IDENTIEIERS

*Airborne Television: Broddcast Television; Cable Television: Certification; *Connercial Television: *Growth Patterns: *Hodels; *Prediation; Television Resear ${ }^{\prime}$; Television Vieving: Video Equipment

ABSTRACT

The purposes of this study are (1) to. estimate the number of commercial $0 H F$ television stations that are likely to come on the air between the present and 1990, and (2) to determine whether. spectrum resources already allocated will be adequate in meeting this demand. gollaterally, the study seeks to determine whether sorre spectrum.space now allocated to conmercial oHF broadcasting will continue to lie idle and may be subject to reallocation to competing services. Taking 1974 as a base year, the sṭudy examines relationships among the existing stations and such variables as the number of television households, the growth of cable television, and the competition from overlapping television markets. It projects the number of stations along various paths into the future depending upon certain assumptions, including new services such as pay television. It concludes that the number of QHF commercial broadcasting stations will continue to rise between now and.1990. However, except for a few scattered markets, èxisting spectrun assignments appear adequate to accommodate this growth. The report is supplemented by a series of appendices, one of mich is a model of the determination of the .

Documents acquired by ERIC include many informar unpublished * materials not available from other sources. ERIC makes every effort * * to óbtain the best copyavailable. Nevertheless. itens of marginal * reproducibility are oftep encountered and this affects the quality * of the icroflche and hadácopy reprodictions BRIC makes available * via the ERIC Document Reproduction Service (EDRS). EDRS is not. *

* responsible for the quality of the original document. Reproductions *
* supplied by EDRS are the best that can be made from the original.

New commercial broadcasting stations constitute one of many groups of claimants to scarce radio frequency spectrum space. A large block of spectrum space has, of course, already been allocated to television brodaceasting. Virtually-all assignments in the VHF band are in use, but mạny assignments in the UHF band remain empty. The purposes of this study are (a) to estimate the number of commercial UHF television stations that âre likely to come* on the air between tihe present and 1990 , and (b) to detemine whether spectrum resources already allocated will be adequate in meeting this demand. Collaterally, the study seeks to determine whether some spectrum space now allocated to commercial UHF broadcasting wili continue to lie idle and therefore subject; in the ubic interest, to reallocation to competing services such as land mobile radio.' Taking 1974 as.a.base yearl, the study examines relattonships among the existing stations and such variables as the number of television houséholds, the growth of cable television, and the competition from querlapping television markets. It projects the number of stations along various paths into the future, depending upon certain underlying assumptions-including some affecting new services such as pay television. The basic model underiying the projections in this report is being made available in computer form to the Federal-Communications Commission so , that the Commission can make its own projections, based on a wide range of alternative assumptions, and can update the model as new information and data become, available.

This is one of several studies within Rand's Communications Policy Program, Şupported by private fqundations and by government agencies. Earlier studies have concentrated on the development of cable television, the services it might provide, its impact on over-the-air broadcasting, and its implications for regulatory policy. Other Rand studies in the television field)have analyzed the Fairness Doctrine, prospects for the
emergence of a fourth television network, the use of telecommunications technology for the delivery of soctal services, and the impact of television on socifal behavior.

During the course of the prdject, several persons provided valuable help. They include Bryan Ellickson, Joseph Grundfest, Bridger Mitchell, and Richard Neu of Rand, Stanley Besen of Rice University, and Bruce fowen of Stanfọrd University. of fourse, the authors are solely responsible for the contents of the repoit.
 number of UHF commercial broadcasting stations will continue to rise between now and 1990. However, except for a few scattergd markets; existing: spectrum assignments qpear, adequate to accommodate this growth. In fact, \cdot even under our most optimištic assumptions about the "growth of UHF stations,". our projections indicate that a substantial number of assignments may $)^{\circ}$ remain unused in many markets. By shuffling these assignments among , various markets in accordance with our projections and taking technical limitations into acçomt, thè FCC may bè able to clear some additional spectrum space on either a regionwide or nationwide basis for reallocation to other competing sefvices.

These projections are based upon analysis of 1974 data inỵlving the relationship in 197 markets between the number of existing UHF stations and other characterisfics of each market including: (i) the size of the market, (2) the number of UHF stations, in the market, (3). the fraction of homes in the market that have television sets capable of receiving UNF signals, (4) the fraction of hotmes in the market that subscribe to cable television, (5) the wealth of the market, and (6) competition from stations. outside the market. Based upon estimates of relationships between these variables and the number of existing UHF stations in each market, we . Ppoject the number of stations in the 100 largest markets to 1980, 1985, and 1990.

In our so-called "base cases" where the only change's assumed are population and income; growth and the attainment of 100 percent UHF set penetration, the number of UHF stations is projected to grow from about 124 to 194 , for a percentage increase well in excess of 50 percent.

With this base case as a point of departure, cable television appears to have rather little effect on the number of UHF stations one way or the other. Under our most extreme assumptions about detrimental effects - of cable on "UHF development, the number of stations projected in 1990 .. would run to about 160 , in comparison with 194 in the base case-still a
larger number, than the. 124 operating in 1974.
Without maktng any Judgments as to the technical feasibility of the \cdot UHF drop-ins proposed by the Office of Telecommunications Policy, we analyze the effect on UHF of dropping in 76 VHF stations in our list of the tap 100 markets. We project that 57 of these VHF stations, would be viable. Of course, VHF drop-ins would reduce the number of UHF stations below that of the base case- -168 projected for 1990 compared with the 194 in the base case on one projection; 174 compared to 219 using an alternatiue equation-but again the number of UHF stations would rise from the level of. 1974.

We also consider the effects of competition from new services and technologies, including pay telievision, videodisc and videocassette, fiber optics, and the use of direct broadcast satellites. Assuming that new services siphon off alternatively 10 percent, 20 percent, and 30 percent of the audience from commercial television, we still project some growth in the number of UHF stations. In the most extreme oase-30 percent audience-siphoning--the number of UHF stations in 1990 , is:
 1974.

Even .ẉhen UHF set penetration reachès 100 percent, as wassume for projections for 1980 and beyond, UHF stations will continue to be handicapped by reception and tuning deficiencies relativelto VHF stations. However, the so-called UHF handicap will be reduced over time as UHF . stations increase their transmitter power, more people install special UHF antennas, and new. television sets with push-button or detent tuners for UHF come into wider use. It is especially difficuity to quantify trends in the UHF handicep in our model, because changes in the handicap cannot be distinguished from changes in economic conditions and other factors that vary from year to year. Moreover, trends in the reduction of the handicap will be greatly affected by future rulemaking of the. FCC with respect to issues of VHF-UHF parity. But making assumptions.. about reductions in the handicap and/or improvements in economic conditions, we show a substantial stimulation in the growth of vHF-perhaps as many as 290 UHF stations in 1990 in comparison with the 194 projected in the base cace. We have also developed a model'that does disentangle the
elimination of the UHF handicap from gene economic conditions and other factors. With this model we project the effect of the complete disappearance of the handicap (with economic conditions unchanged from" ; $\therefore 1974$) to showa 1990 projection of 280 stations- 61 more than the : comparable base case projection. In other words, we project that achievement 'of' complete parity of UHF and VHF by 1990 would result in nearly 30 percent more UHF stations than if the UHF handicap remained at the 1974. level.

In addition to the preceding projections made on the basis of individual changes or inclusions of assumptions in comparison with our base case, we examine mixed cases involving combinations of developments that may be of particular relevance. Here we find that' only under rather - extreme assumptions would there likely be no growth in the number of UHF stätións fro ply 1974. .These assumptions include (1) cable peñetration reaching a minimum of 50 percent nationwide and ranging up to 85 percent in specific markets, (2) 83 VHF drop-in stations on the air, and (3) 30 percent of the market siphoned off by new video service β including pay television and videodisc.

In contrast, we also, take an "optimistic" set of assumptions including (1) cable penetration ranging from 30 to 80 percent, (2) no VHF drop-ins, (3) 10 percent of audierte siphoned off to new services, and (4) a favorable economic climate and substantial decline in the UHF handicap. Even under "these favorable combinations of circumstances, many'specific - market assignments would remain unused in 1990 and might, then; 'provide the basis for reassignments and reallocation to other services.

Overall, the following patterns stand out:

- In all cases there is a substantial increase in projected stations between 1974tañ 1980, reflecting primarily che achievement of 100 percent $\begin{aligned} & \text { U } \\ & \text { set penetration. }\end{aligned}$ - the number of UHF stations. Even on extreme assumptions, the reduction t due to cable in 1990 is less than 17 percent. below our base case.
o Los. of audiencé to new video services such as pay television ? and videodísçs also has a relatively swall impact on projected number of stations. Even a 30 percent audience loss redures the 1990 projection by only 14 percent.

0. The projected impact of VHF drop-in stations is a 14 percent \therefore reduction in UHF stations in 1990 based on one projection, gra a 21 percent reduction based on an alternative projection. The negative impacts of developments above may he easily offset by improvements in economic climate or reductions in UHF reception and tuning handicaps.

All thege projections are based on a so-called "viable stations model" based on estimates of relationships between the number of UHF 'stations' operating in 19,74 and the other variables listed above.' This model yields direct, estimates of the number of viable commercial stations in each market. However, when we began our work in late 1973 we expected to use more roundabout ways of projecting the number of. viable.stations. All would yield projections of stations' profits,' and profitability, would be used as an inflicator of economic viability. We tried three $\mathbf{~} i f$ fferent ways to project television station profits. - The first was drawn from the FCC's work statement in its request for proposals, which suggésted a proceduṛe with several steps including estimation of television market revenues, partitioning these among stations in the market, and subtraction of estimated expenses to arrive at profit predictions. A second method involved estimating profits directly, rather than as the difference between estimated revénues and estimated costs. A third focused more explicitly on television station. behavior in which the station was viewed as a firm that chooses its, expenditure level to maximize profits subject to competitive pressure, public service obligations, and other aspects of its environment.

None of the three methods of predicting station profits.did a very good job, paticularly for stations handicapped by UfF transmission or lack of network affiliation--precisely those stations in which we are most interested in terms, of implications for future spectrum needs. Furthermore, even good profit projections would have been dubious indicators of viabilfty, since many stations report losses year after year and still remain on the air. Therefore, we rely on the more direct method of our
viable Stations model for all projections.
It is unfortunate that none af the three financial models led to usefưl results. Had thé done so, we would have gained insight into how ecónomic factors affect décisions. to construct and operáte new television stations. Part of the difficulty may lie in differences. among financial circumstances of stations apparently equally situated-differences reflecting such factors as skill of management and óperating. . mode-that are difficult or impossible to take systematically into account in econometric modeling. Another difficulty may be that the findincial datalsupplied to the FCC by the stationts are simply unreliable. With respect to the latter, general and administrative expenfes, are particularly susceptible, to wide variations in accounting treatment. Since the FCC is not in a position tolaudit.financial statements or to cross-check against Encome tax returns, the seriousness of this problem cannot now be assessed. However, we must emphasize that the reported financial positions of firms in our analysis are quite sensitive to the level of expenditures they report to the FCC. For the fíndustry as a whol le," "general and administrative expenses" are about equal to total industry profits. -Thus, a "50'percent reduction in general and administrative expenses would increase profits by 50 percent; while a doübling-of general and administrative expenses would wipe out profits. Recognizing this problem, the FCC hias recently authorized a separate 13 -month study to examine ways to improve the reliability of financial data decision by the Commission that wie strongly support.
\because These unsuccessful attempts to use station financial data for' projectipg numbers of stations; carry'important lessons:

- The large variation observed in the profits of apparently equally situated, stations suggests that financial data filed by individual stations have little usefulness for pollcymaking purposes. Although the figures in thè aggregate are useful in providing an overall measure of how well the industry as a whole. is doing from year to year, domparisons of individual station performance are questionable because of problems with data reliability and because of differences in station operating modes and other factors that cannot be systematically taken into accoupt. The resulting nensystematic variation in profits makes it impossible to predfet with any precision the smaller, systematic effects of policy changes on station profits.

$$
\begin{array}{cccc}
\because & \ddots & \ddots & 0 \\
\because & \ddots & \ddots \\
\ddots & \ddots & \circ \\
\ddots & \cdots, & & \circ
\end{array}
$$

\ddot{o}^{\prime} Even if it $^{\text {it }}$ were possible to predict profits,' this would not provide a good indication of viability, since many stations rēport `losses year after year, and continue in businéss.
o) Toptal audience increases very little as viewfitg options increase.
o The problem of the UHF handfcap shows up consistently whenever we deal with individual station data, whether it is in terms of revenue shares, profits, or a revenue and expense model.
o To the extent that the large variation in profits of equally situated stations does not reflect'simply differences in station accounting practices, then a good deal of flexibility exists in the system; there seems to be room for different modes of station operation, all viable. Certainly stations' - will react to competition from new technologies by adjusting their operations in ways that soften the impact on profits.

* Indeed, the relationship between competitive factors and profit

$$
s
$$

CONTENTS

I: INTRODUETTON 1
The Use of Radio Spectrum in Terevision
The Use of Radio Spectrum in Terevision Broadcasting 1 .
The Future Gise of Spectruin Assignments 4
Ovèrview of this Report 8
in. "~ THE VIABLE Stations.model 11
The Use of Modeling Fl
Elements in the Model 14
Collecting the Data. 16
Fitting the Model to the Data 16
Illustrating Results of the Model 19 19
Calibrating the Model for Making Future - Projections 20
III. BASE CASE ASSUMPTIONS AND PROJECTIONS 22
Results Using Basic Quadratic Equation. 22
Results Using Four-Year Equation 2.5
Results Using Constrained Equation 25
Summary of Base Case Projections 30
IV. EFFECTS OF ©CABLE TELEVISION 33
v. EFFECTS OF VHF RROP-INS 42°
Basic Quadratic Equation 42
Constrained Equation 46
vi. EFFECTS OF COMpetition From new SERvices any TECHNOLOGIES 53
Pay Television 53
Videodfsc Technology 58
Plber Optics 59 59
Broadcast Satellites 59 59
The Range of our Projections 60.
VII. EFFECTS OF DECREASED UHF̊ HANfficap AND IMPROVED ECONOMIC CONDITIONS 70
Four-Year Equation 71
Constrained Equation 77
V'III. RANGE OF THE PROJECTIONS AND IMPLICATIONS FOR -SPECTRUM ALLOCATION 82
Three Mixed Cases 82
An Overview 85
Comparişons with Current Spectrum Assignments In Each ${ }^{\text {Mairket }}$ 91
Prospects for a Fourth Network 95
Remaining Uncertajnties 97
Spectrum Requirements for Bublic Television 99
IX. . PROBLEMS OF USING INDIVIDUAL STATION
FINANCIAL DATA 100

- . Questionable Reliability of the Data 100
Differences in Station Operating Modes and Other Factors 104
X. UNSUCCESSFUL ATTEMPTS TO CONSTRUCT MODELS USING TELEVISION STAT'イON FINANCIAL DÁTA 107
* Method İ 107
Method II 112
Method III 113
Profit Prediction Comparisons 115
Summary Listing of Lessons Learned 118
XI. FURTHER WORK THAT WQULD BE USEFUL IN MAKING SPEGERUM ALLOCATIGN DECISIONS 120
More Efficient Use of Spectrum Space 120
The .Social Valué of Spectrium Space 121
Further Use of Viable Stations Model 122
AppendixGUIDE TO THE APPENDICES127.
A. A MODELL OF THE DETERMINATION OF ṪHE NUMBER OF
viable uhf television stations 129
B. THE RELATIONSHIP BETWEEN TELEVISION SERVICE
AND TELEVISION VIEWING 183
C. TELEYISION MARKET REVENUE 203
D. INDIVIDUAL STATION.SHARES OF TELEVISION MARKET
revenue 241
E. TELEVISION STATION PROFITS 261Fi A SIMULTANEOS. EQUATIONS MODEL OF TELEVISIONSTATITON REVENUE AND EXPENDITURE by Stanley M.Besen289

FIGURES

menial UHF Broadcasting (Ali Markets)
under Varying Assumptions1. 5
5 .
n. 2. Relationship between Number of Television Households

- and Number of UNF Stations inca Television Market 17

4. Form for Reporting Broadcast"Expenses 'to FCC, 1974 102
5. Revenue and Cost Curves for' a Typical Television

Station. 114
A. 1 . Regression Relationships Using"Equatión (A.1) 150
A. 2 Relationship of UHF Stations, to Television

Households for Markets with no VHF Station 151
A. 3 Relationship of UHF Stations to Television

Households 'for Markets with One VHF Station !.. . $\quad \therefore \quad 152$
$\begin{aligned} & \text { A: } 4 \text { Relationship of UHF Stations to Television } \\ & \text { Households for Markets with Two VHR Stations } . \quad . \quad . \quad 153\end{aligned}$
A. 5 Relationship of UHF Stations to Television

- Households for Markets with Three VHF Stations154

A. 6 Relationship of UHF Stations to Television
Stations 155

A. 7 Relationship of UHF Stations to Television
Households for Markets with Five or More

- : UHF Stations 156
A. 8 Separate Regression Relationships for Number of UHF Stations, VHF Stations, and 158
A. 9 Schematic Representation of the Viable Statiorfs Model 160
C. 1 Interpolation of ARB Estimates of Television Households in Area of Dominant Influence (ADI) 212
4 C. 2 Simplified. Example of Analysis of Covariance 219

1. Unused Commercial VHF Assignments 2
T. 2. . Base Case Projections Using Basic Quadratic Equation. 23
3.' Base Case Projections Using Four-Year Equation 26
2. Base Case Projections Using Conṣtrained Equation 28
3. Summary of Base Case Projections
Commercial UHF Stations, Top 100 Markets 31
Estimated Effects of Cable. 34 6?
-7.Effects of Cable Television: Four-Year Equation,Very High Cable Penetration.35
Summary of Cable Projections 40
8 $83^{\text {V }}$ VHF Drop-Ins in the Basic Quadratic Equation 43
4. : Viable VHF Stations with Drop-Ins, Constrained Equation 47
$\times 118$ Viable UHF Stations with Drop-Ins, Constrained Equation 50
5. Summary of Projected UHF Stations with VHF Drop-Ins 52
6. Ten Percent Loss of Audience to New Video Services. 62
7. . Twenty Percent Loss of Audience to New Video Services 64
8. . . Thirty Percent Loss of Audience to New Video Services 66
16 Summary of Effects of New Services and Technologies 68
"Moderate" Decrease in UHF Handicap or Improvement in Economic Conditions. 73
9. "Lạge" Decrease in UHF Handicap or Improvement in Economic Conditions. 75
Projections Assuming UHF Harldicap Disappears, Constrained Equation 79
Summary of Projections for Decreased UHF Handicap or Improvement in Economic Conditions 81
"No Growth" Projection 83
"Middle of the Road" Projection 86
"Optimistic" Projection 88
Summary of Projections for Combined Assupiptions 90
,Summary Ranking of the Various Cases in Accordance With. Effect on UHF Growth.' 92
Projedted Usés Vs. Channel Assignments 93
10. Profit Prediction Comparisons 116
A. 1 Adjustments to Count of UHF Stations, 1974 133
A. 2 Allocations and Station Counts by Area of Dominant Influence 136
141
$\begin{array}{ll}\text { A. } 3 & \text { Other Variables in Regression Analysis, } \\ \text { A.4. Regression Variables, } 1974 \text { Data Summary }\end{array}$ 146
A. 5 Regression Relationships for Number of UHF Stations 149
Regression Relation
Estimated Equations A. 6 Estimated Equations 165 165
A. 7 Individual Constant Terms for States in the Cable Regression 166
11
A. 8 Alternative Specifications of NUHF Equation: Common Slope or Common Intercept 170
A. 9 Alternative Specifications of NUHF Equation;Quadratic Slope and/or QuadraticIntercept171
A. 10 Trends in UHF Handicap Ove'r Time, $1971-1974$ 176
A. 11 Constrained Equations 181
B. 1 Market-Level Data Summary, 1967-1971 1.87
B. 2 . Dummy Variables for Market-Level Analysis 189
B.3. Number of Markets in Different Network Classes, 1967 and 1971 190
B. 4 Market-Level Regression Results 191
B. 5 County-Level Analysis of Prime-Time Viewing: Alr Counties 198
B. 6 : County-Level Analysis of Prime-Time Viewing: Rural Counties Only 200
C. 1 T Television Market Revenue: Data Summary 209
C. 2 : 1972 Cross-Section Regression Results for Television Revenue 216
C.3 1963-72 Analysis of Covariance: Year Effects 220
C.4 1963-72 Analysis of Covariance: Market Effects 221
C. 5 Summary Comparison of 1972 Prediction Methods from 1967 Data 227
C'. $6 \quad 1967$ Crờss-Section.Regression Results' for Television Revenues 230
C. 7 1963-67 Analysis of Covariance: Year Effects 231
C. 8 1963-67 Analysis of Covariance: Market Effects 232
D. 1 Ratio Model for Division of Television Audiences Among Compering Stations 246
D. 2 Revenue Shares Predicted by Ratio Model, 1972 Estimates 248
D. 3^{*} Logarithmic Model 251
D. 4 Revenue Shares Predicted by Logarithmic Model, 1972 Estimates 252
D.5 Logarithmic Model Estimated for Independent 254
Stations Only
Stations Only (D. 6 Revenue Shares Predicted by Logarithmic Mode 1,1972 Estimates for Independent StationsOnly, TVH Equals Sample Maximum255
D. 7 Revenue Shares Predicted by Logarithmic Model,1972, Estimates for Independent StationsOnly, TVH Equals Sample Mean256
D. 8 Revenue Shares Predicted by Logarithmic Model, 1972 Estimates for Independent Stations Only, TVH Equals Sample Minimum 257.
D. 9 Comparison of Various Methods of Predicting Station Revenue Shares and Station Revenue 259
E. 1 Summary Statistics for 1972 Station Profits 264E. 2 Upper Bounds on the Performance of Modelsthat Treat Equally Situated Stationsthe Same267
E\& 3 Ordinary Least Squares Profit Equations fir Television Stations 271
E.4 : Sumáry Statistics for Depreciation and for Profit.Plus Depreciation : 272E. 5 Plus Depreciation
275
Goodness-of-Fit Measures for Profits plus 1
88
E. 6 First Stage Equation for Number of UHF Stations 280
E. 7 Profit Equations for All Markets and Top 50 Markets. 283

1

I. INTRODUCTION

As demands for various radio services continue to rise, the problem of scarcity of radio spectrum space becomes increasingly. severe. As in the case of other natural resources, such as land, oil, and metals, pressing questions arise as to how best to allocate this resource among competing uses. To.be sure, spectrum space is different from other resources in that it is not depleted after use; that is, were over-the-air broadcasting suddenly to cease, the radfo spectrum would still exist for other uses unlike, say, coal where once used the resource is gone forever: Still, at any particulat time we do observe spectrum congestion; at least in many frequency bands, along with pressures by other users to retain whatever rights they currently have to the use of spectrum'space.

THE USE OF RADIO SPECTRUM IN TELEVISION BROADCASTING

A large portion of the usable spectrum has been allocated to tele'vision broadcasting--spectrum space which also has other potentially valuable uses, especially in land mobile radio and for government purposes, Of the 930 MHz between 30 and 960 MHz which are especially suitable for these purposes 408 MHz , or about .40 percent af the total, is devoted to television broadcasting in VHF channels 2 to 13 , and to UHF channels 14 to 69.*

In view of the large portion of spectrum space allocated to television broadcasting, questions arise as to whether some of this space should be reallocated to other competing needs. With respect to VHF broadcasting, possibilities forv reallocations are remote (though possibilities arise for "VHF drop-ins". currently under consideration by the FCC, as discussed in Section V below). For nearly all of the
${ }^{\star}$ Office of Telecommunications 'Policy, The Radio Frequency Spectrum: United States Use and Management., Washington, D.C., January 1973, pp. D-38, E-3. As a, result of an FCC rulemaking in Dockets Nos. 18261/2, UHF channels 14 through 20 are being shared with land mobile raḍio in the largest 25 urban areas, and 84 MHz of spectrum space (UHF channels 70 through 83) , have been transferred to land mobile radio.
commercial VHF assignments to specific markets are already in use. Of the 319 assignments made fn the top 100 markets; only 29 remained unused in 1974 in the markets shown in Table $1 .{ }^{*}$ Thus, there is little room for reallocating VHF channels; to competing uses. Moreover, most ${ }^{\circ}$

UNUSED COMMERCIAL VHF ASSIGNMENTS Top 100 Markets, Beginningl of Year 1974

SOURCE: Table A-2, Appendix A.
a Defined as "area of dominant influence" (ADI) in accordance with usage of the American Research Buréau.
of the unused NHF channels are concentrated in sparsely popylated areas of the country where spectrum scarcity poses little problem. All of the unused channels are assfgned to outlying communities; none is assigned to the city for hath the market is named. The 9 allofations in . Albiquerque aud 3 in Salt Lake City reflect the fact that the geographicat. areas of these two markets are very large, covering all or portions

These and subsequent numbers exclude allócations and stations in six "border" markets, including two in the top 100, Buffalo and San Diego, near the Canadian and Mexican borders, respectively, as described in Appendix A, p. 1. -

- of several statés, so that a large number of assignments are possible. But most of them lie fallow, and may continue to do so into the foreweeable ' u uture.' Since nearly all y and since our subsequent projections show no decline and at least some: increase in the number of stations during the period relevant in this study, "we will concentrate our analysis on the prospects for growth of , UHF stations.

The situation is far different for'UHF. Of the 435 commercial assigments in the rop 100 markets, only 124 were in use at the beginning of 1974. This situation reflects the problems that UHF' has had throughout it́s development. Many early TV receivers did not have a UHF tuner; it/was only after the all-channel tundre legislation was passed in 1964 that later sets wére required to have UHF tuners. Even then, UHF suffered the handicap of receivers having coontinuous rather, than detent funers, and tuners forwich, according to some observers, technical standards were set too low to provide reception generally as god as that on competing VHF channels. More recently; FCC rules have gone into effect, to fequire new sets to have detent rather than continuous UHF tuners in an attempt to reduçe or eliminate the disparity between the convenience of tuning VHF and UHF channels. Furthermore, the propagation characteristics, in the UHF portion of the spectrum die not as favorable for broadcasting as the lower VHF bands. In some cases; larger and more expensive antennas "are required than is the case with VHF. In many places; the viewer can get along with rabbit ears"for VHF but has to install a rooftop antenna in order to obtain adequate UHF reception. To the extent that UHF stations go to higher transmitter power, this handicap will also diminish.

However, the manufacture of TV receivers with better UHF tuners

Thus, several developments operate in opposite directions with respect to pressure on spectrum space. On the one hand, the fontinuIng reduction in the UHF handicap will increase the number of UHF stations on the air. Also, continuing growth in population and in household income will stimulate UHF growth. On the other hand, . . the continuing growth of cable and the possibility of videodisc technology developing to the point of having an attractive home market could work in the contrary direction.

As shown in Fig. 1, the number of commercial UHF stations has grown, particularly since 1964 (when the all-channel tuner requirements were introduced), although there has been some tapering of f in the last four years, perhaps as a consequence of overall depressed economic conditions. From 1974 onward a number of growth paths are plausible. Growth path A, for example, showing a sharp increase in the number of UHF stations, paralleling the growth from 1964 to 1970 , might occùr . if the UHF handicap continues to decline, the number of television. . households grows rapidly, and no inroads are made by technologies suqh as cable and video-discs. 'The more moderate growth path B is an extrapolation of the overall 1954-1974 trend. It might result from a less raptd response in the number of UHF stations to the continuing decline in UHF handicap. Growth path C mirrors the $1954-1970$ swing, and would suggest a decline in the number of UḦF stations, perhaps under competitive pressüre from cable, but eventually, an upturn as a consequence of the longerterm decline or elfmination of the UHF handicap placing UHF on full parity with VHF. Grpwth path D shows a continuing decline of UHंF stations occurring possibly as a. consequence of strong pressures from cable and videodisc, a lack of success in eliminating the UHF handicap, and perhaps a reduction in the growth rate of TV'households below previous) estimates.

THE FUTURE USE OF SPECTRUM ASSIGNMENTS
In general, then, given these and other pressures, to what extent are new stations likely to come onto the air over the next 10 to 1.5 years? Will the industry grow to make use of most or all of the , unused UHF

Fig. i-Growth of commercial UHF broadcasting (all markets) under varying assumptions. Path B is an extrapolation of the rend from, 1954 to 1974،' For other details, see text.
assignments? Obviously, these questions are dificult to answer since so many factors arise whose effects are'difficult or impossible to trace; moreover, new developments that we simply cannot now foresee: afe almost súre, to intrude over a period as long as 10 to 15 years. pespite the uncertainties, pressures on spectrum use w/hl require that the $F C C$ continue to make major decistions about allocations and reallocations of spectrum space. In response to this need, the Rand'stydy involves techniques for projecting the number of commercial UHF sta-. tions estimated to operate in individual markets for the years 1980, ", 1985, and 1990. These projections have been made on the basis of analyzing the major determinants of the number of commercial UHF stations that operated in 1974.

* More specifically, we have undertaken a cross-sectional analysis of 197 television markets in the contiguous United States to determine how the number of UHF stations in each market in the base year 1974 was related to such variables as the number of VHF stations in the market, the number of TV households, retail sales per household, and degree to which signals from separate markets overlap to increase viewing of out-of-market signals and hence increase competitive pressures (for example, Washington, D.C., signals being viewed in Baltimorig). By projecting the number of TNv households and changes in the other variables (based pattially on estimates supplied by the Department of Commerce Bureau of Economic Analysis) to the years 1980, 1985, and 1990, and assuming that the same relationships will continue to hold between the number of UHF. stations and these variables observed in 1974, we are able to project the number of UHF stations for each market for 1980°, 1985, and 1990. In "addition, we are able to take other factors into account, such as the continuing growth of cable television, pay television, and use of videodisc technology.

As one would expect, projections of number of UHF stations depend critically on the assumptions made in 1975 about the growth and the effect of new developments such as pay TV. Because this is an area where a good deal of uncertainty exists, and one where the "experts" simply cannot agree on all facets, we resort to the common technique
of making alternative assumptions and showing how the results vary as a consequence. In some cases, changing certain assumptions does not make much difference, while in other cases our projections are quite sensitive. This "sensitivity analysis" is therefore important in showing which assumptions are particularly relevant to the results and what kinds of additional information would be required to make improved estimates. In this report we have varied our key assumptions over a wide range and have combined them in what we feè are the most interesting combinations to provide useful inputs for future FCC- "decision- making. Moreover, our analysis is containgd in a deck of computer cards, with instructions for running the computer program, for use directly . by the FCC, so that it can include yet other assumptions to derive new and increasingly reliable projections, as additional information and data become available in later years.

Thus, we qee our study as an important part, but only one part, of longer term FCC analysis of future spectrum uses. In addition, othet work will need to be undertaken by the FCC; for example, profection of demand for mobile radio and other competing uses of radio spectrum and measurement of existing channel loadinga. With. these additional inputs the FCC will then need to decide how, if at all, assigniments to broadcast and nonbroadcast servicea should be rearranged in order. to permit an increase in overall communications service in the public interest.

Thus, if our projections show that in a particular television market only. 5 of 7 UHF allocations are likely to be taken up by 1990; then questions will arise as to whether these assignments should be transferred to other neighboring markets or left standing as a contingency or safety margin. Moreover, if the FCC decides that a reallocation of UHF space from television to competing services is appropriate, then questions arise as to how channel assignments can be shuffled among markets, based on our projections of uses in specific markets, so that sufficiently large blocks

of spećtrum can be cleared on a regionwide or nationwide basis and made available for other services.

One cautionary note: Even if we project accurately the number of stations that will be viable in 1980, 1985, and 1990, this says nothing i. about whether that particular number is consistent with the pubiic.

- inter in 1 tight of the scarcity of spectrum space which is provided "free" to whichever service it is assigned. Sínce spectrum space, unlike other resources; does not carry a price paid by the user to reflect its value in alternative uses.; a particular television station may be economiclily viable only because it does not pay for its use of spectrum. Studies have been undertaken toxamine the feasibility of establishing property rights in spectrúm space, analogous to those in the use of land and other resources, and of setting up a market. within which thote rights could be bought and sold at prices reflecting their values in alternative uses. ${ }^{*}$ Nothing has come of this analysis operatbonally, partially because of the difficulty of satisfactorily defining property rights, in spectrum spacé. Lacking such marketplace transactions in spectrum, the FCC will have to continue to use its own judgment, undex guidançe of Congress, about how to allocate spectrum space ip the public interest.

OVERVIEW OF THIS REPORT

In Section II, we describe our approach, called the "viable stations model," by discussing the nature of such a model and the advantages and disadvantages of using model particularly in dealing with the kinds of problems faced by the FCC in spectrum management. We show . . how the model is used for understanding a varlety of relationships such as those noted above, and the relative influence of the different variable
. ${ }^{*}$ One of the most extensive studies of the possibilities of setting up private markets in spectrum space is G. E. Tempo, Electromagnetic

- Spectmom Manaǵement: Alternatives and-Experiments, Santä Barbara, Ca., 1968, available through the Național Technical formation Service, PB-184422. This was one of a number of studies corncted for the President's Task Force on Communications Policy, which submitted its final report in December 1968. *cluding assumptions about the continued growth in sets capable of recefting UHF and the influence of new services and technologies.
*. In Section III we apply the model in à so-ca11ed "base case"-a |more or less'neutral case with plausible assumptions about
growth of population, income, and UHF set penetration-=and show projections for the tof 100 markets based on this particular set of assumptions.
- 'In Section IV we describe the posisible effects on UHF of cable ${ }_{\mathbf{p}}$
解se, depending again upon a range of assumptions.

In Section V we consider the effects on UHF development of addi- tional VH゙F "drop-ins." The FCC is currently considering this possibility of new VHF assigrmepts on the basis of a study by the Office of Telecommunications Policy made in 1973-74. suggesting the technical feasibility of additional VHF assignments, and in response to a recent petition filed by the United Church of Christ.

In Section VI we take into account new technologies and services; particularly videodisas and the use of special pay hannels on cable, that could in principle draw audience away from commercial proadcast television.

In Section VII we apply the model under assumptions, about improved UHF tuning, reception and increased transmitting power, such that the UHF handicap will be further reduced over time.

In Section VIII we, bring together various combinations of the above assumptions, and compare the projections with existing spectrum assignm"ents in the ; 100 top markets.

The viable staxtions model is far different from the model we used initially. At the beginning we mfelt, along with the FCC staff, that the most promising approach would be to project the growth of TV sta- , tion profits, based on confidential financial data filed by individual stations with the FCC, and from there determine how many stations each market could economically support over the next 10 to 15 years. Hơwever,
the range of possible errors in our estimates was so great that it became clear that this approach would not be, useful for FCC policymaking. Thus, in Section IX we discuss the reasons why these approaches using individual station financial data were not useful, in terms of questionable reliability of the data, and differences in station operating modes and other factors. In Section X we describe the three unsuccessful attempts'to use individual station financial data; and discuss the salient lessons to be learned from these approaches.

In Section XI we discuss further research that would be useful in making spectrum" allocation decisions based on our own report as a point of departure, including questions of a) how much, , if any, UHF sp@ctrum can be rêleased by reallocations that satisfy our projections; b/ how much social value the projected stations have; c) the projected demand by competitors for use of the UHF spectrum and the social value of these competing uses; d) the process of updating our model as new data become available.

All of these sections are written for andience with nontechnical backgrounds. Since it is important that technical aspects be fully laid out for independent appraisal by ecomists and engineers, the appendices include extensive technical discussion in support of the text. In particular, Appendix A gives atechnical description of our "viable stations model,". which is the basis for all of our projec- , tions.
II. THE VIABLE STATIONS MODEL.

In this section we shall describe the basic ingredients of our viable stations model, explain reasons why we use it as an alternative to, say, polling "experts" for their reasoned judgments about the future of broadcasting, and show how it can be used to make future projections of viable stations. The discussion throughout is non\because technical. Appendix A describes the model in much greater detail for those interested in the series of data employed and the econometric methods used to estimate the relationships involved in the study. THE USE OF MODDELING

- Our way of answering the question discussed in Section. I (How many commercial UHF television stations can we expect to be on the air 15 years from now?) is to constract a model-a simplified, abstract representation of the situation. . In some wats, our model is like a model airplane that can be "flown" in a wind tunnel to check its aerodynamic characteristics before the full scale airplane is built. The model airplane is much simpler than the real thing; it omits details that are not important for wind tunnel tests. Because it is smaller and simpler, it is much cheaper and easier to work with than the real airplane. One can easily change the -shape of the wings on the model, for example, and see what that does to ,the airflow.

Although our model is mathematical rather than physical, its purpose is much the same. The model describes how the number of UHF stations in a market is influenced by important factors such as the size of the market, the number of VHF stations operating there, and the level of UHF set penetration. These are not things that one can experiment with in reality in .order to find out what will happen. But it is easy to "change" them in the model and observe the results. For example, one can increase each market's size to reflect population grawth expected by 1990 and see what that does to the,expected number of UHF stations.

This is not the only way to answer the question. Among other possibilities; one could poll "experts" for their opinions, draw a line extrapolating past growth into the future (such as appears in Fig. 1 above), or make one's own infotmed.guesstimate.

Obviously, no one method is necessarily more accurate than the others in all cases. But our choice of modeling in the case at hand does have some important advantages over other methods.

One characteristic of modeling that may be an advantage is that is relatively objective. Once the model is specified and the data that are to be used to estimate it are chosen, the outcome is determined. The computer takes over, performs the necessary calculations, and prints : out the results. In contrast, two experts, given the same. information to work with, may come to quite different conclusions.

- But of.course the computer cannot specify the model in the first place. The analyst. must do that, and in so doing he must'make subjective choices. Another advantage of modeling is that the results of these (necessarily subjective) choices are explicit. Regardlesss of what confidence can be placed in these results, they are at least in an explicit form that can be compared with results that would be arrived at through alternative quantitative analyses, and they can also be compared with the subjective judgments of those knowledgeable in the field.

Another advantage of modeling is that it provides a fromewark for systematic discussion. If the reade'r is suspicious of particular results that come out of the model, it is possible to go back into the model to determine how those particular results were obtained. "This. does not mean that the results fromthe model are necessarily right. "and judgments by the reader wrong; but that it can provide the basis - for reconciliation through collection of additional data, or by changing the structure of the model.

Finally, modeling issbetter adapted than alternative techniques for systematically exploring the effects of changing assumptions. As we shall show throughout this study, one can include'a wide range
of assumptions, such as changes in the growth rate of cable television, the reduction over time in the UHF handicap, alternative estimates of population growth, and other factors, to indicate how our overall projections are affécted and by how much. Again, the model is certainly not guaranteed to provide accụrate results; but it does provłde a fromework whereby alternative assumptions can be included 'to show the degree to which each affects the results.

On the other hand, modeling is certainìy no panacea. By necessity it omits aspects of reality, especially those aspects that cannot

* be quantified. For example, we cannot take precisely into account variations in quality of UHF reception that occur from all local geographic peculiarities, such as hills near the center of town, tall buildings in particular cities, and variations in the local electromagnetic environment. In this case data are simply not available in a systematic enough form to place in a model; and in this case we can only hope that such local factors are inconsequential in comparison with those that can be taken into account. Modeling is necessarily a simplification of the real world, which if successful, is able to encompass the major elements that merit consideration whilq omitting those of lesser importance. But we should also note that these same problems plague subjective judgments about the future. The "expert". would be at no less of a loss to try to take into account such aspects as local geographical quirks scattered throughout the country in making any reasoned judgment about.the overall growth of broadcasting over the nett 10 to 15 years.
' Modeling also suffers the problem of not being able to deal fith thing's for which we do not have data. For example;' in our analysis of the UHF handicáp, it would be useful to have data on the disadvantage arising from the difference between continuous tuning and detent: tuning, in order to quantify the effect of the phased introduction of detent tuning on UHF viability. But there are no récords of the penetration of sets with detent" tuners in individual markets, and even if there were, penetfation is almost certainly too low to have a detectable influence on UHF stations.

Also modeling cannot eliminate inherent uncertainty. For example, we cannot tell at what point in a businessman's profit and loss calculations he decides that it would be economically attractive to build and operate a broadcasting station. Partly the problem arises because of differences in opinion among businessmen as to the condilions under which they would or would not undertake certain actions.

Finally, and perhaps most importantly, modeling cannot deal with unforeseen developments. Over the next 10 to 15 years all manner of things can take place that could compromise the value of any projections. we made now. A major world depression, or sustained world prosperity going beyond the bounds of what we have observed in the past, wars and their global effects, and innumerable other factors ${ }^{-1}$ can arise to render any projection wide of the mark. This is, of course, a problem endemic to any kind of forecasting, whether based on the reasoned judgments of the experts; or on a wide variety of quanttative analyses. Still, decisions must be made on the basis of one's expectations about what the future will hold. Thus, decisions may in hindsight turn out to be wrong, but we would hope wrong only for reasons that were simply impossible to take into account at the time the decisions were made. It is in this spirit that we proceed to construct a model that may lead to better reasoned decisionmaking in a world that necessarily is subject to high levels of uncertainty and one in which the emergence of unforeseen developments is inherent.

ELEMENTS IN THE MODEL

In its most basic terms the model examines the relationship between the number of active commercial UHF* stations in a particular market and a number of characteristics or variables we observe in that market. These vari-. . . able include:

Note that both the data used to estimate our model and the projections based on the model represent stations actually broadcasting, and do not include construction permits or stations that have gone of f the air.
o The size of the market, measured by the number of teleytsion households. Holding everything else constant,* we would expect to find more UHF stations in larger markets.
o The number of commercial VHF stations in the market. The more competing VHF stations, the fewer UHF stations we wouldexpect.

- The fraction of homes in the market that have yelequsion sets capable of receiving UHF signals. The greater tifis is, the more UHF stations there should be.
- The fraction of homes in the market' that subscribe to cable television service. This could affect the number of viabie UHF stations either way. On the one hand, cable systems, usually carry in television signals from other markets. Ttis fragments the local audience and tends to decrease the number of viable UHF stations. On the other hand, cable improves; reception quality of UHF, and this ought to increase the number . . of UHF stations. The net effect of cable depends on how these two effects balance out.'
- Thé wealth of the market, as measured by retail sales per television household. We would expect wealthier markets to support -more UHF stations.
- Competition from.stations outside the market. Some markets overlap with adjacent markets more than do others. In highoverlap markets, out-of-market stations can be an important additional source of competition for local stations, and may tend to depress the number of viable UHF stations.

