@

‘ED 143 508 : Siege e s SE 022 9851\ .-
2o, D N
AUTHOR Cha;p, Sylv1a"And Cthers
. «~TITLE " . Algoplthms, Computation and Nathematlcs {Algol
o - 'Supplement) . Student .Text. Revised Edition. <
INSTITOTION Stanford Unlv., Callf School Hathematlcs tudy)

.« . Group. et T Ty . T
SPONS AGENCY. Natlonai Sc1ence Foundatlon, adhlngtoh¢ B.c i :
* PUB DATE 66 ¥

., NOTE 138p.; For related documents, ‘'see SE 022 983-988; Not
available 4in hard ccpy due tc marglnal leglblllty
original document . e .

"EDRS PRICE '-

. HF‘$00

: \
‘.
*» M 0
-~

83 Plus Postage.

[

HC Not Available from EDRS. -

DESCRIPTORS. ' . Algorithms;- *Computers; *Instructional ‘Materials;
", . . *Programing languages; Secondary. Education; .
e o *Secondary School Mathematics;: *Textbooks
IDENTIFIERS . *3ALGCL; *Schoot Mdthematics Study Gtoup v
" + . b L . . f.) .-)),‘ u
ABSTRACT n¢ A A~

I PO S W
)

. This is the stuﬁent's textbook for Algor;thms,
Computatlon, and Mathematics (2lgol Supplement). This computer
language supplement is split off frcm the main; text to enable a

school tc¢ choose the
easier to 'modify the’
text are designed ‘to

computer language desired, and also to make it
course’as languages" chamge. The, chapters in the
add language capability. [Each'can be read in

conjunction with/the ma}ﬁ text section by sectiom. (RH)

skl sk ok ke s ok sk ok 3 ol sk sl i ok 3k vk s 3 ok ok ke sk e ok ok ok ik ok 3k sk Sk ok ok skl e ok ko ok ke ok i okl ok kR ok Rk

‘Docyments .acquired by ERIC include many-informal unpublished *
materlalg not available from other.sources. ERIC- makes every effort *
to.obtalm the best copy available.:Nevertheless, -items of marginal. *
‘reproduclblllty are often encountered and this affects the quality -#
of the 1crof1che and hardcopy regroductions ERIC makes availablé *
via theﬁERIC Document Reproduction Service (EDRS).
respon ible for theé quality of the origin document. Repréduqtioms *
suppllg 'by EDRS are the best that can biﬁﬁﬁde from the':@riginal. - *

*%kk ****ﬁ Aok deokok ok ok kokok ok Kok *******M******** 33k ki ok ok okk ok kK *****************
' » *. - A\

Vd v ,

I

3 3 # 3 3 3 3

‘\i
[

Q PR " e

.
.
3 . ! N -
+ + M N - .
. . . R
. N v - .
. o - [4 »>
. ’ . . .
¥ - ~

EDRS is not ¥,

TN

3

~

&

1

%

Sav e ~ .
.
- v ’

« U'S DEPARTMENT OF HEALTH,
EOUCATION & WELFARE °
- NATIONAL INSTITUTE OF
) EQUCATION .

s

, THIS DOCUMENT HAS BEEN REPRO.

DUCED EXACTLY AS RECEIVED FROM

THE PERSON OR ORGANIZATION ORIGIN-

ATING IT POINTS OF VIEW OR OPINIONS,

. STATED DO NOT NECESSARILY REPRE.

R SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY,

A - *ALGORITHMS,
- COMPUTATION
. ‘ ND -
. " . MATHEMATICS.
.4 (Algol Supplement)
- L
Student Téxt «
Revised Edition

X ‘,' N L

o

.
' R .

. Kl . .
" The following is a list. of all those who participated in the préparation of this

volume: <«

L)

Sylvia Chhrp, Dobbins Technical High School, Ph'iladelphia, Pennsylvania
‘8

e TN
¢

F0'THE EDUCATIONAL RESOURCES

.

. Alexandra Forsythe, Gunn High Schaol, Palo Alto, California

John G, Herriot, Stapford University, California

Walter Hoffmann, Wayne State University, Detroit, Michigan o
+ * Thomas E. Hull, University of Tofonto, Toronto, Ontario, Canada)
Thomas A Keenan, University of Rochester, Rochester, New Y(_)rl.(' ’
Robert E. Monroe, Wayne State University, Detroit, Michigan
Silvio O. Navarro, University of Kentucky, Lexipgton, Kentucky

Bernard A, Galler, University of Michigan, Ann Arbor, Michigan .

Elliott I. Organiek, University of Houston, Houston, Texas

Jesse Peckenham, Oakland UnifiedSchool District, Oakland, Califbrr_n'a
George A. Robinson, Argonne National Laborator$, Argonne, Ilinois

Phillip M. Sherman, Bell Telephone Laboratories, Mutray Hill, New Jersey
Robert E. Smith, Control Data Corporation, St. Paul, Minnesota

Warren Stenberg,’f)niversity of Minnesota, Minneapolis, Minnesota
Harley Tillitt, U. S. Naval.Ordnance Test Station, China Lake, California
Lyneve Waldrop, Newton South High Sc’hool,‘Newtbn,Massachusétts

- /’I‘h‘ofollowing were the principal consultants: ™ .
George E_Forsythe, Stanford University, Californja

~

)
K
¢

- .

]

.

* ., Bernard A. Galler, University of Michiga#l, Ann Arbor, Michigan
:«Wal,lace Givens, Argonng Natioral Laboratory, Argonn.,e, IHinois 4

1A

‘&.THE ERIC SYSTEM CONTBACTQRS ",

“PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

. SMS6 y .

P .

>

INFORMATION CENTER 4ERIC) AND

‘e

s . ,
. } L
+

\

LT

-

. -
<

. [

o .

.
.

A

\ 4 .
@ 1965 and 1966 by The Board of Trustees of the Leland Stanford Junior Umvershy

. 1l rights reserved
anea 1n the United States of Amenca

S
- L4 < .
. . ¢ .
. - < . ~
, - .‘
- * ~
- L] > .
A) - .
. \‘ . - * ¢
. . P « Y
s o , .
. - .
. - L
- i -
.
; N .
» . ’ M
\, . v > R
v P . .
L4 -
’ 3 A 4)
- = - \ 2 P
B .
- LS
. N . . v, \ .
. -
. . N
. - L [»
. -~
¢ »
' A 4 .
‘. Vd . N
. -
. , v ’ 2
N, . t
t . .

. Permission-to make verba,tzm use-of material in tkts book must be secured
frém the Dirgctor of SMSG . Such permussion will be g“ranted. except in
unusual circumstances. Publzcatzons mcor[)oratmg‘SMSG materzals must

include both an ackndﬁzledgment of the SMSG copynght (Yale Univer-’

sz~y or Stanford Umverszty, as the case may be) and a disclaimer of SMSG
endorsgment. Exclusive license will not be granted save in exceptional

P czrcumstqnces, and then only by speczﬁc act:on of the Advisory Board of
: SM’SG . Lo le N e -
- R < . : ' PEEN P ’ ke
| .- 1". . ‘ '
)) P A Al .) M €
. " . e
N0 . P oo e § . - » v
| N
. . , “ '. N , 1 -
~ 0 . s
- .- .
. . o ¢ J .o R
. K -
) Vo e s .
* ! Jtar ,’\‘)f -
. R ‘./dér LT l""“ i
. . N . ’ T
e ., -t W :
. - . {‘,;; - ~g7!v ~f\%§‘t, Ll tote =
o e . <) .
J Fmamzal sz(pport for the Schook Matbemdtm Study Gfoujz has_been
prowded by the National Sczefice Foundation.
. ’ -- e ’
N ¢
. .
’ ~ [} . N
Q . f . .

.

»i

)

. N ,) RV .
' \ ? * d " | . : \ " .
)] _". .‘ s - .’ .
) . , o & ‘<’~ 5
I 2 TABLE OF CONTENTS . « .
. e : e T D
voo- [,
* .Chapter U y . o\
A2 -ALGOL LANGUAGE MANUAL TO ‘ACCOMPANY CHAPTER 2 . ? .
- .. A2-1., Introductien . . . B 1 7 .
v A2-2. ALGOL language‘elements S U N, 7
42-3. Input-output statements. 15 »
o A2-4. Assignment statements. o e . 22
A2~ 5\ The order of computation in an ALGOL expressmn. AN 31
. A2 Meam.ng of assignment when the variable on the left ' . . s
© is, of dlfferent type from the expression on the right. 32 B
A2-7. Writing complete ALGOL PrOgrams. . « « o v o o o o . . 35,
A2-8 Alpnanumenc datae «*. e oL e o e s e e . 39,
1 ‘ , -‘ 4
T, A3 v -BRANCﬁiNG AND SUBSCRIPTED VARIABLES ' ’)
" * A3-1. Conditiongl statgments F, e,)
A3-2. Auxiliary Yeriables., .. Gt e . £0
A3-3. Compound condifiqgn boxes and multlple branchmg S 62 ‘
. * ., M3-4. Precedence leyel for-relations., 12 °
«+A3-5. Subdcripted variables. n w o o v o 0 v 0 o oute S L 73
.. £3-6. Double Subsgripts. . v . s o 4.7 ... } 8 ‘o
" LOOPING ; ‘ ‘ '
7 Mi-1. The "for clause” and the "for statement" S < l
. A4-2, Tllustrative examples. . . - . e e T e e e e e e 87
A3, Table-loOK-UPs o o v v v 0 0 4 te 4 4 . . R A
AN, Nestedloops......'..............,. 93
;x 5 PROCE’DU‘RES . : .- C
: -1, ProcBaures . . . v . v e v u e e e e e e e . 9T
}5-2. Functions end ALGOL e e e e e e e e e e e s de102
. 15-3.« SLEOL- function Procedures. o v v v v o o 4 o 4 4 . . . 103 .
A£5-4. ALGOL "proper" proceduresS. . . . w o s o « o o e - . . 106

5-5. Alternate exits end techniques.for branchmg [109
" #5-6. Symbol manipulation im ALGOL O 1 b B
AT SOME MATHEMATICAL APPLICATIONS . . Lt
A7-1. Root. of an equation by bisectign « « 119
A’?-Z. The srea under a curve: &n ex&nple; y = l/x, R
) betwegn x =1 and x = 2. . ,126

O A AT- 3. Ares under_curve: the generel case., }28 .
AT- imulteneous linear equations: Developing a systematic - :
A/n?ﬁhoddfsglutlon...'................ 130 e

.- , -5. "Simultaneous linear equations: @Geuss algdrithm. . . . , 131 -

-

- . v ,‘

- »
o i)
. M - - ‘
1 , .
°
- ~ . : LY
3 . H . Al
£ , i
[> ”
LR W ¢ o . “
Q | . 4
i
H

r 0 v N .
P P by EMC '
' i N

: [.

: L4) Y\Aérl.
g \ pd s -
. e
» L -
B s .) \
L - ! \
» ¢ »
L : . ' Chapter A2 ’ . '
*) ALGOL LANGUAGE MANUAL 0. ACCOMPANY CHAPTER 2, | o "
N o, J
) i 1 ”f \ . . C - :
A2-1 Introductlon . . ~ . , N .

>

In Chapt}r 2 ve developed an appreélatlon of input, output and assignment
/ steps as compenénfs ‘of algorjthms¢ expressed in the form of flow charts. So
far, we have viewed flow chdrts as a means for conveying a.sequence of compu- ‘ ‘:.,,;
* tation rules prlmarlly from .one person to another. We have tac:.tly assumed .

*that only man can read, understand and carry out the ingent of such flow charts

Naturally we wanto include computers‘ in the set of all th:.ngs which caxf read, . .,

understand And carry out procedures. S . . ‘ o

. [
, f . “«

o
, \ NS
ALGOL--language and process,or" 1 . 4

Hdé&‘ammlng languages like ALGOL and FORTRAN accompllsh this obJective.
‘v, The steps of a proérarrﬁnlng language are. called statements They c_:ox.'respond

roughly to the boxes of 'a flow thart.' ~ R :
S : ." . S') oy .
ALEOL 6o L / A D -

-Several years ago a grcup ot comj:uter sp(ec1alists and mathematlcians from
many coyntrles Jomtly‘ _geveloped an Engllsh like prograrmmng language which
they called ALGOL 60. The language was designed m,th these objactives.

- .
B .a J..’l A wide vaz‘lety of algorlthms c;gn'be deﬁcribed with this language.
: ’ Its chief area,of app‘llcatlon is for expressing algorithms which °
. deal with seient:.fic and eng:.neermg computation. Algorithms for\t "
) . . ,many other type’stof problems can(also be expressed satisfactorily
L. 'i.nALGOL'éO T - S o -
D 20 Do ‘ . .
7« 2.. The rules o:r 'Wérammar" of the kanguage are defined precisely--i.e.,
. T wirth mathegancaz_ rigor (unlike English). The net rédult is thaf an
’ ° ‘o algorithm ,written in ALGOL 6Q means preci'sely the same tﬁing to each
N “, '.'°' perSon who reads it, i.e., it means’the seme thing all over the world '

. “to people w%have learned’this language. Hence, ALGOL 60 provides R

e

e e * - .

' ‘ M P N . - 4 . '-f..,‘
. w T s W2 P c . » ", ¢ . -
P4 12 N * "}' < .
¢ S P ‘v q 1 - ' -

O PR i, - Lt N . I - »

ERIC: .- * 0 TG e ,

' e ANN -
PR : : . 5. - ' W . 4
¥ noo v ", L. , -
- L Y v P . o - - ' *

- - ~ " o L 3 . . N

v e ! - .
. a means for. connmmlcatlng algorithms via correspondence and publica-
tions, from one person to another Tt is indeed an international .
L

< ~ A Iy -

language. Y s
3. Wlth minor additions or modiflcatlons, ALGOL 60 Aah -be "implemented"
: on many types ot digital computers. By implementation vg mean that
. a compute'r can be programmed to accept as "'source"" programs algo-
LN) rithms wrltten inva verslon of ALGOL 60 and %.utomamcaliy convert
~ them to sequences of computer instructions often called "target"

- prog:cfams, whleh canlthen be executed by the computer.

. . -

ooy ¢ , ‘. . ~
\ " : These features of ALGOL 60 have led fo its wide, international acceptance
o among mathematicians and sq1,,ent1sts. In this chapter, we shall begin tg de-

N , scribe ALGOL 60 as it is typically 1mplemented for use on a. computer, calling
it simply AIGOL. . : . . «

. '
- / . ' 3
N [

_ Each statemeht in ALGOL fs writtem so that when, typed oy puné:;hed on a

card it can be trangferred to the computé™s memory. ‘Here it’ cen be scanned r

‘.
“ .
]

character by character' and analyzed £or 1ts fulkl intent. 4 ' P
B

Programs which- analyze these statements are called comp:.ler or processor

. progrems. A typical ALGOL processor reads statements originating on punch

_ cards and gnaly%es the convertJ.ng each statement into an, equivalent seguence

of computer inst
o

amoung to hav the computer carry out the intent of the ALGOL statement.
. $ \

. ‘I‘arget programs and source programs - ’ S

. . ‘\, .

}) gwg;Lpe processor program wril read apd analy!e all the staflements of an ALGOL
prog& to generate a complete set of instructions or "target‘" program, * suffi-

prégram gets its” neme beca’use 1t 1s-the target or ob,jective of the processor
program Similarly, the prpcessor Has received as input 8 "sduroe program —
_written in the AIGOL language “When the processor program finil, hes generating
the target program, the computer may execute these instructions right away.

This ig feasible because the target progra.m is developed ahd kept iA the com- :.
puter’s"fnemory. It the target program is too big to it in hi h speed Jmemory -
‘aldng w’ith “the, large processor program, the geperated target 8 stored tempo- '
rarily in Some form of au;ciliary memory media. such as on magnet ¢ drums, disks

[' or tapes, orx in the form of decks of punched cards - When'stor in au.xiliar.v N

|

?
[‘

NS “ .
b ’TThie procéss is further deseribed in Section 2- li’ of the main. text. L7

,“. . ‘ P N o .. el L.
ERIC. - - R A
. . ,e . ° 2 . .,

. . . v,
' ¢ . N - d. » . . ‘ . 4 RN > -

*

cient , if executed to carry eut ;he intent of the entire process. The "target"

1on! Were these instructions to be executed it would .

’

.
! N . . B
r . . B L o - .
Fulloxt Providsd by ERIC . , ¢ . . l N gt

L

A2-1
s , - " N
memory media, especially punched cards, térget progréms c¢an be rgcalled for

execition at any subsequent time, as suggested in Flgure A2 1. We would rarely
“wish to read or study ‘the tdrget_program ourselves, but iq prlnc1ple this can

alway&be done .by causing the py@cessor to print the target program.
. P [.. ° .

L COMPUTER
(p,eoczéso/a AN STORARGE SUCH AS

MEMORY

oeod

PRINTED:
PAPER

Figure A2-1. The "compiling" process
+ It may be intriguing t& you“to learn How the procgssor pro'gram does its

iob° After all, it is also a flow-chartable pracess and hencé could easily beg

within our am.lltles to understand it.". Chapter 8 will shed some -llght on this

interesting process. For the present however, wé will avoid any head.-on

discussion of this topie because our flrst interest must bg to learn to write

simple algorithms for solnng matnematl'cal problems in ALGOL. We will, however,

be making occasg.onal comments that bear J.ndn.rectlsr on the nature and structure
' Yof the processor ‘o . - . ’

‘General appearante g_fi an ALGOL program

= Recall the pro‘cess for computing -

' -D’=*/A2-+B2+Cef

. - : - -~ .
vhpse flow chart we displaped in Figure 2-k,, Eacﬂ. box can be written as an
¢ .

ARGOL statement,'as shown-in Figuré A2-2. kiAol)

PAruntext provided oy enic [

.

OV AN AUxiLiaRy , |

PROGRAM 1S /N [, TAPE, oam,ae_oz.s.f._ 2
' v,

.

‘ -

2R

.. ~output

2

-

» TS

ﬁ;bw chart form

P N . ‘ [

JALGOL statement

1 <

-4

s - [. . s .
qpput \ \| 4,B,C . read(’A,B,C); ’ .
. - i 2 J .

D« »42-»132+C2

assignment .

sart(At2 + Bf2 + cfe);

- write(4,B;C,D);

ALGOL statements compgred with flow chart‘boxes

L]

Figure A2-2.

- - 14 "
-

The
dlfferences are largely superfltral, that 1s, the symbols\used in Eaeh case

Notlce the slnnlarlty between~the boxes and the .ALGOL statements

may, be d1f1erent but the ideas appear to ve the same.

We don't-hatve to connect the statements with _arrovs, Because, when we

. wrlte-ALGOL statements one below the other, we imply that they are to be carried

out one axter the’ other from top to bottom. In ‘order to suggest repeatlng.the
process for many sets of data, we drew a line from box 3 back to box 1 in the
flow chart There 1s an analogy in ALGOL to accompflsh the same obJjective.

We s1mDLy glfe the ' say START, Thén we add

statement a name or label
wrlte a statement which | sends control to the des?!nated statement,
[

read

a“ter the
Thls 1s‘Ehown 1n4f1gure A2 3 . . . ’ !
. - Tt *)
~ ' . T % . . o ® '
: * START: yead(4,B,C);
! - - s
. . D :=.sqrt(a}2 + B2 + cl2);
] ~, A\ ’ * — .
e | o
: write(A\B,C,D);
. , : 2 - £,
o PR \\\' g0 t® START; t

N -

Figq‘§ A2-3+ The go.to statement directs control to any degired stat?ment
In other words,.we gtve the
{ s ;

"read" statement the label START'and then
- o
*introduce an ALGOL statement,

~

- go.to START; ° . "

»

. l"
.
5
7,
.
v
.
-
~
.
\
K

-~

~/

Az-1

-

for the purpose of 1nd1cat1ng a 'u.g or transfer to that statement The Jump
‘statement consisgs of the special symbel "o to" followed by a label. Because
‘it reads like Engllsh, the jump statement is” eas to ynderstand and we shall

say no more about it at this time,

As we focys on a new language, it always takes a while f;p its features,
_its special symbols and punctuation patterns to stand out clearly. If you are-

observant, however, you have probably concluded, and correctly, that in ALGOL

(1) statements are separated by the semlcolon (;).

As'a remlnder that the semicolon is needed for this purpose, we will

usually show the semicolon at the end of the statement‘even"when the
- statement stands alone. ’ *)

by

(2)* a statement may have a label. If sc, the label 'precedes -the.state-
M
1 ment and is separated from it by a colen (:)., .-

.

T (3) the assignment symbol is a colon®followed by an equal sign (:=)..

Alas, a left-pointing arrow would have been our choice!

’ -

(%) the symbol for exponentiation is the upward1pdlnt1ng arrow ()
" and wg appear to have lost the ability to use a symbol like v,

"« having now to use sqrt with the argument follow1ng it enclosed in

parentheses~ ‘ o

L. -

’

(5?‘”for some curi;?s reason certain words are underlined. We cannot yet
-~ ” ’ »

guess what, it any, slgnlflcance to attach to thls. . -

New, before taklng“a more methodlcal look at 1nput output and ass1gnment

0

statements Jand rules for formlng these correctly, we show 1n Flgure A2.L g

complete ALGOL pngram and.discuss it briefly. . SN

coment 'Evaluatfon of D;
. real 4, B, C, D;

read(A B C) ‘

D, := sqrt(at2 + Blaw ct2)y

s

write (4, B, C, D); | *
v .

g0 Eg‘STaRT;

i

'Figure Aok, Comglete.ALGOL ﬁrogram"'

.
Aruitoxt provided by Eic:

A2-1

Under ‘control of an ALGOL progessor: the com4puter will read statement hy'
stat'ement this program which is punched on cards. It is a good idea to place
each stateément, on a separate card or at least to begin each statement -on a new

P ‘ card. In thls way the program becomes easler to read and proofread. Strictly
speaking, however, singe the semlcolon acts as a separatlng hlark betwegn state- .
..ments{, it is poss1ble to pack more than one statement bn a' card. If a state-

ment; is too, lonb to fl‘t on one cargd, it may be contlnued on succeedlng cards.

. : / “ ;
’
e’

Flgure A,_ 5 shows how our program may b€ punched on_ cards to form a
prégram deck". ' '

- "\ . . .

3

You will recall that today's key punches ‘do net punch speclal cod s for

lo er case letters Computer 1mplementat1\bns of ALGOL whlch accept %rograms
+ " input on 1 hed. cards are deslgned to expect only ‘capital letters This ex-
ins pax“t of the dlffere.nce you, see between Figures A2 4 and AR-5. L

)
. 5
. . 3

; - / END . . . -
~ v GO TO START; ik T
' . ‘ YA WRITE- (%;3B,C,D); ' .)
/ . D « SQRT(A T2+B T2+C 72), A ,
/ SPART:. READ(A,B,C); - - . : 4 ,
f ? - , l ‘-. . . "REAIL A,E‘C,D; \. : ‘ \
O BBGIN COMMENT EVALUATION OF D; 1.1 11
. *] N —
. —
- * - ¢ . LT e v N
o AR
¥ -‘ - P % O — K
. o « . :] .
) 9 N4 ! g ' B

3 P

Figure A2-5. The program as & "deck" of ,cirds

% .
» 3
.

.) . . .
The’ keyg;unch used to prepare tbese cards is not typical It has special
punches for characters like the HE e, whlch are useful for preparing RieoL

programs ‘In th1s cdse the character « 1s recognlzed to mean” = .

If you prepare AI.GOL pPograms qn standard key punches which have character
sets such as that shown in Flgure 1-18, other compromlses will have to be made.

\Xgur 1nstru_ctor will explain these details.

~ . .

- . . . oy o

—
A
.

T
TN)
& N R ; '

- . ~ .

- o
- .

A2-2 ALG(.)L Tanguage elements

We are now ready to begln @ detailed look at AIGOL, starting w1th AIGOL?'s
1c1al" alphavet, \or «.haracter set, and the varlous types of symbols which

S ‘

may be\formed from these characters. Among ’these are the numerals (constants),

variables, labels, names of functions, 'operators, ‘and special symbpls.
< : -

- ' v
N -
‘ ’ .

' Lan‘guage_ Lt

.

The program of Figure A"-h‘be’gins and ends with the speci’:a.]: (unqerlined)
symbols Ee__gilf and en__d.l We’ gan almost gdess the _f;ntent .of the first two lines.

- The spectal symbol comment is plated there to identify, in a’p‘u_re]:y dederiptive
way, the title of the program. Comments help, 'tc‘ thake the ALGOL self-explanatory.
The speélal symbol real identifies the t e of numerical values assigned to the
varlables .llsted after reals In this case each of the varlables A, B, C, D
has a value cdrrespondlng to.a réal number. T We shallirefer to‘a line like :

. . r~

real A, B, C, D; - l -

. - . ‘ o

i »

as a "declaratlon" to dlstlngulsh it from a statemént Dec],Eratlons descrfoe

the variableg and pther components of the algorlthm to the compller program. o
They are, in a sense, ptsswe Statements, on the other hand, are imperatives =
expressing action. Only statements can correspond to the boxes of a ;‘low '_’

. .o o — D

chart. o * g ~ - e
. ; g(* - V :
. In summary we see ,that an ALGOL program appears to consist of a grOtxp of
statements preceded by a group of one or more:deblaratlons. The sy‘mbolt
» begin and end sandw:.ch the two groups, i.e., they—perform the sa?ne. functi'on"
+ as parentheses. An ALGOL program can be punched as a deck of car-ds thereby
£ 4 L3
’“becoming machlne readable. To de thxs recﬂ.ures transllteratioi% into Qhe”’f‘r;bre

restricted character set of the key punch. \\
o .

TNaturallyy not all real numbers cah be represented accurately inside a com- ’
puter as there is only a fixed (finite) precision for,eac}L number stored in a
word of the cqmputer‘s memory. This precision,, in turn, may depend on the
.computer forﬁi‘ich AI.GOL 6"0 has been implemented.

Aruitoxt provided by Eic:

. ‘\' N * - .~ . \, . “e . . o
. .. . Ny . S
A2-’2" * N . :\&A‘l
i l - [
- . &) . .
The ALGOL character set . . ’ 3 -
- Iam— f . e .
. The characters which are used in ALGOL are Shown in Table A2-ln
“y Vo T .
) » . ~- ’ \n '
o . .) ' \ B .
,) -~ - Table, A2-1 .)
' . The ALGOL Character Set : v
' ¢
(a) Retters®) , . .
. . o ¢
- PR 7
o a b ¢ a e f g h i '
{ . . ’} ' . °
~) /% ‘t u v w ' ox y 'z
a.) 2 \ p
N - \ lev . "
. . A B, C D EXF G H I ~
¢ ‘. N ’) ' N -)]
. ., d K L My N 0 P Q R Y
» - * . .
'), s T .U VvV wW-X Y 2z ' :
. ¥ s
. 7 X o |
L] . ‘ ‘o * 1
-' -~ {v) Digits . C Ly,
' L. . N |
.0 10 2 . 3 b w5 _‘6 T 8 Y . ‘
< ¢ 7 - . . =))
Vot] . . R . }
. 1 (¢) Special Characters
» Al . |
- ' . + .o X /. % ’ |
‘ ‘e)) ' ‘\
. fo b) =] " R
' y D I L
4 ® ’ [
Lo = £ < < > 2 S
R / 1
\ e ! ' . .
. N & . . . R - i
¢ . Ccnstructing. nimerals (numerical constants) ' . . S ;
A nymeral may have $ﬁvéral parts, Bome of which may be omitted Wwhen not “
. . ’ " - ’ R
. essential. These are?l, , , ‘ -
) . A . 4 . 9 .)
. ‘ 1. Bign . ° . , ‘\% T ’ .o . L
s 2. The numeral itself which mey be written with e . - T ~
’ - '. . ‘ .' * ~ ‘
N) a) a fractiopal part only . 4, * ~ . T
. . - *
) b) an integral part only . ‘ -) -
- -)
L3 N - . x .

I

.a fractional axd an integral part

.
¢ -
. . . .
f N e
., v
. . -

- . _ . . '
) [8 . - .,

g - I - ‘2 ' ' .
ERIC L . o,
i v e I ‘ . . . - //. " - . { 5

«

. E

RIC - . ol

>
= - - N . ,

\\ ~
.
» N . AL

- ? A

- - e

r S

* - .

. -
,

3. Scale factor to the ba.s'e 10 (writ'ten as’ an integer with or without

,/ a‘s*’gn) . -

Listed below. are some example numerals.

ﬁarts, as defined abo.ve, out of*swhich ’che numeral 1Aconstructed

To the right of each numera’l are the
Study these

‘ekamples carefully " . . \
Examples Constructed fz.'om \parts . o2
. ~ & . R . ‘4t -
- 0059 ‘ 1, 2a : .
0059] .o L e A i‘%
+ .59 ¢ 1, 2a e
692k { , 3 ca] ..)) B
0 . 20,7 g ‘
155 oL . 2o o - . ‘
'..‘ [] . dy 2b . " -y .
)1- O . 2 2C . . ‘Z'
- 134,04 1, 2c F o
l'10-7 2B, 3 H _ - means thp"?-
- 5.36‘16 w3 . 1, 2a,.3 - means v.596 x 10° "i;
. bl
T ”~ v | o, i 16 ,
l016 _ . 3 K L means , - 10
D246 1 ‘2,30 7 meane | 15.2&6}4& 1o_lr
o L 3 F)
} . s - :" . . - S s . -t - . -~ o _{‘
0" L . Lo L3 ; means ool r'\:;}b'
. . % :‘:};‘Z-: :j«“ﬂ) .) i ' LT ;‘)
Lo . . * g . <
Exerc:.se A2-2 Set A R . ool . .
i el . oA .]

Identlfy the components which g9 1n,to fQI'mulg these nmnberﬁ ce e

' s % ®
. + i . . . -
A lth o4 . . .] . -
L STs20 . feoow s
o) ‘ ar et . - P
-017.14, R AP [-
et 3 * .) , . . L, e
“107 -) X) -
. ' . -, R LR e
N t P) X . . . * Y . % .
. +lOlOlO) g ; R .
- , ?‘1 . t. PR
: . - ’ fae P
. . -, o -~ \“;b"s
One type gf numeral whichWe:are used to writing is 6utlawed in ALGOI}. This is
an 1nteger with a decmal point "to 1ts ight. :Thus - S
¢ . . \
.k T k. is inyalid bt beor 4,0 45 valid ;
) - . Lo oyt . >
: ! ~17% dis T " " 17 or 13,0 gg valid ,
i ° ' { T - ’
/. -) ,

Py

.

A2-2 4 _ o —
. * * }"r A . . .
A way to remember that a numeral like L. is invalid is to imaginé that the
fractional part of the number, suggested by the presence of the decimal point,
L *

! L]
_~-" 1is missing. . C U

. .o » -

. — . . £
.- . ~ . 4
¢ -« N R - . . ~ - - & .

