\

v : < . N
[. - ~ . -
. . . - . Q,

' ' DOCUMENT FESUME ‘
. ED 148-506 - SE 022 983
-) . A . BN .
AUTHOR { Charp, Sylvia; And Others - A : prl
i TITLE Algorithms, Computation and Mathematics. Student .
. : Text. Revised Editicn. ° »
* INSTITUTION Stanford Univ., Calif. School Mathemalticse St ,
: Graup.- ' s N
SPONS AGENCY National Sc1ence Foundation, Washrggt6ﬁjfgj;%éf e
FUB. DATE , 66 jgr///// . v
NOTE 456p.;. For related d;\ﬂmen see SE 022 984-988; Not -
. available, in hard ccpé;ﬁue-to marglnal legibility of - - -
- ¢ original dqgument Eages 3-6 missing; Best Copy 2 .
A Available ‘ i cTT T
R ! « o \ .
EDRS PRICE . MP-$0.83 Plus Postage. HC Not Avallable._fmm-ED.B?{u_--_
EESCRIPTORS * *Algorithas; *Compwters; *Instructional Materials’ .
Nd ') Programing Languages; Secondary Education; *Secondari
. Schocl/Mathematics; *textbooks .
IDENTIFIERS *School Mathematics Study Grouwp
MBSTRACT) e ‘ .
- This text contains material design=d for about 18 Nt
- weeks JOf study at grades 11 or 12. Use of a computer with the course
is highly recommended. Developlng an understandlng of the '
relationship between mathematics, cgmputers, and problem solving is \
the main objective of this book. The following chapters are included-
in the book: (1) Algorithms, Language, and Machines; (2) Imput, . -
Output, and Assignment; (3) Branching and Subscripted Variableg; (4) ' {
"Looping; (S5)" Functions and Procedures; (6) Apprcximations; (7) Some
Mathematical Applications; and (8) Compllatlon and Some Other "
- Non-Numeric Problems. Also included is a\dlscuSC1on on futurée !
computer applications. (RH) Lo ; y . .
. -
B ¢) A
- N ¢
° N
4 B N
o ! - —
L ‘ ’ . o
Loy , / S “
i

* fede K ***.

»

* “Documents acquired by ERIC include many informal unpublished *
* pmaterials pot available from other souTces. ERIC: pakes every effort *
* to ,obtain the best copy available. Nevertheless, items of marginal *
* reproduc1b111ty are often encountéred-and this affects the quality *
* of the microfiche and hardcopy regrroductions ERIC makes avallable *
% yia thé ERIq_Document Reproduction Service {ELRS). EDRS is not ¥
. * Césponsible for the quality of the orlglnal dccument. Reproductioms *
* supplied by EDRS ar};ﬁhe bes that’can be made from the original. “* .

#********************* fedke ek Kk ok ***************************************

o

<~ J . . N

v ! ¥
US DEPARTMENT OF HEALTH,

EDUCATION B g HEAL “PERMISSION .TO REPRODUCE THIS
Y NATIDNAL INSTITUTE OF . MATERIAL HAS BEEN GRARNTED BY
- + EDUCATION - 5
. THIS DOCUMENT HAS BEEN REPRO. SMS6 :
. DUCED EXACTLY AS RECEIVED From ° . .
THE PERSON OR ORGANIZATION OR IGIN. - N
:YING IT POINTS OF VIEW OR OPJNIONS .
' STATED DO NOT NECESSARILY REPRE. - - . 3

. SENT OFFICIAL NATIONAL INSTITUTE Of . TO THE. EDUCAT’quAL RESOURCES
. EDUCATION ROSITION OR pbL)cy INFORMATION CENTER (ERIC) AND

: 2
4 . THE ERIC SYSTEM CONTRACTORS ~

- ' -

ALGORITHMS, L
COMPUTATION .
., AND
o MATHEMATICS :
. , Student Text ve

«)

. Revised Edition '

[.

* The following is a list of all those who participated in the Sréparation of this
volume: ' o . .®
Sylvia Charp, Dobbins Technical High Schoo,PPhiladelphia, Pennsylvania
Alexandra 'Forsythe, Gunn High School, Palo Alto, California
Bernard A. Galler, University of Michigan, Ann Arbor, Michigan
John G, Herriot, Stanford University, California . 'Y
Walter Hoffmann} Wayne State University, Detroit, Michigan
Thomas E. Hull, Univérsity of Toronto, Téronto, Onf¥ario, Canada . '
T'homas A. Keenan, University of Rochesttr, Rochester, New York
Robert E. Monroe, Wayne State University, Detroit, Michigan .
Silvio O. Navarro, University of Kentucky, Lexiﬁgton, Kentucky v
Elliott 1. Organick, University of Houston, Houston, Texas , -
Jesse Peckenham, Oakland Unified School District, Oakl'and, California .
- George A. Robinson, Argonne National Laboratory, Argonpe, 1llinois . ~
Phillip M. Sherman, B:l Telephone Laboratories, Murray Hill, New Jersey
-Robert E. Smith, Control Data Corporation, St. Paul, Minnesota
Warren Stenberg, University of Minnesota, Minneapolis, Minnesota %
Harley Tillitt, U. S. Naval Ordnance Test Station, China Lake, California - 2
Lyneve Waldrop, NewtonJ’South High School, Newton, Massachusetts ’ S

The following were the principal consultants:

Geﬂgﬂ E F““‘,”h“, Stanford ”l"-i'“..'.w::',, Galtforniax T

~/

>

-

—-C

@)

RA i 7ox proviaea by ERic:

Bernard A. Galler, University of Michigan, Ann-Arbor, Mj&}xiga:n' T .
. Wallace Givens, Ar'gonne'Nationalematogy, Argonne, Illinois . . :
y .

3 .
' P K
« . [.
i
« < . !

. . , . ,
v, ‘ 4 .

. “J ’,

© 1965 and 1966 by The Board of Trustees of the Leland Stanford Junior Umvemlr

Permzsszon tomake ve,rbat:m use of material in this book must be—seet;rea‘ -

.

All rights reserved . 4

Printed in the United States of America -

-
-

from ‘the Djrector-of SMSG. Such permzsswn wlll be granted except in"

unusual circumstances. Publ:catwnsmcorporatmg SMSG materials must -

include both-an acknowledgment of the SMSG copyright (Yale Univer-,

. sity or qunford?]mvers:ty, as the case may be) and adisclaimer of SMSG

 endorsement. E:écluswe liggnse will not be granted save in exceptional
circumstances, and. then only by specifie acizoh of the Advisory Board of

SMSG..

‘/ ' . . N

-

tERI!

Aruntoxt provided by Eic:

) mathematics itself. One of the first Frojects undertaken by SIvSG was to enlist g

A

' SMSG includes college and university mathematicians R teachers of mathematics

; presented in this text is valusble for all well- educated citizqns in our society *

Tyhar

.o ' - -
"The increasing contribution of mathematics to the culture Of the modern
world, as well as its importgnce as a vital part of scientific and humanistic

'education, has made it essential that the mathematics in our schools be both '

well sele'cted‘andvéifl taught ’ o S —
. v . g . 'o .

W#th this in mind the various mathematical organizations in the United
States cooperated in the formation of the School Mathematics Study Group (SMSG)

s

-at_all levels, experts in education, and reprgsentatives of science and S .
technology. The géfieTal objective of SMSG is £he improvemént of the teaching.

-of methemetics in the schoold of this country., The Natiohal Science Foundation

.has proVided substantial fuﬁs for the support of t‘his endeévor,

One of the prerequisites for the improvement of the teaqhing of mathe-
matics in our schools is*en improved curriculum -- one which takes account
of the increas ing use. of methematics in science and technology and -in ’othez'
a.reas of knowledge and at the same time one which refleets recent ddvances- in .

recdls, Sewm.s Tees A6

& group of outstanding methematicians and mathematics teachers to prepare 8

series of textbooks which would illustrate such an improved curriculum.

The professional mathematicians in SMSG believe that the matheﬁxatics

«

-

to know and that it is important for the precollege student to leaxrn in prepara- N
tion £3r advanced work in the field. ‘At the same. time!, teachers in SMSG believe
that it is presented in such a form that it ,cen be readily grasped by s!'t-.udeni:sx .

. In most instances the material will have a familia.r note, but. the presen- .
tation and the point of view will be’ different. Some material will be entirely)
.new to the tréditional curriculum This is as it should be, for mathematics i
is a living and an ever-growing subiect. and not g asna hnd..i‘xozen-preéue%—ef-—-—v—-—w——-—

-
, -

v E K

~ . .
. 2
+ N , M . : -

1 ' .
antiquity.. This healthy fusion df the old ahd the .new <should~ lead students to . ,
&8 better” understanding of the basic concepts and structure of mathematics and .t Ay
provide a firmer foundstion for understanding and use of, mathematics in a

. ° ’

scientific society. ° ’ ' C o3

- . . .

‘., > >

\)‘ 4§/ PO . . . ‘: - v [

3
"’\. 1
-\
N - . N - 4
Y 1 . ° ' .
. Tt is not intended that this book be regerded as the only deinitiVe way.
1
Y. of presenting good mathematics to students at this level. Insteed, it should

v, be thought of as a sample of the kind of improved curriculum that we' need-énd *

J
8

as a source of suggestions for the authors of commeréial textbooks. It i;‘
v

.

- - sincerely hoped that theése texts will lead the way toward inspiring a more

n}eanipgful way of teaching Mafhematics y the Queen snd Servant c_xf the Sciences.

N ' A

) .
\ . . 13 »
\ .
i e ! * »
. . BECEE
-
v . - [3
1 " -
o
) 4 .
- . ¢
1
2
.
B
.
. » ”,
g . . R -
b . y
-
"W -
B
a ‘ 4
c . ?"
. . I
? . N
A : /
L4 - v
.
- ’ - .
B
< . .
M r
. .
/ 2
. .
Y R , v
*
.
. ' .
Ny \
J Al + R)
[- . L, e
-
.
P ¥
N v N ! . -
-
. ¢
/~ o &
N
A . e
4
< \ , . . «
> 4 Wt
. -
7
L3 -
* \ o *
voE .
- v(? .
' .
W . K [
‘ ’ J 4 N o }
.
.
s
1 .
’ t ' .
- R \
- . . ‘ *
L «
’ o
f L. B
- . (.’] <
¥ * ' 4
[.
[T . . ° 0
N ~ 3
. » . ~
) - . A 1
) : . ? iw ¢
ERIC ‘ 5] -
- ERIC - - .
A
e rovsedor enc Y ' - ' ! ¢« ¢
° .

Pl o M 4 . L4

- -
. -
. . ‘i
N | . '
- .
. o
. \ . - . .
. L] -~ »
s ‘ 4 " e
. .
. . . *) .
N - > - . N
.
N « .
— .
' - s PREFACE . LI .o
v . .
.

To The Btudent: . ! ‘
. . B - 1 . " . -
A new computer !c1ence is emergmg as a dlsclphne*in the colleges and

universities of our land .0n a growing number Bf collegé < cempuses studernts e

, who are majoring, in englnee-rmg, mathematlcs, busmg:ss’ —<and other areas, .+ .

i ' are-being urged or"even required to gazn at least an introductory ¥iew of

this new science before stepping into s comnu‘ter-mfluenced soc1ety. o

» ~— . .
An introduction to computer scien::e is much'more then a quick how to .
do it"—op the use of computers. Among other things, it is based on and i¢
an extension of the matherhatics you now kn0w. Developing an uhde}standing of
the relationship between mathematlcs,, computers , and problem solvmg is the
Jkobqec’clve of this book. ‘I'he "how-to-do- 1t" or technique of computlng

o is also necessary. You will flnd yourself acgulrmg such $kills as a valuable

4

by-product of the leerning process that you are now embarking on. The - -
P ppportunlty is here. Qei%e it? . .
- . ' ? . : ‘

f)
N . « 0

. . .o .

N L
. + . <
. . - .
'
. -
.
' N L}
A . " - ~
» Y .
- [8 . . - P
- »
. . .
> '
~
@ '
¢ . .
. . v Y ' ?
. . . ,\ -
2 - N .
B
K . %
¢ -
y
.) . . -
. . N ¢ ’
’ . s . . .
’ v ., .
° , a (
. " !
M ’
oon . R oo A . . ’
A .t .
\ o
’ M ¢ .
° e
. . B
! Yo iy 5 T
T s [IETESRIVY S ! > ey v w i
' P - B . i “»
? 1 t .} P . 2
o . . - . K
Y ! ’ ’ o !
\ ' P
— R \ . y . ' .
¢ . ra \
P P ‘ \ . LA * !’ Y .
2 .
- B * ’
s e (s
f
. \ L. S
.] . : .
¢ . . -
. : (& -
K “ . N o , R L W 7.
. B
t J 3 * .
t B
i =~ LI L .
. .
.‘i b . .-
| &) .
EN{CQ, b -
Lo
. . i
| .t

v .‘ L 1 g ! "
ezt >,)
., » . o . ' .
. . o -
) N \T - - " .
° . ABLE OF CONTENIS' o= : ,
: . \ ‘ v ‘
FOREWORD) R Fo
"+ PREFACE L . 0 ®
h S Ve
Chapter . b . .
.) N W~ ,
1 ALGORITHMS;- AGEANDMACHINES T1-
! 11.Introductin....,.....u........'..;.'1',,
L 1-20 ALittle Higtory. « & v v v v v v v e w w wu . R 3., BN
1-3. Some Technical Aspects of Computers e e e e e e e e T
. . 1-b. Numbers ‘and Other Characters. 17
v L5 v Algorithms. . . .l L i s s e s e e e e e . 2h
, 1-6. Comments on Language. « « « « o« « o' 4 4 2 W u . . R
. 2 INPUT, CUTRUT AND ASSIGNMENT. . L A. 35 ’
/7 2-1. The Flow Chart ConcePt. v « v v oot v o o o o o o o o o 35,1
2-2. Repetifion. y ./ . . 0 S . e e e e e e e e e W
> 2=3. Assigmment-€nd Variables.v. v v . 'y . .. b5
' 2-b. " _Arifhmetic Expressions. v 54
N - 2-5. Rounding Functions. . .-.'v v v v v v v v 69
T 2-6. Alphanumeric DBt . 4 « v v 4 4 4 4 e w ae . a . . . '8E :
~ 3 BRANCHING AND SUBSCRIPTED VARIABIES . & v v ¢ ¢ o o e v v v W 89 R
3-1. Branchmg......—.........\.....n.,. 89 /
7, 3-2. Auxiliary Variables .. o . . . - P O X ¢ 2]
. 3-3. Compound Conditions -and Mutiple Branching e e oo . 120 ~ ¢
‘ 3-4. Precédence Levels for Relations . « « « & o v o o + . . 130 ,
- 3-9. Subscripted Variables v v v v v v v v v u ... 13k .
i . 3-6. Double SUDSCTIPES « & v v o % W 4 oc . in . %, "149 i
~ h.'LOOPING.,.‘........................]:57 . ‘
* 1&-1:Looping...................".'....157 .
) b-2. TIilustrative Examples . . + v v v v v v 00w v 0w u .. 165. \
ba3't, Table-LoOK-UDP + « v v v v v v v v v v v v vt e w . e, 179 - '
hb Nested[oops..........’............190 e
5 " FUNCTIONS AND PROCHDURES . ta 7
" 5-1. Referencg FlovCharts C et e e e e e e e e e e e e ,315?
5-2. Mathematical Functions. T~ 1 "
5-3. Getting'In and Out of a Functional Reference. . . .”. . 229 g, B
5-14.Procedures.......................2bl !
* 5-5. Extensions to Reference Flow Charts-and ‘their Models. . 251 . N
5-6. Chayacter Strings — 259 ,[
6 APPRO}CI'MATIONS.."..'...,......'.’-‘......,,..265 LB
. 6-1. TAEYGAUGLION: « v v i v v v e e e e e u s e o 265 . 7 -
6-2. CHopping and, Rounding to m Digits 2L L. 207 L0 p
6-3- ‘IhreeDigitArLthmetic..‘.,.......'.\....‘. 268 > :
6-h. Implicdtions of Finite Word Length. .". 271 \
6-5. Non-Associativity of Computer ‘Arithmetic. .'.. . L. 277)
. »766.‘Some1>1tfa11s~..............,,....-..281‘
. 67.MorePitfalls.........,......,.....286
6-8. Approximating F\mctions‘ . - B .
; \ ' ‘ N .
\ . P
» Moo 0
\‘1 . «’ 1 (‘ - vii. .
B lC .° ’ . '. o, -
. . ‘ .. } / , ‘7’. ‘ ’ .
. . P - | . A ‘M

¢
Chapter . .
' 7... SOME MATHEMATICAL APPLICATIONS. . "+ . . i + . .
oo : .7-1., Root of an Equation by.Bisection.
- . " 7-2. The Area Under & Curve: An example, y =
s . - between x =/]£n 311,
. . T7-3. The-Area Under a Curvé: The Gener S€ .rv o0 . .0 32b
. L T-b. Simultaneous Linear Equations; veloping a ,
, systematic method solution. . % &£ » «.« . « 330 °
, . 7-5. Simultaneous Linear atiods: Gauss Algorifhm .-. . 4338)
- ' e v
; 8 COMPILATION AND OTHER NON-NUMERIC PROBLEMS 359 :
8-1. Introd e U 1 A
: 8-2. Sy/mbofManipulation. P (<3
- . 8-3 . & Language 1to be Transiated . + « « o ¢ « v o « « « +» 369
. - 8ak!| Prescan, (the preliminary steps of a compiler) . < . . 3Tk
'8-5. The Decompositiqn of Assignment Statements. 390
. 7 8-6.° A Decomposition Flow Charb. « « « o ¢ o o+« » o o o HBOL
-~ . . -~ -. . . k
! Epilogue M_NWMNRCOMMS....'..............‘ho9 C,
- ~E-1. Computer Applications TOdBY « « o TEp e e 4+ s o+ o+ Lo9
) . E-2. Changes in Computer Directionsy . « «™v & o « o « o & 411 .
., *E-3. New Problems. « « « o ¢ o o« o e e e g e e e e e s h12
’ E-h. Preparing for the Futyre. . . « « « ¢« ¢« o o« o < o % by
- Lo N
- APPENDIX Av o o o o o v o s o e b o m ve o v o e o @ BID
- APP.ENDIX/‘»....,.........i,.i..'.’.....hh6 .
. INDEX)) -0
’ ; e R4 ' ' ‘e)
Y : —e ! .
- s * - * ® . .
, . CN,
. ! ' . . ’ .
M 3
f ;- 7
_—) . .) .
- . Y) » .. .
~ . - y] N L3 ~ i v
X . = , (- 3 ;
;E\’) ’ vﬂ _ : f) . ’ {o .
I A A‘é‘x v -
- .l . " ! i
1 . . - ’ R . . :
L . L8 e ;
N o) L vimi Lo
"L EMC) . . ") P ~ ,3- ‘ 7 R .. X "{,‘w
Y ommmt T 1 | w - : SR Ly ‘
AN Y, N -~ i [N ‘. ; W
‘ = ' o I 3 7 «

) ’ . e
-‘ ! « - ’ - ‘
, . . // . . " . - .
N : // hd - '
.) R} / ’ . *
: ; -7 . Chapter I e v ’
¢ 4
4 'ALGORTTHMS, LANGUAGE AND MACHINES -
t 3 N ‘ .
7 , . ¢ 3
v «
. ') : ' +)
Z1-1 Introduction - ’ - P ..
> ;o C
S THese gre the early,(exciting years of g revolutien in wan's ability o

io process and use infofmdtion. This. is.the computer revolution. It

g prom:Lses to be at least as far-reachifg as the industr;a} revolu'tion of the
steam engine. Twenty-*five thousand electronic computers are 1n use in the
United States alone. They r_epresent an 1nvestm%nt of eight billion dollats.

» L]

G - What!s s .more , six to seven thousand comp’uters are-being made each year.'. _.._

: 2, The work of{literally millions of people (including scien‘;{%ists, . s
! eng'ineers, economists, medical dgctors, nurses, designers, salesmen, . ' v
.) tead&ers, machinists, financial-workers, social workers, writers,.editors, , °
.'linguists, archeologists, etc) is being changed by new uses of computers. '
EVery person in the country needs some understanding of compute,rs and the oy

ways they can be Ssed to help in solving pnopflems. . . " .

&
Modern digitadl computers are essential in & vast range of activities,

many of which we now accept as commonplace,,but which were impossible to .
carry out just ten or fifteen years ago. The air transportafion industry
could not exist, as ve know it today, without computers. The computer is -
. used in every stage of the design, construction, and testing of new air-
¢ .craft. The airlines depend on computers to. schedule their planes, to make \ .
flight plans, to kee’o track of passengérs reservations, to fly the planes b
(an autopilot is axspecial kind of computer) and even to guide the planes
. on take -off and landing. Other industries have become Just about as depen-’

+ dent on,compwters; for example, nationwide éredit card sygtems would be A B ,

™ inoperable withouf' computers. N ‘ . .
. . - 4 a h
s ke, explorat.ion of é;pace demands large ‘numbers of ,,9?}@%61‘8 ¢ *A space .
' (“vehicld must be 'gtiided dnto a very precise” orbit. The booster rocket must) P

M Jbe carefully c‘ontrolled in direction and in the ,length of time it Bﬂrns.
Even glight errors in t?s econtrol would mean a failure to achieve orbit. -
To get this precise con frol the booster is followed by radar, its position

beihg continually transg;‘:zted to a computer which calculates its velocity,

. acceleration and the ch

. trajectory. S:Iinals frqm the computer are then transmitted to “the booster

1
. i * -
i
H

es (if any) that are needed*to follow the planned ’

A

CERIC - e e

.
: C , 9 . s

. -
.

to céntrol its steering or to cut it off et the right ingtant.

Computers are required for the calculation of course-corz%cti

Similgrly

on maneuvers, .

* for rendezvous maneuvers s retrorocket firing, and prsetically every other /.

. editing of ,literature and even in the automatic setting of fyl;e at t

event occurring gin space exploration.

] o ¢ N
Importént uses of computers occur in many other }n'}glds.
meleing increasing ‘use of computers to aid in the diagnosis of
L g t

apalyze the progress of g patient's treatment.”’ Computers ass

printers. ,Designers (inclwding architedts and product d;sifhers) aré begin-
ey

ning tb use computers connected to televis}ton screens.

and mo'dlfy “their design as 1f the screen were a drawing board

v

using computers——or, at least, for which potgntlal uses

demonstrated. in ;;c1ent1f1c leboratories,

In short, it' ig hard to think of any field of activity whic

are not

Medipine
illnesg
ist in t »/

can then dis lay
> : .
is no

'being

No matter what you hgpe to be, «

d/ ‘f..o

.l

ERI

Aruitoxt provided by Eic:

.-

> . "\ : . R . l-'3"'

N .
. A B -
. l‘-3 Some Technical Aspects of Compu't'ers: |) -~ ’ .
R | ‘I’wo types of electron1c computers, analog and digltal,. are in widespread ' |

1 Y

.° use, The dlfference between them lies in the way 'that each type represents
Jnunmeers. ¥n an analog 'computer, numbers ware representéd by the s1ze of a

: econtlnuously variable guantity such as the speed of a rotating shaft or an
electrical voltage.. In a digital co;rputer, numbers are represented by]

dlscrete codes to stand for 1ntegers (as an exampye” Analog computers are

useful and important but they are not t\he subJect of this. book Other than

in the present paragraph, we' w:Lll always use computer to mean digital . l. ‘_‘

computer, . - L - . D a

L We know that a .cornputer has electgonic circukts which éan somehow store ‘
. numb rs. We don't want to get too desply involved in how th1s can be done L
physlcally since there are many %echnlques and an adequate descriptian of
any one of them is beyond the stope of this hooks—We will very briefly s .

describe one of the most common storage devices, the magnetic core.

o ¢

]

- A magnetic core is a tiny doughnut (perhaps l/20 ineh out slde, dia.meter),

made of a magnetizable material, Figure 1-1 ,shows twa ways in which a core

cen be magnetized (that is, clockwist or counter-clockwise).. N -
* 1

“ N

¢

\/ - .

.. ~ Figure 1-1. Dipection of magnetization of dores . -
. 2 . ¢

. R SR

¥ou may know that an electrical current. can~1nduce ma%netlsm as in an

eleCtromagnet In particular, 1f a fine wire. is wrapped around the ‘Core as in

Figure l -25- the d'irectlon of Thagnetization of the core can be controlled “by

electrlcal currents in the wire. In fact, the dLrection Of magnetization can

Jbe- changed.very Guickly (Isss Than a milligni:h of a second) . .

, ! ’ . * - ‘

7"Figure 1-2. A core with vire wrapping - .

« . 1 L . . .
Q ‘ : L. . } '_7 o *

ERIC. * = . i

. 2

Aruitoxt provided by Eic . - . .
g

foarit.

»

. around a core.

One direction of magnet*zation can I‘e used to represent the bipary .-

digit "0", the other the binary digit "1": Thus, with enough of these wire-
wrapped cores ,we could store, in magnetic form, the binary répresentation of
any number.,

(A typical small computer may have. J,OO 000 cores, a large computer

The catch is that for practical use, we need an awful lot of
cores.

may have over %en m.lllion.) So, the real problem\is how & ‘computer sclects

* an individual core 40" store a binary ‘digit in it or té Tind out’ whlch digit

or 1) is already stored in the core.* . .y -

(0

'I‘yplcall¥ the magnetlc cores are srrangdd in a plane rectangular array.
~ Imagine & "screen" of. yery fine wlres and -a core at each intersection of°
wlres.
of the core in the pla.ne.- In reality \wire does naob .have to be wrapped

It is suff;\,c1ent for the wires to pass through the hole of

-the doughnut ‘as is shown schema‘clcal]y in Figure 1-3. , _)
) .
* BN Pl ¥ . -
4 . < Lo TN I,
! ' S . . ‘
. - N -2
iy = ! .
4
T = — i,
. ¥ s *
. ‘ L] '\‘ N » = ~
» . L Bl _'7 4 . .
cf’
. . LYt et . : FENN S
\ . - . v e
> L]
- : C.
- - L - 3
s B eI S NP P Q/ £
. 5 A) .
. B T . L Iv Sl
-) : - N T -
¥ < o T * M M

- "

An srray of magnefic cores (only~ome~core » ',

Figure 1-3.
. shown) ‘_ T,

v -

Each core now has two w1res associ‘ated with it. givmg the coordmates

A be found by p_icking Just.two wires at the same time.

.
- \ 7 P = g
s - - . " <‘ ~ Al —~
T i

—e—

An individual core from an array whlch may contain several thousend can now

T
with many cores but there is just one cor'e; where the wires cross.

material from whfc_h" the cores are’ made has the remarkable property Jthat 2

. eritical minimum amount of current is neéded to change the direction of = ¥
. t 4

P
>

Aruitoxt provided by Eic:

megneti ia’cion . It behaves 1like & ball thrown on the sloping

P ’ . ¥ . - .
. : ' - N .
. 6 8 -
, . . e « *
7
N hd . 1 ,2] * hd
- . . (- .

Each wire i,s,associa‘ced‘

R
[

° ‘roof of a house. If you don't thr % hard enough, the ball will come down on
the same side as it started. 'Thévol it Just hard enough and it will come

% "’ down on the other side. So,”if half (or'just a.little more) of the critical

amount of current is;gm along -each of the\two selected wires in the
"sareen," only the odre‘at the 1ntersection of the wires can be affected.

" t
' 2 e

To sum/garﬁe': . - & -
MEach cie cen store a binary digit, -, '
o

A (b) ‘ari indffvidusl core can be selected from among the thousands

o \3 in a computer, and ..
‘ ()

the direction of magnetization of a core can be changed in
less than a milliohth of a gecond.

t Usuelly the planes of magnetic cores are stacked side by side (or on
top c\)f] dne another). The cores lying in -a line perpendicular to the wplanes
(not connected by any wires) are then convenlently treated together as the.
blnary ligits (or "bits" from the first two and l&st two Jletters of binary
diths):%f the blnary representation of & number. This related group of

T bits ‘is calbed a compute r word (or simply word, if no confusiqn results)
. 1h,

. S

_\ ' \ ‘ 1 . o ’
cores considered together ¢) i
. @s containing the - . o
"= bits of a word—_* i . .
\ a1 |8 e e e o ———
‘ 77 he P he N
. ()J A a
&v‘ AL UUAY -

Figyre 1-4, \ A stack of magnetic cor.e'.planes and *the ~
we e ’ " relhtionship of the ¥its of a word '

4 v -
.

) Of. course, the bits Jn a word can be used to represeft things other than
binary numbers, The de ma.l digits” for example, can be represented by a

~grouping of foéur bits h each digit; letters of the alphabet can he repre-
sented by a groupin moye bits (at least six are needed for each character

if l:?ers* and di ja:re to be represented) Representations of numeric
49

|

and habetic . -/f‘- acters will be further dlscussew Section 14,
yey « . ' - » -
:/ ' £ Pl . ’9) T ,\ R .

o,

1-3 ° . : ' ,

» " If you have ‘ever shoppgd in a large* supermarket or.a departmeht store
you, already know how helpful it is to have large signs like DRUGS or. SUNDRIES,
to identify the’ ‘sections in which the drugs and su.ndries are sold. In .
general a means of identifying a location is called an address (llk'e the

address of your home or of a post Offlce box).

Here we do not want to discuss: supermarkets (or delicatesser‘s) but the
section of the computer in which information is stored. This store also uses
addresses to fdentify the different words (made up of bits stored in 'cares).
Most fv.:oxrxmonly, the integers (includir;g zero) are ‘used for addresses in a
computer store. The word memory is often used in place of store. Some
people have preferences for one word or the other but we will use them inter-
changeably. . : i

v

From the description of how magn.etic cores worky; it should be clear th‘at
. . ’ L .
only one thing can be stored in a word at one time, Therefore, when new

infoma’p%gn is placed in a word of store, whatever was there before is de-.

'S k4

-stroyed. This is called déstructive read-in.) 5

- 4 ’, ‘

We-have not told you what happens when information stered in magnetic

o

cores 1is requested. Actually, computers are built so that &,copy of what
is stored in a word is made in response to a request fp%’tha‘ information.
. / a The original irfformat:gon remains in the store. This is called non~destruc-

; tive read-out. 5
- s ’ l" . ’
. A hypothetical computer called SAMOS (which doesn’t: stand for anything

special) is described in Appendix A. Each model of computer i§ diffsrent
‘in detail but SAMOS is intended to be representative in its overall plan.
., The store of SAMOS jconsists of 10,000 words each of which can contain &
¢ gign (+ or =) /and ten Yetter® or digits so that a SAMOS word hag .
. gr?upings of bits (from left to right).

PR
¢ “

s

_ ‘!’ “123h5678910, T
. °jé SO EENEENS NN B

. Structure of a SAMOS word«® .

' 0 .
ERIC ~ .~ - oo ‘ o

.) » ‘ . .
[T

)
.

-

=7
==

/’I"

t is convenient to think of the computer store as an arraengement of boxes

(or nigeonholes, such as those used for sorting mail)

to g eomputer word and ¢an cont n‘just ten characters at a time. The boxes

.are identified by the integers ooy 9999 which are the addresses

Each box corresponds

of SAMQS.

A saMos instruction is ten characters in length and it always has a +

Fféure l-é.

*

0000] | . |) g
o] | 1 LT] -) o .
-) o
0002 |) +
’) [[5990]
- ‘ c
. A T I 5
‘ L
- —_— 3
O o1 . 229
:)

The store of SAMOS

' i

0000, 0001,

3

7 %
~
N f

sign ét the beginning. Thys, one instruction fits in one 3?rd of the storg

1
.
. Y
s

Posittons -

Sign
,2,3

4,5,6

fil
o

‘.1,8,9,10 .

A, -
N
instruction
ﬁ N
C ot ol
L 3
- 2 d
3
. .
Q
ERIC
i oo enc

(rememﬁer the stored program concept from Section 1-2).

the ten positions of a word from left to right, every SAMOS
the following form:

B , N
~ % s

x

e " . -~ - Meaning - - - R

v
P -

No mganing,nassumed always +

. A code for the operation fo be performed.
" For example, ADD for addition, MPY forg
multiplication, ete. . ’

We will always assume.zero in these pos-
X/Aﬁtions elthough? Appendix A-does make use
o .

f them.
A four-digit number, giving the address of
a SAMOS word. s .

3

The

=1
——

o
o
o

B

N R operation address
code . r
. , | - L.
; ’ o) A
Figyre 1-6i Structure of a SAMOS instruction s,
Arithmetic Unit e
L - \‘h

The arithmeti

unit 1is connected to the store of a computer so that/it

result of % calculation it performs to replace whatever ma;y be in any s

|4 . . .
can receive a copy,of information from any word of store” or transmit the jéf*?j ;
L

«fied word of the store.

operations on data.
called accumulatorsJ .

.
PR Frd L
-)
4
+
P
X
4
k]
R
~d
sa
.
*
e
- B
Fhadd >
[§'}
-*
,n
i
.
3
o
3 .
'
"y
.

<

P

\ .
»
Arithmetic units ggntain the electronic cirguits to perfoxm arithmetic

.
(%
D

They may also contain one or more special stor&ge devices |

(SAMOS contains one accumulator, see Figure 1-7.) An

accumulator is used to hold ‘temporarily the result of an arithmetic operation.

:—J —T .__JI T Yo , A -J‘
] — | ——— | . "
T . ' - N
. a . “
Store -~ ﬁ’ ‘) '
4 . RS = ‘o C
o — 7T .:, T - ? : . .
. - - ' A
- 7 o s a’r
. T
- ~
] Ve 51
, .
_ IC— . o Arithmetic
| | / Unit
; X
| . |- Avtthmetic: - 2 IR
I e} ,Operations ‘i__':w,lr . _ U
I* : = |
. jad 7 I IS R l i y
¢ n
. L Accumulator | L .
. ’l s ry J a4 s i
g e —— | - L
Figure 1=7. Relation of.Arithmetic Unit and Store 'in
. €
P SAMOS v ' . R
) . . “
.éi;‘ . . ‘}-Jé . - V‘ * -)
-~ . St .

[[y

The arithmetic oper&tions that SAMOS can do include replacement of the' *
content of tha accumulator by the content of a specified word of the store,
and vide versa (generally called “loading" tHe accumulator and "storing" the
accumulator). It can perfo(m addition to the accumilater, subtraction from
the accumilator; multiplication’ by ~the accumulator, and division into the
accumulator. In each case the resnlt remalns in the sccumulator. All the
more complicated arithmetic operations.(like a square root or the sine of an.

angle) are built up out of these basiq operations.: s

Each operation hsb an operation code which the computer has been
< designed to interpret. For example, . LDA - 1s the SAMOS operation code
meaning,/replace what is’ 1n the accumilator by a.copy of what is in the woﬂﬁ
the address of which is given 'in the‘instruction. This meaning is usually
‘abbreviated to "load the .accumulator.” * -

«
¢’ \

If a person speaks, precisely abou; what 1s happening in a computer, he
- tends to become involved in such’ complex (and hard to unravel) sentences as
. in the last paragraph. For this reason, destructive read-in and non- . .
' destructive read-out_are generally assumed in speech and writing reover,

a d1st1nctlon myst often be made between the addr;ss of a word (a posb~office .
bﬁt.

box,number) and the 1nformation contained in the word (a letter in ﬁg

office box). If L stands for the.address of an arbitrary word yn ‘ﬁﬁg .)
"store, one popular way to indicate the content of L is with parentwk égj‘ ¢
That is, (L) repiesentsethe content of address L. With this notat on; . 2\
the arithmetic operation codes are defined as in Figure 1-8, where * is
the address given in the instruction and "«" 1s to be reed as A "3 % -
{ . replaced by, " , L n . ‘
(gggg;;gg 0805y | . - Meaning | ‘ Reeuit” | |
DA | Load thef accumnator (AcC) « (L) ,
[: . STP Store gheAaccumulator) (L) « (acc) .
¥ [T a7 | Add tofthe accumilator. . |.(ACC) .« (ACC). + (L) | -.. .- :
AR E SUB Subtyéé% from .the accumlator “ (ACC) - (ace) - (L)
70wy 7 o b | Mutiely by the accumilator (Ay,‘c) (acc) x (1)
) DIV Divide into the accumulator (dec) « (acc)/(L)

Figure 1-8. Basic SAMOS arithmetic operations

N .
o . ’ . -
t

)
¥
T
M

Of course, to get anything done, a series of instructions has to be

executed. B

L

ERIC = * - 17

PAraiitex: providea by enic i . - '
. . .
. “ ‘ . . B ..

~An historic example

Suppose we have been told that mumbers are storedein addresses

1
~

10'66

1%92 and 1776 in SAMOS and thst to solve some problem e should multiply

> (1066) by [1492) and to that product sdd (1776).

We are also told to

store the result of the calculation in address 1965. T .
- / . , ' .
in accordance vith what we have been told we would write: ,“
(j—v/;hstructions Compents (or meaning% v

pPos.1-3

LDA

-

MEY

ADD

STé

Notice‘that we gpe not, as yet, saying where the 1nstruet10ns are,

pos.7-10

1066
1492,

1776+
/ﬁ965 .

load the aEcumulator with (1066)
multiply (1066) now in accumulator

by (1492) _
add (1776) to the product in the .
accumulator . .

+ store the result in 1965

We merely

assume that the %gktructlons will be executed from top' to bottofi in the order

Qhey appear.,

-

N

The Contfol Unit -~

The control unit is the part of the computer désigned to determine which
instructiqg/ﬁs to be done next, to decipher the operation indicated by that

instruction code, and to establish thegponnections between electronic

circuits carrying out the operation (recall the stored program concept).

‘The ‘

control unit of SAMOS can be thought of as containing three specialized

storage devices; the instruction counter, the operation register, and the

1

address register.

A3

Instruction
Counter.

v

Tt e o

véperation

Register

|

Address
Register -

L]

T
'thdre 1-9,

" Registers in the control unit

3

L1

i8 ’ | - SR

-
’ A

* To begin with, the instruction counter is set to show where a program
is to begin, that is, it contains the address of the first instruction to*

be performed. Thereafter, every time an instruction is used, the instruction

counter goes up another notch. The instfuction counter eontains the address
' of the next instruction to be used. As soon as circuits .have been set up to ;/ﬂ%//
bring a copy ‘of that next instruction to the control unit the instruction
counter (by, automatically having one added to its content) "counts" to the
next 1nstrultion to be done. You can see that instructions will be used in
<~ the sequence in which they appéar in the words of the store. Therefore,

SAMOS is called a sequential computer.

B

A copy of the operation part (Positions 1, 2, and 3) af the inst;hc-
tion'to be executed is placed in the operation register and a copy of the
address part (Positions ™ 8, 9, and 10) is placed in the address register.
What is in the operation register is used to connect electronic circuits in
the arithmetlc unit (or whereter else needed) in preparation for doing the
partlcular operatiaon spec1fied. at 1¢ in the address register is used to
make a connection between the particular word in the store .and the arithmetic)
unét. Then the operation is executed. ‘

- A ‘ .- o ‘4
B After execution of an instruction, the' instruction counter is again used
to bring the next 1nstfuction to the control unit and the cycle is repeated.
It is worth oointing out that 1f SAMOS can execute lOO OOO instructions
p%§‘second (a reasonable rate)," all the instructions in its memoxy at one -
time would be used up in a ténth of a second unless some way were found to *
break the sequencing. Moreover, even-ten thousand instructions could not do
] a simple th&ng like finding the absolute va;ue of a number without some wWey *
to select the sequence of" indtructions to be used.

X The cycle of using instruction after instruction in sequence can be

"N address. SAMOS has several instructions (generally cgaled branch instrug-
tions) to effect this replaCement. Hg will mention just three such inst
" tions’ in Figure 1- 10 (refer to Agpendix A for more detaii). ™~ "~ - -

b

‘§

L g

Aruitoxt provided by Eic:

* 1_3 - . N ~ - v, .
. Operation Qg#ér Y Meaning T Result
1 3 = . A =
, BRY Execute next the instruction at L. | (IC) «L s
' . L] M >
, . KUT . | Helt the machine. If the start Helt end (IC) «L
< ' ' S * . 7| button' is pressed, execute the ‘ v
oo \'\ instruction at L. N
' . g IR 2 .
" BMI "5 'If the §ign of the sccumilator is | if (ACC) <O,
to . ’ . negative,héxecute the instruction (IC) « L other- .
' at L. Otherwise BMI kas no wise (IC) « (IC)+1
T }‘ ——
% effegct,.

- . ‘Eiéhre 1-10. SAMOS branch instructions

" .

1 3

” »
An absolute example

1234, the absolute value of

4321, Suppose the instruction counter

In this example we will store in address
\
the number A, vwhich is in address

starts at 1001, thé address of the first instruction of the example.

\

Inst., location Instruction Comments
001" DA 4321 load sccumsl®or with the number, A -
1002 - “RMI 100k is A negative?
1003 - BRU 1006 A 1is already > O if .you reach this o

' . , instruction '

. 1004 SUB 4321 this puts a zero in the accumulator’

‘190? SUB L321 -A in accumlator ’ ¢
1006 sTd 1234 store |A] . -

A

[y

The first-dhstruction brings the number -A to theTaccumulator and the

instruction counter advances to
tested by the BMI instruction.

1002.

will hqye to be done to change it.
{ “be inserted into the instruction counter; otherwise the instrﬁction counter

advances to 1003.

eontains an, unconditional branch instruction to

In this case,

If-the instructlon counter reaches
A 1is ngn-negative. and its value is to be stored in 123h.

The sién of thé accumulator is then
If the sign of A 1is negative, something

EMI |#ill cause 100k to

100 we know that
3’ Vs

1003

1006 which contains the

Therefore,

instruction to stére the contents of the accumulator in 1234, If the

’9

TSAMOS, like all computers, has buttons S0 g%at people can start and stop

(and otherwise control) its operation.

&)Ai,

-4

%

"y
s

- instruction -counter reaches 10‘0'14- we know that A is.negative. 'I'he

4 ’
instruction in lOOb subtracts A from itself--a convenient way to put)° ‘
2ero in the accu.tmu\tor--and the instruction counter a&vances to 1005 -

. There the negative of A is placed in the accumulator, the instruction . -

counter advancing to 1008 which is the instruction to store the contents r
N
of the accumulsator in 1234, lﬁ:'u can trace the sequence of instructions

performed in either case as follows. . . . :
*) ' \ - ' . - . ¢ LY i LY
> " Instructions performed C . AP
If ACO If A>O0 . . .
) - . ¢ © . -
- , 1000 _ 1001 ‘ . . ‘L
. 1002, 1002 ‘ .
. : > .. 100k s 1003 s,
- .. : 1005 1006 ~ . .
’ . 006" . T vog
’ |
‘ ; ~ i - .
1-b Numbers and Other Characters)) . : =

- - - ¢ .
s

In developing Computer programs we will need to know how the dats dealt
with in problems is represented. The SAMOS computer (see Appéndix A) treats
every number as though it were an integer. . When two numbers are multiplied
they are treated as integers. _When one nux}xber i,s divided by ano_ther‘,“'the
quotient is treated as-an 1n.teger, the rgmainder (i e., the fractional part
of the q_uotient) being discarded. " This is glled integer division. Examples ° . ':
of integer division are given in Chaptér 2. Hoy then can SAMOS use numbers -
or get answers that are not integers? The easiest answer is to require the .

-person writing a SAMOS program to multiply each number \by factors of ten so o,
that the machine can perform operations (e ‘g. division) without discarding

L desired digits. This amounts to positioning (or shifting) the ndtbers 1n the
»

Y

”
<z
%

computer word so that'‘the machine, ip doing its 1nteger arithmetic, is ocled"
into keeping digits that can be reinte;'preted as being in the fractional part
v, of alnumberk, I two numbers are to be-added or subtracted the programmer - - ‘
, should be certain that each contains the sams number of digits interpretable
as being in the fractional part. This is the easiest answersbut it‘is a) ¢

) 3 Lo ’

complicated task for the progra.mmer to do, : , o e ,

Notice that t?xe rain difficulty is in keeping traek of where ‘the decimal

point is in a number. Long ago, mathematicians, scientists, and gngineers

‘ developed a convenient scheme called "scientif’ic notation" for positioning

. . . .

17

Aruitoxt provided by Eic:

, . AS fo
e , . - ‘ T L. e - s *
. the decimal padnt. The method is to write every number with a decimal point ‘.

" after the first non-z€ro digit; then each' number is multiplied by & power ~of L,

“p
.

., ten su.ffucient to p051tion thg decimal, pbint properly. o s . AN '
- For example: , '~ . o 7 - o e . iy
v AR . Usual notation Scientific ‘hotat‘ion)

. 3.1415926 = 3 1&15926 \ 100 - T, .

. >) 2 ' 5

. . ., -273.1k = -2.73114»'>< ° L YL s

t -+ ..0008761 - 8.761 X 1o'iL c Co

-~ *) - "‘ - “' *

' Many computers are ;Onstructed so that they cancuse numbers in a form.

\
similar to scientific fotation. . Numbers that are represented inside a ° ?

computer by meking use of the exponent idea are said to be represented in,

s \p

floatlng point form. ‘A computer constructed to use numbers 1n floating pdint

N form*hasg different instructions “for gadding two numbers in floating point - . s

’ form and for adding two numbers treated as 1n£egers. Even if a computex: is

9 not constructed to use this (floating point) representation, standard pro-
grams for each type of computer (from a "library of programs ") can be_used)

to perform arithmetic mtrx numbers in a floatrng pointf form. A

-
<

Use of floating point numbers, tha.t 1s, numbers in floating point form,

_,ﬂ R ma.kes it much easjer to do aritlrunetic since the computer keeps track 3f the ¢

.) .
* . R 7 . ‘.-
Our comparison of i@é{:ger form and floating point form can be made more

- position.of the decimel point for ‘you.

ex_plicit by reference to Figure 1-11 which shows these two forms for repxe-

-

. senting numbers in a given word of memory. ° R

. .

- ' —_— o

L . Memory __ " .
r Word Length ' . & o :

——— T M T —r—T v

‘ (2) Sign[Exponent grf N Precision Part e A -

[}

’
EE e - .
~

'_d.) / . floa.tingrpoint' form : e

o

. ") N PR

, T T T] 7 Units - .
(v) Sign Magnitude: ; s

bo oo

2
“a
el
o+
A
o
s

r » integer form.;i . o ~

. N

I3
Ed
]

w
] Figure 1-11. Illustrating two forms for internally
) : representing aumbers ;

. (a) used for "real" nubets including integers
nany A

Yo . (b) used for integers only S e
. ¢ . . 8- . .. o
. \‘1] I?'\ . A . — e ,1 AT, ' . . ,
EMC ’ . . . :d '4) § . . '
: ¢ e

. o - . . -

4

-' L
o, . o~ -

Notice that numbers with Tractional’ parts cannot be represented in the
Integer form as long as the units position is agreed to be fixed at-the right

end of the word. On ‘the oth&r hand an integer can be represented in either

’

form. S . e

-

* To represent an integer, the integer form seems like the natural choice, }

B} because thig form has a far zimpler structure. Circuitry for performing
arithmetic on numbers which a®e coded in“an integer form is less complicated.