In addition, the model allows for the effect of other variables that are assumed to, influence the number of UHF stations indirectly. These variables, which we expect to affect cable or UHF set penetration (which in turn affect the number of UHF stations) are:
o Over-the-air reception quality. The worse this is fon average in a particular state), the greater the cable penetration we would expect to find in that sfate.
o Whether or not the market is one of the top 100 . If it is, we expect lesser cable penetrations both because of a variety of restrictions that the cable television rules have imposed on operations in these markets and because of the generally good over-the-air service.
*The qualification "holding everything else constant," though unstated, applies throughout this list.

- Whether or not public televiston service in the market is available only on UHF. If so, we expect somewhat higher cable and UHF set pénetration.

The assumed relationships among all of these variables are fully described in Appendix A.*

As the first. step in making our estimates, we determine the quantitative values.for these variables for the year 1974 for each of the 197 markets in the U.S. listed in Appendix A, Tables. A-2 and A-3. To take just one example, we find that in New York, market no. 1, two commercial UHF and six commerial VHF stations were on the air; the market contained 6,167. 000 television households; 79 percent of the homes had television sets capable of receiving UHF signals; 4 percent of the homes subscribed to cable television seqvice; retail sales per Ty household amounted to $\$ 6,163$; and there was.1ittle competition from stations outside the market, measured by our "overlap" value of . 960 as defined in Appendix A.

FITTING THE MODEL TO THE DATA
As the second step, we use the statistical technique called fegression analysis, using the cross-section of data for all 197 markets; to estimate the strength of relationships between these variables Mand the number of UHF stations. ${ }^{* *}$ This, results in a rather complicated formula in which each of the variables is given its separate weight. The weights are chosen to make the formula fit the data on the actual number of UHF stations as well as possible.

In principle, doing regression analysis is much like drawing.a line that passes as close as possible to points plotted on a graph. An example is shown in Fig. 2. Say the dots represent the number of UHF stations in several different markets. The farther are the dóts

[^0]

Fig. 2-Relationsthip between number of television hovseholds, and number of UHFF stations in a television morket
to the right, the bigger the market; and the higher up they are, the more UHF stations in the market. , Clearly there is a tendency for larger markets to have more UHF stations. Most"people, if asked to draw a straight line that sumarizes this tendency, would draw it pretty close to the one shown in the figure: Regression analysis "draws" lines like that, but it" does it mathematically. \int.

Our model is more complicated than the example in Fig. 2 in two ways. First, the model relates the number of UHF stations to all of . the variablestisted above, not just the size of the market. That means that we have to use multiple regression to sort out the separate effects of the different variables.

Second, ordinàry multịle regression, like the line'in. Fig. 2 ; summarizes the association between variables, but it does not say anythíng about causation. We would seriously mislead ourselves if. we were to look only at the association between number fof UFF stations and UHF set penetration (the fraction of homes with ceceivers capable of receiving UHF signals) in making our projections. The problem is that causation runs both ways. Higher UHF set penetration should helpo UHF. stations by increasing the audience they can. reach and putting. them on a more even competitive footing with VHF stations: Thus increased UHF set penetration should increase the number of viable UHF stations. But it works the other way, too. An increase in the number of UHF. stations increases the level of UHF set penetration. With more UHF stations on the air, people have stronger incentive to buy a set that can receive UHF. In making our projections, we are only* interested in the former effect. UHF set penetration willisoon reach, percent in all markets, and we want to know what that wili do to the number of UHF stations they can support.

In a similar way, cable penetration may both infiuence and be influenced by the number of UHF stations. We discussed above how cable may either help. or hurt UHF stations. Going the other way, UHF stations may help cable, since better reception of UHF is one motive for subscribing to cable service.

In estimating our model, we use an econometric regression teehniqué (called two-stage least-squares) that lets ús separate out the effect pf UHF stations on UHF set penetration from the effect of UHF set penetration on UHF stations, and the effect of UHF on cablè from the effect of cable on UHF.

Of the several variants of the model that we estimate in Appendix A we choose one (Equation 1, Table A.9) for most of the projections, in this report. It does a good job of fitting the data, but at the same time is a relatively simple equation. Mate complicated equations do ,
 this equation as our "basic quadratic equation" in the sections that follow.

ILLUSTRATIVE RESULTS OF THE MODEL.
The results of our varipus estimates are for the most part consistent, both among themselves and with our prior expectations. Larger markets and markets with fewer VHF stations support more UHF stations, as expected. * Incireased UHF set penetration has a dramatic effect on number of UHF stations. A 10 percent increase in UHF penetration is consistently estimated to increase the number of viable UHF stations

- by even more than 10 percent.
. The effect of market wealth, measured by retail sales, on number of UHF istations is positive in almost all of our estimates, but it is always small and statistiçally insignificant. The effect of overlap with adjacent markets is usually estimated to be negative, that is, thy greater the overlap, the less attractive is the market for UHF, as we rwould expect. Bu't the relationship is not strong enough to be statistically significant.

The effect of cable is particularly important, and the evidence on this. is mixed. In most of the variants of the model that we estimated, cable has a small and insignificant negative impadt on UHF-so small that a 1 percent increase in UHF set penetration would more than offset a 10 perçent increase fin cable penetratifon. In one or
*With a minor exception noted in the section on VHF drop-ins below.
two other variants, the effect goes the other way, and cable is estimated to help UHF slightly (but statistically insignificantly). On balance, one must say that there is no clear evidence that cable affects UHF one way or the gther. Apparently the help that cable gives UHF in terms of improved reception approximately offsets the harm from carriage of distant signals.*

CALIBRATING THE MODEL FOR MAKING FUTURE PROJECTIONS

With these relation§ affecting the number of UHF stations established, we are then able as, a third step to estimate the values $f(r$ the variables in later years (for example, increase the number of television households. for 1980 , 1985, and 1990) in order to determine what effect. this will have on the expected number of UHF stations in the same time period. We can also include the effects of new technology, such as videodiscs, / by making alternative assumptions about the extent to which videodiscs might reduce the potential audience (again measured̃y TV househylds). . Similarly, we can vary assumptions about the effects of cable television and pay television. We also make alternative assumptions about changes in the UHF handicap as it affects the growth of UHF broadcasting,

But in making projections, there is one final step involving "calibrating" the modelato improve its accuracy." Based on our crosssection analysis for 1974 , we were able to predict the number of UHF stations that would operate in 1974, and in this case, be able to compare our predictions with the actual number of stations that were on the air in that year. As one would expect, since our model is not able to take all considerations theo account, the predjcted number of stations is not exactly the same as the actual number. In some cases we overestimate the number of stations, and in other cases we underestimate.

* In makiog estimates of UHF viability, question arises as to whether
certain markets or stations should. be removed from analysis if they are
obviously unusual. For example, New York and. Los Angeles (and possibly
others) might be deleted because of their size. We have done this in
some of our computer runs and found our results are not significantly
affected. Moreover, this approach raises the question as to where to
stop in deleting particular markets. Some UHF stations program in Spanish
and others are operated by religious groups supported by donations. How-
ever, there are only a few scattered syations of these types and, given our
large data base, it is most unlikely that their deletion would make a sig-
nificant difference.

In New York, for example, in the "base case" analysis discussed in Section III we estimate 3.4 stations in 1974, while in fact there were only 2 UHF stations operating. In Los Angeles, on the other hand, we calculate 4.8 stations, while a larger number, 6 , were operating in 1974.

For each market we táke the difference between the predicted and actual. numbers for 1974 and apply this "constant adjustment factor" to our prodections for 1980 , 1985, and 1990 as well. This adjustment is based on the assumption that whatever elements were operating in each of the markets to cause errors in our estimates for 1974 will continue to operate to the same degree, so that for any given market our projections would, if madjusted, continue to overestimate or underestimate the number of stations by the same amount as was the case for 1974. While the assumption of an unchanging "error factor" in each. market is open.to question, to include this factor is better than not making any adjustment at all. Thus, to carry our New York example a bit further, the difference of 1.4 between 3.4 and 2 stations is also subtracted from our projections for New York for 1980, 1985, 'and 1990. In our "base case" discussed in Section III, we first project 5.4 stations in 1980, but we then adjust by subtracting the factor of 1.4 to . arrive at a projection of 4 stations, and similarly for 1985 and 1990. It may seem strange the reader that we estimate numbers of stations in fractions rather than rounding upward or downward to whole. numbers. However, retaining fractions conveys usefulinformation.' For example, estimates of 3.4 and 2.6 would both round to 3 stations. But we would have more confidence that at least 3 stations would operate if our estimate is 3.4 , rather than 2.6. To avoid loss of information, we show the number of stations projected for each market to the nearest tenth in the tables, that follow.

39

The projections in this section assume only gradual change between 1974 and 1990. We assume that

1. The number of television households in each market goes up in proportion to population growth projected for that far: Ret
2. Retail sales per.househöld go up in proportion to per capita income projections*.
3. UHF set penetration reaches 100 percent by 1980
4. Cable penetration does not increase beyond 1974 levels
5. VHF allogationis do not change (there are no VHF "drop-ins")
$?$ a

6. The UHf tuning and reception handicap does not change
7. Nev developmentsosuch as pay television and videodiscs make inroads on the audience for conventional commercial programs.

We make these assumptions not because we think that is what is going to happen. Instead, they just represent a neutral base case, to which other projections can be compared to see the effects of developments excluded here.

RESULTS USING BASIC QUADRATIC EQUATION

The results of using our preferred equation and the assumptions given at the start of this section to project numbers of viable UHF stations by market are shown in Table 2 . We show projections for the top 100 marketsoonly, since it is in these markets that spectrum scarcity is most likely to be acute.
\quad *Per capita income and population growth estimates are taken from
the Bureau of Economic Analysis (BEA), Department of Commerce, 1974 : OBERS Projections, Volume II, Economic Areas.
${ }^{\circ} \cdot$

Table 2
BASE CASE PROJECTIONS USING BASIC QUADRATIC EQUATION

Table 2 (contd.)

Column 1 for each year shows the number of stations actually. calculated by our model. In general; it is a fragtional number of stations, like 3.4 for New York, which as we méntioned in Section II is not rounded off at this stage. Column 2 shows the adjusted projections also as discussed in Sectioh II. These are based on the assumption that factors we have not taken into account affect the outcome in each market, and that these factors will be fairly stable over time. So if our model overstatés the number of UHF stations in New York in 1974 By 1.4 stations, it will tend to overstate by the same amount in future years. To get column 2 from column 1 , we subtract or add the "constant adjustment factor" for 1974.*

RESULTS USING FOUR-YEAR EQUATION

A second version of the model was estimated in an attempt to uncover trends in the UHF handicap to use in making projections in Section VII. Since * it was estimated using data for the years 1971 through 1974, rather than only 1974, we shall refer to this as our "four-year equation." This equation is also used to, make upper-bound projections of the impact of cable television on UHF in Section IV. . Table 3 shows projections made, using the base-case assumptions and the four-year equation. Columns 1 and 2 have the same meaning as in Table. 2. One would hope that the projections would not differ very much' between the two different equations. To make this easy to check, column 3 shows the difference between the two. We see that the difference is generally very small (in 1990, for example, 0.1 stations in New York and -0.3 stations in Los Angeles). The only large differences are a few markets'such as Wilkes-Barre and Fresno, with relatively many UHF stations.

RESULTS USING CONSTRAINED EQUATION

Some of the projections below are based on yet a third equation. We refer to it as our "constrained equation;" because it was estimated subject to certain constraints that make it possible to project, the effect of the complete disappearance of the UHF handicap (Section VII). We also use this equation to project the offects of VHF drop-ths in Section V. Table 4 shows projections using the constrained equation together with base

[^1]Table 3

BASE CASE PROJECTIONS USING FOUR－YEAR EQUATION

－			
MAEMFT			
	1	vy	MiY
$\otimes .)$	2	LA	c． 1
	3	CHCA．fon	11
	4	Phit	PA
	5	DTPOMT	$\cdots 1$
－	6	gISTCN	Ma
	7	SF	CA
	\＆	colviñ．	． $\mathrm{nH}^{\text {r }}$
	9	Wash	OC
	10	PIT	PA
－	11	sturus	M 1
	12	ralias	TX
	13	MINN	WN
	14	Bal？	4 M ．
	15	H．JISSN	TX
。	16°	－ynfls	IN
	17	cinc：	rH
	18	$\triangle T L A N T$	ria
	17	HSOTFD	P．N．
	27	cEATLE	wa
	21	M1A： 1	FL
	22	K AyCTY	v
	73	mll wau	wI
	75	sacfa	r．A
	24	¢ \quad 「יPH	P． 1
	27	crivima	TH
	29	「4＂アA	FL
	29	Pritiln	OR
	30	arasivi．	TN
	31	Mfwrel	LA
－	37	Dfnver	CO
	3.3	penvin	F1
	3%	glbaty	Nr
	35	syantis	NY
	3／，	CHADLS	IV
1	31	ה－ninco	$4!$
	34	Luevi	k Y
	37	Ckrity	7 k
	40）	Rgan	$A L$
	41	Daytrat	nH
．	42	r．lanit	N
	43	n＋ailix	12
	44	MaEFLK	va
	45	SANAA：T	TX
	46	cruave	5 C
	47		ar
	48	s．．t Tik	IT
	47	小くら叫	OA
	50	L！tick	A^{4}

Colur：n（i）：
ㅊari p：ojection．
Column（2）：Adjusted projection．
Column（3）：Difference from Table 2 projection．

1974 Ph ${ }^{\text {P }}$	1480 PR7J	1485 PROJ	1990 P\＆のJ		
（1）（2）．（3）	（11）（2） 11	（1）12）（3）	（1） 121.13 ）		
3．2 2．0－0．2	5.74 .40 .3	5.94 .60 .2	$6.14 .8{ }^{\circ} 0.1$	．	
4.5 6．0－0．3	6．4 7．9－0．1	6．7 8．2－0．2	$7.08 .5-0.3$		
1.73 .00 .0	2.23 .50 .0	2.23 .50 .0	2.3 3．6－0．0		
1.7 3．0－0．0	2．1 2．4－0．1	2．1 3．4－0．1	2.2 3．5－0．2		
1.22 .00 .1	1.62 .40 .1	1.72 .40 .1	1.72 .50 .1		
1.3 2．0－0．1	1．9 2．6－0．0	2．0 2．6－0．1	2．0 2．7－0．1	i	
$1.03 .0-0.0$	1．4 3.60 .1	1.7 .3 .70 .0	1.73 .80 .0	\cdots	
1.32 .00 .1	1.7 .2 .40 .0	1．8 2．4－0．0	1．8 2．4－0．1		
1.01 .0 .0 .1	1.51 .400 .1	1.61 .50 .1	1.71 .60 .1		
$0.70 .0-0.1$	1.50 .80 .0	$1.50 .8-0.0$	$1.50 .8-0.1$		－
0.71 .00 .0	1.31 .60 .1	1.31 .60 .1	1.31 .60 .0		
0.81 .00 .1	1.41 .50 .1	1．4 1．6 0．1	1.51 .60 .1		
0．3 0．0－0．1	1.20 .90 .1	1.31 .00 .1	1.31 .00 .0		
0.91 .00 .1	1.41 .50 .1	1.41 .50 .1	1.41 .50 .1	－	
1.22 .00 .1	1.62 .40 .1	1.62 .40 .0	1.72 .50 .0		
$0.51 .00 .0{ }^{\circ}$	1.11 .60 .1	1.11 .60 .1	1.21 .70 .1		
0.91 .00 .1	1.31 .10 .1	1.41 .50 .1	1.41 .50 .0		
$1.02 .0-0.0$	1.52 .50 .1	1.62 .60 .0	1.62 .70 .0		
1.52 .00 .0	1.92 .50 .0	1．9 2．5－0．0	2．0 2．5－0．1	－	
0.2 0．0－0．0	0.90 .70 .1	1.00 .70 .0	$1.00 .8-0.0$		
0.71 .00 .0	1.3 1．A 0.2	1.41 .70 .2	1.51 .80 .2		
0.81 .00 .1	1.31 .50 .1	1.31 .50 .1	1.41 .60 .1	－	
1.01 .09 .1	1.31 .30 .1	$\cdots 1.41 .30 .1$	1．4 1．4 0．0		
0.81 .0000	1.21 .50 .1	1.31 .50 .0	1.31 .60 .0	－	
0．3 0．0－0．1	1.20 .90 .1	1.20 .90 .1	1.31 .0 .0 .1		H
N					
0.70 .00 .1	1.20 .50 .2	1.20 .50 .2	1.3 .0 .60 .1		
1.01 .00 .0	1.51 .50 .1	1.61 .60 .1	1.71 .60 .0		
0.3 U．：）0．0	1.00 .60 .1	1.00 .7 .0 .1	1.00 .70 .1		
0.3 0．0－0．1	1.31 .00 .1	1.31 .00 .1	1.41 .10 .1		
$\therefore 0.81 .00 .1$	1.21 .40 .1	1.21 .40 .1	1.21 .4 .0 .1		
$0.30 .0-0.0$	1.00 .70 .2	1.10 .70 .1	1.10 .80 .1		
0.90 .00 .1	1.30 .50 .2	1.30 .50 .2	1.30 .60 .1		
0.50 .00 .0	1.10 .60 .1	1.10 .60 .1	1.20 .60 .0		
0.50 .00 .1	0.90 .40 .1	0.90 .400 .1	$1.00 .50 . \mathrm{C}$		
$0.40 .0-0.0$	1.00 .60 .1	1.00 .60 .0	$1.00 .7-0.0$		
$0.50 .0-0.0$	1.10 .70 .1	1.20 .70 .1	1.20 .70 .0		
1.32 .00 .1	1.82 .50 .1	1.82 .50 .0	1．9 2．6－0．0		
0．4 0．0－0．0	1.20 .80 .2	1.20 .40 .1	1.20 .80 .1		
1.11 .00 .0	$1 . t 1.50 .1$	1.71 .60 .1	1.7 1．6－0．0		
1.21 .00 .0	1.74 .50 .1	1.71 .50 .0	1．7 1．5－0．0	＊	－
1.22 .00 .0	1．8．2．6 0．1	$1.8 \quad 2.60 .0$	1．92．7－0．0		
0.51 .00 .0	$1.0{ }^{\circ} 1.5 .0 .1$	1.21 .60 .1	1.11 .60 .1	$!$	
0.71 .00 .1	1.1 i．4 0．1	1.11 .50 .9	1：2 1．5 0.1	，	，
0.51 .00 .0	1.11 .50 .1	1.11 .60 .1	1.11 .60 .0		
$0.31 .0-0.0$	1．7．1．9 0．2	1.21 .90 .2	1.21 .90 .1		
0.30 .00 .0	1.10 .90 .2	1.10 .80 .2	$1.2 \% 0.2$		
$0.30 .0-0.0$	1.10 .40 .1.	1.10 .90 .1	1.150 .70 .1		
3.3 3．0－0．9	3.7 3．i－1．1	3．8 3．5－1．3	3．9．3．6－1．5		
$1) .20 .00 .0$	1.10 .70 .2	1.10 .80 .2	1．1．0．9 0.1		

Table 3 (contd.).

1

base case projections USING CONSTRAINED EQUATION

Coiumn (1):
Column (2):
Column (3):

Table 4 (contd.)

case assumptions. Column 3 again shows the difference between these projections and those based on our basic quadratic equation. The diffferences in this case are larger, with the constrained equation projecting more UHF stations than does the preferred equation in most markets... The differences are largest in the top 10 markets; in smaller markets, the difference is generally only a fraction of station. 1

SUMMARY OF BASE. CASE PROJECTIONS

Table 5 summarizes the base-ease projections. The basic quadratic equation, the four-year equation, and the constrained equation all project the number of stations in what we call our "narrow count." This excludes er tain stations that provide less than a full alternative signal in their mar-kets--mostly satellite stations in the same market as their parents, duplicate network affiliates, and outlying stations that do not serve the main metropolitan area of the market. We take account of these . excluded stations in two ways in the summary table. The first line shows the narrow count projections; these are simply the sums of column 2 in the market-by-market tables. The second line adds the excluded stations, on the assumption that their number will not increase in the. future. The fourth line adds the growth in excluded stations, on the assumption that they will increase in proportion to the included stations. Although both are extreme assumptions, we shall use the former. If the reader prefers another assumption, he call easily produce projections based on that assumption using our computer model.

Several notable features emerge from Table 5. First, in 1990 there is a difference of only two stations between using the single base year 1974 (167 stations) and the four-year base period 1971-1974 (165 stations). The constrained equation yields a somewhat higher projection (192 stations). We will continue to use the 1974 base period and the basic quadratic equation throughout the following analysis (except where exceptions are explicitly noted:

Table 5
SUMMARY OF BASE CASE PROJECTIONS COMMERCIAL UHF STATIONS, TOP 100 MARKETS

Projection	1974	1980	1.985	1990
Narrow count, Table 2	97	149	158	167
Excluded stations, flat	27.	27	27	27
Total	124	176	185	194
	0	14	$\frac{17}{202}$	19
Total	$\overline{124}$	190	202	213
Narrow Count, Table 3	97	156	161	165
Excluded stations, flat	27	27	27	27
Total . .	124	183	188	192
Excluded stations, proportional	0	16	18	19
Total	124	199	206	211

Narrow count, Table 4	97	185	189	192
Excluded stations, flat	$\frac{.27}{124}$	$\frac{27}{212}$	$\frac{27}{216}$	$\frac{27}{219}$
\quad Total	$\frac{0}{124}$	$\frac{24}{236}$	$\frac{26}{242}$	$\frac{26}{245}$
Excluded stations, proportional				
\quad Total				

Seoul, the projected growth of UHF stations is fairly substantial even in, the case. where we, assume that the number of "excluded": stations remains flat at 27: For the 1974 base year analysis the total rises from 124 in 1974 to 194 stations in 1990-a percentage increase of about 55 percent) Again this increase must be considered in terms of the relatively neutral assumptions that have gone into our base case projection. We assume that the UHF tuning and reception handicap does not change, although almost surely between now and 1990 the handicap will fall or even disappear, further stimulating the growth of UHF stations, as treated in Section VII. On the other hand, we assume that developments such as pay'television and videodiscs make no inroads on the audience for conventional commercial programs, which is likely not to be the case, so on this count the growth rate shown in Table 5 is likely to be an overestimate. The projected growth in UHF stations is largely a consequence of 100 percent UHF set penetration assumed by 1980. It is because of these conflicting pressures that we interpret the base case being more, or less neutral, as "a convenient point of comparison in examining the range of assumptions in the subsequent sections.

- IV. EEFECTS OF. CABLE TELEVISION

$\ddot{W}{ }^{*}$ mentioned in Section II that cable television apparently has very little effect on the number of UHF stations, one way or the other. In'all variants of the model that we estimated, its effect was insig- nificant in a statistical sense; in most, it was negative, though small; in one or two variants it was'very small and positive. Beyond suggesting that cable will not reduce UFF growth to any great extent, this does not give us much to go on in estimating the effect of continued cable growth.

We shall handie the uncertainty by making two sets of projections of the effects of cable." In the first (Table 6), we use our basic quadratic equation and moderately high values for cable penetration. This results in a very "small reduction in the projected number" of viable UHF stations trelative to our base"case. In the second (Table 7), we pick from among all of the variants of our model estimated in Appendix A, the one; in whigh the negative effect of cable on UHF is estimated to be the largest; it is the four-year equation that wied for the projections in Table 3 . In conjunction with this equation, wo use very high values for cable 'penetration.. Both the choice of equation and the high penetration values exaggerate the effect of cable. Thus we can be reasonably sure that the actual effect of cable will be less severe than shown in our second set of projections. That is, we expect that. the reduction in the number s of viable UHF stations due to continued cable growth will actually be less than that shown in Table 7.

The moderately high cable penetration used for our first set of projections is at the upper end of the range suggested by the most widely accepted study of the/matter. : Park (1971)*, summarizes his findings as - followg: "Generally, expected penetration at the center of the market 'ranges from about 20 to 35° percent ${ }^{\prime}$. at the edges of the 35 -mile zone, it ranges from about 30 to 60 , percent." These estimates ane for cable ${ }^{\circ}$ systems
*Rölla Edward Park, Prospects for Cablè in the 100 Largest Television Markets, R-875-MF, October 1971. Also appears in Bell Journal of Economics and Management Science, Spring 1972.

Table 6 (contd.)

Table 7
EFFECTS OF CABLE TELEVISION: FOUR-YEAR EQUATION, VERY HIGH CABLE PENETRATION

Column (1): Raw projection.
Column (2): Adjusted projection.
Column (3): Differeqnce from base case projection.

Table 7 （contd．）

			1974 EROJ		0 PROJ	1985 PPOJ	1990	0 PROJ	
	MAREET		（1）（2）（3）	（1）	（2）（3）	（1）（2）（3）	（1）	（2）（3）	
52	TOLEDO	On	0．9 0．7－0．3	1.2	1．1－0．3	1．1．1－0．3	1.3	1．1－0．3	
53	Ontia	HE	0．1－0．2－0．2	0.7	0．4－0．2	0.7 0．5－0．3	0.7	0．5－0．3	
54	culsa	OR	0．1－0．2－0．2	0.8	0．5－0．3	0．8 0．5－0．3．	0.8	0．6－0．3	
55	ORLAN	PL	0．3－0．2－0．2	0.9	0．3－0．3	0．9 0．4－0．3．	0.9	0．4－0．3	
56	ROCHES	NY	0．4－0．2－0．2	0.8	0．2－0．3	0．8＊0．2－0．3	0.8	0．3－0．3	－1．
57	harisb	F	$1.61 .6-0.4$	1.9	2．0－0．4	2.0 2．0－0．4	2.0	2．0－0．4	
58	Sthypt	LA	0．1－0．2－0．2	0.8	0．6－0．3	0.8 0．6－0．3	0.8	0．6－0．3	
59	mobile	12	－0．0－0．1－0．1	0.7	0．6－0．2	0．7 0．6－0．3	0.8	0．6－0．3．	
60	Davenp	IA	0．3－0．2－0．2	0.7	0．3－0．2	0．7 0．3－0．2	0.7	0．3－0．3	
61	PL： $\mathrm{ST}^{\text {P }}$	MI	0．9 0．7－0．3	1.2	1．0－0．3	1．3 1．1－0．3	1.3	1．1－0．3	
62	Grneay	WI	0．2－0．2－0．2	0.7	0．3－0．2	0．7 0．4－0．2	0.7	0．4－0．3	
63	PICHMN	VA	0．2－0．2－0．2	0.8	0．4－0．3	0．8 0．4－0．3	0.9	0．5－0．3	
64	SPRNG：	IL	1．6 1．6－0．4	1.9	1．9－0．4	1．9 1．9－0．4 ${ }^{\circ}$	2.0	2．0－0．4	
65	CDRAAP	IA	0．2－0．2－0．2	0.7	0．4－0．2	0．7－0．4－0．2	0.7	0．4－0．3	
66	droine	IA	0．1－0．2－0．2	0.8	0．5－0．3	0.8 0．5－0．3	0.8	0．5－0．3	
67	wichia	KS	0．1－0．2－0．2	0.7	0．5－0．3	0．7 0．5－0．3	0.8	0．5－0．3	
68	Jrsyve	FL	0：8 0．7－0．3	1.2	1．1－0．3	1．3 1．2－0．3	1.3	1．2－0．3	
69	qaduca	K	－0．0 0．9－0．1	0.7	1．6－0．2	0．7 1－46－0．2	0.7	1．6－0．2	
70	ectanor	Va	0．1－0．2－0．2	0.7	0．5－0．2	0.7 0．5－0．3	0.8	0．5－0．3	
71	xnorve	TN	$0.60 .8-0.2$	1.2	1．4－0．3	1.3 1．5－0．3	1.3	1．5－0．3	
72	PE ESEO	Ca	2．8 4．4－0．6	3.0	4．6－0．6	$3.04 .6-0.6$	3.0	4．7－0．6	＊，v．
73	pigeric	NC	0．6 0．8－0．2	1.2	1．4－0．3	$1.21 .4-0.3$	1.2	1．4－0．3	
74	JOHNST	PR	0．2 0．8－0．2	0.8	1．4－0．3	0.8 1．4－0．3	0.9	1．5－0．3	
75	POPIL	ME	0．1－0．2－0．2	0.6	0．4－0．2	0.6 0．4－0．2	0.6	0．4－0．2	
76	sfuran	Ha	－0．1－0．1－0．1	0.6	0．5－0．2	0．6 0．5－0．2	0.6	0．5－0．2	
77	JACKSN	RS	0．4 0．8－0．2	1.0	1．4－0．3	1.1 1．4－0．3	1.1	1．5－0．3	
78	chattn	TN	0．1 0．8－0．2	0.7	1．4－0．2	$0.71 .5-0.2$	0.7	1．5－0．3	
79	YGSİ：	OH	$2.42 .5-0.5$	2.8	2．9－0．5	2．8 2．9－0．6	2.9	3．0－0．6	
90	SPEND	IN	$2.32 .5-0.5$	2.7	2．9－0．5	2.7 3．0－0．5	2.8	3．0－0．5	
81	h．．日リア	NM	0．0－g．2－0．2	0.6	0．4－0．2	0.6 0．4－0．2		$0.5-0.2$	
82	prways	IN	2.4 1．5－0．5	2.7	2．9－0．5	2．8 3．0－0．6	2.9	3．1－0．6	
83	PFORIA	IL	2.34 5－0．5	2.8	3．0－0．5	2．8 3．1－0．6	2.9	3．1－0．6	
94	；ovvle	NC	－0．1－0． $1-0.1$	0.7	0．6－0．2	0.7 0．6－0．2	0.7	0．6－0．2	
85	SIOUXP	SD	－0．2－1．1－0．1	0.5	0．6－0．2	0.5 0．6－0．2	0.6	0：6－0．2	
85	Eva：！S	IN	$1,4 / 1.7-0.3$	1.7	2．0－0．4	．1．7 2．0－0．4	1.8	2．0－0．4	
87	brgona	12	$0.60 .8-0.2^{\circ}$	0.9	1．1－0．3	0.9 1．1－0．3	1.0	1．1－00．3	
88	Resumz	－ $\mathrm{x}^{\text {x }}$	－0．1－0．1－0．1	0.4	0．4－0．2	0．4 0．4－0．2	0.4	0．4－0．2	
89	DULITH	\％	－0．0－0．1－0．1	0.4	0．3－0．2	0．5 0．3－0．2	0.5	0．3－0．2	
90	nHLISG	W	0．1－0．2－0．2	0.6	0．3－0．2	0．7 0．3－0．2	0.7	0．4－0． 2	\square
91	Liscin	nE	－0．0－0．1－0．1	0.6	0．5－0．2	0．6 0．5－0．2	0.6	0．5－0．2	
92	LA NS NG	P1	0．4－0．7 0.2	0.9	0．2－0．3	0.9 0．3－0．3	0.9	0．3－0．3	－
93	iadiss	WI	$1.41 .1-0.3$	1.6	1．8－0．4	1．6 1．9－0．4	1.7	1．9－0．4	
94	COLJMB	GA	$0.40 .4-0.2$	0.8	1．2－0．3	0.8 1．2－0．3	． 0.8	1．2－0．3	
95	Aツhail	TX	－0．1－0．1－0．1	0.4	0．3－0．2	0．4 0．3－0．2	0.4	0．3－0．2	
96	HuNisy	1.1	$2.12 .6=0.4$	2.4	2．9－0．5	2．5 3．0－0．5	2.6	3．1－0．5	
97	RCCKFD	IL	1.4 1．7－0． 3	1.5	1．8－0．4	$1.61 .8-0.4$	1.6	1．9－0．4	
98	Pin：0	ND	－0．2－0．1－0．1	0.5	0．6－0．2	0.5 0．6－0．2	0.5	0．6－0．2	
99	MONZOE	IA	－0．1－0．1－0．1	0.9	0．8－0．3	0．9 0．8－0．3	0.9	0．8－0．3	
100	COLJMB	SC	1.1 1．7－0．3	1.6	2．1－0．4	$1.62 .2-0.4$	1.7	2．2－0．4	

that provide traditional services only: improved reception plus the distant signals that are allowed by current rules. Actual cable penetration will depend on future regulatory decisions, development and consumer acceptance of new cable communications services, and other factors that are now impossible to predict with any precision.'. Our moderately high cable penetration assumption is intended to include some allowance for the effect of a possible relaxation of distant siğnal restrictions ànd/or néy services.
\therefore For our first set of projections we assume a minimum penetration of 30 percent: Specifically, we assume that whatever the fraction of hotmes in a market that did not subscribe to cable in 1974, only sevenf. tenths of that frattion will not subscribe in the future. So in a market with no cable sübscribers at all in 1974, we use 30 percent penetration for our cable projections. With 40 percent in 1974, we use 58 -percent for the projections, and so on'. The maximal penetration in any market would increase from a current value of 69 up to an. assumed value of 78 .

We also maintain the assumpttons of the base case, that is, that market size and wealth grow in pace with BEA projections, and UHF set penetration reaches 100 percent in 1980. Dur higher assumed cable penetration is used in all years, even 1974. This way we can see what its effect would be in the absence of the assumed base-case developments. The results of using these assumptions in our preferred equation are shown in Table 6 in comparison with the preceding results of the base case in Table 2. Table 6, column 1, shows the predicted number of UHF stations with cable. Column 2 is the adjusted number of stations taking into account the constant adjustment factor described previously, and column 3 shows the difference in the predtcted number of stations between the base case and the situation where we take explicitly into account the effect of cable. Thus, for example, in Table 6 for New York, column 1 shows 3.3 stations and after reducing the number 3.3 by the adjustment factor of 1.4 , we have 1.9 stations, in comparison with 2 stations in Table 2. The difference of -0.1 station shows the effect
of cable, that is, a reduction in number of UHF stations by 0.1. . By examining all markets together for the 1990 projection, we see in column 3 that in only three cases does the effect of cable cause a reduction of as much as $\mathbf{- 0 . 2}$ of a station. In virtually all markets the reduction is -0.1 station, and in some it is 0 .

Table 7 shows our upper limit projections for the impact of cable. We use our four-year equation together with assumed levels of cable penetration ranging from 50 to 85 percen. Specifically, 'we assume that the percentage of households not subscribing to cable in 1974 is reduced by a factor of one-half in each market. We consider these figures to be optimistic upper bounds on the cable penetration. that can reasonably be expected in the foreseeable future. As in Table 5, column 3 in Table 7 shows changes relative to the base case" for the four-year equation, Table 3. . Thus, for the 1990 projection in the New York market, column 2 in Table 7 shows 3.9 stations in com'parison with 4.8 stations in column 2 of Table 3 base case projections, or a difference of -0.9 stations (shown in column). That is, the effect of cable in this case would be to reduce the number of UHF stations projected in 1990 by 0.9 for New York.

Table 8 summarizes the cable projections and includes as column 2 the difference that cable makes in comparison with the summary in . Table 5. Thus, in Table 8 the narrow count for Table 6 for 1974 in column 1 shows 92 stations, in comparison with 97 stations for 1974 in Table 5, or a net loss of UHF stations of -5 . As another example, Taple 8 with the addition of 27 excluded stations shows, a. total of 160 stations for 1990 in column 1, in comparison with 192 stations in Table 4, for a net decrease of 32 stations. Table 6 , which includes. the relatively small effects of cable on the growth of UHF, shows only a modest decrease in the total number of stations, with the maximum. of 10 show in column 1 for 1990. When we increase the penetration of cable in our assumptions described for Table 8, and use the fouryear 1971-1974 equation for our projections indicating paximum effects of cable, we see afreduction of 41 stations for 990°, in comparison with the base case in rable 5.

Table 8

SIMMARY OF CABLE PROJECTIONS

- Perhaps one of the most interesting aspect's of Table 8 is that even assuming the maximum impact of cable shown in Table 7, the number. of UHF stations would continue to grow beyond that operating in 1974. The 124 stations shown for 1974 in Table 5 would grow to 152 by 1980 under the assumption that excluded stations are included at the flat totalof 27 ; and hould continue to grow to 156 by 1985 and to 160 by 1990--for a net gain of 36 stations over the 15 -year period. Thus, under our most extreme assumptions about the effect of cable on UHF, the number of UHF stations would not decline over the 15 -year period but would continue to exhibit at least some modest growth.

V. EFFECTS OF VHF DROP-INS

The Office of Teiecommunications Policy ${ }^{*}$ has proposed the possibility of "dropping in" up to 83 VHF stations in the top 100 markets. This would require reduction of minimal adjacent channel separation by 15 percent, reduction of minimal co-channel separation by 17.65^{\prime} percent, plus an additional reduction of as much as five miles if necessary to permit a drop-in, and the reassígnment of some presently unused channels.

BASIC QUADRATIC EQUATION

Including additional VHF stations is easy in our model because we already have as one of the variables the number of VHF stations that 'operate in each of the 197 markets and the effect that their presence has on the number of UHF stations. Thus, we can use the base case assumptions in Table, 2 with our basic quadratic equation and add the number of VHF stations pecified by OTP under its most liberal assumptions in whichever markets they would operate. Tabje 9 shows the 100 , top markets again but under the assumption that 83 additional VHF stations are distributed among the markets indicated by asterisks after the market name. **
,
Especially important, the basic quadratic equation provides no basis for \ddagger udgment as to either the technical feasibility or the economic, viabi) ity of the drop-ins themselves. The proffections in Table 9 simply ssume that all proposed drop-ins are on the air. However, the alternative projections based on our coristrained equation below do take economic viability into account.
*"Further evaluation of additional VHF-TV channels that could be assigned in the top 100 markets," attachment to letter from Clay T . Whitehead, OTP, to Richard E. Wiley, FCC, May 14, 19.74.
${ }^{*}$ Plus four other markets that are among the top 100 in the ranking used by OTP but below that in our ranking. Our ranking is the same as the list in the 1972 cable television regulations; OTP uses a different, and unidentified, list. Seven of the 83 stations would be assigned to these four other markets, leaving 76 drop-ins for markets on our list of the top 100.

Table 9

83 VHF DROP-INS IN THE BASIC QUADRATIC - Equation

	1974 PROJ	1980 PROJ	1985 PROJ	1990	0 PROJ
	(1) (2):(3)	(1) (2) (3)	(1) (2) (3)	(1) 1	(2) (3)
	-3.42.0 0.0	5.44 .00 .0	5.64 .3 0.0	6.04	4.60 .0
	4.86 .00 .0	6.57 .70 .0	6.98820 .0	7.48	8.60 .0
*	1.83 .20 .2	2.33 .70 .2	2.513 .80 .2	2.63	3.90 .3
	$1.7 \times 3.00 .0$	2.23 .40 .0	2.33 .50 .0	2.43	3.60 .0
	1.12 .0000	1.52 .40 .0	1.62 .50 .0	1.72	2.50 .0
	1.42 .00 .0	2.02 .60 .0	2.02 .70 .0	2.12	2.80 .0.
	1.83 .00 .0	1.63 .60 .1	1.73 .70 .1	1.83	3.80 .1
*	$1.01 .7-0.3$	1.3 2.0-0.4	1.4 2.1-0.4	1.52	2.2-0.4
	1.01 .00 .0	1.31 .40 .0	1.41 .50 .0	1.51	1.60 .0
*	0.5-0.3-0.3	$1.10 .3-0.4$	1/.2 0.4-0.4	1.20	0.4-0.4
	0.711 .00 .0	1.11 .50 .0	1.2. 1.60 .0	1.31	1.60 .0
*	0.91 .10 .1	1.51 .70 .2	1.6.1.8 0.3	1.7	1.90 .3
	0.40 .00 .0	1.10 .70 .0	1.20 .80 .0	1.30	0.90 .0
	0.81 .00 .0	1.21 .40 .0	-3,500	1.41	1.60 .0
*	0.8 1.7-0.3	$1.12 .0-0.4$	1.2-2.1-0.4	1.32	2-1-0.4
*	0.4 0.9-0.1	$0.91 .4-0.0{ }^{4}$	$1.01 .5=0.1$	1.0	1.5-0.1
	0.81 .0 .0 .05	1.21 .40 .0	1.31 .50 .0	1.4	1.60 .0
*	0.7 1.7-0.3	$1.12 .1-0.4$	1.2 2.2-0.4	1.3	2.3-0.4
	1.4.2.0 0.0	1.92 .50 .0	$2.0 \quad 2.60 .0$	2.1	$2 . t 0.0$
*	0.60 .300 .3	1.31 .10 .5	1.51 .20 .5	1.6	1.30 .6
	0.71 .00 .6	1.31 .60 .2	14.4	1.6	1.90 .3
*	0.3 0.6-0.4	0.7 0.9-0.5	$0.81 .0-0.5$	0.8	1.1-0.5
*	0.6 0.7-0.3.	0.9 1.0-0.4	$0.91 .0-0.4$	1.0	1.1-0.4
	0.71 .00 .0	1.21 .40 .9	1.21 .50 .0	1.3	1.60 .0
*	0.1-0.2-0.2	0.7 0.4-0.4	0.8 0.4-0.4	0.9	0.5-0.4

27 CCLUMB OH
28 TAMPA FL
29 PORTÍN OR

30 NASHVL TN
31 NEWORL LA

* $1.01 .00 .0 \quad 1.41 .410 .0$ 1.5 $1.50 .0 \quad 1.61 .6 \quad 0.0$
$\begin{array}{llllllll} \\ * & 0.1-0.2-0.2 & 0.8 & 0.4-0.4 & 0.8 & 0.5-0.1 & 0.8 & 0.5-0.1 \\ 0.5-0.4 & 0.9 & 0.5-0.4\end{array}$
$0.71 .00 .0 \quad 1.0^{\prime} 1.3 \quad 0.0 .11 .11 .40 .0 \quad 1.21 .50 .0$
32 DFNVER CO
33 PROVIDRI
34 ALGAAY NY
35 SYRACU NY
36 36 CHARLS WV
:

0.02-0.1-0.1	0.70 .440 .1	0.8 0.5-0.1	$0.90 .5-0.1$
0.70 .00 .0	1.10 .40 .0	1.20 .50 .0	1.20 .60 .0
c. 2-0.3-0.3	0.6 0.1-0.4	0.7 0.2-0.4	0.8 0.2-0.4
$1 . .4{ }^{\circ} 0.00 .0$	0.80 .40 .0	0.90 .40 .0	0.9 .0 .50 .0
c.0-0.4-0.4	0.4-0.020.5	0.4 0.0-0.5	0.5 0.1-0.6
0.2-0.3-0.3	0.7 0.2-0.4.	0.7 0.2-0.4	0.8 0.3-0.4
0.4 1.1-0.9	0.7 1.4-1.0	0.7 1.5-1.1	0.8 1.5-1.1.
0.40 .00 .0	1.00 .60 .0	1.10 .70 .0	1.20 .10 .0
0.5 0.5-0.5	0.9 0.8-0.6	1.0 0.9-0.7	1.0 1.0-0.7
0.6 0.5-0.5	1.0 0.8-0.7	$1.00 .9-0.7$	1.1 0.9-0:7
1.22 .00 .0	1.72 .50 .0	$1.820 .6 \quad 0.0$	$1.92: 70.0$
0.3 0.9-0.	0.7 1.3-0.1	0.8 1.3-0.1	$0.91 .4-0.1$
0.3 0.7-0.3	0.6 1.0-0.4	$0.61 .1-0.4$	$0.71 .1-0.4$
0.51 .00 .0	1.01 .50 .0	1.01 .50 .0	1.12 .60 .0
$0.10 .8-0.2$	0.6 1.3-0.3	0.71.4-0.4	$0.11 .4-0.4$
0.30 .00 .0	0.90 .60 .0	0.90 .60 .0	1.00 .70 .0
0.3-0.0-0.0	1.00 .70 .1	1.20 .9	1.41 .10 .3
$4.23 .0 \cdot 0.0$	4.93 .70 .0	5.14 .00 .0	5.44 .20 .0
0.1-0.4-0.4	0.3 0.1-0.5	0.4 0.2-0.5	0.5 0.3-0.5

* Indicates market with one or more $V \mathrm{HF}$ drop-in stations: Column (1): Raw projection.
Column (2): Adjusted projection.

