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ABSTRACT

Partial matching is a comparison of two or more descriptions
that identifies their similarities. Determining which of several
descriptions is most éimilar to one description of interest is
called the best mabch problem. Partial and best matches underlie
several knohlédge system functions, including: analogical
reasoning, inductive inferehce, rredicate discovery, pattern-
directed inference, semantic interpretation, and speech and image
understanding. Because rpartial matchiné is both cbmbinatorial
and ill-structured, admissible algorithms are elusive,
Economical solutions require very effective use of constraints
that, apparently, can be 'provided only by globally. organized
knowledge bases. Examples of such organizations are provided,

and promising avenues of research are proposed.

4



-

"INTRODUCTION: WHAT 1S THE PARTIAL MATCHINC PROBLEM?

A partial match is a comparison of two or more descriptions

that identifies their similarities. Because typical descriptions
. < Ed ’

comprise symbolic property-lists or propositional formulae, a

partial match of two descriptions includes three components: an

abstraction, consisting of all properties or propositions common

to both compared descriptions; and two sidual terms,

i

representing the properties that are true of only one or the
other of the 6éscriptions. If the two compared descriptions are
A and B, the partial ﬁatch of A and B, denoted PM(A,B), is (A¥*B,
A-A¥B, B-A*B), where A¥B denotes the abstraction of A and B, and
A-A*¥B and B~A*¥B denote the properties of A and B, respectively,

that are not contained in A*B. In other papers, partial .matching

has been variously referred to as interference matching,

generalization or correspondence mapping (9, 10, 14, 15, 37, 407].

The premise of this paper is that the partial matching
probleﬁ is of fundamental importance for pattern~directed
inference and other knowledge~based acti&ities. While some
well—structurgd problems  may be splvable by conventicnal
algorithmic methods, it appears that tﬁe majority of complex
préblems cannot be solved with a small set of predefined,
pattern-matching rules thatl are appiied in an all~or-none
fashion, exactly as coded. Just "as laws must be flexibly

interpreted to regulate complex social interactions in reasonable

ways, So is it true in systems employing 1large amourts of

e
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knowledge to complex problems that each element of knowledge

should influence the cutcomes of numerous decisions without

dominating any. In such systems, "many diverse sources of

influence must be pooled to identify the best or most strongly

indicated course of action at each moment in time . Partial
matching and best matching are the mechanisms for accomplishing

this control.

In addition to its role in identifying the commonalities and.
differences of comparable situations, partial matching cén be
interpreted in two other ways. The second role of partial
matching is to ascertain how well an observed event -satisfies the
rrescribec constraints of an ideal or prototypic situational
descriptidn. Identifying the best match between the description
of an obsefved event and alternative prototyres enables the
current situation to be recognized as an instance or special case
of one of the prototypes. Those relationships shared by both
descriptioné are the constraints of the prototype that the
observed event satisifies. Any residual properties of the
prototype are wunsatisfied constraints. Classifying an event
according to its best match among alternative prototyres is
tantamount to péttern recognition hy constraint satisfaction (Cf.

[11).

The third role of partial matching is similar to constraint

satisfaction. In this case, too, a description of data is
compared with descriptions called temglates,: case frames,
'0 «
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schemata or frames. These frames are usually® hierarchically
organized, empirical or conceptual descriptions of observable
phenomena. In short, frames constitute a system’s knowledge of

its world. When the best matching frames are ascertained, the

data are interpreted by, imposing the frame structure upon them.
For example, in é spéech understanding task the data might
consist of an array of hypthesizéd wordés, and the cemplates would
te empirical phrase structurés of the language. The best-matched.
templates determine how the words should be parsed and
semantically interpreted. As a general rule, it appears that
semantic interpretation is best conceived as the mappigg between
current data and previously inferred schemata. Because the
superficial aspects of mbst observed situations differ
substantially from all previously encountered ones, semantic

interpretation is fundamentally a problem of partial matching.

Iﬁ the next sectiod!'several applications of partial and
best matches  are rresented to convey the generality and
difficulty of the partial matching pfoblem. Subsequently, a
criterion for the admissibility of ﬁartial~matching algorithms is
discussed which, though simple and reasonable, is difficult to
realize. In the 1last sections, the principal features of the
partiél matching problem' are disoussed, and. some promising

approaches towara its solution are propcued.

SOME APPLICATIONS OF PARTIAL MATCHING
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In this section, several applications‘are briefly discussed
to illustrate the generality, importance, and difficulty of the
-partial and best match problems. The ‘applications considered
inclﬁde analogical feasoning, semantic interpretétion, inductive
inference, predicate discovery, pattern-~directed inference, and
'speech and image understanding. In each case, the central problem
is finding a best match between two data descriptions or between
a data description and existing knowledge. This nearly always

entails searches of exponential problem spaces.

Analogical Reasoning. While this category properly embraces

numerous problems of widely varying specificity, the most well
studied is "A is to B as C is to whiqh, p1, D2, ..., Dn2" As
several researchers have shown {6, 38], an effective program for
solving these problems is as follows:

(1) Compute the partial matches PM(A, B), PM(C, D1),
PM(C, Dn).

