¢ and the new coordinates of P, and :

similarly for q«*‘anﬂ&; q', etc. Let af(B,Q) = Ip?* - qf[. Then -
N A N

2
[a] |p™= a| [p° + pa +q°.

dH(F,Q) = e’ + b Fagd -
\ - i

p>

Similarly !f .
! - 2, . -
d‘(R,S) IaI fr i s| |r° +rs +65).7 -
. Supposg Q= RS;I Then |[p < gq| = |r - sl. However, d'(P,Q,) .a'(R,s). \ )
only if |p2 +D _;\qu [r + T8 + 8 [, which in general is false.
" For example, if p‘ l,g=2,r=3 and s =14, then Ip2 +pq ¥ g l
while |r +rsts | 37. It 1s also true that we can have .
a* (p;Q) = df (R, ) although PG and RE are not.congruent. The example "y
P —‘04 q.= '%7_‘ fr=1 and & = 2 shows this. p <q < r always
implies. p3 < q3 < r3 50 betweenness is preserved. »
. - ) PR
xt =&Y ’ ) Ty . / . i
Y ar(e,e) = P - o ~ i

d'(R,é) Ier - esl
!
by e )
So PQ = RE does not ‘always imply df(P,Q) = d*(R,S) .
P < gqi<r does plvays imply e < e < e, &6 betweenness

is pr.reserved;

,f 449
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R TP
12..xt == ,rg‘.xfo

Wxt =,x if x =0

o~

* If none of p, q, ry 5 1is zero
ar(p,Q) = 11)1—QT lp - qf
ar(R,8) = 57 I* - 5l

So PQV_ RS does not always imply ai(p,Q) = a*(R,S)., However, if
’ ‘P =0 and PQ = RS, then |g| = |s| anda a‘(p, Q) a*(Rr,S).
.Let p<g<r,. Then betweenness 1s preserved only if q= "0 or.
r<0 or p >0 -//
13, x' = log, X

This cannot handle points on negative side of the origin since long
is not defined for negative numbers or O , Where it is defined

-~ —

d'(P,Q) = llOglo %l

a'(R,S) = |logy, £l

. -
«® . ,

So, PQ = RS, does not always imply a'(E,Q) = d'(R,8) . Betweenness is
" preserved where log), is defined.

. b i
. The notion of a group will mean very little to the students ux%les_s they
consider many examples. The): should study carefully all those mentioned
in the fext and tiy to think of others. If they know something sbout comblex
numbers, they cén be asked to prove that the three cube roots of 1 form
a ‘group under nn;ltiplication, as do the four fourth roots. These examples
show that a group may be finite. If the students are asked for other finite
groups , some ‘of them may suggest the kind of arithmetic that suits clock
" faces. * Finally, no complicé%ed mathematical definition becomes clear to
students until they have thought of examples that don't quite fit. What.
about the integers under multiplicatior}, the non-negative integers-under

addition, and -the rational numbers under multiplication?

rt'
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P

Exercises 82-1b - . '
ax +b a f 0. ° : l
o +td cf 0.

Let £ ‘be the function defined by f£(x)
- let 8 be the function defined by g( )’

We wish to prove f(g) is a function defined vy (f(g))(x) ‘9x + t

for real: numbers .5 £ 0, and teo S . i -
(f‘(e))(X) - £(g(x) - - . T o
2 4 -
’ =afex +d) +b. B . te.os .

& = (ac)x + (ad +b) ° . ® B
Since...a-ﬁ 0 ,and c £ O we know that (ac) £ 0. ) o . (
Thus there do exist real numbers s =ac £0; t =ad +b such that .

+ (£(g))(x) = sX + t.¢ ) S -
' N . - - )v -
Consider f, g, h- _as three functions in our set: ’ -
£(x) =mx +n, g(x) =px+a, h(x)=rx+s mp,rf0 * )
N " ) .
We.iish-to show (£(g))(n) = £(g(h)) . o
We find that f(g) is defined by (£(g)(x) = (mp)x + (mq +n) and that T
g(h) is defined by (g(h))(x) = pr)x + (ps -+ q) ° v
Then for all x (£(g))(h)(x) = (wp)rx + (mp)s +mq +n !
5 ¢
- for all x f(g(h))(x) = m(pr)x + m(ps +q) * n ‘ e L
Herce for a1l x (£(g))(h)(x) = (f(g(h)))(x) which is the. necessg'
and sufficient condition that the functions S, or for each x, : .
(£(a))(n) = (£(g(n))). . ’
Note: this is & special case of the theorem that if .h maps set -A into , .

set'B, g maps B into C, and, £ maps C dinto D then
(£(2))(h) = £(g(h)). The genersl proof follows: If x €4, let

g = h(x) € B, £ =gly) €¢, and £(z) €D." Let k = £(g) mapping
B imto._D, f= s(h) mapping A into 'C. Then Y .
(£(a)) () (x) = k(h)(x) = k(n(x)) = kly) but k() '=2(a)(y) = £(y).
Atso £(g(h))(x) = (EUXx) = £(z) since (x) = g(h)(x) = g(y) = 2.
Therefore (£(g)(h) = £(g(h)). ) ’




3. Let °f The defined by f(x) =ax +b: a f0

o ST 8 be defined by g(x) = ox +4 c £o0. ° )
S Men (2(a))(x) = flex + @) = alex +) +b = (ac)x + (ad +b)
% ’ g ‘ ® (a(£))(x) = glex + b) = (ca)x + (cb +.a)

T 1(e) -'—g(f) ’only.i-f ad +b =cb +d.0

: 5[b show that the commatatiye property does not hold* we need simply .
v o exhibit one ‘case when it doesn't. Take a =1, c 52 d= 1, b=1;

e, from _{2) letting

«

-P{hich gives us e = et. . ] .

5. To show that in any .group's G the inverse is unique. Let a € G,

Pl Suppose b and b! are both inverses; i.e.,
a(b) = b(a) =’e : .

. - a(b') = Y(a)-= '

Now consider b(a(bt)) = (b(a))(l}’) by associativity; but

/

1]

6. To show that the inverse or the identity is the identity, 1et e be ,

z

the identity, a its ‘inverse. ) o :

Then a(e) =-e “since a <is'the inversé of .e,
but a(e) = a since e 1is the ideéntity, therefore a <e. |

Py -~

' R *"b(a) = e” and a(b?) = e- 80 . : .
! .. _ ble) =e(b?); S D e
4 but e .is the -identity element, so R -
? . - b, ‘s . ot . R . w, -.‘ .

.thén ad +¥ = 1-1+1 2. cb+d=2.178=3 - -
) ; .
(£@@))(x) = 2 + s -Ge(f))(x) = 2x.+4 3 (g) # 8(£)
4, To show that in any group the identity. is unique. o :
.Let e and et be identity elements. . T .
. ~Then for all" a, af(e) = e(a). =-a )y - < ¢
LT s el =etl@)=a (2 -
' So in particular et(e) = e(et) = e! from (1) letting & =-e
) e(et) ='et(e) = a=e

-~

~




i
: (a)- 8% +ab+b .

(b) apx +ag +D

“(c) apx. *bp +g

(@). p™% +pq + q (@)

(o) a3x +a% +ab +1 " (k)

{£) Px +p% +5a+q S ®

o

Tet..f be defined. by, f(x) zax+b _afo.

It h(h) =f werust have p £ 0 and qQ such that’
n(i(x)) = 5% +pg + q = ax +b = £{x)

!mus p and q must satisfy
: p¥-a pq +q =

k4
Case 1. a<O . . '
There is no real number whose square is negative so there is no
: » 8

. function h such that h(h) = f

Case 2 a>0 and af1l s
"Both p=+a and p = - ¥a s\at\isty P° = a. So we have, in
general, two solutions to h(h} = f. - : -

b
h, defined by‘ hl(x) =+va x + .

. " 'b
h, defined by ha(x) =-Jax+ 7

o

»

b, is defined for all values of a £ 0 and b. However, in thespecial
casé a=1, B, is not defined because' 1 - Y2 =1-1=0. So When |
a=1 ve get-the unique solution h(x) = x + % .

