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Multivariate Multiple'Regression

in Communication Research

Far better an approximate answer to the right
question, which is often vague, than an exact
answer to the wrong question, which can always
be made precise. . Tukey. 1962, p. 13)

The scientific study of human communication, like any other

science, is fundamentally conceit-led with establishing laws Of

,relations among the variables that constitute its subject matter.

While formulating laws is, of course, a thebretical endeavor,

establishing them is an empirical enterprise. Whena.communication

-scientist undertakes research to.estahlish a law, he mus:t choose

a statistical technique from,among the large repertoire available

which,in his judgment is the one best suited to enable Kim to

derive meaningful conclusions. This 'paper will-present pne

alternative, mul,tivariate multiple regression (MMR) and its uni-

variate counterpart, which in my opiniOn is often-ideally suited

this task. In fact; as Blalock (1964) says, ",It is the

regression Coefficients which give us the laws of science" (p. 51).

It is not my intention, however, to argue for the superiority

of MMR over other analytic techniques. Rather, it seems-important

-that the communication nesearchers.understand the technique and its

assumptions so that, as with all statisitical procedures, he will
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have a ratonal basis for selecting it when it is best suited to

his heeds. In this regard, the assumptions are most critical for

here is where the researcher must compare the nature and assumptions

of the theory being tested (i.e., the proposed.law) with the

assumptions or the analytit technique. Should the theoretical and

analytic assumptions fail to correspond, then the 'analysis-under

one set of assumptions of data gathered under the other set is

bound to be in error.

The purpose of this paper, then, iS to examine the multi-'

variaLe multiple regression model and to explore its aOplicability .

to the'domain of communication inquiry. Wewill begin with a preiude

on partitioning- a data matrix as a heuristic device,for distinguishing

among alternative regression models. In the second section we will

discuss. the major aspects of univariate multiple regression: (a)

the form of the-model, (b) using the model for descriptive purposes,

(c) estimators and their properties, (d) assumptions of the model,

(e) procedures.for parameter estimatiOn, (f) hypothesis testing -

procedures, (g) interpretation of regression coefficients, and (h)

reestimation. The-third section will provide a parallel presentation

for multivariate multiple regression. In the final section, we will

turn to sever:al additional topics. These will intlude: (a) tests

of assumptions, (b) coping with failed assumptions, (c) the relation

of MMR to other multivariate procedures, and (d) tha advantages and

disadvantages of MMR.
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Notation

In terms of notation it may be helpful at tl-?. outset to make the

conventions we will utilize explicit. For parameLers, i.e.,

.characteristiCs of.populations, we shall use upper and lower case

Greek letters, e.g., Z, u2, E, p. For estimators of parameters from

sample data, we shall use the same Greek letters as the corresponding

parameter augmented by a caret, -,.above each symbol, e.g., (3, as

an eStimator,of For statistics, i.e., characteristics of

samples, and for computational forms, we will use English equivalents

(or alternatives, if necessary) to the Greek symbolse.g., S for

b for etc. Vectors will be identified by lower case letters,

matrices by upPer case, and both will always be underscored to

distinguish them from scalars and other data representations thus,

is a single regression coefficient, is a vector of coefficients

and.B is a matrix of COefficients.

Partitioning the Data Matrix for Regression

Virtually every communication researcher has gathered data for

several, different variables on some number of subjects. The most

traditional way to.prepare these data for analysis is to arrange

them into a subjects.by variables data matrix. In fact, virtually

all standard computerized statistical packages require that data be

prepared in this. way. Here the 'deck of punched cards may be

considered the data matrix;:, where each card corresponds to the set

6
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of obserVations (scores or measurements) on a single subject, ..e.,

a row of the data matrix. Since this format is generally familiar

to researchers., let us examine Various partitionings of this matrix

in order to provide an overview of alternative lirear regression

models.

A
Suppose that we have a data matrix, ,which consists of

measurements for N subjects (i = 1, 2, . . N) on M variables

= 1, 2,_. M). Our matrix is then c order N x M. Let

us assume that we are interested in how the values of some variables

can be determined from knowledge about the values of other variables;

regression analysiS is appropriate for examining this kind of depend-

ency. Some variables in the matrix will be identified as predictor

variables and others as criterion variables. We can partition 'the

data matrix into two submatrices, one for predictor variables and

one for criterion Variables, and eXamine the interrelations among

the two submatrices.

According tO cortventicin, we will label the predictor.variables

'the X variables and the criterion variable's the Y variables. We

will.label our criterion submatrix, , ahd our predictor submatrix,
NxP

X

NxK
It is possible to have one or more of each kind'of variable,

i.e., one or more Criterion 'variables and one or more predictor

variables, which pi-ovide 'four possible combinations or regression

models. The first_situatioh occurs If cie have a data matrix with
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A
only two variables. Then we would partition (M = 2) as follcws

(where M = P K = 1 + 1 - 2)

(1)
A Y 1 X [-Y i X y hx1

Nx2 NxP Nl]xK 1757 Nx:1 Nxl INX1J
[

With one criterion variable and one predictor variable we have the

data partition for univariate simple regression. Note that since

there is only one criterion and one predictor variable, that the

A
submat llrices are reay vectors (and iq.,T s N x 2).

Now assume that M is greater than two. We must decide how to
\

partition the matrix. If we choose ,one variable (the first, for

convenience) as the criterion variable, so that P = 1 an6 treat all .

the.remaining variables as predictor variables, (K

would partition
A

(M > 3) as follows
NxM

(2)
Y 1 X

NxP NxK Mxl I NxK
Y x]

>2), then we

and cafl it the data partit:ion fOr univariate multiple regression.

There is a single vector of criterion scores but a matrix of two or

more predictor scores (one score for each subject on each predictor

'variable).

A
Now consider what would happen if we were to partition FITJT, so

that there were two ,or more criterion variables (P > 2) but only

. A
one predictor variable (K .= 1). ffif4-- would look like

8



( 3 )

A

NxM

../

Multivariate tultiple Regression

.mMp

Y

NxP Nx,1
(M = P + K = P + 1 >

7

This data partition can still be treated as a regression problem.

Since there are several criterion variables but only one-predictor

variable it would be the appropriate data setup for a multivariate

simple regression analysis.

Finally, assume that the researcher is interested in examining,

the regression of two or more criterion variables (p > 2) on two Or

more predictor variables (K > 2). Taen,

(4)
A Y X

NxM ,LxP Nxk
(M = P + k > 4)

_This partitioning of the data matrix into fwo submatrices is

apPropriate for analysis under the multivariate mUlt-!ple regression

model.

During the remainder of this paper we will work with the

,Y X
criterioa and.predictor submatrices, and rather than the

NxK'

full data matrix. Since it is helpful in sorting out the differences

for the Various forms pf analysis, the results of this section are

summarized in Table 1. This data partitioning.will also be useful

when it coMes to comparing the regression procedures with related

techniques.

Table 1 about here
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While we will assume at the outset that the reader is familiar

with standard simple and multiple regression techniques, a presen-

tation Pf theunivariatc model will help to set the stage for cur

discussion of the multivariate case. To that task we will now turn.

Univariate Multiple Regression

The Univariate Multiple Regression Model

The classical univariate linear multiple regression model can

be given by

-(5)
. +

k
X
ik

+ E.

whicb.shows the relationship between two or more (K) predictor or

independent variables (X) and a criterion or dePendent -variable

.(Y) all measured simultaneously on the subject. The model is called

linear (or linear in the parameters) because the effects of the

various predictor variables are treated as additive, i.e., Yi is

composed of a linear combination of regression parameters. The

regression parameters (R0 . . 13k) are the population partial

regression coefficients or weights which are determined from the

sample data and used; to optimally predict Y. 50 is a scaling

constant which absorbs the differences in the scales used to

measurP the Y and X variablPs. The E
i

represents the error terifi,

i.e., the extent to Which the model fails to predict the criterion

10



Multivariate Multiple Regression

scores, Y. This can be seen by rewriting (5) as,

(6) = Y. +.
1

X
il

. +
k

X
ik

)

9

Since data are oathered on each subject (i 1 . . . N) in

the sample, there are N equations of 91e-form depicted in equation

(5 ) above

(7) (1)so "1 '11 1

. X +
Sk lk 1

1 21 2 22
.

k 2k +Y = (1)B + X + X +

-2

= (1)8o S1 YN1 82 XN2 Sk XNk EN

These equations may be represented in matrix form as

(8)

or

( 9 )

Yl

N

1 X11 X12 . . . Xlk

1 x
-21

x
-22 )(2k

1 xN1 XN2 . . XNk

o

f3i

f3

k

(Nxl) Nx(1)- (qxl) (Nil)

.y is the Nxl vector o criterion or 'dependent scores, one for.each
.

subject in the sample.. is the Nxq model matrix which contains an

1

initial vector of uniies and the data for the k'predictor or

Ll
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ind=oend=nt variables (o = 1 + k). s the q x 1 vector of partial

rPoression coefficients and is the N x I vector of error terms.

The model given in (9) is often called the raw or raw score form

of the linear regression of y on x. Two other forms of the model

are also possible and frequently encountered in regression work.-

Ore alternative following Timm (1975, p. 270), is called the

reparameterized or deviation model. In this model all predictor

scores are measured as deviations about their respective means.

-Thus, the regression equation would be

(10)

k

= + e. X. + E (X.. - +
'0

j=1

which can be represented in matrix notation as

y_ = Xd e

Nxl Nxq qxl Nxl

where q = k + 1, and X.ci is the model matrix of deviation scores,

and n (i.e., eta, is the vector of regression coefficients for the

reparameterized model.