(2) Determine the hest match between PM(4, B) and one of
PM(C, D1), ..., PM(C, Dn). If the best match is
PM(C, Dk), Dk is the best solution to the problem.

Recall that”PM(X, Y) comprises three terms, the abstraction X¥Y
and the residuais of X and Y. Thus, the partial match between A
and B defines a viewpoint 'for interpreting what changes were
necessary” Eo transform A into B; i.e., the pair A-~B incduces a

transformation [A -> B]. This transformation is implicit in the

structure PM(A, B) = (A¥B, A-A*B, B~A*B): A¥B specifies which

proberties of . A were retained, A-A¥B specifies which properties
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of A were deleted, and B~A¥B srecifies which properties were

added to A by the transformation of A into B.

The partial match between PM(A, B) and PM(C, Di) (for some

i) can be viewed as a comparison of two ordered lists and is

defined as PM(PM(A, B), PM(C, Di)) = (((A*B)*(C*Di), (A~A¥*B)*(C~

C*pi), (B~A*B)*(Di~C*Di)), R1, R2), where R1 and R2 are the
appropriate residual terms. ~ The abstraction of this partial
match consists of three ter@s: (A*B)*(C*Di) comprises all
properties éommon to all of the descriptions, A, B, C, and Di

(the partial matching operator * is associative); (A-A*B)*(C-

" C*Di) comprises all properties removed from A and C in
-4

transforming them to B and Di, respectively; and, similarly, (B-

A*B)*(Di~-C*Di) comprises all properties added to A and, C in

transformihg them to B and Di, respectively. Thus, the original
analogy proolem is reducible, through partial matching, to a
question of choosing the one comhination of common, dealeted, and

added properties that is most persuasive or plausible. Becaune
)

any answer to this question must rest on empirical or subjective
criteria, nothing of general validity can be added to this

analysis.

i

TSR

. - £
Another use of partial matching for analogical reasoning

~

occurs in Merlin [28]. In this system, any object can be
in‘erpreted as a special case of another - whenever their
differences do not outweigh their similarities. As an example,

suppose we wished to play baseball with only a bzt and a tennis
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ball: In Merlin’s framework, the feasibility of playing should
be directly related to the reasonability of viewing a tennis ball
in the role of a baseball. Such a viewpoint can b= achieved by
partial-matching their descriptions.: Supt ot e tennis bali were
defined as a "bouncy, hollow, light, fuzzy. {our-inch spheroid
that is forcefully hit in the game of “ennis" anc a baseball were
defined as a "hard, solid, leatherhcoverec, moderately heavy,
four~inch spheroid that is forzefully hit in the game of
baseball.”" In this case, the abstraction of the two descriptions
specifies that both objects are four-inch .spheroids hit
forcefully in games. The residuals, however, specify that
wher2as the baseball is hard, solid, ieather«covered, moderately
heavy and used in the game of baseball, thc tennis ball is

bouney, hollow, light, fuzzy and used in the game of tennis.

To decide'if the tennis ball will suffice as a makeshift
baseball, these residdalsl must be reconciled. One simplifying
approach to reconciliation émploys semantic categoriés. If
correspondenccs between pairs of residual properties can be
established so that each difference is internretable as a
specific dimensional ‘variation, the significance of the overall
difference can be decomposed and, thus, easily apprehended and
evaluated. A hierarchical organization of the system's.knowledge
greatly facilitates such a decompositicn. For example, the
difference hollow~solid can be reconciled by interpreting it as a
variation on the dimension of "structure" or "coastruction type."

As a result, a tennis ball can be viewed as a type of taseball

10
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that is hollow (rather than solid), light (rather than moderately
heavy), fuzzy (rather than leather-covered), used in the game of
tennis (rather than basebal’}, ard bouncy (rather than some

unspecified related ‘praperty

cf a baseball). If these
differences do not outweigh the similarities of the two, the

tennis ball will serve adbirably.

Before\legving this example, consider the role of partial
matching and residuals in eétablishing the correspondence between
objectsf First, the two objects” descriptions were obtained from
a dictibnary or semantic network. Seccnd, the properties common
to btoth were abstracted by intersecting their property~lists.
Third, the residuals were forced into possible corresponding
value pairs by finding dimensions that embraced both values.
Note that, in genera;, reconciling the difference between two
arbitrary values requires a recursive épplication of the partial
matching scheme. Finally, the best match maximizes the
similarities and minimizes the. diffe;ences (according to

exogenous criteria) between the compared descriptions.

! Cther sorts of analogical reasoning tasks can be formulated
eésily. For example: (1) If I know a detailed proc?dure (ordered
operations on operands) - to accomplish a specific ‘ function
(establish particular rélationships on the operands), how do I
modify" the procedure to .accomplish similar objectives. on
qualitatively different operands? Answer: try to find related

operations applicable to-the new operands that perform similar

¢
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functions. (2) If I want to persuade sosmeone that X causes Y but

don’t have specific examples, what can I do? Answer: find an
example where X° céﬁsed Y’ and X is to X" as Y'is to Y~ . .Despite
the fact that such arguments are not strictly logical, many
people fincd them persuasive when the underlying énalogies are

rlausitle.

