-

<

.~ DOCUMENT EESUME

ED W3 510 . - .- o o . SB. 022 987 g
. L. £ ’,) R :) ' . Y ' ‘
AUTHOR Charp, Sylvia; And - Cthers = ' ' ~
TITLE N " algorithams, Computation and Mathematics (Fortran - .
; Supplement) . Student Text: Reviskd Edition. - o
INSTITUTION Stanford Univ., Callf. School nathnmatlcs Study -« ‘
Group.))]

SPONS AGENCY . -Natiomal Sc1ence Foundatlon, Rashington, D.C.

EUB DATE . 66 .

NOTE ' 137p.; Por related documents, see SE 022 983-988; Not

. . available in harad ccpg due to, mardginzl leglblllty of "
orlglnal document . g

Py

»

EDRS PRICE'i('MF—$0 83 Plus. Postade. HC Nc¢t Available from EDRS.

) H\/ﬁ/.

This 1is "the suudent*s'textbook for Algorithms,
Computatlon, and Mathematics (Fortran Supplément) This computer
- language supplement is split off frcm the main text to _enable a
school tc cho¢dse the computer language de§1red, and also toimake it
easier to modify the'course as anguages change. The chapters in" the
text are designed to add language.capability. Each.can be read in
conjunction with the main text, sectlon by sectiop. (RH)

Ak *****#*********»***#

*
* Documents acquired by ERIC include many informal unpublished

* materials not -gvailable from other sourges. IC makes every effort.
* to optain the best cdpy.available. Neverthele®s, items of marginal
* reproduc1b111ty are often encountered and- this affects’the quality -
*«©0f the microfiche (and hardcopy reproductions ERIC makes availablé’
#
*
*
*

*-**'*ﬂ'*

via ghe ERIC Document Reproductior Service (EDRS). EDRS is not
resp ble for,- ne—guallty of the orlglnal dccument. Reproductionsi¥*,6 -
suppli®d. by 'EDRS are the best that can be made from the original. *
**

” . [N
AN

. * DESCRIPTORS Al'gorithasy *Computers; *Instructlonal Haterlals,
*Programing Languages, Secondary Education; s
: - *Secondary School Mathematics; *Textbooks : A L
IDENTIFIERS : *FOP?RAN: *School Mathematics Study Group >
. . Lol . - "
ABSTRACT ‘ o o ' K

B) ‘\"*
. LI . Y

s

~

10

B
.
.
-
.-
1

g

[
1
o
1

Al
.

ED1

r
U'S DEPARTMENTORHEALTH, “PERMISSION TO REPRODUCE THIS -
EDUCATION & WELEARE MATERIAL HAS BEEN,4
. NA?ONAL INSTITUTE OF .
EDUCATION ;
: b SMSG
mncs/roocumsm HAS BEEN REPRD. . ’
- BUCED EXACTLY AS RECEIVED FROM .
THE PERSON OR ORGANIZATION ORIGIN® T, 777
ATiING IT POINTS OF VIEW OR QPINIONS Y . ;- R -
. STATED DO NOT NECESSARILY REPRE. TO "THE EOUCATIONAL RESOURCES
L e SENT OFFICIAL NATIONAL INSTITUTE OF . INFORMATION CENTER (ERJC) AN? N .)
1 EDUCATION PQSITION o.u POLICY THE ERIC SYSTEM coNTR’ACTORS : N
[A 1 ‘ > - b

. ALGORITHMS, '
oA ~ COMPUTATION ‘ .
_ . AN AND R - . .

‘ b MATHEMATICS . AR S
‘ * (Fortran _Supplgment) : \ !

- . . N

.

Student Text _ ’
. ‘ Revised Edition o el

M . a L S ‘ .
- The following is a list of all those who participated in the preparation gf this
volume: . :

' 4
.

. ¢ Sylvia Charp, Dobbins Technical High School, Phxladelpi]ia, Pennsylvania . : .
) e Alexan&r‘z\}igrsy!he‘ Gunn High School, Palo. Alto, California * : T
. i Bernard-A. Galler, University of Michigan, Ann Arbor, Michigan
. John G. Herriot, Stanford Universil’y, California’ - : . . .
Walter Hoftmann, Wayne State University, Detroit, Michigan~ . ’ st
+ Thomas E. Hull, University of Toromo,'l\oromo, Ontario, Canada -~ * ') *)
Thomas A. Keenan, University of Rochester, Rochester, New York .
Robert E-Monroe, Wayne $tate Unwversity, Detroit, Michigan fr 2
Silvio O. Navarro, University of Kentucky, Lexington, Kentucky o
. Eliiou‘l.'Organick, University of Honston, Houstop, Texas . * .
v Jesse Peckenham, Oakland Unified School District, Oakland, California
» ". . GeorgeA, Robinson, Argonne National-Laboratory, Argofine, Illinois AR T
. - Phillip M. Sherman, Bell Telephone Laboratories, Murray Hill; New Jersey : .
: Robert E. Smith, Control Data Corporation, St. Paul, Minnesota - : '
Warren Stenberg, University of Minnesota, Minneapolis, Minnesota .
Harley Tillitt, U. S. Naval Ordnance Test Station, China Lake, California b
Lyneve Waldrop:Newton South High Schodl. Newton, Massachusetts -

.

The folllowing were the p.rincipal consultants: ¢
. George E. Forsythe, Stanford.University, California . - - ‘
'Bernard, A. Galler, University of Michigan, Ann Arbor, Michigan \
Wallace Givens, Argonne National LaboraloryrArgonne; Hlinois
’ ¢ ‘ . : '

.

1

.

>

N .

$
. !ﬁ: v .
, : .

e

ERIC

Aruitoxt provided by Eic:

© 1965 and 1966 by The Board of Trustees of the Leland Slanford Junior Umversny ‘
. . Al rights reserved’ - _
meled in the United Slales of America

)
- -

o
o
2 -
"
N .
N L4
.
. e .
LY . "
h * . . “ ’)
- N * »
. « .
. . .
. N -
”~ A
» . ” » -
(S »
1
v *
¢ 2 - v
& Ve ’
f . — 2 -
) e et S
PR I N
. e .
. - . -
. . N
] [‘ . .
N
\
' « & 7
A,
.

Permzsszon t6 make verbatim use of material in thzs I/ook must be Secured
from the Director of SMSG* Such.permission will be granted gxcept in
uhusual circumstances, Publications mcorporatmg SMSG materials must *
inclutle both*an acknowledgment of the SMSG copynght (Yale Univer-
sity oagSlanford Umverszty, as the case may be)and (rdzsclazmer of SMSG
endorsement. Exclusive license will not.be granted save in exce[zttpnal
circumstances, apd.then only by spec‘rﬁc action .of the Advzsory Board of
SMSG. ' .- .

»

’
‘ l -)
e . ' .
[. ‘ J
s B .
3 . .
'
" oyt $
v ¢ v) S
- . . kS
. . AIEN
“ . ’
» \ , .
~ ’ - . . -
4 .
. - -
- - ¥
v £ K
“ -
'
~ . v .]
.
.
- L 4
- N b
- .
? - Y « Y
- . -
. - . s

Financial support for the Scbool Matbemat;cx Study Graz&p bax been
~provided by the Natzonal Sczence Foundation.

v

[

F3

Fh

@

.ERIC

R A 1 7cx: Provided by ERIC

3

MATHEMATICAL APPLIC}I‘IONS ' oo

SOME

.Fl-1. .Root of ®n equetiop by bisection ’ .. e e e

F7-2. The a‘rea under a curve; ’ An example, y = l/x between

=1 and ¥=2...,

F7-3. Area ynder curve the genera} case., . . .

F7-k4. /améneous ligegr equationd: Developmg a
systematic method of solution. . ¥ . o e e

F7-5. Simultaneous linear equations:

Gauss algorlthm.

: R) -
s " .
TABLE OF CONTENTS v
’ < b
’ - [y
INPUT-OUTEUT AND ASSIGIMENT: STATRMENTS ~ ° . 2 r,
F2-1. Introduction . . e e e e . 1 .
F2-2. .FORTRAN language elements 3 8
F2-3. Input-oftpyut statements. 15
F2-4. Assignment’ statements.®. . : . 26 .
F2-5. The order,of computation in a FOR’BRAN expressmn A 34
F2-6 Meaning of assignment when the vamhble on the left is °,

' of different type from the expresslon on the right . . 3%
#o-7. Writing complete programs’. S . 38 4 .-
F2-8. Some clerical details. Ty I
F2-9. The printer carriage P 1Y)
F2-10. Input and output of alphanumemc da‘ta B L1
BRANCHING AND SUBSCQIPI'ED VARIABLES . ¢ T
F3-1. Conditiomal statements = . e e e e e e 51 %
F3-2. Auxiliary varisbles. . . -. A 63 .
F3-3. Compound conditions and multlple branchmg e e e s 5.
F3-4. lLogical expressions. oL il L. L. L, 68
F3-5 Subscmpted«*’var;ables e T e e e e . gt
«F3-6. Double subscmpts ST T . R }%

‘t, ' .
LOOPING y s .
B-1. The DO statement ... T A S 79
Fh-2. Illustrative examples. f” e e e et o - 83
¢ Fh-3. Table-100K-UD. w v o v ¥ n v v v v ver 89
F¥-b. Nested DO loops. . . + . . . e e e et e e e 96
SUBPROGRAMS 4 e ” ‘
F5-1. FORTRAN subprograms I VP (0
F5-2. Functions and FO NPT R e N e 16
"F5-3 FORTRAN functions w1th gore than‘ one argument. . . 106
F5-b. FORTRAN procedures % . . c e e . 109
F5-5: Alternate exits»and pz‘ocedures for branchmg [112°
- F5-6. Symbol manipulation in FORTRAN

-) Cha.pter F2). : -t
s INPUT-QUTPUT- AND ASSTONNENT. STATEMENTS
.- | .
. .) v §
F221. Introdu?ti?;?
- A ?

In Chapter 2 w?deve oped an’ apprex.latlon of 1nput, output and asslgnment ‘
steps as components of algorlthms expressed in the form of flow charts. So s .
 far, we have viewed flow J:harts as a means for conveye.ng a sequence(of compu-
\tatw on rules Rrimarily f"rom one person to another. We have tacitly assumed

. - that only man cajq read, understand and carry out the intent of such flow

s charts. Naturally we want tQ include computers in the set of all thﬂngs ‘

which g:an fead, understand- and'carry out procedures. . ‘

»
ow ot -

kS FORTRAN II--language and processor ;)) ’

Programming lanz'uages like ALGOL and FORTRAN accompllsh +this objective, :
I
'I'he steps of, a\pr‘ograrmnlng language are éalled s;catements. They correspond
roughly tg the boxes of a flow chart.

« . - A
L) FbRTRAN meaning"‘ FORmula 'I‘llANslatlon, is an Engllsh like programming
) language developed by IR about ten years, ago. It was historically the
. f:.rst ‘of a ser\les of similar languages. FORTRAN IT is an improvementjover
the ortginal vérs:.on and is’ probably the most widely used of available pro-

gramming languages. More advanced versions are aZ’so in common use. They

. ,’ a:;e know'n by varipus names, the most widely used nade be1ng FORTRAN IV.

. FOBTRAN IT was designed with these\- objectives,

<

- 1, 'A"w.ide-"v'ariety of algorithms can be described with this language.

it _‘)Its chlef area of appllcatlon is for express:.ng algorithms which

/ 5 - deal with scientiflc and englneer:img computation‘ Algorithms Jfor

B

many other types of problems can also be expressed satisfactorily 4 °
, s, "~in'FORTRAN I1..: . - o *

2, . \

N \
. The rules or grammar"c of the languﬁge are defined prec:.sely "

(y.nlike English,) The et result is that en algoritgw written in
":‘ e "’ * TFORTRAN IT cén mean precigsely the Same thing to each erson who

.
[AC IS

A -—reads 1t i. <€, {t means the same thing. everywhere to people’who

' E have 1earned this language. \Hence, FORTRAN II provides a means for
cormnumqating algorithms via orrespondence and publice ons, from
- . one person‘to azﬂther. '

3

S e

T *‘—"‘\,‘ - . !

v . -

. 3. With minor additions or modiffcactions _%’ORTRAN II can be "implemented"
. 7 2% A

Qn many types of digital computers. By .’izmplementation we mean that,
a computer can be progra d{to accept z%orithms as "source" pro'-'
grams that are wrltt“en 1/ a_ version of I%TRAN II and automatica‘ll'y
onvert then to sequen es*of computer instructions, often called
"target" program‘s, wh7/7 '

ch can then be executed by the coilputer.
. . e - FAIN

These features of FORTRAD{ Ii ‘have led to its wide acceptance 'among o
mthematicians and seientist N be
FORTRAN II as it is typical
sinply FORTRAN.

In’this chapter, we shall begin to describe

implemented for use on a comput'er_, calling it

)
Each stateftent in FO

a dard it can be transferfreq to

L

ritten so that when typed Or'-punched on

e computer?®s memory. Here it can be

and analyzed for 1 s_ﬁn‘r luu;‘ub. 3

\ Programs which anaglyzg t ese statemeats are called compiler or processor

processor reads statements orlglnatlng on punch

programs. A typical.
cards and analyzes them by’ converting each statement into an equlvalent ‘
sequence of computezyj tructions. Wére thesd instructions to be executed,’

it would amount to having the computer carry out the intent of the statement

which is itself distinct from the mgchinets particilar injtruction repertoire.

- K » . 6, [
.. y . 1

Target programs and source programs -

2

Y
rd

. 'I‘he processor program will read_and analyze all the statements of a

FORTRAN Program to generate a complete set of ;nstzuctlons or "target"
program, sufflclent, 1f executea Yo, carry out the intent’ of thesentire
process. The "tar%et program gets its name becaus& it is .the target or.
objectlve of the processor program. In turrf, the processo}" has recelved as -

input a source program nrrltten in th FORTRAN languag W the processor
%

prograg 'flnlshes generatlng the target program, the computez‘-may execute e,

. these 1nstructions right away. ThlS is fea51b1e because the target program

1s developed and kept in’ the compdtert?s. memory. When the target prograam is
too big to fit in high speed memory along w1th the large processor program,

“the generated target is stored temporarlly in 30me form of aux1'11ary tiembry

medla such a8on magnetic drums, dlscs, or tapeg, or in’the form of decks -of
)plgnched cards. When stored in auxlllary memory med;La, es,pecially p&nched

i = z . .

Aruitoxt provided by Eic:

ERIC

- -

/:, '__ »_;:W - N . - N :'!' !
T'I’hli ocess 4§ . further describe@ in Sectlon 2’-L of the main text. .
.] - ? L e
/)) . ' . * R i .
[N 26 : , ‘. . =3
B v ,) '
Lol e . .

- T e

<

.
“

7 l e L. R

cards, target programs can be recalled for execution at an& subsequent time,
as sugéested in Figure F2~1. We _would rarely wish to read or study the

uarget pro ram ourseTves, "but in principle thls can always be done by eau51ng

4 L

the processor to print the target program . o
. .. »
S N AR | TARGET PROGRAM :
' P [. . .

i ON CARDS
o e
N - " B COMPUTER osu x\gA Aguxmkhv -
st " /PROCESSOR ' TORAGE SUCH AS
SOURCE N PROGRAMS IN TAPE, DRUM OR
PROGRAM e TS MEMORY Disc .
\ \) ? ! 4
- o . . OR ON PRINTED
) PAPER

3 -

Figure F2~1. The "compiling" process > ’
N . . 3 .

It may be 1ntr1gu1ng to you to }earn how ﬂueprooessor program does its
Jjob. Aftsr ally it is also a flow-chartable prooess and hence could easily
be within our abilities to understahd ‘it Chapter 8 Wll% shed some light on
thls interesting progess For the present, however, ve will avoid any, head-
on dlscu551on of this: té%lc because our first JIngerest must be £o. learn;to
write 51mp1e al gorithms ﬂon solving methematical problems in FORTRAN. We N

N

will,,however, be maklng occa51onal comments whielr bear. 1nd1rECt1y on the x)

nature and structure of the processor
M . [} " -

General appearance gjig'FORTRAN prograp . o

’/Recall the process for computing

e pxMPaPad® " .
< ar HE -\- ~ - . .

@ *
wT

whpse flow chart we displayéd in Figure 2-2 Each hox can be writien as a

FORTRAN statément as shown in Figure F2 2. s o, " ,
) - . r
. - A .’ . .
.
» . .
. * . . =¥ o
» HOS R 2
M N ' .
- L X,
« _{ . »y .
- X ' * ;
' N \ N / L VN
e / ‘
. : @ L ! g »
. Q o , 3 17 . . oo ”..; .
- - R . e P .o
LN .o R i . S PO e -

T « oL L
. FORTRAN statement .

N % _’] 4 . ' L4
input, . . . ‘ 100,.4, B, C

r . , ‘ ' . \ . .

agsignment - . = SQRTF (A%*2 + B2 + (**2)

.
N ~

output B.C. PEINT 101, 4, B, ¢, D

Figure F2-2. ‘ FORTRAN Statements compared with Flow Chart Boxes

v

. Notice the 'similarity between thé®boxes az‘l the FORTRAN statements. The
. Aff‘erences are largely superflclal “that is, the ‘!Svmbols used in each case

may be dlff‘erent ’ but the 1deas appear to be the same.,

We. don*t have ‘to connéct the stétements with arrows, beca\{zse, whén w:e
write\ FORTRAN state.ménts one below the c;ther, we imply tﬁat they are to be
carried out one aftex: the, otlier from top to bottom. In order to sugges
repeating the process.for ma}uy sets of data, we drew 'a line ;rdm Box 3 back

Box 1 in the flow chart There 1is an' analogy in FORTRAN to accompllsh

““""}7*‘”. !

Gy ‘b-he Same” objéctive, Wq can sa.mply give the READ statement a nume“c label, s

Tt correspondlng to «4ts box nu.;nber in the flow chart, which is 1 1in this
’ case. Then we add after the PRINT a statement which sends control to° the

designated statement. .This is shown in Figure F2-3. * . Lo Mt

&

* STATEMENT e

READ 100, A, B, C - .

= SQRTF (A**2 £ per2 4 oxx2)

* > . '.’ . o §
PRINT 101, A, B,¢, D

) *~

o .
GO TO 1 \ n T ”)
rd

Fighre F2-3. The GO TO ‘statement directs control to any desired.statement.

*
———— e - - ——— - -] - ——
—f . o = s mam s e e = - [——

- ~ 4
.

. . _./

ln other wobﬁs we give the READ statement the label 1 and then

7 '.—%9dﬁce a FDRTRAN ‘statement, i o . . ' '

: GO To 1

9

for the purpose of 1nd1cat1ng a Jjump or transfer to that statem{nt. The Jump

statenent donsists of the symbol GO TO followed by & numeric label. Because .
it reads like English, the Jump statement is easy to understand and we shall i

say no more about it at this time. / - v
Y

-
O 1

As we focus on an éxamp > of a new .languagg, it'always takes a while for - :
its leatures, ltu spec1al symbols and. punctuatlon patterns to stand out . - . "

clearly v You have proba ly_observed, and correctly, that “fn FORTRAN

Y

l. Statements are separated by virtue of being written on S
separate lines. L N . . - ‘
? -

*2. Alphabetical characters in each statement appear to be- v R

, exclusively upper case. b . AP

-\
3. A statement may have a label. If so, the label precedes the
statement, and is separated, from 1t 1n some way, apparently

'oy’some blank space.

.
4

h, The_asslgnmeﬁt-symbol is the equal sigi (=), an unfortunate *
v state of affairsiinnce a left point;ng arrow would have |

beén our'chéige!
- ¢ gt

5. THe symbol for gxponentiation is the double asterisk (**), and . ‘
we appear to have lost the ability to use a symbol like 'v”",

. having now to use SQRTF which is a curious abbrev1atlonii

6. Certajn nTmbers, speclflcally lOO and 101, which appear
following the words READ and PRINT, have no apparent

»

counterpart in the .flow chart.. ’

N - et

[js' ' .
Now, before taking a more methodical look at input, output and assign~
ment statements end rules for forming these correctly, we show 1n Figure F2- h
a complete FORTRAN program as it might be wrltten on a coding sheet prellm-
inary to-being punched on'cards, one card\per line of FORTRAN coding
‘i' °
“We can now notice a number of features. Some have to do with lgxout of '

the *cards. Others relate to the language of FORTRAN 1tself . -
¢ .,

Card layout ¢ h L - - »

'

A statement label will*be punched in card Columns. 1 thfough 5. The

AL SRR . [’ . .. M

statemenf, proper will be placed in card Columns 7 .through 72. We can’add
comments to identify our program or to h‘e“jp make it self-explanatory: A
comment wil! be recognigzed if we place the vetter C in card Colllmn 1. So
the title; i i ‘ ‘

- " EVALUATION OF D')
. * |

i3 treated .as a commént instead of a procedural étatement, because t'ne— letter

*

C will be punched in 'Column 1 of thié card. We don't expect the computer

tq‘@ay any attention to comments. They*4re there mainly to help usg docu;nent
& - 1 .

)

what we are doing!

. « L)
. \ .

common convention, Columns 72 - 80 are not considered ®art of the*
RS b , "

.

program. You might say the computer.would ignore any mart of a program

which happens to je punched in these columns. .

- ' .
. .

. . ‘
' O L g FORT@AN:CCO>DI_NG. o

Progrom -)) érom’ <\ ‘
Progiommer , 7 Joore © | Punen O\
A— C FOR COMMENT " L T i] A\
TrstaenenTs . j e FORTRAN ;TATEMENT>1 .
' s |67 10 57 20 23 .30 35 ' 40
¢l ’E.VALUAJM}J I 4/_

L | 1| READ, 100, A, B, C . S
’ Sl o= LSQRTFI(Aag*Z,_ L.Ba?.*.z + Cx%2), 'IQ '
_ PRINT 10V, Ar38, Co D . SR
e ‘G¢ L7/ S '1‘ o L IR
‘ 100 [FORMAT (3715.8)¢ P
01| [EgRMAT.(4FI15.8), e O /

»~ \EN.Dl{l.l.LAAl‘A..nl\:.,J ,L,llLA‘l(Q
P ‘L..IA‘.'..LA A RN TN ;,4_.J_L4
- . . : «] ! °

- . e -

& . -,

4

L) - ¢

Golumn 6, aWthough not utlllzed in the example. glven in Flgure Fe-L»

7

will have a special 51gn1f1cance to be explalned later

N

. . § o)
language . ’ © .
L]
° ’
Notice that a statement

END o

is placed at the end of the program to mark the end: Thi§ s characterlétlco

of a7L FORTRAN programs. They are not complete without this termingl State-
e A -
.ment.

'

There are two new statements spown labeled 100 " and 3101, Statement
- - S ; .

100 rrovides a format required by the. READ statement. By format We mean

. certain coded information pertalnlng to the ayout of data as it might be

minched on one or more data cards or as it m1 ht appear printed or typed out

v

on one or‘more 71nes of paper. leeW1se statement 101 prOV1des a 'format

required by the PRINT statement. We will' defer further dlscu551od of

format codes untll Section F2- j « (If you are wonderlng what spec1al signifi-
carice the format numbers 100 and 101 have—-don’t bother You Wil see

later that these are Qhosen quite hrbltrarlly)

>
v

So far, then, we see that a FORTRAN program appears to con51st of a

group of stgtements and’ p0551b1y tomments endlng with END Each statement

1s punched on a card of standard layout so boding fonms llke that shown in

Flgure F2 4 may prove helpful. A picture of the cards produced from thisV
codlng form is shown in PFigure F2-5,

/ ot
[] ' 1 -
, _ Sl [rommar Ggei5g) - [-
. . ~ / 104 | rormmr (3F 15.8) |
. /[TTeomz !
/[1]eewrio, 4 8c0 t ‘
[_lo-sorriCaeszianercuve) |
[/ 1] [r€a0 100, 4, 8¢ [

- |
e || svacvarion o o 1C ‘ ._J ,

Fllure F2-5. The Program as & "deck" of cards

LRIC - S 1 RO

Aruitoxt provided by Eic:

Fo-» FORTRAN language elements

. In this section we shall deal with the eharaeter set or "alphabet", of

FORTRAN and thelr use in =onstructing some of the 51mp1e componehts of stated
mentb, specitizally tne construction of mumerals (Lonstants and labels),

variables, names for functipns; and~operators. ’ . '
. « N .

[
.

he dharaster sat . . - , .
{
The eharqcter§\q§z ch are used in FORTRAN stateuments are 11m1ted to

. those shown in Table . Notize the absen‘e of lower case letters. .
il SR _ 2 o . ‘
i . I | . Table Fo-1 ‘ ., ~
Fo 4 ﬁwzwmmfer Set L
. — -
T (a) Lethers A B CDETF GHI o
o ' ' . T KL MDNOPQ R ST
N - . ST UV WX Y g ¢ v
.) - . ¢
., (v) Digiters ., 012 3.5 67809 '
‘0 ' ; . ; -
i . (:)spe-ia: Cba;a sters + - o/ . v
' T . w() =

B (o L4 =

Construsting numsrals (numerical tonstants) and labels

’ . To understané how numerais are written in a FORTRAN statement 1t helps
. - T
to re:all the two s hemes we dis:uss in Chapter One for representing numbers

infernailx, i.e’, in a word of remory. Tﬁere}was the integer s:heme and the

. , .
’ f.oating point.scheme. Externally, i.e., in a FORTRAN statenlent, there gre

two types of numerals, 2alled integer and real. \ -

.
-

.o For example, the numerals
. T . v .
* , . 4, 4%, -15, 100} ’)
‘ , . . ' {
are#l]l examples of integers in FORTRAN. : .

v
-‘r

The connection between the externai and the internal,representation is
I A

this; If & numeral, L4, for 1nstan~e, is written as ‘a FORTRAN 1nteger

-

(externaily), thea it wi'l be repfcoeﬂbed 1nternany in the 1nteger scheme

12 (Y
ERIC L -
. e S -

. 1 . L4

- - . -~

Expressions involving FORTRAN integers ‘are then evaluated in integer arith-

metic which is, of cpurse, characterlstlcally different from realy arithmetlc

«

as explamed in Chapter One. - Lt T : . .
' - N . .

=~ If a numeral, 1&., for 1nstance, is written as a FORTRAN real, then it
s
wlll be represented mternally in ¥he floating pomt scheme. Expressions

which a.nvolve FORTRAN reals are 'then evaluated using real ari‘thmetic.‘ ‘

. ! ’ ¢

- We See then, that the way we write numerals as numerical constants in .
FORTRAN statements (i. .€., with or w1thout the decunal point) determines by
inspectidn, and w1 thout amblgulty, whluh,-tybg of 1nternal representat%‘)n the

number is to ‘have during comnutatlon. . ‘e
- L .

. There is one more way we can wrl:ce a FORTRAN real. This is to uge the
, =

"E" nota'tion mentioﬁed in-Chapter Ones You will regall that "E", as it

~

is used in a, numeral, ILS mere]:y a convenlent symbol whose meaning is "times W)

Y

. teh to the power of". Some examples are: ¢ ’ WO g
- :
o ~ . . ‘ .) R
. . Method 1 Method Z oo
o .
" -, HNumber ' (Without "E"§ “{With "E" notation)” - .
LY . 8 . R . % ‘ il
- wt
52 X 10 . .00Q00052 -~ . 52,8-8 >
L 5.2 X% 10"8 ' *. 0000000524) 5.2E-8
* ~ . . . ‘ L2
- =2 , =2, -2,E0
- . . o . v
’ .. R K or -.2FEl. -
s , or -.2E+l <
. . or - 20.E-1
¢ - L . = «
6.023 x 107 602300000000060000000000. 6.023E23 ,
. (Avogadro's numbér, .
* . . : . - the number of mole-
, . : cules in a gram mole
. - o .' of gas at standard
. . e temperature and
~ " pressure,)
158780k x 10%° 15874040000, - 158704810,
R ' (1 llght year ingmiles. y -

- = . -
~ - PN — . N 4 -

The "E" notation prov1des us With some flexlblllty. It is especially

~ useful in expresSsing numbens whlch are ve’ry small or very large in magnltude.g

.
- 7o w ot - |
L . P

TStrictly speaking, the arlthmetlc used'is floatlng point whiah, you,
recall from Chapter One; was 'said to be a way of ‘approximsting true .
réal arithmetic, We take the liberty of. ca}ling this ‘type of arith- . 2"

metic "real", / . . -
. ' r 7

°
. o ‘

Moreover, any one real number can be expressed in a variety of ways

The

decimal p01nt in the first part of the numeral cgh be shifted at will without

changzng the value of thé number, prov1ded a correspondlng change (in the

dpposite sense), i made to the exponent. For éxample, moving the ‘decima)

point to the left is equivalent to multiplying the number by a power of ten,

so we have t¢ subtract the same poﬁer from tge exponent.

R
A

Exercises F2-2 Set A

i. Show three ways (other than those showﬁ.above) to write

Aruitoxt provided by Eic:
3

' .

2. Use "E" notation to show 1 1light year in centimeters.

—of 4 decimal places.

[3

-2. in PORTRAN.

Use a precision

v

3

3. Write in customary notation the values represented by the follow1ng

FORTRAN constants
. S
5.06E0, - :.002E+8, 88.E-1, -522.4,

.
v

5.8 ¢

4. Write real constants using "E" notdtion for the fumerals &iven:

3.91 ><.1o'5 : _ \ .
9.09 . ‘

- -6.67 x 10> -

176.4 x 10°2 , .

. K

n”o

5. Do all the FORTRAN. constants given below on,the left correctly.express
thefsuggested values shbwn on the right? Correct those FORTRAN constants

that do not. v
LT9E-b 1.79 x 1(y’3‘/ . .
6179.E:7 6179 %107

IR ¢
.. 1679E 16.79 !
X . <
. o
< . . _ 5

4 -

- e

E

. . \ . Fe-2
-) .
. . . N ‘
Statement labels ; - ’ -
' In AORTRAN, statement labels are speCial.forrKS'of:' FORTRAN irfcegers.,x J
namely, unsigned infeger constants other than zero. Thus 114,t 1000, 3'93 \
% . Py .
would be perfectly good labels,.but -4, 0, kT, or 81 are not.acceptable.
o 3) S Py I
Constructing variables anfi names~for functions] SN . .
® - v - .
A variable is formed according to this_rule,: *
- .. ;o .
© A letter, or a &etter followed by a llmlted sequence of letters ox or
151‘05, The total number of characters in %he name is lmhted. Most \ .
1mplerpentatlons (FORTRAN processors) permit'variabl/es to have up to six | , .
characters. We will assume this limit of six characters for our text, . ’
Examples)) . . ' e)
" . ' € .
HARRY TEMP X T46 , c,
' . IKE COLUMN Al5AA . '
] .)
‘Type of number represented -) ’ :
What ty}fe of nuier is represented by a given variable?, In the FORTRAN
expressions ke ¥ . - .
C o, 'Y N . - R
N ‘ A+ B or A/B_'. . ¢
‘ . . v .
do you think values for A and B are represented internally in the integer . <
or in the floating point s.ch'eme" It makes quite a difference, ‘because the %’
kind of ‘arithmetic which will*be performed in evaluating A + B or A / B-
depends on the internal represenbat n of A dnd B. .
Consequently, a rule for determining the mode -or type of internal repre-
_sentation:is requlred. “It is this: ‘ .2 >
1 .
+ Al1 variables which begin with the 1etters' I, J, K, L, M or N. .
- correspond to numerlcal values whlch are stored 1n the mteger scheme ke .
sha/refer to such variables as 1nteger variables., b . T
All other varlable names then correspond to variables sto¥ed in f%ae s .
f‘loating point scheme and can be referred to as real variabfes. ’ " ‘
- - |
Examples of integer variable names are . . v i\ .
ISTEP3, I1, ITEM, KT1, .NUM, KCOUNT L }
R . N) - ‘
. Examples of real wvariable names are -)
TEMP, X2, FNUMBR, SMELD, AEEL, BAKER . /”"
. .- £ \ .ol
. 11 ~' .
Q . 10 . .
MC 2 . A i' = R S A » *
B PR C
- ; »

F2-2, .

