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ABSTRACT
This symposium consists of five papers and presents
some recent developments in adaptive testing which have applications
to several military testing problems. The overview, by James R.
McBride, defines adaptive testing and discusses some of its iten
selection and scoring strategies. Item response theciy, or itenm
characteristic curve theory, is also described. In the second paper,
James B. Syupson explicates the role of latent trait theory in
measurement for criterion prediction and in ¢riterion referenced
measurement. C. David Vale then discusses the use of adaptive testing
- procedures to make ability classification decisions (i.e., cutting
score decisions). In the fourth paper Stever M. Pine argues that a
major problem in current efforts to develop less biased tests is an
, over-reliance on classical test theory. Item characteristic curve
" theory is offered as a more appropriate measurement model. In the
~ . final paper by Isaac I. Bejar, two relatively recent developments in
- psychometric theory, the assessment of partial knowledge and research
-in adaptive testing, are reviewed. (RQ) )
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James B. Sympson: Estimation of Latent Traic Status in Adaptive Testing
Procedures
The ro f latent trait theory in measurement for criterion prediction
and in criterion-referenced measurement is explicated. It is noted that
latent trait models allow both normed-referenced and criterion-referenced
interpretations of test performance. Using a 3-parameter logistic test
model, an example of sequential estimation in a 20-item adaptive test is
resented. After each item is administered, four different ability esti-
mares {(two likelihood-based and two Bayesian estimates) are calculated.
Characteristics of the four estimation methods are discussed. The infor~
mation available in the items selected by the adaptive test is compared
with the information available from comparable 'rectangular' and Ypeaked"
non-adaptive tests. The joint application of latent trait theory and
adaptive testing is advocated as a useful approach to human assessment.
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: is discussed. Data from com-=
puter simulations comparing conventiona sting strategies with an
adaptive testing strategy are presented. These data suggest that,
1though a conveuntional test is as good as an adaptive test when there is
one cutting score at the middle of the distribution of ability, an adap=
tive test can provide better classification decisions when there is more
rhan one cutting score. Some utility considerations are alse discussed.
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Steven M. Pine: applications of Item Characteristic Curve Theory to the
Prohlem of Test Bias
It is argued that a major problem in cu

rrent efforts to develop less

biazsad tests is an over-reliance on clas
a

a

r

gical test theory. Item Charac-
sed on individual rather than

s a

teristic Curve (ICC) Theory, which 1s he
more appropriate measurement

group-oriented measurement, is pffered
model. A definition of test bias based on ICC theory is presented. Using
this definition, several empirical tests for bias are presented and demon-
strated with real test cata. Additional applications of 1ICC theory to
the problem of test bias are also discussed.
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Isaac L. Bejar: Applications of Adaptive Testing in Measuring Ach
and Perloermance
The paper reviews two relatively recent developments in psychometric
theory, the assessment of partial knowledge and research in adaptive
testing. It is argued rhat the use of non-dichotomous item formats,:
ment of partial knowledge, and fow made possible by
the administration of achievement test items on interactive computers,
should result in achievement test scores which are a more realistic and

precise indication of what a student can do,
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AppLicATIONS OF COMPUTERIZED ADAPTIVE TESTING
A BRIEF OVERVIEW OF ADAPTIVE TESTING

, JAMES R. McBRIDE
U.” 5. Army Research Institute for the Behavioral and Social Sciences
Pe .
This symposium will present some recent developments in adaptive testing which
have appliaations to several military testing problems. The purpose of this over-
-view is to provide a brief introduction to adaptive testing--what jt is, what is
needed to implement it, and why it is of interest. :

"Adaptive" testing is one of a number of terms used to describe a procadure
whereby the test items that comprise an individual's test are selected during
the test itself. Some of the other terms used intarchangeably with adaptive testing
include tailored t ,gsting, branched testing, programmed testing, and individualized
testing. The term "adaptive'" was chosen because these tests adapt themselves to
the examinee; different persons answer different items, with the items chosen
sequentially to suit the individual examinee's performance.

Differential selection of test items may be accomplished in any number of
‘ways. But, generally, in adaptive tests a more difficult item is administered
following each correct answer, and an easier item following an incorrect one. Some
methods of adapt;va testing have been implemented in paper-and-pencil mode; for
example, Lord's (1971) flexilevel adaptive test was designed specifically for
paper-and-pencil administration. .However, experience has shown that the instruc-—
tions for paper-and-pencil adaptivattests are too complex for some examinees to
follow successfully (Weiss & Betz, 1973, p. 23) A more satisfactory mode of admin-
istration is through use of an interactive computer terminal or similar device.
Thus, Weiss (1976) chose to administer adaptive tests at a cathode-ray terminal
(CRT); Bayroff, Ross and Fischl (1974) reported the Army's development of a v
computer-contrelled slide projection terminal for adaptive testing; Waters (1977)
designed and built a micro-processor terminal which directs the examinee through
an adaptlva sequence of test items read from a priﬁted booklet,

) . ltem selection strazegies Because. adaptive tests are giite different from
conventiﬁnal tests in which all examinees must answer the same set of test iFemS,

adaptive testing poses some new psychometric problems. One problem is how to

choose successive items from the pool of available items. This problem can be

. solved through an item selection strategy, which defines a formalized rule for
.item choice. ' '

Numerous item selection strategies are possible. They vary from very simple
two-branch rules to rules based on the optimization of rather complex msthematical
functions (Weilss, 1974). Obviously, computerizing the item-selection pracess
faciliﬁate& the use of the mathematical optimization procedures.




Scoring adaptive tests.. Since different examinees take sets of test items
which may differ in number, difficulty, and discriminating power, the traditional
number correct score will not suffice to order people on most adaptive tests. Some
scoring procedure is required which will consider not only how many items were '
‘answered correctly, but also which items were taken, and the pattern of right and
wrong answers to those items. The scoring procedures most widely used in adaptive

. testing are based on various formulations of latent trait theory (e.g., Birnbaum,
1968; Lord, 1952, 1974; Rasch, 1960). All of these formulations provide statis-
tical methods for locating examinees on a common scale, even though they responded

o different sets of test items. '

I

Item response theory. Because of the unique characteristics of adaptive
tests--tailoring each test to the individual and locating all examinees on a common
scale despite the different items constituting each test--traditional test theory
is inadequate for use in adaptive testing. 'Latent trait" or "item response”
theory (Lord, 1952, 1976) provides an adequate theoretical basis for the develop-
ment of adaptive testing. '

Item response theory, also known as item characteristic curve theory, is a
general term for theoretical formulations which account for-examinees' responses
to test items in terms of their status on an underlying attribute. In ability

(or achievement) testing, the higher the attribute status,.the larger is the
probability of a correct response to any given item which-measures the trait in
question. Through appropriate scaling procedures, a response curve can be con-
structed for every such test item. This item characteristic curve (ICC) expresses
the probability of a correct response as a mathematical function of the scaled
‘trait and the item characteristics. '
Every pevson can be characterized by his/her location on this scale. Fvery
test item also has a location parameter (its threshold, or "difficulty") and
perhaps its own-.rate parameter (proportional to the steepness of the ICC), analogous
‘ to its discriminating power. Some items also have a lower asymptote, or guessing
parameter. ' :

Knowing which items a person has answered; the difficulty, discrimination,
and guessing parameters of those items; and whether the answers were correct or
incorrect permits the use of the statistical techniques of item response theory
to estimate the examinee's ability. The resulting ability estimate is a "test _
“gecore" of sorts which has an error component like any other observed score. Unlike
classical test theory, item response theory makes no assumption that.measurement
errors are independent of "true score", which is appropriate because this central
assumption of classical test theory is untenable (Lumsden, 1976). Whether ability
" ig -defined as "'true score' or as location on a latent continuum, errors of measurement .
can vary at different levels of the trait, reflecting in part . the discrepancy ‘
between examinee trait level and the difficulties of the test items. '

 Information. Item response theory permits the evaluation of something closely
akin to the standard error of measurement as a function of underlying ability, if
the test item parameters are known.  This is called the test information function
(Birnbaum, 1968) which is inversely proportional to the standard error of estima-
ting an examinee's location on the trait scale. If the information function of a"

:
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typical peaked conventional test (one whose items are all about equal in difficulty)
were plotted, its test information function would likewise be peaked--very high
over a narrcew range of the trait, but diminishing in magnitude elsewhere. Such a
test will discriminate very well over a narrow interval of the trait range; it will
not discriminate as well outside that interval. The ability level at which the

test information function is highest can be referred to as the test ''center".

The information function of a "rectangular" conventional test (one whose
item difficulties are uniformly distributed over a wide range) is fairly flat, but
low over a broad interval on the trait scale around the test center. This test
would measura about equally well over a much wider range than the peaked test,

- but other things being equal, would not dlscrlmlnata neafly as effectively as
dceg the peaked test at its center. D

"The deslgﬂ of conventional tests. A test measures best (most precisely) where
its information function is hlghest (and hence its standard error is lowest).
=1t is frequently desirable to have high measurement precision over most of the
. normal range of the attribute we seek to measure. This is tantamount to a high,
flat information function. Conventional testing, however, presents a dilemma. A
peaked test can be constructed which yields an information function with a high
peak; or at the other extreme, a rectangular test can be built which has a low,
flat information function. A test with a high, flat information function cannot
-be constructed for conventional test administration unless it is extremely long.

This problem can be referred to as a "bandwidth-fidelity dilemma', with
apologies to Cronbach (1961), who described a different "bandwidth-fidelity -
dilemma". The designer of a conventional test can construct it to have high
"fidellty"-—hlgh precision, low measurement error--over a rarrow range of ability;
or to have a broad "bandwidth''--equiprecision of measurement over a wide range
of ability, at the expense of fidelity. In designing a conventional test, there
is a tradeoff between broad bandwidth and high fidaliﬁy, the designer cannot have

both.

Adaptive t2sting. Herein resides the most attractive feature of adaptive
tests from a psychometric point of view: Because the test is adapted to the
.individual, the discrepancy between trait level and item difficulty can be made
both small and fairly constant across the trait range. The result is a flat
information function which is also generally high. Adaptive tests~—and only
adaptive tests--are capable of accurate, equiprecise measurement over a wide
~ability range. This should pay dividends in test rellabllity, ecriterion~related
validity, and in the general utility of the test for a broad range of measurement

and decision applications. i

A properly designed adaptive test will have higher reliability than a conven-—
tional test of the same length. As a corollary to that, an adaptive test can ]
achieve'a specified level of reliability in substantially fewer items than can a
conventional test, thus permitting the measurement of additional attributes in
the time saved.  Both improved reliability and additional measurements should result
in an increment in predictive validity over that obtained using conventional tests.

- In addition to.the psychometric benefits accruing from the use of adaptive
‘tests, there are psychological benefits to the examinees. Adaptive tests can have
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positive effects on the test-taking motivation of examinees (Betz . & Weiss, 1976b)
and, for some testees, on their measured ability levels (Betz & Weiss, 1976a).

By tailoring test difficulty to examinee ability, adaptive tests can reduce the
effects of guessing among low-ability examinees and make any remaining effects
relatively constant across ability levels.

Sumnary

This overview has presented a rather broad-brush introduction to adaptive

_testing. Hopefully, it has conveyed some conception of what adaptive testing

is, of the rudiments of the test theory supporting it, and of the significant
psychometric and psychological advantages that can accrue when a well-designed
adaptive testing program is implemented in a mental-measurement setting. The

four principal papers in this symposium will deal in more detail with some methods
used in conjunction with adaptive testing, and with a variety of areas of appli-

cation of adaptive tests which are relevant to the needs and problems of test

users in the military.
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ESTIMATION OF LATENT TRAIT STATUS IN ADAPTIVE TESTING PROCEDURES

JAMES B, SYMPSON
University of Minnesota

During the last few years, latent trait theory has become increasingly
important as a theoretical foundation for the practice of psychological and
educational assessment. This has been due to shortcomings inherent in classical
test theory (Lumsden, 1976) and to recent developments.in testing practice. .In
particular, when "adaptive' or "individualized'" testing is desired, latent trait
theory provides a particularly useful conceptual scheme for guiding test design and
test scoring procedures.

Latent trait theories are characterized by a mathematical model that relates
the probability of occurrence of a.particular response class (e.g., a "correct"
response) in the presence of a particular stimulus (e.g., a test item) to a person's
position on one or more metric dimensions. The graph DE the function that relates

probability of a particular response class to a person's status on these dlmEnSlOnS
can be referred to as a respomnse-characteristic surface.