Table 9 (contd.)

To interpret Table 9, let us take the case of Fresno, California (market no. 72). There the effect of VHF drop-ins is especially great, since 5 UHF stations now operate in the Fresno market (one of the (few deintermixed ${ }^{*}$ markets in the United States) and since in the OTP list as many as 5 Vif drop-ins could be included in the: Fresno market. For. 1974, Table 9, column 1 indicates, that if 5 VHF stations were operating in the Fresno market in 1974, there would be 0.0 UHF syations in the Fresno market. Adjusting this upward by 0.9 constant adjustment factor, traken from Table 2, we compute a figure of 1.0 UHF station in column 2. ${ }^{* *}$ Column 3 in the 1974 projection shows $-4: 0$ stations, which is the difference between the 5 stations that actualiy operated in Fresno (Table 2, column 2, 1974 projection) and the one station predicted with VHF drop-ins.

Simflarly, in 1980 our Fresno base case projects 5.4 UHF stations while in column 2 in Table 9 , we project only 1.0 for a tot loss of 4.4 stations as shown in column 3. By 1990 the net loss is 4.6 sta-: tions, shown by the difference between the projection of 1.1 stations with VHF drop-ins for 1990 and 5.8 stations in the base case. Rounding the 4.6 upwards as a rough, approximation, we conclude from our analysis that the inclusion of 5 VHF stations in Fresno would cause the loss of 5 UHF stations in Fresno, so that in effect the UHF stations would be converted to VHF.

We must note one peculiarity in our results: Wè would expect that in all cases the insertion of a VHF in a given market would reduce the number of UHF stations in that market, or at the limit have no effect, as shown by the minus figures or the zeros in column 3 of the projections in Table 9. However, in a few large markets-Chicago, San Fran-: cisco, Dallas, Seattle, and Miami--we see positive figures suggesting that the number of UHF stations would rise rather than decline (though by small amounts) as a esult of VHF drop-ins. This counterintuitiye result is propably a onsequence of quirks in our data resulting from large variati ns in the character of the market listed in our tables.
*An intermixed market has both VHF and UHF channeil assignments; a deintermixed market, in contrast, has only one kind or the other.
${ }^{* *}$ Here again, an apparent discrepancy of 0.1 occurs, as described in the footnote on p. 25.

For example, New York has almost twice as many television households as Los Angeles, and one fewer VHF station, and yet it has only 2 UHF stations compared to Los Angeles' 6. The viability of additional UHF stations in the Los Angeles market probably reflects the fact that it covers a far larger geographical area containing a number of separate commities (such as San Bernadino and Fontana). Because our equation tries'to fit this and other anomalies as well as possible, the estimated equation says that in some very large markets more VHF stations result in more UHF stations. But again the amounts are small; only in the case of Seattle would the number of additional UHF stations round out to a whole station. In the others they would ail round down to 0 .

CONSTRAINED EQUATION

An alternative approach that avoids this counterintuitive result and in addition provides a basis for judging the economic viability (though still not the technical feasibility) of the drop-ins themselves is based on our constrained equation. *, This equation implies an "unlimited-vHF" relationship that projects the number of VHF stations a market could economically support if there were no limits on availability of VHF spectrum. We use that relationship to calculate the numbers in column 1 of Table 10. ' Por example, we calculate that New 'York could support 18.2 stations in 1974 if all cauld operate on VHF. The second column of Table 10 shows the number of existing stations in each market. Column 3 shows our projection of VHF stations assuming all 83 proposed drop-ins were allocated. In some cases this number is limited by allocations and in some cases by ecc nomics. For example, New York now has 6 commercial VHF stations and would continue to be limited to 6 because it does not get any drop-ins under the (proposal. Chicago could support 10.1 VHFs , according to our projections, but it is now limited to 4 . The one drop-in proposed by OTP would be viable, so columin 3 shows 5 stations. In contrast, the 2 drop-ins proposed for Seqttle would probably lie fallow. Seattle already has 5 VHFs

[^2]

[^3]Table 10 (contd.)

and we project 5.4 as the number it could support with unlimited VHF allocations.

We use, the number of VHF stations from Table 10 , column 3, and our constrained equation to project UHF stations in Table il. Column 1 is the number of UHF stations calculated directly from the constrained equation. To get column 2 from column 1 , we apply the constant adjustment factor from Table 4.* Column 3 is the difference between these projections, 弱务 the base case projections using the constrained equation in Table. 4. That is, column 3 shows what difference VHF drop-ins make in the number of viable UHF stations.

Table 12 shows the summary of projected stations with VHF drop-ins. The minus figures show the reductions below the base case in Tables 2 and 4. The plus figures are drop-ins projected to be viable. Three features are particularly notable. First, our projections indicate that a maximum of 57 . VHF drop-in stations would be viable out of a total of 76 proposed by OTP for the markets on our list of the top 100. ** Second the inclusion of as many as 83 VHF drop-ins would reduce the number of UHF stations largely as a consequence of UHF stations converting over to the new VHF assignments. Third, even with this reduction of UHF stations, there would continue to be some growth in UHF, partly as a consequence of many markets lying outside of those affected by drop-ins. Thus, with the inclusion of the flat total of 27 "excluded" stations, the projected number of UHF stations in 1990 would run to 168 using the basic quadratic equation of 174 using the constrained equation, in comparison with the 124 in the 1974 base cases shotn in Table 5.***

[^4]VIABLE UHF STATIONS WITH DROP-INS, CONSTRAINED EQUATION

* Indicates market with one or more VHF drop-in stations.

Column (1): Raw projection.
Column (2): Adjusted projection.
Column (3): Difference from base case projection.

Table ll (contd.)

Column (1): Projected stations.
Column (2): Difference from base -case totals.

71 -

So far we have examined the effects of growth of conventional cable television and the possibility of VHF drop-ins on the future growth of UHF broadcasting. Another question, of course, relates to the extent through which new technologies and services may also affect the future of UHF. The most immediate possibilities are

1. The growth of pay television both by cable and by conventional broadcasting stations through scrambled signals
2. The continued development of videodisc and videocassette technology
3. The further development and commercialization of fiber

PAY TELEVISION
Probably the most important development in television in recent years is the emergence of pay television through the use of cable channels. In nearly all cases special programming is offered over a special channel. In addition to the basic monthly dable subscription fee, the subscriber pays an amount for which he receives a series of programs otherwise unavailable on telowision. (The system of per-channel charge stands in contrast to payment on a strictly program-by-program basis, which, because of technical"difficulties encountered thus far, is offered on vgry few cable systems.) 'To this time, the basie content of pay television has consisted almost entirely of movies newer than those shown on conventional television and sports that otherwise would not be available.

We have been witnessing a rapid growth in pay television using cable channels. For example, the cable. industry now has about 200,000 pay subscribers, about double the number estimated a year or so ago.

TelePrompTer, the nation's largest cable operator, has over 33,000 pay cable subscribers, who reportedly will contribute about $\$ 3$ million in revenues in 1975. In four TelePrompTer systems where pay tele-
 took the new service.*.

In addition, plans have recently been announced to use satellites and terrestrial microwave to link cable systems together for lower cost use of pay television channels. Home Box Office, óne of the leading firms in offering pay television packages to cable operators, announced in April 1975 that it had contracted with RCA to buy $\$ 7.5$ million worth of satellite transponder time over five years. A spokesman for Home Box Office foresees as many as one million pay cable subscribers within five years. UA-Columbia Cablevision plans to join in the Home Box Office network with $\$ 5,000$ of its subscribers from Florida through the Midwest. American Television Corporation has also announced plans to build earth stations to feed Home Box Offec programs to nine of its systems with a potential of 250,000 subscribers. TelePrompTer has announced an agreement with Home Box Office in plans that would of fer a pay TV service to as many as 170,000 TelePrompTer subsćribers. At this writing Home Box Office has about 115,000 customers, so that these new hookups may enable its pay TV network to offer service to as many - . ass a million customers when the Home Box Office and earth stations are in place by the end of 1976. . . Optical-Systems, another pay television service, plans to begin operation of a microwave network'in the West Texas area, in addition to its networks already operating in the Northern and Southern California markets.

The overall effect of these pay television networks will, be to reduce the cost of the service by providing live interconnection as a

[^5]substitute for the bicycling of videotapes and film. With programming being fed from a central location, cable system operators will not need to make major outlays for origination equipment, enabling even small cable operators to offer pay service.

Some forecasts have been made of the growth of pay television, although at this point data are still, too sparse to permit projections with much confidence. Were pay television a service that had operated for many years, as, for example, VHF broadcasting stations are, then its presence could be quantified and included in our equations along with the other variables drawn from the cross-section of 197 markets in 1974. But lacking this body of experience, we have no good way to project the path of pay television ρ vet the next fifteen years. A recent study conducted by Cox Broadcasting estimates that by 19804.8 percent of U.S. homes will subscribe to pay cable, and that 10 percent will subscribe by 1985.* Stanford Research Institute is preparing a study on the future growth of pay television for the Office of Telecommunications Policy, but the report has not yet been released.

In contrast to the rapid growth of pay television a cable, the use of scrambled signals transmitted by broadcasting stations and descrambled at the home television set with a special terminal has had rough sledding. Technical problems and high costs have continued to plague attempts to provide pay television over the air. Several plans have been announced to use UHF stations for pay service in a few major markets, such as Chicago and Los Angeles; but at this writing there is not yet a single over-the-air broadcasting station transmitting special pay programming,

With respect to the first, a major concern of the broadcasting industry has been that those who watch pay television will do so at the expense of watching conventional television (under the assumption that the total viewing time of the individual will not rise as a consequep of neminferings), so that the audience for conventional television will fall. The analysis in Appendix B below indicates that not much new audience will be attracted to more of the same kind of programing. That is, the assumption is probably correct that total viewing will not . rise if the kinds of new offerings run much along the lines of what is already available. Thus, the increase in offerings of newer movies

Lwhere there is already a rich fare of older movies will, probably not increase total viewing time. If so, the concern that pay television :will take away audience for this kind of fare is well founded.

However, another recent Rand report, dealing with viewing patterns during the Watergate hearings, suggests that sufficiently dissimilar programming will attfact new audience as well as siphorfing off some of the existing audience. ${ }^{*}$ Thus, if pay television offers substantially new kinds of programming, going beyond simply offeriog newer movies than otherwise would be shown, then perhaps total audience will rise. But at best this would occur only when the pay television industry becomes a major factor in the programming market $s a$ that new kinds of programming, perhaps in the educational and cultural fields, emerge to increase total viewing time.

[^6]With respect to the second point above--the impact on television programming--concern has been widely expressed that pay television entrepreneurs will btd away programs from broadcasters dependent upon commercial advertising. The FCC, keenly aware of this potential probleq, has established a set of rule designed to prevent the siphoning of pro-. grams from conventional television by restricting the nature of programs, (for example; relatively new movies not typically shown on conventional television) that can be ma available to pay television.

Moreover, there is one Counter force at work: if pay television develops and provides an important source of funding for programing; then perhaps, in the longer term, programs produced for pay television may eventuadly be shown on conventional television (on a delayed basis) to increase rather than decrease the total amount of programming available to conventional television. In fther words, in the same way that the existence of movie theaters, competing with conventional teleyision, provides a funding source for programs (new movies) that might not otherwise be produced, they provide a source of programming (these same movies with a time delay) to conventional television. With this factor operating more powerfully as pay television grows, and with the continued operation of the FCC antisiphoning rules that prevent or at least reduce . direct competition for programs between pay television and conventional broadcast, we shall assume in this section that the effect of pay television on programming sources and volume will remain on balance neutral. Its main detrimental effect on conventional broadcasting, if any, will arise from siphoning off audience.

Finally, if pay television through use of broadcasting stations ever does become significant, it could stimulate the growth of UHF broadcasting, since UHF stations are the ones-most likely to be used "For pay operation. İ̀ this case, some existing UHF -stations might switch a portign of programming to pay television, and perhaps new stations would emerge. But there have been too many setbacks in the over-the-air pay television field to predict with confidence that this factor will ever be an important consideration in the future demand for radio spectrum.

VIDEODISC TECHNOLOGY

Videodisc technology has been under development for years. After a number of delays, two systems appear to be close to entering the market. RCA has developed one using a "capacitance" pickup; optical playback. seems to be the closest competitor. According to one source, the price of this player is expected to be around $\$ 400-$ a fairly high price for the home, but one low enough to offer possibilities of intitutional use. The second system is one developed by MCA-Phillips, a unit using optical playback and involving a price of about $\$ 500$.

Although videocassette players have an advantage over videodisc of being able to record, they suffer the disadvantage of higher cost. For example, RCA has also developed its Selectavision Mana Tape Player-Recorder, but its cost is likely to run $\$ 800$ to $\$ 1,000$. As another example, the SONY Corporation has announced that it. will. begin marketing a $1 / 2$-inch videocassette system for the home. The unit reportedly will be priced in Japan at $\$ 788$, in comparison with a price of $\$ 1,297$ for SONY's standard $3 / 4$-inch hardware and in contract to the substantially lower prices of the videodisc units noted above.

Of course, it is impossible to predict at this point how far videodisc and cassette technology will develop over the next 15 years in terms of quality, reliability, and cost. In any event, whatever efffact it has on over-the-air broadcasting will, as in the case of pay television, likely take the form of siphoning audience away from conventional over-the-air broadcasts; that is, unless video disc services provide quite different programming from that available over-the-air

[^7](and therefore increase total viewing time as described above) then growth of videodisc aldiences would be at the expense of both conventional over-the-air broadcast and cable.

FIBER OPTICS

The use of glass fiber as a communications channel has excited the imagination of many because it offers a tremendous capacity, going far beyond that available even over cable television. If remaining technological difficulties can be resolved, fiber optics might find their first use in the trunking of circuits by telephone companies on high-density routes and perhaps as a substitute for conventional cable television into homes. The last-named application is of interest here. If development of fiber optiespeaches the point of application in the television field, we would visualize it as providing a means of simply reducing the costs of cable television to the home--that is, a straightforwiard substitution of fiber optics for copper that might both increase capacity and reduce costs of installing and operating cable plant. Thus, its main effect would be to increase the penetration of cable along the lines of the assumptions we have made about high levels of cable penetration in Section IV above. Thus, by itself, fiber optics would pake away neither programming nor audience from conventional

* broadcasting. But by serving as a lower-cost substitute for conventional cable television construction, it might widen the market for : $":-$ cable and in that manner serve to $\dot{s i p h o n ~ a d d i t i o n a l ~ a u d i e n c e ~ f r o m ~ o v e r-~}$ the-air broadcast.

BROADCAST SATELLITES

Finally, a question arises about the prospects of broadcast satellites that would transmit signals directly to the home as a substitute for broadcasting from conventional broadcast stationis. Although an analysis of broadcast satellite technology and its prospects lies

- Videodisc services face the problem of programming. Some observers question whether motion picture discs will sell in sufficient quantity as prices contemplated, since the number of times a motion picture can be enjoyably viewed is limited. Perhaps rental libraries will play an important role, although this prospect is hard to assess today.
** A recent technical discussion of fiber optics is contained in

Beyond the scope of this study, we must say that despite all the excitement that has been generated by satelilite technology in the past, the • future of direct satellite broadcasting to the home does not appear bright. In all cases of satellite plans we have seen, an additional cost would be imposed for the ground installation of a rooftop antenna' and converter to provide access directly into the television set. This antenna and converter equipment would probably cost several hundred dollars. Were this level of expenditure the only way that the home viewer could obtain television, then direct satellite broadcasting might be viable within the foreseable future. But with the existing well developed broadcasting system in the U.Ss, it is difficult to imagine the typical home viewer paying for a śpécial rooftop antenna and other equipment just to receive one or a few additional channels. And of course, in addition to expenditures for home equipment, the cost of developing, manufacturing, launching, and.operating dir£ct broadcast satellites would in one way or another have to be covered.

As satellite technology advançes, we would expect satellites to be-. come progressively more attractive to link relatively small stations for both cable and broadcast station networks, and directly to serve institutions such as hospitals and schools with special rooftop antenna installations. But these applications are quite different from satellite-to-home direct broadcasting.

THE RANGE OF OUR PROJECTIONS

Since we assume, that any effect of the preceding technologies and services on 'over-the-air broadcasting is through siphoning of audience and since it is so difficult, indeed, impossible to determine_how these technological advances and services will develop in the future, we shall make three projections based on alternative assumptions about the extent
("pptic Eiber Communications Systems," Conference Record, Volume II, International Conference on Communication, San Francisco, June 16-18, 1975; Recent popular accounts of fiber optic developments are contained in Access magazine, March 24 and April 21; 1975.
of audience siphoning--10 percent, 20 percent, and 30 percent.*
Our results ar* shown in Tables 13 through 16. -In Table 13, for example, we show the effect of a 10 percent audience loss compared to the base case shown in Table 2. To consider one example, in the New York market for 1990 , we project 5.6 stations in Table 13, column 1 , and adjust it downward to 4.2 by the 1.4 "constant adjustment factor" described previously for the New York market. The basecase projection of 4.6 for New York in Table 2 is subtracted from the projection of 4.2 to obtain the -0.4 stations shown in column 3 of Table 13. Similarly, Table 14 shows the resuits of a 20 percent loss of audience, and Table 15 the results of a 30 percent loss of audience.

Running down the list of figures for individual markets in column 3 of Table 15, we find that even with the severest audience losses, 30 percent, the impact in individual markets is typically small, running on the order of -0.2 stations. The impact is heaviest in places such as New York, Los Angeles, Fresno, and Fort Wayne; which already contain two or more UHF stations.
-The summary Table 16 shows the net differences from the base-case analysis of Table 2. As expected, with increasing audience siphoning shown in Tables 13-15, the impact on UHF development becomes increasingly more severe. If we include here the "excluded" stations at the of lat 27 us d in other summary tables, we find that in 19909 fewer stations are projected with a 10^{*} percent audience siphoning; 18 fewer stations with 20 percent audience siphoning; apd 27 fewer stations with 30 percent siphoning. But the pattern here is much as shown in other summary tables: despite the possible impact ϕf new services on UHF, including even the relatively severe case of 30 percent audience

[^8]Table 13
「
TEA-PERCENT LOSS-OF AUDIENCE TO NEW
VIDEO SERVICES

[^9]

Table 13 (contd.)

B. 2 FTHAYN IN 83 PEORIA IL 84 GFNVLE NC 85 SIDUXF SO 8C EVANSV IN

87 BA PCVR LA 88 कfaumitix gO DULUTH MN 40 WHLING WV 91 LINCLN NE

92 LANSNG MI 93 MACISN WI 94 COLUME GA 95 ANAPIL, iX 9E.HGNTSV AL

97 RCCKFO IL 98 fargo no 99 庳CARCE LA 100 CCLUMB SC

Table 14

TWENTY PERCENT LOSS OF AUDIENCE TO NEW VIDEO SERVICES

Table 14 (contd.)

THIRTY PERCENT DOSS OF AUDIENCE TO NEW VIDEO SERVICES

Raw projection.
Column (1):
Column (2):
Column (3):
Adjusted profection.
Difference from base case projection.

Table 15 (contd.)

8
loss, the number of UHF stations continues to grow. The 167 stations
projected for 1990 in Table 16 is still substantially higher than the
124 stations in our 1974 base case. \square

VII. EFFECTS OF DECREASED UHF HANDICAP AND IMPROVED ECONOMIC CONDITIONS

Even when UHF set penetration reaches 100 percent--as we assume - will happen for our projections to 1980 and beyond--UHF stations will continue to be handicapped by recéption and tuning deficiencies relative VHF stations. However, one expects that this so-called UHF . handicap will be reduced over time as UHF stations increase their trang mitter power, more people install speçial UHF antennas, and new tele-. vision sets with better receivers and pushbutton or detent tuners for UHF come into wider use.

Quite a number of quantitative estimates of the handicap are available. Perhaps the first is found in an FCC Research Branch report (1970), * which attempts to measure the handicap in terms of relative audiences attract by VHF and UHF stations. An alternative estimate of the audience handicap is in Park (1970). ${ }^{* *}$ Fischman (1971) ${ }^{* * *}$ criticizès Park's estimate and provides ohis own. Besen (1973) ${ }^{\dagger}$ estimates the handicap measured in terms. of time rates, that is, the prices*at which stations would sell broadcast time. Our own attempts to construct an economic model of station viability produced several estimates of the handicap measuret in terms of a variety \because of financial quantities. These include station shases of market revenue (Appendix D, Tables D. 1 and D.3); reported profits, both gross and net of depreciation (Appendix E, Tables E. 3 and $L .7$); the revenue received for any levei of audience?(Appendix F, equation ($F .1^{\prime}$)); and the cost of attracting any level of audience (Appendix F, equation (F.2')).

* Research Branch, Broadcast Bureau, Federal Communications. Commission, "The Economics of the TV-CATV Inter'face," Staff'Report, July 15, 1970, pp. 6
** Rolla Edward Park, Potential Impact of Cable Growth on Television Broadcasting, The Rand Corporation, R-587-FF; October 1970, Pp. 31-33. ***
'Leonard L. Fischman, "Critique of Study by Rolla Edward Park on Potential Impact of Cable Growth bn Television Broadcasting," Economic Reisearch Associates, February 1971, pp. 26-34; Appendix A to Edgar F. Czarra, .. Jr., ${ }^{\text {. }}$ and Michael S. Horn, Joint Corments on Behalf of 21 Broadcast Stations,

Stanley M. Besen, The Value of Television Time and the Prospects for New Stations, The Rand Corporation, R-1328-MF, October 193, passịth.

These estimates taken together provide strong support for the statement that the UHF handicap e is substantial and significant no matter how
3 it is measured. They alpo provide some indication that the handicap is decreasing over time. * However, none of themis of direct use to us in this section. The season is that all of the previous estimates are in terms of audience, or revenue share, or reported profits; or some other measure that does not translate into station viability; as discussed in the Introduction. We must develop a method that yields asti/ mates of numbers of viable stations in each market as the handicap de- . chines. We report results of two such methods in this section.

FOUR-YEAR EQUATION

- We attempted to estimate the -rate of decline in the UHF handicap 'over the four-year period 1971-74** as a rough guide for projecting declines in the future. To. do this, we included separate texas in the viable stations formula to estimate a "year effect" for each of the four years. We expected that the estimated year effect would be larger for 1974 , than for 1971--that is to say, even if all the other variables in the equation mincing UHF set penetrate kept exactly the same values from 1971 to 1974, the number of UHF stations would. still increase, reflecting a decline in the. UHF handicap. We were surprised to find, instead, that the year feces decreased from 1971 to 1974.*** If the year effect's reflected' of y tends in the UHF handicap, this would mean "that the handicap increased overfhis four-year period. However, we I cannot believe that the ${ }^{\circ}$ handicap actually did increase. Rather, we expect that of actors that aye not included in our modefsuch as high " ?intèrest rates and unsettled economic. conditions, depressed the number of UHF stations in 1972 , 1973 , and 1974 , relative to 1971 . The astimated year effect, then, is a conglomerate measure of the effect of economic conditions, Uh x handicap, and all other factors that vary from

[^10]year fo year and affect the number of UHF stations but are not included as vafiables in our model.

Consequently, we are reduced th making essentially arbitrary assumptions about changes in the year effect and checking, to see what effect they have on our projections. For the projections in Table 17, wę assume that the net effect of decreased handicap and improved economic climate is such that the year effect returns to its 1971 level. We arbitrarily label this as a "moderate" decrease in the hamdicap and/or improvement ith economic conditigns. For Table 18 we assume an increase in the year effect that is twicers large as that reflected in Table 17 . "We call this a "large" dfeasexin handicap or improvement in the economy.

An important virtue of this method is that it emphasizes the significance of factors that vary fromyear to year and cannot be captured in an equation based on data ffom a single year. We have assumed chafnges in the year effect that are of the same order of magnitude as the change observed between 197̣1 and 1974, and the resulting changes in oụr plojections are substantial: see, for example, in summary Table 20, that when the "large" increase in year effect is combined with the $2 I$ "excluded". stations, the number of UHF stations in 1990 increases from 194 in the base case to 290--a difference of 96 stations. *
. On the other hand, theire are two significant drawbacks to this method. For ohe thing, the approach simply does not allow one to separate outthose effects which may be attributed to (1) chafges in the UHF handicap, (2) changes in the state of the econony, or (3) changes in all other factors which vary from year to year and which also influence the financial performance of television stations.

Another drawback is that it does not yield estimates of what would happen should .the handicap disáppear completely: Even if we were able

- to isolate a trend in the handicap using, this approach, it would show up as an increasing multiplicative term in the equation for number of viable stations, and we would have no way of knowing what value corresponded to the point of zerd handicap. In other words, in making projections we -4. Would have no way of knowing when we had gone beyond the point of zero handicap and begun teoject a UHF advantage.
${ }^{*}$ Adso, since consideration of general
ctors independent of the UHF handicap are
UfF development, the Comiston'will likely
in its future deli)Berations.

Table 18 (contd.)

CONSTRAINED EQUATION*

Consequently, we turn to another version of the viable stations model that does produce projections based on the complete disappearance of the handicap. We call this our constrained equation because it is , estimated subject to certain constraints on the coefficients of the variables, the technical details of witch are set out in Appendix A.

The basic idea behind the constrained equation is fairly straightforward. The method is" based on the following observation: The total number of stations., VHF and UHF, that a market would support if the handicap disappeared is equal to the number of vhf stations it would support
: werethere no limits on VHF spectrum allocations. Thus our. task reduces to estimating the lather quantity, of what we call the "unlimited" VHF revationship. Since all VHF allocations are in use in almost all markets; we cannot estimate an unlimited VHF relationship. directly. We know that the number of VHF stations is already bumping up against the ceiling of channel assignments, but we do not know how hard it is pushing in diffferment markets. One suspects that VHF allocations are very restrictive in some markets (Philadelphia and Boston, for example) and much less so in. others (say Seattle and Denver)'. If one could somehow separate out markets y here there is little or no pressure on VHF allocations,' one could use just these markets to estimate an unlimited -VHF relationship.

Our cons/ rained equation does something very much like that. We take the presence of UHF stations be an indication of pressure on VHF allocations. That is; if a market now supports a UHF. station, we are. quite sure that it could support another VHF station if allocations. permitted. The more UHF it supports, the greater is the presumed pressure on VHF allocations. To find the unlimited-VHF line, we first estimate the viable stations model (subject to constraints-described in Appendix A); this gives us a relationship between the number of UHF stations, number of vHs, television households, and other variables. We then find points of no. pressure on VHF allocations by setting, the number of UHF stations. equal to zerokand solving for the number of VHF stations. These points

[^11]constitute the unitmated-VHF line:
The urlimited-VHF line is. used to matse the projections in Table'. 19 The unlimited-VHF •line gives directly an éstimate of the total number of stations the market would support--WHF stations plus unhandicapped UHF stations. From this number we subtract the number of VHFs to get the projected number of UHFs in Table 19. Column 1 is the straight projection. Column 2 is column i plus or mfnus the constant adfustment factor for the constrained equation. Coluḿn 3 shows how much difference disappearance of the handicap makes by comparing these projections with the constrained". eguation base case projections in Table 4. , For example, disappearance of the handicap increases projected UHF stations in New. York in 1990.by 3.3. In. 974 , the prajected ${ }^{2}$ difference is larger- $\dot{9} .8$ stations--because UHF stations. in the base case projections suffer not just from the handicap but from incomplete UHF set penetration as well. The 9.8 station increase feflects removal of both burdens.

As shown in summary Table 20, the total number of UHF stations projected using the constrained equation assuming complete disappearance of the handicap (280) is about the same as the projection using the fouryear equation assuming a."large" decrëase in the handicap and/or Improvement in ećonomic conditịns '(290)

An apparent weakness of this second method is that it does not provide any estimate of the rate at which the handicap will decrease and when, if ever, it will disappear entirely. However, even if it were possible to isolate past trends in the handicap, its future course would remain highly speculative and heavily dependent on FCC policy changes such as those recently suggested by the Cóuncil. for UHF Broadcasting and others.

- *In September 1975 the Council for UHF Broadcasting filed a petition fo rulemaking to require that whenever a VHF antenna is affixed to a teleyision receivar by the manufacturer, an effective UHF antenna must be likewise affixed to the receiver, as one way to promote greater parity between UHF and VHF. The speed with which the UHF handicap is reduced will depend, upon FCC action regarding this petition, as well as in considering imposition of more stringent UHF tuner specifications and other approachis to reducing the UHF, handicap.

PROJECTIONS. ASSUMING UHF HANDICAP
DISAPPEARS, CONSTRA!NED EQUATION'ン

		MARKET.	
	1	MY	NY.
	c	L'A	CA
	,	CHCAGO	1 L
	4	PHIL	P4
	¢	OTPOIT	MI.
	E	BCSTCN	ma
	7	SF	CA
	E	Clvind	CH
	9	WASH	C.C
	10	PITT	PA

33 PRCVIGFI
34 ALRAAY AY
32 SYRACU AY
36 CHARLS WV

- 1
$\begin{array}{llllllllllll}.0 & 1.0 & 1.0 & 2.1 & 1.2 & 0.4 & 2.2 & 1.2 & 0.4 & 2.2 & 1.3 & 0.5 \\ .6 & 1.1 & 1.1 & 1.7 & 1.1 & 0.4 & 1.7 & 1.2 & 0.4 & 1.7 .1 & 1.2 & 0.4 \\ .4 & 0.8 & 0.8 & .1 .5 & 0.8 & 0.4 & 1.5 .0 .9 & 0.4 & 6.5 & 0.9 & 0.4\end{array}$

4 \mathcal{C} GRABRC NC
48 SAHTLK UT
$4 S$ WLKSER PA
50 LITLRK AR
Column (1): Raw projection.
Column (2): Adjusted projection.
Column (3): \because Difference from base case projection.

Table 19 (contd.)

Column (1): Projected stations.
Column (2): pifference from base-case totals.

VIII: RANGE OF THE PROJECTIONS AND IMPLICATIONS FOR SPECTRUM ALLOCATION

THREE MIXED CASES
All of the projections we bave. presented so far have been pure cases in the sense that we check out only one development at a time (in addition'to the base case assumptions). Mixed cases involving combinations of developments may also be of interest and are easy to produce using our computer model. As examples, we present three of. them in this subsection.

We, saw in the base case that population and income growth and, especially, 100, percent UHF set penetration; are sufficient to cause a large increase in, UHF stations. 'Figures from Table 5' show UHF stations in the top 100 markets (including the stations that, are excluded from our narrow count, projected flat) increasing from 124 in 1974 to 1.76 in 1980 and 194 in 1990.

One might want to know what combination of other developments woul \dot{d} be sufficient to offse \dot{t} that growth-ithat is, developments such that the number of stations in 1990 would be about the same as, the 124 sta--'tions in our 1974 base case, although țhere might be some variation within individual markets: The question is easy to answer by trying different combinations of assumptions'in our model. Using our basic quadratic equation, we find that it takes the following formidable combination of develppments to produce little or no growth to 1990:
o Cable penetration a minimum of 50 peircent and ranging up to 85 percent.*
o 83 VHF drop-in stations on the air
o 30 percent of the market siphoned off by pew video services.

Table 21 shows thé market-by-market projections for this case.

[^12]$11!$

Table 21°
"No GROWTH" PRQJECTION

Other, more plausible, combinations are just as easy to construct. A "middle of the road" set of assumptions might be:

Cable penetration ranging from 50 to 55 percent.
0 - No vHf drop-ins
0 .. Twenty percent of audience siphoned to new services

- The "year" effect". goes "backup to the 1971 level because of .
." improvement in the economy y_{2} decrease in" the UHF handicap, or for whatever reason..

These assumptions in our basic quadratic equation underlie Table. 22 " We call the following an "optimistic" set of assumptions because* it is relatively favorable to UHF growth.

- Cable penetration ranges from 30 to 80 percent ${ }^{*}$ ไ
o 'No VHF drop-ins
o Ten percent of audience is siphoned to new services
o The "year effect" improves still further, so that it is as. much better than 1971 as 1971 was better than 1974. This might result from a combination of a favorable economic climate with a substantial decide in the UHF handicap.
' Table 23^{\prime} shows these projections, and Table 24 summarizes the three mixed cases with the differences shown from the base case figures in Table 5..

AN OVERVIEW

In the preceding discussion, including the mixed cases immediately above, we have accumulated quite a few sets of projections. Table 25 draws many of them together in a summary overview, ranked in order of their increasingly negative effects on the growth of UHF. Thus the

[^13]"MIDDLL of the roàd" prójegrion

"OPTIMISTIC" PROJECTION.

Table 23 (contd.)

				1974 PROJ	1980 PROJ	1985 PROJ		1990 PROJ		
	MARKET	-		(1) (2) (3.)	(1) (2) (3)	111	(2) 131	(1)	121.13	31
52	tcledo	OH		81 ¢ 0.6	2.32 .20 .8	2.4	2.30 .8	2.5	2.40.	. 8
5%	OMS.HA	NE		0.690 .40 .4	1.31 .10 .5	1.4	1.10 .5	1.4	.20	. 6
54	tulsa	OK		0.60 .40 .4	1.41 .10 .5	1.5	1.20 .6	1.6	1.30.	0.6
55	ORLAN	FL		1.000 .50 .5	$1.71 .100 .6^{\circ}$	1.8	1.20 .6	1.9	1,30.	. 7
56	ROCHES	NY,		0.90 .40 .4	1.40 .90 .5	1.5	1.0 0.th	1.6	1.10.	0.6
57	HARI S8	PiA		3.23 .01 .0	3.93 .61 .1	4.0	3.81 .1	4.2	3.9	2
58	SHRVPT	LA		0.60 .40 .4	1.41 .20 .6	1.5	1.3. 0.6	1.6	1.4	6
59	MCBILE	Al		0.50 .30 .3	1.31 .20 .5	1.4	1.30 .6	1.5	1.3	6
60	davenp	IA		0.80 .40 .4	1.31 .00 .5	1.4	1.00 .6	1.4	1.10	. 6
61	FLINT	MI*	,	1.81 .710 .7	2.32 .10 .8	2.4	2.20 .8	2.5	2.4	ก. 8
62	grnbay	WI		0.70 .4 .0 .4	1.31 .00 .5	1.4	1.10 .6	1.5	1.20	0.6
63	'RICHMN,	va		0.80 .40 .4	1.51 .10 .6	1.6	1.20 .6	1.7	$1.3{ }^{\circ}$,
64	SPRN:GF'	If		3.12 .90 .9	3.63 .41 .0	3.7	3.61 .1	3.9	3.7	长
65	CCREAP	IA		0.70 .40 .4	1.31 .00 .5	1.4	1.1,0.6	1.5	1.2	8
66	dmoine	IA		0.60 .4 C. 4	1.4 r .20 .6	1.5	1.20 .6	1.6	1.30	0.6
6.7	WICHTA	KS		0.70 .40 .4	1.51 .20 .6	1.6	1.30 .6	1.7	1.40	0.6
68	JKSNVL	FL		1.81 .60 .6	2.32 .20 .8	2. 4	2.3.0.8	2.5	2.40	0.8
69	pacuca	Kr		0.51 .30 .3	$1.22 \cdot 10.5$	1.3	2.2 0.5'	1.4	2.30	0.6
70	ROANOK	VA		0.610 .40 .4	$1.31 / 10.5$	1.3	1.10 .5	1.4	1.20	0.6
71	KNOXVL	TN		1.41 .50 .5	2.2 2/.4 0.7	2.3	2.50 .9	2.4	2.60	0.8
72	FRESNO	ca		5.56 .41 .4	6.07 .01 .6	6.2	7.21 .6	6.5	7.41	1.7
73	Paletg,	NC		1.31 .50 .5	2.1.2.3 0.7	2.2	2.40 .7	2.3	2.50	0.8
74	Jomist	PA		0.91 .40 .4	1.02 .20 .6	1.7	2.30 .6	1.8	2.30	0.6
75	PORTLN.	ME.		0.60 .40 .4	1.31 .00 .5	1.3	1.10 .5		1.2	0.6
76	SPIJKAN	HA		0.40 .30 .3	1.21 .10 .5	1.2	1.10 .5	1.3	1.20	0.
77	JaCK SN	ms		1.11 .50 .5	1.82 .20 .6	1.9	2.3. 0.7	2.0	2.40	0.7
78	Chatin	TN		0.6 .1 .40 .4	1.22 .00 .9	1.3	2.10 .5	1.4	2.2	0.5
79	ygitin	OH		4.44 .21 .2	5.1 4.9 1.4	5.3	5.11 .4	5.6	5.3	. 5
80	SBEND	IN		4.24 .21 .2	5.04 .91 .9	5.2	5.11 .4	5.4	5.4	. 4
81	alruo	NM		0.50 .40 .4	1.21 .00 .5	1.3	1.1-0.5			
82	fihay	IN		4.44 .21 .2	$5.25 .0 \mid$. 4	5.04	5.21 .4	5.7	5.5	1.5
83	PEORIA	1 L		4.44 .21 .2	5.35 .10 .4 .4	5.6	5.31 .5	5.8	5.6	1.5
84	GpNVLE	NC		$0.40 .30 .3{ }^{*}$	1.21 .10 .5	1.3	1.20 .5	1.4	1.3	5 5
85	sinuxf	SD		0.20 .3 . 0.3		1.1	1.20 .5	1.2	1.3	$0=5$
86	EVAMSV	IN		2.52 .80 .8	3.03 .30 .9	3.	3.40 .9	3.3	3.6	. 0 :
87	batcne	LA		1.21 .50 .5	1.61 .90 .6	1.7	2.00 .6	1.8	2.1	0.6
18	beaulat	TX		0.30 .30 .3	0.80 .80 .4	0.9	0.90 .4	1.0	1.0	0.5
89	duluth	MN		0.40 .30 .30 .3	0.90 .90 .4	1.0	0.90 .5	1.0	1.0	. 5
90	WHLING,	wV		0.60 .40 .4	1.21 .00 .5	1.3	1.00 .5	1.4	1.1	. 5
91	LINCLN.	NE		0.40 .30 .3	$1.21,10.5$	$1 . .2$	1.10 .5	1.3		. 5
9.2	LANSNG	MI		1.00 .50 .51	1.61 .00 .6	1.7	1.40 .6	1.7	1.2	0.6
93	MAOP SN	H1		2.42 .80 .8	2.73 .10 .9	2.9	3.30 .9	3.0	3.4	0.9
94	columb	GA		0.91 .40 .4	1.41 .90 .5	1.4	2.00 .6	1.5	2.1	0.6
95	AMARIL	TX		0.40 .30 .3	1.0 0.90 .5	1.1	1.00 .5	1.1	1.0	0.5
76	HUNTSV	AL		4.14 .11 .1	4.84 .91 .3	5.1.	5.1 1.4	5.3		1.4
97	ROCKFD	IL		2.42 .90 .8	2.73 .10 .8	2.8	3.20 .9	3.0	3.4	0.4
98	FAHCO	NO		0.20 .30 .3	1.01 .10 .5	1.1	1.20 .5	1.2	1.2	0.5
99	monr de.	LA		0.50 .30 .3	1.51 .40 .6	1.6	1.50 .6	1.7	1.6	0,6
100	columb	SC		2.12 .70 .7	2.83 .3	2.9	3.50 .9	3.1	3.6	0.9

Narrow count, Table 22

$\frac{2}{133}+9 \quad \frac{17}{202}+12 \frac{19}{213}+11 \quad \frac{22}{225}+12$
Narrow count, Table 23 (optimistic assumptions)

Excluded stations, flat Total

220 . $231 . \quad 242$ $\frac{27}{179}+55 \quad \frac{27}{247}+64 \quad \frac{27}{258}+70 \quad \frac{27}{269}+77$. $\frac{15}{194}+40 \quad \frac{34}{281}+82 \quad \frac{37}{295}+89 \quad \frac{40}{301}+98$

Column (1): Projected stations.
Column (2): Difference from base-case totals.