“

Although Section S52.2 can be omitted withtut serious loss of continuity,
* there a.re &' goad many ideas In it vhich are important in other brayches of
mthmtiea. It you do nat think there is time to cover it in class, peri-aps

the better studen‘cs could study it and do some of the exercises.
*‘.:f

“In earliex‘ courses, students have studied various number systems and
learned to eonaider them g8 sets close& under certain operations but not
7ux§@er others, ' The fundamenie: operations of addition and multiplication
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are commtative. In the set of linear transformations of a line onto itself f~ ~
‘, we have an algebraic operation whose elements are’not\numbers but functions.
The onl operation--composition of functions--is not commutative. Nevertheless,
the operation is associative. There is an element’which plays the Sam% role
for composition as zero does, for addition and one for multiplication.; For
each linear transformation there is a transformastion which '"undoe." Bhe first,
and thus acts like the reciprocal of a nonzero number when the cperation is
multiplication and like the negative of a number when the operation, is '
addition.

It is the fact that so many different algebraic systems sharg these
properties that led mathematicians to define a group. This concept was
defined earlier, and the example treated here is one which is_very important
. in advanced mathematics. !

' If ihe exercises on caréinal number are to be assigned, it will probably
be necessary to prepare the way with a brief discussion in class. It can
be pointed out that when we are asked whether two finite seti'have the same
number of members, we can count tbem. Now counting a set can be described
as setting up’ a one-to-one correSpondence between the set and paxrt of a
iderd seguence of noises. If we do this for sets A and B and discover
that we used the same part of tﬁé standard sequence of nOises in both cases,
we have set up a one-to-one correspondence between A andf B. Ve could have
done this without counting. Since we can't, in any ordinary sense, count ”
the members of an infinite set/ it is natural to define wnat we mean when
we say that two such sets haverthe same number of members;in texrms of one-
to-one correspondences., Althohgh the students will probably be a bit dis-
turbed by the fact that the set of positive 1ntegers and’ the set of odd
positive integers have the same number of members, they will soon come to
realize that no other definition seems reasonable.

The students should be aske& to give detailed proofs, in class, for
one or two cases of the theorem ﬁhat an image is between two olher images
if and only if its pre-image is between the pre- images of the other two
A/' imeges. This will prepare them for the first exerc1se in the next set.

Since we are dealing with a necessary and sufficient condition, two implications

must be proved. . The proof can be shortened however, by noting that the

inverse of a transformation of any of the four types is of The same type.
Exercises 3-6 of the following set Justify that the linear transformation

of a line onto itself forms a group unaer the operation of composition.

; ‘, hss /
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‘where p, q, r are coordinates of P, Q, R on line ffi If T is
a linear transformation, then there are numbers a £0 and b such
that the coordinate of T(X) =

X. )
7(P) ~ p*

It and
Ir
it
If

p<ac<r
p<ag<r
p>aq>r

and
and

p>qg>r and

a

a

a

a

Exercises S2-2a

ap + b

>0
<0
>0
<0

then
then
then
then

Q) ~ q* =

ap < aq < ar
ap > aq > ar
ap > aq > ar

ap < aq < ar

ag +b T(R)

and p?! <'qt
and p! > qt
and pt > gt

and p! < q?

Let Q be between P and R; i.e., either p<q<r or p>g>r

ax +b where x is the coordinate of . C

~T'=z=ar+b

<rt

>rI e
>t

¢

<rt

Hence  in all cases T(Q) is between T(P) and T(R).

Let PQ and RS be congruent segments; i.e., |p - a| = |r - s|.

Let T be a linear trensformation, defined: T(X) = X' has coordinate
= ai + b *
P)~p'=ap 4b T(@)~q'=aqg+b |[p'-q'| = |ap+b-aq-b| = |a| |p-q]
T(S) ~ s* =as +b |r*-st| = |ar+b-as-b| = |a| |r-s| |, °
ies |p-4q| =|r-s|. So |p*-q'| = |r - s
which means P'Q' = R'S'.

et -Ti s ié be arbitrary linear transformations of the line into itself
‘defined by coordinate equations: Ti(x) =X'-x! =ax +b, Té(X) = X!

x! = cx + d. We wish to know whether Ti(Té) is & linear transformation
of the line. -

TQ(X) is a point -Y with coordinate cx + @ .

>

T, is definéd at Y; Tl(y) is a point with coordinates

(ac)x + (ad + b).
But ac £ 0 since a#£0 and ¢ £0. And (ad +Db)
So Tl(Te) is defined for all points X by coordinate equation !

is a number.

x! = (ac)x + (ad + b). Thus it is a linear transformation of the line.

¢

At



: h, To show‘ thet composition of linear transformations is associative let

X ‘ 'I‘l; Ty Ty be defined by coordinate equations 'l'l(x) =ax +b,
'1‘2(:;) =ox + a, Ty (x) = ex + £, Then ‘1‘2('1’3) is the linear transformation
taking . x to {ee)x + (cf +d) and Tl(T2) is the linear transformation

- teking x to “(ae)x + (ad + b), Let X, be an arbitrary point with

A coordinate g
. '1‘3(}(0') =Y with coordinate (exy + £), ' )
(Tl(T2))(Y) = Z with coordinate (as:)(exlo + f) 45‘(8,& + D),
S0 ({1, (1,))T,)(X)) = 2 with cooratnate (aceliy + (act + ad + b),

“ ) ‘ Now (1‘2('1‘3))()(0') =y with coqrdinate v o= (ée)xo + (et +4),

T,(V) ='2* with coordinate ag(cefxo + (ef +4a)) +.b, ;
So ('1‘1('1‘2('1‘3)))()(0) = 2% with coordinate (a,ce)xo + _(agf +ad + b).’
Therefore 2 = Z* since both have the same coordinate whiehr means

T (To(1) = (T {T))T).

5, 'To show- that' the set of linear transformeitions of e line has an identity
with respect to composition, consider line &Y and the‘transposition I
such that "I(X) = X, I is given by the coordinate equetion
I’(x =X = ‘l'x +0 so I is a member of the set of linear transformations,
This I is an.identity, By the definition of I we know : ‘

(T())(x) = 1(7(x)) = (X)
‘or (M(1))(x) = H(I{X)) = 1(X)
so (?) =I) =T -
" Suppose I? were eny other identity, »
Then 1#(1) = 1(1*) = I since I’ is en identity,
. Dut T(F*) = I#(I) = I* sinee I is ep identity,
Therefore . I'* =1 which means I 4s the upigue identity,

gy
,
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6, To show that each element on the set S of linear transformations of
the line has an inverse with respect to composition, let T be an
erbitrary element of SeT(X) 1is the point Y such that y = asc +b,
b £0.

If there were gn inyerse .Trl to T we would have to have

* .

* T-l(T), = T(T'-l) =1, a

There would have to be numbers .c f 0 and d, such that for all points
S, with coordinste x, .
clax +b) +d =afex +4d) +b = 1x + O,

‘This requires cax = acs = 1x - (1)

cb+d=ad +b =0 (2)
Since a # 0 we can choose ¢ = é #£0 to satisfy (1) and then
d = -b alopg with c¢ = % y ¥ - b wiil be the inverse of T, and

is a linear transformation,

:

7, We exhibit one counter example to show that composition is not commutative,

Consider
Tor (X)) =Y, yo=2x+0 MY is réad
. "defined by")
Tyt Ty(K) =Y, y =Llx+1 ’
, Tl('l‘e) 3 ('1'1('1‘2))(){) =2(x +1) +0 =2x + 2
, Te(Tl) 1. (Te(Tl))(X) = 1{(2x +0) + 1=2x+1
. Therefore TQ(Tl) # Tl(TQ)'
Suppose we require T Tl(X) =Y, v=ax +b and )
ﬂb;%u)=h y =cx+d s
to be sugh that Tl(TQ) = TE(Tl)’ i.e., afcx +d) +b =

c(ax +b) + 4,V x,

So we must have acx = cax apd ad + b = cb + d,
The conditions are (1) a
(2) a

2

c=1l and b and d any real numbers,

cf1 ;andL b =d any real number,
P

(3) a, ¢ any real’numbers and b=4as=0,

\ .