Both univariate and multivariate latent trait models have been proposed. The
univariate models (e.g., Birnbaum, 1968; Bock, 1972; Lord, 1952; Rasch, 1960)

assume that response probabilities are related to the relative positions of persons
and stimuli on a single metric dimension. Multivariate models (e.g., Christoffer-

,,,,,,

‘son, 1975; Samcjima, 1974) allow for the possibility of several latent dimensions.

Latent Trait Ihéory and the Objectives of Measurement

When they firsE encounter latent trait tha@ry, many people question its
practical utility. For example, they often ask, "Why should I bother with an
approach to testing that involves inferred latent traits if what I'm really
interested in 1s either predicting some criterion accurately or achieving content
validity and implementing criterion-referenced measurement?' In order to motivate
an interest in latent trait estimation procedures, it will be useful to discuss
briefly the issues raised by this type of question.

The "existence' of latent traits. The adoption of latent trait theory as a:

ﬁu;de to test construction and test scoring does not require a belief in the- ]

"existence' of unobservable traits that control human behavior. Empirically, it is
sufficient to inquire whether peoples' responses to test stimuli can be predicted.

accurately on the basis of such a model. The postulated dimensions of latent trait
theory can be viewed as quantitative variables that are created by calibrating and

- secoring test items in a certain way. These variables can provide a convenient basis
.. for designing testing pracedures and may lead to increased predictive accuracy in

scientific and practical-applications.

This fesaarch is sitpported by contract NOOO014-76-C-0243, NR150-382, with the
Personnel and Training Research Programs, Office Df Naval Research.

o | 11
[ERJ!:; o . . o .

Aruitoxt provided by Eic:



Q

ERIC -

Aruitoxt provided by Eic:

Measurement for criterion prediction. In many situations, tests are developed
and applied with the sole intention of predicting performance on a criterion of
interest. The introduction of intervening variables (latent traits) might seem
unnecessary when one is only interested in obtaining a high degree of relationship
between test scores and criterion scores. However, estimates of latent trait status
can themselves be viewed as a particular variety of test score. Such scores may or
may not have higher predictive validity than more conventional test scores; this
is an empirical question. . But,even if predictive validity is not increased via the
use of latent trait scores, it may still be advantageous to adopt a latent trait
approach if the testing process can be made more efficient as a result (e.g., through

‘adaptive testing procedures).

Moreover, test development for the purpose of criterion prediction is always
based upon an implicit structural model. Mo one chooses items at random from all
conceivable item domains. Test developers try out items with certain kinds of
content and never consider using other kinds of content. They also attempt to
generate items that have difficulty levels or endorsement rates (i.e., p-values)
that are not too extreme in the population to be tested. This is done so that item-
criterion correlations will not be unduly restricted. Such procedures suggest the.

Trying certain types of items, and not others, implies that certain types of
inter-person differences exist and are related to criterion performance, while
others are not. More generally, any conceptual scheme for classifying test items
implies a corresponding set of response variables that can be generated when the
items are administered. In selecting items for criterion prediction the test
developer indicates the response variables that are thought to be related to the
criterion. : ) )

A concern about item difficulties and endorsement rates implies that the -
probability of a given response to an item is a function of status on the relevant

response variable(s). If such probabilities were not a function of status on the"

response variables, an item would have the same p-value in every conceivable popu-
lation and there would be no need to match item difficulties to the population that
is to be tested. ' : Lo
A latent trait approach to test construction and scoring provides a formal
vehicle for elaborating structural models and encourages the test developer to make
structural assumptions explicit. When structural models are explicitly stated, :
they can serve to guide test construction efforts and aid in the interpretation of

“empirical results.

Content validity and criterion-referenced measurement. The testing situation °

never constitutes he entire behavioral domain of interest. The implicit objective
in pursuing content validity-and in implementing criterion-referenced measurement

is to make more accurate inferences about a person's potential for performance in a
hypothetical -task domain (Crombach, 1971, p. 4523 Glaser & Nitko, 1971, p. 653).

This hypothetical task domain, though it is not observable in its entirety, is

carefully defined in terms of performance objectives or item content. Test items...
are generated that represent the domain, and.responses to these items are used as
basis for making inferences about domdin performance. :

12
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: >Sbme'iﬁdividuals protest-such a view and argue that in- criterlon—raferenced
easurement ' the test stimuli are the criterion ' tasks of interest "and that no’
further- task domain is intended or implied. However, unless all the tasks that are
"equlred on the job are ;ncluded in the test, inferences are necessarily being made:
-about -a larger task. d nain. from a sample of personsstimulus interactions drawn from

‘the domain.AJ il e e o - R . - N ,?'

: Whaf is tne nature Df the hypothetical task domaln in achlevemEBE teszing?‘
W.Sugh task domains can be described in termsrof a multidimensional structural model~
' Whenever test stimuli can be clustered with regard to common content Or process
and ‘arranged in a learning hierarchy within each cluster, there is a definite
f'possib;llty that a latent trait appz@a:h to aghievementttesting will bg usefuli

: !lﬂﬂ rafereﬂced 1nterpretat1§ns of test Performancei
"In recent years, the distinction between norm-referenced and criterlan—referenﬁed i
‘i measurenznt has been widely discussed. An: Aimportant fact to keep in mind isthat . -
“.this distinction properly applies to the type of information available from test.

scores, not to test content or the testing procedure itself (Hambleton & Novick, ... .- ..

gt

' NDmefEfEIEHCEd and crlt‘

» provide information about both inter-person- -differences (norm-referenced interpre-
; tatlcns) and intra-person response probabilities (criterion-referenced interpreta-
" ticns) for tasks drawn from a task doma1n.

,:, An‘estimate of an individual's latent tra .t status’ can be converted to a -
centile rank or standard score relative to y orm graup ‘previously tested using
“the latent trait. procedure. ‘This same latent rait estimate, when considered in
< ‘conjunction with - the latent trait parameters f a t est item (i.e., a task sample)
- that "has been}p:evicuSly calibrated, allows generatio n of the probability of
~ occurrence of a-given response class (e.g., a correct" response) in the presence-
““of the 1tam.,(That is, one can determine the probability that a person will
chomplete a given task successfully, even though the person has never attempted the
ask.) " The fact that latent trait theory can provide both norm-referenced and
7;cr1ter;an—referenced interpretations of test performance indicates that the current
f,schlsm between psychological and educatlanal testlng may . be natrowed conglderably
'1n -the. years -to-come. ... - S T S S e

24;5};1f'w' ' o Es;imating Latent Trait Statusf

TIn ordef to exploit the wida range of potential appllcat1ans of latent tralt ,

: hEérY;.lt is necessary to understand procedures for estimating latent trait status

“of individual testees. Four methods for obtaining estimates of latent trait status

5are déscribed below. In addition, it will be shown that the accuracy of such ESElﬂJf
mates can often be lmproved through the use of adaptlve testing pracadures. '

.. The latent trait model to be described'ig one in_which only two response classes
- are considered, -a keyed response and a non-keyed response, and the probability of -
"éccurIEﬂcé‘Df'Eazh response class is a function of a single latent dimension. ThlS L
modal mlghE be applicable. to a test that has been constructad to maximize .internal
san51steney (Nunnally, 1967, pp. 254-268) and in which items are scored dichotomously.:
“The model would not be suitable for tests that involve a multidimensional item
icture, 'but the principles of 1atent tralt estlmatlun that are-discussed can
generallzed to such cases. . ' S

Tl
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1973, p. 162). This is impcrtant because estimates of latent trait’®status can il



,The Ihreeﬁparameter Loglstic Model N N . B _ v1:’“fﬁ?

: This latent tralt medel has._ bEEﬁ 1ﬂvestlga§ed exten51vely by Blrﬂbaum (1968)
- The function rule that relates prcbabiliﬁy of a-keyed. response ‘to the parameters;ig

‘of the model is given in Equation 1.

r:?gli!ﬁ_.,(l*——c:,)E1+éxp(éli7§§(6=b,))]%l SRR v,[l] o

P-(a)
' The quantity P CE) lS the prcbabllity of a keyed respanse to item g, with
) parameters a,s b and g , by a person whose location on the latent tralt con-
tinuum 15 given by the quantlty 8 (theta). The exponential cperatar (exp) 1nd1—f i
cates ﬁhat ‘the quantlty in parentheses is an axpanent of the canstant e=2. 71828
Figure 1 shows a graph of the functlon Pg(%) in- the interval from e_—g DD tc i
,6=+3 00 for an item having ag=2 .0, bg 0. .0, and égﬁ,QO.. This graph was generated ff
by evaluatlng Pg(@) at 61 p01nts alcng the theta continuum. . The ifregulatltles e

visible in Flgura 1 result from rounding Pg(a) to the nearest .02 far plDttiug

purposes.
- Figure 1 - o
Response Characteristic Curve (a=2.0, 5»=0.0, £=.00) -
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response occurring "by chance" when 6=-=, The item parameter %?-isranWﬂ as the

diSEFimzHatl&ﬂ parameter. It is related to the slopa of the response charac—

teristic curve and in this model is equal to the reciprocal of the distance that -
_one must move along the theta continuum in order to increase P (8) from 5(l+§g)

iﬂ:Lo appr331mately (. 8455(1 -c ))+e Since ag=2 0 and Cq™- .00 in Flgure 1, the

E distance ‘between the lacatlans on the theta ccntlnuum at which P (8)=. 5 and

- b,=0.0, and ¢,=.00. The reduced valueﬂef ﬁg relative to Figure 1; is féfjected

(6)= 84 is equal to 1/a =, 50 theta units.

Figure 2 shows a response characteristic curve for an item having}irglﬂo;“

g=0: 9"

~in- the shallower slope of this gfaph and in the fact that the distance between

>fth$ locations at which E%(E) .50 and P (B)= 84 is now equal to l/aé—l .00 theta

Figure 2
Response Characteristic Curve (g=1.0, 5=0.0, ¢=.00)

=2 =5
oo =
= s LK N
e LI IR I B I Vo=
¥ * & & - ¥
L] 2 & i
(=] i & (=]
L= L] * o
= . i
L3 ] B ] .
- o e e e T e e e e e e e e e e e e e e e e e e e e e e e e e e g 1 .
=] il (=]
s . : * 2
' i
i - ! 1
i:‘Iv & i [
=1 | =~ L= I
S~ - ' I ¥ =
= 1 i LI
¥ & l‘ ‘i
- o ]
= =2 ® I [ =}
- - i -
= L] L] 1 [
-1 1] 1.
E i L i ]
[T ] : (=]
M e e e e e ey { * o1
L i 1 1=
: e | i 3
i 1]
S =] o | | 1
E'aav | H * T
b .o * ! L i
¥ . b ! 5
- - i | o
. T % [] l l L x]
=i [
] - i I
o . I i .
a . - 1 i [N =]
[ - - e g - . [ i - Hr
=0 - g L]
S & ! - | 1
o , I i :
(=3 & : [R=
= c o B | 1/{:1 | . =
= i L i A i LI
| - N} ] i i
] & = = Hl,f—i—-g—g‘ i
= k= %3 o3 F 8 8 N B L=
e I I I I I I I -]
oo =z 8 @ g e e 7 e g e v o s 8 8 © 8B 8 8 & 5 8 8 8o 6 8 & &6 O 8 G-
= @ == I o g o k-] = & i =] a3 0 E 04 fu T =0 = = ™~ 3 L] 153 o & = 2 o [=]
7on 8 M B N = = =T = = i i N - = = = = N B N & &
i ) i L] 1 L] L] L] 1] I ] L]

- units. A value of @_in the vicinity of 1.0 is typical of many test items.

»,Vél,eg of a, below about .5 are indiecative Df "poor'" items and values of g

O

g.
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s item location parameter; it indicates the location on the latent trait continuum =
- at which P,(é) is equal to- 5(1+E ). The item parameter ag is known as the item
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....test item that has five fEspanse alternatives. R
is equal to the location at which P (0)=.5(1+. 2)— 60 and a_ is

66 tab

equal to the
" the location

-10-

Figure 3 shows a response characterlstlc curve for an item having ag—l .0,

bg :0.0, and éggiZD_v
In accéfd ‘with the. définitigns
given above, bg
\9)

Note that one of thé effegts

reciprocal of the distance from the. 1acat1aﬁ at whlch
at which FQ(S)E(-Séjj(le.z))+izg.88i

of a non-zero cg is to reduce the -slope of

.. continuum.
. : : Flgure 3 :
Respcnsg Characteristic Curve (a=1.0, b=0.0, ¢=.20)
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The Concept of "Information' L

‘Birnbaum (1968) has discussed the concept of "information'" available in a

7 “test item. Birmbaum's item information function is given in Equation 2.-
'I(e;_ug) = E g(é)] /[P (0) Q ®1 . o [21-
In this equatio n, Hg is the ztgm P§EPSHSE variarle. It is equal to 1 when a

‘keyed response is emitted and is equal to 0 otherwise.

