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. Weekly Teackling Plan - . . £ o
v * . ] ~ £ ! /\
<L ' You will find below a rough gulde foz" the nulber of weeks which each -7
** ' chapter 1s expected to take.for ade%yate coverage Hére weeks are assumed to r
i be full £ 1ve day weeks without 1nterruotlon ‘I‘hese estlmates are based on the V
- -
R .experienc galneu vy the seventeen teachers who used the book durlng the trlal "

L4

year. Th t:Lmes shown 1nclude those needed to coyver the eorrespondlng material

in the language supplements.. r o \. ‘ ¢ , -
4 . . . * R ’ ‘ " A
. ! . M [of LY
- Chapter . Min. Mex. -  Best Guess
°, . » L. /( L. A ’l —_—
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ppendix B (optional) - '
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. Asguming. 15 weeks of unintermpted ingtruction,.it would appear that

" either: Chapter 7 or Chapter 8 might be covered with moderate thoroughness
(but not .both)

L] 1

’I’he Role of\Laboratory Work 1n thls Course v R

g ‘~_.

2 1 For maxiyum bepefilt from this course, the student needs contact with a .

computer, prln&rily for verifying and trouble- shoorting the algorithms which he
has’ constructed. This laboratory work need not be "hands on" computer exper-
+ lence, but shoul be whatever is ne\:essary for adequate testlng of programs on
the computer facil ty that is chosen for use. Hands-on computer experience 1is

no, goal of this courge. Where poss1ble, it should be avoided as there is more

.-

. than enough substant1 1 material of a mathematieal ynature in ‘this text. L’




'?13 . If the "low-cnart language in this book is taughi wsll, the% FORTRAN s

Many schools already have computers or have them ’on order For schools
) that have no racll:r.‘tles of their own, (and gven for schools that do), ‘arrange- '
nents mt\ neanb}, colleges, unlve}1s1t1es, o other 1nst1tutlons for the dse of
‘thEII‘ facilities are urged. Distances of.‘ u to 200 m;Lles from the unlverslty

or 2o0llege need not Ye a prohlbltlve factor. A numbe/r of universitlies wn.ll be*

1nstallJ.ng tlme “shdred,’ *omputer systems ip.esite coming years. Arrangements-for

remote uge of such faClll"leS (especially in a cilt/y via rented teletype or

other keyboard consoles looks 1ncreas1ngly promls-lng. .

. N ~ . PO

v
<

Choice of a Programxm‘,ng Language . - .

»

. (- Carerul and serlous study must be.'devoted to the ch01ce oﬂ a language, a
' computer, and a software system. (o01tware refers to the serv1ce programs ) )
used tooperate and exploit the computerv f’or your benefit.) The best language

is not necessar1ly measured by the number of people us1ng it.
- EA .

Learn:.ng> one good Lxrogramnlng language makes it Very easy to learn another.

l -~

. . < - .
\M, ny s1ml‘lar lanvuage ge_gam b, L W W\{}e 4585 the sec- .
-

ond language (‘MMart language at empts to deal w“th those concepts of
central 1ntérest in all programnung" languages in a e_ontext free of most df the’

synta%tlc detalls assoclated mth a given language. N .

- Ty

Ga.ven a choice of ‘ohe -programming language, such as FOR'I‘R:AN ‘one ﬁst \
still be aware of varlatlons in igs 1mplementat10n on varlous types of com- LB

ruters eometlmes, even two VerSJ.ons of FORTRAN for the same~mach1ne may diffef
I-4

R zﬁaterlally. - . o ' v R

¢ ‘.,
.

Thes device which implem,ents a laggusmge on a gi“ven machine is a prpgram
which we call a processor. _- Among thésfactors that contribute to variation

. \' - .
P :Ln"these processors are . 3’ .. . . T
. N . ~

(a) -,\size of the "eomputer (mefnorx‘and speed)° ’ . : -

* (b) prpcessmg speeds--rate at which programs are compiléd (or readied

I3

. By the computer for computatlon) . A T e -
e, L ) . Ct
(8)° speed in executmg the computation;. "' ) - : .
. % T (&) rgessmg quality--<some prd?:es‘sors in use still have~ errors 1.,
~ - .S
nery ‘ *‘them, Some procegors produce better intermedlate dbcumentation . 3
N ) — .than’othexrs; - ‘ - L v
" . ) . . . ) .
s v & (e) error detection and recovery--a critical factor is the degree to - o
) which programm.lng and language, errors made by the student or '&
. teacher are detected clearfy 1den’t1fied and reported or corrected -
4 C < . . : - .o e
- , B - o ,)
o . T K P Are ey 2 8 B N . ‘5‘3“:5
EMC - ':, * ) . . v”‘!?“ . .t 'J‘.?}" b
3 : . e g e TS ’ : L gy
. A - - ‘\ :;‘ 3 4 ‘ - ‘ ¥ 2 %’Q
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.

by the computer. at the time the program\iS' being compil’ed Fatal

- = __;ﬁ programming Brrors can also be aetected and‘reported durlng execu-

L5

‘ tion of the target (comclled) program. The quallty of this reprQ
ing also varies widely depentiing on the executive system (more
soztware) which is"ﬁelng used. "Detection of equipment mélfunction
durlng 1nput/qutput and of misuse of llbrary subroutlnes is impor-
tant,and the way these ervors are treated«can be critical to the
efficiekt/running'of large numbers of small studen} problems oh a

computer in a reasonable amount of elapsed time. . —

‘
£l \ . ) -

Next in importance to the quality of the progréamming language 1s the
question. of access to-the computer and the nature of the reﬁponse by the com-
puter. Here one must often choose between” hands-on experierce and remote use.

¥ Bach technlque depends for good reswlts on the esponse which is obtained’ from
»

)

the computer system. Response is measured by - ,
. = L4
(a) "turn-around" time; ‘
v

(v) dpnt and periinence of, 1nformatlon received, especlally durlng

error detectlon and reportlng or .recovery.

- -
v -

A computer 100 miles away that is equipped with software ideal for school
" work may prove to Le superlor to a small, 1nadequately supported "hands-on"
coMputer 1n the "next room ‘S%é teacher who, by 5h01Ce or necessityhlases a
small _home -owned computer must Le eognizant of the trade off bet&eéh,technlcal

tralnlng anF machine- orlented know-how which tends to accrue from hénds-on use

versus the facility that is galned in focus1ng on progranming language algo-
r;igm}c constructlon, mathematlcal theory and more reallstlc insight, into the

use oI computers 1n science, qﬁﬁustry, ang, bu51ness that can be gained from

~
worklng w1th a8 better software system on a remote machlne .
4
J -2 ’ . * y v
e . .- B »

.

“

'\

The Comouter Language Supplement L ~ . ;

In order to increasezthe scope of'appllcablllty of\ this book the specific
syntactlc details of the romputer language have been splif off from the main
flow chart text into a language supplement This enables the schqol to choose
Petween FOR”RAN,,ALGOL MAD or any other as the computer language while sbill
'preserv1ng compatlblllty concerning the fundamental concepts that are common

to most comfuter languages. Each supplement is then briefer and easier to
revise as the languages change with time. This way of organizing the material
also maK)s it povsible to write other language supplements for new programming

—_ -
.

. } * 2 , ~




Tanguages. -~ Only three have been prepared by SMSG

be used as models for others. » %

A dir'e.ct consequencé of this separation ig
language (the f_lbw chart language) first. Tis is ‘considered an asset, not a

»igbility.' You mustg, however, be prepared/to give the student some additional

Ai‘t.er the text has been studiead., you rnay need to 'examine reference mate-
rials that deal Wwith the spec:.flc 1mplementat10ns for the language and
machine wh:.ch you have thosen to se. Ne:.ther tegcher nor student should
read a re;erence manual as a te .‘ If at all poss:.ble, you shquld seek the
gssistance of capable cdmputer spe01allsts in helping you to identiry and in-

iterpret the needtd 1nIormat1n in /{he reference manual.

There are a number oF commer‘cially .available p;'imers, guides, and texts
that deal with FORTRﬁl, {LGOL and MAD. Those available at present are not |
generally compatible wyth ‘SMSG _mathemat;'.cal conterts or not aimed at a level
apyrorriate to the hj gh'school auﬁi‘en@é' Some of these may be useful to the
teacher as sources 6f problems and 1llustrat:.ons » Better students, can“be
referred t_c_: them i_"t)ér acquiring a healthy gra~sp of the material‘ in the flow
chart text and )anguage supplement'.

L4 .

ign of the,language suppleients .

entirety) in the main text. Reason--we want to introduce a (smhll but for
some purposes complete)\flowgﬁhart language. Then we introduce its pro=
gra.mmlng language equivalent. In this way F’ORTRAN ALGOL, MAD or what have

~

you, is 1ntrg§a.1¢ed as a second lan%iage . -

-

1

Lab WOrk - _. .
. . . ’ £
\) Upon éompletiné Chap@r 2 of the supplemént, 2small computer programs can
» * ¢ -
be run as laboratory exergises. To* do this certain fill-in information
- \J Y

.must be conveyed by the teacher. '

Tl Héw to fill{e‘ut coding .forms’

~
s

< 2. ch to key punch cards or punch' paper tape, ete. | ,

3'. How to prepare decks of ca&:ds 1ncluding I. D. cards$.monitor speciflca-

’

t:.on carc}s, if any. oL
' '
s
+ 10

A i Toxt Provided by ERIC

~




. . )
The teacher is urged to get help from loca% practitioners on these

* details.™ Consult reference manuals only as a laét resort.
N N

(d) Subsequent- chaoters add more Ianguage capﬁblllty Each of these can be

. ’ read 1n’gon3unctlon with, i. e. . section by section with, the main text
- ] . —~ o .
¢ *e) { detalls - - L ~ »

Format detalls are necessary in someslanguages like FORTRAN There is a
__ risk oﬁ'glﬁlng too much detail. To solve th1s problem, the FORTRAN®

\

surplement offers format deteils p1ecemeal--as needed beglnnlng ‘with

. Chapter 2. Many re1e1ence manuals are dlf?Leult to yead on this subJect

~Format in a }anguage like MAD need ‘not be taught because a set of

-

mell“led" input-output statements'are available which obviates the

]

f
need to teach format codes and associated details. .

’

Format 'in a language llke ALGOL is pot treated because as yet' nd standard.
. way of handling I/0 is part of what 1s/talled ALGOL. Computer implemen-
tation or' the input- -output procedures in ALGOL dlffer We must rely on
v the teacher bemng\snown the minimum nebessaiy information by theolqcal
. rractitioner. Hopefully the p;xt;pu%ar ALGOL implementation. uses .a v

* simply I/O scheme 1nVolv1ng a minimum of format control or none at allk, Nl\ ;

A - .. -~
. . B - N

N -t
‘~‘ ' - . . . B '$ :’\.' .t \ L
[ 2 . . . - - - M
4 Helping students to debug their programs . .. )
A . > v
The llterature on thls subject has little formal development ‘of wide , v

applicability. There are so many dlfferent software systems that we can't
,'glve standard procedures All we can do is give genaxaI)pr1n01ples ‘ .

-

.(a) Debugging is an 1tenat1ve process The loop includes the flow chart
the’ program, sometlmes the*data format and the output format and sometlmes

» ‘even, the problem statement Ttexation is a process of reflnement of all
" steps in the loop. . ) -, 7
4 ' > [ . - ! ;
{b) To minimize error certain godod work habitd are essential. 4
l- Be methodical, neat-;keép.clear notes on the statement of the prdb- .
: * lem, assumptions used, and fhe symbols used and their signifdcance.
3 A e ‘
o ‘k 2. Draw a flow chart ;hat conveys an up to Adate version of the algorifhm
being tested ! * )

r \

3. Keep a check-lis} of s1mple thlngs to remember and use it each t1me

- before submittingsthe program to the computer The check—list on- .
sists of a set of simple clerical detalls and tasks, the violatlon

of any one of which, however trivlal, can fault.a computer run.

Q \ . 5 ‘ . .
ERIC .o i .

i vc S v
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B A Fuiiext provided by ERIC

. ERIC

: e ’ - ‘$ &
"L, Develop the hablt ‘of ‘getting the most use:.ul inforfmation from the .

comuuter ‘at each un but not too much detall Think of each run as

3 debugglng run and Ainsert extra output statements whlch Tan later

- be removed with ease.e These output.statements are to print selected
values developed at intermediate points in the computation. Suppose
. we fin,duthat a printed -intermediate reslet is ‘demonstrably.incorrect.

~ -
Then we can confine our search for the trouble to that small, section

of the program which develops this result -incorrectly. It may be that,

after some,study of «this section, we €till cannot deduce the reason “
'

for t’ne'erm;ous result We may then insert additional output state-'

&- Cl ments at. key/points within the sus’pected sen.tlon of‘ the probram and

N, rerun, hoplng finglly €0 pinpoint the incorrect p.xogxam step.
\/‘
® . ( ) . "

s _ , . \

Pre-Laboratory Planning gnd Preparatfon ™

0 Y .
The t‘eacher has g_ulte a’rew problems to solve before the class begins its

laboratoFy work. —)You mist de%ide. ’ o, e .‘

]

1. How many p¥ograms'will each sbudent submit per week, month, semester?

Meke = schedui'e'for students to follow based pon turn‘around time.

2. Will each gtudent run all progugms or will he run selected programs?
- & P » . .

3. What arrangenents will you make for card er tape preparation time?,

Obv:.ously, you should seek consultatlon (formal or informal) w;Lt'h univer—

sity ar hlgh s‘Chool teachers wﬂo already have the exper*ence you S'tlll need.

-

- . * Al

..
Work'lbad for the Teacher ' .

.t N
L) . - N

I’c shOuld now be falrl.y apparent that teaching ACM (Algorithms, Computa-

tion and Mathenlatlcs) as_a regular ‘Ligh schobl course ;an_olves considerably .

¢ more work and time than does the teaching of dn ordinary course in high schbol

g »
mathematics. Until it becomes commonplace for the high school to have its own
staffed'computer labdratqry;_ the ACQM tea‘cher must take on many of the ,dufies
of such a latoratoty staff.. Many. olfhthese activities and responsibilities can

'Be 'delegated to .others, hOwever. Teachérs ha‘k%experimented by having 'the

betterigkldents assist w1th a number of the laboratory c¢hores, and errands.

Where especially bright students are avallable, or where eleventh graders are

allowed to enrgll, certa1n twelfth graders can bec'éme computer operators,, '

graders or assistants for he'):ping others in program debugging After teaching

_ACM several times, ag'organizing sy 1t looks.like it would he possible to {Ie—
, duce the overload to

nageable proportions. .

°

- \» : Py
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Chapter T1

ALGORITHMS, LANGUAGE, AND MACHINES
M -y ' ae ‘- [

.

-

5 Swmnary of Ghapter I

Section l 1, Introduction sketches briefly a few reasons for studying
a'bouf computers and the areas where they are being employed to solve problems.
Som!\students may want to gain a more tomplete picture of computers ang their

R impact on socrety We suggestr as- qutside read‘ing the Section 11, New York
. Times, Sunday, April ok, 1966 entitled "The Computers and Society, Six View-

I

po:Lnts__.i: . . , / -
- N e 0 : - - < e »
» Section l 2 Hfstory gives a very bz‘ief acc¢ount Of some of the develop~

.

ments leading to the stored program digital electmn,j,c computer

* . -In Section 1-3, Some Technical‘Ajpects of m‘t’i‘_m‘? some of the more/
fundamgntal‘*ildea\s connected with thé organization of computers and the method
of their operation are 1llastrated with the aid of a hypothetical cgmputer
. SAMOS The details of the SAMOS compu r are r@ in themselvés sufficiently
e ;l,plporta t te warrant learning for retention but are offered only as a means of
. illustr%ing the more basic ideas that the hypothetical mach.,fne e.mbodies On
““the occasions when specific detad.ls a'bout SAMOS are needed the student can ’
. refer to Appendix A, . o : : N

.y
. .

:In 'Sect&on 1-4, Numbers and Other Characters, we see how numerical data(i.e.,

LN “ -
. the integers and the ‘reals) and alphanumericel data (strings of characters)

might Ye* represented or coded" internally, i.e., in"femory. The “floatipg—
. point" coding scheme for 'the reafls is, introduced. M.so, sets of binary codes

are ‘suggested for alpha'bets consisting-pf Both digits and letters. Finally,

the memory is viewed as ,capaple of storing arbitrary strin f characters .

~y

e

W'Ordo . LT 2 “ ‘ - ~ s

~ ¢

grouped one ‘or more pex membzy word depending upon the size or length of the

“oo~ v -

In Section 1- 5, Algoritims, ,we corte to the central topic of this text.
For this course we are interested in details of actual computers only to the
extent that they are necessai'y to motivate or explain aspects of the study of
. alg«orithm construction. Because it is more important one might hold that B
this section should precede Section 1- 3. However, Sect'ion 4-3 provides a con- )
crete: basis for 'beginning the study of algorithms , and piter some soul search- w» =
Id.ng, the present order was selected, e o

’ . asn

0
.

1 13
(/ . . 0
o © TN
) ;. ) . N
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. i
Y Finglly, Section 1-6, Commgnts on Langua%e, points out the need for an

adequate language in which to express algorithms, laying the groundwork for '
the study of’ the flow chart language in Chapters 2 thfough 5

2 ' Chaoter l is 1nuended prlmarlly as a read:mg assignment at the beglnnlng

of the course to galn some general’ background knowledge of computers ‘and the
concépt ,of algorithms. It is nat necessary that the study of this material

tuild motivation for what follows., [xperienge shows that student interest

. automatic‘ally heightens upon launching irto Chapter 2. " .
. K ‘ ?

You will undoubtedly want to _discuss some of *the material from Sectlons .
< 1-3, 1-4%, and 1-5 in class. But certainly no more than one week should be 3
spent on the entire chapter. We mention this.important point for the obvious
regson that this chapter xlnrill seen to raise more questions”that it ans¥ers
and lengthy dlgress1orf\¥éan easily result * This is not a "teaching" chapter
as a"'e tne f‘napters which follow. Some students ‘will want to know much more
about how tomputers are, built or, how they wokk. You might éncourage your

- ‘Kk
better students to reed Appendiec A on theiw own Many questions on how com-

v

. organlzatlon of computer hardware are cons1dered to be outside the scope “of .
’ thlu course. I-IoJever? .a prime reference on this ‘tOplC for h1g11 school students

%ﬂ T , Luters fungtion will be answergg here. Questlons on the constructlon and .
T ist "The*Man Made World" publlshed 19b5 by the ,Commlssmn on Engineering

e
X Ne, -~ - . ) ' X
, . %&gat\lon e . . ) ' ‘ .
$ED e ’ ,_f et s ' ’
« / . . v . < < . M . o
- . " -.fl \ - ) v , h i
- Problems, Te e e e . B ¢ .
3 N "o - L A S A v -
. Only one set of problems.;is given but this set should not, be over100ked .
[ ’ ‘I’hese are’ the: four ball welghmg problems at the end of Example 2 in Sectlon ; .
1- LL ’Solutlons to these are glven in follom.ng paragraphs It would be worth-
v , while to ‘assign 1 and or 3 and 4 as homework. We would not recommend more
C /:p/roblem At this tife. oL ) S,
oo i / . e * e :
~ ‘ -
[ A . . -
. . i IR ¢ N v
o ’ o . ‘. » -, R %
Tests . - . Ten s . ’ .
’ " 0t . . m, » “
.. . >
er ‘suggest that no tests are needed on the, material in this chap_ter If, LN
tests are glven«,frthe* questiOns should bé confuted to material on Sections 1- 3, ‘
1-3, and L<5. ‘ ce . . '
N . . - . 7 .
: ) v oo - -
) * Vo, o < A Y
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.\)4 ‘u * ‘ /. ) L. ’L].& . ' " »
ERIC e TR 3
L ' , Lo . L

.« . . B - .



Solutiong to the Weéighing Problems
Problem,l.‘ Weighing 8 balls.

Two solutlons gare given:

\.-.'v,‘«n,, - <
o Solui:)&orgNo‘. L, t .
« A flow chart anp't\oach. Conclusions are subscripted H for
e e & s - . [ ]
heavy and L for llght . '
. TR e A g £ % s . a wn‘
” . .
\ . ate t
. @ ¢ ¢ »
- 4 ’ -
. - \v N
. S at+b+e e+ T +g ——
-~ means g =
atoic > eif+g. . means d # h .
v - > f
- - ‘ . . N
] ! " -

<

o

means

e+f+g > atb+c
L4

P ~

an o/
- s

! Strategy

s
-

s

~

ERI

Aruitoxt provided by Eic:

of the three possible outcomes. If the subset balances, we know*that

‘s the remaim.ng balls contain the one we are mterested 4in.

Once we have 1solated ar palr contammg the "odd" ball and we want to
know if one of them is heavy ox light, we welgh one of the.two can-

didetes against am/ other chh_is knqvm to,be "standard". -

1. * Select and #eigh a .su‘p‘sgt Qf the balls and consider the (signifi'cg.nce

A




Solution No. 2

et the balls bé A, B, C, D, E,
gs follows and note Yesults each time:
:' lst time " A, B, C, D,

-, . . ©2nd time A, B, G
3 S ow ‘ S
. 3rd time /

~ . . . ' T . ) ,

L9

. ¢ . o) ’ \
If the left side of a weighing was down, we write L. .

If the right side of a weighing was ¥own, we write R.
If the sides balanced, we write "=". - . . .
The results of every set of three observations (we%ghings) can'be coded

s b LY
as a "triple" or string, of three characters” involving "L", "R", or now,

“{ For each of .the listed 16 tr}ﬂles which can result from the above weighing
sequence, we4giﬁe the associated (unique) conglusion. (Other weighing seq-

uences might have been chosen.)

Triple ‘ Conclusiqn ° ’ 0

is héavy -
is light
is heavy
is light- SR * .
is heavy -
is light ,

-2

D e v O o

is heavy
is light @ .
is light . , :
is heavy .

is light

is heavy - 4
is light

is heavy .

is light ’ .
is heavy *

A W e

o
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Problem 2. Weighing ]2 balls with one kadwn to be hegvier. ‘s - -

S

£ - d .

. '] N D) . v o
4, Flow Chart Solut_§on ‘ eoe -, v,
- , st = T T « 0 °

| * .
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Problem No. 3

. Flow Chart Solution .
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Problem No. 4{ .Weighing 12 balls with one known to he either lighter or
ot - 8 ! .

[ d ’ <

heavier. T ’ At

—_— ! 4 -

{

Tabular Solution' ‘ _ Lot . .

Solutidh: Let the'balls be 4 B, ¢, D, E, F, G, H, I, 3, K L.
ﬁWelgh the balls as follows and note the results .ot

each . time. DR . ’
1st weighing <A %B, C, B, ‘E, F, G, H
L , A \

ond‘weighing - A, J, G, I c,D, E, L -
. ! . . . A

3rd weighing A, C,H, T bD,F J, K
A O

v
. .

. If thé left.side of a weighing was down, we write L.
If the right side of a weighing was down, we write : R.'

If there wds a baldnce,” we write L=0%, . -

3

If the results.were: L 4 .

v

A is heavy
-4 is light

‘B 1s$2heavy
B 1s li“ghte

c 1s Jheavy .
.C is*light /

D is,heavy
D'i‘s%!gigh"f
E is heavy !
E is light

.F is heavy
F is light
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. Comment: It can'be shown that no more than 12 balls can be searche‘a"

for an "odd ball" 1.. three weighings “even thqugh three othe® trlples .exist %

of a possi"ble 27 (= 33)‘ The ufiliséd triples are ===, L LR, and KR Ly )
= = would mean that tlie odd ball is never on the scale .gnd Vthis contra-

dicts the assumption that one of the bails is, different. The triples L L R

or R RL also lead to contradictionggfor the sequence of thre: veighings we

PR

have used. ; v

~ .
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N Solutlon —8 the Concentration- Camp Eroblem

Vo . S

Suppose that you are one of the three prlsoners ,You will have no ob‘

Jjection to a cekimate recelving a piece whlcb is.no larger (in your con31dera-

tion) than'his share of the loaf IR . ‘2.,, s

L3

-

If a piece of the “loaf is (in your estlmationJ an exaét share, you should °

e 1nd1fferent as to who getg it. | o

' IR
' ¥ «

Our solutlon Vlll guarantee that bEfore you are servad no ore else will ’
get a Dle%F which is (in your estimat;on) greater than his share and that you"

WM never be stuck‘w1th a _piec€ which (in your estimation) is less fban your

! N A M
share. Lk - A N A .

Flrst the nrlsoners are numbered in order, 1, 2, and 3. Prisoner No. 1

cuts off a slice which he claims is L of the+loaf.* He is*theh~indifferenﬁ as

to who gets it. This slice is now of%ered'to the second prisoner. If

" -
Iy
v ad .

. (a) Hé feels that this slice is no larger thaﬁ-a fair share,-he * i
.. rejects lt,

“y .
(v) he feels that the slice is larger than & fair share, he trims it to

the "size of a falr share. 3 , ;\

4

MR ) » . -
¢ In elthe; case (a) or (b) the s1if is now offered to prisoner 3 who

elther acoepts it oy rejects.it.. If he rejgets 1t, then it reverts “to the

.\’*l

v - -~
last person who has cut or trlmmed it. L . L
1% - . , LT
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: . Chapter T2 . ' ‘ "
. . 7 . ¢
INPUT, CUTEUT AND ASSIGNMENT -
" ! .
he ¢ - . ! . »
A N . T \ : N
‘ In many respects this is the most importent chapter-in the book. Alor'lg

-

with the companidn chapter ih the lan?guage,_supplement as much as three weeks

of classroom and quiz meetings may be required. The purpose of grouping the

-

three concepts of input, output and assigmment in a single chapter (which at
first may seem somewhat ambitious) is two- fold. )

. > ]

! ; /First,' input and assignment steps are closely related i'rz that both
result in the assigning of values to variables. Moreover, input
. is closely related to output in that one process can be thought
of as the’ reva-se—or—the—ottrer. Hence, all three concepts, input,
R . output, and assignnment, seem o be directly or indirectly linked.
Second, when the student completes this chapter he can draw. flov( charts * -

for many smple but complete algonthms Exercises in%oldmg, the -

construction of sonme surprisingly mteresting algorlthnfs arei ' '

given at the end of Sections 2-3 and 2-5. Moreover, when' the

student has completed the study of the companlon chaptér in thé . e

) r ST
. . ’ /fnguage manual, he can write complete programs for the algorithms. A
’ These can then be "run" and tested on the computer. It is}the :
- ) quickest route to .laboratorsr practlce.. Here we assume that ;xﬂ'o‘st .
schools will have access to a computer for runnmg stutient o = \ b"‘w ..
) problems. , ' , f‘u—» . ] N
. N s - N N e .
, T s “:%‘15,331
The chapter outline-is as follows: I e — - ny VAR
»2-1 ' The Flow Chart/ Concept ™ v ;
2-2  Repetition . N
2-3 " Assigmment and Varlables P S e RS
b T 2-% " Arithmetic Ex,pressions ! o * . ’

. . 2-5 Rounding Functions . ' S °
2-6 Alphanumeric Data . . ‘o : !

The @iscussi-ons of these toplcs will be eontained in the approbriate sectiogs’ )
‘' of the chapter.

I N * -
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: 2- 1 The- Flow Chart’ cOnc%st, . ot :

We 1llustrate Lthe first flov chart ‘in the so-dalled flow chart lahguage
which\ls described in this ‘text (Figure 2-2). A simple problem is used Vth}{

- embraces all three basic actions; input, asslgnment and output. ‘The transition

) - from a wox;d probl.em to an algorithm in flqw chart form is 1llustrated.
o

. - A p‘rellmlnary Gr mltlal explanat*on is given for the three basic actlons.
The id as ‘of’ mput and Qutput are then repeated and elaborated. *Flow chart
s11houettes for each of thege actions or events, i.e.,

> ’ ! Q
;7 ) - e f . i . P . -
. -, ) . ~ = ror input, | I for owtput,
‘ s v ! C
< £ > R . :
, are also dlstu__;eed in some detall .+ The start gnd stop c'rtles
-, . .
. '] ‘ ‘ ’. .
P
dre wlso‘introduced. . : .
" BN N e . B .
Exercises are presented in whith lthe student cbnvez:ts some simple word
&
problems into & Mow chart whose struc ure, he is told, is similar to the )
[prqblem Tirst 111uetrated in Flgure 2- . This figure, mcidentally, appears .
severdl times in this chapter and agal in ('{hapter 3.~ A number of ‘ide,as stem . -
. . o~ ' LA “ .
from itg study. .- A > . w ¢ . .
. N dm 0 - \ .
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1
I

times, each time with another set of data. Opport_unlt'es are thereby afforded

. to cement coneepts of destructive read-in and @n-destructive read-out ®

= N

The dis’tinction between an endless‘and a terminati-ng loop is made.' At
. this pointr we begin to repeat and expand ih detail the initial 1dea of an

assignment step. The silhouette. representlng assignment,

v

and its contents are brought into focus.
. ]

The'kind of computer process it suggesxs is outlmed in a three-step

, brocess. The section closes with a few very simple e)cercises to make certaln

Aruitoxt provided by Eic:

-

the student: has understood the loop Just shown in Flgure 2-6.

- 4

L
4

Answers *to Fxercises 2-2

(a)-
Y
)
)

= 5.0 . ' C= 3 ) = unknown .
8.5 = 5. c = 10.7
5.0 = 10. ¢ = 11.6

(e
(a b3 = 2. Gl Bl - 11,6

A
A
A=
A=
\
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2-3 Assi/gnmyentgp_dVariables . - o

L4
.

It may well be that this is the ‘most important section in the entire text.

;A much'more cefretul scrutiny is given to the assignment step. Since ass'ignment

involves the_ assigning of a value to ¥y variable the first Job is to define
what we mean by a‘-variable. In many texts om_computing there is onkty the fuz- -
ziest relatlonshlp established between variables of the_computer langdage.
descrived and variables as they are ordinarily defined isd mathematics. In

this text great pains are taken to make the two concepts'essential identical

or at least compatible. An analogy (Figure 2- 9.1, is drawn between a mathematical
varisble and its value and a flow, chart variable and 1t9/va1oue. Fhe latter can
e thought of as a\wooden vox. The (mathematical) variable is _engraved on 1ts
cover. and its (current) value is stored inside’ the box. We make nunerous ref-r
erences C\tnis analogy in explaining o_thei' concepts at.later points in the

text. . N - Yo
- . Cy . .
With the aid of the woodén box we define assignment in detail., Later the

bo;dq.s visualized®as hving a Window. To explain a redad-out from memory\(non--

—destmctlve) we simply send a messenger 6&,15001( throug‘h the window, To read-in,

or store in memory (1.e., assign a value AWa varials‘le), we send another mes-
senger, who opens the box, dumps out its contents, puts a new value inside and
closes the Jbox. Th:.s ,simple—mi(nded analogy becomes the basis for good humor
and, we hope will prove to be* pc>werful pedagogically. ¢

.

Anot"her point carefully made in this section is the distinction between
“the equallt;y symbol Qf algebra, e.g«, x = 2, and the assignm(ent symbol of
t};,ilow chart language, e.g., X ca.. J )

o\?<, oy y; q‘; v >

The section closes with. a set of exercises for constructing simple algo-

rithms, the f).rst ones of some real interest. This teachers! cormenta en the

set is quite complete, several extensions of the exerci~ses are d.isc sed.

A rathey simple but quite effective way to make the ideas of assigning »
and reading values of variables clear to all students is to construct a\ctual

working models of "window ?oxes and organizing the class to carry out s

algorithm‘s using the boxes for s\toring values of variable € boxes may be
constmcted from a shoe box, for example, wj.\h/a, ole cut in the side. . The
nnmber in the box may “be represent y writing a name of the number on a slip
of, 'paper and placing it +he box 5o that the neme can be read through the

window. WHen, in Section\2 -6, you want to represent alphanumeric. data stored

" in the box, you can do itiby placing quotation marks around the alphanumeric

RS

gata. 'I{hen it will be imgOssible to confuse your representation for a number
with your rep;resent’ation for a numeral naming that number. &

P . oo ,

: . - } ﬁ . h .




Answers to Exercises 2- 2-3

. & ' R Lo .
Problems l) 3, & and, 6 of this set requite flow charts.- P;eblenls 2-and
'5 require-the student to.explain something.. The problfg*se% develops
sequentially. If pressed for time; a class could do.only Problems 1,
2 and 3. p -0 : CoeT

- -

3

1 : 2

f( n, OLDAVG, GRADE | NENAVG  QLDATG X8+ GRADE

£
~
)
.

S L . - :
In the flrst form of the problem we used single letters’ for the variables.
It was difflcult to choose a single letter which conveyed any meaning to

AN
quantitles like vld average, hew aveyage, or grade. The use Of character

, strings, even if limited to a fixed length, like a max1mum of six charac-

L]
‘ters, is preferable. L 5

Without question the f]\ow chart for the secopd’solution would mean
more than the first flow chart even if the elapsged tlme were only a week.

. After one year the' first solution is likely to have little or no res1dual

- --meaning while’ the second solution w1th symbols like OLDAVG, NEWAVG and

T TR -
3

ﬁ*.,éi— [ to o T

. GRADE is likely to retain all of its original meaning to the person who
d:rew the flow chart (or even to someone else) ‘

L3 SR N . .U ) >,
. \") - ' N
v 1 . LN e

r( " OLDAYG, GRAPE |—— o orpay « OLPAVG X ¥ GRADE

- c' . 7 )
. T / . 3 -
- ‘ OLDAVG .
N ! A

: L
< t 1 .
. Jpe

In box 2 we are u’pdating" the OLDAVG. Before execution, OLDAVG is the
grade average based on n scores. After execution of-box 2, OLDAVG is
the average of n + 1 scores. The old value is not needed and can be

. destroyed. Storage is conserved by not using NEWAVG as ‘a variable.

» < »
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) 5 P . { - ’ 1.
5 e N . T
-3 ' . . .
4. “For Abel:- n =7, OLDAVG = 77.1, GRADE = 9l. —
- For THary:  ~n'= 7, OLDAVC = 71.2, GRADE = 82. . o
~Ti T CFor Williams: n= 7, OLDAVG = 84.6, GRADE = 87. C .
g S ST S A P ’ -1 t - ‘

3

~
~

5.

x

Yés, because any and allll

knowledge of the series of cumulatlve averages.

vidual grades can be recomputed from &

(A grade yhich is

. . ©Or 2nd grade <2 x CUM 2

;recomnu from two successive cumulative averages may be subject to
some untertalnty by virtu the roundoff errors in the’ a}rerage values.

-

.

6. For :ar;y giw}en 'student we can }:ompute each successive grade as fol;ows.

lst grade is simply the entry in column*l, denoted by CUM l
2nd grade is computed by noting that a
2nd grade + 1 X ehtry

- or 2nd grade +1 X CUM 2

1

2.X CUM 2 : i

1wa]/>

End grade + 2 X,entry in col. 2 = 3 X entry in col. 3
or 3rd grade « 3 X CUM 3 - 2 X CUM 2

. b ¢

.

e

. - e

and in general& T - . .
" n# 1st grade « (n + 1) X CUMNPIUSL - n X CUMN

in col. 1 = 2 X entry in col. 2'#-

If we let NEWGR be.the

n + lst grade

Y

". . /, NEWAVG the average of n + 1 grades and -
’ Lo OLDAVG the average of n grades )
'i ’ Lv e ° .
then we get a flow chart like' I - o

o

(a) ‘

) ;

° ‘

<

. - r ’ —
B . v \ N
. . 1 . 2
‘START n, OLDAVG, NEWAVG = NEWGR « (n+l:) X NEWAVG - n X OLDAVG
M ‘ v "
, ; .
e
- ‘ . . OLDAVG, NEWAVG, .
. I .
. NEWGR
) : . v
o

1 .
DR ag
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1.

.

Comment

-

“in Figure 2-11 to obtain: ?

. ’
-» * f .

Another way to view this process is to draw a parallel with the flow chart

‘ . T
(b) A - e .\ 2
START n el OLNEQEG' NEWGR « (n+1) X NEWAVG ¢
' . .- n X QLDAVG
4 | - . _(
RS : ( ¢
’ ® A [ 3
A N n, OLDAVG, NEWAVG, NEWGR |’
- - * 4/’—_———-—-§~N“-~J_____,a/
L. - ) - - b e L
= _ N
- ~

.

The loop in (b) more clea¥ly suggests the computation'of the series of

grades begihnin% with the second grade.

2

Tq use flow chart (b) zach data carq must contain two values, the nth°’,

and the n’+ lst cumulative average.
51+o 6k,

to compute the ‘third grade, etc.

cards will contain’the pairs

basic idea in Figure 2- 13 and its appli
tally n is gctually used in box 2.

Thus, for Smile&‘Chary, successive data
0 to compute the 2nd, ‘grade, 64,0, 67.0

.There is one important difference betweg% the

cation here in flow chart (b). Here the

This was nqt the case in Figure 2-13.

A weakness of the approach used in. (b)’ is the duplication of data-on suc-

cessive cards. fhus, the second value
value on the following card. :
shown,in flow chart (c)¢

to compute the nth grade.

f(c)m-

Here only the

.

Ig

on one card is a duplicate of the first

This overlap can be eliminated with the scheme

nth cumulative average must be input

NEWGR « (n+l) X NEWAVG

- §fXx OLDAVG

- My 4 ’ ¢
. )

3
,  |m, OLDAVG, NEWAVG )
- NEWGR
s 4
- n 9—!1!E 1

OLDAVG « NEWAVG

.



. Flow chart (c) ‘can be explained, by imagining we want to récover.all _
grades for Smiley Chary beginning with the second grade. We punch a series

4 of data cards containing the successive brade averages for Chary, one value

w7

ber card. The first card Wlll contain 'Sk, O‘\ln this case. The flow chart

- tells us that box 5 will be executed only once. The value from the first card
is assxgned to OLDAVG, but the value from the next (and all succeeding cards)
Will béaaaSLgned to NEWAVG. Thus, after the 2nd grade is computed (box 2) and
_printed (tox 3), boX ¥ provides the preparation to compute the next grade.
First n’
current vhlue of NEWAVG.

«is incremented. Then OLDAVG is reass1gned a value equal to the

This is really another form of 'updating."

Notige that the effect Of box 3 is to print a line on which the second

item, OLDAVG,.is a repeat of the, thl”d item, NEWAVG, on the preceding line.
we want tiiis duplication? Why have we faken the trouble to remove this »

tput?, We can easily delepe the second

vhy don't we?

kind o?f zedlnaan*) on lnput and not‘on

iltem from the output l1st in box 3, so One answer is.that ‘the _

- ;ncremental codt of printing the extra numeral is nil, while readability iss

soméwhat enhanced because each llne tells the whole story There.is one more

somewnat subtle poirtt. If we drop OLDAVG from the output list, we will have

no rrinted record ofl.the value on the very flrstlﬁata card which was read.by
executing box 5." This can be remedied.in a number of vays-~but any remedy

will add one or more tdxes to the flow chart--as for example, flow chart (d).

(d) < » )
0 5 6 1o . 2
- e . - A
A nel *(O,LDAVG OLDAVG —T-LNEWAVG NEWGR ¢ (n+1) x NEWAVG
I~ < . - n X OLDAVG
- P : ‘ t L
b % - . .
. i g o REFALI 3
* ’ ’ . - n(,NEWAVG, NEWGR
i ™ ¥
] ~ ~
= : '\~“\ nen+’l
, t OLDAVG, « NEWAVG
- ) - * R . ~ - '
J ’
s ~ B
O ) 23 * ‘ . .

s .o .
l‘ g

- . . R W

" » - -
N .

;7




, : ‘ A - .
- It would seem that the s?Lower students could be cHallenged to develop a
— pz‘_oce‘_ss". like this one and even help you keep your school records this.way-- .
- by computer. At g lgter pomt in the course you might discuss this data
- recovery or "retrieval" process from the standpoint of round-off error. It is -
) rea],l){ not possible to recover all the information originally input to the ’
system, Grades cannot always be recomputed exactly due to round+ fi‘.erroz; in T
the recorded averages (the cumulative averages are only recorde& o one decimal
' _ "7 place). Never‘theless, for ghe 1nstructor § puspose, this method f grade re-
generation (1nformation retneval) is satisfactory.
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2-% ArithmeBic Expressions

Arithmetic expressions which appeér on the rlght hand side of the assign-
ment arrow cdme in for close inspection in this sectlon - We are especially
interested in polnting out the praces in "every day" mathematical notation

which cause problems in interpretation due efther to reading difficulty er -
ambiguity or both. A group of practicgl improvements in conventions for mathe-

matical notaxion are listed as s&ggestions. If followed, the resulting expres-
sions would not on!g be easler to read, type or print, and dhambiguous mathe-

matically, but also easy for computers to read.

Two of the suggestlons are adopted for our flow chart language. These
are (a) abandon the practlce of using Juxtaposltlon to denote multiplication,
and (b) embrace function arguments in parentheses, llke cos(x) instead of

L]

¥ -
cos X.

/ﬂfféntion is drawn to the three klnds of minu es; binary, anary, and
number-naming, which may appear in a single arithietic expreésién :

Rules are given for forming arithmetic expressions starting from certain

‘basic forms (Table 2-3). .o .

The important question of order of computation is introduced. The r6le

'_ of parentheses and the concept ‘of a subexpression arg introdticed. The concept

of precedence levels for arithmetlc operations is presented (Table® 2- h) Next
is the idea of scanning an expression from left to right in search of the next
task to be accomplished in the evaluation of ap expression Finally, we arrive
at a simple set of rules (Table 2-6) for explaining the step-by-step procedure

to be followed in evaluating an expression (however complex). - .
- o . SC
One exception'is noted and explained; the case of AB or At¢ Bf C. Ehe

section includeg several exercises for practice in establishing the seqpence
of steps in evaluating'expressions, followxng the procedure that has beenk
developed. g

N

RS

Aruitoxt provided by Eic:




' ' ot h . !

. . * In case your students have difficulty applying Table 2.6 to Exercises;e-h,
Set, A,{)here is one furthér example. - -
Exemple: The expression is: ‘ . el
L e .. AX(B+SINAWX (B-C)+AXC-3) - ;1
: . “\ihe‘ﬁ‘”& ’ . . L R
Tabulated values for the variables: -
) { - ’ Lt © t N T.
- N IT ’ Al B ¢ -
o ’ . r‘ L
o 31 215 3
k-3 ’
R * M ‘ i ’
¢ & TR 4 . .’.
iR ol . R . P
‘&5’;‘\ . . L \ .
' K\ . Display of Step By Step Evaluation , o
' ‘ " Example’2 L
i - ’, . ~ , ) <« . ) Ky
- Step } . ) Appearance of the Eb'cpreséiqn .
a No. Action . After each Step ' ’
. " Initial appearance | A x (B + SIN(A x-{B a©) + A X.C-3))
- - ) ' A ),
1 . Compute B’- C AX+(B+SIN(AX (-3) +AXC-3)) .
< 2 Compute A X (-3) AX(B+siNG-9+AXC-3)) . - :
- N A - N
3 Compute A% C . | A X (B +'SIN(-9 +'15 - 3))
. . A
L Compute* -9 + 15 A X (B + SIN(6 <3)) .
. \ : A . :
’ i " ° /4 . T . .
5 | Compute 6 - 3 A x (B + SIN(3)) - . ..
6 Compute, SIN3 | A x (B +-.141) )
A A .
7 Compwte B + 141 | A x 2.141 .
. ' ’ Y ¥
08 Compute A X 2.141 6:&23( ' Ca .
- . . - ‘ ‘ . ’ H

. . N g . - © . T .
‘4 T f oL s

| — AR oL
3 , ) »~ i L e ooy
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We want to be sure the student is acquainted with'the "facts of life"
about ‘t},le restrictions impdsed by the way‘xhaghiqee read expressions. They -
read ¢xpressions & a stream ar string of characters which meane that express -
- slons must be writtsen oh a singie line. We also want the student to undérstand

_ rather vividly that characters as well as numbers cah be stered, in memory,

be "

. .

Regarding Figure 2-18: ‘

\

, The parentheses used- m Case b are %necessary, but in Case ¢ they are
- A

, necessary. . . - co- h

» >

Qlw

I For Case b, both B/C/D and B/C /D would mean —— , following the-

D
precedence and left-to- rlght rulgs we have developed for these expressions.

That is, the.parentheses neither change the mathematical intent nor change the
. computathnal order’. Note, however, that B/(C X D), whose mathematical
intent appears the same as (B/C)/D, 1is computationally different. Because

of round,—off‘considerations, such an alternative could yield different results.

For Case ¢, B/(C/D) is'mathematically equivalent to ,B/C/D, but-is
computationally different. The round-off error for real, numbers 'B, C and
D* may be small, but’ if B, C and D represent mtegers, the difference in

. computational order becomes s:.gnificqnt “ s

’ . ‘ .

. For example, let

B=4
. . . ~C =6 all integers
D=3

Now (C/D) is ] or 2, i.e.," 3 goes into ‘6 two times. So, .B/(C/D)
. 3 [ ? M

. » ‘correspdnds to L4/2 or 2. On the other hand, B/C {Qr Y/ is zero, i.ey,

"6 goes into 4 zero times. So; B/C/D corresponds to 0/3 o gerot

.
' .
" . +

o - " | 27- 33 ~ .,

. . ‘

. | .
¢ N
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Answers' to Exercises 2-4 Set:A

' Displays of step-by-step evaluations

4

'\ This column hot required in student solution
\ oo N . \
Apgearance of the expression
Exercise | Step No. Action i after each step
. \ : N ’

1 . Initially — ((@x X +b) x.X+&)xX+a .
* 1 Compute a X X {(( b+b ) xX+ec)xX+a )
2 -Compute & + b-. ’J‘( -3‘ XX+o)XxX+ad

‘ 3 Computes 3 x X ‘,_(\ ‘ 6 +c)xX+4d
¢ ‘ . T .
L Compute 6 + ¢ ;ﬁ -**;_,. 8 xX, 4 d
5 Compu‘t'e 8 xX jt/‘n.-f“" ' 16! ‘+ d
- ¢ X
B 6 Compute 16 + d 13
< - 4 . IJ . |
2 - Tnitially —a (8 - b) x {c --)/(e x (£ + g))
[N N v A
™3 0| Compiite a - b (-1) x(c -a)/(e X (£ g))
) Compute ¢ - d“‘:':’: (-1 >< ( 1) /(e x (f %g))
1 3 Compute f + g (1) X ( 1) /(e x 3":‘) .
17w " Compute e-X 3 (1) x (1) Feo9 Vo
. 5 Compute (-#)%(<1) 1 Y9 .
46 Compute 1 /b 0.11111... .
3 - Initially — 3—72}—& < - (s x ff - + r/‘/x “PHI) -
. 1 Compute 2 % X r° - (s x 1/100\32 ‘+‘r x-FHT)
. \ oo,
2 Compute §° -3\—2]—'5- x ° - (s x Y100-81 + r° x PHI)
e, . !
‘ 3. Compute ]fo + 81 3——2-1—1-{ xitg - (s x YIg ot r2 x PHI) .
—_ 4 . | Compute VB9 ;gil{ X2 - (s x U.36 #ro X PHI)"
- 5 Comput'e e . 3—2]—‘5 X % - (s x k.36 + 100 x PHI)
6 . Compute s X 4.36 3-?1& x r° - (39 2 + 100 x,PI_{I)‘.
L & o
7 ¥ | Compute 100 x PHI 3—215 X 2 - (39- 5 + 12 )
: 3.1% 2 )
_ 8 Compute 39.2 + 112 =Z=— X1~ - 151.2
L , o .
) / )
N \ 28 N




I T A :
. f . . .
g Compute r2 ieili X 100 -
10 Comput 3-2& 1.57 x 100 - « ’
- . . e R o
- - A, F - e
1 Cémpute 1.57 X 100 < 157 - .
. . " . ‘ T ’ - .
—_ 12 Compute 15 151.2 5.8 R
i A . 3
. f . - ’ n
. Comment; Resu dr Exerc:.se 3 were obtamed using a slide rule: The answer

-

‘using an ?, ecimal- digit computer Wl‘th n
Notme that s

is 26

X!