Constmicting variables, labels andunames for functions
Variables : labels, and f\{nction names are called identifiers in tﬁe refer-

ence literature of ALGOL. Ahy of these may be formeg. aecording to the sgue

rule: A letter folloved by a, sequence of letters or dlglts c;onstltutes an .
1dent1f1er. ; *)
—_—

. .
.
»

» R ¢
. . ' ‘ - N i

" Examples - ',

. . Y
- . Harry Temp X - ‘L6 # . .
- = : . ‘
YL IKE + COLUMN ALSAA
- o N . o . N .
. . . ‘.:. . > ~ ﬂ‘ . .
- In principte there is o restriction to the length'of -an identifier but
. from a practical considera," @we will restrict them to® six or fewer letters
i and/ox digits. > : L.)
~ - . 2 L] " e
. e A / . " : . ' L
. Ebcercise 42-2 ¥YSet B . ‘) ‘ -
" 'Each of the fo),@»g@pe of characters would be invalid as an
individual identifier: — o ' »
.t % e [y
: e ‘ iQJOHN /i 16 F-6 >
M L .
— Explain why%% S IR A S R SR R TR St R T
- P ‘ . ~
B e ., .
.) ? B . - . .
. . * Veariebles--integer versus real e W) .
~ ‘___ , L
A > o r
.. We must agree to thinls of every &z‘lthme‘tlc variable of our program as
- 4' ‘ .
i 5’;{ either type real of*‘ty‘pe integer. 4 . .t -
A OP .
‘-*m At the top or "head" of every ALGOL program we will state or "declake"
f%é‘mthe typé‘”of each variable used in the progrmand in this way, will helpq;he .
:.;{w wt, D M%ogmm to properly anplyze the statements which ~follow. ' P
e SIS

\,b .. .To aeclare the types of our variables, we simply group all those of inte-
- s B L) N - [4 .
- ger type in one list and all those of real type in another list.

g;}.‘_« oy ¢ » .

’ . " ' =3 ‘0~
- «

[) . ’
TSome ALGOL implementations restrict identifiers to six characters. Others
acgept more than six characters but keep'track of only the leading six
- characters. oy Z :

. .
«
» ‘ \ . . CC s L N »

Q . S il ‘f]f BN
ERIC- ‘ | 4 .

. é- v ! N «)
. 4 - ' J .

o

3

>

~

. . d"’,ﬁ,ﬁ“
’ : . P,
‘ . Ueps, :
v .) *
Y . o - :(: i A A2-2
. . * Yt T
Examples <7
., ' 4 integer I, P, g, ERT_ES, COUNT ; - . \'0“
o " \ . I . . -
2 real height, X, ORD, y3 ; . i

The qn'derlining of intéger and real will be explained at the end of the

section under the heading Special Sy'mbols. . y ,
= ' .

As you know, the set of'.all real numbers :anludes the lntegers, sO a

' varlable of type real may have a 'value which is integral; i.e.) one Which has
/ no fractional part. Thus, legitimate valpes for real variables a,re g

a N . (X \\ o ®
) : “b,o2.1, 16, -o.1h9, 1740

@
1

On the other hand a varlable of ty'pe Ainteger cannot have a value m.th a

o

fractional part. Thus, the Values - '.\
. N 1.1," 17%

<
obviously cannpt e assigned .to variables declared to be of type integer.

- . A . -,

1) . . ,(-
< L o)
Names of standard mathematlcal functlons : -

.
v”

/ n
Gertain 1dent1f1ers ‘are reserved to refér to names of standard mathe-

matical functions as shown in Table A2-2. Notice the spec1al way we apell .

these E‘unption_s. . .o . . o .
' - Table A2-2 o o
. - ¢
Standard Mathematlcal Functions .
R < e e T
identifier s N
) (name') - . + meaning,,*)
: . - T = :
N 1. abs 2) ,;abgolute'value ‘ /
2. sqrt . . _w, -, square root , .
+ -
. 3, '1n . logarithm to the base e .
) .) o, 0 ,
. h exp powers of e, or exponential -

4 -

S sin . sine of an’angle whose measure'is

' glven in radians

. .

6. cas . - . cosineo of an angle whose measure .
. » . T .. is given in radians
- . AN . . : //J“
s ‘. A ’¢ . ﬁ;!. .
T T
) s .
Y 5

ERIC , -y .. B &« . S

=]) o % R ‘ O I i

.

i : - :
Table A2-2 Standard Mathematical Functions,.continued

. ‘ K 13
L

. 7. arctan . ‘ . arctangent, or principal angle in,
. . . g ’ I b

radians of a given tangent

: z, . value. ~(Fhat is, arctan(x).’
* - ® o
M - * s . > 2 2 i ° ’ .
"% - . gives a valuwe in radiéns cor-
1 #

. . ‘-‘ A N vono-
“*3‘ Q};{ N . / responding to t¥e principal
.Q | | .

\ N . ¢ angle- whose-tangent is x).
""—\.——\/ . - . . T .

. 8. enti"erT ! greatest integer function. (That ‘
'5, .)) v ' “is, entier{x) means [x].)

e i ¢) . ‘

= 3. . sign sign of a number. {That is, sign(x) -
' means x/|x| , unless x = O
, e g A ’ .
o ot h) o + ‘in whicth case signéx) means
' i 0.)) £
[S : . A ¢ A ’
. - *) ,{ﬁ‘ [L8 - vt

By now you_are probably fa;niliér with all of thgse mathewatical funct\ions:,

Y
"entier" is the name chosen in ALGOL for the greatest integer function which’

has been discussed tho;;oughly in chaptes 2. The functions "sin", *'cos" and
"arctan"” will cf ccurse be familiar to you if you ha\fe_i studied *trigonometry.
A use for the "sign" function, perhaps-the least familiar of these, was sug-

‘vested in s¥ction 2-5.) a . . -

- When wWe use any one of these”stand’ard?unctions in an ALGOL statement,
the resulting'{%iachine code (target program) automatically carmites out the

Qo

sevalugtion of the specified function. t 2

. -

' \f

i -
. .

Operators - . s ",

To write arithmetic expz’e’ssions and assignment statements we need symbolse

\\
L
]

‘ . *

,
,
5% -

S 1
* '

for arithmetlc operations. The characters chosen for these ‘operator symbols
i - - ! ' . .}
are: . ‘ . . T e

S ' ; . . + sid X I A / . Mg

In Tiafole A2-3 we show a list of the symbols we shfall be using for the va;il?us
_ arithmetic operators. For convenience in later discussion they axe g‘iven', in

hiez:archical crder, that is, in d?scending order of precedence which is the

same in ALGOL as it is in our flo;:‘chart langgége'. We have also included t};e

, assignment symbol := in this group.. It is a birfary operator,' but, of course,'
R J

2

not_ really arithmetic in nature).,

tpronounced on-t-aye . ’ ‘ -

ERIC™ "

Aruitoxt provided by Eic:

-~

. - T v - ~ .
“w‘ g ” N "‘ '/ Vf
4 ’ . , “’/ - -
v / % “ rt:’ 1 M /" s
w . Y : . A2-2
. ‘7 \ SN ; .
~ . ‘6’\“ zTable‘&A2—3 . v \‘ :\" 2
‘AU?;OL Opexator Symbols * ™ I 3
' PR :" ’ . * - ' ’ . : :
‘ Symbol b'deanlng / i Example o, ;L . e
T F:txponentiagon -- AYB means AB
. ‘ : .) ¢ ' . * "‘ -
.) X . Multiplieation / LB : ‘ .
‘ . i - - . ;";f . N
same level ' .{ / ' Division (reel) A/B P
of precedence . ’ . ' £ .
T Division (integer). A%B. means sl’gﬁ ><£ IBI] e
. ' L 4 / L
" same level . \ * Addlt’lon .- / ArB .] . g
. . ., 7 . & .
. of precedencte |- . Subtraction _,/ /At . -
. v L S
t= Assignment Iy 2= B means A« B] ¢
A ~ . N ,rl . ?
) ’ - / .
. o . B # .
. Special symbols \r i / * '
¥ * [/
" * Certain symbols which at~first glance resemble E‘ngllsh wogtds appear under-
llned in ALGOL programs Ye have already ‘seen g few eaca.’xnpleS' e v . A
begin end comuent ‘real i..nteger go tﬁof’ .
. . . i ‘k - b »
9 . v/ . - -
These symbols play a special role?ALk}OL programs and are not to be confused LT
. with identifiers. They will not confused, with 1dent1f1ers 1f they are

'marked or printed in a d.lstlnctive szzlon. Texts prlnted commercially usually

use boldface letters or place such symbols in quotes. In_this boek we underlige

such symbols. / -
{ ‘ P
L) » .
The following ALGOL stat_e‘ments! o - . . .
- . i .4 s - .
N e real T; T .
== -
o " N T ..
. repl: . T := T + 1; ', l
i go to real; R)
. vhile somewhat confusing at firs %:nié, are perf'ectly correct here. The ,
© word real is used as a statemen} labe€l and is not at all the same as the
) o . w© .
special symbol real. . * ~ . - .
.) »
The A.LGOL special syn}bols ich were d.escrlbed above as underlined in this
book present a problexy for' un h card input. ’I’here is no way tU underline on a)

key‘punch Burroughs AI.GOL sol es thls dilemma by decreelng that speclal
symbols may not be used ‘as identifiers. In other words, special symbols are

) reserved words., "Real" cannot{ be a label in Burroughs ALGOL. ’ .
Q . L* e 13 - .
E MC l . - i / \ o

P e R . . 1 & C . .
<Y { - . [-

ERI

Aruitoxt provided by Eic:

A

. / . ' ’
Spaces between cpdracters/play/pp part in ALGOL 60. ‘The identifier, go to,

is the same as goto and the specigl symbol go to is the same as goto.

However,

. < .
in some implementations of/Aééprsuch as Burroughs ALGOL for the B5500, spaces,

—
act as -separators.

In {ﬁro
.
is a sequence of two igéntifi

v

N .
stants./ In this

with the other languages.-:

/ w»
S
) *
I
.
.
N
A .
4
’ . [
v
s
3
. S -
. -
v
- ~ 'é
o .
N B -
.
.
. .
' >
r i B
2
o
LI EL -
X .
.
. .
<
»
. L}
- —
’
. .
" .
s - -~
L3
0] -) -
o~ [} hd
"~ _/
O . '

ers; the first is "so" and th

, [y
Iti bably ‘a good idea to avoid using spaces
¥y our rules for congtructing these comporents are, in harmony

- 0
4
«
K
\ « P
.
.
. .
-
-
~ * -
b
»
‘ P
- .
-
N A}
.
* -
N 3
14
.
.
-~
v N
.
- "
- . ~-(§
.
. . ,

L

ughs ALGOL some is a single identifier while so me
!

second is "me".

’
3

insidé variables® or con-

r .
rd .
Y ’
.
¢ -
>
¢
> -~ . .
B .
.,
. [
e
. 4 <
L
, .
ind + .
-
.
v o N
-
.
~ I . .
-
N .

&

. ”»
A2-3 Input-output gtatements

“Now that you have become somgwhat accustomed to the appearance of" ALGOL

characters and to their use’ in‘the elementary components of thg language, like

" numerals, 1den“b1f1ers , and operators B you are ready to study~ the Jhree 1mpor-

<
»uwo -

- tant statemen types, 1nput output and assignment. h

‘ﬁou have already sgen examples of ipput and output statements, namely:

— o~ ¥

. (, read(4, B, C);

write(A, B, C, D);

-~ .

read

write

Foll wing this we wrlte, enclosed wm parentheses, the list of var:.ables
whose values are e1ther to be read or printed If there is more than one,,

this llst is separated by commas? We will, not limit the number 3‘f§11st el.e..
e, N

R -
wey

ments’ of &n input or output lJ.st. T

;
>

JIn this slay we arrlve at’ the general form of an input or output statement,
. . ‘3':‘0. .
| . & .
) (“‘ _ ' read{input list);

wg'ite(output list); ,

. Fgr & read statement, the 1list elements are the variables whose values,
are to be assigned from the idput data, while for a write statem@fthe 1ish

elements are’ the variables whose currently assigned Values are_to-.be prrnted.

Strictly speaking, ALGOL 60 does not |specify any particular form for the
input or output statements or any particular standard nam’*g“ to suégest input
or output. The forms we are describing he’re merely represent a typica.l AIGOL.
‘computer implementation. In some implementations , for instance, '"print" is
used in place of "rite", While. the names for ‘the standard mathematical func-
tions (Table A2 2) were ch%en by those individials who specified ALGOL 60
the 1dentifiers like "read" and "irite" are names of procedures chosen and
d.efined by the persons who developed the particular ;mplementation ’These

pro.cedures are specia.l programs which are made available automatically whenever
. X

-

————

°

PAruntext provided oy eric [

« . A2-3 i s . . PP -

- " 4 \ “ . . - ’\
they are mentloned by name in an ALGOL prcgram. Obviously, you should’ learn tog‘_

use the procedure names avd statement forms which are turrect for the implemen-

- -

tation you are us1ng! , 4

. . . v o 1 e 3

. o v ,
v ' '(s-
s N .
. R - L -
.

Exechting a read statement S . : . :
» In thls d&scussLon we. shall assume, as in the flow cHart-text, that 1nput
7 .
- data orlglnate on punched cards The effect cf exeputlng a read statement is
as f‘ollows . LS o
. . Lot
) 1. Fkrst we assume a card isin pbsition to be read by the computer s *
('1nput device. -If not, the execution of the program ‘ceases 1mmed1- -
- ~
N \ately. in some,but not all systems the computer might then print
> Y -
t. some message .like : .
{" B * € } . Lo . v)
"YO .HAVE* RUN OUT OF DATA" o &
. . . N .) v - . ‘o .
-~ or . ’ ‘. . —
"ALL INFPUT DATA HAVE ‘BEEN PROCESSED" . ' .
. \ - ‘¢ . v
2. The conttnts of the card ready to be read is theqntraﬁgported
. P
. * to the computer memory, where it is examined ene numeral at a time
>
: from left to fight A pq\\t -ohe match is then made between the .
t I numerals on, the card and the varlables ot the input llSt with the
, R result that each variable is ass1gned te matching value. What
- - happens if the’ card.fails to contain enough .numetals to match all
. ! the variables of the input list or vice versa? This widl depend on
3 the rature of the read procedure, which is likeiy to vary with each \
c ALGOL implementation. However, in most cases, another card will be '
- read and numerdls from this card matched with the as-yet-ummatched %
list elements. The process continugs with as many cards being read
L “ as necessary until all the list elements have been assigned values.
_When this has occurred, we say that the list is exhausted-.. Execution
. of the read statement then terminates even if some .1 merals remain“
i on,the list data card that was being read., [-
. L. At this point some examples can help us see W this matching process is
‘.-.‘P‘«',' K v ~
7 carried out. * . =
Exsmple 1 : s M
" Study Figure A2- 6 whére you see a read statement and a picture of a card
that might possibly be read as = result of exé‘utlng the given statement.
co ‘ S ‘ B
- YT16] 9 oo
Q 2 0 ‘
ERIC ¢ ‘i -
rull‘hn n-mni by ERIC > ’? . H: .
L :)

_ ’ - A2-3
/ ‘ .
. read (NUMBER, PAID, AMOUNT); (A ' ,
. ’ J . .
» "' L . . ."
v 1502, , 145,72 - -169.1%
’ .. : o - g
i . 3 ’ N \~ .
» . .J ’
*] . «/ o ' - A

- F’igure A2-6 Picture of a data card and a read statement .

“ . ﬂ . g } N . ,0 t
4 .

The effect of executing this read statement is-the same as if the follow-
ing assignments had occurred success:.vely. . x \

\ . R . - i I \ ¢ 13 -

[MnBER . 1502 | 7
: * [D« 1b5.72] . -

‘J -) :)))

. . " | AMOUNT<--1§9.1!T] .
. e - - \ "
R S : - =

leferent read procedures may scan the contents of data cards in d.lfférent
ways . In the scheme suggested in Figure A2-6 the computer is expected “to recog-

mnze the end of one numeral when it "sees" a space Since there are many other

.
-

schemes in use, you should learn the rules for punchlng data, often called

* formattlng, which are used m.th your system. In our text we shall presume the
" system we are using is the very simple one we have just described. . i
’. f\ 3 0 ' ’ ' :)
Example 2 , S v

-
’,

Study Flgu,re A2 ¥ where you ‘see a read statement al,ong with thrge data
+ ‘cards which mlght pos51bly be rgad as a result o?” executipg the given statement/.

.;5 v
, read (Ag B; £, D, E, A,G, H, S); . t;w' i
' ‘ . / 14 1564 17.7% 18,94 20.96
/[1473 359 . / ‘
9.1 7.3 | 1A :

01 7“. 2 A2-T%" Picture of three data cards and a read_statement
'g%" T s : - . ?

~ T

#

.

,'.-A23@ C

The efi’ect cﬁexecutlng this read statement is the same as if, the follow-

LXY

destructive read-in the current value for. A at

~ s

~
N R B LT LS H .

N ’

- Exercises A2—3 Set A

.

irig nine assigrments had been accomplished in order: 4
: . ST - .
. o *) Lo) ‘ LT
. \ i " Nfirst card is read
- ‘ ~ +
» M . » ’ . -
.) .
- ~ .
: \
- . . % g nextt card '{s rlead
3 .) et ll{. 73 .!_75
- % B .
. g ~ L u;fi.‘ b4 . .
. = .
. N X . | E~-—15.9
.) ! e next card Is read . Tt
s ~N ’ = . [‘
N .
A - R : -
-
P a »
~ - .
Y 'Notice that two assignments are made for A becauge it happens to appear
e twice, perhaps as.a result “of a key punch’error. Followi;fg‘ the principle of

the end of the input step

-

t

would be 1k.4 and not 9.1 as perhaps desired.
s o= . . .
. Noticé elso that,idgl-t list is exhausted when 18.9% has been assigned
td S. The last value onm the last card, 20.96, is then ignored. . .
at, o > o -

.

We mtag}ne a class of very simple problems to be solved on the computer
Let the flow chart for each of these have a structure identical with the one-

In the follom.ng exercises you are given box 2 in detall.

‘m Figure A2-3.
’I’hen . .

Your job in each Case is to decide what should be in box 1.

T @

v

t

-

Y

wrife an appropriate read statement.
. i ' . »

/ - S ‘ \ ‘
= N g . -

Aruitoxt provided by Eic:

o

I

[

-

..

X

A

E

¢ 4 -

. '
. Executing a write statement

MC R | b

\

. . . ! N) . A2—3 . -
. . B . - LI .
e ;
(b) Draw a picture of a typical card which could be reag (in the system
Yyou wn,ll be using) as a result of executing the read statement which N

you have ‘just written. - -- ~ = - N *

o - .

‘ 5 . _ .
{.Z*—Q.S‘*‘T}* 4 } a

3. ﬂ-[27 —

2 l/ 'S . ‘
b= Qe - xn = T {0, . y
- - . ! . : N
M 2 < ¢ 4
5 — X‘—'QA(Y-{-Y) — . . '
) ¢ > ’ . "2 ‘ ‘ . H .
6. '—o AREA——@X . s x:¥r° - s + 1o X PHL)—e * ’ .

'

of [}
® ; °

T v Writing is analagous to re¢ading, but-in a reversed sensg. ‘The valug
that is currently assigned__rto each element of the output list w-i‘ll appear typed
or printed across the page b} the output device. When each number is copi(ed
“from its plaée in memory it i‘%converted ,ﬂor printing from its internal repre-

tor the desifed extern&l form \ <,

- R

sentati

.o M i

ou may have. noticed that 'thg,&w‘r Vie statement merely itemizes the varia-
bles whose velues are to be written\é, It gives no &lue as, to 'how the numbers

are: to be displayed on printed paper., Write procedures in common use merely

numerical values across the page‘ ong for each item in the list--

say up to \m) items per line. If there are more than m items in the list

additional lines will be printed, with up to m items on each succ\eeding ’
line. We il normally assume m = 4 in our illustrations. The magic number
m may vary depending on the width of the printer carriage that is used.. ,You

sheuld consult your instructor for more dettils because’ some computer imple-

: mentations héveé more elaborate write procedures than others, which would make

it possible to obtain more elegant and more reaaable printed output. If this

. is the case with your computer, no ‘doubt your instructor can furnish you with

a booklet which adequately details the use of such fancy write procedures.

N pvs

H) ,) . ¥ v

“ . ML Y ’
N

. 19 .« . '
Q . - o S

‘A2-3

~ []

- Example ¥ F e ‘)
Examine Figure A2-8 where you will see an example of a write statement *~

7\ ' and what it mi‘ght accomplish when executed. Notice “the uniform spacing of

v the numbers across the 'page, each number allctted the same width withthe
fractié al part always given to four d‘.e’cimaal pleces. - How, does the computer
know to do this? The answer is simple. The write procedure arranges for this
"f‘orm,atted" appearance for us automatica!ly Write procedures vary from one L
implementation to another. Some,,(for instance, will print more decimal places,
others fewer. These’ are details which are lei"t for you to determine because

‘they are related to the pérticular computer system you will ke us"ing.

. . o .
- . . . ' . L}
= write (NUMBER, AMOUNT, PAID); £ . .
PP ———— -~ . (,
_ . /5 . o L5 60 /20 }
e - - \ .
. Of. 7502.0000 =169. 1400, 145 ;7200 | - 1 T0]°
O 8 ! 1 E HE i)
'/]) v ; ; : ' I ') o
/ o) ! + K) 0
ol i o 3 i N : [O

'Assumes current value °
-of NUMBER is 502,
. of AMOUNT 1is -169.1h,
of PAID is., 145.72

> . «

Figure A2-8. Example of a write statement and a possible line
C.ot of printed results caused by execution of the (

write statement

e ' write (A, B, 0D, E, A, G, K, 8)y) & v .
5 0 " . 45 . 60 /20 |
8. ' 1 1 ‘ N « H } : -6- |
0 ib.hooo; | 7.3000%] 315.4000 ! 14,7300 o |
() 15.9000 ! \1b.booo! /' 15.600 v 17.7400; \ ~1o B
o 18,9400 1~ N . L E o] - i
‘ O 1 i i v O v |
. ol ! ! H v 1| o .-
S pe) ;
: ‘ - 1

/ Shows printed values for B &nd A. L_L:_ .

Figure £2-9. When executed, the write statement shown here .
p \ causes three lines to "be printed.. Since A |
appears twice in t}? output list, the first and. - |
s’ .. sixth printed values are identical.

. Q . s ~ 5 2‘0 24 ’ [-
ERIC- . ’ | S

: kG s

L Exgmple 2 % .

Now suppose we wish to print, sa)r nine w;alues, aska result ~bf executing a
s single write statement. With a write procedure controlllng .the prlntlng of
up to four items per llne, we may expect output like that illustrated in
Figure A2- 9, ‘ . N ' . - - M

. > . . ‘ ,‘ ~‘ M . i
When the write statement is ‘executed, values are copied out of memory ong
. , /
at a time from positions associated with A, 'B C, etc. Each copied va]:ue 1s;

£hen converted for prlnting in the desired external form, as illustrated. .
- -

- If a line printer device ‘is used then, when four such numbers have been

onverted a complete line is prJ.nted at ace However, 1f a typewrlter dev1ce
is used each number is typed as soon as 1t has been converted to output fo)w
Thls\dlfference in behavior has no v1tal(consequence as the net effect is the
same . In any case, when fOur items have been d%_\ensed wit.n, »the line is
orinted. Values are then copled from mergory locations assoclated with four

‘more list eL.ements and printed. The ‘last v;a_}gg is th copled fron\rnemory.
At this point the procedure discovers-that the list is exhausted, i.e., no
more items remain to be copied. Thls discovery then signals “the end of the
‘process. Executlon of the write statement is %ermlnated and the computer is

free to execute\ vhatever stétement happens to be next in the program.

* » »
Lt ,,/ e) R 1 \n
- - . . M . % -
- . - . — R ‘. N
] Exercis.‘e-& A2-3 *Set B o . Lo Y
f/“l - 6..In these six exercises you will continue with the develepment you
began in the preceding exercise !e‘tﬁ. E‘o'r“e“a‘c‘h your job now is to decide .' .
T e T e ey e N "R Y =
what should go inslde box 3 of the flow chart. Then - ?ﬁ ' AR
N . 3 i . .
(a) “write a write statement which, if execyted, .would carry out the
", intent of box 3; 13 - . e
(b) for the data you used in the fiyst set ‘of exerclses, compute the
°(result which -would be prlnted and show how 1t would appegr on the '
printed page using the write procedure at your laboratory.
. [r .
. e
0 !
- ¢
- ..) -4 "
E:1
*, - N .
A o 21~ d[) ' . .

.EK

) .
. e s ’ .

n2-y

A2-4 7 Assignment statements .

" Ve shall first exahmine .the parallel existir;g between our previously de-

* velcped fl#w~chart concepts, of ass.ignment steps and those of ALGOL statemenys.’
[. ~ ’ .
Flow Chart . "ALGOL

specific L*—/Az'ﬁ- B’ +§(é2 .. L := sart(af2 + B2 + cf2);

+ example

' ¥ ‘«

general)bt ARLE e EXPRESSION " varigble ;= 8Tithmetic
form) expression

B [y
.

S ’ . . ' . <

+ The ALGOL identifier is ‘a cheracter string built up of letters and digits
\5 4 ~

1

£
. The ALGOL arlthmetlc expression corresponds to any meaningful compu‘tatlonal

(up to six in all, .with the first character being a 1ette:;).

rule which uni quely defines & sipgle numerical valu&. Th%re will be a few .
[
1mportang restrxctlons to obsdrve in writing such expressions correr:tly’./ Before *
considering these; let us see how several flow chart éxamples are rewritten in
‘ . A .
ALGOL. B)

.
[N . . .
- ‘.

Examples]) i . .

v
4

-

« Flow Chart ' S TALGOL

X := 2.5;

3

FE N

Z 1= 2.5+ T;

. w7
t = abs(a) X b/c;

qe/(n -%)r} ’ . Qt = sqry((m .‘: 9/2) X p);_

?

XO-.-Q/(Y+%5-—-— X := 2/(!'*‘%'!)»,

hY
. &Y,
‘- [V i

- —
AREA«.’:%I.E x 1% - (8 x Jr -’sz.+ 2 x PHI) |~

AREA := 3.14159/2 x rf2 - (8 x sqrt(rt2 - sf&&ijﬁ‘)i PHI);

e

. RN

6

- -

;) ’ " n ’
‘ Rulegrfor deciding the t;pe of an evaluated erpression

step by step evaluation of arith”
metic expressions ingfection 2-4, we did not need to consider the questions of
. operand type. All our Eprers were thought of as being availébie on a handy .
[scratch"pad' At each step in the evaluation if one operaﬁd of a binary pair

When we discussed and illustrated t

Sl

hap@?d to be an integer and another a number which had a fractional part, we -~

took this in stride and added, subtracted multiplied or divided as the '

<

.

operaﬁpr symbol required.

The computer evalua on of an ALGOL expression

fqilows along similar‘lines, but what are these sPecifically?

To understand exactly what the computér does in each case, we need to
realize that its action depends to ;eme extent on which operator is involved.

The operators fall into three classes and we will tréat each separately.

.

Q/Q‘ -
class 1 +, -, X
AR class 2 4/ A
- . .~ ° * R
/ class 3 ¢ »
PR !
class 4 t *
Class 1: #, -, X

’

There are four possibilities ﬁecause each opérand'may be either type

~T

real or type integer.

~
"

The rule-is: +The operation results in a number which is type integer if,

,and only if, both operands are integer.

is of type real.

operat?Dn be depicted as

! (4

Let ug;see how we may proJect this coneept:éz,tabular fashion.

In all three other cases the resulf °

5 +

Let the

T

T \ . o A OB . ‘.
‘. ' S : ‘ :
~ “'where A stands for the left-hand operand q&gis an operator symbol which

in this case represents

"operand.

we have abbre t

-

. . '

O

.ERIC

Aruitoxt provided by Eic:

+

’/

Table A2-l4 shows at a éiance the type oflresult obtajined.

real as R and integer as

wh

-y or X, and B n’stamis for the right-hand .

«

N A

In the table
I.

~

»e

L

-

| . & 0
A2'u'. s . ' -
o / . ‘ .. * : 5 ‘5:.'
' ‘ < am)t s #5547‘
S . Teble A2-4 X
) Types resulting from +, - or X operations -‘*‘* . -
. - . ' { N
. ¢ B R :/ . .
\ AN\ & | 1 A
. . S | ‘ , , —) “ . . .
g ~ : Ry RM™R| -~ - h
! — - +- : fﬁat,a L.f"&ﬁ“"%
“ o 2. I | R 1 Y -3
- 1 3 /:_ ~\|- ' i] ’
. R ‘ f
Class 2: VA R 1 Al " .]
« 07 v It is best to thln.]ﬁ of the lelSié%‘ A/B as the pmltlpllcat\on of A by. ¢
the reciprocal of *B, orf A x (B ") en we do this, we see that tie result
\
ofidivision is always of type real Table A2- 5 displays this case, L

> . 4y
.

. \g}‘,&%)

13

1
f N - - . Table A2-5
[N . . *
N | Types resulting from / operation ~
0y ‘} . . -
) - B
/ A R I £
. . [N - :
|) .
- . R R | «R°|°
¢
- ' e = N . -
4 : I R |'R -
* ’ » , . y . i
€lass 3: - L. . N
¢ : . : . R
The symbol + 1is resérved for a special integer d‘ivision, i.é.y when both
. operands are 1nteger, yleldlng & result of type integer, as shown in Table A2 6.
The operatlon is no{ def;med for any other type combmnation .. .
. . . o ’ " . e TR
x) . * :
. . . P .
. S . Table A2-6 - .
[:) Types resulting from =+ oper_gatio‘n'
- N [.' M A) .)

‘e i Y B - .
- » PXg
o ONER R Q

. \)‘ : . l - '(. “ . ’ 2& N . ’ '. .
;;[MC L - =28 L L :

Integer division is' related to the greatest inteéer or "bracket" ([1)

function, as can b€ seen from the Yfollowing equival'enggs. -

Mathemat:.cal Equivalent

A) ' ALGOL \
Dt Expressigg ' Computed Value
. Y. 9:10 T . 0
3* 2 -10 (10) ‘
3. 11+10 1 .
. 4, 0.+ 1 : 10 .
¢ 5. 5+10 . 0
6 -15 + 10 . -1
7. 10+ (-1)- <. 2
8 1+ (-10) - ? '

L)

-

. [9/101 ‘
" [10/10]
[11/10]

. (10/1]
-(5/10]
-[15/10]

¥ -[10/1]
-[1/10]

-

' \

AIGOL's integer division yleldsé remalnderless 1nteger quotient with the N
game sign we would ordJ.narJ.ly obtain for the real quotient.
and B

. For 1ntegers A
it can be expressed mathematically as -
T = A+ B = TRUNK(A/B) = éign(A/B). x [|A/B|]

v .
- . ; . .