B . '
»
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c.o 8. Tet F:F(X) =Y, y=ax+b bea transCormation.
. g case (1) a i“o: F=T(E) where E:y=ax T:y=x+b
. ) ¥ X, E(X) has coordinate ax, T(E(X)) has coordinate ax +b.
_Case () a<o0. F=T(E([R)) where Riy =-1x E:y-=|a|x T:y=x
¢ ¥ X, R(¥) has coordinate -x, E(K(X)) has coordinate
|a] (-x) = ax :
T(E(R(X))) hes coordinste ax +b hence T(E(R)) = F.

- ‘Exercises 52-2b

! 1, Let the pointsbe R and S. We may assume r < s. The ratio of two
'non-zero numbers is positive if and only if both numbers have the same
* T . q!

sign. r<s means r - s <O. Therefore I;—:—g— >0 if and only
if r?! - s?* < 0. But we have r! - s* <0 if and only if 1r! < s!

27 which is the condition that the coordinate change be order preserving.
. t _ qt
Similarly,* T——- <0 if and only if r' - &' >0 which is true if ’

and only if the coordinate change is order reversing.

-3
2

2. The.coordinate change f determines an equation of the form

f(x) =x' =ax +b, From 1! = ar +b, s!' = as + b, We find

rt - st rs?! - ris
a:—, b:—— .
r-s r - s

4

(a) £ includes a contraction if and only if O < a <1 which is the

: rt - st _
L condition O < < - s < 1. :

(b) ¥ includes a contraction and reflection if and only if -l<a <0
1 . gt

which is the condition -1 < E;—:—g— < 0. . i

(¢) f 1includes an expansion if and only if a > 1 which is the

| . T,
condition r-s > 1.
r-s

<

(a) £ includes an expansion and reflection if and only if a <~l

which is ﬁ:—:'o-l. : ' _ i

1)
: 3. The coordindte change f determines an equation of the form f(x) = ax + b, ﬁ

B Tt . gt t _ ntla
From p* =ap +b, q' = ag+b we find a = 25—:—%— s b= 235_:_%_3. !

; (a) £ 1includes a translation if and only if a = 1 which is the -
FA t o ot M i
S condition pp—_g— = 1.
: ' (b) £ 1includes a reflection if and only if a = -1 which is the

. T . ]

condition -4 -1, b ,

% « ) P -4 , (:

5 O v ’ .
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Aruitoxt provided by Eic:

T

, P, P o
1 - 1 X<y if and only if X is left of Y
. i |
Po-system 0 'Pl x! <y'! if and only if X is left of Y
: new system P'o 0 . .
. So d(Po, P ) =0 - P' =P -0 since unit of measure is the same. ’
- 1-{. -
’ Solv1ng Po' =a0 +b and O =a'P) +b wveget x' =x+ (-Pl).

ae., p) i 0 in P
o» By) is py - in

<

4

We wish to show that the intrinsic coordinate systems are identical to

the coordinate systems whose defining functions have the form"

x*=x+b or x! =-x +b with b any real number.

P

0 and

Pick one intrinsic toordinate system, call i:s o}igiﬁ

réfer to
it as the :

Po-system.

Consideér any other intrinsic coordinate system (one having the
length) with origin P

same unit

1 and the same positive direction.

So this (inxrinsic) coordinate system has defining function of the form
X + b relative to the Po
x*=x+b we can, find the 1ntr1nsic coordinate system whose origin

P, (-b) and the P,

Similarly we establish an identity between coordinate systems with

Conversely for any equation

Y

x! ~system,

has coordinate positive direction.

positive sense opposite to thet of the Po-system and systems with defining

functions x' = -x + b, .
-~ -
Notice
Fo 1
Po-system 0] P1 x <y if and only if X is left of Y
new system P'0 0 x' < y* if and only if X is rlght of Y

-system, but p'o ~ 0 1in system with opposite

0

positive sense,

- - _3 Jla 11 3 pre-images v,
3 2 5 1 -3 Otfs 1 5 2 3
[T VA N N N N T O N I N N OO T T N N T T AN O S O |
1 | L] L] LI LI R L L | L] |3 | ]l. 1
1 o2 0 o0 2-1 1 o
3 2 3 1 2-hok2 1 3 2 3 images
(a)* Domain of F(G(H)) = domain of H = {w:w is real}

range of F(G(H)) = {2:0 < z < 1}

| 7:6& 5Y
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10,

11,

e
Pransformation F{G(H)) dis into the line, not onto.
It is one-to-onc,

-

) 8 2 1. a - =2 .-& pre-inages
o 3 N 1 'S 2 G % -
P VAN R S N B AN
Y 008 = 3 5 3 3 .992) ~ images

(c) ‘The cardlnality of, the interior of a segment is the same as the
" cardinality of the line,

.

(2) -Domain D(}ﬂ(l")) = {w i w is real)
Range D(E(F)) =(z 1 0<z< 1)
D(E(F}) maps the reals into but not onto the reals.
. It is one-to-one, - ~ ’ -
(v) ‘l';lé”cardinalit}y of R is infinite,

Let the coor(\}inate change be given by x' = ax + b,
: p' - § _ (ap +b) - (ag +b) _alp - (b.b) p-~g
Then 1357 - ar + ~ {as + alr - s (o -b}) ra-s

hc operatlons are Justified since » £ s and a # c so that
r-sj}o and-:-=l. ‘

X=—2—

This may be obtained from the change of cooxdinate fbrmula, or, using
Problem 8, fryom ratios of directed distances (letting A =P,

'B=R=Q, C=S)0

bt - a’) + (a‘b - ab')

LI
x x(b-a b-_a

Let f be a linear transformation of the line into itself such that
for two distinct points X and Y, £(X) =X and £(Y) = Yo We. .
wish to show that for all pointe 2, f£(2) = Z.

£(X) =X and £(Y) =Y yield coordinate equations
X =ax +b and y =ay +b

P

which 1m_plies a=1 and b
Z, f£(Z) has coordinate

2V =1 2+0=2,

So f keeps all points fixed.

160

3 - P
¥ - . s

.
o

0. So for any point % with coordinate

oo £ e e



Supplement D

(Supplement to Chapters 2,3,8)
. ' POINTS, LINES, AND PLANES-

In this chapter the student will face many problems arising from the re-
lstive positions of points, lines, and planes in space. Among these are the
measurements of angies and distances, matters of parallelism and perpendicu-

iﬁfity, und questions of incidence and separation.

Various schemes and devices are suggested as being appropriate in certain
cases, but in the last analysis we believe that a student should not be told
"too much.
own solution 'for any given situation.

He has many tools; therefore, he should be encouraged to find his

’

Here is where a student begins to need some facility with determinants.
There is help in Appendix A. .

If the-equ tion of a line is written in the form ax + by + ¢ = 0 , then
i
the equations

ax, + byl +c¢c=0 P
+ = .
i ax, by2 +c¢c=0
) + + =
: .ax3 by3 c=0
," +5 -

may be considered a system of 3' linear homogeneous equations in the 3 un-
knowns a 2 b, ¢ . Equation (3) in the student's text is the necessary and
sufficient condition that there are non-trivial solutions of the system.




~

Exercises E
(a) collinear (b) k = U6.5 (¢) |be - adl (a) ecollinear

de; -aé, ac; -ac; yesy no. The direction of traverse of the triangle
affects the sign (positive for counter-clockwise, negative for cloekvise),
the vertex. at whi?x one ‘stafts does not. b

Consider the triangle with vertices Pi = (xi’yi) s, 1=1,2,3. ¥e

et

know that the area ‘is ) ‘
’ .
x ¥ 1 _ i
K= -;‘- Xy Yo iy - i.e. absolute value of determinant

*3 3 1 : ,
= %lxl(ya - ¥3) ’."2(5'1’ - ¥3) x5l - 7)
= 3o - xyy - Xt Xg¥y + %3 - x|
- %I(xlya - X)) ¥ (xyy3 - xgy,) * (xgy, - x1y3)|

4 N %2 Y| %3 Y31\
+

=1 +
B\ %2 Y2 *3 Y3 x5 N
1 .
185 X
(8) 2 1 1
2 -2 1 =-2(3) - 2(6) + 6(3) =
ade 6 -5 1 N

“(b) B-F =143, &-&=I8,-6]

Hence §-K=%(C-A)

But AB is parallel to the line of B - A , and
3¢ is parallel o the line of G - A which is the line of
‘ 5-%. _
So. X coincides with G . .

