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Multivariate Multipie Regression

in Communication Research

Far better an approximate answer to the right
question, which 1s often vague, than an exact
answer to the wrong questien, which can always
be made precise. (Tukey, 1962, p. 13)

The scientific study of huiran communication, like any other

" science, is fundamentally concevned with establishing laws of

relations among the variables that constitute its subject matter.

While formulating laws is, of course, a thecreticai endeavor,

establishing them is an empirical enterprise. When a communication

scientist undertakes research to-establish & law, he must choose

a statistical techinique fvrom among the -large repertoire available

which in his judgment is thé one best suited to enable him tc

derive méaﬁingfé] cénc]ﬁsions. This paper w1117bresent one-

alternative, multivarfafevmultiple regression (MMR) and its uni-

varfate qpunterpdrt, whiph in my opinién is ofteﬁ-ﬁdea]]y‘suited

o this task. In fact, as Blalock (1964) s%yé, "It is the-

regkéssion coefficients which give us the 1aQs of science”’(p. 51).
It is not my intention, however, to argué for the supekiority

of MMR over other analytic techniques. VRather, it seems important

“that the commurication researchers understand the techrique and its

assumptions so that, as with all statistical procedures, he wili

e
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ﬁu}tivariate Multiple Regreésion
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nave a rational basis for selecting it when it is best suited to
his needs. 1In this regard, the assumptions are most cr%tica] for
here is where the researcher must cbmpare the nature and assqmptions
" of the theory being'tested (i.e., thé‘proposed.iaw) with the
»assumptions o%‘the analytic technique. Should the theoretical and
ané]ytfc assumptions fail to correspond, then the :analysis-under
one set of assumptions of data gathered under the other set is
bouﬁd to be in error. —
The purpose of this paper, then,.ﬁé to examine the muiti-
variale multiple regression model and to explore its'apblfcability
to the domain of éommunication inquiry; Né/ﬁg{} begin with a pré}ude
on parﬁitioning~a data matrix zs a ﬁeurigtic dé;}ée,for disfinguishing'
aﬁong alternative regression models. In the second section we will .
_ discuss. the mqjor.éspects of univariate multiple rggressign: (a) |
“the form of the-model, (b) using the mode 1 for.descriptive purposes,
. {c) est%mators and their properties, (d) assumpt{ons of the model,
- (e) procedures-fbr parameter estimation, (f) Hypothesis testing
procedures, (g)-interp}etation of regression coefficients, and (h)
reestimation. The-third section will-providé a paraliel presentation
for multivariate multiple regression. In the finaT~section, we wi]id
turh to seveﬁa} additional topics. -These will include: (a) tests |
of a55umbtions, (b) coping with failed aSSumptfons, (c) the relation
of MMR to othef.muitivqriate procedures, and (d) the advantéges and
disadvantages of_MMR.- N
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A

Notaticn

+In terms of notation it may be heipful at tke butset to nake the
conventions we wil? utilize explicit. For paramecers, i.e., |
characteristics of populations, we shall use upper and lower case
Gréek jetters, e.g., Z, g2, 5, . For estimators of parametérs from
sample data, we shall use the same Greek letters as the corresponding
parameter augmented by & caret, ~,-above each symbol, e.g., é as
an eéfimator~of 8. For statistics, i.e., characteristics of
samp]es, and fof computational forms, we wili useukng1ish equivalents
{or alternatives, if necessary) to the Greek symbols, e.g., S for L,
/b for B, etc. Vectors will be identified by lower cas2 letters,

matrices by upper case, and both will always be underscored to

R

distinguish them from scalars and other data representations; thus,
R is a single regression coefficient, B is a vector of coefficients
and B is a matr1x of cooff1c1ents

Part1t1on1nq the Data Matrix for Regression

Virtually every communication researcher hac gathered data for
severa1:d1fferent variables on some qumber of subJects. The most
1 traditioha] wa} tovbrepare theée>data for ana1ysis is to arrange
them ihté a subjeqtsAby variables data matrik. ‘Invfact, virtually
' a1T standard computerized atatisfiaa1 packages require that data be
prepared in tnis way. Here the deck of punched cards may be |

considered the data matrix,, where each card corresponds to the set

6
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of observations (scores or measuremenis) on a single subject, i.2.,

a row of the data matrix. Since this format 1s generally familiar

t0 researchers, let us examine various partitionings of this matrix

in order to provide an averview of alternative lirear regression

models.

Suppose that we have a data matrix, HéM , which consists of
measurements for N subjects (i =1, 2, . . ., N) on;M variables
(G =1,2,.. .., M. Jurmatrix is tﬁen ¢ order N x M. Let
us assume that we ére interested in how fhe values of some variables

can be determined from knowledge about the values of other variables;

regression analysis is appropriate for examining this kind of dépend—

ency. Some variables in the matrix wili be identified as predictor

variables and others as criterion variables. We can partition the
data matrix into two submatfices, one for predicfor variables and

one fbr criterion vhridb1é§; and examine the\interfelations among

the two submagrices.

According to convention, we will label the predictor variables

‘thé X variabies and the criterion variables the Y variables. We

; will- label our criterion éubmafrix, Néﬁ" and our predictor submatrix,

N§E ' It is possible te have one or more of each kind'of variable,

j.e., one or more criterion variables and one or more predictor

-~ .

variables, which provide four possible combinations or regression

models. The first situation occurs if we have a data matrix with



Multivariate Multipie Regression

only two variabies. Then we would partition 7= (M = 2} as follows

—
3
o)
1)
3
[¢9)
X

1]
el
b
i
—
“
—
i
N

3\
/

. \ _ N

1 Ay x b oy vl oty x|

$ X2 NxF | FixK MxT | Tix] FixT ! x.J
L. 4 i

With one criterion variable and one predictor variable we have the

=

data partition for univariate simple regression. Hote that since

there is only one criterion and one predictor variable, that the
submatrices are really vectors (and Néﬁ-is N ox 2).

Now assume that M is greater than two. We must decide hbw to
partition the‘matri;. If e choose'égg variable (the first, for
convenience) as the criterion variable, so that P = 1 anu treat all

the remaining variables as predictor variables, (K>2), then we

would partition Néﬁ-(M > 3) as follows ‘ o

| ; ’
S TN HxP b RxK MNXT 1 NxK

and cali it the data partition for univariate multiple regression.

-

There is a single vector of criterion scores buf a matrix of two or
more predictor scdres (one score Forveach subject on each predictor
 varia51e)._” l

Now consider what would happen if we were to partition ﬁéﬁ\so
that there were two oOr more criterion variables (P > 2) but only

one predictor variable (K = 1)? ‘Néﬁ-wou1d look like

8
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A _ Y + x - D s v o= SN
RxT ‘-‘ NxP | rzx*x}“‘"‘?)*’(“” 1> 3)

This data partition can stili be treated as a regression problem.

Since there are several criterion variabies but only one predictor

variable it would be the appropriate data setup for a multivariate

simple regression analysis.

Finaliy, assume that the researcher is interested in examining.

the regression of two or more criterion variables (p > 2) on two or

"more predictor variables (K > 2). Then,

A Y
\ — - ————
(4) NxM § NxP

=

>

X
|

This partitioning of the data matrix into two submatrices is

appropriate for analysis under the mu]%iﬁariaté/mu1ti91e regression

' ’ )

model.

During the remainder of this paper we will work with the

X
NxK 2

full data matrix. Since it is helpful in sorting out the differences

criterion and predictor submatrices, ﬁéﬁ-and rather than the

for the Various forms of analysis, the results of this section are -

summarized in Table 1. This data partitioning will also be useful
when it comes to comparing the regression procedures with related |

techniques.

Table 1 about here




fultivariate Muitiple Regression
S
wnile we will assume at the outset that the reader is familiar
with standard simple and multiple regression techniques, a presen-
tation of the univariate mode] will hefp to set the stage for cuvr
discussion of the multivariate case. To that task we will now turn.

Univariate Multiple Regression

The Univariate Multipie Regression Model

The classical univariate linear muitiple regression model can

be given by

(5) | Y. =

whiéh-shows the relationship betwegn +two or more. (K) predictor or
independent variables (X) and a criterion of débendent~variab1e

.(Y) all measured simuitaneously on the subject. The model is called
1inéar-(or Tinear in‘the parameters) because the effects of the
various pred{ctor variables are treated as additive, i.e., Yi is
composed of a linear combination of regression parameters. The
regression parameters (80 .. Bk) are the population partial
regression coefficients or weights which are determined from the
sample data and used to optimally predict Yi‘ Bo'is a scaling
constant which absorbs the differences in the scales used to

measure the Y and ¥ variables. The €; represents the error teria,

i.e., the extent to which the model fails to predict the criterion

10




- . Multivariate Multiple Regression

g
scores,'Yi. This can bSe sean by rewriting {5) as,
6 .= Y. - (B, + By R.5 + + 35, X.
(6) i 1 (“u F1 49 Pk 1k)

Since data are gathered on each subject (i =1 . . . N} in
- the sampie) there are N ecuations of the form depicted in equation

(5) above

(7) R I T P S T
Yp = (NBg+ 8y dpy # By Xop b v By Py :
: . + .. X + :
=Byt 8y iy T By Ko - Y

. These equations may be represented in matrix form as

_ - o - o
(8) Yy Y R A B £
Yol = |1 '21 *a2 - Ll 1811 * &2
i L} Y1 *uz Kl 1Bk N
or
(t11x1) (ttxq) - (gx1) ix1)

y is the Nx1 vector of criterion or dependent scores, one for. each
o o .

subjgct’ﬁn the sample. Tﬁ'is the Nxq model matrix which contains an

" initial vector of unities and the data for the k predictor or




2 is the g x 1 vector of partial

"
)
1
mn
T3
[2¥]
o]
(8}
[14]
3
ct
o
-
—d
g8}
or
-—
¢4
w

—

]
It
—
4
oy

[N

ragression coefficients ans is the H x 1 vector cof error terms.

g
—r
wn
Q
“H
~t
m
S

The model given in {2 called the raw or raw score form
of the linear regression of ¥ orn x. Two other forms of the model
are alsc possible and freguently encountered in regression work.

Cre alternative following Timm (1575, p. 270}, is calied the

reparameterized or deviation model. In this model all predictor

scores are measured as deviations abcout their respective means.