SUMMARY RAVKING OF THE VARIOUS CASES IN ACORDANCE WITH EPFECT ON UHP GROWTH

124 176.185, 194.
$\begin{array}{llll}119 & 169 & 178 & \because 186\end{array}$
$\begin{array}{lllll}118 & 168 & 177 & 185\end{array}$
$\begin{array}{lllll}111 & 160 & 168 & 176\end{array}$
$\begin{array}{llll}101 & 166 & 170 & 174\end{array}$
104. $151 \quad 160 \quad 160^{\circ}$
$104,151,159167$

100 • 152 156 160°
$\begin{array}{llll}76 & 114 & : 122 & 130\end{array}$

first entry from Table 18 shows that the greatest positive effect on the growth of UHF, with 290 stations projected for the year 1990 , would come from large improvement of economic conditions and/or a 'large decrease in the UHF handicap. At the.other extreme in Table 21 , our no-growth combination of assumptions shows only 130 stations projected for 1990. The numbers of UHF stations in Table 25 are taken from the middle line for each case in the ipdividual section summary tables above. That is, they include the projected number of stations in our narrow count, plus 27 stations that were extluded from that count projected with no growth:'

```
\(\because\) The most important features of Table 25 are the following:
```

o İ̀ all cases, there is a substạtial increase in projected stations, between 1974 and 1980 , reflecting primarily the achievement of 100 percent UHF set penetration.

- S Slower growth is projected after, 1980.ir.
o Cable will probably have only a slight negative impact on the number of UHF stations. Even on extreme assumptions, the reduction due to cable in 1990 is less than 18 percent below our base case.
o. Loss of audience to new video services such as pay television ; and videodfscs alsó has a relativély small impact on projécted stations. Even a 30 percent audience loss reduces the 1990 projections by only 14 percent..
o The projected impact of VHf drop-in stations is also only moderate: about a 14 percent reduction in UHF stations in 1990.
0 - The negative. impacts of developments mentioned above may be easily of fset by improvements in the economic climate or reductions in $U H F^{\prime}$ s reception and tuming handicaps.

COMPARISONS WITH CURRENT*SPECTRUM ASSIGNMENTS IN EACH゙ MARKET

Finally, and most important of all, is the question of how these projections of stations compare with curdent channel asal gnménts in the separate markets. Column 1 in Table 26 shows the number of currently.

Using Assumptions from Table: ${ }^{\text {a }}$
7 Market $\begin{array}{llllllllllllllll}18 & 19 & 23 & 17 & 22 & 2 & 6 & 13 & 14 & 11 & 9 & 15 & 7 & 21\end{array}$

${ }^{\text {a }}$ See Table 25 for brief descriptions of the assimptions used for each table.

allocated commercial UHF channels in each-market. Then, in successive pairs of columns we show our projectsed number of stations for 1990^{*} in column 2 and the excess, or shortfall, of allocations relative to pro- jected numbers of stations in column 3. Thus.the figures in column show .the differences between the values in columns 1 and 2 for each of the pro.jections. The columns arranged in the same ordet as in Table 26 show ${ }_{j}$ -progressively fewer, UHF stations'as ane moves towald the right. The most striking aspect of Table 26 is that an excess of allocations exists in mostj markets, even for the most optimistic projection of UHF; growth. The projections from Table 18 show that shortfalls of one or two channels arise for only four markets in the top 50 . In the largest 10 markets, except for Los Angeles, as many as four or five channels are projected to remain unused. The fargest shortfalls from Table 18 columns are in the smaller of the 100 top markets, such as Youngstown, Ohio (-3) and South Bend, $\eta^{\text {Iridiana (}} \mathbf{- 2)}$. Taking one other case from Table 22- the middle of the road combination of assumptions--we observe an excess of channels in all of the top 50 markets, or at minimum, a zero shortfall; with a few tne-channel shortfalls in five of the smallest of the top 100 markets.

PROSPECTS FOR A FOURTH NETWORK
Park (1973)*** examines the prospects for different kinds of new commercial teleision networks, and concludes that overall the prospects are not very bright. However, he concludes that a fourth network using exis fng independent stations plus new UHF stations might well be viable if (a) 1- could affiliate with enough stations to that it could

6 The projected number of stations is the one that is corrected for the constant adjustment. factor (column 2 in the decailed projection tables), rounded to the nearest whole number, plus the/number of UHF stations in that market that were excluded from our narrow count.
**
Also, since many ADIs cover large geographical areas, some of the channels activated in accordance with our projections would provide the basis for new ADIs as defined and measured by the audience rating services.
*** Rolla Edward-Park, New Television Networks, The Rand Corporation, R-1408-MF, December, 1973; abridged version appears in Bell Journal of Economics, Autumn 1975.
reach nearly all' U.S. television houpeholds, and (b) the UHF. handi cap were to drop substantially. (In his calculations.; he qossumes a decline to the point where a UHF station would attract about 90° percent as much audience, as would a VHF station broadcasting the same programs.)

1. As noted above in Section VII, we have no new evidence on (b), the "decline of, the UHF handicap $;$ it is, however, interesting to examine our profections in terms of (a), rthat $1 s$, to see how much the projected growth in UHF stat fons would increase the coverage of a fourth network. In 1974, the potential coverage of a fourth network using existing independent stations would be much less than complete, even in the top 100 markets: There are 57 million television households in the top 100 markets. * Of these, only 22 million are in markets with at least one VHF independent: Another 16 million are in markets with a unf independent (but no VHF independents). A fourth network made up of existing independent stations would, then, have affiliates (either VHF or UHF) , in markets with 38 million households, but it would not serve the remainfng 19 million households.
'This situation would ebeage dramatically, given the growth of UHF stations projected in this report. Take our "middle of the road" pyjection for 1990, for example.** On this projection there would be UHF independents avallable for affiliation with a fourth network in almost all of the top 100 warkets. In addition to the 22 million households with VHF four th network coverage, 34.5 million could then be reached on UHF, leaving only .5 million uncovered. Depending to some extent on what happens in the markets below the top 100 , . and to a greater extent on future declines in the UHF handicap, this increase in coverage coúld give prospets for a fourth network a substantial boost.

It is worth noting that all three developments are mutually reinforcing. The existence of a large number of UHF stat tons, particularly

[^14]If they are affiliated with a fourth network, would promote the development and spread of technology to reduce the UHF handicap. The more UHF stations there are and the lower the handicap, the better the prospects for a fourth network. The possibility of affiliating with a fourth network and a decline in the handicap would both stimulate the growth of UHF stations. This beneficial feedback process appears to be our best hope for the emergence of a full quale fourth commercial network.

REMAINING UNCERTAINTIES

Of course, for all the reasgns mentioned in Section'II about what models can and cannot do in projecting accurately into the future, these estimates are subject to uncertainty. We have given our best estimates of the numbers of stations to be expected in each market under a variety of assumed conditions. Each of these numbers should be thought of as surrounded by a range within which the real value is likely.to fall. Unfortunately, the complexity of our estimation process makes it impossible to calculate the shape and size of these bands of uncertainty. In particular, our use of a constant adjustment factor for each marketrshould improve the accuracy of the projections, but it makes standard measures of uncertainty inapplicable.

- Nevertheless, it is worth noting that the average error* with which our equation predicts the number of UHF stations in 1974 (that is, within the sample used to estimate it) is abotut one half of a station. We conjecture that the average error for our profections is somewhat smaller thain this for amall projected values and larger for larger values. AZL of the projections are conditional on the assumptions that go into them, and it is for this reason that we have made a large number of projections based on a varlety of assumptions.

But perhaps the most salient characteristic in all the patterns we have uncovered is that, despite the uncertainties, it seems reasonably

[^15]clear that there will be no strong pressure, at least'in most markets, against existing spectrum assignments; that is, existing assignments will be at least enough to provide substantial growth in the numbers of UHF broadcasting stations, even taking into account the recent reallocation of 14 channels of spectrum space from UHF to land mobile radio, as mentioner in the In'troduction. Thus, at a minimum, it appears that.existing assignments will be sufficient to accommodate whatever growth in UHF can reasonably be projected at this time. Going beyond that, it may be possible to both shuffle allocations by reassigning channels to particular markets based on the continuing empty channel slots shown in Table 24 and to use some of the spectrum space on both a shared and exclusive basis for other competing services. Again, much depends upon the assumptions one is willing to accept. If one is satisfied with the "middle of the road combination" of assumptions (from Table 22), then substantial reallocations can be made in the top 10 or so markets where in all cases two or more channels would remain unused by 1990. On the other hand; if one judges that pay cable and videodisc services will have a substantially greater impact on UHF than we project--moving the conclusions toward the no-growth end of the range of projections--then even more spectrum space in virtually all the top 100 markets could be made available for other uses.

Finally, we again emphasize that yet many otker assumptions, and combinations of assumptions, can be explored with our model. And it is for that reason that the model itself, to be turned over to the FCC for its own use, is an important part of this study.

124

SPECTRUM REQUIREMENTS FOR PUBLIC TELEVISION

- Our projections are limited to commercial stations and commercial station spectrum allocations. We exclude public television requirements because the determinańts of the growth of public television are far different from those of commercial television. The future willingness of Congress to appropriate funds for public broadcasting, in terms both of funding levels and length of multiyear commitments, will depend on a host. of complex political and other factors, including the general tightness of the federal budget, that we cannot hope to capture in our models. Growth will also depend upon the extent of viewers' voluntary contributions, the extent to which schools use public television for classroom instruction with appropriate compensation paid to stations, and the extent to which support is provided by local and state governments, colleges, and private foundations. The future roles of these factors would take us afield into broad questions of television for use in formal education, state and local expenditure policies; the future of private foundations, and other considerations lying outside the major determinants of commercial viability.

The best that can be said here is that many past studies have focused on the financial needs and. public benefits of public broadcasting. It was the. 196才 Carnegie Commission report, Public TeZevision--A Program for Action, that led to establishment of the Corporation for Public Broadcasting. An excellent recent survey of the prospects and the needs of public broadcasting is contained in Report of the Task Force on the Long-Range Financing . of Public Broadcasting, Corporation for Public Broadcasting, Washington, D.C., September 1973.

IX. PROBLEMS OF USING INDIVIDUAL STATION FINANCIAL DATA

As discussed in Section X below, and in the appendices, we spent a good deal of time exploring three alternative ways of projecting the number of viable stations based upon the financial data supplied by individual stations to the FCC. None of these approaches generated useful results, for two reasons: (a) the questionable reliability of the data supplied to the FCC, and (b) differences in station operating modes and other factors that may not lend themselves to econometric modeling. Each will be discussed here in turn.

QUESTIONABLE RELIABILITY OF THE DATA

To identify potential problem areas that arise in current methods for obtaining station financial data, let us consider Schedules 1, 2, and 3 reproduced below from the 1974 "Annual Financial Report. of Networks . and Licensees of Broadcast Stations,". Form 324, that the FCC annually sends to broadcast stations for their submission.

On a priori grounds one would expect the computations of broadcast revenues to be straightforward, with little variation among stations rising as a consequence of differences in their adcounting techniques. * One area, probably of minor importance, is the amount reported on line 20 because of differences in valuing merchandise and services that are not actually purchased and sold in the marketplace. The FCC recognizes this problem for it specifies in its "General Instructions for Broadcast Stations" in completing Form 324 that "spots exchanged for mérchandise...for advertisements in'other media...for services...are more difficult to value, but must be estimated ${ }^{\text {f for purposes of the financial report." The FCC states }}$ that "the amount of cash the station would have paid for the merchandise .. provides a reasonable basis for estimating the value." But one could expect widely varying estimates among stations for this value in the same way that the price of a particular piece of merchandise can vary substantially among retail stores.

[^16]$$
126
$$

SCHEDULE I. - BROARGAST REVENUES

Fig. 3 - Form for reporting broadcast revenues to ECC, 1974 (slightly reduced),

1.

SCHEDULE 3. BROADCAST INCOME		
LINE.	-	$\begin{aligned} & \text { AMOUNT } \\ & \text { (omit eents) } \end{aligned}$
		5
1	Broadrast revenues (from Schedule i, line 19) . 4 4.40!	
2		
3	Broadeast operatina income or' (loss) (line 1 minus line 2)	
4	Total of any amounts included in line 2 above which repre:ient payments (salaries, commissions, management fees, tents, etc.) for services or muterals supplied by the owners or stockholders, or any close relative of such per:ions or any affiliated company under commion control (see page 3 of instructions).	
5		

Fig. 4 - Form for reporting broadcast expenses to FCC, 1974 (slightly reduced)

It is in Schedule 2--Broadcast Expenses--that the most serious .problems of reliability of financial data are likely to arise, in "general and administreative expenses" (line 20). "Generdl and administrative payroll" (line 21) can be overstated by excessive payments made to owner-principals. "Depreciation and amortization" (line 22) can vary wifdély depending upon the depreciation method being used (straight-line or other), and the basis upon which depreciation is calçulated.
'For example, when a station is purchased, an excessive original cost assigned to the intangible property could be used as the basis for depreciation calculations. These calculations critically depend on the way that the selling price of the station in excess of its value of plant and equipment (with the differences between the two reflecting goodwill and the value of. scarce radio spectrum space) is depreciated. "Interest" (line 22a) can vary widely among stations depending upon requirements to repay funds borrowed to purchase the station. "Allocated costs of management from home office or affiliate" (line 22b) can obviously vary a good deal depending upon the techniques that the firm uses in making these allocations. This figure can easily be exaggerated by excessive payments to affiliated units of the same enterprise, computer billing and management services, and other items.

To obtain a rough idea of how sensitive operating income or loss may be to variations in these figures, let us consider the figures for 'an average broadcasting station. * Its broadcast qevenues wére $\$ 2.77$ million; broadcast expenses were $\$ 2.12$ million; broadcast operating income was, therefore, $\$ 0.64$ million. Its general and administrative expenses from line' 20 above were $\$ 0.66$ milifon or about the same as its operating income. Thus, an increase of 50 percent in its general administrative expenses would have reduced operating income by 50 percent; a doubling of these expenses would have wiped out profits altogether.
*These figures are calculated by dividing the totals for all reporting stations shown on p. 225 of FCC, 39th Annual Report, Fiscal Year.1973, by 690 , the number of reporting stations.

Broadcast stations have wide leeway in reporting their financial situations--particularly in general and administrative expenses-and the FCC has at this time no technique for independent verification: It does - not audit any of the reports it receives on Form 324, nor is ift able to cross-ched figures against income tax returns. Thus, we have no way of determinfing the extent to which variations in accounting prattices among firms do anfe to cause distortions in financial data and to compromise their usefulness for analytic purposes. For these reasons, the FCC appears to be moving constructively in explicitly recognizing the potential unreliability of the financial data and in authorizing in December 1975 a separate 13 -month study focused specifically upon this problem.*

DIFFERENCES IN STATYON OPERATING MODES AND OTHER FACTORSY

Other difficulties may arise not from faults in the data but because of 'the way stations are owned and operated. While network stations have essentially the same program formats, independent stations--particularly UHF--show wide variations. Well-financed UHFs purchase top syndicated * product with. strong audience appeal and sometimes comit themselves to the purchase of expensive sports programming rights. Weakly financed UHFs operate at lower costs with the hope of garnering sufficient revenues to make a modest profit. In some cases they are held in the hópe of ' eventually being, sold for a capitar gain when their financial prospects improve.

- A station with a lafger local news and public affairs staff may show higher expenses and less profit than its counterparts; or a station with. a stricter limitation on commercial interruptions may have lower time . sales., Data are available on the number of minutes of news programming, size of staff, and program expenses for local programming. In principle, one might be able to construct a model that, taking these data into account, could distinguish among a few operating modes. The mafjor problem is. in determining the operating modes of new stations çoming on the air be- : tween now and 19,90 and changes in operating modes of existigg stations

[^17]as a consequence; here there is simply no basis for judgment.
: . Other factors include differences in management skills among firms. We frequently observe, for example, that two gasoline stations across the street from each other, although apparently equally situated perform quite differently. While one thrives and prospers, perhaps eventually to form a chain, the other loses money and eventually may go out of busi' dess. These differences are hard to explain other than in terms of skills if management practices and perhaps sheer luck. The same is probabiy true n the broadcast business where theste factors create static to reduce the explanatory power our econometric techniques based on station financial data.
\therefore Ambng network stations, which network ($A B C, C B S, N B C$) is involved could certainly be used to explain some of the variation in financial performance. However, we are primarily ifferested in projecting new stations for the top-100 markets where no new affiliations are ávailable; a more precise explanation of network station profitability would not help us in this task.

Another possibility is that reception quality varies enough among VHF stations or among UHF, stations,so that stations with lower channel numbers do better than those with' higher numbers, even within the same frequency band. (That is, channel 2 is better than channel 13; channel 14 is better than channel 70.) Perhaps audience loyalty builds up over long periods, so that older. stations are generally more profitable than newer stations. 'Perhaps there is some sort of specialization, with each sta-tion-going after a different category of audience, some more profitable than others. This is clearly the fase with foreign language stations, and there may be some more subtle form of speciallization by other stations. More generally, the literature on audience preferences and station programing behavior ${ }^{*}$ suggests that there should e a regular distribu-. tion of audience shares, and hence profits, among equally situated stations.

[^18]We investigated each of these possibilities in enough detail to convince Ourselves that none of them would improve our financial predictions for independent UHF stations sufficiently to make them useful for projecting the number of new stations. Further research into these matters might yell be useful for other purposes, howéver, and would almost certainly advance understanding of the television industry.

$\uparrow \quad 132$

$-y^{-4}$
\section*{X. UNSUCCESSFUL ATTEMPTS TO CONSTRUCT MODELS USING TELEVISION STATION FINANCIAL DATA}

The projections discussed in earlier sections are alf based on our viable stations model, * which p'redicts' the number of stations directly. We also put extensive effort into three models that would predict number, of stations indirectly. Elements of these models are described in detail in :Appendixes B through F. They are all based on financial data reported to thë FCC by, individual television stations. All would yield estimates of station profits, and our intention was to use these as indicators of viability; However, far reasons noted in Section IX, none of the three methods did a very good job of predicting profits, particularly for stations handicapped, by UHF transmission or lack of network affiliation-precisely'those stations in which we are most interested. Consequently, we did not use any of these three methods in making our projections. However, they are of interest in their own right and carry some important lessons that are summarized in this section.

METHOD I.

Our first method of predicting station profits was based on suggestions made in the work statement that accompanied the FCC's request for proposals. It comprises several intérlocking steps. First, one estimates the total television audience for each market (Appendix B) and the "price" of audience ${ }^{* *}$ in each market (Appendix C): Multiplying these two quantities gives an esti'mate of the total revenue for each"market. Then one estimates the fraction df market revenue that goes to pach station in the market (Appendix D). Multipiying this fraction by the estimated, market revenue yields an estimate of each station's 'revenue. Finally, one.estimates éach station's expense and deducts -
\qquad
AAS described in general terms in Section II and in detail in Appendix A. **

More precisely, the ratio of total revenue to total audience for each market.
this from estimated revenue to arrive at the station's estimated profit. We discuss briefly in turn what we learned from each of these steps; details are included in the appendixes.

Television Market Audience

In estimating television market audience, we are particularly interested in whether or not additiol stations increase total audience, and if so, how much. One can find support for both positions in previousearch results. Noll, Peck, and McGowan (1973) *resent regression results that
imply that a single affiliate will attract between" 42 and 45 percent of the potential viewers in its market. In a market with two stations, the total audience would be between 55 and 65 percent of the potential, depending upon the affiliation status of the statiors? Finally, in a market with an affiliate of each network, the total audience is 60 percent of potential.
Int a similar vein, Besen and Mitchell (1975) ** conclude from an analysis of television audiences during the Watergate hearings that additional program choices can substantially increase total audience, at least if the. new programming is sufficienthodifferent from standard fare. 「on the \cdot. other hand, it has been frequently assumed (e.g., Park, 1973), *** or asserted based on rather fasualt evidence (e.g., Owen, Beebe and Manning, 1974; FCC, 1970), that total audience does not depend on the choice
*Roger G. Noll, Merton J. Pepk, and John J. McGowan, Economic Aspects of Television Regulation, Brookings"Institution, Washington, D.C.,'1973; \dot{p}.
${ }^{* *}$ Stanléy M. Besen and Bridger M. Mitchell, Watergate and TeZevision: An Economic Analysis, The Rand Corporation, R-1712-MF, May 1975.
${ }^{* * *}$ Rolla Edward Park, New Television Networks, The Rand Corporation, R-1408-MF, December 1973; abridged version appears in Bell Journal of Economics, Autumn, 1975.
**** Bruce M. Owen, Jack H. Beebe, and Willard G. Manning, Jr., Television Economics, D. C. Heath, Lexington, Ma., 1974; `Federal

- Communications Commission, "The Economics of the TV-CATV Interface," prepared by the Research. Branch, Broadcast Bureau, Washington, D.C., July 15; 1970.
of signals.
Our own analysis has two parts; corresponding to the two strands in previous research, and leads to a reconciliation of the apparently conflicting results. The first part of our analysis uses market level data. We add up the audience for all stations in the market to get totalaudience. We measure the level of television service by the number of networks in the market, whether they broadcast on VHF or UHF, and whether there is पुHF or UHF independent service in the market. By this definition, the worst-served market has only one network UHF station, and the bestserved receives all three networks plus at least one independent, all on VHF. We find that total audience (as a fraction of potential audience) is generally about, twice as great in the best-served markets as it is in the worst-served markets. 'This is consistent with Noil, Peck, and McGowan's results:

In the second part of our analysis, we use data \vec{a} on audience in over 3000 individual counties. Here we find that the range of signal choice has very little effect on audience size. There are very few counties where only. one network signal is received--fewer than 50 on most counts* --and in these counties primetime audience averaged 54 percent of potential audience: . In the counties with two network signals, audience averaged 56 percent. In those with three, it was 58 percent, and in those with three networks plus at least one independent, it was 59 percent. Overall, there is not much difference between the size of the audience in the worstserved and the best-served counties.

How do we reconcile these seemingly conflicting results? In a sense both are correct, but they are conclusions about different effects. Consider the following example, which is consistent with both sets of results. Market A is a three-network market surrounded by other threenetwork markets. Within A's ADI, 58 percent of households watch television during prime "time. Both county-level and markef-level data show total

[^19]ratings of 58 : Market B is a twó-network market surrounded by threenetwork markets. Within B's ADI, total viewing is the same as in A's: 58 percent. But a substantial share of this total is watching the third network signal from adjacent markets. ,Thus the total rating for Market B's two.stations is substantially less than 58 -percent.

The county-level results are correct in Showing that total viewing in any given geographical area is only siightly affected by ... the number of signals received there. The market-level results are córrect in showing how that total is shared among adjacent markets with different numbers of local stations.

Television Market Revenue
It would be convenient if audience were worth the same amount of money to advertisers in all markets. Then one could simply multiply the market audience estimates $\mathrm{fr} \mathrm{m}_{\mathrm{m}}$ Appendix B by some constant "price" of audience to get market revenue estimates. A look at the data, however, shows considerable market-to-market variation in the "price". of audience. . In 1972, for example, the ratio of market revenue to - average daily audience averaged $\$ 80$ per househoid, with a range of $\$ 42$ to $\$ 199$. We attempted to explain this variance in three different ways.

First, we used regression analysis to check for relationships between "price" of audience and things that might be expected to influence it -- the wealth of the market, market size, and a measure of competition among stations in the market. We did find significant relationships that went in the expected directions -- for example, the "price" of audience tended to be higher in richer markets. However, the relationships were not strong enough to explain more than 20 percent of the market-to-market variance in "price" of audience.

Second, we attempted to discover additional factors that might account for the unexplained variance, by interviewing people who might know --station officials, advertising representatives, and advertising agency executiyes. FCC staff members conducted interviews in New York, and we interviewed people in Los Angeles. The results were not very helpful. Some explanations were simply appeals to tradition: "San Francisco
has always been a good market."* Others relied on idiosyncratic and unpredictable factors:- "One of the Las Vegas station managers is . really on the ball." Some explanations were used interchangeably to explain both good and bad markets: "A dominant station in one three-station market keeps prices up; two weak stations in another three-station market drive prices down."

The idea behind our third approach is that there are a whole host of factors that affect "price" of audience in a particular market: the age, occupation, education, race, and income distribution of its population; its climate; its industrial, commercial and financial make-up; activities, tastes and opportunities of its population; competition from other media-anything that affects the advertising buyer's image of the market. There are far too many potentially important factors to include them all. in a regressiort equation, even if they yere all measurable. But if they are relatively stable over time, we can estimate their net effect on "price" of audience in the various markets using a statistical technique called qnalysis of covariance. Applying this technique to data for 1963-1972 , we find that we can explain 75 percent of the variance in "price" of audience, strongly confirming the importance of persistent market effects. In fact, it turns out that "price" of audience is sufficiently stable from yěar to year that one can do a pretty good job of predicting it by simply assuming that it is constant in each market over time.

Individual Station Shares of Revenue
Thus far, we have a way of estimating audience size and the "price" of audience in each market. "Multiplying the two gives an

[^20]estimate of market revenue. The next step in Method I is to estimate what fraction of market revenue goes to each station in the market. We investigate two diffefent ways of doing this in Appendix D. Both assume that station shares depend on the type of station (network, affiliated or independent, VHF or UHF) and on the amount and type of . its competition. One formula assumes that a new station reduces all existing stations' shares in the same proportion. That is, it makes no allowance for the possibility that, for example, a new independent station might have more impact on other independents than on network affiliates. The other formula allows, for a different.impact of each category of station on stations in each category. Both formulas explain about two-thirds of the variance in station revenue shares.

Individual Station Expense

To complete Method I of estimating, televigion station profits, we planned to estimate an equation that would relate station expense to its characteristics and the characteristics of its competition and its market. We would then deduct estimated station' expense given by this equation from the revenue figure obtained as described above, and use the result as estimated station profit. However, profit prediction comparisons described below led us to abandon this approach in favor of our viable stations model before we went on to estimate an expense equation.

METHOD II

- The second method of predicting profits was suggested in our proposal to the FCC as a way of cutting through the complexities of Method I. Instead of calculating profits as the difference between two estimated quantities, one of which is itself calculated as the product of three other estimated quantities, Method II estimates profit direqtly.

We use the same equation that Besen (1973)* used to estimate station time rates. This equation relates time rates, or in our case station profits, to the size of the market the station operates in; whether it is handicapped by lack of network affiliation, UHF transmission, both, or neither; the number of competing stations and. the extent to which they are handicapped. Superficially, the estimated equation looks remarkably good. All of the coefficients have the expected signs and are highly significant, and the equation explains about 80 percent of the variançe in station profits. However, the profit prediction comparisons belowshow that even Method II has serious shorticomings.

METHOD III

Method III was originated at Rand after the contract work was under way. Its main purpose was to test a profit maximization model of television station behavior, but the model may also be used as a third method of estimating station profits.

We think of a television station as a firm that is in the business of "producing" audience and selling it to advertisers. The more • audience it has to sell, the higher its revenues. But additional audience can be produced only at increased cost -- for better programs, stronger promotion, upgraded technical facilities, etc. For a typical station, the relationships between revenue and audience, and between cost and audience may be as shown in Fig. 5. Different stations will have different revenue and cost curves, depending on their own characteristics, their competition, and the market they operate in. We hypothesize that the station will choose to produce the amaunt of audience (A^{*}) that maximizes the difference between its revenue and its cost. We estimate equations that represent the revenue and cost curves of Fig. 5. This is a fairly complex process, for reasons discussed in Appendix F.

By usual statistical standards, our estimates of the cost and revenue curves are quite good; their explanatory power and the significance of their coefficients are all high. But this method, too,

[^21]

Fig. 5-Revenue and cost curves for a typical television station (conceptual).
140°
\$

$$
-
$$

fails to do an adequate job of predicting profits, as discussed below .

PROFIT PREDIĊTIÓN, COMPARISONS
Table 27 compares the perfdumance of the three methods of predicting * profits: We did the calculations to establish a probable upper bound on the performance of the three methods. Thus, in many places we used actual values of variables that would have to be predicted in full-blown applications of the models to make projections to 1980 and beyond. Without this help, they would almost certainly perform even less well.

In a full-blown application of Method I for making projections, we would first need to predict market audience using Appendix B. Then we would predict market revenue/audience ratios using Appendix C, and multiply the two figures to get estimated market revenue. Then we would use Appendix D to predict individual stat \ddagger anares of market revenue: Finally we would estimate station expenses using an equation similar to the expense equation in Appendix F, and deduct them from estimated station revenues to get estimated profits. The method actually used in Table 27 is much less complicated and represents a probable upper bound on the performance of this method. We applied station revenue shares predicted by Appendix D to actual market revenues and subtriacted actual syation expenses to estimate profits. Even with this advantage, this method performs generally less well than does Method II.

Method II also got a little help from the use of actual values. In making the calculations for Table 27, we substituted actual numbers of UHF stations into the profit equation. These numbers would have to be estimated in a full-scale application of the model.

Method III used for the table is also much simpler than a fullscale application of the model would be, and represents an upper bound on the performance of this approach.. A full-scale application

Table 27

PROFIT PREDICTION COMPARISONS

Station Class	R-squared			RMSE ${ }^{\text {a }}$?	RMSE/ $\overline{\mathrm{X}}^{\text {b }}$		
	I	II	III	I	II	III	I	II	III
All stations	. 717	. 787	. 196	906	782	1521	1.14	. 98	1.91
Network VHF	. 843	. 810	. 271	747	815	1596	. 68	. 75	1.47
Network UHF	-3.61	.-. 213	-. 249	424	218	221	1.67	. 86	. 87
Independent VHF	-3.43	-. 151	-. 411	2719	1385	1534	3.22	1.64	1.82
Independent UHF	-2.24	-. 535	-11.6	1109°	763	2189	3.53	2.46	7.06

${ }^{\text {a }}$ Root mean squared error in $\$ 1000 ; \sqrt{S S E / n}$, where SSE is the sum of squared errors and n is the number of observations.
$b_{\text {RMSE }}$ as a fraction of mean profit.
would be a complicated iterative process in which trial values of station expenditure would be assumed, profit-maximizing expenditures for each station would be calculated assuming other stations' expendtres were equal to the trial values, calculated expenditures would be substituted for the trial values, and the process continued until estimated expenditures for each station converged to, a stable value. Estimated profits would be calculated as the difference between estimated revenues and estimated expenses at that point. For our upper bound calculations, we substitute actual values for other stations.! expenditures in equation (F.3'), Appendix F, to calculate estimated audience, then substitute these estimates $\ddagger n$ equations (F.1') and (F.2!) to predict revenues, expenses, and hence profits. In Table 27 we show three measures of predictive merit for: each method. R-squared is the fraction of variance in profits explatned. by the method. An R-squared of 1 is 100 percent perfect prediction. A negative R-squared means that the method predicts less well than one would do if one used the observed mean value of profit for all stations in a particular class (for example, independent UHF stations) as the predictor for all stations in that class. Root mean squared error (RMSE) is a sort of average amount by which the predicted value misses the actual value; the smaller it is, the better the prediction. But the absolute size of the error is perhaps less important than its size relative to the size of the quantity being. predicted. Thus we also show RMSE/ $\overline{\mathrm{X}}$, the root mean squared error divided by the mean value of profits.

Methods I and II both do a respectable job of predicting profits for all stations taken together and for network VHF stations as a separate class. But none of the three methods does at all well at predicting for any of the handicapped classes of stations-network UHF, independent VHF, and independent UHF. For independent UHF stations, for example, R-s,quared shows minus values, indicating that the method predicts less well than one could do simply by using the
observed mean value of; profit for all UHF independents. Moreover, the root mean squared error. (RMSE) as a ratio to the mean profit ($\overline{\mathrm{X}}$) for independent UHF stations $\sim(3.53,2.46,7.06$ in the lower right hand corner of the table) shows that the average errors are far in excess of the mean values of the variables being estimated. Since we are primarily interested in the potential for new UHF stations, we cannot rely on any of the three profit predidion methods. It is for this reason that we developed the viable stations model and relied on it for the profections in this report.

Proprietary plots of individual station prófits against market size* illustrate the problems of predicting proflts for handfcapped stations. We see, for example, that independent UHF stations located in the same market, and hence facing exactly the same comptetitidsituations, report greatly different profit figures. Since all of our models t reat equally situated stations the same, there is no way that they can explain these differences in performance.

SUMMARY LISTING OF LESSONS LEARNED

In summary, we believe that the most important lessons to be learned from our attempts to build models using station financial data are the following:

- Financial data in the aggregate are useful as overall measures of industry performance over time. Although varying from station to statiof, accounting practices for individual stations are maintained more or less consistently from year to year; moreover, whatever anomalies appear in individual station accounts are likely to ber offset or tempered by anomafies in others. Thus, overall figures are useful in showing changes in the financial position of the industry. For example, an increase in profits of, say, 25 or 50 percent in a single year for the industry could surely not be attributable to changes in accounting practices alone, but to rapidly increased revenues relative to industry costs. Aggregate data are also useful in monftoring changes in the composition of revenues and expensës, as, for example, in shifts between national advertising and local spot advertising and in costs and expenditures for local public affairs and news programming.

[^22]\therefore However, the large variation observed in the frofits of equally situated stations suggests that financial data.
\therefore filed by individual stations have little usefulness for policymaking purposes. Comparisons of individual station performance -are questionable because of problems with reliability of data and because of differences in, station operating modes and other factors that cannot be systematically

- taken into ackount. This large non-systematic variation makes it impossible; to predict with any precision the smaller, systematic.effects of policy changes on station profits.
o Even if it were possible to predict profits, this would not provide a goed indication of viability since many stations report losses year after yeat and continue in business.
o , Total audience increases very little as viewing options inctrease.
o The problem of the UHF handicap shows up consistently whenever we deal. with individual station daṭa, whether it is in terms of revenue shares, profits, or a revenue and expense model.
o Perhaps most importantly, the large variation in profits of equally situated stations indicates that there is a good deal of flexibility in the system; there seems to be room for different modes of station operation, all viable. Certainly stations will react to competition from new technologifes by adjusting their operations in ways that soften the Impact on profits. Indeed, the relationship between competitive factors and profits is so tenuous that any impact of new technologies on profits may get lost in the static.

145

MORE EFFICIENT USE OF SPECTRUM SPACE

Based on this work, if the FCC were to deem it' desirable to shift some additional UHF space to competing uses on a shared or exclusive basis, then the next step would be to determine which particular channel numbers assigned in particular markets can be reshuffled (in light of all the UHF "taboos") In order to clear on a regionwide or nationwide basis several specific UHF channels that can thè be re'allocated to other uses. Again, how much spectrum could be released by reallocations depends on which assumptions one chooses to accept among the wide range we have explored in this study. As illusṭrated In Table 25 the number of channels that might be reassigned in New York could vary all the way from 6 , to -5 depending on the range of assumptions, and in Los Angeles from 4 to -2. "(Under the most optimistic assumptions about ${ }^{\circ}$ UHF growth, there would be a shortfall in these markets. ${ }^{*}$)

As a parallel effort to this study, it is important that the FCC reconsider the problem of UHF taboos. In contrast to VHF; which has only two constraints (co-channel and adjacent channel restrictions), UHF has many more, including IF beat, intermodulation, oscillator, and sound image. Because of these taboos, fewer channels can be assigned out of a given total $\mathrm{MH} z$ allocation than is true in VHF. However, if UHF receivers were redesigned to higher standards to get around some of these taboos, many more stations could be put into each market. Thus, the question arises of whether new UHF tuner and receiver. standards should be imposed in order (a) to permit more UHF channelf to be assigned out of the existing total spectrum space allocated to UHF, and (b) given our projections of channel use to 1990, to. permit an even larger , reallocation of spectrum space to other uses in 10 or 15 years, when improved receivers and tuners might be widely distributed in the market. Fortunately, the FCC has already launched such ań inquiry.
*Since many ADIs cover a substantial geographicai area, it is important to note the distinction between core city UHF, ailocations and allocations toward the fringes of the ADI. In many cases, the allocations: that would remain unused in our. projections would be those in the fringe areas. For example, if all three Washington, D.C., UHF allocations wers to be activated, the only additional allocations which could be assigned to other. spectrum uses would be those in the outlying areas of Hagerstown, Md. Cumberiand, Md., and Fredericksburg, Va.; rather than in the metropolitan area where spectrum scarcity ls likely to be most serious. But the critical

Another parallel effort involves projections of demand for mobile radio and for other services that by their nature could use spectrum space now allocated to television. Several studies have been completed in this area and their projections, like ours, will need to be revised as new data änd ifformation become available.

In addition, it is important to examine the actual channel loadings employed in mobile radio uses in representative metropolitan environments. Some assignments may be lightly used or may be used during the time of day that could be meshed with communcations activities, using other frequencies.

THE SOCIAL VALUE OF SPECTRUM SPACE
Of course, another question that arises, as mentioned in the Introduction, ts the value to society of whatever estations we do project to come onto the market between now and 1990. Just because a station may be economically víable does not necessartly mean that its operation is in the public interest in fiew of the fact that the spectrum space it uses is made available without charge. Unfortưnately, there is no way within the scope of our study 'tio determime' the social value of these projected stations (or of existing stations, for that mattex) because any realistic calculation would have to quantify the value of "spectrum space in . alternative uses. Were spectrom space bought and sold like other resources such as land, then we would have some measure of the social value of spectrum. But sincé spectrum is allocated by administrative decision, no such measure exists. All that can be said here is that certain attempts in the past to measure spectrum value; Involving adding up the value of equipment that makes use of spectrum space, are wholly invalid measures of spectrum valuës. For example, we have seen many computations made of the millions of dollars invested in communications
factor is that so long as those allocations are maintained in the outlying areas, spectrum interference, were the allocqtions ever to be activated. Or, to express it differently, a station bperating on a given UHF frequency. in Fredericksburg, Va., would preclude the use of the same spectrum space for 8 ther ases in Washington some 50 miles away.

A comprehensive report prepared for the office of Telecommunications Policy is George P. Mandanis, et al., Land Mobile Communications and Public Policy, Systems Applications, Inc., National Technical-Information Service, No. PB-231524, August 1972. See also President's Task Force on Communcations Policy, "Public Safety Radio Spectrum Require-
 Service, PB-184422; June 1969.
gear dependent upon the use of spectrum space with the implication drawn that the total value of communications equipment is somehow a measure of the value of the spectrum space. This is analogous to estimating the value of, say, copper by adding together the value of all of * the copper-using commodities, including automobiles, telephone plant, and the host of other items in which copper is employed. The astronomical figure that one would derive in the case of copper would surely not reflect its value, sịnce other metals could, at some price, be substituted for it to some degree.

Similarly, with spectrum space. It is only one of many inputs that goes into communications systems. It can substitute for and be substituted against in the design and usp of communications systems. In mobile communication, substitution is most constrained, but even there adjustments are possible between equipment design and spectrum use. Were the explicit price of spectrum very high, for example, this would

* serve as further inducement for the development of cable television systems with program origination to reduce the demand for over-the-air broadcasting. Were its price very low, perhaps as a consequence of technological breakthroughs permitting greater sharing between terrestrial and space uses, then the use of over-the-air communications might. be substituted (to a degree) for the eventual fse of fiber optics, millimeter wave guides, and other confined fommunications links.
- In a similar vein, we cannot estimate the social value of competing uses of spectrum space. The best that can be done here is to project demand by competitors for use of UHF spectrum-an effort that falls outside the scope of the present study, but one that is the focus of other studies either underway or completed, as mentioned above.

FURTHER, USE OF VIABLE STATIONS MODEL

Finally, further.work using our model itself will be useful over the years as new data become available regarding such things is the popularity of pay television and videodiscs; the inclusion of unexpected new developments, and, especially, the rate at which the UHG handicap declines. As mentioned above, our time series 1971 to 1974 is too

[^23]short, and intermingled with macroeconomic effects such as high interest rates and general recessionary tendencies, to show UHF handicap has decilined over the four-year period. As a longer time series becomes available, perhaps extending through 1980 , it may be possible to estimate the decline in the UHF handicap from 1971 through. 1980 and use that estimate as a key element in projecting the further decline in the handicap through 1990.
annual repair and maintenance bill on the total stock of spectrumusing equipment, and (c) research and development expenditures in spectrumtrelated activities. See Telecommunications Science Panel of the Department of Commerce Technical Advisory Board, Electro, magnetic Spectrum Utilization: The Silent Crisis, October 1966, p. 8:

ϑ

$\frac{\text { GUIDE TO THE APPENDICES }}{S}$

Appendix A describes the model that we use to make the projections discussed in the main body of this report. This model yields direct projections of the number of vilable commercial UHF stations in each* market. However, when we began work late in 1973, we expected to. use more roundabout ways of projecting viable stations. All would yield profections of stations' profits, and profitability would be used as an indicator of economic viability.

As described in more detail in Section IX, we tried three different ways to predict television station profits. The first method was inspired by the FCC's draft work statemen's in its RFP, which suggests a procedure with several steps including the estimation of television market revenues, partitioning these amongestations in the market, and deduction of estimated expenses to arrive at profit predictions. Elements of this method are reported in Appendices, B, C and D. \&

A second method was quggested in our proposal that the FCC funded as a way of cutting throuth some of the complexities of the first approach: Estimate profis directly, rather than as the difference between estimated revenufs and estimated costs. This method is discussed in Appendix E.

A third method was originated at Rand after the project was underway, to focus more explicitly on television station pehavior'. As described in Appendix F, we view the station as a firm that. chooses its expenditure level to maximize profits subject to competitive pressure, public service obligations, and othe aspects of its environment. We estimated cost and revenue curves that model this process; these curves can be used as a third way to estimate profits.
profits did a very good jbe, particularly for stations handicapped

$$
-\quad 151
$$

by UHF transmission or lack of network affiliation. Furthermore, even good profit projections would have been dubious indicators of viability, since many stations report losses year after year and still remain on the air. So we rely on the more direct method of Appendix "A for all of our projections.

In this sense, then, the work reported in Appendices B through F - is a dead end, since it did not lead to a useful way of projecting viable stations. However, much of it is 月nteresting in its own right, as discussed in Section X above, and it is included here for that reason.