The other alternative is to standardize the elements of both

y_ and X, which is accomplished by dividing each deviation score by

the standard deviation of that variable. The standardized regression

model is

1 2

-
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(12) .;71
1---

z
11

Z
12

Z,-1 r-

[I li
,K

yl.z
Z21 Z22 Z2.1,

. . . .

. . . .

YN2. '41'1 N2
, Z

Nk

or

Y-z

Nxl Nxk kxl

c2

EN

Note that he orderS of the data matrix Z a d the regression vector

-in equation .(13) are k rather than q k + 1. Since all variables

are standa+dized to the same scale, there i nolonger'the necessity

for ascaling terM; hence, there is no initial vector of unities in

7 , and no y,
'o

bescription..

'-Suppose :that a commUnication researcher has a setof data which
.

, .

'he wishes simply to describe. ,Multiple..regression proCedures may be.

used:Zpightforwardly in this cas.e_as a Aescriptive device. The _

_

data will be divided into a criterion variable and one or more_

predictor variables. USing English letters to.indicate that

regression coefficients areto be calculated froM sample data for

desCriptive purposes only,'theregression equation specifying the

relatiOn among theOriables is given-by

(14) = X b +

Nxl : T6;sq qxl Nxl



Multivariate Multiple Rpgression

*12

where y. is an Nx 1 column vector of observations on the criterion

score (sometimes called the regressand), X- is the N x q (q = 1 + k)

data matrix of observed predictor variables (sometimes call

regressors) augmented by an initial vector of unities, b. k e un-

known q x 1 vector of regression coefficients and e is the unknown

N x 1 Vector of errors. The problem is one of determining the un-

known regressiOn coefficients and calculating the error components

of the. equation.

By manipulation of (14) we,can create' n equatign which will

give us a solutiqn for the regression parameters. : In order to

obtain the best possible solution,, we wOuld_ like our regression

coefficients when multiplying the X scdres-to reproduce the...y.

scores as exactly as:possible. Another way to state this is that.,

the error.cgmponent of the model, he difference between observed

;and calculated Y scores, or more precisely the error sum of squareS;

will be at 'a minimum. First we calcuiate the error sums bf squares,

e'e.
_

14.

>--

(15) e - Xb rearranging (14)

e"e (y_ Xb) (y_ 7 Xb) multiplying

r yXb:- bXTy + b-X-Xb collecting terms

Since we are inte.'ested,in findi.ng the b which giveS the smallest

errorumS of squares-, let us differentiate these error sums of

_

-'1
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. (16)
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This solution:to 3(e'e)/Db, when set i2qu, 1) gives the "normal_

equsations"

(17) X'Xb = X. \

JlereXX is the sums of squares and cross produCts for the predictors,

b the.Vector of regreSsion Coefficients,.and-X'y is the sum:of squares

and'cross products for thefpredictor and criterion variables.

Simple algebraic maniPulation-of (17),gives us the solution for

the regression coeffidents we seek.

(18 (X-X

For'those familiar with the.calculation of,simple regression'coefficients
.

in summation notation it might be useful to point out that in the

'bivariate,case ,(18)- is equivalent to

(19) b 'xY
yx Ex2

which is the ratio of variation between x and to variation in x
/

alone:

Having now obtained b it -is'possible to insert the values of b

into the equation to calculate.or- predict.the valuei, of y. Since we

15



Multivariate Multiple Regression

14

already possess the observed predictor scores, X, the calculated

scores, y, 'are

If we now compare our calculated.criterion values, y, with the observed

criterion values, y, we Will discover the extent to which our pre-

dictor variables , when multiplied by the best possible regression

coefficients, b, ccurate1y reproduce the observed scores, y. As a

measure of our failure to correctly reproduce the observed scor.

frOM ourpredictor.variabs and the regrssion coefficients we

,construct an equation fc- residuals.

,(21) e y y since y =

mhere èis the vector of residuals obtained bycomparing the observed

y_ scores with the calculated or predicted scores;
, -..

Flving obtained our best wei,ghts =or the set of predictors is

useful to determine hc w.,,11 the prediction model, Xb, "fits" th,,_,

'observation vectu., J. procedure, f011oing 6O1dberger (1964,

p. 159), is to pa.rtiti or decompose the variance'of y into its

component parts. The ps of the decomposition can then be developed

16
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into a measure of the goodness of fit, R
2

. First, me obtain the sums

of squares for residuals.

(22) = Xb)' - Xb)
frow (21)

y:Xb. b1X1K + b'X'X ' multiplying

y:y - 2bX + bX"X (XX)-1 X Combininvterms and

from (18)

1

= y' b'X'y 'since X'X (XX =_

Also', from equation (20) we All fl, _airl the sums of squares total

for the calculated scores,

(23) 211 = (Xb)" (Xb) squaring (20)

rearranging

=b'Xly since

By substituting (23) in (22) ,earranging terms, we obtain sums

of, squares total for the obs v scores.

(24) = + e-e

This provides the fundamental Dilr on for lin.,ar regression_ The

',partition-states that total va in observed y, can be decomposed
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into two components (1) sums of squares for predicted also called

sums of squares for regression, SSR, and (2) sums of squares error,

SS
E"

If we treat the sums of squares as deviations from.their

respective means, then we have'

(25)\ SS
T

= SS
R

SS
E

As a measure ofthe "gOodnesS:of fit.," the sample coefficient

multiP)e determination, R2', is calcUlated.

,

(26). R
2.

= - SE = 1 -
SS

Ee = R

(Y-Y)
SS

SST E

which varies.between p nd 1.: As Godberger (196) says, "When the

fit is perfect, the least squares plane passesthrough every ob-

2
served y evpry e = 0, so,R := 1. At the other extreme bl = .

= b
k

= 0, b
0

= y, the plane is horizontal'at y,ever.ve= y -

so R2 = O."' (p. 160). R, the square root of R2, is called the

;

sample multiple correlation coefficient.

The results of this section indicate that regression ana)ysis
3

.may be uSed for purely descriptive purposes. Regression toefficients

may be obtained and the adequacy'of the predictor variables may be

determined 'as proportions of variance accounted for or as goodness

1 8
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uf fit between observed and predicted scores.

Communi,cation researchers are rarely interested in simple

description Typitally, we draw samples-and wish ta make inferences

back to the population from which the sample came. In. regression

'analysis, this inference will tiiCally encOmpass two different,but

related processes: (1) estimation of population parameters

(regression coefficients) from sample data, and (2) hypothesis tests.,

regardirg the parameters.

Parameter Estimation

'The process-of makinc an Inference about the value of a

population parameter, 0, from a:samole.statistic is c'alled estimation.

An estiLator, e, is a function or fo-mula which tells how, to caMbine,

sample cpservations in orcer to make tt estimate about the parameter.

An estilr,ate is the value (scalar) obta ed for any given sample from

'an estimator formu-a. According to Kmc ta (1971, p. 9) character-,

.istics:of estimators are derived by examing their samPling distributions.

The parameters typically estimated in',regression analysis are the

regression coefficients, ro . . theintercept and slope

values of the regression equation:'

As many econometricians point out (e.'g. Kmerta, 1971,

Goldberger, 19E4) it is iMportan,t.thateseimators possess certain-

properties:-
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(1) An estimator should be unbiased. 0 is an unbiased

estimator of 0 if E (0) = 0. This definition states

that on the ayerage, the estimator is correct, which.

nlipc thr, the sampling *distribution

:f the estimator equals the population parameter.

(2) Unbiased estimatos should be efficient. An

A is efficient if it has minimum variance among the

.lass of unbias-d estimators.

(3) An estimator should also be consi]tent. This

implies that as ar-I,ple size gets larc-r (i.e.,

approaches the oolyilation size), the estimator,

provides better es7imates. An alternat've way to

state this is :hat the "sampling distribLti.on of the

estimator tends to concentrate on the t ue value of

the' parameter, i.e., it becomes less biased and

smaller variance,

(4).. Finally, an estimator that is-consistent. is

Best Asymptot'c Normal .(BAN) "... . if the asym:ptotic

distribution of VW
N

As normal with mean 0 'and-

variance a
2

(0) has the least possible value."

(1-:mm, 1975, p. 151)

Many economezricians cal- an estimator, 0, that-is an unbiased,
, .

,minimum variance inear functThn of.sdmple observations a Be'st

2 0
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Linear Unbiased Estimator (BLUE) (See, e.g., Goldberger, 1964,

Technically, bias, minimum variance dnd bl_UL à1 L rred to as

f11. siliall) sample properties., while consistency and BAN Er7e

asyMptetic (large) sampl properties. For ar illuminating ar,.;eay

.betweer properties of estimator's and Olooting bull's eye target

with rifle, see,(Kmenta, 1971, pp. 13-14 and 168). Althouch it

will t be proved in this paper;', it will come asno.surprise to

many r-Aers, that the least squares procedures which Were

discus,ed earlier -for determining regression eoefficients for

descrTtive purpose, turn out, te be; Under certain assumptions,

BLUE popblation parameters.--We'now turn to those assumptions.

'AssumAions of the Linear Regression Model'

In order 'co make parameter estimates on the basis of sample

data it is necessary to make a number of-assumptions about the

populat7on. If these assumptions are warranted., then statiStical

theory ..-egarding-sampling distributions and properties of

.estimator,s:can be used to formulateinferences about the parameters
- ,

The assumptiors of the classical linear regression model can

be summarized by- several 'equations.which will ba'Apriefly Afscussed

in -.his section...

