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Characteristics of the four estimation methods ate diScussed. :The infor-

mation available in the items selected by the adaptive test is-compared
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non-adaptive tests. The joint application of latent trait theory.and

adaptive testing is advocated as a. useful approach to human assessment
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the problem of test bias are also discussed.
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The paper reviews.two relatively recent developments in .psychometric

theory, the-assessment of partial knowledge and research in adaptive
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APPLICATIONS OF COMPUTERIZED ADAPTIVE TESTING

A BRIEF OVERVIEW OF ADAPTIVE TESTING

JAMES R, McBRIDE
_ Army Research Institute for the Behavioral and Social Sciences

This symposium will present some recent developments in adaptive testing which
have applications to several military testing problems. The purpose of this over-
view is to provide a brief introduction to adaptive testing--what it is, what is
needed to implement it, and why it is of interest.

"Adaptive" testing is one of a number of terms used to describe a procedure
whereby the test items that comprise an individual's test are selected during
the test itself. Some of the other terms used interchangeably with adaptive testing
include tailored testing, branched testing, programmed testing, and individualized
testing. The term "adaptive" was chosen because theS-e tests adapt themselves to
the examinee; different persons answer different items, with the items chosen
sequentially to suit the individual examinee's performance.

Differential selection of test items may be accomplished in any number-of
1fays. But, generally, in adaptive tests a more difficult item is administered
following -each correct answer, and an easier item_ following an-incorrect one. _Some-

methods of adaptive testing_haVe been iiplemented in paper7and-peneil mode; far
example, Lord's:(1971) -flexilevel adaptiVe_tesr_was_designed_speeifically.for

-paper-and-pencil administration. :However, experience has show-that. the instruc-.
tions for paper-and7pencil adaptive_tests are too complex for some examinees to
follow successfully (WeiSs & Betz, 1973, p, 23) A more satisfactory mode of admin--

.-istration is through use of an interactive computer terminal'or. similar device.
--Thus, Weiss (1976) chose to administer adaptive tests at-a eathode-ray.terminal
(CRT); .Bayroff, Ross and Fischl (1974) reported the Arrily!s develoPment_of a
computer-controlled slide projection:terminal.for adaptive testing; Waters (1977)_
'designed and.built a micro-processor terminal which directs the examinee through
an adaptive sequence of test items read from a printed booklet.

:Item selection stra- es. BecaUsaadaptive.testS are qAte different -from ..

conventional tests in which all examinees muat answer the same set of test items,
adaOtivs-testing.poses some new psychometric probleMs. One problem is-how to-
-choose successive-items from the pool of available-items. This problem-can-be
-solved-through -an item selection strategy, which-defines a formalized rule for
item choice.

Numerous item selection stra.egies are-possible. They vary from :ery simple
two-branch rules.to rules based on the -optimization of rather complex mathematical
functions-(Weiss, '1974). Obviously, computerizing-the item-selection-process
-facilitates the use of the mathematical optimization procedures.



8corieg_agaptive tests.- Since different examinees take sets of- est items .

which may differ in number,_difficulty, and discriminating power, the traditional,
number correct score will not suffice to order people on most adaptive tests. Some

-scoring procedure is required which-will consider-not only how many items were
answered correctly, but also which items were taken, and the pattern of right and
wrong answers to those items. The_ scoring procedures most widely used in-adaptive

testing are based on various formulations of latent trait theory (e.g-Birnbaum,
1968; Lord, 1952,-1974; Rasch, 1960). All of these formulations provide statis-
tical-methods for locating examinees on: a common scale, even though they responded
to.different sets of test items.

-Ilem_ylmeme_theesy _Because of the-unique-characteristics of Adaptive
testatailoring each test to the individual and locating all examinees on a common
scale despite the different items constituting each test--traditional test theory'
is inadequate_ for -uae in adaptive testing. "Latent trait" or "item-response"

-theory (Lord, 1952,-1976) provides an adequate theoretical basis for-the develop-- .

ment of adaptive testing.

Item response .theory, also known as item characteristic curve theory, is a
general term for theoretical-formulations which account for-examinees- responses
to.test.items in-terms-of their status on an underlying-attribute.- In ability
(or achievement). testing, the higher the attribute statUs,the larger is the
probability of a correct response.to- any-given item whieh-measures the trait in.

question. Through appropriate sealing procedures, a response curve ean be con-
structed for eVery -such test item. This item_characteristic Curve (ICC) expresses
.the probability of a correct response as 4 mathematical function of the scaled
trait and the item characteristics.

Every pe2s n 'can be characterized by- his/her.location_on this .scale. _tvery_
test-item also has a location-parameter (its threshold, or "difficulty") and
perhaps its Own-,rate parameter (proportional to the steepness of the ICC), analogous

. to its discriminating power. Some items also have a lower asymptote, or guessing

parameter.

Knowing which items a person has answered; the difficulty, discrimination,-
and guessing parameters of those items; and whether-the answers were-correct er
incorrect permits the use of the statistical techniques of-item response theory
to estimate the-examinee's ability. The resulting ability estimate_is a "test
-acore" of-Sorts which has an-error com?onent like.any Other .observed score._ Unlike---
classical test theory, item response.theory makes no-assuMption that:measurement
errors,are independent of "true score",_ which is-_appropriate because this_ central

.
assumption of classical test theory is untenable -(Lumaden 1976). ..Whether ability
is:defined-as="true score" or as location ono-latent Continuum, errorsrd measurement
can vary at different_ levels of .the trait, reflecting.in part .the discrepancy . .

_between examinee-trait level and the difficulties of the test itema.

Informat on. Item response theory_ permits the evaluation of something closely

akin to the standard error of measurement aa a-function:- :.,(73f- underlying- ability, if--

the test item parameters-are known.. This is.ealled the-test infermation_function-
(Birnbaum, 1968) which is inversely proporticinal to-the'standard error of estima-
ting_an examinee's location--on. the trait seale.- If the_informarien-function -of- a-
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typical peaked conventional test (one whose items are all about equal in difficulty).
-.--were.plotted, its test infotwation function wauld.likewise be peaked-7very high
over a narrow range of the trait, but diminishing in magnitude elsewhere. Such
test will discriminate very well over a narrow_interval of the trait range; _it will

-not discriminate as,well outside that interval. The ability level at which_the
test- information function is highest can be referred-to as the test "center".

. The information function of a "rectangular" conventional test (one whose
item-difficulties are uniformly distributed over a wide range) is fairly flat, but
low over a broad interval on the trait scale around the test center. This test
would measure about equally well over-a much Wider range than the peaked test,

rbut other things being equal, would not discriminate nearly as effectively as
does the peaked test at its center.

The deWp_pf conventional tests. A test measures best (most precisely) where
its information function is highest (and hence its standard error is lowest).
It is frequently desirable to have high measurement precision over most of the
normal range of the attribute we seek to measure. This is tantamount to a high,
flat information function. Conventional testing, however, presents a dilemma. A
peaked test can be constructed which yields an information function with a high
peak; or at the other extreme, a rectangular test can be built which has a low,
flat information function. A test with a high, flat information function cannot
be constructed for conventional test administration unless it is extremely long.

This problem can be referred to as a "bandwidth-fidelity dilemma", with
apologies to Cronbach (1961), who described a different "bandwidth-fidelity
dilemma". The designer of a conventional test can construct it to have high
"fidelity"--high precision, low measurement error-Tover a narrow range of ability;
or to have a broad "bandwidth" -equiprecision of measurement over a wide range
of ability, at the expense of fidelity. In designing a conventional test, there
is a tradeoff between broad bandwidth and high fidelity; the deSigner cannot have
both.

Adaptive t3sting. Herein resides the most attractive feature of adaptive
tests from a psychometric point of view: Because- the. test is-adapted-to the
individual, .the discrepancy between-trait level and item difficulty can be made
both small.and fairly constant across the trait range. The .result is a flat
information function which is also generally high.. Adaptive tests--and only
adaOtivetests--are capable of accurate,-equiprecise measurement over a wide
eability_range.- This should.-pay_dividends_in_test. reliability, criterion-related
.validitY- end in- the general utility---of the test for a broad range of Measurement..
and decision applications.

A Properly .designed-adaptive teSt will have higher reliability than a-conven-
tional test of-the-same length. As a corollary to-that,- an adaptive testican
achievea Specified,level of reliability in substantially fewer items- than can a

conventional test, thus_permitting the measurement of additional attributes in,
the- time iaved.-- Both improved- reliability and additional measurements should result
in an increment in predictive validity over that obtained-using conventional tests.

In addition to.the psychometric benefits accruing from the use of adaptive
egts, there are psychological benefits to the examinees. Adaptive tests can have

9
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positive effects on the test-taking motivation of examinees (Betz_& Weiss, 1976b)
and, for some testees, on their measured ability levels (Betz & Weiss, 1976a).
By tailoring test difficulty to examinee ability, Adaptive tests can reduce the
effects of guessing among low-ability examinees and make any remaining effects
relatively constant across ability levels.

Summary

This overview has presented a rather broad-brush introduction to adaptive
testing. Hopefully, it has conveyed some coruzeption of what adaptive testing
is, of the ru3iments of the test theory supporting it, and of the significant
psychometric and psychological advantages that can accrue when a wel1-4esigned
adaptive testing program is implemented in a mental-measurement setting. The

four principal papers in this symposium will deal in more detail with some methods
used in conjunction with adaptive testing, and with a variety of areas of appli-
cation of adaptive tests which are relevant to the needs and problems of teSt
users in the military.

1.0



ESTIMATION OF LATENT TRAIT STATUS. IN ADAPTIVE TEST NG PROCEDURES

JAMES B, SYMPSON
University of Minnesota

During the last few years, latent trait theory has become increasingly
important as a theoretical ,foundation for the practice of psychological and
ed-ucational assessment. This has been due to shortcomings inherent in classical
test theory (Lumsden, 1976) and to recent- developments-in testing practice. In
particular, whdn "adaptive"-er "individualized" testing is desired, latent trait
theory provides a particularly useful conceptual scheme for guiding test design and-
test scoring procedures.

Latent trait theories are characterized by a mathematical model that relatea:
the probabilitY of occurrence of:a-particular response class (e.g., a "correct"
response) in the presence of a particular stimulus (e.g., a test item) to a person's
position on one or more metric dimensions. The graph of the function that relates
probability of a particular responge class to a person's status on these dimensions
can be referred to as a response-characteristic surface.

Both univeriate and multivariate latent trait models have been proposed. The
univariate models e.g., Birnbaum, 1968; Bock, 1972; Lord, 1952; Rasch, 1960)
assume that response probabilities are related to the relative positions of persons
and stimuli on a single metric dimension. Multivariate models (e.g., Christoffer
sop, 1975; Samejima, 1974) allow for the possibility of several latent dimensions.

