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ASTRACT

In this paper we explore the consequences of particular stage linkage

ructures for the evolution of a population. We first argue the importance

of cons -ucting "dyna ic" models of developmental theories and show through

a series of examples the mplieatons of various stage connections for popu-

lation movements. In discussing dynamic models, one thrust of our co_-ents

is to identify the sorts of process features about which assumptions must

be made in order to convert a static theory about stage connect ons (the

sort of specification commonly presented in life-span psychology) into a

dynamic model. A second focus of our discussion concerns inverse problems:

how to utilie a model formulation so that the stage linkage structure may be

recovered from survey data of the kind-collected by developmental psychologists.



MATHEMATICAL REPRESENTATIONS OF DEVELOPMENT THEORIES

Burton Singer Seymour Spilerman

Columbia University University of WIsconsin

INTRODUCTION .

Although tim, usually in the guise of age, is a crucial variable in

developmental psychology, it is the case that formal models of developmental

phenomena ra ely have the character of dynamic representations, in the sense

of mimicking the evolution of an empirical process through tirne. The analytic

procedures e ployed most extensively by life-span psychologists are factor

analysis, regression, analysis of variance, scaling, clustering, and variants

of these methods (see, for instance, Nesselroade and Reese 1973). These are

powerful techniques for identifying variables that are central to the course

of development in a par icular substantive area (e.g., intellectual atura-

tion, acquisition of moral values). Also, when applied to panel data, the

procedures can yield insights into how the salience of key variables shifts

over the life cycle, or over a portion thereof (e.g., stages in infancy, youth,

adulthood).

These analytic methods do not, however, lead to dynamic formulations of

developmental theories, which can be useful in testing predictions from a

theory about the evolution of an empirical process, or in comparing the

implications of competing explanations. By a dynamic formulation we mean a

representation which incorporates into the mathematics the main assumptions

about a developmental phenomenon and is specified in such a way that the

relevant variables, and their pos ula ed interrelations, are functions

ot subje age. In this sense, like the empirical process, it_tpo
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constitutes an evolving system. As a simple illustration of such a model,

consider the following statemen _ of alternative evolutionary mechanisms:

(A) The growth of a process at each ins ant is prop- tional to its

potential for future growth.

(B) The growth of a proc ss at each instant is proportional to the

product of its current size and its potential for future growth.

These statements night be propos d as comp ting explanations of the

cia by which infor a

lation (A

_ diffused in a population of size N. In formu-

ers not how many persons y(t) know the Information of

concern at ins_nt t; only those yet to hear, numbering N-y(t) are salient

to the diffusion rate. If the information were pr pagated by a mass media

Aource, such as radio or television, rather than by in rsonal communica-

tion, this model might apply. Fo ula ion in comparison, Is consistent

.1 h a pro which those already aware of the info lation "infect" the

uninItIated through contact and conversation. Ass- ing that the informed

and the uninfo- ed mix randomly, the variable governing the evolution of the

process would be y (t) y(t)), which measures the rate at which individuals

from the two groups come into contact.

The evolutionary mechanisms, (A) and can be represented by the

differential equations (1) and (2), respectively,

LILCO_

d(t)

d-

k
1

y(t

k y(t

where k_ and k_
2

are constants which djust for the time unit (e

(1)

(2)

day, year)

used in the mcasur -ents.- Equations 1) and (2) have for solutions (3) and (4),
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y(t) N(1 e

y(t) (4)

which predict the different evolutionary paths displayed in Figura 1.

These formulations are "dynami_" in that time appears explicitly as a

variable; they are process "models" in that the predicted value of y(t) evolves

according 65-the ass -ptions of a particular theory. If a researcher has data

on the time course of an empirical process, he could test whether equation (3),

(4 ), or a specification of an equivalent sort best approximates his observa-

tions. By this exercise it is often possible to select among competing

explanations ofthe mechanism underlying a developmental process. Indeed,

these very models have been applied by Coleman, Katz, and Menzel (1957) to

data on drug adop=ions by physicians (also see Coleman 1964, pp. 43-45). They

concluded that the drug acquisition pattern by socially integrated MD's is

best represented by a logistic curve (i plying mechanism [B]) while isolated

MD's adopt according to the constant source model (mechanism [A]), as they are

'influenced principally by drug advertisements in trade journals. To our

knowledge, although developmental psychologists emphasize ontogeaetic processes

and employ the imagery of an evolutionary system, few attempts have been made

to translate their theories into formal models of the above sort.

In this paper, we describe the __ormulation of dynamic models where the

objective is to tes_ developmental theories against data or ascertain the con-

sequences of particular assumptions about the structure of a process. To

7



Figure 1. Illustrative Growth Curves for Di fusion via Social Inte action
and Diffusion from a Constant Sourcea-

y(t)

(A) Constant
Source

46-7 (3) Social
Interaction

a
N population size; y(t) number aware of the information

at time t.

8



delimit our task, we focus on the sort of mathematics that is appropriate

for studying qualitative change. As a result, the tools we introduce are

pertinent to theories which postulate stage sequences, a variety of explana-

tion with considerable precedent in developmental psychology (Piaget 1960;

Kohlberg 1968; Ausubel and Sullivan 1970). To the degree possible we have

organized this paper with a view toward substantive issues and have concen-

trated on the translation of theoretical specifications into mathematical

formalism; the reader usually is referred elsewhere for mathematical details

and estimation procedures. The organization of the paper is 4s follows: In

the next section we intr_duce a class of models that is suitable for studying

evolutionary processes that incorporate the notion of stage. In section III

we describe how particular stage theories can be cast in the framework of the

general model. In section IV we relax several requirements of the basic model

so that it can more realistically represent developmental phenomena.