Semantic Interpre-ation. The assignmert of best-matched

frames as the semantic interpretation of verbal material was
rreviously mentionecd. There is a second way in which rartial
matching supports»semantic interpretation.'.ln this case, two or
more concepté sharing certain syntactic relationships stimulate

restricted sorts of "spreading activation" searches of a semantic

network. When the searches emanating from the originél éoncepts

intersect, . the connecting path defines the semantic
interpretation of the syntactic structure [24, 31]. For example,

a novel noun-noun phrase encountered in a text, such as "lawn

mower," can be semantically interpreted by finding the test match

-among the relationships that radiate from the two concepts '"lawn"

and “mower" in a network embodying dictionary definitions. In
this example, the ©best such match entails the following
raraphrased interpretation: a "lawn mower™ is a machine that cuts
grass or similar plants [24]. Spreadiag activation, intersection
searches are now widely. applied in computer science and
psychology. Their similarity to the search techniques employed
by Merlin is apparent. Regardless of the particular knowledge

representation acoptec¢, the essential function of these systems

12
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is to find the best match possible under the constraints imposed

by the current knowledge.

Inductive Inference. Several researchers have shown that
ratterns, concepts, and production rules can be inferred by
.partial-matching examples to discover the consistently repeafted,
hence presumably criterial, properties [3, 4, 8, 9, 10, 14, 15,
18, 19, 35, 37, U40]. To illustrate, consider the following

examples of several classes:

Example 1: Tom and Jack are trothers. Jack is the father
of a boy named Bill who is under 10. Both Tom and Jack
are in their fifties. Jack’s brother is Bill's Uncle
Tom. )

Example 2: Mary is the mother of twin sons, Bill and Jim.
Mary is in her forties, while the boys~are both 14. HMary
has two brothers who are the boys Uncles Tom and Steve.

Example 3: Sue has no brothers or sisters. Her mother is

Jane, and Jane has has a brother named Fred. Fred is
Sue’s uncle. .

Example 4: Fred was a brilliant Negro who 1lived all of’
his life in a predominantly white, racist country.
Because he was . powerless and intimidated, Fred was
humiliatingly subservient to the whites in his community.
Fred was an Uncle Tom.
Example 5: Because John, an aging, impoverished Negro,
was humiliatingly subservient to Southern whites, the
young blacks in his town called him Uncle Tom. '
These examples will support a number of toth correct and
incorrect inferences that are equally plausible. For example, if
Examples 1 and 2 are partial-matched, one inference is ‘that

rarents are at least 40 years old and children are 14 or younger.

However, the type of inference that I want to draw attention to

i0
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here has to‘do with notions of "Uncle." By partial-matching
Examples 1 and 2, it is reasonable to infer that an uncle of x
Iis the brother of the parent of x. However; the best partial.
match of these two examples would entail the stronger inference
that x’s Uncle Tom is the hfother of x's pareni, who 1is at leasf

forty, while x is no older than 14%

A valid inference of the concept c¢f '"uncle" requires
rartial-matching all of Examples 1, 2 and 3, whereas a valid
inference of the concept of “Uncle Tom" requires comparing
Examples 4 and 5. This illustrates one of the perplexing
problems regarding the role of partial matching in inductive
inference. While it is pos§ible to infer valid rules by paftial—
matéhing enough examples to eliminate all irrelevant properties,
rartial matching is also necesséry to determine which examples
illustrate the same concept. Knowing that Examples 4 and 5
should be compared to infer the meaning of "Uncle Tom," rather
than comparing Examples 1, 2, U4, and 5, requires additional

knowledge.

Suppose a learning system were asked to decide, based only
on'}its knowledge of the five examples, if a certain 55~year-old
Neg%ﬁ named Sam could be considered an uncle. To answer, it
would necessarily seek similarities between the broperties.of Sam
and previous examples of uncles. If, dinstead of actually

retaining all examples, the system had only stored some

"suffiecient" set of rules induced by partial-matching arbitrarily
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selected subsets of examples, its current classification would
. have a good chance of being incorrect. Because most systems do,
in fact, attempt t»o sﬁore oni§ a minimal set of rules that can
- dcover" the data [25, 35], they are prone to errors caused by
decisions, about what combinations of propenties are important{

made before the properties of a test item are known. A system

S~

that stores its examples and postpones inferencing until the item
to be. classified is fully specified has a significantly reduced
probability of error. 1In the current example, such a system
would be guaranteed to have sufficient evidence to infer both
that: if Sam is the brother of a parent, he m;y be labeled an

uncle; and if he 1is subservient to whites, he may be an Uncle

Tom. -

The important point to observe is that the properties of the

- item to be classified, not the properties of the training data,

deiermine which inferences should be made. Obviously, then, many
inferences cannot be anticipated or generated until the problem
is fully specified. In short, optimal performance in inductive
inf'erence requires a '"wait-and-~-see" approach. In actual
applications of the partial matching mechanism to pattern
classification, the imgroved performance of wait-and~see

classifiers has repeatedly been otserved [5, 111.

