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ABSTRACT

Partial matching is a comparison of two or more descriptions

that identifies their similarities. Determining which of several

descriptions is most similar to one description of interest is

called the best mat-cli problem. Partial and best matches underlie

several knowledge system functions, including: analogical

reasoning, inductive inference, predicate discovery, pattern-

directed inference, semantic interpretation, and speech and image

understanding. Because partial matching is both combinatorial

and ill-structured, admissible algorithms are elusive.

Economical solutions require very effective use of constraints

that, apparently, can be provided only by globally% organized

knowledge bases. Examples of such organizations are provided,

and promising avenues of research are proposed.

o:



-1-

INTRODUCTION: WHAT IS.THE PARTIAL MATCHING PROBLEM?

A partial match" is a comparison of two or more descriptions

that identifies their similarities. Because typical descriptions

comprise symbolic property-lists or propositional formulae, a

partial match of two descriptions includes three components: an

abstraction, consisting of all properties or propositions common

to both compared descriptions; and two rcAsidual terms,

representing the properties that are true of only one or the

other of the descriptions. If the two compared descriptions are

A and B, the partial match of A and B, denoted PM(A,B), is (A*Bj

A-A*B, B-A*B), where A*B denotes the abstraction of A and B, and

A-A*B and B-A*B denote the properties of A and B, respectively,

that are not contained in A*B. In .other papers, partial.matching

has been variously referred to as interference matching,

generalization or correspondence maoping (9, 10, 14,.15, 37, 40].

The premise of.this paper is that the partial niatching

problem is of fundamental importance for pattern-directed

inference and other knowledge-based, activities. While some

well-structured problems may be solvable by conventional

algorithmic methods, it appears that the majority of complex

prOblems cannot be solved with a small set of predefined,

pattern-matching rules that are applied in an all-or-none

fashion, exactly as coded. Just 'as laws mUst be flexibly

interpreted to regulate complex social interactions in reasonable

ways, so is it true in systems employing large amounts of
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knowledge to complex problems that each element of knowledge

should influence the cutumes of numerous decisions without

dominating any. In uch systems, many diverse sources of

influence must be pboled to identify the best or most strongly

.indicated course of action at each moment in time. Partial

matching and best matching are the mechanisms for accomplishing

this control.

In addition to its role in identifying the commonalities and.

differences of comparable situations, partial matching can be

interpreted in two other ways. The second role of partial

matching is to ascertain how well an observed event.satisfies the

prescribed constraints of an ideal or prototy.Eic situational

description. Idenifying the best match between the description

of an observed event and alternative Prototypes enables the

current situation to be recognized as an instance or special case

of one of the prototypes. Those relationships shared by both

descriptions are the constraints of the prototype that the

observed event satisifies. Any residual properties of the

prototype are unsatisfied constraints. Classifying an event

according to its best match among alternative prototypes is

tantamount to pattern recognitioh by constraint satisfaction (Cf.

[1]).

The third role of partial matching is similar to constraint

satisfaction. In this case, too, a description of data is

compared with descriptions called templates, case frames,



schemata or frames. These frames are usually hierarchically

organized, empirical or conceptual descriptions of observable

phenomena. In short, frames constitute a system's knowledge of

its world. When the best matching frames are ascertained, the

data are interpreted lo,imposing the frame structure upon them.

For example, in a speech understanding task the data might

consist of an array of hypthesized words, and the templates would

te empirical phrase structures of the language. The bestmatched

templates determine how the words should be parsed and

semantically interpreted. As a general rule, it appears that

semantic interpretation is best conceived as the mapping between

current data and previously inferred schemata. Because the

superficial aspeQts of most observed situations differ

substantially from all previously encountered ones, semantic

interpretation is fundamentally a problem of partial matching:

In the next sectio* several applications of partial and

best matches are presented to convey the generality and

difficulty of the partial matching problem. Subsequently, a

criterion for the admissibility of partial- matching algorithms is

discussed which, though simple and reasonable, is difficult to

realize. In the last sections, the principal features of the

partial matching problem are disosed, and some promising

approaches toward its solution are propcoed.

SOME APPLICATIONS OF PARTIAL MATCHING
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In this section, several applications are briefly discussed

to illustrate the generality, importance, and difficultir of the

partial and best match problems. The applications considered

include analogical reasoning, semantic interpretation, inductive

inference, predicate discovery, pattern-directed inference, and

speech and image understanding. In each case, the central problem

is finding a best match between two data descriptions or between

a data description and existing knowledge. This nearly always

entails searches of exponential problem spaces.

Analogical Reasoning. While this category properly embraces

numerous problems of widely varying specificity, the most well

studied is "A is to B as C is to which, D1, D2, , Dn?" As

several researchers have shown [6, 38], an eff9,ctive program for

solving these probleMs is aS follows:

(1) Compute the partial matches PM(A, B), PM(C, D1), ...,
PM(C, Dn).

