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ABSTRACT

In this paper we explore the consequences of particular stage linkage
struciures for the evolution of a population. We firat argue the importance
of constructing "dynamic" models of developmental theories and show through
a series of examples the implications of various stage connections for popu-
lation movements. In discussing dynamic models, one thrust of our comments
is to 1dentify the sorts of process features about which assumptions must
be made 1in order to convert a static theory about stage connections (the
sort of specification commonly presented in life-span psychology) into a
dynamic model. A second focus of our discussion concerns inverse problems:
how to utilize a model formulation so that the stage linkage structure may be

recovered from survey data of the kind collected by developmental psychologists.




MATHEMATICAL REPRESENTATIONS OF DEVELOPMENT THEORIES

Burton Singer » Seymour Spilerman
Columbia University University of Wisconsin

I. INTRODUCTION .

Although time, usually in the guise of age, i3 a c¢ruclal variable in
developmental psychology, it 1s the case that formal models of developmental

phenomena rarely have the character of dynamie representations, in the sense

of mimicking the evolution of an empirical process through time. The analytic

=

procedures employed most extensively by life-span psychologists are factor
analysis, regression, analysis of variance, scaling, clustering, and variants
éfhfhesa methods (see, for instance, Nesselroade and Reese 1973). These are
powerful techniques for identifying variables that are central to the course
of development in a particular substantive area (e.g., intellectual matura-
tion, acquisition of moral wvalues). Also, when applied to panel data, the
procedures can yield insignts into how the saliEﬂce of key variables shifts
over the life cycle, or over a portion thereof {(e.g., stages in infancy, youth,
adulthood}.

These analytic methods do not, however, lead to dynamic formulatioms of

developmental. theories, which can be useful in testing predictions from a

thecry about the evolution of an empirical process, or in comparing the
implications of competing explanations. By a dynamic formulation we mean a
répfésentaticn which incorporates into the mathematics the main assumptions
about a developmental phenomenon and is specified in sﬁﬁh a way that the
relevant variables, and their postulated interrelations, are functions of

. time or subject’'s age. 1n this sense, like the empirical process, it too
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2
constitutes an evolving system. As a simple 1llustration of such a model,
consider the following statements of alternative evolutionary mechanisms:
(A) The growth of a process at each instant is proportional to its
potential for future growth,
{(B) The growth of a process at each instant is proportional to the
product of its eurrent size and its potential for future growth,.

These statements might be proposed as competing explanations of the

manner by which information is diffused in a population of size N. In formu-
. lation (A), it matters not how many persons y(t) know the information of

concern at iastant t; only those yegyta hear, numbering N-y(t), are salient
to the diffusion rate. If the information were propagated by a mass media
source, such as radio or television, rather than by interpersonal communica-
tion, this model might apply. Formulation (B), in comparison, is consistent
with a procéss in which those already aware of the information "infect" the
uninitiated through contact and conversation. Assuming that the informed
and the uninformed wix randomly, the variable governing the evolution of the
process would be y(t)[ﬁ*y(tij, which measures the rate at which individuals
from the two groups come into contact.

The evolutionary mechanisms, (A) and (B), can be téprSéﬁtéd by the

differential equations (1) and (2), respectively,
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where kl and kg are constants which adjust for the time unit (e.g., day, year)

used 1In the mcasuremenca.l Equations (1) and (2) have for solutions (3) and (4),
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which predict the different evolutionary paths displayed in Figur: 1.

Theae formulations are 'dynamic" in that time appears explicitly as a
variable; they are process ''models" in zhét the predicted value of y(t) evolves
according to the assumptions of a particular theory. If a researcher has data
on the time course of an empirical process, he could test whether equation (3),
(4), or a specification of an equivalent sort best approximates his observa-
tions. By this exercise it is often possible to select among competing
explanations of  the mechanism underlying a developmental process. Indeed,
these very models have been applied by Coleman, Katz, and Menzel (1957) to
-data on drug adoptions by pﬁysicians (also see Coleman 1964, pp. 43-45). They
concluded that the drug acquisition pattern by socially integrated MD's is
best represented by a logistic curve (implying mechanism [B]), while isolated
MD's adopt according to the éanstant source model (mechanism [A]), as they are
“influenced principally by drug advertisements in trade journals. To our

knowledge, although developmental psychologlsts emphasize ontogenetic processes

and employ the imagery of an évalutioﬁéfy éfstem, few attémpts-have been made
to translate their theories into formal modéls of the above sort.

In this paper, we describe the formulation of dynamic models where the
objective 1s to test developmental theories against data or ascertain the con-

sequences of particular assumptions about the structure of a process. To

7
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Figure 1. Illustrative Growth Curves for Diffusion via Social Interaction
and Diffusion from a Constant Source?®.

y(t)
N == = = = = o omm o e s e o o o e o e e o
€7 _____(A) Constant
Source
/
€2 _(B) Social
Interaction
1
O e e _ _
0 : time

N = population size; y(t) = number aware of the information
at time t.




delimit our task, we focus on the sort of mathematics that is appropriate
for studying qﬁalitative change. As a result, the tools we introduce are
pertinent to theories which postulate stage sequences, a variety of explzna-
tion with considerable precedent in developmental psychology (Pilaget 1960;
Kohlberg 1968; Ausubel and Sullivan 1970). To the degree possible we have
organized this paper with a view toward substantive issues and have concen-
trated on the translation of theoretical specifications into mathematical
formalism; the reader. usually is referred elsawhéfé for mathematical details
and estimation procedures. The organization of the paper is as follows: In
the next section we introduce a class of modals that is.suitable for studying
evolutionary processes that incorporate thé notion of stage. In section III
we describe how particular stage theories can be cast in the framework of the
general model. In section IV we relax several requirements of the basic model
so that it can more realistically represent developmental phenomena.
II. THE CONCEPT OF DEVELOPMENT STAGES AND A MATHEMATICAL FORMULATION OF

STAGE PROGRESSIONS

Stage sequences have been postulated for a variety of developmental
processes-~the evolution of moral behavior (Kohlberg 1973), cognition (Piaget

1954), personality (Loevinger 1966), and motor skills (Shirley 1933), to cite

n

but a few topics. There also exist diverse formulations of stage models in
the literature of life-span psychology. These differ with respect to the
presumed sources of the stages and with regard to the rules governing movement
between them. In regard to stage origins, some authors have emphasized
maturational considerations, in which individuals are viewed as programmed
genetically for particular behaviors or abilities to emerge (Gesell 1954).