It works faster; and is chesper tqg build. On the other hand it is wprth . .

noting that integers yhich are)too large to f1t in a given word length in

the integer form can be adequately approximated in a floating point form

. @

- which 'uses the same word length) .

-

To explain this pomt let us imsgine we have a storage word which holds

:

decimal digits. Asstme the word len&h is sufficient to hold eleven ‘decimal
digits, but that the left most of these ig preempte&“‘for storing the sign

l'«r“

of the number. We'll show it in the figures below as ‘¥ to indicate that

~ either sign may be present. 4

3

1~é3u5»678910

4|k

., A vord contesining an integer‘

In the 1nteg r form, the largest integer which can b‘r represented is
+9999999999 Now lone way to employ this memory word in alfloating point form
pight be' to treat positions l 2 and - 3 as the e @onent part using
position 1 as a ign for the exponent and to trea’c positions 4, 5, ...,

10 as a sev’en-posi ion preC1sion per

LT TT] 1

I

exponent , precision e)
part -l pabt c e o e

h N
. - R P :)

t,

. .
M ’

. . A word containing a floating point number ° -

- " L

‘ Let us further agree that the precision part always represents a number '
lying betwden .1000000 eand 9999999 (1.e. s to sever digit precision)

<« Flgure 1-12, as they would ‘appear internally. . . .

F . "“ ‘ 19 n
N) 'y N .
ERIC - CoEd P

P cnc g 2 o . N , -,

\ -) - . s

With these ru.les the numeric examples mentioned earlier are shown in ‘y .

- S

\‘: l precision) is of limited 1ength. Neve}itheless, in computer Jargon, we

v e e o

EXTERNAL . INTERNAL

&
. Number Computer notation . Floating point formh

3.1415926 T ais96x 10t | 44013181592 |,
) ¢ -273.1h : =.2731h4 % 103) -+Q3‘27311+00 v -

.0008761 . 8761 x1073 | +.038761000

v

Figu:gei l-lé. External and interngl representations of numbers R
. v ¢ . -

-You can see that the largest number which can be coded in this floating

p01nt form, i.e., . ‘ N . N N . oo .

$ 123 LS 66 8 9 1p

. CEBLDLLGLEL]

would represent

-

= rd
Ny

T +.9999999 X 1077

. »

wh:.ch.a.s far larger (although with not as many digits of precision) than can

"be represented in the integer form. - ’ '
{ ’ EY

It would seem that any calculation using real numbers could be done by
computers using the floating point representation. This is not _really true
(we will come back to this point, particula.rly in Chepter 6) because the -
pert of e floating point number following, the decimal point (called the

s

* speak of "integer" numbers and "real" numbers in algori thms even though not

.

all of the integers and not all real numbers can be represented in a computer.

The examples of the las,t few .pages meke use of decimal numbers because
these are thé numbers we are accustomed to: You must not think*that floating
point forms are limited to decima.l numbers . Many computers s including the

most powerful represent numbers in binary: form, and by using ‘the same 1

’

O

‘ERIC

Aruitoxt provided by Eric
.

outlined above, perform arithmetic with binary floating point numbers.

Computex’s that perform aI’lthmetic. with decimel numbers must somehow
store the decimal digits in magnetic cores each of which can store a bit. . ‘
How can this be? Are you familiar,with anxv wey to group bits so as to. s ’
represent the decimal digits? There are literally hundreds of ways to
accomplish such a representation. The most ious way is to use the binaxry
fdx’ms of the decimal digits diréctly.

. 4
. . °

. 1 s 20 e - .
4 »: ¢ . 2 /i 5 }"": :

1

) ’» " ~ . . ’ s {‘3 o

- -,
. ’ 2 1-k -
v . . ot ..
. . . - v ;.
Decinfal Digit~ Binary Form , Decimal Digit Binary Foym
o - = T
) ! 10000 ., 5 - 4 ool U
1. ' 0001 S 6 . oo)
) 2 o0 . T} * 7 . oL .-
aaa 37, o011 « 8. ©o1004
.o : b " 0100 s 9 1001 ¢

Figure 1-13. Binary forms of decimal digits
I ~

v

» -

Since each decimal digit is,g¢oded into binary form, this rgpresentation
is called binary coded decimal {(or BCD, for short) 'I'>h\e code for £fach -+ -
decima.i digit takes the place of that digit 50 that for e&cample, ,

v ’ N v . v
- 365 1s coded as 0011%0110 0101 ’
. “ . rd
- &
\— and 1965 isioded as 0001 1001 0110 0101 .
‘ £ ’) 'y -
Representing all kinds of characters . ¢
In general, n bits can be used to represent 2" different things.
Thus 3 bits could be used to represent 23 8 .things--not enough for the ’
ten decimal digits. Four bits giye 2 =16 " combinations,,eWi‘pn the
decipel digits with some left ovet.. If we want to represent not only the
- decimal digits but also the 26 letters of the alphabet, we would need at
least 26 + 10 = 36 combinations. Five bits gives 25 32 combinations
wvhich are not enough. Six bits' are required to prov.ide 6 = 64 combinations
with plenty of combinz{ions left over for other chafacters such as $, =, X,
blank space, etc, L " l.
A popular type of coding places two gxtra bits to the left of the four,
' bit bin forms of Figure 1-13. This type of ¢ ing is displayed in N
o Figure%h . , -
’ 9haracter, Code Character Code Character Code -Chardcter Code >
7 ! . H '
! 0 00,0000 - | I I S R
— 1 OO’OOOl - TR T T 0L000L T lOEO%T‘ R b
2 00!0010] ° B, 01, 0010 X 10: 0010 S 1110010
3 OO'OOll c Q1; 0011 L 10~ 0011 T 11;0011
b . O0.0l‘OO D 01,0100 .M lO 0100 U].1 0100
5 00: 0101 E -841!0101 . N lO 0101 v 11:0101
6 00:0110 F Ql: 0110 ¢ 10:0110 W ll. 01104
d 7 00,0111 G 010111 P lO'Olll rd X . 11 oxrf- -,
. 8+ 00;1000 H 0L;1000| ~ @ .. 10{1009 Y . 11; 10001 ,
o) 00:1001 I Ol 1001 R 10: lOOl Z ll lOOl
Figure 1-1b4, Six i} code frequently used to represent both* . ., -
digits and alphabetic characters
" % 21 . A
. N e _ s
3 . . £ ~ - .
-RIC - . : 29

The Input Problem . o ‘ .

. N >
Numbers, letters and other characters of/the data must be introduced
(read) Tnto the computer through some inptt device. ¢ there i5 & "first law

of computer input",lt probably goes somethlng like: "We aluaﬁﬁruant____make
use of more characters than can be recogni,ed by the avallable readlng device." .
One uill quickly discover, in fact, that we would like even more characters
than can be encoded with &ix bits. Typically,'restrictions on the set of
recognlaable characters result either from the extra*expense of building a
device that can recognize more characters than seem to be reallz necessary,
.t or from the fact t at aditional set of characters for common input - " ot

devices antedates computers.

B In the banks, account numbers are now commonly printed at the bot¥om ofe .
checks. In printing, an ink is used containing a ferrous compound-which can
+ FI-ES e magnetized. When magneticzed, ‘thie printing char cters cen induce a current

in a reading device and the indiviAual "Tunnx chapes of the printed charac-

L]

~ters induce dlstlnguishable shapes of ?urrent This system,v 'megnetic ink
character recqenition” or MICR, was particularly developed for the yse of
banks where numeric coding is adequate. To avoid unnecessary expense, the .

character set has been llmltg? to drgits and a few extrs characters used as
LBy . »

- ‘separators. G . o

%" ’
The electric typewriter is often used as an input and—output device for

computers directly or with punched paper tape as dn intermeﬁiate step. This .
. © device providqs the possibility of machine recognlfion of all the characters Y-
(upper and lower case) found on a typewriter. The limitation therefore is
the character set normally found on a typewriter. Unfortunately, because oﬂ

- »

. s expense,.all of the aveilsble characters are not always: used.

e -
Typewriters, teletypes, and other machines with similar keyboards are

W

. . coming into commgn use to communicate with computers at afdistance. All this
amounts to is ‘making a phone call to théscomputer. Since dozeps of typewriters
cen now be connected to a “single computer,mthe set of characters that can be

.. 2. used for inpud is moxe often becoming The ordinary typewriter set, ¢

o L ~ 2

-

Punched cards . \ .
3 . . . PR
The heypunch is’a machine that has developed with the use of punched .

N

cards and punched card tsbulating systems for more than 60 years. In

tabulating systems it proved to be uneconpomical to use more than the dig{ts
'and capital 18tters together with 8 few so-called "special" chavacters. Here,

the.sgecial characters are evell a "recent" addition of the past thirty-years.

Q . 0 .
ERIC N 20 : S L. o
|, . . ‘ . . 0 .

-~

2 ‘ o

’ When a key' is struck on a keypunch, ‘a pattern of holes is produced in &
colum of a card. These holes can subsequently be identified by a card read-..

ing machiqe. The codes used in key punches in most common use todsy are

designed in t}iis way: To produce the plus or minus sign or one of the .ten | j“ -
digits " (0, 1, ..., 9), a single h@le 13 punched in one of 12 Yows of the
card. To represent the capital letters (A «e. Z), they produce*as combina-
tion of two holes (see Figure 1-15). Note‘that of 12 X 11/2 = 66 possible

two-hole combinations, only #85 are used (reﬂly 27 are used because 'the

special charactgr "/ has a two-hole encoding). Beyond this. there are . .
eight special characters encoded as- three holes punched in & colum. (How.<''
many three-hole combinstions are possuble?) e < -

* e keypunch has been in common use to transmit information to a coﬁ ter
beca?uT§ of the relative perman /za‘ce of the cards (they can be<used over an
over) ,» and because the mdividuﬂ cards can be’ readily reordered or replaced.
However, the usual keypunch encodes only h8 cha.racters (including no punch
for e blank space). Fortunately, equipment manufacturers have paid consider-
able attention to the problem of prov1d1ng a lapger character set at reason-
gble cost. Currently severﬂ dev1ces (typewriters, keypunches and fancier
machmes) which encode “extehded character sets" are being marketed. In the
gbsence of these newer machines unavaflable characters &re usually coded sas

combinations of those available (e. g, $A conceivably could be used to imply
+ lower case a). / ’

£

LR -

1 ‘ il ’] o) .

‘ mMmmn - ' 1 |) N
ooooooooooooooooooooooooooouooooooOOIlllllllooooolooooonlnoooloooooonuoooo
IERRINE-2 2R 3] unnmvmumunamo31m:mmnmmomwauunmmnszsswunusmnnnunununnnnnnnnnnnn
|lllllII!IIII!IIJIIIIIllllIlllIllllllllllljlllllllllllllllllllllll&lllllll
zzzzzzzlzzz22222222I2222i22?222|2222222212|2222222222222222222222222222222222222
33333333|33333333333|33333333333[3333333333|313333313IIII33333333333533333333333
444444444|44444444444|44444444444'4‘44¢44444|444444444444444IIII4444444444444444
sssssssssslssssssssssslssssssssssslsssssssssslssssssssssssssssssssssssssssssssss
ssssssssssslssssssssssslssssssssssslsssssssssslssssssssssssssssvssssssssssssssss -
777777777777|77777777777|77777777777|77777777q7|777777777777777777w7777777777711
lzlllasasaaaallaaauaa&llalxaaaasaaasalaaaaaaaalalaalalllllalllllllaalaaalanllllr

l! 899 SS'SS‘SSSS898SS'S9SSSSSSSSSlSSSSSSSSSSlSSSSSSSSSSSSSSSS.’&SSS&N 3999499
$14 1nnnusnnununnmmanmmuuuuuunnnwuuu«uununuﬂnuwwuaunnnmw #NARDURAN AN)

+-01224947%% ARCDEFGHI JKLHNOPGR — STUVHRYZ [S5= 2%(v ~ \

—_—eo WA
- o 0

Figure 1-15. ‘Pinch caFd dodes.for 'a‘ﬁzpical 'charagter set

~ 1 . A ‘_ > R
, N .

_ ’ This_cpding schemé is=elso refe}'red to°as Hollerith GG&?"m hg&g_r of) .
X 4 Herman Hollerith, a late nineteenth century statistician vho developed the

BRI L2

PAruntext provided oy enic [l -
et .e

. ... ‘.~ N ‘ & :: <, If'
ERIC C. gy S |

1-5 '

.-

W T
' 15 Meorivms - L
Now that we have learned somet:hing of how a computer works, let's find ¢
out Now to prepare a problem for computation., One of the striking things)
ebout g:omputers is that all they can do at .one time is one fairly small step,

like add to the accumulator, or store the accumulator. To ‘Qe able to do any-
thing more complld&tacl the computer aust execute a seguencge of instructions,

. A sequence of instructions ‘for & computer is called a computer program.

\
A more general name for a sequence of instructions to solve a problem,
. whether with a computer or not, is "algorithm". An algorithm actually has
/ T
characteristics that a computer program maﬁnot have--although most useful
computer programs do. Any arbitrary sequence of instructions could be a

computer program but an algorithm must, in eddition, give an answer to &

oot
1

problem within a finite number of steps.

More formally, an algorithm is any unambiguous mlan telling how to carry

- - out 8 Erocess in a finite number of steps. You should be able to think of

lots of examples of algorithms; some examples could be vthe instructi'on_s for
‘assembly of a model airplane, or the score for a piece of III"U.S:LC. Each of
these exemples is a sét of instruslions designed to predice a specif?res'ult
) . X . , f,_i‘gi_i
5 .. N 1. A ch&racteristic “of aelgorithms tha'b has slready been mentioned but must
be emphasized is that the step-by-step plan must be unembiguous. . We cen not {

and each comes to an end.

SRS . tell a computer td "either add or subtract. Rather, we must say--"1if |
specific, detailed conditions are satisfii& then, add- if ‘these .specific '

conditions are not met then subtract. There can be no_room for doubt as

’ to 'the meaniﬁg of en algorithm . \ .

‘;'. Algorithms that are useful with computers frequently heve several “other

' characteristics. First among these is generality. For example, it is not
very interésting (orr useful) to know that the greatest common divisor of’ 12
and '36 1is 12.--1\,;.% is far more useful to know a step- any of finding
the greatest common di‘Visog of any - two integers,\ s and b (Euclid’s “algo-

““F{thm). The same 1s true Sr\ang%u\l algontl'lm\For example, an algorithm

-
a

to find the solutien set for a qﬁaﬁilaLc eq\ation,\ . \ _o -
- . . S o . ~ .
- - . 3 ’f'?s-—h* D= - ~ -
PN ﬁ - - ~ ‘ ax :F\'b;l:f‘C=0 - -2
- - - . - . DAL g !\e} R .o
. ~ e e
e - ° - \i -
—_— - - - o~ ~ -
— . 3 Vo . ‘(\ ,+ A -5‘ .
o -, F © . . 28 B Rt v 3
"(= l~ £) " - -
FRIC—* S5 T
.: e .y . , N . P .

.

should produce answers (or tell us there afe no answers) for any values of g,

b and ¢ (eyeu for the degeherate case 1n which a might be zero)

3
| - ~A‘ secgnd common chara.cteristic of useful algorithms is regetition. f R
Instructions for | ssembly of a model airplane often say repeat Steps T to,
t w:mg as for the left wing.” In a mus1ca.1 comio;i;tion,

12 for the rj
specigl symbols are used to tell a performer to repeat a part o e piece.
In the same way, we will find it extremely useful to repeat series of’ steps

in. a computing algorithm One reason computers are so useful is that useful -

algorithms do depend heav:.ly on repetition, and the computex, will repeat the

¢

same steps/.tirelessly and without complaint.
¢

4 . -
Using ,Méorithms in Solving Broblems ™ » ’ 3

ometimes we connect ife word "problem"|~with a-question on an examination
or X homework assignment. §More generally, "problem” means any. situation in .
vwhich there is a differe e between what one has and what one wants. If you ¢
don t have a date for / dance, and you want a date, you hav& problem. If -
yomu. hdve to plan a/merfu for-the school cafeteria and you /want to include

nourishing foods that people like without costing too much, you have a problem.

Problemé can be separated 1n4) real-life" problems like -those above and

° composed /problems like those in most textbooks. Algbiritnms are important in
’elping to solve both kinds of problems but real-1lifé problems like getting

<

E

daté or planning -a menu often have a very large number of poss1ble choicesy.
to ‘6e made in finding‘ a solution » meking them ha.rd to an&lyze\. You can
probably write down a series of steps you would go through in getting a date

<

/
but if someone elsé could interpret your instructions in a different way, or \

if your 1nstru9‘tions ‘wouldntt get aﬁte every time, you haye not written an

‘algorithmi, * '*,'_G ! .

Y

"% Besides ‘e “large number of choices to be made in finding s solution,~
s are hard to discuss precisely because we tend to use our

native language English, and this has its own built in ambiguities. Se to'

discuss algorithms we must consider all alternatives and express our instruc- -,}-:

tions in such & ‘way that they cannot be misunderstood To see what cen be -
done, consider a.j,problem with which you may already be familiar.

o

.

Ekample 1- oo . . .

.

. . i . A
Suppdse you are given eight balls ell of which look alike, but you are

told that one Ball is heavier than the others ﬁhich are identical. Equipped

{

b
i
- £
]

.\‘l N “’ ° . i -
- i 59 ‘0 . . N
N] \‘.\:« Slieg w7 N ",) . . -)

L

'Labeitheballs A, B, C, D,E F, G,

only ,yithbalance, identify the heavy baﬂ no more than three- weighings.*

First we will :Lntroduce symbols to avoid the ambiguities of English.
end H. Let the weigh‘bs of the balls

and h. Now we can write a series
7 1

]

4
correspondmgly be a, b, c, d, e, £, g,
of steps to solve the problem.

1. If a+brc+dcetnl+g+h Jump.to Step 9.

v . 2.0 If a+b<c+d‘JmnptoSi:ep6. 5
3. If a<b Jumpto Step5 -
by ot Thé hedvy ball is A. End of calculation. B
’ 5. The heavy ball is B. End of calculation.
6, If c<d jump to Step 8. >)
PR N The heavy ball is C. End : _\v .
: 8. The heavy balk is D. of calculation. . .
9., If e+f< gi+ ~~Jump_to Step 13. ' - i
0. If e < £-Femp to, Step 12. .
- 11, e-fleavy ball is E. End of culation.
12, The heavy ball is F, End,oxjé::chulatioﬁ. ’
- 1t to Step
o 13. If g < nh . jump to Step 15.)
: <« 1%, The heavy ball is G, End of calculation..
- ’ 15.. The heavy ball is H.’ End o?falculation. : -
R o R
Studying these fifteen stepsSyou will find that t,he problef is solved in
all cases and misinterpretation'of the stl:ps would be difficult if not impos-
siblé. Therefore this is an algorithm. Still, the fifteen steps seem to be
: a complicated answer to";vhat appears to be a simple problem. Moreover, the
fact that only three weighings are required in anybparticula.r ¢tase is not \
obvious $ince there are seven possible weighings listed in the algorithm. , If: “
’ would be interesting to have Y means to clearly distinguish between the seven !
weighings of the algorithm and the three sequential weighiings done when the -~
_aZI.goritIun is executed. . ’
& There is an elegar:t diagrammatic way to display the solution to }his
problem. First, use a colon _() to represept the compe.rison opsration of
weighing on the scales so that, for examﬁlc—.{a +b 3 C + d means place
ba.lls A and B on the left pan of the scales and compare with balls C .' .
. and ‘D placed on the right pen. Enclose each comparison” {or other step) .
in a box and adopt the convention that if the weight on the left of the
. : r ° . ' PR
1'Morc-: complicated problems of this type can be stated and easily solved
with the methods discussed here. . ‘
o) ‘
Q7 . . 26
‘ERIC . s oo
. e

Al
.

comparison is.heavier we will "leave the box on the left if the wejght on
the right of the>comparison is heavier we wzll "leave" the box on he right

; With ﬁhese conventions, a’ dlagram of the earlier fifteen stép algorithm is

;% 'shown'in Fagure7l 16. < : o -~ '
i B ' Al

,{ . s
: v o . .
[. j

. : | 1 | -

) bB+b+c+d 1 e+ f+g+h

‘ Lgna.of c;lculation1 Nl e,

-

. ~
1 j"

& .
Figure 1-16, Diagram of algorithm to find a single heavy .
’ * ball from a set of eight balls :

- Here‘we have a clear display of the three sequential weighings needed to
’ select the heavy ball and the plan-of the process stands o\t. This example
b “elorie, should be enough motiwation to further ssudy, diagrammatic representa-

ot

&
&

tions of algorithms. In the next several chapters we will develop a diagram-
matic language (called the flow chart language) for representihg algorithms.

Just for the fun of it you mey, want to try to find diagrams for the 4
fallowing-related problems: _ . ¢

3

l. Suppose you are given eight seemingly identical balls and you. are told
that one ball is different in weight (either heavier or lighter).

Identffy the ball and whether it is heavier or lighter in three weighings.,

~ ‘3\'
2. Suppose you are given twelve seemingly identical balls and you are told
that one ball is heavier then the others, which are the same weight.

Identify the heavy ball in/three weighings. T

3
é . ,I ’
K - *

ERIC - 8- 2

s oo v N - ! - .

-

/

SN

Il

e

ERIC

Aruitoxt provided by Eic:

3 Suppose you are give;l fourteen seem{r‘lgly identical balls and you are
. told that one ball is heavier than the others s which are the same weight.
E Iden‘l:if‘yJ ‘tHe heav‘y' ball 11;1 three weiéhmgd ‘\5 o, ! b L
4 i

1
f] f f

{
L, Suppose you are giveh twelve seemingly 1dent1cal balls, 'and you are told

that one ball is different in welght (either heavier or llghter)
Identiﬁy the ball and whether it i$ heavier or lighter in three welghlngs

~

Example 2 i . PO

For a’sgcond example to 1llustrate the generality desired in an algorlthm

“let us turn to & mor%ﬁ mathematlcal problem; that o& finding the real solutlon
>

set of the quadratic equatlon\.

. ~N
v ' 2 .
ax" +bx+te=0

<

for any set of real numbers a, b, and c¢. You know that (as long as a is
-) 0

not zero):

Lac < O there is no real solution,

e

H

o’
[}

if b - 4dc = 0 there is one real solution given by x = - 5% ’”

- . 2 -&ﬁ TS ow . :?ﬁ . -
if b - Lac >0 th.ere a}e two real solutions which are:

- -b + »/gg - Lae 7 -b —'.ng - Lac -

* = 2a - o Xy = 2a '

- . .
.

':Since we want an elgorithm so general that values of a, b, and c |
could be numbers radioed from Marg, we will look for.pathological cases.
Whet if 'a = 0? VWhat if a=b =0? If a=0 and b'A0, the equation

PR

degenerates into a linesr equation With one real solution,
h -

- ,
*

If"2a=0 and b =0, then ‘if ¢ =0, any real value of x- can sati’sfy
the quadratic equation, or if ¢ # O there is a contradiction and the three
ﬁumbers- cannot}ve coefficients of a qu;adratic equation, In gither of these
cases we would *be justified in saying that there is no ‘interesting soluti.on.
Are there any other special cases? If =& ;4 O -end b = 0, £he quadratic "
formula applies but we can meke the cafculation shorter by reoognizing this
case separately, then Xy o= =< and Xy = - ;ag ' provided c/a is

a
negative., These special ‘cases are sumiarized in Figure 1-17.

¢

. ' 28 B . .

e

i

‘

- > . A

¥

. LT a=0 . ’ a # 0 : v‘ o -
N \ S — - -
-0 interesting sotun Y= /=
r = C no interesting solu ‘1ons' N Ay and“ x2 =~/ =
P U c - ; ; - id—i R
) b £0 X= -5 | usual rules apply.
hi ry

.

Figure 1-17:

Y

.Special cases in solution of quadratic equations

. - ' N oL
. Now let's write down & list of steps to d¢ this calctlationT*
1. If a#0 jump bo Step 3, . .
2. If b#0 jump to Step 4, e
3. There are qno interesting solut'ions. End of cal‘cuiatidn.) ‘.
L, One_‘solution, x = -¢/b. End of calculation. .
5. If b#4% jum to Step 8,
t‘6. If ’c/a >0 jump to Step 11, . . ‘
7. Two solutions, Xy = */:c_/a and ‘xe = -/=c/a . End of calculation.
8. Calculate discrir;xinant =v2 . bae, - L. . - \ ’_
9. r If}discriminant >0 jump to Step i3, '
10.. If discriminant = 0 jump QStep 12, ' ' X ’
ll.‘ There are no real solut%ons. End of ca_lcu.lation. - . ﬁ
-12. 6ne solutiom, - x = -b/2a.’ JEnd of calcuiation. o e
13. Two solutions, X, =r(-b + J/discriminant)/2a and

= (- D Jdltscrlmlﬁan)/2a. End of calculation.

E)

*2

i}
x> 1
s a3 e -

Read this carefully. Can you misinter-

Are any situations not covered?
T “pr‘et these instructions?
whole story concerning the solution of a quadratic equation. In Chapter 6 ..
we will return to the quadratic equation’ to discuss other difficulties that
%}}is algorithm‘cou.ld encouriter and to discover hoy this algorithm cén be

repaired to account for those difficulties. i .

.

To help- find a diagmm for this a.lgorlthm we will adopt the eonventlon
that lines leaving a box in which g comparison (w1th =, ;(> et,c) ta.kes
Dblace will be labelled T and F for true and false. Then Figure l }.8 ﬁ.s a
& disgrdm for the guadratic equation algorithm. '

E

Aruntoxt provided by Eic: s N
~ i

This 1§ an algorithm but it is not, in fact, the- =~ .

F .
ki ’ | . » 2 *
F (120 Ny o
!
. . 9 .
: . T :
& e 7 ' 13
“ /‘ FR ’ ! X, = tbhydise
3 3 R 7 ‘ 1" . 2a
X No =/-c/a | [Jo real . -b-Ydisc
Interesting 4 solutions . 12 |x=—>%g
Solutions x=-cfb Xy=- 0 . x= -b/2a . .
L i l Lt N - ‘
oo _ . | Ena of Calculdtion |)

Figure '171;8..‘ Diagrem of an algorithm to solve =& quadratic

,. ¢+ equation

(3 . —— , . . .
Cd e N - PR S . - LR 1 - . 1Y
- ‘ v
-

The examples given in \t’his section show %that it is vital to use
unanbiguous language forms in describing an algorithm. Prob¥ems that lend ’
* themselves to such una.m'biguous language (genera.lly methematical and logical ‘
3 pro’blems) are those for which we can most easily express algorithms On the
other hand, real-life problems like planning & menu or getting a Eate for a ' -
da.nce, cgn. be 'broken dowq into step-’by-step processes. When we can express
these proce5ses unambiguously (which we are not used to doing) and when the
processes account for all possi'ble situations, the soluti,ohs to real-life

:

pro’blems can 'be given as algorithms.

L,

——

A'veal-1ife" problem which shcgg the usefulness of algorithms particularly
well and which we challenge you t% folve on your next free weekend is The

-vConce'rf?x{on Camp Problem: _ N i

L » ’ N N ’
RlA e rovianity enc . R . 4
. . .
* . : R .o A
E

s

16

.

Each- day they

the bread go,e ch is satiﬁfied that he has' received hies1 shaz;e. The classicé
solution is. that one divides the loaf and the other takes first choice. °

J

Now suppose thét a third Dprisoner is put in the cell.» How then are they
“to div1de the loaf? You.r solution mus® be such that if a.ny prisoner is
dissati sfied it will be in consequence of his own greed or poor Judgement.
It must be proof against the collusion or illogical behavior of others. 1El'he

best solution provides ‘an algorithm which is easily extended to any number
of prisoners.

.

v
1-6 Comments-on-Languagfy !) g
e

Language is a means of expressing and communicating our ideas. In
computing we want to be able to communicate not only with people but also
with computers. To communicate with people we gormally use “the natural
language" we learned as children. Still, in specialized topics, people have:
,_____ag.llaxs_ found it useful to devise specialized Jargons and languages.

To commmicate with a computer we have to be able to express algorithms

e

unambiguously in a form the computer can understand We have already had
4 taste (1’.* Section 1-3) of* what is involved in writing instructions for .
computer in machine language." Since each model of computer has differences
in design and these shoy up as differences 1n each machine languagek a
bos 4 agouer oF Babel"'situation exists in vhich a progrem prepared: in machine

language for one computer cannot be used by another computer.
!

In Section 1-2, we remarked that a significant recent development has
been the exploitation of procedural languages,~spec}fically designed for
the expression of algorithms in a form computers cen understand, essentially
independent. of a particular model of computer.

.
y;«ﬂu-h,\,,\. - 1 7\ b)

! The flow chart lenguage developed in this book is a formalization of -

the diagrammetic wey we displayed algorithms in ,Section l-5 You will

~ discover that the flow chart language helps us to develop, display, and
discuss algorithms in an unambiguous w? y ’

In light of these remarks, the ‘task of using a.computer to help in
solving a problem can be separated into’ three distinct steps. that - of .
reducing our p’roblem to & sequence of elementary s:beps 3 that of ‘:foméj.ization"

N
3
N ‘
) 3 ‘ * !
. - E 2
L

. . ' ‘ . B 31 s Mo . 4

- > v

. Q i ‘] - . 3«)

| EMC § ’ T . \ ‘
: 1 . ,
L) i~ ' . , "

’

*y

1-6 T i . .

M 23

R '
o “ s
N . N .

or converting to a i‘ormb:l language, that of transfornrlng from th1s formal

{ v language to machine language. Each of these steps n.s a translation from one A

5\ b foxlm Jor language, to another. Consequéntly, %dlagram of the translation L v :
process would” look like Flgure 1-.19. - < . SR -

v ’ 3
(. -

OF ® ©) T
FLOW CHART PRCCEDURAL . MACHINE |- e,
LANGUAGE : LANGUAGE | . LANGUAGE

ENGLISH

N
.

\ -

/\ Figure 1-19. Actual Translation Process « - -

o)
‘The first translation involves meking a diagram celled a "flow chart"
+ for the problem. Each box of the fiow chart corresponds to a'task te be
[3 v .
performed in the order shown by arr

ws between the boxes (as in Figures 1-16 =
and l--l'8). What is written inside'each box is supposed to explain the task

' but need'not be a detailed description. . In fact, relatively complicated 3
proliLems gre often s‘lved by subd1v1d1ng tasks into simplfyr, more easily
'Understood subtlsks. At each stage the problem solution 1s descrlbed by a
flow chart. lanations of tasks inside the boxes become mpre specific and
more formal as we approath a description of the final solution. ’I’his book

is chiefly concerned with t/he{f/row chart language and its use as an aid 1n

di scovering problem solving rocesses. ‘ : - A

¥

The second translatiop expresses the flow chart in a formal language ,
which is in gemeral use such as FORTRAN or ALGOL It is the puz;pose of the”
FORTRAN and ALGOL language supplements accompanying this text to teach you.

.

this second translation process,) . PRI

The third translation Ys from one completely formal language to another '
such language. You can imagine that given two languages which have strict ‘
rules of expression /and are free from ambiguities, translation from one to
the other ought to Ve performeble by machines. This is in fact the case, QIf:"
-, you have, say, an ALGOL program for your pi’oblem, the last translation is
made by feeding your program into the computer along with a compller" (or £
translating) program to produce a translation_ of your progrem into machine s ’

-language. , o : s . R
N 1

The purpose of the discussions just completed was to esﬂébif the relation-
ship of our activitieg'in this book to the general problem of feeding a -,
kqmathematical problem into a machine. " With these words we are ready to proceed

¢) ‘with the main business of ther rest of this book--that of construoting flow
. charts.) . L e

© ' *
o . ,“;f N . ” - Sy
. R ,

)

‘ -) o ‘ | 1-6 7
4 . » '* ‘. 4 ‘ « '

The material in the language supplement is arranged roughly in parallel
| V:_th the subject matter coveréﬁl in this text. For bhapter {2 it is pre‘ferable‘
to read the chapter in its ent:.rety bei‘ore stu(lying the ,corfresponding cilapter,

{ in your &anguage manual, For subsequent chapters it will be feaslble, unless

" otherwise 1ndicated to read a sectien of tie langusge supplement jus‘b after g '
" you have read the ,correspondlngly numbered section in the main text You gte

warged to save all the flow ¢harts you draw as you work exercises in this

book because computer pro'blems in the lang(a;e supplement will refer to them.

. o

A ' ’
v P
3
.
L]
.
»] ”
N — R
.
. .
L ’
. .
k1 s
.
.
. >
5 v
’ - N
-~ - !
* -
- [
. ; e
v
.
»
. . i
- N .
N »
PR .
¢ ¢ -
«
Al »
" .
. .
.
s -
*
. -
ft - ‘ '
L}
L
1] . N
. .
N ‘
.
. -
b\- -
. . -
.). * .. 12 L4
L) 33\ . R
) . SNy . .
Q RYS ’
ERIC ~
R

"Given: A =5.0, B=10.0, eand C=3.0 , . -
¥ Find: the:'length', D, according to the formila suggested %
d)
in Figure 2-1.") R
by
) ’ .)
’ ' b 4 b ¢ ,
aa:.s’« R N - . . . Y
. C /
i . 9
’ . A B ¢ 5
‘\7 . + L3
. ¢
‘. 4 Y t
{ g D=/A%+38%+c% :
L. .- ~ . s

&

. . [e .
-y
¢ ’
. * . . R Ty h
. | . \ ~ M .
P . . Chapter,’ 2. v

}‘l ’ : J ‘ ;(’ { E o])) -

o ‘; j meu'r OUTEUT: AD! ASSIGMENT\ .

a'. (i o P ‘%y tj:"i :7; . § :‘;“Qw ! ' .

. ' . ! ! . ot Lot e 4
wj . «l ’) : 1 * .
' 2-1 The Flow Chart Concept - -
E Y

-1

Jn this chapter we ledrn about threé basic kinds of procedural steps '

called "input,"' "assignment," end “"output." With these three it will“be
possible to develop some simple computer programs and'in this way gein a

progressively bet,ter insight for "talking to" or ccmmunicating with a
computer. . i

Suppose the instructor ha; posed. the following simple pro‘blem:

. Figure 2-1. Diagonal oij‘R_ectangular Box '

-

The pro;}%m statement might be rephrased in Taple 2 1 asa simple,
three-step process.

\
- e
L]
.
- ' ’ s
. «* . ‘ - i
Q N Pigg .7 i
RIC < - v BB 3
K v] R '. L P L

- 4

~e

AFullToxt Provided by ERIC

‘(6 Y

n

2l

2-1 i .
| . : - SN
5 ‘jﬁ? Tablej 2-1 ’ g
\ o able; 2-1 . : :
' b ! : ﬂ - 1 \J‘v , A‘l .
. — v, PR T 3
: ' P ‘ L I Correspondihg i ')
N Procedural phrasing H | phrasingsin” 'f' <
: . > ~ poriginal statement
\ , : + !
1. Input (i.e., define) the specific values | Given A, B, C
of A, B, and C. ’ ! ' N
. ' . b)) I
2. Using values for A, B, eand C defined |
in Step 1, comEute the value for tHe ‘ N
; expression /A% + B2 & (2 and then t .
assign this value to D. A sﬁorthand : -
. : way of saying all this is: 3 : ’ 2
. H ‘el
De /A% 482 47cB ¥ ! < a2+ B84 B
{. . l *
3. Output the value of D. : * Report the value of D,

"/

.y

Thi,s simple sequence of three events, each of which represents an action

a computer can perform (provided it péceives an

language 1t can understand), may" be e;épressed even

flow chart as shown in Figure 2-2.

2

,

~

-

1
1/

H
Die

J§2+B2+02;

A

_ . Figure 2-2.

H

’
ASSIGNMENT

3

7 g

s

D

Flow Chart For Diagonal of 1Box

a -~

—~

re concisely with

appropriate command in a

¥

a

We will usually meke it a point to number each box in a flow chart with’

'1itt1e numbers placed close to the boxes. ’

Lspecific part of the flow. ch@t,

[]iJﬂ:‘

~

e .

It is then easy to refer to any .

The numbered boxes in Figu.re 2-2 represent

commends to a campu‘tfer whjhgg,g\zld be worded as follows!

~

wWe ' K

: ; ~ & '
1. Ihput. Read _specificFvalues to be assigned to variables A, B, C
from a punch gard (or other input device) and transfer these

ag".”‘

2.

'

~ v’
velues to & pre- assigned location in the computer'

storag§

Assignment.

P

L]

Obtain the specific values of A, B and C from

mewory orn,. .-

their storage locations.

2

Compute the corresponding valde of

/A2 + B2+ C

and assign this vedue to D.

(I.e., put this

value in storage at a location associated with the variable

D.)

>3

E

Q ;; . d. - R
MC -

. L - “
-~ R . . .

— - . M ’ -
3. Output., Obtain the calculated vaelue of D from its storage

position and type or print it on a roll of paper.

v

[For clarification it should be noté& that there are two kinds of input
associated with the computing process--input of data, which is what we afre
discussing,,and input ‘of the program (i e. .y the set of instructions or
Program input will not be discussed in the main body of &his
text but at any time the student feels the need of knowing how this.input is'

commands).

handled or knowing about any aspeét of the actuel operation of the machine
in more detail he may refer to Appendix A.)]) .

The student has probably noticed that nowhere onAthe flow chart are the
values 5.0, 10.0 and 3.0 assigned to A, B and C. This is character-_
istic (with’ézrtain exceptions to be noted) of flow chart writing We ordinar-
ily do not give on the flow chart the actual numerical values to be assigned

“to variables but rather indicate how they are to be computed or where they

are to be found. One reason for this, as will be seen soon, is that we will
use the same section of a flow chart to indicate many repetitions of the same

calculation but with different values assigned togghe variables.-

The *box labeled 2 in Flgu;e 2- 2 s called an assignment step, because
2 to the variable D. How-

.

This box contains

we assign the computed the value of- JA + B 4 C
ever a great deal more than this is going on in this step.
the indication of the basic computation of the problem which in fact consists
We will seeslater how to write more detailéd flow charts

breaking similar computations into their component parts..

several steps.
Such exerciges
will help us to see the details or the "fine structure" when we need to. It

might seem more regsonable to refer to such a steg—as_the se€cond in Figure 2-2

as a "c utatron and assignment” step, but we will adhere to the conventional
nomencliture of "gssignment." . 7
. . e
’
o ~ *
A 37
S 40 . ' oo

<v

2-1. ’ . ' .
N - s .

Later in this chapter we shall provide discussion and clarification of
the idea of assignment. For non we jgst obiewe that our input step also
i.nvolves "assignment." There we assigned the velues on 8 card to A, B and
C. Input always involves assignment but the nomenclature assignment step"
will be reserved for assignment of values which are eitbher computed or obtained

. -
@ o ¢

from storage.

The output step identifies by neme the one or more variablés whose
. values, now stored in the computer's memory, are to pe~ written out or dis-

| " played for us to see. . ‘ .

The phrases "read a specibfic value into storage" and "write out 'a‘
specific value .¥9£1_ storage" are often used in speaking sbout input and
" output processes. Modern computérs are equipped with a variety of input .
devices which can read data supplied through appropriate input™media.
Computers at the banks, for example, have input devices which readgccount
numbets printed on checks when these numbers areA printed with a special E4
magnetic ink. When typewriters ar'e attache<i to computers, the data may be__

i supplied simply by typing it.

One of the most popular input devices is the card reader which reads

punch cards, so you can see it is natural to adol;,t as a flow chart convention

- the sg¥lhouette of a punch caz)%d . .
. - to suggest the input process. The /—
* list of items being read we shall P .
"jcall the "jhput 1ist." So o 3 i L
. co e tne representationzof .

a specifi'c input step, as a flow chart symbol, we insert the input list within

the figure, as 'for exafple, N ’ i

KN . \ . B ,

* AyB,C -

P
3a
. - N
L -

.. N Likewise, some of the most common output devices are line printers and
", typewriters. These provide us witheprinted answers in a familiar and readable

- form. The conventional form representing output is the silhouette

ERIC . ° T 2 v
Lo) . o

c . . . 2 . <

- N -
™ ——

- " - -

" which suggests a piece of paper torn from a typewriter or line printer. Since
] the key component of the output step is the "output list," to complete the

symbol for a specific output step we insert the output 1ist within the figure, *
as for example,

Vi

A

e T T

5

In this problem, the list is Simply D. ' :

'I'here is one more way in which the shape of boxes is indicative of the
. operations they represent. The circular START and STOP boxes clearly
suggest the round buttons commonly used.,to start and stop pieces of machinery.

o~

s . T~

R Figure 2-3. Control Switch for Grinding Wheel

s
4

From now on we will use the shape of the box to indicate what is going
on inside it. This is one of the cha%acteristics of the flow chart language.

JERIC - - | |

R . . *a b
\

. L N
. Exercises 2-1 L . L
Do —_— e \ .
'%,'_“3- In each of the following exercises your job is to convert the problem
. \ " statement into a flow chart. You will find the structure of each flow chart — —_
. is-similar to that of Figure 2-2. . ‘) -

k4

1. The shaded area in Figuré 2-4
", is made up of t'k s;-:mi-circle’
of diameter DE, tl square
. ACDE and the isosths
trisngle ABC ’(;hese hase 1is
b+ and whose alfitude is h.
Given b end h, find p,
the Z>erimeter of the shaded

figure.

.

2., Given a rovw M and a column N

‘ /234 5
such that M > N, find L, the /7] (
‘ velye in the square for the MB~ EAE
P
row and N column in 2 3141516
Fi 2-5 sh 'tfl"ht [1A LA LA 1
N gv:lre -5 shown on the rgg}d}. szl ”/5] .
(Hint: Notice that 8 = 25—+ 2.) e e . \
! Figure 2-5

N

3.' Given the grade average, & for 'g previo{xs homework assignments, and
the grade g, for the n + lSt hom(ework assignment, find the average
grade,” r, based oh n + 1) a§signment§. There are th;";ie input values.

. What-are they? . .) - .

A
. v v
| hd 4 s

¥

O

ERIC " * .

2-2 Repetition .

The usefulness of a computer calculation AIncreases if it can be easily
repeated. Even the simple, almost trivial, process of Figure 2-2 becomes
significant when it is to be repeated a large number of ‘times. Suppose, in
fact, the instructor restates the original problem as follows:

"Given: A large number of values of ;7B ~&nd” C; such .
-] as might be found in Table 2-2. >
Prepare: A ta‘t‘le showing for each set of values A, B,' and C , o

(’in Columis 1, 2 and- 3 respectively) and the'corréd-
s sponding value of "D {in Column 4). Assume the same t

LN formula for D applies as before.”
y - , ‘o
Table 2-2
- A B C °*k
) 5.0 10.0, 3.0 .
e ki3 2.5 6.1 - L.
' 8.5 5.7 To-3.2
- 10.4 Cos 0.7
: T 6.3 5.2 . 6.7 Coe
- . Y A N 1Y
. . , . T . s . .
- T 9.6 U P 2.2 R -
o 9.1 “Te2 7 L - 3.3 JE
o o [y . o ’) vl » .z
. T _
o While fhe task involved may comprise far more work than before , the Lo ’
‘ essential change to the process is simply that it be repeated. This concept -
‘of simple §epetition is very easy to express in a flow ¢hart language by s.. - ..
// forming a loop, as can be seen.in Figure 2-6. . . ‘
r) - 3 ‘ i
$n - s 2)
KEE oy
De—JA2+ B + 4(52’ *
. . * » b i
. AR .
, o . Pigure 2-6. A Simple Loop . .
° - a3 . , m—
- 3 1"3 i~ .
Y ',(. - N

L . . A~ I ¥ o .o
ERIC. . oo R P . A

- - 1 A
. . . P ‘ ta . o7

¢

. ERI

Aruitoxt provided by Eic:

Such a loop will meke sense if we think of each set of data as pu_.nc)g(ed on a
4 separate card, with the cards arranged in a‘stack,’ and with only one card
read each time the input step is executed. The flow chart ‘tells us .something
fairly obvious: Instead of hal‘t:ing the process after prin‘t:ing the value of
D for the first set of data (along with the values A, B, C), we will /
-retu:z\'x to repeat the entire procedure at the input step (Box l):

The appearance of th%op/ in Figure 2-6 requires more exact explanation

of the processes represented by our input, assignment and output. boxes.

. The input box in a’.?*flow chart will always have one or more variables
<
, written in it., The bok can be considered Xo refer to a stack of punch .cards,

each with specific numbérs appearing,on it in the positions belonging to the
variables as shown in the flow charxt. (See for example Figure 2-7 below.)

3, J

The commend represented by the input box can now be selza.ra‘t:ed into its \ .

- component parts as follows$! s J

. L

1.- Read the nﬂmbers ofi‘\‘\\ the first card in the stack and p}lt these
num'f)ers in storage lecations assigned to the variables appearing
in the input box. If numbers are already stored in these locations
remember that, these numbers are comple‘t:ely erased before the new N

numbers are put in; computer storage ae\rlces ha.ve destructive

read-in.
e .

2. Remove the first card from the s‘t:ack permi‘t:‘t:ing the next card
-~
(if any) to become the first cerd., . . r

+

'

3. vaa flow chart arrow carries us idto an input box and'it turns
olut that there gre no cards left in ¢the stack then the computation

is to stope. ‘ Ty

- .

Without the last part of the sbove explanae;ion Figure 2-6 would suggest
an "endless loop.' Such a,loop would represent a most unsatdsfactory salgo-
rithm. We now sge that the computation in Figuré 2-6 is provided with a way

to stop; there will not be an infinite loop unleé ‘t:here are infinitely many .

, . J i
cards. 1 -

v

~Emc . . .

..*"

-
Inside an assignment box we will always put a left-pointing arrow.' To the

left of the arrow we always put a variable. To the right of the arrow will

appear some sort of expression, it may be = c&xstant it mey Be a varisble

or'it may be, as in the previous example, an expression indicatipg a computa-
tion. 'I'he brea.kdown of the commdnd of the assignment box follows.

s

1. For each of the variables (if any) occurring on the right side
of the arrow ¥ th§‘ assignment box, read-out the value from
the sppropriate location in storage. This read-out is non- :
* destructive. THat is, the values to be found in the locations l
corresponding to these variables gre exactly the seme after
this read out as before. ‘As described in Section 1-3, read-in-

* "7 1s destructive, while read-out is not&.

n
.