- ," the thference 1s§takem

)
LY

-

Exércis! Step

““u e -

“p T

5.

No. Action

12 is a prlme*sourcé of numerical error.

etween two terms of like sign and comparable magnitude.

= 3. 11+159 and PHI(arcsm —& 1.11977,
Here

[ 4
Appearance‘ of the expression
after egth step

(This column not required in
student solution.)

. ° E.’;,\
' <

Il
-

.2 ey

-~ . .

il . L

e
‘%

Initially —=

Compute p2

1+ 9

2

Compute q

Compute 9 + 16

. ]
Cofnpute -/2—5 v

- - -

Gompute q/5
Compute 1 + .8
Compute %
Compute .5 X 1.8
Compute -/—9
' .
\ . 2.
. Wiy
* “ o~ .:';3‘

[ Y

X (l +q/~/p2 + q%)v R B
¢+ a/¥9 + %)
x (i + o//5 3 16) S

Lx(T+o/B) - C

“~
|- '\)b mb
X

r ot o

l+q/5 )

TemF )
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v 5. Not counting the prior step 1nvolved in computing rsq, there aJ;e three-

. multipllca‘tion sté'ps saved each time this expression is evaluated.

" /7’Comment: : ‘;Jhen common subexpressions apb.ar_ in a given expression, like
s r2 in Exercis? 3, 1it is freguently more efficient to compute

the value of th1s subexpression and assign thls value-to a ney

> tebe g v acaron ‘e .
variable, like rsq, which can then appear in the larger
, ’ e - expression in placF of the orlglnal subexpress:.pn.
x . * . ‘ .

“Thu's, if the original: problem was to carry out the

" assignment,

. \_.._3‘}' ) i, - 1
S ———AREA&-?"ITWXrg-'(strQ-s2+z;2><PHI) -
L ] .- _
- and moreowver, if box 1 is to be«re‘peated many times ‘for the
et . ‘same value of r, a more efflclent approach would be to -

P

: first carry out the ass1gnn}ents in box O and ther execute &

el ) revised box 1 that is inside a loop. ‘
. N . .
» oy ' * ' ‘
f T o - : > .

) {dt . 2 "I POVER2 P:’% )
v —_— — ~
: "' "?’ .-‘: rfqt—rxr ” i M ’
/ "
- ‘ R ) . 1
. 7 \ "
' s Q‘qt . . AREA « POVER2 X rsq - (s X vrsq - s2 + rsq X PHL) |~
‘ o box 1 (revised) . e o
3 . i .
.- Students can be motivated to write efficient assigmnment
3 f" statements after looping and_ iteration is introduced in
Chapter k4.
T . . a .
- e
a . .
i /7 -
K e ¥ - t L
\' i » o \ 3 :: )
PN . -
.t >
- M LN .
{ “ S ¢
: 4 .
. z
. > TR

. \)4 " 30
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Answers to Exercise 2-4 Set B . ,
—— -—— - . n . f . .
,' M*mw‘—‘lihere are no superfluoous parentheseés in Case a. In Case b, the paren- . -
.- 'theses around {D/E) can besomitted? yielding o mad .o
s ° N , N . ' "~
! . * . . N S .
. R - (A/B + C x D/E)/(F x G). . e N
« Notice, it7I5 'possible to make a further revision "' . . .
-‘. ~ !\ /_ . . ,
e ) ' (A/B + ¢ x D/E)/F/G AN ’ *
~ . . <.
1 . ~ d . . .
thereby removing a pair of parentheses, but in doing so-we are changing the .
cBmputatidnal mle,\_though not necessarily thg matherﬁatical intent.
- - r . . . . L.
. . )
B .- ~ ! ' ¢
*”» v ’ Y 2 ‘
'~
# . . ‘
- ¢ - ‘
s g -
- l X - ¥
. J , ’
. ] b * . ; .
. & . . ) .
3 - v ‘ Ty T
' v . ¥ N
. ° -~ .
[3 . ’_ . "
DR ) \4 . [EI )
* 4 * v
T . .
. v * -
9~ S
-
» v ° ’ . i * ! N
. . Y \\, Y [} - , ‘ . :
N [ N s —
- ] t -
2 - ’
L] 4 ' * N ‘4 L} N
. , Y \
C , . . , '
' . 3
' Y .
? ¢ ‘ N .
L ' . . S
‘ K ) o -
k] " 4 . < ’ H
i 4 ' ) -
- - .- © 3197, 4
R T .
pa— el 7 e x,\v i e T i S R TR A hd ’: - -
. N U R N - | L .!-' . .
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2-5 [Rounding Functions . e

STV

The general idea of rounding will be quite well"known %o t'};‘e ‘studerft’.’:ﬁe'a T
> l
knows, from long experience, that in long.division and in taking 5ot ‘

|
he must somehow terminate his process. More than likely he views rounding as |

W AP W W ® o

a rather random precedure. The number of terms to which _he carries his divi-

sion, as weTl aé the decision on the velue of'the last d.igit is left to
. student caprice. .;~ VR Lo T i

»
. . - T Y
< - » .

' One of the purpose_s of this section is the presentation of roundinZ; as a
S -perfect.ly definite’ procedure describable in terms of well-defined mathematical
o functiohs. All of the cofimon methods are seen, in fact, to be expressible in
terms of the greatest integer function. g

-
~ -

-

R Th_e idea that rounded values ‘are exactly determined :and that the functions
L. - used are genuine mathematical functiohs is reinforced‘%hen we show that these
same functions are frequently used in obtaining the exact answers to certain
.. " types of mathematical problems. The only one of these which has earhed a name
R ’ in ordinary mathematical ndtation is the Greatest Integer Function, [X]. A1l
::.“£ . the others are easil ‘r/e‘s.:sible in te';c.'ms of it.
Al

5 . t‘m/e_i/déa of using’fﬁe greatest integer function in obtainii’rg the precise
';E’? ) ) s/lu ons tp pro’blems is 1llustrated in examples and problems of this sectio:,

! in the mclldean Algorithm of Section 3- 2 and in numerous other examples. en

4
¢ indicate it in our flow charts, i.e., explicitly. Thus, in the Euclidean ‘,

such rounding is required in the mathematical solution of a proBleJn we*yalyya s .
- "Mgorithm of Section 3-2 we find B,

o
v v f . e o

D -

[
‘

P .,
4 .y . N N L~ N
P s e e N

. T ——"Rt—A-Bx[B/A]

N s
v * . * Id4

which assigns to é the remainder in d.ividJ.ng the integer A by the integj:r B.,
" ‘

On the other: hand we never indi(.fate. in our flow charts the‘rounding that
- 1is forced on us by the fini}t;e wordslength in the computer. This sort of round-
. ing is ever-(pr:es,ent in computing. Evéry arithmetic operation in a computing
process, is followed by a rounding actiorP bhat is an application of some round-
ing function. If, for example,. the rounding being used by the computer is

! ¥ ROUND to hfe nearest ten thousandth then the flow chart box ’ ¢
N - !
. R . — X« P/Q |—» .
R PO ’ . "
» l ¢ ¢ - "
“ 4
. f \ ’ - -
- . -
o _ . 32 i
- ERIC ° - ' 38 . - - -

:
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RO A 1 7ext Provided by ERIC

“WAT1 have the.effect then that the value of X will be

.
v

A ) " 207" x Roump(10* X B/Q) T ’

4 \, ) P - . ’

Again in the flow chart bok M ) :

" ‘

—gv—- X e (- + B - uAd)/z(:x) ———>

one solution.o;f‘ a lerta\ln quadratic equation is being asgigned to XL. The
exact value of ‘the éxpression on the right is the exact value of the desired
root. However, the computer must o Jrform nine ,operations in the evaluation of
the rlght hand expression and all but one of these operations is immediately

!
followed by a process which is tantamount to the application of a rounding
s, .
’ - . .. : r O -

It is difficult. to estimate the error in the sctyal oomputed value of X. 4

We adopt the hopeful attitude that if the imitial values computed for the vapet— ot

)
iables are sufficiently accu¥ate, then the answefs we output will also be close i%ﬁ/

(but less close). The' dangers inherent in this assumption are strikingly .. "‘ P

- Y
brought qut in Chapter 6. (R . Y oy e “"%‘rf-\
It is not intended _that the student should _commit to ‘I‘X}emory the namés of -~
the various funcb:ouscintroduced in this section. ‘The functions GRIN and
FRPT should suffiee for all future needs. ° \
One more related observation; ’
* When we want the computer to produce an &xact value, we don’t always
get it by specifying an e’fpressiorr which mathematically, is the exact

Y

.  equivalent of what we want. . S o
- . -
o . . a8 a
1 For exampdye: Mathematically ’ S .
N § e P
7 X FRPT(10/7) and 10 - 7 x GRIN(lO/'{) a
: 3 4. o
. are both equal to the remainder when 10 is divided by 7, but a cam-
. puter with round off to 4 decimal places will compute tifem Tespectively, ot
> ’ B
L4

as . . L2 . - R "
2.9995 and ° 3.0000.

”

The. second alternative is then greatly to be preferred. ;e -

<
0y ’

’




-t ¥

Rounding to produce exact values: Flow Chart vs » Procedure Languages

.

Ih languages like ALGOL and FORTRAN certain conventions are used which

allow us to imply rather than be forced to spell out some of the rounding
functlons that troduqe exact values. We shall elaborakﬁzon.this because it
can be a source of confusion when carrying over key conCepﬁi’llke assignment

v *

from the flow chart to the procedural language. i

% s Y

Suppose we hav% a real’ value of A’ which is to be approximated a¥ an
integer in some way and suppose this approximation is to be assigned to I.
We must spell 'out this process 1n the flow chart as a sequence of two steps

rounding and a551gnment, edgu,y - " . -

!
.

.I « BRUNK(A)

or possibly
r‘ ,

{

I « ROUND(A)

. é“ [y ¢
~ b ".' J |
In most procedunal langqgges, however, the assignment statement has_ round-

ing ag an implied operatlon -

< v

Thus, in FGRTRAN'we would say

I=A (rounding action of TRUNK is automatic)

or in ALGOL . K/\ma
T I:;A;' (rounding action of ROUND is aut tic)

°

Implied rounding arises because each variable has & type or mode asscciated
with it that governs the digital coding scheme used in representing ite value -
in storage, (Usﬁally the type for ;EEh variable is declared as part of the

.. e 4 .
program or, in the absence of explicit-declaration, some "default® ryle is in-_.
NN

voked, allowing the computer to decide the type.) s

The particular rounding function that is‘implied in an assigpiment state- |

ment as can be seen from these two ‘examples, “is unfoftunately not standard.

It depends on the computer language one happens\to be using.

Finslly, -we note that integer division, i.e., where the remainder iswm
<?
thrown away, is another example ‘of implied rounding 1n some of the procedural

. languages. Thus, 1n FORTRAN and MAD, there is no special operator symbol to

denote the TRUNK functlon operating on the quotient to give its integral part.
This is simply.implied whengver the two operands of/ the division are type h

integer expressions.
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1.

2.

-
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- Answers to Exercises 2+6 Set A = o ..

6 trips - . ‘ : ' .

2N ) . .

(The purpose &f this question.is to begin motivating an inte.rest in

Chapter 3 whi¢h deals with branching.) The algorithm is definitely not -
TONS '

seaworthy, CAPACI'I‘Y) = 0. Lo, .

when TONS is exactly dividéd by CAPACITY the algorithm will print out 'a p

value dor TRIPS. which is one too high. While this is an unlikely occur- ¢

Many students will recognize the P

Wrong answers {Jill o?:cu'r when FRPT(serno—

rence, it nevertheless can happen.
problem but few are likely to see how to' ‘solve it, becausé we have not
yet introduceq the 'cond'itx'.’on box in our flow chart language. A simple

solution, which will becomé ,meaningful/after completing Se’ction 3-1, is

as follows: e .
. 28" 2b [+ o

- . Fid

TONS

TRIPS -

CAPACITY

JTR‘

IPS - [TRIPS]

b

F

o, 2¢ Cw

5 I> 4 . -

TRIPS « [TRIPS] + 1 -

v

- s

e : . o, .
A bit of p hilosophy Compiex computer prograns often hav caseé like
* this which fail to show ‘g'f'ronequs results during the check-out phase with the

particular set or sets of test data. 'Much later, when the program is assumed, ..

-
-

to be . $horoughly tested and in actual "product‘ion , an obvious blunder in the o

_program, 1iKe-the one. illustrated here, comes to light when usimr ,_,er;'ectly

. . . i
legitimate data. s . . RN <
. ~ .« ' s

3 N * ' il
7 - / N . - .
i. '—yiﬁ’g g ‘- ~1 . R s i
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Aruitoxt provided by Eic:

Answers to Exercises 2:% '§e_t B .

“I'his group of pro\blems gives some practice with the~i\‘o‘ur rounding functions,
ROUND, ROUNDUP, TRUNK, and { ]. Exercises 8 and 9 introduce the use of the
greatest integer func’cion in modular arithmétic (computation of restdues).
Exercise 9 1s ‘the flrst of several appearances of the carmival wheel problem.
Over a series of exercises in Chapters 2, 3, and &, we show the student how
this sunple problem can grow in complexity from computing the winnings on a
single spin of a wheel that has a simple (linear) win-loss .function, to an
experiment in which a wheel whose wim-loss function can be of a_rbitrary com-
plexity is put through a sequence of spins wit_h the wins (or losses) being
accumulated: . ‘ ’ .

v

. - !
It is possible to develop this even further.. &d&i};ional discussion is
given in the commentary in conhection with Exercise 4 of Section b-1, ¥
s’ ' N

, ')
j

o~
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Answers, to Exercises 2-6 B - i
. = = == T

4

2. N NBOY

’I'RUNK(—-9—-) or N =

w
.
]

ROUNDUP(X)
-[-x]

«
1]

GRINCEX) ar, N =
. . o3

1., COST = .08 x ROUNDUP(?J‘I‘) or COST & .68vx (- [-wrl)

NBOY,;
55

M .
, 3.

2\ Ins—g

1 S ‘

.

~

, ) - -
. b
1 2 i
¢ - ) b [ -3 AN
- -
' . s ¢ - $
L, ¥ = TRUNK(X) y .
//V - {
»//‘
y 21 7 gmmmc
/ 1 / [
~ -3 -2 -1 1 2 3
. Al ommmmg -1 )
' ::--o +-2 ~
5. ¥y = ROUND(X). ¢ y
3 \
! 3 " o=e
1
,‘ . - » 2 * n—
! t 1-f- [
. i v ) Y
. - a3t,e20a1 |1 2 3
: [ ‘1 N
i PO 4-2 :
— 4-3
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6. _ Comment: This exercise is in the "fun and’ games" category.

¥ \

' L . .

8

-

y
[} . , 5 3 -
L

.

’ > . 3 . )
9. This exercise with the cernival wheel should provide good practice with
modulan arithmetic and should deve],_og‘an appreciation of the value of

integer arithmetic in general. Other exercises are built on this one
P . - » .

in later chapters. -7 ‘ . e {
,A - Answer: Nopiée that the wheel will come to rest at a position N v ‘

’ 4 , . 1 ,’%
‘ = + . ' oo
) 8oy (m soldz) moduloq32 3 o

runtox provided o crvc IS 4\ - H s ! b - ;. B ., .
< ’ . K "
. . - .o

Tong
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@ - ' T2
, .
On-the other hand, we are not really interested in knowing Snew in ) N
this case. We only need k, which we can compute directly:
k= (m'+ sold)modul? 4 , )
This can be éxpressed as the flow chart box = h . .
.\ LY

—_— kem+ s - [m—i—sl X b —." ¢ ~

The points p can then be ejxpressed in terms of k as '
. _ ; . ‘ ~
. . . p = 20k '30 P

as suggested by the graph
at right which shows the four -

possible polnt value's falling

on a s‘traright line. ¥

It

.

/

. /
positive /’.(

expectation player comes ovt
. about even -
. ~
-
JBased on the above discussion, we then have these three alternative .
i flow chart solutions, in decreasing order of elegance. i
~ - o4 . . . ; : 8 .
: () - - —_ I
! . k)
~ i
. o
» . N
. . ',7 P 1 ]
. ) t 4 :
. . ' 7
4 9 n 0 T Y . N . .
} . , Lo lts .
j P20 x (m+ s~[l%;—]xh)-30\ . /k.
. : o g
' < i i ' 4 ’ R
t I ! i ‘ . 1
N s ! . '
’ (best) : . ,
-’ X2 . .
% ’ . .
. ! 9 "
. . ) | ,
. ‘ o
s N . N \'\ -
H . Iy
’ - f
: . . ' .t Y XY
&) A \ 1 39 . '
i . : ¢ " s ~ *
CERICe 7 7 . L 45 N L
w0 ' e P Y. - : ‘ ;
:‘: 11. B . Vlf . ¢ - i i - .




T ) - . 'y .
t I 1.
- T2
' (v)
L f .
o T -
1 o, , A
' - P <20+ k- 30 :
C. N (end besf) ,
A [ . -
)- ‘e \
(o) @ . L
2 ) I “ta JQ
sl . S, m L ' ' i N .
l’) . . , ) ’7
s 2 ! oo ,
) m + s . *
- sem+t s - [ ] x 32 . .
\ . o h
~ ks ][H] X u , ‘
i » - , ¥ N
. - Pe20Xk - 30
N ’ . Y3 . - o S
. 1 . .
Y ’ . CL (acceptable), - /
. ' ~ . . LT
. ‘. . o ‘ - . .. &
: v 1( ? ‘! [N Cow . . N ,"..F/t:'g
. v /o 4 s \
N If you feel some\or all of your students will néed additicnal hel With < 3
. this problem, you might offer some help along the following lines. ‘ :;
} AN ) @: ’ o
Additional suggestions L . , Ixs . a
R - ) ‘\,. «
1., . Suppose you divide each of the blue sector numbérs by 4. What are the
. remaimders? What are the remainders if you had started with the green
sector numbers, or ¢ the zged, or the yellow sector numbers{ Are the ,
remainders you, sust fouqd the same as the values of k ? . .
: { H ‘ \
! . ,
¥ Ly ; ) " . ‘
- ma :\ - RS { ! L
i A . wd N ., R o 7 s i .
- 5 - ! 40 y { - ! Lt
]: \ ! 4 6 A B -/ ' b
) : oo o . .o ! 3
- 5 ol i - . i e ] .
- S sy ’ B ‘.




t T2
’
- » . <
2.  Prepare a chart for plotting the points won versus the remainders of
- step L. ' Call the remainders k. :
3. Plot the fouf given point. values oh this_chart as a function of k.
4, Do the function values fall on a straight line? If so, fihd an equation
of tite form ) T v
3 “ p=mXk+b v
by determining m and b. Lo . 5
. CA
) N
Comment: 1In the problem statement the point formula is, such that after a

large number of spins the player should come out about even. ﬂ(Coming out .even

nmeans with O total points') Since most players enjoy winning, it is of
! interest to note that shifting the_straight line in the graph upwérd, as
suggested in the figure, will give the player a positive expectation. It:

wvould be interesting to see how the students would answer the following addi-

The answer:
Al

tlona&uestlon "
"How would you alter your flow chart if the rule is to be \
player loses U40O points for blue
’
player‘loses 20 points for green
! player ‘wins 0 "points for red
player wins 20 points for y;llow?" )
%
Only .one box needs to be changed in the flow chart--box L4 Yecomes
o 2 ' .

later, when c

ERI

Aruitoxt provided by Eic:

P «'20 X k - 40

This number is the only change?

-

opRitional statements and subscrlpted variables are 1htro-
duced it will be pos

—_— ..

B

ible to s1mulate much nlore interestlng games of this type.

.-

.

a3~
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2-6 Alphanumeric Data ‘ ) .

" The ideas deréloped in the precedirg section, coupled with those in
Section 1-4 on hit patterns for alphanumeric characters, are reviewed in order
to introduce* the idea fhat flow charts may déscribe the input\,assigdment or

output of alphanumerical as well as numerical data. Careful parallels are

established between each of the three ‘step types carried out on numerical and .

non-numerical: data. . '

First we explain how a variable may have 4 non-numerlcal value. Thus,
the value of X might berthe~letber wx". Then“Vé’show the two poss1ble forms

e
4 M .

of an ass1gnment steéz

. - - 4

3

=TT - X
~ , ., variable « variable
¢
or '’ | . ’ ¢
N .
.s

. variable « alphanumerical constant

Several example flow charts which deal with alphaaymerical data are illus~
trated and explained. The sectiqn closes by pointing out certain possibilities

‘, fp% ambiguity in & fléw chart where it is not possible, looking only at the
flow chart, to tell whether a“given variable is to have numerical or non-numer-

icalsvalues. The ambiguity #s eliminated in one way or another in each com-
) " puter progmamming language. - 0 . 0 “ ’
< .
\ N
. . ¥ .

© - o v
. . . 4

Comment: Wesbelieve it is very important that the student grasp the potential
of computers, flow charts, and progranming languases for solv1ng problems which «
deal with alphanumerlcak data, e.g., data process1ng, symbol manlpulatnon,‘etc.

But we alsd reallze that there simply may not be enough tmme in a one- -semester .
Re
coufse to cover this’togfic and those that bear somewhat more dlrectly on con-

+

vedtlonal mathematics.? For this %eason we havega tempted to pléée the topies .

-

on alphanumerlc data processing at the very énd of th1s4phapter and at the end
o£;Zhapter 5 where it is discussed. In thls gay the material may ‘be sklpped
i

W ut loss qf continuity. The exception, of <course, is Chapter 8 Vwhich dealsy -

entirely with prohlems using alphanumerical data.

There are no exerc1ses for this section. As noted in ﬁhe outline we gave
for Chapter 2 this sectlon, and its companion sectlon in the language supple-
ment, can be sklpp@d without loss of continuity. The section is not‘at all .
difficilt to understand--it has eye-opening idéas., We hope it wiil proﬁe both
amusing and intriguing, and that time will be found for it.

) s ’

. v
Aruitoxt provided by Eic: ’ N . \ Nz 7’ -
@ .
»

fon — < [ - . .
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. Chapter T3 > .

BRANCHING AND SUBSCRIPTED VARIABLES o

-

~

3-1 Branching is introduced.

The use of the simple condition box

.. /)' TRUE

! FALSE

Y

.

is 1llustrated with several examples. Calculatlon of D2, and the com—

parison D < B4l would sufflce in Flgures 3- l and 3-2 saving computing
time in taking square roots. However, the intention here is to focus on
the condition box rather than efficiency. Simple programs and loops are‘ -
descrlbed. Relational express1ons introduced as the basis for a branch;
other decision ‘criteria are 1llustrated.
1den:£ay1ng the largest of three numbers is discyssed in detail, showing

alternative flow chart forms.

The problem of finding and

The section closes with an example algo-

rithm for tallying test écores which (Figure 3-7) uses all concepts

deyelobed to this point. v -

Set A is quite easy. It is intended
Exercises in Set B will be more

©

T interesting to the student since he 15 being asked to synthesi;e flow --

cha.rfg for snmple algo«rlthms’ / %g 3 . ' §
ek 4
3- 2 Auxilidry Varlables, that is, variables ;ﬁich do not specrf&gallz_ofcur £—
in the problem statement are discussed and illustrated with significant 5

mathematical examples. The first of these is the Fibonacci Sequence
The need for an auxiliary varisble called%bOPY is illustrated graphically.

Two exercise .sets are given.

to show examples of simple branching.

?‘u»v],

P

Actually, this need for COPY can be circumvented by replaclng be 4 of
»

Figure 3-13 by £ “ T
[ l . ‘ ' '
. *| LTERM « LTERM '+ NLT \ : ’ .
) * | NLT < LTERM - NIT ; :
’ TeI+1 . ) '
. L0 ’ ‘ * . 1 -2
o . B T T— ‘ N
! § - ‘/‘ -
- 1
> % N \
. ' - .
Q . v d 43

FRIC = L

- S L : ' 9 N -
IR . - . . - -
] .




It is hard to flmi. really simple examples in which the use of an auxillary
vari&ble (for a.ll 1ts utllity) cannot be avoided. Exerc;Lses using sub-
scr,ipted varlables (Sectlon 3- 5) will require frequent use of auxiliary

variables. ) . .
£ 4 [ ! - -
Exercise Set A follow; the treatment of the Fibonacci Sequence. )

' Exercise 2 uses the simple generation process of the Fibonacci Sequence
to produce a set of numbers ugiformly distributed between O and 939
(see Answers to Exercises). This exercise is referred 1o in later gec-

o

: tions as a source of "random numbers", ) i

In the same section we develop two algorithms for computing the
greatest common diViSOI: (g.c.d.) of two numbers (Figures 3-lk and 3-15).
Anumber ‘of later exercises will require the use_ of a g.c.d. algorithm.
8 \ ; The notion of 1nterchange of two varlables, a common process, again illus-
H . trates the use of an aux;Lla.ary variagble. Curiously, the need for an
. *-aux;Ll;Lary variable can again be circumvented (bu‘@‘at soexe expense in

o ) complex;Lty arid computing speed). TFor ‘exemple, instead of box L im .

Figure. .3- lh we could use . R ) :
.¥ [ ‘:\ l { l{_ ‘ ~ . *
- :‘/ 7 :ﬁe}g‘ B s ’ - N [y
. o By 0 ‘ . B«A+B P
) &8
PR AeB - A , ‘
. A B«B - A “
“+ ~ i

- - N .
N - . - ’ -
3 s
- L) ] L] %

We do not feel that this is important but don't be surprlsed whem some /2;
C, students come* up with it. ) : N . 8, % oc %\!
13

5" The section Jeloses with an 1zhtroductlorr'to the idea of an organized
o ,tré,ce through the steps of an. algorithm for purposes of "desk-check;mg . ,&
orﬁvenfying an algorithm. Two Jexercise sets are glven, Set B, contaln-«g
ing two q'_uestlons, and Set C, each exercise of which requlres construc-
tiofi of - a flow chart modeli‘ng some ana@‘ﬁgfsis of a stralght line (or‘lme

segment) through (or between) two given points. s

. <
N 4
.

[~

Aruitoxt provided by Eric
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3-3 Compound ConditionS»éhd Multiple Branching ]
4 -

Although we do not introduce the logical operators eand, or, and not

in any formal way in this text, we use these 1nformally For example,

- M Fl

Ty ,

the compound condition

%
1is explained, and we show the student how such "compound‘conditfoﬁghvmayudﬁu
) , be decomposed into a group of one or more s1mple condition boxes, each
1nvolv1ng only one relatlonal expression., We also show how a multi-way
) bfahch can be decomposed, if des1red, into a series of simple (or two- way )
co ion boxes,-and we 1llustrzze this multi-way decision box®ina =~ °
:d rithm (Figure 3-20). «

" re fqQrm of the tallying al

There is an Ymportant set of exercises at the énd of this section.
Compound conditions are given 1n the form of verbal statements and graphs
»0of geometric regions. The student must then develop.or synthesize
detailed flow charts using simple boxes for each ‘case. He is then given
Q'severai flom charts of compound conditions and asked to graph tle region
determined by these conditlons. The carnival wheel problem from Chapter
2-6 is expanded in this set (Exercise 11).and is treated one more time in

an exercise in Section 3-5, Set A. .

-

. . -

3-4 Precedence Levels for Relations e ‘¢

o
We explain how relational symbols may be thought of as hav1ng a

precedbnce level with resvect to those of the arithmetic ogerators
(Table 3- 2) We actuaIly aVOld calling these relatlonal.symbols

N ¢

" although of course, most computer and language people

"operators
“?\prefer to thlnk of them th1s way . We have also av01ded referring, to a

relational expression as a "loglcal“ or Boglean expression (whose value

is ‘either true or false) We have chosen to avoid the comglication in

this text, of defining Boolean varﬁables and Boolean values. Instead, we*
simply think of & relational expression as having the three- -part form

. anithmetic " relational . arithmetic
exPression. symbol - expression

No' exercises ‘are given at the end of this section.

-

BRI B

BA R Text provided by enic RS
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3-5 Sdbscrlpted Varisbles, the second crucial concept of this chapter, is

.which is in common use. Some programming ianguages usevessentially this

introduced here. A good deal of atteptlon is focused on the¥distinction
Eetween ordinary variables’and subscripted variables .and the distinction

between inscriptions like £- .gﬁ‘
. - 3 P73 <N

v ¢ v . v -

X3 and XN | ‘ . T

oy

) _ .
The problem of finding the.largest value in a list of values is
* -~

illustrated with and withbut the use of subscripted variables (Figure 3-22).

A special notation is given for the input and output of datgivalues
for a list of sequentially subscripted variables. This js g notation .
notation while others (notably FORTRAN) unfortunately interchange the
order of tha increment and the cut-off point. We can only remark that

the order used in FORTRAN is not the common.mathematlcal ﬁwage.

The section closes with the development of g very Q}mple algo%ithm
for sortipg a group of numbegs in ascending order‘(Figure 3-27). This
algorithm i1llustrates nearly all the key ideas develope@fin the text to
this.point. Althodgh Chapter U4 again takes up the question of sorting{

an exercise at the end of this section (Set B) requires the student to

. beéin thinking seriously about the process (Figyre 7-27) and understand

it thoroughly. ’ .
« - 1‘
A vector 1s defined in thls section as a list of variables like Xi,

2, ete. of a linear array. We also agree to call the list of values-of

these variables a vector. ; .

«



Aruntext provided oy enic [l

)

’
.

I's
Double Subscribts are introduced here. The singly subscripted variable

concept is expanded using the novw .familiar window box technidhe (see

L il ’
Figure 3-30). A set notation is introduced for inpuk-output of a com-

4 .

plete matrix. - N
A'set of matrix elements aire listed in a sequence determined by an
inner index which ranges over a set of values for each value in the range

L) .l J
of an outer qndeé\;dﬂhus, in the notetion: S
* 3 ¥

B, Jr’ 113, § - 1(2)10)

inner outer
index index*
(rows) (columns)

uhe sequence of' elements suggested Ly this list is the elements of the

odd-numbered columns (one column after \the other) of the B array, i.e.,
PN .

ae

- *B é

L1 P, B0 B Bn By 0B, By

.., B B B -
? L9 72,97 73,9

Similarly, in the notation

‘

(T 4 3 =1(2)3), 1= 1(1)3)

. ilnner outer

>

<

ve refer to ;§row-by-row sequence (3 rows) in each of which we take the

elements from odd columams, i.e.}

-

T T3 s T 1 Ty 30 Tp g0 Ty
T, ., T, «- .
3,3’ 73,5

~4 4
A simple zero-sum game using a 6 X 6 array of simple integers is
i

then devised-and modeled or'translated into flow-chart «form. The pbwer
of subsqglpts 1s suggested by our. ablllty to generalize this gameato one

which uses an n X n array.
£ ' o
Beveral exercises requiring the student to synthesize loops which

carry aut simple’ opefrations on a row or column of a matrix are then grvgﬂ.

.
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N -
s . T3 . oy .
. g A : ’ " ')v ¥
© i ‘Answers to Exercises 3-1 -Seki A ' ,
- ' s . » -
1. 2X5< 7T is fdlse, Oufput value for LRGR is 5. )
. 2. 2x(-3) < -5 1is true. Output value for LRGR ds =5. ' %
3. 2x(10) <5 is false. Output value for IRGR "is 10. Lo .
. ) : 7 - —~ B !
) 2 2 2 ; '
~A B. A~ A -3B B Value printed for LRGR
. , . " . \
4, 5 7T 25 18 < k9 true 7 .

. 5. -3 -5 9 1lleme< 25 trué -5 T v
6. 100 "5 100 95 < 25 . false 10 -
Corment on Exercises 7-11 - ’ " N

’.For each exercise test data and answers ar%ven. If you assign p}ié
/" mputer-checking of these exercises #you may wish to give the students these
data and check their computed results against the given answers. )
’ ‘ .
. T 8.
J
) .
K
Ve
! 1
o o
- . )
7 . . 37‘
. ‘e :
e .’ ) Box 6
- Test Input” ~ Box Yors5 - Test - . ‘Input Output | ’
Deta @ b,c,d,x Qutput Datd  "b,e,d,x .t -
1 7,3,4,2 gt L 1 7,3,4,2 1’ ,
b 2 3:7:2‘:2*& 2 2 7;.1":3:2 3k ¢
3 \ t" * » R
. 4 i -

El{lCr’ RN S -

T & . ’}‘ =y, . - ’ <

. } [ L . . -



o,

c+b+d-wx anéi q- e
eap e “h Te ausq,ned to tThe same variable, say t. This should» ke pomted out

to him. The ad\ﬁantage of usmg the same varlable is that a common prlnt

stauement box 6 can then be used. L

9. . atternat iv(eklg'

1

|b,c,d,x]

$

b,c,d,x

/m ‘7 . .
i wc—b%(cexda.
y(—(b'+c)8
8. ¢

w,¥

Box 6 or 8
Output

w_or w,y

oh

15876, 108

- .
Comment ,\Solution (a) is more efﬁclent computétlonally in the jsenses that

“ ._, subexpression,s developed and temporanly stored for use in the ‘l:est in box 4
are reuse%i in boxes § &fid 7 A minimum of computation in boxes and 7 is frhén
'required The virfue of SOIution (b) is that it follows thezsta ement. of the
vprob.lem mere closely. You ‘éan expect stuw to turn in solutidhs like (b), "
. bk solutions like (a) should be pointed out to them- . s m S
VI R '

¥ oF i L B
e

f' , R 51)"
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6 1

~

Test JInput

-
5

Outlimt .

"EVERY REAL
NUMBER
SATISFIES
bx + ¢ =0"

, Data j,m,n j,m,n, sum
1 7,911 ?,9,11,18
2 \8,11,9 8,11,9,19
H
‘\ - e
C—
‘ k'
. . .
3 ]
\ s
‘ <
’ \ ' ‘ ))‘( i
. ‘ ’ ‘*"}k
"* Test  Input Box 6, 7g or 8 | 3
Data b,c * Qutput * i
. RN ’
1 24 the root of bx +c Ng S
. . 'is -2.0 TR
‘ o - j
2 - 0,4  Dbx+ c =0 has no-root
3 ., 0,0 | &very real number . ,
;- % . “ satisBies.bx + cu= Q.-
~ . - A TR B
X -
) -‘ . ‘ ~
{
4 AN L e
1 A




+ Exeraiseg 3-1 Set B

!

This is a very,important exercise set. We. expect the student to try his

1. . .
. v e
—
1
" < SUMALL « O
COUNT & 1
\ 2
ik ‘
.« 3

¥ )
SUMALL « SUMALL +°7-

[N

ERIC -

. «
2 i

7

COUNT « COUNT + 1

LRI
¥
~

Altérnate §91ution: -

Box 5 coﬁld(ﬁe .

\4

T

hand at synthesizing simrle loops. Students should be asked to do at least
"two or three exercises here’ including Y4 and 5. 1If necessary, the answer to 1

could be given to them. But, if so, he should’%hen be asked to do all the rest:

<

-

5. , , -

(324

) ' .
. Loy ,
- -.SUMCUB « 0 ’ =
COUNT &1 .
N . . L3
. "- y 2
: N -
kY H
. 3 *
*
- .J,p“
. . \(l\\
4 ,
. *
\ 14
nfﬁ 1
. \ «*}ﬁ:ﬁ:
s . .
. . . - )
- \ . ) . -
: ' -
< : '1 « . .' _x .
50, © . o
o . .,
1 87 . o
o 2 b o
o,‘ Lo - -




SUMNEG « SUMJEG +,T

S ¥ 5 .
[ couwr  coomr + 1| .

1]

i 1
SUMNEG « Q
COUNT « 1 . ..
. T [ gy
. . 2 . .-
f o
, L3 ‘
( r<o £ T
\ *
T | )y

an

-
+ - .
. ¥l
& B
IR 1
M
SUMALL « O
- SUMCUB « O
' SUMNEG « O
COUNT « 1
.
ﬁ. »
WA .
/ 2
R
N 4

3 7]

P

SUMNEG « SUMNEG + T

-

COUNT « COUNT + % -

L
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IO
State « O

ScB « 0

ScA « 0 ‘1

n

’

12

#

3

T

13

.

15

H-
‘ ¥

- 13

1k .

.. B (T =100 }a(Sch = 5cB )= —w( ScA > ScB )} "

T

16

"TIE GAME"
ScA, MALLY

'PLAYER B WINS",
ScB, "TO"," ScA

10

ScAe ScA + I

State « O

State 'L

& q . {

—

a

11

_I(—-I~1+l

"l and

) R SR S, - )
The conditlon bokes in the solutioh could, of course, he grranged

tes in order ‘to simﬁlify box 17.
A

~

-

g

R

in a variety of equivalent ways. A more subtle solution, not likely
. . to be produced by the student at this stage, is shown below. We use

-1 fqr the stg
* rom Box 3 .

o -

»

.
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Aruitoxt provided by Eic: o

J
. . . T3
‘ ) ® .
Answers to Exercises 3-2 Set A s
1, We assign 0 for the im.tlal value of NLT instead of 1 for the follow-
ing reason: The values printed for LTERM at box 2 would be 1, 1, 2, 3,
* v ete. But, if NLT were initially agsigned the value -1, then values .
printed for LTERM would be l', 2, 3, 5, ete., with the first number of
the series missing. '
2. ‘ . : ‘ ;
., A4 @ ’
R I
- LTERM « 1
. NLT « O
Il ,
. o .
F _ * B
- * L LY
. E,' LTERM
© .| [ coPt e rmmu . W _
Y . |+ | LTERM  LTERM ¢ MCT
’ N A LTERM + NLT
) Y . ig - 20000 =755 S
- we Y NI P . - P e 1
- ‘ Ten COPY_ ’ . ‘ .
) % TeI+l = o ° %
; N .
- 4 ;% ¢
. - . ?& ~ ~
1\ . - : S

I

v - s 13

i‘or large numbers in t# Fibonacei sequence_the’\n r@gﬁmosﬁcim&m '

digits are essentially uniformly distributed between O and 10", ’gms, an

~ algorithm like the one for this problem has. been foundluseful for generating
random numbers, especially when n is larger. , (See, for exa.mple, B# A.“Gal].ei;'
"The Language of Co‘ers," Section 6.3, p. 72.) Eveh for n’ equal three,@it
may be poss&le to see that the numbers approach a unlform dlstribution.

I.e., approx:.mately half of the generated numbers should exceed 500 and
approx1mately one-tenth of the 100 generated nu.mbers snould fall be@ .
300 and Loo. © . ,

Suggestion You might use the 100 generated ndmbers as the data set

for the’ exerc:.ses in Sectlon 3-1, Set B.

&) ‘ : L, .
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TWOSUM « TNEW + TOLD ~

s

)

. "TWOSI}M =",
TWOSUM

L~
\/6

TOLD « TNEW TOLDER ¢~ TOLD

LT TOLD « TNEW
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TOLDER ¢« TOLD

E)

TOLD « TNEW
T I % 1 .

- H
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.
0
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.
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4"‘
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1
-

N 8
_FQ TNEW < TOED &
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. | . AVERAGE «

TOLD + TOLDER

AVERAGE «,
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|

T3 L
6. ¢
- - . , ) I -
. .
. ﬁ v {
. ) s
W . . ' N
e/ h
o, } - 1
- o ) . v Twgt mam w oA ’
2 . N%, "a®, "B", "C

3
. . N, A, B,C )
, , » .. 6
' ) o T N<15 STOP
‘\‘ - .5 } ;
2 Y [T« 3ME + I -
o » B« SUMA + 1
’ | |Aeca+n . . .
L - l - ) 3 - - i
N<-N+1% . ‘
Lf SUMB « SUMB + B o
. SUMA « SUMA + A o
Comments : \ _J : ’ s',

" You may need to give the students some hints in order to prevent them
from suming all the terms in Columh A and Column B each time they need a new
" B and c, respectively The hlnt .might g0 somethmg like.

0

4

, "Summing all the terms in Colu.mns A and B each time you need to
pe - cofnput‘é & new: B -and C, respectively, #s wasteful, difficult_to

program and can he easily "é\foided if you employ auxiliary varisbles

» '

Exjhose values are the - runniﬁg sums of Columns A and B."
4
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- ) Exercise 6 calls for the generation of the following table:
’ - i . ¢ L4
. . N A B c
. "0 s 1 1 1
- 1 w 2 2 2
0 . 2 3 4 b
L S -
» h 59 ll 15 ’ v *
- 1]
.t " 5 6 16 26
- ; 6 7 22 b2 i
- . . SN . étc ‘
. . by the process N-1 .
, B,.=1+ ZA, ", .
i N =0 '
— .o . 7
« ¢ (N-l \L & ' - -
C.=1+ B N
P | N
’ * ; N° . i=0 .
- Notice &lso that , '
- : By=fyy* By o
. : 2. 1 S T .. CN = ?IN-l + CN-l * . )
’ - rs @
EN % Vel -
for all the entries shown. Is it generally true? Consider
e * ° . > . } R . . . - ! - ’? B3
I J L 3 . * T N o .
. . . - _ / ° ’
. . BN+l =1+ .Z Ai
. & . . i=0 .
. : : N-1 .
? - ’ =l 4+ A+ 2 Ai -
i=0 e
~ ‘ N-11 .
o , oAy (L DA by By
. 1=0
'~ which proves the general truth of the second form (for the "B) by
+ . mathematical induction,® . . !
L ' ¥ . ¢ ~ ‘\
el Ad " .
’ , .
L] ’ .
~ . 1 ~
» et
‘ Q . | e s . ;0
‘o ‘ . . U o
ERIC: T ~
vy T * k voeooTy Voo ! : ‘ ‘ . ' . +
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) v The solution to the same problem is now seen to be: !
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Additional remarks on the Fibonacci sequence

S

In this Chapter and in apter 4 we have made considerable use ‘of the
Fibonacci Sequence. This sequence has served as a pédagogical vehicle for
.introduéing and illustrating various flow-charting techniques. The com'i;uta-

h

* tions themselves are of no mathematical importance and there is a si ple for-
mla for the n° term, a s Of this sequence. We derive this i%%

la below.
Whether this derivation should be presented to the'students as "enrichment" . °
material must be left to thé discretion of the teacher. Certainly, if the
student can follow the presentation, then the mathematical content (i.e., that

of solving recurrence relations) is very important..,

If this 'material is .presented to the s‘cudent, it is likely that he will
experience his greatest difficulties in passing from s‘teg (3) to step (L) ‘and
from step (4) to step (5), In ordetr %o clarify the transition from step (3)
to step (L), the teacher could copy from the formula of step (3) with k re-
plgced by 2, 3, k4, 5, 6\, T and then add up the corresponding sides of the ‘

equation indfcating the sum, with dots (e.g., 8 ta, + ...+ a,{).' Now 1'1se »
sigma notation.instead of the' dots (e.g., * 2 ak) and then replace the T by
k=1 -

In getting from step (L) to, step'(5) it should suffice to observe that the
- indicated sums in step' (5) have the same terms as those in step (4). Now we

3 - »

Proceed with the derivation of the formmla. B .
¢ .ST
The Fibonacei Sequence is determined by the following recurrence relation

+ ‘and initial conditions:™ '
. \" -

(1) 8, =8, te

n throughout the formula

~ « ~ ~

for n>2 ; ao=al=1. .

&

We have seen in the student text how we may successively compute g

2’ 8.3, an’
ete. We now ‘derive a formula giving & directly without first calculating
Rl a.,, a etc. ‘ ‘
J 2 - . )
. o 8o 3 7L - . .
. First we substitute. K for n in formyla (1) to obtain
¢ N ’ - R . ”
.(2) 2y =8, +:ak_2 for k> 2. . v
_— Q : - . - | ‘
. - Ld A 'Y - ©
b . . )
- . - , -
y IV .
. - ) o “
T * :
o s

- . N
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T3

<

ERIC

PAruntext provided oy enic il

|

9

)

i . .
’ ' i . o
Next, multiply both sidesiof this equation by xk, yielding1 , -
o k .
" (3) X &, x + x for &> 2. .
x ! ak-a/\?? ’
A\ ] M LI .
Now sum from k-=2 to f, -
nl . &
W) . 3 akxk .3 ak_l).(k . 3 ak.zxk . .
. k=2 k=2 * k=2 B}
1 -
Rewrite the last two sum;s so as to have a, Appear in thessummand a
‘n-1 . n-2
k-1 k+2
(5)

"n
Z & o Zax o+ 2 X .
ak k=1ak ak

. From each sum in (5) pull out two terms. so as to have the range of the 4ndex’ k

the same in all three,

-
»

n-2 ‘
(6) ax+a Xty Za < -
ns n-1 k
. =2 } .
. - n-2 Y n-2 -
_ - Y 3
= an_lx + Z akx + alx + Zbakx + 8, x” + ax . - )
k= =2 B
Combining” some-terms: ) : .
» 3. n-2 N -
o n n-1 2 2 k+2, _k+1 °k
(7? 8 X +a X (l-x)' =§lx(x+x ) + agx" + f a.k(x + X - X)),
! N
i\ ) Ca
Recallipg from (1) that 8y =8 =1, X ;"#J’f:«,-; . i
L : . R . . ' : >
o n-1 p M2 >t
S~(8)-  ax’ +a xt (lex)'= x(x+x ) + x5+ 3 akx (x *x - 1)
\ N « “n-1 . k=2 .
or . o - >~ ; . "
. n-2
(97 a xn + a xn'l(l-x) = x(x+x ")+ x2 * (x Ax-1)Za xli,;
. n-1 P . kﬁ&k -
iBy skipping stfo‘g) and just summing (2) from k = 2. to '..n\ (this @mounts to
substituting for x in.(4)) we have, ! ; .
le . . u y . :
. ‘ Fog = Z at Z oo o ~
T k=2ak akJ ‘2 ' ‘
> or 2 b A . ‘ o \ '» ..f' . . ’A " L'y
o7 . n-1 n-1 n-2 - . ]
v ‘ | e, +, Z 8 + Z T+ I ® .
e e ) Sk T ok k0,0 . '
o0 . N\ . : .
: R o opes L.t < . .
sothat ) Lf "a =1+ z-_ak. . :
[N ‘m' , .‘ = N '
R © ) - . -
This result”&ar’also be, obtained Py substituting 1 i‘or x 1in (7) below.
It will be discove:cegl 'by the studpnt when he works problem 3, \Exercigé b1,
Vi A . <
¢ 2 a "}: o ° 9 ! PO
A - I( ‘; ~' 6. 862 L]



T I I R T
Lo S . St T T ’ ‘w' vy W
. IR 1." c. . . .