The general iearning framework that revolves about partial
matching has teen applied to the induction of several kinds of

knowledge, including speech and imags patterns [5, 9, 11, 351,

-y
1
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structured or relational concepts [3, 9, 1C, 14, 15, 37, 38, 4C],
transformational grammaf rules [9, 1C, 38], anc other [condition

~> action] productions [38]. ‘ '

Predicate Discovery. While the type of induction discussed
in the previous section assumes the prio- disccvery and encoding
of those properties needed to express a rule, rpartial matching
provicdes a basis for «ciscovering new gredicates too. For
example, if a learner were exposed to the following sentences, it
would have a gooc¢ basis for several interesting inéuctions:

Example 1: Because John is so tall, it is difficult to
find clothes that fit him.
Example 2: Because Mary is so short, it is hard to get
2lothes that can fit her.

Example 3: Because Joanne is so fat, it is impossible to
get apparel that is the right size. ‘

Example 4: Because Tom is so skinny, it is not possible
Lo find clothes that are suitable.

~

Using only superficial characteristics of the string
representations of these examples, the following common

abstraction would te produced by partial-matching:
(Because u is so v, it is w to x).

The corresponding residual values from the four examples

associated with each variable u, v, w and X are as follows:

us (John, Mary, Joanne, Tom)

v (tall, short, fat, skinny)
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w: (gifficult, hard, impossitle, not possible)
Xt (find clothes that fit him,
get clothes that can fit her,
get apparel that is the right size,
find clothes that are suitable).
Thus, with only four examples and very little knowledge ,
reasonable inferences regarding four apparent categc?ies of

natural language could be generated. The four distinct values

associated with- each of the variables are apparently subsets of

the possible domains of associatead (unknown) predicates. For
examplé, John, Mary, Joanne and Tom are four of the possible
values of the attribute "name." If this attribute hacd already

been known to the system, partial-matching of the examples would
have preserved the common "name" attribute, and a slightly more

informative abstraction would have bteen produced, such as:
(Because the thing named u is so v, it is w to x

Thus, u, v, and w contribute to the discovery of the categories

.of name, tody shape attritutes, ana expressions for "¢ifficult ¢t

Y]

chieve". For the purposes of machine learning, knowls=dge of

these interprebations rer se is unnecessary. All that apparently

[fa}

is necessary is to infer the existence and composition of such
categories (unary predicates), and this may be done whenever
different constants are correspondents in correctly rpartial-

matched descriptions.

Continuing with the previous example, it is also interesting

to compare the residuals associated with variatle x by a

17 )
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recursive application of partial matching like that employeg 5in‘_
Merlin. As a result of recursive partial matches of the four
residual x strings, the following sequence of inferences will be

produced:

(1) Infer the .category FIND = {find, get}.

(2) Infer the category CLOTHES = {clothes, apparel}.

(3) Infer the category FIT = {fit him, can fit her, is
the right size, are suitable}.

Then the abstraction of the residuals of X is:

(FIND(a) CLOTHES(b) that FIT(c)).

-

Notice that this abstraction is itself a candidate for a new‘type
of. ternary relation that, by definition, is true of any triple
(a, b, ¢) constituted from the categories FIND, CLOTHES, and FIT,
respectively. Any' such triple is an instance of this general
template and has the obvious interpretation. Such a ﬁemplate is
a2 plausible model of the natﬁral language expression for finding

clothes that fit. 1In any case, a capacity exists to identify

plausible syntactic categories and semantic templates by
partial-matching even a small number of similar verbal strings.
This approach to ' predicate discovery has been successfully

applied to a number of restricted languages [9, 17, 36].

Pattern-directed inference. One of the concepts that has

captured the imagination of many computer scientists and
4 .

psychologists is that of frames, prototypes, templates, scripts

i3
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or schemata [2, 26]. Frames are supposedly knowledge units that
delineate the elements of physical ér conceptual e&ents and
express the constraints by which they are related. Distinct
frames have been proposed for every ordinary physical object,
typical configurations of objects, and most observable phenomena
(e.g., dining atla restaurant or shopping for food). While there

is prima facie evidence supporting the theory that people have

-such knowledge, there is little concrete undersﬁanding of how

this knowledge can be exploitec to simplify reasoning .processes.
What can be universally agreed upon 1is trivial: whenever a
situatioh is encountered where existing knowlecdge is aprlicatle,
that knowledge should be applied to constrain the possible

interpretations attributed to observed phenomena.

In this framework, the key issues are how relevant knowledge
can be identified efficiently and applied effectively.  Thus, for
the moment, it will be assumed that a frame exists for describhing

every interesting rattern of relationships. Surpose, for

“example, that the number of frames rslevant to image processing

is abocut 100,0CC, including ones for familiar faces, buildings,
automobiles, buses, bodies, trees, mountains, furniture, and
implements of various sorts. Now, suppose that someone presents
a photograph selected randomly from a magazine anc asks how
knowledge should be employed to assist in interpreting it.
Simply asserting that we should arply whatever knowledge is
needed "to resolve the a priori uncertainrty abddt the identity of

various obtjects and their interrelationships is not an answer,

i9
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for this is presumed by the question. The question'asks‘ggg the
relevant knowledge can be identifiedf Once again, the answer
appears to be that the best-matching frames should be chosen to
interpret .the data. In most cases, even best—matched frames will
only be paréially satisfied, because observed objects are
occludec or otherwise faii to conform perfectly to the
preconceived frame constraints.  Once the best-matched frames
have teen identified, their kno@ledge can be exploited ¢to
hypothesize and test the arparently missing or erroneous data

constituents.