(2) Determine the best match between PM(A, B) and one of
PM(C, D1), PM(C, Dn). If the best match is
PM(C, Dk) , Dk is the best sOlution to the problem.

Recall that PM(X, Y) comprises three terms, the abstraction X*Y

and the residuals of X and Y. Thus, the partial match between A

and B defines a viewpoint for interpreting what changes were
,

necessary to transform A into B; i.e., the pair A-B induce's a

transformation [A -> B]. This transformation is implicit in the

structure PM(A, B) = (A*B, A-A*B, B-A*B): A*B specifies which

properties of. A. were retained, A-A*B specifies which properties



-5-

of A were deleted, and B-A*B specifies which properties were

added to A by the transformation of A into B.

The -partial match between PM(A, B) and PM(C, Di) (for some

i) can be viewed as .a comparison of two ordered lists and is

defined as Pl%ftPM(A, B) , PM(C, Di)) = (((A*B)*(C*Di) , (A-A*B)*(C-,

C*Di) , (B-A*B)*(Di-C*Di)), Rl, R2) , where Rl and R2 are the

appropriate residual terms. The abstraction of this partial

match consists of three terms: (A*B)*(C*Di) comprises all

properties common to all of the descriptions, A, B, C, and Di

(the partial matching operator * is associative); (A_A*B)*(c-

'C*Di) comprises all properties removed from A and C in
4

transforming them to B and Di, respectively; and, similarly, (B-

A*B)*(Di_C*Di) comprises all properties added to A an& C in

transforming them to B and Di, respectively. Thus, the original

analogy problem is reducible, through partial matching, to a

question of choosing the one combination of common, deleted, and

added properties that is most persuasive or plausible. Becauoe

any answer to this question must rest on empirical or subjective

criteria, nothing of general validity can be added to this

analysis.

Another use of partial matching for analogical reasoning

occurs in Merlin [28]. In this system, any object can be

in erpreted as a special case of another whenever their

differences do not outweigh their similarities. As an example,

suppose we wished to play baseball with only a bat and a tennis

9
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ball. In Merlin's framework, the feasibility of playing should

be directly related to the reasonability of viewing a tennis ball

in the role of a baseball. Such a viewpoint can achieved by

partial-matching their descriptions; Suploe tennis ball were

defined as a "bouncy, hollow, light, fuzzy, tour-inch spheroid

that is forcefully hit in the game of tennis" and a baseball were

defined as a "hard, solid, leathercovered, moderately heavy,

four-inch spheroid that is for:!efully hit in the game of

baseball." In this case, the abstraction of the two descriptions

specifies that both objects are four-inch -spheroids hit

forcefully in games. The residuals, however, specify that

wheraas the baseball is hard, solid, leather-covered, moderately

heavy and used in the game of baseball, the tennis ball is

bouncy, hollow, light, fuzzy and used in the game of tennis.

To decide if the tennis ball will suffice as a makeshift

baseball, these residuals must be reconciled. One simplifying

approach to reconciliation employs semantic categories. If

correspondences between pairs of residual properties can be

established so that each difference is interpretable as a

specific dimensional .variation, the significance of the overall

difference can be decomposed and, thus, easily apprehended and

evaluated. A hierarchical organization of the system's knowledge

greatly facilitates such a decomposition. For example, the

difference hollow-solid can be reconciled by interpreting it as a

variation on the dimension of "structure" or "construction type."

As a result, a tennis ball can be viewed as a type of baseball

10
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that is hollow (rather than solid), light (rather than.moderately

heavy), fuzzy (rather than leather-covered), used in the game of

tennis (rather than baseba) ), ard bouncy (rather than some

unspecified related (if a baseball). If these

differences do not outweigh the similarities of the two, the

tennis ball will serve admirably.

Before,leaving this example, consider the role of ,partial

matching and residuals in establishing the correspondence between

objects. First, the two objects' descriptions were obtained from

a dictionary or semantic network. Second, the properties common

to both were abstracted by intersecting their property-lists.

Third, the residuals were forced into possible corresponding

value pairs by finding dimensions that embraced both values.

Note that, in general, reconciling the difference between two

arbitrary values requires a recursive application of the partial

matching scheme. Finally, the best match maximizes the

similarities and minimizes the differences (according to

exogenous criteria) between the compared descriptions.

Other sorts of analogical reasoning tasks can be formulated

easily. For exampae: (1) If I know a detailed procedure (ordered

operations on operands). to accomplish a specific function

(establish particular relationships on the operands) , how do I

modify' the procedure to .accomplish similar objectives on

qualitatively different operands? Answer: try to find related

operations applicable to.the neW operands ,that perform similar
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functions. (2) If I want to persuade soiteone that X causes Y but

don't have specific examples, what can. I do? Answer: find an

example where X' caused Y' and X is to X as Y'is to Y'. Despite

the fact that .such arguments are not strictly logical, many

people find them persuasive when the underlying analogies are

plausible.