-Latent Trait Theor a 4 the Ob'ectives of Measurement_

When they first_enepunter latent trait theory, many people question its
practicalutility. For__example, they-often ask, "Why 9hould I bother with an
approach_to. testing that _involves inferred latent traits if what I'm really
interested in is either predicting some criterion accurately or achieving content
validity and implementing criterion-referenced measurementr' In order to motivate
an interest in latent trait estimation procedures, it will be useful to discuss
briefly the issues-raised by-this type of-question

The "existence' of latent traits. The adoption of latent trait theory as a
guide to telt-constructionand test scoring does not require a belief-in the:
"Ikistence" of unobscrvable_traits that control human behavior. Empirically, it _is
sufficient to inquire whether..peoples'.respenses to test stimuli can be predicted_
accurately on the basis of such a model.. The postulated dimenaions.Of. latent trait
-thearY:Cdn.he viewed as quantitative Variables that are created by calibrating and
scoring test items.in a.certain way. These variables can Provide a conVenientbasis

:.for-designing testing procedures and may lead to increased predictive accurady in
scientific and practical-. epplications

Thie researCh is supPerted bY contraCt N00014-76-C-0243, NR150-382, with the
Personnel and Training Research Programs, Office of Naval Research. . .

1 t
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Measurement_ for criterion -rediction. In many situations, te ts are- developed

and applied with the sole intention of..predicting performance on a criterion- of

interest. The introduction of intervening variables (latent traits) might seem

unnecessary when one is only interested in obtaining-a high degree of relationship

between test scores and criterion scores. However, estimates of latent trait status

can themselves be viewed as a particular variety-of test score. Such scores may or-

may not have higher predictive validity than more conventional test scores; this

is an empirical question. But,even if predictive validity is not increased- via the

Use of .latent trait-scores, it-may still be advantageous to adopt a-latent trait

approach if-the testing process can be made more efficient as-a result '(e.g., through.-

adaptive testing procedures).

Moreover, test development for the purpose of.criterion prediction is always-

based upon.an implicit structural model. No one chooses items ae-random from all,

conceivable item domains. Test developers try out iteMs with Certain kinds of
--content and- never-consider Using other-kinds of content. _They also attempt to..

generate itema that have difficulty levels or endorsement rates- (i.e.,.p7values)

that are not too-extreme in the population to be tested. This is done ao that :item-

criterion correlations will not- be unduly restricted. Such ptocedurea suggest the_

existence_of an implicit structural model.

Trying-certain types of items, and not others, implies that certain _types of_

inter-person differences exist and are related to.criterion performanee- while

others are not. -More generally, any conceptual scheme for classifying test items

implies a corresponding set of response variables that-can be generated.when the

items are adminiatered. In selecting items for criterion prediction _the test-

developer indicates the response variables that are .thought to be related to the

criterion.

A concern about item.difficulties and-endorsement .rates implies thatthe

probability of a given response to an item is-a function of status on the relevant

response variable(s)_. .1f such probabilities were not a function of status- on the'

response variables, an item would-have the same p-value in-every conceivable popu-

lation and there would be no need to match item difficulties to the-population that

is to be tested.-.

A latent trait approach to test construttion and scoring provides a formal

vehicle for elaborating structural models and entourages the-test develeper to.make..

structural- assumptions explicit.. -When structural models are explicitly stated,-

they can serve to guide test construCtion efforts-and-aid-in the interpretation of-,

empirical -reaults.

Content validit and cricerion-referericed measurement. The testing situation

never constitute Ae entire behavioral domain of interest. The implicit objective

in pursuing content validity and in implementing criterion-referenced measurement

is to make more accurate inferences about a person's potential for performance in a

hypothetical task domain (Cronbach, 1971, p. 452; Glaser & Nitko, 1971, p. 653).

This hypothetical task domain, though it is not observable in its entirety, is

carefully defined in terms of performance objectives or item content. Test items

are generated that represent the domain, and.responses co these items are used as a

basis for making inferences about domain performance.



Some individuals protest such a view and argue that in criterion-referenced
measurement the test stimuli are the criterion tasks of interest'and that no
further task domain is intended or implied. However, unless all the tasks that are
required on the job are included in the test, inferences are necessarily being made
about a larger task domain from a sample of person-stimulus interactions drawn from
the domain.

Whar is the nature of the hypothetical task-domain in achievement testing?
Such task domains can be described in terms of a multidimensional structural model.
Whenever test stimuli can be clustered with regard to common content or process
and arranged in a learning hierarchy within each cluster, there is a definite
possibility that a latent trait approach to achievement testing will be useful.

Norm-referenced and criterion-referenced inter retations of test .erformance.

In recent years, the distinction between norm-referenced and criterion-referenced
measurement has been widely discussed. An important fact to keep in mind is that
this distinction properly applies to the type of information available from test
scares, not to test content or the testing procedure itself (liambleton & Novick,
19737 p. 162). This is impertant because estimates of latent trait-status can
provide information about both inter-person differences (norm-referenced interpre-
tations) and intra-person response probabilities (criterion-referenced interpreta-
tions) for tasks drawn from a task domain.

An estimate of an individual's latent trait status can be converted to a
centile rank or standard score relative to any norm group previously tested using
the latent trait procedure. This same latent trait estimate, when considered in
conjunction with the latent trait parameters of a test item (i.e., a task sample)
that has been'previously calibrated, allows generation of the probability of
occurrence of a given response class (e.g., a "correct" response) in the presence
of the item. (That is, one can determine the probability that a person Will
complete a given task successfully, even though the person has never attempted the
task.) The fact that latent trait theory can provide both norm-referenced and
criterion-referenced interpretations of test performance indicates that the current
schism between psychological and educational testing may be narrowed considerably
in the years to come.

Estimating Latent Trait Status

---In-order to exploit the wide range of potential applications of latent trait
theory, it is necessary to understand procedures for estimating latent trait status
of individual testees. Four methods for obtaining estimates of latent trait status
are described below. In addition, it will be shown that the accuracy of such esti-
mates can often be i proved through the use of adaptive testing procedures.

The latent trait model to be described is one in which only two response classes
_

are considered, a keyed response and a non-keyed response, and the probability of
occurrence of each response class is a function of a single latent dimension. This

mo-del might be applicable to a test that has been constructed to maximize-internal
consistency (Nunnally, 1967, pp. 254-268) and in which items are scored dichotomously.
The model would not be suitable for_tests that involve a multidimensional item
structure, but the principles of latent trait estimation that are discussed can
be generalized to such cases.



The Three-parameter Logistic Model

This.latent trait model:J.1as been investigated extensively by Birnbaum (1968)..:

The=function:rula-that-relates probability of a:keyed response to the:parameters;

he model is given in Equation 1.

pg.(e) c
g

(l-cg )[1+exp(-1.7a
g
(0-bg _))171

The quantitY P (0) is the probability of a keyed responSe to item
. g

parameters a b and a hy a person whose location on the latent trait con=-
_

tinuum is giVen by the quantity 0 (th ta). The exponential operatotjexp)

cates hat the quantity in:parentheses is an exponent nf_the constant e=2.71828.

l'igure 1 shows

0-1-3.00 for an item

by evaluating Pg,(0)_

visible in Figure 1
purposes.

a graph of the function P (0)Hin the interval from 0.= -3.00ftp:,

having- e2=2 .0, b
g

and c =.00. This graph was generatedi
g

at 61 points-alOng the theta continuum The irregularities

result from rounding P:(e) to the neare= -.02 for plotting
_

Figure 1 --
Response Characteristic Curve (a2.0 1)=0.0, c=-.00)

The item parameter c is the value of P (0) when 0=-m. It is the lower

asymptote of P (0) and is usually conceived of as the probability of a keyed



response occurring "by chance" when e= The item parameter Zi7 is known as the

em location parameter; it indicates the location on the latent trait continuum
at which AP (6) is equal to .5(I+c ). The item parameter a is known as the itemg g
discrimination parameter. It is related to the slope of the response charac-
teristic curve and in this model is equal to the reciprocal of the distance that
one must move along the theta continuum in order to increase p

g
(e) from .5(1+cg)

to approximately (.8455(1-e ))+c Since a =2.0 and c -.00 in Figure 1, the.

distance between the locations on the theta continuum at which (6)=.5 and

P is equal to I/a
g

.50 theta units.-

Figure 2 _shows a response characteristic curve for an item having-a =1.0,g .

bg=0X, and -cg=.00. The reduced value of ag, relative to Figure .1,_is.refletted

-jiv.the shallower:slope of this.graph and in the fatt that-the distante betWeen
the locations at i4hich P

g
(6).50 end P!.(6)A.84 is now equal to =1-.00 theta

-g

Figure 2
Response Characteristic Curve (ctl. O, b0.0, c=.00)

-. units. kvalue of a g in the vicinity of 1.0 is typical of many test items.

,Iialues of a below abont .5 are indicative of "poor" items and values of a
g g

above 2.0 while desirable in many applications, are not common
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Figure 3 shows a response characteristic curve for anAtem having a =1.0,

and c ---.20. The value Cq2O might be applicable to a multiple-choice
g -g

:-.test item that has five response alternatives In accord with the_definitionS

given above, b is equal to the location at which P (0)=.5(14-.2)=.60 and a is
g g

equal to the reciprocal of the distance from the locationat which Pg(0)7,60

the location at which Pg(0)a(.8455(1--.2))+.2a.88. Note that one tef,the effects

of a non-zero c is to reduce the-slope of P5 -(6) at all points along the theta-g

_continuum.

*Figure3
Response Characteristic Curve

#.

1

.
1

0 0 0 Q 0

1
0

c=20)

The Conce ati n"

Birnbaum (1968) has discussed the concept of -"information"- available in a-

test item. Birnbaures item inforMation function is_given-in Equation 2.--:

10 u ) -.[F--(0)]2/[p (3)-Q_(0)].g g.

In .this equation, u is-the item response variaZe. It is equal .to 1. when-a.

'keyed response is emitted and.is equal to,0 otherwise. The quantity Qg -(e) is

[2]



-Pg (8). -The numerator of Equation--2 is _he-squared first derivative

_.e., the squared slope) of P (e ) at.a fixed value of e. The denominator is
_

the,vatiance-of-the-item responsa variable u ,-_.at a -fixed -valueiof-6., The--

_quantity .T(0,u9)-is.-an index of the_ltem's ability todiscriminate peoPle whose

atenttrait.location equals 0 from people at nearby_latent trait'locations...

ln.general, a ateeper slope for Pg _(6) implies greater.discriminating,power._

was noted earlier, high values of -a -and low values-of c increase the slope--g -g

of P
g.
(6) and, hence, the information_available from an item. The variance.of

. 7 _

approaehes zero- at latent trait levelathat are deviant' from b and reaehesg . . g

its .maximum value at the-latent trait level-where P_(0)7.5. --Figure 4 shows a
. g

graph of .the function /(e,u_) in .the interval from 6=-3.00 .to +3.00.for.the item

shown- in Figure 2, which has a
g
71.0, b =0.0, and c

g
= 00. This graph was_generated

---. .

by evaluating 1(6,u ) at 61-points along the-theta continuum and rounding the
. g

obtained values to the nearest .02.

