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PREFACE

This text aims at restoring what is,,in a sense, ,a "lost" subject. There

is a widespread practice of including analyticAgmetry material in the taloa.,

lus )program; but "eh this is accomplished, Analytic Geometry, as a course of

study, disappears-and what remains of it is the part immediately useful to a

study of calculus. You will find a much more varied selection of, topics in

.tiis than you would see'in a calculus

In a book devoted to the interplay between algebra and geometry you would

expect to befcalledupA to exhihit considerable dexterity in algebraic mani-

pulatiOns as well as to recall previous experiences with-geometric figures and

theorems. You will not be disappointed. It'is also assumed that :you know the

elementary notions of trigonometry.

A deliberate effort was made to tie this text to previous SMSG texts; so,

you will find the usual language of sets, ordered pairs, number properties,

-tic }_,you have had some acquaintance. This flavor is perhaps what

disti this book
4
from others in the field. For example, the treatment

of coordinate systems in Chapter 2 depends upon the)postulates of MEG

Geometry.

Here is'one word-of,advice. The early chapters are fUndamental to every-

thing which follows. Study them until they seem to be old friends; 0 not

hesitate to return to th4I44 for a fresh look. Another thing you might

,watch. The related ideas of vectors, direction numbers, and parameters are

used extenTsively to simplify and unify the various topics. Look for this

'feature.

The theorems and figures are numbered serially within each. chapter; e.g.,

Theorem 8.-3 is the third theorem of Chapter 8,. Figure 5-2 is the second figure

to appear in Chapter 5. If an equation is to be referred to, it is assigned

:a counting zkimber, which'is then displayed in the left margin. The counting

begins at one for each section. Definitions are not nuMbered but may be found

by referring to the Index.

The writers hope they have recreated the 'beauty of Analytic Gebmetry id a

.new SMSG setting, and they further hope'that you will enjoy and profit by ihe

adventure you are about to undertake.. Bon Voyage.

."
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Chapter 1

-ANALYTIC GEOMETRY

1-1. That Is Analytic Geometry?'
5

Geometry has been studied systematically for over two thousand years.

Euclid's Elements, which was written about 300 B.C.; is perhaps the most

influential mathematics textbook ever published. There are undoubtedly Many f

traces of it to be found in the-text you. used in your high school course.

Until. the 17th 'century, geometry was studied by what are known as

synthetic methods. The postUlates dealt with such geopetriC notions as point;

line and angle, and little or no use was made of numbers. In the Elements,

for example, line segments do not have lengths.

.Then in the early part of the 17th century there occurred the greatest,

advanCe in geometry since Euclid. It was not the work of one mansuch

-0 advances seldom, if ever, are. 'Instead, it occurred, when the "intellectual

ell ate" was ready fox/ it. nevertheless, there was one man whose name is so

% universally associated with the new geometry that you should know it. That

man.wps Rene Descartes, a French mathematician and philosopher, who lived

from 1596 to 1650. The essential - novelty in the new geOmetry was that it

used algebraic methods to solve geometric problems. Thus it brought together

two subjects which until then.had remsina-almost independent. .

The link between geometry and algebra is forged by coordinate systems.

In essence, aicoorhnate system is a_correspondAce betWeen the pdints of some

. "space" and certain ordelid'sets of numbers. (We use quotation marks because

the space maybe a curve, or the surface

Polnis not usually-thought of as a space

number of different coordinate systems,

of a sphere,,, or some other set Of

.) You are already familiar with a

some studied in earlier mathematic;

courses, others met with in other fields, such as geography. In eleftentary

algebra you introduced coordinates into a plane by drawing two mutually

-perpendicular lines (axes) in the plane, choosing a positive dtrection'on each

0
and a unit length common to both, and associating with each point the ordered

pair of real numbers representing the directed distances of the point from the

two axes. The location of a'point.on the earth'a surface is often given In

:1

1 9
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terms of latitude apd longitude. An artillery* sometimes locates a target

by saying how far away it is and in what dil.re4d4on it lies with respect to

an arbitrary fixed direction established by'settrx up an aiming post. This

is what is called a polar coordinate system for the plane.

Artilleryman

. .

7

Target

Aiming post

Figure 1-1

A point P on a right circular cylinder could' be identified by means of

the directed distance z and the measure of the angle 0 shown in Figure 1-2.

J.

Figure 1\2,

2
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Tr, insteadine right circular cylinder, we consider all such cylinder

with the same axis, we can locate any point in space by giving the radius

of the cylinder on which it ties and its z- and 9- coordinates on that

cylinder. The result is called a cylindrical coordinate system for space.

A fly on a doughnut (a point on a torus) could be located by Means of

the measures (in degrees, radians, or any other convenient unit) of the angles

9 and 4; shown in the figure below.

Figure 1r3

The position of an artificial satellite at a certain moment could be

slectfi0 lyy, giving Lts vertical distance from the'earth's surface (or center)

and the latitude and longitude of the point of theyearthls surface directly

"below" the satellite.

S

Figure 1-4

The r sult is called a spherical Coordinate tstem for space.

3

; I.
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A coordinate system could be set up even for a "space" which is quite

irregula'r. We may note that your home address is a set of coordinates

Which we locate :a particular point, your home, relative, to the streets and.
avenues of the town you live in. These streets and avenues, which teed not

.be straight, are thIN"coordinatl lines", and the numbers of the housbs on

them'indicate, in some reasonable way, the positions along these lines.

Once a coordinate'system has been established, interesting sets Of

'points can be represented by ,suitable c6nditions on their coordinates. The

I

cluatiOn

1 w '2x y + 4 = 0

represents the line through the points (-.1,,2) and (2,8) , where we are.

using rectangular coordinates. The inequality

( x2 + (y : 2)2 < 9

represents the se(of points not as far as. 3 units distant from 10;2) , in

other words, the interior of the'circle with radius 3 anq center (6,2),

I I.

The equation

2
2 ,

x - y =

represents the two lines through the origin making angles of 45o and 135
o

1with the x-axis.

By means of coordinate systems we can, if you like, arithmetize.geonetry.

Problems fabout%eometric figures are replaced by problems about numbers,

functions, equations, inequalities?, and so forth

the extensive body of knowledge about algebra, t

which has been develdped largely since the

Thus one can bring to bear

onometry, and the, calculus

century.,, (In this text we

shall use no calculus, but if later you study the subject, you-will see that

,it would have been, insome places, rather useful to us.)

The definition'of analytic geometry given above is of.the sort found in

dictionaries rather than the port used in mathematics. It tells us not'howa

technical,tqrm will be used in the remainder of this book but*how anon.;

.technical Phrase is commonly used. As the discussion above indicates, both

the subject matter and
1

the methods of this book are already fairly faMiliar

to you. You have even put them together in earlier courses. For exakple,

you know that the grai4(ina OL) of an equation of the form

(1)
A

ax + by, + c =0

is a straight line, and that the problem of finding the intersection pi' two

lines in a plane can be solved by finding the Solution of asystem of two

12



1-2

.equ ions like (iy. You also know that the locus of all the points in a

ane which are as far,fromalfixeeline as they are from a fixed poiht-not

on that line (this is'callea a parabola) has an equatipn of the forM

, y2 = 4ex

if you choose the proper :coordinate system. In this book We shall takelup

many such problems,and-b3, the time you reach the end of it you will have

some idea of the poWei- of the new method which Descartes and his contempo-

,raries introduced into geometry.

c

1-2. 'TIE Study Analytic Geotetry?

4

A chief reason for studying analytic,geometry is the power of its methods.

Certain problems can be solved mi readily, more directly, and more simply by

such methods. This,is true not only for the problems of geometry and other
,

branches of mathematics, but'also for awide variety of appl, cations in

statistics, physics, engineering,, and other scientific techniCal fields.
/

UsIng algebraic methods to7tolve geometric prpblems Permits easy generali-

zati9n. A result obtained in one or two dimensions can Of:ten be, extended 4._

once to three or more dimensions. It isoften -just as ehSy to prove a relation

space of n dimensions as it would` be in space' of two or three dimenSions.

In fact, much of the work in higher dimensions is essentially algebra- with

geometric terminology.

Analytic geometry ties together and applies in a new and interesting

context what you have been'learning about number systems, algebra, geometry,

and. trigonometry. ,Zt should lead to mastery in handling matheMatics you J

havrsiudied previously. As yeu ttudy this course you will have many oppor-

tunities to use knowledge and,methods that 4onstitute your present mathematical

equipment. You will also learn new,methods. Sometimes the new methods will

seem awkward or djeficult at first when compared with methods you have, been

using. You should keep in mind that what you are doing is learning about the

methods and how to apply them:'

g

...pathematical weapons'in your arsenal, and more powerful ones. You should be

more able then-tb select effve mathematical weapons to attack problems.

Thus another important reas: n for
g

studying analytic geometry is the value it

'0,*

:-.. a

-As a student, you may at times'be .directed to use a certain method to

gain facility with it. Real problems, whether in mathematics, science, or
.

.

industry, do not come equipped with a mathematical setting and a prescribed

method. By the end of this course you should have a greater variety of k

/9
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will have for''you in future coursesnot just courses in mathematics but in

physics, statistics, engineering, and science in general:

There is a current _trend to combine tnalytic geometry and calculus. When

this occurs,'much that is of,value in the subject of analytic geometry is lost.

Because such a course is primarily calculus, only such parts of analytic,ge-

ametry as are immediately useful in the calculus are kept. By studying a

separate course in analytic geometry, you have a better opportunity to under-

stand the coherence of the subject, the diversity of its methods, and the

wide variety of problems to which it may be applied.

One of the most impoAant reasons for studying analytic geodetry is to

gain understanding of the interplay of algebra and geometry. Algebra contri-

buted to analytic geometry by providing a way of writing relatitnships, a

method not only of proving,knownpsults but oleo of deriving previously un-
known results. Geometry contributes to algebra by providing a way of visu-

alizing algebraic relations. This visualization, or picturea, helps-you to
understand the algebraic discussion., In the framework provided by a coordinate
system, you will do geometry by doing algebra, and see algebra bY looking-at

geometry. 'Algebra and,geometry are intermeshed ip andlytic geometry; each

strengthens and illuminates the other%

- -

14.
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Chapter 2

-COORDINATES AND THE LINE

6

AmM1111

- --2=1

2-1. Linear Coordinate Systems.

In our previ9us study of mathematics we have already encountered at

least three major mathematical structures,arithmetic, the algebra of re'Al

numbers; and Euclidean geometry. The great German matheiatician, David

Hilbert (186271943),:showed that all geometric problems could'be'reduced to

problems in algebra. Our goal here need not be so drastic. We are not .

trying to eliminate the need for geometry,bUt ratper to establish con-

nections between algebra and geometry. This will.enable us to bring to bear
r

on a single problem both the sower of algebraic techniques and the structural

clarity of geometry,

,

It turns out that we are abletto effect these connections betweeh

algebra and geometry by establishing certain one-to-one correspondences
/algebra

real numbets and points on a line `and between real numbers and angles.

In bur study,of geometry we adopted an important postulate:

/
The Ruler Postulate. The points of a line can be placed in corre-

',tpondence with the real numbers in such'a way that'

(1) To eyery point of the line there corresponds
;

exactly one

real number, 4

(2) TO every'real number theredorresponds exactly' one point

(3)

of the line4.and

The distance between two points is the absolute value of

the difference of the corresponding numbers..

1

We defined such a cirrespondence to be acoOrdinate system for the line. ''-iie
/ :

called the numbe/corresponding toagiven point the coordinate of the point.
/1

In order pi assign a Coordinate system to a.given lineowe adopted
e....-

another postylate: '

r./

"V.

A

4)
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The 1161er Placement Postulate. Given two points P and Q

of a,line, the coordihate system can be chosen in such a

way that the coordinate of P is zerygnd the coordinate

of Q s positive.

We found these postulates to be extremely useful when we defined such concepts -
)as co ence for segments, and order or betweenness for collihear points.

We s ail want to review and extend these ideas in this.text, for it isail

coordinate systems that we are able to relate the algebra of numberg

. to the geometry of sets of points. We shall first extend our notion of a

v coordinate system.
f

In our theoretical development of geometry we had no need to mention

units; the measure of distance between each pair of points was always a:fixed,

though unspecified, number. We did not need to know what these numpers were,

but only hOw the measure of distance between one pair of points.compared with
: 1

,
the measure of'distance between a:second pair of points. Was the first number

as large as the second? Was it larger? Was it twice as large? In applying

our theOretical knowledge to Specific problems we found that we. could use any

units we pleased if we were consistent in our,Usage throughout each given

problem. If we did a problem in inches rather\than in feet, the numbers-we

obtained were twelve times as great, but equal distances were still meas'ed
- .

by equal numbers.: Agreater distance had a greater measure, and a shorter

distance had a ealler measure, but the ratio-Of these distances was the

same for both choices of unit. Although the measures of distance between
b ,

1 ...

pairs of points depended upon the choice of units, within a given problem the
.

measures in one unit were always proportional to the corresponding measures

in another unit.

.
.

What we discovered in effec was that rel tivp to a

1

given,point on a-x
_ 4

er
.s.

. .
byline are not just two coordinate systems fOr the line, one oriented

,

in
',-,-i, .

e4ch direction. For each pont and each sense of
\:

direction on the line there

is a coordinate system for the line corresponding to each choice of unit for

measuring
..,N ,.

g distance. In each of these coordinate systems the orientation

corresp nds to one sense of direction for threline and the coordinate 4 the

given oint is zero. Since there are inf'nitely.magy,choices of unit, there

are i finitely many coordinate systems fo each pointand sense of direction
'V

_
- on t the line:,

-""
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In this text we are not attempting to develop a rigorous deductive
,,.

system as we did in geometry. Rather we want to develop and extend the

concepts and techniques which ire can use to solve problems. Our basic

technique will be to introduce coordinate systeds. It is so important to,

utilize the freedom to choose coordinate systems n a 1.j.he that wd state the

following guiding principle:

2-1

LINEAR COORDINATE *STEM PRINCIPLE. There exist -coordinate

systems for any line such that

(1) If P and Q are any two distinct points on the lihe

and p and q are any two distinct real numbers,.

there is a coordinate system in which the coordinate

of P is p and the coordinate of Q is q .

(2) If P, Q, R;-and -S are collinear points with

coord ates p, q, r, and s respectively in one

coord ate-systeM=add qt, rtland resp-ectivelY

in a -se end dinate system, if P and Q are

distinct, and if R and S are distinct, to

1p.
_

Irt _ 0-1

IP -q11 r - S I

DEFINITION.' If a coordinate'aystem ona line assigns the

coordinates r and s to the points 'R and S , then,

SI is the measure of distance between R and S

relative to-the coordinate system.

.
This nicety of expression is necessary when we are trxing to'%explain and

distinguish concepts which are often confused. As our understanding increases,

we may speak more colloquially, and use whatever level of precision is,

appropriate to the topic and setting. What is important us that a lack.of

precision should reflect our choice and not our ignorance.

For convenience, and if there is no danger of ambiguity,.we shall call

this the distance betireen R and ,S .
I

f4

We denote the distance between RDand S. by d(i,S)

(

'

9
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2-1

is b

coordi

coordin

the on

the unit-

vex the context makes clear that only a single coordinate system

Sidered, we shall adopt the convention that a is the

Ant of A , b is the coordinate of point B , c ithe
oint C . We shall call the point with coordinate zero

e coordinate system. The point with coordinate one is called

ate

to o

11 of t

oiht

It is

to S , Wh

in the next

some

ch we

sect

imes convenient to think of the directed distance from R
define to be the number s r . 1.1e shall need this idea

We shal
11'

Which we define to

pair'of its edpoin

segment by RI .

terminate in S .

find it necessary to use the notion of a directed segment,

be the set Whose elements are the'segment and the ordered

s, or (.RS,(R,S)) . We shall denote sucha directed

e directed segment RS is said to emanate from R and

H wever, we should note that directedldistance is related

to the c.hoice of coo dinate systempand a directed

choice of orderifor s endpoints. The'length or

segment R5. the ]ength of RS , or d(R,S),.

of endpoints (R,S)

direction, from R t S . We shall find that this alliance of tha'concepts

of magnitude and sensd of direction in directed segments is basic

development of a Power ul tool'of analysis in Chapter 3.

segment is related to the

magnitude of the directed

The ordering of the pair

s related to our intuitive notion of sense of

We conclude with

above. .

to our

examples illustrating some of.tAe4deas introduced

6

'10
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Example '1. Let us perform a practical experiment;,. Te a ruler which
f.1

/

is marked in inches and another which is marked in.eentimeeys; use each of

these rulers to theasure the distances between the pairs of labeled points in

Figure 2 -1. Record your results and compare them.

2-1

B

1
/

/
A

Figure 2-1

r.

\
Discussion. If a ruler is old or damaged at an end, we\prefer not to

measure from the end. When we made the measurements required,above, we
,

hAppened to place the unit point of the coordinate system on the inch ruler

at A and found that in'this case the coordinates of B and were

3 13 and 5 i 'respectively. When we placed the unit point at , we found

the coordinate of C. to be 6 2
8

Since the measure of distances the

.,

-absolute value of the difference between the coordinates, we conclUped that

in inches d(A,B) ==' 2 i ;-0A,C) =!.J. i , and d(B,C) = 5 i . We made similar

4t!

measurements using%a ruler marked in centimeter units.
1

1
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We summarized our measurements in the following table.

Distance -Measure Measure in
in cinches centimeters'

d(A,B)

d(A,C)

OBIC)

2
7'.

-8

, 4

2
8

7.3,'

11.7.

14.3

How do these results compare with yours?

We compared the measures to each other, first .n inches and,then in

centimete;s:

d(A,B)
2

, _
d(A,C)

8

7
71

'Tl(A,B)
2

0
d(13,C) 5

5

0 4 2
A,c) 8

d(B,c) - .82
5

"! 5

d(A,B)
7.3 .62

o(A,c)

OA,B) 7.3
d(B,c) 14.3 yi '

d(A c) 11.7

)775

The accuracy of our results cannot exceed that of our measurements. Within

these lititatiOns we found that the ratios of corresponding measures of

distance were independent of the units.

oThen we compared the measurements in centimeters to these in inches for

the same pairs oflpoints and for the perimeter of PABC :

d(A,B) : 2.4 ,

11.7
d(A7c) : --7 2.53 ,

4 f

. 12

20
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d(By0) :

14.3
2.54 ,

58

Perimeter of 6,ABC : 2.54 .

13

Within the limits of accuracy whichiwe could expect, we'found that, the

corresponding measurements in centimeters and in inches were proportional.

Example 2. A straight road 180 miles Long connects town A to town

B A driver leaves town A for B at the same instant as another driver

leaves town B lor A . The dri4ers travel at the uniform rates of speed,

44 ft. per sec. and 88 ft.'per sec. respectively. How soon will they meet?

Discussion._ In.solving this problem we must makesome decisions about

units. Some information is given in terms of tiles and some in terms of feet.

Also we are not told in what un4.ts to express the answer. iSuppose we try?two

different approaches. We shall first adopt feet and seconds as the units for

Aistance and time.

tfr

(1) We must express 180 miles in feet. The constant of propprtion\

aiity is 5,280 ft. per Mile.
)tt'

Thus

180 (mi.) x .212' (ami.) = 950,400 (ft.) .

.....

.

- I ,
.

The inclusion of the name of the unit 'next to the numbe; of units is

a common practice,in the p sical sciences and engineering. 4t
1

provides an,immediate reminder of the significance of the 6a1c4-
L

lations. Such a practice is called a mnemonic (from the Greek

0yao.Oat meaning to'rem

)

ber).

_.
, ...t

/*

P We let t _represent the number of seconds which will elapse
.....--

before the two drivers me t. We interpret the problem with the

following statement of eq ality: .

1 '

44t + 8t = 950,400 ,
1

,

I

Which is equivalenf'to I

132t = 950,400

and t = 7,200 .

The drivers will meet in 7,200 seconds.-

13
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tis This result is such a large number,that it may not appeal readily to_our_
.,

intuitive sense of duratiOn of time. We might convert this measure to
. ' ....k

different units in the hope that'the answer will be more.intuitively meaning-
.

ful: If we convert,tominutes by dividing'by 60 , we obtain 120 minutes,

which i's clearer. If we convert to hours by dividing by 60. again, ,.we . '

,obtain 2 hours, which is probably the most satisfactory expressi6n of the
9_ .

answer.

If we are able to anticipate the relaigre "size 6f the answer, we may be

able to chpose units which will obviate the need to'make changes at the',end.

In this problem we 'might well have realized that hours were An appropriate

unit for time: We,might also have simplified the arithmetic had we used
.

miles as the, unit of distance. Our solution would then have been!

(2) We convert the rates of speed to miles per hour,. The constants of.

1

80
proportionality are

52
mile per foot, 60 seconds per minute,

and 60 minutes per hour. Thus we obtain f

sec.'

1 (nd.),60 (std.) ;<'60 (mi1 . .(n1.)44 (-11')
x 5280 'ft./ 1 'min./ '1 hr.' 'hr./

and ...

( ft. 1 ,sec.) 60 ) 60 (mi.\88
ilt;) x ( i n. 1 hr./

x k
'sec.' -5-06 'hr.'

.

T!,
.14S let t represent the number of hours whidh will elapse

before the two drivers meet. We interpret the probleinwith the

statement'of equality,

30t + 60t = 180 .

This Is equivalent to

or

90t = 180

t = 2 .

The drivers will meet in 2 hours.

The first eXample'illustrates tIle"assertions,which led to the formulation

of the Linear Coordinate System Principle.' It also suggests that when we

change the coordinate system, we do not lose the notion of congruence for

segments, whiCh is defined in the SMSG Geometry on'the basis of equal lengths.

In the next section we shallfilpe that the concept of order or betweenness is

also preserved in linear coordinate systems.

22
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The secondexample

throughout the solution

inherent .in the freedom

points up the

of. a problem.

to choose the

2-1

necessity for using units consistently

It also illustrates the advantages

scale or units of a coordinate system. .

Exercises 2-1

1. Take a sheet of ordinary lined paper and use'-a lateral edge to make a

"ruler" by assigning coordinates to the ends of the lines. Use this

ruler. to "measure" Figure 2-1. ;.Following the outline of the dilcussion

in Example 1, compare your measurements to each other and to th4 measure-

6Mts-in Example 1. Find the constants Qf proportiorlity which relate'

the Units of your ruler to inches and Centimeters.
0.

2. In Example 1 it was asserted that our results agreed within the

kiimitations of accuracy which might Ve expected. Show that the accuracy

of our results is consistent with the accuracy of our measurements.

"We.obtained 2.53 "rather than Q.51 as the consthnt of

yroportionalityrelating one measurement in centimeters to the corre-

spon4ing measurement in inc'hes. HSustify that this discrepancy is not

significant. e'

3. Assiime that the earth is a SpheretOf radius 3963 miles. A.-:man of

extraordinary powers is able to walk completely.around the earth at the

equator. During this trip his dead is always 6 feet farther from the

center ,of the earth than his feet are. ThU)s the path of the milts head

. is longer' than the path of his feet. 'Determine how much longer.

4
Let n = 3:1416/e Try to anticipate theappropriateunits for the

answer.

ii. What is the scale.of the map on which the "distance" from New York to
1

Sam.Francisco is shown by a line 7 -§ inches long?

' 5. (See Exercises 3 and 4.) A model of the earth, or globe, has a -24
.

inch diameter. What is the scale of this model? How-164g'on the

1, surface of this modal would be,the "line" from New:York to San Francisco?

6. bicyclist starts along the road at the rate of 8 mile? per hour.,

Two hours later his friend starts after him on a acOoter at the rate of

32 kilometers per hour.

(a) How far apart are the friends one hour'later?

(b) How long and how far have they traveled when they meet?'



2-2

Two bicyclists 'start at the same time from points 30 miles apart and

ride direCtly toward each other until they meet. The, first rides at 4

miles plc hgur, the second at 5 miles per hour. At the instant they

start a preposterous bee starts from the first bicycle toward the second,

flying at an unvarying rate of ;0 miles per hour. As soon as he meets

the second bicycle, the beetuAs back and fliesto the first; then back

tg the second, .t . He continues to do so until the two riders meet.'

(a) How long in time and distance was the first leg of the bee's flight?

(b) What was the total length of the beets flight in time and distance?

2-2. Analytic Aapresentationaof Points and Subsets of a Line.

In this section we confine out' attention to aline on which a coordinate

system has been chosen. We shall let "a" 7stand for the coordinate of the

point A , "b" for that of B and,so forth.

We shall show that the description, of betweenness of points is wederved

in any linear coordinate system. We shall also show that conditions on points'

and subsets of a line may be represented by means of relations involving

-coordinates.

In the SMSG Geometry we'defined the concept of order for three distinct

collinear points. The point B is between the points A and C if and

only if, d(A,B) + d(B,C) = d(A,C) . We proved that when B is between A

and C either 'la < b < c or a > b > c ; that isl the coordinate of B

is between the coordinates of A and C We also realized that the

converse of this theorem is true. Lastly, we used

pf three distinct collinear points one and or onell

If we change to'a coordinate system with a dif

oordinates to deduce'that

is between the other two.

erent unit, the measures

of distance will change, but the Linear Coordinate ;System Principle assures

us that the corresponding new distances will be proportional to the old. If

a, p, and c are the original coordinated of thref distinct collinear points

and ,al, bt, and at are new coordinates, then

Alt lal

la - bl

lb' , 01
lb - cl

16

i
e 4.



."1 2-2.

dIM
If we,let the positive real number k represent the equal i'atios above, we

may write : .

(1) la' b'l = 41a - bl - 01 klb -.c1 , and lat t. 01 = 41a cl.

A
.IN../the original coordinate system we denote the Measures of distance between

points by d(A,B) d(B,C) , and d(A,C) ; in the new coordinate system we

denote the measures by dt(A,B) d'(B,C), and dt(A,C) . By definition,
,

(2). d(A,B) = la - bj d(B,C) = 'lb - cl W, d(A,C) = I

and'

(3) dI(A,B).= ) = lbt - 01 dI(A;C) = la' 01

Now if B is betw4en "Ai;' and C then by definition,

d(A,B) + d(B,C) = d(A,C) .

If we substitute the equal quantities from (2), we obtaip

bl + lb - cl la - c1-4

which, since -yt / 0', is'equillalent to

Ze.k '

414 - bl + klb - cl =1a - cl .

If we substitute the, equal ciantitiesifrom (1) and'(3), we'obtain first

lal - b'l + lb' - c'l = la' c'l

and'then/

d'(A,B) + dt(B,C) = dj(A,C).

. .

Thus the condition Describing the order of points on'a line is independent

of the choice of coordinate system for the line.

Once we have estallighed a criterion for d cribing the order of points
.

on_a line, we are able to define sdch basic geo etric entities as segments and

*`rays. We:recall IIIErOthe-41-egment.-,,,ZQ is the set which contains P, Q, and

all points between P and Q , while ti4:iiy 134. is the union oft.PQ and

thee set of all points R s'dch that Q is ,betweertP,, #nd,

We described the points between P and Q, as interior pa* of the ,

segment PQ Since an interior point of a segment divides the segment into

two other segments, we sometimes call it an internal point of division. We

identify 'a point of division of a segment by stating the ratio'of the legThtt",In

of the new segments. :

I 17
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DEFINITION. A point o'f division X is said to divide the

t
segment PQ in the ratio if and only if

d(P,1 c

d(X,Q d

If we let, p, q, and Y represent the coordinates of P, Q, and X in

a coordinate system for the line, we may write

ti
lx ql a

Since X is between P and Q , we know that either' p < x < q or

p > x > q. Thus we may remove the absolute value signs to write either

which implies

x P.- 1 or x
q- x d x -q

-
d'

dx - dp = CC" - CX dp - dx = Cx - cq .

These are both equivalent to

(

or

( 5) x

CX dx = dp + aq

dp + cg
x =

c + d '

c + d q

Since c and d, are either both po'd ve or both negative, x is always

defined in terms of p, q, c, and d

Equation (4) suggests the description of the coordinate of the paint of

division as a "weighted average" of the coordinates of the endpoints of the

segment. The phraselweighted average" is suggested by the placement of a

ful.crum. When two different weights at the ends of a lever 'are in balance,

the fulcrum is closer to the heavier weight than to the lighter' weight. In

:determining a point of division the heavier "weight";is assigned to the

,coordinate of the closer point and the lighter "weight" to the coordinate of

the more remote point. 0000v

Example 1. Express the coordinate.of 4111 midpoimnf segment PQ in

terms 'of p_ and g ,. the coordinates of ,the endpoints.,

)8

2
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Solution By-definition the midpoint

point equidistant from the endpoints., Thus

divid the segment in the ratio one to one.

both begone, and we may write

or

AF
x =

2

1x= p +
1

q

2-2

X of a segment isail interior

it is a point of division Which

In this case c 'and d

In Equation (5) above the coefficieqts of

d
If we let

c d
---- - a and
+

ma

p, and q add up to one.

c + d
= b , we may write

x = ap + hq_, where a > 0", b > 6 , and a t b =

It is interesting to see what happens here if we omit the requirement

that both a and b be positive. Our egation is now

(6) x = ap bq , where a + b =

If b is zero,

a is zero, b

a is one and Equation (6)..gives the coordinate of .P

is one and Equation (6) gives the coordinate of Q

R P S Q T U y'

v

Figure 2-2

In Figure 2-2 We have indicated several points on lin e ,

If

as well as their

coordinates. For convenience let us assume that r<p<s<q< tr < u < v .

We have already seen that if S is the midpoint of PQ s = p +.; q ;

that is, in Equation (6) a = b =
1-

. Also, p and q are determined by the

conditiona a = 1 , b = O and a = 0 , b = 1 respeetivel. Let us suppose

that d(P,Q) = d(R,P) = d(Q,T) = d(T,V) and that U is ;the midpoint of Tf
We may determine the coordinates r, t; u, and v in terms of p and q .

lg
'
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_
.

The a*aumptlon for order of the coordinates permits us to remove the absolute

.- value signs and write:

P -t=1 t- 2- -

q Tr. 5't- 2' and v -p 3

Which imply

P r = 2p - q ,-t = -p + 2q ;,and v = -2p + 3q respectively:

Since U is'the midpoint Of. TV ,

4

1 1
u = -2 t + -2 v

= 2 ..1) +2q) + + 3q)

2q .

Had; we chosen to orient the coordinate system in the opposite direction, we
4

_wouiAlurrebbtained the same results.

o

In very case, above the sum of the coefficients of p and q is one.

This -Tuggeata that any point on the line may be represented by adopting,

appropriate coefficients in Equation (6). This is true, although we do not

prove it here. When a variable is expressed by a form similar to the right

side of Equation (6,), we say thatit is expressed as a linear combination

P __and q . We shall ave occasion to develop this idea in the next

chapter. We may describe ur conjecture here by saying that the coordinate

ofanypoint on a line may e expressed as a linear combination of the

I

coordinates of two given distinct points on the line.

_ .

In_ view of the restriction on Equation (6), we really need only one

yariable to represent the.coefficients. If we let t = a , then b = 1 - t
-

and-,wesmay, write
.....

x = tp + (1 - t)q where t is any real number. ti
"NO

Thus the variable x' is related to the constants p and q by a second

variable t . It is clear that x represents; it is the.coordinate of a

point on the line. We know that t represents a real number and xe can Bee

that each value of t determines a unique value of x , but it Is not

immediately cl ear what t names or measures. Our primary interest is in the

variable x i our interest in A.s,defini4* subordinate. When we express

one or mote variable in terns of yet another variable,,we frequently say that

we have a parametric representation. The other variable is called a parameter.

We shall want to develop this idea in Chapter 5. .

20
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In the present case we see,that When t = 0 , x = $1*; when t = 1 ,

x = p ; and when t =
1 1

, x =
1

+ . This suggests the explanation of the

role of t . The Linear Coordinate System Principle assures lid that there

exists another coordinate system on the linlriPQ in which the coordinate of

"4 is zero and the coordinate of P is ohe. A point whose coordinate is

represented by t in the latter coordinate prstem is represented'by x in

the former coordinate system. The coOrdinates in the two coordinate 'systems

Are related by Equation (7).

We 'have developed several different ways of describinga point on a line

by means of equations involving coordinates. We call such descriptions

analytic representations. We nOw turn to analytic representations of subsets

of the line:

In earlier courses you have studied a number of subsets of a line.

Among them are the following:

AB , the line through A and B.;

A- B , the ray whose endpoint is A.and which contains B ;

AB the segment with endpoints A and B
.

1" It is possible to-..represent these and many other subsets of 6. line

analytically. We consider a number of examples below, and ask you to study

others in the exercises. In what follows, when

(

we.say,that b ib betwfAn
,

a and c a , b, and c real numbers), we mean that either a <'13 < c
,
'.

,
1

or c < b < a.. Then B is between A and C if and only if b ih .

between"' a, And o .

AB consists of all poirits X with any real coordinate x .

We can say this in the form

mr= (X: x is real)

or in the form

. AB = (X: x
2 >0) .

./

AB= (X: a < x < b or b < x < a)

= (X: b > a and x > a *.or b <a and x < a)

21
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There are two related problems which crop up frequently in analytio, ,

geometry,.one of which is illustrated above. A set_ S of_ppints may be

specified by geometric conditions, and we may ask tor an slaFtic condition.
.

.

satisfied by the coordinatet of points-Of S bUt notby those of any other
points. On the other handy, we may be given an analytic condition and watt to

know what points have coordinates satisfying'it. You have met both these

problems before. The analytic Condition was usually an equation,,,but yoi

have also considered inequalities, and some of the conditions considered below

involve other relations. When a set of points consists-of-those points.-
,

whose coordinates satisfy a certain condition, we call the set the graph

(or locus) of the condition; we call the condition a condition for (or of) the

set. These ideas prove more interesting and more important in a plane and in

space, but we shall discuss some examples on a line and ask you to work on

others.

)

Example 1. The graph of kr= 5 , Which is aIs6 the-grghof x2. 25 ,

is the set of points with coordinates -± 5 .

..,4-7 -6 1-5 -4 -3 -2 -I 0 I 4 5 6 7
1 .

This illustrates the fact that there may be different conditions for the same

set of points. (Of course this raises the question of whether the Conditions

are really different, but at least they were ekpressea d-iffrently.)

Example 2. To find the graph of -15x.- .6 9 we- Observe that

13x - 61 < 9 is equivalent to 3 k - 21 < 9 - < 3 TheThe graph

is shown below.,

- -4 -3 -2 I 2 3 4 5 6 7 -

The use of the absoluteKvalud in measuring distance is an aid in finding the
w4k,

graph. Thus, the graph of the solution set of Ix'-.21 < 3 may he inter;

preted as "the set of all points of the line whose distance from the point ,:

with coordinate 2 is less than or equal to 3 ."

22
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Solution. For any 'X d(0,X) + d(X,A) > n,The unless

-(The, heavy dot,isa device'for indicating that the right endpoint is in the

set.) An analytic conditioh for this set is

respectively. Find all points X such that

d(0,X) = d(X,A) ="0 , we have

Example 4. Let the coordinites of points 0, A p X , be 0 , a , x

Example 1. Find an analytic condition for the set of s soints hown below.

d(0,X) + 3d(X,A) > d(0,A) .

-5 < x < 4

2d(0,X) + = d(0,A) .

2-2

Thus there is no solu on unless_0_=_X..='A .

616666666-,..:,664,

. 1. -Represent-graphically:

(a) r = 4.

_ 4

(c) Ir - 31 = 2

(d) x + 3 < 7

(e) 5 < 2 - x

(f) It +31 <3

(g) x(x - 1) > 0

(h) -(x - 1)(x4+ 2) < 0

(i). Is? + 4 < - 4x .

,(3) "12i - 41 = 6 -;

6

6

Exercises 2-2

(k) Ix - 1.1231 < .456

(1) 128 + 21 < 4

(m) 13x + 21 . 1

(n) sin xn = 0

(o) ,2 sin Xn = 1

(p) cop e

(q) lx - al < 6 ,

and 6 0 0.44

Cr) Ix < 6 ,

and 6 = 2.35

where a = 2.35

where a = 0.114



2,2

2. Represent analytic

(a)
o

(f)

(b) (g) i i i 4116 I
I,

(d) ,

0 I 0

1~ I 6
a b7

,, ,,
x, x,

I 1 I

(h) I 6111 1 1 1 30
I 0

(For Parts (1) and (j) assume the
same pattern throughout the

(i)
o

3. Points ,0 , U , A , and X have coordinates 0 , 1 , a , and

respectively. Find all values 'of

conditions:

(a) d(o,x) = 3d(0,A)

(b) d(0,X) + d(U,X) = d(0,U) .

x that satisfy each of the following

43 4. If P and Q haye he coordinates given-, an if M , A , and B are

the midpoint and t e two trisection points .of respectively, find,

in each case, th' coordinates m- , a , and .b :

(a) P = 3 ;
(b) p = 13

=,:r+s,q=r,s

p= (r + t) -2, q= (r + t) +

(e) p 2r , q =4 3t

p = 2r + 3s ,:q.= 3r 2s

(g) p e;=, r2 r , q s2

(h) p=r q=s .

I



H
5. In the equation of the.lite PQ

, x = ap +'bq , where a + b = 1 ,

x , p , and q are the coordinates of the points

respectively.

Find the,relative positions 'of X , aw,4 Q if

(a) a=.0 (d) 11 <C

(b) a = 1
/
(e) a > 1

( c ) 0 < a <1
1

(f) .b,,> 1 1

<.-

6. In the equation of the line PQ

X , P , and

x = tp + (1'- t)q , 'where t. is real,

Q

p , and q are the coordinates.of the points X , P , and Q

respectively. For what value(s) Q,f t is

(a) d(P,X) = 2d(Q,X) (c) d(X,P) = 2d(P,Q)

(b) 2d(P,X) = d(Q,X) (d) d(P,Q) = d(Q,X)

Exercises 7-10 are based upon the following situation:

2-2 '

Points A , B ,JC , li , and E are on the edge of an ordinary 12 inch

ruler at pOsitions corresponding to 1 , 1 ; , 2 2- , 4 ; , and 9

respectively. These numbers are the inch-coordinates a , b , c ,, d ;and e ,

of the corresponding points.

7. 'Find the ratios to-)
d(A

,13 k d( C, D '
and

/
k c)k c))

,

8. Express

(a) b as a linear combination of a and c .

(b), c as'a linear combination of b and d .

(c) d asoa linear:combinatiog of cs,, and

. Find the ipch-coordinates of the trisection'points of AC ;' of BD

of CE'.

. Find the inch-coordinates of points P , Q', and R such that

d(A,1 2 C) 2 D) 2
d(B,P 3 cW1)-

-3,
c:TM,T)C '

vajit- 25
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2-3. Coordinates in a Plane.

You will recall that the points of a plane can be put into one -to -one

correspondence with the ordered pairs of real numbers in the following way.

Any two perpendicular lines in the plane are selected as reference lines or

axes. They are called'the x-axis and the y -axis. The intersection of these

lines is called the origin and denoted by 0 . On each axis we use a

coordinate system with 0 as origin. Normally the two coordinate systems

should use the same-units. tt is possible to use different coordinate

systems on the two axes, but this introduces complications,'a few of which

will be considered in exercises. If'Ais,any point in the plane, let

and b be the coordinates of the projections of _P onto the x-axis and

y-axis respectively. Then to P we assign the ordered pair (a,b) of real

numbers (rectangular coordinates). The first is called the x- coordinate or

abscissa of P , the second the ,y-coordinate or ordinate of P . Conversely,

if (a,b) is an ordered pair of real, numbers, there is a unique pOint P

with abscissa a and ordinate b . It is the intersection of the line'

perpendicular to the x-axis at the point on that axis with coordinate a ,

and the line perpendicular to the y-axis at the point on that axis with

coordinate 'b .

In sltetches it is customary, though not necessary, to show the x-axis

horizontal with its, positive half to the right, the y-axis vertical.withits

positive half upward. In all sketches we place an ux by the end of the line

representing the positive half of the x-axis and a y by the end of the line

representing the positive half.of the y-axis. This is essential when we do

nOt indicate the coordinates of any points on the axes.

s. y

"x

Figure 2-3

34
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We customarily reserve theiletter 0 to

always include it on a sketch. unless we

You will also recall that if P
0
=

distance between the two points is a,

1

r preWent the origin, but do not

efer*to it;

2-3

x0$Y0) and P1 = (x1$Y1) , then the
-

d(Po,P1) = (x1 ;x0 + - Y0)--

We turn now to the problem deexpressrhg the coordinates of any point

P = (x,y) of the line L determined by the distinct points p6 =(xo,yo).

and ?l = (x1,y1) in terms of the coordinates of PO and P1 . Let us

assume for the time being that x0 xi and yo A yi

Figure 2-4

*-. fr- Hy
In Figure 2-4 .P perpendicular to the y-axis PQ and P

1
R., to the

x-taxis. Then triangles

)

Be sore

and P

If

segment

-to
c

c+

oe.

P
o
QP and P

0
RP

1
are similar, and hence

x - xo y - yo

xi- xo yl- yo,

that you see that'the same equation holds

is different.

the point P

POPS in the

d

if the order of PO
P1

is an internal .point of division which divides the

ratio`icthen each member of Equation (1) is equal

and we may write

x, - xo
c

Y Y0 c_ - =
xi- x c + d

and

Y1-.Y0 c &

27
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If we solve these equiltions for x and 'y we obtain

1*(2) qx0 exl
dy0 + cyl

x - +d,. andy_
IP

1n which the coordinates of the point of division are expressed as weighted
.

averages of the coordinates Of the endpoints of the segment. "
A

We are now in a'position to follow exactly the same development as in

Section 2-2.
(

If P is the midpoint of P
0
P1 , it divides the in-the ratio -one

to one. In this chse'we may let c = d = 1 and write

X0 + xl YO +.Y1x= and y -
2 2

'If in Equations we let a =
+ d

and
c + d

,we may write

x = axo + bxi and y = ay
0

by where a>0,b>0, and a+b=1.

If we omit the requiretent that a = d b be positive, we obtain-.

(3) x = alb + bxj and y.= AY0 + where a + b = i ..

N

An arraLysis\ Similai, to that of Equation (6) in 4ht2revious section. would
4..>. ,

suggest that each point P = (x,y) on P0P1 corr ponds to a unique choice

of Thera for a and b in Equations (3) , and conversely each-pair ,(a,b),
in Equations .0) corresponds to a unique point on

4
I '0 P

1
. has the

x-coordinate of a point on a line may be represented by a linear combination

of the x -coordinates of two given distinct points on_the liner while the
....,

4

y-coordinate is represented by the same linear combination-of the -, .

y-coordinates of the given points.

Lastly, we recognize that, because of the restriction on the coefficients
4_,_,

in Equations (3), one variable will suffice. If we let t .-1) ,'then

a = 1 - t and we obtain

or

x =11 - t)x0 + txi ,and y (1 - t)y0 + tn.

x = xo + t(xi - x6)

(4) ,where t is real.

Y YO" t(Y1 YO)

.

I

28
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,, This is a parametric representation of the point P. :=-(x,y) on the, ,,line
* (--->

P0P1 ,'Where Po = (x6,y0)- and. P1 = (x±,ki) .-=As we qt1A11 see'in Chapter 5,

this representation is not only_useful; for certain problems it is essential.4
.

,..,
__

As NT observed..in the previous section, the parameter t represents the

coordinate of P in the linear coordinate b-sygtem with origin Po and

unit -point Prv-

z

The coordinate system for a plane which we have described and used above

is called a rectangular or Cartesian cbordinate_system. The name "Cartesian"
_ -

comes from Descartes, who is credited with being the first to introduce the

theory algebra into the study of geometry. _

4)fr

. - Exercises

1. If P. and Q have the coordinates given, and if M , A , and B are

find
C

the midpoint and the ty6frisction points of PQ respectiyely,

the coordinates of M ; A ; and B in each case:
4

(a) P = (0,0) , =

(b) P = (2,3) , Qy= (8,12)._

P = (5,12) = (6,-7)-

P = (4,-3) , Q = (-9,10)

(e) P = -6,-3), Q = (6,3)

(f) P = Q ("=6;73).

(g) P (P1'P2)' = (511'cl2)

,(h) P = (2s,5t),'Q = .

(i) P = (4r + 2s , -3r + s) , Q = (=I; -

2. Let P lbe a point on line PoPi ,where, Po.= (xo,y,i)) and

AAP, = (x.,,y1) . ExpressxItirininedr combination of x0 and xi

and. y as the same linear combination of yo and y, in the

following cases:

(a) Po .= (2,3) , P1 = ,(6,i)

(01,10 = (-4,5) , P1 = (2,-7)

(c) PO = (-3,-6) , P1 =

?9.

3

4 a
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0 *--*

3. Let P = x,y) be a point on line-, PoPi ,where P0,= (x0,y0) and

Pi = (x.,y1) . In the following cases express coordinates of P b

a parametric representation. Choose the.perameter t so that

(x,y) = Po when t = 0 and Tx,y) = P1 when t = 1 .

(a) Po = (2,3) , p1 = (6,1)

(b) 160 = (-4,5) ; P1 = (2,-7)

,(c) P
0

= (-3
'
-6) , P1143 (-6,4)

;

a

4. In the development of Equation (1) in Section 2-3, we assume that

xo xi and yo A yi . If xo = xi of y
0

= yl,, this equ =tion does,

not hold, but Equation (2) in Section 2-3 does apply. Consequently,

the'rest of the development is valid-in either of these capes.

Justify that Equation (2) applies when the conditions are/relaxed.

(Hint: Show that the problem reduces to the situation' discussed in

Section 2-2.]

5. Apply the condition given by Equation (1) to decide whether the points

A , B , and C with tie coordinates given, are collinear. How An you

muse the formula for the distance between two points to'determine whether

three points 'are collinear? Use this method to check your answers.

(a) A = (7,0 , B = (-3,-6) , C = (22,9)

(b) A = (-1,4)/ B = (3,-14) , 0(= (-5,-6)

6.. For wha'valUe of h is the point P = (h,-3) on the line ditermined

by A = (1,m1) and B = (4,7) ?

2-4. Polar Coordinates.
%

A rectangular coordinate System is certainly the most'frequently employed

coordinate system, but it is not always the best choice for a given,problem.

,

The ;ectangular coordinate system is based uPdk a grid composed of two

mutually perpendiculansYstems of evenly spaced parallel lines in a plane.

An alternative is the polar coordinate system, which is based upon a grid

comOsed of a system of concentric circles and a system of rays emanating

from the
4
common center ofthe circles.

30
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The paths 'from one point to another on a rectangular grid usually entail

motion along two adjacent sides of a rectangle, but the natural paths of

physical objects are usually more direct. .1k football plaSrer does not pass

the ball tq follow the deceptive path of a receiver. Rather he looks for the

receiver in a certain area. If he'finds the receiver uncovered, he will

try to pass the ball just so far in the direction of the receiver. To apply

this idea in-the plane we require a frame of reference. The rrame of reference

consists of g fixed point 0 , called the pole, and a fixed ray OM ,

called the polar axis.. The ray has the non-negative part of a linear co-
,

ordinate system with the origin at 0 . The pobition of a point P is

Uniquely determined by r and e , its polar coordinates (Figure 2 -5a).

M

Figure 2 -5b

The polar angle, e is an angle generated byrotating a ray OR

about 0 from in either direction as, far as desired and terminating the

*rotation in,a positic:n7N4 that the line Olt contains P . If We rotate 15g

in a counterclockwise direction, Le has a positive measure; if (3g is ro,

tated clockwise, then,69 ,has a negative measure.

DEFINITION. If oiLcontains P then the. polar distance

r =rd(0,P) ; if .P lies on the ray oppositetoOR ,

then r = - d(O,P)
OP

Commonly used units of measure for polar angles are degrees and radians.

When the usual symbols for numerical measure of angleg in degrees,winuted

and seconds are omitted, it is understood that radian measure is intended.-

The polar coordinates of a point are written as an ordered pair (r,0)
A

where r i the polar distance and 0 is a measure of the polar-amglec If

the angle is measured in degrees, the symbolise alone indicates that the

ordered pair represents polar Coordinates. If the measure of theqingle is

given in radians, the ordered pair of real numbers is indistinguishable from

the notation used in rectangular coordinates. If the conteXt does not make

clear that these are polar coordinates, we must say so explicitly. If no

indication is given, 4e shall assume that rectangular coordinates are intended.

31
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The pole is a spedial point. When r = 0 , the pole is described. In

this case Le may have any measure. (0,0) (0,60°) , (6,180°) , and (0A)
are all names fOr'the pole. We usually write (0,e) to indicate that e
may be any number. The pole is not the only point whose representation is

not ,unique.,

A rectangular coordinate systemestablishes a one-to-one correspondence

between points in'a plane and ordered pairs of real numbers. It is important

to observe that a polar coordinate system does not. In polar coordinates each

ordered pair corresponds to a unique point in the plane, but each point. is

represented by infinitely many ordered pairs of numbers.

For example, some other coordinates for the point P shown in

Figure-2-51) are (3,.42010) :(3,-300°) , and (-3,- i%). . See Figure 2-6.

) .
420°

(a) -

Figure 2-6

In subsequent' figures we shall delete the arrowhead from all rays except the
polai axis. '

The lack of a ond=to-one :correspondence between points and ordered pairs

of numbers nedessitates care when we use polar coordinates, but the advantages

are sometimes great indeed. For example, the figures Which we have used here

may remind you of the figures which illustrated the definitions of the

trigonometric or circular functions. As you will discover in subsequent

chapters, the analytic representations of these functions and allied relations

are often simpler in Polar coordinates.

32
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Example, 1. Plot the points A , B , C , dnd D., which hav6 polar

coordinated (2,45°) , (3; -120 °) , (1i) and (-2,- .) respectively.

Solution.

(2,450)

c 3 4 5
4

B.= (3, -120 °) fz

Figure

Since a measure of,,/P9M = 45° A ,is the point on (3? such that

...0d(0,A)'=. 2 . A measure of LQOM = -120° and B is te point on Tar:such
40.

A
that 'd(O,B) =

3
. A measure of- /ROM = and C is the point on suchsuch

that d(0,C),= 1.. liastly, a measure of LSOM - , but since the polar

distance is negative, D is the poin'on the ray opposite to OS such that

V

d.0,r0 = 2 .
3

A'

A

Example 2.. Find'four pairs of polar coordinates, two in degrees and two

in radians, for:each of t1 points A , B , and C ,inFigure 2-8.

o

33

r



2-4.

'Figure 2-
.

/ I.,.o.Solution. A simple representation for A is k3,4u ) , but we may also

use (3, -320 °)
(,,al ,_., ...... llg

k j, ) . (There are others, of course.)c., 1 , % ..) / , and

B = (2,-14) ,(-2,§0°)., (2,:) , and (-24). C = 105°) , (1 ,465°) ,

, and (-114)
4

We mentioned that any pair of pe.,.gehdicular lines ina plane may be

chosen as the reference axes for a rectangular coordinate system. Any ray in
go*.

a plane may be chosen for the polar axis in introducing a polar coordinate.

system. When we are solving a problem using coordinates, this freedom enables

us' to choose a system which will simplify the computation. Because we wish to4. '

keep this in mind, we state the following

-34
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OORDINATE PLAlit JItNCIPILB. If and te are two perpen-

dicular lines in"tersecting:E;t 0 (0 # A and 0 # C) , there
44

exists-erectangular coordinate system in the plane of AB
4E4 <i

and. CD such -Oat

'-''":() AB 4.s the x-axis, CD is the y-axis

(ii) in the coordinate systems on the axes; the

coordinates ,of A and C arepolgitive.

In any plane containing the ray OM there exists a polar
---

coordinate system such that OM is the polar axis.

2-4

In some situations we must use both rectangular coordinate systefis
4

in,the same plane. Usually we let the polar 9f1kcOilicide with the non-

negative half of the x-axis. Coordinates in,b6tW systems. are assigned to each

point in the plane, but we shall need equations relating the coordinates in

order to change.back and forth.

0

Fiire 2-9

In Figure 2-9, we see that'

(1) ,x = r cos e

y =r sin e

and

(2) r2
2 2

= x y

t&in e = Where A o

35 r
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Ag`In Equations (2) we not'that, as.we might have expected, r and er are not
uniquely. defined. You should verify these equations for points in other

quadrants.

We may use Equations (1) to transform from polar coordinates to

rectangular coordinates and Equations (4 to_find polar coordinates for

points whose rectangular coordinates are known.

Example 3. Find the rectangular coordinates of the poine.designated in
polar form by (8,-60°) .

Solution.

x =.8 cos (-600) = eqp =

'y = 8 sin (-600) = 8(- = -41

gek

Example 4. Find a polar representation for the point with rectangular
form P = (-2,-2).

Solution. r
2

= (-2)
2

+ (-2)
2

= 8 ; therefore, r = t 2I . Also,

tan 0 =.--:E= 1 ; hence, e = + nm , n an integer
. It id- necessary to

' -2

match the values of r grid 0 which
Aw correctly locate P . For example,

(2/2- , V s not a correct solution,

as these coordinates locate a point in

the first quadrant. But
a

,4) and (-247' V are two //
4P= (-2,-2)

of the possible correct designations

for P .

36
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Example 5. ,Find the distance between the points P1 and P2 Whose

polar coordinates are (r1001) and (r20e2) respectivefr.

Solution. We hay an expression for the distapce between two points in

terms of their rectangular coordinates,

d(P1,0132) =ni(X2 x1)
2

+ (ya yi) .

We may use this expression if we transform the coordinates of P
1

and P
2

to rectangular form. We use Equations (1) to obtain

xi = r1 cos el 0 yi = r1 sin er,

x2 = r2 cog 02', y2 = r2 sin e2 .

We square both members of Equation (3) and substitute these values to obtain'

or

((?1,P2)2 = (ri qos e2 - r1 cos e1)2 + (r2 sin e2 - r1 sin (91)2

(cl(Pi,P2) 2 = r 22 co
,

s
2

e
2

- 2r
1
r
2
cos Q2 cos + r12 cps- el

+ r
2

2
sin

2
e
2

- 2r
1
r
2

sin e
2

sin e
1

+ r
1

2
sin

2
e
1

.

If we apply the distributive and other laws, this becomes

Now

(d(P
1°

P
2
) 2

= r
1

2
(cos

2
e
1

+ sin
2

e
l
)+ r

2

2
(cos

2
e
2

+ sin2 e2)

. .

, - 4
1
r
2
(cos e

2
cos e

1
+ Sin e

2
sin e

1
)

f

'Cos
2
e
1

+.6in
2

e
1

= 1 r cost e
2

+ sin
2
e
2

= 1

cos e2 cos el + sin e2 stn 01 = cost

We substitute these equivalent values to 'obtain

(3)

- e1

(d(P101,2) 2 = r1
2

+ r2
2

- 2r1r2 cos(e2 - el) .'

'37
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rt

We might have obtained this' expression directly applying the-,law of

Cosines to triangle 0PIP2. in Figure 2-11. a t t",

P = (r2,02)
4,= (r1,01)

Figure 2-11

Thus the distance formula in polar coordinates is an application of the

Law of- Cosines.

:Exercises 2-4

1.

1. Plot the following points and for each list three pairs of coordinates:

(,135°) , (2,90°) , (-4,45°) , (3,-120°) '.

Plot, the points whose polar coordinates are (-2,45°) , ...4,210°)

(3,2) , (-3,- i'i) , (4 0°) (0 a) (-4 180°) .* * ,2 , ,

)k''

i ,

3. Plot the vertices of an equilateral triangle, the centr d coincident,
. e,

with the po-. le and a vertex on the polar axis, and, give Molar, t

coordinates of the vertices.

4: Draw graphs representing the set of 'points

set of,pointe:((r,0) e = 45°)

48
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6. Find the rectangular representation of the points whose polar coordinates
are

(a) (0,90°) (e) .(1,g)

(b) (-0,-45P) ---j (f) (-0,1i1)

(c) '(5,420°) (g) (-2 70,3

(d), (4,o°) (4) (2,-i)

7. Write a pOlar representation for the points whope reCiangular coordinates
are

(a) (1,-1)

,(b)

(c) (p,0)

(a) (0,q)

(e)

(f) (-1, - -f)
t

(g) 1542)

(h) (-4,1)

8. Use polar coordinates to Lind the distance between the points A and B .

Then change to rectangular coordinates and verify your result.

(h). A= (2,150°) , p = (4,210°)

, B =(.12ti7()(1;) A = (5,1)

4

9. Find the distance between each of the following pairs of points.

(a). =(0°) B = (5;0°)

(0) A = (2,37°)N ,,B°= (00°)

(c) AC= (6,100°) , i'(8,400°)
;

(d) A = (-1,45°), B = (3,165°) 4

(...e.) 'A = (3,20°)
i = (5,1 )

(f) A% (5,-;60°) , B = (16,-30°)

10. On a polar graph chart such as iri?3xefcifie 5 construct a hexagon with
vertices (10,0°) , (10,60°) , etc. Then construct all its dihgonals

and write the coordinates of all their intersections (other than",ihe pole).

:11., Let (r.
02

e
0
) represent a point P .

the possible polar, coordinates of P
< ,

(a) when 90' is in degrees and

Tb) when 19

0
is in radians.

-

I-

40.

48-
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2-5. Lines in a Plane.'

Now that we have developed coordinate systems for planes, we are able to

discuss analytic representations of subsets of planes. We start with the

line.

(1)

Symmetric Form. In Section 2-3 we developed tquation'(1),

x - xo y - yo

xl- x0 Yl- YO

which is the analytic condition describing a point' P = (x,y) on the

oblique line PoPI , where Po = (x0,y0) and P1 = (x1,y1) . (We note that

the requirement that the line be oblique ensures that the denominator in each

member is not zero.)

- Since every point on the line may be described in this way,

: X X0
(X,Y1

4 Xi- X0 Yo POP1

- We call Equation (1) a symmetric form of the equation of a line.

Example 1. A symmetric form of an equation of the line cohtaifting the

points (2,3) and (4,-1) is
'

x - 2 y, - 3 x - 2 y - 3
-1 -43 or - .

41;TwoPoint Form. If we reverse, the order of the members of Equation (1)

. and multiply by (y1_- y(11) , we obt4inl

Yi Yo
(2). Y _ yo _ x0(x xo)

We call Equation. (2),a two-point fori of the equation of a line.

P

Example 2. A two-pant form for an equation of the line containing the

points (1,-2) and (4,5) Is

LB

y + 2 -
+
i(x

3
y + 2 = I(x = 1) .

4 9
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We note that in Equation 2) the quotient of differences, or the

Y
' d±fXerence quotient, ------ is, by definition, the slope of the segment- xo

PoPi . In your study of geometry you may have used similar trianglps to prove

that every segment of a given line has the same slope. We define the slope

of a tine to be the slope of all the segments on that lima. We denote the

slope of a segment or line by m .

The two-point form is eat precisely equivalent to the symmetric form,

since it is also defined When y
0

= y
1

or y
1

- y
0

= 0 . In this case the

line PoPi is parallel to the x-axis, has a slope of zero, and is
. .

relpresentea by the equation y - yo = 0 .

If xo = x, or, x, - xo = 0 , neither the symmetric form nor the two-

point form as given in Equation (2) is defined., Inthis case an alternative,

two-point form

( 3)
1

11

x - x0
y - y 0
1 Q

is defined. In this case the line P0P1 ,has rho slope, is-parallel to,the,

y-axis, and is represented by the equation x 1116x0 ='0 .

If ,x0 = xi and yo = yi , the points Po -and P1P, are, q. course, not

distinct and no line is deterhined..

4'
0

.... . .
Example 3.

.

,

; , -- , .

. (a) The line containing 4:744Ants (1,2) an ,has ,elope
..,

PI
m = r:-.37. - 7 and has as an equation in t

. ..,
IA ford .

'
,

A' ' '
Y 2 =

3
4.--7-1(x -4) or y 7 2 = 71( 7,4) .

, '...t.

,..
4'

(b) The lizie ,containing the points (2,3 and (4 as slope
2

ra, -3 0 and has an equation in,two-point form

y - 3 = i7-11(x - 2) or y - 3 = 0 .

0

.



The line containing the points (1,3) and (1,5) has no slope since

5.- 3 2
is not defined. However, it has an equation in an alternative

1 - 1

two-point form:

1 - 1
x -

5 3
Y - 3) or x - 1 = 0 .

2 -5

Point-Slope, Form. Since a line is determined by two distinct points, a

line in a plane with a rectangular coordinate system is determined by the

coordinates, of two points on the line. If a line has slope, it is also

determined by its si.ope and the coordinates of one of its points.

If a line has slope m and contains the point (x0,y0) , we may replace

the quotient in Equation (2) by m tq obtain

(4) YO m(x x0)

We call Equation (4) a point-slope form of the equation of-a line.

Xxample 14 A point-slOpe form of the line which contains the p6int

(5,-3) and has slope
2- is
3

Y + 3= 3( X - 5) .

Inclination. Occasionally we wish to describe a line, not by its slope,

but by an angle related to the slope.

Lt

1

,'
x1,Y1) '--:'

I

.-.,
lli.

.e ,-"(,:

D
...e

/ 13'1 -.Y0

,e

/a 0.Po 1

I

I !

a

xo,Yo ) 'D

Figure 2-12
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In Figure 2-12 the angle a is the angle of inclination of line L . The

measure of angle a is the inclination of L . The angle a has the same

measure as the corresponding angle measured in a counterclockwise direction

from the positive side of the x-axis to the unique line L' which is

parallel to L" and contains the origin. (If L contains the origin, angle

a corresponds to itself.)

We observe that if L is the x-axis or is parallel to the x-axis, its

inclination is 0
o

We also note that the slope of L is the tangent of
4-1*-

angle a .; If Po = (x0,y0) and P1 . (xi,y1) , then for the-line PoPi

y
1

- y
0

tan m = - Xo

For an angle a measured in degrees or radians, it is always the case that

0 < a < 180° or 0 < a < n , respectively.

Example 5.

(a) If the slope of a line is-4-3- , then tan a =-N,r5 and the inclination

a of the line is 60° or 5-

(b) For the line-containing the points (-1,4) and (2,7)'

7 - 4
' tan a, m =

2 + 1
,- = 1 and a = 45° or,

4

Slope-Intercept Form. The'x-intercepts of any graph are the abscissas of

the points,Of the graph whichare on the x-axis. The y-intercepts ace the

ordinates of_the points of the graph on the y-axis.

0A line has a unique y-intercept if and only if its slope is defined.

If the slope is defined, the line-ka distinct from the y-axis and isliaot

parallel to the y-axis. The line 34ersects the y-axis in a single point and

therefore has a unique y-intercept. If the slope is not defined; the line

either is the y-aXis or is parallel to the y-axis. In either case the inter-

section of_he line and the y-axis doedrnot contain a unique point.

Since the lines with unique y-intercepts are those for -which the slope is

defined; they are the same lines which have point-slope forms. The point -

slope_form

Y. 7 YO ni(x7 x0)

44
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is awivalent to

(5) Y = +-(Y() nao)

O

We observe that, the y-intercept is the y-coordinate of the point whose

x-coordinate i

y- intercept

With, this ch

(6)

which is c

2-5

zero. If we let x = 0 in Equation (5), we find that the

yo - mxo It is customary to denote the y-intercept by b

e Equation (5) becomes
tto*

y = mx + b ,

ed the slope - intercept form of the equOion.

.Example 6.

(a) The line with slope 3 and y-intercept

by the equation y = 3x - 7 .

(b) The line represented by the equation

y - 2 x + 4

3 7 '

which is equivalent to

12y = 3
+ +

,

or

Y T '
3 26

has slope
7

and y-intercept

-7 is represented

/

Intercept Form. A line has a unique x-intercept if and only if,it does

not have zero slope. The slope is (zero if and_only if the line either is the

x-axis or is parallel to the x-axis., The ]3ne iknot_t130x,za.x14,±3a45-44-riot.--x

paraliel'tothe x-axis if and only if it intersects the x-axis in a single

point. - -In this case the x- intercet is Unique.

'It is customary to denote a unique x-intercept by a .

If the slope of a like is defined and is, not zero, both intercepts. are

unique. Since the x- intercept isthe x-coordinate of the point whose y-

coordinate is zero, we let y be zero in Equation (6) and-find that the
-b

x-intercept a = . If in addition
,m

we may transform Equation (6)

ab # 0 (neither a nor b n is zero),

y = mx + b



-2-5

4

to ;obtain °

or

mx y
b b

x
b b

y
+ - = 1 .

We substitute the value of the x-intercept to obtain

(7)
a

Y
- + b =1' 44.414

This is called the intercept form of the equation of a line.

Example 7. Find intercept form of an equation for the line coif-

taining the points (-1,4) and (2,5) .
14

Solution.

(a) 'The- line has an equation in two-point form,

ey-4-2 --:-1(x+ 1)
+ 1

or

Y - -1(x + 1)
3

or

y6) 3x +-2?

The y-intercept is and when y = 0, x = -13 .
3 ,

\

xinterCept is -13 and the intercept form is

2E_
13

.
-13

3

Hemp

-
, r \_.L.-

.,(bLIf'the intercepts are a and b , then the line contains the

" points (a,0) and (0,b) . ,Since the slope is
.. \._

5 -
+

4 1
'

vs- it must also be the case that'2 1 = j

- 0 1

2 - a 3

S

and '271) = 17
2 - 0 3 '

46.
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or

a = -13 and' b
3

Hence, the intercept form is

-13 13
-

.

General Form. Hitch of the preceding forms of the equation of a line has

certain adyantages, not only because it is easy to write when certain facts

about the line are known, but also because each clearly displays in its

written form certain geometric properties of the line. However; none of

these forms is defined for all lines.

The symmetric form
x- y 0

xl- x0 Yl- YO t

2 -5'.

ismot defined for

equation to

(Y1 YO)(x

a line parallel to either axis, but if we transform the

xo) = (xi - x0)(y y0) , where xo or or y0 # yi

the new equation does describe ame_line in the plane. In order to Simplify

this equation, we collect all non -zero terms in one member of the equation

and identify the coefficients of x and y and the constant term.

(Y1 Yo)x (xi xo)Y x0(Y1 Yo) Yo(xl xo) = 0

is equivalent' to

We let

(Y1

a = yi -Y0 ,
xo

::,4

+ Ociyo - = 0

, and c =- xoYi
gr

and'writd ,

2
b
2 .

.

.
(8) ax 4 by 1- -C = 0, , where

(
a + f.0 tthatis, a i 0 or b i 0) 0(

I

Equation 00 is called a general form of the equatioh of a line. It is also
1 .

called the general linear equation in 'x .and 'y
. :4 .

-1,Mak

47
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"-and

Example 8. Write the equations

(a) 3x 4y - 8 = 0 and

(b) aX+ by +c=0, Where abc /0, (that is,a/0,b/0, and

c # 0) in intercept and slope-intercept form.

SOlution.

.(a) 3x 4. 4y - 8 0

is equaa1ent to

Or

3x ,

+ 2 "

3

which is in the intercept form.

',T4e original equation is also equivalent to

111

,

y = - 3 + 2 ;
)

which is in the slope-intercept form.

(b) ,ax + by + c = 0 ,where abc # 0 ,

is equivalent to

.A ax it
+ . 1 , where abc, i 0 ,

and
4

c4+
-X- = 1 ; where abc i 0 ,-

c

..:., Ii
P...

iFo

.

which is in the intercept form.

z
56
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a5c + by = 0 , where

is equivalent to

and

abc / 0 ,

,by = -ax - c , where dbc / 0 ,

y = - - , where abc / 0 ,

which is in the slope-intercept form.

,_From Example 8(b) we observe that,when an equation of,a line is

expressed 3 i..general form, the x- and y-intercepts are )7 and - 1-3

' respectively if they exist and the slope of the line
a

- if it is

2-5

The great adv;intage of thegeneral form is that it'ean be written for any

line. The only shortcoming is that the geometric properties of tha line are

less clearly revealed by this form.

Exercises L.2

1. Use Equation (4) to find anequation of a, line

having slope 2 . Put the equation ,in general
qt

oontainst6e points p,7) and" (5,q) , -find

Find an equation of a line with slope
2

and passing - through

contdining (2,-3) -an

form. If the line.,

p. and q
.2 \ - ,

If'this line contains the points (p,7) and (2,q) , find p and q .

3. Find an equation of a line containing the point (q,b)i and having slope

3 . If the line contains Zhe points.", (13;7) and (5,q) , find p and

CI

:4. Find tellatign of a linecontainingthe point (4,5) and having the

swne.sloPe as the line 2x -'3y = 600 .:Tescribe the relative position

of these two lines.

5. Write aneqUation of a line having slope k and containing the point

(a,0) What are the coordinates of the point.Where the line crosses

the y-axis?

O
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6-5
4

. Write an equation representing all lines containing the origin. AreyoU

sure eery line is represented by your eqUittion? Write the equation of

Ike one of these lines that contains the point, (-3,5) .

ev

7. The-eqprdinates of A and B are (3,5) and ( -5,3) . Segments. OA

t and OB form a right angle at the origin. Determine the slope of each

segment and try to arrive at a general conclusion that you can prove.

8.. Choose' (-8,8) as (x0,y0) ant write the equation 3x + 4y - 8 = 6

in symmetric form.

9. Write an equation of the line containing. the points (-4,8) and (2,3) .

Exhibit the result in all seven forms so far discussed. What is the

slope? what are th-e intercepts?

10. Write the equation ax +-by'+ c = 0 in the slope-intercept form.

What is-the geometric interpretation of ax + by.+ c = 0 ,

(a) when b.= 0 , ac / 0 ?

(b) a , be/ 0 .

(c) when c = 0 , ab /0 ?

11. rind an equation of A line satisfying the following conditions:

1' (a) Contairiing the point (3,-2) and having y-intercept

(10 Containing the point (3,-2) and having x-intercept 5 d.

, (c) Containing-the midpoint49f- AB where A = B,= (3,4)
,

and withthe'same slope as the line OA

(d) Containing the point .(2,-4) and with inclination 135° .

(e) Containing the paint (-1,-3) and with inclination 30° .

12. In tilaagle ABC ; A = (1,-2) , B , (0,4) . Find an

equation of each of the following, lines:

(8) 1!.

(b) The median from A .

(c)'Theline joining the midpoints of -,AC and BC .

13. Find an equation of a line Containingtheipoint -P = {5,8) whic
7 4

with the coordinate axes a triangle wit?, area 10 square units
.atax.
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Review Exercises--Section 2-1 through Section gri

In Exercises 1-4 find the graph oftthe sets described on a line with a
r

/ i

linear coordinate system.

1. : 1 < x6<)2) .

2. (x (x -,1)(x..-1- 2) = 0)

3. (x <3) . aP.

4' 4. (x lx > 2)

InExercises 5 to 9 graph and describe the geometric representation in

one-space and 2-space:
.

5. (x x + 4 0)

I 6. lxl. I- 4 . 0) .

7. :, 2 < x < 6) .

(x : 2 < lx1) .

(x.: rxl < . z
Find the midpoints and trisection points of

a) AB= (x': -1 < x < 2) .

(b) (x : 1X + 21 < 3) .

-(c) cn = c < x.<d , (C 1 2)(d 0) .

11. Find a polar representation- for the points whose,rectangular coordinates

are: -

(a.) (1;13.) (d) (-2,-3)

_.(b),2 . ;IP _ (e) (1,0)

(c) (, -4) (f) .
,

12. 4Fl.nd the rectangular repregentation for the points whose polar

'coordinates are:

(a) (4,450)::

(b) (3,) .

(c) .

(d) .4(64)

(e)e I, (5,-1350)

(f) (-3,75091



\In each exercise from 13 to 18 write an e ustion of a line
2,4

satisfies the given conditions.

13. Contains (c=2;5) ; m = - .

14. Contains (-3,2) , (8,10) .I

15. Contains (-4,-5) ,' (-6,-10) .

16. Cont4ns (4,5) ; a ='120° .

17. Horizontal; y-intercept 6 .

18. Vertical; x-intercept° 4.
Exercises 19 - 25 refer to the

figure at the right, 'which represents

a regular hexagon with sides of length

6 The coordinates of the vertices

are:

A = (6,0) B = (3,3N/3) ;

C = ; = -6,0)

E = (-3,-3N/3) ; = (i,;3N/D 4

f .

which

19. Write equations of the lines determined by

slope-intercepttform. f

as

20. Write eqUations of the lines determined by

each, of the six sides in,a.

.

eadh of the six sides in

general forito
;

i

21. Write equations of the'lines determined by eachof the six sides in

.symmetric form.
4.

a.

22. Find the slopes of_ AC , BD , AE , and DF .
*-

23. Find the coordinates of the two trisection points of AB , BC-, CD ,tE
EF , and FA :-

,s.

24: Find coordinates -of the points P , and R , where

,

a) P(a)

(b) Q

4P

(e) R

is on

is on

is on

411. .

AB

BC

CD

and

and

and

I

2ILALPI /= (two, answers.

d B (/) 3
T(ot-c-)- (.two answers).

a

LIL.91.111 _
.

answers).-0;1 (two
ww

52

0

ta I



411; .0IAw .40;

25. Find the inclination, to the nearest degree, of AB , AC , AE , and AF . °

4 Summarize the different forms of the equation of a line in a table,.

listing for each form its particular advantage's and didadvantages.

Which form, or forms, of equations for a line would you use to

answer each of the following questions in the most'efficient way? Be

prepared to explain your answer.

(a) Is the point (3,7) on the-line?

(b) Does the line intersect the x-axis? If so, where?

(c) the line contain the origin?

(d) What is the slope of the line?

(e) Find the ordinate of the point where the abscissa is 5

Find the point on the line where the two coordinates are equal.

_ (g) If the point (3,3 - k) is On the line, find k .

(h) Suppose the point P is on the line; find the points R and S

on the line which are 5' units from P .

Graph Ahe relations of Exercises\27 to 32.

27. (x,Y) lx11' IY1 7 10 = 0)

28. ((X,Y) lx1 IY1 = 0) f

29. ((x,y) x 7 y < 1) .

,

30. ((x,y) - ;-

AfT
t'y '<I) 7

41.1

((x,y) x - y <1)4) ((x,y) : x + y < 1)

32. :13i"= (((x,Y) lx1 < 4) , 112 = ((j(iY) IY1 < 4) R3 = R1 () R2 ,

44'w
33. Discuss Exercise 32 if < is clanged to <, _ What geometric -

F
,interpretation can ,you give'

4 1!)

34.1No thermometers in common use are the shrenheit.and Centigrade. The

freezing point for water is 32°F and 0°=,; the boiling point foi water

is 212°F and 100°C . Derive a fOrmUla forexpreling temperature on

one scale in terms of the other. Find the telPeratire reading which

gives the. same number on both scales.

A --

35. Graph the following relations:

(a) Ri = ((x,y) : 2x+ 3y - 6 . 0)

(b) R2 = ((x,y) : 7x + y -.2 = 0)

53



(g)

= ((x,Y) 5x - 2y 15 = .

= ((x,y) 2x +, <

R
5

= ((x y) : 7x + y > 2) .

R6. ((x,y) 5x- 2y < 151 .

Ri4.n R50 R6

Challenge Exercises

Note: The symbol (x) is used to represent the first integer < x ,

or stated in another way, (x) means the greatest, integer not greater than

. For instance, if 0 < x <1 , (x) = 0 ;J if x = , [x] 2 ; if

-1 < x < 0 , (x) = -1 .
-

. Graph the relations.

1. (a) R
1 '

((x y) : [x] = x)

(b) R
2

((x
'
Y) : [Y] = 3c)

R3 = {(x,y) :.(x) = x) r) ((x,y) : y) .c)

(d)
.."((kAY) N)L)1(,x.-,,,Y) :Jr) = Y) .

(e) R5 [ x,y) (xi = [y]-)

f) R6 = ((x,y) [x] = [

(g) 137: = ((x,y) fx) [-

(h)- R8 = [(x,y) : [x] = -(y)) .

2. Graph r = e .

3. Graph r2 = 0 .

4. When we introduced g system of rectangular coordinates into a plane, we

used on each axis linear coordinate systems in the same units. Then if

P1 = (xi,Y1) and p2.= (x2,y2) are any two' points in the plane,

/
x x

d(P P =1/(X - x.)
2

+ lY2 - Yli
2

2 2 1.

/ .54
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Suppose instead that on the x- and ,y-axes we use linear coordinate

systems for which the units are in the ratio r, to s respectively,
. -

. Iwhere r

(a) Find a formula, for d(P1,P2) in the units of the x-axis.

(b) rind a formula for d(P1,P2) in the. nits of the y-axiS.,

(c) Let P ; Q , R., and S be four points in the plane, with

-,coordinates (p1,p2) , (q1,q2) , (r1,r2) , and (si,s2)

respectively. Under what conditions 'is PQ = RS and

q1)2 q2)2 ...\/(r1 s1)2 s2)2

5°.; Find the graph of S = ((x,y) ( + 3y - 5) 2 = 0) . Can you find a

simpler analytic representation for the graph?
4

.6.4 4/hat is the graph oi T = ((x,y) : (ax + by + 0 , where

+ b2 # 0 and k is a positive integer) _? Can you find a simpler

analytic representation for the graph?

7. Find the intersection of L1 ((x,y) : 3x + 2y - 1 = 0) and

L2 = ((X,Y) : 2x - 3y + 2 = 0)

8. Find the graph of U = ((x,y) : (3x + 2y - 1)(2X - 3y + 2) = .

Find=the:graph.-Of V = ((x,y) :'(x + y)(x = 0) .

10. Find the graph of W = ((x,y) : xy = 0)
fr

at 11. Assume that, Lo =- ((x,y) aox + boy + c0 = 0 , a02 + b02 # 0) and

= ((x,y).: 11.1)C + c). = o , a12 + b1
2

1 0) have a unique point

(x1,y1) in.conmion. What can you say about x1 and y1 if ao ,

.1)

/
b
1 / c

0 '
and c

1
are

(a) 4integral?

(by rational?

(c) real?'

(d) complex?

.12. What can you say about the graph of

(a) ft r ((x,y) : (3x r 2y + 2) + k(x + y + i) = 0 ,where k is constant }?

(b) S '= ((x,y) (x + y + 1) t k(3x a 2y + 2) = 0 , whererk is constant)?

(c) T = ((x,y) : m(3x + 2) + rx(x + y + 1) =.' 0 , where m2 ± n2 # 0 ,

and in and n are contant)?

ti

W.
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13. What can you say about the graph of

(a) ((x,y) : (3x*- 2y + 2) + t(x + y + 1) = 0 .Where t is a..

real variable) ?
1,

(b) V= ((x)y) : (X+ y + 1) + t(3x - 2y + 2) = 0 , where t is

real variable) ?

(c) W = ((x,y) : s(3x - 2y + 2) + t(x:+ .5r + 1) = 0 , Where s2 + t
2
/

and s an& t are real variables) ?

14. Assumes that the linear equations a0x + boy + c0 = 0 , where

a02 + b02 / 0 , and alx + blyb+ cl = 0 , Where(' a12 + b 12 p 0 , "are

not equivalent. ,,Whal can you say about the graph of

(a) = ((x,y) : (a0x + b0y r+ co), + k(aix + bly + c1) = 0 , Where

k is constant) ?

(b) S = ((x,y) : (aix + bly + cl) + k(a0x + b0y + c0) = 0 , Where

k is constant) ?

(c) T.= ((x,y) : (a0x + b0y + c0) + t(eix + bly + = 0 , Where

t is 1101) y

(d) U = ((x,y) : (alx + b
1
y + + t(a0x + b0y + c0) .-o Where

0 t is real) ?

,(e) m(a0x + box + n(alx,t bly A cl) = 0 , Where

m2 +. n2 k0,0 and m and . n are constant) ?

(k) W = ((x,y) : s(a0x + b0y + co) + t( alx + bly + cl) = 0- ,---wh-ere

t2S
2

t p 0 , and s and t are Oal variables) ?

15. What is the graph of

( S1--;((xy),, : 0 =1)

(h) T =((x Y) : 1 = 1) Y

r

4

8

.56

, .64

WO



2:6. Direction on aLime.

Although there are two senses of direction implicit in our intuitive

notion of a line, neither one is dominant or primary. When we represent al

line analytically,' we maSr''suggest a specific sense,of direction for the line.

When we undertake a geometric description of the line in terms-of an associ-

ated angle, we suggest a sense of direction for the line if'a side of the

angle As contained in the line.

In this'section we shalWintrOduce some of the analytic ideas and terms

which may be used once a sense of direction has been assumed for a line. We

shall also consider$the geometric interpretation of the ideas.

When we speak of the line segment from Po to P1 , we suggest a sense

of direction on the line. If Pb (x0,y0) and the numbers

= xi - xo and 'M..= Yi - 'yo also- suggest this sense of direction.

The numbers i and m are calleedirectiOn numbers of L . For the

ordered pair c4 direction numbers we use the symbol (i,m) . Since this

symbol is also used for aPoint, care must-be exercised,to avoid ambiguity.

Clearly a line has infinitely many pairs of direction numbers, since there'

are infinitely many pairs of points Po and Pi' which determine it. How-

ever, all the pairs for a given line L are related in a very simple way.

If L has a slope and (i,m) and (it,m9 are two pairs of direction.
.:,

,i,.

M l' MI
muMbers for L , then 7 . -IT and there is a'number c i 0 such that/,

it = ci and mt = em . If 1 has 'no slope, there is still such a' number

though the argument above doe not prove 4. If two lines are parallel, a

similar argument shows tha any two airs of direction numbers for the two

are related in the same way. Thus.it is natural to make the following

-definition:-

.
,

1

DEFINITION. The pair (2,m) of 'direction numbers is said to

' be equivalent to the Pair (p,mt) if and only if there is a

number c i 0 such7fat 22 = ci , ml = cm .
.

.f.lg

ffi---/

. .,

The preceding seussion can now be summarised in the followijig statement.
.

...

Two distinct lined in a plane are parallel if and only if any

pair of direction numbers for one is equivalent to any pair

, for the other.

57
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,29.6,

A pair (i,m) of direction numbers for,aline L may be said to

determine a direction on'the line in-4e following sense. Let

= (x0,y0)t- be -se. fixed point of L and P e (x,y) any other point of 'L .

Then - xo = ci and y - yo = cm , or

X = X
0

+ ci e

y -.., + cm ,
YO

where c # 0 .

.The point P
0

separates L into two sets of points; the points

of P
0

are given by positive values of c . P
0

and the points

by positive values of -c form a ray, which we call the positive

on one side

of L given

ray (on L)

with endpoint Po . If Pi = (xi,y1) is another point of L then P and

the points P = (x,y) given by

x = xi + ct ,

y = y
1

+ cm , where c > 0 ,

form another positive ray on L . The intersection (set of common points) of
.

the positive rays with endpoints Po and P1 is.one of those two rays.
.

Intuitively speaking, all the positive rays, point in the same direction on

L . The pair (ci,cm) of direction numbers determines the same direction

on L as (2,m) if and only if c '0 .
A

If (i,m) is a pair of direction numbers for L , the equivalent pair

0,µ) = (
42 m2

) 42 m2

is of particular importance. Such a par is sometimes called a normalized

pair. You shotld observe that 7\2 + 112 = 1 .

Let L be a line in a plane with a rectangular coordinate system and

let L',be the line parallel to. L which passes through the origin. (If L

contains the origin,' = Then L and LI have the same pair of

direction numbers (t,m) . Figure 2-13a shows the situation if t > 0_ and

m >0 , Figure 2-13b if t > 0 and m < 0 , Figure 2-13c if Z < 0 and

m <f) , and Figure 2-1,3d if i < 0 and m > 0 .
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Figure 2-13a

2"-6

Figure ,2-13b

0

The arrowheads show the positivee directions on L and Lt .r The angles

a and 3, are called the direction. angles of the line L with the positive

direction determined by the pair (.8,m) of direction numbers. Act is the
- --

theformed by tile' positive ray on 'Lt with the origin as ,endpoint, and the

positive half of the x-axis. 1r3 is the angle formed by the positive re* on

LIB with the origin as endpoint, and the positive half or the y-axis, We

note that the direction angles are geometric angles, with the single, excdtion-

that their sides may be collinear. Hence, 0 < a < 180° ,and b .13 < 180° .

If c > 0 , each equivalent pair (c.t,cm) of direction numbers for L

is als6 the pair of coordinates ler a point on °LI . The point wit r---(1, ) ,,-,
the riOrmalized pairT'as ,coordinates has been indicated in each cane of

Figure 2-13. Consideration of these cases reveals that, since44, + .2= 1 ,

a

VW"
^

0

59
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cos a = , and tos 0 = µ . The cosines of direction angles of a line L are

cglAd direction cosines fo the line.

,, The direction nuMber , angles, and cosines of a ray R are defined to

be'the direction numbers, angles, and cosines, respectively, of the line

containing R with positive direction determined by R .

Example 1. What are the pairs of direction nuMbermfor the line

determined by the points Po: = (-2,7) and P1= (6,-2) ?
.r

-onNIP1

Solution.. One pair,is (-2 - 6,7 - (-2)) , or' (-8,9) , but any
,

..

equivalent pair (-8c,9c) , where c / 0 , will do.. Since any'pair (2,m)

2 8 '-

must be such that ri = 7 or, 92 + 8m = 0 , we may write this as

° ,
((i,m) :.- 92 4. 8m ,= 0 ., t

2
+ m

2 ,

01 .

,

Example 2. r
°

{a) What are the direction Cosines and the measures of the direction

angles for the line. L with the positive direction determined by

the pair (1,1)_ of direction numbers?

(b) What are the direction cosines and angles'for the same line ^L

.4ut with the positive direction determined by the equivalent pair

?

Solution.

. (a) cos a = X -

+ m
2

mand cos 0 - µ -

42m2
Therefore, cos a =

1
cos 0 = and 'a = 0 = 45 0 .

(b) this, Case, cos a , cosh =
-1

and. a = = 135
o

Example 3. Finalthe direction angles and direction cosines of the line

through (1;2) with positive direction determinethby the pair of,
,- /direction numbers% Do the same when the positive direction is determined by

the pair (7, -1) .

,

4

0

Ne60

(18,
D 4

,
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'266

Solution; .1n the first case, = - and
1

. 'Since by

definition .0 k c <180. and 0 < < 180? , an% since cos a = 7 and

cos f3 p, we see ,that a = 1501 f3 X600 . If we consider' the other

, 4' 1 a "o
diredtion vn 1...., we have- cos a = cos 0 = - - Hence a = 30 ,

2
.

0 =,120° . /". 0.) °\
6

Examples Z'and 3 suggest a careful distinction to be made. A line bas

unsensed directi6n,;_.0r perhaps- it. could be betty to 'say that two opposite

senses of direction are implied for a given line, but neither one is
.

-dominhnt. Some of the pairs of direction numbers for a line imply each

sense, but if we select a single pair, we elect a single sepsell.sof directio

as well. Direction anglep and diebction cosines are defined only for a line

with a specified sense of direction. We shall call s a a line a directed
or..

line. The sense of direction may ,he speciffed by the. ntext, such as the

choice of a siRtle.pair of direction numbers for,the line.

In Figure 2114 yre observe that
"".

either 2/2:1, and Lf3 'or ict? and ,

Might be direction anglesior line L

Since'ct oi = 180°, and 0 + 01 = 180°

. we note that cos. a',= -cos a and

cos p = - cos p , Thus,_if the

normalized pair (7\,p.) of'direction'

numbers are direction Cosines for a

directed line,. (-7,11) are the pair

'. of direction cosines for the same line' ,

with opposite direction; if. 24,: and

are direction angles for a
9 .4

directed line, teir.supplements are

direction angles for the same, line V

with opposite direction..

Example 4. Find direction numbers, cosines, and
,

(a) ((x,y) 3x 4y -'5 = 0) and

(b) ((x,y) t by c = 01 , b./ 0) .

,. 61
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1,177-3E 447,

3 ')
5 ' 5

(4 3) Or
4 3

Solution.

(a) We observe that if a nonvertical line has a pair (i,m) of

direction numbers and an equation in general form, ax + by + c = 0
t a

then the slope of the line is given by both and - .7) .

Therefore

a
_ - where ib / 0 .

Since 3x - 4y - 5 = 0 is in genFal form, the slope of the line_

, (4,3) is a pair of direction numbers, and any other pair

(4c,3c) , where c / 0 , is an equivalent pair of direction

numbers. .The normalized pair (7,11.) of direction numbers, or

direction cosines cos a and cos p , is either

2

a

t

depending on which sense of directimisado ted.for the line.

We use tables of trigonometric functions to di ver that the

measures ct., and p of the narresp011ing direction angles are

(approximately) 37
o

and 53
o

, or 143
o

and 127°-

respeCtively.

For the general form of an equation of a line ax + by + e = 0

Where b / 0 , the slope is - /.11; . ,Thusc-(, -b,a) ,, (b,-a) ,.and,

in general, (-bk;614 , Where k # 0 , are pairs of direction

-numbers. The normalized pair, or pair of direction cosines,is
*

-b a b , -a

-1 71)
a
2

+ b
2 4F'"E /+b a + b; a + b2

depending on the sense-.of direction. Once the direction cosines

are found, the direction angles are uniquely determined, since by

definition - <xx<180° *and '0'< p 1806
.



"r4

f

.Example 5. ConsiderAthe line

Let 0,be the origih; let A ;and

y-axes respectively.

(a) Write an equation of L in general form.

(b) Find the length of the altitude OC on the hypotenuse of.right

.4
2 -6

.

L = ((X,y);
a

+
b

= 1 ab 0).
to,, .

B be the points of L on the x- and

triangle AOB . .

_.4,..

(c) Find the direction cosines of OC .
.

(d) .11o* are the coefficients in the answer to Part Aa).;elated to

the results of Parts (c) and (b)?

Solution.
4

(a) ;Ft +- 1 is equivalent to bx + ay - ab= O., which is in

general form.

t

(b) The area of AAJOB is equal Itth to
. 11
valor and to

614

/.$

2
b2 d(O,C) ; hence, babl F 2 S/T4'Y2 d(.O,C) .

Therefore, the length of OC = d(O,C) -

11/7-7-2a + br
(c) cos cx = cos LABO - (Why?)

142 +b2.

cos p= cosPAO = (Why ?)

% .

4/82771;2

(d)-2Litstly,_wenote that the-result

.of Parts (c) 1 and (b) apart

from a possible difference in

sign, are proportional to the

coefficients in the equation

obtained in Par-Ma). The

constant of proportionality is

77,7'8.1.2772 i
1

(

ors, -1

1

y

x
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Exercises 2 -6

1.. Find pairs of direction numbers for the line through each pair of points

given below. Use both'possible orders;

(a) (5,-1), (213) (e) .(1,1) , (2,2)

(b) (0,0)t , (4,1) (f) (-1,-1) , (1,1)

(c) (2, -3) , (2,3) (g) (1,0) , (0,1)

(d) (-1,4) , (h) (2,-2) (-2,2)

2. Find the normalized Imirs,of direction numbers for the lines in

Exercise 1.

3. Find thq,dliection angles of the lines'in Exercises 1 and 2.

4. Given the pairs (3;=14,,7(2,0) , (0,-3) (-1,2) , and (-2,1) of

directiot number, ti

' (a) find the slope of a line with each pair as-a pair of direction

numbers

(b) find pair equivalent to each pair, and find the corresponding .

direction angled

(c) draw the line through the origin with each pair as its direction

,numbers, and indicate the positive direction on etichjine deter-

mined by the pair '(Do.not draw too many on One sketch.)

(d) indicate on your sketches the direction angles of each directed line.

5. Let Po = (x040) , P1 = (x0,y1) , and P2 T. (x0,y2) be any three

distinct points on a line paralrel to the y-axis in a plane with a

rectangular coordinate system. Show that the pair of direction numbers

determined by P
o

and P
1

and th7e pair of direction numbers determined

by PQ and P'2 are equivalent.

6. Let a and p be the direction angles of the line. L with positive

direction determined by the pair (44 of direction numbers, at .

and p, the direction angles of L with direction detertined
by the pair (-4,:n) of direction numbers. Prove that 'a and a' are,

supplementary, and that p and p, are supplementary.

. 7. Assdme that in each art of Figure 2-13 a polar coordinate system has
.

also been introduced in the usual way. Let w denote the measure of a

polar angle which contains'the positive ray of Lt with endpoint at

the origin.

(a). Show that in each case sin = cos p . /-

Show that sin ui = cos p ,for any positive rgy.lying.bn an axis.,

64



2-7

8. Find 'pEarS of direction nuMbers, direction cosines, and direction angles

for the lines L M and, N , where

(a) L 7 ((x,y),: x - 2y + 7 '--- 0)

(b); ((x,y)-: y = - 2x + 7)

(c) N 7 ((x,y) : - 5 = /) 1

-2-7. The Angle Between Two Lines;, Parallel and Perpendicular Lines.

We have developed various forms of anrequation of a line. Here we shall

use equations to answer a question about the lines they represent: What angle

is formed by two lines? In particular, are two lines perpendicular or parallel?

We observed that the slope of lines parallel,to the x-axis is zero, and

that lines parallel to the y-axis have no slope. Because of the customary

orientation of the axes we usually refer to lines parallel to the x-axis as

horiZontal lines and to lines parallel to' the y -axis as vertical lines.

65
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In Figure 2-15 we indicate two nonvertical lines LI Ind Li ,

intasecting at the point Po = (x0,y0) The vertical line represented by

the equation x = xo + 1 will -intersect these, lines at P
1

and P
24

respectively. If we reresent the slopes of L1 and L2 by ml, and m2

respectively, the coordinates of P1 and P2 will be Axo + 1 y0 +111b..)

and (x0 + 1, yr, + m2) respectively. If in triangle P0P1P2 we -apply the

distance formula and the Law of Cosines in terms of LP1P0P2 = Le ,'we obtain

((1)1'1)24)2 ((1)(D'Pl))2 +'(d(P0'132))2 2C1(P6,P1)d(P0,P2) cos e

or

(m2 - mi)
2

= 1 + mi
2
+ 1 + m2

2
- 2 1 + mi 1 + coa 0

This is equivalent to

-2m1M2 = 2 - 21-4r7a3.2 IAA/7:1n: cos 0

of

(1)
1 + mi m

2
cos e _

ml tm2

Example 1. Fjnd the measures of the angles of interseetiPn between the

1lines represented by the equations y =--3x 4- 1 and 'y = 2x + 1 .

Solution. Since the equations are in slope-intercept form,-:we-pertpive.

immediately that the slopes of the lines are and 2 . We substitute the t.
Y

1 -

3
values in Equation (1) to-obtain

cos
l + (4

3 3
(2) 2

39

11773;e: 417 94
5

3 .15 7

Thus e = 45° , and the other three angles-of intersection will have.measurep.

of , 135
o

, and 135
o

.
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In'your previous courses you discovered that two nonvertical lines are

parallel or the same if and only'if they have the same slope. Clearly all

ve'ttical lines are parallel. You also discovered that two nonvertical lines

are perpendicular, if and only if the product of-their slopes is -1 . It

should be clear that a vertical line is perpendicular to a second line if

and only if the second line is horizontal.

In Equation (1) we note that the lines are perpendicular if and only if

cos e = 0, or mim2 = dr".

Example 2. Find an equation for'the line L ,whidh contains the point

P = (4,3) and which is perpendicUlar to the line represented by the equation
o

2x + 3y + 7 = 0 .

Solution 1. In the previous section we observed that the slope of a line

represented by an equation with. general form ax + by + c'= 0 , (b 0),
,a

is -
b
--,. Thus the line above h -

2
lope If L is perpendicular to.

the given line, its slope m must be such that

3
-.2-m = -1, or m 3

Since L contains P = (4,3) has the equation in point-slope form,

This is equivalent to

or

Y - 3) = (x 4)

x y - 3 = 0 ,
2

3x - 2y - 6 = 0 .

Solution 2. We might have developed a more general equation for a line

'L which contains P
0

(x
0'

y
0

,) and which is perpendicular to a line with

equation ax + by + c = 0 , (ab / 0) . .We bserve 105the slope m of L

must be such that

-
a
-m = -1 or m =-b .

a

Thus L must have the equation in point-slope form,

p
'Y YO ji(x x0)

67
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/ This is equivalent to

(31, bi - ay - fbxo - ay0) = 0 .

If we substitute the specific values for a , b , xo , and

general. equation, we obtain

3x - 2y - (3. 4 - 2. 3) = 0 , or 3x - 2y - 6 = 0 .

in this

If we generalize the notion of angle so that we may speak meaningfully

of the measure of the "angle" between two par'allel lines, we may obtain both

these results as corollaries to the more general problem of determining the

angle between two lines. Let two parallel directed lines have the same sense

of direction. Then the pr ojection of each positive ray of one line on the

second line is also a ray and coincides with a positive ray of the second

The cbincident rays form angleedOse measure is 0° or 0 radians. When i

two parallel directed lines have opposite senses of direction, the Projection

of each positive ray of one line on the second line is also a ray,.but in this

'case, it is opposite to a positive ray of the second line. The pqirs of

opP6site rays form angles whose measure is 180° or g radians. We speak

of parallel and antiparallel directed lines respectively to distihguish

betw4en these two cases. NN

The preceding discUSsion suggests the following conventions. The -

measure of the angle between two parallel' directed lines is said to be 0°

or 0 radians. The measure of the angle between two antiparallel lines is

said to be lco or g radians.

Although the, Law of Cosines was not developed for angles of measure 0
o

or 180
0

, the relationship it describes is still Valid. We shall leave the
0

justification as an exercise. If this extension is made, we may apply

Equation (1) to paiallel and antiparallel directed lines.

equivalent conditions are that .cos 9 = 1 and cos 9 = -1

Thus, if the lines are parallel, cos 9 = - 1 and Equation

This is equivalent to

(1 + mim2)2-= (1- + 412)(1 + m22) ;

or

1.1 + mim,

- +1
.

3"1.

m22

In these cases,

respectively.:

(1) becomes 4-

2mimg 1111

2
m2

2
'

,

mi
2/,_

m2
2

7 mi
2m
2
2

!



This becomes

or

which is true if and

if and only if

2 2
ml 2m1m2 4. m2 '

only if

(ml
m2)2

ml -m2.

2-7

Thus, nonvertical lines are parallel

cos 9 =.- 1 , which is equivalent to ,mi = m2 .

Thus, we may ,pxpress the condition that two nonvertical lines are parallel

_either in terms of the angle between them or in terms of their slopes.

Example 3.- Write an equation in general form for

(a) the line 'containing the point (1,2) and parallel to the

line L= ((x,y) : 3x - 2y :I- 6 = 0) , and

(b) the line containing (x0,y0) and.parallel to the line

L = ((x,y) : ax + by + c = 0 0 where b # 0) .

(5)

Solutions.

(a) Theslope of both lines must be 2' so the required like must

have as al? equation in point -slope form,

- 2 = -;-(x - 1) .

This is equivalent 'to

2y - 4 = 3x - 3 , or 3x - 2y + 1.=

(b) The slope of both lines must be
2

'
sothe required line must

b
have as an equation in point-slope form, .

11.(x - x )
YO 0

.This is equivalent to

by -by0 =':ax +axo

ax + by - (axo + byo) = 0 .

69
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Since equations repreiienting lines are frequently liven in general form,

We write an equivalent expression to Equation (1)8 for the cosine of the angle

between two lines in terms of the coefficients in the equations.

Let two nonvertical lines. and d: L2 have respective slopes

m2 and be represented by the equations

Jalx + bly + cl = 0 , where a,
2

+ b
2
p 0

'

and

a2x + b2y + c2 = 0 , where a
2
2 +-b

2
2 # 0 .

We have observed that

al a
2ml = - and. m = -

1
2 b2

If we substitute these values in Equation (1), we obtain

ala2
1 + b

1
b
20 -

,

a.2 vIdt a
2+ 1

2
1 +

b b
2

1 2

Which is equivalent to-'

ala2 ± 1b2
ala2

b bl
1 2

cos 0 -

or

and

b
1
b
2 .

bl b22 b

a377+bi if77a2+ b22

b1b2

al2 1- *qb12/ + b22
2 ..

+ bib2
(6) cos e

Pal + bi7 a24 b22

E.
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,

Since alt + bi # 0 and a2
2

+ b2
2

t 0 , Equation (6) is always defined.

Furthermore, Equation`(6) is valid even when .LI or L2 is vertical.' We

shall leave thequstification as an exercise:

When two lines intersect, two. pairs of vertical angles are formed. If

the lines are not perpendicular, two of the angles are acute, while the other

two are obtuse and supplementary to the acute angles. The cosine acute

angle a is positive, while its obtuse supplement, LW is su

cos At = - cos A . Thus, if we wish to obtain ohly.the acute or might angle

between lines Li and L2 , we consider

(7) cos 19 -

I aia2 + )3.1)21

Val2 +b12 N/C7:7172

Example 4. Find the measure of the acute angle between

Ll = ((x,y).4 2i - 7y4 25 = 0) and L2 = ((x,y) : 3x - 2y 7 5 = 0)

Solution.

cos e _
12. 3 + ( -7)( -2)1 20 5T--

7 .762 ;
53.13AF-7-77

2 + (-7) 3 + -2) .

and e z 4o° .

Example:5. Let (13:,mi) and (12,m2) be pairs of direction numbers

14 for linei L1 and L2 respectively. Show that Li is perpendicular to

#1:1.
L2 if and only if 1112 + nim s 0 .

,

Solution. 'This suggests a special case of Equation (6),

cos e

-1

a. a2
1 2

2 2 4a
+ b

2
al + bi

2 2

71r-
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where al,b1 and a2,b2 are the coefficients in general formsof equations

for Li and L2 respectively. We are considering perpendicularity, which

is'equivalent to cos e = 0 or the condition.,

ala2 + 1)11)2 = 0

We have already observed that (-b,a) are direction numbers for a line

L = ((x,y) : ax + by + = 0 , where a
2

+ b
2
p 0),. This is true in general,

as we shall ask you to Justify in the exercises. Thus, we may write

al klml , bi = - k1B1 , a2 = k2m2 , and b
2

= -k
2
82 , where kl and k

2
are

/constants such that k12 + k2
2

p 0 . We substitute these in the necessary and

sufficient condition above to obtain

which is equivalent to

(8)

k2m2 (-k121)(-k222) 0 ,

8112
mim2

Since the three equations are equivalent, both the statement and its converse

follow.

Exercises 2-7

1. Show that the relationship described by the Law of Cosines

(d(A,B))2 = (d(A,C))2 + (d(B,C))2 7 2d(A,C)d(B,C) cos C

is also valid in the cases illustrated by

(a)

C

and

B A

(b)

I

A

That is,.justify the use of the Law of Cosines with angles onieaspre

0° and 180° .

72
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2. Show thafEqUation (6) in the text is "valid when

(a) one line is vertical.' (Let L1 = ((x,y) : a1x + cl

0))

=.0 ,

and' L2' = ((x,y) : a2x + b2y + c_ = 0 a2 + b 2\ 01
'd

,

2 ' .I'
.a

(b) both lines are vertical. (Let L1 = ((x,y) :'aix i-c1 =,0", al4 0)
0

%.:,
.

". and L2 =,((x,y) : a2x + c2 = 0 , a2 / 0).) Aro

2-7

b

) tit

4

0)

41-- GC

410

3. Which, if any, of the lines with the given equations are parallel?

perpendicular? the same line?

Li : 3x - 4y = 12
z

L
4

- -

Y =4 -3=
4

- 3 L
x - 3 y - 1

L2 :
5 :-.6-27 -11 - 1
.

L
3

: 8x + 6y - 15 = 0

4. Find an angle between each of he pairs of ;pies with the give equations.

(a) 2x - 3y 1 ='0 x - 2y + 3 = 00
,

-

(b) x + 2y + 3 = 0 , y = 2x - 4

'(c) y = 3,, x + y = 7

( d ) 3x + 2y + 5 = 0, x - 2y + 5 =

(e) y = 2x r 5 , 4x- 2y + 7 = 0

(f)' y= 2, x = 3

5. If P = (a,b) ,,Q = (-b,a) , and a
2
,+ b2 / 0 , show that OP 1 OQ .

6. Let L1 = : 2x- 3y + 4 = 0) and L2 ((x,y) : 3i+ - 2 = 0) .

Write _equation in general form of a line -L
3

which is: ,

(a) f

1
and contains,the origin.

(b) I I
L
2

and contains tlie point (1,5) .

(b)

1 LI and contains the point (3,4) .

(d) 1 L
2

and contains the point (2,-1) .

7. Find an equation'fo; a line meeting thelfollowing conditions:

(a) Parallel to L = ((x,y) : 2x - 5y+ 7 = 0) and containing P1 = (2,7)

e
(bp Perpendicular to -13.;((x,.Y) : 3x +2y - 1 = 0), -containing (2,7) .