II. THE CONCEPT OF DEVELOPMENT STAGES AND A MATHEMATICAL FORMULATION OF
STAGE PROGRESSIONS

Stage sequences have been postulated for a variety of developmental

processes--the evolution of moral behavior (Kohlberg 1973) cognition (Piaget

1954), personality (Loevinger 1966), and motor skills (Shirley 1933), to cite

but a few topics. There also exist diverse formulations of stage models in

the literature of life-span psychology. These differ with respec_ to the

presumed sources of the stages and With regard to the rules governing movement

between them. In regard to stage origins, some authors have emphasized

maturational considerations, in which individuals are viewed as programmed

genetically for particular behaviors or abilities to emerge (Gesell 1954).

The specification of psychosexual stages, keyed t- biological ac iv- ion of

the sex glands, provides an illustration (Kohlberg 1973, p. 181). Others

9



view stages as arising from nteractions with the social envi onment. Kohlberg

(1968, pp. 1016-1024), for example, contends that experience with the cultural

and physical world is necessary for cognitive stages to take the shapes they

do. Still other researchers have adopted the position that stages are a useful

research construct around which to discuss development, without insisting that

they have an empirical existence (Kaplan 1966; Reese 1970).

We shall not discuss further the very important issues concerning the

etiology of stages, but will focus instead on the mathematical represe cation

theories about stage connections and on the consequences of various linkage

structures for the evolution of individuals among the stages. Formulations

of stage connections In a developmental process differ according to whether

the progression is vie ed as unilineal or multilineal, whether stages in the

sequence can be skipped, and whether re ession to an earlier level is possible.

A second set of considerations pertinent to the struc ure of developmental

theories concerns the age specificity of a stage and the related matter of the

variability of duration in a stage. For discussions of these topics in the

context of particular substantive processes, the reader is refe red to Emmerich

(1968) and Kessen (1962).

To develop the mathematical apparatus for ascertaining the Implications

of particular stage connections, we discuss both the simplest prototype _f a

stage theory (for concreteness) and the general mathematical formulation.
2

Consider, then, a developmental progression consisting of n stages, in which

the linkage is nnilineal and there is no possibility of stage skipping or

regression. An example of such a structure, with n equal to 5, Is presented

in panel A of Figure 2; henceforth this model IS referred to as exati.
It will be convenIent to also have available a matrix representation of the

stage 1 nkages. For an arbitrary n-stage structure, vm define a matrix M,

10
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m12
min

m
ni

whoseelementsare mij -_.=.(probability of -ansferr ng from stage i to stage j

when a transition OcCurs where 0 < m .

ij
and E m

ij
1. These restric-

i=1

tions on the elements of M ensure that each row of the matrix constitutes a

probability distribution. We require, in addition, that m 0 for each stage

i which is not an absorbing state of the process; that is, from which individuals

can exit. This means we exclude the possibility of within-stage transitions,

a type of move which is undefined in most developmental theories. Also, we set

1 for each stage which is an absorbing state of the process. This is

done for mathematical convenience and, as we shall see, carries no substantive

implications, ln the particular case of the unilineal progression (Figure 2,

panel A), we haverhefurtherrequirementsonM: mi_i+- =-1 m.and = 0 other-
,

1 ij

wise (except that m55 1). This M1, _- is reported in panel B of Figure 2.

To this point, though matrix M conveys important s Jctural information

about the process, the description of the stage progression is a static repre-

sentation. To elaborate the model we must indicate how stage transition events

occur. At a general level of description we assume that the time I spent by

an individual in stage i follows some probability distrlbution

where

Probi k-1
(6)

,T report the -ojourn times in earlier stages. Our imagery,
-k-1

11
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Figure 2. Representati_n of a Simple Unilineal Stage Structure

a. Dia ram Stage Linkages

b. MatrIx Representation of the Stage ba

0

0

0

0

1000
0

0

0001
0

1

0

0

1

0

0

0

1

-Each row of M is a vector of d stination probabilities. Thus,
if an individual were in stage one before a transition, the row one
entries would pertain and they indicate movement to stage two with
probability equal to 1.

The main diagonal entries are set equal to zero (with the
exception of row 5) to indicate that a "move" is not defined apar
from a stage transition; i.e., there is no notion of movement withina stage. , The main diagonal entry of row 5 is set equal to 1 because
this stage is an absorbing state ( m 0 for j 5) and the definition
of M

1--see textrequires Em5j 1.

12
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therefore, is the following. An individual originates in stage i at

the beginning of the process, to im O. He remains.there for an interval

T- specified by distribution function Prob (T
-I 1

and then transfers to

stage j with probability mij He remains in this stage for a period T2, speci-

fied by a conditional probability distribution Prob (i2 <
1

then transfers
j

to stage k with probability mik; and so forth.3 The process continues until some..

absorbing state is reached, at which point the evolution is terminated. The time

path for the un lineal progression associated with the stage linkages of matrix

is presented in Figure 3.

Several further assumptions are necessary to complete the specification

f the model. One matter concerns the relevance of an individual's past move-

ment history to the course of his subsequent evolution among the stages. We

assume,

(i) knoldge of current stage conveys all _information that is

relevant to forecasting future movement

Stated technically, if
ijab

{probability -f moving from stage i to,...f -

stage j at the occurrence of a transition, given prior sojourns in stages a,

b,.. }, then

,ab...f

(This assumption is superfluous in the current example of a unilineal pro-

gression ince there is only one possible path, but it is relevant to the

evolution of a population in less restrictive models.) We indicate in the

next sect on that this specification has been employed in descriptions of stage

linkages in developmental psychology.

1 3
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Figure 3. A Sample Path Description Corresponding to the Unilineal Stage
Structure of Figure 2.