4;- _

e
e

=

Figure 4-
Information Curve for a Single Item cc,- b=0. 0, c7.00).

e

- 0 0 0 n 0 n 0 0 ta 0 0 Ce 0 0 .0 0 0 0 0 g 0 0 n to 0 0
3 e 3 3

r* EY 0 re

META

Figure 4 shows that an item provides maximum information in the region of
_heta coP_cinuum_where the item is located (i.e., near b_) and relatively



little information at levels far below or far above- 1,. This res t
g... .

tent With'intuiti-e impressions of item di. -iminating.power-.' If,..for example,

anability.testitemthatJ)-near .5 .

n which group t
t correctly and

among third graders) were administered to co_ ege students

Pg (e)Al.o), all the colleae students would probably answer _

no basis for discriminating among college students would exist. Note that

bg d attains a maximum

value f approximately .72.

igure 5.shows an information curve for an item having ag.85, b50.0, and

=.00. This curve, while still symmetric about bg, attains a lower maximum

(approxialately .52) and falls off more gradually on either side of b than the

curve in Figure 4. In fact, the item represented in Figure 5 provides slightly

more information than the item represented in Figure 4 in the interval below

0.171.40_and in the interval above 84.40. However, the gain in these regions
is slight compared to the information loss in the interval -1.40 <-6 <- 1.40.

Figure 6 shows an informat on curve for an item having a9=1-0, be0.0,

and c.20. This curve is not symmetric about bg. It attains its maximum

value of about .50 near 0-.16. The curve falls off more rapidly on the left

of 8-.16 than on the right. This reflects the fact that "chance" keyed res-

ponses are more prevalent among people located below bg than among people locat d

above b Such "lucky" responses contribute error to the estimation of latent
g-

trait status and reduce the amount of information available. Note that the

information curve in Figure 6 is lower than the curve in Figure 5. Introducing

the possibility of "lucky" keyed responses reduces the information available

from an item just as if it were an item with lower a but with c

§Iguential Estimation in an Adaitive Test

In order tp demonstrate the sequential
in an adaptive test, a cemputer program was

_
-a-person-whose-latent:trait-location is

estimation of latent trai_ statu
used to simulate the test responses

-Twenty- items having a1 0
_g

and a .20 were administered. The items' b values changed as a function of

responses generated during the simulated test. Table 1 summarizes the resul

of this 20-item test.

The first column in Table 1 contains item numbers in the 20-item series

.,20). The second column contains the b values of the items

administered. The difficulty of the first item was b1=0 because this value

approximates the mean latent trait score in any population of persons that is

sampled to parameterize a set of test items. (An exception to this may be

found in Wright and Panchapakesan's (1969) implementation of the Rasch model.

They scale the latent trait metric such that the mean of the b estimates is

18
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zero and the mean 8 eatimate among persons is, in general, other than zero.)
Following the first item, b values either increase or decrease (in accordance'

, g
ith a procedure to be outlined below) depending on whether-a keyed or non7keyed _

-.response was generated-. The:item response variable u is shown in thethird
column of Table 1.

Table. 1

Sequential-Es imationfof Latent Trai -Status
in a 20-Item. Adaptive Test-

Item
No.

1

2 1.00

3 0

4 .18

5 .82

6 1.25
7 .72
8 1.00
9 1.21
10 .93
11 1.10
12 .89

13 1.02
14 .85

15 .96

16 1.05
17 .92
18 1.00
19 .89

20 .96

0

SBAYES OBAYES
Res- Est. Est. Est. Est,

1

1

1

1

0

5.49 1.61 .38 .38

.36 -.85 .05 .04

. 67 .18 .32 .31

. 89 .82 .53 .54

1.16 1.25 .75 .78

. 87 .72 .57 .56

1.03 1.00 .74 .75
1.20 1.21 .89 .93

.99 .93 .74 .74 ...

1.12 1.10 .87 .89

. 95 .89 .73 .72

1.05 1.02 .84 .84

. 91 .85 .72 .70

.99 .96 .82 .80

1.07 1.05 .90 .90

-96 .92 .80 .78

1-03 1.00 -88 .87

.93 .89 .79 .76

. 99 .96 .86 .84

1.05 1.03 .92 .92

Likelihood-based-estimation. The last four columns of Table 1 contain four
different estimates of latent trait status that were calculated after each item= _ _

was administered. The fourth column of Table 1 contains maximum-likelihood
estimates of 0. A maximum-likelihood estimate of 0 corresponds eo the latent
trait location at which the observed pattern of item resPonses has the maximum
probability of occurrence'. The probability of a set of item responses, given some
fixed value of 0 and the item parameters, is obtained using the likelihood ftmetion
given in Equation 3.

1

Fl[p (0) 0 (0) [31

Thie equation assumes that the responses of a given person to different test ite7_
are independent of one another. The operator II indicates that a serialproduct is
to be taken over the test items administered-np to that pOint



After each item was administered, Equation 3 was evaluated at 101 equally
spaced 0 values in the interval from 0=-5.00 to 61=4-5.00 and the largest of the 101
likelihood values was identified. Then, a quadratic function was fitted to this
largest likelihood value and the two likelihoods adjacent to it. The-value of 0
corresponding to the maximum of the quadratic function was used a's the "MAXL"
estimate. Under most conditions, the estimate of 0 obtained in this manner is
a good approximation to the estimate that would be obtained if more sophisticated
methods of numerical analysis were used to search for a root of.the log-likelihood
function's first derivative.

The interval between 8=-5.00 and 0=A-5.00 will contain at least 96% of the 0
es imates in any group that is used to parameterize test items. This is because
latent trait item parameterization procedures scale the theta metric such that the
mean 0 estimate equals zero and the standard deviation among the estimates is 1.0
(again, the Rasch model provides an exception to this general result), and by
virtue of Tchebycheff's inequality which states that the proportion of cases which
fall more than S standard deviations from the mean cannot exceed (1/82) in any
distribution (Hays, 1973, p. 253). If the distribution of 0 estimates is peaked
and unimodal, virtually all of the 0 estimates will be between -5.00 and +5.00.

Figure 7
Relative Likelihood and Posterior Probability Curves After 1 Item

a
W

Figures 7-, 0,-and.9 'show graphs Of the data likelihood function...in the..

interval..from 0-3.00 to 0=+3.00.following the administratiOn of 1; 2, andH3 ite:
respectively.. yor.plotting..purpoSes,- the raw likelihoOd-values-were-expressed
relatiVe to the largestlikelihood. value in the interval 0-5.00-- to 0=475.00 and.
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then-.rounded to the,nearest .02.- As can-be seen in Equation-3, after- ona-item is-.
'administered the-likelihood function corresponds to. either P

/
(e) or Q

1
(e), dependi g--

. ...... - --
--

"ther-a.-.keyed_or non-keyed_response is-eMitted.(campare..Figure 7 and .Figure--:3) .1 :

Ille)4AXLeitimate.after_a.t.'correCe-artsWer toithe-first. item .,-Actually,.---
Sinee'---P-(0) is-strictly increasing-in- 0,- the.estimate -should be. 0=-1-00,.but a finite.

-.. ..

estimate is certainly bore reasonable.. .After an _"incorrectl! answer to the second
-..item,. with- b2=1.00i the peak. of -the-likelihood-curve occurs-near 0=-1-A6-(Figure.8).

-.-.After the-third item,the peak occurs near er-7.07.. (Figure- 9)...

"Weightedby-likelihoods": (WEL) estimates of latent trait status appear_inL
the fifth column of Table 1. The WBL estimates were obtained by taking a weigh ed
average of 101 equally spaced 0 values in theinterval from 0---5.00 to 0=-1-5.00.
The weights used were the data likelihoods at each 0 value. Thatis

WEL Est. = [EU, (
v )]/[E(L (e))]

0 v [41

where 0 takea on the values -5.00, -4,90, ..., +5.00. The WEL estima 2 is influ-
-.6riced by the entire set of 101 likelihood values instead of just the maximum of
:the likelihood function.

The MAXL and WEL estimates can differ considerably when only a few items have
been administered, as can be seen in Table 1. Inspection uf the relaLive likeli-
hood curve in Figure 8 shows why these two estimators differ after two items have
been administered. The WEL estimate is lower due to-the fact that the left tail
f the likelihood curve is high relative to the 4ght tail. Table 1 also shows

that the MAXI. and WEL estimators become more similar as the number of items admin-
istered increases. Since the WEL estimator has not been proposed previously,.
future research is planned to study its characteristics.

The procednre by which item b values were determined during the simulated

test now, can be outlined. The general rule followed was: Let the next item have a
difficulty level equal to the current value of the WEL estimator, except that in no
case shall the new b value be more than 1.00 units from the immediately preceding

b value. Thus, as can be seen in Table 1, item difficulties changed by 1.00
g

-until the third item had been administered and the WEL estimate-was .18. After
this, each item difficulty corresponded to the value of the WEL estimate followink-
the preceding item. In actual practice, an item is seldom found with b exactly

equal to the current estimate of latent trait status. In such cases, an item that
has b close to the desired value is selected for administration.

Bayesian estimation. Columns six and seven of Table I contain Bayesian
estimates of latent trait status. Given a specified form for the continuous distri-
bution of latent trait scores in a population (i.e., the prior probability density
function of theta), the item parameters for the items administered, and a Vector
-of item responses (u values), it is possible, in principle, to derive the

posterior probability density function of theta using the inverse probability rule
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of"-Bayes (Hays,1973,-p. 819). In practice, it- becomes-difficult-to obtain

analytic expressionS'.fbf. the posterior theta:distribution unles. the prior distrib:

ution.and-tho da.ta likelihood:function take on certain reatricted -fcrm$'. .To avoid

such ,difficulties, _the following approximate procedure can be uSed.

.

the continuous Prior density function Of theta is approximated with a-
-'disereto probability-distribution in which the probabilities are concentrated.--at

101- equally spaced points_along-the theta nonrinuum.- Thus, for example,. the,area_-

- under-the prior.density curve between 0=-',-05-. and 0+..05 is assigned to:rhe point .-

.,0=.00."This i6 dene for.0-5.00, +5.00= Areas- beyond.-0=-5.05 and

e=1-5A5 .4re -assigned to-the ppints.'0=-5.00 and 0=4-5.00,_respectivelY.. (These

.-oxtreme- tail areas should be trivially.small. If they are hoti the --region.-of

-the_thets continuUM in which- the procedure i-s applied can be shifted or-extended.).-

_Next, data likelihoods are generated-at-the same.101 values of 0- using.Equation 3.

The prior probabilities, f(0), arid the data likelihoods, v
(0), are.then-entered-

into into Equation 5-in order-to deterthinerhe posterior probability of each giVen-

,0-value..

P(elv) v(e) f ))/ [ ) f(e)]
0

[5]

The resulting 101 posterior probabilities provide a discrete approximation to

the continuous posterior distribution of theta. Finally, the mean of the discrete
PoSterior distribution is obtained with Equation 6 and this value is referred to
as the "SBAYES" (simplified Bayesian) estimate at that stage of the testing

procedure.

SBAYES Est. = r[F( IV) e]6-
[6]

SBAYES estimates of 0 appear in column six of Table 1. Figures 7, 8, and 9 show

three of the posterior probability distributions that were generated with the

BBAYES procedure when the prior distribution of latent trait scores was specified

to be a normal density function with zero mean and unit variance. The first three

SBAYES estimates in Table I are the means of these discrete distributions.

The "OBAYES Owen Bayesian) latent trait estimates that appear in column

seven of Table 1 were obtained using a procedure described by Owen (1975). While

Owen has described both a method for estimating latent trait status and a method

for selecting test items, only his estimation procedure was used here. Owen intro-

duced his procedure in the context of a three-parameter normal ogive latent trait

model. The close similarity of this model to the logistic model given in Equation 1

allows its application here.