.Assumption (1) is
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which specifies the functional form of the relationship in the

population. It states that the observed scores, the yi, are

linearly dependent upon the X
ij

scores and the disturbance or

error terms, 6..1
Assumption (2) is

T)

(28) E (c) . 0 or, alternatively F y =

,

This assumption states that each disturbance term has an expected

value of zero. The two forms of the assqmptiOn are equivalent

because if y. = )(

E(6) = 0.

6 and E(y) = X13, then it must follow that

Assumption (3) also may be written in two forms:'

(29) y() = E 6 or V(y)

variance of 6 equals.the variance ofy. because 6 and y. are

separated onTy by a constant,. which does not affect the variance.

This equation states that the eXpected value for the sums .of squares

for the disturbance's will equal.,a constant Variance times the

identity matrix:. This'really encompasses two assumptions. First,

assumptiOn (3) Specifies that for all values; -kw of -any given

predictOr variable, X the variances will be constant, i.e., they

2 2
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,will be homoskecastic: The assumption of homoskedasticity is some-

times written as

(29a) E(e.1)-= o2

2
Violation of the assumption; i.e., E(e.)

2
is referred to as

heteroskedasticity. Second, since an identity matrix has zerdes,

in the off-diagonal,.position, (3) implies that the errors are

uncorrelated, which can also be written as

(29b) E(c) 7 0 for all

This assumption is often refe'rred to as one of the nonautpregression

or nonautoregressive disturbances.

, AssuMption (4) stipulates that

(30) X is an N x q matrix which is fixed in repeated samples.

This assumOtion implies a nonstochastic -X which further implies that

X and e are independent._ _

Assumption (5) is-that the

(31) Rank of X = q <

2 3
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which indicates that there are more subjects than variables and that

no exact linear combinations exist among the predictor variables.

This latter statement, that there is no exact correlation among the

predictors, is often referral to as lack of multicollinearity. In

practice we are often more concerned with high degrees of multi-

collinearity than with perfect multicollinearity.

If we add one additional assumption, (6) 'that the ci are

normally distributed, to the previous five, the model ,becomes the

classical normal linear regression model. Assumptions 1 - 3 and

-6 may be Compactly.summarized for this model as

(s2) % N((13, a2I) or, alternatively e %.11(0,2: )where'

This. format for synthesizing assumptions 1 - 3 and nermality may be

read as "Y is a normally distributed random variabfe with.

expectation (mean) equal to Xfi, and variance equal to a2I," or'

alternatively, "The errors are normally distributed with zero mean.:

and equal variance, E.9 It is alsO often assumed that the X:.
IJ

scores are measured on scales that have at least ordinal properties,
-

but hat is not required by either model.

Estimating Univariate Regression Parameters

Having stated a model of the form

24
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Y_ c

and .specified a number of assumptions about that model, how can we,

obtain BLUE estimates of the regression parameters? If the assumptions

are valid, it turns out that the least squares procedures that were

utilized for,descriptive purposes, may also be used for inferential

purposes. Using the carot (A) to_indicate that sample data are

: being used to estimate the.population regression parameters,

equation (9) is rewritten as

03) X B 4. c

Nxl Nxq Oxl Nxl

L.,

-where the details of the vectors and Matrices are as previously

specified. EquatiOn (33) -may be manipulated_in'identical fashion

to the way. equatiOn (18) was derived from equation (14). These

operations lead to the least squares estimate of the population

- \

regression. coefficients,(See inn, 1974, p. 97, for a demonstration

without using caltulus that vis a minimum sum of squared errors

estimate of B.)..

(34) (XX)-1:X

8 is ah unbiased estiMator of 6 because E(B) = B... This can be shown



fairly easily.

(35) E() = EF'X)-1 X'

'= (X'X)-1 X E (y

= (X-X)-1 X'XB

Multivariate Multiple Regression
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taking expertations of (34)

since X is.constant
.

from Assumption 2

E(y.) = XB

's'ince (6)-1 = I_ _ _

6 is also efficient, i.e., minimum variance. (See Finn, 1974.,

p. 99, for proof): Ahdin general, B,is,a BLUE of B,(see Kmenta,

1971, pp. 209-216).

Since an estimate, though unbiased, will be correct only On

A

the average (i.e.,,E(0) - 0), it is_ impOrtant to obtain an estimate

. A

of the,variability-of.B over repeated samples (of.the'same size).

Th.is, of course, is equivalent to asking, "What is the variance or

.
'standard deviation of the.sampling distribution of the estimator,

in this case B?" The.variance of'B (see Johnston, 1972, pp. 125','

126) is given by

(36) V() = a diag (X'X.

-and .the standard deviation of B, called the standard error of

estimate of B is given by
. _

26
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(37) a(B) = G diag (X X

Thus, for the -.0:1 regression Coefficient, f3;, the star'idard error of

estimate is

-1
(38) =adiag X)jj

-Both the variance of B:and the standard error of estimate can be
_

found on the diagonals of their respective matrkes.

The Conventions regarding-xeporting of regression results in

economics might usefully be:incorporated into communication researc

As Kmenta, 1971, ipdicates"It has come'customary to present.all

these results by writing out the estimated regressIon equatiOn with

the estimated standard errors in parentheses under the-respeCtive

coefficients. This is followed by the value Of R
2

(p. 242), For

our development we wouldmrite

(39) Yi =
o

+ Xi +

)(Gi)

The foregoing indicatesjhat. the,procedures for determining'

regression coefficients for inferential pur ?terestimation)

are no different from.those emPloyed for descrip irpos. What

does differ is that in the former case a number of critical

2 7
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assumptions are made-about the population, while ip the latter-case,

no assumptions are made. These assumPtiOns,.of courSe, make all

the difference. Depending on the extent to which they are invalid,

the researcher must eitberabandon ordinary -east squares-(OLS)

techniques in favor of other alternatives (e,g:.; two stage least

squares, instrumental variables, etc.) or be left'in the -unenviable

position of being able only to describe rela-_-ons :in the obtained

data: We will briefly review those alternatives at a later-point

in the paper. Now, having shown,how to obtain parameter estimates,

we will briefly review'various interpretations,of regression co-

efficients before turning to the important topic of how to,test

"the significance of those estimates.'

Interpretation of Regression Coefficients

It might be helpful at this point to be explicit abOut the

interpretation of the various regression coefficients. As already

mentioned, the parameter its estimator counterprt, Ro, and, the

,descriptive sample coefficient, bo, are all scaling coefficients

whip are 'necessitated if y and X are measured on different scales,

i.e., in different units of measurement. These coefficients insure

the equality of'the right hand and left hand sides of their

respective equations.

(40)
Fjo 1X1 +

(1?'1X1

9 8
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If the vari are all meE same scale, the coefficient

will eqUal Thus, in ized model where all variables

are convert ':,c) the same sza-=-- ore transformations there is

yo or co coefficients ( y
o

is the standardized

coeffizient that corresponds
o

and b
o
are defined only

for the raw and deviation for- regression model.. Each may

also be considered the interce line, plane or hyperplane

of the regression equation (de: ,pon,,whether it is a simple

regression, two variable multip',.,

variable multiple regression equ

value of y when X1 = 0 in the o'

in the two predictor case or X,

predictor variable case. It sii

also call this coefficient a.

.2ssion, or greater than two

.As an intercept, it is the

.ctor case, when X
1

and X
2

0

Kk = 0 in the greater than two

pointed out that many texts

The other regreS"sion
k'

and

1 . k
are called partia- on coeffi-ciepts. They should

. . . . ,

"be interpreted as the'change unit change in X . This
j.

quantity is typically -referrec the slope of the line; plane

or hyperplane of the regression of y on X . Alternatively, they

may be thought of'as weights which are used as multipliers for the

Xj in crder to Optimally predict ,y. They are called partial

regression coe&icients because each shows the relationship' between

y and 'a given X. partialing out or controlling for-the influences
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of a er Xs ion. :Thou vs sta

regr coeffit,, ays under"tc_A
^

,
par

coeffic er only exception is is the intL

cept c scaling cc--- h21 which is why aome authors prefer
o'

give 't an entir- -it. symbol, '.e., a.) As shc ld also

clea- short"h etimes. refer-re, as unstardardized

regressior coc ere the tern 'oa --,,a1" is acain under :,oc.

Finally, since __Joti: zed recression coe:ficients are,

apt:oprately th the raw score or deviation forms of

rec ssion eqLa" are scmetimes referred to as raw

rearassion oef- e-

ft is ":71V t 'ae that changing. the order of variable:

in t e e-rluatior -.banging the first abc last variables,

X
1

ard X
k
) will the magnitude of any jf the regression

coeff'cients. o- ,-.1eting variables, on the other hand, wi'l

typically char th, mac- turje of the coefficients, in some cases.

quite drastica is so because partial regression coeffic'eots

are defined fc iet of predictors; change the set and the

coefficients SC

:nterpret 1m oartial regression coefficient by comparing

it 7 other reg7ess :ficients in an equation is difficul' if

tha, variabl6s mea-u- on different scales. Regression

Cc icients wi' oly as a functic- () the differe :-±T in scales



r e te tihTe Rem-

on .nicri the respec- DT,es are- measre--. additic

any .:pritributions t-ey ma,,e 11-{ ion. .--rcome the T...

of ..ifferences in re-:--esaio.- 2nts attpc-:.able to sc

it customary to ceTcu'aL iardized ir.ar:ial regress

Coe'ficients,x
1 .

id gi A stand

reg-essi-oncoefficie-,- is a raw ..peji:ient ie

of y.