Stage

5

4

2

a
It is assumed that there are five stages, which must he traversed

sequentlally. Ti is the value of a random variable and denotes the
solourn time for an individual in stage 1. Stage 5 is an absorbing
state of the process.

1 4



For an initial baseline class of models, we further assume,

Prob (T
-k

the sojourn time in stage i is independen_ _f previous sojourn

times and is exponentially di ributed; that is,

= Prob T F
1
(t = 1-e (7)

Use of the exponential distribu ion amounts to specifying that the Probability

f departing from stage i during the infinItesimal interval t dt, condi-

tional on being in stage i at time t, equals

-A t
i-

-)dt Ae dt

= A dF (t) -A i
t

i
it

1- -e

where f (t) is the density function corresponding to Fi This result,

turn, indicates that the probability of leaving stage J. is independcnt of

duration in the stage, and is tantamount to specifying an absence of aging, so

new entrants have the same likelihood of departing as individuals who have been=

in the stage for some period of time. The parameter, Ai, incidentally, has

an interpretation as the rate of movement out of stage i; consequently, 1/A_

equals the expected duration in stage I.

Finally, we require that

(iii) if the data pertain t- the movements of a population, rather

than to the transitions of a single individual, the popula-

tion is homogeneous with respect to the structure of the

evolutionary process.

This does not mean that all persons have the same duration T in stage i, but

th t T the time spent in stage i by individual c, follows the single expo-

t

nential. distribution F (t) = 1-e Stated less formally, duration in a stage
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a random variable with the underlying distribution of holding times the same

for all individuals. Similarly, where alternative destinations are available

to persons in stage i, homogeneity means that all have the same list of prob-

abilities for making the various transitions, not that they move identically.

It is worth dwelling on the conceptual status of the preceding assump-

tions. The question of the structure of M is a familiar topic t_ developmental

psychologists, since stage theories are commonly specified at this level.

AssumptiOns (i) to (iii) can be viewed as "side conditions," aspects of the

process to which researchers have generally not been sensitive, though see

Kessen (1970) and Emmerich (1968) for provocative comments on precisely these

matters. What is made evident by formulating a dynamic model is that develop-

ment theorists must address these auxiliary questions if complete models are

to be specified. The particular assumptions we have made constitute a gross

simplification of reality; this is especially true of specification (_ ), which

postulates an absence of duration effects, and specif cation (iii), which

postulates population homogenety. These assumptions do, however, provide a

convenient starting point from which to consider more realistic formulations,

which are developed in the next sections.

We now wish to convey the implications of assumptions (i) to (iii) for

the movements of individuals among the stages. We deno _ by pii(t) the prob-

ability that an individual in stage i at time 0 moves to stage j by time t.

(This probabIllty differs from m
i.

in that the latter refers to movement Pro-

clivities at the occurrence of a transition, not over widely spaced tim

intervals.) With this specification in hand, the evolution of a population

among the stages is described by the system of integral equa_ ons,

Xit t -X u
E I Xe
k 0

16. 0 <

u)du (8)
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where id 1 f i a j, and 0 otherwise. This expression, known as the hack-

ward equations for a continuous time Markov process (Feller 1971, p. 484), is

amenable to the following interpretation: (1) When i consists of

the sum of products of three factors: the probability of a rst departure

from stage i at time u, the probability of a stage i to stage k transition at

that instant, and the probability of transferring to stage j by some combination

of moves in the interval t - u. The summation is over all intermediate stages

k and over all time divisions u in the Interval (0, ). (2) When i = in

addition to the above term, there is the possibility of not transferrIng out

stage i during (0,--t). .This probability is given by the first term.

If we represent by P(t) the matrix of elemen s

P(t)

pij < 1,

venient solution,

P(t) =

-= 1, then the integral equations have the con-

Ilt

In this representation A is a diagonal matrix,

A

-

whose entries are the reciprocals of the expected duration times in each stage,

is the identity matrix, and M is the array specified in equation (5) which

17

0

0

P(0 ) I.
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describes the pattern of movement between the stages. Further, by the expression
Ae , A an arbitrary square matrix, we mean the power s_ iee in A,

e (10)

which can be evaluated by standard numerical methods (see, eg., Gantmacher

[1960]).

It is useful to recapitulate what is accomplished by this mathe_a ical

formulation. The matrix P(t) relates the distribution -f a population among stages

at time t to its distribution at time 09 in the sen e that a typical e t y,

p represeats the probability of moving from stage i to stage j during theij

interval (0,t). The model is "dynamic in that P(t) is a function of time;

with the passage of time P(t) des. _bes the evolution of the popul tion among

the stages. Equation (9 ) shows how the matrix P(t) is built up from the arrays

M and A. How ver, while this equation is useful as a calculating formula, the

logic of the process is conveyed more adequately by the integral equations (8).

To illustrate this model n the se--ing of a simple uniline 1 pr gression

(matrix H1 of Figure 2), we must specify average waiting times.in stages 1,2,3,

and 4. We assume these to be .5, 1, 2, and 5 years, _ spectively. Consequently,

have for -atrix A,

0 0
1 0
0 .5

0 0
0 0

0 0

0 0
0 0

0 X_
5

where the choice of X Is arb _ary. (Since stage 5 is an absorbing state,

the notion of waiting to a depar ure has no meaning. Mathematically,

[14 - 1)55 La Em55 I] [1-1) m 0, X_ bea no influence on the calcul -ions..