Semantic Interpre:ation. The assignmert of bestmatched

frames as the semantic interpretation cf verbal material was

previously mentioned. There is a second way in which partial

matching supports semantic interpretation. In this case, two or

more concepts sharing certain syntactic relationships stimulate

restricted sorts of "spreading activation" searches of a semantic

network. When the searches emanating from the original concepts

intersect, the connecting path defines the semantic

interpretation of the syntactic structune. [24, 31]. For example,

a novel nounnoun phrase encountered in a text, such as "lawn

nower," dan be semantically interpreted by finding the best match

among the relationships that radiate from the two concepts "lawn"

and °mower" in a network embodying dictionary definitions. In

this example, the best such match entails the following

paraphrased interpretation: a "lawn mower" is a machine that cuts

grass or similar plants [24]. SPreadiag activation, intersection

searches are now widely. applied in computer science and

psychology. Their similarity to the search techniques employed

by Merlin is apparent. Regardless of the particUlar knowledge

representation adopted, the essential function of these systems
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is to find the best match possible under the constraints imposed

by th e. current knowledge.

Tndqctive Inference. Several researchers have shown that

patterns, concepts, and production rules can be inferred by

.-partial-matching exaMples to discover the consistently repeated,

hence presumably criterial, properties [3, 4, 8, 9, 10, 14, 15,

18, 19, 35, 37, 40],. To iliustrate, consider the following

examples of several classes:

Example 1: Tom and Jack are brothers. Jack is the father
of a boy named Bill who is under 10. Both Tom and Jack
are in their fifties. Jack's brother is Bill's Uncle
Tom.

Example 2: Mary is the mother of twin sons, Bill and Jim.
Mary is in her forties, while the boyS-are both 14. Mary
has two brothers who are the boys Uncles Tom and Steve.

Example 3: Sue has no brothers or sisters. Her mother is
Jane, and Jane has has a brother named Fred. Fred is
Sue's uncle.

Example 4: Fred was a brilliant Negro who lived all of'
his life in a predominantly white, racist country.
Because he was . powerless and intimidated, Fred was
humiliatingly subservient to the whites in his community.
Fred was an Uncle Tom.

Example 5: Because John, an aging, impoverished Negro,
was humiliatingly subservient to Southern whites, the
young blacks in his town called him Uncle Tom.

These examples will support a number of both correct and

incorrect inferences that are equally plausible. For example, if

Examples 1 and 2 are partial-matched, one inference is that

parents are at least 40 years old and children are 14 or younger.

However, the type of inference that I want to draw attention to

1.3
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here has to do with notions of "Uncle." By partial-matching

Examples 1 and 2, it is reasonable to infer that an uncle of x

is the brother of the parent of x. However, the best partial

match of these two examples would entail the stronger inference

that x's Uncle Tom is the brother of x's parent, who is at least

forty, while x is no older than 141.

A valid inference of the concept of "uncle" requires

partial-matching all of Examples 1, 2 and 3, whereas a valid

inference of the concept of "Uncle Tom" requires comparing

Examples 4 and 5. This illustrates one of the perplexing

problems regarding the role of partial matching in inductive

inference. While it is possible to infer valid rules by partial-

matching enough examples to eliminate all irrelevant properties,

partial matching is also necessary to determine which examples

illustrate the same concept. Knowing that Examples 4 and 5

should be compared to infer the meaning of "Uncle Tom," rather

than comparing Examples 1, 2, 4, and 5, requires additional

knowledge.

Suppose a learning system were asked to decide, based only

on-iits knowledge of the five examples, if a certain 55-year-old

Negir6 named Sam could be considered an uncle. To answer, it

would necessarily seek similarities betwecn the properties of Sam

and previous examples of uncles. If, instead of actually

retaining all examples, the system had only stored some

"sufficient" set of rules induced by partial-matching arbitrarily



selected subsets of examples, its current classification would

have a good chance of being incorrect. Because most systems do,

in fact, attempt t'-) store only a minimal set of rules that can

Icover" the data [25, 35], they are prone to errors caused by

decisions, about what combinations of propenties sre important,

made before the properties of a test item are known. A system

that stores its examples and postpones inferencing until the item

to be classified is fully specified has a significantly reduced

probability of error. In the current example, such a system

would be guaranteed to have sufficient evidence to infer both

that: if Sam is the brother of a parent, he may be labeled an

uncle;

Tom.

and if he is subservient to whites, he may be an Uncle

The important point to observe is that the properties of the

item to be classified, not the properties of the traininK data,

determine which inferences should be made. Obviously, then, many

inferences cannot be anticipated or generated until the problem

is fully specified. In short, optimal performance in inductive

inference requires "wait-and-see" approach. In actual

applications of the partial matching Mechanism to pattern

classification, the improved performance of wait-and-see

classifiers has repeatedly been observed [5, 11].