-Thus, the regression eguation would be
(10) y; = 8.+
which can be represented in matrix notation as

(1) y = X n o+

Nx1 Mxq  gxl Nx1
where g = k + 1, and gd is the model matfix of deviation scores,
and n (i.e., eta, is the vector of rearession coefficients for the
reparameterizéd model.

The other alternative is to standardize the elements of both

y and X, which is accomplished by dividing each deviation score by
the standard deviation of that variable. The standardized regression

model 1is

12
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Muitivariate Multiple Regression

N
i
(12) y;;] 1w Y2 21;1 5
Vz| o | P 2 -t .
Yol 7o Zoo . . . L,
| a3 | “nn w2 NK
or
(13) Y, : Z X, toe

[ Nx1 Nxk O kxl Nx 1

flote that ‘the orders d? the data_mafrix Z'and the }egreséion vector -
szin e§Qati6n (13§'are k ragheﬁ than g = k + 1.‘ Since all variébies
;fTvarg'stgndéFdized to the same scale, there is no'fonger‘the’necéssity
for é]sca]ingAterm; hence, there is no inftia] vector of unities in-
S
7 ,ranq no yzo‘in Y, k
Description. \ . |
';Supbose»that a Eommdniéation reseércher has a set:of ééta which
“he wisﬁes simply to descrjbe. _Mu]tig]e:regreséi@ﬁ_broéeddrés méy bgll

used-%%%;ightforward]y in this case as a'descripfive dqvice.' The .

~ data will be divided into a criterion variable and one or more

Eredictor variables. Using qu]ish»jettors td.indﬁcate that

o
F]

" regression coefficients are;to be calculated frdm éamp]e'data for
’ descriptive purboseé on]y,'the*regréssion equatfbn specifyiné the

relation ampng'thehgériab1es is given by

(14) y = - X.b + e’ PR
i M- Nxg axl o Mxl CoL T




e T Multivariate Multiple Regression

N 512
where y is an N.x 1 co]umntvebtor of observations on the criterion
score (sometimes calléd the regressand), % is the N x q (qg=1+k)
data matrix of'observedrpredictor variables (sometimeg call - '
regressors) augmented by'anvinitia1 vector ofxﬁnitﬁes, b is e un-
known g x 1 vector of Fegression coefficients and e is the unknown

1N x 1 vector of errors. The problem is one of determining phe un;

»known regreséién'coefficienfs and calculating the error tomponents
oflthe-quation. | o R |

By ménipu1ation of‘(14) we can cféate’anyequqtﬁbn.which.wiT]
giYe-us a so]utigq for,the'regfessfonuparéﬁetersf - In o}der'to
obtain the best possible so]utjon; we w6u1d‘1ike_qﬁr regressioﬁ

)coefficjents when mu1t1p1yjhgﬁfhe X_scdres-to neproducevthgéx
scores as'exactlylaslpdssiblé. Another way to state this is that '
the error_COmbonént of”;he mode],:the diffe;énce between observed

~and calculated Y scores, or more preécisely the error sum of squares,’

will be at a minimum. First we calculate the error sums of squares,

e e
(15) e = y-Xb rearranging (14)
| . e’ "= (y - Xb)” (y - Xb) multiplying
! = y’y - yXb. - b”X”y + b"X"¥b collecting terms
"“ * © = YTy - BhKTy + b X

-

" Since we &re interested in finding the b which gives the smallest
" ! e ) - » . had . { . .. 13 ‘
.~ . 7 error~sums of 'squares, let us differentiate these error sums of

!

e



“Multivariate Multiple Regression

squares with respect to b
. d(ee) '
(16) T 2 S AR 2
‘ 3b ‘
) This solutionsto 3(e’e)/db, when set cyu. .o 0, gives the "normal
equations" : |
(17) XX = Xy "

, ‘Here,ﬂfg_is the sums of squarés qﬁd cross prodUC£s for thé predictors,
<=’ b is the.vector of regression éOeffigients,:ahd'lfx is the sum:of squ&res
_aﬁd”cro%s p(dducts fpr ;hejpredictor and criterion variables.
Simple a]gebraic'manibu1étion"o% (17),givésmﬁs the sé1ution for
the regresgion'coeffiéiéﬁté we seek. |

o N

(18) ~ b o= (x0)7xy

¢

~

‘ Forffhose familiar with tpe.ca1cu1ation of.simp]é;regressjon'coefficients
in summation notation it might be useful to point out that in the |
‘bivariate.case (18) i§ equiva]ent to

. o o
(19) by =¥ }

. . e T . USRI ‘
which is the ratio of variation between x and y to variation in x alone:

| Having now obtained Q_it-is’posﬁib]e to insert the values of b

into the equation to ca1cu1atexor’predict.the va]ue% of y.  Since we

15
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14

already posseés the observed predictor scores, X, the calculated

“scores, y, are

If we now compare our calculated criterion values, y, with the observed’

criterion'va1ues,‘x3 we will discover the extent to which our pre-

dictor variables| X, when multiplied by the best possible fégreséion

céefficients, g,‘ 1égﬁ§te1y reproduceithe observed Scorés, y. As a
measure of our failure to correctly reproduce the 6bserved'scora
from our-predicto% var1ab7es and the regrassion coefficients we

-construct an’équation fc©  residuals.

~ ~

(21) e=yv-%b y-y since y = ¥b

—

:whére g’%s the veCtor of residuals obtained byvc6mparing,the observed
-y scores with the calculated or pred1cted scorns, Q} v

| Hav1nq obtained our Lest we%ghts 'or tne set of pr°d1ctors s
use%ul to determ1ne ac w21l the prgd1ct1on model, Xb, “f1ts“ thu
'observaf%én vecte-, . > procedure, féf]owing Go]dﬁerger (196@1
“p. 159); is to partipi ¢r decompose the variance-of y into 1%5

component parts. The p.: .5 of the decomposition can then be déve1oped
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into a measure of the goodness of fit, R2. First, we obtain the sums

of squares for residuals.

frv >
n
——
<
!
>
o
N
AY
—
<
!
>
o
S

(22> e ‘ from (21)

=yy - y'Xb ~ b"X7y + b7X7X ! . multiplying

=Y’y - 2b7K"y + bX7X O™ Xy ¢ombining ‘terms and
| 'from (18) |

e’e = yy - X C since xX (07 =1

Also, from equation (20) we an ~btain the surz of squares total

for the calculated scores, :

~ A

(23) y'y = (Xb)" (Xb) squaring (20) )
| s b"X"Xb rea%ranging
= bXy since Xb = y
By substituting (23) in (22) .. . . earranging terms, we‘obfain'sumé
ofquuqres total for'the obs: . v scores.
(24 yly=yy+ele
This provides the fundgmenta] oAy on for linear regression.. The *

- partition states that total va =~ cn in observed y, can be decomposed

7

Jo
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into two components: (1) sums of squares for predicted i} also called

~ sums of squares for regression, SSR, and (2) sums of squares error,

| mu]tigte determination, RS, is calculated.

SSg- If we treat the sums of squares as deviations from their

respective means, then we have’

(2]
w
[

(25)\ LSS +SSg

\..‘ . T ) h ., :' ' . . . -
'As a measure of. the "goodness .of fit," the sample coefficient of .

AN

(26) . RE=1-%g=1 - 58 g
' . . SS. <
5T (y v)

which varfeS‘between'p and 1. As qudbenger:(196§) says, "When the

fit is perfect, the least squares plane paSsesxthFough every ob-

served Y, every e = 0, so° R2 1.h At'the other extreme b1 = .

Y 4 -

= bk'= 0, b, =y, the plane is hor1zonta1 at.m every'e’ y - y,

0
SO R2 =0." (p. 160). R, the squawe root of R2 is ca11ed the

samp]é mu1t1p1e corre]at1on coeff1c1ent

The resu]ts of this sect1on 1nd1cate that regreSS1on ana]y51s

;may be used for pure]y descr1pt1ve purposes. Reqre551on coeff1c1ents

may be obtained and the ‘adequacy of the pred1ctor var1ab1es may be

-

- determined as prooort]ons of var1ance accounted for or as qoodness

13
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related orocesses: (1) estimation of DOpu]ﬁtlon Darameters

Multivariate Muttib]e Regression'
| 17
of fit between observed and predicted scores.
Commun1cat1on researchers are rarely interested in. s1mp]e
descr1pt1ont Typically, we draw samples- and wish to make inferences

back to the population from which the sample came. In-regression

: -0
analysis, this inference will tyoically encompass two different but

\
\

(regression coefficients) from samp]e data, and (2) hypothes1s tests
. . _ e
regardirq the parameters.

Parameter Estimation

Thc procefs of mak1n< an inference about tie va1ue of a
popu]at on patameter, 6, from a: samp]e stat1st1c is ca]]ed est1mat1on

~

An estimraitor, ¢, is a funtt1on or for mula which tells how to comb1ne

‘sample cuservations in orcer to make th= estimate about the parameter.
‘An estinate is the value (scalar) obta ad for‘any given sample from

'ah estimator formu'a Accofding to kmenta (1971, p.'9) character-

5

dstics:of est1mat0rs are derived by examing their samﬁ1inq'distributions.

The parameters typita11y est1mated in. reqress1on analysis are the
regression eoefftcwents, 86 - .ggk, i.e., the.1ntercept and’ §Jope

values of the regression equation!