Exercises F2-2 Set B ‘ .

Y
’

1. Wiich of the following inscriptions (qr cilaracter.strings)' are invalid

for variables? . . ' N
2ZF¥z, 19768, ~-S1976, ' 19576, NN,
. ITIF, VAR, TI5TT, - MAR.Y, MARxY -

. o » !
2. Which of the followipg character strings &re valid for integer variables?
. . Ll L)\ v, . .

< ; . :,Ial5z., N-G, J9T5 GaiT, ABI, .

® 37, N 37 SN
¢ . .

-9

Nemes of predefined functibns ’ . N

’? *

" Several kinds of functions may, be named in, FORTRAN. 1In"this bhap‘icer we
shall use a group of predefined functions. The rule for naming these func-

_ tions is similar to the rule for naming varfables except that gi_l_ names for
predefined functions end in the letter F.' For example:

—_——————,— =,

g ' " P ~
ABSF for absolute value function ~
. and SQRTF for.square root func/fion . .)

/

>

Other fu;lcti'c.a;{s of this kind are giver; in Table F2-2. Lf;ke variables
! names, these function names must begin with 'a letter and must be followed by
a lim.ited sequence of letters (ending in F). The total number of characters
in the function name is not entirely standard among the various fprocessors.
For this book we shall assume & predefined “Punction Sme consists of from

4 to 7 characters including the terminal F. ‘The letter F, by itself, is

a
¢ r . . - -

not a legal name for a function. :

In. order to avoid confusion Between these func¢tion names and variable

- names, we shall adopt this arbitrary, but very practical rule:
T

Never end g variable name with the letter F, 1if the name is to

consist of four or more characters. Thus, /(TIFF, TUFF, and JEFF would
be avoided, but TIF, TUF, JEF and F are perfeqtlir i"oK" paﬁeé"yfor -

' :
variables. K S P .

.

ERIC - - ‘L

Aruitoxt provided by Eic: -

- . Ve 4 . F?-:Q
i , :
A hd e '. . . «~ _\}’
. . £ Table F2-2 : 1N\
L ' Predefined Mathematical Functions . Ceovs
. . . S B . .
. Name . Meaning N ¥ ce
' ABSF absolute value . .
° ! o, - —_— . Y &S))
’ SQRTF : square root . ’ C . .
‘ ’ - ’ . © .
- LOGF . logarithm to the base e - ‘ . -
. T " EXPF ! ' powers of e or exponential ,] T '
. . SINF sihe of an angle whose measure is o »
& v - given in radians 1;
to. T . - B !
, COSF | cosine of an angle whose measure :
* — M '. is given in radians .)
: ATANF ' arctangent or principal angle in .
’ ‘. . r'Y o
- . ~ radlans of a given tangent e : ,I‘ ¥
N s I . we -
P “velfle. That is, ATAN(X)
J 4 .
. Lt gives a value in radians ‘
‘ ' ! oot . -
’ N . - . -¢" ’corresponding to'the principal)
—— .) angle whose tangent is X. . ~
. ‘. <t . ~
- v . - - - T
&, : ‘ v . ’
= Most of the functions listed m. Table F2-2 should already be familiar .
to y6u. When we use one of these special predefined functions in a "FORTRAN
statement, the resulting machine code . automatically carries out the evalua-
e e

. ﬁ?on of the specified function. The grgugents we use with the functions
. listed, in Table F2-2 are all real and thq function values that are developed

are also all real values. ‘ - .. / ot -
- LN e
. - * K ’ T / A
. . " . . A M . v - 'l [1;‘
Operators ° R ' .
~ . \ .
) To write arithmetic expressions and assignment statements we need
operator symbols. Congidering the limited charactér séWye have with FORTRAN,
it should not be su.rpris:.ng to find some compromises with conventional mathe-
matical notation. Table F2 -3 shgws a’ list‘ 'of the symbols we shall be using ’ v
for the various arithmetic operators. For couvenience in later diacussion
’ they are given in hierarchical order, that is, in descending order of ,pre- .. *
; cedence which is the same in FORTRAN as it is in our flow chart language.
7 T—r . 4 T . ’ i
° A > " - L] '
G S : At 17 - \
CERIC- - ~ ;
. .. . 2 . ,

- F2-2 ' ’

1y

We have also included the 'éssignment symbol in this group.

' It is a binary

operator, but, of éourse, not really arithmetic in nature. ’
; 7
s - . . . - ¢ - .
/ . , . ‘Table F2-3 -
' N FORTRAN Operator S:‘ymbols)
B [y
N - . F%bol e Meaning Exa}nple
. = ! : <~
T e * x** Lo expanentiation A**B means AB
\\ raising to a power L, .
same level * multiplication A*B .
. of precedence / division A/B "
: S ‘ , ¢
_ same level { + gddition A+ B
of precedence { - & . subtractio\n A-B ‘
. . = assignment A =B means A «B
: . = .) »] A
~, . . 3
‘" ‘e -
. . . . 4
e /\ N y .
-3 - * -t
. 3 =
& 7 ' ’
[N \ . : Q} ‘ *) . -
- ¢ a .
< i
: . c s
\\ " ? v ' ’ ’
oy ,
_ ~, 0 N CN
* .a'\ LI \/ a :
- r « 4
. ’ v ° .
N -~ @ . LYY
T .
e
. . ’ - ‘ . 1y
+ 2 . : Ty / B ~ ,‘h
- ¢ \ . , 3 , ': e
- * x
. R
, . i o
\) . . X
i N
% AN
T .
— g o\ T w T
’ . . - \ -
W
Q X

ERIC

- - ¢

A

ERI

kY

-t

« F2-3 Input-'output statements

v

Now tha you have become somewhat dccustomed to the appearance of FORTRAN

rals, varlables, fungtion names, "and operato,rs, you are ready to

study/the three important statement types input, output and assignment.

You have already seen examples of input and output statements, famely:

’
-
v

~

: : %
L READ 100, 4, B, ¢ :

PRINT 101, A, B, C, D

W

. ' . s |

. The stater%ents are simpM in form. They always begin with the key word

. . A . I
. N . - 1
oo READ % .) ;

L o 6r PRINT " |

'
) Follow:.ng the key werd we provide ad ‘unsigned 1nteger constant which" is
the label of another FOBTRAN statement.

This label tells where to get some |
needed format 1nformatlon.

W'e call this label a format number. A clomma
_

<Then we wrlte the llst of variables whose values are either

to be read or prlnted%, This list is simply a set of variables

commas, if there is more than one.

[N

follows next.

separat ed by °*

" We will not 1i the number of list elements of an ingut or output 1list,

)) -
but we will prohibit ertain things from being on the list, a constant for

example.
Thus, - ') o . " - Y’a"ﬁ;‘}
. . READ 100, 2.5, "'A)
-» or PRINT 150, A, B, 2. 5, C,_l52 D
are 1nva11d because constants are prohi’blted as list elements. In the same i
veln any expressions which require evalustion, such as A+ 3B, and such’ 3 Ak
. . - LR
forms'as (A), (-A4), +A, or -A, are prohibited. o, ' g:? v
Thus in the two statements [that follow % .
READ © 150, A+ B, -4, +B o
' or PRINT 151, #4*A + B*B . . ,
0] * 3
each list elemépt is invalida < “ .
In this »;ay we arrive at the "general form of an ;Eﬁt ®r output state-
. . ‘/'
ment, i,e., -
, . _ READ formet number, input list
or PRINT format number, output list 2 -
) e ' ' BT ettt
IC > Lo

> r ! >oe > N - .
: 19
. v 2 . . o

M

For a READ statement, the‘list elements are the variables, whose values

are tQ be assigned from the input data, while for a PRINT statement the list

elements are the variables whose currently a551gned values are to,be printed.

B » e - B
. . . N
< ! - L

Executing a READ statement T . . -

N ¢

In this discussion we shall assume, as in the flow chart text that inpyt

‘ data originate on punched cards. The effect of executing a READ statement
'
is as follows. ' . ’
.)) e A

1. First we assume a cawd is in position to be'read by the computer's

- .t

-

2 - input device. If not, the execution of the program ceases

immediately. In some but not all systems the computer might then
w7
print some message like . . . -

LS
3 ¢

‘ "YOU HAVE RUN OUT OF DaT "o . ro
or "ALL INPUT DATA HAVE BEEN PROCESSED" y o |

| s
2., The format number of the READ statenment 1s then used to consul "§%ﬁ
(look up) the format code stored in memory which has this formaﬁs*“

LN

.

number. The format number is simply a way of identifyihg the l? ,
’ particular ?Brmat code you @%yt among several different formats
that may be employed in the same program. !

. - -

. Fotwat ofde, when properly interpreted, will, in effect’, tell the

computer where on the card to find the desired.values. The code

itself is written in a special language which w1ll be~described

momentarily. . ' . ,
!é‘ 3. The content of the card that is ready to ke read is then transported
Y to the computer memory, where it is examined one character at a time
o beginning with Column 1., The format code'which was found in Step é
. 'is then used %o decide which numerals (from the card) go with-which ///
) ’ variable (of the input list). The purposg,is to.achieve a one-to- |’
.) ,;‘one matching between the numerals on, theméard and the mariables of .
/the input list with which they are to become associated.
’ At this point some examples should help us see ;ov this matching process
is carried out., . '\ .

Example 1 , .
K Stud& E&gure F2 6 where you see a READ statement, an associated FORMAT
statement dnd a picture of a card that might possibly be read as a result

of executing the given READ statement.. =

. 3
*

\)‘ ’ . ’ 16 . ' .
FRIC - ,/EU S

‘ s
-~ - . -

. R
4 * - - . -
’ - .

N

. . F2-3

- ~
ve

@~
) [3
The format number is 22, prie asgociated formst code is (Il5, Il15, I15). .
The code is interpreted to me ,—-1n thichase--that the data are arranged E

on the card in three groups, each fifteen columns -in width. .Thevletter, I,

for 1nteger, tells us thgf each group of 15 columns 1s expected to contain

B . . 1
an integer which can be stored in memory at g place associated with an integer
' N

\ variable. - . . '

| : T
. [7 §

‘ . // , READ 22, NUM, KPAY, KAMT L -,

’ " 22 FORMAT (115,115,115) ' . ’ :

s ’ . iﬁa ' . : -
. , t N
L4 . [|5 3.0 . R '-]

v
15021 14572

“” Figure F2-6. A data card with three intege;s punched on it, ,
together with related READ and FORMAT stateménts.

i

T , We shall call‘each sueh grqup of columns a fleld. Codes like I15 are -

then called field codes because they tell the type of number, I, (for ’ yt
1nteger) in this case, and the width of the field in which the numeral can i
be found .

You mey wonder if there ‘is any speclal reason for choosing a field width- -/
of 15 columns for‘these integers. We want a field which is, of course, wide .
enough to contain the largest expected integer value. But it doesn't hurt to

use a wider field if room is available on the data card. The main Jthing to . '2§
: remember, howg§er, is that the un1ts:portlon of the data value should bé <

punched i the rlghtmost position SMathe card field. This keeps you out of

" trouble because, in many computer systems, any blanks ;nside the fieldv.and to

Rl

the right of the numeral will be 1nterpreted as trailing zeros. Thus, if the -
integbr 1502 were punched in columns 9-12 instead of 12-15, on the card
shown in Flguré F2- 6, it would be erroneonsly interpreted as » 1502000.

f " As the scan of the data from the card proceeds, column by column, the

} Pdeiiesas

1nformation is picked off ohe fii}d at & time to be matched with the hext
yitem in the input list. When & match-ls achieved, then that numeraf Zrom the‘

card 1s converted to its internal form as:a sequence of bits representing '

«

that number in the appropriate gcheme. This is done by a special program

‘
D

aElﬁC | ‘ o S

MIA Fuimext provided by R

‘e

’

4

. L

.

I

P

& .
woxrth knouing about for several reasons It will help you, for one thing, to

- RiC

.

F2-3 ‘ ’ : . . P

prov:Lded by the pro%ssor For I-fields the conversion is made to the

1nteger scheme. e

L4

- Several general remdrks are al'ways true doncerning formai statements.
.o -

\ 1. 'Every format statement in a pyogram must have a {unique) statement,

.

number. . . ¢
2. Every format statehent has <the form FORMA® (format code).

. . . "y - -

Example "2] ! "L .
Now study Figure Fa-7 where you see \another READ statement along with an

3

associated FORMAT statement. Here we show a data.card with numerals for three
. - .

real numbers punched on it. The field, codes, which show where these numerals

are to be found and how they are to be converted to their internal form,' are
’

each F15.8. .o) .o

READ 00, A, 8, C o \
100 r%gm'r@s.a ,FI15.8 F15.8) >

L
] o ? - AN

15 30 * 45
1 \ |
' 3 . * ‘

3 2.5 -6.

¥ rhpd7
wr

Figure NM‘-Y. A data card with three values punched .om it
Y .) together with related READ and FORMAT sta'bements

-~

I _ "g’s"“ I

. .The letter F (for floating point) tells us that' the’group of‘ 1'5. columns

-~

-is expected to contain the numeral for a real num‘ber, gnd vhen converted to

,i.nter‘nal form, it should be represented in the floating point scheme. -

Y ’
In Figure F2-7 each numeral on the data card contains a decimal point

It’s easy and quite natural to punch the decima’l point with each numeral, and
wheu i’c is punched, the positioﬁ'& the decimal point on the data card will
decid'e its Tepresentation in the floating point scheme. There is provision,

howe\yer, to omit the punching of the decimal po:Lnt and have the computer fig-
ure out where it ought t9 be in each field; that is, locate the place &n the *
numeral where the decimal point js intended to be. Use of this feature requires

8gkdttle more care than is proba"bly warranted‘&th'eginrh’ng However, it is

understand the meaning of the' 8 1in the field code F15.8 8

‘ 18
22 K
/ :

- h
, .

- -5) N
Prope€rly interpreted this code means: The mummeral foun® in the next 15

_~columns of the card is to be converted for stqrage m the floatlng point scheme.
If the numeral does not have a decimal point, actually punched on the card};

T then g decimal point is located by counting §_ columns to the left from the

* 15th, &r rlghtmost, column of the fleld The decimal point is intended 5% g0

.

immediately to the left of this eighth column. You can see this illustrated

in the card pléture found -in Figure F2 8. .- . r
FORM_AT('FEB,.) . .

N .

2 345678'9\onwz|3l4|5
M Tel T T 1

pu
! |

DECIMAL POINT
BELONGS HERE

. . . . s
vt b It , :
> , X

]

«
’

ik '
S

. \ Figure F2-8. F-type dath mthout punchlng the decimal point.
d .) The numeral ’+3, which is punched in Colwmns_7
. AN and 8, will be interpreted as 4.3.

3 .) s, . o

The ‘numeral 1+3' is punched in Columns T“and 8.
punches are present in the first fifteen columns .
_shown on the data ,card, the numeral will be interpreted as 4.3 when it is

: finally stored in memory under "control" of a field code F15.8. ’

5 2N - ’ !
We. that F-field codes, which are

‘We assume that no other

Because no decimal ’pomt is

o

ing rea¥ numbers punched on data cards are somewhat more complicated than

I- fleld codes. An easy way ggv1ew the form of these codes is.suggested in

sed to identify numerals represent-, ‘

1.ERI Pa3

Aruitoxt provided by Eic:

.

) : Flgure F2-9¢° °* * .
i \\ and ’ F w . d -
- an i tege? a real decimal point '

number locator (d
- f d .
v’ ield width field digits from .
e - ‘ - o= Cwidbn right end of)
. #*. - v the field.) .
. * Figure F2-9, General forms for I- and F-field codes
. \}4 ? ,) t

T ¢

ERIC |

s p : -
Strictly speexing a field can be of any width, w, from 1 to &,

. the width of the card, not just 15 columns as we have been illustrating

Similaply, the deeimal point locator 4 can vary in value, and.not just

equal 8 as illustrated thus far. For the time Béing, however, in order
not to have to keep so many new ideas in our head 4t once it.,will be simpler

to imagine the,field widths are fixed at " 15

.

' Another point ‘about writing fMeld codes--and tids one is worth remember-

ing--is that you don't have to write a series of identical codes. You can

g&oup them and use g repetition indicator to tell how many are 1ntended in

sequenca. Thus in Figure F2- 6 we could write ”

22 FORMAT (3I15) -
insteed of

124

.

. . s N :
’ . 22 FORMAT (I15, T15, I115) ')

Similarly, in Figure F2-7 we could write:

., _ 100 FORMAT (3F15.8) ot

., in place of the more tedious)
. " 100 FORMAT (F15.8, F15.8, F15.:8)

| Example 3 ’

Example
\ ' ‘ ' '
i . .

[
A card c#n contain any combination of I~ L and F-fields desired and in
N =

E
Notice that the one-to-one
\match is properly achieved employing formet” number 15

anye+sequence as may be seen in Figufe,FQ-lO.

. “The first and fourth
list elements in %the READ statement are real variables and the second and

names). Correspordingly, the first and fourth field codes of format number
15 are F-fields while the second and third are I-fields. This duarantees
\that assigned values for the rea\“,ariables will be stored in the appropriate

floating-point scheme, while assigned values for the integer variables are
. 4 . .
\stoxed in the desired integer scheme.

/. /. '
Kthird items are integer variables (according to the leading letters in their

™
oy %

!

|

|

| B

. .
. ‘
s
|

end a value of d fixed at. 8.

v

>

X
0037

L ° - .
. il /\/ } ’ ~
. _ . o
Figure F2-10., Two.field types on the same data card : -
(3 . LI 3
. A\ - e .
Exercises F2-3 Set A . ~ . T
Bl 3 . *s
- We imaglne a class of very simple problems to be solved in the computer. ’ '

Iet the flow chhrt for each of these have a structure identical with the one
, in Figure F2- 3 In the following exe-rc:.ses you are glven Box 2¢. Your, job . ﬁ,’}

in each case is to: .‘) . B S \ :
A. Decide what should be-in Box 1?7 ' -
Ky Y * " A N !
"B. Write an appropriate READ statewent. ,
. & oot .
s C. Write a companion FORMAT statemen ~
“ ‘D. ‘Draw a picture of a typlcal data card which could be read * :
/—'- ‘as a result of executing the READ statement which you have 5 ’ -
. ' 'written ‘ , n ’
g . . . , .~ e
s A B _
1. - Z <5+ T ’ .
. ! N : ¢
) v ¥ - 2 . &
2. £l<— (L - 1Y + § e -) a1
N : , . ’
.) :,.j . 7‘ v 2 . EER TN . v , -
3. . Z<—((axx+,‘t*))><x+\c)xx+d‘-£~ ‘)
.) ' “ .J » . ' r ’
‘ . 2 . .
b e e flu- DRy - - R e
s . t . .
5.0 X c2/(y+d) - ' S :
.7»: v [. Nb‘)'-;‘:h .
-’ ~ . . -
R N y Tag iy s .
ERIC R fau, -

Executing a PRINT statement

.

Printing urider control of a given formdt is analogous to-reading, but

in a reversed sense. The value that is currently assigned .to.each element of

N the output list will appear typed or prirted across the page by the output
devicé. When each nunber 'is do;nied from its place'in memory it is converted

for printing to the external form that is dictated by the matching field , = .
code. The sp'acing of the numerals on the printed line. is set automatically - ° L
By the' -widths of the corresponding field codes. As you can see, the fieﬁ
codes, in a sense* control or govern the appearance of the printed line.

Several. examplestwill help you td See this process.
. B ‘ ’
> . \]

Example 1~ o & . B
4 a
Examine Figure F2-11 wnere you will see an example of a PRINT statemeni,/
and what it might accomplish when executed Notice the format is essentiatly

the same as that used in an earlier example for a READ statement. This

i

illustrates the -fact that the same. format can Be used in connection with any

READ 'PRINT, or group ot such statements, so 1ong as each refers to the RN
s
‘, 'fomat by the same number. - , T

For most simple problems, it is helpful to obtain a computer—}groduced

printed copy of :‘e\/ery piece of data that is read in to the-computer. This
pr?cess {s sometimes referred to as “&gho checkiJ the data. Of \course it

| 1Sn’t essential to print the data values in precisely the same order as they
may have appeared on the data card. Thus, a program may begin with state-
ments/ like ! . - '/ .] S
’ 1 READ 22, NUM, KPAY, KAMT

N
2 PRINT .22, NUM, KAMT, KPAY
£, . *
© W ' 22 FoRMAT (3115) :
AY .
Data read as a‘result of executing statement 1 will be printed as a
result of executing statement 2. The echoed data can. then be checked
. visually to see if the computer got the right information Both statements -

.. N

“refer to the same format. \

Now since"statemen'\t 22 has a passive or reference role, rather than

' en active or "executable" role, its position in the sequence of statements

¥ - - .
. e -) oo L ‘ ‘ '

whi‘ch' forms a program isn’t really critical. . To emphasize thia dlstinc»tion,v
we shall henceforth call non-executable statements like the format, *
declaratmns, because, in a sense, they provide "declarative", or descriptive
~ 1nformatlon only. 1In this wéy we can reserve the word statement for the
class of action ©or. executable steéps of a computer program., FORTRAN has
se.veral er declaratlve statement types. You will be introduced to these
1n later chapters. "You might” now check Flgure F2-4 and notice how the
FORMAT - dé'g!aratzons in that program are placed at the very end (just ahead
. of END)¢{ They could Just as well have been placed ahead of statement number
‘ 1, Many‘ people prefer. to keep FORMAT declaratijons near the input or output

statement which refers to it (or near the first of these).

f ‘ : PRINT 22, NUM, KAMT, KPAY .
Lo \ * 22 FORMAT (3115))
J 5 ¥ % P _. :
o 1502 17l 14572 9
. [© - . o
[¢] O
0 —) 5 .
v . [e) 0 j Ale) R
~? o —— j 9]
. « . (o]
* agsumes :
‘ £ NUM 1 2\¥ N 2
current value o is 150 o)
current value of KAMT is 17k \ ? [o) .
current value of KPAY is 14572 . 1] -

AN
o~ N 1] .

. /
s Figure F2-11. Example 'of a PRINT statement, its referenced
) — , FORMA‘I‘ and & possible line of printed results
'3 ’ _caused by the execution of the PRINT statement

A | . :
Maximum line,widths , *

*« You may have wondered'fiow }nﬁny numerals can be printed on one line, and,

1f more than one line is needed, how the format can be written for use in
controlhng such & process. Unlike the punched card which has a fixed number
'of columns, the maximum width of a pripted line is not so well standardized
For a given class of printing equ,j.pment there is some degree of uniformity,
* however. Thus 120 characters or 132, cheracters are common "sfandards".
For our text, we will assume a maximum Iine width of 120 columns, or
. characters, Herce, iffwe use fixed field widths of 15 colum.ns, we will be
able to ’print up’ to eight numerals per lide. ' ’

-

ERIC ' - ' ; 27 R

> 3 . -

N -

-

Example 2 o

B
T e L P SNt o R

.

Now suppose we vant to print, say ten v‘alues, as a result of execut:i.ng‘3

a single-PRINT-statement, Since many printers-use type spacing of 10
chajractersﬂtoﬁthehhorizmtal inch, the 120 character width lme is 12
inches-across. For many purpoges thls is wider than we actually need. To,

) keep our page w1dth narrow enough to fit in our notebook or in an 8— X',ll
report letts suppose We agree to _print: not more t’ﬁan four numerals on any
one line. Figure F2 12 1llustrates one way this might be done. We use as *
our formet (4F15.8) W}é’lch is mterp:eted to mean: -up to four items of the
form F15.8 (per 11ne).= The numerals on each printed line are to actount
for wp to four list élements of the PRINT statement. When the PRINT. state-

ment is executed values are copied out of memory one at a time from pos1tions

associated with A, B, C, etec. Fach copied value is then converted for .
. px:inting‘ in the desired exte;’nal real form, as illustrated.

ol }

00000

sXeXeXeXeXeXeXeXe)
I

’ %&

™ Shows appearance of ' "
printed value for -C and G

s
- #
.

. ' ' ‘ LAV
- L 4 s

> Figure F2-12. Showing printingj up to four items ‘per lifie,
t

. each item under cbntrol of an F15.8 code *

Qo) . a ool e2h x -
EMC . 28‘ & ,

.
. L
' . v .

. -

3. IKE, JAK, BAKER, CHARLY, D, B

. ERI

[- ¥
r - .
Full Tt Provided by ERIC. . . .3
4 . .- .

Fe-3

. . . £
If a line printer device is used,then, when four such numbers have been

converted, a complete kne is printed &t once. However, if a typewriter

' device is used, each number is typed as soon as it has been converted to .

‘ output form. This difference in behavior s no vital conseque'nce as the net

effect 1s the same. In any casg, when four items have ‘been dispensed with
the Wrmat, (L4F15.8), is reused and the next four num”bers are matched with the
four F15 '8’s_t converted and printed. The fomat is again reused. This time

. the last two list elements are matched with the first two of the F15.8!s,

‘ cenvert‘ed and printed. Since the last of the ten values has mow been copied *

out, and the number properly converted under control ofjits matching field

code, the list is discovered to be exhausted i.e., no more Jitews remain to
i

":be copied. This discovery then s1gnals the end of the process. Execution

of the PRINT statement is temlnated and the coniputer is free to execute
whatever statemernt happens to be next in thé program. -

L -

Exercises F2-3 Set B

For the following output lists, yrlte FRINT statements, each with &
suitable FORMAT declaration to go along with it. Use only 1I15 and ?15 8

field codes. Assume a maximum line width of 90 columns, i.e., six items.

. \
1. #, B, J,K and L .-

2. A, B,C,J, K L, AL, Bl, Cl .
-

?
. ook
[S . A
Exercises ¥2-3 Set C e i/

«

S N . slr, .
1 - 6. .In these six exercises, you will continue with) bhe dévelopment begun
earllier, in Section F2~ 3,, Set A.(QYour Jjob now in e h ‘exercise is to:

a. Decide what should go in Box 3 of the flow chart\

b. Write a PRINT st;teﬁ'xt fwhich, if executed, would carry out the
intent of Box 3. "

c. Stow an at:commnying FO! 'l;declara.tionw .
A d .
d. For thé data you used in\the first set of exercises, compute the
result which would be printed and show its expected formatted

value as*it would appear lon the printed page.

O ‘ i 5 2'9 ,

Y

r2)y

F2-4 Assignment statements . ‘ d

Te® ¢+ We shall ﬁ.rst examlne the* parallel existing between our prev:.ously

developed flow chart concepts of assignment steps and those of FORTRAN

statements. : .o % .
! - ¥ «
Flo¥ Chart ~, FORTHAN
. v / f{ "
specific féTé ’ _ : o % %
exauple L /A= + B~ + (% = L = SQRTF(A*¥2 # B¥*2 4+ (*%2) 2
- N S
general —Jvariable « arlthmetlc = . variable = arlthmetlc R
% form . : expression - expression
) * ’, ~ .
’ The FORTRAN variable is a character strmg built up of letters'rand digits
as described in Section F2-2,. .

-

-’I’he arithmetic expression in FORTRAN corresponds to any mea.nmgf‘ul
computa.tlonal rule which uniquely defines a single numerical value. There
will be a few important restrictions to observe in writing such express:.ons
correctly., Before cons:.dermg these, let us see how several flow chart
examples are rewrltten in FORTRAN,

I
¢

Examples . ~ - .

Flow Chart - FORTRAN
1. = xe2s5 - _— x=25 - '
"2 - o T 2.5+ Ple tc et 2 =2.54+7 «
3: -"te-a,CXb .T=ABSI:“(A)*B/C
oo dedn-Dxaf~ g2 sqae((aeh.s)v -
5~’ , X(—-‘2/(Y+§A)_' - o .}gf 2, /(Y + afY) -
R T T R
4 ‘ AREA = 3.14159/2, * R*%2 - (SKSQRTF(RF*2 - S%%2) + Rex2 FHI)

~

~ .
We have already become acquainted with three of the basie components of

[N

arithmeticrexpressions; namely, c'onst'ants, variables, and opekxators.

s

Two otler important components are ba.rentheses and function referencef.

In FORTRAN we shall use parenthes‘es in several different ways,

T you
look at Example 5, you will see the parentheses used to form subexpressions
that force a desired’ order:mg to the computatlon. This is the use which is

: perhaps most familiar to us.

L 4
.

In Example 3 you see the parentheses used in ® new way--{o enclose ‘ohe
argumint of a function.
.?29_9; for short, consists of the name of the function followed <oy a pair of
This convention,.in FORTRAN, which is

used for all fypetions, is often used in mat_hematical’ notation, ﬁ'

’, .
A reference to a function value, or function refer-

parentheses enclosing the argument.
For example,

. £(x) .

a

msy meen "the function f evalusted with argumept X';

»

Since some functions are given special marks or symbols, like

or simply.

1, 7

&_, which are simply not available in the FORTRAN charactef* set, it makes

good sense to“use the parenthesés. We then get a uniform way for writing .

'

functien references,

How are the parentheses used in Example 4? There .are two padrs used .
‘You can probably see easily that the outer-
SQRTF function. This

- 4 e
argument is the value which will be obtained upon eval'uation of the expression

‘here, one nested within another.

most parentheses serve to encl.os,e the argument of the

a . b

(EM - k.5) * EN

EE R A

.-

Here the parentheses are employed for order.ing computation, 5

As you can see, a function arément may .itself be a FORTRAN expression

of decided complexity. A similar example is given in Example 6.
- ‘ ~ -

L
by
.

Number types in arithmetic expressions

<

In ge%%?al, an lpression in FORTRAN must be homogeneous, By this we

mean the variables, constants and ﬁmction references which are Joined by

arithmetic operators in one expression, all must be of the same type--either
all real or all integer.
later.)

(There is one exception which is treated a Bit
w2 ‘ ’

-y

v

O

. Ly e e syt

r . E
"f efl\:é'.‘

\ gg-h

r

.

A%

° \ -
F2-4 s
¢ i
N rl
‘. . ‘-" ' . . \
For example: . A+ 5. '
6, *
- LS . C .
e F* G ..
o S,) N

: ’ , 6. *_SQRTF(X)

. 6. /ABSF(T —\P) . ' ‘._
, are exatiples of homo‘geneous real "expressionst !
- 3 v D' ’
[K+ 4
- . bxperT . o
. . . ' P
. Jk*3 . d . /
.
. o b : JMW(J - 2 + K/M)
g ce e . .
L are examples of homogenecus integer expressions. . 4
. In the casejof real expressions,feach arithmetic operation is carried

out in real arithmetic. The value resulting in any of these expression

g evaluations is developed internally in floating point represe’ntation,

In the 'case of J,nteger express:.ons, each arithmetic operation is

73
internally in integer representation.)

. .

conducted using integer arithmetic and the resulting value 1S)developed

Target code produced from an arithmetic expression is generally more
efficient when the eXpression is homogeneous. Moreover, the results of each
operation are easier to define. For these reasons, and other purely pragmatic

ones, the original FOISTRAN languages and compilers were designed and conv-

oot A
structed to reject, as illegal, any expressmn*that was not homogeneous. *‘ f

Many of the later vers:.ons of the FORTRAN language retained this

restriction, As a result, expressions like .

’ I+ 1.
LI+A) g
A+) . ,,/
. 7/T +5, % U . l R e
.- oo S . .
< (M- L45)* N - g

3 : ’, IR)
are illegal in FORTRAN! You can npw see why, in Example 1& names like EM
\' . in place of M, and EN, in place of N were used in constructing a

hoxrﬁgeneous real expression as the desired argument for SQRTF. ¢

"*-...1_7 - . - - w5 d - y T L0 2

ERIC

' R . ~

~ POV PRS-

, .oab _ Fo-b

—_— - T -

Because in customary mathematjcal notation we do not normally 1mpose ‘thlS L

——— e -

restriction against "mixing modes" of the operands, you may flnd yourself . —— e
very frequently writing illegal FORTRAN without- meaning to. K:If you fail to
.make the necessary changes to correct the error fear not!. WYen your.program ___._. .
is read by the computer, under comtrol of 'the processor program, it will - =T >
certainly b%e rejected fZ)r this reason. In many cases, in fagt,-the processor et
will find most or all such 1llegal expressions the first time program is- . ’ ~=
exammed Not only will you receive-a ‘printed rejection slip, but alﬁsuch s
‘vmlatlons which have been found will ?és identified rather clear]\?' So, it

will be vexy easy to correct this 'type of errort . -t -

~ Special case of gg\ponentiation with intggral powei's - \ . '

.