. The quantity QQ(S) is

16

The value égs.zﬂ ‘might be applicable to a multiple=chalce L

Fgfe) at all points along the theta .
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it‘éqﬁal to 1;Pg(6),” The numerator of Equation 2 is the Squared first derivative
75 (i'ei;”the squared slcpe) of P (6) at a fixed value of 6. The daﬂaminatcr is

'ifzhe varlance of the item respanse variable, g’ at a f;x&d value of 8. Thé—

‘:'quantity I(6;u ) is an index of the item's ability to :discriminate people wbose :

.b;flatent trait 1Dcatinn equals 8 from people at nearby latent tra;t lacatiﬁns.

was noted earlier, high values of ag and low values of e g increase the slope

f P (5) and, hence, the 1nformation available from an 1tem. . The variance of

o

g'approaches zero at latent trait 1evels that are deviant from bg and feaghas
its maximum value at the latent trait level where P {8)=.5. - Figure 4 Shaws a

H

.. graph of the function I(, Ug ) in the interval from EE—B 00 to +3.00 for the item

In'genéfél a steeper slope for P (6) implies greater discriminating péwéf-.

 TShDWﬁ in F;gu:e 2, which has ag=l .0, bg—D D, and ﬁgg 20. This graph was generated

by evaluat;ng I(8,u ) at 61 points along the theta ccﬁtlnuum and raund;ng the

7‘;abcained values to the nearest .02.

-
k

o o .. Figure 4
Information Curve for a Single Item (a=1.0, b=0.0, e—.DD)
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-~ - of this 20-item test.

=12~

Vlit&lé information ét'laﬁelﬁ fat belﬁw’or’far aEavé'Eé. This result is consis-
tent with’ intuiti-e impressimn% of item discriminating power. If, for example,
ar, ability test item that was su:ﬁable for thiré graders (i.e., P (6) near ;5

. among third graders) were admlnisgered to college students (1n which group -
vP (8)21.0), all ‘the colleae students would probably answer it correctly and

‘no basis for discriminating among. college students would exist. Note that -in
Figure 4 the information curve is symmetric about b and-attains a maximum

value of ap?roximately 72,

- Figure 5.shows an information curve for an item having A= .85, b =0.0, and.

‘I'I

eg= =, 00. This curve, wﬁile still sym@etfic about bg, attains a 1cwer maximum -
(approxiimately .52) and falls off more: gradually on elthar gide of b chan the

curve in Figure 4. In fact, the item represented in Figure 5 pfévides sllghtly
‘more information than the item represanted in Figure 4 in the interval below =~
.92 =1.40_and .in_the interval above 821.40. - However, the gain in these regions
- ig sllght compared to the infotmatlan loss in the 1nterval ~1.40 <86 < 1.40.

Figuré 6 shows an 1nformat10n curve for an item having ag=1 .0, bg =0. O

and Cq =,20. This curve is not symmetric about bgf It attains its maximum

]’value of about .50 near 6=.16. The curve falls off more rapldly on the left
of 0=.16 than on the right. This reflects the fact that "chance" keyed res-

ponses are more prevalent among people 1oca§ed below bg than among people 1acatéd

above b Such "lucky' responses Qontflbute error to the estimation of latent

trait %tagus and reduce the amount of 1nformatlon avallable. Note that the
information.curve in Figure 6 is lower than the curve in Figure 5. Iﬂtraduciﬂg
‘the possibility of "lucky" keyed responses reduces the information available
from an item gust as if it were an item w;th lower Qs but w1th gga.DD

Saquential Est;matlon in an Adaptlve Test

In order to demonstrate the sequential estimation of latent trait status
i "an adaptive test, a computer program was -used to simulate the test responses

“ofa person’ “whose - latant»tralt lacatlcn is 6k+1 D.-»TWﬂnty items having- &g 1.0

and eg .20 were administered. The items’ bg values chaﬁgea as a fuﬁctlon of

_responses generated during the simulated test. Table 1 sammarizes the Eesults '

) The first column-in Table 1 contains item numbers in the 20-item series
Lo (g=1,2, . .,ED) The second aclumn contains the bq values of the items -
- - administered. The dlfflculty of the first item was ngD becausa thls value

approximates the mean lataﬁt trait score in any pnpulat;@n of persons that is

" -sampled to parameterize a ‘get of test items. CAn exception to this may be-

~ found -in Wright and Panchapakesan' s (1969) implementation of the Rasch ‘model.
They scala the latent trait metric such that the mean of the b ‘estimates is -

e
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"+ ‘zero and the mean 6 estimate among persons is, in general, other than zero.)

Follawing the first lﬁem, bg values either 1nﬁraase or decrease (in accordance-

7 with a prncédure to be outlined below) dapendiﬂg on whether a keyed OF non—keyed
"response was generated.  The item response variable ug is shown in the ﬁhird

x”ﬂolumn>@fyiabierl.

: Table 1
Sequentlai Estimation-of Latent Trait Status
in a EDsItem Adaptive Test ’

Ttem HWARL 7WBi7 ~ SBAYES = OBAYES

, B
_No. - Diff. Resp. .  Est. Est.  Est. . Est.
1 0 1 5.49 1.61° .38 .38
2 1.00 - 0 .36 -.85 .05 .04
3 0 1 .67 - - .18 .32 .31
b4 .18 1 .89 .82 .53 .54
5 .82 1 1.16 1.25 .75 .78
6 1.25 0 .87 .72 .57 .56
7 .72 1 1.03 1.00 .74 .75
8 1.00 1 1.20 - 1.21 .89 .93
9 1.21 0 .99 .93 . Th Ty
10 .93 1 1.12 1.10 . .87 -7 .89 °
11 1.10 -0 .95 - .89 .73 .72
12 .89 1 1.05 1.02 .84 .84 -
13 1.02 0 .91 . .85 .72 .70 . T
14 .85 1 .99 .96 .82 - .80 o
15 .96 - 1 © o 1.07 1.05 .90 .90
16 1.05 0 .96 - - .92 .80 .78
17 .92 1 1.03 " 1.00 ..88 - .87
18 1.00 0 .93 .89 - . 79 L6
.19 .89 1 .99 .96 .86 .84
20 .96 1 1.05° 1,03 .92 .92

.o Li k elihood- based estimation. The last four columns af Table 1 tontaln fcuf

S dlffefent estimates of latent trait status that were calculated after each item . .
was admln;szgrgd The fourth column of Table 1 contains maximum-likelihood __ -~ .
estimates of 6. A maximum-likelihood estimate of O corresponds to the latent :
trait location at which the observed pattern of item responses has the maximum

.- probability-of oceurrence. ' The probability of a set of item responses, given some:
‘fixéd value of 8 and the 1tem parameters, is obtained using the Iikeltihood fﬁnstz@n

glvan in Equation 3.

L) : ,H[P ©)% @(5) “g1 R | 3]

‘ are 1ﬂdependent of one anctthi The Dperatmr H 1ndlcates that a serlal product is’
to ba taken over the test items administersd up to that point (g=1 2,...k)

20 o
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After agch item was admlﬁlstared Equatian 3 was evaluated at 101 equally -

:spaced 8 walues in the interval from 6=-5.00 to 8=+5.00 and the largest of the 101 -

-likelihood values was identified. Then, a quadratic function was fifted to this

“largest’ likelihood value and the two likelihoods adjacent to it. The-value of 6

 corraspDnding to the maximum of the quadratic function was used as the 'MAXL"
estimate. Under most conditions, the estimate of 6 obtained in this mannér is

.a good approximation to the estimate that would be obtained if more sophisticated

' methods of numerical analysis were used to search: for-a root @f the logrlikéllhoodv

ﬂfunctlon's first derlvatlve

- The interval between §=-5.00 and 0=+5.00 will contain at least 95? of the 6
estimates in any ‘group that is used to parameterize test items. This is because
‘latent trait item parameterization procedutres scale the theta metric such that the
mean 6 estimate equals zero and the standard deviation among the estimates is 1.0
“(again; the Rasch model provides an exception to this general result), and by..
-virtue of Tchebycheff's inequality whicl states that the proportion of cases which
-fall more than 5 standard deviations from the mean cannot exceed (1/5%) in any
distribution (Hays, 1973, p. 253). 1If the distribution of @ estimates is peaked -
'aﬁd unimodal, v1rtually all of the 6 estimates will be between -5.00 and +5.00.

Flgure 7
Relatlve Likellhoad and PDStEtin Probability Curves After 1 Item ” :
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bFigures 7, 8, and 9 show graphs of the data llkellhacd functlan in the

interval from 6=-3.00 to
respectively. For plotting purposes, the raw likelihood values were: expressed
relative to the largest likelihood value in the interval 8=-5.00 to 8=+5.00 and
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8=+3.00 following the administration of 1, 2, and 3'1tems,,,
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;itﬁeﬁ‘rounded to.the nearest .02.' As can be seen in Equation- 3, after one item is. v
.administered the likelihood function corresponds to either che) Cg'Qz(E), depending = -

R:Qn whether a keyed or nan=k§yed respcnse is emitted (compare Figure 7 and Figure 3).
“The MAXL estimate after a '"correct" answer. to the first item is +5.49. -Actually, -~
,ince P (B) is strictly 1ncreasing in 0, the estimate should be =0, but a finlte

;tescimate is certalnly more reasonable. After an incazrect answer to the second - -
rtitem, with bg=1 00, the peak of the likelihood curve occurs near 6=+,36 (Figure S)i ,

"‘After Eha third 1tem, the peak occurs near 8=.67 (Figure 9).

B "Welghtedsby—likéllhgads" (WBL) estimates of latent trait status appear in

~ the fifth column of Table 1.  The WBL estimates were obtained by taking a weighted
- average of 101 equally spaced § values in the interval from 6=-5.00 to 6=+5.00:
';Iha weights used were the data likelihoods at each 6 value. That is,

. WBL Est. [.;,(L, (8) B)I/[Z(E& i;a))] ' , : [4]

S o
where 8 takes on the values -5.00, =4.90, ..., +5.00. The WBL estimate is influ- °
‘enced by the entire set of 101 likelihood values instead of just the maximum of
:»the likellhood functlan; : .

: The MAXL and WBL estimates can différ considerably when only a few items have
_been administered, as can be seen in. Table 1. . .Inspection of the relative likeli= -
-hood curve in Figure 8 shows why these two estimators differ after two items have .
"been administered. The WBL estimate is lower due to~the fact that the left tail
~of the likelihood curve is high relative to.the right tail. Table 1 also shows
~‘that the MAXL and WBL estimators become more-similar as the number of items admin-
istered increases. . Since the WBL estimator has not been propcsed prav1ausly,.

ifuture research is planﬁed to study its charaEEEflstlcs.

The pracedure by which item bg values were determired durlng the Slmulated

;tesﬁ now. can be outlined. The general rule followed was: Let the next itam have a
jdlfflculﬁy level equal to thé current value of the WBL estimator, except that in no
~case shall the new bg.value be more than-1.00 units from the immediately- precedimg,'

fb ‘'value. Thus, as can be seen in Table 1, item dlfflcultles changed by 1.00

juﬂtll “the third item had been administered and the WBL estimate. was .18.. After—- .

-this,-each item difficulty corresponded to the value of the WBL estimate following -
“the preceding item. In actual practice, an item is seldom found with bg exactly .