" As many econometricians point out (e;g.% Kmernta, 1971,

Ge1dberger, 19§4) it is,importanﬁ.thatuestﬁmatofs possess certain

properties:”
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(1) An esfimator'should be4unbiased;>6 is an unbiased
"estimator of 8 if £ (8) = 6. This definition states

that on the qveragé; £he estimator is cofféci, which'

onlies thet the meon the samp]ing‘djstkibutjon

-f the estimetor equals.thefpopulétion 5arameter.
(2) Unbiased estimatos should be efficient. An

~

5 s effic%ent if it has minjmum variance ambng_the
‘lass of unbiasad estimators. |

{3) An estimatof stould also be consiztent. This
imp]fes that‘hs sample size gets larger (i.é.,.
approaches the otopulation size),.the astimator
provihes_bgtter-eStimates. An‘ajfernaz‘vg way to
'stafé this is tnat the Samb1iﬁg djstributidn.of the.
‘estimator tends to concentrate on the t ue value of
the'parametéf, i.e.. it becomes less biaséd and ‘
sm§11er variance. | f

(4). Fihq]]y, ah estimator that is-éonsistent,i§

Best Asymptot c Normal (BAN) ".-. .'1% thé asymptotic
\ ; distribution of VN ;SN.- 5)‘ié‘norma1 with mean Oﬁand;’
K variance ° (0) has the least possible vafue.f

- - V(T mm, 1975, p. 151) e

1
/

k]
\- Mzny economezricians cai  an estimator, 0, that"is an unbtased,
\ i - . - . - ! . ,

.minimum variance inear funct‘on of .sdmple observations a Best

1

20
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Linear Unbfased Estimator (BLUE) (See, e.q., Goldberaer, 1964, p. 1}
fechnica11y, bias, minimum varianco and v.ouc are ioicrrad Lo s

fin. \small) sample properties, while consistency and BAN a-e
'asymptotic (large) samo1ﬁ properties. For an i]1uminating ar.iogy
betwe=r propertﬁes"of estimators. and shoot{ng sioa bull's eye target -
wi th r{rie see (Kmenta, 1971, Pp. 13-14 and 168). Although it
,.wi11 -t be proved 1n thiz papery it w111 come as.no surprise to
many v~ 3ders, that the 1ecst SQuares procedures which were «i ’ {‘“ g
discus~ eo ear11er'°or determ1n1ng regress1on coeff1c1ents For S : :L\ 3

descr=>t1ve:purpose, turn out. to be, under certa1n assumpt1ons,

- BLUE ~f population parameters We now turn to those assumpt1ons

. ~ ';
‘Assumotions of the Linear Regression Model

In order to make parameter escimates_on'the basis of sample
data it is necessary te make a number of!assumptions about the
populat-on. if these assmmptions are Warranted, then statistical
j:gﬂyhﬂory regarding- samp11ng d1str1but1ons and propert1es of ‘ .

»estimators. can be used to foymu1ate 1nferences about the parameters

The assumpt1ovs of the c1a551ca1 linear regress1on mode1 can

* he summar1zed by several ‘equations wh1ch w111 berbriefly d1scussed

in “his sect1on,

Assumption (1) is



"o rlultiple Regre n
which specifies the functional form of the relationship in the
population. It states that the observed scores, the yi» are
1inear1y dependent upon the Xij scores and the disturbance or
error terms, €..

;
Assumption (2) is

= i AP ==

(28)  E(e) =0  or, alternatively  E(y) = X8 "
 This assumption states that edch~disturbance term has‘an expected ,
value of zero. The two forms of the assqmpt10n are equ1»a1ent

because if xf= X8 + g_and E(x)v— X8, then it must follow that
_ (o) - 0. . )

7 : ' R
Assumption (3) also may be written in two forms:

]

(29)  (e) = E(e’e) = 0L or . V(y) = oI

The' variance of ¢ equals the vahiance of y because g and X_are \

)

/separated on"y by a constant wh1ch does not affect the variance.
- Th1s equat1on states that the Dxpected value for the sums of squares
for the d1sturbances will equal 2 constant variance times the
1dent1ty‘matr1;, This’ real]y encompasses two assumpt1ons First,
. assuﬁptidh (3) sbec1f1es-that for all yalues; Xij’ of any‘g1ven
: predictOr variable, Xj’ the variances will bé constant, i.e., they

/ .

T 99
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_will be homoskecastic. The assumption of homoskedasticity is scome-

times written as

(29a) = E(e

LN

‘Violation of the assumption; i.e., E(e?) # 62 is referred to as
heteroskedasticity. Second, since an identity matrix has zeroes,
in the off-diagonal position, (3) implies that the errors are

uncorrelated, which can also be written as

(29b) - E(ese5) = 0 for all i # j.
" This assumption is often referred to as one of the ﬁonautoregressioh
or nonautoregressive disfurbances.
- Assumption (4) stipulates that
(30) ~ X isanNxq matrix which is fixed in repeatéd,samp]es.

.

This,assumptior implies a nonstochastib'x which further implies that
”{x_and"g_are independent. j

Assumptior (5) is'that the

~(31) Rank o

—h
|><

I
0
| A
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which indicates that there are more subjects than variables and that
no exact linear cbmbtnations exist among the‘predictor variables.
This latter statement, that there is no exact correlation among the
predictors, is often referrea to as lack of mu]tico]]inearity. In
practice we are oftenhmore concerned with high degrees of multi-
collinearity than with perfect multicollinearity.
If we add one additional assumption; (6) "that the £; are

nohma]]y distributed, to the prevﬁous'five, the ﬁode1‘becomes the

classical normal linear regression model. Assumptions 1 - 3 and

‘6 may be compactly summarized for this model as

Y

(32) ” y o N(Zﬁt 621) or, aiterhative1y _e__.'\:»,N(Q_,_iz_)_,;where~

"This.format for synthesizing assumetions 1 - 3“and‘ndrma1ity may be
read as "Y is a normally distributed raneom variabTeuwith_ :
expectation (mean) equal to X8, and variance equal to‘ozle"ior*
alternatively, “The errohs are norm&%]yfdistributed withwgetd mean;
" and equal varijance, L." It is a]so often assumed that the X “
scores are measured on sca]es that have at Jeast ord1na1 propert1es
but that is not requ1red by e1ther mode]

3

Est1mat1ng Un1var1ate Regression Parameters

" Having stated a model of the form
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y=Xp+e

and .specified a number of assumptions about that mode], how can wé.

obtain BLUE estimates of the regression paraméters? If the assumptions

are valid, it turns out that the least squares procédures that were
‘utilized For\descriptive purposes, may also be used for inferentié]

purposes. Using the carot (f) to indicate that sample data are

- being used to gg}imate‘the.population regression parameters,

equation (9) is rewritten as s

~

(33) Yoo X

/= &
. Nx1 - Nxq  axl Nx1

> >

o

- where the details of the vectors and matrices are as previously

specified. 'Equation (33)-may‘be manipu]atedﬁin‘idéntical fashion

to the way equation (18) was derived from'equation (14). These

squares estimate of the popuiation

operations lead to the least
perdatipns. 1t _ o

regression_coefficientsp(Seé Finn, 1974, p. 97, for a demonstrafion
Lo R . . . - ’

. without using calculus that g -is a minimum sum of squared errors

o

(33) =0 xy

B is anh unbiased estimator of 8 because E(@) =B.. ths can be shown

b
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fairly easily.
.(35) E(é) = E (5f1)~1_5’x] . taking expertations of (34)
s (ng)‘] X E (x)‘ since X is-constant
= (Zfﬁj‘] X“X8 from Ass;mption.Z
. E(ly_)l=' ¥ ’
=g ) jV"gince (l<i)_]fo§.= 1-

8 is also efficient, i.e., minimum variance. (See Finn, 1974,

p. 99, for proof). And in generé], slis;a BLUE of §=(see‘KﬁentaL
1971, pp. 209-216). o ‘

Since an estimate, though unbiased, will be correct ahly on
the avérage}(i.é.,,E(g).: 0),1jt is_impbktéﬁt to obtain an estimate
of thé,variabi1ify;of'é_ovef:rebea%éd samples (of.the ‘same size)..
r.Thjs,va“cﬁurse, is equivalent to asking, "What is the variaﬁce or
. ‘standard deviation of the-saﬁﬁ]ihg diStr%bution of thé estimator,
in thié case é?“ The.vSriance‘pf"E (see JoHnston,'1972, pp. 125,
126) is gjben by

(36) V() = of diag (XN

k)

-and the standard deviation of B, called the standard error” of
estimate of B is given by

20
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(37) © ol8) = o diag (X )7

A\
'
! \,

Thus, -for the\$in\regress1on coefficient, B , the standard error of

—

estimate is

S o=odiag (X X).. !
- =odiag (_‘__)JJ

)

W
0
~—

-Both tne variance of égand the standard error of estimate can be
fdund on the diagonals-of tnetr respective matridES.

The Conventions regarding-reporting of regression results tn
‘econom1cs m1ght usefully be “incorporated into commun1cat1on research.

As Kmenta, 1971, indicates, "It has 92come customary to present all
/ [

-

these results by wr1t|ng out the estimated regress1on equat1on w1th
' the estimated standard errors 1n parentheses under the-respect1ve
coefficients. Th1s is followed by the va]ue of R2“ (p. 242), For

- our development we wou]d write

(38) Yy =B R N B K ey g2l |
(9% ~ : RCrue - '
(BB o (OB . '
R The foregoing indicates’;hat.the procedures for determiningf
_regression coefficients for inferential pur ~ter est1mat1on)
are no different from. those employed for descrip. . irpos- .. What

does differ is that in the former case a number of critical

e
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assumptions are made-about the oopu]atlon, while in the latter case,

no assumptions are made. These assumpt10ns, of course, make all

.the difference. 'Dependihg,on the extent to which they are 1nva11d,
the researgher must either:abandon ordinary “east squares'(OLS)
techniques in favor of other alternatives (e,qké two “stage least
squares, instrumental variables, etc.) or be left in the’unenviab]e.
position of being'able only to describe re]a:“ons.jn the obtained
data.” We wi]} briefly review thoee a]terhatfves at a later-point

in the paper. Now, havind shown.how to obtainuparameter eétimates,
We w111 briefly review various 1nterpretat1ons of regress1on'co-
eff1c1ents bhefore turn]ng to the important topic of how to. test

“the significance of those estimates. -

Interpretation of Regression Coefficients

It might be helpful at thts point to be explicit about the
interpretationyof the various regressioh coefficients. As a]ready
ment1oned the parameter B , 1ts est]mator counterpart 8 s ano the
Adescr1pt1ve samp]e coefficient, b s are all scaling coeff1c1ents
which are necessitated if X_and X are meaiuredﬂon d1fferent scales,
i.e., 1n different units of measurement. h These coeff1t1ents “insure

the equa11ty of the r1qht hand and left hand sides of their

respecf1ve equations. .