"'3 ,Now we will d.etermine the va.lue of x s<§:"that x2 + X - N whence the ) P
las’c sum m i‘ormula (8) will drop out’, Using the quadratic formula, the roo{s -
l-. of Lt ‘I" 2" * e
\ ) . \ 2 X ,+.)’< - 1 4 : ’ . \
- e .found, %0 be L L
.'. \‘. 1 ". -

»
. \: ~ ‘ ) - )
‘ If x des:.gnates el }ie/z;/of these roots, we have, x + x =1 and 1- X=X, s0
N e ~ . . v ' -~ - B
%that. (9): Dbecomes : ) . P : _Ji
v 7 n+l = ) o 2
(11 ) ; 8 x + n-lx. ,l . .
‘ § - * -
’ or ' / )
(12) ! o+ 4 X = . . ’ .
". & o, R 2 . . X . -
S SR W - ~\
Substituting each of "tRe rogts for x - we have the system, .
. 4y ’ . .
' . L] % = : o
. (13) ! ~ R * . « ' ., -
¢ 3
n " %at=F3F ( . PR r~
PR . . 4 /
s : L o l
Now we multiply the first of thkse equations by r and the second by z and -
. add-to eliminate én-l' Co- ’ . . ) Lo
. ' : n -
3 ] . R ‘,an-l 7 _“'r )
L )y L N - 11 J ‘o . .
' ' o -a ,r=(-3) ’ c
PN - PR r an n-1 r ’ o -
' o S T !
- . 1 _n+l q O . - s .
(r+day =x" - (2 . )
. < . . - ) "\.»T
From (X0) r + % ié\ seen to be simply 5 so that -, o o o
. ° o ~ . ) Y
M ’ ) 3 -~ \n'*'l M e * / °
mte « 1 n+1 . 7 Lo
o (15) L an = F (r,= - (.—-) l E . /
% which is the desired formula, - N .. i
© "'ﬁ , . ¢ o - . . ' '° , :Jf.b(:-i . .
. s“:f,;g ) - . - : / '
-4 . P ] / . )
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1:{ LI . ¢
) T3 Lo T . ,
Mi ‘ . :3 n+l- ¢ o N
N It is sgen that the term (- —) tends quite rapidly Lo Jo for
large n, a, .is gpproximately 1 = +1 where r is abproximately 1.618.
5 - ' A
: It is, further, easy to calculate that r = %csc ’é% as seen b€low. In
. — the isosceles triangle (a) ) t k ‘
h -
e’ Ld
) - 4
/ [}
el B X - ’ x
. ’ (2) 7% . (v) o
/ d./aw from the vertex B a segment BD blsectlng [ ABC to obtain figure
é(bs. From the s1mi;ar1ty of -A ABC an;i' OBCD we have ° L
e ) L ex 1 ‘ :
S A xS %, . 5
. or - s % - , . g n e
= C NN . . 2 . —
X +x-1=0 N
Pl had » .
. so that ° s =t v - -
; g sl B 1 i
“ 3 2, g\-‘i’ 2 - I‘ . .
< '> . : - x -
B Buty from the isosceles triangle in (b) we see thab 5 =,sin '236 . Thus,
- e 1 L — .
I = 3 ese 55 and (15) becomes . o Coo?
! . n‘i"l X “n+l )
] s ) °(16) . {1 —43( ?csc 5 - ( 2 Sln'§6 . ). .
R [l ’ ' s .
-~ A last ninterestlng p'i,nt concerning the Fibonacei sequence involves the
1.
1 “golden mean'. Now you may know th'gt a rectangle is said to have ’
. 2 . ) . .
/{ 2 -. §
4 - r 7 b ) . ) SN
T, a " ' . '
the golden proportion if. . . L . . =3
‘ P RS a+b ‘a =*
§ . (D . =T e o
< . Letting %' =x,, then (17) becomes D .
. . - . a . '
e ' et Vtm1+%_=,x.owr'x2-x-l=0,, .
) s0 that x (necessarily positive) is g - c N
v * v . .
. . . : ]
_ . - N N R A -
¥ 2 » - ‘m.

R ) e
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Js'I'he Fibonacei Sequence is of little mathemafical importance in itself. However,

as has beep seen, it is pedagogically quite useful in introduc1ng some ‘intexr-

. esting mathematical techniques. o N
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Answers to Exercises 3-2 Set B

3.
4

a

b

s

- P

What is réquired,is a simple change to éake adventage of the fact that

the last two assigmnments of box b occur &gain in box 6. The necessary
R

change.is incorporated in the flow chart for the next exergise.

.

The statement in’the hint is Justifiedsgas follows: If X 1is the g.c.d.

of C an& D, then there are integers m and n so that C = mX and
.= nx. Moreover, m and n have no factors in common. Thﬁs, '
mXn XX is the smallest integer, which is,a multiple of both mX and
nX. Now, mXnxX=mXXnX/X=Cx D/X. s
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Comment: After functional' procedures’ have been studied in Section 5-3, we
vill be able to simplif‘y the flow chart to: -

I“.P <

-

Here we'presen{: & more difficult 'algorithm which the teacher may wish to
e .

use as a project for better students. . R

In connection wi‘th the Euclidea.n Algorithm there is an ilflportan‘b_ mathe-
'ms‘tical t_}leorFm to the effect that, given non-negative integers_ A and B,
there are integers X and Y &o that GCD(A,B) = AX + BY. .The problem of
finding the values of X‘ and Y invdlves some mathematical preparation.

i Letting a,, &, be the given numbers whose GCD we are to find, we consider
i O l , > Rp—,
a ‘sequence [ ’ I
- 8y 81y 8o 83y veey By .
s - . , B .,

where‘ for each k > 1, e is the remainder on dividing & o by 8 1°
The formula r = a - gb becomes . ’
SR ,—.(%). A T S 2 S T ey -

That"these S and d.k reé.lly exist can be seen by successive substitution

and verified inductivelya When By .= GCD(A,B), .then ¢, = X and d‘k Y., -

FT. TH se last & an'a dk are the only onesg we w;i.sh to output.
‘
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Py . . v

. Qleazgt}y, o , ‘ .
-~ CO=1, d,=0,.¢, =0, d1'=l.: ) . .

In order to demve the recurrence relation for the* ck and dk we write
<
out (1) for three values of %,

1] \ ,
4 A
ak-2 = 080t Go™y \

. %-1 T %-1% * %a% o
T . Co '
: ' . S ak-;&j::._ %Bx-1

I . .

Substituting the first two lines intg the third

a _ ' . v
N oA T G o8t ey - gt dk 1810 . .

§ Rearranging terms , ) \

R P NP (@ 5 - o q)ey-

.

® Thus, \/

° = %p T %l K = d\k-d' Yy v

We now see that only the last two c¢!s and the last two d's are needed.
Letting the 1atest) e, bee XA and the next to last be C2 {similarly for

J , the 4) we have the 'zssignme'nts:.. : L. -
L ' \\ HOLDC « G | o
. CLece -qxal -
Lo “C2 « HOLDC '

Here q denotes gq,. A complete flow chart is given below.
. k
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Flow chart for computing/GCD of ‘A + B.and representing ij.as ‘ CF
BRI GCD(A,B) = AX + BY: .
:;{ : ’ - , » ) v ’
A . " r . . - - ° ‘
! /. . N . ”
. N * - ’ ¢ §%.
. T
) 1 » '_:i\
. . (
] Cl«o S i
1 DLé&1 ' ‘
C2 «1 .
N ¢
R « 0 . . AR
"If A is", A, "and B is", B, : .- ‘
1, ”
thg}"l the greatest c‘ommof_& .y \__\) ’
- [divisor of AEnd-Bis" = v | Note: In this algo-
. ) ; R . : . rithm we treat B as
’ . . the divisor instead N
. of A, This is just
. the reverse of the
e way we did it in <
. . o ~ Figure 3-1%.
‘ reh f - ' s
¢ Ae«B . . .‘ . 4
-+
B:l—‘r
’ N M 5 . S ~~ ”%
q « .[A/B] - “ ‘
Y- A-qgXB ; N
q 3 -
' - 6
< -
¥ Al ‘ by ,= 0 \T ! —_
. F . »
47 7 8
\ ‘A eB - | B, "which can be '
e L Ber " | expressed as", C1, ™~
-’ . HOLDC « C1 o - |+ Vtimes A plus", D1, ,
s, HOLDD «-D1 PO "times B." .
- Clle-gxCl | .
_ DL «D2 - q X DL .
.« o C2. « HOLDC
. ‘e D2 « HOLDD A
, :
. * Jé;-, i
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" ihAnswers to Exércises 3-2'~Set C ? ’
N & . 2' ;g
SR START d . START
2 Lo .
-, i
t . & - -
$ . 1 ) . . § 1
' 7 . t4 ¥
(xl,yl,xQ,yg . . s (
d ’ t
2
. x1,yl,
x2,y2
< s
3 -,
- length «
s N J’i 2 R > N
.o (x2-x1)“+(y2-y1) _
<
h N >
- & "THE SLOPE )
: o OF PQ IS",
. - = - s .
. /W\-/' ]
e ;’ . N
7’ .
- - m *
} 1. : . . v
Te\,s‘b o Input ‘ Outgutl (vox &)
l ﬁ - -
Deta 1, ¥1, 22, ¥2 The length of PQ is
. ]: "3) 2 ; l} 5 - A.I5:o ) ¥ M B
aF . . ;T _
2. K « .
4 L (S
Test . Input Output (boxes5 or 6)
Data xl,i¥l, x2, y2 . ~The slope of PQ 1is -3.0
*l b,2, 3, 5 PG is parallel to the y-axis.
. 2 2,5, 2, 6 ‘ . ' .
& ’ i -
. P
\‘1 . - ,-.‘;‘ 'Z 6 70 -




Comment on 2

real” numbers (box 3). When the nurbers being compared are measured data or

- computed values, some uncertainty is associated with each value. Instead,

In realistic problems one rarely seeks a check for true equality of two

tests likg

.t

-

ERIC

P i 3
.

V6

or programmer.

.

C]xé - x| <E

E

1

%

N

.

PSILOD.—T—, g

’

are used, where epsilon is some small value determined by the problem analyst

We shall masf)use of these ideas in Chaptér 7.

.S(—-

x2-x1

Ldely,@fsxdel;1

"ANY REAL
NUMBE
WILL DO"

)

7 -
Tt .
)
. .
Input Result output (box 7 or 9 or

Test ’
Data xl‘ yle, x2, y2 delx .
1 Y23, 5, dely = -.3
2 b, 2, 4, 5, . No such valﬁg exists
3 b2, h) s, .0 Any real nhmber will do

~

P

71

77

o
3

e 23
<y
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b © (srarT .
i
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3 l .
\ '.'
’ - k28
4 N
T
\
- 6
o2 -
x2-x1 "ANY REAL
, NUMBER
WII'IL Don
7
delx 28 delx « 0 o \
N 8 .
>
+ "delx =l| i
delx
. 7
« ) Input Result Butput (boxes 8, 11, or 12)
Test | x1, yl, X2, y2, dely g . P
Data d ¢ . ‘ - 7 .
i 1- | 4% 2, 3, 5 03] ° delx = -0.1 -
i T2 L, 5, 3, 5, 0.3 No such value exists ~ A
. 3 b, 2, 4, 5,703 . i delx = 0.0
. b L, 5, 3, 5, 0.0} ° Any real number will do
2 )
9 - 12 yoF
" EMC ; . =~ 7 8 g. .

Aruitoxt provided by Eic: . . . -



ERI

Aruitoxt provided by Eic:

ye yl+s x k-x1) [

7

"NO SUCH

VAIUE
EXTST:

sll

’ -

Result output (boxes 7, 9, or 10)

.,

[
JON
y = -1 —_—
. Any real number will.do

No such value exists




"NO SUCH

Aruitoxt provided by Eic

VALUE NUMBER <
~EXISTS" WILL DO"
.
- . E3
1 /
- . toee
& - -, -~ :
- Input Result output (boxes 8, 11, or 12)
Test )
N Data A, ¥y1, x2,.¥2, ¥ . .
o - - s
1 4, 2, 3, 5, -k.0 x = 6.0,
2 L, 2, 3, 2, -4.0 No such value exists
) 3 | 4, o2, 3, 2, 2 Any real number will do y
b b, 2, 4, 2, 4.0 JNo such value exists
N . . o
. . G
- ~ v
v P _ . ‘ . *
O ‘ 80 i ! -
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. xint (—-xl-% §
yinte-sXxint
9 7 .
"PQ DOES "x-INTERCEPT "x-INTERCEPT y
"NOT INTER- IS", o\ Is", x1
SECT x-AXIS" xint .
v ¢ ’
q M o -
"PQ DOES NOT ’
= | IvtERSECT
Cy-AXTS"
.‘ »
~ .
Input * 7 Result output (boxes 9,10,0r.6,7,or 11,12)
Test~
Data xLy=yl, x2, y2
x-intercept is L4.67
1 b 2, 3\ 5. y-intercept is 1h4.0 . ’
L " x-intercept is 4 . -
2 b, 80k 5 PQ does not intersect y-axis
g . PQ does not intersect x-axis !
3 b8 03, 2 y-intercept is 2.0
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L ]
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F s £ 3 . . *

- - ‘ . - s (_Pzg.-ll- .
] , x2-x1 ¢ . xint « x1

‘. o ~ Ty ‘lj ‘ . .
xint'e x1- ys—l
= yint & yl-'sXxl ‘.

.‘7' T

; "PQ DOES NOT| - " -INTERCEPT]

, INTERSECT s", ,
T \ THE x-AXIS' | xint . )
‘
/ -
- g 12 . .
. 5 j
INTERSECT |,
- = ™1"DHE «y -AXTS" o
d L4
. o .
. Inpw ‘ o Result output (poxes 10,6,8,11,12) -
Test - - ’ - ’
Data | XL, ¥1j x2, ¥2 ' .
. - PQ does not iAtersect the x-axis ° , .
. ﬁ 1 L’h’ 2, 3, 5° 0 PQ does not intersect the y-axif ’
B : . x-intercept is -2.0 l y .
g - @ , *;.‘,2) 3 3 y-intercept is 2.0 . .\ .
* - \ . P ]
N PQ ‘does not intersect the x-axis
ws;s ¢ 3 -k, 2, 3"‘ 5 T , y-intercept is-.3.71L. | . .
] ’ . >
s ) . - . x:intercept is 3.714 ) N .
‘ : b . b -2, '3’ 2’4 . .. PQ Woes not intercept.the y-axis ==
- . ' 1 x-intercept igg 4.0
w 2 i A2, by 5“ Y ,* PQ does not intercept iie y-axis B
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. E.5Cercises 3-3 ’ - i

L
A

- I . F} - . ’
Cormen Exercises 1 - 7 ' ’ )
EE @E . T S . !

, W& regard this as another ke'{ exercise set because of the practice to be

. gained in syn‘bhes:.zing the flow chart from verbal statements of feirly com-

plicated cond.ltionals. As nany of these as possible should be worked.
Exercises like these wouid be excellent for tests. They are easy to make up.
. A minimum subset to be assigned would be 1, 3, %, 5 or 6, and possibly T.

Number 7 should not be ass*gned unless it is preceded by L. The companion

’ exerc:.ses'in_,the language manual should also be assigned.

[N . .

. . . s )
« * Comment on Exercises 8 and"9 - : "

- 3 M
These are the reve‘?‘se"of Exercises 1 through 7. The student is now

challenged to take a fléw chaz\t of a compound cond.ltion and come- up with a
correspondlng geometric region determined by one ‘of the two exitsg from ‘thls
) cBndition. At least one of these exercises should be assigned, and a test

- questlon of this kind lS recomnended. "I'hey are easy to invent.
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o - ot e
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. ) Boxes 4, 5,.6 and 7 can be étltefnately represented as:
\ :

Illustrating that asfour-vay bra\nc‘h/\ .

may Ye decompos!d into three 2-way”
branches. (In gen.eral, an -Nivay
branch may be decomposed into a chain

of N -1 2-wvay dranches.)
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Test, Input Output (box 9) \
Data S M I

1 21, 165 / "o .

2 .7 2k, 169 -30 ’

37 %723, 161 . =20 .
L 27, 188 50

'

EY

This is the second of these problems related to the carnival wheel.

scoring rule.

-

.

The third problem occurs in Section 3-5 where we show the student how the

conditional can be avoidet’i‘ usiné a vectoréﬂhose f;:)ur eléments comprise the
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Answers to Exercises 3-5 Set %{ . .

-

b,

.

Comment

(b) is equivalent, simpler and’ more
P2, P
respectively, then the

The student's clainm is'dorrect.
If we presume the data values for P
-20,
Instead of %’ fbei/g_used as a test ’

general . 1’ 3 and Phg'which

are input at box 0 are -50, 0, -30, and

two flow charts are equivalent.

e a

value in a conditional box, it is useﬂ,as in the subscript express1on

-

¢ k+1 ¢~

H .

Thus, if k were 3, {means Ph' It for Ph_ we had assigned

k + 1
-20, ~the ‘same value for Pk 1

in"the cprresponding box 9 of flow chart (&).

is printed in (b) as is printed for P
The same match in values
printed can be seen to hold for the other three values which can be
conputed for k. X -p -

Any 4-way point rule can now be devised using the algorithm in (b) by
merely repeating the execution of the algorithm with different data'
TR 3, ThigTs not trie for flow'chart (a).
In' order to change the point rule we must change the values assigned to.
P in boxes 5, 6, 7 and/or B. ’

A . .

N
Flow chart (b) reoresents a proper use of subscripts 1n a computer

values for P and’Ply

-In

the nexékgroup of exercises we see an example of a poor use of subscripts.

S

100 times. N ' . . s —e s

i A

Once for each time a value of b is encountered which is greater than or

equal to, m. It need- not happen dt all, or it can happen a hundred times

-

If box 8 is never executed, then box 10 will be'executed. If box 8°is

. In other words, ANY
en box T isrreached the value
Its vilue is either equ;: to Q.orto 1,

It i

not be reset to a Talue of one in box 8.

¢

executed even once, then; box 10 Wlll not be- executed
is made to behave,like
of ANY is tested#

on ‘earlier ewvents.

two-way switch.
depending

set initially to zeao in box 3 and may or may i
It makes no difference how nany

times box 8 is exeputed aftér % happens once; its value remeinks one. -*- ..
» v,

.
- . r7 ;S [

Comﬁent:

Switch variab

earlier event has

ltke the passing off

nx-.\n-.n B S T

value, say 1,

les are useful for recalling whether or not a certain.
Jecurred, In general, whenever a certain event occurs,

£ "Train No 9" the switch is set to an alternate

i

us changing fts initially chosen value. Now, if ever

-

swe nee
do is deffermine the current value of the

o know if that certain event, occurred--€ven o e--all we have to
witch by tes ing to see if it is

JAruitoxt provided by ERIC

LY

; . e .

‘one or ‘2ero0.
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— R - AN
No. ',It'is not necessary for more than one value to be in memory at any
one time..

2t o7
The modified flow chart, before generalizing to read in n values,
s  1s shown below. '
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We coulf rébd the value of n as part of box 2 of Figu;'e 3 25. Then, in’ /
l boxes 3'and 6, 've must replace 100 by n. '
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° .
This problem w:f.‘ll regppear as a procedure in Section 5-5.

8.
® : - .
- . . k]
@ % ’ ’
: | - 1 Y
_ Q , Any more cards? 1o - @
) * | yes !
2 »
( {ai, i =‘O(’l)n}
— ) o 3 T :
e =0
’ n L .
S T -,. i .
nen- } ) < * ) -
I 2 T .
LT n>0" - r P
* ) .

s, the falge exit

not necessary. That

ote: Strictly speeking, box T i
When exiting "fals " at box 5,

. t
fmm box 5 could be led into box 6.
In this ,event if we enter box 6§ ; the value of n would be printed but none

jof the 'ats, because for 1 = O, 1 Talréady exceeds n, 50 the set is empty.

‘ We haye sepa:fted boxes 6 add T in‘antici-pz‘at:l‘.'on of the difficulty which
we would encounter in some F
loop notation", the first el
‘\ not made until after the first item (first transit through the implied loop)

L4 - .

ne= -1,

TRANs where ubing the equivalent "implied DO
nt is always taken because the test (i>n) .is

is printed.. . - .
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Aruitoxt provided by Eric

. o ’ o
~ % : '
0 ‘_ . . . . .
Heré is a very simﬁle question guéstign and its. flow chart solution:
’ » Loa - '& R . .
Draw.—%» flow difart for inputting a set of values and outputting

another set having as its elements the absotute values of the elements

.o »

the i t. oy
of e' input se o 4 ,ﬁ
Solution: : B ”
) , o
i)
P T START . Boxes 4, 5, 6 could
‘ . A -+ be rogplaced by
. 1 " i
(n,(a,, *=1(1)n) B I b, « |a,}
- - p ‘ L%
g — : . ) v
(3 E“—{n \ F : -~
T
Lo -
> l.bf;_
¢

<

-1 the student could be asked to redo this flow chart
&

pu]ﬂi.ltir\)'g' boxes 2 ‘f)tolgef;her inté?a‘n itf;%eratidn box. . .2 # .
. o @ - R
87 " ;
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Answers to Exercises 3-5. Set B A
) . - . ' .
1. {a) b, 7,72, -5, k4 '
\ N %
n . -~ -
! rrent

' box ' Vaiue “
(b)s®n0e3h5678 of K

\

1 v/ P\ )

‘ - 1
2 / ~ s This much of the
3 v \  table is given to
L / . 1 the student..'
5 / - :
6 LA 2 )
7 " / . )
8 ° v/ .y ©

¥ 9 / - = ‘

10 / 1

L / d ) Appearance of )

12 Y . ) Scrateh pad memory for

1o . P . the A vector.

——— -LJ -1 J @ l -
« 1h B J ' 3 A . .
15 / 2 oL r R 5
’ 16 . K1 I
A ‘2 |R-Y X 2
) 17 / .

© 18 ' / 3 |3 XX
19 v . ol 7.

o - L .
¢ ’ 21 ~/ : -
. e / . 1 - . 2
Kkl »
. 23 " - .
t ’ X lgl* ~/ 2 3 o"
Y ‘25 v/ '
s * .
- 3 " \
y
Jq T ) . -
s L ‘ *
N L3 - H
° » %aiél? I3 i~ 3
“ e E% 3? 3

3
LR 7Y
&4

Y.
- T A
& ’Tot/l.f“i

2 . : 2

! a ‘; :s ;{ . o "3
) Q N —- _ ) 5 ‘
“ERIC v B O

2 ]
LN [P S
;




(c) 32 boxes - ’ :
- {d). 10 times . « T,
4 - .
"2.% 3 times or N -1 / ‘\ .
3. 13 times / . :
Comment: One popular way to rate/sorting algorithms is by the ninber of
_— :

comparisons like box 3 which are required as a function of N. 1In _this
- algorithm the number of coQEarisons depends stro'ngly on the init:ial
ordering of tHe data ranging from a minimum of N - 1 when the data -
are in perfect order up to a maximum of .i\l?’ + SN - 6 when data are -
initially in rever;e ordexf.‘ " In Chapter 4 we show Limprovement in the
algorithm whicl reduces this maximum to N x (N - l-)/2. ’I‘.hus, for

2
reverse ordered data we get

N Number of comparisons .
> - 2 2 N ¢
M 3 ' 6 .
. 13 : ;o
. . » 5 ( 4 2h ) " )
-~ ———— r——— - - — o ———— B' -
6 46

. , ' }
* In Chapter 4 we shall develgp an algorithm where the number of com-
parisons is irfdependent of the initial ordering of the data and is

equal to N x (N .- 1)/2.

This ‘exercise is inspired out @f the need to have the student ;‘oc&s /
f his attention, .while developing an algorithm, on the f;_uestion of 'whetherd .
sibscripted variables are needed. »Certainly nond are needed in answering
part [(a) and (b). At other time.s.thgy definitely are needed, as in
" part '(d). v

-

-

) - 3 . /
~ g Al ! - «.
. . 4 - -
N . ) , . N
'\;9 - . Y. i
5 - ) " b, - v , .
N - - v .
L. . RN .
o oy Lo i ‘ \
“‘ , /’ ! 4 ! R : \
- Q ! Y w89 N ‘ .
! | i | i
- ERICT oo 95’ '
Vo S :

/‘ e H . LN




is even, then

N+l
£ |-
after [ 5 ]

. Answers to Exercises 3_—5_ 'ﬂ c

N could

could'&e changed to

¥

(a) We‘can' use,the Sort flow chart of Figure 3-27 to solve this problem.
spec:.ahzed to 101

MEED =
/s

/

r

is odd, [N—;i]

1. *‘gthe same value as the .~variable we called MID = (

is

)=

~ <0 . i
Subscripted variables are essential for-hn internal sorting\algo-
rithm like the one in Figurk 3:27.
"*to input all the ages into: aevector in memory and then sort.

"MEDIAN IS",A.. ——

51

(b) The meddan of a set of. N numgrs, N

as the average of two numbers accor&ing to this formula:
R

5 X (A[N+l]+ A[

2 2

and '[g+ l] are equal and both would give
w?r

[

integral and [g+ l]

vUs_ixrlg;.this expression the flow chart can %e rewritten’-

o

P

[N, (A K- 1(1)15:}

f .
MID(—-[ ]+/
! T
N+1
MAD « [ 2']
\LMEED&- .5 i,(AMAD+ AMID)'I‘, '
¥ ; .

"MEDIAN IS",MEED|-

and in box 8 the outpu

In other words, it is neCessary

even or odd,"= ‘can be defined

- reaches the next integer

- sawm o

Y



v ‘i l
+ ° ° ! - '
(¢) ,
N ’ 1 .
- JAny more ' ,
. orchestras?y ’ M
' - ! *
L
. PR
. ) fi’ ’ -
- * ¢ ‘ .
' ! ‘
. . .
. ' 3
COPY « AK )
- . ’ -

. . A < Agn

AK+1 « COPY

/ i
N - )

510
MAD « MID + 1

! o . . 2
. , \ z B . 12 ) ‘.
« MEED « .5(Ayrh + Agup) .ot
c ‘ 13 ,
) "MEDIAN AGE-IS", MEED, v ;.
’ ’ ’ n g f .
/ - YOUNGEST IS"; A, .\ ‘
P IR | "oLpEST Is", Ay . ’ :
': : » ':'v"‘?: ‘
P ) *
- T
1S ke b
— . [
- - . . 4 . -
. . R - : S
i . . “ . ‘ "\ -'.““

.
.
« . .
E lC - il v .
« N 4 ] L W
" ’ ) )
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PAruntext provided oy enic [P

L

" Exercises 3-6 _ .

3

. * . .
-

Comment: These exercised involve simple lgops operdating on elements of a row -

or a column of an array. &xercises 2 through 5 aré fundamental row

N - )
operations of matrix algeBra. .Working these will be very helpful in

. , g ' - A
understanding some of thes steps in the algorithms described in Section -5

(Simultaneous linear ec}_uations).

~ ES

Answers to Exercises 3-6 . .

Alternate solution:

&

1.

.
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T 44
y T3
B
L,
A
)
'
-
.
A
g
«
»
[
¢
.
o
5
A
\“
5.
Y
.
.
4
-
! .
.
s .
@
e
R
b,
-
L 4

.

COPY (,—-Pf.,J )
?L’J < PM}J °
PM,J « COPY
. X
. N
L3 :
.
M )
=S
'
MA}S - PL,J
|
¥

Jed+1l LTy
11
NEXT
STATEMENT
,
~ ~ '
100

PS4
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’ *‘Chapter T - \
P » ) .
- . LOOPING .
© - ’ .
. _ - A
*The four sections of this chapter are _ N
. . » M o "
4-1 ' Looping . g \
: . .11- 2 Illustratlve Examples ' . . ) C oo
. i3 TableGook-Up, . : \ ‘
o -4 Nested Loops - ! L
/- Outline of the Chapter \ o *
£ L 1" The' ablllty to descrlbe 1'epeL\tlve events or loops in a convenient ) '

v

ungmbiguous way 1s one of the most important skills in prograrmrung

. Here students develop some insight 1nto what loops are. Although there
.1is no s:mgle form which all loops take, there is ome kind of loop sO
common as to merit the development ‘of shorthand techniques for d.escrlblng

S it

sectlon and employed numerous times thereafter 1n thls text.

]
Thls is the main reason for. the "iteration box 1ntroduced in this

+
- »
B2 THis section includes mardy sn
¢ . N -

‘best deseribed using an iteradion box.

S

i

IS

~

-

7

N
) .

11 problems each of which iInvolves a loop
-,

.
.

-3 Here wea'tjake uplthe simple ‘topic Of table-look-up and treat it in depth. - i ,

We 1vok at many aspects of this one 1mportant prqblem and brlng a number

of programmlng concepts 1nto focus.

4
\

.

~

'

o S’
" 11-.-1! We ;Lntroauce the nest,lng of loops or repet:x.tions

Y

\:

Thls is an all important

: _ idea Repetitions frequently come riof singly, but in bunches,and often 7

‘Sne m..thin another. -
Sortirfg does, too.: One of ,the most interesting algorithms in the entire .

tex:t that of flndlng a.longest mortotone suhsequence, is described‘ at the

Many operatlons ‘on matrices fall in this category. o

. v

Thé algorlthm suggests the proof of an 1nteresting

5 . end ,of this Section.

| T

theorem about the minimum length of a..monotone subsequence.

Without first

o, x . .
: ° suggest itsél:ﬁ’r - .. .
LY
’ - o ’ .
LA 1Y - R - ‘ H
; 4 v € N . . N » - ‘
vie N . . . 3 “, . . " ., . ’ B
Y. . . * . L o . .
) S SRR . . )
N N . h BRI 3 2" ’ . - -
' e, ’ S ! . 7 o .
., R RN L - , . ' I .
i . . EEEAN ‘\. v . e . ' ’ T
- ‘ ' . - { ’
2 PAR . vy B . . .

ERIC

A et it

s s
‘Y A

' focu31ng~on the algo‘lethm if 1§ hard to see how the propf WOuld ever N . .




1. Check values. Let I< 5. _
) X . . \_q N

Input

1D AY TR C .

L1703 L 5 ;
P a‘* 6 8 10 -
. 377 ¢ 1é_ 15, ARSI
- % 12 16 20 . -

s .

- T3, .9, 0 12,7 15, - 21.21_'
o kT 1R 16, 20, 2828
v W3, 13,0 20, %, ‘:35.35‘ 3

FRIC 102
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"ERI

. TTERM « 2°
"NI’.T(—J. ) ’.\
Sel | 4 -

-

S « S + NLT

COPY ¢ LTERM

b LTERM < LTERM + NLT

NLT « COPY R
=

Comment :
The cofnputed results are: -
I LTERM S

1 2 1 , K .
2 3 .2 . DA R '
3705 b - |
. - . Comment: Computed results are: ',
. L)' . .\8 7 K : - . I FI SI;2 R
5 13 ., 12 ! . , .
. . 3. 2 1.
6 21 20 - , | L 3 2.
ete. ] 4 ST %5 5 Lo )
‘ . ¢ ~ 6 8 7
y The ,‘check value I'S 5 co 7 13 12 / .
output’ 55-13, 12 , 8 21 + 20 Joe
¥ . . ete. 4
Notice tha®% LTERM and S differ by 1 for-all, I ! Or, in the alternate * *
solution, FI' and SI_Q' "differ by 1 for gll I. We hope the studgg@:—‘nck h

find frthis to be an interesting discovery. Also notice subscripts are not

e"ss,ehti‘al in this flow charte since the first solution dojes: not use them.

Aruitoxt provided by Eric: »

4

=~
.
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"APTER", N, "SPINS, YOUR NET WINNINGS
ARE",*SUM, "POINTS" . '

ket 5o (8

SUM ¢ SUM + P,

Check vvalue~s; N'=5
Input S, + M
216
126
T 621
261
612




Note on the'c carnixal wheel ( B .o - ’ , .

i -

Although we have not done so in this ,text, one can proceed ‘to simulate .
some interesting experiments fer didcovering game-playing characteristics of
© the wheel. 1In th;is exercise we have suggested.tha’c the spins ip the sequence
be supplieh as data. It would be moxe interesting :,f the computer could oper-
ate such data in some ra‘ndom fashlon by employing a pr0tedure for generating <
random numbers. Sych a procedure would "generate 8- value of m each t:Lme it
- is cal{:ed on. Values of m mlght be uniformly, dlstrlbuted over a glven range .
or, more realistically, dlstrlbuted normally over the same range about some
mean value of m which you or your students (LOLlId vary. Some useful references

which will suggest algorlthms for generating random numbers” are:

1. Problems for Computer Solution by -F. Gruenberger and &. Jaffrey,
John Wiley, 1965. ‘See Problems ET, E1l end* ELL. .

2. A Fortran IV Primer by-E. Organick, Addison-Wesley, 1966. Seé .
e . P.rleem 5 (Simulation of Experiments) \

3. The Language of Computers by G Galler, McGraw-Hll'l 1962.

See Sectlon 6 3, "Random Number Generators" p. 72. N

. ‘ 3 ' : . : )
’ r ({E\i, i = 1{1)N) B IR

A i >
: '\__]7\ 5'.1,

- ’ " WAGES =R, X T,
. ’ : PAYROLL « PAYROLL + WABES .

- i, WAGES| Do

C e . ' 8 . ‘
: * PAYROLL . R

ERIC Mo : : B

" - !
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FullTex provided by enic [N

* - N . - N
s / . '
. Th‘ ' R . ' ‘\ .,
- . ¢ - )‘
Answers to Exercises 4-2 Set A » % * '
Lo . 2. - -
. 1 . . ‘
R4 - (‘é 4 1, PR ¢
.o ! I 1 P I 2 . )
’ I<N |— . I<y -
. I I+l - I I+2 -
! T 1 T
LTt .
» COPY « P} ’ COPY: Py
P, «Q i . ‘ ‘
v . I _ _ Pr o9
- QI ("COPY - . Q‘I (—CO'P‘Y. ~
]
( . ‘. Immaterial whether N is odd or even. )
- s
. 3 , ~ ’ ( S
. l , . : L},‘ \ , - v
- l = Iy
L .
[ I(—5 . . b e
. . ND2 N - -
: 1en He ‘ il
I «I+3}) " ‘ s
: - T f 2 -
g 2 i T ‘Il 3 r v
COPY «P. , | W < W
LI N - I «I+1
. ?i-— (__QI i »
\ o : . T, .
Qp « COPY , r-@J '
’ , I . -
- ) ' 9 “PI, ) .
s . & An alternative, though less o
. . . : efficient, way of doing i%:
) ; / .o
//y ‘: ‘- .
, - » -
! /o ’ I <1 |
5 ‘ : — I < [N2)f—
3 L «I+1 - I
) ] .
s B -{ 2 »
- : 1% F L
. p ' . __"_j
. \\n “’/- o ‘ - K
v \\// . ' . - -
Y Sy "
Q -~ IU(}OO : . .



6.s Perhap‘s the "cleanest" appr_o'z_ach,

ERIC

Aruitoxt provided by Eic:

.
5.
t _ * logically speéking, is to first
L 4
o | NO2 & N/2 ’ determine if N is even or odd and
their; act ‘accordingly. °
1 - .
Il . . oo « 1
N —1 < Noaf-Rm :
—] I «I+1 ol NO2B « {N/2]
(_) T |
. ¢ - L ‘
- 2 ' o <
* Q. « P : 2 .
§ I Noz2 + I . 2 .
- . - ( ( NO2B = N/2 T (N EVEN)
3 . : N
. F. (N oDD)
. ‘. . ° 3 6
An alternative, though usually . K « NO2B + 1: 1K NO2B
" less efficient, way of doing it:
- % -, S e,
f e .
L =
. , | IR
):‘ T 1 I F ., I «1 ~ F
— I < Nfop——t I < NO2BR[~—>
—d I «J+1 __,16..1+3_$—
! T b
' = ,~ T v
. T .
/9 <Py v 1 , < 2 .
- T . ) QI ("PKHI - -
. . I S .
. -~ .
. . L4 . ! '
. ~ A - *
L
7. o . Note that I must b ?incremehted negatively
N i J . here--td do it any er’ vay wc?uld be self
. L= s destructive. . ’
I«N}/J P T . .
. I>N-Kilp———r ~ A
™ I «I-1f~- |, ) )
. T /
> ' { \ - ¢
PI+é - Pi‘ .
. > ) (} .
-~ N . .
o }of { .
- N

. }')




»

IN-K+)

I I+]

Prie = Fr

n;. ' - l

\ .

v ., h .
By }rirtuefgf des\ ructive read in, the pair of values originally

assigned to PN-K+l and' PN—K > would be repe‘ated over, a‘nd over,®
' again. ‘See Fig. r4,'-']_3. -

[y

Aruitoxt provided by Eic:

b1




SUMCUB -« SUMCUB + P_3

I

| -

A

L

SRUCUB « 0
SUMNEG « 0

" SUMBIG « -0
! 2

I el

SUBIG « SUMBIG + ||
MBIG — SUMBIG

)
HE

§'_.' .
]

4
.
1
3
.
L 3
P
“
H
*
O

Aruitoxt provided by Eic:

¥ -

ERIC

SUMNEG « O

.
3
.
'
.
- -
-
, :
-
< ,
., ¢
t
h 4
.

o




NEXT
STATEMENT

-, T

-




-v v . . ‘ -
v a -~ 7 A" s
0 .
- - :
4 s ¥
- - » - ¢ - ey - —
F & ¥
[ 4 -
- \ 4
N - .
° . 3 ¢ h ° * * ¢ .
. \ .
, )
N , W By ‘ ANY « 0 . ) .
LAY <1 . .
3
EY B
- L ( N R
PN Y - -
- ot A7 - . ‘
> y-
) p) 7t
¥ NEXT
. STATEMENT .
- \
- 7 ‘: .I
13.. * e alternatively,
/ .
l lﬁ v
L] .0
v | Wes0 W« 50 -
- ’ !
’ ~ ., <« p
L % ‘ . 2
I«1 ! * i’
» \* ’ F
. I<HN
* : oo "I eI+l
S
! ¥ ,‘ 23 > T
- , F { . 3.
- 0
P >
R l N I-l-lI 5)
T ° . Ty,
- L \ .
. N &P i
. e “i‘ I
; L XY
. ’& , . -
5
. . . STATEMENT .
» . -4
. . . . X/Ja
e % ' ° *\ . "
K" N ; ‘\ x N 4 PR H
e - ) . t ,\ e e 4 P ,om ) Re4 .
R Sk, 10
FRIC, ™ 5072 151 S :
R SRR R A I I VANt s f x




=

P > © 3
’ ¥ f . rl -
. ~—(T2ol < Jul da 2] > o))
L] T . -
. 5 ) 6 - 7 .
- . | e ..'
AR L : )
v ' STATEMENT
F b e .
' ]
< : 2
¢ N
- \'\ _— = - v > a N
": " _J ‘
é‘{‘ Ké—w LK <N F\ note: we resume the scan
e KeK+1 B . down the list
" ' ! o -
;%ﬁéﬁ ) IIT 5 \1 -
. -———@< P, and B < M ) N ,
\ T * 7’ b
) T (_,PK../_-‘ . ‘
o, 8 f
. ‘-_\

ERIC

r

, | NEXD STATEMENT




“ERI

. - . q_ﬂ’
- [ . .
. . .
T N ~
. - ‘\f' ?,
(%4 N o
I v ot
ao
. & . s
o v
Tl N
£
“ . %
. N
. .
- ¥
»
. ¥
-— .
'
e
< '\ '
r
(Rl
e
. T
-
4
N oda o B . - S -
‘ ¥ 7 3 3 ~§'~;’"
JOTUR
2 | A . , ‘
. . >t 7 L
Q. 2> T ROW « 0
I,R = - o
' iT . s & v -
. .
, 3 X .
ROW « I N ( T
BIG «Q p .4 .
) 5
- 4
~
- 4 ~
1
L3 L
.
K
\ . . - oo .
5 - R _
vk ¢ . v ‘ K
y ‘
‘:‘.\\‘ * * = N /“ (w r‘( '
! -
m%} o IOi . - SRS
~-*,7N§"‘. 18 " ) voq ;
o . z_ra‘ *
S
N Yoy N
——n N -~
T e e s . o ‘/, ,_: » J’
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ERIC

AruiToxt provided by ERIC
[}

3 . -

Answers to Exercises 4-2
1

1(a)

. o

. ~

START )

/

Set B

Check values.
Input ’ .
. 'N _s
;=(3 .
=18 '
= -7 .
= 62

= =19

=22

X

B B e

Output
| NM = 3,614,560

o o

Input | N

Qutput v ~

NUM = 90, 36k .




—
.

*

’

2 The va, ué pf. A is né longer x}eeded as input': data._ XK may be used in
its p: ace’ (Box 6). Otherwide, the computation of NUM in 1(v), and that
.of DEN, is identical.

.

Aruntoxt provided by Eic:
» B <




N < @ .
. - - .
> - *
r Y —
¢ 7 L4
- .
‘ . ' . - - 2 '
3(a)+ Same as answer to Exercise ‘3 .Sdctich L-1. , e .
- . "
P I : T- . .
{b). ; A , L
. . . . . b . P .
START b oo ¢
< ) .
. i s
. -
. ~ e J ¢ . . 5 °
- 2
' . B
v' v “ Nz ’
¢ ‘ [ )
R .ot
<, P4 S r N
* Mo
N ,
A
l U
N .
. ) ,
LI - *
e . R
\ ) - 9 o - ¢ ¥
: B A - "ERROR”' '
N . N : 4 »
. . /\/ , _
-, ¢ ) /
) . :
¢ '
: -,

- ks - (52 K ,

A SUM — SUM + By ST g

7 . o - ’

. F 7 S
e ,g .

- Check values.

Input Use data ‘cards from EX. Le b1 v ' .
L N -~ o

P16, 217 =5 . Output L4, 5,6
e - 126, 30 . o
o621, 2b
g 261, 15
. 612, 11
|




Angwers to Exercises ¥-3 Set A

The same 2-poin£ formula  for- & straight line is

. : _ye =yl -
. Y- ¥yl = 5l X V(x _ “fl_)'w,. , .
Applying this, we have ° v .
N LY - Y PR ¢
. R Sl 05! . P
. YINT = (xI - xI_lZ X (8- X)) ¥ Yy
where we have let y = YINT _
' yl = YI-l - e
. ’ y2 = Yo ~
xli= XI-l ‘_ )
%2 = .
- and XxX=A. ® - .
. .- ’ -
L]
We may then replace Box 9 of Figure L4-22 with
X L \
N Y

.J -0

.
2\
.
.
P
< -
)
L 4 3
]
.
.
.
A
,.
C ' 1 *
r.
” .
Q o

L
.- -
e ¢
W
o
117 : )
111 V) g

ve




-
T ! Yo <2 v Ty =
i \ . . -
\ -
. - .
. -

, ¢ usver to Pypreise b-3- Set B St 0
\

. e

The new Boxes 13 thz:ough 17 are to be ddded as showni !

: ~ L
T s T
. (  HIGH -'LOW = 1 I X oh= A T « LOW .

L 2N
.

L . . . "‘_\ 15 “ 16 ° .

o QXHIGl-I:A )—L—> T « HIGH -

” . » 12 ' ) 17
- "F "'A " is" Y .
“ ) ’ Xow Yrow © ,,( i8,") 18", X,
' A : - "on the nose"
~ ’ - 1
. ' D -
IGH’ “HIGH .
L - S, *
. ‘ - n_‘\)
hd ‘
v 4
T ¥ .
5 - - * -
‘ \ A D ’ » ooy
' C“‘ *
. . . (Ol .
LB , - . N
-1 "Q ° N \~ -
., ~ i .
a " ’
Y o ¢ ¥ . ~ ¢
" ' -
- Y - .
0 LI .
° 1
* - . . ; [}
N L]
N [ 4
¢ h -

-
A . -
- * '
> . - '
- - Y !
. . 3 -ty !/
. . . ! ' \ , i~ !
LS
- . \
4
) V4 ‘ . - \ .- .
T &, - s B
¢ - -
. ‘e “‘ - 5]
’
. -~ . -

. ¢ . " {
. L s
ERIC - vt 118 L ;
- ‘ 2 . T, . [
! . . g - . "
- . por. , . - -




r

|,
‘BIG « O -

?_;_J.