Now, lat1' Afrom and I, we have

18
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0 0 0

0 0
.5 0

-.2 .2

0 0

(12)

For the illustrative times t = 1, 2, and 4 years, we obtain, from - P(t),

and

P(1) =

-
.1353 .4651 .3263 .0691 .0041
. 0000 .3679 .4773 .1438 .0110
. 0000 .0000 .6065 .3537 .0398
. 0000 .0000 .0000 .8187 .1813
. 0000 .0000 .0000 .0000 1.0000

(13)

. 0183 .2340 .4641 .2482 .0354

. 0000 .1353 .4651 .3394 .0602
P(2) .0000 .0000 .3679 .5041 .1281 (14)

. 0000 .0000 .0000 .6703 .3297

.0000 .0000 .0000 .0000 1.0000 a

-
.0003 .0360 .2881 .4843 .1913
.6000 .0183 .2340 .5079 .2398

P(4) = .0000 .0000 .1353 .5233 .3413 (15)

.0000 .0000 .0000 .4493 .5507

. 0000 .0000 .0000 .0000 1.0000

These values of P(t) describe the evolution of individuals among the stages,

subject to the assumptions about the process structure detailed above. The

entries of p (0 refer to proportions
4
of the population who have moved

between particular stages in the relevant time interval. For example, according

to the entties in the top row of P(1), if observations are taken one year apa

we would expect 1' percent of the population in stage 1 at time 0 to still be

there, 46 percent to have moved to stage 2, and 33 percent to_have reached

stage 3. By comparison, over a four-year interval, le s than 1 percent-would

remain in stage 1, 48 percent would have reached stage 4, and 19 percent would

be in the te ninal stage of the process.

19



The resul _ from the three calculations reveal that, even though the

progression is unilineal with all individuals characterized by the same pare-

meters, f observations were taken on the population at two time points, t=0

5 ^
and t=t1.

,

the array P(t
1-
) might be interpreted as evidence for a more complex

theory, such as one permitting stage skipping or population hetero eneity in the

rate or pattern of movement. Further, the correspondence between the matrix

constructed from the population locations at two time points, P(t ), and the

rule governing stage transitions, Mi, dee eases with time. Thus, different

researchers obscrving the same population at t o time points, but with different

spacing intervals, might draw contrary conclusions about the stage linkage

structure even though-the single mechanism, M1 of Figure 2, governs its

evolution. Only with a formal model of the process could one hope to uncover

its underlying structure.

III. MODELS OF MORE ELABORATE STAGE THEORIES

The matrix M contains structural information about stage linkages. Since'

theories of development are commonly posed at the level of specifying this

array, flexibility in incorporating a variety of specific formulatioris would

appear to be an important feature of a general framework for describing

evolutionary behavior. In this section we focus on the issue of translating

stage theori s into M-matrices, and illustrate the evolution of P(t), the

transition matrix for a pepulation based on its locations at times 0 and t,

under alternative specifications of M. As we have noted, auxiliary info mati n

about the process, concerning the distribution of -aiting time intervals and

the form of population heterogeneity, is required f r a full description of

a dynamic mod 1. In the next section we therefore elaborate upon these ' ide

conditions" and outline ways in which our initial a--u ptions can be relaxed.

2 0
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No technical difficulties arise in reformulating the continuclus-time Markov

model-to accommodate more elaborate the- ies of stage linkages than the struc-

ture i- Figure 2 -We' illustrate the procedure with a few examples.6

A unilineal progression whieh permits sta e skipping. The formula-

tion of such a structure is diagrammed in Figure 4, panel A; its translation

into an M-matrix is reported in panel B. The principal new feature is that,

supplementing the deterministic sequence of Figure 2- it is now possible to

move directly from stage 2 to stage 4 and from stage 3 to stage 5, when a

transition out of the relevant origin location takes place. We must also specify

the probabilities of following the alte:-ate paths. In the present example,

lacking info: _ion as to the relative magnitudes of the various probabilities,

we assume all destinations to be equally likely; that is, we prescribe m
23

m24 "5'
d m34 m

35
.5. In practice, estimates of the transition prob-

abilities would be assigned,on the basis oE heory or from observation on the

empi ical process.

Using matrix M2, together with the A array of equation (11), whose entries

describe the rate of movement by individuals out of each stage, we obtain for

P(1) and P(4 from equation (9),

i.1353 .4651 .1632 .2012 .0352
.0000 .3679 .2387 .3177 .0757

P(1) .0000 .6065 .1768 .2166 (16)[.0000
.0000 .0000 .0000 .8187 .1813
.0000 .0000 .0000 .0000 1.0000

.0003 .0360 .1440 .4104 .4093

.0000 .0183 .1170 .3964 .4683
P(4) .0000 .0000 .1353 .2617 .6030 (17)

.0000 .0000 .0000 .4493 .5507

.0000 .0000 .0000 .0000 1.0000 ...

21
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Figure 4. Representation of a Unilineal Progression in which Stage Skipping
is Permitted

a. Diagram of Stage Linkages

b. Matrix Representation of the Stage Linkagesa

0 1 0 0

0 0 .5 0

0 0 0 .5 .5

0 0 0 0 1

0 0 0 0 1

a
All destination stages corresponding to an origin location are

assumed to occur with equal probability. See notes to Figure 2 foradditional details on interpretation of M2.

2 2
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These P arrays are the transition matrices a researcher should expect

observe if the stage locations of individuals are surveyed one year or four

years apart, assuming that the population evolves according to the linkage

specification M2 together with the auxiliary conditions outlined in the pre-

ceding section. The entries are different from those obtained with the simple

unilineal progression (equations 13 and 15), yet the same pattern of zero'

and non-zero's is present, and without a formal model of the evolution of the

process a researcher would be unable to predict the different implications of

these structures.