( 41 )

stand.ard deNiiatior -idej t) s:andard ( ti7h

Since all variables . same s:ale t'

coefficients are moi . -etable. A Lni: -:hangr

per unit change in swilT --dyssion ne at
.

origin, for each X. Mult- actions -= ir pe

unit change in :ire also sa.: each T. -n.i.,refori.,

comparison of the magnitude TariouS T, y ar. q an

ecua7fon -is'faciL-Ated. As la (1971) in'cate , star

regre.-, ion. coeffic'-nts are --AL :est suit,,d for compar

relationships withn equation:, instandariiiz, coeff:

are nore appropria7. fo "comp.ar :pulatiThsr. .tatinc

-laws." (p. 145; se,:. also, Cp. 3.)

I- should he r inted i
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social sciences is to call the standartized regression cdefficier7.

a "beta" weliit and ts. reser,e for it the symbol "(3." This is ri1

the conyenti,on in ecor:-.metrics and many multiyariate texts where

Greek letters-are reserved for population parameters or estimator.7.

(Finn, 1974, in fact, reverses the convention and uses for the

unstandardized anc b for the standardized coefficients. Gold-

berger's, 1964, usage is such that he directly warns his readers

about not confusing "beta" coefficients with the eleMents of the

population coeffic-ient vector Sorting out the vai-iety of

conventions of b and ,6 is nat always easy and it is the main

-reason why, following Timm (1975) and others, I have chosen to ,us

an_ entirely different symbol, -1,, for the standarezed coefficier-

The important thing to remember ts not the symbol; rather, remem:

(1) there are two forms of the slope coefficients, standardized

unstandardized, (2) the interpretation appropriate to each and

(3)-that each may be.defined as a parameter an estimator or a

descriptive statistic.

Hypothesis Testing

Hypot esis testing ir regression analysis is the.procedure

whereby influences about rfne Significance of_population regressigr

'coefficient::, (parameters) are made on the basis of sample regress;

coefficients (statisttcs). As Finn (1975, p. 134) indicates,.this

process requires two separate steps: (1) partitioning of vartatio-

3 2



Multi hil a 1:,lression

31

ant covariat'on - -i=erion vEri=_,Dles for

t-Fferent (scrts 3f s oor w--_ don:: .

W-thesis SW-75 of anc cross Frod. ar. -E-ro: or

rec-idua1 sums of so._L-e. (and c-oss pre.duct . and .1 a comparisc-

between tne hypothE is --ms of -quares ;Inc squares

with one ormore te. t

In a previAs _.ect :41 we partitioned ti-H to::1 -,ntance, SST,

--,to sums of sc_ares for regression, SS.:), and th-te fpr error, SSE

Recalling equat'.ons (22 - 25), 'et us now use 7 an estimator-of

o (inst&E: * of u:inc. e -7or eescrrotive purpose_) Eqd dal'. this_

sCalar q ntity. fo conver'enc, -Qc:. Thus, the S!..= of squares

(and.cross products due tc error are

(42) , - XXd fron (22)

an the sums of se - =eS (anc cross pr l'ucts)-hyFtts17,, or as it

is often called, os of sT .ires for ,gressidn

= X- fror=

'WP can haw estab- . lu-' alternat ie C.-.:Y -.7 that wiU

eratle us to,test all of the -.TrW :1C7 C tients are..

jc. ftly sighifican: , whether the ert:-e coefficients

3 3
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,

To :est 1 we ::.tandard F ra--- of the tsc

of siivares v ded b], the freedor.... . e. a ratio .1.

twc rr9,an 9n,H

(4 F =
c

,5 --Xf3

table ablc, .may be c('- surmr_irize th=

informatioh te:t w- Yri k-1) ".egrees free-J,.-.,r

s the fr,DS'i , is 1 ittl=

tical -.917 si On

'ncThAini..-: -73F- :.-,r.: ---'5t -o ",ve v:-.;blem, 7 is

.051 -le Hnir.- ---,-- eqi,ivle-' ne :tandard':ed vec

f r :Tires ior : -1 he vect-r into

'40 i Aps '.s, . ,i--Id e.., E,mi- ly the sle:-e coeff ents
o

see Time, 1$, --T.--; anc' Golcherqe!. :964, pp. 5-177'

_
2 .,,lit

0
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tne :17.ter v,,tui b.

01
7

'c

ere

c ,r7s

vec:c trIzid recsic

7411 lc7B) inCicLiies, "Testi- thaT _rill the 5- :.,27 co-

effi 31 '
ie equal t. is a al cas e of the n

pritlem if testih.i c-hat some rst -.7 the coeffik iants

wi-n no -iestrictionE on the other e1e±me-':2±" j75).

The gene bra,cE: -e ii. itil to i±he roe iust ,:escribec.

Po titio S I two ectars

3 =

conta±. -..: :l'EL 7,0" .. ..!.... '.nc -.. a includihg the

' T..- --c* t)- and _ .)nt: i :; ±: nose T 'IC T re Jr. -_-:- t. t by the hypothe

T IL.. t a nul 1 1 ar:± -le al terri,± iHve are

± 9) r ;
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which hypothes4ze that the va,-iables in tr,-.2 se:Tond set wni:h

correspond to 4 significantly coltribut-, tc the varianoe th x over

and above the regressors in the first set.

A convenient- technique for testing hypothesis is- to

formulate-two separate regressOn equetians. The flrst qjation

contains the first m of thek predictc-: (m <k) which ar knowm

assumed to significantly contribute t., --iterion varier; the

second equation contains all predictcrs, Le., the first m

variables not being tested nlJs the'remainnq m variables

which constitute Al. The respectiwe eguatiluis would be

(50a) : X

Nxl Nx(m+ 7,11-1-)A

(50b) : y = X + c where c k_
Nxl Nxc Nxl

anc

These two equations can, of coLrse, be reprsented 1),/ their
1

respective measures of "goodness ,)f. R- for thi relLced set of

2 ,
regressors, E30,and Rh Tor o recresscP-: P, =

-fi

It is then possible to cons' F r iy. that ,

to determine the significan-

vector.
--o

le F and ./c.,

2 2
R-
m'(51) F

R
k N k 1_ .

2
1 - Rk
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and k - 1) degrees of freedom, m equal to

the number cf X variatles in the reduced vector and k equal to

the full se: of X variab- in If F is significant at P < a, then

H
o

is rejec:ed Elui it is -cncluded that some of the regreSsors in B
-11

do contribute sigmificant y to variation in The squared partial

. multiple coe'=icient oj :etermination is given by

(52) R;
m . k) (1, . .

and indiicai the amount of variation in Y which remains after tbe

first m ya.f.ables have been partialed out of the regression equation.

When cont.:Lls only one regression coefficient-so that 130 k -

(i.e., c-Itain all but the last_coefficient), equation (51) has
-o

a ,special i-iterpr -:ation which is of considerable importance.

Specifically, the equatiOn can be shown to reduce to the'partial

correlatin coefficient (see Timm, 1975; p. 277)

(53)
k 1)

which when examined as an F test at 1 and N - k 7 1 degrees of freedom

shows whey7er one X variable added to an existing set of predictor

3 7
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variables contributes significantly to variation in the criterion

measure. Thus, we can test whether an individual regression

coefficient differs significantly from zero, and thereby 'contributes

2
significantly to criterion variation. The size of r

Yk (1, . .

k - 1) also provides a measure of the shared variation between the

two variables.

There are several other hypotheses that are often worthy of

.examination; they are listed in Table 3 along with those that have

already been discussed.

The formula provided in equation (3) is perfectly adequate for

examining the contribution to criterion,variance made by the last

variable in the equation: In general,'however, if we examine more

than the final variable we find that the regression coefficients for

pairs of predictors are generally correlated. Let us suppose that

we wish to obtain individual sequential tests for each of the final

.K - m>1 predictorsi.e., the last variable, the, next to last

th
variable, etc., until wc get back to the m-- variablos. Finn (1974)

indicates that

A series of independent tests if facilitated by

transforming the predictor variables to a new set of

uncorrelated measures, in a specified order. We

shall substitute for predictor X-,j in X only the linear

function or-portion of Xj that is uncorrelated with

Table 3 about here

3 8
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Preceding predictors Xi, X2, . . . Xj That is,

wP shall find thP X values that are obtained if we

"partial out" or "hold constant" the effects of

earlier predictors in the set (p. 137).

There are two'important points to note here. The first is that each

variable is orthogonalized (made to be uncorrelated) with only those

variables that preceed it in the equation. The second is-that

the process requires that the variables be arranged in a prespecified

order.

The process which Finn (1974, pp. 134-144. see also Timm,

1975, Kshirsag6r, 1959, and Anderson, 1958) describes produces

orthogonal estimates of regression coeffiCients or semiPartial

regression' coefficients. Each semipartial regression coefficient

indicates.therelationbetweenYandX.controlling for the variance

cOntributed by variables preceding X in the equation, but hot

controlling for the variance of those variables which fdllow it.

The process'of sequentially estimating the effect'of each predictor

variable eliminating those preceding it, is called stepwise

elimination.

in general, the r
2
s between Y and each X. will not add up to

R
2

X
because the' r

2
s are correlated. The'squared semi-

Y.
1 . . . k 2

partial correlation coefficients will, however, add to R
y.X

2
1 . . . k

since the constraint is imposed that each- sequential r tx

j.X
1. . .j-1

3 9
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accpunt or:y for variance nDt accounte L! for by preceding

,feriabies. Thu as Kerlinger an Penaour (1973, . 94) irdlcate

= r 2(54) R- ,

. _
ry(x, ry(.x.