LARGE < P

LARGE « Py ;
ROW e=eI *
COL & J

, Check value;s.
Card 1
Card’2
Card_ 3 12
Card 4~ 18
Output ’
LARGE, ROW, toL
12, 3,3




. T
« ‘ M
-
, T
F ‘5
- ZTALY « ZTALY + 1
‘ L]
. 6. l
( b b T
) LEAS’I’>PI)J
: - NE (.
. J'..E.‘\S’.[’(—PI:’J
+ ¢ o R ‘
. N .
, : ,"‘ < - T~ I~ -

. Check values. (Use cards from Ex. b}, 2)

Input . ’
Capd 1 * 92 3
L cara2 , 0' 7 9
/& T cerd3 22 1o 19
o Card b, 18 16 12
PR Odtphit ) . .
LEAST, ZTALY == L .
)-. . : 3, 0 - )
| - *,

. « ) - 12901
ERIC - " .°° S

. BN




T
4 i

3(( {

-

N . t —— -
) . . s )
A ' !
- v
b3 o }
; . 1 - . 1 A better method
Ie2| | P Jel| " s
I eI+l LM ' = sz N e ’
J « Jxl .
~ |7 , T .'
_ 2 T \o- .
Jel |- '
~ . ‘ TEMP < B, o X T N
ALK P SR M T <
¢ I,I, ) - ’ 3
' I «2 :
. .3 . .
-1 lp i P T ’ I I+l T<H .
. 1,0 g TP . St
i I ' ’ N -
Y - . 4 !
. e . - S &
Prg<Ppyrtae| | -
5.° ’ S
- » 1 g . . A
J el o, ‘ .-
-~ J <N F—» ! ) 4
ISV § R Y Y ’ g
T : ¢
N >, 2 i *
. : d
MIN «—PI,J - - ;
. ROW - 1 ! ’
N = . . '
— . 3
o I <2 ' B ’ , ! . r
T I<M £ Check values. . ( - -
A ' T+1 - : : > .
‘yveed T Rl + (Use cards from-Ex. 4-8, 2). -
A Edratan oo TN SO s s g n ! -
A k " Cardl. 2 3 0
> . .
= 51,0 N Card 2 0 7 9
: T 5 Lard 3 12 10 %x19
e PI ; ) Card b 18 16
- , hd
L — . output * ‘“
28
. ;
~ 3 l )
o ’ o 1 Y
. i z
> - , ’ ; / «
‘ N 11 '
)
\‘ Q 2 1\’ / 1 L]
L s !
[ ;T




- = e~ e,
oL S y T : ‘
! " . . ~ - .-.,
‘. 6. 7. .
- - . 11 T
: 'SUMl«—OI] , ‘-|.s_UM2<—:o|
] PR N PR
. - . ) ‘ ) , sl . > LS |
Iew2 I <1
. 2 I<MMH—e )
T Tl R R ;
. i .
“ ‘_°_’ - ‘ r_Jr_[- ’ <
o R : 3
A A 1 J«1 s T e o .
. . J<M
- : J g J+1 =
S * I | T,
. 4 ! _IT
i . ’ . o L e ] _} 4
* SUM2 « SUM2 + P
‘ SUML « SUML + Py . ‘ N 1,3 ~
‘ = - . ~
N L ]
. . ’ )
- -~ : ’ g -
¢ . . . ° v .
’ Comment on No. 6: If the student draws Box 2 as » ‘ ' \ A
v . 1 2 . ) ¢
; PR '
: Ik HF— ‘
I <141 |- . . -
[ . l:,r " B} p . d
L3
. it is not wrong. MNo entry for row 1 will B
. ~ . . . .
s, . be take‘n anyway. When Box 3 isvexecuted ~ N
for tH¥*irst time, J is set to 1 and
then the test, J < I, is made. Of‘courée,
it will be false because both I and J -
are ,l.".We then exit from the inner loop - ' . -~
' }
immediately with no execution of Box k4. . ’
] ' : o «
Y ) A}
+ . »
/ - .
. « 2 2 bt " - A
) ' ¢
) ’ -1 116 ‘ o
“ERIC A s :
- Lot e, vy, . '
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. 8 l 1 . : o
- ANY «0 . !
a4 -
Vi ' M
ST eM| 2
. < T

= ANY = 0 .
. _‘t,.Je-J-l J>2 o’ F—/ . '\'."

‘ - , 10 .
—- 4 ) T "NONE! .
:- ‘.'; . . 3 y ) . )

. ' ‘ LAST Pl,J
» € ° E)
, : i §—' 4 , ) . 1 o
- . Ie2 l . . NEXT Lo
] Tera 1S9 . [: . SA
o T , - .
: [P, | >2 x LasT FE— : T,
: 1,0 = | :
F T . Pl
‘ _6 By L0 , o
. LAST « PI,J » ¢
. . 8
. | ANY « 1 l /’,
M : . ] -.’ !
Searching for Pigs . I
:’ ' - H : .‘
Chéck values. (Use last 3.cards from Ex. 4k, 2)° . \
Tnput . N Lo oo Input  Check wal 6 x6 :
u ' - B npu; eck values > ,
Card 2 0 7 .9 M=6 !
. ) . .
e et - Car€3 212 10 19 Card 1 2 2 N
. \ Card 2 | 2 316
. Card % 18 ‘ 16 ;LEQ © Card'3 17 5! & »
N M=3 Carda 4| 8 31 8 4
, . caras 6. 11 @
: Qutput 192 3 0 Card 6 | 4 |- 2| 1 '
] Output | ‘PI,J - e
Ilo } . 6 bt
. v ) 8
- 9
— -7 .
. . P
./
. ; " .
?
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. Alternat?.ve approaches to solution of Problem 8.
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1. 8 multiplications each time Box, r is executed.

2;

,3./

b

]

*

Answers to Exercises 4-4% set B

Only 9 different values of . H3.

Only, lO different values of 3,

e e e 2

Box 4 is executed 900 times, sq@ the answer is. 8 X 900 or 7200 times.

. —

3]

6

.

ERI

- e

b




. R
) ) 6. One could even further reduce the number of multiplications as shown
m . *%° on the next flow chart. It would be interesting to see how many students
. suggest this further improvement on their own. Note that in making these
- . changes we add boxes to our flow chart which in computer programming

° means more instructions in the progrem.

: B I'4
- ’ ' ’ "

Cogy

. . T -
- b

H100 « H x 100

T0 «T x 10 | ’ ,

i 7 ‘ .

U 0 ‘ - . L

* . . g ot U o U+l e . S

. ' . T
’ ‘ . 8

<-F_@100 + TIO + U = CUBE, +%JBET + CUBE,

(]

I'4 2 —

. Multiplicetions: « 20  + 9 ™4 90 = 119
(Box 2) (Box 4) {Box 6) N

. .
vérsus 7200 in the’original algorithm.

EKTC ) S *,~,120120' ’ "

py
2 L A 4 >
oo ‘ )
. \

?
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T
L

Tt
Ve

’

J.

.. P F I - ' ‘ ; \
——@XI@+10XT+U=CUBBH+CUBET+WBEU)'

"H, T, U o ?

FN

$

>

Multiplications: 20
(Box2)

.

+ 2X900 =
(Box 6)

s
N ’ ~ )
’
- .
’%/,
‘
- [
/
.
£ ~ !
i
ks
- e hd
\ .
-
.

ERIC - = e

. -, -~

1820 wversus 7200 in:ﬁj@l&\.;“‘
+ ,original flow chart.
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- . I T4
—_ ‘ —_— - N .
1. Solution. The main mathematlcal pomt here J.s tbe tnangle inequality
, that the length of one side of g trlangle is less than tﬁ sum of the
N lengths of the other two., Let I be the length of the longest side of
. a triangle, J the length of the second longest and K the length of the
shortest, so that , T - :
-y . 1<K<JI<TI <100, ‘ - '
i L
The triangle inequality yields .
e e J>1I/2 end K>TI-J. , .
We wis-h,to count all 'triples, I dJd, K, subject to the above conditions.
“ once. I and J are chosen, K may run from I -,.,J +1 to J, mclusw\n
There are thus J - (I-J + 1) +1 or--2J - I triangles havmg the giv
- . values of I and J. We sumsthis value first for J between [If2] + 1
’ ﬁn‘l and then for I between 1 and 100. .
Y 1
e
. (&) = (b) : .
RN START o N
¢ ’ v
£ ; 1 '
* & O ‘ .\,u'- . :
. . , P . |
. ’ 2 |
! T l F [ - |
j T ema|fs 0 T e 1ey| T S0
‘_J ; ‘_J
d « 1+ 1/2] F J e 1+[I/2] .
J<TI | 47 <1 | F
\ J<—J+,1 . Ll J T+ 1.
4
T
1 i .
LS<—S+2J-I| i
~ - 4 L r -
[
w ..
| ; ‘
[ - ‘ -~
122 . ; s ¢ :
\‘1 . N 7’ 8 v L. ¥ " ’
ERIC - L ~ . o
‘- - . . P fﬁ\\ “*:' P >| f - - ,,,-.; -, o ,\.{’\1, ;g‘_}w“:‘ ‘~.7'~v,;,', >

t 2 v




7.~ (¢) 1In the solution of part (b) replece P by S in Box 1, replace the
' condition in Box 2 by "I < 50", the condition in Box U by "K<J
v : . .

»and I+ J + K <100". Replace the assignment in Box 5 by "S «S+1",

" Replace P-in Box 6 by § .

~

(d) In the solution to part (b), replace the|conditions in Boxes 2 and b,

N - respectively, by "I <50", and 'K <J 'end I+J+K< 100", ’ .
.~ . ) ¢ .ﬁ - ) . R
. " Comment on the solution to Problem 7 . . . )

One drawback to the given prof;lem as an example of a computer problem is
. that formulas for the solut:.ons can be generated by elementary techmques.
Thds, in part (a)\ if we replace 100 by 2M in order to geheralize we have

! . M I - :
L . s b 2 (29-1)
’ I=1 J=1 + [1/2]"

: M I oM I
: z

, .o="3 (20-1) + = z (23-1)
} } I=1 J=1 + [1/2] I=1 J=1 + [I/2] .
T | 1 < . i R
| I odd . I even ’ .
J / . .
- ! ° M 2H-1 M 2H
. = Z I (2J-2Hl)+ 2 (27 - 2H) )
.o H=1 J=H H=1 J=H+1
' L
) M
. -z +E) - (M+l)(2M+l) M(1\24+l)
. H=1 7 . . .
r. -
: _ MOE1) (4es5) .o y ’
2 = =g .
. ‘ X ~ LN ; .
. % which, has the value 87,125 :f‘or M = 50 and this is the answer Fo part (a) ~—
For the other’ parts we obtain the result by similar but sllght%y more dlfficult . ~ 4

computations. In Chapter 5 We return to this problem, replacing the word
Tdistinct" by “dissimilar" (i.e., no two similar) This slight modification
) yields a problem no more difficult for a mgchipe, but it is no longer’so -y
‘easily access:.ble by means of deriving a f‘orrmla.

1]
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.

P’
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»
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«‘ A

. Aﬁswer_@:Exez?cise 4-L  Set C ® ) N

The student is entirely~-correct in botH his claims. Students may have .a
little trouble following FlgureT 13 The t,rOuble spot students mey encounter

-~ b

,is acceptmg the concept that

Kex 70 T

- - - e e L L

is a legitimate initialization for Box 2. It is valid and is a useful "triekh - —

in this particular version of ‘the algonthm - ST TR

...«,..ofn >

The algorithm in Figure 4-33 is equivalent to the one in Flgure 4-32-and
is more efficient in that unnecessary repe‘pltlon of the computation of’ ANids. ©

avoided. . - e e a " e w

Answers to Exercises Loy Set D

o

, .-
v v i ~.
): ’ & N u§? .
A Check values.
Lo ’ Inp'ut ]:I =6 -
: A A A3 A5 A
L 6 1 3 5 2
Output el s
l’ 2} 3’ h} 5} 6
B, ‘ COPY « AK‘ . . o .
. Ae <A ) .
\ o : AK+1 « COPY . ,
[ . . . ‘

(&, K = 1(1)N) -

2o,
£

SR S , 130 2% e
§~ EN{CB_ },; "V'“"'l"a{‘- - - + TS . - . . . ;5.

PAruiText provided LR -
. .




lw b
A I N )
L) 4 I

.

I : T
q?k ! s ~
. B, S - ‘
2(a) 5 times (3 times~for Box 4 and 2 times for Box 7). You fshould urge the :
students to trace—tHPough Figure L-34 until bhey can gdt the correct
ansver for tth_S?"?g?'some other set of data. Stuilefts who have -

m~—ugi%§;cu15y should be asked to review the tracing technlques WhléL they
used for Exer01se 1(v) Section 3«5 Set B. '

- N .
. M ’ . .
.

(b) 3 times (3 times for Box b4 and none for Box T) -

N [
L .
.

(c) 6 times (3 times for Box 4 and 3 times for Box T) . -
s . NXQN-IZ
In general, for N numbers initigldy ik reverse order, - > ,

comparisons are required. This is for the worst case. It is far more
efficient than the primitive sort for shich N3 + 5N -6 comperisons
were requirea. In the most favorable case (where the data is already

completely sorted) both algorithms’ require N - 1 comparisons.

. .

\ ‘ ' A ,

3. Box 4 ghould be ‘ l ; 4 " . . '
. ; ( AJ > A

) ' I ' 5

b T c . T

.

. Box 7’ should be , - l : T o
. . < AKZAK'FI )
T F‘ ‘

)

No ather changes are needed.

L. Claim (a) is correct. This is a perfectly good algorithm fof‘sorting in

ascending order,(It'sFPeen called the "push down" method because the _
first largest number is’ pushed down tonfhe bottom of the list, then the ¢
next largest is pushed down to a po%nt Just above the largest, and so - .
forth:) ) ‘ . . B
laim (b) is false.' The push down @ethod requires -—2ij%%————l compari-

sons regardless of the initial ordering exhibited by the data. Algorithm

. L 34§;equir this number of comparlsonu only in the worst case (reveree ‘. .
order input” data). T 7 ¥ o

Q ) 125 ", '

“FRIC - VAT 11 .
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.
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Ansvers ta Exeigiqgg 4-4 set E .

(a) Change all B's to c' and YAXINC's to M‘AXDEC'S. : i
H)J bhange Box 4 te read: b

. b
e ) F\( AK>
- T
LD ’
Yo
can be tacked on the end of the longest monotone

Thus, BK >.BJ. Similarly, if AJ > AK’

A

Either AU'< AK or A > AK. o

'If A < AK

subsequence ending w1th AJ.

then C >~CJ. “ s

then

K

»

From Problem 2 we see that for each integer I from 1 to N there is

.

a corresponding pair - ' . |
’ (BI, CI), " ¢

. ’

Let -M be the length of the longest T

and no two)pairs are the same.
Then eachof the B and the C;- i*less than

monotone subsequence. T
The number of possible different pairs (B B, C )“ig.f |

then M. Since we have N such pairs it fust be that N < M2 (i.e.,

or equal to M.

that M > /N). . ' ) -
. | - :
‘ ‘ Al'- A, Ar Ay A A A - Ag £ o
. 7 8 9 L 5 6 1 27 3 ;
) - AT D

indicates how we may, for any value of N, constrict sedquences having

no monotone subsequences of length as great as 1 + /. Thus, we

cannot increase the lower bound of /N for the length of the largest ,//
« monotone subsequence. ‘h N L ’ e
7 - ' I - : y .
The job of finding a maximum subsequence consists of carrying out these
. th steps. - ¢
(1) Search backwards fram By looking for the first vafue, B, vhich
is equal to MAXINC. The corresponding value of AK is the head
of subsequence. gnint out this value(,AK. - 4

(2) Now resume the baekward search of the Bls for ,the first one whose &5
value is one less than that of the previous BK and print the value
of the corresponding element in the A vector.

+ Repeat the process of searching bacﬁwards for successively smaller




e e J s ‘
LN e ’& , A %\ \ I : /\ B "» . ~
. ] .
. v ]
;-'yalues of “BK, printing out.the &orresponding value of AK The last
. value of A to be p’rinted will be the one for which the value of BK
P is one. Here is the flow chart. R ,
- . Lo
' TN .
; .
‘\ . . L
A ’ T ,
\ . ; , -
I -~ . i . &
AN ' 20
! (] ’ F 1t tt ‘
AN ey ; 21 [ ERROR find and print the
: ] "héagd"
« . . . B
, i
[ x
] ]
4 / ’
. N .
15 ! -
. LeI |, :
’ -
16
\ |k «MaxING - 3 . 2l ,
PR _ K> 1 "END" ‘ STOP
. 4 KeK-1 - g
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» T . 3
£ . N It * s
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Sample Test Questions ‘ . ‘ - \ )

- \ - v

The f‘ollowing questions do not constitute a test. They are offer\ d to- the
teachér as typical or approprigte semple £e§t items. In some cases a siingle
item w~5uld be efn‘ough' for one test. The chapter designation on a questian means
that the iter can be us‘éd any time ‘af.ter the completion of the indicated \chapter. _ ’

. . 1
- .y s - -

1. {Chapter 2) Given the lenébh (2, b, and ¢)* of the three sides of g
Ariangle, the area ean be determined by’Heron“s formmla: \\

» . ' \

. N Area = ¥s(s - a)(s - b)(s - c) ’ .

. where . T o P

Draw a flow chart which will compute M such areas for given lengths of

L 4 |
the sides and then stop. Assume you have M data cards, each containing \
‘three positive numbers representing the sides of one triangle. Each line

of output should contain the count, N, the three lengthé, and the area.
R O _' ¥ ’

. .
- Solution: Cow

N

)
.

o T 5 - s
.

Ric T

: Aruitoxt provided by Eric:




2.  (Chapter 3)
A surveyor measures the sides and angles (in degrees),of a quadrilateral

; as shown on the figure below. Construct a flow chart to.decide whether

Ithe,quadrilatez"a'l is: ¥

v
»

1. ., a square;
' 2 a rectangle (but not & square);

3. @ rhombus (but not & square or
a rectangle);

4. & parallelogram (but not a 1,
4 -2, or 3)5 -

5. & trapezoid (but not a 1,2,
3, or’ ,2‘*)5 ’ .

v
»

6, none-of these. . .

y ® e,

- ’ [

Output an appropriate message in. each c;ase.' .

P

R Solution:

"PARALLELOGRAM"||"TRAPEZOID"| | "NONE OF | .
) THESE"

e N

Aruitoxt provided by Eic:




3. (Chapter 3 or C"‘Ptéx;‘dq .

a.

?
- . '

- .5

‘o

y

. . E
Draw a flow chart for computing the sum of the ‘reciprocals of the

first 5000 positive i?ﬁ:egers.
Ed ‘ i; '
Add rto this flow chart a mechanism for printing out the number of

terms used when the sum first exceeds 1,P'first exceeds 2, etc.

Solution; (If.given following Chapter’3) -

) b
A L]
(a) _ _ (v) ,
¥ 1 1
. S5+0 ’ ’ e S0
N<—l . . N1
- s . - 5 T . Ke1
’ ‘. N« N+1 [
1 ¥ | R B .
S<«S + = 1
N ; , S St=
, NeN+ 1 -
’ F 6" N .
) ‘ T }
o3 . >k N < 5000
T Ry 2y F
M< 5000)_ ~ o I 4
4 . K, N ! ‘. S
S , 8 _ (4 )
' ¢ |[Ks— K+l -~
' , STOP .
@ . . ) r /\ .
4
. *
k- 4
> ' - . -
- -? v o \t
« o ) ' ‘ e r.f‘;s;’fl *
. ) i { i . L ter ‘1{‘?"3:“"{“
) \ 2 . - :‘;‘ "" ":‘
- .- 1~ Kl
. ; < ,»“:‘ ) I V:"“.’f\?’: }j .
‘ : - ‘- ol
. . . S
Q . . 131 1 3 o B ) .
EMC ” 3."\ 2 ] »
g P i . 3 q‘ ) :;:, v
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(Note to teacher: If given following Chapter b, iterationf':ooxes would

i

be used as shown below.) -
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1
T

2
I
-4

.
.
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.

¢
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- (0) " :
L
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N S0 ..
| K1
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. Ne-1 ¥ < 50 F
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4,  (Chapter 4)
Most of us offen have to "make change". The problem is to draw a
flow chart for making change in the fewest number of bills and co:.ns.
You should ougput the names of the bills and coins actually sappearing in
the ehange together with the ngmber of each.
for the mext transaction.

chart below.

Then loop back to make change
We have started you®off in the partial flow

Complete it and answer the questions below.

.

1 . 3 ‘
<— "HUNDREDS" PRICE, PAID

NAME | «—

NAMZEl <

"FIFTIES"
"IWENTIES"
"TENS"
“FIVES" .
"ONES"
"HALVES"
"QU ARTERS"
"DIMES"
"NLCKELS"
"PENNIES"

i

PRICE, PAID

— T TUNDER-
(<)~ —— pneme [
T N
T 9 .
Gt

= CHANGE"

A1<—10000
Ay = 5000
71\3«-—-— 2000
Ahi— 1000 .
S hated I

s @

A6 «—" 100

N a3 5
i .”:\: ‘ As‘— 25\’ *’-@1,
i -, A9<—- 10 ,

W o :

. 1 .”47 . Allﬂ-—- . l ’ )

A Lo ‘l : '
~ ;

PR i ’

Explain the connection between NAMEl

v

»

3

, i ;x an example. N

i’ L : 1331'38

and A

£

4 -

P

'3

b. Why is. PATD - FRICE multiplied by 100 in Box 5 7.

¢. In what form should the data referred to in Box 3 be

'4

®,

input? Give

' Vot
.

, .




—

ERIC .

Aruitoxt provided by Eic:
»

t e '
i

i ; ‘ ' ) ~ .
Solution® The students®contribution consists of Boxes 10 - 1% and

their connec"bio'ﬁé . ’

£ -

NAME, =— "HUNDREDS"
NAYE, «— "FIFTIES"
NAME, ~— "TWENTIES"
.NAMEi ~— "TENS"
NAME, <— "FIVES'
NAME, «— "ONES" ‘ 6
NAME, < "HALVES®. ' 6 " NDER-
NAME; <~ "QUARTERS" ( @DT——- PAYMENT"
NAME,, <— "DIMES" )

NAMEzO«— " NICKELS" : o

A u 1 N N
NAME, , <— “PENNIES ; .

{ .2 + ’

- [ 4, ==10000 ‘ R
| SO
A, 5000

A3\<—— 2000 : / ) ('-;

Ah <«— 1000
A5 «— 500
A

gﬁ 100"7. !
coamAt |

g B
Ay 201,
hov— 2|
A )

H

‘ ' *
, 5
| R“—100yx (PAID - FPRICE)|

]

o NAE,, Q

s

.a) A 1is the equivalent.in penpies of the coln or bill called NAME .
N " S . * * -

'b) To convert the change into penmies.

‘
¥

"¢) In doller &nd cents} e.g., PRICE = 3.49; 7PAID = 10.00.

’

[Note to teacher: Box 11 could be eliminated entirely or it could be put in
after Box 1k. Including this test increases the efficiency of the algorithm.]

‘




%

5.  (Chapter 4)
For the accompamying flow chart:

. i) Describe in your own words the values which j will successively

ii)

. ii1)

iv)

v)

Je
.

.‘\ .

O

. ERIC " *

" T
N .

be assigned in Box L.

pJ

Note that for each odd number j, Aj”‘is initialized with the value

J in Box 3. Supposing that we leave Box 6 with J. having a par-

ticular valué, for what yalues of 1 _will Ai be crossed out (i.e.,

set equal’ to zexo) in the ensuing loop through Boxes T and 8 ?

0y

leave Box 5 by the T exit.

Give the first T output values. Use scratch paper if necessary.

Describe what yhe algorithm {s doing, in your own words.

A

1

‘Describe in terms of "drossed out" the circumstances under which we




~

T

s

Solution:

.

i)

J will be assigned successively the odd numbers starting with 3,
i.e., 3, 5, 7, 9, ete. As long as these values are < 1000, the T
exit is taken to Box 5. The last. value\for which this happens is
J = 999. The next time J = 1001 a:nii ,A\< 1000 . is false, so the
F exit is taken. ‘ b

All the odd multiples of J less than & thousand will be crossed

out, i.e., 3X Jj, 5% J, 7T x Jj, etc.

Ir A;) = 0, then it has been "crossed out" and is not a canﬁa&te to ,
be output. Any odd number which can be “"reached" as an odd mult’}iple
We will leave Box 5

(Since there are no even

of a smaller odd number will get "crossed out".
by the P exit only‘when' J

primes greater than 2,

is a prime.
none are missed by excluding even numbers

from consideratiof. )

2, 3, 5, 7, ll 3, 17.

The &lgorlthm is generating the prlmes less than one(thousand.
In'Box 1,"2" is output as a special case, the only even prime. Then
a-loop assigns the odd numbers as the components of a vector with the
same subscripis, AJ<—J.

time starting with 3.

Then the components are tested one at a
If the component is not zero, then it is a
Not only is a prime output in Box 6, but all its odd mil-
Since the

even multiples of odd numbersiare even, and hence composite, only odd |

prime.

tiples are crossed out because they are composite.numbers.
; -

multiples need be considereﬁg.gsin Boxes 7 and 8.

‘ \ . . |
. .

[
¢ . . 4
iﬁsm‘“}{’f ’
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. 6. (Chapter 4) ) . a . ,
.\f N 4 o
. Construct one flow chart to do all the following: . . RS
. . e A
1. read in a number/N; ¢ ) ’ .
w , ooe
2. read in an array A which has N <omponents )
3. compute MAX, the largest of the .components; g -
3 ’ - -
4. compute MEAN, the arithmetic mean of the numbers Y\i;
a0 * — T
5.  compute :?(w
, " :
r -
- . ' , Y]
6. Wrige- MAX, MBAN/ and SIGMA. :
= N ’ " 8
1’ ¢ ! H
i T e . - ¢y N ~
. . . . ’
4 - .
. .
> ,”' -~ .
: S/
. ) . ; re ’ N
N - v e
0 , A Y
Rl A {‘ »|
- - ¢
* ' A4
~ . -
~ t\ ‘
v
é .
- A Y * s, el
’ | /\ . . . ) .
L] » « ’
’ ” 4
. ' ) B f
' % - . "
* "
. . » “ . , ;
[ 0 W , S <
h rd
0 ™ ) 1 .
ERIC, 142 “ 0
. [4 L -
S e TR, R L - - ) 4 ol A
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Aruitoxt provided by Eic:

‘ oA
)
. , e
)
1 14
, . SIGMA<~SQRT(SUM/N)
v 1
MAX’
o
X SIGMA

“s
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FUNCTIONS AND PROCEDURES

Overview

¢

One cen use the same sequence of boxes in several unrelsted parte of

one flow chart (or several flow cha.rts), by writing a reference flow chart

once, and referring back to it in the several places. Section 5-1 explains

what these reference flow charts are' and how to prepare, them. e

kS . 3 .
I3

Section 5-2 is a review discussion -of the function concept from a . ¢
mathematical point of view followed by remarks on the function concept in
computiné. \t
’ . ; ¢

Two slightly different types of reference flow charts are possible,
rThe first is called a functional reference flow chart because the end re-

sult is the computation of a single.value, just as in applying a f‘unction,

a sivngle value resulted., This type of flow chart is described in Séction -
9
5'3' * R . 4 . oy
- " o e .

The Second type of reference flow chart is more general and is called

a pre,cedure.*' Section 5-4 exp‘lains the convention we will use for procedures.’

& » .8 s ¢

.

Section 5-5 explains how to include alternate exits in procedures.

o

- A pxq-

cedure can aldo be used to make complicated compa.risons or evaluations for -

usé as bra.nchiq'g criteria, "Section 55 shq 9 y‘r to do this. . * .
. ) N ;

The last sectioh of thé chapter, 5-6, ﬁevelops several procedures using
character strings? These have MI@T&&&H@O&"&&IXG&W Therillustrate “how one
procedure can use another and thus s show*thé“"ﬁiiﬂdmg block property of
proeednres. Second_ly the procedures themselves i1l be used again in |

Chepter 8. : . :

i

o”'
¢ . . - ? P

- ' L
L . . . ~

" o
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5-1 Reference Flow Charts

" The point of this section is to introduce the idea of producing flow
chgrts that may be referred to many] times from the same point or from many
different points in another flow chart. Newton's algorithm for the square ,.-'’

root is used.as a means of bringing up th'is idea with the associated ﬂf:ow

chart conventions.

Of course, the square root of A is a solution of

- TN
. f(x)=x2—A=O P
‘In ca}culus the student will learn that f(x) can be approximated near x = 3(0
by a series: - T LT
. 1 5 .
_— - 1 = - H
f(x) = f(xo) + (2 xo)f (xo) + 2(x xo) f (xo) + :(:/
where f'(xo) is the derivative of the expression f(x) evaluated when_ X=X,
If we take only this first (linear) term as a suitable approximation, ~
2 L
P x-A=xo-A+§x-jxo)2xo.

-

If- X represents our first guess at the square root of A, the x- (%étermined .-

" by setting the sbove approximation to zero would be closer to the square root

, ~ of A. Then: e /{
2 . 4 -
-xo+A ‘
X - Xx,) = —4—
- , ( o 2%, ) v
B £ e .
. 2 2
' 0x-2xo-xo +A—l(x +A) .
% =T = 3 =) .
L ' ‘2x0 270 X

The same argument for f(x) = x3 - A _or f(x) = xN - A produces the formilas
for Exercises 5-1 in this Section and Proplem 6 in Exércises 5-3, Set A.

‘Now, whet we are really doing 'bvy‘saying that f£(x) 2 f(xo) +(x= xo)f'(xo)

o . f(xo)‘+(x-xo)f'(x :) -

" 1s to. approximate the graph of £(x) by
a straight 1line with slope f'(xo)
touching the graph of f(x) at x=x

Then the root of the line (its inter-

and
o
section with the x-axis) is an ‘approx-

" imation to the root of £(x). Newtén's

‘method is discussed in more detail in-

g __/_ - X x Section T7-1 in connection with the pro-
0 : )
cedure ZERO.,
- A %‘ .
. o R )

N . 140 . : .

ERIC I - 1406
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. Ansvers to Exercises 5L
= 203,

- . P Y .

i“* ‘ )
a~ ‘ > rd
¢ | »
R “s g(—'l 4
< , — .
& ¥ . 2
\ R ) 2
’ h (2 xg+y/e)/3]
3 -
& . (](n-g)|<.6001)T
S N F’-l- ‘1.
5 g¢h ' 5
<
’
2. °
A}

Alternatiﬁely:

L e, 1 ) . . '
peres

ze(3Xx-2kxx+1 —~

.- RS- NEAaE 4
¥ ~

I3 5“--’ -
» ’ . .

o
A',?«M‘b ™

.

ERI

Aruitoxt provided by Eic:

a
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Answers to Exercises 5-3. Set A

. Discdssion ?

It-is important that the student dgvelop the habit of recognizing and
repairing all "loopholes" in his flow charts. He should not Jjust assume that
ix;lpu{: aata will be reasonable; this is especially importhnt for a function or
procedure sinée not only.is it to be used wi.th many different programs, but

&

also the input data may itself be generated within the main program. He must
. be alert tg the possibility of div;d.ing,by zero or taking the square root of a
negative quantity. In this exercises and later ones, possible sources of error
should be pointed out to him if e has not already seen them. Then a more for-
“mal discussion of alternate (error) exits will be given in Section 5-5.

- 4

Solutions
i
1. (a)

<

(b) .Z «f(r,s) + 6t

(X)Y)

S

Z(—-((x +y 5)/(k| + 2)

NCH

RIGHT(a b,c)

LRGST « Y
TS DL

Ly P




v
o

"

13

E

Rl A ruitex: provided by ERiC

1

L,

Here as an error indication we set Q equal to zero if the point is on

!
A
(€)

C

- A
a.coordinate axis.
¥
° ' »
. /
L4
‘ P
H
!
i
¥ L
4 -’
1
' \ > ! * - ;”‘5%3
- : 9 o , e .
. N , .
- Q /,/
’ .
: H
i
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¥ - 4 »
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5. Defining ‘dist to be the distance between cénters,uwe have - -

w B -
. infinite points of inter-
. : . section for Rl = R2 .
. - k
. ) for dist = 0, concentric circles with 10 potnts of intersection
i : ) for Rl £ R2
‘. M -
. for dist ='Rl +‘R2 1* point of 1nter§ection !
N '- . ; 3 ' 3
i for dist = |RL - R2|, 1 point of intersection Y
' .
. . i ) - o.
‘ for @ist > Rl + R2, O points of intersection ' ‘
- (Do
!
for dist < |RL 4 R2|, O “points of 1nte§section d
Q.’ N
for |RL - R2| < dist < RL + R%, 2 points of intersection
. ) 3 e
, .
Also, we !m:tst check the data to make certain Rl and R2 are positive;,
N
\an %rror is indicated by INT = -1. Concurrent circles are indicated
!
by INT': 100. ]
¥ \ - <
- . < K} L
.o { “ !
’ . ! ~ - -
Fd ! ' h » y t 3 1
: L : N » . @ x
v ‘ * ’
& > = \ o
- ; _ : ¥
ﬁ ’ o - !
A ' F) N
H > ’ [ 7 7 Ll g ! ;‘ [y
x? T | ) s
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L
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. DIST = RL + R _ . 1 )
OR . S INT 1 S
v \_DIST = |Rl-R2] R . . L
< I WY
A ¥ 6 . SJorSs s
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. - ( DIST < |Bi-R2| - .o Her
OR - T ~ . . I
'RL + DI INT « O [ -
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' Commen%: Here h -id used differently, tilan in Fijgua"e 5-F. We have-let- |

% h designate the¥other end of the intef've:l in which the root
. is known to be bracketed. Thus, if thé’ test is, passed in box b,
Tt ¥e know that the root is within .0001 of g.
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; . _ > ’ N 5
2 .+ 7. » We use this p’roble;l} to emphasize two points. )
' (1) There are always alternate solutions and generally various ;a.dvanté.ges oo
3 . ‘ and disadvantages to be bals;nged before anyone can say which is better.

K - (2) our ge‘ner.al"approach is to build up & set of tools (subroutines) and.

f use them wzd/e,ly Problem '{(‘b)~ illustrates a case where we are bette'r

off npt using a subroutine that is already available.

(a) t
. N
4
’ e
L 4
R .
~ -
; . ’
N - |
I _ ’ |
i alternate solution: :‘”
—————— ] ‘
- }‘ - - 1R - ‘-~>
] o
: SR
. » ; ‘ g ;:i&\ W
» - \_par ) b e T,
1 - @J e
: ' 1. ™~
4 - J ¢
3 ) b . - S N
)\ { | ; \ b
Comment: The alternate soldtio’r} looks much simplén but n + 1 multiplica-
4 - Y . [ '
\ tions are still n\?eded\. cot ' . 7 ‘
, . 7 . | ,

U

- 3 > ) ~
WERIC © #® pIsz - .
| AR \ \ oL b !

»;‘).u < .
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SWITCH « Q
: X ¢ 100
Y «100

i1

v
?
1 /35

-

1

1eitl

T

X=X X 1.00
Y Y +1.125

,\
B
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i .
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/ . A .
. X ;
“N
!
. . ;’ - - ’
0
> : - 3
. X « IRATE(i,1 ,100 ) *°
- q '
, ,
S Y(—QY‘-l-l_.125 e .
. }
. X>Y ' s Lo
&’ > v F ° N “ . t
SWITCH « 1
e C : MONTH « 1 ¢ : . S
. ) - . a - e - -
M (3 ] ¥ ) ’ °
¥ .
"y ' .
N - : - ‘ - T\
II. + - J
. N \ " -
AN 3 R TR . [t R St
~ . E Y . . j . ’ g -
s * ., t
[} hd -
H . . 3
’ ) LN ' ¥,
) . Connnent. + This is considbred an und.esirable solution because IRATE i% T
‘ #
° . - called 3/6 times,” each ’eime taking longer toycom.pute. .
. LI b s
e - ' (Total number of pagses through box 3, of IRATE flow chart i ! |
?} booee T .'36 é 37 ¢ = 665 as compared with 36" passes through box 3 of
; - the first solution ) ' S SR ;W T b
o ‘ . : . 4 . f ‘k
L. % ! - & .
A .‘, & LI . \ * Iy .
R - . s [ . i B
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(b) Altex%-age solution. '
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AT T /200 =100 x (1. 01)
R : 2 =1.00" / P
’ \' : log2 = n X log 1.01
T n = log 2 -
T Tog 1.01 ;
® more precisels;
, e
* NX = ROUNDUP(n) = ROUNDUP(log 2/log 1.P1)
. . = -[-log2/log 1.01]
. . P > , \
. . For company Y - "o,
. ; K 200 = 100 + 1.125 X n !
: * . 100<1,125 xn : .
. L o 100
‘ T 1.125 ‘
- / NY = ROUNDUP(n) = -[- 100/1 125]‘
. Alterna e solutibn for NX (not requiring 1ogari'bhxhs y:
- ' |
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Answers to Exercises 5-3 'Set B , ™
1"
' -
£
. §
- ® .
: : RETURN
B /.
A B ['
re<B-[3] XA
(3] L .
BeaA
- Aer :
& ’ » ‘ -
;- L. \ - ‘

s
f

e réplace box 1 with the furnel, box T with the return box and omit box 2

entirely.* Itls unngcessary for a functional ref:erence. flow cha:rt.'

2]
20 4 - o
D ! r
! >
. 4 . 2
T 3 . LR o e . _ - - -~ ° y,s_ -
[ GCF(A,B,C)
4 : ' ~
- . ‘
. ! -
] v
. . X « GCD(A,B) .
X & 6€b(x,c) |. R
L. - _—
1] _ \ _ i‘ .
' »
‘ ‘ s - A - "‘ “
. ‘ v : o * ~ *w
e R . .
v / -, - M
o 4 .
- E’r\ -
" o 1511 Qb ’ , oo
Y~ ! ‘ . ; P
ERIC . g Y :
T LI : . ' .;. "3 o 4 T T PR
L

M Y 1 o .
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START . -)‘ .
/ , r-
1,
- 4 S «0 i .-
. 2 .
Tl .
T I <100 [F : .o
: . - I I+l .
[r - ) . .
3 .
J 1+ [1/2] - )
* ’ . J<I-
- TN\ JeJ +1 = o ‘
e B
. 4 _— 7.
. . : KeTR g+ 1 SO e
. ; Yo é<J r .
i = K <K+ 1 - = ..
; . :
1 ;s
= > L
i
- et
—
N .~ - ~, - < i
’
i —3:
(b) Replace box 6 with
i
1Y)
. . ¥ '
t - g ' -
: | ¥
. O ‘ ! “>
- ERIC - \
W

u3.

!

- >or

(a) (See remarks in the TC in Section b-4, Set B, Problem 7.) .
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L. We give a flow ¢hart for the solutio

n and then

. provide 'some 'd.iscgussién.

- . - 7
' ) "tell : -
@ ) I<1ooof—-‘
. ) , . ,
" ’ 2
CUBE., 13
i 3 .
Jel - P
T
: [ q
~—'IlESTe-CtIBEI+ CUBE; | .
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| (o )= :
* TEST < 10 = 1
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Discussion: Box 2 together with box l shows us that storage locations
will, be needed for all perfect-cubes between 13 ‘and 10003 .that's 1000

in all. The'oniy other storage lochtions needed will be those for the var-

iables I, J, TEST, X and LH e also need the reference floy. chart fof

GCF (box 9). ., The numher of passages through box T is approximately 109/6 and
the total number of afithmetic operations will be on the order of 2- 109 a
formidable number? These large storage and time demands may be scaled down by

replacing 109

in th% statement of the problem by lO6 Then only 100 stor-
age locations for cub s will be needed and the number of passes, through box T
will be reduced to 1 /6 and the number of arithmetic operations to” 2- 106
Moreover, word length [requirements will be reduced from 8 decimal digits to
5. The only changes %n the flow chart will be replacing 1000 in box 1 to

100 and 109 in box 5 to 106

«

~

An interesting feature of,the flow cha® is that not all the 109 numbers
from 1 to lO9 are tested to determine whether they meet the conditions of
the problem, but only those (TEST in. box L) which already are known to be the
sum of two cubes in at least one way. They are approximately 10 /2 in
number. We are looking for integers I,J, K end L' so that

3.3 413

where 1 Tis ther largest of these four numbers and K the second;largest,
whence it follows that J 'is the smallest and L the second smallest. These
cbservations gre reflected in boxes 6'and 1 and in the test in box 3.

The "see- saw technique displaxgd_in_boxes 10,. ll and 13 will be “gpprec=" "
iated affer careful study. (If J3 + L3 is too small, increase L, but if .
too large, decrease ‘L.) Box 9-eliminates proportional combinations If‘three
of the numbers I J K and L have a common factor, then the fourth must

also have this factor since I3 + J3 TEST = K3 + L3
. - -
The modifications’Tequired to find the numbers which are the sums of two .

.

squares (or fourth powers or fifth powers) in two different ways are trivial.
But, in the case of squares, the limits mist be scaled down to, avoid the use

,

of tons.of paper.

-

Hooking box 12 into box 13 instead of box 3 assures that if any numbers .

can be expressed as the sum of cubes. in more than two ways, we will find this
~ ¢ . ' ‘ T T

~
3

out.




" Answers to Exer::ises 5-4 set A . ’ -

tDiséu‘ssion A 'reasonable selection tould be problems 1, 3 and h with the
corresponding problems in the language text. On considering problem 5, you

might wish to gssign only parts (a) and (b); (c) is a rather tricky challenge

for the better student.
ABSOL(X, absx )

1.
. 3 ‘ .
absx « =X 1 Labsx <—x
(b) :
; |aeal + a2 T . ¢ ‘8 «al - a2
- o |b Dbl + b2 . . b «Bl - b2 o -
b} ¢ “
e . ‘ ‘ e » @ '
(c) C . .l (d) cxdiv(al,bl,a2,b2,a,b)
J) F Al ]
denom « a2 X a2 + b2 X b2
4 — : . . | & « (alxa2 +blxb2)7/denom
) Apdeal x a2 -blxba . b_ (a2xb1.- alxb2) /denom
o TUb «al xb2 +a2 x bl —
. ' v g .
- N ‘_ G ) » )

- - .
" Lt ‘ 1
E MC - . " ’
» ~ -
B . [A Ls ~ -
oo Proided o EHC ] T ‘ e
. : . - RO .
i B 5 - N ef e
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' '1\5 H 7' [y
» . 4{ i
2.. (e) . .
) N ~ R o—' v -
* s
el (53 b 1] .
I S -2 .
. EXECUTE EXECUTE ) -6 "
cxadd(al,bl,a2,b2,a,b) [lexsubt(al,bl,as,b2,a,b)
) * . . , - 8'
. | EXECUTE ’ - | JEXECUTE '
. cxmlt{al,bl,a2,b2,a,b) flexdiv(al,bl,a2,b2,a,b)
- . : <
< - 1 R
> Nt v -
. ) * ’ ’
i 3. If ERROR =1 then K < O. A normal
B 4 bl
exit is 1ndicat.efd by . ERROR, = Oy, ;s o
» ‘ ) .
L - s . '
N > Commeng: In this problem‘solu- -
. tion and in the three parts of
‘ Problem 5 in the .same set we
! pave used for brevity a differ-
, ent no‘batiortx\for treating vec-
. T i tors in the funnels of pro-
” . _F A >A L, - . edures. For the ‘stuflent you
T 5 . d best write: 2
: COoPY (—Ai “f ! . . 2
) _ A oen - . sonTg(K,{Ai, i = 1{1)K},
. RN IR (By, 1 = L(2JK}, ERROE). -
o F Ai +1v:l‘— QOPY . . : .
- COPY « Bi N -
- [ ’ I N ' ) . ’ ¢
BieBiaa P N
. i :
B 1 « COFY . . . .,
* .Or, alternately, the student might use the more efficient shuttle-interchange
. . * . vk ‘
. method of Figure 4-34 to sort vector A. .
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(a) A negative value of COUNTFAC (v)
indicates N < O.

COUNT(N, COUNTFAC)

COUNTFAC « O . Nel
BOUND « /' Ne N+l
— 1,
Kel ’ EXECUTE
- K < BOUND .
KK+l COUNT(N, FAC)

N < 1000

COUNTFAC « COUNTFAC + 1

. The algorithm is very inefficient )

because we must count all the factors

‘of eachhuiiber < 1000, whereas as soon

as wé know that a number has more than

cq -

two factors we know it is not.a prime.

)
T
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(a) Let .n & -1 indicate (b)

5.
numbér < 0.
L

L s

ALIQUOT(NUMBER,n, PARTS): ,

Il

I < 500
4

™ I « I+

o LO)-
N
=
T,
]
l_l
o
9
Y

=

EXECUTE
) o
" ALIQGOT(I,n ,A)

9

K « K¢l

Ts 6

~

° )., s
' ~E(UMBER=K X [ NUMBER/K] )
- T .
L 7

nen-+ 2 ,
PARTS n-1 «K

PARTS « NUMBER/K

o

had °) : ' -
comment on Problem 3.~ '

.
~
:rf,:.r*

T, Remark: See
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be an array. Bi is the sum

$he aliquot parts for the
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e 1
Iel o 12 « €
L T < 500 - ' :
I I+ ~— > SToP ¢
EXECUTE
ALIQUOT(I,n,A)
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¢ ( The effect of MARKS cannot
. be achieved with a functional -

, reference because two values; J
. - § and K, mdst Pe determined by .
- N g the progedure. A fungtional ref-
1 M \ . -
. .1 Se Al _ . erencg can only return 1 value.
- ‘. -~ Kel ¢ . . ’ K’: s
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Comment: The three exe?cises in Set'B can be used td clarify a point that
is often coni‘usihg. That is, when to use a function and when to use a procedure.
The general answer is: If there is one value to be calculated, use a function;

if moré than one g’alue has to be 'calculaped, you must use a procedure.
- - <

.Since procedures are more general (ariy I‘unctiop can be written as a pro-

cednre); why have two kinds of reference methods? Why not a@lways use proced-
ures( Becaus§ e

M2 i 0y

nctions, yielding just one value, can be used in arithmetic
expressions but Q\z‘ocedures cannot. The added generality of procedures means

that programs to carry out procedures must take account of Mﬁost éeneral
case. X, = .
-~ The followi%g' ggll?'.agram for the simple ope;'ation of st.luarin-g can -be helpful
] . in cfomparing funcﬁ;oga}Lreferences and procedures in class discussion.

N | "
/ Functional Reference N . Procedures

|l
T e SQR(A»lZ SQR(B) | [ExecUTE .
)~ Zsa(E) - I SQRZ(A,TA) . SQRL(A) -
. ‘$ ’. - ‘l . ; . P - * _ _
|- BRI EXBCUTE .
; ; S SQRZ(B,TB) | SqRL(B)
" /f 1 , Lt
. T l , L_semz(c,T0) | sam1(c) [y
- 2 ) I ./ - ) . .
o . | [TeTa - T¢]
“ N N « ) N ) t
cas€ & | case b cage.c
- Comparing a functional reference with procedures :which can accomplish a ’
. similar action. o ' 5
o ) 161 I
. - at *
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. Problems 3 and L4 of this section are very d.ifficul’c The teacher may wish
~ to asslgn them as 8 project for the student to work on alone or in groups. The
. students may Spend weeks on these problems. Hints could be given from time to
time if the students get stuck. The problem materlal is rather sparse in/ *
, Chapters 6 and 7 so that such a project would give the student something to
work on during the period in which these“chapters are taken up in class.
Problem L uses problem 3 and both use problems 2 and 1. In addition, both

problems 3 and i involve other flow charts developed in this and earl:.er

chapters . . , REDUCEMOD(n,m, o I
. . *3. [8. ,l 0(1)11} A . - '3 3/'?;
. . : (b ,1 =001 )m}) ‘ Y y
; i,“ ) ‘
+ -]
. . ) - 10 I - 4
i i
! .
/ k}
{ N
. X e« GCD(an,bm) )
. L C (-bm/X
. D« an/X
o [
| b s .
K el : S
‘a A ) ‘ i<n F
- - 1l ei+l |~ ‘
- 7 . _ ' ,
I - nen- 1% -
»
. : 8 - ’
: * [ ExECUTE -
X ' DEGREE n, [ai, 1 = 0(1)n}» .
K ’ 9— - : o
. . || EXECUTE
. SIMPLIFY n, (ai, i = 0(1)n}
. - I3 3| o T
. it
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’ d.rawback li-,es in the appearance of fractions among the coefficients. The

MC

B 7o rovidod oy i

'\

. ! | T ;
5 . :
T . g
Discussion: REDUCEMOD has as its purpose the computation of the remainder
- n n-1 2 O as s m
when a(x) = 8 X \+a X + + al’f + 8, is’divided by b(x) = b X + ...
+ b X + bo. It is simply the division algorithm for polynomials.
The division theorem for polynomia.ls tells us that for any two polynomia.ls
(x)=ax + +v. +a. X+ a’' and b(x)-bx + ve bx+b (where not all

1 0 0
coefflcients of b(x) are zero) there are uniq_t.ely detennined polynomials

-

a(x) and r(x) so-that . . .