Once the values of the varisbles appea.ring on the right side
- of the assignment box have been read, any computation indicated

/"

by the expressiofi on the right hand side of the arraw is
performed. -

3. Thé‘ value of thé expression on the right side is ‘assi@ed to
the va.riable on the left side of the arrow.® That is, the *
result of the.computation"&*s read-in (destructively) to"tbe'
storage location corresponding to the varisble on the left side

of the arrow, ')
» ‘. .

As an example suppose that the input of .the process illustrated by -
Figure 2= 6 consists of the three cards in Figure 2-7 (in the indicated order)

Then the,output will be as in this figu:re. ‘
/5.0, 10.0 3.0 .
—lpt { amme 10,0 3.0
. ’ € . . 205 601
[F3 25 6.1 : . 5.7° -3.2
~ R . s -

T
L (8.5 5.7 -"3%‘2

. Figure 2-T¢ Sample Input and “Output Data

> S Ve R '

~— . -

PAruntext provided by enic [N W ’ - / N ‘o
P 4 '
. AR . .
. W0 K . . . " .

Sk
Yo

O

ERIC

Aruitoxt provided by Eic:

2-2

5

Cae

, .
The student may wonder why the, values of A, B, C

output when they were known at the beginning.

then know for example that 7.9 1is

in Figure 2«7 were printed as output/’)lhe

@ 2‘4 2

should be p
Buppose only thé last

fed as

.

lumn

erson reading this output would

3

for some values of A,

B and C which he might be able to find if the .order: of the cards has not

been disturbed, “and provided the cards can be located.

output data would obviously be seriously reduced.

R

Exercice 2-2

the input of Figure’

computation.

\

.

-\

~
.

<
For the flow chart of Figure 2- 6 repeated in Figure 2-8 below, with

(2) At.position
(v). At position
(c) At position

(a) at position

-

-4

ZiS - when no oﬁ%Put has been printed.

[25 when two lines of oﬁtput have been printed.

1

o1

A,B,C A D22+ B s A-
‘ A "
v ? V]
- -
Figure 2-8. A Simple Loop

ZCS when one line of outbui has been printed.

4
[25 when one line of output has been printed.

The value of this-'

-7, give the values stored in the positions corresponding
go/each of the varisbles - A, By C and D at the indicated point in the

2-3 Assignmént end Variables

*

The concept of assignment is of fundemental importence in computing, so
_ we should really subject 1t to the most careful scrutiny, ' Assignment is
quite' different from eny concept you have met in mathematice, although it is
similar enough to be migstaken for either "equality" or substitut:lon.' We ..
will explain how assignment differs from.these concepts at the appropriate

time. ,
- As has been steted in the previous section, we always assign values to
: va.riables. :

A variable in msthematics is wsually a letter which has not been
previously identified as a constant. A letter followed by one or several
integer subscripts is also permissible. In computer /Z(anguage we allow a
great deal more leeway Iin the symbols which may be ‘]/sed as varlables. Some

samples are:
4 4

R DIST, AREA, LENGTH, ARGGH,
. . 4) By
©or such strings of letters and digits as:

@ \ 0 ¥ . Y

% A3, X2, Y3065, R3CH '
LN
There are two prinecipel reasons for enla.rging our 1list of variables to

includ these strings.) First, the list of symbols avallable to computers is
.‘usua.lly limited to upper cdse Roman letters/. _There are ng Greelg letters,and
- usyelly no lower case lp.tters. We just do not have enough letters available
for nse as varisbles. Second, using a descriptive combination of letters as -
.a veriable is often véry helpful in reminding us how the va.riable ig beingﬁ

*

used. : “ } ; .
[w“ s

We have a spetial attitude towa.rd such unbroken strings of letters and
- diglts starting with a letter. We regard them as being connected together to)
forxﬁ a bt'and new symbol, somewhat like handwriting. We think‘of symbols
? above as!being written as follows:)

. [. s
2 DIST st o ‘
- \ : b z7
. - R3CY y 2ty) .
. . ' 2) B v
. . 3 o s ,,‘A -
N . ,

Q A ‘ . ; : - S .

.- P T) . . A
=] r A] ,

. " g

The occurrence of punctuation, operation symbols, or parentheses bresks the
spell. The sbove attitude applies only to strings of letters and/or digits
commencing with a letter. Any such string of characters will be regarded as
a variable\unless there has been a specific statement to the contrary. From
this‘pointxof view an expression like XN is not considered- to contain
either of the variables X or N but rather to be & brand new symbol. ‘.In-
other words we insist no variable'should be considered to_be part of ancther
‘ variable E T : C
-

Now we are able in a few words to explain the \use of varisbles in

computing and the idea of assignment.

In any\computing problem, there corresponds to each variable used in °

tﬁatlproblem a locatton in the coumputer's storage. By assigning a number to
a variable_w mean simply reading the number destructively into the storage
location corﬁesponding to that va.riable.w In evalusting arithpetic expressions
a variable is to be treated as a name for the number in %he corresponding
storage location. The number in the corresponding storage location is re-

o«
ferred to as the value (or current value)of the variable., During the, course,

‘of a computation many different values (perhaps even millions) ma& be assigned .
to a.given varisble. Thus it will not be meaningful to spesk of the value ‘of
&8 variable without specifying the time or, more precisely, the stage of the
’ computing process. But once *the stage of the process is specifiedx the value *
. of ‘the variable is uﬁiqueiy determined. (See, for example, the exercise at

the end of the preceding section.) . ‘

N
A storage location may be hard to visualize. If so, here is an analogy
which will not lead to error. ., Consider that to each variable there corres-
’ ponds a wooden box. To meke the orrespondence clear we engrave on the boxes

the corresponding verisbles. (But remember that the verisble is a name not ¢ -

. 4 R

for the box but for the number inside.) 3

. »

<. t
(S

. - i . - 3 v N

- . . .
e Figure 2-9, Three Boxes with Identificaxion
SNy

\ S - 49 6

o, 2-3- .
To assign 2.5 to the variasble X, we open the box labeled X, dump out the
contents and put in 2.5. We will speak for a while in terms qf;,these boxes\.

Assi_gnment may be done either in an input step or in an assignment step.
When, as in the example of the prece.ding section, we come to the input box,

. * ,
-
” .

%

we empty out the boxes labeled A, B and C and £ill them respectively with
the values punched on the proper input card.

N
-

You will remember that an assignment box has the ferm shown in the
following figure. '

<

. N =) : > o
, | —= VARIABIE « EXPRESSION |—w ' =~ & .
- / B t;u N '
' . Figure 2z 10. Forfi-of an Kssignment B%x _
v 4 « o 'o /};.w e . %,,
A left-point ng _arrow is uked toﬁéoid confusion with the many uses of right- ;
pointing ar mathemagcfcs. & E‘ ’ , VAR .
' Immediately we see some inadmilssiblé forms for @;.iignpent béxeg asin - 7
P . i 3 RRCTSY T
Figure 2-11a' ' o AN (; e
[' . % . s “ 7 - .
K + N) ’. & ., é ', ' . -; . <
- ¢ VO ! ! Lf " I N
y > O o4 < . . . - . vt .¢~..
—— 2 3 e —-45.(—]_({»1 |t ——-/— 2(_-2“ S “i. ‘s‘
¢ i w/ % ,’ ™ 7"
w e %
-) . - - . f w . 3y .
. - Filgure 2-11. Inadmissibdle Assignment; Boxes . .1 <o : .l
) ‘ ’ ’ . } . e o £
The [reasen that these assignment statements are inadmissible is that a con- .
1 1 [y 14
‘ s’cant rather than a varigble appears to the left of the a.rrow. i
- s N

. Another inadmi ssible assignment box 1s shown in Figure 2-12, <>' - L

. * . 7 . ‘;‘

- . , 1 ° N . ,\‘ ot . .).

. ; - N {_’

& / ¢ v/ . e
.,’,- o / . - ' B h750 g e {‘; 7 . " :

.
Aruitoxt provided by Eic: . i

°

—f Be-thXC«-—S——b

Fl 7

Figure 2-12. Another Iradmissible Assignment Box
- v .

gain the expression ,on the left is not a variable and we cannot gssién any-
thing to 1t. ' ' . 1

’

Now we are repdy to examine some admissible assignment boxes. The

'
v

* simplest form, R : :
- }

T, < —» X2 o

is” interpreted: Dump out the value in the box labeled X and put in 2.

- - >

We hasten to remind +he student that ass'ignment is not gguglit&_», Some
. . , ’
beginners erroneously read as "X = 2." Then, later in the Process

. they may see [X «3] and Anink, "X = :'3." " Combining fthese two statements
| they have 2= 3 which points out the confusion. Of course if we see
\"' X « 2] and later we remember. that the number 2 is cleared out

of the location associated wi‘ h "X before 3 1is put in. Thus we do not
imply ‘that 3 =2 ’b}it merely| that 2 and 3 were consecutive tensnts of
. -) bthe location belonging to X.

H

>
- ° 3 . « -
. " . B
‘ / » N ’ ? .

|
\
!
}
|
\
|
|
|
|
" ' Now congider the assignment statement:

» ’ ' —» X T | , . .
- o0 ’ .‘J ' * I
a This statement does not meany Go through all the fomuIas‘;!invoIving X end -
_replace 'X' by T. 'This is dnother way in whic beginners go ;rron‘g.: Such .

an interpretation does not yieid correct results. ot .

3

What the above assignment statement does mean is the following: Go to
the box labeled T and read|the value contained therein (but do not glter

- 3 - -\ |

A

» <

') S U Y- S .
: Q ‘ ‘. . 51 P : . . e - ‘
' 'EMC . C T e :

. . - i .
v . .

RV e providedy e . \S ot e PR e
- . . . N v s
, . - , . “ -
‘ . - . 3 - . . oA Lo

- 2-3
'

this value). Empty out the box labeled X and put into it the value read
out of the box labeled T. As an example, suppose the values of A end T
were 5 eand 7 nespectively before the command XeT is carried out.

After thi's command is éxecuted the values of’ X and T will both be 7.

An assignment statement we frequegtly see is,

~ . —-I(—)I+i——

A

5

To gxecute this command_ we go to the box labeled I and read the \;alue
cohtained therein.‘ Then we add 1 to this value. Now we empty out the
contents of the bgx lebeled I and put in the value just computed. As en
example, if the value 61“ I was, 7T before the execution of this comman 3
‘the value of I will be 8 after the command is executed.

This last assignment box can be thought of as an ‘'updating" rule (if
I represents the date). Assignment steps of this kind are often used when -

the incremented variable is being use& as a tally or counter. . .

As an exa.mple of"this idea, .suppose tha.t in the flow chart of Figure 2-6
with-the input of Figure 2-T we wish the lines in the output to be numbered
in order. Figure 2-13 ig a revised flow char%?achieving this result.

- < ¢ 1
. 1 ’ 2
' ¥
A,B,C D « /224824 C°
’ . LY -
\ 0 = —IL (
‘ - ITeI+1
. - .,
~ - -
Figue 2-13. Revi(sea« Flow Chart for Problem of Preceding
Section
Yoow
. - A9 - R
- O ‘ N 9 ..).5
ERIC - o .
‘ . / ' .

’

The "counter," I, keeps track of the number of sets of data, 4, B, C,
read in to memory and used to compute D. We begin ‘Sy assigning to I an
initial value of 1 (Box 0). Each time we print out the resilts, we incre-
ment or "update"” the value of I (Box 4). Notice that the value of I will

PR N bé printejd along with th(values assigned to A, B, C and D each time the
\\ob.tput step (Box 3) is executed. If the input of Figure 2-7 is fed into the
' procéss of E‘igure 2-13 then the output will be as in Figure 2-1k.

AL

- ' 1 5.0 '10.0 3.0 11.6 : >

s 2 k3. 25 61 7.9
3 "85 5.7 -3.2 10.7

, Figure 2-14. Sample Outpu£ Data from Preceéing Flow"Chart

«

\ R _ \
In Chapter 3 yc}lélll see how the same updating step,

may be used to‘control a repetitive process like that in ®igure 2-6, but here
we are using this step only to keep track of or to "monitor" the repetitive

‘process.
L]

'

Let us now make an improvement in the box we visualize as corresponding
to a varisble. From now on think of the box as having a window 1in it. All

»

read-out will be done through this’ window. This will eliminate the danger
of altering or destroylng the number in the .box by our reading process. To

avold confusion with input, output and assignment boxes we will from now on

refer to these wqoden storage boxes as "window boxes.

P

- > WINDOW

H

Figure 2-15. The "window box"

b

»

.E ol | .. ? .

Aruitoxt provided by Eic: -

U

o
¥

The window box with the letter X g’u 4t will be opened only
AN J e 3
1. during en input step when X app srs in the input box, o;/,.

2. during an assignment step when X- appears on the left side of ’
the assignment 8rrov. ‘ ’

Thus a window box is opened only when reassignment is to take place. Once a

value is assignied to a variable, its corresponding window hLe#® will henceforth T
never be empty. , . \
The fOllOWing two assignment commends are easily interpreted. e e ecaas
T s W 2 re L b 3l -gx X B va €A T N-d.-idv(Lo) M-"«ﬂ'm
*\ ’ ' . '. L]
’ '~ T e ’/io ——a— ? . -

A s

. . * -
Read through thé window the value in the box labeled T. Compute the
_ square rodt of tﬁis value, Empty out the.value in the box labeled T .and
replace with the computed value. . < .

N

— ! , DISCRIMINANT «B° - 4 X AX C - —

.
- -~ ¢
P [y - M
- . , Y
\ N rd .

‘ Here we read the value ‘of A B, and C, Using those values we compute
B - h x AX C. Yow we read this computed value (destructively) -into- the box
. 1abeled DISCRIMINANT - v, 2 « RN

You may find it helpful to think of thekwork of a computer as being done .
by three .people, the "master computer and two assiétan‘bs called the assigner
and the ' reader. " When the master computer wlshes to aSSign a value to a
g veriable, he- writes the value on a slip of paper. - He gives this slip of -
paper to the assigner “nd tells him which variable to assign 1t to. The
assigner finds X%he appropriate wind0w bok, empties out the contents and puts
in the sl‘.lp of paper bearing. the new value. = . e R

-

Wnen the master cemputer wi*shes to know the value of a variable he calls *

the reader and tells him which variable to look up. The reader goes to the,
. .appropriate window box and, looking through the window, mskes a copy, of the .
val}le in’eg.de the box on a small pad of paper. He, then returns to the master

.

a * Y

ERIC -~ =« &7 ‘ .

o

2-3 " . ST ge I
+ ” ‘ F ! ! - N
. . K ,.‘ - . -
computer and glves him the sheet of paper bearing the_copied value: \

. The "master computer Jas a master, too.u It is you who write the

N algorithms which he must run. An algorithm will be poorly formed if, in
carrying it out, the maste;c must send a reader to & window box before

sending a/n "assigner" to that seme box. Why? . .
o | -sa;s 4 , " »
b . - " ') ©
3
a . '\ - J
» s i

Exercises 2-3 ‘ o ' o
U
1. The following is a restatement of Exercise 2-1, Number 3

_Given the grade average * OLDAVG, _for n previons homework assignments -
and the grade, GRADF.‘, for the n + lSt homework assigument, find the

e

|
new average NEWAVG, based on n + 1 assignments.

Convert this’ problem statement into a flow chart with a structure
similar to that of Flgu.re 2- 6 Fe.

\ ! . 4
<

~ -

2. Compsre the above problem statement and your ‘solution of it with the
—eriginal—s%etement a&é—ye\:a“—selutien %&that—ene—miehﬂ%eh&r%i—

would convey more medning to you after one week, one month, one year, !

’ it you were to glance at each one without looking at the corresponding //
) - problem statement? Comment on the lesson that is to be learned here. /
. - . - . /‘a i
3. "~ Suppbse we modify the ‘problem in Exercise 1 as follows. . A
. The %new average grade for" n +"l homework assignments is to be assi@ @& i
, . not- to NEWAVG, but toF OLDAVG. Redraw the flow chart for this Acase. i
Why is this a veasohzble thing to do? ' ; '
, . . o . N
. 4, The instructor began keeping two pages in his gradebook for each class. |
) . On ?age 1 he recorded the actual scores or grades for each of the g
€ ¥e

a0 homework assignments. This page isn? t, shown here. On Page 2 he
recorded the new gumulptive 'g,rade avexrages, colum after. colu.mnt e'tfs’ they
were computed following the grading of ‘edch assignment. Page ?2-,‘.1.Fs‘;‘r

‘,’/ " : { e
T illustrated Ain partiad detail below. ‘/ ‘ "

T . "t
T~ / B . . :
., ° “’o -
i, -2 b - ’ H -
PR T ‘ 52 - Lo M
e 55 o :
EMC f”’f i c o . | p . . ”

2 .

."4 R) . .

. , .
w ! »

N ‘ ’ / < Cumulative Grade Averages . ’ ’
e / CUM1 CUM2 = (UM3...CUMT7 CUM.8
Abel, J'ohn/ 79.0 8.5 . 830 ...77.1 e e ’
. Ba.ker, 83.0 84.5 8.0 ... 83.4
Chary, miley 54,0 64.0. & 67.0 ...'TL.2 . °
oo ‘I’ho son, Bill 83.0 81.5 .0 ... 831 ,
Willliams, Ted 81.0 ©. " 83.0° 80.0 ... 846

-

. Note that each column shows the average based on one more score”

en the previous colum. Thus, after 3 scores, Tim Baker had an

' javerage of 84.0. After 7. scores, his ,average was 83, h e "“},“
/ To compute each column ve imagin® th,e instru\or follows a manual
. / or computer process based on the flow chart you Just developed in
/ Exercise 3. Now suppose, the grades for the eighth homewor}g. set are ‘
/ R John Abél . ol, L. "
/ N) Tim Baker ' &8 . v .
) Smiley Chary 82 L)
s . . & . A
. ——— o :) N
) o) BN Thomp son 88) .

Ted Williams X 87

1
R4

’ What are the input data values to compute column CUM 8 entries for >)
’ John Abel, Smiley Chary and Ted Williems? . R :
’ . . v) . ‘) h
5. After some expéerience with this grade recording system the “instructor ~

- -

felt it no’ longer necessary to maintain Page 1 informstion showing the
individﬁal grades. Having the series £ cumulativ;'- averages seemed ‘
adequste for him. (On only rare occasi

ind:ldri(iual grade}. In your op\in/ios{Tas the instructor safe in dropg%hg ’

ons did he need to lo.ok at an

.o -

Page 1 from his records? Explain. | " .
‘o R N . ‘

6. Develop a flow chart showing the process by which any desd.red grade L
can be computed from Pdge 2 informetien &lone.)

ERIC)

Aruitoxt provided by Eic:

. . . -
. 2-4 : ' o
-) ~ "/r ‘ T e ~-7 ‘\,'
2-% Arithmetic’ Efo‘es:sions- - @ .
. We have to take a close look at our mathematical notatiep. and we commence

the scrutiny in this section, focusing our attention on those rather vague
"expressions” on the right hand side‘of assignment boxes. These expressions
\usually represent an indicated calculation and we will refer to them as .

“"arithmetic expressions." "It should be noted that the term "arithmetic

expressiJﬁ has a larger scope in computer work than’ in mathematics.

Although our usual (every day) méthemstical notation is very useful and
flexible and quite adequate for our mathematical needs, it is not suitable
for mechanical reading: This is what we mean vhen we say that ordina_ry
ma&em&tical language is not a "formal" language. Applied to arithznetic -

expressions this means that we camnot write dowfg sets of g‘ules fors
' ’
- 1. determining Whether or not any arrangement of 'symbols / 5'%

. - K constitutes’ an arithmetic expression, . 4.7

t e [

2. telling Row to evaluate any arithmetic expression we may ‘ S

<o “ be given .

And yet, with a fey small changes 1n our mathematical notation, the

/3\‘.

le.nguage ‘of a.rithmetic expressions is- converted into a langu‘age capagle of

——ﬂemﬁormtm we—nmrcate—whmnese—cnarrge— are angd glve the ;orma.l
rules for evaluating, expresswns, after these changes have been made. Part

' of the rules for determining whether an arrangement of symbols is an arith-:y'
metic expression (that par‘tv concerning detailed study of the use of paren- .

:théses) is left to Appendix B '

‘ ’ ' R 4
e r A This discussion of the modifications necessary to formalize mathemaiv.cal
¥) language should be of considerable help to you’ in your programming work.

'Most of the prOgramming languages ybu are likely to be studyhng a.re based on

everyday ma:bhematical language. The material of this section should provide

a "rationale" for the depa.rtures fromseveryday mathematical usage encomtered
= in those programming languages. Some of the '’ reforms proposed in this

L . section we do adopt in +the flow chart language. Others we do not. The ones

not, adopted do, however, provide us W‘J.th an alternative way of m‘iting things
if problems* in readabili‘ty occur. . v . o .

¢

A pumber of years ago at a latrge American university, an entra.nce ekem *

- % kY

< contained the question:) . ‘ '

R . - . -
I Y AR . .
’ S S . Simplify ¢ ¢ »
> . ‘(, < . .' Sinx - , o
. . L tanx - .
K . / o0 '
. - . . & - N N ’ ~
e h ~y
Q / ; i‘! Sh i .
E lC * - / ’ [N o N : {’ N
o i 4
..l._/-' o * - .

One student .gave &s his answver;
it 7 Y

si
ta - .

{
The prdfessors involved in the grading of the test had a good chuckle over
this\unexpected miﬂ.nterpretation of the problem. K

, r
Unexpected though it may have beem, still there was nothing ridiculous
: a
in this answer. Presumably the student had not studied trigonometry end

i

-
acgording to the ruies learned in his algebra course his work was perfectly. ‘
. correct, He had no other way of interpreting _sinx but as .
[y . ' *
T sX1ixXnXxx. 7.
. A .
If the problem had been) _ ‘ - .
- . ’) - . . N
. Simplify : N . v
-8 . . ’ A «J * -
® N ’ . abnx
° v, cdnx - - .
. . - o
» there could be no alternative to the enswer - "
N RN “
e . &b iy RS y ¢
- cd /v“/\
e " ' : ;
4
f The studengyhere wais using a.rule which he believed to be permanent and
. ’unchangivng, but, alas, it hed been supersededvby snpthér rule. In Jact, it
ma.y not have been entirely superseded, Suppose we were dea.ling with ‘a probXtm .
not involving trigonometry%n which .)) “" R
- < v, .) .] j T ' .
> S ‘ s, 1,’n, a@nd x °) T v
L -] o N
, Were varisbles. Might wg not then regard " . o .,
- - 0 . -~ N -~ .
- - . , » . y ‘\ - N .
. siny . ~ * .
. - . Nl . -
ki - *
as denoting * K o s N *
LY - oo -' " . 4 > < ., .
7 © sXixXnxax? ﬁ" Joa e -
At R i N Q..: i
» »-Next consider«the frustrating expression . - .
.o o, . i

. : © falvdel.

Which does it denote, ! -

-
.

¢ .
[alexI‘pl or .'Iaxtbl'xtc |-2

ek SN ;

vl ¢ . s o

Acco&diné to our usual convention of using Juxtaposition to denoté multiplica-
tion, either of these last two expressions may be writteh in the form

| a I b | c l Yet 1f b is negative, these expressions will in general
have different values.

e
EEEAN

) . TN

These examples show that the meeming of\mathematicaigexpressions is
sometimes ambiguous'anq may depend on context for correct interpretation.
In the first example the use of jﬁxtaposition for multiplication is the
eulprite In the second, Juxtaposition conspires, with the indistinguishability

of .left and right sbsolute value symbols to rob the expression of its meaning.

i e oy
| We hope that we‘have not giyen the impression that mathematical notation
j is unsalvageable. In truth, practices current in everyday mathematical
i notation which may lead to ambiguity, or difficulties of fonmalizatioﬁ are
} few in number.” We 1ift the 'reforms" needed or helpful to insure absolute
{ ;larity in the mathemé%ical language of expressions These reformd will be
. used throughoui this section, thus obtaining a language rather like & program-
rk ' ming language. When we return to ordinary flow chart langusge in Section 2-5, '

only the first and fifth reforms noted below will be retained.

0 { - ,
v’ 1. Abandon théfpractice of using Juxtaposition to denote multiplication

end instead use the operator symbol "X." 'We'willldo this in flow
- +—ehert .:aﬁguag —* T ! ! hd a) _— /
’ 2. Special functional notations cause trouble because, in gliins l

~ formal rules for reading, it is necessary to'give a special rule

for each such notatioh.” “To avoid this, replace these notations by Lo
such notations as ABS(X) for ']x| ‘and SQRT(X) ‘for“/zs. in.’
s ' floW. chart language, we will continue to write le' and Vx since' o

the human reader generally flnds them easier.

~ - . .
1 - i i e .

3. Abandon off-the-line notations because they strike a death blow at * .
any hope of a simple formalization procedure if the part occurring

.« Off the line-is allowed to have variables in it. Substitutions can :
then carry farther and farther off the 1ine, giving rise to numerous

Zypes o} difficuities. We adopt here the notation
K ‘[‘a . A s - ' o N ‘ . »
\ -~ x3 for NN : -

. . . gy .
%n flow chart language ve will stick to superscripts.
Ry - - ' \ ; . c . : . . L

. N - »

Y

P . L . .
. < . . = . s N ‘ - . . .
ERIC fom T mg R oo
- . : .o
-, AT . Y ‘ ' L. ' . 4,

4. Abandon use of "-" in three ,different senses: as a binary sub-
traction operator in "X - Y"; a5 a unary "ta}fing the 'negative of" ;
“operator in. ".X"; as part of ‘the, name of a negative constant in
Mg, M .) . - -
. , -~ ¥
V 5. ‘Embrace function arguments in parentheses. .We will also do this in
the flow.chart languége" exéépt in the special notation li\sted
. undér (2). ,) » .)
t

» .

.
[y

6. Adhere to the usuel conventions regarding parenthesis removal, This -
is discussed later in this section and also in Appendix B.

' 1

Now all the velid arithmetic expressions in our "modified" language can .
¢ ' .
be genergted by using Teble 2-3 together with the rule that follows.

Table 2-3 ; % -
. ; f 21 -4 -
. _Basic Forms 05 Arithmetic Expressions
A Kind) Examples . y
1. Numerical Constants 17, .0065, 3.14%159, .0 :
. I ,4 -5, =061, . -17.62 * \
. 2. Variables X, Y, A, B, DIST, -
3. Unary 01?erational Foxrm ¢ *
4. ° Binary Operationsl Form' | | X+7VY, X-7Y, XxY *%
' o ol oxy, oy i
5. Functionsl Forms * SIN(X) COS('X) - <
- . .
— . . ABS(X), SQRT(X) .
' v - g ¥ “ e e~ -
[The @sterisks occurring in the table will ,be-explained as we go ‘alq_ng.i
[\ i
fThe three uses of "-" were introduced into mathematical notation in ord r a

t6 profit from the cdnfusion. Although they cause quite & lot of trouble,
we retain the thz;ee minuses., An example showing .the three mminuses is

s
)

& a ‘ ‘GLD/L%. -%(-\5)\)\° |) &

- : ' b'inary ;znary number-neming . e
Does "profit‘ from confusion” cpn'fpse you? It shouldn®t. How were we taught :
to recognize &t g'glance that’' A'L (-(-5)) 1is the 'seme as A - 5% . -
Answer--WHer,x ye want to simplify an e@ression we treat all three different N ;
minuses as if they were the same- in the rule that an-odd number of them can
be replaced by & single one. . . ‘ ’

‘ 0

[

. S s7 e

6{)
.

.

T .

- ‘ . Y

@

5 In our computing work we will take what may seem & narrowifiew of what we

consider to be numerical constants By numerical constants we mean strings of

digits with or without a decimal point and pqssibly prece'&ed by a minus sign.

Thaet is all; no exceptions. For example, we da not ‘consider -
s

— ST T -: n \2‘\+—5——’Ma\ 3/h

-

as numerica.l constants, but as expressions still to be evaluated: indicated
operations to be carried out. Some Writers do not pexmit the functional
forms {entry 5 in Table 2-3) to be classified as Arithmetic Express{ons.

Along with the ta.BIe goes a rile for grinding, out more and more

expressions.

RULE: In an arithmetic expression, if a varisble is .

replaced by an arithmetic expression, the result

is again an arithmetic expression.

-
on

A slight modification of this rule is necessary in light of the following

example. Suppose in B X X we replece X be""’-A. We then obtain B X -A.°
This juxtaposition of two operator symbols {"x" and ".") is not permitted in
mathematical writing and it is not permitted in most .computer languages

)

either. We must in this case put parentheses around -A fhen obtaining ,

E

O

RIC L

o
x)‘

£ A\
B X (&)~ -

One might wish to De able to apply the sbove rule directly without making
\ -

any exceptions concerning parentheses. This result could be obtained by ‘

A : ;
goingzhack to Table 2-3 and putting Mntheses around the basic forms in the

boxeérnmarked with a .single asterisk (%). In this way we would always have
parentheses g,tten around negative constants and unary operational forms,

such as

.-;' i :“ (_5)",‘(_.0091), (-x), (-A). : .

* N ¥
> »

We are used 0 having the replacement or substitution in the above rule

more for us tﬁan merely produce a valid expression. We will illustrate
- e . a
th these examples. .

P

5

xample 1: ol -"gﬂ . . S
If we substitute 3 x5 fof X.in the*‘expression 2 + X' we'obtain

2+ 3 X5, which we evaluate accorﬁng ‘to our usual rules‘to be 17. : If, on
the other hand, we evaluate 3 X5 and substitute the result for X in

2+ X we obtain 2 + 15 which we evaluate to 'be 17. The twe ‘substitutions

‘mede for X produced equivalent (i.e., "equal-Valued") expres§iogs;

]

. S .

2+3><5 ‘and 2+l5

But now let us look at ano‘ther example.

A\ :::%ni;
S o.
Example 2 -
’)
. If wé substitute § +5, for X in the expression
\ I g
- L)
2xX . .
" we obtain) .o . - .
R / o o
2X3+5

which evaluates to 11. If on the other hand, we evaluate 3 +5 as 8 and

substitute this value for X in . . - - o
. .
‘ 2xX .
. ®d ot - i ! +
we obtain ° : . ’

2x8 - . ! 4

Pwhich-evaluates' to 16. The two substitutions made for X produced the
AR, .
expressions : * : .
x;pﬁg. .. ({',

. 2X3+5 and "2x8 '

-~ ¥

which are not,eduivalénf

»

No doubt every reader has spotted ¥he. trouble, we lefit oyt the parentheses.
In every mathematical use of replacement or substitution in the sbove rule we
want the results of the two orders @ing things to be equivalent. This, is
what is indicated by the old ma.xim "When equals are substituted for equals -
the results are equal.” 1In order to attain this end we put barentheses -around

. the 3 +5 in the last example to obtain . '
. s’

o 2><(3+5)

N &
" thus ensuring the.desired order of computation,

» We might wish to preserve this property of obtaining equivalent expres-
sions through use of our, rule wi'thout making special cases concerning use of
parentheses., If we so wish we can attain the desired result by again modify-

ing Tahle 2 3 by putting' parentheses around. the fonns in the box labeled with
double asterisks (%), : e
‘ - i - -

.

~

Suppose w% were. {o- put pareptheses around the forms in the boxes labeled 2
with asterisks. ‘Then as we used .oyr rule to generate more complicated expres...
7 sions we would fi)ld many more parentheses occurring than we are accustomed to

Lo ¥

59

)) .
) 2-4)] ~ . | ‘ *
. wrxi’b\ For ex;mple, we might find 3) o
: (s (2 x STH(+(B X) + (5 x6x i L
where we would ordinarily write , T) .
i X+ X SIN(A + B.XC) +5 x (x + A)) v,

Al

These two expressions are €quivalent because of our egreement on the order in

. vhich operatidns are to be performed in the absence of] parentheses.

. If we were to put all these parentheses in Table™R-3 we sho;o.id then have
to give'a rule for removal of parentheses.in'conformity with ordinary, usage.
This rule is rather complicated and we do not_feel it necessary to discuss it,
here. (It cen be found, however, in Append:Lx B, for those who are interested.)
There is a wide egreement (exhibited in the precedence table ‘below) on the
order in which operations, are to be performed in the z;bsence of parentheses.
We will assume that you have mastered the art of writing expressions, putting
in parentheses where necessary to indicate the order of calculation. The
scanning process used by computers is designed to use the same order of
calculation. In other words, it performs calculations in the same order you
would. We will.exhibit this order of computation. After thay it will be up
to you to write in such_a way that the computer will carry _out ’your intent.
One fast word of é.dmonition; If in doubt whether parentheses are necessary,

put them }_rl!

\Y\ou have long known that in expressions such as
» . . * 2 4 3 X)+ ‘ wr

the multiplication is to be perfgrmed first. We convey this information by
saying that multipllcaﬁion i{s more cohesive or more binding than additn.on or
perhaps we say that multiplication takes priority or precedence over addition.
This kind of fnformation is, colleéted in Table 2-1+ We heve taken the<liberty
of using the symbol "4 " for exponentiation. In 1 t?t‘e flow chart lenguage we

v P

will still use superscripts. ' , ' K

2
i

L‘ Q ' ‘ 63 . ‘ : ' "

R [

\ * - 2-1¥ . P
) { , . . '
. : LY ~ 4 »
T&Si.e 2-4 - ‘- X
‘ » <. . P , r “
Precedence Level"\s, for Evaludting Parenthesis-Free Expressions .
. - R P
' Level) Operation Neme Operator Symbol |
. High | First Expohentiation - ' ¢ N R
) - 7
Multip;Lica'tion ‘ X .
Second *| Division ' & '/) o
.) .
P . Taking the Negative - (unary) g)
. ‘ Third .| Addition Tk
] ’ : T
Lovw |- Subtraction - (binary) ,

7

3
]

. : T

In evaluating parenthesis-free expressions you (or tie computer) first scan '

from left to Xight for operators of the first level.- IT none .are found, scap

(left to right) for operators of the second level. If no operators of lthe L
. second.level.are found, then scan for operatoxr's of the third. level. As|{soon

as you locate an operator of the type being scanned for, perform the operation o
.o thét it indicates. Then remember where you were in the stanning process-gand

: 7’ take u from there. pler_mle_to_stai;e_md_one—w}}ieh—eea&d—equ&i-b———

well have been chosen is to restart every scan at the begiming of the nt :

. '
. . ' N .. '
. '
. . . N

w = We give an example showing hdw t!}is all worke out. R

expression.)

-

. . ‘ .. : S Y
E_xim& . p .) * 1‘ —
The expression is *° ’ - _ e v Ny .
L ' I-NXxAVND+FxU-T - »
A . - . - X .
Tabulated yalues "for the variables: . : /’
« . N S T - z A
. . Alp|(ziN|dl.o|v
‘ . e sl ol 379 - . '
‘ . - Y E . o R
“ rI’a.ble 2-5 d.isplays the step by step evaluation. Little triangular
symbols (M) are used to indicate the operator symbol to be dealt with next..
a) b - . . -
8 v *
¢ -) 1
. ‘ . Corg .
. 4 ’ 1 * < »
s, ‘)/ 61, , ‘ . , "
\‘1 ‘ . . /] . b g . Y "
, EMC - ‘ T - : . e . .o
o R e I . R S o

—

" Table 2-5

Display of Step by Step Evaluation

Exampleﬂl) ' - /l

e Step ' Appearaiice 6f thé Expression .
No.. | * . Action After, Each Step - AT Remarks
y A P
) nitiel appearance | I - N XAAND+ gxU-T
lA N . . - - b z
S Compute A4 N I-Nx & /D+@§XU-T | Nomore level 1
. . ' . A .
5 2 | -compute N x 8 I- 24 /D+@xU-T
- - . ‘ . " A
- . S
3. | Compute 24/D. I - 6 +PxU-T |N
. N o A ‘ © A
g Complite—F X U * I ‘ 67 + 28..- 7T No more level 2
. Compute I - 6 4 #. 28 - L
5 D . 3 ,ﬁi ‘ T/
»] 6 Comppte 3 + 28 | - i 31 - fp
N = ‘T * “*
/—x — Compufrﬂ\,3l S — ". 5 - \)
. - . . . ~\
-~ -

ERIC

Aruitoxt provided by Eic:

o
> . ‘
~

You may wonder how to tell a unary minus from a binary minus. Do they

have dittle tags on them? No, but in a»properly witten arithmetic expression
a unary minus can occur either at the ve‘ry begin.ning of an expreSsion as in,
-Y, or immediately followmg a left parenthesis and nowhere else. ‘A binary

minus, on the other hand, can never occupy such positions. ’ .
* PN '«.W ~

The scanning process shown in Table 2- 5 constitutes the heart of the
evaluation process. We now finish the description of eva]?uation by explaining
what to do with expréssions containing parentheses. A "sub- expression of
an expression is defined to be any part of the éxpression included between a

pair of parentheses. For example, in the expression v

-
. “

(Ax.C-D) XE AN ¥ ’ .
.
we see that ‘ . T) Cs
AxC-D g0
. X - v
is a sub-expression. ;) I ‘- .
\ - 62 - ‘ .
s * I
- 65 L
’ . ‘
~ . 5.%;1“. .‘

s M 2

s

Ta&ie 2-6 gives the procedure for evaluating an expression~with paren-)
theses. :

2
~ N . P4 A d

Table 2-6 ..
Rules for Evaluating Arithmetic Expressions with Parentheses

.
-

1. Scan expression'f;om left tszright for first right parenthesis ")".

- 2. Evaluate the sub-expression ending with this right parenthesis
according to the rule for parenthesis-free expressions. N

(Teble 2-4). &

3. If this sub-expression is & constant, see whether it is
preceded by a function name, and if so, compute-the indicated

- iy

functional value.

v
[NOTE: Parentheses surrounding a constant should be deleted if possible.
In the scanning procedure the (undeletable) parentheses, surrounding a nega-
tive constant but not preceded by & function name, should be ignored. In"
such a case this negative constant together with its surrounding parentheses

o

is to be treated as a numerical constant.]

We must confess that there %s one place where our instruction for the

order in which ¢xpressjons are to be read gives results not in conformity ‘

‘With usual matflematical conventions. This is in expressions of the form -

”

¢ ’ ‘ : .
7 2 or a}sle. ! g

§ -

Mhat 1s the value, for example, of

.
. N
3 .

L T i o ; 233 ? Lo . ¥

) Y . Lo N
It can be either 512 or 134,217,728 depending on how parentheses are
yinserted As you can imagine,in certdin calculations the difference between

these two values ‘may be of considerable importance.

[. < ‘
4 ' P

. “The rule given in the text would evaluate G

: ~ abste ' - R

. in the. order. v o o o
/ ' - (alm)tc. N

In mathematics, however, the convention is that

: B o e -t ' \
- 2 ’ .‘j{’}'
CERIC,. - i : :

Aruitoxt provided by Eic: N

P
b L
] 2-4 . . - ‘
) _ Y
- o atBlc means. a}(sto).
3!‘ in customary mathematical nota£ion .
x
c © ¢ -
. }l\ - AP means A(,B) . :
- . N * ' « t
hd Be sure you ape.aware of this discrepancy. You can always force yoﬁr
. intent by use of parentheses. /'
. . ’/l
Exercises 2-4 Set A . . T
° ? ' \ - ' : -
1. Create a table of "step number" and "action" similar to the first two
columns of Table 2-5 for the step by step evaluatiqn of the expression
. ((axX+b)xX+c)xX+d
‘ + where values of the varigbles are . ,o .
3 a |l bfec| alx ®)
’ 2 | -1 2 1-3,] 2 o . .
g . v ¢ Y ‘
o 5 .
R * 2. ' For the expression - |
’ (a2 =b) x (e -a)/(ex (£+g)) .
where values of the variables are o ’ ’
la |'b® ¢ @ | e f g w
» N + ‘ N b ' - »
. . : 1| ef3|sl3fea]n . :
f 1 B A . o
Create & "step number" and “action" table, as in Problem l.. - - .
s Y ¢ © . ® ¢ M o e Y
.. 4 . ' © s s L.
» . 3. TFor° the expression - & c.° . ,° ’
o - < - 5
R ¢ Lel-li X 12 . x /r - 32 + 1;2 »X.PHI)_ C ‘; .
’ e y e . ’ ,
where r =10, s =9, an&“"P}fI = L. 12, write down the action of -, T
' the Uth, 8th and 12th Jﬂsel*_;l':.eps 1n the step by step dvaluation.
..‘) - i A\
~ . . £ o . °'. . o)) L N
o o + . ¢ ; % ai@g‘ , 0\
- ’ ":) *
' . L T
, . ’ , - -7
I Als a s, - ° .
Q - G7 & o e
ERIC ~ | | : :
' . , Y .
Rt £ " . .y .. AS)

»

\ 4. - For the expression c ~ . . .
1 2 \
- fé-u + a/h® + ¢°) s
' . :

where p =3, and q =L, writh.down the "action" of Step 5 in the
step by step evaluation. s . L

. v
7 - \
! . . o N

, 5 If the expression in Exercise 3 were modified to read .

-3'2—1l‘xrsq-(sx#rsq-s2+rsquHI); \ a

how many fewer'steps‘would be required for its evaluation? Here rsq
J \ presumably is a variable whose value is the .square of r assigned in a)

step prior to the evaluation of the given expression.

y 0

5 R ‘ 5 V*’ . ‘,‘

We have suggested no limit to the complex'ity of the mathe;natical expres-
sions which appear in assigmnent'steps.' Practicallg speaking, there is only
the 1imit of the eye's ability to’'scan and the mind's ability to analyze for’

! P P

unique meaning.) . >
/f . N

Some—expressions Iike g -

or ‘ ’ .

¢ A+Bx°c/(20+F) . e ' g

-

involve only horizontal inspection left to -right. Since only one direction
' 1s*wolved,, we® speak of this-as a one-dimensional or "linear" scan.

. * These "hbrizontal" expressions are really judt sgrinﬁi-of charaeters.
+If we can get these character strings into memory in consecutively addresséd
positions then the computer can be progran;med to inspect and interpret them

- a8 expressions. The gules of precedence within subexpressions which we ce—

- studied in Table 2#& then govern the computerts interpretation procedure.

- What kinds of expressions can we transmit to memory as character strings?

v
3

’ In a sense, the sta'?’ements.of our procedure, when thought of as ,.character(

) strings, are just another form of input dapa, so the manner of transmission

.) . | &) S ~N - . C
FRIC,, - % . 3 |

: ' . £ -
: K s 5 . \:(g . - ¢ .
:'°° ’ﬁéav] - ’ 2 5, M - N o = & k

&
3

. ‘ . - . \: .v'-' K) [y

. depends on the “riput media available., Foy the&ake of simplicity "5/

N ‘c%ntinue tg, assume the punch card is our input medium However, most of the
ideas discussed below are applicagble to other input media, like punched y -

pap@& tape, typewriter keyboards s etee |

:, S5
Wt - ¥ Figure 2 16 shows the" expression °) :
" - ’ - \
3 N A;j-BXC/(2.0+F) .
G e e . 7 .
*', . as 1t might appear on a punched card.
: J
N ’ L /) =) 77”777 L
' A¥FBXEL 72,0 £) . . N
AL IR . . R
4 . 00000000000' 00'000000%000&0000000000000000006}%&!@&00000000000‘0000000000000000
;I!JO!‘II!N"& UBKTBANDRBUIFHDANNNRBUBRIBNONQ A6 0 SIVTUBHBUIUNLOONHBROBONINIBUANNANN
1'11]111]1]' I’Hll!lHllll‘}l'\l!lll““lllllllllll'llllll‘llll!ll\llllllllllllll,:~
, 2222202222222 0222222122222272 22222222222‘2222222222222112222222222222?2222722222 L

] 331333333'3335'333333333333333333)3333333333333333333333;{3}1£333’t’%&é333333333
A “‘4“4““‘]4‘44414'}““‘4“4‘4““““4“‘4(44??*{{:;4“44““‘4‘;““‘4““!
5555555555555555555555555555325555555555555555555555555 55555;&55555;55555555555
5565#55'56555555555'5555555555555&558555565555555555&555555655555566555555555555
) 1777177717117777717777177777777]777777777777777777771777777177777777777777777777
llllllllllll.l'lltll'lltlllllIGSSIIllllll&ll!lllll!l!lllll}lll!llllllllllllll‘sl,
99999999999999999 59995999!9!999999!99999999999999598999999999399399999 999999
\‘nz: s tenpuungn nxn g

—

lnnnnnunanﬂnmnnnunuvunuuuuuuuuuuuunu#ﬂuuuuwunuuuu\unxnn‘

’ - ki < C/
4 \l’ [. .. “’ . .
. . . 1 . P N !"‘ 1_ .o
. Figure 2-16. Punch-card with an arithmetic expression } .
.‘ ;‘x‘ '.. S T R ‘ . : N : ¢
| - Egch column of the card contains puncheﬁ information or i blank, i e.,

<
nb holes. The input device, when properly acbivated, automatically transfers
the informetion on the card to the '‘computer's memory as a string of characters. s

,Figure 2-1 indicates two ways this information might be ‘stored in eonsecu-

P

4 tivel;y edd edsed positions. ’ M ; 3 :
.. . . i 3 } i ',;;\:/. A»-)
. s 7
P d . .7
. \ \) . o7
» ~
> \ 3 i - . - ~
\. - ~ ” 1“
14 | b ¢ . ., o) .
a N r ‘ / - . :
% The characJter set shown here is not ide’ntical with thattof Figure 1-18. ’
’ ,’/1J ‘ ’ ! ; ‘ ' » l
i . . B .
* N ’ R . °: 3 -)

. o 4 i .
| 69 e , .
'XM]: MC , . . . * . a ' »)

et .o :
e ' o R !