-X
2

) y (X
k
'X

1...
--1 )

which is re:ad, "The total amount 'f shared variance in y and X

is given by the sum of the sgua- A semipartial correlation

coefficients, i.e., the squared rrelation between Y and X1 plus

the variance betv,eer Y and X, removinc the influence of X, from

the tion wi71h, Y, plus . . . plus the variance between Y and Xk

removing the influence of X, through Xk_l from the relation with Y."

Often a researcher is interested in whether the combined effects

of two (or more) variables viewet together significantly contribute

to criterion variaflon over and above the variation accounted for

by the va-iables viewed.separately. This interaction between (among)

variables can be examined in regression analysis by the inclusion of

multiplicative cr cross-product terms in the prediiction equation.

Each interaction term is treated as a new predictor variable in the_

Thnear model. The new variable is created by cross multiplyingthe

.observed values fbr each subject on the original variables, i.e.,

X. X. . Since the model is still linear this multiplicative term
131 ij2

js added to the model and a regression parameter is estimated for

,the new term. For example, aiven two variables, X1 and X2, the

4 0
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linear model which includes the interaction term would be

(55) +y. X + X. X + E.
1 13o il 132 12 133Xil i2

To calculate interaction terms it irs'first necessary to

standardize respective variables prior to computation of the

cross-product terms. As Finn (1975) indicates, "the dominance df

the interaction by orie or another variable due to scaling is

avoided. The interaction terms themselves need not be standardiied"

(p. 85). Once this is a,ccomplished, the.OLS estimation and

hypothesis testing techniques described,earlier can be employed. .

It should be noted, however, that 'it is 'CustomarS, 4.o add the

multiplicative terms into the equation last, 'des testing them,

first,if backward elimination techniques are employed.

Several hypotheses haye been.identified in this section which .

a researcher might profitably-exaMine. These do not eXhatlist the
- --

possibiliti ", however. ,Table 3 presents'those discussed plus

several oth r,-alternatives which are worthy of consideration. ',Which

test to use depends, of course, uphn the theory quiding the research.

Perhaps an example will help to illustrate 'this .pdint.

Attentibn in comtunicitfon research\tends to focus almost,

exclusivelY on_slope regression coefficients,

to the exclusion of the intercept coefficient, 13 (or a). Unless

4 1
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data have been reparameterized to force the intercept to the

,
origin (or Some other level) of the coordinate system, the value:of

the intercept may also be of considerable theoreticarinterest\. If

.
we modify an example given by Kmenta (1971, pp. 204-205) we cr see

\

the importance of the intercept. 'Suppose that media consumption

number of hours/week spent watching.T.V), Y, is regressed on

amount of leisure time (number of hours not devoted to gajnful

employment or primary occupation), X, and.a linear relationship of

the form E(Y) = Go + G.IX1 + c i5 determined. .The slOpe coefficient,

B, would be interpreted as the marginal propensity to watch T.V.,

i.e., the amount of increase in1watching T.V. for every unit

increase in amount of leisure time. Now examine Bo. Assuming that

peopTe will consume at least some T.V. even if they have no leisure'

time, Go indicates the minimal or subsistence consumption of T.V.,

i.e., the amount of T.V. exposure when the value of leisure time

is zero: Hypotheses regarding the intertept coefficient could be

of significant theoretical value. Refering to Table 3 we might

utilize test (1), that H G 0, for the intercept coefficient
k

o
If-our theory Were more sophisticated we might utilize test

(2), that Ho Go = Mk, for Some 'constant, which is tantamount to-

, .

asserting that we can predict ,"subsistence" media consumption at

some number.greater than zero. .

Reestimation .

As was pointed out earlier in the paper, estimates Of

4 2
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regression parameters are valid, under the assumptions of the

model, only for a given set of regressors. If we change the set

of regressors, either by.adding or deleting predictor variables,

the coefficients for the original equation for which the estimates

were obtained will no lOnger be appropriate. New estimates should

be' olLtalined.

.It should be,clear that the hypothesis testing procedures

dcscribed in the previous section lead , if signifiCant, to the

deletion ofivariables from the full set of variables included in

)' the original equation. Or, alternatively conceived, the procedUres

lead to the addition of significant variables over and above those

already included in the equation. (lt is possible, of course, to

test the entire- set of variables.) Under either conceptualization,

obtaining significant results'in hypothesis testing is likely to

lead to a different set of variables, a different regression

equation, than the one with which the researcher began.

In situations where this.occurs, the'researcher should

reestiMate the parameters of the final obtained regress:ion equation.

The procedures for reestimátion a're identical td those for

estimation. The final set of variables are estimated by OLS

procedures, with the variance of the rejected variables pooled

with' the error variance. A final estimate of the standard error

of estimate should'also be obtained. The final equation which

4 3
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contains the final eStimatesof regression parameters, the final

/
standard errors of estimate, and the recomputed final R

2
should be

the results that are presented in the research report.

Multivar 2te/Multiple Regression

In this section we w 1 extend the findings deVeloped for the

univariate Model to the multivariate case. Most of the presentation

will be by analogy with univariate results.

The Multivariate Multiple r--egression Model

Let us assume that a :cmmunication researcher has two or more

variables that he would 1 ,pc examine as criterion variables in

relation to the same set -ijredictor variables that we assumed in

the univariate case. Th is a problem for which multivariate

regression, analysis is appropriate.

The multivariate multiple regressioh model is given by

(56) Y.XB E

Nxp Nxq qx-p Nxp

This equation states that a data matrix
A
- h`as been partitioned into

Nxm

twosubmatricest1)-(7:pwhich contains two' or more criterion, variables

and which Contains all 'the data fcir the predictor variables

augmented by an initial column of unities. Furthermore, the score's

in the Y matrix .are composed .of linear comi'hations of the X scores,

each Weighted by,a regression coefficient, and added t the.

44
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error term, c
ij

That is,

(57) y. = + (3..X
tl

+ + .X. +
'2j-i2

then, is an Nxp matrix of error terms, with one column of errors

for each chterion variable. If the model is intended to he a

multivariate classical linear r,---2ssion model we assume

(58) E(Y) = XB which eiuivale. to E(E) 7 0

since the expectation'of Y is

(59) V(Y) = 46) E: whicl

si: Y. and r differ only bi,a

uct oper,tor., 0 , which\Is

produces tn :his case a diagona

'equal to E and off-diaaonal

(60) V(Y).= V(E) = 0

Tivalent tc V(E) = im

-t, name' XB. The'Kronebier

defire the variance of Y.

-ix with diagonal elements

0. 'Thus

0
0

These assumptions may be somiarized as

(pi) E % IN (0 0 E)_ N _ _
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which states that Y is. a multivariate normal distribution, that the

errors have constant variance, and that the errorS a-re uncorrelated.

It is also possible to state the model in equjvalent mean deviation

(reparameterized) and standardized'forms. In the former cas-E.

(62) Y H

Nxp Nxg
qxp Nxp

where eta (H) is the matrix of partial regression coefficienT:
,

the mean-adjusted scores, 2.td. In the latter case we have

(63) = Z F_ + E

Nxp. Nxk Nxp

where gamma (F') is the matrix of standardized partial --,gre,

coefficients.

.Estimation of Multivaniate Regression Parameters

In order to estimate ,Che regression parameters we procee

univariate 'case. The process is to apply the Gauss-Maroff

Theorem fsee Timm, 1975, 185-188) to obtain the matrix Ei so that

the sum.of,..squared err6rs:is minimized. The theorem states that

this can be accomplished by minfmizing the trace of the sums of

squared errors, matrix, Thus, let SE equal to the sum of

squared errors to be minimized, then

4 6
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k p ,

= Tr (E-E) -since Tr (E'.E)= X

7 1=1 j=1

= TRAY - )(fir (Y Xii) rearrariging (56)

When the partial derivatives of SE with respect to B are set equL.

to zero and solved, the following normal equations are obtained

(65) =

-ch-ca71 be solvec' for B

(66) X'Y

This equation :tates that under the aSsrmptier- of :Fie model the best

linear unbiased estimates of the matrix of re, -ession coefficients
4

can be obtained directly from.the sums of squares and cross products

matrices of the raw data, i.e., from X'Y and the inverse of X-X:-

Comparison of equation (60 with equations (18) and (34) indicate,:

that the multivariate solution is completely analagous to its

univariate counterpart.

B, of Course, consists of a matrix of partial regression

coefficients. For each criterion variable_there are as many

coefficients as there-are predictor variibles, plus one-coefficient

for the intercept. Thus, if there are two criterion variables and

4 7
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three predictor variables, there would be 2 x +1) = E'regressi.on

coefficients. In general, us-:.ng the Orders of c matrices,.there

will be (q X p) regr ssion coefficients (rerembe c = k predictr,-,r

variables .+ 11 fo y. raw form of ne model. In the

stsssdardize:i mocl :-.=re would be . x

-Since B ha he estimatEL from, the fata, it is desirable to

obtairn a measur- stabi7'ty of imate. Sampling theory

specifies tnat eated samplin-s- .-CT a given population we

would obtain a i Jtion of Bs fo imples of a given-size, N.