.equal to the current estimate of latent trait status. - In such cases, an item that - .
rhas»b clase ‘to the dEElrEd valué is gelected for admlnlstratlon,

. Bayes;am estimation. Columns six and seven of Table 1 contain Bayesian

-estimates-of latent trait status.  Given a specified form for the continuous distri- - - -

bution of latent trait scores in a population (i.e., the prior probability density
fﬁﬂstzgﬁ of thata), the 'item parameters for the items administered, and a vector
‘of item responses (u_values), it is possible, in prlnClple, to derive the -

EQSﬁéPth prababzlity density jﬁﬂgtzén of theta using the inverse probability rule:




of Bayes (Hays, 1973, p. 819).  In practice, it becomes dlfflcult to ébfslﬂ : =
analytic expressions for the pgszeriot theta dlstrlbutlon unless the prior ﬁlEtfle;'

ution and the data likelihood function take on certain feStrlEtEd foerns, To avoid - .
such diffiaultles, the féllowing approximate procedure can be used. R R

Firsi, the continuous prior den;ity functlon of theta is- appraxiﬂaLEd with a
fdls:rete probability distribution in which the probabilities are concentrated at»
.~ 101 equally spaced points along the theta continuum. Thus, for example, the area -
- under . the prior density curve between 6= ".DS and O9=+.05 is assigned to the point
B8=.00. This is done for 6=-5.00, -4.90, .; +5.00. Areas beyond: f=-5.05 and
- B8=+5.,05 are assigned to the points 8=-5, DD and 6=+5.00, respectively.. (These
< " extreme tail areas should be trivially small. If they are not, the region of
B . the theta continuum in which the procedure is applied can be shlfted or extended. )
o Next, data likelihoods are generated at the same 101 values of 8 using Equation 3.
The prior probabilities, f(8), and the data likelihoods, L (8), are then ‘entered

into inté Equation 5 in order to determine the poster;@r probablllty of each givenA
8- value i , '

Pl & 15, OMNORICI R R

The resulting 101 posterior prabablllties provide a discrete approximation to
the continuous posterior distribution of theta. Finally, the mean of the discrete -

"posterior distribution is obtained with- Equatlcn 6 and this value.is referred to.

as the '"SBAYES" (simplified Bayesian) estimate at that stage of the testlng
pracedure. :

'SBAYES Est. g P(8|v) e] R ' o RN

SEAYES estimates of 6 appear in cclumn six of Table 1. Figures 7, 8, and 9 show
three of the posterior prabablllty distributions that were generated with the

SBAYES procedure when the prior distribution of latent trait scores was speclfled

to be a normal density function with zero mean and unit variance. The first tthE :
SBAYES EEtlmaEes in Table 1 are the means of these discrete distributions. :

The "OBAYES" (Owen Bayeslan) latent trait estimates that appear in Eolumn
seven of Table 1 were obtained using a procedure described by Owen (1975).  While
- Owen has described both a method for estimating latent trait status and a method. == -
for selecting test items, only his estimation procedure was used here.  Owen 1ntro=‘ﬁ
-duced his procedure in the context of .a three—-parameter narmal ogive latent trait
model. The close similarity of this model to the logistic model giveﬂ in Equatlan 1

allcws its appllcatlon here.

'The OBAYES prDCEdurE has two drawbacks. First, it is limited to prior distri-
butions that follow a normal density function. The SBAYES procedure described
above can accept any ‘type of prior distribution.- Second, the OBAYES procedure is-
order dependent. That is, if a set of items is administered and the item responses
--are recorded, then the value of the OBAYES estimator will depend partly on the

order in which the items are processed by the scoring procedure. The OBAYES proce— -
dure implicitly generates an updated prior distribution after each item is scored

and then combines this new pflor dlstributlon w1th the ‘likelihood function for ﬁhe ;f

24




;2~tian, ‘this level of agreement can be viewed as an indication that ve

‘response to the next item, This in itself would not make the DBAYES procedure
~order dependent but, in order to simplify the -mathematics, Owen proceeded as if
each. updatgd prior distribution could ‘be described by a normal density function.A
‘This~ approximation introduces a small amount of inaccuracy into the eatimaticn .
“process and’ ‘makes the procedure order depemdent.: The SBAYES procedure does not

xffutilizg this type Qf approximatioﬁ and 1is not Qfder dependent;ub .

R After administering a Eiﬂgle item, SBAYES and OBAYES estimates ge

'f'tc three decimal places when the initial prior distribution of 6 is a normal -
" density function. Since the OBAYES estimate is optimal in this pafti' ular situa-
. ery little

" dnaccuracy is introduced by the discrete approximations in the SBAYES procedure.
"--When more than one item has been. administered, or when the prior distribution
"?Epacified for the SBAYES ﬁrocedure is non-normal, the two estimation methods will

S not nézessatily agree..

S Figure 10
Relative Likelihood and Posterior Probabllity Gurvas After 20 Items
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i N Campérlscns between llkellhoad—based and Bayg§;§§ estlma;, .
. the relative likelihood and posterior pfobability curves that resulted after 20
“items had been administered. The 1ikelihood curve peaks near 6=1.05 and the

ifpasﬁéfior probablllty distribution has a-mean of .92 (see Table 1). Both the

+1ikelihood curve and the posterior pfobablllty curve have shifted to. the region of -

>?tha ‘theta continuum near 6=1.00, and both curves have become more peaked. In fact,
las test length (k) appfoachas infinity, both of these curves approach a vertical

™o
™
i

' Figure'iD shbwsd.



fz,than the likelihood-based estimates throughout the- testing process., This is-

"'distribution This is appfopriate when DnE'S objective iS to minimizg squared o

"+ biased than the Bayesian estimator. -~ The Bayesian ‘estimator's bias’ can be reduced

Vprior distfibution This can. be done readily in an adaptive testing 51tuation.;j

Vline (1. e.,'a single—valued dis tribution) lacated at the value of 6 that is :
]gEnEfating the item responses.'~' : : . :

'Aof the theta distribution must be accepted in order tg azhiéve this minlmization'
,(McBride & Weiss, 1976) ; v

1  for a given value - of k ‘and values of O deviant from the- high density: region of ‘a -
o péaked prior distribution, the maximumslikalihaod estimator WlLl tend to be less

“Note in- Table 1 that the Bayesian- estimates of 0.tend to stay closer to 5§j’

because Bayesian estimators are "drawn toward" the high denslty region of the prior

Unfnrtunataly, for tests of maderate 1ength a Eertain amaunt of bias at Ehe tail

For moderata 'k, the maximum—likelihaod Estimator can also be biasad Hoﬁé&é

by inecreasing k as the estimate of 6 deviates from the high ‘density. region of. the‘

. An Interesting relationship exists betwaen the 1ikelihood=based estimators'»ini:
and an351an estimators.. If one applied the SBAYES estimation pracedure and: -
specified that the prior distribution of theta was rectangular in the inter- R

- wval 6=-5.05 to 6=+5.05, then the SBAYES estimate of 0, as determined by. Equatian
"6, would be identical to the WBL estimator. Moreover, the MAXL estimate would--

closely approximate the mode of the Bayesian posterior probabillty distrlbution.f
Thus, "all four types of latent trait estimators that have been presented here

" can be viewed as Bayesian estimators. The MAXL estimator is a Bayesian modal -

‘estimate of 8 when the. impllzit prior is restricted to a rectangular form, thE’"fh
- WBL estimator is a least-squares estimate of © when the implicit prior is - .
“restricted to a rectangulat form, and the OBAYES estimator . is a least- squares

" estimate of 6 when the expliclt prior is restrlcted to a normal form..  The .

SBAYES protedure is the only one of the four methods that does not. festrigt

" the form-of the prior distribution.- By virtue of this flexibility, the SBAYES - . -

_estimation procedure appaars to be the most widely appllcable of the four

"»methods C e L . B R T L e -

" of items. - The amount of. 1nfarmat10n actually extracted depemds on how the . .. . ...
‘items are scored. : - Py

~_along the theta continuum in the interval from 6=-3.00-to 8=+3.00. Thls curve

"shows_the maximum amount-of information avallable from these items.: The curv3»1‘°
“l”peaks neatie =1.00, thus indicating that-this set: of-items: pfav1des maxlmum S
»idlszrlmiﬁation among . individuals whose latent tf31= locations fall near jf o
”15 l DD The maxlmum value af the curve is about 9 DD Ll

Tatal Test Information

‘This function is the sum of the.constituent item information functions and .

'1nfarmat10n function “for the 20 items administered in the simulated adaptive

T»Elfﬂbauﬂ (1965 p. 454) has defined the 1nfbfm§tz§n fhﬂétiﬂﬂ Qf a tgéﬁ%ééﬁf%

defines the maximum amount of information that can be extracted from a set

Information in the adaptive test. Figure 11 shows a graph of the test . .

test.. It was obtained by Evaluatlng Equation 7 at 61 equally spaaed points-
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Figure 11
Information Curve for 20-Item Adaptive Test
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Information in two conventional tests. Figure 1 hows a graph nf the test

, 2 s
information function for a set of 20 items having a =1.0, @ ggﬁ,ZD, and bg values

equally spaced in the interval from -3.00 to +3.00 (i.e., bééezéoo -2.68, -2.37,

« « «, ¥3.00). This would commonly be referred to as a 'rectangular" distribution
“of ditem difficulties. This test provides a f,;tly uniform level of information
across a broad range of the theta continuum. Unfortunately, the level of infor-
- mation is relatively low. The curve attains its maximum value of about 3.20
“in the interval -1.00 < 6 < 1.90.

Figure 13 shows a graph of the test information function for a set of 20
. items having §g=1 .0, ég .20, and b =0.0 for all items. This is a "perfectly
peaked" test. The shape of this 1ﬂformatlan curve is rather similar to the
.-curve in Figure 11, but it is shifted to the left. The curve in F;gure 13
attains its maximum value of 9.80 near €=.16. At 8=1.00, the value of this
information curve is about 5.80. '
_ Figures 12 and 13 represent two rather idealized non-adaptive tests. Both
- of these tests deliver less information at 6=1.00 than the items selected by the -
. adaptive testing procedure. What is the implication of this result? If, for
. some practical purpose, it were necessary to order a testee with 021.00 relative
to other individuals falling At nearby 8 values, fewer errors would be made if
0 estimates derived from the adaptive test's items were used than if estimates
'derived from either corventional test were used. '
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Sevaral rgzédurés for estlmatlﬁg 1atent tfalt status have baen presanted.
more accufaze egtimates gf 1atent tfalt status than zcnventional testsa Thcugh
there is no necessary connection between latent trait theory and adaptive testing,
there is a strong natural impetus toward their joint application. JLatent trait
theory provides adaptlve testing with a coherent theoretical foundation. It is
guide to procedures for designing and scoring adaptive tests. On the ather

==~hand; adaptive testing offers the opportunity to take maximum advantage of the
potentialities of latent trait theory. At this point in time, both a new type
of test theory and a new type of testing technology are available. Their joint
Effect might possibly exceed the sum of the two parts.

[ui]
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ADAPTIVE TESTING AND THE PROBLEM OF CLASSIFICATION

C. DAVID VALE
University of Minnesota

Two basic goals in the use of ability tests are measurement and classification.

When a test is used for measurement, the objective is to accurately determine where a
testee's ability lies on the latent ability continuum. When™ a test is used for classe

_ification, the objective is to determine on which side of a cutting score (or between
which cutting scores) a testee's ability lies. Such classification decisions should
be made so as to minimize the errors of misclassification. Once a classification is
made, there is no necessity for a more precise determination of an individual's
ability level. ' ' :

This paper is concerned with the classification of abilitiles into diserete
categories. The general goals of classification will be explicated and alternative - -
means that may practically be used to achieve these goals will be presented and
compared using monte carlo computer simulations- ' '

The Classigiga;;anfEﬁpblgm'

The goal of this classification is to determine, with a minimal probability of:
being in error, on which side of a cutting score or between which of several cutting .
scores, a testee's ability falls. There are two kinds of error probabilities that
'%ﬂﬁwfééﬁﬁEé;éiéﬁiﬁéd“iﬁ”making“ghege“éiassificatianS?SanEwis=thE=canditiaﬁalxprababiliti_;
of being in error (i.e., for a single testee or at a specific ability level); the
other is the expected or unconditional probability of being in error across a group of
testees. The conditional probability is a function of the test, the testee's ability
level and the placement of the cutting score (for the moment, limiting the discussion
to one cutting score). For a given test of fixed length, the probability of making an
error of classification for a testee is usually high if the testee's ability level (8)
~-1s near a cutting score (69), and lower if the abilitv level is distant from the cut=w

.ting score. This conditional probability of misclassification [p(|0)] 1is described |
by a function like that shown in Figure 14, :

- The unconditional probability of misclassification for a group of testees
[P(M)], is a function of the“donditional reliability function and the distribution

of abilities within the grbﬁé;uﬂdér consideration. For a large group with o
abilities distributed N(0,1), this probability is given by Equation 8. :

PM)i[m P(M|O) ¢ (@) dO ' (8]

o B | o
where ¢(0) = [2m+exp(0°)] ~

In practical situations, it may be desirable to minimize the quantity in
 Equation 8. This unconditional probability is a scalar quantity and, as such can be -

This research is supported by contract NOOO14-76-C-0243, NR150-382, with the
o _Personnel and Training Research Programs, Office of Naval Research., =~ =
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minimized. A function such as the conditional probability function can only be
minimized at a single point and this is typically of little practical value
because theoretically, assuming a continuous distribution of ability, the praba=
bility of anyone havir~ an ability at that point is zero.