The specifica;ioa of péychasexual stages, keyed to biclogical activation of

the sex glands, provides an 1llustration (Kohlberg 1973, p. 181). Others

9



6
view stages as arising from interactions with the social environment. Kohlberg
(1968, pp. 1016-1024), for example, contends that experience with the cultural
and physical world is necessary for cognitive stages to take the shapes they
do. Still other researchers have adopted the position that stages are a useful
research construct around which to discuss development, without insiéting that
they have an empirical existence (Raplan 1966; Reese 1970).

We shall not discuss further the very important issues concerning the
etiology of stages, but will focus instead on the mathematical rapresentation
of theories about stage connections and on the consequences of various linkage
structures for the e%diuiion of individuals among the stages. Formulations
of stage connections in a developmental process differ according to whether
the progression is viewed as unilineal éf multilineal, whether stages in the
sequence can be skipped, and whether regression to an earlier level is possible.
A second set of considerations pertinent teo thebstfucture of developmental
theories concerns the age specificity of a stage and the rélatégwggpter of the
variability of duration in a stage. For discussions of these topics in the
context of particular substantive processes, the reader is referred to Emmerich
(1968) and Kessen (1962).

To develop the mathematical apparatus for ascertaining the implications
of particular stage connections, we discuss both the simplest prototype of a
&tage theory (for concreteness) and the general mathematical formulation.
Consider, then, a developmental progression consisting of n stages, in wﬁigh
the linkage 1s unilineal and there is no possibility of stage skipping or
regression. An example of such a Structure, with n equal to 5, is presented

in panel A of Figure 2; henceforth this model is referred to as example 1.

It will be convenient to also have avallable a matrix representation of the

stage linkages, For an arbitrary n-stage structure, we define a matrix M,

?Q A 1 O
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whose elements are mij = {probability of transferring from stage i to stage ]

3 n
when a transition occurs}, where 0 E-mij <1, and £ W, = 1. These restric-
ij j=1 13

ticg$ on the aleménés of M ensure that each row of the matrix constitutes a
probability distribution. We require, in addition, that my = 0 for each stage

{ which is not an absorbing state of the process; that is, from which individuals
can exit. This means we exclude the possibility of within-stage transitions,

a type of move which is undefined in most developmental theories. Also, we set
my = 1 for each stage which is an absorbing state of the process. This is

done for mathematical convenience and, as we shall see, carries no substantive
implications. in the particular case of the unilineal progression (Figure 2,
1,1+1 = 1jand mij = 0 other-
1). This matrix, Hl, is reported in panel B of Figure 2.

panel A), we have the further requirements on MI m

wise (except that Mg

To this point, thaugﬁ matrix M conveys important s uctural information
about the process, the description of the stage péagressiOn is a static repre-
sentation. To elaborate the model we must indicate how stage transition eveﬁgs
occur. At a general level of description we assume that the time T spent by

an individual in stage i follows some probability distribution ,
p . < Ly ey * - (6
Prob, (1, < Elrgse ety y) (6)

report the sojourn times 1n earlier stages. Our imagery,

11
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Figure 2. Representation of a Simple Unilineal Stage Structure

a. Diagram of Stage Linkages

L . b
b. Matrix Representation® of the Stage Linkages

r . =

=

#
O 0o o0 o o
O O O o
= I I S
o O = o o
O O ©

#Each row of M, isa vector of destination probabilities. Thus,

if an individual were in stage one before a transition, the row one
entries would pertain and they indicate movement to stage two with
probability equal to 1. S

bThe main diagonal entries are set equal to zero (with the
exception of row 5) to indicate that a "move" is not defined apart
from a stage transition; i.e., there is no notion of movement within
a stage. - The main diagonal entry of row 5 is set equal to 1 because
this stage 1s an absorbing state (m5j = 0 for j # 5) and the definition

of Hlsasge text--requires Im_, = 1,

g 2
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9
therefore, 1s the following. An individual originates in stage 1 at

the beginning of the process, t ™ 0., He remains. there for an interval

T,, specified by a distribution function Prgbi(Tl < t), and then transfers to
stage'j with probability m, He remains in this stage for a period Tys speci~

My 9
fied by a conditional probability distribution Prgbj(fz < tlfl), then transfers
to stage k with probability m K and so forthi3 The process continues until some.

absorbing state is reached, at which point the evolution is terminated. The time

path for the unilineal progression associated with the stage linkages of matrix

Ei is presented in Figure 3.
Several further aésumptians are necessary to complete the specification

of the model. One matter concerns the relevance of an individual's past move-

ment history to the course of his subsequent evolution among the stages. We

assume,
1) knﬂéiéﬂgéiofrgurrént stage conveys all information that is
r R — =

" relevant to forecasting future movements.

= {probability of moving from stage i to

Stated technically, if mij,ab!,.f
stage j at the occurrence of a transition, given prior sojourns in stages a,

b,...f}, then

Myq,ab.. £ - T4y
(This assumption is superfluous in the current example of a unilineal pro-
gresasion since there is only one possible path, but it is relevant to the
evolution of a population in less restrictive models.) We indicate in the
- next section that this specification has been employed in descriptions of stage

linkages in developmental psychology.

