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Chapter 1-2 )

INPUT- UTPUT AND ASSIGNMENT,ST1TEMENTS

F2-1 IntrodticiTOri .

In Chapter Wrdeve oped an appreciation of input, output and assignment

steps as componentsofalgorithms expressed in the form of flow charts. Lo
far, we Ilave'viewed flOw harts as a means for conveying a sequence(of compu---

'-etation rules primarily from one'persOn to another. We have tacitly assumed

. that only man cl, read, underst.ald and carry out the intent of such flow

charts,. Naturally we *ant tIzinclUde computers in the set ofrail thvings

which can //bad, understand-and-carry out procedures.

I

FORTRAN II--language and processor

%Programming languages like ALGOL and FORTRAN accomplish this objective.
,

The steps of.aI sAtogramming language are oalled statements. They correspond
91roughly t4ffthe boxes of a flow chart.

_FORTRAN, meaning

language developtd by

firstdf a series of

the original version

gramndng languages.

are known by raripus names, the most widely used neat& being FORTRAN IV.

A

FORmula TRANslation is an English -like programming

IBM about ten years. ago. It'was hIstorically the

similar languages. FORTRAN II is an improvement over

and is'probably the most widely used of available pro-

More advanced versions are a'so in common use. They

FORTRAN II was designed with these-objectives.

1, ilvideariety of algorithms can be described with this language.

Its chief area of application is for expressing algorithms which

-.deal with scientific and engineering computation. Algorithms:for

many Other types ofproblems can also be expessed satisfactorily

. ' i.-n FORTRAN II..:
_

,

1 , 2. The rules or "grammai".of the languAge are defined precisely
.,

,..-

e, (plike English). The et result' is that analgorit T written,in

FORTRAN II Oninean preci ely the same thing.to each erson who

-:reads'it, i.e., it meaps't e same thing.everywhere to eople*who

havelearned this language. Hence, FORTRAN II provides a means for
0 . \

communicatinealgorithmsVia orrespondence and publications,from
. . -

.

one }person `to aaaher.
.. , *".vnt ,.,

. , . -1. t

'.

.

:
ve.

t ,
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3. With minor additions or modif cations,. RTRAN II can be "timpleMentecP

On many typeP of digital computers.. By l.mplementation we mean that.

to accept orithms as "source" pro:

a'v'ersion of FORTRAN II and automatically

a computer can be progra

grams that are writtet.I'i

'convert the to sequen es*-bf computer instructions, often call9d

"target" programs, wh ch can then be executed by the copputer.
0 °

e
. .

These features of FORTRAN have led to its wide acceptance

In ths chapter, we shall begin to describe

FORTRAN II as it is typical impleme ted for use on a Computer, calling it

metheMaticians and seientist

simply FIORTBA14.

Each state nt in FO

N:\a .'ard it can be transfer

scanned character by cha

\ Programs which an

programs. A typical.

cards and analyzes t

is ritten so that when typed p.rqounched on

e computerts memory. Here it can be
r

and analyzed for i S-11111 irrteuU.4
7

ese statements are called compiler or processor

processor reads statements originating on punch

converting each statement into an equivalent

sequence of computer) tructions. 1Tre" these in'structfons to be executed,.

it would amount to having the computer carry out the intent of the statement

which is itself distinct from the machine=s particUlar instruction repertoire.
IS,

Target programs and source programs

'The processor program will read,and ahalyze'all the statements of a

FORTRAN Program to generate a complete set of instructions. or "target'

program, sufficient, if executed i to, carry out the inteneof theaehtire

process. The "taraet" proiram gets ite name becausskit is the target or

objective of the processor progfam. In turn, the process4 has received as -

input a "source" program written in trl FORTRAN languag e processor

prograr finishes geaerating the target pmgram, the computemmay execute

these instructions tight away. Thisis,feasible because the target program
s

is developed and.kept in'the complitefts. memory. When the target program iS
9

too big to fit in high speed memOry4along with the large processor program;

the generated target is stored temporarily in Some formoeauxiliary dembry

media such a6ion magnetic drums, discs, or tapq, Or in'the form of decksof
, A

punched cards. When stored in auxiliary memory 'media, especially Anohed

/.
t

This process'litfdrther,described in Section 24. of.the main text.

7
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cards, target programscan be recalled for execution at any subsequent time,

as suggested in Figure F2-1. We would rarely wish to read or study the
.

'target program OUrselvesibut in, principle this

the processor to print the target program.

SOURCE.

PROGRAM

dos

can always be done by causing

TARGET PROGRAM

COMPUTER MOST

ON CARDS

ON AN AUXILIARY -
PROCESSOR FREQUENT)

STORAGE SUCH AS(`I-
PROGRAM M IN TAPE, DRUM OR
as MEMORY ' ' DISC

Figure F2-1. The "compiling" process 7

It may be intriguing to you to

job. After alL, it is also a flow-

be within our abilities to undehta

this interesting pYogess. For the

on discussion of thit pic because

write simple algorithms fon solving

OR ON PRINTED
PAPER

.

learn how theprocessorprogram2pes its

chartable process and hence could easily

Airtid it. Chapter 8 Wil.Vshed some light on

present, however, we will avoid any head-

our first,in*rest must be i.o.learn,to

We-mathematical
, r

will, however, be making occasional

nature and structure of the process

problems in FORTRAN.

comments whichbear.indirectly on the

or.'

General appearance of a'FORTRAN program

-Recall the process for computing

42 D24. D2

44whose flow chart we displayed In Figure 2-2.

FORTRAN statement as shown in Figure F2-2.

3

Each fox can be written as a

,:t

4
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input,

r

aSSignment.

output

'Flow Chart,

4-4 +B2+ C2 ,

3

A,B,C,D

FORTRAN statement

100,.A, B, C

= SQRTF (A**2 +:1;*42 + C**2)

PRINT 101, A, B, C, D

Figure F2-2. FORTRAN Statements compared with Flow Chart Boxes
.,

Notice the similarity between thelboxes A the FORTRAN statements. The

differences:are largely superficial;'that is, the *mbols used in each case

may be different/but the ideas appear to be the same.

We.&mtt have to connect the statements with arrows, because, when we

write FORTRAN statements one below the other, we imply that they are'to be

carried out one after the, other from top to bottom. In order to sugges

repeating the process for many sets of data, we drew a line from Box 3 back

V Box 1 in the flow chart. There is an'analogy,in FORTRAN to accomplish

the,6arde'ObjectiVe, We can simply give the READ statemen,

corresponding to 4ts box nujnber in the flow chart, which is 1 in this

case. Then we add after the PRINT a statement which sends control tothe

designated statement. :Ibis is shown in Figure F2-3.

41 a

a. .t

I I

LABEL : 'STATEMENT

11
I

1 READ 100, A, B,
r

I

I

1 1

D = SQRTF (A*42 +.B**2 + C**2)

1 I.
1

I

I I PRINT 101, A,
'

D

1

t

I I GO TO 1
I s.)
I I

0

Figure F2-3. The GO TO statement directs control to any desired statement.

t.

OA,

de
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n other worts, we give the READ statement the

tce a FORTRAPstatement,

GO TO 1

label 1 and then

F2-1

tdr'the purpose dfindicating.a jump or transfer to that statemrt. The jump

statement donsisi,s of the symbol GO TO followed by. A numeric label. Because

it reads like English, the jump statement is easy to understand and we shall

say no more about it at -this time.

As we focus on an 65camo,l) of a new language, it always takes a while for
f

its features, its special symbols and.punctuatiT patterns to stand out .

clearly., You have probably* observed, and correctly, that'-rn FORTRAN

Statements are separated by virtue of being written on

separate lines.

2. Alphabetical characters in each statement appear to be

, exclusively upper case. ,

3. A statement may have a label. If so, the label precedes the

statement, and is separated, from it 'in some way,, apparently
,

-brsome blank space.

4. The.adsignmec-4, symbol is the equal sigri (.), an unfortunate

. state of affairs, Since a left poin4ng arrow would haVe ,

been our chOice!

ihe-Symbol for Okponentiation is the double asterisk ( * *), and

we appear to have lost the ability to use a symbol like "1--,

having now to use SQRTF which is a curious abbreviation:

6. Certal.n numbers, specifically. 100 and 101, which appear

following the words READ and PRINT, have no apparent

counterpart in the .flow chart,

Now, bef9re taking a more methodical look at input, output and assign,..,

ment statements and rules for forming these correctly, we show in Figure F2-4,

a complete FORTRAN program as it might be written on a coding sheet prelim-

inary to -being punched on-cards, one card\per line of FORTRAN coding.
.

.

We can now notice a number of features. Some have to do with layolt of '

theecards. Others relate to the language of FORTRAN itself.
e

Card layout/

A statement label will'be punched in card Columns, 1 theough 5. The

4 11
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statement proper will be placed in card Columns 7 :through 72. We can'add

comments to ideritify our program or to help make it self-explanatory: .e

comment Will be recogned if we place theletter C in card Column 1. So

the title,

EVALUATION OF D'

istreated,as a comment instead of a procedural statement, because the letter

C will be.punched in Column 1 of this card. We donrt expect the computer

tqTay any attention tO comments. They'are there mainly to help us document
A

what we are doing!
. -

By Common convention, Coi.umns 72 - 8o are not considered part of the

program. You might say the computer would ignore any gart of a program

which happens to be punched in these columns.

7 '

0

O
FORTRAN -CODING

Program GmOniC 0

Proglamnlet Dote Punch

C FOR COMMENT
1

y S T A T E ME 84T
NUMBER

1 '5

a
Z
5

.,

c.
6 7 10 15 20 25

. T

FORTRAN STATEMENT
30 ', 35 ( 140

X EIV.A 1_ U Ail- 1 0 N 10,r D I 1 1

I. R.E A.DI 1 00f1 A,. B,1, .C. I 1 L
1

D _-, IS QRTP1( A*Y-2,_ +,...8il-x-.2 +, 1C**2)1

P,12.1.NtT .1.0,11, .A.18., C., .D. _._.

'G.0. TIO. _1_ 1 1
1

1.0.0
.

F.0,Q.M AT (3r1 5 .,8)r
-

. , -

(0,R,MIAT.1451 5 ,8. 1

,
N,1:0.1

t,N.D, I 1. . I , . .. .41. .1 ._

__---.-------.L ----)""------- -------
r.

'Figure F2-4. Complete program written on a FORTRAN coding sheet

, 610
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Column 6, although not utilized in the examplegiventinFigure F2-4;
'will have a special significance to be explained later. :

Language

Notice that a statement

, END

P

is placed at the end of the program to mark the end: Thikis characteristic -

of LI FORTRAN programs. They.are not complete without this terminel state-
.ment.

There are two nqw statements shown labeled 100' and i01. Statementr
100 provides a format required by the READ statement. By format We mean

Certain coded information pertaining to the Ilyout obi data as it might be

punched on one or more data cards or as it mi ht, appear printed or typed out

on one or"more lines of paper. LikeWise std ement 101 provides a'format

required by the PRINT statement. We wi,ll'defer further discussion of

format codes until Section F2-3.-. (If ybu are wondering what special signifi-

carice the format numbers 10D and 101 have -don't bother. You will see

later that these are,qhosen quite hrbitrarily.)

So far, then, we see that a FORTRAN program appears to consist of a

group or statements and'possibly'comments ending with END. Each statement

is punched on a card of standard layout so 'toding'follms like that shown in

' Figure P2-4 may prove helpful. A picture of the cards produced from this`

coding form is shown in Figure F2-5.

Al

AlAI

FORMAT (3f/5.8)

CO 70 I

PRINT 101, 4,8.C,D

SORTFrA 2413* *2..,C*
READ /00, it, 8,

OX. 5" COL.?' 401.72

Flture F2-5. The Program as a "deck" of cards0

-t.

1

s.

'
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E2 -2 FORTRAN language elements

In this-section we shall deal with the charadter set or "alphabet",of

\-

FORTRAN and their use in constructing some of the simple components of states
II\0

merits, spedifiially the construction of numerals (constants and labels),

variables, names for functipn; and-operators.
,

4

e character suet

The characters ;hich are used in FORTRAN statements are limited. to

those shown Table . Notice the absen'e of lower case lette'rs.

/ 0

r
Table FP-1

A
SW/ / iLe FOI1TVAN Character Set

(a) Letters. ABCD4eFGUI
J K L. M N 0 1.)* Q R

. S' TUVW .X Y

(b) Digits' 0 '1 2 3, 4 5 6 7 8 9

%

( ) 'SpeNial Characters + -

'44,( ) =

FP

-

Constructing nufals (numerical constants) and labels
- -

To understand how numerals are written in a FORTRAN statement it helps

to recall the two schemes we discuss in Chapter One for representing numbers

in-Cernal1y, in a word of nleihory. T
T1 ere

)

was thq integer scheme and the

Boating point_sclieme. Externally, i.e., in a FORTRAN statement, there are

two types of numerals, called integer and real. \

For example, the numerals

4, +14, -15N41001.

areolill examples of integers in FORTRAN.

The connection between the external and the internal,representation is

this: If a numeral, 4, for Instant-e, is written asa FORTRAN integer

(exteTnal.ly), then it will be repfesented internally in the intege? scheme.
4

12
em

8
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1. 0

Expressions involving FORTRAN integers are then evaluated in integer arith-

metic which is, of course, characteristically different from rea15 arithmetic

as .explained in Chapter One.

If a numeral, 4., for instance, is written as a FORTRAN real, then it

will be represented internally in the floating point scheme. Expressions

which involve FORTRAN reels are then evaluated using real arithmetic.I.

We'see then, that the way we write numerals as numerical constants in

FORTRAN statements (i.e., with or without the decimal point) determines by

inspection, and without ambiguity, which,typ4 of'internal wepresentatkn the
0

, number is to ,have during ,computation.

There is one more, way we can write a FORTRAN real. This is to u the

"E" notation mentiohed inChapter One.. You will recall that "E", as it

is used in a, numeral, is merely a convenient symbol whose meaning is "times 40......1)

,teh to the power of ". Some examples are:
.1:

Yd

4

Number

52, x 10
-8

5.2 x 10
-8

-2

,- 23
0.023 X 10

1.5874O4 x1010

_

Method 1

(Without "El
Az.

.00Q00052

.000000052

Method Z K.

",E" notation)

52.E-8

5.2E-8

-2.E0

or -.2E1.

or -.2E+1

or - 29.E-1

602300000000000000000000: 6,023E23
(Avogadro's numbeD,
the number of mole-
cules in a gram mole
of gas at standard

/4 temperature and
0 pressure.)

2.5874040000. 1.58740 4E10,

(1 light year

The "E" notation provides us frith some flexibility. It is especially

useful in expregsing numbers which are very small or very large in magnitude.,'

tarictly speaking, the arithMetic useeis i'foatini4 point which, you.
recall from Chapter One; waS said to be a way of 'approximating true

. real arithmetic. We take the liberty of,ca4ling this type of arith-.
metic "real". /

/
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Moreover, any one real number can be expressed in a variety of ways. The

decimal point in the first part of the numeral eel be shifted at will without

changing the value of the number, Provided a corresponding change (in the

dpposite sense),iamade to the, exponent. For example, moving the decimal j

point to the left is equivalent to multiplying the number'by a power of ten,

so we have to subtract the same power from the exponent.
.

Exercises F2-2 Set A

3.

2.

3.

4.

Show three ways (other than those shownabove) to_write -2. in FORTRAN.

Use "E" notation to show 1 light year in centimeters. Use a Nrecision

--of 4 decimal places.

Write in customary notation the,,values represented by the following el.).

FORTRAN constants:
.°.

5.96E0, .002E+8, 88.E-1, -522.4, 5.E5

Write real constants using "W! notation for the riumerals civen:

3.91

.
.,-

9.09
P

-6.67 x 103
..

.

176.4 x 10-9
.

.

.

5. 1,o, all the FORTRANcOnstants given below on,the left correctly express

:theuggested values ShOwn on the right? Correct those FORTRAN constants

that do not.

x1.79. 107
ei

179E-4 1 400
/

/
6179.Er7 6179 :,10

2

16!'79E 16.79

10 4
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Statement labels

In /FORTRAN, statement labels are special.forqs.of FORTMN inegers,

namely, unsigned integer constants other than zero. Thus 14,, 1000, 393
6

would be perfectly good labels,but -4, 0, 4T; or S1 are not, acceptable.

Constructing variables and names-Tor functions

A variable is formed according to.this.rule,:

)

A letter, or a letter followed by a limited sequence of letters or

digits, Ti le total number of characters in the name is lithited. MoSt

imple7entations (FORTRAN processors) perMit4variab/es to have up to six

characters. We will assume this limit of six characters for our text.

Examples

HARRY TEMP X T46

. IKE COLUMN A15AA

.Type of number represented

What type of n

expressions 'llke

er is represented by a given variable?' In the FORTRAN

e

A + B or A /

do you think values for A and

or in the floating point scHeme?

kind of- arithmetic which Will'be

depends on the internal represe

Consequently,a rule for determining the mode or type of internal repre

sentation,is required. It is this: .e

I.

B are represented' internally in the integer,

It makes quite a difference, 'because the

performed in evaluating A + B or A / B

n1 at of A -and B.

All variables which begin with the letters,:, I, J, K, L, M or N-

corre pond to numerical values which are stored in the integer scheme. We

'sh 1 refer to such variables as 'integer variables.

A11 other variable names then correspond to variables stoked in ,ek

floating poirit scheme and can be referred to as real variables.

Examples of integer variable names are

ISTEP3, Il, ITEM, KT1, .NUM, ,KCOUNT

Examples.of real 'variable names are-

TEMP, X2, FNUMBR; SMELL, ABEL, BAKER
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Exercises F2-2 Set B

1. Wtfich of the following inscriptions (or character.strings),are-invalid

for variables?

ZZF1Z, 1976Q, ''S1976, 19S76, NN,

ITIF, VAR, T15TT, MAR.Y, MAR*Y

2. Which pf the followiy character strings are valid for integer variableS?

-I15Z., N7G, J97; GAT, ABI,.

847, N, 37
7 A

Names of predefined functibns

"Several kinds of functions may, tie named in. FORTRAN. In'this Chapter we

shall use a group of predefined flinctions. The rule for naming these func-

tions is similar to the rule for naming variables except that all names for

predefined functions endin the letter 1".' For example;

ABS' for absolute value function
/""

and SQRTF for,square root funcition..

Other functions of this kind are given in Table F2-2. Like variable.

names, these function names must begin with a letterind rapt be followed by

a limited sequence of letters (ending in A. The total number of characters

in the function name is not entirely standard among the various.processors.

For this book we shall asbumea predefined funtion e consists of from

4 to 7 charactets including the terminal F. The letter F, by itself, is

' not a legal name for a function.

In. order to avoid confusion 'between these function names and variable

names, we shall adopt this arbitrary, but very practical rule:

Never end a variable name with the letter F, if the name is to i\

consist of four or more characters. Thus, 'TIFF, TUFF, and dEnwould

be avoided, but TIF, TUF, JEF'and F are perfectlOK" naMgfort,- '"'",'

variables. ,,

i 1,00,

,

r

eo.



-Table F2-2

Predefined Mathematical Functions .

Name

ABSF

SQRTF

LOGF

EXPF

SINF

COSF

ATANF

Meaning

absolute value

square root

logarithm to the base e

powers'of, e or exponential

site of an angle whose measu re is

given in radians

F2-2

cosine of an angle whose measure

is given in.radians,

arctangent or principal angle in

radians of a given tangent .

vakle. That is, ATAN(X)

gives a value in radians

corresponding to.the principal

angle whose tangent is X.

*Most of the functions listed in, Table F2-2 should already be familiar

to y6u. When we use one of,llese special predefined functions in a FORTRAN

statement, the resulting machine code.automatically carries out the evalua-

Ohof the specified function. The arguments we use with the functions

listed4in Table F2-2 are all real and the function values that
.

are developed
. 4,4

are also all real values.
c

Operators

To write arithmetic expressions and assignment statements wee need

operator symbols. Considering the limited character se'we have with FORTRAN,

it should not be surprising to find some compromises with conventional mathe-

matical notation. Table F2-3 sh9ws a'liat'of the symbols we shall be using

for the various arithmetic operators. For convenience in later discuision

they are given in hierarchical order, that is, in descending order of,pre-
.

.cedence which is, the same in FORTRAN as it is in our flow chart language.

. .
r1j 1 7
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1

We have also included the assignment symbol in this group. It is a binary
1 .

operator, but, of course, not really arithmetic in nature.

,Table

FORTRAN Operator Symbols

41111oll'k.

RTRAN
ol

Meaning Example

same level
of precedence

same level
of precedence

exponentiation
raising to a power

A**B means A
B

multiplication A*B
division A/B

addition A+ B
subtraction A - B

assignment , A =B means A(-B

1

0

r

.
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F2-3 Input-butput statements

F2-3

Now tha "you havt. become somewhap accustomed to the appearance of FORTRAN

characters anto their use in the elementary components of the language,

'like n rats, variables, function names, and operators, you are ready to

study the three important statement types: input, output and assignment.

You have already seen examples of input and output statements, namely:

and

READ 100, A, B, C

PRINT 101, A, B, C, D

Mle Statements are simple in form. They always begin with the key word

READ t

or PRINT

r Following the key yard we provide art unsigned integer constant which"is,

the label of another FORTRAN statement. This label tells where to get some,
,

needed fortatinformation. 1e call this label a format number. A comma

follows next. -Then we write the list of variables whose Values are either

to be read or printed., ThiS list is simply'a set of variables separated by

commas, if there is more than one.
,

We will not li the number of list elements of an input or output list,
...

i -

but we will prohibit ertain things from beirIg on the list, a constant for

example.

Thus,

READ 100, 2.5, 'A

or PRINT 150, A, B, 2.5, C,_152, D

are invalid, because constants are prohibited as list elements. In the same

vein any expressions which require evaluation, such as A + B, arld such

formsas (A), (-A), +A, or -A, are prohibited.

Thus in the two statements that follow

READ 15 , 'A + B, -A, +B

or PRINT 151, lAx-A + B*B

each list elemept is invalid.

In this way we arrive at the general form of an tilitttlbr output state-

ment, i.e.,

READ format number, input list

or PRINT format number, output list
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For a REAP statement, the list elements are the variablesjthPse values

are to be assigned from the, input data, while fdr a PRINT-statement the list

elements are the variables whose currently assigned values acre toOpe printed.

Executing a READ statement

In this discussion we shall assume, as in the floW chart text that inpgt
,

data originate on punched cards. T aThe effect of executing READ statement
,a 0

is as follows. . ' -
.