Figure 14 )
A Conditional Probability of Misclassification Curve
BT
[
SC

p(Mle) -t

* A more viable approach to making classification decisions is one that will,

- over a group of individuals, maximize some form of utility such as the quality of
performance extracted from the work force. The unconditional probability of
misclassification reflects errors of classification into categories along a latent

.. continuum and it may be errors of classification along an observable success-failure. -

. continuum that are of interest. This possibility 4s important because two indi-

viduals, one with an ability level slightly above a cutting score on the latent

. continuum and the other with ability slightly below the cutting point, . probably
‘have a trivial difference between their probabilities of success on a job. If

- both are classified-above the cutting score, however, one will be considered a

"it" and the other a "miss" when classification occurs on the latent continuum.

In order to assess the praaticsl value (i.e., cost effectiveness) to an organiza-
tion of an adaptive testing strategy, utility functions of © for each decision ,
. must be specified. As an example of such utility functions, consider the following:
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For three classifications--low, middle, and high--three utility functions
might be:

Unedium = @(3i0§e+ﬂ.7)) [10]

Upign = 2:0(0(3.0(6-0.73)) B )

X
where $(x) i/r ¢(e)dt
—
A practical situation in which these utility functions might arise is as

follows: There are three jobs requiring an ability, 6. One is so easy that almost
anyone can do it but when performed satisfactorily, it is only .5 utility units of

Figure 15 A
Conditional Utilities for each of Three Decisions o
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value to the organization. A second jab is féirly easy and 50% of people with ©

above -.7 can perform it satisfactorily. Differences in ability near -.7 make
greater changes in the probability of success than do differences around, say,




6=0.0. Ninety—-eight percent of people with 6 above 0.0 will be successful on the
job and additional increments in 6 are of little importance in predicting job
success. - Success in this job is worth one unit of walue. A third job requires
higher ® to be successful, but is worth two units of value when performed satis-
factorily. The utility functions defined by Equations 8, 9, and 10 result in the
three utility curves presented in Figure 15. As can be seen, there is a clear
reason for assigning high 6 people to the third job and lower 8 people to the

second and first jobs.

Test D231gn for Class

Although it may be possible to determine that quantity (e.g., probability
~of misclassification or expected utility) which is to be minimized or maximized,
‘it is difficult to design a test explicitly for that purpose. The goal of optimal
test design can be approached practically via one of several approximation stra-
tegies. Two general types of testing strategies that have been researched in the
ability measurement domain are the conventional testing strategy and the adaptive
testing strategy. In the former, test items are selected to best measure the
abilities of members of a group, and the same test is given to everyone. In the
latter, a test is tailored, during the testing process, to cach individual's level of
ability, and a different test may be given to each person. This permits higher
measurement precision over mast of 'the ability continuum than that attained with
‘'a conventional test.

In the remainder of this paper, two forms of a conventional test and one form-
of an adaptive test will be compared. The conventional tests will be a unimodally
peaked “test” with all"item difiiculties of one vélue TatdTa bimgdally peaked test'fﬁ

values. As will be discussed later these are, fespettively, attempts to put
‘items at a level where they best measure most people or at a level where people’
need to be measured best. The adaptive test to be compared will be Owen's (1975)
Bayeslan strategy. This strategy starts with some estimate of an individual's
ability, chooses an appropriate item, administers the item, and forms a new
estimate of the individual's ability. Using this estimate, it chooses the next
item and continues this procedure until the end of the test.

Siﬁce utility functians are petullar to an organization, the magority of the
comparisons will be in terms of misclassification probabilities. The utility
functions presented above will, hcwever, be -discussed as examples in some later

- comparisons.

Simulation Procedures

The comparisons presented in this paper assume that classification decisions

are made in the following way: - e o ) R

l)‘ A testing strategy selects a subset of items from a iatge pool of items;

2)‘ These items are then administered to a testee, and from his responses-
to those-items-an estimate of ability level is obtained; -

sification Problems o R,



3) The testee is then classified into that category which:

a) in the case where probability of misclassification is of interest,
' is the one in which his estimated ability falls, or

b)  in the case where utility maximization is of interest, is the one
which for his estimated ability predicts the highest utility.

To simplify the analyses and interpretations, availability of an infinitely
em——-large item pool was assumed.  This pool contained items of all difficulties with
their discriminating powers fixed at a constant level. It was further assumed that
these items could not be correctly answered by guessing. These assumptions reduced
the problem of item selection to determining the difficulty of the next item to be
administered in the adaptive test. Finally, to make a determination of the :
unconditional probability of misclassification possible,’ability was assumed

distfibutad N(0,1).

Dweﬁ' (1975) Bayeslan testing procedure requires a prior esﬁlmate of a
testee's ability to administer and score a test. TFor all data presented in this -
'paper, a fixed prior ability distribution which was N(0,1) was used for all testees, -
. Owen's.scoring procedure was used to score the ccnventional tests and again a N(O,;1)--
prior was used. .

Generation of Misclassification Probabilities and Expected Utilities

- Conditional probability of misclassification was calculated for each of 30

T yalués 6f 6 equally spaced between 6==1745 and 0=17457 "~ The simulation-procedure——
followed thaz described by McBride and Weiss (1976) or Vale and Weilss (1975) 7
Ten-item "tests" were administered to 200 "testees" at each of 30 points. The means
and standard deviations of the abiliry estimates were calculated at each point, a
normal distribution with these parameters was determined, and the proportion of
that distribution falling outside the correct cutting score interval was taken as
the probability of misclassification at that level of ability. These probabilities

- were then visually fitted into the smooth curves shown in the figures. _ .

"gests" were administered to 2 000 "testees w1th abllity levels randomly sampled

from a N(0,1) population of abillty levels (the same sample of 2000 ability levels

was used for all comparisons). The predicted category for individuals was the

score interval in which their ability estimate fell. The true category was the

interval in which their true ability fell. An individual was considered misclass- . -
. ified if the predicted category was not the same as the true category. The number .
-of misclassified individuals divided by 2000 was taken as the uncnnditional proba-

bility of misclassification.

Expacted utility was determined by generating EDDD ability estimates follawing
"the same procedures used in the calculation of expected probability of misclassifi-
“cation. The optimal decision to make for an individual was taken as the decision
. corresponding to the utility function with the highest value at the estimated level
"of ability. The actual utility was the value of the utility funetion correspondimg -

to Ehe decision made, evaluated at the '"testee's' true level of ability. The




expected utility was simply the mean of these 2000 actual utility values. These
values are reported only in comparisons of tests in decisions involving more than
one cutting score.

m
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A Single Cutting Score

L

The simplest categorization situation to investigate is where there is one
cutting score placed inthe middle of the ability distribution at Eﬁgoiai The best

conventional test for making this decision is one with all of its items peaked at
£=0.0. Figure 16 shows curves representing standard error of measurement functions

Figure 16
Standard Error of Measurement Curves for Three Tests
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(the reciprocal square root of the information functions) for three ten-item tests
with a=2.0; a peaked conventional test with all items having 5=0.0, an ideal
~adaptive test with all items having b=0, and a practical adaptive test with items
having difficulties at the estimated ability level at each stage. The conventional
‘test provides a low error level at 0=0.0, but higher error levels distant from that
point. The ideal adaptive test provides the same low level of error at all ability.
levels but is unrealistic because in order to implement it, it is necessary to know

ERIC
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a testee's ability level before the test is administered. A practical adaptive test
provides . standard error function lower than that of the conventional test at abil-
ity levels distant from 8=0.0, but relatively higher near 6=0.0. "

Assuming errors of measurement at a level of 0 are distributed N(8, SEM?), the
probability of misclassifying an individual is given by Equation 12,

i
et
!

I
|
i
[

P(M|8) = 1

1 - o[/1(8) (8,-0)%1 - [12]
where Sé is the cutting score, and_l(@) is the test information

It can be shown from Equation 12 that when Eé is fixed, P(1|0) is a monotonic

increasing function of the standard error of measurement. Thus, the ordering of the

Figure 17
Conditional Probability of Misclassification, a=1.0
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three testing strategies on ECH[B) is the same as their ordering on conditional
standard errors of measurement at any level of 6. It can then be seen from these
‘curves that a practical adaptive test can provide a lowver expected probability of
misclassification if it approximates the ideal adaptive test. How well a given
‘adaptive testing strategy approximates the ideal is, or course, an empirical
question. :

Figure 17 presents the PCM[E) curves for a ten-item conventional test, with
difficulties peaked at b=0.0, and a ten-item Bayesian adaptive test, both with item
discrimination fixed at ¢=1.0 and both scored by Owen's method. The curves appear
very similar, being high near the cutting point (indicating a high probability of
making an error) and low distant from the cutting point. The conventional test
allows somewhat better decisions for values of 8 nearer to the cutting score. The
differences in the conditional probability of misclassification function yield a
very small difference between unconditional probability of misclassification values

. for the two strategies, which were .120 for the conventional test and .122 for the
“Bayesian test. (Unconditional probabilities are shown in parentheses beside the
legend in Figure 17 and successive figures.)

Figure 18
Conditional Probability of Misclassification, 2=2.0
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Figure 18 shows P(M|6) curves for the same strategigs with item discriminina-
tions of a=2.0. The same general results were obtained, except that the differences
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at values of 6 distant from the cutting score were more pronounced, and the range
of superlority of the conventional test was smaller. Due to the N(0,1) shape of
the ability distribution, however, small differences near the cutting point are as
important in the determination of the expected probability of misclassification as
large differences distant from the cutting point. Difference in expected probabil-
ity was still very low (.076 versus .075).

Figure 19
Conditional Probability of Misclassification, z=3.0
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Figure 19 shows curves for tests with high.itemdﬁissriminatién (a=3.0). Again,
similar results were obtained and the difference in’expected probability of mis-
classification was still small (.052 versus .054). '

These results suggest that an adaptive test makes classification decisions
about as well as a conventional test in this simple case where a conventional test
- should perform better in comparison to a2 adaptive test. However, it should be
noted that the conventional test was sup.:lor to the adaptive test in an increas-
ingly narrower range of 6 with increasing izem discriminations.

More than One Cutting Score

Design of conventional tests is .or~ ceomplicated, however, when the cutting
scores deviate from the center of t%=z abil.ty distribution. A ziven inrcrease in
.information, which corresponds to & 4iven decrease in standard erroy. has its
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greatest effect on the conditional probability of misclassification at ability
levels near a cutting score. This suggests that items should be peaked at the
cutting scores. But a given reduction in conditional probability of misclassifica-
tion has its greatest effect on the expected probability of misclassification at
levels of ability where most of the people are located. This, assumimgiémN(D,l),
suggests peaking the item difficulties at »=0.0. As a result, when the cutting
score is at some value of 8 other than 0.0, the two suggestions are in conflict.
-The optimal point(s) to peak the difficulties will be some function of the location
of the cutting scores, the discriminating powers of the items, and the underlying
.ability distribution. Determindtion of such an optimal design of a conventional

test is beyond the scope of this paper. However, comparisons of some standard
conventional test designs with an adaptive test will be informative.

Figure 20
Conditional Probability of Misclassification, a=1.0
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~ Assume that there are two cutting scores, one at B§29g7 and the other at 6§;.7,

and that all errors of misclassification are equivalent in terms of importance.