(c). The perpendicular bisector of TB , if A =-(-,2) .and B =

(d) ,Parallel to the x-axis and containing Pl = (,,7)

(e) Parallel' to tifeY-axis and containiil P1 ='(5,7)..
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04 V

4 '

b 0

'1,8. Quadrilateral ABCD is a parallelogiam., Find the coordinates of D

if A = C1,2) , B = (5,7) -0 r(8,-. ,If the order of. the vertices

of the parallelogram were not specified, how many possibilities would

there be for D ?

9. A line. Li makes an angle whose cosine is 10 45 - with
4

L2 = ((x,y) : 3x - + 5 = 0) . What is the slope of L
1

?

Find its equation if it.contains the point (1,-2)

10. Let A = (5,1) B = ..( -2,3) , and NC = (-3,4) .

(a) Write tht equations of , BC , and CA in general form.

(b) What is the slope of each Of these lines?

(c) Find the measures of the 'three anglsi of triangle ABC .

(d) Write equatiorls of the lines containing the altitudes of

triangle ABC in general form.

11. Let Li := ((x,y) : aix + bly + ci =0 ,Where. a1 2
b12 ,

and

'L2 f-li((X,y) a2x +-b2y + d2 = 0 , where a2 b22

Let Llt be perpendicular to Lit, anc ontain the 'oriksin and

let L
2

t be perpendicular to L
2

and contain the origin.'
.

(a), Write equations for andand L2t in general form.

(b) If Li and L2 form an Le , prove that/there is an Lb , formed

rl by andand L2t , such that cos e = cos e .
(c) Interpret the results of Part (b) in words. 0

12. Show that if lines Li...,'Ond L2 have pairs of direction cosines

(7,1.1.1) and (T2,112) orespectivelY, then

(a)- 712 + ='cos e , where Le is an angle formed by LI and

(b) IWt.,111421 = cos e , Nth Le is the least angle formed by

Li, and L2 , and

,(c) .117$2 +11,1'12.= 0 if and only if Li and L2 are perpendicular.

74
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2-8. Normal and Polar Forms of an Equation of a Line.

In this section we shall introduce forms of_an equation of a line which

display the geometric properties discussed in the last section. We shall also

consider a related expression for the diStance between a point and a line.

Normal Form. The results of Example 5 in Section 2-6 suggest another
4,r

characterization of a line in a plane. This characterization leads to yet

apother form of an equation of a line; the form has several useful applica-

tions.

Ong,e a'rectangular coordinate system has been defined in a plane, any

directed segment OP , emanating from the origin and terminating at another

point P in the plAe,.is determined by the distance d(0,P) and the

direction cosines,-151-la = T and cos = p,, of the ray OP . In the plane

,any line L. which does not contain the origin may-bedescribed simply,as the

\set off points which is perpendicular, or normal, to the directed segment OP

at P . The directed segment OP isalsosaid to be normal to L and is

vaned the normal segment of L . The'didtance d(0,P) is'called the normal

distance of L (and is, of Course, the distance from 0 to L ).
.

In Figure 2-16 *we let OP0 be the

normal serpent of L and let p . d(0,P0) .

Then
PO

-(p cos a , p cos 0) ..-. (pA,p11)

NOV( (pA,pti) ,is also a pair of direction

\ ,

numbers l'or the line OP
o

If p = (x,y)%'`
)

is any point of L other than PO ,

(x - pA , N - pl.1) is a pair of direction

numbers for L ./'

s we have seen in Example75,of

Section is normal to OP0 fl, t P0-

if and onfy f a(x - 137) + 111(y - pp) = 64.

We note that the coordinates of the poirit

Po also Satisfy this equation.

a o

Figure.2-16
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The equation is equivalent to

p(.0 112)

Since 7
2 ,2

+ = 1 , this'may be written as

(1) c%4A:7(t +iy -p = 0

which is called a normal form of an equation'of a line. We cannot stress too

strongly that in this form .2\ and u. are no direction cosines of the line

itself, but,of the normal segment. The constant p is always positive and

is the distance between the origin and the line.

We may always express an equation of a line in general form; Example 5

in Section 2-6 also suggesl*s how'we may find the normal ;form of an equation of

a line L which does not contain the origin. Let L = ((x,y) : ax + by + c = 0)
.Where (a

2
°+ b

2
)c p Oi . The normal form of such an equation is a special case

of the general form. Both are linear equations, and two linter equations are

equivalent if and only if their corresponding coefficipnts are proportional. -

Thus, the pair (a,bY is equivalent to the normalized pair (7,p.) of

direction numbers for the normal segment. Consequently; (a,b) is a pair of

direction numbers; for the normal segment and

b2 a4/7-472 ( b2 ir7 b2

a -a -bCN,0 or

Our choice between these two possibilities is determined by the requirement

that p > 0 . If 4 < 0 in the equation ax + by t c= 0 , we divide by

4a2 + b2 to obtain the normal form; if c > 0 we divide by - a
rE-7-7

+ b2 .

0'

ExaMple 1. Write 3x - 4y + 12 = 0, in normal form.

Solution. Since tne constant term is positive, me divide by

-N6T47-7117 = 2 to obtain

1 -
5

3 4 12x +
5
y - =0 .

.

, ! .

3We see from the equation that the normal distance is 12
-- , cos c = ,-.--

5
, and

1 5
nCOS: p = .

a
ofg-

7 6
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Example 2. Put the equation "--6x - 5y - 20 = 0 in normal form.

Solution: 6 5 20
Y -0.

161

We have not considered lines containing the origin. In the general form,

of an lquation for such a line L c is zero. There is no directed segment

normal to the line emanating from the origin, nor is there a unique standard

procedure it this case. Sole mathematicianii hold that `there are two normal

forms, corresponding to the normal rays

OP . and OQ as illustrated in Figure

2-17; others prefer a unique form corre-

sponding to the normal ray for which

0 < a < 180° and 0 < p < 90° . In

the first 'cas/ we obtain a normal form

by dividing a general form with c = 0

by either a1/T----Eb2 or '--.1ri b2 ;.

s in the second case, we obtain a unique

normal form by dividing by

a + b , when b > 0 , by

when b <-0 and by a when b = 0 .

You may follow either'. convention.

- a2 + b
2

Fighre.2-17

Example 3. Find the normal forms of equations of the lines

(a) L1 = ((x,y) : 3x + 4y = 0) .

(b) L2 = ((x;y) : 3x - 2y = 0) .

(c) L3 = ((x,y) : :2x =10) .

ti

-,
Solution.

- 4
3 - -4(a) Alternate forma:

5

11.

5
+ -y = 0 or -x y = 0

5 . 5

3 4Unique form: , 3X + 3y = 0 .

(b) Alternate forms:: 3x 4 2 y = 0 or - 1-x + 7-;-.y = o
ill

3 ' - '12

d
Unique form - , x....-t-1---,_,..y = 0 ,

3 3.1?

(c) rAlternate forms: X t-..0 or -x '2. 6.,

Unique form: x'=-- 0 . ...

,'

0
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A useful application related V the normal fOrm is to find the distance

between a point P1 = (x,,y1) and a line L = ((x,y) + py.- p ='0)

We 1,11ustratethis situation in Figure

2 -18. F is the projection of P1

onto L and wegsh to find d(P1,F)..

There exists a unique line, L1 which

1s parallel to L, and which contains

P1 . L, is represented by.the-equation

Tx +1.1.y - pl = 0 . Since Li contains

(xi,y1) Xxi + pyl - pl = 0 or

P1 7°c1 115r1

There are several cases to consider,

including the following two:

0 and P are on opposite sides of L1 as 'in Figure 2-18. Ir\ this

17 Figure 2-18

case, d(P1,F) = pl - p = + pyi - p

/
is on the same side of L as 0 ; P1 is farther than 0 ',from

0

L . In this case, thenormal segment to Li has jfe opposite sense

of direction and its direction cosines are

0

normal distance is - py
1

2 or -p
1

d(P1,F) = p +,(-p1) = 17oc1 +.pyl - pl

You may find it helpful to draw a figure.tocillustrae the second situation.

and

Hence,, its

We'leiiave the-other possibilities as an exercise. Ih each

ais lhce d _between thepointil P1,. (x1,Y1) and tle line'

1, =,((x,y)4 7( + py - p = 01 Ji.s given -by

1v- + by +. el

--, (,.2) d t l',7xi + 1.4y1-
, ;--1. 1

: Na2 ./-7- 112
,

ilnd..thedistance between P (3,, -10) and

g y)_ : 3x - 12 =0).

- .,
Solution. FrOm Fgquation (2) we obtain,

,4

- -10 + 121 61
-! _ .

case the

it

Li
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Polar Form. The analftic representation of a line in a plane with a

olar coordinate system is similar to the normal form.

r

2-8

lo

Figure ,.-19

, '4

. In re 2-19, we illustrate a lihe L in a'plane with'a polar

coordi ate system Let OD be'the normal segment to L , let p be the

no distance, and let Ao be the polar angle of D : If P = (r,e) iit

any oint of L other than D , then in right triangle ODP we have
.

( ) r cos(6) -4,n) = p ,

Which J.s called the polar form of an equb.tior)ola line which does not

contain the pole; ileIrte that D = (1),(.0) satisfies Equatio(5) and that,

since cos(co - e) = cos(e - co) , the equation is valid for points whose

polar 'angle has measure 9 which is less than to :

..13

Points are on a line L containing the pole if and only if they May all

, be described by the same or equivalent polar angles. Thus, the represen-

tations of a line-scontaining the pole are

;*
L''`e (r,e) : e = k + nA where k is real and n is an integer)

or., .

.
I.

, -

L = ((r,e) : e = 4c. n , where k is real and n 'is an integer; .
-..

The appearande of the degree symbol in the second representation does not mean

that the right-hand member of the equation doesnot-Trepresent a simple real
..,

__.
nuMber; rather,,it.is a.donventi9n to indicate-that thyangle );13 _Measured in

.

--7----g ,

,degrees. ' .,
, ,4.

----. i

79

8 1
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Example 4.

(a) Find a polar fori of an equation of the line wi
o.

l35 and whose distance from the pole is 2 .

(b) Find a polar equation or a'line containing the pole with

inclination 60°

inclination

'Solution.

(a) If the

normal

lineeinterseqs the

segment is , and

cos(6

polar axis, the polar angle of the

the polar form of an equation is

- = 2 .

If the line intersects the key opposite to

polar angle of the normal segment is -1

an equation is

rcos(0 - 1p) = 2

(b) The 14ae has polai equations

Or

the

and

e =
3

+ nag=, where n is an integer,

0.

polar axis, the

the polar formlof

e = 60P + 180n° , where n is an integer.

If a line has already been represented in a rectangular' coordinate

system as.

=. (,(x,y) : ax + by + c = 0', a2 + b2 = 0) ,

we may obtain apoldr evatiolloin the related polar coordinate system sinply

by Jubstitution from the relations x = r doe e and y,= r sin e . The

equation becomes

,

(4) 00' a rcod e + r.sin el+ c = , where
,

b
2
A 0 .

In order to see Hoy this equation is related to the usual polar form,'

we, recall that ax + by + c = 0 has the equivalent norfnal,form

7x,+ gy - p = 0 , with the corresponding coefficients proportional. Further-

,

more, 7% = cos a' and i ;= cos p where La and jp. areithedirection ang les

= of the Orval', egment:'* In the polar coordinate system which we have assumed

tO, relate.:the;coordinates, we 4t 1.3 be a pol angle which containsthe

1

'normal segmen of L . Thus w = - /and cos ="cos a = 7% . FUrthermoie,

;41=.16.

I



w = cos0 = µ . If you have worked Exercise 7 of Section 2-6, you should

already be aware that this is.true; otherwise, you should justify now that

it is so.

°, Let Nc + - p =-0 be the normal form of Equation

for ,T , µ , x , and y to Main

cos w r cose + sin wl' r sin e - p = 0

or

r( cos 0 cos w + sin 0 sin (1) = p

which is equivalents to
1.

r cos(e - = P

(4). We substitute

Example 5. Assume the usual orientation of the polard i and find the

polar form of an equation of the line

(a) 2 units to the right of the pole and perpendicular to the polar,

axis,

(b) 3 units above the pole and parallel to the polar axis,

(c) 1 unit to the left of the pole and perpendicular to the polar

axis,

(d) 4 units be1oW the pole and parallel to the polar axis.

(e) L.= ((x,y) : x + Irfy - 12 = 0) . .

Solution.

:00.-

(a) Since the length and polbs angle of the normal segment are2 and

0 tespectively,the polar form of an equation is r cos a:72 .

sco r cos(e i) F 3 . -A simpler equation ist sin 0 = 3 . -:

[ i(c) r Cos(e 4.; g) = 1 . Another equation is r. os e'= -1 .

(d) r cos(e- 270°)0r:: 4 IjI Another equation is sin e .

(e) :x + -4/Ty - 12 = 0 is, to the normal form
:4,

.1

I x
2 2-

-13
- = 0 ,

and thexorresponding polar'equation

4'

0

r cos 0 +,2r sine - 6 . 0 ,
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or

(5) cos' e + /5 C.sin e) = 6 . ,

1
=

.'If we let cos w and =sin 03, we obtain

for 03 We substitute'in Equation (5) to obtain

'

*.Or

A
r(cos

A
e + sin Ts- sin e) = 6 ,cos

0`

r - = d/I- T nl

5

r cos(e - 11) = 6
3

which is in polar form.

3
as a suitable''

Example 6. Assume .the usual relationship between the polar axis and the
.0"

x arid y -axes and rite an equivalent equation in rectangular coordinAtes for

r cos(e - w) = p

;tattSolution. If we expand cogtez-=-7o.)--T-we-obtain-t he-eq

r cos 0 cps w + r sin e sari w = p .

Since x = r cos e and y = r sin e , this is equivalent to

(9_. x cos w + y sin w = p..

Because cos w = 7k and sin w = , Equation.(6) is sometimes called the '.

normal form of an equation of a line. .

, .

Exercise 2-8
P.

1,. Write each of the following equati' s in normal form:

(a) 4x - 3y + 15 = 0 12x - 5y 0

(b) 5x + 12y - 65 = 0

(c) .3x -.2y- 6 = 0:

(h) 7y = 20-

(i) 9x t 15 = 0 '

(d) 15y - 3x + 12=

(0 = 3x* 7

(f) 5x+

0

,'

( 0), - x
12 5

15 .

(1). y - 2 =
Zvi

4.98A
V
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2. For Parts (a) and (b) of Exercise 1, draw the normal segment by using

the ,information concerning a , 0 , and' p which is supplied by the

equation. Then draw the line perpendicular to the normal segment at

its terminal point. Verify that this is the line represented by the

given equation.

3. Without using rectangular coordinates write in polar form the equation

of a line

(a) which is parallel to the polar axis and 4 units above it.'
.

(b) which is perpendicular to the polar axis and 4 units to the

right of the pole.

(c) through the pole with slope / . 4: A

(d) which contains the point (-3,135°) and has inclinition 45°

(e) -which contains the point (3,0) and has inclination 30°

(O. which contains the point (2,) and has inclination 45c! .

(g) which is perpendicular to the line, with equation r cog0- ) = 2
3

and contains the point (44) .

(h) which is parallel to the line with equation

and contains the point (2,-135°) .

r cos(e

4. Transform each of the following equations to polar form.

(a) x - 4 = 0

(b) y + '4 = 0 0

(c) x = 0

(d) x + y + 2 = 0

(e) 3x- + 6 .

(f). x + /3. ... 2 =

'(t) 1.5y -8x +340
. 5. L4 L = ((x,y : Wx +.µy- pa= 0 :Where A2 + g2 = 1) anc let

i
PI = (xi,yi) ,Show that the' distance between P

1
and L is

"'" tAxi + gyi 7 pl when .

4

=1

(a) P1 is on (L .

(b) P1 iscathe same side of L as the origin 0 ; P1 1. closer
I . ,

than 0 to L . _______1
,

(c) P1 is on the same side of L as 0 ; P1 and 0 are equitlistant

from L

83
. i 1

i b 9i.
.
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6. Findpe distance between P and :

(a) P = (6,8) ; L = ((x,y) 12x fl 5y +26 = 0)..'
Aio

(b) P = (-3,2) ; L = ((x,y) : 3x - 4y - 5 = 0}

4
(c) P,-= (-5,-7) ; L = ((x,Y) Y =. 4x - 7)

(d) P = ; L =.((x,y) : + = 1)

(e) P= (8,11) ;L = ((x,y) y - 4 = 75-(x - 3))..

7. Find equations of the lines bigectingthe angles formed by the lines

= ((x,Y) : 3x - Mfr + 5 = 0) and L2 = ((x,y) : 12x +'5y - 13 = d)

'Hint: How is an angle bisector described as a locus?

8. Find equations of the lines bisecting the angles. formed by

Ll = ((x,y) : 3x - 4y +.12 = 0) and L2 = ((x,y) : 12x - 5y. 7 60-,= 0) .

(See Exercise 7.)

9. Find equations Of thelines bisecting the, angles formed by the lines

Ll = ((x,y): 7\ix +

L2 r= ((xiY) : 72X + 112y

(See Extrcise 7.)

111
0,

p
2

= 0

/

1

2

1
2
2

,

2

+
2

2

=

=

1)

1}'.

and

I

10. Write the equation r cos 0 - 3 =X) in rectangular toordinates.

11. Write the equation .x a y = 0 .n polar' coordinates.

12. Write the equation ,x
2
+ y

2
= 36 in polar coordinates.

13. Write the equation r = 4 cos e in rectangular coordinates.

Hint: Multiply both members of the equation by Check that the

pole is in) the graph of the original equation: lain Why you must

. make this llcheck.

14. Write the, equation r = 2a c s

I(See Exercise 13.)
,

15. Transform to rectangula44orm.

(a) e = 6o°

r Sin e + 4 . 9

(9) r =.5

16. Sketch the locus of each equation iri.Exercise 15.

4

.a

L0 in rectangul coordinates.

1

V
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17. (a) Transform x
2
+ y

2
- 4x = 0 into polar coordinates.

(b) Transform r = 5 cos 0 - 3 sin 0 into rectangular coordinates.

Transform r,coa(0 -IP = 4 into rectangular coordinates.(c)

.(d) Transform (x2-+ y)?

2-9. 'Summary.

+ y
2

into pder coordinates.

.2-9

In this chapter you have encountered many topics which were already

familiar from 'various sources. Our hope is that by gathering them together,

We have offered you not only the,chance to refresh your memory, but also. new

insight,into the coherence and `application of these ideas.'

We first considered the basis for coordinates on a line and the.
)

characterization of subsets of a line in terms- of coordinates. Next we

reviewed with care,thereetangular coordinate syStem in the plane and various

analytic representations of a line in the plane. '

If ,

Polar Coordinates may well be a concept new to you. Relations of both

mathematical interest and physical importance may often
)

be_ represented most

_simply by equations in polar coordinates,__

,
We have stressed our freedoT of choice introducing coordinate systems.

,. - . ,

The ease 'of'our solutidn of problems depends in part upOn Cui. foresfght in
1 f ..-..,

establishing a framework o reference'.
. , 7..>-i'4

',,...

In-problem solving the anger aili.a,yH.S exists tliat we might let the,

algebra do our thinking for-ols.t A geometric interpretation will both-guide /
..

and control o
4

application ok algeb aia techniques. Throughout thrs chapter
-1

we have emphaEized the roles o alge ra and geometry in the,iq rotation Of
.

suchconcepts as congruence, b wee ess, direction on a lines e measure of, .

I

. %

angles; and the" measure of distance between Points and lines.,

In the next chapter we sha1.1. study vectors. Vectors form

a bridge between geometry and alg, ra; for they are geometric object
(*e.

for whith algebraic operations are, defined.

'

[

e.4,

/NI
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'Review Exercises - Section 2-6 through'SactIon 2-8

1. Find a pair of direction numbers, a pair of direction cosines, and a

pair of direction angles for

(a)0 the line...containing the punts (-3,7) and (4,-3) .

(b) line with sioPe
24

25

(c) a ray emanating from ('2,3) and containing (.4,8)

(i) ,the line L = ((x,y) 67c - 7y + 4 . 0) .

(e) L = ((x,y) :

5 - 2 777.717'

1

rit

L = ((x,y) : y = -x + 9)

x y
(g) L = ((x,y) +- 117) = 1)

(h) L f ((x,y) : y + 2 =
3
1 4. 2 (x - 5))5

2. In each part below determine whether the three points are Collinear.

(a) (11,13) (-4,1) , and (1,5)

(b) (1,1.2) , (-5,7) , and (6,-12) . .

(c) (23,17) ,t.(11,-1) , and (L17,-13) .

0. (0,11(0,-4) ; (-3,8) v, and (5.,-11).

In Exercises 3-8 let A = (-3,1) , B = (2,5) C 4 (4,-1)0.

3. 'Find the d4tances: d(A,B) , d(A,C) d(B,C) .

4. Write in general form the equations of the three lines. ig, AC , BC

5. lUse the results of Exercise 4 to find the lengths of the three altitudes

of AsABC '11

6. Use the results of Exercises 3 and 5 to find, he area of AABC .

4

7. IA AlsABC find'equaiions of

(a) the line containing theibisector f LA

(b) the line containing the bisector of LB .

' (c)"t' therlihe containing the bisector of Lc .

In Exercises 8-11 ,filet L1 = ((x,y) : 2x - 3y + 6 = 0) ,

:I,
2
,f (x

'

y) : 3x ; 437. - 12 = 0) ,

((x,y)' x - 2y' + 4 = 0) .and

ti

A.
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8. Find.the distance from . - _ _ _

(a) .A to each of the lines L1 , L2 , L
3

.
..

(b) B to each of the line.s .1,I , L2 , L
3

i
/-.

C to each of the lines L L . L
1 2 '

L3

9., Fin equations for the two angle bisectors of the angles formed by

(a) L1 , L2 .

(b) L3

(e) L2 , L3

io., Find the distances between the parallel lines:'

(a) L1 as above, and ,L = ((x,y) : 2x - 33,-+ 12 = 0) .1

(b) -L2 as above, and 1, = i(x,y) : 3x + 4y - 1 = 0) .

(c)
L3

as above, and L6 = ((x,y) : x - 2y + 10 = 0) .

11. Find two points on L
1

which are 5 units away from L 2

12. nil the angles between L = ((x,y) : x 2 Y 41
/ . 5 - 2 7:7)

x - 3

- 2'

21
L ((x y)
2 ' 77 3

.....

13. Show that L1 = ((x,y) : 7.;44 ; : ) is perpendicular to

L2 = {(x,y)
x 1 ,

Y
14. Find the angles between Li and L2 , where _Li contains the points

, .

(3,4) and (-1,-1) , and L2 contains the points .. -4,6) and (3,0) .
i

e
i

Find the measure of the angle whose sides havp pairs of direction cosines,

2 1
and , -1- , respectively.

1573 ,'r371

16. Shot,/ that triangle ABC i a right triangle, where A = (3,4),,

B = (-2:7) , and C = (6,9

y. a

8
J

I
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17. Find the normal form of the equations
.;

(a) 3x - 7y + 29 = 0 . =

=.20x

(c + J. . : . r 4 ,
,_.--- X y ,

.. ,.....

i

(d) 3x - 7y = 0.,..

(e) 7 = 5x .

-18. Find the polar form of the equation of,the line

Ls,

. Xar which intersects the pOlar axis at (2,0) andh inclination
_ '

(b) -which is perpendicular to the polar axis at a'point 4. units

from the pole on the ray opposite to the polar axis,

(c) coiains4the pole and theepoint 47,147°)
?

19. Transform to rectangular coordinates:

(ar r poe(e - =

(b) 3r sin e -',4r cos e = 12

20. Transform to polar Coordinates:

(a) ?7.1 + Arg = 1

(b) y = 5XX - 12

Challenge Exercises

I/

or each of Exercises 1-6 write an eql.lation to represent all lines,'

141. a rallel to 8x-- 4y + 10 o ,
4

2. perpendicular to 35c - 4y + 10 = 0

3. containing the origin,

4. containing the point (2,3):2

5. the point ( 0) and parallel t line in Exercise 1

6. , having slope -3
N

t.
7. Prove analytically that the lines containing the bisectors of the angles"

formed by any two intersecting lines areperpendiculv.

p

a
4

1
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8. Prove:, f Pl=(xl,y1) is not on L ==f(x,y) : ax +,-by + c = f(x,y) = 0) ,

then f(x,y) = f(xl,y1) is an equation of aline parallel to L.
;>.

In Exeipises 9-13 let A = (0,0) , B = (1;0) , and C = ( where ,b

9. Prove that the lines containing the altitudes o' triangles ABC are
--

concurrent.at a point. H . Find the.coordliate4s'of H .

,
10. ProV that the lines containing the medians of triangle ABC are con-

cuirent at a point G . Find the coordinates of G

11. Prove that the lines containing the bisectors of the angles of triangle

ABC are concurrent at a point X : Find the coordinates of:point, I .

1

12. Prove that the perpendicular bisectors of the sides ofstriangle 'ABC,

are concurrent at a point E . Find.the coordinates of point E .
.

13. Prove that the points II , G , and E in Exercises 9, 10; and 121

collinear. Find -an equation of the line containing them.

a.

'

. s,

-

89
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Chapter 3
. -

J' THEIR

. Wkly Study "Vectors"?

I

The use of vectors is becoming increasingly important. For example, many

of the problems regarding space travel and ordinary air travel on the earth

are solved by vector methods.

Vectors were Created by the Athematical physicists Willism.R. Hamilton

. and He an Grassman in aboutZthe middle of the ninettehth century td solve the

many p blems involving forces,and motion. Since that time vectors have beep

app ed in many trenches of science, engineering, and mathematics. The work

of Hamilton and Graesman.was based on the earllerodevelopment of analytic
/

geometry by Rene Descartes and Pierre Fermat in the seventeenth century.

Vector methods and the non-vector methods of analytic geometry are both

widely, used in proving geomftric theorems and they have become so interwoven

that it is at times impossible to separate them.. In fact,. several books have

been published

Approach", and

vector methods

recently under titles such as "Analytic Geometry: A Vector,.

courses in calculus'Ake,extensive use of both vector and non-

interchangeably. This is one of
.
the principal reasons for in-

eluding this'chapter in our book--to give you!an additional tool to apply to
:10;

find interesting relations among geometric objects and to prove some geometric

theorems. An additional reason is the future need in scientific ovengineer-
-

ing studies or in mathematics courses.

o understand. what folloWs you should recall what you learn in your

course geometry. "If you have studied about vectors before, part of

material trill serve as,a review and rou may bb interested in comparing. the two
pi '

approaches to the subject. However, no knowledge of vectors is assumed.

3-2. Directed Line S4ments and Vectors.

- In Chapter 2 we encountered directed line segments, whidh possess, both .

direction and magnitude.' A simple example ';)f this geometric concept is that

41
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3-2

4

/

Of a motion or displacement along a line. Let us say a boY starts at a"given
_

poini_and walkatwo,mis.
.

We don't know much about IlLs trip until. we are
.

told the directibn in which he walks or the point Which he, A dis-

placement c then beArepresented Id one of two ways:
f

(a) By a Curectgd.segment extending a giyen distance in,a given

direction from a given'point.

(b) 137 a pair Of points, one Identified pa the starting or initial

fts

point, the other as the ending orterminal
o

The symbol "Al- is used to denote such a directed line segment

ini ial point.is 'A and whose terminal point is B .

DEFINITION. By the magnitude of the directed line segment AB we

mean /d(A,B), , the'length of the associated segment AB .

- .. .

We noyr turn our attention to the concept of a vector, which. is
1

related to the geometric concept of a directed line segment. Vectors were
/ .

Oi-eated by physicists to de ,with Soncepts such .as force
/

acceleration, ,

,velocity, flow of heat,- an flow'of'4ectxicity: ,

. .
,

...

To-underatand this new,ponept, we need the followilig definition:
!

wpose

closely

DEFINITION. Diregted line segments will be considered eiuivale4

and Only if they,

1

(1) lie on the same or parallel lines,

.(2) ,have tlie same sensegf direction, and

I3) have the satheimagniNe. ;

K

For convenience, we'shall use the term "parallel" in the sense of statement

). The phrase "if and Only if" means that the statement and its converse

1

are both true.

DEFINITTON. Thetinfinite apt of directed line segments equivalent

to any given directed line segment is called a vector.

'V=

'To un rstand more fully the
P

from arithmetic. Here we nave an
,

represent the same quantity; e.g.

is called a .rationaI number.

I-

cdncept of a vector t us recall an analogy

set of equival nf fr(ctforig which

'2 3 5 11

lo 22

92
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It is'common in many texts td use the Nord vector to mean, not the whole
.

set

of equivalent directed line segments, but any 'single member of th\t pt.

When convenient,ivand when is no ambiguitY we will this proce ure.

When we use the word - vector in, this Nty, and say that two,Ieptors are equal,
4

we mean they are members of the same set,of equivalent drected line segments.

In the case of the representation of rational numPers,'Tat.en we say 4. = E we
e. 2 3

mearOtlIt.these two fractions represent theftame rational number. We shall

represent a vector by any of its members and we shall denote such directed

line segments by ir, b , .

Each rational number has a representative which is considered the
/

"simplest ", -and #fit is the member whose numerator and denominator have no -JI- ''scommon.fator. In the example above, -

1
is the simplest representative of'.

e
- ' --

the rat4nal'number.

In thesame way, it:will-be cAvenient to have a "simplest" representative
. k x

for each vector. For this purpose we require a reference point in space which

we.shall call the origin. Any point in space can serves s 4111e origip, and to
. ,------ x i -. '46

if

emphasize this erebftm, we state the following princip
4

i

1

ORIGIN PRINCIPLE: Vectors maybe related to any'point in space

as an Origin.

i ' t

The usefulness of this principle will become evident when vectors are applied
1 .

to the solution of problems.,

i

After an origin is selected in space each vector (or.equiValent set of

in

directed .ine segments, contains a unique e

l

ber with this origin as its

initial point. We shall call thir b t e_origin-vector and it will serve
1..

as the "simplest" resentative of the vector. The sygibol A will be the
i

( - ...

origin-vector representation for the'vectoi',Ir, ; B for b , ... as shown in

gur 3-1. Note thatto.each point A of the plane there now corresponds a

unique origin-vector A : .r, a

.93
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3 -2

0

4.4

. .
/.'

Figure
-1

It Wtimportant to note that we do not always wish to use the simplest
/

1 4representatiVe. V 1.

3
,,

2
or eample, in adding and we find it most convenient

2

3 1
.0
2 1ton9c. the membtr

b instead fof . and 'instead of -..; . Likewise, in
. i

dealing with vectors, weehall frequently find it more convenient to use a

-representative of its set other than the origin-vectlr.

.. .s....-.
. ,

Vectors are very frequently associated with real numbers. In discussions
. .

involving vectors, real numbers will be referred to as scalaft s. The scalar
Iv.

which is the length of Tr. will be denoted by ill and will be referred to

as its magnitude or absolh.value. Other examplA of scalars are the measures7 ' .
of angle,,area, mass, and temperature. Xou will find it helpful.. to compare

vectors.
.

these with the examples of given earlier. 4'
.

DEFINITIONS.' Any origincorresponds to an-object called the

-zero .vector and is denoted by 0

,

A vector of Unit length is called a unit vector. Note that

'Ilt
. is the unit vector along a .

la',
:.,

Note also that thezei.o'vector has zero magnitude but no particular direpo/n.
., .

,A unit vec'or ex4sta in every direction.. ..,

4

I,

,
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I.
EXercises

Draw a v ctor from (3,2) .as-defi,ned, in this

simples t presentative.

chapter and indicate its

2. For the figures below indicate, the sets of equivalent

segments

B D

1\
3. Given the ve tic

.directed seg

Which belong t.

,

Fiore ABCDEF

In the d/iggram,

ments for X' an

of,these statemen

( a y - -

*

(b) X
0.

5. Show the'timplest.

plane' with a reptati

° 'a-pOlar coordinate,:

6. List five,geometric,

which can betrepres

K r

directed line

0 P

R 'es %.

,. and D of a paiallelogram.

ents.determined by ordered pairs of these

e- same, vector?

a regular hexagon.

d three replace-
....:.

,

y to make

true: ,

presentatives of four, differehtt'unit

points.

D

vectors ,/ on

lar-coordinatesystem. Do the same on a plane
,

section,

ystem. . -

:9
r physical concepts not'afsted in this

ted by 'vectors.

-

.: ___,) '1'
A 1

,

a

with
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A: 1

4#,

r

.3.3. Sum and Difference o Scalar Kiltiplication.
.

. .

4
T9 get anything of either mathematiCal interest or physical

on vectors. Since forcesit,is necessrlrywto-introduce operati

veniently represented by vectors, we may considerthe problem of replacing.,....

two fbrces-sacting at a point by°,11. sipgle°force called.the resultant. A. Dutch -

scieniist,'SiMon Stevin (1548-1620 experimenited with this problem aril dis,

covered thOethe resultantiforCt coilld be represented by the diagonal'ofla

uSefulness,

are con-

parallelogram wh3te slides represented the original f6rces.

.e
4

Figure' 3-2

Thus a definition pf vector, addition is made which ,is consistent wlth.

observe ns of the physical.world.

Befor presenting such a definitions ,there is an importaat distinction

to make be ween the, use of origin- vectors and other.vectors. You must be

aware of this distinction.

We have already agrted in the statement of qt "Origin Principle" that

vectors may be related to.anyqooint in space as an origin. One reason for

stating this_principle is that it is more convenient to deal withiorigin-,

'vectors .when:we seek a geometric interpretations

'We are:about'to define operations with vectors and prove several theorems.,

In order thetothe use of origin=;ectors will'hot limit the applicatiOn of the

results we s't'atethe following principle :0'

_ORIGIN-VECTOR PRINCIPLE.., The sum and difference of vectors and

the product of a vector by a scalar is equivalent to the sum,
.

difference; and scalar product of their xespective origin vecto

/,
-

There is one more significant statement to make in this regard: ,All

proofs, using origin-vectors depend in part upon the fact that all such vectors

9'61.
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1

. ,

have a common.initial point. The extension of s1,1611 proofs: toyectors2in
. .

general can readily be made by choosing for any lies-tors those representatives

which htive 'a cott ton. initial oint.
..,

. .

'In other words, the
1

alg braic relationships between vectors i:riil hold in 1
4'

general, but the giowtrt& i terpretaiion_must be lIkAed to the geometric

conditions assumed'in the development.' ,
:

ti:

, :
r

4

°

ON

(4_ Let and Q be two non-zero vectors not lying in

.4

L

r
the same line and with a common initial point 0 .

We define ihe vector suns of P and 9 , designated
.

,by 7+ Q ,'to be the 'unique vector with initial

point 0 ana whae terminal point is the vertex
,

opposite 0 in'the parallelogram formed with P444

and Q as sides.

(2) If417 and Q have the same direction; P + Q is

the vector with the s direction, and with magnitude

equal to the sum of the m Ludes of P and Q .

P a nd, Q have apposi e'directions.7.+ 4 is

the vector with the same direction as the v.ector4of,

larger magnitude, and with magnitude..equaletekthe

.abiolute value.of tk difference of the two magnitudes.

(3) For. any vector 7,.,-156,= 0 + 7 = P , where 0

.'denotes the zere vector. 0

9

Mb

Figure 3-3

97 .
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In arithmetic one usually considers multiplication 'as repeated addition

of the same number. Forexample, 3 x 2 = 2 + 2 + 2 . An analogous defini-

tion is made for theaultipliCation oel'a vector by'a scalar. Thus

3fr .1-+r+ . The:seCond.part of the above definition also tells ue that

A + I-+ 'A' is a vector parallel to A , with-the same sense of direction, and

a magnitude three times as large:. GenTalizing this idea, -one can state the
77

.following definition:

DEFINITION. Let. r be a
C
real number and P any vector.

en if is defined by,

(1) If r > 0 , them rP is t he vector with,same dixectiOn.
as P and-magnitude 'r t imes the magnitude bf

(2) If r < 0 , then rP is the vectoa;owith.direction

*0- opposite to 17 and magnitude In times the
..

magnitude of f .

(3) If r ='0', then

(4) If r = 1 , then rP 4 P .

.

When r = -1 , rP.=,(_i), and we denote this vector by the sy mbol -1"

, The vector =P has the opp9site sense of direction of P but'has thd same

magnitude as shown in Figure'3-4.

L

1

Figure 3 -4 -..
. .

In accordance with.our earlier definitions, we note that if r / 0

is always parallel to 15 . oP' 4.

,.. * .

,It is'now possible to Wine one,kind of division of two vectors.

ti

98'
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We' now can also make th followirfg definition:

V_

A = k13'; that is,k a scalar, if and,
)1.

if A and B are parallel.

DEFINITION. A - means A + (-B) . The quantity A - B

is called.the difference of, th two vectors A and B ..*

3-3

ThuS, in order to find the difference of two vectors, A and B , we merely

need. to add the negative of the second. to the first as shown in Figure 3-5.

b

A B'
C B = a -b

0 6 /

/ C

Figure 3-5

Figure 3-5 also shows that- if f- 13- = C , then = 13. + C .

. Nov that we, have made the.4above definitions we are in a position to

- illustrate toile disti,nction between the use of origin- vectors and other vectors

referred. to on p. Ie. For examp19, the .sum. of vectors a and in in Figure

is equivalent to the sum of thei' reap tiye origin-vectors A and B .
v

$

. .

,99
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3-3

5,

... I 0 ...
....

1 \...I ,

\ V.../.

13 ; ...-7 .
...

,, ....-.. J
\ ' #' A<,. ,
0

Figure 3-6
(

It is not even n essary that vectors t and b havethe same initial .

.point.,. (See Figure 3 7).

P Ai- El; +b

" -1 f'
Figure 3-7

!P,:-

An important application of the above*principeie is s*alin

where the sum of t and I; can be folia'' "seCtsfArindr*
:,

with its initial point coincident with thcb.A rminal point of

can be applied t9.thre
. .

or more veci-OrS,Y.

I

.

Figure 3 -8 r
vslent 9f b

. This method



Figure 3-8

.1.

a

3-3

LIn ap ying vector methods, physicists and other scientist's often consider

that they 'move around a diagram",andtnen equate,the.c9rresponding vector

suns. We could "moven from A to D directly, or from A through B and X.

C to D . If the vector from A to D isso called d , then -a.= 1.i.)4.s

Likewise', one can 6 from A to C ilia two routes with the; result that

at)ci=d7-6.

Exercises 3-3

1. Upillg the figure as given,

supply the missing vector

expressfons.
/-s

(a). A.+ B = ?

(b) D -A =-?

cc)
A + 13k..+4 C = ?

(d) TP= rC (find

(e). ? = C

,

4.

ri

47

Quadrilaterals OCDA ,OBCA ,

and 'OBED ara parallelograms.

101



3-3

A

In the figure, A , B C , and

D are vertices of a parallelogram

'and determine the vectors indicated.

(a) lib:Press ',t, d.... t and e in

terms of t and t alone.
,

(b) Eb:press 'e" ih terms of

( ) -a" an d

(ii) and a
(iii) andand -1:7

(ivk t atld -,1.-

(c) (i) What is tiA sum of 7-1 , t , and t?

(ii) What is, the sum of t , t , l' , and .a. Z

3. Draw on paper the vectors a , t' ,

and C- as shown in the figure.
\

Construct the vectors: -- '

1

(a) IS +7--
(b)'

44:14 b

+1:, z.

4. By a drawin,5, show that if fir,-F-t. = Ch. ,

4

then

5. ,0 , B and X are collinear points. Find T such that

X =
.s.
if

X is the midpoint of OB .

(b) the midpoint, of OX .
4e

I (p) 0 is.the midpoint of-1 r)3X .

(d): X is i of the .way. from _0 to B .

' (e) B ip of tlie way -from 0 to X-.

_(f,) 0 u, of the way from B to X .

6; If a =Wand c = d ,''prove a + c = + T .

IA,( =3 ,'what is 141.1 7 1-.511 ? -1511 ?

2,

84 Prove = r and i' r IM a scalar; then ra rt.

102
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,2119. If b is a non-zero vector, and if i = k , what can you say about

lb I

11631 ?

10. The.figure is a vector diagram

based on.a regular hexagon.

(a) "Write 6 vector equations

which should occur to anyone

in the claSs.

(ii) Write 6 more which are not

obvious but which you could-

prove.

b

e
4

By using vectors, indicaty:5 different paths in the.plane by which one

could move from P (1;2) to Q = (4,6) .

12. 4a) If l a l = I b l , does It =t ?

'(b) If = 0 , does. = b ?

13... Pro4e -fp] < 171 +=
vf:0

14, Letting 1 inch represent, 2 miles, find graphically the resultant

motion if a car traVeld 4 miles north and then 5 miles southeast,
e 0
assuming the car travels in a plane. s

15. Using:the idea of resultant 'vectors and a scale of 1 inch to

represent 2 miles per hour, solve the folldWing problem graphically.

A river has a 3 mile per hour current. A, motor boat moves directly

across the river (perpendicular tb the current) at 5 miles per hour.
1 ,

'How fast and in what'direction.would the boat be traveling if there Were:
4 d,

no current and the sate power and heading were used in crossing the

'ri*er?

16. Make a vector drawing with's. scale of 1 ieri to represent 10 pounds

to solve the foIldwihg

. A body, is acted on by two forces, A and B , which make an,angle of.

70°, with each othe'r. The'magnitude of A is 20 pounds and that o/'

is 30 pounds. What is the maaltude and direction of the
P

- f

%. resultant force?

1:.0
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17. Show that if A d t are distinct vectors, then- r+ (-1/6 = -

lies on a line parallel to the line through the of A

and B, and similarly for B- A

le. a , b , c ) and 11 Pare consecutive vector sides of a quadrilateral..
41.

Prove that the figurq is a parallelogra. if and only if b + d = 0 .
0

19. Prove that the-sum of the'six vectors drawn from the center of a regular

hexagonto its vertices is the zero vectors

20. If we traces the perimeter of a polygon
*A. -a. %.,a,b,c,d , p correspgnding'to

show 'that thg vector sum Ee+ b +
;

c + d

ABGD ... PA , -r1t. assign a vector

each side as we traverse it,

+.p ='0 . (It is'this idea

that physicists4have in mind when tteTsay, "The vector

closed circuit is zero:"

3-4.* Properties of Vector OperationV .; .---
f

',1 , , _ _. e

We now derive several important algebilIC properties of the operation of
.-A

sum around a

:Piot

vector addition.

THEOREM 3-1. (Commutative Property)

This follows from the definition of vector

3-3.

sum with the help of Figure

' Figure 3-3



THEM/M.3-2. (Associative Property)

+ T1 + Tv

, ,?

Figure 3-9 suggests a proof uelpg the various parallelografils which

, "appear. A.much nicer proof will be given later.
e

THEOREM 3-3. (Additive Inverses)'

For any vector r, the equation

satisfied by r= (_l)z = .

o
a

/-

This follows immediately from the defi ion. of addition of vectors and

we provi a theorem concerned with multiplying vectors by real

12A4Mb

, _

l''HEOREM 3-4. (Associative Property)

(rs)t= r(SP) .
i

This follows immediatelA from the definition of each member of the

equation.

105
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Exercises 3-4
-

1. By using the definition of subtraction., and the ommutatiVe and a (Dela-,
I

, tire properties; show that

(4) + (P -

(b) (X. - + =

2. Draw on paper the figure showing

t and g Lochte point X

such that It !=11 + qg ,

(a)

(b)

(c)

if

if

if

p = 1

1

P = 0

and

and

And

g

q = 1 ,

2

q =
1,

1 1
(d) 5 l p = 4nd q = y

i.

(e)' if p = 4- and

. .

1 q=
5

-

Can you make a conjecture about the value.s-far--p--a44__q X
-ion?on

41

3: .(a) Show by a vector drawing that the subtraction of vectors,

A.- B , is not commutative.

(b) Is there arelation between the two differences, i.e., does

- = rOr- ?

Ne4 4. Prove Theorem 3-2.

5. Show that 1(t + , b

6. Show that (-r)g = r(-1t) .

3-5. Charaoterization of the 'Points on a Line. ,

The term "linear combination" "was first mentioned in Chapter 2 in connec-

tiontion witdfinding a point of division of a line segment. Now that we know howl,
,r----7

.to add and subtract vectors and how cimultiply 43ctor by a scalar, we can

"I io ,
r

combine. these operationg- to create other vectors', such as 27 - 3g,, 04 ,

and (1 - 4,K.+ ;Ir. To formal e this idea, we-state the following .

definition: :
/

(

A

io6
1
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3 -5
/

DEFINITIO . If , a2 , ;11 are n vectors and

x
' n

scalars, the lector xiil + x2a2 +,

said e a lidear combina.O.on of , r2 , tre

x
1

, x2 ,

+ xn an is

In ord r to use vectors to prove theorems in,geometry we, need several

basic theore s. The uirst one is concerned with expressing any vector in the
a.

plan4-1,a -ar co ination of other vectors in the same plane.

.

THEOREM 3 -5. If a .and b "are coplanar and nonparallel, then any third

vector 'C'r which lies in the plane determined by T and 15 , 'can be

expressed 'as a urique linear combination of a and b.

t Coplanar

in their plane.,

proyeL c = +

and non-parallel vectors a and andv and c lying

y*,,t where x 'and y are scalars.

Figure 3-10

Inasmuch as vectors , and t can be represented-1)y their respecii.w.

Ttive origin-vectors 1: , ,'and el with terminal points A , B,, and ,C as

shown in Figure 3-10, we need only prove, that tr = . In this diagram

we hEA chosen x and y positiVe aliiOugh this restriction is, not needed.

(1.)' Draw at line through C parallel to the line containing tr . Let D be

the point of intersection of this line, with the line containing t 4

107
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#(2) Since 11 is parallel to , it is some scalar multiple of A .

Thus, for some unique x = .

(3), Similexlyt the. vector t, along the line containing 1T, is a scalar

4 multiple of IT . Thus, for some,unique Y t=

4 14) Then' -6r=15+ t = xr+ yt which shows 6- is a unique linear Combination

of r and 1- . We have the equivalent statement;:

c is a linear combination of a and b .

We note tliat if
....

c is parallel to a
At

or b ,, then`4 Jris a scalar. multiple
.

J. 1

of either a or b alone,.
- 1 (

.\\L

THEOREM 3-6. (pistributive Properties)

#1. rCP + =rP +rQ.

2. (r + s)P + sP .

Figtre 3(.11

Proof of Part 1: r(P +1) = + tr.

In thisIiitof, we assume P and Q qn distinct lines with r > 0 .

= t\

rIQI 4)-311,4ft 111..0 ,

(1) In Figure 3-11, t

Therefore: 121

108

1



(2) it .'IJIll ..11P1).
rtl r1:1

;

(3) = de,(0,g) = d(A,r0

111 = d(0,A)

1/t1 d(0,P) = d(Q,C)

141 = d(C),Q)
.

d(A,D) C).(4) Combining steps (2)- and (3) we hdVe
aTOTIT

.

ROAD

() = rii(0,C)

IQI = r I =

, .nd therefore

(6) Since the vectors, are in the same'direction, we have D 1 rt.

(7) Jr or

rtf = rft + rt. , and since 6. =

rat + = rP + 4

Let us cOhsider the special cases where the non-zero.vectors

are collinear. They are then parallel and have either the same-or opposite

Senses.

If they have the same sense of direction, then

(1i) By definition, + has the same sense, of direction as and - et
40*

and has magnitude 'II + IQI .
1

(2) If r > 0 , then r(P + also has the sam(sensp of direction as

+ , lt , and t and,has magnitude r( + = r141 by

definition and the distributive taw.

(3) In the same,way, since r > 0 , 4 + .has the same sense of direction

as it, 4, I! , and t , and has magnitude. IA31 + 1.41 = rrPI + 44'1

(4) Since the vectors r(t + t) and it + 4 have the same magnitude and

the same. sense of direction, they are equal, as was to be shown.
t2.

The case in which P and / have opposite direction is treated in a
4

similar fashion and the proof is,left for class discussion.

The proof of the cases where r < 0 ±s also left for class discussion.

The proof of the second part of the distributive law: (r + s)t = it + st is

left-ak an exercise.
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THEOREM 3-7. if it and I are distinct vectors hot lying in the
. .

same line, then the vector 11 + iff will terminate on the

line deterAined by the terminqi- pOints of andand' B if and

only if p + q,= 1

a.

I #

B-A
, Figure 3-12

Proof 1

(1) C is collinear with A and B if and only if C = A or AT

(g) AC I I OD if and on13; -if there exists a q # 0 such that

or

or

or

= q(t - 'At) ,

2-=-1"
+

c.-q13 + ( 1 -

= pt ql. where p +1 q =

We note thiti 'if. q = 0 , then t = .

.

%

'4

The statement = qlr + (1 - is a vector ionii of an equation'of the

line through A and B_.

Each particular choice of p (and Consequently of q) referred to in the

Theorem 3-7 determines a vector to a point on the line 11. fn Figure 3-12.

We can therefore describe `subsets of the line r by placiQg conditions on the

'scalars p and q % %

The-lina = (v 1T = + qB ;ahem p + q = 1)

The segmen-C--Nk= (X : = +.:Jalt where p + q = I , and 6. > 0 , '4 >.101

The ray At = [X : = + qB where p + q = 1 and q > 0)

The ray BA = (X X = pA + q3 where p +.q = 1 and p >,0)

110
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The ray, opposite to g = (x.: X = where p q =.1 and q < 0)

The interkr of E = (X : + where"' .p + q = 1 and p > 0 , q > 0)..

Furthermore, ,

(i) if' r cis where p1- q = 1 p > 0 and q > 0 , then X is

an interior point of A$ , -
,

(ii) if 2 :73 + qt. where p + q = and either % or is,zero,

then X is an endpoint of AN , and .

(iii) if 2 = +0 where p + q = 1 and either p, or q < 0 ,

'den X is a point of the:line exterior to AN, .

We observe that in the vector representation pt + (1 - p)B the scalar

is-also a coordinate in one of the coordinate systems for the line. When

p = 0 , we obtain B ; n p = 1 , we obtain )t . The value of p which

determines a vector in this vector - representation of the line AB is .also
flk4,

the coordinate of the point X in the coordinate system for the line with

'origin B and unit-point A .

THEOREM 3-8 If P divid AB in_the ratio , then

111'"+ 11 where A , and Itre. origin-vectors
m

to points A , -B P respectivgly.

(1)

(?)

Figure 3-13

Referring to, Figure 3-13, ,--gt P (Given).

.

a n
(the vectors lie on the same line).

b - m

Q

111
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(3) m(1 ,1-11.(t -

(1k) nip -, ma = nb np

(5 ) + = rata. + rit .

. .

(6) (rd+ n)r) = mja' + , or 13.= + 1:1
m + n

r

#71
+
m + n

t .

(7) In termsOf origin-vectdrs, we may 'then write:,

*r +
41 t+ n .ft.

ld
M 1- Ii. M + n m + n

.

Note : If P is the' midpoint, then Ir 7= 1(2Ss+ t)

Exercises 3-5

iven vectors R, , and t with their terminal points A , B , and C

on a straight line:, so that -al.= p2T + p,+ q = a

(..al What happens if r or It is the zero vector?

(b) What are p and q if = r ?
(c) What can we say t tb, if

(i) p > 0 and > 0 ?

(ii) p < 0 ?

(iii) p = 0 ?

(d) Construct' figures to illustrate the ,cases:

(i) p = q = 1

. 1 2(ii) , -q =

5( p/= - q =
4. 4

(iv) p = 2 ,q =
.4;

1 A.t

2. (a) the ratio of the divisionof a line segment is given by

= 2:3 , ,find n and in so that n + m = 1 .

(b) Same, as pait (a) for m:n = 5:-3

3; Make a vector drawing to illustrate Theorem 3-5: iiYen

(a) ,x.= 2 , y= 3
"-Arlo (b) x-= -2 , y .

4. Prove Theorem 3-6, Part 2,

J 112



3-6. Components

' 3-6

_114-

We have used extensively the correspondence between points in the plane

and vectors. It is fruitful to describe this correspondence in another way

using the rectangralar coordi-tates of a point. To each ordered pair of real

Aigters° (a,t) , there corresponds Erunique vector emanating from 0 and
t

terminp.ting in that point and thus we make'the'following definition.

.
4

,
,

1!DEFINtrION.

.

The.
11

e.symbol [,151 denotes the origin- vector to

point (a,b) . :the number ,a is called the'x7tomponent of

the vector and'the number. b , the y-component of the vector.

We, now describe the-operations involving vectors in terms -of components.

TAOREM 3-9 If X = (a,I1) and Y = (c,d)

+ y = 1a. + c b +, d]

46.

, f.

(a+c b+d )

k

-sr

Figure 3-14
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k .

IiieProofs. parallelogram in Figure 3-14 is constructed according to
.

the definition of addition of vectors.

Since AtOMY = 6XRP,,S, d(0 M) = d(X,R) = d(S,N) = c and d(M,Y) = d(R,P) =d

The veitex P opposite 0 Is the.poin c , b + d) , and this vertex is

trieerminal point of r+ *If the,veetpi..s have the same oropposite direc-

tions.,

. A

the proof follows immediately from the definition of vector addition.

If Is is the zero vector [0,0) , theh

[a,b] + [0,0] = x-+ Y k [elt] = [a + 0 + 0]

THEOREM 3-10. If 2"= [a,b] and 'r is a real number,, then x=r = [ra,rb] .

The proof'is left as an exercise.

THEOREM 3-11. Weprove, using components, a theorem learned earlier: Two

1non-zero vectors r and y lie in the same line through 'the origin,

if andonly if X = r/ for some real number r .

Proof. If = [a,b] and,:t= [ra,rb] , then Is and lie in the

line ay = bX . Conversely.,if = [sib), and if 1 lie n the" line which

oontains Y , then the components of '$' must satisfy heequation ay = bx .

Hence 5r= [ra,rb] for some real number r . ,
'ANIIgitvector [1,0] is indicatedlby the letter i and 0,1] by 1,_. The

i and j vectors could be written as i and j but,,in accordance with

we shall 'use the simpler notation. They represent the unit

the horizontal and vertical axes respectively.

(al,a2) ,'the origin- vector A ply be written as f6llows:.

. 150,

= [ai,a2) = favoi + [0,a2) = ai[1,0) + a2[0,1] = ali + a2j .

coMmon usage,

vectors along

If A =

14,
Note that a1 and a2 are the components of A ; ail and Etj are called

the component vectors of A . We observe in Figure 3-15 tha'c any origin-vector

can be written uniquely as the sum of its component vectors. The magnitude of
4

A is
2

+ a
1 A2

....-*-,-.1"1111.
7e 410....--
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.. Figure .3-15

,TheIt
,

use of components leads to a,simple_arLthmstio of", vectors, as will,be .-
. ,

seen in the fo11owirig sections. ,

)
J

.-

Example 1. Given Z F [2,3) and ? = [4,5) , .....,---
d

Find Z (4,-2) in tens of IC and 1' .
,,

We must find scalars r and s ,,such, that = r[2,3] + s[-1,5] . Hence

[4,-2] [2r,3r] + [-s,5s) = [2r s , 3r + 5s] . .
4

Since the components of a given origin-vector are unique, we haye:

2r - d = 4

3r + 5s = -2

18 -16 1We find tipat r = , s =
17

; hence z =
8(2

'

,

( -1,5]
17

We can form'vector description/ of ,lines and .their subsets using com-

port;nts.

Exhmple 2% Find the vector representation, in terms of a single parameter,

-for where r = [3,4] and B (-2,3] . lot

Solution. Let VI" be the origin-vector to any_ point on

cab
(1) = + (1 -r) (Theorem 3-7)

= r[3,10 + r)(-2,3]

,= [3r,4r] + 2r , 3 - 3r]'

(2) .Thus AB.= (13:1.= [-2 + 5r , + r))

115
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Example. 3. Find, using components, a vector- representation of AB wher

A .=-13- 4)and B = (-2,3)

ion. .17 = (3,4J, and -11'_= (-2,3) As' in Example 2, \any point P

e represented by

- jx AB = P : Yr= + ( 1 - r)131 .

However we must place a restriction on r so that P wii-1 lie only on AB .

Thl.s condition will be < r < 1 since P = A itieki-"r =1 an P =_
when r = 0 .

,
The complete solution is:

-7Z.= = + 5r; 3 +r], 0<rk1}..

Example 4. 4nd, using components, a _vector repreeentation of BA wher

A = (3,1) and = (-2,3) .

Solution. This- problem differs from Diample 3 in only one respect.' We

must now place a-restriction-onr so that _P- on BA ., This

condition will be met -if' r > 0_ since P = B when r = 0 and P lies on

the ray emanating from laTTeld gonteXhihg A when . The Complgte soh

ti-on -is: - . ...
.1.. , ,,, ',

AI = 1 i" ,:r = ( - 2 + 5r , 3 +1-] _fr.> 0} .

-1-.-....17:.4...,, ,-, ...

Example 5. Find the -vector representation of the trisection points of

"A13- where = (3,1d and, r
Solution. Referring to Theorem 3-8, we have

P . m + n

where P -the_se ent in the ratio. .

There are two pOints of trisection, one where n:m =,1 :2 ; the other whe:

n:m 2:1 . We shall do the first, part.
,

2(3,10 +1(-2,3] 2[3 4] 111 fa

3 ' 7` '

o

), ,..,, , c.., ,

12,3- '.



ExerCises 3-6

. kiiritte;COMponentso
\,\

(a) (3,2) + [4,1]

(b) (3,-2]

(c), 4t5,6] .

.(d) -4[5,6]..

(e) -1(5,6]

(f)- .

(h) -3[44 ,11 - 2E-1,3]

2. If Ttt = (3,-5] , T3b.q [ -1,6] , 6= [2,3] , find .tbe compon nts of.

(a) - e. (d) 5(1t - 3Te--

(b) 25 + 3e. r (e ) 3(t 42't -1\t) + 2(t - t

(c) 2(f+ - t). (f) 5(t t - 3(t t - e)-.

. What is the 4 component of i ? of j ?

Find the magnitude of the followingoolactors:

(a) i + j .

(b) 3i - 4j .

(c) ai + bj

(d) (wse)i + (sin e)j .

a

3-6

I

. Vector 'P. is drawn frai A = (4 2) to B = (5,-1) . Write its origin -

vector P in terms of i and-

. Express the zero vector e in terms of two distinct non-collinear vectors

Y and Y lying in the same plane.

7. In terms of i and j , desCribe the,vector represented by the arrow

extendtpg from 0 to the midpoint of the segment joining (2,5) and

(5,8)\.

In terms of. i and j , describe
0#4

(a) -Pthe unit vector making an angle of 30 Nwith the x-axis.

(b) the unit vector making an angle of -300 with the x-axis.

(d) the unit vector having the same direction its 41. - 3j .

1

117
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'9; Find x and y so that

(a) x[3,-1) + y[3,1) = C5,6) .

(b) x[3, ?] + Y[2;3) = [1,2] .

(c) x[3,21 + y[-2,3) = [5,63,

(d) x[3,2) +sy[6,11.) Ainfinitely many solutions. Why?)
E

10. ReRFesent an arbitrary.vecTr [a,b] as a linear combination of

(A) [1,0] and [0,1).

(b) 11,1) and 1-1,1) .3.

(c) [... 1 = 1 ] and 1-1
'
0).

11. Physical forces possess both magnitude and direction and therefore may be

represented by vectors. In physics problems it is often convenient to

use x=components and y-components to represent the horizontal and

vertical components of a force..

' Suppose a sled is being pulled along level ground by a cord making an

angle of 30° with the ground. The tension'(magni.tude of the pulling

force) in the cord is 50 pounds. What is the component of the force

parallel to the ground, and what is the component of the force perpen-

dicular°io the ground?

(Hint: With the force vector emanating
1,1-

from the origin; the horizontal vector t-

will be IT cos 30°,01 and the . y
.,'

.
vertical vector will be [0, T sin 30°) .)

12. Two forces act simultaneously at the same point. The first, has a __

magnitude of 20' pounds, and direction 37° aboye'the horizontal and

toward-the right. The other force has a magnitude of 30 pounds and

direction .30° below the flOrAontal and toward the;right. Find the

vector which represents t e,res4tant of these two forces.,

13. Refer to the fofces of Exerc% e 12.

(a) At what angle must the second force act if the resultant acts s.

horizontally toward the right?

(b) At what angle must the second force act if the resultant a s

vertically?

a
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c
14. tuppose three forces accts simultaneously at the same point. (It can 11

seen from the commutate and associative properties of addition for

vectors that there is but one resultant for all three, no matter which

-« two are taken first.) Find the resultant of these three'forces: 20

pounds acting due west, 30 pounds acting northwest, and 40 pounds

acting due south.

15. If two forces

they are said

of the other.

have the tame mAgnitude but act in opposite directions,

to be in equilibrium and each it called the equilibrapt/

(a) Find the Magnitude and direction of the eqUilibrant of the

resultant of two forces, one pulling due north with a magnitude

of 20 poun s and the other pulling southeast with a magnitude 4

Of 30 you
.1

(bel) If a thir force of 10 pounds acting due east is added, find the

force which will provide equiliqiUmfor the -whole system.

LL. A picture weighing ten pounds is suspended evenly by a wire going over
.

a hook on the wall. If the two ends of the wire make an angle of 140
o

at the hook, find the tension in the wire. (See Exercise 11 for the use

of "tension".)

17, Prove Theoems 3-1, 3:2,1And3-6 using components.

18. Prove Theorem 3-1C.

19. Firid.vector representations,

described below:

A
-a, r where = :2,3) and I =

b, tg where x = 1,3] and 3 = [3,9]
4-4

C) AB where«

where

where

where - = Cl) ani = 2]

in terms of a single pa*meter

r =[4,-7]* and d = (4,2]

= [2] and B -=z;3]

[-3,2] and t =

(g.) aT where

h) Mr where

3ar where

AB where

BA where

where

r = [3,4) and t = [-2;3]

r = [1,-2] and 1r= ( -3,2)

r = [2) and t = [1)

= [3,4) and t= [-2,3]

= [3,4] and = [ -2,3]

= [1] and 1r= [2)

for thethe sets

r

The ray' opposite to n where t= [,4] and t= [ -2,3)

The interior of segment, AB where A = [-3,2] and 1r= [1,-2)

119
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20. Find the vector representWns of the midpoirits and trisection points of

the following line segments:

.
(a) where A = [0,0], and B = [6,12]

(b) If 'where A = 1-3,2] and B = [10,-11]

(c) AB where A = ral,a21 and B = [b ,,,b2]

21. Find' tlie vector representations of the points which divide the directed

segment ( RQ) in the ratio
r.

where:

(a) P = (4,6] z Q = (-;,ir] , and

(b) P = [4]% Q = [ia] , and =

(c) P Q = [3,2], and
. .

(d) P = [ -1,4] , Q = [9,-5], and

r
=

.s
1

r 1

, 7
1 r Iff

(e) P.= [73 2.] , =,r7,,-17), and =
s 7r

6-
(f) P = [41 , = 1

r

8
11] , and =

s

120
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3.7. Inner Product.

3 -7

Our algebra of vectors does'not yet include multiplication of one vector

by another. In order to make a definition which will have significant

consequences, 'e investigate the angle between two vectors.

,DEFINITION. Le X and Y be any two non-zero vectors.

Then by the angle between X and Y we, mean the angle-
-a,

whose sides contain X an8
......

Y . This angle has a unique
...-.1...1.. .--

_.-

degree measure between 0° and 180° (inclusive).
1-

4.

a

Figure 3-16

Let (9 denote the anglebetween ' and 1 . The law of cosines,

applied to triangle OXY enables us to write

(d(x,Y)2 = 1/2 - cos e

The term IX,,YI cos e has significant physical applications which lead us

a useful vector concept. One such application deals with the work done in

Applying a force through a given distance. Since we must consider the direc-

tion and magnitude of both the for which is applied and the motion which

takes place, it is customary'to represent them by vectors r and t. , where

s= MI is the distance.

121
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-
(

Figure 3-17

Th Figure 3,17, an object -at Q.. is-moved a distance . s by a force

This force is applied to the object along a'straight line and in the same

direction As that line so that all of the force acts in the direction of

motion.
'

,

On the other hand, if the forge is applied at an angle e , as shown in

Figure -18, only that vector compone4 of the force, f` , which produces

e motion is effective in performing the work done.

, .

Figure 3-18
---

In Figure 3-18, d(0,S) = s = 11>'I so

Work = I Is = I I s cos e

)

111 cos- e.

DEFINITION. Let X and Y be any non-zero ve ors. Then

the inner product, X .Y of the, two vectors is the real

number

IXIIYI cos e

where IXI is the magnitude of X , JYl is the magnitude'

of 11 , and e is the angle between and Y . If

either X or Y is the zero vector, X Y is defined to

be zero. .

-

The inner product X Y is usually read "vector X -dot vector Y" and

is therefore sometimes called the "dot product". Notice that the inner

product is an operation that assigns to each pair of vectors a real number

rather than a vector. The operation is obviously commutative.

122
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In view of the above definition, Work = 111. lr. Also

u 444-$42 4;

, u ,

Example. Evaluate ic f 1Z1 = 2 , IYI = 3 and (a) e = 0° ,

(b) e =115° (c) e = 900 , d) e = 180° .

3-7

= ,

I

Solution.

4cf (a) = 2 3 .pos 0° =4.2. 3 1 = 6

1. 7-2. 3 cos 45° = 2 3

(c) 3C Y 21. ,3, cos 90° ;7 2 3 = 0

(d) X Y = 2 3 ,cos 180° = 2 3 (-1) = -6

The inner product has 'many applications. One of these is test for

perpendicularity.

THEOREM 1:12 rf, X and Y are non -zero vectors, then the are perpen-

dicular if and only if

X X = 0 .

6 "
$

Proof. Accorditi to the definition of inner product

X Y = IXI ill cos e.

This product of real numbers is zero if and only if one of its factors is
,b

zero. Since 3Ce and )! are non-zero vectors, the numbers IX!. d are
. ,

not zero. Therefore the' product is zero if and only if cos e = which is

the case if and only if jt and Y, are perpendicular. '

The following theorem, supplies a useftl formula for the inner

vectors.

TEMOREM La. If

then

4

1=. (xl,x2]

PP 1

'2 '

= x1Y1 + 'V2

123
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4^:fr

Proof. From the law of cosines and the distance formula we

write (see Figure

2 + -.(c1(x,1?1' = 11.111 cos. e

1 r 2 2 2
= + x + y - (5c1 -2 , 1

I

1,
=
2 1 1

+ 2x2312)-= xiyi,+ x2y2 .

can now

Example 1. If 1.= [8,-6] and t= [3,4Y, show ..hat' and It are

perpendicular.

Solutioo.. 1%., 8 3 * (.6). 4 = 24 - 24 = 0 .

Since It and It are non-zero vectors, Theorem 3-12 snbws tnat.tney are

per/Andicular.

Example 2, 'Find the angle between the vectors I.= [4,3] and 1t= [-2,2]

Solution .f

a

cos e

.

Figure 3-19

f. = ItImcos 6 st

t tr. 0.0(-2) + (3)(2) = -2

= =

\

'lr -2
-.141

1-Z1 I
B I 104 To

A
A-

e 98n
)

We shall find further application fo the formula

ri.
cos

1p4
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The Angle Between Two Lines. An application of this formula cane made

to find the angles formed by two lines with equations in rectangular fonn. .

Suppose the lines are _Li and L2 with respective equations

bly + ci-= 0 and a2x +1;b2y + c2 = 0 .

.

. 4

'

4 /

.41111111111111

a
\

1

N2

In Cid ter- 2 we learned that the respective normals N
1

and N
2

have__

direction n ers (al,b1) and, (a2,b2) . We may take these as vector com-

ponents vectors along N1 and N2 . From the diag*m, Le and Z.0 have

_ equal measure since each is the complement of La ; hence, we may'find e ,

the measure of the angle between' LI and L2 , by finding-0 , the measure of

the .angle between their normals. Therefore

[al'bl] [a2'b2]
cos e = cos 0 -

r.
ala2 + b1b2

1(al,b1)1 1(a2,b2)1' la 2
+ b

2 2 2
r

1 1 2 2

Tbisis the same formula we found in Chapter 2 by another approach.

Example. Firia the angles formed by the lines with equations

3x + 4y + 5 = 0_ and 5x + 12y + 9 = 0 .

(Solution. Direction numbers' for the normals to these lines are (3,4)
0

, P
and (5,12) ; therefore,

. w' ,-...,i

[3,4)45,12] 15 + 48 63 63
cos e = .

5713 '
, , 1[3,4111[5,12)1

,/3 + 4g 162 + 122

coS-0 .969 , , , ana e 0 14° .

The angles formed have measure '14
o

and 166° .

125
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-Exercises 3-7

1
*

i = [1,0] and J [0,1] , find

(a), i. j (e) (1 + j). (1 -

(b) j 1- (f) (21 + 3J) (41. - 5j)
C..1.> i (g) (al + bJ) + di)

(d)

2. If A = [3, , r3= [ -2,1] , ,

ta)

(b)

(C) 3/ (fs 6)-

. (d)' 2i. (3r+ 20

i re (e) ( + ) . ( )-

.gP
(b) 1

(c) -2

(d) 3

Find the angle between X and.

Rai 0.

kt
is.. Given ,r

(a) A =-1ti - 3j -, find 1712'.

(b) B = 12i + 5j. , find 531

4

(f) (213-+3t).(2B -3t)

to 0; i:'51b. (31 - 2t)

(i) (2A - + 4Z) (5A - +s4i3)

(I)

(e), -4

(f) 5

(), 6

(h) 76-

t '

5. If -X = 3i + 14i, determine w so that Y is perpendicular to

if Y is

(a) wi + 4j
(b) - 14.j

( rs)14i + wJ

1(d) wi - 3J

(e) Find an origin-vector-in component form which is perpendicular to

X and four times as long. (two answers)

-6. Given T= 2i - J and B = 3i +6,j as sides of 7,5A0B ; *abet kind of
a triangle is 21A0B ? Find the third side,o7c in terms of I and B .

rind "6' , the origin-vectorof, c , in terms of its wilt vectors.

7.' Let 7:-.= 2i - 3J 3 B = + j . Find

(a) the angle .between A and TS ;
(b) the work done by A , considered.as a farce vector, in moving a

particle from the origin to' S (2,0) along the x-axis.
" 126
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A-s ed is pulled'a distance of s ft. by aoforce of f lbs., where
*->

F re esents the Force which makes an angle 9f e with-the:horiontal.

Find the wok done if

(a) s = 100 ft:. f = 10 lbs., e = 200

(b) s = 1000 f .= 10 lbs., e = '30° .

9. In Problem (8), how far can the sled be dragged if the number of avail-

able foot pounds of work is 1000 and if-

(a) f '= 19q lbs., e =

(b). f = 100 lbs., e = 89° .

, 10. Let 1(coM3 e)i + (sin e)j and

1 = (cos (0)1 + (sin 0)j .

Draw these vectors in the xy-plane.

osy.iiila, A B, JAI ,

fr

A .

,,.(b) 130.z:those results to prove that

e) . cos cos e + siri m sin e

11. Prove:
X. Y

< 1 .

71X1IYI

12. Compost on the rollowingi there is an associative law for vector addi-

tion: (A + B) + C = A + (B + C) . Therefore, there may be an associa-

tive law .for inner products: A. (B .C) = (A. B). C ,

3-8. Laws and Applications of the Inner (Dot) Product.
---,..

A useful fact about inner Rroducts"is that they have some of the

algebraic properties of products of numbers. The following theorem gives two

such properties.

THEOREM 3-14. If X , Y , Z,are any vectors, then

(a ) p (7 + E4= 5F t

(3) (tZ Y = t(5F = (Z (ti) .

Part Qb) states "a scalar multiple-of a dot product can be

attach to either vector factor."

127
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Proof. Let X = (xl,x2] [yi,Y2] r= ki,z2] . Then

4'1) =` fx32.x2Y: + zl , y2 + z2]

xl(31.1tz1) + x2(y2 + z2)1

1

= + xizi + x2z2

.f

(b) ftxi,tx2] [yi,y2]

= txiyi + tx2y2

= t(xiyi + x2y2)

= t(X 61)

..1 . .bio

Corollary; X (aY = a(X Y) + b(X z)

The proofs of this corollary and the last part of Theorem 3-14 are left

as exercises.

We may now use the inner product to prove theorems in geometry which

involve perendicularityi ac

I

.
EXample 1. Show that the diagonals of a rhombus are perpendicular.

1 Solution, /Choose the origin as one vertex of the rhombus. The two

adjacent sides 'can,be represented by the vectors A and B with 1-4.

1.

Figure 3-20
////'

Thus one diagonal is represented* +15 and the other diagonal is
-A a

parallel to A - B To test for, perpendicularity we calculate the inner

product of these two vectors, using Theorem 3-14.

1289 35
AO'
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But RI

are2-.perpendicular.

)

,.-

Proof. Refer to Figure 3-21: Let BE and
\

bealtitudes of
f

+1) (A - Ti) = cz+ - (7+
a a Al* a a a a 4.111.

= A.A+BA - AB-BB

= I-Al2 ,l712

that the inner product is zero and hence the diagonals

49.

Example 2. Prove that the altitudes`of a triangle are concurrent.

C

. -

Figure 3-21

Then B E and CF must intersect at some point H .

some point D . We must prove X1/ 1 t-6 .

(1) I; (It* - C') = a IS c = 0 ; (Why?)

thus b a = 7 a c.

(2) Similarly, -C%

(3)

eml Alto a
thus ca= cb

4.
a)

Ari,.cb- ca

: ; = . (Why?)

=r0

AH intersects BC at

(4) - b a = 0 .

(5) (C- - TS) -a': 7 0 and "E: 1 (7 - -7) .

(6) Hence AD l BC and the three altitude's a3 .c6pc;rrent.

I....
. -

The inner product can'be used to derfe another result. Let

X = EX X ] be a non-zero vector.

vector and we have

Then X' = [..x,,y is also e. on -zero
.

4 1:".



3-8

-1t*Tc.b' =,Exi,x21. ("x2,x11 x1x2 = 6
tI7

Hence by Theorem 3-12, X and 5ti are perpendicular and the angle between

the vectors-is 90° . Now let Y = brial be any non-zero vector. -We now

calculate .

Figure 3-22
4

To do so:we must determine the angle between the vectors X' and T. The
'relationship otvthis angle to angle ,e i,s not always the same. In

Figure 3-22 the angle 0' between X' and Y is 360° - (90° + ,e) .
...i

Ift. Y were near the posi'ive Bide of the y- axis, the angle 0 would be
4 :. 0 % 1%

90 +
,

0
, I)i. ; were between X and X' , the angle 0' would be

o =1.-
- 19 g '. .xf Y were near the negattVe sida-of .the y-axis, the .angle-

would be 1 0790 °''. Therefore, we have
A /

i -

_AV

.cos 8' = cos (9og.. g)

. ior cos ( 0 - 90),

cos-[360° - cyo + ,e )] ,

cos (9o°'+ e 5 ,

. ) ,
.

....

sin e . -_,

G
Therefore, in any case, since X', = [-xi,xi]

x' .1 = [-X2,X) (51;5r21 = X112 )23'1 = fr1 ti cos 0' =
,..

+
P t ' I Y I sin

-.
e .I

, .

49t-

r

. 4

;

130.
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-

But from the figure, we see that IXI sin e is the length of the altitude h

drawn from X to line OY in WXY. Thus the area K of WXY is givell by ''

K = -2 -111h .

However, since h = lXi sin e ,

= 21711.7.1 sin e = 2lxiy2 - x2y11

3-9. Resolution of Vectors.

In the first discussion on vector components (Section 3-6),,it was noted
J.

that the vector X4, (a,b) had a as its x-component and b'as its y-com-
.

ponent.

r Figure 3-23

1/4 As before, we have Ahe component vectors ai = A , and bj = B .

We now wish tooextend this concept of component vectors. Consider any

Via

abe

non -zero origin- vectors X and Y to points, X and Y respectively. Let

e pe
k

end oplar from, X to, OY, meet, OX(in..44.
'

Figure .Then the vectors, m and, n corresp

1 .04.
nt P as indicate din

riding' OP , and ate

called the compoheni vectors of X with respect to Y This 'idea is not
.)

restricted ito origin-vectors.
!

a.
Figure 3-24

by

-

M
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eis extension.of the concept of components of vectors is .often helpful

ysical and geometric applications, where these ideas are discussed W
.

terms of the resolution of a vector into vector components. In the above
.

.......

discussion; we say that we resolve X into vector components m and n
respectively par.SiApl and perpendicular to Y .

. .
,

have
A

(1) .the component of X in the direction of Y ,

From the definition' of the inner broductt, of two vectors X and Y we

(2)

Y

171

111

Y X 74X Cos e =
.11.1 171

where

represents the unit veetorrelong the Y. direction..

the component of Y in the direction of X ,

Y cos 8 = Y. X
where-

IXI
I *.

represents the unit vector along the X direction.

Exercises 3-8 and 34

1. Verify TYleorem 3-14 (b) for the vectors

.. 7= (2,4) , IF (-1,-3) and t = 5 .

If ~X = (xl,x2) and 7= (Y1;Y2) prdve that (t7).71i= 1E. (t1) for

any scalar t .

p e the corollary of Theorem 3-14.

(,a) 'Supply the ;easoni for ach Step df the proof of the theorm in'
,

.

.

.

1

I 1

Example} l'011owingThe011 3-14.1

(b) Same as' (a) for,the theorem in Example 2.
1 '

5. Fi ,the area of the triangle determiqed by 1. = (3,-11 'and 1..= (2,61

nd check yOUr result'by any method. , ss

.

6. 'Given A = 21 - 3j 'and ii= -2i + j .Find the component of'

(a) :As: upon B , ', 1 4

(b) li upon As

-132
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q. Given a vector representing a wind of 30 mph: from the southwest.

Locate this vector in a coordinate plane where the positive side of the

y-axis is considered to lie in the north direction. Resolve this vector

into its m -and n components (as described in Figure 3-23) with

respect to

(a) the, x and y axes.

(b) the line- 8 = 15° .

(c) the vector .r.410,15) .

Challenge Problems

*±%

1. (Ceva's Theorem) Let P be any point not on triangle AMC . .Let

75, BP , CP intersect
.

BC , AC , AB respectively

at Q, R, S . Show that

4(Ag 01211.gc,R)
dcs;r3T p(R,A)

2. In triangle ABC , let

CD 1 AB and let P be
ti

any point on CD . Let

'AP intersect BC at M

and BP intersect AC

'at N . ShOw that

Zpm = LC DM .

- 4

(Hint. Take D. to be 0 .) '4
'74

3. (Menelaus' Theorem)

ibe any lihewhicndoes not

pass through any vertex of

triangle ABC . Let 2

intersect AB , AC;

respectively at P, Q, R .

/1 i

Show that

gLai.d(C,R) ,d(B,11
d(R,B) d(P,A

4
":".1.

133,
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-b
ee

4. (a) Prove algeraically

(x1y1 + x2y2)2 < (x12 x22)(y12.1.

NOTE: This is a case of Schwarz's inequality another form of

whiTh'is

(xlyi + x2y2 + x3y3) < (x12
y22 x32)(y1? y22 y32)

(b) Write these in vector notation.

(c) What geometric interpretation can be made for the case in which the

left and right members are equal.

3-16, Summary and Review Exercisei..

. ,

The chapter just concluded dealt with vectors and their applications.

After 'reviewing some basic ideas about directed line segments (objects with

both direction and magnitude), a vector was defined as an infinite set of ,

equivalerit'directed line segments. The Origin-Principle allowed us to relate
a vector to any point in space as an origin. We found it useful to select the

origin-vector, that member of each set with its initial point at the origin,

as -the simplest representative of a vector. The unit vector and zero vector
.

were defined and the term scalar introduced.

The next step in setting up an algebra of vectors was taken when the

equality of vectors was defined in accordance with common practice. The

operations of addition and subtraction of vectors and the product of a vector

by a scalar were defined. The last concdpt made it possible to state that two

vectors are parallel if and only,if one is,a scalar multiple of the qther.

The Origin-Principle relates operations with vectors to the corresponding

operations with their respective origin vectors.

,It was then proved that the commutative and associative laws hold for

the addition of vectors. Scalar multiplication satisfied the associative'law
(r4F = r(sTr) and the distributive laws r(13.+:= rP + 4 and

?(r + s)P = 47+ sr). The zero -vector 0 has the usual properties of the

additive identity; the additive inverse, - f, is defined by "f+ (.:P) =

The definition of"a linear combination of vectors made it possible to

prove some basic theorems about vectors. Theorem 3-5 stated that in a plane/ 4,

1 any vector can be expressed in terms of any two nori-parallel and non -zero

vectors. After the study of-vector components, it was pointed out that any

vector can be represented as a linear combination of the unit vectors

134
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i = (1,0) and j = (0,1].. Theorem 3-7 made it possible to determine if a

point P lies on the line passing through the terminaliblnts of two4distinct.

vectors A and B which'do not lie on the same line by proving that

11,?' = (1 - Or+ 11. . Sets of points on a given line could now be given a vector

characterizatton. Theorem 3-8 offered a second method for dividing a line

segment in a given ratio.

Vector components play a basic role in the application,ef vectors, The

operations on vectors were defined in terms of these compodents. If X = fa,b),
..... ...

,

Y = tc,di,,,,then 1+ 7= [EC+ c , b.+ d) and, rX ..= tra,rbi .

. .

The inner produot of two vectors was defined by 7.1 = RI 1-ii cos e
J

where 7, the angle between. the two vectors, with 0 < e < A , It was
4Z -...i. ,.. ,,. ....1 '

then proved that if 7= (xl,x2) and t= (yi,y2) , then X. Y = xlyi + x2y2.

A physical application was presented in the concept of work in physics, An
.. ... ,

important theorem is that two vectors, X and Y , are perpendicular if and
. .... ..

only if X. Y = 0 . The inner produgt has'the following properties.:
o

(1) 1. (Y +1),= l.7+ 7.e .

(2) (t1) = X. (ti) = t(tZ where t is a scalar.

(3) 7 + bZ) = a(7. + b(7 7) where a and b are scalars,

The inner product has many applications in geometry. We showed how it could

be, used to determine an angle,between vectors, to find the area of the triangle

determined by twq vectors wit4A common initial point, to prove that the diago-

nals of a rhombus are perpendicular, and to show that the altitudes of a tri-

angle are concurrent. The-chapter concluded with a discussion of the resolu--
tionof vectors. ,This concept has considerable application in physical problems.

In the following chapter which deals with methods.of proof in analytic

geometry, there will be more proofs applying vector methods to geometric

problems. In Chapter 8 there, will be a brief introduction to vectors in a

three_dimensiopal space.

135
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Review Exercises

1. If I= [3,-5) ; B = [:1,6) , -C-=[2,3] , find X in componentntorm such
that

(a) '7S'+-13=-C-+1
(b) 2r* 313-=4Oft+
(c) 201._ = 3(.6- 7)

2. Prove Theorem 3-3: .

3. ProVe Theorem 3-4.

4. Let r [2,3] , -35:= [30.-2) , C =

single vector equal to

(d) "A. +-23t. 5--
(e) 3(f +I)) = 207-

.. (f) k+2(1.+ 3(Z + = 0

[ -1,3) . Find in component form, the

(a) 21+ 317- (4) 5(7,._

(h)-,7 - 2B + (e) 3(1. + B - 'a) -I; 2(r - B + -16)
(c) 2 ( + ) - 3 ( - ) -(f) 5(t- A +1) - + A - -bC)

5. Use the values of A , 13 , 1, as
fcrrp so that

(a) A+B=C+X
(b) tit + 313" = 4C t 51.
(c) 2(t 73.) = 3(ae-

6. Use the values of A B , as
value of

(a) A B
(b) 2r
(c) 3T 01'

(d), 2r (SZ 2C)

(e), +13-) (Ai- .r)

7. Use the valup of A , B , C
values of

(a)

(b) I 21 + I

(e) 2171 + 3161

(d) 13r31 - 114-Z1

,(e) IA - BI

(f) 12r +

(g),. 1313 - !alr

in Exercise 4, and find X in component

(4) ..Z+2743+q71
(e) 3(-Z + -r) = 2(7 -
(f) It+ 2a +7),* 5(7 )) = o

in'Exercise 4, and find the numerical

(f) ( 2 + 3 ) . ( 2 - 3 )
(g) (3-17+ 5) (3i3- 2-8)

(h) (A + B- 6 ) ( T +
(i) (21' - 3B + VC) (57 - 2C + 413)

AA + 1 -6 .6

, as' in Exercise 4,'and find the numerical

112 r42

M2

I2Al2 13812 14"c12

12 +33 +4-612

3:712

(m) 21r12 31512 418'1\
(n) 1112 + 211111 I12

136

143



8. If. i = [1,0] and j = [0,1] , we may express the vectors of Exhrcise 4

thus: X7= 2i + 3j , B = 3i - 2j , 6= + 3j . In each part of Exercise

4, restate the original problem in terms of i and j ; then, carry out

your computations and express your rdsults'in terms of these components.

. (Refer to Exercises 8 and 4 above.) Restate, in each part of. Exercise

the problem and tie solution in terms, of i and j components.

10. (Refer to Exercises 8 and 4.above.) ,Restate, in each part df Exercise 6,

problemproblem and the solution in terms of i and j components.

11. Given A = (4,1) , B = (2,5) , C = (-2,3) , and D = (0,-4)r.

5,

Find the angle_measure of LABC , LBCD , LCDA , and LAAB ; check

your resu ts.

Using as the origin, 'find the areas of 60AB ,. 60BC , and
I

LOAC .

(c) Use the results from part (b) to find the area of 6ABC .

12. Try to develop, with the methods of ,this chapter, a.formula for the area

o f 6ABC , where A = (al,a2)

13. F ind the area of the parallelogram in which OA and OB are adjacent

sides. Can you a2p1y these results to an earlier exercise in thia'set?

C = (ci,c2)

14. Find the vector representation of an exterior point of division which

divides the directed segment '(R,S) in the ratio
a

where:
0

(a) = [2,-1] , g = [-P1,3] , and = -2

(b) = [ -1] = [2] , and 7!-,

(b) = [2,3,1] , = [1,-2,4] , and 12). =

(d) = [:9,7] = 13,-27*d = -
' 3

*15. Given the triangle ABC with X = [2,3]
0

(a) Describe the triangular region, its

using these vectors and two Sdalars

(b). Show that [1,3] is a vector whose

point of the triangle.
.

(c) Show that [1,1]' is a vector whose

point of the triangle.

show.thet the segment joining the points described,in (b) and

.intersects the triangle.
- ,

0

, = [-1,2] , and t =

interior, and the triangle itself,

terminal point is an interior

'

terminal point itrail exte'ior

ft
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*16. Consider the convex cfmArilateral ABCD with r= c2,3) , s = [ -1,2) ,

= [1,4] , and 15 = [2,41. Find an expression for the pOlygonl region

ABCD using these vectors and three scalars.

* 17. Given the four vectors X , , , and t , whose terminal points are not

coplanar, find an expression for the tetrahedral region ABCD in terms of

these vectors and three scalars.

18. Find the measure of the angles formed by the intersection of the lines

(a) 2x + 3y - 8 = 0 and 3x - 2y + 4 = 0 .

fb) 5x + y - 2 = 0 and 2x - y + 6 = 0

( c ) x + 3 = 0 and

'(d) x = 0 and x = 4

19. Points A = (1,0) , B = (5,-2) , and C = (3,4) are the vertices of a

triangle. Find the measure of each angle of 6ABC

20. Given points P = (-3,-8) , Q = (10,9) , R = (4,9) , and S = (-3,2) .

Find the Measure of each angle of quadrilateral PQRS , and name the

figure.

ta?,
awe

A

F

138

1 45



Chdpter 4

PROOFS BY ANALYTIC METHODS

4-1. Introduction.
, .

4-1'

One of the satisfactions we hope you will gain from your study of

analytic geometry is the realization that you have some very powerful tools

fo solving many seemingly difficult or. impossible problems. We can demon-
;

st to this,.even so early in our work, by observing the simplicity and

directness of analytic proofs for some theorems from plane'geometry and

trigonometry. You will recall many of these theorems, and you also may

recall some of the struggles which resulted from using'synthetic methods on

these problems.

/ ,
t

By increasing the number of methods available to so;ve problems, we,,

cre e another problem.--the uncertainty as to which method to use in.a given

sit tion. We shall Sometimes ask you to use a pauticulanmeihod so that you

may deVelop competence and confidence.in its use., A tennis playei'may, it
7 0

order to strengthen his backhand, be encouraged to use it temporarily more
k

than he would in normal play. Your uncertainty and discomfort with a new.

method will last onay until you have mastered it. You'should fZhdfrrsttaand
, .

also that even a competent mathematician may start with one m hodogid;
o ,;,,

discover later that it is notes convenient a another method. uvnuctr
_.,-

,-
the examples in this chapter,}ou- sholld watch for cluesto the reasdhs for

...4.
choosing one. method'rather than another" Careful observation' t4is point .A.-

-. 6 .
. will smoothythe way you proceed.

For the purposes of this chapter we assume that you knoW the kinds and

basic properties of common geometric figures and that di&gonala, medians, and

the like, have been defined. These items, as well2as the theorems to be

' discussed, may be reviewed in SMSG Geometry, IntermediateMathematics, or
-4mtov,

some equivalent source;

139
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. 4-2

k4-2. Proofs Using Rectangular Cootdinates.

Let us now prove some geometric theorems in rectangular coordinates.

Example 1. Prove: The median the base oran isosceles triangle is

, perpendicular to the base. We might

find the triang), pldced in relation

to'the coordinate axes, as in Figure

4-1, with AC = BC and with D the

midpoint, Of AB 0 From an'analytic

point of view, -to pru've CD 1 AB we

must show that the product of the

slope of AB and the slope of CD

is -1 .

C(e,f)

A (a, b)

,Figure

In or er to ensure that the, triangle is a general one we might select

coordinates as follows: A = (a,b) , B = (c,d) C = (e,f) . It follows that

midpoint- D = (a
+c

b d) . BY hypothesis d(A,C) = d(B,C) .

X

We apply the distance formula to obtain

(1)

2 (b f)2 2 f)2

a
2

- 2ae + e
2
+ b - 2bf + f

2
= c

2
- 2ce + e

2
+ d

2
- 2df + f

2
, or

a
2

- 2ae + b - 2bf =c
2
- 2ce + d

2
- 2df .

.

'
t b + d - 2f

We next calculate slopes. The slope of CD is
2

a + c - 2e

-,

and the slope of AB _is'
b - d-- .

?.-
2

(a - c

The product of the two slopes is

2 21....... -,..--
1b
2
+ bd - 2bf -,bd - d;-+ 2df b2-, 2b1--t-d- 4- 'df'

' 1 -

a + ac - 2ae - ac - c
2
+ 2ce a

2
- 2ae - c,

2,
+ 2ce

;40- ,
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Equation (1) can be written as .

(2) a
2

- tae - c
2
+ 2ce = -b2 + 2bf + d

2
- 2df .

4-2

Substituting the right member of (2) into the denominator of the product of

.the slopes, we obtain

b
2

- 2bf - d
2
1+ 2df

= -1 ; 4'
-b
2

+ 2bf + d
2

- 2df

S

hen e, the theorem is proved.' -

It would be discouraging indeed if all of our coordinate proofs involved

as much; algebraic manipulation as exhibited in this example. Eortuftately,
.

this is not the case, and you may already see what can be done to simplify.-

the'algebra. It was not-necessary to o the coordinates as we did.

The properties of geometric figures epend upon the relations of the

parts and ngt upon the position,of the fig e as a whole. Therefore, in our

example, since only the triangle and not i s location is specified, we could

just as well select a coordinate system

in which A is the origin and B lies

on the positive side of the x -axis.

This altuation is illustrated in Figure

4-2. We now may have the following

coordinates for the points: A = (0,0) ,

B = (a,0) $ C = (b,c) , D = $0)
Note that several of the coordinates

are zero. This is tkycr feature which

simplifies the Agebra in our theorems,

and this desirable goal provides us with

a general guide in Choosing coordinate

axes for all our problems.

In- actual practice we are more

liely to m&kea drawing with the axes

o"r"iented as in Figure 4-3.. This leads

Us to consider two methqds of relating

a geometric figure to a,set of axes.

s41
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The method we have just described, that of assigningocoordinates to a given

geometric figure, is based upon the properties of coordinate systems developed

in Ch ter 2. Another method in common use employs the principles of rigid

moti.6n in which geometric objects are "moved" to more suitable locations

without changing their size or shape. With respect to our currents example,

we would arrive at Figure 4-3 through this second method by assuminl. a fixed

coordinate systeeupon which we place ABC so that A coincides with the
41011*

origin and B4 is placed on the positive side of the x-axis. The difference

in the methods is largely one,of viewpoint.

Another device which you will find useful canbcillustrated by assigning

coordinates to pte
4
vertices of &ABC in Figure 4-3 as follows: A = (0,0) ;

B = (2a,0) C = (b,c) . The reason,for using 2a for the abscissa of B

that we now have D = (a,0) , and we can complete the algebra without so much

calculation involving fractions. The principle here is that a few minutes of

foresight may save hours of patience.

r- Sometimes we pay a small price for the simplicity we gain. )For example,

the choice of coordinates suggeAed in the previous paragraph leads to trouble

1:egal.ding the slopes. Although the slope of AB can be found to be zero,

CD does not have a slope, since a = b . (Use the distance formula with

d(A,C) = d(B,C) to lArify this.) Nevertheless, he problem has been

%im ified, for this means that AB is horiz¢htaland CD is vertical, and

this is also a condition for perpendicularity. '

You might have chosen a coordinate

System in which AB is on the x-axis
3'

but D is the origin. This is a fine '

choice. As you can see in Figure 4-4,

if we choose A = (a,0) ,then"B = (-a,0) .

,f It remains ,,,for us to prove that .0 lies

on the y-axis. Let C = (10c) 'end use

the distance formula in d(A,C) ,= d(B,C)'.°

YOu can show that b = 0 ; hence, C lies

on the y-axis and CD 1 AB .

Let us summarize the procedures we have,seenip this example. Usually

there are more ways than one to attack any given problem, but certain general

steps can:be outlined. It was natural and useful in this example tot"..e.

y

<

Figure 44 :
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rectangular coordinates, since we- were concerned with midpoints, lengths, and

perpendicularity. Other situations we meet later may lead naturally to

vectors or polar coordinates. In the cases for which we decide to use

rectangular coordinates, we might follow the outline suggested below.

(a) Choose a coordinate system (or place the figure,on one) so as to

simplify the algebraic processes. Xi ten this meads having a vertex

of the figure at the origin and one of it Er sides on the x-axis.

(b) Assign coordinates to points of the figure%so as to accommodate,the

hypothesis as simply and clearly as 4ssible, That is, make the

Ihgur4r'sufficiently, but not unnecessarily, general.'"

(c) If possible, state ate hypothesis and conclusion in a way that will

correspond closely to the algebraic procedures being used.

(d) Plan an algebraic pro Whch for opportunities to employ the

distance, midpoint, and slope formulas.
4g.

Let us try another thebrem from plane geometry.

.Example 2. Prove: The diagonals of a parallelogram bisect each other.

Following the outline of our procedures, (a) to (c), we represent a

parallelogram in a drawing and orient it withprespect to the axes 0 in

Figure 4=5. We let A = (0,0) an

B = (a,0) . The question of choosing

coordinates for C and D can stand

some discussion. The coordinates of

D are not independent of

those of A and B nor are they'

independent of each othef: HoWmuch

can we assa ume about a parallelogram?

- We know by definition that the opposite

sides of a parallelogram are parallel.

This enables us to see at once that C

and D have the same 'ordinate. Further-
.

'Figure 4-5

more, since BC II AD , their slopes are equal._,This suggests that we use

slope formula to' obtain a relation he'etteen the absciSAZ of C and D ;

namely, that the abscissa of C is the abscissa of B plus the abscissa of

D . Thus we wr .1) F (b,c) and C = (a + b,c). If we,are allowed to use'

.143
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the property of a parallelogram that the opposite sides have equal lengths,

then we shall reach the same conclusion more readily.

Some people prefer to employ these eledentary properties of the common

figures; others choose to assume no more than the definitions. For the.,

purposes of this section we shall agree that we may use the properties

ascribed to geometric figures by their definitions and by the theorems listed,

in Exercises 4-2, taking these theorems in the order in which they are listed.

Our current'example would'be listed after Exersee 4 so the conclusion of
.

Exercise 4 would be available to us when we chose coordinates for Figure 4-5.

The conclusion of our example is reached quickly. We are required to

prove that the diagonals bisect each other. This,means that each diagonal

intersects the other ato its midpoint. An application of the midpoint formula

shows that the midpoint of each diagonal is
(a t b EN

2 / 2'

We conclhde this section with 'a challenge. Try to prove the following
P '

,.. I
theorem by synthetic methods, and compare your prooflwith the one suggested

below.

Example 3. Prove: If two medians of a triangle are congruent, the

triangle is isosceles.

We.prefer to use coordinates. The triangle must not be assumed to be

isosceles, sb we assign coordinates in

Figure 4=6 as'follows: A = (2a,0) ,

B = (21),0) , C = (0,2c). Let M = .(a,c)

be the midpoint of AC ,.and let

(b, c) be 'the midpOW9f, BC .

Tifekt-IreEihall express the'lyp4hesis,

.d(A,N) =.d(B,P) , in terms-of -the-

distance ,formula.' Youare encouraged

to state 'the desired conclubion and ,to

complete the details of the proof.

.

Figure 4,6
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Exercises 4-2'

The following exercises are theorems selected from the usual development

of plane geometry. You are to prove these theorems in rectangular coordinates,

using the "ground, rules" we have outlined.

1. :tt*line segment joining the midpoints of two sides of a triangle is

parallel to the third side'and has length equal to one-hLf the length.,

of the third side.

2. If a line bisects, one4le of a triangle and is parallel to aseciii0

side, it bisects the third side.

3. ele locus of points equidistant from two points is the perpendicular

bisector of the line segient joining the two given points.

4. The apposite sides of a parallelogram have equal length,.

5.. If two sides of a quadrilateral havetequal length and are parallel,

the quadrilater'al is a, parallelogram.

6., If the diagonals of a quadrilateral bisect each other, the quadrilateral

is a paralldlograt.

7. If the diagonals of a parallelogram have equal length, the parallelogram

is a rectangle.

.
.8. The diagonals of a rhombus are perpendicular.

1\

9. If the diagonals ofi.a parallelogram are perpendicular, the parallelogram

is arhombus.
A 4

10. The line segments joining in'order the midpoints of the successive sides

of a auadrilateral form a parallelogram.
4

di:
11. The line segments joining the midpoints of the opposite sides of a

;-1 1 quadrilateral bisecteach' other`. . ,
71-

The diagonals of an isosceles.trapezoid have equal lengp:&

13. The median of a trapetotd is parallel to the bases and has length equal

to one-half the sum of the lengths, of the bases.

14. If a line biSeczts one, of the nonparhllel Tof e Z4Teioid and is

parallel/to the bases, it bisects the otheit. nparallel side.
,

145
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15. In any triangle, the square of the length of a si e opposite an acute

angle is equal to the sum of the squares of the engths of the other. two

sides minus twice the product of the length one of the two tides and

the length of the projection of the othe on it.

16. The medians of a triangle are conQ rent-in a point that divides each of ,

the medians in the ratio 2:1

17. The altitudes of a triangle are concurrent.

18. A line through a fixed poirit P''tinterseets1 a fixed circle in points

,- A and B . Find the locus of the midpoint of AB . (Consider three'

ossible positions for 'P relative to the fixed circle.)

7 -
) ,

t!'It Proofs Using Vectors.

We shall now'prove several theerems of geometry by vector methods. Some

of the proofs are more difficult than those using. methods disCUssed in your

geometry course or in the preceding section. Oiers are.accomplished more

simply or concisely. In any case, the experience will be of great help in

future mathematics courses and in application tO,-science or engineering.

It will contribute toward your general ihiliiy to solve problems by giving

you an additional tool and approacE. / .t:

.
,

41( We shall demo tr,ate thg4 4pxOaches by solving several probleMs11

detail. y C
.,

,.,"

.,..
. ..

Example 1. Prove that,the medianof altrapezoid is parallel to the

and has-length equal to one-half the sum of the lengtikof the bases.
.

We'fiirsdraw and label a trapzp.i.dk
N '

,
. - .

_AB06 wi.iti, a .1,1,:glLa.nd°F1.01 E an4'~ -F

the r'espectii/e midpoints of AD and pc .

If 1.N were using a rectangular coordinatp.

systemin this proof, we-probably'Nould

choose the
..

axes as in FigUre 4-7. But

since.weare using a vector proof, we do

not need the axes at all; In- fact,

because the origin vectors would not give

u('any advantage-in the proof, neither do

,specify an origin.

1

7

°P. .

Figurq 4-7

. ?
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A vector drawing for the problei might thenappear as in Figure 4-8.

o .

Figure 4-.8

Something dhould -be said about our choice of vector representation.

Since Eis the, midpoint of AD , if we represent AE by E'r , then ED

may also' be represented by.'Z a 4. ,Similvik0 we choose S on the other non-
.

parallel side. c hand d represent the basearand sae represents median, EF

We are to prove

. d(E0F) = (3LA B) d(C
&
D)) '-and

2 It I I ac" and Tc. I I Tr.

Since'one may I'move" from E to F, by going directly there, or by

going through D and C v or by going througherA rand B we have

6.
x = a +r d b

41. Aft ikia

and x + c + b
6

therefore, , _'° 27= c + d -.
. r

.' 7 o

!tote again that when "moving around a vector diagrath,

have thsam e, sense. of direction as our taotiion, and we
.. .

. r
have the opposite sense of direction of our motion. ,.

;

we add vectors which

subtract vectors_which

a
By the definition of parallel vectors, if 2x

Aft

= .c
Aft

+ d,', then

x ; since it is given that c lit; it- fallow; that It II .ac:;.. alto aft Aft
and x II d. Furthermore', if 2x = c + d thei)

0.11t

17) --414:1+ 171), or d(E,F).= --(d(A B) + ii(c,D))2 2 v
,

.
. .

hence, the 'theorem is braved. You.may wish to inNeptigate what happens to the
- .- -

troorif you alter the direction of any of the vectors in the Aiegraph.
- .

'1, 5,i
. .

4
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Example 2. Show that the midpoints of the sides of'a quadrilateral are

the.vertices of a parallelogram.,

.Thts situation is depicted by Figure

4-9 in which ,P, Q, R, and S are the

given midpoints of the Sides of quadri-

lateral ABCD . Once we choose an

origin, each point of the figure de-

tellnines an origin-vector. (Itight

be prOfitable for you to copy the figure

on a piece of paper,c:,select some point

as an origin, and draw the origin-

/vectors to the vertipes.)

x.
.

max,

A pqrtion of the figure wiWa -set of

origin - vectors isshown in'tigure 4-10.

We have alg4 identifieddentified the vectors from

A to P and from P to B

to make use of fact that

d(A,P)=td(P,B) .

, Since" P -='! A -+ a

air allo

P = B'7 a ,

in order

(Had we not been interested in calling your

vector addition, we would haveobtaied the

Division Theorem.)

Figure 4-9

attention to an applicat0j-n'of

same, results from the Point .of

148
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am. Alb am. Ab
We net note that vector P - Q is equal to vector S - R because both

ta Alb Alb

C),. But why did, we choose an expression like P - Q ?are equal to

Alb .111..

There is a good reason for the choice. The line on vector P - Q is parallel

to .PQ , and remember that we pre to show that certain segments are parallel.

Alb Ale .1Ne Al
In order to see the importance of P-Q=S-R us take a closer

look at this situation, using a different, origin. Suppose we isolate the

lower part of Figure\4-9 containing ,

points P,,B, and Q as in:Figure

4-11. If we choose B as the Origin

and -E so that B is the midpoint of

QE , then we have vectors as marked on

the diagram. The vector from Q to P
ANN Ala At. ..111.

is -q tip which equals P - R and is
Jab

therefore equal to T . It follows then
ais. Ala

that the line on vector P - Q is

parallel to PQ . Similarly the line on

vector S - R is parallel to n ; and
Alb al.

since P - Q is equal to and, consequently,
ANN ..111.

parallel to S - R , we conclude that

1T :7::
4 :

\ide.
E

17 I I

SR . In the same way we bhow that

PS ll'QRand pus is-a parallelogram. Figure 4-11
.

--- , ,

. ,

'-,
Examk ple'Prave that the medians of a tr:i

.;,

which is a *Anti of trisection Of each median.

A

4 ¢ 4

-Solution. Let ABC be the triangle and P,

of its sides as shown in Figure 4-121

et,, intersect 111 a point

Q) and 'R the midpoints

Q

Figure 4-12
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By the Origin Principle we may place the origin wherever we wish. If
. r

we, are successful in proving the medians concurrent, the pqint of inter4ectio

would be an ideal choice for the origin, for then each origin-vector o a

.vertex would be collinear with the origin-vector to the midpoint e,

opposite side.