, You may have gondered ir indeed all homogeneous expressions are illegal ' '.
in FORTRAN. Are there no exceptions? Scme of you may recall thé discussion '

"in the main text on exponentiation. In order to distinguish between |
| ¥ '

r 4
— . a3 with the meaning a xa xa . | \
and . Vo

3 34na -

a” with the neaning e .

we agreed that two different wdys to write as were needed. 1In FORTRAN'\the
4 i
notation ; -

2

>)
1s permitted so that we can 1mply the computation a X a X a and disting

A %% 3

it from . . . K ,
v o
. 1 Axx 3. .
. i ; '*«S\ﬁy\\f"m
» %
. 34na
which,is an order to carry out the computation e i .
’ cumbersome expression eqtlxivglent to A %% 3,, can be\wr ten in F()R‘I’RAN JrIt
is: ED(PF(3 * LOFG(A)) which also means 3“‘& / .

In short, raising a real eXpressmn (llke K) to an integral power (like 3) ,

+ 1s,the one and only form of nonhomogeneous expressmn whlch is permltted.T

N

..
- K i

1In more advanced versions of FORTRAN like FOR’I‘RAN 1v, there are other forms
oﬁ" nonhomogeneity which are permitted. :

> .

LY
5
.~

Aruitoxt provided by Eic:

i

4 29 |
o / ¢

a &3

i

i

LR

. - * o wd .
[N) . - A N v L2 y Liae . .
- \{\ ey ST AR e

—r _ .) . N - '

- LT v o
EANE Which of the two expressions, ” i '
“ R - . . o
e / . ‘ T e DRy o
[, s P
;! A3 or A3, ' e

< . ./ - a— ‘ 4 o
B

.do you think is easier to carry out manually? By computer? The obvious-

?__D‘_;:;' . ‘answer‘is u*_?; in each case,) .)
R To compute e3£m requires the determination of a logarithm and the
‘:‘” raising of e to ‘a'power. These operations are carried out in a computer
B . . with the use, of the LOGF and the EXPF funetions, which are separate programs.

Though automatically supplied when expressions like Aj’(-* 3. are used, eacli e
ordinarily involves from 10 to 100 times as much computer time as a simple
muitiplication. We can conclude theref.orelthat, when a choice is available, I

« expressions like A ** 3 are to be preferred to A *x 3,, because a more

efficient target program will result.)
- K |

i v

)

. .

Integer lelsion and its relationshlp within the greatest integer functibn

]

Integer division in FORTRAN plays an important role in algorithmic pro-'
cesses because it is related to the TRUNK function which we defined in Section
2-5 and which is in turn related to the logically powerful greatest integer or
"hracket" ([]) function. Specdfically, the FORTRAN expression I/J is
equivalent to the+mathematical expression 'I'RUNK(—) for;all integers I and- J.

. . ‘ \
: FORTRAN ‘ .
' }‘i:cpression Computed Value Mathenﬁ‘:lcal ﬁquivalent
) 1. 9/10 . o . (9/10]
A 2. '-10/(-10) 1 .) [10/10] ‘ .
' 3. 011100 .17 U l/roy R
w., 4 10/1 10 [10/1] .
5. -5/10) } to0 v -[5/10] ’ .
' 6. -15/10 -1 ’ -(15/10} -
7. 10/(-1) _ -lo -[10/1] .
8., 1/(-100 0 , -(1/10]
Notice that when I and J @ bot};‘pos‘i’tive or ar.e both negative, . :
the FORTRAN exprésston é::,' ’ '
° . o L I/J;)

: is equivalent to the mathematical expression, ~ =] On the other hand, if
the sign of either I or J, but’not of both, is negative, the FORTRAN

4 i v
expression C , .
N .
k"l 7-.:,;‘ . "" j\. - ") 30 .
E MC S .

Aruitoxt provided by Eic: - B . . [
« -

; - . V-

Quivalent to the mathematical expression, -{ I%l] .

) . ! 3 ‘ -

' Specjal note on the exponentiation operation (%) - T ‘
You Tmay have %ondered how we woulg write expressions like e ,

. . ' [[B) . ' ' ! . i T

¥ \ . . A\ .

1} AB h) - - - -

N !

in PORTRAN. Either we mean ‘ ?

(1) A*x (B*r E),'i.e., A

QOr wWe mean °
| - ; E

ro L (2) (A *x B) »* E, \ag. (AB) which is really A(BXE).
As you cawgsee, they'll only be the same whem BC i the same as B X E.

, We must therefore conclude that the ** operator is not associative,
and in FORTRAN it is invalid to write)

\ '~' A %% B %% E

. .

because it is cons:.dered alablguous. One of the two unambiguous forms (1) -or
(2), vhichever is, desired, must be expllcitly written.
. . ¢ ’

Fungtions which have function values as the‘ir-arguments" . T ’
. . -

In some of the expressions you will see in the next exercisg, the argu- -
ment of a function is expressed in terms of the value of ‘another funetion,
This is perfectly perm.lssible in FORTRAN, as there is no res'tnction on the .
complexity of an arithmetic expression when used as an argument of a functionw'/ 'f
Another example of thiswlch we saw earlier was the expression - .

-

EXPF(3. * LOGF(A)) \

gument of EXPF . ¢ '

- i}

Aruitoxt provided by Eric:

-

¢ b,
‘Co

d.

Ce

" f.
.o g.

2. Ir

8

- Exercises F2-h h:?éet A

. Some have superfluous operatlons.

ABSF(A ** 1.5)
(A **-3) %% 0.5
SQRTF(A ** 3)

- ABSF(SQRTF (A ** 3))
(A *x 1.5)

_ABSF(A) ** 1.5

+ SQRTF(ABSF(A ¥* 3))

A can have negative values, which of the geven FORTRAN’ expr

in this case, the same as

E or
in FORTRAN.

Comment on each and chodse the one

. which appears to be ths,most efficient computationally.

than one, which is simpler computaﬁionally? Explain.

(312

Some are awkward.

-

given in the preceding exercise correctly expresses]A|3/2 ? 1

_ We would likewto express A§/ in FORTRAN, where A > 0. 'Keep in mlnd
* that, A3/2 is,
the_follow1ng correg;ly express K3ﬂe

All of

*

pssions

f more

X

v

. 1.
4 - 20
. 3.

. \)H"'
'ERIC

[oA e

L~ » -

Here are

r Note thgt (&)

of the flow chart text that exponentiation takes precedence over unary minus,

-~
.
P2

w . Unary nminus

= -5, .
=-(A+3B)
QL -A xx (-C)
Q= (-4,) *x 2
Q = -(k. ** 2)
Q -k, *x (2) .

1 4

Q = L, wx 2 ’

Q = SINF(-A + B * (-COSF(C)))

.ﬂ/'

assigns a value of +16 to Q.

It cannot be a binaxy minus.

[}
gome examples in FORTRAN statements. .

»

.44“

t

the*unary gnd nunber-naming minus, on the one hand, an%.the binary minus, on
¢ the othér hand.
(Sﬁg . or immediately following a left-parenthesis, it is eithsf a, unary minus or &
) . . ‘ngmber—r;amin.g minus.

In Sectifn 2-4 of the flow chart text you learned to distidguish between .

If a minus sign appears at the very beginning of an e%pression,

i

Remembering from Table 2-4

N = .. Lo

. ST T L - ~
' ! ,‘ il - -- - -h,...vc- t
T I .
PR . - .
we see that (5) $67 end T7) “esch assign -16 to Q,. Similarly, -A ** -0
, - s thesameas -(A *_:LC))) . ~~-,A>—‘-~'- : ,,;
" of course, ng two- operators may“ﬁe written sfae-by -side. Thus, A X -B ’

is invalid. Wé mu,s.t._\sm&e Anstead A ~ (-B) - or perhaps -A * B. Similarly, - weesecyg
——r — -

ey C or -A ** - C are both mvalld

- T papm——) . N . R -
. '
. - - R 4 -, s
: . — e —— ~ - . - . - s A3 ¥ A m Y ~

. ‘ - - e - s
'5. ~ e e i -
-~ - s .
"
 ? N - N : * ¢
.. Exercises F2-l+ SetB -, , <.
. Correct the following three invalid FORTRAN statements. What problems
arise, if afy, uz correcting t);\second ang third %tatements"
N ~
3 . .
. 1, T=Tx-A .
. . . - - ‘s
‘2. F= C/z3.4 b ,
, 3. G'=A+B % (C* -F/D) - g ¢ ‘
"o N) ’
N g W 7 - .
. v - 3 J
T - ,
. i
. . - [r L] N
. \
. 3 . .
¢ \ .
. %
1 . -
’ 'a :
~ ’ ‘
- , - . N ' 1
PO ’ > - N
. B* ‘ R)
. 4 b w >y
. »
: : " e '
- o - ‘ﬁ:;;‘ ﬁ .
~ ’ ! . 1) N
LY ‘ ”»
. .)
-~ ~) * i :
0 ‘) R N
1 - > «
v N
. A ‘ .
. ‘- N 3
») -, , . .
’ - ’ = »
. 1 -
. N ’ .) 4 . !
- ; .
. - . z
- Al -
Fad [
[’ ’
d’“ ’ 33 . ? R .
[mc S 37 3 y
- . .
- . . -
. L e aea

”g, : - TN e -%

-
=
:

e
-~
-

- . o
M . . hal N P

*

Fe-5 The order of computation in a FORTRAN expression
. N LA \ - sl '
We have not deferred this.question to this.late point because there is

somethlng special that must be sald here about FORTRAN that is different from -
what we have already said in Chapter 2 of the flow chart text. On the .

. gontrary, the fules for 1nterpret1ng the order of computatlon are precisely
. ‘the sgme. If you don’t recall these, cloSe the book now and try to recon=-

struct them. Then compare them with the follow;ng.

° -
» <&»
1. When-parentheses age used to nest one subexpression inside another,
evaluate these nested subexpressions in the order from the innermost
N ” r
to the outermost. . .) .
. * 2. Within any one subexpression evaluate in descending order of precedence:
hY ~ .
i
e Highest functlon references
\ .
. *% (exponentlatlonh ,
A N
. I, - - .]
N ° < -t N *, / . J
. . % ovest +, - - "
[3
>
3. In case of a tie in precedence level (within any subexpression),
perform thase operations in the tie from left to rlght.
- & *
¢ Y ~ . .
- N - - -I
r- -
'] -
5o, .
- f‘
=~ - 4 A - . - ' 'Y -~
v ' . e
\‘. : \ ‘
S . - L
5 . .
-) ® * ,‘ .
. e
- *)
. . /a ‘ ') ,
“ v A »
L 4
4
.) .
. - »
7 A @ ‘ e
' ‘ - 6y .
! , 33
- * »*
(< b
]: MC j . 3 ALY
B - . ; .
v o e . ’ N . L. .

E 2

v .

H / b

.ﬁ Meaning of assignmept when the variable on the left is of different
' type from the expression on the right ° /

v , ¢
’r

Is 1t possible to convert a number from integer to real- representation
or vice versa? Based on our discussion so far, it would-seem not. To answer
. this question properly, you should notice that until now all the assignment
statements we have illustrated were homogeneous in the sense that the variable
on the left of the (=) sign and the expression on the right of it were both
of the same type (real or integer). There are two other. obvious possibilities
in FORTRAN They are not only both legal, but highly ukefer

: -
In short, we have four cases:

H IR

(a) real variable = real expression

.

or . ©

-

i S
B
.

. (b) integer variable = integdr expression

&

.
Iy

(c) real variable = integer expression

0
-~

(d) integer variable = real expréssion.

We have nothing further to say about cases (a) and (b). It is (c)

and (d) we are interested in because, such statements can be used to convert
13 Fe
integers to reals and vice versa, y

~ -

.
E]

. Let's first,. cgnSider case (c). The number assigned to the real
variable 51mply has no fractional part, %’

~ <
’ . .

Examgle . - -~
. .. .
) o Ty " LT
o . ., " - . .
Lo r",..~3=§/46“) ' /A
. S T)#"I°+3 T o e

Observé that this sequence of FORTRAN statements will lead to a real vdlue
< - ’ -,
for T equal to 22.0. In other words, the integer sum of I +.J- results

.

in the real vdlue for T having a zero fractional pa§t4/‘

‘ i
Now consider case {d), Here the int/ger VEZEQ : gﬁea/t;~the.variable
is truncated in\EFE"sense—GEscribed in Chapter-2; Section 2-5, In ot) er >

words, when the expression is real and the variable is inte er, then 3
variable = eXpression
. /: - -
really means . . e ,
. K VAR
. g »

ERIC » SRR AL

. .
3 * e
s

14

. . fq» A
. i i
. F2-6 ’ . i
» $.
variable -= sign of expression x [|expression|]’
v absolute
o~ 2 value
4 .| marks Ny P
A\ ~ i
\ . - ® 5 grez?fe?t -
\ ‘ integer :
' , - . '7":3;

Wha{: this VYoils down'to is that a FORTRAN statement like
s . VA T=A . .

is the equivalent of the .flow chart assignment:

. N

«which is by no means the same as 3
L]

1

T i I« A

o

‘)

Why? Becquse the-flow chart varigbles I and A do not have specific _

digital representatidns 1S5 01ated. wn:,h them. en?e‘ ho—rounding (lo;;ping-off!

can be implied in the simple flow chart ass1gnment

L4 . .

t

« Example 1 . v r . N
< - - - LY
Co o DIAM .= 5.9 E
ICIRC = 3.14159 * DIAM e
. kW i
P - This sequence of FORTRAN statements leads to a v,alt}e of 18 for ICIRC, -.

A
- pge S '
and.not 18,535 which would be the actual circumference of a circle m.thzé. 2

diameter of 5.9. . : -

-

-~

Fxample 2 ’ - ! ‘.
LXamp € < . . .
" BAINCE = 52.51) :
. WITHDR = 92.49 . - Lo) N
o " IOWE.= BALACE - WITHDR
’ 2 " v PN ; - - ‘.
Assu.ming BALNCE and WITHDR refer to- bank balance and withdrawal, _the
\ overdraw 1s’ $39.98. The fz‘a'ctiqnal part, .98, is lost when stofirig :.39 o,
in IOWE. ‘_ . . ‘4 ,»"I) :
t (had g .) K’ 2 u Coe ' :" o <,"
V) L \ W
) H L Moy c e -
O - . N . 40 , 4) - ’;4*)
ERIC 3 ! - 3¢ o Lo .
P e o Ll L e . A v '
; :

poer - 3

.

‘Y

! ” \ - ° * m‘6
Exercises F2-6 ; ¢
1. VWhich of the following statements-.are inv:alid in FORTRAN? Explain.

(a) TL =T * vag3/s =~ 2
(bN A = EXPF(A4 % Z %% g + A3 * Z %% 2.)) .
-, (e) 'Y = LOGF(SINF(F)) + 22 ~ . .)
. (ay T=70+1. . . .
“(e) 1 =1/ S T . .
. « - .
2. ‘Assuming 1(b) above is valid, what changes would you propose in ‘the

, interest of efficiency?

°

\

..

In eaéh‘of the follo'wing write a sequence of one orimore FORTRAN assign-

ment .statelients to.accomplish the indicated task.

i

a

<

- . S
3. Assign to I‘P%H ‘the intégral part of the real value now gssigned to V.

X
real value.currently assigned

b)

4. Assigh to FPART the fractional part of the

. * .
w0 oV .
~ 5. Provide ah alternative real representation for the integer va'jk.\le currently
~ assigned to the variable called INIV. .Call this new representation RINTV. g
. 6. Compare the following FORTRAN statement wi‘f/h the accompanying flow chart
box .) "
- E .
, e J = /K .
©Z .
’ <@ b . o . »
Y -
.. . ey T I LK :
M N \ A \
o I' ' 4 - X ! -
‘. . . » . ‘.):ﬁ,
Are they the same? If not, change the flow chart box "co conform with .
. 0 ‘ . s " -
>, the FORTRAN statement. ‘) : ’
’ o .. ! v . -e ! - ‘.‘
: la o K .
< bl\ * . .
ot ; . ") . ., ,"
S i) o N
- - e . ’ ;0 . s
° N * v 4)
s P -) L4 P ‘ .
- P ! i{ f * -
6 1 .) ;e
. / /f 5
. k ") :
o B . 4 ¥ L
. . v o o R
s - - f
. ' - ’ - ' ;
=) .&i v l‘ ! i ’ . ¥
Q " I ° I3 A 37 - 43_ , . o e S .
CERIC 5 . S
| nllmrmlﬁirvn i . «‘) i” . i . :: . P . . . £ .
AP S . - SN . L e e .

‘

F2-7 Writing complete progrems
Remember the $20 bill problem? You will now be able to write FORTRAN

statements s indeed a complete FORTRAN program, which will show hqu to compute
- the most $20. bilds obtainable from the given (real) PRICE of Dad's Jersey

cow. Before looking at the version given below in Figure F2-13, write your

own first and then compare the two. @
{ . 3
_ FORTRAN PROGRAM
b ® - ' -
: Label Statement or declaration -
- ¢ WHAT THE JERSEY COW WILL BRING
. . D
READ 101, PRICE
RO C PRICE IS GIVEN IN
> c DOLLARS AND CENTS L &

PRINT 101, PRICE ,
101 'FORMAT (F15.8) -

c NOW CONVERT TO PENNIES
TPRICE = PRICE * 100. _ «
. c COMPUTE NUMEER OF 20'S
. NUM20 = IPRICE/2000
.. C NOW PRINT ANSVER, I.E., 5)
c VALUE OF ‘NUM20, A STOP .
" mnrtack, I\}UMZO .o '
102 FORMAT (I15) , ' ‘.)
, STOP
/ 75.751. ’ P
' . . - -
_ ’ , 8 Picture of a Data Card
. ; 4% :
.) ' 1'5 o o) -
ol 75,75000000 | o
o o| . 3 /) 0 .
’ = = 7LL’ 8 Picture of Results
N : . / S
~— ZL 0
‘ oy .
Figure F2-13. The Jersey Cow - programmed in i‘ORTRAN B >
wWe BRI L

. .
, .

Exercises F2-7

>
1 - 6. 1Inthe exercisés of Section E2- -3, Set A and C, you worked out the
input and output details needed ons:.;c FORTRAN programs each having

. the simple loop stmcture shown in Flgure F2-3. You're to finish the

Job “now by writing out on a coding sheet each of these six simple
FORTRAN programs. fog s
P <~ 3

T What single assignment statement can replace the two that are used in

the program given in Figure F2-132 ~ LY .
8. Recall the pi'oblem (in Section 2-5 of the main text) to simulate winning
’ points on a carnival roulette wheel. It'!s presumed you have already.

drawn a flow chart for this situation. Now write a complete FORTRAN
+ program which is eq_ulvalent to your flow chart.

F2-8

J x '

0) ¢

F2-8 Some clerical-details

AV

This section introduces you to some'additional details concerning the

preparation of punched cards for FORTRAN programs.

Length of a statement

A FORTRAN statement (or declaration) can be, for all practical Purposes
as long as necessary. If it is necessary to continue any one statement on
a series of lines, provision is prov1ded in the coding form to indicate
continuation, This is the purpose of Column 6 on the coding form shown in

Figure F2-k, Thus, suppose we choose to write the statement

-
»

= SQRTF(A #* 2 + B *% 2 4°C ** 2)

on two lines instead of one., Its appearance on a coding form might then be
‘modified as shown in Figure F2-1k,

Label || Statement

. . T=SQRT£3‘_(A**2+B**
. 2 +C *2)

N g -

- Column 6

-

Figure F?-lh.v,Showing use of the continuation code

v

on a coding form -

N -

+ -)
The digit 1 1is used here on the continuation line. Any digit is

satisfactory except zero, Notice we leave Column 6 blank on the first line.

The cards punched from these instructions are pictured in Figure F2-15,

© »

-

.
Y.

' ~ co 6 -, foo 72
Z ' N
D /[zscxe2) |
’ T+ 6QRTF (Ax x2+8+¥ %)
- .
. N
Pigure F2-l5. Showing use of the contanation code on .

A

the punched card

\‘1‘ . - . k 14" .
ERIC - | o

R
h »
. / . -

N . . LI
F2-8
- "?‘
. Blarflk spaces (columns) in a sta‘t?ment

A blank'column in any statement or declaration punched on a card is,

with one exception, always ignored in FORTRAN. To illustrate this point we
can let a O represent a blank card columh, Then the statement '

' ACBOFOLO-GROACKNECROHO1000,04
T ! :
will be treated in’the same way as

g ABEL=BAKER+10 .4

~

~

So+blanks can appear anywhere and wil.l be ignored. Moreover, the A in

ABEL need not be punched in Cglumn 7. A statement'may be punched beginning

. -
in any column which one chooses, between 7 and 72 inclusive. The same
© principles epply to READ, PRINT and "FORMAT, - The exception, where blank
columns do have significance occurs in H-field codes used in FORMAT
declarations, This subject will be treated in .the next chapter,
, ‘ a r (—— e
¢ Y 4) .
L] - -
. 7
N .
: ~ \ ¢) . N R)
PR -~ }
& 7\ .
4 \) !
’ P ’ -
) N L R i '
; , - A
3 ‘ -
1
A A
L -
. ' . - N -
¥ L .
y - ’ 1 i .
ERIC ~ 45 TR :

a L4
.
R ‘

. F2-9 &) ’ <

F2-9 The printer carriageT \ N

LI . . .

¢ The carriage of a line printer, which holds and rolls the paper, must

receive instructions as to how mych to roll. or feed the pape forward prior
to the printing of the next line. ©Note thls is analogous to an %ectric

typewriter rece1v1ng a carriage return impulse which causes the paper to move

forward one unit or line in the vertical direction. Also note that vertical
paper movement on either a typewriter or on a line ﬁrinter is forward.on}z: -
If we are going to space the printed materialtﬁofas to get various’vertical
arrangements, we will want to have the computer issue spacing commands to'the
yrinter carriage telling how many llnes are to be moved, preferabLy before

each prlntlng action. ’ .

How is this control achieved in the FORTRAN]anguage? To see how this is

for printing as one line. Call this a line image. These charagters are,vin

general the numbers converted to their output appearance governed by one or

it can (and does) "shunt off" the leading character (i.e., the left most in
the string) and interpret it in a special way, Instead of belng treated as
the first of a series of characters to be prlnted this character is received
as a coded signal which then activates carriage movement. Depending on the
character, the carriage moves various distances (i.e., feeds the paper forward

various emounts). For this reason we ’call the leading character of a line®

©

. ™~
image‘the garriage control code. It is never prifted.

The three codes which all printers are wired Lp understand,_and their

¢ .resulting effect are: !
, * Carriage - L
control code N Effect .
O (blank) Rolls paper forward 1 space. T
0 (zero) . Rolls paper forward 2 spaces.
. / 1 (one) ¢ Rolls paper forward so as to'position it
.) . at the top of the next bage’ Leavﬂng a
: ,one-inch margin at the top.” 'page" on
- iy | a continuous printer form roughly corre-

sponds to a single ticket ‘on a roll of
- movie theatre tickets Or a single "square"
¢ on"a roll of paper towels. In other words,
a page consists of the paper between two
horizontal perforations. In the cgse of
- * the printer we shall assume these perfor-
. - ! ations occur every eleqen inches. ,

T;I‘his section can be omitted if you communicate with your computer via a type-
writer rather than by punch card for input and by line printer for output.
. . o , \

' 4G \

; Q
EMC : .) \
...m.m i , . \

. .
done, we.should first visualize a’string of characters which has been developed

more field codes. The printer which receives this line 1mage is so‘wired that _

The next éuest,i.on is, whaf technique can we use to force the character,
. . §
blank, zero, or one, as desired, into the leaditig position of each line
image which is to be printed? . : o

- -
=~

For the present suppose we limit ocurselves to single space printing.
For this we will ~only need to force & blank into the leading position,

) 4 £

You have probably noticed'that upon printing a number under control of

an f— or F-field, if the numeral is:small and does not f£ill the field, J 4
positions to the left of the leadlng digit print as blanks. This is our ¢

clue, A blank will therefore automatically be pre,sent at the left end of

the flrst field of a line image if

'l., this field is an I- for F-field, and if

s ’ A . . ‘
2., the field width is ¥ider than necess&’ﬁ?ﬁ'or printing the
.. bed <

desired number and i}s sign. “&\ N '

-

N e
S PRI IS

t

1 Now if you check the examples used so far in thj.s text, you will find
that with a field width of 15 coclumns, most of the simple numbers we have
dealt w1th are in this category, _ ! N St

For a field coded as . f:‘

‘ F15.8 . ST

| -

. what 1s the largest number whlch can be printed and stil; have a blank at .
T
f%the left-most position? . fgf

. To answer thls, interpret the X!s in,Figure F2-16 as digits. '

i I

Ledding ‘blank
used for
carriage control

A place is needed for a minus
sign if the number is negative.
This is the leftemost spacé
actually printed.

LR Ll s

. A
. Figure F2-16, Printed form of a leading numeral under CE T

- D . s 2L T SpRsuE SYe. PN

F15.8 control ’ -

- - e s s e e s

-

Clearly, a number as large as _ . . oot - ST

£ 9999.99999999 4 .

[E il it ckulig

For printing integers there is even 1less problem with a field coded I15,

x
hY

can be printed.

L3 \

ERIC . .. R P .

T . | Cmros

N

-

< -

ERIC

Aruitoxt provided by Eic:

F2-10 :

- . ¥

¥2-10 Input’ and output of alphenumeric data . . -

»

) R .

Computers can store and manipulate alphanumeric ‘data (letters, digits
and special characters), This idea was introduced to you earlier in the
flow chart text (Figure 2-17). You may have wondered how, in FORTRAN, we

can describe the input, output, and manipulation of such data.

8ince’FORTRAN was originally designed to describe algorithms for
compu'tat{on arith numerical data, it should not surprise you that its scope
is limited when it comes to describing processes for handling alphanumeric . .

information.

Nonetheless, we can perform a i“ew elementary alphanumeric proce.ss'es
via ‘some FORTRAN statements. These actions, though simi)le: will permit us
to carry out some surprisingly complicated information processing. We cany
easily describe in FORTRAN how to input alphanumeric datd (to memory_), as
wve shall see shortly. Assignment statements can be used to move alphanumeric
data to new locations in memory. Thus, if a variabl/e T, for instance, has

acquired &n alphanumeric value via input, then subsequent execution of the

- statement,

S=T . N

s Q N AR :
wou:Ld a551gn to S " the alphanumerlc value of T, Of course, we cahnot -
perfom any meaningful ﬁrlthmetlc operations on alphanumeric data; but, as
we shall see in Chapter 5, it #will be possible. to compare two alphanumeric
-] (4 . ——

quantities for equality. Finally, we cgn express in FORTRAN how to print

@ .

. out’ alphanuneric datg from memory. > .

§ ° ¢]

&
Storage of alphanumeric data

s Up to now we imAgined FORTRAN permlttlngﬁf’@y two classes of varigbles;
real and intgger numbers. But alphanumeric data is ngithe? real nor integer.
H?w,then, can alphanumeric data be stored in memory? FORIRAN II processors
permit you tq useestorage locations that are*assigned to numeric variables
for other purposes ' !

o ° h ° N4
We ;shall in the,,following “discussions imagine a computer whose word length
in blts is such that. one word stores six whole characters. (If you, have fQr-
gotten how the éharacters may be coded, each as a group of binary bits, you

should review Section 1-k.)

o

a0

]Egcam le o : .)
Suppose the mstructor who posed the original problem to compute

/ D=4/ + 8 +c2

-«

has since been introduced to computer programming and has some inkling as ‘
to the power of computers. He now poses the prpblem this way:

)

*

, '
"Imagine that several different sophomore geometry students have given

you values of A4, B{ ‘and C corresponding to the edges:of a rectangular

prism. You are to compute for them the distance D, which represents the

., length of g diagonal, according to the formula suggested in Figure 2-1,
Write a program which prints values for 4, B, C

and the computed value
for D,

"and then also prints for identification purposes the full neme of
the student, his room number, and seat location; 1like ’

-~

BOB JOHNSON, ROOM 342, ROW C, SEAT b,"

If identification of this sort were« punched on & card :l): might Look
like that shown in Figure F2-1T,

<

“

SBOBAJOHNSON,0 ROOMG342FROWOC 0 SEATck 000D

: ‘ | / } ey

&

d ‘ - -
~ 'N) - , e
; + —_—
Figure F2-17, Alphanmneric idenjcification (I.D.) cara - . M
e s Reenks
‘w_’

[
- A .

With rgspect to the structure of the ‘algorithm ‘first fiow charted in
)
.\ Figure 2 -1, little -has changed when we add, as we now must, the steps for

reading and printing the alphanumeric identification, as shown in Figure F2-18, i

- ~
-~ .

>
ey

ERIC T

f . - .
Aruitoxt provided by Eic:

[ITRvAE

START

-

0

ALPHANUMERIC
IDENTLFI CATION

s 4 S
- %
Figure F2-18, Flow chart with provision Por reading and . o
. . N * Printing alphanumeric idenf:ification 3
P : i . N ‘.
The question is, how do we write Boxes 0 and 4 in FORTRAN?

R To write Box O 'in FORTRAN we must first imagine the information on
the I.D. card...divided into six-column fields. Now, recall that we are
supposing each group of six ‘characters can be stﬁed in a single memory
word, say, one that is normally used for storing real numbers, (Any other

charactér packing capacity wouid not change what we are saying here in
prirciple.), Then, any real variables we choogse--you name it-~guch T
as R, S, T, U V, W and X or R, R, R3 etc., will

g be suitable as elements of thé input 1list. So, in effect,
- , ;

‘ o . : . b6 [
ERIC - 50

S

3
A, B, C,D | . .-
. (9 HY
§ d - .
ALPHANUMERIC . -
" IDENTIFICATION)

- ’ . 4 - .
x.\ : ¢
we want to think of dlphanumeric information that has been punched in the
.card as being partitiomed into groups of six characters each, for storing
into locations associated with some group of variables. This idea ig

. suggested in Figure F2-19, - . .
4 - f > ' b ’

READ 15, Rl, R2, R3, . Ru, , Rs, R6, m * . -

A}

15 FORMAT '(.7A6)

. ’ .)
. 6 T “*, %6 42) .

‘ :OBOBOJb}ﬂ\ISON'?DROOW:BlQ OloROWOC, OSEATPY | -

¢ 1 |) H |

i | ! : 1 [|

’ iRl I R2 | R3!Re [R5 Ip6| erl ?
o 1 ’ . I s

SRR I S B N N D i |

-) ! - N . . -»
Figure F2-19, Illustrating use of Alphabetic, or e N
¢ o
A-field codes
/

“ 9
L

- d. v
, 3 y L
The iernal representation of alphanumeric data follows a scheme, which is
different from eititer the. integer or 'the floating point scheme. So, a
spec:.al conversion procedure is needed and hence a special field code is also .' ‘.

ri)eeded to call for this conversion. °The field code that is used has the form

r « h w ’
- ., ' A -w '
. o \ - : "
’ A for J A width in columns
alphanumeric

° ~

During execution of a READ statement, if an$-A-field code like A6, is
‘encountered vherf consulting the referenced format, tthe charatters matched to
this code. are converted. for s}oragffl the alphanumeri scheme. wSo, executing -

** a READ statement when linked to a format, as one shown in Figure F2-19, will . P

prove suitable for inputting alphanumeric data. i
> /
‘ Many other possibilities, some even more subtle, would also work, We

- shall consider one of these alternatives presently., Right now, we want to
o get an idea how we might write Box 1& the output box, in FORTRAN., We can
*bake advani,'age of the natural symmetry of input with ou‘tput. The statemente

o

~

. - PRINT 15, Rl, R2, R3, R4, RS, R6, W[
oo .
15 ' FORMAT (746) .] -~
oo 0 .
will be suitable. - C . A
) Ca , . . .
o) - oo, . ,

.