The right-hand side can be written in ALGOL as: ? ' . .

si‘.gr’x(A/B) X entier(abs(A/B)) ' ‘ N

recalling that both the entier and sign function were defined in Table A2-2. N

. h
It is instructive to ndtiee that for A/B> 0, A +B and [A/B] are
computationally the seme but for A/B <0 thfy are not. \ T

Y

Class 4: {. e N : .
- 'Y . “ . N . < 4 e) ¢
N Finally, we ha¥e the operator | , denoting expondntiétion such as Af B.. X

ERIC -~ . . -1,

y : e .
. ¢ W - +

v SR

4?_

l

. A2-k

3
5) > 5 ‘
(Wil v

f'ﬁ '

¥ercises A2-4 "Set A

T
1
" 1. Complete the table by filling in the types of the result, "or "undefined".’
) Operands Operation, - type of result
A B o] i A®B. 7
- - 4 ‘ e,
2 3 + *
- ’)
6.3 .09 X
\L y ’ .
. 100 A -
' 6. |% /)
A . . N
: . 6 b +

f

scheme developed in Section 2-5 of the main text.

of the eight ALGOL expression(s in the p?ceding discussdion.
. expression, 9 + 10, is g‘ifi.ed in th

»

2. We wish to verify theamathgmatical fornm]'.a.%or integer division in each o

The first

table' shown below. . Your job is
)}

to f£ill out the rest of- the table for the remaining seven expressions,
scanning each from left to right according to the step by step evaluation

> .
' Verifying that A + B = sign(A/B) X entier(abs(A/B)) 4
& 8 v ’ h r ¥
Case 1 A B @ @ @T @ @ b
(a/B) sign(A/B) abs(A/B) entier(abs(4/B)) A+ B
1 9 110+ 0.9 +1 0.9 0 o |-
2 | ’ .
. R ’
3] . |
o -/ | o
8 ‘ N

,

“.

— 2
hd ~
4
" \) -
*" }‘ . -
i
. ’
’ . 1
Q 26
-ERIC o 30 ‘

‘Exercises A2-} Set ‘B o "

s
c

-~ . .
Study the following cases in.order to formulate rules, to explain exponen- -

SR T T

tiatiod. The mlg has nine ‘.part‘s[. Hint: The first 11 cases have td do witht

raising integers ¢r real numbers to ‘integer powers. Cases 12 - 22 deal with . T

real powers only. .) " o
(1. 6t2 { means S 6:>< é el Co e
2. 613 ' " -6 x6x6 - IV
s ey S (-6) x (:6) x (-6) -
b 6(ln | :" 6%6x .. x6 (n tines) - ,'
5. 2513 " . 25 x25x%x25 i
le. Cosro wot 1 c o)
1. b2 for . ° " - L. \ / .
8. % (-4.2910 " ro .
9.' 31(-2) " /1/(3 X 3) .
10. ’ S8 . " ' - /(3 x3x3x3)
(1L - 251 (-2) " /@5 x2s5) - .
. . : . s
12. 5t2.0 . " © exp(2.0 x-1n(5))! .
13.. 5.412.3 " ¢ exp(2.3 X 1n(51.1+))‘ '
N 0t3.1 . L 0.0 |
" 5. 010.0 “is undefined) .
16. 0f (-514) mo .
S S (5232 0 . © e -
‘I\ 18. (-6)13.2 .- " " .
19. (-6)10.0 wooow s . .
o . . . - . N
20. (-5.2)40.0 7 m.ooowm . L.
21. (-16.1)}(-3.2) v 3 . "
«

2. (-6)t(3.2) Y v w]

TRecal]; Table A2-2. exp is the exponential function and 1n is the natural

logarithm function., The_expression exp(2.0 X ln(5)'). means "e raised to a %
power which is 2 times the natural, logarithm of- 5.4 Natural logarithms,. in '
. case you haven't already seen them, use as their base the number - =

2.71828..., rather than the mumber 10. Using base 10, we mean the mathe-
. . 2
” matical expression, 10° % log) o® .

] . & .
N Hint: let i be a number of type integer

let r be a number of type réal
let a be a number of either type

»

Divide the rule into two parteS\ Let category 1, covering Cases 1 .- 11
g .‘ . @boveé, be represented by alt i, Now for 1> 0, fon‘ 1 =0, and for i
' - i<?d try to specify the type of a’. If you need to, break these cases .
further into’ subcases depending on the type of* a. Next let category 2°
- - cover Ca@es 12 - 22 above end be represented by af r. Notice that_here
- . the‘;elevant factor is the value of a, Is a >0 oris a=0 or
is fa< 0? Subdivide»’thes‘e cases if. necessary until you can either %
epeeify that the resuft is 5ndefined or you can determine .the type.

s

\ / »

. . . . -
/ -
i . . .
Pe N

- & .
Function references . - .

< . - .
. A &

We have already begome acquainted with three of the basic components of

arithmetic expressions, namely, constants, variables, and operators. °

Two other importént components are parentheses and function references. <

. 3 .
In AIGOL we use pareﬁtheses in several different ways. In the express%gn’

I . o >
L Z/(¥ + afy) . r

r

4 .
the parentheses are used to form a subexpression that forces a désired order- o
Nggggh;qg}he computation. In the expressio?

» - !

L o “sqrt(a) X b/d
~ ¥

parentheses are used in another way--to enclose the argument of a function.

5 .
A reference to a function value or a function reference, for short, consists

of the name of the function followed by a pair of pérentheses enclosing the
argument. . This convention in AIGOL is used for all functions.

- (ﬂ - —

" Since some functions are g'ven special marks or symbols, like | |, v,
g %f_, which are not avallable in the ALGOL character set, it mAkes good sense
to use the parentheses. .
. !
~ Here are some examples of typical 'function references:

L3 -

~ -

: o R sqrt(rfé""i“%) S
. ‘ . I
. . L. . X . .
. cos(PHI) .

, sin(6.4) ' .- : SRS
kY . _ : o ..
! _-entier(3 + N) - !
g . - » v — -
' abs(X) . . v

.

They are easy to type from left to rlght as strings of characters. Remember
the rule: .waery functlon argument mist be placed 1nside parentheses even 1f

’ ; -
it is a SLngle numeral or variable! e ‘

1
How are parentheses used in the expression

sart((m - 9/2) x n) ? - s ﬁ;l'

You, can probably see that the outermost parentheses serve to enclose the argu-

ment of the sqrt function. This argument is the value which will be obtained

upon svaluation of the expression ! ” . o
m- Gg/2) Xn

. (m - 9/2) ! w

- ‘. Y
Pl

in which the parentheses are employed for,ordering computation.

, As yop"can ‘see, a function argument may itself be an ALGOL exp;ession of
. decided complexity. In fact, in some of the expressions in the next exerciset
the argument of a function is expressed in terms of the value of another func-
thp. Thiz is perfectly permissfble in ALGOL. Another‘bxample df this is -

"

}

g .- exp(3 x %n(a))
, e~ , ‘
oo argiment of exp , . . s !
. . fkﬁﬁﬁ s ;i
o AN 1

ERIC * ,, ‘ | S

4
rorerorieio e B * 4 V- e :

A2k

Exercises A2-4 Set C

1. We-would like to express AB/e in ALGOL, where A > 0. ’Keep in mind that

/2 . .
' A3/2 is in this case the same as ¢£§,'or (A3) . All of the following
’n correctly express A3/2 in ALGOL \Some are awkward. s.Some have superflu-

ous operatiens. Coument on each andrchoose the one which appears to be

1o

the most efficient computatiopally.

(a) abs(atrs) . v Lt .
() ~(Af3)t0.5 Pt e =
(¢) sqrt(At3) : e
T (a) ebs(sert(atd)y . s .
. _(e) (at1s) ? . .
o (2) eps(A)LS (] ' *
(g) sart{abs(at3))- . e

2. If A can have negative values, Wthh éf the seven ALGOL expressions
given in the ﬁ%eceding exercise correctly exXpresses |AL3/2. If more ,

than one, which is Simpler computationélly° Explain.

Unary minus ' -~ . ~

In Section'2-h of the flow chart text you learned to distinguish betﬁeen
the unary and number naming minus'on the one hand and th binary minus on the
other hand If a minus s1gn appears at the very beginning)of an expression or
immediately following a left parentheSis, it is either a lary minys or a B

-

number-naming: minus. It cannot be a binary minus.

' Here.are sonme exaﬁples in AﬁhOL statements.r ' ;
(1) .Q := -5; . 1
. -, ' .
(2),@ 1= b+ By 0 T T
' (3) @ := -At(-C); - ’ -
() *Q := (M)t2; - . :

QN:= -(HR)s ‘ ' 7
(6) @:=-4l@); ; K
’ Q = -’4'2; :
Q := sin(-A + B X (-cos(C)));

)) &
i] poes— o -
. - ~ .))
. Note that (4) assigns a value of +16 to 9 RemgpbeMng from ’I‘tlole 2-4

we see that, (5), (6), and ('7) each assign 216 to * Similarly, -}\f (-c)
is the same as -(A} (-C)). Two operétors may not bk

2Thu§, A -B is’invalid. We must write instead A X (-B) or perhaps -A X B.

itten s y-side. ’

Similarly, A }+C or A}-C sare both. J.nvalld. : T
’ - . '.%:‘ﬁ
N T
4 .' i
- <]
/7
r— 4 ;
—_— - 4 -
- Exercise 2-h Set D ' -

[. #
' Correct the followi{g three invalid ALGOL statements. What problems

. v
arise in correcting the’second and third statements?

(1) .7 := B x -A;

i

\ (2) F u=1€/3 + 4
A+ B x (¢ % -F/D); Co . -

—

(V4]

~—
(o]
1

. > e
. .
. N

>

A2-5 The order of compzttation in an ALGOL expressiqn ‘ .

. . ‘
We have not deferred this question because there is anything special to
say about ALGOL that is diffg;‘ent from what was already said in Chapter 2.
. ; « 4
On the contrary; the rules for the o¥der of,, computation are precisely the

same. Close the book. and try to reconstruct them. Then compare with.the

following. . AT " . NI

1. When parehtheses are ii‘é_ed toMrie's;a one subexpression iriside another,

evaluate the nested sube:gpressiégs from'thq innermost to the outermost.
‘ L2

2. Within any one subexpress;’.on evaluate in descending order of precedence:) ..
Highest function reference -
bl , / f (exponentiatlon) ..
Y .o .) X, /’ . bt N
Lowest 4, - ’
) - v N
3. " In case of a tie in precedence level (wi:thin any subexpression) perform .

—— ot e et

those operations in the tie from left to right.

T | .
Emc { 35

‘ DN gy

3 _ - - %
N ” . .
v « . . B L4 .(
<\ A2-6 % LI) »‘* - - .
5 A2 6 Meam.ng of asmgnment when the variable on the left is o_f dlfferent type
' _from the expression on the right ' - '
ﬂ“ Is 1t p0551ble to convert a numbew from 1nteger to reaJ_ representation-ors o~
¢ vice yersa? Notlce t}mt until now all the a551gnment statements we have illus-' . %

*trated were homogeneous in the sense that the varlablm’th\:"_yt of«the (:=)
‘) sign and, the number evaluated from the' expression on the right were both of
i\he sa.me type (real or 1nt'eger) Two other obvious possibilities in ALGOL are
both legal’ e

ot 4

In short, we ‘have four eases:

- (a) Treal \}ariable := real expression: .
~~ (b) i'nteger variable :=/’ir‘1teger expression; i .
o :ﬂx (g') regl varlable := integer express:Lon, : .
- (a) 1nteger varlable i= real expression;

We have nothing further tq say about cases (a) and (b) It is (c) ang (d)

- . we are interested in because such statements can be used to convert integers to
e reals and vice versa.
R gy . ‘
. *In case (c) the number assigned to the real variable simply has no frac-
t:.onal part.
o heme , ' /
, ¥) real T;
; X \‘ integer V, W; ’
H} v -3 —_—
. M " V=)-I»; P
~ L . : W:=3x6;
by . . A - y N
Q‘?* .. T = VoW ' ' 4
T ! 1 . oy
s Observe that this seguence of, Ab@@ﬁ%&:_clarations and statements leads to a
' _real value for T equal to 22.0. In other words', the inteéer sum of V + W
results in the real value for P~ having a zero fractional part.
’ . In case (d) the integer value assigned to the varisble is rounded in the
1 sepse déscribed in Sectlon 2-5. 1In other words, when the expression is real. ..
H p reas ;
*» -and the variable is integer . *
3 . 1 ' — . ‘ - ’ - > . 1
§\' - . . Yariable := expression; Tt
R really jeans ° .
b <«) ’;%e ~ o ' ™
o .) variable 4=/entfer(expression + 0.5)¢ '
» 4) — -What this means xix;' that if I .is an integer variable and R is a real
variable, the ALGOL st&temwen*
‘ . \ . o - ; : -
N . o AEErz I' = A;
, SHTFTEAY T O T B T 7 \ N
- \
Q . 38 &) .

"ERIC -~ - S : i
K .

PAruntext proviasa vy exic IS .
B : .

. ~ s M

rx g

i

» - e /7
/ .‘j [- L
P -t — - L B ; GRS
e - S -
rd - - 5 - - '3.
. .. —
C Y . e © el A6 —
e s] i o
~ . . _ » . - T Tl
» . 2€2 sk -~

PRV - - ey . T s
—{I < RoUND(2 R T s AN
¥ R - Il 2 At CSad, , ,
. * - : PRI Ve L e :
- B B . . 4

) Jor . - 1] . . , M R R , ' ’ . ~

. N § Tees . I« [A+.5] o : -

' PR > - 3

T . . .

A . 7
- Neither of these is identical t¢ : \ . ¢
. - C . p s 4 wt

i 4 M ¢
. . v K M 4 s TS R
WYhy? %ecause,the flow chart variables I and A do not have specific B
digital represerﬁations associated with them. Hehce, nd roundn.ng can'be im- s
* plied in simpile flow chart assignment. . . ,//_ . *
‘ . . i .
Example 1 1 Rt , ‘ - s ! .
#8al DIAM; -{*- N e ‘ .
. 1nteger CIRCUM, o L 'w,;
‘]
- . i= 5/.9, ‘*.5\ [3 ¥ -
CIRéUM ='3.14159 x Dﬁ i
”‘"‘ .
3 \‘ l d£ \\
This sequence of ALGOL statemenizs.\leads tooa value\of 19 for CIRCUM,
" and not 18. 535 whlch would be the’ 'ae’bua‘L cj?rcumference oi‘ & circle with a?
¢ . OB 2
' diameter of 5.9.) . ‘.\ - K ‘"‘iﬁ\ .]
.o X ! R N . - \ } ; .
, Example 2 . . ® . S
—_— . v b ke
integer OWE; ‘ L Y L
N\) " real BAL,, WITHDL; . . R
N + . 2 i
o ! e { BAL =-50 97; ‘ ‘) :) ! ’
- WITHDL i= 92.49; . * ©Fae

OVE iz BAEL - wxmnig . : . '
Assuming BAL refers to bank balance, the overdraw is $1¥l 52 The dif- <
ference between BAL and WI’I‘HDL is -41.52. The roundeéd value asagned to OWE,

i e, -entier(+41.52 # .5). = eptier(- 1*1‘02) ke, S Y s
. R \ R s ’
3 . k% .] “ RN
'. i» v~ b A P ! ' Y (N ! ‘ -~
- . Lot . ’
B ey h
i . '
) - - ;iL,N * .
:,) 3 ﬁ.j‘ * hd ‘
] ") » S)))
v . ~ -
. ° . . . % 3?37 e . v .
B . . . , ™

- - . . - -

Exercises A2-6

1. Which of the foll%)_\g;;‘.ng statements are invalid ALGOL assignment statements?

- Explam. . . -
- T (@Y L= T X VAR3/1+ ¥ : ' .)
* :' () A := exp(AWEXPE3.0 + A3*EXPT.2 0); i - . ' .
; '(c)' Y := I1n(sin + 1\&.0); o PoaTE e . 7
() J := 3.+ 1.0; , - .' . ot
(g) I :=1I/K +¥~‘+§ | f .

L4

2. Assuming 1(b) above is valid, what changes- would you propose in the
_L interest of eff:.c:.ency? If not, correct 1(b) :and then i;nprove it.

/ ,In each of the following, write a sequence of declarations and ALGOL .

assignment statements to accomplish the indicated task.

4

3. Assume the-real variable V is assigned values which are always greater

than or equal to zero. A551gn to, FPART, which is to be a type real .

»

" variablé, the fractional part of V. o -

. A Py
L, "ASSign to INPT, an‘nteger variable, the 1ntegral part of V. V is a

real variable whose value is never negative.

- 5. Compare the f})llowlng.Al'.GOL statement with the accompanying flow chart

box assuming I, d and K to be integers. <t . .
¢ ’ ~—— v ’
J =1 + K; . s
. I. » a |/ :
s . s § R !
‘ ——-—1 J e I/K }——- ’
. . Lt ~
N : . co ¢ ,

Are they the same? If not, draw another flpw chart box to conform with®
the ALGOL statement. v

=

’ 6. Caryy out the- 1nstruct‘lons of Problem 5 for the-ALGOL statement“ |

- " J.-I/K,

for e g w e - e
and the same flow chert bok.

oy, XY e,

.
" .
. B .
’ *
- ~ N .
%‘. - ’ . -
. .
.gﬂ:ﬁ‘ et - . . . (
e ¥ f “ p
C-o W - . ,
:

ERIC : o

< -

<,

-

T 35 g .
ERIC | - .3y Lo

T -

s Figure A2-10. The Jersey Cow progregd in ALGOL

~ , hd ')
- ' a2-7
A2-T7 Writiné complete ALG&L prograns - " .
Remember the $20 bill’problem? You are now able to write ALGOL statements
to' compute how mam' $20 bills are contained in (real) PRICE of your Jersey cowy
Write your own vers:.on ,and then compare with that below.
-
, comment WHAT m JERSEY COW WI,LL BRING; |
' " : “ . integer NUM20O 5
) . real PRICE, RNUM20 ;
y " RNUM20 := FRICE/20.00; :
« ‘NUM20 := entier(RNUM20); - &
A con{plete ALGOL program posesses a certain "structure". Before giving a
formil description o# this structb.re, we first form a complete program for the
JERSEY COW problem as shown in Figure A2-10. We also put & label on the read
statement and add a go to séatement'o{:o make the program loop.
) begin ‘ comment WHAT THE JERSEY CoW WIEL BRING; -]
- real FRICE, RNUM20;)
integer NUM20; 7. j
.- .« again: " read (PﬁICE);
’ ’ comment PRICE is glven in dollars and cents, ;‘
~ RNUM20 := PRICE/ZO 00; , ' . ..
" ’ ~ . . comment RNUM20 is the real number of twenty dodlar bills; ‘
v . ‘:: NUM20 := entier{RNUMSO); -
) . comment NUM20 is the answer; .)
: wiite (PRICE, NUM20);
_gé_fzgagain; . ;’ ’ R : -
end ' . A » S
= L' = T - ’ ‘ . - a
: : 75.75 g - B *
-) - v, E ' i ’ F? Picture of a ,
[X , ! data card
!)
- 1 1
: - 7 N ;
ST .y P
0 75.7500] 3] 0
0 I/ S
0] A 0 :
' o} I Y O| Picture of
. -~ / B °) printed results
ML S :

N , 3 <
- « . - UK . o S

.
TA2-7 e . - T e s
> B - < ‘4

-

A complete ALGOL program«mist begin with’a begin symbol and end with aﬁ
end symbol. There are no e-xceptlons. We m.l.ght say that begip and end sandwich

- the gleclarations and statements. DNotice that declarations precede the state- .

o
. ments. We might thigk of the declarations as the "head" and the statements as
13 s
" "+ the "body" of the progrem. A strugture, then, begins to emerge as suggested
. | *ir Figure A2-11.) S
) . B ,
o ' begin .
Love an ALGOL program - .*
ed . e '
M 3
Figure A2-11. Structure of a complete ALGOL program -
’) ’
. . @ » .
J Now we antroduce the concept of a "simple" and a "cqompound" statement. v
S [
. . A
. - ¥ [°
The simple statement R : !
’ We hhve seen in this chapter four examples of simple or basic statements.
.) . . 4 S882% SVALS
The basic forms were e
. A " . ,varia'ble é‘= expression; .
; read- (input list); v
- - write (output List); N)

go to label;

Each of these is a request to a eomputer to carry out a’'specific set of
attlons and when L,ompleted the next statement, ust\ally in sequence, is execu-

ted. The exception is the go sco statement.

‘ 2
The compound statement ' : TR -
) o } . .
R ,,I‘b is perfectly proper to think of a sequence of simple statements as . ;

F ooRE s%elt;ment since it describes 8 unit of action. In the flow-chart.sense
' golp of individual hetions might be thought, of as a single box. W,

§ thiz§
theretore, employ the concept of a compound statemeht which consists of a

sequehce of statements preceded by"’begin" and followed by "end". For our _

AN

present purposes, the statements between begin ‘and _e&i will be eonsidered to bel ’
simple statements. In Section A3-1 compoundsstatements will be discussed
, further. : . - '
L4 N N .
.) o , ¢

< O ‘ , 36 N . K o
-ERIC L RN
. : , e - :

b

- ¥ . .
. 3 ° N - ‘ ‘ ,
co “ .) ’ . A2-7
* The general form of a . compound statement can be thought, of as .
. L oL . begin .« ’
. »> « _— .
. . S o, .
J 1’ .
!
I) B , 82'} 3 . o
. “ o - oo 3 ’ .
. o '
0 . Q&
i N . Sn’ v
end .
Sema _ e
vhere' 8,5 8,5 etc.,, represent the individual statements.
, . ‘ P . . i
N d - - . e)'—’f
. o
. . a
The*p gram - . . °
L]
' We cxeate & p ram by _packeging with the compound statement all the
necessary declarations and comments that are neoessary or appropriate. We
v . then have as-a general form for a prbgram . . -’
%4 " .
. begin . .]
L “- . .
T P ' D ; -
By o .
* IV
2’ - Tw
A N . .
. e - i
- f . 2
e~ L7 AN e . »
o, . :' . ‘Dm; R ’ '1.
> ’ *»% * lf . i S.: SR d
. Kl " - ~ .
P . / - T e
Ot F - g ? 92, ’ ¢ -
- . N hd - ' -
- . oo T ‘ , * k)
- . 8, ’
i ’) . 3 g
R / . -end | .. i .
! ..o . / « ! ' ’ 4 N :

Here , the D's represent the one. or more declarations whi-ch are now in-r
* cluded to form thé cozhplete program.

Comments may be’ inserted any,where between

E 'the begin and end of any program. T L L e -,
h In subsequent chqpters we shall see many more examples of complete ALGOL
’ -.programs. You wj.ll qg.so be urged to- write many of your. own. . 4 gw
: .) '
-)1 . I 4 s . rt ¢
. e * - . . '
< _f“ e N iy s . L e s . e
PRI H . v . < .. - .
’ . \‘ A ., ’ gj 7 37 ! . ., o
. \) . “‘ R . 4 1' * - .
«ERIC- O e R
rummmrv el . i . ! , ¥ . .
N DR 2 N (O o b : il T

‘ERIC

[Aruitoxt provided by Eic

:

et - TR T
. . e .]
'Exercises Az&) -

1 - 6. In Section A2-3 you worked out the input and output details needed for

six ALGOL programs each having the simple loop structurq~§hown in Figure
A2-3. ;Yoq're to finish the job now by writing out on a coding §ﬁeet,each
of these six simple ALGOL programs.

- Y

7. What single assignment statement can replace the two that are used in the
\

prograin given in Figure:A2-107 |, N

_8. Recall the problem (in Section 2-5 of’ the main text) to simulate a

carnival roulette wheel. It's presumed yo& have already drawn a flow
.chart for the situation specified. Now write a complete ALGOL program
which is equivalent to your flow chart.’

~

e, ‘ ¢

. _‘91A2-8 Alphanumen ta . i)

An ALGOL program may deal with alphanumerlc data, numeric dat) or any

-
mxture of these. When ddta is’ mput the computer needs special structions
to convert alphanumWeric data to the appropriate binary bit patterns for stor- ’

ing in memory. These patterns are of course different for storing alphan&neric
characters than for rmme?nc values. . cf

. ‘

.) Alphanumeric characters will:be stored one character per rd of memory.

They may be stored in space that is earmarked for either int éeﬁor real ~var- v

f.'—-f/'
iables. To avoid confusiop, however, we shall always store /such data in gpac’e o,

(window toxes) for integer variables. A spec:.al input statement will b% u&gﬁ-«‘ ?w@
A 4

when readlng alphanu.merlc characters. Instead of the reac{ statement we ﬁtse -

readsymbol statemept'. The form is: . / . ;-1"’~'i~g?*"-

- A ('~

readsymbol(list ofg‘.ntegez\vfariables); -~
] \ 3 ; -
Wewzte in Figure A2-12. S : .
- 4ac !
4
integer X‘; Y, Z; ' ’ !
repdsymbol(X,Y,Z);) N '

=z \
4 > '
: K :
k3 -, - . .
Figure A2-12. indow bo}té‘s after executing the readsymbol
statement for the data card shown ' : -
)) . !) /s
Similarly, to output alpha'humeric characters which may be curréntly
- assigned’ to certain variables,(we use the printsymbol statement. For example, .
| ‘ ; s
printsymbol(Z, Y, X); .

.
1} o
r! ..

!

: TNot all ALGOL implémentations use exactly the same technique--you should con-
sult your teacher or a reference manual to/%etermine Just how it is done on
the computer system you aye using. For ingtance, in Burroughs ALGOL alpha-
numerie values can be assigned to variable$ declared as type alpha. Three
*%types are then possible: real, integer andnalpha. The usual free field read
or write procedures can be used with alpha variable’e. Such variables can have
any set of six or fewer alphanumeric characters. L .

-

f .

. . 3 9) . 13
\)‘ .) 7] . 4 3 ' N N

A2-8 : . .
’ “ , g‘ * A A

. If this statement were executed following the input that was illustrated in

Figure A2-12,)the printed result would be Figure A2-13.
- . t
s 'R T J
: i Hesn .
‘ !
: .
. Figure A2-13. Printed resudt v

£ - v
4

-

Once an alphanumeric character has been' assignea to a vari¥able, it can be ’

used on the right side of an assignment sta‘ge/ment of the form

“

" variable := variable;
/ <.

Armed with this much Information, the flow chart in Figure 2-28 can be written

~ I in ALGOL as shown here: -)
begin comment utterly ridiculous process;
‘ integer A, B; o 7 X
. ' readsymbol (A);)

Box2: readsymbol (B);
printsymbol (A, B);

« A :="B; '
~ g0 toBoxzy - 7

4 -
The only trouble with this program is that only the first character from
each card is read J‘.Bto A or into B. After executing Box2 the first time j
using the data cards shown in Figure 2-28(c), A will have the value "M"

and B the value "J". The rest of, "MUTT® and "JEFF" is lost.
/ S
We can remedy this situation by a straightforward revision of thé program,

. N

[

although by doing do we are forced to make the program quite a bit longer. Tor
handle nemes of up to six characters we will use six vdriables in place of A
alone, like Al, A2, A3, A4, AS, A6 and six more for B.-

; « \ N »
. '
: \ B
. . .

N .
: A " A2-8)
an - - [;
: i -
Here is the program: . o cos . o
o ‘ C A
begin comment ridiculous process; . S
L4 M '
. intege r Al,A2,A3,AL 85,06, \ o,
‘ Bl B2 ,B3, Bh BS,B6 4
) readsymbol(Al,A2,A3,Al, A5 ,A6); * . -
BOX2: readsymbol(Bl,B2B3¢BY,B5,B6); *
printsymbol(Al,A2,A3,Ak, A5,A6,BL, B2 ,B3,B4,B5,B6); | .
)) Al := Bl; : , Lo ! -
A2 := B2;) ‘ o [>
A3 := B3; ’ , :)
3 Al = Bk) . <~
’ BB '
- A6 o= B6; . ‘
go to BOx2; -
end)
. ‘ &
. _ :
« Alat of work just to describe a ridiculous process--to be sure. For-
tunately, techniques will be develeped (Chapter 4) to make our ALGOL writing .
task’ far easier. . . .)
PN . . .
. ® o+ VWhena character, be it a digit or agy other character, is enclosed in
quote marks it will be understood to be an alphanumeric constant. Thus, the o
progref.) '
1 N '
. begin °, integer A, B, C; Te . . ’ .
= :"T" 3) %; o 1 b .
. - . N ‘B = n_u; »
- c ,__'n5u . : . ° B
i= 3, .) | .
S printsymbol (C, B, A);)
end" : ‘ ¥ . 1 T . L, :,
: RN D L L R
' 7 will cause the outpit, of ‘the characters "5 - T, i T ¥ : R
C o ; .
Statements 11ke . ‘ ‘ ¥ « S 0
ot . ‘-’ e ' ‘ A = MU +2; ' . 9 L
A) '; , ' or A := non ||2u;', . . :
are meaningless and as far as we aré concerned invalid Statements like N
- I, ﬁ L e AN . ' . ' L I
would also be considered improper because in our AIGOL system we are permitted
1 4
to assign only one alphanumerical character to & variable, In other words ,
\; i

’ ‘[AV" '{‘ *‘ i

e Th) no45 . -)
E%EMC S ST T Ty

= i red e

¢
Wi

¢ an alphanunidric constant can only be one character "long". ' .

le

P 0

JAa + 32 + c?

N ' I

\ Suppose the instructor who posed the original problem to compute ’\

now poses the prob].?m this way: ' . .

\ . Imaglne *b;'zat several sophomore geometry students have given ,
you values of A, B and C, corresponding to ‘the edges of a :;'ec-
tangular ‘prism. You are to compute for each of them the ddstance
D, which represents the length of a diagonal according to the
formula suggested in Figure/2-l. Write a program which prints
Values of A, B, C, and the computed value for D, 4&nd then also
prints for identification purposes the studentts initie.ls (‘three
‘\letters) his room number (a, 3-digit integer) and seat locatiéni

d .

{a two-character code) like ‘ . .

— N - PO
. BIM - A .

. 2 - - N
' . ' ch . _
3 . .] -

You will notice that a}l the identification can be thought of as alpha-
5 n};meric including the room number--even though the instructor thought of it

as an integer.

v . .
If identification of this sort were punched op a card, it might look like
- that shown in Figure ‘A2-1lh
L ~ ¢
~ 8 - . ,
BaM3k2Ch - ‘

s £) . . * .
;’%\ 0)/\(v r — \/\ q s ‘ F . s
| ot . C ‘
‘ - . ‘ i

: : Figure A2-1%, “ID" card .
o . ' . - . P
e - . ’ .