Because no frame, by itself, can be expected to give a,
thorough account of the significant features of any normal,
reasonably comglex scen:, satisfactory interpretations will-
normally require the .iategration of several partially matched
frames. Two ways of determining the appropriate combination of
frames can be proposed: (1) frames should,be tried one-at-a~time,
and acditional frames should be incorporated as needed to resolve
residual or. anomalous properties; (2) some identifying
characteristics of appropriate frames shoulémbe discerned through
an analysis of global properties o% the problem, and then frames
satisfying these dynamically determined criteria should be
invoked.v In the next subsection some recent results of speech
and image understanding research are presented favoring the

second alternative.

Speech and Image Understanding. Speech understanding
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systems face the task of finding the best~fitting interpretatioq
for a noisy, rparametric time series. The parameters are acoustic
measurements and the interpretation is a hierarchical tree whose
root is a seméntic template from the language and whose
intermediate levels represent phrases, words, syllables, phones,
. and acoustic segments [16, 20]. An ‘nterpretation is constructed
by applying knowledge of possible mappings between intermediate
levels. In the  Hearsay~II system- in particular, the
interpretation process occurs basically in two phases. First,
knowledge about the acoustic realization of words is used to
hypothesize, bottom~up, plausitle words at various temporal
locations within an utterance. For example, if the sentence
contains 10 words chosen from a 1000~word vocabulary;wabout 7 or
8 on the average are correctly hypothesized. In addition,
approximatelv 200 incorrect words are hypothesized, and about 40

of these are actually rated higher than valid word hypotheses.

In the second phas2, missing words are hypothesized and
rated and the entire sequence of words in the sentence is parsed
and assigned an overall semantic interpretation. The key problem

in this rhase is to generate and rate the most plausible, missing

words. Even when the vocabulary and grammar are highly
constrained, the size of the search space for rossibie
grammatical word sequences is extraordinabily large. In the

Hearsay~I1 system several approaches to this problem were tried,
and only one approach apparently derived sufficient constraint,

by applying enough knowledgs simultaneously, to succeed. The

21
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.method wused: was to partial-match the entire collection’ of
bottom~up word hypotheses againéi all templates of the grammar ,
in“parallel, in the hope of finding oﬁe sequence ofv.highly—rated
words that was grammatical and most probably validr If such a
sequence could‘be identified,.the system predicted and rated its
plausible word extensions, iteratively, until a complete

interpretation of the sentence was constructed.

Two knowledge sources were involved in computing the partial
match between the matrix of hypothesized words and the
grammatical case frames. These were WOSEQ [21], a word sequence
‘hypothesizer, and PPARSE [12], a gartial parser. 1In overview,
WOSEQ uses knowledge about the adjacency of words in the language
to foerm hypothetical word sequences by concatenating successive
language~adjacent and time~adjacent wofd hypotheses. It prunes
the search space further by terminating the concatenation process
for any sequence when the expected benefit is less than\thezcost,
i.e., when the increase' in credibility obtainable by
concatenating additional word %ypotheses is insufficient to
wafﬁént the attendant multiplicative increase in the total pumber
of word sequences generated. Each of the most credible word
sequences identified by WOSEQ is then evaluated by PPARSE to
determine whether it is actﬁally grammatical, i.e., whether it is
a subséquence of some sentence in the language. Each of these

rartial matching procedures is now explained in more detail.

WOSEQ uses a precomputed bit matrix that specifies for each

v
| ]
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possible word pair (u,.v).whether the sequence u Vv can occur in a
sentence of the language. For the 10C0-~-word vocabulary, this
requires approximately 30K 36-bit wordas of memory. Given a
collection of Gbottom-up word hypotheses, WOSEQ selects a few of
the most credible ones as geeds for its sennence-growing process.
Each seed is a one-~word sequence, and the 1ollowing procedure is
applied repeatedly to all sequences until quiescence occurs:
(1) For each word sequence W, construct the sets P(W) and
S(w) of word hypotheses that can precede and succeed W.
P(W) contains all tLypotheses that are both language-
adjacent and time~adjacent to the first word in W. The
set S(W) contains all hypotheses that are time and
language~adjacent to the last word of W.
(2) For each w in P(W) evaluate the credibility of the
sequence (w, W). This is an increasing function of the
credibility of w 2nd W, an increasing function of the
total number of syllables spanned by (w, W), and a
decreasing function of the number of words in P(W). If
the credibility of the sequence (w, W) is greater than.
that off W, add (w, W) to the sst of hypothesized
sequences. For each word w-in S(W), similarly process
the potential sequence W, w).
When WOSEQ quiesces, it will have identified sequences of
rairwise~grammatical words that appear to be most credible over
the entire set, both because they incorporate at least one of the
individually most credible bottom-up hypotheses and because they
satisfy a maximum number of low probability constraints. WOSEQ
is usually successful at its task, because it ccntinually
increases the credibility of the objects it processes. It does
this bty adducing contextual support in the form of numerous,

consistent, unlikely observations. The algorithm is efficient

because the +time and language-~adjacency constraints are easily

23
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computed. In a later section of this paper, it is suggestec that

easily computable, global attributes of the problem space may

provide a promising, general approach to . the rartial matching
G

rroblem.