We cannot assume all three medians concurrent, but we can let the origin

0 be the intersection of AP and BQ . Then to prove that CR contains
A

this point, we must prove that R and C are collinear, or that R is a

scalar multiple of C .
.

_ Proof. Let the origin be the intersection of AP and .BQ . Since P
.... .

and Q are midpoints, and since P and Q are collinear with T and B

respectively, we may, write

Al) ; = -I(B + ) = xr

A 1 A A Alb

(2) Q = (A + C) = yB .
lig 2

If wei.subtract Equation (2) from Equation (1), we obtain

"1 2_1 *

1 1y the unique linear combination theorem (Theorem 3-5), x = - --2. and

A y = -- The geometric interpretation of this discovery is that 0 is a
---

t r i s ec t point of AP and ,BQ If we substitute these values in
*.

Equations (1) and .(2) and add, we obtain

.." .." 1." 10" -ft 1 -":` 1
-0.BP+Q=A+B+C=--A-,-.

2 ^, 2 2 N.k?, v,,.

-

Since -
2
1(1Z+ 1) the second two members of this equhity,becom

,

,

l'"
R C F -R = -C.

Thus, R and C. are collinear, 0 is on- "CR and' ,0 is a point of

trisection of CR .
10°

If we choose another point as origin and let{ be the point of inter-

section of the me4ans, the Point of Division Theorem permits us to write

or

1 2
- + r

1 11

1 1 1 -"
31."

'1 '1' 1 f -".a)_ , A + B c = B + C
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We havenot.

3

only solved the problem, but also have represented the point of

concurrency by the vector l(r+ B +46.) . This point is called the centroid

of the triangle and has an important, property connected with the idea of the

'''C'enter of gravity of a physical object. If a thin uniform sheet -(such as

cardboard) is cut in the shape of the triangle, it can be balahced on a

pencil point placed at the*point corresponding-to the centroid.

&wile 4. Show that the bisector of an angle of pitriangle divides

the opposite side into segments whose lengths are proportional to the

lengths of the adjacent sides.

Solution. Let PT

and let the vector from

represented by ls,,-the

bisect LQPR

P to Q be

vector from P

to T by b ,, and the vector from

to R by T, as shown in Figtil\!4-13.

We are to show that

d(R,T dipiR1
d(T,Q, d FW

R

Figure 4-13
rr

This problem InvolvAlg an angle bisetilipr affords us an opportunity to

demonstrate the use of unit vectors in 8.094ion. A vector which bisects

the angle between a and c
aft

must lie along the diagonal of a rhombus whose

adjacent sides lie along a and c We employ unit vectors to accomplish

this result.

Any vector along T can be represented as a scalar multiple of r. In

444 1 4.4particular, the unit vector along a, can be represented by a or
a

Ia1 la
4.114

Then the vector frob P to E , and the vector from P to F
lal

, determine a rhombus whose diagonal fG bibects the angle determined
C

1
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by
aA

and. c . The vector from P to 0 is then

vector °a3ong it, say from P to T can. be represented by a scalar multip

....

(
k 41.11 c

...
. )

lal 1cl
\._.

LT1Now suppose r is the ratio A Since the vec from R to ,4
d(R,QI

w-, it rrk7 1) , the vector from R to T may be expressed as rya -/D

that from T to T1Q by (1 - r)(:. - c) We-may write

b =
JII ail. am,
c + r(a - c)

and obtain k
a. ,.

171 11

Equating the corresponding coefficients, we have
1.

It follows that

hence,
*

*Jr

k ka+ c = ra + (l - r)

111

k =r and . - r

lal 1cl

c

1 - r
IaI

1(LT)
TeIX TCPAT

Exercises 4-3

. Give a vector proof that the diagonals of a parallelogram bisect each

other. I

2. Prove by using vectors that a line,segment which joins one vertex of a

parallelogram to the midpointof
.

). an opposite, side passes through a

point of trisection of a diagonal.

(AB in the figure.) prove also

that the diagonal AB passes

through points of'trisection of

OX and OY .

t,

3. Rework Example 3 for the case in which the origin is_selected
0

point. A . Does this choice of origin simplify the proof?

152
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1

4. In parallelogram OABC , OP intersects AC at

If ggiEl d(c 4)
-r' show that -r-L-r

dkC,A) -,r + 1

4-3

Q'.

Exercises 5 to 10are theorems from lane geometry which rU;iire to

prove by the vectbr methods illustrated in the examples of this section.

5. If two medians'of a triangle have equal length, then the triangle is

isosceles.

6. The median to the base of an isosceles triangle is perpendicular to

the base. ' j

A
7. The line segments joining the midpoints of the opposite sides of a

quadrilateral bisect each other.
.

8. The line segment,joining tlloidpoints of two sides'of a triangle is

parallel to the third side and has length equal to one-half the length

Of the thirdOide.

-9. An angle inscribed in a semj.cifu..1.e_ij-- a right angle.

10. The bisectors-of a pair of adjacent supplementary angles form a

4

I right angle.*

11; D, E,.and F are midpoints of- LIABC,.:,

A to D be t, thWector from

B to E be b , the vector from
1

C to IpF be c . Prove that

+ b +

I

8

as shO Let the vector irom

C
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4-4. Proofs .Vsing.Poler Coordinates.

Polar coordinates are useful in many applications, particularly if the

problems involve rotations or trigonometric functions.

The following example from trigonometry illustrates one such use.

.0 ,

Example 1. Show that .cos(8 - =

Let L a and L a be asshown in

Figure 4-14. We select points B and

C on the respective terminal sides of

the angles and let ZI(B,C) = a ,

d(A,C) = b , and d(A,B)= c . The

distance formula tells us that

a2 --x1)2
(y2

y1)2

Nle

cos cos Cc + sin a sin a .

Figure 4-14

Now if we convert from, rectangular to polar coordinates as outlined in

Section 2-5, Equation (/) becomes

a
2

= (b cos 0- cco4 a )2 ± (b sin 5 -c sin a )2.

Expanding the right member and applying the identity si
2

e cos e
2

we obtain

mooed

(2) a2 e= b2 + c2 - 2bc(cos cos a + sin a sin, a, ) .

Noting that the measure of LBAC = a - a and comparing Equation (2) with

the-Law of Cosines fort AABC , we see that

cos( a, , a )= cos '0 cos a + sin sin a .

As for the next example, it is unlikely that anyone woad choose this

kind" of proof when other proofs are available, but nevertheless, it mak be

instructive to look at one demonstration of a simple geometric proposition
.

using polar coordinates.
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Example 2.

bisects the Vertex angle.

4-5

-

Prove that the median to the base of an isosceles triangle

Consider Figure 4:15, in which

AD ; BC ,p In order to describe-the

angles in question, we let C be

the pole. We also let D , the mid-

point of AB , lie on the polar axis.

Without loss of ge rality, we haVe

A = (r, al; B.= (r, . We must

prove a = a .

B(t., 0)

C
(0,0)

A(r, a )

Figure 4-15

To simplify the notation we-shall let d(C,D) = f and

d(A,D) = d(B,D) = g . Applyft the Law of Cosines, we have,'

in ABCD g
2

= r2 + f2 - 2rf cos a,

and in .6ACD g
2

=-r
2

+ f
2

- 2rf Oft a

We see then that cos a = cos a Since 0 < a <

- 4 < a < 6 , this implies a .= - a

4-5. Choice of Method of Proof

2
and

It is time we paused to survey the variety o problem- solving tools ..,

which are now at our disposal., We have a choice of three basicNiystems
...

,

--rectangular coordinates, polar coordinates, and vectors; within each
. ,

system we haye different representations to suit dif erent purposes. But the

question uppermost in your mind at the moment probaffly is, "How do I decide
li

.,,.whiell' method is the best tone to use?"
/

The question does not have a simple answer. Some problems are'best

worked by one particular method, other problems seem to be approachable by

any of these methods, end some problems appear to be impossible regardless

of what we try.

t.
1-5
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j

However, there are certain guidelines. 'Which may hell) us.

(1) Try to decide upon a coordinate system which is'appropriaV to the

problem. Think over-What is known about the problem, or what is to

e proved, or wlt kind of answer is required.

Distances between points, slopes of lines, andmidpoints.of

segmentg are easily handled in rectangular coordingtes;

therefore, when these ideas'are present, you should try to

fit rectangular coordinate axes t4 the problem.

b) If the problem involves angular motion or circular functions,.

it would be wise to look at the possibilities of polar fprms.

(c) Vectors are quite versatile and fit a wide range of conditions.

Concurrence, parallelism, and perpendicularity 4f lines, as
o

well as probtehs of physical forces, are situati,onswhich might

lead you to choose a vector approach.

(2) Make a drawing relating the known facts of the problem to your

choice of method. Much time and effort may-be saved by a reasonably

accurate draWing. This not only helps to relate the parts of the

problem, but it serves as a check on the calculated results.
si

(3) .Choose coordinates or vectors so as to simplify the algebra. Take

s advantage of all the given information at this stage, but be careful

that you maintain "generality where it is required.

(4) Watch for opportunities to use pax metric representations. This

may be something new to you, but you will obseye frequent cases

insucceeding chapters in which this special method will simplify

' troublesome problems.

(5) yorX,manyi manyproblems. It also will help if you 'try to sOlVe a '

givenProblem in several different ways. In this area of mathe-

matics, experience is probably the most valuable asset. Sometimes

a choice of method can be explained only on the basis of.,experience.

(6) After you have completed your solution to a problem, it'is wise
I'

, to look back over your work. You may see an unnecessary step you :

can eliminate, 'an unwarranted assumption you,shOuld justify, or a
*s"".

_general tightening up you may accomplish.' In any Case, yo ,u gain a

new pei'apective Ipn your work which increases your understanding and

appreciation of what you have done. '1404, of

O

, 15,§
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Review

For EXercisep 1 to 10, first ch

is appropriate for each theorem,

ercises

se a coordinate system which you think

then prove the theorem accordingly.

1. The midpoint of the hypotenuse of a right triangle is equidistant from

the three vertices of the,tridngle.

2. The locus of the vertex of a right angle, the sides of which Sass

through two fixed points, is a circle.

3. The diagonals of a rectangle have equal length.

4. Show that the sum of the squares of the lengths of the sides of a

parallelogram is equal to the sum of the squares of the lengths of

its diagonals.

5., The line segments joining in order the midpoints of the successive sides

Of sui isosceles trapezoid form a rhombus.

6. The line segment joining the midpoints of the diagonals of a trapetoid .

is parallel to the bases and,haa length equalto one-half the

difference of the lengths of the bases.

7. If lines, are drawn through a pair of opposite vertices of a parallelogram A,

and through the midpoints of a pair of opposite sides in such a way that

the lines*intersect one of the diagonals in distinct points, the lines

4 are parallel_and-the dia6nal is trisected.

8, The Perpendicular bisectors of the sides bf a triangle are concurrent

in a point that is equidistant from the three vertices of the triangle.

'9. If two sides of a triangle are divided in the same ratio, the line

segment, joining the points of division is parallel to the third side
.-

. and is in the same-ratio to it. .

° .

Show that the vector joining the midpoints of tro opposite sides of a

vector quadrilateral is equatohalf the,vector sum of the other two

sided:
;

1

4

)

1'

112
9

'6
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.g. .In the follbwing ffgire -'44 . .r ) 4 .

A -.1110111

. \ .

, 11WATIL- t

41,

. .

, WIIIMIRA
...

Of

.

OABC pAEF,,and MC' are each parallelograms. Prove that the

DE , and -1M1 ,respective diagonals of ihe'parallelCgrams OB

p.' extended as necessary; meet in a single point X .
... s

1

''..7 3. In parallelogram OACB 'let P

and Q be pointson dia,gonalt
kii<:

. '

such that diA,16Wd(B,Q) ..., Let .

OP intersect AC at, 4 ', and "let

'61. interselit, q at e Y . Show'.

-that XY 11 AB

F.

14. Prove that'the'sum of the squares'of the lengths of the sides 6f a

;4

quadrilateral ekdeeds the sum of the sciares of the lengths

diagonals by 4 tikes the squale of the length of the line

that joins the midpoints' pf thetdiagonals.
ti4

of

segment

Jr

its

A

15. A band'of pirates buried :their:treasure on an island. They chose a.'"spot

at Which to bury.it in the follow' manner: Near the shore there were

two large men' and a large pine tree. One pirate started out from one

rock along 4 line at right ,angles to the line between this-rock and ,the

tree.' He marched a distance equal'to the distance between this rock and

the tree. Ahother pirate started oSt from.the second rock along,a line

at right angles olo the line between. this second rock, and the tree and
.es

marched a-distance equal to the oUstance between thisrock and the,tree:

/

The rest of the band of pirates then found the spot midway between

'these two and there buried the treasure.'

14

I
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Many years later', 'these directions Came to lightand a party of
.

I

treasure-seekers sailed off to find the treasure. When they reached the

island, they found theftwo rocks with no difficulty. But the tree had

long since disappeared; so they did not know'how to proceed. All seemed

'lost till the cabin bo', who had just finished his freshman year at Yale;I.
spoke up. Remembering the analytic geometry he had studied, he calcu-

\.X

lated where the treasure must be, and a short spell of digging proved

hii correct. low didihe do it? '4,'

I

T.
I

/

3
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' Chapter 5

GRAPHS AND THEIR EQUATIONS

5-1. Introduction'

.4
5-.1

In Section 2- we discussed sets
,
of points and their,Analytic representa-

tions. The relation between the two is at the heart of analytic geometry, and

we shall review the fundamental notions briefly here. We confine the discus-

sion to the planerAt-ift the.extension to space is immediate. The sets of points

will, frequently be the geometric 'figures we met 'earD1*; and the analytic re-

presentations will usually be given in algebraic or trlgodbmetic, Arms that

we have met,before. We propose to relate Ise ideas with the hope\that your

Competence and appreciation for their use will continue to graw.

Let S, be a set of points in a plane with a rectangular coordinate sys-

tem. Let s(x,y) be an open sentence involvi two variables. Let S con-

sist of those points (a,b) of the/Diane such hat ,s(a,b) As true. Then

we say S is the locus (or graph) of the condition
. q ,

a condition for the set S . The plural of "locus"

=flounced as though it were spelled "16w-sigh". The

system in the plan.ee could be teplaced
.

by any other
,.

priate to the problem andkto the space In Which we

s(x,y) , and s(x,y) is

is "loci". (It, is -pro'

rectangular coordinate

coordinate system appro-

are working. Thechoice

of a coordinate system determines the "language" in which the open sentence is

stated. We,shall often concerned with the limitations of a particular.

language, an& the de ils of the translation from one language to another.

SO be u fferent way of talking about the matter.

In the eometry there is a discussion.of characterizatiOns of sets. A

co on is said to .characterize a set if every point in the set satisfies

ndition and every point that satisfies the condition is in the4et. The

tions we are chiefly interested in here are analytic conditions (Condi-

tions on the coordinates of points), whereas in Geometry the conditions were

stated in g ametric terms.

4
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T

5-.2. Conditions for Loci or Graphs, and Graphs of Conditions

The discussion above is quite general, but in practice the conditions

that matter most are equations and inequalities. For example, we define the

graph of an equation (inequality) in x and y to be the set of points whose

coordindtes satisfy the equatiOn (inequality). Thus the locus of the equation'

2
y2+ y = 4 is the circle with center (0,0) and radius 2 , while the locus

of the inequality xy < 0 is the set of points in the second quadrant or in

the fourth quadrant. Using set notation these two loci can be expressed as

follows:

(P = x2 + y2 = 4)

= (x,y) xy < 0) .

Using thethe same notation we can express the loci of the eqaatton f(x,y) = 0

and the inequality g(x,y) > 0 as follows:

4 JP = (x;y) f(x,y) = 0) ,

(P = (x4) : g(x,y) > 0) .

We now take up the problem of finding an analytic condition for a set

points in a plane. There is no routine procedure for doing this, but the

following advicemay be useful.

First a word about the choice of coordinate systems, When the terms of

the problem leave you free, think carefully about the coordinate system to

use. rock curves with complicated equations in rectangular coordinates have

nice paroiethe representations. An equation inzectangular coordinates for

a certain curve may be simpler than it is otherwise if a coordinate axis is an

axis of symmetry. A circle of radius 3 has a simple equation in rectangular
, 0 .

coordinates if its center is made the origin, a still simpler equation in polar

coordinates if itt center. is chosen as the pole.

Following ,common usage we will use pc and y for rectangular coordi-

nates, and r and e for polar coordinates. mWe will also,assume in each case,

unless otherwise specified, suitable choices of axes and units. Only with these,,
.

assumptions may we speak about "the" locus of an equation. Without such assump-

tions an equation 9.xchave several quite different graphs, depending on our

choices of coordinate systems. These matters will be considered more fully

later, particularly in Chapter 6.

After choosing a coordinate sysAem we can attack the problem. We start

With a given set of points. These points are not given to us in a basket but

162
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instead are detefmined by some geometric condition. We are looking for an

equivalent condition in terms of. the coordinates of points. Let us look at

what we do in several examples.

Example 1. We describe certain sets of points of the plane. You are
,

asked to give-analytic description of'eachfset. . 4.,k S.

(a)' All the points of the.x-axis.

Solution (P = (x,y) : y = 0) .

4Z*,

(b):',,All the oints above the x -axis.

Solution. (P = (x,y) : > 0) .

(c) All the points of the plane except those on either axis.

Solution. (P = (x,y) : xy # 0) .

(d) The midpoints .4zf all line segments in the first quadrant which, with

the coordinate axes, form a triangle whose area has a measure of 12

square units.

Solution. If P.= (x,y) is one such point, the endpoints of its

segment have coordinates (2x,0) and- (0,2y) . The triangular

region will then have area (2x)(2y) , Which must equal 12 . We

havathe simpley equivalent relationship xy = 6 . The graph of

this relationship contains points in the first and third quadrants

but we want only those with positive coordinates. Thus, our answer

is (P = (x,y) xy = 6 , x > , y > 0) .

Example 2. Find an equation in rectangular coordinates of the locus of

all, points equidistant from two distinct points.

Solution. Let the x-axis be the line through the two points and let the
4

origin be-the midpoint of the segment determined, by them. Then the two points

are -(a,0) and (-a,0) . Let (x,y) be any point in the plane. Then the

distances to (x,y) from (ajO) and (-a,0) are )((x - a)2 + y2 and

14x + a)
2

+ y
2

, raspectiyely. The point (x,y) belongs to our locus if arld

.:8;0..;.-il ihede :WO distances are equal, that is, if and only if
/

''cl ,' .4x.t. a)2 + y2 .4x _ se 4-'5/.2
r

.. t
,

7 ,Thus (1) is equation of the locus. 11) is, of course, not the simplest

possible equat on for the locus. What is,.and how can you get it from (1) ?

. , 163
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Example 3. We present some analytic descriptions of sets of points of th(

plane.' Describe these sets in ordinary English.

.:,,

and whose radius is 5 .

o
'.,

(.D) (P'.. (x,x) lx - 31 = 7)

(a) (.1p = (r,(9) : r-> 5)

- .

Solution. All points outside a circle whose center is at the pole

41,

(c)

Ns.

Solution. All the points on-4two paretl1e,1 lines. These lines are

parallel to the line x = 3 , 'and lieone oneaclit and 7

units away.

(P = (x,y) xy + 2x - y > 2) .

Solution. This inequality may be written xy + 2x - y - 2 > 0 , 'or

--(x --1)(y 2) > 0 . This statementwfll be true for values of x

. and y Such that either:

x 1 > 0 and y + 2 > 0 , or x - 1 < 0 and y + 2 < 0 ;

that is if either:

x'> 1 and y > -2 ,.or x < 1 and y > -2

,The poihts we want lie in two

"quadrants", as indicated in

Figu 5-1. The graph does

not include the boundaries of
- .

the regfons.- How could xou

change the tralytic'descrip-

tions of the set to include

these boundaries?'

1.64

170'

Figure 5-1
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t) (P(x,y) Ix ; 11 < 3 and 1y + 1[ < y) .

Solution-. All the points of a-

rectangular region, with center

at the'point (-1,-1) . The
.

regiOn is 6 units wide and

does not include the vertical

boundaries; it is 8 units

high and does include the

( horizodtal boundafies. It is

pictured in Figure 5-2. We

note that the corners of the

region are not points of.the

graph.

(e) (P = (r,e) it - 5.01 < .1) .

Figure 5-2

x

11

5-2

I

Solution. The 'set of points'
.9,.....9,............ .; .67

N.# 0° , C.\ ,
/

of the annular region be tdee3 / .0/
S

S.
N,s

two concentric circles center- bi
s

NN s,

ed at the pole. The inner /I 1% %

i; 0
%I

i
circle has radius 4.9 and

t1
II. 0 >

the outer circle has radtus

1

,

4.9 5.1
tl

k
)
7:

5.1 , but neither circle is 0

.. 1
1

part of the locus, which is. 4kk i e
/

illustrated' in Figure 5-3. N41,1 1 .04
1, 10. 144 .00 P
.

Figure 5-3

We have been using set notation because we wanted to be perfectly clear.

Hereafter we shall be less formal. We might state the p4oblem of Exercise.

3.Ce): Describe and draw the graph of 1r - 5.01 < .1 .

Example 4. Find an equation in rectangular coordinates for the locus of

all points which are equidistant from a given pt171411F and a given line L
-

Solution. The geometric condition fOr the locus defines a parabola, whose

equatioi we no4 derive from the condition. With this in mind we'let the line

through F perpendicular to L be the y-axis, with the origin at the midpoint

of the segment determined by F and the point where the perpendicular

165
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intersects L . (If- F is in L ,we \ I

pick F as the origin and leave the

further details in this case,as an

exercise.) !Inally, we let the

y-coordinate of F be
2

, where

p > 0 ."Then F = (04) and L is

the line y =.7

Let p = (x,y) be an arbitrary

point in thecplane. Then the things

talked about in the geometric condition
I

are the distances from P to F and

to L . Using the distance fopnula we

find that the first of these is 4m4k

xf2 + (y li))2 The second is
Figure 5-4.

4- The geometric condition says these two distances are to be equal.

Hence

(2) e 42

is an equation for the locus. This is acomplete solution of the original

4 problem, but a simpler equation can be found. If ye square both members of

(2) and combine terms, we get the equation

(3) x
2
= 2py .

There remains the question of weether (2) and( (3) are equivalent.
6

The only operation we have performed which might have caused trouble was the

squaring of both sfdes. ButRany point on the locus of (2) is on the locds
ye?'

of the equation obtained by squaring both members of (2) , and hence on the

locus of (3) . That the reverse is also true can be shown most simply by

considering a more general problet. Let _(a,b) be a pbint on the locus of

(f(x,y))2 (g(xty))2
so that (f(a,b))2 = (g(a.,b))2 . Then -1

f(a,b) = t g(a,b)'. Now suppose, further, that if (x,y) is in the domains

of f and g, then f(x,y) > 0 and g(x,y) -> We cannot h5,2-,

f(a,b) = -g(a,b) unless both are zero, .and hence f(a,b) = g(a,b) . Thus

(f(x,y))2 = (5(x,y))2 and f(x,y) = g(x,y) are equivalent equations. This

result settles our question for us, since both members of (2) are non-

,negative for all x and y .

166
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Example 5. A Coast Guard Cutter, searching for.a boat ;xi distress,

travels in a path with the

_from its Starting point, 0

erated 1y the ray from 0

suitable coordinate system

.Ar
* 5-2

property that the distance (in miles) of the cutter

) is equal to the radian measure of the angle gen-
;

to the Futter. Find an equation of the path in a

(Ass* the surface of the ocean is a plane.)

Solution. the deacriptionZf the path suggests that we should use polar

coordinates, with 0 as pole and the polar axis in the direction in which the

cutter is heading when

the function defined by the equat

s its search. If we do this we get immediately

r = e . (By choosing the positive direc-

tion of rotation properly we can make e positive.)

/ Figure 5-5

The path is a spiral.'

S.

If we use rectangular coordinates we get a much more complicated equation.

Furthermore, no matter how we choOse.the axes, the equation does nbe define a

-function. Can you explain why not?

Related Polar E4u) ions. In writing an analytic Bescrii5 n of a set of

0
. .

points we may use t 0 ur advantage the freedom we have in choosing the type of

coordinate system, ,he placement of the axes, an the units. In the case of

polar coordinates there is an ambiguity imposed on us by the fact that each

point now has infinitely many pairs of coordinates. This malies _some matters

easy, and some ,difficult. If a moving point,traces and retraces its path'in

recurrent pattern, a polar equation for the locus can represent this pattern,

since (r,e) and (r,e + 2nn) are, for integral values of n , coordina

for the same point. On the .other hand,

also coordinates' the,same point, we

,writing equations of loci in polar coordinates.' A po).nt

Cdrve represented" by the equation r = f(e) also has the coordinates

since (r,e) and (-r;e + n) ar

cannot avoid a certain ambi

j
uity in

-4e n the

a
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(-r1 , el + fr) . ;f we substitute the latter coordinates in the equation we

obtain the equation -r1 = f(el + n) which may be written,--r-t = -f(el + n) .

That,is, every point of the curve represented by r = f(e) is at the'same

time a, point of the curve represented by r%= -f(e + n) . We will call these

equations,

r = f(e)

r = -f(e +

4

related polar equations for the curve. In some cases these related polar

equations are quite different in appearance and it takes some experience to

recognize that they represent the same curve. On the other hand the related

. polar equations may be identical.

Example 6. The related'equation,or r = 5 sin e is r = -5 sin(e + n)

= -5(-sin e) = 5 in e , and is the same as the original equation.

Example 7. The related equation for r= 3 tan e is

r = -3 .tan(e + n) = -3 tan e , and is different from the original equation.

Example 8. The related equation for r = 3(1 + sin 8) is t

r = -3(1 + sin(e + n)) = -3(1 - in e) = 3(sin e - 1) , and is different from

the original equation.

(Example 9,. The related equation for r = 5 is r = -5 , and is different

frbm the original equation.

Because the correspondences between poins4nd their polar coordinates and

between sets of points and theirtrepreAntAtialin polar coordinates are not
..

Nr"..4\

unique, we must define the graph of a polar equation to be not the set of

polAs whose coordinates sati6fy that equation but .rather the set of points

each of which has some pair of coordinates that sa4'sfy the equation.

N

Exercises 5-2

For each of the following, write.an equation or statement of inequality

of the locus of a point which satisfies the stated condition. Use the co-

ordinate system you think appropriate if one is not specified. If you use

pole coordinates, give the pair of related equations in each case.

41
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go.

1.

2.

3e

4.

5.

6.

70

8.

9.

A point 3 units above the x-axis.

A point 5 units to the left of the.y,axis.

A point equidiitant frbm the x- and y-axes:

A point tiice as far from the x-axis as it is from the y-axis.

A point a units frod the origin.

A point a units from the point (3,-2)( .

A point equidistant from (3,0) and (-5,0) .

A point eq4distant from (2,3). and (5,-4) .

A point equidistant from the lines with equations x + y - 2 = 0

5-2'

and

x + 2y + 2 = 0 .

10. A point whose distance from the line with equation x + 2 = 0 is_equal

to its distance from the'point (2,0)'.
o

11.. A, point whose distance from the line with equation 2x + y + 2 =0
)

equal to its distance from the point (2,-1) .

12. A point the sum of whose distances from the points (4,0) and (-4,0)
0

is JO .

13.. A.point the difference of whose distances from the points (k40) and

( -4,0) is 6 .

14. A point the ratio of'whose distances from the lines 2x +'y - 4 = 0 Ad

3x - y + 1 = 0 is 2 to 3.

15. A point that is contained in the line through the points (-1,2) and

(5'07)

A6: A point, the product of whose distances two fixed points is a con-

stant. (This locus is called Cassini's Oval; it was studied'by Giovanni

Domenico (assini in the late seventeeqh_century in connection with the

motions of the_earth and the sun.)

17. A point within 3 units distance from the x-axis.

18.' A point at least 5 units distant from the origin.

19. ,A point no more than 1 unit from the y-axis .\

20. A point no more than -2- -units from (1,3) . '

pi. .A point no nearer to the origin than ft is to the point- (0,5)5.

.1 0

22. .A point no nearer to the origin than it is to the line y = 4 .



O

23. A point nearer to'the origin thanito'any point on the line x = 10 .

24. A point betWeen the lines x = = -6 .

255. A point within a circle with its center at the origin, if the radtqs is

"8 inches t 1 % ." (Note: This notation, ,frequently seen in drawings

and applications, means here that the radius must be at least 7.92 inches

long, and at most 8.c8 inches long. We Sometimes say that there is a

"tolerance" of 14 f the stated ditension.)

5-3. Parametric Representation.

In describing physical phenomena we customarily simplify mattere; for

example, a car on the road becomes a point on the line. In describing any

motion it is convenient to say when, after some given instant, a particular

event occurs. This is indicated by a value of the varitble, t . 15 the

motion takes place in two or three dimensions its analysis may be made easier

by considering one dimension at a time. With a rectangular coordinate system

we may then describe that part of the motion parallel to the x-axis (the

x-component) by indicating how it alone changes with respect to time, pay

x = f
1
(t) . Similarly we may have y = f

2
(t) . Such a set of equations, it

which the two components of the motion, that is, the values of the two vari-

able s x and y are given in terms of &third variable, t , is an example of

what is called a parametric telpresentation of the motion. It is interesting .

td note that the tracking of satellites is actually done in this way.

EXample.l. Two students observe the motion of a ball rolling down a

tilted plane. The plane has been coordinatized

tration, as in many physical problems,

the variable t., represent)

elapsed since a given instant; is us

as a parameter or auxiliary variable.

The use Cif a parameter is often of

great value in simplifying the presen-

tation and solution of physical prob.).

In some problems it may be useful to

.two, or even more, paratheters.

RIP

as indicated. In this illus-

One student finds that with suitable

units he can describe'the motion relative

to-the y-axis with the equation y = 3t2 .

170
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He may have come to this conclusion by'noting, with the use of a stop- watch,

the y-coordigates of the points on the lines parallel to.the- s.croasedlY,,

the rolling ball in successive second's. The other student) using ffielines

parallel to the y-axis in a similar way, finds that he can describe! the motion

'relative'to the x-axis with the equation x = 2t2 . Mese are the parametric

equations of the motion. If we want to express y in terms of x,, we may

3eliminate t between thee two equations and obtain y 7x . Since t is a

measure of elapsed time'it is nonnegative, hence x and y are also non-

negative. Therefore, the graph on the xy-plane will be a ray of the line

whose equation may be written y .

Example 2. A plane, flying at 120 miles per hour at an altitude of

5000 feet, drops a package to the ground. A S some that the package remains inr
one vertical plane as it falls, and, neglecting air resistance, determine t5

path to the ground.

Solution. We must assume certain conditions. If, at the moment of its

release, the package is moving forward at 120 mph (= 176 ft. per see.),

then it will continue to do so at the same rate, whatever its vertical motion

May be. Under the stated conditions we assumethat,its vertical motion is

described by the formula s = ;'gt2, where t represents the elapsed time in

seconds, g is the gravitational acceleration in feet per second per second

(which we shall approximate as 32) , and s ia, the number of feet of frge
-

fall.

We now coordinatize the vertical plane, taking the point of release as
A

the origin. The positive sense of the x-axis indicatei forward motion, and

the positive sense of the y-axis indicates downward motion.

0

..,.
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ib

144

400

1 96

1600

y

1 t,

.

az s ui

t

352 528 70h 880 1 6. 1232 1408% 1984 176, x(..""r...

Figure 5-,

Note that the grid on which the locus is drawn hp c,een presented in a

nonlotarrlarS way, to make, the diagram easier to interpret,. As the package

moves forwart in space the corresponding point on the graph moves right and

qrosses, successive vertical Ines in ...,uccessive,seconds. The vertkcarlines

are equally spaced tecausethaVorizontal totion is uniform! x = 17et . As

the package falls the corresponding point on,the graph moves down on the page,

crossing successive horizwitgl lines in successive seconds. The horizontal

lines are not equally spaced tecause the vertical motion is not uniform, btAK_

accelerated. n spacing was determined ly successive values of t in the

formula y = . The scare is _the same on both axes, thus'the diagram is

not only a graph of our locus,, but also a picture of the actual'path.

172 FP
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If we, had plotted.pcints on a dif=

ferent grid, say the oneto the right,

in which the horizontal scale is differ-

ent from the vertical scale, then the 50

graph would Still be an accurate repre- too

taentation of the relationships among ibo

the variables, but it would not be an too

accurate, representation of the path. 250

Since fie use the word"path here in a v;co

special. way, we define it to be the set -550

of,positions Actually occupied by a 400

real object as it moves in real space. 480

Clearly, a path may be reizasented by 500

a curve in a great 1-153er:cif ways by leo

different choices of coordinate systems.

4 In manyphysical problems we pre y Figure 5-8
concerned with the-relative positions ' .

of objects as they travel on their
f.

respective-paths.' If the bat is to hit the ball, it is not enough for their

paths to cross; they must be at the crossirli point at the'same time. Ships'

paths may cross safely, but a collision coarse would-bring them to the same

point at thetsame moment. 'The captains of two ships a t'spa are concerned with
r

when and Where the ships are alosi-st to each other. When we must consider

time and position along a path, we need some relationship;involving these

quantities: The are most readily presented in parametric form.

eoo

5 -3

Exercises 5-3

1. Refer to Ex ple 1 and make a dh

and y boor inates for Antegral

t like the one below,, showLng th x

slues of t from t = 0 to t = 10

2
.

3 4 7 8 9 10

,
.

Y
,

t

.
2.; Maki a similar chart for Example 2 of this seeti n.

S. titelparaMAtrip equations f /r the poattiOn of a point P =.(x,y).

. 4 , / +4
.,..

e yj,axis. and es cross the pl the rate of 5 ,units
..

.?

2
.',.remains al its' ove ;
1t

s

4,

173

, 79

4.
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4. Write parametric equations for the position of a point P = (x,y) which

starts on thex-axA and moves uniformly on the plane at the rate of 2

.units a second, and remains always, 6 units to tl%e left of the y-axis.

.7. Write parametric equations for the position of"a point P = (x,y) which ,

starts at the.gin, goes through' the point (3,4) ten seconds later,

and continues to move uniformlyalong line OP at that same rate across

the plane. Find rectangular equations for its locus.

6. Write parametric equations for the position of a point P = (x,y) which

moves uniformly along aline across the plane, and takes 5 seconds to

go from ( -6,1) to (1,25) .

7. Parametric dquatios.for the path of a Point P,= (x,y) are x 7 t

y = t?, Where t -indicates time in seconds. Discuss the motion of the

peint,in the first five seconds. Make an estimate, correct to the nearest

.runit,-of the distance traveled

8. A point P = (x,y) travels along

at the uniform gate of 10 units

in that time.

the line represented by 4x - 3y + 2 = 0

per second and passes through (1,2)

when t = 3 . Write parametric equations for its.positios'at-any time-

t . Find its position when t = 01,4'when t = 10

9. A point P = (x,y) travels along 11 line represented by 2x + 3y - 6 = 0

at a uniform rate of 5 units per second and crosses the x-axis at the

time t =- 0 . Write parametric equations for its position at any time

t .

10. A point P=Jx,y) moves uniformly on a line across the plane. -It goes

thrOggh (a,b) at time t0 , and (c,d) at time t1 . Write parametric

equations for'i s Position at any time t .

'

11. A point is movi along the x-axis, its position at time t 1(sec) given by

'x = cos "t . Be ore you do any computation try to describe the way the'

point moves. e cosine function is frequently associated with angles

and rotation, ut there is no such motion here. We must now use the

cline as a particular real number function, whose values, for the domtin

O < x < 1.80 are gives in Table IT. gbe heading "radian measure" for

tit table indicates the most frequent but by no means the,only use for

these trigonometric functions. Make a table for-the positions of the

point fOr the first 10 'seconds, at one second intervali How would you

ind the position of the point at the end of one minute?
1
one hour?
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.. '.

12.° 16 vertical position of a point is given by y = 56o.- 16t2 where y
, - > , r

represents altitude in feet and t elapsed time in seconds. Before you, .
do any computation try to describe the motion of.t the,

. Do you-know

any physical interpretation of this motion? Make a table of the positio

Xof the point, at one second ntervals, for the first 10 seconds.

13. Refeito the previoUs exercise, and answer the same questions for the

,relatinnship y = 120 + 64t - 16t
2

.

14. peer to Exercise li, and answer the same questions for, the relationship

x = 4 sin 2t .

15. Refer to Exercise 11, and answer the same questions for the relationship

* x = 2 - cos't .

16. If the points of Exercises 11 and 15 were on the same x-axis, find Ectime

and place at/which they meet.

...i.

o .

. 15-4. Parametric Equations of the Circle and the Ellipse.I' .c...
In many physical situations an important role is played by a fixed re-

I 0 ..

rference point, such as a source of light or radiation,or a magnetic pole. The
.

.i'

associated phenomena, sometimes called focal or radial, can be described with
1

1 polar coordinates or vectors. We should use the coordinate system and pare,

'meters whichseem appropriate. When rotations are involved it is usually

helpful to use as a parameter, e., the measure of the angle of rotation frdm

a fixed initial:position:7/

i

,

Egample 1. A point moves around a circle at constant...P.Pe.e.d.,1,Eimil analy-

N.c conditions for its path. 1 r
1

- ..

. SolutiOn: Suppose, as in the/ `'

' di -gram, the point starts from A and
ry

!,i moves counter-clockwise. Its position

at any potrft, P is given by the

' i rectangular coordinates (x,y) , or the

L' F.1 equivalents (r cos 8 , r ain 8) ; that
I .

1 S ,

' , % -

1

ix = r cos e,

1 y = r'sin 8 .

These Ire parametric equations for a ,

circle. '

- 175

,110

(x,y)

,Figure 5-

x
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We may express the fact the point moves around the circle with constant

speed by saying either that it moves along the circle at so' many inches per

second, or that the radius OP rotates about 0 at so many revolutions;pr

minute. Of course, other units may be used. The first method of expression

is important in mechanical problems involving, for example, gearing, belting,

rimspeed, and so 811".' The second method of expressing constant speed, which

concerns the amount of turning done in-a unit of time, is significant in

timing mechanisms-such as are used in automatic washers, in electrical theory

involving alternating current, which is related to the positions of a turning

armature, and in the analysis of many other phenomena which are periodic, that

is, which repeat in successive time intervals.

In this latter interpretation it is customary to u e.Greek letter a)

to represent the angular velocity, usually but not ne ssarily\in terms of

radians per unit time. Thus, if a wheel is turni -at the rate of 300

revolutions per, minute, it has an angular velocit oft (300)21 radians per

minute, or 10v radians per second; that is, 00(rpm) , or a; = 6

(radian minute), or U) = 10v (radians/second).

,

4

If he point P has constant angular velocity ca then its angular

above becomeposition 9 is given by, at. The parametric equations

fk = r cos ca ,

I y = r sin at -

These are-equations of the path of the point.

. . If we eliminate the.parameter by squaring the mekbers f each e ation apid

adding the corresponding members of the new equations we obta
I

/ \.../

x
2

+ y
2
= r

2kcos 2
at + sin at) , or x

2
+ y

2
= r

2
. This represents the lochs

)

of the path in rectangular coordinates and_no longer takes ac'ountstof the Ros

t of the/point at any particular instant.
,-,

I J

Example 2. Two points travel on the same circle. They start at the same

'time from diametrically opposite pbsitions and travel in opposite directionstravel
1

;the first at 2 rotations per second, the second at 3 rotations per second.
. .

`Find analytic conditions for their paths, and the times and positions at whicP
r

they coincide.

.1
So4tion. (Refer to Fi 5-9.) If the firgt point .starts at 'A =,(r,O,

$ and goes, counterclockwise, ijs equations are

j r cos-4gt

y = r sinr4gt .

176,

182
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If the second point stalks B = (-r,0) , and goes clockwise, its equations

are

j = r cos (g -.6nt)
'

1 y - 6gt) . ,

4 *
If t 0 , the position of A is given by (r .cos 0 , r sin 6) ; there-4'

fore, A = (r,0) , as indic4ted. At the-same time (t = 0) , the position of

is given by )(r cos g , r in g) ; therefore B = (-T,O) , as indicated.

As.tiMe eMpseS, the angle for'the motion of A inCreases while the angle

for the motion of B decreases, As A and.B rotate, only 'their angular

positions are changing, and the rates of these angular displacements are 4g
#..

radians per second and radians per second., At any instant the difference
4

of these- angular displacements is called their angular separation. It is

customary to give-this angular separation as,the lest angle between the
D ,

respective radii to the.oints. Thus we use an angular-separation of

radians rather than 13.5g radians.

Since our two points start with an angular separation of g , their fifst

meeting will occur when their angular diSplacements from their starting Posi-

tions add to

meetings will

to 2A g , 4n ,

when 't = .3

; that is, when 4nt 6nt = r ; ;.,1 \.1 second. Sliccessive

occur after this when ,their additional angular diSplacements add
_

6n , , when 4gt + 6nt = 3n ,,5n , 7g , , i.e
5 , .7 , . That is, they pass each other in 1.1 second,

and every .2 second thereafter.
A.

To find the corresponding posftiorls, we need only substitute these values..

for t in the equations of motion. It is simplest to obtAn first the suc.

c ssive atigu r positions

19

, (9 ,

If ti = , .83. = ..4.ir = 72°

if t2-' = 3, ,.612 --% 1. 2tt = 216° ,
i. ,

for their passing points.

If t3 = .5 , 2rc = 360°

The rectangular coordinates of these positions are given, say fob r = 10,,

by P1 = 10 cos 72° , 10 sin 72°) ;. .1°"'2 = (10 cos 216 , 10 sin 216°) ;

9
3

= (10 cos 360° 10 sin 3606) These are equivalent to -

P, = (10(.309):, 10 P2 = (10(:;8"09) , 10(- $8.),)a; P3 = (10(1) , 10(o)

177
,

. v

188
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In usual rectangular form,.rounded to hundredths, we have:

P1 = (3.09;9.51) ; P2 = -5.88Y ; P3 = (10,0) ;,

Example 3. (Refer to Example 2, above.) Suppose, in the previous exampl

the points start as before but traveliin the same direction, with the same r at
at.

as before. When and where do they pass?

Solution.' The equations of motion are now:

x = r cos lint X = r cos( n + 6vt)

and

y = r sin 4vt; y = r sin(n + 6vt) .

The meetings (or overtakings) will,take place now when the difference of

their angular displacements is 2n , 4v 6v , . The first meeting wilf
-

take place when ,n + 6vt - 4vt = 2n thatthat is, when t = .5 sec. After this,

successive meetings will occur when n + 6vt 4vt = 4v , 6v , ev , ;

that is, when. t = 1.5 , 2.5 3.5,, . TO find ttlecorresponding angular

positions we proceed as in the previous problem and find el = 2n , e2 = 6n ,

etc.; that is, all overtakings will take place 1 second apart, at point A ,

starting at the end of the first half-second.

Example 4. A point is rotating uniformly on a circle of radius a , With

its center at the point (b,0) . Find,analytic conditions for its locus:

Solution. Suppose/fileilniform angular

s' veloci.ty, expressedlimadians per second,

is w From the hypothesis and the
I"

4 x = + a c o s e , ixeb + cos uyt,

a sin e j I y =a sin ait .

These,are parametric/equations for the

locus. The first equations are posi-

,0 tional only, the second equations relate

diagram, we have

the positions tottime and describe the

of the point . /
4.44

mar eliainkte the4aramet s w and t.,,
Figur/0 5=10



therefore,

or

(x b)2 (yg )2 2 2
= cos at + sin at,= 1 ;

(x - b)2"+
y2 a2

r
544.

This last equation is the 'one usually given in rectangular coordinates. It is

an equation of the locus of the point and takeso account of its position at

any particular moment.

The ellipse will be ,discussed in detail in Chapter 7, but we derive now

its analytic repreSentation in parametric form. We start with two concentric

circles, the smallest that will enclose the ellipse, and the largest twat the

ellipse will enclose, as illustrated in Figure 5-11. Suppose their radii are

a and b with a > b

as many points of the

Draw any line through

. We, describe now a way in which a draftsman can locate

ellipse as he needs to draw a smooth curve throilgh them.

0 meeting the circles at A and _R respectively.

Through A and B the lines patallel to the y- and x-axes respectively will

meet at point P of the ellipse. For all o we have x = d(0,C) = a cos o ,

and y = d(C,P) = d(D,B) = b sin o .

The equations are

x = a cos o

y = b sin o

We may eliminate G as follows:

X 'Y= cos - =sin 0;

x
2

y
2

2 7 2-7 . = cos 7, + sin 1 ,
a b

2 2
x y

+ = l 24
a b

l or,

which 4Sthe usual equation of an Figure 5-11

allipse in rectangular coordiptes. Note that the paramet r used here is

not the angle between the pOsitiVe art of the' x-axis and he radius vector -

OP to the point P ; that is) it is not the angle used in representing P in
.

It should be recognized that we may select a parameter in various ways to

. polar coordinates.
.)

plan'

it a variety of situations. There never.a unique way :to do this, so it isc

naccurate to refer to "the aramet e equations of ..,.". Rather, we hiFie

"a parametric representdtiorf with,the understanding that we have mad

the choicei,of constants and -.that best suit thehypotcieasaad our

'of apprbachm the soiU AW

'A *

ti
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Exercises 5-4

1. Write parametric equations for a circle of'radi e 10 and with center at

the origin.'
'

2. Write parametric equationsIfor the path of a.point around the circle of

.3,

Exercise 1. AssVine that 14 starts from the 3 o'clock position and

rotates'cloclWise at the rate o 4 revolutions per second.

Write parametric equations for the path of a point at tlh end of the

minute hand of a clock during one hoUr.. Assume.the length of_the radius

to be 6 inches and that the point starts from.the 12 o'clock position

to which we assign the numbers 0 and 60 . Use minutes as measures of

time. 4,

4. Write parametric equations for a circle with center at (4,0) and radius

3 .

5. Write parametric cations for a,circle with center at 10,6) and radius

4

6. Write parametric equations for the path of a point moving around the -

circle of Exercise 4. -Assume that it starts from its iowest.point and

moves clockwise at 2 rps .

7. Write parametric equations for the path of a point moving aroilhd the

circle of Exercise 5. Assume that it starts from its highest point and

moves'Counterciockwlse at _3 rps

Describe in words the motion of a point whose path has the parametric

equaiionigiven below. Assume t denotes elapsed time in secon&S.

4 cos nt

= 4 sin,rtt

1

+ 5-')9. zx = 6 cos (li

1

2 Y

y = t, sin (rtt

10. rx 8 cos ,(7t - 3/a)

y8 sin (rt - 37(0 .

:

11. x = 10 cos (3gf + 10rtt)'?,

3rt
y = .1 i n 10110/0

2
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12. x = 4 + cos bnt

1 y = sin 6nt

13. / x = 8nt

y= 3

14. x = 2 + cos 12ut

1 y = 5 + sin 12nt

15.. x= a + 13 cos 2nt

'y = c b cos 2Itt

16. x = p q(cos 2nnt -

p
y
I

r
=

+-q(cos 2nnt - a).

17. The equations of motion of a point moving uniformly on a circular pair are

(t ih seconds)'1x = 6 cos lort,i

1 y = 6 sin 'Int.

(a) Descrife its motion in words.

(b) Mdse a table showing the coordinates of the point at the times

t = 0 , .1 , .2 , , 1.0 second. .

(c) A second point travels on the same circle'in the same direction at

the same rate, and starts at the same-time, but from the point on.\,

the y-axis above the origin. Write equations for its motion.

(d) A third point starts at the same time and place as the first point,

but travels in the opposite direction at half its speed., Find

equations of motion for this third point. . e,

(e) Find the times and places aft whicethe'ihirci point meets the first
. _

point, as was done in Examples 2 and 3. . ..

(f) Find the times and plac s where the third point meets the second
.

18. Three bicyclIst A , .B , C are equally spaced around a one mile circu-

lar-track; (say the 8 olclobk, 4 o'clock, and 12 o'clock positions,
* a-

respectively). and, B , who go clockwise, can circle the track in

3 minutes and minutes respectively. Cc rho travels counterclock-.

can circle the tracksin .5 minutes. They start at the same moment.

Write
.

Oations of motion for th ir angular positions on the track

at fly tiMe, t after they start

(b) nd and illustrate their positipns at the end of each of the first

10'' inutes.

b, pete ne the first 5 meeting ; who meet; when, and where?
tir

.

6.,(d)Whe and where-do all three mee , if ever?
1.

181
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19. A point starts at A (Figure 5-9) and moves counterelAckylse at i rps.
14.77'

A second ptint starts at position P , which you are find, and, moving

clockwise at the same rate, passes the first point each time ey cross '

the y-axis. Write the equations of motion for this seqond point.

Four points, P , Q , R , S are equally spaced around a'circle (Figure

5-9), with P at the 3o2clock positibn, Q at the 12 o'clock position,

R at the 9 o'clock position, and at the 6 otdlock pOsition. P and

Q move counterclockwise, R and S clockwise. They start simultaneously,

and all meet for the first time 10, geconds later at the 10 o'clock

h.

position.

. (a) Write equations-of motion for each point.

(b) When and where will all four meet aeain?

5-5. Parametric Equations of the Cycloid.

A curve frequently encountered in Physical applications is the cycloid.

We introduce it in an example.

Example 1. Awheel of radius a feet rolls in a straight line doint a

; flat. road. Find analytic conditions for the Vaih of a_point P'on the rim of
I d

the wheel.

411

Solution. Something--perhaps years of experience-luggests a parametric

representation.
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Let the line along which the wheel rolls be the x-axis, and let the

origin be a point at which P ',touches the road. Let the positive direction

on the x-axis be the'etion in yhich the wheel is.rolling. Finally, let 0

be the radian measure of the angle through which the wheel has rotated since

P touched the road, with 0" positive when the center ofe wheel has a
paiitive abscissa. Since the-wheel is railing, not slipping, the length of

is the same as thSe length of PG The definition of radian measure gives

this arc length as ac . Hence,

/ x-E-d(0,J) =d(0,G) d(P,H) = a sin 0 ,

1 y r d(P,J) d(C,G) =,d(C,H) =a - a cos 0 .

We rewrite these parametric equations of the cycloid
2

0x
= a0 - a sin ,(t1) Or

x = a(0 -sin, )

y = a - a c o s ; 1 y =a(I cos

If the wheel were rotating at the rate of 0) radiansrper second, then

= cot and Equations (1) become

= seot - a sin at ,
(2)

I
y= a -acos uyt''"'

ibmrepes 5-5

1. A point P = (x,y) on the rim of a Wheel with a 2 inch diameterArapes

a cycloid as the wheel rolrs'along the x-axis. trite parametric 'OZ''1Uaticifl
'.:.

for the locus of% P r. Find reetang4rcoordinateh for P , correct to

tenths, corresponding to values, of 61 from 0° to 360° 'at,interirals

of 30
o

MAice a; careful drawing of the graph.

2. One arch of a cycloid will Just fit inside a rectangle 6 unit1t, 1.0,
,

. *-

1How wid is that reetangle Choose suitable axes and then write4ara-

/'

...
, ., .

,:. v. ..!''

A wheel with a 6 inch r is rolling along aline, rotatift.44
(..q. .3,

metric 4quations for the c cloid.

..0s. .

. 4 "c 1?0i.
01,. times per second. . . 4,.. ,

4 4

jai

(b)

(c)

..:...,.
.....

Choose a suitable coordinate system and write parametric equationitNtN.
.-

.t.....0'.'

of the motion of a point P = (xly) on the rim.
I

1 Ai:

Find rectangular coordinates for the positions of P ,at times mq .'..,.,
.t= 1 , .2; .3, Ii , 5 ' 4

,
.,.....-

Find the time and place-at,which P

its path.

6' 4 Ti
183
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4.. An automobile traveling along a straight and level road at 30 Miles an

hour has a wheel whose o4euircumference is_ 66 inches.

(a) Make an accurate scale drawing of one arch of the cycloid traced by

a poizt,on the circumference.

(b) Chooge a suitable coordinate system and write parametric efauatiods

for the motion of a 15oilit on the rim of the wheel. Use a minute as

1
'a"unit of time and 3-

7
as n,approximate value for A .

Challenge Exercises.for Sections 5-3, 5-4, 5-5

1. (Refer to Figure 5-12,) If, as in the case of'a Cycloid, we consider a

wheel of radius a rolling down a straight flat road, we may consider the

path of a point P not on the rim, but along a radius F , at a distance

of b .feet from the center. We distinguidh two cases: ID > a , and

b <: a . The locus in the,first case is called a prolate cycloid, and

in the second case a curtate cycloid. Figure 5-13 illustrates .ifpe
=2\

Which leads to a prolate cyCloid, whose parametric equations y Ware askedI
_

to find. A part of,the graph is shown in Figure 5-14/

Figure 5-13



I

4 8' , 12 16 20 11

A
(0,-2) a .= 4 , b = .6,,

(8g,-2)
Figure` 5 -14

.0 i 4
.. . .

.

This figure illustrates a case in which b = 1.5a . (Can yol.(find the
4 .

ordinate of the point Q in which-the graph cuts the y-axis?) The stu-

dent is urge7d to consider the cases: b = 2a , b = 10a , and to draw

some general conclusions.

. The curtate cycloid. ,(Refer to Figures 5-13, 5-1:4'.) Find the locus of'a

point P on the radius- CF3 of a circle as the circle rolls alongaline:

d(C,P) = b ; radius = d(C,F) = a , and b < a . Choose a suitable co-

ordinate sy2tem and draw an arch of the graph of a curtate cycloid for

the case a = b . (2'

circle oferadius 4a rolls, without slipping) on the outside of a

circle of radius it . Find an analytic

a point P on the outside circle.

Discussion: We illustrate the

case a < b and suggest these
.

relations: length of AB =.1ength

of PB , a0 = be .

C= ((a +-b)cod e , (a + b) sin 0;

the sum of the measures of e 0 )

Or 90? ;

d(P,D) = a sin 4%; d(C,D) = a cos 1,1,.

We urge,the student to experiment

with the special cases b ,

..- .a =gb rd =.1 oT SUch curves
_

,

m a called epicyclOids and,have

ap
I

lyations in astronomy, and in mechanical
. .

' 1D9 1 \
)

V

representation of the locus of

a

engineering'.

1

e
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,

5. ti circle Of radius a has as center C = (0,a) A chOr,d'is- drawn througl

_-.any point D = (x1,y1) of the circle and extended to'meet,at Q , the

tangent to t circ le at, A , the
Y.

' end of the diameter from 0 . QR

4

4. (Refgr to the previous problem.) A circle of radius a zlls, without

slipping? on the inside of a circle of radius b fa < b) . Find'analytic

representations of the path of a point P on the circumference of' the

insider circle. Such a path is.called a hypocyclp... The student is urged

4, 1
to experiment with the special cases a .77

1
b , as = b, a = 75b . 0In both

this and the previous exercise the student is challenged to answer this

questions without performing the experiment: If a =
1
1.5-b, and we make a

comiilete circuit, how many times nas the smaller circle rot: ed on ''ts own

is drawn parallel td A0, and

line is 'iclrawn from D parallel

to AQ , And Intersecting' QR at

P .*(x,y) . Find egus ,tions of

the locus of P as the point p
': Figure 5-16

move; bn the circle. Sketch the

locus. (This curve, called the witch of Agnesi, was studied and named by

' a mathematician of the eighteenth centullY, Maria Gdertaha Agnesi.) ,

6. Find an equation of the Acus of a point which moves so that the sum of

the squares of its distances from two fixed .points is a constant, wb.ch

2
we call' 2a . Desc be and sketch the locus.

I .

7. Find an equation of he locus of a point which moves so iiitt the 61.1,m ok
. - ;

the squares of its distances from the vertices of a squar is'bonstant.

,

Describe the locuse
i

3. Find An equation of the locus of a pOint which moves o t thesud of

the squares of its distances from the lines containing the sidestf.a. .

.. .;,, . ,.'

...,
square is constant.

ih'

.

^9. A line ka parallel to,thPside AB pf Otriangle ABC ,, meets AC,..
4 ... V .i.V

...-, D , 276 to E. The lint t' =SAE and BD meet- at '1°-'4,1::.F,I an equeitio

of the locus consisting ofa.il such points . (Hint:At AT be
. . , ,

' and let, C = (0,c) , where c > 0 .,*Introdude as .a p teri

the diitance between DE andlthex-axis.)

a86

,9 2
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10. Let 0 and Q be distinct points. Let T, be a ,line.through 9 and

let -P 4e the foot of the perpendicular to 4, through Q . What is the
kir

'locus` of 'P .as L rotates around 0 (Hint: Use the slope of L as

an auxiliary variable. Remember that some lines don't have slopes. Does

Q lie on the locus?)

11. 'A circle of radius -a has, its

.diameter OCA along the polar

axis. From 0 a chord' OR is

drawn and extended to meet, at S,

the tangent-to the circle at IA .

-Find equations of the locus of
.40

P ,a point on OS such that

d(P,S).= d(OR)v. Make /a- sketch of

the graph. (Thid 14cus is a

Figure 5-17cissoid, a curve studied by the'

4preek mathematician Diodes, who lived a century or sd'after Euclid. You

may learn somethingmore about it when you study inversion later.

04440

12.' A fixed-line BC is perpendicular

to the polar axis at point A , a

units frbm the pole. ,A ling is
44410

drawn through, 0 meeting BC at

R.. A fixed, length 2 is marked

off from ItooeTithis line in both

directio4-locating the points P

and 'P' Find an equation in

polar.coordinatestfor the locus

of' P and P' . (This curve,

called a conchoid, was studied by

` the Greek mathemattcian.Nicomedes

about two centuries B. C. it can

'be used in the tiisection of an

anglg. Try 'to discover how.)

'1e7
I Da

,Figure 5.18
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. 5=6

,
J

.Involtute. of the' circle. A string

of,n6 thickness is wrapped around

o a fixed circle; the end, of the s

string :is at A . We unwrap the .

string, keeping it(fitut, and tangent

to the circle. -(PT' is,tangentoto

the circle, and, d(P,T) = length of

AT). 'Fitd analytic.condnions for '

thee graph'of P This graph iz

. clued4the involuteof the circle.

Try to -glneraliie.this idea, and

.

) 0.

sketch involutes for'an ellipse,, ,' .

_a parabola, ... Pees, every curve have an involute? Make some mechanic :1

modelswith which you can draw invol4tes. Draw the involute of a square.
-,

. Suppose a fixed circle with radius ;a. is itternally tangent to a circle

with radius b (b > a) Firia parametric eqUations for-the locus of a

point P on the outer circle as the outer circle rolls around the inner

circle withOut slipping. y'

I

Wo

Figure 5-2G
t

. ..--

'(1(E-6:. Parametric Eqvations,of a Straight Line.

.
..

t .

Parametric represent'ation, which we found so useful in the complicated
. -

cased of the previous settions can be used toilluminate and extend the dis-,.
. ,

cession of the straight line. Some of the exercises of Section 5-2 have
- ..

already introduced you to the ideas and met ods we examine now in more'detail.

The foundations for this .discussion have ready been developed in Chapter 2,

_ particularly in Section 3, where we find ese equations:

t(Y1 YO)

188 .

191
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5-6

....,

We recognize that the Alkantities x .xo and yi - yo are direction
o

numbers obtained from the c ordihates o he point Po = (xo,y0) and

'P
Ilt

= (i
1
,y
1

) . Therefore, we rep ent them,respectively by i and m , and
, .

rewrite Equations (1) as .

(2)
+It,.

= YO + mt .., ,

We recognize that t' is a Yrameter, and that these,equations are pare -
L.' . . _4

metric equations ot the line through the points Po and P, ; which we assume
i

to be distiXact.'

V;4-
.ii.

: If xi = xo , then yi yo , ana t=S) .t.sZkes the form

s
X X0
y =yo .1. Mt

`I .
4

V.. ,

(What is-the geometric version ofthis hApothesisand conclusion?)

,

, 'If yi--:- yo ,:then xi # x,,,',and (2) takes the form
'.

.

.
x .; x

0
+it ,

.' .

0 ...

1 y =

, (What is the geometricx4sion 'of this hyPothesis and conclusion ?)

Mpmfle 'Find a-parametric lrepresenfation of the line through (2,0)

and r4,3)

4,_ .

Solution:. 'We'can, chOoseefther point as P
0

If P
0
= (-0) then

'

x
1

x
0

= - -6
''

y
1

- y
0

3 and we get the representation

(x = 2=-6t
J6 ly = 0°+ 3t

-:-Theothei choice for P
0

leadd to thePrepresentation.

+ 6t
.tI ,

y. = ; 3t
, .

A Parametric representation of a line'sets up a one-to-one correspondence

between the reaL ....erssand the pointg on a line in the plane. We illustrate

below the correspondences estaNdshed by the parametric representations,we

found for-the line in Example -1.
.

-189



Figure

tc,=

Fiore 5-ab

'Hxelaple2. 'Find the ante section pi" the line thrOugh (4,2) and
(2,-4) and the line-through/(-3,--1) and (-4,2C) 1

- Solution: The lines may be represented parametrically as follows:

= 4 - 2 x =,-3 tL ', 9* ,
4

r .
- , .y = 2 -.6s . - , y = X ,.4; 3t

,, - ,

a'We idsh to find all points which lie on both lines. Now the point (x,y)
. .-- liCs Qn :loth lines 11 and only if there eXist values, -so and to of s/ .

and t such that . /
1 74

I

All such values Hoff s and t,can be found by Solving simultaneously the
e

equations.

4 - 2s = 1 t ,
. 4t. 2 - = -1 + 3t-

solutions are = 2 ; t s -3 . Substituting ,these in either pair
_ intersectiontrig equatiOns, we 'find ,that the only point of tersection is

1-

x - 2 = 3 to

y =2 - 6so = -1 + 3.to "

- .

It would-have been ctt&te.correct use the s letter for the

parameter in the par'ametric representations of L1 L2 . However,. this..
.

would have leS tOi difficulties later iksthe problem. Do <you see why? Cam

you find another method of getting 'around "the-diff ulitiles?`

190 t
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,'L

In previous sections of this chapter we -related the parameter.' t to'

elapsed time. In such cases the parametric equations gave us equations of

motion of the point P . The graph of these equations was directly related.e
to the path of the point. Example 3 shows how this approach can be used for

the line.

+t

Example A ball is rolling along a level surface in a straight line

with constant velocity. .The surface is provided with a Cartesian coordinate

system with he foot,as the unit of length. At 10:00 a.m. the ball is at

(4;2) while one second later rt 'is at (2,-4) . A second bag, also _rolling

along the level surface in a straight line with a constant velocity, 1,5 at
,

-(-4,2) at 10:00 a.m., at (-3,-1) one second later.' We ask whether the

. two alls will collide. In other words, we want to know not whether their
.

paths' tersect but whether, if, they do, the two "balls are at arty point of

intersect n . at the same time. We assume,, in order to simplify the problem,

that the balls have zero radii and will collide only if their centers

coincide. '1r

4

Sofutioff:

= 2 - 6s .
o

" F gurther; if s is the number of seconds w}ch have elapsed since 10:00 a.m:,

The path of tke_lirst ball is represented by, the equations

the equations also tell us where the ball is at any time. For if we set

- s =4'0 (10:00:00 a.m.), getu x.= 4 and y = 2 , while if we se = 1

(10:00:0,1 a.m.) we get x = 2 a,nd y = -4 Further, ,in s second*s starting

at 10:00:'CR) a.m., an object whose motion was repented by these equations

would travel

4

feet. Thus the

and the speed
4 '

described, hy
44

i
t.

.i . .

- 4)2'4 (y -

distance travelled

is constant. Similarly,

the equations
t

l. * 1 X =.:

' i y =

2)2'= + 36 s = 2./rd

is. a
)

constant multiple of the time taken

the _motion of the Second ball is

-4,+ t ,
2 - 3t .

/

..

4 I

I

191
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Our problem is to find out whether the abscissas of the pbsiti ns Of
%.the two halls, and the ordinates, are ever. simultaneously' (s '=.t) qua.

1._In other words we ask whether the system of equations
. .

4 4 2t = -4 + t ,

t 2- - 6t = 2'- 'it .. .
,. , - . .

has a solutIon. Clearly not, since his pair is equivalent to the pal.

,.

.
, . t.-

Thus the balls° do not collide.

If direction cosines are used in a parametric representation 'of a 1
the parameter t has. an interesting interpretation: Since '

.

a(10'P) /(x 7 x0)2 (Y
/ 2 2 2 2

YO) t t 1= Itl
`N .the absolute value op the parameter is the 'dfstance of thercorresponding

point from P
0

Example 4. Find, on the line through P
0 = (1,5)- and P

1 (5)8) ,
.

points wkiich. are 3 units distant from Pr, .

, -...- ' , ,
,. doow ...Solution. Diieetion numbers for P P are (4,3) , and direction cosi''

cazi44,aken as , . .We. may then write parametric equations for 44144P P

4 3) .

s'., 0 1-
' 1

4. 0 .1, .......t. . ,
terms., of cii:rection cosines as .

s
1 ..

. . .

...
'.., i

The substitution t = '.4.: 3 givqs thi. coordinates of both points;
Cl

5
+,2....

5 + J) or: 5(3.4,6.8) and (-1 4 2)- J 6.

. .'. °

° ( :' I

s
o

k.

0

%M.

19.2
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5-6

, . ercises 5-,6

. A ,
41"*. Find ;two parametric. each line through one of the,

following pairs Of points, using each pair. in both possible orders.`'
,

(1,1)` , (2,2)
-.

,-)C
(a)

(b)

(c)

(d')

(5,-1) ,

(0,0) ,

(2,-3). ,

(-1,4) ,

(2,3)

(4;1)4

;(2,3) ft
(-6,4)

:
/ .

.

(e)*

(f)

' g)

. .(h)
.

.

(-1,-1), (1,1)

*(1;0) , (0,1)

(2,-2), , (-2,2)
....

2. Draw the graph..of'eath Of the lines in Exercise'1,. plotting, on each,

, the points corresponding 'to the values -1 , 0 ; 1 , and 2 of the'
..-

parameter. \

3. Find the intersection of each of the folfoowingpairs 'of lines. Vhen the

lines do not intersect, what do you notice about their equations?
'a ..

j
(a) fx 5'-' s ' . r

x = 4 - 2t -

t y .°=:` 2 - s ly = -6 + 3t
- --

..
x =2 - 3s ix = 4 + 6t

(b) f y ..
= 1 +. 2s

ly = -5' - 4t

( )

fx = -3 + g 'ix. = -2 - t

y = 2 - 3s , 1 y = -1° + 3t

Find a.pair of.pexametric equations for the line L with equation

.2x.- 3y +. 1= 0

Let L have thepexametric equations'

x = x +
0 ,- ),

nit(,

'Let Pl = (xi,y1)4_ and = be _.,
e

,y_.,) be the points on L given by t =
I

.

and t t
2

-nresective Prove .that cl(P P2) =
2, qv it t 1

2

- 1 *,.
6. A ball is rolling on a level floor along the line through (16,2) and

(4,7) and in the direction from the,first point towards the second.

(The unit of length is the toot..) Its speed is , 26 feet per second.
, . ,f.

Find,parametrid equations for its !notion) mea.uring time from the
. .

instant when it is at .¢l6;2).). .

1 .

'' i .

,

4.

193,
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r
7. Let S be a set of points i a plane. A point .P is sometimes called

ILa center of S if S i,s s etrio

tion of aline Tay be'used to prove

points. Let S be the circle with

gin hap a parametric representation x = Tt , y .

= 1 . Substituting these expressions for x and 4 in

through the o

yri th N2 4

, the equation of the circle we get
4

about P.

.that a point

equation x
2

Aplarametric representa-
,

is a center of, a set of

y2 .,4 . Any line

?A2,+ 112t2 = 40

or t2 =4 .

Thus t = - 2 .

Sinc'6 the answer is independent of ?. and µ , every line through

the origin meets the circle in

These are Adistant from the

(a) Show that the origin is a

ti

the points given = -2 and t = 2 .

origin.

center for
b2x2

+
a'y2

'

O
(b) Show that the origin is a center for y . (Discus's. the case

when a >ID andAhe case when a < 0 .)

(c), Show that the originip a center for y =,

/

x - 1 5

8. A set S' oT poirhs in a plane-is Ailed bounded if there is a rectangle

"which contains S . Pi-ovethat a bourAe set in a plane his at most

ote center.. Isthis also true for unboun ed sets?

I

9. find, on the line through Po = (1,5). and 1)3. = (5,8), two points at
. .

,

. unit distance from P, .
t o

...
,.,..

10. .Find, .oar the line through A = (-3,5) and B = (09), two points P and

Q such-that d(B,P) = d(B,Q) = 5d(A,B) .

''5-7. Summary. .

,
. . II .

We have investigated the relations between certain geometric and algebraic
)entities. The geometric oijects Were sets of points not', ii.s.we have said, given'

tb us in a basket* but determined by crtail:t conditions or descriptions. The

corresponding algebraic expressions were statements of quality orinequality.

The relations betwee them wfreipproached through-a co dinatization-of the.

"space" in which 'th sets were presented to up, Then our knowledge and/in-.
genuity and'experience led us to an algebraic description of the set, knthe

.

terminology of our.coordinate system.



.

We have shown tEis process in de

applied parametric representation in

and motions along a circle or line.

- perties or geom4tric appearance; how

tail in-a number of situations. We have

situations involving angular displacement

Ic,a set.olpoints has any special pro-

is this reflected in_its analytic repre-

sensation ?. If, for example, the set of points is syMMetric in any way,,could

we tell that from its equation? If, on the other hand, some analyti

.

i

repre-

sentaton shows a particular algebraic proper'y, what is the geometric counter-

part? What would,be the geometric effect of, imposing certain restrictions on

the domain or range of the variables that appear in the analytic representar
f

-ions:? ) ,
.

,

., ogg

In oun;sext chapter we will investigate in detail many such relations
\

between curves and their analytic representations..
. A .

,

Review Exercises -
. _

1. We describe certain,sets of points, Yolu; are asked to give aft analytic

description of each..
, -

(a) All poi41ts equidistant from, the x- and'y-axes.

All pants equidiant from the points A,= (5,0), and B = (11,0)

All points equidistant from

AI1 points equidis&nt fiom

A = (5,0),

C = (5,8)

an

and

C.= (5,8) .

B = (11,0) .

(e) All points at distance l3 frOm. C = (5,8) .

(:',6 All points at diitance 3 from the line x = 5 . ,

(g) All points atdistance 3 from the line y = -2 .

CO All points at distance 3 from the line

(i."> points at distance h from the line

(j) 'All points at distance p f i'dm the line

(k) All points. at distance d from the line
<

-(I 1) All Points twice as far from A = (5,0Y as from ..B-!.= (11,0) .

(m) All points equidistant from the point C = (5,8) and the x -axis.

(n) All points equidistant from the,point A ='(5,0) andthe line x = 1.
- 4

(0) All points equidistant from the point p = (5,3 and the line"
.

3x - 4y + 7 =-,0

(p) All points equidistant from the line ax+ by + c=

point P = (r,$) 'not on that line.
.

3x 43/. 7 = 0 .

x = k .

Y =

ax + by + c = 0. .

1

195
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2. If A = (-3,1) , B = (5,3) ; C = (1,5) find an ana

of

(a)

(b)

-(c)

(k)

(1)

(m)

(n)

(c) the

(q)

(r)

(3):-the.

(t) the

the

the

AB

AB

AB

the interioor

the*interiol.

the, interior

the interior

of

of

of

of

the line through

line throlIgh

the line through

the

the

(ti)

('v)

'NBC .

LBCA

Lc,.
6ABC .1

A and parallel,tb.

B aiid pdreliel

C and parallel to

4-1
"BC

BC

BC

line cOntaining)altitude AD' of

line containing altitude BE of
line containing altitude CE of LABC .

line containing the median of AABC through,

lime containing the median of LABC through

line containing the median.of AABC through

(w) tie pair of lines through A and ftmllel to the

(x), the perpendicular bisector of AB .

(y). the perpendicular bisector of BC .

(z) the.cirale co4aining. A , B ,.and C .

440
BC .

CA .
'

AB .

A BC .

.6ABC .

ytic repi-esentation

g) 5

(1) 7

A

B

C..

axes.

3. Theiltollowing expressions are analytic descriptions of certain sets. You

are asked to describe each set in words, giving its name, its location pn

the plane, and any speciargeometric(prolArties may have. Sketch the

graph of each.

(a)
sl 3

L' + = 1'

(b) + 5

_ -

(c), ac.
2

(d) "1,x2 +.y2 = 16 ,

(e) x2 + 9y2 = 16

(f): x2 -2yy =.16

(g) 9y =16

(h) 9m. x
2

= 16

(i) y2 -.9x = 16

1

) 3L=S.

(k) lx +5I <4 .

(1) lx - al < b

(m) xl; = 0

(n) (x "-11(y +2)=p.

(o) x2 - 3x - 10 = 0

(p)

(q)

x < y -.

x. <y2

x <



1, Give Verbal descriptions of each of the sets described analytically'with

polar coordinate's below. Give its name if availatle, its 'location on the

:plane, and any special geolnetric properties it may have.,

a) r
2 = 9 (k) r = 7177

(b) r
2 < 9 (1)

r cos e

. I

r -

(c) r <.3 , -- (m) r
-2

CI:77.. .

5(dj. 4 >.3 (n) ' =cos e

(e) e = 2 i (o)
1

......./F6s(e + ;)

(f), <

(g) r = 2e .

(h) r <*e

(1) le - 21 = .1

(J) 1r - 51 <.1

5. Write they related p'olar equation or inequality for each part. of Exercise
.

4 above.

(p) r

sine - i)

q)

a
( sin(e - b)

(r) r 1
sin

(s) r"
2

-c7s-74,

(t) sr = 0 .

I s

6. EliMinate the pareheter in each pair of parametric equations below.

(a )1 x :-$.3. + t (f) x = 3 s in :t

iy = 1 + t
2 x :.-- r cos t - ..

.
"

(b) x = 2t (g) x=..2 + 3 cos t.

(c)

y = t + 2 y = .4 -

(d) x t
2

+ t

y = 3
t
2

(e)
1

= t +

2 1y = t + --6
t

7

(h) . x = 2 sin t

y = sin 2t

1
/x =°

sin t '

Y -
1

i. cos .t

sin 2t
...

y = ain2t

L
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7. A point moves,on a line from A = (3,7) through

of 1 linear unitiper second. Write parametric
I -

using - seconds as,units forhe parameter t'.
tir

B = (0,3) at the rate

its path,equations for

8., A point moves on line from the origih through point C (7A) at the
.rate of 5 linear units per second. Write parametric equations for its,

path, using minutes as units 'or the parameter t .

A mOVes.along a line

Ix 1 + 3t ,

y = 3 -t

equations for its path:

The path of P1

The path

Point

=

with_parametric equations for its

B moves along a line with parametric
k

5 - 2t
Find 0A,B) when t = 4; and

11 + t

x
has equations

Of P2 has equations

Express
'

d(P°
l

P
2

)
'
when

equations.

= xl + ilt ,

.

= .yl. 4. Mit
L

X = X2 + 22t ,

(y -1.- y2 + m2t .

t = 2 , in terms of the constants in these

11. Write parataric equations, for

clock

(a)'

(b)

(;.)

(d)

(e)

if .the path

Starts at 12

(revolutions

Starts at 6

Starts at 4

Startallpt 9

&tarts at'8

each path of a point.around the rim of.a.

had the fol40owing desbripiion (assume unit radius):

o'clOck position,

per second).

o'clock position and

o'clock posttion'and

O'clock position and

and moves Counterclockwise at 3 rps

o'clock position and

1.2. Find the time and place of the

moves clockwise at a rps.

moves counterclockwise at 1 rps.

moves clo'ckwise at 4 rps.

moves counterclockwise at
1

rps.

first meeting, assuming a simultaneous

start of the, points described in Exercise 11:

(a) a, and

(b) a 'and c

(q) a and d

(d) a and e

(e) ,b 'and c

a.

-7

A

198

r

b and d

b and

c and

c and e

d and e



i

13. .A point is rOtating- at 2 rps at Nd.istance 3 from the

,point (4,5r. Find analytic conditions for is path?...

A'point is rotating clockwise at a rill at a distance of 2 from the

(-1,0) Find analytic conditions for its p ath..

point

15. We give analytic descriptions of the paths of certain points around the

1-41:of a clock. You areasiied to, describe these parts in words. 'Assume
la

t' measured in minutes.

.4
(a) = 4 'cos 47rt

4 y = 4 sin'47*.
_ ` ..

. , (b) = 6 ( +trrt)
.

,y = 6 sin(-Tr + 6;rt) .

2

(o-) ix = 10 cos(g. - 1041) *

ty = 10 sins(rr - 10itt)

-
(d)tix cos'(47rt + g*)

1,r 'Sin (trt Tr).

(e). fx = 2 sin

y = 2 cps art
.

-
Find parametric representatiOris for the ellipses described below:

(a) center at the origin, major axis 10 along the x-axis, minor axis
.

.6 .

. 4
. ,

(b) center at the origin, x-intercepts ± 31, y-intercepts +,4 .

(cl major axis horizontal) and the' ellip9e will just fit between the
- 4 ..,. , .

'circles- x2 + y2 = 5 and x
E

+ y
2

-

= 6 .. .'

,,

17,. A wheel. radius 12 inellgs, turning at-the rate of 3 rps, is' -

' ...., ... 7

rolling own a steraight, leVel road. Assume a coordinate pystem as ,usual'
,

'

and wiite pitrametric equations for .

. '', . i . .
. (a) a' point P on, its ribs; - gi '''

(b) ,a point Q, , six incheS in from the:.xim. '(A chaLleni)ge problem.)

...

,

/
/ 199



6-2

1
-:. Chapter 6

CURVE SKEA:ING AND LOCUS PROBLEMS
'fi=t'

t

6-1. Introductlio-n

We have by this time made a beginning in the discussion of sett of

points and their analytic descriptions. We have introduced and used various

coordinate systems. We have used parametri-c-representations, finding them
f.

par\Lularly useful in physical applications involving rotation or other

motion, and in locating positions on a path. Now we investigate tore of the

details and try to develop more competence (and confidence) in this powerful

language of analytic geometry.

,`

6 -2. 'General Principles

The study of analytic geometry has two major concerns. One of these

is, the relation of geometry to algebra; the other is the relation oe algebra

to geometry. We must, therefore, consider two basic situations.,

s

A. We are given aset of points. What would be a'good analytic

representation of ;hat set? If we'had two sets of points how

would their geometric relationships be reveaiedintheir analytic

B.

;representations? (geometry to algebras)' ti

We are giyen an analytic representation of a set of points. What

can we now say about the geometric properties of that set? If we

had analytic representations of two sets, how could we'use these
< ,

to reveal and develop their geometric relationships? (algebra to

geometry.)

p $

.

t
14 the,first situation wviet distinguish imrLli

0
ately betweeirthe cases

we Aall treat in' this text and those we leave for later wort. If a set of
,,,,,,,,r,

poiriii c;aes to us,' say, froth a chart of the results of an experiment 4
)

be
...

if,-

.,curve ,drawn by ah autoMatic, recording de4ce, it might b useful to 4, a

simple analytic representation of that set. We do not treat such mal rs in

this book,'although they have important applications ih satnce, are the
( 1

.

;

subject of much current mathematical research.
.
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2 0 G-1
..

. . ..4 )
. r. c



k

L

6-2

The sets of points with which"we shall concern ourselves must comb

already structured by some geometric condition or property. Our task will

be to translate this condition into itnalytic terms through our choice_of

coordinate system and mode of algebraic oat trigonometric representation!,
e

For example we may be interested in,the.set of all points equidistant from

tyo given points. What type of coordinate system is best suited to dedribc

this situation?, Can we,simplify the description by'a wise choice of axes and

units? .

' On the other hand suppose we ink the ekpression 2xp+ 3y + 5 > 6 .

Wha set of p4nts does it desciIbe? Is kta configuration we can visualize?

are its properties?
. ,

In this second situation the variablts come to us already named, and the

context and notation usually indica.e the type of coordinate system and the

choices of axes and units. The analytic ,representation may exhibit some

fpecial algebraic or trigonometric properties which we expect to see reflected

in certain geometric properties of the corresponding graph. We db not define

the general term, "property", but illustrate and comment on those we snill

consider.

Example 1. Discuss the equation y = sin x an'dits graph.

'Discussion: We assume that the domain o1 x is the set of real numbers

and note immediately that/ whatever the value of x, we always have lyl < 1 .

,
If a graph of this equatibn were drawn.= the usual rectangular coordinate

grid: the geometric interpretation of this statement is that the entire graph

is Contained in a strip two units wide, centered on the x-axis, and of
.° .

infinite length to right and left. We sometimes describe such restrictions,

on the graph by saying it. is bounded ab6ve and below, but not at the sides.
,

Any comment Indicating whatrregions of the plane may or may not be occupied

14 a graph is part of the discussion of what is nulled the extent of the

graph. ' '

51'

We note al6o from the given relationship, that for each value of x'

there is a unique value of y , but, not vice versa. That is, y is expressed
-,

as a function of x , but x, is not a function of y. The geometric

version of:this comment is that, if the graph'were drawn on thd usua

rectangular coordinate grid, each line parallel to they-axis would intersect
.C. 6

N
the graph exactly once, What can you say about intersections of the graph

with lines.parallel to the x-axis?

Y2
,...,.



6-2

Wd note-also that, since sin(x +2nn) = sin.x for integral values .of

n , the y values will repeat endlessly through the range -1 < y < 1 .

We say inthis,Case that 3r :As a peribdic funcpion of x . ,If) in general;

y-= f(x) s&Ahat,s for some'fixed p / 0 'and for all x , f(x + p) = f(x) ,

then we seiy that y is a periodic filnctiOnof x . In that pse

f(x + 2p)= f((x + p)°+ p) = f(x + p) = f(x) .'"

Itierepie 5 r such functions, f(x + np) = f(x) for Integral Values of n .

If ,p 0 and there is no,smsller positive number which satisfies the

. requirteMent: f(x + p) '= f(x) for all x ;then we say that f(x is a

.periodic function of x , of period p .

I v

Specifically, y = sin x is a periddic,funciion of x of period 2n .

What are the periods of the periodic functions, y = cos x and y = tan x ?

Note that it is the function which is periodic,,not the graph. A particular

function may have quite different'looking graphs, depending on our ,choices

f of coordinate systems. The periodicity of a function may be more readily

seen in some graphs than in-other The graph -in Figure 6-1 can be inter-
.

I preted tb give tnefsame information about y in x as is girven 'when we

say that y is a bounded periodic function of x of period 2n . What .

other information abouethe function can be inferred froMrthe graph?

Figure.6-1

We have chosen the usual= rectangular coordinate systeM, using x and

y as abscissa and ordinate respectively, and obtained the familiar and

beautiful sine curve. Do you see the relation between the, shape of thilk4.

curve and the -related words: sinuous, and insinuate?,

e

20,3.

2 /)

h



4

. 6-2 ,

We could have chosen a,polar coordinate system for a graphic representatir itv

of y = sin x . We may expect a different loN.ing graph on a different g

but we shbald expect also to have some geomdtric 6oUnterparts of the algebraic
.

properties we mentioned earlier.

4- °
When we use polar coorAinates'we customari1S-use asAirariables not x atd:

y and e . r is now a measure of-the polar distance to the lloint

(r,6) , and e is a Measure of the angle between the polar axis and the polar

ray through , In_this context some authorg say that r ./ is a measure

of the distance or moddlus, anti that e is a measureof the .argument, or
.....amplitude. 4

A strong note of caution must be made in discussions of, polar graphs of

equations. From the fact that a point does not have a unique representation

in polar coordinates weexpect that a set ofpoints may :cave several, perhaps

quite dissimilar analytic repr sentations.'.Any,discussion of the relation.
:!

between a graph and its anal tic representation in polar coordinates must take

account of this la4ofuniqueness.- We remember.that a point P .is on the
* -

I graph of r = f(6) if P has at least onepair of polar coordinates which

satipfyPars equation. Thus the point P (10,5) is on the. polar graph
s

of r =.26 because 10 = 2(5) , but the same point could also have been

locatedby the coordinates (10,5 + 2n) , or (-10,5 4=',1) , or others, where

the coordinates do not satisfy the equation T = 26 .

The polar graph of r = sin e is

given ip'Figure 6-2. Can you now

interpret the graph tb show that r

is a periodic bounded function of 6?

We may note that:the'relatedtpcilar

equation for this graph is '

o
r sin ('6 + g) = sin e ,henceis

identical with the original polar

equation:

Fig4re 6-2
,

Both Figure -1 and 6-2,'which are graphic representations of y = sin x

exhibit a geometric property called symmetry. 1ae algebraic ,:odnterpart of

this property will be discussed in detail after the following exercises.



Exercises 6-2(a)

1. Give bounds for the graphs of the)fhlrowing equations. , a

--.-- (a) sin x

) y := sin' 2x

(c) y =/ sin 2x

(f) Y = 0.6 sin x + 0.8 cos x

(g) y= 2 sin x + 3 cos x

(h) y = a sin x + b cos

(d) y = sin 2x (i) y = sin
2
x

(e). y = 4 + 2 sin (3x +2) (j) y = sin2 x - cos2 x
2 ,

2. Express in terms of a , b , c , d the bounds and the period of the

graph of y = a + b din (cx + d) .

B4

6 -2(b) Sykmetry

6-2

The graph in Figure 6-1 is symmetric with respect to the origiq (and

many other points), and to the line X (and many other-iineg). The:.

graph in Figure 6'-'2 is symmetric'rithrespect to the'ppint and to

the line 8:- i (and many other lines). We shall concern ourselves wih only

the types of symmetry you have already met4nearlier courses.' We give their

definitions here for the atke of completeness.

' . A
V,"

Point Symmetry. Given a set of points' S , and'a fixed point M . S is

symmetric with respect to !. if, for e p nt P of S there is a

corresponding point' Ft of S such that M is the midpoint of PP: .° (he%

pqnt PI is called the point-symmetric image of P with respect to M , or,
.... 1'.

'when the context makes the reference clear, the, image of P with respect to
. ,.

;M.)
..:

Line Symmetry., ,'GkKen, a set'of points S , end a fixel. line L . S is,'
syntetric wi'bh-repect to L if, for each point P of :S there is a

point Pt gf S such that ,4.1S the perpendicular bisector

of'' PPt A.s.sometimes calW an axis' of symmetry of, the set, S y which,,
,

may have mare than one such aids. -We sametimes-barriTetep4nologY from the

applicat ns, and cal/ L an axis of reflection; in that'case may also
'r -

call Pt he reflected' image of P with respect td L , or-simp
r°

reflqction of' P in L .

205
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In rectangular coordinates we readily establish algebraic test for

symmetry with respect to the origin. The point p1 (xl,y1) has the image
, .

psi = (-x1,-y1) with respect to the origin. IP1 is bn the graph of

f(x,y) = 0 then f(xi,y1) = 0 . If the graph is,/symmetric with respect ib

the origin, for e ch point P1;= (xl,y1) on it the graph mus also contain

j
.

the point Pi = (-x1,-y1) . That is, whenever (x1,y1) = 0 we must also

have f(-x1,-y1) = '0 . This yields our test

The graph or an equati in rectangul r coordinates is symmetric

with respect to the origin ,if an equivalent equation is obtained by

replacing (x,y) by ( -x, -y) 00

We may now test the equation y = sin x maybe written

.y - sin x = 0 . If we designate the left member as f(x,y) , we.have:

f(-x,-y) = -y ; or sin x , or =(y sin x),, or -f(x,y) .

0
This is clearly equal taize4 Whenever f(x,y) As equal to zero; therefore,

the graph is symmetric with respect to the origin.

As a second examplewe may test the equation y = x3 whose graph is

called a cubic 7arebola: If -e ilri4e this equation is y - x3 = 0 and
. .

call the left member f(x,y)., then.r. find f(.:x,-y) = (-y)- (-x)3 p x3

.= -(y - x3) = -f ,y) CleaFly this is zero whenever f(x,y) 0 , thus

our test for s mu-try is satisried, and the graph is symmetric th respect

.to the origin:

The test.for Symmetry with respect to any point M = (h,k) other

than the origin, ienot at all difficult, hit will not be presented here. If

a curve has such symmetry, we- can usually find a simpler analytic representation

kor i,t if we use the center of 'symmetry as a new origin.

.

2
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In rectangular csordinates, we can

find a. simple algebraic test. for

symmetry with respect to the axes..

T1ie pOint, P (x,y) has the Image'

pa . (-x,y) with respect'to.t*-

y- s2 and (x,-y) with respect

to 13tie x-axis-___

.e

Tlipse relations lead to our test.
;

If the graph is siMmetilc with 'respect

to the y-axis, then2.for,each point

P3 = (xial) on the graph these must

be a point ly= (-xl,y1) also on -Figure 6,3

the graph; that is., if f(xY,) 0 , so,Ailso'mu;t f(-xl,y1) = 0 . This

means that the equations f(x2yY = 0 , anal f(-x2y),= 0 -Must be equivalent

equations. We show that the graph of y = sin x in rectangular coorinates

does not have this type of symmetry. This equation can be written as

y - sin x. \40 , or f(x,y) = . Then"' f( -x,y), is y - sin (-x) or

y'+ sin x , which'clearly need hot equal: zero when f{x,y) = y 7 sin x does.

The test for symmetry with respect to the x-axis is analogous and we

1

.0

Z.

e

e-

. -

6 -2

0 x

P"

(x,-y)

summarize these two tests:

f 7,

The graph of an equation in rectangular coordinates)is symmetric

with respect tb the

qa) ad equivalent-equationd:robtained by replacing

(x2Y) by

(b) y-J:112 if an equivalent equatIonis obtained by replacing

(x,y) by ( -x,y, 1

.

,It is quitepossiblefor a graph to besymmetricwith respect to both

.

_axes. The graph of -x
2
+ 4y

2
= 4 is an ellipse add it exhibits such

double symmetry both algebraically and geometrically'. .

2

4
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6-2

.

Figure 6:74

,

If y can be expressed as an explicit functioh of x , y = f(x) ,

such That f(x) contains only even powers of x then we say that y is

an even function of x , ail recognize that its graph is symmetric With respect

to the k-axis gome'example of eyen functions of x' are:
,

/ a

2 /4 2 2 1
y = /x , y = x

2 4
+3x , y = yx - 3x , y .2x_ - .

e.

NOte that the equation_ x2,+4y2 ill 36 does not define y as a function

Hof x or x as Afundtion'of. y . Rather, it yields exptess4ons for y

As two (even) functions of .x , that is), y 14-77 , and; = -
2 2

The graphs of these functions are semi-circular arcs each of _which it.a .; in

fq,ct, symmetric with respect to-the x -axis.

(c)
_2 4

2x2 + 3y2kei x Y = 4,, whose graph is symmetric with, roopgct to

both axes.

/
'IWhere x and y

ts
are related implicitlOy an equation' f(x,y) = 0 ,

\
we may still.use the concepts above. If f(,y) contains only even powers

of x., then 'f(x,y) = f(-x,y) , and-the graph of f(x,y) . 0 Will be.

symmetric with respect,td-the y-axis. us we.marstili-rte the, symmetry

of the graph to Aveh41( 4igps even when those functions are implicit. Some

X4PP
%-exahples of even'im _icit functions are: '

, .

N
_.,-

, (0' x
2
y + x

4
y
2

= 10 ' whose graph is symmetric with respect.to the'
\I\ . .

y-axib but not-the x-axis;

x2y.2 + 3xy4 + 2x1= 0 , 'whose graph is symmetric with respect to,

the x-axis, but nirt

2 .2
Note that the graph 'Of x + 4y =-36 is symmetric with, respect tothe

origin also, since f(x,y) = f(-x,-y) Whichlif any, of the graphs df

a , b , and c , above, are symmetric Withrespect to the origin?

208,
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4,1ftmetry with respect to ot:ler lines will not be. generally discussed

here, but there is a simple test:for symmetry with respect4g,the linep which

bisect the angles formed by the axes.

These lines are Li: y = x ,, and

y 'The reflection of

P = (x,y) in

and in L
2.

is

Ll is Pt = ('y,x)

P! = (-y, -4 as may

be seen 1.n the figure.

The corresponding test folio

as before and may be stated thus:

I

L2

y
P.

/
/

/ P
; )t-(x,y).

/ /
/ \ // \ /-

//'/ / \
11

P /
/

(-y,-x)

Figure 6-4

The graph of an equation in rectagular coordinates is symmetric with

'respect to the line,

(a) y = x ,'if an equivalent equation is obtained by replacing

(x1Y) 10Y (Y,x) tek

y = -x if an equivalent eqUation is obtained by replacing

(x,y) by (-y,-x)

examples:

1. The gsphs of the following' equations are symmetric with

respect to the line y.=, x

(a) xy . 6

(b) xy, = x3 +
3

1 .1 1

x + y
2-

= a
2-

(c)

(d) x + y = ,10

4

(e) x2 + Y2 - 6x - 6N12.

,

2. The graphs of the following equations are symmetric with-
.,

respect to the line y = -x ; ,

;.(b) Y
.

(c) x2 + y
2 - 66y =

(d) x3 = + xy

(e) y = x
2
y
2
+-x
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If a graph has an axis of

it may ave a simpler analytic

based this axis -of symien try

ti

symmetry parallelLto the x -axis or the y-axis

representation i. we use new coordinates

Such transformations of coordinates are

consld red in detail in Chapter 10. Tests for symmetry With respect to

other lines than those mentioned are, available, but they are blond the

scop of this book.. 4

Thes0\comments orb symmetwy in rectangular coordinates hav their

nterparts in polar coordinates. Point symmetry with respect to the pale

r quires that the graph of f(r,e) = 0 contain, for each point 1) = (r1,61)

,the corresponding point Pt . (-r61.) . This condition will be satisfied

if' f(r,e) is aneven ,flunctioA of r . Note that the condition is

7- sufficient to establish such symmetry but it is not necessary. Thus,, the

graph of r = 5 is:.a circle with radius 5 , and it does have such

_synmietry, but this eqmation does not define an even function of r.. We will

/not analyze the general situation, but note that r 5 and -5 are

related polar equations for the same circ1e. These equations may be written
,

as r - 5 = Oand r + 5 = 0 , and then combine: as in. Chapter 5 tw

2`
multiplying corresponding members to get r - 25 = 0 . Thi's equation does

.give an even function of r and its'graph, which is the same as that ,of

r = 5 and of r -5, is therefore symmetric with respect to the pole.,

Ilkg*
The point 'P = has: as its image.with respect to the line

containing the polar axis, the point (r,-e).. We will not treat line

,;(/ symmetry in general, but we note an easy test for symmetry with respect

to any line thr6ugh the pole, say theTine 6 = k :-"Injus case the points

P = (r,k + (1) and Pt = (r,k - a) are line-symmetric images 'or any value

of a .

P

1(0400

r,

. / PS r

Qc

Figure 6-5 ,

:4216t5



We state a test for such'arametry:

The polar graph of an equation is symmetric with respect to the line

8 = k if an equivalent equation is,atained by replacing (r,k + a) by.

(r,k 9!) . In particular, the,grAph will,be symmetric with respect.to the

line along the polar axis if f(r43) = f(r,-e) .

aft /

These 'should again be'!-ecognized as sufficient-but not necessary

conditions. ince We have infinitely many polar representations of the

symmetric poi is P and PI we could haveAinfinitely many test for such

s7metry. Thl test we have Presented is the s±mpleat to apply; and, with

the concept o4 related polar equations, is adequate for the work of this

course.

11100-2

If we go b
la
ck to an equation from Example 1, r = sine , we may write

4 P
it r - sip 8 =' 0 , and eaIl-the left member of this equation f(r,e) The

. , . A

diagram there suggests that the line 8 = 121 is.an,axis of symmetry and we
5

,

compare 0,- and f(r,i - a) . The first of these becomes

r - sin 2 4i. 4,0 , or r - cos a The second of these becables r - sin(2 -

or ry - cos,a .s.,The,identity of these expressions established the. line

symmetry of the graph, as indicated. We may have stated, in corresponding,

manner, that the point 5P = (r,i + a) is on the curve iftand only if the

, 5

corresponding point PI
2

(r
,

- a) is on the carve. This is, in effect,

what we have shown.

/ Exercises.6.2)

e

1. May a set of points have two centers of symmetry? Discuss your anwer,

with,examples.

2, Give an example of a set of Points which has exactly 2 axes of symmetry;

exa9 y 3 ; exactly 4 .
- -

' glY 4, 1 .
3. Give an example of'a set ofpoints which has an infinte number of axes

of symmetry. .......)

Pr.

0

ft

i. If a graphtric-with respect to both axes must it be symmetric
.

S symme

with respect to the origin? Illustrate.

If a graph is symmetric with respect to the origin must it be symmetric

with respect :to both axes?



6-2 dp

a

6. 15iscUSs the symmetry of the graphs of each of the equations. listed'

(a) x2 +-y3 = 16 (k) 2 = Sin e

(b)
3 3y =x+y,

x2 Lb. 5x6
Lb

(d) x(x2 + y2) . y(x3 +

(1) r A sin
2

e

(n) r = 2 t si (e +

(n) r -

1100

6

4

,

e
. ,

x
2
y + xy,

2
l (o) r=

'5.

.

Vat
cos

(f) (x + y)2 + 2(x + y) (p) r
2-

cos
2

e = o

(g) (x + y)2 + 3(x + y) = 1' (q) r2 = 6Sn 2e-
.

.(h) x2 Y3 = y! + x3 (r) r = 2 sin 3e.

x4 :,,.x2y2.
Y = x + y (s) r ;°3 + 2 cos(e,+ i)

xn + yn = 1 (t) r = a.+ b sin e

\,

Challehge Problems

1. (For discussion) 'BY analogy with line symmetry in two dimensions,

,Jponsider symmetry with respect'to a plane in three dimensions. We,

are familiar with our reflected images yin a mirror and accept the,fact

that there-is a."reversal"!:of some sort. The reflection of my right

hand is the "left hand" of my reflected image. ,Why, ts this, reversal

only left-right? Why is there not also a reversal of top-bottom, Bo

that my reflected image would stand 'on its head?
. ac

2. Given the Line L: ax + ty + c = 0 and the point P1 = (x1,y1) not

.1

on the line. Find coordinates for P2 = ,y2) , the symmetric. image

of P1 , with respect to L .

6 -2(c) Extent.

f
We discussed the equation x

2.
+ 4y

2
= 36, earlier from the point of

_ -

vies of symmetry. We use it now to discuss theextentor a graph. This

equation yields two equations' which define y as a function of x ,
.

. 1 .'

y = 214T-T and y = - 46:7 . We see that if we take'values of
9

2 2

1
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lx1 large enough we shell have in both cases corresponding values of y
/

which are imaginary. Since our graphs consider-only real values of x ,and

y we now inquire about possible values of x which will lead tp real values

of y , and vice versa. In these cases we must have .-6 < x.< 6', or

lx1 < 6 . For these restricted values

of x the corresponding values of Sr

range from -3 to 3 . The geometric

versions of. these restrictions can be

applied to the graphs of both functiohs

of. x defined above, but it is more

useful to consider the anion of these

graphs; that is, the graph of the

original equation

Ift
x2 + 4y2 =- 36 .

From the disCussion above we see that

the points of the graph all lie in a

rectangular region 12 units wide,

and 6 units high, - centered at tht--'

oFigin. If, in general, we can'expitss

y as a ftnction of x , and there are

r.

Figure 6-6

such, estrictions on values of x as will yield only real values for

-o

y

we say that the domain of the function is boundad.. Thus, all points of the
a

' .

graph of the function y = x2 are confined to a strip bounded by to

vertical lines, = ±6 , as indicated in Figure 6-6. If, in general, the

possible. rral vanes of- y are similarly restricted, we say that the range

of the.function is bounded. Thus, allt,points.ofthe graph of_v = PST: T

.a.se confined to ,a strip boundetby two horizontal lines, y ='±3,, as indicated

in Figure 6-6. If both the domain and-range of a function are-bounded, wg

say that the function is bounded, in which case its graph is confined to the

intersection of a vertical an.d:',horizontal strip, and is therefore-confined

to a rectangular region. These terms are usually applied to equatiNt'and

their graphs even when the functions are only defined implicitly. Thus.

when'we say that' the graph op1112
36. is bounded, we indite 1St

it is contained in a rectangle, as mentionea earlier.
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-If the equation were x
2

- 4y
2
= 36 , we would obtain,

y = f(x) = t g77;157
2

Wejlo note that we must take values of Ix l' Targe enough to make the

--
radicand-non-negative; that is, .

kKI > 6 , which will be true if either

x> 6 or x < -6 . Geometrically,

this means that y is defined only

for points on the edges or outside),

the vertical strip bounded by the

lines, which are the graphs of x = 6

and x,F.- -6 . iith these restrictions

on,,,x we may now have any value of

y . The original equation yields two
twat"?

equations which define x as a function

of y , x = 4T-717 and -Figure 6-7

X = -:1374717 and we see that x- in both cases is defined for all values

.
1 21F76

of y . It is not customary, in this case, to speak of y = -2-

.. .

as a bounded function, but merely to say that the domain; of x excludes

certain values.
.1

-

Another concept emerges_when we consider, 'y = 1- . The domain of x
.

x .

Also restricted here since, x cannot equal zero. With this exception, y

is defined for all values of. x . Geometrically, points of the graph are

available except at the places where the abscissa is zero, therefore this

graph does not touch or cross the Y-axis. If we irrite the equation

4 1. , dowe see that the h does not touch or cross the x -axis. Also,le
7 .

from the fact that ky,=,- 1 , we mist balie x and y either both To.O.tive ,

or both negative, which means, geometrically, that we dre confined tothe

first and third quadrants exclusively. From the equation xy = 1 we s40

alsd that as we take points of the graph nearer the x-axis we must'take them

farther from the y-axis, and vice- versa. A line, such as-tife x-axis in this,'

case, tolwhich points of the graph approach more and more closely, but which

contains no poinof the graph, is called an asymptote of the graph. The

214

219



graph of y -- 1
has two asymptotes;

namely, the x-axis and the y7axis.

Our ev.flaes will illustrate' fhe-

treatmen of asymptotes in several

atuations, but we make a general

observation. If our analytic repre-

pentation can '6e 'written as

f x)

g x

whete g(x) may equal zero for some

yalue of x ,:say x = a then,for

this value of x y is not defined.

Also, if, f(b) / 0 then, in general,

as we take'values of x closer to b

the corresponding va,lues of 'y become 11'Figure 6-8 4

greater in absolute value. Geomet-

rically this usually means tniat as we take points closer to the line x = b

they must 1e f her from the x-axis. Thus, the line x = b is a vertical

asymptote. If g(x) = 0 has roots bl , b2 , , and these are not roots

y

6-2

X

of f(x), = 0 , theie will general, be:vertical asymptotes,.x =

.

x ='b
2

. There is no fficulty in revising these comments to apply

to horizontal asymptotes: If Y)ws can write x = , and MO = 0 hasroots

c1 c, c2 , , and these are not roots of h(y) = 0 then, in general,

4
therecwill be 'horizontal asymptotes/ y = c1 , y = c2

'&aizple: Discuss and sketch the graph of
N\

Y
X

2x - 3

Solution: The equatiorCaan b hefIce,
_ .

written as y - - 1) -t

from the .discussion above, the curve,htts as vertical asymptotes the lines

x = -3' and .)1{= 1. y is not 'defined for.tkee values1of x , but
..

y 'is:defingd for all Other values of x . If x-> 1 and increasing then
f

:t
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.,

y is positive, and decreasing. For.

large values of x the values of

x + 3 and x - 1 are relatively

close to values of x , and y is

relatively close to
1
- , which is
x .

positive/therefore, the corresponding

points of the curve are close to the

x -axis. If 0 < x < 1' the rium4rator

is positive and the denominator negative;

therefore, y is negative. The curve

still approaches the line x = 1 as

an asymptote, but from the other side.

If -3 < x < 0 the numerator and

. denominator are both negative, there-

fore y is positive. As before,

curve approaches -the line x = -3

an asymptote. If x < -3 then t

numerator is negative, the enominator positive, and y negative.- The

O

t I

'Figure 6-9

4.-

curve age:n approachesrthe line x = -3 as-an asymptote, but,from the left

x

side.
. A .

For negative values of x with large absolute value theuvalues-15f
.-':

x + 3 and x - 1 are relatively close to x , and the corresi5ondiriglva7,u4.

of y is relatilvely close to 2-- r, which is now negative. That is,*s. we
x,.., .,..

r

take points of the graph farther to the left, they must'be closer to the

x -axis, from, below._ The graph, pictured in Fire 679, shows that

algebraic and geometric relationships we have discussed.

A discuvioneof the aptleaince of a graph for large values of ixl

or ; lyl , whether we take y positive Or_negdtive, is part of the

discussion of the extent of e graph, and is sometimes-referred to as a

discussion.of the behaviour of.V\le graph for extreme values of the variables.