To input the data for thie card we might use a readsymbol statement Like
readsymbol(Il, I2, I3, RL, R2, R3, S1,'S2);
- I el it e

.’..riit.ials room number seat C :

'y

. !&246 .. :
WERIC. e R

)
A ruiText provided by Eric “w s " .
PRI E7R . . o .o . . .
LA Tl P . . i
R " v P
i 3 . -

'

-
N
.

Fum
s

.the card bearing the student's values of A, B and C.
v‘“‘: ~ . °

l?‘

We will not need to Lhange the structure of the algorithm in any signifl—
cgnt way to achieve our new obdectlves-—as you can see in Figure A2-15, We
have merely tdded Boxes 0 and 4. The "ID" card is imegined always to precede

.

-,

JThe correspondlng ALGOL program—-you could probably write it your- -

self-‘is shown in Figure A2-16.

A
<

5 v
&

.
-

ERIC - .

Aruitoxt provided by Eic:

. . . . ' T .
3 START) . . .
% »
¢ ' Y
7 0
. ‘i .
I.D. CARD 4
INFORMATION
4 - »
h ; 1. e .
. - (A’ B, c
) 2 '
Sethy ‘) .
* [v
- - X ¥
4@ ’\’ » ‘
v - . b
. : o
' . Flgure A2-15. Ney flow chart - T .
. » . °
1 S

¥

-~
-

.
-

begin ~ comment Evaluation of Dj .- % .
. " integer 11, 12, I3, Rl;-R2, B3, SI, 82; _
real A, B, c, .Y); . * . t T
[N "

BOXZERO: reddsymbol(Tl, 12, I3, Rl, R2, R3, SI, S2);
read (4, B, C); :
:=sqrt(At2 + Bf2 + cte);

3

¢
- write (A, B, C, D); v -
. .. printsymbol (I1, 24 13);
: ' printsymbol (Rl, R2, R3)y .
- ’ printsymbol (S1, S2); " PN .
‘ " g0 to BOXZERO; —
. . ¢
end .
—_—— .
. Figure A2-16. The ALGOL program that goes with Figure A2-15
N ‘ / ' .
- , The three separate printsymbol statements are used in order to $plit up
the "ID" information on ta three successive printed liges, :
v & I ¢ ’ R
o - © a :
) B y ’
]
.
e 2 . .
. ‘o <L
. . . .
P LI O o 9 0
ko \‘:;" a bl ’ L4
" : '
) . -~ 2 < ’ g % .
M}&u?mﬂ?»,-.al ¥ oy o. “ B & ? ' . ! d’ ! lq" !
i $ < - . P
¥ - !‘3;: ‘l ¢ ¥ -
o — hd -, !
° e
o mi .
. . ° . ! -
’ 4 ¥ 4 . - a k ’ t
. > . ’ -
rd
i
’ i y R ! M ’ -
C . ' by
. Q 0 5 ©
o ~ . 3
ERIC, . , 4 :
N . . ’ \ -

&

W3

>~

Chapter A3

BRANCHING AND SUBSCRIPTED VARIABLES

A3-1 Conditional statements

’
L

In Section 3-1 of the flow chart text you studied techniques for branching

by means of a condition box. In ALGOL you can write branching instrudtions by

means of a conditional statement. Later in this chapter you will see that one

ALGOL conditional statement can represent the equivalent of several condition.
boxes in the flow chart language. But first will look at an -ALGOL condi-
tional statement that starts from one condition box--along with the two lines
that emanate from it.

If D <29 then write (N);

} }

.Figure A3-1. Structure of one tipe of ALGOL
- conditional statement a

The meaning, of this cond.itional statement is clear: If ‘D is_less than’
» - -

_or equal to 29, then write the value of N, otherwise, 4o not. Tﬁe two

-

\

f]aow chart branches then’come together again.
. In the i‘low chart language the rules for what could be writtej. inside the
oval were not rigidly specified. As you might suspect in AIGOL it is neceg- |
K
sary to, be rather specific about this matter, since a machine must translate
your ALGOL program into executable code. An "if-clause can be defined as a

pair of arithmetic expressions separated by any one of the six relational

LR

symbols, . .

and set off by if and then, - Ihe above simple, form of con‘ditional statement
can therefore be written in the form

- : . (& Tead statement,
if-clguse then' "{a write statement, or
S ‘ an assigmment statement

!

5

49

PO A i Toxt provided by ERIC

. ‘\\ — ¢ -
Recall the 'R\qi;tam.an Postal Regulations problem from Pigure 3-1. fThis

-

is one wax & to wr){bé t‘he program in AIGOL . N

.

begin comment RURITANIAN POSTAL REGULATIONS;
real A, B, C, D;
integer N;
BOXL: read(N,A,B,C);
D := sqrt(af2 + Bj2 + cf2);
if D < 29 then wrifd (N); (=
;g_o_,g_.)_ B0

L)

-

T

o

-

Exercises A3-1 Set A .

Which, of the followings are correctly formed if-clauses? For those which

are incorrect, cite the defects. :
if A<B<(then
if A+ B<C then

if A+B>C+1 then

.

if A +gB \> C; then

if C'= B+ k4 C then.

Write ALGOL statemeniys for each of the following*flow chart fragments

.

s
» - .R-?. Ce

<0 =

.

Draw flow chart boxes for each of the following ALGOL statements. In

case re,join the flow chart branches.
if Z< A then write (sS);'
if saqrt(Af2 + 1312) C then” P:i=P + 1;

if C+ D#T then read(A,B,N);

Actually, the statement which follows the "then" in the conditional

Statement need not be restricted to a single read, write or assignment state-
'3 S— -
ment. Any simple or compound statement can be used after then. For instance,

_ * “the following ALGOL statements are proper:

g‘/cgz then

begin y := 2 + x;
P =3 XD

» end

- N \

. .
In Seétion A2LTwe defined a compound statement as a seq_uence of ptatements;
the' seq_uence being preceded by "begin" and followed by "€nd"s Now that we kndw
‘. what a conditional statement is, we can point out that the individual state-

ments in the compound statement may be conditional or compound, ds well as
simple. : A N N o 3)

7 If thé statement following then is a go to statement then, of. course,
the two branches of the program do hot re,join tnnnediately after the conditional

The following example is of this type:] - A

b0
.

if "2 <5 then go to BOX5;

Aruitoxt provided by Eic:

A3 ’ ' ¢ : .

’ «

>

Exercises 43-1 Set B

Write ALGOL statements equivalent to each of the following flow chart

‘fragments. : . b

. L
g «
+Draw flow chart boxes for the following 'AIGOL statements. ;)
. - 1
5. if 2% A then go to BOX30; ’
Z = A; ’ -~ ’
6. if P+3<S - K then go o BOX30;" o i
P := P X sqrt(P); . >
S := S X sqrt(s); : ‘
7. if C + D#T then e ; ;
begin' F :=10XT+5 | s {
=2 T N s
G :=G - 5; ,‘ . .
end; | i f
. r d .
’ ’ (’p‘\/\‘
L] , \‘ . L] e
~ - . -
~, . -
} o,
- . -2
- - .

. . \

)

not fulfilled.

chart quite naturally.

+

<

In ‘Ehe éimple conditional statement the if-clause causes the progrem to
branch dnd the part of the conditional following the word "then" affects only
‘oné of the branches. Whether the branches reunite immediately following the

-+ conditional depends on the fopic of the particular conditional statement. The
basiq flow pattern for a simple conditional is then:

< b

The basic pattern for the “else" conditidnal is this:

«

!

Figure A3-2 repeaté a familiar flow chart which lends itself fo thié
second typé of conditional statement. The ALGOL statements parallel the flow

«

Flow Chart Form . N

i a3 '{. - 1
-y . ‘ be
© *'(A<B "if A< B then - o o .
a k- T : v . "
) E b e | ; ‘,
. IRGR « A LRGR « B , LRCR := A elsé IRGR := B;
5 . -
- LRGR vrite L};BGRQ 5) , / ;
- R - R *y‘ P g
s . T
5 ’ 3 o .
Figure A3-2. Conditional Statement, "Else"-type
K] . H .
Q et 49 , v,

Aruitoxt provided by Eic:

. ,—T——(T,'T . read(A,B); - o

T

’

LRIC

v

= S . % ¥

Any ‘'statement type that couidg‘ollow then in a c0nditional‘ can legally
follow else. That means any simple statement or compound stetement can follow
else.

You will recall that a compound stattment £s a sequence of ALGOL state-
ments preceded by a begin‘ and followed by an end. Since you can do practically
anything with a compound statem%t it is possible to insert the equivalent of
a whole chunk of flow chart following the then and another whole chunk follow-

s

ing the else. ‘ ')

.

Here are se’v\e'zj%,examples of legal AIGOL conditionals: &~

- if p < O then go to BOXL else go to BOXS;
if k - r =0 then X := Y - Z else . ~
begin y = z + X;

T :33XT; * T

end; ™ ’ ' S ©
Notice that there is no semicolon before else. In fact, else must never
Ye preceded by a semicolon? .. .
4
»

- . -

>, CAUTION: If you use a statement {whether compound or
/ not) between then and else, you must observe the
following restricf:ior}: The else may not’ be imme-
.diately preceded by a semicolon. 'Some other (non-
blank) legel characters (e. g., end) must oceur Dbetween

N them. +For example, the following is Crictl'y i_llegal:

! if A> Bt Een B :='D; else“B := [;
. B ' e
- get ‘%@d of it}
~ * ‘e
e, . 1 - - \ \ N
I . .. ’ [N
. v 5 "
< ' ‘
- ’ . - . .
. 4 . o ' .
: . ' .
&
; L3
:
, .
N /
. AN
.- :) 56 ¢
‘ g . . ! N

-
1]

next sbatement to be yritten correspo

ERIC

Aruitoxt provided by Eic:

Exercises A3-1" Set c

e 0

'

-

-
=

«(C+D4T T ;

’
.F2

FelOXT + 51

GeGr5 e

=]

- 40 | 30

.4 s
» (K=o 1 T
,} i
F 20
“CASE 2" "CASE 1"
'/—\ ’
. 30 '
: [}
N h r

F 10
tg& lF«—F-ll

-2
A
22

For the following flow charts write ALGOL conditional statements. Use
compound statements following then and/or glse wherever. feasible. Assume the -
3‘1‘ nds with liox 30, and is labéled BOX30.

.
d /
['\
-
-
.
E
N
.
- I
-
i
»
. -
..
/’ -
Y e
* 7
<
.
. e
¢ ‘/
. |
_ ” -
~ 7, , -
v L
ok LT T
T e
'.)"", , ’

/s

‘ ”
A3 o
.
‘
|
i
.
i
1

i

-
}
U -
E
°
i
- d
\ -
v
-
.
’
R -
-

|

Aruitoxt provided by Eic:

P

Tell which of the following are correct ALGOL conditional statements. ‘
For those which are not, tell what is wrong. ~ |
8, if A<BthenT = T+ 1; elsé T =T -.1;
9. if COUNT < lOO else go to BOXL40;

.

10, if ccUNT + 1 then begtn 4 1= AX S; B :=Bx1T; end;

11. if GLOOM < JOY then begln BOYS := BOYS + 1; GIRLS := GIRLS + 1; ° -
-else defeat = duper . . . ;
. . . L
g 3 . '’ 4
G . >
L. s~ B .
) e
N L 4
« .
i B4
e 1 = 4 . .) - . T P —
5 e T : - . .] o
i 19 4 v

\

N
ol
AR e

\

.
- ﬁ é o
'ﬁ'zﬂ?{’?ﬁ

4
<
.
v
-
%
A

¥
oA
]
o

. .
, | : o : t

2

| -
~eag

EXAMPLE: You are giVen that thelequa’clon A Xx" +BXx+C=0 has A, e w—
. least one real root, but you domot knovw that. A £ 0. ’I’*ut 4, B, and c. i o
If A =0, output B, C, and the root of the equation. -If A £ 0, 3%!; A, LA .
B, C, and the two rodts (p0551bly equal) X1 and X2. Then qo;g&’ﬁ&ck to read
. A, B, and C for the next equatioh. ' R N
) ¢ FLOW, CHART SOLUTION: . '

, -
.
1, 1 -
.
.
. »
“ N
b4 e
—
’
»
N
< 4
.
. . P |
. .
- . N
« B
v i
(-
v b o~ s *
. -— kY A
2 . h . ~
S -
e
+ DISCR |
—_—
~ - 2XA 3 .
A P ®
E ~ N 4 e’ [y
.
’ IS ? . I .~ ! -
r b . - N ~
s - i Ny - ‘ . .
] l : _
’ o . ¥
- - -B - DISCR
2 < ’
AraaY ng . 3 Srrw ey S% T LR
L4 - - ~ . < ~ -~ . »
4 -
~ - J H Y.
<
. Id
- -
P , -
*
~ , ~a v a E 1
. - ~ ’I -
»
- AN ’ u .
.
o
.
- ~ '
‘ . e ‘
v ‘.
- »\‘;
N ~ ~ - ! \ N ’
.) . e . <L
IS »
- A - - - -
N ' ‘. . ’
- ¢
- -
o
“ -~ . - .44- * ' »
- ¥ AT - .
-~ - *r ,
‘ - - 7 N
_ e
\ - < oy ' N
. . .
. K <, : . f :
‘ * ~ . ’} -~ P - -
2 P . . ~ . .8 Y -
. L 4 -
' ®
-
1 .] .) ° . . ¢ s ‘o
. - . -
Q . . 33 . .

’ B i ‘- s . .
EMC ’ ~ ’1 ¢ 57 * * -
e rovissdor erc I8 o« : . ' -
~ . L . \ -~ - * . s . ‘

ALOL PROGRAM -- METHOD ONE: ¢ °

begin real A, B, ‘c,hx 1, X, DISCR .

' BOXL: read(A; ,C); e _ vr
T .EA—O.OM&QEBOB; : K *
’ DISCR := sq‘rt.(BfZ - b xAxC); '»b
“ XL := (-B + DISCR)/(2.0 X A); - T 1';
- X = (-B - DISCR)/(2 0 X A), .
) ek write(4,B,C,%1,%2); Co- i ",
K \ o _ go to BOXL;, ’ : L
. BOX3: X i= -C/B} T e e '
S write(B,C,X); . .) E
- g0 to BOXl; .
- e .
ALGOL PROGRAM -- METHOD TWO (usin% compgund st'atements): |
j _begin real A, B,-C, X, Xl, X2, DISCR; -
) -~ BOXL: regfi(A,B;C)g‘ a L,
P ; i ‘writeA(B,C,X);' oo o
’ ‘ end ; . '
S else_gigDISCR = sqpp(B}2 - bxaxc); T
N 7 . . '}(1?,_(B+DISCR)/(2XA), : / .
e R i= (-B - DISGR)/(2 x &); *- |
e write(A, B, C, XL, X2); ’ ' y
o ’ X Cend; . -‘ 7
. ,

Compare ‘the methods used in the two ALGOL programs in the example. Which
do you think is easier to reed? "To write? There is room for a difﬁerence of
OplnlOn here » as the cholce between the two methods is largely a matter of.‘ K
,taste You should learn to read and write ALGOL in either style and use which-

* ever seems more approprlate to a given problen,
‘
. . y h ‘ '
< ‘ P “ N
‘ / Co e L
- » * - - -
LY 1 ’ e A . . N
. - . * . . El
. . v
. h - & s
- , - .
\]
o S . .~ &
-] . e . v .a LI . ‘
. T . . ,
. 1 T . iy
[o} P

A uirToxt provided by ERic . ' . . " ¢
. . .
. - B
hed . 13 B & v . e . e

. Xy

»
.
et < et
I
B o
.
2z de
-
- -
[

« In Section 3-1 of)‘rour flow cliart text you used output boxes involving
ngt only vdriables but' ide.ntifylng remarks in quotes. In AIk}OL we will hov®e .
identifying remarks in precisel)r the same fashion as you did in your flow chart
. work, We will merely enclose them in quotes and add them to the output list
- & where appropriate. As with other output list ttems, a comma should separate
the identifying remark from the following list item (if there is one) and.from ¢
the preceding llet item (if there is one?. But this is nothmg new, since you
did it that way in flow chart.output boxes. ‘ . '

.

' da

Example 1

[

write ("AFTERD", N, "OTRIES,OTHEMANSWERDISO', X)
i x *
If the value o N were 3 and X. were h.9, then executing this

write statement wonld result in printing the line . ' {

'AFTER131TRIES, THE ANSWER IS11+.9 y

]) ' .)

‘fone space above each arrow ‘_corre&ponding to each

square (O) in theprint statement. * The square

“is simply our mark for a blank space; it isn‘t o
» . l\printed and on a punched card it is represented - ’ .
i by a column w1th no punches in it. - . e

X ~ .
. £ . . .
. P
k- 8 . <
.) LS ¥ - e
N T g - 24
- ,) - .
‘ ‘4
‘ T
L R .
e P b .
) [4
- " o ‘E«
" \ X o
. ;.
LY M , R
.
e i .
‘ , . PN
‘ 1
~ \ [-~ 1
' - I .
. . '
. ' . L
¥ .
. I .
. . ¢ . 1
* ‘ ‘ - . «
« “ .
’ \ N ‘\‘ : - e
i i W
‘X s \‘ N S i
o i I ; , iR . \ , \\ .
‘ . R . } s
’ ! - - 3y . L 4 v
S 259 o \
| B . \ . .) g ‘
- , Yy o : 3
Cy t* -4 oo R N

O [? \ . \

[mc

B A .70 Provided by ERIC

 Exguple 2 - :

®

chart could be written in ALGOL.

‘may b
witho

Recall the flow chart from Figure 3 4, Figure A3-3 shows how. this f];ow

1 c - l
’

- Flow Chart Form

~n
-
N v -
1]
\
.. h) . ’
read(A,B); : . .
if A-< B then write("B IS THE LARGER. THE VALUE OF B IS", B)
, " else write("k IS THE »Lﬂmm’; THE VALUE OF A IS";.4);

LY

Figure A3-3. Use of identify;[& remfrks in AU;;OL Sutput
L) @\ ::. . i
. q

- . ¢ u.

Strict).y speaking, it isn't necessary that & write statement ¢all for

printing of any numerical values. One may wish to write only remgijks or
" messafes. ‘For: example° . &

B ‘ vri'te (" AT SUTHEOLARGER'Y ;

or ’ - R »

write ("KILROYOWASCHERE") ;

2

~ e b -

In Burrouglie Algol a'ny string of cha'racters placed. between quote marks

e'used as a "field specification". The effect is to print ‘the string
ut the" quote marks in the line at this point. An example is
, "

‘ write(< "B IS THE LARGER" >); T .

The less-than symbol, ':4< ", at the beginning signals the compiley that what

_follo

N

R

- - -~

ws is not a variabler whose value is to be written, bht some "'ﬁormat"

N ¢

~-r

s ’ 7\,‘ . -
. X~ -~ -\\ AN -
v N ’ I3

T
information. Format 1nf’ormation includes l:.teral strings as well as directions

for how variables are {o be printed. The free f:.eld write procedure in,

Burroughs A].gol does not allow the insert;i.on “of strings of identifying

,cha)j;acters ‘ e,
If A and B were integers of 5 digits or less in Figure A3- 3, the
Burroughs A].gol for the statements would be \
READ(A,B);- - . . ' o ‘*'f%f;
. IF A< B THEN WRITE(< "B IS THE LARGER. THE VALUE OF B 18", I5 >,B) . -

ELSE WRITE(< "A Is THE LARGER. THE VALUE OF A Is", I5 >,4);

9

I5 in the write statement above' is a field specification whic.h reserves
5 spaces at ihe place in the line where a variable is to be printed and causes
»the nufiber to be prindedeas an integer. The greater-than symbol, ">", indi- '
cates the end of the f t information. What follows is the variable to be
printed. ‘ ’

-
-

e y N a~ .
o) The integer field speclflcation has the form" Iw Qere w 1s the field
width, ')

’I‘wo other field specifications are fai%t common . -’I’hese are the ,F ‘and
- o E fields for printi,ng real numbers. The F fiel'd specification is of the
form F w.d wherel w denotes the field-width and d denotes the number of
declma.l places to the righ 4 " the decimal point. ’I’he number will be round.ed
' to d dec places. :) . %%

.

The third type has. the form E w. d where again w is the field width
and d the number of ' de?imal places to the right oﬁthe decimal point. An “
example would be E20.10. The E-type is called floating point type because -

T TeT % eSS -l _-::‘""' R N SR X T

¢+ the rlght of the declma'l point. ’ ’
{ . -

Formatting is a topic ‘which has a great degl more detail\thanm need to ,

includé here. The Fortran language supplement to this course can bea,.consulted B

s jora

for more information on format. e,

.) MR : P
' ’ - ;“&x a4

—
ot
’
~
D
*

. QEK

Aruitoxt provided by Eic:

Exercises A3-1 Set D
e .

Write an ALGOL print statement -for each of the following output bdxes. ¢

’

1. ' 4 10 ‘2.‘3 40 -

) "THE IMPOSSIBLE"| T m N

¢ <

o

3. I ' -
. . IIA=II s A, "B=I) ,-B, '"C=" , C . ‘ . -

L]

"Nesting" one conditiomel statement within another e

\

. There is one more inlpl.icatign of the usé of com‘pound statementé within a
conditional statement that we should examine before going on. A compound
statement may contain one or more conditional statements. Thus, & conditional
§tatementl may contain something tha{ 1tsélf contains more conditional state- -
ments., The following ALGOL program for.the flow chart in Figure Sf{illus-
trates one way of u‘sing a conditional within a compound within a cor}dffional:

: T "éegin 2+ <commert T.&LLYING;' P] . ; ~< L o
integer LOW, MID, HIGH, T, N, COUNT;) y
. re'ad?(N); * N 3
, COUNT := 0; .) -
om0 T e
T my © 7 MID :=0; | : '~) : ..
. i " HIGH := 0; J\} -
BOX3:, read(T); ; -
if T < 50 then LOW := LOW +1 C ' \
’ (‘else begin if T < 80 then MID := MID '+l
. ' ' else HIGH := HIGH +1;
| o ‘ . f:n_la; . . o L .
' ‘ . " COUNT := COUNT +1;) , ,
) . if COUNT < N then go to BOX3; e
" write('VAIUES OF COUNT, LQW, MID, AND HIGH.ARE", couNr,
B N S .LOW, MID, HIGH); . .’ T e . ‘
- o L . g i

end .

Exercises A3-1 Set E

1 - 5. Refer to Exercises 9 - 13, Section 3 l Set'?\ln your flow chart text.
Fof each of these five exercises you prepared a flow chart of a simple
algorithm, Now, vrite an ALGOL program corresponding to.each flow
chart. Choose statement labels, in Exercises 12. and 13, to correspond

. with the box numbers used in the flow cHarts. . \
' . N
EXercises A3-1 Set F .,
1-6. Refer to Exercises 1 - 6, Section 3-1, Set B. For each of these six
exercises you prepared a flow chart of a simple summing algorithm.
P Now, write an ALGOL program corwesponding to each flow hart. Choose
statement labels, where needed, to correspond with the ox numbers
¢
. used in the flow charts.
A |
. " * . ,
R AR S - / ,
. , - oo .
. . : » b
’) N -.‘o' . '.
L . -
i
. . -
; _
. L) - -
3 . ; \
AN 3 ‘ * ‘
)
= v I
L \ -
T DN
’ ’
~ a - &
£) ‘ ¥
s , - . » ,
. - . =3
+) .59
- ; (3 .
) .
E lC g ‘ . , J . *.
v) ’ ¢
2, 1 i

15| _ | 7

A3-2 Auxiliary variables-

»

s s

The use of auxiliary variables in ALGOL programs mirrors what you have
_already learned in the flow chart text. ' { .x

Exercises A31 Set A . - .

-~

1l - 5 Refer to Problems 2 - 6 of Exercises 3-2, Set A in“your flow chart
text. Write ALGOL programs for each of the flow charts you have*

Lad

constructed for these problems.

You might like to see how the flow chart for the E.J.clidean Algorithm

given in‘FJ.gure 3-14 might work out in ALGOL: . .. ’ :
begin comment EJCLIDEAN AIGORI".I"IM for two non negative integers;)
o “,')"ﬁteger A, B, T ! . . ! -
* read (,B); - ‘ -
3 . : write("cmﬂcn OF", A, "AND", B, "IS");
B TR . ‘ .
. then begin .
BOX5: Afa=o0 - , C.
B S then_eii_write(B), 2 - o
SRR g9 to AT, TN ..
Mrend .
; i .- -~gelse-beginr :=B - entier(B/A) X A; - o ‘tg,
e . ~ B := A; » -
<) A= r;. L
;- go toBOW; - T
o . o nd; o .
: ° © else begin 1. := B; - . L
a0 L B =4y | -
s © A:=r; - -
' . W o o BOKS; o /
1 \ _é_r125) . 1 ‘s
" HALT: ' e _ ' .
- end . : ¢ ’ ' ‘
4 . “ .
[AEEN .1.1 . t. B
A Q “ . ?O) .
‘ERIC SN L L DA -
| R .o . Vi - t)

v, -

- In this example you should note a different kind of basic statement: tne - .
dupmy statement. It consists of no symbols at all and shows up only by means
of 1ts lagbel, in this case “HAL'I‘" Nothmg is to be.done at this point. We
merely want to mark the place at the end of the program so that we can use the

PR

* statement Y~ ;
g0 to HALT; .

Not all programs require this technique; wut it is frequently useful when the

. box qeceurs in the flow chart and we want to express thls in ALGOL.
-

Note that we must not f‘orget to declare the tyne of any auxiliary variable
\/o’bbat is used in the orogram r 1s an auxiliary variable and appears in the
" integer declaration. .

Exercises A3-2 Set B ‘

s

Write an ALGOL program cgrrespondiné to the flow chart you constructed
in Problem 2 of Exercises 3-2, Set B of);our flow chart text. .

r

o~ - -
Exercises A3-2 Set C -

1 - 8! Refer to Problems,l - 8, Exercisds 3-2, Set C in yonr flow chart text.
) For each of these eight exerclses you prepared a flow chart of a simple e

s algorithm related-to coordinates of, points on a straight line. Now, ,
. wrlte an ALGOL program correspondyg to each of tRese flow charts.
. - Choose statement labels, where needed, that are of the form BOX1,
¢ . t
- =3 BGXQ, ete., to correspond %0 the box numbering of .the flow charts, L3 Ty
. . ’ .
. ;[’ -
]
. »~ J g
. \ ’
- , o |
- ‘!'
. ! \ * , » + \ ot
Ty i \
" i
N "
. - . s \\\
s N o . o ;
o R ?‘:ﬂ“ R Ty . 61\ _rf»s

o]:MC L) ' . . 651 ". ‘ .~‘ \ ‘ ‘v“. |

.o~ AT \\x - \

-~
. A3 X ’ -

A3-3 Compound condition boxes and multiple branching

.

. ~
; Ii: Section 3-3 you encountered condition 'boxes involving more than one

decision, e.g.,

%
- “
-

H

l L
‘ 2<x YF
. =")
. . ~ « T

&

From your study of Section A3-1 you know that boxes 1 and & In the latter flow
i .)) ; . °
P v~ thaftican*be expressed in ALGOL as . !
!
< BOXL: if 2 < X then begin if X <5 then go to BOX2]
e 3 .
. PR i . , .
Lo
else go to BOX
.. . or, if the statement -BOX3 imr\nedia‘t*el’yﬁfollgws the stateﬁept BOX1 e
- - T ’
. BOXl: if 2 < X then begin if X <5 then go to BOX2; |
’ end ; i ’
Similarly, the following pair of flow charts \f

-4

Q T ‘ 62 60 N -
ERIC : g .

! .
. i
o . .

.. i 1 ,
J] . A3
may be writtes in ALGOL as . .
BOXlx if X< O then go to BOX2 ’ . N

roe else begin if X >_,,l then go to BOX2;

- end;
Vd

3
provided, of course, that the statement BOX3 immediately follows the state-

ment BOX1. . . .)gl\ G

In Section A3-1 you learned that any basic or compound statement was legal
follom.ng then and also legal followxﬁg else. In addition ,to basic and com- -

?

pound statements, conditional statements are also legal following else! °Thus, hl
A

we can abbreviate the last conditional statement BOXL displayed ahove by
i . ° - * ?

BOX1 : ‘if X < O then g0 to BOX2

. » . else if X > 1 then go to BOX2;
—_— V— S e— . ”
- - CAUTION; Conditional statements are not legal follov'ving
= then unless they are buried within a compound statement
- en_closep. by begin and end. Thus, we can legally write N
- ‘) . . * Tt ~
A: _i_f_X<Ot§er_1Qt_oBOX2
else if X > 1 then go to BOX2; =~ -
but we cannot legally write . -)
' * * . °
; P B: if 2 < X then if X.< 5 then go to BOX2; - .
X] In place of statement B we must xsrrite - K/f\
' C: 1if 2 <X then begin if X < 5 then go to BOX2;
> l,‘- \" ‘ | ’ ﬂg; ’ ‘) } B T
In other words then if is forbidden but else if A -
Ty "7 | Uis alright. - : ‘ - .
, E) L
j; \ . .. ‘
Exercises A3-3 Seth .) i
— S = s % . e
Which of the follom.ng are legal in ALGOL? For those which are legal °
"draw a flow chart: For tho's% whlcfl are not legal tell w‘hy they are not legal. &
(0
Assume that a statement labe,).e& B% J.nnnediately&follows the ALGOL «code gu.ven -
; - in the exercise. - . . - .
. i »
Y N - ¢) ’ .
3 © Al . .
B < @ ¢
¢ o - R
- N ’ - - &
- . .) v
. [N Pl
. . . >
o o 2 * 63 6 7 .
EMC * ‘e . . * ' A 27) g
: .