13
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_ Figure 3. A Sample Path Deseription Corresponding to the Unilineal Stage
Structure of Figure 2, .

aIg is assumed that there are five stages, which must be traversed
sequentially, T 1s the value of a random variable and denotes the
sojourn time for an individual in stage 1. Stage 5 is an absorbing

sBtate of the process,

14
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For an initial baseline class of models, we further assume,
(11) the sojourn time in stage 1 is independent of previous sojourn

times and 1is exponentially distributed; that is, .

1-e 1, (7)

Probi(fk < E]fl;.igjfk_i) = Prgbi(tk <t) = Fi(t)

Use of the exponential distribution amounts to specifying that the probability

of departing from stage 1 during the infinitesimal interval t + dt, condi-

tional on being in stage 1 at time t, equals

—Ait
£, (t)dte A,e ~ dt
T ST
1 - Fi(t) - At I Anke

where fi(t) is the density function corresponding to Fi(t). This result, in
turn, indicates that the probability of leaving stage i is independent of
duration in the stage, and is tantamount to specifying an absence of aging, so
new entrants have the same 11Eeiihgud of departing as individuals who have been

in the stage for some period of time. The parameter, A incidentally, has

i
an interpretatian as the rate of movement out of stage 1i; consequently, l/Ai
equals the expected duration in stage i.
Finally, we require that
(111) 4f the data pertain to the movements of a population, rather
than to the transitions of a single individual, the popula-
tion is homogeneous with respect to the structure of the
evolutionary process,
This does not mean that all persons have the same duration T, in stage 1, but
"that Tiﬁ‘ the time spent in stage 1 by individual c, follows the single expo-
o

nential distribution Fi(t) w l-g 1 . Stated less formally, duration in a stage

Q ]iE




is a random variable with the underlying distribution of holding times the same
for all individuals, Similarly, where alternative destinations are available
to persons in stage 1, homogeneity means that all have the same list of prob-
abilities for making the various transitions, not that they move identically.

It is worth dwelling on the conceptual status of the precedingéassumpi
tions. The question of the structure of M is a familiar topic to developmental
psychglcgists; since stage theories are commonly specified at this level.
Assumptions (i) to (iii) can be viewed as "side conditions," aépezzs of the
process to which researchers héve generally not been sensitive, though see
Kessen (1970) and Emmerich (1968) for provocative comments on precisely these
matters. What is made evident by formulating a dynamic model is that develop-
ment theorists must address these auxilié%ﬁ'questians if complete models szre
to be specified. The particular assumptions we have made constitute a gross
simplification of reality; this is especially true of specification (ii), which
postulates an absence of duration effects, and specification (iii), wﬁiéﬁ
postulates population hamogéneity,- These assumptions do, however, provide a
convenient starting point from which to consider more realistie formulations,
which are developed in the next sections.

We now wish to convey the implicatiOﬁs of assumptions (i) to (1i1) for
the movements of individuals aﬁaﬁg the stages. We denote by pijft) the prob-
ability that an individual in stage 1 at time 0 moves to stage j by time t.
(This pfabaﬁiliiy differs from mij in that the latter refers to movement pro-
clivities at the occurrence of a transition, ﬁ@t over widely spaced time

intervals.) With this specification in hand, the evolution of a population

among the stages 1is described by the system of integral equations,

t ﬁkiu )
é Ae mikpkj(t = u)du (8)

o 16 0<i,j<n
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where 6§ =1 1f { = §, and O otherwise. This expression, known as the back-

1]

ward equations for a continuous-time Markov process (Feller 1971, p. 484), is
amenable to the following interpretation: (1) When i # j, pij(t) consists of
the sum of products of three factors: the probability of a “irst departure

from stage i at time u, the probability of a stage 1 to stage k transition at
that instant, and the probability of transferring tg”stagé j by some combination
of moves in the interval t - u. The summation is over all intermediate stages
k and over all time divisions u in the interval (0, t). (2) When i = j, in
addition to the above term, there is the possibility of not transferring out
of stége i during (0, t). This probability is given by the first term.

If we represent by P(t) the matrix of elementg pij(t)?

r , o]
i p11(t?. f s s s e . ipln(t)

P(t) = ’ )

pnl(t). e e e s e . gpnn(t) §

0 <p,.(t) =1, Zp,.(t) = 1, then the integral equations (8) have the con-

i & j ij

venient solution,

P(t) hM - 1ie PCO) = I. (9)

In this representation A 1s a diagonal matrix,

whose entries are the weciprocals of the expected duration times in each stage,
I 18 the identity matrix, and M 1s the array specified in equation (5) which

17




14,

describes the pattern of movement between the stages. Further, by the expression

EA, A an arbitrary square matrix, we mean the power series in A,

® .n -
- - (10)
n=0 '

which can be evaluated by standard numerical methods (see, €.g., Gantmacher
[1960]).

It is useful to recapitulate what is accomplished by this mathematicai
formulation. The matrix P(t) relates the distribution of a population among stages
at time t to its distribution at time 0, iﬁ.the sense that a typical entry,
Pij(t)’ represents the probability of moving from stage 1 Eaxstage j during the
interval (0,t). The model is "dynamic' in that P(t) is a function of time;
with the passage of time P(t) describes the evolution of the population among
the stages. Equation (9) shows how the matrix P(t) is built up from the arrays
M and A. However, while this equation is useful as a calculating formula, the
logic of the process is conveyed more adequately by the integral équations (8.

To iilustrate this model in the setting of a simple unilineal érégressian
(matrix Hl of Figure 2), we must specify average waiting times in stages 1,2,3,
and 4. We assume these to be .5, 1, 2, and 5 years, respectively. Consequently,

we have for matrix A,

- -
2 0 0 0 0
0 1 0 0 0
A = 0 0 .5 0 0 (11)
0 0 0 .2 0
C 0 v X,
L° 0 s

where the choice of 15 is arbltrary. (Since stage 5 is an absorbing state,

the notion of waiting time to a departure has no meaning. Mathematically,

55 = [mgg

Now, from Hl‘ A, and I, we have

M- 1) ~ I] = [1-1} = 0, 8o AS bears no influence on the calculationa.)