.
. . ,

l. First we assume a card is in position to be'read by -ale computer's
. .,

input deyice. If not, the execution of the program ceases

immediately. In some but not all systema,the computer tight then

print some message like

"YOU HAVE RUN OUT OF DATA"

Or "ALL INPUT DATA HAVE BEEN PROCESSED"
,

1 e

2. The format number of the READ stateMent is then used to ,consul"--4,1

(look up) the format code stored in memory which has this format?'

number. The ,format number is simplya way of identifyihg the

particUlar &mat code you it among several different formats

that may be employed in the same program.

Folitlat pewhen properly ifiterRreted, will, in effect, tell the

computer where on the card to find theldesired.values: The,code

itself is written in a special language which will.be,described

momentarily.

3. The content of the card that is ready to be read is then transported

to the computer memory, where it is examined one character at a 'time

beginning with Column 1. The format code which was found in Step 2

is then used4to decide which numerals (from the card) go with-which

variable (of the input list). The purpose,is to,achievea one -to=

one matching between the numerals on.the..Card and the variables of

'the input list with which they are to become associated.
.

r.
At this point some examples should help us see how this matching process

is carried Out.
I

Example 1

Study Ogure F2-6 where you see a READ statement, an associated FORMAT

statement, .nd a piCture of a card that might possibly be read as a result

of executing the given READ statement..

"u142



./

a

7

F2-3

The format number is 22. e associated format code is (115, 115, 115).

The code is interpreted to me:' in thisicase--that: the data are arranged

on the card in three groups, each fifteen columns,in width. .The letter, I,

for integer, tells us the each group of 15 columns is expected to contain

an integer which can b- stored in memory at a place associated with an integer
N .

variable.

READ 22, NUM, KPAY, KAMT

22 FORMAT (115,115,115)

115 30

i
1502

i
14572 " 147 ..

t .

^.1,

...,

.

eite

Figure F2-6. A data card with three tntegels punched on it,

together with related READ and FORMAT statements.

We shall call each sush group of columns a field. Codes like 115 are

then called field codes becausethey tell the type of number, I, (for

integer) in this case, and the width of the field in which the numeral can

be found.

You may wonder if there is any special reason for choosing a field width- "

Of 15 columns for-these integers. We want a field which is, of course, wide

enough to contain the largest expected integer value. But it doesn't hurt to

use a wider f4eld if room is available on the data card. The main4thing to .

remember, howe#er, is that the unitswportion of, the data value should be

punched in the rightmost position o '\the card field. This keeps you out of

trouble because, in many computer systems, any blanks #nside the field...arid to

the right of the numeral will be interpreited . as trailing zeros. 'thus-, if the

integer' _1502 were_punched in columns 9-12 inatead of 12-15, on the card

shown in Figurt F2-6, it would be erroneously interpreted as-1502000.

As the scan of the data from the card proceeds, column by column, the
f

infOrmation is picked off otie file at a time to be matched with the next

item in the input list. When a match.is achieved, then that numeral from the

card is converted to its internal form as,a sequence of bits representing

that number in the appropriate scheme. This is done by a special program

.1r

.
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provided by th;'proicssor. For I-fields the conversion is made to the

integer:scheme.

Several general rpmdrks are always true Soncerhing,formA statements.
t

1. 'Every format statement in a program must have a .(uni statement

number.

2. Every format statelent has the form FORMA (format code).

Example 2

Now study Figure F2-7

associated FORMAT sta
/
tement

J

, . I. real numbers punched on it.

.

where you see another READ statement along with an

. Here we show a data, card with numerals for three

The field,codes, which show where these numerals

are to be found and how they are to be converted to their internal form,' are

each F15.8:
0

\-

1

READ 100,A, B, C

100 FORMAT(F15.8,F15.8,F15.a)

15 30 45

t
. 4.3

Y

.

2.5

t
-6.1

..

O
,t

. , .

Figure -7. A data card with three values punched.onsit,

.

together with related READ and FORMAT sta-66ments.

The letter F (for floating point)' tells us ,thatvthe'group of 15. columns

is expected to contain the numeral for a real number, and whn converted to

internal form, it should be represented in the floating point scheme., ..

In Figure F2-7 each numeral on the data card contains a decimal, point.

It's easy and quite natural to punch the decimal point with each numeral, and
-

-

whet 1i is punched, the position'etthe decimal point on the data card will

decide its'representation in the floating point scheme. There is proVikion,_

however, to omit the punching of the decimal point and have the. computer fig-

ure out where it ought to be in each field; that is, locate the place In the '

numeral where the decimal point 1,s intended to be. Use of this feature requires

a44.ttre rhore care than is probably warrantedAA,thlipeginging. However, it is '

worth knowing about for several reasons. It will help you, for onp thing, to
. -

understand the meaning of the 8 in the field code F15.8.

22 18
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Properly interpreted this code means: The numeral fount4in the next 15

.columns of the card is to be converted for storage ift the floating'point scheme.

If the numeral does not have a decimal point, actually punched on the card

then a decimal point is located by counting 8, columns to the left from the

' 15th, cgr rightmost, column of the field., The decimal point is intended tilgo
. .

immediately to the left of this eighth column. You can see thi4 Allustrated

in the card pi.ture .foundoin Figure F2-8.

FORMA*,

2 3 4 5 6 7 g.9 O II

4'

Figure F2-8. F-type dath without 'punching the decimal point.
,(

The numeral: 43, which is punched in Columns 7
, ,

and 8, will be interpreted as 4.3.

1 12, 13 14 15

The numeral 43' is punched in Columns rand 8. We assume that no other

punches are present in the first fifteen columns. no decimal point is

,shown on the data card, the numeral will be interpreted as 4.3 when it ..s

finally stored in memory under "control" of a field code F15.8.
1,

. We. that F-field codes, Which are dsed to identify numerals represent-,

ing reaY numbers Punched on data cards, are somewhat more complicated than
. ,

I-field coded. An easy way tzview the form of these codes issuggested in

FigUre F2-9 '

1 w and F w . d

t 'I

...

an teger
--L*.

a real 3 decimal point
number locator (d

field width
field

digits from

.... ,width
right end of
the field..)

t

Figure F2 -9. Generals forms for I- and F-field codes

9230

a
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4Nir
Strictly speaking a field cam be of any width, w, from 1 to 8p,

the width of the card, not just 12 columns as we have been illustrating.

Similarly, the decimal point locator d can vary iA value, and. not just

equal 8 as illustrated thus far. For the time Bing, however, in order

not to have to keep so many new ideas in our head at' once it,will be simpler

to imaginethe,fieldwidths are fixed at 15 and a value of d fixed at, 8.

Another point *about writing field codes--and thds one'is worth remember -

ing--is that you don't have to write a series of identical codes. You can

coup them and use a repetition indicator to tell how many are intended in

sequence. Thus in Figure F2-6 we could write
*,

22 FORMAT (3115)

instead of

4
22 FORMAT (115, 115, 115)

so

Similarly, in Figure F2-7 we could write.

100 FORMAT (3F15.8)

in place of the More tedious

100 'FORMAT (F15.8, F15.8, F15:8)
t

Example _a
,

A card can contain any combination of I- and F-fields desired and in
.

..,

ahysequence as may be seen in Figure,F2-10. Notice that the one-to-one

imatch is properly achieved employing formate number 15. `The first and fourth

list elements in the READ statement are real variables and the second and
i

third items are integer variables (according to the leading letters in their

names). Correspondingly, the first and fourth field codes of format number

1

15 are 'F- fields while the second and third are 1-fields. This guarantees

that assigned values for the real ariables will be stored in the appropriate

,floating-point scheme, while assigned values for the integer Variables dre

in the desired integer scheme.

0
.11

20 1
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(

-2.946

,

3200

vio

-1492 , .00395

.

.

1

Figure F2-10, Two. field types on the same data card

Exercises F2 -3 Set A

F2-3

-We :imagine a class of very simple problems to be solved in the computer.

tet the flow clihrt for each of these have a structure identical with ilte one

in Figure F2-3. In the following exercises you are given Box 2p Your,job

in each case is to:

A. Decide what should bein Box 1.
T

'B. Write an appropriate READ state
0 . -

C. Write a companion FORMAT statemen

T. Draw a picture of a typical data card which could be read

as a result, of executing the READ statement which you have

written.

A
---. 2

. - .{ Z . 5 + '

' 2

2. -..1 2 i(-. n'x:(1 - 1 ) -1- j 1-....

f..-.

, 1, . ;., 2. ,

3. ....inz (- ((a x x + b) x x+ c) x x+ d 14..
4

2

21 t 25

es

13
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6. -1 AREA

f
2

3.141,9 2
x4r- - x r2 X-PHI)2

Executing a PRINT statement

Pririting wider control' of a Riven format is analogous to'reading, but

in a reversed sense. The value that is currently assigned to each elenient of

the output list will appear typed or pririted across the page by the output

device When each nuMbee is dopied from its place in memory it is converted

for printing to the external form that is dictated by the matching field
S'""code. The spacing of the numerals on the printed line, is set automatically

by the'widths of the corresponding field codes. As you 'can see, the fie

codes, in a sensed4 control or govern the appearance of the printed line.

Several,exampleSTWill help you tb 'S'ee this process.

,Example 1

Examine Figure F2-11 where you will see an example, af a PRINT statement.--

and what it might accomplish when executed. Notice the format is essentially

the same as that used in an earlier example for a READ statement. This

illustrates the-fact that the same.format can te used in connection with any

READ, *PRINT, or group Ot such statements, so long as each refers to the

format by the same number.

For most simple problems, it is helpful to obtain a computer-produced

printed'copi ofery piece of data that is read in to the-computer. This :

priTess is sometimes referred to as mho checking the data. Of .ourse it

isn't essential to print the data values in precisely the same order as they

may, have appeared on the data card. Thus, a program may begin with state-

ments like.

1 READ 22, NUM, KPAY, KAMT

2 PRINT,22, NUM, KAMT,JCPAY
4

titit 22 FORMAT (3115}

Data read as aresult of executing statement 1 will be printed as a

result of executing statement 2. The echoed data can then be checked

visually to see if the computer got the right information: Both statements

refer to the same format.,

ntNow since stateme 22 has a passive or reference role, rather than

an active or "executable" role, its position in the sequence of statements

f

L

22

OM%



which forms a program isn't really critical.. To emphasize this distinction,'

we shall henceforth call non executable statements like the,fprmat, '

declarations, because, in a sense, they provide "declaratiiie", or descriptive

information only. In this we we can reserve the word statement for the -

class of action or, executable steps of a computer program. FORTRAN has
'everal er declarative statement types. You will be introduced to these

in later chapters. You mightnow check Figure F-4 and notice how the

FORNATfddttarations in that program are placed at the very end (just ahead

of ENO,: They could'just as well have been placed ahead of statement number

1. Many people, prefer to keep FORMAT declarations near the input or output

statement which refers to it (or near the first of these).

PRINT 22, 191, KAM, KPAY

22 FORMAT (3I1)

so 45
O 1502i 174;

.

14572:0
i.-

1

! I0 t

1
1

1
1

,0 i I

1

10 '

. 1

1
1 1

, 1

assumes'.
,.

current value of MN? is 1502
current value of KAMT is 174
current value of KPAY i,s 14572

4

o

Figure F2-11. Example 'of a PRINT statement, its referenced

FORMAT, and -a possible line of printed :results

caused by the execution of the PRINT statement

r
Maximum line kwidths

You may have wondered/flow many numerals can be printed on ,one line, and,

if.more than one line is needed, how the format can be written for use in
4controlling such a process. Unlike the punched card which has a fixed number

of columns, the maximum width of a pripted line is not so well standardized.

For a given class of printing equipment there is some degree of uniformity,

however. Thus 120_ characters or 132, characters are common "standards".

For our text, we will assume a maximum line width of 120 columns, or

characters. Bence, iffwe use fixed field widths of 15 columns, we will be
. .

able to 'print up to eight numerals per line.
9

23
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Example 2

Now suppose we wanto print, say ten values, as a result of executing

a single-PRINT-statement. Since many printers.use type spacing of 10

characttrs_to-the horizbntal inch, the 120 character width line is 12

inches across. For many purposes this is wider than we actually need. To

keep our page width narrow enough to fit in our notebOok or in an o-
2

X 11

report, letts suppose we agree to printnot more tcian four numerals on any

one line. Figure F2-12 illustrates one way this might be done. We use as

our format (41'15.8) which is interpreted to mean: a to four items of the

form F15.8 (2 lifie)4 The numerals on each printed line are to account

for wo to four list elements of the PRINT statement: When the PRIMP.. state-
.

nent is executed, values are copied out of memory one at a time from positions

associated with A, B, C,. etc. Each copied value is then converted for

printing' in the desired external real form, as illustrated.

PRINT 31, A, B, C, D, E, F, G, H, P,. Q

31 FORMAT (4F15.8)

105 120

*

0
0
0
0
0

0
0

Shows appearance of
printed value for and G

Figure F2-12. Showing printing o? up to four items per line,

each item under ntrpl of an F15.8 'code

-e

.24 ),"'
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If a line printer device is used,then, when four such numbers have been

converted, a complete line is printed at once. However, if a typewriter

device is used, each number is typed as soon as it has been converted to ,

output form. This difference in behavior it no vital consequence as the het

effect is the same. In any casci, when four items have been dispensed with,

the %rmat, (1015.8),is reused and the next four numbers are matched with the

four F15.13's converted and printed. The format is again reused. This time

the last two list elements are matched with the first two of the F15.8's,

converted and printed. Since the last of,the ten values has now been copied

out, and the number properly converted under control of its matching field

code, the list is discovered to be exhausted, i.e., no more ,items retain to

rye copied. This discovery then signals the end of the: process. Execution

of the PRINT statement is terminated and the computer is free to execute

whatever statement happens to 'be next in the program.

Exercises F2 -3 Set B

For the following output lists, write PRINT

suitable FORMAT declaration to go along with ft.

field codes. Assume a maximum line width of 90

1. B, J, K, and L

2. A, B, C, J, K, L, Al,, B1, Cl

3. IKE, JAK; BAKER; CHARLY, D, B

Exercises F2-3 Set

statements, each with a

Use only 115 and V15.8

columns, i.e., six items.

1 - 6. In these six exercises, you Will continue with byte avelopment begun

earlier, in Section F2 -3,, Set A.4,Jour job now in

Decide what should go in Box 3 of the flow chart.ti

eCh "exercise is to:

b. Write a PRINT sa;Nntwhich, if executed, would carry out the

intent of Box 3.
r

c. Show an accomnanying FO T
.
declaration.,

,
-.7A

d. For the data you used in the first set of exercises, compute the

result which would be Pr nted and show its expected formatted

value asit would appear on the printed page.

29
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F2-4 Assignment statements

- We shall first examine the'parallel existing between our previously

developed flow chart concepts of assignment stepsland those of FORTRAN
statements.

specific,
example

Floti Chart FORTE

4-14,2 + 132. + C2 [!- L = SQRTF(A**2 B**2 + C**2)

general arithmetic arithmeticvariable* form expression . variable =
e ression

A

4

The FORTRAN variable is a character string built up of lettersTand digits
as described in Section F2-2.

The arithmetic expression in FORTRAN corresponds to any meaningful

computational rule which uniquely defines a single nusierical value. There
will be a few important restrictions to observe in writing such expressions

correeLly. Before considering these, let us see how several flow chart

examples are rewritten in FORTRAN.

Examples

1.

Flow Chart

x (-2.5 H

,a. Z.(- 2.5 + T

3. -t

(- 1(M - 2) X n1:4°
, 2

5. x (-2/(Y + 1;1)1

6.

FORTRAN

X = 2.5

Z = 2.5 + T

.T = ABSF(A) * B/C

Q = Q.RTF( (E14-14..5 ) *EN)

= 2./(Y + A /Y)
44

AREA*-44422'x r
2

- (s x 1r2 - s2 + r
2

x PHI)

AREA = 3.14159/2. * R**2 (S*SQRTF(R**2JJJ S**2) + R**2 * PHI)

34 26
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We have already become acquainted with three of the basic components of

arithmetictexpressions; namely, constants, variables, and ophators.

Two other important components are parentheses and function references..

In FORTRAN we shall use parenthedei in several different ways. If you

look at Example 5, you will see the' parentheses used to form subexpressions

that force a desired'ordering to the computation. This is the use which is

perhaps most familiar to us.

In Example 3 you see the parentheses used in a new way--to enclose the

argurrint of a function. A reference to a function value, or function refer-
,

ence, for short, consists of the name of the .function followedoy a pair of

parentheses enclosing the Argument. This convention,.in FORTRAN, which is

used for all fliactions, is often used in mathematical notation. For example,

f(x)

(may mean "the function f evaluated with argume9t x ; or simply. "f of,

Since some functions are given special marks or symbols, like
I I,

'..--, which are simply not available in the FORTRAN charactef set it makes,
good sense to'use the parentheses. We then get a uniform way for writing

function references.

How are the parentheses used in Example 4? There are two pairs used .

here, one nested within anothet. 'You caa probably see easily that the outer-

most parentheses serve to enclose the argument of the SQRTF function. This

argument is the value which, will be obtained upon evaluation of the expression

'(EM - 4.5) * EN

Here the parentheses are employed for orderJ.ng computation.

As you can see, a function argument may itself be a FORTRAN expression

of decided complexity. A similar example is given in Example 6.
A

Number types in arithmetic expressions

In g al, an expression in FORTRAN must be homogeneous. By this we

mean the variables, constants and function references which are joined by

arithmetic operator's in one expression, all must be of the same type--either

all real or all integer. (There is one exceptioi which is treated a bit

. later.) ,

27
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. For example:
aL

A + 5.

6. * T

F * G

*,SQRTF(X)

6./ABSF(T -IP)

are examples of homogeneous real expressions.

K + 4

4 * K**IT, .

J/K * 3

J *S(J - 2 + K/M)
0 7

are examples of homogeneous integer expregsions.

In the case/of realexpresaions,Oeach arithmetic operation is carried

out in real arithmetic. The value resulting in any of these expression

evaluations is developed internally in floating point representation,

In the 'case of integer expressions, each arithmetic operation is

conducted using integer arithmetic and the resulting value is

)

developed

internally in integer representation. 4,4*

Target code produced from an arithmetic expression is generally more

efficient when the expression is homogeneous. Moreover, the results of each

operation are easier to define. For these reasons, and other purely pragmatic

ones, the original. FORTRAN languages and compilerswere designed and con,-
, .

strutted to reject, as illegal, any expressioetilat yeas not homogeneous. .1

,

Many of the later versions of the FORTRAN language retained this

restriction. As a result, expressions like , ,

A + 4

7/T + 5. * U.

(M 4.5) N
,....

are illegal ,.n FORTRAN! YOU can npw see why, in Example 4, names like EM,

in place of M/ and EN, in place of N, were used in constructing a

hoMOgeneous real expression as the desired argument for SQRTF. C
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Because in customary mathematical notation we do not normally impose this

restriction against "mixing modes" of the operands, you may ,find yourself
-

very frequently writing illegal FORTRAN without meaning to. you fail to

make the necessary changes to correct the err0, fear not!. en your program

is read by the computer, under control of the processor progra , it will

certainly be rejected Al' this reason. In many cases, in fact -the processor

will find most or all such illegal expressions the first time program is-
examined. Not only will you receive-a/printed rejection slip, b t allibuch

Violations which hive been found will 0! identified rather clearly Bo, it
will be very easy to correct this type of error!

Special case of exponentiation with integral powers.

You may have (Pondered If indeed all homogeneous expressions are illegal
. , in FORTRAN. Are there no exceptions? Some of you may recall thd discussion

'

in the main text onexponentiation. In order tO distinguish between 1

and

a 3 with the meaning a x a X a

3
with the teaning e

3gna

we agreed that two different ways to write a
3

were needed. In FORTRANlthe
notation

A **.3

is permitted so that we can imply the computation aXaxa and disting
it frOM

n

A **l
4;d

Which,is an order to carry out the computation e
3i

na. Note hat a morer

cumbersome expression equivalent to A ** 3., can be wr ten in'FbRTRAN.
.rIt

;"is: 'EDUF(3. * DOFG(A)) which also means e
32na

short, raising a real expression (like A) to an integral power (like 3)

is, the one and only form of nonhomogeneoue expression which'is permitted.1

lIn more advanced versions of FORTRAN like FORTRAN IV, there are other forms
of nonhomogeneity which are permitted.

,
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Which of the two expressions,

'A ** 3 or A.** 3.

do you think is easier to carry' out manually? By computer? The obvious

answer is A ** 3 in each case.

To compute e
32

na requires the determination of a logarithm, and the

raising of e to a power. These operations are carried out in,a computer

with the use.ok the LOGF and the EXPF functions, which are separate programs.

Though automatically supplied when expressions like A,** 3. are used, each

ordinarily involves from 10' to 100- times as much computer time as a simple

multiplication. We can conclude therefore that, when's choice lb available,

expressions like A ** 3 are to be preferred to A ** 3., because a more

efficient target program will result.

flp

Integer division and its relationship within the greatest integer functibn

Integer division in FORTRAN plays an important role in algorithmic pro-
..

cesses because it is related to-the TRUNK function which we defined in Section

2-5 and which is in turn related to the logically powerful greatest integer or

"bracket" ([ ]) function. Spedifically, the FORTRAN expression I/J is

equivalent to the*mathematical expression ,TRUNK(-) for;a11 integers I and J.

1.

_
2`

3.

4:

5...

6.

7.

8.

FORTRAN

Expression Computed Value Matheaacal Equivalent

1/10

-
11/10

10/1

//

-5/10

-15/10

p/(-1)

0-10)
...

6 :
1 c

1

10

4 0

-1

-10

0

[9 /10]

[10 /10]

[11/10]

[10 /1]

45/10]

-[15/10]'

- [10/1]

- [1/10]

Notice that when I and J -7
, ,,

both, or are both.negative, al :

the FORTRAN exprissIon

1k,

is equivalent to the mathematical expression, '[.1''!]. On the other hand, if

the sign of either I or J, but'not of both, is negative, the FORTRAN

; .1
expression

30
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is e uivalent to the Mathematical expression,

A

al note on the exponentiation operation (**)

'Lou 'may have kondered how"we would write expressions like

In FORTRAN. Either we mean

Aor we mean

BE
A

(BE)
(1) A ** (B ** E),)i.e., A

E
r I (2) (A ** B) ** E, (AB) which is really A

(B
XE

)

et.

As you canesee, they'll only be the same when B
E

is the same as B X E.

We must therefore conclude that the ** operator is not associative,

and in FORTRAN it is invalid to write

A ** B ** E

F2-4

because it is considered azeiguous. One of the two unambiguous forms (1)or

(2), whighever is, desired, must be explicitly written.