The OBAYES procedure has two drawbacks. First, it is limited to prior dist i-

butions that follow a normal density function. The SBAYES procedure described

above can accept any type of prior distribution. Second, the OBAYES procedure is

order dependent. That is, if a set of items is administered and the item responses
are recorded, then the value of the OBAYES estimator will depend partly on the

order in whYch the items are processed by the scoring procedure. The OBAYES proce-
dure implicitly generates an updated prior distribution after each item is scored
and then combines this new prior distribution with the likelihood function for the



_sponse to the next item. This in itself would not make the MAYES procedure
order dependent but, in order to simplify the mathematics, Owen proceeded as if
each updated prior distribution could be described by a normal density function.
This approximation introduces a small amount of inaccuracy into the estimation_
process and makes the procedure order dependent. The SBAYES procedure does not
utilize this type of approximation and is not order dependent.

After adMinistering a single item, SBAYES and OBAYES estimates:generally ag ee
to'three decimal pieces when the initial prior distribution of! is:e normal

_ciertaitY function'. Since the'OBAYES estimate is optimal in this particular situa-
"tion,-!this level of agreement can be viewed asan indication-that verylittle
inaccuracy is introduced by the discrete approximations in_the !BANES procedure,
Whenmore than one item has been administered, or when the prior distribution

,

SPecified for the MYES procedure is non-normali the two-estimation methoda will
not necessarily agree.

Figure 10
Relative Likelihood and Posterior Probability Curves After 20 Ite s
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om arisons between Bayesian estimates. Figure 10 sho
the relative likelihood and posterior probability curves that resulted after 20
items had been administered. The likelihood curve peaks near 0-1.O5 and the
posterior probability distribution has a mean of .92 (see Table 1). Both the
likelihood curve and the posterior probability curve have shifted to the region of
the theta continuum near 01.00, and both curves have become more peaked. In fact
as test length (k) approaches infinity, both of these curves approach a vertical



line .e, a singlevalued distribution)
generating the item respOnses.-

_Note in Table-1 thatthe BaYesiarLestitates of Ovtend tostaycloser to 6= 00_-_

than:the:Jikelihood-based:estimates throughout the testing,process. This is

becauseBayesian estimators are "drawn toward7 the high density region of the prior

illistribution.This'is appropriate when one!s objective-isto minimizeaquared
-errors-Of estimation in the pOpulationepecified bythe prior distribution.
Unfortunately, foritests of moderate length, a Certain amount ofbiaaat_the tails

of-the-theta distribution must be accepted in order to achieve this minimization
(McBride & Weiss,: 1976).

:For moderate,k, the maximum-likelihood es imator-can also be biased. -However
for a giVen value of k and values ofU,deviant from thehigh density--region of-a
peaked Prior:distribution,the maximum-likelihood estimator wilend to be less:
biased than the Bayesian estimator. -=_The Bayesian eatimatorl.a:_bias:dan_berednced
by increasing-k es the estimateHof e deviates from the:high density:region of the,

prior distribution. This can:_be done readily4n an adaptive testing situation._

An interesting relationship exists between the likelihood-based estimators
and Bayesian estimators. If one applied the SBAYES estimation procedure and
specified that the prior distribution of theta was rectangular in the inter-
val 0=-5.05 to 8=-1-5.05, then the SBAYES estimate of 0, as determined by Equation
6, would be identical to the WBL estimator. Moreover, the MAXL estimate would
closely approximate the mode of the Bayesian posterior probability distribution.
Thus, all four types of latent trait estimators that have been presented here

can be viewed as Bayesian estimators. The MAXL estimator is a Bayesian modal
estimate of 0 when the implicit prior is restricted to a rectangular form, the

WBL estimator is a least-squares estimate of e when the implicit prior is
restricted to a rectangular form, and the OBAYES estimator is a least-squares
estimate of 0 when the explicit prior-is restricted to a normal form. The

SBAYES procedure is the only one of the four methods that does not restrict
the form of the prior distribution. By virtue of this flexibility, the SBAYES
estimation procedure appears to be the most widely applicable of the four
methods.

Total Test Information

Birnbaum (1668, p. 454) has defined the 'informatwn functwi o -est as:

0) = E[I(O,U )]. [71-
_

This function-is the sum of the_constituent item information functions ana _

defines the maximUm ahount of information that can be extracted fromva set
items.: The amount of_information actually extracted depends on how the-

items are scored. :

Information in the adaptive test. Figure 11 shows a graph of the test
information function for the 20 items administered in the simulated adaptive

test. It was obtained by evaluating Equation 7 at 61 equally spaced points
along the theta continuum in the interval from 0=-3.00 to 0=-F3.00. This curve

shows the maximum amount of information available from these items. The curve

peaks near 6=1.00, thus indicating that this set of-items provides maximum
discrimination among individuals whose latent trai!: locations fall near
0=1.00. The maximum value of the curve4s about 9.00.

2 6
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Figure 11
l:nformation Curve for 20-IteM Adaptive Test
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Information in two conventional tests. Figure 12 shows a graph of the test
information function for a set of 20 items having a -1.0, c =.20, and b values

equally spaced in the interval from -3.00 to +3.00 (i.e., b 4-3.00, -2.68, -2.37,

. 43.00). This would commonly be referred to as a " ectangular" distribution
of item difficulties. This test provides a fairly uniform level of information
across a broad range of the theta continuum. Unfortunately, the level of infor-
mation is relatively low. The curve attains its maximum value of about 3.20
in the interval -1.00 0 4 1.90.

Figure 13 shows a graph of the test information function for a set of 20
items having a =1.0, c =.20, and b =--0.0 for all items. This is a "perfectly

peaked" test. The shape of this information curve is rather similar to the
curve in Figure 11, but it is shifted to the left. The curve in Figure 13
attains its maximum value of 9.80 near 0..16. At 0=1.00, the value of this
information curve is about 5.80.

Fligures 12 and 13 represent two rather idealized non-adaptive tests. Both
of these tests deliver less information at 0=1.00 than the items selected by the
adaptive testing procedure. What is the implication of this result? If, for
some practical purpose, it were necessary to order a testee with 041.00 relative
to other individuals falling nt nearby 0 values, fewer errors would be made if
0 estimates derived from the adaptive test's items were used than if estimates
derived from either codventional test were used.
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Summary

Several procedures for estimating latent trait status have been presented.
It has also-been suggested that adaptive testing procedures often can provide
more accurate estimates of latent trait status than conventional tests. Though
there.is no necessary connection between latent trait theory and adaptive testing,
there is a strong natural impetus toward their joint appr.cation. .Latent trait
-theory provides -adaptive testing with a coherent theoretical foundation. It is a.-

guide to procedures for designing and scoring adaptive tests. On the other
==.11andi-adaptive-testing offers the opportunity.to- take--maximum adVantage pf the

potentialities of latent trait theory. At this point in time, both a new type
of_test theory and a new _type of testing technology are available. . Their joint .

effect might- pOssibly exceed-the Sum of the two parts

2 9



ADAPT I VE TESTI NG AND THE PROBLEM OF CLASS I F I CAT I ON

C . DAV I D VALE
University of Minnesota

Two basic goals in the use of ability tests are measurement and classification.

When a test is used for measurement, the objective is to accurately determine where a

testee's ability lies on the latent ability continuum. When-a test is used for class-

ification, the objective is to determine on which side of a cutting score (or between

which cutting scores) a testee's ability lies. Such classification decisions should

be made so as to minimize the errors of misclassification. Once a classification is

made, there is no necessity for a more precise determination of an individual's

ability level.

This paper is concerned with the classification of abilities into discrete --

.categories. The general goals of classification will be explicated and alterriative-

means that may practically be used to achieve these goals will be_presented and

compared using monte cario computer simulations.

The Classificat on Problem

Classification Errors nd Utilit Functions

The goal of this classification is to determine, with a minimal probability

being in error,.on which side of a cutting acore -or between which of several cutting

scores, a testee's ability falls.: There are two.kinds of -error probabilitiee that

Making-these-c-lassifications-.---Ond-is-the-conditional_probabilitY _-

of being_ in error (i,e., for a single,testee or at.a specific ability level); the

other-is the expected or Unconditional probability of being in error actoss'a groupof

testees The conditional probability is a function of the test, the testee's abilitY,

level and the placement of the cutting score (for the moment, _limiting the discussion

to one cutting score). For a=given test of fixed length,-the probability of-.making:an

error of classification for a testee is usually high if the.testee's ability level (01

is near a cutting score (00), and lower if the abilitY level is distant from the Cut-'

ting score. This conditional probabili y of misclassification (P(M(0)] is described

by a function like that shown in Figure 14.

The unconditional probability of misclassification for a group _of testees

(P (A)], is a function of theCenditional reliability .function and the distribution

of abilities within the gronp-under consideration. For a large group with

abilities-distributed N(0,1),-this probability is given by Equation 8.

P(M) = P(MIO) dO
*OD

where OM = 42ff exp(O
_

[81

Inpractical situations may be desirable to minimize the quantitY in

Equa-iom 8. This unconditional probability is a scalar quantity and,as such can be

This research is supported by contractli000.14-76-070243 NR150-382-, with the

Pereonnel and Training Research Programs, Office of Naval Research.=
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minimized. A function such as the conditional probability function can only be
minimized at a single point and this is typically of little practical value
because theoretically, assuming a continuous distribution of ability, the proba-
bility of anyone havir- an ability at that point is zero.

Figure 14
A Conditional Probability of Misclass ication Curve

.8

P (rile)

.2

-1.0 1.0 1.5

0
--A more'viable approach to making classification decisions is one--that will,

over-a group of individuals, maximize some form of utility such-as the,quality of
performance extracted from the work force. -The unconditional-prObability of
-misclassification reflects errors of classificatibn into categories along a_latent
continuum and-it may ba errors of-classification alongen observable success-failure,--.
continuum- that are of_interest. -This posSibilitTlvimportant because-two.indi-
viduals, One with an ability level slightly above a cutting score on the latent- -_-
continuum and.the other-with ability.slightly-below-the.cutting point-,,probably

--

"have a trivial difference between their probabilities.of anecess.on a jab. If
.both are classified-above-the-cutting-score, however,---one.will be eonsidered a
"'hit" and-the other a ."misa". when classification Occurs-on the .latent continuum-.
In order to assesa:the- Practical value. (i.e., post effectiveness) to an.organiza
tion of an adaptive teating strategy, utility functions-of 0 for each deciaion

.

__must be specified. As an. example Of such utility functions, conaider the followinvr-

31



For three classifications--low, middle, and high--three utility functions

might be:

.0 = 5
low

-medium
- 4)(3.0(0+0.7))

u
high

= 2.00(3.0(0-0.7)))

where (15(t)dt

[9 ]

[10]

A practical situation in which these utility functions might arise -is as

follows: There are three jobs requiring an.ability, 0. One is so easy that almost

-anyone can do it but when performed satisfactorily, it is only .5-utility units .of

UT I L I TY

2

Figure 15
Conditional Utilities for each of Three Decisions

HIGH

-1, 5
1. 5

-value.to. the organization. A second job is fairly easy and 50% of people with. 0

above -.7 ean perform it satisfactorily. --Differences in abilityjlear .7- make'

greater changes in the probability of sncoessthan.do differences.aronnd, say,

3 2
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0=0.0. . Ninety-eight percent of people with 6 above 0.0 will be successful on the
job and additional increments in 0 are of little importance in predicting job
success. Success in this job is worth one unit of value. A third job requires
higher e to be successful, but is worth two .units of value when performed satis-
factorily. The utility functions definP4 by Equations 8, 9, -and 10 result in the
three-utility curves presented in Figure 15. As can be seen, there is a clear
reason for assigning high 0 people to the third job and-lower e people to the
-second and first jobs..