18




-2 2 0 0 0
0 -1 1 0 0
A(Hl - 1) = ¢ 0 -5 .5 0 (12)
- 0 0 0 -.2 .2
0 0 0 0 0

For the illustrative times t = 1, 2, and 4 years, we obtain, from (9), for P(t),

.1353 . 4651 .3263 .0691 0041

B .0000 L3679 L4773 .1438 .0110
P(l) = .0000 .0000 .6065 .3537 .0398 (13)
.0000 ,0000 .0000 .8187  .1813
_ .0000 .0000 . 0000 .0000 1.0000
.0183 .2340 L4641 .2482 .0354
.0000 .1353 L4651 .3394 .0602
P(2) = .0000 .0000 .3679 .5041 ,1281 (14)
.0000 .0000 .0000  .6703 .3297 |
~.0000 .0000  .0000 .0000  1.0000
and
.0003 .0360 ,2881 L4843 .1913
.6000  .0183 .2340 .5079 .2398
P(4) = .0000 . 0000 .1353 .5233 3413 - (15)

.0000 .. 0000 .0000 .4493 .5507
_ - 0000 .0000 . .0000 .0000 1.0000 _
These values of P(t) describe the evolution of individuals among the stages,

subject to the assumptions about the process structure detailed above. The

between particular stages in the relevant time interval. For example, according
to the entries in the top row of P(1), if observations are taken one year>apaft,
we would expect 17 percent of the population in stage 1 at time O to still be

there, 46 percent to have moved to stage 2, and 33 percent to have reached

stage 3. By Qémpafisén, over a four-year interval, less than 1 percent would
remaln in stage 1, 48 percent would have reached stage 4, and 19 percent would

be in the terminal stage of the process.

19
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The results from the three calculations reveal that, even though the

meters, 1f observations were taken on the population at two time points, t=0

, B 5 ) ,
and tgti, the array E(tl) might be interpreted as evidence for a more complex
theory, such as one permitting stage skipping or population hétefogenaity in the
rate or pattern of movement. Further, the correspondence between the matrix

constructed from the population locations at two time points, ?(;1); and the

rule governing stage transitions, M :d%;reases with time. Thus, different

,71 N
researchers obscrving the same population at two time points, but with different
spacing intervals, might draw contrary conclusions about the stage linkage
stf&éture even though-the single mechanism, Hl of Figure 2, géverns its

evolution. Only with a formal model of the process could one hope to uncover

its underlying structure.
ITI. MODELS OF MORE ELABORATE STAGE THEORIES

The matrix M contains structural information about stage linkages. Since

theories of development are commonly posed at the level of specifying this

array, flexibility in iﬁccrparazing a variety of specific formulatigﬁé would
appear to be an important feature of a general framework for describing
evolutionary behavior. In this section we focus on the issue of translating
stage theories into M-matrices, and illustrate the evolution of P(t), the
transition. matrix for a population based on its locations at times O and t,
under alternative specifications of M. As we have noted, auxiliary information
about éﬁe p:ocess,:zongarning the distribution of waiting timé intervals and
the form of populatien hetéﬁogeneiéy, 1s required for a full description of

a dynamic model, 1In the next section we therefore elaborate upon these "side

conditlons" and outline ways in which our initial assumptions can be relaxed.

20
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No technical difficulties arise in reformulating the continuous-time Markov

ture in Figure 2. ““We: illustrate the procedure with a few examplas;é

(2) A unilineal progression which permits stage skipping. The formula-
tion of such a structure 1s diagrammed in Figure 4, panel A; 1its translation
into an M-matrix is reported in pénel B. The principal new feature is that,
supplementing the deterministic sequeﬁce of Figufe 2, it is now possible to
move directly from stage 2 to stage 4 and from stage 3 to stage 5, when a
transition out of the relevant origin location takes place. We must also specify
the probabilities of fcll@wi;g the alternate paths. In the present example,

lacking information as to the relative magnitudes of the various probabilities,

we assume all destinatiouns to be equally likely; that is, we prescribe Mg =
oy, = .5, and My, = Mag = :5. In practice, estimates of the transition prob-

abilities would be assigned on the basis ?f theory or from observation on the
empirical process.

Using matrix Mz, together with the A array of equation (11), whose entries
describe the rate of movement by individuals out of each stage, we obtain for

P(1) and P(4), from equation (9),

g [ .1353 . 4651 .1632 .2012 .0352 ]
0000 .3679 .2387 . 3177 0757
P(1) = - .0000 .0000 . 6065 .1768 .2166 (16)

.0000 .0000 .0000 .8187 .1813
. 0000 . 0000 .0000 .0000 1.0000 _

" .0003  .0360  .1440  .4104  .4093 ]
7 ©.0000  .0183  .1170  .3964  .4683
P(4) = .0000  .0000  .1353  .2617  .6030 an
.0000  .0000  .0000  .4493  .5507
_ .0000  ,0000  .0000  .0000 1.0000 _

21
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Representation of a Unilineal Progression in which Stage Skipping

Figure 4.
is Permitted

a. Diagram of Stage Linkages

b. Matrix Representation of the Stage Linkagesa

f0 1 0 0 o

0 1 0 0 o
0 0 .5 .5 0
M, = | 0 0 o0 .5 .5
0 0 0 0 1

L0 0 0 o0 1]

aAll destination stages corresponding to an origin location are
assumed to occur with equal probability. See notes to Figure 2 for
additional details on interpretation of Hg-

22
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These P(t) arraysyafe the transition matrices a researcher should expect to
observe 1f the stage locations of individuals are surveyed one year or four
years apart, assuming that the popuiatiag evolves according to the linkage
specification M, together with the auxiliary conditions outlined in the pre-

2
ceding section. The entries are different from those obtained with the simple
unilineal progression (equations 13 and 15), yet the same pattern of zero's
and non-zero's is present, and without a formal model of the evolution of the

process a researcher would be unable to predict the different implications of

these structures.