FUnptions which hal& function values as their:argumente
P

In some of the expressions you will see in the next exercise, the argu-

ment of a function is expressed in terms of the value of another function.

This is perfectly permissible in FORTRAN, as there is no restriction on the

coMplexity, of an arithmetic expression when used as an argument of a functioml,

Another example of this...mhich we saw earlier was the expression

tXPF(3. * LOGF(A))

gument of EXPF

31J
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F2-4

Exercises F2-47Set A

1. We would 1ikemoto express AV2 in FORTRAN, where A > O. 'Keep in mind

that, A312 is, in this case, the same as g, or (A3)I/2 All of

the,following express I(3/4 in FORTRAN. Some are awkward.

Some have superfluous operations. Comment on each and choose the one

which appears to'be the most efficient computationally.

ABSF(A ** 1.5)

1°' GA **.3) ** 0.5

c. 'SQRTF(A ** 3)

d. 'ABSF(SQRTF(A ** 3))

e. (A ** 1.5)

f, ,ABSF(A) ** 1.5

g. SQRTi(ABSF(A t* 3))

*2. If A can have negative values, Which of the seven FORTRAN'expr ssioris

given in the preceding exercise correctly expresses IAI3/2 ? ii more

than one, which is simpler computationally? Explain.

1'

_Unary minus

In Secti6ri 2-4 of the floW chart text you learned to distiAguish betWeen .

th&unary and number-naming minus, on thesone hand, an', the binary minus, on

rthe`other hand. If a m4.nus sign appears at the very beginning of an expression,

or immediately following a left-parentheSis, it is either aunary minus or a

. number-naming minus. It cannot be a binary minus.

Here are some examples in FORTRAN statements.

= -5.

2. Q = -(A + B)

3./ et ** (-C)

4. "Q . (-4.) ** 2

5. Q = -(4. ** 2)

6. cz 4-4. ** (2) .

7.' 1Q, =/-4. t** .2 ,

8. Q = SINF(-A + B * (-COSF(C))) 4.&

Note thOt (4) assigns a value of +16 to Q. Remembering from Table 2-4

4, of the flow chart text that expOnentiation takes precedence over unary minus,

3,6
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.
we see that --(5)) 't67 and t7) each assign -16 to Q. Similarly, -A ** (- C)

is the sauna as -(g. ** (-C)). . .

Of course,. nq two operators 1116.7yOT-i.trittelidcd.E:b'f-side. Thus, A x -B

is invalid. We,ratat NTritAfiratead, A * (-B) or perhaps -A * B. Similarly,

* * C or, - C are both invalid.

Exercises F2-4 Set B

Correct the following thrT invalid FORTRAN statements.. What problems

arise, if any, ii;-correcting t e second an, thirdtatements?

rt

1. T T -A

3 . G.= A + B *' -F/0)

. Art,.

NAL

--I
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F2-5 The order of computation in a FORTRAN expression

We have not deferred thil.queSq'ion to this late point because there is

something special that must be said here about FORTRAN that is different from

what we have already said in Chapter 2, of the flow chart text. On the

contrary, the Pules for interpreting the order of computation are preciselyk

the same. If you don't recall these, cloge the book now and try to recon-

_ struct them. Then compare them with the following.

1. When parentheses ave used to nest one subexpression inside another,

evaluate these nested subexpressions in the order from the innermost

to the outermost.

q

Within any one subexpression evaluate in, descending order of precedence:

Highest

towest

function references

** (exponentiationi

+

/

3. In case of a tie in precedence level (within any subexpression),

perform those operations in the tie from left to right.

q

3 8

1
34.
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F2 =t Meaning of assignment when the variable on the left is of'differeni

. type from the expression on the right

Is it possible to convert a number from integer to real representation

or vice versa? Based on our discussion so far, it would-seem not. To answer

this question properly, you should notice that .until now all the assignment

statements we have illustrated were homogeneous in the sense that the variable

on the left of the (=) sign and the expression on the right of it were both

of the same type (real or integer). There

in FORTRAN. They are not only both legal,

In short, we have four cases:

(a) real variable = real expression

'or

are two other. obvious possibilities

but highly ueftitt.

0.
integer varialle,= integer expression

real variable = integer expredsion

integer variable = real expression.

We have nothing 'further to say about cases (a) and (b). It is (c)

and (d) we are interested in because, such statements can be used to convert

integers to reels and vice versa.

Let's first,conlider case (c). The number assigned to the real

variable simply has no fractional` part.

. Example

. -

I = 4

3/ 6,
T

Observe that this'sequence of FORTRAN statements

for T equal to

in the real Villue

Now consider

is truncated i 1-17117

15.

will lead to a real value

22.0. In other words, the integer sum of I 71-..1-tesults

for T having a zero fractional pf*,,

case .(d). Here the intgf;:r 1 big--

e sense described in Ohapte , Section 2-5

words, when the expression is real and

really means

tothe variable

In otter
..,-

e variable is integer, then

variable = expression

35 3 9
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variable -= sign of expression x expression'

absolute,

marks

gret
integer

What this boils down'to is that a FORTRAN statement like

I = A

is the equivalent of the.flow chart assignment:

-7"-i I 4- TRUNK(A)

.which is by no means the same as

I 4- A.1-0-

Why? BeCiidie the-flow chart variables I and A do not have specific_

digital representatiOns ciated with them. e`no mounding (lopping -off

can be iffiplied in the Simple flow chart assignment.

Example 1

DIAM .= 5.9

ICIRC = 3.14159 * DIAM

This sequence of FORTRAN statements leads to a value of 18 for ICIRC,

and,not 18.535 which would be the actual circumference of a circle with a

diameter of 5.9.

Example 2

BALNCE = 52.51

WITHDR = 92.49

IOWE = BALNCE - WITHER

.

Assuming 2ALNCE and WITHDR refer to-bank balance and withdrawal, the

overdraw ia$39.98.

in IOWE.

The fractional part, .98, is lost when storing .=3,
,

40
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Exercises F2-6

Which of the following statements..are invalid in FORTRAN? Explain.

(a) TI = T1 * VAR3/4

(b)\ \A = EXPF(A4 * Z ** + A3 * Z ** 2.)

(c) Y = LOGF(SINF(F)) + 22

(di J = J+ 1.

..-re) I = I/K

2. 'Assuming 1(b) above is valid, what changes would you propose inthe

interest o' efficiency?

In each of the following write a sequence of one or:more FORTRAN assign-

ment,statements to.accomplish the indicated task.
0

3. Assign to IP the integral part of the real value now assigned to V.

,
4. Assign to FPART the fractional part of the real value,currently assigned

to V.

5. Provide ah alternative real representation for the integer va'ue currently

assigned to the variable called INTV. .Call this new representation RINTV.

6. Comparethefollowing FORTRAN statement with the accompanying flow chart

box

J =

Are they the same? If not, .change the flow chart box to conform with

the FORTRAN ,statement.

t.
f

/

-

1

1
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F2-7 Writing complete programs

Remember the S20 bill problem? You will now be able

'statements, indeed a complete FORTRAN program, which will

the most ta20 bills obtainable from the given (real) PRICE

cow. Before looking at the version given below in Figure

own first and then compare the two.

Label

FORTRAN PROGRAM

Statement or declaration

to write FORTRAN

show hew to compute

of Dad's Jersey

F2-13, write your

C WHAT THE JERSEY COW WILL
.

BRING

READ 101, PRICE

C PRICE IS GIVEN IN

C DOLLARS AND CENTS

PRINT 101, PRICE ,

101 'FORMAT (F15.8)

C NOW CONVERT TO PENNIES

IPRICE = PRICE * 100.

C COMPUTE NUMBER OF 20'S ,

NUM20 = IPRICE/2000

, C NOW PRINT ANSWER, I.E.,

VALUE OF NUM20, AND STOP

IUM20

102 FORMAT (I15)

STOP

15 END ..

Picture of a Data Card

Picture of Results

Figure F2-13. The Jersey Cow - programmed in FORTRAN-

sa



ExercIses F2-7
I

F2-7

1 - 6. In the exercises of Section F2-3, Set A and C, you worked out the

input and output details needed fo?..siic FCRTRAN programs each having
. .

the simple loop structure shown in FiOre F2-3. You're to finish the

job now by writing out on a coding sheet each of these six simple

FORTRAN programs.

7, What single assignment statement can replace the two that are used in

the prdgram given in Figure F2-13?

8. Recall the problem (in Section 2-5 of the main text) to simulate winning

points on a carnival roulette wheel. It's presumed you have already_

drawn a fl9w chart for this situation. Now write a complete FORTRAN.

program which is equivalent to your flow chart.

4

t
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F2-8 Some clerical-details

This section introduces you to some' additional details concerning the

preparation of punched cards for FORTRAN programs.

Length of a statement

A FORTRAN statement (or declaration) can be, for all practical purposes,

as long as necessary. If it is necessary to continue any one statement on

a series of lines, provision is provided in the coding form to indicate

continuation. This is the purpose of Column 6 on the coding form shown in

Figure F2-4. Thus, suppose we choose to write the statement

T = SQBTF(A ** 2 + B ** 2 1-'C ** 2)

on two lines instead of one., Its appearance on a coding form might then be

modified as shown in Figure F2-14.

Label Statement

1

T = SQBTkA ** 2 + B **

2 + C ** 2)

Column 6

Figure F2-14. ,Showing use of the continuation code

on a coding form

The digit 1 is used here on the continuation line. Any digit is

satisfactory except zero. Notice we leave Column 6 blank on the first line.

The cards punched from these instructions are pictured in Figure F2-15.

Figure F2-15. Showing use of the continuation code. on

the punched card
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Blank spaces (columns) in a statement

A blank'column in any statement or declaration punched on a card is,

with one exception, always ignored in FORTRAN. To illustrate this point we

can let a 0 represent a blank card column. Then the statement

AOECIEOLCORCOOKOEcE0+0107g

will be treated in the same way as

ABEL=BAEER-h0.4

So blanks can appear anywhere and will be ignored. Moreover, the A in

ABEL need not be punched in Column 7. A statement may be punched beginning

in any column which one chboses, between. 7 and 72 inclusive. The same

principles apply to READ, PRINT and FORMAT.- The exception, where blank

columns do have significance occurs in H-field codes used in FORMAT

declarations. This subject will be treated in the next chapter.

t
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F2-9 The printer carriagel ,

"S.'

f The carriage of a line printer,' which hol6 and rolls the paper, must

ceive instructions as to how much to roll. or feed the -fo prior

to the printing of the next line. Note this is analogous to an 3ectric

typewriter receiving a carriage return impulse which causes the paper to move

forward one unit or line in the vertical direction. Also note that vertical

paper movement on either a typewriter or on a line printer is forward, only;

If we are going to space the printed materialio as to get various vertical

arrangements, We will want to have the computer issue spacing commands to the

\printer carriage telling how many lines are to be moved, prefeFably before

-each printing action.

How is this control achieved in the FORTRAN language? To see how this is

done, weshould first visualize a'string of characters which has been developed

for printing as one line. Call this a line image. These characters are,in

general, the numbers converted to their output appearance governed, by one or

more field codes. The printer which receives this line image is so'wired that

it can (and does) "shunt off" the leading character (i.e., the left-most in

the string) and interpret it in a special way, Instead of being treated as

the first of a series of characters to be printed, this character is received

as a coded signal which then activates carriage movement. Depending on the

character, the carriage moves various distances (i.e., feeds the paper forward

various amounts). For this reason we'call the leading character of a line'

image the parriage control code. It is never printed.

The three codes which all printers are'wired tao understand, and their

.resulting effect are:

Carriage
Effect

control code

0 (blank) Rolls paper forward 1 space.

0 (zero) . Rolls paper forward 2 spaces.

1 (one) t Rolls paper forward so as to position it
. at the top of the next psge-3;eaving a

one-inch margin at the top.'1Wpage" on
a continuous printer form roughly corre-
sponds.to a single ticket'on a roll of
movie theatre tickets or a single "square"
on'a roll of paper towels. In °their words,
a page consists of the paper between two
horitontal perforations. In the case of
the printer we shall assume.these perfor-,
ations occur every elexr inches.,

tThis section can be omitted if you communicate with your computer via a type-
writer rather than by punch card for input and by line pFinter for output.

4.6 42
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The next question is, what technique can we use to force the character,

blank, zero, or one, as desired, into the leading position of each line

image which is to be printed?

For the present suppose we limit ourselves to single, space printing.

For this we will only need to force a blank into the leading position,

.4
You have probably noticed that upon printing a number under control of

an I- or F-field, if the numeral is,small and does not fill the field,

positions to the left of the leading digit print as blanks. This is our

clue. A blank Will therefore automatically be invent at the left, eod of

the first field of a line image if

'1. this field is an I- for F-field, and if

2.. the field width is Wider than necess or printing the

desired number and 4s-sign.

44r Now if you check the examples used so far in this text, you will find

that with a field width of 15* columns, most of the simple numbers we have

dealt with are in this category.___ -

Fin. a field coded as

F15.8

what is the largest number which can be printed and stir have a blank at

4
the left-most position?

To answer this, interpret the Xis in,Figure F2-16 as digits.
15

..=(XXXXX

Leddingiblank .

used for

carriage control A place is ,needed for a minus
sign if the number is negative.
This is the left-most space
actually printed.

Figure F2-16. Printed form of a leading numeral under

-,-F15.8 control

Clearly, a number as large as

± 9999.99999999

can be printed.

For printing integers there is even less problem with a field coded 115.

t t
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Ft-10 Input' and output of alphanumeric data

Computers can store and manipulate alphanumeric data (letters, digits

and special characters). This idea was introduced to you earlier in the

flow chart tet (Figure 2-1?). You may have wondered how, in FORTRAN, we

can describe the input, output, and manipulation of such data.

Since.FORTRAN was originally designed to describe algorithms for

computationewith numerical data, it should not surprise you that its scope

is limited when it comes to describing processes for handling alphanumeric,-

information.

Nonetheless, we can perform a few elementary alphanumeric processes

via some FORTRAN statements. These actions, though simple, will permit us

to carry out some surprisingly complicated information processing. W5 cane

easily describe in FORTRAN how to input alphanumeric data (to memory), as

we Shall see shortly. Assignment statements can be used to move alphanumeric

data to new locations in memory. Thus, if a variabe T, for instance, has

acquired an alphanumeric value via input, then subsequent execution of the

statement;

S = T
, 9

would assign to S the alphanumeric value of T. Of course, we cannot

perform any meaningfullarithmetic operations on alphanumeric data; but, as

we shall see in Chapter 5, it,1111 be possible, to compare two alphanumeric

quantities for equality. Finally, we can express in FORTRAN how to print

out'AlphanuMeric data from memory.

Storage of alphanumeric data

. Up to now we imagined FORTRAN permitting
0

O

two classes' of variables;

real and integer numbers. But alphanumeric data is neither real nor integer.

Hpw,then, can alphanumeric data be stored in memory? FORTRAN II processors

permit you to useestorage locations that are assigned to numeric variables

for other purposes.

We.shall in thefollovingdiscussiona imagine a computer whose word length

in bits, is such that one word stores six whole characters. (If you have f9r-

gotten how the 6haracters,may be coded, each as a group of binary bits; you

should review Sqction 1-4.)
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sample 4

Suppose the instructor who posed the original problem to compute

D 42 + B2 + C2

F2-10

e

has since been introduced to computer programming and has some inkling as
to the power of computers. He now poses the problem this way:

"Imagine that several different sophomore geometry students have given
you values of A, B1 'and C corresponding to the edges;of a rectangular
prism. You are to compute for them the distance D, which represents the
length of a diagonal, according

to the formula suggested in Figure 2-1.

Write a program which prints values for A, B, C, and the computed value
for D, and then also prints for identification purposes the full name of
the student, hid room number, and seat location; like

BOB JOHNSON, ROOM 342, ROW C, SEAT 4."

If identification of this sort were punched on a card, in might look

like that shown in Figure F2-17.

/oBOB470HNSON,DROOM0342pROW0C,c SEMI/mono

*
11v

Figure F2-17, Alphanumeric identification (I.D.) card

With rspect to the structure of the algorithm'first flow charted ina
1Figure 2-1, little.has changed when we add, as we now musts the steps for

reading and printing the alphanumeric identification, as shown in Figure F2-18.

p
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ALPHANUMERIC

IDENTIFICATION

A, B, C

÷ B2 ÷ C2

A, B, C, 'D

IP*

ALPHANUMERIC .

IDENTIFICATION

Figure F2-18.- Flow chart with provisionVor 'reading and

.6" printing alphanumeric identification

.%.

The ciVestion is, hOw do we write Boxes 0 and 4 in FORTRAN ?'

To write Box 0 in FORTRAN we must first imagine the information on

the I.D. cardivided into six-column fields. Now, recall that we are

supposing each group of six characters can be stied, in a single memory

word, say, one that is normally used for storing real numbers. (Any other

characttr packing capacity would not change what we are saying here in

priAciple.), Then; any real variables_, we choose; -you name it--such

as, 1R, SI T, U, V, W and X or R1, R2, R3, etc., will

be suitable as elements of thd input list. So, in effect,

I'



we want to think of alphanumeric information that has been punched in the
.card as being partitiofted into groups of six characters each, rot storing

into locations associated,with some group of variables. This idea le

. suggested in Figure F2-19.

15

6

READ 15, R1, R2, R3, .134, R5, R6, R7

FORMAT (7A6)

m } u a 36 42

/01)0B oJpHIVONI?oR00140342,0loROW040SEA+4

t t
s 1

1
1s i

1
i 1RI R2. 1 R I.3 R.4 I R5 1 R6 1 R7

1 1 1

Figure F2-19 Illustrating use of Allihabetic, or

A-field codes

/

The ?, erpal representation of alphanumeric, data follows a scheme, whiCh_is

different from either the. integer or the floating point scheme. So, a
I

special conversion procedure is needed and hence a special field code is also

F2-10

Ikededto call for this conversion. The field code that is used has the form

A for

alphanumeric

W

width in columns

During execution of a READ statement, if 4;1_4,-A-field code like A6, is

encountered when' consulting the referenced format,the chariitters matched,to

this code. are converted.for qara-gein the, alphanumeric scheme. *So, executing

- a READ statement when linked to a format, as one shown in Figure F2-19, will

prove suitable for inputting alphanumeric data.
, sow

.Many other possibilities, some even more subtle, would also work. We

- shall consider one of these alternatives presently. Right now, we want to

get an idea how we might write Box 4,1'the output box, in FORTRAN. We can

take advantage of the natural symmetry of input with output. The statements

PRINT 15, R1, J32, R3, Ris., R5, R6, in

15. FORMAT (7A6)

V
will be suitable.
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In executing this PRINT statement the. A6 fields encountered in the

consulted format will force the reverse conversion of the alphanumeric data

from the internal scheme, to the external scheme and printing will then be

accomplished in groups of six'gharacters per field.

t -

The Complete program requested by the instructor might apptr as shown'''.

in Figure F2-20.

Label Statemenor declaration

'EVALUATION OF D

EACH SET OF DATA A, .B, AND C IS PUNCHED

ON ONE CARD, BUT IS PRECEDED BY A CARD

CONTAINING ALPHANUMERIC IDENTIFICATION

READ 15, R1, R2, R3, R4, R5, R6', R7

FORMAT (7A6)

READ 101, A, B, C

FORMAT (4F15.8)

SQBTF(A**2 + B**2 + C**2)

PRINT 101, A, B, C, D

PRINT 15, R1, R2, R3, R4, R5, R6, R7

GO TO 1

END

Figure F2-20. Program:showing-facility for alphanumeric

input and,output .

In examining Figure F2-19, yoU.may have wondered about the form of the

information on the I.D. card. Except for the fact that the information

will be grouped-lnto "words" of six columns each for storage, the name,

room number and seat locallpn is in free form. ,That is, st5fe name, room

number, etc., don't have to be punched in certain fields on the card. More-

overf, with the exception of a blank in Column 1, which will be explained in

a moment, no special attention is
.

given to the number of blanfoolumn's be-

How then would our program, (Figure F2-20) handle the ',D. card for

AlgernonlThistlewhaite whose I.D. card is showu'in,Figure F2-21?

tween words.
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r

N 6 a , 16 24 60 36 42 46

AALGE*ONETHISTLEW4AITEXROOM042,cRd4 00E, T 11
1

1
1 ).

.
4

I

RI R2 1 R3 1 R4 R5 I R6 R7 ? 1
1 , 1

I I 1
,t

Figure F2-21. f.D. card with a longername J
,

The last six_characters on this card will not be read by the computer'because

provision was made for storing information from only the first forty-two
,

columns of each I.D. card (7A6). If we 'Wantgto be safe, we had better make

prOvision to store all 8o columns of the card. This means 13 full words

of six characters each.plus a partiqi.ly filled word containing the last two

characters from the, card (Columns 79 and 80). In other words, we need an

input list of 14 items with a governing famat code like

13A6, A2

(- To revise our program so it Will both read rld print the full I.D. card,

////
we can. replace the affected READ, PRINT, and FORMAT statements with those

shown here: I

15

1

READ 15, R1, R2, R3, R4, R5, R6, R7, R8, R9,

R10, R11, R12, R13, R14.

FORMAT 613A6,A2).

PRINT 15,'111, R2, P.3, R4i R5,, R6i'R7,,,,R8,,

R9, R10, R11, P12.,. R13, R14
11)

Now to clear up the question of Column 1 on the I.D.. card, and why we

suggested i should be blank. The Mystery is easily soled if we recall our

discussion of printer carriage control from Section F2-9. If our output comes

from a line printer we need to ensure that the first character of an output -

line is shunted-off and used as a carriage control code instead of being

.printed. By insisting on a blank in tolumn 1 of each I.D. card, we guarantee

single spacing of each printed line of I.D. information. If you Use a type-
_

writer for output--no harm--the first position of the typed line will be blank.
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'Chapter F3
$.

BRANCHING AND SUBSCRIPTED VARIABLES

F3-1 Conditional statements

In_ection 3-1 ofyour flow chart text you studied techniques for

branching by means of a two-exit condition box, 'In Section 3-3 you will

study multi-exit condationyboxes. Branching instructions may be written in.

"FORTRAN 12y means of an. IF statement. The FORTRAN IF statement can be used

as either a two-exit or three-exit conditional statement. In practice, how-

ever, the IF statement is most frequently used for two-way branching and less

frequently' for three -way 'branching. Figure F3-1 ws both uses of the IF
statement'.