The general learning framework that revolves about partial

matching has teen applied to the induction of several kinds of

knowledge, including speech and imaze patterns [5, 9, 11, 35],

.1 5
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structured or relational concepts [3, 9; 10, 14, 15, 37, 38, 40],

transformational grammar rules [9, 10, 38], and other [condition

-> action] productions [38].

Predicate Discovers:. While the type of induction discussed

. in the previous section assumes the 1.:riw. ,iistcvery and encoding

of those properties needed to express a rule, partial matching

provides a basis for discovering new predicates too. For

example, if a learner were exposed to the following sentences, it

would have a good basis for several interesting inductions:

Example 1: Because John is so tall, it is difficult to
find clothes that fit him.

Example 2: Because Mary is so short, it is hard to get
rdothes that can fit her.

Example 3: Because Joanne is so fat, it is impossible to
get apparel that is'the right size.

Example 4: Because Tom is so skinny, it is not possible
to find clothes that are suitable.

Using only' superticial characteristics of the string

representations of these examples, the following common

abstraction would be produced by partial-matching:

(Because u is so v, it is w to x).

The corresponding residual values from the four examples

associated with each variable u, v, w and x are as follows:

U:

V:

(John, Mary, Joanne, Tom)

(tall, short, fat, skinny)

16



Y: (difficult, hard, impossible, not possible)

X: (find clothes that fit him,
get clothes that can fit her,
get Apparel that is .the right size,
find clothes that are suitable).

Thus, with only four examples and very little knowledge,

reasonable inferences regarding four apparent categGries of

natural language could be generated. The four distinct values

associated with each of the variables are apparently subsets of

the possible domains of associated (unknown) predicates. For

example, John, Mary, Joanne and Tom are four of the possible

values of the attribute "name.° If this attribute had already

been known to the system, partial-matching of the examples would

have preserved the common "name" attribute, and a slightly more

informative abstraction would have been produced, such as:

(Because the thing named u is so v, it is w to x

Thus, u, v, and w contribute to the discovery of the categories

,of name, body shape attributes, and expressions for "difficult to

achieve". For the purposes of machine learning, knowledge of

these interpretations ler se is unnecessary. All t,hat apparently

is,pecessary is to infer the existence and composition of such

categories (unary predicates) , and this may be done whenever

different constants

matched descriptions.

are correspondents in correctly partial-

Continuing with the previous example, it is also intenesting

to compare the residuals associated with variable x by a

17



recursive application of partial matching like that employed in.

Merlin. As a result of recursive partial matches of the four

residual x strings, the following sequence of inferences will be

produced:

(1) Infer the category FIND = (find, get).

(2) Infer the category CLOTHES = [clothes, apparel).

(3) Infer the category FIT = [fit him, can fit her, is
the right size, are suitable).

Then the abstraction of the residuals of x is:

(FIND(a) CLOTHES(b) that FIT(.0).

Notice that this abstraction is itself a candidate for a new type

of. ternary relation that, by definition, is true of any triple

(a, b, c) constituted from the categories FIND, CLOTHES, and FIT,

respectively. Any such triple is an instance of this general

teMplate and has the obvious interpretation. Such a template is

a plausible model of the natural language expression for finding

clothes that fit. In any case, a capacity exists to identify

plausible syntactic categories and semantic templates by

partial-matching even a small number of similar verbal string .

This approach to predicate discovery has been successfully

applied to a number of restricted languages [9, 17, 36].

Pattern-directed inference. One of 'the concepts that has

captured the imagination of many computer scientists and
I

psychologists is that of frames, prototypes, templates, scripts
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or schemata [2, 26]. Frames are supposedly knowledge units that

delineate the elements of physical or conceptual events and

express the constraints by which they are related. Distinct

frames have been proposed for every ordinary physical object,

typical configurations of objects, and most observable phenomena

(e.g., dining at a restaurant or shopping for food). While there

is prima facie evidence supporting the theory that People have

such knowledae, there is little concrete understanding of how

this knowledge can be exploited to simplify reasoning processes.

What can be universally agreed Upon is trivial: whenever a

situation is encountered where existing knowledge is applicable,

that knowledge should be applied to constrain the possible

interpretations attributed to observed phenomena.

In this framework, the key issueb are how relevant knowledge

can be identified efficiently and applied effectively. Thus, for

the moment, it will be assumed that a frame exists for descriting

Suppose, forevery interesting pattern of relationships.

''example, that the number of frames relevant to image processing

is about 100,000, including ones for familiar faces, buildings,

automobiles, buses, bodies, trees, mountains, furniture, and

implements of various sorts. Now, suppose that someone presents

a photograph selected randomly from a magazine and asks how

knowledge should be employed to assist in interpreting it.