"
o
H
E=g
,

, 4 L
\ . ’ * . ‘\r
. /('
. B +HEXC [(2,0 ¥F) N
ot A ¢
-) . oo .
» NS (g . .
¥ b *
¢ » 1 - gw;‘\ . e, bttty
. 101 02 103 104 55 « - |56
1y
A + B X. A+B = | ¢/
1 3
. ‘< . .
105 o6 107 108. : 57 58 ‘ .
c ./ (2 N (2. L+ F) ' .
109 [P0 |ur [u2 59 .. |60 o
. o | + F .
) 11 114 11 116
3 3 5 AL
R A . *
‘) v R
- = -
a. Characters storeq. one per b. Characters stored three per '
‘ . « word of memory -~ word of memory 4)
- v Figure 2-17. An expression in memory \“
. \ ° . /) - . ¢
From now on, .when we speak of a cbmputer scanning an expression we shall
mean that’the eeression, originally punched on ‘the caﬁd or transm‘is&d)na
some other*input medium, is examined one charactér at a time from the section <o
‘of memdbry where it is stored.. o * -

U .
»\4 4 o

Thus, a left to-right scan corresponds to a sequential examination..from‘“

* lowest to highest memory addresses. 1In many machifies, character® can be

grouped ‘two, three, or more to.each word or address. In such cases a left- 5

to- right scap amoun‘c.s3 to looking at the characters of one word from left-to-° s
right ‘and then exa.m:ming 'Qhe characters at the next higher address _ing the Y
se.me way, continuing word after w0rd until the laa‘q character has been

examined. . , » - - b ’ “(

Other expressions like

B. - G o
¢ 7 A * C ¢ B H :)
- . . 8. B oo be 5 C. < d. T 4 .
SR 5 3

also involve one d ggional dnspection. We are accustomed to relyn on our eye
for a veértica¥ scan, but there is o direct analogy with the punch card unleés
icd

p . ' .

\“ N "n J; ¢ 67 .‘,. . - ~— . , .
. B . o . ’
\) “m i e ,i@‘f .‘ . , . .
RIC . A
T ° R .l ¥
o .

ot < >

i

2-4

we adopt conventions to convert vertically-written expressions to equivalent o

t - * v
Yo
.

horizontal forms which preserve unique meaning. Some possibilities are shQWn

PR

in Figure, 2-18. . . . '

4

;a)(c/D)) (G/H)/(R/S>

”

s, Case a Case b Case ¢ ,f’ “Case d

4

Figure 2-18. Examples of expressions written horizontally

It 1%

necessary to replace bars (), representing division, with

'slashes (/) when we transform .a vértically-arranged expression to horizontal

form ﬂn‘tﬁe punch card. : - o)

¢
—— -

Parentheses may be introduced to preserve the meaning usually clearly . \~
understood in the vertical display. Are the parentheseseuséd in Cases (b) and

~

(c) of Figure 2 18 really necessary? If you are in doubt"of the answer
)

repiev the rules of Table 2- 6. . °

As expressions beccme more complex the eye is expected to travel fimst in
i“’

one direction, then in another. Expressions like o ', N

Y

o A D
' axB+rc - B'OXE :
R D+ L ° FXG

are good ekamples. Figure 2 19 suggests how these may be converted to hori-
zontal form. Again, parentheses are employed to reduce the risk of ambiguity.

LY

A 4

Exercise 2-4 Set B

e

principles developed in this section, can you identify the parentheses which

are superfluous? o

ld

- ERIC

Aruitoxt provided by Eic

:
f

2

Not a

11 the parentheses used in Figure £2-19 5&9 necessary. Applying the

~ .
-

«

(AxB+C)/(D+4) o f(a/prex (D/E))/F x G)°

; S
Case &' N t"Case b
v otf ' . { ° .
< h

Figure 2-19. Expressions vhich may have unnecessary parentheses ')

- e

68 . :

\class of mathematical functions known as integer rounding
ons which are of Special interest in co;nputing. Qur interest dn

. rounding functions comes from two sources: " .

- [P

1. Every arithmetic operation on real numbers in a computer implies
s the use of some rounding function., To understand the effect of
arithmetic operations we should, therefore, be' femiliar with these

. functions. :) o

2. Rounding, proﬁerly interpreted, is often & key step in the solution

. of problems, and therefore, in the design of algorithms. "What is
meant, for example, by an instruction for half the.class to go to

. the blackboerd?, If there are 25 in the class, should 12, 12

2
or 13 go to the blackboard? Remember, in developing algorithms

*

we must be unambiguous.

An integer rounding function has a real mumber for i}s argument and it

yields an integer value for its result. The integer obtained is, in some

senseg "best" approximation to the given resl number. Each function in
this class embodies a different interpretation of the word best. For exanple,
one integer rounding function (called the "greatest integer function") yields

’

"the va...ae 1 as the best integer approximation to 1.6.
) R :
- We know frome ourstudy of Secytion l-}# that computers‘ often have the -
capability to perform arithmetic operations_efficiently on real numbers over
"7 & very wide range when coded in floatir;g-p.o‘int form (i;‘e., égéponent and
precision‘parts). Thes res}u‘lts while not perfect are correct to the last
place. ‘Furthermore, comﬁuters pérform integer arithmetic operations yielding o
exact results provided the integer operands don’t get too big. It is there-
A fore' o en of great advantage to convert numbe;;s B stored in floating-point
' form, (to some integer repz‘ésentation, and vice versa. When studying program-
ming ldfiguages, such as FORTRAN, or AI.GOL, we will be learning ways to tell .
: £he computer how to convert numbers in memory fram “orle representation to
anothee‘. Because our flow cha.rt analogies must be capable St describing any L
coputer action, including that of rounding, Ve need a mathematica.l notation ’

+ to express precisely this actlon inside the boxes of a flow chart S

L YU

. Q e . o K ‘ |
EMC . - ' - - I;,Z) . . ‘ ‘ . Lo © . _“qv) '—,

PAruntext provided oy enic [

2.5 . -) ‘ J -
4 ; . .

-

The Greatest Integer Function

- . .

1 '
A particular integer rounding function which is very simple, of frequent)

occurrence in mathematics, and of fund,e.mental importance in computing, is the

"greatest integer function. " The usual mathematlcal notation for this f\mction .

. e e = e ’ ’
is , { -

’ ot (x} s

-

- , wvhich is subject td many, t;ut not all of the criticisms of tie absolute value

notation. One possible elternative nétation is

‘GRIN(x) .

from GReatest INteger.T The usual mathematical notation will be adequ'ate for

. -

- flow chart language.

Ths_ function is defined as follows:

. * .

’ [x] = the greatest 'integer which does ngt exceed X .

.

hoe ' The value of this function can be explained geometrically by considering

X to be & point on the numbeg line. To find [x]. we start out at x \and,

1. X if x .is an integer we stay where we are, while ’
P 2. if x 1is not an integer we move to the fir'st integer to the left.

v

In this way our final locatjon is at [x]. "We see in Figure 2-20 some examplés

. v 21/2 -. 7 2.1 3.9
- 3 2) S T .2 3] Y
(-2.1) {-2] * [-.7}7 [.7] (2.1] [3.9] .
’ Figure 2-20 o .

Mé : - ‘
of this procedure., Thus, the figure tells us that [-2,1]=-3, while [2.1]=2,
< /4 : N .

. v 5 at 1 ¢ * ' B . O
. D
Yoo

L 1.No mathewhtician has ever seen the name - GRIN. We'vg just made this up for

our own convenience. Th@ other function némes you will see in this gection
like FRPT, TRUNK, and- ROIfNDUP are also Just made up for our present

;4 Dpurposes.

| ; 79 - ‘
FRIC .-, ‘ L

L g 4
.

. S 2-5'

’

’
’

We ‘see that fo’rﬂ Eositive numbers the greatest integer function has the Jeffec‘l‘:
of "lopping-b.ff" everything to the right of the decimsl point. Whereas for
nege:tive numbers the jnstructions for findirfg the grea‘éesi;' inteéer would be:
If enything but zZeros app:-:ars after +the fdecimal pointsy then lop off everything
after the decimel point and subtract L. ‘

-
-

The graph o,f the greatest integer funcuori (Figure 2-21) displays its -
- step-like behavior. - . ;

Y
o

'
W
'
n
[
[
[
n
W
=+

o : . 5 S~ :
‘ - Figure 2-21. Graph of” y = [x]
] - 2 -
- - .

We also note that fox all numbérs X, Wwe have) [x),<x or in other words,
} w2

. for all x, i 3 . e

. .
‘ x-[x}>0. - . oo »
Let us use the' notation FRPT(x) . (for ERéctonal ParT of x) to denote * |
x = [x] end let us examine the graph of FRPT(x) given in Figure 2-22.

¢ : ~ . »

~

ERIC. -.°

. Aruitoxt provided by Eic:

V7,

Graph of -y = FRPT(x)

Figure 2-22.
¢ ot 1

" This'graph exhibits the non-negativity of FRPT(x)

property of being a perigdic function of period 1. Thet is, we have,

FRPT(L + x) = FRPD(x) for T x. Geametrically, if we look, in Figure 2-22,

at the functional value of a point x on the xiumbér line and then move one
“¥nit to the right, tpe »nevw point w:)‘.D. have the séme functicnal value.

as well as its

) An interesting and important property of the functions x] .
a property which could have beén usad in giving the definition of these func-
tions--is that the equation :

e,
o

L]

P(x)--

0y . -

.4 = [x] + FRPT(x)

;.
displays the un J:hu_e decomposition of x as the sum oi’ an integer and a non-_
nega”tivmber less than 1., Those students vho have studied loga.rithms e
have been using these tw0 functions whether they haVe used the names “or not.
If x 1is 'the logaritim of some: number, then [x) :Ls its cha.racteristic end
FRP‘I’(x) is its mantissa. : N ./"/:5'-.’ a5

In Figure 2-23 the decomposition of the identi’ty f\mction, IDENT(x)
(dotted), as the sum of the GRIN(x) (solid) a.nd FRPT(x) (dashed) “is

illustrated. At each point X on the - x-exis the value of IDENT(x) ,i
‘found by adding the values of GRIN{x) and FRPT(x).
A
’ Qn
‘\-. N . . '
\. -
T - g - ’ %M‘
¢ . . l : o
“ 2
oY I -
' Y » 3
‘,\‘a . ¥
} ’
— 5 ;"
- >] b ,
' '
- \rl‘ v .
L) - a4 4 '
)r‘ ¢ ‘t\ 72 A
. N . o .
‘ 15 _

Tt oo G

>

.‘,‘EMC S

o

I}

Figure 2-23 L

3 s ¢

+ In math,natical problemsT we are interested only in the remainder
oo
obta'ined dividing one integer: by another. . For example, if we divide

3211-17 by 1309 according to the rules learned in elementa.ry school,
ork J.ookﬁe‘% like this! - - i
' 2u] S . ,
' 32 17 - - - - .
S ' , - T - 2618 - ' i
"..':,“ . ’) 623 » B 1
i:-,:. . ., - ») “ 2236\)) .
< 1001 -

" We identi the mmbe&-s»ga ar here ag: .)
, b1ty ppearing % o ., -

: et dividend 32417 . e

— N . divisor 1303»'

' : quotient .

remainder 1001 ' . :

., 1>e.g_., See Buclidean algorithm 4in Section 3-2. . ’ - " -

- - .
- o oy . !

T Lo . _.. .
-~ ' . . 73 H v "
T

-

R " 32417 = 1309 2k +,1001 .

3

In general if N is the*«'dividend, M the divisor, Q the quotient and R

the- remainder, then o .
r

2 2

. N=M-Q+R where R<M .

-

. s
This is the "division algofithm" of elementary school arithmetic. The yalues
of Q &and R are related to the functions studied in this section by

- Q
~ R

GRIN(N/M) ,
M. ‘FRP‘I'(N/M) .

These remainders are of} fundamental KimpOrtance in "modulaer arithmetic"
whereﬁwe replace all numbers by their remainders relative to some fixed
divisor. ,In telling time in hours we use modular arithmetic modulo 12, In
the "casting out nines" method .Q'f che&king arithmetic we use arithlmetic
.modulo 9. In the oarnival wheel problems at the, end of this section we _
encounter ‘modular arithmetic modulo % and 5.5

Just sbout any integer,rounding funetion of practical value, ,i.e., related
t0 interesting computer algoritlms, can 'be expressed in tetms of the greatest o~
integer function. These relationships wii'wf be di&cussed later in this _section.
For the moment we will further Tllustrate the use of the [x] function with

“. the following problem. K

~ loe

A farmer in a nt of weakness made a pledge which he now
deeply regrets. Thﬁédge wag that he would Jkeep all his money
in mul‘biples of $20.00. end that if any time he had a residue -
which was less than $20.00 this wou];d be put into an educational

fund for his«~son. .

Thus in any monetary tramsactich’ in\ which the farmer receives money, only «
the number of twenty dollar bills he receives is of importance 5, while if he
spends money. the number of twenty dollar Vbills he must break is_the important.

.] N LI
thing. - .
\ L z . .
Suppose he sells-the family cow for §$75.75. How many twenty @ollar bills
will he reckive? First we campute) e

\ . _ 20,00 or 307875 N 4 . -

> and then we see that the number of twenties is 3. ‘
L e . &
A .

C s -
Ric <. - 7

Suppose he buys a horse for $87 50, how many twenties mll he lose?

First we compute (considering expenditures as negative)

- SRR o D

5

and we see that the number of twenties he gltist break out is 5.

N '

a 5 -
For either case it should now be clear that in any transaction the muber

of twentieé is given by

AMOUNT
| | 5%]

S

The amount going into the education fund will be given by,

20 X FRPT (50, 00)

‘

»

Pt

Exercises &2 S_ce_‘c_ A

2

<y

1.7 A smell country in Eurc;pe has purchased 160,000 tons of

grain from the

' U.S. Ityprefers to ship the grain in its only grain ship which has a
. capé.city of 30,000 tons. What is the minimm number.of round trips

required?

-

-2¢ Ve now generalize the problem in Exercise 1 as follows. Suppose this \

country buys grain rather frequently and in varying guantitisgs,
suppose it has many ships at its disposal of various capacities, but orfly ’
one ship is*availsble at any one time which can be earmarked for handling

the grein transport.

|

1
°

Iet TONS be the asmount of grain purchased and CAPACITY be the
capacity of the ship that is availeble. 4An .algoritlm to determine the

7~ number of round trips required is given.in Figire 2.2k,

__4:: oAl 1 —“ - S
T TONS,
@ CAPACITY TRIFS «
. | Figure 2-2. At Ses . ’
. . ’ . . /
. \ . T6 this glgorithm "geaworthy™? That is, assuming no error in the data,

cen this algorithm ever prodyce the wrong: a.nswer? .

A Lot h "' ' 75
ERIC o _—

3

c‘\

0}

Aruitoxt provided by Eic: * :
Full Tt Provided by o .
B s .

Further,

»
. ‘ >
e #

Approximation By Round-off

-From the mathematical point™of view, the expressfton .
N L !)
kS . O) 1 ’

5 ') 3 . ’

L is a constant--a nemé for a pérj«iculfa.r mumber. From the computer point of
view, this expression denotes a commend--an indicated division which is to be

carried outs If the machine encounters it in such a box as

3

. 7 — x"’e—-]g'-—‘— 7 ’ t) ‘
" .
the net result will be that not -]3:;; But o333 or .33333 or .333333333
¥ will be reed into the storage location belonging to the variable ‘x. The -

number of 3%s which'will be stored will depend on the number of digits the

computer has been told to ca.rry ou‘f: in t?ﬁe divide operation or on the capacity

of the storage lgcatlon. In any case only finitely many digits of the infinite

. decimal representlng %‘- can be stored so the computer replaces % by some

--- = ﬂpproxa.mation, that-i8, it "pounde-off" the infin:&te decimals- ‘Approximetion | —
by round-off is encquntered almost every time we divide or evaluate a function
as well as in many other places. In Chgpter 6 we will sey more sbout the
effect that rou;ld-off has in computation and also discuss other ihteresting

sources of "numerical error'.

Although we have only been discussing integer rounding here, the rounding
of any real number to the kth place (where k- is any integer)_ is a process
~ . vhich has as its heart integer rounding. Thus, if we wish to round a certain——
real number to the thousandths place (k = 3), we can adopt the procedure:

. i
1. Multiply the given number by 1000; .

- -~

¢ 2. Round the result to an integer, employ;ing scme integer rounding
- function; ‘ .

~ N ~

3. Divide the resulting mmber by 1000, T
- 4/

N R
1 -

1’”\7 3
6. %o 3he thousandths place. . ’
1. Muliply by 1000 . 57294,16 ‘ ’
s , 2, Round to ¢ teger 57294 *
- . (using the est integer :
' - function)
. 3. Divide by 1000 . 57.294 . -
' ..

ERIC,

.
R i o 3 : o

.’ 2-5

t -

We are now ready for a precise definition:

An integer rounding procedure is a systematic method for replacing any
given number by an infeger subject to the conditions:

' 1. If the givAn mumber is an integer it is unchanged;

. 2 If the given number is not an integer then the rounded value is
- either the°nearest integer to the left or the nearest to the right;

3. If A < B then their rounded velues satisfy the same inequality.

’

In more mathematical language the above c?n be stated:

An integer rounding procedure is a monotone integer valued
function, F, on the reals satisfﬁing for all real x,
the inequality, |F(x) - x| < 1. .)

Everything is found in the second definition that appears in the first
except the word systematic, and we are uneble to say what that means anyhow.

’

We see that when rounding a mmber which is not an integer we always have/

two choices for the rounded value. We can_g;gsaiﬁy_xhe fQuraQQmmonestmrnnndina
R

procedures according to how we make that ch01ce.
l.s Choose the first integer to the left; .
2. Choose the first integer to the right;
3+ Choose the first integer nearer to the origin;
fh: Choose the nearest integer, N . f

The functions giving the rounded values are all closely related to [x].
These functions are given below. We leave to the student the simple task of
checking that these functions. actually do what we say they do.

+e

¥, Here the function is just [x] itself;

‘ 2. ROUNDUR(x) = -[-x] ; ‘ (A “] -
+ M3) = sente) x [« - ., "
. 4. RoumD(x) =[x + .5]. ’ N

fNote the ambiguity for numbers halfwey between two integers. We will select
a' sdmple formule which works for other numbers and take what it gives for odd
multiples of 1/2. - .

. ’ I
TTHere SIGN(x) 1s defined to be x/|x| uwniless x'=0 in which case SIGN(x)= 0.

;-
.

o) .
o T 89 k
EMC . 3 ”“:
) ‘% _ . « -

ERIC

2.5 ') . ¥

3o e

The method of rounding given by TRUNK 1sdealied truncation. It cen algo
erything after the d;&imal point , regardless

'I'RUNK(x) and _GRIN(x) jare the same.
. . >
The TRUNK function is employed implicitly dw proRramming langueges like

FORTRAN and MAD when converting real numbers.to int;egers. The ROUND fu.n(tion 7
plays an equally prominent role in ALGOL implementjat’iorgs when converting real
The ROUNDUP function.is not important but is included in.

these discussions to round out our discussion of rounding.

be *described as "lopping-

of sign. Notice that for pogitive x,
\

numbers to integers.

When calling for the division of two intege}s I a'nd' J we quite often
really went TRUNK(I/J) which is the)integral portion of the actual quotient,
1/J.
imply TRUNK(I/J) without having.t¢ bother to write TRUNK. When the quotdent
of -I and J i# indicated in suck a way that 1t means YTRUNK(I/J) for

(as in \ALGOL), we call this integer division.

}{any programming langfiages havel special conventions that ena&le us to

example, by writing "o+ J"

We usually think of these rounding procedures as producing apprgXimate

answers to problems. However, in problems which by their very nature require ’

- whole mmber answers, it sometimes heppens *ti'aatwtheee rounding @meédwgq_ar-e — =t

tailor-made for producing the exact answers required. Such sSituations are

emphasized in the following exercises. . .
§
3

r

‘

. H

u/ o A

Write a formula

Exercises 2-3 Set B
_—

1. It costs 8¢ an ounce to send an airmail letter.
involving one 0f the rounding functions expressing the cost of sending

Ad ‘an air mail letter as a funétion of the (real) veriable WI. .-

2. A camp dMrector wishes to divide the boys into baseball teams. Give a
formula involving one of the rounding functions giving the humber of
teams as a function of NBOY zthg ngrber of boys). No boy is to be on ,

* .
more than one team. .

. .

"
\/‘ .
v . .
t

In each of the following three exercises; your job is to plot a graph

‘ simila.r to Figure 2-21. . . . " , - ‘
- *
3. For r:ouimup(x) from -3<x<3. '
L. _éc‘;r TRUNK(x) from -3 <x<3. i
5.. For ROUND(x)d from -3 <k 3. T :
. \
. , 78 . -
. .‘ , 8 1 A L . - f

. . « . 2_5

‘

.

W

2 ‘@ o .
@
6. Graph th& following four functions on one set of axes. Be sure to limit
the’ domain of each of> the functions according to the inequality that

accompanies the function. .
< () (y=“[x] i‘;r -3<x<3 ‘- . .
(2) y=1[x) +1 for —35x<\3' : - -
) xz 0y for -3<y<3 '
g,»(h) x=1[y)+1 for -3<y<3 ¢ ‘ :

¥7. Determine the values of ROUND(x) when x is an odd mul& of %

8. A game wheel is divided into five equal~sectors numbered consecutively
from 1 in a clockwise menner as
. shown in Figure 2-25. There is

. !
) a spinner whioh rotates on a

shaf't mounted at the center of
the wheel. | ,21

Let .S be the sector pointed
. to by the spinner at rest. We now.

flick the spinner with our fingers
in a clockwise direction. It spins Figure 2-25. . -
thh'ough m .sectors and eomes te rest inside a sector, 1. €ey not<on & line.
& .
(a) Write a formula involving one of the rounding functions which gives -
you the new sector muber NEWS in terms of the\ original rest,

position S and the spin span M. o - »

(v) What changes are needed in the formula found in (a) to mdke it
applicable for spins in either the clockwise or the counterclock- '
. . ‘ Pa
\\ wise "directions? ' ’ P
(c) Generalize the formula(s) developed previously in this problem o .
the case of a game wheel having k s‘ectors numbered consecutively - .~

from. 1.
- . '-‘ .
. - N ! %;}, ,
’ -
a >
LS
IS
9 ’
L] ~y ! 4
“ ' 4
= « {
. » i . !
. . @
. -
Al s -
L e ¢ * M
. o . - ~ ?
6o .
- . 79 L s
- L4 ?'

e

9. A carnival wheel, Figure 2-26,

* has 32 painted sectars numbered.
‘cloekwise, s =0, 1, 2, +a., 31.
The sectors are divided into 8

; . groups, L sectors per group. In
each’ gz:oup, the sectors are painted
blue, green, red and yellow (BA, G,
R, and Y) ‘going clockwise.

When thd wheel is spun (always

. counterclockwise) and comes to

rest, the color Rf the sector oppo- , '
. site the fixed poi ter, R, tells you Figure 2-26
how.the game comes out.

vSuppo.se the rule is - . ’\‘r >
.. N . .o - N
. « Player loses‘ 30 points for blue. k. —
Vs .
, Player loses, 10 yoints for green |)
Player wins 10 points for red. ¢ e B /‘

L=

Player wins 30 points for yellow. ™

+

T Further suppose that, before any one spin the. wheel is considered o be
at rest with sector number s opposite. the ratchet R. . We now imagine

.. the wheel is spun a distance of m sectorn’ positions. How mény points p
- will be won or lost for each data pair s and m? How can we develop

0, a simple algorithm which simulates repeated pla.ys at the wheel?

:} 1
HINT: You.r flow éhart shou.ld shorw 8’ loop beginning with a step for the
input of s and m, one or more’ assignment boxes to compute- p, an
output statement to print p, and e Teturn to the imput step. Onew'éy
. © to compute p,‘ is to first compute the nev sector mmber s after the '
« -, . spinm, in terms of the given (or old) s end m. Then W€ cén compute the
position k (= (2, 1, 2, or 3) within'the group--corresponding to:\blue,
0 green, red or yellow, respectively. (Actﬁa_lly 1t is simpler to compute
" K directJ:y fran m and the 614 s without first computing the nev s.)
T Mo simulate repeated spins, return to the input step af‘Eer prin,ting Pe

- .
- . . \‘ e
4 P R . ! b t
- \ - - -
- 3 14 4 R
' 3 JA . \ Y E
{ . . .1 . | I . .
’ T3 H [IDN W,
¢ LY "v :
\ . . ot
3 R f . ‘\a . Y }
. 1
. 4 . ! -
¢ v
° . 0 2

e
AN
-
-*
ly
[

-) . N ka3 © -
JERIC ~ . .~ . . S

‘v R a .o
- . .
) .

v R .2,

2-6 Alphenuteric dza.tza.lf ' . a

.

A 'funny thing happened one day when the master computér sent his robot
the "reader" to a window box. The robot retu.rned, in tears and consternation,
with this story--"l(ou sent me to the window box perked X to bring you its e,
value. When I looked through the window to copy. the number, there was no .

¥ number--only the letter 'X?,

Sl

\ N '
N - o

R f’lgure 2-27. "... but when I opened the box to copy the
‘mber, there waé no number--only the letter O *

. -
A - - v]

Then I went to the boxd marked Z and, to my' horror again I found not a number
but a letter., This time it was the letter 'N', _Please, sir, what do,es_tk;,is. .

nt oy)
mee.n? - - ! * R

1l - . ‘> +
P 3

. Resd’ing this story may make you as confused as the poor robot. We ho;;e
-~ not. There are grest rewards for those who will grasp its true meghing. We,
learned in the preceding .sectigh that camputers can resd and store .alphabetic
characters and special, che.racters in the words of meniorx Coupled with what ,
¢, We can recall‘frcxm‘ Section 1-k, it seems that characters like mu, mye] how
| or like "M, "X“' "N" or like Wx", "/ " and ")" can each be stored
ohe or more per word of memory as & specia.l canbination of six bits. So, it’s
’ entirely possible for a string of. characters s say,."ll}" to appear in memom

.

-

BN - ,'” - . . ; . - L . .
i 7 ~— /
) fWhenever you see a daggered section heading, you can assume the material is N

" interesting, but, if time is short, the 'whole section can be ekipped @out

.. loss’of continuity, especia.lly during a first reeding,- .
‘ K If Jou find-a daggered paragrapp samewhere }rﬁﬁe middle* of a section,\
| o it means it's possible to ski to the end of_thé section. . . & I
! If y6u see two defgers it meads the material may be even more
5 interesting, but even more reason to. skip it if you are pressed for time. * ,
e) / ' ‘ ' ST
, . - - , . ! \
- /‘" N - - 3 -
- 2 ’ -~
. R » — .
v i . 4 -
. ‘ ' 81 . .
g o . , . O . i B -
/EMC . . . 0.? o K /

1 ‘ - . . s -
. . . v
. L)

LY

R

~—

A

JERIC

A -\i

an

~
.

~

.ag] an entirely different pattern of bits the.n“, say, the integer ., If we

imkgine a memory word of twelve bits, then following Figure 1-14,- "ll#"‘ would
be.'cyded as 000001000100 while the integer 1% would be coded as B
000000001110, If orie makes the mistake ’of misinterpreting (000001000100 'as‘

. an ipnteger one would then read it as 68,

3

How can these facts relate.,to ouzr flow chart language? Well, for one

~

- i

.
-

' thing we shotld be able to see that a window box can, store characters as well

as nmbera. In other words, a vari,able X can have a.value“that is not

numerical at all bu* alpha.nmnerical. . By alphanumérical we shall mean a value

'consisting of some collection of characters made up of those displayed on'the

card in Figure 1-15. |

]
. 'Just how many char acters can be stored in one window box depénds on the

size of the box--or memory word size. For this text,.since -we aren't dealing

with any one, computer, we won't be too specific. Let's assume that a window

We will leave it to your

our, laboratory imstructor to “be more specific' on this
Y e

point. w

box can store a string of "sevefal' characters.
lafBuage menual or 7
If a variable gen, Jave an alphanumeric value, it must be able to acquire

¥

such a value the seame way it can acquire a\ nuzerical value, namely as a result

of input or as a result of an assigmment ,sfkep. Having once acquired an

'e

" alphanumeric value, it must be possible to output -it by an output stgp".

TIt begins to appear that our input, output and assigmment boxes must

¥

,8llow us to describe computer procedxﬁes for do\ing things with alphanmneri‘ca’l

//
/.
\ P

' We ixmnediately illustrate this point by showing a very simple flow cha.rt
(Figure 2-28), the input data consisting of nemes, ‘one per card, and the

as well as nmnerical datal

> -
B

~—

-

nted results--a list of name pairs.

L . 1 2 3% 4
@ A ‘J “ B, A,B AeB
3

R x - . »
. -
. L (a) The flow chart - 4
P
S
‘\1 R)
. OMOTT JEFF S
OIJEFF A+B/C O ‘
, , OlA+B/C DICK ¢ o
. ‘ o
. V\\‘ o
o o (8 %‘ ‘ .
T s ~ ' o
(b) The data 7 o (c) The printed results,
| o ‘ x
i Figure 2-28. A questionable process .-

A : a
B ‘\)

3

e

What do yot imagine is in the window box called A before and e.f‘ter a
Box 4 is executed for the first time? . To answer tils, perhaps we hed better ‘

) step ,through the process once fram the very beginning.

r‘"

1

’

3
3 p”

v

. -
P, 4 N L g

" values either--as you c%n see ,in Figure 2-28(c). Moreoyer, we also ayofd

When Box 1 is executed, the Pour letteys, “MUTT", are read from the
card and are assigned to the varisble A. Now Box 2 is executed where "JEFF" .
is assigned to B. ‘Then -val,ues of" A and B are printed at Box 3. ‘When
we come to Box b we see that at first A has " the value 'MU‘IT", but after
Box b i&executed the current value of B whichﬁis “JEFF" will have begen

:

agsigned to A. In answer to ot .original question, A has the value ~"MUTT" .

\ﬁ

before the first execution of Box b _and the value "UI!F'I" " after.’ If you're ¢
wondering about the third card in’ ﬁhe stack, it got in t‘here by mistake but
e deliberately left 4% in to iﬁustrate how ouz algorithm takes it in stride.’

e

o Observe how ve have been using quote symbols o describe alpha.mmerical
values, We dontt actua.lly put them on the date card, as you can see in
Figure 2-28(b), a.nd they dontt actually appear when printing the e.lpha.numerice.l

quoﬂe “marks around variables s 1ike A. . ‘
0 “Q i

f}s,ymz.miu See)Présenﬂyﬁwe cééha\g,e,\; phammeric! né?thnts and%we T R
can aSsign sueh constar}ts to va.ria.blﬁ EIhe parallel igH ustrated in X .

Fi'gur? 2- e (}f .. i? z g - .
- { Py S . LA I U
) . . i, } g , . & .
“ . : . e A !)
\)‘ N | S - v 2 83 . [. o i »\
C L C B T8G s o

. X & R ! k) ° 5

. e Y
4 B4 . -

. (a) assignment of a nimerical (v) assigmnent of an alpha.nunierical

~

. - constant . constant

9 — -

. - \ i _—

- Figu:re 2-29 Two kinds of assigmnent
! 'S e ™ 1“ & _..,-.........___.,. ‘\d -
Example (a) shows a conventional" assignment of & constant }alue to a
varisble. Example (b) shows an assigmment of the character string "BLUEFINY

" to the varieble FI-SH Any quantity in quetes is to be regarded as an o

-

i
.~ alphenumerical constant.’ \ D L
: We have’ come to the end of our pa.rqallel. More complicated expressions
to the right of the arrow will e cqnsidered meaningless and will not be
pemitted. \ : - o
For ‘exampie
P ' -
, FISH « 2 + "BLUEFIN" .
; o . ‘or FISH «2 X "BIUEFIN" - ,
o ', or FISH "BLUEFIN" + "REDFIN" ' 7
il o ! .
. " are, as far as we are concerned, meaningless. We see‘that there are only two
‘ alloved forms of alpha.mmeric assigment s'i; : -
LI : N v
. N - vgriasble ¢« vafiasble
, . BN . ;,,_,_ -
and ;e N ,
.« . “ X . .)
. . M) b i .
s - o *"varisble « alphanumerical constant . /
RN Lo . / .
- It should now be cledr; in spite of all temptation, that the following I,"
@ . are also invalid forms: : \ 2 A LS e
- . 4 - a3 -
Pt . " NUMBER <2 + "4¥ 2 .
\. . 2. R) - -o ’ N L - . I
or . N s '
. .. ‘ -~ PRODWT - "5" X 5“511 o N *
‘ T v ‘ . i 7 i R ol f'\\ !
, \} . ” ! 1(H { B l v ;
o ‘f ' onej; ;more crucial obserVation ﬁmst be made here. ’ '
C oo " Co -
’ . . Suppose th%t 1n‘ca.rrying out the input step, . . , ’
PRI, oy 4 ., . R “ i .o
. ‘ f‘-“ . . ') T e
. Q7 CL,e =
L . L 37 & wl T e s
RIC: - o . ot e R
g

-

- ¥
) 2.6
1
s
g \
1] |
N z , !
- v
K
Y k - - f
W . -
’ - Y o X . >
" ; e
" ‘ *\' .
. o 3
t - i
I , . hi
. .
& b3l = -
il v . . — 2

«] . .

.
‘e

¢
v

#,\‘\How do we specify in our flow chaxt, language whether it is to be read as a)
) mrmber or as a Symbol? The answer is: if a.m' borx in the flow chart contains
. an o‘_pere.tion on the data which ean be performed only on numbers s then the .)
* value on the ca:rd mist be read as 8 mnnber, but if there are no such operations
then’ Jou may choose either vay to ‘read it. However, before the ca:rd is read

this decision must have been faged and me.de. %15 no ambiguity when the .

card arrives in position to be read. -
47 - - s .
Ncw let us look at some examples of inpqt a.nd cutput of symbols and / o

i numbers to 1llustrate this thought. ‘Letts Plrst imagine we have a flow chart,
Figure 2-30, for the input of two a&.ues, X and- Y and the" output of their

~ sifi! Z. Tvo aifferent da.ta cards, are presented for input es shom in = .’
Figure 2-31. W the '

AV

-y
r ; 4 J Y)
N] /u .
el * i e - s o
L ' +" Figiwe 2-30. First -flow: thart ° .)

- - v preS - -
’ Al ¢ - ’
! 3 -~
. e ~ - /
-] ‘ N y hited —— - ’ - -
{ . { " / .S B - . N :
u ¢4 A B ! LI v
¢ : . - . T A
~~ e N ' - '
- - “ s
a - , N, . ———
. 4 «
¥ . ! , . ——g .
; 'A'»;’ ' .
‘ . : . N
o~ . .

! N RN
EMC ~ SRR
i , .
,‘r PN
t o

A

o ' First card : .

= v RT A J o
) Second card - ’ i .

r3 ot - »

g&-‘&l Two da.ta cards 7 L.

If the second card is read; what happens? Something is obviolgly wrong
becsuse we camnob add . "R", to, "I". A perfectly valid flow chart n used
with data which can Be interpreted a; numerical becomes utterly.meani

" for data that is clearly not mmerical. . B

. © Now let?s look at a second flow chart (Figure 2-32), vhich inputs two
' 'vages X end Y, assigns Y -to Z and then prints the Values of X Y .
end Z. If we present the first, card as imput, there is no problem. The "
computer prints three values, "w' 3" and "3%. If e present the second
card sg input, no prob¥lem. The é‘omput‘er prints "R", "I", and "I,

R h -

7 \ 2 3
L eYN——= X1 @
- » - . . . e T , X
\ B T !
) Figure 2-32, Second flow chart ’ ’
- £
.) . e . \\
L, ¢ - Here the.n is a flow chart which can be said to be’ meaningful whether the
date is efther mmerical (or may be interpreted as numerical) or alphanmnerical.

. g "

You can look at the firqt flow chart and pretty cleprly say that it'is
intemied for wor& on quzerical valués only--i €., that the window boxes for
X, Y end Z a.re expected to store only numbers. ﬁox12 tips you off to this

i
crucial ‘fact’s But if you look at the flow chart in Figure 2-32, Jyou simp]y
a o cannot say what types-of values the window boxes _should or sl;ould not be i
-, - e allowéd to have stored in them. e TR~ B
. * s
) 3 We see, then,.lthatmthe flow chart alone wil&. not always make crystal) i
clear what kinds o)%‘ data are to be assigned to each of the va.riables. It you
feel there is an intolerable anfbiguit& cree;ping in here , we can simply agree
~ o - R ' “ ‘3 ;
" El{fc"‘ S, e B s A
\ . D ’ R . . '

Y
to flag (in our flow chart) those input varigbles
alphanumeric.

y

that are to be/treated as

For instance in Figure 2-32 we can revise Box \as

putting a Jittle "notch" under each variable of the input list)whose input
. velue is to be treated as alphanumerical

(a)
(b)

iguities.
language mamual.

"

¢

You will see this wvhen you consult your

4

in this case (Figure 2-32) it simply doesn®t matter, and

in an actual computer programming language like FORTRAN or
-~ TL, s:.mple steps are always taken to remove such v
' afib

Kl

In any event, remember to use quote ma.rks around numerals or character groups"
only when you mean them to be character groups, as in

oAk, B

.

v

) w

and avoid them otherwise.

ERI

M e

~

A

GRADE '« "CURLY + Q" |—e *

a
L)

On the other hand, you may be willing to live with this situation because

L

e "
'
.
‘a
.
7’
K . -
8
h - s
W ‘ N
[~ 2
:] . ! ! ",‘ o N
(= . A voon o
Lol Y
I. * ‘
L 4 .
b . N
' 1 \ .
N KR Lot ..
[N v [N e,
N - .2

g

e R
?P 3] . L3 N -
' ' i 3
% - , - 3
¥ {
Cha.pter 3) oo
C . BRANCHING AND SUBSCRTPTED VARTABLES
» - B R ' -
3-1 Br anching , o . e .
- So fep our, flow chart tools and techniques include input, assigmnent and
) output bosxes /' s -

1 W — N
: A
- '

-
a N d

VA

With these tools :re have seen how we may make flow charts for alggg;itlms which é—
call for many repetitions of tHe same ca.l:eulations with different sdts of data.

In this chapter we add “two new tools to our kit, Hsed ivﬁombination .
vith those we already have, these new tools" ensble us to construct flow charts.
for a.lgorithms of any degree of ccmplexity. The first of these is "branching"
which gives us the gbility to choose a new path (or branch) depending “on
L whether a certain condition is-satisfied. s

o <,)

o

Branching‘ 1s' indicated I‘n ‘flow charts’ by a "condition box," oval in shape.

. W
¥

b As you cén see, a condition box has two eXits. In this way a condition

box c{igfers from all the other boxes we have met in flow-charting. " Here is a -
i non-mathematical analog of the use of the condition box. The Unlversity

-
president has announced that gradustion ceremonies will take place in the
! . 5
?tadium unless it rains, in which case they will be moved to the auditorium.
flow chart of ounfbehavior in attending the graduation would include
‘ - jGoTo . |- ° 7
(IS IT RAINING? STADIUM | &
» ! - —— e e d
' ' YES
> ’ *‘ -'
b N . ———— L ——1 v
) . -+ lgomo A)
: ' | auprToRTUM | ! :
<o, Lo X - { S i ; ¢
: ' , P ‘ o

. ‘ '\.\ v
A . .

To i].lustrate the use of branching in computation we ofi‘er the following
.- Sy -

story book problem . ,

o QE '+ The Ruritanian Post Office pepartment has Just announced the
) - regu.latlon that no packages will be accepted for mailing which ere greater
than 29 7 inches in diemeter. [By the diemeter of g package the Ruritenians

'mean the meximum of- the distances between pairs of points in the package. For

o a rectengular bax the diameter is the leng‘bh of the interior diagonal.] A

: ‘wholesal'er with a large number of boxes packed and reedy for mailing must now)
see which packages combly with the new regv.lation and vhich will have to be
repac.ked. He has no way of directly measuring the di\.ameter but he Cen measure

the three edges‘.? .) 1 N
’ ,S\

A*computer programmer tells the wh lesaler to write an identifying number
-c on each package and to prepare for each ;gackage Hollerith card. The card)
is to have punched in it the id‘:ﬁtifying number (N) , *and N léngths of the
three edges (4, B, C). The computer will then,be ¥nstructed to.read, these ",
* cirds and to print & list of the numbers of the peckages which comp]y with ;/

T regulations. Here is the £low chert: . . . L
. - . B . v -
’ ¢ g ’ L - ~ -
. T (! ‘ - T ;. c
- i ‘o ; - ¢
- 4
o . ¢ IR s , 1! . - ' f ¢ .t
O g g I R P I R =) ') .
. ! Lo . 1 Ty .
: ‘j hs L . e N i Vo L v ,&' J P/ -
b - S (I ST R ! bl g) / o
. }(s i [‘ 1"‘1 § { : ; /} . } .
1, . ! oy i ¥ ' ‘
j i s , .- . s b A
4 . ‘ AT
L I e —

[]iJj:

Arui o povidedoy exic

‘ P ! o ‘ a 90 . :
Q ? O e , e td‘d? 5 . - . { . | Q\'
i ‘

~
’
. “
) RN
Vi . -
. 5
"
Ve
.
4
P

¢
~
V.
ot
. ¥ -
. R %
4 . e
.-
By
. B
°N
.
\’.
.
Y
JRECISte
s
v
w!

Vo
. {
it
Lrt
AN i

Y
o (START
1
1l =g - -
' (N, A, B, C ;.
.4 '

; .
. ’ i*
; , 'I‘his is easily recognized as a médific;atibn obei
Ipshduld check that the desired reéult is obtained,
5 .

i

1y:£ng with the postal I)egulations. ‘

'
‘.“.'l

L

e s b

’ -
* A%
s
E
.
.
o2 ’
3 &
3 3
A .
J
- .
3
.
>
. R
‘b
I~
Iy \ .
W .
-y
- ~
.
2
-
L]
ﬁu\
r
.
3
L)
R
.
A

her, F:!ure 2-11 or 2.6,
list of the packages

, ’ \-..44_.

,‘ A T ' ’
B \ . i L i 2
s - RIS e \"7 s WA -
Q . P9 .. Svw . -4
EMC# . L o ' L |
Ty ! ‘ Lo | PR ~ .) \ ’

,

. Tt will be of interest to know that we could, if required,’ replace the
/ condition box/3, by any of the following. '

¢

By saying we can replace one box by another we mean that entering each of
these boxes with the same value of D we will always come out in the same
direction. This is another thing for the student to check.

* . We see, then, that it would be possible to restrict ourselves to the use
. of',just one of the four inequalities < <y 2 > . But we @0 not make this
, restriction. We write our inequalities in"condition boxes in whatever form
e - comes most naturally to us. ‘ - — —> < — -
. N \ L
. Y A choice is also avellsble when two values are compared by ;mplpying the

"< " and " # W symbols. For example, k

L4

/

¢

" T {

- EMC . \. . - 'CM'

n 3-1

In our rélatively informal flow chart language we pemit Just about any

form of question or assertion in our condition boxes. As an example we could
‘\insert the c?ndition béx '

\

- s bl R
'Y e

s - ‘;) \\
oo N . (/ANY MORE VALUES OF \ YES . ‘
- 'K, A, B, C1 o \

. a L lno < - N

A Figure 3-2. The Ruritanian problem solved - i . o
< - . .

.In our informal flow chart :'Language we could as well have written .'Eo;' E
.box 1: i

;—\/
P
3
> ‘,'{. N
N
‘ < e
. ‘ pl 1 L}
> - ’ & -4"5, - R \\
. 93 | , :
: (&) S R ¢ Sad ‘ o \
ERIC- - o S i LW
) o .) . .~

*

-
JAruitoxt provided by Eic: » .
v . . .

’ K . « 0T e ¢ ,’ - ’ te

s e
.
v

¢ Box l is not a logmal necessity in Pi 3/2 since ve addpted the .
convention in Chepter 2 ﬂaat gn input box y&S constructed so as to stop ‘the

computation..when pothing‘is left for input. Nevertheless ;1t is g{d prectice o
to include such & bdx and we shall usually do s50. Some reasons for doing 80
are: not everyone follows thes, above-mentioned Convention, if we wish to use "
the calculation of Figure 3-2 as a part of a, larger algorithm, we are all ,\\

ready to branch to gnother task rather than 'stopping H ex'plicitly exhibiting .
- » y\\%

Y, the command to sto;p makes it easier to avoiad "endless loops." ot

{
One obvious example of thee use of decision is in determining a.nd printing
the lerger value of a pair of‘numbers._ Here are two ways of doing thi:s.

. L}
s .o e ¢ -

A ’ (a) ‘First Form

p
° . . , . . .

F .
o flow charts «for larger . ~ s ‘w
. -) ¢ N ’ 1.

Figure 3L3.

g'ﬂhere is a val

different flow charts m‘ay represent the seme pro‘blem. Each'of these flow charts
L ma.y have both adwantages and disadvantages relati*e to the others. One edvan-
' tage to the first fdrm in Figures 3-3 is that it is possible to dete“rmine which
Variable has the larger value. By "larger" here @we really meen greater than- or |

. R - \ e f
le lesson to be learned in\Figure 3- 3 Several quite

Q

equel to. - Figure 3 L illustrates this idea. I R »)
(5“ ¢ - ‘i# - - " ’
i . ' ‘ ' 4 3 ! Wt
Ql v . . , o 0+ .
: s ' oY Y A .
\.1 o N - ﬁs_ 9h A ‘. - . .
ERIC - o /.) N
. - ! .. ~e "
- 4 *) et . » .

o ~h

5 - N ‘/ N
"A IS THE LARGER. THE "B IS THE.LARGER. THE
~ LN
VAIUE OF A 1IS", A : VALUE OF B IS" ,\"‘B’)

4]

s
¢

~~

Figure 3-4. Output with identifysing remarks

s °® .

[
2

In the output boxes <3 _-and L, anjything enclosed in quotation mark®is
td be printed just as1t appears. Variables not enclosed in quotes will have
thei‘x" current” values printéd.’ Individual ofxtput 1tems are to be separated

Y tcommas . & . ° .

An advantage to the second form in Figure 3-3 lies’in tl% ease with which
we can generalize it tS more variables. We give two'flow ’charts exhibitihg

.this generslizat ion.

o

o~

LY
.