The next step in the linguistic partial matching problem is
to test each word sequence for grammaticality. This requires a
parser capable of recogniziné the grammaticalitf of any word
sequence, even if it is only a subsequence «f the string
cderivable from a nonterminal. In Hearsay-~11, this is
accémplished by a program PPARSE. FPARSE is a btottom~up, left-.
to-right Kay~type parser with the following modifications: Any
rewrite rule such as X -> A B can be applied, and the parse node
X constructed, whenever the leftmbst derivative of B in the parse
tree 1s the first word of the sequence being partial-parsed.
Similarly, any rewrite like Y -> C D can be applied whenever the
rightmost derivative of C is the last word of the sequence being
rartial-parsed. These are the only cases in which incomplete

tree structures are built.'

WOSEQ and PPARSE succeeded at controlling the combinatorics
of the search rproblem, while a number of production systems
failed [16, 27], because hypotheses that satisfy many ot WOSEQ s
constraints are 1likely to be wvalid. Furthermore, the truly
expensive operation in this partial matchirg, instantiating and
hypothesizing incomplete grammatical case frames, occurs only
when an incomplete nonterm;nal can appropriately derive the first -

ded



-21~ .

or last werd of a sequence selected by WOSEQ. Compareé¢ to any
simplistic conception of how a frame system can operate to
hypothesize and then fill in partially instantiated frames, WOSEQ.
and 'PPARSE constitute a significantly suprerior solution to the

best match problem.

The last example of partial matching to be considered is the
problem of determining stereo disparity tetween two images that
are left and right—éye views of one scene. To resolve the
disparity between two images of this sort, it is necessary to
paftial~match'them to identify the corresponding (same) objects
in each image.' Once this is done, the lateral displac:ment or
disparity between the two is a cue for the distance of the object
from the viewer. The human visual system is capatle of resolving
such disparity, even when there are no distinguishable o= jects in
either view (as in random~dot stereograms). Recently Marr and
Poggio [22] have shown how the ;e;essary partial matching
computations can be perfcrmed locally by spatially distributed,
cooperative processes. Their approach rests on the observation
that, while the disparity between any two corresponding points is
initially wunknown, any hypothesis regarding some particular
disparity value between two points in the two images implies
approximately the same disparity value btetween neightoring
points. By‘constructing a problem representation in which évers
possible rair of corresponding points, with disparity d,
influences the neightoring points with matching properties toward

correspondences under the same disparity, a difference equation
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‘is constructed that can te applied iteratively and 1locally to
choose correspondences that maximize constraint satisfaction. A
solution in this algorithm is just a steady-state reached.by -the

difference equation.

This application of ©partial matching is particulébly
interesting, because.it shows how global features of the proilem
" space, such as disparity and spatial position, can constrain -the
search for the Uest match. The global communication of
constiai~t is accomplished by directly connecting neighboring
points whose hypothetical.disparity values influence one another.
To cevelop a mechanism capable of this sort of information
sharing, a representation had tc be discovered that clarified the
relationship between global data attributes (location and
disparity) and 1local computations involved in partial matching
(determining the grey-scale similarity of two  potentially
corresponding point§3;* The role of t;;; integrated global~local
~ problem representation. is comparable to ,that played by the
precomputed language~adjacency matrix used by WOSEQ to
hypothesize word  sequences in Hearsay-II. This suggests some
interesting properties of the partial matching proﬁlem that are

pursued in the subsequent sections.

PRINCIPAL PROPERTIES OF THE PARTIAL MATCHING PROBLEM

From the preceding illustrations, it is possible to identify

four principal characteristics of the partial matching problem.

N
<
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"In this section, these are briefly discussed.

The desirability of analyzing any particular configuration

of data can only be determined Qxﬁamica;;x. In the large class

of problems where partial matching is necessary and
computationally expensive, the number of distinct partial matches
that can arise is virtually limitless. As a result, it is not
possible to | predetermine - all combinations of observable
troperties that may, at some time, most warrant some response. A
fortiori, it is not possible to rank order the potential
situations in terms of import or interest value. Réther, the
choice of which configurations of data deserve further processing
resources is determinatle only as a result of dynamic partial
_matching bgtween the data in hand and the frames or templates

specifying known constraints.

Partial matching, as a general computational rroblem, is

intngg&able. Because partial matching subsumes the graph
ménomofphism, the k~-clique, and othér NP~-complete problems, ihé
amount  of time apparently needed to solve worst-case problems is
at least exponential in the complexity of the struciures being-
matched. It follﬁws that if partial-matching is to be applied
successfully, problem‘complexity must be reduced. The principal
'Qay in which such complexity reductionican be accomplished is by
choosing rich, high~order predicates as a basis for desqription.