-"---.\%, The concept of excluded values because of a zero denominator 'has one
ti

further application. Consider

ic

.r x2 -4
y = x , and y

. x - 2

23_6
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le`

It would not be correct to write the second equa n as
.-

.
, .

, '' (x + 2)(X 2)
Ze1

.
' .' . e

r. ie 1
and then remove the common factor

Y (x

y

to arrive at the first equation , S

y = x .+ 2

1

sr"

As a matter of fact, the two equations and their graphs are'differni in a

small.but significant way. In the'first,equation, y is defined for all x ;

in the second equagon y is defined fo all x , except x = 2 .

Geometrically, the graph of the first equation is a line;.the graph of the

second equatioh4.is a line except for a missing point at the place where

x = 2 , that is, it is an interrupted line. (CoVid you interrupt this line.

at the place where x = 1,, also?)

The discussion of these excluded, points,'llnes, or regions is useful in

describing the extent of the graph. 'It's all vary well to know where the

graph does not go, but we are still concerneewitE the points thrAgh which
. ,

it does go, that is,,with drawing the . The most straightforward way °
4'

of drawing the graph ofan equation is to blot a number of points qn it and

.draw a curve through them. If the equation has the form y = -f(x) you can

make a table showing theivalue'of y corresponding to each of a.number of

values of x'. You have done this many times in the past, and there istoi

need to go into detail again, here. However, it is worth reminding you that

you shouldthink about how mallymalues of x' to use, and which ones, and

how to join the corresponding points,,_

Cie

As in an election poll, we,take enough samples, with special attention

to certain critical spots, until we,have some reasonably clear idea of how

the whole picture_will,look. There will always be some disagreement about how

many are "enough", and what is "reasonably clear". Our sampling can start

at some easily available points. On our grid we can most easily find tte

places where the graph crosses the axes. Since the x-axis, for example,

has the equation,' y = 0 , -we may solve similitaneous4.7: y = 0 , y = f(x) ;

that is, we may find the roots of the equation f(x). =a, ip order to 'find

the abscissas of these crossing points. If f(x) = 0 has roots al , a2

then these numbers are the x-intercepts of the graph, which goes

through the points (a1,0) , (a2"0) . These points are easily plotted

217
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On the grid, as, are the points,of intersection of the graph with the x-axis.
.

t

But, no matter how many points you plot, therdalways remains the question

X how the curve behaves elsewhere. It is tb cast turther,light on this
e ,

question that you should investigatebefore any, extensive computation, the

properties:of the curve and its analytic representation in the manner we

have jusi'illuOrated. We summarize this type, of, investigation in mnemonic.
I

form: 'Check the'SEPIAfirst." (Symmetry, Extent, Periodicity, Intercepts,
) . ,

.

lksymptotes.) ,

. f
NI ,

The curves and equationsfwith rich yedeal'in this course are reasonably

well behaved, and the pointi of the graph are usually smoothly Oonnecte4j
./-.% . .si,

with certain notable exceptions. ate haVe already' dealt with graphs ai' in4;:..[

equalities in Chapter 5 , and will not deal with them at
.great

"gth her.:,'

but will consider them in the'example,s whenever there is any matterof

special interest. le - ..,.
. ,

A curve usually eiparates the plane locally into two regions4above
.

1

below, inside and o side, T..). In many cases in this tent the points in tIL. '-
these two regions are precisely those whose coordinates satisfy, brie or the :e..;

I 41. 11,,
other of the inequalities we obtain from the original equation. Thus the

".4p(,:.

2 2 ,
's;:,40.

graph of x, + y = 25 is a circle of radius 5 , centered at. the origin. ! 1
k.

t
The graph of x2 + y2 < 25 is the interior or that circle, and the graph of 1

',.

x
2
+ y

2
> 25 is the eXterior.

We have used rectangular coordinates in this general discussion, but
A

much of it can be adapted to polar coordinates, though the graphs will not

v.).have the same geometric properties. In polar coordinates the graphs of

inequalities are sometimes unexpected. Thus the graph of r = 5 is a,

circle, the graph of r > 5 is the region outside that circle, but the graph
1of r < 5 is the entire plane. The graph of r = is only'a remote cousin

graph of y =
1 -

e
to the g 7 . The rectangular graph (a hyperbola) has a vertical'

.

asymptote, the line x = 0 , and this is a geometric conseNence of the

1fact that y is not defined for x = 0 . From the equation t =

we see that r is not defined for 6 = 0 ; nevertheless the line e = 0
, 1

contains the point P = (- 0) . This point has infinitely many other
It

polar representations; including particularly P = (
1

n) , and since
n

these coordinates satisfy the equation , r = , we must allow P on the

N
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graph of e = 0 . There are, as a matter

points for which we can find same pair of

1
r = , and which lie on the line e = 0 . Therefore/this line is0not an

11) ,

, .

/ ;
, 6-3 ,

.t/

I. s,

of fact, infinibely many other

polar coordinates that satisfy

' 1
asymptote for the graph if x = .

, I

-1 3 . sme
The graph of r = does,

nevertheless, have a true asymptote,

the line corresponding to r = ,
sin e

but the discussion of this must consider

the value of Ila-a as e gets doter
e

to 0 , and this discussion is beyond the

scope of this book. Figure 6-10

We will, in the examples and text that follow, use polar representation
. -

or any other that ms approprialte to the problem and our, purposes, and

11.

carry the discus t che leveViand detail that seeefitting. Our examples

will illustrate the general prin'iPies above, and'some ideas of less general

application, but the student iyurged to extend his'own experience by doing

asNlhany of the exercises as he can. One suggestion Ile have round valuable:

an /equation and its graph should be considered in a dynamic, rather than a

static way. If we have,. y = ftx) , what happens to .y 4ent x ,increases a

little, when. x approaches 0 , when gets'very large? If we have d

point Po = (x0,y0) of the graph, how does the curve look, near that point?
- .

Think of the point-as movinealong the curve, and our analysis as a =Tying

picture of the pant ra han a snapshot of the entire curve.

6-3. Conditions and Graphs (Rectangular Coordinates)

In this section we shall discuss d number of examples in detail. This

discussion will bring together and apply a number'of topics you first

studied separately. We shall illustrate also some useful approaches that may

be new to you. .4

Example 1. Discuss and sketch the graph of

- 219
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Solution. There is no.symmetry with respect to either axis, since we

do not get equiva1ent'equati9p by replacing x by -x ; or y by ,-y

There is symmetry with respect to the origin, because we do get an equivalent

equation byreplacing x by -x and y by -§ . There is'a vertical

asymptote, the y axis, whose equation is x 0 . For large lx1 and

x either positive or negative, y and, x become relatively equal, since

1
becomes relatively small. Geometrically this means that the graph

approvghes the line y = x asymptotically, from above, oil the right, and

froin below, on the left.

We shall graph this equation in' a way which may be new to you, by addition

. .1 '
. of ordinates. You can draw fairly accurate graphs of y = x and y = 7

with almost-no effort. Do so, with respect to the same axes. Then, for each
t

of a number of different values of x add the y-coordinates of the points on

the two curves with 414-E x- coordinate. The result is the y-coordinate oD the

1

*
corresponding point on the graph of y = x + The addition can be done

x

using marks on the edge of a piece of paper, but you must,pay attention io the

. algebraic signs. The sketch below illustrates the process.

Figure 6-11

22



We suggest,tbis_sequence of steps: .

1 'Draw the familiar curves Q1 and (2).

2.

6-3

At several points along the x-axis erect perpendiculars to meet the

trio curves. In Figure 6-11 the ordinate segments, t c were

1
. _

found this way at x=. , x =°1"; k =-2 :' (We shall 'refer to

thede ordinate segments simply.asthe-ordinatea0

3. Add the corresponding ordinates for the two curves with due .
v

regard to sign. In Figure =6-11, a , the ordinate at

$.
1

x = is seised to a' above the hyperbola; b is raised to
2

2

bt- above the, hyperbola; c is raised to 0 above the line;

and so on.

__14,_ Connect the new pbints thus found, to get the new curve.

)tbcaniple 2 a Sketch the graph of' y = x
2
+ 2 .

Example 2(b) Sketch the graph of y = sin x - 3 .

Figure 6-12,

r
Solution 2(a). Draw the familiar graphs of yi = x

2
indicated by

C) in the figure and of y2 = 2 , indipated by (2)in theb.44gure. Then

"raise"every point of 0 2 units; as indicated by the dashed, lines, to get

the graph 0 of y = 4y1 + y2 = x2 + 2 .

a

*..- 1
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2(b) The solution should be

student.

clear from the figdre and is left to the

The process Of graphing b subtraction of ordinates is related to the

process of graphing y = -f(x from thecraph of y The discutsion

of symmetry in the previous

graphs itre symmetric' images

is, the graph of y -f(x)

with respect to the-x-axis.

4

section indicates immediately that these two

ofeactiother wit} respect to the x-axis. That

is,the refleCtion of the graph of y f(x) ,

Example 3(a). Sketch, the graph

Example 3(b). SiAch,Ithe graph

Solution: (Refer to Figure.6-13)

Of y = - x
2

of -y = - cos x .

Y

O y- x

3(a) Construct

= - X

Figure 6-13

the familia r graph C of y,= x
2

;' then extend the ordintte

of each point of 0 down its on length through x -axis toiget the

reflected points,)Ahich we connect to obtain the solution,(g).

3(b) The solution, inLeaked in Figure 6-13, is left to the class.
.

I
r

We may now sketch graphs by subtracting ordinates,

iy = f(x) g(x) , then y =c7.(x) + (-g(x)) .

222
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.FacariP.11_4(a). Sketch the graph of \ y = - x
2

;

low

Example 4(b). Sketch the graph of y = 1 - sin x .

*

*'- , SoiUti&i4(a). '(Refer'to Figure 6-14).

II

%

y

V.

x

1- 0
; y3:3

1.

y

6-3

\I
X r /

- /

y2=- x2

.
Figure 6-14

// /0
= Sin x

0
y2= - sin x

We suggest these steps'-

(1) Draw the familiar graphs Q. Y = x2 , d CD y = 3 .

(2) 'Belect 0 with respect to the x-axis to get 0: y
2

= -x,
2

x

!r1

(3) Add le ordinates for 0 and Q3 to get' 0: 3 - x
2

'This ait step is equivalent to adding units to each ordinate of

of indicated on the graph.

may extend these graphical methods to the multiplication of ordinates.

We have already done this in some cases but 'not with this terminology. The

griph of y =.2 sin x illustrates a simple application of this method. We

.comparethis graph with the graph of y1 = sin x and recogn ze that when

yi = 0 'then y = 0 ; when yi > 0 then y 0 ;, and when yl< 0 , then
a

y < 0 We just draw the graph of yi = sin,x , and double the ordinktes to

223
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find corresponding ordinates for y = 2 sin x . It is,ad if thergraph were

stretched, vertically, away from the x -axis.

"44

Example 5(a). Sketch the graph of 'y = 2 sin x

Example.50). Sketch thip/iraph of y = 2x2 - 8 .

Y

,111

111111' 11111! 2:

x

n

sin x

..r

lorrx
-
.

k

t _ 2 0
y

i

t , t y=x4t I . Z

. / / 2
,

- l I
% % .1 Ir

Figure 6-15 4,

,®
y = 2x2- 8'
or

y= 2(x =- 4)

. W.
t

4

Solution 5(a). We sketc the familiar graph,(1): yl = sin x , then

double each ordinate of 0 to t'the graph, ®: y = 2 sin'x.. Note that

for 6 < x.< t we have 0'< yi <4' therefore 0 < Y-1.
< 2 . Thus ® is

. .... ,._ ....

0

bounded between 2 and -2 .-If, re generally, y = a sih x , then y
.0.

,i' ^ .

is bounded betwee, la[
'1'.9-1

. Th this case lal is called the

amplitude of thiVsine c is the measure of the maximum departure
,

of points of the curve from'the a xis, and has important physical applications.

Solution 5(b). We haye illustrated the sequence. of graphs:

yi =vc
2

y2 = x
2
- 4 ;4): y = 2(x2 - 4) We could have found

the same graph with the sequence 02):' yl = x2 ;0): y3 .7 2x2

2211.
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0

..!!!
. 12

(1): y = gx - 4 . We leave the details toothe student.

We may in general relate the graph of y = vat of yi, =f(x)

if b is a' constant. Both graphs cross the x-axis at the same points. If

,b > 0 than both graphs are above or below the x-axis together. If b < 0

then the graphs of y-= -bf(x) and yi = f(x) are together above or below

the x-axis. In this latter case we graph y2 =.11:11 f(x) , then reflect this

graph in thQ x-axis-ta get the graph of y = bf(x). .

Exange 6(a). Sketch the graph of y = -2x
2

Example 6(b). . Sketch the graph of -3 sin x

x2

y2= 3sin x

,,
,,

,,

\ 4

yi = sin x

_,

,

, Figure 6-16

y 3sin x

Solution 6(a).' Sketch the familiar curve (E): 4. =.x
2

., Double the
. -

ordinates, which in this case are all non-negative, to get 02): y2 = 2x

Finally reflect 0 in the x-axis to get (D: y = -2x
2

.

t

Solution 6(b). We leave the solution to the student. Note that in
.

Example 6(a) we could have used the sequence y
1
= x

2
; y

3
= fx

2
,y = -2x

2

1

"..,

110' That' is we could have reflected, then stretched to get the final curve, in
1

both 6(a) and 6(b) . We leave these aetailt to the student.

.1/
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Our final cases concern multiplication of ordinates with variable factors.
,

.

T These are the most difficult, the,most interesting, and the most useful of

the applications of these methods of graphing by combinations of ordinates.

`Example 7. -Sketch the graph of 'y = x2 x .'

Solution.

ft Figure 6-17 -

We could sketch the graph by subtraction of ordinates but we choose to

.illustrate the method Rf graphing by multiplication of ordinates'. Thus

y = x(x - 1) , and we draw the graphs (1): ly1 = x , and (2): y2 = x - 1 ;

twoparallellines.Whenx<O
.

thenyland'
Y2

are both negative and

their prod4t, y , is positive: If < 0 'and decreasing then y is

positive and increasing, and corresp nding points of S .are in the

third quadrant.

.

Since y = yiy2,, clearly y must equal zero when either y
1

or y
2

equals zero, thus the graph S intersects the x-axis at A and B . Betwedn

0 and A we have 0 < x < 1 , with 01 abO4e,and 9 below the x-axis. In

226311
r.
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this interval yl > 0 , y2 < Cr and therefore y < 0 and-the graph is below

the.x-axis. Between. A and B' we have i < x < 2 and both, y
1

and -y
2

v.

positive; therefore y > 0 . The graph indicates that since 0 and 0 are

above the x-axis then 0 must.-be' also. However in that interval 0 < y
2
< 1

therefore Y2yL is a proper fractiaal part of yi , thus
y --:Y2Y1 4 Y1

therefore 0 is above 0 but below 0.

As x increases beyond B w,4 have x > 1 , y].. and .y2 positive and

increasing, and y increa even more rapidly, thus 0 is above both

0 and 0.

We have taken this time to discuss the graph of what is, after all,

only a parabola, because the analysis and method will hell') in more difficult

and unfamiliar situations.
0

Example 8. ,Sketch the graph of y = .lx sin X .
<

.

-*Solution. We are familiar With the graphs of y].. = .lx , and -y2 = sin x

Since' sin x is a bounded perio'dic function of x ,we have 1y21 1 and

1.1x1 The graph of this last condition is the pair of lines O1 and

in Figure 6-18,

:Figure 6-18

N
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We have compressed the scale along the x-axis for the purpose of getting

enough of the graph gn the page t9. illustrate the discussion.

When x > 0 ,

the angular region

yf...-Ay2 then y

all points of the graph lie within, or on the boundary of

7f8rined by the right half-lines of 0 and (1), Since

will etWitamero when either y
1
'or

x2
equals zero.

w
is zero only at the 011giA,'but y2 is zero at integral multiples of t

460, when y2 =,1 We have y = llx and.whed y2 = -1 we have y = -.1x ,

which means that the graph touch alternately' he lines. 1

5nat points where x =
it

,
3n

.

and 2

We leave the rest of the discussion cf -this graph to the student but

mention an important applicati9n.

If we consider how the graph of y2 = sin x is changed by the variable

factor yl = .lx , we'may think of the amplitude of y2 , as changed by this
J.

variable fabtot. In this example we mayictay that the amplitude of sin x is

increasing linearly. If we had y3 = f(x) in x then we also have a sine
.

wave whose amplitude 1s being 4anged or constrained by the variable factor

f(x) 1 The graph of y,

y 9 f(x) and y*= -f(x) andwould oscillate between them, touching them

would be constrained by the symmetric carves:

alternately when

"' . 'Thfs systematic changing of the amplitude is Called amplitude Modulation

eihd is-the basis for AM radio reception. A typical equation here would be

x = n , 3v , 5v , as before.

y = sin 10011ot sin 1000000gt .

This graph Mould show a rapidly oscillating

radio frequency, or RF wave) moduiatedhy a less

signal, or audio frequency, or AF:weve).

C

Av,

Figure 6-19'

'Phis'sketch, not to scale, illustrat&st

,42s

'23a

curve' (the carkier or

rapidly oscillating curve

t
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The methods just discussed, for relating graphs of esiat9ns to graphs

of more familiar equations by combining ordinates are ca ley some authors,
. -.

composition of ordinates. We apply similar techniques in polar graphs in some
\ ,

%
examples, later.

.

We consner now some further examples of 'graphs of equations ihtlegngular

coordinates.

Example 9. 4x
2

-
9y2 ;+ 8x.+ 36y + 4 = 0 . From this equation it is not

obvious whether the curve isssynnet

1
c with respect to any point or line, or

whether it has Any asymptotes. No can we easily see what parts of the plane

it does or does not enter. We can find as many points,on it as we have the
.,

patience for; since picking a value for x gives us a quadrattc equation for

y .

The sensible approach, 'howelier, is to use a trick you learned in algebra:

complete the square in x and y'. We get

4(x2 + 2x + 1) -9(y2 - 4y +.4) = -4 + 4 - 36

{Y - 2)2
-

(x 1)2 - 1

or

These numerators are related to distances from the lines y = 2 and

x -1 , and we might expect a considerable 'implification in the discussion

of this graph if we hgd new coordinates based on these lines as axes. Such

..transgornetins are carried out more generally in Chapter 1.(3) but we show

the details here in order to,continue with our discussion of the graph.

If we let u = x + 1 and v = y - 2 the equation becomes

2
u
2

(1) , - g.
.

This equation is ccmisiderably easier to , handle, and is recognized as

an equation of a hyperbola. You know something about hyperbolas, but we

continue with our general'approach so'that after you have seen it, work in

familiar sitUations.you may be able tq use it in unfamiliar ones

The graph is symmetric With respect to ,both new axes, and hence with
,

respect to the origin. If we solve (1) for v' in terms of u ye get

+ 2
r = -

3
u + 9 . This makes it clear that for a large/ positive value of u

the two values of v are one large and pqsitiVe, the other large, and negative.

(1) also shows that if (u,v) is any point on the graph, then >r2 . For

r
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u" 2r77 > 0, and Since .- - -7 ..F 1, --> 1 . Thus no point of the graph lies

above V = ,2 and below v".. 2 .

Now 1c5 usconsidef the part of the curve which lies in the first quadrant.
,

For this we ca.5g:use the equation

v = u + 9

where u > 0. It seems almost obvious.that when u is large, v is very
2

nearly equal to
3
--u We can confirm this Less quite simply. Clearly

2

' 3

2

,

v >--
3
u so let us consider v - u in the hope that we can prove it ap-

proaches 0 as u grows very large.

2 2v -
3
--u = u + 9 -

3
--u

3 N

=
3

9 - u)

.0747; + u)(47:9 - u)

3 .
u + 9 +

2 u
2

+ 9 - u
2

3
+ 9 + u

6

11.77f.9 + u'

2By taking large enough values of u we can Make v - 3u as,near t(i111-o

,
as we like. Thus we have shown that in the first quAdvant, the graph lies

.!'
above the lime v = 212 but arbitrarily close to it for large enough . Iu . In3 ..-v

r
e

3
= --other words, v V is an asymptote of the curve.- By similar arguments we

,

2 ,' .

can 'shontAhat V =
3
--u is also asymptotic to the 'of the curve in the

third quadrant, and that v = 71-u is asymptotic to the parts of, the curve

in the second and fourth quadrants.

230

. .



The results above have been stated in,terms of the new coordinates They

can easily be restated in. terms of the old. For example, the asymptotes'are
%

.the lines y - 2 = 3.(x
3

)

Finally we consider the intercepts. Setting u= 0 in (1) we get

i 2

-4-- = 1 , so the v-interceptg' are 2 and -2 . Setting v = 0 we get

2 %.

-
u
-3T,= 1 , which has no solution. Hence the curve does not intersect the

u-axis.' The x- and y-intercepts can be found by the same sort of procedure,

but since we are chiefly interested, in sketching the curve, Let's not bother

. with them.

y

Figure 6-20

The hyperbola is sketched above. Notice that we can draw a fairly

accuratearaphwith9tt finding the coordinates ,of any points but the vertices.

(What are the vertices o± a 17;Perbola?)

233.
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When you

the hyperbola

first studied the hyperbgl.you learned that the asymptotes of

2

are given by the equation

= 1
a
2

b
2,

.

2 2

- = 0
a
2

b

p
This is' an illustration of a principle' which is sometimes useful in sketching

loci. Et can be expressed loosely in the fqllowing way: If

f(x,y) = g(x,y).h(r,y) , the graph of f(x,y) = 0 is the union of the

graphs of g(x,y) = 0 And h(x,y) = 0 Thus since

x
2

- y
2

- x + 5y - 6 = (x y + 2)(x + y - 3)

the graph of

x
2

- y
2

- x + 5y-- 6 = 0

is the pair of the lines 4hich are the graphs ofs_.)

.

x - y + 2 = 0

and

x + y --3 = 0

Before trying to prove the principle we had better find out more accu-

rately yhat'it says. Let's "factor" x + y

(x2. y2).

lb.

UnforiaateLyifthe graph of

is a line, the graph of

is two lines, while the graph of

is the null get.

--3

r

1.4

-1 y = 0

2

. 1
=Y;)

x - y

:
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The difficulty lies in the notion of factoria& When we speak of factor-
,

ing a pbsiEive integer, we mean expressing it as the product of two smaller-

,positive integers. [len we speak of factoring a polynomial, we mean expressing.

it as the product of two po omials each of lower degree than the given poly-
_

.

nomial and having coefficients'Of some specified type (say rationalnudbers).

There is no suchoagreement as to what it means,to factor an arbitrary function.

For our
4

present purposes it is enough to say that we, have a factorization of

f(x,y) if, for every .(x,y) in the dotain ofe f ,

f(x,y):.1g(x,y)h(x,y) '74,*

Of coin, this allows klinteresting factorilations like
-

-2
x
2 y+ = 1 (x2 + y2)

but it exc udes'the sort of thing that got us into trouble above, since

x + y is defined for every

x = y .

x and y , while
1

X y
is not .defined if

-t

With this interpretation of "factor" we can state the principle referred

to alcove. . ,,,,

..

.. . . 1....,

THEOREM 6-1. If f(x-k) has tAfactorization

(...",/

f(x,y) -= g(x,y) h(x,y) . -

The graph of. f(x,y) = 0' is the union of the graphs of g(x,y) = 0 'i

and h(x,y) = 0 .

Proof: The point -.(a,b) is on thp graph of

if, acid only if,

t

But

and hence

if, and only if

f(x,y) = 0

f(a,b) = 0

f(a,b) = g(a,h) lh(a,b) -I

c

. 0

g(a,b) = 0

-233,
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or

h(a,b) = 0

N4.
that is, if, andonly if, (a,b) lies on the graph of

or the graph of

)
g(x,y) = 0

h(x;y} = 0 .

Example Thegraph of

.(y - x + 2)(x2 + 14.Y2 2x + 16y + 13) =0

is made up of the graph of

and the graph of

y-x+ 2 =0

x
2

+ 4y
2

- 2x + 16y + 13"= 0 .

The former is a straight line. If we rewrite the equation of the latter in

the form ;

(X 1) (y + 2)2
1 1

we see that it is an ellilpe, with center (1,-2) , symmetric about the lines

= 1

and

y = -2

and with major prd minor axes of lengths It and q,, respectively. Both

graphs are sketched below.

Y
t

Figure 6-21 ,

f 3 9

.7,Wh.t,` 1,*"..,
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If we are given two parametric equations for a locus in a plane, there

are two methods of sketching the locus (unless the eqUations.are too compli-

cated) . We can elminate the parameter between the two equations and graph

the resulting equati n x and y or we can-choose some values of the

parameter, compute the c esponding values of x and y , and draw a curve

through the points thus determined, We illustrate both methods in the next

(example.

(1)

Example 11. Draw the graph-of the parametric equations

x = 4t2 7 2, y = !It .

. I

Solution. First let's eliminate the parameter a graph the result;pg

equation. From the first equation we find that/ 2t2
4' 4.
2

2 Substituting

this 1the second ecuation gives
4.4

(2) y =e4(x + u)

h of (2) is a parabola. It is sketched bel

4

b.

_a -4 -2 0 2 41

Figure 6-22

a,
X

Now let's e the second method described above. The table below shows

the results of o computptions.

t -1 -0 2.

x. .14 2' -2 2 14

y 64 4' 0 4 64

We notj.ce at once that we have found no values of x smaller than -2 6 It
would be natural to jump to the conclusion that we had chosen the values of

t foolishly, but that is not the:explanation. Sincek ,x = 4t2 - 2 and

4t2 > 0 , it follows that x .r2, for every point-on the graph. The trouble

235
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.. .

is that Equations (1) and (2) are simply not equivalent. The graph of (1) .'''''

is half a parabola. It is the intersection of the graphs of (2) and the
il

inekuality x > -2 If you look back over our reasoning youswill see it /'

proves that the locus of (1) is contained'in the locus of (2) , but it does

riot prove they are identical.

Obviously the'elimination of t was not as har0p.ess an operation as it

looked and we must study it more carefully. At a certa4n 'point we found from

+ 2
the first equation in (1) that 2t

2 x
2

= . Then we squared, getting the

equation 4t
4

(X + 2)2
. These two are not eqUivalent, since in the first,

'

,4-3 .7

x > -2 While the second puts no restriction on ,.,, This is no surprise

since the same sort of thing comes up in the solution o equations involving

radicals. In nature we shall be carefUl not to square or divide by zero, or

do anything else of that sort when eliminating a paramefeir, and then perhaps

we'll not get into trouble as we did above. Unfort tely it isn't that simple.
1 0

t Example 12.; What locus is representedsby'the parametric equations

(3) x = sin t' y = sin t ?
. 1

Solution. Eliminating in the only sensible way gives the equation

y = x . The graph of this is ,a line, whige the ].opus. -of '(3) is the segment

determined by' (-1,-1)., and (1,1). Eq iqns (3)'are an analytic condition

fora segment stated without inequalities. .

There is no simple way out.of this difficulty, and we end our discussion

with the warning that when you eliminate the parameter from a pair of para-
.

metric equations for a curve, you must then check'to see whether-the locus2f

the resulting equation is the locus of the original pair of equations.

The nature of the parameter may impose certain natural restrictions or

bounds on the values of the variables involved. In some problems we may wish

to imp9se such restrictions, and in that case we have,' not a difficulty, but

a special tool. It is important that we learn the uses and limitations of

our tools, so that we do not try to e a screwdriver to drive nails.

All the analytic conditions we ha d,conaidered so far in this section

have been equations. Oui'last two examples deal with inequalities.
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Example 13. A)isucas and sketch'the locus of the inequality.
-;=:. . _ (4.1

1 :

`
-.

2x - 3y + 4 < 0 .
. . - ..:.

.. .

67,3

Solution. We shall use simple arguments about inequalities. Suppose .

lx10,Y0) is on the line 2x - 3y.+ 4 = 0',.so that 2x6 - 3y0 = 0 .

Now consider a point (x0,y1) , with yi >yo . Then 3x, 3y0 -and

2x
0
- 3y + 4 <2x

0
- 3y

0
+ 4 = 0 . Thus (x

0
,y
1

) is a point of the locus.

Similarly, if y2 < yo 2xO -,341+ 4 > 0 band (4;,Y2) is not a point of

the locus. Thus any point directly above a point of the line is in the locus,

while any potnt,directly below_ a point of the line is not. Therefore the locus

is the half-plane indicated below..

\2x-y+4<0

Figure 67.?3

Example 14. Discuss and sketclogicts of,;the inequal

(4)

Solution.

fOrM

OF j 8x - y + 7

/
.,A...,.

) ,.

'i. .

- .

,c

..

.., ..i
By completing the square we can reUrite this inequality in the'

-

4 .

. '

r

2(x ' 2)2 - sr - 1 > 0 . '

2)2
t A

. Now suppose- 2(x0 - 2) - yo -.f = 0 ; If yi < yo .then

1, ,2
axo -, 2) yl -.1 > 0 . Thus if (x0,y0) is on the graph of the equation

(5) 2(x -; 2 )2 1 = 0

237
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4 --,

.and yi <-yo , we see that (x0,y1) is a po nt of our locus. '\,y\ similar

argUment we can show that if y
2

> y
0 r

. then x
0'
y
2
) is'riot a point of our

...

te, locus. Thus our locus is:the set of points belo or on the parabola repre-

sented by Equation (5) e It, or rather some of it is shaded in the sketch

below.

\

Figure 6-24

'

4.

Exercises 6-3

In these exercises discuss and sketch the graphs of the conditions

given. In your discussion you may find, it useful to consider symmetry,

extent, periodicity, intercepts, and asymptotes. When the condition is a

pair of parametric equations, eliminate the parameter if you can, but be ifinate......,_

then to indicate any restrictions onvthe values of the variablei.

2 ^,

y = -3

3. x = -1,

h. x

5. y.,= -x + 3

,6. y = 2.X - I

, 7. "x- 2y +3 =0

8. 2x + - 5. =

% li=1

238
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+ =

11. x = 1 - 2t y = 2 + 3t

x = 2t , y - t

13: x2 + y2 4x + 2y + 4 = 0

14. x2 + y2 + - 3 = 0

15. x2 + Sr2 + 2x - 2y + 2 =0`

16. y
2

= x(x -'2)(x - 3)

17. x2 = (y + 1)(y - 1) (y -, 4)

18. xy2 - ay -x= 0
19. y = sin, 2xi -

20. x = siny

21. y = 2 sinx

22. x = cos y

23. y = 1 +cos x

24. y = tan 2x

25. y = 2x

V. y = 2-x

a

O

4

27. y = 2x

28. y = 3x3

(110t:29. y = x This may also be written ,y= loge x .) *

30. y = x2 - (See above.)

31. y =,log
2

= t
2
+ 1 y = 5t2 + 4

.33. x , y = 3t

x = 2 cos (1) y = 2 sin

x = 2 cos , y = 4 sin

32. x

.36. x = 3 cos3 0,6_4 y = 3 sin
3

4)

4.i
x = sin

2
0 y = cos

2
Of

.38., x = peg
2 e' ; y = tan

2 e

39. y > x2 ,

+ < 1x2 2 ,

9
40.
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41. y2 - 2x -4y + 2 < 0
. '

42. x
2

+ y
2

+-4x + 6y + 9 0

/, = x 343.

44. x3
2 ',.

y
2

+ xy - Li = d

xy2 3x2 2
, 45. x3 + y = 0

go"

46.
2 L
x y + 4y'- x "= 0 ,

47. x
4
+ y

4
= a

4

f

,6-4. Graphs and Conditions (Polar Coordinates)

In this section we discuss the problem of sketchinethe graphs of

analytic conditions in polar coordinates. The most important such conditions

are equations, and we shall confine our attention to this case except for a

few exercises.

.The most straightforward way to draw the graph of an equation in polar

coordinates is to plot a number of points of the locus and draw a curve through

then. If the equatiob has the form r = f(e)

Lng the values of r corresponding to a numb of values of 8 . No matter

how many points we plot, there always remains the question of how:the curve

behaves elsewhere, that is, between the points we have plotted. If the

can construct a table giv-

equation is not too complicated, we can get a good deal of information by

studying the functions involved.

As was the case for equations in rectangular. =ordinates, we can often

get useful information about the curve by considering symmetry and extent,

Asymptotes of curves given by equations in polar coordinates are not easy to

find from the equations, aid we.shall not discus the problem. Hawever,,if,.

the curve has a 'fairly simple equation in rectangularacoordinates, we may be

able to find its asymptotes by studying that.

4

As you knoi, given a polar coordinate system in a plane, each point has

infinitely many pairs of coordinates. This fact giVes. rise .(,o certain diffi-

culties that we have already met in-Chapter 5 but we.now consider them in

greater detail. As in the previous section we shall develop additiot

theory and useful methods of approach in our discussion of a number if

examples/ t -

1

4-- ±,

1
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eExaRlefl. Sketch and discuss graph of the equation r = 2 cos 0 .

. Solution. Strictly speaking, we should state explicitly that r and e

are to be interpreted as polar coordinates. We shall alt do so in the rest

of this.section, since there is no danger of ambiguity.

Since cosI 691 < 1 for all 9 , thegraph is bounded. Since

cos (-6) = cos e for all e , if the point (r0,60) is on the graph, so is

the point (r0,-90) . Thus the graph is symmetric.with respect to the line

conitIng the polar axis. It is also symmetric with respect to the point

(1,0) but it is much easier to show this by using an equation in rectangular

coordinates for the locus. The table below shows the values of r

corresponding to several v s of, 6 . The cosine function has period 2g ,
so any 6-interval of leAgth 2t will do.

e
g g

2
3g

-

2

The graph is sketched below.

T2- 0

t

. \
\

1

(0. A ., 6.2. v)
, ,

0

t , Y
.

,

(g:"4)

t
,!

.
, t . Figure 6-25

It looks like a circle (probably because it was drawn
N.

ell we know so far, even if we make use of Mir knowledge
..

of
\ ...

tion, is that it is roughly circular.
t

-(h0)

S

th

-2

I.

s) but

osine func-

.e."4
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t:

That the graph really is a circle can,be proved as tolrows. The graph of

ra = 2r.cos 6 is the same as the graph of r 2 cos 6 . For the only points

that might be on the former 134t not on the latter are points with r = 0 , and

the origin, which is on the latter, is the only such point. If we take a "

rectangular coordinate system with its axes-in the.usuai.--pcp4tons wiAh re-
.

spect to the polar axis, we find that the graph has the equation

x2 4- y2 =

,

pcample 2. Sketch and discuss the grapy Of the equation. r = sin 3 &

Solution. This graph, too, isbounded, since 'sin 3 el < 1 for all
f, ,

Whether there is a point or line about which the graph is symmetric is

not obvious from the equation, so we postpone the discussion of symmetry till

we have sketched the graph. It will 'prove nothing but it will suggest what

is probablOrue. The table below shows the valUes of 'r corresponding to a

number of values of 6 . If we needed a fairly accurate graph of the equation

we would have to consider more values of 6 , but since we know how-I-hi 3-,e

varies with 6 this table will do.

n n it a 5n 7n 41t 3n 5n lin

T 3 2 T T ' T T 7
,

0 -1 'o 1 0 -1 0 1 0 -1

Figure 6-26

The sketch suggests there is symmetry about each

anTMO = Let us check the `First

ic
of the lines 0 ,.---

these conjectures. If we .



3

;

wish to hompare + 60 and fir - a) we obtain in the first case,

a)r = sin 3(s + 00 and in the Second case r =,ain - a) . These become

r = + 3a) , and r
2

- 300 ; which in turnriDehome r cos 3a

and r = cds 3a . The identity of these equations establishes the Symmetry

we, were checking. The same method can be used to deal with the other lines.

The graph is not symmetric about any Point, but we shall not prove this.

Example 3. Sketch and discuss the graph of the equation r =r11 - 2 sin O.

Solution. Once more the graph is bounded, and we postpone the discussion

of symmetry until below:.

This time we shall sketch the g aph without' making a table,.introducing,.

first an guxiliary graph of a kind that is often useful in graphing polar,,

:equations. This auxiliary' graph is thesgraph of theequatiOn. y,101 - 2 sin x,

drawn on a plane with a rectangular'coordinate system. We have 1 ed to do,

this readily by the addition and multiplication of ordinates, as s wn in 'Iv-

Section 6-3, and illustrated below for the values 0 < x <

purpose of illustrating certain details of the discussion we will sometimes

. For the

use different scales on the axes in'the graphs in this section.

Figure 6-27

243
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We suggest the following sequence:

(1) Sketch the familiar curve 0 y = sin x .

(2) Expan ; Q. away from the x-axisto get' 0 : y= 2 sin x .

(3) Reflect Q) in the x-axis to get 0 ; y= -2 sin x .
°

(4) Raise IC) 1, unit to get our graph: 34= 1 7 2 sin x .

We now use this graph of the equation y = I - 2 sin x to give us

coordinates of points of the polar, graph of r = 1 - 2 sin e , and obtain the

polar graph given in Figure 6-28. '

a

Figure 6-28
I

, ,'his curve is called a likeion. We have indicated with the?same letters

corresponding pointspn the -Ewa graphs. Nkte that the lagk of a unique. polar'

representation of a point is shown in the facilthatt points ,P and Q of

Figure 6-27 (and infinitely many more not shown),ali correspond to point

of Figure 6-28. Also, paints A and E Hof Figure 6 -2l (arid infinitely, many

more not shown) all coOespond to Roint A of Figure 6-28. The inverted

arch below:the x-axis ,of Figure 6-27-correspoNd6 to the small-ftside loapjof

Figure 6 -28.

. f

'Fiidre 6-28, suggests that the graph is symmetric about the line through
. ,

the pole perpendicular to the polar axis, that is
1

the line for which one .

equation is e = 2 . We check this by compaiing - a) + a) 4

In the first case r L 1 - 2 sing - a) and in the second case

r' = 1 2 sin(2 + a) . In both cases we obtain from familiar trigonometric
, 4 ,

relationships r ..1 - 2 cos a which means that tistwo cases give equivilent

equations, and. the symmetry .14 proved.
. .

-t4

2 ,9
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Finally, the related polhr equation is r = -(1 - 2.4.1.n(61 + ir))=
-(1 + 2 sin e) .,.11b show that the polar graph of this equation,sis the same
limafon as the One we obtained in Figure 6-28, we use a method similar to the
method of ad 'On of ordinates for graphs in rectangular oordinates. The
method, called 'addition of radii, which may be new to you, is useful in
sketching certain new graphs related to familial'. ones.

Nlie have seen earlier that the polar gi a ph of r = 2 sin e is a circle
of radius 1 , with its center at (1,i) indicated as ®in Figure 6-29(a).

Consider a number of rays drawn from 0 to point, of this circle, ,
4

33 , . Find points Q1 , :Q4 ., '=; Q3 . . . OA these respective rays so that

d(PI,Q.1).= d(P230,2) = d(P3',01) ; , = 1 ; as 'shown in Figure 6-29(a) ,

which shows the graph of r = 1 + 24in 9 .

1 0

7

0

1

ct

6-29N

A-., Note that 37when v < 0 < - we have 9 >.2 sin 9 > -2 , 'therefore

1 > (1 + 2 sin 0) > .1., and the Q points of Figure 6-29(a) are on the
0

right half of the inside loop of the graph. In the .sanle :y when. , if
7 <.6 we get the rest of the insilde loop.

,.

"E'llt <*a. % .

.
' . $

-

Ihus the Zocus of all the Q° poind is tlie graph marked a which is
,.. ,

a limaion those poll- representatiqn is r -AL +" 2 sin 0 . This process of
using the: P point's to find the 4 i,, points .and the graph 0 is called the

;

e

Jar

Fi 6-29(b)
g '

1 .

addition of radii.
a

2V5.

V

e 1

-

air



440

, .

J.
Since we want the graph of r= -(1 + sin e) we now find the symmetric

image of C) with respect to the pole. It is graph -0 which we recognizt

as thl same limaion as in Figure 6-28.

I

1
Example 4. Discuss and sketch the graph of the equation r

1 + sin 9

ablution. This graph is not bounded, since r can be made arbitrarily

large by picking 8 so(that sine' is sufficiently close to -1 . By the

method used in Examples 2 and 3 we find the graph is symmetric about the

A
line e = 1F It can be sketched from the table below.'

e
v 5g 4v 3g a

0
2

it 2n.
-4 3 7' 3

E.

r

Jr"

1

2
1 3.4 7.5 Undefined 7:5 3.4 1

41)
(4-0)(/,

Figure 6-30

The sketch suggests the graph may be a parabola. That'it is may bshown

as folloWs. Theaquation .

'r -
1 + sin e

246
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is equivalent to the equation

,Ium
6-4

r + r sin 04= 1 .

) ,

!

If we introduce a rectangular coordinate system with its axes located, as
It....--4-,

usual, the graph has the equation ,

x + y = 1 - y .

This is an equaVon of the parAola'consisting of all points as far from the

origin as they are from the line :y = 1 .

Exercises 6 -4

In each of the exercises below, discuss
and sketch the graph of the

condition given. In your discussion, consider Whatever geometric properties
you can infer from the equations.

Write>the related polar equation for each.4

If you can, find a condition in rdctangular
coordinates for the same locus and

identify the locus.

.-7

1. r 3

2. r = -2

3. e =

3/r4.. e = -

5. r = 3 sin e

6. r =singe

7. r= cos 2 e 41.

8. r = sin 5'e

.94 or cod e = -3

0. r cos (9.- 4)= 3
-

-. r

9 a
12.

r 4 - 5 cos e

13. r-= 2(1 +sin e)

14. r = 2 tan e . (There are vertical asymptotes; try to find theM0

- 15. r -
4

r = 2 cos e -

17. r = 2 - 3 cos e

18.1 r = 2 + sin e

J 4

247
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19. r
2

= cos 2 e

20. r
2

= 4 sin 2 e

21. r = 4 tan e see e

22. r = 2(1 + sin
2
e)

5
cos

23. r -
1 + e

24. r<2

25. Irk< 2

'26. 2 <r <3

27. 0 < e <

28 0 < e< , r ). 0

6' -5. Intersections of °reale (Rectangular Coordinates)

- The intersection of two sets is the collection of objects that belong to

both the sets. Now the graph of the equation f(x,y) = 0 is

whose coordinates 's sfy, the equation, i.e. ..((x;y) : f(x,y)

intersectionof the graphs of f(x,y) = 0 and g(x,y) = 0 i

;points whose coordinates satisfy both equations, i.e. ((x,y, :

and Ot. If t and g are linear funabions, the intersection of

the graphs of f(x,y) = 0 41rd g(xM = 0 ii:,the set of points Which lie on
-AV'

two lines, in other words the intersection of Ale two linei. In general, the

intersection of the graphs,g'f(x,y) = 0 and g(x,y) = 0 is

the two equations simulttously.

t e set of points

0). Hence the

the set of

f(s,y) = 0

Example 1.

x + y = 2

found by solving

.

The intersection o' the lines.4ritF equations .x 2y - I = 0

.,
is.the point

Example 2.' The intersection of ihsteli

and 2x - 4y - 3 = 0 is the null set... In 6

Example 3. The intersection of the graph

is a bit harder to find. At each point (x,y

have sin x = cos x . 'Thus. x = + ky

25/8

tivequations x - 2y r 1 = 0
.2 ,

words, the ].nes are parallel.

of y ,= sin x and y F. cos x.

Where the curves intersect we

k is diA:nteger.- Then -

'1 I 1
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up

Y = when k is even, y = - 7 when k is odd. This last statement can

be written more compactly in a form frequently used by mathematicians:

k
y = (-1)

2
-- where k is an integer.

lt

Example 4 The interse tion of.th graphs of x - y + 3 < 0 and

2x - xy + 4 >`0 is the set of points 5) or above the line x - y "+ 3 = 0 and

on or below the line 2x - +4 = 0.. It is thedoublishaded area in the

figure.below, and its bOundary along parts of the lines.

- y 4- 4

.

3

_

-2

-

-4 3 2 -1

-/

-2

/
-

-

...3
A

Figure 6-31

The pitiblem of finding the intersection'of two graphs can be very compli-

X -y 0 ,

3 4-

cated', and We Shall not. spend much more time on it here. Howe3Q there is

another example yhich is of interest.

Example 2. Find the intersection of x
2
+ y2 - 2x - 4y - 4 = 0 and

L

x y
2

+-2x + 2y - 2 = Cr. We ,could consider the first equation as a, quad-,

vatic equation in y and use the quadratic formula to express y; in terms

Qf x . We could get y = 2 t )8 + 2x - xa We could then substitute this

in the second equation and solve for x. (Carry the work a bit further so

yoll will appreciate the diffulties-.)

This problem can be solved much more easily by using the principle of

linear combination, which you studied in algebra. ghe system

x
2

y
2

- 2x - 4y - 4 = 0

x2 + y2 + + 2y - .2 = 0 "`\,

249 4r

25,i
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is equivalent.to the syste4

a(x y
2

- - 4) b(x
2k

y
2

+,2x,11: 2y,- 2)
=0+

(2)

x + y2 + 2x -02y.- 2 = 0
g.W

as long as a / 0 . If al= -1 and b =E1 , the second system becOmes

4X .t.,6Y 4. 2 = 0'

(31,
2 2
x y 2x 2 = 0 .

Now the first equation in (3) is linear. Using it, we can exIress y in

terms of x substitute the result in the Second equation,ramd have left

nothing worse than a quadratic equation in x . The pointsof intersection

are ( I, -1) and ( _
11 \13,13)

This solution has a geometric interpretation which is worth 'investigating.

Figure 6-32

The graphs of the equations in (1)- are J.rcles.1-(How can, you check this?)

They are shown above. Now the graph of the first equation in ,(3) _is ,a line

and that equation is a tpecial case of the first equation in (2). But if

the coordinates of a point.satisfy the two equations in -(1) , they clearly

satisfy the first equation in (2) , no matter what 'a acid b are. ,Thus the

graph of the first equation in (3) passes, through ail points of intersection

of the two circles and must-be the line containing the common ,chord, which is

shown in the'sketch above. If a / -b which implies that a and :la are not

both zero, the first equation in (2) is that of a circle passing through the

points of intersection of it two original circles. (Aq a matter of fact,

each such circle may be obtained by some choice of a pnd 'b . Can you
a

prove, this?)

255
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. .

This result can be generalized. If f(x,y) = 0 and . g(x,y) = 0 are

. equations of two loci, then the, locus of af(x,y) + bg(x,y) 0 contains the

intersection of ;the tw/) original loci. For suppose (x0,y0) lies on the

original loci. 1Then f(x0,y0) = 0 , g(x0,Y0).= 0. , and hence

af(x0,y0) + bg(x0,y0) = 0 .- (This is true, though not very interesting, even

When a = b O.)

Exercises

In each of the exercises below, find the intersection of the loci de-

termined by the conditions 'given. Use both.alg,ebraic and geometric methods.

1. x = 2 -, x - 2y = 2

2. x - y +, 1 = 0 , 2x + y - 7 = 0

3. 'x+y- 1=0 ,2x+y= 0

4. x - 2y + 3: 0 , 2x + y - 2= 0

5. x - 2y + 3 = 0 , 2x + 5 = Q

6.
2 2 ,x + y = 4 , y =.2x

f. x2 + y2 = 2, , x y =, 0

8. x2 + y2.- 2x + 4y + 5 0 , 3x + y = 0

9. x2 + y2 + 2x+ 2y- 2 =0 ,t+f= 1

: 44 10. y2 = 4x ,

- 3y2 = 1

id?. x2 : 2y. = 4 , x - - 1 = 0

x2.1. y2
= 11, x? *1;(2 2x = 04

x2 +sy2 = 15 , 2x2 + y2.= 2

-,.. 16. +2.2 , y x?

y-x2 >0; y-x- 1 <0
8

-
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.*

-2
lo. x

2
+ y < 4 - y2 >0

19. x + 2y + 3 < o , 3x - y + > 0 , 2x - 3y + 1 < 0

e

6-6. Intersection of Loci (Polar Coordinates)

In, the previous section we discussed the intersection of loci given by
10,*

equations in rectangular coordinates. The method we used works for loci de-

termined.by equations in polar coordinates, but, as we shall see, there are

added complications. Let us take up first a simple case.

Example 1. Consider the graphs of r ="1 and r = 2 cos e . They are

the circles shown below.

r= / Y = 208 60

,Figure

1 y
Solving the equatigoesimultangousfy we get 2 cos e = 1 , cps 0 = , es=

Or -521 (There are infinitely many other solutions a theequations, butO3
since the sine and cosine functions have period 2v , weneed consider only

solutions with u < e < 2v .) Of course, r = 1 . This is consistent with
ouxfsketch.

a

e

IS
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Example 2. Now consider the equations r = 2 co, h 0 and r = 2 sin 0

Once more their graphs are tircles, which-are shown in the figure below.

6-6

t

.Figure 6-34

There appear to-be two points of intersection. Let us solve the two equations

simultaneously and compare our answer with the figure. Setting

5g2 cos 0 = 2 sin 6 we find ir= or . (As before, we need consider

only solutions with 0 < 6 < 2n .) The first gives xi= i5 , the second
-

r = We have not, holi'everk-found,th two points of intersection Olo wn

in the figure.. .We have foundvtwo sets of polar coordinates for the same point.
.

This: reminds us once more thatipile a rectangular coordinate system in a

plane is a one-to-one correspondence between the points in the plane and the

°Oared pairs of real n;Lers, every point it e plane has infinitely many

different pairs of polar coordinates.

This is also the source pf our other difficulty. Clearly the pole lies

on both curves, but our algebraic method did not find this intersection. The

trouble is that the coordinates 17 = 0 , 6 = 2 satisfy the first equation

but not the second, while the coordinates r = 0 , 6 = 0 satisfy the second

but not the first. Both pairs, of course, represent the e, Whose coordi-

nates require special comment. If P is any point other than the pole, its

coordinates, (r,,0 + 221/) , allow infinitely many, but not all numbers as

second coordinate. For the pole, however, the coordinates (0,0)' allow any

"number as a possible replacement for 0 . Geometrically this means that, if

there is any 6 PSI' Which r = f(0) becOmeszero, the graph must contain

the pole. We have already /found in this example that (4 satisfies the
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J
first equation, and -(0,0) the second, 4ich means that the pole lien on both_

graphs and is theref a point of intersection. ,

7 i

. , This leads to a small but important caution When finding intersections- .

of polar graphs of. r = f(e) , and r = g(e) . Check fifgt to see if,each, .

graph contains the pole zanyseeing if there is any e for which r = f(e)

gquals zero,'or any o for Which r = g(o) equals zero. I! both conditions

can be satisfied, then, Whether or not e = o ; both graphs contain the pole,

which is therefore an,intersection point. Theq ydu can proceed with the

usual simultaneous solution of the two equations.
.

Example 3. Find.the points of intersection of the graphs of

2 + 2
1

cos e
and r,= 2cos e + 1

C.
.Solution. These graphs, Which are related to some we haye discussed

earlier, are shown below. The pole is on the second graph but not the first,

hence is not a point,of,intersection.

ti

Figure 6-35

There appear to be four points of intersection. :

) ,

Now let us solve the two equations simultaneougly. Setting the expres-_
.,

sions for r in the two equations equal to each other,*1.1,e get

1

cos e
- 2 cos e .e. 2+ 2

Simplifying, we get

4 cos
20

+ cos 'e + 1 = d

from which we find that

s

1 Br
co S = ( -3 _4. ,a.7) .401.

254
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cos e -1.31 or -.19

6-6

The first is a perfectly good root of the quadratic equation for ,cos e , but

it is not a possible value for cos e . (Why not?) From a table of values of

the trigonometric functions we findlthat if cos e , then

e loi° or e 259° .

,r

r z .62 °

clear that we have found the points A and B of the figure, but what

abc C auic. D ? It is not too hard to 1;1ter:s mower renenber tlLt

F Ioler inay,have other analytic repreentat'on... Tn our alqebraic

.solu7,:lon we merely equated two of the infinitely many equivuient polar ecrua-'

tions Available for each curve. Fortunately we need not try them all; for

the purposes of the course -we can always find all the inter.ectioris of two

polar graphs from the simultaneous solution of equation of one of them

with both of the ?elated polar equation6 of the other. The limapn,

r t'2° cos e + has the related pOtar equation r = -12 cos (e + + or

r = 2 1cos e - 1 . If we now solve simultaneously the-equations

r- 2+ 2
1

cos e
and r= 2 cos e - 1

weget the coordinates of points C and D in our figure. They turn out to

be,apProximately, (.30,49°) and (.30,311°)

The difficulty is not a simple one, so we shall take Mother look at it.

Consider:

i (.62,101°)

t 7.62,281)

r =, 2 cos e

r = 2 cos a. - 1

We have two pairs of coordinates for the same point, and two equations for

the same curve. The first pair of coordinates satisfies the first equation
4

b_t not the second and al; second pair of coordinates satisfies the,second

not the first: This situation should occasion not anxiety but caretADd

is entirely consistent with durdefinitipn df the pol.ar.graph of an equation
%.0

as the set Of points each of which has some pair of coordinates that satisfy'

OR

255
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6-7
.a

-4

..--NExe* rcises 6-6

-" in'eacli of the exercises below, find the intersection of the 16ci de-

termined by the conditions given. _Write thsorelated polar equation for each,

to make tute you find all poitnts of intersection. Sketch both loci, as ao
.elieckion your algebra.

1,

2.

3.

14.

2 e
cs'IN

35°

135°

sin e

cos e,

2 e

r
1 + cos e?

r e+ sin e
s -

r-= 2 oos e , r = 2

= cos e , r 1 -

r = cos e , r sin
1

6.
I

r =1 - sin e ,4r sin e

7. r = 1 + cos e., r
.1

1 - cos e,'1-

44.)

6-7.. Families of Curves.

j

In Section 6-5 Nre mentioned the collection of lines through the inter: -,-
section of two limps and the collrction of circles (and the line) through the

,'°$

intersections of two circlps. These are examples of what Eire called families

of curves. The collection '6f all circles 0.n a plane and the collection of- 41
tangents to a parabola are other exam es. In this section we shall proceed

a bit further with this topic.

If a. and b are not both zero, then.
(1) a(x - 7;3'3)- + b(3x y-+ 7) = 0

is an equation of %. line through the 'intersection; I",1,

x y.+ 3 = 0 %rid ; 3x - y + =0
, ,

Can....re choose a and 'b 'SO that the line, is vertical? Yes. For if we let'

a. =.1 and b = -1 , the,equation becomes

Or

: ^ -2.15 '2 4 = 0

= -2 '.

256'
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This is one method you learned.in algebra for solving pairs of linear equations ,

in two, unknowns. In a similar way we could find the horizontal line through

the intersection, which is equivalent to finding the y-coordinate oi P . It

turns out that P = (-2,1) .

Every line thrOugh (-2,1). may be obtained by picking a and 1p

4

a +, 3fsuitably. For the slope of (1) , if it has one, is If a = -k

then (1) has no slope, a fact we noted above, in case a = 1, b = -1 . And

for any real number a and b may be chosen so that

a + 3f
-

a + b
m

(This is not obvious. Can you prove it?)

Let us look at this family of lines frolft another point of view. The line

through (-2,1) with slope m has an equation

(2) ' y - = m(x 4. 2)

For each'real value of m we get a line, and different values of in give

different lilies. Thus, (2) is almost the same family as ( the only

difference being that the lipe x = -2 has slope, is not a

member of (2).

, .

Among the members of the family (2) there should be two which are

tangentge circle x
2

+ y
2

1 , (One oe,them is obvious, 'but let's salve=

the problem as though we did not .0ftw one answer.)* IntuitiVely, it is cleat

that a tangent to a circle ,is a line which intersects the circle in only one

point. Let us solve (2) simultaneously with the equation of the circle, and

then 417 to pick M so th &t there is only one solution.- From (2) ,

4
2

Substituting.fthis in. x +5,-
2
= 1 we get

4 2
+ k

, ,2x mx + 2m + 1) =1

y = mx + 2m + 1

or

x2 + nex2 + 4m2 + 1 + 2mx +'Imil= 1

+ m2)x) (42 +2m)x t4m2 +4ni 7 0

6 257
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),

quadratic will have only'one root -(that is, a.dquble.root) if, and only

if, its discriminant is zero. The discriminant turns out to be -4m(3m + 4) ,

, 4
Which AS zero-if, and only if, Jill = 0- or m = - .

4 I

.
A

"a
The figure shows the tangent lines for each case. Their equations are

- I 0 , and 4x + 3y + 5 = 0 .

ift

Let us use the sae method to find 'the family of tangents to.the parabo1.,

y = x2 . Let '(a,a2) be any point on the parabola. The family of all but

one of the lines through this point can be represented by the equation

2 ,

- = mut -

(Which ode is missing?) EXpressIngy in terms of a , m., and x , and

substituting the result.in the equatiori ,y x
2

, we get

x
2

- mx + ma - = 0 .

This equation has a double 'root if, and only if, m
2

- 4(ma - a2) = 0 i.e.

if, and only if, m = 2a . Thus the slope of the tangent to y = x
2
at

(a:A 2 ) 'is 2a, and the family of lines tangent to the parabola can be i'epre-

sented by the equation ,

y - a
2

= 2a(x - a)



. or, in somew at simpler form

('3) y = 2ax - a2 .

6-t

The, "a" in (3) above is called a parameter. (The word was 'used

earlier in the text ine different sense.. That is, in a way, unfortunate, but

both uses are very capon.) It is difficult to define that word, but you must

undet'stand how "a" is,used here. ,We'might say "Let a be any real number.

Then (3) is an equation of thd tangent to y =x?at .(a,a2)." Here we

are thinking of a as a fixed, but undetermined, real number. On the other

hand, when we say that (3) represents the family of all tangents to the

parabola y = x
2

we mean-that each tangent to the narabolaphas an equation

obtained by assigning a suitable real value to a , and each equation so,pb-

tainable is an equation of a tangent to the parabola. In other words, (3) is
,

an ingenious way of writing infinitely many equations in a small space.
1

You have,considered many other families of curves in earlier courses,

whether you used this phrase or not. The equation Ax + By * C = 0 repre-

sents the family of all lines in a plane. The equation 'y = mx b repre-

sents the family of all lines which have slopes, that is, all lines which are

not perpendicular to the x-axis. the equation .xy = k represents the family

Of all rectangitlPr hyperbolas with the coordinate. axes as their asyrziptotes

(and the two axes themselves, obtained by setting k = 0 and sometimes called

a degenerate hyperbola)., The equation (x h)
2

+ (y -.k)
2

= r
2

represents

thelfamilyof all circles in a tlane (and the point (11,k) , obtainediby

getting r 40 and sometimes called a point circle)

Sometimes it is useful to consider a family of curves End selec from it

those which have some additjxnal property. For example, at one point in the

discussion above we considered the family of lines which pass through a point

of y = x2 , and then selected from this family the member having the addl.=

tional property of being tangent to the parabola. 'Let's consider an analo-
. .

gous problem.

The family of all the circles in the plane can be represented
.

by the

equation

(x 1,1)2 k)2 r2 .

'The 'center of each such circle is at (h,k) . Which members of the family are

tangent to both axes? If a circle is tangent to both axes its center is on

the line y =.x or on the line y 12-xf. The, family of circles with centers

259'.
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, On the line y = x can be. represented by the equation

- h)
2
+,(y - h)

2
= r

2

Such a circle,will be tangent, to both axes if, and only if, r = Ihl or

r
2

=-b
2

. Thus the family of circles lying in the first or third quadrant and

-tangent to both axes can be represented by the equation

02_4. h)2 h2

An equation representing those in the second zar fourth quadrant can be found

in a similar way.

Exercises

In each of the first 13 exercises, find an equation representing the

family of curves described.

1. All vertical lines.

2. All horizontal lines,

3. All nonvertical lines through (2,-1) .

4.r All nonvertical lines.

5. All circles with center (-1,2)

6. All circles with radius 4 .

7. All parabolas with vertices at the origin and axes horizontal.

8. All lines parallel to 3x - 4y + = 0 :
A

9. All lines perpendicular to 2x + y - 3 = 0 .

10. All lines tangent to the circle' x2 + y21= 25

11. All lines that do not meet the circle x
2
+ y

2
= 25 .

0
]2'. All circles of radius 6 Which go through the origin.

13. Al], circles of radius 1 such that the origin is not a point of the circle
or itq-interpr.,

. , ' 14. find'an equation or the linethro the intersections ofk.the lineq
-r-

6x-, y + o = 0 _and 2x - y = 0 and having x-intercept equal to 3.
0. .

. .

. 15. Find an equat on of the line through the intersection of x + y - 4,=. 0
. ,

and -.y + 8 = 0 and .haVing slope 1 .

260
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16. Find an eq tin of theline passing through the intersection of the

.

i lines x * y + 1 = 0 and x - 3y +,2 = 0 , and having no slope.

17. Find an equation of the line through the intersection of the llnes

.. x - 2y 1-t 3 = 0 and x -.-.3y - 2 = 0 and the Point (1,1) , without

. finding the intersection f tha two lines:

. ,/. .

.

6 8'

.

18. Find an equation of the family of circles through the intersections of

the ciYcles x
2

+ y2 - 2x - 35 = 0 4nd x
2

+ y
2

+ 2x + 1y - 44 0.0 ,

without. finding the intersections of the two circles.

19. Find an equation of *le line through the intersection of the lines
r

2x + 5y - IG = 0 and - y 19 = 0 and Peroeridicular'to the second

of these lines.
-..

'20. Find an equation of the line through the inter e tion of x + y - 4 = 0,

and x - j 4-'2 = 0 and Parallel to 3x + 4y4 7.= 0 .
3 ,

21, Find equations ofall lines passing through the intersection of

5x - 2y= 0 and x - 2y ' 8 = 0 and cutting from the first quadrant

+ rianglep whose aTdas are 36.

22. Find equations of all lines through the intersection of y - 10 = 0 and ,

ax - y =0 whi& are 5 units from the origin.

6-8. summary.'

4.

We have explored in some detail in thisohapter the relations between the

geometric Properties of a set -of'points and the algebraic properties of its

analytic representation. It was convenient to discuss the geometric proper-

ties under the headings of simmetry, extent, periodicity, intercepts, and

asymptotes. We paid particlar attention to the special situations that

arise in polar coordinates from the lack of uniqueness in the correspondence,
.

.between points and their polar coordinates, and the_consequent lack of
. .

uniqueness in the correspondence between curves and their analytic represdh-
.

tations.

Our discussion consi,dered relationships alveen graphs and,their condi-

tions, first in rectangular and then in polar coordinates.. Wd developed-

several useful techniques, notably the method of sketching a graph by addition

and multi ication of ordinates in rectangular graphs, and by addition of

radii in po ar graphs:

'261
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O

These tedliniqUes were then applied to pairs of graphs and their inter-

sections, and the corresponding pairs of analytic representations and their

simvltaneous solutiOns. We investigated in some detail the difficulties that

aiise here with polar coordinates and found the concept of related polar,

equations particularly.useful in these cases.

Our consideration of more than two graphs at a time was confined to

collections of graphs related by some common feature. These are called

families of graphs, and we developedAp-e useful concepts in defining such a

family, and then selecting a particular itetber of it to fit some special

requirement.

In our next chapter we sharpen our,focus and discuss particularly a

certain classification of graphs and their equations. These, the _conic

sections, have a valid claim to our special attention, both because they have

been extensively studied for over 2000 years and because they have imloortant

and interesting application in many aspects of'our lives today.

)

Chapter 6 - Review Exercises %

1. Find the locus Of.themidpoint of all segments parallel to the x-axis,

and terminated by the lines x + y L'8 = 0 , 2x - y - 1 = 0 .

2. Find the locus of the midpoint of all segments parallel to the y-eXii;

and terminated by the lines 'x + y - = 0 , 2x y - 1 = 0 .

3. If A = (-4,0) and, B = (4,0) find an equation_ for the . -

p =lx,y). if:

(a) d(P,A) = 2d(P,B)

(b) d(P,A) + d(Fp.1) =_10 ;

(c) d(P,A) - d(P,B) = 2

(d) PAIPB;

(e) slope of PA = twice 'the slope of PB ;

(f) slope of PA =.1 + slopP`641iP5 ;

(g) measure of LAPS =45° ;

(h) sum of the measure's of- LA 'and LB is

(i) area of LABF!= 20 ; 4

(j) d(P,A) < d(P,B) . -
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4. The excle Whose equation is' x
2
+ y2 t363o contains the point A.= (6,0).

If p = (x,y) is any other point of the circle, find an equation for the

locus of :the.midpoints of AP . "-

'5. The circle Whose equation is x
2

+ y
2

= 25 contains the poi t B = (0,5).

If Q = (x,y) is any other point of the Circle, find an nation for the

locus-of points P such that Q is the midpoint of

`6. The circle Whose equation'is x +y2 = 100 Contains the point,,
'

d = (-10,0) . A line through, C meets the circle again at D., and the

line x .620 at E Find an equation for the locus of themidpoint of

DE , for all positions of-the line through et

r. Find an equation for the locus of the midpoints of all chords of the

0

circle x
2
+ y

2
- 4x + 8y =-0 hick are parallel to the line y = 3x + 5

- So Find an equation for the line containing the midpoints of all chords of

the ellipse 'x2 + 9y2 = 36 which are parallel to the line x + y = 10

9.° Find equations for the families of curves described below:

(a) All lines which, with the polar axes, form a triangle whose area

eis 12. N,

(b)- All lines,the sum of whose intercepts is 6 .

(c) All circles tangent to the y-axis.

(d) All circles tangent to'the x -axis.

(e) All circles with radius 1 that are tangent to the:line

4x + 3y - 2 m 0

(f) All circles tangent to the line 4x + 3y - 2 = 0

(g) till-circles of radius 6 such that the origin is an interior point.

(b) All circles which go thAugh the origin.

(i) All circles which gethrough the point (12,5) .

M:All circles whose interior contain the origin.

(k) All circles of radius 5 , such that the origin is'not a point of

the, circle or its interior.

(l) All'circles of radius d which are tangent to the line

ax +by +.c . 0

(m) All circles)tangentto the lines 3x - 4y + 5 = 0 and

4x -'3y + 9 = 0

(n) All circles tangent to the lines six + bly + cl = 0' and,;-1

112.4 'I'

(o) All circles which intersect or touch, the x-axis.
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, .(P) All circles vhiCh do not intersectortouh,the y -axis. /

(q) All circles whiCh do 4tnot orturhthe line
7..

ax + by +7c = 0:.

(r) All dr es in the'interior of x2.4- Y2 = 100 .

r
(s) 41 circles which intersect or touch the,cirdle X

2
+
y2

=

(t) All lines' which; or touch the circle x2 + y2'= 1 ,,

(u)f All circles in the interior of the triangle determined by te,points
: ':

.0 = (0,0) , A = (10,0) arid, ,B = (0,10)

(v) All circles whose interiors contain the points A , B , and 0 of

the previous exercise.

'(If) All circles which are.tangent internally to x
2

+ y
2

= 100 .

(x) All circles which are tangent externally to x
2

+ y
2

=
-

100 .

(y) 111 circles to Vhich the circle x
2
+ y

2
= 100 is tangent internally.

- .

(z) All circles tangent to the line ax + by + c = 0 and passing through

the point (r,$) .

10. Sketch the graphs of the following conditionse

(al- 'Ix' .3

(b) ly = 7

(c) ly)".< 5

(d) <

(e) x2 -62 >14'b

.x2

(g) Ix' < 134

(h) "Ixl IYI = 6`-

(i) x2 < x + 20

(J) Y
2

> 3Y

J

(k) xy + 2x > y 2

(2) xy + 3x + 117 > -12.

(m) 5x - 2y + 10 > xY

(n) = 3y - x + 3

" ; (0) 3x + - 6 < NY'

(p) x3 + xy2 = 9k

(q) x3y +.xy =

(r) (x - 3)2 = (Y 7 5)2

(E Y =I
(t) x = 736.- y2
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11. .Sketch the graphs of the following pairs of parametric-equations.

4111.

(a)

(b)

1

(d)

(e)

x =t ,

y = t
2

+ 2 .

x = ,

y = t2 .

I x = 3
= 3 - 2t .

t +1 ,

y = sin t .

x = t
12

y = cos t2 .

(f)

(g)

(h)

(i)

(j)

(

j

1

x > t

y = 2t .

x < t

y = t + 1

x > 2t ,

y =t2 .

x >

y < t

x < t ,

y > t
2

.'

.

12. Sketch and discuss the polar graphs of the following conditions.

(a) r = C S e (e) r =, 3 singe,
(b) r = c g(e + 2) (f) r = 1 + sin e

(C) r = sin (e - i) (g) r = 2 - cos e

(d) /r = 2 sin 3 e (h) r = 1 + 2 sin e
x

13. Sketch the graphs of y = x
2

and y = x
4

with respect to the same aXes.

Generalize.

14. Sketch the graphs of y = x , y = x3 and y = x5 with-respect to the

same axes. Generalize.

15. Sketch the graph of y = 3 sin x + 4 cos x,. What dOes it remind you of?

/Rte that this equation can also be writtein the form ,

.
y = 5(.5 sin x +

IP cos X) 6 th;.t (3; + (4)2 = 1.

Finally, use these facts and &well known trigonometric identity to-write

a third form of the original equation.

16. Generalize the result of the preceding exercise by considering the eggs:

tion y = a sin'x + b cos x
,
where a and b are arbitrary real num-

17.

bers.

Prove analytically that if a set of points in a plane is symmetric with

respect to each of two mutually perpendiculAr lines, it is symmetric with

respect to their intersection.
4.

17 0



18. Prove that the graph of the paar x = at + b y = f(t)' of parametric

eqnatiOns is identical with the graph of the equation

y
roc b

) obtained by eliminating t in the natural way. Thus there

are castes in Which it is possible to eliminate a parameter without getting

into trouble.'

19.- Make a graph of y = a + b sin (ex + d) for each of the following sets

Ofmalues of a, b c, d

(a) a = 2 , b = 3 , c = 2 , d, =2.

(b) a= -3 , b = 2 , c = -3 ", d =rt

(c) A = 3 , b = -2 0 c = 2 , d .

(d) a. = -2 , b = 2 , c = 3 , d =

.0

Challenge Exercises

1. Sketch the rectangular graph of y = sin 4x sin x . Discuss the graph of

y = (6 + sin x)*sin 12x , and generalize,} suitably. _anis/der

y = sin 1000gt sin 1000000gi , Which is related to equations which

describe amplitude modulation, ina'adio broadcasting.

2. p,x,discussion and experiment, if an oscilloscope is available. _Adjust-

Abe controls to get a stationary sine wave on the screen, then lter one

control at a time to change the amplitude, the wave-length, the frequency,

etc. If,available and possible, find the constants of the oscilloscope

and write the actual equations of the curve.

T

r

.1
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Chapter-7

' CONIC SECTIONS

7-1. Introduction

7-2

This chapter is intended to give you a better understanding of the curves

called conic sections. When you studied geometry, you investigated properties

of a circle.. In your studY of algebra you worked with equations of the various

conic sections and their properties. Here we shall first consideryiefly the

history of conic sections. Then we shall give a formal definition of a conic
0

section and use polar coordinates to obtain a standard polar equation of a

conic section. We shall see how equations in polar form are related to the

equations in rectangular form that you have a4eady studied. We shall,derive

properties of these curves and work with some of their many applications.

In studying conic s ions you will use t.e knowledge and techniques

acquired so far in analytic etry. Both rectangular and polar coordinates

will be%used;often parametric%representation will be helpful. Ideas of locus

and curve sketching will be used,

It is assumed that you have studied the definitions, equations, and prop-

erties of the conic sections; brief summaries will show you what you are

expected to know. 'If you find that you need more detail, you will find it in

the following sections pf Intermediate Mathematics:

6-3. The Parabola .(pages 315-321)

6-4. The General Definition of the Conic (pages 326,331)

.6-5: The Circle and'the Ellipse (pages 333-336)

6 -6: The Hyperbola (pages 342-348)

7 -2. listorylnd Applications of the Conic Section

The Curves Called conic sections were so named after their historical .

dibcovary as intersections of a plane and a surface called a right circular

cone. A right circular cone is the surface generated Wa line moving about

'a circle and containing a fixed point on the normal to the plane,pf the circle

'267
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7-2

*

at the center of the circle. The fixed point, called the. vertex,-separa6es

the s/rface into two parts called naDpes. Each line determined by the vertex,

and a point of the cirtle is called an element of the cone. The normal to
ir At!'

the plane of the circle containing the vertex is called the axis of the:cone., 01

The proper conic sectional are circles, ellipses, parabolas; and hyperbolas.

The discovery of the conic sections is attributed to the Greek math-... 4.

ematician MenaechmUs (,circa 375-325 B.C.), who was a tutdr to Alexander the

Great. He apparently used them in an attempt to solve three famous problems.; u.

the trisection Of an angle, the duplication of a cube, and the squaring of a°

ciAle. Although the Greek mathematicians were primarily interested in the

mathematical applications of the, conic sections, they did know some of the

optical properties of the curves.'"The definitiorfof the conic ections which

we shall use is attributed to Allilonius, who flourished before 200 B.C.

Further discoveries of the physical applications of the onic sections

did .not occur until the conjectures of the/German scientist nd mathematician

Johannes Kepler (1571 L 1630), who hypothesized that the planets moved in

ellipt ''c orbits with the sun as a'focus. The theoretical development of

Kepler's conjectures followed the gravitation theory and calculus developed

by Isaac Newton (1642 - 1727). Inlfact, it may be shown that any physital

object subject to a force which is described by what is called an inverse*

square law will move in an orbit which is a conic section, Gravity.is such a

force; the electrical force between charged bodies was found to be another'

such force by Charles Augustin de Coulomb (1736 - 1806)..

To ay, we find applications of the'theory of conic sections in the orbits

o nets, comets, and artificial satellites. The theory also applies to

the lenses of telescopes, microscopes, and other optical instruments, weather
ti

prediction, communication by satellites, geological surveying, and the con-

Struction of buildings an* bridges. Conics also occur in the study of atomic

structure, the long' range guidance systems for sips and aircraft, the loca=

tion of hidden gun emplacements and the detection cf approaching enemy ships

and? aircraft. The surfaces of revolution formed by the cSnicssections, which

will be considered in` Chapter p, find application in the sciences abaing with .

light, sound, Etna radio waves.'

It is helpful to visualize the four canic sections formed by the inter-

sections of a plane and a right circular cone. We illustrate the physical

possibilities, below.

3
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0

Figure 741a: Circle

Figure 7-1c.

4

Parabola

A circle (Figu\ ) is the',intersection of a cone and a plane perpen-
,

di61er to the axis of the cone: An ellipse (Figure 7-1b) is the intersAtion

of a cone and a plane which forms in'ac4e angle with the axis. The measure

of this acute angle is greater than the 46asure of the angle formed by the

axis and an eleient of the cone. A parabola (Figure 7-1c) ia the intersection
,

of a cone and a plane parallel to an element of the cone. A hyperbola

(Figure 7 -id) is the'intersection of a cone and a plane which forms an angle

with the axis whoie measure is less than, the measure of the angle formed by !

the axis and an element of the cone. These 4escriptipas suggest that circles .

269
a

Figure
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Figure 7.:1d:' Hyperbola,
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J

. /

,

e- r 0

;

and 'ellipses are the sections formed when plane.; cut every elelent of the

cone? parabolas are formed when planes cut soile,elements in one nappe of a
,

cone; hyperbolas are formed when
v...

p.ralies, cqt'some elements in both nappes of

the cone.. Although the drawings of"-figure 7-1 are limited, cones are infinite

in extent; what is illustrated i;s pnly.,part of.the parabola or hyperbola.

4 For a more complete and systematic geometric development of the conic

sections, leading to theodefinition to be giyen in the following section,

see Supplement to"Chapter 7.
p,

7 -3. The Conic Sections in Polar Form

We shall noose as a defining characterlsi..ic of '.Ye that

geOmetric pr nerty which leads most readily to their analytic description.

This property relates all the conic sections except the circle. '

DEFIkTIONS. A conic section'is the locus of points in a plane

such that f each point the ratio of its distance from a given

point F 1 t e plane to its distance from a given line D in the

plane is'a ive constant e. The given point F is called a focus°.

or focal point o the conic section. The given line D is a

f directrix of the is section. The given constant e is the

, . eccentricity of the onic section. If 0 < e < 1 , the conic section

is called an ellipse. If e = 1 , the conic section is called a

parabola: If 'e > 1 the conic section is called a hyperbola.
s)'

A ircle is al o a conk section and is the locu of pointEi at a

'g ven distance from a enpo t. The gi:ren'd' tance is called the

ircle;and the g en point Ts called the center of the
I

radius of the.

In some ways, it is Simpler to 1escribe the conic sec foils in polar.

polarcoordinates. We are already familiar with the polar e-ua iOn or equation .
. ,

in'polar coordinates, of a circle with center at the orig n as r = k ,,,

where' k is the radius. . . -

_..., , .. .

1
:"

We shall assume that the focal point does not;f lie on, the directrix. Let

the focus of the conic section be at the pole and let tie drrectrix_be per-
.

I

pendiculaetothe polar axis. Leethe'polar axis be oriented away from the
. .

directrix; 'that' is, the ray that Is the polar axis does rot Intersect the
I

, . ,

1,........--,.' .

t
, 4

Y

`.: . '27.5...,,
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directrix. Let p be the distance from the pole to the directrix and,let

P = (r,9) be a point of.the conic section.

Figure

Then the distance from P to the focal point is

from to the directrix is p + r cos e . Thus,

Expressing

(1), °'

In the

on the dir

degenerate c

planesICOn

see Supplem

r
- e .

p + r cos e

r in terms of -e , we obtains

ep-
1 - e cos e

773_

FHB

r , and the'distance

ye discussion we'have assumed that the focal point,did not lie

If Wdoes, we ob in certain figures whibh are called

cs. Geometrically, they are tie

ng the vertex ,of th c . (For a

to Chapter7.)

int4isedtions of cones and,

more complete discussion,,

If the fo al point s- on the

perform certai algebraic
6eratio

We may ,express helsnalyti ?midi

N4, , 71
=

If < e 1 we have r < r

have r =0 , which is an eqat'

pont- circle. `(It I3om94Mes

case of the ellipse.I\This,A.

suggesta why one may enco
1

d reetrix, then p

r, !ince division

/

n,Ms follows:
?

erXl.s'e .

0 , and we may

by zero would be

not

indicated.

e', which is never true./ If e..-..."0 ; we

f the pole.' i is sometimes called's:

ent to 'hink of a circle as a special
L

exit /ur aPProaphhere, but it

is locus as a point-



7-3

...., .
,

If p').70 and e = 1., we obtain r . r cos e . From this we may infer

either, r -=, 0 ,A 1 = cos e . The graph of r = CN has just been diccusSed.
1

The graph Of .1 = cos e is the line containing the polar axis; this we call
-,-...

a degenerate parala. If p = 0 and, e > 1 , the equation r er cos 9

Will beaitisfied when .cos e = 2e... . Thus the locus is two distinct lines
....

through the pole and is called a degenerate hyperbola. (There will be further

discussion of degenerate .conics in the Supplement to Chapter 7.) .

Thus far we have considered the equation of a conic only in the case in

which the focus is at the pole, the directrix is perpendicular to the polar

axis, and the polar axis is oriented away from the directrix. Certain other

"eases will be considered in Example 2 and the,exercises, but we shall not take

up the case in which the directrix is oblique to the polar akii until we have

studied rotation of -the.aXes in Chapter 10.

Example 1. A fixed point F' is units'erom a given line L . Write

an eqUation for the...locus of points equidistant from P and L .

Solution. We placbthe bOle of

our polar coordinate system at 'F , and

the polar axis p'erpendi'cular to L and

directed away from L Then for any

,point p =

r

which becomes

4 r .cos V ,

.1,

4
r

1 - cos 0

This equation is in the form of
I

Equation.(1), and represents a parabola.

. ,

Example 2. What is a polar equatIon'Of a conic section with_focus at"the

pole and directrix parallel'ito the polar axis and p units below it?

ro '

ij ti



Solution.. Let P = (r,8) be,a

point of the curve. Then the distance

from II to the foetal point is r , and

the distance from P to the directrix

is p +.r sin e . Thus,

r
p r sin e - e

IP

Expressing r in terms of e , we

obtain -

epr F,1 -e sine'

2
Example 3. Graph r -

1 - cos e

7-3

-SolutiOn.,.Titi's equation is in the

form of Eation (13with e = 1

p = 2 . He e its graph is a parabola

with focus- t 0 , and directrix D

perpendicular to the polar axis and 2

units to theaeft of the pole. The '

vertex ;lust be midway between 0 and

D . .Location of one. or two more paints

-,say (4;600) and (2,90°) - -and use

of symmetry then permit mak:ft a

sketch.

4--

o

Example 4. Graph r =

t,

O

6.
3 cos e

D

*

o.

FFt

4
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Solution. TO obtain the form of Equation (1), we 4ivide numerator and

denominator of the fraction by 5 , and write the numerator as the groduqt of

e and a number which must be p . We ,

obtain

r '

.k- ,. 2
.

,

4 or

D
1 - 7-3 - cos e:

2

3Since e and p = 2 , the graph is

an ellipse; one vertex divides the

normal segment- joining the focus to the

directrix in the ratio 3 to 5 . -We 2
0 . .

Obtain a few more points--say (3,0°),
fi

, /6 o.
--and 'use symmetry to

(12,
60 °) and k5., 90 )

Graph each of the following:

6

12 ON
'

complete the graph.

EXercises 7-3

14410 1. r= 4 12
1 -.cos e = 4 - 5 cos'e

.

6-
?'

r
2 - 2 cos (9

4
3.

r 2 - cos e

6. r =
24

2 - 6 cos e

4

7* 1 - sin e

6 64. r
3 - cos e 8. r'-

. 9. What is a polar equation of a conic setion'with focus at the polea

diredtrix parallel tethe-polar axis'and p unitsaliOve it?,

' 10. What is 6 polar equation,of a conic section wish focus at the pole and

directrix perpendieular'
I

to the polar axis and, p units to the right of
/ I

.
,

thg pole? ,'
' :, N

)11. Using the r ults of .EX'Iercises 9 and 10, graph the.,i'ollowingt
NN

\ F
(a)

-E., cos,0 I : (c) 1 = 4 + 3

8

sin_e

12

5 sin p
10(d)Ir =

5 + 3 cos e



In EXercises 12-19, rewrite'the equations in a form convenient for

graphing, identify the conic bection,and sketch the graph.

12. r - 6 -:r cos = 0 16. r =.2 + r sin

13. r - 10 - r sin e =

14. 3r - 12 - 2r cos 0 = 0

17. 4.. 2r cos

18. cos e = 1 - F
4

7-4

15. 3r - 42 cos (9.= o - 19. sin e =
1=-1- 2

2'0. An artificial satellite has the center of the earth as its focus. For

a polar coordinate system in the plane of its orbit the distance of the

satellite from the center of the earth at e = 180°- is 5000 mi. and

at e = 90° is 600o mi. Assuming that the axis is 'along the line

e = 09 -,finolthe equation describing the orbit and the greatestAisterce

of the satellite. from the center4of the earth.

7-4. Conic sections in Rectangular Form

. We have developed polar equations for the conic sections in certain

specified position's.- For a circle with center at the pole, we have

r = k .

For the other conic sections with4focus at the pole, and direct-rix perpendicu-

lar to the polar axis and p units to the left of the pole, we, have

''..

a parabola if 'c 7 1 ,-
.ep

; 1 - e.cos e , representing an ellipse if a < e < 1 *,,r

1 I.
! a hyperbolwif e >1 : '''

We shall find the corresponding Actangular equationi b u ing the following

equa4onk, developed in Section 2-4:
r

O

"?.

Circle: .If-

then

I

t

0

X = r cos 19.

y = r sine

r =

r2 k2,

404

275

2-
r = + .

tah 0= x /'o .
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(This is equivalent to multiplyingethe members of r - k = 0 by he corres-

ponding members of r k = 0 . Since these are both equations bf the same

circle, the graph -of the resulting equation is the same 4 that of the original'

equation.)

.Since

we may write

(1)

2 .2 2
r = X + Sr ,

2 2 2
x + y = .

now consider the general equation

ep.

r- 1 - e cos e

We,multiply both members of the equation by 1 - e cos e to obtain

r - er cos e = ep

Or 1 r = e(r cos e + p) ,

and. square both members,of the latter equation to obtain

(2) r
2

= e
2
(r
2

cos
2

e + 2pr co.s e + p2),.

(Whenever we *square both members of an equation we must be careful of the in-.

terpretaiion ofe result. We.have in effect multiplied both members of

r - e(r cos 6. + p) = 0 by the correspc;nding members of r + e(r cos 6 + p)= 0.

We recall from Section 5 -2 that r - e(r cos e + p) = 0 has the related polar

eludtion

-r -.e 0) cos (e + g) = o .
,

Since' cos (e + g) = - cos19 , this is equivalent to
t

- -r -..e(r cos e + P) = (I)

Or (3) r + e(r cos e + p) 0 .

Since the "factors" of Equation (2) are equivalentto:Equation (1)and its

related polar eq13dtton, it haethe same graph as Equation (1). We may now

proceed with the original discus ion.) Using 'r2 = x2 + y2 and r obis e = x

we have
, 0 f l

(41 x, + y
2

= e
2
(x
2

+ 2pxe-+ p
2'

) .

We no have our equation in rectangplAr coordinates andwish to examine it
0

for the different values of e .

4j

1

A

- S N
276



Parabola: Since

or

This equation, as

t

, Equation (4) tkodomes

(s.2 2
x + y

2
= x + 2px+ p

2

'Y2 = 2P(x + 2)
2 :

you may recognizyc-_from your study

parabola with focus at the origirf.and vertex at

of algebra, represents a

Example I. Write in rectangular foth and sketch the graph of

6
-

1 - cos e

Solution. The given equation yields

transformation becomes

141?.2 7 - et 6

or 477 = x + 6 ,

6

Therefore x
2

+ y
2

= x
2

-4-1.2x + 3

y2 = 12x + 3e

or yg + 3 )_

Nit Al":46'

Ellipstvntee O < e < 1 . -We

q

r.- r cos e = 6 , which after

rewrite Equation (4)

2 2
e2 x2x +y =ex2 t2e2px + e 2p

2
,.

, .

range the terms to obtain 4

._

ice ,we are
R ,id iikfoi a form

conic that'has a centir, we use

Divicling`by the Coefficient of
....--

.

7
( ,e. )k

'2,
-2`e

.2
px + y2 = e2p

2
.

,

as

that wp_can recognize as the equation o

thel-technique bf completing the square.

.2
x , we have

x
2 d

2
p

y2
2 fix =

I 1 .1 -e -11te 1 - e
.

4 of
1
F

..1111

a

,
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or
.2-x-

2

2 e P--x
1 - e2

2 2

or
- e2)) 1 -

+

x2

(2P2
1 e 1 - e2 1 e

2

2 f 2' 2 2

72

%02 2 2
_2 _2_ +

2 2 '0
1 - e 1 - e

Since Or < e < 1 , e
2

< 1 and 1 e
2
> 0 . Thus the coefficients of

are both positiVt. Although the equation above is quiteand, y
2

cluttered with constants, it zahowl.d be apparent that it has the form of.-.he

2

equation of an ellipse with center at e p
1 - e

2

EXample'2. Write in rectangular form:

r =
6

_ cos e .2

:

.34

Solution. Zile give-, equation yields r -
1

r cos = 6 , waien, by
2

substitution:, becomes

Therefore

he

ix2-+ 1.;
2

/2 4'2 -
vx y =

1x + 6 ;
2

2 2 1 2
x + y = )+ 6x + 36 .

finally, th s becomes 3x2 + 4y2 - 24x:- 144 = 0 , ilhich you ma.. recognize sCs

an eqdation for an ellipse in rectangular form. lie may write this in standard
0

form thus:

or.

or I

You may rec gnize that this equation represents an ,ellipse with. cen
0.a

I 4

', %:(440), i. - 1

,

q ( (0 .
1 , \ t

j .
N

. ,

) 278
'1'...-\. .

3 (x - 8x + 16) + 4 y2 = 144 + .48 ,

3(x .4)`
,

4y2 = 192 ,.

4)2 y2
' + = 1

.44
k:

N.

:_ 4.1



Hyperbola: The algebraic manipulation involved in expressing 117e)

equation of a hyperbola in rectangular foim is identical with that for the

ellipse. However, whenvwe reach the form

(
e2p y2 el

e2 e2 4.
1 ; e2 k

-4

a

we note 'that since e 1> 1 ; e
2
> 1 and 1 - e2 < 0 . Thus the coefficients

of x
2

and y2 have opposite signs.

It should be apparent that this is the equation of a hyperbola with

2

ctnter' at
2 '

0) .

1 - e

Exercises 7-4

For each Of the polar equations
below.you are asked to, do three things :

(a) Sketch the graph.
- r

I(b) .Write a corresponding, equation in rectangular coordinates.,
-_, / nates....

( c ) Wr to the 'related
.polar

equatkon ,
.

..*-

1. r = 3 e

6
8. r

2 cos 8
2. r = 9 ,

3: r.7,= 2 cos 9

4. :r = cos 8 + sin 8

'5,

-6. r. -
3

1 + cos 8

r =1 - 2 cos 9

4
r

- 'cos 8

A -4

1 9. r 53 - cos e

10. r 5
- 2 - 3 cos 0,

1
11. Pr = 1 + cos e

12. r -; r sin 8 =

13. 4r.- 3r cos\O 12

14. 4r + 5r sin ,8 -20

,279 ;

,
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7 -5. The Parabola

v4,4.
tky

In thIt'Secticin and the following three. we consider the four main kinds

of Conic sectOns:' parabola, circle, ellipse, and hyperbola. There are

brief summaries of the important definitions anOproperties. Equations in

rectangular coordinatesr-often Called standard forms--are given for these

curves with axes on or parallel to Asa ,coordinate axes. Much of this

information is not new; it is placed here because of.its impolkance, and for

your convenience.

The parabola is defined as the set of points equidistant from a fixed

point (the focus) and a fixed line (the directrix}.-A-parabolais sYmmetric

with respect to the line`othrough the focus perpendiCular to the 6ire'etrix.

This line of symmetry is called the axis of the parabola, ancf.its poiRt of

intersection with the parabola is called the vertex'of the:parabola.

In Figure 7-3 F,-V, and D indicate the POcus, vertex, and directrix,

respectively, and 11)1 is the distance betteen F'and -V. 'If p > 0 ,

the Parabola extends upward or to the right as shown;, ,if p < 0 ;it extends

-downward or to the left.

In making.a-quiek sketch of a-parabola, it is Convenient, after JortAting

1
, V, F, and D, to find the length Or thelatus rectum. This is the Chord of

the parabola through the focus perpendicular td-the axis. 'If in claation (a)

Figure 7-3 we set y,,= p, w find x = 1.2p .; thus, the.lenithof the,fatus

rectum is 14p1 . (The student should verify that for eachof thYother
, .

standard fOrms of the,equation;giyen in Figure 7-3 the length of the

(
latuS

rectum is also N I .)
;'

, .'. .-

.

In general a Conic sectiom ha been defined aS,4e,sef 4 points P :suCh
". . ..

that the ratio f the distance fro P" to a fixed pointetd the dist ce from

P to a fixed lie, 17S-M-m)nstant , called the eccentk
Is

b y. ' or,t e

11/

. i'

_ .

.7t

4

arabola ei= 1 ;

)11iY

. " -;.".-4

Ci;
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(0) e =4py

Our definition

the fi:xed pointarild

of geometry tells us, that

directrix at the fixed pbint.

. 7-5

(C) = 4-fix

614) T GUS y=4 .

I L --Figure 7-3 r.

. ..e

4,L
""'_Ps-1> .

'

1 \ ""ii.......: :

qt :111 ''''

t Vof the parabola makes no restriction on tte po#tion of
'---41

line. What if the'point is on the line? Ouf knowledge _ (

the locus must be the line perpendicular to the
.4,4vA'-v

t.0

Figure 7-3, we obtain

If we let p = 0 in say ,E4Uation (a) of
, -

%
,

4
This locus lisAl,ft@n called a

y

This equation represents a straig4

degenerate parabola.

p

j 281
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7-5 \

The parabola has important geometric properties) some of which concern .

tangents; these you will be able to derive more*easily when you, have studied

calculus. One of the best known is the reflective property: light rays

parallel to the axis of a parabolic reflector are concentrated at the focus,
a

and light rays emanating from the focus are reflected parallel to the axis.

Thi' property, although usually illustrated ih two dimensions, has more in -_

terest and physical applications'in three dimensions. Such parabolic reflec-

tors are used not only for light rays, but also for heat, 'bound, and micro-,..

waves. You.may have'seen such reflect3s used with microphones, or radar

antenna, or as parts of artificial satellites'.

The parabola ie.also important in analyzing trajectories; the path of a'

projectile can be approximated.by a parabola. Under certain conditions of

loading, the cable of a suspension bridge hangs in the form of a parabola .

Arches of bridges sometimes have parabolic form.

ti Example 1. Rewrite the equation x
2
+ 4x + 8y - 4 = 0 in stanclard form.

Write the coordinates of the vertex and focus and the equations of the axis
. .

and directrix. A

o
. .

Solution. Since x
2

is the only second-degree term, we group the

lc -terms omd complete the square.

0

x
2

+ 4x = -8y +'4

is equivalent to x2 + 4x + 4 L -8y +I,
it

or -(x + 2)2 ., t8(y 1 1) ..,..

'This last form we may"compare with (x - h)
2
= 4p(y - k) , anci recognize

-

i

as an equation of the parabola with axis parallel to the y-axis, and vertex.

A-2,1) . Since p =
1

r2 , the parabola opens downward. The axis is a vertical
., 1

line through the vertex; hence its equation is x = -2 . The directrix is a

horizontal line 2 units above the vertex and has the equation, y = 3 .

The focus, -2,-1) , is two units below the vertex.
. r

I

Example 2. Write an,evation of thearabola with vertex (3,2) and

directrix x -1 .

.

Li

ti

282
.
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Solution.loSince the directrix is vertical, the axis is hOrizontal;

an equation will be in the form (d) of,Figure 7_3. 'The distance from

torhe directrix is p ; here p = 4 . Thus an equativ ts

.

st

(y - 2)
2

= 16(x - 3)e.

Exercises .
Rewrite each of the followitg,equations in standard form; WI-

codrdinates of vertex and focus, and equations, of axis and

draw the graph.

,x2 ='-16y

(b) ir2 = 16x

_(c) 5x2

e the

directrix;

(d) y2 - 5y + 6x - 16.= 0

0,

(e) 2x2 -,8x - 3y + 11 = 0
,...-

.
.

' 1"
.

.

(f) y' = ax
2

+ bx + c
, '4,

. .

A'

2. We haye noted that a sbeeial or degenerate case of the parabola occurs

when'the fixed point,ls, on the fixed Line. In this, dAse Equation (d)

.of Figure 7-3 becomes (y - k)
2

= 0 ; t4e,lotli.i. is a straight line

parallel to the x-axis.

(a) Find the degenerate case .....of each of the other standard forms of-the

equation of the parabola, and state°\hat the lddiasis. !* 0
.. ,

(b) .IfS,paral!lola is a se tion,-of 0, cone by a plane parallel to an

element of the cone, can you explain these "degenerate parabolas"
/-
as limiting cases?,

3. !Derive an equation of a parabola to fitleach

by using the locils definition els. parabola.

(a) Focus (-1,-2) ,Idfrectrix x = 2,
. %

(b) Focus (-1,3) , directrix -y = 2

,0
(c) Vertex (0,0) , focus (-5,0) . ,

/ . .

.., \' ..,

. ..*-.,

(d) Verjtx (4,5) , directrt X = 3
01,,

.4s.,:

.- Obtain an equatiOn for each of the parabolas for wil
0

given in Exercise 3 'by using the standard fOrms of ie _eq ationS-.,
, (

.

/\
.. , e;.. " I; ' .41.'

, , t,a

.r. ,

f4he following conditions
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.. . " .
5. rind an equation of a }parabola to fit each of the following con4itiOnsj,

J
(a)

. (b)

(c)

Vertex

Vertex

Vertex

point

(0;0) ,idirectrix.. 2x - .7.- 0

1.
(2,-3) , directrix the x-axis

.

, axis of symffietry. the
k

(2,7)

I `
.

x-axis, passing,through the-

('d) Latus rectum 16 , open down, vertex (-2,3)

6. Cross-section paper and a compass can be'

used as follows. Mark one of the printed

lines L
0

and Ark successive parallel

lines L1 , L2 , . Select any point F

on the same sidetof Lo as Li . With a

compass measure one of the printed

lines the distance' d
2

from L
0

to, L2

With" d
2

as radius and F as center,

locate points P2 and 132' on L2 .

a similar fashion, using d3 as radius,.

locate, P
3

and P ' t
on . Prole that

the points P2., P2' ,,... lie on a parabola.

4 Th

F
1-

.constructa parabola. echanically; place
4P

a'stratglit edge L perpendicsilar to the

line' MN . Attach one end of a piece of

string of length ST_rto 4Doi11t T of right

triangle RST 9 and the'other end to a

point F on MN . With agoencii, hold the
'

string against the side ST of the triangle'

as the aide '$R slides along ML . Prove

thai,the point P of the pencil describes

a parabola as the triangle slide..s.i

Nj

" ;

28l
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Cha'llenge Problems,

i

1.. In,Section 6-7 it was shown that the family of tangents to the parabora
% .

2'y = x
2

at any.pbint P -,. (a a ) on the parabola can bb represented by
,.-

$ ' . , , .

the equation y = 2ax - A
2

. Prove the reflective property. of the
.

parabola for this cAse.. (Hint: Show that the tangent makes equal angles
.

with the line from, P to the focus'and the line.through P parallel to

the axis of%theparabola.) 4

2. 4gain using the results of Section 6-7, prove the following statements

for the parabola y = x
2

.
.

.(a) ,A points of tangen0y of two perpendicular tangents collinearar tagens are co

* with the focus.

(b) -*The loa4s of the intersections"of pairs ofperpendicudar tangents

Is the d/rectrix. f*

7-6. The Circle
k*,

circle is the set of points in a plane each of:which is:at a given

distance from a fixed point of the plane. It the fixed point, called the

center, is C = (h,k) , and the given distance is r , for the 'required set
0

of points P = (x,y) we have

s(x - .(3; k)2 r2

If r = 0 , the solution set-is'the single point (h,k) ; such a locus

is often called. a pointicirclel If r..
2

0 , the solution' set is the empty

set; in this case the lo$14s is sometimes said to be an imaginary circle.

Since there are- three arbitrary constants h, k, r in the standard .

equation ofa circle, it is in'general possitle to imprOse'three geometric

'*conditions on a circle: Tht folloiing example will illustrate this.

I

,

Example 1. Find an equation-of the circle which passes through the

three points,, (1,2) , .

285
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Solutidn A. Using the eqUktipn x
2

+ y
2
+ Dx '+ Ey + F.= 0 we wri e

.n turn the condition that each of the given pop ints satisfies the equation.

+. 4 +1) + 2E + F \=,, 0 , or D 2E + F = -5

-D+ E+F=0,or-D+ E+,F=-2
A

2D - 3E + F = 0 ,or 2D- 3E + F = -13,.
I

,

..... -
We now have a syStem of 3 equation's in 3 unknowns; solvi hese by any

c.

/desired mettiod,, we find that

E anti F.
11 '

..=

11

We substitute these values. in the equation an multiply by 11 to obtain

11x
2

+ lly
2

- 23x 13y*.t. 58 = 0 .

Solution B Here ye "use e condition that the center (h,k) is

equidist: !ts of the circle. We select the first two.

Points d write t s ondition.
,t

I

+ (k 2)2 =, (h + 1)2. + (k,s- '1)`` , or 4h +'2k = 3

We. then the same thing for.the last- two points.
.

.

' (h + 1)2 + (k i).2 2)2 3)2
, or 0, - ak = 3.3.

,
The cookdinates o the center of the desired circle must satisfy both of

4 \these ony; solg, them, we have

c = (h, k)
Li
22!

,

0

Now we find the radius , the distance between C and any of the given

points, say the first. 4

r 10

2 2

22, 22 ,

- 7

(-1)2 + (57)2r
----N.,' 22

t
2

,3250
2

$

. 2861\
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- " - %.

Thus' the equation of the circle is .. . -.

- ,,

.. r

.
,,

. .

I - N].. 2 loco2
.

(x ii) + (Y + g): 1)'''2
e.

4. 0 '22
.0 .

or , p .

The student should satisfy himself Illatjhis equation, When 'simplified, s the-/

same as the' One obtained in Solution A
t

What happens to the solution of this
aRA,

problem if the three points are colligualir? -:/ -/ .4 ... 4=
4 r

Example 2. What i the locue Of '36X2 + 36y2 - 36x +. 8y + 24 = 0.?

. ,

. , 4 '

-.

Solution. We rpgrobip the terms' and apply the distributive law to obtain

36(x2 - x).+ .36.(y2 + 14)-1- 24 j '
3.

.

'We complete the squares by adding the same numbers to each membe,r of the,

equation, 'obtaining - li ,.
,

:i
C

... , '
,, 2 1.,

.1 3okx - x.+ T) + 36(y. 2+ lisr + lip -24 + 9 + 16 ,
_....4

Which is equivalent to

1 2 2 2 -1-
(x, 'a *7) =-36.

k

Hence t e loctis J. a circle with center (12-', ) , and radius ,-, u 1

/. o '
1 .

i

ReWrite the follow ing, equations to show what each locus is; if it isle

g circle, find the center and radius.

(e) x2 + y2 - 8x = 0 (e) r X2 + y2 2.x + y = 0
4 4

(b) :(2S y2
ley

4. 33 --(f) 4(2 + y 2
2 2

2ax - 'eQy + a =-0

Exercises 7-6

r

/ t

a

,

(c) ' -X2 + -+ By + 20 = 0 %- (g. -5x2 +,5y
2

6x +- 4y + 2 = 0'

(d). x2 + y244. 1 4x - 9y + 60 = 0 (h) 2x2 + 2y2 - ?ax + 2by - ab -= 0 -

it

e,
I

0

2 9 2

!,

I

R.

,
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. .

2., In each of the following, find an_equation of the circle (or of each

oircle)Iditermined by the given oonditions,and make a sketch. ;Let C

and r represent center and radius.)\

:(a) C = (3,,-9) , r = 7

(b) .5 = (-5,12) and passing through the origin

.(c) C = (3,2) and tangent to,en axis

(d)- r 7 3 anct pasiipg through the points ( -1,1) ; 1,2,4)*

,(e) C.= (1,2) and tangnt to the line 3x - 4y - 12 = 0

(f) ,passing through th oints 2,3) , (5;1) , - (0,1)'
/,

'3, (a) Use the ,filet that a,tangent to a circle is perpendicular to tbe.
radius at the point of contact tofind an,equation of a tangent

to the circle x
2

+ y
2

`= 25 at the point (3,-4) .

(b) Pro.re that an equation of the tangent to the circle
x2 -4.1 y2 t2

I

at the point (x
1
,y
1

)' of the circl is .x
1
x + y1y = r

2
.

..,

4. (a) find the length of .a tangent from (3,7) to the circle x2 +y2.= 25 .

(b) Shoj that if t is the length of a tangent from the point (xl,y1)

to the ciFcle x
2
+ y204- Dx Tjr + = 0 ,

a 2 2

=, xl yl
Dxl + -E r1

F
`---)

2
(c) If in using this formula you find that t- = 0 , how do you

inte ret this geometrically? What if t2 < 0 ?

5. In Section 85 'we.considered the family of circles through the-dommon

points of two circles; such a family'-is sometimes called a coaxial family,

or a pencil of circles.

(a) _Find an equation of a pencil of c'ircle's through the intersections

of the circles with equations

2 '

-x
2

4- y 10x - 2y - 35 = 0 .'and

, ;cf y2 , ,

4(6) Fnden equation'n of a circle of this pencil which passes through

'the points' (0,-6) :

(c) ,Find an equation of a circle of this pencil. which has its center

on kibe line x + 5 = 0 %

-
V / 0

1' .

,e.

`288'2'93
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'act

line, whether the circles_intersect or not

radical aIid of the two circles. ,Prove that

circles from any point in their'radical axis
1,

,'

'7:6

In:Sedtion 6.5 we found\the equation of a line throu'gh the common point

of two ci la. the same, algebraic technique gives us vele equation olagf-a

Findthe codrdinates of,a point from which

. /
to the th ree circles with equata ions ic

2
+

. .

y
2

4: 4x - ,3y 15
2

This line is called tfle .

the-tangent's draWn to)twok -

are.equal,in lengthy

qual tangents can be dralin

2"
y2x ,+ y - 6x y = 12 ,

-
.