»
3
i LRGST4C
. LRGST«C
! e '.. o
t 3 . . .
§ ! "‘ Y !
i »
- . .
2 "(() ! "y 3,
R I (I
i o
\Y] ; - 5 '
, i ' \
: . ‘
- {a) First Form {v) Second, Forn
- . \) ‘
. Figure 3&5.:"1':“;0 flow charts for:selectiné the }argest‘of)
X , three values o,
. ,' | | .
O ." \ 9 8 96 i
B]
! EMC { ! . s . 1 Y N ! N .
. \ . b - B ’ ! :
P } \»(' b N J

. - *

The second form of. Figure *3-5 hes en. advantage -over the f-irst form which we
cannos fully appreciate 'at this _point., This advantage lies in. the uniform
format of the.compsrisons; fWe will understand the significance vwhen, we study
’ subscripted variables late 4

in the chapter.) .. ; -

JA flow chart for the same problem which generalizes the first form in
- Figure 3- 3_i,s, R ¢ g

. ”

"B IS THE LARGEST.
THE VALUE IS", B

"e IS THE LARi;mT. .
THE VALUE I§"

"A I8 THE LARGEST.
THE VALUE IS", A

\—
¢ ’
. Pl . i] .
. R . 17 ' . n
Ay A -
. £ .
M £ - . .
“
T] a, ' : ~
- - 7
- L ~ . - >
4 . . b
‘- r . S : s . <
. S) ‘Y8
- . " i i ' . R .
. - STOP -
~ - < 4
. L}
) Y.
. , .
- - Figure '3-6, Flow chart “for Margest" without use of auxilia.ry
. o . varisbles . : E e
- .
’ d - . . 97 ’ C~ . t
~ R r-’ :) .
[€) N . ARy - »n

>

’) . . - .‘ 1 - Al s .
. The next flow c_hé.rt--the last of this section--shows how a computer may
be used to tally data read from n cards. Here the input varisble, T, -
represents t'gst scores\nunched on cards. ,. It is desired to know how meny

scores fell in the low range ;{0 < T <50), hovw meny in the middle range

© Ay
I3

- N
(50 < T < 80) a.nd how many in ’Ehe high range (80 < ™< 100). The varisbles
. low, m:.d and high act as counters. For each input- value of T one of the
* three counters cllcks up one notch.\ The 1n1tial gssignment box sets these .
+
countexs to zeros Another counter called "count" keeps a tally of the number
of date values read -thus far. When cowit reaches n, which is. input at
Box 1, the printout at Box I1'is executed. . . B N
. 7 ‘ ;‘ ! ' /—‘
2N , . ‘
LY e r
. , ' -
} L 4 ' . M %4
. ’) 4 . -
-)
Y, I “, . ! \
. , . . .
’ o"‘
¥) ') ' ~F
E . : ' ° .
$ -
. R , *
<
, L P . "
. « -
* T
. .) . . 5'4 ., . 4
’ - v -
W
! l “ » A . ! .' et «
\ ' 1 1 él ; ¢
' - - - 5 / ¥ .
Sadt ol . ."] 4
. f : 7
’ ¢ « }l .
. - ,«h%" / .- - . N) ' ; .) s
P v, [’ .t - AR ‘,
" 3 . ; } v, . .
» : s
/ ° oLt
, <O . Co
B N . o7
) - -’ 7 ']
1 . ;1 ! N LI "
¢ . A SRR
[. . J vy
“ LI 4 , . I
. 3 { N . . f
o 1490 , 98 ' f RIS,
. é A
ERIC | . -, 1 R
: , : ' ' Co T i

T3 .
lov low + 1]

.

mid +mnid+l

"Values of count,* low, mid
" and high are", count, low,
fiid, high,

Figure 3-7. Illusy;réting use of ‘two million dolla.r computer
Lol <y fortallying '

e .

"

Exercises3 1 SetA | - ~N ~ ’ '

~

In Exereises 1°- 3 uge’ the flow chart.in Figure 3 3(b) but replace

(mentallg') the condition in Box 2-by tea & B!, Give as- output the Aalue” of
A or B selected by this criterion from t_/e input indicate(in the exercise.

’ N e .
1.)A_? Bal o e
2. a3, =5, A '
3. £=10; B=5 . - o Te oL
L -.6. Work Exercises 1 - 3, but use th‘e‘condition 'A2 -BXZ B_e? in Box 2.

. H
by reading as inpat values of b, ¢, d, apd x, then print these values ‘as

Draw flow.charts for the progesses specified in Exercisgs 7 - 9. Begin

. output. Then eomplete the process indicated.

3 [

T. If b 1is greater than ¢, 'output the value of d. Othervise, output
(* the'value Qf X. ‘ *) .

o~ .
- r-
.Y

8, If d'<ec, Eutput the value of ‘¢ X b + d X x. Otherwise, output the

value of 4' - c. Hint: You cannot i)ririt the value of any expression
like ¢ Xb +d XX Véithout first evaluating it and assigning it to a o

‘

* verisble. : ’ c "

. .

-9, 1If (b+c)2+x2>b><cxd, output the value of b+c+bxcxd.

* Otherwise, output the value of b2 X ¢2x d° and . (b + N -
10. Prepasre a flow cha.rt for an algofithm Which ix}puts values of 3, m, a_nd
& 0, determines the s of J and the larger. of m and n and outpu.ts
. the valués of J, my.n,- &nd the sum. The last step is to return to the

beginning to input more values of J, m, and n. ' . ‘- .

-

llov Draw a flow chart to irgi)t values of b and ¢, output both velues
Bnmediately, and then perform the fol_lowing: T

. If b =0 and c;éo output “bx+c='0 has no réot.("

) ’ | Rn g)and_q__—_}’_CL_Q%Ltph)b "everv real number satisfies)/ B o

’a
]

7
, bx+c=0" . . L <. :

r

. .OIf'D *0 compute the root of the equation bx +c’= 0. Output
- “the roo}- of bx+c=0 is", followed by the. root,) -

F?.nally; return to thé‘ ipput‘ step for more data..
f .t . ’

Ehcerciaes 31 SetB'

In the tallying problem, F:.gure 3-7, ve saw Ifc;: a computer might be asked -
to examine and tally a series of values for *T thdtare input from data cards.
\‘I'here are. many s-imllar thmgs we may want to do with a series of mput Values.
For example, we may wish to sv.m al_'L the: value& of T, or sum the squares of
T, or 'sum the absolute values of ‘I’, ete. In the follow:mg exerc:.ses,

N develop a flow’ char’c for the descr:.bed Soperation on a series of input values
for T. Always pr:_nt some appropriate message which identifies the numer:.cal
result that is also to be pr:.nted.. The basic ingredients for the des1red

flow charts})can be found by re- studylng Figure 3-T:

.
-

“Sum 100 values of T and print oyt the sum. Call this sum SUMALL.

e

Sup the cubes of 100 velues of T. Call this SUMCUB.

! ~g B
Sum only the negatlve values found in 100 mput values for T,

Call this ' SUMNEG. ’

Without rfeading the mput values mQre than once, develop all three sums ;
SWIALL, SUMCUB, end SUMNEG. ., - N

.
¢

For each-of -the 1Q0 values that are input, print the <':umulat1ve sum to
that Roint, Cell it CUMSUM. Thus, af,ter reading the 5th vdlue for T,
we print the sum of the first 5 Mues. Ai‘ter‘the 6th value of T ©

has been reag; e print the sum of the first 6 terms, etc. . ‘

4

Think of the hundred input values ment:.oned in the preceding exercises as

. representlng the plays of a | geme which has two players. Ir 2 number is
,>a .,lt means player A has won that play. If the number is negative,
player’ as won that play. Now suppose the gamt is sc&red as follows
(like badm:.nton or volley ball): Player A beg:ms by serving? If the
server wins a play, a point is added to his score. If the server loses
a/play, the other ‘player becomées server and the scoresfdoes not change.
Prepare a flow chart to prmt which player wins and the ‘%score ai‘té'r lOO
plays,

i\l

.
'i
‘
5

ERIC

R 7o provided by eric [

e .- , . . . N
‘ . . . B .
S .32 e o - . : ' .
» N
4 .7 (", . . 4
3-2 Auxilisry Varisbles - . ' . o,

4

"

f

' In the previous section we saw the introduction of “"auxiliary variables" °
.) - <
into our flew charts. 'By auwxilimry variables we mean variables not obviously \
. . i R . - ' N
involved in the phrasing of the problem. We-used these varjisbles only for

convenience. In this.section we will see some rather unexpected uses of .

auxiliai'y variables. T . ’ ' .

Consider the FiI;;macci éequence

1,1, 2, 3, 5, 8, 13, 21, 3%, 55, +..

where we start with two 1's and then form new terms. acéording.to the rule
thet each term is the sum of its two predecessors., We will construct a flow

;hart for tomputing the first thousand terms of th::.s' sequence. '

ﬂlns;cead of presentiné you 'with' the finish{flbw chart we will I}av/e a
.loQ\k at the process of itsi‘ construetion.. ~ What we want_to do is to grind out
the tgams of the ‘Fibonacci Sequence and to print the,latest term as we' cofpute
it. F;)r .ease of recall g.et us introduce the var&a_ble RN '

.

: 5 S - b
o LTRRM - R -

. -

to represent the I_._ateét TERM. We will the{l want to have®in our flow ¢hart g

LN L ez e - e

print _instruction“f the form: -- - - - e m oI TNt g

. - - A e e e e M N J
= .

To compute the next‘ value of LTERM we ne.éd to 8dd, the present value of
LTERM °tS the value of the Next to6 Last Term. which ve call '

-

c - . T NLT

. .
. ... PP P S — PG P
) -

‘ : ‘ ! ’ * - s g o '-—-«'.—- % a e
_The Mundemental step in this program will be the compytation of the new value

“of LTERMY and the assignment of this value to the verighleé ™ LTERM:” Tnis step
T - " 7 T e — Y

"FRIC

-

JAruitoxt provided by exic |8

i

Trheer

: 7 - A
, 1s indicated by, , - - - et R .

U
Y. - e
- e Lo g pacm . N ; .
. I T, - e ™ - -
. -,
-~ o~

T - LTERM « LTERM + NLT . {—> -

,
oy
-

~ ey *

=
Q
n
.

——— . [i‘,
. . ' s P, ot
—~| LTERM-LTERN + NOT NIT - LTERM |—
: »
\ / :\ ‘n{
~effectof thts s Showr T Figure 3= ; <
e T S TR "y & By L BT NN AR VIR . . - ' ! Yo
. . - B o .
- . . -
£ [" R P .
\ . . PRy -
) . ; ,
\ .
-
- N)
° .) 103 v,
’ ‘ t)
- . 10 -
ERIC - I : .

i e R
=

o - - L. £

At the same, time the prev1ous vaelue of LTERM gets demoted to second place,

that 1s, to "NLT. This:is indlcated by the box

L NIT + LTERM

But which of these two g;signme_nt ,Statements should come, fi

this by going back to oui' window boxes.- Let us take th P

of the séries at. Which LTERM has the value 8 so tha

5. After all the switching is done ‘LTERM should have [the

value 13 while
. b . ! vt
NLT has the value 8, as suggested.in Figure 3-8.
f .
~ . .
: . 1 -7
2
- , R »
Before ,) , -
. Figure 3-8. Desired effevt of assigdmeht statements in - '
» &above discussion . .
. 1i M \]
7

First we will try

s¥?. Let ud test
nt in construction
T 'ﬁas the value -

o~

Figure 3-9. F‘:i.zjst effort’ to attain desired effett T

<
L]

No.good! So, we will try }/t—’f,he other way 'arou'nd. (Figure 3-10.) '

~

-~
‘/’ .
LTERM ¢~ [TERM+NLT
‘e . ‘) ’
L . - '.‘
‘ . .]
Figure 3-10, Second abortive effort .- .o

Thfs is kruly a shattering blow! 1Is there no way to write a flow chart for
. ‘our irtended algoritlm for the Fibonacci Sequence? - .
, p SR,

(N -

-

R TSN . © .

[

)

s It {s important to subjeut our failure, to analysis.
4

¢ thinking was somewhat ‘as follows.

<

What we were really

! Consider the two'assignment statements

NLT « LTERM

LTERM ¢ LTERM.+ NLT

’

.
e

First, evgluate the right hand sides of both w1€h the origln@l values of the

A
varlables, say 8° fore LTERM and. 5 fdr NET. ,Next, simultaneously make
the 1nd1cated assignmehts
thé varlables

The desired values are now evidently assigned to

But an algorithm is a plan for cagryin out a pr.cess in a

finite number of‘stepsignd wifh a computer every sfep must be carried out in

a definite sequence--act simbiltatieously.”

As soon as we assign a new valug to

. a variable, the ¢ld value is lost forever--unless we have had the foresight

to make a copy of it.

a new variable

COPY,

Therein llgs the solution to our dilemma.

We 1ntrodqce

and consider, in order, the following assigmment steps: *

COPY « LTERM

.NLT « COPY

-

. LTERM « LTERM + NLT

o

>

FBllowing as before with-window boxes ylelds thé results shown in
. Flgure 3- ll. .)

v

é

Q
ERIC
"

<

-,

€
.

~——

S v

- - ')

.

.

&

L

. W
Figure 3-11. Successful assignment steps in Fibonacci sequence

.

-

Now in our problem we find we have two component_s1 . .

v

* 1.

COPY « LTERM
LTERM « LTERM + NLT

NLT « COPY. ML
<

A G

ue
Viad

T

)

» -This lasy assignment box is

)

e =

LTERM « LTERM + MLT

: NLT « COPY

-

103

It is not hard now to put our flow chart together. (Figure 3-12)
- . .o . a .

’ [

: ‘ ! . . ~
”» v 4
. ’ N\ ,
—
N B ! .
%*"(x« - -
‘, 5 A ' 1 . P
“n(? X » ‘
. T LTERM 1
. el NLT « O
. 4,\ \ [
‘1 . /‘ } e N
* £ f 1 » - N . N
. 7> ~ - :)
¥ .
- 3 - -
! 1
. LY
s 7
3
. :
. COPY « LTERM . ", .
- ? . N . .
h < LE T LTERM « LTERM + NLT T~ S -,
’ T .NLT « COPY . S
. 3
5 ; . *
’ 54 . 3 ' '
, . E PR o
Fy oy, &
v ¢ T
A & = * ° . ' i
< . - -
. - -
{ E Figure 3-12, _First flow chart .for Fibonacci Sequence. ’

< 1

This flow c.hart has two defects; first, the flow chart shows no way to
stop, second if we, wish to know, the 6571:h Fibonacel number,we will be T -
. forced to count down to the 657th in the output list. Both ob,jections‘ ;'
are corrected in the Figure 3«13 flow chart where We introduce an indexmg or
counting,variable, I, and branch to a halt when I assumes the value 1009.

o f

-

-

1}
i
¥
b
t
i
g . . ie, é
i

. §
o , N

/

=) .
EMCA T e L SRR PE

---**5“‘ .

3-2

F

o1
LTERM « 1 ‘ “
fLT <0 AN
» I(—.l * .
2 . R ‘
I, LTERM *
. - 1
3 .

. b '
COPY « LTERM \ - ®
LTERM(—L‘IERM+NL‘I’ :
NLT < CORY O, . .. v . ot e oo
I-I+l) 2]

5

. Figyre 3-13.
. .

L

v

Final flow chart for Fibonacci Sequence

-

R

b

Moreover, the importent idea of a

e,./

We have spent considerable time on this simple example to show how a flow
R chart can Be built up, piece by piece.

- copying varlable has been introduced end you have.been graphically reminded of ’

computer algorithms.

N

ERI!

JAruiToxt provided by ERIC
-

"

the destructive nature of, assignment and of the vital importaﬁce of order ih

-

The student shoul&jcﬁeck'that~the~%ox,’h, could be replaced by.

COPY « NLT
NLT*e- LTERM
LTERM « LTERM
I<3+1 "

+ COPY

l

13

. o

«

-

Exercises 3-2 Set A |

1. In Figurg 3-13, whv do we choose to assign zerd for the initial value
of NLT' instead of one?
) . . . -
2. Prepare a_ flow chart to print only the three rlght—most digits of one .
hundf-ed terms of the Fibonacci Sequences beginning with the l7th term. .
Make guesses at how Jnany of these hundred nun}pers will be even, how many R
* greater than 500, how many between 300, gnd L40O. Save these guesses
to see how they compare withwresults when yot. run the program on a
., computer. (Hint: wuse the Greatest Integ‘er Functlon.)

[y ' ‘

. In Exercises 3-1, Set B a series of 100 values of T were input from-
data cards. In the following exercises develop 8 flow chart for the described , :

operation dn this same series of input values of T. Always print some

appropriate message identifying the numerical result printed.ﬁ == . ,
2 . N Y. » , i
3. For each input value after the first value sum and print theMwo most
. . .. ? > ‘
r recently input gralues of T and their sum, | Call this sum TWOSUM, : . . -~

PR -

L, For each 1nput value ‘after. he second, sum the most recent value and the.

*ﬁ %, ° value two posltlons earlier in tHe series. Print the sums.” . - "~

LS

. . (S

5. In each input Wlue after the kth (where the value of k 1s itself
s,upplled as ;&nd where 3 <k < lOO) rrint out the average of either
the most recen‘t three values or if the most recent value is lower than 1ts
predecessor, prmt the average of the preceding two values (omittlng the

. most .recent on€ from this average). ?

-

’ o

6. «Prepare a flow charp to calculate and print the first 15 rows of a tabIe

according to the following rales: 3 -

1. The. table is'to have four colums called N, A B, C.

2. The values in the flrst row of the table are 0 W1, 1.) Ay
‘ 5 - s A e e

.~ __ 3. The value of N\ is_one greater than its value -in the preceding.row.- - -

B T - e e = e

-

L. ‘The value . _is one greater tl&n %ts value in the preceding row.
of

» 5. The value is one greater than the sum of the values of A -

. 4o and 1nclud1ng the preceding row.
) . L) .

- * "6. The value of C is one greater than the sum‘of the values of B
S - to and including the ﬁé\leding row. ‘ ’

Aruitoxt provided by Eic:

3-2 .
. R ’ .) ¢ .
This table is of considersble mathematical interest because A is the
; number of line segments into which a line is divided by N polnts; B T
| . ‘ .
. is the number of regions into whic¢h a plane is divided by N lin‘es;
C is the number of regions into which space is divided by N planes.
¢) N N N ' - M |
- . s
-) ‘\
The Euclidean Algorlthm is a process for flndlng the greatest ‘common .
. -
« , ™ divisor of two integers ' \ -
i This algomthm is of fundamental importance in mathematics and will be
S “used fret{uently throughout the bo{from this point on. ..\ .
. A “An integer C 1is a common.divisor of integers A and B 1if it is e
divisor of both A and B, “+i.e., if for some integers m and n \
) A=n-C and Bsn-C.) I
. . >
. . [
. The greatest common divisor of A and B is the greatest of all their cofmon
< J N
‘ dlYlSOI‘S. . : .
- - . v B coerTo T
When we do & long d1v1si,on.;r3‘roblem, say dlvidin\% 32417 by 1309, “our -
work looks like this: . L. K -
- L - . v ‘ - 21* X o - 9
. ©+ 1309 [3217 ’ :
T 2618
Tt 6237 .
- <1001
. We gqcall these” nages for th‘e numbers appearing here . v -
‘ .o ’ dividend (B) 32417 - .
: divisor (A) 1309 .
o) . " quotient (q). 24 1) ‘ ,
remainder (r) 1001
| _ _____The _quotient and the remainder are comple%ly determined bx_the leldend and .
divisor. In fact, in terms of the greatest’ integer functlon :
R B ’ .
'y q=[K] and r=B-q~A.

This last formula shows us that given whole numbers A and B, there are

[
.

whole numbers g and r so that e

. - (S

ng..(l) 3?Q'A+I‘.
. «

o : mo .

FRIC .) o A

.
N s . .
; 1;,’4 : Lt
! .

. 1 3'2
- N . . "' ..
*\’ ' . [4 A
And if the conditlon r<a is 1m'_eosed then q and‘ r are. uniquely deter-
mined. . . - N . N . : ‘ x
: Qa : “e ' *

Now if A, B;. g end r are mnnbers satisfying (1), we will show that .
the common d1v1sors of ‘B and A are the same as thasé of A and r. For
1f C is a common divisor of A and R (i.e. s~ A=mC and %= nC with

m and n integers) then . T, ‘ '
N) \"{ .- g . *
e . ™ B=q-A+r‘=‘qu.+hC~='(qm+n)C.
’ . &

0f coursey ; gm + n is & whole number so that C 1s also & divisor of B. If

Disadivi§orofBa{1dA i.e., B—sD and A =.tD, then .
Ld . /__—"

r =B - gA'='sD . - qtD'= (s - qt.)D" ,)

-

Y

so thet D 1is also a divisor of Ta

’
-

In the last paragraph ?Lt was showg that any common d*:.v1sor of A and r

is'also a divisor of B, and is then a common div1sor of B and A; con-
versely, any common divisor of B and A is also & divisor of r, anpd is
, thus a common divisor of A and r. Hence, as we have set out to _show, the T ;

common divisors of B and A are the common divisors of A and r. .

>]

-+~ YWe see then that in the problem.of finding the common divisors of B and °
A we may replace B by r without altermg the common divisors. What is
geined by this? Stmply that we have swapped the original problem. for one in k
which the nurbers are smaller, but thé answer.is the same.~ We suspect that
this swapping process can be repeated, but when does it come to an end? Iet -~
us carry out, the process comyletely on the preceding example, but w1thout .
showing the long divisions. Notice in the following example the pair of - | .
valueg for ;3 and® A on the second and succeeding .lines are the ‘values of

A and r from the immediately preceding line.
' k] \’ » i

I
o SN saar g s agwbeaom e s
, ® 1309 = 11000 + 308 -

/\/

1001 = 3 - 308 + 17 ’ .

= R y 4 — L ~
. 308 = k77 4 0 C

- .
. L

And now the process must, terminate becauge another go-around would call for a
divigion by zero. Each of the following peirs of numbers has just the same

;]
. ¢ N . -

% P, Na
’ ‘143

o .

.
L

»

. ,
common divisors as the preceding pair:

7 : 32417 and 1309 + - T
| g .. 1309 .and 1001 §
’ \ o “’ 1001 . and 308 '
o ; 308 andj 7= -
\ - \ ‘77 and 0 .

¢ \

~

The common divisors of 77 and O ‘are Just the divisors of since all

numbers divide zero)‘ and the greatest ‘of these common d1v1sors is 77 itself.

1 N
Tpus, 77 1is the greatest commqn divisor of 32’-1-17) and 1309 The conmmon

divisors of these two numbers are.juét the divisors of 77.

N .
Flow-charting this algorithm. is now quite simple. Given values for A
" . .) .
and B -)

v s 3 - .. A, B—v— ~ - /

3,

we compute the value of' r by ' .
1] » ~

- B »

s - Bl

v . ~

i

We then replace the values of B and A by the velues of A and r,’

respectively, - a

i l) ! -~
ooV - BeA . R

Aer
. -4 ¢
3 i . ‘ - '
b Yos . .
. ! and prepare’ tc? repeat) the prosess. Except thagif A = 0, vwe print out the

value of B and terminate ‘the process. -

These are all the components of the flow chart except for a preliminary check
‘bhat A<B and\,?or a labeling of the result. We now exhibit the assembled
flow chart. Note that. r plays the Tole of a copying veriable when we need

1

‘to interchange A and B. .

i e S > . . e
- - .

23
"THE GCD OF",
1 1
e

interchange ‘
A with B/

r«B - [B/Alx A
Be A
Aer

: I

* Figure 3-14. The Euclidean Algorithm

1

1
"

There is gnother way of flow-charting the Euclidean Algorithm whi@h is

less efficiezgt than the above for actual ccmputing, but which hag a special

charm all of its own. This method depends on the fact that division‘as we

_.ctarry it out is repeated Ssubtraction, ,_The r.emai:nder r~$~i.n B q XA r—-:‘w——t e
we have seen to be B - [B/A] x A. But it can also be cbtained by subtracting
T A from B endugh times (i.e.y B -A-A-A-A-A-A-K-A-A) Tuis
'repeated s‘btraction «wili be indicatsd on the flow chart by repeatedly passing
through the assignment box'

N

- i)
. 8 .
i
3-2 . ! . o .
*
.t N ' . - L . .
. . . Y3 . * : N . ‘
- JBeéfore each execution of this box we must check whether A is still less than
C ; .
: B. SN) ¢
) . L e -
3 . . ‘Y-
€
A RS
‘)
. N I A T T .

1

If,'ngt; then wé, intercha

" . as before.

.) | copY « B . -
> -) - —™ Be A -
i A« COPY | .

Now we have onlyc to put the components together, with one eye on the ,previows‘
Y flow chart for this problem. For qdded interest in Figure 3-15, wé have '

included a little fancy printing for you to study: - N ‘
. : ‘ |
P . Vo, > . |
] - e
o ¥
* ¥
¢ \‘;‘
. Ky
KA
; .
! - -
Y j .
& . ’
- - e Y) o - B ; .

114 :

2. ERIC | T -

Aruitoxt provided by Eic:

-

' . é 1(' ‘v
> . 1 S
» ~ . " -
G Y o - '
o , .
v START ‘ S :
\ . ' ’ ’ -
b . N . . 1 - - N A <
ANYMORE VALUES -\NO . T
. OF A AND B :)
- . . . YES Pes s ‘ 3 ;“
« - A‘r" 2'
! _ M(_ -A,B - .
/o , . -
"GREATEST COMMON, DIVISOR -
. S)F", A" “AND", "B’ ".IS" . .
. - | ‘ 'J
) - ~ LS
v - . -
- . , L
' L l; L
. (A<BY)
=/, .
3 ‘ T v — 5
: . . COPY «B |™
_ . BeA «
. i N R A « COPY
; . Y L3
L 1 . 3 ,
~ ‘ 6 !
T (a>0) PR
T+ -
¢ 8
LY L 5
\ B«3B -~ A 4 .~
- 7 U L T - = o T o I, PN
. LY ‘.:
, .
. *
L v >
8 Figure 3-15. Flow chart for E’uclic{eavn Algorithm without .
e division (less efficient than Figure 3-14) N
4 " s
) ~
Elk\l‘c .o . ~ ' \ !
oo - .o

~ -
.
L3N /
'
.,
3-2
- , *
B
.
?
¥
.
~
>
]
.
P
,
. B
L3 <
»
[
.
. s e
ta L
.
:
\
13
£ -
.
.
- »
¢ (9
“
i
.
.
4
~ N
)
-
“
.
a
Ll
* -
4
+
. .
-

'
"

[E

3.2, - .

.

Numerical example:

Find the g.
=16 and B =

.

Since B < A,

This time we flip the value of /A which is

that}now' A=0,

Tracing

c.de
56.

l.a

C r‘ R
we interchange the

so 8,

of 16 and 5

[y - .

e

]
i
O\ OIONON

1

[e)

o5

ls),

Je
8, with B which is

the alue of B,, is the g c.d.

s
2 L }
* ¢

’

‘-Oﬂ

and cdn imze :

@. Note-
”, L]

. s

RIC

Aruitoxt provided by Eic:

The Figure 3-15 {flow ¢hart is relatiuely eaay'to”follq5

knOWS what’process it is sppposed to represent

more difficult that is,

asked to figure out whab it is or what it does.

4

indispensable. Ons

one weay we might record vital information abput Figure 3- 15 as we “trace

way through (or execute") the algorithm

set of ‘input data, p.g., A = 16 and B =

we have chosen to record key-events as they occur.
‘ R -

There are many. w%ys‘to produce‘and show a’trace.

flaws in a really complicated algorithm

Certain techniques for analy;ing a flow chart are therefore frequently 4.
led "tracing" is illustrate&'in Table 3-1.

once the student

The reversexproBIEm.is often

ne is given ‘a fairly complicated flow chart and is

Q' A ‘-’ . ‘4
g .

.

‘It shows
our :
This is done here for a particular
.]
56. . ‘e “p - .

L]

1 Ty ¢ ' N . >
It is a good idea to work through this table line.by lineﬁs‘erving how

Y

-

Y

-

either in the flow chart or in ane

equivalent computer program, professgonal programmers often trace the algorithm

or at least the section under question.

Once the algoritgﬂ'ﬁas been connected

t%.F computer program, there are generally easy ways to do this. We'can make

the computer assist us in tracing by printing out certain vital inforhation,

at selected‘places, while it is executing the algorithm under test.

Wheh“sea}ohiné'for’fhe‘i‘}’

: - . 3-2
. Co
.'; . -
. * Trace of the g. c. algorlthm ‘in Figure 3-15
for th/e exampIe where A = 16 and B = 56 Yf ot
" After execution ' / .- .)) ’ . ’
of Vdlue of Value of . g.c.d. result
indicated box A (B . A A<B A>0 | printed
1 ‘ . .
- .56 16 .
' K) S ' " . true :
6 M n " M . true B
A i i N 4
8 . Lo) . ,
Tw . " " true .
6 . " " true ,
| 8 2k ! " . :
° T " " true
. ‘. 6 "‘ "y ' ° tme
: 5 8 8 " S
. ru o " ‘ o . false .
‘15 A~ 16 <] 8 N
6 " T ' true . -
-~ _8 .‘ 8) " 2"\4. " -
S "~ " true
6 " " true
_8 0 " Y
R [“u_ ' il ’ _false' 1
5 . 8 o .
g o " : falge .
,_-7 1 i 1 1t N 8
. . 1 -
18 . ’ : Y >
- ¢ ? ’ PR [N s t
/-
Exercises 3-2 Set B . é)
' ° N} - . .
1. Box b of Pigure 3wlh conéin)s three assignments. °What change can be.. .,

made so that two of th se assignments can be elim!nat,ed?-

/ ~ e
T 2. Draw a flow chart wlr}ich inputs two non- negative integers C e.nd D
... @nd outputs their least common multiple, ~LCM.- - N “'j - ot N
-z - Y R N
= - [Hint: " LCM(C D) c>%1>/ccn(c D)] (. A
3 7
’ P4 ¥
) ’ . ' r’) - B \ Ll
; !
. g . .
/ s '{;; . ' :’ ‘ AWt .
s /.' . e , . R .. ‘
' o Al - - "
P YA e
3 o - o 1; 9 .
EMC o - . . .
+ kY . -
5 . . - ' . - * ,

| . /- . ¢'., , B
t3-2 . . ’ .

the given coordinates of two distinct points P and Q, .res‘.péctively, neither

‘and then printed back out in the same order. Then the task.given in the

"ERIC

' 5 L]) R - -

L]

Exercises 3-2 Set C

-

o . 3

In these eight exercises (x1,yl) and (x2,y2) arg to be regarded as

of which is the origin. Each exercise involves either & straight line passing
t h the points P and or a straight line’'segment wh dpQint
hroug ngo nts Q g ne’ segment whose en pQ}n s are
P and Q. It will help you to know a useful formula for a non-wertical
straight line passing through two known (distinct) points P and Q.. It i.s:

.

> 2 A
‘ 1 : _ (Y2 - yi .
‘ 7 y -yl = (i) % (x - x1)
a the slope
’ ’ . ' N V! . .

.
-

. . ' “
Values of x1, yl, x2, and ’y2 are to be read as input in that order

" exercise is to be berformed. Draw-a complete flow chart for each exercise,

including all input and output. Whenever the value(s) requested as output do

not exist or fail to be unique, print an appropriate message. In all cases,

. yo'ur flow chart should show a loop to read in more input data,

1.. Compute the length of the line "segment PQ ayd output.that length
preceded by "the leng‘.ch of PQ 1s". . : PR .

L]
j . \ . .
2. Deteminevwhether the slope of the line PQ is finite. If it is, output
that slope preceded by the message "the slope of PQ 1is". ‘If PQ is . .
parallel to the y-axis, print out.a message to that effect. ~

3. Read as, input and print a value for a varisble delx, Compute and output
; : ’
the value of dely (if any) for which the point (xiL + delx, yl + dely)
, . .
lies on the line (not the line segment) PQ. (See Figure 3-16.)

. @

N
”

¥4 ‘ ' .

. ’\j’ \

‘ Figure 3-16. Collinearity of three points
. . 18

) - 12w : L .

. . \ ‘ ' »
k. Read as input and print a number dely. Compute and ,output the value of
delx, (if any) such that (xl + delxp yl + dely) 1ies on the line Q.

X
5. Read as input and print a number +x. Compute and output the\value of NS
(if any) such that (x,y) lies on the line PQ. { ,

* 6. Read and print a number v Compute and output the value of x (ir any)
such that (x,y) lies on the line PQ. . Y

‘7. Compute the x- intercept and the y-intercept of the line (not the line
segment) PQ. Output both numbers (if any). - ' :

.8, Compute and prlnt the x- and y- 1ntercepts of the line segment PQ .
Print approprlate messages If~the line segment PQ does not 1ntersect i) ,';'
the x or the y-axis. . . : , . - :

- * « - l / -
- L :
0y x ' . 2 . . * - h Y
. ' .
¢ . .
e .
< . “‘\ [4 .
v
) . - , .
. . “
—— s P "/
~ (. P -
; - T ¢
4 N g . R
.]) 7 L e
e - . 5 L S
. ‘ A\
\
- .‘ ~ ’
. = ! L) st /
\ ' 119 : ’ ~

ERIC. RS S -

LA i Toxt provided by ERIC

‘ - / / - .
N /e / s . . L. N ¢
. “©.3-3 . Y .

- . At . N

- «

3-3 Compound Condittons and Multiple' Branching !

. « 2 *
Often one may encouwrter or wish to writ/a condition boxes such as: .
‘ F .
N . . .~‘ N . . /0 -
- ¥ . ~ ! .
, M o
s M il . .
-
. .
o
’ ~
° a3

3 . -4 .-
; . 4
. . 4 'Fhe statement appearing in this box is called a "compound" statement and is '

srs obviously e@‘%lent to . @f . . »

.'f‘ - - f{
) sy ' . ~ [N
- \ \\ . s , .
. (<#ANDX<9—> .

-~ ﬁ/ £
. s

This means that ve leav}/ér the bottom if' both the conditions 2 <x and
X< 5 hold. Othenste, ve “lea.ve by the side. It is important to see how to

expres’s this compoung.o’conditiOn in terms of the simpler components

/ .

. : o, . ¢ ’ .b -

In this way we will be able to make flow charts more readily translatable into

computer language, fhe reasgn being that each condition may have tS be tested
14

A
5 37 " in a separate step.)
”' Yo, .) .
v » ’ . —_
: , 120 - .
Q .
. o t
- e ' ¢
ERIC 122 -
[Arutroc provides o e | s . N -
b _ . -‘ f. . N - ~ - .

-~ -

[
.

B s .
v . . . »

e -

' ' Since the compound statement is true only if both 51mple relations are

true and is false if e1the£ slmple relation is false we can clearly connect the
PR v‘-?*i { e

vslmpne conditiok}boXes as ih Figuﬂe 3 h?(b) ' I””

~~ l

e e i

O

N 9

o

(a) Compound (b) comblnatlon of s1mple

’

Figure 3-17. COmpound condltion box and an equlvalent v

5
f

. combination of simple o%xes

7. M

’ °
~

In any flow chart 1n which it appears, the box in Figure 3-17(a) may be
s+ replaced, by the comblnatlog in Figure 3-17(b), the connections being made &s
indicated by the arrows. Neither (a)°nor (b) is the "more correct." The
combination lh (v) is the more detgiled and hence the more readily translated-.
into machine lahguage. In that respect (b) is better. But on the other hand,

the single box in (a) 1s more easily scanned by a reader who wishes £0 kngy

- e

what the flow chart is d01ng.~ v) ‘

" - ol \

In constrast to this example where we want to know whether both of two .
condltlons are true, there are, places where we might want to know dhether
either of two conditlpns is trye. The decomposition of the latter type oﬂ

A 2 ™ P\m“s-

“compound condition 1nto simple condltions is shown in Figure 3- 18(b).

-) ¢ s .
W -)] .
L , ey , b . .

Iy . ° . “‘\

Q ' : . . . s B N - ’ 1\
ERIC T ’ o Q.

a - ~
FullTox: Provided by ERIC
. . - N . .

3
g

N

Combination of simple.-

(v)

(a}» Compound

Figure 3-18. Another compmm& condition box and its
- equivalent comblnatlon of’ simple boxes

Clearly, ‘compound condition boxes could grow to any *degree of cémplexity
demanded by the problem, with any number of conditions to be satisfied and
any number of variables involved. ‘ \)

e
For -example, if we want to know when both X and Y are positive or 2

. is zero we can draw the compound box and its decomposition as in Figure 3-19.

Y

stages.

%El{lc. '

T

We

LY

-

’ Cx>ompysoryt .
ORZ =0
T
. ..
—
- A Y
. ' ey Compound . (b) Combination of simple
i Figure 3-19. Composition of condition boxes

Al

Notice that ®%the decompositiop in Figure 3-19 can be gccomplished in two ’
first use the method shown in Figure 3-18 to decompose the "or"

statement‘ in 3-19(a) to obtain Co.

3

Figure 3-19(c) - ¢ n
’]
Now the method of Figure 3 17 is used to replace’ Box b of Figure ,3;—19(c) by~
the “eloud" in Figure 3- l9(b) .

-

A compound condition box may be regarded as shorthand for a combination
of simple condition boxes. There is another type of shorthand associated’ with ’
condition boxes which can ‘be extremely helpful in the proceSS of gradually
Dbuilding up complicated flow charts. This ﬁ@d technique is designated
by the name of "multiple branch.ing " o S
To indicate multiple branching we will draw eompoux;d condition boxes with
- ' several exits. Each exit must be clearly labeled ,to s.h.ow what condition would

* N

cause its use. For example .. NP
i

J ; > . j.oo- : G- . - e e

VALUE OF 1

£ .

——— e et

. 1 Iwo important warnings are in order: - \) v PR

(1) The conditions on the exits must not be overlapping. If one exit’ .
were labeled."3 <X < 7" and another were lsbeled »"5 <X< lO" : -
tlten if we come into this box with & value of X bétween 5 and T, ‘

we will not kiow which branch to tske on leaving, ~ ~ ;

(2) a11 possibilities mist be exhausted. If the conditions on the exits
were "X 3" and "6 <X < N and "9 < X", then if wa come into -
the Box with a value of X betweqnm 3 and 6 we w1ll have no vay

to get out. ’I‘hen we will really be in a box? v £

123 . '

,‘:\

N

2 ' - o]

ERIC : 125" B T

B o i o i .o C e, .

-]

i i1
.

i . An expmple of the usefulness o? multiple branching is prov1ded by the 1
example in Section 3-1 of tallying test grades as fiow-charted in Figure 3 Te ‘

- The way 1n vhich this same problem might havp'been handled with multiple
’ . branchlng is shown in Figure 3-20. " We simply "collapse" the chain of two
2-wa%'branches, (Boxes 4 and 5 of Figure 3 -7) into a single 3\3?y branch

(Box L of Figure '3-20). ' . e :
B We ahould'note‘in.passihg that any box indicating a multiple branch of
a vays ?an be broken down into a chainof n -1 2-way branches. Thus

S 4 the l-way branch on tﬂg_value of I may be viewed in wore detail as the chain

of 'thrae 2-way branches:

. £
. v
4
! +
")
! w
. .
.
) 4
)
= 1)
~
.
e : o
' v
-
, -
1
*
L .
4 ¢
)
4 v
N
. o ’ v
I -
-
1
° t »
’
< .
» v
- - - t)
Fl 3
. -~
. p |
& 3
4 - ‘
1 . |
.
4 .
s -
N " N
f
Q0
Y
L} J7
31 v
»
N .
.4 '}4 i [y
) - 1126 1 < -
LS H i ’
o L
ERIC ’ j
1 tS .

' N - - K]
' T
" - - e

»" \

3 P . ‘;

! k ! : A ’

Pl = 1 + i

IR ! :

b ‘< . } |

LN . - .

T .

.; ' -)

k |

. g
'. ’
5
VNN low e«low + 1 nid < mid + 1 high«bigh + 1
i : \:f‘
. - 8 . - "K@' 'f,
<o . . |_count « gount + 1] , S
v s ' 5 4 N
- 9] L 3
I count < n
) *oad F
"Values of count, low, mid, and
A . high are', count, lov, mid, |°
:) high*

< 5

[

Aruitoxt provided by Eic:

“ERIC « . o qs7

—Z.

R
7
b
]
2
3
{

v - . ‘ \
) In the normal course of events this multiple branching flow cha.rt would
have been given first. It represents our flrst formulatlon of the problem.
After ve had first drawn this flow chart we would then have given our atten-
, tlon to the problem of decompos1ng the multiple condltlon box into B cmelna-

tion of simple conditions.

Exercises 3-3 . s Ve) I

\.‘ - In each of the next seven exercises your job is to construect %he flow ,:
-.{. chert equivalent to the given assertlon using only simple condition hoxes.
The "tz’ue " path of the assertion should lead to Box 20 and the "false" path a
to Box 30 : .

1 4
Example: vl .
' The assertion is: x1 1is less then x2 and either P exceeds

. te G or T equals S or both.

The required flow chart is:

20 : —

L x lies between 2 and 1, \,inclusive. A

\ -+ - AP . e

2. Either 7 is less than Q of 7 is’ goks
less than R or-7 1is legs than 8.

3.' x 1lies between 1.7, and 8.4, end
y lies between -3.9 and +5.h4.

s - 7 = —3.9

¥ N ’
j- : R kA @ B v
R—_ . e 1218 :
] ' P ; .

< Co4 7/ R\‘

A e Provided by R

e

6. The point

E

. -

)V)
/ X
>
L Y
«

} yi.v Y S !
|) '

ST R
X
=

| . y =

(a) !The point (x1,yl) 1lies inside
" the shaded Tegion: of quadrant’ I.

.

3-3

(b) The point (x1,y1) 1lies inside

. m
v the shaded region of quadrant ITII. ,
(¢} The point (x1,yl) 1lies some- ‘ﬂmm
yhere inside the shaded region
of quédrants I or III. . b
5, The point (xl;yl)’lies inside the

shaded triangle in the first S L
2
- §x + 2 and the ’ -

coordinate axes.

quadrant formed by the straight

line y =

.
.

lies in the #

=

(x1,y1))
-shaded area (or on its boundarles))
formed by the curve, y = sm X

and the straight l:me, Yy = —(zr -x).

Y

' -
. . . " q-x
S / < .
v . Ry
-) 0&—» >

LS

<

The intersecting straight lines

x + 16

y=hxx-12 ana ¥ o= -k x

determined four regions, one of vwhich, ‘region A, lies entirely in the '

.

upper helf-plene. We assert that the point (x1,yI) lies in the iqtgrior

oy

-

‘%lf; Tégion A or on its boundary

A

f(?.

A3

Q »
I

i
KC v N B

1

)

- ' . v FY
For each of the following flow chart assert:.ons, certain x, y \palrs

\

lead to Box 20. These pairs define a region in the x- -y oplane. Your \j\ob

W

is to draw the graph.of this region.

8.

\ -

\ F \
x>0 d >O).—/ .
& J -~ / ¥ . ‘

/2 ,)
! _- R
i Santete assertion . T
‘ "
\

y . . ' R
- assertion o -

-

v

) 10. Draw a flow chyrt which computes and prints the numbers 1,| 2, "3, or &

as a messafe to indicate in which quadrant a point P 1lies; The

—_— e

coordinates (x1l,yl) of P are given. What heppens if P| lies on
. one or both axes?] g J ;!

- \ Ls

S

ERIC | SV 130 ‘

~ ‘ . ‘) ‘ e
- . - Son UD o R y
to the carnival wheel problem (Exercise 6, Section 2-5, No. 9).
. We sup se;. now i:}.le{ rule is modified. Recall p, the number of polnts

won oy lost, wgs‘:"\;)riginall& a straight 'line function of k, the pﬁition

v number in the :reQJeate;l group of four sectors. We now want a new point

’ ruleuw_ihere p 1is anﬁarbitrary fgnction of k. For exa.mpie,

. -

4 ' . k- 0ld point rule New poi;x't rule ‘.,. -
‘ 0 lose 30 " lose 20 ‘) D
1. lose 10, lose 30 '
P 2 win 10 win 0) ' R
3 .win 30 win 50

- .. ‘

Draw a revised flow chart to show p as a function of‘ th'e same data

pair S and m but with the new point rule give‘n gbove. (S 1is the

: . 9 -~
sector position of the wheel at rest, and m is the number of sector - .
, positions the wheel is spun.) 0 -
-
1 ?
' [}
s ¢ o
+ ", .
5
kS g *
) o,
P N > s
> . ! “
[. '
“ “ -
- 1 - TsA)f‘o *
e, s (
. ~ n o 1

-

i 9w T
. o ‘% RN . 1'?1 3 M t J
L~) - u “
. g 7’ i -

3-k " V’) | | | - . :,

+

3-4% - Precedence Levels for Relatlons))' 3 . oo

ER YN
» e pause here to look in & more formal way at the statements which we have.

been ¥ iting inside the oval condition boxes. When the lines emanating from ‘
e 4val are'marked true for T) and false (or F), perhaps a more approprlate B
7term for the statement which appears inside is an assertioxn.

Consider the condition box , ‘ [. « »

(More compl%cated conditions may, as we have seen, Ve representeddthréugh

comblnatlons of this type.) The condition inside the -4bove box consists of

two arithmetic expifss1ons with a "relation symbol" between them..

AR Y

. . .
arithmetic expression arithgetic expréssion . ¢

ty

.

>

relgtion symbol

J . -

4 . >
The complete list of "relation symbolsdé-used in this text is ‘
- : o 7
v ! <, >;-=~S J‘ f; 4;.794 .
Such a symbol together w1th a constant on each side amowrs to an aesger-

be either true or false. For example.
s .

2

T4
1 L3
v 1s certainly true, while _— - .

” 8=T1- " :
. / R
is op ously false. We may-also ige su&h a relatlon symbol between twoinuth-

> T metic expressi@ns such as:

I'+1>N o ‘.

Q 130 -~

ERIC - S 19

y

[
[
m

s K y : P
- . - ¥ . ."&c . . LR

tion that a certain relatlon holds between these numbers?” The assertion may v

E

: %
— * .

’ LA 1 4
This states that a certaln]Flatlon holds, not between the expressions
"I 1" and "N", but between their values®

.

Suppgse we have a flow chart with such a box in it as this:

During the computation 1nd1cated by the;rlow chant we may pass through this o
box many times. Sometrmes the assertion indicated by the '
expression" in thép/hx will be true and sometimes false.

falsity dete ines the 'exit by which we leave.

N
. .

'relational ‘

And the truth or

et us look at our method of determin%ng whether the assertion is true .
Or false. F

(1) "Took up the crent values of the variables.’
e ; 2'?

)) ¥
«(2) » Bvaluate the arithmetic‘eﬁpressions on either side of the relation

symbol. ? 3) ., ‘

(3) - Determine whethér the relation in question holds between the
numerlcal constants obtalned in (2).

3
It_follows, for exampleg that the expressién

e " \ *

X2+2><X+1<2><A><B

»

o will be read as though parentheses were inserted as follows.'

./ ,

x2+2xx+1) (2><A><B)
We can convey the, same 1dea by‘sa/ing that when readlng expressions L

hav1ng no parentheses, relational symbols have a "lower precedence than any

of the arithmetic operators. We can, expand the precedence table, Table a- h

tqQ 1nclud the ‘relational symbols.
i ‘ . ~ '

O - B

IQJ!:* . , 4 .. .’