(3) A unilineal progression with stage skipping and the ﬁqssibility of

regression. We now superimpose on the linkage structure the possibility of

reverting to an earlier stage. This arrangement is diagrammed in Figure 5,

panel A, in which we have  rovided for the passibiliﬁfbaf backward flows from

stage 2 to stage 1, from stage 3 to stage 2, and from stage 5 to stage 4. The
M-matrix corresponding to this model is reported in panel B. Again, where
multiple destinations correspond to an origin stage, we have arbitrarily assigned

equal values to the mij's. There is one additional alteration in M_, in com- -

parison with the M-matrices of earlier examples. Because there now exists

a possibility of regressing from the terminal stage to an earlier level, Mge # 1.
To maintain our Qancepﬁual imagery, in which within-stage transitions are
undefined, we set Mg, = 1 and Mgg = Q_ N?FEwthat the former value does not
imply a high rate of departure from stggé 5, since the rate of movement is
controlled by 15;

to stage 4.
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Figure 5. Representation of a Unilineal Prégressi@n in which Stage Skipping
and Regression to an Earlier Level are Permitted

a. Diagram of Stage Linkages

b. Matrix Representation of the Stage Liﬂkaggsa
i 1 0 0o o]
.33 0 .34 .33 0
0 .33 0 .34 .33
0 0 0 0 1

h_f;;:Do’"J;D_J

fo]

AA11 destination stages corresponding to an origin location
are assumed to occur with equal probability. See notes to Figure 2 for
additional details on interpretation of ME'
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To obtain P(t) we use HB and A in conjunction with equation (9). Here

the element AS in equation (11) is no longer arbitrary, as movement ou. of

stage 5 18 a possibility. We shall assume that such reversions are rare, and

hence specify the average walting time to a transition from stage 5 to be
eight years; that is, RS = ,125. With these assumptions, we obtain for our
illustrative calculations at t = 1, 4,

[ .2043 .5240 .1153 .1374 .0190 ]

0871 4758 .1742 2217 L0411
P(l) = .0094 .0858 . 6215 L1461 1371 (18)
.0000 .0000 ,0000 .8292 .1708 '
_ .0000 .0000 .0000  .1067 .8933
[~ .0330 .1560 .1652 L4025 .2433 )
.0259 1246 .1500 L4174 .2820
P(4) = .0135 .0739 .1846 . 3542 .3738 ~ (19)
,0000 .0000 .0000 .5523 L4477
L .0000 .0000 . 0000 .2798 7202

If we compare the P(l) matrices and the P(4) matrices from the three
examples [i.e., equations (13}, (16), (18) and (15), (17), and (19)], we can
acquire a fair idea of the implicatiénsecf different sﬁage interconnections
for the evolution of a population among the statuses. We also emphasize the
fact that if a population were surveyed at two time points, especially widely
spaced time points, it may not be obvious from inspecting the empirically
determined transition array, E(tl), as to the structure of tha stage linkages
(matrix M) which generated the observations. We will return to the issue of
on a process are widely spaced; first we conclude this discussion on translat-
ing theoretical specifications of stage linkages into M-matrices with a cégpiex
of examples of multilineal sequences that have been described in‘the develop-

mental paychology literature.
20
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(4) A divergent multiple progression (Van Den Daele 1969, Figures 2, 4),

This stage linkage structure has the diagrammatic representation of Figure 6,
panel A; its corresponding M-matrix 1s presented in panel B. Because stages
4~7 are specified to be terminal states of the process, the corresponding rows
of H4 have 1's in the main diag@nalg Van den Daele provides no discussion

of waiting time distributions to departure from the various stages; hence the
model remains incomplete as an evolutionary process.

This stage sequence is depigteé in Figure 7, panel A, and its associated M-

L1

~matrix is reported in panel B. In this instance, the structure consists of a
collection of deterministic unilineal progressions, the speéific sequence for
an individual being contingent upon his entry siégei Note also that the
assumption of irrelevance of past history, which is posited in this formula-
tion, is one of the side conditions we have required (assumption [i] in thg’
preceding section). In particular, this specification appears in the fact that

knowledge of the path by which one has reached stage 5 (.- stage 6) is of no

value in fgrécastingjﬂgr;Qﬁderstanding, an individual's subsequent movements.
Van Den Daele (1969) discusses several additional models of stage linkages,
such as‘"parcially c@nV&féént, divergent progression,” and "partially divergent,
convergent progression."” As the procedure in converting flow structures into
M-matrices should be efidené at this point, discussions of these specifications
are)nct presented.

To recapitulate, subject to several side conditions, we have shown that
it 1s possible to construct formulations of a range of dévelapmental phenomena
which mimic the evolutionary characget of the observed process. With such a

model one can forecast the movements of a population among the stages. By
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] ) . . a
Figure 6. Representation of a Divergent Multiple Progression

a. Diagram of Stage Linkages

©
®
@

b. Matrix Representation of the Stage Linkages

- ™

iS !5

=

]
O 0 O O O C O
0O 0O 0 C O O K
o 0O 0 0 o0 o o
O 0 O H O
cC O R O o

I N =
o

Bsource: Van Den Daele (1969, Figures 2, 3).
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Figure 7. Representation of a Convergent Multiple Pragressiana

a. Diagram of Stage Linkages

h. Matrix Representation of the Stage Einkagésa

[0 0 0 0 1 0 0]
0 0 0 0 1 0 o0
0O 0 0 0 0 1 o0
M, = 0O 0 0 0 0 1 o0
0O 0 0 0 0 0 1
0o 0 0 0 0 o0 1
o 0 0 0 0 o0 1
- -