One classical approach to designing a conventional test involves peaking half of
the items at each of the two cutting scores, where the fine distinctions need to.be
made; * such a test can be referred to as a bimodal conventional test. Another
approach 1s to peak all the items at b=0.0; this test can be called a unimodal
conventional test.
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Figures 20 through 22 present the conditional probabilities of misclassifica-
tion for each of the unimodal and bimodal conventional tests, and the Bayesian
adaptive -test, at three levels of item discrimination. Figure 20 shows the curves
for the case when aq=1.0. There is little suggestion in Figure 20 as to which .
strategy is better. But an interesting discontinuity is observed for estimates
from all testing strategles at the cut points. This characteristic is due to the
fact that, for finite-length tests (which include 10-item tests like those used -
here), the Owen's Bayesian score is biased (i.e., the expected value of the score

_at a given level of 6 'is not ). Specifically, in this case, the Bayesian score is

biased in the vicinity of the cutting scores toward the center of the population ™ =

ability distribution at 6=0.0. This causes more testees to be classified into the
middle interval than would be by an unbiased score. The effect 1s that fewer errors
of classification are made for ability levels in the middle interval and more are
made for individuals in the two extreme intervals. Comparing expected probabilities
of misclassification, the adaptive test yields the lowest probability (.197) and = - -
the bimodal conventional, the highest (.224). : : E

Figure 21
Conditional Probability of Misclassification, a=2.0
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It is difficult to say in this case, however, whether the adaptive test
provides a lower expected probability of misclassification because it makes better
decisions or because it is conservative. The conservatism results. in more classifi~
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: ns errors in the extreme’ :atagories, and fewer arrars at central ability
15 where more 1ndividuals ability levels lie.‘~ ‘

e 1scant1nuity suggestiug that scores are taa extreme near the Qutting palﬂts;, The
“~adaptive test provides the smallest conditional prababillties of misclassification.
over most of the ability range. It makes a few more- errors in the extreme intervals
ithan dces the uﬁimodal conventional test, but the uﬁimodal test's. supaziority is

- pffset-by- extreme error rates in the middle interval. Iﬁ;termg of - expected- proba=~~
billties of mlsclassiflcatian, the adaptive test is again superior [P(M)%.llﬂ] _
~With-an expazted prcbablllty of misclassification of .126, the bimodal conventional -

"test, 1tz nearest zﬂmpetitar, is expected to make 1.15 tlmes as maﬂy errors of
’ classification o .

Figure 22
Co nditlanal Prababillty of Misc13551f1catian, a=3.0"
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" Whan a= 3 D, as shawn in Flgure 22, -the sane general resu.cs were obtained.
The expected prababillty of misclassification for the bimodal conventional test
7(.085) was 1.18 times as large as that of the Bayesian adaptive test (.072). It
shculd be noted however, that items this dlscflmlnatlng are rare in practlce.
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‘ijwtil Camparisgng

f?"testing can greatly: reduce overall errors of classificatian by up to 15 percent-:
“dn'a realiatic ‘classification situation. ' Eut, -as-was -discussed. earliEE, the .-

Suum” rather than an observable. sucgess-failUfa zaﬁtinuum.z Using the utility
’5jfunctians presented earlier. and choosing the decision ylelding the highest  expect

“utility for the estimate of. ability,-average utilities for the bimgdal*ccnveﬁtianalf
_ “ test (the. best conventional test in previous- ccmpatisans) and the Bayesian ‘test T
";were'.BDE and .820, respectively, using. the items’ of @=1.0. For-'the same. sample
. 'of 'abilities and a=2.0, the utilities were_.BBl and- 849. With a=3.0, z 1
- ~were ,855 and 858 Whether these ‘differences are- pragtically Eigﬂifisaﬁt depend
" on what these units of utility mean-in'a particular context. - But.such utilities

7. -the 2amparative values aﬁ canVEﬁtinnal versus adaptive testing for- glassificati@nﬁ’f
“ﬂdécisions. - T Ll :

. to an organization involved in making ‘classification (e. g;,*selégtinn and-place-:
ment) decisions. Specifically, the data show that while a cunventinnal test =
classifies as well as an adaptive test ‘when there is one cutting score at the'
"middle of the ability d;gtributinn, an ‘adaptive test will provide better categor--
_ 4ization when there 1is more than one. The determination of. the cost eﬁfegtiveness;,;
- of adaptive testing in an gtganizatinn, howevar will depend on the gtility T

‘functions specified by the Dtganlzatinn.

' It ia tempt;ng tn take these values at this point and say that adaptive _-}T

errors of glassificatian presented thus far are based on a: 1EtEﬂt ability gaﬁ;i,u

(of which’ ‘these are only an example) must ultimately. be considered indetermining -

Eaﬁclusicﬂs

: Ihese results suggésﬁ that adaptive testing may affer impértant advaﬂtages




APPLICATIQNS OF ITEM CHARACTERISTIC CURVE THEDRY
: TO THE FRDBLEM OF TEST BIAS : v

STEVEN M, PINE

Univaraity of ManESDta

‘One of tha most Lhallanging and 1mpoftant issues facing test devalopara and.

q;;uaafa today is whether or not ability tests are biased againat minority groups, and
;-1if 'so, how test bias can be reduced. In recent years, there has been conaidarabla A
=~ research activity concerned with the identification and reduction!of bias -and Do T
- unfairness in various settings. For the most part, these efforts have been unsuc—

- cessful. ~One possible reason for this lack of progress is the fact that almost 7
’ a11 the- faaaarah on test bilas and fairnaaa haa hean based on claaaical taat thaory.'f
R In his recent raviaw af taat theary, Lumsden (1976) rafara to the true. score
s model of classical’ test theory as the '"Model-T Theory" and suggests that classical
" test theory reflects a very restricted range of test behavior. For axampla, class-
~ ical test theory emphasizes group-oriented measurement; but group-oriented measure-
- ment is likely to be unproductive if tests are to be relevant to individuals of -
varied backgrounds. Consequently, it is unlikely that this approach will be uaeful

- in raaclving prablama as ‘complex as those 1nvolvad in test bias,

DL Biaa in testing is caused by the failure of tests to take into account a_

"~ “number of important variables in their construction, administration, - -and acaring
. (Angoff, 1975; Green, 1976;.Pine ‘& Walaa, 1976; Sattler, 1974).  These variables
include 1nd1vidua1 differencea in mativatian, athnic hackgrnund and relatad

' jvaf1ab1aa.

. Taata based on alaaaical test thaory may ignore certain types of individual

o diffarancaa because they are constructed using item statistics which can be axpacted
- to vary between population subgroups, and because they require all testees to take
 ddentical test items. If" progress. is to be mada in this eritical raaaarch araa, a
f_taat theory Ehat permits .the testing process to be adapted or tailored to lﬂleidE :
;iuals is needed. This capability now exists in the form of item characteristic

- curve theory, coupled with the ta:hnclogy of adaptive test administration.

;An Itam Respanaa Hmdal of Bias

: Itam charactafiatic curve theory. Raaantly, a new test theary callad "itam

E charaateriatir curve (or latent trait) theory," apec1f1ca11y daaignad for the
measurement oi individuals; has emerged. Item characteristic curve theory (Lord &
. Noviek, 1968) is based on the idea that the responses which individuals make to a

- glven ability test item are determined by their ability on. one or more undarlyiﬂg
-dimensions (latent traits), and the parameters of the test items, i.e.; their
“difficulty, discriminating power, and prabability of being guessed aorractly by
E‘ahanaa. This idea is.expressed mathematically by the Item Charactariatic Curve (ICC)
which gives the prabability that a testee with a giveﬁ ability level on tha

:undarlylng dimanalan Wlll carfactly answer a given test: 1tam.

. This research is auppaftad by contract NOO014-76-C- D244 NR Na. 150*383, w1th thavf
Parao nne SR

1.and- Training Raaaat:h Pragrama, Office of" Naval Raaaarah.,




The IGG curves and their associated item paramaters are the building blocks .
- of this new test theory. Once item parameters are. determined for each. test. item,,vf
“>they can be used to describe how individuals at a given ability level are likely -
_to, perfnrm on each item. ICC. theefy allows prababilistic statements to be made
- about the ability 1ével of testeea regardless of theiy subgroup membership or ‘which "
* ‘gubset of items they have been administered. This p:aperty pravidés a means. for -
. creating tests which can be adapted to individual testees since it is no 1DngEf‘”*
' .necessary.that identical items be administered to every testee, thus making ICC
" “theory potentially valuable for developing less biased testa. Fufthefmores the',: :
E fibiassfaﬂucing potential of ICC theory 1s not tied to its use with any particular ,Qf4
lﬁ,Jitegting strategy, althcggh the greatest benpfits can be axpected when it 15 used N
- iAn conjunction with adaptive testing (?ina & Weiss, 1977 Weiss, 1974) L

Definiticm ‘of item’ bias. A tgst uém can be emsmdgrgd t:;; béz unbtased zf aZZ
mdwzducﬂs ham.ﬁg the same underlying ability level have an equal pr&babzhty c:f
'1@rre;tly answgrtng the Ltsm;_fggardlsss af thsl? subgraup membership.  ~ .. - »,;;

’ As indicated the 1CC gives ‘the prcbability of currectly answering an item at
- a given ability level. Therefore, the above definition of an unbiased: item is "

- eguivalent to requiring that a test item have the same ICC for all subgroups. = -~ = .-
“S1ince an ICC 1s deseribed by its diffizulty,.discriminatian and guessing: parameterg,da
this 1s also equivalenﬁ to requiring that the values of these parameters be invar- -

iant within a linear transformation from subgroup to subgroup. The linear trans-
- formation assumption is necessary to account for the fact that subgroups in which:.
_the parameters are calculated may have ability distributians with different means j; -

maﬁd variances._u o - o v ) _ T

"Applying the Model to DEtEEt Tgst Bias

. Iha fcllawing discuésicﬂ is restricted to tests that consist entifely of -
-~ homogeneous. items. Homogeneity implies that the items measure essentially one . L
. -ability dimension. This definition. allows for the possibility that a hcmogeneaus;71;¢
- set of items may measure one oOTr more extraneous dimensions in addition to the single,
.'primafy dimension which the test is purported to measure. For instance, test Atems -

" ‘intended to measure vocabulary ability may inadvertently also measure ‘several . 1_‘
“eultural variables. Although the present discussion is restricted to- hnmogenenugff~5=
items, the cancepts developed here cguld in principle be extanaed to the multidi= :

—’mensional case.

, It is also assumed here that test items fit an underlying response madal for
- all subgroups._ This model is the function which specifies-the shape of the ICC
curve and indicates, at each ability level, the probability that an individual - . __
at that level will correctly answer the administered item. This constraint is not
. as limiting as it may appear to be, since one can empirizally test the fit of the
- -item data to the assumed response model and eliminate those items that do not fit
priur to carrying out any of the analyses: described here. = s :

. Given the above restrictions, the first step in investigating whathar a set
“6F items is biased is to screen out those items which do not fit the underlying-
‘response EQdEl -Most- of the existing computer programs far estimating Atem. resp ons

.
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faﬁafémétérsi(e"g., Urry! 19749, Wiﬂgersky & Lgrd -1973) reject itémg that do not -
fit the assumed model as a matter of course. Iherefgre, with these programs, it

,f’g“can be assumed that all items for which parameter valuas are available fit the
'f}rgsponse mcdel \ S

The next . stap is to demonstrate . that these items. are hamagenegus, i.e., Lha

. .same trait accounts for the major portion of undgrlyiﬂg variance in each subgraup s.ff

“inter-item correlation matrix. If they are homogeneous, Lord and Nbvick (1968,
L ppL- SSQﬁBED) have shown that their item response parameters will be invariant -

"—(withiﬂ a linear transformation) across subgroups. According to the definitionsi

f:;given earlier, invariant test items are unbiased. Therafare, _sufficient method
7. for demonstrating that a set of test items is unbiased is first to:factor- analyze -

" .<“the matrix of inter-item’ carrelatian coefficients within each of two or more. subﬁamf

:,igraups and demansﬁrate that the same single factor accounts for the major porticn ' : 
~of variance in each subgroup's matrix, anﬂ thEﬂ show. ﬁhat this is the factar that';f'*

;’;—the test was intande& to measure. S ; : R

Figure 23
Item Bias Shown as a Perpendicular Distance
‘in a Scatter Plot of Subgroup Item Difficulties

Item Uiffiﬂwlﬁy Paraméterﬂ
Minority Subgroup

 Item Difficulty Parameters
- Majority Subgroup

A second apprcach for determining whecher a set gf test items is blasa& ;st
also lmpliclt in the work of Lord and Novick. If the same dimension underllés a, set
f - test items for a populatlan of testees (which would, therafcfe, make the items.

m

@
unbi asad), ‘the item parameters ‘for- “any two subgrnups in the papulation shculd have
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-a. lineer reletiunehip (Lerd & Noviek 1968 p. 380). This condition. can be tested "
- directly by plotting the discrimination (a), ‘difficulty (b), or guessing (c) para-. .
7 meters of ‘a set of 1tems derived from one subgroup_ egeinet those from: another and: -
. and testing. for . lineerity.} A plot of this -type,. based on rhe item reepenee diffi-
" culty parameters for a 10- item test;, is ehuwn in Figure 23. If feerur enelyeie ‘
- indicates that a single dimension" underliee a set of iteme, ‘the presence of a liﬁee,»
‘relation between eubgreepe for ICE peremetere s berh a neeeeeery end euffieient
rdemenetretion ;het theee iteme ere unbieeed SRy S U

b;;'“'fffln Figure 23, . the perpendieuler dietence between eeeh item end the beet