I7 the vars .. are al1 mee
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~
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‘bf || are called partie
‘be interpreted as the change
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.~e same scale, the coefficient
ized model wher2 all variables
ore transformations there is
o 15 the standardized
éo and bO are defiﬁed on1y
regression model. Each may
line, p]ané or Hyperp]ane
oon whether it is a simple
assion, or greater than two
As an intercept, it is the
‘ctor case, when X, and X2 = 0
(k = 0 in the géeatéf tﬁan two

pcinted out that many texts

By By and

on coeffitiénts. They should

unit change ig’xj. This
; the slope of the 1ine) plane

A]ternative]y, they

may be thouqht of as we1ghts which are Hsed as mu1t1p11ers for the

Xj in erer to opt1ma11y pred1ct<y

They are called part1a1

regress1on coefficients because each shows the reJ§t1onsh1p between

R4 .

y and a given Xj partialing out or controlling for-thevipfluences

“t‘
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of ¢ = er Xs . gL tion. Thou o2 vs sta 3&,;Lhe e
regr iom coeffic.: s sys under-tc.d © . in par'ial'{T
regr . xion coeffic ar : oniy exceation .18 s che:intL
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rec #5$30n equa . are scmetimes re?erred to as raw

regr 2§5ioan Toe o &

[t is imp.t ot e the: changing. the order of variable:
in t 2 ejuazior ... + ~nanging the first anhc last variatles,
X] ard Xy) will . e “he magnitude Qf any >f the regression

coeff ‘cients. -:17- o~ :=l=tina variables, on the other hand, wi'i
‘typice1ly char : th. mag ituce of the coefficients, in some cases.
gquite drastice : .1~ is so because partial regression coeftic ents

are defined fc - :1v:= -ot of predictors; change the set and the

coefficiants = s¢ e
- ‘nterpret Tiw sartial regression coefficient by comparing
it - other regresst 1 “ficients in an equation is difficul:- if
th= vafiab1és A mel T on different scales. Regression
cg=- icients wi b dif 7ly as a functic ol the dﬁffere -+ in scales
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social sciences is to cail the sfandarcized_reqressicn coefficier:
a "beta" weight arid tc reserve for it the symbol "B." This is nc
the conventioan in acon;meﬁrics and mény multivariate texts where
Gréek Tetfers»are reservad Tor population paraméters or estimétor;.
"(Finn, 1974, in fact, fevérées the éonvention and uses B for the
unstandardized anc b for the standafdized coefficients. Gold-
berger's, 1964, usage is such that he directly warns his readers
about not confusing "teta" coefficients with the elements of the
pcpulation coefficient vector B.) 'SoFting out thke variety of.
conventions of b and 8 is not always easy and it is the ﬁaiﬁ
"reason why, fo11owiﬁg Timﬁ (1925) and>bthers, I have chésen to us
an entirely diffe}ent symbol, v, for the standardfiéd coefficier-
The important'thing to remember is not the symbo1;'rather, remem: - -
(1) there are two forms of the slope coefficients, standardized -
unstandardized, (2) the interpretatioh appropriate to each, éﬁd
(3)»that each may be defined as a pafametef an estimatér or é
descriptive statistfc.“ . '

" Hypothesis Testina

Hypot esis testing ir regression analysis is the procedure

8

' whereby iri7luences about zhe significance of nopulation regressior

coefficients (parameters) are made on the basis of sample regress:
coefficients (statistics). As Finn (1975, p. 134) indicates}}this

process requires two separate steps: (1) partitioning of variatio

32
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which hypothes%ie that the va-~iables in trme sezord set wini zh
corréspond to éh significantly contribute tc the varianz2 in y over
and abecve the regressors in tha first set. gjﬂ'

A convenient technique for tastimg this hypothesis is- to
formulatevgyp,seoafate regrassion equazicns. The fﬁrét =quation
contains the first m of the k predictc~: (m<k) which ar= known o’
assdmed to significanp]y contribute 1. zviterion varizrnis: tha
second equation contains all & predictors, E.e.,'the firs. m
variables not being tested 71us the remaining = - m variatles

which constitute B The raspective equaticns would be

B, -
(50a) 3ty o= % 8 " :
° T NX3 Nx(m+1Y (o] )] R enc
(50b) R oy = X i+ g where ¢ = k + °
Hx1 Nxc .1 Nx1 Y

These two equations can, of course, be reprosented by their

bl
respective measures of "goodness ~f fit." R Tor th: reduced set of
19}
X 2 ¥ e ey = A Vo Lo =
.regressors, @O, and Rh for to« 007 reqressor . f Eh
It is then possible to cons . ¢ F 4 decin that 17 =~able .
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—O ‘A
2 2
(51) F = Bk'Rm"ﬂ_—”If—l
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T - Ry
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which hes (v - v and | - k - 1) degreeslof freedom, m equal to
the numter c% X variatle: in the reduced vector §6; and k equal to
the full se= of X varab™ - in 8. If F is signi%;cant at P <, then
Ho is rejgc:ed and it is -oncluded that some of the regneé;prs in §h
do contribp;e stgnificant y to variation in Y- The square& partial

muitiple coe’;icient'o‘ ~=termination is given by
. 2 2
~ I R"R ¢
(52) R, - =k m
m+ ", . . ., k) (1, ..., m —
1 - Rm

" and indicatas the amount of variation in Y which remajns‘after the

first m va “izbles have been partialed out df the regression equation.
When ;. contz s only one regression coefficient.so that §6 =k - 1

(i.e., Eo ¢ .ontains 211 but the 1ast-coéfficieﬁt), equation (51) has

a-specia] jwterpr zation which is of considerable importancé.' o

" Specifically, the equation can be shown to reduce to the partial

correlatizn coeffﬁciént (see Timm, 1975, p. 277)

: ’

(53) r PR

. RS P
- K8

k-1

which when examined as an F test at 1 and N - k - 1 degrees of freedom

shows whethar one X variable added to an existing set of predictor

- 37
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variables contributes significantly to variation in the criterion
measure. Thus, we can test whether an individual regression

coefficient differs significantly from zero, and thereby contributes

significantly to criterion variation. The size of rék -0

k - 1) also provides a measure othhe shared variation betweeﬁ/thé
fwo v%riab]es. |
There are several other hypotheses tﬁat are often worthy of
-examinétion; they afel1isted in Table 3 a1on§ witﬁ‘those that have
already been discussed.
The formula providéd in equation (53) is.perfectly adequate for
éxamining'the[contributibn'éo griterioh\varfance made by the last
variabie in the equafion: ~In genera],-ﬁowevér, if we examine more
thén the final variable we find that the regression coefficients for
pairs of predictorg are generally correlated. Let us suppose that
we wish to obtain indivjdua] sequential tests for each of the final
K - m>1.predictoré,ii.e., the ‘last variable, the next to Iaéf
- variable, étc:{ until wcvget back to the mEﬁ Variab1es. Finn (1974)
indiéétes that
A series of independent tests if facilitated by
transforming the predictor variables to a new set of
uncorre]éted measures, in a specified order. We

shall substitute for predictor Xi in X only the linear

j
function orfportion‘of Xj that is uncorrelated with

Table 3 about here

38
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oreceding predictors S P Hj That is,
L - 1

we shall find the Xj values tnat are nbtained if we

"partial out" or "hold constant” the effects of

13

s\‘

eariier predictors in the set {p. ).

There are twd important points to note here. The first is that each

variable is orthogonalized (made to be uncorreldted) with only those

The second is that

variables that preceed it in the eguation.
the process requires that the variables be arranged in a prespecified
" order. “
%he proce

ss which Finn {1974, pp. 134-144; see also Timm,

1975, Kshirsagar, 1959, and Anderson, 1958) describes produces

orthogora] est1mates of regression coeff1c1ents or em19aru1a

Each semipartial regress1on coeff1c1ent

. regression coeff1c1ents

indicates-the re]at1on between Y and Xj

contributed by variables preceding Xj

controlling for the variance of those

contro1]1ng for the variance
in the equation, but not

variables which follow it.

The process of sequentially estimating the effect of each predietor

variable eliminating those preceding i
elimination.

in general, the rzs between Y and

t, is called stepwise

v
AN

each will not add up to

R$-X ; because the rls are correlated. The ‘'squared semi-
1. ..k ‘
partial correlation coefficients will, however, add to Ri-X
. ‘ . 7 .k
since the constraint is imposed that each sequential ri (x '
\j.x
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w111 account or’v for variznce not accounted for Sy nreceding -

varizbles. Thu  as ¥erlinger an. Pedha-ur (1873, 2. 94) iraicate
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which is rzad, "The total amount “f sharad variance in y and X
is given by th2 sum of the squa | semipartial corralation
coefficients, i.e., the scuared ¢ rretation batwsen Y and X] plus
che variznze betweer Y and X, removing th2 influence of Ay Trom
the ve ation wizh Y, plus . . . olus *he variance between Y and Xk
rehoving the ihf7uence of X? through Xk—] from the relation with Y."
Often & resezrcher is interested in whether the combined effects

of two (0~ more) variables viewa¢ together significantly contribute

to criterion variation over and zbove the variation accounted for

by the va-~iables viewed separately. This interaction between_(among)
variables can be examined in regres;ion analysis by the inclusion of
multiplicative or :rosé—product terms in the predﬁctidn equat{on.
zach interaction term is treated as a new predictor variable in the.
iinear model. The new varizble is created by cross multiplying the

observed values for each subject on the original variables, i.e.,

Xij Xij - Since the model is still linear this multiplicative term
51 Y2 /

s added to the model and a ragression parameter is estimated for

.the new term. For example, given two variables, X]'énd X2, the

40
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Tinear-mode1 which includes the interaction term would be
A\
(55) vy = By ¥ ByXyy F BpXyp ¥ BakyiRp * gy
‘

}o calculate interaction terms it ‘s first necessary to
standaroize tng respective variables prior to eompotation of the
cross-oroduct terms. As Finn (1975) indﬁqates, “the dominence of
the interaction by one or another variable due to scaling is )
avoided. The interaction terms themselves need not be standardized"
(p. 85). Once this is eccomp1ished, the~0LS estimationﬂand"
hypothesis testing tethntques described ear]ier can be employed.

It should be noted, however, that it is customary +0 add the
mu1f1p11cat1ve terms 1nto the equat1on 1ast ;ﬁus test1nq them‘
f1rst if backward elimination techn1ques are employed.

‘ Severa] hypotheses have been |dent1f1ed in th1s section which

a researrher m1oht prof1tab1v examine. These do not exhaust the

e

.possibilities, however.  Table 3 presents those d1scussed plus
severé1 othzi'a1ternatives which are worthy of consideration. -hhich\
tést to use depends, of course,‘upbn‘the theorytﬂuiding the research.
Perhaps an examp]e will he1p to 111ustrate ‘this po1nt |
Attent]On in commun1cat1on research\tends to focus a]most

exclusively on slope regression coefficients, i.e.,Bi(i=1..tk)~

"to the exclusion of the intercept coefficient,ﬂso(or a). Unless
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data have been reparameterized to force the intercept to the ?