(1) . ; a{x) = q(x) - b-ix) + r(x). .

If degree a(;c) < degree b(x), then gq(x) = 0 and r{x) = a(x).

The division algorithm ensbles us to compute q(x) and r(x) by an
3 - 3x +Ix + 2
and bLJ_()__.—_gx_--—éie—i—i The first step in the .division is shown below.

iterative process. We illustrate by letting a(x) = 2xh + 2%

2
. 3x2-5x+1lexk+2x3-3x2.+'{x+‘2 .
“o. . 2xh - Ex3+ gx2 ’
R 36 3
' . AT 3 11 2
3 3x-l~'{x+2

Note that we have subtracted %3: $ b(x) from a(x). The next step amounts

to repeating the process with the same b(x) but with a{x) replaced by

1?6x3 ]élxg + X + 2. mé observation will be reflected in our flow chart.

We iee that -g-xg has for its coefficient /b "and for its degree, n - m.
We could conceive of ¢ "generalized flow chart" component such as

|
:

a(x) « a(x) - an/‘nm X b(x) .

Thé above process has one great drawback for computing purposes. }The

~

effect of -+ this is that our answer will be annihilgted by round-off. This
difficuify can be handled by multiplying by the constant b or better, by

B /GCD(a ,b ) which is 3 "in this case. Applied to _t_:he preceding example

this would giver, . . 22 e
. e - 3322 - 5% +.1 6xh +.'.6x3 - 9x2 +21x + 6 .
* ' ' et 0w 4+ o -
+- ) ; % .
. ce e 16x3 .11x° + 21x + 6. ;
. ) 164 )
- ] ’ 8 4
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The net effeet of multiplying a(x) by this integer constant is,to mu].tiply
a(x) and r(x) by thé samfe integer constant (see (l)).

« 4s mentioned in the statement of the problem, multiplicat'ien of our poly-
+* nomials by rational numbers will not affect divisibilit’y properties

Now we show the work without the powers of x being written down (i.e.,

in synthetic form) : . - —

. ___L‘é 5w T (1) .
o =0 2 3 (ii)
,0 16 -11. 21 6 (iii)

[ . b
If we let C = bm/ACD(an,bm) and D = an7ACD(an,bm), then on line (i) we see
the coefficients of C-a(x), on line (ii) the coefficients of D - b(x) and
on (iii).the coefficients of C - a(x) - Dxn-mb(x). In order, from left to

right, these coefficients are . ' .

&
C an-i“D °bm-i i

(2) " fbllowed by . ° .

1

(=)
-
-
v

B

v n-i

Now we fix our attention on the flow chart for problem 3.
- -

In box 2 wecompute the C.. and D déscribed above. In boxes 3 through
6 we compute the coefficients of the new a(x) as described in (2).
Y

One trick should be-noted to avoid confusion. Since the leadi.ng coef-
ficdients have been made equal by the choicesof C and D, the leading coef-
ficient of the new a(x) will-be zero. Knowing this: we dd not compute it in
box 5 but, rather, leave &, &s it is. But then we reduce the value of n by .
1 in box 9 so bthat the erroneocus value is eliminated from further considera-
“tion. This technique is mild.ly interestidg and can be used in other places
and, in fact, is- used in Chapte§‘ T in the séction on solutions of systems of
linear equatiors. The "trick" can be eliminated by initiating i at. 0 in
box 3 ‘and dropping box 7 out of the flow chart. .t ’

-
£

In box 8 we compute the degree of the’ new a(x) which may by some fluke
have been decregsed by more than 1 in the preceding steps. *In bdx 9 we sim-
plify a(x) An the desperate hope of keeping the coefficients from growing

too large and going off sca\I\e\

»

“ERIC .~ - N £70 \\
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_ space and relatively few arithmetic¢ operations, on the other hand, it i‘equires -~

’

K % A IR ‘
- _

Returning to box 1 we ascertain whether the degree of a(x) is now less
F

than the degree of b(x), If so, then we are through and a(x}-is our

N

remainder as observed earlier. If not, We repeat the process.

y
- 7

Inbox 0, if m = O, then b(x) 1is a non-zero constant polynomial &nd

we know in advance that the remainder will be zero so that there is no need to
compute it. If m < 0, then b(x) 1is identically zero and the division can-

not be performed;

A final warning is in order concerning this problem and the next one. 1In
order to avoid the occurrence of fractions and the consequent roundoff, we have

called for repeated multiplication of our polynomials Hy suitable integers.

The maximum number of times that this multiplication can occur in the execu-

tion of problem 4 is 1 1less than the sum of the degrees of the two polimom-
ials. The result is that although our program calls for very little storage

enprmous word length. ' This is the price we b_s_a{e/to pay for demanding exact
answers, But, in this case, the alternative?of rounding is not available to.

us, The result would be complé‘qely logt in roundoff.

. To give some idea of the word length regiired, /suppose that the degree of
a(x) 1is 8 and-the degree of b(x) is 7." Let M be the greatest of the
absolute value:é;} the coefficients of the two polynomials. Then the maximum-
of the magnitudes of the coeffi'cient; of the new a(x°) after the first pass
through box 7 of the REDUCEMOD program cannot exceed .

- -

. . . o=

: S ..

7

.

A new bound on the size of the coefficients on the successive pagses ' .
through hox 7 is 5btained by squaring and then doubling the old boqnd. Then
on the completion of the program &f problem ‘h, if 14 passes through box 7

are 'req_uii‘ed, our bound will be

2
2 2 .

o[ofeletew® ) | | )

\
n
n

or ' f . 1k

, F hé .
This is a ridfculously large number but hopefully, in practice, things will,
not turf out all that badly. Still, they are iikely'to be bag enough.

’
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EXEQWTE ¢ L. :
DEGREE(n, (., 1 = 0(1)n}) ‘ . .

!

* " - 37 s * :
/ EXECUTE :
SIMPLIFY(n, {a,, 1 = 0(1)d}) -

~ L 4 - T i : Y :
. ‘ , EXEQUTE . :
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ﬁiscussion" The greatest common divisor algorithm for polynomials, amounts
to this: We start out with two polynomials ,a(o)(x) and a(l)(x). Then we
.construct a—sequenceAef—pelynem&als S
0 1), h-1 h 3@
a( )(x)h aﬂ*)(x), a(2) x), cen, al )(x), a( )(x)
so’ that for k > 1, a(k)(x) is the remainder on dividing a(k'e)(x) by
(k l)(x). When' a(h)(x) is finally ﬁdentically zero, we stop the process
and 'a(h-l)(x) is the greatest common divisor of a(O (x) and a(L)(x). .

The Justiflcatlon is the same as that for integers given in Seotion 3-2 of

the student text.

We have taken the liberty of multiplying our polynemials by

e . constants at various stages in order to avoid fractibns.

This, as mentioned

in the statement of the problem, will not alter our final answer.
»

We see that new polynomials in the above list will be generated by apply-

ing REDUCEMOD to the last two members of the 1list already computed.
will call the last two members of the list a(x) and b(x),
a(x) by the remainder.

S - L

REDUCEMOD 4

and will replace

Before repeating the process we must then switch the

AN

roles of a(x)

and b(x). . -3. . - .

This switching is acdomplished in the main flow chart of problem 4 by )
SW seen in boxes 6, 12 and 13. This vhri-
able alternstes between O and 1 on each exzcution of REDUCEMOD and thus
sends us alternately through boxes zaand 8

the auxiliary switching variable

In these boxes we see the alter:w

nation,of the roles of a(x) and h(x). ' » .

Boxes,9, 10 and 11 have the purpose of determining whether we are through.
If T>0,
then the remalnder is a non-zero' constant and we Know that the greatest
common divisor in simplest form will be "1) (box 14).
If T <0 (that is, T.= -1); then the remainder is zero and the last non-zero
polynomial in our list is printed out as the greatest common df¥isor (boxes

T is the degree of the remsinder.
T=z0,

then we are not-thrpug ng

1, .s0 we print out

5 - 17). *
s
The following flow chart is a variant

“ERIC - :

Aruitoxt provided by Eic: o

of the one just seen.

1Y

The redugtion

from 17 boxes to 10 is achieved by the use of‘double.subscripts. The two
polynomials are
n i n. -1 ) ‘
, O : 0 - . o

e aO,nOx 0 no'l + e ao,%x + a0,0 ‘

and . ) - . /A_//
‘pf' %fl )
. . al,nlr ay nl_l + ves + al,lx + a},O . :
. i . -
- > y
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5

o
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The switching variaPle SW now becomes 1 so that the switchip§'_£§ acc;ma“ _. \
pfished by altgrnatfng the/values of the first subscript,thus changing the ’
roles of the two polynomidls. Now boxes 2 through 5 of 4(a) are compresseﬁ
into boxes 3 and L4 of h(b). Boxes T and 8 of 4(a) are compressed into box 6

v of b(b}., Boxes 9 through 11 of 4(a) are compressed intc box 7 of 4(b). Boxes *
12 and 13 of L4(a) are compreséed into 8 of 4(b). .Boxes 15 thréugh 17 of 4(a)
are compressed into box 10 of hkb). Boxe% 6 and 1b of L{a) bgqome, respectively,s i

boxes 5 and 9 of 4(b).

&
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Further work could be done along the lines of this problem set: The

flow chart of problem 4 could be mads into a procedure which we might call

. . GRCOMDIV (to distinguish it from GCD).
with integer coefficients, find a pblynomial SIMP a(x )'

Now we could, given a polynomial a(xs
having t}je same roots
as a(x) but having no multiple rootg, Thls pol,,rnomial 1s given by

‘
o

< " SIMP a(x) = a(x)/o(x ‘
where ) : .

b(x) = GRCOMDIV(a(x), a%(x)),

Ed -

at(x)-
%

being the derivative of a(x).

Ne'xt, one could take up Sturm®s Method for isolating the real roots of
polynomials. (See, for example, Uspensky, Theory of Equations, McGraw-Hill,

New York, 1948, Chapter VII ) .

J
°

For 1llustrat1ve purposes, - we show in the followrmg table the repeated
trace through REDUCEMOD for the solutioh of the GCD of

( a(x)=3x5.+axb'+2x3-x,2+5x+2
and .
N b(x)=2xn+6x3+3x2+3x+l.

’ . .
The GRCOMDIV x) b(x)) turns out to be x> + 3x + 1. -

As can be seen on the trace, three successive calls must be made on

REDUCEMOD before & remainder is found which is identically zero (i.e., n < 0).

gﬁ
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Supplementdry exercises

/
(We reprint here a set of exerc:.ses which may be of interest to your"
students. These, originally appeared in the student te;ct of the preliminary

A edition. The solufion set is given at the end of the reprint ) —

- ’ Students often enjoy nunber- conversion problems. Problems 1, 3, & and 5

are reasonable for class ass1gnment. Problems 2 and 6 are tricKy and really

v .y

-~

better suited for challenging projects than.for daily assignments.

‘(R.eprint be,gins here) . .
y The' d.ecmal system has 10 -as a base, i.e., there are ten unique digits
) (symbols), O, l .2, 3, 4,5,6, 7,8, Y. With these ten dlgits’we can write a
number as large or as small as we-twtoil by allowing the position of the digit to
represent & spec:ific nower of the base. As you know, the decimal numeral
L h megns ¥ ‘) ) e
<, O a‘ ‘ L '
- ..
- 3 2 1 A0 -1
. BOMT b = (B X 10%) + (0 X 10%) + (b x 107) + (7.x 10°) + (4 x 1070).
v . ‘ - - N
- Note the use of the,'su‘oséript _TEN to indicate the base. . .
7. When numbers are expressed in terms of bases other than ten we aan easily
. : find their decimal renr{sentations. For example, the binary (base two with
symbols O, 1) . numeral llOl,..wo mey be expressed ] ©e
A~ A1 % 23) +(11x22) +(0x2ty+ 11 x2% ) -t
N B \ . .
or l‘?’TEN' ‘The octal (base eight symbols’ 0, 1, 2, 3, 4, 5, 6, 7) numeral
e . N e ‘ . e ,
:‘] 263EIGHT{; becomes o ) e .
] 0 (2 x 8%) + (6 x81)+(3 x 8°)
: . ! i N 3 .
[ T~ " For the hexodecimal system (base sixteen, symbols 0, 1, ,2 3, &,
. 5, 6, 7, 8, 9, UV W, X, Y,, Z) 15V, STXTEEN becomes
" . J @ “ v
SN - i ) v P ) .
» o b (1 x 162) + (5 x 161)IH- (12 x 160) = 31+8m, "' Lo
s ) - ' ' : ' y - ! )
. - N ‘ ! : .t
- - Y. ‘. ¢ ) . ! . -
_‘ " . ] 5 ‘ [ 1 4 N . .
LI . / - . . - :
N o
s .. S . 14 N ¢ ) g ‘ e .-
?ﬂ‘ 4 V § ‘ oo, 3 2 g “i f% LN X ? . fé\ D

: . .
s . -
- . i .

2 . , ) . 5. 7 , . ! ' .

E - \* [ 3 €\ G
’ N f 4 . i .
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Now let's ]:oqk at a refererice .flow chrart for procedure oct&ldec(;,A,deC)/ :
for the conversion of octal numerals into decimal, as given below. ¥c ylet A
be & vector of n piaces having as its entries the digits of a positive
‘ numeral arranged in the order in which they appear in the numeral, e.g., for
€2k, n « 3, A 6, A <2, A ! The variable dec returns the decimal

. 2 3 .
~ wvalue. ' , )

OCTALDEC(n, A,dec)

o . LT )
& ¢ .
. P : P
-~ ,° * a V.‘ .,
- r
<o ’ de¢ « dec + &, X gln-1) ' ) o :
] . ) v . ’ NE g 5
. Flow chart for conversion of an .
R octal mumeral into decimal ) -
) toe . ’ ' -1
'Wasn‘t:\it simple? Now it's your'turn.
: - . o
1, Adoptirrxg the flow chart of octaldec, p epare a reference flow chart for
procedure’ intedec(n,A,B,dec) which converts ja positive numeral, base b,
- into deqiﬁzal‘. Base b .will be restricted teo - b < 10. ‘-
2. For th§ ingenious student we nropose t'ne problem of converting| from :
' hexadecimal to decimal, In this case the entries of vector Al will be .
.- alnnanumeric, rather than nu.merical as; before, Thus, we must begin by -
’ identlfying, each symbol. ) : : ' .07
pd o ' “+
» (a) Prepare a reference fl; ¢hart for a procedure 1identify(k,A,VALUE)
« which accept; the vector A and the index k of the element to be
4
_ identifiéd. It ‘uses as local variables the alphanulneric elements of
< oo El
: . ' . the vector COMPARE. . . ‘
. . " Vector COMPARE
Subscript 1_2,,3 L .5 6 7 & 9 1o 11 12 13°12+ 15 16 -
Element * Iloll lllll ll2" "3" llyll Ilsll "6" Il?]l II8II\ |I9ll IIU" Ilvll Ilwll llxll uYn }IZII
T . : T & .. - i R ;
T AP IOE BT N %%*“% . IERE I
f R ! 3 SAN ’ L

@ SRR 175180 SO
ERIC CG o _ 1

{ . LA . '
S o X . , - :
TN e - T B + x§ s N i




&

. u, ’
- v "
.

The procedire returns VAIUE, the value of the hexadecimal digit

represented in A4,. .
" ’ i . \%‘
(b) . Now prepare the reference flow chart for a procedure hexdecdec(n,A)

which conveggts hexadecimal numbers. into decimal numbers.

, v S .
Xl—- Now for the reyerse process. To convert a decimal 1n‘teger 4 to another
‘ base b, we le;.Lde d by b, obtaining a quotient g and a remainder which _
“ '; ) we store in the remsinder vector T as ry . We replace ¢d by qa and div1§e .

the mew & by b.' Adain q becomes d; the remainder is stored as . r2.'. The -
s
process is repeated until g is 0. The digits of the answer are contained

-

in vec}or r ~in reverse order, low-crder to high-order.

s L@ . !

into binary:

Tne methed may be illust':lrated in the conversion of . 204TEN
- | e B =22 om0 T,
102 °
a=F-5 meo -
» l' ‘
-~ q = {%-] = 25 r3@= l N »
25, _ . ‘
{ qQ = ['35‘] = 12 -I‘L =1
‘ o 12 '
- ° ¢ q = [?} = 6 ’r5 =0 &, '
. 6 ¥ )
_ g = [Ej ~..-£ 3 1‘6 =0
= (3 = - ) |
. q = [2] = 1 1‘7 =1 . \ . ‘
= (4 - ‘ v /
a= [3) -0 - - - :
Thus), -201;TEN = 11001100qy - e .
) _¢3. (a) Use the 1.11_eth<5d to convert lehTE'N into .
N )
- (v) Convert 63145TEN into hexadecimal. - )

< . * .

. Now that you've practiced the method, we present & reference £16w chart’
o o %, for procedn decbin(d m,R) which cdnverts the positive decifhal numez‘al 4

into binary T‘i;e result is stored in the first m digits of wector R with
i the digits ranged In reverse order to that in which they app{a\ar in the num-

”; : ’eral‘ (1.e., 7@ would appear as 527) . e ‘ ! , ‘ +
-7 «é} 3 R " N 3 ,, - ‘\" \
' i’ : . . s

g % S‘%\si‘} % a % S y e
. 2 B0y IR S
%‘. ;‘ 2.4 'g H R \ ‘ »L
LR | f’! .%’ - . % 176 4 , . 2E
. Q . . B 3 ] ! . , ;

L . N . . * o 0y . “
"“. o E . A b} 1 2 L 4 a . ’ o




_for conversion bf a
ersgl) -into binary
L=

.

“Your turn again. s

Write a, reference i‘]:pw chart for the procedure outdec(d,b,m,R) which
converts the positive decimal numersl d to base L+ Again the result
is stqredfin the first m digits of vector* R with the digits arranged

3 , ' '

i Y
in reve order. &

Now it's time to put the two varts together. Draw a flow chaz,jt which
inputs the quantities " bl, b2, n, A where the digits of a Dositfve
numeral in base bl are contained in the first m elements of vector A
ig nom#al order and where b2 1ig| the base to which the ntmeral,is ‘tQ be
converted. The output will be[e numeral in base b2. We make[ the

restriction that bl <10 and'/ b2 < 10+ { »

Finally, for the really crafty student we suggest a problefn using Rgn Y
numerals as input. Prepare a reference flow chert for a procedure

Rnum(n A, NUM) which converts any Roman numeral less than MMM rep-

resented as a vector A of n elements into an Arabic numeral NUM.

The vector A ,contains ad e%ements each digit of the Roman numeral ‘.
arranged high- order to low-order. %s local varisbles use the elements

,0f vectors ROMAN and VALUE. The comparigson vector ROMAN contains|the’ C
seven elément,s listed below. Each element of the vector VAIUE conta£

the va.lue of the contesponding element in ROMAN as given below. “
\ C e ) v
y ( o -2 . 3

) ? . 'i
gy

v .. . . ¢
; - ,
"ti e .




- . .
5 . &
. i -
. R Vectgri ROMAN I v X °L C D M X
Vector 1 5 10 50 100 500 1000 Wy
- . . - . ' ’ “‘e:g
#(b) Draw the flow chart for a prdgram which will input two Roman numerals
less than MMM and output an echo check and their sum in Ai‘a/bic ’ -
. ¢ numerals. Go back to the input step. ~ ~
. = N, N C »
@&.i—ons for preceding exercises . .
1 . . intodec(n,A,b,dec) g
RS o
. s -
N -
¢ '
\ -
f/(
2
. ::: , . - - '(__}"
‘ dec « dec + A, X b(n-i)
EY ¢ . . * '
For test date we suggest that the following be transformed to bgse ten:
‘ B . :fx f
. P ' - T
_ Test Daia N *  Answer A
« L7
. . lOOlOlTWO ] , . 37;1’EN . ’ .
Pmewr - oy .. .
N ) » -I .’ ‘-- .
g i PR -3 1o ~ NN, L . -1‘701_@: . . T
. ¥ . = . .
. :-LIQ}OOOHTWO . . hl‘9TEN . ’
. 2‘_37°1EIGH'1; ‘ }%olm - © -
- ' .- ' . N &%
¢ . W3y 56850gy N .
. : ’ - o
i ! fadd
i ) 3
" - - o
v « A
v ' /
» * L . . o
PN R e . " :. -
4. . T ,
'ERIC . -

. »n 4 ’
. N -
4 . s . . 1 8 -y . ) \
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COMPARE, « 0"
COMPARE,, « "1"
COMPARE3 « np

C@rPAREh « 3 {1 141
COMPARE,_ - «""}" ' L {T 3
Gt 1% i,
L ¢ ~ ngn . IDENTIFY(1,A, VAIUE

II‘TH . . : +

g ’ dec «dec + VALUE x16("'i)l i
||9u . ¢ .

IIU“
llvll
llwﬂ
"XII
llyﬂ
llzll

"INCORRECT
CHARACTER"

Suggested Test Deta a ADSWET
" - —_—

3XvV

22 g1y

soeemmy ol 5T




S &
1284 ’ 634
3. (a) [21-160 rp=b (0) a=(321-3%6 r =9 \
160, _ _ 396 _
q= -8—]-2.0‘ r,=0 q-[T T, =12
204, _ “
q = ,[_8—] =2 . I‘3 =4 . q= [ ] =1 r3 d 8
.
T q=[§]=0 r, =2 - q=[—%]=_0 r, =1
1284y = 240hpropn N 632‘5TEN = 18w9SIXTEEN
4, - . “
re
= —
X . ' N ¢
N .
i v
-~ .
z Toe !
2 co '
- ‘ _’-'
~ - ’
- ) _ 4
Ty ’ . ‘ g
7 ) S e L] S
. - g - ~
. - EXECUTE ] g _
el - i’ntc:gdeg,(n,A,b’Z,base 10) . .
a2 -0
. - ), c @ R v
. s EXECUTE . PR P
P . -
. oatdeé(base 10,b2,R,m)
“ ' ’ " ° ‘
’ g
’ - bl
~ , : o - ’*. -] [Y M
- - . - . . . . = ~
-° e - Suggested Test Data ' Answer“ : N L
1. 13671+EIGHT into base TWO 5 . 10111101111 mr; /

'/?\ B £ 'léé‘l;ngREE intg base EIEHT

- ~ = ~ .

. 2. 61&29TE.N into base FIVE "7 } , fﬂo]_goh %“ % . é’%
{ % % o f 4 F :
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ey

AT

A k<np

"I"—-—-"’
ROMAN, « "V"

RMN - Hxll
mNh - HLH
ROMAN5 « et
ROMAN, « DY
ROMAN, (_‘ gy

' 7 -
A . T

2
VAIUE, « 1
VALUE, 5.
VAIUE, « 10
VAIUE, « 50 -
1 VALUE. « 100
VAIUE6 « 500

VALUE, « 1000 -

- Al

) 3 -
NM <0
LAST « 8

LAV IR

E ol OV)

'k «1 e F

= k1

Yel

¥

"1}

"INCORRECT -

~a%i+%55

" 6

,*_—‘—"% * o "
7

CHARACTER"

= X

+

4

L ECal)

= ROMAN(iD
T

c 1 VF .

. . T
T \ F:
"‘{EEzgi/ -

‘3

8,

LNUM (—NUM - 2 X VALUE(LAST) + VAIUE(i)l

Jab o

L,

e & |

:5 q%% %% i A

.
e 2 Y
.

<
224

1 A

T L et b,
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1

© o
. - _ EXECUTE -
. Roum(n,A,NUM 1)
i
EXECUTE
, y Roum(m, B, NUM 2) -
Z - tre ) . - . . . ! 5 @
) " -
; | sMemmir+emme |0
. N :
. . - ° r
“Suggested Test Date Answer - -
. . ¥
R . 1. MCDXIV, MMIX - SUM = 3423
2. LX, DXLV ! SUM = 605 .
|- %, MMCVIIY, CDLXT' SUM = 2569 |
‘I ’ e » !
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H
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'AnswegE to Exercises 3-5

¥ L]

1.

- -

P @

-

sume eqﬁa'tizbns of the fom

al Xx +pl Xy =cl |
. : a2 X x +b2 Xy =c2’
. N

'Let.the value of EXIT be zero if limes intersect,and one if the lines

are parallel. B

“ ROOTS2(al,bl,cl,
82,b2,c2,
x1,x2,L)

8 .
— - S
v
LS
x1 (el ¥ b2 - c2 X bl)/denon .,
' - x2 . (al X c2 - a2 X cl)/denor ¢ ’
. ( )/ . 3
. - 4 b
N \
Suggested Problems; . ¢ ,
(a) 3%, + ng =l (b) 6.147x, - 3.28, | 2.481
2%, 8~ 5x2 =3 . 3.2:(1 + h.9lx2 =]-1.233
Answers: ) ‘
// - L - ’ - (;‘ - .
" (a) %, = 5" 0.0526 { - (v) ©x, = 0.201
. Yo N , - . : N ~
x, & -% = -0.579 x, = -0.380 -
X ..
‘ -~
2R i
! i 4
¢ . | .
1/ , . - ) * , ‘““:-:o- f /‘ L ..
O ! ; ¢ .
} '\‘) ¢ ! ’ w K B N . \ -
o Uy { S
) - . . - ;
ERIC- SRS R
' X Ve oz 7 Yk 188 . :
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> LY

' ’-‘!-'-... - . - ]
- .. s ‘o
~ -~ * ¢ ¢
¢ ROOTSA(a,b,e,xL,x2,L,M,N) - :
. N § ": »
- L
a
Czd
el
3 ‘
D nyr .
DISC « b~ - 4ac
f -
¢ )
- -b + JDISC '
t2d 7.
o 5B - G |
. 2a ~ § i
R o
=
. PR
<
f: . '
5 .
L 4 ?
- ;
3’ .
i
N :
. . - . .:
¥
’ : y
> t ’
4 4 ¢ ' - -
- . -
N .
/ ’ ’
LY A . 3 ‘» D
-~ - . "‘ ] L
1‘ i ; * ! /"
L4 ' C
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2. () . 1 START
- T - ¢
v i * _ ; M
' EXEQUTE ’
ROOTSA(a,b, ¢, x1,x2,b0x5,box6,box8)
H i i )
: N ' :
s v 5 Y & y 8 -
"NO INTERESTING| |"ONE SOLUTION | |"SOLUTIONS ARE
SOLUTI ON" x =", x1 COMPLEX" .
) i ’ ..
2. (o) @(a,b,c,n,xl,xZ :
T .—- i b / L
. : ' . Al
* ’ - ) ] ' ~ '
~ / )D [ -
. A . ]
— /D |
’ T
o ' 11 N 2 , . ’)' 3 . !
N ,——'—)’—'—F—G;é 0 b £ 0L DISC «b? - hac
T G o o] |
n v R\ ‘ h ) ?
.- , FODpIsC > 0 }——
L, )
¥ ) B "
o : . F (DISC =.0) .
| [3 7 5 3
" y
n'e2
f 112 - N xl P 'b+VDISC
~—" ] nel n e« T 28
S 139 b| |, -b-/TESC
o wes] R A tm| BT
. - i ;,/ ] 1
! 4 ' é
oy st oA . L
Vool 3 TS RN A
\ (
2 . o » . . vy \ 1. ‘\:" .




5 .
- « &

'NO INTERESTING| F'ONE SOLUTION
IUTION" x=", x1 @

. R . L-
' . }, ) -
L]
EXECUTE ~ . |
] F4 ‘f{r,s,V, TEST)
, 11
TEST = 0 »- -
. 13 .22
. 7 «VigxW "V cannot be




.3 ) S '
’ . '
~ . "x
-— - ¢ '
Y v
.-
) 10
. " EXECUTE ‘
-
) 3 _ g oAl f(rys,V,boxl2)
) 3 ¥ \ ‘ . * i
—_— - - . [
, ? . , ® h . :
- ' - . ! + b
o A 13 - .y ‘'l2
- ' "V cannot be |-

computed"

" L ‘1

EXECUTE -
SUME Q,RT,XP,XF,I,SUM,I)%S9)
. |

x [ . 'ﬂ '

!
)
{
|

; . 4 \ « . " .
- i [} - .
CHE SIS 2 TN N ; ) ;\‘ s
1 > - »,
£ . ' GO r \ X\ e A . NG
-, . s . ‘ N
5 ) . ‘3 7 3 K i o S
O . R & N . H r;, ) ¢ , s .
CERIC SR T AR o PR
- v AR PR L L - L
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. s
. 2

- - ’ Vi - ‘.

s * j%& [
A )
- R '
Y ? (
‘ : RN
¥ -
l-' - '
‘ . red .' - {
r_--\ y m=1, ° ” * B '
' . . COUNT '« O -~
] ‘ 4
. 0 ' ‘ ] ] 2 e < .
- ¢ - © - ..? . )
P! chekeh(n,$,m,c,loc} | .
- -4'" . - A
- ’ . = . ~
. . © " |counr € coumr + 1] N -
LI e .t 5 ) - .o

. - . -, '
- o n e Yoc +'1 . . .
14 ‘e

T R N A N . -
- 2. Let the value of ERROR equal O for a correctly wrltten expression,
' 1 fora negatwe counter value and, 2 for a norizero counter value at =~ °
tk}e end of the scan. 1 : . Lt
) : - . ‘parenchek(n,s,ERROR) . ' ’ (
.~ . . ! . ‘
i
%
+ x
r
‘.
. N Sy . . > - '
. \ . . 88 3 *
. ‘ L] l -
\)4 ] i '\1 q 4 . M
R T - 193 - "




-¢ ':
i 3.
; ) COUNT « O #
me1l
» N
- s 2 ~ .
chekst(n,S,m,%,C,p)
1, .
[}
T ‘
COUNT « COUNT ¢ 1 o
) meeD + 1
- ..
7 »
« «d
f B

E

-~

]

n'= léngth of text Shorthand
© §.= the string being examined
: (1., (s5,141(1)n} #
k = length of gubséring
" T Zshorthénd for the substring
being searched for, f. e.,
{c i+1(1)k]
COUNT = the count o;‘_ o¢currences
" of C in S,
- :_J.J .
- . ‘; 7
. | .
E 3
4 *
- ‘ . .
A $ ‘ 1" ‘
, K .
Al J.

~ L4
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- ghapter -6

APPROXIMATIONS

Thls chapter is in a’ way a freak ‘show or chamber 'of horrors exhlbl‘tl‘ng
samples of many types of difficulties encountered when -algorithms are actually

carrled out in computers.’, These pathologla.al e:qamples are 1noluded not to.

scare off the reader but rather to make him aware of their existence. aneri%al - .,

analysts (people who make a specialty of this area) often are able to* suggest

ways 0of avoiding the exhibited difficulties in any parta.cular case. A r
4 . .

) The first ségtion of the chapter concerns itself Vitl:l Trepresenting numbers
in a computer while the second brlefly reviews what we. mean by cfloppmg and ’
roundlng te n drmits. Sectlon 6-3 1llustz}ates arlthmetlc on a 3- dlflt com~
puter. In Section 6-4 we g'tudq some of the consequences of the fact t‘};} com-
puters have only finite word length. While only a subset of the ratio num- |
bers is actually representable in any computer, we often act :a’s thoﬁéh atl real
r{umbers were represented. It is mterestlng and 1nstruct1ve to realize that
most of the time what we represent in the computer is only an dpproximation to

the number we have in our mind. .

, Se.ctio'n 6-5 deals with the consequence that computer arithmetic is not
associative; the order of operations may affect the result. Sections 6-6 arid
6 7 1llustrate difflcultles that could arise 1n solving familiar probiems by
computers. The last .sectlén, 6- 8 disgusses us1ng a computer to compute the
value of a functlon by ‘metliods which themselves are only approximations. The

examples are the iterative Newton algorithm for t}? square root, and cOmputa-

et
«

tlon of 3in x by summing terms of a series.
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\\ (f
ves, 3hk.2 \ ‘ (g

( .yes, 3426
IS . -
(@) no Coe &
Kl . \ ‘
. (e) yes, .078125 [
IS ’ ‘\\
. . \ :
-~ ) &\\ ‘
| 25 i . Answers to Exercises 6-2 ~ J

b2
“ A

3.+ o
O ban 7770 0 ¥ ] .\\

1. l&9705
.00723 . vooR

L2.3

~ |

? l“ ’ \’

1.

(a)

f.
. Ansvers Yo Exetcises 6-3

467

y o
-
i

. i '
.2. (a) 8010 5 (b) 2h.2!
"y C o :
3. (a) 85 x 1073 (%) 6.38°
I ’ . * ' I
by (a) 6.87 - (b) 1386,
. - ;:_ ur [ -
P 5. (a) 9.1 () -22.7 "7
\1: oL ’ ) *
a‘ "D ’
i 4 -
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yes, 3

yes, 250,827.36 *

yes, O '
-

no

no

45700
.0072h .
2.4 ‘
1780

(e) 200,
(c) 0050k
- —%e) 7.10
(e) 4.76 ° .
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Answers to Exercises 6-4 .
o oz . .
. « .

ud'«./,

1. * ,000110011 B0 ., 7 L,0111110 ’ ¥
+, 000110011 ~.0001100

- .001100110 L .1001010
> - 00011001 O .000110 -

-~ ¥ U

. ~.01001200 . .1Q1011
- < ,000000 .. @& v, .000110
20001100 - -000110

« ., ©  .0110010 . © 110001
- 0001100 [€) © ;000110
0111110 . L1011
o . .000110
N o . oL -

M 2

@0 o

® ©

, . .0100101 -
2. < 1010 [ 11.0000000 . ' o .
. 10 10 ¢ L - . e
© 710000 . a . '
.. - T 1010 ‘ M oo
. 11000 +* Lo ;

7 .102109 . . . ¥
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" Ansvers to Exercise%\6-8 : AR
] -~ 0
§If a ='0, the flrst value of h =

1/2 s 1/23 , ete.

1.

5 and successw,e values m.ll be”
The successive differentes .»Ih g|

ful

- s .
= 24 = —l?;, ete. The Process will teminate when
27| _\2 * s R .o

.

willve

4

.23

2

L

ol Y <°—§ Th).s is egulvalent to th < 2k -or k >
2 lO -

L
\ L4

2 1T a'< (& we know theoretlcally that there will be trouble. Suppose

, a = -2; we will fill ina little table. §
K .

s
‘s
[ .

. L

b - gl

® o,

1 a
"2"(8:"*' ‘é‘)

2. N

L
2

N

_ 2 | ¥ Lo
0 Trees |60 h-ars 1k

. 1
. . -
.
.

. . )
From the last.colt;mn' it is apparent that, {h - g|> is increasing. The

1.25

[

successive approximations are getting.worse rather than better.
| ! { - -

’ .

~e

»

——

A .
. . .
‘

A,

~

3.

. .
An mltial guess related to the size of & fould get the algorlthm off
to a faster start.

A

would be such 'z guess. However, in this case we
.1is not zero since we divide by 1t in box 2. Since thls N .

algorlthm is to be used as a reference flow chart the abllity to handle
any value of

-
. must be !s'ure a

a~ 1s more 1mportant than saving one it)ératlon of the

The value of 2 ; 1 as an initial gugss meets both conditjons

. «
‘

+ algorithm.

but is more complicated..

Tog 2, °
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SOME MATHEMATICAL APPLICATIONS .
- ) . ' e )

v . . 2 - '
. . - .
. e IS -

Overview' . e .

This chapter. is devoted tg 1ntroducmg the use of computer techniques “in e
cormec‘tlon with three problems of' the greates:t mathematlcal impartance. 'I'hese
problems gfford the student hi\s first glmpse of the way computers are .really”

used in applied mathematics. - T *
. '

THese problems are: , roots of equatlons seen in Section 7-1; area under

"a curve in Sectlons 7-2 and 7-3; and ‘solutions of systems of ljneartequations
in Section 7=k, Thus we meet' appllcatlons fraiy computers in the areas of

theory of equatlons , 1ntegral calculus e.nd linear algebra. The main mathe-

matical aréas of oomputer appllcatlon whlgh have been omltted are statistics ' .
and ordinary and partlal dlfferentlal equations. These latter topics are

well beyond thé scope. of this book.

‘. For further readlng we suggest

., 1 r

(1) Edward Stlefel 4n Introdwtlon to Numerical Ma‘bhematics, ) )
Academio: Preas,/ ‘. ‘ T

-

o

(2) L. Fox, 59_ Introduction to Numerical Linear Algebra, Ox€ord Press.

1 I - - M N RN 1 v

- . . .

4

O ¢

.
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T7-1 Root‘gf'an Equation by Bisectiop

- " N

»

g cT 3
The successive bisection algorithm presented in this section 1s by no
. [ ]

means the’only method for fihding rooEsLof equations. Newton's method, for

. example, converges to ther root much more rapldly.» The blsectlon algorlthm,

in essence, Dpicks up one ‘new binary dlglt of the root on each passage through

" the loop. Newton's methad oy contrast will double the number of correct

digits (binary or decimal) on each passage ﬁhrough the loop.

~ - va—mm

‘We have touchéd on Newtonl's- method in Seetlon S-1 as applled~to square
¥ I3 N .
roots because in this special case we wePe aplé tu present it w1tnout the use

of calculus. A general treatment of Newton's methodswould require the usé of

.differentizl calculus which ke assume the student will not\have had. In case

' your students have had some Q}fferentlal calewlus we present later in this

section a brief exposition of a Newton‘s method algorlthm whlch you could

present to your students. | I -

" The mathematicel basis of the “biséetion algorithn of this section {8
extremely simple, viz. ’ vhen'a contlnuous Jfunction changes s1gn in gn intgrval .
then it has & root in the 1nterval. The number of roots 1n the interval must
elther be odd‘(countlng multlpllcltles) or infinite. In the case that the-
nurber of roots }s‘odd and greater. than pne it 1s‘d1fficult and of little, l
interest to attempt to determlqi in advance which root the algorithm will ’
converge to. Slnce the 1nterval er;XET will at ali stages contain an odd
nunber of roots, it is relaﬁlvely easy to see that the method m?st converge

6 the first, thlrd, ‘fifth, or sevemnth, etc., root

.

. If it is not known in advance that the function is continuols in the
glven 1nterval but yet the method cOnverges, then it must converge elther

to a root or to ‘a point of dlSCOntanlty‘bf the function.

»Id all the precedlng dlscus51on§ of\other things which our algorlthm will
do, one should not ‘lose slght of the fact thaf the algorithm {s primarily ‘¢
1ntended er the case that there is Just,one root in the interval. One may

_even say,vfor the case that it is known that there is just one root in the

interval. One way in whlch one migh% know this is by knqying‘%hat the ¢

“derivative of the glven functlon does not ehange sign in the given interval.

Aruitoxt provided by Eic:




Newton?s Method

‘e

This method was briefly dlscussed in this 'l‘eauher S Commenta.ry m
Section 5 1. Here we wish to dlscuss it A a slléntly different way in order
to treat the subJect of er‘ror. This disﬁqss:.on meyy be found in marry caleulus

books. We w1ll give a condensed, descrlptlon here !

e B

Before embarklng on the studg of. the Newton s method algorrthm it would
be well to be aware of some of its limitations as compared with the success1ve:
blsection algorlth Newton’s method c?nverges %o the rdot fantastlcally Kk
faster than the blsectlon method. If the avallable binaty word length of the

_ machme is @ then the number of iterations of the bisection aigorithm loop
‘required for maximum accuracy is ~ w %hile fdr Newton!? s method the number’
of-m_iterations is ~ 1032:.-;. Tf‘ ‘w wer very large then Newton? s,method !
would,be enormously superior. E_;mce w is in practlce usually no betfter
than 32, the numbers of it'er‘a‘tions are on the order of 32; and 5 respec-
tively, so that the saving is not so _very great unles’s Wélgorithm is to be’
uysed on a large number® of problems, or unless a great degree oI‘ multiple
precision is available, or ufless the Lom'putatlon of the functlonal values

is very tlme consuming. . T ok !
d Ay

Burthermore, *the.use of Newton's method requires gu&rahteed kqowledge of
the behavior of the first two derlv.atlves whlcb.,may not be available’ in
practlce. 'I'he method is thus only suitable tquntabulated functionSJ whose
first two derlvatlves are computable and have eertain Unice" propertles.’ The

bisection technique imposes no such resirictions.
] ¢ » . v hd .

Still, the Newton'’s method algorithm has considerable instructive yalue
. éspecially ag regsrds the prelimmary use of the.bisecdtion technlgue to obtain

rellable bounds on the error. Furthermore, a variant on thls,method is
indispensible in the applica‘tion of numerlcaL method to. da.fferenta.a,l equatiops.

The analysis which follows should contribute to the understanding of this, .
variant. ’ ! ! .

T Let f be a function hz;‘ving a root at r ,and let X, be & numbets
different from r. S‘uppose ’that £1(x) ana P1(x) do nob\.change slgn or
" assume the valué 0 between r and X Further assume that the, ,gopstant .

0°

sign of f£3{x) - f"(x) ds the sa.me between Xy &nd 1 as the sign of

Xo- = r.” 'I'hen the line tangent 3 the’ graph of f at the point (xo, f(x )) -
‘ .

intersects the x-axls at a point Xy lying between xo' and 1. 'Ihe—.t‘our

.

possible cases in T:lhiCh these conditions are met are illustrate(i.below.
[4

. ' ] N
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~(a) f'(x f"();’f i X« T positive;
all pos1t1\>9 £1(x), £"(x), negative.,

TR LA T

X, -\r‘, £*(x) negative; Xo = Ty "(x) negative;
£"(x) positive. v £t(x) positive.

’

s
- .

Although the method. to be derived works in all these cases, we will,

assume for sz.mpllclty in the JFollowing ‘discussion that case (a) holds i e.,
Xy - r, f‘(x), £(x) &l positive. N RN
' The) triangle in Figur (a) above ylelds the ratio

- o) =\f%"<xo>'

X'" X

N
f(x~

xlom

s0 that
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.‘: (2) 1

ver

Y

ERI
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[since £"(x) > 0 “for r Sx <Xy then T 1s convex in this interval so

that

Ky ]

¢ next

at(x

. where

’ f(xo)

whe re.
Y

1
A bound for the error X - T in, tez';ns of the original error X, - r.1is
.derived., - . T . ) . ', T
Using.the La¥ of the Méan'we have s - -
B N . ¢ Y - .
(2) AL Elxg) - f(r).z ) . :
'-‘, .‘n ) xo 4T - . . . ks ]
"\ . - . T . -
‘for some £ Tbetween X4 ‘and r. Recall that' f(r) = O and rewrite (1) and
n the form ¢ ’ .
N ¥ - ’ »
. b} . .
- G A 0 .
- - f ) _ - ~
- Xo - % I(xX,) Xo - T Elxg) .
. s
Eaking the difference and agam aprlying the law of the mean, 'tfhls time to
)} - £3(g); we obtain : R T L
I G I
) 1. L Exg) - £9(E) T (ed(x, - k) '
(3) - 3 = o “= f o
- > _ 4
L Xg ot H Xy -7 flxy) (x5) S
T lies between X, and &, hence between X, and r. o
Getting the left-hanci side at (3) over a common denonﬁ.}lator and replacing
on th& right side by (xo - xl)f‘(xo) from (1) we obtain
- ; . :
- ¥ T s e e T et . / n Ty - o
e £ 1)(x <TE) T
N » ~ A
- - - A
Gc Xy )(x )~ T! (xo)(xodxl ' -~ .
at o ' ! " C
) f"(r)(xo - e)(x; - 1) K
t FX T F
’ ] ' £1(x,) M )
v - - ]
) e s . -
) M 2 - -
: . lxl'.r'SN(xO-r)' .
Y il P . -
M= max|£"(x)|’ and Ne= min}ft(x)]. s - .., ! o ;
r<x<xo . rSXSxO- 5"5“’ : C/ . ety

-
M [}

-the tangent line lies below .the curve and thus x, lies betwe?n r andﬂ

.




e - . o - 3

T7 -

| ' .
| . Iterating the process by letting Xy play the role of xo we obtain
’ é

s .
. . N L

. 2
: M > MM, - 2 -
. %, TL‘I"I_S“'I\?('Xj_—"*’;"ﬁ.‘ﬁ('ﬁ(XO - 1)%) Cohe

: ;
‘ “%-n ‘
. N ,
—

owon ©t v o« 3

'In general, : ., ' . . '
‘ ' -k ko .

, M\27-1 2 v N °
. ‘ , |xk -r| < (Tr) (.XO - r) . i}

e '

k-’ ’ 2
M 2
= (-ﬁ(xo - r)) /% v
‘- LI 4 '

A dlsadvantage of thisg method would 'seem to be that w? need to know the value

. Y.

of r in advance. However, if a is a number known to be on the other s:.de

- ¢ .

of r from x,, then

0 ‘o : _
g M, oM L . )
. |xk - I‘l _<_ ('ﬁ'lxo - ‘al-) 'ﬁ I3 . .
3 M .’ v ’ . H , * . %‘ l * 2
‘ Now, cif{‘flx - a| . were known to be fairly small, say less than 5 “then
- the method is seen to coverage at a gallcplng rate. . %

* A good method of procedure might be to determlne success;.ve&xalues of xO

and a by the b..sectxon method until we have ! -a| < $ and then switch

; L ‘ N|x 2 :

’ " to the Newton method. 5 i . . - i

| In sddition to knom.ng that the first and secopd, derivatives are posit&ve,

1“' "7 "wé know that the second derivative is monotone, théen ~ - S

.
. e g wgmw%xﬂ@) ‘
_ while o e :

‘- - sz'(é) T L . .

. A flow chart for thé entire algorithm is given below. We Trecall all the
conditions: [a,b] is an interval in which a M of f(x') 0 is known to
_ lie; £ (x) and f"(x) are known to be positive in [a b] with of"(x) monotone
[Any of the four cdses descrlbed earller- can bé reduced *to the case considere&

here by suitably’ replacing f(x) by-, -f(x) or by f(- x) or by -f(-—x).]