.. -fitting line through all the points can be interpreted as- the degree of item biee,
. the greeter the dietenee, ‘the more item bias. is impliea "~ By ceﬁp ring the reletive'f
ritem peremeter values between subgroups, -it is possible: to-identify the specific . . ‘.
- test items which contribute .the most to a non-linear’ relationship. between . eubgreup '
—"’peremetere., In the languege of enalyeie of. verienee, this - non-lineer“reletienehip(
.. ‘'would be an item—by—greup interaction. Plots ‘'gimilar to Figure 23" and related -
”g7interpretetione eould eleo be made fer item dieerimination end gueeeing paremeteree B

nol The degree—of-itemﬁbiee index illustrated in Figure 23 hee>=everel eppliee

tiene.: It could be used to eereen out the most biased iteme during the eeﬁetrue
“tion of a eenventionel test. Or, ‘it could be used within an edeptive teeting

framework as an additional eriteriom for item eeleetien. :

Coe

SR The assessment uf item bias by plotting a- eeatter diegrem of item peremeterE' =
. for.ome subgroup: against another is not in itself new. “A very. similar  method has .
.. -..been used.at Educational Testing Service (ETS) for several years. The eeeen;lel P
..’ difference between the present method and the ETS. method- is that ETS uses item -
. parameters based on classical test: theory. It can be shown (Lord & Novick, 1968
p.:301)- that ‘classical item peremetere will generelly not be lineerly releEed eeroee
< .'subgroups of a population. This means that the test for bias using classical...... ..
-7 _parameters- een leed to an artifactual detection of bias. . Eurthermore, the diffi-’
= e-eulty: peremeter of classical test theory is confounded by leVel of ’ dieeriminatlen
. and gueeeing effects -(Urry, 1974b). Thus, 1f ‘an item.ie relatively more difficult
- .- for one subgroup" ‘than another, it is not clear whether this is because: the’ item . :-
.- varies only on:difficulty,.or whether this ‘result 1is caused by differences in o
f,ﬂ’dieeriminetion and/or gueeeing. The item. peremetere from ICC. theory, on- the’ etherj;*?
. hand, provide relatively" unconfounded measures of diffieulty, dieeriminetion,'end T
~““guessing. - Therefore, by plotting these peremetere on separate graphs, it is:. S
}*poeeible to determine exactly why -an item is biased. For instance, 1t mey be. thet
“a’given item is biased not because.it is relatively more difficult for a minerity
" . subgroup, but’ because that Eubgreup 1s less effective at" gueeeing., Ihie kind of
;fdeteiled enelyeie ie impoeeible using eleeeieal item peremetere,,

ST Anether iﬁtereeting eoneideratien in the use. ef ICC -versus cleesicel item ;;1‘:*

_ 'parameters 1s the fact that 1if classical item peremetere are - lineerly releted emong
.~ . subgroups, - thereby implying an unbiased set of items, ICC" parameters will of

o Aneeeeeity not be lineerly related and wills therefore, imply. the presence of- biee

... Adn these same items..- This fact would seem to have particular relevance for the,‘igt
- “work of - reeeerehere such as Jensen (1975) whe have concluded that tests are geﬂer= .
’1?elly not . ‘biased” ageinet Eleeke ‘based..on the" presence of a'linear relationship '

. betweee elaeeieal 1tem paremetere correleted eeroee Bleek end White eubgroupeL -




SR An example with real data To demonstrate how these analyses might be- used
“and interpreted, they have been applied to the difficulty parameter from 75
‘fmultiple—chciae vocabulary items administered in a racially mixed high schODl in ‘
“‘Minneapolis. The sample sizes in this study were not optimal (58 Blacks,_m' T
f'lES Whltes), buc the data PfOVldE a good example af the. technique '

N FleE the' hongEﬂéity assumpticn was Eestéd'by factar analyzing the inter-
rcmrrélation matrices. A subset of 45 items was chosen and two tetraﬁharic’
”ielation matrices were calculated, one for the Black and -one for the White
i les. The matrlges were then factor analyzed using the principal axis ‘method;
7}communalities were estimated using the highest off-diagonal entry for each item, - -.-
- and -the factor solution was iterated until the estimated communalities stabilized.
~Eight factors were extracted from each matrix, in each case accounting for-all of.
“the -estimated commor varlance The Eigenvalueg from the two fagknr andlyses are

.;;hown in Table 2.

. Table 2
Eigenvalues frcm Factor Analyses of. Black and White
Subgroup Itemslntercorrelatlcn Matrigesg

-Pe:gent of :
Common ~  Cumulative

[

o
]

[y
13 |
< N
f |
i ]
'l |
m

Subgroup  Factor snval “Variance. ~  Percent
Whites o -
: ‘1 19.26 - 64.8 64.8
2 2.32 7.8 72.7.
3 1.67 5.6 78.3
4 1.58 5.3 83.7
5. 1.37 4.6 88.3
6 1.20 4.1 92.4
7 1.18 4.0 96.4
S 8 .1.08 3.6 100.0
- Blacks R : - e
: -1 16.33- 47.9 T 47.9
2 3.70 10.9 58.7
3 3.01 8.8 67.5 -
4 2.64 ~7.7 75.3
- 5. 2.35- 6.9 . 82.2
. 6 2.26 6.6 . 88.8
' 7 2.06 6.0 94,9
el 8 1.75 5.1 100.0

SR ,Far bath thé Black and the WhltE data, the flfst eigenvalue was. very 1arge in
jccmp arison to the femalnlng elgEﬁvalues, prnvidlng evidence suppartive of the uni-""
ﬂdlmg,51onallty assumptlan_A ‘Furthermore, the items appear to be- measuring . the" same -
dimension  in both subgroups, since the coefficient of congruence (Rummel, 1970,

p. 461)" calculated between the 45 COIIESPDHdlﬂg loadings for Factor 1.in tha two
?Subgraups was .97. It also seems reasonable to CGﬂEluéE, based on the patte n of
'1oad1ngs,'ghat Factor 1 is meéasuring vccabLlary abillty. : S
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. The results of a further analysis oi bilas for these 75 ‘items are shown in ,7ff
' Figure 24." The scatter plot in Figure 24 is based on the estimated ICC difficulty
parameter values calgulated separately fur the White and Black subsamples.

Eigure 24 = '
Graphical Analysis of the Bias in 75 Multiple Choigea
Vacabulary Items
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pifficulties for Blacks {bi)

" The data plﬂttéd in Figufe 24 show that almcst all of the items are relatively-
" more difficult for Blacks than for Whites. This is indicated by the. fact that the .
dots representlng the items tend to fgll below the diagonal line. If the items were™
equally difficult fnr Blacks and Whltes, the data points would fall on this line.. -

' H@wever, the mere fact. that the items are ‘relatively more difficult fnr Elscks}g

igg_aannot necessarily be taken as an indication of bias, since bias in the test items o
 -is assessed by evaluating the degféé of linearity in the plot. The Eearsan prﬂduct—:;




f‘that to obtain unbiased test items, all that is necessary is to-know how each -test

" item behaves (i.e., what its parameters are) in the various subgroups which EGmpflSE
‘. our test population. Using the method now under development, bias in an item can
-.be eliminated by correcting its parameter values-to account for the -degree of -bias. :
:--Then, if the resultlng ablllty estimates are based not on. the total number of )

ffcorrect answers, but on some functlon of the Earrected item patameter values, the f

ﬁ?resultlng -ability estimates will be- unbiased. - - o co -

. tent with the results of the factor analysis and suggests that these vocabularyw«
“items,. when taken as a group, are essentially unbiased. It is passible, however,
© . that even though the items taken as a group are unbiased, one or more of the items
- taken individually might be biased. For instance, in these data, several items

. appear to have larger departures from the dotted line fitted through the item points .
.- in Figure 24. Of course, it is possible that these large departures may be due only:
= to.sampling error. To eliminate possible mlsintezpregatigns that would oceur if

- this were the E&SE, a technique is under develcpment ‘to establish- ccnfidencé 11mits
;,jfnr the best fitting line. This technique will. permit the. identlfication, w1th -

" some known degree of confldenge, of blased items. o : '

f?latian technlques.' In this way, the bias-corrected item parameter values can-be -
17directly :Dmpared to the knOWﬁ, true 1tem parametar values., If the results af

Q'cf the effezts Df 1tem blas ‘on ablllty test scares,

f*Nat at-all! First, some may dlsagfee that bias has been’ eliminated as long as
”fdifferences exist in the mean test scores of.various subgroups. Secondly, bias

;fln the estimation of item parametEfs is only one source of posslble unfairness in
_the testing process. A test can be unfair for a myriad of other reasons, 1nclud1ng
‘those attributable to elements in the testing environment, and to the ‘psychometrie L
properties’ of the procedure used to select and administer test items (Pine & We;ss,,~';”;ﬁ%
-:1977; Weiss; 1975) - To explore the possible psychometric influences on test :
:runfalrness, a series of computer simulations designed to.investigate how item
“‘characteristics ‘interact ‘with the choice of a- testing strategy is currently in
'pfogréss. Also in progress is.a live computerized testing study designed to-
';1nvest1gate how well some af;the bias-reducing procedures described in this paper
- operate in a real test administration. This study will also 1nve5tlgate -a- compu- 7
~‘terized adaptive test designed explicitly to reduce bias in test scores.. In addition;
*.the. study ‘is de51gned to replicate a previous finding that camputerlzed ‘tests -l
i?lncrease Ehe test-— taklng matlvatlcn Df miﬁnrlty Eestees (Betz & Welss, 1976b

1

 moment correlation’ coefficient between the item parameter values for Blacks and

Whites is r=.86, indicating a high degree of linear relationship. This is consis- -

iR

‘ffRéla;edngvélgpgentg

The material presented here is only one example of haw item charactezistlgi'

- curve. theary can potentially be applled to the problem of test bilas. It is only
. a small part of the research related to test bias and uﬁfairness cgrrently underway - -
-, at the UnlverSLty of Minnesata. - LT

Addltional devalopmenzs ;nvolve a method of correcting for bias in the IGC

_;;item pa:ameters, ‘Very briefly, this method cansists ‘of determining item. parameterzl‘t
-~ estimates that will depend only on the extent to which an item loads on the factor

it is supposed to be measuring. In essence, -this approach is based on the notion

‘ Thls method for correcting item bias is now belng ‘studied: by computer 51mu—

Dogs thlS mean that we can now write the final chapter ‘on test unfairness?

L

Aruitoxt provided by Eic:



APPLICATIONS OF ADAPTIVE TESTING IN
MEASURING ACHIEVEMENT AND PERFORMANCE

- ISAAC 1. BEJAR
Hniversity,of Minnesota

. The purpose of achievement.testing is to locate individuals on an achievement
-+ scale. - Usually, . to interpret achievement test scores, a transformation is applied -~
- to the scores which allows an interpretation in terms, of the relative standing of -
- an individual with respect to the norming group.' In many instructional settings,"
- -this interpretation-is not adequate and, as a resul ,~in$tzuctionalfpé:sonnel
_have requested more concrete kinds of interpretation. - Criterion-referenced -
"~ testing, mastery testing and similar approaches have been developed to meet -
‘these needs. - ' : : S e
v . What is unique about criterion-referenced and mastery testing is that the . =
" items that constitute the test are sampled from a population of items which is - =
isomorphic with the objectives of the instructional program in which achievement . .
.15 to be measured (Shoemaker, 1975). ~Because of this, it is possible to inter-
pret scores in terms of the specific areas of achievement that a student has = =
mastered in relation to the cbjeativgs,cflthe_iﬁstructianal program.