Simply asserting that we should apply whatever knowledge is

needed .to resolve the a priori uncertainty about the identity of

various objects and their interrelationships is not an answer,

I 9



-16-

for this is presumed by the question. The question 'asks how the

relevant knowledge can be identified. Once again, the answer

appears to be that the best-matching frames should be chosen to

interpret the data. In most mases, even best-matched frames will

only be partially satisfied, because observed objects are

occludeC or otherwise fail to conform perfectly to the

Preconceived frame constraints. Once the best-matched frames

have been identified, their knowledge can be exploited to

hypothesize and test the apparently missing or erroneous data

constituents.

Because no frame, by itself, can be expected to give a

thorough account of the significant features of any normal,

reasonably complex scen,:, satisfactory interpretations will-

normally require the integration Of several partially matched

frames. Two ways of determining the appropriate combination of

frames can be proposed: (1) frames should,..be tried one-at-a-time,

and additionaq frames should be incorporated as needed to resolve

residual or. anomalous properties; (2) some identifying

characteristics of appropriate frames should be discerned through

an analysis of global properties of the problem, and then frames

satisfing these dynamically determined criteria should be

invoked. In the next subsection some recent results of speech

and image understanding research are fresented favoring the

second alternative.

1Leech and Image Understanding,. Speech understanding
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systems face the task of finding the best-fitting interpretation

f'or a noisy, parametric time series. The parameters are acoustic

measurements and the interpretation is a hierarchical tree whose

root is a semantic template from the language and whose

intermediate levels represent phrases, words, syllableS, phones,

and acoustic segments [16, 20]. An *nterpretation is constructed

by applying knowledge of possible mappings between intermediate

levels. In the Hearsay-II system in particular, the

interpretation process occurs basically.in two phases. First,

knowledge about the acoustic realization of words is used to

hypothesize, bottom-up, plausible words at various temporal

locations within an utterance. For example, if the sentence

contains 10 words chosen from a 1000-word vocabulary, about 7 or

8 on the average are correctly hypothesized. In addition,

approximately 200 incorrect words are hypothesized, and about 40

of these are actually rated higher than valid word hypotheses.

the second phase, missing words are hypothesized and

rated and the entire'Sequence of words in the sentence is parsed

and assigned an overall semantic interpretation.. The key problem

in this phase is to generate and rate the most plausible, missing

words. Even when the vocabulary and grammar are highly

constrained, the size of the search space for possible

grammatical word sequences is extraordinarily large. In the

Hearsay-II system several approaches to this problem were tried,

and only one approach apparently derived sufficient constraint,

by applying enough knowledge simultaneously, to succeed. The

21
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,method used was to partial-match the entire collection of

bottom-up word hypotheses against all templates of the grammar,

in parallel, in the hope of finding one sequence of highly-rated

words that was grammatical and most probably valid. If such a

sequence could be identified, the system predicted and rated its

plausible word extensions, iteratively, until a complete

interpretation of the sentence was constructed.

Two knowledge sources were involved in computing the partial

match between the matrix of hypothesized words and the

grammatical case frames. These were WOSEQ [21], a word sequence

hypothesizer, and PPARSE [12], a partial parser. In overview,

WOSEQ uses knowledge about the adjacency of words in the language

to form hypothetical word sequences by concatenating successive

language-adjacent and time-adjacent word hypotheses. It prunes

the search space further by terminating the concatenation process

for any sequence when the expected benefit is less than,the cost,

i.e., when the increase in credibility obtainable by

concatenating additional word 4hypotheses is insufficient to

warrant the attendant multiplicative increase in the total number

of word sequences generated. Each of the most credible word

sequences identified by WOSEQ is then evaluated by PPARSE to

determine whether it is actually grammatical, i.e., whether it is

a subsequence of some sentence in the language. Each of these

partial matching procedures is now explalned in more detail.

WOSEQ uses a preãomputed bit matrix that specifies for each

2 2
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possible Word pair (u,,v).whether the sequence u v can occur in a

sentence of the language. For the 1000-word vocabulary, this

requires approximately 30K 36-bit words of memory. Given a

collection of bottom-up word hypotheses, WOSEQ selects a few of

the most credible ones as seeds for its secolence-growing process.

Each seed is a one-word sequence, and the following procedure is

applied repeatedly to all sequences until quiescence occurs:

(1) For each word sequence W, construct the sets P(W) and
S(w) of word hypotheses that can precede and succeed W.
P(W) contains all hypotheses that are both language-
adjacent and time-adjacent to the first word in W. The
set S(W) contains all hypotheses that are time and
language-adjacent to the last word of W.

(2) For each w in P(W) evaluate the credibility of the
sequence (w, W). This is an increasing function of the
credibility of w and W, an increasing function of the
total number of syllables spanned by (w, W) , and a
decreasing function of the number of words in P(W). If
the credibility of the sequence (w, W) is greater than_
that of W, add (w, W) to the set of hypothesized
sequences. For each word w in S(W), similarly process
the potential sequence (W, w).