Theste appendices were prepared at intervals over a year-long. period as interim reports on work in process. It is not too surprising, then, that there are some inconsistencies among them--for example, use of data for different years, or reporting of different summary statistics. To iron out all of these differences would be a costly job for small benefits, and so we have not tried to do it. 'We have, though, made some changes. These are most extensive in Appendices A and E, each of which is based on two interto reports.
e

A.1. INTRODUCTION

Our analysis of the profits reported by television stations to the FCC*. convinced us of two things. First, reported profits are very difficult to predict with any precision. Equally situated stations--for example, independent UHF stations all located in the same markēt-which, objectively, ought to be equally profitcable, report. widely different profits. Second, reported profits are ónly very.tenuously related to station viability. Many stations report large losses year after year, yet still remain in business. We can't predict profits ! very well, and even.if. we. could, they wouldn't help us very muctreo predict numbers of viable stations.

Consequently, we turned our attention to the construction of a model that predicts directly the number of viable stations in each television market. That model is the subject. of this appendix. In Section A. 2, we take a close, look at the data that we are trying to explain--the. Aumber of UHF stations in each market. In Section A. 3, we describe the model and estimate it. In Section A.4, we attempt to separate out the effects of the UHF handicap, using a four-year data base and a constrained version of the viable stations model.

[^24]
A.2. DATA DESCRIPTION

In this section, we describe relationships between the number of commercial UHF stations in a market (NUHF), the number of commercial VHF stations (NVHF), and the size of the market for the year 1974. This is not yet meant to be model of the determination of the number of viable UHF stations, for clearly there are other factors that can affect that number (for example, the level of UHF set penetration). It is simply meant to, point out certain regularities in the data. We use these. observed regularities; when we specify the model in Section A. 3 :

Our. unit of observation is an American Research Bureau (ARB) telev dsion market area of dominant influence (ADI). An ADI is a set of counties, within which a given market's television stations attract a plurality of all viewers. The set of all ADIs is an exhaustive and. mutually exclusive partitioning of U.S. counties. We confine our attention to ADIs within the 48 contigüous states, and we exclude six "border" markets, * whose stations attract a substantial share of their audience from Canada or Mexico..

We are interested in the number of UHF stations in each ADI. The starting point for counting numbers of stations is the market-by-market list in Television Façtbook services volume. ** Bút a number of adjustments. are necessary or desirable, as summarized in Table A.l. The first three

Buffalo, NY (market 24); San Diego, CA (5i); Burlington, VT (117); Bellinglfam, WA (167); Watertown, NY (178); Pembina, ND (215). San Diego. was excluded in part because one of its network affiliates was licensed in Mexico: All the other excluded cities are relatively small compared to their neighboring Canadian cities: Detroit, for example; was not excluded because it is much bigger than Windsor, Qntario.
** Number of stations for 1974, for example, come from the list on pp. 43-46 of the 1974-75 edition:

Table A. 1
ADUUSTMENTS TO COUNT OF UHF STATIONS, 1974
$-$

listed adjustments are straight forward. We omit one station that is included in the Factbook list even though it was not on the air, drop three stations in'border markets which we exclude from our analysis, and add 12 stations in markets that are not included in the list. These 12 stations are all in markets that do not have ADIs. That is, they do not attract a plurality of viewing even in their home counties. They are physically located in the ADI of a nearby larger market. Examples are the Akron and Canton stations in the Cleveland ADI. We, count them in the, ADI in which they are physically located.

In the fourth adjustment, we subtract eight satellite stations located in the same market as their parents. The rationale is that these are, not separate stations in any real sense; they'add little or nothing to programming choice, and not much to the parent stations' costs. Functionally, they are just the equivalent of more powerful transmitters for the parent stations.

The net effect of the first four adjustments is to leave us with 169 UHF stations in what we call our broad count. Other adjustments, • which reduce the number of UHF stations to 143 In our narrow count, can be argued both ways. We might want to exclude futlying stations (such as the Ak'ron and Canton stations) because they are not really a factor in the main market. These stations, for example, provide very little competition for Cleveland stations, and thus have little effect on'the number of stations met ropolitan Cleveland can support. Also, we might want to exclude duplicate network affiliates, for much the same reason that we excluded satellites. To the extent that these
stations' schedules are dominated by network programming, a duplicate affiliate does not increase the competition facing the other stations in the market: On the other hand, both outlying stations and duplicate affiliates are some additional competition, and it would be desirable to work with the most inclusive reasonable data base. Because there is no compelling reason to choose either the broad of the narrow count of stations, we initially use both ${ }_{R}$ in one analysis in Section A.3.

Similar adjustments are made to the counts of Vif" stations in the Factbook list. Table A. 2 shows the station counts for each market used in the analysis. The first two columns show VHF and UHF allocations to communities located within the market's ADI. The next two columns show the number of operating television stations within each ADI in 1974.* Our broad count and narrow count, excluding some stations for the reasons discussed above, are also shown.

Table A. 3 presents the rest of the 1974 data that we use to. estimate our model in the next section. ** Table 'A. 4 gives data sumary statistics.
*The total number of operating stations inciuded on our list is smaller than the total stations on the air as reported by Television Factbook. The major reason is that we have excluded stations in border markets and in markets outside the 48 contiguous states which presumbly are included in the Factbook totals. A detailed reconciliation is not possible, since we do not have a list of stations included in the Factbook totals.
, ${ }^{* *}$ There is one minor difference between the data shown in Table A. 3 and those used in our estimates: For the estimates, cable penetration was inadveqtently set equal to zero for three markets (Jackson, TN : (market 17) ; Elmira, NY (182); and Palm Springs, CA (212). Also, there is a possible problem apparent in Table A. 3 that should, perhaps, have changed the data used in our estimates. SALES seems unreasonably. high for El Centro, CA (207) and Laredd, TX (217), so maybe these markets. should be omitted from the data base. These problems were discovered after all our estimates and projections had been made. We reestimated our pre-. ferred equation with correct cable penetration in Jackson, Elmira and Palm Springs and omitting El Centro and Laređo, with results shown in Table A. 9 below. In our judgment, the ohanges are too small to justify rerunning all - of the estimates and projections.

[^25]Table A. 2 (contd.)

Table A. 2 (contd.) .

Table A. 2 (contd.)

Table A. 2 (contd.) $=$

NOTE: The top 100 market rankings are assigned according to the list in the FCC cable television regulations. The rest of the rankings are assigned in order of 1972 ARB primetime television households. Border markets, markets outside the contiguous states, markets with no area of domimant influence, and markets that have been absorbed by ađjacent markets since 1972 are not included in this listing, but the original rank numbers have been peeserved.

163

Table A. 3
*
OTHER VARIABLES IN REGRESSION ANALYSIS 1974 DATA

Table A. 3 (contd.)

Table A. 3 (contd.)

	MLRKET		UHFPEN	cable	TVH	Sales	OVERLAP	etvuhf
101	SALNAS	CA	. 87	. 53	166.	6.687	2.192	0.
103	WPALMB	FL	. 85	. 24	199.	7.896	1.543	0.
104	SPRNGF	MA	. 96	. 10	216.	5. 9.45	1.281	1.
105	BINGHY	NY	.93	. 46	146.	6.203	1.608	1.
106	WILMNG	NC	. 63	. 12	109.	6.887	2.301	1.
108	AUGUSt	GA	. 75	. 08	155.	6.070	1.342	1.
109	BRSTCL	VA	.81	. 29	201.	5.045	1.215	0.
110	lafayt	LA	. 82	. 09	141.	6.138	1.580	0.
111	TDREHT	IN	. 81	-19	152.	6.603	1.433	0.
112	MONTGM	AL	. 84	.09	145.	6.221	1.395	1.
114	Lubuck	TX	. 92	. 19	114.	7.416	1.444	0.
115	Al bany	GA	. 70	. 18	101.	7.409	2.338	1.
116	SIOUXC	IA	. 87	. 05	145.	6.612	1.285	0.
118	Charls	SC	.77	. 01	131.	6.017	1.370	0.
119	ERIE	PA	. 95	. 13	114.	5.776	1.635	1.
120	TALLAH	FL	. 69	. 27	101.	6.305	1.625	0.
121	WACO	TX	. 79	. 29	154.	6.695	1.241	1.
122	JJPLIN	MO	. 81	. .20	145.	5.101	1.302	0.
123	SPRRIGF	MO	. 81	. 10	199.	5.523	1.079	0.
124	LXNGTN	KY	-91	. 15	166.	5.665	1.175	1.
125	FLORNC	Sc	. 73	. 18	74.	6.342	2.412	1.
- 126	AUSTIN	rx	. 94	. 20	153.	6.469	1.332	0.
127	TOPEKA	KS	- 85	. 22	129.	5.618	1.361	0.
12.8	RCCHES	MN	.77,	. 14	129.	6.423	1.273	1.
129	DSTHAN	AL	. 82	. 18	86.	5.658	2.122	0.
130	StJo	mo	. 73	. 25	50.	5.456	3.277	0.
131	WICHFL	IX	. 80	. 25	145.	6.184	1.029	1.
132	travrs	MI	. 80	. 28	. 123.	7.119	1.409	0.
133	LACROS	WI	. 82	. 29	131.	6.633	1.286	1.
134	UTICA	NY	. 85	. 43	485.	5.731	1.432	0.
135	ALEX:O	LA	. 72	- 28	61.	5.265	2.561	0.
$13 t$	TUCSCN	Al	. 79	. 08	170.	6.282	0.996	0.
137	YakIma	WA	. 96	. 32	125.	6.553	1.140	1.
13 B	CORPUS	1 T	. 86	. 19	131.	6.314	1.145	1.
139	BAKERS	C'A	. 96	. 55	92.	6.747	1.492	0 。
140	SNEARB	CA	. 78	. 69	89.	6.526	1.523	0.
141	TACCN	GA	. 88	.32	117.	6.468	1. 240	1.
142	CHICO	CA	. 82	- 34	88.	6.669	1.405	0.
143	Quincy	IL	. 78	. 22	109.	6.308	1.087	0.
144	ELPASO	TX	. 77	- 15	152.	7.132	0.957	0.
145	COLSPR	co	. 80	. 22	163.	6.051	0.916	0.
146	Eugéne	OR	. 79	. 42	120.	6.253	1.170	0.
147	BLUFLD	wV	. 70	. 39	111.	5.257	1.196	0.
148	COLUMB	mo	. 80	. 19	131.	6.612	1.119	0.
149	BILOXI	MS	. 83	.31	44.	6.566	2.857	1.
150	savana	GA	.90	.13	120.	6.921	1.073	0.

166

1
N.

Table A. 3 (contd.)

	MARKET			UHFPEN	Cable	TVH	SALES	OVERLAP	ETVUHF
151	YYLER	7x		. 78	. 40	75.	5.903	1.765	0.
152	ALEXNO	MN		. 70	. 21	80.	6.203	1.568	0.
153	BANGCR	ME		.73	$\therefore 10$	98.	6.493	1.267	0.
154	WAUSAU	WI-		. 74	-10	119.	6.750	1.161	0.
155	GRNW D	MS		- 72	. 34	38.	5.526	2.453	1.
156	Panama	FL		. 76	. 30	37.	6.690	3.453	0.
157	MINOT	ND		.67	. 05	113.	6.001	1.038	$0:$
158	ODESSA'	TX		. 80	. 42	101.	7.294	0.936	0.
159	MERID	MS		. 78	- 23	66.	4.704	1.517	1.
160	BOISE	10		. 76	. 02	101.	6.243	1.141	0.
161	LVEGAS	NV		.90	. 0	104.	8. 888	1.000	0.
162	ABILEN	YX		- 77	. 41	98.	6.646	1.204	0.
163	OTUMWA	14		. 68	. 27	30.	4.522	3.230	0.
164	FTSMTH	AR		. 84	. 25	77.	4.581	1.947	0.
165	COLUMB	MS		-66	- 25	66.	5.096	1.751	0.
166	CLRK BG	WV	${ }^{*}$. 75	. 48	80.	5.917	0.825	0.
168	MNKATO	MN		- 79	- 30	43.	7.677	1.998	0.
165	CHEYEN	WY		-82	. 36	54.	7.270	1.427	0.
170	MCALLN	T. X		. 70	. 21	95.	7.725	0.971	0.
171	LAUREL	MS		. 66	.18	65.	5.670	1.728	0.
172	MEDFRD	OR		. 76	. 28	77.	6.896	1.789	0.
173	RENO	NV		. 85	. 35	85.	8.595	0.958	0.
174	HARRSN	VA		. 74	- 27	30.	5.669	2.92.3	1.
175	JACKSN	TN		- 58	- 29	38.	6.055	5.314	0.
176	LKCHAR	1.4		- 77	.12	48.	5.385	1.519	0.
177	LIMA	OH		. 96	P. 53	35.	7.713	2.091	1.
179	RPDCTY	SD		. 78	- 27	60.	6.145	1.400	0.
180	ARDM ${ }^{\text {AR }}$	OK		. 75	. 24	51.	5.023	1. 685	0.
181	MAROTE	MI		. 75	. 49	47.	5.161	1.557.	0.
182	ELMIRA	NY		. 98	. 66	74.	5.910	1.910	0.
183	8UTTE	MT		. 68	. 34	36.	5.944	1.750	0.
184	JCNE SB	AR		. 68	- 20	39.	4.803	2.423	0.
185	MSCULA	MT		- 78	- 37	80.	6.441	1.700	
18.6	IDFALS	10		. 77	. 28	62.	6.869	1.083	0.
187	8 LLNGS	MT		- 78	. .28	62.	6.464	0.978	0.
188	FTMYER	FL		- 97	$\{47$	62.	9.199	1.49 .0	0.
190	ROSAEL	NM		. 74	. 45) 36.	7.617	1.578	0.
191	GREATF	MT		-80	.35	52.	7.117	1.142	0.
192	SALISB	MD		. 93	. 56	61.	6.833	0.992	1.
193	TUPELO	MS		. 76	- 36	35.	7.143	2.382	0.
195	CASPER	WY		-. 68	. 43	42.	7.216	1.335	0.
197	EUREXA	CA		.76	- 22	42.	6.451	1. 046	0.
199	2 ANESV	OH		. 95	. .51	26.	7.035	1.636	1.
200	GRANDJ	CO	-	. 73	$\bigcirc 34$	33.	5.587	1.174	0

Table A: 3 (contd.)

	MARKET		UHFPEN	CABLE	TVh	SALES	OVERLAP	etvumf
203	TwNFLS	10	. 79	. 34	38.	6.783	0.988	0.
206	SANANG	TX	. 74	. 51	25.	7.465	1.144	0.
207	ELCENT	CA	. 75	. 51	22.	16.271	1.195	0.
211	PRESCU	ME	. 74	.37	27.	6.359	0.923	0.
212	PLMSPR	CA	. 90	. 67	35.	6.337	0.610	0.
214	nPLAT	NE	. 82	. 22	15.	5.993	1.638	0.
217	LAREDO	TX	. 66	. 61	21.	10.905	1.056	0.
219	helena	MT	. 85	. 37	13.	7.245	0.873	0.
222	GLNOIV	MT	. 74	. 35	8.	+ 6.317	1.t00	0.

\cdot

168

Table A. 4
REGRESSION VARIABLES
1974 DATA SUMMARY

Item	Top-100 Markets		All Markets		
	Mean	Std. Dev.	Mean	Std. Dev.	
NVHF, broad count	2.79	1.27	2.19	1.24	
NUHF, broad count	1.23	1.32	. 86	1.14	
NVHF, narrow count.	2.70	1.18	2.14	1.18	
NUHE, Jarrow count	. 99	1.17	. 73	1.02	
UHFPEN	. 852	. 075	. 823	. 085	
CAble	. 106	. 091	. 198	. 155	
TVH	582.	770.	334.	597.	
SALES	6.43	. 59	6.48	1.06	
OVERLAP	1.22	. 31	1.38	. 55 \%	
ETVUHF	. 449	. 497	. 340	. 474	

(26)

A.3. ALTERNATIVE MODEL SPECIFICATION AND ESTIMATION

A DESCRIPTIVE MODEL

One expects the number of UHF stations (NUHF) to be negatively related to the number of VHF stations (NVHF) and positively related to market size, other things being equal. As our measure of market size, we use the number of homes with at least one television set located within the ADI. Television homes (TVH) is interpolated from ARB estimates as described th Appendix C and is measured in 1000 s of Chouseholds. Ancillary to our work on profits (Appendix E), we estimated an equation of the form

$$
\begin{equation*}
\text { NUHF }=\alpha_{0}+\alpha_{1} \mathrm{NVHF}+\alpha_{2} \mathrm{TVH} \tag{A.1}
\end{equation*}
$$

$$
4
$$

Besen and Hanley (1975) have estimated a similar equation.* We shall argue here that equation (A.1) is unnecessarily and unrealistically restrictive, and that a less restrictive relationship does a significantly better job of describing the data. ${ }^{* *}$
*Stanley M. Besen and Paul J. Hanley, "Market Size, VHF Allocations, and the Viability of Television Stations," Journal of Industrial Economics, Septepher 1975. The Besen-Hanlev equation differs from (A.1) in four respects: (1) their independent variable is the number of stations on the air and not the number of UHF stations; (2) their observations are only for markets with at least three stations on the air; (3) their "preferred" equation is logarithmic; and (4) their "preferred" equation is estimated using the limited dependent variable technique.
**
Equation (A.1) and all of the more complex specifications to follow treat NUHF as though it were a continuous variable. In fact, of course, it can assume only integer values. Thus the error variance in our equations is necessarily heteroscedastic, and our least squares estimates are inefficient. We attempted to take account of the integer restrictions on NUHF by using discriminant analysis and maximum likelihood estimation of a polycotomous logistic function to sort markets into NUHF categories, but were unable to obtain satisfactory results. Another way to take account of the integer resyriction would be to fit a step function to NUHF, as suggested by the comments of one knowledgeable FCC staff member. Both approaches probably warrent further investigation, were time and resources available.

To examlne the restrictions imposed by (A.1) and their effect on its ability to describe the data, we first reestimate (A.1) using all 197 markets in our sample. (For the remainder of this section, we present results using our narrow count of stations. Results for the broad. count are substantially 'the same, but somewhat less precise.) The resulting equation is fown on the top line of Table A.5, and the estimated relationship is plotted in Figure A.1. The relationship is statistically highly significant, with NUHF positively related to TVH and negatively to NVHF as expected. However, it accounts for only 40 percent of the variance of NUHF. Figure A. 1 shows the restrictiveness of equation (A.1). The relationship conslsts of a set of equally spaced parallel lines relating NUHF to TVH for different values of NVHF. Equation (A.1) constrains the slopes of the lines to be the same; that is, it constrains number of TVH associated with an additional UHF station to be the same no matter how many VHF stations there are in the market. And it constrains the intercepts to decrease an equal amount with each added VHF station; that is, each VHF station is associated with an equal decrease in the number of UHF stations regardless of market size.

Removing these restrictions, we estimate separate linear relationships between NUHF and TVH for eagh NVHF value: $0,1,2,3,4$, and 5 or more. The regressions results are shown in Table A. 5 and plotted in Figs. A. 2 through A. 7 , together with the data points.

The data plots themselves are quite encouraging. They exhibit a substantial degree of regularity, at least in comparison with our analysis of profit data described in the subsequent appendices. This is particularly true.

Table A. 5
REGRESSION RELATIONSHIPS FOR NUMBER OF UHF STATIONS, 1974 . .

Sample	Cobservations	Constant	TVH	NVHF	R 2	SSE $^{\text {a }}$
All	197	1.41	.0013	-.516	.40	122.9

NVHF0	16	$\begin{gathered} 1.52 \\ (3.9) \end{gathered}$	$\begin{aligned} & .0069 \\ & (3.1) \end{aligned}$. 41	9.38
NVHF1	43	$\begin{gathered} -.18 \\ (-1.4) \end{gathered}$	$\begin{aligned} & .0092 \\ & (8.2) \end{aligned}$. 62	11.30
NVHF2	56	$\begin{gathered} -.08 \\ (-1.0) \end{gathered}$	$\underset{(9.2)}{.0036}$. 61	7.82
NVHF3	65	$\begin{gathered} -.22 \\ (-2.7) \end{gathered}$	$\begin{aligned} & .0014 \\ & (9.6) \end{aligned}$. 59	11.84
$\mathrm{NVHF} \sqrt{4}$	14	$\begin{gathered} -.27 \\ (-1.1) \end{gathered}$	${ }_{(6.0)}^{.0013}$. 75	- 3.49
NVHF5 +	3	$\begin{aligned} & 1.37 \\ & (0.3) \end{aligned}$	$\begin{aligned} & .0004 \\ & (0.4) \end{aligned}$. 11	16.6

All separate
equations

${ }^{\text {a }}$ Sum of squared errors.

Fig. A.1-Regression relationships using Equation"($\mathbf{A} .1$)

Fig. A.2-Relationship of UHF stations to television households for markets with no WHF station

Fig. A.3-Rejationship of UHF stations to television households, for markets with one VHF station (single X indicates one observation; larger numbers are indicated numerically):

- Fig. A,4-Relationship of UHF stations to television households for morkets with two VHF stations (single X indicates one observation; larger numbers are indicated numericolly),

Fig. A.5-Relationship of UHF stations to television households for morkets with three VHF stations ㄱ (single X indicates one observation; larger numbers are indicated numerically).

Fig. A.7-Relationship of UHF stations to television households for markepts with five or more UHF stptions
of the plots, for $N V H F$ equal to 1 through 4 stations.
The separate regressions explain nearly twice as much of the variance in NUHF as does equation (A.I); R-squared for the separate regressions together equals . 70 instead of .40 . This increase is statistically significant far beyond the . ôl level, so we can decisively refect equation (A.1) in'favor of the separate regressions.*

Furthermore, the slopes estimated in separate regressions vary in a systematic and reasonable way, as shown in Figure A.8. The more VHF stations there are in a market, the larger is the increment in TVH associated with an additional UHF station.

Based on these descriptive results, we shall next specify a model of the determination of the number of viable UHF stations--a model that avoids the unrealistic constraints of equation (A.1).

[^26]

A BROADER SPECIFICATION

j
To go beyond mere description and specify a model of the determination of the numer of viable UHF stations, we must account for the influence on NUHF of other potentially important variables, in addition to NVHF and TVH. For example, richer markets may be moře attractive to advertisers, and heng, able to support more stations than can poorer markets. Th\& sorre measyre of market wealth should be included in the model.

Also, one strongly suspects that the number of viable UHF stations must depend on the number of homes thet are equipped to receive UHF signals--the greater is UHF set penetration, the more viable UHF sta- . (* tions there should be. But estimating this relationship is complicated by the fact that it works the other way, too--the more UHF stations
l there are, the greater is the incentive to buy a new set with UHF , capability in qrar to be able to receive them, and so the greater is the UHF peenetration. Our model allows for both effects--fhe influence) of UHF penetration on the number of UHF stations, and the influence of UHF stations on UHF penct ration--and our estimating method allows us to separate the two.

Other variables may be important as well. Figure A. 9 summarizes those that we include in the model, as well as the hypothesized relationships among them. The three variables in circles--NUHF, UHF penetration (UHFPEN), and cable penetration (CABLE)--are jointly determined endogenous variables. 1

Fig. A.9-Scherinatic representation of the viable stations:model

Each of them influences, and is influenced by, the other two. The other variables, shown in rectangular boxes, are assumed to be exogenous-determined by forces. outside of the model.

We first discuss the measurement and hypothesized influence of each oflthe variables, then set out the equations to be estimated.

NUHF: This is the number of UHF stations in a market, counted as described in Section A.2. Increasing NUHF should increase UHFPEN as discussed above. It may also increase CABLE, since one reason for subscribing to cable service is to improve the reception of UHF signals.

- By treating NUHF as endogenous, we are assuming that it is determined by market forces, not constrained by FCC frequency allocations. In fact, there ar\& unused commercial UHF allocations in most markets. (See Table A.2.) Even in those markets with no unused assignments, we can assume that a, UHF channel could and would be activated if there were an economic justification. Even in those cases, then', the real determinants of NUHF are economic forces, not limited (allocations. At the same time, it is clear that this is not true for VHF where" most channels are being used and little leeway exists for reallocation under existing allocation: \because cribber

UHFPEN: This is the fraction of TVH in the market that has television sets 'with UHF receivers. Increasing UHFPEN should increase NUHF, as discussed above. Insofar as buying a set with UHF receiver and subscribing to cable are competing ways, to get access, to UHF signals, increasing UHFPEN may decrease CABLE.

CABLE: This is the fraction of TVH in the market that subscribes 8 cable service. (We use Nielsen figurfas.) Increasing CABLE many have . Cither a positive or negative effect on NUHF. Cable improves UHF reception, tending to help UHF stations, but it also blethgs in distant, signal competition,
tending to hurt them. The direction of influence on CABLE on NUHF depends on which effect predominates. Also, CABLE may havena negative effect on UHFPEN /. because'of the competitiqe relationship noted above.

TVH: Thousands of ADI television hougeholds.
NVIF: The number of VHF stations, counted as in Section A.2. By treating this as an exogenous, variable, we are assuming that it is defermined by FCC fraquency allocations. The fact that there are very few unưsed VHF allocations, and none at all in markets with UHF stations, ${ }^{*}$ supports this assumption.

We saw in Section A. 2 that TVH is positively related to NUHF, and NVHF is negatively related to NUHF. We expect these relationships to hold in our model, as well. The जोay in which these variables enter the mọdel is based on the discussion in section A. 2. We want to allow different slopes and intercepts in the relat ionship of NUHF to TVH, depending on the value of NVHF. To accomplish this, we define the following variables .

AVHFF, ..: NVHF5: Six dumy variabies, equal to 1 ife⿴囗HFF=0, .. 5 .or more, and 0 otherwise.
, NVHFO*TVH, ... NVHFS*TVH: The products of TVH and the six dummy variables.

SALES: This is our measure of market wealth. It is calculated as ADh retail sales per TVH ($\$ 1000$ per year per household). We would expect it to have a positive infleence on all three. of the endogenous variables. OVERLAP: This variable is included to account for the fact that television markes are not autarkic; stations in one market compete, to

* ${ }^{*}$ There are a few applarent exceptions in Table A.2, but in all such.ocases the unused WHF allocations are for smaller communities far away from the se markets' major cities. i. . .
a greater or lesser degree, with stations in adjacent markets. measure of OVERLAP is the ratio of NWC to TVH, where NWC is market ret i weekly circulation (the largest NWC for. any station in the market). * The bigger this ratio, the more important is competition with adjacent markets. We allow for the possible 'influence of OVERLAP on each of the. endogenous" variable̊s; but we shall nat spécify the expected direction of influence a priomi.

RECEPTION: Over-t -air reception quality.certainly has an effect ' on CABLE, but we lack a convenient way to measure it direct-ly. Thus, as proxies for RECEPTION, we shall use:

STATE1, ...STATE48: Dummy variables equal to 1 if the market is* located in the first, ... forrty-eighth state, and, 0^{\prime} otherwise. These• dummies should capture the effect of differences in average terrain, : which is surely related to over-the-air reception quality'. They will also pick up the effect of non-reception state-specific influences on CABLE, such as the long freeze on franchising in Connecticut.

TOP 100: This is a dummy variable equal to if the observation is one of the $100+$ largest television markets, and 0 otherwise. FCC regulations have imposed requirements and restrictions on cable operation in the top 100 markets that have tended to 11 mdt CABLE there. Also, this variable will pick.up the effect of the generally.good over-the-air television "service' in larger markets. We expect it to have a negative influence on CABLE.

ETVUHF: This is a dummy variable equal to l° if the only noncommercial television serfice in the market is on UHF, and otherwise. ${ }^{\star}$ We calculate OVERLAP Lsing 1971 rath
and TVH. That is the last year for which
NWC was published. This variable should b
193

ETVÜF represents an incentive, in addition to that offered by NUHF, to buy a UHF set or subscribe to cable. * Thus we expect it to have a positive influence on UHFPEN and CABLE.

These relationships taken together make up a throe equation simultaneous system:

NUHF $=\mathrm{f}$ (UHFPEN, CABLE, $\mathrm{NVHF} 1 ; \quad \because$ NVHF5, TVH*NVHFO, \ldots
(TVH*NVHF5, SALES, -OVERLAP)

CABLE $=\mathrm{f}$ (NUHF, UHFPEN, SALES, OVERLAP, TOP100,
ETVUHF, : STATE1, .. STAPE4Q). $\because: \%$ (A.4)

ESTIMATION
We estimate équations (A.2) (A.B), and (A.4) as multuplicative; functions using both our narrow and our broad station counts and observations on all 197. markets. (Estimates usfng alternative specificationst presented in the following subsection.) The estimation technique is two-stage least squares. The; fesults are shown in Table A. 6.

We are primairly interested in estimates of equation (A.2), since NUHF is what we want to explafn. The most important features of this equation are:

1. UHFPEN fias a signifilcant and substantial impact on NUHF. Any increase in UHFPEN is estimated to increase NUHF in at least the same proportion.
2. CABLE has no detect able influence on NUHF one way or the other Apparently the reception and fragmentation effects approximately balance out to zero.

].

NOTE: Corrected R-squared, R-squared for ugransformed predictions, RMSE (root mean squared error) and t-statisfics all allased on variance estimates using actual rather than predicted values for right hand side endogenous varíables.

Table A. 7
INDIVIDUAL CONSTANT TERMS FOR STATES
IN ${ }^{\prime}$ THE CABLE REGRESSION

State		Narrow Count		Braad Count	
		Constant	,$_{\text {t-Statistic }}{ }^{\text {a }}$	Constrant	t-Statistic ${ }^{\text {a }}$
AL		. 284	1.15	. 157	0.61
AR'		. 321	1.35	. 217	0.89
AZ		. 426	1.71	. 337	1.33
CA		. $150{ }^{\circ}$	0.59	. 337	0.13
CN		. 399	1.40	. 255	0.85
∞		. 317	1.32	. 232	0.95
DC		. 347	1.26	. 214	0.73
FL		. 339	1.39	. 234	0.92
GA		. 371	1.49.	. 264	1.04
IA		. 391	1.68	. 274	1.10
ID		. 378	1.54	- . 290	1.15
IL		. 32.7	1.32	. 221	0.88
IN		. 349	1.39	-. 227	0.88
KS	*	. 311	1.23	- $\quad 213$	0.83
KY		. 299°	1.15	, $\quad .174$	0.65
LA	-	. 385	1.63	. 286	1.18
MA		. 402	1.57	. 276	1.04
MD		-074	0.30	-. 020	-0.08
ME		. 341	1.35	. 225	0.84
MI		. 286	1.19	. 180	0.72
MN		. 390	1.59	. 297	1.18
M0	-	. 374	1.56	. 266	1.08
.MS		. 290	1.18	. 179	0.70
MT		- 232	0.97	. 141	0.58
NC	1	. 389	1.49	. 271	1.00
ND		. 416	1.49	$\bigcirc .303$	1.06
NE		. 338	1.43	-. 255	1.06
KM		. 226	- 0.86	. 134	0.50
NV		. 510	1.99	. 445	1.72
NY		. 264	1.14	. 170	0.72
OH		. 220	0.93	. 119	0.49
- OK		. 312	1.33	-. 203	0.82
OR		. 252	1.04	. 168	0.68
PA		. 059	0.24	-. 061	-0.25
RI		. 407	1.61	. 346 :	1.36
SC		. 448	1.74	. 317	1.17
SD		. 345	1.31	. 246	0.92.
TN		. 397	1.53	. 283	1.06
TX		. 259	1.07	. 163	0.66
UT		. 363	1:31-	- 277	0.99
VA		. 301	1.26	. 182	0.72
WA		. 192	0.77	. 929	0.37
, WI		. 398	1.63	. 301	1.21
WV.	\cdots	. 011	0.05	-. 094	-0.39
WY		. 186	0.69	. 862	0.31

$a_{\text {Based }}$ on variance estimates using aćtual rather than predicted values for right-hand side endogenous variables.
3. The relationship of NUHF to TVH and NVHF, after accounting for : the influence of allwthe other variables, is generally gignificint, as we would expect from the discussion in Section A.2. The separate' effects. of the NVHF dummes and the dummies multiplied by \log (TVI) are not weill , : estimated because they are padrwise highiy collineat. The simple correlations range from-. 980 to 994 . This presents no problem for prediction, since these variables. will be similarly correlated in the future.
, 4. Somewhat surprisingly, the impact of SALES on NUHF is not in statistically significant, although it does have the expected sign. •
5. The coefftcient of OVERLAP is negative and almost significant at the . 05 level: This might be considered weak evidence that out-ofmarket competition tends to depress, the number of viable UHF stations.
6. The explanatory power of the equation is substantial. Using the narrow count of stations, over three quarters of the variance is, explained, and the root mean squared error is about half a station.

The other two equations are of direct interest only insofar as good resolts for them tend to confirm that our model specification is reasonable. In this respect, the UHFPEN equation is very encouraging, and the CABLE equation is somewhat less so: We discuss the UHFPEN equation first:
7. As expected, the presence of UHF stations, has a substantial and highly significant influence on UHFPEN.
8. CABLE has no detectable influence on UHFPEN one way or the other.

9:. SALES has a significant positive effect on' UHFPEN in accordance with our prior expectations..
10. OVERLAP has a significant negative effect on UHFPEN Although we did not specify the sign for this a priori, it is easy to rationalize. One explanation wotld be that the greater the out-of-market competition, the more total $\overline{\mathrm{VHF}}$ viewing options there are, hence the smaller the incentive to get a UHF set.
11. ETVUHF has a positive and signtificant effect on UHFPEN as expected.
12. The explanatory power of the equation is respectable, though not quite as good as that for NUHE.

The dependent variable in the CABLE equation is spectfied as $\log (1-C A B L E)$ to avoid taking the logarithm of zero. Thus it is actually. a NONCABLE equation, and the signs of the coeffictents are reversed. This equation does somewhat less well than *the other two.
13. Neither NUHF nor UHFPEN has a significant estimaled impact ón CABLE.
14. SALES tis postively and significantly relafed to CABLE, as expected.
15. OVERLAP is also significantly and posfively related to CABLE. This can be interpreted in the following way. High OVERLAP indicates. the presence of many nearly out-of-market stations that can be carried by cable systems, increasing the incentive/ to. subscribe to cable service.
16. TOP 100 is negatively and very ofignificantly related to CABLE as expected.
17. ETVUKF, like commercial NUHF, has no discernible impact on 1 CABLE.
18. The STATE' dummies taken as a group are not statistically
significant.
'The' rełatively poor performance of the CABLE equation má arise because the STATE dummes are not doing a good job of capturing reception differences. A.chelck of the within-state and between-state variance in CABLE lends . support to this conjecture, showing that the state means, are not as good predictiors of individual market values as' we expectéd. The state means account for only about one-third of the total variance.

Alifin-all, though, the model performs quite well.

ADDITIONAL: SPECİFICATIONS

In Tables A. 8 and A.9, we present estimates of alternative versions of the NUHF equation. The equation disçussed above (Table A.6) is of the form

$$
\cdot \cdot \log (1+\mathrm{NUHF})=\alpha_{i}+\beta_{i} \log (\mathrm{TVH})+\ldots
$$

where there is a separate intercept α_{i} and a separate slope β_{i} for each NVHF category (NVHFO, NVHF1, etc.'). The modifications in Tables A. 8 and A. 9 all constrain the α_{i}, and β_{i} in one way or another. The goal is to see if simpler versions of the equation will do almost as good a job of explaining the'data as does the unconstrained equation.
) We noted above that thè NVHF category dummies are very highly correlated with the same dummies multiplied by $\log (T V H)$. This suggests

alternative sfectifications of nugf equation:
COMMON SLOPE OR COMMON INTERCEPT, NARROW COUNT, 1974

Equation Number

(3.70) (6.72).

$x^{\log (\mathrm{TVR})}$			$\begin{aligned} & .300 \\ & (5.94) \end{aligned}$
$\dot{\log }$ (SALES)	$\begin{aligned} & .195 \\ & (1.09) \end{aligned}$	$\begin{aligned} & .972 \\ & .(1.00) \end{aligned}$	$\begin{aligned} & .243 \\ & (1.38) \end{aligned}$
\log (OVERLAP)	--. 151	-. 129	-. 155
, ,	(-1.86)	(-.159)	(-1.90)
CONSTANT	$\begin{aligned} & -.296 \\ & .(-.50) \end{aligned}$	$\begin{array}{r} -1.109 \\ (-2.02) \end{array}$	$\begin{aligned} & -.539 \\ & (-1.07) \end{aligned}$
R-squared:'		. 1	
Second stage	687	, . 663	. 676
Corrected.	. 743	. 723	. 727
Prodicting NUHF	. 754	. 722	. 746
RMSE	. 507	. 538	: 514

Note: Corrected R-squared, R-squared for
untransformed predictions, RMSE (root mean squared errör) and t-statistics are all based on variance estimates using actual rather than predicted values fot right hand side endogenous variables.

$$
\cdots, 1 . \quad \cdots \quad \because 196
$$

Table A. 9
ALTERNATIVE SPECIFICATIONS OF NUHF EQUATION: QUADRATIC SLOPE AND/OR QUÁDRATIC INTERCEPT,

including the dummies only once in the equation, that is, either multiplied by $\log (T V H)$ or alone, but not both together. This is equivalent to constraining the equations fàr all, NVHF-categories, to have the same. slope, $\beta_{i}=\beta$, or the same intercept, $\alpha_{i}=\alpha$.

Table A. 8 shows the results of imposing these constraints. Column (1) reproduces the unconstrained equations from Table A. for easy comparison. Coluinn (2) shows the equation with a common intercept, and cblumn (3) shows the equation with a' common slope. The t-statistics for the slope and intercept terms in the constrained equations ar"e substantially increased, and R-squared falls only slightly. Equation (3), witheseparáte interkepts, fits the data slightly better than does equation (2), with . separame slopes. Wquation (2) is rejected in favor of equation (1) by . an F test at the .05 level, but equadion (3) is not.

- In Tabke A'.9, we impose another kind of a constraint. We note in Table A. 7 that there appears to be a fairly régular, but nonlinear, pattern in the estimated slopes and intercepts. We should expeçt some - pattern, since the categories are naturally ordered by the number of VHF stations, NVHF.
${ }^{\prime}$ In column (1) of Table A. 9, we impose quadratic smoothing on the slopes and intercepts. That is, we.specify

$$
\alpha=\alpha_{0}+\alpha_{1} \star \mathrm{NVHF}+\alpha_{2} \star \mathrm{BHHF}^{* * 2}
$$

and

$$
-\beta_{\sigma}+\beta_{1} * \mathrm{NVHF}+\beta_{2} * \mathrm{NVHF} * * 2 .
$$

We estimate seven fewer coefficients for this equation than for the unionstrained equation, and R-squared decreases only slightly... In fact, the additional variancexplained by the upeonstralned equation falls far short of being significant at the of level:
\therefore Again, though, the coefficient of the slope and intercept terms are imprectsedy estimate because of multicolinearity among the variables
 trying the equations shown in columns (2) and (3). In (2), we specify a common intercept and quadratic slope. In (3), we specify a quadrate intercept and common slope. Both constraints must be rejected at the .05 significance level.

On statistical grounds, then, we have our choice of an equation with separate intercept for each NV̌F category and a common slope (equation ((3) , Table A.8), or an, equation with quadrat id slopes any. intercepts (equation (1), Table A.9). Of the two, we choose equation (1), Table A. 9 on astatistical grounds. One reason is that it, does a better job of predicting untransformed NUHF (as opposed to $\log (i+N U H F)$); its R-squared of .785 is better even than that for the unconstrained equation.

Another reason' is that its patterns of predictions are more reasonable. $\because A Z$ of the equations predict more UHF, stations for markets - With more VHP stations for some (relatively high) values of "NVHF and TV̉H \dot{A} priory, this is an unreasonable result, but it reflects relationships

- \quad Column (4) of Table $A . \dot{9}$ is the same equation as column (1) estimated using a corrected data base. See the footnote discussion of, two data problems relating to Table A. 3 above. -

Qur estimates flearly show that UHF stathons are helped by increasing t

- URF set penet ration, just as one would expect." But even when ỤHF pene-
\therefore tration reaches 100 pércent, UHF wll continue to suffer, rélative to VHF, from reception and tuning difficulties that collectively have come to be caliled the UHF handicap. This'月andicap may be decreásing over time as UHF, stafions increase their power and as, more households install UHF ${ }^{\text {a }}$ antennas, and 1 t will probably decrease still more in the future as - more and more sets with push button tuning for both'VHF and UHF come into use.

FOUR-YEAR EQUATION

We would like to check how fast the UHF handifap has decilned in the past, as a"guida to projecting further declines in the future. As a simple way to do so, we estimate the model using data for all four years; 1971-1974, and including dummy variables for 1972, 1973, and 1974. The results.are shown in the first-column of Table A. 10 .

Surprisingly, the year effects deorease significantly over the fouryear period. That is, the number of UHF stations increased less rapidly over. this period than one would expect to result from changes in the factors included in the model--primarily increasing UHFPEN and TVH.. This is just the opposite of what we expected to find. We thought that the decreasing UHF handicap would result in a faster increase in the number of UHF stations than could be explained by the factors inciuded explicitly In the model.

What must be happening is that factors that are not included in the model--for example, high interest rates and unsettled economic conditions--

Table A. 10
TRENDS. IN UHF HANDICAP OVER TIME, 1971-1974 ${ }^{\text {a }}$

T $a_{" \text { Four }}$ year equation."
NOTE: Corrected R-squared, R-squared for untransformed predictions, RMSE (root mean squared error) and t-statistics a. are all based on varfance estimates using actual rather than predicted values for right hand side endogenous variables.
depressed the number of UHF stations in 1972,1973 , and 1974 relative to 1971. The estimated year effect, then, combines the effects'of - 10 economic conditions, any change in the UHF handicap, and all other: factors that vary from year to year and affect the number of UHF stations but are not included as variables in our model.

CONSTRAINED EQUATION
Although there is no way to separate out trends in the UHF handicap in our model, another approach lets us make projections on the assumption that the handicap disappears entirely. In other words, we cannot tell how fast the handicap is approaching zero, but we can project what will happen when (and if) it. gets there?