(3) Ai._Iaqiyitg_kirTeponwittLsa-resi_ag_osob:iiit--9f

LeireAsi,fLn. We now superimpose on the linkage structure the possibility of

reverting to an earlier stage. This arrangement is diagrammed in Figure 5,

panel A, in which we have =rovided for the possibility of backward flows from

stage 2 to stage 1, from stage 3 to stage 2, and ,f'rOM' stage 5 to stage 4. The

M-matrix corresponding to this model is reported in panel B. Again, where

multiple destinations correspond to an origin stage, we have arbitrarily assigned

equal values to the m .'s. There is one additional alteration in M3, in com-
_ _

parison with th M-matrices of earlier examples. Because there now exists

possibility _of regressing from the terminal stage to an earlier level, m55 1.

To maintain our conceptual imagery, in iAlich within-stage transitions are

undefined, we set m54 1 and m55 O. Note-that the former valUe does not

imply a high rate of departure from stage 5, since the rate of movement is

controlled by A5. It only means that all ;:ransitions'from stage 5 are directed

to stage 4.

2 3
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Figure 5. Representation of a Unilineal Progression in which Stage Skipping
and Regression to an Earlier Level are Permitted

a. Diagram of Stage Linkages

b. Matrix Representation o_ the Stage Linkagesa

0 1 0 0 0

.33 0 .34 33 0

0 .33 0 .34 .33

0 0 0 0 1

0 0 1 0

aAll destination s ages cerresponding to an origin loca_ion
are assumed to occur with equal probability. See notes to Figure 2 for
additional details on interpretation of M3.
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To obtain P(t) we use M
3
and A in con unction with equation ( Here

the element X in equation (11) is no longer arbitrary, as movement oki. of_

stage 5 II A possibility. We shall assume that such reversions are rare, and

hence specify the average waiting time to a transition from stage 5 to be

eight years that is, X5 .125. With these assumptions, we obtain for our

illustrative calculations at t = 1, 4,

.2043 .5240 .1153 .1374 .0190

.0871 .4758 .1742 .2217 .0411
P(1) .0094 .0858 .6215 .1461 .1371 (18)

.0000 .0000 .0000 .8292 .1708

.0000 .0000 .0000 .1067 .8933

.0330 .1560 .1652 .4025 .2433

.0259 .1246 .1500 .4174 .2820
P (4) = .0135 .0739 .1846 .3542 .3738 (19)

.0000 .0000 .0000 .5523 .4477

.0000 .0000 .0000 .2798 .7202

If we _ompare the P(1) matrices and the P(4) matrices from the three

examples equations ( (16), (18) and (15), (17), and (19)1, we can

acquire a fair idea of the implications of different stage interconnections

for the evolution of a population among the statuses. We also emphasize the

fact that if a population were surveyed at two time points, especially widely

spaced time points, it may not be obvious from inspecting the empirically

determined ansition array, P (t1), as to the s _ucture of the stage linkages

(matrix M) which generated the observations. We will return to the issue of

identifying the correct structure and recovering matrix M when the observations

on a process are widely spaced; first -e conclude this discussion on translat-

ing theoretical specifications of stage linkages into M-matrices with a couple

of examples of multiliaeal sequences that have been described in the develop-

mental psychology literature.

2
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(4) Adivergent multipl_p_ragml§12a (Van Den Daele 1969, Figures 2, 4).

This stage linkage structure has the diagrammatic representation of Figure 6,

panel A its corresponding M- atrix is presented in panel B. Because stages

4-7 are specified to be terminal states of the process, the corresponding rows

of M
4

have l's in the main diagonal. Van den Daele provides no discussion

of waiting time distributions to departure from the various stages; hence the

model remains incomplete as an evolutionary process.

(5) LL.coatiler.pgia (Van Den Daele 1969, Figure 2).

This stage sequence is depicted in Figure 7, panel A, and its associated M-

matrix is reported in panel B. In this instance, the structure consists of a

collection of deterministic unilineal progressions, the specific sequence for

an individual being contingent upon his entry stage. Note also that the

assumption of irrelevance of past history, which is posited in this formula-

-1 n, is one of the side conditions we have required (assumption [i] in the

preceding section). In particular, this specification appears in the fact that

knowledge of the path by which one has reached stage 5 - stage ) is of no
--

value in forecasting, or understanding, .an individual's subsequent movements.

Van Den Daele (1969) discusses sever 1 additional i-dels of stage linkages,

such as "partially convergent, divergent progression," and "partially divergent,

convergent p ogression." As the procedure in converting flow structures into

M-matrices should be evident at this point, discussions of these specifications

are not presented.

To recapitulate, subjee_ to seve A side conditions, we have shown that

is pOssible to .eonstruct formulations of a range of developmental phenomena

which mi ic the evolutionary character of the observed process. With such a

model one can forecast the movements of a population among the stages. By
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Figure 6. Representation of a Divergent Multiple Progressiona

a. Diagram of Stage Linkages

x Representation of the Stage Linkages

0100000
0 0 0 .5

00000.5
0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0

1 0

0 1 0

0 0 j

a_
-Source: Van Den Daele (1969, Figures 2,

2 7
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Figure 7. Rpreentation of a Convergent Multiple Progresaiona

Diagram of Stage Linkages

11. Matrix Representation of the Stage Linkagesa

M
-5

0 0 0 0 1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0000 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

aSource: Van Den Daele (1969, Figure
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carrying out the requisite calculations for different specifications of the

stage linkages, and comparing the predictions, it is possible to ascertain the

ways in which rather complex theories produce divergent implications and design

testing schemes which maximize the possibility of rejecting one or another

formulation as a description of the empirical process. Of equal importance,

it is often possible to work backwards, starting with observationa on the stage

locations of a population at a few widely spaced time points, and derive the

structure of the stage linkages compatible with the data.