, origin ’of”Some other 1eve1) of the coordinate system ‘the va]uefhf
the intercept may a]so be of cons1derab1e theoretical™ 1nterest\ If
we modify an example given by Kmenta (1971, pp. 204- 205) we cam see
‘the importance of the intercept. "Suppose that media consumpt1oﬁ
_(i.e,) number of hours/week spent watching‘T.V), Y, is regheSSed on

\ amount of leisure time (numberwof'hours not devoted to gginfh]
employment or primary OCCupation)' X, and a linear relationship of
the form E(Y) = B + B]X] + g is determ1ned -The s]Ope coefficient,
B, would be 1nterpreted as the marg1na1 propens1ty to watch T.V.
i.e., the amount of increase in watch1nq T. V for ‘every unit (ﬂ

, increase in amount of leisure time. Now examine Bo‘ Assuming that
peopTe will consume gt_lgg§t.§gje_T.V. even if.they have no leisure-
time, @Ov1nd1cates the minimal or subs1stence con<umpt1on of T.V.
t.el, the amount of T.V. exposure when the value of ]e1sure time

' ié zere} 'Hypotheses fegarding the intercept coefficient could be
of significant theoretidat va]ue.. Refering to Table 3 we hight.

utilize test (1), that Hj : B, = 0, for the intercept coefficient
) ' . \

By If our theory viere more sophisticated we might utilize test

(2), that Hy : B :‘Mk’

for $ome ‘constant, which is tantamount t%‘\
- asserting that we can predict "subsistence" media consumption at

some number greater than zero.

Reestimation ‘ -

As was pointed out eér]%er in the pqu?, egtimates of

Comg "
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regression parameters are valid, under the assumptions of the
ﬁodé], only for a givgn set of reg;essors. If we change the set‘
of regressors, either by -adding or de]éting predictor variables,
the coefficients for the original equation for which the eﬁtimates
were obtained will no JOnge; be appropriate. New estimates should
be obtained. - o |
/ ‘It should beaclear<that,thé'hypothesis testing'proceaures
described A the p?evious J;ction lead , i%_signifiéant, to the
~deletion oflvaFiables from the full se: of variables included in-"
> the originé] equation. Or, alternatively cohceiQed, the procedﬁres
lead to the addition.of significant variables over ahd above those

'\“//

already included in the equation. (It is possible, of course, to

test the entire set of variables.) Under either conceptualization,
] obtaining sjgnificant results in hypothesis testing is likely to
( lead to a different set Qf variables, a diffefenthregression

equation, than the one wfth wh%ch'the reséaréher began.

In sitgafions where this-occurs, the researcher should

reestimate the parametéFs of the final obféined‘régressidn eqdation.
Thé pr&cedufes for rgestimétion are identical to those for
estimation. The final set-o% variables are esti%ﬁted by OLS
procedures, with the variance of the\rejected variab1es.pooled'

with the error variance. A final estimate of the standard error

of estimate should also be obtained. The final"eQUétion vhich
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contains the final eétimatéS*of'regression parameters, the final
standard errors of estimate, and thé recomputed final R2 shou]d be/(
the results that are presented in the research report.

o .
Multivar “tefMultiple Regression

In this section we w 1! extend the findings deve]oped for the

univariate model t0'the.mu1t1var1dte case. Most of the presentat1on‘

will be by‘ana1ogy witHPunivariafe results. T

" The Multivariate Multiple fegression Model

Let us‘assumé that a --mmunication ré§eércher has twocor more
variables that he would 1 te examine as criterion variables in
relation to thé same se@\ /Sredictor variéb]es that we assumed in.
the univariate case. - Th- ig a problem for which multivariate

regression analysis is appropriate.

" The multivariate multiple regression model s given by

(56) y _ X B E

Nxp — Nxg axp T Nxp

This equation states that a data matrix N%“ has been partitioned into

two submatrices N§b which conta1ns two or more criterion variables
and Niq which contains a]] the data for the pred1ctor var1ab1es
augmented by an 1n1t1a1 column of unities. Furthermore, the scores

in the X_matrix are composed .of linear combinations of the X scores,

each weighted by a regression coefficient, Bk} and added to the.

S | 44
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“error term, &5 That is,
7V vy = Boy ¥ Bigin * gz T T BgRyy ey
.E,, then, is an Nxp matrix of error terms, with one column of'erroré.'

for each criterion variable. If the model is intended‘to he a

multivariate classical linear r=z-2s5ion model we assume

(58) EC(Y) = XB which 5 =ajuivaler® to E(E) = O
since the expectation of Y is v od
.(59)‘ V(Y) = IN o) g; wﬁjci wivalent to V(g).= EN ® .,
sit = Y and [ differ only by-a “t, nams  XB. The Kronecher
.pr: .uct oper:stor, ® , which"is .+ defire tha variance of Y.
produces in -his case a diagona ~ix with diagonal e]eménts
“equal to g and off-diagonal '= . 5, 0. Thus
_(60)» 'l,v(_[)=V(g)=;N® = 0z ...‘o
| : b
LO 0 ... I
These assumpticons may be summmrized-as : : PR
(61) En NN (0, l®z) . ’ \\
. - - - . ) \‘ :
. - \ :
45 !
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which states that Y is a multivariate normal distribution, that the
erf-ors have constant variance, and that the errors are uncOrrelated.

"It is also possible to state the model in equivalent mean deviation

(reparameterized) and standardized forms. In the former cas: - -~ave
‘NXP~ kg PP Mxp

where eta (H) is the matrix of partial regression coefficien=: <-+

the‘mean-adjusted scores, Xd' In the latter case we have

63 Y, = 7 oo+

Fxp. Mk ks Nxp -

where gamma (EZ) is the matrix df standardized partial —egre-

coeff1c1ents - ;

,Est1mat10n of Multivariate Regression Parameters

In order»to estimate'the regress10n_parameters_we-procee 3z
jnmthe uhivar1qte case. ‘The process is to apply the Gauss-Mar<off
Theorenm (éee Timﬁ’ 1975, 185 188) to.obtain the‘matrix B so that
) the sum. of . squared errOrs s m1n1m1zed The theorem states that
this can be accomp11shed by m1n1m1z1ng the trace of the sums of

squared errors matrix, E'E Thus, let Sg equal to the sum of

squared errors to be minimized, -then

46
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k P -
% X s:].,_

i

(64) - S¢ -‘TY‘ (Eé) 1 ' -since Tr (E’_

Cimy

)=
= fR,.(’ - ﬁé)’ (Y - Xg) rearranging (56)

i=1 j=1

When the partial derivatives pf_SE with‘respect to B are sef~equa‘
to zero and solved, the following normal equations are obtained

~

(65) . X“XB = 7Y

~

w~-ch-cen be scived for B

- )'—]

1o

(66) XY

This equation :tates that under the assiwptics  of ~nie model the best

linear unbiased eStimates of the matrix of ve--~ession coefficients
. : 1

can be obtained directly from.tHé sums of squeres and cross products
matrices of the raw data, i.e., from ﬁfi and the.inverse“of XX
Comparison of eduation (6€) wiih equations (18) and (34) indicates
that the mu]tjvafﬁaté solution is completely analagous to its

univariate counterpart.

v
~

B, of course, consists of a matrix of partial regression

coefficients. For eacﬁ‘critehiOn variable. there are as many

coefficients as there-are predictor variibles, nlus one coefficient
for the intercept. Thus, if there are two criterion variables and
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fhre; prgdictof variables, there would be 2 x (I +°1) =.E‘regression
coefficients. In general, using the orders of ¢ matrices, there
will be (d'x p) regr-ssion coefficients‘{reﬁemae ., ¢ = k predictor

variables = 11 for - raw forr of t-e rerr=ssic model. In the

stirndardized moc2l oo =re would bs x b coeffizients.

t

‘Since ﬁ_has bazr estimate- from the -ata, 1% is desirable to
obtain a msasurs ©° tme stabi”“ty of ¢ . timate. Sampling theory
speciffes tnat - - eatad samplint  or a given popuiatfonJWe
wouid obtain a =~ + -1 :ticn of Bs fo mples of a given-size, N.
“hat sampl® .z d st “ion would hav: sth zn expected value and a
ariance (as we 1 as ¢ ghe- order mome. 3). Finn (1973) ind}cates

1at "The estir :e E, like its univarie e counterpdrt, is unbiased
id minimum ve: ance” ‘p. "13). Its e ‘ectation and variance-

fanca mat  « are

| >
—
1l
[nal

=1 -

| ><
<
—
\

——
| ><
1

=

from (66)

since X is constant °

1l
——
<

1Y
>
-
|><

)
m
——~
| =<
S

- (ng)—] LT3 by substitution from (58)
=[ - since (l;i)_] XK = T
and - ; ‘ :
a (63) v (B) = v](xx) ‘yﬂ from (66)
| = (X7X; ] ® z éee Finn, p. 114, “or proof.>
&
/ %8
/ .
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Using equation (64) wi can 31z see thaz an unniaséd (maxim.m
IR ~

Tikelihvod) estimate of the errcr .zriance of Y, I, can be obtaim=d
directiy-fﬁom the observed data. L=t §£ reprasent the residual -
erryrs sums of squares and cross procucts mair%x; and we cstain he
va "iance-covarijance é@@imate by div . ding by —he degrees of ffeéc:m

si 1lar, N-q

el
i

() = o TR(EEY from 24)

— subst:tuting

by mu tiplication and cancelling

M-q L.
or
| 17 - BXXB

N-q

a frequantly oncountered.ecrivalzsnt
form

t should bz obvious that each element of gfis an estiméte of popu1atioh_
variance and covarfahce, Withloi on the diagonal and ij (i # )
on the-off—diagona]‘ce11s.
As in the univariate ease, the variance in N§b cgn be partitioned. ‘

jod

Let.Sy represent the total sums of squares and cross products in the

sample criterion scores, Y, and §R the variation in the prédicted

jo >

~scores, Y7Y = ‘lfx_, called the sum§~of squares for regression. Then

the partition is
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(70) Sy T St 3

\\

\

\\

which breaks the total variation into two components: <hat
attributable to regression and that attributab]g\to errce.  If §R

approximates §Y’ then §E will Se sha]] and the predictor scores
will predict the criterion scores quitz well. If Sp is emali
compared to §¥? then the linear model does not fit fhe data w=11
and S, vf]J be quite large.