We note that an unhandicapped UAF' station is'by definition indistinguishable from a VHF station. Thus our task is equivalent to estimating how many VHF stations each market would suppoft if there were no limits, on VHF allocations; we shall refer to this as the "unlimited". VHF relationship or the "unlimited". VHF line. The thing that makes estimating.an un ${ }^{2}$ limited VHF relationship difficult is that VHF aflocations afe in fact limited and almost all of them are in use. Many, if not most, markets would use more allocations if they were available; thus we must use an tndirect approach to estimating an unlimited VHF, relationship. Our approach builds on the work-o.f Besen and Hanfey (1975), who derive: an unlimited VHF line from an 'estimate of equation (A.1). * The key observation

that makes this possible is that the existence of UHF stations in a market is an indication of pressure on VHF allocations; conversely, the absence of UHF'stations indicates a lack of pressure. * One way to proceed, then, would be to estimate an unlimited VHF line using only markets without any UHF stations. However, this would neglect the information contained in observations on, other markets. To make use of this information too, one can estimate (A.1), set NUHF equal to zero (the no-pressure candition); and solve for NVHF in terms of TVH. Our estimate of (A.1) from Table A. 5 is

$\rightarrow \rightarrow 4$

 Second, where a solution exists, it implies that the portion of the unIImited VHF line depends strongly qn the value of UHFPEN; an unreasonable result.${ }^{*}$ If there are all-VHF markets that would support an additional VHF stz tion but not a UHF, this is not precisely true. To the extent that such me kets are fncluded, in our sample, our estimate of the unlimited VHF reiationship is biased downward.

Consequently, we specify the following version of the viable stations model, including constraints that eliminate the two problems.

- We take unlimited NVHF to be a iinear function of TVF only:

$$
\text { NVHF }=\alpha_{0}+\alpha_{1} T V H
$$

Ideally, one w̉ould waht to let the slope of this line depend on some of the other variables in the model--SALES, OVERLAP, possibly. CABLE: However, doing so results in a nonlinear equation that would be very difficult to estimate; as the reader can easily verify by substituting $\left(\alpha_{1}+\alpha_{2}\right.$ SALES $+\alpha_{3}$ OVERLAP $\dot{+} \alpha_{4}$ CABLE $)$ for α_{1} below. Following Besen and Hanley, we solve (A.6) for the value of $\overline{T V H}$ that corresponds to the allo-cations-limited value of $\overline{\mathrm{NVHF}}$:

$$
\begin{equation*}
\overline{T V H}=\left(\overline{N V H F}-\alpha_{R}\right) / \alpha_{1} \tag{A.7}
\end{equation*}
$$

Finally we specify NUHF as a mưliple of the excess of TVH over $\overline{T V H}$:

$$
\begin{align*}
\text { NUHF }= & \left(\beta_{0}+\beta_{1} \text { UHFPEN }+\beta_{2} \text { CABLE }+\beta_{3}\right. \text { SALES } \\
& +\beta_{4} \text { OVRRLAP }(\operatorname{TVH}-\overline{T V H}) \ldots
\end{align*}
$$

Here the multiplier does depend on factors other than TVH that may influency NUHF. Substituting from (A.7) in (A.8) and rearranging terms we get.

$$
\begin{aligned}
\text { NUHF } & \dot{=} \frac{\alpha_{0}}{\alpha_{1}}\left(\beta_{0}+\beta_{1} \text { UHFPEN }+\beta_{2} \text { CABLE }+\beta_{3} \text { SALES }+\beta_{4} \text { OVERLAP }\right) \\
& \left.+\beta_{0}+\beta_{1} \text { UHFPEN }+\beta_{2} \text { CABLE }+\beta_{3} \text { SALES }+\beta_{4} \text { OVERLAP }\right) \text { TVH } \\
& -\frac{1}{\alpha_{1}}\left(\beta_{0}+\beta_{1} \text { UHFPEN }+\beta_{2} \text { CABLE }+\beta_{3} \text { SALES }+\beta_{4} \text { OVERLAP }\right) \overline{N V H F}
\end{aligned}
$$

$$
\begin{aligned}
+ & \beta_{2}\left(\mathrm{TVH}-\frac{1}{\alpha_{1}} \overline{\mathrm{NVHF}}+\frac{\alpha_{0}}{\alpha_{1}}\right) \text { CABLE } \\
& +\beta_{3}\left(\mathrm{TVH}-\frac{1}{\alpha_{1}} / \dot{\mathrm{NVFF}}+\frac{\alpha_{0}}{\alpha_{1}}\right) \text { SALES } \\
& +\beta_{4}\left(\mathrm{TVH}-\frac{1}{\alpha_{1}} \overline{\mathrm{NVHF}}+\frac{\alpha_{0}}{\alpha_{\mathrm{I}}}\right) \text { OVERLAP }
\end{aligned}
$$

1
(A.9.)

As before, this is on three spructural equations in the model, and we estimate it by two-stage least squares with UHFPEN and CABLE treated as endogenous variables. An ityerative procedure is usèd to estimate (A.9) Initial values of the $\dot{\alpha}$ coefficients from (A.5) are used to calculate valu\& of the composite variables in the second form of (A.9)." Regressing NUHF on these composite variables with the intercept suppressed yields an estimate of the β coefficients. These are used ta calculate the composite variables in the first version of (A.9). Regressing NUHF $-\left(\beta_{0}+\beta_{1}\right.$ UHFPEN $\ldots+B_{4} 0$ OERLAP) on the ether two composite variables, again suppressing the constant term, gives revised estimates of the α coefficients with which to begin the next iteration. This process converges to the estimates given in Table A.11.. \quad ध

Table A. 11

Coefficient	Estimated Value	$\begin{aligned} & \text { Conditional }{ }_{\text {t-Statistic }}{ }^{\text {b }} \end{aligned}$

1

B.1. INTRODUCTION:

In this paper we investigate the determinants of television view-. ing, levels. The estimates of television market audience from this appendix would feed into a model of the determination of television station profits, as described in Section IX of the main body of this。 report. In particular, we ąre interested in the extent to which an ${ }^{\circ}$ increase in'the number of viewing' options (for example, from two to... . three network stations) increases the amount of viewing.

We analyze audience data, at two levels of aggregation: first the market, level, then the, county level. The two analyses produce results that seem, on the surface, to be in conflict. The market-level analysis (Section B.2) suggests that the number of viewing options has'a faigly large effect on viewing levels, and the county-level analysis (Section B.3) suggests that the effect is very slight. The apparent discrepančy is discuissed and the, two analyses reconciled in Section B. 4 ..

```
B.2. MARKET-LEVEL ANALYSIS
```

There is a wide range in the number of conmercial stations in " different-television márkets: only one in quitera few small markets, on up to more than a dozen in Los Angeles.. Thus it looks as thọugh we should be able tétell a lot about the effect of the number of viewing option on total viewing in a market. This would probably be true if e"ach market's'signals were confined to exclusive geographical areasif New York stations, for example, were watched only in an area within which no other market's stations were watched. But. in fact there is; in most cases considerable overlap between adjacent markets. This complicates the analysis and clouds the results.

One way top proceed in the face of this difficulty is simply to ignore it, hoping that overlap, though ubiquitous, is not important enough to seriously distort the results. Using this appoach, we • initially assume that market are autarkic, that is, that each market's stations are watched only within that market's area of dominant Influence (ADI).* Then we can measure total market viewing by adding up the audience attracted.by all stations in a market (AUD) and dividr ing by the number of television households (TVH) in that market's ADI. Calculating this'measure of viewing using 1967 data on rime-time* audience yields a distribution of values that is summarized on the first line. Table B.1. The mean value (.599) is consistent with the well-known fact that approximately 60 percent of all television households watch television during prime time, but the range

[^27]
(\cdot
$1:-$

is so wide as to make one doubt in advancs that this approach *ill work out very well. At the'upper end af the range, it shows nearly all households watching television in prime time; at the lower end, only onequarter. Both figures are to extrene to be beltievable. Still, one can tropé that the wide variation is random noise superimposed on an underlying’pattern and attempt "to discern the pattern.

Our provisional assumption that markets are autarkic makes it easy to specify the viewing options in each market: they consist simply of all local stations. Lacking any strong a priori knowledge of the form of the relationship between options and viewing levels, we specify the dammy variable structure shown in Table B.2. We do suspect that network affiliation and perhaps VHF or UHF transmission will affect viewing levels, and the dumny variables are defined to take these factors into account. Table B. 3 shows the number of markets that falli into each class.

In our first attempt to relate viewing levels to viewing options, we simply regress prime-time audience divided by $A D I$ TVH on the eleven dummy variables, with the results shown as line (1) in Table B.4. The broad pattern of the coefficients of the network dummies is reasonable: generally speaking, the better network service is; the higher is predicted viewing. . The range is from .412 for a onep-network UHF market to .643 for a three-network all-VHF' market (or, somewhat anomalously, .671 for a three-network al -UHF market). These results areroughly comparable Eq those of Noll, Peck
also used mafket-level data. The presence of independent atations has no significant effect on aggregate viewing in this equation.. The of Television Regulation, The Brookings Institution, Washington, D.C., 1973, p. 52.

Table B. 4

 (24.14) (36.66) (47.94) (6.65) (10.77) (17:04) (7.87) (9.73) (18.88) (2.39) (.20)
 (24.45). (36.05) (47.63) (12.36), (17.13) (24.37) (12.63) (15.96) , (26.54) (2.12) (.07) (-11.09)
 $\begin{array}{llllllll}(22.14) & (30.57) & (53.96) & (6.10) & (9.17) & (28.15) & (6.85) & (18.93) \\ (22.71) & (3.85) & (1.02)\end{array}$
 (17.35) (24.73) $-(49.94)(6.01)(8.92) \quad(22.13) \quad(6.88)(18.56),(21.98) \quad(3.21)(.91)$
$-050.0388 .072$
(-1,06)

[^28]equation, though statistically significant, explains less than onequarter of the variance of AUD/TVH:

When we abandon the assumption that markets are autarkic, the problem becomes more difficult, for now we must. recognize that a market's stations attract some audience from outside its $A D I$, and stations from other markets attract audience thin the first market's ADI. Furthermore, the amount of competition varies from place to place in and around the ADI. We cannot hope to deal definitively with these complexities us market-level data, but we can press on in an ad hoc way.

Recognizing that some audience comes from beyond the ADI, we use market net weekly circulation (NWC) ${ }^{*}$ instead of $A D I$ TVH to measure the number of television households in a market's service area. Then the variable' to be' explained is the fraction of households in the service area that watch the market's stations during prime time; AUD/NWC. The results using 1967 da are shown as line (2) in Table B.4. The pattern is much the same as in line -(1): more network signals generally mean higher AUD/NWC. There are, however, two important differences between line (1) and line (2) . First, R-squared is nearly tripled to . 645 : Second, 'in; (2) a VHF independent station, adds a statistically signifycant amount to AUD/NWC.

By using AUD/NWC, we have taken account of the fact that some V audience comes from beyond the ADI. We can further improve the explanatony power of the equation by including a variable in recognition of

[^29]the fact that local stations face out-of-market competition, Out-of-market competition is presumably higher the greater the overlap with adjacent markets; we measure overlap with the ratio of NWC to TVH. \therefore This variable has the expected negative sign and is highly significant in line (3); it further increases R-squared to . 784 without mich changing the relative magnitudes of the other coefficients. Note, however, that there is some danger that the high partial correlation between AUD/NWC and NWC/TVH is a statistical artifact resulting from the use of NWC in creating both variables.

In -later years we have data on another measure of out-of-market competition: the percentage of cable households (CABLE) in the market's ADI. Most cable systems carry out-of-market signals, providing good reception of stations that can be received only poorly or not at all over the air. Hence the competition facing local stations is higher in cable than in non-cable households; and so CABLE should be negatively related to AUD/NWC

We have data on CABLE for 1971. Lines (4) through (7) in
Table B. 4 show results for that year. Lines (4) and (6) are without the CABLE variable for comparison with lines (2) and (3). Lines (5) and (7) add CABLE to each of the two specifications. In both cases its coefficient is negative as expected. When NWC/TVH is also included in the equation, line (7), it is statistically-significant,. though small. According to this estimate, the effect of increasing cable penetration from 25 , up to 50 percent would be to reduce local station AUD/NWC by .035. For a three-network VHF market with average NWC/TVH, this would be from .496 to .461 , a seven percent reduction.

All in all, the picture that emerges from the market-level analysis is that television viewing is quite, sensitive to the number. of signals avallable. In all of the Table B. 4 equations, expected prime-time viewing differs by a factor of about two petween the bestserved and the worst-served market classes. But these results are clouded. by the difficulties with market-level data discussed above, and so we turn next to an analysis using county-by-county, audience. data.
,

$$
\% 5
$$

The county-level analysis is conceptually cleaner than the market-level analysis in, two ways. (1) In the market-1evel analysis, we were forced to use NWC as a rough measure of households in a , market.'s (amorphous) service area. In the county-level analysis, the ${ }^{\text {a }}$ number of television households in the county is well-defined. (2) In the market-level analysis, we had no good way to meqsure the number of out-of-market television signals, a number that in any event varies from place to place in the market. Most counties, though; are small enough géographically so that it is reasonable to assume that they have homogenous television reception throughout.** Thus the number of viewing options can be counted up in a (reasonably) straightforward manner.
\Varangle
Perhaps the main disadvantage of the county data is that some of the samples used by ARB are very small: fewer than ten households in some small copunties: Consequently the estimates of viewing levels in some individual counties are not very precise due to sampling error. There are, however, a sufficiently large number of counties to work with"so that we can hope to make reasonably precise estimates of average viewing in broad categories of counties. In particular, we shall classify counties by levels of television service, and hope to detect any differences in viewing levels between poorly served and well served' counties.

[^30]In'principle, our classification scheme is very simple. We divide countiès into five categories:

	Category
	$\because 1$
	. ${ }^{\text {c }}$
	3
	4
	5.

Number of
Networks

1
2
3
3
less than 3

Number of
Independent Stations
0

1 or more
1 or more
-

In practice, there are two complications. First, consider a county in which only one station is received--a station that is affiliated with all three networks. Should that county be counted as a one-network county or a three-network county? On the one hand, there is only one network signal available at any given time. But on the other hand, the 'station presumably chooses the most popular shows from each network and so offers better than one-network service. We run the calculations both ways: (a) considering only the primary affiliation of each station in determ (ning how many networks are received in each county, and (b) constdering all affiliations, primary, secondary, and tertiary.

To illustrate the second complication; consider a county that reports viewing of three stations: $A B C$ and CBS affiliates that each receive 49 percent of the audience and an NBC affiliate that receives only 2 percent. Do we really want to classify this as a threenetwork county? 'What if the percentages were 46,46 , and 8? Again, we solve the problem by running the calculations in a variety of ways: (a) counting everything, no matter how small its audience in
the county; (b) counting'a network as received if its affiliates attract. aleast 5 percent of all viewing in the county and independents as received if they collectively attract at least 2 percent; (c) and (d) successively higher cutoffs as follows:
 of putting counties into our five categories. Table B. 5 shows the results for all 3094 counties. The table shows several statistics. for each category: \mathfrak{n}_{4} the number of counties in the category; \bar{x}, the average percentage of telèvision households watching television during prime time; $s \bar{x}$, the standard error of estimate for \bar{x}; $t \bar{x}$, the t statistic for the difference ${ }^{\text {a }}$ between $\overline{\mathrm{x}}$ for the category and the overall mean for all counties; and, where appropriate, $t_{\text {adj }}$, the t statistic for the difference between adjacent category means; for example, between average viewing in one-network and intwo-network counties*.

The same general pattern appears no matter which of the eight ways of assigning counties to categories is used: Total viewing increases slightly but significantly with the level of felevision service. On the first line, for example, prime-time v/ewing goes from about' 54 percent where only one network is recedod, to 56 with two networks, 58 with three, and 59 where an indemendent is added to the three networks. There are so few counties where only one network

Table 8. 5
county-Líevel analysis of prime-tine viewing: all countibs
(percent of television households).

For all 3094 counties, $\bar{x}: 58.40$ and $s_{-}-: 13$.
$n:-$ number of coundies
$\overline{\mathrm{x}}$: , mean prime-time viewing in percent for each service category
${ }_{\mathbf{d}}^{\mathbf{x}}$: standard error of estimate for $\overline{\mathbf{x}}$.
${ }^{\mathbf{t}} \overline{\mathrm{x}}$: $\quad \mathrm{t}$ statistic for the difference of \bar{x} and 3094 county mean
$t_{\text {adj }}$: t statistic for the difference of \bar{x} and the mean for the next service category to the right. ;
is received that our estimate of $\overline{\mathrm{x}}$ for this category is not very precise, but the general pattern is clear and significant.

It might be objected that something other than the level of television serviee causes the differences in viewing apparent in Table B.5. For example, one- and two-network counties are generally rural, and the people who live there may well have systematically different tastes and opportunities for the use of time than do $\}$ people who live in cities. To check on this, we ran the calculathons reported in Table B, 6 for rural counties only. * The results are not substantially different than those for all counties, lending some additional support to the hypothesis that level of service affects total viewing.
*ARB defines four county sizes as follows:

1. Counties within one of the 26 largest standard metropolitan statistical areas (SMSAs).
2. Counties (not of size 1) with population at least 120,000 , o'r within the metropolitan area of a city in a size 2 county.
3. Counties. (not of size 1 or 2) with population at least 32,000 , or within the metropolitan area of a city in a size 3 county.
4. All counties not of size 1,2 or 3 .

Table B. 6. uses counties afistze 3 and 4 only.

Table B. 6

COUNTY-LEEEL ANLYSIS OF PRIE-TIIE VIEMTMG: RURAL COMTIES OMY (percent of television households)

Counting prlary afflliation only

 Countling priaary, secondary, and tertiary affiliation

 Por all 2612 rural counties, $\bar{x}=57.96$ and $\frac{8-}{8}=.14$.
a: nubber of counties
\bar{x} : wran prime-tide vieving in percent for each service category
(${ }_{5}^{5-}$: standard error of estinate for \bar{x}
t-: t statistic for the difference of \bar{x} and 2672 courty mean
$t_{\text {adj }}$: statistic for the difference of \bar{x} and the mean for the next service categrory to the right.

The two seemingly conflicting analyses in this appendix correspond to two conflicting strands in past research. On the one hand, our market-level analysis indicates that additional signals have a substantial effect on aggregate viewing levels. This matches Noll, Peck, and McGowan's conclusion, which was also based on market-level data. On the other hand, it has been frequently assumed (e.g., Park, 1973), * or asserted based on rather casual evidence (e.g., Owen, Beebe, and Manning, 1973; FCC, 1969), ** that total audience does not depend on the choice of signals. This is (approximately) supported by our county-level analysis, where we find that additional signals add only slightly to total audience.

Which conclusion is correct? In a sense both are, but they are conclusions about different effects. It is important for modeling and forecasting to understand the difference.

Consider the following example, which is consistent yith both sets of results. Market A is, a three-network market surrounded by other three-network markets. Within A's ADI, 58 percent of households watch television during prime time. Both county-level and market-level data show total ratings of 58 . Market B is a twonetwork market surrounded by three-network markets. Within B's ADI,

[^31]total viewing is the same as in A's: 58 percent. But a substantial share of this total is watching the third network signal from adjacent markets. Thus the total rating for Market B 's two stations is substantially less than 58 percent.

The county-level results are correct in showing that total viewing in any given geographical area is only slightly affected by the number of signals received there. The market-level results are correct in showing how that total is shared among adjacent markets with different numbers of local stations:.

Appendix C TELEVISION MARKET REVENUE

Fisher, et al. (1966) and Park (1970) ${ }^{\text {* }}$ have reported strong linear relationships between television statioh audience and revenue. Re^{-}. gressing 1963 net broadcast revenue, r, on March 1964 prime-time ${ }_{c}^{\text {** }}$ audience, a ${ }_{p}$; Fisher obtained

$$
\begin{array}{r}
\mathrm{r}=103.3+26.63 \mathrm{a} . \tag{C.1}\\
(2.28) \quad(68 .)^{\mathrm{p}} .
\end{array}
$$

The numbers in parentheses are t statistics and the coefficient of determination (R^{2}) is :897. Using 1968 data, Park obtained

$$
\begin{align*}
\mathrm{r}= & 13.4+43.20 a_{\mathrm{p}} \tag{C.2}\\
& (0.22)(81.34)
\end{align*}
$$

with $\mathrm{R}^{2}=.924^{* * *}$
Although both equations look quite good by conventional standards -high R^{2}, high t statistics --, there are several reasons for trying to

[^32]go beyond them in our present work. Most compelling, perhaps, is the fact that these equations constrain the value of audience to be the same in all markets; for example, a viewing household is assumed to be worth as much in a poor market as in a rich one. A look at the data (Section C.2) shows that there is considerable market-to-market variation in the amount of revenue per viewing househoid. In the work reported here, we explain some of this variation.

Another reason has to do with the fact that we plan to use our results for prediction. R^{2} is scaled wrong to be a very good measure of predictive merit. A better one is the standard error of estimate (SEE),whick (ignoring correction for degrees of freedom) equals $\sqrt{1-R^{2}}$ times the sample standard deviation. So while the equations leave only onetenth or so. of the sample variance unexplained, their SEE is about . 3 times the sample standard deviation. Since the sample standard deviation is itself very large, SEE for the two equations is large. The equations developed here are more precise predictors. (Some uncertainty is, of course, inevitable. Even with an R^{2} as high as .99 , an equation has an SEE of .1 times sample standard deviation.)

Additional reasons have to do with the statistical properties of the estimates. For one thing, the error variance in equations (C.1) and (C.2) is certainly larger for large stations than for small stations. In the presence of this heteroscedasticity, the reported coefficients, are estimated inefficiently and the reported t statistics are biased upward. In our estimates we attempt to stabilize the error variance.

For another thing, depending on the model assumed, the estimates in (C.1) and (C.2) may be subject to simultaneous equation bias. Certainly a_{p} is an epdogenpus variable; since it is affected by station programing decisions. Therefore, unless it is determined "above" r in a recursive system, it does not belong on the right hand side of an equation estimated by ordinary least squares.

In the remainder of this section we discuss the data that are used in the study (Section $C .2$) and fit two different sets of equations using data that are now available extending through 1972 (Section C.3). In Section C.4, we subject the methods of Section C. 3 and others to a hard test of their predictive merit: Pretending to stand in 1967, we compare the various methods as predictors of 1972.

3

C.2. THE DATA

The data used are sumarized in Table C. 1 and discussed in this section / Table C. 1 shows summaries for 1967 and 1972 only. These two years pfay special roles in our analysis in this note, although data for the , full ten-year period 1963-72 were also used in some cases. .

THE SAMPLE

Our unit of observation is ARB-defined areas of dominant influence (ADIs). These make up an exhaustive and mutually exclusive geographic partitioning of the United States. Each ADI includes all counties (or in some cases portions of counties) in which a particular market's' stations capture a plurality of viewing hours. Some cities that are traditionally considered to be separate television markets (such as Akron, Ohio) have no $A D I$. For our purposes, stations in such markets are assigned to the ADI in which they are located (Cleveland, in the case of Akron). Also, satellite $\mathbf{S}_{\boldsymbol{j}}$ tations are considered to be simply; extensions of their parents. Data for satellites, when separately reported, are added to those for the parent and the aggregate entity is treated as a single station.

Only markets within the 48 contiguous states are analyzed. Border markets -- those whose stations attract a large fraction of their audience from outside the U.S. -- are excluded from our analysis because we do not have data on foreign oudiences.

$$
8 \%
$$

REVENUE

Our revenie figures come from FCC'files of financial reports made annually by all U.S. commercial television stations. Four different revenue figures are reported: three by type of revenue and one allinclusive figure. The categories are network, national and regional spot, and local spot. The alf-inclusive figure, net broadcast revenue, is the sum of the three categories plus a generally small amount of non-timesale revenue less commissions to advertising agencies and representative agencies.

In this appendix, we ignore two possible problems with the revenue data. First, the allocation of reported revenue between national-regional spót and local spot is somewhat arbitrary. Thus the sum of the two spot categories may be more reliably measured than is either one individually. This argues in favor of anaiyzing total spot revenue rather than nationalregional and local separately, but we do not do so here:

Seciond, network revenue is not strictly comparable with spot. revenue. The latter reflects the full amount paid by advertisers, but the former does not. Network advertisers do not pay stations directly; they pay the networks. The networks retaln a large part of this revenue as implicit compensation for, network programs fed to the stations without explicit charge. This clouds the meaning of figures that include the sum of network and spot revenue, and argues (perhaps) for analyzing only the separate figures. In this note, however, we do paraliel analyses of all four reported revenue figures.

All revenue figures for our sample period 1963-72 are inflated tó 1972 dollars using the $\not \subset$ tmṕlicit price deflators for total gross national

240
product reported foconomic Report of the President (1973).* Market revenue figures are obtained by adding together the figures for all stations in the market.

AUDIENCE

Our audience data are based on ARB estimates of the average number of households tuned to each station between $9 \mathrm{a} . \mathrm{m}$. and $12 \mathrm{p} . \mathrm{m}$. Monday through Sunday. This is a more comprehensive, measure than the primetime audience figures used by Fisher and Park in the work described in Séction C.1, but it is highly correlated with prime-time audtence. The estimates for each year are averages for the February/March survey that year and the November survey of the previous year. Station audience figures are added together to get market audience.

REVENUE/AUDIENCE RATIOS

These figures are obtained simply by dividing each of the four revenue figures for each market by total market average daily audience. It is ? convenient to think of and refer to the resulting figures as "price" of audience, although that is only a rough, heuristic interpretation. TELEVISION HOUSEHOLDS

ARB estimates the number of television households (TVH) in each $A D I$ as of several dates scattered through our ten-year time period, as shown by the triangles above the time line in Fig. C.1. We interpolated

[^33]
linearly between the $A R B$ estimates to produce our own estimates evenly spaced throughout the period at March 1 of each year.

RETAIL SALES./TELEVISION HOUSEHOLD
Our measure of the affluence of each market is calculated by dividing annual ADI retail -sales is reported by ARB by our interpolated estimates of TVH. Like revenue, these sales figures a re inflated to 1972 dollars using the implicit GNP price deflator.

MARKET RANK

The top 100 market rankings are assigned according to the list in the cable television regulations, FCC (1972).* The rest of the rankings are assigned in order of 1972 ARB primetime television households.

[^34]
C.3. 1972-BASED ESTIMATION

In this section we report on two methods of estimating revenue using data now available. First is a cross section regression approach that avoids somep the problems with the work of Fisher and Park discussed in Section C.1. Second is an analysis of covariance approach that uses data for the full 1963-72 period and allows for the existence of persistent market effects.

CROSS-SECTION REGRESSION

Under this approach we use 1972 data to estimate a set of relationships between "price" of audience and market characteristics. The equations estimated allow for the possibility of the following effects:

1. We expect that the "price" of audience wtll be higher in rich markets chan in poor markets, and so include retail sales/TVH in the equa-
tions.
2. We expect that "price" may vary systematically with market size for any number of reasons, and so include TVH and TVH^{2} in the equations.
3. Market rank is of course correlated with market size, but it may independently affect "price.". For example, we know that spot advertisers sometimes buy markets from the top down until their budget is exhausted.' To capture effects of market rank, we include dummy varíables T10; T25, T50, T100 and T200, whe equal one for markets 1-10, 11-25, $26-50,51-100,101-222$, respectively, and zero otherwise.
4. Competition among more stations might be expected to lead to a'lower "price." Thts is especially true of network revenue: With only one or two stations in the market, the (etworks will bid up compensation competing for affiliates. With four, or more stations, the stations will bid down compensation competing for affiliation. To capture this effect, we inglude dummy variables D1, D2, D3, and D4 which equal 1 for one-station, two-station, three-station and four-or-morestation markets, respectively.

Estimating the resulting equations, we found that the T dummies failed to explain significant additional variance when the D dummies were already in the equations, and similarly, the Ds did not contribute significantly when added to the Ts. Consequently, in each final equa- tion, we included oqly the set of dummies that contributed more to that equation: the Ds for network revenue, the Ts for the others. Also, TVH and TVH^{2} were not significant in the local spot and net broadcast *
revenue equations (t statistics were less than one), and were dropped in the final version.

The final estimatef, shown in Table C. 2 , are generally consistent with our prior expectations, but their explanatory power is disappointingly low.

ANALYSIS OF COVARIANCE

The factors included in our cross-section regressions fail to * explain" very much of the market-to-market variation in "price" of audience. We made several attempts, to find additional factors that would substantially increase the explanatory power of these equations.

Table C. 2

1972 cross section regecssion results por talevision revemue

Dependent Vattole	01	D2	D3	. 0^{4}	T10	125	750	T100	7200	$\frac{\text { Salees }}{\text { NTh }}$	$\begin{gathered} 1000 \\ T V H \end{gathered}$	$\binom{1000}{\mathrm{wy}}^{2}$	R^{2}	SEE ${ }^{\text {d }}$
Network r/a	$\begin{aligned} & 12,42 \\ & (4,22) \end{aligned}$			$\begin{gathered} 5.76 \\ (1,69) \end{gathered}$,	1		$\begin{gathered} .116 \\ (2.67) \end{gathered}$	$\begin{gathered} -6640 \\ (-2,51) \end{gathered}$. 0000944 (2.03)	. 291	6.39
Netional-regiona! upot r / d				η	18.25	26.94	16.52		13.86	. 207	2.58	-.00034	. 509	10.82
					(1.48)	(3.53)	(2.81)	(1,80)	(2,19)	(2.75)	(2.96)	(-2.72)		
bocal r/4					$\begin{aligned} & 7.54 \\ & (0.97) \end{aligned}$	$\begin{aligned} & 16.54 \\ & (2,26) \end{aligned}$	$\begin{aligned} & 15.23 \\ & (2.37) \end{aligned}$	$\begin{gathered} 8,71 \\ (1,30) \end{gathered}$	$\begin{aligned} & 19,39 \\ & (2,93) \end{aligned}$	$\begin{gathered} .349 \\ \cdot(3.48) \end{gathered}$. 155	14.48
Net brodectit y / L					'48,86	51.74	40.33	27,06	44.37	. 596				21.06
					(4.30)	(4.86)	(4.31)	(2.77)	- 4.63$)$	$(4,08)$				

WTE: Plgures in parentheses are t-statistics.
astandard error of estimate.

These efforts, which included interviews with station representatives and experimentation with additional explanatory variables, were not successfut. Thus we turned to the analysis of covariance approach described here,

The idea behind this approach is that there are a whole host of factors that affect "price" of audience in a particular market: the age; occupation, education, race, and income distribution of its population; its climate; its industrial, commercial and financial, make- $\mu \mathrm{p}$: activities, tastes, and opportunities of its population "- anything that affects the advertising buyer's image of the market. There are far too many potentially important factors to include them all in a regression equation, even if they were all measurable. But if we hypothesize that this complex of market characteristics is relatively stable over : time, we can capture its effect with a set of dummy variables, one for each market.

To estimate these persistent market effects, we must of course have more than one observation per market. Thus we turn to the 1963-72 panel data and estimate, equations of the form

$$
\begin{equation*}
r / a=\alpha_{i}+\beta_{t}^{\prime}+\Sigma \gamma_{j} x_{j} \tag{C.3}
\end{equation*}
$$

'where α_{i} is the persistent market effect for market i, β_{t} is a year effect for year t, and the X_{j} are the independent variables included in our crosssection equations.

When equation (C.3) was estimated, the coefficients of the x_{j} turned to be generally insignificant. Fig. C. 2 shows a simplified picture of wha to be happening. Assume we have observations on r / a and retail sales/TVH three markets in each of three years. The observations for each market 'are clustered as shown in the figure. Then a cross section regression would estimate the sloping line and show a significant relationship between r / a and sales/TVH. However, when individual market dummies are included for the analysis of covarience, the regression fits lines that have separate intercepts for each market and a common slope determined by the within-market relatiofship between r / a and sales/TVH. Apparently there is too little within-market variation to produce statistically significant slope estimates in out analysis of covariance.

- Consequently, the analyses were rerun with just the market and time dummies in the equation. The results are shown in Table C. 3 (which shows the year effects and goodness-of-fit measures for each equation) and Table C.4, which shows the persistent market effects.

The analysis of covariance approach has substantially higher explanatory power than does the cross section regression approach, strongly suggesting the importance of persistent market effects.

6

Fig. C. 2 - Simplified example of analysis of covariance (conceptual)
-

251

Table C. 3
1963-72 ANLYSIS OF COVARIANCE: YEAR EPFECTS

National-regional

$\begin{array}{lcccccccccccc}\text { Local spot } \mathrm{I} / \mathrm{s} & -11.49 & -8.73 & -9.45 & -9.92 & -8.51 & -4.34 & -3.47 & -1.44 & -.87 & 0.0 & .819 & 6.37 \\ & (-17.71) & (-13.52) & (-14.63) & (-15.36) & (-13.18) & (-6.72) & (-5.38) & (-2.25) & (-1.35) & & & ,\end{array}$
Net brodicast

-3.48	3.21	2,31	-1.78	-.38	6.10^{\prime}	5,31	$\mathbf{6 . 1 4}$	1.55	0.0	.759	10.89
(-3.14)	$(2,91)$	(2.49)	(-1.62)	(-0.35)	(5.54)	(4.82)	$(5,59)$	(1.41)			

NOTES: Year effects are estimated relative to 1972 (0.0). Figures in parentheses are t statistics.

1963-72 ANALYSIS OF COVARIANCE: MARKET EFFECTG .

		NE TWORK		NATIONAL-REG		LOCAL		NET BR'	ADCST
	MARKET	COEFF.	- ${ }^{\text {T }}$	COF	T	COEF F.	T	CEEFF.	T
1	NY NY	3.25	2.36	64.7.4	34.91	17.74	8.61	74.97	21.28
2	LA CA	4.01	2.90	-90.77	48.95	41.00	19.89	113.17	32.13
3	CHCAGOIL.	4.97	3.60	85.44	46.07	27.96	13.56	104. 53	29.67
4	PHIL PA	5.71	4.14	60.67	32.71	25.86	12.54	76. 73	21.78
5	DTROITMI	6.23	4.51	53.79	29.01	28.95	14.04	75.65	21.48
6	BOSTONMA	5.66	4.10	73.16	39.45	29. 52	14.32	89.43	25.39
7	SF CA	7.46	5.40	101.67	54.83	40.87	19.83	127.35	36.15
8	CLVLNDOH	6.29	4.55	55.10	29.71	28.91	14.02	81.37	23.10
9	WASH CC	5.71	4.14	70.79	38.18	$\checkmark 28.44$	13.80	95.39	27.08
10	PITT PA	6.90	4.99	53.88	29.06	26.97	13.08	\%4. 28	21.09
11	STLOUSMȮ,	7.06	5.11	62.87	33.90	25.79	12.51	80.49	22×5
12	DALLASTX	7.30	5.28	64.20	34,62	42.63	20.68	101.76	28.89
13	MINN' M M	8.19	5.93	58.06	31.31	46.62	22.61	101.06	28.69.
14	BALT ND	8.74	6.33	66.38	35.80	35.50	17.22	94.37	26.79
15	HOUSTNTX	8.20	5.94	72. 21	38.94	37.30	18.09	101.88	28.92
16	INOPLSIN	6.45	4.67	53.32	28.75	37.55	18.21	85. 10	24.16
17	CINCI OH	9.31	6.74	. 46.93	25.31	29.53	14.32	79. 35	22.53
18	ATLANTGA	7.30	5.28	62.17	33.52	40.19	19.50	.930.23	26.47
19	HARTFDCN	-10.86	7.36	78.33	42.24	27.93	13.55	99. 7.5	28.32
20	SFATLEWA	7.34	5.31	62.97	33.96	34.03	16.51	89.18	25.31
21	MIAMI FL	7.60	5.50	75.32	40.62	40.36.	19.58	108.71	30.86
22	K.ANCTYMO	8.85	6.41	61.04	32.92	32.83	15.92	87. 25	24.77
23	MILWAUWI	9.67	7.00	60.61	32.68	37.36	18.12	91.78	26.05
25	SACRA CA	7.30	5.29	58.45	31.52	35. 3.4	17,14	85.55	24.29
26	MEMPH TN	$9{ }^{9} 24$	6.69	36.83	19.86	26.86	$13: 03$	64.96	18.44
27	C OLUMBCH	8.105	5.93	56.88	30.67	40. 27	19.53	91.92	26.09
28	TAMPA FL	6.96	5.04	47.36	25.54	33.27	16.14	.75.14	21.33
29	PORTLNGQ	9.33	6.76	56.62	30.53	32.92	15.97	85. 31	24.22
30	NASHVLTN	7.17	5.19	28.92	15.60	32.59	15.81	61.68	17.51
31	NEWORLLA	9.01	6.52	46.46	25.06	45.69	22.16	87.52	24.84
32	OENVERCT	8.22	5.95	65.89	35.53	48.59	23.57	107.83	30.61
33	PRROVIDRI	12.47	9.03	53,43	28.81	26. 57	12.89	78.05	22.16
34	ALBANYNY	$11.4 ?$	8.27	48.00	25.89	27.07	13.13	74.01	21.01
35	SYRACIJNY	10.82	7.83	-50.02	26.97	23.60	11.45	71.75	20.37
36	CHÁRLSWV	11.55	8.37	24.35	13.13	24.32	11.80	54.31	15.42
37	GRNDRDMI	14.58	10.58	54.11	29.18	23.67	11.48	84.61	24.02
. 38	LOUSVLKY	$12: 71$	9.20	46.87	25.27	32.65	15.84	81.04	23.00
39	OKCITYCK	11.62	8.42	. 52.84	28.50	29.80	14.45	82.94	23.54
. 40	BRIM ΔL	17.43	12.62	42.22	22.77	29. 27	- 4.20	78. 14	22.18
41	ПAYTONCH	14.01	10.14	44.64.	24.07	(40.29	19.54	87.46	24.83
42	CHAPLTNC	16.45	11.9 .1	50.34	27.14	C. 31.63	15.34.	89. 12	25.30
43	PHOENXAT.	7.09	5.14	58.46	31.52	56.45	27.38	108.36	30.76
44	NDRFLKVA	11.86	8.59	30.95	16.69	37.07	17.98	71.65	20.34
45	SANANTTX	9.70	7.02	38. 14	20.57	40.38	19.59	76. 17	21.62

Table C. 4
(contd)

		NE TWORK		NATIONAL-REG		LOCAL		NET BROADCST	
	MARKET	CREFF.	T	COEF	T	COEFF.	1	COEFF.	T
46	GQNVLESC	51	6. 16		19.29	21.60	10.48	58. 26	16.54
47	GRNBRONC	11.78	8.53	35.18	18.97	30. 51	14.80	67.86	19.26
48	SALTLKLT	8.30	6.01	37.25	20.09	40. 74	19.76	78.88	22.39
49	WLKSBRPA	9.02	6.53	23.50	12.67	24. 86	12.06	50.91	14.45
50	Littrask	6.90	5.00	24.59	13.26	34. 60	16.78.	59.49	16.89
52	TOLEDOCH	18.76	13.59	46.54	25.10	33.60	16.30.	86.65	24.60
53	omaha ne	13.75	9.96	39.49	21.29	31.13	15.10	76. 26	21.65
54	tulsa ck	9.86	7.14	35.87	19.32	33. 99	16.48	70.66	20.06
55	ORLAN FL	8.88	6.43	34.21	18.45	34. 53	16.75	67.60	19.19
56	RICHESNY	15.48	11.21	41.99	22.65	38. 22	18.54	83.95	23.83
57	HARISBP	16.60.	12.02	45.87	24.74	31.17	15.12	80.17	22.76
58	SHRVPTLA	8.96	6.49	24.81	13.38	25. 35	12.29	51.41	14.59
59	MORILFAL	8.98	6.50	25.66	13.84	27.91	13.54	58.22	15.96
60	OAVFNPIA	14.74	10.68	29.111	$15.70{ }^{\text {c }}$	19.39	9.40	57.48	16.32
61	FLINT MI	11.08	8.02	41.40	22.32	33. 84	16.41	74.49	21.15
62	GRNBAYWI	9.59	6.95	23.56	12.70	25. 90	12.56	55. 79	15.84
63	Q ICHMNVA	1.1 .84	8.57.	31.96	17.23	33. 84	10.41	69.69	19.78
64	SPRNGFIL	12.42	$8.99{ }^{\prime}$	35.22	18.99	39. 10	18697	79.30	22.51
65	CORQAPIA	10.74	7.78	29.12	15.71	27.73	13.45	60.64	17.21
66	dmaineia	11.11	8.04	41.24	22.24	31.73	15.39	73.94	20.99
67	WICHTAKS	11.59	8.39	27.22	1,4.68	34.95	16.95	68.01	19.31
68	JKSNVLFL	12.49	9.04	58.69	31.65	33. 44	16.22	90.21	25.61
69	paducaky	10.2 .4	7.41	24.17	13.03	16. 37	7.94	46. 21	13.12
70	ROANOKVA	11.38	8.24	25.94	13.99	28. 57	13.86	59.45	16.88
71	KNOXVLTN	11.25	8.15	32.56	17.56	26. 51	12.86	62.87	17.85
72	FRESNCCA	10.17	6.97	41.51	21.18	34. 22	15.7.1	73.06	19.63
73	RALEIGNC	24.39	17.66	38.29	20.65	29. 06	14.10	81.82	23.23
74	JOHNSTPA	16.29	11.79	26.62	14.36	20.18	9.79	58. 59	16.63
75	PORTLNME	12.91	9.35	30.64	16.52	28.38	13:77	64.90	18.42
76	SPOKANWA	9.38	6.79	33.71	18.18	23. 27	11.29	56. 52	16.04
77	JACKSNNS	9.51	6.39	21.91	11.82	31.57	15.31	58. 26	16.54
78	Chat	9.65	5.99	22.35	12.05	29.69	14.40	-55.45	15.74
79	YGSTN OH	8.97	6.49	26.95	14.53	23.00	11.16	53.18	15.10
80	SRENO IN	8.93	6.46	2.3 .01	12.41	30.43	14.76	57. 15	16.22
81	ALBUIO AM	10.70°	2094	24.57	13.25	47.66	23.12	73. 22	20.78
82	fTWAYNIN	11.?8	8.17	33.81	18.23	35.63	17.28	71.66	20.34
83	PEORIAIL	11.97	8.67	28.96	15.62	37. 71	18.29	70.38	19.98
84	GRNVLENC	12.15	8.79	27.57	14.87	76. 94	13.07	62. 20	17.66
85	SIDUXFSD	15.74	$1 \cdot 1.40$	34.56	18.63	24.36	11.81	69.24	19.66
86	evansvin	13.33	9.65	23.48	12.66	37.86	18.36	68.27	19.38
87	BATONRLA	9.72	7.04	21.99	11.86	50.07	24.28	74.59	21.17
88	PEAUMTTX	10.13	7.33	23.02	12.41	33.04	16.02	58.07	16.49
89	DULUTHMN	17.38	12.59	25.25	13.62	26. 25	12.73	65.97	18.73
90	WHLINGWV	14.67	10.6?	28.86	15.56	18.81	9.12	57.15	16.22

Table C. 4.
(conted)

```
4
```

' Table C. 4
(contd)

Table C. 4

- (contd)

C. 4. PREDICTION FROM 1967 to 1972

Reports of econometric work conventionally include measures of the model's in-sample predictive ability $-R^{2}$ and standard error of estimate, as in Tables C. 2 and C. 3. It is much less common'to test and report on the model's ability to predict outside the sample used to estimate it. However, since a major purpose of our work is extra-sample prediction, it seems important to perform such tests here.