When WOSEQ quiesces, it will have identified sequences of

pairwise-grammatical words that appear to be most credible over

the entire set, both becauie they incorporate at least one of the

individually most credible bottom-up hypotheses and because they

satisfy a maximum number of low probability constraints. WOSEQ

is usually successful at its task, because it continually

increases the credibility of the objects it processes. It does

this by adducing contextual support in the form of numerous,

consistent, unl'ikely observations. The algorithm is efficient

because the time and language-adjacency constraints are easily

2 3
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computed. In a later section of this paper, it is suggested that

easily computable, global attributes of the problem space may

provide a promising, general approach to, the partial matching

The next step in the linguistic partial matching problem is

to test each word sequence for grammaticality. This requires a

parser capable of recognizing the grammaticality of any word

sequence, even if it is only a subsequence ()f the string

derivable from a nonterminal. In Hearsay-II,, this is

accomplished by a program PPARSE. FPARSE is a bottom-up, left-.

to-right Kay-type parser with the following modifications: Any

rewrite rule such as X -> A B can te applied, and the parse node

X constructed, whenever the leftmost derivative of B in the parse

tree is the first word of the sequence being partial-parsed.

Similarly, any 'rewrite like Y. -> C D can be applied whenever the

rightmost derivative of C is the last word of the sequence being

partial-parsed. These are-the only cases in which incomplete

tree structures are built.

WOSEQ and PPARSE succeeded at controlling the combinatorics

of the search problem, while a number of production systems

failed 116, 27], because hypotheses that satisfy many or WOSEQ's

constraints are likely to be valid. Furthermore, the truly

expensive operation in this partial matching, instantiating and

hypothesizing incomplete grammatical case frames, occurs only

when an incomplete nonterminal can appropriately derive the first
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or last word of a sequence selected by WOSEQ. Compared to any

simplistic conception of how a frame system can operate to

hypothesize-and then fill in partially instantiated frames, WOSEQ.

and 'PPARSE constitute a significantly superior sollAtion to the

best match problem.

The last example of

problem of determining

are left and right-eye

disparity between two

partial matching to be considered is the

stereo disparity between two images that

views of one scene. To resolve the

images of this sort, it is necessary to

partial-match-them to identify the corresponding (same) objects

in each image. Once this is done, the lateral displac.?ment or

disparity between the two is a cue for the distance of the object

from the viewer. The human visual system is capable of resolving

such disparity, even when there are no distinguishable ojects in

either view (as in random-dot stereogramS). Recently Marr and

Poggio [22] have shown how the necessary partial matching

computations can be performed locally by spatially distributed,

cooperative processes. Their approach rests on the observation

that, while the disparity between any two corresponding points is

initially unknown, any hypothesis regarding some particular

disparity value between two points in the two images implies

approximately the same disparity value between neighboring

points. By constructing a problem representation in whinh every

possible pair of corresponding points, with disparity d,

influences the neighboring points with matching properties toward

correspondences under the same disparity, a difference equation
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is constructed that can te applied iteratively and locally to

choose correspondences that maximize constraint satisfaction. A

solution in this algorithm is just a steady-state reached by ,the

difference equation.

This application of partial matching is particularly

interesting, because.it shows how global features,of the problem

space, such as disparity and spatial position, can constrain -the

search for the biest match. The global communication of

constai:it is accomplished by directly connecting neighboring

points.whose hypothetical disparity values influence one another.

To develop a mechanism capable of this sort of information

sharing, a representation had to be discovered that clarified the

relationship between global data attributes (location and

disparity) and local computations involved in partial matching

(determining the grey-scale similarity of two potentially

corresponding points)- The role of this integrated global-local

problem representation is comparable to that played by the

precomputed language-adjacency matrix used by WOSEQ to

hypothesize word.sequences in Hearsay-II. This suggests some

interesting properties of the partial matching problem that are

pursued in the subsequent sections.

PRINCIPAL PROPERTIES OF THE PARTIAL MATCHING PROBLEM

From the preceding illustrations, it is possible to identify

four principal characteristics of the partial matching problem.

2 6
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In this section, these are briefly discussed.

The desirability of analyzing any particular configuration

of data can only be determined dynamically. In the large class

of problems where partial matching is necessary and

: computationally expensive, the number Of distinct partial matches

that can arise is virtually limitless. As a result, it is not

possible to predetermine all combinations of observable

properties that may, at some time, most warrant some response. A

fortiori, it is not possible to rank order the potential

situations in terms of import or interest value. Rather, the

choice of which configurations of data deserve further processing

resburces is determinable only as result of dynamic partial

matching between the data in hand and the frames or templates

specifying known constraints.

Partial matching, as a general computational problem, is

intractable. Because partial matching subsumes the graph

monomorphism, the kclique, and other NPcomplete problems, the

amount of time apparently needed to solve worstcase problems is

at least exponential in the complexity of the structures being-

matChed. It follows that if partialmatching is to be applied

successfully, problem complexity must be reduced. The principal

way in which such complexity reduction can be accomplished is by

choosing rich, highorder predicates as a basis for description.