An inverse roblem. Until this point we have assumed that observations

have been made on an empirical process in a way such that M and A can be esti-

mated directly from the data or that theories are available which specify

the values of their entries, and have sought to derive the evolution of the

process subject he presumed structure. In developmental psychology, it

not uncommon for a researcher to have many observations on a few individuals

(e.g., Fiaget 1954). Such a data collection scheme approximates "sample path

information," a complete history on movements and waiting times of the sort

illustrated in Figure 3. Detailed observations on a few subjects is a research

strategy not without its costs, however. One learns little about the frequency

of rare events (_ g., regression to an earlier stage, stage skipping, rare

development paths) and acquires only the most rudimentary knowledge about the

variation of duration times in a stage. It is therefore not surprising that

investigators who rely on this approach tend to be oriented to uncovering

uniVersal rules (e.g., Piaget 1960) rather than to elucidating individual

differences and ascertaining the variety of developmental patterns.



Partly because of the limitations of small data se s, it is becoming

increasingly common to employ survey methods, in which a large population,

sometimes thousands of individuals, is observed (or interrogated) at a very

few time points (e.g., Baltes and Nesselroade 1972). The spacing intervals in

ch panel studies are usually wide, often one,or more years lap between

interviews, so it is not unusual for some subjects to have made multiple moves

while others have made one or zero shifts between st ges. The transition

matrices which can be constructed directly from such observations are

arrays, rather than Marrays, and the stage linkages may not be readily dis-

cernable. Indeed, determination of the movement structure which underlies the

evolution of the papule ion can be a difficult task.

One app oach to ascertaining the stage linkages from survey data involves

consideration of the "inverse problee to the mathematical formulation of the

evolutionary model (equation 9). Stated formally, we have available the

ma P(t ), constructed from obse ations on the stage locations of individuals

_i es 0 and t
1

. The typical entry in this matrt- is p,.
- whet

13 1 1.

n_ (number of individuals in stage i at time 0) and nij = (number of

persons who started in stage i at time 0 and are in stage j at tIme t
1
). We

wish to inquIre whether it is possible to recover a unique M-matrix for the

process and, where the answer is affirmative, we wish to estimate this matrix.

The first step in solving the inverse problem is to take the logarithm

both sides of equation (9),

1

Just what we mean by the logarithm of matrIx P(

(20)

the conditions under which

a solution to equation (20) will exist, and the ci _u stances under which the

solution will- be unique, ae complex issues which are discussed at length in

30
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Singer and Spiletwan (1976). Assuming we can obtain a valid and unique

Q-marrx from these calculations, a second task, sepa ating M from A, still

remains. In many instances, though, this matter is of little concern,

since the pattern of zeros and non-zeros in Q and M - I will be identical and

development.theories are often pose0_.at the_level of. identifying_permissible__
.

transitions. Moreover- because zeros are typically present in many main diagonal

cells of M in models of developmental structures, a complete or near complete

separation bet een M and A can frequently be effected.

We conclude this section with an example of the calculavions associated

with the inverse problem. Suppose observations taken on a population at t' 'es

0 and t
1
have produced the transition matrix,

.0224 .2633 .2402

.0063 .1758 .2460

.0216 .0288 .3758

.0365 .0745 .0288

.0005 .0960 .0460

.1261
,.1735
.5060

.6794

.0177

.3479

.3983

.0679

.1809

.8397

(21)

Such data would appear to be consistent with a variety of evolutionary mechanisms.

From inspection of P(t
1
) we do knowthat regression to some earlier stage must

be possible, othe Ase all entries below the main diagonal would be zero.

Little else about the structure of M, however, can be inferred from inspection

of P(t ). Indeed because of the sizable non-zero elements in most cells of_

the matrIx, a researcher might conclude that direct transitions are possible

between most pairs of stages.

f we are willing to assume that matrIx P(t1) was generated by a continuous-

time Markov process; that is, via the evolution of the structure P(t) = e
A(M-I)t

for some matrices A and M which sati fy the definitional restrIctIons enumerated

in connection with equations (5) and (9 ), we can solve for A(M-I)t1 using

equation (20). This yields the arra-
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-4. 4. 0. 0. 0.
0. -2. 1. 0. 1.

A 0. 0. -1. 1. 0. (22)
0.20 0. 0. -0.40 0.10
0. 0.25 0. 0. -0.25

In this instance At, and M can he_separated1)y_employing_ the follo-. n...

argument. From our earlier examples we know that a main diagonal element

of M will equal zero if any off diagonal entry in the same row, mii, is differ-

ent from ze:o. According to equation (22), each rew of matrix M must have at

least --e non-zero off diagonal element; therefore mi = 0 for all values of

i. With this information -e can obtain At u iquely ,

4

0

0

0

0

0

2

0

0

0

0

0

1

0

0

0

.4

0

0

0

0

0

.25 _

(23)

and sol,qug for M provides the structure M4 reported in Figure 8, panel A.

The schematic representation of the stage linkages implied by M4 is shown in

panel B, in which probabilities of the various moves have been appended to

the paths.

The point to be emphasized is that it is not apparent from inspecting

matrix P(t_) in equation (21) that the underlying stage linkages are those

repo_ ed in Figure 8, .nor would any static analytic procedure be likely to

lead a researcher to the correct conclusion. What is necessary is to construct

a model of the evolution of the process and solve the implied inverse problem

for the parame e s whi h correspond to the particular data set. (In the present

example -e have assumed that the underlying model is a continuous-time Markov

process [i.e., specifications (i)-(iii) of the preceding section] and have

solved for the matrices At and M which are compatible with the observed_ _ _ _

3 2
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A

Figure 8. Stage Sequence Structure Implied by P(t1) in Equation (21)a

a. M-matrix
b

1 0 0 0

0 .5 0 .5

0 0 0 1 0

.5 0 0 0 .5

0 1 0 0 0

b. Diagram of Stage Linkagese

aThe process is assumed to evolve according to a continuous-t me

Markov formulation.

bEntries indicate the probaLil ty of a stage i to stage j move

when a transition takes place.

eProbabilities of the various transitions are attached to the

appropriate paths.
3 3
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array P(ti), in th t they would have given rise to this array if the postulated

evolutionary process were approximately correct.