.
SRy .
v v R .- . T R I :
. . o

3-8 - -
¢ < .
. - - Table'3-2 '
»}‘ N\
. - - - e
~ Precedence Levels for Relational Expressions
Levels j ‘ ‘ Sym‘bol ¥ .
. High. | First ¥ exponentiatlon or raislng ’
* . . to a power" +
* “Second * "+ x, [/, - (unary) .
Third oy {binary)
| tow | Pourth ° <\ <>, =, f .

.

-
a

* Nothing need be said about scanning leff-to‘.right for symbols of the fourth

level, since in a properly written expression thkere can be, at most, dne such .

+ symbol. Such an expression as M . ,///
> v /
3<X<5 - @

~
"

(frequently encountered in matlgematics) is actually a compound efpression, dy"’;ﬂ

i.e., in this case™ P ’ /A .
« . -
. 3<X amld X<5 AL o :

< ks >
- - .

= 8 : -
We have seen how to deal with SL{Ch compound statemen'ts in the preceding section. .

Perhaps you would be interestéd im seeing how a° machyne might find out

. whethéer one of the above inequalities is true or false., -Consider, for example,
Jroe

the SAMOS computer of Appendix A. It has only the one branching il%struction
BRANCH ON MINUS. We consider the condition box at the beginning of. this e

M %

section, oo

i -

) ‘ : g ‘ .
{ L - ’ Lo 4 f

. with the current values of the variable, given by ' ’ ,
. i g .)
[3 N
Variable . I N
. ! : .
K ° ' %
. s Cufrent value 7 1 . . R
\4 . - -
b 1 e - ’ -~
Q . - o 132, " - > ’
.. B e . -~ , 2 '..’ 4 '
}, ERIC . 134 i

Y

o ’ 4
First the values of the varisable

arithmetic expressions on eithér

TR,

£) -
. . N .o

s in the condition box are looked up and the
(o234 -
side of the relation symbol are evaluated. °

The condition box\may nov be visualized as: ! T

§ 14

wa

Because 8 > 10V is equivelent 4

8 - 10 1is evaluated and we may

i, - -
o the relation 8 - 10 2/0, the expression ;

how visualize the condition box as:

The. machine determines .tht .truth
examining the first character in

r falsity of the relation . -2 >0 by

the numeral on the ,'Left This'character -~

5ide of the flow ¢hart box.

e

being a minus, we "branch on minug," that is, we go to an address spez‘\tfied
'in the branching order to pick up pur next mstructions ‘%rresponding l

false‘side of the flow chart box.
branch on minus will be executed.

o the
Otherwise, the next lnstruction after the
This corresponds to emerging from the true - ...

. v

.

35 L A

3-5 Subscripted Varisbles yf' .

Ye come now to the second of ﬁéﬁpowen“ul tools referred to in the opening
wpa’i'agraph of this chapter—-the subscripted varlable.

& admit as variables inscriptions of the sort:
) . 3 e - ‘5‘ /
Xl’ X2, X3, Xh’ X‘j .

e "/v/
Here the thing occupying the posltion of X may be the inscription for any

properly written \fariable while the subscript must be an integer. ’ !

/
Each subscripted varisble is provided with a window box as With oz‘dinary

varigbles as suggested in Figure 3-21.

- L4

« Figure 3-21. Window boxes for subscripted varisbles h

4
‘ £ .

We do not, introduu.e these subscripted variables just for the purpose ‘of

v /heg.iz;g more variables availsble. If that were all we wanted, we could ‘use:
- \

A

Xil, X2; X3, Xk, X5 . ! SN

PLY A -

The epplication of subscripted variables lles in our ability to write
¢

expressions like /

/ Yl
in our flow chart boxes. N 1s a variable which can have -only an agreed set
of consecutive values, like 1, 8 3, 4, and 5. Let us see how we interpret’
such an 1nscription. Supposemye,, Jfind in a flow chart the assignment box
§ (v " el e
. ’) _\-‘ :':’i“ AS
‘ - — }S_N s]_9«———_» -

I - B N

Evidently, we are supposed to put 19 somewhere. —Baf”where? If we iook;
at“the window boxes of Figure 3-21, we& Tipd boxé¥ labeled Xl’ X2, X3, Xh’

and X5 , but none labeled XN We do the obvious thing. We lopk up the’
cx*rrent value of N. Say it is U4. Then we interpret the assigmment box
n i . ; IR
Y . - T ; .
o ol ' 1383 '

. .

ERIC" » ‘ ©
- - . .

- : .

e

r

', designate .one windgw'box--that-‘nscribed with XN.

) - . oY

. X, <19 - ' . "

Thus XN is a subséripted Yarigble which unembiguously designates one i .
"window box from the set inscribed with XJ_’ X2’ X3, Xh or XS Which window

box is designated depends on the current value of the varisble N. I
N " AN T
/. " .
The domein of permisssble values of the subscript N can, of course,

-be as large as is necessary. Generaslly we will limit N tc;\t e non-negative

integers. . The real pover of subscripted varisbles becomes evident when we ,
\ ~

T

R

. consider problems having a large number \bf related varisbles. The n\ex~ exemple
'gﬁgins to illustrat® the poWer of this no\ ation. v L. ,
Consider tl;e problem of finding and p inting the largest x;alue of six
input yariablés. ‘We treated this problem with three input verisbles iﬁ“
‘Section 3+1. The flow chart we will gé;lezl'alfie is given in Figure 3-5(b).
We give the generaliiked\ flow chart in Figure 3-22(a) with no further explane-
. tion.

- w

J .
, “w > .
[= . . e '
..f . R

'Note that Xy ise v’érz» different "animal" from XN. The latter Mse can only

\]

o
v

Y
@ .

RSN - BN :

QA - ‘.\ ,° . . 'Y C o, - ‘ ’ L
g ‘El{l‘/(: R ’A\‘\‘.) "‘;w\x‘ 0 1\37 9 .) ' - g

1 .

MORE VALUES OF
A,B,C,D,E,F? _

L (1ReST <B 116 1 - . .
.. 5 F " ll e T
; s LRGST < A -
- LRGST < ¢ }———»{ LRGST «C . LY K
i F—= __ - F LRGST Az -f
//6 aud b 1 - \\ K %
= T \
HCER ; (
\ y -
____ ______________ //
y 13
. LRGST < E Y- LRGST «E ; . ‘)
N - < O\ °F
F) J k<6 .
AN . 14 -1 -
T
'\°2\ LRGST < F }o-ef LRGST ¢ F 8 < |T 5 : -
- i "THE LARGEST OF", ’
. 128] . . KK+ 1] | A A A008, 4, .
. 1 A . A , "IS", LRGST
NTHE LARGEST. 6 .
VALUE IS", |. N '
LRGST N .
» ~ \
2
N AN
'S N a
(2) without A N (b) with |) ,
N] b ¥ - y ,
. \\\‘ ‘ ' 4 t
Figure)~3-22. Flow chart for finding largest of six numbers
without and with subscripted varisbles T

Th ~

. N . S
. o -
2 N] # ~
.

. ! T

We see & certain monotonous repetition in this flow chart. Think how mugh
; . ~..

vorse the situation would have been if there were a hundred input varisbles

l instead of "only six. The problem would get out of hand (as well as off the

-

Co13E,

~ . ! .

paper) . - :

- .
*)

We' will now see how to treat the same ;>roblem with subscripted variables.
We let the input varisbles be

-};

A Ae, Bys By Agy Ag

1

We have put a dashed line around one of the "blocks" which go into making up

"«this flow chart, TI® generai form'off such’a block in our subscripted variable
- notation would be: ' ' ‘

LRGST < A,) = LRGST « A

Ty)

4

With suitable values assigned tg' K this conf;{guration can represent any
of thedfive "blocks" in Figure 3-22(a). But how do we get to the next step? N
C.learly, unless K alreasdy has the value 6, we augment K by 1 and come . *
back to)l:he tols of the block. So far we have:

-6 dem o .
T ‘L
.- (LRGST < Ag | LRGST « A
. F . }
7 B
K<6 ¥
T i ‘ >
) - »
8 -
K - K +. l X '\ . -, L 4
] | ~
Figure 3-23. Partial flow chart for largest of a set of M
numbers . i . .

What we have so far described fepresents'the body of the £1ow chart. All that
remains is to attach the head and tail. ' . y

To start, we must input the data, assign the initial value of 1 to the.

. Y o P

) s . ' a. 17 ‘ 2
Q . . 133 T

3-5

variable X

Box 7 at F we print the current value of LRGST and go back for more data

U o

N .

hook in at the top of Box 4 of Figure 3- 23 If we‘\ieave

(if any) The complgte flow chart is given in Figure 3-22(b).

Careful study of the development of the flow chart in Figure 3-22(b) and
wcomparison with that in Figure 3-22(a) will show better than any number of
words the importance of subscripted varigbles and the way we use them.

An important thing- to observe gbout the f]:ow chart Of Figure 3-22(b)
is that it would only be changed in the most minor way if we had 30 input

variables rather than a mere six.

In Box.7, the 6 would be replaced by 30.

.'In the input and output boxes, 2 and 3, Al" A2, A3, Ab’ A5, A6 would be

+ replaced by Al, A2, A3, Ah’ A5, A6, A7, A8, A9, AlO’ All’ 512, A13’ Alh’ Al5’

higr Ay Pag Pagr Daor Aarr Ropr Bazo Baus Aps
We can avoid all of this writing by in{roducing z;. more compact notation,

Bogr Bops Bois Bogs Agg:

The real point is that the structure of the flow chart, i.e., the way the

— - st———

boxes are comnected, does not depend on the amount of data..
S —_ LR i LA

In the input and output boxes we are reaily dealing with a set of

variables and there is a convenient notation in common use which we can
adopt. The notation: ’

.1s a shorthand eguivalent to listing every element ‘Al through A3O"' Explana-

tion of this notation is given below: T) ’

=1(1)3Q)

d —

initial value amount by which sub'script : , cut-o¥f point.
. of subscript. is incremented (i.e., " No subscripts -

) N . size,of steps) in advanc- -larger, than this
! ing from element-to * allowed.
element in the list. . .
Example: The notation ;:;,;; {A., J = T7(5)23) - - N
N el
denotes A7, Al2’ Al7:? A22.

O

ERIC

Aruitoxt provided by Eic:
.

-

—

(A ¥ = 1(2)30)

A

This notation may be used either in an input or Ain an output box. In

most uses in this

ext, the initial value and the

. 138

S 14D

iAr}_crremer;t‘will both be 1.

<

2] - e
; {8 K =1(1)6) "THE LARGEST OF",
PR ' ‘ 4, K= 1(1)6}, ' ,
) : . "1s", LRGST
. i‘:l - ;
i < < -~

Exercises 3-5 Set A

Problems 1 and 2: When we revised the carnival wheel problem in Exercise ﬁ,
Section 3-3, we employed a multi-way condition i)ox to model the new point
rule. In Figure 3-24(a) you see one way to achieve that objectivé. ",)

A student now proposes an alternative solution shown in Figure 3-24(b). »
He cleims it is simpler, equivalent, and an inherently more general solution.
,Study these two flow charts carefully and ans)wer the two questions glven below.
1. Under what circumstances are the flow charts equivalent? ~

2. In what sende’ can (b) ve construed to be more general than a)?

K] 3 >
1
» .
ow T ’ 2 e
. .
i
0 -
" . — o ‘.;'R B PRt -
"y (8) Carnival wheel with a T (p) Carnival vheel .) :
! . conditional . . < with subscripts
' : , \ ‘ ¢ Flgure 3-24 .)
i Q ' - 139 .
ARE S - S A

" E

RIC

MRA v 7ox Provided by ERIC
P f '

3-5

Problems 3 through 7: The flow chart in Figure 3-2‘5 is an algorithm which
accomplishes the following steps: * - .7 ‘

. A . ..
(a) Inputs a number ¢ ’

v (b) Inputs 100 numbers Dby, by .evs Dy

¢) Determines and prints a list of -the b, which satisfy the relation
. ! .] i
. T, >\ i
& l —

————— ”

5

Study ‘the flow chart ¢arefully and answer the following questions.

—ipe from 6,
~

How'xlar\yptimes is Box 6 executed?

How many times is Box 8 executed?

Under what circumstance will Box 10 be uted? The remark is made

that ANY s a "switch variable"; that is, i% is used like railrosders

use a rail switch. - Explain. s
<&

- .
¢

Is it really necesSary for t};ere to bf-.‘ more thar one value c')f b in
memory at any given time in order to achieve the same output objectives
for th;s prog&‘am? Anotheér way of asking this 'question is, "Are subscripts
really necessary in this algorithm?" If your answer is no, redraw the

flow 7151&: accordingly putting a check ma.rk.ne}Lct to each bc{x you change.

¥

}Ic:w ould you modiﬁ”eijther Figure 3-25 or your modified version, result-
3;15/ to gener'élize the flow chart so that instead of reading
100 elements for b we read any given number n of them?

A i ’ o o f«;g
9 g :

* ¢ ‘3 . P
| - c 'Q: \r ;
oo 2] ,
e o ; e
» 4 B}on
: o
142 .
R . ’ o 4
. of

5 . - '
. — -
e’ s . - [
- ' 3
“ . : 35
B
X - &
~ ~\ s
-
. - ¢ e~ ™
* (START
* L)
/Q\s \ ’
. 1 N
R - -
. i 1
- ANY « 0 - PRl
. i '
e ”
. 2 .
.
. b4 ([e
. s R .
3 \ -
. L) ,
Al
3>
- 1l
k
g o)
| 5
: N - 1ei1+1 ’)
> 1 - : u‘
R , Yo Py «
N ,J
N i
¢ ¥
Pt
. s Al i W A“\._'
¢ i ~
Ko " -
> " .
B
N ! *
Y& 2 \ s .
A ‘ - . __/ ' 4
3 e
I;g M i
- I . i ,
<
Al 3 ! R =
b & - ,
A L]
¢ ¥ ’)
- ﬁ" .
, . o % . -
} . (Figure 3-25. An algorithm t[o‘study
.o) t - * - - ! ’ N ' ‘
4 / '
[-
, 4 - v
O . v ., =
E lC 3 . . 1 [1‘ ':.? . ‘.. . . :
; J; , . ., - R , Y t .

L - B
- °
.) . s

8. . Draw. a flow chart for inputting n and = vector Bys 8y ceey B The
als are considered to be the coefficients of the polynomial

] ~

: - 2 n -
a,. + + + oeea t
0 8,X a2x ~tax

and n »is its apparent degree. However some or all vof the coefficients
may be gzero. Construct a flow chart to determine tél}e actual degree, m,
of the polynomial. Of coypse m<n end m can be determined by

‘\ ' searching the set of coefficients for the non;zero element with the

. highest .subscript. Output m and the coefficients from &y through
&, inclusive, If all the coefficients are zerq, dontt print any
coefficients but let.the printed value of' m be -1l.
+— - 8

K

1

Additionsl remarks on subscripts

; .)
"As we have said, we view Xy es designating one of a set of window boxes
inscribed with Xl’ X2, X3, ++e s Vhich box is designated depends on the
cutrent value of the varisble N. Now,what do we mean by XI? By the seme
reasoning, XI designates one of the hoxes Xl’ X2, X3, ¢e. depending on the
current value of the\va:riable I. XN and XI may designate different boxes
v (1f N #I) or may designate the same box (if N=1I). *

‘ Now, what do you think XN+1 should m\ean? Apparently it should _desig-
_. nate one of the boxes inscribed with Xl’ X2, *}g3, eee o Which of these is
designated should @epe‘nd on the current- value<of the variable N. Suppose
the value of N is 3. Then N+ 1 is 4 and XN+1 really means Xl}
From this éxample you will correctly guess that arithmetic expressions can be
o_m;%: used as subscripts.. However, D ocedural 'languages sometimes place limits on
the conrplexity of expressions used as subscripts (see your lang‘uage supplement)

¥

In this text we will normally avoid express:.ons more complicated than
. N+1 (or N#K) as subscripts. , . .

. In sunnnary; if the subséript of a varisble is an expression, it must be

. possible to ‘compxite the value of this subscript each time the subscripted
varisble is encolintered in & flow chart box. The subscript expression must
be integer-'valut‘-:d.g Like any expression, a subscript’ expression is "computable"

2 if we have previously assigned values for every varisble that appears in the
subscript expression.

X E (11&24 ; o .
EMC ‘. ‘ 2144 C

AruiToxt provided by ERIC

Ry R

. S S 138
[

/- :

Frequently in computing we have to put numbérs (or other things, like

Sorting Example

names) into some kind of order. This, "sorting;', seems like a very simple
thing but the problem arises so often as part of larger problems that much
effort has been sp?-:nt to be able to do sorting as efficiéntly as pbssible.
Many elgorithms have been invented and many ref:'gnéments made fo‘r this
Wow we will develop one of many possible algorithms for sorting. We sfille

study o‘ther‘sorting algorithms later. ‘ - ‘

s .
In sorting the problem is this: If we in)é: a set of numbers:
- (5 72659
. L]
o
¢ \ .
we should output: .
2556 %9 5
\‘7 »
Consider a list of input varisbles with values: ‘ ' o
N) . R i . t i * PO
" a ' : * .
X) Al A2 A3 Ah | A5 A6 . S)
5171216519
N . \ v . . » e
. Scan the values from left to right until we encountez: the first Place where

the vgldugs decrease. (If there is no such decrease, then the‘values are’
alreg.&“}fin increasing. order.) In the above example, we find this first de-

crease when going from A2 to” A3. Interchange these values:

-

N .

- A Ay A3 A A5 A . ~

512171615 |9 3 .

What next? Well, we seem 4, have done some’ good. So,‘ let®s treat this list
T 3{15? ‘.'_Like a brand new one. That is, go back to the beginning and sc?n ~from 1
T1éPte to right, ete. ‘ .

This almost seems too.simple ;co work! Nevertheless, we observe thz;t as.
long as the list is not in increasing order', there will always be another '
interchange to do. Each interchange affects the relativé ordez: of Just one

+ 'pair of valyes and since there are only finitely many suth pairs, the algo-
_ rithm must ‘terminate. Perhaps yould like to try :che prc';geﬂss with some rlaying

cards. - ‘ , s -

,:1 , . . ‘ - 1]_:1,?:; . 4 <

o '

ERIC . . : | o

Aruitoxt provided by Eic: .,) B \
N > . H -

The basic idea is the “inter-

on & flow chart.
experienced as we have become, we know to
2

Next, to put this algorithm
change of AK and AK+1_» which,
represent as s s
. . l
. fcory e a .
, \ : he © A} .
5@' ' AK+1 €« ?OPY . . v
We execute this interchange only if AK > AK+1’ Thus, thé COnditior{_box. y
S . - |
T :”_. . _ ‘- W
. (% > A1 ; ,)
- . : . . f
F ‘ R : .
. M :l
o

1

-

If false, we go to the next positfon in the list
- o S
© R . 3 .
. l KeK'+ 1 o
On emerging from ,

- ,
and repeat “the test (1 N -TON return to the condition box),
the 1nterchz;u1ge box, we set X, baofk to l .and s&,e:t"t over. We novw havecthe
skeleton of Figure 3-26. T ’ . . T,
. 4‘3‘?’ . . .
Y o U LN o
' - v D1 :
- Kel .. v .
\ N ' ’/ | ki . t
w 7 5 SR
L ‘. £ e iy :" ’ 4 'r N
LF - Q\& @ ‘e 2‘ .
-~ - * " > ~
+ Y- ™\ s : ¥
’ © Bk > A - ‘%: . ,Ju'f?.‘ -
_J T, . » ';5
) w , - .
v) : « ry s, 2 - = 7 e
. o - v
& o =
‘ COPY ‘ .AK \ ')
. - , , , « A R . .)
§ - “le AK K':'l L o
At «<’copy - | o
4| . + + . - _
Ke«K+ 1 K+l , -
-] prx ° b
L N , ; . -
’ o ° . . §>' °
/—, - Figure 3-26. Skeleton of & sort-—. D b
- ' (. ¢ : SR
o : . 4 et A ‘- '/ }
ERIC - L - ST
{ ! . '7) ,, " ::—"~- Y R . . Wo. ‘ L

3-5

o

Only 'inputrm and stopping mechanisxln are needed. ‘- We should also., . ’
decide on how large a list of numbers the flow chart shouldsbe set up to M
handle. One, time we may want to sort 13 numbers, another time 200, or ..
perhaps 1000. Why not let the varisble N denote the length of the 1ist?

Thié is all put together in Figure 3-27. '

"

" START

g K =11)N)

A riext provided by R

-

ERI!

Aruitoxt provided by Eic:

-description of a vector.

Exercises 3-5 Set.B

1. Suppose you wanted to test the algorithm by determining if the list

35 - - .

Before we leave this section there is a terminology we should like to
introducq in connection with subscrip%ed variables. Let us suppose we have
a subscripted varisble such as . > .
(] . PO
l . B < {XI,) I= :l(l)’6} >

It-is then customsry to refer to the list (or linear array):

. Xy By X3y Xy Xy Xgo e ’

or the list of values of these vaxiables: ’ *
=y

7, 9.2, =82, 17, -2.73, 0

" as a M"vector." The individuel entries this list are referr&d to as the /,
"components" of the vector. This is in ement with mathematical usage. '

B -
Engineers and physicists often speak of a vector as having% megnitude and
direction but that view is really Just a sp'ecial example of our mathematical

. '}
Mzthematical notation requiies that ow vectors be enclosed in parentheses

as R . «) N
“« o
, (X, %p X57%, %, 08
P . . K
We will not insist on’ these outer parentheses in our computer work. -

.
.We will frequently use such terminology as, "The vector X," to desig-

nate the. list, o .

\”' M !
. . Xl, XE’ .X3, Xh’ X5, X6 .
“x) N

b

4 N/. w ’ ! - T, .
This group of exercises concerns the sorting algorithm given in Figure 3-27.
whe

*

Ty ’ g .7 2 -5 b »
(: - < A
will be properly sorted in gscending order, i.e., %
. -5 2 b7 .
+ (a) WVhat %re the values of the input data at Box 22
- L ‘ : «
=
T Ve .. .
- . -146 .
5 L ’ /’ ' - - N -

. (v) with i:hese' input data frace through the algorithm Beginning at
box 3, showing the box numbers in the sequén(kdthey are actually
executed until box 8 is reached. Use a table like the one given

here. It is partially filled for this problem to help you get

started. - ¥
Lo .) assigned .
X Box P . value of . -
sequence 3 4 5 6 7 8 K
" e 1 "
” \’ 2 / _ . Scratch pad
J— R SR A I S A A - for a vector
L. vy] 1 1 1
Z M y \ T2 2 7 -
/ 2 N 1 .
7 . %
\8
k“ .

oo ‘

4 [

4

(c) How many times in this sequence has a flow chart box (including
box 8) been executed before returning to box l'{'

(d) How meny times is box b reached?

134

42._ By now you should be thoroughly £onvinced this algorithm will work /

o S

every time. Suppose the values to_be sorted are

9 5 "9 12 - >

1 ~ ‘ '

. . . o
That is, they are already in ascending order. How many times will box 4

4
1

= ---—be executed before box 8 is reached? ”

1

3. What 1if the input values are already sorteg,but in opposite order, say '

1

- ' 12 .9 § -9 ‘ Lz

, . - ! !
. How many executions of .box 4 ? =) >

Save your resufts for problems 1, 2, and 3. In the next chapte§ we will .
look at another sorting algorithm and will wish to compare with corresponding
regsults of the new algorithm, ; . . - -

&]\

: o b o ’ 147
o ’

ERIC -~ -

i
};n

v@ ~
b

< . o
. -7"5 ¥ :
- S ‘
Exercise 3-5Set C , -

-

There’are 101 members in a youth symphony %rcﬁe"s_tra sbout to meke a
::oncert tour. A reporter asks the conductor, "What is the median age of
your members?" He replies, "I have a list of the ages of the players. Will
that help you?" Y(The medfan of an ordered set of numbersagg/ou reca%the
midd1& number,. if any.)

(a) Draw a.flow chart to find the median 245 of the 101 players if
the ages are t¥ken in order from an alphabetical listing of the
“players. Can you solve this problem without using subscripted -
variables? 7 ’

* (b) If N is even, there is no middle number i;1 a set ¢f N numbers.

How would you exiend the idea of wiedian to an ordered set ovf‘ N

&

which found the median of & set of N/ 0dd) numbers.’ When revised

your flow ;:hart should output “the ge&ian of any ordered set of N

numbers if N is e'veh?, Incorporate th? dea into your flow chart

numbers (odd or. even). N -

- Y
"= (ec) Now the reporter, wanting to be prepared for the next ors:hestra to
< come to town, asks for a flow chart to give.him the \mgdiafrl age of
. @ny size group when the ageé are given in arbitrary orderf“ “He
would' also J.?.ke to know the agesiof ;c.he oldpes‘i and youngest 'in the

. group. Prepare the ‘flow chart. } 8
' .
" -
=T P M
) . - .
.. oo .
7ot)4 Vo
. k4 «
°
. 73 [.
- 2, -t
L] - -
; ¢
7
~ 13
& N . v~
. . £ 7
.
. hd -
& L 4
—{_;/ - ‘*. ¢ .
- . e .
, .
‘t
* A
. N = s * e]
\ R . v ‘ 4 N
1 ‘ 3
. ' - 4 }'
- + » — 1
\/ : o8
v A -»
N A .
. .
:) - 148 .

ERIC .- I £ 11 o
! »

/
__ﬁx P R s . v .
. A «

3-6 Double Subscripts

]

L
L3S

rows and col

S as:
oy N

}

rix'\ of a'isystem BF eq

P
)

Figure 3-28. Matrix

e mathéﬁftlcal term for such a rectangular array is '

ces crop up you would have to see to believe.

tions.

SWw 2X+ 7Yy =1 . °

oW - 4X + OQ\T 2

N

. - Onge yoy have mastered the use of . subscripfed variables in computing you
« will find that double subscripts offer very llttle additional difficulty.

In mathematics hata often come to us in such a rectangular array" of

How

I

@

s on a {reek temple.

s 1 6W + X + 3Y é_ -2

ve matrix\ has three rows and fo&r columns. Columns are vertical

When you want to discuss the entry in a certain

»

o
- n
v, . it

TR A A

JKieiire 3-

29. The above matrix as a tabl

-J/

,;‘,
TN e

The 1nd1v1dual numbers éppearing in the.

specify the position by giving the row and the column. '

% 3-6 , ‘

} ,

. Double subscripts make their sppearance when we introduce,tﬁ_e notation

; used in talking sbout entries in & matrix. .We use a varisble with two .
i subseripts : . . . 0
‘ Fn ~. . ,

) s . '

to mdicate the entry in the I row end the J colum. , The rov is alm

M_ at the beginning of this sectlon as taebulated in Figure 3-29, then the value

L 'of A23 is O while that of A32 is 7. . .

As in the casg of singly subscripted, variables, we cons1der sthat thé‘z'e is

a nndow box asseciated w:Lth each of the twelye variables Al 12 Al 2 a.nd
2 2

-

S0 forth as suggested 1n Flgure 3-30. R - |

“A

Figure-3-30. Window bees for subscripted variables S

W , h ,u - 7. . -

\ If we wish to input a table into these window boxes, we could iﬁdicate § >

= ¢’ " this on & “low chart by the' inpat box in Figure 3-f31. .. or
N : . ~ ..
U e , [AL Al 2 Mz Ay ’
re) . /~ . ,
_— — - Bompr BJ oo Ap 3 Ay L 1L B
‘ A A A A -~ '
: AR . 4/1"/] 3,22 73,37 T3,k -
C ke] Al) \ L
- '_ ! ’ Figu.re 3-31.. ’Input Box for Subscripted Varisbles

. . R
~ B R

It would be good to have some notation (as in ‘the last sectlon) to refer
L to an'entire matrix or to portions thereof. An extension of v previous

‘ notation is ghown:in Figure 3-32.
] 4

= . e . ‘
Q LS 0.
« - L, B
B 7 G h .
: S 01

R

N *

..
{

-——— -

this much means elements
“of row I, in order

: . . " means: what is inside inner
¢ - s brace is to be repeated for all- .
values of I, in order s -

;

o Figure 3-32. Abbgeviated input statement for doublef LY g
v subscripted variablés D

\ . ¢ o~~~ L

This notation is an abbreviation for what appears in Rigure- 3-31. Mathe- ~
maticlans and _computer programmers llke to use such notation b.ecause it. allows .
naming particular ordered nsubsets of mhtrix elements in an exact way. Thus, the .

way the braces are used in Figure 3-32 indlcates that each row 1s redd in COMeas,

\pletely (1eft to right) before going jon to the next row. This bould be importent . \

to knoy if the table is too lar/ge to put giito one card. We would then pu% each

-t **row (Tather“"t?ran eacn coJ.umn) on.a separate card For our fSLow che.r't language
however, this information is quite superfluous. All we need to know is that -~ -

an 1nput box like that in Figure 3-32 will' cause entries of a matrix like that
in Figute 3-28 (or Figure 3- 29),, to be assigned to thé appropriata varlables .

/presented in Figure 3,30 B . ~
- P N *

¢ Si.gniflcant computatlons w1th doubly subscripted variables usually invol,e
complicated looping and m.ll therefore, be left to the next chapter.. ' We con= .

tent ourseives here w1th a very simple examplerlllustrating 'the use oiLdouble e —

subscripts in £}ov charts.])

. L ! - \ h] -~ '
Example. 4 zero sum game . . ' oo
. N oy o, il
- We are given the 'matrix: . ’
6 2 5 ¥ 3 1 .
.. . oy .
£ ‘ * 9‘ 0 ,8 3 - 2 6 - ° -) .
' . A8 5 k11 o .o
- . s . . 8 Y 3 7 3 6 3 3 ,
e Y 57 2T,k 8 12 o v
. . T3 21 6 4 ‘8 ”

"ERIC "+ S o ‘ s »

PAruntext provided by eric . . s . - hd
-
o, - B - P

. Yo~nrow describe a game eyp};oying this matr:bg We have two dice , one
green and one red. We roll the dice and let K denote - t(l}e\ number on the
green die and L that on"the red die. Now we jncrease our score by the sum

entries in the Lth colym. Can you see why this is called a "zero sum™
game ? Hiaz Around what total score will the game hover after a la:rge mumber

-

‘ / 4 Of the entries in the Kth - row and we deduct from our score the sum of the . 4
|
|

of rolls of ice? ' ‘ : '

3

. . -
We wiIl construct a flow chart for this game. An outline of the steps
— lavolved—in the problem is:

e 1. Ihput the_given matrix. : v
© 2. - Input values for K and L. »
3. Celculate -the sum of the entries in the Kth row. ° -
4. Calculate the sum of entries in the Lth col\umn * :
. 5. , Compute the difference of the values in Steps 3 and L.

° 6.”" Print out this difference. ’ v

After, a detailed analysis of Stebe3, the flqw chart should offer little
*difficulty. The analysis f this detail is give;l in Pigure 3-33.

& .
T, 7 i N
M ¢
. ;o - B - ‘.
[4 A i 3
- L]
-~ ~ ! * ‘ ’
. P .
.4 ¢ .
. . s .t
3 « -
- 4 *
[\ .
.. . . s .
: , “Figure 3-33, DetaiMor zeroﬁum game / .. ¢
* [: '] -
= ¥ -

- ' You shou].d see that when we \finaliy come out of this loop thg value of !
WIN 1is bhe sum of the entries in %he Kth row of the matrix. Notice that
. the value of K. which determines the row in which entries are summed, remains

the ,seme dunngvany one executlonqof the 10p. . ‘ , ot

-
o - .

T Now we exhibit® :che entire flow‘ chart for this game in Figure 3-3b.

’

P oAU N -

= o : , 3

N .?
e . 5 -~
i ’ . K I 3-6
38) ¥ #
.. .
Tyt s)
T s
5 e '
g . 1 »\ ‘
' (A _, 7=1(1)6),1=1(1)6)
) T,00 7
. 2 .
ﬁ X,L ol
3 (g
WIN <0
LOSE « 0
I «1°
J «1° 3 -
i . Y
b F
G '
. ’ T
5
WIN « $i “
WIN #8y)
J J';(- 1
b | - 2
1 I ! ‘ LY
) . - ‘l‘ : - N
S ~ r’\s'
N . 156) . £
. . 8
W T - . NET '« WIN - LOSE
R i
1 " .
' LOSE « LOSE + A C 9 .
’ . » I’L !
IeI+1 - l NET *
a? !
a T N ‘ ’
»
» . o
. # ‘
. ¢ o ‘ . . .
- ! = ‘) - ;‘
; N STOP ! . <
T A
b J .0 } ot
? » : n‘ - * N
: o Tigure. 3-3k4, ‘F}oﬁ chart for the game- ‘
— . -
A) 153 - '
Y Q ‘ . i Ingi ‘
- ;EMC R X Zg‘a . .
- % ! < e]

It may be well to point out for contrast an alternative flow chart to
Figure 3- 3h which makes a sensible use of subscripted variable methods,“for

this problem and leads to & simpler program.

2 L

.

1

({(AI’J, J=1(1)e}, I=1(1)6)

K,L

2

»

I3

NED A (g oty s¥he 1t 5 tag 6 - (A pthe ot 3 AR LA, 1)

¥
%

Y py T
. A2 ¥ L]
v M ?‘& ol
* : \ NET : ’
. . ‘
]
. . 5? {8 7y
Figure 3-35. Less instructive alternative A ~
h N !
However, we lose some potential generality with thfs'approach.' Notice

ERIC

Aruitoxt provided by Eic:

-

that in principle. this geme could also be played using larger matrices, say
§x 8, 10 x 10,

with more faces, like octshedrons, or some other device for generating pairs
1 .

ete. Of course, for each new size we would need either dice

of numbers. To generalize Figure 3-34 for any size array we need change only

the 6's where they appear in Boxes 1, 4 and 6 to N and add a Box O to .
the flow chart at the start to read in this value of- N--which could vary from

Such generalization is not possible with the approsch used in

In short, while producing a shorter program, Figure 3-35 captures
rithmié¢ method. —em

game to game.

Figure 3-35.
less of the spirit of our al

Exercises 3-6 . ¥ .

K - . -
In each of the following exercises, assume that values for the variab’les',1
or matrix entries which are mentioned are a]ready assigned initial ‘'values.
Your Job is to flow chart the action described. (These are some of the '

elementary operations often perfonmed with matrices. 'They are usually pieces

of larger problems.) . ‘ .)

S . T 11'3(5 . .

»

.. -For example,'the matrix P has 22 rows and 27 colwnnstFind,the sum

&
;ff

' of the gbsolute values of all entries in row Ly where L has already been
M assigned a suitable value. : ~ :
j;' .'A suiteblé answer is: -
3
; :
IR b P - ’
Y T A
Y T . 1 ,
! ‘ ROWSUM 0
- : . 2 ’
2 . | Jel |
L E 3 ‘
_ e " ROWSUM — ROWSWM + [P | 4
H AR Y . >
. 4 o 7
v i . h ¥
| G -
| M : ,
T il JeJ+1 F
%)) \
) A 6 R
| &4 ‘ ' % ROWSUM
i \“: s 5 ‘,é’ ¢
4 < H .
ReE - ™ . / . .)
e B .', N 55\ o
, :&/; . kg ‘ fn . ' . - - N) v . - .
1. For the same mat¥¥X P, find the sum of all but one of the entries in -
; the ' Kth cdfl:hmn ‘I’he _exception is the entry in row 12 of that column.
Call the summlgemg g%perated COLSUM. & .-
2. For the same matrim B, -add to each entry in row L the value of the
. corresponding entry {same column) of row M. As an«actual example with ,
. a much smaller’ matrix, Q, “f% would have: | \ IR
) before % . - . after .. v
L : g .)
3 4 5 -4 ‘ 3 b o2 a5 -k o
Row L 3.9 2 -4 = Tho10 3 5%
F S h . R %’a
RowM. 1 1 2 11 203 Tom
’ ¥ Y
,G ‘ .t 1‘55'5.“ ' ’
ERIC .o S s
. . ‘ ”
. : 4 x

[

? . 3. TFor the 'same matrix P, ‘add to each entry in row L, except in the Kth
entry, 2 times the corresponding value of the Mth row.
9 B -
N S . 3
4., For the sale matrix P, interchange row L with row M. ¢
. » ..’ Q .] . - M
. 5.5 For the' ‘ame‘bmatri_g P, find the emrow L Thaving the largest
magnitude. Divide every entry in row L by the en}:ry of largest
’ magritude. . ‘ , oL e L !
v i ;T LR o
- N oot Ry _
s ® “H
. ‘
. \;J P ” R .
o - - 1
. - p
N o
» ot i . .(N -
iy L
e |
R R e)
: ¥ i ’
. . : . r 2N ! . ¢ 4'\0
/f\ . ! ’ .
' i : i,
. ' 5t . °
) _"“é FY iy '
A ’ ' -
’ L4
. i » . .
.) ' ‘ Y ‘ / o
[7 N S
, . .
) . f”
-~ % - ¢ 4 .
6 .
\)’ . - N LT g R R
ERIC ~ 7. .. o L
o e I
. . . v k8 &

) : : Chapter & ‘ ’ \ 3
L . \ - - A . - \
L » . LOOPING _ ‘ .
. - . T \ ‘
. - ! \
b1 Looping . * \ .

\

With the introduction of the concept ‘of branching in Chapter 3 we have .
* been able to develop some fairly complicated flow charts involving looping.
"Looping" refers to the kind of "connections" which result in passing through - a

the same box twice or many times during the course of a computation.

" In this chapfr we will study looping in more* detail. Then we will develop

a systematic way treating one very 1mportant kind of looping.

We commence by putting down side-by-side in Figure L4-1 two different flow -
charts for the Fibonacci Sequence problem of Section 3-2. Remember that the .

Fibonacci Stquence, s

. . EN
, o 1, 1,2, 3,5, 8 13, 21, 34, ...,

has the property that each term (after the two 1's) is the sum of its two

-

immediate predecessors.

N

START)
- _. - l
LTERM « 1
. NLT « 0
(LTERM < 10000)2-{HII>
T
ok - . ,
LTERM | .
- .
‘\-‘5 n4
0 COPY « LTERM “
- - LTERM « LTERM + NLT) "\.' .
NIT « COPY 2 COPY - LTERM .o
—— * | LTERM « LTERM + NLT' 3 “
- NLT « COPY i } '
{ . 0 . -
. > '
. ‘ . i — . . r
(a) No-Count Fiow Chart T (b) Ancegtor of Iteration Box ’
. _'Figure h- 1.5 " Two Flow Charts for Fibonacei ‘Sequence .
y < /v o
A 157 N (.,_ ﬁ
Q - : ’ i

-

ERIC ‘ S , :lﬁSiQ - LT e

: . e .
- S . . : N .

Lo -) ‘ ' 3

. \ - ‘
The -flow chart in Figure b4- l(a) represents an algo.r;lthm for computing '
and printing in order all terms’ of the Fibonacci Seq_uence which are less than

10000. The flow chart in Figire k- l(b) represents an algorithm for computing .

and printing a numbered list of the first 1000 terms of the Fibonacoi Sequence.

, We can see that Box 5 is exactly the same in egch flow chart This box
contains the fundamental computation in this algorithm.)) .

bl

o ES '
Each flow chart has a loop, i.e., Boxes 3, 4, 5 1in the first flow chart

i

and Boxes-3, 4, 5, 6 in the second. These sequences of box passed
through (or "executed") over and over again. Each loop iﬁd with an
sbsolutely certain exit. In Figure 4-1(a) we.exit or branch out of the loop
as soon as the variable LTERM exceeds 10000. In Figure 4-1(b) we exit
h when I exceeds 1000. In Figure 4-1(b) the loop will be execu.ed 1000 . -
At " times. In Figure h-1(a) it is not at all clear how many times the loop‘\wil}.:

be executed.
. + -

The reason that we can tell the number of times the loop will be executed '

Y

R in Figure 4-1(b) is that the loop is controlled by a counter, whereas this is

ot the case in Figure L4-1(a). The variable . I, works"exact lii:e a counter.
. 2 .

X

T, . “Figure 4-2. The Variable I

It is auéﬁented, steppedi—up, “or inérsmented by 1 each time we pass through
‘the loop. This is represented by Box 6 in Figure L4-1(b). PFurthermore, Box 2
in this figure sets the counter to 1 at the start. Th§ the value of. "I‘
- gives us the number of transits through the loop we have made (including ‘tne

*. »

one we are currently making)

In addition to acting as a counter, I has one additionsl duty; i;t con-
trolsythe exit switch. When I counts up to 1000, 1t throws the switch

LI ° . . 3
allowing us to exit from the‘_/loop. Here we exit to & @ but we could

>

\‘1 ‘ . ‘ . ' .-° % 1@@ l - li - ‘v
e E MC - l“) ‘ \ < . .
. . . <7 .

% ™ o »

K N 7 . e . L

: i

"

as well have gone to some other task.

. I 1is seeh in Box‘3.

To emphasize the distinction,, we present still another flow chart,

-

.

f
\

H
2

%

Figure 1+-3, in which a counter has been added to Figure k- L(a) to pri-nt out

- a numbered list. -

=1

This \"controlling“ duty of the varisble

e

'3

COPY « LTERM
LTERM « LTERM + NLT
NLT « COPY

P

switching duties.

v

CERIC .

Aruitoxt provided by Eic:

We see that the variable
variable I in Figur?a b- lqg‘) but it does not control the exit switch.,,

. Figure k-3,

.

’ .

2

Non-Controlling-Counter

~e

I in Flgure 4. 3 has the same counting duty as the

We see then that the variable

the instructions, f'i;et the first 1000 through and then throw the switch."

.

The situation within, the dashed lines of Figure 4-1(b) occurs 80 often
that we introduce a special box to do the work of all three boxeg.

4(

I in Figure L-1(b) has both counting and

You can conceive of I as a switchman who has been given

2L e

————‘——""'—“.)
b1 . .
» A Q
Falb e Y .
tn , Pl
—_— N - B .
, N entry ,
- into loop N
i "Initislization" or .
.E‘/ . - setting the counter ’
1 »
/
- exit from
"“Increfentation" or the loop
’ clicking the counter
:]
|
{
fn [0
© i NPy & RS S w or
4 L = - T T T~ " exit switch
---w Computation portion ?
of loop - °
7 W . *
e . ! s ' 13
- 153
Figure 4-k. Embryo Iteration Box :

¢ \
. 4 LY

5t % : entry into
' ‘ loop .

b

Iel
A= I<1000 [F—

, ™ I« I+ 1L = .o

. ' ‘ T ’ 4
- P — -
) Computation portion .o

N of loop -
. - - P) 7
/ " Figure 4-5. Birth of Iterstion Box .
- LI A 3 ’

- : C o ¢ ‘ L :
: -l} |) - ‘ 160 . ® \ .
ERIC .16z S

PR A i Toxt Provided by ERIC - \
. - - ;

. . . . o : i s

: R

The thrée-compartment box in Figuré 4-5 is shorthand for the three boxes in
" Figure h-h. Such a box car be used whénever a counter controls (the exit
':switcl} for) a Toop. The exits frorfl the two co‘mpartmqent's on the left:; lead
,'qinto the larger_compartment on the‘right.e We draw a schematic Iteration box

° to fix the n of the compartments. = °

il .
- 3 0 ’)
vk -Initialization _| ;
1 * Test F
, . E—]
>, Incrementation’
——n

a - -

, l S T T/

Computation

¢‘Returning to uii”‘{example of the Fibonaceci Sequence we find that Figure 4-1(b)
: X Puriexal 3

- 5
can be replaced by Figure 426, .
3 - .
e p &

// ’ 1
¢ 3,!' i - MY
L3 3 N
“ v - e
. oo
* & N l bt ‘ . * LY
i e‘;? K

@ 0
14
v,
RE M T * N
: s
. S
R ¢ By . ¢ ®
» . -~
. e
- . . o 'p‘.
& - .
LY
. . ° R ® ’
4 ° <Q 2 &
3
o .. o
< ,o N wad o ¥ v % -
T3 o R ‘¥}’COPY_ <—3UI’ERM e . , - L oa i o
. 2 :
- Ji LTERM « LTERM + NLT . y . .
3 - 4 . ¥ -
NLT « COPY] “
. - £ I "
‘\ . A h
" % ¢k B s 3“ LT,
-] EREE 2R
’ : = 1] [S ., % :6;
. ' w
Figyre, 4-6. Fibonacei Sequence Algorithm with Iteration Bok* .
R LS o L. - . L. ’
v . bt ¥ - - a_:; N . o *
' i . . P .
\‘1 . ’ v ' . k9 lég ‘J j Y 4 . :’
B Ko T
ERIC. | \ ,
R i v R - . < ‘et .

s

ot

If

°

In Figure 4-6 Box 2 replaces %oxes 2,3 and 6 of figure h-l(b).
you have understood what it is that an iteration box doks, t
should be easier to rgéd than Exgune 4= l(b)
boxes make flow chart§£2asier to write, too.

then Figure 4-6
We?ll soon see that iteration
For, whenever we real%ze (or
even suspect) that we have a fbop controlled by.a counter we draw the iteration

box end try to hang the lqop.on it.
w

We must remember that the heart of the loop is in qpé’;am;fntion portion.
The iteratlon box merely represents the in and oubt mechanism.
a flow chart as the following is possible.

However, such

[

»

¥ ; 1
I3 ’ :,
. . o] I«I+5
- °
e -
-])
P N
- \ ¥, "%
. ' N , Lo <
Figure Lk-7. The "Little Dandy flow chart] . i
The best that can be ’said of this "algorithm” is that having no output, R
it saves paper. This flow chart ddes show us that we can initiate with
integers other then 1, increment with integers othe¥ then 1 and exit on
o
¢ integers other than 1000. We give below a diagram showing the most general
L - forms of e

-~
4

ERI

Aruitoxt provided by Eic:
LI

-~

iterétion box generally used in thds COWife
¢

integer valued
. expression

. ‘ . ¢ By
L1 * ?
I8/ K xJF ' .
) 1>7-NF .
— I eI 3| Y T .
v ‘/ ‘ LY

plus or minus Carithmetic
an integer (constant)

expressién)

B

. - ’ . . . k;‘»‘ - ‘ ‘
+ "-Exercises L4-1 -) . .
Q' ¢ h,. N
1) The instructor who gave our first ..problem for computing and printing
- Q -~ »

g I/ IR . . Vi e

no%rgstates roblem this way: "You are given 56 different sets of

data cansistige QFf four items each’ An 1dentification number ID, 4, B

nted@table .having five columns of numbers: ID, 4,

" B C, and the computed value of D.. Pach printed line in the table is to ,
correspond to one input ddta set .and the computed value of D." Your Jbb

in this exercise is to draw a f]jw,char_t for this computation.. Use an
. A - ¢ ; : : .
ters rBox. O i
- ite tiB;HSox mly four f:'gpw art boxes are needed (nq;c countrng y
and). N - e
~ -~ -

‘2..‘ Redraw th flow chart you made in Problem 1 to achjeve the following two /ﬁ
. ’ improveme ts in the algorithm sixmltaneousl\ . }

e

(a) Hapdle ' N sets of Bﬁta where N is any integer (within reason) &

\

(b) After _printing the table, print out a message "ENQ‘VF TABLM@ .
. return to gccept another group’ of N' data“sets where N may now

' have a different value, - A . S

{ ‘ A - L
3 In Figure'4-6 we studied a way "o genetrate the terms of the Fibonacei

Seq_uem.e. Now you are to rowchart a related algorithm Generate both
N () the Fibonacei Sequence and its sum sequence. Let F be the ~Ftir—term—-

of the Fibonacci Sequence. Thus, F3 is 2, F, is 3, F5 is 5, ete.
Le‘b S ‘ be the sum of all terms of the F‘ibonacci Sequence up to and . .