As the grain of description is reduced toward uniform, lowlevel

predicates (e.g., simple graphs, retinal arrays of onoff

2 7



-24

detectors, semantic primitives), the partial matching problem

made inherently more complex and less feasible.

Partial matching ip funcamentally nondeterministic. Thus

far in this paper the nondetermini3m of partial matching

algorithms has been neglected, primarily because one partial

match solution is usually test. Thus, while any [:rogram designed

for partial matching must incorporate logic that permits it to

pursue multiple solutions simultaneously, effective mechanisms

will quickly prune poor alternatives from consideration.

Good Lartial matches traverse a Lriori boundaries 'and

multille levels of hierarchicallK organized knowledge ptructures.

This point is of the utmost importance for understanding why

simple approaches to pattern-directed inferc;nce or frame-

theoretic analysis of real data are likely to fail.. Simple

approaches will attempt to hypothesize all partial-matched

frames and then predict and verify their missing

constituents.. In any reasonably, complex domain, the test

interpretation of data will traverse a priori boundaries of

several low-order frames and will only be apparent when multiple

leve'.s of partial-matched frames are integrated. The simple

approach entails extensive unwarranted searching of many levels

of frames, because hundreds of frames can 'be consistent

with at least some properties of the observed data. The search

for a best overall interpretation can be effective only if

many properties of the data, providing multiple sources of

28
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constraints, are considered bimultaneously.

THE PARTIAL MATCH ADMISSIBILITY CRITERION

Any proposed algorithm for partial-matching two structures A

and B ought to satisfy the following criterion:

The mcre similar A and B are (everything else held
constant) , the 'faster the partial match should be.

This criterion is called the partial match, adRissibility

criterion. Its reasonableness and desirability are intuitively

apparent. Yet, even in the simplest applications of partial

matching, it is rarely achievable [33] . The causB is that

typical partial matching algorithms evaluate properties one-at-

a-time. For example, if we wish to finc a document that has

keys (attributes) g, h, and k, most procedures accomplish this

by intersecting the inverted lists of documents associated with

each of the three keys. Thus, it takes longer to find a

document that matches 10 keys than to find one that matches 3,

and so forth.

lvenues of approach toward realizing admissible algorithms

.are suggested by considerirg partial mat-hing as a search problem

in which each partial match corresponds to a state. The initial

state is represented as a three-tuple, (0, A, F) , where A is the

observed data representation (or query) and F is a set of frames

against which A can be compared. As before, the first component

represents the abstraction or partial match thus far constructed,

2 9
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the second component represents the residual of A with respect to

this abstraction, and the third component represents the

residuals of the frames vis-a-vis the current abstraction.

By applying typical admissibility criteria of general

searches .[30], it is apparent how one should move through this

search space. At each decision point in the algorithm, the most

promising partial solution should be extended. -The most

promising extension is the one providing the most complete

partial match for the least expeive. Here, expense is defined as

the total computation required to arrive at any given state,

including both the co,paltation time spent developing the

particular partial match as well as the time spent constructing

collateral matches from expanded partial solutions on the same

path. Thus, the best step at each point is the one which adduces

the most constraint for the least cost. Constraint in this case

is exactly definable as the reduction in the reMaining

uncertainty regarding which frames of F are involved in the best

match of A.

From this viewpoint, it appears that there'. is only one

interpretation of constraint. A transformation from one partial

matching state to another is constraining to the extent to which

it eliminates possible elements of F from further consideration.

Two useful concepts in this context are the diaRnosticity of

a test and its performance. Diagnobticity is a measure of the

ability of a test to rule oilt possibilities. Performance is a

:3 0
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composite measure of the expected utility of a test, combining

its diagnosticity with its expected frequency of satisfiability

[8]. An optimal algorithm would apply, at each decision

point, the most diagnostic test that is satisfiable.

Expected ccst can te minimized by applying the tests with highest

performance values at each decision point. Such an

approximation is important, because we know of no reasonable way

to determine dynamically the most diagnostic tests. Some avenues

of approach to these problems are suggested in the next section.

IMPLICATIONS FOR THE DESIGN OF KNOWLEDGE SYSTEMS

From this study of partial matching, four general

implications for the design of knowledge systems are drawn. Each

of these is considered in turn.

Analyses should be synthetic and dynamic. This criterion,

although sounding Superficially like a suggestion for analysis-

by-synthesis, is diametrically opposed to that approach: In

analysis-by-synthesis [19], patterns are interpreted by top-

down methods:- one most likely, highest-level frame is selected

arbitrarily to apply and, at each point, unfilled frames are

expanded downward until they can fit (interpret) the data.

Because such search strategies are insensitive to properties of

the data at hand, they will perform badly unlesS more constraint

is available from the top-down structure of the frame system

than from tests based on diagnostic combinations of data and
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frames. To be synthetic means choosing tests to perform which,

in view of the properties exhibited by the data, apply maximal

constraint. Knowledge systems designed along these lines would

employ a basic threestep cycle: (1) a small number of highest

performance tests are applied to the best partial solutions

(initially, to the most credible data); (2) the most promising

matches are extended; and (3) the new best matches are

identified for evaluation by another set of highestperformance

tests. Note .how this paradigm embraces the WOSEQPPARSE

methodology described earlier.