- '

P For convenisnce we denote f'(x) by g(x) and f"(x) by *h(x).. e
. > '.\
' v ¢ ’ i
. y
=1 a o ot ' ,
| ' ze ‘ 3 i " ” B
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° Combined Bisaction ahd Newton s Method Flow Chart R 0 4
A " v‘
T, RN . *
In this flow chart boxes 2 through 10 constitute ,a modified form of the )

'-

bisection technique seen in the flow chart of Figure 7-5 of the student Jtext,

This variant has as its purpose to to beat ¢ down .the value of . T ~ (“Hich 1s just the ’
M(x - a) of the preceding discussion) 'I'he test in box 3 of-this flow chart

" is different from. the test in box 3. of Figure T¢5 of the student -’cex; because

we know that £ 1s increasing. Boxes 11 tﬁrough 13 comprise the Newton's

method part of the algonthm It is striking to see how simple this algor[}:n
is once we kno¥ we are in 8 suitable in%erval. . A .
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Ansvers to Exercises 7-1 Set A’ NN
S

The most difficult of these are (e) and 2(c).

root: near 2.

[

roots: (a) between -1 and 0O
(v) betyeen 1 and

3
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Ansvers io Exercises 7-1 Set B

8 ¢ o

1. After L steps,"the/ root lies iy the intervai (2.0825, 2,125). -

' - Sign' of | Sign'of| = - “Sign of ;
Step % f(xl)‘ N "f(xe) 1 Xy - f(xM) 2
‘ 2 -3 N R
1 2 - s v Joees | ’
, 2 .2 - 2.25 + | 2025, -+ .ot
R - 2.125 + 2.0625)" -
- L | 2.0625] - 2.125 |-+ |7 2.00% 1'

#

2.% After 3 steps, the root is found to lie in the interval (-0.875,-0.75F.

- Sign of .| sign of| | Sign of |
W Ste? X f(xl)_ %, ,i:(xe) X f(.xw
i -1 + o ..~ 05 | - - .
° e L t
o o | 1 -1 + -0.5 - 4-0.75 -
o . .
e L -2 ~1 7+ | 075 - |-0.875 -
' 3 | -0.875 + |75} -, [-0.8125 j
> —7 T
.8 T _ : i
' 3. After L4 steps, the root lies in the inmterval (%3?5, L.5). -
’ bt i Sign, .of Sign of} .- e Sign of ’
. Step ‘xl f(.xl) , %5 f(x2) ‘ xM. f(ScM)‘ ,
. )
3 + 5 - 4 3 ' )
; 1 4 + 5° - bs ]
2 b + 4.5 Yoo hes +
3 h.25 + |- ks - | k315 |, o+
. 4 5375 | .+ 4.5 - ] B375 )
. 4, ~ ’
5{4"’% ! s -
- A }:.g};
.t " . ' B (-] ” P
! "-
. : L4

vt
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, 7
Answers to Exercises 7-1 Set C -J’_ ' ‘ )
For- € = 0.1 the rootiis 1.3k. 3. :
: 3 . flx}) = x"~-x-1=0
) Sign of Sign of Sign &L :
| Step x; ’ f(xl) x4 f(xg). X, .f(xm) le-xg‘
:Q ' - 2 + 1 - 2 :
1 1 R + |15 + I
b 1 ' - s + 1.5 - 0.5 ‘
3 ¢ L.25 - s +  [1.375 + 0.25
4 1.25 = - |7 + 13125 - 0.125
5 1.3125 - 1.375 +  11.38375) + | 0.0625 |
. - .
For ¢ = 0.15,  the root is +0.606. ) ' B
' ‘ ' £(x) 2x + fnx = 0
Sign of Sign of Sign of .
Step x Sy f(xl) X, f(xg) . X f(xm) IJ\cl-x2
0.1 z 1 + |0.55 - 0.9
1 0.55 - + Jormse |, + 0.45
\ J.0.55 - 0.5 + lo.6625 + G.225 |. -
3 | 055 - - lo.6625]- + Jo.60625]  + 0.1125
) M > ISR S A
For € = 0.4, the root is 02875. ’ ,,-' ° .
'\' S el ££x=~5-;c-f')sinx'=‘(‘)‘
, 7} Sign off Sign of | . Sign of \ ‘
'Sterz ~] f(x’l) X, I f(xe) X £x)) le-x2
o - A -2 - \ 1 ' . 2 -
e + 1. - 1os + 1. |,
i~ L2 |05 oy - Jors] L+ 0.5
13 0.75 + 1 - 0.875 + 0.25 . .

O

ERIC

7/

L

The root is 2.

-

t

»

¢ ¢

-

i

-

“Method inapplicable" would be printed.

*

-

LN

[

v
Y 5AY

f(x)=x3-,§x-'2=0

¥ '

£(x) = 0 -,.2x2'“5 13x - 10 = 0
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Answers to Exerc:Lses 2% Set D - Cao- . .,
Ll 3% 3 L 2N ‘
N Let - F( x) = sin x - %x T,
G(x) -- tan x - 10x +
. ’ ~ - ? T o'
o S .
) it . o
~ k)
] A , . e .
N T w , 1 " ’ ‘
N EXECYTE h B
. L ZERO(F Boxh 0,5, -0001,4) ., , . '
. i‘~‘ - )
< - . ' SN -
A . 1 N -
¢ 1 TN N .
i * LF \\ . . N
N "Method is Y
v inapplicab]:e 1 .
. . | for [ F(X), \'
- . ) or G(X)"{ |
. ¢ [ - !
| I - . 'l . ! ‘ ’
. ¢ * : ] T !
@ 1 g’
¢ | . | '.? >
. P A I
\ . !
. ’ > ! . — ’
. o /l 4‘};‘\\ .,x,("\ .
i EXECUTE / o o
D ZERO(G,B0xk, 0,3 > . OORL, B) ,/ <,
. T, o~ . T"\r*‘ U4 “'~ A ‘“fv" ) ,’ - :: LN T .
& Yo b . LS
' RRREE T
j , o . 3 :l\,’* i ) ’ -,
oL, 7 {"ROOT OF F(X)| . ¥ . ‘ ,
LT ’ IS", A, . L
. . . "ROOT OF G(X)| - . . ‘
c 1", : e
- : & » ) } '
T ! ® “ x Y
4 0 .
- . R oo, .
v o, - . I
2 ™ Comment: BOx It should never be executed--but "Just in case", wé make
", provision for printing & message. In computer work clericel errors liice key
}pch errors, or a "’oug in the zero procedure, could caus? the canputer to
fake the alternate exit. If i‘tﬁhappens, we want rbogrlnt a message so we know
¢ it's happened’. We take the same approach in giving similar print boxes in the .
, sblutions toa the other exeréises ih this set.' T '
< " l. ' .
P ‘, > ’ ‘ f
::“ \. A , { R ( : 2101 T ’ . s ; [N
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.
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: ] hid . .~ éﬁ
- ,
¢ 2 —
) [~
~ . 1
n.XECUTE. .t
. _ ZERO(H, BOX6, 0 ,1,.0001, R-) -
+ .t T
» - ]
1 ’“_‘“
: :
. X A t 6
1 s "Method is
N ~ - indpplicable"
i v
(..
-

; » R
* 1, .CCOOL,R)
r ) T 3 )
. .
’ ¢
» 3 =
¢ . : +
L0 211
ERIC .
. “ 1

. Lo
T7 N
s - ’ ] , Con
~ —— ; -
a_. =
(((;?+1) x - 1)x -1)x -1- |” S
\a N ¢ Ne
¥ . v g =
(e )
; [
f' L] . . ”’
" . G(X) - e ot
N . »
T Ty
=~ N
Y +1)x-1)x -1)% -1 . ods

1
v
)
13 .
Lt
I\
.
N
o ———— {
e
Y,
“ -+
| -
A ~




X . ¢ v T - ' .
L I ,,, . ! LY
R : : oS
-7 . - _
~ Lk, 'Equation,for the orbit is x. + y° = 1. N -
- ’
‘ ~
7o - 7 Note that in the first ‘quadrant, y = Y1 - x2 . ‘e
i 1 d '\
: o L 1 \ .
(a) , Intersections with the hyperbola Xy =3 0<x< 3. are *
- ¥ ' ¥ . - =2 .
. obtained by solving: :
- . : /__2 " < | Y
5 v. l -x"= 'E}'{‘ N ¢
"Bet fx) = x - -xg-%::O
b ) _ - A N
— ) a) " interval 0 < x < %
. . b) interval % <x<1 v
. (b) Intersection with the’ powerecurves
?
- n ;
N ‘o y=x .n=1,2,3,4,5
i *in the first quadrant %
i 4 aue -
+ . expressed as .
. ) . . " o '
‘
- T o=
o5, . - (
’ ~ 2 -t 2
R ¢ Let Cl(x) = -/l - X - x (solution in this case®™is x = —23‘ .)
) - Ga(x) = V1 - 2 x?""T:' U
. . v ~ ,
Ty ‘ay T TOONT R s vy ag e .
\ . 4 . . ’ ' * .

I 65(x) = A - 2 - | ' '

1t

i € ~ [
. * . ) \ ‘
\ f“‘ . ) A v
v - IS
F ] ' . . PR
i 1' “ !
[N % 5
’ X - s .
o 7 . - ,"Q -
> '
\.1 . " ,23’2 “
ERIC - .3 . s 2:5 .
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?g}k

[E

" l
/~“ E)CECUTE It

' ) te—
. i’ T T

1The require.dwfiow charts: . '

F(X) G1(X) c2(x)

]

.
Y
~
i
+ .
<
.
+
?

. 1

EXECUTE .
ZERO(F, BOX8 o, , +000L,F1)

© | N
. i 25
EXECUTE V

ZERO(F BOX8,§4 5 0001, F2)
. e e — -

1 3

1 EXECUTE W

i
ZERO(G2, Box8,”§ 1, .000L,RG2)

I L.___’__’_

ZERO(G3, Box8 RG2,1, .000L, RG3)

ZERO(GLL BOX8,R63,1, .OOOL,RGI&)

’ 5

EXECUTE -
ZERO(G5,B0X8,RGY4, 1, .0001,RG5)

Loe ¥ 1. ‘'t——————s
F1,F2,RG2,RG3,
RG4,RG5

’ .

H
tor
!
i
Al

.

Comment: We do not bother calling on the zel:o procedure for computing ‘bhe -
_root of @X(x) since the solution is ob}riously ~/-/2 Notice that, we can ¥ <
the root of Gl(x) ?fthe lower limit Yor the beginning bisect interval in ,
computing the root of G2(x}. In general, the root of Gi(x) becomés the lower.
limit of the interval searéh for the root of G(i+l)(x). - o

-
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E) . P - ~ '7
) 4 0‘ . R 4 . A . . '
™ . . 4{' ) ’ - 4
¢ . . ) R r
4 &3 ' 4
g S %=5x - 6x =4 = 0 = YPRIME(X), ‘
. - ) C o, . v
R . Inspection shows a root of o
s . YPRIME(X) lies-in the SR
-~ '
interval . (0,2). .. .
. s S 4 . . »
: . EXEQUTE :-.; B . .
- ZERO(YPRINE, BOX2,0,2,a88) | .07 )
’ e 7 *
,. 2 ' Lo . ' -
1 . ‘.
Z<F(ANS) ‘ I A) .
\"MP;THOD Is ‘«' RETURN
‘ +|" - "INAPPLICABLE" A .,
‘:;: ~ N
S ¥ . v -
. . & -
.2 P )
* - ’ s
o ’ o i ( N N
‘/’ - ¢ . Y " }""‘:,B
- ; P ¢ Pl °
) ‘.
' . -
I ’ . " K v
' + ) . ~ . .
N
F3 * ~ -
Co .
) ) i
.‘l Py
6. w =15 feet . " e .
F :“
' . '
. \ 3‘ ) ,¢ <" .
e g \: "/. 4 ,* .’ ‘
. e SR,
. A ) Lo
[e " ¢ @
g . +
3 e F \
! L 2 t 3 [} _‘wmj{ .‘ -~ “l
* "\3‘ ¢
[ F""g«. ..
R “ ' , /
. . . '
! c° ) a N .
- ’(Q
< A “
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T7-2 Area Under ‘i‘ve An Example: y = 1/x between x = 1 and x =2

This section constitutes the student's introduction to the subject of
integration, although we h}ge deliberately avoided the use of that word. Such
a projection info the future would best (we feel) be casually passed off by

* the te:?e T . : ‘
. A 2 s

. ‘I'hete are compelling reasons for believing that integratipg.is best intro-
duced v’% computation. In most textbook approaches to integration very little
time’ss devoted to computing integrals from the definition since most examples |
are too difficult for hand computation. Instead, the texts head with all
possible dispatch for the Fundamental Theorem of Calculus. The effect on the
student is to leave him thinl:ing of the integral only as the anti-derivative--
an ur.fortunate viewpoint for most applications. With computational techniques
availz%)j:e the student can program, or at least flow chart, a wide variety of

integrals before meeting with the Fundamental  Theorem of Calculus. ‘

Furthermore, the computational method is more closely related to real life
where anti derivatlves can hardly ever. be found. It is a sort of a miracle
that for certain elementary functions the integral can be calculated explicitly'
This miracle is of fundamental importance in mathematics. mt it should not
bar s from approximating i'ntegrals when no miracle ocqurs.

The numerical 1ntegration technique developed in this section is_ the trap-
" ezoidal rule. It 'produces an approximation of the integral regaz:dless ‘of
whether the function is éverywhere positive in the given interval. Of coursej**
the .interpretation of the integral in cases in which, the function is nat’ every-
where positive, would be.very difficult and d.istract’ingz for students at this

stage. L. -

ro : o L
To be\sure, there are methods of approximating the integral which,converge

much more rapldly to the integral than the trapezoid rule. The moskt fa}nous of
these is Simpsonts Rule, obtalned by approximating the' function by parabalas |

rather than line segments. (See almost any Calculus text. ) The. approximation T

is .given by ) . . %\'\x‘ :
. a .

b
.Sa f(x)ax = -(f(a)’ + bf(a + h) + 2f(a + 2h) + hf(a + 3h)

+ 2f(a-+ 4h) +'4f(a + Sh) + .., + 2f(a + (2n-2)h)
. + Uf(a + (2n-1)h) + £(v)) ©o.
4 ‘ »
! wh_e."ce h = 7});% - The algorithm is simply flowcharted but its Justification
18 beyond the scope of this text. vt . A

.
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In the text there "has not been included a discussion of a bound on the
error in using the trapezoid rule.

:
.
.
- \l ’
"O e
] ® 2"{" - . , ;
Ve Eiree 3
B /
3 ©p ; R L. E < N
7 - - « - N ‘I ° ’ -

We will next discuss this subject hete.
7, | M - "
: Letting h = Z;la we see that the bisection method gives the approximate
_value, Ak , of the ar€a over the kth subinterval as )
; ., ; . FIE . o ‘
. f o fle+ (k-1)h) + £(a + Xn)
A ' e kT 2 ) d
. el ] ‘ —
vhile the actual area, Iy, is S ’ i
) ¢ : ~ ¥
a + kh N - H
o S : Ik = Sa + (k-1)n (x)dx ‘ e "
For some ¢ and some 17 in [a 4 (k-l)h, ,8 + kh) N ;
. fla + (k-1)h) + f(a + kh) ‘
) . ~t(3)
and ! :: e e .
’ a +kh . ] .
, : » S £(x)ax = he(n) L
: ‘ . Ja + (k-1)h s
by the mean value theorem for integrals. Thus, . .
1 I * -
T - Al = |f(§) - £(n)|n ,
o, ' £(g) - f ' X
- (E) e (n) h,|§ a . R
e e ! . _7 i s - & »
P ¢ - h
. b » - ) T ~
%5y the law of the mean ' )
-~ ¢ i
. (E,) - f(!!)‘__: t . T,
b'? — l A’-J ‘v‘ \?J ) g - "q 1 i: (T) .,.~ ) » ’ ' ‘ \‘
i P N *. .
for some T between £ and 1. Usini; the fact tnat <t - nr<.h we7have
. ) - y 2 \ ‘ i T
’ % _ asf oL .
A - ) < x
" where Ml = max £'{x). Multiplying by the numbgi; of subiptervals, -b—;;-% p
* a<x<hb ) ’ ~ ——]
N\ o - - 4 . L
wg get an upper bound for the difference in the total areas g
¢ i » e : ¥
. ¢ ¢
: T+ Al <3 (6 - a)n. . , C
) 4 ~ [ 4 £ . *
- . .
!




In the nth itefatior‘z of the bisection process, the length, h, of the sub-.

intervals is TJTH so that the error will be less than
L2 : ‘o !
: w \

; (o - o)

” " 2"

.

If we know a bound, M for the secohd derivative of f 1in the interval

“{a,b], we can get the much better bound for the error ' ) j

[ 3 »
.t . -
’ M. (b - a)h® M (b - a)

v 2( _
12 . 10 - 42

y -
. ~

For Simpson's rule the bound on the error is

My(b - a)n’ M0 -8
180 180 - 16"

\

t - .

For a calculatlon of these bound.s for the error see, for example, R. Courant,

-

Calculus I, Interscience. ¢ . E .

Answers to- Exerciges -2 Set A . - ,

, = erea of trapezoid ACQP plus area of trapezoid CBRQ
»

- x-—[f(l)“+ £(3)] ¥3 ><~-[f<3> T L¢-%) N
i—":(l+_)+";x(_ _)

E(l+ 4

“'__) Il 6+8+3=1

%

™~ .
2. 'TO = area of trapezoid ABRP = %
. ‘I’l area of trapezoidyACQP plus area of trapezoid

area of triang PQR .

17 1
‘E T2k

, =
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» SAnswers to Exercises 1-2 Set B L

A

.

area of trapezoid ADSP plus area of trdpezoid DCQS plus
area of trapezoid CEVQ plus ;irea of trdpezoid EBRV

T2

—

1 1.4 2 1 .
=8[1+-5-]+8[-5-+§]+ [—+—]+,[-+§] . - ]
1. ,8. 4 8 1, "L 210 +336 + 280 + 240 + 105 .
=-8[d.+5+§+-7+§]_-8 - 21Q .
_un ) .
1680 Co
;, o _ll_um_ug umoo.
17 "2 7 2k T 1680~ 1680 - 1680,
19 . » Ny

ro= mvg 01131

’ ‘ 4

b #
K}

1 5/k 3f2 7/b 2 :
A D, c E B
Tl = aréa of trapezoid ACQP plus area of’ trapezoid .CBRQ,,
{
T = area of trapezoid ADSP plus area og trapezoid neQs plus

2 .
area of trapezoid CEVQ plus area of trapezoid EBRV -

’

a - T ="(area ACQP minug area ADSP minus area DCQS) plus
". farea CBRQ minus area CEVQ minus area EBRV)

= area triangle PSQ plus area triangle QYR e
[ 2 N

XS+ 2D+ ltf(l;wf@n+Ex—{f(3)+f(ﬂ)1+ X3le() @A,
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Answers to Exercies 7-2 Set.C . . .
Flow chart to T(b) should be saved; jt will'be r)eferred to in the language
’ text. o ) o ’ . v
) 1." Abscissa values arée 1, 17/16, 9/8,‘19/16, 5/4, 21/16, 11/8, 23/16, 372,
25/16," 13/8, 27/16, /b, 29/16, 15/8, 31/16, 2. -
= '3, The number doubles. J . ; . .
. ,
T T3, 7 The abscii%a ‘values are 1, -2-\, 2, g, 3, %) ’ ‘2‘:05" .
22,
l P . ) .
h 1 / - 3 a
23 : " o
— TO o, nel s «0 A
- 0’7’/ ¥ l ~ S
. " Iz{ _ 6
k «1 o '
» kek+2 lk‘sqg -1 "
‘ .
s - 5
A 2
85+ 6+ 5_3 + -3—12{— ,
. 2 2"
* K
! C (1 o+ ,—1;) " )
2 .
- . ~
Cr(x) =3B e ax 1 . .
P . e -
. k 2' k -,
. ) - =31+ ) +2(l+ =) +1
7 by . . 2 . v 2 . e R .
NCIY- ' ;
=3(l+——,+va-5)+2+——2§2+1 ‘ . ‘
‘ CR 2 R
. 2. - -
6 + §—l-; + '%—5
2" 2 - *
1 2 - ’
! N 6+ nk-: * %‘ 1 -
) 2 25 -
‘ s
¢ . N :
» )’ ) @ - . -
—_ - - )
/ .
' ’
- ,_f:
O 219 . .)4 &>
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- ’
* A » ’ . y
e 2

chart of Figure '{ 16 by asking leading questions.

a‘Solu't::.on
A

(a) T, ‘l%%_h ‘

ml\.n
/
.

(v) Enter ice. Exit once to box 5, once to box 6.
. (e) -2, 2 X
+ (ad) -2n‘ 1 ﬁ'{ You enter for k=1, 3, 5, 7, and 9.

(e} k =,~ \G\en the test fails.® At that tlme you, just calculated

and added.-it to S. Ml . -

e J:‘

=f(l+%)+f(l+%)+f(1 +’%)+f(1 +%) ”,‘;

(9>+(>+()+(> i

- éa(& + 121 +'169 + 225) .

149 .

(f) x < lO < 1021+

= 102 You enter = 512 times and go on.to
=5 3. 2 5 g m

- box 3. ’I’he 513th time ‘you go on to box 6. So you enter 513 times,

2 P b . .
} 3
. i ! ‘ !
L -~ - S
6. —-[f(l\) +2R(1L +2) + 20(1 + 5) 4 ...+ 20(1 + =Z=) + £(2)]
b1
e, , ¥ ot
k<p,F—hA<—%
kek+ 1 : ,
. :—» v:z -
1{ :,\’- %‘i’ "%ﬂ:ﬂ 7 . ’
. + g: M

§.‘}j—"s + f(l+3);

73

-
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TR s
1 . . ’ - P
o= a - R P ~ ——
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5. The purpos¢ of this problem is to hélp the student to understand the flow
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R

A

I4
7. (0) Tbg;}-g-(’S)l‘f(i), (O ML) + £(9)] = A + ) = 5 = hubbb-

NIV

cecsnhe) - Temg(WIE(1) + 20(5) +, £(9)] = 2le(1) + 2£(5) ¥ 2(9)] |
/ L]
- 2,1y 136 cooe /
_2g1+5.+ ?) “I5 - 3.022/ .. ‘. ’ K
(@) T, = 22)£) + 20(3) + 20(5) +lae(7) + £(9)] ) .
- 2,2,2 .8 _ 176 _ o -
-l+3+5+7+ﬁ§_35—2.1&63 N i |
(e) T, = 3(1)[£(1) +726(2) + 2£(3) + 26(k) + 26(5) + 20(6) + 2£(T) +
o, . . . + 20(8) + £(9)
[ Ap— — — g — g i '
: —2(l¢+l+3+2+5+3+7:+-21+‘9). o
1 8 ,/‘
(2) 1, =31, + 8(5)] -
cl ;
T, = E[Tl + LE(3) + Lo (7)) B
. T, = S0t + 20(2) + 20(k) + 2£(6) +%2£(8))
Lo o3 3 7 9 11 13 5 17
(&) Ty = F[T, ¢ £(5)+ £(5) +£(3) + £(2) + £(F) + £(55) + £(F) + £(F)]
8 2 8
1 k
Tn:2n-l+§ _\f(lf—ﬁ)
k odd *
’ n
L 1\ i .k
= + {1 + ) .
o ) 2"n-1 2n-,3 ko2 n-3 .
- ) (h) Poe k odd "o . ’ 3.
cen T M) ¢ 2(9)] o n L s < 0 |y et S i
G T ] S‘ - P
* S g ' } ’
k (—'I ' . . . : ' ‘ [
n F ) — _]_- L TR ,
Kek+2 k<2, - | Tn_g[Tn-l+2n-H>°s] g,
. &
' k
+ £(L +.
S &8 ( + ——pﬂ
' ’ - :
221 '
- s e ; t2 05 D - P T
» el e 2

L

Ji

£
g

e/
Kkt




o

i i . - o~ LA Ve
L l )
%(2)[1‘(2) + T)] = [8(2) + £(8)] = (4 + 16) = 20 )
HLe(2) + 20(3) + £(8)] = 304 + 18+ 16) = 19
Ly oiny ' RN
3@)e(2) + 22(2) ¢, 22(3) + 20() + 2(0)], ¥ o
by v :
K(h+%5-+l8+£22¢16)=:{§- o : , .
Tl - L "y ‘
5lTy + 2(3))
3
1 2 I
5T, + £(5) + £(3)] -
1 1.9y, 111y 113, 115 )
2[T2 + gf(y‘;) + §f(T) + Ef(-h_) + §f( ,,)]
1 2 &
2k '
2n-l+2_n-k; f(l+-2-ﬁ) . )
’ k odad he
4 n
1 1 f; Kk o\ Y - ’
+ ' £(1 +
2'n-1 " ol & 2 1)
k odd Y
‘\
Y M - : '
LS ’ :
A '0 . ‘Nx L | ; N & S
. ° ¢ \ .
- _ .
’ l} \/
* 0’ N
222 )
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T7-3 The Area Under a Curve: The General Case’ .

- 4

'Answers to Exercises, 7-3 : )

~ k) - . -
'The mQst difficult problems are 5(a) and 5(b). Thé flow chz\n# for'
ProbYem 1 wi be called for in the language text. < e e
1. a, b, nl—pﬁ(- (b- a)/nj ) S ot
: g ot + f(a) . .

‘ } . 2
- kel '
) o k< nf A8 xn]

‘ . Ae«SXxh
' Kek+1 |B<P q )

T
S 5 + £(a+kn)]

. : 5 .

> ' -
: kel ’
‘ k< 2P 1
'k ek + 2 -
¥ s
P n % .
A g es-eie(a+ Kxn) | -
. \ 2 o
I 1 4 ’ ‘}Q
) ﬁ , \ ‘5':« .
‘ ) .,

3. We could add a tally to count the number of times the intefval is cut in
half and stop the calculation when this loop has been enj;ered a certain
number of times. Specifically, in box 3'we also 1nclude the statement'
rad
Ne1. We add to box 11 the statement: N« N + 1. Between boxes 10 and

o ¢ -
11 we add a new decision box N < N MAX., 'The true branch will lead to
i ' ‘bgi‘ 11 and the false to a new output box indicating an error stop. ;
2 ” 3

N \)‘ N o . ) - ) o ) ) o . —.
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.g | o Lo - R { o {
TF . ‘ o >,v_
X ,‘ b, | Flow chartj.,compa{riso‘n. B : ’1 * r, )
j. {(a)) m ["h .| K f(a:l—Kh) .‘s ‘ T, T,
> L f - ¥ 6
R - P A 9.0 9.0 ~ | 19.000 10.0
y | 31| sas . 6.25 o h
3 12.25 18.50. | 18.750 ,o.‘&? '
I P s.o62 | s.oe | 4 b
) ¢ 3 J.562 | 12.62hk 1
5 | -10.563 23.187 .
) N ) T 14.063 37.250 | 1'§3<.687 0.063
() m | b K “f(a: + @) R S ( r:rl T, - T,
: - - —= 7
. 2 |20 9.375 ©.9.375 50.06 21.94,
e e L % 1 2.297 2.297 , |+ B
3 / I‘ \ i :
. +o3 23.766 . 26.063 - 44,58 5.48
o 8 % 1 0.709 . 0.709 ;
3 5.080 5.8 |, | ‘
v | 5] 15.408 o1.287 |
RS 7 “3h . hoh 55.781 43.21 1.37 7
3 = -
1% {5z ? 0.264 Q.264 |
3 1373 | 1.637
[ 5 3.519 . 5,.156 o B
o S N K Y B Y1 wars | L |- ]
| , 9 12.188 24.363 '
’ T 19.34k 432707 ¥
13 |- 28.802 - | 72.509
° : 15 ho.886 113.389 42.86 0.34
.; . . , »
4 ¥
. 222;. -
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»RESULT)

I

IS

AREA(0,2,10”

LR

This combinatioff of programs eyBluates the axea of that part of the
2

l

circle x + y2 =tk 1lying in%he first quadrant &nd, hence, yilelds T ’
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T . - i . 4 . -
* B N . <
T7 B M o R . ® A
. * ./ ) ‘\
- <! ¢ ’
7. - -
. -
»
L1 ‘
2 B3 1.
! v )
2 Y3 4
L b d '
. o i i+3 ‘ 11y 13 .
. it is apparent that ¢n2 < 5 2 13: and 4nk > 5t3*7=15 Thus,
h ~ .. . ‘ ?/l . . - . .
 F(2) = 2 - 1<-3% ‘and F(u)=zﬁh-1$l.
) SR ’ . 12
'Hence, the root of F lie§ between 2-and L. Thus, dur main floy
chart calljng on the procedure zero will be: . o
" - _— | - o
. . - ’ .
. ". r'y i -
i
( s |
r > ?
. "‘/ ‘.
) : v 2 j
. EXECUTE * . " .
’ ZERO(F,B0X3,2, 4,eps ;R) ©
. ‘ - ce A ) J -
RS - T S : 0 .
) ;'—‘\‘. . > H
. K 4 { 3 A& -
J "The value Of "Some mysterious : .
. .t e is", R ~ |- error® ) k
v ’ 7
. E
, * - [ ‘m
‘ ' .
e ]
“ ‘- #
% .
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'E

2

,

.

F(X)
_,

OLDAREA 4 (1 + 1/X)/2

ugf

me1l

h(—x;-l

me2Xmnm
h « h/2

5«0

-

¢

.

7

apg particularized f£(x)

" . at all occurrences to be 1/x. ,0fherwise, Yoxes 1 through 8 of Figure 7-20

i 4

s s+ 1/(1+ kxh)

) @

NUAREA « 3 X OLDAREA + h X s

r—

‘

) \ <

(-|muAREA - oLDAREA] < 10-6);_m_.

. have been unchanged. This part of the flow Chart hqs the purpose of computjing
. fnx. Fipally, in YoX 9 we complete omx - 1.

F

8

- :
——mne ’
,
- .
L]
»
:
- ~ »
4 s 4
L
- L3 (\
=
ot
*
; .
'
.
>
P
-
- -
-
.
O

RIC- -

OLDARTA_« NUAREA

e

7 . 9
Y « AREA - 1
” ’
e e T e e
5 '\’

[

The flow chart for .F 1is given next. DNote that throughout the flow chart
we have replaced a by 1, b by x, E by 10'6
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T7-4 Simultaneous Iinear Equations: Developing a Sz;tematit Method of Solution

In Sectlons 7-4% and ?—5 Me, study one of the basic problems of linear n
algebra, that of solv1ng systems of llnear,equatlons Unfortunately, it seems
impossible to. g;xe the student at this level an app?gg;atlon of the wide var-
iety of problems ofzpure and applied mathematics which réﬁuce in the final

analysis to the solutlontof systems of linear equatlons or to the tlosely rela- N

ted problem of matrix- 1nvers1on

— et e ’

~

The Gauss algoﬁiﬁhm and its variants constitute the most efficient methods
‘e

of calculatlng the solution or at least a first approxxmation of the solutlon

The familiar Cramerts Rule uhereln the values of the xj‘s are expressed as

ratios of determinants is much less efflclent for computation and is primarily
A :

of\theoretical interest.

The determinant of the matrix of the coefficients (aij) can be output as
a simple by-product of the improved Gaussian akgorithm (Problem 2 of Exercises
7-5, Set C). This determinant is the preduct of all the pivot elements

v
\
each taken after the row interchange made in the pivoting part of the algorithm.‘
This determinant can be computed by the.addition of two flow chart boxes to the

,,_c

algorithm. These changes are indicated in the Teacher!s éommentaryAih connec-
tion with thet problem. :

THhe above-mentioned problem and Problem 3 of the same set. (on "equilibra-‘
tion ) wilkl give the student a stiff workouu Experience indicatou that by
this’ tlme many students are thirsting for tough problems. These problems
should make an excellent subject of classroom discussion once the student has

had a crack at them. :

N e

Attempts are still being miMe to reduce the 1naccuracies due to round-off
ef&or: Attempts in this direction are represented by partial pmvotlng and
eqdilibration Another method for reducing round-off error is called ”compléte
pivoting". This method mvolves ‘ghe permuting of varialles at various ‘.;tages ¥
of the precess. Hence we have the additional complicatlon of keeplng track.of
these permutatlons so as to make the inverse permutatlon at the end of the cal-
<culation For this reason, and because lts effectiveness is not clear, we.
omitted dlseussion of this method.

g El{lc

JAruitoxt Provided
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Answer to Exercise 7-4 Set B T
ST
} 3
~a - o‘

Assume all coefficients are different from zero.

%Y

© .

/ Divide all coefficients of R From second equation subtract
. first equation by all all X new first equation
— - - - ’ ,
@——, Solve second equation for X, P "Back substitute" to get X -)
or, more formally: - -
<, ‘ * h
- . \‘ *

/ M < 8y, /28y, :

. %119 8100 By _,@ 't'

8517 8505 By

\ F .

oy %21 B21

< By/hyy

’Zé“ By~ A XX,

@—)Aee 85 8y X Ay
82 «b, - a., XB

,-‘ xl,X2 —)‘

2 2l 1
- E
~ .
. . ] 103
. The next sew@;on of the text shows how to solve equations more efficiently. \
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~
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Answers to Exercises 7-5 Set‘A .
R i - . T -

1. Upi)ér bounds shown as 3 muerl be ch‘anged to n. Thes% changes occur in

boxes 0, 1, 2, 5, 6 and—13. Also, the initial values for control indexes
in bcxes 9 and 11 should be changed from 3 to n. '

¢ N

2. GAUSS(n,[{aij,J=l(l)n}i=l(1)nf, B .

e

by, 1= 1(1)n}
(f)] 3 = 1Wn)

i«

. i o« i+l -

kel
ok kel | BSD
! o
. J « k+l
J<n
K ; J « g+l -
» By < s/ : ’
' _ 5 o
i e ktl N
' g i<npE : —
»i « i+l = E gy
‘——jT6 L .
AN J - k‘f“ * P . 8 /
= b, «b, «a. b
mlj g+l | 95D 211 Tikk
T .
. T , '
‘ SIS et ¥ . :
’ * -
A ) "o - ) ) ‘
) ’ ! ; ’) )
. ) | ‘ |
' ! / 2 J )/41' Y ;3. du. 3a P D
. Ty / PN A
- I ’
P .
| ) . ) .
Gaussiap algorithm-for n equations éin n unknownsy
" (without pivoting) -
s . . :» ,
. o
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Answers o Exercises 15 Set B

2.  The sequence of arrays.is’

W|& wllxl

}—J
=

i MW

263

}—J
5

I R | o1
S I S | 3503
2 b 1. 3| 2, L 1 3 ® 3 3
3.5 3 7 3 -5 3 7T -9 2
v o1 T7) L1 ol
I ST < N T R
; 1 23 1
JoE ¢ 2| @l 2| @[] s
: 17 263 17
® -9 21| O F7F| OOF
. - 3
. 6 — ,
For the b%‘ck' solutions, x3 = —2]?73’ and- x2 emd“x:L successively receive
*  _ the’values indicated fad Jre
.23 23 _1.263_ 3
- R e e L
L} . ; -
L L L1l 3% 3 b m
1 3 3 3. 17 17 T 3 17
. ','/ ‘
" . we " 4 y
5 K |
: ’
. )f‘;,.iugJ,J _J,».,-/l,) - L L .‘L }
. e

-
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T 4’ f_
77 _ o . ,
. 3 -2 7 -1 2 . X :
L IR P T T
1 25 2 1 , . . ¢
n 3. 1+ -8 -2 . \
-0.667  2.33 -0.333  0.667] - K
2 3 -4 1. .7 ' S
1z 5 2 11 '
, L 403 7 -8 -
; -0.667 " 2.33 -0.333  0.667] s,
Lo yet@ b33 Fe-8.67  1.67 567 |
» @‘\ vr."ﬁ% ‘ .2.67 2"33 lq.3 S
| ®  5Fn -233 <667 k.67 B f
_ il S - L
o . -0.667  2.33  -0.333  0.667 ‘
ke e e "ix@ m -2.00  0.385  1.31 ot
i 267 267 233 10.3 .
-~ @ 5.67 -2.33 -6.67  -L.67° _ "
"~ — -0.667  2.33 -0.333  0.667] D o
® [4.33] -2 0.385  1.31 <
J ® 8.00 1.302  6.802| . .
© w00 8,853 12,059
L 4
T L0667 2.33 -0.333  0.667 .
, ® -2 0.385 '1.31
T % 0’.\;63 0.856
9.00 -8.85 .-12.1
© G 5 e |
-0.667, .2.33 «0.333  0.667], ' . 4
® € 0.385  1.31 | s ‘
) " NO * 0.63 Q.85 R \,{ ' . <
NN G.001003  -19.8 | e '
-0.667 2.33  -0.333  0.667 . TR
' 16 331 -2 0.385 131 |« | e
< 1 ! N i . f N
S0 GEDE das o
SRR [0 2 9.00) [10.3] 1.917 .
. Y A : :
' . x, - 0.667x) %, 2. 3%y - 0. 333xh ioesr . -
. Eﬁ . N %, - 2x3 + 0. 385:(1;*-‘ 1.31
_— . S Lt xy +0:6Bx s 0.8%6.
i 3_,,” . —
- i R (’/- ] xh =:.1.92 . -
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GAUSS(n,[{z;iJ, J=1(1)}i=1(1)n},
oy, 1= l(l)n},(, 3"= 1(1)n}, < -
E) o™

815 T %y 7N

.

. s N { 8.
10 ? “ M : _ ' .
. 1 . .& Py <Py - Al |,
q F4 ~ . . ,
, Gaussian aZ'Lgorithm for n equations in
’ P ' n unknowss with)partial pivoting 7
- [ :. ’ ‘j . i 'l’ ! ) 5 { ) ) . .
. v 3 > %
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In order to have this flow chart also compute the determinant of the
‘matrix, (aiJ.),

2dd two £lo¥ chart boxes as follows. Add

. : S —
o ‘ . » '. N
4
) H
4 imme%iately before box 1. édd: T g -
} 22 -

" DET «DET X a

. M . ‘ s
-
g

immediately before box 2

t
>

The fmal value of DET will be the determinant
of the (a,.)..

ij A receptacle must also be supplled in the hopper for returning.
this-value to thd main flow chart. : '

- ‘ W .
A . P
-~ < .
- ; - ’
'
.
N B N . P
e » <
A4 >
c
. . 4 ’
. ’0 . \ -
D . .
A .
. . - .
-
. -
/ ’ , N -
Y . ] N
ot o
' . . -
. . Py
i \ .
/4
. ¥ : |
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c e . ’ ;
- - N .
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s S ‘
B - .
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B < 4 \ . s
v A R ‘
‘ 4 . .
v 4 | - . s
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. . f ,
’ ! S .
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ra 1
- 11 1 3 o
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Heand

ERIC

¢

5

-

L

)

~\ .
. . 1
n, [’[ai'i,i = 1(1)n} J ‘=' 1(1)n
(6, 1 =1(1)n) - ." ‘ ’
- 2 '
RXECUTE - CoTT

EQUILIBRATE(n, { { , J=1(1)n}

i=1(1)n}, f, i =1(1)n}, .
Box 3) ’

———

"Method is
inapplicable" :
- EXECUTE

" Gapss(n, ((a; 4, 4 ="1{1)n}s=1(1)n},

(o, 1 = 1), (] 1 -

J = 1(1)n}, Box 3) -
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Semple Test Questions N
7.  (Chapter 5)

a. Prepare a reference proced.ure flow chart, CONDENSE which receives a
vector Al, A2, ey A and returns in consecutive positions the
non-zero elements of the original vector and also returns %8s n, the

! dimension of the new vector. (Don’t worry about the values of Ai
with 1 greater thap the new n. ) N
b. Prepare a flow chart to read in a vector X, use CONDENSE, and print **
. out the copdensed vector and its dimension. .- . ”
% Solution: «
a. CONDENSE =~ ;
N (El]) ‘[ » 1=1(1)n}) ,
. " ‘
: .
o~ .
5, &
* 6 ‘
ol s Nen -k
H A '\ ?
S
b.
D
l 4 -
“ < . . ' '
. » l R ' ’ ’
CONDENSE({), (A;,1=2{1)n) . _ / -
~ ‘m o -
n) (Ai) i=l(l)n} Q e
. -y . . . P
‘ - - .
\)‘ ” 2 . 2h24‘[£ -

KA




8. (Chapter 5)

.
.

. ' Write a procedure flow chart MINIMAX for inputtﬁ_ing an’ m By n matrix
and searching it for an elément which is at the same” time as large as any
elem?nt fn its row and as small as any element in its column. Return the

' iocation and value of this element. Provide a special exit for the case that

there is no sucH element. - ’ .

¢

Y

Solution: .

¢

MINIMAX(E? n,
{{Aij, J=1()n}i=1(1)m) "«

m@; @: ': E)

[ Note to teacher: -If the student were allowed to assume that no two 'ie‘iements in
any row n24 the same value, then the loop in Boxes 8 - 10 could be eliminated

and the F exit from Box 7 hoo}_zed into the incrementation section of Box 1.

The algorithm would thus be considerably simplified.] _ -

©

. ) 2ho -
EK ‘ . . . ,9‘ 2‘f:)‘ E

Aruitoxt provided by Eic:
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Take Home Exam Question (Chapter 7)

It is often important in mathematics to know the rate o‘f chanée of a
function at various'points. The rate of change of a function on an interval
_ is defined as the difference of the functional values at the emdpoints of the

"intervel aivided *éy' the length of the intervay. For example:
.. . ' ’ .
f(x +h) - £(x 1) -

: ' %* 2h:. -~ ~

. ~

. _AS “the rate of change of .f over the % terval [x - h, x'+'h] If h is sos
small that reduction of the size ’of h \makesf R0 perceptlble change in the
computed rate, we will take the compute?"?a‘te ;:che rate of change of the

function at x. . . e

L

‘ Your ’job is to prepare & flow chart computing the rate of change of a
reference function, f, at =n - l points, which d.'LVld.e an input mterval

[a bl into n equal subintervals. Successively halve the values of h,
1n1t1allzlng h m.th the length of the subintervals. Output the vz%l‘ug (of the
rate when it r'e ns stationary (differences less than an input value of: € ). )

for three consgfutive trials. . o . L

’

. ~ - s
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¢~ - * -
. \¢ " . X,
k2 . 5. e
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s
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3
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- N A
K .
kY Y ¢ - ~
. e ~ N\
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P
- T e ”
A L4
a— £d
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* v
.
v ~
»
e -
T 7
- 3
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9. (Chapter 6)' Ao 4Amportant function in later math coursés is Gefined by
", K x3 5
+ + -~ + L )
o . wEXP (X) = 1 S - e T T .
v/ ¢
E . < ' C
’ Construct a flow cha"r"c for inputting X and € and computing approxi-
ma{:lons to EXP(X) “‘I‘ermmate the process and print out the result when
© two consecutive appmxmatlons diffei-by less tHan e,
Solution: & . ’
1
", . - 3
. 2 -
v - N "o
: : T 1 :
o | ) . B el | -
~ “1 ) 3 - )
. Te«TxXX/K- .
’ S eSS+ T .
<
. }
# . s
- N N »aph
’ ““ ) , " N ‘ . 3
- . ., el ]
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¥ L.
10. (Chapter 7) Hand trace through the flow chart-efFigure, 7-20 with
the function f{x) = 3x +5 and with the input values of a, b, € )

N respectively 1, 4 and® .0l. List in the table below the values

successivély assigned the ind;cacted variables. Encircle sthe output
', value of NUAREA,

o /
. .

. ‘e - .
) om h s OLDAREA NUAREA “
) = 7 N
" -
/ N * L . i . . ~
Answer the following questions concerning this trace. . - "
al' How many times-was thg Yest in Box 7 made?’ .
v 7 b) How many times was Box 8 executed? .
. .
e) What ‘property of the partlcular function caysed he procegs to .
. temminate WHen it did. Lo . - *
. < “‘/ ‘. ) x \
Solubion: ; o h
L i -
s v & a * [y
., om . h - s. | OLDAREA | .NUAR —/ .
A S E o " | (e
X Jg 2 3/2 &5/2 M ' Ly
> ‘:‘ ] ~ h ~ "' 1) N ] ‘v $ -
. N , 3 - [ T ! e T ?
. ! é ‘ ) 4‘ - <
N ] L § N =
. : ] .
2 ‘. x
N ¥ : N
- ’ 8:) Once, N ) . ,. . ) > * “ .
", 'b) None o . . o .
::) Since %he graph of the function {s a straight«line the area to be
T ) approx1mated is a trapezo:.d and all trapezoidal approximatlonfw \
. ? will be exact. Thus the first two -approximatlons have a di}ference N
. . " %4 O which is less than .OL.
hd \ \
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hd b - . 7 - -
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‘ . N Va%' ~ Chapter T8 ¢ .
- COMPILATION AND— ME CTHER NON-NUMERIC PROBLEMS . -
b 8 - Y . - .
8-1 Introduction X C - \ )
: i This chapter is exp'ected o be fairly difficult., Not only 4s the

- i P

material somewhat different from most of the material in the course but also
the chapter deals, with problems of" somevhat” greater;i complexity than tHose
found earlier in the text. Many classes may not be able to,.gover this .~
terial in detail, -If desirable due to lack of time, Section 8-k may be

» skipped but, if 1t 1s skipped, the results of theprocesses presented there

‘. should be summarized for the students. These results are;

. h 1,/ Progran statements are-;read \ﬁrom \ca’rds. Individual
statements are,separated from each other and state-
ment’s wha.ch may run from 0ne card to the next are

._properly ,joined together . ’

.

< 2, ALl blank spaces are eliminated from each statement. °
N\ 3.. Each statement is ident‘ified as to tS'pe, and ,

R Internal symbols are substituteﬁ for 411 symbols

. _ . and symbol strings used by the prograw tq identify ’ :-
b - AR S
o Variables y, SO that eevery> symbol is just one element ' \.'
? . \ -
of the resulting string. . - ’

. S - - . . .

- When these rg_*sults aré understood,_ the ﬁtudent can pr.ocegd to the more

z ] ! A R
~ exciting résults of Sections 8-5 and 8- 6 ) . ‘
I ’ -
.t . : i,
1 . . - - . I3

~ . . »
- . .

8-2 Symbol Nfanipulation \ - e 3

’ ! -, -

. Tn this section, the manipulation of symbols is motivated by the e
possibility of determining authorship’ of literature when the identity, of
. the true author issin Qoubt. You might’ rei’er %o the article by.Frederick "‘ AT
- Mostellar in the Ameriean Stat,i,étician (l963) ~where. the authorship of the X P
g ‘Federalist papers vas determined (mostly by Hamiltop) with & high degree of
i probability. The class shbuld not be led to "think¥ that authorship can
.’ .always (or easily) be determined, A number of other. attempts have l1ed to

e " highly ‘questionable résults.‘ : SR E T .