Thé ”goddness‘of Fit" of the mode1lcan be determined in a way
that is identical to tha£ in univariate regression. As Press (1972}
indicates, "In multivariate regression, the value o7 R2 zn be
computed for each'equation senarately to study the effactiveness of
each_re]atfbnship in accounting for observad variatior ' (3. 195).

As Timm (1975) indicates,.”Estimatior theory,‘usung Ena multi-
’ variafé linear model, is no different from employing E_unﬁwariate.
models. It is not until hypothesis testing theory is employed that
the models really différ.- Univariate anelysis does not addra=ss
itself to the dependency that exists amor j a set of p respcmnse
'.[Eriteriod7 variables" (p. 309). Ue turn now to the questicim of
hypothesis tééfing: | »

Hypothesis Test{ng for Multivariate Regression

The logic of hfpothesis'testing in‘mulitivariata mu]fip?e

regression is similar to-that in ifs univariate counterpart except
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that multiple criteraon‘variables are tested simultaneously. Thg‘
purpose of the simultaneous test is to maintain pratection levels
at a point predetermined by the reseakcher, i.e.,:ét o. we}e' |
separate tests run for-each dependent variaS]e,'the 1ikelihood of
'obtaininé a false significant va1ﬁe would increase in direct pro-
portion to the number of dependent variables being tested, i.e.,
the power of the tesf decreases.
The gereral test for all coefficients of the raw form of the

model 1is
(7]) TIO:_B_.:._Q

which can t= examined by using a multivariate analysis of variance
(MANOVA) table. To conduct the test we must obtain the sums of

squarés'and'crqss prpducts matrices for both hypothésis‘and error,
from which mean squares may be determined. These are, by extersion

from the univariate case

(72) Q, =YY~
and \ . /

e
i
>
‘
|>=<
AY
|
~

The MANOVA table can then be constructed

N _ ,‘.Insert Tab1e 4 here

51
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Normally, of course, we are not interested in testing all of

'the regression equations, since we seldom test the intercept and

~usually are interested in testing on]y a subset of the slope

coefficients. Hence we would partition the model into two separite
regressions and develop an hypothesis which would enable us -to test

the subset. THe partftioned model wonld be !

'

. with the hypothesis that
L

(74). H, By =0

Equaticns (73 and 74) sfmp]y.assert that the first set of variables

Xp (=1 ..m) and regressions coefficients - By (I=0: .. M)
are not beirg tested while thebremaining variables X1 (Il =m. ..k

.\ A
and coeff1c1ents BII (11.= m QQ are under test. It is, of

course, pos,1b1e to test the f1na1 set of coeff1c1ents, gk, by sett1ng
the 1nd1cator m-to k-1. Then we would have BI equ%\ to a11 k 1
coe|f1c1ents and BII equa] to the last set of &k coeFf1c1ents

" There are a number of a1ternat1ve procedures avaﬂab]p to test

“the hypothesis stated in equatlons (7" and 74). These a11 depend on.

solutions for the roots. or eigenvalues A, AZ’ o s Ag of the

characteristic equation

(75) | 9, = A0, =0

7]
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whore the roots are ordered from largest, A], te smallest, AS.
Anderson (1958, Cp. 8) and Timm (1975, pp. 137-140, 146-149, and
3Q8—3]3) describe a number of criteria which may be used}to testb
the hypothéses. These tests are‘provided in Table 5. Tables for
}each~of these distributions at selected degrées-of freedom are
avai]ab1e\iniT5mmv(1975){ Since most of these distributjons are
unfamiliar to ﬁoﬁmunication researchers, the fable includes tests
for mu]tivariate”hypdthesés-by approximat%on§ to x? and‘£

~

statistics which have been derived from the other distributions.

' Table 5 about here

It is instﬁuctiveuto examine the logic g% the Hilk's likelihood
ratio criterion A. :It‘Qgﬁ mentiéned earlier that the deterﬁinant
of a yaridncefco;aniahce‘mafrix”één‘be considered a measure of
generq]ized varj?nce;. Njikfs A,is_fhe ratio of two genera]ized’
va;iqnces. The.hqmerator contains the variance for the reduced
méde], ge; i:e.; those variables not under test; the denominator
' é&ntains,the variance for thé Full set o¥~predictors, i.e., ‘those

3

" predictors not under test plus those that are being tested, Qh. Thus

- (76) A = et
% T Oy
. o ; 0, |
It should be apparent that if B,, = 0 then Q,_ = 0 and A = - =1,
: e

- &
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which fs the upper bound of the stafistic. On the other haﬁd,'to
thg extent that Qh (i.e., Xm R Xk) addé varignce over and above
the reduced mode], the dénominator will dincrease and A<1. Thus,

.the'sma11ér A is, the more that’Qh or B is adding to criterion
variation. The F and X? tests simply transform:the A statistic
(really, the U distriputionj to the more familiar F and X?

;distributions, Most computerized MMR routines will print both A

AN

and either‘f_or-xz test statistics.

Testing the criterion variables. If A (or any of the other
teét,crﬁterion) is sigh{ficant it is tHen possible to determine
which of the_criterioh va}iébles are being affected'by the variables .
N - in the predictor>set. Univariate F-ratios may be used to accomplish
| this task. The univqriaté F that is largest is fhe‘pné which shows
which of the triterioh‘variab1es is moét affected by‘iheiﬁredictors,'
énd so on down to the smallest F-ratio thch shows the-crfterion
variable which is 1eaét affected by predictors. However, as Finn
(}975, p. 156) points out, these tests are not independent: "there
1§’no hecessary re]étionship of the signifiéance of the‘univariate
and multivariate tests fof oite hypothesis. vFor examp]é; one or
- mere univar ate F's may be significant and not the multivariate
statistic, o~ vice versa; (p. 157). Consequently, it is usually
recommended that in addition to the univariate E}tests; researchers
S examine'the simple -and multiple correlations tc aid fh'iﬁterpretaﬁféh.

3
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o deal with this problem of intercependence of multivariate
and univariate tests for locating effects, it is possible to conduct

=
a

a sten-cown analysis which will provide independent univariate tests

for the criterion variables. The term step-down as used here and
by Bock (1966) and Finn (1975, pp. 157-160) refers to the fact that
the griterioﬁ‘variab1es réther than the predictor variables are
being examined (eliminated) sequentially. The tests, which are
»described by Roy (1958} require that the researcher impose an a
priori ordering on fhe criterion variables. If the researcher has
-no rational basis for such an ordering, then g;ggfggﬂg_fests will

be of little value. The procedures for conducting the tests are
idﬁnticéf to calculating E_tests‘(for each of the-p criterion
variables) with the condition imposed that only the conditional
variance in the criterion variables be analyzed. The tests proceed
by regressing all the q predictor variables on Y1 on'y2 e1iminating
Yys 01 g eliminéting Yy and yzg etc. The test pkoqedure is a form
of backward elimination.. First, the th criterion- variable yp is
eliminated, i.e., thellasf cne in the c.-dered set. Then the néxt
ast 1s eliminated yp_], etc., down to the first criterion,

.. At smach step an F statistic is calculated; if F is non-
H ¢ - . -

®

significant, and H, for a particular criterion cannot be rejected,
it means that the predictor set does not significantly contribute

to variation in particular criterion variable Yy Each time that

59 -
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HO cannot.be rejected, the step-down procedure continues un%i1 such
a time as an H must be rejected in favor of the alternative HA.
At that point testing terminates since al]aremaining tests are
Pnonindependent. See Bock (1966) and Finn (1974) for additional
details on_s}gﬁ;ggyg_analysis.

< >

Testind/the predictor variables. __Having determined how the set

of predictor variables differentially af%ects the criterion

variables it is often of interest, as in the univariate case, to

test hypotheses regarding ; subset of the predictor variables.

Tests for oontr]but1ons to er1ter1on var1ance of individual predictors
'are\TaC1 itated by creat1ng orthogona] columns of B, i.e., convert1ng
the partial regression coeff1c1ents to semipartial reqressibn ‘
coefficients. Each sem1part1a] regression coeff1c1ent accounts for
variance in Y not accounted for by predictor var1ab1es that oreceed
it in the regress1on equat1on ?This orthogonalization process, of
courset requires that the researcher impose an a priori order on

the predictors. When the backward sequential tests on the predictor
ivariab]es ercounter a variable which significantly contributes to
criterion varfaﬁce, the‘testing procedure must stop, since all
subsequent tests are nonmindependent. Itxshou1d be anparent from
this discussion that the ‘researcher must rely heaVi]y upon his

theory to sEecify the order of the prediqfor variables so that the
strongest known predictor is the'firsf vqriab]e in the eqeation and

s

“the wea est ig Jast.
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Reestimation

As 1in the univartate case, 1T a researcher either adds or
deletes variables from the equation with which he began, it is
important to reestimate the parameters of the resultant or final
equation. Variance in the non-significant variables is péb]ed ‘
with error variance to make the final estimate. Finn (]975)

- indicates that "Under ideal circumstances, these final estimates
v?hOU]d Be obtained from a sample other than the one used for
;ignificance tests" (p..165).

Issues and Implications

In this final section of the paper we shall briefly explore
several topics which are raised by or reJated’to MMR. These should
help to p]ace the information just presented i a broader ‘contéxt.

Algorithms for Se]ect1ng Predictor Varlables

There ‘are a number of computerized algorithms which Een be used:
.to select an optimal set of predictbrs for a regression equation;.
In tact, Draper and Smith; (1966) identify six dififerent alternative
procedures.- Four of these are sumnmarized in this section; for
detaflsuthe reader is referred to the fd]]er explication in Draper
and Smith and aiso to Ker]inger and Pedhazur (1973, pp. 285-295).

The first procedure is termed a]] possible regressions Here

" separate regression equations are calculated for a]] poss1b]e

comb1nat1ons of pred1ctor var1ab]es (1) each pred\ctqr variable
- \\

w
a
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examined separately, (2) all possible predictor pairs, (3} all
pbssibfe triplets, (4) and in general, all possible k-tuples
(i =1 ... k predictors], where the final k-tuple contains one

set of all k variables. A moments reflection will indicate that

a totqi of 2~ separate regressions must be determined since each
Qariable may-either be included or excluded from the eauationl

Within each of the k-tuple regressions (i.e., pairs, triplets, etc.),
.equations aré ordered aCédfding'to some criterion, usually tHe

. . vl
amount of variance accounted for, R™.