(e¢) a(a,B) =5, a(B,c) =5 , a(4,C) = 10
By the triangle inequality, this implies B 1ies on/AC .
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H
-

1r unés' Ll » Ly s L3 meet in a point (xl,yi) , then
- \

) i, + =0 o
aixl + blyl cl 0
e ’ + ¢, =0 ’ -
L ag¥y, ¥ bpyy ¥ € = 0 :
- )
. = -
. \3xl + b3 i c3 0

his systém of three linear equations“ 1n the two unknowns (xl,yl) has &
common golution only if the deteminant of the doefficients is 26T0; this
condition is Equation (3) in the student's text.

1t might bé worthwhiie to place considerable emphasis on the ides of.
f&miiiés. This concept will appear later in connection with curves in the
plane and in space.

<

3

Exercises D-3

1L: (a) No (b) Yes, %‘- g—) (¢) No, (the lines are parallel)

- 23 (a)-h

() K+l -16=(k=-2) (k2 + 2k +8) =0 ; real value, k = 2 .
3+ General form, 3x - 2y + 5 + n(x + by - 1) =

¢ (a) 21x -« 28y + 43 =
(b) 1Ux + 21y +6 =

(¢} Wx+9y=0 ?
(d) 5x - 22y + 19 = . .
() x-~3y+3=0 . .

b, 9% -3y +8=

5'. This exercise may be done in a variety of ways. If students use the ,
methods in this section, some of the following may be useful in checking

- -

their wérk. o . : )

S ~

(a) Centroid (=

78 + ¢ b
)
(b) Orthioce 'er, (04« 9.59-)

(a+c b2_+ac)

“(¢) Ciwcuw. iter;

e

453
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(d) -Evaluate determinapt in (3) of text by factoring out 1635——"5 from

N 1 . ! 3 .
Cyrp from G, mult;hp,lying elements-of R, by -5 and -
adding to.elements of .H3 ’ ‘ ‘
0 = 1 0 -6ac 1
b
é+c b a-taol, | 42
3~ 3 =& P ev !
2
at+c Db +ac . w8
- +
5 =5 1 3" 3 3ac 1 .
0 -fac 1 .
~ satels w2 '
> L,36m 1
0 3ac -3
. 2
‘= %«(*2)(3&0 ” 3&0)
36 .
. =0

(e) Yes, 5ecausa by appropriate choice of coordinates any triangle can
have vertices with the coordinates given for A, B, C .

Consider trapezoid ABGD and chonse coordinate system so thah A = (a,0),
= (p,0) , €= (O,c) , D=1(d,¢) « The diagonals are cx + ay - ac =0,
ex + (b~ d)y~be=0, Joining
midpoints of bases is the line
pex + (a+ b -d)y - (a+he=0
¢ 8 B
b~q < wbe =0
2 g+h-4a -~(a+be

A




\ . . . N ' . . «‘\
The subject matter of this course can be grouped and developed in various

” ways. Although we have used some of the contents of this section in earlier
sections, we now consider, in a more systemati.c way, the general topic of in-

tersections and parallelisms.

We make extensive use of determinauts, with which we assume some reason-
able familiarity. An appendix presents a brief- treatment of the topic, which
was considered too algebraic to be part of the text. Matrices also, would
; have facilitated our development, particularly the concept of the\rggk of a
matrix, andéan augmented metrix; but'these ideas were considered to be too far

° afield from.our central theme, and so do not appear, even in an appendix. .
" Peachers. and interested students are referred to the SMSG text on Matrix /

Algebra, or Fo any of the recent elementary texts on matrices« We recommend _.'

strongly that students be encouraged to gain some competence in those aspects
) of matrix algebra which apply to the present content, and perhaps prepare oral .

.or written reports on these applications.
it . '
Authors, as well as students and teachers, are not pleased with pages

that seem overloaded with letters and subscripts. However, in three dimensions,

equations of lines and planes do require many symbols. We chose to use fewer

letters with different subscripts, rather th&h\many different letters, be-

- , cause we felt that, with a bit of effort, the patterns of relationships. could

. be more easily seen. Students should be encouraged to see these patterns, and
to try to extend them to:corresponding situations in higher dimensions, where
subscripts become more significantly necessary. We have avdided here, and
generally throughout the text, the use~of Z notation. If students have the _

proper background and ability, they might be encouraged to ‘state, as far as
possible, the results of this section that could be generalized to n dimen-
sions, using whatever sxmbolism they think most appropriate.

:;

.- e " Solutions ‘to Exercises D-h
.. o N . . -
1. (a) parallel .+ N (@) skew . —
(b) skew . * (e) skew :
(c) skew o (f) skew

N Vo RO N

Y,




R
+ 3t
- at '
- 31-,'_ .
-1 -3t oo
(b) {y=2+2t (Q) fy=a+by
o= 3ake 2=3 -6t .
'3;' ‘zasl Ml:hx+18y-3z~-3h=0 C
M, s bx # 18y - 32.-69 =0 N
b). : Lhx + 2k -+ 9z + ) = )
. ~(v) My x + 2hy + 92 69 =0 5
K M,z lx + 2y 492 - 35 =0 ¢
I '{{. ) ) °
b, (a)¥ lx+18y -32-34 =0 ° . o . °
. () 2x +2by +.92 - 35 =0 Note_ﬂlllba
‘S.Q (a 2x - -8y\+ 72 =0
(b)| 11x + 9y +122'= 0 ) A
(e)\22x + y + 8z = ) ¢ . :
(@) \3y+2z=0 ° ’ ' »
6. (a) L, goes over I . (e) L, goes under L, ~ -
(b) goes over Ly (4) Ly goes under I ' ' \\
. , . ‘ e o
2If L,| goes over and oes over L. , then it is sometimes,t
T. 4 goes ove Ié Ly goes ove @ then s s fe me:ig‘g.rue i

that goes over LQ . .
8. :}.‘t is fdlse that if LA ané L.'B° are distinct, then L, goes over L.'B )

or L.'B oes over LA . Consider the lines LA 1 x = l 2 L.'B nrPx =2 .

It is‘ne}Ver the case that Py on L, and P2 on I.tBA--have the same
‘x.-coordjina.te,*’hence;' one criterion is never met. )

" 9. (a) [1,0,2] + t[5,11,7] = [x,y,z) ) .

() " [0,-11,-17] + %[1,7,7] = [x,y,z] -

(c) [1:;1:0] + t[5:8:1] = [k,y,z] ,J
'(d) [3:2:h] + t[7:1:5] = [x,y,z] < M -
l(e) [l:'3:1] + t[5:2:hl,§ [x,y,z] . ’

t
(£) .

[‘5:'1:‘6] * t[8:2:7] =

.

Vo
svﬁ)" .
Eaid

[x:y:Z]

A7

; 2 s (a8
2 406,
Soon ) ')‘.
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,,,,,

()
(c‘)
(@)

. llv E&)
(v)
(e)

2. (a)
. (v)

Ll.

"[-2 ~11
‘“5’"5’ "3

(@)

el 1119
TITE
’ 1

(F- 3.3
%
3373

t

Jx<8y+z
2ty - 3z
x + 3y - 2z
-’226,“"33(‘*‘,'2;

1]

(1 3k 20
?"