Test Design for Classification Problems

Although it may be possible to determine that quantity (e.g., probability
of misclassification or expected utility) which is to he minimized or maximized,
it is difficult to design a test explicitly for that purpose. The goal of optimal
test design can be approached practically via one of several approximation stra-
tegies. Two general types of testing strategies that have been researched in the
ability measurement domain are the conventional testing strategy and the adaptive
testing strategy. In the former, test items are selected to best measure the
abilities of members of a group, and the same test is given to everyone. In the
latter, a test is tailored, during the testing process, to oach individual's level
ability, and a different test may be given to each person. This permits higher
measurement precision over most of the ability continuum,than that attained with
a conventional test.

In the remainder of this paper, two forms of a conventional test and one form
of an adaptive test will be compared. The conventional tests will be a unimodally
peaked-teSt-With all:item difficulties of one value and a bimodally peaked test
(i.e., the simplest form of a multimodally peaked test) with difficulties of two
values. As will be discussed later, these are, respectively, attempts to put
items at a level where they best measure most people or at a level where people
need to be measured best. The adaptive test to be compared will be Owen's (1975)
Bayesian strategy. This strategy starts with some estimate of an individual's
ability, chooses an appropriate item, administers the item, and forms a new
estimate of the individual's ability. Using this estimate, it chooses the next
item and continues this procedure until the end of the test.

These strategies will be compared alongthe criteria previously discussed.
Since utility functions are peculiar to an organization, the majority of the
comparisons will be in terms of_ misclassification probabilities. The utility _

functions presented above will; however, be-discussed as examples in some later
comparisons.

Simulation Procedures

The comparisons .presentad-in this paper assume that classification decisions
are made in the following way:

1) A testing.strategy selects a subset of items from a large-pool of items;

These items are then administered to a testee, and from his responses-
to those-items-an estimate-of-ability level is obtained;
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The testee is then classified into that category which:

) in the case where probability of misclassification is of interest,
is the one in which his estimated ability falls, or

b) in the case where utility maximization -is of interest, is the one
which for his estimated ability predicts the highest utility.

To simplify the analyses and interpretations, availability of an_infinitely
--largeitem pool was assumed,- This pool contained items of all difficulties with
their discriminating powers fixed at a constant level. It was further assumed that
these items could not be correctly answered by guessing. These assumptions reduced
the problem of item selection to determining the difficulty of the next item to be
administered in the adaptive test. Finally, to make a determination:of the
unconditional probability of misclassification possible, Ability was assumed
distributed N(0,1).

Owen's (1975) Bayesian testing procedure requires a pridr estimate of a
testee's ability to administer and score a test. For all data presented in this
paper, a fixed prior ability distribution which was N(0,1) was used for all testees.
OWen's-seoring procedure was used to score the conventional tests and again a

: prior was used.

Generation of Misclassification Probabilities and Ex eeted Utilities

..Conditional probability ofmisciassification was calculated for each of 30

values of-0-eqnally spactdbetWeen-017-45-aad-8=1745-;'-the-simulation-procedure- --

followed that described by McBride and Weiss (1978) or Vale and Weiss (1975).
Ten-item "tests" were administered to 200 "testeek" at each of 30 points. the means

and standard deviations of the ability estimates were calculated at each point, a
normal distribution with these parameters was determined, and the proportion of

that distribution falling outside the correct cutting score interval was taken as
the probabilitY of misclassification at that level of ability. These probabilities
were then visually fitted into the smooth curves shown in the figures. _

To determine the unconditional probability of misclassification, ten-item
"tests" were administered to 2,000 "testees" with ability levels randomly sampled
from a N(0,1) population of ability levels (the same sample of 2000 ability levels
was used for all comparisons). The predicted category for individuals was the

score interval in which their ability estimate fell. The true category was the
interval in which their true ability fell. An individual was considered misclass-
ified if the predicted category was not the same as the true category. The number

of misclassified individuals divided by 2000 was taken as the unconditional proba-
bility of misclassification.

Expected utility was determined by generating 2000 ability estimates following
the same Procedures used in the caleulation of expected probability of misclassifi-
:cation. The optimal decision to makt for an individual was taken as the decision
corresponding to the utility function with the highest value at the estimated level

of ability. The actual utility was the value of the utility function corresponding
to the decision made, evaluated at the "testee's" true level of ability. The

3 4
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expected utility was simply the mean of these 2000 actual utility values. These
values are reported only in comparisons of tests in decisions involving more than
one cutting score.

Results

A_LP11-_C Cutting_LLT

The simplest categorization situation to investigate is where there is one
cutting score placed in the middle of the ability distribution at 00.0. The best

conventional test for making this decision is one with all of its items peaked at
b=0.0. Figure 16 shows curves representing standard error of measurement functions

S EM 1

Figure 16
Standard-Error of Measurement Curves for Three Tests

CONVENT I ONAL

IDEAL ADAPT I VE

- - - PRACT I CAL ADAPT I VE

-1.5 -LO 0 1.0

. _

(the reciprocal square root of the information functions) for three en-item teSts
with d=2..0; a peaked conventional test with all items having.b=0.0i- an ideal.-

' adaptive test with all items having b.0, and a practical adaptive test with items
_having diffitulties at the estimated ability level at_each stage: .The tonventional..
--test provides-a low error level at .0=0.0, -but higher error levels distant from that
point. The ideal adaptive test provides _the same low level-of error at .all ability
levels but is unrealistic because in order to implement it, it is necessary to know



0

a testee's ability level before .the test is-administered. A practical adaptive test

provides I standard error function lower-than that of the conventional test at abil-

ity levels distant from e.o.o, but relatively higher near 0=0.0.

Assuming errors of measurement at a level of e are distributed No, S the

probability of misclassifying an individual is given by Equation 12,

le -el

SEN
c

- 1 - I (0) ( -02] [12]

where ec
is the cutting score; and I( is the test information

function evalua ed at e.

It can be shown from Ecuation 12 that when 0 is fixed, P(Mle) is a monotonic-

increasing_ unction of the standard error of measurement. Thus, the ordering of the.-

.8

.6

.2

,Figure 17
Conditional Probability of Misclassificat on, ct--1.0

of

CONVENTIDNAL(.124)

ADAPT I vE (.122)

3 6
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three-test ng strategies on P(M10) is the same as their ordering on cond tional
standard errors of measurement at any level of 0. It can then be seen from these
curves that a practical adaptive test can provide a lower expected probability of
misclassification if it approximates the ideal adaptive test. How well a given
-adaptive- testing strategy approximates the ideal is, or course, an- empirical
question.

Figure 17 presents the P(M10)_curveslor a-ten-item conventional test, with-
-difficulties-peaked at-b.--0.0, and a ten-item Bayeaian adaptive test, both with item
discrimination'fixed-at a=1.0 and both-sCored by OWen's method; The eUrvea appear
very similar, being high near the cutting point -(indiCating a high probability of
making. an -error) and low distant from the cutting point. The-conventional test
allows somewhat better decisions for values of 0 nearer to the cutting score. The
differences in the conditional probability of misclassification function yield a
very small difference between unconditional probability of misclassification-values
for the.two.strategies, which were .120 for the.conventional-test.and .122 for the

:Bayesian test. (Unconditional probabilities are shown in parentheses beside the-
legend in Figure 17 and Successive figures.)

Figure 18
Conditional Probability of Misclassification, a2.0

Figure 18 shows P(MIO) curves for the same strategies with item discriminina7
tions_of a=2,0. The same general results were obtained, except that the differences

3 7
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at values of 0 distant from the cutting score were more pronounced, and the range
of superiority of the conventional test was smaller. Due to the N(0,1) shape of
the ability distribution, however, small differences near the cutting point are as
important in the determination of the expected probability of misclassification as
large differences distant from the cutting point. Difference in expected probabil-

ity was still very low (.076 versus .075).

Figure 19
Conditional Probability'of Misclassification, a3.0

.8

CONVENT I oNAL( .052)

AoAPT vE( .054)

Figure 19 shows curves for tests with high .item (cm3.0). Again,

-.similar results-were obtained and the difference in'expected probability of .mis-
-classification was still small (.052 versus .054).

These results suggesr that an-adaptive test makes classification:Aecisions
about as-well as a conventional test In this simple case where a conventional test,
should perform better in comparison .to a adaptive test. .HoweVer,- it .should'be

-noted that the .conventional test was supor to-the adaptive test in an increas-
ingly narrower range of 0 with increasing i:em discriminations. .

More than_One Cuttin Score

.DeSign of conventional:tests is ,:omplicated,--.however, whom-the cutting

scores .deviate from the center .of th3.abilAy distribution. A given therease in_
-information, Which corresponds to n given decrease'instandard error_ ha-s fts
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greatest effect on the conditional probability of misclassification at ability
levels near a cutting score. This suggests that items should be peaked at .the
cutting scores.-- But a given reduction in conditional probability of misclaesifica-
tion has its greatest effect on the expected probability of misclassification at
levels of ability where-most of the people are located. This, assuming;On4i(0,l),

--suggests peaking the item difficulties at /30.0.- As a result, when the'.cutting
score is at some value of e other than 0.0, the two suggestions are in conflict.
_.The optimal point(s) to peak the difficulties will be some function of the location
of the cutting scores, the discriminating powers of the items, and the underlying

-.ability distribution. Determititafielf-of such an optimal design of a conventional--
test_is beyond the scope of this paper. However, comparisons-of Some standard
-conventional test designs with an adaptive test will he informative.

Figure 20
Condit onal Probability of Misclassification, a=1.0

Assume that there are two cutting scores, one at Eic .7 and the other at 0 .7, :

and.that all errors of misclassification are equivalent in terms of importance.
.0ne classical approach to designing a conventional test -involves peaking half of .

the-items at each of the two-cutting scores, where the fine diutinctions need to._be
ma-de;such a test can be referred to as a bimodal conventional test. Another
-approach is to peak all-the items at b=,0.0; this.test can be called a unimodal
conventional test.
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Figures 20 through 22 present the conditional probabilities of misclassifica-

tion for each of the unimodal and bimodal conventional tests, And the Bayesian

adaptive.test, At three levels of item discrimination. Figure 20 shows the curves

for the case when a=1.0. There is little suggestion in Figure 20 as to which

strategy is better. But an interesting discontinuity is observed for estimates

from all testing Strategies at the,cut points. This characteristic is due to the

fact that, for finite-length tests (which inelude 10-item tests like those used

here), the Owen's Bayesian score is biased (i.e., the expected value of the score

_at a given level Of_Vis not 0).. _Specifically,_ in this case, the Bayesian score is

biased in the vicinity of the cutting scores toward the center of the-PepUlation---

,ability distribution at 8=0.0. This causes more testees to be classified into the

middle interval than would be by an unbiased score. The effect is that fewer errors

of classification are made for ability levels in the middle interval And more are

made for individuals in the two extreme intervals. Comparing expected probabilities

of misclassification, the adaptive test yields the lowest probability (.197),and:.

the bimodal conventional, the highest (.224).