1: MC : :') ! L

. ‘ .
. LY .

In executing this PRINT statement the « A6 fields exicountered. in the

. _ consulted format will force the reverse conversion of the alphal:lumeric data
% ., from the internal scheme, to the external scheme and pr,;‘lnting will then be
accomplishe‘d in groups. of six ’ckiaracters per field.

v

The «éomple—te program requested by th\e instructor might appe_m&r as S;lOWH o
in Figure F2-20. ;
Label Statement' or declaration «
. c " EVALUATION OF D ﬂ
C EACH SET OF DATA, A, .-B, AND C IS PUNCI{Eb
c ON ONE CARD, BUT IS PRECEDED EY A CARD
c " | |CONTAINING ALPHANUMERIC IDENTIFICATION
1 1 ||reap 15, R1, ®2, R3, RY, RS, R6, RY
15 ||FORMAT (746) .
. | |REaD 101, A, B, C
101 | [ForMAT (4F15.8) .
4D = SQRTF(A¥*2 + B*¥2 + C**2)
PRINT 101, A, B, C, D ' -
PRINT 15, R, R2, R3, Rh RS, R6, R7
v . GO TO 1 ,
kN END Py ’
Figure F2-20. Programshowing facility for ?.lphanumeritc >

input youtput .

In examining Figure F2-19, you may have wondered about the form of the °
information on the I.D. card. Except for the fact that the information

will be grouped—i:mio 'words" of six columns each for s‘torage, the name,

room numbeyr and seat loc%on is in free folm. .That is, % name, room
nuber, etc., don!t have to be punched 1n certain fields on the card. More-,
over, with the exce,ption of a blank in Column 1, whicp will be explained in
a moment no special attention is given to the number of blanlg colqmns be-

1] x b
tween words. i “ .

- . {

How then would our program (Figure F2 20) handle the I.D. card for
Algernon "I'histlewhaite whoge I,D. card is shown i Figure F2- 21?"__‘/!

< ' A «

B R

=
-
v
;.
i
]

=

d

LR

ERIC .. -

Aruitoxt provided by Eic:

. ‘ . Qi . \ ‘ F2-10
‘ L4 o
AN 6 2. B 24 30 36 2 8 \\ .
- mewommfxsmv{;mm GROOMC#&Q DRdWDE D%Tclﬂ \(
: I i | P l
. i ! H i i] l
| R1 | R2 §R3;R4;R5;R6;R.7i ? :‘\'»_ \
‘ 1 i i J
[T N R W I R A Y
; \4 :
.. y . - -/ AN :
Figure F2-21. 1.D. card with a longer name . \\ \ .
* ¢ . -

- [y

The last six_characters on this card w%}l not be read by the computer hecause
provision was made for storing information from only the first forty-two v
columns of each I.D. card (746). If we Yart*to be safe, we had better make
provision to store all 80 columns of the card. This means 13 full words

of six characters each.plus a partig}ly filled word containiﬁé the last two “
characters from the, card (Columns 79 apd 80). 1In other words, we need an

- .
)y input 1ist of 14 items with a governing fotmat code like

i ' 1346, 22 : \

To revise our program so it will both read and print the full I.D. card,

we can. replace the affected READ, PRINT, and FORMAT statements with those/// i . ’
shown here:) ; . ’ ¢
.o . READ 15, R1, R2, R3, R4, RS, R6, R7, R8, R9,
R Y R10, R1l, R12, R13, Rlk.
/15| |FORMAT §13A6,42),
e »
: < | PRINT 15, 'R1, R2, B3, R4, RS, R6, R7,.R8,. Co
. 1 R9, R10, Rll, Rl2, é}g, R1k . .

’ * .) ' . w5
Now to clear up the question of Column 1 on the 1.D.. card, and why we
Asuggésﬁed i should be blank. The mystery is easily solVed if we recall our

discussion of printer carriage control from Section F2- 9. If our output comes

from a line printer we need to ensure that the first character of an output ~

line is shunted-off and used as a carriage control code instead of being

sprinted. By insisting on a blank in Column 1 of each I.D. card, we guarantee ~

single spacing of eacﬁ printed line of I.D. information.s If you use ; type- *
writer for output--no harm--the first position of the typed lige will be blank."®
* L4

3 . '
K

"

. o . o v
Uh;i)ter F3

- P . . . -

BRANCHING AND SUBSCRIPTED VARIABLES

)

F3-1 Conditional statements S Y

-In Qection 3-1 of.your flow chart text you studied techniques for
branching by means of a two-exit condition box, ¢In Section 3-3 you will
study mlti-exit condition,boxes. Branching instructions may be written in.

“FORTRAN by means of an. IF (statement. The FORTRAN IF statement can be used
as either a t;o-exit or three-exit conditional statement. In practlce, how-
ever, the IF 'statement is most frequently used for two- -way branching and less

frequently for three-way branching Figure F3-1 iws both uses of the IF-

statemenf < \ S
w»

#IFI-5)2,2,4. °

>

FORTRAN. .» IR(I -5) 2,3, b

e Statement . x
English ™ If I-5<¢ go to Statement 2 If I-5<0 go to Statement 2
A S F . I&.I-5=0 go to Statement '3 If I-5=0 go to Statement 2

If4I—5>O 80 %o Statement h

-

. “‘x"-’.f[f I-550 go to Statement 4

One way of
drawing the
condition
box

VALUE OF I-5

e ————

Another way
~ of drawing

the condi-

tion box

d as a two-way - ’
conditional

. as a three~way
conditional

et e
.
~ ;
.
.

Figure F3-1._ Examples of FORTRAN IF-statements

. C e T x

ERIC . 54 L

3 e L
[Arorron powist o enic ., - . e
* B

%

) ;F3-]¥ ‘ . . i
. Al . -
3 ‘ PN N 1
An IF statement consists of the word) .
PRI . ’) ’ -

, ’ : IF ' :

g ' 5

followed by a FORTRAN arithmetic expression enclosed in patentheses, for' .’

example, ° “ : ; . .
- Lo e _ (I-5) - ‘ '
followed by three statement numbers, for exa;nple, . N . b
- e -~
{“ e 3 2, 3, l“ . }
The complete étatement is
.o ’ « IMI-5)2,3,%4
’ . - '
It tells the computer to evaluate the expression
. e /.
I-5
. .) < .
and choose among the following alternatives/: . , .
: . if T-5<0 go to Statement Number 2; v
A - if F:5=0 go to Statement Number 3; ‘ .
T if 1-5> O go to Statement Number b, v

~

Thus the@F statement ig a test of whether the value of a given expression

. - is negatiue, zero, or positive. JThe three statement numbers specify where
c R T go in each casew . ‘ ‘ a

o 7
~ i . . 0 s
» -

PR

; The sec'c'md) example in Figure F3-1 shows how the three-exit IF statement
can be used as a tx;o-yay branch. There is really no requirement that, the
three specified statement numbers in the IF statement be all different. Two

" of them can be the same,—‘,and vhen two are the same, we get & tyo-way | branch.
Thus, we can test whether the value of I-5 4is non-positive (I -5 _<_ Q)

’
~ -

by writing ,

. T ,517'-’;) . IF(I-5)2 2, Lo
L It is important to observe that this gives the ,same effect as if we ask
NN -
whether I <5 1is true or false. .
£ "% - . . .) ‘
e - a
a”mgles~ Bonsider ‘the statement IF(X - 5<.o) 6,7, 7"
L3 .l' ”' - Y
R - I8 What will be the ne,ct stateument executed if X = 4,77 (Ansver:
¢ - ., Y » =
. Statement “Rumber- 6, since 4,7 - 5. O -0.3 1is negative.) .
C s e ” e ¢ ©
* ¢ 2,. What will’ be the ne,ct stgtemen‘t executed if X"‘-— 5.4 (Answer ’ .

f Statement Number 7, since’ 5. 5.0 = +0.4 is positiveo),

- 4 .
al 'l ' s x
. “ C \ L ’)g:/ il
. - IR A g ‘ o
N) Vo 50 N . I : i
. o , \ 52 . \; . Loy -
T ") ! :
ERIC™ 1 AR f

j . | — .
) » ' > Y /;A \? . P
% < T 1 C oy e L P gy

4) ‘ ' P .
. . . F3-1
©
3. What will be the next statement executed if X = 5.0?7 (Answer: .
; Statement Number 7, since 5.0 - 5.0 equals zero.) ’

L, Based on t};e above IF stateme.nt, complete the following: If X ___ 5.0,
the next statement :e’;/cecuted will be Statement Number 6; but if
X ___ 5.0, the next statement executed will be Statement\ Number 7.
(Answer: If X < 5.0, the next statement executed will be Statementl

. Number 6; -but if X > 5.0, the next statement executed will be
Statement Number 7.) ’

5 % Draw a two-exit confition box with exit'arr'ovgs labelled "T" and "F"
corresponding to the IF statement given a‘u&Ve. Give two alternate

solutions. Answer:

Which is easier to understand at a glance? Answer: The author thinks ’

it will be the one on the right in most instances.

é. Refer to the lower right hand condition box in Figure F3-1. Redraw the.
. box without changing' its intent sg that the T exit now leads to Box 4

while the F exit leads to Box 2. 'Answer:

L

g b
AY - .
- 4
¥ Y ’
. How has the corresponding IF statement changed? Answer: It hasn't.
N E .t
i s ; .
. . '
3 . K
- HY 3 [~
Q ol

Aruitoxt provided by Eic:

r F3-1 E | .
) Voot) * .) ' ‘ -
‘ ' Exercises F3°1 Set A 2 L

In Exercises 1 - 5 wuse /the following IF statement:
IF(K - 8) 20, 30, 20) C L
: 1. " What will be the next.statement .executed if K = 4?7
' 2. ‘;h;t will “be [the next statement executéd if K 82
3. What will be the next statement executed if ,K.= 9?

'S Complete the ?ollowing: The next statement executed will be .
_Statement Number 30 if and only if K __ 8. - .

5e Compi—ete the following: The next statement executed will be ,

Statement Number 20 if and onlyrif K ___ 8.
: . -

. .

- »
* 6. Write an IF statement thaet will go to Statement Number 9 if X is .
positive and to Statement NymPer 10 if X is non-positive.
b st e
In Bxercises 7 - 12, transform each of the given equations or inequal-

-

™

ities into an equiyalent form having "O" as one ‘member.: —

b3
. ‘o -
. 7. K>'T (Answer: K- 7 > 0) N _ . o . i : |
1&& - 8. X Z 8.h . . . © ‘ " N . .
wH 9 Y<ho . . - A U
L, ‘ L - . T - -
) 10. A<B - . ' '
i :) USSR - -
3 «»:11, X =Y .-) - ar ?
,) . - o S .
3 N 12' X + 5 # Y s . o . . 7’ R) R
X\\ ' et ; R ¥
_——y Converting to a three-way algebnaic test from any one o:t’ six 2-way - . *
) relations. : w N v s a T "‘7"‘ ‘ .
r i . . o , .

F .

Figure F3-2 shows how one might g0 about writing IF statements corre- !
\ spondjing to t‘wo-exit condition boxes involving one of the six relational i\?@'
gjmbols - ; C oL ‘

¥
e D N - ’

\A' P <> < 2= F o “ .-

In every case illustrated we convert a relation whose form is A re’lational

_symbol B, to a difference whose form is A B,» vheres, A ,and B. are the N
\‘essi‘ons in the conggtion box that 1lie op either side of the relational
SymbOIU . “” ‘ * 1 -‘. - & * lﬁ
$ - ¢ . - i
. ». c & [L2 LA
) « 7 5k - . .
ERIC* L BT , o
.) \ PR . .]
. . ‘ P . K d e TR

Reasoning

)

Figure F3-2. Six va;ia;tions_on,.:thegIF—-"ehemérfmanches
) , .

‘Tp55

93

e -

. o
R § ¢
‘What is True? K7 <0 |[K-7T=0 [K-7>0
IsK-1>0Tor F | ®F F T IF(K-7)10,10,20
Go to Statément # 10 10 20
| Jt : A
[} ~ .
& R
N S i
‘ What“is True? [X-8.4<0|X-8.4= 0| X-8.4>0
Is X-8.320 T or F F T % T IF(X-8.4)11,11,21
, ‘-Go to Statement # 11 11 - 21 -
11 ‘2N T ‘ :
) 1/\7 \4!/\/)) \
What is True? Y-4.2<%0 | Y-b.2=0, Y-k.2>0 ;.
Is Y-4.2Z<0 T or F T . F F oo IF(Y-4.2)22,12,12
Go to Statement # 22 12 12 v B
- Py : A L
& 0 }Kﬁﬁ ’ } ~
y . . r .
- . - - . ‘
4 A
- . , e ’
What is True? A-B<0 |#B=0 [AB> /
Is A-BO Tor F . T - Ty | ' F IF(A-B)23, 23,13
P Go to Statement # 23 23 ¥ 13 .
-0 . N
- ® '
4 T, \.
‘ [. . hd .
' 7 N . ‘ 7 . -
\What is True? X-Y <0 [XY=0 |'XY>0 :
, Is X-¥=0 T or F F T 7T IF(X-A)1k, 2k, 20 =
Ry . Go to' Statement L4 VI 2L - "1k, N }ﬁ .
. . . , ot . L - " 'y
- . . r - J . . ‘!
v \ SRR
.o] s <' o e ‘ \ -
What is True? X#5-Y<0] X+5-Y=0[X45-Y>0 S
Is X+5-¥f0 P or F T e B IF(X+5-Y)25,15,25 .
Go. ta Statement #§ &5 o R o

- / Lo 4
- wy

Table F3*-1 shows the six gatterns possible in using the IE statement

as sa two-way branch. /| ,
. S :
(A Table F3-1) ’
~ The six patterns for statement numbers in two-way IFt!s ° "
% o . going .to Statement 1 if the relation is true, .
_ going to S‘;ttatemen;te 2 if the relation is false
[y ’ - (. .
- Form of Relation IE Statement)
A>B . . IF(A-3B)2, 2,1
. A>B , . IA-B)2,1,1
. / X .) ;
© AK . IF(4 - B) 1, 2, 2
“A<B ’ »IF(A-B)1, 1,2 - —_
/ AgB ' . IF(A-B)2, 1,2 ‘
A4 B IF(A - B) 1, 2, 1

. »

Y

’? .
8

,ﬂ“
-

\

Among the Amportant things to refnembe ‘abou'b “the form of the IF

statement are the following:® - ~

»

g

'S h . s

(a) The,arithmetic expression to be'yte.sted is enclos!ed. in
parentheses following "IF,

) ’ . - K . . _}
, 7~ (b) The three exits are n'egati-ve, zero,- and positive in that .
order, St v ’ - 4 e '
i (¢) & statement number must be written for each of the three ;
exits in the. orde_r indicated in (b),ﬁiven though one of D
- the- conditions may never occur. * !) ’
(dy There must Be commas betyeen the statement numbers but
- none between the right p‘a\enthesm and the first state~ T
’ ment' number. . . '
7 ‘ . .
{ - s
.) .
. N
Y - i \ ¢
- R - - v » -
v - . 3.
hd - 5
. ¥ i .
« - N ‘l - -
\ . s

‘ 4 : .-

- . . i 3 B K . N -

'ERIC ‘ 59 % . S
ERIC N /

-

A1

" F3-1

* ° You may recall the Ruritanian Postal Regulatibns problem. Co'mpare' the
executable steps of the following FORTRAN program with the flow chart in

Figure 3-1 and verify that the

Label

two are-eguivalent.

Statement or declaration

1l

. 100
101

READ 100, N, A, B, C
D = SQRTF(A**2 + B¥*2 + Cxx2)
IF(D- 29°0) &, 4, 1

PRINT 101, N

GO 'TO- L

FORMAT (I6,¢ 3F6.2)

FORMAT (I6)

Exercises F3-1 Bet B
.]

]

END

Write'a FORTRAN IF statement for each of the following condition boxes: 1
[

Identifying remarks in FORTRAN output -

remarks as elements of the output list. For example: -,

"A is the larger. The
value of A is", A

In Sectjon 3-51 you worked with outp{lt boxes which included identi‘fyingy

-

i

Y-

Vs

ERIC

Aruitoxt provided by Eic:
.

F3-1 ' EE s RETIPR T

~ Bl /
.

Note that an identifying remeark is a cohstant, more precisely an alpha-
numberic constant, as défined in Section 2-6 of the Mein Text. There is no
way that the remark itself can be changed in Qalue as a resul% of carrying
out the steps of the flow chart.

’ A

] . . .
In FORTRAN an igsntifying\gemark such as

A is the larger. The value of A is"

f

dOeS'nqt appear directly ‘as an item in the output llst. Constants are not
legal elements of an output list. Instead, we insert the remark in the beMAT
declaratloq. Thus far, you have encountered the following types of field
spepificétibns in FORMAT declarations: I, F, and A. To these we now add
the H-field. “

- The_ H-f&eld 10 erlth fleld) may contain the text of any remark message
or hqulng, i, e., any ¢ phaﬁumerlp constant. Instead of enclosing the text in
quotation mﬁrks, we P ecede it g& the letter H (identifying the type of field)
and precede that letter by an ﬁﬁsigned integer 1ndlcating thé length (number
of characters) of the text that immediately follows the letter H. Figure F3-3.
gives several illustratlons. -

< 2 .
- z\- - e < H - P -
. * PR A
* : g
' L]
;ﬁ ’
%@r&y .
e —— o & .w. ca vt Al g
x / -
L4 .
) - v ' 2T
s *
‘ .
’ , B s o @
A4
S/ C .
. - ! °. . =
! gt
. £
- %
Ay
58

’

’ i . FORTRAN and the . ,

__Fi/ch Chart ' resulting printed line
) ‘ . .
PRINT 100, J ’
tt P
J'I.I[fIE I8 100 , FORMAT (16; 14HCOTSOTHEOLARGER)
" | LARGER" S -7

XXX IS THE LARGER

o ”

. » L3
PRINT 102, J —-
102 FORMAT (19HOTHECLARGERGISOJo=U, I6)

THE LARGER IS J = XXO0OX

PRINT 101, X, ¥)
101 FORMAT (F10.3, 17HOISOGREATEROTHANO, F10,3) .
' XXX, XHX IS GREATER THAN XO000KK, XK
: 'PRINT 103; § :
+ 103 FORMAT (19HLTHECLARGERQISoJB=0, I8V

i A) ' ~

e

,

- - . o= - F A +
» . . -
Figute F3-3. Use of *H-fields for identifying remarks -

. -

" - ’

. Note -the "@ifference I;etweenwFORMAT statements-102,and 103, .1In 102 tﬁg . .
first character of output for the line is a blank, while in 103 the first
character is the nume}'al’ "1", 7f you recall the discussion of printer
carriage control in Cﬁapter 2, you will remember that the blank initial char-
acter calls for a singlé space before printing, v'rhile the "1"’calls’for a
skip to the top &f tHe next page before printing. If you begin a line with
an H-field , and 1if you do your printing on a line printer instead of a type-

writer, you must remember to put in this first carrisge control character ”
for each line, If the first field‘would not normally be an H—field and you

want to be certain that the leading character will signal the carria.ge control

of your chqice, you can use a one -character H-field at the beginning o‘f a

FORMAT statement.

AN , » B \

\ . ’ i

b

r ¢ .
3 F3-1 . -
-l . . »
Carriage Control Desired. Initial H-ffeld , U
» <
singlg space, . ° ,,igo b
. double space 0
¢ skip to top of next page. 1M N .
-] For example, we might rewrite the first format in Figure F3-3 as

, 100 'FORMAT (1Ho, 16, 14HCISOTHECLARGER)

Id .

in order %o guarantee a.blank as the leading character for use in carriage

control. ’ s
’
L 4
Exercises F3:1 Set C J :

\
Write FORTRAN PRINT and FORMAT statements for each 9f the following:*

exercises. Assume that flow ché?t variables beginning d&éh any letter I
" through N are integer variables (and use I6 fields). Assume that all .
other varisbles are floating point variables (and use F10.3 fields). 7

Insert a one-character‘H-field at the beginning of each output record to
* . « Dprovide carriage control on the assumption you are using a line.printer for
P output. In Erexeises 1 and .2, single space before printing. In '3 “double
space. In & skib to tpe"ﬁéxt page before printing. The choice of FPormat

< - - numbers is'upé;o you.‘ ToerL et :

. * b . -

X, VISQHE | 4F.. . - -
LR — - - - ¢
o VALUE OF X" ;
s N ‘I"' N ,'/"
B) . TR s ‘G, "

' ! s ’

o ' B e
\] ' . ! 0 » . 7
3 11,7, : b ! I"HOUR SCORE | .. © —
e 1 7 ' . . ‘? YEA %9 .ot

o
. - {bﬁ,{ »- . ,
. GG A ot
. Ve - ?',.:"f‘;) .) R
. o v "
s .) w ke
- 4 .’ Fd v ’ . '% .
. xr s
2 b .
R : - A o TR
. e .. N
M R M
. i -
™y . AR
3 e pre— - A ».
- * . d :‘:4 % ¥ ""M‘*ﬁ
° - -é. Y s ‘]\ o w,
) g ! éod ’ o
(S o
)

CERIC e o

A"

Example 1

*

!
>

N *
)

- e 3

- The sécond form of the flow char¢ in® Flgure 3-5(b) could be programmed

in FORTRAN as follows

-

Statement or Declaration ‘

' Label
I
L
5,
. 6
. 0 7
100
’ 101
Example 2
J

'The flow chart in

READ 100, A, B, C
ALRGST = A

IF(ALRGST - B) 4, 5, 5 :
ALRGST = :
IF(ALRGST - C) 6, 7, T ’
ALRGST = C -
PRINT 101, ALRGST -
STOP - ’

FORMAT (3F10.3) .
FORMAT (22HOTHENLARGESTOVALUEDISE, F10.3)
END . .

’ . . <

. Q M

r

Figure 3-6 smld be programmed in FORTRAN as follows:

’ .
L bel Statement or Iiec-lazjation' .
) | READ 100, A, B, ¢
. : IF(A -B) 4 3,3 - - - -
(T 3| [IF(a - 8RS, 5, 5 L
. S 5| |PRINT 201,)\- - NS
8} | sToP . ‘]
- 6| | PRINT 102, C
v ©o{leoms T . ‘ kY
\, / L4 IF(B—Cf) 6".7)7" .
_ ' 7! | PRINT 103, B ,)
! , feomws LY B v
L 100} |Fora? (3F20.3) - T
. J 101| | FORMAT (32HIANT SCTHECLARGEST. DI TSOVALURLISS, F10,3)
- © "+ 102| | PorMAT (3EHOCLT SOTHATARGES P 0 ITSEVALUBIIS, F10. 3)
. " 103(| FormaT (32HJBCIISUI'HEDLARGEST.DITSDVALUE:IISD F10.3)
. ‘ y a
“ B :
e 0 - el 864 ,
EMC ,/ . , \.\t. . ’ ‘

Aruitoxt provided by Eic:

b

7

C . '} B F'S-l . ‘ N ' -

e ‘Exax_n‘g' le 3 ’ . « . . -
. ’ . The talh:ing' problezn in Figure 3-7 could be programmed in FORTRAN as fallows
a) T Labei ° Statement or Declaration , .)
{READ 100, N ° . -
\ N f)) > . . KEOUNT =0 o ~ . -
i _ IOW = 0 .
. i MID = O ’
.) KHIGH = O - .
" . 3||reap101, T .
. . IF(T - 50.0) 9, 9, 5
v T - 9| | Low = Tow + 1 .)
, , 0T 7 -)
A - 5| 18(T - &.0) 10, 10, & C
X "10| | MID = MID + 1 ° . o .
e L 6 wm T , .
P BN ‘ KHIGH = KHIGH + 1 ,
) : 7| | kcouffT = KCOUNT + 1
2, "ot { TF(KCOUNT - N) 3,11, 11 ‘
ca o 11| | PRINT 102, KCOUNT, LOW, MID, KHIGH
' STOP o oL
. ‘ 100 | | FORMAT (16)
- t 101| | ForuT (£8.3)
RSN : 102 | | FORMAT (%mwmma:omccom,oww,oﬂmpmdu o
- ' il A‘RECI, 416) : ’)
A END . sy
Exercises*F3-1 SetD ., ~ .

1 - 5. Refer to Exercises 7- 11, Section 3-1 Set A in your flow chart text,.. ;

) - For each of these five exercises you prepared a flow chart of a simple *

algorithm. Now write a FORTRAN progfam corresponding to each chart. Choose
statement numbers where needed, to correspond tb the box numbers used in
the flow char'ts. Specifically, let 1 be_ the label for a statement that

Vo corresponds to Box 1, 2 for Box 2, etc. . ‘@
N - \ - ‘ ”
Exercises F3-1 Set E . - . ‘ .

hoo —= . : -
- 1 - 6, Refer to Exercises 1l- 6, Section 3-1 Set B. For each of the#& six

‘ exercises you prepared a flow chart of a sin;nle surming al@rithm. Now
o write a FORTRAN progrem corresponding to each fl'ow chart. Choose statement
' numl;er's, Where needed, to corregpond to the box mumbers used in the flow -
charts. Assume a suitable input format code for the data is F10.5.

b ‘ _
SR . ,

-JU . s v

¢
"F3-2 Auxiliary verisbles .

I
i
f .

1

i
The us:e of* auxiliary' variables in F"ORTRAN programs mirrors wha't you ,Lave

‘]
already learned in the flow chart text. (
- 7 .

Bt

Exercises F3-2 Set A

1-5, .Refer to Problems 2 ‘ghréugh 6, Section 3-2 Set A in your flow chart
text. Write FORTRAN progréms for each of the flow charts you have con-
structed for these exercises. Choose statement numbers which correspond
to the box Wrs used in the flow charts.

=

o

t
You might like to see how the flow chart for the Euclidean Algori;chm
given in Figure 3-14 m{ght work out in FORTRAN:

R -Label . Statemdnt or Declaratson
_ READ 100, KA, KB
3 s |PRINTTOL, K, kB : -
’ IF(KA-KB) 5, 5, 4 - rt
” b= xa <
e - . .
||k = kg . . . o
L L aflrta) 6, 7, 6 B RN
v . 6|8 =18 - KB/karka . S
) KB = KA . . T T
B KA = KR ‘ h 4 7 . 1 : '
. - : @ T0 5 ’ T C T
77 7] |erive 102, KB -) !
. . | |sTop - | , ’
' 100 | |FORMAT(216) \] :
101 | | FORMAT(L2HOTHEOGCINOMD, 16, SHIANDD, 16, bHOTS.) N)
* 102 | |ForAT(1HD, 16). . ; e,
e ’ : -
. s [RN
< T “\) - A
g -"'"{f;.') '\ ‘ N - '
y ‘K\ , ‘ \-‘ “,' ‘ ‘ -)"
o T 8. g5 L))] ’

ERIC

N L4 \ . -
, .
’ y Co i B - xo ' - e
1 Y \ 1 " N

PP MWJ-_.‘__& —

by

ERI

°

O

N : ‘ . ~

F3-2 ‘

Exercise F3-2 Set B ; ° .

- A

Write m FORTRAN prograf corresponding to thesflow chart that you constructed
in Problem 2 of Exercise 3-2 Set B of your flow chart text.

Exercise F3-2 Set C LT

1 - 8. Refer to Problems 1 through 8, Section 3-2 Set C im%ur‘ flow, chart
text. For each of these eight exercises you have prepared a flow chart
of a simple algorithm related to coordinates of points on & stra;.ght o
line. Now write a FORTRAN program corresponding to each flow chart.”

Choose statement numbers which corx:espongi to the box numbers u-ed in the
- M ly

flow charts. - .
e »
(-3 £
e
8
9 A
'
-
v iy
‘e
’ . -
N
- (- - .
. “l
"
3
. . o
l ¢ ° .
R R .
.
+ et {
« . - 57 r
, .
o TemeMe v ’
""""" -
’ >
Ny v
~ \‘- -
\\. > - ~
~ .
— .
T k] - \\ . ™ h .
~ ~
] Ed .
. . .
\
.
N .
? .
" A r} " .
I ¢ . A
. ¥
b °
v s‘ ’
¢
q . \\ I8 e
.
o — -
- [y v -
-3
’ / 4
. -
4 P
A4 ~
= "
' ;
B SR
€ 4, .
~ 14
- o ,.
- “ . s o ’

& . : P) .

F3-3 Compound conditions &and mubhtiple brancixing

. Writing compound conditions using IF statements

N

v
@ In Section 3-3 you encountered condition boxés involving more than one
decision, e.g., ’ . -
- .
R | . 3 . W
" ¢ F . J
: (e<x aw x<s5)—F L.
= A .
» . T . i
. 2 _ ’ ‘ .
- -.eiind you saw that this single decfsion box was equivalent to a pair-of boxes:
N \
° R | 1l 3
' 2<X . ")
. — D(, .
- T)
© ‘ . N ¥
- , h F -
. - ° (x<5
. Y 'T . .
L 2 Q

5 . ‘
. * 4
.
’ N

This pair of boxes can be coded in FORTRAN as

-

. L |TF(2.0 - X) &, &, 3 . o) -
R © b IRX- 5.0) 2,03, 3 . Ve T L e
- , ° .)) R Y
Similarly, the following pair of equivalent flow charts . -~

. .
7.

»*

IF(X) 2, b, 4.7 - « - '
Wx-13 B2

PAruntext provided oy enic S

Exémlse’s F3- 3_ Set A N , L a o
—"'ﬁ—— L

1 -?7. Refer to Exertises l - T, Section 3 3 in your flow chary 4ext. ior
T edch of‘ these exerc:lses wz'lte FORTRAN statements equivalent to the flow ¢
L LhaItS y:u prep’ared" For example, the flow ch;art example would pro’bably

o be. codéd in FORTRAN as’ _, . BN S

> * . ~ s - - \ . C / o ' 50) . < . : _i.' \.

. . . Labpl -Statemertt or Declaration ., -
- . ‘ T . R " A— B ’
o) IF(X1 - X2) 2, 30, 30. Lo e) .

: 2| |IF(P <6) 3, 3, 20 . S) A

.. .:, 3 - 3| {zr(T" - 8 30,720, 30 ‘
P e "y :v .) i
s I ~ . -

— % - - b
" Writing multlple branchlng 1nstruct10ns using IF s?ate/é ts , .r.

t W v . Py

In Sectlon F3 1 you learned\ that the FORTRAN I.F statement was a kind of

. - - ‘three-exit (1 €., three-bran?:h) condltlonal statement That is

) T . . \
. e J.F(aI'l‘thIﬂe‘blC expressmn) 10, 20 30)

is equivaleit to the flow chart) . RN
] . A . . - . /_[_,/ . N
s . ' ”(Value of arithinetlc expressmn .7
v, ' o ' =0 / >0 IS
_ v 10 RN B S

o
W -

In certain 51tuat10ns y‘ou mll ind it useful to use the IF statement
N thls way--as a thrée-way bram.h. Frequently, hoWever, when you need to dc a
three-way branch, you will find that your problem does not neatly fit the
” © pattern of a smgle IF statement. U?ualiy you will find it necessary to L
. write two or more IF, statements c”'orrespondlng to a n\yltlple branch condition

< . . .o . S
b . . - . ”
A

- box. . . 4 .