FORTRAN.
Statement

English,,35.-, If -5<6 go to Statement 2 If I go to Statement 2

*i7 IA,I-5=0 go to Statement 3 If 175=0 go to Statement 2

A 1-570 oo to Statement 4 I. If'I-5>0 go to Statement 4-

IF(I - 5) 2, 3, 4 - 5) 2, 2,,4

One way of
drawing the
condition
box

Another way
of drawing
the condi-
tion box

44,

as a three-way
conditional

O

as a two-way-

conditional

Figure F3 -1. Examples of FORTRAN 1F-statements

f"'
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iF3 -3.

An IF statement consists of the word

IF

followed'by a FORTRAN arithmetic expression enclosed in pahntheses,.for'

example,'

(I - 5)

followed by three statement numbers, for exam ple,

2, 3,4

The complete ktatement is

IF(I - 5) 2, 3, 4
t

It tells the computer to evaluate the expression

I-5

and choose among the following alternativeW:

if I - 5 < 0 go to StatementNUMber 2;

if I ; 5 = 0 go to Statement Number 3;

if f - 5 > 0 go to Statement Number 4.
,

Thus the* statement is a test of whether the value of a given expression

is negative, zero, or positive. The three statement numbers specify where

to go in each case..;

The secald)example in Figure F3-1 shows how the three-exit IF statement

can be used as a tvo -yay branch. There is really no requirement that the

three specified statement numbers in the IF statement be all different. Two

of them can be the-earner-And when two are the same, we get a two-way brsnch,

Thus, we can test whether the value of I - 5 is non-positive (I - 5 < 0)

by writing. ,

IF(I - 5) 2, 2, 4 ,

. .

It is important to observe that this gives the same effect as if we ask

whether T < 5 is true or false.

. .

paiimpleS't,"hnsider the statement IF(X - 1;0) 6,\7; 7

.. .

lt What will be the next statement executed if X = 4.7? (Answer:
e

\

'

..,..

Statement'Number6, since 4.7 - 5.0 = -0.3 is negative.)

2. What be the next s4tement executed if X rr 5.4? (Answer

Statement Number 7;, since' 5 5.0 = +OA' is4ositive.)/,
4

52.
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3. What will be the next statement executed if X = 5.0? (Answer:

Statement Number 7, since 5.0 - 5.0 equals zero.)

4. Based on the above IF statement, complete the following: If X 5.0,

the next, statement executed will be Statement Number 6; but if

X 5.0, the next statement executed will be Statement Number 7.

(Answer: If X < 5.0, the next statement executed will be Statement

Number 6;-but if X > 5.0, the next statapent.executed will be

Statement Number 7.)

Draw a two-exit coition box with exit arrows labelled and "F"

corresponding to the IF statement given atove. Give two alternate

solutions. Answer:

Which is easier to understand at a glance? Answer: The author thinks

it will be the one on the right in most instances.

6. Refer to the lower right hand condition box_in Figure 73-1. _Redraw the_

box without changinits intent sgithat the T exit now leads to Box 4

while the F exit leads to Box 2. Answer:

How has the corresponding IF statement changed? Answer: It hasn't.

53
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Exercises F3-:1 Set A

In Exerciaes 1 - 5 use the following IF Statement:

IF(K - 8) 26, 30, 20

1. What will be the next_statement,executed if K = 4?
,

2: What will-be the next statement executed if K = ?

3. What will be the next statement executed if .K = 9?

4. Complete the following: The next statement executed will be

:Statement Number 30 if and only if K 8.

5. Complete the following: The next statement executed will be

Statement Number 20 if and,onlyfif K 8.

6. Write an IF statement that will go to Statement Number 9 if X is

positive and to .Statement Ntidger 10 if X is non-positiYe.

it. In E:xercises 7 - 12, transform each of the given equations or inequal-

ities into an equiyalent form having

7. K >7 (Answer: It - 7 > 0)

8. x > 8.4

90.* < 4.2

10. A < B

11. X =-Y

"0" as one'member:--

:
12. X + 5 / Y 4

.
v

Converting to a three-way algeb;aic test from any one of six 2Lw.65-
\,

. ----.'%--
relations.

\
'

.

a.

0

f"

.``Figure F3-2 shows how one might go about writing IF statements corre-
,

spoAding to No-exit condition boxes involving one of the six relational.

symbols

< > < > =. 1.
..

.

.--'

In every case illustrated we convert a relation whose form is ,A relational

symbol B to a difference whose form is A- B Aere,,,A and B B. ai'e the
a .

..,

-e;c?ressinns in the cOndftlon'box that lie on either side of the relational

symbol. I ' . e
.

C -
,

4.

A
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Flow Chart Reaspning

',.-4,

*What is True?

1

1:7,7 < 0

Is K-7 > 0 T or F ''W
Go to Statement # 10

t

Whatas True?
T or F

Go to Statement #

.14

x-8.4<o

What is True?
Is Y-4.2<0 T or F
Go to Statement

IPPIF"r 1101r

What is True?
is A-B<0 T br F
Go to Statetent

\What is True?
Is X-X=0 T or F

! " Go to-Statement

F
11

F3-1

K-7 = 9 K-7 > 0

Fortran

F T IF(K-7)10,10,20
10

o

20

x-8.4). o

T T IF(X-8.4)11,11,21

Y-4.210 Y-4-.2>0
T

22
; F

12 12
F IF(Y-4.2)22,12,12

A-B < ft-B = 0

e

.A-B
.

WA:B.)23,2303

IF(X-gY)14,24,14' ti

T 4 T1

1

F

X-Y < 01X-Y

fl23

e

=

13

> 0
F T F

14 I
.

24 ' 1,,

,

#I

4410

What is Tr Ue? X45-Y <0
Is X+5-Vidp7111' T
Go.to Statement

Figure F3-2.

1.

.

Six'var tions_onthe-IF-hemeHicritwa-tranehes

F

X+5 -Y=

F--

15

Xt5-Y>0
T "IF(X+5 -y12542,21,

" k 55
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Table F3-1 shows the six patterns possible in using the IF statement

assa two-way branch. /

Table F3-1

The six patterns for statement numbers in

goingto Statement 1 if the; relation

going to Statement 2 if the relation
'

two-way IF2s

is true,

is false
I

Form of Relation IF Statement----

A > B IF(A - B) 2, 2, 1

A > A - B) 2, 1, 1

A < - B) 1, 2, 2'

A dB
.IF(A

IF(A - B) 1, 1, 2

A B IF(A - B) 2, 1, 2

.A / B IF(A - B) 1, 2, 1

Among the mportapt things to remembezSaboutthe

statement are the following:`

(a) The arithmetic expression to be tested is

phrentheses following "IF".

- (b).

(o)

form of the IF

enclosed in

The three exits are negative,. zero, and positive j.n that

. , 4order.

A statement number must be vTitten for each of the three

exits. in the_ order indicated in (6),,even though one of

the conditions may never occur.

(d)' There must be commas bet een the statement numbers but

none between the right re enthesis and the first state-
.

ment.number.

5 9
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You may recall the Ruritanian Postal Regulatibm problem. Cclrparetthe

executable steps of the following' FORTRAN program with the flow chart in

Figure 3-1 and verify that the two are ivalent.

Exercises,F3. -1 'Set B

Write a FORTRAN IF statement for each'of the following condition boxes:

e,

Label Statement or declaration

1

11DO

101

4

READ 100, N, A, B, C

D = SQRTF(A**2 + B**2 + C**2)

IF D - 29:0) 4, 4, 1

PRINT 101, N

GO 10

FORMAT (16,4 3F6.2)

FORMAT (16)

END

2.

5

3

6.

a

Idenpi"ying remarks in FORTRAN output ,

In Sect,on 3-1 you worked with output boxes which included identiCying,

remarks as elements,of'the output list. For example:..

"A is the larger. The
value of A is", A

\ 57
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Note that an identifying remark is a constant, more precisely an alpha-

nuMberic constant, as defined in Section 2-6 of the Main Text-. There is no

way that the remark itself can be changed in value as a result of carrying

out the steps of the flow chart.

")

In FORTRAN an identifyinvremark such as

"A is the larger. The value of A is

does- -no,t appear directly'as an item in the output list. Constants are not

legal elements of anoltput list. Instead, we insert the remark in the itRMAT

'declara'tion. Thus far, you have encountered the following types of field

specifications in FORMAT declarations: I, F, and A. To these we now add

the H-field.

The H-field o erith field) may contain the text of any remark, message,
or hqading, i.e., any iliantinaeric constant. Instead of enclosing the text in

quotation mkrks, we p ecede it by the letter H (identifying the type of field)

and precede that letter by enAsigned integer indicating the length (nuMber

of characters) of the text that immediately follows the letter H. Figure F3-3

gives several illustrations.

58'
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Flow Chart

J, "IS
THE
LARGER"

"UBE
LARGER IS
J=", J

X, "IS
GREATER.
THAN'', Y

"THE ,

LARGER IS
0.=st,

FORTRAN and the
resulting printed, line

PRINT 100, Jy.

100 .FORMAT (16; litHalSoTHE0LARGICe)

JP

=COCK IS THE LARGER

PRINT 102, J

102 FORMAT (19HDTHE0LARGERDIS0Jo=0, 16)

THE LARGER IS J = XXXDOCX

PRINT 101, X, Y

101 FORMAT (F10.3, 17H0IS0GREATER0TEAN0, F10.3).

XXXXXX.XXX IS GREATER THAN XXXXXX.XXX

'PRINT 103; J

103 FORMAT (15H1THEMLARGER01S0JD=o, ]W"

THE LARGER IS J = XMOODC

Figute F3.-3. Use of °H-fields for identifying remarks

Note the "difference between,FORMAT statements- 3102,and 1031_In,102 the,

first character of output for the line is a blank, while in 103 the first

character is the numeral "1°. if you recall the discussion of printer

carriage control in Chapter 2, you widl,remember that the blank initial char-

acter calls for a single space before printing, while the "1"calls'for a

skip to the top bf Vie next page before printing. If you begin a line with

an H- field, and if you do your printing on a line printer instead of a type-
,

Writer; you must remember to put in this first carriage control. character

for each line. If the first field.would not normally be an A-field and you

want to be certain that the leading character will signal the carriage control

of your choice, you can use, a one-character H-field at the beginning of a

FORMAT statement.

59

6 2

ir



V3-1 AP

Carriage Control Desired,

sing4 space,

double spacespace

Initial H -field

skip to top of next page 1H1

For example, we might rewrite the first format in Figure F3-3 as

1001 (FORMAT (1H6, 16, 141101S0THEoLARGER)

in order to guarantee 6..blank'as,the leading character for use in carriage

control.

Exercises F3'-1 Set C )(

Write FORTRAN PRINT and FORMAT statements for each 9f the followings

exercises. Assume that flow chdt variables beginning Ifith any letter I

through N are integer variables (and use 16 fields). Assume that all

other variables are floating point variables (and use F10.3 fields).

Insert a one-character H-field at the beginning of each output record to

. provide carriage control on the assumption ypu are using a line printer for

output. 'In Eltellcises 1 and _2, single spade before printing. In 3 double

space. In 4 skip to the'next page before printing. The choice of Format

--nuMbers is upto you.'

ti /4.'4 2.*

3. 4.

X,,'"ISVJHE

VALUE OF X"
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The second form of the flow char+ inFigure 3-5(b) could be programmed

in FORTRAN as follows:

Example 2
)

The flow chart iR Figure 3-622uld be programmed, in FORTRAN as follows:

Label Statement or Declaration

4

5

6

7

100

101

READ 100, A, B, C

ALRGST = A

IF(ALRGST B) 4, 5, 5

ALRGST = B

IF(ALRGST - C) 6, 7, 7

ALRGST = C

PRINT 101, ALRGST

STOP

FORMAT (3F10.3)

FORMAT (221WITHEOLARGESTMALUEDISO, F10.3)

END

--L bel Statement or Declaratiori

3

5

'8

7

100

101

102

103

READ 100, A; B, C

IF(A - 3,-3

IF(A = 6, 5, 5

PRINT 101

STOP .

PRINT 102, C

GO TO 8

IF(B - c) 6? 7, 7

PRINT 1D3, B.

'GO To 8

FORMAT (3F10.3)

FORMAT (32113ADIS7THEDLARGESTMITSOVALUEDISO, F10.3)

FORMAT (32RDMITSOTHEOLAR6ESTZITaiVALUECIISO, F10.3)

FORMAT (3211MOISOTHEOLARGESTMTMVALUECIISO, F10.3)

END
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Example 3

The tallying problem in Figure 3-7 could be programmed in FORTRAN as foillowlm

*Os

s

Label

1

Statement or Declaration

READ 100, N

KCOUNT = 0 .

LOW = 0

MID = 0

KHIGH = 0

READ 101, T

IF(T 50.D) 9, 9, 5

LOW = LOW + 1

GO TO 7

5 IF(T - 80.0) 10, 10, 6

'10 MID = MID 4. 1

GO TO 7

KHIGH = KHIGH + i

KCOUIft = KCOUNT + 1

IF(KCOUNT - N) 3,11, 11

11 PRINT 102, ' KCOUNT, LOW, MID, KHIGH

STOP

100 FORMAT (i6)

101 FORMAT (F8.3)

102 FORMAT (43HaVALUES3OFCIFOUNT,OLOW,OMID,OANDUSHIGH

AREO, 416)

END

'ExerAses=F3=1 Set D or*. *
.e

1 - 5. Refer to-Ekercises 7- 11, Section 3-1 Set A,in your flow charttaxt.

For each of these five exercises you prepared a flow chart of a simple

algorithm. Now write a FORTRAN roam corresponding to each chart. Choose

statement numbers, here needed, to correspond tb the box numbers used in

the flow charts. Specifically, let 1 be, the label for a statement that

corresponds to Box 1, 2 for Box 2, etc:

Exercises F3-1 Set E

1 - 6. Refer to Exercises 1- 6, Section 3-1 Set B. For each of thegesiX

exercises you prepared a flow chart of a simple summing algorithm. Now

write a FORTRAN program corresponding to each flow chart. Choose statement

numera, %'here needed, to correspond tO the box numbers used in the flow

charts. Assume a suitable input format code for the data is F10.5.



F3-2

'F3-2 Auxiliary variables

The use ofl aukiliary'variables in FORTRAN programs mirrors what you have

already learned in the flow chart text.

Exercises F3-2 Set A

1 - 5. Refer to Problems 2 through 6, Section 3-2 Set A in your flow chart
text. Write FORTRAN irograms for each of the flow charts you have con-
structed for these exercises. Choose*statement numbers which correspond
to the box numbers used in the flow charts.

You might like to see how the flow chart for the Euclidean Algorithm
given in Figure 5-14 mght work out in FORTRAN:

'4Labbl Statement or Declaration

READ 100, 1$A, KB

PRINP101, KA, KB

IF(KA-KB) 5, 5, 4

KR. KA

KA = KB

KB = KR-

IF(KA) 6, 7, 6

_6 KR = 'KB - KB/KA*KA

KB = KA

KA_= KR

GO TO 5..

PRINT 102, KB

STOP

100 FORMAT(2I6)

101 FORMAT(12HOTH6b0D7OFO, 16, 516ANDO,I6,4HOIS.)

1102 FORMAT^(1110,I6),

END

'63 4J v



Exercise F3-2 Set B

Write 13. FORTRAN progrAff corresponding tothe.11ow chart that you constructed

in Problem 2 of EXerCise 3-2 See B of your flow chart text.

Exercise F3-2 Set C

1 - 8. Refer to Problems 1 through 8, Section 3-2 Set C i r flow. chart

text. For each of these eight exercises you have prepared a flow chart

of a simple algorithm related to coordinates of points on a straight

line. Now write a FORTRAN Program corresponding to each flow chart.°

Choose,statement numbers which correspond to the box numbers u-ed in the

flow charts.

ce

e

S
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F3-3 Compound conditions and mu54ple branching

° Writing compound conditions using IF statements

In Section 3-3 you encountered condition boxes involving more than one

decision, e.g.,
1

1

F3-3

°
and you saw that this single decision box was equivalent to a pairof boxes:

1

4

This pair of boxes can be coded in FORTRAN as

- X) 4, 4, 3

4 IF(X-- 5.0) 2,-3, 3

4

Similarly, the following pair of equivalent flow charts

,r

can be boded' as,
I

t .
IF(X) 2, 4, 4,'

t 4 1F(x - 1) 3, 3, 2

4 4

rr -1°

t
Itt

o

4 65/
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F3-3.

; , ---
,

... .

Exercise% F3-1 Set A_......____
.,. .

.

1 -,7. Refer to Exercises 1 - /, Section 3-3 in your flow charm text. tor

each of-these exerciser write,tORTRAN statements equivalent to the flow °

. .../-
.. -__, . , t ,

, i chart yi.1 prekaree.. For example, the flow chrt example would prObably
..), . -

be. coded in FORTRIN as: ., CNbt,

.

'

/ f/
.,

LLabel .Statement or Declaration
\

IF.(Xl - X2) 2, 30; 30.

. 2 IN' -',..-G) 3, 3, 20 . I

...
3 IF* - S 30/ 20, 30

:

.... s

4

Writing multiple branching instructions using IF Slatdign;

In Section F3-1 you leilrned that the FORTRAN IF statement was a kind of
...

three-exit (i.e., three-braribh), conditional statement. That is

* .,

,IF(arithMetic
.

expression) 10, 26, 30
.

;

is equilialekt totheffow chart

10

Value of arithtetic expression

Pr Pr
In certain situations you will find it useful to use the IF statement

this way--asa three-way branch. Frequently, hoWever,when you need to dd a

three-way branch, you will find that your problem does note neatly fit the

pattern of a single IF statement. tRualili you will find it necessary to .1

write two or more IF, statements corresponding to a myltiple branch condition

box.

>0

I
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Example: Flow Chart:

21

X+Y<5

VALUE OF X + Y

5 < X+Y <70 70 <X+Y <100

22 24

X+Y> 100

IF Ply r
FORTRAN:

ir(X + Y - 5.0) 21, 40, 40

40 IF(X + Y - 70.0) 22, 22, 41'

IF(X + Y - 100.0) 23, 24, 24

4p-..k. I(

.Exercises F3-3 Set B

Write FOR 'IF statements for

2. Write IF statetntsifore

F3 -3

3. " Write a FORTRAN program corresponding to the flow &hart you prepared for

Problem 10, Exercises 3-3.

,

4. 'Write. a FORTRARtprogram correspondin o the new flow chart which yciu,

)
preparee for the carnival wheel pro em as the answer to Problem 11,

le. . A

4EXereiSeS.3''j. .41051*

I

67 70:
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IF3 -4 Logical egressions

' It would'be nice if it/were possible in FORTRAN to code the two-way

condition boxes of our flow charts in aNmore straightforward fashion. To'do

this one would need to add relational operators (and symbols for thet) to the

set of allowed operations. For example, it wiip.d be nice if a condition box

like',

could be coded as the single statement:

IF(A > B) 2,

or possibly in some other-way, like

3

IF(A > B) GO TO 2

meaning: go to 2 if true,

meaning: 6) to 3 if false

where here the IF statement shows what to do if the condition inside the

parentlIres is true, implying that we should otherwi§e proceed to the next

statement if false.

You may have surmised or have learned from other sources that FORTRAN is

more a set of similar dialects than a single'language. The dialect FORTRAN II

which we are studying, has no "relational operators and hence it has no "logical"

IF statement like tir ones suggested above. It has only the "arithmetic" IF

statement. As a matter of fact, there are FORTRAN dialects, notably a group

referred to as,ORTRAN IV which do exhibit logical IF statements like those

shown above. You Can guess tat coding:a flow chart into one of these
, --

dialects of FORTRAN is an- easier job.

This section can be skipped Withoutloss of continuity.

1,1
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Subscripted variables

.R4resentation of subscripted variables in FORTRAN

Figdre -F3-4 shows how subscripted variables are represented in FORTRAN.

Flow Chart Form,

X
4

XN

B
I+2

j°E.M0E-6

CHAR_
-)XI+4

ALPHA
2 +15,

0
BETA

17xJAY-9

FORTRAN Form

X(4)

X(N)

B(I+2)

JOE(M0E-6)

CHAR(5*I+4)

ALPHA(22*J+15)

BETA( 17*JAY-9 )

Figure F3-4. Representation of subscripted variables in
FORTRAN

As you can see from the figure, Subscripted variables are represented in

FORTRAN by enclosing the subscript in parentheses and writing it following the

,variable to which the subscript is affixed. This is another example of a

notationr'that .enables FORT/ 141N code to be written "on the line." Other examples
you have seen include 1A**2" fol. "A2" and "SQR1F(X)" for -Since

belied Tultiplici;tion (omission of the multiplication sign) is strictly

forbidden,' there isno danger than YN will be confused with Y X N--the

latter is written using an asterisk between the variables. The only se.urce,

of confusion in the notation is that a similar notation is used for function

references. You will see later in this section how thiS potential ambiguity
is resolved.

_

In your flow chart text, just about any integer-valued arithmetic

expression was permitted as a subscript. In the version of FORTRAN you are

studying, the rules are much more strict:

(a) A subscripi'may take on only positive integer values (zero,

negative numbers, and numbers other than integers may.not occur

as subscript values). v.

)
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(b), The most general form6 permitted are

A constantl * variable + consta nt2

and

constantl * variable - constant2

where constantl and constant2 are unsigned integer constants and

variable is a non-subscripted integer variable. Other permitted

forms are

constant

variable

variable + constant

variable constant

constant * variable

where constant is again an unsigned integer constant and variable
ois,

is also of non-subscripted integer type.

Exercises F3-5 Set A

Examine each of the following flow chart subscripts.` If the subscript _

is legal in FORTRAN, writ the subscripted variable in FORTRAN form. Other-

wise point out the defect.

1. tS.,

7

2. X
J

...i.. 3. CHAR.

4.1 B
I+2

56

6. z
5X1+2

7. Z
. 14.67

8. ALPHA
-4.

96 PIXY
10. ABC'

,-5XJ O

\ .

6
Allo?ation of memory storsge for arrays

. . t
;... .

As yolikriow, the computer must have a storage location available corre-

sponding to each variable in a given FORTRAN Program. If all variables were

of the fOrm. .

.:
.,.

/.

..,
A; 1, CHAR, X4, etc.

i

z...iyt a ,
.1

this would be a simple prpblem indeed. The prockgsor could merely assign a
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41$

storage location to each variable occurring in your program.

But what about Xi? 'now can the processor know for what values of I

' to affigrf storage locations? Ielcannot tell merely by looking at' the

occurrences of X
I

in your program.- But if it weie to wait until 'the

program was being exikuted, it might find that it needed locations for:
X1, X2, X3, ..., X25 and had assigned locations only for X1, X2, ..., X10.