P (MI )

Figure 21
Conditional Probability of Misclassification, a=2.0

It is difficult to say in this case, however, whether the adaptive test -

-provides a lower expected probability of misclassification because it makes better

decisions of because it is conservative. The conservatism results,in more:clasSifi-

4 0



cations errors in the extreme categories, and fewer
levels where more individuals' ability levels lie.

When ct=2.0 (Figure 21), the unimodal conventional test shows pronounced
discontinuity suggesting that scores are too extreme, near; the.cutting points. The
adaptive test provides the smallest conditional probabilities of misclassification
over most of the ability range. It makes a few more errors in the extreme intervals
than does the unimodal conventional test, but the unimodal test's superiority is
offset-by-extreme error rates in the middle interval. Initerms of expected-proba-
bilities of misclassification, the adaptive test is again superiol; [P(M).110].
With-an expected probability of misclassification of .126, the bimodal conventional
test, its nearest competitor, is expected to make 1.15 tiMes as many errors of
classification.

Figure 22
Condi ional Probability of Misclassification, ra.. .0-

UNDtODAL

ADAPT I VE

When c:L3.0, as shown in Figure 22, the same general resu,cs were obtained.
The expected probability of misclassification for the bimodal conventional test
(.085) was 1.18 times as large as that of the Bayesian adaptive test (.072). It

should be noted, however, that items this discriminating are rare in practice.



Tt.is 'tempting to take these values at this paint and say that adaptive

testing can greatly reduce overall errors of classification by uP to 15 percent

in a realistic classification situation. But, as.was discussed earlier, the

errors of classification presented.thus far are based on a:latent ability contin-

uum rather than an-observable success-failure continuum. Using the utility

functions presented earlier and choosing,the decision yielding the highest expected

utility for the estimate of ability,- Average utilities-for-the bimodal-conventional

test -(the best-conventional test in previous Comparisons) and the Bayesian-test

were '.808 and .820, respectively, using the items of (21.0. For the same,sample

of abilities and a2 0, the utilities were .831 and .849.- With-a=3.0, the values

were .855 and .858. Whether these differences are_practically significant depeds

on what these units of utility mean in a particular-context. But-such utilities

(of which these are only an example) must ultimately be considered in determining-

the comparative values of conventional versus adaptive testing for classification

--decisions.

Conclusions

These results sUggest that adaptive testing May offer important' advantage*

atkanization involved'in making'classification-(e.gselettion'znUplace--
Ment) decisions. SpecificallY, the:dateehewthat while a conventional test

_--classifies as well a*,an Adaptive test when there isonecUtting *core at theH.,

middle of the ability distribution,-an adaptive test will:provide better,'categor-

:izAtion when-there is more,thaninneThe_determination'of-the cost-:effeCtivenesa

of adaptive testing in an organization, however, will depend on the utility

functions specified by the organization.



CATIONS -OF TEM-CHARACTERISTIC CURVE.-THEORY-
HTO THE. PROBLEM-OF:TEST BIAS

STEVEN M. PINE
University of Minnesota

One of the most challenging and important issues facing test:developers and,
-:-,-:users today is whether or not:ability tests are biased against'minority groups, and-]:
if:sc, how test bias can be reduced. In recent years there has been considerable
research-.activity concerned with-the identification and reductionkif bias-and
:unfairness in Various settings. For the most part, these efforts have been unsuc7
ceSsful; -One:possible reason fot this lack_of progressjs the fact that almost
all the research on test bias a d fairness-has been based On:Claseical test theory.

In hisjtecent review Of test theory, Lumsden (1970 refers to the_ttue scorer
_model of claasical test theory asithe-"Model-T Theory" and suggests that claisical
test theory'reflects a very restricted range of test.behavior. Fotexample,class7:-
ical test theoryemphasizes-grouporiented measurement; but groUP-oriented messure

-ment is likely to be Unproductive if tests are to be relevant to individuals of
varied backgrounds.: Coniequently', it is nnlikely that this approach will be useful
in resolving-,problemsas'complex as those involved in-test biaa.

-Bias in testing is Caused by the failure nf tests to take into account a
'number of itportant_variablesin their construction, administration,-and scoring
(Angoff, 1975; Green, 1976;:Pine "6, Weiss, 1976; Settler, _1974). These variables
inelude individual differences in motivation, ethnic background And telated
variables

Tests based on classical test theory may ignore certain types of individual
differences because they are constructed using item statistics which can be expected
to vary between population subgroups, and because they require all testees to take
identical test items. If progress is to be made in this critical research area, a
test theory that permits the testing process to be adapted or tailored to individ-
ualS is needed. This capability now exists in the form of item characteristic
curve theory, coupled with the technology of adaptive test administration.

-,An I e Res onse Model of Bias

Item characteristic curve theory. Recently, anew test theory called "item
characteristir curve (or latent trait) theory," specifically designed for the
measurement oi individuals, has emerged. Item characteristic curve theory (Lord &
Novick, 1968) is based on the idea that the responses which individuals make to a
given ability test item are determined by their ability on one or more underlying
dimensions (latent traits), and the parameters of the test items, i.e.., their
difficulty, discriminating power, and probability of being guessed correctly by
chance. This idea is expressed mathematically by the Item Characteristic Curve (ICC
mhich gives the probability that a testee with a given ability level on the
underlying dimension will correctly answer a given test item.

_

This:_research is supported by contract NO0014-76-C-0244, NR No. 150-38
ersonneland TrainingiResearch.Frograma,-,Office ofliaval-_:RASee Ch.



The ICC,curves and their associated item parameters are the building blocks

of this new test theory. Once item parameters are determined for each test item;

they can be used to describe how individuals at a given ability level are likely

to perform on each irem. ICC theory allows probabilistic statements to be made
about the Ability level of testees regardless of their subgroup membership or 'which

subset of items they have been administered. This proOerty provides a means for

creating tests which can be adapted to individual testees since it is no longer

necessary_that identical items be administered to every testee, thus making ICC

theory.potentially-valuable for developing less biased tests. Furthermore, the

-bias-reducing potential of ICC theory is not tied to its use with any particular
testing strategy, although the greatest benefits can be expected when it is used

in conjunction with adaptive testing (Pine & Weiss, 1977; -Weiss, 1974).

Definition of item bias. A test item can be considered to be unbiased if a

Individuals having the same underlying ability level have an equal probability o
correctly answering the item, regardless of their subgroup membership.

As indicated, the ICC gives the probability of correctly answering an item

a given ability level. Therefore, the above definition of an unbiased item is
equivalent to requiring that a test item have the same ICC for all subgroups.

Since an ICC is described by its difficulty, discrimination and guessing parameters,_

this is also equivalent to requiring that the values of these parameters be invar-

iant within a linear transformation from subgroup to= subgroup. The linear trans-

-formation assumption is necessary to accountfor the fact that subgroups in which

the parameters are calculated may have ability distributions with different means

and variances._

Applying=the Model to Detect Test Bias

-The-following discussion is restricted to tests that consist entirely of:

liomogeneeus items. Homogeneity implies that the items measure essentially ope-,

dimension: This definition_allows for:thepossibilitythatallomogeneoual
'set of:itensmay measure one:or more extraneous dimensions in:addition tothe single

primary dimension which the test is purpertedto measure. Tor instance, test itema-:

Antended to:measure vocabulary ability may inadvertently also measure:Seydral

Cultural Variables. Although the present-discussion is:restricted to homogeneous::
Items, the concepts developed here could in principle be extended to the multidi7

menslonal--case.

It is_also assumed here that test itemS fit an underlying response model for,

all subgroups. This model is the function which specifies:the shape:of the ICC

curve and indicates, at each ability level, the probability that an individual:

at Chat level will correctly answer the administered item. This constraint is not: :

as limiting as it may appear to be, ainceene can empirically test the fit of the:.

item data to the assumed response model:and eliminate these items that do net fit::

priot to carrying out any of-the analysesdescribed here.

Given the above restrictions,- thejirst step in investigat ng whether a set

-of items iSbiased is to screen out those items which do not fit the underlying-,

response model. Most-of the existing computer programs for estimating-dtem-response



_.parameters Urry, 19748; W ngeksky &:Lord,-1973)-re ect-items:that:do_not
fitthe assumed model as a matterofcourse.:-Therefore, with these programs,it:
dan:be:essumed,thaf all items for which parameter values are available'fit the.'
response model.

Ihe next step isto demonstrate that:these items are-homogeneous,J.e,:the
eame trait Accounts for the major portion of underlying variance in:each subgroup
inter-itemcorrelation matrix. If they are,homogeneous Lord and:Novick':(1968,'
Ppi-_359360) have shown that theirltem-response parameters willbe-invariant
'(within a linear,transformation) across subgroups.- :According td the defihiti6na
given earlierii:invariant test items areAmbiased.-.-:Therefore, a_sufficient,Method
fordemonstrating that a set of test items is unbiased is first tojactoranalyze--
the matrix'of inter7item correlation coefficients'within:each of:two-Atmore sub.7
groups and:demonstrate that the same single:factor accounts forthe majotTortion
of variance 4n each subgroup'smatrix, and then shoig:that this is the factor that
the test was intended to measure.

Figure 23
Item Bias Shown as a Perpendicular D_stance

in a Scatter Plot of Subgroup Item Difficulties

em Difficulty Parameters
Majority Bubgroup-

'A second approach for determining whether a set of test_items is:biased is
also implicit in:_the work ofiLord and:Novick., If the:same:dimension underlies aset:
7ef:test items for a population of testees (which would,therefore, make the4tems,
:unbiased), the -item parameterslor-any two subgroups it the:pOpula ien should have-t

4 5



a linear relationship (Lord & Novick, 1968, p. 380). This condition can be tested
directly by plotting the discrimination (a), difficulty (b), or guessing (o) para-

meters of a set of items derived from one subgroup against those from another and

and testing for linearity. A plot of this type, based on the item response diffi-
culty parameters for a 10-item test, is shown in Figure 23. If factor analysis
indicates that a single dimension underlies a set of items, the presence of a linear

relation between subgroups for ICC parameters is both a necessary and sufficient
demonstration that these items are unbiased.

In Figure 23, the perpendicular distance between each item and the best
fitting line through all the points can be interpreted as the degree of item bias;
the greater the distance, the more item bias is implied. By comparing the relative
item parameter values between subgroups, it is possible to identify the specific

test itens which contribute the most to a non-linear relationship between subgroup

parameters. In the language of analysis of variance, this noirlinear relationship

would be an itemby-group interaction. Plots similar to Figure 23 and related
interpretations could also be made for item discrimination and guessiiii-PariMeters.

The degree-of-item-bias index illustrated in,Figure 23 has several applica-

tions. It could be used to screen out the most biased itens during the construc-
tion of a conventional test. Or, it could be used within an adaptive testing
framework as an additional criterion for item selection.