6, 2,38

x .al+.zl'b

[t}

Y bl + mlt

Wi ;
. /
i

i

i
|
]

. and there exists an

i

L, and L, -are coincident if and only if

]

] {“
:
i
f —"
¢
0. ¢
O 7
= Q
/"(") [13 13 1
(@) (5, <k, 6]
° , x=a2+£2t
3 L B
2 y=b2+m2t
L, &
1 T2l
7 my ‘me
s0~ ;.s'uch that
a. ~a, %.s8
1 2 2% -0
by = by "My 8y

- Note: This is équivalent o the existence of-a Y

=0 .

]8‘2 s 8y 4 Yl

by = by Wy by

I.l and L2 ary parallel if and only if

4 4,
=Q - .
ml m2 p
T 46T
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) b = by, my s,

and there is no sy such that L ¢

8 =8, 45,

L1 and L2 intersect in a unique point if ‘and only if

; T It is traditional to talk about the angle between two 11nes s but present
sta.ndards of precision require that we take account of the fact that at lesct

) / four angles are formed when two lines intersects "These angles can be distin-

guished in a.diagram by various methods, but a.ll of these methods must induce
a sent - along each of the lines. We indicate expllcitly in the text that
such a sensing must underly any method of dlstlnguishing these angles analy-
tically .

It is convenient to carry through the é.evélopnent in the text ixsing the
pai*ametric‘forms of equations for lines. We leave to an exercise (R_roblem J.6)
at the end -of this section the development of some of these ideas, using the
ubual gereral forms of the equations of these. lines, in 2-space. Students
should be erncouraged here, as in other places, in the text 2 to use the torrdi-
nate system and method of representat:.omthat seems most natural s and to ‘be
prepared to show the equivalence of the results obtained in different ways e ~

It is not expected that any class complete #ll the exercises at t}{e end
of this section. We have supplied sufficlent exerc¢ises to give some variety
in assigmments, testing, etc. X

Solutions to Exercises D=5 :
-1/2 ’ 5

1. (AaA)' ~172° . cos O = o~ 0.9898 ‘1
O 3'130 ~ 3 ‘é

(b) ~75 cos B = =55 0.263 . L‘

|

!

(¢). ~83° cos @ = :g ~ «0.124 ,

468 1‘
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g =3+3t 11
(@ y=54+¢ o ¥-573% -3 :
‘ X = 3 + 2t ‘ .
21 .3
(b)iy=5+t OTY 5"2x 2
3-2t :
-3, L2 :
(c)gy 5+3 OF ¥YE3* Y3
Lines Li.:y+3x-11=0 - direction pairs L, = (-1,3]
Lty*2x-5=0 L2=[-l,2]'
Bisectors B, : (3-2@2)x+(1L-R)y-11+52=0 51 = [1-42,-3+2/2)
By: (3+2@)x+ (L+/By-1-5F=0 B, = (-1-/3,3+2/3).
Let. 6 be one angle determined by L, end ‘B,
® be one angle determined by I, and B,

Since L » 1. and 5 are in the samé quadrant we can be sure that
. 2

. . S
cos 6 = cos ¢ implies that /g =Z¢ .

- -

cos § = Byt Ly __lo+7?2 ' ;
15,111, | (Jao + W3 )jl-o
B, L, -

cos 6 = =22 _ 7+ 5/2 _ 10 + 7/2

- ) Eal lial -(Jao + 1&/5)/5 _(/20 + 1h/§)li6

This can also be checked by noticing that cos § 1is the cosine of half

thegh angle between Ll and L2 5 o

c11 -4o 43
(a) ,lfl = L-;;-,3] P, = (== 11 ll] P3 = [6,-7]

(b) Alt. fram Py [££, 3] + t[3,1] dine through P | L)

"Alt. from P, = ["1‘0 1‘3] +t[(2,1) line through P, 1 L,
Alt. fron Py = [6,-7] + t[-2,3] line through P; 15
The 1lines are parallel. Therefore, 6 = do, )
469
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(a) arccos % arccos 0.161 * 80.5° and 99.5°

/I5k

" (b) arccos (:%%) = 180° - arccos (0.786) = 1h1;7° and 38{3o

} " -8 (o] -
““(e) arccos ( ) = 180"~ afrccos (0.654) = 130° and 50°
] = N ] 13 an ' 5

1. (2) [x,y,2] = [122,3] +tla, 3a - 2¢, ¢]
© (b)) f{x,y,2) =[1,2,3) +tla , a +3c, c) |, foreanwy & and ¢ not
() [x3y,2) = [1,2,3) + tle ,-3c - 2a , ¢)] both zero.

8. (2) N i [x,y,2] = t[0,3,1]
T ) my s [xye] = 0220 ‘
1o : (¢) Ny 3 (x,y,2) = t[é;ll;gl -

9. (&) -3x+y+22-1=0 ] -
(b) x-y+3z2-19=-0 .

- (¢) 2x +y-32+10=0
. 10. (a) Sx+1ly +2z-51=0 7
() x+y+z-9=0 -
(e) 5x +1ly +22 -53 =0 . '
(d) 3y +z-1=0
(e) x+y+2-7=0
A (£) 3y +z-1=0
: 11. (a) 8° and 9K°
° (b). 69° and 111° -
(¢) 60° and 2120° )
12. (a) 7;<~y+llz~5§?0 : ‘

(b) x+3y+0z-11=0

(e¢) 3x-12y +7z2z+2=0

(d) -~8x + Ty +5z - 62 =0 _ ‘
(e) x+qy+22-35=0 . ¢
(£) 3x+0y-2-7=0

(g) 2x-y+z-4=0

(h) x+13y +5z - 47 =0 v p
(1) 3x=3p+z-1=0Q

i

. ERIC : 72 | S




i5.

16.

(v)

55,3°

() 29.8°
(e) 53.6°

() ¥° : tr) 4o.4°
T, ' with x<akis ¥-axis
“(a) 32.3° 53,5°
(3) 53:2° 15.5°
< (o) 1i5:5° ) 32,3°
Cos = . affelfl.)ﬁa,‘i}'
. . 2 2 2 2
’Q’ by ’[‘; + by
) /3 “
’ ) ° "./
/
.v//
//
-]

: 4’1

£

(n) ¥
(i) 22°
‘ z-axis
15.5°
32.3°
53.2° ;
g
’:\
H
3
SR

«




,Supplement to Chapter 7

‘ Exercises S7<6 ]
L (a) 2° § (a) 36°
o () &° h (e %
D o (o) 22.5° - , . (£) 63°

T2 () Lardoy - (c) o s P ol

rotation through 45° rotation through 30°

ellipse ellipse
. ) y*
LT A // \
N 2 ’ + RN P -,
: S T 7 s X
. \\ P \ \(z P
\ U
pad P ( :
% . . z R
[ - >/ 2 X AN
afl 7/ \\\ //// \\ “
) // AN e \
B - /7 N \
Ao 7/ N \
. \
s \
N . ° i
’ ) o (b)x2+h!2=h (d)2x2+!2=1
; . rotate hSq rotate 9 =45
translate X = x + V2 translate X = x + vZ °
: ellipse . . ellipse

J

[

o e

4 b
In abirs sl S B A st 1




<N

Q
. ERIC
:

(e.;')' e - 8y = 9%

‘rotate 45°

translate X = x - 3/§ ,
/s
. T=y-7
hyperbola
. 94
\Y
N
N
N
AY
N
N
N
¥
14
1,
/

(£) ¥ - ¥ =y

rotate arccos —;-
8
translate X = x - 5
. 6'
= 4+ -
‘X y , 5
X

(@) - ¥ =1
N o
- rotate 45 .
. tranglate X =x, Y=y + 2/2
\
kyperbola
AN

. 2 _ .
0-(h)y—6x

I
rotate arccos =

5
translate X = x -%,Y=y+l

garabola




)
\ i
: Exercises S7-7a
: 1, Given that x* =x+h
" and Yyt =y +k
2 2 , . .
end Ux“ +y“ - 8x+ iy +4=0
Find h and k such that the foirst-degree terms will be eliminated, N
= 2. 2
. BxT +yT - 8x+ly+4 =0 (1)
* - x=x'+<h
y=y'-k- ~
- i
Substituting in (1) a_.pd grouping terms, we find that the transformed !
5 equation is '
N & P
b2 4 y12 4 (Bh - B)xt + (ks byt + (M2 4 k2 4 Bh - bk 4By =m0 -
i 5
‘ " Solving simultaneously ;
E . 8h-8=0 h =-1 -
? -2k + 4 =0 k=2 ° : 3
The transformed equation becomes ‘
bxt® 4 y12 o )
: Ft = b . 4
P TR
. f
. ‘
.
1' «
S * X }»
- p
: =3 A '
474 :
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P T O R R O PEras