Since storage of arrays such as X1, X2, .:., X25 in consecutive locations

is of overwhelmini.importance in'efficienCY of program execution in most

computers, we would like to have advance knowledge of the range of values

possible for a subscript before we start executing the program in which

that subscript occurs. More precisely, we-require at least knowledge of

the maximum range so that we will allow enough locations.

In FORTRAN this problem is solved by means of a DIMENSION declaration.

It is used to specify an upper limit for the subscript value for a particular

subscripted variable. Figure F3-5 shows the form and use of the DIMENSION -

' declaration. .These declarations must precede all executable statements of

a program.

Now we c8i*explain hOw the computer can distinguish between such thirigs

as CHAR(J) meanin the J-th element of the array CHAR and CHARM
meaning a function reference consisting of the function name CHAR followed

by the argument expression "J". If a variable CHAR appears in

DIMENSION declaration, then a subsequent occurrence of CHAR(J) will be

interpreted as a subscripted variable. If CHAR does not appear in a

DIMENSION declaration,ithen CHAR(J) will be interpreted as a reference to

a function named CHAR. (A common source of error in writing,FORTRAN

prOgrams is to omit a necessary DIMENSION declaration. With this omission

the processor will, dutifully interpret all occurrences of CHAR(J),as

function references. The result is usually a nasty but: misleading error

message telling you. about your misuse of the fiinction CHAR.)
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Declaration 3

DIMENSION X(5)
.

DIMENSION CHAR(100)

Resulting Storage Allocation

five locations': one each for XI, X2, X3,

X4, and

one hundred locations: one 4act for

CHAR
- '

CHAR
1

CHAR,

DIMENSION-X.(3), Y(4) 4 one location each for

DIMENSION 1(2)

Y
2'

Y3, and Y
4

X
5'

Y

two locations: one for I
1

,'eind one for I
2

Figure F3-5. Storage allocations for FORTRAN DIMENSION:

declarations

Input and output of arrays

The form 'of the input and output lists for arrays in FORTRAN is quite

similar to that in your flow chart language,.with a few small, but important

differences in detail. Figure F3-6 shows how'arrays can be input and

output in'FORTRAN.

ri

Flow Chart Box FORTRAN PrOgram__

(KAYi, i= 3(2)N)

Label Statement or Declaration
A.%

READ 100 N, (KAX(I), I = 3,N,2)

100 FORMAT(12I6)

PRINT 101, (X(J), Ji= 1, -4)

FORMAT 030, I*12.6)

'Figure F3-6. Input and output of arrays.in FORTRAN
,

1 101

You should note these points concerning the form of our notation in

FORTRAN:

(a)

A

The increment for the subscript is placed after the upper bound

,instead of between the lower and upper bounds, As practiced in the

flow chart notation.
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When the increment is equal to 1 , it may be omitted.

Parentheses rather than braces,are used:

The upper,boupd for the subscript is set off by commas rather than

by parentheses.

Example Figure F3-7

Draw a flo)o'chart and write a FORTRAN program to find.the largest com-

ponent of an n-component vector (n < 10(1).

ALRGST (--A
1K<-2

K > n

.5

(ALRGST > A

6.

AIAGST A

f

K 4 K 1'

8

"LARGEST
COMPONENT
IS" ALRGST

STOP

Figure F3-7.

. %FORTRAN

DIMENSION A(100)...wa

READ 102, N

READ 100, (A(I), I ='1,N) .

ALRGST = A(1)

K = 2

4 IF(K N) 5, 5, 8

N.,

OF

IP(ALRGST - A(K)) 6, 7, 7.

6 ALRGST = A(K)

7 K = K + 1

GO TO 4
8 PRINT 101, ALRGIP

100
101.

102

STOP

FORMAT(4F16.8)

FORMAT(22H LARGEST COMPONENT IS, F16.8)
FORMAT(13)
.END

Find the largest number problem

73
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<

Exercises F3-5 Set B

In Exercises 1 - 3 write ;the necessary DIMENSION statements and READ

statements to input the arrays indicated.

1. (Ai, i = 1(1)k) Assume k < 50

2. 4B j = 5(2)n) Assume n < 125

3. (Ai, i = 1(10)n), (Bi, i = 10(2)n) Assume n < 50

Exercises F3-5 Set C
*ow

1. Write a FORTRAN program corresponding to the flow chart in Figure 3 -2l(b)

(The carnival wheel pAblem using subscripts).

2. Write a FORTRAN program that corresponds to Figure 3-25. Choose your

format codes using 15 and F10.5 fields as needed. Assume values

for B are punched on data cards with up to seven values per card.

Write a FORT1tAN program that corresponds to the flow chart you drew for

Problem -8 of Section 3-5 Set A. Assume the value of n will never be

greater than 50. You will have to write the program so that subscripts --7

for the coefficients range.from 1 instead of from zero, because zero

subscripts are not allowed in FOI4RAN.. For format codes use 15 and

F10.5_ fields as needed for input. Assume polynomial coefficient values

are punched in order on data cards having up to five values per card.

Exercises F3-5 Set D

Write a FORTRAN program for the flow chart you dreyvfor Part C of the

Exercise 3-5 Set.0 in the Main Text. Assume by "and ize orchestra"' we mean

one that will never exceed,. 500 players. Assume the agqs of the players are

punched as integer data (15 fields, up to 10 per card).



F3-6 Double subscripts .

.Representation of double subscripts in FORTRAN

In Section F3-5 you learned that a subscripted variable like

x.
1

could be written in FORTRAN as

'X(I)

OP
Now, in Section 3-6, you have been intro4uced in your flow chart language

to doubly-subscripted variables such as

x. .1J

The FORTRAN'representation for such a doubly-subscripted
40°

about what you would expect it to be:

X(I,J)

The two subscripts are'separatqd by a comma.

Thus the assignment. box.

could be written in FORTRAN as

+ A 4$
K, J

WIN = WIN + A(K,J)

Allocation -of storage for doubly-subscripted arrays

variable

1

is just

F3-6

A DIMENSION declaration-is required to allocate space for doubly-sub
scripted variables. For example

DIMENSION A(3,4)

This particular declaration allocates 12 spaces for a matrix having
.3 rows and 4 columns. The subscr-ipted variables of this matrix are:

A
1)1-

A
1,2

A1,3 A
1,4

A
2,1

A
2,2 A2,3 A

2,4

A
3,1

A
3,2 A

3,3

Thus the acceptable values for the first sulAript are 1, 2, and 3

and foi the second subscript they are 1, 2,'3, and 4. No other subscript
values'have significance with the above DIMENSION declaration.

. .

O

7,578
1
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To input or output an entire matrix, we can employ, either of two

approaches' suggested by the flow charts in Figure F3-9.

(0.40.,J=gixil,I=1.(1)14)

e

Method a)
4

S

Method (b)

Figure F3-9. Two ways to input values of a matrix having

M rows and N columns.

The FaRTIANcOding for each method is given below for comparison. In

each case it is assumed that data are punched an'cards,'four values per card

using F10.5 field codes.

Method-(a)

READ 50, ((A(I,Ri J = 1, N), I = 1,M)

50 FORMAT (4F10.5)

,Method (b)

, I = 1 .

3 ') READ 50, (A(I,J), J 1,N)

.50 FORMAT (4F10.5)

I = I 4- 1

IF(I - M) 3, 3, 6

76
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In Method (b), Box 3 is an order to input one entire row of the matrix

(the It
br

row). The,other boxes define a range of values for I from 1
...

to M inclusive, under which Bok 3 is -'repeated. In Method (a) Box 1 is an

.order to input the entire matrix row -by -row.'
,

It would certainly seem that Method (a) might always be preferred

because it is easier to write. In the next chapter we will show situations

where the approach used in rethod (a) hag ceri)in practical advantages.

The FORTRAN program equivalent to the game flow-charted in Figure 3-34-

is given below. The one-row-at-a-time approach for input of the ,6 x 6

matrix (Method (b)) is chosen.

1

2

6

'7

100

101

102:

DIMENSION A(6,6)

1 = 1

READ 100, (A(I,J), J = 1,6)

I = I + 1*

IF (I - 6 1, 1, 2

READ 101, K, L

WIN = 0.0

ALOSE = 0.0

I = 1

J = 1

IF(J - 6) 5, 5, 6

WIN = WIN + A(K,J)

J = J + 1

GO TO 4

IF(; - 6) 7, 7, 8

ALOSE = ALOSE +

I = I + 1

GO ao 6

ABET = WIN - ALOSE

PRINT 102, AMET

STOP

FORMAT (6F8.3)

FORMAT (212)

FORMAT (11A F8.3)

END

77
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Exercises F3-

1 - 5. Refer to Exercises 1 - 5, Section 346. For each of these exercises

you'have drawn flow charts describing certaini.nrow" or "column operations"

on a matrix. For each of these flow chitts your job is to write the

equivalent FORTRAN statements preceded bithe necessary DIMENSION

declarations. No FORMAT declarations will be required in your answers.

7

C

Ir
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F4-1 The DO statement

- It should

discovered and

FORTRAN. This

Figure F4-1.

Chapter F4

LOOPING

=19.1"
I

- ;

come as no unpleasant surprise that the,lit,le wonder box we

called the "iteration box" has an almost perfect parallel in

shorthand is called the DO statement. An example is shown in

1

I 1

I <1000
F

.

DO 15 I = 1i1000

Figure F4-1. The iteration box and 9.n equivalent DO
statement

' dmittedly; the parallel is not yet obvious, but we promise it will be

after 1;e show eaccin the larger context of a loop.

To display,a parallel between a flow chart and a FORTRAN "DO loop" we

present Figure F4-2. The algonithmy,usedl you will recognize, is the Fibonacci

sequence generator (Figure 4-6).

Our next discussion will focus on the loop counter ttat.is used in a DO

statement. It's "personality" Will now be desCTibed. o.Youimay find this

description somewhat long and detailed. Don't be discouraged. Read it once

and then we will look'at same examples.

1, Its always a non-subscripted integer variable, like I, IKE,

IBALL, J, ,etc. and never it6J(5), INT(K), etc.

'a

2. As in the iteration box, the loop counter must always be

an initial value ( 0).

11
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'

a

Label Statement or declaration

LTERM = 1
NLT = 0

= li1000

ICOPY = LTERM
-LTERM F LTETIM NLT
NLT = ICOPY
CONTINUE

-I

COMPUTATION P RTIONS

Figure- Parallel between a flow chart and a FORTRAN
oop

--t

The DO statement is an ivorder to repeat a certain task for each
. .

value of the counter I in the range 1 to 1000 inclusive. .The task.
. . , .

which is to be repeated begins with the first statement that fellow's the DO
.

st n't and terminates afte executing the statement labeled 15. To mark, ,

the terminatipn of a "DO .loop' we can use a Special "dummy"...statement or
6 j ' ....

marker for this purpose. , It s viiiapl,y the word
'-z)

2g' 17. --*

a.

OONTINUE

8o r)

: t
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(Although we frequently use the CONTINUE statement to mark the terminus, an

assignment, READ or PRINT statement would also be suitable.) We now see that

the sdltement

Do,15 I .1,1opo

should be read this way:

"Repeatedly execute (or do) all statements which follow this one, down

to and including the (CONTINUE) statement that is labeItd 15. Do this once

foi each value of I in the range 1 to 1000.

3. A highest value for the counter's range mtstalways be supplied.

4. An increment must be supplied if it is other than one. We shall

,see examples presently.

4: In supplying Items 2, 3, and 4 in the DO statement, we are privileged to

give each either as an unsigned integer constant or as a non-subscripted

integer variable. The rules are strict on this point. If you forget and use

some other 'form, don't worry, the processor-will,politely remind you by

printing an error message for each poorly formed DO statement.

o

Examples

1.

2.

bo 51 I = 1, N; 2

means: repeat the execution of the immedi- ately ollowing statem ts

through the one labeled 51, once for'e ch value of the oop

counter I, in steps of 2 until I > . Thus if NI ad

a value of 7, the loop would be repeated (4 times)for values

ef- I of 1, 3, 5 and 7. When the counter Is incremented

again its value exceeds 7 and ye ;exit from the ldop by

proceeding to execute he first statement that follows the

one labeled 51.

,

DO 51 IC= 3, a, 2 b..
means: repeat through once foe each value of K until K > 8. K

starts with a value of 3 and is ihcremented each time by 2.

The loop is repeated, for I-.= 3, 5 ,and 7 (three titles).

=
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A

DO 51 J = I, L,

loop ,/4 for for counter

Counter initial loaci increment

'value limit

. . ,

means: repeat,through Statement 51, once for each value of the counter

J until J > L. J is given a starting value equal to that

currently assigned to I. Prior to each proposed repetition

J is incremented by K.

-4,--- ID,9 51 J = I, L >.

loop) for / for loop

counter initial limit
value

means: same as Example 3, except that no increment Is supplied. In'

such an event we (and the computer that must read this state-

ment) always assiime the increment it one. ,

Exercises F4-1

Problems 1 - 5: For each of the flow charts you drew in answering the exer-

cises 1 through 5 Section 4-1, now write an equivalent FORTRAN program. In

order to write a complete FORTRAN progrem, use the information supplied below

for eac of th? exercises.

4..

%
A ume ID is e, 6-digit integer,.and that values of A, B and C

l'

,0

.

II

can'tie punched orr cards using F10.5 fields.
, .

2. Use an ]10 field-code for ID and F10.5 codes for A, B, C end D.
. ,

Assume N a-number-less than 10000.

Choose a wide I-field like 115 for, printing values of I, LTERM and

S. (Is ,a gooci_name for our purposes in the FORTRAN program?).

fJ - ..

4. Use 115 fields for all i tegers. Let the four values/ of P betpunched
.

..r

on a single card.
1 . = : t .

5. The Timekeeper records his data in houra tind hundredths of an hour.
. C

Personnel keep data on rates in dollars and cents per hour.

-1

a 82
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F4-2 Illustrative examples

There are a number of simple examples of loops in Section 4-2 of your

flow chart text which can be easily transliterated into FORTRAN code with

the aid of the DO loop. We'Shall use theseutV4furt r illustrate some of

the details in the proper use of the DO statement. Figure F4-3 shows FORTRAN °`

coding equivalent to the flow charts in Figure 4.-8.

Label Statement Label Statement

DO 4 I = 1, N DO 5 J = 1, N
Y = X(I)**3
PRINT 51, X(I), Y

REAP 51,
Y = X**3

X

CONTINUE

5

PRINT 52,

CONTINUE
X, Y

(a), (b)

Figure F4-3. FORTRAN fo flow charts in Figure 4-8.

Similarly we see in Figur F4 -4 a FORTRAN equivalent of the flow chart

in Figure 4-9(a).

I

Label Statement

TO
4

SUM = O.

DO 10 J.=
SUM = A(J) +SUM
CONTINUE
PRINT 50, SUM

Figure F4-4. FORTRAN for Figure 4.-9(a).

Before looking at our next transliteration, please try your hand at

x writing the FORTRAN for Figure'4-9(b). Now compare your code with that

found in Figure F4-5.

83*
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Label Statement

2

'3

4

10_

5

FMAX = ABSF(A(1))
DO 10-J = 2, N
IF(ABSF(A(J5) - FMAX) 10, 10, 4
FMAX = ABSF(A(J))
CONTINUE :7
PRINT 50; FMAX '

Figure F4-5. FORTRAN for Figure 4-9(b)'

There are several lessons to be learned here. If you look at the flow

cha you see a line returning from the false side of Box 3 to the increment-

ation portion of Box 2.

How`do we express this,.retup line in FORTRAN?

You may have been tempted toiwrite code somethlng like that in Figure

F4-6. Woe is you if you did!.

Label Statement

FMAX = ABSF(A(1))
DO 10 J =2, N
TF:(ABSFCA(J) - -FMAX)

ABSF(A(J))
CONTINUE

Figure r4-6. -A miptake!A

In that case you have falleninto,agreat big _FORTRAN trap! Urifortunately,

when we order a returno Statement 2 it is equiv= e t to returning to iox2

f the flow chart at the initialization eo artmen, d not at the increment-
\

tion portion! This means we sta the,loop all o e again with J = 2
--%;

s (instead oficontinuing with the c tang a d testing process. In fact the.

,onlyiway tbsity in FORTRAN "go b ck to the"!incrementatiovortion of the DO

statement" is to send control forward,to the statement'wilichas named as

t1 he terminus in the DO statement. you c9 see now-1-47the 6ONTINUE statement
, \

is
] .

o handy to as a terminus for a loop.. `By givirigtbe CONTINUE the
, .

lab 1 10 in-this case and "funneling" gall-flow to it, we guaiantfe a ret
. 4

, . .

io he inorehentation portion of he DO loop.

With this idea in-Mind you s mild have no trouble writing helFORTRAN

forlthe flow charts in gure 4=10 and 4-11.

-

a ,
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Exercises F4-2 Set A

In each of the following four exerIses, we present FORTRAN code for the

flow charts in Figures 4-11(a), 4-10(b), 4-11(a) and '4-11(b), .respectively.

Your job is to indicate what errors, if any, have been made in the coding

process. The necessary declarations are being disregarded here.,

1. For Figure 4-10(a)

2. For Figure 4:710(b)

1

4

if

3. For Figure 4-11(a)

4. -For Figure 4-11(b)

4N
Label Statement

2

FMAX = ABSF(A(1))

INDEX = 1
DO J = 2, N

IF(ABSF(A(J)) - FMAX) 4, 4, 3
FMAX = ABSF(A(J))

INDEX = J
CONTINUE
PRINT 51,,INDEX, FMAX

Label Statement

4

10

MAX = ABSF(A(2))
DO 10, J = t N, 2
IF(ABSF(A(J)) - MAX)' 10, 10, 4
MAX = ABSF(A(J1)

CONTINUE
PRINT 5, MAX

Label Statement

FIT = 1
DO 10 K = 1, 1, N
FACT = K * FACT
PRINT 5, K, FACT
CONTINUE

' Label Statement

10

LTERM = 1 ,

.

NL7.10,
DO 10, L 7-1,V
COPY = LTERM

LTERMI= LTERM + NLT
NLT *COPY
PRINT! 5, KaTSM
CONTINUE '1

I



F4-2

There is one more point that is worthy of note about the DO statement.

Many FORTRAN II processors interpret the DO statement slightly differently

than the iteration box would imply. The iteration box implies that the test

for termination is made immediately after the counter is initialized. If

.the test happens fojail this first time, then we never do execute the

computation portion of the loop -'not even once. Not so with DO statement in

many FORTRAN II processors. After initializing the counter, the test is

bypassed and, we do enter the computation portion. It's only after completing

an incrementation of the loop counter that the test is made. ,Hence the

computation portion of a DO loop (for these processors) is always executed

at least once. Ask your teacher if the processor you are using in the

laboratory behaves this way.

Supposing for the moment your FORTRAN processor is of the type juh

described, under what circumstances would the FORTRAN code in Figure F4-5

fail to agree, with our flow chart in Figure 4-9(b)?

Theaanswer is--if by some chance the value of N, were 1, then the

printed value for MAX at Box 5 (Boxes 3 and 4 not executed) would be lAll

(unequivocably). On the other hand, in the FORTRAN case, if I-A21 ;were

larger than lAil, then the printed value for FMAX would be IA21, since

Statements 3 and $. are executed once.

Yell, then, what must we do to bring about strict equivalence between

the flow chart and the FORTRAN under these circumstances? One way this can

be done is to precede the DO statement with the necessary test to permit

skipping over the DO oop. Thus we might write in this case

2

10

.5

FMAX = ABSF(A(1))
IF(2 -'N) 2, 2, 515.41s is

e extra -step

DO 10 J = 2, N

e :

CONTINUE-
PRINT 50, FMAX

To add this step is cumbersome and totally unnecessary in most instances.

Your judgment is relied on here to decide in these mattere. Obviously in

*this case,,you are not goin.0 to be look ng for the larges% f 1 numbers

with.a DO statement.

+

4

A
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Exercises F4-2 Set B

F4-2

1 - 17. For each of the flow charts you drew in answering the exercises of

Section 4-2, Set A now write the FORTRAN statements as 41'

)

partial programs only. Do not bother to,write declarations unless it

helps you to see what is going on. 41int--the tricky o{;; where you

should be wide awake are: 4, 5, 6, 7, 12, 13 and 17.

You may be interested in seeing how the flow chart of the fabtors-of-N

a.lgoilithmr(Figure 4-14) is coded in FORTRAN. Here'it is in Ture F4-7.

You'will notice that all the data of this problem are integers, but

the SQRTF function requires a real argument and produces a real result. So

the value of N is converted to a real value by

FN = N do.

and FN is then used as the argument of SQRTF in the next statement. The

rest of the program should be easy to follow. You may recall that [N/K)

can be written in FORTRAN as simply N/K, because for positive values integer

division produces the same result as the bracket function.

41

4,

Label Statement or declaration

Figure F4-7.
-

C

1

. '50

1(

Algorithm for
to Figure 4-14.

FACTORS OF°N
READ 50, N
FORMAT (I1O)"
FN = N
IBOUND = SQRTF(FN)
PRINT 51, N

FORMAT(16HOTATIFACTORSOOFO,f150H9ARE)1
DO 10
InN - K * (N/
L = N/K
PRINT-52, K,
FORMAT( -1H(

CONTINUE
STOP
END

factors of

f'

oOND
)) 10, 6, 10

215)

N equivalent'

The FORTRAN coding of the polynomial evaluation algorithm. Figure 4-17

presents an interesting problem.'

coeffloienteas%components of a ve

the flow chart w ow the polynemiaf

for A beginning at Ao. In FORTRAN we kj

.40
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1

4.-

cannot have a zero subscript. The smallest value is 1. Consequently'in

the equivalent FORTRAN program you will see hOw we have had to position the

coefficients beginning.at Al. To do this a slight change in the algorithm

is required, as'you will see when you study Figure p4 -8.

Label. Statement or/declaration

C

10

51

POLYNOMIAL
DIMENSION B(4)
READ 50, (B(I)Z
FORMAT (4F15.5)
READ 50, X
VALUE = B(1)
DO 10 K = 2, 4
VALUE = VALUE *
CONTINUE
PRINT 51, VALUE
FORMAT(14HbTHEnVALUEDISn,F15.5)
STOP
END

1, 4)

X.+ B(K)

Figure F4-8. FORTRAN equivalent of the polynomial. evaluation_

(Figure 4-17)

Exercises F4-2 Set d

J

1 - 3. For each of the flow charts you drew in answering the exercises of
. .

Section 4-2 Set B, now write the equivalent FORTRAN--(full progran

Note special information supplied below:
V

(1) Assume that N will never exceed 50. Assume the values for

X and A may be input using FlO 5 field codes and that up t
. ,

5 va/uebof X may b punched o a single dtita card.
.1\ .