The reseafcher.then selects
what he considers the best eguation, cften by 1ooking‘for3ﬁany
consistent pattern of variables in the leading equatigns!in each

set" (Draper and Smith, p. 162).

fhe.second procédure is called the backward elimination. There
.are tﬁfee bas{c steps. First, calculate a.regrgssion equation~which
includes all the k predictor varjab]eé;:‘Second,'ca]cu1ate par;ial
F-tests for each of the k variables which indicates the significance
of X, as if it were the last variable entered intc the~2quqtioﬁ. e _._fAﬁ
Finally, select the lowest partial f_?a]ue and combaée.it wfth a
par;ia]—E_va}ue séf equal "to some predetermined level of significance,
a, If the smallest partial-F is less than F . then delete that
Avariab1e éndtrepeaththe process for k-1 predictér variab]es: This

sequence‘continues until the smallest pahtial-f_at.any'given step

(k-1 predictor variables to 1 predictor) is greater than Fy- The
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variables that ‘emain are ccnsider - .: ificant precictors.

The thirc :lternative for che zirg redictors is forwerd
selection. Ir -7is process variab es are added to the regressicn
equatioh one at a time rather than deleted from the eguation as
was done in backward elimination. The first step‘is to se]ect'thg
!argesf zers-order sihp?e cbrrelation coefficient'betweeh y and,Xj.
THis variable is used tb construct a simple regression eéuation.
Secbnd, an F-test is calculated. to determine whether the simple
regression 6f y on the first predictor variable iSisigﬁ*ficant.

- Assuming this test is éignif%cant,-thexthird step is to calculate
first-order parﬁia] rsrbeﬁween‘y ahd a11”§i595 Xj controlling for
the predic@or variab1e_é]ready in the simple regression equétion.

| The Xj with the highest partial r (or'squéred partial r) is then
se]ected for the construction of a multiple regression equétiqh.with
fwo‘predictOr variables. Fourth, as with the backward elimination
-procedure, partial E;tests zre underfaKen t¢ detivrmine whether the
variable selected for-ihc]usién contributes significantly to the
JQariénce~ih y over aﬁd ébovelthe variance~a§éounted for by those
predicfors a1ready.in'théiéquation; i.e., R2 for the simple
.regression énd R2 for the two variable multiple regression.
Finally, this process (calculating higher order pértia1.Fs,
Se1e§ting theldne of'gkeatest magnityde, qreatihq a new regression

equation with this variable added, calculating the significance of

2
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the increase in variance contributed by this variable) continues
until the partial-F test indicates *hat the variable selected for
inclusion at the next iteration is.nen-significant. The finel
equation includes all variables found significant up todthe point
at which adding'an additional predictor variable does not
significant?y‘increase the amount of variance accounted for in the
criterion variable; all remaining\predictors are conSidered nen-
signifﬁcant and omitted'from the equation.

The fourth procedure, wh1ch is called s tegw1se regresswon, 1S
_real]y a var1at1on on the forward se]ect1on procedure For any
given setvof var1ab1es the magn1tude of regress1on coefficients
does not vary accord1ng to he1r 9£Q§£.lﬂ_a regress1on'equat1on.
For example, the regress1on coefficients for three Variab]es, call
them A, B, and C, will be the same regardless of the order in
which these three variables. are arranged in a 3:variab1e multiple
regression equation, i.e., whether variable A is first, second, or
last, whether varidble B is First, second . . ., etc. If, however,
a variable, say D, is added to this equation, or one of the three
variables, A, B; or C, is deleted from the equation, it is highly
likely that the magnitude of all the coefficients in the new (4
variab]e or 2 variable) equat1on will be cons1derab1y altered. The
reason for this 15 that regression coeff1c1ents are a patterned |

(ffunct1on of a Jet of var1ab1es, SUCh that they account for as much
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prediciors and that set only. he amount that the regression
coefficients will change is a function of the ﬁegree to which they
Liare variance with each other and the criterion variable(s); the
more variance they share in common, the greater the coefficients
w111 change by adding or deleting variables. It should be apparent

fhat the three procedures identified so far all require the

addition or deletior of variables. The stepwise procedure attempts

ct

t, compensate for the fact that at each step adding a variable
(remember, it is a variation oh the forward selection procedure)
could reduce the amount of variation contributed by one or more of

the variables already in the equation to a point at which it (they)

would no longer be considered significant. Thus, after cach step
in which a variable is selected for inclusion in the nexf largér
multiple regression eguation, a partja]—E_test is performed on all
variablés in the equation to which the new variable is being édded_
to determine whether each s*i1l significantly contkibutes to
criterion variance. Any that fail to meet Ea are deleted from the
regression quatiOn and join the set of predictor variab]es not in
the equation. Then the process'jé repeated: new nEbvorder’partiaT
rs are calculated; the laraest is selected for inclusion in a new
regression equation; a test 6f the Significénce of this new

variable is conducted; if 1t exceeds F for appropriate v, a
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sepzrate partial-F is conducted for each criterion variable already
in the equaticn; any.-criterion *that fails the Fl is removed from

the equation. The process terminates when there is no new variable

that added to the eguation and significantly increase critericn

(3]

P e B
nc céh O

variation.

En ‘alternative procedure, called stagewise regression will not

be discussed since it is not a least squares procedure. Also, it
should be noted that there are some "variations of the themes"
‘presented in these four a1ternativesv(see Draper and Smith, 1966,
pp. 172-173).

Given the four procedures just describéd. which one should the
researcher chdose? That, of qou%se, is a jUdgment call, which each
person will have to make depending upon his research needs. Inr
general, héﬁever; all possible .regressions is both impractical and
without‘recoursé to statistical test; it.should be avoided. Draper

4 © and Smith (p. 172) recommend’fhe steinse proéedure but indicate
" that it can be abused by the inexperienced. In this context,‘Finn ‘
{1974), makes an additional important point:

"Stepwise" procedures Which attempt all possible
éfderihgé, of-seafch for'the best single pre@ittion'.
equafion\do not:gene;élly yield valid test statigtic§,.
and must be interpreted with caution: With a pre-

_deterﬁfnea order of predictor variables, valid_éédhentia1

test statistics are ¢btained. Using a fixed order, it is
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also possible to test important combinations or sets
of variables {p. 161).

Testing the Assumptions

In this paper we have stressed the importance of the assumptions
éf the model being employed. The only way to determine whether a
given set of assﬁmptions is viable for any given study iz to test
them. As Timm (1975) indicates, "Plots of residuals against the
fitted values, againsfrthe independent variables, and. sometimes
against -variabies not included in the model help to i-termine (1)
whetner model assumptions are reasonable, (2) 'the linearity of the
regression function, and (3) whether impo;tant variables have been
Jeft out of the model® (p. 269). Draper and Smith (1966) review
these procedures ih detail énd Daniel and Wood (1971) give several
i]]ustfative exampies; the ﬁrocedﬁres will be discus;ed only briefly
here.

The logic of the examination is as follows: Réca11-that our.
assumptfons for the classical normal linear regregsion mode]
specified that the errors\wéré normally distributed with zero mean
and cphstant variance and that they were independent. I% the .
.éssumptions are correct, the érrors or residuals ought to display
fhese characteristics.

The first_prétedure is to undertake an overall plot of the
reéidua]s:‘ Horma]ity; or departure from normality, can be judged

by reference to a table of gandom normal deVidtes*or by_ploiing
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the residuals on standard probability pazper. Alternatively, the

th

residuals may be transformed to "unit normal deviat form, 1in
which case we would expect that 957 of the residuals wouid fall

witnin the + 1.56 ¢ limits. Outiiers, which are residuals which lie

It

far out in the tails of the distribution, say + 3 or 4 ste"™
deviations, can also be identified, Sc . u=r. ~egress o
tevoadter pe.r-g3es now have subroutines which permit the plotting of
residuals in unit normal deviate form.

Another procedure is to plot each residual against the predicted

value which helped to generaté it, i.e., Yi‘ Here, a horizontal

band of scores lieing relatively equidistant from zero would indicate
that the assumptions have been met. If the aistribution of residuals

shows divergence (or convergence) ac-0ss ' 28, the _ovisuent

'

variance assumption js challenged. If the variance is constant, but

there is an upward or downward fren” . .. Liu®. ‘"o Clare has

i

L.

probably been an error 1 ine andiyses or the constant terr. A

N

been omitted. ﬁFina]1y, if thevblot looks curvilinear, then the

assumption of linearity is questioned. .Transformation on the

ha

\
variables or extra terms (square or cross-products) may be required

in thé mode]l.

Residﬂa?s may be piotted against the independent variab]eé.
As with the plot against §i’ the eXistence of a horizontal band of
vesiduals is the desired form. Failure to obtain such a plot would

‘e

raise similar sorts of questions as those in the previous paragraph.

f

o1



Statistics are available for formally testing residuals. The

ne wo
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=

reader is referred to by inscombe (7281) and Anscombe and

(1963} for the details. Other plots are also possible ard

—q
o
ot
D

<

pioct shouid be

o

Oragzr zr2 Smits o "orzcommend thet ooy residual
‘made that mekes szrse in light of the resea-ch “a.q., ~lc* inc

residuals acainst ¢ “._l. measured on the same subjects but not

included in the recression esquation). For an example of testing
assumptions in comrunication research see Monge, et al. (1976),
who examined the pl:ut of the residuals for a fully recyrsive
structural equation medel of tHe determinarts of'comnunication
strycture in larce Po.oions.,

Residuals, ¢f s e new th2 © Lay to test assumptions:
Autoregres 1on can = escertained by the Durbin-Watson test.
4u1tico1]inear1ty can be determined by avo it ng tF - mi- i of
f%‘{);'iffﬁﬁ approz - ., some columi of the matrix is linearly
dependent upon some cther co1umn(§) of the matfix. Homoskedasticity
can be examined by a homogeneity of variance test.. Other bro&edures

are also available and can be found in most standard econometrics

texts (e.qg., Go]dberger, 19645 Johnéton, 1972, Kmenta, 1971). The

g
/ . . - : .. . . . .
///’ important point to remember from this section is that when communication
' rescarchers undertake a regression analysis, they should always

test the assumptLons of the model. Only when this becomes standard
* .

practice in communication research will we be able to have confidence

O
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in research findings that employ statistical inference.