> SN . -

&3 . A

. . [.
A

1. if A < B then go tb BOXS else g0 to BOXT;
2. if A <B-then go 't“S ‘30}6\(

3. If A <Bthenif € <D then ;ggg;%oxs;'

== Rt [e
%. Lf A <B then go to BOX5 else if C < D then go to BOX7; ~ ¥ .
I :f A < B then £0 10 BOX 5 ¢lse beg'in if C < 0 then'go to BOXT;end; oo
67 “if A < B then begin if C < D then go to éOXS;@nd; ' ’ o i . %

7. if A < B then go to BOXS clse A := Bj

8. if A< B then A :=B; , . S s

. . [y gm ?
4oy fae v %
LT SR ¢

‘ (I A < 3B then be,in ® 1= A} A := B; B := C; "end;
L N +—] / ’ y S . .
O.n 12 A <Bthen C:= A; A= B; B :=C; else go 'to BOXS; .
. - -
. Ll LA <BthnenC :=4; A :=B; B :=0C; yo to BOXS; N
b . AN
a .
M L)
Exercises A2-3y Get B ! ’
. - s ¥
1 -7 Refer to Exercises 1 - T, Section 3-3 in your flow chart text. For v -

each .f these %ercises write ALGOL statements equivalent tu the flow

charts you prepared. Fur example, the flow chert exampleg might be

’
.

coded in ALGOL as: T . ‘
& ~’1 if X1 < X2 then go to BOX2 else go to BOX30;
BOX2: if P > G then go to BOX20 " ‘ .
° else if T = S then go to BOX20 * ° . . -
. , else go to BOXs0; L ' : -0 i
N » . N N . N ‘T v L4
Am tepie you studled in Sectlon 3= 3 was mulhple bzsanchmg,, for -
oLt example . T .
. - . - " . h w e “
4.-3‘) r g ‘ ° £ o = - y .' ')
CoR K . VAWWEOFT ~ }. . o'~
4 % . te - T . ‘ . o : < -
) ot . TS50 . |so<BON\ Bo<T)
© < - B, -
: s 4 ‘% . -3 ’ . - . (3
| S ' - .
. ‘ % unl
- [y o * - -
Y e Y. i .
g4 ; :
. 'Y »
- o ., . 4 v ‘:
. 4 .
: Q@ . ¢ Yoo, * ? 6. -
RICY % 0 e 768
- c . /

<4 ! 7 N ! o . oF

p L L4 N
¢ o » ’ . ’

. . . . b
.o A - R S fg
’I*he ALGOL orogram ‘ig wrote earlier in this cm&erJ.?SIVESPOnﬁng to the tally-
1ng flow chart of Flgure 3-7° used -a succession”of” two two-way Lranches- t @ .

achieve the,effect of a three- wa;r Branch. rI'he ALGOL statement wasethis:
A} ! 3 & -

e ‘ 1fT<50t QLOW =IOW+ 1 o o
- - * - e1Se begiﬁ’w_&g then MIU := MID + 1 . 0 .
S _ . else HIGH “%HIGH + k5, . N\ -

. . - . end';: ¢ e - . P .-
-~ : L’ o e W .
Compare thls with the AIGOL statement for the single three-way o ch of t\he
e .o J v
flow chart 1n‘F1gure 3-20. .F ST . PR

» .
.

"“'_JJ“TSjO then LOW := LOW + 1 AN : |
. I else_i_§T580thean-—MID+1 e JJ
. . ‘ @3{ ' - .. H/-e
.) else HIGH HIG 1; .
The only diffe'rence is the omission of "hegin" and_ "_e_rr_d" around the second ~

! . ., conditional statement

) 9
. «
. hd g ’ N L . L]
. - 4 * .. .
L . N : '

e L

B
'

The warnings 1n Sectlon 3-3 concermng/tbe non-overlapping and exhaustive
nature of the ex1t conditions from a cbndition box are not rea.lly necessary

in ALGOL since in an 1fmthenw else if /«wwthen else if mmrthen . . % o
statement’ - LT e

T (1) The first if-clause that comes out true .atn;.s.fies the condition ofﬂ) .
- the entire if, so the rer.uainimg if-clauses are ignored.
(2) If nong of the 1f clauses come’qut true and there is no else after) .
‘ the last the‘n we merely go on to the next piece of code after the '*
. cond‘itional statement. , . . , a0 .
v © You may haye notlced that the dlscr?m.lna‘tion between ¥ at can fol‘,l'o.iv t_heé_
.and what can follow else seems_ at first glance Mi:tpfair" to cOmpourfd
| 'condltion boxes involving . and". If you didn't ,notice this, loo’k at the first
. tvo examples in this section--the ones involvipg "and" and "or" and see which -« .
is easier to code in ALGQL. . . . ! . . o

- 3 » - -
5 . x> e - .,

N For relatively uncomplicated compound condition boxes duch as T -
o . L -] .

Aruitoxt provided by Eic:

]

.) , (. f } N
f .

A3’ . .

; - . .

T

this "discrimination” actually poses no difficulty. If you know a little
5 3 4 . .
about the logic of the words "and" and "or" you may sed without difficulty

that we can replace the "and" Lox above by the following "or" box:,

1

< \ .-r"". > ~
R % ’ - - o
~ “ ‘
. v :; -y .) ~)
. . You will remember frqui Section 3-1 that the two arrangeménts
o ! SRR Seet 3 g :
. f’ “ R - - ¥
v .
) . .
)

.

are gquiyaleﬁt, and that €%e same applies to the two arrangemeﬁts

J ¥
. .. .
r
.
N
“ » -
”
] - ?
. "
. ‘ 2 - ', ‘
-~ - . .
. . ﬁ ’ . .
~
‘ 3 Vi I ~
“ e
»
’ b

ot e, 41 - - R - - e - B - — - i - — s - e

. .
mmSemt - - . . : e
) e i

. ERI!

.

- ’J*-’ L4
< . Cf co
‘e . . v

L

»

ir we’put these fragments fogether we fin

.

d that the anranéémepts

.

are equivalent. But new teke a fresh look at the right-hand flow chart. By

‘merély rearranging the drawingdgj the page we get

’ _.‘ r

A

+
which, according to your study in Section 3-3, is the sgme as
. - N

. »
. N N

[T,

+ 1 D . .
, ‘ 2>X0RX>5 \M R
Q. - T

3

. s | .
*
- >
. .
.

¢ -]
L . ~ -
B 23
But this is just another way of arranging the drawind for
S
. ' o l : 3.
(C 2>X0RX>5 I __* %
"3 ; h - J .
. 4
2 F A] 0",

L ')
r o, . -
> A
» L]
! °
O

My

RN

.

D 2N

£

“ERIC

I A .1 7ext Provided by ERIC
‘

1 .

. > @ PN
Thus, you can see that the following two are equivalent condition boxes:

1 . 1
. * L ‘
2< X AND X <5 /_\; ~(2>xoa_x__>__5>—T..—~
) " r '? ‘ R e /
.o 2 R 3
I ? . ‘:_/ ’

.

, For the purposé of your York with AIGOL, the important lesson

1 for you to.learn from the foregoing discussion is that it°is possible

"to transform a sequence of condition boxes connected by "T" arrows
into a sequ:ance'of conditioh boxes connected by npt arrows)‘a'nd
v:llce versa. This J':'s important because gf the’ correspopdence .bet'v{egn
the ALGOL construction -

. K
if s then avas else if s then ama else if . Yy
~ . - -

Y

and a sequence of condition boxes connected in "series" by "ph
ARV

arrovs.) .

.

1 . -
<X AND X<5 AND A@F—-

. T

. 4 \

-
.

. %
ir2<X then begjn if X < 5 then begin if A > B then go to BOX!L'1 .

~ else go to BOXS; end; erd; - -

v
o I3 »

Figune A3-k. T-series method o} coding 2:;5 Xand X<5 and A>B

. »

[

‘e . i

.-

- - H3 ~ . ¥ -g
R) . s . } - a~ %u
. A3 ¢ ’*‘?
.) . : L
, oy
- B ~x #e
. wo L N

! 5 -

’ T
€>x ok X>5 OR A59—./_\/
y ¢F '

v
Th LA

-

-

if 2 >_2§r‘ then go. to BOXSK

‘ %lse if X > 534Hn go to BOXS - ,) ~
A g == . .
‘ v . %™ else If A< B then go to BOXS :

glse go to BOXk;

N °

Figure A3-3. Easier F‘-series way of coding-the problem in Figure A3-%

<

F.:xerc.’ises A3-3 % Set. e

.

In Exercises 1 - 3, complete the flow,chart on the right ;naking it

equivalent to the one on the left. Then write a single ALGOL conditional

statement equivalent to either fiow chart form. Is it easiez: to write the
ALGOL from the first form or the second?

. \

- o . N ’
Fey N - \
LA 2

Lo . 69 71, , -
(“EMC . ..’ " . 73) .

.

[

f. In Exercises 4 - 5 write an equivalent ALGOL statement without using

begin or end. Hint: Use if.w-then wa else if v .. : N
4. if P < Q then begin if @ > R_iefi go to BOX7 else go to BOXS; end;
5. if P = Q then begin if Q = R then begin if R # S then go to BOX7

else go to BOX8; end; end;
g1se go to gnd; enc

hat i In Exercises 6 - 7 write an equivalent ALGOL statethent without using the
. else'_%ﬁ-cous‘!;mction. . el v)

Ed

6. if A# B then go to BOX6 else if'C = D.then go to BOX6 else go to BOXT;

7. if A> B then go to BOX6 else if B > C then go to BOX6 else go to BOXT;

i

n N M .
.
- [3 . ‘
. ! . *
.

-~

‘ o o 70, , ;o rgg;“‘s.g\
EMC S . - 4 ” Soam

Aruitoxt provided by Eic: > -

' ! « . !
1, ! ' ¢ { . . :

Drawnjggzltiplé brdngg‘condition box for each of the following ALGOL

Statements. Observe the cautions concerning non-overlapping and exhaustive
P

]

exits as set down in Section 3-3. . .

.
7 . -

. 'y) ’ 3y : + '; .) i i
8. if X'< B then go to BOX6 else %1: X< B +5 then go'to BOXT else go to
BOX8;
"9. if A= B then go to BOX6 else if A = C then go to BO¥T else go to BOX8; |
10. Write an ALGOL statement for the following mﬁltiple brafighing condition

v

box:

Exercises A3-3 Set D . ‘

—

Write an ALGOL program corresponding to the flow chart you prepared for

, . ot

Problem 10, Exercises 313. 0

-

2. VWrite an ALGOL program @orresponding to the new flow chart which you pre-

pared for the carnival wheel problem as the answer to Problem 11, =
- Exercises 3-3.) T -'
' " V"% W

ERIC o 75

Aruitoxt provided by Eic: »
B . .

CAS-k Precedence levels for relations
"In ALGOL the precedence level for reltation symbols mirrors that in your

.
.
"

T'low- chart language and shouid reguire no special study.
' . .-') ' -
. ~\\d

-

.
L]
.
,
. .
»
- . . .
s
I d
. .
(23 v .
. ' e 4 .
. N
- - J -
2
. .
.
£
33,
3%
bt

o - -
, B ’ 4 L a
¢ 7' T S . ’

O

CERIC

Aruntext provided by eric IS

~

A3-5 Subscripted variables

Representatica of subscripted’ veriables in ALGOL

Flow Chart Form

T Xl

Y

Bri

, 2‘5 ><I+Q+2><K
. &,

%

Figure A--6.

»
..

ALGOL, Form
X[1)

X[Nj

BT + X

.

2[5 XTI +J +2xK],

Representation of subseripted variables in ALGOL

Figure A3-6 shows how subscripted variubles are represented in ALGOL.

As ycu can see from the figure, subscripted variables are represented in

~

"sreatest Integer function"is represented in ALGOL by entier(X), there need be

ne cenfusicn between use of square brackets for_this function in, flow chart

languagce and Zts use for subsceripts in ALGOL.

indicate subscripts. They are not a®ilable as a special type of parenthesi‘s*’*
as in ordinary algebra.

)

In ALGOL square brackets always

ALGOL ty enclosing the subseript in sguare brackets and m_‘riting it fOllOW]:..;l‘é

the variable to which the subscript is affixed. This is another examplé of é,
nctation thgt erables ALGOL code to be written "on the line". Other examples
you have seen in¢lude "Ai2" fo::: "Ag"_and "sqrt(X)" for "VX". Since the

For parentheses you must always use "(" and ")".

Exercises A3-5 Set A

-
..

»# Write each of the following subscripted Variables in ALGOL fdrm:
1. X5

2. 7 " 3.

RGO

’

L, B

b+ 2

Allqcation of memory storage for arrays

-

sponding to each variable ,in,a' given ALGOL program. If“al}.. variables were of
the form ' - co
*

. A, X, CHAR, X

Z I
4 .
*

’

etc_.

1@;

As you know, the computer must héve a storage location available corre-

Y

sl

{s

A3 .)) 3
- e

this would be'a simple problem indeed. The processor could merely assign a

storage location to each variagble occurring in your program.

.

Iéuf. vwhat‘ab&;t/ ’X.I? How can the processor kncw for what values of I tc
assign storage lycations? it cz?nnct tell‘ merely by lochking af the occirrences
of XI in your program. But if it were to weit ulntil the program was beirng
éxecuted, it might find that it needed locations Tor X1y Xy Xyy on, Xy and

M 25 o

had assigned 'locat\igns cnly for Xl? Xe, <o XlO' Since storages of arrays sugh

as)sl, XE’ ...,}(25 in consecutive locations in stcrage is of i';nportlance i:’l:
efficiency of program e/xecution in most computers, we would like to have ad-
vance knowledge of the range ¢f values possible for a subscript before we start
executing the porticn cf the program in which that subscript cccurs. Mcre

precisely, we reguire at least knowledge of the maximum range so that we will

W 311cw enough locations. . ! -

O

ERIC . | . U3

Aruitoxt provided by Eic:

d .

In ALGOL.this problem is solveéby means of a declaration. You have

already learhed about the declarations real and integer. Fpr arrays (sub-

scripted variables) we have the declarations real array and integer array.

Figure A3-7 shows the form of the array declarations and compares’ them to the
declarations real and integer.) -

.

Declaration Resulting Storage Allocation
. real X; one location for X >
integer I, J; . . one location for I and b;lé for J
‘r_e_a_l g'_rg_y_ X[1:5]; five locations: one each for X,, X,,
¥y X, and X
. integer array I[5:60}; 56 locatio’ns: “one each for® 15’ I6’ cens
’ through I.5 =/
’ _r_'_ga_f array X[-2:3,; * six ldcations: one each for X-E’ X-l’
i) . Xgr X5 Xp and X

) - lj
real array X[1:3], Yf2:5]; ond location each for X5 X, X3, Y,
N .) - Y3} Yh} Qnd Y5

. , ~
Figure A3-7. Storage allocations for 'ALG6L declarations.

. -
5 -

Input and output of arrays ' .. -

You wj,Il study more convenient methods for input and output of arrays 1n

Chapter L. i'or the present, we\ shall use a loop to input an array. Figure A3-8
illustrates one possible method. \\ . . % ‘ :“;
< Flow Chart Box Crude ALGOL Program 8
. . !/‘ I:= 1; , N
(8,,1=1(1)6) . AGATN: read(B[I]);) .
: I:=1I+ l,.) '
\ if I < 6 then go to AGAIN;
s ¢ !)
* Ji=3; \) -
R . REPET: write(X[{J]);
7 ' J =3+ 2 X
if J £ n then go to REPET;
’ - PN . »

Note that n will already have been assigned a yalue before the array
is written out, in-the second example.
1

Figure A3-8. .Crude method. for input and output of arrays in ALGOL

% -
38 ®
- - -«
- . . »
- 4 - I')
. f s
.
N
[
. y .
N
. . N
4 A * k03
4 ’ > - ¥
e o]
‘ /
. ye .
: B w
- S ¥ T
' CRoe om Tyl

N - .
E lC) .. !
.
.) .

S »

- , - s
Example C) ,
) Draw & tlov chart and write an ALGOL program to find lar.est component of

an n-component vector (n g 100):

’ Flow Chart)) ALGOL .

o

pegin comfent LARGEST COMPONENT ;

@] real array Af1:100]; . .
0 “real LRGST; :

1 ' integer N, X, I;
n reafi(N);
I:=1;

v
—

@, i = 1(1)n} BOX2: read(A[I]); £
e I:=1+1;)

if I <N then go to BOX2;
LRGST := A[1];
K := 2;

BOX4: if K > N then go to BOX8;
j if LRGST 2 A[K] then go to BOXT;
LRGST := A[K]; .

KK+ 1l BOXT: K := K + 1;
(B « go to BOXh;

[.

“write("LARGEST ‘COMPONENT IS",
LRGST) ;

Q SR ' - ‘ .
ERIC | -
'

- sl -~ . . ,‘

Exércises A3-5 -Set §o .
\ ~ . Q ,
In Exercises 1 - 3 write the necessary AIGOL declarations and ALGOL state-

ments to 1nput the real arrays 1ndif'ated In éach case assume that befdre we
start, n or k has been assigned a spe01f1c value. Use the inequaliiy on }

the right only for the purpose of reserving space, i.e., in the array declar~ l =

ation. PUR.

L {4, i=1(1)x} " Assume k < 50.

2. {Bj’ J ={2)n} Assume n < 125.
3. (4, i=10(1)n), (B,,*1=10(2)n) Assume n < 50.
¢
el s - (' ’
]
Exercises A3-5 Set C . ' Y

'l. erte an ALGOL program corresponding to the flow chart,in Figure 3 2l(b)

(the carnival.wheel problem using subscripts). -
2. Write an ALGOL program that? corresponds to Figure 3-25.

3. Write an ALGOL program corresponding to the flow chart you drew for
Problem 8 of Section 3-5, Set A. Assume the value of n will néver be
" greater than 50. Assume poiynom.ial coefficients are punched in order

' ¢
on spccessive data cards.

[! 2 .

3

~ - .

Exercises A3-5 Set D -) V. ,
Write an dLGOL progra.zp for the flow chart you drew for part ¢ of '

Exercise 3- 5, Set € in the maip text. Assume by any size orchestra" we _mean

$n

one that has ho more than 125 players. Assunie the ages of the players are

' *
I |

_Mtegers punched on succdssive cards.

ERIC - U “

s - >
var . /’
.

. A3 ‘ " [. . s o R

. A3-6 Double subseripts o .

Representation of doubleé- sudacripts in ALGOL =

. Ny ’ L2 ., .
. - In Section A3-5 you learned that a subscriptep. variable .like ¢ A
s . x, ‘ . - 1%& .
could be written in ALGOL as ;) -
A Y
ta c . s r
X(1] w
iNuw, in Section 3-6£ you have been introduced in your flow chart langugée to
doubly subscripted variables such as® - » N
R ' .
- -~

v Ny
R The ALGOL—pepresentation for such a doubly subsgripted variable is Just about

what you would expect it to be: . ., 7
) P . ~ o~
~ e XI1,9)
s N ,J. . 14
The two sﬁbscripts are separated’by a comma. ” . -
. ,) 4
Thus, the assignment' box o s s 2
| . c R /)
] .]] —-— M .
o e . T WIN-—WIN + AK,J o=
Y ¢ . Co-
. could be written in ALGOL as T ' ' K
. ©, JIN = WIN + A[K,J); e
- . : ~ ‘ oL N
- r

" Allocation of storage for doubly subscripted g_ngays

An array declaratlon 1s required to allocate space for doubly subscripted

variables. You c‘.an no doubt guess how this fé done. For example,

’ ‘ | ¢ " real a‘:rra Al1:3, 1:43;)
declares that acceptable value/s\g the first subscript on A lie between 1 and
3, 1nclusive, and of the second subscript, between 1 and k&, inclusive.

¢ o s vou 1

In Section A3-5 you learfled to write the ALGOL program for an input box

such &s, R
+) - Qﬁ' 4 . .
, ‘-—{“&: -1 [, SN
‘ ~ . -
1
. «
.) . " * ’ tp "
Q ‘ Ja / “ '8.2‘ < _ R ' -
ERIC - - oE

Al Ao provied
u by ERIC . P
! ‘ .

Lo

t o §
. .:) b 5 .
v . N .
- . / ’0 - ¢
. % n .
: T e -
[S " -
" as P -
[~ , -
& » CoTen
. THERE: read(A[I]); = « . . .
, A_) Ix=I+1; . s N -)
N -t . Tif I <4 fhen go to THERE;

- It is p0551b1e to generﬁllze this technique to take care o:t‘ jnput boxes such as

' ' —-[((AI g 9= 1(1)»@, 1(1)H) f—] ’
‘. .y . T . N ~
but to dd this in Chapter A3 would cause you busy work which can be avoided
vhen we have more powerful tools for)ooping that you m.ll learn in Chapter Ak, .
For now, ‘merely place a comment in your ALGOL program show;\ng where the input
’(or output) of a doubly subsc‘xlpted array is ‘to occur. Then, in Chapter L,
, you will learn hqw to complete the program to run on a computer . .
¢ With this convention, we are ‘now prepared to look at an ALGOL program for . .
o the problem in Figure 3 ., B ’ . -
*;7 ' begin comment GAME;) . S .
. /r_é/a_]__mA[l:Q 1:6]; . - n . \ ’ T)
- . real: wiN, rosk, NET; -,)))
integer I, J,.X,, L; o] d ' .
. coment, INFUT OF ARRAY A[1,J) GOES HERE; r
‘ read(K, L)} . _ _ , :
. WIN := 0; ’ . ‘ : -
' .7 0" LOSE :2 0; .) ‘ .
d . q. , I = 1; . ' ’ f " .
- ‘ . : 14 Tiels . o ' . - e . . ’ ' f
- “ BXh: ifJ<é6 then go to BOX5 else go to BOX6;, | / a
"BOX5: WIN WIN+A[K J], . e , ’
) . ‘ . 1; . ‘ ’. . _‘ N ‘)
« B gé to BOXk; ; , e ST
-, BOX6: gsI < 6 then go to %o BO*’? else go to BOX8; -, -
: BOXT: E := LOSE + A[I,L], ‘ o . , . ¢ .
c - ‘g0t BOX6 ! ‘ T R BIRS
BOYS: NET-i- VIN D40SEy - S "
\ write(NET); B “’) R A -
& ;. end ‘,, ‘ : ';/ . ‘ - I : .
S ! Y ' I - : IR W .
: o ‘s e ' . - , IR T
" e L omw83 T T e
EMC SR ¢ v ¢ o« 1 / N . . “ g N
ﬁ" RS e o ! -y b i L

»

.
'
N [4
e
o
'
-
»
v
N
3
/
-
(3
«
.
o
i
5
v b
s
.
¢
x
.

ERI!

Aruitoxt provided by Eic:

e 3

Exercises A3-6

1-5.

(TR
&

e o+ e s e o
-~

—- oy »
.i v
' 3

Refer to| Exercises 1 - 5, Section 3-6.

For each of these. exercises
{

youvﬁave already drawn floé charts describfhg certain "row-" or "column-

operations" on a matrix. Now your job is to write equivalent AldbL
statements preceded by all necessary declarations for each of these
partial flow charts. . v '

oo .

Y

. — v
0 - w R
J ’
. 3
Kl
. -~)
s N
>
.
.
",
. N , -
Ie " '
¢
b ~
-
. s . . . ,
.
-
» ? , - . ¥
’
. v
. ; o - - B
N }
’ . “
, ’ !
0, N - - -
,
. .
4 - ~o2- -- N !
-~
] S s
- N
. ~ !
.
’ “
* .
s . - . -
. n . ol
. ' - . — € -
¢ \ i % !
v . 8@] -
. N ‘L- .
.
. Lo * ; s
k4 - ' % ‘
» R ' . .

-~ A »
’ 5 ~ L4 .
’ ™ an PR O
Q\ < » -

Lo - . ks

. . . . R .
Chapter A4 _~)
. - .o
. . *LODPING X
’ N ° &
" -
Ah 1 The "for clause" and the "for statemen‘t“ . T -

" It should come as®no su;'prlse that the nema,rkable box we called the.

Miteration hox" has a perfect parallel in ALGOL. This shorthand is callea . ’
0 “e ‘ -
the "for clause." Aﬁexainple is shown in Figure Al- 1. .) -
= T A . . ,{3& ’ : . .
+ ~ ’ ’ 4 : | 20 PR S . AR
oL@ 'I L "7 - for T :=1stepluntil 1000d0 T
. - /
" I < 1000+ T \ ‘\ S
. I I+ . - - . .
[. . Q'initial increment final value
.) valueT or - - upper limit
- . T N decrement . or
. ‘ - lower® limit .wee
- *) *
- L g o . <@ .
v . co- v, . . .
- 1 N ‘
P . Figure Ah-1l. The 1terat10n box angd an equ:.valent } . ‘
. ~for clause . . .

»

‘
i

" An entfre flow chart loop con51st1ng of the iteration box and the compu- *
tatiqn portion "hung" on it can be expz;essed in ALGOL with the for statemegt.- N
We present ‘thls parallel in Figure Ab- 2.” rJ.'he algorithm'displayed, you will

Tcognize s is’ the Fibo acci Sequence generator. {Figure lx»-6)

The “for statement" consists of a for clause f llowed by a»single state- -~ .
ment, either. sn.mple or compound, that "is -to %e repe ted. < '

L
.~ N ’ ., e A - ’ .
.) - . . e .
v N H o
. . - S
. . ;i - <
N [. .
. ,
.

,
N "' v N - . -~
B - ~ - ‘. s !
- - * a .
[} \) J 1 o~ -~ - ‘ f: ‘ ') -
.
o 12 N . .
K - . [3 — .
) . | — ~ ‘. - - B
i . ! / FRaT ot
|
2 p 1 T .§)
s
Py . e ~ { - . , *y
3 Rt ‘ . P - X . Vi
H ; . P ~
. ‘e - [+ - .y . - ‘
- - . & .
. , - .1 % ¥
) " . - . 2l o
. ~ S,
o 1 ,’8 J o
Loy 1

‘u,

~

¥ .
Ab-1 ‘ *
' e
e
P s
) . . A
begin ‘
. integer I, LTERM, NLT, COFY;
, © LTERM := 1; :
NLT := O;
for I :=1 step l-until 1000 do
write (I, LTERM);
" COFY := LTERM;
LTERM := LTERM +
[NLT := COPY; 1
COPY « L :
LTERM ¢ LTERM # NLT '
NLT « COPY/ =
, . —
~ . computation portion
v t .
. . .
Figure Ak-2. The flow ch@¥t loop and the eq_uivalent
' _ ALGOL for statement S
o« ’ <
*In the example shown thé whole for statement is:) ,
/ N '
+for IRF1 do 3,
: / N

compound fstatement A
‘that is to be ’
repeatedly executed

.

> ode for statement
2 M ’ *':"..«5 o

PAruntext providea by enic [l
3

. . J '
“I’he general forfr of the fol statement is then:’ .
e ' 2 simple e
) statement (or) |f .
- . compound T et
4 . '$"‘»’I t"z;" (.
. AV 3 ;-\;.\W\M\‘ RTINS

N

-
- *-

' e

-

* The form oR the for clause is seen to be:

< .
 orNOOP COUNTER := INITIAL VALUE step INCREMENT ~
untdl FINAL VAWE do

LR 4
. .
o H

" We mean to imply here that 1f the INCREMEN‘I‘ ig a p051t1ve quantl‘ty//the o

FINAL VALUE has the signiflcance of an upper limit whlle if the INCREMEMT is _
o

negative (i. e., a decremént) then the FINAL VALUE has the significance of.,

bei loi?é-r limit for the LOOP COUNTER.

The statement that follows the word "do" is repeatedly executed once for

each ue ass1gned to the LOOP COUNTER. Of course, after each a551gmnent of

a value to the LOOP COUN‘I‘ER tHe test is made to see’if Bts value remains

withm i®s proper range. If not the repetltlon is discontmued and execu-

tion of the for statement is compli . We thén go on to execute the next

/AH}OL statement. ‘ ’ to .

¢ Here are some examples of the for clause and its equivalent iteration

L box. Be sure to study each example carefully—-especially Example k.
. E .
Example ’ for clause

’ *

*) Iteration box
_ A

—— 3

1. for I := 1 step 2 until N do, - l

1

: ' ‘ Ie1

o - R § O 7Y B

o

s

Means: Exfcute tile statement] that in.Jmediately fbllews' the worzi s g'm,::e
fo eaeh value of Ilin steps of- 2 ul;)til I <N is false

! : ’ o - (orf, if you like, unfil I > N is' true) Thus, if N h;s a. :

N ' Vvalte of T, the statement would be' repeated (four times) for ”

. values of I of 1, 3, 5,, “and 7

" When ’the counter is = : .

incremented again, its value exceeds* Vi and we exit from the 4

’Q

td
’)»-
.

&

Q
.
c

Ab -2 - °
Example ' for clause . Iteration box
2. for K := 3 step 2 until 8.do o 1
‘ K‘<—3 F -
K<8 f—
. - . Kek2 |

-

. :
Means: -Execute the statement immediately following the word "do" once
. for each value of K until K <8 is false. K 1is given an
initial value of 3 and is incremented each time by 2. The
‘ statement is executed for K =3, 5, and T (threge times).

- .

‘3. for J :=T step KuntilL - 1 do
— R

J(—-IH »

-) "JeJHK :

-

.
e

Means: Execute the statement immediately following the word "do" once
* 8 for each,value ®f. J until J <L -1 is false. J is given
a starting value equal td tnat cur;ently asmgned to I. The’

increment is the cufrent value of W. . - - LT
| | . |
. . ¢ k. for J :/: N dtep Jl until 2 do !/ /} R 1 / , 2
- ‘W o ’) JeN f \ °F
1 J >l b—
. o ' JeJ-1
“ ’ . ’ ’ / - ': -
. , B 1'1’
. \ o ”
- - ‘ :
' ';‘ A o
. ., Means: Execute the statement immediately following the word "do" once
, for each 'v lue of J as it descends in ‘vaﬁle from N in steps .
'\\ L, P of ~L ‘until it is np ulonger greate thﬂor equal to - 1(i.e.,
: .
R e,]
- y R " N N |
SO L S N N DRI
y e 3]) 3 8!; - ~ i '
O B L - ag 9
E lC A ot ‘/ . 7 o R S < el .
BEPESEES B IR St) L o -

v o W r, " o : ‘ . .. B - , . c

We might now take a look at one more appllcation of the for statement
and then do some exercises., * Figure Ak- 3 shows how we would write the ALGOL

program fTor the flow chart you drew in answer;.ng Problem 1 of Exercises 4- l
in the flow thart text.)

.7

M »

P

ALGOL

beg'in integer I, ‘ID;
real A, B, C, D;
for I := 1 step 1

until 50 do

e

read (ID, A, B, C);
De=sarv(At 2 +'BY 2 + ¢t 2);
print (ID, A, B, C, D);

end

s the whole for statement)) T

-

Figuré' Ah—-g. Another illustration .of the &)_z_‘. statement

v

In an exercise whére you are interested in writing the ALGOL equivalent
. of a flow chart box like: -

. 4
N -

(/{Pi,i = 1(1)4) -

. . . [R
.

- »

ou should consider the three alternatives that are now availaple to you.