2),Make same assumptions b

1

ut the,da a you made in tie preceding

'exercisei.
.. . .1
(3) If 34continue to se integer variable§, espe ially for your

\ .. winnings, you may need to know how to cell for t e absolute value

pf an integer expression. In FORTRAN II we use the ABSF function
. \

/hen the, argument is .real but we use the XABSF function when the

argument is integer. The resulting vallie Oesay XABS (K) is an

integer.

. 88
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F4-3 Table- look -up

In this section we shall do.two things:

1. Verify our ability to write the FORTRAN equivalent to the fairly

involved table - look -up (Figure 4-24) using the-bisection method.

Figure F4-9 shows the program.

2. Learm a little more about iniut-outputstatements and format code.

The assumptions we have made in order to write the program:given'in
/ Figure F4-9-are:

1. The table to be stored Will never contain more than 200 X's

and 200 .Y's.

4

2. All input data can te formatted using 15 fields ,for the. integers

and F10.5 fields for the rals.-.

,
.

3. A data card read at Box 2 contains only one phir of valueS for the

X-Y table.

Label Statement or declaration

2

51

5?

41

11

'53

6

54

7

. 9

1

1

DIMENSION X(200),Y(200)
READ 50, N
FORMAT(15)

READ 51, (X(K), Y(K), K 1, N)..

FORMAT (2F10.5)
READ 52,A

FORMAT (F10.5)
.

IF (X(1)-A)41, 41, 11
,IF(A-X(N))5, 5, 11
PRINT53,A 4

FORMAT(1H,F10.5,'

26HDISDNOTDIN3RANGEDOFDTABLE:)
STOP
.LOW . 1

IHIGH
IF ( IHIGH-LOW-1)7,'12, 7

PRINT 454, XLOW, YLOW, A, MIMI, /HIGH
FORMAT(1HD 5F10.5)
STOP

MID = (LOW + IHIGH)/2

IF (A7X(tD))9, 9, io
IHIGH = MID
GO '10 6

10 LOW MID
GO TO 6
END

Figure F4-9, FORTRAN eqUivalent of tab e-look-up using

bisection-(Figure 4-24)
.11 ,
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Implied DO loop as list elements.

In studying the prograM inn Figure'74-9, and in comparing it with its
1 '

corresponding flow chart you may have noticed that in Statement 2 we used

4

the input list element 404
C

(x(K), Y(K), K = 1, tO

This i5 the FORTRAN equivalent of our new flow.chart notat'on

(XK, Y
K'

K = 1(1)R)

Executing the statement:

READ'51(X(K), Y(K), K = 1, N)
51 FORMAT(2F10.5)

is a shorthand 'way of calling for execution of the statements:

DO 10 K = 1, N
READ 51, X(K) Y(K)

51 FORMAT(2F10.5)
10 CONTINUE

You can now see why we frequently refer to a notation'like

(X(iC), Y(K),, K

as 'implied Da lOol)" potation.

In fact,-if we look at such notation in thisway: we can i)erhd6 begin

to understand, it for the first time. Other examples which sh6ad help are

given in Table F4 -1. Study these carefully.

F

4

Table F4-1

Implied DO loop notation

te

f

I I
t'

Exaniple "Shorthand" Equiva ent "longhand",
174

1.

51

I = 11,,N)

FORMAT(2F10.5)

DO 10 I = 1, N, 2 I
READ 51, A(I)0 A(I+1)

51., FORMAT(2F10.5)
10 CONTINUE4

A through AN inclusive.

s

Data

MIM\

Iniut values for all Ai from

card contains up to two values per, card.. If the value of N is 71
_

co,

for example, then 4 cards Will-be read, the last card containi9g the

seventh value.

. t
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J.'able F4-1 (continued)'

Example Shorthand" Equivalent "longhand"

2. READ 51, (A(I), I = 1, Ni 2) I l',DO'410 I = I, 'N, 4
51 FORMAT (2E10.5)

1
'''''tEAD 51, A(I), A(I+2)

1 51 FORMAT (2E10.5)
1 10 CONTINUE

Input values for odd-subscripted values of Ai, beginning with Al

and up to or including AN (depending on whether N is even or odd,

respectively). The first card contains values for Al and A3, the

second card has values for A5 and A7, etc.

.
3. READ 51, (A(I) I = 5, K, 3) I DO 10 I= 5, K, 9 4

51...... FORMAT (3E10.5)
I

READ 51, A(I) A(I+3), A(I+6)
i 51 FORMAT (3E10.5) r

1 10 CONTINUE

e
I

4.

If K has the value 15, for instance, then values will be input

for A5, A8, A11, and A14. The first three values will be punched on

the first card that is read and the fourth value will be on the second .°

card.

4. READ 51, (A(I), B(I),C(I),I=1,N) I DO 10 I = 1, N
51 . FORMAT (3E10.5)

I

READ 51NA(I), p(I), c(i)
. FORMAT (3E10.5) ,

10 CONTINUE

1-

Inputs values for Al, B1, Cl, A2, B2, C2, Ai, B3, C3, etc., up to and .

includi g AN, BN, ON. The valuesifor Ai, Si, Ci for any one value,

of. i re punched,on a single card.

'In the next section we will lookat impl ed DO loops once again.

The X-field

We would now like to give you

occasionally prove useful to you.

several interesting uses for it.

using them!: 4

r

a tidbit aboyt !ormat code which might

It is the so-ca11ed:1-field". There ar

imally,' however, you can get by without'
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For an input format; the X-field is useful for skipping, over (or

ignoring)Ithe data which may be punched in certain plumns of a data card.

For an output fo at the X-field allows yOu to insert any number of

blank spaces between plumbers or comments that are to be printed on a line.

When an X-field appears at the very beginning of a format codea it guarantees

?b. cblank which can be. used for single-line spacing in carriage control.

We write an X-field code using the form:

w X

an unsigned letter X
integer

"For example, 6X or. 12X or 1X (Never do we write X6 or X12 or

X1 0

We now return our attention t9 the table-look-up problem and again

consider that, the deck of data cards containing the .:KK and, YK (Figure

F4-10) shows four possible "card designs."

Example Format Code

o

1. (2F10.5)

0

1

2. (F10.5,4X,F10.51

40

0

10

a

10 14 24

WHO
XK

KNOWS
Y
K

so

12 ho

WHO
KNOWS 11 1 X1C

W110

MOWS?:
4
''''K

.

/1 --I
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Example Format Code

4
4. On.Sulpy:

(201).5)

On Monday:

(F10.5,10X,F10.5)

On Tuesday:

(P16.5,20X,F10.5)

tr

4

F4- 3

XK YK YK Y*
K ,

SUNDAY MONDAY TUESDAY
_

., . ,

A __I

ti

igure F4-10. Valivub ebigns illustrate

uses of the, X-field

possible

1. Tfwetrere puadhing our own data cards fo'the table of function

we might naturally choose the first design as the easiest. One never

knows how many different uses such data might be:but to.

2. For the benefit of a human reader, however; you may have,decided to

4

separate

tell the

space of

or es

In th

porti n

the two fields by, say, 4 columns. Of course, we would wit to

computer which alsO must read this card ttpat Wehave leg a

4 Columns so we now must write the Rnmat code as either

10.5, F14.5)

(F(1.0.5,

first war we merely treat

secondof the

to completes ignore

punch something in th

then the use of the X

field'. In

4X,

column', - 14 as the left (bla

the second, approach we tell ,the computer

time later, wedecide to
I I

like a sequenci number,

That is.why we have

KNOWS. It is,certainly

hese'hlumns.. If, som

four intermediate col

field becomes mandato

called columns 11 - 14 on the second card a

safer to use the X-field.

3.- Here is another. card design, this time with wo WH OWS fields. jfou

see how we can "sprinkle" thd X- fieltts in a around the F-fields (or *

around I-fields If'we had them here) ilk any WO we may choose.
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4.= The final example suggests that several different tabulated functions.

for the same, values of -XK may be punched on one card. On Sunday weAtigo,

tight want tq do a table-look-up using'values of Y in Cqlumns 11 - 20,

on Monday perhaps with the value's of Columns 21 - 30, and so forth.

The same FORTRAN program could be used each timer provided thatteach

time we used the program, we change FORMAT number 51 in the program

(Figure F4-9) in the manner shown (Example 4 of Figure F4-10}.

Now that we've begun to ap(ciate ways i nwhich the X-field bCan be

used for input format, let's see how it may be used f9n output.

In the first place -we can see that for FORMAT 54 of the program

(Figure F4-9) an alternative to

(1H0,5F10 .5)

would be

- (1X,5F10.5)

On output an'X-field inserts blanks. So 1X .a. the beginning inserts

the blank needed as a darriage control signal. We can also insert blanks to

spread out the printed values. Thus, if we want the 5 values to be printed,
. , . 7with arbitrary amounts c;f space in between eadh niaMber, we Could write

(ix, JR10.5,,2X, F10.5, 4X, F10.5, 4X,-F10.5, 2X, F105)

__ Y
LO

This fOrmat would group X X_
hIoW' W pair and the
IGH' YHIGH

pair each

flanking the printed value of A ),;7601rder to help the eye do the grouping as

suggested by the wiggles below

./'
^M/\, --1\AAA,,VVV\,---,\AA.N7W\A,

2 4 4 2

Of course, the same "spread," could be achieved by simply lengthening each

F-field the, right amount such'as:

, -

(1X, F10.5, F12.5, 'F14.5, F14.5, F12.5)

Take your choice.

The X-field could also be used to .helpeth the Spacing of headings acfoss

'the top of tabulated data.

94
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Exercises F4-3 Set A

Go back to Chapier 2 of ydur Flow Chart text. See Figure 2-7 there

which shows tabulated results for our frietv loop, Figure 2-8. Your job
-is.to write a FORTRAN program, which would print'a heading across the top of
the table to "name" the values below, as:suggested in Figure

R

0
0
0

0
0
0.
0
0

.Figure. A table with printed heeding

EXTRA SPACE

Print the,tablwheading at the top of a pa& and figur6 out a way, if

you can, to,skip a line before the first line of numbers is printed usingr i

single spacing the?e)after. YoU will probably have to revise the flo? chart;fp

of Figure 2-8 first.

1

4

79;
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. r-
. %.
F4-4 Nested DO loops

. .
:

.

.
.

.

. .
.

,,,,t"Tust as we can have one loop, with its iteration, box' form "part of the

computation portion of another loop, we can have the one DO loop become part

of another DO loo, , ,.
. . . .

.

Examine the flow chat in Figure 4-29, begihning.with Box 4._ We now
. .

.

show the'equiva,lent FORTRAN code in, Figure"F4:-11.

.

4
4 . 10

. 7

20
0/1.8

DO 2.0 I F 1, M
SUM( I = 0.0
DO 10 J = 1, Ilk

SUM(I) = A(I,J) ; SUM(I)
CONTINUE

TOTAL = TOTAL + SUM(I)
CONTINUE

PRINT 55, TOTAL

Figure F4-1I. 'jested DO-loop6
.

r.

#

We have deliberately indented the statements after eachADO-loop to .

. -

suggest the idea of nesting. Suppose we call those ttatements :Which are .

t,

repeated under cronti-ol of a.DO-statement the "- range" or scope
44 of that DO

_statement or D9, loop.

the "outer" } first

If you again,look at

ments constitute the

Using this terminology, we cansay that the scope of

-D61 loop inCludeS aribther DO s:Eatement'and its 'scope.'

Figure F4-11 you see that the doublynindentedstate-

scope of the.innerD0 statement while all those whidh'

are at least singly-indented belong,tothe scope ofIth outer DO statement.

When executing these FORTRAN statements,:thecoMputeraan keep track, of

what loop it is in at all times.. Whens,the
.

DO 20 I =, 1, M

is executed, the computer attempts to,reieat the scope of this DO M ti
. .

In doing eacti repetition, it encounters the inner DO sta;tement which mea

es.

that the scopeof this loop must be repeated .11 times 'before moving on to
i

Statement 7, and comPleting the,pcope..of the outer loop.
. '

. ,.. ., *
.

I>

-....... ,
Each time we emerg a loop by. sucmdihg on a loop-limit tot we

say "a DO'loop has been sati i d." Z!!.*

..' , ,

Using this terminology4 we might say that, "iri executing the sop of

the outer DO loop we must repeat an'iliner DO loop until it is satisfied"

- I

#
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Now let's look at the whole program for summing the matrix entres. Here
it'is in Figure F4-12. .We have assumed the matrix can have up tb 50 rows. .

and 50 columns. Data for the matrix entries are assumed to be punched up
to items i5eYcard, in row by row order.

Label Statement or declaration

C SUMMING A MATRIX'

.r

44.

,

I I

50
2

51

10

20
8

55

DIMENSION A(50, 50)
READ u, N
FORMAT(215)
READ 51,. ((A(IJ),;J-= 1, N), I =1,M1 \\
FORMAT (4F10.5)'
TOTAL ..0.0
DO 20 I = 1, M

SUM(I) = 0.0
DO 10 J = 1, N

SUM(I) = A(I,J) + SUM(I)
CONTINUE

TOTAL = TOTAL + SUM(I)
CONTINUE

PRINT455,)TOTAL

FORMAT (14HEITHEoTOTALaISD, F10.5)
STOP
END

1

Nested implied DO loops

Figure F4-12. The whole show

_

Legs take a moment here to digress again on the subject.of implied
6 DO loop,notation. In Chapter '3 we introduced you to the flow chart, notation

like the'ohe on Box 2 (Figuie 4-29).

/ .

2

-41 = I(I)N), I =I ) M)

The FORTRAN way s to write something very similar--naMly,

2 READ 1, ((A(I,J), J = 1, N), I = 1,.M)

inner implied DO-loop

outer it 11ed DO-loop

.`-You can now begin to see the method in this notational madness--if you'
wk

want to take -the time

9100
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This is seen to be just a,slick'shorthand within a shorthand to represent'

a simplerRE.AD statement under control of 2 (nested) DO-rloOps, Figure- F4 -13.

70
10
2Q

too g) 1, M
DO.10 J = 14 N

READ 70, A(I,J)
FORMAT (F10.5)
CONTINUE

coviNuE

. .;;;,

, ii

. - .

Figure F4-13: The "long. way",. but not qupg.equivalent

to Statement,2

rn this case we show here the equivalence with Statement 2 is nOt quite
' .

complete beCaUse only one matrix ent.ry can be put on one card whereas in

Flg ure,F4-1? we werrable to specify 4 items peil card using FORMAT. We

can correct this by having 4 /i."-t elements in the'BEAD statement as shown

in Figure F4-14. as

°

Figure F4-14,

51

20

DO 20 I = 1
h
M qa

DO 10 J 1, N, 4
READ 51, Aq,J), A(I,J+1), A(I,J+2),A(I5J+3)
FORMAT (4F10.5)
CONTINUE

CONTINUE

"The long way", but equivalent to

Stieterfient 2 -

There is still a er and even better "long way" as shown in Figure

.74-15. 'W4 would recommend it o the other methods. It has bOth thei

short; ,and the long look:

."

_/ ,

. DO a) I = 1, M
...

READ 51, (A(I,J), J = 1, N)
:51,, *FORMAT (4F10.5)

. 20 CONTINUE .

4:

.

i,

re '1714:-.;.5.: Tht "long-short" say, equivalent to

-it-61-lien2.
,

,

seethat we ,have used a. single t1e READ state-
.

' ment and wq, r the read statelent under control of a,D0 statement. This

I.



method has the Allowing virtue:

.F4-4

The READ state tent amounts to an order to read'a whole row of the

matrix with up to four entries per card. If thelast entries of ,a ,

row don't quite fill out a card--np matter--we can still start the

entries for t he next row-- fresh 'on the next card in sequence. This

way if you have a fairly"big matrix to put on cards, it's...4asyeto.. 1

verify you've, punched entries for each row correctly. You don't get

this flexibility when you buy the doublyTimpried DO loop that is
..... ! .used in Figure F4-12; there entries for each new row begin, ifneces-

sary, on thee same card with the last entry or ,entries of the preceding

card:

0

4

Exercises F4-4 Set A

1 8. For each of the flow charts you constructed forthe exercises in

Section 4-4, Set A, write the equivalent FORTRAN' statemepts. Don't

bother writing declarations unless you feel,they .add.to your under-
.,

standing of the transliteration problem.

ITriply`nest,ed DO 1,oOps ire just as easy to write as doubly nested odes.

Figqe P4 -16 "shows how the stickler in Figure 4 -31 .would be coded irk FORTRAN'.

«-

Label Statezent

DO 30 IR = , 9,

DO 20 IT = , TO .
DO 10 IU = 1, 10'

ITM1 = IT 1.

IUM1 = TU 7 1
IF (100 *'IH + 10t*,ITM1 + IUMla

7(IH**3 + ITM1**3 .* TUM1**3)
2 .10, 5 , 10'

5 PRINT 50, '11,11-1 ITM1; IUM1
50 FORMAT,( 31157

40.

10 CONTINUE,
20 CONTINUE
30 CONTINUE ,

STOP

IFigure F4-16.

4*

The .sticikler in FORTRAi

1
99A .

0'9
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::..

Sin..-2e 4 D0-loop counter may not.beginwith a_tero Value we have had to be,.
a bit inventive to. accomplish the same objectivesCof the.stackleralgorithm.

v

. As you. can see in Figure F4:116, we let, IT and ,IU rangdfrom 1 to 10 _ ,

. .

insteltof from 0 to 9. In the IF statement expression we use ITN1

(defined'as IT 1) and IUNI (defined as IU - 1) ix place of IT and

IU, respectively.
r

6

A ;

Exercise F4-4 Set B

1. :Write FORTRAN programs for the flow chart solutions you Obtained for

Problem 7, Section 4-4; Set B 'of the Main Text. - ,

:

Exercises P4-4: Spt C

. .

Write a complete FORTRAN program for the Compete Factorization AlT'rithm4.

Figure 4-32. Assume the input value for N will not be as large as -- 4

l W
4000. In converting to FORTRAN,. you should be on the lookout for` two ,

interesting features.. First, take aim on the test4ortion.of the iter-

ation box--the upper limit must be an integer. 'Se-col-id:notice thet'th'e

scope of the DO loop includes a 'complete loop--but without ari iteratiO

b6x.

2.:1 Write a complete FORTRAN program for the shqtle-interchange sorting
k.%".'

algorithm, Figure 4-3k. .e.sume you may wish to:40rt up tt 500 numbers,
ts*

each of wAich.can be input using an F10.5 field- -say up. to four values
4 ,

.per card:\44 on the lookout for ocoassional difficulties in converting

the flow chglie to tie FORTRAN code -- especially in modeling Box 6 which
,

show depreaingcounter setiriiti'all an expression.

3. Write a .complete FORTRAN program for.the sort adgAIAM dhel.r.h*in FigureL

.

';'

4735. Make:the same assumptions in this program hat you are asked
-.

to make in .the preceding exercise. 'o

.
.f '-\

t

4. Write a comp140p1SpRTRAN program for finding the largest decreasing=

,

. .. 1 "7.k,gb. A 4 . ,
, 4

subsequence.- Base your program on the flow
.

Chart
,
in Figure /4-39.

.,ASSume.h4 givei sequence will not exceed `100' valUes'iA14 and that.
. -.... .

. '

the values the elves are to be punched. On data vas, f'clur values per
_

field code's.card, governed by. F10.5
' .

,
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F5=1 .FORTRAN subprograms

Chapter F5

4
SUBPROGRAMS

4

FORTRAN programs that correspond to reference flow charts are called

FORTRAN subprograms. As ydu might expect, these subprograms locji verymuch
like other FORTRAN programs 'except for spacial statements at,the beginning

and end corresponding to the funnel and return box of the'flow chart. In
. .

,addition to these special statements there Area number of conventions to be

observed which will -be explained in what"tollows.,

A subprogram is a self- contained unit whicIll'can be compiled separately,'

and then used by a number of programs or other subprograms. One of the main

advantages of separate compilation is that one can in,this way establish and

develop a library of subprograts, which is available for..Later use.

Subprograms that evaluatea function and report h single value to the

main pi-ogram-are"called function Subprograms. (A wcond type of subprogram

will be encountered an Section F5,74.) Fon a-function subprdgram, the flow

chart funnecorresponds to the first statement of the subprogram. This

statem, t begins_with the,vord FUNCTION, followed by the name,of Vie.funct in

and itAargument in parenthesis. or example, Figure 5-4' corresponds to

FUNCTION SQROOT(Y) .'

Since speCial symbols like -,/77 are not available in FORTRAN, we

naturally replace such a symbol wittl an alpabetic name for the function (in

this case SQROOT). Names of function subprograms are to be chosen with some

c-are,.observirig the following c %nventions. The first character in "the sub-

1A-cgram name must be I, J, K, L, M, or N if and only if the value reported °

is in the integer mode. The last character must not be F if the name has

more than 3 ehafdcters% Otherwise the name can have 'l to 6 cnaracters,
the first beineAlphabetic.

You are alres0Sr. fhmiliar'with the use of predefinedtathematica
°

functions' like SQ,WF, SINF, APSE, etc. (See Table F2-2.) FORTRAN sub-j
.,,Rograms are different from these predefined mathematical functions even

,Though our first example, .SQROOT,o, serves same pUrpose as SQRTF. The ..
. . .

..,difference is,hot just in the way tike names, are spelled (the conventions are
.

different for subprograms and predefined functipns), but.is mainly in thk

iv

101ci
I t



1.

e

fa.ct thatthe predefined mathematical functions are part of -,the complier

system. The techAques for adding,to the list of,predefined'mathematical

functions are outside of the scope of this bookbut function subprograms

provide a way that, you can use to develop whatever 'set of, , reference programs

you want.

Just as refrence flow charts must sooner or later' reach a return opx,
/

a subprogram,must eventually reach a RETURN statement./ Thii statement,

corresponding to Figure 5-5, consists just of the wpvd .'RETURN ". This state-

ment need not appear in the/last line of the subprogrammore than one RETURN.

statement may be used in a single subprogram), but it must be the iast'step

in the<exeCution of the'subprogram.

Since the RETURN statement of FORiltADI does not indicate what variable is
n4.

to be reported to the main program, another convention is needed-to identify

the value to be reported. The convention is that the name of the functiorf

subprogram itself must appearaat.least onci on the left side of an assignment

statement and the value assigned is, upon returnj, the value reported to the

main program. For this purpose only, the function name is 0 be, thought of

as a variable.