The assessment of.item bias by plotting a_scatter diagram of item parameters-

.,for,one subgroupagainstanother is not in itself new... 'A veryi,similarmethod has
.been:useclat,Educational_Testing Service (ETS),for several-yeara., The essential -
difference between,.the4resent method and:the EMmethed is that ETS,Usea item'

parameteri based on-classidal test theory It dan beshown_(Lord & Novick:, 1968,
p.:301):thattlessical_item_parameterswill generally_not be linearly related across:7.

subgroups of a' population'. YThis:Judans that tiWtestlor biasusing classical

-patametersdan lead-to an artifactual detection-Of'biaa. Furthermore, the::.diffi-

-culty::perameter of classicaltest theoris..confeunded:by level:T:0f discrimination
and gUeasingeffetts(Urry, 1974b):.-. Thus,-ifan:itenvis relatively more difficult

:ifor-one subgroup.then anotheri-it is not clear whethet_this is:because the item
-:_varies:OnlY:ondifficulty;-:or whether thisresult:is caused,by differences in

f.discrimination and/or guessing. The item,parameters from ICC thebry,on thelOther__

hand,, provide relativelyunconfounded measures of difficulty;:discrimination, and

guessing. Thprefore.,:by plotting these parameters on separate graphs, itis
-posSible to determine exactly why:an item.is biased. For instance,- it may be,that _

-'agiven item is:biased'not bedause_it_is:relatiVely:more_difficult for a minority:

subgroup; but because that subgroUp,is less effective:at,guessing..This
detailed analysis:isi.mpossible Using:classical item parameters.:

Another:interesting consideration in:rhe:use of ICC-versus classical item
parametetsAs the fact that if classical_item parameters arelinearIT:related among

'subgroups, thereby implying an unbiased-Settlitems,-:ICCparateters will of

necessity not:be linearly related and will, therefore, implythe presence of bias

in:these_-same items ThIs factwould seem to have PartidUlarreleVatee for the
work_Ofresearchers Such as Jensen (1975) who' have concluded.that tests are gener

_ .

ellY notbiased against,'Biacksbaseionithe-presence of a:linear:relationship
between'classical item paraMetera correleted_dcross Bleck andWhite subgroups.

46
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:.:Arlexample.with real data. To demonstrate how these analyses:might be used
ancl-interpreted, they have been applied to the difficulty parameter:from 75
Multiplechoice vocabulary items administered in a racially.ffiiked high sdhool in
Minneapolis. The sample sizes in this study were not OptiMal (58 Blacks,
168 Whites); but the data provide a good example of the technique.

First the homogeneity assumption was tested_by factor analyzing the inter-
item correlation matrices. A subset of 45 items was chosen and two tetrachoric
intercorrelation_matrices were calculated, one for the Black and ,one for the White
SUbiaMPlea. The matrices Wer-e then factor analyzed using the principal axis mdthod;
-communalities were estimated using the highest off-diagonal entry for eadh item,
and-the factor solution was iterated until the estimated communalities stabilized.

_gight factors were extracted from each matrix, in each case accounting for-all of
the estimated common variance. The eigenvalues from the two factor analyses are
shown in Table 2.

Eigenvaluesjrom Factor Analyses:of Blackand White
Subgroup Item-Intercorrelation Matrices

Percent of
Common

Subgroup Factorgigenvalne -,Variance
Whites

Cumulative
Percent

19.26
2.32

.1.58
1.37

-1.18

64.8
.7.8

5.3

-3.6_-

47.9
10.9
8.8
7.7

6.9
6.6
6.0
5.1

64.8
72.7
78.3
83.7
88.3
92.4
96.4

100.0

47.9
58.7
67.5
75.3
82.2
88.8

94-9
100.0

-For both-.the Black and the White data, the first eigenvalue was very large in
;comparison to the remaining-,eigenvalues, providing evidence supportive of the uni-
dimensionality assumption. Furthermore, the items appear to be measuring the same
dimension in both subgroups, since the coefficient of congruence (Rummel, 1970,
p. 461) calculated between the 45 corresponding loadings for Factor 1 in the two
subgroups was .97. It also seems reasonable to conclude, based on the pattern of
loadings, that Factor 1 is mdasuring vocabulary ability.



The results of a further analysis oi bias for these 75A.tems are shownAh
Figure 24 : The scatter plot in Figure 24.is based on the estimated ICC-difficulty:
parameter values calculated separately for the White ahd Black Subsamples-

Figure 24
Graphical Analysis of the Biasiin775. Multiple

Vocabulary Items

0

Difffcu1tje s o

The data plotted in Figure 24 show that almost all of the items are relatively

more difficult for Blacks than for Whites. This is indicated by the-fact_tharrhe,-;
dots representing the items tend to f1 below the diagonal line. If the items were::_

equally difficult for Blacks and Whites,.rthe data points would fall on this line

Howeverithe mere fact:that the items are relatively moredifficult for:Bihcks

cannot necessarily be taken as an indication of bias, since bias in the test:items

S-asseSsed by evaluating the degree of linearity in the plot. The Pearson product



moment correlation coefficient betvieen the item parameter values for Blacks and
Whites is r=.86, indicating a high degree of linear relationship. This is consis-
tent with the results of the factor analysis and suggests that these vocabulary-1=
items, when taken as a group, are essentially unbiased. It is possible, however,
that even though the items taken as a group are unbiased, one or more of the items
taken individually might be biased. For instance, in these data, several items
appear to have larger departures from the dotted line fitted through the item points
in Figure 24. Of course, it is possible that these large departures may be due only

-to sampling error. To eliminate possible misinterpretations that would occur if
this were the case, a technique is under development to establish confidenceJimits
or the best fitting line. This techni'que will permit the identification, with

some known degree of confidence, of biased items.

:43alated Develo ments

.jhe material presentedhere is only one example of how item characteristic
curve,.theory:ean potentially be applied to the problem of test bias. Tt ig only
a small part-of the regearch related to test bias and un airness currently underway
at the University of-Minnesota.

'Additional developmentslinvolve-a method of correcting for bias in the.ICC,
.tem..paramators...:VerY:briefly,_:this.mthod_consistaf determining item,parameter:

---estimates that.willAapend. Only-On the ektent tO Which an item loads-on,thejactor-
snpposed.tobe.measuring. In .essence,this_ approach is-based on the notion..

that,to obtain ,unbiasedtest items, all that is nOcessary-.is to-know.how eachTtest
-item-behavea (i.e...,..what-its parameters are). in..the various- subgroupe.whichcompriSe
our test -population.- Using the.method now-under development;-bias:in-an-item'ean
j'e...eliminated by correcting its,.parameter values-to account-for ,the degree-ofhias.

resultingability estimates-are based-not on,the total- number-of.
....'icorrect answers, but on seme function_ of the corrected item parimeter_.values-,7 the.

. .

!:-resultinvability -estimates will be-unbiased.

Thig method:for correcting item bias is-.now: beingstudiecFby-computer.simu--
lation techniques.- in:this way, the bias7corrected item-parametsr'"valnes- can'-be:1--
directly. .compared'to-the-.known, true item parameter.values. If_the results-.ofH_
thete-..stUdies:Are favorablei-. the technique.will-permitthereduction or elimination

:y.ofthe: affects of:item-biaS-on ability teir -scores-.

Does this mean that we can how write the final chapter on test unfairness?
Not at all! First, some may disagree that bias has been eliminated as long as
differences exist in the mean test scores of various subgroups. Secondly, bias
in the estimation of item parameters is only one source of possible unfairness in
the testing process. A rest can be unfair for a myriad of other reasons, including

-those attributable to elements in the testing environment, and to the psychometric
properties of the procedure used to select and administer test items (Pine & Weiss,
1977; Weiss; 1975). To explore the possible psychometric influences on test
unfairness, a series of computer simulations designed to investigate how item
characteristics interact with the choice of a testing strategy is currently in
progress. Also in progress is a live computerized testing study designed to
investigate how well some of the bias-reducing procedures described in this paper
operate in a real test administration. This study will also investigate a compu-
terized adaptive test designed explicitly to reduce bias in test scores.. In addition,
the study is designed to replicate a previous finding that computerized tests ---
increase the test-taking motivation of minority testees (Betz & Weiss, 1976b;
Weiss, 1976)



APPLICAT ONS OF ADAPTIVE TESTING IN

MEASURING ACHIEVEMENT:AND PERFORMANCE

: I SAAC: I , BEJAR
University of Minnesota

The_purpose of achievementtesting is to locate indjviduals on an-achievement

scale- UsuallY,,to:interpret achievement test_scores,-la transformation is applied

_to the scores which allows an interpretation:in terms;of the relative:standing of

:anAndividual with respect to the norming:gronp: ItIrmanyjnstructional settings,

this-interpretationAs:not adequate and, as a result-, instructional_personnel

have requested More concrete kinds of interpretation.---:Criterion-referenced--

testing,-mastery testing and similar approaches have been developed to meet

:these needs.

What:is unique About criterion-referenced and mastery testing isthatthe

Items thAt Constirutejthe test are:sampled from a popularion:ofitems which:is

isomorphic With the objectives of the instructional program inwhictrathievement_

js to be:MeasureShoemaker1975). Because of this, it is poSsible,to

pret,scores in terns of the specific-areas of achievement-that a student has::::7-'

mastered in:relation to the objectives of theimstructional program.

Undoubtedly-, this attention to content is bpundto increase the quality

of achievement test scores. However,-the degree_of improvement possible in

achievement test scores-using-any:_approach to achievement-test Construction is

limited by the nature of the test item. When:typical multiple-choice test

items ateuseda very.limited range of student performance isimeasured. The

cognitiVe Skills involved appeartobe the:processes of-recallHof information_

coupled with_recognition of the correct'answeri and the result is-Ushally

expressed_as either:7correct". or 'lincorrece.. However, achievement-,:or:knowledge

is-:seldom-all or none,-'-and proceeding_as-if it-yere,ias irrthe typicalcor-

rectincorrect7,- multiple-choice achievement rest; does not extract all the

porentialjnformation about an individualachievement lel:tel. :This paper

-describes research Concerned with the integratiorrof--testing procedures whiCh:-

take partial information into accOunt with methods of computerizecLadaptive

achievement test administration, and discusses some implications of_this ---

search for performance testing.

Partial Knowled e-

Aaci._&-rts_ Intuitively it seems clear that extracting partial knowledge :

from test responses should lead to better assessment of achievement. However,

the researdh,literature (e.-g.4- Wang & Stanley, 1970) does not show Consistent

Thi6 research is supported by contract N00014=76-0-0627, Nk 150-389 with the

Personnel and Training Research Programs, Office of Naval Research.
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increases-in both reliability and validity when partial knowledge is taken
into:accounr.-: The:results of the typicalAnvestigation (e.g., Hakstian & Kansup
-1975) show that, whilereliability is Usually increased by taking partial know-
ledgeinto account,- the validity of the scOres remains the saMe or even;dimin- -
ishes. Such findings are usually interpreted as evidence against theuseful
.negs of theassessMent of partial knowledge. However, a careful consideration
Hof theproblem suggests that something is amiss. One possible explanatim is
:that the test and the criterion are not unidimensional.