In this section, we pretend to stand in 1967 and see how well we can do predicting 1972 using our cross-section and analysis of covariance approaches, pius some variants of the two basic approaches. The results are summarized in Table C.5, which presents four measures of merit for each approach as a predietor, of $1972 \mathrm{r} / \mathrm{a}$ and as a predictor of 1972 revenue.

MEASURES OF MERIT
R^{2} is defined as l-SSE/VAR, where SSE is the sum of squared.differences between actual and predicted values, and VAR is the sum of squared departures from the mean. When measuring the in-sample predictive ability of an unconstrained regression equation, R^{2} is always positive. Measuring extra-sample prediction, however, it may well be negative. A negative R^{2} indicates that the method used is not as good a predictor as the actual mean value. If there were some way to predict the actual mean value with certainty, one would always choose to use it in preference to

Table C.5,
SUMMARY COMPARISON OF 1972 PREDICTION METHODS FROM 1967 data

[^35]$\operatorname{VAR}=\sum_{1}^{n}\left(x_{1}-\bar{x}\right)^{2} \quad \because R^{2}=1-\frac{S S E}{V A R}$
$\operatorname{SSE}-\sum_{1}^{n}\left(x_{1}-\hat{x}\right)^{2}, \quad, \quad=-\sqrt{\frac{y A R}{n}}$
$S E E=\frac{\sqrt{S S E}}{n}$.
a method with negative R^{2}, but of course there is not. A préácting method with negative R^{2} may conceivably be the best feasible alternative. The standard error of estimate, SEE, for extra-sample prediction is calculated without correction for degrees of freedom as the root mean squared prediction error, $\sqrt{S S E / n}$. No degrees-of-freedom adjustment is necessary since none of the extra-sample degrees of freedom are "used up" in making the estimates.

If the étrors are approximately normally distributed with constant. variance (as in our estimates of r / a), a band of width SEE on either side of a predicted value would contain the actual value about two-thirds of the time. If the errors are non-normally distributed with variance that depends on the magnitude of the actual value (as in our estimates of revenue), the picture of expected errors is more complicated. SEE no longer suffices for the construction of a two-thirds confidence band for all predictions, but it still conveniently summarizes the size of prediction errors on average.

- Because the absolute magnitude of SEE is of interest only in comparis on to the magnitude - of the-variable being predicted, we also re(port two ratios: SEE as a fraction of the mean value of the quantity being predicted, and SEE as a fraction of the standard deviatign of the quantity being predicted. (This later rations simply equal to $\sqrt{1-R^{2}}$.) ESTIMATION METHODS

In this subsection, we describe the estimation methods compared in Table C.5. A discussion of their relative performance is in the next
subsection.
In all cases, the estimating method is applied directly to estimate 1972 market ra. The estimates of 1972 revenue are obtained by multiplying estimated r/a by actual 1972 market audience.

1\&2: 1972-based Predictions

For comparison purposes, we begin with the eros section and anallysis of covariance equations estimated in Section IIT. Items 1 and 2 rer port on the performance of these 1972-based estimators, using the four measures of merit described above. For item 1 , the 1972 cross section equation, this is straight in-sample performance. For item 2, it is partial in-sample performance, since the estimates based on the full period 1963-72 are used to predict 1972 only.

3 \& 4: 1967-based Cross Section Equation and

 Analysis of CovarianceFor items 3 and 4, we reestimate our cross-section and analysis of covariance equations using 1967 and 1963-67 data, respectively. The reestimated equations are reported in Tables C.6, C.7, and_ C .8 . 'Items 3 and 4 in Table C. 5 show how well they do in predicting 1972 . . The item 3 estimates are obtained by applying the 1967 cross-section equation to 1972 values of the independent variables.* Item 4 simply uses 1963-67 estimated persistent market effects as estimators of $1972 \mathrm{r} / \mathrm{a}$.
. *Actually, the estimates for local-spot and net broadcast revenue are made using equations estimated before TVH and. TVH ${ }^{2}$ were dropped. The comparisons were not rerun using the final equations because of time pressure and because the very low significance of TVH and TVH in the equation actually, used" makes it seem unlikely that the predic= Live performance would change very much.

Table 6.6

1967 Cross section relikession resllits for television revenues

Dependent Variable	01	D2	D3	14	\$10.	225	150	1100		$\frac{\text { Sales }}{\text { TVI }}$	$\begin{gathered} 1000 \\ \text { TH } \end{gathered}$	$\binom{1000}{7 \mathrm{VH}}^{2}$	R^{2}	SER
Network r / s	$\begin{aligned} & 14,58 \\ & (3.29) \end{aligned}$	$\begin{aligned} & 14.93 \\ & (3.36) \end{aligned}$	$\begin{aligned} & 10,75 \\ & (2,44) \end{aligned}$	$\begin{gathered} 8.94 \\ (1,87) \end{gathered}$,			$\begin{gathered} .154 \\ (2,37) \end{gathered}$	$\begin{gathered} -813 \\ (-2,62) \end{gathered}$. 000121 $(1,96)$. 255	7.28
. National-regional spot r / a					9.02	20,86	10.84	3.64	1.15	. 304		$\cdots, 000569$. 736	
	1				(0.78)	(2,67)	(1.73)	(0,62)	(0.21)	(3.70)		(-4.41)		
Local spot t / a					6.27	13.52	13.43	12.11	20.70	.134				
					(0,92)	$(2,03)$	(2.31)	$(2,04)$	(3.52)			,		
Net brodeast r/s					46.53	45.87	35.85	25.95	35.15	. 646			. 235	15.21
					(4.31)	(4.34)	(3.87)	(2,75)	(3.76)					

NOTE: Figures in parentheses are t statistics.

Table 0.7

1963-67 ANALYSIS OF COVARIAMCE: YEAR EFFECTS

Dependent, Variable	1963	1964	1965	1966	1967	R^{2}	SEE ${ }^{\text {a }}$
National r/a	$\begin{gathered} -.93 \\ (-2.76) \end{gathered}$	$\begin{gathered} .37 \\ (1,09) \end{gathered}$	$\begin{array}{r} .40 \\ (1.20) \end{array}$	$\begin{gathered} -.96 \\ (-2,86) \end{gathered}$	0.0	. 804	3.32 1
National-regional spot r/a	$\begin{gathered} 0.09 \\ (\cdot 0.21) \end{gathered}$	$\begin{gathered} 3.64 \\ (8.56) \end{gathered}$	$\begin{gathered} 3.90 \\ (9.17) \end{gathered}$	$\begin{gathered} 1,41 \\ (3,31)^{\circ} \end{gathered}$	0.0	. 951	4.21
Local spot r/a	$\begin{gathered} -3,01 \\ (-5,81) \end{gathered}$	$\begin{gathered} -.022 \\ (-0.42) \end{gathered}$	$\begin{gathered} 0,93 \\ (-1,81) \end{gathered}$	$\begin{gathered} -1.41 \\ (-2.73) \end{gathered}$	0.0	. 858	5.10
Net broadcast r/a	$\begin{gathered} -3,20 \\ (-3,56) \end{gathered}$	$\begin{aligned} & 3.59 \\ & (4,02) \end{aligned}$	$\begin{gathered} 2.69 \\ (3.01) \end{gathered}$	$\begin{gathered} -1,40 \\ (11,57) \end{gathered}$	0.0	. 806	8.84

NOTES: Year effects are estimated relative to 1967 (0.0). Figures in parentheses are t statistics.
${ }^{\text {a }}$ Standard error of estimate.

Table C. 8
1963-67 ANALYSIS OF COVARIANCE: MARKET EFFECTS

2

Table C. 8
(contd)
: •

NARKFT		NETHORK		NATIONAL-REG		LOCAL		NET BROADCST	
		CORPP.	T	CORPP.	T	CCEPP.	T	CORPP.	T
91	IINCLNNE	22.81	15.22	29.28	15.39	26.96	11.70	74.71	18.71
92	Lans nami	20.55	13.72	37.82	19.88	19.38	8.42	70.93	17.76
93	MADISNWI	19.77	13. 19	40.95	21.52	21.77	9.45	76.52	19.16
94	colurbaa	24.60	16.42	15.31	8.05	23.82	10.34	62.58	15.67
95	AMARILTX	16.75	11.18	22. 19	11.67	37.33	16.21	73-11	18.31
96	hontsval	16.34	10.90	26.26	13.80	48.79	21.19	87.38	21.88
97	ROCKPDIL.	32.46	21.67	24.57	12.91	35.72	15.51	91.77	22.98
98	PARGC ND	24.36	16.26	24.61	12.93	28.12;	12. 21	75.69	18.95
99	MONROELA	21.54	14.38.	22. 12	11.63	26.76	11.62	67.27	16.85
100	COLUMBS'C	22.55	15.05	45.41	23.87	30.41	13.20	90.61	22.69
101	salnasca	21.18	14.13	40.12	21.09	30.79	13.37	86.00	21.53
103	pralmbfl	15.49	10.34	24.19	12.72	60.32	26.19	103.88	26.01
104	SPRNGPMA	17.87	11.93	35.56	18.69	37.86	16.44	81.98	20.53
105	BINGMMN Y	26.20	17.48	33.21	17.45	27.90.	12.11	79.15	19.82
106	WILMNGNC	20.77	13.86	18.60	9.78	34.16	14.83	75.00	18.78
108	AUGUSTGA	26.72	1.7 .83	17.99	0.46	30.46	13.22	73.54	18.41
109	brstclva	21.78	14.53	22.83	12.00	18.97	8.24	61.00	15.27
1.10	lapaytla	14.26	9. 52	16.55	8.70	37.92	16.47	66.72	16.71
111	TRREHTIN	23.45	15.65	30.11	15.82	21.44	9.31	69.16	17.32
112	montgmal	24.88	16.61	35.40	18.61 .	32.09	13.94	, 88.28	22.17
114	LUBUCKTX	24.60	16.42	28.83	15.15	47.96	20.82	96.71	24.22
115	albanyga	18.01	12.02	- 25.40	13.35	22. 84	9.92	$64<87$	16.24
116	SIOUXCTA	24.27	16.20	29.51	15.51	17.09	-7.42	64.43	16.13
118	Charlssc	28.01	18.69	17.18.	9.03	38.17	15.27	76.52	19.16
119	PRIE PA	32.55	21.73	23.99°	12.61	25.67	11.15	75.69	18.9.5-
. 120	tallahpl	18.78	12.54	22. 10	$11.62{ }^{\circ}$	27. 89	12.11	69.62	17.28
- 121	haco tx	20.75	13.86	30.13	15.84	28.04	12.18	71.82	17.98
122	JOPLINMO	16.98	11.33	24.84	13.05	13.83	6.00	53.06	13.29
123	SPRNGPMO	17.99	12.01	23.32	12.26	24.44	10.61	64.87	16.24
124	LXNGTNKY	17.98	12.00	26.16	13.75	34.33	14.91	76.87	19.25
125	PLORNCSC	22.95	15.32	22.36	11.75	31.77	13.80	71.56	17:92
126	AUSTINTX	23.88	15.94	55. ${ }^{\text {¢ }} 4$	2.9 .19	34.35	14.91	107.24	26.85
127	toppraks	18.03	12.03	35.45	18.63	24. 98	10.85.	4.74 .67	18.70
128	ROCHESMN	22.51	15.02	20.53	1089	26.73	11.60	67.37.	16.87
1.29	dothanal	18.92	12.62	$21.71{ }^{\prime \prime}$	11.41	21.96	9.53	59.42	14.88
130	STJO MO	23.75	15.85	15.95	8.38	35.31	15.33	70.67	17.70
131	WICHPLTX	17.11	11.42	20.28	10.66	30.47	13.23	65.42	16.38
132	TRAVRSMI	22.54^{*}	15.04	20.08	10.56	21.41	9.30	63.30	15.85
133	lacrosk	20.80	13.88	33.20	17.45	24.63	10.70	74.87	18.75
134	UTICA. NY	33.43	22.31	39.01	20.51	28. 34	12:31	97.83	24.50
135	ALEXNDLA	13.78	9.19	34.59	18.18	39. 27	17.05	78.62	19.69

Table C. 8
(contd)

-Tabile C. 8
(contd)

5: 1963-67 Analysis of Covariance With Time Trend
Y Item 5 was not realistically available in 1967, but is included nevertheless because it is instructive. Recall that our analysis of covariance estimates both market effeots and year offects. For item 5, we assume that we know in 1967 what the 1972 year effect is. The we estimate $1972 \mathrm{r} / \mathrm{a}$ as the difference between 1972 and 1967 year effects plus 1963-67 market effects.

6: $1967 \mathrm{r} / \mathrm{a}$
Item 6 is a very simple, method of estimating persistent market effects. Here we just assume that $1967 \mathrm{r} / \mathrm{a}$ values continue to apply in 1972.

7: 1967 Cross-Section Equation Plus 1967 Residuals
Item 7 represents another way to take accopnt of persistent market effects. The effect of unmeasured factors in each market is esfimatred. * A as the residual from the 1967 cross-section equation. Estimates for 1972 are then obtained by applying the 1967 equation to 1972 values of independent variables and adding the 1967 residual.

DFSCUSSION

- ;

The following are what seem to us to be the major points to be made concerning the comparisons in Table c.5.

1. We can explain a'much higher fraction of the variance of revenue than we can of the variance of r / a. For example, the 1972 cross-section . equation (item 1 in the tablex explains only 20 percent ofe the variance of het broadcast r/a, but 98 percent of the variance of net broadcast revenue. This is to be expected because revenue and audience are highiy
correlated across the full, wide range of market sizes.
2. Even when R^{2} is very high, SEE is substantial, both absolutely and relative to the values being predicted. For example, the 1963-72 analysis of covariance (item 2 in/the table) predicts 1972 net broadcast revenue with an R^{2} of .993 , but SEE is nearly $\$ 1.5$ million. This is about 16 percent of the mean value for market revenue, and 8 percent of its standard deviation
3. Because the errb́r variance is not constant across markets, it is not necessarily true for any particular malret that revenue is predicted plus or minus two SEE with about 95 percent confidence. In smaller markets the confidence bands are narrower than that and in large markets they are wider.
4. Persistent market effelts are very important. In the 1972based net broadcast r /a predictions, allowing for" persistent market effects increases R^{2} from about . 20 to over . 80 and decreases SEE from .266 to .124 (items 1 and 2) In the 1967-based predictions, any of the methods that allow for persistent market effects (items 4 through 7) do better than the 1967 cross-section equation (item 3), which does not.

- 5. Time trends are also potentially very important. Nationairegiodal spot r / a and net broadcast r / a show very fittle change between 1967 and 1972. (Their 1967 and 1972 year effects in the analysis of covariance are approximately the same; see Table C.3). on the other hand, network r / a decreases and local spot r / a increases substantially over the same period. This is the reason that 1967-based predictions of 1972 r / a^{\prime} are generally much better for national-regional spot and net broad1 cast revenue, than for network and local spot (items $3,4,6$, and 7). If there had been some way to predict the change in year effects for
network and local, their estimates could be much improved (item 5). However, we certainly would not have been abie to make accurate predictions by examining the trend of year effects from 1963-67. (Table C.7), so item 5 must be considere an unattainable method.)

6. The three attainable prediction methods that allow for persistent market effects (items 4, 6, and 7) all performed about equally well Of the three, the method that uses the 1967 cross-section equaption plus 1967 residuals to be preferred because it is the only method that allows one to simulate the effect of changes in any variables othe than audience` (specifically, retail sales and TVH).

1

D.1. INTRODUCT ION

In Appendix C, we explored a number of ways to project television revenues by market. In this appendix, we investigate the division of market aggregates into individual station, shares. Here, too, we check out a number of different methods. Any one of the methods of projecting market revenue, combined with any one of the methods of predicting station shares, will yield predictions of individual stations' revenue.

There is a substantial amount of variation in the shares of stations of the same type:

	1972 Sharès				1967 Shares			
	Mean	Stiandard Deviation	Maximum	Minimum	Mann	Standard Deviation	Maximum	Minimum
Network VHF	$\because .370$. 130	. 915	. 085	. 332	. 134	. 897	. 061
Network UiHf	. 253	. 124	. 571	. 019	. 2066	. 144	. 640	. 025
Independent VHF	. 141	. 064	. 257	. 021	. 131	. 059	. 216	. 009
Independent' UḨ	. 052	. 037	. 130	. 001	. 021	. 018	. 064	.000́4

Some of this yariation is the result of different amounts of competition facing different stations; the models in this note take difference in competition into account.

However, there is also substantial variation between stations that. are competitively equally situated, as shown by plots of proprietary data. This variation between shares of equally situàted stations, may be impossible to explain in' an economic mo'del.

D. 2. RATIO MODEL

Park (1970)* used a ratio model to predict the division of television, audiences among competing stations. It was hypothesized that each station could be assigned an "attractiveness index," a_{i}, such that audiences would tend to split in proportion to $a_{i} / \Sigma a_{i}$, where the summation is over all stations in the market.

In this section, we use the same functional form to explon the division market revenue among stations. We assign each station to one ff four categories: network affiliated VHF (NV), network affiliated UHF (NU), independent VHF (IV), and independent UHF (IU), and assume that all stations in a category, have the same weight, $a_{N V}, a_{N U} k, a_{I V}$, and $a_{I U}$. respectively. Then a station's expected revenue share is

$$
\begin{equation*}
\mathrm{SHR}=\frac{\mathrm{NV} \mathrm{a}_{\mathrm{NV}}+N \mathrm{NU} \mathrm{NNU}+I \nabla \mathrm{a}_{\mathrm{IV}}+I U a_{\mathrm{IU}}}{\mathrm{NNV}_{\mathrm{NV}}+N N a_{\mathrm{NU}}+N I V a_{\mathrm{IV}}+N I U a_{\mathrm{IU}}} \tag{D.1}
\end{equation*}
$$

NV is a dummy variable that equals 1 if the station is a network VHF, 0 otherwise, and NU, IV, and IU are analogously defined. NNV is the number of network VHFs in the market, and NNU, NIV and NîU are numbers Of the other types of stations.

In this formulation, a station's revenue share depends both on its own characteristics and on the amount and type of competititon it faces: The mafor advantage of this formulation is that the sum of the shares of all stations in the market is constrained to, be 1 in the formula, as it is in actuality. The major disadvantage is othat a new station is assumed to reduce all existing stations' shares in the same proportion. That is, the specification makes no allowance for the possibility that, for example, a new independent might have more impact on other independents than on network affiliates.

With a little manipulation, equation ($\mathrm{D}, 1$) can be changed into a form suitable for econometric estimation. First note that, the scale of the
${ }^{*}$ Park, Rolla Edward, Potential Impact of Cable Growth in Television Bróodacasting, R-587-FF, The Rand Corporation, Octaber 1970, pp. 28-35.
weights, a, does not matter, only their relative size. Thus we can normalize by setting $\mathrm{a}_{\mathrm{NV}}=1$. Making this substitution and manipulating (D.1), we get

$$
\begin{align*}
\text { SHR }_{i} N N V-N V & =a_{N U}\left(N U-S H R_{i} N N U\right) \\
& +a_{I V}\left(I V-\operatorname{SHR}_{i} N I U\right)+a_{I U}\left(I U-\text { SHR }_{i} N I U\right), \tag{D.2}
\end{align*}
$$

which can be estimated by ordinary least squares regression with the intercept suppressed.

The sample used to estimate (D.2) (and the different equations specifled in the next section of this note) is made up as follows. The unit of observation is a televisign station in an ADI market in the 48 contiguous states. Satellite revenues are added to the parents and the aggregate treated as a single station. Outlying stations (for example, the Worcester stations in the Boston AD and the Akron station in the Cleveland ADI) are omitted from the sample. All stations in border markets are omitted. One-station markets were omitted to make possible a fair comparison of the ratio model with the model fitted in the next seçtion. The ratiomodel automatically fits such markets perfectly, so there is no information to be gafned by including them. Separate estimates were made using 1972 and 1967 data. The numbers of stations in . the sample for each year were as follows:

Year	NV	NU	IV	IU	Total		
1972	352	82	22	42	503		
1967	. 353	57	19	23	452		4

The results from estimating (D, 2) are shown in Table D.1. In both years, stations. without a VHF allocation, without network affiliation, or wfthout both, could expect substantiálly less revenue than VHF network stations in their market. These handicaps were, though, somewhat smaller by 1972 than they were in 1967. The fit to the data is fairly good. One-half to three-quarters of the variance in SHR is explained by the model, differing somewhat in the two years and depending on whether the variance for all stations or for independents oury is being explained:

Table D.1

Year	W ${ }^{\text {a }}$	NV	IV	IU	R-squared			Root Mean Squared Error ${ }^{\text {b }}$		
					(1)	(2)	(3)	(1)	(2)	(3)
1972	1.	$\begin{gathered} .301 \\ (11.39) \end{gathered}$	$\begin{gathered} .513 \\ (12.06) \end{gathered}$	$\begin{gathered} \sum_{146} \\ (5.52) \end{gathered}$. 387	. 726	-. 519	. 200	. 082	. 045
1967 >	1.	$\begin{aligned} & .228 \\ & (5.75) \end{aligned}$	$\begin{aligned} & .458 \\ & (8.59) \end{aligned}$. 040 (.99)	. 195	. 658	. 700	. 229	. 094	. 038

${ }^{\text {b }}$ (1) For the equation as run, that is, predicting SRRMNV - NV.
(2) Predicting SHR for all stations in 2-or-more station markets.
(3) Predicting SRR for independent stations only.

In Table D.2, the 1972 estimates are applied to calculate revenue' shares in some typical markets (all with 3 network Vs). The table extrapolates somewhat beyond present experience to markets with 10 . independents (5 Vs and 5 Us -- impossible given present frequency allocations, except on cable). There are two main probilems with the estimates: UHF independents in markets with independent V s do not do as well as indicated, and an independent V in a l-IV market often does better than indicated. Both of these discrepencies may arise because of the equal-proportional-impact assumption built into the ratio model. In the next section we fit a model that does not impose this constraint.

Table D. 2
REVENUE SHARES PREDICTED GY RATIO MODEL, 1972 ESTIMATES

*

D. 3 LOGARITHMIC MODEL

$$
F
$$

I In this section we postulate a model that allows for different - impact of each category of station on stations in each category:*
$\therefore \operatorname{SHR}={ }^{\circ} \exp \left(\alpha_{1}+\alpha_{2} N U+\alpha_{3} I V+\alpha_{4}\right.$ IN $)$
$1 . \infty \operatorname{NVNV}^{\beta} 1 \cdot \operatorname{NVNU}^{\beta_{2}} \operatorname{NVIV}^{\beta_{3}} \operatorname{NVIU}^{\beta^{*}}$

$$
\int \operatorname{NUNV}^{\beta_{5}} \operatorname{NUNU}^{\beta} \operatorname{NUIU}^{\beta}
$$

$\therefore \quad \therefore \quad \because \quad . l$
$\overbrace{\text { IUNV }}{ }^{\beta} 10$ IUNU $^{\beta} 11_{\text {IUIV }}{ }^{\beta}{ }^{12}$ IUIUU $^{\beta} 13$

$$
\operatorname{IVIV}^{\beta} \operatorname{IVIU}^{\beta}
$$

than an approximation to the unknown "true" form of the relationship. It can better approximate the true relationship for 2-or-more-stat markets if it does not have to fit l-station markets, as well. Andoafter all, we don't need any help in estimating shares in l-station markets; ' we know they always equal 1.

The estimates for the logarithmic model are shown in Table D.3. The first line foreach year includes all of the competition effects. if the second lin: we impose the a prior reasonable. constraint that no: competitive facts are positive * and omit all variables whose estimated coefficifts have tselatistics less than 1 in absolute value. The R-squareds are respectable, running from .63 to .75 , somewhat better than for the ratio model.

The results suggest that it was correct to relax the equal-p'roportionalimpact assumption of the ratio model. Particularly striking are the diffferment estimated effects of IVs. In. the 1972 estimates, they. here a substantially larger negative impact on other IVs than on NV; and their imppact on Us $_{\boldsymbol{q}} i{ }^{i s}$ larger still.

Applying the 1972 second-1ine equation gives the estimated shares for various market configurations shown, in Table D.4. The estimated share of* an independent V in a $\mathrm{l}^{-}-\mathrm{IV}$ market may still be somewhat low, but the shares for independent Us look quite reasonable.

LOGARITHMIC MODEL ESTIMATED FOR INDEPENDENTS ONLY: A DIGRESSION

Before -Starting to work with the furl logarithmic model discussed above, we estimated a similar model using data on independent station shares only. The results were sufficiently interesting to be worth reporting here. The initial specification was
SHR $=\exp \left(\alpha_{1}+\alpha_{2} I U\right)$.
1
*Possible exception: By encouraging people to buy UHF sets and training
them in the use of UHE tuners, UHF network affiliates may have a positive
impact on independent Us
1.

281

Table D.4

REVENUE SHARES PREDICTED BY LOGARITHMIC MODEL, 1972 ESTIMATES. FOR INDEPENDENT STATIONS ONLY, \dagger TV EQUALS SAMPLE MAXIMUM ${ }^{\text {a }}$

No terms for network competition were incladed since there se so litele variation in network competition facing independent stations: The number of television households in the ADI, TVH, wàs incfuded because independents may well do bettér in lạrger markets where their coverage hanticap relative to the networks is less severe: *. ${ }_{3}$ (TVH was also tried in the full logarithmic model above, but proved to bẹ insignificant.)

The estimates for (D.4) are shown on the first line of Table D.5. They do not refute the hypothesis that IUs have no impact on IVs, nor the hypothesis that the (proportional) impact of IVs on IVs is the same as that of IUs on IUs. The second ifine of the table, shows estimates incorporating these constraints, where SAME is IVIV + IUIU: The large negative impact of IVs on IUs offers some confimation of the similar ef- : fect estimated in the full model. The coefficient of TVH is significant and positive as expected; we do not know why it is significant here but not in the full model above.

The explanatory power of this model is about the same as that of the two estimated previous,ly. Estimates for shares in typical markets (shown in Tables D. 6, D.7, and D. 8 for different values of TVH) appear to be reasonable.

This hyporhesis is suggested by R. E. Park, New Television Networks, The Rand Corporation, R-1408-MF, December 1973.

INDEPRNDETI STATIONS ONYY

Table D. 6
REVENUE SHARES PREDICTED BY' LOGARITHMIC MODEL, 1972 ESTIMATES FOR INDEPENDENT STATIONS ONLY,

TVH EQUALS SAMPLE MAXIMUM ${ }^{2}$

$a_{5,984}$ thousand households.
$29 i$

Table D. 7

> REVENUE SHARES PREDICTED BY LOGARITHMIC MODEL, 1972 ESTIMATES FOR INDEPENDEN' STATIONS ONLY,
> TVH EQUALS SAMPLE MEAN

${ }^{a} 1681.6$ thousand households.

292

Table D. $\dot{9}$
REVENUE SHARES PREDICTED BY LOGARITHMIC MODEL, 1972. ESTIMATES FOR INDEPENDENT STATIONS ONLY,

TVH EQUALS SAMPLE MINIMUM ${ }^{\text {a }}$.

Independent VHFs	Shares of		Number o	Independent UHFs (NIU) .			L
			1	12	3	4	-) 5
. 0	3 NV	1.000	. 965	'. 958	- . 953.	. 949	$\cdot .9$
	Each IV	, -	-	\cdots	-	-	\because -
	Each IU	4.	. 035	. 021	. 016	. $013{ }^{\circ}$:011
1	3 NV	. 927	. 910	. 911	. 910	. 908	-. 907
	Each IV	. 073	. 073	. 073	. 073	.073	-. 073
	Each IU	--	. 013	$\bigcirc .008$	$\therefore 1006$. 005	. 004
2	3 NV	. 912	. 905	. 903	$\bigcirc .902$. 901	. 901
	Each IV	. 044	. 044	. 044 '	$\bigcirc .044$. 044	. 044
	Each IU	-	. 007	. 004	. 003	. 003	. 002
3	3 NV	.. 902	- 8977	. 896 .	. 895	- . 895	. $898{ }^{\circ}$
	Each IV	. 033	\%.033	:023.4.	.033	-. 033	. 039
	Each IU		. 005	. 003	. 002	. 002	.001**
4	3 NV	. 894	. 890	. 889	. 889	. 288	. 888
	. Each IV	. . 027	. 027	. 027	. 027	. 027	. 027
	Each IU	-	. 003	. $002{ }^{\circ}$. 002 ,	. 001	. 001
5	3 NV .		: 884	. $884{ }^{\circ}$. 883	. 883	. 883
	Each IV	< 023	. 023	. $023{ }^{\circ}$.023*	. $023{ }^{\circ}$.	' . 023
	- Each IU	-	. 003	. 002	. 001	. 001	. 001

${ }^{\text {a }} 93$ thousand households.

D. 4 COMPARISON OF THE-RESULTS.

The powery of all of the models to explain variance in SHR amons stations is respectable but not spectacular. (But we should not expect spectaculat performance in light' of the large (inexplicable) variation incperformance of equally situated stations noted in, the fotroduction.) However, predicting. SHReds only an intermediatestep; we are more iñ:terested in the predictions of station fevenue obtained by multiplying) estimated SHR by estimated market revenue. Table D. 9 . compares the power of the varioup methods to predict both SHR and sfation revenue, using the same, four summary measures of performance used for market predictions in Appendix C.

There are several notable features to observe in Table D.9. Fjrst. revences for all stations including network affiliatgs arelsomewhat bette predicted (w th $R=$ squareds on the order of 95) than are revenues for 'independent stations alone (R-squared \neq around $\uparrow 85$). Second, standard errors of estimate are substantial, on the order of $\$ 1$ million for all stations and $\$ 2$ million, for indepèndente only. As a percentage of mean revenue; these afe about 30 percent and 50 percent respectively. . 'Third, if one were to choose among the several models, the full logarithmic model seems to have a slight edge.

Fourth, the performance of the stathon revenue estimators is not yer sensitive to the quality ρf the market revenue. estimates. Predictions using actual marker revenue and predictions using matket reveníe estimate from 1962 revenue-to-audience ratios are compared in the table, and it. makes very little differénce which is used. This strongly suggests that there is not much to be gained from further refinement of our markét révenue. estimators. ©Even if we could predict market revenue perfectly (which of course we cannot do), we woyld not substantially improve our estimates of station revenue.

1

E.1, DATA DESCRIPTION

This appendix feports on our atempts to explain tëlevision station profits directily as finction of market size and competition variables.

- Our data base is a 1972 cross section of television stations in ADI markets in the 48 contiguous states . Financial data for satellite stations, when separately reported, arre added to those for parents and the aggregate is treated as. a single station. Outlying stations (for example, the Worcester stations in the Boston ADI and the Akron station in thecleveland ADI) are omfted fromethe sample. All 3tations in border markets and alf part-year*stations are onitted. This is the same as the 1972 sample used in Appendix D, 〕but l-station markets, which wered excluded there, are included here.

Table. E. 1 summarizes the after-depreciation profit data. "We seé as expected that UHF stations are generaily less profitable than VAF stations, and that independent stations are less profitable than network affiliates. There is conslderable variation within station typé; we expect this to be . related to market size, with bigger profits in larger markets. Plots of proprietary profit data confirm this expectation only partially. , Plotting profit's against ADI TVH for the four classes of stiat tons: NV, NU, IV, and IU,' one sees that profits for network Vs are clearly related to market size, but there is no obvious relationship for the other thime station classes. In Section E.2, we attempt to explain some of this variation on the basis of other, factors, most notably the amount of competfion that a station'faces. Howevar, there are definite limits to how successful this attempt can be, limits to which we now turn.

A MAJOR PROBLEM: UNEQUAL PERFORMANCE OF EQUALLY SITUATED STATIONS
In' al ! of our work', including the work reported in this aspen$\therefore \quad r^{\prime}$ dix, we use models that predict equal ${ }^{\text {performance for equally situated }}$ stations, that is, stations of the same class located in the same competi -rive environment. For examples the equations in this note predict the \because same profits for all independent Us in the same market. This seems like a ~ natural: approach: after all, these stations all suffer from the same $\stackrel{\rightharpoonup}{r}$ handicaps of non-affiliation and UHF transmission and compete with the $\therefore \ddot{a}^{\prime}$ same linerup of stations for the same audience." Why should they perform substantially differently?

We will look at some possible reasons in a moment, for the fact V is that there are substantial differences in the performance of . equally situated stations. This statement is confirmed by a took, for example, at the proprietary plot showing the profits of independent. Us.* In the right-hand portion of the figure, it is easy to pick out stations in the same market; they are plotted along the same vertical Heine at the value of TVH for each market. Similar variation is apparent in the plots for the other classes of stations.

Since it may be very difficult to build quantitative models that are capable of predicting different performance for equally situated stations, it is reasonable to ask how well we can do in the absence of such models. We never expect to predict perfectly; perhap" the systematic differences between markets and station classes are sufficiently important so we can accept errors of prediction

* This is in Appendix G, which is separately bound and available only to the FCC -because of the proprietary nature of the data displayed. .
within statiof class and market. To evaluate this possibility we - calculate an upper bound on the quality of predictions based on . models that treat all equally situated stations the same. The best. we could possibly do with such a model would be to predict perfectly the average profit for each class of station in èach market, and use that average value ' as our estimate of the profit of each station in the class.

Table E. 2 summarizes the quallty of the resulting predictions. As the top part of the table shows, upper bounds on R -squared range from about .9 for network V_{s} to .6 for independent Us, and minimum standard errors of estimate are quite large for all station classes. If we exclude singleton stations (that is, stations that are the only one of their class in the market, and hence automatically perfectiy. predicted), R-squared values drop considerably for all except network Vs, and standard erròrs of estimate correspondingly increase. All'in. all, these upper bound calculations are not very endouraging. No prediction metfod that treats.equally situated stations the same can do better than the upper bound, and the upper bound is not very good.

There are a number of possible reasons for the unequal performance, of equally situated stations. Among network stations, which netwark (ABC, CBS, NBC) certainly affects profit, so affiliation could be used to improve the fit. However, we are primarily interested. in projecting new stations for the top-100 markets where affiliations, are all used up; a better fit to the network classes would not help us in this task.

Table E. 2
UPPER BOUNDS ON THE PERFORMANCE OF MODELS THAT - TREAT EQUALLY SITUATED STATIONS THE SAME

For all station classes, management skills or goals probably differ from station to station. Thus one might expect systematic differences in performance, of stations under different group ownership. Another possibility is that receptifon quality varies enough among. VHF stations or among UHF stations so that stations with lower channel numbers do better than those with higher numbers, even within the same frequency band. (That is, channel 2 is.better than channel 13 ; channel 14 is better than channel 70.) Perhaps audience loyalty builds up over loñg periods, so that older stations are generally more profitable than newel stations. Perhaps there is some sort of specialization, with each station going after a different category of audience, some more profitable than others. This is clearly the cakewith foreign language stations; is were some more subtle form.of specialization by other stations? More generally, the ifterature on audience preferences and station programming behavior* ${ }^{*}$ suggests that there should be a regular distribution of audience shares, and hence profits, among equally situated stations. We investigated each of these possibilities in enough detail to convince ourselves that none of them would improve our profit predictigns for independent UHF stations sufficiently to make them useful for projecting new'stations.

[^36]In a broader context; there is an important lesson to be learned \because from the unequal performance of equally situated stations: There appears to be a great deal of flexibility in the television broadcasting system; there is room for a wide range of styles of station operation. This suggests that the system may be better able to withstand competition from new technologies such as cable than would otherwise be the case, bécause adjustmentes can be made in station operation to soften any negative impact on profits.
profit's if some of its competitors are handicapped; we expect β_{3}, β_{5}, and β_{7} to be positive. Eor a more extensive discuṣion and justification of equation (E.1), see Besen (1973). The results of lestimating this $\underset{6}{e} q u$ uation for our 1972 cross section of stations are shown on the first. line of Table E.3.. All of the coefficients have the expected signs and are highly significant. The explanatory power of the estimated equation is high, sọmewhat over . 8 .

The resulits are somewhat improved if we use profit before deprectiation as the dependent variable. Deprectiation is a major component of expense that of bears no relationship to actual operating dost. It is calculated by arbitrary formulas using an arbitrary 1ife for each asset, and on the basis of purchase, not replacement, price; thus; during periods of general price inflation, two stations with identical equipment, purchased at different times, would be calculating depreciation on a different base. Further confasing the issue is, the fact that when a station is sold, the value of the license and other intangibles is apitalized into the price of the plant and equipment, and this becomes the base for depreciation. Thus two identical státions built in the same year could report widely different values of depreciation, and thus profit, if one was held by the original ${ }^{\text {a }}$ owners while the other had been recently sold.

T'able E. 4 summarizes $\left.\right|_{0} ^{\text {the data on depfecfation and our rew dependent }}$ variable, profit plus depreciation. The regression resúlts, shown on line (2) of Table E.3, are somewhat sharper than those for profit alone, but the pattern of estimated coefficients is not much changed.

$$
\begin{aligned}
& \text { 际解 } \mathrm{NU}\left(\frac{\mathrm{TVH}}{\mathrm{~N}}\right)+\mathrm{B}_{3}\left(\frac{\mathrm{NCNU}}{\mathrm{~N}-1}\right)\left(\frac{\mathrm{TVH}}{\mathrm{~N}}\right) \\
& +\beta_{4} \operatorname{IV}\left(\frac{\mathrm{TVH}}{\mathrm{~N}}\right)+\beta_{5}\left(\frac{\mathrm{NCIV}}{\mathrm{~N}-1}\right)\left(\frac{\mathrm{TVH}}{\mathrm{~N}}\right) \\
& \because \quad \therefore \quad 2 \\
& \left.+\beta_{6} \operatorname{IU}\left(\frac{\mathrm{TVH}}{\mathrm{~N}}\right) \stackrel{ }{ }\right) \beta_{7}\left(\frac{\mathrm{NCIU}}{\mathrm{~N}-1}\right)\left(\frac{\mathrm{TVH}}{\mathrm{~N}}\right),
\end{aligned}
$$

where TVH is the number of television households in the ADI；N is the number of television stations in the market；NU，IV，IU are station class＂dummies；and NCNU，NCIV，NCIU are the number of stations in each class that compete with the station to which the observation refers．

The first line of equation（E．1）would be the specification if all stations were equal．We expect profit to increase with TVH／N，so β_{1} should be positive．The remaining lines allow for the fact that all stations are not equal．The terms to the left of the remaining three lines reflect the handicaps of UHF transmission，hack of netwark af－ filiation；or，both；we expect β_{2}, β_{4} ，and β_{6} to be negative．The terms．．． to the right reflect our，expectation that a Gation will make higher

[^37]We also tried other specificajtions. In one, we added both payments to owners and depreciation to profit to create the dependent Nariable. In others, we specified the competition and handicap vari-' ables in defferent ways, and in some we included ADI retail sales as an explanatory variable. None of thése other specifications produced results that were substantially different or better than those roported here.

SOME PROBLEMS WITH THE RESULTS

- Superficially, the estimated equation on the second line of

Table E. 3 looks remarkably good. A closer look, however, shows that it is not without some serious problems.

Poor Estimates of Profits for Handicapped Stations
The overall $\mathrm{R}-$ squared for the equatipn, .822 , is quite respectable. Unfortunately, the 'high R-squared is due entírely to the ability o to predict the profits of network Vs. The equation does a very poor job of 'predicting profits for the other three cjasses of stations, as shown in Table E. 5.
*In-sample predictive performance can be increased by estimating separate equations for each class of station. The resulting equations are on lines (3) through (6) of Table E.3. In addition to the equation for network Vs, the ones for network Us and independent Vs look falrly good. The separate. NU equation is a clear tmprovement over the application of line (2) to predict NUs' \rightarrow profits, and the IV equation has a fair amount of explanatory power. There is, though, a complete lack of sysfematic relationships in the IU equation. Thus we are

Table E. 5
GOODNESS OF FIT. MEASURES FOR PROFIT' PLUS DEPRECIATION EQUATION

d

left without any means of predicting profits for independent Us, the class of stations that may be of most interest.