0
In all otherreispects, a FORTRAN subprogreh must conform to the require-

' ments of any FbRTRANrfrogram. In particulp.r, the 1;40 line of'a subprogram

must be followed byan statetent and DBIENSION information mist be given
.

for each`subscripted 'variable in,the subprograM.

, .

Tile use of a 'function subprogram by a main program is shown in
;1'

,Figure F5-1.

I Z = A + SQROOT(X)

-3 IF(Z) 5, 4, 5

4 'Z.= A - SQR06T(Z)

FORTRAN main'program

FUNCTION SQROOT(1)

4
SQROOT = - --

RETURN

I END

function subpAgram

'Figt.re F5-1. Use of a FORTRAN function subprogram

r



Figure F5-11.s intended to correspond to Figure 5-6 of the flow chart

text and to illustrate only those featUres related.to Subprogram use. The

first time the subprogram is required (in Statement Number 1 of the main

program), we go to the FUNCTION statement via Route 1. This statement directs

that tbe value of X be assigned to Y. It is essential that the name of,

the argument Ain the FUNCTION statement and the name of the argument where,the

subprogram is requested be of,the same mode. That is, since Y represents

a real variable, a request for -SQROOT(N) would begin error since N repre-

sents an integer variable.

e
When the subprogram has been executed a veld §C;sbeen assigned to

SQBOOT and the return to Statement 1 of the main ro am is byjRoute 1.

Upon return ,to the main prograM; the value assigned tO'4, SQROOT is added to

A and the, result assigned to Z. Where the subprogram is 'vain required

(in Statement Number it) we are to go tolthe FUNCTION sta '44'it by Route 2,

assign. Z to the y in the saprograM (note they agree(
1

We),; execute
f,

the subprogram, and return via Route 2 to Statement 4 with-the result of the

subprpgram assigned to SQROOT. s

. 4

An actuhl function subprogram for the square root can be prepared with

reference to Figure 5-7, as shown in Figure F5-2.

C

10

, 5

SQUARE ROOT FUNCTION SUBPROGRAM
FUNCTION SQR00i(Y)
G1 1.0
H = 0.5 * (G + Y/G) 4

IF(ABSF(H - G) - .0001) 5, 10, 10
G = H
GO TO 2

SQROOT = H
RETURN
-END

Figure F5-2. Function subprogram for square roots

. .

As you inspect this filst function saprogramwe take the opportunity to warn

you away from something you're not likely to do anyhow. That-as, don't try

to assign anything to an argument (in this case, Y) of a function subprografk.

It is never necessary to do,this anyway. With some FORTRAN compilers this

will produce very strange results--so let the buyer bewares (You will be

given one more reminder of this danger area in Section F5-3--then you will be

on your own.)

' .
r .
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F5-1

Exercises F5-1

/
1 - 3. Write FORTRAN function.subprOgrams for the. fin./ harts prepared in

Exercises .5-1 main text.

7

e

0

4

11

af
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F5-2 Functions and FORTRAN

The 'flow .Chert text tells us that any flow chart which, when given a

value will roduce another value, can be viewedas 104e,.evaluatiOn of some

function. The statement is true for FORTRAN programs as well as for flow

charts. Mathematical functions exist which cannot be evaluated with a flow
. ,

chart or by a FORTRAN prograta, but the common usage of the word fAnctiom in

'computing is strictly limitee'Co those which can be evaludted with a flow
chart. Moreover, we do ;:not'ully think of expressions which can be precisely

evaluated solely by onqof the four basic arithmetic operations as functions
althoufh, fact.; they. are .Ih.cbmputing, then, a function is commonly °

Athbughl of as a'relationsIgip for which,,:a reference, flow chart is used.
4 A. "

The,domaif a function, i computing, is the set of values that the77:---
argument,in the fUnnelof.the flow chart can take on. The range of a function

isthe set of values thatcan be reported to the main flow chart. In FORTRAN,

the domain can be either a set of real number's' representable in a,computer or

,a set of integers representable in a.computer. Which set of numbers is mea4,
4is inddcated, in the usualrway, by the first letter of the name of the argu-.

ment. The range, too, Can beleither from the set of integers orfrom the

Set of real numbers. Which is meant is indicated, in the usual way, by the
'44.tspe;ling of the name ofthe f,4pctfon.

1
A t'a

4

.t

108
1P5

I

*s.

N4,
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0 -1
-4

F5-3 FORTRAN functions with more than one argumelat_;,,,.

FORTRAN function subprograms chn haye as many arguments as are necessary.

. The min fUnction provides an.example. The subprogram in Figure F5-3 Corre-
.

'sponds to Figure 5-14 of.the flow chart text.1,

C

2

3

4

MINIMUM OF TWO ARGUMENTS
FUNCTION SUBPROGRAM

FUNCTION FMIN(B, C)
IF(B C)2, 2; 3
Z = B .
GO TO 4
Z = C
FMIN = Z
RETURN
END

0.

.Figure F5-3. A function subprogram of two'argumertts

Notice that we have changed the name of the function subprogram so,that it
.

does
z
not begin with the letter M. That is, the function subprogram expects

to 4ceive two real values and to rep6rth real value. We do 1iot need to

introduce thevariable Z since, FMIN can serve the same role. For thi

reason, Figure F5-3 can'be r01]-4..d by Figure F5-4: Should Figure F5-2 be

o changed in a similar way?

t.

2

3

4

MINTrUM OF TWO- ARGUMENTS

FIACTION,SUBPROVRAM
'FUNCTION FMIN (B, C)
IF(B - C) 2, 2, 3
FMIN = B
GO TO 4
FMIN = C
RETURN
END 6.

Figure F5-4. Improved
0
FMIN subprogram

The parameter list of a FORTRAN subprogram can contairi,ipteger,variables.

and constants, real variables and constants, variables, containing alphanumerip'
.

information, -the names of vectors, and,the names of matrices. In every case

there must be a one-to-one correspondence in the number and types of pare-

meters between those of the parameter list where the subprogram is requested

and-those of the parameter list in the FUNCTION statement.'_Confusion would
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reign if we tried to request the-subprogram_ofFigure F5-4 by writing some

fthing, like

T = FMIN (A, 3; C)

or T = FMIN (M,P)

A classification of variables

The distinction between local and'nOnlocal variables is the same ine
FORTRAN as is described in the flow chart ,text. Thus in the two subprograms

for FMIN given earlier, the arguments B and C are nonlocal,:rariables.

In the first subprogram Z is a local variabid.
0

Some compilers are written on the assumption you will never try to

reassign values to nonlocal variableS of a FUNCTION subprogram. Such compilers

take advantage of this fact in assembling. efficient target code for your

program: Hence,an attempt to "out-fox" the compiler in this respect, just

to save astep in the program, or to save a storage cell or two, codld lead

to trouble. Unless you are absolutely sure about what can happen you should
.

avoid changing nonlocal variables in a subprogram. '

An appreciation of.'tte distinction between local and noniocalvariables

can be had by recalling that subprograms can.be compiled.;eparately from

programs that make use-of'them. During compilation a local variable is

associated with a specific location tin memory (except for an additive con-

stant needed to account for possible shifting of the whole subprogram from

,one
place in memory to another.) On 'the other hand,.there'is no way a sub-

.program...can know prior to compilation of the main program, where nonlocal

variables:may be located when the subprogram is executed.

Independence of-statement'nuMbers among Programs
'4

The realization t1at compilation 4f a subprogram is an entirely 'Separate.

Pi-ocess frdm the compilation of a mean program arso brings out the fact that
- *

statement numbers in a subprogram are entirely different references from ,

statement numbers in another subprogram or in'a main prohiim even if the same'

Irumer 4a1- has been -used. _
.

4,

Composition of functions references

: The situation with respect to composition of function references, is

exactly as described in the flow chart test. Thief .- just whit you have

learned as composition of functions. That is, given function subprograms

101 0

f

I

O '
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defining F1(X) and F2(X), one can write

Y = il(F2(X)),

so long as the orange of F2 is a subset of the domain of Fl. Correspondingly,

the .following function references are entirely proper:
.

;
,

itLFMTN(A,E6F(A + B), 5.4).

or = FMIN(FMIN(F, ABSFekn,

or Y = FMIN(SQROOT(B * B - 4.0 * A * C), -B,

or Y = S6100T(FMTI('X,Y))

.

Exercises F5-3 Set A

1 - 7. Write FORTRAN programs and function subprograms for the Low charts

V prepared in ExerCises 5A-3, Set A, Main Text.

Exercises F5-3 et B

1. Write a FORTRAN furiction-subprogram for the GCD 'functiuual reference
, f

whose flow chart yoU prepared in. Problem 1 of Set B in the main text.

Call this subprogram KGCD: Why must the name be changed for FOKRAN?

2. Write a,FORTRAN function subprograM called KGCF corresRpnding to the

flow chart youdreMor the GCF algorithm ( Problem 2, Sei B, main text).

-3. Write a FORTRAN)prograthat corresponds to the flow chart for determining
r

(A) the number Of similar triangles -

(b) the total perimeter of similar triangles
n*

corresponding to the flow charts you,izrepared in Problem 3, Set 'B,

main text.

1 ' ':

A

*4. Write a FORTRAN program.that corresponds to the algorithm for Problem 4,

'... Set Ili, main text. Try to estimate how much computation wIlbeinvolved.main

'Computation can be measured in terms of the number of_additions; tub:- '',

,.

tractions and comparisons that must be made, counting each-as 1.:

*
These problems are quite difficult. The_student will be able to solve
only. with considerable time and effot.

J

1
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F5-4 .;FORTRAN procedures

FORTRAN subpi-ograms which correspond to reference flow charts for prod

cedures are called SUBROUTINE subprograms. -Corresponding to the funnel of

the reference flow chart is the.SUBROUTINE statement which takes the form

suAh as:

SUBROUTIgicRi(N, V)

The'S'ubroutine statement consists of the word SUBROUTINE followed by the name

of 'the procedure you are defining and aparameter list in parentheses, _In,

--:Itii4SORT---6-gatiple we see that A entire vector is identified solely by its

nale, V, in the parameter list. No attempt is made to subscript V in

the parameter list but the subprogram will have to provide DIMENSION inform-'

titian for this 'rector.

Since a subroutifie subprogram does not report a value in the same way

Wfunction subprogram does, the name of the procidure will'not appear in'

he tidy of the' subprogram. Moreover, since this name will. not be used as

f though it were a local variable, its spelling (i.e., its first letter) has

!no special significance.' The name of a procedure musenot end in F if

it is more than three characters long and all other conventions, are as they

are for function subprograms.

'A subroutine subprogram corresponding to Figure 5-16 is given in

Figure F5 -5. The dimension of V has been given as 100 but, for each use,

N is the actual humber of components in the vector to be sorted. Thus, this.

subprogram is usable for any vector liaving 100 or fewer components.,

1/4

C

4

SUBROUTINE SUBPROGRAM FOR SORT
SUBROUTINE SOWN, V)
DIMENSION V(100)
K = N - 1

_DO 40 I = 1, K
M = I + 1
DO 40 J

IF(V(I) - VO),) kO, 40, 4
B = V(J)
V(J) = V(I)

Y(T) = B
CONTINUE
RETURN
END

Figure y5-5. Subprogram for sorting

692



Lookat FigUres 5-16 and F5-5 side by side. See how the FORTRAN Oatements'\

correspond almost exactly to the flow chart loxes. Notice alsa that valuet

cam be intentionally assigned to parameters f a subroutinessubprogram: 'We

warned you not tofdo,this in function sub ro rams but this'isow-a sulfroutine:..

subprogram Koduces its output.

Use of a SUBROUTINE subprogram is accom

analogous to the eAcute box of the flow cha

consists of.the word CALL, followed by the name

and a parameter list in parentheses, for example:

CALL SORT(88, B),

lished with a CALL statement, =

text. The CALL statement

of the subroutine subprOgram

-P-

where B is dimensioned to have at least 88 components in the main program.

,InrFORTRAN, the preceSsof referring to a subroutine .is called "calling the A

subroutine ".

A main Program ceiling SORT, corresponding to Figure 5-23, is shown

in Figure F5-6. This program /
f

C

101

102

103

A PROGRAM TO ILLUSTRATE CALL STATEMENT
DIMENSION B(100), C( 100) I

READ 101, K
FORMAT (13)
READ 102, (B(I), I =;1,'K)
FORMAT(5F15.8)
REAR 102, (C(I) I =.1, K)
CALIAORT (K, B)
CALL SORT (K, C) A ;

PRINT,103, (B(I), C(I), I = 1, K)
FORMAT (1X, 2F

1
5.8)

,STOP
END

Figure F5-6r A main program calling the sort procedure

.

assumes that I is a three digit integer in thp first three columns of the '

first data card; that the components B and C are puncheisl) five per-card
_ .

in F15.8 format. .It is also assumed that K will not exceed 100.

r
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Exercises F5-4 Set A

4L.
11= 5. For the flow charts prepared in Exercises 5-4, Set A main text,

write FORTRAN calking programs and subroutine subprograms. \

Exercises F5-4 (Set B -- .

1 - 3. Fhe f ow-char
repared in Exercises 5-4, Set B main text for.

-Problems 11, 2, and 3, write the FORTRAN function and subroutine sub-
.,.

programs.

Exercises F5-4.

1 4. For the

Problems 1

Set C

floW charts prepared in Exercises 5-4i Set C maim text for

through 4, write the FORTRAN procedures and programs. In
'doing the Program for the subroutine DEGREE, keep in mind that you must
_shift-the indexes for the coefficients, i.e., the coefficient ao _must
be associated with A(1), etc. The same problem must be handled in a
similar fashion in coding the flow chart for SIMPLIFY and REDUeEMOD.
(spelling O.K. for FORTRAN?) in Problems 2 and 3.

cf :

/,

1 1 4

111
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F5-5, Alternate exits and procedures for branching /

Provision for alternate exits and. liranaing from subroutine subprograms

in FORTRAN mirror_s_the-initial -thiscussion In the flow chart text. A parameter

is provided to indicate the result,of tests Performed by the subprogram.

Figures F5-7 and F5-8 present programs corresponding tone 'flow charts of

Figure 5=26 and Figure 5-27.

Figure F5-7.

2

3

5

SUBPROGRAM TO TEST EQUAZITY OF

TWO COMPLEX NUMBERS /
SUBROUTINE COMPEQ(A, B, C,'D, N)
IF(A - C) 1i, 2, 4 '

IF(B D) 4, 3, 4 ,

N
GO TO 5
N 1 .

RETURN
END

ity of coMPlex numbers in FORTRAN

/

C ,PROGRdilSEGMENT SHOWING USE OF COMPEQ

CALL COMPEQ(X, Y, 11,0.17, K)

0(K) 3, 4, 3
C STATEMENT 3 IF UNEQUAL

C STATEMENT 4 IF EQUAL

Figure 15-8. A pro ram segment to test equality of complex

numbers

\

Statement labels and function names as arguments

FORTRAN II was not designed with such types of arguments in mind. He eely,

few if any processors have this capability. Mpre advanced languages do,

however, permit full freedom in the use of such procedure arguments.

4
112.



Exercises F5-5

G

Construct-a-f-ow chart-sdmii-;sa-to -tha of Pr hienr ex0ibee 5z5, Main

Text, and 'plen-write'a FORTRAN subroutine s bprogram to solve two

equations in two unknowns.

Use the appropriate flow charts prepased for Problem 2,

write a FORTRAN program and subroutine subprogram which

real roots of a quadratic equation, ,Use the program to
. .

ing equations:

2x
2

- 3x + y = 0a

3,14x2 - 6.2x - 14.23 = 0

O

Exercisea,5-5, to

will compute the
e

solve the follow-

3. Write a FORTRAN subroutine subprogram and calling program statements

corresponding to one of the techniques you used for solving Problem 3,

Exercises 5-5.
1

.

r

le.

f

4:
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F5-6 Symbol manipulation in FORTRAN-
J

In Section F2-10 we discussed ,14e- input and output of alphanumeric

characters. Now we want to, find out how alphanumericrdata,can be processed
)

so that we will
,

be ab,le to alter such input data as

THE QUICK BROWN FOX JUMPED .OVER THE LAZY DOG.

or 3.14159

or r + +u(v +w)).

'Since we will want to be able tb.refel- to each individ1)41 element

in such character strings, we will associate a separate variable with

each :element of a, string. This means that a card, let ils, say, would

be read with a FORMA' code of 80A1. ".

We are now ready to code a sub4putine subprogram, .corresponding
),'-,-
:s. .., ,,

to Figure.5-33, for CHEKCH This program is dhown in Figure F5-9.

We notiA that there is a DIMENSION statement giving the maximum length'a, DIMENSION

of S as 200. Other than for the DIMENSION statement the program

14

C

2

A-SUBPROGRAM FOR'DHEKCH'-
SUBROUTINE CHEKCH(N, S, M,
DIMENSION S(200)
DO 2 = M,

- C) 2, 3, 2 j

CONTINUE
IP = 0
GO TO 5
IP= I
RETURN
END

C,

Figure F5-9. A FORiRAN,subprogram for CHEECI4--

-could accomacite any length string As presented in Figure F5-9, 200 is

simply a maximum length and could be replaced by ailarger integer subject only

t9 the amount of memory available. The'alphanumeric,data is associated with

real variables, S and C, in Section F2-10. Finally, we see that two

characters like the values of SW and C can be tested for, identity by

subtracting one from the other as if they were numbers, and testing for a

zero difference.

A FORTRAN subprograth corresponding to Figure 5-34 is given in Figure

F5-10. Here we assume the string, S, has 200 or fewer elements and the

substring,' C, has' 20 or fewer elements.
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9

10

11

12
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A SUBPROGRAM FOR CHEKST
SUBROUTINE CHEKST (N, S, K,-C,
DIMENSION S(200), c(29)

= M'

IP(L - 3, 11
CALL CHWCH (N, S, L, C(1), IP)4
IFP) 5, 11, 5
IF(IP - N + K - 1) 6, 6, 11 -

IR IP + 1
DO 9 J 2, K
IF(S(IR) C(JK'10,19, 10
IR = IR + 1
/00 TO 12

. IP + 1
,

TO 2
IP =0
RETURN
END

IP)

S

1gure F5- 10. A FORTRAN subprogram for CHEKST

As the f13:)i,hart text has pointed out, the ability of subroutine sub, -

'program to ca4ahother subprogram had far-reaching significance. It is this

ability that gerMits the construction of subprograms of increasingly greater

comple ?ity PTA simpler "building blocks". Chanter 8 and all larger problems

=will make heavy use of.thit......tuilding block ability

Exerelses

-g 4. For the flow charts

FORWiograms.and subprograms.

prepared in. Exercises 5-6 , maisaf text, write

One further point should be made here. It is often very conxenient ;to

coniderth.ilength of a string, and the string itself as bring a tingle entity.
:

One. way to-do this is to u¢e an array, say STR, with the property-that its

'first component STR(1) is equal to the length of the string, while its:re-

maInIngeom4nents
0

, If wei.denote

by Cita, -end. its

Figurp F5?ll.,

STR(2), STR(3), and

the character' for which.

position-(if found) by

so on, are the character& themselves..

the search of CHENCH is being made

KP, the subprogram is stioWn in

-
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ash

I ..

1 4,
'I - ,

...,
C MODIFIED SUBPROGRAM FOR CHEKCH

SUBROUTINE CHEKCH (STR, M, CHAR, KP)
DIMENSION STR(100)
MM.= M + 1

4
f

N,sTR(1 ) + 1.Q__

:

1

2

3

DO 2 I = MM, N
IF(STR(I) - CHAR) 2,
KP = I.- 1
GQ TO 3
CONTINUE ''',"7

RETURN '

END

1,

,'

2

.

o.

.

.,

.

.

Figure F5-11. A'modified subprogram for CHEKCH

The
1.,

only complication
I.
is in adding 1 in'two places, and subtracting in'

.4

anoth ?r. These.steps are required because now the I
th

character in, the

string is the (I + 1)
th

'cbmpongnt of the array STR,
'''''

1

e

199

116'

4
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, Chapter' F7

SOME MATHEMATICAL APPLICATIONS

F7-1 Root ofan equation labisection

Now let us write a program to find the root ofkneq tion 'y = f(x) in,,

the interval _xl = A and x2 =_B. We Shall write:the p gram, corresponding

to the ilpw chart of FI.AUre 7-5", in the, form of a subrouine....au,bprogram

ZERO so that it, can be used with many'different main pr grams. Then we 'shall,

write aFORTRAN program whift calls ZERO.

. The given function f(x), Fe shall call FUNCT( , it will need to be
defined as a FORTRAN function subprogram. The desi- accuracy of he result

4 /is given as EPSI; so the biSection process will be/terminated when the

length of the interval is Tess than the value of, DeSI. Inside thec'subroutine

the value of the root of the equation will 156 assgned to the variable ROOT.

The final value of ROOT is printed before Peturning to the calling grogram.

FigurtP7-1 shows one way to code thetZERO subroutine. Only three dummy

arguments are used,. A,-B, and EPSI. ,The first thing that's done bythe

subpicgram is to reassign thezvalues of A and B to auxiliary vari tiles

ri and X2 as a safeguard. to protect the
values

of arguments that m4ch A
and B in the calling program. In dase the bisection method is inapp able

*..we let the subroutine print the message.

The value of, ROOT could,ofcourseibe carried back to the calling

program by making ROOT' a dummy'varilble'and adding it to the parameter list
r

in the opening'declaration. In this evert the CALL statement would also show. .

a parameter list of four actual argumentb, 2tbe last one being a variable that ..

ccep ts tbe'computed value, of the root. '' "

It)

. ..

.

120

11.7

o -4*

.
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2te

5
7

8

12
61

6

10

11
13

14

4

62
4

(
E-fields

SUBROUTINE,ZERO(AiB,EPSI)
X1 = A
X2 = B
YJ P FUNCT(X1)
IF(Y1 -,FUNCT(X2)) 6, 5,4
IF(Y1) 8, 7, 8-
ROOT =.X1
GO' TO 12

ROOT = X2
PRINT 634\ ROOT

FORMAT(E20,8)
RETURN
XM = 0.5 * (X1 + X2)

IF(ABSF(X1 - X2) - EPSI) 11, 't0, 10
ROOT = XM
GO TO 12
IF(Y1 * UNCT(XM)) 13, 10; 14
X2 = )04,

GO 'DC 6

= xm
GO TO 6
PRINT 62

FORMAT(23HONETHODOISOINAPPLICABLE)
RETURN
END

Figure.F7-1

7J

A,

There are many things you probably want to. lookat carefully in the ARO::

subprogram. We Tight, however, digress temporarily to explain the strange
-

field code that id used in-format nuMber 61.