8. Prove the radical .axis of two circles is perpendicular to the .line

of centers of the circles.

9. Two intersecting circles are said to be orthogonal if title t'ariiepts at

eich posint of intersection are perpendicular. Prove that if circles

.
e+ y2 + D

1
x + E

1
y +iF

1
= 0 and x2 + y

2
+

, 4

,
r.". .

, orthogonal, then 4l
D2 +

,

EiE0 = 2(F1 t Pp.:
4 .t,

6. '

.

10., thdf that the following pairs of circles are

4,x2 y2
- 5y,v+ 6 = 0 ; x2%+ y2 + 10x

(13) . 2x2,4.2y2 + 2x + 1 = 0 ,.2xe +.2ye-- 43( +

D
2
x + E

2
y + F

2
= 0 are

r

orthogonal.

. .
'11. peterTine the lOnstant 1k

n
/

of the

is orthogonal.

,
. /.

. ,

(a), V\+ ye 1,, 3x +43'r - 3 = 0,

.(b) .x"- + 3Yel..kx - 2y = 4 , 5X2
,-.

sothat each

x
2

+ y
2

+ 2x

+ 9 = 0

6y- 3 =0
h \ e

following pairs of

y + k = 0.

+ 5ye x + 2y = 2

lf.

Challenge Problems
/

.

.
,

..

r
1. The vertices of triangle ABC

P

are the centers of any three circles yhich.

intersect each otter. Prove ,tDat.their common chords, are concurrent.
t,

2. The vertices of t

.0"

ngle 'ABC are the center's of any threelsirdles.'

Prove that their radical aka'sateoZnOt:rrent:" (Qes'Y'Oul- ptoof also

hold fo¢ Challenge -Problem i ?,)

' o

7

.

I

9
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. 7s7 The Ellipse /.\

. , .
.

. *

The ellipse is defined a', the set of points P such that the distance .

from P to,a fiXed.point (.tile focus) is equal to the product of a constant
or°'e' and the distance from 'P to a fixed line (the directrix). The constant

e , he eccentricity, is such 'the 0 < e' < 1 . In our earlier study we foUnd

s c
. tilt if we take as fogpt F = (c,0)' and asvdirectrix the line. x = 7., and

0 t e
..

e

c / L__.
.

.' 4;

let a = - and b = --Y1 - e
2

an, quation for 'the ellipse
e \

scan be written

x2' y
2\

b 1

' \
We note from these relations .that the equation of the directrix cang,:alsobe

.

. , 2
. ...

written x = , or rx = - . Apiher usefUl relation is.. c
2

. a
2
e
2
= a

2
- b

2
..

--,,- a . a

c e
1.

,
.

From Equation (1) we see that the graph :)f the ellipse'is symmetric with

'respect to the origin and to both of the coordinate axes; hence the point

c \

Ft = (-c,0) and the line x . - also serve as focus and directrix. Theo(

,

.

chord of the ellipse which contains the foci is ca\lled the major axis; its .41
.

.

A. endpoints are called vertices.- The midpoint of the major axis is called4tile , _,,,.

l AR
center of the ellipse; the chord'perpendicular to the major axis'at the center

.

.
\,

,is called-the minor axis. 4

1:
--...-- ---- .

In Figure 7-4, parta) and. (c) summarize leOrmation about the ellipse.

with Equation (1), and also Oe.comparable case with the role oe the x- and

.y-axpsinterchanged.

The equation'

(x - h)2. (y - k)
M

tf M and N are pOsitive,

center C = (1,k) . Whether

y-axis depends on whether M

isoin the form of

the major axis is

or N is larger. Using V,V1 , F,F1' , and ,

;
an equation of an ellipse with

parallel to the x- or the

D,D1 to indicate.yertices, foci, and directrices, we can summarize in
, , _ .',

Figure7-4, parts (b) and (d), information about an ellipse with center (h,k)

and axes parallel to the coordinate axes. - -
t

290 "
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'2 ."2
( a ) +

a b

(h,I-8)
;4.

y

(x - h)2 (y --4)s)2.-(b)
a2 4.

I

For all figurep,

Figure

(c)b
2 2

+
a

2
' b2

a >b and. = .8'5
a177 GI'
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7-7

. If in Equation*(2) M and 'N are negative, there is no locus; game-
.

times in this,case we speak of an imaginary ellipse. "the equation

h)2 k)2

,rn *

.

has as its locus only the point /(1,k) . Such a locus fs spoken of as a

degenerate-ellipse or a Point-ellipseIi4ce its equation resembles that of

an ellipse.

In dis'cussIng the ellipse and its properties aid graph we have, in this

section, written the equations in rectangular coordinates. All of the'work

cculd.nave been done us ng polar coordinates. If the equation ofan ellipse,

or any conic section, is in polar coordinates, you may leave it in that folm:

inorder to graph it'apd obtain such information as coordinates of foci and

vertices.

The Shape of ah ellipse varies with its eccentricity. As'you see in

Figure 7 -53 the nearer e is to zero, the closer the+Shape of the ellipse

e s= .1

Figure 7-5

to a circle. You can see why ,the circle is spoken of as an ellipse of.ecnen-
..

tricity zero. For increasingly large values of e< ,the ellipse is more and

.

1

e=

'more elongated., Can you explain this result from the-fdct that

b * 1 - e =7

Perhaps best knwah ofthe,properties of an ellipse is that,'for any point, °
I

on an ellipse, the sum of thesdistances to the #.oci is a constantequai to the

length of the major axis.' The reflective prope2tThas important applications-'

in optics and radar: Since a tangent at any point of an ellipse 'makes equal

arigles with the radii drawn to the two foci, rays are reflected from one focps

to the other. This property explains the "whispering gallery" effeet_in some

halls, where a whi'sper.at one spot, though not audible nearby, iseasily heard

at some more remote stot. The'orbits,of planets and the, paths pf electrons

about the nucleus in an atom are approximately ellipses with the sun and the

nucleus respectively ht one focus. The elliptic form alsd occurs in arches

and gears.
I

292
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Example 1. Discuss and ske)ch the ellipse with equation'

2 2-
9x + 4y + 54x - 16y + 61 = 0 .

_ .

Solution. 'lie proceed:to rewrite this equatioh.

.

Xx2" + 6x + 9) + 4(y .s. 4y 4 4) . 81 + 16 :
2 11 .

i , ,
1 -. .:

.

.

. '

is equivalent to ," 9(x + 3)2 +.4(y - = 3g'

(x + 3)2

2
2

3
'.

Since 3 is lgrger than 2 we see' that a = 3 , b = 2 , and the major axis
. f

.

.

is parallel to the y-axis.
i
The curve is an ellipse such' s ,(td) of-Figure

i

6

p.

7-7,
-

\-*

7-4 with center (-3;2) The eccentricity
4 a

2 b2
a___- ;e hencelae, =.1r5 and

a- =2'5. We use these Nelues end the
5

formulas of Figure 7-4 (d) to obtain the..

coordinates for the vertices, V ='(-3,5),

V' = (73,-1) , and foci, F = (-312 +,,5),

F' = , equations'of the axes

it , ,y =2) anft'directrices'

,(y.= 2 ±-55) Iwmaking a,sketch we

usually locate the center first, and mark Off from

values used for this (h,k,a,b) may all. be obtained directly from the

' equation in,form. (d) of Figure ,7 -4,

* 1

it the semi-axes; the

A
.

.

Example 2. Write an equation of the ellipsa with foci

yt = (-4,4? ant Wirth é i.,; .

F = (2,4) and

ia

0

-
,

Solution. Sitce fOr this ellipse the maj r axis parallelto the

x -axis, we shalLuse form (b) of Figure 7-40! T1-fe distance between'the

.foci is

therefore

Sin8e
, 3
et=

5

.

/

tae = 12 - (-4) 1 * 6 ;

/ .

J
ae - 3 e

a =
ae- 3.'

e 3,

5
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7-7

Using the relation i a2e
2

= a2- b 2 ,

we have b,2 =a2
-
a2

e
2

r.

and

.

Thus b 4 ,

Since the center is the midpoint of , C= (-1,4) We now write the

equation..

(x .+1)2
.,

+ J. o

b
2
= 25 -9,

b
2

= 16 .

1

. lir

. Exercises 7-7
% .. "

1, Wiite an equation pf the ellipsewithcenter (5,2) ,',major axis equal
'../

to 12 and parallel to tte x-axis, and minor axis , 8 . Find the
. -

eccentricity, the coordinates of,ihe foci aqd yeztites, and equations
. .

of the directrices Make a sketch. I

:"

2. Write art equation of the ellipse with center at (0,0) , one vertex

(3,0) and one focus (2,0) .

.

3. Rewrite the follbving equations in the(!forms of,Figure. 7-4. For each,

find' the eccentricity, the Coordinated"'of foci and vertices, and

equations of directrices; make a sketch.

(a) 4x2 + y2 = 4

(b) 4*
2

+ 2512 =x100

3x2 2y2 6

(a) 4x2 + 9y2 = 1 7;

(e) 36(x .1 4)2 ± 25(y + 3)2 = 900

'(f) 4(x t + 9(y + 1)
2
= 36,

(Ej 9x
2

+ 4y
2

- 36x = 0 1,

(h) 4x
2

+.5/
2'
+ 8x - lOy + 13 =10

. .

(1) 16x
2

25y
2

- 32x 4-150y + 241 = 0

7
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7,7
11

4. Wiite an equation of -,an ellipse to fit each or the following conditions

fjetters'are used as in Figure 7-4).
, .

(a) C (0,0) ; major axis, 8 , parallel to x-aX'is) minor axis, 6

.(b) (0,0) ; Y = (0,3) ; F = (0,2)
4

kdj Zi. (3',5) , directrix x = 10 ,. a =

(1) F= (r3,,,4) , F''. -1,4) e =

What change must°, bemade in the definition of latus rectum given for Vle

N parabola to make it apply to the ellipse? Fin& a formUla for the, length

of the latus retum for i ellipse; check that yOur formula applies for

all four cases.in Figure 7-4.
*a+

(b. A focal-cradius of an 1.lipse is a segment drawn from a' fosus to any

point of the ellipS'e. Prove that the guru of the lengths Of_tIlizyocal

'radii fdr any point nn an ellipse is a constant,,and equal to the

length of the major axis.

7. Prove" that an ellipse is fhe locus #of points the sum of whose dista4ces

from two flied points constant greater than the distance between

the two fixed points.

e,. Consiructome points of an

' ellipse.from given vertices :

V,V' and -foci F,F'

follows. Select any point. ),

4 P of the segment V'V
4

. With F as center and PV. V' A" P F

ivradius, strike arcs above

and below V'V . With F' '

as/beater and' PV! ea

radius, descrite arch inter-

secting the ones first drawn,

and locating points R and R' of the ellipse. Then interchange° F-

and F' and repeat,,Tocating,two more points, S and S' . Thus' .

for altrp-o-int stlyr as P '61 the segment fouraooints e.can be4locate

Why do the points so lie on the ellipse with the given foci and

vertices?
A

1

4

re
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;1.44
(b) an ellips fixed points (1,1)

radii e ual to

9. Construct an ellipse as'follows.

Tie tEe ends of.", piece of

string to-two thumbtacks. Stick
.

r ',the tacks'into a

board of and

string thut with

(r) and trace a

piece of cara-r .Draw. the

a pencil point .

_

curve. Why is

the curve an ellipse? Keeping,

the length of thi string the

same, change the distance

betty 6 the tacks and repeat the construction., What do you_observet

'10. Use the locus definition in Exercise 7 in deriving equations of

(a) an ellipse with fixed points (2,3)

radii equal to 6.

am.

/
'11. Some writers like to include the circle as a special

If a circle with its center at the origin is to be thought of as an

and

and

(6,) and sum of ,focal

(3,5) and sum of focal

case of an ellipse.

ellipse, then a = b'. What, then, is e ?

the focus-directrix definition.of a conic?

Is thi,s consistent with

12 Show that the ellipse with focus F=(c,0), eccentricity e ;and

c
x =

e
2

. -

(

,

has another foCus Fra= -c,0) .and another directrix

,13. Discuss and sketch the griph of r -
6

2 - cos 'e

of the vertices, foci, and center; the lengths
, ,

axes and of the latus rectum; eccentricity.

J
, including coordinates

oC the major and minor

directrix

c

e .

° _1;1,1

14. Pjove that,in an ellipse the length of the major axia,is the-mean

propor,tional between the distance between the foci and the distance

between the direbtrices.

1.

The Hyperbola
,

Tie hyperbola is defined as the set or points P such that the

,A,_#!4;

A'17,0m P to a fixed pbint (the focus) is the product of the eccentricity, le ,
.7 ', .. I ,

and the distance from P to_a fixed, line '(the directrix), with ,e 4reater
,

-, than one. In our earlier Study we found 'that if, as with the ellipse,, we'take-'41
1

cEIS focus IF = (c,0)-4,and as.directrix the line x = , and let (a = and .,

/. e

0216



2
-S

2
(a.) )1-

a
2 2'

(Asymptotes;: = 0_ . 2 b2 -)

)

(b) Sx - 11)2 (y.- k)2
2 - I

a2

(Asymptotes:,

t

7-8

-2
(c) - /15

b a-

(AjtIptotes 'x2°
2 2 =

k

b2 a2

- h)? (y k)2 kAsyinptotes :1 (x'- h)2 (y - k)2
a2

b
2

b
2 s

Ta
2

0\

47 .->1For all figures, a
a,

Figure 7-6

(d) (x - h)2 (y - k)2

.1 297 . .
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.7 -8

ge ;r7f----
b = e - 1 ,an equation for the hyperbola can be written

(1)

The l perbola has.the same symmetriei as the ellipse. ,The formulae for .foci,

vertices, and direc:triCes are also the same; these are Sup6arizeksfor the

various simple cases in Figure 7-6.

x y
2 2

t. a 1:1
7 7 1

1'

Unlike the ellipse,.the hyperbola is not a bounded curve. In part (a)

of Figure 7-6, for example,_we see that if we take increasingly laygeavalws

for x ,-the corresponding values for y are increasingly large in absolute

On the ether hand, there are values of x (in this case. x < a)

for which there are no real values of y . If we solte '(1) for y e get

b /
y = _ -:Y x

2
- a2 .

a

For very larie values of the values of y in the firit`quadra
1

b
very near* equal to ix (corresponding comments apply in the other

Thus wedsee'intuitively that for values of x that are sufficiently
,

.

absolute value, the distance between a point on the'curve and the.l4ne with-

b
equation y = -x (or y = --

b
x). can be.made arbitrarily Thus thesea a

illnes are ,asymptotes of tke hyperboli; in'Figure 7-6 they are marked A and

At t You may wish tosrefer to Section 6-3 where there is a detailed dp-

ctssion of the, asymptotes of a Particular hyperbola; it applies here.

To make'a sketch of a hyperbola we. first locate the verticifs,,, and then,'

draw the asymptotes. They are drawn easily since hey are diagonalspf the

rectangle with sides 26 and 2b , located as in Figure 7r6. The se:pinent

, oelength 2a , is Called the transverse (or major) axis op.the hyperbola.

K
t are

0,..=

quadrAqts).4

.large in

(pie line sedgy!

Of part (a)

,relatiOnship'

J

ent.joidAg the points (0,b and (0,4) , of length 2b

of Figure 7-6 is sometimes called the conjugate axis.) -From the.
2. 2)- 5 T i F = 7 =

c = a + b , we see'that the length of the diagonal of the
, )

rectangle is also the distance between the 4pci. We may use this fact to

locate the foci.

'298
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conjugate hyperbolas are concen-

tric hyperbolas with the roles of the,

transverse and conjugEA axes inter-

changed.:The equations

x y
2 2

and

2
x y
-7+7=1

a b
,

represent conjugate hyperbolas) As

shown in Figure 7-7, they have the

same asymptotes: and their foci lie on

dircle with center at the center of

the curves.

A hyperbola is called equilateral (or

and conjugate axes are equal. In this ase

ol

the transverse

sketching is a square, and the asympt ( iC4 4re di ona(s)are per-

pendicular. You may have studied the fami equillte al,hyperbolas t

equation = k . These are hyperbolas w th the coo4d nate axes as
;

asymptotes.

For any point of a hyperbola, the absolute value of the difference of

its distandes froetwo fixed points is a constant. ThIs operty is some-
.

times used to def,tiNa hyperbola; it'has aPplidatione, in range finding,,and

LORAN (Long Range Navigation). Both of these use, intersections of families
,

of hyperbolas: As with the ellipse; a tangent at an4point of a hyperbola

makes equal angles with radii drawn to the foci; 'o tie hyperbola, however,

the nadii'are on opposite sides of.the tangent. 1

Example. Find the equations of the asymptotes of the hyperbola with
, 4

equation 9x
2

- 4y2 + 54x.+ + 41 = 0 . Sketch the curve and its

asymptotes.

299
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Solution. We rewrite the equation, following

Example l'in Sec,tion 7, getting the

equation

(a'
A

+.3)'

3

2 - 1 .

2
,

This i` 'Th form (b) of Figure 7-6,

with trahsv se'axishaving a length

of 4', thd conjugate axis 6 ; the

center is' C = (-3,1)% To obtain

the equatio s'of the asymptotes, we

write

(y 1)
0

procedure as

or. 3x +,2y + 7 = 0 and 3x - 2y + 11 = 0 To make,the sket h, we locate

the center C , 'drip: through C lines parallefto th coordinate,axei, and

mark of on them, the lengths of the semi-axes. ,Next we draw the rectangle,

its diagonals give the asymptotes and we can tketch the c6-ve.°

Ate

Exercises 7-8

Write an equation of a hyperbola, with semi -axes ihd 3 , center at,

theorign,and.trannersewAson,thex-axis.rindtlie_ecceAricity,
the coordinates,of the vertices and loci, and equations the direc-

trices and asymptetes. Sketch the curve.

2. -Repeat Exercise I, but ihts-tite-Iet*theiransverse axis be.:pn the

-'- y -axis.

i 3. Write an equation of a hyperbola ithocenter (:2;3) , semi-axes 4

and 3., and transverse.axis par Ilel to the x-axis.,)Find the

eccentricity, coordinates of ve ices and foci, and equations of\

'dAreciriCes and asymptotes. -Sketch the curve.
,

A .
1 .* 4

f11-

4. Repeat Exercise 3, but this ti e hav the transverse axis parallelto

the i.4 .fr
li'74$ .......

.

, T A
. .7

.
1- ..

'
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5. For each hyperbola whose equation is given,, find the eccentricity and

he length of'the semi -axes; the coordinates of center, foci, and

ices; the equatiohs of the directrices andasymftotes.. Sketch the

° curves.

(a) x2 - y2 =

(b) y2 x2

IC) ,4x2 -,9y2 = 36

(d) 144y2 - 25x2 = 3600

(e) x2 - 4y2 - 4x 4)24y - 16 = 0 4
6.' For each part of Exercise 5, write an equation of the conjugate

0 ,
%hyperbola.

7. Find an equation of the locus of a point such that the absolute value

'f of the difference'bf its distances from the points (5,0) and '(:5,0)

is &.
,

. 4
8. Find an'equatiohof the locus of a point such that the absolute vsaue-

of theidifferehCe of its distances frollithe points (1;1) and (-1,-1

is 2 . Nhat is the eccentricity of4this curve?

9. Prove that a hyperbola is the locus of'a point such that therabsolute,

value of thedifference of its distances from two fixed points is a,

'constant which is less than the- distance between the 'fixed points.
-s

,

10. What is an Appropriate def1nition.of the latus rectum of ahyperbolaZ

. 'Find a formula for the length of the latus rectum of a hyperbola;

check that'your formula applies in all four cases of Figdre 7-6. t-

11. Construct some points of a hyperbola as follows. Select fixed points-
.

1 v .

F,F' and.a length 2a

(2a SOF,1")) . With F as

center and any desired radius r ,

describe. an arc. With To as

center and radius of length ,

r + 2a , describe an arc inter-

secting the first ere at points

P :and P' . Then, use F', as

a center with radius r , and
.

radiug r + 2a7 , obtainingpoints,R aryl R' . Thus for a

partiCular choice of r , four points can be fodated. Why do the points
. . *,`

so located lie on,a hyperbola?

24
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7-9 :"
I

i

*

121 Prove that the "equations x =la sec 0,..y = b tan 8, are a parametric
.. 4

representation of a hyperbola. ' .

13. !See if youfcan,devise a method of constructing a hyperbola whioh uses
, .

r
the equations in Exercise 121 (Hint: See Section 5-4.)

14. Find equations of the equilaterall hyperbolas through the point
I

(3,-7) ,

(a) with the coordinate axes' as asymptotes. ,.

(b) with axes of the hyperbola along the coordinate. axes.

x
2 2

y.
15. Just a5 7 + 7 = 0 was onsidered an equation of a degenerate ellipse,

2

a b

we.may speak of
a b

as tte equation'of a degenerate hyperbola.

What is the locus' in thie case?

7-9. Summary,

A conic section is the nterseCtion of a plane aria a right circAllar cone;

it is a circle, ellipse, pa abola, hyperbola, or, in a degenerate case, a

point, line, or pair.of lin s.
AP

In polar coordinates circle with ceAter st the origin has the equation

r = k Any other conic s ction'ma4r be defined As the locus of points in a

plate s4cn that for each paint the ratio of its distance from a given point

kthe plane to its distance from a gAxen line in the plane is a constant e ,
I A

called thethe eccentricity. Such a conic,'if the center J.,at thIP\pOle and;

directrix Perpendicular tq the polar axis and p drifts to the left of it,

has the equatiqn

-

r
ep

1 - e cos;
representing

a parabola if e = 1 ,-

an ellipse if 0 < e <

a hyperboa 1.f e > 1

quations that re to polar and-rectangular dOrdinates were used to

find c esponding rectangul r equations. These were ,een to be equivalent
I .... c.

to the equations developed in earlier work in.algebra. Since the Wormatreih-
\

-

about the conics in .rectangula iorm is summarized at the beginning of the

sections (7-5 through 7-8) del%]. ng Ykith each type,vit is not repeated again

here. , ' ,
,
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Conic sections have wide usefulness'in theoretical work in mathematics

and science, and applications to a great variety of prOblems in science

and industry; it has been possible to mention"only a few here.

With this chapter we conclUde, for the, ime being, our study of the
I e

'analytic geometry of tyo-space. We shall take up next the analytic geometry

of three-space, Later, if time, permits,.there may be an opportunity to

riturn again to conic sections in order to consider .the general problem of

showing that all eqUations oc second degree in x and y have 16ci. which

are conic sections, and then ;to relate the correspohding algebraic and geometric

properties,. 7

Review Exercises,

1. Sketch the graph' of each of,the following equations. Identify each

conic section,andgive the appropriate information (foci, vertices,

center, eceentiicity, directrices, asymptotes, etc.) .. tk

(a) 3r.- 2 = 0
1

(lp) ;', =, 2 cos e

8
, t .1,

#( c) r .=
/

. ' ,cog e
a

( 2 - 3 cos 'e

(e) 2 - cos e 3

12
(f) r

- 3 cos 0'

'(g) r!lfr = 3r cos 0 + g4

(h). 1=4

(i) r = 3 +er cos 0

(J) x2 - 4x,+ y
2

+ 6y + 13 = 0

(k) 3x2

(1)' y2 + 8x 6y + 25 =t;0'

4'4 n,n

(m)
25x2 36y23by + 100x + 288y - 224 .40'

2 5y2.71.
6x + 203., + = 0

(o) x2-+ + lOy + = a

(P) - 3y2 + 8x - 6y - 0

(q) '144x2 - 576X 4: 150v -

303
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2. Write an equation for each of the following and sketch the grafh.

(0. A parabola with vertex (0,0) and focus ,(-5,0) .

(b) A parabOla with vertex (7,6) and directrix y = -2 .

(c) A circle with radius 5 and tanger4 to both axes.

-(d) A circle with center C = (L, -4) and passing throUgh. (3,.2) .

3.

A circle tangent to the line x - ay - 2 = 0

point ( -2,0) , and with center ent,tile y-axis
#

A circle passing through' the points (0,4) ,

An ellipse with center (2,3) e_vertex (5,

x 4

(0 An ellipse with a focus i.T.3,5) , and directrices y = 6 and the

x-axis.

(i) A hyperbola with fo9i (-1,1) and (5,,1) ,"and a vertex '(0,1) .

(t1) A hyperbola with asymptotes 3x - 4y = 0 , .3x + 4y = 0 , and

galssing through the poitlt (3,5)

(k) A parabola with axisparallel to, the y-axis, passing through the

point (2%11), (0,5) and (-1,8)
'tz

, passing through the °

'(6,6) and (-2,-10).",,-.N:

3) , ana a directrix

.
Find an equation of the locus of a point whose distance from the poirit

(-1,4) is 2 units more than its distance from the line y + 2 = 0 . '

Find an equation of the locus of the center of a 'elide whit is tangent

to the line x =.3 and passes through (1,-1) . Explain from geometric

considerations why this locus must be a parabola.

5. Find the eccentricity of an elite whose major axis is twice the length

of its minor axis.,

. 6. Prove that the equations x = a cos e y = b sin 8 are a parametric

representation often pllipse,

ri

7. Find an equation of the locus of a point which moves so that its distance .

from the point (0,2) is one-half its distance 'from the pdipt (3,1) .

.16N

8. Proves that the product of the distances from any point on a hyperbola

to the asymptotes is a/constant.
.

.

9. (a) If the ratio, of the length of the conjugate axisthe length 6f

the transverse axis of a hyperbola is 2', what is the eccentricity'?

,(b) If the ratio is k , find a formula for e .

N.1\
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41IS 10. (a) Shpw that x y are parametric equations

. -----

-1. ): 4- "1 + t2.

of a circle. (These equations are bomet1mes useful in calculus.)

(b) What is the'graph of the equations in (a) if only the positive .

signs before the radicals are ubed? If only the Tegative Sign's?

(c) Show that these paraAtciC equations do not represent the points
, A

(r,0) and (-r,0)'. Sir3te this'is the case, what would.be a

more Teise way to state (a) in this exercise?

11. Prove that, for the conjugate hyperbolas whose equations are

x y
2 2 2

.

2
x

. and - + 1 the Sum of the squares of the
a b

reciprocals of the eccentricities 4s one.

12.- A curve is defined by the parametric equatiOns x = a + k cos 0 ,

y = b + k sin 6 , where a , b , and k" are arbitrary constants

0) . Find an equation of the curve in standard rectangular form

and,identify it. What is the significance of the, requirement that k

not be iero? p

13. An archway is in the shape of a semi-ellipse. The, distance across the
,

base of the archway is 30 feet, and its maximum height from the base ;.

0

is 20. feet. What shottld be the limit on the height of vehiCles using,;

a centrally placed 20 -foot vide "road under the archway? ( lhe posted

limit is
4

such that a vehicle of that height, at the edge 0i" the road.

but not ,off the road,, will have o arance.)

11 The cable of a suspension bridge

hangs in the form of a parabola

from supporting towers boo feet

apart. The points where the cable

is suspended frpm the,towers are

100 feet above the roadway,land.

the lowest' part orthe cable is

10 feet above the roadway. If .

there are supporting structures

to the cable froM the two points

on the roadway each 200 ,feet

from the base of the towers, how

high must :these support

structures be? %

f 00 ft. t
200 ft.

,GOP ft. - .
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15e 'Prove that the product of the focal radii from a point:on an equilateral

hypeito.la is equal to the square of the distance from the point to the

center..

16. (a) Write an eqtiation of the family of ellipses with the origin as,

center mmjor ax;.s along the x-axis, and eccentricity equal to --3
.

5

(uy- write an- equation for the member of tida-family with the length

of the minortais egual to 12 .

) -

(c) Write an equation for the member of this family which passes #

through the point (44) .

.

17. Prove the fdllowing statements analytically.

(a) A radius - perpendicular to a chord bisects the chord.

(b) The perpendiculartfrom any point of a circle to a diameter iZthe__

mean proportional between the segments of the diameter.

' (c) The locus of a point such that its distance from one fixed point

id a constant Multiple of its distance from a second fixed point
4

is a circle. (What restriction must there be onthe value of the

constant for this,to be a correct statement?) .

ne

Challenge Problems

1. Prove that ina hyperbola an asymptote, a directrix, and a line from the

corresponding focus perpendicular to the asymptote are concurrent.
71.

On/map marked with a rectangular grid using a mile as a unit, three'

listening posts are at A,= (0,0) , B = (2,0) , and C = (OM . 'An

explosion is heard at A 5-,seconds after it is heard at B , and 8

seconds after it is heard at C . Where did the explosion take, iace?

(Use 0.2 mile per second as the speed of sound. Find equatfbns of the--

two loci involved, and find the applopriate intersection either by
ti

,graphing or by using the eqpations of the asymptotes. Do You think that

it is sufficiently accurate'in this case to,astumE that the asymptotes

I
,

meet at the point you want?) . .

3p6.
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, ..

a. A taxpayer changap his residence because of_a change in his place of work.

Ar his moving expenses to be allowed as,a deduction undex the Revenue Act
.:.4

of 1964, it is necessary (among other requirements) that his hew principal
. ,

place of work be "at least 20 miles farther from his former residence
. .. .

than was his former principar place of work."
. .

.
.

.

Suppose a.matO s new ewloyment_is_at_a -place

was'previously :1Oyed. Let P = (x,y) represent the location of.his

Writainanalytic form the condition under which. the pass' would

moving expenbes to a new home. (Suggestion:

30 miles-froffi-Whbre he,

be entitled to deduct

W
1

and `14
2

are points

respectively, let _,W1W2

thd origin.)

represv.nting.the old and new places ofi4oployment

x -axis, and iet the midpoint ofbe. the

,

6 ' .

4. For the parabola r = prove the reflective property,that'is,
1 r cos u

W
1
W
2

be

the tangent to the parabola at the-Point. P = (r,b) makes equal angles
4

with th .7-Polar ildius OP' and the line through P palllel to the polar

k

5. Prove analytically that, in any triangle,: the mapoints Of the sides,

the feet of'the altitude's, and the points halfway between the vertices

and the orthocenter li% on a cirdle.. This is called the nine-Point circle.

1



.. Chapter 8

THE LINE AND THE PLANE IN 3-SPACE
..N ..

.

8-1

8-1. The Extension toillegce.'

64
TO this point in our'study we h4 sought analytic representations ce;17.;-

sets of a plane; in turn we.have sketched the loci, or graphs, of both alge-

braic and vector relationshipsodih the assumption usually tacit, that their-

geometric interpretation was confined to a plane or a 1 e.

Our previous experience in geometry has been largely in a plane; even

When we did consider geometric configurations fn space, we frequently pursued
. ,

our investigations in only one or two planes.
Slot

1

It is; easier to analyze loci inaPlane, but we liyAfTnra world of three'

dimensions. If we are\to apply our geometric knowledge to physical problems,

we'iust be able to extend our concepts to 3-space.

.In this chapter and the next we shall consider the basic extension to

3-siolL of the ideas which we have alreadY'deYeloped; we shall even suggest

how repetition of this prodess leads to mathematicalNstructures with more

dimensions, which are celled,spaces, even though we cannot possibly visualize

them.

. In this chapterwe shall be extendi some of the ideas of Chapter-f 2 and

.2.,to 3- space; you might want to review th se c apters briefly before you con-

tinue. We assume that you have pad some experience with rectangular coordi-
.

nate systems in 3-space, but we shall reconstruct the development. We shall

consider the analytic representAion's of lines and planes,and we shall make

suggestions on sketching to help you visualize their graphs. The extension of

_vectors to spaces of_higher,dimension is surprisingly eaT,this is another

reason for the favor vectors find in contemporary analysis.

One thing you might keep in mind. The focus of a condition depends upon
A0,4,

the space to which it is applied. -We.have already seen that the equation

x = 1 describes both a point on a it& and a line in a plane: Here we shall

see that it also describes a plane in 3-space. In spaces of higher dimension

' it would be subject to still other interpretations. In general, analytic

.
309



8-2 may
, .

__represent a ons describe foci in any space whic as at least as many dimension
i.
as the, analytic representation has independent iables1 TO describe the locu

we Must first know the number of dimensions of the ace in which it occurs.

-2. A Cdordinate System for 3-Space.

In Sections 2-1 and 2-3 we discussed rectangular coordinate systems on a

line.and in aNgane. 'No4 we shall' indicate how a similar coordinate ;ysteM

cap°be introduced into 3-space.

fie'begin by selecting an arbitrary point 0 in spade and three mutually,

j:perpendicular lines through 0 . The point 0, is called the origin of the

coordinate system and the lines are called the x-f y-, and z-axes: tOn path cr

axis we set up a liftear'coordinate system with point 0 as its origin. The

plane determined by the x,, and y-axes is called the xy-plane. The xz- and

yz-planes are defined similarly. 'The three are called the coordinate planes.

Let F be any point in spade. Llt a be the coordinate of the projection of

P on the x-axis. a is called the-x-coordinate of P . Z-co-

ordinates, say .b and c respectively, ared5ined-simiarly. point

P we assign the ordered triple (a,b,c) of coordinates.' just as in the,

plane, the correspondenlbetween points and ordered sets of coordinates is

one-to-one. The coordinate planes divide space into eigbOiegions called, not,

unnaturally, octants. :Usually only one of them is numbered, and it is called

the arst and is the one in which all the coordinates of every point are

Figure 8 -1
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The point (a,b,0) is called the pitjedtion of (a,b,c) on the

*-plane. The point (a,0,0) is called the projedtion of (a,b,c) on.the

, and so forth.

The configuration of axes shoWn in Figure 8-1 is called a right-handed

system because a 90° rotation of the positive side of the x-axis into the

'positive side of the y-axis will advance_a right-handet.screw along the

positive side of the z-axis, We shall use this system in drawings in this
.

text. If the locations of the x- and y-axes are interchanged, as you will

find that they are in,some texts, the system is left-handed

Distance Between Two Points: We may use the Pythagorean Theorem to

develop a formula for the distance between two points in space. If the points

are Po = (x0,y0,z0) and P1 = , the distanck 'between them is '

-a(Po2P1) = 14x1 xo)

2

('3f1 7 YO)

2

+9(11
2

Points of Division: An extension to 3-space of the method used in

Section 2-3 to obtain the coordinates of, the point which divides a line

segment in the ratio gives us; for the,segmentPoyl

dxo + cxi
x=

c + d

1/L0 cY1
(2) Y = c 4 a

dz
0

+ oz.=

In the speciEd case when c = d Ire'have 'the midpoint, with

X =
2

+ X1

YO
yl

z =
2

0
Zi

311
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8-2

Exercises 8-2I. . .-.,

1. Draw a sketch showing each of the following points in space:

4 (e) (-1,-1;2)

(f) 6(4,-2,-1)

- (g) (-3,1,-1) 4

(1r) (1,-f,-2)-

In Exercises 2, and 3, P = (1,2,3) , Q = (.2,73,1)

2. Find ,d(0,P) , d(0,Q) , d(P,R) , and d(Q,R) .

3: Find the midpoints of OP and PR .

-

4. (a) Draw AB , about 3 inches A.

rong oblique to the edge of
. . -

your paper. Consider AB as

drawn from the rear loireN left

to, the front upper right corner

of a rectangultsolid. Next

draw oblique segments from

,to P and from B to Q

equal in length and parallel

butwith op ite sense of

direction. If, as is Aually
/[

the case, t solid is to be oriented with aspect to rectangular
. .

coordinate-
.

s, make 115 and BQ parallel ,to the x -axis. Then
-.....

. .

draw a rectangle with horizontal and vertical sides and with P and

B as opposite/
vertices; this is the front face. The back face is

0

another rectangle with A and 4 as opposite vertices. Two more

segments complete,the figure.

(b) Now start again with the same kind of diagonal segment AB ,
01)

consider it drawn from the front lower left' to the rear upper-right,

and draw the new solid. This time reverse the directions of AP

and BQ Now A and \Q are in the front face and B and P ..(afe

in the back 'face: )

5. The origin and the point .1' . (3,5,4) are the opposite corners of a

r(ctangular box that has three of its edges along the axes. Drag the box

and give the coordinates of 'its othen...vertices.

6. Repeat Exercise 5, using P'..(-5j4,-3)

312
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-7. Given:. P1 = (2,-3,4) and P2 = (-1,3,-2)

(a) .Make a drawing which shows Pi ,P2 , and P
1
P
2
.'

(b) Write the coordinates of the points which are the projections of.'

P
1

and P
2

on each of the axes and on each of the coordinate.

planes.

(c) Find the length of P
1
P
2 and the length of its projections on the

axes and on the coordinate planes. :

8. Repeat Exercise 7,using P1 (- 3,5,7) pnd P2 = (3,0,-3)

9. If. pi = (3,-4,6) and P2 = (-43,-2)___ find the coordinates of point' P

.1-1-

on P1 P2., if

(a) P is the midpoint of .P1P2

(b) d(P1,P) = 2d (P,P2 )

(c) ,d(Pi,P) = id (P,P2)

(a)* d( P1, p) = (P,Ipt

(e) d(P P)= 2d(P
l'

P.)
5 2

(f) d(P 1,P) = 5d (P P )
1' 2

41
4

'

J

W.:Intriangle ABC , A = (2,4,1) , B = (1,2,-2) and C = (5,0,-2) F14.-

the lengths of the sides of this triangle-and decide that kind of

triangle it is. '

I

. 7:
enge Problem

We introduced a coordi to system in 3-space by selecting three mutually

perpendicular lines through an bitrary Point. Show that this is possible.

8-3. Parametric Representation of the Line in 3-Space

Our'discussion in Section 5-6 of the paratietric,repretentation of a line

in,a plane generalizes quit.e4rasily to 3-Space. Let P
0
(x

0'
y
0'

z
0

) and

:p1(x1,y1,z1) be two points in space and let L be the line through. them.

313
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Assume for the time being. that L is not parallel tz01.. lying in any coordi-

nate,plane. Then Po and P1 cannot bOth lie in the xy-plane and we let Pi:

be one which does not. Hence P0,P1 (yi,y1,0). are not collinear and .

determine a plane M cOntaining L . M intersects the xy-plane in a line

LI called the projection of L on the'xy-plane. Since the line containing
4

Pi and (yi,y1,0) isrperpendicular to the xyl-plane, plane .M is perpendicular

4 w

to the NY-plane. Hence the line from P
Q

-perpendicular to the iy-plane (and

thus intersecting it in the point (x
0,
y
0'

0)) lies in plane hi and.is a point

L , the line of intersection.

L"

4

/
/ I

/. 1 j
.

Figure 8-2 d.,

. .

if

From our previous discussion, we kno

\
that ,L' has the ptrametric

equations

x = x
0

+ t(x
1,

. x
0

)

y0 Yo)

. .

We woul&ave a parametric representation for L very similar to thg one we

obtained for a line in a plane if we could show that if P = (x,y,z), is on L
N .

. . .
.

z = zo + t(z1 - z0)
I



Clearly

zo S(Zi t:))

8 -3

for suitable s . The quest on is, is s equal-to t 3 -That-it.fa'cin he--

proved as follows. Let L4' be the. projection of ,L on the-yz-pland. Then

in this plane L" fias>the p etrid.repredentation
a

0 Y1 Y0)

(2)

= y + s(

"Z0 +'S(Za. Z0) e

From (1) and (2) it follows hat for'each point P = (x,y,z) of L ,

and hence 'L has the parametric i,hpresentation

x = Xr;+ t(X, - x0).

(3) yo t(Ya. yo)

.z = zr, + t(2 - zo) .
,.

`-' . 4-

We leave it to the student -as'an exercise to prove that (3) represents
, .

L_ even if L is in or parallel to a coordinate plans..,

To save writing, let 2 = x1,_ -
0

m = yi - yo , and n = z1 - z0 .

We call (2,m,n) an.6dered triple of direction numbers for L . If c i,d

the equations

= X0 + Cit

Y = y
0

+ cmt

z = zo +-cnt
is -

. .

-also represent L . Thus,it-is natural to extend the definition of
. equivalence. f-ordered pairs of direction numbers for a line in a plane to

ordered triples of direction numbers for a line in space. Two such ordered

triples are said to be equiyalent if corresponding numbers are proportional.

Let L and Isd be the lines with parametric equations

0 .

Li*: y = mt

x .E"'

z =,nt

x = x + At
0

:
Y = y 0 + mt

Z= z 4 nt

4'

Ate
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8-3

and assume L does not go thrOugh thk origin. Then, as we sh `prove, L

and L' are

I ri

C

parallel. Let P1 = (x0 + , y0+ z0 + n) , Q,= . Then and

P
0
(x
0'
y
0'

z
0

). are on L ; 0 and Q are on L' . ,The midpoint of OP1 is

M 0
+ z0y

0
±4i6 z n

2 2 2 ,

M is also the midpoint of P0Q . Thus 0P0P1Q is a plane quadrilateral

whose diagonals bisect each other and hence is a parallelogram. It follows

that L and L' are parallel. The following theorem is an almost immediate

-consequence of-our-argument. 4.

THEOREM 8-1. Two d1stinct lines L and L' ate parallel if and only

any tilUle of direction numbers for L is equivalent to any one

for LI .

As in th; plane) a. set of direction numbers for a line can be used to

establish a direction on,the line. Let (2,m,n) be a triple of direction

nvArs'for the.line L . If Po . (x0,y0,z0) is a point on L , L has the
...

representation

x = x
0

+ it .

.y =1*y Mt
0

.14

)

Z = Z
0

nt

316



The positive,r

of Po and all ants of L given by positivevalues

another point of , the positive ray with endpoint

directiOn as the one with endpoint P
o

in the sense t

is one of them. If c 0 , the triple (c2,cmicn) o
n

or L establifhes the same positive direction on

(i,m,n)

(on L ) with endpoint P
0

ip the se
A

,/

If (40m7 n) is a triple of direction Numbers- fo

8-3

of points consisting

of t . If P
1

is

1
points in the same

at their intersection

direction numbers

L as does the triple

(',?,p;,v ) -

, the

4
n2 /2 2

m2 + n2
122

somet mes calledpis 'off particula'r importance. ,Such
.2 '

triple. Note that T
2 2

v =

through the origin. The point P = (?,p.,v) lies o

Figures 8-4a and 8-4b show the situation when 7 >

and the situation when ?\ < 0 , µ > 0 , v > 0 re

= cos where 0 is. the angle detedlned by

a triple is

1 , Let:us ass

with endpoint 0 and the positive half of the y-

triple

n

+ n
2

a normalized

first that L goes

L and d(0,P)'. 1 .

0 , µ> 0 , v >0

pectively. In both cases,

the positive ray on L

s. a and
'y

are defined

I

simi1arly, with the positive halves of tht x- and z,axes, respectiyely,

\replacing the positive half of the y-axis.

z

P = (Tvp,v)

(T,0,0)

0
y

4

Figure 8-4a

317
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If L is the x -axis, then any triple of direct numbers for it has

the form (t,0,0) . If £ > 0 , the positive ray. wit

positive half of the x-axis and cos a = 1 . If 2

endpoint 0 is the

0 , the positive ray

on L with endpoint 0 is the negative half df the x-axis and cosqx = -1'.

Similarly, if L is the y-axis, cos 0 =.± 1 depending on the algebraic-sign,

of m , and

sign of n

signs for

= cos 0

if L

. The

, and '

is the z-axis, cos 7 = t 1 depending on

student should consider the other possible

, and v , to make sure that in every case

V = cos, y- The angles a , and 7

the algebraic,,

combinations of

'A 4= cos a, ,

are called

direction angles of the line L with its direction determined by the ordered

triple '(tim,n) of direction numbers, Their cosines arecalled the

direction cosines. If we determine the direction of L'4by, means of the

triple (ct,cm,cn) of direction nUmbers, with c < 0 , and if a' , (3'

and 7' are-the new direction angles, then a and of! are supplementary

angles, as are 0 and 0' , and 'y and y .

Finellly, let L. be a line which does not pass through

`let (t,m,n) be an ordered triple of direction numbers for

be the line through the origin parallel to L , and let the
o

be determined by the triple (t,m,n) of direction numbers.

the'origin,,and

L . Let L'

direction on Lt

Then we define

th% direction angles and cosines of L to be the corresponding ones for L' .

Notice that throughout this discussion we.dd not define direction

. , angles or directio 4 cosines for a"lite, but-only for a line which has been

assigned a direction
-

by means of a triple of direction numbers.

In Section 2-3 we derived a parametric representation of points on a-line

from their symmetric representation. 'Something similar can be done with a

parametric representation of a line in space. Let L 'be the line with '._

parametric equations

5.

x = xo + .

Y 5;0 mt

z zo + nt .

Suppose that, tom A 0 . Then we Can eliminate t from any two of these

equations by solving eachsme for t and setting the results equal to each

other. Using the first two, we get

t =

x - xo y T yo

m

318.
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Using 'the first and third, we get

t=
x -

Combining the last two resultslw get T
f .

x. - X0 . y - yo z

, (5) = -m-

These are called symmetric equations for L

n

There remains the question 9f that we have achieved by eliminating t .

Let t0 be any real number and let

a = xo + it()

b = yo + mto

c = ,z0 + nto .

Then

a - xo b - yol c - zo
. .'7 m .n

1

Thus if the point (a,b,c) is 'on the graph of
-

(4) it is also on the graph

Of (5).' If we let.

a - xo b - yo c - zo

t =46'
0 2 m n

e
."'i

we find at once that the point (a,b,c) also lies on the graph of (4). Thus
.

the graphs of (4) and (5) are identical. ., 4

, . Equations (g)tare equivalent to any pair of the three, equations

.
x : xo y - yo

.8 , m

X - X
0

z- z0
.

y yo z - zo

\\

Each of these is an equation of a, plane. We shall discuss the.signifi-

cance of this, particular set of three planes containing a line in the next

section.

319
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o.

4v

If at least one of the direction numbers for L vanishes we cannot,

write such symMetric equation6 for L . We can, however, eliminate t

and obtain equations of two planes containing L We leave this to the

exercises.

You may have read'of spaces of four or mere dimensions. We are now in ,

a position to 'give you some idea of what was meant. You,have learned how to-,

set up a one-to-one correspondence between the points in a plane and the

ordered' pairs Of real numbers, and between thXpoints in 3=space and the

ordpred tilPies of real numbers. Given a coordinate systeml.it is natural

to speak)of "the point (2,3) " or "the point (3,2,-1) This suggests

that we should define a point in 4- space, for example, to be an ordered

,quadruple of real numbers. Similarly, we define a line in 4-space to be the%

set of points in.4-space given by a set of parametric equations of the fOrm

x = X
o

+

y = y
0

+ mt

z = z
0

+
i
nt

.

w=
w0

oo

It can then be pthved that there is one an only one,n.ine" through two

distinct "points." We can define the distance between P (x y z w )
0 0' 0' 0' 0

and P1(vyl,z1,w1) too be
4

,d(P0,PP I(xl - x0)2 (y1 f. y0)2 + 6s1 - z0)2 + (w1 - w0)2 .

We can define the coordinate axes to be the four "lines" through
(6,0,0,0,)

each of Which passes through one of the "points" (1,0,0,0) , (0,1,0,0) ,

)(0;0,1,0) and (0,0,6,1) . Many othet geometric concepts you have studied
can be generalized in this way, but that is beyond the scope of this course.

3
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Example. If .A = (3,-1,4) , B = (-2,2,1) and C = (2,3,-2) ,

parametric and symmetric representations forAB , ap4

equations for the line C parallel to AB

(a)' write

a
(b)' write

Solution.

(a)

(b)

For parametric fdlom (Equations

:directionnuMber4 We choose

numbers (5,-3,3)

sentation

From the first two

8-3

(4)), we need a point on the line and

A = (3,-1,4) , and obtain directioh

Hence the line, AB, has as a parametric repre-
,.

x = 3 + 5t

= -1 - 3t

z 4 + 3t ;

of these we get

t =
x - 3 y + 1

5 _3,

From the last two we get

Combining the last

LAB

4

y 44-1 z - 4

-3 3

two results, we have as symmetric equations for

x - 3 y 1 z - 4

5 -3 3

44

Since we have direction numbers for AB , we can
a

a parametric represtation of a pargllel line through

x = 2 + 5t

write 1.-Mmediately

C

Y*-= 3 -- 3t

z = -2 + 3t

321
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Exercises 8.3

In Exercises 1 to 3, P (1,2,3) ;,Q = (-3,-2,1) , and R (2,-3,1)-

1. Write parametric equations'for the lines determined by the following.3

conditions:

Tin04h P , parallel to the x -axis

Through Q , parallel to the z-axis

Through,P and Q

Through Q and R

ThrOugh 0 parallel to R

Through 0 parallel to i5

Through 0 and P -
.

Through P , parallel to the xy-plane, and intersecting the z -axis
Through P parallel to .0. . /7

'Through R Aparallel to PQ'

2. Write an equation in symmetric form for each of the lines referred to in

Exercis1 1 (if it is poshible to do so):

3. Write alset of normalized direction numbers for each of the lines

descril4d Th Exercise 1.

4. Find two parametric representations of the lime through each of the

following pairs of points whi establish opposite directions on the

.line. Find the coordinates,of other pointrop each line. ,

(a). (1:1,-2) and (0,-1,-1) .(c) (4,2,1) and (1,-2,4)

(b) (-1,-1,-1) Sand (-2,-1,1) (d) (-3,44.) and (1,2-i)

5. Find the two triples of direction cosines for each line in Exercise 1.

Using a table of the valls of the trigonometric functions, find.the,

approximate value of each of the direction angles.

6. What are direction cosines for the axed?
Af

')40
7. Find direction cosines of a line that makes equal angles with the axes.

8. In each of the following parts determine whether the third point islon
. A- the line. containing the first two.

(a) (1,1,-2) , (0,-1,-1) , (2,3,.2)

(b) (1,0;1) , (-1,-1,-2) , (-7,-4,-11)

322
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9 Determine which, if any, of the lines determined by the following pairs

of points are parallel.

(1,1,-?) 'and =(-1,2,3) (a) (-3,5,12) and (1,3,3)

(b) (3,-1,2) and (-1,1,11) (e) (2,-3,4) and (-2,-5,-6)

(c) (1,-1,3) and (5,,1,11) (f) (-1,0:1) and (1,-1,-4)

10. Write symmetric equations for the lines

= 2 + 3t

L1: y = 1 - 2t

z = -1 - t

3

lx = 3 + 2f

y = -5 - 3t

z = 4t

x =.-1 + t

L
2

: y = 2 + 2t
.

z = 4 - t

x = 2 - t

L4: y = -1 + 3t

z = -2

11. Prove that if L haethe parametric representation x = x
0

+ it ,

1

y = Y.0 + tat z = zo + nt , and if P1 and P2 ei-e the points en r,

given by thd values t.= t
1

and t = t
2

then

d(P P
2
) = 42 + m2 + n2, t2 - t

1
I .

Iiiterpilt this result in words, including -the special case when the

direction numbers are normalized.

12. Prove that Equatibns (3) represent 4

a coordinate plane.

even if L is in or parallel td

Challenge Problems

Find equations of two planes which intersect in the line

"Ix = 2
\,

y= -1 + t

z = + 3f .

Exp ain carefully how you kp th the planes contain the line.

?.°Find equations of two Piiinea.which intersect in the line

x = 2 _

y -1 + t

z = .

7
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3. Find parametric equations for the "line" L through the "points"

1.P6 =.4g0,y0,z0,w6) and PI = (aci,y1,zi,w1) . Prove that if

P2 = (x2,y2,z2,y2) is any other "point" on L then the "line"

through Pb and Prontains,iTi Thus there is only one "line"

through two given "point*

4. Let P = (x.0,y0,z0,w6) . Find the coordinates of the projections of

,

-;'P
0 on the coordinate axes, on the coordinate planes, and on the

coordinate hyperplanes. (Before you can do the last part you will have

.-to decide what it means.) t
5. A cube in 3 -space has an'analog'in 4-space which is called a tesseract.

Makd a three-dimensional "picture" of a tesseract. (It may help you to

think hbout the sketch below, in which a cube is drawn in a plane.

-1The six faces of'tbe cube, which are squares, are represented by two

squares and four trapezoids'.) In 3-space there is a relationship

connecting the numbers of vertices, edges, and faces of a polyhedron.

Try 'to discover t*:% relationship by considering some simple cases.-

Try'to find a corresponding theorem,in 4-space.

8-4. The Plane in..3-Space.

In a plane, the set of points equidistant from two ,distinct points is a

line; the equation of a line in. 2-space is of first degree. In 3-space, the

set of points equidistant from two distinct points is a plane. We meyiew
.

briefly the derivation of the equation of a plane; you may recall i ,from

Intermediate Mathetatics.

The point P =()T41:%) is equidistant from two distinct points,
NIl= oc,y1,2) and, p2 =.4012,y2,z2) , if "*

#

7-

d(P1,P) = 4-(P2,P) ,

S



or

r 8-4/

- x)2 (yi a y)2 (zi - z)2 4x2 - x)2 ± (5,2 - y)2 (z2 0 z)2 .

Square both members of the last equation and collect terms,' obtaining

(1) 2(x
2 1
-x.)i.4-2Y2-51)y+2(z2- zi.)z

2 2 2 2 2

Since 'd(P 11P) 'and a(p 2'p) are positive numbers, this argument can bk,

'hersed, and any point E = (x,y,z) 'whose 'coordinates satisfy Equation (1)

is equidistant from P1 and P2 .

Equation (1) is a first-degree equation since the coefficients of x y ,

and z are not all (they could all be zero only if Pf and P2 were

the same point, but they are distinct).
0

Thud we have shown that the. kuation of a plane in three-space is a

linear equation of the form

(2) ax + + cz + d = 0 ,
. J.

where

a.= ,2( - xi) , b = 2(y2 - 7 2(2,- z1) 0

and

0

d = - ((x2.
2

-
2
). + (y2

2
-

2
) +

ei2))

-ft.

The proof of the converse--that every e on of the form (2) represents

a plane-- is` left as an exercise.
,

We note that the 6oefficients of x , y , .and in Equati (1) are

direction numbers of P
1
P2

1
4alise perpendicular to the plane;- nce they are

direction numbers of any normal to 'the plafie. We shall ext'nd this idea in '

Section 8-6. We also note.:that since P
1

P the coefficients a ) b , and

c are not all zero. The restriction on a7 ,.b , c is necessary. _bet%
,

-a = b = e, = 0 . If d is not zero; no triple (x,y,z) satisfies the equation,
4v

While if d is zero,, every triple isaisfies the equation. Neither one of

these sets is a: plane.

I,et us ea-wider certain first-degree equations in which some coefficients

are zero. If the .equation .is of the form ax = 0 (or x = 0) , it represents

a plane.in Which the x-coordinate of every' point is zero; clearly this is the
0

yz-plane. In the same way, equations of the other coordinate-planes are of the

fon( by = 0 ( or y = 0) and _cz .=*,0 (or z = 0) ..

.

.it
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'0 'In'general, we may find it helpful in visualizing a plane whose equation

is given, and in drawing its graph,'tp find the traces. These are the inter-

sections of the plane with the coordinate,planes.

Examplea. Sietch,the graph of 4x + lOy + 5z - 20 = 0 .

Solution. To find the trace in the

xy -plane we let z = 0 in the equation,

of the plane, obtaining

4x + lOy =20 = 0*.

This is the equation of a straight line

in the xy-plane.

(4,

In similar fashion, we find equations of the traces in the yz- and xz-

planes (10y + 5z - 20,= 0 and 4x + 5y - 20 = 0 respectively.) The graphs

of these lines in the coordinate planes (or the parts of the graphs in one

octant) suggest the graph of 4x + lOy + 5z - 20 = 0 .

E)lample 2. alch.the,graph of 2x + 3y - 4z - 2 = 0 .

Solution. As in Example' 2, we :

ftnd equations of the traces in ths_xy-,

yz-, xz-planes* (2x + 3y - 12 = 0 ,

3y - 4z - 12 = 01*and 2x - 4z-- 12 =0

respectively) and then make the sketch.

a

ti
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Example 3.; . Sketch the graph of Y -

Solution..= We procede as before,

drawing the-graphs of, y = 2 , the

.equation of the traces in the xy.: and

yz-planes. There isno trace in the

xz-plane; to make our representation

compatible with our idea of a plane, we

complete a parallelogram parallel to

the xz-plane.

2 = 0

8-4

Since, if two different planes intersect, their intersection is a line,

we can represent a line by the equations or any two different planes containing'

that line. With this in mind, let us lOok again at What we found in Section

8-3 as the smmetric equations for a line L

.0
x - xo y - yo - zo

m , n

41These eq ations are equivalent to any pair of the three equations

x - xo _,y -)y0

/ m

k Jx z- z
0 0=

/, n

YO z z0

m n:

We know from the argument in Section 8-3 that each of the three planes

contains L . Furthermore, each one lacks one of the variables. This Means

that,each of the planes is perpendicular to one of the coordinate planes. This

follows because, in the first of these three planes, for example, if

(xi,y1,21) is a pqint in the plane, so also is (xi,yi,k) Where k has any

real value. Thus for any point of the plane, a line perpendicular to the xy-

plane through that point is 'contained in the plane, These symmetric equations

represent three planes, each c 'bntaining the line and each Derpendicular to a

coordinate plane. These planes are called the piOjecting planes of L . They

327
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are special cases of the,projeciing cylipAers of,a curve which will be con-'

gplered in Chapter 9.%.-

Example 4. Sketch the line with

equations

x - 4 y -.3 z - 4
2 , -2 -1

by using projecting planes.

Solutidn. We write the equations

of two of the projecting planes,

x - 4 ,y - 3
2 -2

(4,3,0)

and

. (0,7,6)

x - 4 z - 4

2 -1

These eqhatiOns may be rewritten as .

Figure 8-5 .x + y = 7 and x
el
+ 2z = 12 . We draw

,

parts of the linen with these equations in the xy- and xz- planes, and complete

the sketch as shown in Figure 8-5.

E

Now we turn, to the problem of finding the distance_ between aysint

P
0 .

(x
0' 0'

z
0

) and a,plane M with equation=
e,

ax + by + cz d =0

There is a unique'line N , containing Po , and normal to plane M. If. N

and M intersect at P1 the distance, between Po and M ,,which we

is a(po,p1) We write parametric equations for N using directi

they are
A

x = x
0

lt

Y = YO "Ellt

za t
0

vt .

Let t
1

represent the'particular value

t- which gives the distance between PO

and Pi ,'the point in Which N inter.- 'Figure,8.!6

sects M . Since P1 is in M , its coordinates satisfy the'equatiOn for M ;

seek,

cosines;

0

4



hence

.or

1

a(x0 ti) + b(y0 +),t t1) + .C( zo + + d = 0 ,

+ cv)ti = -(ax0 + by0 + cx0 d)

If we ,divide both members of this equation by
/ 2
Ya +-b2 + c2

we get

a b c
ax0 +by0 +ez0 +d

7\ +
_ t

1 =

jag b2 c2 42 b2,+ c2 b2 c2 2 2
c

7.$<-

Since a , b , c are direction numbers for N ,
a - 1

+ b2 + c2

b c
- p, , and - v \,1e substitute 7\ , p, , v , and

42 b2 c2

obtain

+b2 c2

ax + by + bz + d
(x2. 1.1,2 v2). 0 0 O.

2 4. c2

,But, since , µ , and v are direction cosines, 7\2 + p,
2
-+ v2 = 1 ; so

and (3) d(PO,Pi)

ax
0

+ by
0

+ ez
0

+ d

c2

lax
0

+ by
0

+ cz
0

+ di

ta2 +b2 c2

Example 5. Find the'$,4ti.stances, between P = (1,-2,3) and planes

= ((x,y,z) : 3pc - 2y + z - 5 0) and M,.," ((x, y, z) x + y = 0) .

to

j

$ and:

Solution. Using Equation (3) , we tindSthat

d(P
2'
P )
1

4= 13(1) 2( ,2) + 1(3) ... 51 5

''',21-N-/9 -+ 4 + 1 -.-1.7-'-,
-,Irr-..--$°°-7,;:$ "., .

d(P P ) J1(i) 1 `.

1' 2

.7 .

1
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n
;Exercises 0-4

1. Write and simplify the equation of the locus of points equidistant from

'A = (-2,3,5) and -B = (2,1,-3) . Check Your work by using a different

method to find the equation of the plane yhtch is the locus.

e
2. Follow the instructions in the first exercise,but use A = (3,1,-4) and

. ,

B = (2,-3,1) .

3. Find the intercepts and traces of the planes whose equations are given,

and sketch the planes.

(a) 6x t 4Y°4- 3z - 12 = 0 J (f) 5y - 8z + 20 = 0

(b) 2x + 5y + 10 = 0 (g) 3x - 6y + 2z = d

(c) 4x - 2y - 5z - 10 = 0 (h) 3y - 5z = 0

(d) 3x - 2y + z + 6 = 0 A (i) x - 7 = 0'

(e) 3x - 4y - 12 = 0 (j) 2z + 9 = 0

4. Write an equation of the family og planes:

(a) ,containing the origin

(b) parallel to the xy-plane

(c) parallel to the yz-plane

(d) parallel to the'z-axis

(e) parallel to the x-axis A

(f) 'perpendicular to the xz-plane

5.6 Draw the line determined by the points A = (5,1,3) and B = (1,4,5) by

(a) using the method` described in Exercises 8-2,.no. 4; and

(b) drawing two of the projecting planes.

6. Repeat Exercise'5, using A = (2,2,3) and Bi= (0,5,5) .

7. What is a set of direction numbers for a line perpendicular O the plane

M = ((x,y,z) : 3x - 2y + 5z, 7 = 0) ? Write the direction .6os1nes for

such a line.
4

8. Repeat Exercise 7 for the plane M = ((x,y,z) : 4x - y + 2 = 0) .

9. Find the distance from the 'point P = (-1,2,2) to each Of the planes

6

with equations given in Exerdise 3.4

10. Repeat Exercide 9 but use the point P = (1,4,-1)

.'"

11. Find an equation of the plane thrOugh'the points

(a) (1,2,3) , (-1,-61,4) (2,0,1)

(b) (2,1,1) , (-1,71;-1)

/330



12. Find an equation,Wa plane through P and parallel tot if

.(a)

(b)

P = {1,2,-3)

P = (-1,2,2)

; M = ((x,y,z)

; M = ((x,Y,z)

: 3x - +.z - 7

: x - 2z + =.Ch)

=,0)

13. Show that if the x' , y- , and z-intercepts of a plane
. .

c respectively, an equation of the plane far

x z z .,

-6- _ 1.

14. Write an equation of the plane with x--',' y- , and z-intercepts respectively I.
.

(a) 1, 3, 4; ( o

(b) -2 , , -3

S

8-5

are a , b ;and

3/*

15. Write an equation of a plane containing the point P and the intersection

(a) P= (1,0,2) , M= ((x,Y,z) : x- 2y + z - 31/4.=f0.)

N ((x,y,z) : 2x + y' + z + 1 '= 0) .

(b) P = (3-1)) M = ((x,y,z) x + 3y - 4 = 0) ,

N= ((x,y,z) : y - 2z' + 3 0) .

of planes M and N when

K

16. Show that the four points A = (1,2,1) B = (2,-1,-4) ,. C = (0,1,2) ,

,D= (2,3,0) are cdplepar.

17.- Find an equation of the plane 'containing the pofnts:

(a) (1,-1,1) , (2,0,0) ,"(-1,-1,2)

(b) (1,3,5) , (2,1,2) , (0,-1,-1)

18. Prove that any equation of the form. ax + by + cz + d = 0 'represents

a plane., (This is the converse of the proof at the beginning ofrthis

section.Y

8-5. Vectors in Space; Components in 3-Space.

For vectors the extension to 3-space is notonly natural, but also

particularly easy. In your study of Chapter 3 you may have realized that,the

distinction between parallel and-collinear vectors is not as clear as the .

distinction between parallel and collinear directed segment's. (Actually, there

is'no distinction. Because a vector is a set of equivalent directed segments,
,

two vectors which have representatives on parallel lines also have representa-

tives on the same line. ,In fact, a vector on a line has representatives any-

where on any line, parallel to the given line.. If a is a vector, every point

in space is the .initial point (or, for that matter, any!other point oA the
,v` ?,

331
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line) of a representative of 'a . This is the basis for the Origin Principle

and the Origin-Vector Principle.,

same, reason np two vectors may be noncoplanar. If the representa-v
tivds of tWio Vectors lie on skeI (noncoplanar) lines, they not only have other

representatives in a single plane, but also representatives in any other '

parallel plane. Furthermore, in such a plane they may be represented, of

course, by origin-vectors.

The definitions and properties of operations which-involve no more than

two vectors, such as addition, scalar multiplication, the distributive laws,

and the inner product, apply in space; end may be interpreted geometrically,

in space. "Theorems describing relations between two vectors also apply and

may be interpreted in space. If at this point you will reread thetefinitions,

principles, and theorems developed in Se ion.3-2 through Section 3-5 (pages

,91-11,2), you will see that every statemen and proof applies to vectors in

space. The figures illustrate the situation in a plane, and in accordance

with the Qrigin- Vector Principle our proofs are in terms of origin-vectors

which are coplanar. As our discussion here indicates, our definition of

vectors is such that a geometric relationship in space mDften be described

by vectors in a plane. In general, the vector, description of a .problem in

space frequentlytmay be reduced to a vector`ecto illustration in a plane. The

illustration in the plane may serve as a simpler guide to the algebraic rela-,

tions between the vectors. The results obtained may then be applied to the ,
o

original problem in space. Of course, we must bear in mind that not- all sets

of vectors are coplanar. '

As you reviewed the material in Chapter 3, you may have wondered whether

the discussion above justifies the statement that Theorem 3-2,,the associative,

a property for vectoraddition, does apply in space. After all, the theorem

"states that P + (ZI"A (P + t R , end the three igin-vectors need
.eo

de-
not be coplanar. Strictly spe king, the assertion is valid, f or vector"

addition is a binary operation; ;that is, we never ad more than two vectors

at a time. Therefore, as we per brm each step of the',proof, we are only adding

vectors in a single plane, though the plane we work in may change from step to

° step in the proof as a whole. Still, the theorem is interesting and illustra-

tive enough to consider as an example.
me

°
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Example 1. Prove the associative property for vector addition:

P + (Q + R) (P + Q) + R .

Proof. In the figure below we illustrate three nodcoplanar origin
.111. - '

8-5

vectors,,P , Q , and R . The segment AQ' is drawn parallel and congruent to

PO and the segment RB is drawn parallel and congruent to OQ . Each of the

quadrilaterals POQA and ORBQ are parallelograms, since in each two opposite
.

sides are parallel and congruent. BT is drawn parallel and congruent to AQ ,

and thus also to PO .

P'

AT is drawn. Since TB and AQ are parallel and congruent, quadrilateral

AQBT is a parallelogrark. Therefore, AT is parallel to a. , and also to

OR . (If CR is drawn part1161 and congruent to PO , and PC and CT are

also drawn, the entire figure is a parallelopiped, 11 prism whose base is a

parallelogram region. However, we have.notquite proved this here.) Since

PO 'and TB are parallel and.congruent2quadrilateral POBT is a parallelo-

gram. Since AT and OR are parallel and congruent, quadrilateral ORTA- is

also a parallelogram.

. We have now identified enough parallelograms to enable us toyerformthe-:

vector additions required the Statement of the associative property. Aill"

The left member

":

.111% *Aft

P + ,(Q + R) 2=-P + B = T ,

since ORBQ and POBT arallelograms, and the right member
.-

since POW and ORTA are parallelograms, thus

(-4+ (T, +R.

333
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Once a rectangular coordinate systesR has been introduced in 3-space, we -

have. a one-to-one correspondence between the ordered triples of real numberi-

and the terminal points of origin-vectors. Thus, if the terminal point of the

origin=vector A has, coordinates (a.i, a
2,a 3

) , we may' denote A in component'

form by fava2,a3) , where al , E(1.2 , and a
3

are the x- , and

z- components respectively.

t

Figure 877 .. v: 4-

It followsefrom the definition that two ve tois.
.
-a.' and 1;.. ..

and only if the component forms of their origi vectors are identical; that *il
.

,

7. =.,..13-...,if and only if [av a4a ) = [bi,b2,h3, arid Lai,S.2,a31.= 401,102,,b) ;,d 3

. ,, <5. .

t .

if and only if al = b1 , a2.= b2 , and a3 = b3 .
,

.

I' ,
,

. vit .

Several theorems in dhapter 3 were proved to hold in the plane using
4

components. We shall restate them here with modifications appropriate to thelr.
,interpretation in space. We suggest proofs for some and leaVe 'the rest as

i 1

exercises.
)

4

are equal if 3
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THEOREM 8-2. If A = fec.,a2,a3) 'ana 17= (b
1/

b
2'b 3)

,

A + B = [al + b1, a2 +b2 a3 + b3] .

We note that if the sum is X , theri 757 and 703 bisect each

other at
(al 4- bl

a
2
+ b

2 a3 +
2 / 2 / 2

1)3
..

.

7 = ( al olf. bl , a2 + b2 , a3 + b3) , and X = A + i = [ai + bi,a2 + b
2'

a
3

+ b3].

e

THEOREM 8 -3; 140ti1cation of a vector A by a scalar r is given by

r17 = f ral, ra2,ry .

The proof is left as an exercise.

THEOREM 8-4. The inner product of two vectors A and B is given by

B = alb]. + a2b2 + a3b3 .

a

Figure 8-6

By definition A B= 111 os ; in triangle AOB we spe by

thekLaw of Cosines that

- 2 2 2
.IA1 +1 131. - (d(A,B)).

cos e -
2all11
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ThUs,

=.1,ZIM 1112 1'312
(d(A,B))2

2111 .

2
+ a

2 +bi2 +13,2 +b3
2 bi)2+(a2_b2)2+ (83_1)3)2)

=
1 2
(ai +a2 2

= +.2a2b2 +2a3b3) .

.= +112. b2 + a3b3 .

THEOREM 8-5. X , Y , and Z are any vectors,

(a) .X +,Z) = X Y + X Z

(b) (ti) Y = t(7 7),

then

Corollary. 4X (aY + bZ) = a(X Y) + b(X Z) .

The proofs are Left as exercises. The other theorems of Chapter 3 were
49'

not proved using components and involve no more than two vectors; hence, they

apply in 3-space.

Example 2. Find tip angle formed by the origin- vectors to the points

A = and B = (-1;3,1) .
4

Solu ion. We recognize that the inner prodlet,

e.
e o. ' .....

will help,
1
here, Since A = (2,-3,3] and B = (-1,3,1) , we have

52 4_1)2
+ 323 + lcos.e2 (-1) + (-3) 3 + 3 122 + (-3)2 +

/

alllqAB = cos e ,

. -8 = 10 ;ET. cos e ,

and

4
cos e =

11

.4.1 -.514 .

Hence e 121°

)
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.

We recall that any vector expressed in component form in the plane may be

resolved into component. vectors along the axes. The component vectors,in turn

may be expressed as scalar multiples bf unit vectors. Thus we may resolve a

vector A as follows:

MOW

A = [al,a2,a3]

-
= [e0,0] + [0,a2,0] + [0,0,e3]

j

=_a1ll,0,0] + a2[0,1,0] + a3[0,0,1] .

It is Customary to denote the unit vector; [1,0,0] , [0,1,0] , and [0,0,1],

by i ,'j , and k respectively. Since any vector A may 1:e expressed,as.a

linear combination of i , j , and k as

a

we say that i j

A = + a2j + a
3
k .

and k form a b.sis for 3-space,

,

The use of vectors gives a concise way of describing a Pine in,3-space.

Let am,n) be a triple ofAirection numbers of a given line L which

passes through the point P0(x0,y0,z0) Thus(a parametric representation

of L is

_,. 0

The Vector D = [/,m,n] lies on the line L' , which has a parametric

representation

x =,et

y = mt

z = nt ,

tl

and which is parallel to L . Thus a"triple of dii:ection numbers (Lm,n)
of a line L determines a vector parallel to L . Ftirthermore, the point

P(.x,y,z) lies on. L if and only if

P = + .



'8-5
4--

4

'V

If L iq the line which passes through two distinct points

P0(x0,y0,z0) and P1(xl,y1,z1) , then, from Chapter 2,

a.

(xi - xo , yi - yo, z1 - io) is 4 triple of direction numbers of L . As

we have just seen, this triple of direction numbers determines a vector I;

which is parallel to L . But

D = - [x0,y0,z0] = -15.1 - PO .

Thus, Y -
0

is a vector parallel to'the line through Po

and P
1

.

.'
Example 3. Find a vector representation for the line FoPi , where

0
3i + 2j - it.k°fr d P

1
-2i + j + 2k.

Solution. Po = (3,2,-9 and F = (-2,1,2) . Hence P
0 1
Pt has

(5,1,76) as a triple of direction numbers; IT= [5,1,-6] is a direction

vector for the line. Hence, the vector representation of the line,

becomes

or

P = P
0

+ tD ,

P .... [3,2,4] 4 t[5;1,-6)
.

= [ + 5f , 2 + t , -4 - 6t] ,

5t .+- Di + (t + 2),j -,. (6f- 4:104c
A ' i. . . ; l

-

4
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Exercises 8-2

1. Let i°= (1,0,0) , j = [0,1,01, and k.= (0,0,1).. Find
(41) i j
(b)

k

(d)Ltti,,

A

(e)

a

(f ) k k
,

( g) ( + 24C), 33113

( h) 31 + 2j - k) (2i + j + k).
2. Find tqe cosine of the angle between the two vect'ors -in. each part of

Exercise2. ...- ..v-
1, .

3. Given B = 2i + 2j

4. Let A" =

( a) + 313n - 6 0,

(b) 11. - +

cc; 2(A 4-13') - 3(B

-

- k . Find r such that 1/43-1 = 1 .

= (3, -2,1) , C = =.2) . Find

. (a) 5(t - 6) +'3(C -

(e) 3(7 + 13. + 2(1 - B + -6)
-C) ( f) 5(6 - + - 363 + _ 6)

5. Use values of t , C ,.as in Exercise 4, and find X ;so that

(a) "Z+=6+-X
(b) 2A + 3B = 4-6 +

c) 2(1 - 73) = 3(-c'

(d)
( e)

( f)

+ =41 +6 -
3(7 + 13.) = 2(X - 6)

+ 2(1 + 3(1. +.13) = 0

Use the values of 1",

(a) -Z

, as in Exercise 4, and find

(f) (2P + ) (2B - 3-6)
( b ) 2Z 3; (g) (3A + 5B). (3B - 2C)

;t 6) (hr (1.* - C) (17-: A +C)
(a) (31 + (1) ( + 4-C) ( - 26 + 1113)

(e) (1. +13) (Z - 11) (j) T7+17.-i"+"6-6.
7. Discuss and relate

, , p13 1%1'

8. Given P = ai + bj + ck. Give algebraic and geometric interpretationsa
of

.IPI

9. If A = a + 3j + 4k and B = xi - j + 3k . Find x such that AOB is
a right tsiarigle.

16. : Given- = 2i + 3j + 4k and B i + - find the length' of the
projection of A upon 4

4 "

39
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11. Show that the line joining the end points of'the vectors

5 = 2i + 3j + 4k and B = i j + 4k is parallel to the xy-plane.

12. If cla and ciS , prOve that q("a +r) .

'13. Describe in terms of components all unit vectors.perpendicttlar to the

xy-Plane.

14. Find a vector 1 to both A = 2i + 3j + 4k and B = i + j - k

Note: There are many solutions. Can you find a general solution?

15. Find,tteMeasuresof the angles kg the triangle wAh vertices at

A:= (2,-1,1) , B = (1,-3,5) , C = (3,-4,-4) .

16 Find vector representations of the lines passing through
4 -

P = (a,li);C) / (0,0,0) which are perpendicular to P .

17. Prove Theorem 8 -3.

18. Prove Theorem 8-5 and its Corollary.

4

Y. Vector Representations of Planes and Other Sets of Points.

In the first course in geometry plane is an undefined term; its use As

described in the postulates. From the postulates we learn that a plane is a

set of poiots and is uniquely determined by three noncolAnear points. Furthe:

if two points lie in a plane, then every Point of the line containing these

points also lies in the plane, and if two different planes inrsect, their

_intersection*is a line. A line and a plane were defined to be perpendicular
, k

if and qnly if they intersect and every line lying in the plane and passing

through the point of intersection is perpendic4W to thesgiven line.,

4 In Section 8-4 we used the fact that in space the locul,of points equI

distaht from,two given points-is a plane. This led to analytic representation.

for planes in recta ula cOordlnates. In this.section we shall considen'

anOther description.of a plane as a locus and develop vector representations

forylanes,

We let M be a plane and 3' be a line perpendielar tó M gt a point

Po . Any other point P , in M , and P01 determine a line in M , which by

definition is perpendicular to N . By theorem from geometry, every lint

perpendicular to N at Po is contained in M . Thus,, we may consider M
-Aglow

to be the loFus of lines perpendicular to N, at Po . We call N a normal

line to the plane:
t4

340
a

34

ti



Figure -7

The description 4.p terms of perpendicularity suggests a vector repre-

sentation in terms of -tie inner product,'for if iTi°,is a vector with repre.4-,

sentatives in M , and n is a vector with representatives ono Nd, we havea. .2.
m n = 0 . ThdAl will be clearer if we interpret the statement. with origin-

.
4.....*vectors. The ctdr m has a' representative mo emanating from Ib which,

0A
...

galso lies in M M. The vector n also hash a representative ng emanating
. . .4

which lies on N . Heriee lii ino li are perpendicular: Their ,

from" PO
.. 0 0

t I

corresponding origin-irectors 'M and, N are perpendicular and, Mi. N = Q ..
By tft Orig&-Vector .Principle we may interpret this as m..n 0

/

To obtain a vdttor representation of the plane M rage dote that if P
1

is a fiked point in: M and P is any other point

parallel'to M Thus, we may describe th'e plane

P - t -71" p
; . f

We note that PI iis also in the set. k

in M , then

SI -

M a ,

k

P; P
1

is C

,
We recall that it is possible to chaiacterize a line which does not contain

thb origin in 2-space as the set of poihts whi'a is perpendicular,tor normal,
,

t
toe.-direeted_segment OP at P . -Iir 3 -space we m4 deS'O'ribe a plane as-the

. .

set of points which is normal to a directed segment, ON t, or origin- vector, N ,
. . .

. at IT* N, is called the normal vector of M . If the given point; of` M is
N Oen

Fr

,

.

M = jp0.7 -.1)
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If we let P ( x,y, z). , = p

direction cosines of OF , We have

" P = [;x,y,z) 2

N = 7\P, P.P vP)

,N = [XP`, pi) , =

Thus

(-1". -17 = ( (x,y,z) - p(N,I,L,v)) p(7\,p.,,v.

and

be the triple of

iCh, since p '/ 0 , is equivalent to

[ x, [ P.,v] P v) (N, p., v = 0

f

.t

or
,

7\x + py + vz - pkN
2
+ p

2 + v2),= 0

SincierN
1

p2 + v2 = 1 , we have

. M = ((x,y,z) : Nx + py + vz --p = 0) , 1\
-4,
.. -.. 4 .

,an analytic representation o'f the plane in terms of the normal form of its
. .

equation. We note that (N,p,v) are direction cosines of the normal segment
and,that. p is the distance between the origin and the plane.

.. " ( I .

Example 1. Find an equation of the p ane is per rKidc.OZaarto the
e .

vector 'A =.(6,41.,3) at the point A .

Solution. We have

and,
^

or

Vx,y, - [6,-4,3]). [4,-4,3] = 0

= 0 ,6 , + 117, 3) ,4
r!

tat -+- 3 z r_

6x - 3z -/61L= 0 . re.

..r ya

Again we note that ,the coefficierit,s are direction numbers of normal lines to
......,

the plane. .
% .e.

4
, , t I . -

0 r 0' 0'0 fl .' (3.'s5r1' z1; )
areExEunik,t)4A-Show that if P (x 0,y0, z ) sand. -

.diati nct points in a plane With equation ax + by + 7.;7+-,d = 0 , then every.

point of PoPi is in'tlie plane.
. 1

4 \

.., \

1

\

1

%

twq.

340*
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Solution. Any point 'P = (x,y,z) on line has the parametric representa-

tion L. I

1

/
X --fX0 + (X3 Xo)t

Y YO (Y1H" YO)t

( z = zo + - zo)t ,

- and is in the plane if its coordinates satisfy, the equation'

ax + by + cz + d = 0 . Tke left membier becomes

a(x0 + (xi x0)t) + b(yr+ (y1 - y0)t) + c(z04 (z, 40)t) + d

=
by0 + cz0 + (axi + by1 -1-"cz1)t - (ax0.+ by0 ezo)t

= O.+ (-d)t, - (-d)t = 0 .

Therefore, any poib t of the line is contained in the plane.
4

We may use vectors, as we did in Section 3-6, to describe,Ag sets of
points in s4ce. .0

Example 3.. Find a vector representation for the line segment determined

by the vectors A =12,-1,31 and B = in terms of a single parameterP
c

folUtion. From the development above, AZ = (X : 2 = pl + qil where

p_ 01,..:_q..> 0 , and p + q,= 1) : .

_. . ,
-, .8ince p + q = 1 , q. = 1 - p ; since q. 0 , 1 - p >°0 or p. <'1 ,

Since .p > 0, ,. the combined restriction on p is that b<p<1. By
substitution, .. °

, ." )
4itt,

pX + got= p12,-1,3.] + (1 - P)(-114,7) where 0 4 p < 1

-..-.1[3/; :. 1 , 11.-' 5P ,f.: 14.P] Whe're- 6- i, --<' I :7 77
L.--- = I2p,-p,3p1 -1. (p - 1 , 4 - lip , 7 - 7p] where ,0 < p `< 1 ..

fr

Z = (X : 2 (3p - 1 , - SP , 7 - where '0 < p ,< 1)

Example li, Find a vector representation of the point which diirides the

deected segment AB in the
1

ratio .

\
I oe

1



ti

*'

8*-'6

Solution. ,.

2 s
2 2

1(2 -1,3] + 1[1,4,7]
5 3

4,- 1,2 (- 1441

(144)

rr;

Alternatively, if we think of the parameter as a coordinate of the point,
2

then for the desired point p = -3- . Substituting this value in the expression

obtained in bcample 3, we obtain ',

= [3 - 1, It - 5 .1 7 -

41
Example 5. Find a vector representation for the ray opposite V BA in

terms of p. single pardmeter q .

Solution. The ray opposite to BA = CX : 2 = a + (17 where p < 0 and

p + q = 1) . Since

therefore

iy= 1 - q < 0

q > 1 .

+ = (0[2,-1,3] + q(-1,4,7)

= [2 - 2q q - 1 3 3q] [-4,4q,7q] where q > 1.

= [2 -,3q , 5q - 1 i'3 + 4q] where q .

The raypphite to BA = CX :2 = [2 - 3q 5q 1 , 3 + 4q] where cL> 1) .

0

where q >f 1

a

Example 4. Suppose 71 ; B , and C are the vectors Whose terminal points

are the vertices of a triangle. Can.we represent the triangular region, the

interior of the triangle, and the triangle itself, in terms of these vectors

and two parameters?

it

O

344
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Solution., We write FCC as (X : = q + - q)t. where 0 < q 2 1)
as in ExaMple 3 above.

Now the triangular region is the

union of the segments AU or

(Y:7 = + (1 - p)'f where 0 < p <1)

= (y 7 = pl.+ (1 - p)(qt,+ (1 - q)6]
where 0 < p < 1 and 0 < q < 1)

= IY : 1-=.131-1- (1 = p)q73 + (1 - p)(1 - q)a
where 0 < p < 1 and 0 < q < 1) .

The interior of the triangle ABC will be -

(X : I = IS + (1--- P)c1S + (1 - p)C where '0 < p< 0 < q <1) '.

--lhe triangle is

(y : I= a + (1 - p)413-f+ (1 - p)(1 - q)-6 where (p = 0, and. 0 < q <1)

or (q = d and 0 < p <1) or (q_=1 and 0 < p <1)) .

(We can write these results more neatly if we let F = (1 - p)q and

s = (1 -/ p)(1 - q) . 'Then p + r + s = 1 and the triangular region is
%

... ....:

(Y: T= IS +ii7 + saltere p , r , and s are non=negative.and p + r + s = 1)

This form is easiev to recall.)

,

1 and

Exercises 8-6 44

. Find an equation of the plane which has (7,73,5] as a normal vector

.and which contains the point (0,0,3) .

2. Find an equation of the4lane 4th the normal vector

(a) [2,73,1]
(b)

(o) [3,-5,4)
(d) [-1,4,6]

3. Find the distance from (0,0,0) to the plane

(a) 2x + 3y- - z = 5
(b) .5x - 3y +12z ="8
(c) ax + by + cz = d

345
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4. In the figure below, consider ABai to be a 3-dimensional figUre. (This

is\knovm as a tetrahedron and has k faces and 6 edges.)

(a) Show that the lines through the midpoints of opposite edges,are

concurrent.

(b) 'Show that 'PTRU and QUST 4swparallelogr

(c) Show that the point f-cOncurrency is the_mid int of e

5. Show that if P
1

= (xi,y1,z1) and M = ((x,y,z) ?\): + 4y + vz - p = 0)

n6n the distance between P1 and M ig

120c1 PY1 Vzl PI

6. Find vector representations, in terms of a,single parameter, for the sets

.described below.

(a) AR where A = (4,-7,5) and B =

(b) AB where A =)(3,4,2) and 'III= (-2,3,31

(c) AB where A = (3,4,2) and B = 172,3,3)

(d) BA where A = (3,4,2) sand B,;(72,3,1j

7. Find he vector representations of the midpoints and trisection points of

the following line, segments:

(a) AB where A = (0,0,0) and ri= [6,12,15]
.

(b) WE where A = [-3,2,7) and B = (10,-11,19)

(c)" AB where A = (avave.3) and, T3- = [bi,bv,b3]

a



8-7

8, Find the vector represent ions of'the points which divide the directed
_s

segment PQ in, the ratio 1-s- ere:

,

(a) 71 a [-3,72,-1] , Q = [3,2,1] , = d = 1

(b) P = [9, -5,7] , an

(c). R = [20,1] , S = [1,-2,4] , and
-

r 3

9. Given the triangle ABC with "Z = [2,3,1] , B = (-1,2,4) , and

737 = [1,4,-2]1

'(a) Describe the triangular region, its interior, and the triangle itself,

using these vectors and two parameters.'

(b) Show that [1;3,1] is a vector whose terminal point is aniiriterior

point of the triangle.

(c) Show that [4,-5,-6] is a vector wOle terminal point is an

6.ft-ertor-sloint of the triangle.

Challenge PrcN6Zem
ti

J
1. Given the four vectors A , C , and D , whose terminal points are not

A
coplanar, find an expression for the tetrahedral region- ABCD in terms

of these vectors and three parameters.

8-7. Summary:

We have extended the rectangular coordinate system to 3-space and have

considered the analytic and vector representations of lines and planes in

-'3-space. In Chapter 9 we shall consider the representation and sketching of

other curves and surfaces.' We shall also consider two extensions of polar

coordinates to 3-space.

We have also suggested that we may interpret algebraic relationships

four faiiables in a 4-space, which may be-helpful even though we cannot

visualize it. The extension is, of course, possible to spaces of more Aimen-

w,sions. We are in a position to make several conjectures based on our obser-

vatiOns in 2- 'space and 3-space. In.2-space the general linear equation in 2

variables describes a line, a one-dimensional figure; in 1-space the general

linear equation, in 3 variables describes a plane, a 2-dinlensi9nal figure.

Thus, in'n-space we might- expect the general linear equation in ft-variables to

'describ'e a figure with n-1 dimensions.

-
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In 2-space wl are:able to describe a line either by a linear equation or

by a,parametric representation in one parameter; in 3-space we still have the'

parametric representation of a line in one parameter, but the alternative is

the common solutin of two linear equations, which is awkward. Some of the
4V

later exerdises show that we may also de be regions in a plane by a para-

metric representation in two parameters. Our onjecture might be that in

space&-a,h enough dimensions we may describe one-dimensional figures with

parametric representations in one parameter, 2 dimensional figures with

parametric representations in .hwp parameters, aid, in, general,

figures with parametric representations in n parameters.

410,

Review Exercises

In Exercises I to 8, write an equation of the locus of a point which

satisfies the stated conditions.

1. A point 5 units above the xy-plane.

2. A point 5 its from the yz-pl,ane.

3. A point equidistant fr \t icy- and the yz-planes.

41111A point 2 units from the x-axis.

5. A point. a Units from the origin.

6. A point r units_frofdthe point (2,-1,9),

7. A point equidistant from the point (1,2,3) and the plane with equation

z = 2 .

1440'

8. A point that lies in the plane determined by the points J3,1,2)

Sketch the graph of th 'equations in fiercises 9 to 14.

9. x + 4 =0 ,

10, 2z - 7 =
.

11 . 4x t *9y - 6z +' 36 = 0

Z.'";',

I

12.' x - y + z,+ 3 = 0

.13. .x = 3t y = 2 + z = 3,- 4t

14. x- 5 - 3

-3

k

348
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In, Exerbises 15-20, graph and describe the geometric representation in
. one-space and 2-space, and discuss, a possible meaning in 3-space.

-
N -,

15. :(X : X -. 3 = 0) :, 18. (x : )xl >3)
`.----...., -4

16. (x :, -1 `<--x < 3} 19. (x : 14,< 5}

yr. (x.: lxl . 3 r- 0) 1 20: -(x : It(?: : 1)(x +' 2) = 0)
.

c j--'-"".."---
21: Graph and desdribe R1 , R2 , and R3 ',::r one space, 2-space, and

3-space if

.'((x,y) lx1 < 2) , R2 = ((x,y) lyl < 2) , R
3

= R
1

R
2

.

22. Discuss Exercise 21 if < is changed to < . What geometric interpre-

tation
. -

tation can you give for R11J R2 ? / ...,

23. Graph and describe ((x,y,z) : x2 + y2 z
2 < . What is the graph -if

< is changed to < ? .

In Exerciseb 24 to 26, use the four points: A(-2,1,3) , B(3,1*-2) ,
C(2,3,-1) , D(1,-3,2) , and the four planes:-

+ z + 4, = 0 , M2 : 3x - y + 2z - 3 = 0 , m3 x + ,2y - 3z + 2 = 0

-x + y + z = 0 .

0;24., Find the distance from each of the points' A , B , C ,'D , 0 to*each of
the plane:

. ( a) Mi ple,. 4 (c) M3

(b) -M2 (d) 144

form, equations of the lines deterraiiledi by:Find, in symmetric

(a)- (M1tM2)

(b) ' (M1,143)

(0) (MI,M4).

(d) (M2,M3)

(e) (M2'144)

(f) (M3,144) 4i1

7 r

26.° Find parametric equations for, e ach of the lines referred to in Problem

25. )

Show that the space quadrilateral Ai3CD , where A.= (-2,3,2) ,

B- = ( -4,5,8) , C = (1,1,4) D 7 (3,-1,-2) , 'is a. parallelogram.

349
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28. Show that the medians of triangle ABC , where A.= (0,0,0) ,

B = (2,4,6) , C = (-4,2,:13) , are' concurrent.

29. For what value of a are the points (3,2,3) , (1,-4,2) , (2,14,5)

collinear?

30. If (2,1,4) , (0,4,-2) , (a,-2,-4)' are,the vertices of a triangle with

a right angle at vertex (0,4,-2) find a .

.
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Chapter 9
O

QUADRIC SURFACES'

°

9-1. What Is a Quadric Surface?

If you know what is meant by "quadratic equation," you might guepe what

Is meant by 7vadric surface'. . The locus, if one exists, of an equation Of

the second degree in rectangular cooreinates for 3-space is called a quadric

may

surface. Each of theses Maces has an important property: 411 Inane sections

yare conics. There are surfaces other than quadric surfaces, and there
. , .

are more quadric surfaces than the ones we shall introduce. We shall limit

our discussion to Ihe most useful and easily recognized ones. You will recog-

nize spheres, cones, and cylinders.' Some of the oihersurfaces may be less
. :.

familiar to koa, but, inasmuch as alb. intersections of these surfaces With

planes are conic sections, you should have little difficulty visualizing even

those quadric surfaces which are new to you.

.
,

°
When we apply mathematics to physical problems, we find that 14it drawing

, .

which depicts the physical relations in the problem can be useful. C4.1;1

principal aim in this chapter is to develEP, methods for visualizing surfaces

,Ad curvesjin 3-space. Such Configurations frequently occur in science and

talc us courses. Ne shall givedirections involving only simple figures and

eqwati no, but the methods are general and can be extended to more complicated

4aseg. We also,shallindisatehow equations representing quadric s ces,or

space curvesnay be simplified:
-

.

Some ability in the sketching of geometric figures is required in this
. ,

.chapter; yoUmust make drawings of three-dimensional objects in a twd-
o 4

dimensional surface.. Also, we. shall. Tely heavily upon the matarialwhich you

learned in Chapters 5; 6, and 7. .._ is

°

'
0

o ..'2. SpheretyCnd Ellipsoids,71.

.
. You are familiar with the graph of the points in a plane a apgiven dis-

.t. -t ! .

tancelfrOm a given point
?

and you also knoi an equation of'this h.° Tithe
o i'' ,'

given point is taken astha origin and the given distahce is 4 , t equat,tdn ;
, ,.

P ' ,

. . p .'

,e

. ta

'1 ,
.

r 351 ^
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Now suppose we consider this same problem in 3-space. You know that the locus,
,is a sphere of radius 4 , but let us proceed as we would if yOu did not know

this. We shall use various methods to "discOfer': the shape of this familiar

surface. Later you will use the same methods to fins, the shape of unfamiliar

surfaces.

2 2 r
x + y = 10 `.

J

'A sphere is defined as the set of points each of which is at a given
..e

distance-from a given point. It always will be possible to select this given

point (the center) as the origin of a rectangular coordinate system. Such a

choice wills simplify -the algebraic representation of the spherel,

We wish to examine the set of points, each of which is a distance' 4, from

the origin, 0 = (0,0,0) . For each such point P = (x,y,Z) -, the condition

is

)(x- + (y - 0) -'2 + (z - 0)? = 4

An attempt to ,visualize

(10/6,3) ,

have been plotted, does

La-
2 2 2

x + y + z = lo *,

this sphere. by plotting points, such as

not only is tedious but, even when a great many points

not'reveal the sphere we expect. '

JI

3,1j) ,

A

Figure 9-1

tt
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I or

It is more illuminating to4explyit the similarity between the equation of,
4....7,

a iphereand the equatioritS\a:circle Fpr instance, the equation

AI
s

4

( 21 ' . . y2 '-s- z
2
= 16'
4, . ..:

notdhly closely resembiea.9ur equation (1) of the. sphere' under discGsSion,
.14 i'vlation (2) represents 9. partof this sphere. It represents, of course,*

.

'the intersection of the sph&e and the ibialane (x 90) shown in Figure 9-2.
.," 0.1

...
quThe intersection of d adric surface and a coordinate\plane is called a trace.

f

es

Figure 9-2

The algebraic representation

of pils'traCe if the siMUltanedua solu-

tion of Equation (1) and' x 0 .

The traces in the other coordinate
.

. planes are found"by taking y = 0

and z =.0 . We show in the fkgure_

only those parts 0 traces which are

in the boundaries of the first octant.

.

-2

ts
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In dome problems we need help in drawing the traces. In this event we

locate the intercepts. tha points of intersection of the surface with the

coordinate axes. For Equation (1) the values are 4 and ,-4 on each axis.

Onae the traces are indicated, as in Figure 9-3, we begin to see the shape

of the surface. Next we investigate the shape of the rest of the surface by

slicing it and looking at eadhslice. Such slices are called sections; they

are the curves formed by the'surface and planes cutting it. The traces, of

course, are special cases of sections. Let us make our slices parallel to the

xy-plane. An equation of the parallel plane one unit above the xy-plane iS

z = 1; we substitute for z in Equation (1), which becomes

x
2
+ y

2
,+ 1 = 16 ,

'or x
2
+ y

2
= 15 .

We see that this is an equation of a circle in a plane parallel to the xy-plane,

with radius /15 z 3.9-, and with its

centelon the z -axis; we add to the

figure, in the pane z = 1 , the part

ef-the circle in the first octant:--We'

continue in this fashibn, let-ting

assume the values 2 and 3 . Each

° 4 .section is'a circle, and the radii are

approximately 3.5 and 2.6 , respec- (0,4,0).

tivply. We have added parts of these

circles in Figure 9-4. When z = 4 we'

have (4A0
2 2 ,

x +,y = u ,

,which 'tepresents the point '

4

z

(0,044)

For any...value of z larger than 4 ,

there is no locus. Figure 1-4
1,

Now we consider sections parallel to the yz-plane, giving the same

numerical Ialues to x that we gave to z .. Again we,find,that the sections

are circles, which we may add to,our drawing (Figure 9-5). ale might also
, I

investigate sections parallel to the xz-plane if this appears to aid our
9
visualization.

e.e
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Figure 9-5

A1.11111=11111

9-2:

This has probably seemed e slow and labored procedure to get a drping

of such a familiar surface as the sphere, but we hope that_,yoil will. now be

able to apply the same meihods.Ao other equations in order to- visualize and

draw the surfaces they represent.

also symmetric with respect to the origin and each axis. A sphere, of course,

point P of S there

is a corresponding point. Pt of S such that M is the perpendicular

bised.pbr of PP= . 'Here we shall investigate symmetry only with respect to

the coordinate planes. We list the tests: a graph will be symmetric with
. .

xy-plane if, whenever
(xl!Yl'zl) (.x1PY1-z1) ,

respect to the yz-plane
is on the graph, so also (-xialpzi)

.
,

. ..., xz-Plane .

If a surface is symmetriC with respect to all three coordinate planes, it is

meets all theseteSts for symmetry. .

When a surface is symmetric allth respect to all three coordinate planes,

the part of it in any octant is repeated in all the other octants. In such
p

cases we need draw only that part in the first octant, since this makes our

also symmetric with respect to the origin and each axis. A sphere, of course,

drawing less complicated:

O
355
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The sphere we have'been considering has its center,at the origin;., the

1Z-2;

equation for such a sphere can always be written in the form '

.

x2 ,+ y2 + z
2
= a

2
(3)

'where lal is the radius.

have the coefficient 1

Consider the equation

44)

Note that the terms containing x , y , z all

.41

4x2 + y2 + Isz2.= 160 .

A.

-What quadric surface does this represent?' We as.befqre, by drawing the

traces. To find the-trace in the yz-plane, we let x = 0 in Equationt(4),

.2 2

obtaining 1-Yor t
z

=1 We recognize that this trace is an ellipse, as

shown in Figure 9-6 When we let z = 0, we again obtain an ellipse.

when Y' = 0 , x2 z
2

= 25 ; the trace is a circle. Again we shall

pictdre only those portions of the traces lying in the boundaries of the first

octant. These are shown in Figure 9 -7.

se

'Fipre'9-6 Figure 9-7

Now we find tha sections'as.before; those parallel to. the xy--and

(h- planes are ellipses; the ones

parallel to the xz-plane are circles

It is common practice to select just
-

one set of iectioas to illuminate ;the .°

drawing; if one set consists of

circles, this is the usual choice. *:-.(5L0.0)

These sections are shown inFigute 9-8.

356
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9-2

The surface,wt.have been sketching belongs to a class called ellipsoid*.

They are so named because the sections parallel to the coordinates planes aa'e
y'

ellipses (or circles, whiCh may be considered special cases of ellipses).
3

These surfac'en have equations of the form ti

2 22 2
x
4'2

+y+z
2 '

a b c

where the numbers t a , ± b ,,t c', are the x-,; y- ;,z- intercepts respect

tively. The segments of the axes joining the intercept points are called. _

axes of the ellipsoiS ; ,

If two of the axes of an ellipsoid have equal length, the surface is

called a spheroid, because it resembles a sphere. These are of two kinds. If

the third axis is longer than the others as is illustrated in Figure 9-8, the

spheroid is called a prolate spheroid and resemb es a football or a watermelon.

If the third axis is shorter than the othe the surface is called an

oblate spheroid and appears flattened like'the earth or a "Yo -Yo" top.

(5)

When a = b = c in Equation (5), we have the equation of a sphere. .A

' sphere, then, 4.s a special kind of ellipsoid in much the same sense that°a

circle is a special kind of ellipse. Before we conclude this section we should

ask again, "What quadric surface does Equation (4) represent"? Following that

is a good general procedure, you should write Equation (4) in the form of

Equation (5) and then name the surface according to the above descriptions.

Exercises 9-2

In Exercises 1 to 12, discuss and sketch the surface represented. In-
_

clude intercepts, traces, and the name of the surface. Draw several of the

sections parallel to one of the coordinate planes.

a. x
2
+ y

2
+ z

2
= 25

. 4x
2

+ 4y
2
+ 4z

2 . 9

2 2 2
9x + gy + 9z =0

4. 9x2

5. 9x
2

6. 4);
2

7. 4x
2
+ 9y

2
+ 4z

2
= 36

O

8. 9x
2
+ 9y

2
+ 25z

2
= 225

9. 9x
2
+ 25y

2
4- 25z

2
225 .

4y2,+ 9z2 =

+ 9y
2
.+ 4z

2
=

+.27y
2
+ 25z

2

36

36

= 100

10.

11,

12.

4x
2

+ 9y
2

+ 16z
2

=

,
9x

2
-1,; 4y

2
.4- loz

2
=

16x
2

+ 9y
2

+ 4z
2

=

144

144

144
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13. Use the definition of sphere to write an equation of a sphere with center

(x01,y0,z0) and radius

4 14. Show that the equation you Obtained in Exercise 13 can always be writteh

4 ,in the form

+ y
2
+ z

2
+ DZ + Ey + Fz + G.= 0 .

Does every equation written'in this Form represent a sphere? Justify

your ansWtr.,

15, Find, A:n the form in Exercise 14, equations of the spheres with the given

center (C) and radius (r)

C = (2,1,3) , r = 5

.
(b) C =`10,-1,2) , r = 2

(,c) C (1,3,-2)., r =

1

'

1
(d) C = (-

3
-1 ,

2
--) , r = 1

1 1 1 1
(e).

C
N

!

, r 2.

) C = (1.5, -.5; 2:5) , r = 3

16. Determine whether the followi& equations represent spheres. For each

sphere, give the radius and the coordinates of the center.

(a) , 3x
2

+ 3y
2

+ 3z
2

- 9 = 0

(b) x
2

+ y
2

+ z
2

- 2x + 4y - 6z + 10 0

x
2
+ y

2
+ z

2
- 4y +,2z - 20 = 0

-(d) x
2
.+ y2 + z

2
+ 6x -.8y + 14z+ = 0

( e) x2 +.y2 + z
2

4x - 6y + '13 = 0

Cf) x
2

+ y
2

+ z
2

- 2x + 6y + 14 =,0

(g) 36x2 +.36y2 + 36z2 - 36x - 48y - -2z -52 = 0

(h) 16x2 + 16Y2 + 16z2 - 24x - 64y - .6i + 41 = 0

17. If A (1,2,3) and B = (-1,0,7) , what :s an equation of ti,e sphere

that has AB as diameter?

18. Write an equation of an ellipsoid with x- , y- , and z-interceo-A : 3 ,

t 7 , I 5,, reueetively.

Challehge Problems-

1. - Write an equationlofan ellipsoid with center at the point (3,-1,2) ,

and with axes parallel to the x- , y- , and z-axes and of lengths 12

8 and 24 respectively.
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"2. Points P = (0,3;1) , Q = (-2,0,2) R = (1,1,4) , and S = (-3,3,2) are
tif0

points of a Sphere.' What is an equation of the sphere? Will any four

distinct points determine asphere?

:

9-3. The Paraboloid and the Hyperboloid.

What is the locus of a point equidistant from a given point F and a

given plane M ?. We shall assume that the distance from F to M is 4 .

' The geometric condition for the locus is similar to e one which defines a

parabola. With this in mind we let the line thro h F perpendicular to

be the y-axis and.let the origin be the midpoint of the normal segment from

F to M Then F = (0,2,0) and the equation of Mis y + 2 =0 The

'required point P = (x,y,z) must meet the condition

/ 2 2 2 y + 2ix +,(y + z -

. . *

Squaring, we have x
2
+.,S'ity + 4 + z2 . y2 + 4y + 4;

hence (1)

is an equation for the lotus.

x2+ z
2

r"... 8y

)

4.1

!ow we must decide.what he graph of this equation looks like. We shall

use the same methods we app ed o the equation of the sphere. If we look for

intercepts, we fine,that e only intersection of the surface with the axes is

the origin, (0,0,0) . The trace in the xy-plane is the parabola k2=8y .

in the yz-plane, the-parabola lz2 = 8y : The trace in the xz-plane is thaL::

single point 0 , given by the equation x
2

+ z
2

= 0 ., We notice that in
. "'

Equation (1) y cannot have negative values; hence no part of the surface is

to the left, of the xz-plane. . ';

*We next investigate the sections parallel to the xzqplane. When- y = 1.,

we have x
2

+ z
2

, a circle with radius 24 ; For y.= 2 , we have a

circle of radius and, and so on. ThEr- surface may be thought, of as formed
4

by e. succession of circles, beginning wit the point-circle and with radius

increasing withovt limit as y 'increases. This bullet-shaped surface (Figure

9.1) is 'called a.paraboloid. It is also called a paraboloid of revolution, as

it,ray be generated by revolving a parabola about its axis. The reflector

,usually called a parabolic reflector is really a paraboloid.