It
o

2; (a) 8x2-‘lixy+5‘y2- 2ix+24y=0 (c) 7x2 ~ 2hxy + 120x + k4

anslate to center (1,-2) .
= y ’ Translate to center (0,5)

. 2 ) 2
. Tyt 4 1“.36 =0
8x bx'y' + 5y 3 7x.2 - 2hxty' + 1k =0

Rotate through esrctan 2

W2 - 9% =36

Rotate through arctan

i :
9%° - 16Y° = 1k

Sl =

(v) 3x2+10xy+3y2-6x+22y-53=o (a) U2 8x5;+1&y2-_'9/2—;? T2y +1h=

ANTAC S L wr £t i a oty dwFene

) Translate to center ({-4,3) Translate to (3,1
iy 3% -8=0 . x=2f 42

) . Rotate through |+5° . . Rot.:ate through 45°
R W2 - P = Coup?lByro2x H2k =0

’ " Pargbola: § =0




. -
[ A—————

2, Center (- -1%,- -57) Axes of symmetry (y + ,57)

1.. Center (2,-5)

Exercises 87-Tb

Axes of symmetry (y +5)

(y+a57)

Exercises S7-8

1, (a)_ 0x° + 6xy + Oy2 +3x -8y -4=0

(b)

(a)

Hx ; 2)

(VIT - 4)(x + =)

-(VIT o+ B)(&7+ 32)

o 6 3 : .
A=]|6 0 -8} =-6(-24) - 6(24) =0
3 -8 -8
Thus it i$ a degenerate conic: (2y + 1)(3x- 4) =0
Lines: 2y +1=0 , 3y -4 =0
-2x2+8xy+0y2-x+hy-l=0 .
b 8 -1 ) -
A= 8 0 L|=U(-16)-8(-12) - 32=0 -
-1 4 .2 '
Thus it is & degenerate conic: (2x + L) {(x + 4y - 1) =0
Iines: 2x +1 =0, x +4y -1=0
b - sxy +9y° -1 =0
. 8.3 o -
A=[-5 18 0f=8(-36) +5(10) = -288 + 50 £ 0
0 0 =2
Thus it is not a degeneraf;e conic,
- B
aﬁa - 1xy - 6y2 =0 .
O T
a=lr <12 0f=0
0 0o o )
So it is a degenerate conic: (2x + 3 (x-2y) =0 .
T Lines: 2x+3 =0, x -2y'=0
. S !
n
gve —
' , 479
- . R _’7 ¢ v




_ 2. Consider Ax° +Bxy + Cy° + Dx + Ey + F = 0
=l L _vhere 4=0 -and §to. .

- o~
d - N

Case l Suppose the factors of the left mémber represent dependent .-:
linear equations. I-'hen we could write the left member /a.s -
(Mx + Ny + P)(kMx + kNy + kP) = 0 where k #0 . ’

—-—-6«;'2.«_4‘«30:{: then we get ‘
—— - kM2x+2kW}cy+kN2y+2}MPx+2kNPy+kP
i S' l;(klvlz)(l':l‘l‘?) - (2kMN)2 =.0 which contradicts our hypothesis § £0 .
Case 2. Supposing the factors repre.sent inconsis}::x;t équations , we

gep.that . .‘
(Mx + Ny + P)(kMx + kNy + hP) =0 for k 0, h #k .

But'again this implies that §= 0 contrary tc our hypothesis, § £0 .

s 3, Gonsi,der'Ax2+Bxy-*_-Cy2+Dx+Ey+F=0 . .
‘where C - . -
24 JB D i
~ a=|B 2 E|=2F - E(24F.- BD) + D(EE - 20D) = S
|l> & orf_ S ‘ -0
’ and R ' " .
- 5 _ oA° B 5 . “ %
B 2c| . . :
Then -2AE° + BDE + BDE - 20D° = 0 T
So.or 2AE° + BDE = 20D° - BDE = 5.

2

Expression (5) s (2% - BAC)K® + 2(BE - 2CD)x + E° - UCF |

§=1AC - BZ = 0 .makes the coefficient of x° vanish.

It remains to sho'w that the coefficient of x is ‘0,

From A=0 and BZ = haC se get . ' ' .

. n . s " .-
0=~.5J:“'+BDE-CDQ. ) )

Mul tiply By -bA and use B° = BAC to get k’%,{ e : :
T 0 = 1A% - bABDE + haD? ’ Q‘ . -
P — - " 0 = 4(aB)? - 4(AE)(5D) 4-4(5D)2
‘ * 0= (aaE - W) . - . P

Hence® BD - 24E = 0 which completes the proof. . ",

U ¥ &' A
£ ;,‘ . .- 4o




_Exercises $7-10

‘8x2 - 12xy + 17y% - 20 = 0

3. 5x2 - bxy + 5y2 - 16x + 16y + 8 =0

1'
. : . Lo
S = hoo A = 416000 ‘! S = & . A - _102h R R X
~ i . : R _ ., 8 ..
' _ Rotate through % arctan %‘ , Translate h = :‘L g ko= 01
. Then rotate through k45
}-{2+hY2=14 . ) x2+!ii2='h
elliisse ellipse -
h X 2
Yy }Y sy ; 7.
L) : )\ - Ax -
VoA BN e
\ NG ’ \‘ V4 '
\\ : . B ‘(\ //
. . 7/ \
Y - ‘\ 42 //’ x \\ ,’\ .
\ \ © . e X/ / .
/("/I N —— /y )/ -8 :
[ k4 -~ N Ao X -
‘,‘ -’ 0)/ 2 4 X o , _\\ X
/// 1\ e ~ /-
7 T . / N
P Cy Y A Y .
\ fﬂé\ / AN
’ > ' ! -
‘\ v
N \ T N
. 2 2 .2 - 2 2 o
. 3%° % 12xy - 13y - 135 =0 h, 9x° . 2hxy + 16y - 20x ~ A5y =0
. ' w300 A= 81069 §=0 a=-8750 } .
Rotate through % arctan 13: . Rotate fphrough arccos g- _.l-« 1.
d PP Ry " o S
’ : !

hyperbola .

paraboia




04

5. 9x° - 2kxy +16y°+ 60x - 80y +100 = 0

.. 8=0 a=0 J
Rotate through arccos g-
2 Translate Y=y -2 ,X =X

Y=0
coincident lines

6. 3x2+J'.0xy+3y2+l6x+l6y +2h(-/= 0
§=-64 A=512
Rotat’e throrgh 145°
Tré".ns"iate Y=y,X=x+/2

K]

R S
hype“:'cbola '

:

o T e

7. 5x2 +6xy +5y2 - 16x~ 16y+ 8 =0
3= 6 A= -l024
Roﬁate_' through h5°

*Translate X = x - ~/§‘, Y=y

132 +‘12=u

. ellipse

y

8. 27)52 -h8xy+l3y2- 12¢+Uhy-77=0 -
§=-900 A= -196200

otate through arccos £




i( | 7
X+ YNX-Y) =

§=-65 &a=0-
2y

Rotaté;* t" rough arccos

Translate X = x - ——
¢ . 5v2

Irtersecting lines

542

)

13xe+h8xy +27y2+ Mix +12y -77=0 12, 10xv +. hx -’15y -

o

= 2900 4 = -196200
3

Rotate arccos, & |

. >

'I‘ransla.t",e X=x+.52.’y=y+
9

5?-F=

hyperbola

iy

pas

1y

5

127 -Tay - 12y° - Ulx +38y +22=0  11. 9x° - 2hxy+ 16y° + 90x - 120y +200=0

s =0 A -= 0 .- .
Rotate through arccos g-
Translate ;X =x , Y=y

(Y - I Y +1) =0

Parallel lines

-

L

- = o

§=-10 /a=0

Rotate U5
) 9
Translate X - 1./2

¢

e
Yoyt

R +YNX-Y)=0"1?
int':ersecting lines

Y|

20 7

1
*




ie’

-

Sttt 1 v e

. ERIC.