The "E-field" isrin. many respects similar to the F-field for input and

output of real data values. E-fields are used to describe the in$t or out -

put .of real data Values written in the "E" notation like

I ' 0.5253E5

A number ifinted under control of an E20.8 field would occupy 20 columns.

If the vatIle in memory is '-1.3467 this number world appear in print as:

Oat] 0 -0.13467000E00i

8 places

20 columns

/`



The right-most four.columns would be used for printing the exponent, the
first of which is for the letter E,, the second for a minus sign .or blank)
and the third and fourth for a two digit exponent (po'ier of 10). There is
azerp to the left of the decimal point of th&precision part preceded by a
minus sign if the number is negative. The leading digit on the right of the
decimal point is always made non -zero and the exponent is adjuSted accord-
ingly.

A number that is read into memory urtder control of an E7field like
E20.8 need not have the decimal point actually punched on the op.rd. If it
is punched, the 8 -*in E20.8 is ignored just.-like in F-fields. Thus the
number -1.3467 might be punched in several different ways on input using
the E20.8 and still enter memory with the same value. Here are some
examples.

110P

Different ways ,to punch the same value on 20 columns of a card.

20 columns

°Doom:woo -.13467E1101
0 o0 0 000 0000-1.3467E0
0000 -1.346700000E000
o o o o -131+6700000.E-09
0 Eicl 000. -134670000E000

Wily in the last example where no decimal .point is punched will tile 8'
'in E20.8 be used to tell where the decimal point should be. In all other
cases the computer takes the number just as it is punched and interprets it
the'same way it would any. TORTRAN constant which, is written the, same way.

One word of caution -- always be sure- -if you use this-type of inputi-to-
have the exponent part of the. number occupy the right-most four or, fewer

a I

columns. Leave no-trailing blanks aftex the exponent As thry are generally
interpreted as zeros. For example:

were

- I

r_ 20' columns

000000000-.13467Eolo
trailing blank treated as
a zero

Here most FORTRAN, implementations would interpret this value as if it

-.13467E10 , instead of

-.13467EI- as intended. '
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One time use of ZERCk

Now suppose we wanted to 'Ise ZERO, to find the root of the equation

3x3 - 7x - 2 = 0 which lies between 1 and 2. Then. we. should need to

define a function subprogramilIFUNCT which calculates the value of

3x3 - 7x - 2. If we choose EPSI= 104 we would need to, call ZERO by the

statement`.
06,

tt

6 CALL ZERO:(l.0, 2.0, 1.0 E - 4, ROOT)

The': FORTRAN program could be written as shown in Figure F7-2.

CALL ZERO (1., 2., 1.0E-4)
STOP

END
C PLACE THE ,DEFINITION OF SUBROUTINE ZERO. HERE

FUNCTION FUNCT(X)
/FUNCT = ( 3. 0*X*X-7 0 )*X- 2. or

RETURN
END
END

Figure F7-2.

Using ZERO on several different functions

Ideally we would prefer to have written ZERO with a list of dummy arguments

like those shown 'in Figure 7-6 of the main text. Unfortunately FORTRAN II

4 processors do not permit statement label arguments, and only a few permit
. ,

function name arguments. This cuts down, the flexibility we would likerbut

we can still find good uses for procedures like ZERO after some slight modi-

fication.

SuppOse we wish to use the ZERO procedure with a series of functions.

N

Though desirable, this would .be4difficult with ZERO as written, As things
....

stand now, we would 'have to.reproduce the ZERO and "package" it with each

function separately. What We need is somf means:by which to identify each of
I

a series of functions so that we can communicaite to ZERO which of the functions

it is to use
,

when called. Although we must always call our function FUNCT,
. . ;

we will now consider FUNCT to be a function of two variables,. 'x and k,
,

where k is really just an index to identify the particular function.
h

The revised FORTRAN program which we will. call ZEROK follows in Figure F7r3. .

Notice the fourth argument is K, an index that is used to identifS, the parti-

cul'ar function to be called oni

.e 1

1g0 -)
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SUBROUTINE ZEROK(A,B,EPSI,K)
X1 = A
X2 = B
Yl = FUNOT(X1,K)
IF(Y1 - FUUCT(X2,K)) 6, 5, 4
IF(y1) 8; 7', 8 7
ROOT = Xi

. .

ROOT = XM ,
GO TO 12

IF(Yl*FUNCT(XM,K)) 13, 10, 14

RETURN
END

N.

Figure F7-3. The subroutine ZEROK. ,It =s identical with
that of Figure F7-1 except for the opening
declaration and statements that contain
references to FUNCT.

Figure F7-4 shOws.how we might use -ZEROK to find the root of 3x3 - 7x - 2= 0

between 1 and 2, the root of x5 - 4x4 + 7x3 - x + 3 = 0 .between -1 aid
0 and-the root of, x = cos(xt between 0 and 1. We choose EPSI = 104.

CALL ZEROK (1., 2., 1.0E-4, 1)
CALL ZEROK (-1., 0., 1.0E-4, 2)
CALL ZEROK (0., 1., 1.0E-4, 3)
STOP
END

C PLACE THE DEFINITION OF SUBROUTINE ZEROK HERE
FUNCTION FUNCT(X,K)
IF(K - 2) 1, 2, 3

1 FUNCT = (3.*X*N:)*X-2.
RETURN,

2 FUNCT = (((X-4.)*X+7.)-xX*X-1.)*X+3.
RETURN

3 FUNCT = COSF(X) A

RETURN -

END
END

Figure ,F7 -4.

121
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The final step in the development of ZERO as a procedure'is to give it.

an alternate exit if the method proves inapplicable. We shall use the
1

technique illustrated in Figures 5-26 and 5-27 of the main text. That is we

shall employ another wtput argument, L,' which will be_assigned an index

value in the procedure. Upon return to the calling program the value Of L

wi4be inspected to see if an alternate exit has been implied. Once we add

this feature it wn.1 no longer be necessary to have the procedure do any

printing. We can add ROOT as an output argument, and carry its value back to

tYie calling, program. The calling program can, in turn, take all responsibility
4

for printing results or diagnostic messages.

We shall call the new bisect, procedure ZEROKL. To complete the analogy
r
ithairhe parameter list in the,funnel of the zero procedure in Figure 7-6,

the parameters for ZEROKL be:

an index to
-point to
the right
function

,The subprogram is given in Figure F7-5. The argument Iv is set to 0 ,

to indicate a normal exit and is set to 1 to indicate the filtetnate exit.

16
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5

7
12

6

10

11

13

14

SUBROUTINE ZEROKL(K,L,A,B,EPSI,ROOT)
X1 := A

X2 = B
Yl = FUNCT(X1, K)
IF(Y1 - FUNCT(X2,K))6,5,4
L = 1
RETURN
IF(Y1) 8, 7, 8
ROOT = X1
L = 0
RETURN
ROOT = X2
GO TO 12
XM = 0.5*(X1 + X2)
IF(ABSF(X1 - X2) - EPSI) 10, 11, 11
ROOT = XM
GO TO 12

IF(Y1OFUNCT(XM,K)) 13, 10, 14
X2 = XM
GO TO 6
X1 = XM
GO 10 6
END

Figure F7-5. A.FORTRAN analog to Figure 7-6

B7-1

Exercises F7-1

1. Write a FORTRAN program to solve all of the equations,.given "in Exercises

7-1, Set C, Problem 1 of the main text. Use the indicated intervals

and the indicated error tolerances. ,Use the subprogram ZEROK given in

Figure F7-3. Run the program and compare your results with the hand

calculated ones. Also run the program for 3 with EPSI = 10 .,
, A

2. Write and run a FORTRAN program to carry out the function evaluations

needed in drawing the graphs in Exercises 7-1, Set A of the main text.

You can use sane of the same FUNCTION subprograms needed in Problem 1.

3. Write and run a FORTRAN program to solve the alley problem (Number 6)

in Exercises 7-1, Set 1) of the main text. Then solve the problem to the

nearest hundredth of a foot if the ladders are 25183 and 19.14 feet

long, and the crossover point is 7117 feet above the ground.

/ .

4 '-...5. For each of the flow chart solutions you prepared for Problems 1 and

4, Exercises 7-1 Set 1), employ the ZEROKL subroutine developed in Figure

F7-5 and write the necessary companion FORTRAN programs (main programs

and FUNCTION,subprograms)._

123
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F7-2 The area under a curve: An examnle,'y = 1/x between x = 1 and x = 2

Since the area under the curve ly = l/x is of interest in defining-
.

logarithms we begin by writing a simple FORTRAN'program for the calculation
1

of the approximate area under this curve between x = 1 and x = 2. This

calculation will provide an approximation to Xn2, We assume that an error

tolerance EPSI is read in from a card and that calculation of the appr,oxi-

m;ate area is to be carried out by doubling the number' of subdivisions each

time and terminating the calculation when the absolute value of the difference

of two successive approximations irs less than EPSI. The'program in Figure F7-6

follows closely the flowchart of Figure 7-16. RameMber that f(x) = l/x.

105

2

30

8

9

106

DIMENSION 2'(101)
105, EPSI

FORMAT(E20.8)
T(1) = 0.5*(1.0 + 0.5)
N = 1

= 0
='2**N-1

FNP = 2**N
DO 30K = 1, NL,2
FK = K
S = S+1.0/(1.0+FONP)
CONTINUE
T(N+1) = 0.5*T(N) + S/FNP
IF(ABS(T(N+1) - T(N)) - EPSI) 9, 8, 8

N = N+1
GO TO 2 -

AREA = T(N)
PRINT 106, AREA.
FORMAT(8HDAREA0=0,E20.8)
STOP
END

Figure F7-0

Note that we had to introduce FK as a floating point value of K and

FRP as a floating point value of the number 2N, in order to be able to

calculate he-desired terms in the calculation of S since FORTRAN does not

permit,us minmodes in arithmetic expression .
r

f
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Exercises F7-2

1. In the above program it is implicitly assumed that.the calculation will

terminate' before N exceeds 100.

(a) Is'it possible for ,N to exceed 100?

(b) What would happen if it failed to terminate befbre N exceeds

100? ,

(c) Add some stateMlents to the above program to protect against this
,

undesirable event, even if the error tolerance\is not satisfied.

Pont out a message in this case indicating ailure to satisfy the

error tolerance.

2. Criticize the above program for inefficiency. .Reviserit to make it more

efficient by following the plow chart of Figure 7-17.\ Also inclUde a

"safety" termination if N exceeds 100. Run your r:vised program

using first 0.01 and,then 0.001 as.valuesofor

\

Instead of terminating the calculation of the approxim4e area when two
. .

successive approximations differ in absolute value by less than EPSI,

we could terminate the calcidation after a fixed finite number of

approximations have been Galculated. Revise the program of the previous
V

problem to read in an upper limit for the number of item tions to be

carried out and then to terminate when this is reached. your

program for N = 15.

Tell how to revise the program iven in this section so th t the

calculation could be repeated'for a series of valUes of EP I each

of which is read in from a card.

a.

5. Write a FORTRAN program for the calculation deicribed in Exercise 7-2,

Set C, Problem 6, main text. Use fx) = 1/x. Run'your program and

compare results using n = 5, 25, 75, 125, 200.

6

125 1 2 8
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F7-3 Area under curie: the general case
I

A now consider the general case of finding an approXimation to the area

under a curve y = F(x), above,the x-axis and between the vertical lines

x = A and x = B. In order to make the program, as useful as possible we could

write it in the form of a function or a subroutine subprogram. We choose the

former here. The function F(X) is assumed to be defined as a FORTRAN

function called FUNCT(X). An error tolerance EPSI is given and we termi-

nate the calculation when the absoWe value of the aifference of two succesc

sive approximations is less than EPSI. We follow the flow chart-of Figure 7-20.

FUNCTION AREA(A,B,EPSI)
M = 1
4 = B-A
OLAREA = .5*H*(FUNCT(A)+FUNCT(B))

3 'M = 2*M

H = H/2.0
S = O.
DO 40 K = 1, M, 2

= K
S 1 S + FUNCT(A + FK*H)

40 CONTINUE
AREA = .5*QLAREA + HAS
InABSF(AREA - OLAREA) - EPSI) 9, 8,

9 RETURN
8 OLAREA = AREA

GO TO 3
END

Figure F7-7

8

-.1
,

. If we want to use this function. subprogram to calculate an' print the ,

4,
approximate area under the aurve y = l/x, above the ,x -axis, sand betweeri

the lines x = 1 and x = 2 we might_use a tolerance of EPSI = 104 and
. .

. r
then we could write the following program: . .-- No

. N
. ,

Z.= AREA(1.0, 2.0, 1.0E-4)
PRINT 4,Z

4 FORMAT (7H AREA = E20.8)
STOP
END

C PLACE THE DEFINITION OF FUNCTION AREA HERD
FUNCTION FUNCT(X)
FUNCT = 1./X
RETURN
END

126
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/
Exercises

1. (a) Write a FORTRAN function subprogram AREA2(A,B,N) which calculates

an approximation to the area der the curve, y = F(x), above the ,

x-axis, and between the lines ='A and x = B and which uses

a subdivision of the intery (k,p) into N 'equal parts. Follow

the flow chart drawn in Exe cases 7-3, problem 1, of the main text.

Test your..prEvam for y =sinx between x = 0 and x = it kith

N = 5000. ('How does your result compare with the area of a semi-

circle of diameter n?)

(b) Use function AREA2 to print out a table of natural logarithm

values from 1 through 51 in intervals of 5.

Tell how the function subprogram AREA(A,B,EPSI) of-this section may

be adapted to protect against the possibility of an.endless lob') by

causing termination of the calculation if the number of subdivisions

exOzeds N. If the calqulation is terminated in this mannez without

satisfying the accuracy criterion, a message should be printed in

addition to giving the approximatiog,to the area.

3 Write a FORTRAN program which includes the subprogram of this

section and the,subprdgram AREA2 of Problem 1. Then use sub-

programs to calculate approximations to the areas described below.

First use 1, 2, 4 equal-subdivisions of the interval and then use an

error tolerance of EPSI = 10-3. Of course yoU will need to supply the.

necessary FORTRAN function subprograms to define the functions:

(a) Below y = .43429/x, above x-axis, between x = 1 and x = 3.

(True area is log 3)
,.

(b) Below y = 32x '+ 2x + 1, above x-axis, between x = -2 and x = 2.

(c) -Below y = x3, above y, = x2 between x =,1 and x = 4.

4. Write FORTRAN

to compute an

Problem 6, in

prpgrams that maybe used in calling on AREA(A,B,EPSI)

approximate value of it to four decimal ,placep (See

Exercises 7-3 of thstmsid.text.)
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F7-4 Simultaneous linear equations: learelopinfc a systematic eth of solution

In this section of_the main text we explained carefully how to solve

systems of two and three simultaneous equations. Exercises F7-4 provided

examples of the method. You should now be ready to write simple FTTRAN

program for the golution of two simultaneous equations in two unknowns. ,-

Exercises F7-4

'1. Follow the flow chart drawn in Exercises 7-4, Set B of the main text, and

write a corresponding FORTRAN program for the solution of two simultaneous

equations in two unknowns:

allxl a12x2 bl

a21x1 a22x2f b2

2. Uie the program of Problem 1 to solve the following systems of equations.
, 4

the computer. Make a hand-calculated check of your computer results.

.For systems (f) and (g) slide rule accuracy is sufficient.

(a) 4x - 2y = 5 (e) 5x + y = 2

2Z + y = 4 3x - 43, = 7

(b) 4x + 3y = 5

- 4y = 7

(f) 3.124x30.+ 5.375x2 = -1.234.

10.246x
1

- 5.214x
2

= 3.714

(c) 3x - 4y = 12
(g) 5.128x1 - 3.874x2 = 12.42

4x + 6y = 3
3.817x1 + 15.157x2'= 3.784'

(d) 2x + 4y = -7

3x + y = 2
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F7-5 Simultaneous linear' equations: Gauss algorithm '

! 1
. In describing the solution of three' equations in three unknowns we

describe eh of the essential operations dn'turn all drew a flow chart for
)

each: It will be insiructiye to build'up the FORTRAN program in the same

gradual fashion: We begin by div.ding the first equation through by all

as described in Figure 7 -24. The corresponding FORTRAN statements would be

100

DO 100, J = 2;'3
A(1,J) = A(1,J)/A(1,1)
CONTINUE
B(1) = B(1)/A(1,1) ,

I

The elimination o i
thf xi- from the row, i = 2, 3 is described in

Figure 1-25° and the Corresponding FORTRAN statements would be

260

DO 200, J = 2, 3
A(I,J) = A(I,J) - A(3,1) A(1,J)
CONTINUE
B(I) = B(I) -'A(I,1) * B(1)

Next ye have to divide the new second equation by a22 and then

x
2

from the third equation. Following these simple examples, you
should h little trouble writing the FORTRAN that's equivalent to

Figures 7-27 through 7-30.

Exer F7-5 Set A

Write the FORTRAN statements corresponding to the flow chart of

Figure 7-27.

Note the similarity between the statements of j'roblem 1 and those

corresponding to Figure 7-24. Write a single set of FORTRAN statements

tolcSver both cdes bi4011owing Figure 7-28. (Remember thq k = 1

or 2.)

3. 'With the FORTRAN statements for the flow chart of Figure 7-30. Be sure

'to :take account of the possibility that k may exceed 2.

I

4. Now write the FORTRAN that's equivalent to Figure 7-33.

It

1291.32
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Next we

x in tuf.
1,"

The FORTRAN

might be: ,

want' to carry out the back solution in order to obtain x3, x2,

This is described in the flow charsof Figures 7-34 and 7!35:

statements corresponding' to the ,latter flow chart, Figure 7-35
e

A-

DO 900 I ='1, 3
= 4-I

X(I1) = B(I1)
IF(I - 1) 11, 900, 11
I1M1 = -.1

DO 1100 J = 1, IiMi
Jl

X(

J
X(I1) = I1) - A(Il, J1

1100 ONTINUE
900 OONT;NVE

OP

This set of_stafaments appears to be somewhat more complicated than the

flow chart of Figur'e,W-5. One reason is that in the flow chart the Controlled
yr

variables i and J an decreasing whereas FORTRAN requires that controlled

-variatles always increase. We takeGre of this by making the substitutions

I1 ='4 - I and Jl = 4 - J. Another reason is that in most versions of

FOR DO loop ig'alw ys executed at least once. To avoid thi's diffi-

) * x(J1)

culty we bypass the inner Le loop if I = 1.

. Now just as the complete flow chart of Figure 7-33 was built up frem

partial flow charts, so we can build up the c9mplete.'ORTRAN progreamcorres-

ponding to Figure 7-36 from the partial FORTRAN programs whiCh we have just .

discussed an0Which you'have written in Exercise F7-5, Set A. .

AlA

e',EXercises F7-5 Set B ;,
.

AO .

1. Wilte a complete FORTRA40.program for the Gauss Algorithm givan in
,

Figure_' -36. (

VG,

2. Rutg. the above program on your machine ana use the program,to solve the

systems of simulianeouA linear equations represented by the following

arrays.
,

,t
(a) 3x + 4y + z = -7

2x + 4y ÷ z = 3-

3x -.5y + 3z = 7

*(b) x + 2y - z = 4

0,
3x - 2y + 4z = 1

_ 3y - 2z = 7

(e), 4x - 2y - 5z = 7

3x - 5y + 2z = 1

.... 2x + y,+ 2z = 1

(d) 2x'- y +416z = 3

3* -4y + 4z =

x + 2y - 5z 4 7

139
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3. Now use the above program'onyour machine to

-equations

(a) A + 2.419i2 - 3.479x3 = 4.219

6.241x' - 5:678x2 +4.271x3 = -52.17

3'1841x1 + 5.761x2 + 34:314x3 = 27.14
4

(b) 27.147x1 1-'3.417x2 - 3.4791y.= 5.617

31.468x1 + 3.428x2 4.7419x3'. 31.421

11.121xi - 3.171x2 + 5.314x3 = -17.121

,

.

solve these systems of

Sokution of n equations in n .unknowns

The gerieralization to n

the pattern we just used for

Eerdise F7-5 Set C

and

I ,

R.

equations is quite easy if we follow exactly

3 equations. .

F7-5

Revise your FORTRAN program for theGauss Algorithrfo handle equations-

n unknowns according to the pilOcedure flow chart you prepared for
Problem.2/7-5 get A of the

program) using the 14 by 4

the main text. The proiedure

equations in15 unknown's.

main text. Test the procedure (subroutine sub-*

.system given in Problem of 7-5 get-B in-

should be capable of handling up to 15

*Etercises F7-5 Set D

1.. ,In Exercises 775. Set C of the .main text you were asked to insert

"partial piiroting" as a capability of your floCchart for the Gauss

procedure. Show the corresponding ihanges necessary to the FORTRAN
' subroutine called GAUSS which you prepared in the previous exercise.

gs

2
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-i.--"z-gomplete the modification of GAUSS and use the new subroutine to solve
_

the following systems of simultaneous linear equations. Compare results

with and without partial pivoting.

(a) 3x2.- 4x3 = -4

3x, - 2x
2

+ 4x
3

. 7
1 =

5x1 + 15x2 - 3x3 = -4

(b)1'2x1 3x2 + 4x3 = 7

4xl - 6x2 + 13x
3

= 11

2x1 - 7x2 12x3 = 1

(.1

.0.

-7,

4).

0

4

132
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I-field code, 19
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Fortran II, 1
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function reference, 27
function subprogram, 101
functions, 105

of more that one argument,

Geitss algorithm, 129
GO TO statement, 4

greatest integer function, 30

H-field, 59

J

a

identifying remarks in FORTRAN output, 57
IF statement, 51

'rules for, 56
implied TO loops, 90 r Ag.

input-output statements, 15
integer, 8

division, 30
variable, 11

iteration, 79

labels, 8, 11_

length of a statement, 40
local variables, 107
logical expressions, 68
looting, 79

mixed mode in arithmetic expressions, 29
multiple branching, 65

nested DQ looa, 96
nested implied DO loops, 97
non-local variables, 107
number types, 11

in arithmetic expressions, 27
numerical constants, 8

operatdr symbols, 14
order-of computation, 34

predefined mathematical functions, 12
PRINT,statement, 22
printer carriage control, 42
PROCEDURES, 109

READ statement, 16
real variable, 11
RETURN statement 102

)

simultaneous linear equations,
source program, 2
statement labels as argurgpts, 112
storage of doubly2subFcripted arrays,
strings, 'l1}

subprograms, 101'

parameter list off 106
subroutines) 102
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)

table-look-up, 89
target program, 2
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128
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112
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variables, 11

X-field, 91

ZERO subroutine, 118 -
ZEROK subroutine, 121
ZEROKL subroutine, 123
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