* »
‘.‘ . - . . i . E

-
Aruitoxt provided by Eic:

- -
, . FORTRAN:)
- ﬁfx +Y - 5.0) 21, 4o, 40
~ (. MO|[IF(X + Y - 70.0) 22, 22, b1~ Co
y) ~ L1FIIF(X + Y - 100.0) 23, 24, 24 .
. . . e
! A o
o~ .) . !
. . ~—
Exercises F3-3 Sex B . ' -y ’ > . s
- - L .) ~‘ o) 5 |}
1, Write FORTRAN IF statements for
Y T ' - .
\ P
. P
') - v F v
. . . s .
. ’, R ~ . .
. 2. Write IF state?éntsffon ’ g 3
°’ .' ’ 3 e ' ’
3 i
, .. ’ ~
3. " Write a FORTRAN program gorresponding to the flow ¢hart you prepared for -.
. Problem 10, Exercises 3-3. . " L. g
P ! \ . ', ~ ' . . .
" b, “Write a EORTRAN&program com:espondigo the new flow chart which ydu
4 . 'preﬁared’for the ca‘rniva} wheel proMem as the answer to groblem 1,
“Exercises 3¢3,) - K Ee N
» . - . - - ~-‘ . - s
]: l{l‘ic . . ° . 7 7 O- N . ‘
‘ mNmm .- - . . . ;o g

A i

) , - oo ‘

. <t g S

* F3-b 3

4 yiilke A4 : ’

. ? . . 4'
. 1’ kS N ' - .-, -~
% *- 'F3-4 Logical expressions : N . .

. >. o '

‘It wouid ve nice if it jwere possible in FORTRAN to code the two-way ’
condition boxes of our flow charts in awmore straightforward fashion: To*do
this one would need to add relstional operators (and‘§ymbols for then) to the
set of allowed opefations. For example, it ww.d be nicg if a condition box

like', o - .

. -'F . .

r Ld .‘.(; ‘3 ‘ e

~-

o coul;i be coded as the single statement: .
’ mean¥g: go to 2 ir true .

/’_meaning: go to 3 if falsé
\ wa>) 41 : -

[-

<

o« or possibly in some other-way, like . : .
. ' v
‘ IF(A>B) GOTO 2 -

.
.
1

&? M .
where here the I¥ statement shows what to do if the condition inside the

parenthses is trué, ‘implying that we should othenv'i§é proc.eed to the next
statement if false. - . . .

[

N .

. You may have surmiéed or have learned from other sources that FORTRAN is
more a set of similar dialects than a single’language. The dialect FORTRAN II
- which we are studying, has no Telational operators and hence it has no "logical"

IF statement like the ones suggested above. "It has only the "arithgnetic" Ir

~
. e statement. As a matter of fact, there are FORTRAN dialec.ts, notably a group
', a referred to as JORTRAN IV which do exhibit logical IF statements like those
“." shown sbove. ¥You can guess that coding.a flow chart ir}{:o one of these
* dialects of FORTRAN is an easier jdb. .o .

= -

f’l’his, section can be skipped without ,lc;ss of continuity.
/‘* .

ERIC .. .- . %y

o - oo i

F3-5 . .o . . e \

5+ Subscripted variables .

' ¥

. ‘Reiresenta‘gi‘on of subscripted variables in FORTRAN
F oL - =2

> !
a .

. Figiire -F3-4 shows how subscripted variables are represented in FORTRAN.
) s . P '
Flow Chart Form, FORTRAN Form ~
.) B e ' .
e Xy S X(4)
Xy . X(w)
Brio , - B(12)
OByrg L, : JOE(MOE-6 § |
CHARS 1.4, o , CHAR(5*I+4) . 0
-AI.EPH.Aew 415 . , ALPHA(22%J+15) .)
© BETAHXJAY@ - BETA(17*JAY-9)
%3 Figure F3-4. Representation of sﬁb;cripted variables in
FORTRAN . co .

»”

As you can s@e from the figure, subscripted varlables are represented in
FORTRAN by enclosing the subscript in parentheses and W‘rltmg it follow:.ng the
- variable to which the subscript is affixed. ThlS is another example of a
notatior that .enables FORTEAN code to be wntten "on the line." Other examples
’ you have seen include "Axx2! for Mpsm and "SQRIF(X)" for +X.. Since
. J.Qlied x{mltlpllcatlon (omission of the multiplication sign) is strictly ‘
forbidden, "there is’'no danger than Yy will be confused with Y X N--the .
latter is written using an asterisk between the variables. The only sdurce.
of confusion in the notation is that a \similar notation is used for functiorr
. references. You wil'l see later in this section how this potential ambiguity

is resolved. . o !

’ »o -
: In yowr flow chart text, Just about any integer-valued arithmetic
expression was permitted as a subscript. In the ,gersmn of FORTRAN you are

studying, the rules are much more strict:
L))

“ .

~

)
{a) A subscript may teke on only positive integer values (zero, ,
- negative numbers, and numbers other than integers may .not occur

&s subscript values). . % .

-

o, . . . [

: - . . 2 .
ERIC o “ - . L

Aruntoxt provided by Eric . .
. . »

i

- (b} The most general forms permitted are
s constantl * yarisble + constant2 -))

, - ~

and

-t -

constantl * variable - constant2

.

where constantl and constant2 are unsigned 1nteger constants and
variable is a non-subscripted 1nteger variable. Other permitted

forms are

constant
variable
variable + constant
.variable - constant

constant * variable

where constant is again an unsigned integer ggpstant and variable

is alsc of non-subscripted integer type.

- e
- P,

Exer01ses F3-5 Set A) N

Examine each of the follow1ng flow chart subscripts. ® If the subscript .
is legal in FORTRAN, wrltg,the subs;rlpted variable <in FORTRAN form. Other-

%,

vise point out the defect.

- L %) A | 6 Zoyrep K
’ 2 X o : [ERS % R g
i 3. CHAR, . 8. AIPHA L
Yoy Prez 9. Xlryy
A 5 T , o ., 10. 1@&3c‘:°_5xJ ,)

Ve . 4 . ’) .

Alloeation of memory storage for affayé

. v -
", As you-kr[ow, the computer must have a storage location available corre-
'_ sponding to each variable in a given FORTﬁAN program. If all variabies were
.7 " of the form-. L ...
- e LN N -
S) - . /s - . . - ’”'I' ¢
e e, : Coe e ..~ Ay X, CHAR, X, ete.
e e . 5 N .
:‘“&/\ <, . . - R . s o . . 7“
P e . L L . ; S .
"t this would be a simple prpblem indeed: fhe proc§§sor could merely assigg a
¢ ‘. R e, . » ., . ; ’Q »
i Q .)

< T - \ . - -

[y - L, . - f ! .

m “
storage location to each variable occurring in y.our program.

But what about XI? ‘How can the processor know for what values of I

to asgigrt storage locations? It¥cannot tell merely by looking at the
06currences of XI in your progra;n But if it weke to wait until ‘the

program was being ex%uted, it might find that it needed locations for

l’ Xe, 35 s X25 and had assigned locations only for Xl’ X’Z’ ooy XlO'
Since storage of arrays such as X5 Xy eves X25 in consecutive locations

is of overwhelmingv importance in’efficiency of program execution in most
. computers, we would like to have advance knowledge of the range of values
possible for a subscript before we start executing the program in which
that subscript occurs. More precisely, we 'r\equire at leasth}mowledge _of

«

the maximum range so that we will allow enough locations.

In FORTRAN this problem is solved by means of a DIMENSION declaration.
It 1s used to specify an upper limit for the subscript value for a particular
. su’bscripted variable. TFigure F3-5 shows the form and use of the DIMENSION - ,

™ declaration. .These declarations must precede sll executable statements of

@ program. . .
F ;

3 ’ -
Wy J o ¥ \

v Yow ve ceh explain how the computer can distinguish between such thirgs
as CHAR(J) meaning the J-th element of the array CHAR and CHAR(J)
meaning a fun.cti‘on reference consisting of the function name CHA? followed
by the argument expression "J". J‘Z’f a variable CHAR appears in &’ -
DIMENSION declaration, then a subsequent occurrence of C}iAR(J) will be
interpreted as a subscripted variable. If (;HAR does not appear* in a
DIMENSION declaration, ithen CHAR(J) will be 1nterp*r'eted as a reference to

8 ﬁmction named CHAR. (A common source of error in writing, FORTRAN
programs is to omit a necessary DIMENSION declaration With this omission
the processor will dutifully interpret all occurrences of CHAR(J) .as
function references. The resy.lt is usually & nasty but. misleading error
message telling you about your misuse‘ of the i‘b',nction CHAR.)

7 -

ERIC =~ . .- n

Aruitoxt provided by Eic:

o
N
e

P oy e

LN

F3-5 . F - .

- T %% ' 7 * :
. = S ., . . :
i"» w8 . ; - > H .
Declaration : Resulting Storage Allocation

. $ » L ¢ - ’
DIMENSION X(5) five locations: dne each for Xl’ X2, X3, ,
7

BYLRY

B)' *
Input and output of arrays

O

ERI

Aruitoxt provided by Eic:

7 . -
.

L
‘0

DIMENSION CHAR(100)

X, s and X o

one hundred locsbtions:

-

s

one éach for

, . CHAR, , C}IARZ;, veey CHAROO :
DIM@NSION&B), Y(4) - . one location each for x/"x2 x3, Y,
3, and Yh 5
DIMENSION I(2) two locations: onc for I, -&nd one for I,
Storage allocations for FORTRAN DIMENSION.

Figure F3-5,

LY

declarations

.

-

The form of the input and output lists for‘arrays in FORTRAN is quite

similar to that ‘in your
differences in detail.
output in"FORTRAN.

Flow Chart §9§

flow chart language, with a few small, but important

Figure F3 -6 shows how arrays can be input and

..

‘Figure F3-6,

; FORTRAN Program .
. 2rem.
* Label Statement or Declaration .
" READ 100, N, (KAY(I), I = 3,N,2)
100 | | FORMAT(1216) & '
'PRINT 101, (X(J), 3% 1, %)
i 101{| ForMaT (1Ho, P¥F12.6) g
- - . ome
2
Input and output of arrays,in FORTRAN
' * « ' v,
- L3

You should note these points concerning the form of our notation in

FORTRAN:
w8

(a) The increment

“

for the subscript is placed after the upper bound

instead of between the lower and upper bounds, as practiced in the
" flow chart notation.

— -

r - =

fZ_:)'

N . :
i‘h

N AR

N ~ Fy

.

» ’ g
. .

-

(b) When the increment is equal to 1 , it may be omitted.
(c) Parentheses rather than braces,are used: : 1) (
(d) The upper hound for the sub’script is set off by commas rather than

by parentheses. ¢ . : ' .

Example Figure F3-7

Draw a flo} chart and wrlte a FOR’I'RAN program to flnd the largest com-
ponent of an n-component vector (n< 100')

. Flow Chart : - . WFORTRAN | _ &
@ - , * ” .
1 . DIMENSION A(100).pis P
n : ’ READ 102, N
1

2
READ 100, (A(I), I ='1,N) . ;
ALRGST = A(1)

. K=2 -y

I IF(K-- N) 5,5, 8

° . 0

v ” ‘(
5 ﬂ(Am%T - A(K)) 6, 7, 7; ‘, . s
& L /} - ;
6 ALRGST = A(K) /

\

- . -

7 K=K+1

v

GO TO &) ’
8 PRINT 101, ALRGST - e
I d
© STOP

100 FORMAT(L4F16.8) -
101, FORMAT(Z2H LARGEST COMPONENT IS Fl6 8)
102 FORMAT(I3)

END

! Figure F3-7. Find the largest number problem

Q s . 13 ©

N

F3-5

~ . .

Exercises F3-5 Set §

1. {4, 1=1()xk) _ Asswme k < 50 ' B
2. {Bj, j = 5(2)n) Assume n < 125
- }

3., 1=2(20)n), (8, 1=10(2)n} Assume n < 50

Exercises F3-5 Set C >~

1. Write a FORTRAN program corresponding to the flow chart in Figure 3-2h(be
(The carnival wheel pf&blem using subscripts).

2. Write a FORTRAN program that corresponds to Figure 3-25. Choose your
format codes using I5 and Fl0.5 fields as needed. Assume values

% for B are punched on data cards with up to seven values per card.
X , . i)

3. Write a FORIRAN program that corresponds to the flow chart you drew for
Problem 8 of Section 3- 5 Set A. Assume the value of n will never be
greater than 50. You w1ll have to write the program so that subscrlpts
for the coefficients range- from 1 instead of from zero, because zero

] subscripts are not allowed in FOM¥RAN.. For format codes use I5 and
i F10.5_ fields as ngeded for input. Asgume polynomial coefficient'values
_ are punched in order on data cards having up to five values per card.
- ! i . 7“.
Exercises F3-5 Set D s

statements to input the arrays indicated.

Exercise 3-5 Set.C in the Main Téxt. Agsume by "

In Exercises 1 - 3 write the necessary DIMENSION statements and READ

N

or Part C of the

-
size orchestra'™ we mean

Write a FORTRAN prograﬁ for the flow chart you dre

one that will never exceed 500 players. Assume the aggs of the players are

punched as 1nteger data (15 fields, up to 10 per card).

g

s

F3-6 Double slbscripts . - ‘ ‘ ’ N

Representation .o_f double subscripts in FORTRAN ~

. . - N

‘ o .
In Section F3-5 you learhed that a subscripted variable like

¢) X,
I 1

could be written in FORTRAN as RSN . "

'X(I)’\ﬁ ~ | "-

- s
3
-

o . : A ' .
Now, in Sectien 3-6, you have been introguced in your flow chart language -

to doubly-subscripted variables such as
¢ T

X, .
. i,
A

The FoIg}}AN representation for such a doubly-subscripted variable is just

f about what you would expect it to be:

. X(1,J) "
~ 4\ .
The two subscripts are separated by a comma. . "o
Thus the assi—gnment._box.
) .
WIN «—~WIN + AK,J —
. - ’ \
could be written in FORTRAN as N

f WIN = WIN + A(K,J) ; 7 .

O

Alloc'atiorr of storage for doubly-subscripted a.fr’ays

A DIMENSION declaration -is required to allocate space for doubly-sub-

seripted variables. For example ~.

«

DIMENSION A(3,k4) p

This"i)arti'cular declaration allocates 12 spaces for a matrix having

.3 rows and 4 columns. The subscripted variables of this matrix are:

A

N ST A 3 ALY
. | .
o A1 a2 2,30 A
A1 7 A M3 A3, y N

'mius the acceptable values for the first sub\§’eript are l 2, and 3
) and for the second subscript they are 1, 2,3, and 4k, No other subscript
values ‘have significance with the above DIMENSION declaration.) ’

. e
- o«

BIg . 0 .

Iy

4

F3 6

To input or output an entire matrix, w\eq can employ .either of two

approaches ‘suggested by the flow charts in Figure F3-9.

oy

1

.

\
!

[UALJ,J =(1)N}, I=1{1)¥)

©° 14

6 A

»

Method “(a)

'

Method (b) .

Figure F3-9, Two ways to input values of a matrix having

* The FORTRfAN‘ cbding for each method is given below for comparison. In

M rows and N columns.

-

-

L4

-

|

B

each case it is assumed that data are punched on-cards, four values per card
p M

using F10.5 field codes.

* Method (&

_Method (b)

.

READ 50, ((A(“I,“','ff\)'?iJ =1, W),
50 FORMAT (4F10.5) o

-
Y

, I=1.
. 3READ 50, (A(I,J), J = 1,N)
50 FORMAT (4F10.5)

I=1+1
IF(I - M) 3, 3, 6 :

o

v

[}

I=1,M)

} s . “
[P P— /f“" }
¥, ¥ , ,
. - i . .,
In Method (b), Box 3 is an _order to input one entire row of the maf.rix
(the Ith row). The. other boxes define a range of values for I from, 1

to M inclusive, under which Box 3 is Tepeated. In Method (a) Box 1 is an

,order to input the entire matrix row-by-row.') ¢

%

It would certainly seem that Method (a) might always be prej‘eréed

because it is easier to write. In the next Ehapter we will show situations

vhere the approach used in Method (a) hss cer@in practical advantages’.

The FORTRAN progrem equivalent to the game flow-chartéd in Figure 3-34

" is given below. The one-row-at-a-time approach for input of the .6 X 6
matrix (Method (b)) is chosen.

4 o

@ &
' . | |onmwszon a6,6) < .
. I=1 ’ g

e ‘1| [READ 100, (A(I,3), J = 1,6) -

. I=I+1 .

. . IF(I-6) 1, 1, 2
LT { 2| |RrEaD 101, X, L

WIN = 0.0 .
AIOSE = 0.0

I=1

=1 ' v

IF(I - 6) 5, 5, 6 SR
5 | |WIN = WIN + A(K,J)

J=J+1 . .
. l GO TO &4

IF(; - 6) 7; 75 8 ®

” 7 | |ALOSE = ALOSE + A(X,L)
I=1+1)
GT6

8.1 |ANET = WIN - ALOSE

| [pRINT 102, ANET s

STOP b r 2
100 | |FomMaT (6F8.3)
101 | |FORMAT (2_12)
102-| |FORMAT (1HO, F8.3) -
T e

Q . _ ’ M .
ERIC | - 80 -

Aruitoxt provided by Eic:

F3-6

~

Py

'E3-6 . p , .
"Exercises F3-6 o ¥ - ¢

~- i ~N ’
1-5. Refe} to Exercises 1 - 5, Section 3+6. .For each of these exercises

you have drawn flow charts describing certain."row" or "column operations”

on a matrix. For each of these flow chg}ts your job is to wrlte the
equivalent FORTRAY statements preceded by the necessary DIMENSION
No FORMAT declarations will be required in your answers

.
.

- declarat;ons

-

-

','-’5.5 [39
~ g

S
. -
v
- hd ~
. L]
- AY
[} ~ -
a4
» \
- -

) AN . .

-) ¢

£

.
H t ‘
> - ’
) ~ , .
s %
9
“s ”
“
‘ -
L] 4
L<
R
. 7
2 ‘ ¢ -
]

. Q ‘e ,(78.-
ERIC S L

s . ‘ N

. i ’ f" . L} 2 '. ! . \";

° - Ny b L B

1 A% 0‘ % o R
. c".' L ot - .
B [3 'y]
. ' " : ’ %
4
. Chapter Fh4)
> . » W
/ . IQOPING i i CeT
: .) S s s
/,.// . . b . .
« N P ’

Fh-1 The DO statement o °

-

It should come as no unpleasant surprise that the litgle wonder box we
discovered and called the "iteratioﬁrbox" has an almost perfect parallel in
FORTRAN. This shorthand 1s called the DO statement. A}{ example is shown in

Flgurthl. : "” : '
. m" l. X
. , .
R Ie1- F .
. I<1I000p—— - " D015 I = 1,1000
| el T -1 + 1 - .

.-

- ¢

x P
Figure Fh-1. The iteration box and gn equivalent DO !
‘. 7 statement

! %&jlttedly, the paraliel is not yet obvious, but we promise it w:Lll be
after show eacgin the larger context of a loop. g

9

To display'a parallel between a flow chart and a FORTRAN "DO loop" we

present Figure F4-2. The algonithmrused\a you will recognize, is the Fibonacci
sequence generator * (Figure 4-6). . ‘ -

4

t

-

Our next discussion will focus on the loop counter tﬁéé.is used in a DO

" statement. It's “personality" will now be descyibed. Yot may find this
description somewhat long and detailed. Don't be discouraged. Read it once
and then we will look ‘at soaue examples.) <.

- o~

1. Itts aiv}ays & non-subscripted .integer variable‘, like I, IKE, -
IBALL, J, M, etc., and never l%]%\@), INT(K), etc.

2. As in the iteration box, the loop counter must always be given
R f an initial value (¥ 0). ° ’

" ~ - ¥ w
-

. -
. 1}
" s - -
Q , M , N . \' ‘ , ‘, " “9 ' .
ERIC - o SR -
. 9 4

Label Statement or de¢laration

\LTERM<—-13 ') "| LTERY
NLT <O : 5

. Il - F - ,DO@i:i’,'looo
— I < 1000

_ PRINT 50, I, LTERM
50 | | FoRMAT (21%5)

N ¢

- R
p . : |
4y ICOPY = LTERM
. COPY « LTERMLr . . LTERM = LTERM + NLT
N - LTERM "« LTERM ™ NLT NLT = ICOPY
NIT « COPY CONTINUE ° :
.\: . . \ (ﬁ LY

| B » i) . .
SANEI) . ;COMP,U'BATION PORTIONS _
- . : . . 3 . . -)

;! . Figure F4-2. Parallel between a flow chart and a FORTRAN

A o ' Loop

- R . , w:‘w‘" - -) N . i) ;))

g e ’ .
.« " ‘Ihe DO statement is an order to repeat a certain task,. once for each
© value of fhe counter I in thé range 1 to 1000 inclusive. .The task -

which is to be repeated begins with the first statement that follows the DO
stwnt and terminates afte executing the statement labeled 15. To mark
the termination of a "o loop we can use a gpecial "dtmzmy" Statement or.

-
JBET ker for this purpose. LTt s«simply the word e A
’ c. :’ * '.?:-.‘,, ¢ {% g ';; . . . N l i - R
22 3§ 5 & 4 %4 , QONTINUE \ . .
: Ry % PR A . ‘ _
o s oh] £y , &% - \ { { s
o *% ; g; R g ') \ .- 1N N~
Lo . 4 : 8o %7 SRR L e
S IS s ST s N . : .
% ‘ 4 h % A Tt i% . . J Y . %) L
PArirrox: provided by e | . \ke . ‘ . . . B o« .
B, \ . . ’ i ’ ; 2 : !

P [}

(Although we frequently use the CONTINUE statement to mark the terminus, an
assignment, READ or PRINT statement would also be suitable.) We now see that
the sthtement :

DO-15 I = 1,1000 .

should be read this way: . ’ J
"Repeatedly execute (or do) all statements which follow this one, _down
to and including the (CONTINUE) statement that is label®d 5. _Do this once

for each value of T 1in the range 1 ‘tc 1000."

s 3. ‘A highest value for the counter?s range must ‘always be supplied.

“ 4, An increment must ve supplled if it is other than one. _We shall

.see examples presently. "

~ -

.
<

; * In supplying Items 2, 3, and L in the DO statement we are pr1v1leged to r

glve each either as an unsigned 1nteger constant or as a non-subscripted

integer variable. Thé rules are strict on ¢his point. If you forget and use

some other form, don!t worry, the processor “will politely remind you by

printing an error message for each poorly formed DO statement. . .
e g o :" Q R) . 1 N
Examples ¢

Ll bosir=1, W2 . ﬂ E , -

O

means: repeat the execution of the 1mmediately ollowing statements -
through the one labeled 51, once for egch value of the oop
gounter I,- in steps of 2 until I > {+ Thus if N ad

a value of 7, the loop would be repeated (& times) for values
of I of 1,3,5 and 7. When the counter 1s incremented
again its value exceeds 7 and we exit from the loop by

— . proceeding to exedute _the first stetement that ‘follows the

: one labeled 51, j h

- s . !

- 4 ~

2. D051 K-3,8 2

® . ,
L4

meaﬁs' repeat through 51 ’ once for each value of K until K>8, K -

. 4_. starts with a value of 3 and is ihcremented each time by 2, -
- * A

The loop is repeated for K= 3, 5 and 7. {three times) . -

.
i Q K] . ' ‘
I 4 : . . -

) . \ . S }
N , ! s X \ ,‘ x. ‘-,,:‘)
~EMC 0T s By e ¢

H

' \ .]
‘ 1 ! . . - . . te .
- . -

DO 51 J =
op \
loop for for for counter
¢ounter initial loo’o increment .
(Jvalue limit ¢
~ . -
means: repeat, through Statement 51, cnce for each value of the counter

i3

J wntil J > L. 'J is given a starting value equal to that

current]zy assigned to I. Prior to each proposed repetition

-J is inéremented by K.

J

3

" = I, L 2 ——— —
loop } for /)' for loop - ‘
counter initial limit
Value . 5
. - .

means: same as Example 3, except that no increment °is supplied. In’

such an evert we (and the computer that }nust‘ read this state-

»
o«

ment) always assume the increment &% one.

" - Exercises Fi-1 . \ . - .
\ .
Problems 1 - 5: For each of the flow charts you drew in answering the exer-
cises 1 through 5 Section fg-l, nov wxite an equivalent FORTRAN program. In
order to write a complete FORTRAN progrém, use the information supplied below
“for each of the exercises. - ‘ v
g J A ume’ o is @ 6-digit integer, and that values of A, B, and C .
can’ ‘be punched orr cayrds using F10. 5 fields. ‘o I
. 2. Use an I,lO field-code for ID and F10.5 codes for A, B Cc a’.nd D, .
' . Assume N a number “ess than 10000. " .
3 < "
3. .Qhoose a wlde I- field like 1I15 for.printing vs.lues of I, LTERM - and
s (Is S .8 good neme for owr putposes in the FORTRAN program?)
4 - .9
< b, - Use Il5 fields for all ixftegers. Let the four _value‘s/ of f‘»be‘pu_nched
- on a single card. . . ¢
",' . z ~ . {\ - -
) ,.f'l‘ - [J - - .
) e The Timekeeper records his data in houré gnd hundredths of én hour. +
) Personnel keep data on rates in dollars and cents per hour T
L : . v 3 .
A Q } N , e (\

-

ER

.) Fﬂ-2‘

Fh.2 TIllustrative examples

There are a number of simple examples of lcops in Section 4-2 of your
flow chart teéxt which can be easily transliterated into FORTRAN code with
the aid of the DO loop. ‘ze 'shall use thesefto mat{}(er iflustrate some of
the details in the proper use of the DO statement . Figure Fk-3 shows FORTRAN *
) coding equiv:aient ‘éo the flow charts in Figure 4-8. .

- EY T
. .
2
Label * Statement i Label Statement
DO 4I=1, N D05 J =1, N
- Y = X(1)*43 READ 51, X
PRINT 51, X(I), Y o I O G
4| |CONTINUE o PRINT 52, %, Y
') 5| | CONTINUE ' ‘
, > . &F
(a), » (v) - =

» Y
2

Figure F4-3, FORTRAN fof flow charts in Figure L-8. i

.

AS

Similarly we see in Figure Fi-4 a FORTRAN equivalent of the flow chart

in Figure 4-9(a). : . . =
¥
~- . Label Statement s
F O SWM = 0. /

DO 10 J'= 1, N ‘ '
SUM = A(J) + SuM

10| |CONTINUE

4| |PRINT 50, SUM "

.- Figure Fi-h. FORTRAN for Figure 4-9(a). ~ ' “
y

Before 'looking :at our next transliteration, please try your hand at =
= writing the FORTRAN for Figure 4-9(b). Tow compare your code with that
found in Figure F4-5, -

"

.,

’

'

. tion mrtion_.

ogx; way t

e\

+» fo the flow chart;s in

LA . . -

BRI i R * Vo

\; ~

[mc I

= e e - L’

Figure Fi-5,

S V
@
Label Statementr ’
FMAX = ABSF(A(1)) L
2| |p0 103 =2, N
3 IF(ABSF(A(JS) - FMAX) 1o 1o h
Ll |PMAX = ABSF(A(J)) ‘a
10| |CONTINUE T v
5| |PRINT 50, FMAX * ’ . w4
1 o

There are several lessons to be learned here,

FORTRAN for Figure 4-9(b)’

If you look at the flow

cha yEm see a line returning from the false side of Box 3 to the increment-

ation portion of Box 2,) a
. ’ ~
" How“do we express this Jgeturn line in FORTRAN? | ' .
4 You may have been tempted to’g;;ite code something like that +in Figure
Fh-6. Woe is you if you did} . : '
\ ¢ ") .

Statement .

Figure /;‘&-6.

\w

.

In that case you have fallen into a great big FORTRAN trap.
when we order a return to St’atement 2 it is equivale t to returning to ‘Box 2
f the flow chart at the initialization eompartment f

DO10J =2, N . s
"‘ﬂ_?(ABSF(A(Js FMAX) 2)2; :
= ABSF(A(J)) \ -

A migtake! o .

. /s

‘Un‘fortunat ely,

d not at the increment-

M in;stead 'of"continuing with the ¢

This means we sta

8 go handy to use as a terminus for a DO loop‘

ting a d testing process,

't

the Loop all over again with d = z
In fact thes =«

say in FORTRAN 'go bgck to the” incrementation portion of the DO
s‘batement is to send control forward to the statement w}{ich is named as
the terminus in the DO statement. Jou cag see“‘h“o“w“ W‘the éONIINUE statement

‘By giving tbe CONTINUE the

label 10 in this case and “funneling" ’all flou to it, we guarant e a ret
‘o he 1nerementation port;ion of the DO 1oop

With this idea in ftnd you s ou.ld have no ‘Erouble writing he‘FORTRAN '
gure 4-10 and 4-11.
™ ‘

- - - Y I TR

H .

4

Exercises Fh- Set A

Pl

In each of the following four execmses , we present FORTRAN code for the

flow charts in Figures h-l&(a L-10(v), L- 1l(a) and b- -11(b), .respectively
Your job is to indicate what errors, if any, have been made in the coding

process. The necessary declarations are being disregarded here. p

v
’

. 1. sFo'r Figure 4-10(a)

*

N
. Label Statement
< FMAX = ABSF(A(1)) . '
| INDEX =
2|'[poJ = 2 N

\N =

2. For Figure k:10(b)

Label

IF(ABSF(A(J)) - FMAX) 4, 4, 3

* |[FMAX = ABSF(A(J))

INDEX = J

CONTINUE 2
PRINT 51, INDEX, FMAX

Pl

Stat ement

N
H - 9‘)
Y

3. For Figure h-ll(a)".

Label

MAX = ABSF(A(2)) B
D010, J=%, N, 2] .
IF(ABSF(A(J)s MAX) 10, 10, 4 ;

= ABSE(A(J))
CONTINUE -
PRINT 5, MAX

I3 ” *
M

Statement

N -
.

FACT = 1 ‘ !
DOjI0K =1, 1, N

FACT = K * FACT .
PRINT 5, K, FACT T
CONTINUE f .Y

Statement A]

LTERM . e W
NLT . ‘
DO 10,fL =1, N . . -,
COFY + LTERM o

i
]
kS
T —

LTERM(LTERM + NLT - c o
NLT =] COFY : X <.

L)

*|PRINT 5, K, LTERM ﬁ
CONTINUE 7 - . %

F4
E3
[+

i B és% 4

3
3.

-

.the test happens fo §ail this first time, then we never do execute the

Fh-2 , U . \~/,
- -f
There is one more point that is worthy of note about the DO statement.
Many FORTRAN II pz:ocessors interpret the DO statement slightly differently

than the iteration box would imply.V The iteration box implies’ that the test .

for termination is mede i!mnedi‘.ately after the counter is initialized. If

o -——
-«

computation portion of the loop--not even once. Not so with DO statement in
many FORTRAN II pi‘ocessors. After initializing the counter, the test is
bypassed and,ye_ do enter the computation portion. It!s only after completing
an incrementation of the loop counter that the test is made. -Hence the

.

computation portion of a DO loop (for these processors) is always executed
at least once. Ask your teacher if the processor you are using"in the ~

leboratory behaves this way. = s

Supposing for the moment your FORTRAN processor is of the type just
described, under what circumstances would the FORTRAN code in Figure F4-5
fail to agree with our flow chart in Figure 4-9(b)?

Theganswer is--if by some c¢hance the value of N were 1, then the
printed value for MAX at Box 5 (Bexes 3 and 4 not executed) would be IA |
(unequivocably) On the other hand, in the FORTRAN case, if |A2}
larger than IAll, then the printed velue for FMAX would be IA

Statememts 3 and L are executed once.

wvere

2], since

» Mell, then, what must we do to bring sbout strict equivalence between
the flow chart and the FORTRAN/ under these circumstarices? One way this can
be done is to precede the DO statement with the necessary test to permit
skipping over the DO dloop. . Thus we might write in this case '

€

v ‘ . . :
FMAX = ABSF(A(l)) <t & (
. IF(2 - N) 2 2, this is e extra-step
- o 2l |D0 10 J =
ol v
£ - v »
PR - 10| | CONTINUE- -
* 5| |PRINT 50, FMAX !

- . °
®

Ta add this step ig cumbersome' and totally unnecessary in most instances. !
Yowr Judgment is Jelied on here to decide in these matters. Obviously in
*this case, you are not goin¢ to be lock: ng for the largest of 1 nurbers
with. a DO statement7 ') .)