%Source: Van Den Daele (1969, Figuré 2),

i)
co




carrying out the requisite calculations for different specifications of the
stage linkagésgraﬁd comparing the predictions, it is possible to ascertain the
ways in which rather complex theories produce divergent implications and design
testing schemes which maximize the possibility of rejecting one or another
formulation as a description of the empirical process. Of equal importance,
it 1s often possible to work backwards, starting with observations on the stage
locations of a population at a few widely spaced time points, and derive the

An inverse problem. Until this point we have assumed that observations

have béeﬁ made on an empirical process in a way such that M and A can be esti-
mated directly from the data, or that theories are available which specify
the values of their entries, and have sought to derive the evolution of the
process subject to the presumed structure. In developmental psychology, it

is not uncommon for a researcher to have many observations on a few individuals

(e.g., Piaget 1954). Such a data collection scheme approximates "sample path
information," a complete history on movements and waiting times of the sort
il1lustrated in Figure 3. Detailed observations on a few subjects is a research
strategy not without 1ts costs, h;wever. One learns little about the frequency
of rare events (e.g., regression to an earlier stage, stage skipping, rare
development paths) and acquires only the most rudimentary knowledge about the
variation of duration times in a stage. It 1s therefore not surprising that
investigators who rely on this approach tend t§ be oriented to uncovering

universal rules (e.g., Piaget 1960) rather than to elucidating individual

“ differences and ascertaining the variety of developmental patterns.

M)
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Partly because of the limitations of small data sets, it is becoming
increasingly common to employ survey methods, in which a large population,
sometimes thousands of individuals, is observed (or interrogated) at a very

few time points (e.g., Baltes and Nesselroade 1972). The spacing intervals in

.such _panel studies are usually.wide, often.one.or more. years-elapses between -

interviews, so it is not unusual for some subjects to have made multiple moves
while others have made one or zero shifts between stages. The transition
matrices which can be constructed directly from such observations are P(t)-
arrays, rather than M-arrays, and the stage linkages may not be readily dis-
cernable. Indeed, determination of the movement structure which underlies the
evolution of the population can be a difficult task.

Ong'approach to ascertaining the stage linkages from survey data involves
evolutionary model (equation 9). Stated formally, we have available the
matrix g(tl); constructed from observations on the stage locations of individuals

at times 0 and - The typical entry in this matrix is pij(ﬁl)

ny = {number of individuals in stage i at time 0} and nij(tl) = {number of

persons who started in stage i at time 0 and are in stage j at time tl}i We

nij (tl) /nii , wher

wish to inquire whether it is possible to recover a unique M-matrix for the
process and, where the answer is affirmative, we wisgh to estimate this matrix.

The first step in solving the inverse problem is to take the logarithm
of both sides of equation (9),

Q = AM-1 = Liepe) (20)

Just what we mean by the logarithm of matrix ?(El), the conditions under which
a solution to equation (20) will exist, and the circumstances under which the

solution will be uhique, are complex issues which are discussed at length in

30
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Singer and Spilerman (1976). Assuming we can obtain a valid and unique

Q-matrix from these calculations, a second task, separating M from A, still

remains. In many instances, though, this matter is of 1little concern,

since the pattern of zeros and non-zeros in Q and M - I will be identical and
~development theories are often posed at the level of identifying permissible

transitions. Moreover, because zeros are typically present in many main diagonal
cells of M in models of developmental structures, a complete or near complete
geparation between M and A can frequently be effected.

We conclude this section with an example of the calculaiions associated
with the inverse problem. Suppose observations taken on a population at t’;eé

0 and tl have produced the transition matrix,

.0224 .2633 .2402 1261 .3479
.0063 ,1758 .2460  ..1735 .3983

.0216 .0288 .3758 .5060 .0679 (21)
.0365 L0745 .0288 .6794 .1809

. 0005 .0960 L0460 .0177 .8397

§(tl)

Such data would appear to be consistent with a variety of evolutionary mechanisms.
From inspection of %(tl) we do know that regression to some earlier stage must

be possible, otherwise all entries below the main diagonal would be zero.

Little else about the structure of M, however, can be inferred from inspection

of %(tl). Indeed, because of the sizable non-zero elements in most cells of

the matrix, a researcher might conclude that direct transitions are possible

between most palrs of stages.

-

If we are willing to assume that matrix P(El) was generated by a continuous-
e . ) ) -~ , ) L L,  AM=D)t
time Markov process; that 1s, via the evolution of the structure P(t) = e s

for some matrices A and M which satisfy the definltional restrictlons enumerated

in connection with equations (5) and (9), we can solve for A(MfI)tl using

equation (20). This yields the array,
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4. 4, 0. 0. O
0. =-2. 1. 0. 1.
AM - De, = 0. 0. -1. 1. o0, . (22)
1 0.20 0. 0. =0.40 0.10
0. 0.25 0. 0., =-0.25

_In this instance At, and M can be separated by employing the following . _

argument. From our earlier examples we know that a main diagonal element m

of M will equal zero if any off diagonal entry in the same row, y is differ-

mij
ent from zero. According to equation (22), each row of matrix M must have at
least one non-zero off diagonal element: therefore mo = 0 for all values of

i. With this information we can obtain At‘uniquely,

4 0 0 0 0
0 2 0 0 0
Atl = 0 0 1 0 0 (23)
' 0 0 0 .4 0
0 0 0 0 .2

and sclving for M provides the structure M& reported in Figure 8, panel A.

The schematic representation of the stage linkages implied by M4 is shown in

panel B, in which probabilities of the various moves have been appended to
the paths.