359
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9-3

1,

z

Figt4re 9-9

A more general eqUation of a parabolicris of the form

2 2
(2) x z

2- + = 123r
a c

OF

The traces of this surface in the xy- and yz-planes are parabolas, but the

sections parallel to the xz-plane are ellipses or circles. This surface is

called an elliTtic yeraboloid.

10%-
We turn now to the equation

( 3 )
2 . 2 2x y z.

1 9 25

and fifid that the x- 444.y-intercepts are t 2 and ± 3 respectively,, but

that ther are no z-interCepts. The trac4in the xy-plane is an ellipse; in
OA**the other rdinate planes the traces are hyperbblad. Sihce ellipses are ,

easier to dr w --than hyperbolas, let us make our sections parallel to the XY-

..plane.' When z = 1 ave

360
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x2' y2
+ = +

1
,

representing an ellipse very much like the one which is a trace in the xy-plane.

We continue, finding thi.t for numerically larger values of z the sections,

will be ellipses with increasingly larger intercepts., This surface (Figure

9-10)is called a hyperboloid of one sheet, or an elliptic hyperboloid. Its

equation is of the form

( 4 )

(5)

2 2 2
x z

2

y

b c
2 2

a

figure 9-10

Next we consider the equation

2 2 .2

4 7- 9 + 25

Here there are no x- or y- intercepts; the z-intercepts are t'5 . The traced

in the.yz- and xz7planes are hyperbolas. ,Again we make our sections parallel

to/the xy-plane. If we write the Eqtaticin (5) in the fOrm

361
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. we see that when 1z1 <

rt

2 2 2
x y

=
z

+9

4'e are no real values of x'=or y .

I '

Figure 9-11

When z = 5 the section is the point (0,0,5) ; for z = -5 , we have the

point (0,0,-5) . For 1z1 > 5 the sections are ellipses, whose axes in-

crease as 1z1 increases. Thus our surface may be thought of as two separate

piles of ellipses. It is called a hyperboloid (or elliptic hyperboloid) of

two sheets.

Exercises 9-3

Discuss and sketch the surfaces repr46nted by the equations in Exercises

1 to 12.

1. y
2

+,z
2 = 1 7. 9x2 + 9y2 - 'z2 = 36

,

2. x2 + y
2

= 16z A. 9x
2

4y
2
+'9z

2
= 36

3. 4x2 + 4z2 = 16y 9 x2
'-.9y

2
+ 4z2 = 36

4. 4x2 + 9z2 = 144y 10. 4x2 - 25y2 + 4z2 = loo

4. 9x2 +Az2 = 144y 11. 4x2 - 9y2 + z2 = 144

6. 9y
2

+ 4z
2

= 144x 12. x
2

- y
2

+ z
2

- 1 = 0
4.

362



13) --We observed that, for the hyperboloid whose graph
i.

,
given by Equation

_ (3), the sections parallel to4thexy-plane are ellipses. Prove that
I ..

these ellipses have the same eccentricity.

N.

Challenge Problems

The surfaces represented by the following equationuieCalled hyperbolic_

paraboloids. Discuss and sketch them.

1. 4x2 - 9y2 36z .

2. 16y2 - 9x2 = 144z .

3. y
2
.-

2
. x .

9-4. Cylinders.

Equations of the quadric surfaces which we have investigated have

contained all three variables. What if an equation contains only two .

variables? Suppbse the equation is 0

,(1) 2
x + y

2
= 25 .

We find the x- and y-intercepts, and note that there are no z-interceptt: The

trace in the xy-plane is a circle of

radius 5 with the center at 0 ; in

each of the other coordinate planes it

is two'straight lin'es,-,parallel_to the

coordinate axis. The sections parallel

to the xy-plane are all circles of radius

5 with their centers on
.

the'z-axis. Zrom

- Figure 9-12 we recognize the surface as a

cylinder.

z

Figure 9-12

A cylindrical surface, or cylinder, is the surface formed when a line

moves in spice so that it always has thesame direction numbers and'"i4ersects

a fixed plane curve. The plane curve is called a directrix; the lines are

called generators or elements. part of such a surface is shown in



9-4

Figure 9-13; the curve, c in the

xy-plane is a directrix, the line

/ an element. For the circular °

cyliner in Figure 9-12, any one of

the-circles we have drawn might be.,

considered a directrix, and any of

the lines of the cylinder an

o element.

We shall restrict our examples

to cylinders with elements parallel

z

PIN
Figure 9-13

to an axis. In such cases one of the variables is missing from the equation. For

example, we shall consider the equation

(2)

2 2
x z

T 6

Let us.see if we can show that surface satisfies our definition of a.

cylinder. If it is a cylinder then '

the trace in the xz-plane, the ellipse

with equations

2 2
x z

7 1 Icy ° '

mustbd'a directrix. We select any

of this ellipse, say .'

P = (4,p,1) . We find that for

any value y., the point (4,y2.0/5) is

a point of the surface. All such points

z

Figure 9-14

'lie on the line / perpendicular to the xz-plane at P ; hence / is an
a ;

element of the cyliflder.

lot all cylinders are quadric surfaces. A plane, may be considered a

.cylinder, since one of any two intersecting lines in it may serve as directrix,

and the other as an element. Other examples of cylinders are the graphs of

such equations as z = sin%y and y = ex . You might sketch one of these

cylinders.

364
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Exercises- 9-4

Discuss and'sketch the cylinders represented by equations 1 to 10

x
2

+ y
2

= 64
s

6. 4y
2

-4- 9z 2' = 36

2. X
2

+
2.

= 25 7. , 25x
2

+,.144y
2

=
a

3. y2 + z2'= 36 8. 144x2 + 25z2 =

4. 4x
2

4.-9y
2

= 36 9. 9x
2

-
'2

= 1

9x
2

+ 4z
2

= 36 10. 9x
2

- 25y
2

= 1

11. Write an equatio

(a)

(b)

(c)

at distance

at distance

at distance

n for the locus of points
......

9 from thy x-axis

6 from t e y-axis

4 from the z-axis

for each of the cylinders discribed below.12. 'Write an equation

(a) Axis is the

(b) Axis is the

(c) 'Axis is the

3600

3600

9=4

b

x-axis,

y-axis,

z-axis,

trace in the YI-plane is

trace in the xz-plane is

tracekln the xy-plane is

a circle ot radius

a circle of radius

a circle of radius ,10 .

3.
5

1

13. A line moves so that it is always parallel to the y-axis and 10 units

from it. What is an equation of its locus?

14. A line moves so that it
(
is always parallel to the x-axis and 12 units

from it. What'is an equation of its locus?

15. The circle with equations

x2 + z
2

= 4 ,,y = 0

is the directrix of %cylinder, and a line parallel

- elemeht. What is,an equatiori of the cylinder?

'16. Write an equation of the cylinder with the_alipse with equations

to;the y-axis is an

25y
2

+ 4z
2

= 100 , x = 0

as directrix, and a line perpendicular to the yz-plane at a vertex

ellipse.as an element.

of the
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9-5
116. 0

e

1.

Challenge Problems

Discuss.and sketch the cylinders represented by Equations 1.to 8,.

1. x2 =4z 5. x
2

z
2

6z,= 7

- 6.

3 'y2 - z 7.

= z

?'

L. xy = 12 8.

x2 - y2.- 2x 4 kfy =

-z = sin x

y = cos z

9. Write an 4Auatpn for the cylinder with axis parallel to the x-axis, and

with trace in the yz-plane a circle of radius k and center at (0,-2,5)

Ske-,chithe'cylVhder.

9:5. The Cone.

Let-us investigatethe'surface whose equation is

2 2
cly,

4 4

y z
0'

9 f
When,we look for intercepts and the

trace in the xy-plane, we find only

the, point 0.='(0,0,0) . If x = 0 ,

Equation (1) becomes

r

the trace in the yz-plang is the union

Of two intersecting lines. So is the

trace in the xz- plane.p

2 2
y z

9 °0'4

We find that the sections parallel

radii i r.ase as °Izr increases. The

z

Figure 9-15

to th x5-Plane are circles

sections parallel to the other oordi-

wh -e

nate plan s'-re hyperbolas. Does this sound familiar? It should, since the

surface (Figure 9-15) is a right circular

we studied in Chapter 7.

A conical surface, or cone, is the
_

afrelement or generator) 'which moves so

plane curve (called the directrix) and

is not in the' plane of the curve. (See

inforation on the rigiat circular cone

a "

cone, whose sections are the conics

surface generated by a. line (called
k

that it - always corNal.ns a point of a

a fixed point (calle9 the vertex) WY.ch

Suppiement to Chapter 7 for further

and its sections.) Here we shall

366.
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,

consider only right cones with vertex at the origin and the directing curve a

conic sectiorfin a plane perpendicular to one of the coordinate. axes.

As another example, let%us sketch

the graph of the equation

2 2 2

1 9
The sections parallel tothe xz-plane

. ,

_

are ellipses; -the cone.(Figure9-16)

is called an elliptic cone.

Exercises 9-5

Figure 9-16"

Sketch the cones represented by Equations 1 to.6. On each sketch shown'.
F y..

the intercepts, traces, and at least two. of the sections perpendicular to\4e
.

)

axis of the cone. %..

/
2 2

y2-
. x y z

1. x n Z = y - . - - 7 . 0
,

-,, e / 2,- y2 - z
2

. x
2

5. 4x2 + 9y2 - 36zg . 0
--....

x2 ,2

3. fr5

2
+

.

= 0 6. 16x2 - 4y2 + 9z2 = 0

\

Write an tion of each of the cones described in Exercises

7. Axis is the y-axis,

twice the distance

8. ois is the x-axis, a perpendicular section at x =i is an ellipse

whoa; section in thaf plane ts .4y2 + 9z
2

= 36. .

to 10.

a perpendicular section is a circle whose radius is
)

m the, origin to theplane of the section.

9. Axis is the z-axis,
.

-radius 3 .

10. Axis is the y-axis, a perpen

whose equation ilk that plaqAis
,4*

a perpendicular section at z = a circle of

.

iCUlar Action dt 5 is an ellipse

I
'J
7

2 2
Z = 10

.
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11. It vas noted that the sections of the graph of Equation (2) parallel to

'. the xz-plane are ellipses; prove that these ellipses all have the same
ti

eccentricity.

Challenge Problems-.

1. Write an equation of a cone vhose axis is the x-axis, and Whose sections .

V
'2

At x = 1 ,perpendiculartotheaxisareellipsesvitheccentricity .

the major axis of the ellipse is 12 .

2. Write an equation of a cone Whose axis is the z-axis, and Whose sections

perpendicular to the axis are,ellipses With eccentricity . At z = 2 ,

the major axis of the ellipse is 16 .

.

9.6. Surfaces of Revolution.

A surfact that is generated by revolving a plane curve about a fixed line

in the plane is called a surfacaofrevolution. The flied line is called the

axis of the surface. Some of the quadric surfaces we .have discussed, here, are

surfaces of revolution. A sphere is Ite; it may be generated by revolving any

of its great circles about a diametpr of that circle.' The ellipsoid of

Figure 9-8, the paraboloid of Figure 9-9,'the cylinder of Figure 9-12, and the

cone of Figure 9 -15 are all surfaces of revolution.

Let us find th uat,ion of the

,surface obtained by revolving the

paltabola th equations, z9 =-2i ,

x = 0 ab ut the y -axis. Let

-P = (x,y, ) be a point on tbe ace.

The plan through P perpendic ar to

the y- s intersects the genet ting

curl at the point C = (0,y,k) , Nhere-

k = d(C,F) ; the same plane lilt, sects

the imaxis at the point F = y,0) .

Since P lust liein this pladeon a,

circle With F as center, 'its(

coordinates must sat tidy the equation ,

(1)
ix2 +!z2

Aft'

368

372 .

1

Figure 9-17



9-6
Qt

where k is the radius df the circle. The value of k is determined by the

requirement

(2)

that C = (0,y,k) be on the generating

k
2

= 2y .

"Equating the expressions for k
2

in Equations

(3) 2
x
2
+ z = 2y,

an equation fob the surface of revolution.

'The paraboloid of revolution .for which

is generated by a parabola revolving on its

curve z
2

2y . Therefore,

V

(1) and (2), we have

It is, of course; a paraboloid)

we have just found an equation,

axis. The parabola may revolve

about lines other than its own axis; suppose it revolves about the z-axis. We

sense intuitively that the resulting surfaceof revolution is

Let us jobtain its equation.

We start.with equations of the generating curve,

z
2

2y x = 9 ,

and let P = (x,y,z) be aqoint on the surface. A plane

dicular to the z-axis intersects the generating curve in

k .7d(C,F) ; the same plane intersects the z:axis in F =

t

z

quite different.

through. P perpen -

C = (0,1t7;) where

(0,0,z) .-

Since P lies on a circle in this

satisfy the equation

gure 9-18

plane with center

2 2 1. 2x + y k .

Sin4e k
'
18 the y-cooidihate of C , and C is a point of the generating

curve, the coordinates pf C must satisfy'the equation of that curve; hence
..

- .:..-- - J3 ,, ,

. .

F , its coordinates

4

10

'3 7 8 44,
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0. --
and therefore

Equating the expressions for
2

in Equations

1 2 ,
z -ex

.

z 2
= .

(6) 2 2 z
4

x + y

,;i

13) and (4), we have

as an equation of our surface of revolution.

Since/Equation 116). is not quadratic, the surface is not a quadric surface.

However, we can use the methods of this

Chapter to investigate its Shape. From

the equation we see that the surface is

symmetrieNith respect to eadh.of the

z

coor nate planes. Its only intersection

'wit the xy-plane is the brigin; the

trades in the other coordinate planes
0 I

are parabolas. The sections parallel"

to the Ay-plane have equations of the

form

2 +2 kx y -17 z k ;

Clearly they are circles, as they,

should be for a surface of revolution.
c

Exercises 9_61

Figure 9-19

o-

-

In each of Exercises 1 to 18, find an equation of the surface obtained try

,revolving the plane'curve about'the axis indicated. Sketbh the surface. In

EXercises 1 to 10 he curve-is to be revolved about its own axis, and the.
e

surfaces obtained are quadric surfers; in Exercises 11 to 18 the axis of

revolution.is-not:an axis of the curve.

1, z2 By 0 1
,

2.. x = 2z y = 0 ,

3. .13x = /ty z

:J

1 6 3x a gy z = 0 ; x axis

2y2 z 25,

4

,; = 0 ;

'
6

2
Z
2

= 25 - 0 ;

'70.
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7.

8.

9.

)1).

11.

12:

2 t49x + ,y = 36 ,.z = 0 ; x-axis

9x
2

+ 4y
2

= 36 , z = 0 ; y-axis

4y
2

- z
2

. x.= 0'; y-axis

x
2

- 11.z
2

= 100 , y = 0 ; x-axis

z
2

= 2x , y = 0 ; z-axis

2
x = 2z , y = 0 ; x-axis

13.

14.

15.

16.

17.

18.

9-7

4y2 - z2 = 16 , x = 0 ; z-axis

x2 -4x2 = 100 , ; z-axis

y2 = 8z , x = 0 ; y-axis .1r

0 z=axis361? 4z2 = 144, x = ;

z = y3 , x .=%ge;

z = y3 , x:= 0.; yi.axis

19. If a curve in the yz-plane represented by the equations f(y,z) = 0

and x = 0 , show that, if z > 0 , an equation of the surface obtained

by revoiVing this curve about the y-axis is
4

x2Ti2

t

\ ,

9-7. Intersection of Surfaces. Space. CUrves:
' 1

In order to visualize quadric surfaces we have been discussing the inter-

sections of curved surfaces and planes. This situation is represented by the

'simultaneous solution of two equations,apCli as

\

(1) )
2 2 2 -x + y + z . -52

z = 3..

In this case, by substittting z,= 3 into the first equation, we have

16x + y2 = lo , an equation of the circular section of the sphere in the plane

z = 3 . This circle is in a plane parallel to the fir- plane, has itp center

at, (0,0,3) , and has radills 4 . It is completely describe& either by the

a

first .pair of equations or, more simply,Iby,tpe pair'
1

.

'

'' (2) 4 ib
X
.2 + Y2

= 16,
. .

. .
z = 3 .,-.

But Equations (2)- represent the intersection of.a cylinder and.s plane. Or

we might have -

I

:
.

,
t representing the intersection of a cone and a cylinder. In each case the
f

circle Which is the intersection of the two surfaces'is the same. You might

like to 4.rify this by findings;
((the

solutions., (Equations (3) have
. ,

1 \' , \I \', , \an adgtional,sgution set.)
V .. "\371 1

..

` 0

' "L--- ; 3 Ti2i - i
( , ,-

% . ,i ..;

,....,, ,..,.._

x2 y2. pi-2

576

- x
2
+ '2,

= 16 ,

0
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t

It should be intuitively' evident by now that there are many pairs of

surfaces which intersect in the circle described above,(. Earlier in your
0

mathematical training you encountered this situation when you described a line

as the intersection of two planes. There are infinitely many planes containing

a given line, and any two off these planes may be used to describe the line.

Similarly, there are infinitely many surfaces passing through a given curve,,

and this curve may be represented by the equations of gliy,two of the surfaces

having this.curve as their intersection. Such an intersection is called a

space curve. (It is perfectly correct to describe a plane as a surface and a

_line as a curve.)

From the many representations of a space curve, we try to choose one which

gives us immediate information about the shape and location of the curve. For

example, Equations (1) tell us at once that the intersection of thfir graphs

is a'circle and lies in the plane z =,3 , but they do not'show us the,radius

or the location of the center of the circle. EquatiOns (3) indicate that the

intersection of their graphs is a circle of radius 4 , with its center`on'the

z-axis, but we do not immediately zee the plane of the circle. All of this

information is available at first glance from Equations (2); hence, this re-

presentation is likely to be our choice from among the three suggested.4,

The representation o Equations (2) is useful also in sketching this space

curve. Recall that by eliminating the variable z from k2 + y2 + z
2

= 25 ,

we obtained the equation

x2 y2
=

which represents a cylinder whose generators are parallel to the axis of the

''missing variable, z . Shch a cylinder not only contains the curve, but its ,

equa ion is also,thelequation of the rojection of the curve on the coordinat6

pl . For this reason;.this cylinder

,is sometimes called a protecting ,

cylinder of the spade curve. If the -

other variables are removed, other

projecting cylinders are obtained;

since these cylinders contain the 9

curve; any two. may be used to, show the

intersection. Interpret Equations

(2) i this way, we thi of the'plane
,-.

: z_..- 3 as a cylinder par lel .4) both ,
Figure 9-20

, the k'-axis and the y-axis. At the sketch, we draw the proje6iing cylincler,

40,

' 2
Az._ +

2
=',10 and show the plane z 3 intersecting, it .(Figure 9-,20) .

(
r

1- ',J312 (-



or'

Example-1, Find simpler equations .for the-curve

2 2 2

27 + 9- 3'

x = 3

Solution. Let x = 3 in the firit equation to obtain

'which becomes

9

1 I

2 2
y z

9 3 '
:

y
2

z
2

2

9 T-

2
Y z7 71

The curve is an ellipse represented by

2 2
y z

"6" -1-

, x =

1

3.

ExaMple 2. A typical problem from calculus could be stated as follows:

Find.the volume of the region in the first octant bounded by the Surfaces

x + y = 4 , and'the coordinate_ planes.y2+ z2+ 2x= 16 ,
/ -

.4
As a st n this problem, you should Make a reasonably a arate sketch

of the boundaries of the region. (You can find the volume When you study

calculus.) We first find the traces of thesurfaces.,One_sUrface6is a

paraboloid of revolt:Aim and ,the other is a plane. Their traces are shown in
99,

Figure 91-21., These traces, alo2g with the coordinate axes,- provide us with

all of the edg# of tile solid e c pt ones This edge is the space curve which

is the intersection of the parabo lOid and the.plane + y = 4 . To,find this

edge, we eliminate X from the equation pf the paraboloid and obtain

9.

(y - 1)2 +'z2 = 9

,guicajecting cyliffd* parallel to thp,X-axis. The projection onithe yz-plane,

ii a circle with center at f0,1,0 ajnd radius 3 , as is shown in the figure.

The space curve is represented

-1

373

:3 7
4d_

.4*



' A

(Y.-

4x + y =

and wes now describe how to loca'e some pdints on it:

Figure 9-21
-

Since y is the variable appearing in both equations, we choose a point,
.

P ,.on the y-axis, and we draw lines parallel to-the other axes intersecting

the traces of Equations (5) in points 'A. and R , as shown. We now qomplete
oe

the rectangle by drawl.ng lines parallel to the x-,and z-axes from ta and R .

e: Other, points may beThese lines intersect at, S , a point of the space

found in a similar manner, and when these points arrjvoined by a smooth curve,
I

Aa. ',----- ". li_.
the figun!k4a,COmPletedi

. EXampls3. Sketh the curve delciibedby

'x''= 2 cos t 2.

y = 2 sin t
*

Z =
g;

.r, 374



--,,4.616

Solution. If we squax'e both members

of the first two equations and add, we

Obtaifi

lF

x
2

+ y
2

= 4 .
u.
4- r

This represents a circular projecting \ojecting

cylinder of radius 2 whosaxil is,

the z-axis. All elements of.,the

solution set are contaided in this

cylinder, and since z is directly

proportional to t , we note in

Figure 9-22 that the curve is an ascending spiral "wrapping around" the

cylindrical surface. This curve is called a helix.

A

Figure 9 -2

'97,7

$.

We might view this differently by eliminating the parameter t . Then .

we have

G

x = 2 cos
2

y = 2 sin
2 /

and the curve is seen to bp the intersection of two,projecting cylinders whose

cross - sections are sine (or cosin4curves. The elements of one cylinder are

parallel to the y-axis; the elements of the other cylinder are parallel to the

x-axis. If you wish to build a model for this problem, you might use two
4-.

pieces of eprrug d cardboard.

Still h view of this curve may be obtained by writing the equations

in cylindr cal cordinates. We shall consider this in the next section.
.

4 Exercises 9-7

101

Name and describe the interspetioh of each of the following pairs of

'equations, and write for each a simpler pair ( there is one)).

2 ,e(a) x + y
2

z ='1.4°
-
,

y = -2

(b) X
2

+ y
2

4. Z
2

=
/I

4 F 3

( . 1

375 .

3 7 9



94

x2
2 t.

x + y, = ,

z = 0 .

2 2 2
(d) x +y? + z =

t.

z = 0

(e) 'x
2

+ z
2

= 25-,

Y = 5..

2
x
2

+ z = 25 ,

z = 0 .

2
y2x + y =,50

x - y = 0 ,

x2 8y2 4z2

z = 1 4.

2 2 -1 2
x +3; - ,+z = 12 ,

(f)

(g)

(h) 12 ,

x, = 0

x2 + 2y
2 + 8z2 = 8 ,

x

(k) x
2

+ 2y
2 + 8z2 = 8,,

y = 2

(2) x2 + y2 - z2 =. z ,

x2 + - z
2

= 1

. t

2. Make a, sketch of the region in the first octant bounded 'bythe given
surfaces and the coordinate planes.

5.2 = 50. arid, under .the plane

f.
and in the half-space forked

4
'(a) Inside the cylinder x

2

x + y = 10;

2
(b) Inside the c Linder y

2
+ z. = 16

I

by x + y = 6 ,which contains 'the origin.

x2 + y2 :=- "z` and unaer the plane z =' 2
-..,

d

y2 + z
2

= 25 :and-inside the cylinder r____-

Inside the paraboloid

Inhide the cylinder

2 2
x + z =.25 .

Inside the sphere, x
2

the-parabolol.d

,

3 a e
,

+ y2 + z
2

= 25 and inside the cylinder

18z =e1+x2 9y2 and in the half-spaies formed

.):1 7 3 *filch containsthein:igi( Ca-?

316
t

is'
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3. Find the quations of the projecting cylinders of the curye whose

. eciVipna are-

2 2 2.
x + 2y, - z_ =3 ;

2 2 2 ,410Px - 2'z = -3

Sketch the curve by making use Of the projecting cylinders.

* 4. A calculus problem requires the student to find the height above the

xy-plane in which tie plane 2x + y = 2 intersects the paraboloid

z = 16 -.4x2 - y2 Find this height by sketching in one of the:

coordinate Blanes the trade of a projecting .6--yAlider.
/

* 5. A calculus probleni' asks for the volume inside the cylinder
s

x2 + - 2y = 0 and between the xy-plane and the upper nappe of the -

-

cone z
2

= x
2

+ y
2

Make a sketch for this' problem,' showing the

portion of the region in the first octant.

9-8. Cylindrical 'and Spherical Coordinate Systems.

Some prOblems in science that have a settinein 3 -space are easier to
--

handle if they are expressed in terms of cylindrical or sphertcal.coordinates.

If %the surface has symmetry with respect to a line, then cylindrical_coordi- °

nates may simplify the work of the problem. If the surfape had-fioint-eynnetry,°

the use of spherical coordinates may provide a simpler analytic repreentation

and solution. ..4
0,1,
/

, .

'Cylindrical C rdinates e a combinat ono;,polar and rectangulai

- -coordinates. A po ar coordin e system
4 ...:

=- - A
.t. ^ ' )

is used in.one coordinate pl e; the _ A ) \1...., ,,

axis perpendicular to this pl e has a '' .,- ,
. ';' ;0:

linear coordinate system. A int is 'r. r .

designated in. cylindrical c0c5 dnates
.

by an ordet-ed triple. We use (r)e,Z) ,

as indicated in Figure 9-23. The first ?
O

-
..

two coordinates are the coordinates of it.:

.. .

.
the projection of P in the polar plane. ., ....

)

' The 'third coordinate-As:--the..Coigidiriate
, t"

,:,,
..

of the projection of P on 'the linear X

I

\0,

:4

axis. 'In this figure we Ina.y verify what .4igure 23"

(

e ,

I,

377
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. -

we could have guessed; the,transformations from cylindrical to rectangular

form, and vice versa, are accomplished by the same process we used in

Section 2-4 to relate polar.and rectangular 1d8C7Thates. The transforming

-equttions are

r cos

r sin e

z = z

r
a x2 +y2

tan e 7 x where .x10

z = z

The simple equation, r = k , represents, in cylinchlical coordinates, a

right circular cylinder with radius k :whose axis is the linear axis. Thi9

fact accounts for the name applied to this system.

Example 1. Write in cylindrical coordinates the equation of the sphere

with radius V5 whose center 'is at the origin.'

Solution; In rectangular coordinates the equation is x2 + y2 + z2 = 5

Since r2 = k2 + y2 , the equation is written x2 + z2 = 5

Example 2.° Transform to rectangular coordinates and identify the surface,

wh e evAtion in oyfindrical Icoordinates is cos e + r sin.0°+' 2z = 0

Solution. 'Using the transforming equationsx we obtain 3x + y + 2z = 0
. -

the equation of a plane.

'Example 3. 'In connection with the helix. iriIcample 3 of the previous

section, we suggested a sl:lutiln using cyl drical coordinates. We write

in pla e of t , use the transforming and square as before,

.- obtain ng

2- 2
r
2=x +y =.4cs e 4sin2e,

2
r, = 4( cos

2
e + sin2 e)

or r
2

= 4 4.c

Since r = 2 Oas the same graph as r
2

= 4 ,,we obtain a 'Ample expresdion

fore tlie helix:

ti

, .

378 ,

2
4.4



r.= 2

r = 28 .

ascqpding spiral around the z-axis,, elh
,

Since this helix is a constantly

we can locate some of its.p5ints by a (2 ,10:457r )

device we might describe as fixing

"ribs" to a "spine", or of locating (2A1v3r)

1111111111111:

the "ribs" are attached. (We are

z-axis will be the "spine" to which

(2. 2,÷roo

Y

steps on a spiral staircase. The

using a condensed scale on the z-axis (2,0,0)/

to
.

save space.)
x

Figui^e 9-24

We first locate a point at (2,0,0), as shown in Figure 9-24. When

8 = 2 we have rotated to a point one-quarter of the way around the "spine",

9-8

6

and we have ascended a distance n . We fix a "rib" to this point, We might

next stop at 8 = g and fix another point.' This process can be'continued as

long as desired and the points may-be conneated by a smooth curve to sketch a

poAton of the helix.
a'

Another useful system for locating pointsin 3-space involves the use
.

of spherical coordinated. In this dysteM.the coordinates of a point P. are

determji,ned,by assuming'a polar coordinate system_in the plane determined by

the oint P and the z -axis. The
,

positive half of the z-axis is the

he positive sense ofpolar
,

tilt. polar le is From the polar axis

to ray POP The polar distances

d(

(I)

1

,P) is denoted by A land the

measure of th polar angle by ,o . In

the xy-plane he
,.,

usual system of polar
i i r

angles-is assumed. The projection of

'13 in the xy-plane determines!the

terminal side Of a polar angle of 'e

.measure 8 . These three numbers repre-

dent the point P and are called the

spherical coordinates of .p . ,They'gre.

written as an ordered t4ple,I usually as (P,e,,) g Figure 9-25 this

system is used to name the point which in rertaitgular coordinates would

P = (x,y, z) . .

379,

3'33'

e '

Q

Figure 9-25
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In order to relate spherical coordinate's and re tangular/toordinates, °

tbtain (from Figure 9-25) the folloWing relations: N,
,

d(Q,m) = d( 0,Q) cos e cos e

= d(O,M) =e1(0,Q,) sin eillt ,P'sir1 4;, sin e

z = P cos 4 .

The derivation of the equations for relating Spherical coo-Minutes and

tylindiical2 coordinates is left as an exercise.- .it

EXample 1. Write in spherical coordinates the uation if the sphere

with radius 15: }whose cater is at the origin.
(

0

Solution.

obtain (P

Since, P is the distance from the origin to a point, 144

6 P =a /5 .

...--- .

This simple equation ford, P-= k., for a sphere inspheiical coordinates
,. .

accounts for the name applied tothis.syStem. 'Cotgler; this wit r = k in
.

cylindrical coordinates, and r = k in polar coordinatei.

.vs? .

le2. Transform to reetangUlar.6 cylindrical coordinates and

identify the surface whose equation'in sphdrical coordinates is P sin t = 3 .

A'

eve

Solution. We sguare both members bnd obe&in.

2 2
-P sin = 9 .

i

Multiplying the.left member by 1 (disguised as cos e + sin

I

P2 sin2 (1)(zos2 e + sin2 e) = 9 ,

P2 sin 2
2

e :2 in2 in
2'

WhiCh in rectangular coordinates

x
i

, ,

+y2 =9 .. .

---

i
I cylindrical coordi

t

as We have, simply

7' '''' A
p..r.... - 3

This is the equation a right circular lind r with-radius

is he z-

-

we have

-
o

61

wIlitse. axis
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9-8
- )

It may come as a surprise When you "realpe,that very likely you used

spherical coordinates before you knew what they 'were., n terms of the position

of a point on the earth, e is the longitude, 90° - is the latitude, and

(assuming the earth is a sphere) p is the earth's radius.

. 4 .

Exercises 9-8

1:- Derive transforming equations to relate-cylindrical coordinates and

spherical coordinates.

2. Write the rectangular and thO cylindrichl coordinates of the points

. -.Mose spheriCal coordinate; are
''

.. (b) (3,04) .
.

.* (c.) (2iii ,i) . .

...-(a) (14-,i,i) 2 .....'
4

P S 1

3. Write the rectangular and the spherical coordinates of the points Whode
.

cylindrical coordinates are s .

(a). (2, 3)

(b) 5

'(c), .

(0 (4,1,2) .

Write the cylindrical and the spherical coordinate 9f the points whose

rectangular coordinates are

(a) (2,3,0) .

(b) (0,6,3) .

(e),.(21f,2,4)

(d) .(4,1,2) ;vie

381

a
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5. .Transform the followipg equations into cylihdrical coordinates and into

spherical coordinates.

2 i
(a) 'x + y = 25

(b) xz = 4y

3;2 + y? = 8x

.
(d)

2 2
.+ y = 3.z .

.6. Tpansform the following equation into rectangular coordinates.
. .

( 'p.= 6

(b) r = 6

(c) z = 6 r

ot)
z2 r2

7. Identify and describe each of the following surfaces.

(.9.) r = 3 .

(b) e = .

=

(.4) m = .

4.

: .,..,
(e) P.,e9s 4) = 7 . 1

(f) z = r cos e .
.

(g) z = r , %
,

(C) r = 2 sec e .

8. A circular cylinder'of diameter 4 intersects a sphere of radius, 4 so

that an element of the cylinder contains a diameterof the sphere*,

Choose axes and write equations tifthe bounding surfaces in

rectangular coordinates,

(b) cylindrical Coordinates, and

(c) spherical couirdinhtes.

0 .

9-9. Summary.

Our work in this chapter has been limited to the most important and

familiar .quadric surfaces, and we have'lotated the' coordinate axes so as to

get simple equations for them. Students who have enjoyed this work may like

to pursue it further by looking up such topics as ruled surfaces, hyperbolic

paraboloi ds, curves in space,, and surfaces of higher order.

re erer, r 382
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. ,, - .

0 ...,. ,

Our Oyjective'here las been to develop methods to help you visualize

surfaces and curves in apace., The methods we-have used are general, and should

be of use'to you'in visualizing or sketching, partiCularly'in yOur work in

calculus and its applications:

Surfaces in space are represented by one equation,

quadric surfaces, the equation is of the second degree.

'given by the interiedition, of two equations (or three in

f(x,y,z) = 0 ; for

Curves in space are
,

parametric form)',

f(x,y,z) = 0 and g(y,z) = 0 . The most important'ourves for sketching a

surface arp the -traces-6'nd the sections parallel to.thp coordinateiplanes.

*

.The surfaces we have stud4d include the cane, cyrinder, sphere and

ellipsoid, elliptic paraboloid, and the hyperboloid. A cone is generated by

a line moving about a line with one point fixed, a cylinder bya line moving

parallel,to a fixed line, and a surface of revolution by a plane curve revoly-
0

ing about a'line in the plane ofsthe curve. For the limited cases we have
f

studied, the quadric surfaces may be identified hy their sections parallel to

the coordinate lanes as folly: ,

Quadric Surface

Cone .

Elliptic
.

ar circular
'cylinder

Sphere

Ellipsoid

liiptie paraboloid

'

Hyp-erboloid

EF

Par lel to Coordinate Planes

Conic sec ions, including.degenerate.cases.

Centr= ellipses or circles, parallel lines,
6 line.

Cir les, includirig point-circle.

lips s, including circles, and points,

Psrahol llipses, including circles and
points

,'Ellipse? including circles and points, and

hyperbolas

In sketching a surface -f(x,y,),-, , it is suggested that information4,

about it be Obtained and g aced on the graph in the following 'order:

1. Intercepts Set t of the variables equal to zero'and solve the

resul ing equation for the third variable to find the

2. Trace's

inter epts on gaol axis.

Let C
e quat

plane

p'variables equal zeros one at a time, to find the
_ _

ons Of the trages*- the sections in the coordinate

. 383
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SeCtions Let z = k , where k,is a constant, to find the sections

parallel to the x1/- plane, for example. You can build up

a sketch of the figure by using enough differett values of

k . For4. this purpose, select'the sections easiest to draw.

We,determine symmetry with, reipect #o the xy-, yz-, or n -plane by

checkinOhat the equation of the surface is unchanged when rz , -x ,or -y

'is substituted for i x , or y respectively. Knowing the symmetries of

a °surface helps in identifying it and sketching it. When E;.surface is sin-

, metric, we often'6rawr only the part.in the first octant.

Certain curves which are the intersection of two surfaces were studied.

7
In addition to using intercepts and traces, we used projecting cylinders to .

1

help us visualize and draw space curves.

Finally, cylindrical. and spherical coordinates Were introduced as other

ways of describing the location of points in space.

Revievimr214
....

,
n' ceDiscuss and sketch the surf... epresented by the equations in 1.to 20.

1.
.2 2t 2

16x + 9y ,+ 16z =-111-4. 11. ,

2' 2
9* - 117' = 0

2.
-

5x
2
+.5y

2
5z

2
- 45 = 0 12. 361/2 + 25z

2
= 900x

.3.
x2 y216 13. :rlox + 25y

2
+ 16z? =

4. 36z = 93? + 41/2., 14. y2 + z
2

:7400



,Discuss And sket6h the surfaces described in Exercises 21 to 38,p-iirite

anequationifor,each surface; identify those .that are not named.
4 Ns

21. A sphere centered at the origin with radius 10

22. An ellipsoid with axes of lengths 12 , 10 , and 8 .

23. A circular cylinder with radius 5 and axis the x-axis.
90'

24. A prolate spheroid,with'axes -of lengths 4 and.,-16 .

25. An oblate spherdid 4th axes of lengths 4 and 6 .

26: A cylinder with the y-axis Eis'its , and its trace in the xz-plane.

the ellipse with equation 25x
2 162 = 400 .

27. The surf ce obtained by revolving the curve with equations

16x2,- n2 = 144 , z = 0 about the y-axis.

, .

28. The surface obtained by revolving the curve with'equations i2 = 4z ,

y = 0 about the i-axis.' .

29. The surface obtaied b4 revolving the 'curve with equations z
2
= 8y ,

X = 0 about-they,Axis.

30. The surface obtained by revolving the curve with equations'

25X2 - 36z2 = 900 y J about the x-axis.

, 31. Refer to Exercise 27, but revolve about the x-axis.

32. Refer to Exercise,28, but revolve about the x-axis.

33. Refer"to'Exercise 29, but revolie shout the z-axis.

34. 'Refer to Exercise 30, but revolve about the Aaxis.

35. The surface obtained by revolving the curve with equations

.
25x

2
-loy

"2
= z = 0 about thq x-axis. _

36.:_Refer-to-Exerb-fge 35, but revolve about the y-axis.

37. The' surface obtained by revolving the tine with equations x = 2 , y 0
. - .

about the z-axis.
, , .

38. Refer to Exercise37, buf revolve the line withejations x = 0.

39. Write an 'equation for tie \ocus of points 10 units from P =(3,-2,1)

40. Write an equation for the locus of points 5 units from the y-axis.

. ,yy
ve'
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yl. Write an equation for the locus of points equidistant frot the plane,
7x= 0 andJthe point (6,o,,o) .

42. .What are the graphs of the following equations?'

. - 2 2,

,

2
_a. x z

, 7
2 2 . 2x,z

(b) ,

y
+ 0

.1 22 .y.'2

(c) t +49 +

. t 2 z2

(d) -a- 7 =
x2 y2 z2

(e) .+ - 7 = 0.

.

2 2 2x

/ ;cp !y2
(g = 1

x2 y2 2
(h) - T.6 .= 0

2 2 2

(i) 24c-. - - =
.

43. Points . A" and lc are '4 units apart. Write an equation for the locus
-

\bf aipoint the sum ,Qf whose distances i'rom A and B is 6 SiMplify

the, equation, sketch the graph, and identify it.

"44. FollOw the same instructions as in the previous-exercise
'

but let the

difference pf -the distances be 2 .

!,
.. ,,

45. A pencil with a hexagonal cross-section is sharpened. Describe.tpe space

curve which ybu pee ds the edge of the painted surface of the pencil.
.

..

,.
.

, 4 f
46. A cube having edges 1 knit ih length has one vertex at the origin and j

three of its fa6es each in one of the Coordinate planes.. A plane

contains the.nddpotnt 'of the diagonal of the cube from the'origln and is
1 ,

perpendicular io the diagonal. Find the seCtfons of this plane on the

faces of the cube. Whattrkind of i'igure is this set ofsedtions?

47. Sketch the intersection o' the surfaces

.- 2 2' 2
x2

2/ ,' x y2 +.1z = x y n 4y = 0

fh the first, octant, using .projecting cylinders.

t

40. In each of ihe.fo4owing gases, classify the given
.

projecting cylinderg of the curve of, intersection,

(a) x' + 2y2'+ z2 8', 3x2 + 2y -

rb) x2 2y2 r:
4.; -2x

2.
y2 + z

2$
2

2
z = 8 .

(c)
2 e 2 2 o

x + y, + z = , x + -=

(d) x2' + y
2

z ,
x2

+
*2

b 4

386:

surfaces, find the.

and s,ketch-the curve.
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N 44.
149.1., Sketch the iolid *in"the first. octant bounded by ,the given surfaces

the co'brdinate 'planes.

( a). x2 + z
2

= 1

(b) y =,x ; z

( c ) x24-4 y2, _'9

(a) 2
+ yam=x 36

y = 2 .

X + x =

z = y
2' 2-

x + z

= 2y

= 25

..J

50. Express each 'equation, in.terms, of two other coordinate systeins. (Assume
.

that *a1.3,- relate .to 3-space. ),

(a) z =5 . x2 .72,=.16

.
(IT) x2 + y2 =;14:x.. (h) *r = 2 cos 6.

y.
(c) r = 7 (i) P sin2, = 2 cos

(d) x2 y2 + z
2

= 25 *(j) P sin- = .3 ;

( e) r2. t z2 = 9 (k) x2 + y2 = 611.

(f) P cos 4) .= 6 ('.Z) p sin e cod (t = cos e

rhailenge Pi7Obiems

bdscribe and Sketch the surfaces represented, by Equations I to 6 .
itlft

1., z = sin y 4. 4x2 +9y21-36z2 +8x- 54y- 72z C 23

'2. y = cos x

3. = x2 2x
,

4

1 1

2

387

5. x2 + y2 -
2

+ 2x + 6y 4-87,,.=

6. z =
2 .

y
2..

x +

2 2
x - y

,

V
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Ap

Chapter 10

GBOMETRIC.TRANSFOITIONS
r

10-1. Why Study Geometric Transformations?
p-

In previous chapters you have,had consid§rable experience in relating a
.

graph and its analytic representation. Because of their importance, conic

.
sections were Oven very careful treatment., Despite this emphasis you may

ri
have noticed that, with the exception of the\circle,:a11-the conics

4
you

. .

sketched had their centers, foci, vertices at the origin and dne or both of
'1

, .

the coordinate axes as axes of symmetry.
, .

.

However, in various studies where the graphs of the 'equations of oohics

(and'other curves), are of importance, one encounters more compliOated enalytio
1

representations of. these Curves. Consider, for example,ithe following pairs

'of eiations:''. .'
.. ,

, .

G

(1) x2 +72 + 10x - 4y + 4 = 0 x.
2
t y

2'
=45 ;

(2) :0 -'y - 4x;- 6y = 30 = 0 , x
2

- y
2

= 25 ; .

.(3) y2 - x - 6y + 11 = 0 ,'3°2 =tx . ,0
...

... ...
l

8

)

.

.

. ,

If yoU wsnOp the trouble of graphing all six of_these equations, you'

would find thttAch pair of equations represents a Pair of congruent graphs;

They differ only in their plecetent with respect to their' coordinate axes.

If,otxe istinterested in geometric properties of such graphs, it is clear that

."the second equation of each pair is simpler to analyze'and will quite readily

yield,information regarding' intercepts, 'symmetry, asymptotes, etc., relitive
4 C..

to itacoordinate system,
t

...'''

o It is one,of the purposes of this cAaater to show hOw wacan relate such.

a compiitated equation of a curve to a gimpler equation of-the same curve
---, ...,

represented in a different coordinate system. The operlii4h Which performs
,

. this task (among others) is commonly referred to as either a "transformation
, :

of axes" or a "transformation of coordinates%
-.7,-, ----* .

'1 4*
0 e

. .



In thik'chapter,We will consider two types of transformations which .
1

accompliith the purpose just described. The type we'treat first (in Sections

2 and 3) is one wherein the operation is performed on the axes and the graph
%..

Under study remains fixed... We then turn our attention (in Sections 5 and 6)
/

.

to the type wherein the operation is
performed on the points of the curve,

whale the, axes remain fixed. We ref r to the latter type as, aspoint
.

trans-?
.

%, ,

formation.,
i

"
. 4..,

Our ,task i.akesort'one of two aspects. We may be given a relationship

beeween the coordinates of P = (x,y on a curve C and thp coordinates of

Pt = ,(il,y1) on a curve and then investigate the correspondence between

C 4rand C* . On the other hand, the-converse is considered,: ,Given two curves ,
,

,C- And C' and some correspondence between'them, we investigate the manner

which' the coordinates of any point P = (x,y) on C are related.to the
litcoordinates .of the Corresponding point P' .-- (.0 y') on C' .

_1 j
.

.

In the cases of the three pairs of equations presented earlier, the

corresponding curves were actually congruent and the point correspondence was
a

t one -to -one. In other cases the corresponding curves need slot be congruent

although there may still be significant relations between them. For example,

in Section 6, you will encounter a correspondence between a straight line and
P a circle under a transformation call an inversion. -.

Certain treasZormatiOnsFeserve geometric properties such as the measure

of distance between points on the original curve,,the mia-sure of angle between

L two lines, the order of points on a line etc. .,. While others do not preserver-

these properties. Discovering which geometric properties are invariant (do.._

not Change) under a set of tranSformations.ig of significance to the advanced

students of geolietry because these properties help them to classIfy"the large

mumber,of geometries which have been created. This topic is discussed in

Section 4.

We may a1scspeak.ofthe properties of a transformation. An important

-transformation'we shall meet in Section 6haa the property that:it preserves /,

measure Of angle but not necessarily measure of distalire. Transformation*
.4,

.1.ihih have this property are called conformal and have'many applications in
. -.

,-.
.

science.
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10-2: Translations.

Suppose we have a'Ourve in,the.coordinate plane and an,equation of the

curve. Let us consider the problem of writing an equation df the same curve

with respect to another pair of axes. The process of changing from vile pair

of axes to another is called "transformation of axes" or "a transformation-of
. -

coordinates" as stated earlier. -

One of the most useful, as,well as simple, transformations is one in

which the new axes are shifted in such a way that they remain parallel to

their vaginal positions and oriented in the same direction. Such E. trans-
,

formation is ailed a trarislation.

10 -2

THEOREM 10-1., Given, a coordinate system-in a plane4with origin at 0 .

The axes are then trapslated so that the new origin is at 0' = (h,k) .

If, .(x,y1 and (x.1,71) are the coordinates of, a poilit P. when

referred to the original and new axes respectively, then xl = x - h

and =y -k

or

) -Figure 10-1

391
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,Proof. .Let P = (x.,y) = 61,k) and P' = (xt1y1) .

,
.

(2) [11,k) + [x',y')

(he+ x.1,1e7-1- 30)

(3) Thus x' +h

, .

1 y r y! + k .

'If.0e solve these equationslor x' and y'

= x - h
of .

F y ,

we obtain the "inverse fore:.

We shall refer to the Equations,(3) or (4) as the'equations of translation.

Example 1. lila the new coordinates of the points

P
2
=.(4

'

-2) if he origin is moved to .(-5,5) .

4-, . .
.

4

Solution: Since h = -'3 ', k = 5,,.the equation8 of t;anslaAon

0
are:

414

i xt = x + 3 ,!-

. ..

.1,0 o I 0 11-' Y - 5 :

' Applying these equations, we see that the point P
1
-= (-3,1) now has the,

coordinates (0,-4) ,and P2 = (4,-2) 'now has the coordinates (7,-7) with

respect to the new axes.

a

.

Y I

o

- -4
:01=4-3,5)

it Pi= (-3a)

P:= (Or, 4)

! .

Pi= ( 7,-7) 4**

Figure 10-2

r.
V
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Consider an equation of acurve f(x,y) = 0 . By the equations of

translation, the coordinates x and y are' transformed resp&ttvely into

x' + h y''+ k . Thus the equation f(x,y.) = 0 changes ,to

f(x1.+ h, yt +lc) -= 0 . he two equations represent-the same curve since the. ''"

point P(x,y) whose coordinates satisfy f(x:y) = 0 is the same..as the point

Pt = (xl,yr.) whose coordinates satisfy f(x' + h, y'.+ k) = 0 .

To illustrate this, consider the line i in Figure .10 -2 passing through

e:points P
1

and P
2

of Exam 1e 1.* The equation of line* ,e is h

. . .

3x + 7y +.2 = 0 . We now replace x by x' - 3 and y by + 5 and the

cation of i is now 3xt + 7y' + 28 = 0.. 4,18' note that the coordinates of

_points = (0,-4) curd P21 = (7,-7) satisfy this last eqUation... The new

4
equa ion 3x' + 7y' + 28 = 0 represents the same line, with respect to the

new axes, and y' , with the new origin at..0° = (-3,5)

4

Example 2. Find the equation of the circle fx
2
+ y

2
+ 10x - 4y + 4 = 0

.

). after a transleitigion movesthe origin to the point, (-5,2) .
,r.

1 .

Solution: The equations of translation are x = x' - 5 , y = 10 + 2 .
A

.: Substituting into tile equation of the circle, we have

1 . (x' - 5 + (yt + 2) + 10():1 - 5,) -4(y' + 2) + 4 = 0

.
I .

... L

If we expand and.,collect terms, our equation simplifies to
rx:2 y:2

We infer immediately that the circle has a radius of 5 units and that its

.....Apntel*.is at 0' = (-5,2) . If you were to findi.the locus (or graph) of the

original equation, you would discover that you had precisely the same circle.

.After doinethis, you ould appreciate the advisability of translating the
(4 .

: Axes. Note that the princial differeAr in the two equations is that one

contains first degree terms and the other does not. .

The basic question l's: How do we know where to place the new origin so

theta complicated equation reduces to a simple one? this method is illustrat-
,

ed-in Example 3.,

1/44. , (6.

Example 3. Tr_anSlate the,axes"so that the equation of the circle

x2 y2
+ 10x - + 4 = 0 clan be written in a form which contains, no first

degree, term,

a
393 ,
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10-2.

Solution: .-. -;
. . . .

(1) , Write the equation iyi the form x2.+ 10x + Y2 - 4y = -4 and

complete. the squares as follows:
. .

(x2 +10x-+ 25) + (y2 - 4y + 4) '-,_ 4 + 25 -4,
(x + 5)2 +1ty - 2)2 = 25 .

or

(2 If we let x' = x + 5 and y' = y - 2 ; 93ir last equation becomes

42 2 1.
=+ yt 25 .

xt = x + 5 .

(3) We no that :thh equationsA4 are. the equations of,

Yi = Y - 2

translation to new axe's with the origin at (-5,2)

To show the wider %Saleability of this method, let us do one more

example:

,Dcample 4. Graph the'curve, 9y2 4(40x + 36y + 28 0

4r .. ....
4.

Solution. '
1 0. ,

. .

(1) Rewrite the equaitliin in the following form so that we can use the

.method. of "eolikleting the square ": .00

4(X2 + 10X) - 9(y2.:. 4y) *= 72$

Completing the sqdare:

<P

(2)

I

4( x2 +. I0x + 25) - 9(52 - 4y + = 36

or 4(x -1:" 5)2 - - 2)2"..= 36

Substituting xt = x + 5 and y' y - 2 , we have

uor

4
ii.xt

2 - 9y 2
,= 3

x12 yt

./0



ti

4

10-2

We recognize this curve to_be_a_hyperbola *with center 0 '= (-5,2) . This

curve can now be drawn by using the methods discussed in the earlier chapters.

Figure 10-3
,

The translatfcm. of axes can, be 'used to simplify equations of curves other

than conics, but at this point we 1.6.11.4"strict our discussions to such curves.

.

We will now generalize the above;
A

(1) A circle in the form" - h)
2
+ (y- k)

2
= r

2
,can be simplified-

to x'2 + y 2
=

(2) An ellipse in the or

,2xis y
2

a b2

7.

(x

a

h (y

13-

- )2
1; can be simplified

-

2
k)

2

.,
(x.2 -,h)'2 (y- -

2
k) 2(3) A'hyperbola in the fbrm can be simplified.4 1! 0;P a b

.

,e,
x y

a
2

r2 ,2 k/
to =1 . --

b
2

°ig
-(4) A parabola.,,in the form (y - k)2 =-4p(x - h) or (x - h)2, = 4p(3,---k)

can be simplified to y12 = 4pxt -or.... x'2 = 450 respectively.

(5) The equilateral hyperbola (x - h)(y - k) = C ,can be simplified. ....
to x'y' = c .

I.

395--

) _



e

/10-2

PI

All of
,
the above can be done, by translating the axes to a new origin at41

0' = (h,k) by use of the,equations 9f translation
'

''..,

-t--- -------(--- x-=-x1--+-h- _

.Exerciaes 10-2

1. Write the equations og translation which change the coordinates of

A = (2,12) to (5,8) with_reSPect to a new origin '01 . What are the

COordinates,of Of with'respect to the first origin?

.2: 'Determine the equation of the curve represented by

2x
2

- y
2

- 12x - 4y + 12 = 0 if'the origin is translated

xl = x +.4

.3. Gven the transformation
lJ

i ,

,

+ o
.

What effect does this'transformation have when it is applied to the

to. (3,-2) .

curves:

(a)
2 2 2

.?x + y = r

2 2
(b)

x y
1 ?

a b

4. Points' A = (%-2) , and C = (3,4) are vertices of a

right triangle. FinA the cooidfncites of these points if the origin is

moved to Of = (-4,-2) by a translation of axes. 'Using 'the new

coordipates give two proofs that an observer at 0' can present to

demonstrate_that a right triangle. -1

5. Translate the axes so that the equation of the curve

x
2

- y
2

+ 10x + 4y, + 5 g, 0

,degree terms. Indicate the

,axes, and sketch,the curve.

can be itten in a form cbntaining, no first

equatil s of translation; draw both seCs,of
. 4 '

)

. Given circle Q,: x
2
+ y

2
= 25, ind the coordinates of three points

A , B , and- C on this.cire e. en find their coordinates -1f
.."

prigip is translatdd to '01 = (1,- ) and the equation of the circle

with respect. to 01 Verify that the new coordinates of A , B , and
. .

C satisfy the transformed equatidn.
/-4,

39',
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7. A line L has the equation 3x - 2y + 6 = 0 . Draw the line, The axes

are then translated twice'in succession in accordance with ,the equations

x = xl-+ 3
(1) followed by (2)

/Sr', -7-Y" +5 .

--Find the- equation of L with respect to both the x'- and y'- and

x"- "- axed. Then find the equations of translation which would

per orm both operations at once. What would: be the effect of commuting

translations (1) and (2)4?

8. Sketch the cdrves after performing a convenient translation of axes.

Y

= x"

y2 t 2

Indicate the equations of translation and draw both sets of axes.

(a) y
2

- 6y - 12x - 34= 0

tb) 3x
2

+ 4y
2

- 6x '+ 8y - 5 =

(c)
2

2x + ox - 3y + 12 = 0

(d) (x + 11-) 12 = 0

(e) (y + = (x +2)3

0

o

9. Derive the equations for the translation of axes with the new origin at

02 = (h,k) without the use of vectors.

10 -3. Rotation of Axes: Rectangular Coordinates.

We next consider a rotation of a rectangular coordinate systbm C We

introduce a new coordinate tystem C' whose origin coincides with the origin

of C and whose axes are obtained by rotating the axes of Q throUgh an

angle ut,_. Thus oc: is an,angle in. standard position whose initialside is:

. the positive side of the ,v-axis anikhose terminal side is ,the positive side :\
of the x2.-axis. Once again we want' to discover the rel.ationship between the

1:J-coordinates of a point P in C and the coordinates of the same point in

The presen4e of the angle a suggests the use of polar coordiates. We

consider the systems of polar coordinates associated with C and IC' 'Iv

letting the polar axes 1)8 the positive sides' of the xeXis and theix24axis.
A sr

Thus, as we have seen in 'Chapter 2 , P is'the point (tf.17-'.0' in_ the jr

coordinate system whose polar axis is the,positiVe'side °fete x-axis,

F



10-3,
?

1i

\
Figmre.10-4

However, in the polar coordinate system whose polar axis Is the positive side

of the x' -axis, P is clearly the point (r,e - . Therefore,

x! = r 'cos (e - r (cos e,cos a + sine sin a)
(2)

= r sin (9...ma)
A
r (sib e cos a - cos 0 sin a)
'

Combining equations (1) and (2) , we get

(3)
xl = Le's a + y sin a

y' = -x sin a + y cos a

Theie transformation equ'tions are often called equations of rotation.
. L.

' ,,a,'.. , ,

.72,,

--------...--,q, k ,,.. 40

Example 1. In a given cbordinat'at.System,,tio points P and P have
r

. ,
the coordinates (2,3) an (-4,5) respectively, The axes are then rotated

...

through an angle of 300 . Find the rectangular coordinates 6,f, Pl and P2

With respect-t6 the-hew axes: ,

0

t

"1,0 -t , .

AA.
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1

\

-6.Solution: Since sin 30
o

=
2

-
1

and cos 30° = --i. , we have. upon
,

1

.

x.'. = ;;(-/tx + y)
1

substitution in the preceding equations,
. , ''

Y1 = ;( -x + ./§y) ,

(2 +3 :2 + 3/.Thus P has the new coordinhtes
1 2 ' 2 '4

+5 4 +51
Pi has the new coordinates

2 r 2

10-3
A

Example 2. Find the.equations )relating -coordinates in C and C' when

C' is obtaited from C by a rotation of (a) 45° , cb) -NIL.

4
z

Solution:

(a') Since sin 45° =-cos 45-
A

= --=" , wi.have, upon substitationin the

le" .

preceding equation,
., .

, 1
xl =

1X -, y = 4 X "1, y)

, 4" ' if- 1'2' .
7.,

-1 1= ---x -,-y _ yj

ig le

'(D) Since sin (-30°) =
2

and coq (-30,o) = we have

c JaIN ' 1
=

15x' 2X y

2
1 , "lqY = X

2
--y

We can solve far x -and =y in terms of xi and y' in Equation (3) .

,(1)_ x,cos a + y qin.a = x'

-x sin a -1-,y cos. a = y'

(2) x cost a y sin o cps a =.x' cos a,

x sing tx -,y sin a 6os a = -50 sin a .
. .4

4
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(3) Adding corresponding members, we have:

4 X cos
2

a + x ein,
2

a = x' cos a - yl sin a

,

or Acos
2
a + sin

2
a) = x' cos a - y' sin a ;

. hence,

(4) By a simil

We shall

x xl cis a - y' sin a

cess: y = x' sin Of + y' cos a

to either of the pairs of.equations

= x cos a + y sin a

y# = -x sin a + y cos a

equations of rotation.

x = x',cos a - y' sin a

or
y = xl sin 96+ y, cos a

Example 3. What - equation represents the graph of 2x2 + 4,/xy - 2y2 t 16

when the axes are rotated' 300 ?

Solution,

(1) Since e = ., the eque ions of rotation are:

2

1
x = x' cos a,-.y' sin e = -,(1330 -74)

y = x' sin ci + y' cos !!),= 2(x0 + lqyt)

(2) Substitutimg iltIrthe equation 12x2 41/xy - 2y2 = 16 ,
and per-

forming the indicated multiplications, we haVe

( 3)

243x12 21/3x/Y1 + Y12) + 1/(1,3x/2
2

- 2(x'2;+'21,x1y1 413y:2y=

Simplifying, 1,re have x/2,,=, y/2 = 4

2x'y' *02) g

: 41

16

We recognize the graph of this equation to be a hyperbola. The graph

in the x'y'- coordinate system can easily be drawn. =

fi
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-
Figure 1.0-5..

x.

Note that a rotation of axes through an angle of. 30° made the xy-term

sappear. It was the elimination of the xy-term which made it possible for

us to graph the -curve much more readily. What we have not discussed is ,a

method for determining thrOugh what angle a given set bf axes may be rotated

to eliminate the xy:term. Unfortunately we cannot develop this topic here.5,

`"'The-interested siudent will enjoy studying this topic in the supplementary

chapter.

44
,

Example 4. What equation represents th`e graph of x
2

- y
2
= 4 when

the axes are rotated 450 ?

I Solution

(1} Thee a5145° , the equations of rotation become:

x = (x!,- yl)

<

Y = 1(xt + yt)

-,(2) Substituting in the equattion x2 - y2 = 4 we have,

'2--(xt" + 2xtyl ) = 4
'2 1 2 20

2

( 3)
I

Simplifying, wt have xtyl= -2

5

4

401i
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.10-3

tfr

We have here two different equations of the same equilateral hyperbola.

J
y .

y
x,

fa

Tiguie 10-6

4

_In this example, the equation with which we began had no xy-term. Alter

a rotation, an xy-term appeared and the squared terms vanished, It may seem

at first,glance that w made a simple'lwo lem hard. There may be aigood

]reason, however, why w may 'Want to convey an equation from one fOrm to

another. ''' r4-

The equation xlyt,r. -2 tells us that the variables
e

inversely proportional to each other. Inverse proportions

occurrence in science. For examples, in traveling a fixed

xt y'
\\

are

are of freqlatt

distanceatLa

constant rate the speed is inversely proportional to the time; the velocity

of.the wind is inversely proprotignal to the spacing of the isobars (lines of

constant pressure)'on a weather map. We are trying to poinf-Out, in this

instance, that the study of a curve whose equation has-the fork. xy ='k., a

constant, may be more prbfitabla than the study of thecurve,whose 'equation

has the form x2 y = c , a ,contant:

We Vow generalize the situation discussed in Example 4. If we start

with a second degree equation containing no xy-term, a rotation of axes

through an Ogle al 2whose measure does' not equal , fqr any iktegerj,_

I

will usually introduce an xy-term into, the transZormed, equation. 4n
qm`

exception'to-this is the equation of a circle). A

77;"

`A.

a,
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asConsider the equation Ot, ,the second degree Which contains no xy-tetm.

2 ,

Ax + 'Cy + Dx +. Ey +..F = 0 ,

and apply the equations of rotation

X =X2

= Xl

cos a -.50 sin a

sina +yti vs a ..,

APper we substitute and,perform the indicated oper'ationt, this equation

becomes:

A2x2
2

Blx2y2 C;y2
2

+ D x + Ely + F2 = 0

,withLrespeet to file new axes. The new constants are in terms of the constants

A ,,C D E , and F . When AI = CI and B2 = 0 the equation represents

a circle. (The details will be left as an 'exercise.)

This last equation is called the "General Equation of the Second Degree"

and is written without prime's as follows:

0
f

4 ,

2
Ax + Bxy + Cy. + Dx + Ey + F = 0

Inthe Supplement to Chapter 7, we consider the method of graphing such

equations. In particular you will learn how to- remove the xy-term by a

rotation of axes through' a determined angle e . YoU have already learned

how to translate the origin to remdve the lineai( terms. When both of these

operatioss pre performed, the equation of the curve is in a form Which la'

simpler to analyze and graph.' e

v

Polar Coordinates. It was pointed outi earlier that when the' poler axis

is rotated through an angle whose measure is a , the point P = (r,e) swill

haye new coordinates (r, e - a) . Figure 10-4 illustrated this re1ation:

Let us now consider a 'polar equation

2

w I

'Which rePresentd a l'carke whose axis mikes an angle whose measure is a

the pole.; axis. a We illustrate an ellipse in such a position in Figure 10-7.

-
cos

1..

t-

403'
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kg"

Figure 10-7

00 If 'Ole polar axis is nowrotated through an dngle whose measure is a _

then an equation relative to the new polar axis, OA , will be

(2)
1 - e c

ep

os e" where e= = e - a .

?nu will recognize this as a polar equation of'a conic with focus tt the pole

and axis along theenew polar axis as discussed ip Chapter 7...
This notation enables us to graph the same curve by using a simpler

4

equation. This effect was observed earlier .14p'Section 10-3 which,Was non-

cerped with rectangular cikrdinates.

The polar equation which represents a circle is r = k a constaA.

This equation is independent Of e and is not changed by any change .\

Example. Graph x =
18

3 - 2 cos(e E,0°)

Solution, We first rotate the polar axis through an angle of

The equation of the curve relative to the neN.tpolar axis will be
-41!

18
3 - 2 cos e

_600.

1

This equation represents an ellipse with its focusat tlt origin and with

its major axis along the new polar axil,s as shown irkflgure710-8.

-...-.....-4. 0.*: -Al.*, 3...k -4...,., .4....- -,-4-.. ,
: .

,/

4c 7 111



Figure

Exercises .10-3

1.\* Points A = (1,0) , B = (5,-2) , and C = (3
*Jangle. Find the coordinates of these-Fo
rotated 150° . .Using the new coordinate

triangle has not changed.

) are vertices of a. right

nts after the axes are

show tia the area of. the

2. What is an- equation in terms of xt an yt of the line

3x + - 8 = 0 after the axes have b en rotated -30° ? What- is the

slope of this line in the new coordin te system?

3. Given the equation's of rotation

x ='xt cos a - yt ,
y = xf sin a 4: yt cos a .

SOlve these equations for xt Enid yt .

11.. What is an equation of the parabola x2 = y with respect to Waxes Making

an angle of 45° with the original axes? /Poi

.
1

1s05

4.J 8
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5.
.t

Find the transformed equation if the axes are rotated through the

indicated angle.

(p.) x2 - 1/3xy + ?y
2

= 3 = 30o
1 #

.,4b) 23x2 + 8xy + 1712 Iv 25 , e is the angle -whose tangent equals,
1

' (c) =- , e =art

(d) y
2 1,

= x , e4

A

2"
,

6. Given a circle mdse equation is x
2

+ yam= r . Find the equation .of

this circle with respect to tiv new axes-after the .original axes undergo

a rotation through any angle whose measure is a .

7. Graph each of the following artar rotating the polar axis to simplify the

equation.

) -6

(a) r -
2 - cos(e r 6e)

(1a) r
lob

+ 3cos(e - 1209,) '

-(c) r - 3

+ sin(e - 0 °)

Challenge Pro lems

1. 'Given the general, quation of ,the second detlgree

Ax! + Bxy .+ Cy2

r
' I ft

+ bx + r + F = 0 . Find an equationi,of its graph if

the axes are rbtated through an' angle of e .

4

Let /At , 431 , and C'

be the coefficients of x.2 x'y' and yt 2
respedtively. Prove that

B'2 /*AtCt = B2 - /*AC (This expression Be - lac is called the

characteristic' of the equatiOh.)

asp
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2. A set of axes ii rotated through an angle of measure. a so that the

equation's ofrotation are:

fx = x' coa a , P'4An oc.

xl sin y* CO8 067'.

This rotation is followed by a second rotation through an angle of

e , so that the equations of rotation are:

.

xt = x" cos - y" 3In e

ty' = x", sin + y" cos 6

Prove analytically that the coordinates (x,y) and *(1e,,y") are related

e
x =

)

cos (e,+ a) - y" sin (a + a)
,4
, y '= x" tin'( + a) + y" cos (e ; a)

Z.; A
measure

10-4. Invariant Properties.

It was mentioned in Section ;0-1 that certain properties of geometric

objects often retain the same under transformational Exactly which properties

remain invariant depends, of course, uponthesiven tramsfoimations.

The geometry ve arestUdying, caled Eaclidaan geometry, is identified by
. ,

the fact,that_the_measnre of both distande and angle of geometric figures

remain invariant under translation and rotation of axes. Many othei geometric
ri

properties also retrain invariant. These, in4ude the order of points on a line,

colll.nearity of points,- and concurrence q lines. 14epe;ste,shall discuss .only

the measures pf distance and angle. The other geometric properties viii be

eillustraibd in the exercises. r.

a 316.

a
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.

We shall first consider the distance between two points in a plane under

y'
P2= ( X2, Y2)

P;=(4,y;)

translation of axes. s

= ( 1, yi)

P; =(4, yi)

0:4(h,k)

0 x

Figure 10-9

In the figure, the x-axis and y-axis with origin at 0 have been

translated so that the new origin is at 01 .= (fi,k) with respect to the old

axes. Observers at both 0 and 0, look at the same two objects and con-

sider the distance between them. The observer at 0 refers to th4ir locations

as positions .P1 and P2 , and the distance, between dem as s While the

observer at 0' refers to the positions as P ' and 'R2'', and the distance

.

between them as st .

_

You and I know that s a s' . Btit how can the two observers reconcile

their obserfations? To answer-this question; -we list the known facts:

(1) = P 1'P2) =
2

)2 + (y2 - y1)2

and F31= d(E112P21) = Ax21 - x1')2 -

(2) The equations of translation relating'the coordinates are:

Using thesel-taA we have:

(3)
Itx21 = x2 - h

xil = xi -.h .

x' = x - h

y'

Therefore x2,! xi1 = x2 - xi )

408 .



"and YMI Y2 k

-Yll = Yl k

,
Therefore; ya! - .

Yl

10-4
,.r

We substitute the expressions from (3) in the formula for si

' t
obtaining' si = 1x2 - x1)2 + (ya - yi)2 which is identical with

the formula for s as was to be proved;

o

A numerical problem may help in making the above discussion clearer. Let
P1 = (t,e) , Pa = (4,2) and 0' = (5,-2) . Thus the equations of transla-

tion. are tx" = x - 5 and y' = y + 2 .

a
The coordinates Z2 , are (.-1, 8) and of °Pt: are ( -6, . Thus

.
d(P1',P2') = 1/2.5 + 16 = 1/41: , d(P1,P2) 4.P./25 , and we have

.

d(Pi,P2)

What if the %axes in the above Problem had, been-rotated instead Of

translated? We would there consider t following:

(1) The equations of rotation are:
ti

x cos e + y sin e ,

yi -x sin 6 +37'cos 6 .

xlt = xi' cos +yi sin 6 and, x2' = xt' cob 0 +12 sin 6 ;
so that

ylt = -x1 sin +yi cos e and yal = -x2 sin e*+y2 cos 6 \
Therefore, x2i - xlt = (x21- xi) cos 6 + (y2 7Yi) sin 6 , and

yii - = -(x2 - xj.X tin e + (ya - yi) cos e

(2) Squaring and adding corresponding member§, we Have,:

-..x2.1)2+ (Y2' = (x2 -xi)2(cos2 e+sin2 e)

t*?(y2-yi)2(cos2 e + si.;12 e)
.

or 1,.x2i x102 + (y2' 4 ,y11) 2 = (x2 - x1) 2 + (y2 - y1)2

',(3) Thus . d(P1i,P21) = 4(P3,P2) .

. . _.t- . - ' . 4,4
We see'that distance is

le
invariant under both rotation and translation of axes. .

.

and we state this ara theorem,:
. .

412 J.
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THBOREM 10-2. , The measure of distanct

under:

between two points is invariant

,
(a) a translation of axes

(b) a rotation of axes..

jhe invariance of the measure of angle under a translation or a rotation,

' of axes follows, directly from Theorem 102;

Consider 6ABC determineby A.= (xi)Y1)
,
B = (x;Y2) and

o = (x3,y3) . Under either one of the above transformations, the points A.,

B , and C will have new coordinates. They will now be designated as

A' = (xil,y11) , B' = (x2',y21) , and C! = (X31,y31) with respect to the

new axes.

Since distance-between points is invariant, we have AB = DIST ,

BC = Mr-, and AD = Hence, LOC 6.6.1BICI and the corresponding

\Angles are; congruent.

THEOREM 10-3. The measure of angle is invariant under:

(a1) ,.a translation of axes.

(b). a rotation-pf axes.

It would have been possible to prove the invariance of the measure of

angle under translation or rotation independently of the invariance of dibtance

discugsed here. We could start with the formilla
,

1 + mim2

cos e - ,
\

2 .

,,
i

..,

consider the lines 1.,1 i..a.ly+ by + c = 0 and L2 : a'x + bly + c' = 0 .

. .,
.,

Upon the translatioih 4,:i*s, the lines and L
2 '

with respect to
. ,

h) + h(y= + k) +,c = 0 ,,

the new axes have the equati

Or

. and

--The slope of

L.

Lit

Lit ax' +11y' + (ah,+ bk + c) = 0.

L2' al(xy h) + bt(y' + k) +c' = 0 ,

L
2

Oxley' + (Oh + h'k + cl) .= 0

,

l
a lb

s given by mil = = mi , and the sloe of L2' is given

.

4 3
410
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bymgt = - ET = m2 Since the slopes are equal, cos 01= oos e and e, =
A 7

for the principal Value. Hence the measure of angle is invariant under

translation. .1

0, The proof of the Invariance of angle under rotation involves considerable

algebraic manipulation and is left as a "challenge" exercise.

-

14

Exercises 10-4

1. (a) Find an equation of the line throdgh A =f2,1) and B2=-CD,4)

and draw the line.

(b) Find the coordinates of sA and B and an equation of the line

after' the origin has been translated to (-4;-6,) .

(c) Verify that d(A,B), is invariant under this translation.

2. ,(Refer to Eiercise 1 above)

(a) Find the coordinates of A an B and amequation of the line

after the 'axes have been rotated, 900. °

(b) Verify that d(A,B) is invariant under this rotation.

3. Given line L,: 4x - 3y - 112 = 0 pasping through A.= ,

B = and C = (3,0).
).

:(a) Find the coordinates of these points (now renamed At , , and Ct

respectively) and an equation of the line (now called Lt) when the

origin has been translated to (.1,-1) .

(b) Verify'that the order of points At , B' , and Ct is the same as'

that of A , B , and C . (That is, order of points on a line is

invariant;'

Verify that At , Bt , and Ct. are collinear. (That is,

coilinearity of Points is invariant under translation.)

4.. Given lines Li : 4x- 3Y- 5 = 0 , L24: x 257. = 0 and,

(C)

L
3'
5x - 3y - 7 = 0.

(a) Verify that L1 , L2 , and L3 are concurrent.

(b), Find equations of these lines (now renamed tit L2t and t
3
1)

after the origin has been translated to (3,-2)

- Ja
a
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(c) Verify that '14' L27' and L3' are concurrent. (That is,

.

concurrence of lines is invariant under tradslatiOn.)
. .

(d), ihat is the rela be ween the point of_conclirrency o

.

and-Iyian4 that fOr L1' ,. L2' and _

(e) Do parts (b) , (c) , (d) if, instead of translating the origin,

e aces are rotated 450 .

5. GiverY es Li : 3x 4: 2y - 8 =

and L2 : 5x - y '9 = 0'. s'

(a) Find the aute angle between L1' and 'L2 at'-their point of.

intersection. :
I

(b) Find equations of L1 and L2 (now called Llt and L2') after

the origin is translated to (2,2) .

(c) Find the ang e between Lit and L2' and verify that the angle

is invariant under translation.

Challenge Problem

Prove that the measure o; angle is invariant under a rotation of axes,

without making use of the invariance of diitance.

10-5. Point Transormations

In the. previous sections we considered an operation called the "trans-

formati axes". We now consider another type,bstranformation which

14*11`achieves s lar results from a different point of view. However, this new

pdint of view leads to significant results, such as thetransforiation'of a

given curve into a corresponding curve which is not.congiuent to the original.

This we could. not achieve by the original approach.
-;-.

We now-consider a trandfdrmation, called a point transformation, which
%

carries each point A into%nother point Al in the same plane. Thus the

points of a figure F are carried into a set of points forming a figdre r'

as shown in Figure 10-10. The axes remain fixed.

1

412
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Figure 10-10. ,

10-5

In this sense a transformation is an operation by ithichieach element of a

geometric figure is replaced.by another element. Another way of expressing

this concept is that a transformation is a one-to-one correspondence or

mapping of each point of A onto a covresponding point At . The plane is

mapped onto itself. A point transformation is written symbolically as
, .and A' is called the image of A .

We,can also consider translations and rotations as point transformations.

Figure 10-11, P = (x,y) .has been mapped into, = x',-y.°) by "moving" the

po nt horizontally a diitance of h and vertically a distance of k . Thus

= x + h

1 = y k .

Another way to write this transformation is + h, y + k) This

form will be used frequently in the remainder of the text.

4

I

y

4p1

(6)

k

e , Figure 10-11

This pair of equations.is similar to those derived earlier for a translation

'of axes; they differ only i signs of h and k . This occurs because

we are now moving the point and keeping the axes fixed.

ti

I

--s

). 1
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The following example will illustrate this fLt.

Let points A = (2,0) B = (2,1) and C = (4,1) be t e vertices of a

triangle as shown in Figure 10-12. These points now undergo a point trans-

formation given by

Thus

jxt x + 4

1-yt = y

A = (2,0) At = ( 6)

B = (2,1) 6,7)

C = Ct 7- 48)7 )

B' C'

B C
(2,1) (4,1)

A'
(6,6)

A . x

(2,0)

Figure 10-12
,

You will note that AABC has beep mapped into bAsillet . You should"

alsoobserire that the same "visual effect" coultt have been achieved by

translating the x7-and y-axes to a new origin at (-4,-6) . What we are

saying is that 4,0C would have the'same rLative position and appearance to
N

a person standing at point (0,0) as bAsIltes' would have to a person standing

at point (-4,-6) . Note that the coordinates (-4,=6) are the negatives of

the values of h and k usedtin the.point transformation.

A rotation is now caaidered
e

as a mapping in which each point in thd

plane is mapped onto a point the same distance from the origin as-previously.
,

When P Pt and Q ,.the.rotation will map LPOP' into the

congruent angle Q0Qt . In the figure, A = (2,0) has been mapped onto

434
4
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Ar

/y

I)

0, (2,

r3,-r
"*.

. .

Figure 10-13

g' I

.1%

10-5

A' (-61,1) by rotating through an angle whose m asure is 30° ; both points

are at a fixed distance of two units from 0 . A comparable visual effect

would hale been achieved if the axes had been rota ed through an angle whose

measure is -30° , and A" = (1/3,-I1 located On t e xi-axis. The idea-we

are emphasizing is that A has the same relative sition to an observer at

A" as A' has to an observer at A Also, OA

resift to the xr".- and y' -axes as OA' has with res

A similar statement could be Made regarding.the rota

for any general figure F . The angle of rotation co

any angl? whose measure is a .

We now return to the concept of reflection which :s discussed in detail

in Section 6-2 with'relation to the sythmetry of curves We shall now define

certain relfections follows:

(1) A' reflectiOn

as the same position with

ectto the x- and y-axes.,

ion of any pOlygon or

d be geheralized to,be

(2) A reflection

(3) Akeflection

terms of point transformation as

with respect to the x-axis is,gi

with respect to the y-axis isgi

with respect to the origin is giv

en by

n

n

by

by

Note our use here of the alternate notation indicated earlier

(x,Y)--.(x,-y)

(x,y) (-x,y)

in this section.

Reflections With respect, to lines L and L' paral el to the x- and

y-axes respectively are best treated by translating the )c and y-laxes to

coincide with L and L' In accordanCe with our practipe regarding note-

_tion we shall now refer'to lines L and L' as the x'- and y' -axes respec-

tively. Thus the point transformations are considered with respect to the

x'- and y' -axes and to the new origin at 0' = (h,k) as shown in Figure 10-14d.

10.5
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We can considerbreflections 141 re-gpect to any point or line but the

equations of transformation are of en difficult to state explicitly. We

consider, this subject beyond the cope of this text and refer you to the

Challenge exercises in'SeCtion 6 2.

Scne reflections of segments are indl,ratedin Figure'10-14.

\

P1

(xyd

P2

()cod

0

(x$Y) (x,-Y)

Figure 10-14a

PZ

(x21`1I2)_

x

Pi2
(X242)

Pi

lx1,101)

ee
I ,/
r/

P2

(1142r

0 x

1

Pp

y2)

4(-x,, -yd
(x0) (' x, Y)

Figure 10-14c

r.

11.

Y,

0

(x,y) (-xii)

Figure 10-14b

Yr

x

,01:04,10,
11'2'644

-.I.

;

ih,k) I is I
PI I

4.1.6

4 i 9

(x,y) ()eat)
(xt,y)--+. cx1,-y0

Figure 10 -14d



;

1

10 -5
.

.

In 'each Of the above illustrations, d(P1,P2r. d(P1t,P21) . It is
- ,

.
..... , .

possiUle to prove that distance is invariant under the set of all refleciions.

We present here a .proof of lime first case where a line segment is reflected

with reSpecll. to the x-axis,

Referring.to Figure 10r14a, we have d(P1,P2) )(x2 - x1)2
(y2 y1)2

and d(F1I,2t)i. 1(x2,- x1)2 + ( -72 + 71)
2'

. Since (-7 ;4. 7 )
2
=(3,_ 7,) 2\ 1 (y2

we d(Pi,P2) = d(F1t,F2')

lt,is also possible to prove that any translation, rotation, or combina-

tion of translations and rotations, can be accomplished by a series of no

onfethall three line reflections. A proof will be found in the Supplement

to4Pter'10. We shall Merely illustrate it here in three examples.

Example 1. Show how the translatlpn of 6ABC to the new position

indicated by ,16A"E"C" can be effected by a series of line reflections.

C"

Figure 10-15

.-r"In Figure 10-15, we. see that. 6ABC has been translated to 6A"B"C" by

a series of two refelctions. The axes of tgf1:ction, Li and L2 , were

selected parallel to AC .- Axis L
1

may be chosen freely but there is only

one position-possible for L
2

I

0



10r,

Example 2. .(Same as Example 1.)

C-'

a A

10-16

In Figure110-16, we observe that 6ABC has been reflected with respect

to axes t
1-

and L
2 /

with the result that it has been both translated and

rotated.

7 Example 3. Demonstrate hew axes of reflection can be selected to move.

'a directed line segment from one position to another given` position.

A

_L

AI

1
. I

ll
,I

B

1

Figure 10-17

,
\Qs

R

Rs

P

In Figure 10 -17. AB ;7-9-rEIT by a series of at most three line

-reflections by using the'Sollowing procedure.

(1) Draw AB and A"B" intersecting at P .

(2) Bisect-Cagle P and call the bisector 71=

(3) Refle t AB ,with respect to PPI. A =B= , the image of' AB', will

lie on A"B" .

, 418
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(4) Construct QQ' ,,a perpendicular to ETA" . Reflect A'B' with

respect to QQ' . rts image DC' lies on 4,131andicoincides with

B "A"
.9

(5) Construct R' ,., the perpendicular bisector of CD . Reflect CD

with respect to 1T, . Thus D -7+.A" and C B" and,the

order of ppints'on TV is the same as that of AB

The selection of axes of when 11771.7 is left as an.

exercise.

The effect of4 one or more reflections upon a geometric figure can be

\ studied analytically as well as by actual construction and observation. To

illustrate this approach, we shall consider the point reflection

(x,y) .fr*

Upon applying this transformation to the line L ax + by + c = 0 , the

equatiori becomes L' -ax - by + c = 0 or jx +.by - c = 0 . The lines L

and LI are parallel but the intercepts on the axes have different signs.**

Specifically, the line 2x + 3y - 6 = 0 , with intercepts (3,0) and (0,2)

transforms to the line 2x + 3y + 6 = 0 with intercepts (-3,0) and (0,-2)

When the same transformation* is applied to the circle x
2

+ 7
2

= r
2

T

we note that there is no change in the equation. This result verifies-the

fact that this circle is symmetric with respect to (the origin. A similar'
, e-\ *

result is obtained for the ellipse b2x2
a2y2

, the hyperbolas

b2x2 a2y2 a2b2
and xy 4 k , the cubic parabola y =,x3 , and any other

1-curvearthat are symmetric to the origin.

The circle x
2
+ y

2
+ Dx+ Ey + F 0 transforms into another circle

x2 + y
2

- px - Ey + F =,0 . The radii have the same measure but the center is

now at
' 2

(2 E). instead of at (- 2, - Figure 10-164illustrates the

effect of the point reflection (x,y)--q. (x'y') upon the circle

U : x
2

+ y
2

4x - .6y -,12 = 0 . The equation of the transformed circle is

,2
C' x

2
+ y + 4x 4-'6y.- 12 =0. C and C' 'both have a radius of 5 but

the center of C' is at (-2,-3) while that of C is at (2,3) .

4492 2
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10.-5

*L.

Figure 10-18,

A second reflection (x',Y1) (x",y") with respect to.the'same point

will map C' into C" : x2 + y
2

- 4x - 6y 12 = 0 and we observe that

C" = 6 . A similar result is obtained when any reflection is followed by one

of the same type and:with respect to the,same point or line. A number of

transformations, lother than reflections have this'same property. We shall

discuss one of these in the next section.

A variety of,poin't transformations will be presented in the exercises.

Exercises 10-5

T. Given points oA = (1,2) and B = (3,-4) . Reflect A and 11. with

respect tab the

(a) x-axis ..(c) origin

(b) y -axis (d) line x = 6

Verify in each case that d(A,B) is invariant.

2. The equation x' =.x + 2 may repreSent a point transformation along the

x-axis. Select any three points on the x-axis, find their images under

the transformation, and determine two properties which reMain invariant.

!120
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0'

3, Perform Exercise 2 for the transformation x' = 2x . Find three

properties invariant under this transformation.

4. Show that the angle between the lines Li': y = 0 and L2 : = x is

preserved under rotation throjab-an angle of measure
A

5. Show the effect of the mapping indAated for each of the following curves

by graphing both the original curve apd its image on the same, set of axes.

(a) y2 = x ; (x,y) --. (-x,y)

(lir x2 = y ;

(T). xy = 6 ; (x,y) ( -x,-y)

(d) 14x2 - 9y,? = 36 ; (x,y) (3x,2y)

(e) x2 + y2 - 2x + 4y + 4 = 0 ; (x,y) (-x,y)

= x3.; (x,y) b-Lx, -y)

= sin x Oxyy)

= tan x ; (x,y)

= 2
x

; (x,y) ---(-x,y) '

6. A = (-2,1) B = , and C = (3,3) are vertices of a triangle.

They are rotated about the origin through an acute angle to such that

tan e = . Test and verify three properties ,which remain invariant
. 4

under this rotation.

7., (a) Given the segments, AB and CD 0 shown in the figure. Show, by

construction, how AB can be mapped into CD by.means of line

reflections.

421
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10-6

(b) Trace congruent triangles ABC. and DEF keeping their relative

positions. Show how to map 6A160' into ADEF by the method used

in part (a) .

E

At.

8. The points on the folloirtng curves are rotated through anangle'of

measure, z with respect to the origin. Find the equations of the
0

transformed curves. Sketch each of the curves and its image on the

same set of axes.

(a), 3x +-2y 7 8 =.30

(b) x2 y
2

= 25 '

(c) y2 =

9. )Discuss the transfoimktion + 3,x + 1) 'by finding the

images of the curves in Exercise 8.-
443

.

10. Determine whether paralle lism is preserved when the lines

L
1

: + 5 b and L
2 "

- 2y - 3 = 0 undergo the mapptpg
,

OCa 41' k X 4' ,2X

.4,

10-6. Inversions.
.

A

We conclude with a dipcussion okNpoint transformation called an

inversion.
, , -,,

,
.4...,1

Consihr circle C with radius, r. and center at 0 . Select any
i .

point P i 0 r d(04.) :,--
1
r y and draw

.
7,, .

'OP With P as a center and OP *.



c.

. 10-6

as raditis draw ail arc intersecting .0)t at R . Finally, witht R as center

and a radius r draw an

shown in Figure 10-19

cirele be intersect at

*RP

Thus

arc intersecting VP in P' . The construction is.
\,

(Note that this construction requires that the

pbint R .)
s-

Figure 10-19

is isosceles since OP = RP ; 6ORP' is isosceles

O

since OR = RP' .

P) (O,R
LORP ZPOR = 'LOP' R and cisEPO 6.ORP' . Then

T(T,T ) d

d(0,P)
)

and

d(o,p) d(o,P). r2 . Two pgints P 'and, v, which meet this condition

are said to be mutually inverse points with respect to circle C .

When d(0,P) <;r ,f! the arc drawn with P as a center and OP as radius

A.1 not intersect the circl. 'In this case, construct the

bisector of OP intersecting circle at R and OP in S At 13 ,

.

endicular

construct Z ORT =-Z POR . Then ET will intersect OP in P' . It is

left as ari exercise to prove that OP OP' = r2 .

DEFINITION. Ap invenionis a point transformation _Alen maps

each of two arbitrary points which are mutually inverse into

the other.

; ---

Circle C it called the circle of inversion and point O. is -billea7the
,10

center of. inversion. Point P' is said to be the inverse or imageot P r

and vice - versa.

l23
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1

Each point'Onthe unit circle is its own imagf; each point outside this

circle has a niile image inside; and, with the exception of the origin, each

point inside the circle has a unique image outside. This is true because

if d(b,P) frrk,:we have d(0,1") > , and for d(0,B > r , we have '

d(0,p')01/41r . Yor any point on the unit circle, d(0,P) = d(0,P') = r .

We now obtain an analytic representation for such a transformaticn. For

simplicity, we let r = 1 .

11

Figure 10-20

Given a unit circle C with its center at the origin. Draw any ray OR and

locate on OR mutually inverse points P and F' . Construct perpendiculars

from P and P' to''the x-axis, intersecting the axis at M and N respec-

tively.

(1) c'Since '6CSMP = 6011P'
x

, d d(0O,P',P) x) '

(2). By definition, we have .d(0,P) d(0,P') =
1

d(0,P) .

-(3) Thus,by substitution,
x

. =
1

(d(0,P))
2

.-
x

(d(0,1"))
2

.

(4) Since. (d(0,P))2 =
x2 4.y2

and (d(0,P')).2 = x'2
:1,2

.

we have
1

2 2 -Tand = x
2

4- Y
2_

x . y'

x'

J'2 x

x
and x' -

2 2
+ y

(5) Thus x =



(6) In a'similir fashion, y ,2 Yt 2and 'y
x' + y' X

2
+ y

2

(7) The pairs of equations:

x =
2 2

x' + y'

It

Y -
x'

2
+ y'2'

x'

and

xt _

yt

. X

X
2

+ y
2

X
2

+ y
2

are cared the equations of the inversion transformation. We shall

now investigate the effect of applying this transformatit

several curves.

Example 1. What is the inverse of a straight line with respect to a

unit circle?

(1) Let L : by + c = 0 with c A 0 . Then LI , the inver'se

of L,, has the equation,

ax' by'
+ c = 0 ,

x'
2

+ y'
2

x'
2

+ y'
2

° (2) Thus c(xl 2 + y'2) + ax, + by' = 0 , or x'2 + 302 + aXt 12 yt = 0

(3)
1 'of

Completing the squares, we have:

4c2

b
and we recognize the graph of a circle with center at (-

--.1
2c ' 2c"

s

0

1

with r 2 2c
, and passing through the origin as illustrated

.n Figure 10-21

I

.
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. Figure 10-21

a + b
r e

2c

Thus a line not paising*the9ugh the origin transform into a circle

Passing through the origin. The conversesof this theorem is a±so true: a

circle passing thru the origin transforms into a straight line not passing

througli the origin. The proof is left as a Challenge Problem.

There is an interesting special c§se of this problem. Note that in the

example given we defined the line L by ax + by + c = 0 and c # 0 . What

if a = 0 ?

aIn this casaAriAe have ax + by F-0 or y = - 1Tx or y = mx Where -

m is the'alope. The invdtsion transformation yields

ye mxt

,xt
2

+ yTM
2

, x
,2

yt
2

Thus yt = nix and we observe that a line passing through the origin trans-

form into itself. Another way of saying thiS is that a line passing tough

the origin remains invariant under an inversion trapsformation:

s



Example 2. What 1s-the inverse, with respect to the unit circle, of a

network of lines x = c , parallel to the y-axis, and y = k , parallel to

the x-axis?

(1) The lines x = c transform into

xt
c or p(xt2 + y12) = x'

x°
2

+ yt
2

r

,2 .2 20 , 1.,2 2 1
(2) Thus x + y. - = 0- .or

,
(X' .....) -1- yl, = ,

c 2c
4c`

. % J
This equation represents a Whole "family of circles" passing throUgh the

origin with centers at 443,0)

(3) In a similar fashion, the lines y = k tran's'form into a family of

1
circles with centers at (0,-0), and passing through the origin.

A part of a network of lines and the circles which are their inverses

are shown in Figure 10-22.

0
It

0

X=-2

Figure 10-22

426



10-6

You have already observed'an unusual result. For the first tima.in this

discussion, it curve has been transformed into a different curve. SuCh an

.event was Made possible because we are dealing wtth point transformations. In

Figure 10-20, a different shale was used toi the two drawings.

As a final example, we considet: the following;

Example 3. What7is.the inverse of a.cirale with respect to the unit

circle? 4

(1) Consider the gendral equation of a circle

C : x
2
+ y

2.
+ Dx + Ey + F = 0 , and_apply the equations of inversion,

Thus we have

x'2 Y
12

Dx' Ey'
(x,2 4.y,2)2

+
(x,2 4.y,2)2 x,24.y,2 2 2

+ F = 0
x1 y'

4
,

1
Dxt

Ey'or + F = 0.2 .2 .2
+ Y' x' + y'

2
x'

2
+ yl

2

(2) Thus since x'2 + y'2 F(x'2 +,y'2) + Dx'.4. Ey' + 1 = 0

.2 ,2
+

E 1 ,or x + y y + = u

(3) Substituting D' = , E' =
E

, F
,

= , we get '

C' : x'
2

+ y'
2

+ D'x' + E'y' + F' = 0

. which we 'recognize as a different circle (in general).

It may be of interest to discover whether C and C' are related to

each other in any wow.

Exercises 10-6

of

The first five exercises are concerned with the effect of inverting the

given Curve with respect to,t unit circle. The equations of the inversion

are

x' Y'x -
2 'x. 2 + yt

Xt
2

y'
2

For each exercise, diaw the circle of inversion, the original curve, and its

inverse on the same graph.

1. + 2y - 6 = o

2. y = 5x

428
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3. Y = 3 aa

.

4. y
2

= 4x (The graph of the inverted curve'is optional)

5. (x - 4)2 (y 4)2 = 16
-

6. Find the inverse of each of the,following lines with respect to the unit

circle. Graph all of them on one set of axes and all their inverses on

smother set. The lines are: x=t<2 , x=tir, x= 6 ,y=t2 ,

y = t 4. , and y =t 6.

7. In Exercise 1 you'found the inverse of the line L ,3x 2y 6 = 0

Call the inverse Lt . Now apply the same transformation Eo L'
. What

can you conjectdre from the result?, t

8. Derive equations of inversion with respect to a circlt whose radius is

r and center at the origin.

9. The following four points are collinear: A = (0,-3) , B = ,

C = (2,1) and. D = (3,3) . Fijad the inverse of each of these points

with respect to the circle x2 y
2

= 4 and call the inverse points

A' , B' , C' , and D' . Prove that

I

42(A g)

d(A',D')
.d(BIC) d(B C )t,'
d(B,D)

(114s ratio is called a cross-ratio in mere advanced geometries).

.
.10. Refer to the text and perform the construction of the inverse point P'

0 .* to 0
0

.. . '.when r <
1

. Prove that OP OPI = r2 .2
4,.

=

Challenp Problem

'Prove that a circle passing through the

line not passing through the 'origin, 0

.

10-7,f Summary and Review Exercised.

gin inverts into a straight

,

We have constdeiedtvo types of geometric transtortations. The first

typeglisidered a transformation as an operation Which changed one set of(:.
A

axes into another by means of translation. or a rotation-or both. In a transla-

tion, the axes are shifted in such a way that they remain parallel to their

429
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original positions and oriented'in the same tirection; the origin is moved. In

contrast, a rotation keeps the origin fixed but new axes ere obtained by

rotating the axes through a fixed ANgie. Sets of.equations were derived to

effect these operations. We demonstrated how a relatively complex equation

could be peduced to a simpler form which then,could bp drawn more readily.

As a second type of transformation we onsidered the mapping of the-plane

onto itself. Rules were given by which point or sets of points in the ,

plane can be moved from one position to another. This set of transformations

can effect translations and rotations. It can also effect reflections,in-

versionsandother phanges.,,Reflections,are:related,:to_
f. the concept

symmetry In figures. Inversions can convert one type of curve into an ther.

The exercises illustrated some other types of point transformations.

One of the principal reasons for studying transformations is to discover

which geometric properties remain invariant under the stated operations.

Geometries are classified on the basis of these properties. Eliclidean

geoMetry is characterized by the fact that the measures-of distance and angle'

are invariant under the set of all rotations and translations. This set is

often r eferred to as the set of rigid motions since those tlIgnsformati s
. .

preserve size and shape. Other invariant properties were considered in he

exercises.

Review Exercises

PART II

The "Review Exercises" are concerned primarily with severaltransforma-
.

tions n ot discussed in the,text. They are presented so that you may dis6borer

some significant facts for yourself and may widen your experience with

subject.

1. Find the curve into which-the parabola x
2

= 2y is transformed by each

of ttle following mappings:

( a) ( x, Y) ( 2x, 3Y)

(b) (x,y) (x + 2,'3y)

' (c) (x,y) --40- (x - 1, y + 2)

Draw the original curve and its image for each. Can you find any in-

variant properties under any of these transformations?

430
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. . /
Thenapping (x,y) is called tl* transformation of

."

Similitude. Let k = 2 and find the effect of this transformation upon

:-Vhe'graphs of the following:

(a) 2x + 3y - 6 = 0

2,
(b) X +y =2

2

..,Which are invariant properties-under this transfOrmation? Can you

justify the name given to this transformation?

x
3. The transformation T

Y

x' + y,

2

- yl

2

is applied to the perpendicular

'lines . 2x - 3y + 4 = 0 and Nor: 3x + 2y - 6,= 0 . DetermineLi

whether the geometric property of perpendicularity is preserved under T

4. The set of affihe transformations is one of the most fruitful (4 all

types studied by mathematicians.' They 'have the forth

= ax' + by' t c

. Many of the mappings studied in thig chapter
y = dx' + gy, + f

A*.

were special cades of this set. For example, the set of rotations are
, -

7 ,

,,-
derived by letting the constants a =:. cos 9 , b ==sine , c = 0 1

i_'

d sin 0 , e = cos 0 and f = 0

x = 2x" t 430 #41
1 n

t

'Consider the special case: T , axfind 'its 'effeci.
.

-
Yogic4'"23rt "; 4 , ,

upon-the graphs of the following:

f_N2 2
k

4,
al

(b ).t 4x2 -.9, = 36
. ,

(n) lix - 12 = .

, - 3y = 0

(You probably cannot identify the images of (a) and (b) unless you

--,,stUdy the Supplement to Chapter 7.)

431
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a

5. In PrOblem 4, construct lines (c) and (d) and their inllas on the

. same set of coordinates., What tentative conclusion can you draw?

6. Prove that the mapping (x,y) is a distance preserving

. transformation.

a,

r,

433
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Table I

Natural Trigonometric Functions (Degree Measure)

.

Deg.

0

1

Sine

,

0.000
0.017

dmine

1.000
° 1.000

..

i

2 0.05 0.999
3 0.052 0.999
4 0.070 0.998
5 0.087 0.996

6.

7

0.105
0.122

0;,995

0.993
8 0.139 0.990
9 ,.Q.156

0.174 X0.985

)
e.985

11 0.191 0.982
12 0.208 0.978 -

'13 0.225 0.974
14 i 0.242 '0.970
15 0.259 0.966

16 0.276 0.961
17 0.292 9.956
18 0.309 0.951
19 0.326 0.946
20 0.342 0.940

211 0358 0.934
22 0.375 0.927
23 0.391 0.921
24 0.407 0.,914
25 0.423. 0.906

26 .. 0.438 0.899
27 0.454 0.891
28 0.469 0.883
29 0.485 0.875
30 0.500 0.866

31 0.515. 0.857
-31T- 0.530 o.848
33 o.545

'owe ....,
0.839

34 0.559 -0.829
35 0.574 .. o.819,

3g . 0.588

00.!37099937 0,602-
38 . 0.616

..

0.788

,39 0.629 '0.777
4o 0.643 0.766

, ,

43, o.656 0:755
42 0.669 0.743
43 -0.682 0.731
44
45.

0.695
0.707

0.719
0:707

-.,

Tangent Cotangent "
.

00.00017

90*****
57.29 89

0.035 28.64 88

0.070 '

19.08 870.052

1130 86
0.087 11.43 85

g.t(253

MIA- 84
8.144 83

.... 0.141 7.115 82

0.176
0.158 6.314
0.176 5.671

.

.... 8/4

8o

0.194 . 5.145 79
0.213 4.705 78
0.231 4.531 77
0.249 4.011 76
0.268 3.732 75

0.287 3.487 74
0.306 3.271 73
0,325 3.078 72
0.344 2.904 71

,9364 2.747 70

0.384 2.605 69
`0.404 2.475 68
0.424 2.356 67
0.445 2.246 66 4
0.466 '2.145 65

0.488 2.050 64

0.55 1.881 6z
1,963

0
63 '

,0.554 . 1.804 61
0.577 1.732 . 60

0.601 1.664 59 i
%,9,625 1.600 58
0.649 1.540 57 '

0.675 1.483 56
o..70q, 1.42B r554

. 0.781

o.75
0.7

0.810

. '4 ,

54

52
53

51
0.839 1.192 50

--.869. 1.150 49
0.900

-
1.111 48

0.933 1.072 47
0.966 .1.036 46
1.000 Low ....... 45

r

Cosine Sine Cotangent Tangent Deg.
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Rad.

Table II

Natural Trigonometric Functions (Radian Measure)

Sine __ Cosine Tangent Cotangent'

.00 0.000 1.000,

.02. 0.020 1..000

.04. 0.040 0.999

: . .06 0.060 0.998 '

.08 . o'.080 0.997

4 .10 , . 0.100 --' 0.995

.12 0.120 0.993

.14 0.140 0.990

.1,6 0.159 0.987.

.18 0.179 0.984

d20 0.199 0.980

.22 0.218 0.976

.24 0.238 0.971

.26 0.257 0.966

...
.28 0.276 0.961

.30 0.296 0.955'

r- .32 . 0.315 0.949

.34 0.333
4 , .36

v.943
0.352 0.936

. '.38 0.371 '0.929

.40 0.389 o.

0.40 0.913.42

.44 .0.426' 0.905

.46 0.444 0.896

.48 0.462 0.887
0.878.50 0.479

.52 0.497 0.868

.54 0.514 0.858
0.8470.% 0.531

.58 0.548 . 0.836

.6o 0.565 0.825

.61 0.581 .4).814

.64 0.597 0.802

,66, 0.613 0.790
.68 0.629 Q.778

.0 (.70, ,0.644 0.765

.72 0.65959 0.752
.

. 0.

.74 0.674 0.738
,,76 0.689 0.725

,78 -0.703' -0.711
9

,.804 0.717 40.897
411

.82 0.731 40.682

.84 0.745 . 0.

,86 , 0.758
, 0.667

0.652

.88 0.771 0.637'

1.90 . ' 0.783 '0.622

..?0.000
. 0.020,

0.040
0.060
0.08o

*****

49.99
24.99
.16.65

12.47

, 0.100 - 9.967

0.121 8.293

..0.141 7.096
0.161 ,

0.182
6.197,

5.495
0.203 4.933

0.224' 4.472
0.245 4.086
0.266 3.759
0.288 3.478
0.309 3.233

0.331
0.354' 231)0.81278

gl:
2.657
2.504

0.423 2.365

0.447 2.239
o 71 2.124

.495 2.018
0.521' 1.921
0.546 1.830

0.573 1.747
0.599 1.668
0.627 1.595

.'0.655. 1.526 .

0.684 1.462

0.714 1.401
0.745 .

..

1.343
0.776
0.809 1. 4?

,.,, 0:842 = Yy-- -1-.1.87 --: /

. *A
d.877 1.140
0.913 - 1.095 -.

0.950 1.052
0.989 1.011

1.030 0.971

1.QV 0.933
1.116 0.896 0
1.162
1.210

0.861
0.827,-

,̀
1.260 0.794

t
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CA Tablq II

Natural Trigonometric Functions (Radian Measure)

Cotangent

0.761
0.730
0.700
0.671
0:642

0.614
0.587

0.560
0.534
0.509

0.484
0.460

-,-,

0.436

4, 0.389

0.412

-- A.3 6g,
0.34-3" (R'cze

Rad.

.92

.94

.96

98
1.00

1.02
1.014

1.06.

'

Sine

0.796
0.808
0.819
0830
0.841

0.852
0.862
0.872

Cosine

0:606
0.590
0.574

0.557
0.540

0.523
. 0.506

0.489

. .

Tangent

1.313
1.369
1.428
1.491

, 1.557

1:628

1.704
1.784

it p8 0.882 0.471 1.871
1.10 0.891 0.454 1.965

1.12 0.900 0.436 2.066
1.14 0.909 0.418 2.176
1.16 , 0.917 0.399 2.296
1.18 0.925 0.381 2.427
1.20 0.932 0.362 2.