) . ,

/ " d

Exercises F4-2 Set B

4

1-17.

Sectidn 4-2, Set A now write the equivalent FORTRAN statements as h
Do not bother to.write declarations unless it

'partial programs only.

should be,w1de aweke are:

For each of the flow charts you drew in answering the exercises of =~

. helps you to see what is going on. .Hint——the tricky ofés where you .
L, 5,6, 7, 12, 13 and 17.
&~

¢

.

.
-
.

You may be interested in seeing how the flow chart of the factors-of-N
.elgordithm (Figure 4-14) 'is coded in FORTRAN. Here'it is in F%gure F4-7.

You “will notice that all the data of this problem are integers, but ~

the SQRTF function requires a real argument and produces a real result.

* the value of N

’

end FN

rest of the program should be easy to follow.
can be written in FORTRAN as simply N/K,

FN =

el . '
is then used as the argument of SQRTF

So

is converted to a real value by

N ot

in the next statement.
(N/k]

- &
because for positive values integer

The
You may recall that

division produces*the same result as the bracket function. .
. »
v Lahel Statemént or declaration
c FACTORS OF'N .-
) 1|l | READ 50, N g
z - 50| | FORMAT (I10) . . N
K |FN =N —
_ - | | IBOUND = SQRTF(FN) ’
’ - : PRINT 51, N

presents an interesting problem.

FORMAT(14HIITHETFACTORSIOFD, 115), h}mARE)I
DO 10 X =71, 'TEOUND

fi the flow chart we

- coeffigients®as’ components of a vegtor A beginning at

To

. ~ IF(N-K*(N/))lO,6 0 .. -
© qs 1 = N/K)
° .) PRINT-52, K,
J FORMAT(1H@, 2I15)
' 10| |CcONTINUE = . " .
STOP . {
. 3 e ; ED C CoE
Figure F4-7. Algerithm for factors of N equivalent
. to Figure 4- lh)
3 { -

!:_' ThesFORTRAN coding of the polynomial evaluation algorithm,Figure 17

ow the polynomial
In FORTRAN we |

.
N

_Fh2 @

¥

cannot havé a zero subscript. The emallest value is 1. Consequently in
the équivalent FORTRAN program you will see how we have had to position the .
coefficients beginning at ’ Al' To do this a slight change in the algorithm

is required, asyou will see when'you study Figure Fu-8. | v

. «
-
B

Label. Statement or,declaration . -

- L) c POLYNOMIAL
. DIMENSION B(4) *
. READ 50, (B(I), I =1, 4) .
50! | FORMAT (hF15.5$
READ 50, X - p.
») VALUE = B(1)
- : . . ’ DO10OK=2, 4
; VALUE = VALUE * X, + B(K)
. 10| | CONTINUE
-] PRINT 51, VALUE
51| |FORMAT(thnT}{EuVALUEbISU ,F15. 5) .
STOP] L
END .

3

Figure Fhi-8. FORTRAN equlvalent of the polynomlal evaluatlom
‘ - . (Flgure 4-17) . =

- \

Exercises Fi-2 Set € : . 7 N
. - 3 . i
1 - 3\ For each of the flow charts you drew in answerlng the exercises of :'»
Sectlon h 2 Set B, now write the equivalent FOR‘I'RAN-—(mll progravﬁﬁ

’ Note special 1nformat10n supplied below: , L ;,ﬂ
~ (1) Assume that N will never exceed 50, Asgume the values for ' - |
‘X and A may be input sing F19{5 field codes and that up t AL
5 values of X may bg punched ‘onla single dqta card.
2 2) ,Make same assumptlons bgqut the data you m&de in tk{e precedlng

- e ‘exercises. . ¢ J - . SN *

"(3) 1f o continue to

.

\ t +_ winnings, you may need to know how to ca'll for the absolute value
gf an intgger exprees:.on. "In FORTRAN“II we use the ABSF mnctlon
‘ 1hen the argument is real but we use the XABSF function when the"
v argument is integer The resulting value of'say XABSE(K) is an

. . integer.

se integer variables, espe\cﬁa\lly for your

%'

4
F4-3 Table-look-up

In this section we shall do "two things:

10

2,

The assumptions we have made in order to write the program’giveh'in

Verify our ablllty to write the FORTRAN equlvalent to the fairly
involved table-look-up (Figure h-2h) using the bisection method
Flgure Fh 9 gshows the program.

Learn. a 11tt1e more about input-outpuﬁ,statements and formet code.

/ Figure Fhi-9-are:

ERIC

£ 4

N

The table to be stored ﬁiil never contain more than 200 Xts

and 200 Y?!s,

411 input data can Be formatted usin& I5 fields ‘for the. integers

r

gnd F10.5 fields for the reals.

A data card read at Box 2 contains only one pair of values for the

X-Y table.

Figure Fli-9

i

. » -
. .

.

Label Statement or declaration .
DIMENSION x(aoo),y(aoo)) :
READ 50,
50 FORMAT(I5) .
2] |READ 51, (X(k), ¥(K), K =1, N)«
51| |ForMAT (2F10.5) e
‘| READ 52,4 . .
52| | FORMAT (mo 5) .
| |EF (x(1)-0)4, b1, 21
| IR(A-X(N))5, 5, 1
11(, | PRINT. 53,4 ¢
‘53 FORMAT(lH ,F10.5,
1 26HuISuNO‘InI1\bRANGEJOFuTABLE)
- | -| sTop)
5 I0W = 1
IHIGH =
6} |1IF (IHIGH-LOW—l)?, 12,7
' “12| | PRINT 5k, XLOW, YLOW, A, XHIGH, YHIGH
54| | FORMAT(1Ho SFlO 5)
a smop .
7 (LOW + IHIGH)/2
Ir (A-X(MID))9, 9, 1o .
9| (IHIGH = MID .
GO TO 6
10| |LOW = MID N
’ GO TO 6 b .
END

FORTRAN equiivalént of table-lookhup using |
bisection” (Figure 4-24)

\

\
92 1 v

-

«t .

«"’

' vf Fh.3 - ‘ ‘) \
~ Qa \ _ - ‘

J Implled DO _loop as 1ist elements ‘ _ .

-
‘!

In stud,y:.ng the program 1n Flgure FL-9, and 1n comparmg it with its

cbrrespondlng flow chart you may have notlced that in Statement 2 we used
"the input 1ist element T . »

* .Y P

(X(K); Y(k), 'K = 1, AN) <L

This 18 the FORTRAN e'quivalent of our new flow chart notation

Xy Yo K = 11N -
Executing the statement: s '
, REAbslx(x) X(K), K =1, N) L
.- 51 FORMAT(2F1g. 5) T

is a shorthand ‘way of calling fo\r execution of the statements:

DO 10 K = ,N

© READ 51 X(Kk) T
S 51 FORMAT(2FlO 53 : .
] :) J 10 CONTINUE
» ¥
You can now see why we frequently refer to a notation “like ~
E—— - - (X(x), YER);K =45 W— - — A
. as "implied DO 1oop" potation. ') SR
In fact, -if we look at such notation in this way, we can berha{s begin * .-
to understand it for the first time. Other examples whlch shq‘uid help are ’?“2
given in Table Fk-1. Study these earefully. : £
- g ‘ o ~
’ ¢ Table Fi-1 l T / L o
Implied DO loop notation |) m’ '
Exaniple "Shorthand" [. Equivalent "l_onghand" . "f:'f’«
N N : ‘ R
A ~ READ 51,(A(I), I = 1,.N) |- DO10I =1, ’ RO
] : 51 FORWAT(2F10.5) | READ 51, ACH), A(T+1) Ny
. , 51_ FORMAT(2F10. 53 T
' > . 1 10" CONTINUE* AR
gy ‘ o
Input values for all A from Al ,through AN inélusive. Data
card contains up to two values per. card. If the value of" N is Ty ;
P o
for example , then L cards will be read, the last card containi the
o seventh value. -~ T . : ry
;‘ _________ ...___a________.___________T___.n.T_
J) . ' P AT £ ;
. * . s o 0 ?:
. ' % . 1 [
: L - g5 z
) < — " 3 X L2 5 - . ;::, L |
" - .1‘\. L iz“ &&‘ Lo % ~2 % b % j; %‘? %
. < e B 4 : ;
“ERIC ® S

Jable Fh-1 (continued):

Example - *Shorthand" - : Fquivalént "longhand" ‘;
il\ *
2. READ 51, (A(1), I =1, N, 2) l ?,_Doqo I=1I,N14
51 FORMAT (2r10.5) ““READ 51, A(I), a(1+2) .

| 51 FORMAT (2¥10.5)
10 CONTINUE

Input values fer odd-subscripted values of Ai’ beginning with A1

‘and up to or including AN (dependlng on whether N ’'is even or odd,

3. READ 51, (A(I), I =5, K, 3)| DOlOI_S,
58 FORMAT (3F10.5) | READ 51, A(I), A(1+3), A(I+6)
v | 51 FORMAT {3F10. 53 .
: b | 10 CONTINUE ‘

E~)

g
If X has the value 15, for instance, then values will be input
for A5 AS’ 1712 and Alh The first three values will be punched on

the first card that is read and the fourth value will be on the second .
card. . ¢

L, READ 51, (A(T), B(I),c(I) I=1,N) I DO10I=1, N !
51 . FORMAT (3FlO 5) .| -. "rEAD 51 «A(I) B(1), ¢(1) .
| - FORMT {3m03) |
S 10 CONTINUE) i

»

’] Inputs values for AI’ B, Cp, A2, BQ’ C,, Aj, B3, 03, etc., up to and
. . including AN’ BN’.CN' The values,for Ai,‘Bi, Ci for any one value
R of. 1 are punched pn a single card. T
. [—
t ! }

O Rt
. <] .

. *'In the flext section we will look+at imleed DO loops once again. "
' . A

{

.

' ~

- ¢ * . s ‘ -
_T_h_eX-field o ' o ’

- ?

We would now like to give you a tidbit aboyt format code which might
occasionally prove useful to you. It is the so- calledg"x-field". There ‘arg
several interesting uses for it. .

rmally, however), you can get by without

. using them. . a oot A r
*‘ . h A 2 g% v k
§ . 3 Ll £€@, S *‘? Lo N e B H .
S WL R DULI R TRVAREY NI
L SR AE RS fres ARSI R
) kA ‘2, H . s . . |
" . 3 n = - ¥ 94 s %) S C g
Q * ¥ e ¥ ‘ §9l) ' h :% . .
FERIC Lo T e A "
o . ik & , "t f <
. LN . v '

s

For en input format; the X-field is useful for skipping over (or

ignoring) ¢the data which may be punched in certajin ¢olumns of a data card.

L - ' For an output fo?at the X-field allows yéu to insert any number of ,
blank spaces between pumbers or comments that are to be rrinted on a line.
When an X-field appears at the very beginqing of a format codea, it guarantees

% dlank which can b_e' used for single-line spacing in 'carxfiage control. ”

We write an X-field code using the form: S . \)

W
an unsigned) !\letter «X
) integer ’ ¢
- . ’

) ‘ . =
* For example, 6X or. 12X or 1X (Never do we write X6 or X12 or

:

X1 1) . -

X -~

We now return our attention to the table-lbok—up problem and again

consider that the deck of data cards containing the X, and. YK (Figure

K

Y .
F4-10) shows four possible "card designs." .

A 2
B @ - . »

Example Format Code - 10 20

\ * .’. WBO“\ . '

,3‘0 ’. h*o'

~ - '

WHO WHO
3, (12X,F10.5,8x,Fl_§5) | Ikwows 1 X kvowsel Yk *
) ~ e ‘. N \

-

* .

Q . - - - . T
ERIC e o ‘ Cy
.oy

\ o oo Y,

oo, | b s e e A i s e e e o e — S —

-
.. o l
Example Format Code . | ‘
; . - .
On* Suné‘ay Ty ,]
(2r0.5) ol oxe I I - o, .
On Monday: SUNDAY |MONDAY |TUESDAY |
. (F10.5,10%,F10.5)
On Tuesday: ,
(F10.5,20%,F10.5) R . ’
o~ | < -

A .

.

4—thure—FH6—Vaz—muswardaﬁes1gns illustrate possible

T usgs of the X-field

-+

- .
- v, - L
‘ .

*

s .

I_f.‘ we {iere punch.ing our own data cards for the table of mnction values, .
we might natu.rally choose the first des:.gn as the easiest, Onhe never

knows how many different uses such data might be.f)ut to.,

For the benefit of a human reader, however; you may have,decided to
separate the two fields by, say, 4 columns. Off course, we wowld it to
tell *Fhe computer which alsd must read this card t!@at we *have 1ef{; a
space of 4 ¢olumns so we now must write the format code as ei‘t:her

* (F10.5, Flh.s)

. . « -
or as . - o

| (F[IO 5, UX, Flj 5) O

In the first way ve merely ‘treat column

L]

11 - 14 as the left (bla)
portion of the second field’ In the second approach we' tell the computer
to completj ignore these columns. If, somgtime later, we deci e to
punch something in thq four intermediate colymns, like a sequenc number,
then the use of the X field becomes mandatory. That is wmr we hj

called columns 11 - 1k on the second card a WHO KNOWS. It is!certainly'

safer to use the X-fiel'd. — : . \)

Ve

..
2y

- Here is another caxd design, this time with wo WH OWS fields. 309
see how we can 3pr1nld_e" the X-fielﬁs in a ‘ around the F-fiélds (or ¥

around I-.fieldT 1f’'we had them Here) 175 any wey ve may chqose, /
. | g -
e. R ‘)
\ .
° h - 4
1
N - s - - r R 9 () N A v ‘ L
oo 93 . ? . %f’ . i

13
)

Rz SR :

h,: The flnal example suggests that several dlfferent tabulated functlons

st . . for the same values of XK may be punched on one card. On Sunday wew
hight want tq do a table look-up using values of Y in Cqlumns 11 - 20,
on Mondey Jperhaps with the values of Columns 2l - 30, and so forth.

’ The same FORTRAN program could be used each time, provided thateach
-tlme we used the program, we change FORMAT number 51 in the program
(Figure Fh- 9) in the manner shown (Example 4 of ugure Fh- 10)

) N ~

Now that we?ve begun to app'f/c iate ways in which the X fleldbcan be
“+ used for input format, let's see how it may be used fq:c output, #

’

“e

Sx + In the first place we can see that for FORMA’I‘ 54 of the program
(Figure F4-9) an alternatlve to ‘
(1HO,5F10.5))
. ‘ e - Ve s
~ would be . ,
' .o - (1X,5F16.5)
.- On output an’ X-fleld inserts blanks. So 1X .af the beginning inserts
the ble.nk needed as a Carriage control signal, We can also insert blanks to
N - spread out the printed values. Thus 1f we want the 5 values to be prmted~
. Spread out 2
! with arbitrary amounts of space in between eaah ntmber, we bould wrlte
. e e (IX, F10.5, 2X, F;o.s,_ kX, Fl0.5, LX, -F10.5, 2%, F10,5) -
) . + This format would group X‘LOW’ LOW pair and the XHIGH’ Hicy. Peir eacb
flanklng the prlnted value of A)wﬁi‘er to help the eye do the grouping as
_I suggested by the w1ggles below (L = -
. I . >
'vvv\,-«/vv»-fvvv\,v'vvvx,.w\/\/\, \ ‘
7 ' 2 - 4 4 2 ' ’
. Of course, the same sp;‘ead" coulll be achleved by smply lengthenmg each
RN F-field the rlght amount such %as: -
f e . (1%, F10.5, F12.5, F1k.5, F14.5, Fl12.5) '
Take your choice.) “. - ‘C“““" '
" The X-field could also be used to help’é’&*n the spacmg of headings ac,{oss
’ R “‘the top of tabulated data. ' . .
. i 2
. , : . g
- [?Q' -
1] 2 .
) . - fnb .
|l * . ' . T \
[y . r " .
T T A _ o
A o . - R . '

ERIC = - . 0 gr . L

PAruntext providea oy enic [- "
o .
] Y r

S

(30

1Y

P

v P

. vhich shows tabulated results for our frien &y loop, Flgure 2- 8

Exercises Fi-3 Set A
"See F:Lgure 2-7 there
Your JOb

Go back to Chapter 2 of ydur Flow Chart text.

- is to m‘lte a FORTRAN program which would print ‘a heading across the top of'
_ the table to "name" fhe values below, as.suggested in Figure %-11.

]
-

.

O A, B ¢ D O ’
1o . o O |=— EXTRA SPACE
o 5.0 . 10.0 3.0 ¢+ 116 ‘O
‘ O . 3 25 . 6.1 179 O .
O 85 5.7 32 1.7 O
O g g . ¢
— g O
O~
. o O ¢
20.
- - ‘\ *
. 7 & Flgure. A table with prmted headlng
a /’JM - v“ -

[

Print the table' heading at the top of a pa
you can, to smp a line before the fn‘st line of numbers is printed us'mg

single spacmg thex’e;after. You will probably have to révise the floy: chart

of Figure 2-8 flrst. LI . . .
’ W p . * .
h ¢ !
c L St
. P ’
1
. - . ¢ -
. » ! Py .
o i ’
‘ *
. v e , .
. . 7 g ‘
. N Arud
. R S
’ : {"‘: ” S
. P P LS
¢ o /X //, ‘/'I.
N gy -
. \ / . B 3‘ L 7
i 2
o . ‘e
o W .
. . £
) ' R N AN ad X d .
(S 1'95 v

FRIC . SN ‘

o A \\ " n
:

and flgure out a way, if |

'

- g -

~

R4

Y

e of another DO loog, : . . .

v

! Fh-lL Nested DO loopbs

g R L e .

. .-xdJust as we can have one loop, with its iteration‘, boxy form 'part of the

computation portion of another loop, we cen have the one DO loop become part
- . f L

" Exemine the flow ehaxxt in Flgure 4-29, beginnglng ‘with Box k.. We now .
shoy the’ equlva«lent FORTRAN code in, Figuré Fi-11.)
. F

v

L] D . i ’ v

. - | |020T=1, M . -
: ; SUM(I) = 0.0 : -
, : DO 10 J = 1, N. :
L .-] SM(I) = A(I,J) + SUM(I) '
Lo , 10| . CONTINUE .
- o, T TOTAL = TOTAL + SUM(I) ‘ Y
s 20 CONTINUE . X .
#8| |PRINT 55, TOTAL ’ '

-, P
< « 3 > . . [y N N
. A
f - . . ~ ~
. - . .
M r

¢ ‘ . *

-
*
hY

Figure Fk-11, Nested DO-loops
" - R . 0 7

We have dellberately 1ndented the statements after each e;DO loop to

suggest the, 1dea of nesting Su,ppose we call those Statements whlch are

* repeated under c'ontrol of a, DO-statement the "range" orj scop\e" of that DO

-statement or DQ loop. Using thls termlnology, we can say that the scope of
" the "outer" o% first DO 00p 1nCludes anOther DO sté.temen't‘ and its scope.)

If you again.look at Flgure FL-11 you see that the doubly-sindented st;ite-

ments constltute the scope of the .inner DD statementyghile all~ those which'

* are at least singly- indented belong to the scope ofﬁ outer DO statement.

1 - °

. _" When executlng these FOR'L‘RAN statements, the cjomputer aan keep track of

N

what loop it is in at all times.‘ Whem the

.
. P .
v ¢ v Lt - v

R . . *pozoz_,l,M Lo .

. is executed, the computer attemptsto,repeat the scope of this DO M times.
In doing each repetition, i} encounters the inner DO sta,tement vhich means
- that the scope of this loqp must be repeated .N times before moving on to '
Statement 7 and completing the pcope~of the outer loop. (

N

P F
-

- f Each time we emerge/frbg‘fa loop by- suo.ce,edihg on a loop-llmit test we
say "a DO’ loop has been satisfied." Lo .

Us1ng ‘this terminology,i we might sa}r that in executing the SGOPS of
the outer DO loop we must repeat an inner DO loop until it is satisfled "

e 969 Al .

ERIC . ., L .

, : - A ’

é

.

- -

.

‘

i

. "' L
Fh-l

Now let!s look at the whole program for summmg the metrix entr;es. Here

. it'is in Figure Fh- 12. We have assumed the matrix can have up t6 50 rows

-

end 50 columns. Data for the matrix entries are assumed to be punched up
to lr items per card, in row by row ordex. ‘ “ 3’) r .
— 3
. ’ \‘. ”
' Label | Statement or declaration \
’ c SUMMING A MATRIX®
¢ . . ’ DIMENSION A(50, 50) .
’ READ 0, M, N o . ~ N
' . 50 FORMAT(215$: ! " \ -
y 2| (READ 51, ((A(I,d),:d-= 1, N), I' 1,M), N\ v
R 51| I'FORMAT (4F10. 55 -
' TOTAL = 0.0 . -
' ' D620I =1, M N P O
- - SWM(I) = 0.0 »»“
‘ D0O10J =1, N .
o ‘ SUM(I) = A(I,J) + SuM(I) :
R ~10 CONTINUE . .
i TOTAL = TOTAL + SUM(I)
R ¢ i | 20 CONTINUE ’ .
I ' 8 PRIN‘II—SB LTOTAL !
- - 55| |FORMAT (14HOTHEQTOTALaISm, F10.5) . }
STOP RS
» » END :
AY - ~
] . Figure F4-12, ‘The whole show -
. -
l\ - ! *
Nested implied DO loops
¢~y y T2 s
)) L t!s take a ‘moment here to digress again on the subJect of 1mp11ed .

Do 1 oop notamon

In Chapter 3 we introduced you to the flow chart, notatlon

like the ‘ohe on Box 2 (Flgure 1& -29).

7

,) K ' 2
~{{‘4\:},&_ ,f;'///)N}, I=/{y/)/VI} S

The FORTRAN way/‘[ov;:lte something very s:.mllar-—namely, . '
‘ 1
A

0§ . 2 READ L, ((A(1,9), §=1, N), T =1, M)
, - N —~~ : - to- \‘\
. ’ . . inner implied DO-loop
! — . Y
. Y

outer in{pli-e'd DO-1oop

v . R

l

Youlcan now begin to see the method in this notational madness--if you’ { -

want to take 4he tlme.? * . I

- | . 4100 . o

O

ERIC ‘

. .

j s
3

. . .
- . . A ¢

. - 1] =

This is seen to be Just a sllck shorthand ‘(lthln a shorthand to represent s

' _ ..& simpler, READ statement under control of 2 (nested) DO-"loops Figure Fi- 13\.
. - ‘ - * \
‘\ . , . - . . ' -
' . |poeor=1,™u . K v
o DO-10 J = 1 N !
. . NN : READ 70, A(I,J)
. N N 70{ 1. FORMAT (F10, 5) T o - .
: . <10 CONTINUE e, A
- : = 2Q CONTMUE - o o .
3 . “) . DR Y N

. . Fifgure Fh-133 The "long, way", but not quitbe .equivalent (
~ ' - © to Statement 2 -, -
AR In th1s case we show here the equivalence w1th Statement 2 is rfo't qu:Lte

< complete because on.ly one matrlx entry can be put on one card whereas 1n ' 4

Flgure 'FLL 12 ve wg;re- able to specify 4 items ;pez’ card using FORMAT. We oo

can correct this by having 4 115t elements in the’ READ statement as shown

' “in Flgure Fl-1k, > . . _ . i
- . .1\ . . . - :
. ’ D220I=1, M4 . oo ;o
. L DO 10 5 2 1, N, L
.o :) READ 51, A(L,J), A(T,J+1), A(T, J+2), A(D,043) -
LS . 51 FORMAT (4F10.5))
A 104, CONTINUE ; :)

T . T -, . 20] |' CONTINUE - . = .. o, v S
R =\.: N \ .

- . .
-

Figure Fi-14 "The long way" ', but equwalent to
D St@t:ement 2 -

- * \
. B .

~ o

'I'h.ere is still a er and even better "long way as shown in Figure
Fh-15, ‘we would recommend it © the other methods. It has both the:

- Ghort .and the long look:

— El

. . ! - M L
V2N , g -
_ , DO20I=1,M ‘
) . € READ 51, (A(IJ) J=1, N)
a2 Lo “51f.| +« FORMAT (uFlo 5)
_— R , 20| - CONTINUE . , . .
I i" i . . N ‘ . . ~ |
R, igure F4-15., The "long-short” way, equivaleat to o
° - T A
) . ‘ . ?é”tementaa\

see’ that we have used a.single 1mpliecf'DO locp_ in tl)e READ state- '

the read statement un,der control of a DO statement This

P 3

method has the following virtue:

The READ statemgnt amounts to am order to read a whole row of the

N

matrix with up to four entries per card.

:

-

If the.last entrles of a

“Fh-k

4

row don't qulte fill out a card--np matter--we can still start the

entries for the next row--fresh on the next card in’ sequence, This !
e

B

;, way if you havé a falrly big matrix to put on cards, 1t's¢§asyato° {

verlﬁy youlve, punched entries for each row correctly.

You don't get

“this flexibility when you buy the, doubly=implied DO loop that is

used in Figure Fi-12; there entrids for each new row begln, ¥ neces-

sary, on th% same card with the last entry or.entries of the preceding

card

>

Exercises Fh-4 Se

d,

A

N

@

¢

)

[

1 - 8. For each of the flow charts ycu constructed forathe exercises in
" Section -k, Set A wrlte the equlvalent FORTRAN'statemepts. Dontt

bother writing declaratlons unless you fqgl they-add to your under-

standlng of the transliteration problem.

+)

‘A“

T Triply ‘nested DO lodps gre just as easy to‘w¥i%é as doubly nested ores.
Figure Ri-16 Shows how thé stickler in Figure 4-31.would be coded ip FORTRAN.

- . -
-~
Y

[

Label Statement ° » .
: DO 30 I# = iz & r o
N D0.20 I’I: =1, 10 'y »* -
< /{0 10 IV = 1, 10° ! oo -
' c I™ML = IT = 1. ‘ =
- Sl M =101 -
i N - |IF (100 *'ZH + 107+ I™M1 + UML)’
z.1 . N i <(IH*%*3 + mm**3 + IUM*3)
- G 2 .10, 5, 10 ©
C 5 |PRINT 50 N ITM1, TUML .
. 50| |FORMAT (3115} - ‘g . .
’ 10 |CONTINUE, - e ey
L 20| |CONTINUE g - . s
- 30| [CONTINUE , .o W
. . “|stop . /
1, |END .- . v .—Q»;J
‘. - K) ‘ . :’ /
. ‘Figuré F4-16. The Stickler in FORTRAN » , i
7 ’ * i N ‘r - ’ f 4
X . to. e &
N RS S 3o b
. ’ » * hd /’ "
- Ky - B
\‘1 9931 O ‘)J L i j %y

1

-

N
I

ERIC

[AFulToxt Provided by ERIC

-). "" .
Fhdh . et ' . ; ~ ¢)

. As you.can see in Flgure F4116, we let, IT and IU range‘\fmm "1 to 10 N
'1nstea§ of from 0 to 9. 1In the IF statement expression we use ITML —
(defined’as IT - 1) and IUML (defined as IU - 1) iy place of IT and ~ ,

IV, respectively. . ./)
. : ¢ - C e,
Exercise Fh-h‘ Set B R) .

Exercises Fh-§ ’Sg‘t; c oo

card, governed by FlO 5 field eodes. - . H . tL.
» ,‘{ . - Lo ‘ ' . K.i . ’ . .
.. . o el ey . "
N . . oo . . { J&\‘:\; . ‘i’
. * '.") , ~ ~’ . ’ T N N "‘sz T8 O
< K . ., N . £ g{r\ (>+ A
. - &, . L] - 9 H P
, Y .t T o
R) . log' 4 a . # - T
f . - i - L3 .= "Zi'w-
. . ‘; NS
. ! "o N N2 R

vy
+
Rk
3

Sinte & DO loop counter may not. begm~ mth :1 Zero vﬁlue we have had to be -__

a blt mventlve to. accomplish the same obJectlves ‘{of the stlck_ler algorlthm

°

1. Write FORTRAN programs for the flow chart solutlons you Sbtainhed for
Problem 7, Sedétion L- 1+ Set B-of the Main Text. e N,

i

RN f

e

Write a compl ete PORTRAN program for the Compl,ete Factorlzatlon Al%orlthmi/

Figure 4-32. Asgsume the mput value for N w:.ll not be as large as L “'N%‘\‘
lpOOO. In convert;v.ng tg FORTRAN you should be on the lookout for two : ".'.'&-ﬁ
intei‘estj:ng features.., First, take aim on the test nortlon of 'the iter- »

ation box--the upper limit_must be an integer. Second notice that th'e
scope of the DO loop includes a complete loop--but w1thout an iteration

box. *o) . e Lo . N
p

. * ot ‘ ot

2.\‘ Wrne a comple’ce FORTRAN program for the shuptle-in‘terchange sort;mg
| algorlthm, Flgure 1+ 3h Assume you mey wish t6 Edrt up, 3 tb 500 numbers,
each of w}(m%can ue mgut usa.ng &n FlO 5 fleld——say up. to four values ~
.per card. % on the lookout for occa’sn.onal dlfflcultles in converting
the f10w cham to the FORTRAN code-—especlally in modellng Box 6 which S

. shows decreasmg“counter set zmtlally 4!0 an expressa.én .) .
{ ',~ > .y . .

<)
-
\ .

, .
Pt .

3. Write & c:omplete FORM program for. the sort alg&éi{hm shoﬁm “in Figure_
4~ 35 Make the same assumptlons in this program}};ha,t you are asked

r

¢ ‘e

to make in the precedlng exercise. . iy . .
! " t '9 f) ‘ i . .
(.
y, Write a comple;?ggxﬁ‘QR’fRAN program for findmg the lafgest decreasing
. subsequence, Ba/se your program on the flow chart 1n Figure 4-39.
. ASSume the glv;i. sequence will not exceed ‘100 ¢ values if °a13,, apd that .

the values the elves are to be punchea on dat)a{;ggfds,. fopr values per

o Chapter 353 , v
pot ST Lo ‘ '
ot - H P .
. . SUBPROGRAMS . ..
. . , . . ‘ 3 .
g > : ' ‘
. o ,‘ A T N ' .
_ By »FORTRAN subprograms T "’ : -) .

FORTRAN programs that correspond to reference flow charts are called
FORTRAN subprograms As you mlght expect, these subprograms lo(‘ very much
like other FORTRAN programs ‘except for speclal s‘satements at .the beginning
and end correspondlng to the funnel and retu'rn box of the flow chart. In .
addition to these special statements there ére\a number; of‘ COnven‘t:LOnS to be

observed which will—be explained in what "3*‘2)11 ows. .

R <

”

A subprogram is a self-contained um.t wh1ch’°can be compiled separately,
and then used by a number of programs or other subprograms. Oné of the main .

advantages of separate comp'llatlon 1s that one can in this way ‘establish and

~

develop a llbrary of subprograms, which is avgilable for, ,1.ater use. , <
. Subprograms that evaluat.e -a function and report B single value to the
main program are called ﬁmctlon subprograms (A @cond. type of subprogram - ﬁ%

will be encountered in Section Fozh.) For\ a-function subprogram, the fiow

chart f‘unneé corresponds to the flrst statement of the sdbprogram This ,
sta*em%;t begins. mth the vord FUNCTION followed by the name. of ‘the. i‘unct‘@n* £ N
and 1ts%argument in parentheses. TFor example Figure 5- l& ¢orresponds to

. .) . i ‘
N FUNCTION SQROOT(Y) . « .
1. " : . ’ ~ x4
. Sinee special symbols llke /_ are not avallable in FORTRAN we

naturally replace such a symbol with an alphabe‘uc name for the functlon (in

this case SQROOT). Names of fynction subprograms are to be chosen with some

care, observmg the followmg ctnventlons ‘The first character in *the sub- o .
#B‘rogram name must be I, J, K, L, M, or N if and only if the vglue reported)

i$ in the integer mode. The last cha.racter must not be F if the name has

more than 3 characters: Otherw:.se the name can have ‘1 to 6 characters,

the first being* alphabetlc ' : t -

- 4 -
N >

You are alrea,dy familigr ‘with the use of predefined mathematlcai)

. functlons llke SQ%F SINF, ARSE, etc. (8ee Table F2-2,) FORTRAN sub- y o~
&-ograms are different from these predefined mathematical functions even T 3
;hough our flI‘S‘t example, . SQROO’I‘, " serves tﬁ salle purpose as SQ,RTF The

Al 5dlff‘erenf‘e is. hot jJust in the way the names are spelled (the conventlons are

L . dxﬁ'ferena for subprograms and .predefined fUJlC‘thIlS), but. is mainly in thk !