Number of Stations is Not Really Exogenous

The application of the estimated equations produces some counterintuitive results that strongly suggest that it is not legitimate to treat numbers of stations (N, NCNU, NCIV, NCIU) as exogenous variables. For example, the equations imply that the addition of a UHF independent . to a market would increase the profits of stations already in the market.* Certainly we would not expect this" to be the case in actuality. The additional competition should decrease the existing stations' profits--
*Say we `add an independent U U to a 3-network ∇ market. Using. line (2) of Table E.3; predicted profit plus depreciation for each of the network Vs would increase from

$$
-109+10.01\left(\frac{\mathrm{TVH}}{3}\right)
$$

to
or by

$$
\begin{gathered}
-109+10.01\left(\frac{\mathrm{TVH}}{4}\right)+18.55\left(\frac{\mathrm{TVH}}{4}\right)\left(\frac{1}{3}\right) \\
(18.55-10.01)\left(\frac{\mathrm{TVH}}{12}\right)
\end{gathered}
$$

where profit is measured in $\$ 1000$ and TVH is measured in 1000 households.

possibly not by very much, but it certainly should not increase them.
Another example: Consider a market with three network Vs*and one independent V. The estimated equation (line (2)) predicts that the independent station losesqmoney, and its losses will be larger the larger is the market. * Again, this prediction conficts with common sense:

The problem in these two examples is notsthat the equation fits the data* poorly. On the contrary, it fits NV profits quite well: The first example (adding an IU to increase the profits of stations already in the market) reflects the fact, that in our sample, independent Qs tend to be located in the same markets as high-profit network Vs. The problem comes in interpreting this as a causal relationship. The independent U do not cause high profits for the network Vs; arbitrarily plunking down a new U in a market would not increase the $V s^{\prime}$ profits. Instead, it is more reasonable to suppose that the same forces lead to the presence of both highly profitable network Vs-and independent Us in some markets. In short, the number of independent $U s$ is really an endogenous varlable, and we explicitly take this fact into account in pur varlable stations model described in Appendix A.

The problem is similar in the second example (the bigger the market, the móre a singleton independent station loses). In this case, the equation does not fit the data well, but that 1 not the basic problem. The, basic problem is again that we are treating the number of independent stations as an exogenous variable, and it is not. In reality, and in our data, we never find a very large market with only one independent station, and the equation is not capable

$$
\begin{array}{r}
{ }^{\star} \text { Predicted profit plus depreciation equals } \\
-109^{\circ}+(10.01-12.41)\left(\frac{\mathrm{TVH}}{4}\right)
\end{array}
$$

of telling us what would happen if suchla market existed. The equation can and does predict positive profits for independent Vs located in market's with other independent stations: There, are forces at work that laad to the presence of several independent stations in large markets; again, $1 t$, is incorrect to treat the number of independents as exogenous.

To handle this problem econometrically, we use a two-stage procedure: First estimate directly the number of stations in each market as. a function of market size and VHF gllocat fons, then rerun the regressions in thís section using estimated instead of actual numbers of stations as Independent variablẹ. This pröcedure should" produce asymptotically unbiased estimates that avoid the counterIntuitive features:of the equations in Table E.3, but we do not expect , it to imprové the fit to our data. Profits, particularly thode of Independent Us, would continue to have a large unexplatned component.

E.3. TWO-STAGE ESTIMATION OF STATION PROFIT EQUATIONS

The root of the problem discussed at the end of the previous section is that the number of stations in a market.is not really exogenous; the number of stations and the profitability of stations are sititianeously determined. Large markets, for example, often contain both highly profitable network VHF stations and (not necessarily profitable) independent UHF stations. Ordinary least squares regression incorrectly atctributes the Vs' high profits to the presence. of the Us; hence the incorrect inference that an additional U would fncrease the Vs' profits. Correct estimation methods must take th simultaneity explicitly into. account.

We use one such method here--a two-stage least squares (TSLS) procedure in which the: number of stations is first estimated as a function of expogenous variables, and then the profit equation is estimated using observations on predicted rather than actual numbers of stations. The number-of-stations equation used here has a very simple form:

$$
\begin{equation*}
\mathrm{NOHF}=\alpha_{0}+\alpha_{1} \mathrm{TVH}+\alpha_{2} \mathrm{NVHF}, \tag{E.2}
\end{equation*}
$$

1
where NUHF is the number of UHF stations in the market and NVHF is
\because. . . .

- the number of VHF stations. We expect to find (other things being equai) more UHF stations in larger markets ($\alpha_{1}>0$) and fewer UHF stations where VHF competition is greater $\left(\alpha_{2}<0\right) .^{*}$ o

Note that we are tring NVHF as an-exogenous variable. This is

[^38]Justifiable for the sample that we used to estimate (E.2), which includes only markets with 3 or more stations. There are no unused VHF allocations in such markets, so it seems legitimate to treat NVHF as being set exogenousily by frequency allocation decisions rather than determined endogenously by economic forces.

In other respects, the sample used to estimate (E.2) is consistent with our previous work: In includes ADI markets within the contiguous states and excludes border markets. Satellite stations are not separately counted. Part-year stations and stations that did not file financial reports with the FCC are noe counted, nor are outlying stations such as the Akron station in the Cleveland market.

The first line of Table Enows estimates of equation (E.2); all coefficients are highly significant and have the expected signs.

Several goodness-af-fit measures are shown for this equation. Showr first, labeled untransformed predictions for all markets, are the usual measures supplied by most regression programs: R-squared, standard error of estimate, and standard error of estimate expressed as a fraction of the mean value of the dependent variable. These are all based on NUHF predicted directly by the equation, which in general will be a fractional number of stations. Since fractional stations don't exist, we also predict NUHF by rounding to the nearest integer value., Goodness-of-fit measures for these integer predictions are also shown in the table. Both fits are fairly good, with R -gquareds : 3 over 7.

We are particularly concerned with the largespmarkets, say the

BDDI 8.6
past stace gopation poi manar oi vie sthitions

Suple	Constant		WR	Prodictions for Ald hetken						Prodictime Por Top 50 Marketo						
				Vatramfornd Prediction Intever Frodiction						Untruafored hrodection				Interat Prodictions		
				i^{2}		Sma/x	R^{2}			n^{2}		sm/i		2	88	S36/I
All mathte	$\begin{gathered} 2.59 \\ (20.60) \end{gathered}$	$\begin{gathered} .117 \\ (13.53)^{\prime} \end{gathered}$	$\begin{gathered} -.852^{\prime} \\ (-16,82) \end{gathered}$. 123	. 562	. 33	. 763		. 51	. 379	. 778	. 81		. 359	.794	. 83
	$\begin{gathered} 1.82 \\ (6,88) \end{gathered}$	$\begin{aligned} & .0894 \\ & (6.33) \end{aligned}$	$\begin{aligned} & -.514 \\ & (-3.92) \end{aligned}$			-				. 466		. 15		. 197	. 885	. $93{ }^{\prime}$
	:															

SSLL a a frection of the man maber of OIE atations.

316
top 50 , where serious spectrum shortages seem most likely to occur. The other entries in Table E. 6 reflect this concern. The top right corner of the table shows how well the equation estimated using the full sample does at predicting for just the top 50 markets. . Unfortunately, it fits large markets less well than it does the full sample, with R squared for either integer or untpansformed predictions around .35. Hoping to improve the fit, we reestimated equation (E, 2), using data on the top 50 markets only, with the results shown on the second line of the table. R-squared for untuansformed predicitans is increased somewhat but, curiously, that for integer predictions drops. The. reason for this is not clear; it may be because (E.2) is an over-simple specification.

We use the estimates in Table E. 6 to generate predicted values of numbers of stations to use in estimating the profit equation (E.1) as a second stage. We take both the number of network Vs (NNV) and the number of independent $V s$ (NIV) as exogenously determined by VHF allocations according to the following relationships:

$$
\begin{aligned}
\text { NNV } & =\min (3, N V H F) \\
\text { and } \quad N I V & =\text { NVHF }-N N V .
\end{aligned}
$$

That is, we assume, consistent with reality, that VHF stations have first chance at network affiliation in each market and that any vs left after all affiliations are taken operate as independents. The *We use integer predictions for, $\widehat{N H F}$.
numbers of affiliated and independent UHF stations, NNU and NIU, app determined endogenously by economic factors, so we use predicted values (indicated by hats) rather than actual values:
$\widehat{\mathrm{NNU}}=\min (3 \cdot-\mathrm{NNV}, \widehat{\mathrm{NUHF}})$
and $\widehat{N I U}^{\cdot}=\widehat{\mathrm{NUHF}}-\widehat{N N U . ~}^{*}$.
That is, if affiliations are sti,11 available gaiter VHF stations have first choice, Us will take them, and any remaining Us will operate as independents: To, get the values that actually enter equation (E.1), we simply calculate

$$
\begin{aligned}
& \mathrm{NCNV}=\mathrm{NNV}-\mathrm{NV}, \\
& N C I V=N I V-I V, \\
& \widehat{\mathrm{NCNU}}=\widehat{\mathrm{NNU}}-\mathrm{NU}, \\
& \widehat{N C I U}=\widehat{N I U}-I U \text {, } \\
& \text { and } \hat{N}=\hat{N V H F}+\widehat{\mathrm{NUHF}} \text {. }
\end{aligned}
$$

Table E. 7 shows TSLS estimates of profit equations and OLS estimates for comparison. On line (2) of Table E\& 7 , the TSLS estimate- for all stations using data for all markets is a remarkable improvement over the corresponding OLS estimate (shown on line (1), duplicating line (1) of Table E.3). In discussing the OLS estimate previously, we saw that it predicted that adding a UHF station to the market would increase the profits of stations already in the market. Take as an example an independent U coming into a 3 network V market. Line (1) predicts

$$
319
$$

[^39]
that profits for each V would change from $-207+9.19\left(\frac{T V H}{3}\right)$ to $-207+$. $9.19\left(\frac{\text { TVH }}{4}\right)+17.86\left(\frac{\text { TVH }}{4}\right)\left(\frac{1}{3}\right)$, an increase of $(18.55-10.01)\left(\frac{\text { TVH }}{12}\right)$. Line. (2) predicts that"the "increase" is negative as it should be' and equal to $(7.73-13.54)\left(\frac{\mathrm{TVH}}{12}\right)$.

In another example, profit predicted for a singleton independent' V from line (1) is $-207+(9.19-12.51) \frac{I V H}{4} ;$ that is, the ofs estimates Indicate implausibly that lit loses more money the larger the market' in which it operates. The TSLS estimate on line (2), on the other hand, puts its pfofit at $-441+(1.3 .54-12.81)\left(\frac{\text { TVH }}{4}\right) y$ which increases with market size as it should.

By taking the simultaneous determination of profits and number of stations explicitiy intp account, we have markedly increased the plausibility of predictions made by the overall profits equation esti-. mated from the full sample. Nevertheless, the problem of unequal . performance of equally situated stations, discussed above, still. remains. Profit predictions, made using line (2) of Table 3 are surrounded by wide bands of uncertainty, partficularly for stations that are handicapped by UHF transmisision, lack of network affiliation, or both. Although to a large extent this is necessarizy true of any modei that treats equally situatèd stations equally, we saw above that the fit could be somewhat improved by estimating separate equations for each station class. Consequently, we estimated separate TSLS equations for each station class. They are shown, together with the comparable OLS equations, in Hines (3) through (10) of Table E.6. These separate TSLS equations ace disappointing in at
least two respects: Except for the network V equation, significance levels are generally very low; and the network V equation is not purged of its implausible predictions by our two-stage procedure.e aiso estimated all of the equations for top 50 markets only, lines (11) through (20), with similarly disappointing results.

E.4. CONCLUSION

We have seen that many equally situated stations realize "quite unequal profits. For example, three independent UFF stations in one large market are all handicapped by lack of network, affiliation and UHF transmission, and they all face the same lineup of compering stations. Yet their profits span a range of more than $\$ 2$ million, extending from a modest positive profit to large loss, fris phenomenon makes the prediction of profits fry difficult. Indeed, nearly half of the variance in the profits of independent Us is neceascarily indexplacable by any model that treats equally situated stations equally. Further, we found that in our sample, there was no significant rel tionship whatsoever between the profits of independent Us and variables that ought to be important: market size and competition. One could explain more of the variance in profits of other sises of stations, but there, too, much remains unexplained.

This is bad news for the econometrician, who would like to project station profits with some degree of precision. One could look more closely at stations that perform especially unpredictably, and try to understand in a qualitative way what leads to the ext meme resuits. But we would nd t expect to be able to produce quantitative prosections of profits that are not surrounded by large bands of minertaints.

But if this is bad news for the econometrician, it is good news: for those concerned with the preservation of broadcast television service.

Some spokesmen for broadcasters have argued that any loss.
of audience to competing technologies would lead rigidly to a leveraged reduction in profits that would drive many stations off the air. But nJ
our results indicate that there is a good deal of flexibility in the system; there seems to be room for many different modes of station operation, all viable. Certainly stations will react' to competition from new technologies by adjusting their operations in ways that would soften the impact on profits. Indeed, the relationship between competithe factors and profits is so tenuous that any impact of new technologies on profitgapay get lost in the static.

1

324

Appendix .F

A SIMULTANEOUS EQUATIONS MODEL OF TELEVISION STATION . REVENUE AND EXPENDITURE*
A SIMULTANEOUS EQUATIONS MODEL OF TELEVISION STAT IX

1

This Appendix was written by Professor • Stanley ${ }^{}$ M. Besen of Rice University, a consultant $t \%$ The Rand Corporation.

325

This appendix describes one way to predict television station profitability, Before turning to details in the next section, we sketch here an overview of the approach and indicate how it is related to the other methods we have stůied.

We think of a television station as a firm that is in the business of "producing" audience and selling it to advertisers: The more audi-'. ence it has to sell, the higher its revenues. But additional audience can be produced only at increased cost--for better programs, stronger promotion, upgraded technical facilities, etc. For a typical station, the relationships between revenue and audience, and between cost and audience; may be as shown in Fig. 5, repeated here for convenience. We hypo\because thesize that the station will choose to produce the amount of audience, A^{*}, that maximizes the difference between its revenue and its cost.

- The approach we take in this note is tomestimate equations that represent the revenue and cost curves of Fig. 5. This is a fairly complex process for at least two reasons. First, different stations will have different revenue and cost curves, depending on their own characteristics, their competition, and fhe market they operate in. Second, it is necessary to use simultaneous equation estimation tech: niques to avoid 'biased estimates. Audience, for example, is endogenous to the system and cannolegitimately be treated as just another independent variable. These complications are discussed in Sections $F, 2$ and F. 3.

The distinguishing feature of this approach is that we estimate the functions that face the firm in its decisionmaking--revenue and cost as functions of audience. These are structural equations in our • model. Given these functions, we can in principle recreate the mation's out put decision by finding the audience that maximizes the difference between its revenue and cost. Thus the functions, together with our , profit-maximization assumption, yield solution values for audience,

* revenue, cost, and profit. And at the same time, they illuminate the process by which we arrive at the solution.

In contrast, our other approqches to estimating station profits estimate solution values directly as functions of exogenous variables only. - These are reduced-form equation approaches. They may perform as well as, or better than, the structural form of the . model in predfcting equilibrium outcomes, "but they do iftele to "illumtnate the structure of the process.

F.2. MODEL SPECIFICATION

It is convenient fo think of the "product", that telewision stations sell as access to addience. Stations acquire or produce programs to attract the attention of viewers who are then exposed to messages that advertisers wish to convey. Station profitability depends on the size of its audience, on the price it receives for each viewer exposure, and on the costs of producing its audience.

There are several ways in which television stations can produce audiences. They can air programs produced by the statfon's own employees. They can acquire them by direct purchase in the syndication market. Network affiliates obtain much of their programming through a contractual relationship with the networks, which acquire programs from independent program. suppliers or produce the programs themselves.

Presumably each station fills its program schedule with the collection of programs that promises it the largest prospective return. Given the relationshi.ps between the revenues it earns and the costs it incurs, it chooses to "produ f " $e^{\prime \prime}$ the audience that maximizes its profits. Cost and revenue functions ff fer among stations in the same market as well as among stations in different markets. Consequently, the decisions made by Stations as to the audience they will seek will differ among stations. We might expect that a station that has a high cost of attracting viewers because, for example, it is handicapped by UHF transmission or competes with a number of very strong stations, will seek to serve a smaller audience than will one with lower costs. It is not that the high-cost
station desires a smaller audience per se but only that its profits are maximized with such an ifience. If it increased its audience through larger expenditures on programing, it would eam smaller profits.

Two considerations are central to the approach we take in this appendix:

First, we analyze the determination of a station's expenditures and revenues as a single process. Additional expenditures by. a station are made to increase its audience and, therefore, its revenues. A station that is attempting to maximize its profits will increase its expenditures so long as each additional dol!ar spent produces more than onedollar of additional revenues. In a given market, different stations will have different audiences largely because their costs of reachíng any given audience will dffer. Given its own characteristics and those of its competitors, a sation will determine the expenditure level which will maximize its profits and this will, at the same time, determine its, audience and revenuel

The second consideration is that our approach recognizes the interdependence of station behafior within a market. We expect that a station's cost of attracting viewers depend on the amount that other stations in the market are spending. In the jargon of economists, there are externalities among the cost functions of stations in the same market. Each station's cost function therefore has as arguments the level of expenditure of other stations in its market.

A second kind of interdépendence concerns the setting of advertising rates. Given the relatively small number of stations in most markets, it is reasonable to inquire whether interdependences in rate-setting
result and whether, therefore, the observed level of advertising rates can be linked to measures of market concentration.

1

A number of factors affect the costs of a station in reaching viewers. First, stations that are affillated with, the networks have lower costs because networks bear the costs of program acquisition. (The fact that their revenues may be lower for any quantity of audience produced will be discussed below.) While both independent stations and network affliates engage in program production and acquire programs in the syndica ion market, the fact that the affiliates have one programing source, the retwork, that is unavailable to the independents should mean that the network station's cost function will be lower. (It is important to re member that we are talking about the cost functions and not about the actual - expenditures of the stations., Since a lower cost function will generally have result that profit is maximized at a larger audience, a station may spend more even if its cost function is lower than that of another station.) Second, because of reception difficulties and the still incomplete penetration of all-channel recefvers, UHF stations have higher costs of reaching any given number of viewers than do VHF stations. In order to overcome the UHF handicap, a UHF station would have to spend more on programming than would an otherwise comparably situated VHF station. In this way, viewers woùld be induced to watch in spite of the poorer reception, or to acquire improved antennas, or to acquire all-channel sets, or perhaps subscribe to cable. The profit maximizing bebravior of such a station might well be to seik a smaller audjence than a simflarly situated VHF station. (Its actual expendiflures could conceivably be larger, however.)
-
Stations may face different revenue functions as well as different cost functions. The most obvious difference between stations is that. between retwork affiliates and independents. While independents retain all of the payments made by advertisers, only a share of total advertising revenues goes to affiliates, with the remainder being retained by the network. (The nature of this relationship is analyzed in Besen and Soligo, 1973.)* Even if an affiliate earns less per viewer produced than an independent, that does not, of course, mean that the former is less profitable. The lower revenue per viewer produced has a counterpart in the lower cost for producing viewers, which was discussed above. A second factor that can affect the price received per viewer is the transaceorns cost, in this case the fost of purchasing television spots, which is likely to have a component independent of the size of the audience reached. If this is the case, stations with a small audience will receive à smaller net price per viewer than will stations with large audiences even if advertisers are willing to pay the same price per viewer on all stations. The rreason is that the full cost of advertising includes the transactions costs and, when these costs are considered, qnly by paying the smaller station a lower price per viewer can advertis \oint, cost per viewer be equated for all stations. .

A thiyd factor that may affect the price received per viewer is differences in the demographics of different markets. If, because viewers are richer, or younger, etc., it is more profitable to advertise

[^40]$$
\therefore \quad \cdots,
$$
in one market that in another, we would expect the price per viewer to be figher in the former than in the latter.
§ Finally, the price that a•station receives per viewer delivered may depend on 'the degree of competition in its market. 'Stations can, by restricting the enumber of viewers delivered, increase their profits, since producing additional viewers involves additional costs for a s.tation. The extent to which the price, charged and quantity of viewer exposures produced differs from the outcome under perfect competitiơn depends on the extent to which the stations in a market efther by direct collusion or through a tacit understanding based on. their perceived interdependeqce, fan actos if they are a single furm. (Of course, there are some markets in which there is only one television station, so that collusion is not required, although even monopoly television stations may face competition from other media.) It is more likely that the monopoly outcome will be achieved the smaller the number of firms that must interact, so that we must inquire as to whether the price charged per viewer differs among markets depending, on the extent of competition.

The full model contains an equation to explain a station's toeal revenue, one to explain its total costs, a profit maximizing condition, and a condition indicating that if a station is not earning a profit it will go off the air.

Each station is faced with. a relationship that indicates how much it can earn for each viewer,"delivered" to advertisers. This equation must allow for the fact that a network affiliat receives less per - viewer than the advertiser pays since the netwotk shares in advertsing
revenues. The disparity in these rates should depend on the number of potential affiliates in the market. Each station also faces a function relating the number of viewers it can delfyer to the expenditure it incurse This relationship is assumed to depend on the expenditurgs of the station's rivals, and on its own characteristics and those of competitors. Shifts in the expenditures of other, stations ohange the "productivity" of a station's own expenditures as do changés, in the number of stations in thë market.

Given the cost and revenue function fon a station, we can determine what its optimal level of "output", i.e., audience, will be. The station. will increase its expenditures until the extra revence produced by the last dollar spent is equal to one dollar. Moreover, it will not operate in the long run unless profits are positive. There may be no audience level at which the station is profitable.

These considerations lead us to specify the following system of equations:

$$
\begin{aligned}
\text { REVENUE }= & \exp \left(\alpha_{0}+\alpha_{1} \mathrm{NU}+\alpha_{2} \mathrm{IV}+\alpha_{3} \mathrm{IU}\right. \\
& \exp \left(\alpha_{4} \mathrm{D} 1+\alpha_{5} \mathrm{D} 2+\alpha_{6} \mathrm{D} 4\right) \\
& \\
& \operatorname{TVH}^{\alpha_{7}} \text { SALES }^{\alpha_{8}}(\mathrm{AUD} / \mathrm{TVH})^{\alpha_{9}} \\
= & \exp ^{\prime}(\mathrm{u})
\end{aligned}
$$

$$
\operatorname{cosT}=\exp \left(\beta_{0}+\beta_{1} N U+\beta_{2} I V+\beta_{3} I U\right)
$$

Equation (F.1) is \uparrow the revenue function. Its variables, and the- expetted signs of their coefficients, are as follows:

REVENUE: The station's net broadcast revenue. NU, IV, IU: Dummy variables that equal 1 if the station is a network affiliated UHF, an independent VHF, or an independent UHF, respectively, 0 otherwise. 'We expect the coefficients of IV and IU to be positive, because independent stations don't have for share their revenue with the networks.

D1, D2, D4: Dummy variables, that measure the degree of competition in the market. - Categories 1 through 4 repre/fnt successively greater competition, and the dummy variables equal 1 if the market falls in the corresponding category, 0 otherwise. Categories 1, 2, and are markets, in which 1,2 , or 3 networks have primary affiliates and there are no serious competitors for affiliation. A serious competitor is a VHF independent in a market in which all three networks have VHF out lets, or a UHF independent in markets where some or all of the networks have only UHF affiliates. If it includes a serious competitor for affiliation, a market falls in category 4. D3 must be omitted from the regression to identify the equations. We expect the coefficients of D1 and D2 to be, positive, and that of $D 4$ - to be negative, reflecting the greater poss$\cdot 1$ bility of collusive pricing in stations with fewer markets.

TVH: The number of television households in the market's ADI. We expect its coefficient to be positive.

SALES: ADI retail sales per ADI. TVH. We expect its coefficient to be positive.

AUD/TVH: The station's average daily audience expressed as a fraction of $A D I T V H$. Expected' coefficient: positive.
u: A random error term.
Equation (F.2) is the cost function. It \dot{s} variables are:
COST: The station's total expenditures.
$!$

NU, IV, IU: We expect the coefficients of thége dummy vaitiables to be positive, reflecting their technical and hon-affiliation handicaps.

336
© CCNV, CCNU, ECIV, CCIU: :Average total expenditures of competing stations by category: network affiliated VHF, network affiliated UHF, independent $V H F$, ap independent $U H F$, respectively. Expected signs are positive.

NCNV, NCNU, NCIV, NCIU: Number of competing stations by category. Expected signs: positive.

TVH: Sign is expected to be positive.
CABLE: Cable penetration expressed as `a fraction of ADI TVH. By importing distant signals, cable systems increase the station's competition and so increase its cost of producing any specified level. of audience. Hence, we expect the coefficient of CABLE to be positive.
(N U+IU) CABLE: As an offset to the distant signal effect above, cable systems improve UHF reception, and so may lower the cost of NU and IU stations only. This coefficient should be negative.

AUD: Expected coefficient is positive.
The third and fourth equations, which will not be estimated, close the system. Equation (F.3) is the condition for profit maximization for a station which is operating and equation (F.4) states that the firm must at least break even for it to continue to operate.

Equations (F.1) and (F.2) are estimated using a 1971 cross section of television stations: All stations within the 48 contiguous states "are included, except those in border markets, those that were in operation only part of the year, those for whicheme or all of the required data are missing, outlying stations (for example, the Akron station in the Cleveland $A D I$) and a few stations whose performance was so far beiow equally situated stations in the same market that the profit-maximfzation hypothesis seemed clearly untenable in their cases. Data for'satelite stations are aggregated with those for their parents. Five hundred, and twepty-nine stations remain in the sample after these exclusions:

Because (F.1) and (F.2) include endogenous explanatory variables, they must be estimated by simuitaneous equation techniques to avoid biased estimates. We.used \dot{x} tworstage instrumental varíables procedure. The instrument $\dot{\mathfrak{a}} 1$ yariables for the first.stage regressions p are NU, IV, I'U and a dimmy variable for each market:
"We also estimated the equations uging standard two-sitage least squares, where the instrumental variables for the first stage are all of the exogenous variables in equations (F.1) and (F.2), but not the market dumpies. The results were similar to those reported here, but a with generally lower significange levels.
1."

REVENUE EQUATION
The estimated revenue equation is

$+\underset{(4.45)}{.302 \mathrm{D1}}+\underset{(1.57)}{.071 \mathrm{D} 2} \underset{(4.99)}{.222 \mathrm{D} 4} \underset{ }{+}$
$+\quad .984 \log (\mathrm{TVH})+.179 \log ($ SALES $)$
(47.75) (3.29)
$+\quad .721 \log (A U D / T V H)$
(16.39)

$$
\begin{equation*}
\mathrm{R}^{2}=.905 \tag{F.1́}
\end{equation*}
$$

The numbers in parentheses are adjusted t statistics, not simple t 's for the second-stage regression. They are calculated by. basing the estimate of the variance of the error term on the squared residuals obtained when actual values of the right-hand-side endofenous variable (rather than , values predicted by the first stage equation) are plugged Into the estimated equationin Similarly, R^{2}. reflects the fit of the equation using actual rather than fitted values of AUD/ivh.

Several important elementsof the equation are worth noting: first, a one percent increase of atation's potential audience, TVH, leads to y approximately a one percent increase in its revenues; given its share.

Second, a onejpercent increase in a station's share leads to approximately a.7. percent increase in its revenues, given TVH. This implies that there are "diminishing returns" to increasing a station's share. Third, the economic well-being of a station's market, as measured by retail sales, has a slight effect q a station's revenues. For a station with a giveg. potential audience and a given share, hence with a given audience, a one percent increase in retail sales increases the station's revenues by. about . 2 percent.

The principal anomaly in the above results is the negative coefficients of IV and IU. Since the network shares in the revenues that advertisers pay fof advertising on affiliated stations, we hat expected that these would both be positive. Also unexpected is the significant positive coefficient of $D 4$. We had expected that the greater degree of competition in markets in category 4 would shift the revenue curve downward.

COST EQUATION*

When equation (F.2) was eqtimated as specified in the previous eection the results were quite poor. Although the overall fit was - good, many of the coefficients had the wrong signs or implausible magnltudes. Consequently we tried estimating equation (F.2) as an "inverse cost function," with AUD as the dependent variable and COST as an endogenous variable on the right-hand side. The results in this form were much better, except for the coefficients of the CABLE variables, both of which were insignificant and had the wrong

signs. When these variables were dropped, the estimated equation was:

$$
\begin{array}{cc}
-.786 & \log (1+\mathrm{NCNV}) \\
(-5.85) & -.113 \log (1+\mathrm{NCNU})-.408 \log (1+\mathrm{NCIV})-.294 \\
(-.68) & \log (1+\mathrm{NCII}
\end{array}
$$

$$
+\begin{array}{r}
.740 \log (\mathrm{TVH}) \\
(11.79)
\end{array}
$$

$$
R^{2}=.894
$$

of ŇU, IV, and IU are all negative and significant, as expected. Moreover, the coefficient of $I U$ is larger in absolute value than the coefficient of either of the others; which is what we expect given the double handicap which - \%. Independent UHF stations face. Second, the coefficient of $\log (T V H)$ is. sig- \cdots nificant indicating that an increase in the potential market of a station increases the audience which can be obtained at any expenditure level. The ' coefficient implies that a percent increase of TVH leads to about a. 7 percent Increase in audience with station expenditure held constant. Third, a one percent increase of station expenditures will lead to about a .5
percent increase in the audience. Since this equation implies that .cost rises faster than does audience and the estimate of ${ }^{\circ}$ ($F .1^{\circ}$) implies that revenue rises more slowíy than does audience, a determinate, equilibrium will exist: Of the variables designed to capture the effects of the expenditures of other stations, both the average expenditures and the number of competing network VHF stations are highly significant and negative, as expected. This'means that as the' total"expenditures of this group of competitors increases, either because of an increase in the number of stations or because of an increase in their ayerage spending, the cost of attracting any given number. of viewers also increases. The coefficients of the variables measuring competition from independent stations, both VHF and UHF, are also negative and signifi- , *. cant. Those for network affiliated UHF have the right sign but are not significant.
\&.
REDUCED-FORM AUDIENCE EQUATION

In principal, elfimated equations (F.1') and (F.2'), together with the profit maximization assumption (F. 3') are all that we need to calculate equilibrtum values of audience, revenue, cost and profit for any station. Adding the positive profit constraint (F.4), we could further calculate by feration the number of stations any market could profitably support. In practice, we may well obtain better estimates starting with a reduced-form audience equation. The form of such an equation is derived by applying equation (F.3) to (F.1) and (F.2) and solving for audience. Estimating the resulting equation we obtain

$$
\log (\mathrm{AUD})=\begin{array}{ccc}
2.116 & -.869 . \mathrm{NU} & -.482 \mathrm{IV} \\
(7.91) & (-14.17) & (-4.18)
\end{array}(-19.851 \mathrm{IU})
$$

$$
\begin{gathered}
-.0499 \\
(-9.00)
\end{gathered} \underset{(-1.37)}{ } \log (\text { CCNV })(-4.39) \quad \log (\text { CCNU }-.0207 \operatorname{lCCIV})-.0098 \log (\text { CCIU })
$$

$$
\begin{gathered}
-1.033 \\
(-6.13)
\end{gathered} \underset{(-1.82)}{ } \log (1+\mathrm{NCNV})-.384 \log (1+\mathrm{NCNU})-.921 \cdot \log (1+\mathrm{NCIV})-.255 \log (1+\mathrm{NC} 1
$$

$$
\begin{aligned}
& +1.174 \log (\mathrm{TVH}) \\
& +(-.011 \log (\text { SALES })
\end{aligned}
$$

$$
\mathrm{R}^{2}=.824 \quad \text { (F.3^) }
$$

The right-hand-side variables are all those regarded as exogenous to the station. Thus, a station's own expenditures are excluded. The equation is designed to show the movement of a station's equilibrium audience in response to changes in the exogenous variables that it faces. As expeqted, equilidrium audience is smallest for independent. UHF stations and largest for network VHF stations. A doubled market size, TVH', leads to an approxi$=$ mate doubling of the audiences of all stations. Both the number of competing network VHF stations and their average expenditures significantly affect a station's audience and the same is' true for independent VHF stations. The picture is mixed for UHF stations although all coefficients have the
expected signs.

343

[^0]: *See particularly Fig. A.9, p. 160, and the accompanying discussion. ** Fór technical details, see Appendix A.

[^1]: *Because the results are rounded to the nearest 0.1 of a station, there are some apparent small discrepancies in the tables. For example, in New York the 1.4 constant adjustment factor shows up as 1.3 for 1985.

[^2]: *We constructed this version of the viable stations model primarily to estimate the effect of the disappearance of the UHF handicap. See Appendix A, Section A. 4 for details.

[^3]: * Indicates market with one or more VhF drop-in stations.

 Column (1): Raw projection.
 Column (2): Existing stations. . .
 Column (3) : Projected VHF stations as limited by allocations including any viable drop-ins.

[^4]: . *Except for cases like Seattle, where we project unused VHF allocations. In those cases, we apply no adjustment factor, leaving projected UHTF stations equal to zero.

 * \quad This estimate of 57 stations is an upper bound; since some VHF drop-ins would probably be limited to a smaller geographical coverage than that of "regular" VHF-stations in our data base. This restriction in coverage may be required to reduce problems of interference with other stations:

 The reader should bear in mind that the projections in this section maintain all of the base case assumptions (listed on p. 22) except no. 5 relating to VHF allocations. It is also of interest to change several assumptions at a time:" We report three such "combination" cases in Section VIII, and others are easy to calculate using our computer model:

[^5]: *Television Digest, May 19, 1975, p. 5.
 ${ }^{* *}$ Television Digest, April. 21, 1975, p. 2; The Videocassette and CATV Newsletter, May 1975, p. 16. *** Ibid., p. 10.

[^6]: *Stanley Besen and Bridger Mitchell, Watergate and Television: An Economic Analysis, The Rand Corporation; R-1712-MF, May 1975.
 ${ }^{* *}$ On the basis of experience to date; new motion pictures will be the basic item for the foreseeable future with educational and cultural items playing a minor role. Hówever, motion pictures currently 'produced for most theatrical exhibitions are generally superior to the average movie shown. on television. This, combined with the absence of commercials, may well warrant their classification as "new"' programming, attracting an audience substantially differery from the $60-65$ percent that receives prime-time television. The exdet mix of audience diversion from television and the growth of "new" audience is, of course, uncertain. Shedding light on these questions, a recent study of future demand for pay television by various classes of programming fias been completed under con\downarrow tract with the Office of Telecommunications Policy by R. R. Panko et al., . Analysis of Consumer Demand for Pay Television, Stanford Research Institute, May 1975.

[^7]: *The Videocassette and CATV Newsletter, April 1975, pp. 1-5. ** Ibid., p. 6.

[^8]: *We dovthisfby reducing by $10,20^{\circ}$ or 30 percent the number of . television hpuseholds (TVH) used in making the projections. That is, we treat the assumed reduction in actual audience as equivalent to the same proportional reduction in potential ádience. An alternative approach would be to treat new services as the equivalent of new broadcast competition in the market, and make the projections by assuming some incres in the number of VHF stations. This, and other variations on the assumptions we have chosen, can be easily used to generate alternative projections using our computer model.

[^9]: - Column (1): Raw projection.

 Column (2): Adjusted projection.
 \therefore Column (3): Difference from base case projection.

[^10]: *See particularly Fischman (1971) and our Appendix Tables D. 1 and D. 3 for evidence on this point.
 ** - a critical factor in our model, were not available for years before 1971, so we could not do an estimate over a longer period.
 $\stackrel{* k}{ }$ See Appendix A; Table A-IV.

 92

[^11]: ${ }^{\star}$ This method is an elaboration of that used by Stanley M. Besen and Paul 'J. Hanley in '"Market Size, VHF Allocation's, and the Viability of Television Stations," Journal of Industrial Economics, September 1975.

[^12]: *Precisely, the fraction of homes in' the market without cable' declines to 50 percent of its 1974 value.

[^13]: *The, fraction of homes in the market "without cable declines to 70 percent of its 1974 value.

[^14]: Excluding two border markets, Buffalo and San Diego, which we exclude from our analysis: The 57 million , and all of the coverage figures in this subsection, are calculated using Tables A. 2 and A. 3 in Appendix A. ** Here we are using the rounded projections in column 18. (2), Table 22. ${ }^{* * *}$ Containing an additional 9 million televịsion households in 1974.

[^15]: *Precisely, the root mean s squared error; that $1 s$, the square root of the average value of the square of the prediction error.

[^16]: However, the allocation among revenue categories, particularly between national-regional spot and local spot, may be somewhat arbitrary.

[^17]: * The FCC authorization of the study is reported in TeZevision Digest, December. 8, 1975, and is described in an FCC Request for proposals, RFP 76-12, January. 23, 1976.

[^18]: *Peter Steiner, "Program Patterns and Preferences, and the Workability of Competition in Radio Broadcasting," Quarterly Journal of Economics, May 1952; Bruce M. Owen, Jack A. Beebe and Willard H. Manning, Jr., Television Economics, Lexington, MA., 1974; Stanley M. Besen and Bridger M. Mitchell, Watergate and Television: An Economic. Analysis, The Rand Corporation, R-1712-MF, May 1975.

[^19]: * We counted signals received in several different ways; see Appendix B for details.

[^20]: *A1though incomes in San Francisc \varnothing have been substantially above average ever since the California gold rush, our analysis shows that television costs per thousand are even greater than could be expected on the basis of this level of higher income. Moreover, there are test markets lifke Phoenix which attract unusually high advertising revenues. But the problem here is predicting ${ }^{\text {a }}$ where test markets will be in the future, again an area about which there is no good basis for judgment. However, the existence of scattered abnormally performing test markets would have little effect on our overall projections, which encompass such a large data base.

[^21]: *Stanley M. Besen, The Value of Télevision Time and the Prospects for New Stations, The Rand Corporation, R-1328-MF, October 1973.

[^22]: *These are reproduced in Appendix G, which is 'separately bound and available only to the FCC because of the proprietaky nature of the data displayed.

[^23]: * One such estimate, running to $\$ 17$ billion in 1962 , was based on the total value of (a) all spectrum-using equipment sold in that year, (b) the

[^24]: ${ }^{\star}$-See especially Appendix E.

[^25]: ${ }^{a}$ Includes one VHF operating $2 n$ Windsor, Ont.

[^26]: * The additional. variance explained by estimating 9 additional parameters in the separate equations is 62.5 , or a meat squafe of 6.94. This compares to the residual sum of squares of 60.43 with 185 degrees of freedom, or a mean square of .327 . The resulting F statistic, $6.94 / .327=21.2$, far exceeds $\mathrm{F}_{9}{ }_{9} 187 . .01=2.50$.

[^27]: A market's ADI consists of all those counties (or in some cases portions of counties) in which that market's stations attract more audience than do those of any other single market.
 ${ }^{* *}$ As defined by ARB: 7:30-11:00 p.m. in the eastern and Pacific time zones, 6:30-10:00 p.in. in the central and mountain time zones; seven days a week.

[^28]: ${ }^{\mathrm{a}}$ Standard error of est mate.

[^29]: *Market NWC is defined as the maximum of any station's NWC in the market. Station NWC is the number of households that watch the station's during at least one quarter-hour period per week.

[^30]: In some cases, ARB divides counties into two more-homogeneous parts. We use "county" to mean "county or ARB-defined portions of a county."
 ** But see Franklin M. Fisher and Victor E. Farrall, Jr., in association with David Belsley and Bridger M. Mitchell, "Community Antenna Television .Systems and Local Television Station Audience," Quarterly Journal of Economics, May 1966, for an analysis that takes into account differences within counties.

[^31]: Park, Rolla Edward, New Television Networks, The Rand Corporation, R-1408-MF, December 1973; abridged version appears in BeZl Journal of Economics, Autumn 1975.
 ** Owen, Bruce M., Jack H. Beebe, and Willard G. Manining, Jr., .. Television Economies, D. C. Heath, Lexington, Ma., 1974; Federal Commications Commission, "The Economics of the TV-CATV Interface," prepared by the Research Branch, Broadcast Bureau, Washington, D.C., July 15, 1970.

[^32]: *Fisher, Franklin M., and Victor E. Ferrall, Jr., in association with David Belsey and Bridger M. Mitchell, "Community Antenna Television Systems and Local Television Station Audience," Quarterly Journal of Economics, May 1966. Pp. 227-251;

 Park, Rolla Edward, Potential Impact of Cable Growth on Television Broadcasting, The Rand Corporation; R-587-FF, October 1970.
 **
 As defined by ARB: 7:30-11:00 p.m. in the eastern and Pacific time zones, 6:30-10:00 p.m. in the central and mountain time zones seven days a week.

 The difference between the two estimated coefficients of a is largely due to three factors: (1) price inflation over the five-P year period between the estimates; (2) an increase in the real value of audience to advertisers; and (3) a downward bias in Fisher's estimate due to regressing (smaller) 1963 revenue on (larger) 1964 audience.

[^33]: Economic Report of the President, U.S. Government Printing Office, Washington, D. C., 1973, p. 196.

[^34]: *Federal Communications Commission, Cable Television Report and Order In Dockets 18397, 183975A, 18373, 18416, 18892 and 18894, 37 Fed. Reg. 3252-3341, February 12, 1972.

[^35]: N: Network.
 S: National and regional apot.
 L: Local apot.
 B: Net broadcaat revenue.
 n: number of observations (markets). X : value to be predicted.

[^36]: *Peter Steiner, "Program Patterns and Preferences, and the Workability of Competition in Radio Broadcasting," Quarterly Journal of Economics, May 1952; Bruce M. Owen, Jack H. Beebe and Willard H. Manning, Jr., Television Economics, LexYngton, MA, 1974s Stanley M. Besen and Brydger M. Mitchell, Watergate and Television: An Economic Analysis, The Rand Corporation, -R-1712-MF; May 1975.

[^37]: ＊．Stanley M．Besen，The Value of Televiaion Time and the Prospects for Nepl Stations，Rand R－1328－MF，October 1973 ．

[^38]: *Equation (E.2) is equivalent to one of the forms used by Stanley M. Besen and Paul J. Hanley in "Market Size, VHF Allocations, and the Viability of Television Stations," Rfce University; Economics Department

[^39]: raluea for right hand aide andogenoue varisbles.
 ${ }^{b}$ TVU in 1000 householde \quad, \quad.
 ${ }^{\text {c }}$ for TSLS eatimate, SEE ie root mean aquarad arror, without degreea-of-freedom correction.

[^40]: *. M. Besen and R. Soligo, "The Economics of the Network-Affiliate Relationship in the Television Broadcasting Industry," American Economic. Review, June 1973.