-hat sampl-',:: d ion would ..;th an expected value and a

ariance (as we 1 as .ghe- order mom& s). Finn (1973) indicates

iat "The est-ft :e B, like its U-nivari e uninterpart, is unbiased

-7_1 minimum VC: ance p. '13). Its e ectation and variance-

ionce mat. 4 arE

E(B) = E 1 X'YII from (66)

= (X"X)- X'E (Y) since X is constant_ _

= (X'X)- XB by sC.:-,st-Lution from (58)

Since (M)-1 X'X = I

and

(60). V (B) = V(X7) from (66)

X"X 1 E See Finn, p. 114, -:.or proof.
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Using equation (64) we can IlsJ see that. an urpiased (maxillm
A

likelihood) estimate of the err:r ariance of Y, E, can be obtai-A

directy.from the observed data. Let .4 represent the residual

er-)rs sums of squares and cross prpcucts mw7.rix, and we cAain ,he

lance-covariance ekimate by div ding by :he degrees of freet:m

s liar, ri.q

((E9) E =- 1

' ---3 =
N-q

T--* ,rt) froM .1'4)

N-q

Y'Y -

N-q

Y'Y - BX-XB

N-q

substtuting

by Mu tiplication and cancelling

a frequently encounteed.eciivalent
form

A

It should be obvious that each element of E is an estimate of population

2
variance and covariance, With G. on the diagonal and a

i

j)

on the off-diagonal. cells.

As jn the univariate case, the variance in 11-)-(i_ can be partittoned.
P .

Let S represent the total sums of squares and cross products in the
---Y

sample criterion,scores,,Y, and _S_R the variation in the predicted

scores, Y'Y = B'X'XB, called. the sum-§Tof:squares for regression. Then

the partition-is

4 9
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(70) S = S + S-
-E

which breaks the total variation into two components: 7hat

attributable to regression and that attributable to errc-. If SR

approximates Sy, then SE will be small and the predictor scores

will predict the criterion scores quite well. If SR 'is s;mall

compared to Sy, then the linear model does not fit the data well

and S will be quite large.

The "goodness of fit of the.model can be determined in a way

that is identical to that in univariate regression. As Press (19721

indicates, "In multivariate regression, the value of R- 7.T-an be

coMputed for each equation separately to study the effectiveness of

each relatiOnship in accounting for observed variatior( (D. 195).

As Timm (1975) indicates, "Estimatior theory, usYng tIle multi-

variaie linear model, is no different from employing uniwariate

models. It is not until hypothesis testing theory is employed that

the models really differ.- Uniyariate J.:nelyis does not aLtress

itself to the dependency that exists amorl.a set.of p respcmse

ariteriog variables" (p.- 309). We turn now to the questicJr, of

hypothesis testing.

Hypothesis Testing for Multivariate Regression

The logic of hypothesis testing in'multivariate multip -

regression is similar tothat in its univariate counterpart except

5 0
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that multiple crterlon variables are tested simultaneously. The

purpose of the smultaneous test is to maintain protection levels

at a point predetermined by the researcher, i.e.,.at a. Were'

separate tests run for each dependent variable, the likelihood of

'obtaining a false significant value would increase in- direct pro-

portion to the number of dependent variables being tested, i.e.,

the power of the test decreases.

The general test for all coefficients of the raw form of the

model is

(71) : B = 0

which can examined by using a multivariate analysis of variance

(MANOVA) table. To conduct the test we must obtain the sums of

squares and cross products matrices for both hypothesis and error,

from which mean squares may be determined. These are, by extension

from the univariate case

(72) ge = BX:XB

and

The MANOVA table can then be conStructed

;

Insert Table 4 here
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Normally, of course, we are not interested in testing all of

the regression equations since we seldom test the intercept and

usually are interested in testing only a subset of the slope

, coefficients. Hence we would partition the model into two separate

regressions and develop an hypothesis which would enable us .to test

the subset. Pie partitioned model would be .

(") -41

-

. with the hypothesis that

(74). Ho :

Equations (73 and 74) simply assert that the first set of variables

X
4

.(1 1 ,m) and regressions coefficients B
-4

( I = -0 . . M)
.

are not beirg tested while the remaining variables
XII (II m k)

and Coefficients B (II,= m . . pre under tesi. It is, of
, 741 __

courSe, possible to test the final set of coefficients, Bic by setting

the indicator m to k-1. Then we would have B equal to all k-1

coefficients and. B
41

equal to the last set of k Coefficients.

'.Tnere are a riumber of alternative procedures aValable to test

the hypothesis stated in equations (7) and 74). These all 'depend on.

solutions for the rbots:or eigenvalues Ai) Ar . ,,A
s

of the ;

characteristic equatiOn
'

(75) 1.. Acy = o

5 2
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Where the roots are ordered from largest, X1, to smallest, X.

Anderson (1958, Cp. 8) and Timm (1975, pp. 137-140, 146-149, and

308-313) describe a number of criteria which may be used to test

the hypotheses. These tests are provided in Table 5., Tables for

each of these distributions at selected degrees, of freedom are

(1975).. Since most of these distributions are

unfamiliar to communication researchers, the table inclUdes tests

for multivariate bypotheses by approximations to and F

statistics which have been deriyed.from the other distribUtions.

Table 5 about- here

It is instructive to examine the logic of the Wilk's likelihood

ratio criterion;,. A. It was mentioned earlier that the determinant

of a variance-covariance matrix can be considered a measure of

generalized variance'. Wilk's A,is the ratio of two generalized

variances. The numerator contains the variance for the reduced

model, .e., those variables not under test; the denominator

contains,the variance for the full set of-predictors, i.e., those

predictors not undey test plus those that are being tested,A. Thus

(76)

1 Q, i

It should be apparent that if BI, = 0 then = 0 and A 1,

ge

5 3
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which is the upper bound of the statistic. On the other hand,'to

the extent that (i.e, Xm . . X
k

) addS variance over and above

the reduced model, the denominator will increase and A< 1. _Thus,

the smaller A is, the more that 0 or B is adding to criterion4
variation. The F and x

.2
tests simply transform,the A statistic

(really, the U diStribution-) to the more familiar F and 2

distributions. Most computerized MMR'routines will print both..A

and either F. or x2 test statistics.

Testing the criterion variables. If A (or any of the other

test,criterion) is significant it is then possible to determine

which of the criterion variables are being affected-by the variables,

in the predictor set. Univariate F-ratios may be used to accomplish

this task. The univariate F that is largest is the one which shows

which of the triterion variables is most affected by'the predictors,'

and so on down to the smallest F-ratio which shows the criterion
. _

variable which is least affected by predictors, However, as Finn

(1975, p. 156) points out, these tests are not independent:. "there

is no necessary relationship of the significance of the univariate

and multivariate tests for one hypothesis. Forexample,' one or

more univar ate F's may be sionificant and not the multivariate

statistic, o-.vice versa" (p. 157). Consequently, it iS usually

recommended ;That in addition to the univariate F.tests, researchers

examine the simple .and multiple correlations to aid in interpreta6on..

5 4
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M deal with this problem of interi:ependence of multivariate

amd univariate tests for locating effects, it is possible to conduct

o b-cown analy-sis which will Provide independent univariate tests

for the criterion variables. The term step-down as used here and

ty Bock -(1966) and Finn (1975, pp. 157-160) refers to the fact that

the criterion variables rather than the predictor variables are

bc-in9 examined (eliminated) sequentially. The tests, which are

described by Roy (1958) require that the researcher impose an a
. _

oriori ordering on the criterion variables. If the researcher has

.-no rational basis for such,an ordering; then step-down tests will

be of little value. The procedures for conducting the tests are

identical to calculating F tests (for each of the-p criterion.

variables) with the condition imposed that.only the conditional

variance in the criterion variables be analyzed. The tests proceed

by regressing all the q predictor-variables on yl, on y2 eliminating

, on h eliminating y, and y2, etc. The test procedure is a form

th
of backward elir.Anation., First, the po--- criterion-variabie y is

eliminated, i.e., the last one in the u.-dered set. Then the next

the st is eliminated y, ett., down to the first criterion,

At each step an F statistic is calculated; if F is non-

-1-

significant, and Ho for a particular. criterion cannot be rejected,

it means that the predictor set does not significantly contribute

to variation in particular criteriOn'variable yj. Each time that
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1

H
o

cannot be rejected, the step-down procedure continues until such

a time as an H
o
must be rejected in favor of the alternative H

A.

At that point testing terminates since all remaining tests are

.nonindependent. See Bock .(1966) and Finn (1974) for-additional

details on ste.15-down analysis.

Testind the predictor variables,Having determined how the set

of predictor variables differentially affects the criterion

variables if is often of interest, as in the univariate case, to

test hypotheses redavding a subset of the predictor variables.

Tests for cdntributions to criterion variance of individual predictors

are facilitated by creating orthogonal columns of B, i.e., converting

the partial regression coefficients to semipartial regression

coefficients. Each semipartial regression coefficient accounts for

variance in Y not accounted for by predictor variables-that preceed

it in the regression equation. Vfhis, orthogonalization.process, of

course, requires that the researcher impose an a priori order on

the predictors. When the backward sequential tests on the predictor .

'variables encounter a variable which significantly contributes to

criterior, variance, the testing procedure must stop, since all

subsequent tests are non-independent. It should be apparent from

this discussion that the'reSearcher must rely heavily upon hi

theory to specify the order of the predictor variables so that the

strongest known predictor is the'first variable in the equation and .

the weaest is' last.

5 6
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Reestimation

As in the univariate case, if a researcher either adds or

deletes variables from the equation with which he began, it is

important/to reestimate the parameters of the resultant or final

equation. Variance in the non-s-ignificant variables is p6Oled

with error variance to make the final estimate. Finn (1975)

indicates that "Under ideal circumstances, these final estimates

_should be obtained from a sample other than the one used for

significance tests" (p. 165).

Issues and Implications

In this final section,ofthe paper we shall briefly explore

several topics which are raised by or related to MMR. These should

help to place the information just presented ih a broader context.

Algorithms for Selecting Predictor Variables

There are a number of computerized algorithm5 which can be used'

.to select an optimal set of predictors for a regression equation..