Lo ' ’ ' * S . o,
o “ _ !“' W \ | 3’50 | .o ’ ! R ‘e
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TeAnsvers to Exercises 8- 8-2- -7
g-"'\ﬁ& N T ' - ‘
f‘w\‘})etermine if the c’haracter *A' occurs at any place after a !B,
. -If so, return a pointer to *A' (set p = the index of TAY). .
&% , '
' To solve this problem, we must search the string twice, once for tB!
i ) and then for 'A!. The first search begins with the birst character
r . and the second at the character just beyond the B!, if ‘the 'B’ is
k\ present. A flow chart solution is: . '
.' N 3 4 .
/ :
Chr s
' . e o S e -
. ¥ . &
. ' : 1.
) EXECUTE Con
' . chekch(n,‘ {sy5 i = 1(1)n}, 1,"B",p)
* - R “
I ! -¢ ~
T U T ek TR
Yy LR B¢ I ki I cet ’ > .
, ’ chekeh(n, \(s,, 1 = 1(1)n), m,"A" .
- T {"A DOES NOT )
¢ M FOLLOW B" [ . .
. . AV ) v :
' . . R i .
! y ) T Figure T8-2 .
: _ = . : o
. : ! A .
: i, St . Ve f
o . SR 1 .248 .
. \‘1 + ! - . ‘1 H ) -
[mc S 20 1 oL ~
ot : SL SRR N 2 ¢ . e

'

-
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2. Determine if the substring ,"IJ}EF— occurs at any place after the substring ‘.
'DR!. If so, return a pointer %o, 'DR?.
el i . **
This problem is similar to Ho. 1, except that now substrings are sought,
so chekst must be used. Al§c, & pointer is to be returned to the first
odman i W § PR, A - .
o substring, rather than the secopd. -.; ’ }; ! . ~
) LR oy S ‘ §
. b -
* -z ({ ) ¢ .
A ] ‘ s o
7 .o -
- ,:0
“ 1
: S | mxgevrm , !
chekst (n, (s, , 1=1(1)n}y1,2,"DR",p) -
: . /
2’ . £
T
(p=0) E . \
F .
. - } 3
3 . Dt . N
m e pr2| - 5 7
. . ! . t . .
& . EXECUTE ) ,
L
- chekst (n,([si,i=l(a.)n].,m,2,"TH",q)
« I . PN . ‘ 6 R
“TH DOES NOT| .~ ) )
a &= 27" rouLow D" : g
R ’ F . - .
T w R . *
e | ' ’
K}
. Py
P < )
t . N
1 4 -
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3., Determine if the characters 'A', 'B!, and 'C' occur in that order, '

X

not necessarily ‘adjacently. If so, return a\‘pointer to B!,

‘ <‘
‘5
NN ’ e
-] ' This pr?bl_eni is similar to No. 1 and No. 2. Now, three searches must
e be made. Since we'must return a pointer to !Bt (if conditions are
i B met), ve n'ejed‘a&new pointer (q) for the search for ICt.
)" . - . " -
| . | @ |
. ) 1 -
y - ? T\ EXECUTE
. chgkch (n, [si’ i:]_(l)n],l,nAn,p) . . -
. ’ . S
e ) e
’ v ﬁ_ 7 . R
= ( p=0 "
- F n 3
- || ExBCUTE - . %W
. chekeh (n, [si’ iﬁl(l‘)n}:P"'l:"B":P)
- <
Y e % . Y ™ - .
. - Y - * Py
pre .‘%; \ ¥
% "
rx/ s ) 5 -
“l.- T, % ‘Z'?;::\ 4 ‘s
: chekeh (n, {s,, i;l(l)n},pgéﬁ*%w",q
. 6 ) N B =
, =o)L 1™,B,C DO NQT >
4° APPEAR IN, .
F THAT ORDER" "
. 8 . v
' - e s,
P . .7 o
B o . . : %' ; i@js p
’ o0 . 2 S e e
STOP -
. . ) . ) o . . . ~’%}
o s ! ! ”":‘ux
L P : i T .
— ., TFigure T84 ° i
. 1 - . .
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A FuliText provided by ERIC

LY
Identify the

most frequently oceurring

f .
character in the string, -

A search for 26 letters is réquftred, with a count of each resulting.

For this purpose, *tye contcheprocedure is used. Let the Qét’of letters

be zl, i=1,

its count; these two values are to be printed by the pro%ram.
- !

«s., 26" Let L be the most common letter and N

. » a
! - ‘
B “
+ P ‘
1 g %
»
* . 6
L, N * STOP
5 ] he /\/ . -
, P “), 3 e
) EXECUTE -« . L. .
. . contch (n,isi,_ i=l(l)n},.li, M
- " . : . )
. N . \ .,
—— 2GD T
M>N ’ N
\__ .
T .
> 5 + - ¥ ";
» i
. Lf—li s .
1 N'(__'M £
A % - f ' vy
’ i 4 !
! Lo ’ -
! i - 3
i o s
§ 3
3 P ; [
- > . igure - ¢
- #ﬁ# ) Figure T8-5 N
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Find out 1f arny letters of the alphabet occﬁ?\exactly three times and

identify them. i

* N . -
The contch procedure’is uséful here also. After it is executed for each

letter, we check the count}' If the count is 3, we print the letter.
(Alternately, it we w1shed to have such letters printed at the end of
the sedrch, we could save them and print them later.) /

4 -
. o ‘

- T .
. 4 . . > ) ' o, .
EXECUTE
e i
< 23 ' -
« , R \ . .
1 ¢ - *
. ’ \)
- ’ >
, 2
N v B
' - ] R
. . . ; N
" t .. . \
" . Figwe 186 :
. '.; ) { § S&? M
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-scharacter after the one to which p points. (Irf Problems 1 - 3 we *

B . . i' Zi
» Vi
B .
' ; . ,
. 8.

/ - ¢ - I.
ir imeediately follows 'Af, vsubstj,.'tﬁte\ 'X* for each such 'B?

.

7’

L

in the string. Report the count of such substitutions.

We can state the problem this way: for each;;u'bgp;iqg 'AB!, replace
the B! by 'X!', and count substi'tutiohs. We calférepeatedly dn

chekst to"‘aiocate dppearances of T'AB®- an{d substitute X! for the

ey

needed multiple searches because characters there could be nbn-adjacent.-

~ . .. i -
Here we seek adjacent !A! and 'B? and so orjhe use of chekst suffices.)

. v
? 1 ) . ¢
L) 1 .
» NeD !
. J o me 1 !
. R .
e o N - ;
EXECUTE
i ¢hekst (n- [Si, i=1(l)n})‘ m, 2, "ABY, P) R ’ .
)
F
T - =3
\
& ¢
- N
1 -3
-~ -
N A <oy .
. \ . -
~ ’v' “
< . : \ -
4
L -
L 4
‘ ’ \ \
4 v . : N -
£ ' 4
‘ LFigure 8-7 +* y ) .
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1
O
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i

v . s .

<" No answers for Exe}‘;::isés._-:’] - 10 inclusive. are l’ncluded in this edition.
%’ '. - ) e ’ b ;’ ’ \ .;
A e 53\ \ '
. ~ . = S. " A

~... . ".\‘:A.‘_: . 4 {)_() . 3 ", .
e L RS E .. .-y Dt .
a e, > > i A | -

- ~




- * or 2 ’ ¢ Y T
.oy - 3 * . Rt t o, ¢ .
¢ '18: + - j'
T ’ . « x‘ . i -
‘ | . T
. ] ! _ ;
. " |
2 h L g ——
EXECUTE -
) move (¥4;n,0,T) :
% ! Y ' 7
- 4
v EXECUTE . -
, . P rgo've(-s-,l,q,o,"f'j’ ‘ ' ‘ -
. : ‘ T g - ' .
. EXECUTE " ) ’
> oo chekeh(n,§,p, "A",ni) ; : ~
. ¢ N ’ L” )
{ .« 8 )
» » 7 m .
' f m =0 )L UIE —‘. : @ ‘
. . * || move(S,p,n,£,T) || . ’
- 9 + ‘ ' -
‘L. . EXECUTE —_
. ,i ;leejcé’(",",n,g,p,m,yg,f). » . ‘
- N ~ -.
| 5 10
N » m < m+l A K
} : - . o
. I ! 1 e A ;
Lot T EXECUTE =~ 5 |- = » ¢ 7+ =% NS t
, ' move (8,m,n, £,T) .-
. ) ) . X -
7 ’ g . . A
. k 3 '
“ In this exercise the length of the string,wlll be changed if arw‘deletion
. takes place. Therefore, we may as well decide to produce 'a new string T of -~
length £. The flow chart then uses procedures chekch, move and dél€te. '
» . ( * ,
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¥ ommmmm,C \ o .,
. ‘ Yo L sl




A - b3 et o H ' i t o=l \
- H X - .i ’ o - 4 ! [N
: 3! i | * » ;
T . ‘ T ' ' : ’ ;
) - : T8
- ) { . - , .
\—/ « | - /' ’ N -~
| ( .
‘ . - , .
k|
3 ! . ]
8. : oy
- . I d
. .
T ‘ - ) l -
match (8, 1, 3, "NOW", m)
- ¥
4 5 ) .
memnm+ 1 ’
- e
, . 3
EXECUTE ' : : .
~ . .
movgy (5, m, ny 0, T) [ . . -
. . M ’
: P oS ) . .
5 . /
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1 ‘ 3 {
‘a - , f v .
j ‘ J ’
i v S
‘ 1
94 : '
) . - ! -
- L
2
3 EXECUTE
move(g,l,n,«.a?%‘)
’ N ¢
3 o
£« 0 °
Q(— 1 .
. — Ly - 9 '
a1 i+l move(S,q,n,£,T)
F s, =k S
‘ i~ ;
’ T . -
/{} . . 6 ~
. y . J e il ..
7. . )
. EXECUTE ,  » .
3 Iﬂove(§JQJj)‘e)T) ° ) i
14 . , -
> , . 8 - B4 '
W . ) ' S
N ~ .~ ce -

O

» .
complicated the .flow chart, L.
- - r
g - ) .
< - - - ©
# ‘fﬁi" e )
° & . -
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R4 Te - - e
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a8 i
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_, An advantage of this ffd{ chart is ’c.ilat the new string is 7 reg’aa:diess
6}; whether or not deletipn has taken place or even if the index p is out’of
bounds. On the gith(‘er hand, since transfer from § to T comes in bunches
after a character to' be deleted hds been ,foufxd, move must be ‘sza,lled twice

(Boxes 7 and 9). This is a case in which.use of a procedure seems to have



8-3 A langusge to be translated

This ‘description is only as detgiTed as will be needed’for the remaining

discussion of this'éhap#e%. It is not a complete definition of a source

language; byt, as far as it gdes, yields a language quite similar to ﬁgﬁy in

actual use. Prohibltion of such items as subscrlpts or signed varlables 1n
assignment statements is not due to any great problem in the1r*@rotess1ng,r
rather their presence would _only further complicate the exp051tlon of an
already complex problem without adding great insight. -

Classroom discussion of the "is there more data?" question shouldqbe
held even though it is not explicitly treated in the text. The difficulty
is that different computers will behave differently if they ;uﬁ out of'input
cards; some will just stop, others will automatically transfer control to,
some predeteymined inétruction. The only uniform way to treat the question
is to require that a card follow the last data.card and that.that card con-
tain somé special coding (e. g., an asterisk 1q Column l) which is testable
by the program and indicates that there is no more data. Obviously, no éata
card can be allowed to have the same coding as the:"end of data" card.

° .

P
i w




8-4 ° Prescan (the steps of & dompiler) . ‘1 , ";

. In the dlscussmn of Figure 8-10, the phra',e "11te;gl characters” is
- '\‘ '.,hsed This simply means eharacters appeahng in a source program which stand

for themselves. We have encountered :fmething asimil% in Qutput st*'ings

earller .8"10 we use the same notatlon ere. Namely tha

- - N ©w - .
. e I L T the character E. 1tse1f - /M

- T e "END"  is the’strlng of chamcters END . v

The t&kt ,‘Points.,out that regardléss of whether or not a colon is found
by the chemh nrocedu:ge 1n Box 3 of Fi gure 8-13 1ncrement1ng q by one in °
'Box lQ ylelds 1ts desired value The student issnot aélfad why th*s is so, &
We can answer this "why" by recalllng the obJect of Box 8 whieh is to find
* the first .position of the string in Whlk.h the- lette!s "E"‘ of the word YEND"
- c‘ould occur, Iﬁthe.statement has a }abel, a colon w1.ll be Yound by Box 8
° & end q will point at that cblon so that™ q«fq '+ 1 _sets the\pointer at the

proper plaee\to’tes’t for "E“{ If the statement does not have a lahel, \ )

'Box 8 sets a to zero ,so that agaln 1ncrementation makes +« point.to the °

. .~ first cheracter of the statement wne're “E" might ocours .
~ \ N » 4
v Sectlons “8-5 and 8-6 will assume’ some( exposure to Example 1 of this/;ectioy:.
\'; N - P .
»

Iﬁ‘ should be discussed for this reason 1f for no other. The _purpose of
the process proposed here is to replace whatever “identifier the programmer
) ';nay .originally have written (whather JTong d|<short) with identifiers of uniform
“structure, e.g. %) lengths, so that each 1denti ier can be thought of as .occu,pying
,just one element of a strlng. In some languages’ the form of the 1nternal
’ identifiers can be used to encode 1nformatlor; about them (e.g., whether they
represen't real or integer numbers). In the language of Chapter°8 all . PPUREE -

P

‘varisbles represent real numbers so-tgat the need for thi§ type of diStinction

e
e 4

Ay

¢ o does not arise. S . ﬂ"\ R . Do
T, Each of the exampl’es in this section is- presented in two stages--the ’

gener,al,, or overall Q.escrj.ptlon followed’ by arr 1mplementatn.on via detailed .
R ”i‘low chart. 'The latter b ld on the material in Section 8- 2. Ve ca.refully
urge the student to skip thi detail during the fizzst reading so that ‘you and

. Mecad get on to see the mores interestmg developments in Sectien 8- 5 Time

- -permitting, all can return te Sectioq 8-4 for a more detailed'look.
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8-5 The Decompbsition of Assignment Statements

The dec‘omposition of &ssignment statements is usually thought of as the
heart’of the compilation process. Section 8-5 develops the background
enabllng us to state a rule for cfecompomtion of asslgnments In Section 8-6

.

we tv'ansfor'n' this rule into flow charts

-

It should be ._rememhered (again and again) that the assignment statement

is assumed to have been processed thro:ugh the prescan of Section 8-4, In

particular we assume that on;x properly- written statements are to be dealt
with. No nrotectlon is nrov1ded in case the asslgnment statement is im-

< properly formed although most actual comp11ers do provuie such protection.

- The key that makes decomposition practical is the use’'of a parenthesis--

ffee way of writing an expression. - A binmary expression is normally written
. . . ‘ .

./mwith the .Q»erator separating its two operands, that is: ’
ST N ’ I
.. ?’b, a < b, " 8,X b, a/b,,.or atv.
© This is callea" infix form. The text makes use of a different way” of wr;ytlng
such emressions& called postf:.x fotm : | < J /
~ .. . 2
ab+, &by, _  abx, ab/,” or abt . ) # o
. A third form also exists, called prefix form : - E
“2 - A}
- © +ab, - -ab,  Xabj /ab, or { ab

" To strat,e prenx form: . .
1,‘ . . ~ . 1 i
”‘/_} A+BXC 1swrittenas" +AXBC
o AXB{C ( .is wr;.tten ‘as +XABC - e
(A+B) XCo, is written ag. X+ ABC o
g . -t
Ax(B+C) 1swr1ttenas' XA+BC .. L.

In either'pzeé or postflx i‘orm, parentheses are unnecessary to indicate
* the order. In prefix form, opetations az\e performed in the order in which
operators appear when scanning the expression from right to left. ,In post{i;
, form, operatiens are per;fo ed in the order in which the operators,appear
_when scann:{ng the expressio from left to right In the text we.have chosen
to uge the postfix form simply because people are accustomed to reading from
* left o right. Eit‘her scheme can e used in writlng a- computer progranm. ,‘
The student' is asked to complete a liyf instructions for evaluation of «

\the postfix form: N 4 -
‘ - -
- ’ zABxC+cet/BA--A2f324+24/4_ . R
° . ) 259 o
. g « . .m ’ A

ERIC = - . ) 2 262 e o

Aruitoxt provided by Eic:
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! X B . - RN :
gt ‘ \ .
~ B N N AN “\<
e T8 v o b : -
¢ f AR . .
i - N "hi’ . -
. The completed list is: ) TN .
, . - .
. 1. multiply A~by B
< - ‘4 ‘ ) .
2. to this add C ' N
. . 3% -~ save that result (call it a) and square .C . ..
<
\ - . .
. 4. divide o by the square of C s e
. A .

»

save that result (call it B) and subtract A from B o

subtract from £ ,the differencer B ~ A . f

3

6

7. save that result (call, it ¥) and square A
8. savé thaf'resff]tt {call it <6) and square B
. .

add the B8 and the square of B

° N .

. . 10. 'square the result of Step 9 .
’ “ 11.  divide Y by the result of Step 10 - c. -
) 12. _ assign the result of Step 11 to Z. - ‘({r y '
[ 0 < f 4 \,I\KF’

To find an automatic transformition to pbStfix form, a precedence table
is presented in 'Figure 8-20. The upper half of the table fontains arithmetic
operators in &n order that agrees with experience (and the presentation of

) Chapter 2) .as to order ofgprecedence ‘ The 1ower half of the table contalns .
R

symbols that aré not generally thought of as operators We call them "isolators"
at firs‘ but we will discover it ubeful to assign them precedence values and -
for present, purposes to call them ope.rators, A_s1.mple example is then_ presented
to motivate consideratiion of adjdcent pairs of op.erators as the basis of a

transformation rule. > . . ) ¢

) . A tentative (and incomplete) rule is then presented and tested agairst

an example. During the test, displayed in Figure 8-21, we find Greek letters -

being used to denote intermediate resulf§. The choice of Greek letters is

. purposeful to emphasize what will be discovered promptly: that it is

.. important that ‘an intermediate result be obviously identifisble as such and

< as something different from the other symbols in the string. ,Following the
tentative rule we suddenly find that the Greek letters representing inter-
mediate results appear in the generated string where the operations they

bred
represent already appear. , Clearly something is wrong.
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nio P . — ; ) .. : ) .A f‘ ": ,
. T , Iy
' b . ’ ’ L R YL N, NS °>
N ’. L , s Additional “examples are helpfu]‘:&\g‘ e \?\\\
e ‘Expression . .Ejriplé'Substitution , Generateci String ‘/ .
T (a2 +Bi2 wctz)fé S a for A}Z .. oy 0 . S
(a+342+c{é)} "t Befor BHS °A2;}32} '
(a+B+c{2)0 o.for"‘a+é A24B2?+ ‘
(¢ c{a){a ' LB for ch2 m2y Ry +c2) |
(a+6)4 2 . T .for'a+6 Y Yo+ c2f +
. af2 C o for 'aLe m2y @} +c2f + 2| )

One 'migpt think that an jindefinite “number of intermediate results migﬁt be

produced. ' ~ ‘ . °

- " . >

This could happen for particular forms® of expres'sion', such as:

~ - -

. . ‘/A*2+B{2 x:(c"42+i342><(}3§‘2 T D).

However, in most situati’ons,'two or three temporary internal identifiers aﬂ\‘\l'
. . .

found to be sufficient. .
. - ' .~ ¢

Another exarnple illustrates the importance of using parentheses carefully

if you want to indicate an ordering. of operations. o
Expression Triple Substitution Generated String -
AXB+C}D | ) a for Chp - CD| .

. AxB+a’ " B for AXB cD{ AB x
, ’ . Y
‘B+a s . a for B+a CD} AB X'+
? 'e e . .l
Jote that the commutat;v:.ty of addition has been assumed. If, inviu'actice, - °

the sequence of operations is important one should wr:.te (A x B) + C4 D to .

‘ insure that the addition is done in the des1red order. .

asked to experiment and decide what to do when' an operator

equal p.recedence; whether or not to select that operator pair. | ﬁ .
e could be developed for either choice. Externally the difference.is in | .
. whether & series of operations of equal precede,nce (for example, A + B + C + D)
is to be done left to right or right to left. Internally, choosing to select ,‘-
an operator  pair unﬁer the condition of equal preceaence (i e., left to right “
execution) aids in the economiZation of temporary internal identif:.ers of
. intermediate results. This is demonstrated in the first of the additional
examples given here. .

1
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Other decomposition algorithms

The algorithm which we develop here

Y .

by

is by no means the only ‘one used in

~ the computing professfg?. -Indeed it can hardly ber construed as the best. We

stack is a last-in, first-out storage device.

‘vere motivated to present this one primarily because it is not necessary to
' digress for the purpose of introducing the concept of a "stack", which is a

progrémming technique used in explaining the way most cogpilers function. A

Another name for a stack is

"push-down store". You will find ‘many references in the literature to "stack

compilers". A readable account of one of these compilers for inétance, can
be found in the paper by Arthur B. Evans, Jr., "An Algol 60 Compiler", Annual

Reviews of Automatic Programming, Pergamon Press, 1964.

-
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. @swers to Exercises 8-5 Set A B . e . -
» [ a_— . N 4 .
’ , List the ordex in whish you would do the opera?_:‘j.ons for each of the

"fo],lowing.‘ _Ident’if‘y‘ the reasons for your chgice of o.rderings. !

(a)A+B><C I N -

-

’”

Mu_ltlply B by . C then add "A because multiplication has a
hlghe;' precedence than addition.

.

‘1' € - - 2 . -~
o () A~>< B+C- )
. multiply A by B then add C . because multiplication has a highér
precedence than addition. ’ .o
(¢) .(A+B)xC - < ~ : L
add A and B ’qhen multiply by C because a parenthesized . v
h subexpression must be evaluated before multiplying. . ) s
la) ax (B+c¢) A A ’

add B and C theg multiply by A because a parenthesized

£l

subexpression must be evaluated before multiplyi:ng.

’ . .
(e) A.""B {‘XD' e, i ~y i P .
4 .

firs€ form BC multiply that by D, then add A because the K

order of precedence is. exponentlatlon, multipllcatlon, then addltlon

(f)A+B§(c><De : L ’ ~
multiply C by D,’ form BCXD, then add A because a parenthesized ]
subexpf'ession must be evalue‘ffed first, then the greceden/ce of .

. operations is exponentiation before addition. . - *

(g -.3) Answers are similar to those above.

Y

>
v
-

Ansvers to Exerclses 8-5 Set B ‘ " .

‘r

How" would: S,hhe express1ons of Exercise 16(e) through (3) be written in
postfix no’o‘a’tionZ

- -
e
‘<, . -
- -

(e) A+ B.f“C X D becomes ABC}{ D X + T B . ) ’
) £y A+3B} (CxD) becomes AB.’,DX*+ L _ J
‘ (g) (A+B)} CxI becomes AB+C4D>< . . . o
. - (h) A} -B+C XD Dbecomes AB} DX+ - - . oL .
- (1) ap.(B+C) x&,bec.omes ARC + { D x .. -
< (J) A} (B+cC xD) becomes ABCD X +} ' ‘ ,
) ‘ - - '
263 . . .
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. . | . .
Answers to Exercises 8-5 Set C ! A .
AJ ~ - — — —— -
1. - Statement: * Triple "Substitution Generated String
PR . - - . ry
(a) Z— A+ BXxC; . a [for BXC BC X
- T Ze A+ q; Bk "B for A+aq ARC X +
. z+— B . * zeB ZABC X ++—
. . .-, . . '. . :’"
(b) Z—AXB+C; a for A X.B AB X
Ze—qa + C; B for a+¢C AB X Cy
E) -
2« B; Z+—B ZABX C +«
(¢c) 2« (& + B)x¢(; "a for A+ B AB +
Ze—aXC(C; B for aXxC AB+Cx , " o~
Z« B - ' Z+«B ZAB + C X+
L (d) 2z~ A X (B+0); a for B+ BC +
. Z+— A X q; B for A Xa ABC + X
. Z+— B; Z—B ZARC + X+
(e) Z—A+B} CxD;. . for B} .C x|.
) Ze—A+axD; > .B.for aXD "+ BC| Dx )
" Ze— A+ B; Y for A+B AEC | D x + .
i T Ze; . - ZeY . ZABC} D X ++ -
*
(f) Z~A+3B| (Cc xD); a. for C.xD CD X 28
) Z—A+BY a; B for B} a BCD ‘% |
Z+ A+ B; . 'Y for A+PB ABCD X | +
7 ZeT; "zt ' zaBOD X | +e
’ (6) 2 (a+B)ycxD; " a for A+B AB+
Zeg | C xD; B for ajcCc 48 + ¢}
i Z«— B X D; Y for BxD ° AB+Cl DX
‘ -~ ZeY; e " Zev | fzaB+C} D xe
) " (n) zZ—a} B+CxD; a for A} B 2. 4B |
Zeaq+CXD; "B for C.xD* ABF CD x «
Ze—a+ B3 ‘ Y for q+B AB erx i -
Ze—T; - Zo=Y 28B{ CD X ++«
- - P e s ‘s
Edad Pd Nl oV L e P %JIW P PV P A e p / . / :.(,"x;' Fred s
. “
o . »
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) 3
- y 1
B 3 - i - ..
(1) 2e=a} (B4C)xXD; ~’a for B+C B+,
7 Z+ A} o XDy " B for A} a ARC +§ | -
Z+ B X D; ., T for BxD, ARC +] D X
Ze7; ' Ze7T ZABC +§ D.xe
(3) ZzA{,(Bi-CX‘D);; a for C XD - D X )
Z+—A} (B+a); € for B+a BCD X +
Z— A} B; .7 Y for A} B ABCD x + | &
. ‘/,Z<-Y; . ) Ze~Y - ., ZABCD X +| +~
L] r , l’ AY - L4
el oo
- 2. ! Statement ) Iriple * Generated Strin
T == . Substitution < L2
Ze—((@+c)/ch 2 - (B-A)) ‘o for AXE  ABX ' o,
[(Afa+B2)) 2; ‘e ‘ .
. ze=((&C)/ch 2 - (B-4)) ‘Bfor a+C  ABXC+ .
/(atasBi2)}e; # , ~
- ge(Blef2 - (B-a)) © yforcha aBkcwc2y g
w0 [(akemya)fe;
,@‘;:q o P . P )
T EB=(Bfr ~ (B-4)) : 6 for B/y  ABCH2| / .
f(ata+B2)|2; f= .
o 2+—(5-(B-A))/¢Al2+B}2) }2; € for B-A  ABNEHC2) /BA- - .
‘ o o S ” (
z~(0-¢)/af2+B2)}2;  * ¢ rorb-e  ABXCHZ2| /BA-- '
z—d/(af2 + Bl2)}2; - pfor Aj25  ABCH2 | /BA--A2) .
- “ - i v % ] .
z—0/(p + B} 2)} 2; b for Bf2_  ABCH2 | /BA--A3) Be|
z20/(p + )} 2; ) v for g+ ABXCHC2 | /ﬁA--A2{ B2} +
Ze0/v}2; . . ororvia  AmcHc2 | /Ba--a2| B2 +2fF
Z=5/0; ; .\ for ¢/c ABcHc2 § /Ba--m2) B2} w2} / ' m
. . w %5
Zehs TOT T s oL Sz Cuapcc2y /ea--2 B 2 /e

-

i,
el.,f?\

g




%

E

/ . SUPPLEMENT

. - The Tree Search: gth Apf)l.ications -
to; the : %@L

Four Color Problem and’Games

This unit is provided for the teacher who may have gifted or enthusiastic
students who want to try their mettle on some really hard algoxithms. Also,
this material could be used as the basis for supple@tary lectures. The unit
does not use functions or procedures and hence could be. inserted any time after

the completion of Chapter h i

Since the exercises in Chapter 6 and the first five séctions of Chapter 7
are rather few in number, this unit could be used gs a project to £ill that dead

spot., . . .
If the students are to be asked to devejg.op the four coloring algorithm, .
it is suggested that ‘the material up through”ithe reduced connection table be
duplicated and given them. In the case of the game of "31", the student should
be-given the material up through the rules of the game. ' .

~

The Tree Search
~ 'R . -
Two examples of trees are shown below. .

We see that there are a number of “nodes" on these trees with one ,branch coming
into each node and two or more branches emanating. In further pictures we will |

(S

~#omit the arrows and assume it to be understood that the d.irection of growth is
~upwerd. ‘ j
. e, . , - j

‘o ' ‘. . 7: , - ,
gc . . B9 o

. : .

. K] B
o* . . e v
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By a segment we will mean one of the vectors reaching frém oer node to the
\ next one. By & branch we mean a segment together with everything that follows
it. Thus, a branch is a "§db tree" of the original tree. In climbing a tree,

when we arrive at a given node we choose one of the segments eniﬁnating from it

. adyance along this segment to the next node and again choose a segment, repeat-
ing this process until we reach the top. We see that we can reach the top at
many different points. However, oncé we have reached a certain int at thes '
top, there is only one path by which we may descend.

A number. of mathematical problems and a great many gemes have the tree
search as a model. In a tree search we attempt to £ind a pat@@up the tree to
one of a number of segments on which a desirable’ object is located. Since, ih

«J0st applications, the number of paths is fermidably large, Ithe task seems

. Quite discouraging. However, it turns oyt that in the applications there are
.certain ‘segments which we are barrec} from choo'sins,. (The in;dmissibilitgf -of .a
segment can o be determined after we have climbed to that ‘position.) Sin\e
a forbidden segment removes a whole branch from consideration, the size of the

”problem may be drastically reduced.

. 14 - ~

We next present a systematic procedure, i.e., an algorithm, fozxemducting

a tree search. 'Our actions are most easily described in the following flow
» \

chart. . '
, N~ 1

t

Go to the lowest
node on the tree.

2
o Are there any more’ .
- untried segments at
, this node?
. ’ 3 2 T
) Select from among these Are we at the lowest
untried segments the one - \_node on the tree?
s ‘ | furthest to the left.t . . Yes \\I‘{o
9
) s v b . Output the news thatr * |Descend to]| |-
. . Is this segment ) .the sgarc_:,lll has failed. { , the’ last
Lo ad.missible? - ' \[:' —' |précéding
: . “ 10 node.
i Cutput the necessary| | L
information. I T\ STOP
SN <+ {Advance along the /\—"’/ .
. ° ) selected segmefit b . o
- to the next node. ’
N T : .

Generalized.flow chart for a tre:e‘ se'arcp
C ey T T
. EMC ' - Pa\ ‘ ' N -

-

-
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"~ In applications, some of’é;he boxes in thds flow chart (especially Box 4) . -
. ; o ! . .
nay be b,roken down into a number Qf flow chart components. ’ * =
¢ . N . . . )
OQur first application of a treé\ search is the problem of determining N

whether a given'map can be colored with four colors. This problem is modeled ‘ .

by a tree with four segmenté emanating from each -noci{ej Each path up the tree ~

‘ represents a coloring of the entire map. The forbidden paths are those which \/—_\
would re,sult in some —country *having the same color as a neighboring country. .
ﬂThe‘ desired object is to reach the very top of the tree alpng a permissible .

o . pathy” .,_\‘ .

.. Before developing tnis algorithm we provide a discussion ogf the four color -
) problem. Much of this material is background msterial and may “be skipped if o
desired. . - - ) ,, .a'

The Four Color Problem

Maps are colored so as to make it easy to see at a glange the extent of
each country. It.is clearly necessary that neighboring countries #i.e. .y coun-
tries with a common boundary line) should be assigned d.xfferent colors. This'

’

. is the only requirement we impose on the coloring of maps. *
L4

A checkerboard is am exampler of & map which can be colored with'only two
colors. The four country map shown below requires four coloxs. The reason for- —_
..this is that, each pair of countrits being adjacent, no twS cen have the same e
color. . -

. ~

' It didn't take us long to find 8 map requiring fourwcolors. \Yet,\{n over .
a nundred years of searching, no one has succeeded in finding & map requiring —
five. It is natu‘ral to con'Jecture that every possible map can be colored with

&

four colors and many mathematicians hayve racked their brainsg trying sto prove ’
this conjecture. The best they have been able ‘t@ do so far is to show tha .
every map can be colored using no more than five dolors. [In fact s & very. .
simple proof of the five color theorem exists which is quite suitable for

14 .
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presentation to high school students. See, for example, Courant and Robbins,

s

‘What is Mathematics?) - )

. We ave about to see how computer methods can be applied to the four color
problem. If the four color conjecture is true, a computer ‘j:i.ll not be &able to ’
devise a proof of it. If, on the other hand, the four color conjecture is

i fa.lse, a computer m}g&t be able to find that out. "In particular, for a given
map, a computer can determine whether it can be colored in four colors. That

is_ the task for which we will construct an algorithm.

Before we present this algorithm, a few remdrks concerning the coloring

g{f maps may be heflpful.

A minimal five color map is a map requiring five colors and such that every
other map requiring five colors has at least as many countries.. It is easy to }
show that if maps requiring filve colors do indeed exist, then there exist min-

. imal five color maps sat'isfying':

i) no'point is a boundary point of more than three countries; and

ii) each country is a neighbor of at least five others. [Every minimal
map mst satisfy this condition.] ‘

It is customary to consider as candidates for counter-examples to the four
color conjecture .only maps fulfilling these sonditions. We do not need to use
these conditions’in our algorithm but ‘theirt proof is established by the follow-
ing map fragments. -

Digression: Establishing Condition (i) and (ii)

To esteblish the legitimacy of requiring condition (1) , suppose that the’
map,fragn}ent on the left is a part of a mini.ma.l five color map.

Condition (i) is clearly violated since the hub of thg wheel ig a'boundary

point of six countries.

O R P
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But that objection is eliminated by the modification shown on the right.

This map“ has the same number of countries as tﬁe'priginal. A1l countries which

were neighbors before the ‘modification are still ne‘ighbors , but now country 1

has three new neighbors. Clearly, this modified .map will require na fewer N

colors than tHe original.® Thus, if the original map was a minimal five color
map, so is the modified mep. This safe modification can be made at all points
which are boundary points of more than three countries, thus _establishing |,
property (i). ?

'I“o establish the legitimacy of requiring property (ii) , suppose that the
.?‘,z“agment on the 1ef:t below is a fzjigment of a larger map which is a minima.l

.

five color map. N o

. ¢
K . _ ( ,

‘

Here condition (if) is violatéd as country 1 has just four neighbors.
Now we obliterate the boundaries between 1 and 2 and between /l“ and 5,
thus making'countries 1, 2 a?id 5 1into a single country in the map on {:he
rig}it. This map has two fewer countries th,an'the original. Since the original
was a minimsl five color map, the revised map must‘be fgur colorable. We

suppose, this to have been done in the figuré on the right sbove.

]
Next we Pestore the deleted boundaries and uncolor country 1 as shown in

the figure on the left below. In this map country 1 has foﬁz neighbors but
. L
these nei%ghbors have only three different colors, since 2 and 5 are colored

RS -~

L
the same., x

Sl
.
.
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- Thus, the. fourth colo-r is av§iléble for country 1 a3 seen in the figure
on the right, And now the whole map is four \coloredf, This contradicts our
assumption t'r;at, the original map uefs a minin{al five color’map and hence lestébi
lishes property (ii). [If dountries 2 and 5 have g common boundary outside
; ’jztfs{ead of\ 2

this fragment, then in the entire discussign use 3 and 6
and 5.] ' .

¢

Four Coloring as a Tree Search

~

< .

¢ e

We will model the, prohlem of finging a four coloring of-B™miven map’ as a
" tree search. The tree will have four segments emanating from each node. Each

country (except for the first three') ‘will have gatco?reséonding level of nodes.

~
-

country
‘9 T

y

6 ~mmmmala

The segments emanating from, tdhe nodes at the hth level repre;ent the four
-y

possible colorings of the nt?l éountry. The particular node which we have

. o) .

reached at the nth level represents the history of the colors presently assigned

*  to lower numbered countries. . .8
o N A
ERIC - 2da .
Rl b : e
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"+ The tnadmissible segments are those which would result in a country being
@iven the same ‘color as a previously colored (lé’wer numbered) neighboring . .
. - : S - . - .
* tountry. Which countries are neighbors depends on the particular map and will
" have to be input as datd, . L . K ;
. The object of the gharch is to find a peth from the bottom of the tree to. -
N t
4 > the top in which segment is admissible, - " : e
Preperation for the Algorithm s

e

) ‘It will simplify .matt:ers greatly to follow the ensuing discussion usixié
the map provided in the next figure a\s‘az_l example. The, first step in preparing

. for the algorithm I's the nymbering or indexing of the countries. :As you see,"*
V. e — . .
this has already been done. g : ’

The efficie’ncy of sthe algorithm will be greatly improv_ed if each country
borders on that with the next lower number and on at leas} 6'ne"bthe1"”?country

. A -7 -
'o with a lower number. We do not absolutely insist on this. - . ‘ -
. . - » - -’ - . N
- We do, however, require that the first three countries ell be neighbors.
-, ok each other. . .
. . \ . ‘
i A .7
-~ ) » . . . (/\
. . - 29 | T
\- ‘.l . . \ - . ~ ’ 5.
. 0D 18 19 o o .
. N V; ~ ~ . y 38 .
: ' ) M Q 31 ' : ° ‘
o . e - 10 . . .
* N . i ) 3 ) ‘
2 b

) T - 11 | -
2. . -
. i K3 32, <

- - . b'f » - -

— . . . > Ve 2 . . .
- .

. PR
4 -
. '\~/ \ ’ . S
. . 4 . d -
. . - . { -
. ’ ‘ - . .
z . -’ .

. . ' % o " Example of map to be four coloréd / T .- ~ R
& Ty y . . f‘ 273 - - ‘ * ’
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h&n the numbering has been done we _construct the "cennection table';,

listing after each. country all of its neighbors in increasing order.*

This is

shown for oui' example in Table’I.

Next we construct the ' reduced connection

table" by striking out of each row in the teble all numbers greater than the

number ‘of the row.

The reduce& connection table for our example is seen in

- *Actua.lly, the' connectiop table

Ay
8 not used.

1
’

Its only purpose is in clarifying

the presentation of the "reduced comnection table" &

_table.could be presented digectly.
. v 271;

. 278

ALY

i
1

1

t

!

Tl{e _reduced conhefctic;g
|

Table II. The subscripted variable vy giveg, the width of the‘/i th row. »iv'e
now have all the input required for our algorithm.
<
= T Table I. The Connection Table for.the Example
Region Neighbors R:gion Neighbors
1, 2 "3 4 5.6 21, 10 11 20 22 31 32
T, 1 3 & "7 8 9 S22, .n 12 21 23 32 33 .
3. 1., 2 & 9 10 1 23, 12 13 22 2& 33 34
5,1 3 5 1 12 134 2ok 13 1+ 23 25 34 35
5. 1, & 6 13 1+ 15 25, s 15 2k 26 35 36
" 6. r 2 5 °7 15 16 26., 15 16 17 25 27 36
7., 2 6 8 16 17 18 | 27. 17 26 28 36 37 .,
8. 2 7 9 18 719 - ¢ 28, 17 18 ’7 29 37
9. "2 3 8 10 19 20 29, 18 "19, 28 30 37 38
10.. 3.9 1 2 21 .|~ 30. 19 20, 29 '3t 38
<+ 11, 3 4 10 12 2, 22 T . 20 22 30 32 38
12, & 1 13 22 23 &| 3 2 22 31 33 38: 39
13. s 5 12 1k 23 2k 33. 22 23 32 3% 39
14, 5 13 15 2k 25 3k, 23 2% 33 35 39 g
. 5 6 1 16 25 26| 33¢ 2 25 34 36 39 -
E. 6 5 17 26 -, 6. 25 26727 35 -37 39
7. 7 16 /18 26 27 28| 37. a7 28 29 (36 38 39.
18, 7.8'17 19 28 29138 29 30 31 ’ 3237 39
19. 8 9 18 20 29 .30 39. 32 33 3% '35 36 37 38
20. 9 10 19 1 30 3 . -




Table II. -Reduced Comnection Teble for the Example .

Y ‘e - ' N

countty | neighbors width | country .. neighbors width
©q 'CONNiJ ,ewi i ’ o CONNij - wy
.1 ‘o |1 =& 16. 11 20 3
N T 22 112 & o, 3 &
3 12 2 'l =3 127713 22 w3
: b 13 | 2 2k 13 1% 23 o 3 |
> 1 % oo .2 25 % 15 2b 3 .
6 1 2 51 3 26 15 16 17 25 T i
7 ‘| 2% 6 | 2 | o1 17 2% - o |
o 8 la 1 2 | =8 17 18 27 3
9 |23 81-3"1/2 18 19 28 h .3
, 10 3 9 2 30 19 20 29 . . -3
1 3 5 0} .3 31 . 2091 30 , 3
12 b 11 2 32 21 22 31 ’ 3 -
13 k-5 12 3, 3 22 23 g2 o "3
1k 5 13 2 34 23 24 33 . P
i5 5 6 14 | 3 35 ah- 25 3b | "3
Tl w6 115 3| 36 25 26 27 35. 4
17 7 16 2(' 37 27 28 29 36 N RY
.18 T 8 17 3 38 .} 29 3031 32 37 ' 5 )
419 T8 9 18| 3§ 39 B 32 33 3435 36 37 38 (N
20 9 10 19 | 3 : . |l _
. Q T e
The Four Coloring Algorithn " : [ | o

¢«

We aYe now prepared to present [the four coloring algori‘thm seen in the
accompanying flow chart. The boxes are numbered starting wj,,th 11 for ease
. of cmnparison with %he generalized £low chart for a tree search.

Box 11 is our input. It gives the number of countries s the zjedlxced connec-
tion table and its widths. ~—-- Lo T e e

COLORi represents the eolor (1, 2, 3 or k) ten{:ativeli givento the.ith

country. Since countries 1, 2', and 3 are mitual neiéhbors s they must hf.ve

. distinct colors, 50 we arbitrarily assign COLOR,, COLOR, . and ébIJOR3 the
vg.l.uea 1,2 and 3 in flow chart Box 12. J;n Boxes 13 a.nd 11; the rest of the 4
countries are blanked. '

LA
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| > |
- - - il ,
g .
rn, {w, ,1=1(1)u}, {tcomvij 3=1(1)w, ) 1=2(1)n} s
Py ’ e - - .
.’ S o 12, ; K
- M % [coror «—1- e .
’ COLOR,, «— 2
“ COL6R3 “«—3 g
rd z ’ Rt
— 13
. ie— 4 R e
.« oz i<n -
. 1e—i+l
r%{g
il i <n ™A 4 coloring of this
7 —fmie-ivl [ = map is" / -
N 3]

17
+1

- COLOR i<'—-' COLCR 4
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J+—1

I{)n}

- | tcoror;, 1 = 1(

g+l

comn;— 0 J
ie—1 -2 |,

W\'_._ 3

"This map cannot be
b colored"
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On emergipglfrom the F exit of Box l§‘ the tree search begins.— 'I;he .rest
of the flow chart is an exact parallel of the generaliZzed tree ‘search flow
chart. In the ensuing discussion of the four coloring algorithm we will give )
pe.renthetlcal &'eferenCes to the corresponding boxes of the tree sear‘ch flow
chart. T ,

In the initlalizatlon portion of Box 15 (Box 1) we initialize the value of

the variable i at 4. “This varisble should be regarded as ‘a pointer which o

tel s’ which country we are attempting to color (which level of nodes we are”
at ). ’

In Box 16 (Box 2) we make a test to determine whether any more colors are,
ava:.lable to be tried for the 1th country. On emerging_from the T exit we
tentatively assign the next numbered’ color to the i°h country “n Box 17 (Box 3).

*Now we go through the loop if Boxes 18 and 19, (this 100p corresponds to Box h}
to determine whether the color assigned in Box 17 is admissible. That is, we '
_check to see whether this coldér has been given-to any of the prev:.ously colored

. ne¥ghbors of the™i th country .- ) o -

.
- .

If this color has been used on a neighbor we will exit from the loop on
the T of Box 19 back to the test in Box 16 where we check w}%th r another
color is available to try for the: ith country. If, on the other hand we find
.that this color has not been used on a%elghbor; we emerge from the loop at the
F, of Box 18 increment i1 by 1 in the incrementation portion of Box 15 )

* (Box 8) and proceed to the coléring of the next country.

M If at any time we find in Box 16 (Box 2Y) that no more tclors are available
to be tried for the 1 th country, then we have to, go back to the previbus country
(g0 back one node dowri“bhe tree)., First we check in Box 20 (Box|7) vhether we
are already at the base of the tree. 1If we e.re at the base o] thentree, we
output the news that ‘the search has failed in X 23 (Box 9). If we are not

th o try in“Bo* 21. and go back one |

node. This stepping back one node is accompli hed by .stepping back two in

Box 21 and up one in the incrementation portion of Box 15. (These together"

correspond to Box 8.) : ..

. - - -~ (Y
7 If we ever eme'rge from tHe F exit of Box 15 (the test ﬁortion of Box 15
. correronding to Box 5) then the vector, COLOR, contains an admissible coloring
. f the entire’ map which we print out in‘Box 22 (Box lO) |

’ P o« ?

Q

at the base of the treejnwe uncolomtpe i
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o ! Toprovements, and’ Modifications .

The greatest fault in the algorithm occurs when we have not succeeded in

‘mmbering the countries so that each borders on its p}"edec;e,ssoz;. In this case,
there is little use in stepping down the tree one branch at a time. We may as -
well drop down until we first reacil a neighbor of the' ith country. For only -
tiese neighbors can contribute to the blockfng of the coloring of the ith

- ' country. Unfortuliately, the incorporation’ of this féature immensely. complicates

the algorithm and we will x}bt discuss such a modification here.
- . . . 4
Another drawback of this algorithm is that we cannot predict in advance

how long the program will require for execution on a computer. We mi.éht then
decide sco cut the process off gfter the millionth or MA}&TRYth setback in,Box 16.
-~ But then we would have no information at all from our program. We might there-

Pl

fore decide to print out the inresent Etat'e of the coloring proggss before any *
setback in wifich the number of countries colored has reached a new high NEWHI.

) -

Thése features are incorporated in our final mod::.fication of the*four color
flow chart. The mod::.fications are’ seen in Box 12 and Boxes 21& 30.
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n, g, 1= U1)n),”
({comi, ;, + = 1(1)w;}, 1=1(1)n)

2
MAXTRY |-

L 12
COLOR, «— 1
COLOR, «3.2
COLOR, +— 3
COUNT «—O0 |-
NEWHT «—3 | .

- u
Jiesl F
i PRSP
je—i+l]

A /

i

COLOh;— ‘0

_§ 15 '
1< bf

.