. read (P{1}, P2], P(3], P(4]);
. ' . ’ >R ¢ .
‘v . ‘4’?41 t= l; { v ,’J .
. - . AN
- BOXA: read (P(I)); 4 .
o R AEER S ¥) T e
. .« if I <4 "then g0 to BOXA;) o i
BN i . ‘ { . / 4
- = 1 . * ‘ o a
3.7 Jor T :=1stepluntil b do read (P[I])')
t Y . 4)
e . for statemen .
f ~ ‘ -
% , . ~ , . . .
Pick whichever form pleases you. %})eyNwili all do 'the Job. However, .
,. s ! 7 -, :‘*
‘ E3 1 B ! lt ' . }) M
: 1o M S t P P o
’Q lﬁ‘% ' ' 8 i 1 L

JERIC T . -89 R

. .
.4 . v

All'—l < ¢

\

there is one aspect “to the alternatives which should be pointed out<. The
first method N .-

.. ‘reaa(pl1], pl2], P[3], BI4)); Lo

“ «

will activate the reading mechani.,m and continte untril four numbers have been

read. The data themselves may all ‘be on one ca.rd or two to a card, or each,

.

¢~ ’ -
€ 4 - I - N .
The second and the third methods, on the other hand, dctivate the reading

mec%a.nism anew each time to read one number, P(1]. Data for thesé- two forms

on a sepa.rate card.

. must be punched one to a card since only -one number is read from each card.

- . . .
3 e %" . 4
. .
. v .
- . ,
\ . % '
* .
13
: 4
-
.
“
> 34@*
R hies
& - :
-~ ‘¢ AJ
4 ES - —

‘ L » M L ’ - - A,
1] @‘5.
4, A N . £y

- . .
.
.
- i e’ - . «
4]
¢)

* \

\ . : ~ i ‘

SERIC

‘:.
. by

L
_ . Burroughs. (Extended) Algol allows an interesting variation, a for clause
inside the read statemeni. The following statement is legal in Extended Algol:

READ (FOR ILISTEP 1 UNTIL N Do P{1]);

This statement will read, one or morestards ’ .until' N numbers have been read,
assigning them sequentially to the Py, 1= 1(1)n}. ‘
: A

R

[}

Exercises Ak-1 ° .

.

1l1-3. For each of the other flow charts you drew in answering Problems 2,
& 3, and b of Exercisgs 4.1, now write an equivalent ALGOL progrem.’ .

-
-
-

d °

4. For Problem 5 of }':bcercises b-1 write en ALGOL program“ assuming the number
of employees never exceeds 100. . -

~

“wm
b
F4
.
(Noj
<
A

Ah-2 Illustrative examples

Ab-2

There are a number of simple examples of. loops in Section 4-2 of your

flow chart text which can be eas1l)r translated into ALGOL code with the

aid of the for statement.

We shall use these to further illustrate some of

the d!talls in the proper use of the for statement

Figur

Al-Y shows ALGOL

Al

codmg equlvale 1t to the flow charts in Figure k-8,

.

- for stgtement

for I := l\step 1 until N do 1 for J i= 1 step 1 until N do .
o A 2amemand — _ H Y —— -_—
.. begin Lo | begin .
—_— . | —=_ ¢
. Y= X[I]}3; ' reéd (X); -
>
T write (X(I], Y);. | Y= X4$3; p
- end; ! write (X,Y);
| eng;
! .
| . (&) (b)
® Figure Al-b. [ALGOL for flow charts in Figure 4-8
v »
- L . ' '
Similarly, we see in Figube AL<5 an ALGOL equivalent of the flow chart
[
in Figure 4-9(a). '
. ‘ » = =
SUM = O; - »
RN . -~ -
s g for J:=lstegluntilN_d_o v)
SUM := A[J] + SUM; .
= ‘4
write (SUM); g '
; _,‘ ’)
o 3 'Figure-Ah-»B\.' ALGOL for Figure 1+-9£a)
L ' /
B . ’ ‘. v . 3
. . Before looklng a} our next translation, tryqyour hepd at writing -

the ALGOE for Figure
Figure ;Ah-é_.

1-9(v).

hd

Now compére your code with| that in

* MAX := abs€A[1
for J :=

-
r.

af s;nglel o

2 step 1 until N do

7

SO0 T % Figure Ab-6. ALGOL for Figure 4-9(b) -
S — IR . T 7 g) _
L. - Y D . 6 1
[o] ‘l /s I . . i A {
: Q .. ’ ‘ * 87 }1 / \ ’ '
SERIC .o\ s 91y -
‘;;_w,_"“ . N . i ‘ SIS .

ERI

Aruitoxt provided by Eic:

.
Ab -2

9

) ?

e ”

Notice that the statement which is to be repeated, under domtrol of loop

counter J,

the for.statement.

<

is an if statement.
o (11.&

marks the end ¢f

The, semicolon after A[J]

-

)
In swmmary, we see that any single if‘ statement, or read or wrlte, or

assignment statement may be the

* statement is to be repeated, we

statement with the aid of begin

.

Exercises Ak-2 Set A

cand.ldate for repetition. If more than one
"weld" them into one by forming one compound

and end.

In each of the i‘ollowing exercises we present ALGOL code for the flow

carts in Figurg 4-10(a), 4-10(b); 4-11(a) and k-11(b), respectively Your
- Job is to 1nd1cate what errors, if eany, have been made 1n the coding process. .
The ‘necessary declaratlons are to be dlsregarded here.
. < . .
1. For Figure k-10(a): ‘ o)
MAX := abs (Al); ‘ i ’ . o
INDEX := 1; v .') ”: N) o
for J := 2~1n_}2erps of 1 until N Ty .
© if abs(A[J]) > MAX then
“begin MAX := abs(A[J]%); . ' B
c ., INDE;(= J; ! -~. ‘
end; | ‘ : '
' vrite kINDEX, MAX); . ' ‘
2, Fcir fgure b-loﬁ'b): f ! / " / \1\
[[wax o= abs a(l2)) ‘ L
¢ |'for J :=h step 2 until N do- x - Lo e

if abs(A[§]) > MAX; thenMAX := A[J]; S o
write (MAK); : o
3. For Figu;r.e 4 l(F): ’\2 R . . Lo,
B . d /
FACT := 1; o y . -
/ for ik := l’ steg.l. un.til‘N do; * \ .). . - |
. [FACT :="K x FACT; ‘ . } . /
3 . M - i B
Ry write (K, FACT); | .
g :

g
%

e -
AN

- - \"
. Ako2
- & ' . ~
ey ~ .
&) For Figure 4-11(b): , - .
. RS - .. '&—:"‘l : P :
¢ . begin LTERM- := 1; : N i
: NET := 0; end; N 3 : > —~
E for k := 1 stepluntil Ndo i g
T begin COPY := LTERM; = .)
LTERM := LTERM + NLT; _ . - - - L
% N &
& NLT :=-COPY; .
end; ’ N -
Iy — - o 4
write (K, LTERM); ¥ > v : R
A R A : - N, L . S s
Exercises Ak-2 Set B v) ; o
‘ 1-17. For each of the flow charts you drew in answéring the‘exe'zjcises' of , . B
! Section 4-2, Set A, now write the equivalent ALGOL statements as part¥al ' . i’
programs- only. Do not bother to write the needed dedlarations. ° - T
For Problem 12: Is the following code correct? If not, why not? S
} . B -
N
for I := lstepluntllNdo o A R
- ~if abs(P[1)) > 50 then begin « ~ : o .
e — B - '°‘ - <
e ’ © W= P[I); ANY := 1; end; . S -
) ANY := 0; , Lt P Fod “(
" You may nov be interested 1n seeing how the flowv chart of the»faptoi’s-of-- B

N algorithm (Figure 4-14) is coded in ALGOL. Here it 1a in Figure AN-7. e, -

you [have done t e exercises n the prebeding set, you éhjuld hate no problemf } J
ollowing the program in | his figure. ° | . o

I | /
begin comment Findlng the actors Qf N; "
3 A B i
. i . v '
) ") M .
. H . Ny v

ste l unt:.l BOU}TD do

-3 » ,
L g,ét_‘?“‘this is one_ = K X ent er(N/K) then -
- 4 or statemevr.xt) begin L := N/K, %

g .~ Y awite (KL);E

(A

H o

aax!
»
« R
FORC 7v. - PTy
S
PR
o)
ey,
[S

v 2 Y
w0 f £ ’3‘ (¥ 3 5 han
CE e e e S 8Ct0;rs of' N equiv‘alent tQ &y P 1AL s S
! Q =14, o ' R ?ﬂ i
.- v I i DY
‘ mi . f » R N &7
B . . B ” S 0 !
L ERIC T o
+ B e . " 9 3 b . N
g'-,j,; - bR .t e P43 2 > s -

)

SRR Y - S .
.&3 -
Similarly, you 'should have no problLem fOllo;Jing the way we code the
pol?‘nomial evaluation algorithm (Figure 4N7) in ALGOL. This is shown in
Figure Ak-8. = ‘ .)

oo, .« begin lcomment Polynomial evaluator. Sunday method;’. a
. . réal array B(0:3); .
_ real X, VAWE; _
. . int-eng-er I, K; l . .

' BOXL: for I.:= O step 1 until 3 do read (B[I));

- read (X); \

VALUE := B[0];

P

— for K := 1 step 1 until 3 do -
] VALUE := VAIUE X X + B[K];
- , write ("The value is", VALUE); c

~

Figure A4-8. ALGOL :equivalent of the polynomial
evalugtion (Figure L4-17) -

~

= - - e F3 o -
In the statement labeled BOX1l, the use of a for clause allows us to

. -
.

repeat the statement: .
v ’ - . . ‘ . ~ '
rdsd Bl1); - .

.

" for various values of I. This is the equivalent of the flow chart notation

Exercises 4-2, Set B, now write the equivalent’ full ALGOL programs. - For

* Problems 1 end 2 assume that N will never exceed ,50. Check the Main Text -
Vs) °

Pt . B, I =0(1)3) ' I)
] | ' {BI’ / - . .
.' 'J ’ rd %
Y Exercists -2 Set ¢ - : S .)
‘, For each of the Flow charts you drew in aszering he three pr¢blems of

for details on Problem 3(8). * .- - . _— \
L — 3
N -1 i . - ® i v
1 . -
> { / o !
: AR ! &+ .

W e \ : . . .
N . ’ r .

—a.

RSO,

\
. - \\ . . . ' ¥ 3
a oot s Al-3
__— ’ S
X - . Fu - ,&;«v
Al-3 Teble- look- up) ' . .
~ M“(hd -
* ' We now test our ability to write the ALGOL e,quivalent to the table-look-
° up (Figure 4-24) wsing thk bisection methdd. Figure Al- 9 shows the program.’
We assume for the ALGOL program that the table to be stored will never contain
more than 200" X's' and 200 Y's. . e
“begin comment Table-look-up by bisection; s R -
r real array X[1:200], ¥(1:200]; . { . .
real A; N ’
- N . l
/ integer N, K, LOW, HIGH, MID;
L8 K — s« - é\
. read -(N); . 4
B - ———— i . e ————
= . for K :=1 step 1 until N do read (X[K}, Y[K]); .
= read (A); . ’
if X[1)'< A then begin :
‘ if A < X[N) then g0 10,BOXS;" end ; .
il write (A, ."is not in the range of the table.').;;
Lo g0 to HALT; -) R .
‘ . . . N
S ., BOX5: LOW :=}; _ . o
I - — - —HIGHEN— o . - '

|-

-

T

s

C oy

Q ')
RIC'. . 7
- T
4o .

. BOX6: if HIGH-LOW = 1 then begin
write (X[LOW], ¥[LOW], A, X[HIGH], Y[HIGH])j
g0 to HALT; end; N
. "MID := entier((LOW + HIGH) / 2); «

"if A < X[MID).then S /

/. begin HIGH :JOMID; . . (
» —_— .

‘ge o
. el_se_Eeﬁi_r_x~£OW :=‘MID;

° \ “ g0 to BOX6; end;
HALT: : s Y Lot . i

end . . - h

. Figure Ak-9. ALGOL eq_ulvalent of table-look-up . o
! . by bisection - .

. ~
. - 3

' N L. , &, ., \‘ .
- ® . °© ' s .
L Study the corres;?ondence between this ALGOL program and its flow chart
’ I}iy OW- you Should reaJ,i&e here are many equivalent ALGOL programs. The o
;.n igure A4-9 is only one lof “several possible ones. You.may prefe#‘ ; o%%'

?e ALGOL somewhat dig@re‘em. s .- . R
S i ‘ ‘

v

X6;gr£i i - "{ :

Exercises AlL-3
& T T

‘

”~”

’

. . i . . .
) Write an,ALGOL mrogram equivalent'to°phe flow chart in Figure 4-25.

H

Assume‘:ghalt we will ndt peed td ‘store more than 200 X,Y “pairs in femory

1
at any-'dne time.

.
. .
-
Y . -
1]
. -~
.
a
————— -
s
-
.
.«
-
.
.
N e '

. -
» s N
.
. .
,
s
. ‘w)
;
.
. .
Ay N
. /
| .
. :l’
.
.
.
- N
‘ 4
. A .
-~ L
v
.
%
. "
-

ERIC" .

[Aruiox rovacaoy e [

> A

w

¢

-

.

~

;
N
v
)
.
*
o
-
‘ B
Y
. ‘
»
4
«
LY
.
°
* |
,
¢
‘.)
.

9G o

&
»

3

@ v ot
.
s
o *
:
. B
5 [
‘s
.
{
-
d »
. .
. .
% N
. -
- .
-
o .g
s ‘5
. gor
- '
‘ .
-
s’ e~
»’ r
»
LI
B
. v .
-
.
L
2 .
- @
4
pend XA, -
)
o/
r e |
. -
.
. 1
-
LA -
i L]
! L} -
» ‘ L]
.
| N
. I
i P G A B
| .
. J y
IS
]
> -
L.
s
"
. AN
M L3

-

”

ERI

° this with nestegﬁ

)

o Al ol
Ah-4 Nested loops B) : y oo

' Just as one loop, with its 1te*at1cm box, cen form part of uhe computatlon A
po*twon of another loop, we can have one complete for statement become part of
—
another. The statement which immediately follows a for clause (i.e., xight

. afrer the word do) can eithez be a for statement itself or 1t can be a compound .

stategent one of whose parts is a for statement,) “' tat
N For our first exanxple, examine Figure 14--29, beginning with Box b. We T

now show the equivalent ALGOL code in Figure A4-10.

R) . . PR . 0’ ’

H

| . B outer for
ia 1 Scep 1 until M do ; /Jstateme_nt— :
vegin *SUM(I] := O; ’

for J := 1 step 1 until N do-

- .

. *

inner for

. . SUMII] := A(I,d) + SUM[I); statement -,
- . _t
¢ TOTAL := TOTAL + SUM[I];
write. ("The “total is", TOTAL); / .
- N < Co- “ v ! '
' - a l‘“igure AL-10. Nested for statements . .
TGS TR —

P -
LN A -*

* . . .

v

The indentatfon of the’ ’statéme’nts helps to suggest the idea of nesting.

The compound statement whlch folloyord do “of'. the first for clause is

“the computation porftlon‘ of the out lOOf) There are three parts. to this
Ay

compound, statement the second one being another for statement which has 1ts
own computatlon port;.on. When executlng thése ALGOL statements the computer

‘can keep tnac& of what loop it is in at .all Jtimes. . , ' Y

Ndw let’s see how to write the, whole program\for Pigure 4-29. We assume
the matrix can have up to 50!; rows and 50 columns\ Data for th atrix
entrles will b7l -assumed "?9“'

bunched in row by row)frder, one Number per data

'
.~ .

J 2 - i
s‘to express Box 2 in ALGOL._ ﬁou may remem’oer that

we sidesteppzé a prq:blem like this in Sectiox‘{"‘Q\BZo and promised we would tell
you how to d 1r{ Chapter Ah You have prabably already figured }‘ow to do
r}statements as shown in Figure Ak-11. . k

-~

O ",

. -
A
Aruitoxt provided by Eic: - 4 - L} .

. . H . A .
~ - LY o~ .

2

ERIC

Aruitoxt provided by Eic:

0

vk
S . s ; 42.bomputathn portlon of the
. . . * j . . Outer loop\

]
o e

computatlon portion of fheﬁ ‘.
1nner loop

.
. ‘
gur
4

Ah-ll& Bquivalence vetween box 2 of ‘flow chart
and nesoed for statements
.. i +

.
’

.

After studying tiis figure you can prdbably see how

the matrix entries §& row-by-rdﬁ order. - We could say
oy

we might print out

U ;o

.t ! ﬁ$ -&wlu-‘;"‘ .‘ ~ .- np . : [.
) , £9§JLS:= 1 step 1 until M do . o
) for J := 1 step'l™until N do

- R — _ — a

1 . . write (A[I)J});
vy noe

.
-

-

‘Hom_xould you prlnt out the entries in column-by- column order? Just
reverse the oxrder of the two for clauses.

¥ ' ’ .
‘ for J := 1 step 1 until N'do \
b . ’ . for I := 1 step 1 until M do i

write (A[I,J1);

.
~
»

.
-

We are now ready to wrlte the whole ALGOL program for Figure h -29. , Here
it is in Figure #Ab-12. "

L
\ -
, -

«r

R R

“

. . ~s - . « B
. . - . PRSI
., L .

. . begin comment suliming ent:f‘ies of a ma'grix; . "

-t © real array A(1:50,:1:50], suM(¥:50); . . .

) N commer‘lt', 'We need to reserve 50]:ocations for the SUM vector

Y o 8nd- enough locations for 50 X 50 matrix A; . /
o , real TO‘I’AL SR) .)
- . o integer-I, J, M, n? oo .‘ s : o
.. : read (M,N); ~ . e . R ‘

.- fori:*l.stepluntil M dos .

for, 5 :x 1 .step,luntil Ndo . .
1oL, =P ulxl. N
read (A[I,J]): o

' TOTAL :x 0 .
. , EI::lstenlant'ilMég~’ D
. T K ! begin SUM[T] ‘ - ilgx '-si o,) .
N ; forJ::lsteolMN” v \
,) . o) UM{I] : l}[I,J] + SUM[I] . -] . .
. o) 'TO’I‘Af. = TQTAL"+ soM(1];) \ ‘ﬁ’? IR
write ("The totaL 1s" TOiI.‘AIf),' , . a.e_ .
= ’ - Lo S ' '
N ‘ Figure AL-12. 'ALGOI;{éqdivalent of Figure 14-29.")
I . ’ C
‘ Exsrcises Ab-b Set A) T - .
—_—) e \ . , «.

1- 8 For each pof the flow charts you constructed forjth e;erc1ses~a.n C
Sectwn Lok, Set A, write tke equlvalent ALGOL stateme/nts. Don’t bother

wrlfrmg declaratlons unless you feel they add to your understanda.ng (of the
translation problem. e e R ‘ <L '

- P Lt . PRy .. »
. . ¢

. - . . "

Y ’ .
~ - A . . - . -

Triply-nested loops«'are Just as easy to mugte in ALGOL by the nesting of
for s’datements as- they are to draw in ;the flow charts. Figure AL-13 shows
how the "stickler" in Figure h-3l would be coded in ALGOL.)

. .
&

.. ERl

(- . *
. . P
AR A v 7 Providod by ERIC . .

‘comfent The Stickler;

1ntegerH ‘1‘, U;
DforH::-’T_t_e_Eluntll9do
for T —Osteplunml _do
for Ui=0stepluntil'ydo ,
; _i_i:j_ooxn+1'oxT+U=Hf'3+T'f3‘+Uf_3
then write (H,.T, U); , ‘

t
. - R
: S v .
Figure A%-13. ‘The stickler in ALGOL

Y ‘ o

Exercises Akb-4 Set B ° NN
xercises oet

~ bl
Wrive ALGOL rrogyams for the ff_ow chart solutions you obtained fo'r

Problem 7, Exercises 4-l Set' B “1n {he Main Text.

. . o) Lo
Y

. ’

1. Write plete nrogz;am for the Prlme Fact borlzamon A.lgorlthm, Figure k-32.

merelses & Set Cr "

2, Wrﬂ”'ce & cor plete ALGOL program for the shuttle interchange sortmg algo-

*'mhm, Figure L 34. Assume you may wish to sort up to 500" m}mbers
. “a
Write a complete ALGOL program for the sort algorithm ‘shoyn in F:igure 4-35,

Méke ‘the same assumption.in this.program’ that you are asked to make in
= _ L
the precedirlg exercise. o ; '

N

.
»

Write .a compTete ALGOL program for finding T,}, longest decreasmg su,b-n
sequences. Base your program on the flow charts in Flgures 4-38 and k- 39.
Assume the given sequence will not exceed 100 values in adl.

. L3

A ruiText rovided by Eric
’

. /~ vl . |. statements A \
/ . a end o T P -wﬁ e T 0
. / 5 . . “'—“ P s ‘ “ » -

? ‘\"h. / . P i R :
< ' ~’\. - 4 .
'] - 4 1 .
v - ' >
l' A“. . e » s
’ Y, L .
- . .7 AIGOL (iihanter A5 . .
» ' ' ’ - + \ -
* PROCEDGRES ‘ .

' The AIsGOL translation of a reference flow cha

85-1 Procedux,é ‘

-is called an ‘ALGOL °~
PROC::,DURE/ This Drocedure looks very mich like a.comw®te ALGOL program
excert within the 1n1t1al group of assertigns, LOI‘I‘GSPQ%.IH@ to the glow chart .-
funnel- The "head of a procedure consists ;‘f an 1ntrod11c‘c,_or~v symbol (to be ! <
explained shortlga) the neme of the progcedure, a list of ps . eters and.

Thds head is followed by a boi;j%t
the task of" the procedure. - '

/_somethlng about _gnelr types. o carpyy out

~

o\ ’ \\
@

-5 The entire' ALGOL procedure. (‘t\he head and the body) is to be thought of ag,

&. declaratlon This rrocedure declaratlojz&st be included in the head (alorrg

p—

mth sueh declaratiof® as real, mteger, ete,) of any program using the pro-

.

C

re.

LR Y

‘

’

N
\ ’ N »

- .

- % Lo

in

£

-~

/ -

.

.;':procedure body} ~

.

’
- ’ . .
: \ declarations) :

\&edure head) . .Y e
. - proc_:ed.ure - program head '
. -

R

declaration

. AN]
declarations \ ‘

.
~ 4 . -

program body

- -4
B e , e . ,,." .
) LA . Figﬁre ‘A5-1, Structure Lof an’ igm ogram .
, oo - . ’ . ;,nqludlpg a procedure ‘
/ B g i .o

' -
! e
\

-

Earlier in Chapter 2 we defined an AIGOL program as a sequence of d!eclara-

“# tions followed,by a- sequence, of statements, with the whole thing enclosed. by

"bégln ani fend", Another name for a program is a block. A block mustein-

4 clude at least one de‘claration after the begln. Otherwise, we may. have a com-

pouqd statement rather than a block. ' &_,

«A‘

’ N “ R '. N C :- N ,
N ©os ot Pt N |.' . .) ‘
' ‘ ! b : : - . .
. L] . . ., - A
-..“) . -y et .‘f.?, ,
e PR e B - C .t e
. ot ;
P Y
+ *e “:" 7 Lt * . 7
" : . L] .]
ElC Lo e
. : .) N »
. . ’135 \.-qu., . .
- .. N n » * ’

é *
) ' ¥ i .
AS s) R e
- .)) -
a v -
- The oody of a procedur~e. declaratlon }nay be e smgle statemen't. For
example : ' . . - ’ T,)
, integer procedure parity(i); ‘procedure ° brocedure '
*)) . head .- -|*declaration
B 1nteger i; \ M
‘ - .
. ° c aa s ‘e procedure
=2 1= o
- if 1= 2 X entler 1/2 then parity := 0 } Dody .]
. else parity := 1; : /S
- o e S R
i - ¥ .
v '_The 'body of a procedure say also be a compound statement. if.local variables
f‘ are required, the body will be a whole program or block. - N
. . ’ i , LN . - t
‘ "!}ﬁ ATGOL rrocedure to evaluate a function &nd report a 'single value ig
A ¢ G
called & function procedure., (A second type of ALGOL procedure w1ll be en-
° . N countered in Section AS-4.) For\a function procedure, the flow ¢hart funnel -
v corrésponds to an assertion at uhe begmm.ng of the procedure declaratlon
"f‘.’ . Tris assertion tegins juth the words real procedure ir the value to be reported
’ " is real, or integer trOcedure if the value tQ be reporteﬁ 1s an integer. These
words are followed by the neme of thé Iunct;on, 1ts argument in parentheses and, '
) 2 semicolon. For example: / ' o -t ., S
; D S .
L 1 . I ' , o
) . real_procedure sqroot(y); . .)
L . Tre head of this procedure declaratlon concludes w1th the type declaration for
“y. The use of this functlon proceduréls shown 1n more detail in Figure A5-2.
»n . . “
tegin comment The head of the ,brogram using the sqroot procedure comes
" . Tirsts It is méde up of the us@ial type declarations and
* . .the procedure declaration for sqroot.; .
" s o Ty .
. real Y, %X on, oz T i . i
copmment + The procedure declaration for sqroot .followg; *) *
, L " real procedure :sqroot (y); .
/ - . . "“ real.y; " o
e - begin . - - N
sqrdot = ---% - s '
o 3 The body of the program uslng the’ s;qroot B ‘
v . proceduret completes this exan@le,. . .o, .
——— 5 1
' ’ -cie t ' » o
\ z 1= g+ sqroot(x); L
' : e . Iy . g *,
s if 'z = O then z := g <. sqroot(n) i
‘e by - - & v .
C Yo e - = T s Yoo
4 A 4+ , .)
. : . Figure #5-2. Use of an, OL function procedu're 5 . 5
. Q R " ’ ‘ . 9 ., . L
ERIC .- N : Vd e .
' - . .. LI . ‘ b

. . . e
' - Pl Lo T .o 2 ;v ,

-. \ 2 — l -) -
-85

{ . -

Y
. .. -

/ - N - ! - : : VQ °/ e : ’
Since pecial symbols 1i¥e Y are not available in ALGOL, "we teplace such a
symb81 with an alphabetic neme for.the functlon (in this casey sqroot). Any

name can,ge chosen except fox unusual reserved words .
1 - (R

You are already Tamiliar with the mse of standard mathematlcal ‘functions

R llket Sqrt, sln, abs, ete. (See Table A2 2) ALGOL Drpcedures are dlffere\nt
from these sténdard mathematical fuqctlons, -even though our first examp'le,
,sqroot, sérves the same purpose ¥\as sqﬁz The d:.fference is not Just in the way
the names arg¢ spelled but Ls mamly in the fact that “the standard mathematlcal
functions are part of thd compiler system. The techniques that might be dsed
for adding to the 'list of btandard mathe‘mat*'.cal functions are oﬁtside of the

- scope of this ,book. Function procedures provide a way that you can develop

whatever sej of srefekence nrograms you wan’c v
l

The vody wf an ALGOL procedure may be- enclosed by & begin and an end.

Just as referénce flow charts sooner or Jlater reach a return pox, an ALGOL
proce&ure\may eventually reach a final ,enclosmg end. "This end corresponds‘ to
- the flow chart reﬁurn box shown in Figure 5-5. Si.nce the end in an ALGOL
. funetion procedure does not indicate what variable is to be reported to the

main program, a conventlon is needed to 1dent1fy the value to be reported.

The convention used is theat the name "of _the futlction ﬁj'ocedu e J.tself must :

:anpear at least once on the left s1de of an assignment staterent,’ and 1ts
value, when the procedure is completed,” is.the value. reported Thls conven-

. tion mist be observed for all functlon procedures whether the body is enclosed

N r
in begin-end or no\l, ¢ ' . N 5

‘In other Respects,, an AI.G&)L precefure must conform to the requirements of
any ALGOL program. * In partlcular, the type of all varisbles used In the pro-

cedure mst be déclared. L. .)
. Y :
An ALGODr procedg.lre is 8 self-contained unit one expects to ¥se many times.

It is, especially convenient to compile procedures separately, rather than along
with the programs in which they are going to be used. Then one_ can develop a-“
, library of procedures which can 'be used at any later tlme. Some ALGOL com-
pilers allow for the separate compilation of procednres, others do not. f‘ind
out v}h:’uch applies for the,compiler you are using. In this chapte’r we will

o~ follow ihe o :;‘gin'alo ‘definition of ALGOL, “which, without forblddlng it doe,s .

‘ -not tell ho Yo achleve separate compilation of procedures.) . "
I * H) A . . -

. I T - ,

. , .
- 2 .

s . -

:
e
.
.
.
/{’
.
.
.
N
I~ 3 -
e

& ' s
Figure' A5-2 1is lntended 0 relate to Figure 5- 6 of the flow cllart text
. J_llustratlne f‘eatures related to ALGOL prodedure use "The fl!‘S‘b time, the ALGOL

[

e

function d signator”’ L sqroot (x), we go to the
is declaration d.irects fl‘éat the value

procedure s requned by the

s .
. ‘ real procedure.declaration via route l

F]

-0f X Le assigned to y iw the procedur

L It'is essentiai that "the variable

3

! * in the function designator agree in tyge w1th the parameter declared in the ' ,.
—
rrocedure decla*‘atlon _That is, since y has been declared T‘eal in the pro-

ce re der*larat*on, decla*‘atlon of X to be mteger in the calling probram

would be lYl eryor. S T :

- -

. Wien tne executfon of the }rocedu*‘e has begen completed, a-value has been
. e <
assigned tQ sqroot and tre return to tne .Jtatefnent that requested the‘;rocedure

s cy route l. .Upott return to the ALGOL rrogram, the \{alue ass:.gned to sqroot

«ls added to & and phs result assigiedsto z. At the next function designator

(in, tre-Conditional statement) we go to the real procedure decliration ¥y
.roite Z, substitutg n -for”’y in the procedure (note that they ‘are both real),
execute ,the rrocedure and return via route 2 to uﬁe condltlonal statement, the
. ’ result ofi the procedure having been ass:.gned bo sqroot ' N
A3 .
~
N . An actual function procedure Qeclaration for the square root can be pre-

-

rared with reference_ to F.lgure /=7 and is shown in Figure A5- 3

. . N -
hd L

‘b'écomment square root function progedure-;
—— - A .

“yeal pfocedure ‘sqréot(¥);- =) o “)

real y; . ' ' '

. beginredl g h; - W . .

B C g =0y T e e

. BOX2: _hoi=.0. 5 x (g + Y/ﬁ) '

F ' if abs(h -g) <, o 0001 then go to-BOX5; -

> ' . .g iz h; : Lo

' ' go to BOX2; L.

K . BOXB'E sqroot := h; e g

» . v -
N - end .) . . -
., - - : -
) - , 4 ‘ . -

’ ‘ . . NN
» 7 TFigure A5-3. A furiction procedure declaration for 3quare roots

N ' <

15 o) As y‘Sﬁ inspect this f‘unction proc\edure, we take the opportur{ity t.v warn .
T e you atout sometblng you aye unllkely to do anyway. That is, de. not assign to

an argument (in this ease v) of ‘a function procedure! It is never. necessary'

Y d « to do this and with some ALGOL cémpilers 1t can produce very dire results. .