In fact, Draper and Smitk(1966) identify,six different alternative

procedures.. Four of these are summarized in this se,ction; for

details the reader is referred to the fuller explication in Draper

and Smith and also to Kerlinger and Pedhazur (1973, pp. 285-295).

The first procedure is termed all possible regressions. Here

separate regression equations are calculated for all 'possible

combinations of predictor-variables: (1) each predi,ctQr variable

e
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examined separately, (2) all possible predictor pairs, (3) all

possible triplets, (4) and in general, all possible k-tuples

(i = 1 . . . k predictors), where the final k-tuple contains One

set of all k variables. A moments reflection will indicate that

a total of 2k separate regressions must be determined since each

variable may either be included or excluded from the equation:

Within each of the k-tuple regressions (i.e., pairs, triplet's, eta.),

equations are ordered atcording to some criterion, usually the

amount of variance accounted for, R2. The researcher. then selects

what he considers the best equation, often by looking fot-)TIany

consistent pattern of variables in the leading equations- in each

Set' (Draper and Smith,' p. 162).

The second procedure is called the backward elimination. There

are three basic steps. First, calculate a regression equation which

includes all the k predictor variables. Second, calculate partial.

T-tests for each of the k variables which indicates the signiffcance

of X
k

as if it were the last variable entered into the-equation.

Finally, select the lowest partial F value and compare it With a

partial-F value set equal -to soMe predetermined level of.significance,

a. If the smallest partial-F is less than F , then delete that

variable and repeat the process for k-1 predictor variables. This

se,quence continues until the smallest partial-F at.any given Step

(k-1 predictor variables to 1 predictor) is greater than Fe( The

5 8
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variabls that 'Emain are ccnside. -ficant p-etictors.

ThE thirt ,,iternative for chc redictors is forward

selection. Ir 7'"Iis process ariabes re added to the reqressicn

equation one at a time rather than deleted from the equation as

was done in backward elimination. The first step is to select the

largest zero-order simple correlation coefficient between y and X,.

This variable is used to construct a simple 'regression equation.

Second, an F-teSt is calculated.to determine whether the simple

regression of y on the first predictor variable iS significant.

Assuming this test is significant, the third step isto calculate

first-order partial rs between' y and 611 other X- controlling for

the predictor variable already in the simple regression equation.

The X with the highest partial r (or squared partial r) is then

selected for the construction of .a multiple regression equatiqn with

two predictor variables. Fr,urth, as with the backward elimination

-procedure, partial F-tests _:re undertaken to det-.2rmine whether the

variable selected for-ihclusion contributes significantly to the

variance-in y over and above the variance.accounted for by those

predictors already in the equation, i.e., R for the simple

,regression and R for the two variable multiple regression.

Finally, this process (calculating higher order partial.rs,

selecting the.one of greatest magnitude, creating a neW regression

equation with this' variable added,.talculating the Si-onificance of

5 9
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the increase in variance contributed by this variable) continues

until the partial-F test indicates that the variable selected for

inclusion ,at the next iteration is.non-significant. The final

equation includes all variables found significant up to the point

at which adding an additional predictor variable does not

significantly increase the amount of variance accounted for in the

criterion variable; all remaining\predictors are considered non-

significant and omitted.from the equation.

The fourth procedure, which is called stepwise-regression, is

really a variation qn the forward selection procedure. For any

given set of variables, the maghitude of regression coefficients

does.not vary acCording to their order in a regression equation.

For example, the regression coefficients for three variables, call

them A, B, and C, will be the same regardless 'of the order in

which these three variables, are arranged in a variable multiple

regression equation, i.e., whether variable A is first, second, or,

last, whether variable B is first, second . . ., etc. If, however,

a variable, say D, is added to this equation, or one of the three

variables, A, B, or C, is deleted from the equation, it is highly

liely that the magnitude of all the coefficients in the new (4

variable or 2 variable) equation will be considerably altered. The

reaSon for this is that regression coefficients are a patterned

. function of a set of variables, such that they account for as much

6 0
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The ar,iount that the regression

cefficients will change is a function of thP dearee to which they

variance with each other and the criterion variable(s); the

i7)re variance they share in common, the greater the coefficients

change by adding or deleting variables. It should be apparent

t-hat the three procedures identified so far all require the

addition or deletior of variables. The stepwise procedure attempts

to compensate for the fact that at each step adding a variable

(remember, it is a variation o'n the forward selection procedure)

could reduce the amount of v3riation contributed by one or more of

the variables already in the equation to a point at which it (they)

would no longer be considered significant. Thus, after-each step

in which a variable is selected for inclusion in the next larger

multiple regression equation, a partial-F test is performed on all

variables in the equation to which the new variable is being added

to determine whether each still significantly contributes to

criterion variance. Any that fail to meet Fa are deleted from the

regression equation and join the set of predictor variables not in

the equation. Then the process is repeated: new n-
th

order partial

rs are calculated; the largest is selected for inclusion in a new

regression equation; a test of the si,gnificapce of this new

variable is conducted; if it exceeds F for appropriate v, aa

6 1



Mu1tivarate MultiblP P.gression

60

-separate partial-F is conducted for each criterion variable already

in the equationLany-criterion that fFils the F is removed from

the equation. The process terminates when there is no new variable

the: can be added tb.the equatiOn and significantly increase criterion

variation.

An-alternative procedure, called stagewise regresSion will not

be discussed since it is not a least squares procedure. Also, it

should be noted that there are some "vcariations of the themes"

presented in these four alternatives (see Draper and Smith, 1966,

pp. 172-173).

Given the four procedures just described, which one should the

researcher choose? That, of course, is a judgment call, which each

person will have to make depending upon his research needs. 1n

general, however, all possibleregressions is both impractical and

without recourse td statistical test; it.shOuld be. avoided. Draper

and Smith (p. 172) recommend the stepwise procedure but indicate

that it can be abused by:the inexperienced. In this context, Finn

(1974), makes an additional important point:

"Stepyise" procedures which attempt 'all possible

orderings, or -search for the best single predjction

equation do not-generally yield valid test statistic's',

. and must be interpreted with caution': With a pre-

cletermined Order of prediCtor variables, valid_Seqbential

test statistics are Obtained. Using a fixed order,-it is

62
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also possible to test important combinations or sets

of variables (p. 161).

TestMg the Assumptions

In this paper we have stressed the importance of the assumptions

of the model being employed. The only way to dete,mine whether a

given set of assumptions is viable for any given study is to test

them. As Timm (1975) -ndicates, "Plots of residuals against the

. fitted values, against the independent variables, and.sometimes

against.variables not included in the model 'help to Jeter;F:ine (1)

whetner model assump.tions are reasonable, (2) the linearity of the

regression function, and (3) whether important variables have been

left out of the model" (p. 269). Draper and Smith (1966) review

these procedu.res in detail and Daniel and Wood (1971) give several

illustrative examples; the procedures will be discussed only briefly

here.

The logic of the examination is as follows: Recall that our.

assumptions for the classical normal linear regression model

specified that the errors were normally distributed with zero mean

and constant variance and that they were independent. If the

,assumptions are correct, the errors or residuals ought to display

these characteristics.

The first procedure is to undertake an overall plot of the

residuals: Normality, or departure from normality, can be jUdged

by reference to a table:of random normal deviates.or by ploting

6 3



Multivariat,,, Multiple Regression

62

the residuals on standard probability paper. Alternatively, the

residuals may be transformed to "unit normal deviate" form, in

which case we would expect that 95 :" of the residuals would fall

witnin the -4- 1.96 o limits. Outliers, which are residuals which lie

far out in the tails of the distributiOn, say ± 3 or 4 stE-

de:viations, can also be identifie7!.. Sc

2Jter pd_ ges now have subroutines which permit the plotting of

residuals in unit normal deviate form.

Another protedure is to plot each residual against the predicted

value which helped to generate it, i.e., Yi. Here, a horizontal

band of scores lieing relatively equidistant from zero would indicate

that the assumptions have been met. If the distribution of rc,sidfials

shows divergence (or convergence) ac-oss thL

variance assumption is challenged. If the variance is constant, but

there is an upward or downward tren,"

probably been an error ue df,dijs, or the constant terr,

been omitted. Finally, if the Plot looks curvilinear, then the

assumption of linearjty is questioned. ,Transformation on the

variables or extra terms (square or cross-products) may be required

in the model.

Residuals may be plotted against the independent variables.

As with the plot against Yi, the existence of a horizontal band of

'residuals is the desired form. Failure to obtain such a plot would

raise similar sorts of questions as those in the previous paragraph.

6 1
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Statistics are available for formally testing residuals. ThA

reader is referred to the work by Lrscombe (.961) and Anscombe and

Tukey (1963) for the details. Other plots are also possible ard

Draper a-' c74-- rcomend thLt residual plot sbould be

-made that makes sfse in light of the resea-ch inc

residuals acainst a measured on the same subjects but not

included in the recression equation). For an example of testing

assumptions in comm,Anication research see Monqe, et al. (1976),

who examined the pl. t of the residuals for a fully recursive

structural equation Tcedel of the determinats of-communication

structure in larc::

Rec,idls, of

Autoregre'

ire no' t C j to test assumptions':

ic,n can ascertained by the Durbin-Watson test.

.Multicollinearity can he determinv! i)y 1'1'1

rX7,_); fHt appc& , some column c)f-- the matrix is linearly

dependent upon some other column(s) of the matrix. Homoskedasticity

can be examined by a homogeneity of variance test.- Other 'pro-Cedures

are also available and can be found in most standard econometrics

texts (e.g., Goldberger, 1964; Johnston, 1972, Kmenta, 1971). The

importanc point to remember from this section is that when cormunication

researchers undertake a regression analysis, they should always

test the assumpti,ons of the model. Only when this becomes standard

practice in communic6tion research will 4e be able to have confidence

6 5
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in research findings that employ statistical inference.