1.22
At
0.939 0.344

1.24 0.946 0.325 2.912
1.26 0.952 0.306 3.113
1.28 0.958 0.287 3:34
1.30 0.9614 0.268 3.602

1.32 0.969 0.248 3.903
1.34 0.973 0.229 4.256
1.36 0.978 , .0.209 4.673
1.38 0.982 0.190 5.177
1.40 0.985 0.170 5.798

1.42 0.989 0.150 6.581
1.44 0.991 0. 30" 7.602
1.46 0.994 8,989
1.48 0.996

,e0.1

0.091 10,98
1.50 0.997 0 071.j . 114.10

1.52 0.999 0.051 19.67
1.514 1.000 0.031 32.46
1.56 1.000- 0.011 4

4*
92.62

1.58 3.000 -0.009 -108.45
1.60
-A

1.060

'0.999

-0.029
-

-34.23
.

1.62 -0.049 -20.31--.
1.64 0.998 -0.069 -14.43
1.66- , 0.996 Lo.089 -11.18
1.68 0.994 -0.109 -9.121
1.70 0;992 -0,129 -7.697

1.72 ' 0.989 -0.149 -6.652
1.74 0.986 -0.168 - -5.853
1.76 0.982 -0.188 \'' , -5.222
1.78 0.978 -0.208 -4.710
1480 0.974 -0.227 -4.286

-
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zit-,

, 0.321
0.299

c:()).;

0.214
0.193
0.172.

0.152
0.132
0.111
0.091

.,
,

o. 071

0.051
0.031 .

0.011 "
I

:g:(021::"

..-0.049
-0.069
r0.1589

-0.110
-0.130

-0.150
-0.171

-0.191
-0.212
-0.233 - ,.
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The:Greek Alphabet 4

,r

9

1' ,..

A a alpha N v nu

B 43 , beta T.. E'' xi

r 7° ge.mma 0 0 omicron

A 6 delta IT Tr Pi-

.
o E e4 epsilon, P p rho

4

Z r zeta

H '1 eta

e e - theta

I iota

K K kappa ,

A lambda

M p, mu

J. 0

Z q sigma

T r tau

T u upsilon

4) 0 phi

X X chi

0 psi

w omega



For precisely

formal definition.

INDEX

defined analytic geometry terms the reference is to the

For other terms the reference is to an informal definition

or tothe most prominent discussion.

abscissa, 26.
0 absolute value, 94

addition

of ordinates, 220
of radii, 245
of vectors, 9b

additive inverse, 105
Agnesi, Maria Gaetana,
amplitude

modulation, 228
iplar, 204

sine curve, 224, 228 -

analytic representation(0,.'121
angle(s)

between two lines, 65, 71, 125
between two vectors, 121
direction, 59
polar,.,31

angular velocity, 176
Apollonius, 268 ak
applications of

conic sections, -268
ellipses, 292,
parabolas,282
hyperbolas, 299

argument, polar, 204
associative property, 105
asymptote(s), 214, 298
axis (axes), 26-

of'a cone, 268
of a coordinate system, 26
of an ellipse, 290

1,1 of an ellipsoid, 357
of a hyperbola, 298
polar, 31
of reflection,40205

of a surface, 368
of symmetry, 205

bounded:
domain, 213
function, 213
graph, 202
range, 213
set, 194

Cassini's Oval, 169
center of inversion, 423
Ceva's Theorem, 133
characterization of'

,poihts on a line, 106
circle(s), 270,-

of inversion, 423 .

orthogonal, 289

parametric representation of, 175
pencil of, 288-

ri V 1

cissoid, 187

coaxial family, 288
combination linear, 20, 106
.commutative property, 104
component vectors 114,.334
components, x- and y-, 113

z-, 334

composition, of ordinates,

conchoid, 187
condition for a set, 22, 161
cone(s)) 366

axis of, 268
directrix of, 366
element of; 268, 366
elliptic, 367
generator of, 3'66
nappes of, 268_
right circular, 366
vertex of 268, 366

cohic sections, 270
applications of, 268
degenerate 271

'directrix'Oi, 270
eccentricity of, 270
focus of, 270

conjugate' axis, 298

conjugate hyperbolas, 299
coordinate(s), 7

cylindrical, 377
in a plane, 26

planelprinciple5 35 -.
planes, 310
polar, 31
rectangular, 26 .,

'spherical, 379
in 3-space, 310

coordinate system(s), 7, 26
Cartesian, 29,
linear`, '7

linear principle, 9
polar, 30

rectangular, 29,
'cubic parabola, 206
Cycloid
' curtate, 184 4-

parametric representation of, 182
prolate, 184 -

cylinder(s), 363
directrix,of, 363
elements of, 363'
generatOr of, 363
projecting, 372

cylindrical coordinates, 377
de Coulomb, 268

4
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degenerate
conics, 271
ellipse, 292
hyperbola, 272
parabola, 272, 281

Descartes, Rene, 1,29, 91
difference quotient, 42

:difference of vectors, 99
iocles, 187
directed distance, 10
directed line, 61
directedsegments, 10, 92

equivalent, 92
.length of, 10
magnitude of, 10, 92

directidn
angles, 59, 318
'cosines, 60, 76, 318
on a line, 57
numbers, 57y 76, 315

directrix
of a cone, 366
of a conic, section, 270

r, 363of'a cylih
distance, 9

between point and a line, 78
between t w points, 27)'311

1 ,directed, 10/
measure,
normal, 75
polar, 31, 204
in polsr coordinates, 37 .

, distributive property, 108
divide &segment". 18
di* product, 122
eccentricity, 270
Elements, of Euclid, 1
ellipae(s), .270, 290

applications of, 292
degenerate, 292

. focalradius, 295
_major axis; 290
'minor axis, 4290

, patametrie,representation
ellitmoid(s), 357

axes of, .357

'elliptic
cone, 367 '

hyperbOlbid; 361
paraboloid, 360

r epicYcloid(s)', 185 ; -

equations of rotation, 398
eqyations of translation, 392
'e'6ilateral hyperbolas, 299
equilibrant, 119
eqpilibriuft, 119-

Euclid's Elements 1

'Wen functidn,
extent of a graph, 202, 212

4 1 ,

extreme values, 216
factoring a function, 253
Fermat, Pierre, 91
focal radius; 295 ,

focils of a conic, 270 ' te

.kunction(s). 202-
bounded, 213
,even, 208
period of, 203
periodic, 203

general form, 47
general linear equation, 47
graph(s), 22, 161

bounded, 202
extent of, 202, 212
of polar equation, 168

Graatmari,-Herman, 91

Hamilton, William R., 91
'helix, 375
Hilbert, David, 7
hyperbolats), 270, 296

applications oft 299
asymptotes of,
conjugate, 299
conjugate axis of, 298 .

degenerate, 272
.equ;lateral, 299
-transvese axis of, 298

-hyperbolic paraboloid, 363
hyperboloid(e), 361,

elliptic, 361t
o o sheet, 361 4.

of sheets;.362

hYtocicloid(s); 186
image, 413

inClination, ,44 .

inner product) 121
i,ntercept(s)v 44, 354

'intercept fotm, 46 '

kinvarfant properties, 390
iniersfoik.); 423

-4 '

center of, 4g23-T '
circle :of, 423

of 179; involute of circle, 188
- _Kepler, 268

: 'latus rectum, 280
. limaqon, 244 t

- line(s) ".

antipa110, 68
,'coordinate systi for, 7
directed, 61
directidn on, 57 '

equation of 41, 43 -47, ?6, 79

inclination 44 ,

normal, 340 41

-.1parallell 67, 68

parametric equations of, 188
ptrpendicuia, 67:
symmetry of, =205

* :
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linear combination, 20, 106
linear coordinate-system principle, 9,16

'locus (loci), 22, 161
magnitude Pe,a Alrected line segment,

.10, 92
magnitude of a'Vector, 92
majortaxis, 290
mapping, 413
measure of distance, 9
Menaechmus, 268
Menelaus' Theorem, 133

--minor'axis, 290
modulus, polarr 204

motion, parametric representation of,170
..cMUltiplication, 9

of ordinates, 223, 226
scalar, 98

Nappes of a cone, 268
Newton, 268
Nicomedes, 187 ,

nine-point circle,.307
normal, 75

,distance,

fori, 76, 82, 342
aim, 340
rays, 77
segment-, 75

. 'vector, 34l.

'normalized pair, 58
normalized triple, 317,
oblate spheroid, 357
octans, 310

o'd
. A7

' ordered pair, 26

4

ordered triple, 310 7

- ordinate, 26

origins 10, 26, 93
. princple, 93
y-ector,:.93, 96

'cathogonal circles, 289
'.parabola( s)', 270, 280

applications of,,282
degenerate 272,

.paraboloid(s), 359
elliptic, 360'
hyperbolic', 363
of revolution, 359

paAmeter(s), 20, 170'
parametric representation, 20, 170

of 1,circle, 176
'of a cycloid, 182

an ellipse, 179
se a line,c.188, 313
of motion, 170

path:173
pencil of circles, 288
period of a function, 203
periodic function, 203
petpandicular,vectors) 123
plane symmetry,, 355

point circle, 271; 285
point of division

internal, 17, 27
of a segment, 18, 311

point-slope form 43
point sYllary, 205
point, transformation, 412*
polar

amplitude, 204
441 angle, 31

argument, 204
axis, 31
coordinate system, 30
coordinates, 31
distance, 31, 204
equations, related, 167
form, 79 .

modulus, 204
pole, 31, 32
positive ray, 58.
projecting cylinder, 372
projecting planes, 327
prolate spheroid, 357
properties of vector operations, 104
quadric surfabe, 351
ray, positive, 58
reflected image, 205 ,

reflection, ax0 of, 205
related polar equations, 167
representation,

analytic, 21
parametric, 20, 170

resolution of vectors; 131
resultant, 96
right-handed system, 311
rotation, 397 `

Ruler placement postulate, '8
Ruler postulate, 7 .

scalar, 94
multiplication, 98

Sehwarz's inequality, 134
' segment(s)

diActed, 10, 92, ' I

Midpoint of, 18
normal.,

point. of division, 18
sets)

,
-covdition for a, 22, 1017

sine cuive, 403,

amplitude of; 224
slope-intercept form, 45 '

spacg curve, 372
spherical coordinates-, 379
spheroid, 357

oblate, 357 -

prolate, 357
Stevin, Sieon,.96
surface, WO of, 368
surface of revolution,
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symnetrid equations; 319
symmetric form, 41

try,
lik.of, 205

4..ine, 205

'plane, 355

point, 205

s

'tests of, 206, 207,.209, 211,
tension, 118
tOsseract, 324
tetrahedron, 346
trace, 353
transformation Ofaxes, 389
transformation of coordinates, 389
translation, 391
transverse axis, 298
two-point form, 41
unit

point, 10
. vector(s), 94, 114, 337

vector(s) 91

absolute value, 94
addity inverse,'105
angle between two,, 121 6

associative property, 105
commutative property, 104
components, 113
difference, 99'

distributive property, 108
dot product, 122, 127
equivalent, 92
Amer product, 121, 127
verse (additive, 105

linear gorination, 107

vector(s), 91
magnitude of,92, 94
normal, 341
origin, 93 .

origin'principle, 93
origin-vector'prinCiple, 96

c,, perpendicularity of, 123

355 ' properties of operations, 104
resolution of, 131
resultant, 96
scalarpultiplication,
sum, 96, 97

unit, 941 114, 337
x-component, 113 .
y-component, 113
z-component, 334
zero, 94

velocity, angular, 176
vertex:of cone, 366
witch of Agnesi, 186
x-axis, 26
x-component, 113
x-coordinate, 26
xy-plane, 310 '

xz-plane, 310
y-axis, 26
y-component, 113
y-coordinate, 26
yz-plane, 310
z-axis, 310
z-component, 334

o iz-coordinate, 310

izerovector, 94_

J.

I
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Supplement A

DETERMINANTS

If we suppose that this system of equations ham a solution:

4P
ax + by = c

px +. qy = r

it can be found by elementary methods to be:

X cq - br ar - cp4
aq by aq - by

Pe

These numerators and denominators may be written in a form which helps to
, 4

develop a useful algebraic concept and notation:

r

.

r

c b a s cl

i p rx = ) Y ,a b a b

IP ql IP ql

An expression of the form la I b I is called a determinant, and its
w . . P- q

value, as suggested 'by the example above,-is defined:
. v .

a . b

P q

= aq - bp

This dpterminant has two rows: a,b; and p,q; and two colu a,p;
...

,

and bi. It it called a,second Order determinant, and has 4 =, 2 tering, --'

or 4ements..1. &third order determinant has three rows and three columns, and
A .2

9 = 3., elements. A determinant of order n has n rows and ' n, columns,

and so on. We frequently use to indicate either a determinant or its

value. -Note that the first order determinant lal has the value a.

We list a number of theorems, all Of which are true for determinants ofi:

any order, and indicate briefly proofs for the second order. In most cases

the proof for higher orders is a.straightforward generalization of the proof

for the second order.
4

r

A
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THEOREM 1. A is unchanged if 'e interchange rows with columns.

a b

1

a D

1
p q b

= aq - by = ,

Note: All these theorems remain valid if we interchange the words "row",

"column."

THEOREM 2. If two rows of A are interchanged, the sign of p is changed.

b
IP

= bp - aq = -(aq - bp) =

THEOREM 3. If every' elenlent of a row Of A is multiplied by k then so

is A.

(ka kbi
= kaq - kbp = k(aq - bp) = kp.

P q

THEOREM 11.4, If two rows of A are equal or proportional, then A = 0

*lc la b

0 a b

7

= ab = 0
a b

ka kb

= k

./1

a b
= 0 .

_THEOREM 5. Two determinants may be added if they agree in all the elements of

n -,1 rows. Their sum is then a determinant with these same n - 1

the_elements'of the remaining row are-theLsums of the corres.m

ponding elements in the original

a b

P q

+
d

determinants.

= aq - ,bp + cq - dp = (a'+ c)q -.(b + d)p

tiR

+c b += I

000 ,

THEOREM 6. A determinant is unchanged if, to the elements of any row we add

a common multiple of the corresponding elements. of another row.

+ kp b + kq

q

a b

P q

+

442,

445

V



I"- 'Notation. It is convenient, for purposes of generalization, to use

-"double Uubscript notation."'

all a12 aln

a a22 ...
21 22

a
2n

a
nl

a
n2

4...
ann

*here "a
ij

" ,designates the element in row i and column j
i

, .

Execise. Revirte the proofs of Theorems ;.-6 using double subscript

notation.

DEFINITION. 'Minor of a
1.1

(Notation Aid) is the determinant of

the square array'obtained by removing from AI all elements of-row

i and of column j ; we sometimes use the same word to indicate

the-value of that determinant. N ,te that Aij is of order n 1 .

j
DEFINITION. Cofactor of aij (Notation aij) aij = ( -1)

i +
A
ij

Note that au ins the4same as Aij: if the sum of its row and column

linuMbers is even, and
-
a is the negative of 401-j if the sum of its

row and column numbers is odd. As above, we use "cofactor" to indi-

cate the expression as.wall aqits valup. e,

Example 1.,

, P q

The minor of a is, q 'y of- p is b.
r

The,cofactor-e-,11 is q ; of p is

Example 2.

The minor of p is
111.

The cofactor of p is

The;pofactor of c is

a b c

u v

(.4

141431T
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Example 3.

The minor of

2 ' 3 4

5 6 7

8 '9 10

8 is
16 71

which has the value
.

21 - 24 = -3 .

The cofactor of 8 is (-1)3 1 *times the minor of 8 , and also has,the
.

value 3.

I..
The minor of 9 is

15 7

12 41
'Which has the value 14 - 20 .4 -6 .

b e'cofactor of 9' is (-1)3 2 times'the minor of 9 , and has the

'value 6 .

Exercise. Find the cofactors of each of -the nine eleMents of .(3)

ablve, or by applying Theorem 6 to write the determinant in a form simpler to

evaluateA thus:

(1). Write the same second columnOhen add '(.2) times these elements

to the corresponding element of the third column; then add (-4)

times these same elements to the corresponding element pf the first

If we

0

column:

4(-) + 3 4 .1;(-2) + 1

3(-10 + 2 3 3(-0 + 5

1(-4) + 4 1 1(r2) +'2

"
which yields the equal determinant

. -

-13 4 -7

-10 3 -1

0 1 0

now evaluate bylusing the element of the third rog,- 'we get

-7
- 1 "13 -7 + 0 -13 .*4 = 0 - 1(13 -'70) + 9 = = 57

3 -l -10 -1 -10 3
.

''DEFINITIO11. The value of any determinant is equal to the sum, of the

products of the of the first row by theirCorrespondingco-
,

factors. Application: Cramer's Rule?

a b

c -d

= aldi - bicl = ad - be .

1444
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a .-b c

p q r + c P qi

= a(qv - rv) - b(pw - ru) + t(pv qu) , etc.

'Example. 3

2

4 '

4

3

1

1

5

2

=3 3

1

Notation.

E
1

Akjai j
=

5

2

= 3(6 - 5)b- 4

2 5

4 2

4 -20)

+ 1

+

2

4

16

3
1

- 12)

= 3 1) 4(-16) + 1(-10)

= 3 + 64 - 10-= 57

MAIN THEOREM: The value of a determinant is equal to the.sum of the products'

of the elements oltianyrow by' their corresponding cofactors.

TheOroof of thi's Main Theorem must be 'carried on by induction and is

sufficiently difficult to be put off to another course, but the student is
.

urged -to write any third order determinant, and to evaluate it in a number

of 'ways., Note that by a judicioUs application of the theorems above; the

,process of evaluating a determinant can be_tonsiderably shortened, by ob-

taining equivalent determihants with some zero elements.

4110

Notation. From the Main Theorem:

- n

/ ija. =

= =
1/0

xipl. We,may evaluate the determinant of the example above by using

"'the element of the second'row:,

-21111-,--11.* 3113 2 513
41 =

4 1

ox' of ile%third coLumn:

11: 111 31 =

-2(7) +.3(2) - 5(-13) = -14 + 6 +.65 = 57

1(-10) - 5(-13) + 2(1) = -10 + 65 + 2 = 57 '

,
gxgrbiees. (I can supply as many as we think. necessary..]

441 8
z.



Supplement B.

FLOW CHART FOR TWO LINEAR EQUATIONS IN X AND Y .

Suppose we want to study the possible geometric relations between thee

graphs of two linear equations

Li : aix + biy + ci = 0

L2 :*a2x + b2y + c2 = 0

/
Suppose further that we want the study to cover all pairs* of ordered triples

of real numbers (al,bi,c1) and (a2;b2,c2) ; If we,agree to include all

such pairs,-prhe-study can easily be converted to a computer program and the

coefficients themselves,can even'be generated internally in the computer as a

part of a larger prpgram.

If we know that the equations are not degenerate (i.e., either the x for__

y ,coefficient is different frOm zero), each represents a line in the plane,

and these lines may be ldentipal, parallel or intersecting. What we want to
.

construct is in
1

ordered set of questions we can ask abotitthe coefficients of
a

t
1.

and L
2

which will distinguish for us how the graphs would have looked if

we had drawn them. Ouraystions must the ithrased in such a way that each
O

answer wilt be either "yes" or "no."

Of course many different patterns ofIquestions are possible. In general

we want the pattern -to bjanch like a tree 'with eanh,question so that if an

4 answer is "yes", the succeeding path will be different than it would have been

had the answer been "no." At the end of each path will be a message stating

the correct geometric configuration for the pair of equations with which we

started. Thie type of pattern is often called,,a flow chart and-is a useful--

tool in computer programming. If you think'a little you will see that the

well known game of Twenty Questions uses a kind ooral flow chart to solve

the problem "What am I thinking of?"

Let us consider whit the first question in, our series should be If at

least one of the given equations is degenerate, then we do not really have

if(

two lines to study. We want to design our pattern'.to channel such equations

.
.
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. aside. Accordingly the first.question might be '

. I Is CIal1 + lbil (1a21 = 0 ?

If the answer is "yes", then we know that either !ail +loll = 0 or - I:

1921 + 1b21 = 0,. In other words at least one equation is not:really linear.

We place the message "Degenerate equation" and end this path. If the answer

to the question was\no", we arelssured of two linear equations. What shall
we ask next? A possible secone4uestion is

Is alb2 - bia2 / 0 ?

Notice that this time we ask whether a certain expression isdiffeient from

zero. Of the answer is "yes`, then we know the lines L1 and L2 intersect

in a point. We write a-message to this effect.and close the path. If the

answer to the secon4 question is "no", then the two lines must be either

parallel or,coincident. We need a third question which will distinguish be-
,

t-Vnen these two cases. One such question is

IIS' 11.22 - a2c11 + Ic1b2 - c2b2 - c2b11 = 0

An answer of "yes" guarantees that
al ci

a2 c2
= 0 arid

. .

b c
1 1

b
2

c2
= 0 .

Therefore we have a pair of coincident lines An answer of "no" in a similar

way insures that areL2 are parallel.
.

Let us repeat these three questions-together with the message pattern.

we have indicated.

4.
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FLOW CHAR'

Li : aix + bly +

L2 s: a2x + b2y +

el =0

c
2

te- 0

+ 1b11)* (1a1 1b21) = 0? -#01--yes Either
.4
L or'L

2
is degenerate

1

Cs aib2 - bia2 0?

1

No

?

I Asti?aica 7 a2ci 1 + 1clb2 - cdoil

°

-----aiyes ,I4

1
and L

2
are inter ecting.lines

s

N

L
1

and'',
2

are parallel lines

a

4

4,

= L and L
2

are coincident lines

ti

°

.0. I

0

4

0



Supplement C

GRAPHS WITH VON-UNIFORM SCALES.

In practice, it is sometimes

system of reference in

different unit is used

is Very large compared

a.

necessary to graph a function f(x,y) ,in a

which the axes

on each axis.

to the domain,

are perpendicular to each Other, but a

For example, if the range of a function

any unit small enobgh to allow the range

to be graphed on a piece of paper will. compress the domain too much to be

helpful. We can study many properties of such a graph, but we must be careful

never to read slopes from it without taking the difference of gcale into

account. 1

Other interesting variations of graphing f(x,y) us4ng perpendicular

axes are semi-logarithmic and logarithhic graphs which prove to be helpful in

.applications of mathematics to biology, economics, and other sciences, 4-

especially where growth is involved. As an example, let us look at the graph

. . .

of y = e
x

first in regular rectangular and then in semi-logarithhic coordi-

nates.

2

0 ; 4 x

2

°

2 4

(a) (h)

Graph (a), is the familiar exponential function studied in

mattes. If y = ex., then x is the, natural logarithm

Clearly there is a linear relatiOn, not betNeen' x and

and log y . If we treat x, as usual, and graph not y but log y on 'the

vertical axis, we do indeed have a straight line. ,(See graph b .) This is

. called a semi- logarithmic graph because one of the axes measures the ragarithm-

1 * of a variable, rather than the variable itself.
4

110)*

k

Intermediate

of y or x = log y

y but between_

.

.
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so'

4 4

''''''' K ..... - 4
, ?, 4 /

'4,4i. ,

step
0

) if' we ar one step furtheINO plot,,,,the logarithm of,..; x on one axis and,. r ,- _ # t",k. ."
the ltigaritlini of y (to 'the, same base), on the other axis, we have a 1.ogarith-

,

mic gra:41. 'This 'type is used extensively in 41;nding equations to .fit experi-
,

..; _ T, t:
, .

mental idata yh414 there is reason to believe the relationship Is of the' form
. ..." ...;,. "..4., :'. ''..,.,-its, -, . , ..

y'=, x .; Taking the logarithm of. each ',:side we
c'

have
*' z .. '..- , 1,,

. C a
_, . , ,':,' ," 4.og y...-. It let X.' 9-," \

. '-, ;:. . .

If we graph 'our exponential data by mtasuring log y, pn one scale end log x

op the other,, we, should be able to fit
1

,a. straight line to ,the:data, and
$

determine k as the slOpe ofthe line.

$' As a matter of fact, if a scientist suspects his data could be descri

AL

by either y.= ax or' y = .xa , heo,cillrjlot the data using se ii- logarithmic

and full logarithmic coordinates. If either graph appears to be a straight

line, his 'Icrobem is 'solved: -If. .the Semi:logarithmic graph is a straight
then log y = (log a)x ,. the slope is the logari

olit, .

e base a , and the,..0.0.

-
data is related by y = a x . If the ,double logarithmic scale yields a

line,
hethen the slope, a , determines the exponent in t equatlon y =.xa

-which relates the data.

Problem.' Supposeyou haveex4rimehtally determined4the tollowiy data
and want. to discover the. mathematical relation between, x and: 'y .

x 2.50 6.20 /11.6\ 21.4

Y 341 12.9 30..9 12,9
,

`Suppose, 'further: you guess that y is either an exponential function in-
.

vol4ing x' or that it is a ,power functiOn of -x .

; I

Solution. Usthg common logarithms we'fill out a'iahle and plot the

ordered pairs ',(x,logy) on one gr4h-end (log x, log y) on a second. Then

we study the points and if either graph is approximately a straight line, we
. 4measure its slope. Finally we use this to express, the relation between x

44

and y ,

o

.

x.. 2.50

, -

. c. 29 11.E 21.4

1Pg- x .398 .792 1.06
. ,

1.33

y . 3.61 12.9 30.9 '2.9 .

.lo y, ,...557 1.09 '
'

1.4.9
I

.
1.86,;
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Supplement to Chapter,2

COORDINATES AD THE LINE

Ya

S2-1.

From the postulates of geometry we,deduced immediately 'that any point on

a line may be chosen as the origin fer a coordinate system and that the pool-
.

tivecoordi,tes-may be assigned to the interior points of either ray deter-

mined by the origin. However, in otr development of the Sial :leometry there

need be no mention of units, in terms of wh'_ch these measurements are made;

the entire development depends upon,one intrinsic scale of measurer For this

reason we shall describe such coordinate systems as intrinsic coordinate

systems. It would be very convenient to be free to choOse coordinate systems.

with different scales of measure. It is easy to show that we have this

freedom.

The coordinate system is an unusual type of

set of points on the line and whose ange is the

denote this function by f, whose value at each

f(X) = x. Let us,consider a4litear function, g

function whose aoffiaiL is the

set of real numbers. Let,us

point X is the number

onthe real numbers,

defined by the equation x' + b, where , a is any non zero real

number and b is any real number. The composite function which assigns to

each peojnt X the number g(f(X)) is also a one-to-one correspondence between

the Points of the line and the real numbers.' We shall describe such corre-

spondences as linear coordinate systems. We shall continue to describe the

number which correspondsto'a point,as the coordinate_of-the point, since this

phrase has meaning only-Vithreference to a particular coordinate system. We

shall denote the composITe function of f by g as, g(f).

We shall considerthe descriPtion'of the geometric properties of the ,'

line in terms of such a linear coordinate system. Is there anything in a'

linear coordinate system comparable,to the measure of distance between two

pointi, R and S whose.,coordinates in an intrinsic coordinate syttem on

'!:17the line Irg are r. and e respectively? The new coordinates r' and s'

of R. and 'S respectively, are related by the equations

b55
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,We discover that

= ar + b

s' =' as, + b .

Ir' - 01 = 1(ark+ b) - (as + b)1

= far -

=..faf..
sl

Unless lal = 1 , I r' - all is not equal to Ir sl , the measure of

distance in the intrinsic coordinate system. However, we do note that in the
.

linear Coordinate system, related to the intrinsic coordinate system by the

equation x' = ex.+ b , the number Ir' - 01. is a constant multiple of

Ir sl the constant being independent of the choice qf points.

We recall that the length of a segment.wat defined to be the measure of

distance between its endpoints and that congruent segments were defined as

segments having the same length. 'Thus the statement RS = 7J is equivalent

to the statement,' ir - sl = it - of , where r , t 1 and ,u are

intrinsic coordinates of R S T , and, U respectively..

If Ir al = It of

then lal Ir sl.= 'af
ft

- ul

fat au ,

1(at + b) - (au + b)1 ,

wtrere r' , t' , and u'

are coordinates in. any linear coordinate system. Thus the condition defining

congruence for segments applies in any linear coordinate systen.

lar = as =

Ind f(ar + h) - (as + b)1 =

or Ir' s'I = It' u'l

' The Student should think through all the details.of the argument that

any linear coordinate system is Et one:to-one correspondence betWeen the 'po'ints

of t linelnd the real numbers. Let 'f be an intrinsic coordinate system

on a line L and-let 'X
-
by.any/point of L . .Then 'f(X) 'is a unique real

number and so is 'g(f(X)) = af(X) + b So far we have not uses the assumption,

that a 0 .

number suchsuch that

Now let'r be a real number. Since .a / 0 , there Is a unique
/

ax
0

+ b = r .. VSince the original'coordinaie system is
y

a one - to=nne correspondence between the points of t and the real numbers,,.

there is a uniqde point X0 such that' f(X0) = x0 . Hence there is a unique

point X0 on L such that g(f(X0)) = g(x0) = axo + b = r .

-.456
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Example., Let P , , R , and S be four points on a line with-intrinsic

Coordinates 2 , 5 , 8 , and 11 .respectively. Since 12 - 51 . 18 - 111

PQ ; RS . Let a linear coordinate' system be defined by the equation

x' = 2x - 1 . Then the new coordinates of P , Q , R , and S are 3 , 9 ,

, and 21. respectively. Since "'13 - 91 115 - 211 , the congruence of

PQ and RS is similarly described in terms of the new coordinates.

The other geometric property described in terms of intrinsic coordinate

systems on a line is betweenness on the line. We recall that the point S is

between R and T, if and only if r < s < t or r >'s > t , where r , s ,

and t are the coordinates of F , S , and T respectively. We obserVe that

if r < s < t

then ar < as < at if a > 0 , or ar > as > at if a,<.0

and ar b < as + b < at + b if a > 0 ,

or ar b >as + b >at b if a < 0 .

The members oaf these inequalities are precisely- the coordinates r' , s' ,

and t' , which would 4e Assigned to the points R , S , and T by a linear

coordinate system defined by a linear equation x' = ax b Thus the last

two lines of the above,development may be replaced by

r' '< s'-< t' if a > r' > s' > t' if a < 0 .

A similar argument obtains if r > s > t all cases the condition

describing betweenness on a line holds if r , s , and t are replaced by

the corresponding coordinates in any linear coordinate system.

The geometric properties of congruence for segments and betweenness on

a line are desCribed in exactly the same way.in terms of linear coordinate

systems as in the intrinsic coordinate systems. We summarize these'rettlts

from the preceding two paragraphs as follows.

Any intrinsic coordinate system will not be changed under composition

with the trivial linear function definedW the-equation = x , and

consequ6ntly is included among the linear coordinate systems on the line.

These are the coordinate systems which are of use and interest to us.

Hencefor#, we shall usually consider only linear. coordinate systems; where

there is no chance of ambiguity we shall"call these systems coordinate

systems.;
41
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THEOREM S2-1. If a coordinate system on a line assigns the-coordinates r

s , and t to the points .'11 S , and T , then S is between R

an d T if and only if .r < s < t' or r > s > t .

THEOREM 82-2. Let 1%---and,,,Q be 'ally6two distinct points on a line. In a

coordinate system C on the line, the coordinates of P and. Q are

p and q :respectively. Let r and s be any two distinct' real

numbers. Then there exists a coordinate system C' on the line in

which the coordinates of P and Q are r and s respectively..

Proof. We WIsh to discover whether there exists a linear function which

elates C' to C by composition. If there is such a funetion, there exists

an equation x' = ax + b defining the function. The following equations

would have to be satisfied,

Combining equatias, we obtain
r

or

r = ap + b

s = aq +'

its a(p - q)

a _
P _ q
r - s

Substituting in Equation (1), we obtain-

r - S
r = .1) + bp q

or b.= r -
pr - ps
p.- q

p - q

Es - qr
p - q

The solution set for ay'and, b of this pair of equations is

fir - s ps - qrN;
ltp c:1) " The coordinate system C' formed by the compOsition

of C by the linear function defined by

x' - (E-=-E)x + Ps ir
P - q P
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does sati's'fy the conclusion. of the :theorem. Since p A q , this equation,

and consequently the coordinate system C' , is allAys defined. In C' the

gooXdinates of P and Q are given respectively by

Pt (17)
p -41: (71)

r - r- - rp, q

and

1 ( i' - s\. ps-E.21-iis
q -Up cili p-q P-q

In fact, the coordinate system C' is unique, though we have not proved it
'.

.here.

Corollary S2-2-1. If P and Q are any two distinct pointsOn a line,

With coordinates p and q respectively in a coordinate system C then

the coordinate system Ct which is related to C by the line) ar equation,

.47r.) 1 p

q 7 P q P .7"

assigns the coordinates 0 and 1 to the points P and Q respectiiely..

It is sometimes convenient in later computations to write this result in the

form x' q _ p

'/n order to make intuitively more clear the role played by the constants

a and b in the iritroductibn of a new coordinate system, we consider what /
.

new coordinates are assigned to the origin and to the 1init-point under

composition by "the linear function defined by..the equatidn ='ax + b .

CI:

A B 0

a'

A .

. 1 -b
a

.

r*--- 0 / 1

0

N

1 b a + b

Figure S2-1



The point which was the origin now has coordinate b ,,and

which was .1 is now lal Thus the role of b is to shift the origin,

-and one role -of a may be to increase or decrease the scale of d stance..

If lal > 1 , we say the new system is scale-decreasing; if. <.1 , the

new system is scale-increasing; if lal = 1 , the new system is scale-

jreserving. We,observe that if a > 0 and the original coordinates p and

q of.two distinct points are unequal in the order p < q, then the new

coordinates ,e and are unequal in the order p' < q' , while if

a < 0 and p < q , then p' and sq.'. are unequal*in the order

q' < pl . For these reasons we say that the new system is order-preserving

if a > 0 and order-reversing if a < 0 .

4

Aolg

Exercises S2-la

Let P-, Q R, 'be points on a line with coordinates -5 , , and 7

respectively. In Problems 1 - 6 -find the coordinates Of these points in

the system given by compositionof the original system by the linear function

defined by the given equation. Is the new system scale-increasipg, scale -

decreasing, or scale-preserving? Is it order-preservi or order-reversing?

x' = -x +

.2. X' = trx - 2

"1
3.. xi =fix +

4. xt = -3x

5 . xl
2 +

7

6. x' = x +7

°For the systems described%in Problems 1 - 6 , find the coordinates of -

the points which were the origins and unit-points in the, original%system.

8. Find the original coordinStes of the points which become the 4rigin and

unit-point of the systems described in Problems 1 - 6 .

9. The equation x' = ax +-to ,defining the linear function which relates
40

coordinate systems was subject to the condition a A 0 . WWII* i-

V"

v
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We have not considered the case in which we employ a non-linear equation
to define a new coordinate system on a line, but it is interesting to do so.

In Problems. 10- 13 the rules,de;ining several functions of other 4pes are
given. Dxamite the:coordinate system obtained by the-composition of an
intrinsic coordinate system and the function defined by the given equation.

Does the coordinate system still describe betweenness on the line? sDoes it
describe the congruent segments of the line adequately?

10. x' = ax3 + b

11. x' =,ex

, 1x =3E where x 0
12.

x' = x where x = 0

13 . x'
4°g10x

An important Mathematical structure which you may have encountered only

briefly is the group. A group is a set of elements with a binary

operation,Whicli has the following properties:

Let S detiote the set,' a , b , and c , any elements of S , and 0
the binary operation.

(1), (Closure) a b is a unique element Of S
(2) (Associativiqy) b) cc = a .:(b c)

(3) (Identity) S contains an element e such that

ace= eca= a
(4) (Inverse) For each a there exists' s: sttch that

ace' = a' = e . at

An element. a desdribed in (3) is called an identity and an eletent

described in (4) is called an inverse of a .

Some familiar ekamplet of groups are the integers, the rational numbers,

.or the Fe ti numbers With addition as the operation. Other examples are the-

non-zero rational numbers or doh=zero real numbers with multiplication

the operation. .

Let us consider the set whose elements are the functions whose domains

are the set of real numbers and which are defined by the equations

f(x) = ax b. where a is any,non-zero real number and- b is an) real number.
This set of functions forms a group under the binary operation of composition..

461
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We shall prove that the identity and inverse, properties are satisfied,

but we leave the discussion of the closure and associative properties as

exercises.

14 the set. contain an identity, it must be a fundtion defined by a

linear equation g(x) = sx + t'. If this function Ps an identity, it must'

satisfy the following equation:

f(g(x)i = g(f(x)) = f(x).:

This becomes a(sx + t) + b = s(ax + b) + t = ax + b

or,- ask + at + b = sax + sb + t = aic + b..

This will be true if
lo.

,

..:

[(1) asx = sax, = ax , and

(2) at +-b = sb + t = b . / \
N°'sir

0 , Equation (1) will be true only if s = 1 Equation (2) thqs

, A

becomes
,

at+b=b+t=b.,
,

TIL equality implies that t = 0 . Thus, the desired filnction

g(x) = sx + t = x . Thire is oqly one function of this form. It is in the 6

set, and it can be seen that it is an identity.

Now we want to find inverses. If an element, f(x) = ax + b,. of the

set has an inverse, it must be a function defined by a linear equation

g(x) = sx + t If this function is the inverse of f(x) , it must satisfy'

f(g(x)) = g(f(4 = X .

This becomes a(sx + t) + b '= s(ax + b) + t7 x

or asx + di + b sax + sb + t = x

This will be true if

(3) asx = sax = x , and

(4) at + b = sb + t '= 0
1

. 1

..-

Since a i 0 , -Equation (3) 1;11l be true if g
1

=
a

Equation (4) becomes %

at + b = (1) b -1- t = 0 ,

which is tru e if t =
-b

, which is tefined since a PO .
a

4.

or

"46a
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.1.Thus the desired function g(x) = sx + t =.k-lx
a

. There is only Onea
function of this fo . It is in the set-, and it can readily be'shown to be 0

3 ,
an inverse of,f(x). In feet, identities and inverses are always unique,

a
but we leave these questions as exercises.

Exer4ses S2-lb

1. Show that the set and binary Operdtion described above have the closure

property.

2. Show that the set and binary operition described above have the

associative property.

- 3. Show that the set acid binary operation described above do not have the
4

commutative propel-V.

4. Show that in any groupthe identity is unique.

5. Show that in any; group the'inverse,of any given element is unique.

6. Show that in any group the inverse of the identity is the identity.

.7. :Ief f(x) = ax b and eX),= px + 9 . We denote the inverse of

f(x) by f:1(x) . Find

(a) f(f(X)) (g) 6-1(x)

(b)
f(g(x)) (h)

f- 1(g -1(x))

g,(f(x)) g-1(f-1(4

(d) g(;,(x)) the inverse of f(g(x))

(e) f(f(f4 (k) i(f-1(x))

(f) g(g(g(x)1,)
(0 f.(g-1(x))

. Firid the . function (or functions) h(x) such that

h(h(x)) = f(x) = ax + b .
=.1k,

Discuss the possibility and number of solutions for h(x) .

ti
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Mappings and Linear Transformations.

A function whoie domain is a set A and whose range is a set B (which

may be the same as A ) is frequently called a mapping. An element Of the

range which corresponds to a given element of the domain is:said tp be the
1.

image of that element. An element of the domain which corresponds to, or is

mapped onto, a given elAment of the range is called s pre-image of that

element.

In desc a mapping the second set mentioned may not always be the

range of the function, but it ,always contains the range. If it is the range,

the mapping is said to be onto the second set. If the range of the function

is a proper subset of the second set, the mapping is aid to he into the

second set. A mapping is4also called a transformation, especially when it is

a mapping from a pet of geometric entities into a set of geomet4c entities.4

The set of images corresponding to the elements of a given set in the domain

is called the image set; the set of pre-images corresponding to the elements

of a giVenset in the range is called the pre-image set.

The mappings which we consider in thiirsection are-One-to-one,transfor-
.

mations of a line onto itself. We consider this line to have a fixed

coordinate system. We need such a coordinate systIm to describe the

transformation. We shall sonsider four types of tignsformations; trgnslations,

reflections, expansions, and contractions.

Intuitively, we may think of a translation as a shifting of the line

along itself. A reflection is a half-rotation of the line about the origin.

Expansions and contractions are uniform stretching from and shrinking toward

the origin. We pay describe these more explicitly.

palNIIITONS. Let 2'be,a line with a coordinate system; let

P be a point on the line-with coordinate p ; let the -point

with coordinate p' be the image of P under a transfor-

mation of the line '2 onto ,itself.

A transformation T(P) = P' is a translation if and only if

there exists areal number b such that for every point P /

= p b .

A transformation R(P) = P' is a reflection if, and only if

for-every point P pf = -p

464



9

A transformation E(P)= P' is an expansion if and only if -

there exists a real number a > 1 such that for every point
.

P , p' = ap . , 4 o4b,

A transformation C(P) = P' is a-contraction if and only if

there exists a positive real number a <'1. . such that for

- ,every point-P ; p' = ap

It should be intuitively apparent that in any of the above.

mations an image is between two other image& if and only if its

is between the pre-images of the other two images., Therefore,

VC

transfor-

pre-fmage

the image sei

of a segment is also a segment. It should also be apparent, that in a trans-
,..40,

lation or a reflection, image segments are congruent if and only i the pre-

image segments are congruelk. It or may not, be clear that th s is also

the case in an expansion or contraction. We consider two cong

P9 and RS Their congruence,depends upon /the equality of

it - si . The congruence of the image segments depends upon the

IPT - q'4,/ and jr' s'l These maybe expressed as lap - aqi

nt segments

- qi and

equality of

= &IP qj

and jar asi = air - 4 . These latter numbers are certainly` equal if the

original segments were congruent. Thts, the image segments of congruent
al

segments are also congruent.

We continue our development by considering compositions of these

transfoximtions. A reflection maps a,point X onto a point whose coordinate

is -x ; a translation will now map the new point onto a point Whose

coordinate iq' -x + b,. An expansion maps a point X onto 'a pOint with

coordinate ax ;, a translation now maps this new point onto a point whose

coordinate is ax + b .

Such a sequence of transformations may be indicated in a.diagfam:

7

NOUPQ x

a

i

-a \ '0 a\ 2a\ 3a\,
\ \ \ \

\

\ \

-a+b b 'a+b 2a+b 3a+b

465

ax+b



e'

.jrg

4
a

'74

It should be understood that L , L' , and L" are the same line, drawn in

separate positions to show the trantformatiofircaearly. Ls
1

is the result of
, - .

an expansion transformation of L , with the equation x' ='ax ; (a > 1)i

L" is the result of a translation transformation of L' , with the equation-

x" = x' + b ; final 4'. 4_.-IP can be considered as the result of a compdsition
, -

, 4
of two transformations of L , with the eqUation x" = ax-+ b .

We-consider the successivaeappIication or composition Of two of these

transformations and display the results by means of the table below. We

employ the notation used in the definitions given above. The labels at the

Ot
top indicate which transformation is performed first; the labels on the left

indicate which transformation is performed Seaend. The entry is the

coordinate oft` -the image of a point X , subject to the restrictions of the
o

given transformations. The subscripts of the constants indicate which

transformation introduced them. 1.

'T , R E (a l'; > 1) C (0 < a
1

< 1)

T . x + b
1

+ b
2

-x + b2 a
1
x + b

2
a
1
x + b

2

R . -x - b1 x
fl ..

-a
1
x -a

1
x

'

.

E (a
2
> 1)

-
a
2
x + a2b1b

t -a
2
x a'ia

2
x. a

1
a
2
x

C (0 <
.
a
2

1)
,

a
2
x + a

2
b
1

-a
2
x. a

1
a
2
x. a

1
a
2
x

We summarize by observing that these transformations and the 0
transfor=

mations that may beobtained from them by composition may be included in the

set of transformations defined as' follows:

DEFINITION. Let X be a line with a coordinate system; let P

be a poet on the linehlath coordinate p ; let the point P'

with con- ate -p' ba the image of P under a transformation ,

of the line A, onto itself.

A transformation T(P) = P' is a linear transformation if and

only if there exist a noni-zer6 real number a and a real

, number b such that for every point , 13' = b .

4 )0 "-)
40k

466

p

0 to

ore



rk.

We call'these mappings linear transformations because-the defining
equations are linear.

If this argument has not begun to round familiar you should go back to-
;Sectidn 2 -1.

The set of lintar,transformations of a line onto itself under the
binary operation of composition is anothen instance of a group.

Exercises S2-2a

In-the following exercises, you may find-that the form of the proofs you are
asked -to give are remarkably similar; if not identical, to those in
Sect/On 2-1,, They ariiafferent only in interpretation and terminology.

1. Prove that if.-41r-rs between P and R , then in a lineartransfor-
,

fixation of PR onto itself, the image of Q is between the images of;P. and R . ,

2. Prove that if PQ and RS are congru ent segments contained in a line,
then in'aoiinear transformation of the line onto itself P'Q' = ,

where ,p' , R' , and S' tare the images of B,

respeCtively.

P
3. Provefthat the set of linear transformations'of a line

closed under composition. - 4

4. Prove-that the operation of composition is associative
-

,transformaTions of a line onto itself.

5. Prove that the set of linear transformations of a line

contain§ an identity with respect to composition.

6. Prove that each element of

onto itself has an inverse

'7. Prove 'that the comPosition

itself is not commutative.

R , and S

onto itself

for linear

onto 'itself

is

e set of linear transformations of a Tine

th respect 'to composition.

Iinemetransformations of a line onto

The composition is commutative if certain

restrictions are placed on he linear transformations.

restrictions?

8 Prove that anylinear tr
II

of nbt more than three tn formations each of which

a reflection, a contractidnllllll or an expansion.;
1 .4

H

'

,

What are these
;

orvation maybefexpressed as the composite

s a translation,

<4

7'
ti
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Although there is no unique way of'"factoring" a linear transformation

in the way suggested above' it May be that for a given_ transformation

. every such expression must inclu ranslation, a reflection, an

expansion, ors. contraction. In this case we shall say that the linear'.

transformation includes a translation, reflection, or? expansion,

We have discovered teat the linear transformations of a line onto itself

under the binary operation of.composition form a group which seems similar to

the group of linear # ,m.nctions.which describe' changes of coordinate system on

a line under the binary operation of composition.

Thins kind of similarity is of some importance in.mathematics and is

called an isomorphism (from the Gree, Laos,

meaning form). An isomorphism is a one-to-one

mathematical structures which relates not duly

but also the operations between the elements.

the relationship between the multiplication of

addition of their logarithms. Another example

between the addition of vectors and the addition of complex numbers. The

importance of isomorphisms stems frdm the fact that statements made about

one structure may suggest corresponding statements about the other.

In this case the isomorphism is between the group of linear transfor-

mations of the line onto itself under composition and the group of changes of

coordinate system on the line under composition. The correspondence is

established by identical linear functions which occur in the definition of

each group. Since our descriptions of e4h group are in terms of linear

meaning salie, and A40/34 A ,

correspondence between two

the elements of the :Structures'

A faMiliar example is,found in

positive real numbers and the

isfound in the relationship

functions defined by equations of the form x' = ax + b , we may make

compariions of our descriptions when the conditions on a and b are the

same.

IA change of coordinate system which shifts the origin c rresponds to-s

linear transformation which includes a translation. A change of coordinate

system which is measure-preserving corresponds to a linear transformation'

which includes only a translation or a reflection. A change of coordinate

system whiCh is,measure-increasing corresponds to a linear transformation

which includes a contraction, and a change of vordinate system which is

1

measure- decreasing corresponds to a linear transforjation which includes an

4 6 8
k
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'expansion. A change of coordinate system-which
is order-preseriring corresponds

to a lineartransformation which does not include a reflection, and a change

of coordinate system which is order-reversing corresponds to a linear trInsfor-

nation which includes a reflection.

(lastly, we consider whether a point may be assigned thesame coordinate

after a change of coordinate system. The comparable situation for a

transformation is that a point is mapped onto,itself. 'In either case, where
xl = ax +.b.,-the.situation occurs if x' = x .

If. =

then

becomes

or

'xl = ax + b

x = ax + b

(a - 1)x = -b .

If a = 1 and S = 0 , we have the identical coordinate system (or the

identity transformation) in all coordinates (or poinp) are unchanged;
if a =,1 and b A 0 , there is no Coordinate (or point) which is unchanged.

Am

If a A 1 ,the coord te4r pant with coordinate). =12737 is unchanged.

It is customary to say that such numbers or points are fixed or invariant.

'Exercises S2-2b

1. Prove that a chaige of Coordinate system is order - preserving, if and

r' s'only if
r s

is positive; where r' and sl, are'the-new

coordinates of points whope original coordinates were r and s

respectively; prove. that = Chaige of coordinate system is o er-

I
reversing if and only if is negative.

onsider a linear tr sformation of a sine onto itself which maps the.

ants R and S , 3ihhose coordinates are r and s respectively, onto

the points whose coordinates are r' and s' respectively. Prove
that th transformation includes:

(a)

(b)

rl - sl
.< 11a contraction if and only if 0 <

I

8

0a contracticokand a reflection if andponly if <
r

-

- s

1.(
0

I

40'

so
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r
' - s'

(c) An expansion if and only if > 1
r - s

.14

- s'
(d) an expansion and a reflection if and only if < -3, .

r - s

3. Consider a linear transformation of a line onto itself which Maps the

points, P and Q ; whose coordinates,are p and q respectively, onto

the points whose coordinates are p' and q' respectively. -Prove that

the transformation includes:

(a) a translation if and only if = 1q

(b) a reflection if and only if Pp
q - 1 .

_

4. ShoW that the intrinsic coordinate systems on a line are identical to the

linear coordinate systems whose defining fuactions have the form .

t x' = x + b and 7x' = -x + b , where b is anyreal number.

5 a sider a line with a coordinate system, let P be a point of the line

let I(P) = P' be the image of P under a transformation of the

lie onto itself; let p and p' be the coordinates of -P and P'

0. 1 respectively..

Consider the transformation definep by

= Pi where p' =
p

pfor p 0 , and p' = p for p = 0
0

Choose an appropriate scale and make a graph for the coordinate system;

write the coordinates of several,images below. Write the coordinates

of their corresponding pre -Images above them. A transforniation of this
Q

type is called an inversion of the line.'
<

,

6. Consider the compoSition F(G(H)) of .ransformations of a line

itsey, where W,X,Y,t are Points of Vle line with coordi a,tesI

..,1,+ , x , y , and z respectively, and

F(Y) = Z1 where = 1 for y./ 0 , and

.

'z'= y for y =
- :--

Y ..:-*4

G(X) = Y where y = x + 1 ; and

II(W) = X where.x .= 2w

Describe the Eret of pre-images, or domain, and the set of image
.

or range, of the composite transformation in terms of the

coordinate system on the line. Is this trantformation into or onto

. the line? Is this a one-to-one mapping?'

. (
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. ,

- (b) Choose an appropriate scale for the coordinate system and make a

graph of the set of images of this composite transformation. Write

the coordinates of several images below them. Write the coordinates

of their corresponding pre-images above them.

Two sets are said to have the same cardinalanumber or the same #

cardinality if their eleqlents may be put in one-to-oneoCorre-

spondence. .What can you say about the cardinality-of the interior

of a segment of a line?

7. consider the composition D E(F)) .of the functions whose domains are

the set of -real numbers, where

17 for' y fm

z = D(y)

y y's=*1

= x t 1 for allI x.
x = F(w) = 2w for all w .

Describe the' domain and range of the composite function. Tethis

mapping into or onto-the set of real numbers? Is this mapping

one -to -one? ,)

(b) The carqinality of.a.set is sa id to be infinite if and only if the

elements of the set may be put into one-to-one corresponaence-ytih-

the elements of a proper subset of the given set. What can you say

about the cardinality of he-set of real numbers?

8. ,If P , Q , and S are poin s, with R A S , whose respective

coordinates in two differea'coor inate systems, are p , q , r , s

anT , ql , r' , s' , prove that
.;

P
. r' - s' r - s

.

Each member of tfle-equa;tion is called a difference quotient, and in'thfs

case expresses the ratio of a pair oftdirected distances., The content

of tilts theorem might be_expressed in thiswey:

.

Difference quotients of-difected.distahces are invariant

under a change of coordinate system.
.

,

I-

Or this way:

. The ratio of directed d sten es depends .46 the Ints

involved, but not upon he c or4)ale,system,
.,

.,.t

4 7 - 1

4 1

4)\
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9. If B , and C have respective coordinates 3 , 5 , end 10 in one

coordinate System, and :2 , 3 , and x in another coord ate system,

find x . (In how;momy ways can you do this problem?)

10. If A ,'13 , and X are disti4t pOintsVith respective, coordinates

a , b', x , and a' , b' , x' in two different coordinate systems,

express x' in terms of a , b , a' , be , and. x .
.

11. Show that if two points are fixed under a 4near transformation, it must

be the identity transformation.

f

as ,!

0
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Supplement to Chapter 3

LINEAR S 34 IS 3h CE AND INDEPEPIDENCE

r

6 ;

We have defined a zero ector!ik, and, for any nudber -k and vector X 4

the scalar product kr . We may, in the same way, define a ze linear poly- .

nomial in one variable, 0 + dX ; and, for any number k and near poly-

nomial in one variable, a + bx , the "scalar product" 4..(a = ka + kbx .

We could, in the same way, define a zero n-tuple of numbers, and,. for any

number k and any n -tuple of numbers, the "scalar product",

k(a,b,60.,n) = (ka)kb,...,kn)

41'
.

We consider nom:a set S = whose members-may-all be vectors,-.

or linear polynomials in one variable, or ordered n-tuples of numbers, etc....

We may see that, with suitable definitions along the lines suggested above,
- :

members of 8 might all be linear expressions in two Variables, or polynomials

-in x of degree not:greater'than 3 , or any polynomials in x , and so on.

A set of such expressions S = (A,B,...,K) is said to be linearly

dependent (L.D.)f if there exists a set of numbers N = , not all

mommamirimiiiiv

zero, such that aA + bB + + iK = 0 .

Example. The bet (2p + 3q , 6p + 9q) lis L.D. be use there

numbers (-3.4) not all 'zero,' such that -3(2p + 3q) + 1(6 9(1)

If .a get of expr sitiOns, is not linearly dependent, it is so.d to be

linearly independent (L.I.) .

4



Example. 'The set (2p + 3q ; 6p + 10q) is L.I. because, if there Were

a set of numbers (a,b) 'such that a(2p + 30` b(6p + 10q) = 0 , then we
. .

Would have

(2a + 6b)p (3a + 10b)q =,0

for all p and q , or .

2a + 6b =0 a + 10b = 0

The only solutions for tliciese eq =tions are a = 0 , b = 0 ; therefore, the

original set is not L.D,, it is L.I.

In view of the example above, it is Possible to define linear inde en

first, as some authors'do.

A set of' such expressions as S (A,B,...,K) is said to be linearly

independent (L.I.) if, for the set of numbers N = (a,b,...,k) , the statement

aA + 1 0 3 + ...+ kK'= 0 , implies a = b = = k = 0 .

4001'

Terminology. The property ofbeing L.D. or L.L. is a collective one,' and

attaches torthe 221, rather than to the separate individuals; however, we

follow general usage in writing, sometimes, "The vectors A , B , C are,L.I."

for the longer "The set of vectors (U,6) is L.I." f,f,

We state some useful theorems whose proofs are left to the reader.

f.

THEOREM'l. A set is L.D. if any subset of it is L.D.

THEOREM 2. If a set with at least two members.is L.D., then one Member can.be

expreaged'as a linear combination ofJ the others.

Corollary. If the set (A,B,...,K) is L.I., and the set (A,B,...,K,L)

is I, D., then L can be expressed as a linear combination of A , B

K

.
'MOM 3. If the set of rows (or,columns) of a determinant is L.D., then the

value of the det9rMinant is zero. -- .

,474
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. Proof. If the set of rows is L.D., then one-row, say, the first, may by

Theorem 2 be expressed as a linear combination of the others.

The illustration below, with a determinant of Order 3 is easily ex-

tende to any order.

all alt

a21. a22

a31 a32

ai3

a23

4133

ka
21

+ /a
31

a
21

a31

ka
22

+ /a
32

.412

a a32

ka

But. by Theorem 5 of Supplement-A, this vast determinant

33

a23

a33

may be written

sum. of determinants, and equals

ka
21

ka22 ka
23

aa
21 22

a
23

a31 a32 a33

4,

/4131

a
21

a31

1a32

a22

a32

./a33

'a23

a,33

as a

The application of Theorem 4 of Supplement A shows that both of these are equal

ta'zero, and therefore, so is the original deteiminant.

Application to vectors.,

0

THEOREM 1+. Any set .of vectors which includes the zero vector is L.D.

.THEOREM 2. Two non-zero vectors are L.D. if and only if they are collinear,

(a) If andand -ef are collinear, vief, from Chapter 3, there exists a

nudber k such that r> = kzz . Therefore IP - 4.= 0 therefore

r_R and Q are,L.D.

'1(b)
s

If gr- Q are `L.D, then there exist numbers a and b not

both = 0 such that af + bQ =17, Suppose a # 0 , -then

P 12a-Q that is .11'.= 14 , which means that and Q are

collinear.

Corollary. [p,q] , (r,s} are collinear if and only if P = 0 .

- r s

ti
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=REM 6., In the Wane, any set of three non-zero vectors isL.DY

(a) If any two are collinear, they are L.D.-and.then so is the set'of
t .

three.
, ,

(b) If no two are collinear, then, for any c , we will show.that we

can always find values for a and b such that

+ b4 + diT t ;

that is we can find a , b , for any p ,q,r,s,t,u,c,
such. that

a[p,AL) + b[r,$) + c[t,u) = [0,0) .

This requires unique solutions or a , and b , in the equations

pa + rb = -ct.

sb.= -cu .

Blit,-from the hypothesis that f and 4 are not collinear, we have

.4

p ,

,

4 .0r

l

r 0 ands is exactly the condition that, there be unique
q s

solutiong.for a and b in the evations above.

Corollary. In the plane, ally:Nrector;cial be expressed at a linear combi-

nation of any pair of non - collinear vectors. That is, if r, and Q are not

-collinear, then, ier any X we can find numbers, a and b soothat

aP + b@ = I. (Compare with Theorem 3-5).

Terminology. If an vector of the plane can be expressed as a linear,

combination of the members of some set S = (FAA...), then S is said to

t en the A set of vector 'Which is L.D and which spranp ti,te lane is,

. ,

.

ccalled:' a basid set, or simply a axis for the plane.
/

Note:- (1) Any pair of non - collinear vecto s forms a basis for the plane.
. .

(2) These concepts generali
t
ze in a atura]. andinteresting way to

higher dimensions;

The-set-of vectors, ([1,0] [0,1)) is what is called the

uinatura/ basis" for the plane, since, [a4b) = a[1,0j + bf0,11 .

The natural basis'for three dimensions'is the set

([1,0,01_, [0,1,6] , [0,0,11) etc.. .4

(3 The number of vectors in th basis is he same as thk,dimen4ion of
,the space. Thits, we may de ine a space of four dimenpf sjas one

in which there is atleast ne set of four L.L. vectors, bu i

L.D.which every set offive vectors is L.D. Similarmiefinitions

be'stated for five and higher dimensions.

,
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Applications to Geometry

1. The lines ax + by = and px + qy = r intersect i na point if and

only if the 'corresponding equations have a unique solution for x and

y , that is, if and onlly if
a

/ 0. This is t406rue ifand only if the
p q

left members of these equations are If the: left members are D.D.

then the lines will be parallel of' coincident, as can easily be shown.

2. The concept introduced abovegeneralizes easily. The planes:

aix + bly.+ clz = d1

a2:0t,b2y + c2z =d2

e

a3x + b3y + c3z = d3

meet in a single pointlif and only if the left members, of these equations

are L.I. If they are L.D. then the planes maybe related in various ways.'

All three may be parallel, two or three of them/may coincide, two may he.,,

parallel and intersect the third,'they may intersect in three parallel

lines, etc. We leave the interested student to discover, either bi- his

op research or by reterenca-to.other -books, the connection between the

dispositions of the planes, and the relations among the coefficients in

theii equations.

6. 1
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lement D

Supplemefits to Chapters 2, 3, and 8

POINTS, LIWTS,.AND PLANES

The material in this supplement previously appeared as Chapter 4 in the

preliminary edition. Faits of that'chapter were retained in the text you are

now using. These sections include significant'matertal which may be of in-
.

terest to ydu.

D-1. Choice of Methods

r.

In this chapter we shall consider, some questions abOut the undefined

elements of geometry-- ,points, lines, and planes. When do they interSPrt?

'How are theN separated? What about betweenness? For answering these and other
. . 1,

;questions, W.elhave developed the basic tools in the earlier- chapters; it°will'
. . ,..

be part of our task to select frgm among these tools those appropriate to the

soiution'of a particular problem.

Sometimes we shall start with the general case and then take special

cases. You may recall praying Desaighes!

t at it holds'i -space. At other times

then genera ze. Thus we considered

pace, pnd so on.

Theorem in 3-space, and then showing

we start withaHmore limited,case

istance first on a line, then inj2-

Weliave available different forms of representation. In a problem about

particular line,line, our representatiou of t may depend on what is known about

t, what we want to proye about it, or other considerations. Fbrexample,.it

yog are toldItiat7the x-intercept fora certain line is 2 and the y-intercept
V

3 = 1 . If you 4rAconcerned with 40,.=3 yrri might choo e a, its equation
, 1

amount of rotat

that point as pq.e
4

A relation such as

on of a line about a fixed point, you might want to. use

f a, polar coordina

r = 9 , expressib

e system and write,for the line

most simply in polar coordinateg;

1;79 t-
$

7,8
1



would be much more complicated to look at and to graph in rectangular co-

ordinates. (You might want to try this.) In Chapter 4 vector methods are

used to prove theorems of geometry that you proved earlier in otheil ways.

0
A Our point here is that in this text from this'point on you can expect to

'see a variety of'repregentations and methods. In Sections D-2 and D-3 2 for
. ,

example, rectangular coordinates and the equation ax + by + c = 0 for a line

are chosen because it is desired to emphasize the relatipn of the geometric

'problem to an algebraic problem of sliving systems of equations. In the same

fashion, you have freedom to select the form of representation and the method

that seems appropriate in a particular''problem. Sometimes a few

minutes spent first in deciding how to locate a coordinate system will save

much time in solving a problem. Often there is no single simplest or best
method.

D-2. Collinearity.

.The geometric problem of,,whether three points are collinear corresponds

LI, to the algebraic problem of whether three pairs .of values of two variables are

solutions of othe same linear equation in two variables..

C4 onsider distinct points` P1 = (xi,y1) , P
2'
= (x

2.
.11*

2
) 1 P

3
= (x

3 ,y 3T.9
. II

Using the two-point form of the equation of a line derived in_Section 2-5,.the
411.0. ' , .

equation of the line P
2
P
3

can be written

This we rewrite as

YY3 -x. x3 ,
x3)

(Y.- Y3)(x2, x3)= (4.- Y3)

)
If we multiply out and collect terms involving Xo

(1) 0'.(Y2- Y3)x- (x2.- x3)/. (x27J x3Y2)

---k

x - x3)

and y , we have

If 'we write the terms in parentheses ad second order dterminanfs (Appendix A),

(1) becomes

2 1

(3
1

- .y

x
2

x3 1
+

x2 y2

x3 y3,
= 9

J



Using x , y , and 14, as the elements of the first row of a th

terminant, we can then write the equation in the form,

(.41 ( 2 )

(2) is an equation

if and only if

. 1

(3)

a

of the line P2.3 , th point Pi.

xi .yi ,, 1

..-1 _

x2 . y2 1

.
evx

3
5(

3 ,
1

- -: 4 %. ,

Thus (3) is a eOkact4fo& #1 which td-write the condition that thr6e'points

, .. 0 .A

order de-

is on this line

are collinear.

If three,given points are not collinear; they determine a triangle. We

choose a rectangular coordiiliate:tystem so that the triangleds entirely in the

firgt quadrant and name the points P1 , P2 , P3 , in a qounterclockwise order

around the triangle, as shown in Figure D-1..
. ."41'w

4 '

If the points P1 , P2 , P
3

are

not collinear, they determine a trtengle.

To find its area we draw Perpendiculars

P1F1 ,P2 F
2

, P3F
3

to the x-a*s. We

can find the area K of 6P,P,P3
b 51.

) 1 1. e

subtracting the area bf trapezoid

F1 P1 P
3

F3) from the sum of the ,,reas, io
of trapezoide

1.

F
1
P
.1
P .F

2
and

(

F P P.
2 2 3

F
3

K = Area F3PF2F2 + Area FFPr3 - Area

VA K = )( )
x2)(Y1 4..y2

) x
2 3 -2 0(3 2(xl.-

1
= 7-2;(x1y2 - x2y1 + x2y3 -x3y2 - x1y3 + x3y1) ,

4

x ,y3)

P

-Figur

Fl

0

(4) ,K .1-oxik5r2 Y3) + x(Y3 5r1).+ 13(Y1 °

.

48,
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a

I 2

'(5) or IG =
1

2

y
1

x
2

. y
2

'

x3 y3

1

1

1

The student should verify that Equations (4) and (5) arg edui.valee. The

value of the dgteminant in (5) will be positive if the vertices'are named

as ih Figure D41 so that trayerse of the perimeter in the order P
1
P
2
P
3

is

counterclockwise. If it is clockwise, the value of the determinant will be
negative.

, We notice that the determinant in (5) is the same as the one 4ed to
4

write (3) , the condition that three points are collinear. This is not sur-

prising, as it is intuitively obvious that three points ...11,Lre collinear if and

the.area of he "triangle" they determine is zero.

A Formula (3) can e obtained in a different way by using

Section.3-8 we saw t t the area of the triangle OXY , where

Y =
2

) .1

K - x I2 _re- 2- 1

We. use this result to find 9e area of an arbitrary triangle.

We name the vertices ' P1 = (ix1,y1),

P (x
2'
y
2

) , P
3

= (x
3'
y )' so that our

/results sAell have the same notation as
.

the preceding development. We add the P1
vector -fl to each of the vectors

A
e

1:7

1 '
P2 , 1

3
to obtain the vectors

vectors., In

X = (x x
2
) and

.1:7 -P. =6,1s" -is'
2. 1. 2 1* 2
3

P .P3 , where

P [x -x y -y2. 2 ' 2 1
-

= Lx3 -ixi , Y3 - Yi

Triangle 0P2' P3' is congruent to triallgle,,P1P2p3
..

e

angle P
1
P
2
P
3

is .

482
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. Thits the area of tri-
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1
K =-&(x2 = xi)(y3 - yi) - (y2 -

1

2

0

x2 xf y2 yi

x3
x1 Y

3
Y1

Exercises.D-2
...*

1. For each of the following find out,whether the points whose coordinates

are given are collinear; if not, find the area of the triangle that is_

determined. k
;

(a) , , (13,2) (c) (a,b) (-a,-b) , (c,d)

(b) (3,2) , (-?,-7) , (15,5) (d) -(b,o) , (a , a - )

)

2. Consider the triangle with vertices P1 = (0,0) , P2 =- (a,0) P3 = (b 0 ''
2 3 'P' .'

and the value (not the absolute value) of the determinant in (7). .

evaluate this determinant for P1 , P2 , P3.. Evaluate it for Qa = (0,0),

Q2= (b,c) , Q3 = (a,0) ; for :JR, = (a,O) , R2 =.(b,c1,, R3 = (0,0) ; and

also for S1 = (b,c) , S2 = (a,O )' , S3 = (0,0) . Does the way y.ou go

around the triangle make a difference? Does the vertex at which yon

start make a difference? Try to state some general conclusions.

- 3. Prove that the ares.of the triangle wi& vertices P1 = (x,,y1)

P
2

= (x
2"
y
2 '

1
3

='(x
3'
y
3

) is

x y2
2

48
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Tote: The equation

t A 1
K -

4.
slave may be written

3

lxi

Yi4

=a , Ici+1 Yi+1 ,

a

where, we interpret as xl and

This genera.42es immediately, giving the ?011oying formula for the area

of a.polygon with n vertices Pi = (xiiyi)

.1 =csi 11 +1

1 E
n Xi

P2 = 3) ''=.

I .
ppiP21,3 and 3P4P1 d, and :Oen by usi the formula in Problem 3 above.
.

2) and C = (.6 -5)

,

i

where we 'interpret xl,-1+1 as x.,
..I.

and yn+1 as yi

, $ :
4: Find the "area ot'ihe quadrilateraL whose vert es are Pi = ( 4,1) .,

/
(-3,728), P4 = (2, -1) , by'adding the areas offirst

.
are i

' colliaiear.

(a) Use condition. (3')

(b) Show that B - r = -

(c) 'Show that d(A,B) + d.(1`)

,4'
I

/

D =3. Concurrence.

, "
The ge?Metric Arabi of whether three lines are concurrent Corresponds

to the algebraic probl of whether one pair of values of two Variat41es sat-
.,

isties three differen linear equations in two variables.

- ° ,
We. consider t 'ee , , and L3 , with'e9.uations

o
Ll : faix + 1?iy c1 =0 '

,*
(1) =

-
L

2
b

2
2y + c

2,f= 0
s

3
L
5

a x + b
3y

e
3

0 .

Owe

484
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4,

'
These lines maybe related in any one Of the following ways; we shall coniider-

the.analytic conditiOns for each.

(a) The lines may be coneUrrent. the case of mast interest.to

uKince it represents the usual situation in whiCh there is a unique solution .

of the three equations. The eqwitionvepreient three distinct lines with one .

and only one point in commons. For

we must have

4..

this, any two of the lines must inter-,

sect in a point, and that point must '

lie on the third line. From our siudy

of Intermediate Mathematics we.knoV

that this'first requirement means that L'

0

al b
1

a
1

b
1

(2) a
2

b
2

a3 b 0

a
2

b
2

a3 b3 0

The second condition requirts that the intersection of, say, L and L *a
.1 2'/

must lie on L3 , If PI = ,represe s the intersections IcAL1 ,an

L
2 /

we may write its coordinates

' I

x
1

-c
1

b
1

.

b22

a
1

b
1

a
2

b
a

71=

The condition that P1 is on L3 is

,

a
3

"el '1)11

-c
2

b
2

+ b
3al bl

.a2 b
2

a
1

-c1

a
2

.-c
2

:1 bl

2
b
2

al -c1

a -c,
2 2

al b
1

a b
2' .

+ c
3
= 0 ,

which can be written more'eOmpadtly ds

a
1

b
1

c
1

(3) a
2

b
2

c
2

= u .

a3
,

3

.

c3

48,
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Thus the condition that three stincines be concurrent is that. the deter-

minant'of their coefficients is zero.

(b) Two lines may coincide and be L,
,

intersected by the third .e. In this'

case the third order Clete rant is zero
,"

-4 ,and there Is a unique so t dh of the

three equations, but thi case may be - I142

. distingui;hed-irom (a) by noting that-

orle thethe determinant. of (2) is zero.

(c) Two lines =y be allel and

besAntersected by th- third ne. The

student must be car ful to distinguish

this case from case (b) , because, here .

there is not a un que solution,. This

/cease resemblei .) in that one of the

determinants of (2) is z , 'but the

determinant of he coeff ents is not zero.

(d) The hree lines may coincide.

There is not unique solution in this

case since solution of one equation

so ution.of each of the Others. L1, L2, L3

The third o per determinant is zero as

pxe all thr e determinants of (2) . There are two other distinguishable

cases whic hay, these same algebraic conditions'. The student may be interested

in describ ng these cases and discovering how to_distihguish them from. case (d).

ti

(e) ch line may intersect each

of the.ot erg in a single point. Condi-

tion (2) holds, but the third order

determine: t ia, not zerp. This is the

case one's most likely to observe from

three omly chosen line's.

ti

L

L
2

We ght:approach the question of concurrence in a somewhat different

fashion. Let: i1 and L
2

be lines with equations given in (1) . Then if

and are any numbers not both edual to zero, the equation
,

.( 4) , ,*.m(aix + bly + c1) t n(a2x.+ b2y +.c2) 70
' -

.

- , \ ,

,

As th nation of a line, since it is a first-degree equation in and y .



If L, and ',L2' intersect in P31'= (x1,y1) , thei Q(4) represents,,forsuit-,_

able ahoices of m and n , any,line through P1 . If 'Li and Lare
. 4f. c 1,_

parallel, then (4). represents, for suitable choices of m and 'n any line.

parallel to L1 and L2 If' Ll and L2 coincide, then (1) represents

that same line. Proof of the last statements will be left to the interested

studdnt.

Equation (4) represents wh4 istften'called'a family of lines; that

for suitable va4es of m and n it represepts'all the lines containing the

nterseotiOn of LI and L2.. Thus a condition that three.distinct lines

with equations in the form ax + by + c = be concurrent is that the left

ember ofthe equation Of one of them is a linear combinations of the left mem-

ers of the equations,of the othertwo..,

0
Example 1. Find a value,of k 'for which lines with the following

quations Will be concurrent. (Assume.k.i -1)

x -'y =0

. r

Solution. We observe that

,

3x + 2 =0

kx + yr + 1 = 0

/ .

the lines are not parallel they satisfy con-./
,

dition.(2));wethen use condition (3)

1 -1 0

3 0 2 =0
k 1 1

We finds that k .3; .4

.

Exagtpleok

'.(a.), -Find an equation that represents a line through the interspction'

of ,lines with equations 'x + 3y 3 = 0 and' 2x - 3y - 6 = 0 .

.9 P
6

(b)' Find an equation of the' member of this family Of lines'
.

. a

(1) that has:lope 'equal to 1. t

(2) 'that contaihs'the pot 0;3),.

4

488
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Solution. . °

Y.
'
(a) Using Equation -(4) we write m(x + 3y - 3).+ n,(2x = 3y 6) =,6,

or (m + 2x1)x + (3m 73nYY + (-3m - 6n) = 0 .

(b) (1) From the last, equation in (a) we have an ezipression'for
si

the slope,, wifich we Set equal to YE and simplify. .

- n

2m - 1441 = - 9n

-,11m -I- 5n = 0
"

We let m = 5 , n = 11 , and substitute these Values' incthe

equation in (a)
,

27x - 18y.'- 81 = 0 .

Or, more simply,' 3x - 2y - 0

(2) If the line is to contain the point (0,3) , these p-

ordinates must satisfy the first' equation ire (a) , therefore
-/

m(0 9 - 3) + n(0 9 - 6)

-
Simplifying, we have 4

"6m - 15n = 0 .

We let m = 5 , n ='2 , and obtain

x+y- 3 0

as.ari. *equation of the desired line.

Exercises D-3

1. Are the lines gith the given equations concurrent? If so, what is their

common point? ,

(a) 2x- 3y + = 0 , r3X+ 4y - -12 = 0 4 = 0

(b) x + y - 3 = 0 , 3x - y = 0 , 2x - 1 = 0

(d) x-y =4; y=x+7; 3x" - 3s, + 5 = 0

2. For each of the following, determlne a real number: k such that the, .

equations represent concurrent lines.

(a) x - 3y 5 = 0 ; 3x Y 5 = 0 kx - 3y - 2 . 0

(b) x + ky - 3 = 0, kw -7Y-.6 = 0 , 2x - y:- 3k = 0

)488
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3, Given lines L
1 '

L2 with 6 ations 3x, - 2y 4- 5 =0 and x + Ly - :2, 0;

write an equationthat represents any line through the point of intersec-

tion of 1,
1

and L
2
". Then find the member of this family of lines4that

. 3r= ,

(a) '...has 1thet slope r .
(b) is perpendicular to L1 .

so

(c) contains the origin.

(d) contains'the point (5,2)-r
If

/
(e) has a y- intercept of 1 .

,4
. 4. Find en equation olt: the line parall,1 to the line whose equation is

3x -.y + 7...0, andocontainng the point of intersection of the lines

whose equatiorSa;e 5x - y y 3-= 0 and x y - 2 = 0 .

. re

5. Given,the triangle determined by points A, =.(a,6) ,J3,= (0,b) ,C=(c,0).

(4) Show that the medians are Concurrent, and find their point of fn-
.

tersection4.-(This point is called the centroid. It'was discussed

and a vector proof of concurrency.given in Example 2 ., Section3-81)
.

(b) Show that the altitiAdes are concurrent, and find their point of in-
.

tersection. (This point is called the orthocentdr.),

(c) Show that the perpendicular bisectprs of the sides are concurrent,

and find their point of intersection: (This point is called the

circumcenter; it is the center the circumscribed circle of the

triangle.) or.

(d) Show that the .centroid, the orthocenter, and the circumcenter of
,o.

. ' this triangle are dalinear.

(e) >D'you think that What you have proved for triangle ABC is true

for any triangle? Give reasons for-your answer.

6. Prove that, in a trapezoid, the diagonals and the line drawn through the

midpoints, of the parallel sides meet in a-point.

'- a. '
,

',p-4. Intersections and Parallelism ,
.-

, ,
,.
-e.

-b3..

"----------------Thrt \sets have at least one member in-comon they are said
..

to intersect.
...c -

. . .A. ,

We consider in this :: tion, points,` Iines and p s and their possible in-
.._

,

tergections. If set S is a t of
r
set T , then their intersection is
'e. O

I

.. all of S , and we sometimes say that -s on, or in, T , or S is em-

489

488



-bedded in T . Thus a point pay lie on a line, or a line.may be'leMbedded in

a plane. Our analytic representations of these sets makes it possible to

develop simple criteria,for many of these relationships.

Point and Point:' Pis , P2 . This case is easy to analyze but a good place
I

to start. Two.epoints interAct,if and only if they coincide. Their analytic

representati9ns -are simply their coordinates, which must be identical or
-

equivalent,iri,acctirdancp with the definition
,6

of equivalence given when the4'9..
coordinate systems were introduced. . (

In rectangular coordinates P = {3,5) differ's from P'= (5,3) . In

polar coordinates P =.(6,A)' is the same as P C-6,0) and P = (6,3A) .

.
( e

Toint and ILA: P1 , L ._ A point is on a line if and only if I set of
r 4

coordinates of 'the point satisfies an equation of the line. The point

e21...i

(x.,y1) lies on the line L : Ea.+ by + c ..f(?cry) = 0 , if and only if

f(x1,y1) = 0. The ppint. Ti = (ki,y1) lies ori L : x . a -1,At , y = +-mt ,

iiand only if,there is some value"of t , say t1 , such'that x
1

= a + gt
1 '

and yl = b + mt1 . If _P1 and L had been-given relative to a polar co-
.

ordinate sy?tem,,the discussion would require simple modifications, which are,

left to the student. The extension of the discussion to 3-space can o be .

made, with minor revisioni.whidh are also left to the student. lug

'Examples.

(a) P.= (1,3) is on
I

L 3x - 2y + 3 = 0 ,'because 3(1) - 2(3) + 3 = O.
(b) P = (1,4) is not on :.x = 3 + t y = 2 - 3t, becauseAhe.

equations 1 = 3 + t 34 = 2 - 3t impose contradictory conditions

on i

(C) P = (1-2;60°) is on L : r
cos 0 -

o
because .12 .

e_
cos au

A/2
Sim4larly, Q = ;(6,d, iy and R =.(12,-60°) are also on L

P = (2,5,-1) is on .L x = 3 + t,, y = 2 - 3t ,.z = 1.+ 2t , since

the equation 2 = 3 + t gives a valve for- t,, nalnely t = -1
which id consisidntWith the equations: 5.= 2 7 3t and

/

(a

-1 =.1 + 2t .



Point and Plane: P1 M . e discussion is left to the studelit, who is
I ,

referred to the paragraph above.

Line and Line: Li ,L2.. 2-space. Two lines in the same gdne may have

(1) just ones, or (2) all,- or. (3) no points in common?. If the lines are

Ll aix + bly + fl(x,y) = L2.: a2x + b2y + c2 = f2(x,y) =,R,,

the analytic counterparts of these 3 cases are presented below. Proofs,

which are not difficult, are left tothe student.

(1) L1 , L2 intersect in just one point'lf and only if

(2) , Li coincide if

a
1

4
b
1

a
2

b
2

and only if

a
1

b
1

a
1

' c
1 1; 1

c1= . = 0

a
2

b
2

a
2

c
2

b2' c2c

.

4 ,
.

Note thatif any two of these determinants are equal to zeo, so is the

third. NoteAlso, that i?this condition is satisfied, there is a non-

,zero number,. k , such that. f1(x,y) = kf2(x,y) .,

( 3 ) L L
2

are parallel -if and only if
a
1

b
1

and either .

- '
( b

2

a
1

c
1

a
2

c
2

or
b
1

c
1

b
2 c2

=

(a) Note that, if either of these is different from zero, so is the

otW.
(b). Note that, for.any numbers p and q , the equation

pf1(x,y) + q;2(x,y) = 0 is, in general, an equation of a line, L3 .

If L,
1

, L2 intersect, then L3 will go through'that point of .,

,, ? i

.40' intersection; if Li , L2 coincide, then L3 will coincide with

-theM; and if Li and L2 are parallel, then L3 krill be parallel /

. ...

to both of them.

14914 9 0
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If equations for Li and L2 had been presented in parametr vector

I,

form, then the analytic representations of the three cases above would. have a

somewhat different appearance. The development of these representations is

called for:in bne of the exercises at the end of this section.

3-space. Two lines in 3-space may have (1) just one ,point in common,

(2) all pointsrn common, or no points in common. In 2-space, this last

condition 'requires that the lines be parallel, but in 3-space, lines that have

no point in common may be (3) parallel, if they lie in one plane, or (4)

skew, if they do not.

V:
The di'cussion o'' the first three cases is a.nalogousoto the correspond- '

ing discussion of the 1..i-ne; in 2-space, but.the equations are more complicated.

. Suppose L1 goes through P1 = ( a., ,bci) with dit.ection numbers
1-

nd L2 through P
2

= (a.
2'
b
2'

c
2

) with direction numbers

I

(.el'm1;n1)
'

.

m n )
2' 2'. 2.

Therefore we have equatioxls Ll : x +,/,s , y =,b1 + mis ;

Z = nis ; 'and : x = a2 + £2t , y =. b2 +.m2t z = c2:+ n2t .

(1) If L1 , L2 intersect at'a unique point = (xt,yi,z1) Othere must be

values of the parameters, say sisa-id such that

x' ,= + £15.1 a2 + £2t'

y' = bi + mist = 1;2 + m2t,

z' = c n
1
s' = c n

2
t' .

e

These are..thiee linear equations .in s' and t' , which: we may write.:

s' - t' =a - a
1 -°. 2 1

' mist -sm2t' = b2.

nis' n2t' c2 - c1'.

Ihe;e is a unique common solution if and only if there is a unique solu-

tion to any two of these equations which will,also satisfy the third. The

solution, if any, for the first two ecivatipnsy 'say, rs:

a2'

ml b2.: bl

1

- 11/2

s'
b2

b1
1 -m2

-i
2

al -m2 1131 .m2
is



t

-(Note that these Solutions require 1
t2

/70 .)

m m ..-

2

quirements that there be unique solutions for any tFo,of the above three
,

equation6 are bil,
,

The corresponding re-

If the s'

have :

1

herefore

*2
/ 0 , mi. m2

n
1

n
2

- - n
1

n
2

values found above are substituted in the thid equatipn,we
I

0.

. -

a
2

- al -12

b2 bi

. I

/1' a2
al

n
1

ml
b2 -bl

L1
-A :2 -12

m ..112
.1

ml

n2

c2 - ci ;

'

n
a, -*al ,42 1

1
i
1

2
2'

1 . -n 2
a2 al

(.e2,- 1
ml 1 -m2

)b
2
, - b

il' b2 bl1
-m2

. 1,U

This may, after some algebraic juggling,'be written in the-form,
.

.

-(a2'- al)(M1n2 m2n1) (b2 bl)(11n2*- 22n1) cl)'(11m2

and this .n turn may be written in debenninant form:

=

a
2

- a
1

b
2
'it b

1
c2 - ci

1 M1
n
1

= 0
1.

2 m2 n2

= 0 .

I

Note that the elements of the rows are direction numbers for , L2
,

a
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1

(2)08) If Li and areare parallel or coincident, their dirqction nuMbere
. ,

.are equivalent, and all the second order minors of the last two rows must;

equal zero," and therefore t must equal zero. If L1 and -It coincide,

ithey coincide also with P
1
P
2

, whose directiOn numbers, must be equia-
r A.

lett to those of Li and Ie
,

L-, and in that case all the second Order
. --/---.

minors of t must equal zero. If L.,

-1-

..-------

and L,, areparallel, then they .
, .

...'
\,

both intersect P
1
P
2

whose direction nwpbers may not beleiquivalent to

those of Th . and II, , and in that case the.second order minors of t

.which include members from the first row maynot all equal zero.

(4) Finally, if L, and L2 are skew , .

-Example:. Consider the lines

: x = 2 + 3t , y = 3 - t , z = 5t.,

L2 : x = 2,+ 2t y = -1 + t , z = 0 + 3t

L3 x = 3 + 6t y = -1' et rz = .1 +lOt,
x = -1 + 9t = 4 - 3t , z = -1 + 15t

, (a) For Li and L2 ;

,(1)) ;.1-br L.: and L3 , A =

skew but may

- However,

intersect

o -4 -4

3 -1. 5

2 1 3

1 .-1 -3

3 -1 5

6 -2 10

= -24 / 0 . and L2 are
2

0

-.7.. Li ,and L
3

are not

.
.

in just one poihtor be parallel or coincident,

5

6 6 lo

494
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4

intersect in,just-One point, but must be parallel or coincident.

Coincidence 'requires all second order minors of t, to equal zero,

and, since
A,

1

lt

= .- 2-i_ 0 ,.the liiies .are not incident
-1 ,-.,.

_._

and must be parallel.
1.

-3 1 -5

(?), For L.J. and L
'

= 3 =1 5 = 0 , and--also all the second

9 -3 15 2

order minors of t equal zero. Therefore Li: and .L4 coincide.

4!

;

(a) For L
2 .

and L
3

, A =

1 3 1

2 1. 3

6 -2 10

skew, but may intersect -in just one

= 0 L
2

and L3 are not

point, or be parallel orlcoin-

cident. These last two possibilities are eliminatea by the fact

that

2 1

6

li, 1 3
= -10 A 0 , and

. .2 1
= -5 d.

Therefore Lk and L3 'intersect in just one point, which can bey.

found by the methods in the section above to'be P(6,1,6) .

The sketcbibelow suggests the relative positions of the four lines.

Li

.

T., ti

bcercise. Show Allytical1y that

(a) Lt and, Lit are skew.

(b) LI and L4 are parallel.

I
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1

Lite and Pldnei. L , M . A line may (1) be parallel to a ikane, (2)

be embedded in a plane, or, (3) intersect a plane in just one point. In this

last-Case Ng sometimes say that the line pierces thelane. We develdp the --
analytic counterparts of these tphree cases.

(1) Suppose L 'goes through P
0

(a
O'
b
0'

c
0

) with direction
. 4V (X0,140,n0) ; then equations for L- are L : x = a0 +/ot , y=b

0
+m0 t ,

Z = Co not . Suppose we have the plane -

M px + qy +,rz + s = f(x,y,z) = 0 .

Then L will be Parallel to M 1if and only if nopoint of L lies in

P

that,is, if there is no value of t

p(a0 + 20t) + q(b
0

+ m
0
t) + r(c

0
+ n

0
t)

which ,maybe written

such that

+ s = 0 . TAisflts an equation
os

(pa0 + qb
0

+ rc
0

+ s) + (pi
o

+ qm
0

+ rn
0
)t = 0 .

. .

The coefficient Of t resembles the algebraic form of the inner product

of two vector's.. (See Seotion 3-5) It is convenient to borrow the algebraic

symbolism of vectors and represent this coefffcient as the "inner product" of

the "vectors"-- [p,q,r] [20,m0,n0]. With this symbolism; the above
t

equation becomsF,

, -

1(+30,bolc0) + [P,c1,1').: [20,m0,n0]t = 0 ..

. x

For this linear"equdtion in t to have nosolution, it is necessary and
. .

sufficient that both: fla0,b0,ci); # 0 , and [p,q,r] (20,mo,n,u ] = 0 , which

are the conditions for L to be parallel to 14L. These may be recognized as

Agrequirinethat Po , which is a point of ,I, , not lie in. M; and that L 'be,

I.

perpendi:culnr to a normal life of M , b.s established earlier.

\

.
* Example. Show thaCt L : x = 3.+ 2t , y = -.7Jt- ,;z = 1 + 3t , is parallel

-t,o M : 3x + 3y - g. --. 5 = f(x)y,z)',= 0,
.

2

. 1

. .,

-
.

Solution. The criteria developed in the text are satisfied, since :,

0

(1) f(3,',1) = 1 7 5 = 15 4-0 , and

(2) [2,-1;3] [3;3;-1]. =.2(3) - 1(3) + 3(-1) -= 6 - 3 - 3-2-10 .

We might also substitute,in the equation of M , the expressions for x

y ae.furictions of t , and get 3(3 +72t) + 3(4 - t)- (1 + 3t),-- 5 = 0

which leads to'the contradiction 15 =,0 . Therefore L doesn't intersect

M .

496 ;4
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' .

. )
,.

The x-axis, or any line parallel to it, has. equations.: x = a + i t '1
. m . P

; ---b0, z = co , with diTgction numbers (i0,0,0) . f a plane has an equa-
,

.
t,:roon'such as M .: qy + rz + s = 0 , its normal lines have directipn numbers.

(0,q,r) . ..: M is parallel to the x-axis or contains ity since

(i6,0,01 (0,q,r] = 0 .--,a

, e
//r----In the same way, if a:plane has an equation in general form in which the"y term is missing, then, the plane is Parallel to, oh containi-the y-axisl-and

so on.

(2). If a line'is embedded in a plane, then cqordinates of eve'y point of the

line must satisfy an equati6n of the olgie. If L,and M are given as

before: .L : x = a0 + iot , y = b0 + mot , z = co i not , and

M px + qy + rz + s = f{x,Y,z) = 0 , then this requirement is met if,s

for ALI t , p(a9 + £0t) + q(b0 +m9t) +.1-(-c0 + n0t) + s = 0 This may

be'written as Cpao + qb0 + rc0 + (p20 + qmo rno)t = 0, or as:

o' bo' c
o
) + [P,q,rj (i my n-jt = 0

0' 0' 0 v

If this expression is'to equal, zlio for all values of t then we must

have: d(a
0'
b
0'

c
0
) = 0 and [p,q,r 3 (20,m0,n01 = 0 .

These conditions fq embedding may be recognized as requiring that

Po =(a9;,b0,c0), Wich is.a point of L. : also be a point, of M ; and also t4at

L , with direction number (t0,M0,n9) 'be perpenctici)Pr to a normal to M .

We have. previously used the fact that such a normal has direction numbers
r

(p,q,r)

Example. Show that : x = 3 + 2t , y = 1 +st , z =-3 r_t., lies wholly.
'>

in M : 2x - 3y + z - 6 = ^gx,y,z). = 0
e.

Solution. Both conditions in!,the section above are, satisfied, since

, -

(a) the point (3,1,3) is on M , since (311,3) = 0 ,.and

(b) a normal to M has direction numberse,,- -3,1) ; and* is perpen-

dicular to, such a-normal, siriCe (2,-3 (2)1,.1 = 4 - 1 F. 0 .'
1.4r

;
V

111..
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.

, (3) If we suppose L and M given as in the two cases above, then, if f 4

. intersects M in just one point, there t be a unique value of t ,
,

- ,

say t' , such that p't-.. (x',50,z') on L ° is also on M. That is, if
,

,x' = a
0 ,

H- A
O
t' ', y' = /b. + m

0
it' , z = co + lint' then

. . - , 04.. -,

:
_ .

,

"p(a
0
-+ A

0-
t')

-
4- q(b

0
+m t1),+-r(c

0
+ n

0
t' 1 's = 0 .

'

This is a linear
"40

, 0

equation in tI which may be written: -- -,

i ! ,

(13a0 + 60 + re() +-s) + (140 + clinO + rndt! = 0 , ory

, . , ,
f(a b c ) + (p q r] lA tor n IV .= 0 .

0' 0' 0 " 0' ' 0
.

, .

,

A unique solution will exist if and only ii.:the coefficient of t' is

different from zero, that Is, (p,q,51 (20,m0,n0] 1, 0 . If this condi-

tion is satisfied, we may find the unique value of t'

f(a0,b0,c0)

t!
p,qjr] [20,m0,n01 /

unique
A- /-14

iiiih- thit value of t' we find thecoordinates of P' , the ,ppint
i' f ,/ ii

--

,..* of intersection of L and M . , ,,
,

-.:i.
/

.;',. :

,

) Example. Find -the point in which L : x = 3 + -at , y = 1 + t,
i

intersects M : 2x - 3y + 4z - 5 = f(x,y,z) = 0 , .

4

Solution. Either by direct substitution

/

of expressios x Y fL

in equations of L into the. equation of M , or by appli =tion o tale fojimula

above, we obtaix.

,

,
may summarize the development in this section so fat' by observing that

/ much of the analysis depends on the possiblity and nature of the sOlutiop of

f(a
0'
b
0'

c
0
) + (p'q rl (to,m0,,noit = 0 . 'exhibit the' results of our

At Maya r
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'analysis in the table below.

(a b c (p,q, nCase 0' 0' 0 '
ri -(2 m

0' 0

(1 Li is-parallel to M

(2) L1 is embedded in M = 0 0

(3) L1 pierces p any value

A significant problem, related to the problem of finding the di

0

numbers' of

tions for

none

olu-

`-infinitely many

'one

between two skew- lines, is to find parallel plane which contain two

lines. Suppose the lines are L., x = al y = bi+ miti ,

z = ci + n
1
t
1 '

and L
2

x = a2 + .8.22 y ba + ns2t2 , .2 = c2 +

tance

skew

2t2

If the plpases 1111 and M2 are to be parallels, their dormals must have

equivaleht direction numbers, and we\may write their equations,

px + qy + rz + s
1

= f
1
(x,y,z, = 0 ; and

px + qy + rz s.
2

= f
2
(x,y,z) = 0 %. The problem is to find p , q ,sr

s2 in terms.of the constant which give us, Li. and L2 , udder the !,

conditions imposed by the proW.em.

tively in Ni and 142 , ye pave

,
/

Since
±

and La, are embedded respec-

the previous section ,

f
1
(a

l'
b
l'

c
1
) = f

2
(a

2'
b
2'

c
2

)
.

,= 0 and also

(P'q'r] (P'q'r] (/2

sufficient to find the five'values

tiat `direction numbers need not be

as well, to write equations for

'112in23
0 . These four equations are not

p q r $
1

and s
2'

but we'recognize'

foupd uniquely; ,any equivalent set will Rio

MiNnd N2 . We assume that not all of
- . ..

(p,q,r) equal zero,- andc.T.n.parttcsiSiti- that, say, 'r 0 , in which case we
4

have an equivalent set 62,2,1) .; and the algebrate problem:of solvingr r

,fourequationll in fourTvariables.

4

Theal.gebraicconditionsiOr solvability have their geometric counter-
4 '\

parts, corresponding to the relatiVe-positions
t
of pLi and L. We consider

2

in whi4 Li and L2 are skek. The -general

case involves extensive algebraic manipulation, which

. We carry through the details in an example.

here only the situation

braic treatment of thj,s

we shall not go through

I IP

t
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Ex 1 . Find parallel planes Ml ,and M2 which contain the lines

Ll
ti , y = 2 + 3ti , z = 1 -b. 2ti ; and L2 : x = -2 + 3t2.,

4.

Y c 3 , z= 1 7 2t2 .

Solut on.4

(1) is not parallel to L2 , because their direction numbersare not

e uivalent.

(2) L and/ L2 do not meet, because the assumption of a common point

ses contradictory conditions on ti and t2 . If we try to

so ve -the, system '

3 - t -2 + 3t
1 2

#2 + 3t, = 3 + 2t
2

1.+ 2t, -1 1 - 2t2

1
,

,

-
5
1

,th last two equations require
5

t. = t't= and these do not

sa

(3) 51

we

.142

sfy the firskequation.

'erbre, . Li and L2 are skew. Then, as in the section above,

consider planes MI : px + qy rz,+ sl fi(x,y,z) = 0', and

: qy + it + s2 = f2(x,y,z) = 0 .''The condition; that L1

anc L
2

be perpenciclor to a common normal N to planes 014.1 vend

'

1-4

-1(11 +3111142
r r

3(f) + 2 = 0 ,

el these yield, by elementary--methods, the solutions P i
r 11 14,

\

10 -4
(17,171, 1) or the equivalent- {10,-4,11) ti.With these. values? of

. We may:therefore use either the directioffnuMbers

9-
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p , q , r , ye find si and s2 'easily from the conditions that

Hi' and. M2% contain points -.P1'= (3,2,1) and P2 = (72,3,1) of

L
1

and L2 resPeotiyely, i.e.

' p(3) +:q(2) r(1)1.+01 =.pt, = -33

+A(3) + r(i) + .. s2 = 2i

Finally we haVe the equations of the planes

. 10x - + llz - a = 0 ;142 10x,- 1-y t+ llz + 21 =.0 .

Two Planes: M, Suppose these planes have respective equations:

141 pix + qiy riz + si =, fi(x,Y,,z) = 0, ,

112 P2x q25r r2z s2 !2(X45z) 0 "
'Ibe planes may --(1) --Coincide,-i(2) beparallel, or (3) intersect.

(1):* The planes coincide if,-an&only if every point of one of them is a point

of the other, and this will be the case if and only irthere is some non-

zeronumberksuchthat 1f2(x,Y, z) , as may be easily seen.

(2) The planes will be parallel i'f and only if they have a common normal, but.

no common point. These conditions will both be met if there is a number

k / 0 , such that. pi = kp2 qi = kq2 , ri = kr but sl / ks2 , The'

proof that this is so is left to the studerit.

(3) If two distinct planes intersect ina point Po = (x0,y0,z0) , one of the

earlier postulates of geometry requires that they intersect in a line.,

containing P
0

. .14e show, from the analytic representation and condition

.that this,is so, and find the line, given the planes.

The general treatment would involve tedious computation, and would prob-

ably notbe as enlightening as a specific example.\

Example. Suppose two planes. Mi : 2x - 3y + z y = fi(x,y,z) = 0 , and

142 : x + 2y - 1 = f2(x,y,z) = 0 , have the point Po = (3,1,1) in commonl

Show that they have in common a line containing Po .
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4 Solution. If p and q are numbers not both zero, theequati6n

pfl(x,y,z) + qf2(x,y z) = 0 is, in general, an equation of a planeontaining'

,

P
o

This equation may be written as
t-

(2p + q)x + (-3p + 2q)y + (p - 4q)z + (-4p - q) = 0

.If,' in"paxticular, p =,1 , q = -2 , this equation becomes -7y + 9z.- 2 =

or 7y 9z + 2 = 0. The locus, in 3- space, of this equation is, as shown Eh

the previous section, a plane, parallel to the x-axis. Note that this plane

contains Po = (3,1,1) since 7(1) - 9() + 2 -= 0 . Ile we subtract correa-

ponding members of these two ,e quat ions we get,, as another equation of this
,*

plane, 7(y - 1) - 9(z - 1) = 0 .

In the 'name way, by taking p = 2 , q.= 3 ; we get the equation

7x PlOz -11 -2-"P , which represents a plane parallel to the y-axis, and also

containing*-Po= (3,1,1)-, since 7(3) - 10(1) - 11,= b . If we subtract

corresponding membere-of these two equations we get* Z.(x2:3) - 16(z - 1) = 0 .
. . /

These of the two planes parallel to the x- and y-axes, respecti vely?'

may be writte :

7 - 1 z - 1 .

9 ; 7

x - 3 z -

10 7 7

Note that these three fractional expressions are all equal and can be set

equaloto\some common value t , from which we get x 3 10t
4

and z = 1 + 7t.. .

These are clearly a set of parametric equations for a line L' containing

the Point (3,1,1) . To show that -L lies wholly,in M1 we must show, that ,

\
for all values of t ,

\A' 2(3 + 10t) - 3(1 + 9t)'+ 1(1-4 7f) - 1.1:=r0

that is, + 20t - 3 7 27t + 1 -
,

which becomes, for 'all t , 0 = 0 .

In the same way, to -show that 4J lies wholly, in ,M , we must show,that-

for all values of tit* ,

that is,

and, for all

1(3 +10t) + .2,(1 + 9t) - 4(1 + 7i) - 1 ;

. 3`'+ 10t + 2 + 18f - 4 - 28t - Q ,

`
t , this becomes; 0 =,0 .

5'02
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. , Exercises D-4 ,

Consider the fciur lines given by the equations" below for EXercisei .1 to 6.
, '

.

ti X = -5 -1-' 3t3 -.-! ,
x ..--. - + 3

.

x -,--! 3 - 6t
2

,,

.

: z = 4 - 2t z. = 1 + 4t
2

z = 13 - 8t
3

`` L
1

: y = 3 ,-.. t
1

L2 : y- = -5 +'2t
2

y = 6 - 2t
.

.: 2t3

.

e 7 j3t

ik 44 y = -6. + 4t4

z = 9 - 6t
.

DArmine fo...' each pair belo .if the lines (a) intersect in just one r
1.

. point, or (b) are .parallel, or (c) are coincident, or

i
If a pair intersect in just one point, find that poAmt. .

(a) 11 , 1,2 (d) L2 ; L3

(b) Ll., L3 . (e) L2 ;L4

( 1,3:- L4 - (f)' L'
3 , 4

i*:t

2. ,Write dZipation (for the line which contains P = (152,3)' and 'is
>A.

parallel to A 0

(d) are skew.

(a) Li .

(b) L2 .

,

3. Write equations- of,parallel planes MI and
1,

-ra) l iand.

(c) L3 .

t i ,

. -,--.
0) LI..

. t
M2 Which contain respectively

(b) L., and L4

4.. Write ae_skipatlon,afs-a - plane -which

(a) contains 1,, and is parallel to L3 . -.i,
. , -1-

1.,.

(b) contains:40and is parallel to 11, .__Li_
..., o

5. Write en equation for tJe plane which contains the origin and
.,. . ,,

(a) L1 . (c).L3..

(b) L2 (d) L- .
' ,

L
A
`is said to !La over L., ifLB LA and LB art disjoint (hEive no poi4

: iri common), and there:is a ,point P. on L. which is above apolt iP sod
,- /4-e :41

: - .. _ 4 --rf--- 141*
R

LA
B ..

LB -;:that, is, such :that xA 11111PxB , yA = yB and zA . Thereigf a
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corredonding definition for a line to go under another line. We show that

Ll, goes over L3 :becalle if xl = x
3

and y = y
3

we have.

-2 + 3t1 = -5 4-'3t3-, and" 3 - tl'= 6 - Et
3

, therefore t
1

= 1 ,and t3 = 2 .

For these values of t1 and t3 we have z
1

= 2 and z
3

= -3 p Z, > Zi

' and therefore .L1 goes over L-
j

.

6. Determine the over*or_Under relationShip fOr these pairs of.lines:'

.: (a) LI and (c) L2 and L
4)

(b) T.,2 and L3 ' (d) L
3

and L

7. If L
A

goes over L,.° , and LB goes oyer LC
',
is it always, sometimes,

4

or never true that -LA goes over L ?
C,

8. True or false One of two disjoint lines,is over the other. Explain.

Considex' the f ur planes. M, : 3x - 2y + z - 5 = 0, for. Exercises 9 to

M
2

2x y 3z + 4 =.0 ; : x + 3y - - 1 = 0 ", and ,*

M + y + 2z + 3 = 0 .'
1

9. Findinparametric form, equations of the line of intersection of

(a) Mf , M2, . (d) M2 ,

(1)' ,M
3

( c) 143: , M4 . (f) 143 , M4

10. Find the common intersection point, if any, of

M1 M2 , M3 .
(c) M-1 , M3 ' M4

(p)
M1 , m2 m4

(d) M2 , M3 , M4

; 2

Note that we may use the results of Exercise 9 to facilitate the compute-
-,

11, Write an equation of the plane which contains the origin, and is parallel

to
-

tion in Exercise 10.

- (a)---141;

-(15), M2
1 A



11101
12.' (Refer to the4ines Blithe top of this group Of exercises.)

Find the point, if any, in which

(a) L
1

meets M1

(b) L2 meets M2 .

4
(c) L

3
meets M

3

(d) L4 meets M4 .

13. Suppose eglations of two lines in 2-space are given in parametric form.

" -Develop criteillia,in terms of the constants in these equations, for the/ .

various' geometric relationships that may exist between the lines, as in

Section 4-6D , where the equations were given in general form.

D-5. Perpendicularity and Angles between Lines and Planes

We have used quite freely in this chapter the definitions and teats for
4

perpendicularity that had been developed in Chaptex,./2 . For the purposes of

this chapter we consider angles between lines and planes in general, and per-
, A.

pendicularity as fhe special relationship that exists when these angles are

right angles. We recall that an angle has been defined as the union of two

non-collinear rays with a common end-point., .

Two lines: L1 , L2 . We do not define angles between parallel or:-
%.

coincident lines. Although there may be some value in the consideration of

"straight angles", or "zero angles", we reel that,pere is not sufficient

application of these concepts in this text to warrant the time and effort that

their treatment would entail.' We have already developed in earlier sections

analytic eriteria to distinguish cases of parallelism or coincidence..