/iq-i-!-l

"A 4 coloring of this]|_. .
map is" . - )
{COLOR,, 1 = 1(1}n)- e

i 4
/_\/ L~
- -
i . .-

Co(1- 1> e
<3

} o5

- 28 g
! -
_ ) 8’ i ,29- .’ ,
)
{COLORJ, 3=1(1)i-1}
P, - . /——\_’_’_ L
; COLORi‘c COLORCONN- p ‘ :
AN iy . )
| ) "No more money", . o
) 7| LT (COLOR,, 3=1(1)1s2) [« 1
* ~ ) | .
L] ) L
' . i
- 7 A
S - e Fd)LORi*—O i "Thj’.s_ m?p :
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ST . ‘ .
Tree Games * ‘ - .

=~ A great many games are modeled by trees. We will call thede games “tre€

gemes". Among thése tree games are chess checke’rs go, nim and tic-tac-toe. .
) ) )

e

In tree games each segment r.cpresents a move of-‘lay by one player or the
other. “Each level of nodes corresponds to the number of elaps?d moves. The
inadmissible segments represent illegal move$: Each admissible path from the
base up to la given node represents a partially completed geme.

“One computer problem associated with tree games is that of "teaching the
cdmputex to play the geme". This problem is interesting as it relates to
human thought processes. At this time considérable success has been achieved
in, teaching machines to play checkers and somewhat less in teaching‘ the.m to
play chess. , ’ .

But that is not the problem we willéConsider here. We will consider the
probled of determining the outcome of the geme in the event o‘f best play“by both

players. {There are other ways of analyzing this problem, which, for some
'games, ﬁzay be considerably better.) -

Tree-games all have the prope‘.rty that if both players were omniscient ‘and
cog}d see all the possible consequences of all the moves they could make (as 1is e
actually the case with tJ.c-tac-we), then the result of the game would be fore-
ordained as & win for the first player, & win for the second player, or a draw.

L2

For any of these. gates algorithms can be devised for determining the pre-

_destined result. Hogever, most tree games are either too easy or-tpo difficult

Q

ERIC

*
T |

Ay [
recorded. . Then each of the two players proceeds in turn to turn up the number*#c"

for compu’ger analysis. For the games of chess or go the pjoblem is ridieu ously
2T working full time J

for a billion years woulld not scratch the surface of the problem. On the other

hang “the games of nim a *tic-tac-toe are s’ufficﬁently simple hat rules. can be

given for the strategy leading to the best result (a draw in ti'c-tac-toe and a

win for the first or second player in nim depending on.ly on the initial numbers '

{
“of std.cks in the piles): ‘ - I . .

.

beyond the povers of a omputer,” The highest speed comput

v

The tree game we have chosen’ to analyze here is very simple but it will
illustrate the main ideas. This game has the pedagogical advantage, that the -
best strategy is not widely known, The neme of the game is "31", Th rules ke .
are quite trivial. A single die is rolled and the number that comes is™ "

-

b

of his choice, except that ,the numbers currently on the top and bott are in-
admisd‘lble. The nunmbers that the p‘iwers turn up are all added to a single
ruwxing total wh h has as 1its initial value the numbgr rolled at the beginning
x»‘ chyre ﬁ‘\ " ! i 3 { B )
‘ .,v' '28 ] - R
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of the game.
player exceediné 31
We see twd ways

no draw is possible;

loses.

in which the geme differs from some other gamest

second, a player can win or los€ at his own turn.

‘A‘ player bringing this total to exactly 31 wins the game; a

.

First,

The

arbitrary and could be changed to any other number.,

number ‘3l is quite

Tree gemes differ from other tree searches in that a result which is
des:.rable for one player is undesirable for the other. This results in the
characteristic pattern of anaf's:l.s. First, a path is fo}lowed up the tree
until a ‘conclus:l.on_';fs‘ reached. 'I'hen the losing player tekes back his last move
and tries ancther move. This game :|.Is played to its conclusion, the loser re-

tracting his last move, etc.
- " to the base of the tree.

the tree » the most recent winner has an incontrovertible win as his opponent *

These move retractions will eventually carry us

When a retraction would carry us below the base of

.’ has exhausted all of. his resources for improvement. .

. -

®In the flow. chart vhich follows, the two players are numbered 1 and O,

1 playing first. It is.easiest to consider that at each turn thére are 6

.

possible 'plays, two of which are inadmissible. .

Again the algorithm is analogous to the gengralized tree search algorithm
< - except that the output 1!1 Box lO is replaced by climbing dowm the tree to let
the loser have another try. In discuss:.ng the following flow chart we aga,in
¥ make parenthet'ical references to the generalized tree search algorithm. An,
abbreviated de,‘scriptioniseems"to be in order, in view of t¥Me similarities w'ith

the previous examples. . ’ .

. The variable
made {the level of. nodes at which

i denotes, from Box 1 onward the number of the move to be
The vector PLAY records ~
The

for even

are Yocated).
all the moves which have been made in}arrivmg at the pr'esent position.
PLAYFR assumes thé val@e 1 for odd numbered moves and 0
numbered moves and, indicates which player has the mdve. SUM and WINNER are

self-explanatory i .

s

In Boxeé\ ll ll; the game is, being set up for-play. 'T’be initial roll of the
is input and the vaﬁables UM, PLAYER and LAY are initiated. . In
In Box*l6 (Box 2) we test to see whether
any moye zoves are availa‘ole 0’ be tried at the ith turn.
nex‘c rfumbered, die face in Box ’Z (Box 3) and test for*legality in Box.18 (Box L)
remembez:ing tha‘tﬁt e sum of the numbers on oppdsi{:e faces of a die is always

_. equal to - 7. ,)\f%gr au@nenting he running total ﬁ1 Box 19 we test- to gee -

) @ whe%her a game hngeen@le% . (Bpxeﬁ 19 e@ ‘to%o

: Py 23 4
3 ~ 4
4 . ! 1 %
y R PR . g: )

%
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variable

"

die: o’
) BOX 15, (Box l) the search commences.

d §O«are»equi
Y S '3 .

It so, we select the ,

~
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,Ifathe geme is not completed, thé ,priv::,lege of moving igs given to the opponent in-
Box 21 ¢ 6) and play continue-s. Boxes 22 24 are a substitute for Box 10.
Here,' if he geme was seen to be completed in Box .20, we designate the approp-
riate player as wimner. [It 1s unnecessa}z_;v.{to allow the player who has Just
moved to retract his move and try again in the case th#t he, has lost, for any
moves he h%s left will also lose. This feature is pe::uliar to this particular

game &} ) g
Ir; the event Qhat a player has run out of moves in Box 16 or that a m.nner‘
has been designa'ted in Box’§3 or 24, we nmst clinib back down the tree. First,.

L.t
et

we must determine-i§1 Box 25 (Box 7) whether the{e are any earlier moves to \ j
return to. If there are, we step back one move in Box 26 (Box 8) after first
erasing the effect of the last made move which now lies on a different branch.

-~

The. move also changes hands in this box. R 4

T It will b.e noted that we stepped down Just one naode instead of going
directly to the last previous' move of the.loser. Box 27, which Thas no equiva-
lent in fhe tree search flow chart, checks, before resuming play, whether we -
have in fact stepped back far enough. On exiting from Box 27 on F the option

- ——of moving reposes with the loser and we proceed to iaox—eg It must be remem-

z

. bered that?another move is to be substituted. for the i th move. The last made .-
ith move is therefore first removed from SUM in Box 28. PLAY, must not be
erased here as the loser must have a record of the last move he tried at this
point. E ) . . NS “)

When the test is failed in Box 25,” so that the losez\has no earlier moves

- left to retract, the search is ended and the resu 14 is printe# in Box 25 (Box 9)

*
The algorithm can,' of |course, be mgdified to provid for the output of

add:.tional information as sired.

. . . " . - {'
. Reve aling the !winning strategy of the gs!&e of "31".fill ryin it as a com~ [
.puter prgbleém but we will whisper this strategy' to the teacher. You have a

winning OSition if you can leave your opponent with the SUM = 1+ mod 9, or, if
this is impossible, with the SUM = Q. or 5 mod 9 with a 3 or 1+ faced up. I :
you can leave your opponept with such & position, he will be unable to do the"
‘'same to you, nor will he be able to prevent you from again achieving such a

position on your next turn. . s

-

3 Ly

. . . - ¢ ’ . , ] g
If the plgy recomménded above' wil]% result in your exceeding 3I / then /you
will be able instead to ‘bring,the total to 30 with a 1 faced up, which you do. s

—am

v -
apvats

, From the bove it follows that if the initial roll is” ll-, then the gamq is
.«-won {or the secgnd With any other initial rolf the game is won for the

; S L S
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. . .
' STUDY GUIDE IN DIGITAL, COMFUTING
) RELATED MATHEMATT CS* L e
’ . -
» e .
. 1. THE PURPOSE OF THIS GUIDE ; . .

Introducing the sufject of digital computers into ;the high schools involves
knowledge, materials, and points of view that are at present not normally part
of the training of the high school mathematics teacher. In order that the sub-
Jeet be introduced as widely and rapidly as possible, an in-servite training
program is necessary. Teachers must acquire an understdhding of the new con-

cepts td use them effectively and confidently in the classroom. .

¥The purpose of this Study Guide is to &id the teacher in acquiring a fam-
iliarity with digital computer concepts or” to further his knowledge of the
. field, The concept of an algorithm is stressed in the”suggested materials,
a.gos i
since it is hasic to the mathematical solution @f many problems. An algorithm o
tsa 1Tt orimstructions specifying a findite sequence of operations whose
executidn will yi‘e]'.d the answer to a particular problem or class of.problems.

» « Algorithms may be stated in diagrammatic form. or as, computer programs. The

programs are themselves sequences of operaftons 'for 'computer processing.

-4
Colleges are stressing the algorithmic approach to mathematics:*® Thus, it is
important that the high school student study this coneept, whether he writes -4

ter programs ?n not 1 ‘ ' 71/

b4 -

The use of this Gui e should not preclide the use of] other sources f in-

tion. For example, the teacher would profit m a course in computer

laboratory experience with a computer. Whilef contact with the computer is
ot essential to an Understanding of the use of the machine, it greatly enhances
the ,training. In the event the teacher cannot conveniently enroll in a college

* course to strengthen his ‘study program, he is urged to seek computer time at a

nearby college or at a government.or industrial research organiza\tion. .
s Lo R ) .
Professional and scientific organizations,. specificazly the AssSciation fo

[}

Computing Machinery, are excellent sources of additional information ahd advice
on professional,. educational, and vocational aspects of computing. Members of

local chapters of. this organization are usually ve*'y helpful in providing advice .

e o,

' |

N
1

*This tudy guide was published Originally by SMSG in / 1961+. More recent titles

Jave-Been added for this publication. -

{ L : ‘
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and even compu‘ber demohtrations. Further ini‘ormation is available , for ex-

« . ample, by writing to | b
S ’ Associatipn for Computing Machinery
oI\ East 43 Street -
‘ New York 17, N.Y. , . . ' .

This Guide may also serye school 11brar1es and mathem.‘tics clubs in build-

.

ing & collection of digital computer reference materials.

“ s

* 2. DIGITAL COMPUTER_TOPICS - ‘- " N

»

» This Guide has been written to answer three qQuestions about digital com-
puting and related mathematics: -

a. What are the important topics to be studied?
b. In what order should these be studied?

- - ae
’-5 ¢. Where can ini‘ormation,be found on these 'topics? _ Tt
. - A

_Several tgpics are suggested as basic to an understand.ing of digital cog- - -
puters. The first five of these ) described in the next paragraph, have been
intentionally ordered as th%y are,.- If this order is followed, a contimuity
will be developed"tha‘t should aid the beginner in this study. These five
topics are considered fundamental to a thorough study of the field. The final
three topics, described later, may be studied in any sequence ar%re o}' lesser

importange. i .
»

° The réferences begin with mater:{al’ on _1_'hl_e Nature ELG_. Or@niéation of ’
Digital Cofiputers.. The, capabilities of computers, the manher in which they

are organiged, and the mbans whereby information is stored in them are c?'Jn-
sidered.” When preparing a problem for computer sollit‘ion, it }ls ‘Inecessary to
formulate an algorithm. This process, termed Problem Analysis, includes stating
the problem, gelecting a method, analyzing and visualizing it-as a s_tep-by-sfep .

) sequence of operations. In this latter process, emphasis is p'ldced on a flow-
chart representation, i.e., a diagram d.ispla;;ring the sequence of operations
comprising a procedure. _The selected references stress this ‘&gproach. Com-
puter programs are written injyarious programing languages. Some of these
languages consist of stateme 8 in a nota‘tion similar to ma,tlgematical formulas

, - and are termed Algorithmic nguades. References are gi en to specific,languages
) of this type. The use of aprgmpr%a‘te problems for the’ ekpression of con%);puter )
. . ¢ , -
‘ *Underlined phrases in these paragraphs are.used as topical headings in the
body ofthis Gliié!e. - ) A . % L. "y
Q . “" 2 6 ‘ L ” ’
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concepts is an essential part of-# couxse in computers.’ As Additional Sources

of Problems,'material is selected that-contains fully- worked problems for the
classroom, sho;.'ing the relat'io!;& between algorithms and computer programs J:In
a— Yorder to unde%étand the nature of the problems that computers can solve,ll o~

-Mathematics of Computat1 on must be considered. References deseribe gystems of
numeration, computer arithmetic, approximations, and methods in arithmetic for
the solution of problems too difficult to solve by cléssical mathematics.
These‘ five topics constitute the concepts that should be ‘studied in sequence.

A’ .

There aresmany Applicatiq;ns of Computer Systems in & variety of fields.

P - ) .
Material here includes readings in_‘ such fields as engineering, physics, the . i
behaviporal scignces, law, etc,—for‘the*enri—c’rme‘m: of a teacher's background. ¢

Computer Operation, the ;nanner in'whic ) a computer operates to _solve a problem;. .
is described in the next set of referécesj De*ba‘ils of the*instruction-by-
1nstruction execution of a program and the manner of programming at £his .level
of detail are considered. The final ‘group of materials ‘offers I\lon technical A

and Historical Views of the mputer Field, prov1d1pg populariZed or historical %

literature. These references do not necessarily probe deeply into particular |,
topics. These three toplcs are considered o less importance than the fivé

- . : - ' v
mentior;gd earlier. . ' R r

.

Several topics are excluded from this Guide beca{se they are not directly
related to the concepts discussed. These include circuit design, Boolean al-’ .
- & ¢

Ay . = . A
gebra and circuit components.< ~ ~ B
' WL e 4, & .

.
- . 2
s . M .

. 3. ORGANIZATION OR THE GﬂIIfE

" To aid in the stugdy of each topic, the
ences. Each is classified asgcentral, peripﬁeral, or ad‘vanced

Guide categorizes suita?ble refer- '

a. A central reference 1is one containing material bearing directly onl”

.ol : the top¥c and embracing the concepts described here. This type of
s reference is furthey classified' ' .
" . .
A primary cent%‘al reference is one whigh is expected to)&i of
greatest value to most high school ematics teach?s. ’
. A .secondary central reference is one of less value to teac’hers. .
b. peripheral reference is one in which the material i spe 1alizec‘ or
. .ot central .to the topic but touches upon it, or is somewh t broader *
" in scope than uthe topic here defined. . . : ‘ &
n . . . P
L i : ) E {%
\ i3 %z & o
> 3 I ‘ " 3 K £.3% é : % ' %
P N . - . -~ ¢ * _ . ! -
Q . . I287 . ‘wr .

Iy

e s Ty T

.~ e - v ) “e ” - hd f




“ . .
4 7

. . » .

An advanced reference contaipsvmgterial eeqtral to_ihe topic but 25; b

which is writtey at a higher or ‘more theoretical levé;.
! - . . : co
v . R . . (

At the end of the Study Guide, all books are listed alphabetically by
author. It is recognized that the list is not exhaustlve. Suggestions fora

appropriate.additions dre welcomed.

-
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. ANDERSEN Introddctlon to ALGOL 60 * -
BAUMANN et al, Introduc’clon to ALGOL )

- -

"'.MC CRACKEN, A.Guide to ALGOL Progremmink
F.:)RTRAN - o - T .
. HARRIS," FORTRAN IT eNd IV Programmi . e .
HARVILL, Basic FoH‘mAN Prograkmm.ng n& '
HULL, Imroductlon to Computing, Ch. 4-10 ;
MC CRACKEN A Guide to FORTRAN ?rogramlnlng
ORGAVICK, A FORTRAN. Primer, . . e

© SMITH, Computer Progremming Concepts, Ch. 3, pp. 12- 16 Ch. 4-9
~ -SMITH* AND JOHNSON FORTRAN Attotester

v ,"u‘ o

OTHERS' - ;. .
GALLER, The Language of Computers (simplifled version of MAD)
. _ORGANIGK, A MAD Primer , * | - :

SPROWLS Computers--A‘Programnéng Problem Approach Ch. 10, .
’ (cosoL), Ch. 14 ( PL/I) . s
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Central ’(Secon_dézy.)‘R'?fereﬁc;s ’ T
- 4 *
= ALGOL, - )
. SHERMAN Programmng and Codmg Dlgltal Con;puters, Ch. 1b,
: »
. FORTRAN - . . - § :
-. COIMAN AND SVLALLWOOD Computer Language . \

, Advanced References
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Peripheral References . . v .\ )

GERMATN, Prograrmnlng jthe IRM 1620, Ch. 8-9 (GOTRAN) :
LEESON AND D]M[TRY Bas1c Programming Concepts and the IBM 1620

Computer,, DD~ l'(h 220 ‘3
. MC CRACKEN' AND DORN, Numerlcal Methods and FQRTRAN Progranmnng, ¥
. Chel, 7, 9, and Apbendlx 1 8

‘

SHERMAN, Programming and Coding Digital.Computers, Ch. 14 ~

OTHERS ’ . . A
MC GEE, The Formulation of Data Proéessing Problems fqr Com-
puters (in ALT, Vol. h,, pp. 3- 21) (CoBOL)
NCTM, Computer Oriented Mathematlcs, Ch. 2 (hypothetlcal
language) -

FORTRAN -
BORKO, Computer Appllcatlons in the Behav:.oral Sciences, Ch. 7,.(’
pp. 12L-132
LEESON AND DIMITRY, Bas c Programming Concepts and the IEM 1620
Computer, pp. 326 353

AI.GOE - . . ¢ 4 a3

MC CRACKEN AND DORN, Numerica
' Ch. 2-6, 8, 10, 11

OTHER s ]
EN, An' Introduction o igital §ompating (MAD) "

”,
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systegts of numeration.
7

-'E

V.

IV. ADDITIONAL SOURCES OF PROBLEMS,

»
»

C

Mathematlcal problems displayed with algorlthmlc language programs for,

v,

thelr solutlon

’

Central {Primary) References

w

« .
[ . . .

-ARDEN, An Introduction-to Digitel Computing, Ch. 4, pp. 46-52
GALLER, The Language of Computers

©

JOHNSTON et al, An Introductien to r}!athematics', Ch.‘ 1, pp. h6-l52‘
NC’HVI' Computer Oriented Mathematics, Ch. 3. (‘
ORGANICK, A FORTRAN Prlmer, pp. 105-155 \,

[OK; ™A' MAD»Prmer, ﬁp{; 181-238

, Programming and Coding Digital Computers

0y

B

SMITH, Computer Pro:gramming Concepts, Ch.JlO (Vol. 1), afl of Vol. 2
® .

. ¢
.

K
Central (Secondary ) Reférences

. -

GRUENBER(.‘LER AND' MC CRACKEN, Introduction to Electronlc ,Computers,
: ' . (good examples’ scattered throughout boo}y but done in 1620
 , machine code) X

LARSSON Equalltles and Approximatiofls with FORTRAN Progralmmng,
+ pp. 60- 62, p. th p. 144

.

. a
)
i

.

Advanced Re,ferencee

@

ARDEN, An Introdnction, to Diggbal Computlng, o 110, pp. 131-1T;
Ch_ 12-18, pp. 161-344 ° oh ’

v BRADEN AND PERLIS, An Introductory Coulrse in Cofmputer Progrannmng, *
: “ pp. 81- 121

T f s ® @y

. . 4 N . . P! . g
MATHEMATICS OF COMPUTATION «
' 1

“Nuferical methods: error anz-alysis; 'g‘pp'roximations; computer arithmetic;
¢

-

4 .

] »
- .

¢

'Central (Primary) References

Y
ARDEN, An Introductlon to Digital Computing, Ch. 7-8, pp. 87-112

,HA'RRIS Numerical Methods Using FORTRAN,. Ch. 8-9
,K ) Computer Or:Lented. Mathematics
NCTM Computer Oriented Mathematics, 'Append.lx A

A

»

J
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/\\ -
. 3 . ve -
" Central {Secondary) References :
» BORKC, Gomputer Applications in the Behavioral 801ences, Ch. 6, -
T Dpp- 62-11" R - ’
GOLDEN FORTRAN IV Programmng and Com’outing ot
NC’IM Computer Oriented Mathematlcs s Appendlx B N . a ,
.;‘ “ “ e. > { . ‘:
Peripheral Reference v - - - L I .
° o« FROESE, Introduction to Programming the IBM 1620,L;pp». 11-12 .
’ - . ’ s
N . , T )’ t o
Advanced "Referénces : . L
4 A N
ARDEN, An Introduction to Diéi al Computing, Ch. 7- 10 Ch. 12- 16 .
N FOX, Introduction to Nmnerlcal Linear Algebra * | .
- : . ¢ ) ' - e .
APPLICATIONS OF CCEMJTER SYSTEMS A ' CT v

/ VI.
Examples of the use of computers’ in such fields, ag engineering, socmlogy, ‘ -

s s M o,

nhys1cs ete. | ' .

K

. Central (Primary) References - . " .
¢ 4 C’ e

BAR- HILLEL The Present Status Qf Automatlc Translation of Languages S s
. (1n ALT Vol. 1, pp. 92- 157) . . W ST

. BORKO Computer Applications 1n the Behav:.oral 801ences, Ch. &, 9 )
10 13, 14, 23, 2k, \ Lt ‘. .

* GOTLIEB General-purpose programmlng for business applications (in
ALT Vol. l, pp..l-hé) . .. .

GREEN Digltal Compui:ers in Research Oh 8'-13
/ LAWIOR, Informatjion technology and the Law (in AT, Vol 3, ppe-’

N 299"352) . b4 R
MC GEE The formulation of datg proceSsing ‘problems for computers v,
(m ALT, Vol. 4, pp. 1352) . .

;r SAMUEL,® Programmmg computer,s to play~games (in ALT, Vol\. 1,
.. op. 155 1929 o . . -
- 2 .v., . N

SKRAMSTAD Combined anaLog-digltal techm.qg.es in simulatlon (in'
~

ALT, Vol 3,pp 275-298) o Y SRR

.. v
. o ' .
k) .
B

%eripheral References : T, .. .
- . GASS, Reggnt developments in linear programming (in ALT, VoI. 2,
. S ‘Pb. 296-377) 7 . . ; . . .o

. & GREENBERGER Management &nd the Computer of the Future, Ch. 2,
. . . DD+ 36 91 (decision making); Ch. 3,”pp. 9&--130*(simulation of o
. human thinking); Ch. k4, pp: 135- 178 (informatiori seargh and * !

retrieval) o . , .
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,-A@vanced Ref erences .

BORKO, Computer Applications.in, the Behavioral Sciences, Ch ll 12,

15, - 22
FEIGENBAUM, Computers and Thought .,
. o . . I
N . P * !
. . \
. VII. COMPUTER OPERATIOI\f X Tea . ’

‘ The manner in which a d_lg;Ltal computer ope;‘ates to solve a .problem. '

Machine-language concepts and. programmlng are mcluded.

Central (Prlmary) References ° ,
-‘ ®e b -
° : BORKO, Cﬁmputer Appllcatlons in ’the Behavioral Sciences, Ch. 5 , .
- DODES, IBM 1620 Progrannnlng fo? 801ence anQ. Mathematics, Parts IXI-III,
. Ap'oend_lces v
FROESE, Introductlon to Programnu.ng the IBM 1620 {mach;ne language
and SPS) ° _ ~ "y
- - ! GERMAIN, Programming the IBM 1620 |

HULL, Introduction to Computing, Ch. 3 - . N

LEESON AND DIMITRY, Basic Programming Concepts and £he IBM 1620 Com-
. * ' puter, Ch. 2- 1& ;pp. 22-173
NCIM, Computer Orlented Ma,_thematlc:s, Append_lx A pp. 138 153
4 ) SHERMAN Programming and Cod_mg‘Dlgltal Computers, Ch 3, Pp- 1:-7 60

..
¢

Central (Seg:ond.ary) References .

ARDEN, An Introduction te Digital Computing, Ch. l 5, 6 .
MC CORM'[CK Dign.tal Computer Primer (hypothetlcal computer)

! NC’IM Computer, Omented Mathematlcs,'Ch 2, pp. 27- b,o (hypo‘bhetical
computer) )
SMITH, Computer Programming :Concepts, Ch. 3

- 4

' .. Peripheral References T .- -’

"CODD, Multiprogramming (in-ALT, Vol. 3, pp. 78- 153)0
CURTIN, Multiple computer operdtions (in ALT, Vol. 4, pp. 2145 303) -
ENGLEBART Games that teach the funda.mentals of com’f;uter operatlon

o X " GREEN Digltal Computers in Research, Ch. 15 PR N i
I GRUENBERGER AND MC CR.ACKEN Introduction to Eleetronic Compu‘t:ers ,.
. A ’ .
Advanced References * ' . ’
T » MC NAUGHTON, The theory ©of automata, a survey (in ALT, Vol. 2,

SRR pp. 379-k21) - .

»
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VIII., NON-T ‘ECHNICA.; AND HISTORICAL VIEWS OF THE COMHJTER FIELD ‘

Popularized or historical litetrature i{l the field..

v

, v

Ce%ral (Primary) References ' )

-
.

BERNSTEIN, The Analytical Engine: Computers--Pas'i(:; 'Present an
Fu.-ture

BORKO Computer ppllcatlons in tie Behavmral 801ences, Ch. .3
(hlstory)

+NCTM, Computer Orlented Maﬁhematlcs R Appe‘ndlx E, pp. 3.98 200
(short hlstory)

TOMPICINS Computer education (1n ALT Vol, 4, bp. 135- 168)

. VON NEUMANN,. The Computer and the Brain, Part ,.2, PR' 39-82 (the

human nerwous system) < s
LY ‘ . ‘
L]

2 Y
Ce'ntz:al (Seconciarx) R_eferences, - . . e
4

DARNOWSKI', Coniputerse-Theory and Uses, Vol.k},/‘pp. 1-29, 61_.»70

\
—— - N

Peripheral References E i %

-

GREENBERGER, Management and the, Computer of the F‘uture Ch. A
pp: 2-3k; Ch. 8, .pp. 291-32k

& .

¢
Advanced References * : : ~

&
< .. ., ' .

SHOULDERS, Micyo-electronics usirr electrott—beam-actlvated machining*
techniques (in" ALT, Vol. 2, 137 293) .
. . Tt
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ALT, F. L. (ed1tor), Advances in Computers, Vols. l-k. New Yorks  Academic ~—
oot Press, 1960-1963. The articles in these books’ range from introducti¢ns
for certain fields and sugmaries of existing work in a, partlcular field
to quite technical paper¥ to be read only with an approprigte background.
The following se%ectlon of twelve of these articlés has betn chosen as
partlcularly suitable for the high school teachew.

BARR-HILLEL, Y The present status of automatic translation of languages
(Vol l np 92 -157). A survey ~of the field of. translation of
natural languages, e.g., French, describing the accompllshments of
# number of workers. Some of the problems encountered in natural
. . _ language translation are described in-an‘appendix. . -

GOTLIEB, C. C., Gen&ral-purpose programming for business applications

Vol 1, pp 1-42)." A rapid, extenslve overview of the buslness data

‘procdessing field coptaining a short 1ntroductlon to programmlng,

. systems; characteristics of data processing problems,.typlca] data
processing operations (sorting) erging, file handling) . .

SAMUEL, A. L., Programming computers to play games (Vol. 1, pp. 165-192).

Written in general terms without giving details of algorithms, this .
article deals primgrily with computer checker playing, although it

llso discusses several approaches to’ computer chess- playlng

GASS,. S. ., Recent developments 1n linear programming (Vol. 2, pp. 296-
377) . A survey of the field | of linear programming (minimization of
a linear function of sevetral variables ofer a region defined by
boundaries specified by linear equatlons) Several specific pro-

- grammlng lapgg\§es and some appllcgtions dre described.

. . MC NAUCHTON R The theory of automata, a survey fvol. 2, pp. 379~ 421)
Automata theory (excludlng such topics as switching theorx, theory
.1 of computability; and artificial intelligence) is treated startlhg .
from a basic level, defining fundamental concepts, end proceeding
. at a level approprlate for most teachers . -

SHOUUDERS K. R., Micro- ‘electr nics using electron-beam-activated machin-
. . iﬂﬁ technlques (Vol ~2, pp. 137- 293). A lengthy (150-page) report -
- on devices”that may have considerasble impact on computer design .
\} technology. Thin film circuitry is described in great detail with °
emphasis on novel manufacturing.techniques.

- N . ,

CODD, E. F., Multiprogramming (Vol. 3, pp. 78-153). Multiprogramming is_
concerned with concurrency of operations within cq@puter Bystems.
This article offers a thorough, relatively non-<technical introduction
to the subject. It requires no particular background.in g specific
programming lafguage. , .

>

LAWLOR, R. C., Information technology and the law (Vol. 3, pp. 299-352).
Tﬁis article provides a brief look at the possible utilizatidn of.
computers to aid in ipformation retrieval in the.field of law. In -

addition, the article shows how Supreme Court decisions.might be

. . . .predicted by the computer, using information on past decisions. -
" / . . ) . . . . R
- .
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y : 296 , :
Q . , .o, g . . SR )
ERIC" - - 2 : -

rorecrosieio enc) . Sa .- . . =

e ‘ - . . e .




>

SKRAMSTAD, H. K., Combined analog-digitgl technijgues in simulation (Vol. 3,
pp. 275-298)." The kinds of problems best handled on such & system
are described; some eguations are solved on each of tHe two types.
Examples are given. The problems with such a system are described.

CURTIN, W. A., Multiple computer operations (Vol. , pp. 245-303). A
.» _descriptibn of general concepts for “he design, programming, and
. scheduling of multiple computer systems. Existing multiple cormputer

%..systems are reviewed, s
MC GEE, W. C.y The formulation of data processing Ero'blems for computers
(Vol. 4, pp. ¥-52). A review of. recent developments in certafn
areas of data processing® the characteristics of data processing
languages (COBOL et al), organization and description of "data, and

somg beginning attempts at a theory of dsta processing.

. TQMPKINS, H. E., Computer education (V6l. L, pp. 135+168)« . A description
of the efforts toward computer education at the college and high
school 'levels with éniphasis on the former. A few comments are given )
‘on programmed instruction.

ANDERSEN, C. An Introduction to ALGOL 60. Readiﬁg, Mass.: Addisen-Wesley,
196k. " A clear and very brief description of the language AIGOL. The
reader is assumed to have.a basic knowledge of step-by-step logical
Jprocesses’ and tepetitive ‘eperations. The features of the language are

", introduced gradually and in a natural and convepient order. Individual
features are illustrated well by examples. i

ARDEN, B. W. An Introduction fo Digital Computing. Reading, Mass.: Addison- -
Wesley, 1963. This book for the scientifically-minded reader is an
excellent introductionsto digital computifig. “About one-ha¥f of the book
is devoted tb a detailed exposition the subject of numerical analysis.

N Many numerical techniques are illustfated b algorithms’ expressed in the

) MAD language. The book also .coniains an excellent chapter on numerical . .

* “methods and a final chapter which "describes the programming of "a simgle
compiler". In addition to an introduction to MAD, a basic approach to
machine organization is given. ) - .

[ 3 . l

BAUMANN, FELICIANO, BAUER AND SAMELSON. ‘Introduction to ALGOL. Englewood
Cliffs, N. J. Prentice-Hall, Inc., 196%. “An excellent, exceptionally
clear and concise textbook on the lenguage ALGM; well-suited for use as

~  a reference work as well (includes revised report on ALGOL 60 as appendix).:
Assumés a kngwledge of the basic ideas of step-by-stép logical procedures

, and repetitive processes. ».

BERNSTEIN, J. The Analyticdl Engifie: Computers--Past, Present and Future.
"New York: ~Random House, 130%. This highly readable 1ittle book (103
pages) first appeared as a series of articles in the New Yorker. Any ~
reasonably” literate person could enjoy it as popular histOrica& back(g.round.

,

BORKO, ‘H. (editor) Computer Applications in the Behavioral Sciences. Englewood

) Cliffs, N. J.: Prentice-Hall, Inc., 1962. ~Although comprised prircipally
of a collretion of 17 reports covering a wide variety of computer applica-
tions to he_behavior,al”’f'skgiences, mﬁi ook also contﬂns_a_L}l-O,—page in-
troduction to computing qﬁch_ presupfoses no prior’knowledge. The research
reports, while not easy reading, should be ,rewarding for the feacher who
wishes to del,_gée further into any of the topics. .

., -

. . . -
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BRADEN AND PERLIS. ég Introductory Course.in Computer Programmlng‘ ‘This is

Y

* Monograrh No. 7 of the Discrete System?Concepts Projects funded by the
National Science Foundation and written at the Carnegie Institute of
Technology, Pittspurgh, Penna. These course notes, not commercially dis-
tributed, are fTor an 1ntroductory course primarily involved with ALGOL.
They are yell wrltten and contain many fine exercises as well as an en-
llghtenlng expos;tlon of data structures , . - . e

COIMAN AND ‘SMALLWOOD. Computer Language--An Auto-insTructional Introduction

to FORTRAN. New York: McGraw-Hill, 1G62. An intTroductory manual (1n a
rather unusual format) to & subBet of the language FORTRAN.

.

¢

DARNOWSKT, V. S. Computers--Theory and Uses (teaching un1t and teachers’

'guide). Washington, D. C National Science Tegchers Association, 1564.
Limited editions--revised ‘edition to be offered for sale at a .later-date.

& 4 .

- DIJKSTRA E. W. A Primer of ALGOL 60 Programming . " New York: Academlc Press,

152, A brlef well -written readable presentation of ALGOL 6Q to readers
already famlllar with some compller lgnguage. Special features of the |
imylementation of the language for the Mathemgtlcal Centre, Amsterdam are
presented s .

~

DODES, I: A. IBM 1620 Programming for Science and Mathematics. New Yqrk: <

Hayden Book Co., 1/63. Of interest prlmarlly to those who have access to
a 1620 computer, this is a in 1620 programming, for good 12th grade
students. It is not, an 1nt§§§zctlon to the overall field of computimg,
Lut treats numer1cal’analys1s,lmachlne language and symo;lmc,programmlng;
and--brlefly-—FORTRAN

. ‘

ENGLEBART, D. C. Games igaat teach the fundamentals of computer QOperation, IRE

FEIGENBAUM AND FELDMAN Computers and Thought 'New York: McGraw-Hill, l963

Transactions, Vol. E.C.-10, No. 1 1, March 1960. This paper instructs a-
'teagher in the rulegLfor playlng a game using- up to 20 students for sim-
dlating variaqus kinds of simple computer elements¢ Bach”’ individual
watches the up-down hand pOSlthH‘Of one or two others and adJusts his
hand pd%ltlon to a response task w ich is equivalent to an AND, OR, NoT,
or flip-tlop. Counters, shift registers, and adders may be organized in
this way. . 1 . .
/ . .

A fine collection eof twenty Tesearch reports on Artificial Intelligence
(programming computers.tod perform <intellectual tasks such as game-playihg,
theorem-provingy etc., in the same way that persons might performsthese
tasks) and Simulation of Cognitive Processes (constructlon of computer -
models to aid in understandlng the information processes underlylng .t
human behavior). . .

- ~ > 4

L. Introduction to Numerical Linéar Algebratgygxford: Oxford University

Press, 1964, A sound readable account, most at the level of inter- -
mediate” algebra, of the numerical methods used in tHe solution of lineam

a

equations, matrix 1nversion and.the ‘eigenvalue problen., .

. FROESE, C. Introduction to Progrdiming the IBM 1620 Readlng, Mass.: Addison-’

v

ERIC
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. ‘

Wesley, 190k, of interest only for those, who have acdcess to an IBM 1620
computer. Emph351s on operatlon, feeding information into the machine,_
machine language and symbollc programming

'




GALL'.ZR B. A. The Language of Computers. New Yor}c Mc“Graw-Hill, 1562. An =~ =
extellent introduction to the structure and usé of a machine- 1ndependent *
algorithmic language (& simrlified version of MAD), The language is ine
troduced gradualdly, employing examples together with _solutions given voth |
by:{low-chart and MAD. progrém. A «,omplete ansver vook 1s available on
;equ@st from the publisher.

GERMAIN, C. B. Programming the IBM 1620. Englewood Cliffs, N. J,: Prentice-
A Hell, ‘1962.7 A text for a,first course in programming w.th emphasis upon
. the ereration pf the ‘1620 (assumed to be available) and the use of machine
o l.anguage and symboli¢ codlng . X .- '
4
. pOLDEN J. T. FORTIRAN IV Prbgrammlqg and Computing. Englewood , Cllffs, N. J\! .
Prentice- Hal,l al%_. A development of the 'FORTRAN IV language. - It differs
from some ‘of “the. o rs in its heavier use of mathematical examples. The S
matiematics is at ‘aeavly college level, and slould give teaehers" some
i 1deas for exam'ples_ d exercises.

- N \ .

.

o GREEN E FaJdr. Digital L,om{uters in Research. New York: McGraw-#ill, l.o3.
This Jboox is of interest &pnncmally for the applications in Part III
Many of these prgblems in the behgvioral sciences are. treated rather
o llbhtly and can be profltably read mt,hout atterntion to Parts I and TI.
\ . M
GRE“NBEIRGER M. (edltor) Management and the Computer of the Futyre. Cambridge, ’
Mass .t ~M.I.T. Press, 1562, In sp splte of its mls,lead_mg title, this col-
lectlon of elghtJlectures (wih accompanying ’dlscussmn) co talns much, ~
. background material’ of -special interest tq hlbh school. teach8rs and stu-
dents. (Not a textbogk.)

¢ .

GRUENBERGER AND MC CRACKEN . Introducl,lon to Electronic Computers. New York:
John Wiley, 1963 ~A good IBM 1620 machige- language programming text
;switable for 12¥h grafe- students having access to a 1620 computer. K
very good presentatioh of basit and important (buf highly' pachihe-oriented)
material.

4 .

' ?
HARRIS, L. D. FORTRAN II and IV Programming. Colunbus - Ohio: Charles B A
Merrlll ‘1 65 This book contains & brief 1ntroductlon to FORTRAN
Emphas1s is on a siuple subset of FORTRAN. This material 1s reprlnted
in the, same author's text, Numerlcal Methods Using FORTRAN. :

HARRIS, L. D. Numerical Methods Using FORTRAN Columbqs Ohio: Charles E.
. Merrill, 156L. This bdok attempts a marriage of programming and numerical .,

methods for the engineer or scientist. Altlough the presentation of
FORTRAN is quite readdble, the book is primarily of interest for the y
* problems in Chapters 8 and 9. . . .
HARVILL, J. B. Basic FORTRAN Progremming. EngleWOOd Cliffs, N.'J.: Prentice-
Hall 1966." An interesting®introduction to & small version ¢f FORTRAN ~
(essentlally FORTRAN II without format details)! Written in an elementary
« style and émphasizing the usefulness pf flow diagrams throughout, this
book should be attractlve to students. The abghor introdqces an inter-
esting echnlque for watching the changes of pértinent storage areas ower
- time, Hled the Memory Chart. -

M »

HULL, T. E. Introduction to Computmg. Englewood Cllf’fs N. J.: ' Prentice- '
"Hall, 1966. & readable introduction to compdtlng-vn.a FORTRAN IV, with
several non-numerical exampleg in the 'later chapters. The blbllography
in Appendix A is very good. . )

3 .
- - ) ,? . ) .
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"u no computer programming here, Just the ma*hematrcs. LT . . :

‘MC CRACKEN AND DORN. Numerical Methods and FORTRAN Prograhmlng. New York'

. N

-

_JOHN§@ON PRICE AND VAN VLECK. An JIntroduction. to Mathematlcs, Vol. 1, Parts

1l and 2. Lawrence, Kansas, Department of Mathematlcs, The Unlvers1ty of

Kansas, L963 This book is part of a mathematics text for the University 5

freshmair. * Only pages Lb- 152 are of 1nterest to this study-guide. In

‘that segment of the book the basic concepts of flow charting and program-

ming an algorithm (in an informal langudge. similar to ALGOL) are presented

in the context of solving systems of limear equations: 2 X 2, L x 5, and

m X n. This section is recommended as an example of a quite detailed algo-
. rithmic solution of a problgm, not as a text.

i

KOVACH, L. D. Computer- Orlented Mathematlcs.' San Francisco: Holden-Day, 1964,
A small book, easy tosread. It is concerned with such computer-oriented
toplcs as approx1matlons, itefation, Mente .Carlo methods, etc. There is

LARSEON, R+ D. Equalities and Approx1matlbns With FORTRAN Programming. .
New York: John Wiley amd Sons, Inc., 1963. The teacher who knows FORTRAN
an £ind in this book a few probléms in mathematics programmed in FORTRAN
.. (baslc fOrmatless FORTRAN for the*IBM 1620)... .
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LEESON AND DIMITRY. Basic Programmlng Concepts and the I§M légg Computer.
New York: Holt Rinehart and Winston, 1942 2.  This text is a complete
treatment of proframming the 1620 with tailed emphasis op machine
languege and symbolic coding. A brief | probaUly 100 %rlef for use by a .
# -beginner) but accurate presentatlon of l620 FORTRAN . I is given.

MC- CORMICK, ‘E. M. Digital ComputggpPrlmer. New Yorks McGraWaﬂllloBook Co.,
1059 The persan already compgtent in the area of programming and who
wishes to delve into how computers work internglly and how they are
des1gned_can find in this book a brief treatmazt'of arithmetic and logical -~
units, input-output devices and related topics.- . T

MC CRACKEN, D.,D. A Gulde to ALGOL Programmlng. New York: John Wiley and '
. Sons, Tnec. R 1952 This is a welF-organsged introduction to the language
- ALGOL, 1nclud1ng nine- case-study examplesy each, carrying a problem from
the original statement through the completed OL program. .

A

MC CRACKEN, D. D. A Guide to FORTRAN Programmlng. New York: John Wiley, 1961.
A brief (38 pages) introduction to FORTRAN programming for the person who °
wants to get a rapid grasp of the language. * R R -

e

n .John Wiley, 196L4.” A very readable book providing en ad%qnate description
of FORTRAN and a good introduction to & well-selectéd Set of topics in
numerical gnalysis., Almed at under-graduatés in science and engineering,
many parts of the book are likely to hestoo advanced to suit the needs of
the high school teacher. However, the teacher with adequate mathematical
hackgyound will find much of the materlalxqseful for his own enriehment
even/;hough most of 1t w1ll be beyond The reath- of ‘his students.~? )

NATIONAL COUNCIL OF TEACHERS OF MATHEMATICS. Computer Oriented Mathematics,
An Introduction for Teachers. Washington; D. Cs; N. C.E.M., 1963. This

book has an excellent plan as an introduction for t ers. Its purpose,

is not to teach.the idea of a ‘eomputer as an end in self, but rather to
motivate the stidy of mathematics by drawing upon the appeal and power of
computers, In'order to attain this goal, certain problems of mathematics
are selected which can be solved’ appropriately,on a compyter. Emphasis is
placed on the Qrganizatlon of solutions imfto logical step =by-step processes,
the use of flow—charﬁs, and on the repetitive capabllities of computers.
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ORGANICK, E. I. “A FORTRAN Primer. Reading, Mass.: Addison-Wesley, 1963.
This is one of the most complete and well- organized FORTRAN texts avail-
able. It uses a comprehensive set of examples - -and®drill exercisges
independerg of any discipline. Tts completeness and thoroughness in
treating the differences between  FORTRAN processors on various machines
mdy make this, boQk more suitable for a course taught by a teacher with
p1ev1ous knowledge of FORTRAN than for, self-study. °

ORGANICK, E. I. A MAD Primer. Ann Arbor, Mich Ulrich’s Book Store, '196)4-

" This book does for the MAD langnage precisely “hat the author s A FORTRAN

Primer does for FORTRAN.

)
3 ‘ .

SHERMAN, P. M. Programm.ing and Coding for Digitdl Computers. New York: John
W1ley, 1962. An excellent v'om“*‘ehenswe source book of information on
basic computer concepts and on computer programming, including numerical
scientific applications, business data processing, and non-numerical -
gpplications. Probably more useful to the high school meacher as a
reference work than as a‘text.

»y

- v
SMITH, -R. E. Computer Programing Concepts. Vol%.l (Reference material),
VoI. 2 (Problem exercises). Minneapolis, Minn.; Control Data Corp., 1963.
' An excellent introduction to the basic concepts of computers at.a. level .,
easily understood by high school students. Emphasis is on FbR‘I‘RAN as used
with the Control Data 160-A Computer. Well-selected examples with a lib- |
‘eral sprinkling of humor.

PRl 7 " -

‘SMITH AND JOHNSOX. FORTRAN Autotester. New York; Jehn Wiley, 1951, An excel-
« . “lent intrpdfctien to FORTRAN, particularly if a computer i§¥not-available ,
for praegram check-out during the course of study.® Minimal use of flow-
‘chart's. Exceptionally well-suited to a brief' self-instructional initia-
tioh to the FORTRAN language.
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SPROWLS, R. C. Computers--A Programming Problem Approach. New York: Harper
and Row, 196§, A good treatment of several lapnguages, such as FORTRAN,
(COBOL, and PL/I. Many examples B with emphasis  on flow diagrams. The
accompanying Iastructor's marfal contains a gréeat deal of teaching phil-*
osopiy and insight into the author's teaching methods. This book\wnl be
useful primarily for the teacher.

R T R g -

‘" ’.f'RAKH’I‘ENBRO’l‘ B. A. Algorithms and Automatic Computing Machines. (Translated
from_th® Russian edit)(dn--lT) "Boston: D. C. Heath and Co., 1963.
This book is ooncerned w1th the theory of algorithms. Tt requires no
specific information _from other branches of mathematits beyond inter-
mediate algebra. The subjéet matter is deep and the treatment is rigor-
ous, requiring the reader to follow a rather complex train of logical .
thought but the author has done an excellent job of making the ideas as
accesgible gs possible. The bagtc ideas .are introduced very carefully.
and gradually, and they are very well motivated.ﬁiecommended for the”
teacher who would like to follow up some of the.l0gical and philosophical ,
implications of computing. -

P

' i )

VON NEUMANN, J. The Computer and the Brain. New Haven: Yale University Pressy,:
1958 ’L’his excellent book although not intended as a textbook, is rec-
ommend.ed to the tedcher as an historically oriented account of the organ-
ization of computing machinea. The second part of the book discusses >
analogous properties of the human nervous system‘ < ’

«“
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