Comparisons with Related TeohnicuR

MMR has been presented in the context of its univariate

.:..cunterpart., linear multiple regression, To provide a broader

context it mi be Jseful to examine the relationship between MMR

and several other tecr4,iques. I will briefly discuss: (1) the

generP1 linear model, (2) VANOVA, (3) canonical correlation, and (4)

ceneral systems of equations.

MMR has been treated as a special case of the general linear

model which consists of the functional form of the model and the

assumptions specified in the Gauss-Markoff theorem (set-up). Many

of the multivariate techniques, e.a., MANOVA, canonical correlation,

etc., are derivable .from the general linear mode7. To understand

that point provides two important insights. First, it emphasizes

that many of the multivariate statistics are highly.interrelated

and not separate, independent techniques. Second, it emphasizes how

the various techniques differ as a function of the differences in

their assumptions, so that- modifying ao assumption of the general

linear model makes it necessary to choose an alternative form of..

the model (i.e., a different multivariate technique).

Comparing hn with MANOVA helps to illustrate these two

points. First, Timm (1975) demonstrates how both 'are special

cases of the multivariate general li!.-ear model. Second, if the

6 6
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researcher assumes categorical rather than continuous_measurement

on X. then MANOVA is the appropriate form of the model to utilize.

Actually, as Bochner and Fitzpatrick (1977) illustrate in another

paper for this conference, a ANOVA model can be analyzed with MVP

techniques by use of special (dummy) coding techniques (See also

Kerlinger and Pedhazur, 1973; Press, 1972; Kmenta-, 1971).

Canonical correlation is a technique that is apPropriate

when there are two sets of variables, measured on ordinal scales.

The coefficient, R is the simple correlation between two random

variables-which are each linear composites of two or more variates.

Each composite is defi-ned" y weights applied to its variates

designed to maximize its correlation, Pc, with the other composite.

As Finn (1974) indicates, when one of the "composites" consists of,

only one variate, R
c

becomes "the multiple correlation of one

measure with the other set-. The weights are the partial regression

coefficients"- (p. 188). MMR is,the appropriate technique when the

researcher is interested in explaining variation in one set of

variables by variation in the other; canonical correlation is

appropriate when one is interested in forming composites which

maxiMally share variance with each other.

Some econometrics texts treat MMR under the topic of sets of

linear regression relations (See, e.g., Goldberger, 1964, pp. 201-212).

'This extension to sets of dependent variables from the univariate

case is,, as we .have shown, quite straightforward. Yet always the
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,r1,-sis is on explaining variance in the criterion variables by

varia tion in the predictor variables. If, however, a researcher is

interested in testMg a theory which consists of a system of

linear relations (eitr single equations which are par 7. of a

larger s,stem of equations or the entire system; itself), then- the

OLS estim7.tion procedJres describeg in this paper are appropriate

only in to spec .al case of a fully recursive system. Simultaneous

linear structu:a1 equation systems require alternative estimation

procedures which are the topic of other papers in this conference

(Canhe'la, 1977; Fink, 1977).

Coping with Faied_Assumptions

In this paper considerable emphasis has been placed on the

importance of the e;sumptions in the classical linear model. Our

discussion, howem, has been limited to OLS techniques; we have

not examined alternative estimation procedures. Though it is

beyond thescope of this paper it is impbrtant to point out that

,pc.ocedures have been develcped to permit statistical inferepce in

spite of violations of OLS assumptions. Some of these tethniques,

such as two stage least squares to estimate autoregressive

ciisturnances .and the use of instrumental variables for errors in

varables (i.e., measurement error in X). are simply more

sophisticated applications, of OLS procedures.- Others require

complete abandonment of.OLS in favor of maximum likelihood
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estimators. WhateVer the case may be, the coMmunication researcher

is strongly encouraged to cdnsult multivariate acnd econometric

texts to discover the appropriate alternatives which are necessitated

, by violations of assumptions in his or her data.

Advantages and Disadvantages of MMR

Kerlinger and Pedhazur (1973) .reView in depth a number of

social science studies that employed multiple regression; their

'comments-give the reader an excellent notion of the breadth of

:;rlications that are possible with the technique (See Cps. 15 and

They also discuss the limitations and strengths of regression

techniques pp. 441-445) and that material, some of which has

already been mentioned, will not be repeated here. Rather, 1

would prefer to make three brief points.

First, MMR techniques lend themselves to simultaneously

replicating previous research and developing new flndings. This can

occur-by including predictors in the regression equation which .have

been shown to be important in. earlier research.. New variables may

then be added and tested for significance over and above those ,

already in the equation. In this way results become cumulative and

we can build coMmuojcation theories of known predictors.

The second point is that'regression analysis, if done correctly,

virtually necessitates the formal specification of the regression

equation. To my yay of thinking this particularly facil_itates
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interliretation of complex relations, particularly interaction terms.

Furthermore, 'Fince traditional ANOVA and more complex MANOVA designs

may be analyzed via regression techniques, it is possible to develop

"mixed" designs which include both categorical and continuous

predictors. j

e-

Third, though we have only discUssed cross-sec 1 Aata in

this paper, all econometrics texts also discuss estimation

procedures :For time series data, These may vary from simple lagged

variables to complex Simultaneous struttural equation systems. These

procedures can be used to explititly caOture the time-variant, pro-

cessional nature of many communication phenomena.

Conclusion

At the outset of this paper we began with a quotation from

Tukey (1962) which asserts not only that our most imPortant questions .

are more likely to be vague than.precise, but also/that'our best

answers will often be approximate rather than exatt. Asking the .

right.questions is a thebretical endeavor; offering our best

approximatiOns to answers is 'a statistical'undeikaking.

Having shown in this paper how analysts may expand the relations

they can examine via,regression techniques to include multiple

criterion variables,-it seems important to stress the necessity for

theorists to develop formulations, which will incorporate this

expanded capability. to develop multivariate theories that can be
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studied by multivariate multiple regression should lead us a long

way toward a'sking the right questions apd obtaining regression

coefficient approximations to laws of human cOmmunication.
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Simple

A..'

(K = 1)

Predictor

Variable(s)

(t: 2)

Criterion:Varialgsl

Univariate Multivariate

1) (P > 2)

A

Table 1.. Partition of a data matrix, ff-cm t, into four possibli! ,',ombir..dons. of PrediCtor Variables,

X Y,.

, and Criterion Variables, -Tpc) , submatrices, M P K. :The four cells vOvide the data partitions

for,(1) univariate simple, regression, (2).. univariate multiple regression, (3) multiVariate simple

regression, and (4)' ,Multivariate multipegression.,
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)T able 2. ANOVA Table for Testing ii 7.- 0.

(from Timm, 1975, p. 273)

Source df

Total Regression

Residual

Total

N k -.1 QE,

SS E(MS)

1752 'TX

I( + 1

= G2

MS
h
/MS

e
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Table 3,

Hypotheses and Test Statistics for Testing Regression ,Coefficients

Hypothesjs,

A

A

0

m

k

Test Statistic'

N-k

;

(1) Ho :

(2) Ho

(3)' H

o

or

t

,S

bk

t
Sk Mk

Sk

F .
SS

R
/(k-1)

SS
E

A

" ..0
61 6k

A

(for j k)

(6) HO :

(7)' .F10

.1

(6 iS,the vector

of regression coefficients

'nor a second equation)

2
R
2

o h i-k-1

Comment

F, equals zero. Can fie used to test the 1-1Neut,
,k

See Johnston, 1972, p. 138.
o

k-equals
some constant, M

k.

See Kmenta, 1971,

p ,366.

(11)

_41 'All coefficients except the,intercept are zero.

1
See Goldbergef, 1964, p. 176; Timm, 1975, p.,273.

Some subset of the coefficiuots -(perhaps t.he final

one) is zero. See Goldberger, 1964.

One regression coefficient equals another. See

Goldberger, 1964, p, 175.

The sum of two. (or more = k) coefficients equals

a constant.. See Kmenta, 1971,. p. 372.

Two regression equations are equal. See {menta,.

1921, p, 373 for tbe 'test st'atiStics.
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Table 4, MANOVA Table for Testing .B p

From Timm, 1975, p. 309.

Source df

---

k + 1

.k

N

SS

= B'X'XB
h

E(MS)

,

,

Total Regres ion,

Residual
,

c

Total

,

B'X'XB
E +

A A

Q = Y'Y - B'X'XB

,

f11

,

k + 1

E

7,9



Table 5

Criteria and Tests for Multivariate Hypotheses

H :13 - 0; H
o

F = 0;H : B = 0
u II

1. Wilks' likelihood ratio criterion

IQ I

A = e,
E (1 +.A.)-1 k + 1, N - k - 1)

Tge ghl i=1

2. Roy's largest root criterion

6 1 >0a (s,
A

1

3. Lawley-Hoteiling trace criterion (or Hotelling's generalized

2
T. statistic)

U

s

-LT

2

X.>Ua
° o

N-k-1
i=1

(s.,min)

4. trace criterion

Vs = Xi > V(1(s m n)
, 7

i=1 1 +

5. Bartlett's X- test

[0_1) L., k +

6. Fisher's F test

= F
e'

v
h

)

A

where

s = min (h p) = (k+1, p)

IU v
h

I -1
m

n =
ve U 1

2

- degrees of freedom

8 0

2
Log A>xil (pk),