* You will be rem:mded‘of thls dangér area.once more in Sectlon A§ -5. .
T ’ ‘b L]

CERIC . - ' 10s L ;

Aruitoxt provided by Eic:

- >
4
* 4 \. 1Y
- ’ -~ * b .
‘ i - toa >
. ')) . . -
. JExercises AS-1 N .o : .
’ .) .
1 - 3. Write ALGOL function procedures for the flow chants prepared in
. J »
: Exercises 5-1, nmin text. ' ’
. . o J ‘
. n - - -
- ° - ~ 4 °
\ . ’ ,
. ’ < ,
4 ' - - *
v - M "
\
ot . .] :
- L4 » . “
. i LI + .
- 4 b . - e« " °
! ? .
. , N .
-
. .
- - " -
_ - \ A o
, .,
s >) N) 9 ‘ . : . . - w \ i
v - ““ ‘ ‘
« R 1 . .
r &
- L , - .
- : AR ‘
\ * ; . . M . ’
- * -
, -1 3 -
A . €.
’ 4
s .. n - -
. .
¢ ‘ ’ .
- ' ' - - N
[ad ’-
* » ! - v ‘ .
. A
.
J - '
]) . . .) I . .
A . . . s .
- . - R . 'S
> rd
¢ L]
-) .- - P
¥y ’I . .)
. -
.
: . o . . 4 -
i . ’
t N - N
. ' * . ¢ .
~ [} -, ‘.
TS .
v ' N
b . . .
/’ - - - .
N M ¥ - »
-, . - FY
: ’ 4 - 19 : :
O ‘ ') o { o
. , N - 8
ERIC . ~ . . ‘
s ~

.a

O

E

Aruitoxt provided by Eic:

RIC

A5 . . . : .o .- .

A5-2 Fulictions, and ALGOL

.
. . - '
. .

The ‘flow chart text tells us that

a value, will ﬁrodu e another value

we can view any flow chart which, given
Thre
Although mathe-
matloal functions exist whlch.cannot ﬂe evaluated, eithé”w1th a flow chart or

as the evaluation of some functlon .

statement is as true for ALGOL programs as for flow chart&

by an ALGOL program, the commory usage of the word function in computing is
strictly limlted to those which can bg evaluated w1th a flow chart.: In com-
puting, then, a functlon is commonly thought of as a relationship for which a

reference Tlow chart is useds

- s

The domain of a. function, in- computlng, is the set of values that the
arglment in the funnel of the floy chart can take on. *he range of a function .
In ALGOL,

tne domain®can be either a set d‘ real numbe rs representable in a computer or

*s the set of valdes that can be reported to the main flow chart.

a set of 1nt?gers representable .in a computer.
3

! .

.
. M

. 4 .
s ’ - <,
- - . i <7
’ . 10 .
. ..
. ’ ~ \' L] l.
g a .
. 102 . . N -
"' I~ .
00 , -
™~ ¢ 4 '1 .
- Lo . N L) .

., A5-3 ,ALGOL function procezlures) “« .

. M . ¢ > ~ .

, .
M . - . -
. 'ALGOL function procedurcs can have as many arguments as are necessary. -%he

min function prgvides an'\example . Thé procedure declaration_in Figure 5L .
corresponds to Figure 5-1% of the flow cha.r't tex*’t. - , . 5
comment minimum of two arguments functlon procedure, . M /

. - real procedure min (b, ¢); = e : ’ \ <
. real b, c; o : B
begin real z; . . : . o> .

if b > c then go-to BOX3(L * T - 3
- ...z :i=Db; go to BOXY; . P V-)
- BOX3: z_:= ¢ ' .) -
: BOXY: mine:= z; T h -
ai end |) : . ? . ‘:
d ~
_Fiéure A3, A function procedure of two arguments) ')
-) « ‘e

Notlce that the type of each Variable has heen declared to be real by the three
A type declarations. That is, the mnctlon procedure 'expects to receive two real ©
’ values and to report a realxalue The var:,able z 1is also declared to be

real. 'The grocedure de'claratlon could be changed easily to expect 1nteger

values or to report an integer value by appropx:ratelx substitutlng ntegez’ for .
+ real. In Flgu.re A5-4 we do not need to *introduce the variable 2z since wmin
can serve the same role. For this reason Figure A5-U4 can be replaced by v -
Flgure 85-5 .o T .
-) comient minimum of two arguments function procedure, , ‘. N
- “real procedure min (b,,c}- L L -
. real .b, c; 7t . 8 -
X , . : .
. . i~fb~>ctnenmin:=‘celsemini=b;) v '.'/_'
‘ 2 ¢ . ce N g e . ’ .. »
z = rm : - - - . . ~ . i "o
‘ h -) .' L ' M
N Figure A5-5. Improved min procedure declaration > . © .
) i s ‘ s s ’ ‘ -

B ’ \

Figure A5-5 contai,ns other 1mprovements. Not only has the extraneous variable, .
2, ’been dropped but _assignments have been includedsin the if-clause. The

. body of the procedu.re declaratlon is then Just one statement. l ,.) ’

ERIC ' 107, . I

.

’ Ed

) .
D - .

o . - . . N * . !1‘ l

« . S I It
". ~\ - K M x’ . ‘
|

- /
. , . s N R i .
L ’ N 7 A ! A5
¢) o TR .
‘ Y. . 3 Y1 S
". Thc varameter list of an ALGOL procedure deelaratlon may eont int ger ’

er real varrables, variatles contalmng alphanumerlc mfon‘xatlon, dmes oé

ve:tors and names of arra},’s In every case there must be a one- to-bne coxn es-\ N

W K » . ° ,.;

Londem.e in both number and‘ tyve tetweeg parameters in the (actual) list of the

“un tlon designator and those In the (formal) llst‘ of the prm.edure decla tlon

- Coqfuslon would re_gn if we tried to refer to the procedure declaration of

Flgure A5 5 by wmtmg somethlng like’ . . i
t - . .
. P ., H t = min(a, b,' C‘) A . ; te ;. i) ..
s e . . ~ . N . ¢« ' H .
ot At v 1
¢ . L ’} ' » t = mig(m, p) where m has been declared
. i € . ") Lo be an integer.
:) - > . f

¥fe function Iroc_eéilre declaration may use another function procedure.
Both‘declarations can then appear in the head of the.main program. See
. * . [

Exercises A5-3, - Set B.

. .
’) '
) a

. A classifi’gation oz“ variables ..

The dl.,tlnctlon between local and nonlocal variatles mth respact to

A.:GOL p*‘o;edures is the same &s 1s deserlbed in the flow chart text._ Thus, in 3
. ~

the two procgdures I~OI‘ min glven in Section A5-L4, the arguments b axd c, .
are nonlocsl variables. ,In the firstygrocedure z is a local variable.
: . r .. -

v leficultles ckn ar1se if nonlacal verisbles are ehanged'mthln a function

L
b S rrowdure deelaration What can happen depends to some extent on the partic- .
ular “ompo.ler that is bemg used U,nless you are absolutely sure about what

cadl happen, avmd\ehanblng nonlocal var}.ables in function procedures’

v An erpreciation of the dlstlnctlon between local and nonlocal variables e
can be had by recalling that procedures are separate units. Upon leaving a

N procedure, the value,s of local varlables are lost; the storage space used to '

keer this 1nform&tlon is freed, Yonlocal variables, on the oth,er hand remain _

defined after leavlng a procedure.

*

A local variable in an ALGOL procedure is completely independent of any

. varlable with the same name that might appear outside the procedure Notice
. that the lomal varisble is declared.in the body of the procedure, and not along

w1th the’ spec1f1r*atlon of the variables whi\?} appear i ‘the parameter list. We .

wa.llﬁ.ways insist that nonlocal vara.ables be given in the parameter llst
There is angther way in which they can app’ear m‘ AI.GOL prOCEdures, but’ we ‘will

‘not cons:.der this other possmillty. “’"(-:,',’/’:u - . - . -

P : . s °

. ® ..
irlc R

N1

)

.

Exercisés A5-3 Set B, -

: !
K ‘ AR TR

- a T ST

. . ¢

'

Composition of function designators T R
2 .

- -~

The situation with respect to composz.t:.on of functlon de 1gnators is
exXactly as described 1n the fXow cha&‘t text. This 1s just what you have
J.earned as com'oosltlon of fuhctions -That’ a.s, given function procedure dec-

,lara&tlons defining fjl() and r2(x), “one can write’

- Y ¢= f1(f2(x)); .

so long &s the range of f2 1is a subset of the domsfin of fI. Correspondingly,

the ﬁollow1n& functlon des1gnators are €nﬁ1rely proper: « - >
o .,)) N .
5 . y o= mn(abs(l&B) 5. 1;) ' '
° or ¥ = mln(mm(f abs())'Q); s , f ! .

- N . \ . .

or y := min(sqroot(b x,b ‘—f 4.0 xaxce), -6);

. ‘ e Or ¥y i= sqroot(min(x,y));

-

Exercises’A5-3 «Set A. S , T '
—_— ‘. c R ~

1 - 6 and 7(a,) , Write AIQOL programs or function procedures correspondl'lg to
S

the flow charts prepared in Exerclses 5-3, Set A, main text. ..,

1. fWrite an ALGOL function procedure for the flow chart of the Buclidean
Algorithm you prepared in Problem 1 of Exercises 5-3, Set B, main text. FY

2+ erte an AI.GOL functlon procedure for Problem 2 of Exertises 5-3, Set B,

the greatest common factor of three 1ntegers._ . -

[-

3+ Write an ALGOL program that corresponds to the flow“'chart for determinlng
S (a) the number of non-similar- trlangles,

(b) *the sum of the perlmeters of the nop-similar trlangles correspond.ing

i . to the flow charts you brepared in Problem 3 of Exercises 5=- 3, Set B.

4, Write,, a8 AI.GOL program for thé algorlthm of Problem’ L, Exercises 5 -3, -
;Set B. Try to estimate How much compu‘tation will be involved. Measure

A

computé%ion in terms :of the number “of ddditions R subtractions, and com-

o parisons that’ must be made, oounting sach as 1. 7o
- e
v oW . !
o . » » Yo ’/ > .

‘-

.

A5-b ; ALGOL “proper" procedures

ALGOL procedures which 2orrespond to referenc.e flow charts for procedures
that are not functions are called "propeTr'. procedures. Corresponding to the

funnel of the reference flow chart 1s an assertion beglnning

- « -

procedure sort(n,d);

integer n;

4
.

. =7
real array 4;

The word procedure is followed by the name of the procedure being de:lared a
parameter list in parentheses and a-semi-colon. In the sort example we see
that an entire vector is identified by its neme d in the parameter li;sf;. _No
attempt is made to subscrip% d in the parameter 1ist':out d. is declared as '

a real array. .Of course, n is decla d as an.inte er.
2) g

. ’

A Since a proper procedure,does not report- a value in the same way that a

Aruitoxt provided by Eic:

funct:.on procedure does, the name of the procedure will not dppear in the bod\}r

of the procedure-and we do ,not attach real or 1nteger to thé declaratlon defin-

J’

ing the progéﬁre identifier. - .

- ' > K

- .

A proper progedure declaration correspond:,ng uo Figure 5- -16 is given in - ,Q
Figure A5-6. ‘I’he dimens:.on of the array d does not ‘need®to be speclfled in *
the procedure declaratlon Whatever the dimens:.on of 4, may be (and it must -
be specified in the ALGOL,calling 'prograrh) n is the actual number of com-
ponents of d to be sorted. This, the’ procedure declaratlon is usable for

a vector wlth any number of components i

-

>

comment proper pro@edure for-sort;
procedure sort(n,d);
integer n;
.real array d
Abegln

integer 1i,j;
—__real b;’

L

B e

“for i:=l stepluntil n-1 do |

for Jj:=i+l _t_e_pw n ,do
if d[1]>d[,)} then
begin |
bi=dlj]; alj):=alil; ali]:=b;
' enss .

end

L
7

Figure As-é. Procedure declaration for._ sorting

' e d .oWER N
~ o” & - < »
. ~: % = K . A5
e , fa o N
A

Look at Fj:gures 5-16 and A5-6 side by sidgi.;i_f".See/how the ALGOL statements
correspond to the fl?w chart boxes Noticeifél.so thajc values. can be intention-
a.l]y ass:.g&ed to parameters of a proper prooedure. . We 'warned you not to do this
in function prqcefiures but it is rlghi: and proper here. This is how a proper

procedure produces its output.’ | . , .
Y * ¢ N ’

‘ Use of a proper procedﬁi*e? is activated by a "procedure statement’, anal-
N\
' ogous to the' exec?te box of the flow chard text. The prOcedure statement con-

sists solely of the procedure name féllowed by the parameter list in paren-

* e

theses and a semicolon, for example:®) .

a f - L¢ . . ., N °
’ : sort(88,b')(i a’
vhere » is-an array having at’ least 88 components 1n the calling ALGOL
program. In AIGOL the process of referrlng to a procedure is termed "calling

the procedure". P

An ALGOL program calling sort, correspo'ndB_'.ng to Figure 5-23, is shown in

Figgre A5-T7. This program assumes that the maximum dimendion of b and ¢

. begin . . ! . o R
comment a program to 1llustrate procedure statemen‘bs,
, real array b[1:100], cl1: lOO],) "2.‘
: integer k,i; -~ \%j"f'“‘*; .
comment thegprocedure declarat._j.on. for sort (Figure ﬁ5-6) ingstﬁ Tt
. ‘ be inserted here; . . . "
: ~ read (k);
. £93-: it=l step 1 until k do read (b[l]) . L N
for' i:=l step b% do read (cli]); Ty '
. sort (k,b);
- sort l(}?,); e~ ;._ ' . N I
i for . i:=l s_tglg_rﬂrk_dgl) -
Y peam - . -
. : write (b[i]); A AN
| ' vrite (eli]); . .
' Figure A5-7. A program calling(the sort procedure . 5

1
- K

is 100. We also call attention to the comment,in the head of the program which
says that the procedure declaration for sort mnst be inserted. This means that
Figure 45-6-1s to be, physically placed in the head of the program. We make

7 _ this comment rather than the actual insertion 1n the calling program here 80 //‘

* that the figures can be more eas,:Ll)r scanned by the eye.

’ . . o~ N

Q “' b v 107 ‘o ‘ ko » ’
B lC > .") - 1 i 1 . B . * ’ ’ .
, & . 14 T R

25 : . :

.
-

Exercises A5-4 Set A

'

1l - 5. For the flow charts prepared in Exercises 5- 1+ -»Set A, main text, wrlte

L ALGOL programs and procedures ’
7 *
¢ * ¢
. - ~
. -~ . e ¥
. /~ ‘ /\ “ l\ "
N - 0 A . ’ ff
Exercises H-b set B ' . .
—_— [-
l‘J-J,Sﬂ For the flow sharts p*‘epared in Exer'cises 5-4, Set B, main text, for .
' f]
Problems 1, 2 and 3, write AIGOL programs and procedures.
", [Exercisés A5-b Set C B T
: a ’) #
. 1 -'k. For the flow charts prepared An Exercises 54, Set C, main text, P
’) Problems 1 through k4, wite ALGOL pragrams and/or procedures. , - g
. . . 1.
. . w
[
. . 3 .
.) .
. - // /
. . / ’ / N
‘ / ,,/ ’ >
- . / ¢
' . - ‘v;, /’) a
o .) /
2
. s o : /
' N - ik J ! Y
. ; ’ @ <
.) . 2 ‘ . ¢ ‘ o
7 -
, _— WA
. 1
\j{! N
i . g
. N) { R
‘ / "
,] . .
- P - ’
. -
N \)‘ - - LY 108_‘) " .
ERIC, - SRS £ - S -
, \ \) - . : - e r .) &7

P - 1

F 4 ’ . » * A5 :
* \ ' B .
ey . S »
, A5- 5 Alternate exlts and techniques for branchlrig ?_ “ \
. . 9 Y v s,

Prov151ons for alternate exits and branchlnfg from ALGOL propergrocedures
* can'mirrQr the initial discussion in the flow chart ;gx-’c A*pa‘rameter is pro-
AVJ.ded to indicate. the results of tests performed by the procedure. Figures A5- 8 . ,

P

and A5-9 present a procedure declaration and a calling program corresponding to -
the flow charts of Figure 5-26 and Rigure 5-27.° . & - ' T '
s - o)
A . . . A
s . " | comment a proc€dure .to test eq_uali-ty of twe 'ckomplex jnumbers;)
) procedure compeq(a,b,c,d,n); - . ',
. real a, b, c, 4d; . . B P
. integer n; . b T
) 1. begin ’ , L
\ if 8 = c fhen begin if b =d then® n:=0 elge '
" 5 ! n:=l end else n:=1; - .
. . a— g ..
. end ’ . - 4
. == i N .
i » i . s
. ¢ Pl . .~ 7 .
KN . Figure A5-8. A procedure declaration for compeq N
. . Lt -
. _ ’ \ ’ .
. -/
begin X)
N ’ ' comment pieces of a‘program showing the us\e of compeq; ") £y
real x u, vi
s ¥, A o ‘l\‘ e
integer k; R 1"‘5—@\ AL
. comment the proeedure declaration of Figure A5- 8 must be -
q yhysically-inserted here; ,
b
——- | . -~ -
N T t T ’ . .
compeg(x,y,u,v,k); : R
. if k= 0 then.go to \sth else go to st3; e ,
. . sth: fama
. A
st3: --- N

, -~
Figure A5-9. Pieces of an ALGOL program testing thé€
. - equality of two complex numbers
. - o B] X .

t . . M

ERIC . o

Aruitoxt provided by Eic: 1Y

4

§

O

ERIC

Aruitoxt provided by Eic:

wvng
Ly

5 » . “\: < /]
Fungtion names and statément labels ag procedure parameters
e T 2
In ALGOL both function names and labels are allowed as parameters of pro-

cedures. In the head of thebprocedure deglaration these parameters must be

specified as to type. For example: .

procedure SMSG(x,y,f,e);
- ? B .
real x,y; .
N . > _. , .
real procedure fi . .
? label e;

J

The actual parameters which replace the formal oniin.the call of this pro-
» if the call is

cedure must match the type’s specified. For instanc
. 1
. L

SMSG(RL,R2,R3,Rk); . ¥

then R1L and RZ must Mave been declared to be real in the head of‘the cglling
program. R3 must have" been declared as a real procedure (Tunction) and
mst be a label. ALGOL 60 does not require labels to be declarsd in the galling
p:;'ogr‘am '(Extended ALGOL does require this.)

o -
Many procedures can be wntten more naturally and easily in ALGO by n-
cluding functions or labels as pa.rameters In Chapter Teit wouid be, d.lf 1cult ! .
to write some of,’the procedures 1n any other way. .
- . of o
- N i
R) .
'Exerc:.ses AS% prtig B ANy ’
l.) Follqmng the flow chart prepa¥ed in Problem 1, Exen.l,s
write an ALGOL procedure to soLve twd equat:.ons 1n two /unknowns.
2. “(a) - (d). Write jhe ALGOL corresponding to p,arts (&) an (b) or (¢) and .
‘ {d). of . Problem 2 of Exercises 5-5. Use 1t T complete pro-
. ‘ gram on the following quadratic equatigns: ‘ ,-,
{e) 2x° - 3 +7 =0 A
() 3.].1+x2 - 6.2x - 14.23 = . LI
- o ' £ g
3. Write an ALGOL proce&ge and the calling progfam ¢orresponding to one
of the technig_{;es you used for solving Problem Exercisgs 5-5, main text.
©
. ¥ R
. B { e
- ‘f@’ N

. C— . ! ,
) - e N : . l - { AS \
’ * i D ’ v - -
- TA5~-6 Symbol manipulation in ALGOL ‘ : .

L=

)

1

1

In- Section.'A2’-8 the input ang oﬁtput of alphanumeric characters was dis-
cussed. No¥W we want to” find out how alphanumeric data can be processed so
that we will be able to alter such input data as

’
14

vy - THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG
H [b 4

o - 3.1M59) -

.. ‘ -h , T +s(trulv+w). /

Since we will want to be able to refer to each individual element in such
; : <)
charagter strings, we will associate a separate variable with each element of

a strj}ng. St <.

y In Sectio'n A2-8 3(01.1 were told about the read symbol statement to input
alph'anumeri'c data. You may remember that this statement appeared as, for .
) exa:hp‘l;e, -~ o . .
readsymbol(a,b,c);)
vhich would read whatever symbols were punched a1 the first three columns of a
card and assign thése symbols: to a, b and c, respectlvely, before proceed—

ing to the next statement. . -) .

Comment: In Burroughs (or Extended) ALGOL, 'symbol menipulation is espec-

ially easy.' Varig les whose values are alphabetic, numeric oy other characters,

are declared as a separate type called alpha.

Exa.mple: o alpha a b ,C;

Each such variable‘ean store up to six alphanumeric characters ALPHA arrays

L

can also be declaréd. It is possible to read or write characters w1th a free-

field read; however, it is oftengmore convenient;,tg,_store one ALPHA character

g per ALPHA variable. In Extedded’ ALGOL th1s can be done with a redd statement

' like the following: . .

4 l read(< 72Al >, for I “1 step 1 until 72 do C[I]);
. <

where 7T2A1 is a format of 72mone—character ALPHA types. This statement
will read 72 columns of ‘alphanumeric information. A corresponding write,state-

s ¥ o s .

ment can be formed. [.
: :)

‘ N

/
¢
.)
. < Y
‘. (..
i~ .
¥ vooosug g o

Qo . ,) S .
EN{CE v . B) o t ‘“jr‘) TS T

v S PR E A
=i o . - - -,) .

-

‘7(’1

ERIC

Aruitoxt provided by Eic:

/

In AILGOL 60, can the readsymbol statement,be used to read whole §§r1ngs? :

If the string we want to readrls punched on a card, and, the punchlng goes all :

the way across the, card (as you would‘naturally do in punchlng a long Engllsh~ - R
sentence such as this one) readsymbol would have to be followed by'%.parameter -

list with eighty identifiers " (one for each card column) Iteratlon on the .
readsymbol statement doesn't help reduce the number of 1dent1f1ers needed v

s
Y ol

since a new card is read for each regdsymbol executlon. ‘) -
\ -

The way out 6f this is 1nd1cat§d by notlng that the readsymbol statement °
looks Jjust like & sort statement or any other procedure stateMent " In fact,
that is a&gost vhat it is?! The statements read, prlnt, readsymbol and
printsymbol are all similar to procedures. They are written in machine lah-
guage and included in the wvarious ALGOL compilers wh1ch automatlcally insert
them when needed. None is a basie ﬁart of ALGOL and that is why input- ouxput ‘f
procedures‘may vary in hame and in the details of thelr speclflcations from

one implementation to another. ‘ ;

‘All we need to do to be able to read and prlnt strings 1s to ,define new
procedures Let us imagine that symbols are to be input from a aprlng of
1ndef1n1te length (like symbols on a punched paper tape or on cards laid end

to end) Now we can define a procedure (and 1eave it to an expert to prepare 'y

it) with the declaration head: - /‘ - , '
‘ s : ; ’
procedure getsymbol(s,n); . .o
- integer n; ¢ ,

integer array s;

The purpose of getsymbol is 51mply tolread the next symbol of the input string
and gssign it to the nth element of s. The procedure will read a new card

whenever it is needed to be sure that a next gymbol is always available.

Seae

Now we define a procedure declared by ’ N -
. \ . .

~

; ‘ comment procedure declaration for reading strings;

) procedure readstring(length,s%ring); B ot P
integer length; - - f
integer array string; ' D w &
begin integer i; . _) .
for 1:=1 step 1 until length do Y, . f
— — - - ¢
. v getsymbol(string,i) , “ / J
¢/
N /
112)
¢ f

We can also define complimentary procedgres called putsymbol and printstring to

provide for the output of strings=

We are now ready.to write a proper procedure, corresponding to.Figure 5-28,

- ' ~

PR

»

'f‘oi: chekeh. This declaration-is shown in Figure A3-1a. N

' commént u bchedure declaragtion to search for a character; |- '

. procedure chekch(n,s,m,c,p); - ' -

) - integer n, my c,' p; ‘
; integer array s; '
- C~ ‘begin — . g
. intéger i;) - T l
. for i:=m step 1 until n do
. ' if s{i) =*¢ then i .
. Beginp 1= 150 ., R
. ’ 8o %to endchgcch, The

- . -end, . X <

- p1=0; o,
. ' endchekeh: - s

H _ ﬂ‘_i_ i
/ .
’ Figure §5-12. *A clzarac‘ter searching procedure i

5 ‘ '

» 4 o

NS -y

i\

L -

is that no limltatlon ie made on the length of the, sf,,ving

tlgn can be u

(if enough memory is available).

can be compared by he relation

..z

0 cg;;ice is that two characters *

Iy

Aruitoxt provided by Eic:

ERIC

hﬁ\ui .. P\A \5}‘.\’:’.

4
» T 7
. LN
- o
\ - \ > .
!
’ . *
o e w3117,

Thé same declara-

One of the things to notlce about the procedur& declaratlon in Figure A5- 12
1]

to 1ns;!ect a string of, length 5 ‘\?4 ¥} string of length 5000
\onther thing

N

. ' R An ALGOL prccedug corzl'esponding fo Figure 5431& is given in Figure A5-13
. . ; . - - - N
0 comment procedure ;ieclération for chekst; .
| ‘\ procedure chekst(n,s,m,k,c,p); : L .. -
2 ' - integer n, m, k, p; . b1
, " integer array s, ¢;) ! . . e
i integer ¢, L J; . -
e comment the procedure declaratiof for ehekch' mist
T T T Lbe 1nserted here; 5
* \ . »J £:=m;‘ M ' “ : . [N o 4 .
SR ‘reﬁeat:-_iﬁ £>n-k+1 t_h_eﬂégtizero;. = n@’_;,ﬁi
. - . chekeh(n,s,2,c[1],p); \
’% . . {_f p=0 ‘thﬁ go to -éndchekst; ~
“ R . if p > n - k +1 then go to zero;) ’;; %
r:=p+l; j:=2; . X
) testm 1_1:‘ J>k _t_@ 8o to en}ichekst; - p -
. -7 . if slr]-= el3] then
) . begin £ i=p + 1;
! * §c_>_'/_t_o_ repeat;
.) .. ' | end; ° P
:
[‘;.z“) - end;-) . ‘. .
’ . N « 0 Y
N - >

Figure AS-J:B .

-
“\

4
.

A procedure 'inside a procegdure

-

sy

© e

IS

Oné way to code the procedure declaration for

chekst 1s seen in Figure

We know that there are various forms to code a flow chart.

{ - .

AS 13. Each form ,
may be an &qually valid program; the choice of one over another is often’ a

Atatter of taste. To illustrate this point we present Figure A5- l3a which 1s

°_ equivalent to Figure A5-13 but has a very different appearancg Which do you
’ prefef? . .

. v
! - [y
4) e " . . :
-, s - - 1]
iw 3 .t .
. ‘ . - - ﬁ-"'“”"" JCRN) X \
o e w w .
2 - ’) 4
}%, . - ae -y
.- o \
7 , . ¢~z w u,_":;x
+ e
o 114 ‘ - 4
LS vt 1’ N N
"ERIC . : SR o
e

5o

.4
- ,‘ > R ’ . .
. r - - " . - . ~ - :“- AS °
« ") - ’ ' . T ?’3 N - v > -
L procedure ctlekst(n,s,m,k,c,p);. . '
N integer n, m, k, p; .
v . -~
s integer array s, c; - , .
o, begin a : ‘
0 —_— '. - . a
' K -+ ‘integer 4, v, j; '
) e gomment the procedure”declaration for chekch mu‘st
¢ . " be inserted here; . -7
t ¢ ’ : . \
B > £:=m; cN ’
. . . » » ot
< repgat: if £ <o - k+ 1 then , '
. . Lo ‘) , - -
i o begln . —_— e 4 . - —_— ‘:‘\
Tl . chekeh(n,s, 2,¢(1],p);]]
(N if p#0 then - T :
N _ begin " .) . -
' ‘ - b if p<n-<k+ 1 then’ ‘
2 (A -) , . .Begin f ' . . - . ! »
R ’ - :,:; - T =p+l*; .
— - g . - . . .
* . . ! : . te .for J:=2 step 1 until k «do .
- P ' . 4 ' . . . _ ‘ . i ,begi. .
; R - I ‘ if sfr) = ¢[J) then a
& . - < oo " ri=r+l else
- - e) , o begin £:=p+l;
Jr . & I, . b —re .
o e ,o T 80 to repeat; .-
e N ¢ ’ e e * end; ... ‘-:-'.'
. .) end; -
. “ . ﬂi = ..% >
oo :' ‘else p:i=0; - "} . , .
s N : L ’, |
© : ¢ end; g ” .
e ', end / . ds ., of
) . else pi=0; i — :)
~ 3 ‘ -
I e " .
. ’ > i} , A , . ._ .
i L lgure A5-13a. An. alternate procedure declarétion = A ""1‘./ -
for chekst . "
. s , N
@, . ') ' -
- The igteresting thingd about either of these procedure declaratidns is that
- thég make use¢ of another ppocedure and so contain a "subprocedure ,declaration",, Sy
* An inspection¥of the structhire of Figure'A5-13 shows us how procedures can use
- otlﬁ" proce Hires té any level. Figure A5714 displays this structulje. o
AN v ‘ . ©

.
.

~ . ’ “ . : . -
'd" .) o+ 4
. . D4 - ' 4 . v -
- ERIC - ! .
“ o , U T L o
. . - GVIRH R . ;-
, > .) | LA Nt W Y o e . <

A

\&

S

One Tyrther point should be -made here.

~

Ong way to do thls :.s to use an-array, say
property that 1ts first component" str[O]

of the str:.ng, while its rema:.ning components

the characters themselves.

»

If %e now ~denote

haracter far whlch the search of

¢
Lnxse\decla\ation for

the procedu

v"‘r}
/
‘made by char,
LY}
~
Leyt Y ey e
>~ OoF . : .
€t
N .

s

E

Aruitoxt provided by Eic:

O

!

RIC

- N -

s,

v/

»

-

-

str,

~

. A} i .
.- h - . A :
. . nd
rocedure head o ‘
p 7 * - I \:’ -~ Q
» * -7 b N
-~ . .
be§1n \ W ’
» body ‘(declaration part) »
I i
- . ,
subprocedure head subprocedure L Procedure b - Procedure
subprocedure,body déclaration Body declaratign'
\ ____________ e - - — — — = L Ay ' N t
a | body (statement part) | . #
. o $. ¥
end . - k |
X . — L .
’ ' ! -’ a? . '\ @
ve Figure‘gA5—,ll+. Structure of nested procedure “‘declarations

It'is often very convenlept to
consider the length of a string, and the string itself, as beipg part’of a
single entity.