.

includ.ing the' Ith ‘t;enn-. ' . [

5.1+1+g+3+5 C : " .
- , ',;\‘) "
/ 3 - S¢ .l+r1+2+3+5+8 20, etes J

» ‘ » . .

.
w
I

4l

*Each term of the S-sequence is a cumulative sum. Your flow chart shoul‘ : ——t
*) generate pairs of values of these twb sequences and print the pairs as
3, l’ and the .%'
- second i's Fh’ 82, etc. The algoritl'nn should terminate af'ter printing

60 such pairs. . ,

v - ‘ ¢] .

As an added challenge, see if Jou can write the flow chart without e

N T they are generated. The Pirst pair to be‘ printed is

using subscripts

P 4

. *o ‘ 7 . g~‘ . ‘ N o
v e . ' 163) : ’ * . K
“ERIC - R I A .-

N A . e providea by Exic . - P

S a ' ‘ bd CL . [

h
.) . ¢
. - : > 1
. ; .
' \ ~ . * [
' »')

-

X
Recall Figure 3- 24(b) which was an algorithm for computing—€the points

won’ or lost in one spin of the carnival wheel (1.e., for one data pair
S and M).
by input of four valdes into vector elements

L.

This algorithm allowed us to have an arbitrary point rule-

Pl, P P3, Ph'
! ‘ * Now suppose we are interested in de;termi‘ning'o‘ur. sgore after a
r the

.

Yarge number, say N., of arbitrarjly chosen data pair§s S, M. ‘
moment we won't concern ourselves with where tﬁew data pai_rs came from.
Your job is to revise ,the flow che.rt in Figure 3-24(b) so that it now
does the following: '

(a)
(b}

inputs values of Pi for a Y-point rule; ° o

determines a point value for eacﬁ.of N data pairs S, M and,

-

instead of printing these values, “forms their sum in (SUM);

after lbe, N data pairs have been "processed”, prints N and

SUM using appropriate li‘berals t(ge efplain the significance of the
values_tha,t are :printed.

For example, "After 35 spins your score

552 - points." . .)

-

is S *

~

#

<t
-

E

1 0

"If you can't fight your wa,v through this exercise just yet-—-postpone

it until af'ter you hav.e done several‘ of the exercises in Set A of the

/ N)

. N K
\Q_/&? N. Let ‘;‘i

be the number of hours worked/by worker number 1 and let Rj; be his
hourly rate of. pay. The payroll, department wishes to mput the time
data from the Time-keepers?® Department and the ratg figures from the
Personnel Degartment and output the-weekly wages ﬁor each workexr and the
total payfoll. Draw a flow chart to do this Job.
the ‘I’imekeepers’ data comes in the form of an ’ordered list ofrthe i {\
from l to N and that Personnels’ data is a séc”ond ordered list of .

the R is from l to N.

@

next sectlon.

5.. Simplified Model of Paylnoll Coniputation.
; ’ . The workers in a plant are assigne& numSﬁ"s from

You may _gssume that

[
.

-4

RIC | '

Aruitoxt provided by Eic:

Y
iy'

-

h;? Illustrative Examples

“In this sectidn we wish to present a portfolio of examples illustrating
the iteration bog. We present them at a rather brisk pace and they will get
gradually more complicated. In order to make what we wish to emphasize stand
Censider the task:

Given N numbers, print out these given numbers and thein cubes, thus in effect

out, we will qually present only fragments of flow charts.

constructing a table of cubes

Suppose the list is already stored in the computert!s emory; in locations
XI. Then we will run through the sub-
scripts reading out of memory the velues of the XI, and making the desired .

computations.
1]

belonging to a subscripted variable,

This suggests the use of an iteration box with the loop variable
This is shown in 4-8(a).

tation is performed with the dafa stored on cards rather than in the machine.

dbiﬁg the running. In Figure 4-8(b) the same compu-'

4o

—_ &‘: * . ¢ * .
' l 1 ¢ T . [25
T el F N R Je1 i
TN - <N
f” =T « I+l - Je J+1 - .
T T ' T .
2« ’
’ 3 # h - L X LY Ve
Q ' s N
X teX i X, Y]
) .\1 ., - .- \-»A ‘ ‘, . ‘ 3. - v
. ¥ ex
} K
@ ! LN .
. . ‘ ’
» . yor > . -
; : . b

RN A v e Provided by xic |18
v o -

(a) From internally stored data (b) From external data’

o
.

ot . . * .) v . Yy

-
N

] . .-

Figure 4-8. Making a table;of'cubes

¥ ' 'y . .
> » -
Notice that in Figure h‘8(b) ‘the loop variable is nowhere ﬁo be seen in_
" the computation _portion of the loop. Figure b 8(a) provides our first exper-
lence with & common occurrence, ‘that of a loop variable going click click,

click through the subscripts of a ‘sybscripted varisble.

ERIC . .

e

. A
L

We see this again, in fact, in our next two exsmples:: Adding up 8 list

of numbers already stored in memory, and, second, finding from a list ‘of num-

bers inﬁmemory, the maximum of their absolute values.
Ir you have trouble understanding this loop, rev1ew Figures

3-24 (b} and 3-25 where we first discussed an' algorithm like "this one.

in Figure 4-9.

1

[E

These are flowcharted

-
‘..

(a) T™e sum of the comppnents "
of a.vector

b

Figure h';9.

x

3
- ° .

Application of iteration boges to calculation
with vectors (subdcripted varisbles) - ’

+

il

. o

-

v
t

3

v 1 : 1
SUM « 0 . MAX « A |
el é ° . i
T -2 4 2 5
- J el . Je?2
- J < N UM > - J<N MAX
’ J « J+l - ‘/ ‘J(—-q"i'l - Y
T . i T
N ki . 3 'f 3_
F i -
o ot Al > MAX
‘ M e Ay + SUM \d, — -
' ’ o <. - rT h
MAX « |4,

(b) The maximum of the absolute,

values of the components of
a tector

There is a fundsmental difference between the algorithm of F.tgure l+-

and those of Figure 4-8.

In aqy transit of the loops of Figure 4-8'no use 15

* made of calculations made in previous , transits s while that is certa.inly r;ot

- the’ case in F:[gure 4 9

L 4
-

for finding the maximum value of | |

O

RIC - .

Aruitoxt provided by Eic:
P

]
4

166
1538

-~

i

"We find in Figure L4-10 two yariants of Figure b 9(b)
the modification of Figure 4-9 which must be made if we wish to print out the,
value of J for which _|A | is the ma.xinmm The second showg the algorith{l
I, _but over only, the even values. of J.

-

The’ first shows ’

-

*o

c“

« T
.

. | .
MAX « |A1| .
, INDEX « 1 MAX |4,]
.] 5 2
. Je2 ,J<N‘F INDEX, Jeb
JJ + 1 - MAX " JeJ + 2 J<N
. . - - T
s ' 3 :
F F
—(|as] >max) ‘—Q la;] > mMax
. . . N . T
- ¢ - 4
MAX « |A.] . .
. MAX « [A_]
INDEX « J : J
e » ~
- . . - ’; .
Outputting index . {b) Maximizing over even subscripts

. (a)

\

Notice the counter we used in (b) of Figure 4-10 counts by 2's
The- fim of the loops of Figure 411 exhibits the calculation of factor-

- ;&&Lu;loq.mﬂlm_zariationsﬁoﬁ.li@me 4-9(p)

\)

.

and not by 1tg

ials and the second is borrowed from the Fibonacci Sequence algorithm of Figure

4-6. These algorithms share the property that no data is injected (sto
/Nernal) after first entering the loop. .

'
!

1;& ‘or

3

7;

- 1 J_ . l
. : LTERM « 1
~ o
r 2 , s 2 !
'K o 1) - Kel F-
2 | e .
. Kek+r | SV o ke kel | =N ‘
T
T
3 L . 3
L FACT « K X FACT K, LTERM| | COPY « LTERM .
. LTERM « LTERM + NI:T
3 - : NIII‘ « COPY
s ' ¥
. f M \)
of fadkorigls l (b) Computation of Fibonacci Sequence
- -) F'isléreah-ll. Loops without data __)
- - e) .
. 167 N
: . o . . 169 ‘

Exercises h-2 Set A

- You have in storage two columns of N numbers each.

Ll

One column is

‘e

ERI!

Aruitoxt provided by Eic:
'

!

s callesd P, “the other Q. For each problem in this set your job is to convert
\ the. word sta‘tement to an eq_uivalent partlal flow chart. You should find the
. iteratlon box helpful. You may wish to first flow chart the computation part
T ““mg it from the proper iteration box, and flna,lly precede
tne iteration box, if approprlate,'py an initiglizing box. .,
C 1. Think of the Ith value of P and-the I th- Value of Q as the pair
PI’ Q’I Interchange the val in every such pair.
2. Modify the flow char aw:{n for Problem 1°so oniy even-indexed pairs are
N interchanged. es it matter whether N is even or odd? .
. 12 .
3. Modif, e flow chart drawm for Problem 1, assuming you wished to inter-
change only every third r of values beginning with the fifth pair.
L, Move the first [N/ elements of thé vector P to the vector @
. See.picture ﬁgu?e b-12).
P 0 g . P [
113 e 113 3
- 2 L A 2 4 4 —_
: 31°9 i s . 3L 9 9
» ‘ . . » D-
£)
4 . - ‘
. ¢
N1 9Ff N-1l9.
H o N|10 N{10
Picture of memory _ Picture of memory
' ‘before "move" after “move"
p Al
o < L
. Figure 4-12, Moving elements of“a vector »
<1 s) *) ,
© * .5.. Move the last [N/2]. elements of the vector. P to'the first [n/e}"
L positioms of vector Q. Assume N is'even. Hint: What is the index :
g; . - of the.first element of P whichy to be moved? .
6. Same problem as Exercise 5--but don't assume N is even.
7 ’ %
7 t ‘\-";&‘ : L3
. . .
: ‘ '
En = L ?O ™
“ * ‘ 168 bt -
o -

MR
\\L

Let each of the last K elements of the N-element vector P be
"shifted" or moved two pos1tions in memory to make room for the léter
irtsertion of* two new values at positions N - K+ l and N - K + 2,
See Figure 4-13. ' .

Picture of Memory P‘;'c“buré of "Memory'

1

Before move - ;'; After move

Figure k.13, Shifting elements of a vector

-

Fas =9 Brgpr

. / ",“ -
You have aIready; stored 100 input values ‘for elements Pl’

{) Form the sum of their cubes (in SUMCUBT. ,,,','

(b) Form the sum of the negative values an, SUMNEI})

.

(®) Form the sum SUMCUB, SUMNEG, &nd mm (vhere SUMBIG is the sum of

“the asbsolute values greater than 50- im magnitude).

1

Refer to the flow chart you constructed in Problem 1, Exercises 3- 6.

Redraw tf"flow chart using an iteration box (sum of entries in the

KB colu.mn of the mgtrix P except for element in Row 12.) N

Refer to, the flow chart you constmcted for Exercise 2, Section 3~ 6

Redraw the flow chart using an iterstion box (replacing entries of the

Lth row of matrix P By the sum of Row L and Row M entries).

Aruitoxt provided by Eic:

P

11, Refer to the flow chart yoh constructed for Exeré¢ise 3, Section 3-6. ‘
Redraw the flow chart usingan iteration box (reflacing entries of Lth
. , row by sum consisting of Row/L entry and 2 X Row M entry, but leaving
Column K entry of Row unchanged) £ o
o7 ' . |
In each of the following two exercises assume there are N values \

currently assigned to the P vector in memory. -

.
' ~

12. Search the llﬁ in the fo#ward direction, i.e.,. ‘P PQ’ P_, evc., for

1’ 3 .
4 the first value greater than 50 in magnitude, assigning this value to
W an;l 1 to ANY. °If no such value is found,assign 0 to ANY. In -~ -

d.e&ther case now ‘proceed to the same point in the flow <chart.

R . ¢ : : :
- 13. ¢Search the list in the backward direction, i.e., PN’ PN-l’ PN-Q

_for the first value greater than 50 in magnitude, assigning this value

, ete.,

to ‘W, If no such value is found,‘ assign 50 tc¢ W, 'in either case,

, now proceed to a common point in the flow chert. (
. A . Lo ,‘A - . .
14, Search the N elements of the P vector for the non-zero element of

largest magnitude less than |M] Assu?me the value of M has already
.been stored in memory. Assign the value of the vector element found

- ‘ in this search to T. If no such value is fhund, print the message ‘ '
"NONE" and stop. . : -

1Y

-

15l Sea’rch all N elethents of the P vector for the element which is the
largest in, value and is still less than the value currently assigned

§§ ‘ w5 to M. Assign.the value found to T. If none is found, print "NONE" e

and stop. . . - '

°

In the following two exercises assume that all entries of a matrix Q ..

are stored in memory. Q has M I‘OWS and ' N coluns. Y . .
[y * » s !
'37

16. éearch the l',t‘:“ﬁr row of Q@ for the smallest value.s Assign this value -

- ‘

to SMALL. . T e ; e
- .17. Search the ﬁth column backwards '(i\,e., from bottom to top) for the
agt 1] . first entry,.if any, that is at least as large as the current value of T.
X .
Assign the row value for this entry to ROW and the value itself to BIG. /
; If no such value ‘is found assign. the value zero. to ROW. . =
- ‘ ! -) . N Al
N . . 170” y 7 T e L
Q . A s,
ERIC . " 175 e

‘

b2
,, ;

.
“e *

We have now seen a number of examples illustrating the use of .iteration
boxes. But how, in ‘the course of drawing a Tlow chart, can* we tell whether
an Iteration box will be useful? The answer is that we will want to use an
iteration box whenever w? have a loop controlled by a countt::r. Whenever this
‘situation exists (or when we strongly-suspect that it does) we draw the
iteration box and try to hang a loop on it. We may draw the iterationrbox
before knéwing eve'rything that goes inside it.

L o
As an example, consider the problem of finding all %the integer factors |,
of a given integer N. If N is large, this task is very tedious, as you
mll know if you have ever tried it. We will be very glad, therefore, to

have a computer do the Job for us.

The word statement of the algorithm for this problem is very simple:

Go through the integers, 1, 2, 3} L, etc., checking
each one to determine whether it is a divisor of N, and

if it is, .write it down. <

Now for the flow ché’rt. Since for each integer we must check whether it
%ii-vi”des ZN',T ~we have =@ Tepet i’t‘f‘VE‘TI‘O“CESF;‘ g loop: ~Bevause we perform the —
'calculgtion for 1, 2, 3, \1&,_ ete., it would seem that our loop is,controlled

by a counter. Now we draw our iteration box, noting that we are not yet sure

where-to stop, .

¥

nc;t yet sure
what goes .here

0f what d.oes our calculation consist? Of determining whether K is a,
divisor of N. But how shall we express this question? Well for K to be
a dl¥isor of N means that N/K is an integer or, equivalen‘b]y, [N/K]= N/K.
Thus, 3 e) ‘

: K is a divisor of N

-~
v

is equivalent to) '
N = K x [N/K].

o

©

Now we come to the important question of vhere to stop our computation. '

E

o

We could go all the way to N, 1.e., we could put N in the empty space in
the test compartment of the iteration box. Then if N were a million,: we
wou}.d have to go through the loop & million times. Must we do that? At this
point a look at the mathematics of the situation will help.) ¥

Whenever we find one integer factor of N, say K, we have really found

two, because N/X 1is also an integer factor. Moreover, these two factors

cannot both be less than /N, else we would have s .

R N " . s P
~ | N=KX (NK) </Nx/M=n <
- . . \ Y v

' y o e ’
“which is & contradiction. By the same reasoning, X and}K are not both
greater 'thag* YN. If they were, we would have a similar <dntradiction

\ N‘=KX(N/K)>N$<///I‘{i/N./° %
° . = A '

Thus, whenever we express as the product of two factérs, one of these
factors is < YN and the othe,/;.'s > /N. This reans that we only have to g0
as far as VN in our search for factors if, 1n/ our output step, we pi'int out
the valye of N/K along with each factor K. “

Vd

Our complete flow chart is then seen/in Figare 4-1k,

.

. s /

o . . : T SR

N B . . B .
S . . . T N T

.

3

BOUND « VN

e 3 .
. "THE FACTORS
OF"’. I:]’_ "ARE")

e

Aruitoxt provided by Eic:

' /
»
Y
|
7 :
.. ' -
N e /
6 I
e D ‘ Py
~ Y
N N
» , s @
"\
—— “Figure 4-14. Finding the factors of W .

S
-

’ : 4 »
We see that if N were 1,000, OOO we would now pass through the loop
only 1000 tim.es. ¢Quite a saving over our o‘riginal plan to pass through @he

loop a million times! . .) T
. . ‘e - a '.
A e N
i) ‘ ©.173
\‘1 . « . ' Feope -
ERIC L SRR SRS

Lo~) -
The last example of this section is the problem of evaluating a polynomisl.
We will illustrate our methods with & third degree polynomial and then general-

L)

ize to Nth ‘degree. Consider thg expression: .
B b AO+A1XX+A2xX2+A3xX3.

3 - -

After values are assigned to the components of the vector A, this expression”
represents g polynomial of degree no greater than 3. Next, a value is assigned
to X; the polynomial cap be evaluated. . . - . .

.

We first describe the usual method of performing this evaluation. We
evaluate each term in the order written, adding this velue to a cumulative sum
.. of the terms computed so far. We also keep the last power (PWRX) of X com-
puted to simplify the computation db'the next higher power. This process is
obviously controlled by a counter which runs through the subscripts of A
But should we initiate the loop variable at O or at 1 ¢ ‘There doesn't seem
to be much computation at 6. Our thoughts so far are shown in Figure h-lé.

~ N

PWRX « X X PWRX
SUM « SUM + Ap X PWRX

\)‘ 1 FR]
ERIC . " - . 156 .
! e . - %o - L0

. <8 .

v
’
(g

L 24 3 - 17

- Box 5 in Figuz‘e L.15 contains the entire loop calcuf'latl'on Our decision p

about what initial values to és,si&g/éo SUM* and PWRX deQide% the question
of how to initialize K in Box 4. Now we can draw our flow chart (Fig 1+-16)
o‘ . ~ . -
1 - \ e’)
. " 3‘
START o .
t F) & ‘:
1 J '
({AI_, I=0(1)3) g ,
4
L aad A
2 & .
”
(([x
- /3)
PWRX « 1 >
“ | SUM « AO A . ,
9 . .
]
- h) -
Kel F ’
K<3 .
KeK+ 1 :
- ’
T .
‘ ,‘7 .
) y
- PHRX < X X PWRK .o .

“~
PN . v
Figuré 4-16. Evaluation of polynomial, everyday method

1

~ ~ .

It should be obvious how we ca.n generalize this flow chart.to work for poly-
nomials of arbitrary degree. We have only to lfeplb.ce the occurrences of "3"
in Boxes 1 and 4 by "N, and. input N, either in Box 1 or ahead of that box
waInstead of stopping we could, of course, go back to get another value of X
or to get another polyno%ial. : - . ..

o -
e} Vo) o .

Q ‘) ' ;L?a 5*’,«‘7 ..

ERIC . | L -

2

) . . ‘
. M
° * 1 o

V] 'Y 4 P . .
h_e ’ * . . -~

0 K 4

. % ‘ P -

. . . rd
7 . -
-

Now that we have solved the ,problem we ask (as usihl), "Is there anothed "

way_to do 1t?", There;is, in fact, another way, and @ most ‘elegant one.- We

<

~x . A4 ¢ . ~

s v
You will have to satisfy yourselves that these, two expressions are eq_uivalenﬁ’.
The second of these expressions is in very inconvenient form for all mathe-

matical purposes except evaluation. .

thake a polynomial . . e s -
[-] .
« o ’ ° 4 M -
> 3 .
X
i ‘BO X/+le +BexX.+B3 -
. A .
and express it in‘the following way. . T .
' ¢ . v .
. ((BOXX+Bl)xX+Be)xX+B3 .

In cdnstructing the flow chart, at each step,the variable VAIUE x;epz:esenté.
the number that X ~is being multiplied by: You might ‘enjoy trying to draw the

EMC @ . ’1) : |] ?0‘ ;! . - ‘

- Cr “
; .

/ .
i flow chatt yourself before looking at the solution in’Figure 417,
- ,/) START : e .
» . l -
- (8}, 1=0(1)3) ,
¢ T - .
2 [: . -
% “ ‘X & < ,
® A Vo .
A"st"{m 3 . -
> R gy VALUE = Bo . P
.o © oo ' . c™ e R
' Ke1l F - JTHE VALUE \
. K < - " .
KeKas+1 <3 Is", VALUE | , .. .
¢ 7 \ ‘ - 4 1
’ . 5 \ « », ’ !
M PO BV - - . \ |
- , . | VAWE < VAUE x X +'B, ~ e ‘
\d N .» 4] g “;‘:}%. i .
- Ny 4 \ -
Figure 4-17. Evaluation of Polynomial ,“ S\indgy method. .
e © . ’ . ot
- . -~
.) ‘ t .-
‘ ' @ - 4 ' Y. ’ ' ' . '
. - ' , - -
N M Ld -
. Q 76 0 .

s,

.

e,

» In the first method there will be two multiplications and one addition for

"Exercises 1#_-2_ S_e_t B

- e

-«/"‘
Again, of course, we can generalize to degree
of "3" in Boxes 1l and 4 by " &nd inputting

s

Now let us compare the two algorithms
computatiOn in Béx 5 of Eigure 417 appeals t

.‘1;-_2

N by z;eplaoing the occurrences
ot
N . prior to (orin) ‘Box 1.

Certainly, .the simplicity of the

o our esthetic sens\e, but in the-

61
.

last analysis the key question is, "Which algorithm uses the least confputer.

time?" -

-

To answer this, compare the computation portion (Box 5).of the two lopps.

each transit of the loop.

is therefore shorter. If the polynomial were
multipli cations.

;golynomials R then tne second method will save

In the second method there will be one multiplica—
tion and one addition in each transit of the loop.

The second (Sunday) method

of degree N, it would save N

And if you intend to use this algorithm to ‘evaluate many

a number of mnltiplications

equal to the sum. of the degrees of all the polynom.ials to be evaluated.

’ !
®

Ve

»

-

-
, . S

)
"

1. Given a set of N values of‘a vector X, i.e.,’ Xl, Xa,)’._._., XN’
‘given a value A, L. b :
K f
(a) draw a flow chart for the computation of NUM defined mathema.tically
as an N-term’ nroduct vf"
= (%, - A) X (X, - &) X (}%~- A) X ... (xN - A)
Show input and output of all required data and results. ,
(b) Same as (a) except that NUM has the KD one of the N terms’
- omitted. Lo
. ’ v o . . -
-~ . . -
2. Suppose in the preceding exerci's,e you are told,.that the given value of .

"A 1is equel-to X What dats vaiue, required as input in 1(b), is nd

. «longer needed? 'Redraw the flow chart to

&
) which is defined the same as NUM;, except'
e ; a.®
LT is omitted., > ; e
_; ool e Yoo f. i . '/, s !
i L L »‘o~ . i !
' . ’ Yo
. .
L4 - -
. ' e N .
- ® .
o I - o
. - - N
‘- 7 ' L S &
o ~ e
[mc = w17y

M

display the computatiom of DEN,
X, = A and the tern Axe- A

]

/h-e s i
Y .

~ 3

(a) Preliminary. In ‘Problem 4, Exercise 4-1, you were asked to spin the

,! 3.

&

"ERIC

Aruitoxt provided by Eic:

(b)

_geme".

's, m,

carnival wheel N times. Did you finish this exercise? If not,

do so now before going on to the main taskdescribed in the next

s
°

paragraph.
O

Main.
ing the ‘playing of a game for the purpose of predicting, with the aid °
' Itts a
Imagine you are given an inexbaustible supply of data pairs z:

~

We begin now to develop more seriously the concept of simylat-

of a computer, something about its outcome. "spinning wheel

for input« ' These data are somehow 1;epresentative of what a
person might actually experience if he we% to take turns spinning
the wheel with one or more other players. We will say that a “game"

consists of a series of spins for a given player and terminates when-

ever the magnitude of his score, |SUM|, exceeds some given critical

. value{ CV. We shafl say that the "length“ of the game is the number '

of spins in the ,series The question we really want to ask is: How

mE(\ny turns’ on the average can a player be "exp‘ected" to tai{e before
oV < |sumf 2 - o

 In this exercise you are ‘preparing ‘the groundwork to answer the
.

stion later. Your‘ Job now is to draw a flow chart that simulates

* ohe complete game ., ’I’he paragraph below contains some guidelines--to

be consulted only after you have experimented with a plan of* your own.
(1)

As in the earlier exercise, first input the four values coh-

stituting the "point rule” to be used.

Next input a value for CV the critical value. »

|

Then input a series of data pa1rs, S, m,

After each data pair the new value, for the net winnings (SUM)
is computed and,.a caunter . L of the number of spi‘ns is updated. .

" Whenever the absolute value of SUM excdeds the'CV, we print the
values of L, CV, and.SUM.and then stop.

/
For insurance against an endless‘,loop, we print out an error

"message and stop if ever L exeeeds :1000. »

L] v

‘
’ t

‘
+ i

Remember to use an iteration box where you think it can help h
to keep the flow chart simple in structure.

I3
P

— ——

<
- - \ - ‘ -

s . .,) « .D’ h"'3

4-3 " Table-Look-Up

y

] ? F -
%)w we begin an algorithmic investigation into the subject of table- look—up;
the looking up values of a; _tabulated function, such as when we "go to the tables"
to find‘che value of sin(.3217). or of V1L7 5 - ! ‘

- ?

Example 1. Table- loo::-_g JL matching b) :

v

Cur, first example of table look-up does not even involve an itera-

tion Box. We héve a function, F, and as in common mathematical notation
we write) ’

-~ 4 .

= F(X) . :

Now we have a stack of cards, each card punched with a value of the varlqble
X and the corresponding value of Y. . : s

\ - b} A}

This means that each card represents an ordered ‘pair of numbers (X,Y), related
by A = F(X). No two cards then can have the same value of X punched on thenm
-unless the values of Y are also'the same. This is qhat is meant by saying
1 .

tha_t' "Y ‘is a function of X". The stack of cards can be .regarded as a table -

of values of the function, F. . . . -

o . . . - N
Now; to look up the functional value of a,certain number, one method

would be to go through the cards comparin& this number with the value of X .
on each card and, when equality is found .to print the corresponding velue
of Y. Figure 4-18 is a flow chart for this process. . -

.

e

f-'/ 5 N N ‘ ‘ \'\}
"FHE VALUE OF . -
F(",A,")IS", ¥ D

gL Figure %-18. Primitive Table- Look-Up

. 179 .o L. Cos
ERIC. ~ ~ & 4 ---';13 .

|, . . \

<1 - L >) . * ' . v

Any flow chart to read a whole table into storaée will use subscripted
variahes. We suppose that we have a ‘'stack of sards with two numbers XK’
punched on each, and. w:.’ch XK and YK satisfying

- - - -z

) YK = F(XK)° . .
el
g Notice that the subscript changes each time a card is read. Data from differ-
ent cards goes irto different window boxes. If 1000 - cards are to be read,
then 2000 window boxes must be made ava:.lable to receive the data on them.
s ’ . N -
. ‘ K
/ ﬁ @ &
[3
. K73
’ For our flow chart ;_rénguage we introduce a slightiy different type of
input box. . l - ; ‘\\‘ ! -
- - _ 3
v : ” Ty
i N (KK, YK’ \K = 1(1)N} . \
F - : , - ’ /
. \ (-
) ' & kY o - v ' ,
- s - ‘ ’Figure k.19, An input step for a stack of N ordered
.) , pairs of subscripted variables ’
- ¥ .
«. Though we have not seen ah input instfuction quite 1like this before, it is]
clear that its effect .is equivalent to the following combination of boxes: ’
’ < -
--)) > A 1- ke . -
K<H)
T MoK K+ 1 L8
T
.@é « [; Ty ',
3 1 . »
£ . (I %o Yy .
S D . --, - . — T ‘
1 B . f ' ‘: * i b {A * 4 ! 4.
i . ‘ { . ; P , i : i] A -
! ' K} \ » ’ - 1 + } , . S
. \g ¢ ’ oL e v v
. (“ Y s . . '
) & 3 . - ’ .
‘_ \‘1 ad - - 180 ¢ v "\ 7

. v ' : '

- . . [I B

L~ * . 4] »

[MC) - l d # - - - e
v " AN “d . .
o o D § ¢

" R - N . !

. 8 ’ e . * Yoo \ X o, C

I
:

&~

%}

Once the table has been read in; we select s value for which F 1is
We eompa '€ this value with each of the XI
the value of Y The flow chart i

sought til we find equality; ™

“then we prlnt ou seen in Figure L.20.

I’

o
a -)
'1
o - ‘n -
- N - b et
: . 3 1 :
) . N A
- . .Y__ t
. % - ’
- I<1 °
F
_) Tegsq] JISN ﬁ
. S T
. A) .
i B s -
o ‘ Y
. Fla-x -
‘,1 ey T .
- +
- B -- - v 2 J 6 o ’
o y "THE VAIUE OF 1
. F(",A, ")IS", .
[EN ot v
. A
, . \ef-’ * .
[-, (4 . -
. . o7
: : S W
+ - - 1
. S P -
e, Figu;e h-@ Look-up from iptergally stored table y A 1" (
! . : SERY PN 3 o N
’%5 ‘What is i;nportant kheré ih the way :tén whieh the itera:cion box helped us to
draw thé flow chgrt. Notice, however, that tl’xere is a second exit £rom the
ioop begides the one Prom the iteratiqn ’oox 1 re . .t
“‘« - . i . ? e . . -
- ;. m ot
co- ° Y .
<5 . .

.~ " PRI

ol

P

.
3.
o
- »
¥ o v
W .
x
t -
s 3
Q i
ERIC
g

L3 .

¥

'

In Figure 4-20 we could have{go‘ne back for more values of A instead

-
.

of stopping.

E};‘ampl‘e 2. Tableclook-up: Bracketing box entries in an ordered set
L - //" —_ R _— - -
Have you ever had to lodk up values in a table? Suppose you are

given a value of X, and you want to find the value .of sin(X). What hgppens,
of course, is that you don*t find your value of X listed. So you note the
nearest listed values gbove and below, and write these down together with their
functional values, as in Figure L-21. ’

)

v

X . sin(.X)

. o= {:

.5760 5446 5818 5495

' , 5789 | .sh71 | .5836 1
your given ,
velue — =586 © 5818 5h95 <5847 - L5519
of X T8 | 5519 0
. .5876 5876 | °
' (a) What you see in (b), What you write
o . the table . down

L}) ’ - '
\ Figure L4-21. ‘Reading.,a table o s

- \
- e . . : , f~
> ‘ s

Now you usually "interpolate" a value between the two tabulated valués\
of sin(X) “in the same proportion as that’ interpo"lated between the two tab-

ulg:ed values of X. ' ' L 47 ‘. .
(‘ "Nl\ : ’
We will construct a flow chart for instmcting a computer to do every'thing
except the final interpolation. It would be easy to instruct the machine to’
perform this step, too, b{l‘t we want to focus our attention on the table-ldok-up
problem. We. will print as output the .number whose’ funetignal value we wish to

find, the closest tabulated values of X, above and below, and the correspond-
ing values of Y., R ’ 7

rd

We will assume in this problem that the yalues bf X are arranged (indexed)

°

in increasing order. We input the table . N

v . Y . ' Badd v
' ' ¢ Y
f; ! ", S a 1 fe . ’ } o v %
Y« 9 ' — : oo

o " ! ‘
<~ x;f’ - ((Xgs Ypr = l(})N] ‘ ‘~ ® , ‘

P !) . o,

=] { M .
. . A ‘

1 ;- 182 . .

\ vq T Tt
ty y 1(_5#& . p?

ya

_/ ’ (/' . : ‘ ’- f ! 1 4

. 3 [.
L] i) . 4

and the value we are looking ‘up in the table ’ o

Qur task involves comparing A .with successive values of X. Ag We~-

have a loop that can be controlled by an it@ration box. The computatio Yeon- @

sists merely of comparing A and XI and printing out the desired information
when we bracket A' between two tabu.la\ed values of, X. Of coursq, if wye hit -
A on the nose we output that i nformatlon, too. The flow chart in Yigure 4-22

is self-exnlanatory. , ’ "
! N [N
1 ’ _
N ’ i
Y
2 |
o (B v K= 1N _ . L
3 \ ‘\\\’z - .
.(A v - 3
’ (} ‘. 4 . v
X N , Lo -
! I<1 47 F £ ‘
vt TeregtSh ' ' '
T]

"F(",A, ") 18",
s ‘"o the nose"

.) , rr \\\
3 - . .
in .‘\ \“ Eve '\
. . (\ Figute b-22.2 Simple scan table-look-up in IR
. { . ¢ ‘an ordered set of values coe
o . R and i . &
e - / . . ‘ | {) L 2
Q B O £ T .
ERIC 1. 185 L
o e - . i s . -

. . . N q. .
Coe Exercise 4-3 <Set A - -
Improve th® flow chart in Figure L4-22 so th -
print the interpolated velye of Y (call it YINT) along mth the value of A.
‘ Hipt— Figure L.22a should help you to see how YI
Y Y
¢~/ . A 0
"
- . N
) YINT . g
: ¢ S '
') 00
1 T——A
"' + + o » X
. o - A /
~ Pl
l" -
. . TN T) v
-~ Figure 4-22a. Illustration of straight line interpolation ¥
3 \ * . LY I
1Eb‘czample 3. .Table-look-up - bisection method
') And now we ask the same old question. Can we improve on the algorithm? ‘
- Let's compare the algorithm with what we do in real life. In the algorithm
we ‘take a valug of A and start et the beginning of the table and compare °
_with each entry. Ts this what we do in real 1ife? Take the analogy of a =
tele’ohone book. We want to f£ind the _number of Tom Spumonl. Do we \gtart at
. the beginning (Figure 4-23) comparing Spu.mom. with each entry? ’
~ - N -) :
L} B
. - .o
g "
A ! .
I Y AAAA Cleaners »~ '234:5678
5 AAA Auto Club/ 355-2320
¢ i Aardvark Motafs 591-4378 \
S, {Aaronson, Do 567-8901 [5 ¢
et . Abacon, James h56-7850 \ -~
Abernathy, P. _e8g-1108"-
1 . N Ace ‘e . L) A .
E .) e
. ¥
{ , c. ¢ = : '
£ Eigureq\b—23. 2In search of Spumohi .- ~ . [:
// N . ’ - ~ ‘ - . . ’
L T ~ R A A
< Y :
- - — - . ',-., :
: 1'If' t‘ime is short the rest of 'Section. h-3 may be’ skipped without loss of
.~ , ~ «continuity. -) . . .
. , a ' .o - . B
T, \‘1 .) -~ 1811’ . ' - l':-—\‘» '
" FRIC R A NI N e
P oo I . a . PR - A
(', . .v- i ' R e3\ ¥ P g 8 R

3
- & N .
- w -
-

\

- 7
Sew *

Y

-
' w W »
RS
- | START
©1 o ; .
| . N N
L]
2 -) . e \"~

4 = l(l)m ‘\ .
1 N PP \
3 . »
%
. £y L A 4 -
- . 4 t 11
. X, SASK)F A,"is not in
- range of
- T table-'" < .
’ 5 ’ . /\/‘ S0 T
' LOW <1 | - R
-~ - HIGH « N LT .
- - . . v g
¥ 6 12 . *
.- N .. _ — . iy %
RS f\/\\ (HIGH - LoW = 1 Xm Yiow’ STOP
S ’ Fa_ . ¢
> S XHIGH’ ThtcH
| - I .
: ’ MID « [(LOW + HIGH)/2] /_\./
v R N 0. - [N
. .) . 8 r . .
' AS X b ‘
, - -= MID] -
. " - . T FN . v - - &
, 3 » . . .
. .5; f & s “
5w 10
“s |- HIGH « MID | ' LOW & MID ‘ & -
: 5 a ‘ t ' - .
- e ' SR R Y . | ' "
s L . R) & L
o . P oo e Bt
v - --Figure b2k, Ta e~1ook~up using bisection technique
l\ " - (Hfghly instructive) © ° - _
‘ , . 1 ': H -
(oK, ! -t o ‘
EMC o 8510 7 L
o B ’ s >
8 ™ ‘4 . . '_') Ll Q‘

3
L

43 .

1

- Certainly not! What we do is split the book in the middle and check to see
which "half" the name is.in. Then we split that "half" and so on. Just as
this is a faster'way for you to look things up, so it is for a computer. ’

. The flow chart for this algorithm is presented in Figure 4-24. We use
N\ two auxiliary variables R LOW and HIGH, to indicate the lower and upper :Lndices

q

. of the part. of the table we are currently iconfined to. 4
{n each loop we find the midpoint of LOW and HIGH, that is
. . p

MID « [(LOW + HIGH)/2) b
) \ %

and test to see whether \
' ASXypp - . '

« If sé, MID becomes the new HIGH (Box 9) and if not, MID becemes the new LOW
(Box'10). Box 4 determines at the outset whether A 1is in the range of the
table. Box 6 is the stopping mechanism. When HI - = 1 we kiow that- A
is bracketed between two table ent:ries with conseeutive subscripts, i.e., that W-

A .
Ry . - . . . oL, 3

’ ' g ¢ XLOSASXHI .“1 '

' The computation portion ofkthe 1oop (Boxes 6 through 10) exhibits the
“"biseltion technique". Study this computation until you are sure you under-

stand it. The idea ogeurs over and over again in computing and'often rep-

‘resents maximum efficiency. You*ll see bisection again in Chapter '?'.

+ It is interesting to compare the efficiency of the algorithms in Figures ’
4-22 and 4-24. The loop gf Figure 4-22 (Boxes b and 5) will be passed through
N/2 times on the average. The loop in Figure L4-24 wiﬁ.l be executed a’'number
of times equal to or one less than the number of d.igits required to express N

+

in the binary system. For example, if N is 1, OOO OOO Figure 422 requires

19 or 20 transits sincef 19 £ 1% <220, . .

. R

There is no iteratiolx box in the £16w chart ‘of Rhgure 4-24. The reason is
that; the loop in this algorithm is not controlled by.a counter. . There is @

<

t

v

valuable lesson here: You should not jcry to force algorithms into\iteration’:
box form when it seems difficult to do so. Iteration boxes are not useful in
all‘loopsw. They are useful. onlx_llyhen the loop,‘ is controlled by a simple
counter. T . R o ;-

L
i

i o H ‘ C . . . - - 4
. 4 . o . f o ﬂ) . N S L0 oL ; ,.
o T ST R S TR A SR C T N
[h . o~

L ' g R
1 3 1Y . o ! . ,a, L N e

' : . h_3

3

‘Exercise 4-3 Set B ' \

AT You may have noticed that the algorithm in Figure L-2L lacks one feature
,,-" exhibited by the one in Figdre 4-22. That is, in the latter, if an exatt match
T found,% message like . s ’

"p(2k.2) 1is ’39.2’5 on the nose" .
is printeci. ’ :) . .

) Your Job in this exercise is £6 redraw Figure_ i; 2k, or whatever portion is

—_—

necessary, with the "on the n0se" feature added..

5
5 - » : 0
~ \ e L4
. ’ ¢ e
% . . .
L ¢

-~

. HExe.mple hf Table- -look-up in an unordered set of values

e
Suppose that the values of XI had not been indexed in increasing order.

This sort of thing might happen if the table were construoted out of empirical N

* data collected by a number of investigators.) ' ~

‘Sv R ..
‘/There are two -different plans we" could follow o L ke

- ~o~}.——-We -eould look up our value in the tablé-

[

L '2.

"1t stands. . 1

v ot -

" We could first sort the data accord‘ing to increasing va.lues .
of)q and then look up in the’ sorted table. -

5

The first plan woulg. be followed Gﬁly to‘look up a very small number of
values in \t‘he table. When many values are "to bé looked up, the ‘second plan is
much shorter o ("

- - 4

I - L3

If. we sort the data first, ﬁhe sorbing proc’ess would be f’ollqwed by a bi-
section look-up algorithm as in Figﬁ}:e b2k, P Sorting Has already Jbeen discussed
in Section 3 5 and will be ai,scussed [further 4n Section L~ lg; We turn our atten-

.

~ 4 ; /~ o »
. . . { N N .. P
. ! : RO . . .
. ‘ Xoshs Xm;"\ ST e -
\ N : ": S K ¢
.) - w1 ;‘ . B E l
- The' difference here is that we will know tm we have at‘,hained our. r}ssult .)
L 3
""only after e have sea,nned the entire table f Eurthemcfre 1o bisection tech-)
, °
.‘ ’ nique can be used here, since the values of Q{I in afe not ;!.ndggce,d inga’ny qrder. (4 [
! 5 f 4 1 H
T g?}‘ ')j {'5 %‘ C\ d b i ixi ‘ } l‘: ') kg.z‘ 3 Y 2 ‘ ‘e ‘: -
. 5 :: i, s, v i rm K 3 Y . ; + i . } ;: 1
‘f* LY . . . L ., ' .: i s i?\-‘c_f‘ %
- Ifiti._mé 1s short, this sécti{)n “[:a'n be skipped~ wi‘bhout loss ‘of continuit
’q'ﬁé.i - "I , . ‘ , _“'; \ . '. M R - gf\ %"
y . . ; 4 7y ; . '
Ic 1&9” L S
JERIC . : it
i , — . .9 N

.

13,

A, "is noj in
| the range of
the table"

CERICT 0 7
o

LY

ERERNT
ki 9

£

. -
. -

4
43) -
/ ' &
1 .
- N
: . 2
. { Y., K=1(1)N}
, (e Yo
: 3
L0 « 0O
)] HI « N+ 1
. b
[%o X
R i >
] . { A 1
. >) R - Yo
.) 6 .
A N : . FrosSAs ¥y
, - T
x L}
.
L
@
DR
N I
«:‘zg‘fggf;a
. = s"‘
Lo X ¥ * . . . ,) .
Y - i ! -
S TR . .. §Figure 425, Loo};-up in an unsorted table
) v ‘
- e

'

1

%4

@

b3

}n'cdhstructing this algorithm it is assumed that the maximum and minimum
values. of XI are known and are input as XLO and Xﬁi. Now we know

- -

Ko< A Xy " ’

rd

—
'We proceed to scan‘phe table replacing the value of LO with thet of I when-

ever we find

fosXpsh-)

/ -
Si@ilarLyf we replace HI by I whenever A S Xi < XﬁI. Since we are scanning

~the entire table we clearly have a loop dontrolled by a counter and hence an

. iteration box. The algorithm is seen in Figure 4-25.

ERI

2

o

°

1 P . i ~
!
T
\ -
13 .
1 , ¥ i
7 ¢ ’ = m . [N . «
i !t : TG . . .
kY
-y A
{ B .
- _ ‘*
. 0 y [. -
Qo R 18h L X

r . © . . R
FullTox Provded b ERC

a ‘ ;
; B - - 5 ~

4-4 Nested Loops ° ' -

By, the term "nes‘ed loop we refer
to algorithms which &ve s like the
. silhouette showm in Flgure 427, -5

o

ve

loop within a loop. In thJ,s silhouette ’
Boxes 3 through’?‘ constitute a loop

while Boxes 4 ‘and 5 form an iglszde . R

loop. Remember, in a flow chart, vhen-
ever an arrow goes back to a box already,

passed through, then you haves a loop.

i . . - , Flgure 4-27. SllhO&tte of a,nested
. .- ' , doqp N
- - .

' L % v L A -“, ’ b)
?ku. pge already.seen numerous examples of nested loops of a rather .
trivia.l kind in which the ' returr’ on the "outer" loop mereLy invol*.'e!i coming

back for mofe data as ixf;che next silhouett! Figure h-28) Here the inner
" 4 loop conéists. of Boxes 3, 4 and 5.

’

Box 3 is an iterat:.on box. The ‘outer

; " loop consistd of Boxes 1,2, 3, 4 and 5 .

Clearly'Box 1 is supposed to be - d
2 . ‘

and the return on the’ ou

N mereJ:y for the purpose of *coming ‘back ,. *
y repeat the same ?jalculation'\dth "y
ew sets of data. T

. . '

- - ‘.

N

o

0

-, Figure 1&’--28 Silhouette showing nésting

P . - formed when returning for

. - # . more data - ! ‘
. - » ¢ i >

CERIC - oA SN

")
> . .

. ~ WRN
: - S
The sorting algorlthm of Sectibné -5 had a non-terlal use of a nested
loop although we dld not call your attention to it at the time. It is qulte
poBsible to construct valld algorithms containing nested loops without being
conscious of the ex1stence ol‘ this nesting. But when both the inner and outer
" loops are controlled by iteration boxes we, w:Lll usually be’ conseious of the :
‘neésting. The mos% natl,.ral example of this is some systematic processing of the i@
entries 'in a matrix. Suppose we m.sh to find the sum of all. entrles in a b
natrix. Flrst we add up each row, and then add the resultipg sums
In this 'examnle we can mentally separate the calculatlons }‘hthe two loops.
""le inner loop, ’add.ng up the entries in a given row, sayfthe 7, B would be . _ I
given by ‘ * .
¢ < e T
- ‘ r
4 “‘
. 1 , o 5
J+1 . \
- J < N—’— . o S S ; ——ie . g
B J «=J+1 -
~ " f ®
; ; T) .
- ; ,
sk SUMp <A 5+ SUM; . N .
. \ v .\\/,7
ol 9y . b) = . o -~
4‘ < , B N
. 4
) And then the outer loop e % ,
: ’ . . '
- e iy e a— SN
I e I+1] " . o \ ;
. ' ? i ’ Py L4
L . v N ? ' . .
N PPN ,) , ..
o y /coMPUTE N, R ! ‘
vy SI ! — r
#%’9' = l\ MT i T] -, 4
§ J \\\LI_‘/”’ ! i H ¥ Sopey “ﬁaé '03‘M'
S T N
- ' ‘ ,
I3 L I‘ e N ¢ , s
L TOTAL « TOTAL + S¥M. . ‘)
) ’,! i Q '
.) ey 4
3 a ‘. . , b, \
) Lo - i) ., . I
2107 (.
- t I l9l \ ! |
. \‘1 ‘ ’ ° , , ' [. ") | | ;
"ERIC T A TR
. : N g ‘ { | St i
. , o N ’ . ('y { i 4

@ R : N . §
l#-h N - i
' .