To illustrate, consider two tests;..A and B, measuring a single construct.
Test B:dati be:referred to as:the "ariterion test i.rhe aorrelation between A
'And'B will be referred te as the Validity of Test_A. Both Test. A and Test B _
dorrelate .60 with the construct. This can be simuarized as follows:

Test

A

:Then the intertest correlat an matrix can be expresse _Oreskog 1971; 'x-

well,-1971) ag Equation 14.'

'where T2 ls a diagonal matrix of e rar-variances. For
Equation 14 becomes,

A-
F.60-1 [. 60 .60] [ 64 .001

L60j .00 .64

w2

64 .001

.36_.00 .64

AA- 177-

P..00 . 361

L .36 1.00 j

the A in Equation 13,

15 I

The off-diagonal element of AA is equal to the validity of A and the
diagonal elements are reliabilities. In this case both A and B have reliabilities
of .36 and the validity of Test A is .36.

Now, suppose Test A is administered under conditions that allow for par-
tial knowledge and that, as a reshlt, its correlation with the construct goes
from .60 to .70. Following the same procedure shown in Equation 15, the re-
liability of Test A becomes .49 while that of Test B remains at .36. At the
same time, the validity of Test A increases from .36 to .42. In short, when
there is a single common factor underlying the responses to a criterion and a
predictor, an increase in the reliability of the predictor will lead to an
increase-in its validity. This is not so when more than one factor is common.
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i1lutrati. thIs, assume that Tests A and'B, both administered conven-
tionally, have in common a method factor (em),A.n addition to the construct,
and that both correIate .40 with it., That is,,

[..6600

Test
A

(16]

Assuming that the cstruct and the method factor are uncorrelated, the

:correlation matrbt cor Tests--1 and B; aftording to the model irvEquation 14,

is-given by:

A IC W

r. 60 F. 60 . 601 F. 48 . 001

L. 60 ,.. 40 .40j L. ao . 48j

AA' T2
[52 5 r 48 00522] . ]

. 00 .40

F1.00 .521

L .52 1.00j

In this case, the validity of Test A i .52.

Now, suppose that the samelTest A:is again administered -under tend tions

that allow for the'ktoring of partial information and that, as a result ef

this, its correlatien with the tonstruct becomes .70. At the same time the

correlation of Test A with the method factor drops from .40 to :.20;

becomes:

Thus, as a result of introducing partial knowledge, the validity waS reduced

from -,52 to 50. However, it is:clear that this seemingly disappointing re-

sult±is not inconsistent with the true improvement that Occurred, namely an-,

increase in:the correlation pf Test A with the construct.

_
Although this_example contains many assumptions, it seems that something

similar-occurs:with real data, Hakstian and Kansuv.(1975) tomparedAhe validIty

of_?a:verbalability test administered under conventional and elimination scoring

:-(Ceombs1111hollandoS Werner, 1956) inSttuctions, Validity was defined:..as tht-



-47-

correlation with School grades in language arts. This correlation was .49 under
conventional administration and .39 under elimination scoring. However, the
correlation with another verbal ability test was,..59 under conventional scoring
and .67 under elimination scoring. Thus, when validity is defined as the cor-
relation with school grades, elimination scoring appears to be less valid;
but when validity is defined as the correlation with another verbal ability
score, elimination scoring is more valid. These results are not contradictory
but simply provide evidence of the fact that performance on verbal ability
tests measured-either with multiple-choice or elimination items is explained
by the same ability, whereas school grades on language arts do not depend ex-
clusively on verbal ability.

'Advanta es of usin artial information. If methods for the assessment
of partial knowledge are to yield improved test scores, the tests must be
such that there will be an opportunity for partial knowledge to emerge. With
few exceptions, most notably Coombs et al. (1956), the presence of partial
knowledge is never tested. Some theoretical results suggest that when partial
knowledge is allowed to emerge and is scored dramatic improvements in test
scores follow.

To illustrate this, consider the information functions of two latent trait
models. Information at a given point on the underlying trait is ehe reciprocal
of the variance of the maximum likelihood estimator at that point. Therefore,
the larger the information value, the more precise is the estimate_of the lo-
cation of an individual on the trait. One latent trait model atUdied was the
two-parameter normal ogive (Lord & Novick, 1968, Chap. 16) which is appro-
priate for dichotomous scoring. The other model was Samejima's (1969) graded
response model, which is an extension of the two-parameter normal ogive model to
polychotomous scoring. Information levels of the graded model can be considered
to be the case when partial knowledge is taken into account, whereas the informa-
tion provided by the dichotomous model is that provided when partial information
is ignored.

To simplify the comparison, the mean information for each model was com-
puted, assuming that the underlying trait was normally distributed. In addi-
tion, it was assumed that each test consisted of 60 items, each having the
same item-trait correlation (r). The distribution of item difficulty in the
dichotomous case can be described as a truncated normal distribution with a mean
of 0.0 and maximum and minimum equal tn 112. and -l/r, respectively. The dis-
tribution of difficulty of the highest category in the graded model was also a
truncated normal distribution but with a mean of .40/r and maximum and minimum
lir and -.20/r. Within each graded item, the difficulty of each of the lower
categories was set in such a way that the categories would be chosen by the
same proportion of testees Thl comparison assumes that there are five graded-
response categories. This choice of difficulties approaches the optimal con-
ditions for the two models.

The ratio of the mean information for the graded model over'that-:of the:_ _

-diChotomous:_model-for several levels of-test homogeneity is seen in Table-3.:
For example; at an item-trait correlation of r _7.55 the_ratio-was 1 :42. This



means that, on the avorage, the use of partial knowledge will be 42% more

informative-thansif it is-ignored. Note that this improvement, due to
incorporating partial information into the scores, increased as the_discrim

ination of-the test inereased. In other words, the better the test, the more

it will benefit !erom adding-partial knowledge. This is-also true when reliability

rather than information is used as the evaluative criterion (Bejar & Weiss,- in

press).

TableA:,
Rstioof Meenjnformation of Graded to:=

Dichoto_eus Model, as a Function ofjtem-Trait Gortelation

The advantages derived:from taking partial knowledge into account can

:Only:materialize underthe=proper conditions._ Inthe typicalOnultiple-choice

test item; even thoughpartial knoWledge 'influences which alternativeAs

chosen-,the response,is scored as,corrector incorrect., One wAY of allowing
-credit_to begiven:forvpartial:_knowledge is to instruct testeesto segregate

alternativee:into different-categories. Coombs''(1956) procedure isan.in-

stancelOf the approach wherethe categories arecorreet" andincorrect7.
_70ther Categories-are:possible, though; 603.,:verbel:items may!be classified _

=:as,"synonyths", "entonyms",='-or-_uneither'%:

.gslEmerized Testing

llecordingand,scoringresponses to non-dichotethoustest items As-jiot,

howevet;:nonvenientwith:paper7and-pencil:testiadministration,:70ne-,obvious
nse.pf:interactive:computerS, therefore, isto:handle_the reaOrding and

,-scoring of responses tonon7dichotomousachievement,test:iteme. .r:But-, as

=j)revious presentatieng inthis report:suggest, the computer Can also:be used

to=edapt-or tailor the test to_each-individual.

These Pregentations =(and indeed most Of:the:research in computerized

adaptiva:testing):,havebeenorientedtoWard-ability measurement. In

_achievementtesting,;itjs:possible todistinguish:,between==two:kinds:of
:adaptive test administration:: One invOlves adapting the length:ofthe test;

-in the other, the difficulty of the test is adapted,t

Adapting theJengtiOpf theaest to thejndividual is appropriate in_

instructional settings where eachiindividual=is allewed as muchtimess is-

necessary to:complete S.gIven unit-of lostruetien.:: Under those,conditiOns

_individuaLdifferences with_respect_to:knowledge.-are minimixed'and :it becomes

profitable to adept the length of the,test rather:than-its::difficulty, The

_research,of Barguson (1970):is:an example:of this,type of adaptive testing.

Systeman individual-is-tested until he Is claSified into A non:t

masteryi-orpastery category. The statistical basis ofv:hivsystem is Wald's

sequential likelihoOdratio_test. FargusoWs_modelassumesthat: the_dif7 =

-fiCulty_aniscrimInation of all items-areithe Same. 'ct isnet,known how,-

5 4
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sensitive the procedure is with respect to violation of these assumptions.
Thus, research addressed to this question is needed. It would also be
desirable to study the possibility of relaxing the model to allow for unequal
item difficulties and discriminations as well as allowing for polychotomous
responses.

Although self-paced instruction has many advantages, limited resources
often do not permit its full implementation. As a result, the sample under
instruction will likely be heterogeneous with respect to achievement. Sim-
ilarly, if a test is intended to measure retention of achievement or levels
of achievement acquired prior to instruction, there will be wide variation in
levels of performance. Under these conditions, adapting the test to an
individual's level of achievement will be more efficient than the conventional
non-adaptive procedure.

Most of the rese rch on adaptive testing has been done in the context
of dichotomous respons models. The exceptions are to be found in the work
of Bayroff, Thomas, and k,derson (1960), Wood (1971), and Samejima (1976).
One of the major aims of the achievement/performance testing research at
the University of MinnesotAis to combine the advantages of partial knowledge
scoring and adaptive testing. Bayroff et al. (1960) seem to be the only
researchers who have actually implemented an adaptive testing strategy using
non-dichotomous items. Essentially what they did was to branch an individual
according to the correctness of the alternative chosen. Although they used
a polychotomous item for the first item only, this can be readily extended
to include all items. Other branching rules are possible. Wood (1971) sug-
gested that the optimal branching rule will administer as the next item the
most discriminating of those items with a midpoint of adjacent categories
closest to the individual's current estimated achievement. Samejima (1976)
implemented a simulation on live data of a similar procedure, which she
referred to as tailoring the dichotomization of the item to the individual.
She noted substantial improvements by comparing the plot of scores based on
a uniform dichotomization and tailored dichotomization against the scores
based on the polychotomous responses.

Summary and ConclusiOns

Iwo,recent developments in test,-theory hold promise for the improvement
'of achievement test scores. ,In combination, adapting the test to the indi-
vidual and simultaneously extracting more information from each resPonseby
'recording partial knOwledge should result in greater improvements in:achievement
test scores_than either_taken alone. :The,use of non7dichotomous item formats-:
how made possible by the administration of achievement test items on interactive
computers, should result in achievement tests which moreaccurately measure
--what a-student has:learned as a-result of- instruction

Although the Use of polychotomous models injhe measurement.of partial
knowledge has been emphasized here-, it is clear that these models have much
to offer in performance testing at well= Fitzpatrick and Morrison (1970)

pprformance test as '.'one in which some criterion situation is
simulated to a much greater degree:than represented-by-the:usual-paperand-
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pencil test." Unlike paper-and-pencil tests, performance tests are relatively
expensive and it is this cost consideration that highlights the necessity
for extracting as much information as possible from a testee's set of re-
sponses. Polychotomous response models make this feasible. The use pf
interactive computers also has much to offer in the area of performance testing,
for computerized test administration can make,it possible to represent simulated
situations conveniently and economically. Additional savings are likely by
testing individuals only on those skills which match the individual's level
of training.-

In short, t seems that coupling polychotomous response model theory with
interactive computer administration of tests is likely to result-in more
accurate and, in the long run, more economical assessments of achievement and
performance.
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