IV. ALTERNATIVE SPECIFICATION OF THE SIDE CONDITIONS

this section we discuss relaxing two of the more burdensome specifica-

tions f the _odel, in the sense_that thoy ,q1°,71 14Itly-to " inapproptiaie as

characterizations of developmental processes. We first consider the require-

ment that the duration intervals in a stage must :ollow an exponential dis-,

tribution (assumption (ii) of section II). Following these comments we turn

the requirement that the population be homogeneous with respect to the

process parameters A and M (assumption (iii)).

More :eneral waicin 'mes than ex onential. The exponential distribut on

is frequently employed in the literature of reliability theory to describe

duration intervals in a system state (stage in the current application). It

has the advantages of being mathematically tractible and approximating reality

in situations where the probability of a state change is uninfluenced by

aging or time in the state. For example if the process states are "alive"

and "not alive," then over the middle age ranges of many animal species, the

age-specific m ality rate is relatively constant and the duration intervals

(in the "alive" state) are reasonably well captured by the exponential dis-

tribution. Similarly, when mortality results from exogeneous events--accidents--

the distribution of ages at failure can often be approximated by the exponential.

In a great many situations in social research, however, we know that

proneness to changing state is a function of duration. In particular, this

has been suggested with respect to re idence location (McGinnis_ 1968) and

employment affiliation (Ginsburg, 1971). In these applications it has been

argued that the duration-specific departure rate decreases with time, giving

to the phenomenon of "cumulative inertial- he longer an individual

34 rema ns in a state the less likely he is to leave in the immediate future.
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The substantive explanat ons for a declining departure rate involve the growing

investment an individual has made, with duration, in friendships (in the first

instance) and in seniority in his place of work (in the second). There is

no mathematical reason, however, to assume a declining departure rate in

choosing Fi(t), and in other substantive contexts a different specification may

he more appropriate. For a superb review of stochastic models incorporating

the notion of duration dependence, see Hoem, 1972.

A convenient way to generalize the Markov model to accommodate a variety

of duration7ti e distributions is to begin with the integral equation repre-

sentation for transition probabilities. Equation (8) is a special case of

the formulation,

1 - F 1 -I- X

k 0

du 0 < (23)

in which the terms are identical with those of the earlier equation except that
-A4u

(Oreplacestheexponentialdensity Aie and F (t) [the distribution
-A

function corresponding to fi (0], replaces [1 e
it

]. A theoretically

appropriate choice may now be made for Fi(t).

As-an illustration, one candidate for Fi( in the case of a declining

departure rate, is the two-parameter family of functions

1
-A t

1- e 1 > 0-
,
0 < < 1 . (24)

Here the probability of departing from state i during the infinitesimal interval

(t, t + dt), conditional on the process being in state i at time t, equals

-Ait

y
i
-1t )e

m 4_yi _t dt '

A t

e
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Y -1
_Because of the restriction on yi in equa-ion (24) t is a decreasing

function of time, and the declining failure rate aspect of the distribution

is evident.

The general fo_ ulation (23) for dua ion time distributions and transi-

tions be-ween states generates a class of models known as semi-Markov processes.

These generally do not have simple representations for the matrices P(t)

analogous to equation 9), and the solution of the systems of equations (23)

requires nume ical integration methods.

PopatIon hetAroe. To this point we have assumed that the matrices

A dnd M of equation (9) are identical for all individuals. This does not

mean that all persons move identically since the process is probabilistic; it

does imply, though, that individual level characteristics are unrelated to the

structural parameters of the process. In other words, homogeneity means that

considerations of genetic makeup, intelligence, sensory stimulation, and other

factors by which individuals differ from one another do not po tend distinct

evolutionary paths in the developmental process under consideration.

There is reason to believe, however, that individual differences are

'present in the course of development in Many processes (Werner, 1957; Kohlberg,

1968, p. 1024). We the efore desire a formulation in which the movement

'pattern is parametrized in terms of variables which differentiate among persons.

To construct a general specification of heterogeneity within the conceptual

fram ork of a Markov process, we assume that, corresponding to equation (9),

the stage transitions by individual c have the structure

A
c
(M )t

P
c (25)

This formula indicates that each person is characterized by a pair of matrices,

3 6



A and M
c

, and his evolution, in turn, is described by P (t). Thus, our
-c c

formulation begins with a separate Markov process for each individual.

This approach directs a researcher to identi y the variables which describe

heterogeneity; that is to ascertain which factors account for individual

differences in the matrices M and A. Thus, not only does a heterogeneity

formulation lead to more realistic models of evolutionary processes, in that

allowance is made for individual differences, but it stresses the analytic

tasks of specifying the variety of developmental patterns in a population

and ascertaining the attributes which make an individual more prone to follow-

ing one set of paths rather than another.

One form of heterogeneity concerns the distribution of M-matrices in a

population. Focusing on these arrays serves to emphasize individual differ-

ences in proneness to making particular -_-_oves when a transition takes place.

We shall not discuss this form of heterogeneity in the present essay and

direct the interested reader instead to McFarland (1970), Spilerman (1972a),

and Singer and,Spilerman (1974). A second form of heterogeneity stresses

individual differences in the A-matrix, i in the raMle Which departures

occur for persons in the various states. We conclude this section with a simple

formulation of population heterogeneity in which it is assumed that the indi-

vidual differences can be expressed in the lat er way.