L -« . : .

« T .
4 . v
|

»

e

EMC

Aruitoxt provided by Eic:

l
. & subprogramnust eventually reach a RETURN statement This statement,

Fs-l: i ‘- .)] A . . e ' -

) - .

Fact that>the predefined mathematical functions are pért of—" the comp'iler

system. 'I'he techmques for addlng to the list of, predefined’ mathematical
functions are outeide of the scope of this bool«:,‘but funct}on subprograms
provide a way that you can use to develop whatev.er set of reference programs

you want. . * . / - .
T : . [:

Just as reférence flow charts must sooner or later reach a return ‘oox,

corresponding to Figure 5-5, consists just of the wg;d YRETURN". This state-
ment need not appear in the/}.ast line of the subprogram (more than one RETURN _
statement may be used in a single subprogr,am), but it must bekthe iast step

in the (executlon of the’ subprogram . ’ . T
L3

Since the RETL&N statement of FUR‘I’RZWHBes not 1nd1eate what variable is

to be reported to the main program, another conventlcm is needed -to 1dent1fy

.

the value to be reported. The Lonventlon 1s that the name of the functiord

N 4

subprogram itself must appear .at~least oncg on the lef® side of an assignment
statement and the value assiéned is, upon returnjy the value reported tqg the
méin program. For this purpose only, the function namé is 16 be thought of

.
as a vari able .

b}

. In all other 'respects, a FORTRAN subprogra‘in must conform to the require-
ments of any FORTRAN program. In partlcular, the le.,st line of a subprogram
must Be followea by ‘an EMI’ statement, and D,H/EE‘.I\ISION 1nformatlon mist be given

for each‘s,ubscrlpted varisble in the subprogram. / o S
‘I'he use of a functlon subprogram by a main progra.m is sh;wn in T I
. Flgure -1, © © o ., . -
) . o . . } ’
11 z=A+SQ§00T(x)/_@\;\ .) A
ORI ~ FUNCTION SQROOT(Y) <7 RS
. bo_so N .
'3 IF(Z) 5, 4, 5 | - ,]
b " Z.= A - SQROOT(Z) e . ' .
——— SQROOT = --- — . .
. RETURY ‘)) !
FORTRAN main'program‘ : . function su‘npzfégrem

- © ‘igure F5-1. Use of a FORTRAY function subprogram
. . . ™

\/{ ", -

) o 1102)

‘o

-

" you away from something you're not likely to do anyhow. Fhetyis, don't try

. . . ©F5-1

~
. ~

. Figure F5-1 is intended to correspend to Figure 5-6 of the flow chart

text and to illustrate otly thosé features related to ‘subprogram use. The
first time thHe su‘éprogram is required (in Statemerft Number 1 of the main
program) we go to the FUNCTION statement via Route l. ‘I’hls statement dlrects
that the value of X be assigrted to Y. It is essentd.al that the name of .

the argument in the FUNCTION statemept and the hame of the argument where | the -

subprogram is requested be of?the same mode. That 1s, s1nce Y represents

a real variable, a request for .SQROOT(N) would be in error smte N repre- .

- 0 . Al

sents an integer Varlable. ',

Whren the su’bprogram has been executed a valué‘?ha%,\been assigned to_
SQBOOT and the return to Statement 1 of the maln{;roggi‘am is by oute 1.’
Upon return ,to the main program, the value assigned to SQ,ROOT is added to
A and the, result asmgned te Z. *Where the subprogram is %galn requlred .
(1n Statément Number) we are to go to Ythe FUNCTION sta NM‘nt by Route ,2,
assign. Z to the Y in the subprogram (note they agreeﬁ;n gnode), exek_uﬁe

»

the subprogram, and return via Route 2" to Statement 4 w1t}{ the Tesult of the

>

subprpgra.m assigned to SQ,ROOT. ‘ 7

]

An actu‘al function subprogram for the square root can be prepared with

reference to Figure 5-7, as shown in Flgu.re F5 2. L . ‘
C SQUARE ROOT' FUNCTION SUBPROGRAM . g~ - ~—~
e B . FUNCTION SQ,ROO‘;(Y) R N T
G2 . ‘e ¢
Ve "2 H=05*(G+Y/G)‘
ot o IF(ABSF(H - G) - .0001) 5, 10, 10 ~
0llg ==
. Jqleo 2 . -
. . , 5|lsqroor = . . .- !
: RETURN . .
I's - ‘E:ND . N ‘ . .
’ 3 ® -

Figure F5-2, Function subprogram for square roots . ‘ .
e 2 . |
As you inspect this first function subprogram we take the opportufity to warn

to assign anything to an aygument (in this case, Y) of a fun::tion subprograf.
It is never necessary to do,this anyway. With some FORTRAN f:onrpil_ers this
will prcduce very strange results--so let the buyer beware! (You will be

given one more remlnder of this danger area in Section F5- 3--then you will be)

onyourown) - o) ‘ R 4

M T : v .

Q. o ’ o
]:MC . L TN FEDS : . .

A o providod o esic

~

»

F5-1
° . . ° ¢ ' ‘ . .) / .
B . . S
Exercises F5-1 - S, ‘ /
- S A
1 - 3. Write FORTRAN function: subprograms for the flow tharts prepared in
Exercises 5-1 mainttext. Yy s /

"F5-2 Funcfions and FORTRAN - . ' :

I3

- The *flow Shart text tells us that any flow chart whlch vhen given a \

value will produce another value, can be viewed - as e, evaluatlon of some

)

fqnctlon The statement is true for FORTRAN programs as well as for flow .
eharts. Mathematieal functions ex1st whlch cannot be evaluated with a f10w -
chart or by a FORTRAN prograh, but the common usage of the word functlon 1n

comnutlng is strlct}y llmlted fo those "which can be evalua%ed w1th a flow

chart. Moreover, we do‘not u 71y thlnk of expre531pns which can be pre01sely .
evaluated solely by one “of the ﬁour basic arithmetlc operations as functions '
o

althouﬁ » i fact, they are. .In‘ebmputlng, then, a function is commonly

,thbugh® of as a'reWat{thhip for which,a reference flow chart is used.
. 4 > . B A o i
v * The domalﬁ’6f a function, i computing, is the set of values that the

1_—

PPN

arguyment _ 1n the funnel -of. the flow chart can take on. The 1 range of a functlon‘
is the set of éélues that<can be reported to the main flow chart. In FORTRAN

’

tbe iémaln can be elther a set of real number§ representable in a.computer or e
a set of lntegers representable in a;computer Which set of numbers is meanx

is 1ndicated, in the usuah”way, by the flrst letter of the name of the argu- ‘w ’ *
ment The range too, ¢an be'elther from the set of integers or.from the oy

set of real numbers. Whlch 1s meant is indicated, in the usual way, by the

.
spe111ng of the name of, the fugetion. . . - ,
. vl o | . A . - SR o
) . L :
i ’
t ' b ¢ -
.) . X b i
- 3 . .\ A B
. -~ -
. ¢ ’
. .. N)
: . .
< \ v - '
s 2
‘. ’
) .) . /. ~
b ¢ A . -
o’ v
.
N . ¢
- * (.
"3 .
: 4 : -
» ! '
. A N

-
A FuiText provided by Eric
. o '

4

ERI

Aruitoxt provided by Eic:

1 F5-3 FORTRAN functions wﬂth more than 222 arggmentug~m¢xf

. The min function prov1des an example

S et . |

FORTRAN functlon subprograms can have as many arguments as are necessary.

The subprogram in Figure F5-3 corre-

* sponds te Figure 5- lh of the flow chart textS .
e A wzvnam oF %o arcumenTs o
- c H FUMCTION SUBPROGRAM _° '
. | FUNCTION FMIN(B, €) ’ .
IF(B -~ C)2, 2; 3 -
- R M 2ll-2 = B . T . PN
' . ‘I co ok : :
, . sz - ¢ M <4
. : Lif mMIN = 2 C g
‘o .. RETURN : .
.. . END | . ; . . N
‘\ " ¢ T 7) . ‘

. . X

v .

. Figure F5-3. A function snbprogram of two argumertts

- & h

Noti:ze that we have changed the name of the function subprogram so that it

doés not begln with the letter M That is, the function subprogram,expects

to g@celve two real values and to report(a real value. We do fot need to '

-

introduce the variable 2 Since: FMIN can serve the samé role. For thi
.reason, Figure ¥5-3 can' be réﬁ%&ced by Figure F5-4. Should Figure F5-2 be
changed in a similar way? I) . B
RS £ MI OR TWO- ARGUMENTS C
R T -3 CTION. ~SUBPRQGRAM
» S « FUNCTION PMIN (B, C))
. ! IF(B-C)2,23 '
not 2| TMIN = B) :
.’ . GO TO & © e . .
. 3 N =c - g T '
. Lyl RETURN . . - . ¥
. END ° 5 T
r A !‘ge
’ %
; N Figure F5-4, Improved FMIN subprogram L.
;1~»~bhe parameter list of g FORTRAN subprogram can contaln rnteger varlables

ani constants, real varlables and constants, varlables ,containing alphanumerlc
information, _ the names of vectors, and the names of matrices. In every case .
there must be a one-to-one correspondence in the pumber and types of para- '
meters between those of the parameter llst where the subprogram is requested

and’ those of the parameter list in the F?NCTION statement.~ Confusion would

“

’ s :

. . " .)"\
' , NN S,
" .o T : 1306/

relgn if we tmed to request the subprogram of Flgure F5 4 by writing some- .

N s e e I i
’”thmg 1ike S ' : ”‘\‘\\\ l e ‘
) : é T —_—
. T = FMIN (4, B; C) . . ——
or , T =FMIN (M, P v . ‘
o ' ‘ 2 ,
. R A

A classification of variables - '

0

The dlstlnctlon beitween local and nonlocal variables is the same in \ .
- FORTRAN a3 is described in the flow chart ,text Thus in the two subprograms
) for' FMIN given earlier, the arguments B and € are nonlocal‘variables. . .

\}
. In the firsk subprogram Z_ is a local variable.

. Some compilers are wrltten on the assumption you will never try to

reasS1gn values to nonlocal variabl€s of a FUNCTION subprogram. Such compilers %
take advantage of this fact in assembllng, efflclent target code for your i o
program Hence, an a‘c/tempt to out fox" the compller in th1s respect, Just

* to save a’'step in the program, or to save a storage cell or two, codld l'ead
to trouble. Unless you are absolutely sure about what can happen you should

avoid changing nonlocal variables in a subprogram. ?

A Y
. . 1

An appreciation of. “the distinction between 1ocal and nonlocal®variables
can be had by xecalling that subprograms can.be complled-separately from
programs that make use -of “them. During cgrrfpilation a local varlable is
associated with a spec1f1c location in memory (except for an addltive con-]
stant needed to account for possible shifting of the whole subprogram from)
) ‘the other hend, . there is no way a sib-

Y
«kprogram can k:now prior to compilation of the main program, where nonlocal &
L 4

one place in memory to another.) On

varlables may be 1ocated when the subprogram is executed. -

!«" b s a

[A
Independence of statement numbers among programs . e .

~ - The reallzatlon that compilation of a subprdgram is an entirely &eparate. R
process from the compllation of a mafin program also brings out the fact that

tatement numbers 1n a subprogram are entirely dlfferent references from ,

statement numbers in another subprogram or in'a main pro L even 1f the same’
LN) .
- . ' . - LTY

" ‘mmerpl- has been used. - . I S ee T ..
‘. \ * L2 ' . -)

. . : ' N - .
Composition of functioft reférences N -

.

 The situatlon mth respect to compos1tlon of function references is e
exactly as described in the flow chart teyt. Thlsr‘fs Just whe}t you have

learned as composition of functlons. That is, given function subprograms
3

C o aedio L
ERIC - e L

! .
A ruText provided by Eric . t

-
——

F5-3 0 L o
s 3\ e

defining FL(X) and F2(X), ' one can vrite - -

.,

. ! ~Fl(F2(X))x . !

L 3

so long as the &'ange of F2 is a subseE of the domaln of , Fl. Uorrespondingly,

the .following function references are entirely proper. .
T e o
T FMIN(ABSF(A +B), 5. W N :
- L o MN(MN(F OO .
, ‘ N 'csr Y = TMIN(SQROOT(B * B - 4.0 % A % C),) o
S or Y = SQROOT(RMIN(X,Y)) " ,
A B : \
Efercises -3 Sit_é - S . S . _ ® s
. * 1. 7. Write FORTRAN programs gnd function subprograms for t};e f.‘lov-r charts . .

. 9' prépared in Exer'éises 5~3, Set A, Mdin ";[L'ext. .o, -,

v Exercises F5-3 , Set B

1. Wrlte a FORTRAN f/‘u.nction subprogram for the GCD ﬁmctiuual reference -
whose flow chart you prepared in, Problent 1 of Set B in the main 't@xt
o Call this subprogram XGCD. Wlw must the name be c.hanged for K)RTRAN?

>

2. Write a, FORTRAN functidén subprogran called KGCF corresnonding to the
flow chart you drew for the GCF algorithm (Problem 2, Set, B, main text).

v

*3. Write a FORTRAN\yrogranL that corresponds to the flow chart for determining
(a) the number Sf similer triangles ‘ .-) R

© (b) the total perimeter of similar triangles 2 :
- ,
correspondmg to the flow cha:rts you ,prepared in Problem 3, Set B,
main text. - . ’ .

. ,

*xh. - Write a FORTRAN program tilat coxgesponds to the algorithm for Problem 14-.
‘e Set B, nmain text Try to estimate how much computation will’ be involved
Computat;on can be measured in terms of the number of] additions, sub- o
tractions and comparisons that mist be made) counting eaeh as 1.

.
’ ‘ s »
- Ly
- _ .~ »,) - 3 .

I - -
, N " .

T *These problems are quite difficult. The student wlll be able to solve the
only, with considerable time ard effort . . /,‘E,{ '
< k' A ‘v
) . o’
E \. . . ., 108 S

RiC . .. " S
. \ ‘\1 111 W~ : .

oAy,

gk

W
s

e, o R (

A,j};:;_

.

et

g AL
o

oty s

P %

f

5

FS-I;» ?,(‘;FORTRAN procedures
LN - .
FORTRAN subprograms which correspond to reference flow charts for pro4

cedures are called SU’BROUTINE subprograms. ‘Corresponding o the funnel of
the reference flow chart is the .SUBROUTINE statement which takes the form

suqh as: ..

S . SUBROUTZHE SORT(N, V)
The subroutlne statement cons;Lsts of the word SUBROUTINE followed by the name
of }ﬁhe procedure you are deflmng and a, parameter list in parentheses. . In.
IR SORT” exa)‘nple we see that ah. entlre vector is 1den‘t1f1ed solely by its
nalm, V, 1in the parameter 1lst. No attempt is ma(ie“t—o .SubSCI‘lp‘t V in
the parametter list but the subprogram will have to prov;Lde DIMENSION inform--

at;xéﬂ for this vector. ‘ . .

S;mce a subroutihe subprogram does not repotrt a value in the same way

"'*bhat a'fu.nctlon subprdgram does, the name of the procedure will not appear in®

4 '&he bgdy of 'the subprogram. Moreover, smce ‘ehls name will not be used as

N though 1t were a local variable, its spelllng (i.e., its first letter) has

r«'ﬁ

W ’no spec;Lal significance,” The name of a procedure musftnot end in F if
!:T

Wit ot
;]

D7 kg
X

it is more than three characters long and all other conventlons are as they

are for functlon subprograms’, '

A subroutine subprogram corresponding to Figure 5-16 dis given in
g Flgure F5- 5 Thre ‘dimension of V has been given as 100 but, for each use,

o

N 1is the ac‘tua.L humber of components in the vector to be sorted. Thus, this.

subprogram 1s usable for any vector having 100 or fewer components,,

: c SUBROUTINE SUEPRQGRAM FOR SORT
.) SUBROUTINE SORT(N, V) - o
o . DIMENSION V(100) - Y . -
. N K=N-1 < v
) © [0k I=1,K
M=I+1 ,

DO 40 J ="M,*N .
IF(V(I) - v(J)) %0, ko, 4
L 1B = Vv(J)
4 V() = ()
“ o fv@@) =B .
ko CONTINUE
/ RETURN .
END

! . . “
%

A

Figure F5-5. Subprogram for sorting

¢ . N . ot

. '

\

o

"~ 'in F15.8 format. .It is also assumed that‘ K will not éxceed 100.

O

ERIC

Aruitoxt provided by Eic:

g .
N
»

. , ’ . ¢, . \‘,
Look st Figures ~5-16 and F5-5 side by side. |See how the FORTRAN s;ﬁatemgnts N

L ok oy
correspond almost exactly to the flow chart Hoxes. Notice (als\d that values

- R ERS “ . - — R
car be intentionally assigned to parameters 9f a subroutine ,subprogram. We

v
3
-

warned yoﬁ not {ofdo' this in function subprograms butf this is ‘a-How -8, sub‘réutine,;

1

subprogram produces its output. -

-

.‘ Use' of a SUBROUTINE subprogram is accomplished with a CALL statement,
analogous to the extcute box of the flow chart text. The CALL statement

L AN

cong’ists of.the word CALL, followed by the name of the subroutine subprogram

and a parameter list in parenthesés, for example: T

e .

-

- CALL SORT(88, B). ;.

where B is dimensioned toc have at least 88 components in the main proéram.

Ine FORTRAN, the precess’ of referring to a subroutine .is called "calling the
subroutine”. i ‘
A main program cagling SORT, corresponding to Figure 5-23, is shown

.

<

in Figure F5-6. This program s 3 . o
, Figu > 1 :

/ N N

. -

: C A PROGRAM TO ILLUSTRATE CALL STATEMENTS
. DIMENSION B(100), c(10Q) °®

- ' ' READ 101, K .

- ~ ; 101 || FORMAT (I3) ’

b . || READ 102, (B(I), I =21,°K)

P 102 || FORMAT(5F15.8)) ’

REAB 102, (C(I), I =1, K) | e %

CALL "SORT (K, B : Y

- CALL SORT (X, C) - 4

PRINT- 103, (B(I), ¢(I), I =1, K)

103 || FORMAT (1X, 2F 15.8) | T
_STOP _, ’

END . s ’

1

H

*
.

~ Figure F5-67 A main program c_al[ling the sort procedure .
N i ' .

!

assumeé that. B is a %uree digit inte:ger ’iq the first three columns of the !

first data card; that the components of ' B ';ﬁnd C are punchel% five per-.card

-

»
-

LN

T

.

x

~

2

. \
- R
/ -~ i
Exercises FS5-4 Set A) -
' . I .
' 145 5. FOT the flow charts prepared in Exercises 5-4, Set A main text,
* write FORTRAN calling programs and subroutine subprograms. N
- - [i, 2 ;
;) S B] . ¢ ‘ . M”—’;"/__,
" Exercises FS-b | Set B T T e
—_———— e — —— - N 3
X e,
- 1-3,

For the| £ ow char
3. For Lhelr)

repared in Exercises 5- L, Set B main text for. -
i Problems 1

2, and 3, wrlte the FORTRAN function ahd subroutlne sub-
. programs. | h °

Exercises FS-k Set ¢ '

1 - k4. For the |flow charts prepared in Exercises 5-U; Set C main text for

Problems 1 [through A write the FORTRAN procedures and programs In

‘doing the ﬁrogram for the subroutine DEGREE, keep in mind that you must
. shift “the indexes for the coefflclents, i.e., the coefficient

ag .mus‘tb \
be associated with AQ), ete.

The same problem must be handled in a
similar fashion in coding the flow chart for S]MPLI;‘Y and REDUGEMOD
(spelling o. K. for FORTRAN?) in Problems 2 and 3. °

n - - ’ o J Ll

* ‘ :‘b i \/
)
- . '
- \ ‘
.. \ |
Y - ,)
- L B
v
—— A b
\hr‘\‘> - -
- ——— I
-~ ! :
> « l ¢ b
' t » . . 1 <
’
[¢ v
-~ - - Qg [
I
. |
|
- / _ ‘i e
- . ‘
)
’ s, \ !
' T N '
N Ll oo K ‘e »
~ \
N \
.) 111 ?
o '

~

ERIC I

-

.

" F5-5, Alternate exits and procedures for branching

-

- Provision for alternate exits and branching from subrou\}ﬂ'.ne subprograms
,m FORTRAN mnrMma.*aal discussion in the TIow cHart | text. .

is provided to indicate the result .of tests performed by the subprogra.m.

A pa.rameter

 Figures E‘j-T and F5-8 present programs corresponding to ¥he flow charts of:

A\ 1

-
N
[y
b
PO
.
I

. Figure 5:26 ami Figure 5-27. / J
. : . ’ .
[<, .] . - . ‘\ - . // 4
i, ; c SUBPROGRAM TO TEST EQUALITY OF N
. st c TWO COMPLEX NUMBERS
SUBROUTINE COMPEQ(A, ﬁ c, D, N)
. " IF(A - C) k&, 2, h ’/ .
2|l 1r(B - D) h 3, / , .
N 3 N ¥ o, ‘ ///
> GO TO 5 » a .
T— Cosflw=1" . ,
T 5 || RETURY /
— , END /
‘. 4) T — l) // B .
, Figure F5-7. Equa{i'ty of Cc/m{plex numbers in RKORTRAN < .
. A \
. ' Lo ./ . i . '
o C ’ PROC-RAﬁ SEGMENT SHOWING USE OF COMPEQ .
. CALL COMPEQ(X Y, UmV, X) *
- /IF(K) 3') h 3 Al : ¢
C . STATEMENT 3 IF UNEQUAL) .
c STATEMENT L IF EQUAL .) - 4
- s N . * 1
Figure ¥5-8, A program segment to test equ:ality of complex
’ f numbe;s\\\ - ’ >
'0 . R -
- . ’ ‘
Statement labels and function names as arguments . |
et T
H%%gem
. few if any processors have this capability. More advanced languages do , " ~~—w—i;
" however, permit full freedom in the use of such procedure arguments. ! '
/ o P
T » . < R
.) s . . ‘1 |
l,/ , > P . , ‘
/ v
- \
. ; { . |
- 1io) 1
— |
———— . - ‘ \ ‘
~ v < . i
Q ' { ! |
: e 12 |
EMC A 1 N - e |
|

Exercises .F5-5

equat:.ons in two unknowns.

.
< s

¢

Use the appropriate flow charts prepared for Problem 2, Exerclses, 5- 5, to

write a FORTRAN program and subroutine ;Subprogram which w111 coxnpute the

real roots of a quadratic equation, ,(Use the program to sﬁolve the follpy-
—_ jahahia et L oS S L .-
ing equations: . st ‘ :

’
- i
. ’

2x2-3x+y=0

3*ll+x2 - 6.2x - 14h.23 =

.
.
v ‘ 4

R , N

Write a FORTRAN subroutine subprogram and calling program stdtements

correspondlng to one of the techniques you used for solving Problem 3,
E‘xercz.ses 5-5.

Aruitoxt provided by Eic:

F5-6 Symbol manipulation in FORTRAN ~ L
in J)

’In Section F2-10 we discussed e ini)ut and output. of alphanumeric -

-

u,hara«.ters. Noy we want to find out how alphanumerlc date, can be pTo ocessed
so that we w1ll be ab_le to alter such input data as

, ¢ THE QUICK BROWN FOX JUMPED OVER THE LAZ& DOG. ,
— e e e ‘ ' L]
. or 3.14159 -))
s , coe ’ *) L - -
’ or r + st + u(v + w)) . .

Smce we will wanw to be able to.refer to eak_h 1nd1v1d1}ql element

1n ,such g_haragter strmgs we w1ll associate a sgparate variable with

each element of a string. This means Lhat a card let s say, would ‘
| N
A be read with & FORMAT code of 8oAl. -, . s o
. \
‘. .) We are now ready to code a sub;@utme subprogram, gorresponding -
to Figure 5-33, for C}LEKCH._._Tbls_program 1s s"nown in Flgure -9, | . -
We notlue‘ that there is a DIMENSION statement giving the maximum length’ Lt

» .
of 5 as 200. Other than for the DIMENSION statement the program

1

s c A-SUBPRQGRAM FOR' CHEKCH - .
- _ SUBROUTINE CHEKCH (N, S, M, C, IP)f -
. . || DIMENSION 3({200) ’ :

- DO2I=MN . . T
- IR(s(1) - c) 2,3,2 4 -
.| 2| cowrInve . B
IP = -
- .. | coT05 '
IP=1I - . o
RETURN ' °
END P ' ¥ . i

' . . » W .
)

'Figure E‘j-9.' A FOR‘i‘RAN,subprogram for CHEKCQ‘«
- - .

1 4

-

could accomodhte any length strm}gf\ As presented in Figure F5-9, 200 is
s:.mply a maximum length and could be replaced by a‘larger integer subgect only
to the amount of memory available. The'alphanumeric data is associated with
resl variables, S and C, =as in Section F2-10. Finally, we seé that two)
characters 1ike the valaes of S(I) and C can be tested for. identity by !
subtracting one from the other as if they were numberg,'and testing for a

\ s
- = .
S S

" A FORTRAN subprogram corresponding to Figure 5-34 is given in Figure

zero difference.

¥5-10. Here we assume the string, S, has 200 or fewer element's and the

substring,” €, has’ 20 or fewer elements. : «

o . .) 11k) .
ERIC - 137 -

Aruitoxt provided by Eic:

[i

E

Aruitoxt provided by Eic:
s

'program to ca}.'.l. another subprogram has far-reaching s:.gnlflcance.

on

aballty that perfnlts the construc ulv

n of subprograms of mcreasmgly greater

compleflty ﬁ'om simpler "building blocks".
- will make heavy use ofu,thlsﬁulldmg block ‘abilitys

B N
z
I3

kY
ERYRw4
Exercises I5-6,
Exercises F5-0..

1<k

»
s

4

¥

L4

<

For the flow charts prepared in Exer01ses 5 6

R

3

e
LIRS

-
L
%

- FO‘RTRY&N ﬁrograms -and subprograms.

‘I‘

' One further point should be made here.

consider” the’ 1ength of a string, and the string 1tself as being g ¥ingle entity

Onew

“first

maining compenents STR(2), STR(3), and so on, are the characters them.selves.
n}PP P F ’

’

4
e

T+
It

Chapter 8 and all larger

- maiw text, write -

;
‘It is often very conyenient to

As the f]:éi(' 'chart text has pointed out, the ability of"a subroutine sub-

is this

problems

ay to- ao this is to v with the property that its
component STR(1) is equal to the length 'of the string, while its re-

an array, say STR,

If we’denote the character’ for which the search of CHEKCH is being made

by CHAR an& its position -(if found) by KP, the subprogrem is shown in
Figure Fj-’ll . . : - '
N - ‘&:.
- H ;‘_, A s » »w \
- ‘v! . - - o
LT 1ig '
Q " 115 Lo e =

RIC.

-) N o . F5-6
, ' ’.’i‘ ’ & C - ,
P -
. . N c A SUBPROGRAM FOR CHEKST
; Wy SUBROUTINE CHEKST (N, S, M, K,°C, IP) N
. ‘- . g%; DIMENSION s(2oo), ¢(2) s .
LN Sl =M c
- < S U2 TIR(T r‘r‘rn—rjr -
- Y, 3| CALL cHEKcH (N, s, T, G(1), 1), *
o IF(IP) 5, 11, 5 - '
sl oIRIP - N v KZ 1) 6, 6, 11 - s ;
- 6 IR TP+ 1 ‘)
’ @ D09 J=2,K . .
IF(S(IR) = C(IN 10A 9, 10
1 9 R=1IR+ 1 ‘ - X .
. X Go TO 12 . *
: B - 1010 =IP+ 1, »
v . AT ~ rI:O 2 . ’ " .
Yoo 1l p=90 o
: . * 12| RETURN ‘
RN ‘:iF'r“gure F5-10. A FORTRAN subprogram for CHEKST

.« -

g] ,; 4 = iy ¢
. F5_6 r‘ , . B

' " . ~

VoA -~ *

..) * . 1 = - <

. e D [c " | MODIFIED SUBPROGRAM FOR CHEKCH '
i ‘ » ", || SUBROUTINE CHEKCH (STR, M, CHAR, KP) .

.o ?»-.9

o BFR DIMENSION STR(100) , ., oS
/e s !

e ‘ . M= M+ 1 A
R N=S8TR(1) +1.0 ~

S
L]

R , D02 I=MM, N ')
IF(S‘I‘R(I)-CH.AR)2 1, 2 g
: ‘ © 1| k=151 -
o - *GQTO3 ‘ fo
S s 2| CONTINUE % - ’
. . ‘KP.=0 . 3 N .o .
e e - . 3| BETURN - . .
p . . L} END . .

He)/ -
y -/A\ . . M
Y 8 .. Figure F5-11. A ‘modified subprogram for CHEKCH
. . ES -

The only compllcatlon is in adding 1 in‘ two 1’olaces,, and subtracting in’
-

anoth?r These. steps are required because now the Ith character im the

. strmg is the (I + l) B, component of the array STR. BTN
L.
- o . ~ . .
S 4 ‘ N *
» he N
- < .
2) ’ - Ny [.
[s ‘ i . - ,
4 - a .
3 . —~
. o ¢ ' “y
T
* . | { *
i .
H , ¢, -
b - N ’ g
DA ° .,
= - ¢ . [N
é ’
. . .
’
. -

by ~ N ;
° - Ve l\
A e T, . ¢
v A . ‘
. . 14 e T .
e} AN
. . R . -
L] .
) < N\ ~
, “ AL , ,
- oy, “ .
¢ . N .
. . - .) “ Pl \
%ﬁ .
. ¢ . ¢ =5 . L . ~ © ot
°. » . : < - '
¥ . - .
, N . 3 . T
Y I3) 1“ B LIRS J o)
D . «* X
1Y . .
v . s of -
v N .
g Al Ll -
P
.]
4 ’
-2 1 "\
L -)
w]. 2 d ’
R LY - 4 .
- . .] -
2 - . ~
\' * . -
. .
. O . RATIN ! . LSt
ERIC . ~ we v
. .
B ; "
« K e -) : - < -~
. » o i) ‘a3t -y .
- . - - -
. . - R R . SRR .

: ' . . s
Ve Chapter’ F7

", ° SOME MATHEMATICAL APPLICATIONS’

- . '

-

.
‘

.

’

-

H

s

W EK

o .. .
-

F7-1 Root af an equation by bisection

“Now let us :vrr:tte a program to find the root of&n'eq tion 'y = £(x) in
the interval X = A and x2 = B. We shall wrlte-the prpgrém, corresponding
to the fl;)w chart of F;.gure 7- 5, 1n the. form of a subrou 1ne_;§'ubprogram called
* ZERO so that it can be ‘used with many "different main prggrams. ‘I‘hen we "shalI
write a_FORTRAN program whic¢h calls ZERO.

. ~

. The given function f(x), we shall call FUNCT(Y); 1t will need to be
deflned as a PORTRAN function subprogram. The desi®

accuracy of the result
) B
is given as EPSI; so the bisection process willk be/terminated when the

Yo

length of the interval is ‘iess than the value of. SI. Inside the: subroutine

the value of the roct of the equation will be ass}gned to the variable ROOT.