The point to be emphasized is that it is not apparent from inspectiﬁg
matrix ;(tl) in equation (21) that the underlying stage linkages are those
reported in Figure 8, .nor would any static analytic procedure be likely to
lead a researcher to the cotfect conclusion., What is necessary is to construct
a model of the evolution of the process and solve the implied inverse problem

for the parameters which correspond to the particular data set. (In the present

example, we have asgsumed that the underlying model is a continuous-time Markov

process [1.,e., specifications (1)-(iii) of the preceding section] and have

solved for the matrices At. and M which are compatible with the observed

1
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Figure 8. Stage Sequence Structure Implied by P(tl) in Equation (21)E

&, Hfmatrixb

g 1 0 0 0 )
D !5 D i5
M, = 0 1 0
.5 0 0 .5

L 0 1 0 0 |

a o _ .
The process 1s assumed to evolve according to a continuous-time

bEntries indicate the probalility of a stage i to stage } move
when a transition takes place.

EPfgbabilities of the various transitions are attached to the
appropriate paths. i
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array F(tl), in that they would have given rise to this array if the postulated

evolutionary process were approximately correct.
IV. ALTERNATIVE SPECIFICATION OF THE SIDE CONDITIONS

In this section we discuss relaxing two of the more burdensome specifica-
tions of the model, in the sénse that thav are likely to-be inappropriate as-
characterizations of developmental processes. We first consider the require-
ment that the duration intervals in a stage must follow an exponential dis-.
tribution (assumption (ii) of section II). Following these comments we turn
to the requirement that the population be homogeneous with respect to the

process parameters A and M (assumption (iii)).

More general waiting times than exponential. The exponential distribution
is frequently employed in the literature of reliability theory to describe
duration intervals in a system state (stage in the current application). It
has the advantages of being mathematically tractible and approximating reaiity
In situations where the probability of a state change is uninfluenced by
aging or time in the state. For example, if the process states are "alive"
and "not alive," then over the middle age ranges of many animal species, the
age-specific mortality rate is relatively constant and the duration intervals
(in the "alive' state) are reasonably well captured by the exponential dis-
tribution. Similarly, when mortality results from exogeneous events--accidents—-
the distribution of ages at failure can often be approximated by the exponential.

In a great many situations in social research, however, we know that
proneness to changing state is a function of duration. 1In particular, this
has been suggested with respect to residence location (McGinnis, 1968) and
employmgn;_affiliaﬁian (Ginsburg, 1971). 1In these applications it has been
argued tgéc the duration-specific departure rate decreases with time, giving
rise to the phenomenon of "cumulative inertia"~=§ﬁg longer an individual

remains in a state the less likely he 1s to leave in the immediate future.

-y




31

The substantive explanations for a declining departure rate involve the growing
investment an individual has made, with duration, in friendships (in the first
instance) and in seniority in his piace of work (in the second). There is

no mathematical reason, however, to assume a declining departure rate in

be more appropriate. For a superb review of stochastic models incorporating

the notion of duration dependence, see Hoem, 1972.

of duration—-time distributions is to begin with the integral equation repre-
sentation for transition pr@babiligiesi Equation (8) is a special case of
the formulation,

t

pyy(8) = 8,01 = F ()] + E SEACIHEMCELCEER RS (23)

in which the terms are identical with those of the earlier equation except that

-A.u
fi(u) replaces the exponential density, Kié i , and Fi(t) [the distribution
] -A,t T

function corresponding to fi(t)], replaces [1 - e ~ ]. A theoretically

appropriate choice may now be made for Ei(t)‘

As-an 1llustration, one candidate for Fi(t), in the case of a declining
departure rate, is the two-parameter family of functions

Fj(t) = 1l-e ° 7"1;‘059""’;{1' (24)

Here the probability of departing from state i during the infinitesimal interval

(t, t + dt), conditional on the process being in state i at time t, equals

£,(0) (sz ERLET ,777771—1
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Because of the reatriction on Ti in equation (24), t = 4ig a decreasing
function of time, and the declining failure rate aspect of the distribution

is evident.

tions between states generates a class of models known as semi-Markov processes,

T:Thésé_géﬁefaily déhﬁotAhéfe simple representations for the matrices P(t)

analogous to equation (9), and the solution of the systems of equations (23)
requires numerical integration methods.

Population heterogeneity. To this point we have assumed that the matrices

A and M of equation (9) are identical for all individuals. This does not

does imply, though, that individual level characteristics are unrelated to the
structural parameters of the process. In other words, homogeneity means that
considerations of genetic makeup, intelligence, sensory stimulation, and other
factors by which individuals differ from one another do not portend distinct
evolutionary paths in the developmental process under consideration.

There is reason to believe, however, that individual differences are

'present in the course of development in many processes (Werner, 1957; Kohlberg,

1968, p. 1024). We therefore desire a formulation in which the movement

pattern is parametrized in terms of variables which differentiate among persons.

To construct a general specification of heterogeneity within the conceptual
framework of a Markov process, we assume that, corresponding to equation (9),

the stage transitions by individual c have the structure

AM - It
Pg(t) = ¢ ¢ € . (25)

This formula indicates that each person is characterized by a palr of matrices,
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Ac and Hc’ and his evolution, in turn, is described by Pc(t)' Thus, our

This appreoach directs a researcher to identify the variables which describe
heterogeneity; that 1s, to ascertain which factors account for individual
differences in the matrices M and A. Thus, not only does a heterogeneity
'féfﬁdiééiéﬁmiééémﬁé'ﬁéfémfééiisfié'médéié"bfmé%biﬁéiéﬁé%y:ﬁfééésééé;”in”éﬁéé"ﬁ*
allowance is made for individual differences, but it stresses the analytic
tasks of specifying ﬁhé variety of developmental patterns in a population
and ascertaining the attributes which make an individual more prone to follow-
ing one set of paths rather than another.

One form of heterogeneity concerns the distribution of M-matrices in a
population. Focusing on these arrays serves to emphasize individual differ-
ences in proneness to making particular moves when a transition takes place.