>

The dotted line is to be filled S.n with the inner loop There is nothing left

, " to %) but to input t’he matrlx, 1n1t1allze the various SUM!s and TOTAL to zero
and outpu‘@ the finel enswer.

T;le flow chart is Figure L4 29 The return arrow

for tlrk irmer loop gpes from Box T to ‘Box - 6, whll'.e that for the outer ioop 'goes N

from Box 9 to Box h

Many computat:.ons that involvey e matrices have s:.mllar flow charts. Several
will be seen 1‘n the next set of problems. ! * ‘ . '

v T e - '

% k) - '

‘\‘({{AI,J, J=L(UN), I =a(1)%) < . .

31 ' . -
TOTAL «0 A ‘ » ¢ M

"The.to‘{cal
is"yTOTAL

computation portion
of iterat#®n Box 4 °

.

ce

E

RIC

Aruitoxt provided by Eic:

. . 1) i
» | H R - :
Figure 4-29, . The sum of‘the entries of a matrix showing -« R
nested iteration boxes ‘ PR ’ .
192 -

+ * -~ ; L)
Exercises h-4 Set A (. R c
KY - . . »
. In the follom;ng exercises you. are to draw a flow chart equdvalent to
> each word Dr,oblem Each 1nvolves a nested: loop, and you will find 1t§:x;a.t10n '/

PR
boxes helpf‘ul« Assume in each case that ‘the metrix P, 5. having M rows and
N colu.mr‘s, is alreédy stored in memory. . £ .

.
®

.

1. - Search' P for the element of laréest absolute value Assign this ”
element to BIG’ and print:’“che value of BIG. Hint: Start by assuxning,
b, b the entry of largest magnltude is- zero t oo «

~

2. Seayeh. P 101' tne element of largest value (not absol;.;be \'/alue), a‘ssign- Tl
ing-1t %o LARGE Print the Value of IrARGE and the xow number ROW and
column n&nﬁber, COL, where this value was f@und Hln‘t Start by assumng
the largest galue is Pl, 1 ' . | .‘ .

Cees E N A

3. Search for the least non- zero element in odd-numbered rows and evign-num-
bered columns, and ass1gn its velue,to LEA.S‘I’ Whlle conductmg this
search keep a tally of the number of-zeros found Z‘I’ALY and then print ‘
values for LEAS‘I’ and Z‘I’ALY If all elemegts are zero, the value printed

_/.i‘or LEAST should be Zero

[a”
- ' ©

k, Add g multiple, T of‘the first rov entries to _the entries of all other

roys of P. For example, 1f T = 2,,we show the action on a h- row by

P o
h-colu!‘matrlx P.) . CoL . . e
s ‘o ' .
Al 1 2 1 1 a0 1.2 11 .
, R . . Iy . >l * e »
A, 3 k-2 5t 7 5 8 4 7
- 13 ~ ' v
O Fl .
, 1 2 1 "2) 3 6 3 4, .
., o) - N v
* » Lye
o 43)l -3 & 3 5, 5 b
, ' —_— = | — —
Pt ‘e»; ‘ R, .
. - befgre” - . ' ° after adding ~)
. ¥ 3
; — z vm_‘mg‘ - R ‘2 Xrow 1 to
Toweooo s i . . each of the ‘ -~
v, Phog , . - other yows . -
o ") oo . A
r¢' ¢ -) + “
. -, - ,
| N M
* LA ' L]
N - " v ~ ’ ' \(

' M -) . [. . :
. : ' : Ry ’ , ‘ *
EMC - ‘ 9“ - . P : o - TI . ey } . N \ -

o
L. M . 1 . "

N LI 2 % o

TN 1 CLape v . . -~

T bk g vt L S -
| ‘ - . .

\5-./ Determine the minimum velue in each column, MIN, of the matrix P end ', ,
iprint it out with its row and column identification, ROW and COL. If
t’he're is more than one occurrence oﬁ the minimum velue, report the last

. one found. ?For the 4 x b array shown in the preceding exercise in the -

"before _state) the desired output for this exercisé{ would be:

. » . R
) an T row a:bL K v,
v R . ' 1 . . 3 O ! y© .) »
- S e > 1 L 3. .
; - 1 3 F 3) * -
) .t ! 1 L f
.) > TN b Y
y 6. A matrix which has the same number of rows and columns is called & square -
" matrix". In the next three exercises we shall. assume that P s square.,l?
/ {M rows and M columns) - The "main d.lagonal" of %= square matrix is a line 1
“ of entries each having egual row an8 column subscripts, i. e., 1'1’ Pe ?v"";"
, etg. The 14 _element.wn the main diagonal can there£o£e¢e xefer-
* 3’3 el 4 ’ v PR S =
'y red to as P 5 e - . . e \
» Vo F} . . . ¥ '
e Y ! \) K
e - Assign to the sum of all entries to the le-ft—of—’shé TEin diagonal

. ~

of the souare matrix P, accumulating the terms: ' TOV by row. " Hint:’_ Make
yoursdlf a pieture of the ‘triangular group of entries that fall An the
category to be’ summed. What is the first row invol;ed? What is the last
column 1nvolved? For any row to the “left of ‘the main diagonal what afe— .

‘ - -~ ——-’-

. ~ the subseripts. of the- righismost entrsl e " 2" ¢ g

. 4

. 7. Form the sum of all entries which arey situated to the right of the main -

» H 7 -

diagonal of P accumulating the terms row-by TOV. (Refer to Exercise 6.)

8. The "triangle" to the 1éft of the main diagonal which you worked with in
T Exercise 6 is often called them"lower triangle" and the one to the right
’ of the mein diagonal is often <alled the "upper triangle", In this exer-

cise we wish to search the upper triangle column-by-column starting from ’
the last column, We- wil—l search ea&r-xco}.—amn from top.to bottom for’ the
first entry that is at least“twicvas large ln magnitude as its immediate

predecessor in the same col"unylri‘ An entry which exhibits this increased

: magnitude. will be- termed a_PIC;.—n«-w« S v L~y

. s e T
— — - —=7- - A PIG can 5umm~mmosﬁatum~omeruppm e

) Print all valuds of PIG as’ “they are discovered along with thelg ;cound,.f el
. column subscripts I and d. It no PIG 15 found: print "NONE" What 1ss Y
P ’ the smallest matrix which can have a PIG? (Answer a 3 Xx 3) Hint _To. ,

search a column for 8 PIG can the top element be one? What is the }‘ow N

B ! .
’ i subseript for the bottommost element in the J column? L -_.*'
i , ' - l/ -~ - * , !
! . v N . ~
¥ \) \ j . s
, . : . . - : .
! ‘ . 2 4 . “ S
g ! * 4 v ! . N - .~ . M A
\) ' L v o . 191} -~ e 4 R
ERIC 0 L g SN
- oo i - Jw v N 4 »

-l

A "
S S

The Stickler Example - . . T .

» . N .. H Yy)
* Next 'we give a little problem to help drive hon;e the power of a computer.

You will recognize thé problem W«t—yp’é\ often encountered in algebra
- .

_courses. {and puzzle books) . ‘ i . -t

STI ¢ ll the threé-digit numbers whlch are
- .. equal to the sum of the cubes of thelr dlglts.

- -

e e -

- T e reason“snch & problem emphasizes the\power of a computer is that this

e B '

problemr though possible, is extremely tedious to do by hand calculatlon.
However, it 14 8 trivisl probdlem for a computer and the algorithm is absurdly .

easy to write. ° .- e ° - N .
L4
If we let the difits of the number be H,,T, and U, then the three-digit
» : - ¢ e ¢
nu\mber is

lOOXI*§"+lOXT+U

.The nroblem then is to find and prmt out all the triples of digits (H, T, U)
" which satlsﬂy the condition: ‘. ,
’-
lOOxH+lO><‘I’+U—H3¢+‘I’3~PU3. \

Consequently, we wo%ld expect to fmd in our\ﬁ&l chart the structure shown)

- o

below. N * . l ‘ . ‘ S

: < 100 X H+ 10X T+ U = B3 + 13 4 y3)
3,1 * /“ . ‘l

Figure 4-30. Computation for the Stickler) :

<

ThlS is, in fact the only computation performed in thls algonthm. - The

<«

L A
ERIC .. 195 Co

L
Full Tt Provided by ERIC. B . ;o .,
D »
. .

rest of the problem merely makes the various values of H T, and U available
for the test of F:L}gure 4-30. The process of ;naking thes}lvalues available in-
volves nested loops. This Brocess’ can be’ des»cribe'd sotewhat vaguely in words
as: When & value is assigned fo H.we then let T ‘“run through" the! digits -
from :0 to 9 arfd “when value,s are assigned to both H and T we then J.et
',U "run through" -the digits from 0 to 9. In this explanatidn we are try:mg

to explain briefly the process of counting as performed by the odometer' on a
) N .1 f R ° : -
;‘ -7, -~ . l% . . .
O ‘ a .

’

.

.

* y . I
beb L ‘ .
car where we consider each rotating ‘wheel of the o}.ometer as .a va;ciable and '
. the value showing as the value of that variasble. ' - .
~ . . ".’ - - - - B = -
\ - A L > ‘
- \ - - - L - K
[y i ~ -
b}
o . e -1 . .)
) .
' * . . I . (‘ . .
This commopplace idea becomes eveh” clearer in the flow cl{art for the
_algorithm given in Figure 4-31. The {nitial value of H is T Tather than’
) zero because we are looklng for: three- d.lglt umbexs,.) .
| -
{ N N 7 N . e 3 1 a
- ") ’
| .) R
- ‘ ‘ -
| s * . ‘ .
4) Co , ’
, - 4 Te0 F , o
§ vl \ h ! T$< 9 N
) . * 7 T & T+1
| . i Y ' T '
. * 3 .00
- A * -
o) Ue0 R 1 .
al . - : u_<_ 9 — o .
. e . - U ¢ U""l - S - \ ! Bl !‘
- T ¢ . .
:' . -~ .
. 4 " .: .
e K 4 o L S ' 3 \
R ' . 100xH+10><"1‘;!-U=H3+‘T3'+U3\,: -
o Jd o ’ - J‘\‘ ol e
POl ’ T Fl a) e
-) ¢ - ¢ « ¢
o, . ’ -
o .t . ’ SR .
. \ 2
S . , . . Fé t '
{ " .. . °' . g N ’ ; "" * “ 2 . \' ~ ’
| ot) - Figure h-3l.' _Flow Chart for, the Stickler» T .
. el e L - R N
| 4 ’ 4 . b
. '];he stickler does not require any ingenuity—-merely bruté force. The L
. - LI LN
| + . 900 computations required in the al;orithm would proba.bly take gll day by ha.nd,
. ™
" but a faSt compui;er “would complete the calculation in less than a se‘cohd. .
l e - .t i ' AU | B ~",'NL
F(' \‘1 ‘ ’)) "‘ i ". @a‘ d ’ " } : . N ’ ') ’J
. ° . . <L o L : . ;

A4

W . A, <
' . . .« -, \ b -) h-h
L) ° - . . . -
3 . ‘ . - v ‘ v
" Exercises 4-L Lok Se@; B . . . o - "
—_— . -

Re- examlne Figure 4-31 and -answer the followj,ng queﬁlons‘

;” . * ’ “ '. . ’ G 3
1. How man\ymltiplicatior}s are required_»from to ? .

.oq “ . o & e !
‘e ~ - 3 ® '
2. How many differeh ‘values of H” qare computed from . tf)' ?
L~ Y : :
A] < A .
3. Hoy many different values of T3 are computed from to ‘ 7.
— - . , N
4, Rev:r.se,.the glgorithm so that the same value of H3 1s never recomput.ed., . !
* and the 'same \;alue of T3\ is not recomputed mox;e than 10 times. '
o * s . - . - .
. . S ' 1 . ‘N N
5. L Howrwould you revise the algorithm so that ng value of H3 T3 or U3
.is ever cd!nptited a second timé? Hint: Compute all valp.es, O3 ?13; 23
Ry 93 ard store them in g separate CIJBE vector having 10 elements.
! ° \ ‘ . v
6. See if you can-reduce the total number of multiplications to 119 using
. no more ,than 9 different boxes in the flow chart. ' "
’ . t A . 9 ’ ' * ' !
7. Drav a fléw chant Mydo the 'following:) . .
(a) Find the number of distinct (i.e., m&two congruent) trlangles with
sides’ of integer length and Bo side greater than 100 in length.) 'g‘
4 . R '
: (t) -Find thé sum of the perlmeters of the trlangles in_ part (). - iy
{c). In"part (a) replacé the condition "no side greater than 100 in
length" by “with perimeter < 109" and redraw the flow chart.. N *
-) ﬂ‘ ‘ <,
) (d) Redraw (b) with the replacement conditién specified in part (c). .
. ¢’ : : X , i \)
37 e Yo 4y P ! - h . N
c T e . : ‘ . « ‘»
. £ Y
o * 1 ¢
’;‘ » ‘
v 2y fd * -) A o . -
. ’ S .
) S e X
. 1 , N\ L v -
h \ o
- - + - ' \ 4
i ’ L .
. . L) . / ¢ L4 F 4
- D N k3 ! * -
» / *
2 _— '
Tt) . .

. . N . P
. . - ,'

~

EKTC L 1549” o

Ay

f

e s

- hebo . ‘ '
- s .
. The Prime Factor lA.l.gorithm) . '

JIn Section 4-2 (Figure 4-14) we considered tHe problem of finding the
> factors of an integer N. Now our problem is to represent N as a product
of prime factors. These pz“obleins may sound similar to you. To see how.they '

f.re different, compare the following. The 1ist of factors of" 369 in the

Y« ‘order output by Figure h-1b is ' .
. 1 4
L . . I
-~ . 1, 360, 2, 180, 3, 120, 4, 90, 5, 72, 6, 60, 8,
- . S ks, ?, Lo, 10, 36, 12, 30, 15, 2k, 18, 20.
On the other hand, the complete factoriza’tipn of 360 as a pi‘oduc,t of primes
isr . . : . v) . - -
ot . * y - i
2Xx2X2X%X3X3X5.

. > N 1

" -7 Whén we output the. results from our algorithm, the multiplication operators

will be omitted. G- e . . |

We will work out the);a}:go,mthm following the same stxeps we would use
N-:mg the computatlon by hand. In the hand method would check to see
{ . W ether’ K‘ }s'a,,d:{.nsqr Qf _‘N?. (Spartsby letting be 2.) . -

f ' . ' -) ! CLTT e)

e
K ;oo

* | ! ' - N
9 3' « If K is not a divisor, of N increment K by 1 ‘and check again. If K
. '« is a divisor of N, then: =~)
) % C () . PRt oub K .] . . .
| } o . | . { v
P o -2 1 replaee N by WK {so that. we can’ now look for factors of the
. $ -—t * smaller miﬁﬁ'e'i‘"%bt&‘ine;i by d.wld.mg N by the factor K);
.» ! .
. i) (3) wi hout lncrementing K cHeck whether K is & divisor of the new
)‘ ‘ value-of N,.. (mmemng_tmm,gd,ﬂf_actors are possible).
A v ,
! Finally, as soon as K e?c)eeds /8 » N ‘can have no factors other thaﬁ
itself (and 1) so N mist be prime, or equal to 1. You should satisfy your-
) « + o self that, in the prééess we hescri'be, the present value of | can nevér have
\- " factors less than the present value of K. ' et
o . , . ' : X e o

.
L

i . , . ‘

!) ‘ ! o '

' e ' P T
| o - g . , ‘) 18\’ S . \
ERIC -~ ", ¢ ,ﬁoe. s L

S , ’ ’.\ ﬂ
- '
© bk
T »
. . ~, A}
N Lo . -
Since K starts at 2,. is 1ncrememted by 1, and is not to exceed N,
we ev:.dently have the iteration: box, .
. . .) -
/ 1 l* \. ‘5 . . . -
_‘A - - N . . t -
/ . ’ K — 2 . . i F - - .
/ » N ,’ -
. ——> kegn| KA 2
. 1 T_ - - - > s,

.‘ Y
The rest of the algorithm has been discussed in the preceding sentences 50 we)
exh:.blt its Flow chart in Flg};{g\ 1+-32. . We can see m this flow chart that as

K _goes up ‘t;owardL XN, N comes down toward K. The mx‘ler loop, Boxes 3, b

2
and 5, involves the check for repeated factors The necessity for %x 6 arises

-—q\«—-
from the TOSBIBITITY that at, some pomt N might’be a power of K. 1In this
case successlve repetitions of the inner loop would eventually reduce the value <

of N to 1. It is left to th‘é‘tstuden’e to' check ’that nothing but primes can
" occur in the outputs -If-4-Fist of - the prmes less than /N wefe available to .
be mput into the computer; the computation would %e consiaerably shortened.

AR
. t
)

1 T
.
.
»
-
L4
.
4 2 -
o g - 8
L) Y 'Y ' R ql 'y
.
. ’
» . v
\ » ‘
' . & '
- ¥, N
. .
. - -,
'
. 7 } ' ,
®
v . Y ’
0 - - N A%
- o
, .
- - il
2 . '
B >
. i o N “ . .)
] ‘; 4
L} ’ *
- \ L4
.
”) -«J . N
3 ’ -
-
il .
. ., : ‘ 4 \ . .,
s - . V .
' . M 5 f yo '
S : 199 o - -
- - . \ £} M- ' . ’
\)4 f v ')) » .
. 1
-RIC R "
/ o . , .
‘ ; . .
Ll | T ¢ |

’ . . . ’ ¢ , - ~ .
')
. v by °)
- L4 .
. N :
A}
4 . ° pe
»
v A
.
- , -
-~ 0
. . .
. °
.
£ . P ‘
M *
LI . " - '
- .
.
.
¢
- v
\
. .
.
.
s
1
’ ! v
.
.
¢
~ .
"
L .

,
.
o
s L]
‘
‘
)
- ’ -
- i .
V4 b
‘
[
r, t
*‘
> T
! . 1 ’
i * T ' +
¥
- .
Y-
.
-
‘ .
. P
’ I
* f L]
<
;
:
.
1 :)
~ .
Yo {
Q.
* ERIC " - -
C 0 Ly . . . : '

Exercise k-4 Set C o)) & i T
. . AR
* One of the students who studied the algorithm in Figure l&---32 wondered oyt 6
abolit ways %o improve its efficiency. 1In partlou.lar, he was unhappy w;Lth the~ ’
) —\.. fact that in repeatlng the test in Box 2, ; - : . Z e
: - . L O :
. K</ﬁ,,. ‘ & B L
R T S i = f %‘.
e we must repeatedly qompute /ﬁ even though the. value gf N might rem%in A t
«

¢ the stud’ent developed the. algorlthm m“F:Lgure 145 -33) c'laimmg

Vb
A

& Nea
unchanged ‘aurlng a numbep 6f trans1ts through the ‘loopi *,A’s an. qlternative), %“
'
>

(a) it is equivalent™® Figure 4-32 as f‘arﬁs :pesnlts are concernﬂl, .

' N) 'Q. |

(v) while perhaps sllghtly more difficult to understand »1t was mére 4

'efflclent in that ‘fﬁ is computed only once~for"each value of N i
- A)" ii" *) : * ._5 ’ f

Your jeb in this exergise is to study the proposed‘ alt,ernatnre and .elthéi‘ T

By k)

verify the claims made by the student, (a) and«(b), o’ where be is .

?

wrong. To verify o, refute clalm (a) you shou.ld tzace thx;c}ugh the fl,ow chart "-"éﬁ .

*- finding the factors of several numbers like 10,/1 12, and a¥ W

.
© [
M \\(~ ¢ . b

. At

-

- ma

-~

Figure"h—§3. Proposed com]é]éite faotorization algorithm
o ‘ . — o)

ERIC., . = - Lo N

’ 5o
. ' ; PR | .
1 ! ‘_.

-

. beb

Shuttle-Interchange Sorting Algorithm

[
v
4
<
¢

Look back at the sorting algori‘thm of Set.’tlon 3-5, Figuvre 3-31.
purpose of the algorithm was to take a given list of numbers and "sort"

rearrange it in increasing order. We went through the list from lef to

rlght looking for a consecutive pair out’ of order. S

-
) K . -

A AelA3 Ay A5 'A6 A7 Aﬂ‘\A

P ‘.

o - — .
) . ~ 2 T 9 ’ 11 3 8 T 12 5 \
, R A ’ - .
/
2 N - 7 \ ‘4
A. soon as we'found two sdjacent numbefs out of order Ve interc ged them.
N . a —
i. A - he P 3
. ! , 8 A3 Alf A5 Ag Q-(‘ Ag A9
27 9 3 1 8 1 1 5 :
/ . ks *
LY Y
. . ’ . \ ., i
Then we started over agaljn treating this "interchanged) list as a brand
.-
new problem. The algorithm was-easy to describe but rathey wasteful. The
d reason for this wastefulness is the rechecKing of pairs pyeceding the inter-
changed padwrs. These are already known to be in increasing ordert We_ look
for an ‘algorithm to eiiminate this waste. * .
In the example apove we see that the 3 1is stilljout of place‘. ‘Holding
a finger on the position of .11, so as not to lose ofr place, we first take
A .
- care of 3 Using three tests and two interchanges ye work 3 back to where
it belongs between 2 and’ 7. : . '
. , . . ‘
- . 5 . J
K I T S T T B T
: 2 3 7 9 1 8 1 1 5 .
° 1‘ . 7 N t »
Now we‘come back to 11 where our finger was and compare it with the
ﬁext en};fy and so on. Now to translate this into a flow chart we, input N
"and & vector with N components’ ' A
» ’ ' . ;o Y
. . . p T
{ . “
* 1 . - 1 .“ .)
- L 202 .
v * §) - e
ERIC . A |
3 ¢ o o R)
+

vy * \.'\‘
e . . ; R u_
. . N !K\
. . "" ‘ ‘ \‘) M .
. . L /
1 - L]
t . .
- , ; (N, (AL T =2(1)N) . .
. . - .) s "‘\'
) .'{-‘ p— : . . 1 ' & 0 \\
R s ‘s !
. - /I \\‘ \i .
Now we' introduce a variasble J which runs through the subscripts, 'pickmg \1,
out N -1 pairs AJ AJ 2 to be eompared. &
] .

Co ‘

I , L Jel Tl |F .
A : v] . y - J<N _ﬁ . ~
C Jega . . . \
. . .i., . " . iT * ’
Av-“o . N

. ' /
- ~ -) /
Then we must have a varisble K which, after an interchange located by Ja

works the smaller of the t¥o interchanged numbers back to its proper location.

8 ~ ‘

B - 1Y
kd 2 s 3 .
. & > o + [‘ .
. ¢ K«J -ﬁ. = L
. 21 e) - .
‘- - —] KeX~1- |50 e e ps g
[

)

There are two surprises in this box.

rst.there is~a variable on the ’
right side of the initiation compartment. econd;' increm%tati%n ig negative, .
Both 'of these novelties are permissible. < o

Now we draw the i’low chart in Figure h-3Y4,

This sorting algorithm ig- R
quite efficient and has therefore been nemed. It is variously gcalled ‘the
. "shuttle—‘interchange algorithm or the ' pushdown-pushup algorithm. R -
-— ‘\ L
, x] , (
* . .
v -~ -
- N) - N [s Tt ! Tt Y\ e Ehaa T li
I -
“dn . / , t)
" . - ’
/’ M t 1) ~ 4 ’. £l 1
f - ‘» .
7/ A v - ’ 6 -
H © B . + . B
e r . s . L3
. 1 //’\(// ‘ . 203 g ‘ . l e
\ © . .o, . = : . . . s
kb 1o e . ~Na . ‘
l c ¢ . « -

-0

| | oorr cag W
1_.M,‘.1",-‘ . AP TR B Ag “hgn .
O . R TOTUPALLL © |,

i : Ve - K AK'*'l | ‘,,.J
* ' A Y l . ‘1
. B . .9 L A P
‘) " a (ars T = 1(1)N) ‘
. SR . B -
il ”(N + .4 + [I
.,) . . A_‘ -, ~
Figure %-34., Shuttle-interchange sort
o ., - 2D06 * v
ERIC* :
A o s

[

Lol

3, ,
N

Exercises L4-4 get D

. = . -

*In’order to properly“compare the primitive sorting algori{:hm Figure 3-31,

1.
~ . . with the one (in Figure 14» 34, redraw the former using aq iteration box for
- COntrol of the, 1nner loop.

Box 1, letting Box 8 lead to a

' 0

':

In r ving Figure 3- 3.1,,yod can simple omit

2. In order to appraise the efficiency of the shuttle-interchange method gnd
to compare it with the primitive sort, we will again equate the 'vork of
sorting to the numbef of comparisons requireg. In this case, the ~sort1ng
work would be proportlonal to the,total number of times Boxes L and; T
(Figure 4-34) are executed. o
(a) How many times are Boxes L and 7 executed from ‘ to '

'if the values to be sorted are 7, 2, -5, 14» ? '
., (b) How hany times are Boxes k and 7 executed if the values _to be sorted’
B ' are :-9, 5, 9, 12 ? ' i ' <
(¢} How many trme,s are Boxes 14» and 7 executed ﬂi‘ the values o be sorted
C are 12, 9, 5, -9 2 -, S
L .°
3. What changes would be required in the flow chart in Flgure L-3k4 to make
- 1t serve for sorting numbers into descendlng order? o

k. A student brings into claSs the algorithm ‘shown in Figuki'e L-35. " He makes

the following claims: , w.
(a) It's an algorithm for sdrting numpers in asc'ending algebraic order.
(b) It's more efficient than The algorithm in Figure 4-3k. L
\ . - Your job is to verify or refute each claim.’
»\‘ ’ N L3 H o T 1 i .
(B by k=10 y S
. ~ .. T 2 -]
. Iel —_ : - 6
.6 I< N-1 - \- .
\ I T4 = : A, X = 1(1)N} —»{ sTOP
e T «\\‘“* RS _'7T\W-w‘»ﬁ.\3§,’1“."‘:: - - s - -
' L Jel .) ' .
I R T 3 - 5
i ' T COPY «A_ s
1 1 1 ! l‘a N N .
) .o i - 1 A chea ;s
J J+1 }'LJ ,
.) ’ A3'+l « COPY .
// ! . ‘ o
/
—- Figure k-35. A sleeper? .
. M b .
~ . 3By k}e;\ 7
2ey . .

ERI

Aruitoxt provided by Eic:

o~

E

»

L-4 -

¢

Tz_?x_g Monotone Sequence Problem

. . . L §
A few years'ago a charming little problem was making the rounds of msthe-

matics departments. It was a true stickler in contrast with the pseudo stickler
we met ea?lier in this section. New terms used in the statement of the problem

" are explained below.* "

A

PROBLEM: Suppose you are given a sequence (that is, a list) of S

N numbers, ‘guarantéed a}i different. Prove that the
length of fhe longest monotone subsequence is ah

v least /R. -
. h > . | N
By a sequence we mean a 1ist of numbers like the components of a vector, The

-

order in which they ;are written ié very important’. For ’example:

- »

A 1’

5 0 9 6 1 12 3 7 2
By a subsequence we nieasn‘ the list that remains after "crossing out" some num-
bers in the original 1list. We show one of the 5lé 'possibie subsequences of

*'the seq‘yence exhibited above:

§ .¢ 9 6 1 12 3 ¢ 2

The reason for explaining’ this idea in terms of "cross;'ng\ogt" is to mske it

absolutely clear that the order of the rémé.ining terms is not altered. By a
nonotone subsequence we m one in which either the wvalues are increasin from®
onotone qt ean e ue g rlc_)

left to right or one in which they are decreasing. - .

o ’ s

R ‘
* Thus, the preceding subsequencg‘is not monotone but the following two are
monotone, the first:being increasing and the‘éécon&'," decreasing.

N P oo 8 6 v # 31 ¢ AV

k] [

5 ¢ 9 ¢ 1 ¥ 3 1 2
o- . . v
You. can check that the incréasing subsequence is the longest possible; that is
to say, 't}‘;[\ere is no increasing subseguence with more than % terms. The de-

o, . . 5 «
éreasing '&me is the not longest possible, since the subsequence
Ea » .

S -er o o 9. -6 3 2

| < - - B - -
I . T . L -
PR -4 - - - e 4 ‘ - - -
.

is longe¥.

In f.his example the longest in’creasing' subsequeehce had length 4 and so

did the longest dec!‘e;ising subsequ;nce. Thus, in this example the length of _

< the long{’est monotone subsequence is L.ov~ R . ‘
. ¥ 7' V’ 7 ™ A

J ¥
/
’V

AR

) -

' /o A,
1}See footnote at the beglnning of Section 2-8.

»
/ .
/

Q ‘ 206 T .

RIC T ‘ 203

. \
K s ., wN . \ ‘ .
. .

N

The problem concerning'tfhe lorig‘est monotone subsequence is actually one .
. of proving a theorem’. It may not Be posslble to get 4 computer to prove this
theorem; but stlil this prdblem suggests an Lnteresting task %that a computer
can perform. Namely, for a glven sequence, find the length of its longest .

increasing subsequence. . T . A
* We look for an algorithm and the first one we not only find very qu;ckly.,.' -
.. but also quickly reject. It begins: Eist all possible subsequences., Check -
) each to see vhether it is 1ncreas‘ing. \ Make & note of the length of each one
which is increasing. Plck out “the greatest of these recorded le‘ngths. That
'is a valid way of attacklng the problem, and the flow chart is not difficult
‘ to draw. Whédt, then, is wrong with this solutlon? We reject it because ofpthe
monstrous amount” of computatfldn%f the original sequence had 60 terms ’ then -
. the number of subsequences would be 260 or 1 125,899,898 650,624, For all
intents and purposes, such a number of calcu’ations may as well be -infinite,
An algorithm which cal.ls fot th1s mamr'calculations may be of theoretical

, interest,. but is of no practlcal use whatsoever. coe
o -

Finding a ysable algorithm for this problem is a more difficult under-

taking than amr we have tr1ed so far. TWe won't get the idea all at once.

o

. Let’s take another look at the preva.ous example

v ~ ¢ N o

I e 3|%]|s| el 7|89

- B

A5 i o) 9| 641220 3| 7] 2
| A— - .

For each valué of I from 1 to 9, we want to figure out the length (cal]?
it B) of the longest increasing subsequence having AI as its last ter'm.
This is not difficult for the short sequence in this example. The‘answers are
tabulated ‘here.) ‘ '

]) prJajefsiss)efr |8l]
o AI ;5 0. 9] 61 111 - “77 -2# o & o, N
Bof1j1]2]|2(2]3 v |3 3,
<1q v ! ‘
\)‘ . 207()(

o e N
ERIC Lo | ,

LY P

i

.

L4

'

How did we find’the values of BI ? By eye--just by looking. And yet we're .

sure welre r ght'. Still, there. is a systematic way (an algorlthm) for finding
t}le ‘values the BI. But flrst note that the desired length of the longest

increasing $ubsequence is now simply the m&lmum of the values of the BI, in.

this case, fthen, it is &4. - ‘ ‘ . .
in orfer to expose this systematic method, consider the preceding table .

only parsly filled out. We will show how to find the value of 137. We will .

in explaihing this algorithm. We start by ‘giving B, the initial value 1.

p 7
We know that .B_ must be at least 1.

N , : T e s
I 14 -2 3 4 5 6 7 8 9 | .
, arls) ool 9 6| 1|12} 3]|7]¢®
. Bplrj 1} a|e]e 3 ,
' 2. |
- . “n B «— 1 . -' .
/ , S I , .
Co l /

" Hpw can we find increasing subsequences ending with A7 (i.e., ending
with 3)? Ow iszgimply to tack A7 onto the end of a subsequence
tezin;nating with some AK coming earlier in the list+ This "tacking on the

gndi-' can only be dong when it won't destrdby the increasing property of the sub-

/éeqfience; that is, only when AK < A7 This suggests the test i

-

»

from 1 to 6.

LRI

1

k . L}

creasing subsequence whose last two terms are AK and
iongest such subsequence? We obtain it by finding the longest increasing

If either of tpe’fnequalities in the deqision boxes 4 or

- Suppose the answer is "I" (as occurs for the first time in our
efample when the value of K is 2§. Then we gnow that there is an in-
A7. What is the

subsequénee terminating with AK and then tacking A7 on the end. The
length of this "extended" subsequence will then be By +1. To be sure we
have the longest extended subsequence ending with A7 “we must compare each

candidete value of By +1 with the current value of B, .

&
- ..A,.;'
‘ . . ,
5 is false, then'
no redﬁsigﬁment‘takes place. - In any event we now increment K by 1 and
. ' t {
repeat_the test in Box k._ We perform this process for gll values of K
A W+
X i
’ ‘* * t . ‘.
: A
, 3 l
N - - ..
oM K-« 1 - fé 2l T T
! K<T p—
— ™ K «K#l t v
:d"‘

.
-
\ .
\ ’ - N
| \ . ’ S ! :
N * Figure 4-36. Heart of the Algorithm
Tt v N ! -~
‘ It is ‘clear now that each of the B;J. is calculafed in this same ;}ay,

not Jjust B7 In order to get this same cafclzulation made for each BJ' we

replace each occurrence of’-.'? in Figure 4-36 by J and hang the Heartq from
the following iteration.box,) '
e 7

L
R L *J el

. I F. \ . .
S rrrreun CELE O) .
. . a ﬂ

o
(=]
<

.
-

-

with the connections as indicated. (We are assuming here that (AI, I = 1(1)N)

e

has been input.) e

Q . K

. ERIC | A 212 L

13 A - .
oy * i -
. \ , .- = L : 2 o'
In Figure 4-37 we see where we stand so far.’ ‘ Lt .
o . -
' I -
AN . -
. . . <] .
. SN
- ’ ry A - ‘P
. ~ . ~
. i M "0 _ . R oo - ’ .
p -t : !
(B apt=Om o : a
" . . .
v , . . :
L . 1- [: R ’

Jel F - . - ‘

’
i<y —®] ;o
: Y e T = - - -
L]
’ . .
b3 . B
v e .A
. ‘e ' . .
]
1 -1 4 .
" LY
, .
- . .
I ’
“ N ,
‘. . - il
i M ‘
. .
- '
I3 M n
v . ¢ °]
. .
kY
-~
N - . 13
.
A
/ i
- » T 3
. N , . g *
. ’ N N . i .
, .
* * -
LY
LI N A A AR S A B e B v L — - . RN A o
i N o \ - i .
\
, ‘ .
y v -)
, .
Lt 4 “ (‘
\ " ' . : . .
bl - »
. Figure 4-37. Coming down the home stretch ~ .
v »
. . . o N
- -
(33 4 -
- 1 ’ - . . . e 0
, . > ¥ »
Y . . ,
.
.o,
. .
! - ;
.
. o . *
R .

ERIC - o el o

E

oox . N .

s e

- We have d.or.: Just about everythmg now except for getting the answer.
The answer, you recall is the largest of the valaés of-the components of B.
We have done such a computation before and it will be "child’s play" to re- -

construct it. The variable MAXfNC 1s taken from MAXimum of the lengths of
INCreasmg\subsequences .

-

a

‘ 7 i o~ T
. o .| maxave B, o e
‘ . tlr_ L] “ °©

8 1 ' \.‘ . T

A =
. Le&e2 F -) '

LeL +1 ’L—:-N

T A Y
-) s
10 « s
¢ o
MAXINC « 1 1
| | n, P
. e ¥ 2 ———
= . wi’ﬁﬁé ‘ : 4.
“ . ~ ° -
' g S) .
. N
, MAXINC ‘
- .~ \ o
. A
‘ ‘ ' * ’ ° L4 E
- ° . &;_
| %
. . B 7
- \ -(L S
TR - . -+ Figure- 1+—38 The final calculation SN
< “ . v !

<

O

RIC

it

~ o - B

Now, if we join the two flow charts (Figure b4-37 and Figure 1&-38) ;together

‘at the: bullseye, the algorithm is cémplete. . ., :
. \ ’
“ ks ,usual, we ask the question, can we make any improvements? #And, as -
usual the answer is yes. It would produce a simple‘r looking {‘low chart

as well as a slightly shorter computation to keep a "running" reco;'d of the)

- + "’
é‘ ’ ’ ’
. AN .

e ’ e, . oo
. . .) -
. ° o . , R Y ¢
* " . '-’) .

s - .

L]

-

"

4

.

y

v bl

value of MAXINC instead of 1ntrodhcing it after all the’ values of the B_!'s

[E

»

are computed.
compare 1t with MAXINC.

Then reassign

B

to MAXINC if B

J

J

is larger

J

We mean that aftera: given B ‘' is finally computed we should
This -

elimlnates one iferation box frag our flow chert. The conparison and possible

reassignment are seen.in Boxes 13 and 14 of Flguré\ﬁ>39

to assign an initial value to MAXINC prior to Box 1.

.

. ‘ -

N | %
M -
\

It .is now necessary

0 .]
@,,{AI, 1=dm| .
' - o
» " .
) 12 ’ .
N | muane <1 |
« ’ '
‘ : T} \
’ Jel A Lr
~% i ega | ISR .
. o ¢ T
I{T « 1 3
—
3

o>
‘
®

O

RIC

e PN

. Figure 4-39,

. -~
~
~

- T 213

‘,4‘ ’ 2 J: t_;x

1

Length of the longest increasing'sgbsequence

-~

v

. . " T ' N N
As g f'inal surprise we findsthat Bome of the machinery developed in our
' —

o

@
. algorithm™wiil inspire a wroof off the theorem proposed in the original problem.

v This is shown in Exercises below. &
. . . . ‘
& Exercises L-b L-4 Set E ; . .o
_ . . K
1. What changes are needed in Figure 4-39 to convert the algori}hm to .one

ﬂ"vv—\.a-av,“.?‘<g ,\v.~K»,<, 1

ERIC

Aruitoxt provided by Eic:

" which finds the length of the longest decreasing subsequence? Let C

I
represent the,length of the longest such sequence terminating with AI

340
Shoy that if J < K, then the pgirs of output values

@ . (B.J, cJ)' and) (BK, cK) -

cannot be the same. (I.e., not both ,B; = By and C; = CK')

Use the result of Problem. 2 to show that the length of the longest mono-
tone subsequence is at least N. ’

Now that we have succeeded in producing an algorithm (we'll call it MAXY
for sho'rt) Jwhich finds the length of the lengest increasing subsequence,

LY

how d.; we find the sequence itself? One ought to be able to search
through the B-vector for clues which will point to the A's " belonging
to this sequence. If you are on your toes, you will be able to draw a
flow chart for the process of searching out and printing elements of this

To get you startéd we'll give you;..‘!fwo hints:

(15 Although MAXY developed the value of MAXiNC, it did not tell you
where the top or ™head" of the longest (or one of the longest) ’

subs?aquence may be found. Your flow chart must search for it.

K

(2) We’li show you a picture which should suggest a plan for system-

matically retrieving elements of the subsequence once you have,

oSubsequence. The flow chart can then Be tacked on-to Box 11 of Figure L_39.

found.its head. Here it is. . e
2 3| us{s]l6l7]8]9" {"
S SN
\ Ay @]9l 6| @2 I®|2],.
By | 1 2] 2, 3|BIIE |3 s
* ahe head
The desired subsequence in this case is 0, 1, 3, 7.1 -
& . {
) o o«
41y) .

N .. Chapter 5 . o P
i . ’ .
= FUNCTIONS AND PROCEDURES e
a ¢ \
5-1 Referencé Flow Charts < e R
. In the last few chapters you have frequently seen an assigmment box like 7
&igure 5 1. 0 .
- ‘, ’
x - 4 '
> . - . :
L3
-7 Hix Yy *
. ' r] . . -
-. \4 N A , -
3 ’ / * - ' . ‘.
. Figure 5-1. A femiliar assigmment box >
* Now we want to ask-swhat really is me y this box., We know that it directs *
. - N »
us ta: "

. 1)
1. Send an assistant to find the window box with "y! engraved on .

its cover and‘*to bring the number found there to the master computer;

2. Do something with the nugber delivered by‘d:he sssistant to produce ' T

- . the square root of that number;" .
, . X

3. Give the result to an assistant to put intgqthe. window box having

lell

How does one find ghe squa.re root of a (pésitivegy numb;r? We know that
it is not & trivial thing to do. Let’s explore an algorithm for fin'ding o

square roots.

‘engraved on its cover.

.

e’ . .

»

Suppose we take a guess at a value 7#0f the square root of y. Call this »

guess g (for ‘guess) Ir g is the squa.re root of y, it is obvidus that

Z is equal to g, but we can’t acpect to be lucky enough to make the right

-y

S guess thé first time. Since the product “of g- and g is. y, we sé€ that:- * .-
T pne of these numbers is leds than /ﬁ and theother great%——“’: “
Now suppose we make a second guess, h, at awalue of the square root
of y. As indicated in Figure 5:8, if the second guess > h lies between g .
. ‘ v/e y/n - *h 8 e NI
: ‘Figure 5-2, Second-guessing the square root - -
) 215 T, :
o) 2 & + .

. - . [
]: . 14
B g - ° hd -
ERIC: . : _ ,

. - N .

[T

and %,_ so also does .. So, if we take any point h in the interval with

S

endpdints g and Z we can, define a new interval with endpoints h and -
Z contained in the, first interval and still cdntaining vy. If _we make

repea-ted guesses by taking a new point inside each ngw 1nterva1 the intervals
must get smaller and smaller without end and the guesses must come closef and
closer to vy.

s
. ’ e v ’ %
- What point in this interval with endpoints- g and ;y;- would you like to
take for a second guess? _Any one will do but some might‘do’bett’er than
others. An easy point to find (and-an excellent one) is the halfway.point,
] " _ N ' . .
' Ir = }.(g -’{- 1) . A .) ‘
r g .
. A < .
If we continue to niake our successive choxces in this way, how fas¥ will
.kthe successive lntervals get small? T s .
3
i‘\‘«\‘;:Let d, be the length of* the first interval, .,
L N . ' / v 2° y . ’ 3
, dleg‘?"J 8‘ o
V > . . j‘ﬂ."
arld let d, Dbe the length of the.second interval, - x
:) ‘P2
. . vy . |y _2ve
G = b -gl= 2g 2)
’ g +tvy
Now you cen easily check that - - « = . | .
2 . 2 2 .
‘ X a (6" - y)" | _Llig” -y x 4
2 Lol 2 :
° leg(e® +) g +'y)
'.k‘ = <, .
Since y 1is a positive number, -7 ‘ S <.
/ - . f
, - . * -
- g -y < 1 [Q
- g tvy ¢
so that . ‘ . & .
. 1,7 ‘ .
S gl <l
. " ; . ,
ITherefore, edch new interval must™Se 1€ss than half as long as the last one.
In fact, after only a few of these sucéessi,ve choices the new intervals wil}
be much Yess than half as long as ?‘neir %edecessors.
, Thus, “the process of repeatedly averaging g and % and assigning the
R ‘result to g 1s guaranteed to gjeld successively better approximations fo the
- . ’ “;gf!%* ‘
\) B 216 ») ~'§e£\ })

ERIC

Aruitoxt provided by Eic:
.

-

) N ‘;}: - Yoy M
: | 2138 ‘. Y

-

5
. .

e
.8

square root szﬁy ~--even “if the f}rst ‘Buess is really terrible.

b d
2 DY T NV

]

- We draw a flow chart 'of this proé’gss, Figure 5- 3

e
RN . * *
g : . |
VoS ¥
N b T
O b} > ..
»
. & . h « -(g + l) s v . s
' . R R
- b 6 7 ’
o . I
(In - g < 0001)T o] h ‘aa=> -
F L]
. s - . ¢
’ o) - '
‘ g«h o . .
. l:’—" . \1‘1 .
Figure 5-3. Square root method (due to Newton) _x‘ /’5 ‘ Q/
, s 1. N ‘o 'i 4

- A
1 o R4 s N
Box L shows a cond.itlon we could use to end this iteratwe"process when the

1mprovement in the approximatlon becomes léss in magnltude than some number
like .0001. . S .

» L

In case we ever want to ,ﬁgke a square root again, wouldn't it be a good
idea to file g permanent copy of Figure 5-3 in a notebook so everyone could

use it? Besides, suppose we ever need to take square ropts at more than one
place in & flow chért wouldn’t 1t be handy to have a reference flow chart thag;

-

could be referred to 4‘1‘rom any place in another flow chart?
- . e

To help us make a permanent reference copy of the square root«flow chart,

we will adopt a few new conyentions. B We need ano;bher Hay to indicdte tdle o

argument of the square root, other than by rea,dlng a card as in Figure 5-3.

e

E

v

.t

.

- . + Figure.5-4. A funnel
¢

o A o - 217 o \ . -
O A . = v .o

RIC" R I

Aruitoxt provided by Eic: . . L . e e .

i RN . o
\] - -
\ N\ﬁ : . ~
f 5-1 e .
i N : T & 7 b
¥ e SO
. Trag.,

* A\ new flow chart shape is useg. to show both the purpose 7(\:aking a square, mot)
of thbe reference flow chart and the ax\Fu.m nt, ¥. Thls ﬁgw shape is the _, }
funnel shown in Figure 5-L. We alsg need a way, in the flow chart l‘anguagwe, -
to state%the result and to say that we nov{ return to. that box\in the flow chari'f ’ :
|
|

~ that caused the reference. This shape, replaclng the print and s% bcxes of
‘ ! Figure 5-3, is” the "return" box (Figure 5-5).) ! \
6 -

3 » ! |
/ , L
- N ' h))) |
. . o . . > 1
: : ¢ -
- \
~t -

- , “

¢ - ’

~ . Figure 5-5. Ret’rn box

. _Main flow chfrt » Co Reference‘ flow chart

-~y ,

’ Fig. 5-6. Use of 8 reference flow chart-

[

ERIC

! .
L . . ¢ - » -
, . . . g

a

3
;
/

2

b]