If L
1

and L
2

are neither parallel nor coincident we define the angles

between them to be,the angles formed by lines L'1 and L'2 which contain

some common point, say,'the origin, 'and are respectively coincident with or

parallel to L1 and L2 . Note that this definition covers any intersecting

or skew lines. Such _lines determine four apgies, which tan be analytically

distinguished only if there is some way of establishing, implicitly or ex-

pliditly, a sel on L1 and L2

1

2-space:, Consider the intersecting lines L =a 7,Nt
1 1 1- '

40; y = b +111t. , and L2 : x= a2 y= b2,4. Nl 7\

1-4.2 , are direction cosines. Then the lines and L'2 which go through
. .

cv



the origin and are respectively parallel to or coincident with L3, and LA
4

_have the equations:

L'
1
:.x =Xt,y= u.t ; L' :x=N2 t, or = 1.1.2t .

42

Note that N1 , establish a.sense along L1 and L'1 ; the "pdaitive"

4

part containing poin for-which t >0 ; and so on: If, on L'1 and L'2_,

we take ,t = , w et the points23.=(2,u1) .end P2=(7\2112) on the positive'

rays OP1 , 02 . We defineA.he angle betweeh LL and L2 As given above,

to he the angle formed by 8P1 and 52 ;which'we designate as e . Note

that ifwe had taken i1Or L1 the equivalent direction cosines'.-N1

these would have been established on L
1

,a'sense opposite to the original,

and in that case the anglebetween L
1

and L
2

would have been the s.upple-

merit of 0 . It is not difficult to see that, for any choices of equivalent

edirection Cosines.fOr Li: and L2 the angle betweep L1 and L2 would be

congruent hither to e Or its supplement. Theie the- angles we mean when

speak 'of the singles fonnedby two lines. ,4

From 60P
1
P
2

and thd law of cosines we get
1

2
(P1,P,2)= d

2
(0,P1) + d2.(0,P2) - 2d(0,P1)d(0,P2) cos e . Note that

0 44

d(0,P1) =-d(0,P2) = 1 , and d
2
(P1,P2) = (X1 - N2)

2
+ (pl -

2

2 .2 2
-

N1 2A1N2 +4 2 2/12/12 t P2

2

Therefore

(1) and

= 2 - 2NiN
2

2 - 2N1N2 - 2p1112 = 2 2 cos e

cos e = NiN2 pip,2 .

This is an unambi ous determination for one of the angles between L
1

positive rays on L Nand L
2

determined by
711,0*.

Another of the angle'S between L

and L2
, namely thE0 between th

the given direction cosines and

1

and L
2

is clearly the-supplement of e ti

t >0 .

506
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Note 'ttat Ll 1 It if and only if the angles between them are right

angles, that is, if and only if A/A2 + 111112 This is a -familiar criter-

ion'foryerpendiesslArity.

than direction 'cosines. Note that when we set

A
, Il

+ m2

-

there is an ambiguity introduced with the choice of sign for the radical. A

particklarpair of'direction numbers entails an implicit sensing of the line,

as with the case of direction cosines; the positive sign for both radicals

1/4

We may indicate the corresponding results using dirpctIOn numberL, ratilfir
.eA

preserves the original sensing. In terms of directiontumbers., Equation (1).

becomes

/ + m
1 2 , 1 'd(2) Cos e

f"-----7
41

2

+ ml

2
*62

24.
ni2

\and the corresponding condition for Elerpendicularity,-;becomes

2112 mim2 = 0

The development here resembles, as it should, the corresirding, develop-
. 4

ment with vectors, given in Section 3-7 . We may, in thes%formulas, use the

symbolism of vectors, to simplify their representations. We recognize that

A the vector OP, = [X141.2] and °CP2 = (A2,14) ,Therefore we may write

Equation (1) in vector, forms

In the same

tion ndniferi, we

algebraicaiiylas

in "vector" "~form:

Cqs e [ pi (7.2,p.,2] = (151 6132

_ I 4 j

`although we have not used vectors whose components are direc-

may extend our symbolism and treat the expression ji,m)

if it were a vector, in which case we may write Equation (2)

(ii,'!1] (.82,m2)

cgs e
:f

and the corresponding condition for 'perpendicIsievity as 11.4.

a tiVn12]

)
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EXamle 1. Find the angle between L1 x = 2 + 3f , y = 4 - t , and

L2x = 3 t , y = 2 + 2t .

Solution.
Cos e =

(3)(1) +.(-1)(2))
.

../32 32F-71. 22

cos e.= 3 2 - 1
115 15 155 .,. .

e e
&ample 2. Show that L3 : x = 3 - 5t , y = 2.+ 3t is perpendicular to

x ="3: + 3t , y = 4 + 5t .

AV

Solution. (-5)(3) (3)(5) = 0 , L3 L4 ,

Example 3. Find the angles between Li" and L2 , where L1 contains'

the points '(3,4) , (-1,-1) and L2 contains the points (-4,6) , (3,0) .

Solution. Since no sense is imposed on L1 and L2 we will find their

angles of intersection`.

We may take as direction nuMbers for Li , (4,5) and for L2 , (-7,6)
1110,

(Why?) Thei'efore:

(10C-7) 5.X6)Cos e sz$

e.
47:762

4e may, most simply, find the other angle of intersection as the supplement of

49, but it is instructive to use equivalTA.grecpion'numbers for Li which

have tto#, effect of 'reversing the sense induced by the first choiCe. We use

now (-4,-5) , and (-7,6) as pairs'of direction numbeiaand get

4 Cos - .1-4)(-7) (-)(6)

4-4)2 4-,,(-5)2 17777

e= A$92°

which is, `as we expected, supplementary to e .

5cV
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Example 4o Find the line L,

j

, to contain the pomt (1,2) and be per-

pendicular to L1 : x = 2 +3t, y =4 -st .

.

Solution. Suppose L
5

meets Ll,

tion numbers for L
5

as a - 1
)
b - 2) . prom the perpendicularity relation=

ship we itave-'3(a - 1) - f(b - = p . From the fact that P = (a,b) is on

L1 , we have a = 2 + 3t 4 - t Substituting these expressions, for a -

and b into the first of these three equations yields 3(1 + 3t) - 1(21,- t)= 0,

.4 from which t = -.1 . Therefore P = (1.7,4.1) and L has the equations :

x.= 1.74. .7s , y = 4.1+ 2.31 .

P = (a,b)'. Then we take dirdc-

109

Two lines: 3-space. The development here is a straightforward generali-
,

zation from that given for 2-ipace. As before; the significant formula comes

from the consideration of '60P1P2 , where L1 and L2 either4contain

Or are parallel to OP
1

OP2 . The results are indichted below, but the

proofs, which are not at all difficult, are left to the student:

(3) or

1
1 ml n

i
l

f2 2 +
m2. 2

-12 2 2 2
+ n

2

As before, the test for perpendicularity becomes

XiX + 111112 + Vile' = 0 , or 2122 m1m2 "4- n1n2 =

These may be represented simply, in vector form, as
4

aos e = X22 + p1y.2 + viv2

1
i
2

+ nin2

,\
follows:

rA1,P1,v1) °'2,1""2,v21 6 or
ii'ml'n2) [22'n12)114)

0 .

Example 1. Find the angle between two lines having direction cosines as

/
\ -2 .

..1.- - =.7,2 -1-7 142 = , v2

. r

, 7 = ) pi = 0 , v = -1- and,
1 ' gr ' )

15 .Y7 Y3

p
, r
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r.

cos e [- ,o,
15 15, rs'
1 _.258

137

e 105°

,

Dcample 2. Show that the lines Li : x = 2 + 3t , y = 3 - t , z = 2 + 4t ,

L2 : x',--- 5 + t , y = 6 + 7t , z = 7 -1-4 ,.are perpendicular t6 each other.
..

s ...

Solution. [3,-1,4] [1;7,1) F (3)(1) + ( -1)(71 + (4)(1) = 0 .

Example 3. Find the line L3 which contains P = (7,4,5) and is per-,

pendiculai to L
1

of the previous exercise.

Solution. If L3 meets at 'P (4,b,c) then we may take, at-direc-
, +

tion numbers for L3 , (a - 7 , b - 4 , c -:5) The condition for pexpendi-
.

cufitrity requires 3(a - - 4) + 4(c - 5) 7 0 4$ Since P = (a,b,c) is..

on (17-, we have a = 2 + 3t , b = 3 - t ,*and c.= 2 + 4t . If viesubstitute

these expressions for the

°

3(-5 + 3t) - 1(-1

coordinates into thq previoue equation

"
- t)-4-4(-3 + 4t) = 0 , from which

:, Therefore P = (5,2,6) and' L3 has the equations:

z =5 - t *

.
x = 7 + , 2t

Line and,Plane: M, . It is convenient to consider the line

Li : 5s = al + ',4-A.5 +omit , z = ci + nit ; and the plane

Ml : px + qy + rz + 4 la,. WW have already develOped criteria for Li t9

be parallel, or perpendi ular to Ma . Suppose itis neither, and intersects

M., at point P1 . Then any other point of Li , say Po -determines, with

Ml , a unique line N , perpendicular to Mi , and meeting it at, say, P2 .

-
%We define the angle 'between Li and Ml to be the angle PoP1P2 desigpated

. Note that-this definition requires 0° < 6 < 90?,

ti
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Since N

'(p,q,r) and

(Al'ml:n1) 41e

tween Li and

has direction-numbers

If has direction numbers

can find, the angles be-

N ?frem".Equation (3)

of ihe-previous section. We need the

acute angle, designated (1) , and there-

fore use the absoldte value of the nights

member as cgs (1) .- Butt from right

.61)0P1P2 , since .e end, .4) are caciple-

mentary, rfe .have sin e =' cos and,

the equation we want:

sine-

r

li1
.

pm1 q+n
1
rl+

h2 " 2 2
r
2" 2

+ P
2

4. + r

Example. Find the angle between Li': x = 2 + t y = 3 - 2t.,

z = 1 + t ; and Mi : 3x + 4y - 12z + 5 = 0 .

M2

Solution.
I

sin e -
11(3) - 2(4) + 1(-12)1 1-171

/ (_2)2 12 132 0 _12)2 ws visg

sine 7:1Z-7- eqv329.
13 /6

Two planes:

P2x + q2y +

fl

.141 14M2 . Consider the planes, M1: pi!( + + r +.s1 0
glY 1- 1

=

r
2
z + s

2
= 0 , and a point P

0
= (a

0'
b
0'

c
0

) not lying in

either plane. Po and Ml determine a unique normal line N1 , and Po and

M
2

a unique normal line N2 . We define the angles between planes M, and

to be the angles beteen lines N1 and N2 . If N1 and N2 coincide,

then the planeS are.perpendicular to a common line and must be parallel Or coin-

cident. The analytic conditions are easy to find. Since N1 and N2 Ontain

a common point P
0

, and have direction numbers (p1,q1,r1) and (p2,q2,r2)

they will coincide if and only if these direction nutters are equivalent,

thatsts,if there is a number k # 0 , such that P1 = kp2 ql:= kg2 ,

511
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,ri...=:kr2) and these are the conditions that M., be parallel to or colncident

`'with M2', as has been noted earlier. Of course MI and M2 wi/11 coincide

if and_only if, further, sl'= ks2 ,'otherwiSe M.1 and M2. A.eParallel.

'IfIT1_ and N2 ado not coincide, the angles between them can be found
. .

from Equation (3) of the previous section, add these are precisely the angles

betweerl

_

t cllg2 t;r1r2
(5) -Cos e -

2 2 2 ,2 2 2
1 '1 1 P2 .c1--e r2

If one of these angles is designated as e , another must be the'supple-

ment of e , andthe remaining two angles congruent to these. Then the right

member of Equation (5) gives the cosine either of e or of its supplement.
6

We are usielly i tqrested in the acute angle, in which case we use the'abso-

lute value of th right member of (5) .

Example. Find the angles between the planes M, : x - 2y + z - 4 = 0 ,

and M2, : 2x + -2y z + 3 =, 0 .

Solution.

Cos e
1(2) - 2(2) + 1(-1)

42 (_2)2 12 1/22 22

3
.41

e r.:1156°

:. The angles are 156° and 24° .

Example. Find an equation of the plane, perpendicular to line

L : x = 2 +'-t y = 2t , z = 1 + 3t , and containing the point AL;(3,1,2).

4

Solution. If P= ,z) is any point of the plane, then direction num-
-,

bprs for PA are (X - 3 y - 1 z - 2) . The cOnditionof perpendic16i6,61--

itY. requires that

- - 2) = o ,

and this is the solution, which may be written more compactly as

x- 2y +3z -,7= 0..
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Eeres D-5
.' g%

Consider these three lines I.Exercises- 1 to 4*

Li : x = 3,- t y ='2 + 3t

:x= 2 +t, y=1- 2t-
,2

L2

L3 m= 1 + 3t y = + 2t
0

1. (a) Find th angle between Ll 'Pa

---- .:(b)---Rbad__,e_e gle between Li..ind L3 .

(c) Find the angle between L2 and L3 .

/9
2. Find tie line through the point (3,5) and perpendicular to

(a) Li '(b) L2 (c) L3

3. Find the Bisectors of the angles formed by II and L2 , using the locus

definition of an angle bisector, (points equidistant from the given lines);

'titem"ShoW, by the methods of this aection,that the angles have been cut

into congruent pairs.

/If Li L2 'meet at P3 ; L2 , L3 meet at Pi ; and L3 , Li

(a) find the coordinates of Pi , P2

(b) Use these results to find the lines which contain the three altitudes

of a1p
2
P
3

%.. At what angles does the line :rie'Lrmined by (1)3) 4,-2) , meet the

at P
2 '

line determined by (=1,2), (2,-3) ?-

Consider these lines for Exercises 6 to 14.

L : X = 2 - 3t , y= 3 + t ,,z = 4 + 2t

i2:x=3+t,y= 4 -t,z=2+ 3t

= 1 + 2t , y = 2 + t z_=_4 - 3t

6. Find the angles

(a) ebetWeen andand I2,)

(b) between Li and 1,3.

(c) between d



.4

-;

7. Find the equations of a line through P

t
.L21.

(112,5) and-perpendicular to

(a) Li . (b) -()1

8. Find equations of a line

^X

(a) "-N1 perpendicular,tO both '1 and L3 .

(b) N2 perpendicular to both-. Li and I3 . V

7.) N3 perpendicular-to both Li and L2

9/Find an equatiCh of a plane which contains the point P= (3,5,7) and is

perpendicular to

(a) Li (b) L2

10. Find an equation of a plane which

(a) contains I ,
1

and is parallel to

(b) contains Li and, is parallel to L.,

(c) contains and is' parallel to I,
1

(d). contain's I, and is Paiallel to L.,

.(e) contains 1:3- and is parallel to I,

(f) contains and is parallel to L
2

Consider these.plenes-,

.Mi 2x +:5y - z + 0

MI2 : 3x y + 2z - 4 = 0

M3.: x + 2y + 3z 7_=R

11. Find the angles between

(ID). Mi ,

.1:

(A) . , m2 I

12. Find the plane whi

(a). contains is perpendicular to M1 .

(11) 'Contains Li and is prendicular to N2 .

(') contains I and is perpendicular to M., .c'

(d) contains it and is perpendicular to 'Mi

(e) contains It and is perpendicular to N2 .

5114

(c) m2 , 143

o



-4

contains L2 and is perpendicular to M3

contains L3 and is perpendicular to MI -47411

contains L3 and is perpendicular tot .

contains L3 -and is perpendicular to M3
v

13. Find the plane which contains the origin, and is perpendicular to the

line determined by

(a) Ml, M2 ,(b). Mi j M3 -(c) M2 , M3

14. Findthe-anglee-between each of the lines L
1

and each of the planes, M1 , M2 , Mi f

(a) L1M1 (d) L2M1

(b) L1.M2 (e) L2M2

( c) LiM3 (f) L2M3

L
2

, L3,, given above,

15. Find the angle that each axis mikes with each plane.

.r

(g) L?'
(h) .L3M2

(i) L3M3

,

(a) MI (b) M2 ' (c) M3

16. Consider two Intersecting lines in 2-space, whose eqnatlOns are

Li aix + bly + cl = qx,y) = 0 , and

: a2x + b2y + c2 = f2(x,y) = 0 . Issmabp a formula for the cosine of

one of the angles between them, in terms. of al , b1 , cl , a2 , b2 , c2
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Supplement to Chapter 7

Part 1

CONIC SECTIONS

S7-1. Cones and Sectionsof Cones \

11,In yur study of geo try you learned that a circular cone may be defined

Z as the union of all SegoiSt VP where ,p is any point,contained in a circu-
w

lar region C and' V Is any point of space not contained in the plane of C,.

The resulting geometric configuration is a solid. If 0 is the center, of C

and if OV is perpendicular to the plane of C , the resulting solid is a

right circularcone.

An alternative idea of: a cone is as as unbounded surface ,rather than as

a bounded solid.

DEFINITIONS. Let D be a curve contained in a plane E and let V be

any point:not in E . Then the union of all lines VP where P is a

point of D , is-a cone.'

*
The curve. D/ -is a plane, curve and the directrix of the cone; the point

#'
V is the vertex of the cone; the lines 'XP are the elements of the cone.

I VI,

Note that according to this definitiOn of a cone the surface fa*,

naturally into two parts.

DEFINITION. If V is the vertex of a cone, D is the directrix of

r-the cone, and PJ is any point of .D , then the union of V"the rays

is a nappe of the cone; the union of the rays opposite to P , is also

a nappe of the cone.

517,. i



, It becomestparent that while a given 'cone has a unique vertex, it has
,

4

ik infinitely mahy possible directrices.
,

.

Cones may ipe named after curves which are their directri ThUs_s.,

.
Icgne which has a tircle ae a directrix is cailed-S-a-CUI-COne. The lfne

.. .

containing the ytex of the cone and the center of the circle is calledthe
4 44,7

- axis of the,:po If the axis of the cone is perpendicular to the plane of

the circle, en the cone is called a right circular cone. The right circular
q r 6v

cones are the cones which we shall consider. \e state two theorems with ''the

,,,

.

proofs suggested as exercises.
r

% .

nuamme7=1. A circular cone is a right circular cone if and only if the

points of a directrix are equidistant from the vertex.
_ _

TITEOREM S7-2. The points of the axid'of a right circular cone are equidistant

from the elements of the cone.

The intersection of a surface and a plane is called a section of the

surface. If, the surface is directed orTgenerated by a plane curve (as- are

cones, prisms, cylinders, and.4yramids), then thd;ections of the surface

formed by planes larallel to the plane of the generating curve are called

cross-sections of the surface. If the surface has an axis, then the sections

of the surface formed by planes perpendicular to the axis are called right-

sections. Since the axis of a right circular cone is perpendicular to the

plane of the directrix, the cross-sections anal right-sections are identical.

The sections of a right circular cone are called conic sections. They may

also be obtained from other cones and surfaces. This will be made clear in

Chapter 9. However, we shall confine our approach here to sections of rfght,

circular cones. )

What we plan to do is to use geoMetric methods to discover certain

characteristics f the conic sections: these characteristics enable us to

. use 'analytic methods to study the conic sections as curves, in the intersecting

plane.

1. Prove TheoAm

2i, Piove Theorem S7-2.

Exercises ST-1



S7-2. Tangent Spheres' and Cutting Planes

-s

"Let us consider the sections of a right circular cone. .Eor the time

`being we'shall not consider those-sections which contain the vertexAlk the
cone. Such sections are classified as degenerate conic sections and will be

studied separately. Let. V be the vertex of the cone, a the axis of the

cone, and E the intersecting or cutting p--lane. 'Mere are associated with

each section one or more spheres with center on the axis a--which-are tangent
both to E and to.all the_eleMents of the cone. It-is our fitst task to

prove the existence of such a sphere or spheres.

From the definitioh4of a right J.rcular cone, it follows that,any.twO

elements of the cone form congruent acute angles'with the axis. We define the

measure$of tiitese acute angles to be the elemental angle of the cone, which we'

denote by x .

We recall that the distance from a point to a line is the length of a
.

__ segment which is perpendicular to the line and of which the end points are the

given point'and a pointin the line. Also, the distance from a point to a

'plane is the length%of a segment which is perpendiculeryto the plane and of

which the end points are the given point and a point in the. plane.

1 The axis of the cone is the set of all points which are equidistant from
the elements of the con. We say therefore that each point of the axis is the

same distance.ftom the cone and thdt this distance is the distance between the
point and the cone.

Given any real number except zero, there exist two points on the axis

which are this measure of distance from the cone, one on either side of the

vertex.. For the real number zeroero there exists only.one such point, the vertex

of the cone. For each of these points on the axis, the points Of the-cone at-.

the given distance lie in the same plane and form a circle. Since these are

theclosest points of the one there is a sphere"With center at the, given

point and radi e 1 to the given distance, which is tangent to each element
of the cone. r this reason we say that the sphere.is tangent to the cone%
The union of the points of tangency'is a circle, called the circle of tangency.

We turn our attention to the plane intersecting theicone. This plane'may
be parallel to the axis of the cope, but in all other cases it intersects the

axis, either in ghe axis itself or in a set containing.asingle point. We

.first consider intersections in a single point.

,519
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.

If the cutting plane is not perpendicular to the axis of the cone, then a

pair of congruent acute verticals angles is formed ¶y the axis of the cone and

its projection in the cutting plane. We define the measure of these acute

angles to be the cutting angle of the.plane. If the cutting plane is, perpen-

dicular to the axis of the cone, we define the cutting angle to be in

,

radian measure or 90 in degree measure. If the cutting plane is para7.101

the axis of the cone (in this case it may cocain the.axis), then the.suttint
. .

angle is defined to be zero. (We cotld avoid defining these angles in such an

unnatural way, were we to consider parallel planes containing the vertex of

the cone. However, we are interested solely in the measures of these angles

and adopt these definitions.),,

Exercises S7-2

1. Pe.that any two elements of a right circular cone form congruent acute
\ '

es with the axis of the cone. ,

* 2. Prove that the axis of a right circular

distant from the elements of the cone.

cone is'the locus of points equi-

3. Prove that,igiven any real number except zero as a measure.of distance,

there'exist two distinct points on the axis of a right circular cone

which are this measure of distance from the cone.

-.-

4. Prove that i A point P on the axis of a right circular cone is at a

distance d frOm the cone,6then the locus of point's a the cone at a
-

distance d from P is a circle.

S7-3. ppheresOf Tangency

' Ia 1 is a schemativr presentation of a plane cutting a cone from a
16.

pdint of view parallel to the cutting plane4 V is the vertex of the cone,
la

a is the axis'of the cone, Q and j' are elements of the cone; o is the

elemental angle, /3 is the cutting angle, P is the point of intersection of.

'the cutting plane and the axis of,the cone, and m is the projection of the

axis in the cutting plane.

520
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Figure S7-1

We consider three different coordinate systems on line a. In the first

coordinate `system X the origin is at V ; the coordinate of P is positive,

and is din oted by '-x0A. The,coordinate.of an arbitrary point is denoted by

x .

The second coordinate system x' is oriented from V to P and assigns

R tb the cone,to'each point R as its coordinate x' the, distance from

N
to the cone with center R .

is at V Tb the left of

This' coordinate system's

and consequently the radius of the sphere tangent

This is the.case to the right of V . The origin

V the toordinate Ls the negative of thi's radius.

related to*the fiist coordinate system by the following linear equation:

x' = x spa.

The third coordinate system 'F'roon a is oriented fram P to V and
rassign6 to each: point 8 al its coordinate x" the distance-from 'S to the

='-cuiting rape, and cOnsequentlitheraaius of a sphere tangent ,to the- cutting

plane with center S . This wi771 be the case to the left of P . The origin

is at P . To the right of P the coordinate is the negative or this radius.

This coordiApte system is related to the first coordinate system by the

following linear equation;
!I

(x0 4 x)x" = iini5.

We observe that, if! xt -E4e corresponding point on a is the

center of the sphere tangent to the cone and the cutting"plane; This is the

desiied sphere mentioned in Section S7-2. f

g21
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We equate these two expressions and solve for

We note that we

x:
(x0 - x)x sine( = sin

= x0 sine - x sin f3

.x sin ce. x sin = x0 sin ft

x
sin e

sinoC+ sin,6
a

oriented the first coordinate systan in such away that

x
0

was positive and that, inasmuch as of and /3 are measured of acute/

sin
+

g
sin )

angles,
(since..

is between 0 and 1 .
/3

nate of a point between V and P and the radius

since- sine
.0(sinc( + sine)

If fi>c< ,

both to the cone

Hence x is the coordi-

of the sphere is

then sin!' >sinc.4 , and we discover a second sphere tangent

and to the cutting plane, but with its center to the right of

P . To the right of P the radius of a sphere tangent to the plane is -x" .

If x' = -x" ,

and
I

e
ine()Since '(sinksin

>1 , x is the coordinate of a point to the
p - s

e
sinc4 e

sinc)right of P . The radius of the sphere is X
0 Sin 4'.

sin

If /3<cC, then sini0 < sinc4 ; we discover a second sphere with center

to the.left of V.. To the left of V the radius ofa sphere tangent to the
/

co?d'is -xi,. If -x' = x" ,

-x sin ce_ = (x0 - x)sini9

)=-40(SinigiiinP)SidOe-

x sino( = -(x0 - x)sinp

sinex = x
0(sina.- - sin

'

.11

and

where
sine

>1 . Thus x is the coordinate of a point to the.
((since. - sine)

left of 'f, the center of the spher9kis more remote from the origin than was

sinc4 sin )
that of the firt sphere, and the radius is x 0sink'sin - sin

If /3 =c4 , sin19 = sino4 , and the search' for other- spheres is in vain.

The coeffi4en s of x0 are not defined outside the segment VF .

5 -U
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Lastly, we consider the possibility that the cutting plane maybe

parallel to the axis of the cone. In this case the distance from a point on

the axis to the plane is constant. Thus'._ x" = k , and following the above

+argument, we discover that x = -
sina.

, there are two spheres, one on either

_side of V , and each with radius k . We recall that the cutting angle is

zero in this case, for the cutting angle is not really'the angle itself, but

rather a measure associated with the angle.

S7-4. Degenerate Conic Sections

Before continuing with our-discussion of the more elaborate conic sec-sec-

tions, we may digress consider what happens if the cutting plane contains
A

the vertex of the cone. A geometric description should be sufficient. If'

:>44. , then the Vertex is the only paint of the section. If /3.=c4 , then

the section is a single element of4the cone, that is, a line. If <a., the

section is the'union'ofetwo elements of the cone, that is, the union of two

intersecting lines.

.

Some sections of the surface called a right circular cylinder are sec-
,

tions of right circular cones. The exceptions are those sections obtained by

a cutting plane parallel: to -.10-axis of the cylinder, with distance from the

axis less than the-radius of the cylinder. (The plane may contain the axis.)

These section s are the union of two parallel lines. Though not obtainable as

sections ofecones' for algebraic reasons they are included among the degenerate

o conic sections.

)

4,

S7-;5. Geometaic Properties of:the

d

donic'Sections
,../ , ,

1 ' _ , , .
d

' Jram our consideration of the onic sections so far we may make t.ertein
A A %-

% ,

general observation's. If Al= i (in radians.) or 90 (in degrees), it is,in-

tuitively obvious' and not difficult to prove that this section is a circle,'
.

If :,.:E>43 .c, iifils apparent that the pane cuts every element of one naive

, 1. 1
, ._

. and that the resulting section is a closed curve. If A = ot., the plane cuts

O same, but not all of 'the elements of one nappe. ,Lastly, if 45 < ol., the ,plane

cuts some, but not all the elefaents Of each nappe and the curve has twosdis-

:-
*tinct branches.

.4__
)

0 5?3
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But to continue our study we need more information. We consider` Figure*

S7-2. We are given a right circular cbne-with vertex V , axis a , and ele-

mental angle a. . E is a cutting plane, not containing V , with an acute

cutting angle /3, . The conic 'section is the curve s . The tangent sphere

With center )1 is tangent to the cone in,c rcle c and to the cutting plane

at point F .

a



It '.(3 be the plane containing circle c . G is perpendicular to the

axis a , and since E .is assumed not to be perpendicular to a , G and E

must forma dihedral angle with edge d . The plane angle of the dihedral

Jangle,is complementary to the cutting angle 'and has me19.)1re (lt -13) ,

.Let P be any point of the conic section s . The plane containing P

and perpendicular to d intersects the dihedral angle in a plane angle of the

diheiral angle which has vertex C and measure CI -16) . Let A be the
2

foot of the perpendicular from P to the other side of the plane angle. PA

is perpendicular to G and 6PAC is a right triangle. Since

m 2:PCA = -13) , m LAPC =/3 and

( 1) . cosfl T,P)
d P,C

)

We observed that AP Was perpendicular to G . The,axis a is also

perpendicular to G , so a and AP are parallel. Consider the element of

the cone PV which intersects the circle of tangency c in point B (which

is in G) . Since the tangent sphere is between V and the cutting plane, B

is between V and P.. The elemental angle and 2:APB are a pair of alter-

nate i terior angles fanner by a transversal of two parallel lines, and conse-

quent
i:

m LAPB =0C . ,OAPB is a right triangle and

(2) cos0C-- crI
B
D

d

Both PB and PF are tangent segments to the sphere from the same point

and hence: d(P,F) = d(P,B) . Substituting in (2) , we obtain

cosoC - tk'l(3)
. 4 P,F

(A)

Dividing (1) by (3)*, we obtain,

dr,F
cosoc d

'

Since both le and oC are constant for a given conic section, this quo-

tient is a constant. It,is called the eccentricity of the conic section ana

is 'denoted by de small letter e . Geometrically this means that for any .

pointof a given conic section the ratio of its distance from a well-defined

point, to its distanCe from a well - defined line is a constant. Both the point,

5,25_

; t523.



which is called the focus or'focal point, and the line, which is called the

directrix, lie in'the plane of the conic section. Since we'have taken both

the elemental angle and the cutting angle to be the measures of acute angles,

the eccentricity e will be a positive real number.

We have observed that it is perfectly possible for the cutting plane E

to be perpendiculpir to the axis of the gone. In this case E and G axe

parallel and the section has no directrix. It does have a focus which'is the

intersection of the cutting plane and the axis. The section is a circle and
.

the center is at the focus; if U is the focus, then the radius Of the circle

is d(U,V)*tanc( In this case the expression for the eccentricity would bet'

cos(-2-).

cos of
, which is zero.

Since this is dietinct from the other cases, we may accept it without

inconsistency.

We observe that if >/13 >c4 , cos f3 < co s o< and e < 1 ; if * = ,

cos f3 = cos of and e = 1 ; if 0 < t3.<04. , 1 > cos $ > cos o< and e > 1

We take these properties to be definitive for the conic sections.

DEFINITIONS. Given a conic section with eccentricity e

The conic section is an ellipse if 0< a,:< 1 .

The conic section is a parabola if e = 1'. -

'The conic section ig a hyperbola if e > 1 .

The conic, section is a circle if e = 0 .

- . .

On the other hand, we hate shown they may be described bytheir geometric

properties,. A circle is the locus of points in a planp at a given diStance

from a given point, called the center; an ellipse is the locus of points in a'

flame such that for each point the ratio of its distance from a given point to

its distance from a given line is a constant which is less than one; a,Parabola

is the locus of points in a plane such that for each point the ratio of its
m a given point to its diStarie'rom a given line is one; a hyppr-

distance

bola is the locus of points in a plane such'that for each pOint the ratio of
its distance from a given point to its distance from a given line is a:constant.
which is greater than one.

Jy #
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EXercises S7-5

1. Prove that if a cutting plane is perpendieular to the axis of a right

circular cone, then the sphere of tangency is tangent to the plane at a

point on the axis. Prove that in this case the conic section is a circle

which centers on the axis. .
.

*2. In Section S7-3 we discovered that if R '>oc , there exists a second sphere

of tangency such that its center is on the other side of the cutting plane

from the vertex. _Let this sphere-be tangent to the cutting plane at F'u.

Proves that if P is a point of the section, then d(P,F) + d(P,F') is a

fixed constant. In other words, prove that an ellipse is the locus of

points in a plane svh that for each point the sum of its distances from

two given points in the plane is a fixed constant. (Hint: In Figure S7-2

the second sphere lies below the cutting Plane; let c' be its circle of

tangency. Let B' be the intersection of VP and c' . Then prove

that d(P,F) + d(P,F') = d(B,B9 . Then prove that this distance Is the

same for all P

3., In Section S7-3 we discovered that if 49 <d4, ',Dere exists a second

sphere of tangency such that the vertex lies between the centers of the-two

spheres-. Let this sphere be tangent to the cutting planet F' . Prove -

that if P is a point of the section, thi td(P,F) - d(P,F')J is a

fixed constant. In other words prove that a hyperbola is the locus of

points in a plane such that for each point, the absolute value of the

difference between its distances from two given points in the plane is a

fixed constant. (Hint: In Figure'S7-2, the second sphere lies within the

upper nappe of the cone; let c' be its circlq'of tangency. Let B' be

the intersection of IT and c' Then prove that

- d(P,F') Ii= d(B,B9 . Then prove that this distance is the same

for all P..)

*4. Let C be a circle contained in a plane E . The union of the lines

perpendicular to E which contain ioints of C is a right circular

cylinder. The lines are called elements of the cylinder; the circle is

called a directrix'of the cylinder. Prove that the sections-Of a right

circular cylinder are conic sections. Show that!in the case o' the right

circa AY cylinder there are also spheres of- tangency (i.e. tan4ent to the ,

cylinder in a circle and to the cutting. plane at a focal point 'f the

conic section).

1h

In general, the sections of any cone or cylinder, with a colic

section as directrix, are alSo coNp sections.
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Part 2

THE GENERAL SECOND-DEGREE EQUATION

S7 -6. The General Second-Degree Equation; Rotations and Translations

The conic sections which we have studied have been represented in

rectangular coordinates by second-degree equations in two variables. It seems

natural td ask rhether all equation of second degree in x and y have
loci which are'conic sections. In its most gen.eral form such an equation may

be written as

(1) Ax2+Bxy+Cy2+Dx + Ey + F = 0 , where, A , B , and C are not all zero.

This general form may be difficult to identify, but some techniques which

we have used in the preceding sections will permit ua to simplify it., The

major stumbling block is posed by the xy -term. The only previous equation_

containing an xy-term, which we have considered in detail, was that of an

equilateral hyperbola. We also have another .equation for an equilateral

2 2
hyperbola. Let us consider the graphs of xy = 1 and

r 2 2
of - 1

J

xy = 1

Figure S7-6a

2 2

2
, = r

Figure S7-6b

The graphs of these two equation? seem kably

the asymptotes perpendicular in eachNab4,'Isitettitli -irensifers-eaxes "axe

congruent. In fact, it would appear that the graph in Figure S7-61) may be

obtained from that in Figure 87-6a by a clockwise rotation of axes through an

)
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angle of 450 . The first equation contains an':4.-term, while the second

does not. The suggestion is that a rotation of axes as described in Section

4-8 might result in the elimination of the xy-term. It turns out that this

is the case; but we are now faced with a second questiori. What size rotation

shOuld we consider? Let_us consider the effect of aNzotation of axes Oh

the general second-degree equation. We recall that the equations of

rotation are:

x,= x' cos 0 - y',sin 6
i

y = x' sin e + y' coie..

If we substitute these values in Equation (1) and expand, we obtain

A(x,
2

cos
2

e - 2x'y' sin e cos e
y,2 e)

+ 33(xo2 sin 0 cos e - x'y' sin 0 + x'y' cos2 e - 37'2 sin e cos e)

+ c(x,2 sin 2 e + 2x'y' sin e cos -e + y'2 cos2 + D(x' cos e - y' sin e)

_ fi
+ E(x' sin cod's)

is

However, all we want to know is the Coefficient of the x'y'-term. This

-2A sin e cos e + B(cos
2

e - sin
2

e) + 2C sin e cos e .

If thii coefficient is zero, the transformed equatiOn will not contain any

x'y?-term. If

2 *." 2 0
-2A sin e cos e + B(cos e - sin 0) + 2C'sin 0 cos e = 0 ,

then

B(cos
2

e - ;in
2

e) - 0 sin e cos e

rie recall that cos
2

e - sin2 0 = cos 2e and that

Thus we may write (

B cos 2e = (A - C) sin 26),

or, if A # C,

or

If A = C , then

or

B sit 2e
A - C cos 2e

B
A - C - tan 2e .

B cos 2 e = o

cos 2e = 0 .

529
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(We recall that if B were zero, we would not have had to go to all this

trouble.) In either case, all we .require is e. single value of e which

satisfies the appropriate condition. If cos 2e = 0 , 2e may be 90° r

thuse.mteybeli5.Iftan2e-A
C '

which is not zeros we recall
-

that the tangent assumes all non-zero real values once and only once between

0° and 180° . Thus, theire exists a unique acute angle A such that

tan 2e =
A - C

;

Thus we have shown that in every case in which-the second-degree
-

equation has an xy-term, it can be transformed, by a rotation of axes through

a unique acute angle, to an equation without an xy-term. The transformed

equation has the form Atx
,2

+ C'y'
2
+ D'x' + E'y' + F' = 0 , or, dropping the

primes, the form /

(2) Ax2 + Cy2 + Dx + Ey + F = 0 . '(A and C are never both zero.)

Now the equation is in a;form which may be identified more easily. We have

already developed techniques for simplifying equations of this form. It is

proper' to drop the prime; on when the form of the equation is being studied.

If AC is not zero, we first complete the squares for the x
2
- and

x-terms and y
2
- and y-terms to obtain

Or

,s24c2 +
;

2 'Y

2

C

_Ey + - F, AC kt5
24A 4C

A (x +

2 _a.
_

11) +
AC

/

4AC
+
2C

2 CD
u

m.

Nolf a translation of axes, as introduced in Section 10-2 and described by the

equations

X =
D
2A

E
Y = ,- ,

gives the transformedequation

2 2 02 + AE2 - 4ACF
Ax' + Cy' _

4AC
, AC # 0,

/6

in which the primes have been omitted for

°,
d

t :
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We recognize that if AC is negative and
62 + - 4AcF

isinot zero,
- 4AC

CD2 + AE2 - 4ACF
A, C, and

4AC
are all positive or All negative, the //

trans rmed equation is the equation of a conic section. If A equals C,

the.conic section is a circle; if -AC is positive and A is not equal to

U0he conic section is an ellipse; if AC is negative, the conic section

is an hyperbola.

We must also consider the case in which AC = 0 in Equation (2)..

Suppose A is zero. Then C is not zero, and we may complete the square

for the y2- and y-terms. Equation (2) is now

Cy
2

+ Dx + Ey + F = 0,

which becomes

or

or

Cy
2

+ Ey = -Dx - F
o-

C(y2+
C2

.4)( F E2

E 47)

E )2 D - 4CF)
fo. e-(x CD

A

A translation of axes, described by the equations

E
2

4CF
x = x' +.

2C'

gives the transformed equation

4y
2

= - zx

We recognize this as the equation of a parabola, with the vertex at

the origin and the axis on.the x-axis.
4

Tf C is zero, a'similar development may be made. The,resulting_ _

\ equation 'will again be of al parebOla with the Vertek at the origin, but the

. ails 4±1i be on. the y-axis.

.531
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Exercises S7-6

1. Through what angle must the axes be rotated to eliminate the ri-tigwm

from each of the following equations ?

(a) x2' 4xy + 4y2 - 4x - 7= 0

(b) x
2

+ xy + 2y' - 3 = 0

(c), x
2

- 3xy + 4y2 - 9 = 0

(d) x2 + 3xy - x rY -1 =O

(e) 3x
2

+ xy + y
2
- 2x - 2I - 16 = 0

12xy + 912 - 2x 3y - 10 = 0 I:

2. For each of the following, simplify the equation, identify the conic

section, and draw its graph:

(a) 5x
2

- 6xy + 5y
2

- 8 = 0

(b) 5x
2

- 6 xy + x + 4y - 4 = 0

(c) 7x
2

+ xy + 5y
2

- 16 = 0

(Q. 3x2 + 2xy + 3y
2 ,

+ 4X 4y f 0

(e) x
2

6xy + y
2

+ 14x + lOy + 14 =-

(f) 11x2 + 245cy + 472 - 44x , 48y + 24 = 0

(g) 2xy + 4x : 4y.'- 9 = 6

(h) 9x2 - 24xy + 16y
2

4- ji:A

This treatment of the quadratic equations ich describe conic sections
f

has been solely `concerned; techniques emp dp'simplify141&_the ,A
equations., It is isportapt that we also consider what we have done Iroii a . ,

A .
. 4 .

geometric point of view- - . ..

._ -

In Section-6.,. -2 we have stressed the importance of recognizing symmqrles .1,

in figures, both-as:an aid in the 44cetching of graphs of equations and as a

sipiLide in theselection end orientation of a coordinate system to describe a d'.

-.graph by an equation. In-ParticUlar we have considered axe of symmetry and
) .

points of symmetry. .We have observed that in rectangularrdoordinata the

y-axis is.an axis pf symde-try for a locus described by f(x,y) =0 if

f(x,y) = f(-,x,y), and ttlat-the x-axis is an axi of symmetry if .

f(x,y) = f(x,-y) . The origin is a point,of symmetry if f(x,y) = f( ,x,-y)

.532
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The originis always a point of symmetry if both the x-axis ganhe y-axis

are axes of symmetry. However, the,converse of this last statement is not

true. (Consider y = x3 .)

It was in Section 10-2 that we first overtly considered translations

of axes as a means to simplify the analysis of the graph of an equation.

However, we have yeally used this technique before. Do you recall that in

Chapter 2 in our discussion of direction angles and direction cosines for a

line we found it convenient to consider a parallel line through the origin?

In our rather mechanical-treatment of quadratic equations in this

section we have been guided by symmetries in the graphs pf the equatioris.

The rotations of axes which we performed,in Sectio 10 -3 made an axis of sym-

'metry parallel to a Coordinate axis. The translations.ofaxes made a point of

symmetry also be the origin. (In the case of the parabola there is.no point of

symmetry. The translation of axes made the vertex be the origin as well.)

It is possible to describe points and axes of symmetry quite generally.

-/

DEFINITIONS. Let S be a set of points. The segments Joining

points of S are chords'of the set. If there exists a point

P such that, for each point X of S , the segment.yith end-,

point X and mid-point P is a chord of the set, then P is a

point of symmetry or center of S.?

Let S be a set sed points in a plane and let L be a line in

the plane. If, for every point X of S , the segment which

. * (i) has end-point X ,

(ii) is. perpendicular to L ,

and (iii) has its mid-point on L ,

is a chord of S
t

, then L pis an-axis of symmetry of S.

S7-7. Me General,;econd-Degree Equation, Translation and Rotation

In. simplifying second-degree equations, it is in some cases more con-

venferre to translate the axes first to eliminate the x- and Y-terms. Then

we rotate the new axes to eliminate the xy-term.

5
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If we start again with Equation (1) of Section S7-6 and use the equations

of translation

x = x' +h

Y = +.1c

weobtain

.A(x12 2hx' + h2.+ B(x'y' + -- hy' + hk) + C(y'? + 2ky' '+ k

+ D(x°4-4.1) + E(3,1 + '+ F =

If we collect to ms, this becomes

'(1) Ax'2 + Bx'y' + Cy'2 + (2Ah + Bk + D)x' + (Bh + 2Ck + E)y'

+ (Ah2 + Bliks + Ck2 + Dh + Ek +X) = 0

We note tha he cAffidients of the second-degree terms will not be changed

by a translation of axes. If we can find values of h and k such that

and

2Ah + Bk + D ='0

Bh + 2Ck + E =.0

we shallbe able to 'substitute these'values in Equation (1) to obtain a

transformed-equation free of first-degree terms. We can solve .41is pair of

equations to obtain

' if

h

6=

-p B

-E 2C

2A' B

-B 2C

2A B

B 2C

and

= 4At - B2 / 0 .

k =

2A -D °

B -E
I

'

2A

B 23C11

The determinant 6 is of some interest. in the analysis of the-second-degree

q tion and, is sometimes called the characteristic.

You should sense that, when it is possible, it is easier to translate

the axes first and then perform.a rotation of the new axes. The fewer terms

there are in an equation, the easier it is to perform a rotation. However,

if the characteristic is zero, We cannot find the appropriate values of h

and k . 'We have no choice but to fotlow the-Procedure of Section 6 -8.

534, ,
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If the characteristic is not zero, the transformed equation is

Ax'2 + Bx'y' + Cy'2 + F' = 0

-where F' = Ah
2
+ Bhk + Ck

2
+ Dh + Ek + F

It is easy to remember what F' is if you notice that when we repres

original equation by f(x,y) = 0 , then F' = f(h,k) .

Exercises S7 -7a

1. Find h ,and k such that a translation of axes described by

x' =

Y' = Y.+ k

will eliminate the first-degree terms of

4;2 y2
8x +.4y + 4 = 0

verify for this case that the constant term in the transformed equation

is equal to f(h,k)

2. Transform each of the following equations by first translating the axes

so aeto eliminate the first-degree terms. Then rotate the axes to

remove ttk xy-term. Sketch the curve, showing old and new axes.

(a) 8x
2

- 4xy + 5y
2

- 24x + 24y - 0

(b) + 6x + 22y - 53 7 Q

(c), 7x2 - 24xy +,120% + 144. = 0 /

(d) 4x2 - 8xy + 4y2 - 9igx + .712. y + 14 .

Once again it's important that we consider this method of simplifying

the second- degree from a geomktric point of view, Why can't we find an

appropriate translation of axes when the characteristic is zero?' You should

recall that in the previousteption we abser4ed that the translation of axes

makes'the new origin a poinfotsymmetry. OV,i- search or values of. h and

the,k, is In fact a ilearch for coordinates,fna point of symmetry. Since the

parabola has no point Of symmetry, the chF6acteristic of Its equation turns

out to be zero. The converse'of thisatitement is not necessare4Ptrue, but
. ,

1

we shall defer the consideration 'og thif question:
l *

3 ':......,

,:, - , 4 e _ . 3
3 4,Z4
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If we,approach the analysis of the second-degree equation from a geometric

point of view, we can develop methods which may be applied to more complicated

problems.

First we observegthat if a set of points in a plane has an axis of sym-

metry, then the axis of symmetry is the perpendicular bisector of chords

joinii pairs of points of the set. In fact, every point of the set is an

endpoint of such a chord. We have already noted that the equation of a 1Ocus

is frequently simplified if an axis of symmetry of the locus is parallel to

one of the coordinate axes. We shall first find an axis of symmetry .61 the
*4.

graph of the second-degree equation and then rotate the axes to make one of

them parallel to this axis of symmetry. Since.the chords in the definition

of an axis of symmetry are all perpendicular to the axis of symmetry, they-
.

are parallel touch other. Then the lines determined by -the chords have

parametric representations in terms ofa fixed pair of direction, cosines
,(N,O Let (x',y') be the midpoint of a chord. Then the parametric

representation of the line containing the chord is

x =

Y = Y' lit

When (x,y) is an.endpoint of the chord, the coordinates should satisfy

the second-degree equation. ;If we substitute the parametric representation

of the endpoint in the second-degree equatibn, we obtain

A(x'2 + 2)tx' + A2) + B(x'y' + ptx' + + Xpt2)

c(i,2
µt2), + D(x' +-t) + f(y' + pt) + F = 0 .

If we collect terms in 't), ,),t. and jlt , we obttin ' ....' ..,

(2) (AX2 + 19\p + Cp2)t2 + (2Ax' + By' + D)1Nt + (Bx' + 2Cy't+ E)pt

_+ (Ax' 2 + Bx'y' + Cy' 2 + Dx' + Ey' -1:-. F) = Q .

Now we observe that both endpoints of the chord must satisfy the equation.

Furthermore,iftlisthevalueOftheparameteratoneendpoint,s-t,is.
1

the value of the parameter atthe other endpoint. This must be -the case for

any chord and any equation. This implies that the form of the equation in

t must always be

2 2

;
t - t

1
0 .
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,(2)

%:r..d. . .
Thus in Equation .,(2) the defficient of t , or

.

,.

. .A
(3) ° 2A,,ct + 40 + Dh + (Bxt + 2Cy' + E) µ',

..

must be zero. Now T and p. are fixed for any particular second-degree
\
.\

equation, but x' and toteare variables, designating the coordinAtes of

the midpoints of the chords perpendicular to the axis of symmetry. But the

midpoints of the chords a4e on the axis of symmetry. Thus the condition on

Expression (3) written as a linear equation in xl and y' is the equation

of the axis of symmetry:

. ) ,

(4) (2/0\ + BOx' + (V\ + 2CPJYt + kin + Ell) = 0

This equation is in the general form. Hence, (20 + Bp.,BT + 2Cp,) is a

pair of directitn numbers for normals to the axis of symmetry. But so is
-.

(T,µ) . Therefote, for some non-zero real number k

(5)

and

2AT + Bp, = kT

BT + 2Cp, = kp. .

If we Solve -the second equation for p. , we obtain

-B

2C - k

We substitute in the first equation, which becomes

B2
(2A - k)T - E:7KT - 0

,

1.
or, 2Ak - 2Ck k2)-T - B2 =

- 2(A + 0)k + (4A0 - B2)P\ = 0
F

Or

Now either T or the coefficient must be zero. But if T were zero, p,

would also be zero, which is impossible, since (T,p,) is a pair of direction

cosines and' + = 1 Therefore,
7-

(6) k
2

- 2(A + C)k + (4AC - B
2

) = 0 .

Equation (6) is called the characteristic equation for the given second -

degree equation and its roots are called, characteristic valu for the

- quadratic equation. We note that the sum of the roots is 2(A + C) while

the product of the
roo(

s is 4AC B
2

or 5 , the characteristic of the

%1119ratic equation.



We may then solve Equation (6) for k and substitute these values in

Equations (5) to determine the pairs of direction cosines (7%,1-1.) . These

pairs of values may then be substituted in (4) to obtain the equations of

axes of symmetry. We note that if the characteristic is zero, Equation (6)

has only one non-zero root. In Equation" (5) k must be hon-zero; hence,

only one pair of direction cosines may be obtained, and the graph of the

quadratic equation will haVe only one axis of symmetry. This is consistent

with our previous observations that the parabola has only one axis of

symmetry and that the characteristic of its equation is zero. We also note

that the char ac teiistic equation will have equal roots only if

(A + C)2 4AC - B2

Or A
2
+ 2AC + C

2
4AC - B

2

Or A2 - 2AC C2
.,2

Or c)2 =: .B2

This may only be true if B is zero and 4A equals' Ci When this is the

case0you will recall that the graph of the quadratic equation is a circle.

Equations (5) are satisfied by any pair of direction cosines, and i`11-614 are

infinitely many equations (4). This is not surprising inasmuch as every

diameter of a circle determines an axis of symmetry. It is a fact that the

characteristic equation of a quadratic equation always hAeal roots.

Furthermore, if these .roots determine two axes of symmetry, the axes are

perpendicular. We are familiar with the fact that the intersection of two

perpendicular axes of symmetry is a point of symmetry. This suggests one

way to find a point of symmetry. .

,We may also discover points of symmetry frost the 4efinition of point, of

symnOtry given in Section 6-8 and from the conditions on Expression (3) above:
r ,

(7) (2Ax' * By + D))% + (Bx's. +ACy' + E)p. = 0 .

You should recall that (xl,y') is the midpoint of achord of the graph

while 0%,iff is a pair of direction cosines in the parametric repreien-

taticlh of the chord. Whet We:wanted to find an axis of frmnetry, Vand

11- were fixed while (X1,y') was variable. However, here wet ant to find a

fixed point (x',y1r) which will satisfy Equation (7)for all pairs
.

This will be the case only if the coefficients of 7% and :11 are both zero;

that is, it

(8)

and

2Ax' + y' * D = 0

Bx''+ 20y4 + E = 0 .
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A solution of this pair of equatioris will be a poia of symmetry or center'

of the graph of the second-degree equation. The pair og equations will haVe

a unique solution if

A B

B 2C
= 4AC - B

2
= 5 p 0 .

Example 1. Find the axerof symmetry and center pi' the graph of

'o n
2 2 ,

x - 4xy + 5y - 3ox + 18y + 9 -0

Solution. The charadteristic equation [Equation (6)] becomes

k
2

- 2(8 + 5) + 4(8)(5) - (4)
2
= o

or k
2...

'
k 26k + 1,44 = 0

or (k - 8)(k - 18) = 0

The characteristic values are 8 and 18 . Now Equat ions (5) become.: ,

1 .
2(8)7 + (-4)p, = 8? ?(8)? +.(-4)11 = 18%
' and .

.

2(5)p. =, 8p, (-4)?, + 2(5)p, = 18p,
....

.
.

.. , A
Or s

87 - 4p, = 0 27 + 4p, =.0

and
I

,.

,-4i% + 2p, ='0 4)\ + 811 =-0. ,

. ,

ok v .

'2 '--.-

These pairs of°equations are deRerident, but since rA
2

'4- p, = 0 ',,we may
4 ,.

1
obtain the solutions (--. , 2\ and ( -, V.

r_. Y
%

15 Y5Y i5 15 .
.

B
If we substitute these values in Equ ation.P(4), we obtain the, equations

ky

of the axes of gymme,ti:

(2($)1- + (°-4)-2-N + (( -4)1 + 2(5)41y + ((-3§)1 +18
15' 154

or 8x + 16y = 0

or x + 2y. = 0 ,

and
k

r

[2(8)(-2) 4. (-4)11x + [(-4I(-2) + 2 (5)--ly%+ (-36)(.-2.) + 18.1-1-) = o

i5- i5

OT 36X + 18y + 90 = 0

or 2x- y -5 =0.
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Equations (8) will enable u$ to find the center. The pair of equations

2(8)x + (-4)y + (-36) = 0

(-4).x + 2(5)y + 18 = 0

4x - y = 9

-4x + lOy = -18

has the unique solutidh (2,-116. The point is the center or point of sym-

metry for the graph. We note that this point is also the intersection of the

axes of symmetry:

"'

. Ekercises S7-7b '

Find the axes of symmetry and centers, if any, of the graphs:

1. xy '+.5x - 2y - 10 = 0

2. 2x2:t+ xy,= 6y2 + IX - 7y + 3 = 0

s7-a. Degenerate and Imaginary-Conics and theDiscriminant A

In our treatment of the second-degree or quadratic equ on in the
,e

previoue two. sections, we have restricted our discussion to equations with

graphs which are'prope conic sectiohs. We have made certain restrictionse
on the constants of the equation. In this sectign we shall relax these

restrictions and consider the loci, if any, of the resulting.equations. We

shall also develop means of identifying aria classifying the various

possibilities. We have already enCounteredIthe degenerate conic-sections

whose graphs are single points, or pairs of lines which may be parallel,

concurrent, or coincident. We have also considered equations
'

whose loci are.
1 .

empty, but which are called imaginary circles and Imaginary ellipses because

offthe form of their equations. ,,-,-

In Section 6-3 we have considered the problem of factoring functions. If
..

we can, factor the left Member
,

of the equatimi
.

, , 2 2 4.

(1), Ax +By+Cy + Dx+ Ey+T= 0 , where A , B,, and C, are not allfzero,

. *
,

inio,two linear factors, we would know that the4graph IS'tlle union of two
.

lines.. Under What conditions is this expression eactorable? You should
,

recall 4at quadratic equations in a single variable often may be solved by
.

- :



factoring the quadAtic expression into linear factors. Such an equation

may always be solved by completing the square or by 'using the quadratic

formula, which is equivalent to completing the square. In all likelihoRd on

some occasion you have failed to detect the linear factors in the quadratic

member of an equation and have resorted to the quadratic formula, only t)

disbover that the equation really could have been solved by factoring. This

suggests that the quadratic formula may be an aid in finding linear factors.

In fact, the quadratic expression lx
2

+ bx + c. may always be expressed as

the product of linear factors as

ax
2 + bx +cs-axk,-b +

h2
- /lac) -b - 42 - 4ac)

2a
) x .(

2a

,

if ye,allow the use of complex numbers when necessary.

. Now Equation (1) may be considered to be a quadratic equation in x
if A is not zero, or in y: if C is not zero. Let us assume that C is

not zero soeti write Equation (1) as

2) Cy
2
+ (Bx + E)y,+ (Ax

2
+ Dx + F) =0,C/ 0

2

Then P

Y
-(Bx + + 1(Bx + E)2 - 4C(Ax2 + Dx + F)

2c

Thetdiscriminant involves terms in x
2

and ,°but if-it is a perfect

square, we'payeliminate,Uhe.radical to obtain two expressions for y Say.

--a and , which are linear in x and 0 involve only x to

the first pol4er and various constants). Then Equation .(2) and, if C is

- riot zero, Equation;(1) may be written as

(4) C(Y a)(Y - 0) = 0
.se

where the Actors of the left member are linear in x and y . The graph

of Equation (4), and consequently or Equation (2), is the union of the .

graphs of ,

Y a = 0
1
y - = 0 ,

which are lines. However, the conclusion of thfs argument does,not hold

1,.'
unless the diseriMinant of Equation (2) is_aerfect square. The.diSbrim-, j " I

-' ': _.4.1- .A..1-44.7 4 v.. ;4 _ 4. li ,"-..44,44 .,r

E)
2

C (Ax
2

+ Dx + F) 1-,

541
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as seen in Expression (3), or.

(5) (B2 - 4AC)x2 + 2(BE - 2CD)x 4CF) .

Again we make use of the quadratic formula as an aid in factoring.

Expression (5) will be a perfect square ifantonly if the roots of the '

equation

(6) .032 4A0X2 2(BE - 2CD)x + (E2 - 4CF) = 0'

are equal: These roots will be equal if and only if the discriminant of.

Equation (6) is zero. This discriminant is

4(BE - 2CD)
2

- 4(B
2

- 4AC)(E
2

- 4CF) ,

which will be zerif and only if

B2E2 .- 4BCDE +
B2E2

+.4B2CF + 4ACE2 - 16AC2F = 0

or -2C(2BDE, - 2C1P - 2B2F - 2AE2 + 8ACF) = 0

or (7) 8ACF - 2AE2 2B2F + BDE + BDE - 2CD2 = 0

or 2A(4071.-. E2) - B(2BF - DE) + D(BE 2CD) = 0

Or

or

2A

2C E

E. 2E

2A -B

B 2C

D E 2F

-
B D

1 + D
E 2F

= 6.= 0 .

D

2C E
.= 0

.

This determinant b. is card the din iminant of ;the second-degAe equation.

If A is zero, the roots of Equation 6) are equal.and the Expression (5),,_

which is the discriminant in Equation (2), is a perfect,square..0 Thus the

graph of Equation (2) is the union if'. C is not zero, this set

is also the graph ofaEquation (1).

If g is zero and A is not zero, we could go through a similar

argument, treating the second - degree equation as a quadratic equation in x.

Eventually we should discover that if Equation (7) holds and A is not zero,

then the graph of Equation.,(1) is the union of two lines. But Equation (7)

is equivalent to, A = 0 .

If both A Apd C are zero, then B c annot be zero (or else 'the

equation would'no longer be of second degree), and.Equation (1) reduces to

Bxy + Dx + Ey +F=0,B/0.
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The graph will be the union of twa lines if

Bxy + Dx + Ey +.F

may be, expressed as the product of linear factors, or as B(x + a)(y +,b) .

Now

,

Bxy + Dx + Ey + F-= B(x + a)(y + b/ for all x and y
Or

Bxy + Dx + kr4 F = Bxy + Bbx + Bay + Bab for all x and y

if 'and only.if'D = Bb , E = Ba, , and.F'= Bab , In this case_

DE = BF or BF - DE = 0
.

If A , C , and BF - DE are all zero," then

=

.2A B D

B 2C E

D E 2F

O B D

B 0 E

D E 2F

-B
B D B D

= -B(2BF.- DE) + D(BE)
E 2F 0 E

+ BDE + BDE = -2B(MF_:DE) = 0 .

In summary, if t grli,ph of a second-degree,equation is the union of

two lines, then the discriminant is zero. The arguments which we have

developed are reversible, although we have not attempted to show this here.

he converse of the above is also true.- If the discriminant of the

general second-degree equation

be expressed as the product of

We have not considered car

is zero, the left member of the equation may

linear factors. ,

4

efully what lines, if"any, these factors might

represent. If Expression (5ps a perfect, square, the facto.are linear,

but suppose that 1- - 411C , the.coefficient Of -x
2

.,
,

is negative?. We-note
-2

that the condition when thelCacteristic 6 is positive. In this
-**49

case the coefficients in the square root are complex numbers, as are the

coeffiCients in the linear factors. that sort of "lines" could these factors

possibly represent? We shall not attemPt!sto explore this question in, detail.

It is sufficient for our needs to observe*,that^even though the coefficients,

are complex numbers, there still are real values which satisfy the corresponding

equations.. For exaiple, the pair of equations

fi

y + (2 + i)x = O.

y - (4 - 2i)x'+ 6 - 2i = 0

543
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0,

has the solution (1,-2) . This is always the case for the, linear factors

which we encounter here. The value'Of x which satisfies Equation (6) is

real, as is the corresponding value of y TrIese real values are the

coordinates of the point of intersection of the gralohs of the corresponding

linear equations. Thus, when the discriminant is zero and the characteristic

is positive, the AY of a quadrat equation is, a point. It is not

possible that the linear factors repAent dependent or inconsistent

equations, for the coefficients of x and y cannot be proportional. (Why?)

If both the discriminant and the characteristic are zero, _EKpression

is a perfect square only if it reduces to E
2

- 4CF . (Why?) The locus of

the equation will be emptj, two coincident lines, or two parallel lines

accordidg as E
2

- 4CF is negative, zero, or positive.

If the discriminant is zero and the characteristic is negative, we note

that E2 - 4CE must be non-negative. Otherwise, Expression (5) would only

be a perfect square if the coefficient of x were complex, which is

impossible. The linear factors cannot represent dependent or inconsistent

equations (Why?), and the locus of the second-degree equation is two inter-

secting lines.

Example. Find the locus of 2x2 + xy - 6y2 + 7x - 7y .4- 3 = 0 .

Solution. We determine that 6 = 0 , and seek, to factor the left

merribeT'ot the equation by i5roupthgthe second-dei,ree terms.

, 2
2x-

2
+ - oy + 7x - 7y +.0,3

=, (2x 3Y)(x :/) '4. (7x - 7Y) +3

By inspection and trial we discover the factors

(2x - 3y + 1)(x + 2y + 3) . 0

*nee the-quadratic,equation-may bs tiritten

(2x r 3y,+ 1)(z + 2y + .

The locus of the equation is two intersecting lines. If we had not been able

to find factors in this way, we could have.considered the equation to be a
f

quadratic equation in one variable, say y,as above, and could have used the

,quadratic formula to determine the factors.

\
"4
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Exercises S7-8

l. Determine whether the following equations represent degenerate conic

sections. If 'so, fip the linear factors of the left member and the

graph.
.

(a) 6xy + 3X - 8y - 4 . 0

(b) 2x2 + 8xy - x + 4y - 1 = 0

.._ (c) 4x2 - 5Xy + 9y2 - 1 = 0 V

(d) 2x2 - xy 6y2 .-0

2. If the discriminant of a second-degree equation is zero, but the

characteristic is not zero, why cannot the lines factors of the left

member of the equation represent dependent or i consistent linearI

equations?

3. If both the discriminant and the characteristic of a quadratic equation

are zero, shOw why Expression (5) must reduce to E
2

- 4CF ., Why must

the linear factors represent dependent or inconsistent equations?

X-9. Invariants of the Second-Degree Equation,

We have made many observations and. devised several tests for the second-

degree equation. We hate obtained these results with the eqUation written

in 6ecial forms. We shall show that the values of the characteristic 6

and thediscrthinent A as well ascertain other algebraic expressions, are

not changed by the transformations which we have used. We shall say that

these values are invariant der translation and rotation of axes.

b

We consider a translation of axes as described in Section S7-7. If we

denote the new coefficients by primes, we have

= A

B' = B

C' = C

D' 2A14 + Bk + D
. -

Bh + 2Ck + E

Ah
2

+ Bhk + Ck
2
+ Dh + Ek + F .

545
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B,C,A+C, and consequently 5 are invariant.

tow that the discriminant is unchanged, we consider

LT =,

2A' B' D'

B' 2C' ET

D' E1.21"

2A B 2Ah +. Bk + D

B '2C Bh + ?ek + E

2Ah + Bk + D Bh + 2Ck + E 2(Ah2 + Bhk+ CO+ Dh+ Ek + F)

We recall that adding a linear combination of several rows or columns to, yet.

another row or column does not change the value of the determinant. We first

try to make the upper right element be D . We multiply the elements of the

first column by -h,, those of the second column by and add the aim to

the third column to 'obtain

2A .B

2C

D

2Ah + Bk +D Bh + 2Ck + E Dh + Ek+ 2F 1,

To make the lower left element be.D wp multiply the elements of the fiist

row by* -h , those if the second row by -k , and add'the sum to the third

row. Thus

0

itW

2A

B

B D

2C E

D E 2F

.-

and we have shown the disCriminant to be invariant under translation of axes,

Now we consider a rotation of axes as described in Section S7.6. If we

denote the new coefficients by primes, we have

A' = A cos
2

e + B sin e cos e + C sin
2

e

.

B' =_ -2A sin (9.
cos e t B cos

2
e - B singe + 2C sin ease e

B(cos2 e - sing e) - 2(A - C)sin

= B cos 2e - (A, - 2e. -

.,

CT T A sin2 Q.- B sin e case + ccos2 e

D' = D Cos e + E sin e

ET j-D in e+ E cos e

F' = F.
4



In this case the coefficients in 5' and .!\_' become quite complicated. We

will first consider certain simpler expressions involvin:-..the coefficients.

We shall then use these results to pro-,;e =hat 5 and ';t_ are invariant.

We not that :F ,is invariant. -A + is also invariant, for

, I A' + C' = A(cos2 e sin- + C(sin',S + cos- 7)

a = A + C .

(A C) 2 + B2 is invariant, for

1

A'ANC',=(A - C)cos- S + 2B sin 7 cos S + (C - A)si:.- e

= (A - c)(20s , sin- 7) + 5(2 sin S cos S)
..:.

=. (A - C)ccs f..S + B :in 2

and
3 ')

(A' :" C92 Bt- = (A - C)-cos.- 2: + 2B(A - C)cos 27 sin 2:: + B- sin-

C.

+ B- 20S 27 - 2B(A - C)cOs 2: sin 2.: + (A - C)2'sin2 27

=(A - C)=(cos=-27 + sin- 27) 4. B-(sin- 2S + coo7,2S)

= (A - C)2 +

. Also IT + E- is invariant, for

2 2 o
D'2 + E' = D cos 77 + 2DE doe sin 7 + E- sin

.

.
.+ IT in : - 2DE cos :,, sin -: + E- cos

2 .7.

. . ,

i' = D(COS :.: + sin- ,S) + r(sill- 7 t. cos- i)

.-^ ..57-

= D- + E- .

00;,= =SAC - B-

= (A C)1; C)2 ". B2

= (A C)2 [(A B2)

;Since (A + C)2 Wand '(A =C)2-+-B2 are invariant, their difference, which

is the characteristic, is invariant under rotation of axes.

It retains to shoW that the discriminant A is invariant under

rotation. We recall from Section S7-8, Equation (7)1

A =.8ACF 2AE2 - 2B2F + 2BDE -.2CD2 .

We rewrite this as

-A = 8ACF - 2B2F + 2BDE - (AE2 + AD2 + CE2 + CD2) - (AV"
o

- AD + CD
2

) °



or LI = 2F(4AC - B2) + 2BDE - (A + C)(E2
) C)(E2 1 D2)

We have already note& that F , - B2 1,A + C , and E2 + DP are

invariant Thus, the first and third term's are invariant. We still must

show that 2BDE - (A - C)N2 - D2) is invariant.

Now 2B'D'E' = 2[B cos 2e - (A - C)sin 29],,D cos e + E in e)(-D sin e + E cos e)

= 2[B cos 2e- (A -C)sin 2e][-D2 sin e cos 9 +E2 sin 0 cos e+DE(cos
2
e+ sin

2
e)]

= [B cos 2e - (A -C)sin 29][(E2 - D2) (2 sin e cos e)+2DE(cos2 e -sin2 9)]

= [B cos 2e - (A - C)sin 2e][(E2'- D2)sin 2e + aecos 2e]
,

E,2 D,2
( -D sine + E cos e)2 - (D cos e + E sin 9)2

= D
2

sin
2
e- 2DE sin e cos e+E

2
cos

2e -D2 cos
2
e -2DE sin e cos e -E2 sin

2
e

=(B2 - D2)(cos2 e - sin2 e) - 2DE(2 sin e cos

= (E2 - D2)cos 29 - 2DE sin 2e ,

and

e)

At - C' = (A - C) cos 2e + B sin 2e .

.Thut,

2D'D'E' :(A' - CO(V2-D'2) = [B cos 29 - (A- C)sin 2e][(E2- D2)sin 29+ 2DE cos 26]

- [B sin 29 + (A - C)cos 2e][(E
2
- D

2
)cos 2e - 2DE sin 201

= cos2 242BDE - C
)(E2 D2)]

! sin2 2 [-(A C)(E2 D2) + 2BDE]

+ sin 2e.cos 2e[B(E2 - D2) - (A - C) (2DE) - B(E2 - A- C)(2DE)]

= (sin2 2e +72os2 29) [2BDE - (A - C)(E2- D2) ]

= 2BDE - (A - C)(E2 - D2) . ,

Thus the discriminant of the second-degree

rotation.

equation is also invariant under

We note that if the gtap oirthe second-degree equation hap a point of

symmetryNr represents's. ce trallonic, then after a translation of the ,

axes which makes the new o gin the point of symmetry, the new equation is

for which

I

A' x2 + B'xy + C' + F' = 0 ,

2A' B 0

= B 0

0' 0, 2F'
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2A' B

= 21"6 .

At

25' '

B. 20'

but since A and 5 are invariant under ttanslati6n,

O

F' = ,

O

and the transformed equation is

Ax
2

+ Bxy 6' = 0

S1-10. Summary

I.

We have shown that if the locus of a second-degree equation is not

empty, then the graph is either a proper conic seetion or a degenerate conic

section. We have developed many methods and criteria for analyzing such

equation`s and have found certain invariants called the characteristic and

'discriminant particularly important% We summarize some of these results

in the form of a table.

, .

5 < 0 , 6 = di . . 6 > 0

0

....

intersecting
lines

. .

empty, or
.

parallel or .

coincident lines

point - ellipse

or point-c 'pie..

r

A / 0 hyperbola
.

parabola. circle, ellipse,
or empty

.
,

4 <

Exammil.e. Discuss the locus of,

8x
2

- 4xy + 5y
2

- 36x 4. 18y + 9 = 0

Solution. Here A = - 10,368 and 6 = 144

Since B / 0 '; the locus may not be a circle, but may be an ellips%.

o

,r,
A

F' = F-6= .36

so the locus is a real ellipse.,

C o
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If we tbstitute coefficie ts in the equa

_ we obtain

2Ah +Bk + D = 0

Bh 2Ck + E = 0 ,

16h - 4k - 36 = 0

-4h + 10k + 18

/

ich give (2,-1) as the center of the ellipse.

characteristic equational., .r

is

k2 - 2(A + C)k + (4AC - B2) = 0'

2
k - 2ok + 144 = 0 ,

o

which gives 8 and 18 as the characteriatie values.

These are substituted in the equations

2.6.7v+ Bp, = k7%

+ 2Cu =

to obtain T - 4µ = 0 and 2T + 4u =..0

'which give

of symmetry

ors

10% + 2p, = 0 10% + 8p, = 0 ,

and (11) as pairs of direction cosines 6r the axes

(2A) + Bp)x +. 037% + + (D7% 4- = 0

x + 2y = 0

2x - y 5 .= 0 .

;

The translation ak axes gives the equation

8x
2

- 14.xy +
2

- 36 = 0 p
_ .

0

while the rotation of axes through an angle e such tat tali 2e,a
B'

gives.the trangformed equation

x2
2

9 + i-

Primes nave been omitted consistently in the interest of simplidtyr
,

. .
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gkercises SY-10

-IdOtify the graphs of the following equations. Obtain thetransformed

equation reduced to standard form. Sketcp.the graph, locating the center

acid indicate aXes of symmetry.

' 1. 8x
2

- 12xy +'17y
2 -200

2. 3x
2

+ 12xy - 13y
2
{135 = 0 ei

3 5x-2. - 6xY + 5y2 -16x + 16y 4 8 = 0

4. 9x
2

+ 16y2 ,e0x - 15y = 0

5. 9x2 - 24xy +16y2 + 60x - 80y + 100 = 0

6. 3x2 + 10xy + 3y2 16x + 16y + 24 = 0

7. 5x2 + 6xy. + 5y2 16x roy + 8 = 0 .

8. 7x2 = 48xy + v2 - 12; + 44y - 77 = 0

9. 12x
2

- 7Imp - 14y
2

- 41x +..38y.+.22 = 0

216. 13x
2
+ 4ixy 4. 27y + 44x.+ 12y - 77 = 0

11. 9x
2

- 24xy + 16y
2

+ 90x - 120y +.200 = 0

12. 10xy + 4k - -15y. - 6 = 0

v
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Supplemeht to Chapter 10

GEOMETRIC TRANSPORMATIOWS

-S10-1. Isometries of the Line

In previous chapters we have seen examples of mappings of a line onto a

line and of a plane onto a plane. Some of these had the property of preserv-

ing the distance between any two points and are therefore called " isometries,"

(froth Greek, tam meaning same and perpetp meaning to measure), Therefore,e,

an isometry, having this property, will map any configuration onto a congruent

configuratiOn. In fact this amounts to a definition Of cong4gence. In this

chapter we want to inVbstigate the isometries of the lid and of the''plane and

consider'other types of mappings or trandOxmations.
7

Let us consider in more generality the isometric transformations of a

Each point P with coordinate x will be Mapped onto its image point

P' with coordinate x' = f(x) . FUrthermore,for anSr two points with co-

." OklhatRa. 'xi and x
2

, we have ,

x21 = If(x1) f(x2)I

We distingdiah two cases according as the origin

fixBdr-toint.

40110,10'

If zero is a fixed point, we haVe f(0) = 0

beaxmes

is a fixed point or is not a

-

, so that with x
2

= 0 (1)

.

-Ax
1

- 01 If(x1) - f(0) 1

lx1 = If(x)1

This implies that either- f(x) = X or f(x) = In the former, each point

is mapped Onto itself and this is called the identity traniformatiart
. In

the latter-we have a transformation which can be described as a_reflection in

the paiint 0 , use each point is mapped oniC its mirror-like.image with

respect to 0 .

553
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f-4

If zero is not a fixed int, it is mapped onto some Point with a non, -'

zero coordinate and we can wr to f(0) = a 40. Thus with- x2 = 01, (1)

becomes

If(xl

or

jx) = lf(x) - al .

Thp implies tharglther f(x) - a= k or f(x) - a = -x . The former is

f(x) = x + a which is a translation and tlielai:ee± is f(x) =F-x + a . The

transformation represpnted by f(x) = -x + a can be described by sayingelhat

the image of any point is obtained by a reflection in the origin followed by_a

transLation.of a We now have

THEOREM S1T-1. An ikmetry of the line is either

(1) the, identity transformation

(2) a translation

(3) a reflection in the origin
or

(4) a reflection in the origin followed by a translation;

and conversely.

The fourth possibility in ThepreraS10-1 raises the genbral question of one

transfoimation followed 14 another. If the first transformation is f and

thp second is g , ite define the product or composite transformation to be the

',transformation , °

gf : x' = gtf(x)]

Where x--1. x' means that the image of x.umder the mapping gf is A' .

As we have,seen,-the transformation -x + a is a composite of

fNr -x followed by g(x) =-x + a since g[f(x)) = -x + a . From the de-,

finition of an isometry, it seems reasonable to expect that the produbt of two

isometries should be an isometry. We show this to be true in the following

case.

Exampld. ,Show that the translation f(x) = x +.a followed by the trans-

lation g(x) b is an isometry.

I
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.

Solution. We have

g[f(X)) = (x + a) + b = x + (a + b)

-which represents a translation. Thus the composite transformation is an
isometry.

Exercises S10-1
:7-

.

1. By considering the remaining pdgsibilities in similar fashion, show that

the composite of any two isometries of the line is again an isometry.

2. Prove theeconverse of Theorem S10-1.

In the first exercise above, it was necessary to consider a tra nslation

followed bya.reflection% If (x) = x + a is followed by f(x) ='-x , the'

composite tradaformation is

fg : f[g(x] = -(x +

This-is certainly an isometry since it is

a) = -x - a .

a reflection followed by a transla-

tion -a We see that composition of transformations is not necessarily emir

mutative since in this case fg / gf However we can generate any isometry

by an appropriate sequence of compositions using only translations and reflec-

tions. It is not difficult t o Show that the isometries of a line form a group"

since the operation of composition is associative and to each isometry. f

there exists an inverse isometry f
-1

such that f
-1
f = I As we have

.

obsel-ved, this group is non-commutative. -.,

S10-2. Isometries of the Plane

In previous chapters we considered two changes of coordinate systems in

the plane called translation and rotation. The same effect can be produced by

mappings of the plane onto itself, which leave the coordinate-ixes u&hArged.

The contrast to this is the previous approach in whi plane remained'

fixed and the coordinate axes were chAnged.
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In this context, e_translation is P mapping of the form

(xt,y') = (x + h , y + k) .

A rotation, is a mapping in which each point is mapped onto a point the same

distance from the origin. These points determine rays from the origin which
-

form an angle in standardposition whose measure is increased by 6 .

Figure S10-1,

x

Let (r,0) be a point P described in polar coordinates where the polar axis.

,is the positive side of the. x-axis. The rotation mapping can now be written

as

1
(r,0)--ar. (r,0 e) .

In terms of rectangular coordinates, we have

xt = r cos' (0 6) = r cos 0 cos 6 - r sin 0 sin 6

= x:cos e- y sin e . '

Yi = r sin (0 + e) = r sin cos 6 + r cos 0 sin 6

.=%x sin e 4-Ity cos e . 40-

The proofs that these mappings are igometries are left as exercises.

0

.
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The previous discussion of reflection with respect to a point can be

extended to the plane. A reflection in the origin can be defined by the

transformation

1,

(,y)7-10.(xs,y9 =

Figure S10-2

The description of this transformation is particularly simple in terms of

polar coordinates since P(r,c) 1"(-riz) . By using the distance formula
. .

for the appropriate coordinate system, it is easy, to verify that,this trans-

formation is an isometry of the plane. However a rotation of n radians is

the same transformation. This can be seen by letting S = n in the rectangu:

lardescriptiop of a rotation to obtain

X7,1= x cos 31 - y sin n = -x

y, = x sin-n + y cos n = -y

or by letting .5, = n in the polar description to obtain

The last ordered pair represents a, point in polar coordinates which can also

be represented as (-r,c) .
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,We now, introduce an4her tradsformation which can be described as are-

flection in a line. Thelimage of a point is found by constructing a perpen-
,

dicular to the line and extending it on the other side a distance equal to the

distande OT 'the point from-the line.
. . .

,..

Figure S10-3 ,

The transformation equations for reflections in certain lines can be

written dOwnimmediate1y. For instance, for reflectioTin the x-axis,

we have (x,y)

y

x

(x,-)0

Figure S10-4

For reflection in the y-axis, we have

a
(x,Y)--0- (x',30) = '(x,Y)

y

P
-x.y) 0!-)0

Figure S10-5

I.
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We can similarly define the product of two transformations of the plane

onto itself, and again would expect the product of two isametries.to be an

isometry. .In fact we will show'that any isometry'of t plane can be des,

cribed solely in terms of reflections. Thus the group of sometries of the

plane-with compositiOn can be generated from the set of flections alone.

4

Example. Find the isometry composed of reflection in the line x = 1

foll wed by reflection in the line x = 4 .

Solution.

I 0

1

41

cx,y)

'1
.1,

Figure S10-6

The fil.st reflegion =PS P(x,y) onto P'(x',y') = (-x + 2 , y) and the

moecond maps (x',y9 onto (x",y") = (-x' + 8 , . By compositipn of the

mappings, we immediately have

x" = -x' + 8 = + 2) + 8 = x + 6

and we'recognize these as the equations of a translation which maps each pOint
Vveonto the.pointsix units to the right. 400,

559

556



Exercises S10-2 V

1. Do the two mappings in the example commute under composition?

2: Find the equations to describe the mapping of reflection in an arbitrary

vertical line x = h and in ansarbitrary horizontal line y = k .

Using Exercise Wind the composite mapping given by successive

reflection in'either 2 horizontal or 2 vertical lines.

4. What is the Composite mapping given by reflection in the line x = h

followed by reflection in the Ane y = k?

5. Do the mappings in 'Exercises 3 and 4 commute Oder composition?

S10-3. Reflections and Isometries

The above exercises illustrate the proposition that any translation*or

any reflection in a point can be obtained by a succession of reflections in

appropriate lines. We observed previously that a reflection in 0 is

equivalent to a rotation of it r- adians, so that a rotation of ./n radians

can be obtained by a succession of reflections. Let us try to establish

further connedkions between reflections and rotations by describing a reflec-

tion in a line L in terms of polar coordinates) Chooseithe pole of the
.

coordinate system on the line in which the reflection is to baosade and let

the equati* of the line L be e = k , a constant.

From.Figure S10-7 it can be seen that rt = r and that a m stare Of cbt

is e + (e - Q 1. 2e (I) for this particar diagram: We can showHttil in

general*if we start with the angle 20 and s ract the angle 0 to ive

at the terminal side of the angle Ot . Thus the reflection in the lie

is the mapping

(1) FL : (r,o). (rt,0') = (r , 2e o)

56c5 5
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Figure S10-7

Suppose we now carry out successive reflections in two lines ,(L and M

through 0 with equations m = 91 , and m = e2 . By (1) we can denote the

reflectiwis by

RL : = , 2&1 - 0)

Rm : (r",0") = , 262 - 0')

Th6 composite jansforMation RL followed by can be described as
J'r

RMRL (r,(/))--w (r"'°)

where r" = r' =r

and '''""=2'92-'°=2'92-(2e--0),-, 0 + 2(e
1

- e ) .

2

We recognize this as the description of a rotation of. 2(e2 - 611) ; thus,

the composite mapping of two lellections in intp1eecting lines is a rotation.

Exercises S10-3

1. By reversing the above argument, prove that any rotation is the prOduct

of line reflections.

2. Using the notation of the preceding dilcussion, determine

.561
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We are now in a position to prove

MOM'S S10-2. Any isometry of 'the plane is composed of at most three line

reflections.

.

.'"

Proof. Assume we have some distance-preserving '1.,nsformation which will
_..

therefore map an arbitrary triangle ABC onto a iodr4ent triangle A'B'C'

The line through the tints A and B may or may not intersect the line

through the points A' and B' . Hence,we consider two cases.

4
441-

Case I. The lines AB and A'B' ,intersect.

Figure S10-8

From Figure S10-8 we see there tee two possible positions for the point 'C'
6

points of intersection of the circles given by the conditions '-

=,d(A,C) and d(B',C') = d(B,C) ., For one position of C' the

transformation is a rotation ,e about 0 , whiAtcan be represented as the6

product of two line reflections. For the other position of C' , the trans-

formation is the same,rotation followed by64.eflection in the line throw

A' and,. and therefore is the product of three line reflections.

r D
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4

Mr.
Case II. The lines ABkand A'B' are parallel.

;

Figure S10-9

Once again there are two possible positions for the point C' . Consider

the line L midway between the lines AB and A'B' . 'Then for one position

of Ct , the transformation is a reflection in L . For. the other position of

C' , the transformation is a reflection in L followed by a reflection in the

line A'B' , which completes the proof of the theorem.

liOn-isometric Transformations

In Section Sal-21in addition to the transformations of a line onto itself

called translation and reflection, the transformation's expanPions and contrac-

tions were defined. An expansion is a mapping x x' = ax where a > 1

and a contraction is a mapping -x -ow x' = ax Where 0 < a < 1 . It is

apparent that neither of these is an isometry since the origin is mapped onto

itself and the point whose coordinate is 1 is mapped onto the point

563
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ikwhose
coordinate is a., but 11 - 01 la - 01 . We may consider the cap-

1.
positions of these transformations with themselves and with isometries to

obtain a general class of.transformations of the fdrm
a. oG

X '111.' x7 *ax+b a0. 0
.

known as the class,of linear transformations. As we noted in Section S2-2, thi8

set of linear transformations with the operation of composition forgu_group.
---

The idea of a linear transformation extends naturally to the plane.by

considering the mapping (x,y)--10. (x',y')- 'where 3 u,

x' = a.x + by + h, lel, + lb
I 0,

y' = cx + dy + k , 1c1 4', Id! -0

We see immediately that this ffiaploing is the omposition of the mapping

(x,y)---1.((x',y7) = (ax + by i cx + dy)

followed by the translAion

/!
(xl,y') (x",y") = (x' + h , y' + k)

Therefore we consider a subset of the setN linear transformations of, the

plane, namely those transformations of the 'form

(x',50) = (ax + by ,kcx + dy) which leave the 6rigin fixed. This
1

subset includes the rotations and reflections in the plane previously dis-

cussed in this chapter. One of the things.#0at can be ddne in general with

thissubset is to investigate whether it ',forms, a group under_composjtion. The

identity mapping is an identity element for the operation of composition.

Hence a given mapping will have an inverse if it can be, followed by a mapping

which will map (x7,50) back Of° (4,Y) To find whether such a maNOing

exists, we consider the composite mapping (i,y)--ao. = (ax + by ,cx + dy)

followed by (x!, ft) --0. (x",y") = (px' + qy' , rx' + sy) . We obtain the

mapping (4,y"):- where ,

x" =
7

Pax + by) ,+ q(cx dy),= (ap-.+ cq)x + (bp dq)y

y "_= '(ax + by) + s(cA + dy) = (ar + cs)x + (br + ds)Y,,

which is a mapping of the same form. Thus, given a , b", c we want.ta

determine p ; q ,r sso thatithe composite mapping is the identity

mapping; that is, so that

si+rcq =1

by + dq = 0 .

ar + cs = 0

br + as, = .1

564
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CO es

s ,

t -(1 -

This is actually two linear systems; each consisting of two equations in two

unknowns, which can be solved to obtain N
.

J r4.
' d . '%". -b

. c a
P = q , r - s =

ac - be ! ad - be .ad - be ' ac - be '.

li

if ad - be / . Thus, a mapping will have an inverse if and only if

ad - be A 0 . t is left as an exerciseto prove that thisAsetof transforma-

tions is associative. We combine these results in

THEOREM S10-3. The set of linear transformations of the form

731. (x1,30) = (ax + by , ex + dy)

where ad - be A 0 , forms a group under the operation of composition.

We now consider examples of linear transformations which are not

isometries.

Example 1. Discuss the finear transformation

.(x,y) (x' ,y') = (2x + '3y , x - y)

Discussion. We tart by examin at happens to points on certain.

lines under this transformation: For instance, a ppint on the x-axis, (a,0)

is mapped'onto the point (2a,a) , which lies On thelne y = 2x . A point

on the y-axis, (0,a) , is mapped opto the point '(3a, -a) , which lies on the

line y = -
3
x . If a point lies .on a line whose, equation is

ax + by + c = 0 , we cantind a condition on the coordinates 6'f its image by

expressing x and y,in.,terms of x' and y' and substituting in the

equation. From the equations of the transformation we get

x = t(x: + 3y')

Y = (x' 2y).,
5

(This also shows that any point (x',y') is the image of some
0

a point on the line is mapped onto a point (x',y') suchthat

a(x' + 3y3) b(x' - 2y') + 5C = 0

or (a + b)x' + (3a - 2b)y' + 5c = 0 .

which is an equation of a line. Hence a line is mapped onto a line, and if

the line contains the Origin (i.e., c = 0) so does its image. The images

of other loci can be similarly determined.
.

565 4'
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Example 2. Discuss the linear transformation.

(x.,Y)--w(x',Y4;) - (x + y , 2x + 2y)

.4,

t
Discussion. We first observe that this transformation does not belong to .'

the group described in Theoum S10-3 singe l 2 - l 2 = 0 Hence it does not

possess an'inverse mapping under composition. We investigate this transforma-,

tion geometrically. A point (a,b) is mapped onto the point
, ,'

(a + b ,.2a + 2b) . This image'lies on the line y = 24 , so that the_plane

is mapped onto a single line in the plane. Furthermore, infinitely many,Points

in the plane are mapped onto each point on the line y = 2x . Thus the

mapping does not have an inverse mapping in the sense of assigning a unique

pre-image to each image, point.

Sittgthere is a one-to-one correspondence between points in the plane

and cgmple4 numbers, it is not surprising that mappings of the plane can be

related to complex numbers. 'Recall that if we have a rectangular coordinate

system, this correspondence is established by associating the point (a,b)

dnd the complex number a + bi . Thus any of the mappings we have.discussed

so far can be considered as mappings of the set of complex numbers into itself.

_Mat is,if (x,y). is mapped onto (x',y')' , we consider the complex number

x + yi mapped onto'the complex number x' + y'i . Since 'functions are

I mappings, functions whose domain and range are the set of complex numbers give

a mapping of the set of complex numbers into itself. For example consider the
.-

function defined by f(z) = 2z,, or the mapping z z' = 2z, where
( / -E

z = x + yi and z' = x' + y'i . This function maps x + yi onto 2x +-2yi

whith corresponds toimapping a point (x,y) ohto the pdint

.(x1,y0= (2x,2y) . inves igation of this mapping is left for

We give another example of this relationship.

exercise;

.
,

.,;"

Example 3. Discuss the mapping defined by e equation f(z) = e .

T
..-

Discussion., From the e4xation we have
.

z' = x' + y'i = z
2/

= (x + yi)
2

= x
2

- y + 2xyi .
-

Hence,' in terms of.coordinates the Mapping is the non-linear transformation

r

x
2,

- y
2
,

yl = 2xy
r.

5615-
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We see from these equations that the hyperbola x
2

- y
2

= k is mapped onto

the line x' =. k and the hyperbola 2xy = k is mapped onto the line y' = k

(Ii* is convenient to think of the functions as a mapping bf the z-plane, with

x and y coordinates, into the z'-plAne, with x' and y' coordinates.)

We also have

x,2 y,2 x4 2x2y2 y4 4x2y2 (x2 y2)2

so that the circle 'x2 + y2 = r2 in the i-plane is mapped onto the circle

x'
2

± y'
2

= r
4

in the z:-plane. We see that'in trying to develop a geometric

description of a mapping, it is sometimes more fruitful to discuss the images

of certain loci rather the images of individual points. This mapping is

an example of an important Clasi of functions of z 'known as conformal

mappings which have the property of preserving the angle of intersection of

two curves. This-property is of fundamental importance in the general theory

of functions of a complex variable In particular, volynomialOin z and

their quotients will provide conformal mappings.

.

Sometimes information about a mapping can be obtained by using the polar

representation of a complex nudber.- Thus, if 8 is the angle in standard

position which contains (x,y) on ill terminal:Side,'we can write

= x + yi = r(cos e +.i =Anti),
t

27
where r =

/
x y

---T
. De Mbivrels Theorem gives us

2 2
z = r (cos 2e + i sin 29),;

Thus, in the/ mappi z -I. z' = s2 1 the point (r,9) is mapped. on the

point (r2,28), ich.gives a geperal geometri description of the pping.

W - Z' I

,,

]

(..e20

I

I

Figure S10-10

567, f



Exercises, S10-4,

1. Show that any transformation belonging to the group in Theorem 510-3 will

"' map a line onto a line.

2. Discuss the transformations (x,y) (2x,2y) , (x,y)

and (x,y),-mb(2x,3y) by finding the image of x
2
+ y

2
= 1

3. In Example 2, find. those points which are mapped onto the same point on

y = ax,

4. Show that the angle between two lines through the origin is preserved

, under the mapping z z' = kz .

5. Discuss.the,maPP1r4E z z'

67 Find various equations to represent the mapping called,"inversion in a

circle.," in which a point at aistance d from the origin is dapped onto

-
the point at'listance

1
.from the origin lying on the same ray from the.

origin. The origin is mapped onto itself.

7. Prove that the se of 'inear transformations

( x,y) ( x' ,= ( ax + by, cx + dy) is. associative.

S10-5. Matrix Representation of Transformations.

In tha previo4s section we saw that the product of two linear trAnsfor-

Mations is again a linear, transformation. It is convenient to introduce a

notation to eprefent a linear (transformation

x' = ax + by

yi = cx + dy .

Since Ithe coefficients of x and y determine thermapp

mapping by the natrix

g we represent the

i

b

I
.

c d) ,

e
where a matrix iegeneral is simply a rectangular array of numbers arranged in

rows (horizontally) and columns,.( vertically), The oam sitemappi ,fg in
.-4- .,the mapping, g followed by the mapping f Thus, as e saw

.

in t e previous

section, the mapping whose matrix ism

c la b

c d

5
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followed by the mapping whose matrix is

is the mapping whose matrix is

/1

Hence, it is natural to.define a binary operation'on these matrices as follows.

( P q

r s

(pa + pb + qd

ra + sc rb + sd .

DEFINITION. (Matrix multiplication)

p b + qc pb + qd

rs cd ra + sc rb + sd

Observe that each entry in the product matrix is the inner product of a

row in the left factor by a column in the right factor.' Because of this,

matrix multiplication can be deperibed as "row into column" multiplication.

Exam le 1. Find the matrix which represents a mapping described by

ion e.

Solution. TheeqWationg of this mapping using rectangular coordinates

are 0

XI = X cos e - y sin e

y. = x sin e + y cos q.

The corresponding matrix is

cos e -sine e

sin e ) cos e .

le 2. Using matrices find the mappilig composed of a reflection in

the x -axis. followed by a reflection in the y-aXig.

Solution. Asye have seen, the equations for a reflection R
x

in the

jai
wr

x' = x = 1.x + 0 .y

y' = -y = 0 + (-1)Sr

569
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so that the -corresponding matrix is
- fi

(1

0)

, -1

Theequations for a reflection
Y
R in the y-axis are

4t

= -x (-1)x + 0 y

= y = 0 x 1 y

with matrix

(-1 0

0 3.) . r

The matrix for the composite mapping.4RyRx is

1

0

( 1)( )

.4

,

WhichCOrresponds to the mapping (x,y).-g. . This, as le have seen,

is a reflection in 0 or a rotation of it 'radians.

(1.1Se ktrices)

Exercises S10 -5aTi
1. Using the notation of the example above, find R R

xf
2. Find the matrix for

(a) reflection in the line y = x

reflectionin the line -x

33. Find the matrix for, and int et-ge9metrically, a reflection in the
:\

line y =x followed by a rotation of radians.

4. Desciree the meming which results.franetation el followed by a

rotation e2.

,

5.. Show that matrix multiplication is_associativelitiot tative.

*6. Shoff that the matrix for a reflection in a line t uih q with incline-
,

tion Eris '

I I III

(cos 2e 2-e)

sin 2e -cos 2e .

.

570

567
1



Q

(Hint: While this can be done directly in rectangular,,..Fordinates using

trigonometry, it is also interesting to solve the p blea.using polar

rib
coordinates.) Verify that this matrix includes the previously discussed

3/t
cases e = 0 1 ,i; and. radians.

7. Find the matrix for a reflection in a line through 0 with inclination

el fdllowed.by a reflection in a line through 0 With inclination e2.

Show that the answer agrees with previous results.

,

We have_a one-to-one correspondence between twO-by-two matrices (2 rows

and 2 columns) and linear transformations of the plane which leave the

origin unchanged. We also see, by the definition of matrix multiplication,

that the product of two matrices corresponds to the mapping composediof the

mappidgs corresponding to the matrices. Thus, the two systeis arg isomorphic
0

in the sense that any operations on mappings can also be interpreted in terms

of operations on the corresponding matrices,. Hence Theorem S10-3 has an

analogue for matrices as follows. '

THEOREM S10-4. The set of matrices 'of the form

b \

d ,

Where ad - bc 0 , forms a group under the oneratidn of matrix multi-:

plication.

I I.

The num er.
r

ad - bc Ji.s called e determinant tof th matrix and the

matrix is called if ad bc i 0-. Th ithe setiin the theorem
_

is he set of pon-singular two-by-Via matrices.

v
, Since we found the inverse of a mapping in the proof of Theorem S10-3, we

_mil, vrite the inverse (Si a nOn-sifighihr matrix udder matrix multiplication,as
r -

,.,

d.

b ad -bc ad -bc

c d A -c a
ad - bc ad - bc

A

.*,
We now consider the matrices of isametries pf the

__.
which leave the,

origin fixed._BY Theorem S 0-21. any such matri is the
. -_,,

oduct of at most
. .

three matriceti
::::

eackpf vhi represents areflection. By.Frobled 6 ill EZercises
,:., T

,'51045a, the miirix of a re ectiOn imadIne the origin can be written
. $ ..o..

440,,
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as

(COs a

sin a

sin a

-cos a

for some a . By Problem 7 in the same set of exercises, the matrix for the

product of two line reflections, which is a rotation, .can be written as

0 -sin D

sin cos

for some 0 . Since matrix multhlication is associative, the matrix for the

product of three line flections can be written as a reflection matrix times

#a rotation matrix; th J.s, as

/
(cos a sin

sin a -cos tc sin 0 cos

for appropriate a and 0 This product is

cos - cos a sin0 0cos a cos 0 t sin a sin sin 0,--

sin a cos 0.7 cos a sin 0 -cos a cos 0 - sin a sin

cos (a - 0) sin (a - 0)
. sin (a 2- 0) -cos (a

Thus we have the following theorem.

THEORDIS10-5. Any isometry of tfe plane with 0 as a fixed point can be

represented by one'of the matrices,

cos a sin

.sin

a -sin a

a -cos a,
or

..cos

sin a cos

for suitable a

Corollary 610 -5 -1. The determinant of a matrix which represents an

isometry of4the plane with 0 as a 'fixed point is either 1 or -1 . ;

kt se be the set of matV.ces which can be written in'either of the
:..

.

...,
0

forms f4

cos a sin a

A* sih a -cps a) '

or
sin

a -sin

sin a cos a
1. .

for some a . We define two matrices to be equal if and my if they are

identical, that is, if and only if their corresionding e ries are eopfal.
4

Thus the same matrix may arise from different'values.of a ,'but we Consider.

57K 0
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the matrices themselves and not th e values ofmatrices As we have seen, each such

matrix reRresents an isometry (either a line reflection or,a rotation)) and

by Theorsit-S10-5, any isometry with 0 a'fixed point can be represented by

such 'a matrix.

The set s _forms a group, under the operatioi of matrix multiplication,

which is a 4gbgroup of the Oro4 described in Theorem S10-4.
a,

0
Exercises S10 -5be

1. Prove that the set s , Just described, group,.

2. Show that the determinant of the product of two square matrices of or

2
2

equals the product of their determinants.

3. Show that there exist matrices with determinant ,1 or -1 which do not

represent isometries.

4. Prove, usineee distance formula, that an isometry with 0 as a fixed

point has a matrix whose determinant is 1 or -1 .

5.- Any matrix in the set s , in addition to having determinant 41:-..bas
qt

the property that the sum of the squares of the elementg4n any row or

in any column is 1 . Prove that if a matrixjlas.determinant t 1 and

has the sum of the squared of elements in each column (or-in each row)

equal to 1 , then it is a member of s .

B10-6. Symmetry

The symmetries ora geometric figure can be interpreted very nicely in

to of mappings. If a figure is mapped into itself by a particulAr isometry,

th ;lb has the particular kind of symmetry described-by the isometry. Thus a

figure' may have symmetry with respect to stpoint ieit is mappedint) itself

upon reflection in that point; it may have symmetry with respect
I

to a line if
,..

.

it.is mapped into_, itself upon reflection in that line:
ti

for Symmetry arise from the equations of the various mapp

As you have seen, it is

,loci hyrusing appropriate transformations.

algebraic tests

possible to simplify the equations of various

iIn particulars it is possible to

eliminate by translation

!ellipse or a hyperbola.

(Geometrically, what this

the terms involving and

Then a suitable rotation wi

last step'irivolves is the d

rotation so that the x and y axes become axes,of
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-We now want to solve this problem by means of the algebrapf matrices. We

assume that a suitable translation has been made so that the hyperbola or

ellipse has its center at the origin of a rectangular coordinate system.

Hence its equation is,

(1) f(x,y) =Ax? + BXT + Cy2 = D .

We want to determine a rotation so .that the points which satisfy = D

will be mapped onto points which satisfy some,quation not having an xy term.

Since the constant term is unaffected by a rotation, we consider only the qua-
:

dxstic portion f(x,y) of (1) . If we' extend our notion of matrix multipli-

cation slightly, we can get a matrix representation of fcx,y) We introduce

matrices with one row and two columns or two rows and one, column and define a

product of one of these times a.two-by-two matrix.

DEFINITION.

Q

a b x ax + by

(c .d (y (cx +dy

(j (
a b\ ax + cy

(x y)

c d bx + dy

(p q)(rs) =(pr + qs)

4

Notice that the one-by-two (or two -bey -one) matrices must occur in the

proper position put that tlie multiplication is still row into column mUltip47

cation. We now associate with f(x,y) the matrix'

.
C

2

B
e

and verify without difficlulty that

f(x,y) (x .y)02.

We can similarly express.a rotation e as

( 3)
cos el -sin e

(sin e* cos e

574
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By Theorem S10-4 this, rotation matrix has an inverse. The Equatton (3) is a
statement of equAlity' of 'matrices and hence each m4mber can be multiplied on

the left by the inverse matrix to obtain equal matrices.

(4)
0 1 ye y 3r,sin 0 cos' ' . )

cos e sin (3 -x

(
\

(This assumes associativity of a matrix product involving non-square matrices

and' the proof of this s left as an exercise.)

From the definition it is not hard to see that if
f,

ax +

+ dy

by a

\c 1:1)(;)
cx

then

(ax + by cx + dy

116

Thus from ,.(4) we have

(x y) = (x'

Substituting

form , f(x,y)

- cos
YI)

sin

(4) and (5) into (2,) we

into

(x
yq: :1)

cos 0
g(x',,y1),= (x'y')

sin e

= (x'y'

A cos e

sin e

.
id

-sin cos

cos. e c

B
- g sin e -f cos e

+ -do cos
2

-g- sin

)
e !---sin e

e cos e

see that the rotation

I

= (xly1)
B'

I

C' yy
= Aix12

We now want t0 deterMind e so that

X' is replaced ,by -x' also when Iy1

occur' if g(x1,30,) 'ides t have an x'y'

e sine

e cos e y'

will trans-

e +C..tbs p sin e cos e y'.

,C sine e sine

, . I

The coefficient of ly' in g(x',y')

B' = 2((A - C) sin e cos e

r ,

g(x',y ). remains unchanged when

is replaced by -y' This will

is ;

- 117.(0.n2 1U cos e))

= (A - C) singe +B cos 2 e

O

i

"Cs

4



Thus =ia if

--= .. radians, when A = C

1
e. = "arc tan

C A
when A C .- -4

:

In Chapter ST the latter angle 0 was
1
-. arc tan ABC , since there,

the axes were rotated; whereaslin.this treatment, the ax4s remain fixed and

the plane is mapped onto Itself. The calculatiOns here do not differ from

those in Chapter S7,but it is oflinterest to see them carried out.in a
.. ,

different framework.'

We may also use this approach to prove that ihe deterMinant of f(x,y) ,

,2
which is." AC -1- is invariant not only under a rotation, but esiso under any

1
. ,

isometry which leaves

which was

0 fixed. FOr this we use the fact that

q.) bd)1.1(pi: sq.)

d r s

shown in Problem 2, Exercises S10-5b. Thus if M is the matriv.of

such an isometry, we have

I

4

A'C'
B'

2 a c

.(b d

2
B

.,= AC -.17- since
.; .

Th."
.:

,

Exercised S10-6"

1. Describe (in terms of reflections -

alone) the isomet ies*of theplane

which in addition carry the outline

of a given rectangle*into

e'

I-1. reflect` on y

.1-2. reflection x

. reflection iA t

identity 1(x,'y

followed 1=2,

, .

axis : (X,Y)--0-(-x,Y)

axis : (x,,y):"

origin (x,y)

(x,Y)-

the same rati.it

5..76
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2: Describe (in terms of reflections

alonethe isometries o the plane

which in addition-carry-lhe outline,

of. e. given square into.itself,

I-1. reflection in the c -axis

1-2. reflection in y-axis

1-3. reflection in the origin

I-4. identity (x,y)---'(x,y)

and in addiAion'

1-5. reflection in the 45° line (x,y)--2 (y,x)

reflection in the 135° line (x,y)---

3. Describe the isometries of 3-space which in addition carry a given cube

(x,y)--

7x,y)---

into itself.

r '

''71":,e
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