We shall not discuss this form of heterogeneity in the present essay and
direct the interested reader instead to McFarland (1970), Spilerman (1972a),

and Singer and.Spilerman (1974). A second form of heterg eneity stresses

individual differences in the A-matrix, i.e., in the rat "which departures

occur for persons in the various states. We conclude this section with a simple

formulation of population heterogeneity in which it is assumed that the indi-
To simplify the discussion, we further require the non-zero entries in

the diagonal matrix A to be equal for an individual; i.e., Xi = A for all i.

This means we are specifying identical departure rates from all states. As a

result, equation (9) reduces to
E:\t(M—I) = (26)

P(t]))

where P(cIl) denotes the transition matrix for an individual having a
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rate of movement value equal to A, We shall assume that equation (26)

describes the evolution of an individual drawn at random from the popu-

lation.

function g(A) which describes the distribution of A-values in the papulatian.

--We now define the Population-level transition matrix eorrespgnding to times 0O

and t to be

P(t) = J P(t|gydr = g PAORD 000 (27)
0 0

This formula expresses the population~level matrix as a welghted average of
the individual-level arrays P(t,l), the weights reflecting the population
Precvrilons associated with particular A-values.
To complete this specification of heterogeneity it is ﬁecéssary to select
2 deasity funetion g(1) to describe the distribution of A-valuez. One usgeful
choice is the gamma family of functions s
] a=1 =BA

- _ B~A , ) ] )
;i!(} = “hrr(?)—%— A > O; a = Q; B >0 (28)

which is flexible enough to describe 3 variety of unimodal curves. With this
selection of 3(A), a convenient representation of the Population-level matrix

P(t) is obtai:ad {Spilerman, 1972b, p. 5@8)3
a , -a
brey o B.) 3 S o
P(t) (——Eﬂ (1-gmMm (29)
Tte transition probabilities (29) do not describe the evolution of a Markov
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the movements of a population in which each

i

process; however, they do describ

individual follows a Markov model, with individual differences being specified
by g(A) in equation (28).
In analogy with our earlier inverse problem discussion for Markov chains,

the present formulation can be used with observations taken at widely spaced

=

‘time points, 0 Sﬁa'tig together with -estimates-of o and B8, to yield an estimate

of the underlying transition mechanism M, according to the matrix equation

-1l/a

g+t -
"1 B

1 * 1

=
"

Thus, from observations of the sort collected in many surveys, even under an
assumption of population heterogeneity in the rate of movement, it may be
possible to recover the matrix of stage linkages which governms the evolution

of the process.

V. CONCLUSIONS

In this paper we have explored the consequences of particular stage
linkage structures for the evolution of a population. One thrust of our
comments has been to identify the sorts of process features concerning which
assumptions must be made in order to convert a static theory about stage
connections into a dynamic model. A second focus in our discussion has
centered on inverse problems; how to utilize a model formulation so that the
stage linkage structure (matrix M) may be recovered from survey data of the
kind usually collected by developmental psychologists.

We have presented only the most rudimentary sorts of stage structures.

Indeed, even within the Markov framework we have limited our consideration to
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a subset of these models; namely, those which are time-stationary (i.e., A
and M are not functions of time). By this specification we have excluded
the possibility of accommodating age-dependent transition laws, a considera-
tion of substantial importance in developmental pgychoi;gy. (An extension
of the models discussed here to incorporate both age dependence and cohort
effects 1s, however, a feasible undertaking but with an increase in mathe= =~

matical complexity.) Further, all the models we have discussed entail a

low dependence of future movements on the transition history of an individual, -

‘glven his current staga-7 Restrictions of these sorts are likely to be

reasonable for some processes, unreasonable for others. Appropriate models
of developmental phenomena must therefore be ai-siructed from a list of
known characteristics about an empirical proces:.

We also point out that the concept of stage merges with the notion of
state as the number and sorts of permissible transitions is increased. 'Stage"
seems conceptually rooted to thé idea of progress (i.e., development) and
would be an appropriate component of a theory which sees the system's statuses
as genetically determined or as facilitaging the conditions for succeeding status
to come into playig The mathematical framework we have introduced is also
compatible with a "state" notion, in which theére is an extensive opportunity
to cycle among the statuses. »Staze formulations have been suggested in the
psychology literature in relation to anxiéty, moods, etc. (e.g., Kessen,
1962, pp. 72=73).

As a final set of considerations in relation to the structure of stage
models, we nozé that all the formulations we have addressed are models of
solitary processes. We have proceeded as 1f intelligence, cognition, motor

skills, and personality development unfold autonomously. In reality there
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no doubt exist extensive dependencies among some of these processes. Mathe-
matical models of interacting developmental phenomena could be formulated
but clear empirically-based specifi:ations of such dependencies are still

lacking.
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NOTES

lIhe initial condition, y(0) = 1, in equation (2) 18 necessary because
diffusion through communication cannot begin until at least one person is

knewledgeable.

zfcr a more technical presentation of continuous-time Markov processes
see Feller (1968, Chap. 17) and Singer and Sp;lérmaﬁ (1974). For discussions
on the superimposition of theoretical structures on stochastic models see
Coleman (1964, Chaps. 5, 6).

BIn the present example i, j, k = 1, 2, 3, respectively.

éIj

the observations are on a single individual the interpretation of

(t) is in terms of the robability of a stage i to stage j move between

Pij
times 0 and_t.

§The symbol """ over a matrix or over an element in a matrix, will mean
that it should be viewed as estimated directly from data rather than calcu-

lated from a mathematical model.

_SWE begin here with example 2. Example 1 refers to the structure in

Figure 2.

7The time-stationary Markov formulations postulate an irrelevance of
prior stage affiliations, durations in those stages, and duration in current
stage. The last two of these restrictions can be eliminated by introducing

non-stationary semi-Markov models as deascribed, for example, in Hoem (1972).
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BStages in childhood, such as "walking" or "reading," expose an indi-
vidual to entirely new sets of experiences which may be prerequisités for

the onset of more advanced behaviors.
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