To simplify the discussion, we further require the non-zero entries in

the diagonal matrix A to be equal for an individual; i.e., Xi - X for all i.

This means we are specifying identi al departure rates from all states. As a

result, equa .on (9) reduces to

(26)

where 13(t1 denotes the transition matrix for an individual having a

3 7
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rate of movement value equal to A. We shall assume that equation (26)

describes the evolution of an individual drawn at random from the popu-

lation.

Heterogeneity is incorporated into the formulation by specifying a density
function g(X) which describes the distribution of A:values in the population.

--We now define the'lsi- transition matrix corresponding to times 0
and t'to be

P(t) f P
0

00

g(A)dX f et g dX (27)

This formula expresses the population-level
matrix as a weighted average of

the individ al-level arrays P(tiA), the weights reflecting the population
p r- 3.0t1 associated with particular X-values.

To complete this specification of heterogeneity it necessary to select

3 .1easity function g(X) to describe the distribution o -values. One useful
cholce is the gamma family of functions

,

a a-1 -$AAe
F(a) A > 0, a >

(28)

which Is flexible enough to describe a variety of unimodal curves. With this
selecti n of ,(A ), a convenient representation of the population-level mat-ix
P(t) is obtaied Opilerman, 1972b, p. 608),

(29)

on probabil _ies (29) do not describe the evolution of a Markov



process; however, they do describe the movements of a population ±nwhch each

individual follows a tlarkov model, with individual differences being specified

by g(A) in equation (28).

In analogy with our earlier inverse problem discussion for Markov chains,

the present formulation can be used wIth observations taken at widely spaced

time pointi, 0 and t1'
,

toge-her with est -and to, anestfrnateesti

of the underlying transition mechanism M, according to the matrix equation

ti [

Thus, from observations of the sort collected in many surveys, even under an

assumption of popula ion heterogeneity in the rate of movement, it may be

possible to recover the matrix of stage linkages which governs the evolution

f the process.

V. CONCLUSIONS

In this paper we have explored the consequences of particular stage

linkage st:uctures for the evolution of a population. One thrust of our

comments has been to identify the sorts of process features conce ning which

assumptions must be made in order to convert a static theory about stage

connections into a dynamic model. A second focus in our discussion has

centered on inverse problems; how to utilize, a model formulation so that the

stage linkage structure (matrix M) may be recovered from survey data of the

kind usually collected by developmental psychologists.

We 'have presented only the most rudi _ntary sorts of stage structures.

Indeed, even within the Markov framework we have limited our consideration

3 9
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a subset of these mode ; namely, those whi-h are time-stationary (i.e., A

and M are not fun-A.0ns of time). By this specification we have excluded

the possibility of accommodating age-dependent transition laws, a considera-

tion of substantial importance in developmental psychology. (An extension

of the models discussed here to incorporate both age dependence and cohor-

effeCtS ia, haWever, a feaSible-undeitaking but'With-an increase in mathe-

matical complexity.) Further, all the models we hove discussed entail a

low dependence of future movements On the transition history of an individual,-

-given his current stage.
7

Restrictions of these sorts are likely to be

reasonable for some processes, unreasonable for others. Appropriate models

f developmental phenomena must therefore be no' '_ructed from a list

known characteristics about an empirical procesl.

We also point out that the concept of stage wrgcr with the notion of

state as the number and sorts of permissible t ansitions is increased. "Stage"

seems conceptually rooted to the idea of progress (i.-., development ) and

would be an appropriate component of a theory which sees the system's.statuses

as genetically determined or as facilitating the conditions for succeeding statut

to come into play.
8

The mathematical framework we have introduced is also

compatible with a "state" notion, in which thre is an extensive opportunity

to cycle among the statuses. State formulations have been suggested in the

psychology literature in relation to anxiety, moods, etc.

1962, pp. 72-73).

As a final set of considerations in relation to the structure of stage

models, we note that all the formulations we have addressed are models of

solitary processes. We have proceeded as if intelligence, cognition, motor

skills, and personality development unfold autonomously. In reality th-re

Kessen,

4 0
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no doubt exist extensive dependencies among some -f these processes. Mathe-

matical models of interacting developmental phenomena could be formulated

but clear empirically-based specifications of such dependencies are still

lacking.
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NOTES

1The initial condition, y(0) -= 1, in equation (2) is necessary because

diffusion through communication cannot begin until at least one person is

knowledgeable.

2
For a more technical presentation of con inuous-time Markov processes

see Pelle- (1968, Chap. 17) and Singer and Spilerman (1974). For discussions

on the superimposition of theoretical structures on stochastic models see

Cole_ (1964, Chaps. 5, 6).

n the present example i, 1, 2, 3, respectively.

4_
If the obse- ations. are on a single individual the interpretation of

p
ij

(t) is in terms of the Rrobabilit of a stage i to stage j move between

times 0 and t.

5
The symbol ' over a matrix or over an element in a mat ix, will mean

that it should be viewed as estimated directly from data rather than calcu-

ted from a mathematical model.

6
We begin here with example 2. Example 1 refers to the structure in

Figure 2.

7
The time-stationary Markov formulations postulate an irrelevance

prior stage affiliations, durations in those stages and duration in current

stage. The last two of these restrictions can be eliminated by introducing

non-stationary semi-Markov models as described, foi example, in Hoem (1972).

42
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8
-Stages in childhood, such as "walking" or "readin " expose an indi-

vidual to entirely new sets of experiences which may be prerequisites for

the onset of more advanced behavio-
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