Descriptions should be rich and simple. To reduce the

complexity of the search problem, descriptions should be as rich

and simpleas possible. This criterion implies that highlevel

descriptors are more desirable than lowlevel ones. For example,

'language processing systems representing knowledge in terms of

lexemes are more efficient than those representing such knowledge

in the form of equivalent graphs of semantic primitives [7]. One

particularly intereSting aspect of Merlin is its use of

hierarchical descriptions permitting partial matching to be

performed at the highestlevel of description possible. Merlin's

partial matcher descends into the depths of loworder

descriptions only if matches of rich,, highlevel terms fail.

This criterion is actually a heuristic for achieving maximally

constraining tests for the least cost. Its actual effectivness

depends on the exact performance of tests at high and low levels;

in reasonable problem domains, however, the heuristic should be
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generally valid.

SchedulinR of computational resources, based on

diagnosticity or performance, should be considered a primitive

function in partial matching systems. Complex partial matching

systems must include mechanisms to insure that the most desirable

actions are executed first. Two properties of schedulers are

proposed. First, desirability should 'primarily reflect the

diagnosticity of a pending action. Second, since scheduling is a

primitive operation, the costs of calculating desirabilities and

sorting the pending actions should be minimized. In this

context, it is 'interesting to note that previous studies of

knowledge system scheduling [13] and conflict resolution in

production ,systems [23,_29] have completely neglected the concept

of diagnosticity.

Problem representations should integrate characteristics of

the knowledge base with properties of the data to maximize

the constraint provided in search. This criterion suggests that

one approach to improved performance in partial matching

is to develop globally organized representations whose

attributes can be exploited to reduce uncertainty during

partial matching. The work of Marr and Poggio [22] on stereo

disparity is a good example of the use of such a globally

organized problem space. Each locus of computation is

influenced by all relevant cooperative loci, and these are

efficiently identifiable because they are in the same
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neighborhood of the problem space. The essence of such spatial

organizations is an ability to reduce the number of computations

involved in similarity judgments. Similar benefits were provided

to the partial matcher in Merlin as a result of its hierarchical

organization of knowledge.

In the future, representations should be sought which

support the use of proximity measures or directionality to

identify good partial matches. hese could provide cheap and

constraining tests for a variety of tasks. For example,

semantic networks might be superimposed upon the type of

metric semantic spaces which humans apparently possess [32, 34,

39]. The value of such organizations would derive from an

improved capacity to detect that two objects are likely

correspondents (are highly similar) just because they are close

in the metric representational space. Moreover, such integrated

spatial and symbolic representations could signifiCantly improve

intersection searches by favoring spread of activation in the

"area" between two concepts of interest. Given the coordinates

of two nodes to be connected by a best path, preference sLould be

given to outgoing links that are oriented in appropriate

directions.

Other types of organization should also be sought that can

facilitate computatf..on of approximate similarity. For example,

in early experiments in rule induction, HayesRoth and

McDermott [15] showed how transformational grammar rules could
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be inferred by partial-matching before-and-after examples.

Their program employed no knowledge about either the structure

of productions or sentences. By incorporating properties of

these structures as attributes of the representations, Vere was

able to reduce the computation time by two orders of magnitude

[38]. The organizing properties he exploited included a three-

part decomposition of each production, corresponding to the

three components of the partial match of the before and after

parts of each example, and a hierarchical representation of

sentences. Ihe additional constraints provided by these global

attributes of problem organization greatly

particular partial matching problem.

CONCLUSIONS

simplify thfs

I have tried to show in this paper that partial matching

is central to many interesting functions of knowledge systems.

A few years ago, the foremost problem of knowlege system

design was how knowledge should be represented. While knowledge

representations are continually improving, many good frameworks

have aL'eady been developed. Since pattern-directed function

invocation is obviously desirable for many applications of these

knowledge systems, attention has recently focused upon good

methods to invoke appropriate knowledge units. Within the

framework of all-or-none knowledge application, the major topics

of interest concern matters of efficiency, such as developing

methods for common subexpression elimination, efficient
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techniques for all-or-none pattern matching, and strategies

for conflict resolution. While these are surely important

considerations in implementing systems for simple or well-

structured tasks, the most difficult problem arising in very

large and flexible knowledge systems is to determine, as

quickly as possible, the most useful knowledge for the task

at hand. Because many diverse elements of knowledge may

be weakly contributory to an overall solution, new ways of

organizing computation must be developed to prevent intractable,

combinatorial searches. In the future, a major shift in

attention can be anticipated toward the deceptively

easily stated but fundamental question: How should partial and

- best matches be computed?

3 6
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