The final valu\e of ROOT is p,rmted before Meturning to the calling Brogram. }
Figm 1 shows one way to code theyx ZERO subroutine. Only three qummy

arguments are used, A,"B, and EPSI. The first thing that!s done by-the

subprogram is to reasswn the Hralues of A and B to auxiliary vard bles

1 and X2 as a safeguard to protect the values of arguments that m ch A

and B in the calling program. In daseé thla bisgction method is inapp feable

we let the subroutine print the message. qt- - -
N :Lg‘_ .
The vaiue of. ROOT could, of courggv, be carried back to the callin.g o

program by making ROOT' a dummy varu:ble *and adding it to the parameter iist
LY

in the opening declaration. In this event the CALL statement would also show 1

a parameter list of fqur actual a.rgwnent‘s the 1ast one being a variable that
[

cepts the’ computed value. of the root./ . Tt v
. it
. A
. . . :
. . _ ‘ -
. . -
. [4
. > ' ' .
- ~ o . ‘ - . >
) LY P
[
L3 - - »
- . A)
o A
~ €
o« T .
‘ - " I3 * v
- : Ll A - i‘
- e L4
’ — — *
°
. . /
Q . “*a
lC -~ ’ \ » .

&

SUBROUTINE ZERO(A B EPSI)
X1 = A

X2 =38

Y1 = FUNCT(X1)

IF(Yl - FUNCT(X2)) 6, 5, 4
IF(Y1) 8, 7, 8~ .
LROOT ='X1
GO TO 12
ROOT = X2
"|PRINT 61, ROOT
FORMAT(E20..8)
RETURN

= 0.5 * (X1 + X2)
IF(ABSF(Xl - xe) - EPSI) 11, 10, 10 .
ROOT = XM
GO TO 12
IF(Yl * FUNCT(XM)) 13, 10, 14
X2 =
GO T0 6
X1 = XM
GO TO 6 .
PRINT 62 -<
FORMAT(23HI:IMETHODDISOINAPPLICABLE)
RETURN ,
END

%onh

\

’

'

»

P

.

Figure F7-1)

E-fields’

~

Thére are many things you probably want to. look at carefully in the Z

o

-

subprogram. We might, however, digress temporarily to explain the strange

/f_leld code that is used in-format nmber 61.

.

. 3

The "E-field" is®in many respects similar to the F-field for input and
output of real data values. E-fields are used to describe the inp{t or out—
put of réal date values written in the" "E" notation like A

.

-

’

0.5253E-5

v
.

A number ?iinte& under cox{trol of an E20. 8 field would occupy 20
“If t%e value in memory is ‘-1.3467 this number onld appedy in print as

\

columns

-

N

)] : - | ooooo«-0.13467000E001]-- - R -y e
~ e e) ’
8 places
i 20 columns !

whe

o

ERI

Aruitoxt provided by Eic:

0%

.
¢

i

. LY

'."é'

,

o

. - Y s
» N . ~
1

The right-most four.columns would be&sed for printing the exponent, the

first of which is for the letter E, the second for a minus sign .or blank,

- und the third and fourth for a two digit exponent (power of 10). There is

ERI

. " |ooooooooo -. 134678401

a_zerg to the left of the decimal point of the’ precision part preceded by a
minus sigrt if the number is negative. The lead.lng digit on the rlght of th
decimal point is always made non-zerd and the exponent is adjusted accord-

:Lngly . N . .

.

e

. YR A . . . -

~ s

A number that is read into memory ur;der contr:l of an Erfield like
E20.8 need not ‘have the decimal point actually punched on the card. If it
is punched, the 8 ~in E20.8 is ignored just.like in F-fields. Thus the
number —1.31467. might be punched in several different ways on input using

the E20.8 and still enter memory with the same value. Here are some “

examples. | ’ °

.

Different we;ys ;to punch the same value orn 20 columns of a card,

' . | = ¥ :‘A: ’

-]

* re——— 20 columns ———e

DoO0DODOO0OOD-1,3467E0
oooo -1.346700000E000 :
Dooo -1346700000.E-09 s

) 0oQooo, -134670000E000 - .

£

z
T3

..

Odly in the last example where no decimal .point is punched will the - 8

‘in E20.8 ,sbe used to tell where the decimal point should be. In all other

cases the computer t.akes the number just as it is punched and interprets it
the’same way it wou.d any .FORTRAN constant which, is written the, same way .

One word of caution--atways be sure--if you use this-type of input;to-

have the exponent part of the. number occupy the right-most four or, fewer
columns Leave no ,trailing blanks af‘te,r the exponent As thley are generally

interpreted as zeros. For example: -

.

> 1 . -

Co .4 “—— 20" columns —
N w .
ooooooooo-.13467Eolo

trailing blank treated as
a z2ero - ;- -~

g M . \

Here most FORTRAN, implementations would interpret this value as if it

wvere r .
’ -.13467E10 , instead of '
' : + -.13467EL- as intended. *
/ .
o) . s : 11)
IC . ' Plzz

- t o

-

P

-

L)

-

s

?

O

‘ERIC

Aruitoxt provided by Eic
.

.statementfxlf. -}“ Tl .

F1-1 \ * 0 T :
. - . -
. .
t L . 3 . < e e E
One timé use of ZER < P ‘ -

u

Now suppose we wanted to’ use ZERO, to find the root of the equatlon
3x3 -Tx-2=0 Wthh lies ®etween 1 'and 2. Then we, should need to
define a function subprogramﬂ'UNCT whlch calculates the value of
3x3 - 7x - 2. If we choose EPSl = 10 h\ we would need %o, call ZERO by the

1 - SR o
- P ') .
. o ® 7 CALL ZERO (1.0, 2.0, 1.0 E - 4, ROOT) .

: "‘;

THe FORTRAN program could be written as shown in Flgure F7-2.

CALL ZERO (1., 2., 1.0E-4)
STOP .
t ; END >
C - PLACE THE DEFINITION OF SUBROUTINE ZERO. HERE
. FUNCTION FUNCT(X) w | 9 '
LY JFUNCT = (3.0%X*X-7.0)*X-2.0"
. END) :
END
. Figure F7-2.)
3 ! t;\:&;, ; . , R
Usirfg ZERO on several different functions. 4,'

Ideally we would prefer to have written ZERO with a list of dummy arguments
likebthose shown in Flgure 7-6 of the main text. Unfortunately FORTRAN II .

processors do not permit statement label arguments, and only a few permlt

function neme arguments. This cuts down the flex:.blllty we would like, but

we can still find good uses for procedures like ZERO after some slight modl- ‘r}‘}':-

fication. [. e . Nt

SuppOse\' we wish to use the ZERO procedure with a series of functions.
'I’hough des1rable, this would be dlfflcult with ZERO as written, As things
sband now, we would 'have to. reproduce the ZERO and package" it with each

. .)
function separately. What we need is som means by vhich to. identify each of

‘a series of functions so that we can coxmnunia%%e to ZERO which of the fufictions

it is to use when called Although we must always call our function FUNCT,
we will now cons1der FUNCT +to be a functlon of two varlables, % and k,

where k .is real,ly Just an index to 1dentify the particular function

rI'he reyised FORTRAN program whlch ve will call ZEROK fo]:lows in Flgure F7-3.
Notice the fourth argument is K, an index t:hat is used to identify the parti- ~

’ (S ’ .
cular function to be called on: - . '
. "
) 120 4 ., A)
Cody 123 ; ‘
Lt “g .,

. PR . A - - - . . EPR

.

rai

SUBROUTINE ZEROK(A,B, EFST, K)

= A
X2 =38
Y1l = FUNCT(X1,K)

IF(Y1 - FU;CT(‘X2,K)) 6, 5, b4
F(v1) 8, 7,8
ROOT = X1 -

-

;

ROOT = XM

GO TO 12 <

IF(YI*FUNCT(XM,K)) 13, 10, 1k

‘ S~
"

RETURN
END

.
-
.

Figure F7-3. The subroutihe ZEROK. . It's identicsl with
’ that of Figure F7-1 except for the opening
declaration and statememts that contain
references to FUNCT. -

i ﬂi
‘ g - \’ . "
Figure F7-4 shows.how we might use “ZEROK to find the root of 3;c3- Tx-2=0

between 1 and 2, the root of x5 - hxl‘ + 7x3 - X +3=0 ‘between -1 apd
0 and’the root of, x = cos(x) between O and 1. We choose EPST = lO'h.

%

CALL ZEROK (1., 2., 1.0E-4, 1) °

CALL ZEROK (-1., 0., 1.OE-4, 2)

CALL ZEROK (0., 1., 1.0E-4, 3)

STOP B ,

END ~ , .
PIACE THE DEFINITION OF SUBROUTINE ZEROK HERE
FUNCTION FUNCT(X,K) . .
IF(K - 2) 1, 2, 3% _

1 FUNCT = (»3.*X*}g-((. w2, | ‘

RETURN -

‘o

2 FUNCT = (((X-h.)*X+7.)*%X*X-1.)¥X+3.
FUNCP = COSF(X) ,
RETURN - A

END

gt T Py

F7-1

1Y >

The final step in the development of ZERO as a px"ocedure is to give it.
an alternate exit if the method prqves. inapplicable, We shall use th§
technique ilJ;ustrated in Fiéures 5-26 and 5-27 of the m-ain text. That is1 we

-~ shall employ another gutput a&‘gument, L,\ which will be_assigned an index

value in the procedure. Upon geturn to the calling program th’e value of L
wills be inspected to see if an alternate exit has been 1mplied. Once we add
this feature it will no longer be necessary to have the proceidure do any
printing. We can add ROOT as an output argument and carry its value back to
"the cz‘all:f.ng ,Jprogram. The calling program can, in turn,’ take all responsibility

~-

"for printing results or diasgnostic messages.

... We shall call the new bisect procedure ZEROKL. To complete the anaédgy
:;‘;gith%he parameéer list in the .funnel of the zero pro'cedure in Figure 7-6,
-7 ¥Nue let the parameters for ZEROKL be: ;)

- -

. - X, :
. ¢ T;¢
- an index to to correspond withj -)
-point to an index Xl and X2
* the right to simulate
function” a state- . ’
. ment label . .
- >
* -
. +The subprogram is given ir‘x Figure F7-5. The argument L., is set to O

to indicate a normal exit and is set to 1 to indicate the 4lterndte exit. -

- .
v
.
-

. B
‘ ’ v

Aruitoxt provided by Eic

Trax “'I. A ow ‘?.wn < '11;,1 ‘. P N * . - tor Lo S LR - kb, R BN

v

s) , F7-1
‘ Y
. SUBROUTINE ZEROKL(K,L,A,B,EPSI,ROOT) - . !
: lix=a
r T e X2 = B
. Yl = FUNCT(X1, X) :
IF(YL - FUNCT(X2,K))6,5,4 3 '
. WL =1 i
o RETURN L .
5| |IF(x1) 8, 7, 8 N ., Cg
7| |ROOT = X1 = « . .
12f |L=0 -
RETURN °~ .
8] |ROOT = X2 .
GO TOo 12 ° ° | . . *

6 [XM = 0.5%(X1 + X2) .

IF(ABSF(Xl - X2) - EPSI) 1o 1, 11

10{ |ROOT =

| {Go o0 12 . .

: 11| |IP(Y2*FUNCT(XM,K)) 13, 10, 14
e . 13 X2 = XM 2

P GO TO 6 -
(X1 = XM) f) =0
GO TO 6 . .
END . ’ .
ot ’) ‘ . .
. Figure F7-5. A FORTRAN analog to Figure 7-6

’

Exercises F7-1 . . i

k!

1. Write a FORTRAN program to solve all of the equationSsgivefi"ir; Exercises

7-1, Set C, Prioblem 1 of the main text. Use t‘f?e indicated intervals
and the indicated error tolerances. ,Use the subprogram ZEROK given in

lFigure F’?-3. Run the program and compare your results with the hand

calculated ones. Also run the program for 3 with EPSI = = 10 h

v . ‘

2. Write and run a FORTRAN program to carry out the function evaluations
needed in draw:.ng the graphs in Exercises 7-1, Set A of the main text.
You can use some of the same FUNCTION subprograms needed in Problem 1.

. -
-
-

3. Write and run a FoRTig\N pro\gram to solve the alley problem (Mumber 6)
¥ in Exercises 7-1, Set D of the main text. Then S¢lve the problem to the
. neerest hundredth of a foot if the ladders are 25¥83 and 19.14 feet
- long, and the crossower po:mt is 7,17 feet sbove the ground.
, . . .
4 5. Fer each of the flow chart solutions you prepared for Problems 1 and
4, Exercises 7-1, Set D, employ the ZEROKL subroutine developed in Pigure
F7-5 and write the necessary companion FORTRAN programs (main programs
and FUNCTION subprograms).) ‘

~ v . 2

Q .;123 126

} LRI ?

N ~

~ - - .
F7-2 The area under a curve: An example, y = 1/x between x = 1 and x = 2
Al N ~

Since the area undez: the curve y l/x is of interest in deflning

logarithms we begln by writmg a simple FORTRAN program for the calculatlon
of the approximate area under this curve between x =1 and X = 2. This
calculation will provide an approximation to 2n2. We assume that an error
tolerance EPSI is read in from a card and that calculatlon of the approxi-
mate area is to b‘e carried out by doubling the number of subdivisions each

time and termmatmg the calculatlon when the absolute value of the di fference

of two successive approxmatlons is less than EPSI. The ‘program in Figure F7-6

follows closely the flow chart of Figure 7-16. Remember that f(x) = 1/x.

DIMENSION T(101)
MREAD 105, EPSI
FORMAT(E20.8)

(1) = 0.5%(1.0 + 0.5)
N=1 ..
S=0 ‘
NL =" 2%*N-1

FIP = 2%xN
DO 30K = 1, NL,2
FK = K _
S = s+1.0/(1. o+FK/Fm=)
CONTINUE

T(N+1) = O. 5*T(N) + S/FNP
IF(ABS(T(N+1) - T(N)) - EPSI) 9, 8, 8
N = N+l

GO0 0 2. ’ .
AREA = T(N) .

PRINT 106, AREA,

FORMAT(8HOAREAD=D, E20.8)
STOP .

EIND i " .

Figure F7-6

‘- i
.

Note that we had to introduce FK as a floating point value of K and *
FNP ‘as a floating point value of the number NZN, in order to be able to
calculateggh&desired terms in the calculatio‘n of S since FORTRAN does not

hY
permit, us mixtmodes in arithmetic expression .
7

ERI
e

terminate before N exceeds 100. ’ !

£

(a) Is it poss:.ble for .N ta exceed 100? '\ .

(b) What would happen 1f it failed to té”rminate b?f’ore N exceeds

el hed

1002 : .) -

-~

(c)

Add some statements to the above program to pr\oteet against this
undesirable event, even if the error tolez‘ance 1§ not satisfied.’

Print out a message in this case mdlcatmg fai;Lure to satisfy the

error tol erance .

¥,

a

. . . = ~e N
2. Criticize the above program for inefficiency.
efficient by following the fllow ¢hart of Figure 7-17.

. "safety" termination if N 100.

exceeds
using first Q.01 and.then 0,001

’
e

3.
successive approximations differ in absolute value by 1
we could terminate the calculation after a fixéd finite
approximations have been calculated. '
problem to read in an upper limit for the number of ite

- carried out and then to terminate when this is reached.

L program for N = 15. . -

»] . "

Tell how to revise the programliven in this section so

calculation could be repeated for a series of values of

of which is read in from a card.

oL
4

Set C, Problem 6, main text., Use f(x) = 1/x.
compare results using n =5, 25, 75, 125, 200.

«r

Run ‘your pro

4
-

.

| Also incHide a

Run your reglrise’d program
as, values, for EPS\ .

¢

<Revise, 1t to make it more

Instead of terminating the calcilation of the approxima\ie area when two s

2SS than EPSI,

number of
r\‘tions to be
&?un your

thet the _- -

I each‘

Write a FORTRAN program for the calculatién described in Exercise 7-2,

am and

L " 125 128

&

13 _ . . R .
G R ""j"]“‘”"?‘“’”'

lse*v-ise the program of the previous

i

S

© F7-3 e R

A ~

F7-3 Area under curve: the general case - . ;

)

We now consider the general casé of fmding an approx:.matlon to the area
under a curve y = F(x), ‘sbove .the x-axis and between the vertical lines

x;.:A end x = B. In order to make the program as useful as posmble we could

T W Ay
- write it in the form of a function or a subroutine subprogram We chooseﬂthe
former here. The function F(x) is assumed to be defined as a FORTRAN *
: function called FUNCT(X). An error tolerance€ EPSI is given and we termi-
nate the calculation when the absolpgte value of the 8ifference of two succese
: sive al.)proximations is less than EPSI. We follow the flow chart of Figure 7-20.
FUNCTION AREA(A,B,EPSI) .)
M=1 .
H = B-A . .
OLAREA = ,5%Hx(FUNCT(A)+FUNCT(B)) - : '
3| M= o - .
H= H/2 0 o
S = !
o hO K=1, M, 2 — .
,FK K
= 5 + FUNCT(A + FK*H))
Lo CONTINUE .
“ AREA = ,5%QLAREA + H*S “ .
) IF(~ABSF(AREA - OLAREA) - EPSI) 9, 8, 8
. 9| | RETURN o
; 8 OLAREA = AREA i
) GO T03 -)
F END
Figure F7-7 '
: 4 .
. - If we want to use this function subprogram to calculate anﬁ print the
o - T T~ \ .
=appro;‘<imate area under the durve y = l/x, above the x-axis, and between B
. the lines x =1 and X = 2 we might_use a tolerance of* EPSI 10"1*, andy
. then we could write the followmg program: . \ o J- \
. % .= AREA(1,0, 2.0, 1.0E-4) i
, PRINT 4,2 N
. L RMAT (7H AREA = E20.8) .
‘ STOP) " .
END | !
c PLACE THE DEFINITION OF FUNCTION AREA HERE
FUNCTION FUNCT(X)
FUNCT = 1./X . " .
RETURN) - . .
4 ?»
O . : 126) B *
ERICC 7 - 13
&t ‘ - a

.
[A I S T .
| 1 Vs { i i v

Exercises :E_:[3

I '“x*'
;. ”

L,

.FRIC

Sl e Provided by ERC
e 2 .

' .
(a) Write a FORTRAN function subprogram AREA2(A, B ,N) which calculates
an approximation to the area u?! er the curve\ ¥y = F(x) , above the
X-axis, and between the lines/ x ='A and x = B and which uses .
a subdivision of the interval (4,B) into N 'equal parts. Follow
- the flow chart drawn in Ex7 cises 7-3, Problem 1, of the main text.
Test your*prggram for y/ sinx between x = 0 and X = n with
N = 5000. (‘How does your result compare with the area of a semi~

~

circle of diameter n?)’ :

(b) Use function AREA2 to print out a table of natural logarithm

. Values from 1 through 51 ~fwimtervals of 5,
. ’

Tell how the functien subprogram AREA(A B,EPSI) of this section may -
be adapted $o protect against the possibility of an endless loop by
causing termination of the calculation if the number of subdivisions
exd@‘eds N. If the calculation is terminated in {:his manney without ’
satisfying the accuracy criterion, a message should be printed in
addition to giving the approximatiog. ‘Fo the area, . o 3

.
*

Write a FORTRAN program which includes the subprogram\“t;;ihis
section and the subprogram AREA2 of Problem 1, Then use sub- | -
programs to calcu.late approximations to the areas described below.

-

First wse 1, 2 L equal subdivisions ef the interval and then use an

-

error tolerance of EPSI = 10 3 of coug‘se you will need to supply ther =
necessary FORTRAN funetion subprograms o define the functions:

(a) Below y = .h3429/x, above x-axis, between x =1 and x = 3,
(’I‘rue area is log 3) , . .

.

i

(b)\ Below ¥y 3x2‘ +2x +1, above x-axis, between % = <2 and x = 2,

>

3

X", above y = x? between x =,1 and x =k,

(c) -Below y

IS o

e o

Write FORTRAN pr,ograms that may be used in calling on AREA(A B,EPSI)

to compute an approximate velue of =n to four decimal places. (See . .-

Problem 6, in Exercises 7-3 of the maid text.)

- % ‘

T' ‘ 'ri’\.lﬂ 130

F7-4

examp

Exercises

‘l.

_“s_yst e

write a corresponding FORTRAN program for the

; ajXy * A K, = b

- AL

Simultaneous linear e Lations

Developing a systématie

ms of two and three simultaneous equations. Exercises

les of the method. Yeu should now be ready to writ\e

-

18es _F_ [‘

-

equations in two unknowns: .

n~*

v _
ap Xy + apXy =

éth@ of solution

_In this-section of_the main text we explained carefully/how to solve
F7-4 provided
simple

program-for the golution of two simultaneous eduatipns in {wo unknowns. -

v
*

Follow the flow chart drawn in Exercises 7- L, Set B of the main text, and

solution of two simultaneous

2. Us(e the program of Problem 1 to solve the following systems of équatlons
%n the computer
.For systems (f) and (g) slide rule accuracy is sufficient.

Make a hand- calculated check of your computer re;sults.

‘ 1)
(a_) bx -2y =5 (e) 5x +y =2
2 +y =1 . — L3 - by =7 .
(b) bx +3y =5 . (£) 3.22x, +5.375x, = -1.23%
.‘ - hy =7 o o X _ .
a N ~ T\ 10.246x) - 5.21kx, = 3.71k
(c) 3x - by =12 (8) 5.128x) - 3.87hx, = 12.k2
bx + 6y = 3 : i o
- ’ 3.817x; + 15.157x, = 3.78k4
N WA
(@) 2x + hy = -7 =
3x +y =2 ‘ \&, N R .
» \l ’::"

P T

-

]

’ ‘ . e
SR - "l F7-5
3 /. ' (¢ , i , . ‘ Ad .
. e

F7-5 "Simultaneous linear ‘equations: Gauss algorithm °
) v \ {

T . - !
In describing the solution of three'equations in three wmnknowns we

descrlbe/g,ch of the” e)ssentlal operations dn turn aM drew a flow chart for
each. It will be 1nst,ruct1ye te builcf'up the FORTRAN program in the same
gradual fashions We begln by dividing the first equatlon through by a8y ‘
as described in Figure 7-24. The correspondlng FORTRAN statements would be

’ : [n
DO 100, J = 2, i
, A(lJ)-AlJ)/All) ' .
g 100}~ | CONTINUE
JAB(1) = B(1)/A(,1) ., . .
The elimination of X, from the 10 row, 1 =2, 3 1is described in
- | Figure 7 25 ana the correspondlng FORTRAN statements would be ’
}
- | |p 200, =23 .
. A(I,J) = A(1,3) - A(T,1) ~ A(1,J) :
200! {CONTINUE . . ’
o] IB(D) = B() -A(T,1) % B(2) a s .
, :’ ‘e . A \ ! “ N
3
Next we have to divide the new second equation by a22 and then
ellmlnate %, from the third equation. Followmg these simple examples s you
should h, little trouble writing the FORTRAN thatts equlvalent to
Flgures T7-27 through 7-30. '
3 . - ’ -
' Exergwes F7-5 Set A . -

. 4 AL emy

1. Write the FORTRAN statements corresponding to the flow chart of
Flgure T-27. T ~

. - y
. : WX '

RS Note the similarity between the statements of Problem 1 and those

correspondlng to Figure 7-24. .Write a single set of FQR‘I'RAN statements
to edver bokh c,a!es byAfollowing Figure 7-28. (Remember thaf k=1

4“_‘, g A
or 2.) - ; e

' - . N) T «

“W{lte the FORTRAN statements for the flow chart of Flgure 7 30. Be sure
" <to take account of the posslblllty that k may exceed 2.

. ~ ' {

k., "Now write the FORTRAN that's.equivalent to Figure 7-33.

Q - v . - 129 1.3 7 . e

.« ’
EN,Cs = . i O .
. B L. <
) . 4

o - Lt

o P

*in tutn.

RPN '/

This is described in the flow charts “of Flgures 7-34% and 7235.

Next we want to carry out the back solutfon in order to cobtain x3, x2,

L]
A
) The FORTRAN statements corresponding to the latter flow chart Figure T7-35
* might et . ° - A
o . < : |
< —— Gy . ~ ‘ ,’
: DO 900 I =1, 3 (e
s - I1 = 41 ¢ i) ‘
<t "|X(11) = B(11) : L.
X . IF(I - 1) 11, 900, 11 . . ~
) IIML =11 -1 ‘L
DO 11007 = 1, IIML . <. .
: 31 < dhn I o :
. - X(1l) "= %(11) - A(11, 1) * X(31) . SRR
1100| |GONTINUE s g >
- 900 NTINVE .
Al y h

-
‘-yarigBles always increase.

vy
°

3.'

This set of.statements appears to be somewhat more complicated than the
flow chart of Figure j-35. One reasbn is that in the flow chart the controll
variables 1 and azg decreasing whereas FGR‘I‘RAN requlres that controlled
We take kare of this by making the substitutions
=‘ll: - I and Jl =4 - J. Another reason is that in most versions of

a "'Do loop is alwg,ys executed at least once. To aveid this diffi-
-«

FOR
culty we bypass the inner D& loop if I =

» . Now just as the/c'emplete flow chart of Figure T-33 was built up frem
partial flow charts, so we can build up the complete.FORTRAN program corres-
ponding to Figure 7-36 from the partial F,OR'.FRAN programs which we haire Just
discussed a.n,d_ii'hich you” have written in Exercise H-S, Set A.)

ed

3

‘

. R

. _#ﬁ':@" :
',\»,,?ﬁ:e.’.uEbcemises F?-5 Set B

systems of simultaneous linear equations represented

-

4 ’ .‘f - Figure. 7- 36 (
.2
arrays.
*._:" '!Q (8.) 3x + hy +g = -7 :
A . . 2x + l{y + 2 = .3.'
3x "-5}’ + 32 = 7
. . '(b) x + 2y _- z =1 ,
' ., 3x - a + bz =1
X - 3y - 22 = 7
PS \.1 . ?\‘ b4
‘ERIC. . N
, / ‘

) . N

——

* ~

2
- Write a complete FORTRAlerogram for the Gauss Algorithm given in

-
- > .

Ruy the above program on your machine and use the program,to solve the

by the following

(e), bx -2y -32=7 ’
"3x -5y t2z =1
~ X +ty+2=1, B
. & v <

() ox-y +%z =3
35:-’hy+l+z=l
X +2y-5z2=T - ¢
.‘139..’ T

S

Now use the above program on your machine to
“equations . -

(a) 3.1h7xl + 2.,1;19)82 - 3.1&79x3
6.2&1:@l - 5-.678:<é +.u.2'71x3 -52,17

= ,4.219 P

D8x + 5.781x2 + 34s31hx. = 27.14

3
27.147x, 1’3.u17x2 - 3.1;793:3\ = 5.617
31.1&68x1 + 3.1;28%2 + h.7¥19x3"= 31.421

ll.llei - 3.l7lx2 + 5.3lhx3 = -17.121

) o -
Sodution of n equations in n .unknowns - (~ 8 .

»

The generalization to n equations is quite easy if we follow exhetly
the pattern we just used for 3 equations. .
.-
.

Exercise F75 SetC) e

D

PR

Rev:.se your FORTRAN program for the Gauss Algorithlrto handle n equatlons
.)ﬁ

and n unknowns according to the procedure’ flpw chart you prepared for
Problem 2,'7-5 Set A of the main text. Test the procedure (subroutine sub-
program) usmg the h by 4 .system given in Pxoblem3_3 of T7-5 Set-B in -
“the maln text. The progedure should be capable of handling up to 15
equatibns in’ 15 unknowns. . .

*Eercises Fi-5 : Set D

.

l._ . In Exercises 7 5 Set C of the main text you were asked to insert
Ypartial pi‘voting as a capsbility of your flo¥.. chart for the Gauss
procedure. Show the r:‘orre8ponding ghanges necessary to the€ FORTRAN
subroutine called GAUSS' vhich you prepared in the previous exercisg.

’ -

Aruitoxt provided by Eic:

—_—— e el e e, M N - 5
[- L e esmas ’ : ‘
L - - N : ¢
~ ff“ké&ﬂ{pletg the modification of GAUSS and use the new subroutine t¢ solve

the following systems of simulteneous linear equations. Compare results

QAL wit'h and without partial pivoting. O s

B

’?‘fw‘" . (a) 3x2_-hx = =4
3x1-2x +h4x, =7

.

éxl + 15x, - 3x, = -4

(b)‘2x - 3x '+ bx A‘= 7 ‘ ' \.

+
(]
w
>

t
(]
(]

2%, - 7x2 - 12x

. [
. Do .
s L
L ¢ . -
*
. & \
< A -
. -
. 4
R ‘
* ,
/
.
v
' ‘ .
’
- .
Ve .
» L4 - . -
- a -
o - " . 3
~ ;. B
X - yE ’
L a \
(_\f L] -
o ~
hd N - ‘ 4 s
#
. .) N /
‘. . 3 -
v .
.
’ t i -
‘
g -
- re
oy mm -
A -y . . N
* L . - Lo
Y » .
y & °
- = ‘
: K
] A a
. o .
~
/ ¥
. . 1
-) .
] » .
'
. ©
-
* . -
-~ /
—— L} -
. .
»
B
(3 M -
£ ~
. 4 ”
¢ v
, - .. . B

pa

Q ' . ’ .
m,) = 13:) L o g

~ -

> ,
> 4. * < s 4
INDEX .
- '
. alﬁhanumeric detn, 44 hid identifying remarks in FORTRAN output, 57
+ alternate exits from subroutines, 113 IF statement 51
;> erea under & curve . - “fules for, 5‘3/(
* from x = 1 to x = 2, 12W implied DO loops, 90 ; & P
. general case, 126 - | input-output stetements, 15
drithmetic expre551on, 27 N integer, 8
array ‘ division, 30
input. and ougput, T2 verisble, 11
. storage, 70 iterstion, 79
@ssignment meaning when there are o ¢
type differences, 35 . labels, 8, 11
. assignment stetement, 26 length of e statement, 40
‘ . locel verisbles, 107 -
" bisectipn process, 117 logicel expressions, 68
blank spaced, 41 looping, 79
branching, 51 {
mixed mode in erithmetic expressions, 29
cerd layout, 5 multiple brenching, 65
chorocter set 8 - + nested DO loopd, 96
eompiler program 5 i nested ‘%mplled DO loops, 97 -~
) non-locel varlables, 107 AN -
composition of function references, 107 number types, 11
compound conditions, 65 - o~ ¥ yPES,

in arithmetic expressions, 27

conditional statement, 51 numerical constants, 8

contipuation, 40 .

continue stetement, 8¢ operator symbols, 1k . . 7
! * order of computation, 34 —_—
DIMENSION declerstion,-71,*75
DO stetement, 79 predefined mathematical functions, 12
domein of & function, 105) /' PRINT stetement, 22
double subscripts, 75 - prmter carriage control, ‘1&2
s) PROCEDURES, 109
E-fields, 118 ‘
exponentiation, 31 . ., READ statement, 16 * ’ _—
. . , - . . real varisble, 11
, . field codes, 17 RETURN statement, 102 . ' ‘. e
_F-field code, 19 . s %
) I-field code, 19 . simultaneous linesr equations, 128
floating point, 8 N source progrem, 2
» FORMAT statement 18 . " statement lsbels 8s argmd@nts 12
Fortren II, 1 - storage of doublylsubgcripted erreys, 75
function strings, 114
renge of, 105 subprograms, 101
function ngmes, 11 . parameter list of; 106 ' ,
¢ as’ arguments, 112 . subroutines; 102 - - N
function reference, 27 » branching from, 112
function subprogram, 101 -~ ’ . . cell of, 110 -
functions, 105 - subscripted varlableS', 69
of more thag one’ argument, 106 symbol menipuletion “in FORTRAN, 114
Géuss elgorithm, 129 - table—look-up, 89 .
GO TO stétement, 4 . terget program, 2
greatest integer function, 30 terminal stetement, 7 ’ ¥
- Vo h W~
 H-tields, 59 % *‘ uwnery minus, 32 \ . ,) N
v ’ ’
& - I N s . . ce
[MC o &) ')
. . |

i . t. w %, ‘i:a‘ . . .

P ° -

¢+ v X-fleld, 91

ZERO subroutine, 118 -
v ZERCK subroutine, 121
’ . , ZEROKL subroutine, 123

.

© SOSEXITE .
B s e .
RN g - -

s