* 1]

Supplement to Chapter 10

o
- A

. GEOMETRIC TRANSFORMATIONS

-
k]

- ’

"In a sense, tpisl -chapter can be thought of a_é a review of the early
chapters. It is essentially a summary of the various treatments of transforma<
tions, vut now thej; are ‘observed from & more sophisticated point of view, The
concepts of mg.ppfg.ngs and groups constitute the background- for the discussion,

The writers would be_interested in knowing how the teachers feel about *
inclugii‘ng: this. type of material and ‘also, if it is included, whether it should

come earlier in the presenta%ion--perhaps even near the front of the book.

-

/

e Exercises S10-2

1.. The reflection about the x =1 1line is (x,y) —=(x',y*) = (-x+;2,y) .
The reflection about the x =4 1line is (x’,y’)_——-»(x“,y") = (-x’+8',y’)“.
Taking X =1 then x =-4 we get

- ; . xnt__:xfs"‘yn_

i
. <

Paking: x =% then x =1 we get

.

v

1
"
N
()Y
<
t
7

o oot 22- (x+8)" +2-

So- they dontt -commute.

185 ) .
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.2, Mapping of reflection about x =h

(%,¥) == (xt,y*P= (-x + 20, y)

o . r -

Mapping of refledtion about y = k

-

(%,3) —=(xt,y*) = (x,7y ¥ 2

- -

3¢ Two successive reflections about horizontel lines:

i

(x,y) —=1(xt,y?)

(x, -y +2k) , (xt,y*) —=(x",y") = (x?, -g? + 20)

it

M= xt = ox « X" =x
3

y+2na-k) =y"|

y' = y? + 2n

Two successive fefledtions about vertical.lines:

(x,7) — (xt,y?) = (=x + 2h,y) s (xP,yt) —=(x", y") = (~x! + 2m, y?)

"

XM= ex*+2m= | x+2(m~h)

yl=yt=vy ) y' =y

X

h.. (%;7) == (x*,y?) = (~x + 2h)y , (x!,y?) —(x",¥") = (x*, -y? + 2k)

M o= xt = -Xx + 2h = x"

y"' = -yt + 2k = -y + 2k = y"

1l

5. The mappings in (3) will commute only if k=n and h =m.
The mappings in (4) will commte. . R B

°

Exercises’ S10-3

1. Suppose they have the rotation

e:-
1

=0+ 2(6, - 6,)
= r
*Then .rewrite

¢ll

[}

292 - (291 - 0)-

™=r

.Thérilet r=1r% and 291-4;:4;* and we have d>"=262-¢',r"=r.‘

Then we see that the rotation is the product of the line reflections

(rr,¢) ""'(f",@') = (r’eel - ‘D) and ) °
s (rt,‘bl)__.(rn,d?n) = (ri,gea- d,t)




2. where R : (r,0) —(r?,s') = (1,26, - ¢)
m * 2

~ . RL : (I",tb')—'* (1'",0") = (r’,291 - ¢:)
n _ Tt o T - - . = n
‘ o" = 251 ot = Lo+ 26 = 6p) =0
° ™= r = rn"
Exercises S10-4" - . “

Now solve for x and y in ierus of x' and y! . .
1 . . {

cem o ex! - ay! _ ax! - by! ‘
Thepy-bc-a,d' and X = =3 . P

" ~

|
1. (x,y) — (x',yﬁ') (ax + by, cx + dy) vwhere ad - be £0

Now substitute these into the line kx + gy + m = O and we see that

r -

kdx® - kby! + fcx? - fay! +m =0 ¢
or .

(kd + ge)x! + (-kb - ga)yt +m =0 ’

s

-

which means that any transformation of the group in Theorem.S10-3 will
S . & '

A-——&
&
R map a line intoc a line, " ¢ :
2. (a) (x,y)=—(2x,2y)
" x';/éng,y'=2y
x’2'+, y'2 = l&(x2 + ye) so the circle £ 4 y2 =1 .

maps tnto x’2.~h-yi2 =i,

(b) x;y) == (2x,3y)
x* =2x, y' = 3y

2+y2=%£’2+%y'2=1 so the circle x2+y2=l

x

- maps into the ellipse llIx 2 4 %y 12 =1

30 (x,y) —=(x',y") = (x + y,2x + 2)
X! =x+y,y=2x+2y

Consider the point a , 2a on 2x= ¥, then a=x+y and

28 = 2x +y  so all points mapped into a point on 2x =y satisfy the
This is the equation of a line,

equation x+y -a =0,

- 483
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Show' that the angle i3 preserved between 4wo lineg through the origin,
under z —»z' = kz , - K

Let 2z =r(cos 6 + i sin @) , then let L, be r(cos 6, +1sin @) end

1

L, be r( cos 6, + 1 sin 62) . Nov the angle between L, axd I will

2

-K - - 3 ‘ ", - ’\
simply be Ie2 ell . Under the mapping L —= L' where’ L ' is
iy . . ) N ’. ’
Kr(cos 91 +1i sin 61) and L,—= L, vhere L, is

Xr{ cos 6, <+ 1 sin 62) . So we see the angle between Ll" end L' egain

< equals l92 - éll o Therefore the augle is prreserved,

>
N

Discuss z - zt =

z=x+iy,%=z'_ xa-iz
] xX“+y

so- x! = _ZLZ end y!? =—2—'y§ in_non-linear coordinates.

— - X +Yy X +y

= L are'mé.pped onto x! = k and the
,hka

Then the circles (x - %)2 +y°

-

circles™ <2 #{y + l)2 =L are mapped onto y! =k .
: KT
2 2 .
Also we have x*a + y’2 =Xty = L hence the circles
2 2,2 2 ’ v
(x° +¥y°) x4y
2 2 2
X +y = are mapped onto the circles x!

.+¥’ i}

222, inthe. 2

plrne, T
(a) It is simplest to consider this problem in polar coordinates then

the solution is (r,da)‘ — (rt,a!) = (%;,ﬁch') where the origin is

-

defihed to map onto the origin.

” P i v 1 :
A second form would be (x,y) —= (x¥,y})= (———= y) vhere
x(1 + &%)

\y = ax 1s the line involved, Again the origin would heve to be
defined as mepping onto the origin.

L

i
:‘g
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’ jExerci’ses 510-5a * ;
1. By R o - : .
-*’16-10,\‘-10—
s GGG
2, (a) Reflection about y =\
- X! =y =0ex+1Lley \‘\‘ 0 1 )
yt =x=lex+ Oey ;‘ _<l 0)
(b) Reflection sbout y = -k ‘
H ‘x’=-y=00x+-loy‘lﬂ‘ T 0 -1\ -
yt=ex=-lix+0ey : (-1 o) , .
3. “Reflection in y = x ‘\4
(l\ "1\ 0)
rotation & h

L
o
2

\
.composition is

- .0 -1> ( } ('-1 o> :
(1 0 o | '

\ o 1z
b, cos 6, - 8in 6, (cos 6, \sin 6, ) - )
-8in. @ cos 6, / ’ sin 9 \Yco8
- ,‘2 2 a , \?

e’

”

cos 6, cos 6; - sin 6, sin 6y , -5in 6 cos 6, - sin §, cos 8

. 1
cos 6, sin 6, + cos 6, sin 6y ,,.8in 6, #8in 6, +'cos 6, cos 6
[cos(e, +9,)  -sin(6) +6,)

sin(e + "a) cos(6) + 6,) """«'

This mapping is the same as a. mapping ‘of &;8ingle- rotation through
6. + e_ radians.