3

w1th the)

is an integer égqual:to “the length
str[l], str{2], .and Bo on, are (

cheleh is ‘being

chekch 1is shown in Figlre A5-15.

22

i - b T
o - . -8 o
a ' of
‘aé; .) " comm fied procedure declaratlon for chekch;,
) “ procedwre’ chek (str m,char,p); ° 4 .
' integer m, Qhar, 0; . - N -
) 1nteger array str;) .
/r”/gb .~ integer 1i; .] /.
for .irsm step 1 wntil str{l] do <
.) . begin .
. ¢ © o if str(i] = chgr then begin p:=i; .
f .) ﬁg endchekch end; o
. ’ p:=U; ' ¢) . . P
.- p endchekch: o . . . - ; . N
Figure 5-15. A-new .chekch S X

R b — - T e . ,
~ » » .
' Exercises A5-6 -
D
v
1 - 4, For the flow charts prepared in Exercises 5-6, Main Text, wrlte ALGOL .
- precedures and/or calling programs. -
/‘ﬂ .
v . {ﬂ
L Y] ‘ . .
v [-
L -
; — . . -
-y b) Tl d e T2 - S - . P
19 ! . r
1
e L4
- - .) 1~\ N
! - ~ . »>
) I
L] 'y)
7 L . ~ “ .
- l
FRIC -~ f21 ° '
WJ:EEE . ' . o ’

o

e

-~

FRIC o “

. . A
23 N - ’
. Chapter A7) . .
. L .- . . L
. - ! o MATHEMATLCAT APPLICATTONS .

Y
.
.
.

"A7-1 Root of an equation _bl'bisection .

.

[

Since finding the root of an equation is such a common problem, we shall
write the ALGOL prograﬁn id the form of a procedure called bisect. This program
will correspond to the flow chart of Figure T-5; then we will write an AIGOL

EN
program which chlls this procedure: . .

(I The parameters of the procedure are clearly ,a and b, the .

end® of the interval under consideration, a tolerance, €psi, which

specifies the acﬁrac)r of the resul%,+and a variable, reot which

will be set equal to the root of the égnation. : -

Figure A7-1 shows one way to code thé hisect procedure. The first ‘fhing
that is dohe in the body of bisect is to geassigp the values of parameters a
.respectivel)r as a safeguard to -~

and b to auxiliary variables 'xL and x2,
he calling i)rogram.

" protect the values of arguments that match ‘& and b in
We protect against ‘the posmbihty of there not beingua root- in the interval

by printing the message 1ndicated in this case.’ B . -
. . .

. . -
ty " - . R

‘ o - Al
d’ ! -

’
- SN - -
] . IJ

: -
B © - .

I

S
i

S : A
” . - \ . ;
AT . . 3 *
. ; : AN ”
¢ oo '
-, _ ' procedure bisect (a, b, epst, rooti‘;", . ‘p‘ i
. real g, b, epsj/ root; .)
- begin ' ' ’ :
, real x1, x2, xﬁi temp, yl . : ‘ h
.) xl := 8) ! 7o ..." ! ‘
A 1’ L 3 44& -
- e VL= f£(x); T : e .
: 'ﬁ temp := yl X f(x2), ‘ ’ i ‘ -
i .

if temp > O tﬁen write ("Method is 3.nappllca.ble") .
else if temp 0 then

,"‘ , begin if y1 = 0 then root := x1 e_lég root := x2;
. F E write .(a, b, epsi; root);
' " end ’) . .
' else begin . - - T
' B%X& T mois (xLo+ x2)/2 T .)
if abs(x2 x1) > € then g ' '7‘ ,
’ P begin temp := yl X f(xm); -
. . D A tem < 0 then , o :
' ‘ R begin x2 := xm; go to BOKG; end
. : . . else if temp > O then
: - ’ begin x1 := xm; go to BOX6; end;
. end o
» . ‘ , else begin root := m; -2 '
, ’ > o i - writé (a, b, epsi, root), :
. N - 4":9_@;. - s - S -
!) ':;J FL : end; R »;‘ - . . ,y
' %r;d "bisect ’ ‘) "‘
. - v -7 Figure A7-1 '
’\ - .. X

Now suppose we wanted to usge this procedure to Tind the root of the egua-
tion 3x3 -™x=-2=0 which lies between 1 and 2. Then we should need to
" define .a real procedure which calculates the value of 3x3 - Tx - 2. If we
) choosé epsi =°lO-l+ we would then need to- call bisect by‘the.gtatement,

Vo -
bisect(1,2,10 h,root) .

s -~
° o
.. &
. ‘t. '
E ¢
[- . . <
o : 120 L o
. ; ‘
FRIC. . 123 !

Aruitoxt provided by Eic:

)
"
LY

. ‘ v N
e T e e T
" The ALGOL program could. be, wrltten as follows:~ -~ -
begin . - o . e
’ tomment Place the declaratlon of the ‘proceédure biSert- here;
. real procedure f(x)? real x; o TTE—T
' - f:‘=(3xx>¢"‘x-7)xx-2'; g .,
L real root; | R
. - ": bisect(l,2,’;0':4,'root)5 ®

-
-

Suppose we wish to use the bisect procedure with a series of functions:
. ‘I‘hou,gh desirable, this would be d_lfflcult with b1sect as written. We ;Jo-u-.ld
have to reproduce the procedure bisect and "package" 1t with each functl\on
separately, What we need is some means by which to identify each of a series

. of functions so that we canr commun;cate to the nrocedure bisect which of the

'functions it is to use when called. Most ALGOL processors take care of this
problem by allowing the f‘unctlon itself to be'a parameter of the procedure.
Flnd out if your processor m.ll allow you to do thigs In this book we-are

assuming this is the case. K

.

We now revise our procedure, rendming it "zero" and adding the function
‘neme f as a parameter. We_.also add the statement label L as a parameter
(also permitted 'in most ALGOL processors). Now we can have a parameter list
that is 1dent1cal with the one in the f‘unnel of Figure 7-6. The revised ALGOL
procedure is given in Figure A7-2. It matches in nearly every, respect the

flow chart procedure given ip the main text.

}

) T ey
— . g _r -
' -
-~ - * ’
.
. -
N\)
- \ . .
> . . 1\')
. . . ; y - %
3 . 4 \
. » ~
’ Y
T
.
. a
’
-~ . A - -
- hY L4 4 B R
‘.\4
- -

Y] >
‘l) | . leif 9 s
QO N - .

-

/-

e

- 'Broéedure zero (£, L, a, b, epsi, root);
.real a, b, epsi, ropt‘,"
real procedure f; ’
label L; »
real x1, x2, Ym, temp,
. xl := a; x2 :=.b;
yl := £fx1); temp := yl X _£(x2);
if temp > O then goto L
else’if témp = 0 then -

- begin if yl = O then root := xl1 else root := x2; end;

-

else begin -,
xm i=<(xl + x2)/2;
" if abs(xl - x2) >.c then
begin temp := yl X f(am);)
7" if temp < O then

begin x2 := xm; go to BOX6; _e_ﬁ_d_.

else if temp > O then
. begin x1 :=&m;ago to §0X6; end;»

end

else root := xm;
i
end; -

«

‘end zero
oy —

v Figure A7-2
-

<

Along with the two new parameters f and

?tionb in the head of the procedure:

7 .
N -

real- procedure f

aag

3

lagbel L;

;-

iﬁformatiqn that the idsnt{f\’ier f 1is not a variable but a placeholder for
a function name. Similarly, mw.}st tell the compiler that the identifier
L has the meaning of (and is,A placeholder for) a label.

k 4 4

LI
Full Tt Provided by ERIC.
> ~
. N

AT

s [e .

3

~ Now let us use th:.s “second procedure to find the root of 3x° - Tx-.2=0,
betweea 1 and 2, the root of x5 - hx +- 7x3 - X+ 3=0 between -} and
"0 end the root of x % cos(x) between 0 and 1. Each of these equations,

~

° can be thought of asa function of x. We give each a distinctive name:

.

’ > b L -

£(x) =35 - Tx - 2=0, , : ;

-

s(x)=x5-l+xh+'{x3_-x+3=0

- . .

and t(x) = x -.cos(x). ° .

If we choose epsi = 10'1*, we could then write the ALGOL program shown in
Figure i7-3. ’

.

- vegin

) ' real procedure f£(x);.real x; £ := (3 X xt2<7) x x-2; . :
real procedure g(x); real x; g := (((x-4) X x+T) X xf2-1,/) % X+3;
real procedure t(x); real x; t :-.E‘x:'cos(x); N

’coxmnent Place the procedure declaration for zero here;
real root; ’ . .
zero(f,label,1,2,.0001,root);

write(root);

zero(g,label,-1,0,2,.0001,root);

‘ write(root); ‘_\\ . S
- ;
. zero(t,label,0,1,.0001,root); :

o . write(root); go to BOXx;
label: write(™Method is-inapplicable®); BOXx:
Figure AT-3

We now show that it is possible, if we wish, to complete the analogy
between our AIGOL zero and the flow chart procedure, Up to now we have pro-:
tected the mcozm.ng values for the th:.rd and fourth parameters by reassigning

’ these to the auxillary or local variables x1 ‘and x2 inside the procedure. \%
This achieves the intent of the "wavy. lines", i.e. - XL, x2 used 1n the ¥
funnel which tells us to protect -these values. ALGOL gives us an optional way -
to achieve this that is Acloser in spirit to the wav&m‘lines. We see this done
in Figure AT7-4 where we, repeat the head and the first few etatements of the
body of a firlxal version qf. "zero.

O - . "“ cr

ERIC S o N

“Aeh
- ; SN N
- ,)

\ ‘ i - ~ o N
...,,.____..:—E'?& {
> . -~ . R .)
- . procedure zero (f,L,x1,x2,ebsi,root); @
." ‘ < .)
. real x1,x2,epsi,root; - ~ , : , 4
) ’ . réal procedure f; . Lt .)
- . label L; ¢ o oL . ’ ..
begin oLt
2 > - real xm,temp,yl; . L -
. f ‘y}/ f(xl), temp := yl X £(x2); . ’
E Same as Figure A7-2 ‘ f—/ v
end o T -
. 5 .
v Figure A7-4. ®ingl version

A

»

Notice that we have used the param/eter;[amesl xl and x2 in place of

a and b, but have declared these in a special declaration .

.

‘ value x1,x3; .

- %0 be parameters whose vhl.ues are being supplied to the procedure (i.e., slips
of paper and not window boxes) Making xl én'd x2 each a "value parameter"
means, we -no longer need the explicit protection mechanism we used before of
writing assignment statements that transfer the values to local varisbles.

If you decide to use the yil_uﬁ declaration in’ any of the procedures you write,
remember this simple restriction: A value declaration mist be the first dec-

laration in the procedure heading after the prbced.ure name and the parameter

-1 list are given. ’ ,
\ o)] L d
R .t
=} Lo - ,
. “ .
. N ’
: \) . Vo« .
i i .
£ - -~
)
*
) . t 3 ‘
f
1
\ AY ,
Ad F
} 1
- F
.
, . - - . .
"]
12k -

Q ‘
“RIC o 127

-
4

N

" Exd

“Exefcises A7-1
i

l'

gram to solve all of the equations given ‘in

Exerc1ses T-1, Set ¢ in’text. Use the indicated intervals :
f and the indlcated ror/ Yolerances. Include equation 3 a second time
w1th epsl z 107 the program and compare your results with the .
hand—calzulated 9 ! v
2 erte an ALGOL D to* carry out the functhn evaluations needed in
drawlng the gra~hs in/ Exercises 7-1, Set A, maln text. Run your program.
3. Write and run gn LGOL program to solve the alley problem (No. 6) i
L3
Exercises 7-1,) Set” , main text Then Solve the prqplem to the nearest,
hundredth of & fodt/if the ladders are- 25783 "and 19.1L ft. long and
the crossoveJ/porn is 7.7 £t. abéVe the ground.
L - 5. For each of the flow chart ébld%ions you prepared for Problems 1 and
' 4, Exercises 7 1, Set D, employ the zero procedure (Figures A7-1 or
7-2) and write the companion ALGOL program and function procedures. ;f
PO ‘ : X : .

o

Aruitoxt provided by Eic: . . N

- B . N ‘ R . /

> 2

£l .

ERIC

Aruitoxt provided by Eic

AT

A7-2 The area under a curve: an example, y = l/x, Between x = l and x = 2

T
: .

Since the area under the curve Yy = l/x is of interest in defining loga-
rithms we begin by writlng a simple ALGOL program for the calculation of.the - -

apprOXimate area under this curve between x = 1 and x = 2. This calculation

Twill provide an approximation to #n2. We assume thal_an-exrror tolerance epsi

is read :Ln from a card and that calculation of the approximate area is “to be - .

carried out by doubling the number of subdiv1s10ns each time and termin_at,ing e

the calculation when the absoldé value of the difference of two sux.cessz.ve

approximations is less than epsi. The following program in Figure AT~ }follews»

— g o

closely the flow chart of Figure 7-16. Remember that f(x) 1/x. T°F

L S - N
begin .
v integer n, k; /. o) w
.) real epsi, AREA, S; - ’, ‘J, t
array T{0:100]; . -
read (epsi); - . e mmr e e
© 1[0]:=0.5 x (£61) + £(2)); . N
n:=1; ' i TR S .
‘ BOX3: S:=0; - T T)
for ki=l step 2 until'2 m -1 *do o :
. o0 si=S+ £(1 o+ k/24R)y - - <)
' T{n]:=0.5 X T[n-1] + S/(2 4 n);
if- abs{T[n] - T[n-1]) < epsi_then go to BOXY; '
B i - - n:=n=+ l' — -)
. g0 16 BOX3; . E——
BOX9: AREA := T(n]; ‘ . |
write("AREA =", AREA); X
end ’) e
* Figure A7-5 -) .
Exercises A7-2
1. In the above program it is implicitly assumed that the calculation wil]/(
. ‘terminate before n exceeds 100. v) "
{a) Is it possible for n to exceed 100 ?
. (b) What would happen if it failed to terminate before p exceeds lOO ?
(¢) Add some statements to the above program to protect against this. '
undesirable event, even if the error tolerance is not seatisfied._' ’
.)) :
Print out a measage in this case indicating failure to satisfy the error
tolerance., . . "
. . . »ﬁﬁ’* ’
’ / 126 ‘)
* : ‘ IR 1 9 () " s - .
. . . - v i ":’\;_
. » " . h K '

Aruitoxt provided by Eic:

.

A A . e N
B T

Criticize the above program for mefflclency. Rel;s@.;t.ta,mak&at morg -

-t

efflcient by following the flow chart of Fxgure 7 17. Also incorporate
a safety term:matlon if n exceeds 100, _.‘@J,B.X.Qur?xevmsed program usmg e

~ first O. Ol and then 0.00I &S va:Lues Ior epsi. ™.

Instead of _gmnatmg the calculat}.on of the approximate area when the

absolute value of the difference of two success:.ve approximations is less

'than e1;$§§g we coul;i term:mate the calcu‘.l.atlon after g fixed finite

number of _apprcagimatlons have ‘éeen calculated. Revisetthe program of the

previous problem “to read in an];Ipper limit for the number of 1teratlons to
bé carried out gg’d n’to j:erminate whe this is reached. Run your Py
program for n = l5.

Explain how to rev:.se the-uprogram,,glven in this sectlon}so that the calcu-

latlon could be repeated for a series of values of epsi each of whlch is

read in from a card. -

Write an ALGOL progrem for the calculation describ®d in Exercise 7-2, Set C,
Problem 6, mdin text. Use f(x) = 1/x. Run your program and compare ’
results using n = 5, 25, 75, 125, 200, . :

2l

-

~

r

LWW‘;"?'? -
s

v

“ A7-3 Area under curve: the general case . *)
- . We now consider the general ‘case of finding an, approxifiation to the area

under a curve 'y = £(x), above the x-axis and between ;h vertical" lines .
x =a and x =b. In order to make the program &s useful as poss.iﬂ.’e we' shall
wr{te it in the *form of a procedure. The “function- f£(x) ‘is assumed to Be,
defined as a.real procedure. An error tol&¥ance epsi 1is givén and we term-
inate the calculation when the absolute vﬁu\e of, th.e\ diffez:ence ‘of two succes-

+ give approximations is less than epsi. ‘W& follow the flow chart of Figure 7-20.

. L]

\ ¢
real prqcedure area,’(gg‘p‘,ﬂe;‘asi,f‘g’ real a,b,epsi; redl prbcedure f;

. begin ~ A
begin P i

o integer k,m; . . . -
. real h, S, OLAREA, NUAREA; L
m:=1l; - ") |
h:=b - a; s 0 ‘ . -

OLAREA := 0.5 X h X (f(elc), + £(0)); . _
\ BOX3: m := 2 X m; : ‘

ho:=h/2; e . o
S := 0; B N) i
' " fork =1 step 2-until ml & -
. S:=S+f(a+k><h);' 6‘_ I
< NUAREA 1= 0.5 X OLAREA + b X'S;) . i '
. - if abs(NUAREA - OLAREA) < epsi then go to BOX9;
_ OLAREA ‘:= NUAREA; '
! ' g0 to BOX3; -
BOX9: area :=, NUAREA; ?
) . end area :\‘ - ‘ ¢ I
. / L ‘ ¢

! i

It 'wga want to use this procedure to calculate and p~rin% the approximgté
area under the cyrve y = 1/x, above the x-axis, and between the lines _x =1 l ‘

agd x = 2, we might use a tolerance of epsi = 10,‘1* and then we could write

the following program: il . ==
i M 3
begin , ' : “

real procedure f(x); real x; f := 17x; :

-
.

real z;
z = area(l,é‘,%OOl,f);

[

l
comment Place the above procedure declaration fpr area here; -
write(1,2,2);

e - -7 ¥

Aruitoxt provided by Eic:
.

. Exercibes A'? 3

\

1. ,(a) Write an ADGOL ﬂnct:.on procedure area2(a b,n,f) which calculates

an approx:.matlon to the area under thegcurve y = £(x) , above the

. — v
' - X-axig and between thewlines x =a and x=1b and which uses a
’ ° subdivision of the.interval (a,b) into n equal parts. TFollow .
v the flow chart drawn in Exercises 7-3,Problem 1, of the main text.
i { Test your program for y = iin X between x =0 and x:= n with
N n = 5000. (How does your lresult compare with the area of a semi-
R circle of diameter =n ?) ‘) ‘

’ .

(b) Use function area? to print out a table of natural logarithms for

« the likrary function 1n(x) for the same values of x for com-
parison. : . ‘

-«

.2. Tell how the procedure area (a,b,epsi,f) of this section may be adapted to
- protect against the posslblllty of an endless loop by caus1ng termination
[P of the calculation if the number of subd_1v1s1ons exceeds n. If th
) culatron 1s§term1nated in this manner without satlsfylng the acc:!acy
crlterlon, a message should be prlnted 1n addition to giving the approx-

" . imation to the area.
e .

3. vlrite an ALGOL program in which you first declare the procedure area of
. ; this section and the procedure area2 of ?ﬁem 1. Then call these
"procedrrres with apﬁropriat’e values of the parameters to calculate approx-
imations to the arbas described below. First use 1,2,k equal subdlv:.siong

o % of the interval and then/s{ an error tolerance of epsi Io 3. 0f course,

you will need to suppl the necessary real procedure declarations to define,
« the functions wlyo{n:er into the descriptions of the areas.

A

(a) Below y & h3h29/x, sbove x- akls, betweed x = 1 and x = 3. .
(’I’he rea is log 3.)

’/J/T‘b‘)— elow /y = 3x + 2x + 1, above x-axis, between x = -2 and x = 2.

"’(c) Below y = x3,, above y = x2, between x —,l and x = 4. :

Lh Write an AI.GOL program and necessary real procedures that can be used in

]

. calling on érea(a b,epsi,f) to compute an app:co:d.mate value of n to
four decimal places. (See Problem 6, Exercises 7-3, main texﬁ.)

or

4 — L

numbers from 1 through S1 ,in intervals of 5. Also, print out .

R R ¢ "R

L N ¢ i
: .

» A7-4 Similtaneous linear equations: Developing a systemstic method of solution

In this secfion of the main text we explained carefully how to solve
systems of two and 3$hree §ixﬁultaneous equations. Exercises 7-k provided exam-
ples of the method. You should now be ready to write a simple ALGOL program

for tﬁ’é"”é:élution of two simultaneous equations in two unknowns.
- o B Y

- 1 o

e, Exercises A7-k

N ”
-~ ———— B f

¢ . -

1. Follow the flow chart drawn in Exercises 7 4, Set B, of the main text,
and write a correspondmg AIGOL program\for the solution of two similtan-

i

eous \Equatlons 1n two unknowns:

o

. - - ¥ 811%) * 8% =0 '
e 8,.%X, +&_.X i ‘ '
L L 2171 2272~ 2 ,
- . & Co | . v
. . Z. Use the program of Problem 1 to solve the following systems of equations

- on the computer. Make a hand-calculated check of’ your gomputer results.
= [}

For systems (f) apd (g), slide rule accuracy is sufficient.
i .

s . . . -

(a) Ux -2y=5 (e) Sx+y=2 Y
o Pxat Y= b 3x - by 27
. . a 3
(b) bx By =5 ; (£) 3.12kx "+ 5.375x, = -1.23k
)) ox)- by = 7 . :].0.211,5xl - 5.211+x2 = 3.714
. (e) %x - by =12 (@) 5.128c - 3.87hx, = 12.42
\ ‘bx + Gy = 3 ’ 3.817x) + 15.15Tx;5 = 3.784
- N ') R o)
L () 2x+ly =< o
» -~
. 3x+y=2 < .
) ' &
s . / .) :
L4 g ”‘» :
. - e '
' 4 ' }

-
.

Qe . 130' .
ERICT - 138

¢ . . LN t . L) RN e
g N]
1

‘A7-5 Slmultaneous linear equations: Gauss algorithm ’

In describing the. solution of three equations in three unknowns we des-~

cribed each of the essentlal operatlons in turn and drew a flow chart for each.

“ Tt will be\lnstructlve to build yp~bke ALGOL program in the same gradual fashion.

k)

QWe *B'é’gln by dividing the-first equation through by 8,15 8s descrlbed. in Figure
T-24: The, corresponding AIGOL statements would. ‘bé:

N
R Y

5 for j:=2 step 1 until\3 o
& - a[l,j]::d[l,jé/a[l,l];
b(1):=b[1]/al1,1]; -

* r

~

The elimination of x, from the 1B row, i=2,3 is described in

. ‘Figure 7-25 and the co'rresponding ALGOL statements, would be:€
‘ - for j:=2 step 1 until 3 do :

alijjl:=ali,j] - ali,1] x al1,j]; '

b{i):=bl1] - ali,1] % b[1];

-

Next we h e to divide the hew second equation by a22 and then\eliminate

from the thlrd. éﬁu m. Following.these simple examples, you should have

X,
2 .
little troubke wrlting the ALGOL that's equivalent to Figures 7-27 through 7-30.

N
- - ’ ~

—
«

Exercises AT-5 Set A o

1. Write tﬁe AIGOL statements corresponding to the flow chart of Figure 7-27.

-4

2. Note the simlarlty between the statements of Problem 1 and those corres-
ponchng to F:Lgure 7-24. Write a single set of ALGOL. statements tQ cover *~
both cases by following Figure 7-28. "

'Write the ALGOL statément.s for the flowy chart of Figure 7-30. -

Now write the ALGOL that's-.equiValent to Figure 7-33.
N . . .

LA i Tox: Provided by ERIC

- 2

Next we want to carry out the back solutlon in order to obtain x3, Koy Xy -
in turn. This is destribed in the flow charts of Figures 7 3% and 7-35. The -~ /
ALGOL statements corresponding to the latter flow chart, Figure 7-35, would be: ¢'

.
-

for 17:= 3 step -1 untll 1 do
x[i] := v[i];
for j := 3 step -1 until 1 + 1 do
x{1] = x(1] - ali,3) x x[4];
end;
Now just as the complete flow chart of Figure 7-33 was built up from par-
tial flow charts, so we can build up the complete ALGOL program correspbnding
. to Figure 7-36 from the par‘tial ALG-OL progre.ms wh:.ch we have Just discussed and
which yQu have written in Exerclses A7-5, Set AA

N
@
N

- 0

Exercises A7-5 Set B

1.' Write a complete AJ:.GOL program for the Gauss Algorithm given in Fig@ 7-36.

2. Bun the above program on your machine and use the program to solve the
eystems’ éf similtaneous, linear eqp.ations represented by the following

. arraSrs ’

(ay 3x + Uy + 2 o+, (e) bx-2y-32z
2x +, by %z = 3 3x + S5y + 2z,
3x -5y + 3z = : T 2X 4y + 22=’l

x+2y-z'=1+. (a) 2x - y + 6z =43
3x -2y +hz=1 . 3 -ly+lbz=1
x-3‘y—22=7 ’ x+’2y-5z=7

f 3

Now use the above program on your.machine to solve these systems of

equatioﬁs : ;

e N - A ‘ N B T
(a) 3.1k7xl.+ e.ulgxg :‘3.&79x3 = 4.219
6.2u1x1 - 5.678x2 + h.27lx3 -52.17 .
3 8h1x1 + 5, 761x + 3k, 31!;x3 = 27.14
27.1k7%) - 3. mx - 3. zqu = 5.617
31. h68x1 4 3. h28x + L, 7l9x = 31.k21 ‘
L 11121x) 3. l7lx + 5. 31ux —'-17 2

lp)

({‘gpAE

3%

P A}

Aruitoxt provided by Eic:

Solution of n. equations in n funlmowns

The generalization to n* equaiibns is quite easy if we follow
exactly the pattern we just used‘;_‘or 3 equations. You are asked to make the

necessary changes in the partial programs in the fol;owi;rlg,exercises.

. -

3
l'bcercise.F'I-S Set C -) 7

i

Revise your ARGOL program for the Gauss Algorithm to handlee n equations
a'rvld n unknowns, adcordipg to the procedure flow chart you prepared for
Problem 2, Exergises 7-5, Sep A, main text. Call the procedure Gauss. Test
the procedure using the 4 by 4 system gi.ven in Problem 3 of Exercises 7-5,
Set B, in the main text. Show the calling program which calls on Gauss.

L4
o~

4
*Exercise AT-5 Set D

1~ In Exercises T7-5, Set C,,of the main text you *were asked to insert
"partial pivoting" as a capability of .your flo¥ chart for the Gauss
procedure. Show the corresponding changes necessary to the ALGOL pro-'
- ~ e

cedure Gauss which you prepared in the preceding exercise.

\ . 11
, 2. Use phe reyiged Gauss procedure to solve the following systems of simul-
taneous Iinear equétions with and without partial pivoting.
. - 3

v

(a) 3x2-’4x = b ' ,(b)-2xl-3)‘ce+hx =7

3 3

3x) - 2ng+ hx3 =7 _hxl - 6x2 + 13x3 =11
5x1+15x2-3x3=-l+ 2x1-7gc2-}2x3=1

[4

Aruitoxt provided by Eic:

v

2

o
.
gt

JERIC -

"~ double subseripts,

ALGOL cheracter set, 8 .
Mgol 60, 1 .
alphanumerlc data, 39 '
_ alternate exits from procedures, 109-
{* aréa under a curve

from & =1 to x = 2, 126
general case, 128
- arithmetic expresgion, 22 ..

array declarations, Th
for doubly-subscripted varlables, 78
array input end output, 75
array storage, T3 A .
assignment meaning when there are type
differences, 32
assignment statements, 22

bisection proceés, .
block, 97

body .of a progrdm, 36
“branching, 45

. “from procedures, 109

Burroughs Algol write stetement, 56 .

calllng a procedure, 107

Ycard leyout, 6 -
composition of function designators,
105 ! ’

compound conditions, 62
compound statément, 36
" computer program, 2

LY

- conditiogel statement, 45

else type, 49

i 44
°

78 ™
duntny statement, 61
B for’ clause, 81 ’
for statement 81 ",
format 57 . -

function designator, 100 " s 7

function nanes as procedure parameters,
o 110 -

" function procedure, 98, 103 .
function reference, 28

' \functions" @8 procedure parameters, 122

-

INDEX

-

identifying remerks in output 55

input-output statements, 15

integér :
division, 25
procedure, 98
type variable, 10

iterafion, 81

labels, 10

ds procedure parameters, 110, 122

local varisble, 1oh$;
looping, 81 ~

multiple branchidg, 62

only), 58 *
nested loops, 93 :

nested procedure declarations,

‘non-local yaylable, 104 *
numericel constents, 8

operator symbols, 13
order of computation, 31

A

-

parameter list of a procedure

procedure

v

biséct (a, b, epsi, root),

‘nested conditionals (2-waxbbranche§

116 "

104

R

“body, 97
call, 107

‘head, 97

. zero (f, L,

procedures, 97

—program, 37

120

-

declaratlon, 97

- -~ »

a, b, epsi, root), 12

prpper procedures, 106

reed ‘stetement, 16,
regl numbers, T =
real procedure, 98
real type variable, 10

simple statement 36

-

H

!‘.

¥

P

simultaneous linear equations, 130, -

sburce programs, 2
spacesg: 14
specie% symbols, 13

v -

Pl

Gauss algorithm, 131 ') -

go to to statement, b4

greatest 1nteger functionf S

. 4 s

standard mathematical functions, 11
STOP; 61 . ‘

HALT, 61 - ~ L
‘héed of a program, 36 = .

g .
identifiers, 10

if statement, hs - . ’

.
. N L
D e] LA

O

A ruitoxt provided by Eic: I

storage of doubly-subscripted arrays, 78'i¢
string, 112 . woo

string procedures, 112 ‘
‘subscripted veriables, T3

symbol menipuletion, 111

¢

in extended ALGOL, 111°*

v . [T

"\ g

¢ . :
B
. '
. . v M
table-look-up, -91 > N '
. target program, 2) .
«type of an evalusted expression, 23
’ . - . - ~—
D . unary minus, 30 » .
.) s
, value declaration, 124 y
varisble (value) protection in ALGOL, 123 - .
variables, 10 S~
: L3
write state’ment, 19
.]
) . . .
. i - S * . .
. .
\0 ~)
. .
. .
. - -] v
A . LIt é
- . s
. :)1 *
. s
- L
. ']
’
r A -
»
, .
. : , » 3
' . \ 1 .
..
- - * /- 14 - - Q
- -
"
. . -f - " ‘
B S)
‘ N . ‘
. .)
N L \ e
RN . ' <
< [
4 - -
v et A -
13
- +
. »
4 -
. . ., o .
; y . IS ; LT L .l . . 4
‘,i‘&" 1 o, » - .
- v €31 .
ERIC S - 133 :
e i S -~ 4 -

s