As the grain of description is reduced toward uniform,; low~level

prédicates (e.g., simple graphs, retinal arrays of “on~-off

27
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detzctors, seiantic primitives), the partial matching probtlem i3

made inherently more complex ancd less feasitle.

tic. Thus

Partial matching is funcamentally wnong

i

termini
far in this rpaper the nondeterminisn of partial matching
algorithms has been neglected, rrimarily because one partial
match solution is usually kest. Thus, while any frogram designed
for partial matching must incorporate logic that permits it to
pursue multiple solutions simultaneously, effective mechanisms

will quickly prune poor alternatives from consideration.

Good rartial matches traverse a grior

'3
;.4
(o
10
S
1Q
i

This point is of the utmost importance for vaderstanding why
simple approaches to rpattern-directec infeircnce or frame-
theoretic analysis of real cata are 1likely to fail. Simrle

approaches will attempt to hypothesize all partial-matched

frames and then precict and verify their missing
constituents.. In any reaconably complex cdomain, the tUtest
interpretation of cdata will traverse a priori touncaries of

several low-orcder frames ané will only te apparent when multiple
leve's of partial-matchec¢ frames are integrated. The simple
approach entails extensive unwarranted searching of many levels
of frames, bLkecsuse hundredé of frames can ‘be consistent
with at least some properties of the observed data. The search

for a best overall interpretation can be effective only if

‘many properties of the cdata, providing multiple sources of

23
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constraints, are considered 5imultaneously.

TAE PARTIAL #ATCH ADMISSIBILITY CRITERION

Any propoéed algorithm for partial-matching two structures A

anc B ought to satisfy the following criterion:

The mcre similar A ancd B are (everything else held
constant), the faster the partial match should te.

This ecriterion is called the partial match admissibility

griterion. Its reasonatleness and desirability are intuitively
apparent. Yet, even in the simplest applications of ©partial
matching, it is rarely achievatle [33]. The cause is that
typical partial matching algorithms evaluate froperties one-at-
a~time. For example, if we wish to finc a document that has
keys (attritutes) g, h, anc k, most procedures accomplish this
by intersecting the inverted lists of documents associated with
each of the three keys. Thus, it takés longer to fing a

document that matches 1C keys than to find one that matches 3,

ilvenues of approach toward realizing admissitle algorithms

.are suggestec by considerirg partial mat-hing as a search problem

in which each partial match corresponds to a state. The initial
' [ o .

state is regpresentec as a three~tuple, ((), A, F), where A is the

observed data representation (or query) and F is a set of frames

against which A can be compared. As before, the first compoﬁent

represents the abstraction or partial match thus far constructed,

»
-
(f\
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the second component represents the residual of A with respect to
this abstraction, ahd the third component represents the

residuals of the frames vis~a~vis the current abstraction.

By applying typical admissibiiity criteria of general

searches [30], it is apparent how one should move through this
search space. At each decision point in the algerithm, the most
rromising partial solution should be extended. .The most

promising extension is ths one vproviding the most complete
partiél match for the least expegse. Here, expense is defined as
the total computation required to arrive at any given state,
ircluding both the computation time spent developing the
varticular partial match as well as the time spent constructing
collateral matches from expénded partial solutions on the same.
rath. Thus, the best step at eaéh point is the one which adduces
the most constraint for the least cost. Constraint in this case
is exactly definable as the reduction in the remaining
uncertainty regarding which frames of F are involved in the best

match of A.

From this viewpoint, it appears that theré'{is 'only one
interpretation of constraint. A transformation from one partial
matching state to another is constraining to the extent to which

it eliminates possible elements of F from further consideration.

Two useful concepts in this context are the diagnosticity of

.

a test and its performance. Diagnosticity is a measure of the

ability of a test to rule out possibilities. Performance is a

-390,



-2

composite measure of the expected utility of a test, combining
its diagnosticity with its expected frequency of satisfiability
[31. An optimal algorithm would apply, at each decision
point, the most diagnostic test that is satisfiable.
Expecteé ccst can te minimized by applying the tests with highest
rerformance values at each decision roint. Such an
approkimation is imgportant, because we know of no reaéonablez way
to determine dynamically the most ciagnostic tests. Some avenues

of approach to these problems are suggested in the next section.

IMPLICATIONS FOR THE DESIGN OF KNOWLEDGE SYSTEMS3

From this stucdy of partial matching, four general
impiications for the design of knowledge systems are drawn. Each

of these is considered in turn.

Analyses should be synthetic and dynamic. This criterion,
-although sounding shperficially like a suggestion for analysis-~
by~synthesis, is diametrically opposed to that approach. . In
analysis~-by~synthesis {[19], patterns are interpreted by top-
down methods: one most likely, highest-level frame is selected
arbitrarily to .apply and, at each point, unfillec¢ frames are
expanded downward until they can fit (interpret) the data.
Because such search strategies are insensitive to properties of
the data at hand, they wili perform badly unless more constraint

is available from the top~down structure of the frame system

than from tests based on diagnostic combinations of data andg

e
ot
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frames. To be synthetic means choosing tests to perform which,
in view of the properties exhitited by the data, aprly maximal
constraint. Knowledge systems designed along these 1lines would
employ a basic three—étep cycle: (1) a small number of highest-
performance tests are applied to the best partial solutions
(initially, to the most credible data); (2) the most promising
matches . are extend;d; and (3) the new best matches are
identified for evaluation by another set of highest~performance
tests. Note how this paradigm embraces the WOSEQ~PPARSE

-

methodology described earlier.