Comparisons with Related Techniques

il ¢

MMR has been presented in the context of its univariate
“Gunterpart, lingar multiple regression. 7o provide a broader
context it mi: ¢ be .seful to examine the relationship between MH?
and several other tecrniques. 1 will briefly discuss: (1) the
general linear model, (2} MANOVA, (3} canonical correlation, and (4)

MM2 has been treated as a special case of the general linear
modél which consists of the functional form of the model and the
assumptions specified in the Gauss-Markoff theorem (set-up). Many
of the multivariate techniques, e.g., MANOVA, canonical correlation,
etc., are derivable from the general linear mode’. To understand
that point proviges two important insights. First, it emphasizes
that many of the multivariate statistics are high]y‘interre1atedb
and not separate, independent techniques. Second, it émphasiées how
the various *echniques differ as a function of the differeﬁces in
their assumptions, SO that modifying an assymption of. fhe‘general
iinear model makes'it necessary to chocse an alternative form of
the model (i.e., a different multivariafe technique).

kCUmparing IR with MANCVA helps to illustrate these two
points. First, Timm (1975) demonstrates ﬁow both'are'special

cases of the multivariate general lircar model. Second, if the ~
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researcher assumes CatedCricai rath2r than centinuous measurement

on X. then MANOVA is the appropriate form of the model to utilize.

Actuaily, as Bochner and Fitzpatrick (1977) illustrate in another

paper for this ccnference, a MANOVA model can be analyzed with MWP
techniques by use of special {durmy) coding techniques {See also
¥erlinger and Pedhazzur, 1973; Press, 1972; ¥Kmenta, 1971).

Canonical correlation is a technique that is appropriate

ot

wnen there are two sets of variables. measured on ordinal scales.

The coefficient, R_ is the simple correlation between twc random

'variables which are each linear composites of two or more variates.

Each composite ié defﬁhéd’ﬁ&vweights appiied to its variates
designed to maximize its correlation, RC, with the other'compoéité.
As Finn (1974) %ndicates, when one of‘the "composites" consists of-
only one variate, RC becomes ”thg muit{ple correlation of one
measure with the other set. The wejghts are the partial regression
coefficients" (p. 188). MMR is. the appropriate technique when the
reéearcher is interested in explaining variation in one set of
variables by variation in the”other; caronical correlation is
appropriate wnen one is fnterested in forming composites which
maximally share variance with each cther.

Some econometrics texts treat MMR undaer the topic of sets of

linear regfession relations (See, e.g., Goldberger, 1964. pp. 201—2]2).

"This extension to sets of‘dependent variables from the univariate

case is, as we have shown, quite stfaﬁghtquward. Tet always the
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E;Gn in the predic%or_varﬂab?es. If, however, 2 researcher is
interested in testirg a theory which consists of a system o
1inearrre1ations {eit-2r single eduations which are parT of a
largsr sys-em of equaticns or the éntire system itseif;, then the
GLS =stir-tion procecurss describec in tnis papér are'apbrdpriate
only in tne spec-al case of a Tully recursive S;stém. Simuitaneous
inear structural equation Systers reguire alternative estimation

arocedures which are the topic of other papars in this conference

——

Canpelia, 1877; Fink, 1977).

]
e
o

U

Coping with Faiied Assumptions
In this paper considerable emphasis has teen placed on the

importance of the ossumptions in the classical Tinear model. Our

discussion, however, has been limited to OLS techniques; we have

not examined alternative estimation procedures. Though it is

beyond the scope of this paper it is important to point out that

>

. ) [
procedures have been develcped to permit statistical inferance in

spite of violations of OLS assumptions. _Some of these techniyues,
such a3 two stage least squares to estimate autoregressive
disturbances and tne use of instrumental variables for efnors in
varwahieé (i.e., measurement error in X). are'simp1y more
sophisticated agp]ications of OLS procedures.- Othershrequire

complete abandonment of OLS in favor of maximum likelihcod
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estimators. Whatever the case may be, the communication researcher
is strongly encouraged to consult multivariate and econometric
texts to discover the appfopriate alternatives which are necessitated
by violations of assumptions in his or her data.

Ad&antages and Disadvantages of MMR

kerlinger and Pedhazur {1973) review in depth a number of

social sciénce studies that employed multiple regression; theirj

'comnenté-give the reader an excellent notion of the breadth of

setlications thet are possib]e with.the technique (See Cpsi 15‘aﬁd
). They also discuss the ]imitations and §treﬁgth§ of regression
techniques {pp. 441-445) and that materiai, some of which has
a]reédy been mentioned, will not be repéated here. Rather, 1
would préfer to make three brief poin?s.

First, MMR techniques lend themselves to simultaneously

replic¢ating previous research and developing new findings. This can

occur by including predictors in the regression equation which have

been shown to be émbortant in ear]ier research. New yariab1es_may
then be added and tested for significance over and ébove those
already in the'QQUation. In this way results become cumulative and
we‘can'bu11d coﬁmunjcation thecries of known predictors.

The second pbint is that regression analysis, if done cqrrectiy,

virtually necessitates the formal specification of the regression

equation. To my way of thinkina this particularly facilitates .
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._gbihteforétatdon of:comp]ex relations, particularly interaction terms.
| Furthermore,'?ince traditiona] ANOVA and more complex MANOVA designs
/ﬂ_ may be ana]yLed via regress1on techn1ques it is possib1e'th develop
mlxed” des1gns wh1ch 1nc1ude both categorical and continuous

!’ .
phed1ctors. |

' Thdrq; thouoh'we have only discussed cross-sec. .lldata dn_

) this paper, all econometrics texts also discuss estimatioh
procedures toY time series data These may vary from simole 1agged
var1ab1es to como1ex s1mu1taneous structura] equat1on systems These
procedures can be used to exp11c1t1y capture the time- var1ant pro—
cessional nature of many commun1catjon phenomena._
Conclusion . ,

At -the outset of this papef we began with a quotation ftom
.Tukgy (1962) which assefts not on]j that our most ihportant.questions
are more'likely to be vague thanfpreciSe; but a1sowthat‘our best
ahswers wt]] often be approximate rather than exatt. Asking the.

. r1ght quest104s is a theoret1ca1 endeavor, offen1ng our best

approx1mat1ons to answers is a stat1st1ca1 undthtak1ng

Having shown in this paper hov analysts may expand the relations
{

!

” they can examine via. regression techniques to include multip]e
criterion variables, it seems important to stress the necessity for
theorists to develop formulations which will incorporate this

Q expanded capability. To develop mu]tivariate theories that can be
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studied by multivariate m&]tip]e regression should lead us a long
way toward asking the right questions and obtaining iegression

coefficient approximations to laws of human communication.
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Criterion Variable(s)

Inivariate Multivariate
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| S
Simp! ~ :
R A INRERNY
(k=1 My ettt
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Table 1. Part1t1on of 2 data matrix, NAM , 1o four pos< ibir ombln L1ons of Predictor Var1ab1es

-X~:, and Criterion Var1ab1 , submatrices, N =P+ K. The four ce]l Lr0v1de the data part1t1ons

&S i
NxK iy
for (1) umivariate simple regression, (2) univariate mu]tip]e'regfessionz (3) multivariate simple

‘'l

regression, and (4) mitivariate multipie regression,
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?Yabkz 2. ANOVA Table for Testing B = 0.

\ (from Tim, 1975, p. 273)
)

Source df S E(MS) O F
Total Regression [k +1 0, = 618 B s s
| | Co N K+

Residual N-k-1 | . Qg =Yy - jiAB o |

Total -~ N QT= v

6
/




CTable ).

| HypOthésés and. Test Statistics for Testing Regression Coefficients /)

Hypothesis o Iﬁikjﬁﬁﬂdgﬁ
(1) H 8 =0 =
0 —

b
.
R p Bl
0 [N k - “‘“—S—
k
/ A |
LSS A
o Se/Tieke1
or
B] ars Bk :'0
\ X A,

SO Creh
| o 4 [\ ke
(5) by i, ek

g. 2
(for § &) Bk
. :g.+é -d
08'- A
| 1By
(7) ,HO q@ ] |
(6 is-the vector
| of regression coefficients
770rasecond equatwn) |
l:IQ\V(Z

PAruntext provided by eric ?

K
Qt p. 366,

one) is zero. See Go]dberger 1964.

/

Coment

-k

By See Johnston, 1972, p. 13 ,\\{

)

: equals zero. (an be used to Cat(\\\\thm et

equals sqme constant, M, . See fenta, 1971,

k k

Al coefficients except the intercept are zero.
*See Goldbergef, 1964, p. 176; Timm, 1975, p. 213,

Some subset of the coefficients - (perhaps Lhe f1naT

f“
{
!

L L .
One reqression coefficient equals angther. See

L Galdberer, 1964, p. 175. j//

J The sum of two or more = k) coefficients equals
- a constant. See Knenta, 1971, p. M.

Two regression equations are equal. See Knenta,
1971, p. 373 for the test stat1st1bs

%



fable 4. MANOVA Table for Testing B = 0

From Timm, 1975, p. 309.

Source df §S - E(MS)
é - | - A.‘ y 0 B’X’X
Total Regresgion: . k + ] Q =BX"XB P4~ 20
‘ ’f . et TR
7 Residual H N-k-j _Qer_v_yag_)_(___g I
Total " o "N' , QT =Y Y
7 ‘.\\
;_, s \




Table 5
Criteria and Tests for Multivariate Hypotheses

Ho‘i B = 0; Ho': L= -Q-.“Hu : 'B“H -0

Wilks' likelihood ratio criterion

!
A =_~_6%J = i

< UMP, K+ 1, N-k-1)
"Wy

(v +.a.)

9 ] a

Roy's largest root criterion
‘ ' ; ot

& = >0 (So M, n)

.
1 + A]

Lawley-Hotelling trace criterion (or Hotelling's genéraTized

T?{statisti

[0 4 \
}\1.>UO (?Emin)

. Pillai's trace criterion

)

Vo= T M > (s, m,n)
=1 1+ A, )
‘ . 1
Bartlett's Xg test

A R AN 1)] Log i’ (pk).

Fisher's F test

s = min (v, p) = (k+1, p)

mo= v - vh‘ ol
s
~ \) - U - 'I ' . N vy
n = ___eg—__.-— o . .
7

v = degrees of Treadom
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