\A
AN
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and so- we see that

LI
=

v [t 2 blcl + bec2 blr:2 + beck ~
- K a3 8, . b3cl_+ c3b!+ b3¢;2 + buc,: s
. [8)by¢) * By 0s05+ abae) +ayesby ‘ﬁ‘h"el+ 81050 ¥ 8030 8y,
. K= a;by¢) # azbycy +,al;b3°l + aué:‘}b!+ ‘ 85Dy ¢, agbyey +_‘al&b3°2 +abycy |
and = ; .
\‘ B %\ [P P . %\ . N
‘ ’ = K! N
a3 _Ha!' b3 bl& c3 ), i
' ai‘?'l‘ * 8oby 8b, + agb) \1‘*. o c |
s agby + &by 8D, + aby S
o alblcl +z.12b3cl + a;b2c3 + aebh_c3\ al‘olc2 + aebsc2 + e’]_b2c;# + aebh_c,‘_
. a3b1cl +al&b3cl + a3b2c3 + a.h_bkc3 a3blc2 + a.h_b:‘}c2 + a3b2ch_ + ah»bh»ch»
. \'b; and s0 we see that.. i: K! and matrix multiplication is associative.
a . a:L aé ) bl ) b albl + a2b3 . alb2 + aebu
:33 8, | b3 b4 i a3bl + au‘o3 a3b'2 + a!‘b!+ -t
ER a .
h’.L abe al a, bla—l + b2a3 beal + bua2 ’
b3 bh ; a3 a, i b3a:L + bh_a3 .b3a2 + bh.al; = F

L £Lt' hence matrix multiplication doesn't commute.

s




é, In -polar c;b'ordi?aates .
rt =r cand ' = 26 - ¢ 4 # o
., A LY R

K3

x* =1 cos(26 - ¢)= r=cos ¢ cos 20 + r sin ¢ sin 20
< ) y".

t

X cos 26+y sin 26

e 4
r _sin(29 - ¢)= r sin 26 cos %_— r (:3;5\26 sin ¢ = x sir: 20 -y cos 26

‘h¢nce the matrix is:

- ‘\. ‘ cos 26 sin 29\
o ! sin 20 - cos 28/ . - o
\ - 1 0 ) o ) )
i Whi;n 8 =0, ve get vhich was previously shown to be a
b . 0 -1 oo

v
1

1 ©

. o ) o0 1)
! reflection about the x-axis,vwhen. @ =-E we get ( ) which was

e a

. previ}ously shown ‘to be a reflection in y = x, when ‘:’3 =% we get .
- " -1 O s - 3 - ‘
: ich is a reflection in the y-axis,vhen 6 = "I;E we get : i
2 1 i '
(o=
. which is a reflection in the y = -x-axis, T |
\-1 ,O - i
A " . I
7. cos ?92 sin 292 7 cos 29—1 sin‘ 26, - . 1
\stn 26, -cos 26, " \sin 26; =g05° 26) . |
C T / .
‘ { c<‘>§:v292 cos 29{ + sin.2@, sin 26)  cos 20, sin 2¢) - cos 26) sin 26,
126 - + A :
. \ cos “261 sin 26, - cos 26, sin 26, ?,if’ 26, sin 26, + cos 26, cos 26,
[ cos ?(62 - 6,) -sin 2(6, - 6,) .. ‘
. , . .© .
sin %(62 -6) - cos 2(6, - 6,) s
; This is the matrix of a rotation where 6 =2(6, - 6,) °
‘ . ko1 -

\
Y
b
~
e
b




Exercises S10-Sb -  ° )

1, cos -Q sin al - cos a -sin a -
» or o ‘ - .
sina -cos a £ sin‘a cos a

By Problem 7 (510-5a) we saw that the produt of two mstrices of the form

cos o «sin o cos ¢ -sin a- )
. is of the form .
v - .
\sin o' -cos a sina cos a L .
. S v

|
|
|
|
\
|
\
|
|
l
) By Problem 4 (S10-5a) we saw that the product of two matrices cf the form

dbs ¢ -sin a :
. is another matrix of the same form.
sin-a -cos a o~

. 5 - IS -
. cosa sin-a) fcosa -sina
We see that the product . o i .
! - sin g <cos a sin g +cos -
. cos 8 sin 8
is of the form .
sin B -cos B /-
) fcos & -sina cos B+ sin B\ .
Finally o - is of the form
. "\sina. cosa sin § - 2088 i )
¢ cos ¢+ B sina +.B ) . 3
\sina+B -cosa+ p/ .
. Hence we see that'the matrix multiplication is closed, From Problem 5
((810-5a) we see that the multiplication obeys thé associative law, and
1 o . :
becavse | 1is included in this set and it is the identity matrix,
. ) o 1 . - -
’ that this set forms a group. - ‘
i ! ¢z
— p |
-+ 26 8 8 bl b2 albl + a2b3 a._LI:t2 + a2b1|» i
‘ z P = ) i j‘
. - + |
\23 &, \ b3 bh a3bl + ahb3 g3b2 all»bll» . |
:

,a;lb]'_ +a2‘8““ aflbe tag, .
3 = (glbl + a2b3)(a3b2 + al&bh) - (a3bl + q.hb3)

. (ayb, +a:D))
= alblahbh+a a.b.b_ -a.ab bh- alal'}beb?’

aebl + 82b3 a3b2 + aubu ;

27372°3 2'3°1

. -

; = (alah_' 8.23.3)(1)]:)!‘ - b2b3) ) L

r

\
.
488 _ ‘
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[5 2 L
3. The matrix | isn't en isometry as.the vector (0,1) —(2,1) _end
& 2 1 _ _ ,
* hence distance isn't preserved,yet the det = 1 .
. cos ¢ -sin o cos O sin o
4. The matrix must be of the form | . or ) A
sin o cos a sinag -cos o ;
by Theorem 10-5, . . .

’ cos o -sin‘q " .

cosaa + sineoz =1 .
sin o cos o -

&

scos°0 - siriaa = <l T

. cos O sin a

\
N

. \ sina -cos-af -

Hence the det of the matrix that represents an isometry is 1 or -1,

_ . " L

R LT “ ,

T 5. If. i \ { ( 1 then alals- - g8y = +1; also,we have .
. 3 . ’

u“

1312":832 =1, al + 8.22 =1, a32 +ah2 =1 and 8.22 + aua = 1. Now,

- . \
if the sum of two squares = 1, the numbers can be*w:itten as sin and

.-

— . cos of some angle 6 . Hence we have 8 = Ysina or *gina,

, 8, =+ cos a or\i‘ sin a , a3 =tsina or ¥ cos a-,
Yo L+ % ¢
- 8 =7cosa or %sin G . Now,from these sve obviously
%

A .

-get matrices that belong to S but we get other as well: ’

8y = *sina or Y eosa, g, =fcosa or ¥sin a., Noy from these: '

- ve obviously get_matrices that belong to S but we get others as well'

-co8°0, sin a\. cos a sin g sin o cos..a sin.a cosa.

B ’ ’ ’ N
sina cos a -8in @ cos o -c08 a0 sinla cos a. -6ina
' / . 2oLt g '
y sing -cos ¢ =8in @  cos o )
. - and ' + Al of thése cases can be

- cos o sin g /? o’os a sinag
reduced to members of S by 1etting a -B a=f + — or a = B .

- Hence, these conditions are enough to make the matrix belong to § , ,
M . » » N \

. it .
e - Exercises 5106

.,  1, AnSWers..,gixen in'téxt

: ‘2, Ansvers given in text
e ~ 489 -
CERIC o3 ‘ :




3.

CI-l
I-2
I-3

I-h-

I-5
1-6
I-T
I-8
I-9

g
.

Refleation
Reflection in
Reflection in
Tdentity -
‘Reflection in
Reflection in
Refiection in
Reflection in
Reflection in

I-10 Reflection in

in X=y Pplane

¥~z plane

X~z Pplane

= . ~

plane through x-axis with

plane

through y-axis

with

plane through z-axis with

plane
plane

glane

through- x-axio
through y-axis
through z-axis

with
with
with

5
135

150
h5°

(o}

to y-axis
anglé'to z-axis-

angle to x-axis
o angle to y-axig
(o]

135
135

o angle to x-axis

angle to z-axis_

Y