Descriptions should be rich and simpl

i

To reduce the

complexity of the search problem, descriptions should be as rich
and simplegas possible. This criterion implies that high-~level

descriptors are more desirable than low-level ones. For example,

'language processing systems representing knowledge in terms of

lexemes are more efficient than those representing such knowledge
in the form of equivalent graphs of semantic primitives [7]. One

particularly interesting aspect of Merlin is its wuse of

'_hierarchical descriptions permitting partial matching to be

performed at the highest-level of description possible. Merlin’s
partial matcher descends into the depths of low-~order
descriptions only if matches of rich, high-level terms fail.
This criterion is actually a heuristic for achieving maximallf
constraining tests for the lgast cost. 1Its actual effectivness

depends on the exact performance of tests at high and low levels;

‘in reasonable problem domains, however, the heuristic should be

Q0
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generally valig.

Scheduling of computational - resources, based on

diagnosticity or performance, should be considered a primitive

function in partial matching systems. Complex partial matching

systems must include mechanisms to insure that the most desirable
actions are executec first. Two properties of‘,schedulers are
proposed. Firéi, desirability should primaﬁily reflect the
diagnosticity of a pending action. Second, since scheduling is a
primitive operation, the costs of calculating desirabtilities and
sorting the pending actions should be minimized. In this
context, it 1is "interesting to note that previous studies of
knowledge system scheduling [15] and conflict resolutioﬁ in
production systems [23, 29] have completely neglected the concept

of diagnosticity.

Problem representations should integrate characteristics of

the knowledge base with rroperties of the data tc maximize

the constraint provided in search. This criterion suggests that

one apprcach - to improved performance in partial matching
is to develop globally organized ° representations whose
attributes can be exploited to reduce uncertainty during
partial matching.  The work of Marr and Poggio [22] on stereo
disparity is a good example of the wuse of such a globally
organized problem srpace. Each locus of ~ computation is
influenced by all relevant cooperative 'loci, and these are

efficiently identifiable beéause they are in the ‘same
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neighborhood of the problem space. The essence of such spatial
organizations 1is an ability to reduce the number of computations
involved in similarity judgments. Similar benefits were provided

to the partial matcher in Merlin as a result of its hierarchical

organization of knowledge.

In the future, representations should be sought which
support the use of proximity measures or directionality to
identify good partial matches. These could provide cheap and
constraining tests for a Qariety of tasks. For example,
semantic networks might be superimpdsed upon the type of
metric semantic spaces which humans apgparently bossess 32, 34,
39]. The value of such organizations would derive from an
improved capacity to detect that' two oujects are likely
correspondents (are highly similar) just because they are close
in the metric representational space. MOreoveﬁ, such integrated
sbégial and symbolic representations could signifiéantly imprer
intersection searches by favoring spread of activation.in the
"area'" between two concepts of interest. Given the coordinates
of two nodes to be connected by a beat path, preference si:nuld be
given to out-going 1links that are oriented in appropriate

directions.

Other types of organization should also be sought that can
facilitate computation of approximate similarity. For example,
in early experiments in rule induction, Hayes~Roth and

‘McDermott [15] showe¢ how transformational grammar rulés could
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be inferred by partial-matching before~and-~after examples.
Their program employed no knowledge about either the structure
of productions or sentences. ' By incorporating rproperties of
these structures as attributes of the representations, Vere das
able to reduce the computation time by two qrders of magnitude
[38]. The organizing properties he exploited included a three-
part decomposition of each production, corresponding to thé
three components of the partial match of the before and after
rarts of each example, and a hierarchical representafion of

sentences. The additional constraints provided by these global

attributes of problem organization greatly simplify this
particular partial matching problem. &#%@~“

CONCLUSIGNS

I have tried to show in this paper that partial matéhing
is central to many interestinél functions of knowledge systems.
A few years ago, the: foremost problem of knowlege s&stem
design was how knowledge should be represented. While knowledge
representations are continually improving, many good frameworks
have aliready been developed. Since pattern~direpted function
invocation is obvioqsly de§irabl§ for many applications of these
knowledge systems, attention has recently focused upon good
methods to invoke appropriate knowledge units. Wwithin the

framework of all-or-none knowledge appliéation, the major topics

of interest concern matters of efficiency, such as developing

"methods for common subexpression elimination, efficient
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techniques for all~or-none pattern matching, and strategies
for conflict resolution. Wnile these are surely important
considerations in implementing' systems for simple or well-
structured tasks, the most difficult rroblem arising in very

large and flexible knowledge systems is to determine, as

quickly as possibtle, the most useful knowledge for the task
at hancg. Becéuse many diverse elements of Kknowledge may
be weakly contributory to an overall solution, new ways of
organizing computation must’be developed to prevent intractable,
combinatorial searches. In the future, a major shift in
attention can be anticipated toward the ' deceptively
easily stated ©but fundamental question: How should partial and

best matches be computed?
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