] Undoubtedly, this attention to content is bound to increase the quality -
of achievement test scores. However, the degree of improvement possible in .
achievement test scores using any approach to achievement. test construction is
_~limited by the nature of the test item. ‘When typical multiple-choice test -
{tems are ‘used, a very limited range of student performance is measured.: The
cognitive skills involved appear to be the processes of recall of information-
. ..coupled with recognition of the correct answer, and the result is usually '
fj;exprgssedrgs‘eicher'“goffagt“ or "incorrect". However, achievement: or knowledge
,jlfis'seldgmféll or none, and proceeding as if it were,'as in- the typical-"ecor- . i
/. _rect—incorrect' multiple-choice achievement test, does not extract all the S
. - potential information about an ind;vidual'biaahievgment’levélg,_This‘papér
“describes research concerned with the integration of testing procedures which
 take partial information into account with methods of computerized-adaptive
' achievament,ﬁestradministratign,.aﬁd discusses some implications of this re- -
search for performance testing. - ' o .

o ?atﬁi&l Egowlédg%,‘

7  Background. Igtﬁitively it seems clear that extracting pattial knowledge ,
from test responses should lead to better assessment of achievement. However, - - -
.the research literature (e.g., Wang & Stanley, 1970) does not show consistent

" This research is supported by-contrazt'ED0014s75=G—0527;,ER lSD@BBQé'wiph;tBévi
s Eersonnelrand Training Research Programs, Office of Naval_Resea:;hi RS S
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flgincfeases in béth Ieliability and validity when partial knowladge is taken g _9
. into ‘account. - The 'results of the typical: investigation (e.g., Hakstian & Kansup, 2
~+1975)  show that, while reliability is usually increased by taking partial know-

.. ledge into account, the validity of the scores remains the same or even dimin-. -
~_ishes. Such findings are usually interpreted as evidence against the useful-

- ness of the assessment of partial knowledge. However, a careful consideration

-~ -of the:problem suggests that something is amiss. One possible explanatien is -

1“'that the tast and the eriterion are not unidimensianal

e ..Tc illusﬁrate, consider two tests,_A and B, measufing a single construct.

“Test B can be referred to as the "criterion test”; the correlation between A

‘and B will be referred to as the validity of Test A.. . Both Test A and Test B .
correlate .60 with the construct. This can be summarized as follows:

. - " Test s
= |60} A - R o [13)
A= -50 - 3 , , | (131

" Then the intertest correlation matrix can be expressed (Joreskog, 1971; Max=
'4well 1971) as Equation 14. : : .

o A wg S ’ - )

" “where ¥2 is a d iagenal matrix af errnrgvariances,‘ For the A in Equation 13;

ia
- Equation 14 becomes..

A f e oy
_ [-60 60 - .60 64 .00
L= @so] 1 [00 ,64]
e AN : v w2 . : ] _
o [.36 EBa] . ,,r{[;aé’,.oo] T BRI
o bese.36] 7 Loo .64l T R A
. . o e T
SRRV S Ll D
o =[1.oo , ;35} P o S .- »
- L .36 1.00] 7 DR o [15]

o " The "off- diagonal element of AA” is equal to the- valldlty of A and the
;1d13 onal elements are reliabilities. In this case hoth A and B have fellabll ies .
QLOf 35 and the valldity of Test A is .35 : R ce ) T

S Naw,Asuppose Test A is admlnistered under candltlans that allow for pars :
. 'tial ‘knowledge and -that, as a result,. its correlation with. the construct goes: -~
“from-.60 to .70. Following the same procedure shown in Equation 15, the re—
"liabllity of Test A becomes .49 while that of Test B remains at .36. At the

~'same time, the validity of Test A increases from .36 to :42. . In short, when"

- there is- a s;ngle common factor underlying’ the responses to a criterion and a

‘" predictor, an increase in the reliability of the predictor will lead to'an
~“increase’in its vaLidltyi Thls is not so when more than one factor 15 Lcmmon. -

'A5?1_:;T., B




fo illustrate tbis, assume that Tests A and B, bath sdminiétered conven- -
) tianally, have in common a method factor (em), in addition to the construzt, .
_ and that bath cgrre ate .40 with it. That is, . ‘

R Ies,
A= [}50 a; A . |
L60 L4 B (161

agtruzt and the method factar are un:c:related the

Assuming that tnh ale
“or Tests & and B, according to the model in Equatiun 14,

‘correlation matrix
is-given by:

I S y2

g - [60 .40 [15D .60] [.43 ».oo]
: .60 .40, 1,40 .40) 00 .48
AT oy N
. [.52 .52] .48 oo]
.52 .52 ~-1,00- .40
_ [1.00 o , o . : BRI
.52 1.00] ' , o - 17

' In this case, the validity of Test A is .52.

S : NDW, suppose that the same Test A is again administered undar conditions .
" that allow for the: scoring of partial information and that, as a result of
this, its correlation with the construct becomes .70, At the same time the
‘correlation of Test A with the method factar drops from éO to L2003 1. e.f,A',»—“f'

bacamesi _ »
: e . m . , )
:A - i70-'.zﬂ]“"" o Test m,(with—pattialxkﬂnwledge) g
~ 1.60 . .40 Test %a,“f S N - [18]
and . i
e [53 .50] . L LT o
w-[%om e

~.Thus, as a result of intraduclng partial knowledge, the validity was reduced
,'From .52 to .50. However, it is clear that this seemingly disappointing re-

-~ gsult 1s not 1n:gnsistent with the true improvement that occurred, namely an

: incfease in the ccrrelatiou of Tast A wiﬁh the cunstruct. .

L Although this example zantains many assumptions, it seems that samethlﬂg ”"

o Silear .ocCurs: with real data. Hakstian and Kansup (1975) compared. “the validity.

1Qf a verbal ability test administered under ccnventinnal and aliminati@n scaring
(Caﬂmbs, Hillhalland & Womer, 1956) iﬁstructlons. Validiﬁy was dafined as the S




‘conventional administration and .39 under elimination scoring. However, the
-correlation with another verbal ability test was, .59 under conventional scoring.
- and .67 under elimination scoring. Thus, when validity is defined as the cor-
-:relation .with school grades, .elimination scoring appears to be less valid; .

;. but when validity is ‘defined as. the correlation with another verbal ability

‘correlation with school grades in language arté_',ThiS;cofrelatian was 149 uﬁder S

“-score, elimination scoring is more valid. These results are not contradictory - =

~.:but simply .provide evidence of the fact that performance on verbal ability
_tests measured either with multiple-choice or elimination items is explained
by the same ability, whereas school. grades on language-arts do not depend ex-—- - -
+ ‘clusively on verbal ability. - . T S I

-~ ‘Advantages of using partial information. If methods for tha assessment

- of partial knowledge are to yield improved test scores, the tests must be .
:i-such that -there will be an opportunity for-partial knowledge to emerge.  With -~
- few-exceptions, most notably Coombs et al. (1956), the presence of partial -

“ knowledge is never tested. Some theoretical results suggest that when partial
- knowledge is allowed to emerge and is scored, dramatic improvements in test

- scores follow, ' : S ‘ R SRR

" 'To illustrate this, conmsider the information functions of two latent trait .. . .

- models. Information at a given point on the underlying trait is the reciprocal
- of the variance of the maximum likelihood estimator at that point. Therefore,
‘the larger the information value, the more precise is the estimate of the lo-
“cation of an individual on the trait. One latent trait model studied was the
two-parameter normal ogive (Lord & Novick, 1968, Chap. 16) which-is appro-

. priate for dichotomous scoring. - The other model:was Samejima's (1969) graded

~response model, which is an extension of the two-parameter normal ogive model to '

. polychotomous scoring. Information levels of the graded model can be considered

~.to be the case when partial knowledge is taken into-account; whereas the informa-= -
~tion provided by the dichotomous model is that provided-when partial-information

s ignored.

. To'simplify the comparison, the mean information for each model was com—
“puted, assuming that the underlying trait was normally distributed. - In addi-
“tion, it was assumed that each test consisted of 60 items, each having the -
“same.item-trait correlation (¥). The distribution of item difficulty in the.

fdichctcméus”case can be described as a truncated normal distribution with a mean.. .

+0f 0.0 and maximum and minimum equai-te.1/# and -1/r, respectively. The dis-
stribution of difficulty of the highest category in the graded model was also a
“truncated normal distribution but with a mean of .40/r and maximum and minimum
“1/f’and -.20/r. Within each graded item, the difficulty of each of the lower
categories was set in such a way that the categories would be chosen by the - -

:same proportion of testees. Th~2 comparison assumes that there are five graded- - .

_Tesponse categories. . This choice of difficulties approaches the optimal con- -
~ditions for the two models. - o - - . ,

,‘_V;TThé ratio of the mean information for the graded model over ‘that of the' -
_dichotomous_model for several levels of test homogeneity is seen in Table.3. , S
This .. - -

‘For example, at an item-trait correlation of » =.55 the ratlio“was 1.42.




;;;Tohly materialize under the proper conditions. In ‘the typical multipleﬂehniee
" test item, even though. pertiel knowledge iﬂflueneee which: elternetive 18"

7,1 :Computerieed Ieetigg

L use .of . interactive computere, ‘therefore, is to handle the recording and :

' to adapt-or tailor the test to. each individual.

<" necessary to complete a given unit-of instruction. Under those conditions,
‘i individual differences with respect to: knowledge -are minimized and it beEOmee L

" .profitable to adapt the length of the test rather than Ats difficulty The - o

Lﬁlilﬁ his system, an individual is tested until he is classified into a non= .
-, .mastery-or. mastery category. The - etatietieel basis ‘0of vhis system . s Welﬂ'

- means thet, on the ev&tege, the use ef pertiel knowledge will be 42% more -
" informative than if it is ignored. Note that this improvement, due to -
: 1neerpereting pertiel information into. the  scores, inereeeed as the- dieerim=
;inetien of: the test ‘increased.  In other words, the ‘better the teet, ‘the more -
_it will ‘benefit from adding- pertiel knowledge. ~ This is: also true when reliability
“rather then infermetion ie used ee the eveluetive criterion (Bejer & Weiee, in

'-pfeee)

#rethes

- TaﬂeB : SRS
- Raio of Mean Infermetion ‘of Graded to : c
] Diehotemeue Hadel, as a Function ef ItemJIreit Getfeleticn S

ItemeTreit cefreletion
o ’ 7” V”W' ) ) ;,, Co . 3 §55 -53 7-7?1 ) '!77?7777 igé‘ ) ;95
”it1Beteq;9£7meeg’infermetieﬂ‘:' ;,42 l:ég,tliégjjliSng;-SS'_l 90 ..

The advantages derived frem teking pertiel knewledge inte eceeunt can’

chosen, the response is scored as correct or iﬁeorreet.. On way ef al ingigw

. -credit to be-given -for-partial knowledge is to instruct testees .to segregate =~
alternatives into different-categories. Coombs' (1956) pfecedure is an in- ¢ o0

.. stance of the approach where the categories are "correct" and "incorrect”.
»:fGther categories are: poseible, though; e.g., verbel iteme mey ‘be. eleesified

eynenyme antonyms ;~or= neither S S T

Reeofding and " eeering reepensee to nonsdiehotoﬁoue test’ iteme ie not, B
" however, convenient with paper-and-pencil test- edminietretion. -One- ebvioue '

I seoring of reeponees to- nensdiehotemous eehievement test iteme ~Buty as
. previous presentations in ‘this report suggest, the computer can else be ueed

; These pfesentetiene (end indeed most. of the reeeerch in eomputerieed

- adaptive. testing) have been' oriented . tewafd ebility measurement. - In :
" achievement. testing, it is- possible to distinguish between two kinds.of - . .-
- adaptive test edminietretion'; One involves edepting the length uf the teet':‘g'°
“in the ether,’the diffieulty ef the test ie edepted R Rt

T Adeptigé the 1ength ef theuteet to the individuel is eppropriete in
..instructional settings where each indiv1duel is allowed as much time as is:

.research of Ferguson (1970) 1s an example of this. type of adaptive- teetinﬂ.

;fsequentiel likelihood-ratio test. " Ferguson's. model eetumes tbet the dif-
end discrlminetion ef ‘all items-are the same L: 7




Thue, reeeereh addreesed te th;e queetien is ﬁeeded 1t weuld aleo be
desirable to study the possibility of relaxing the model to allow for unequel _
item difficulties and dieerlminetione as well as ellowing for polychotomous o

responses.

Although self-paced instruction has many advantages, limited resources
often-do not permit its full implementation. As a result, the sample under
~instruction will likely be heterogeneous with respect to achievement. Sim-
ilarly, if a test is intended to measure retention of achievement or levels
‘of achievement acquired prior to instruction, there will be wide variation in
levels of performance. Under these conditions, adapting the test to an
~individual's level of achievement will be more efficient than the cenveﬂtlonal

non-adaptive pfocedure.

Most of the re;E rch on adaptive. testing has been done in the context
of dichotomous responsé\models. The exceptions are to be found in the work
of Bayroff, Thomas, and Anderson (1956),,Wood (1971), and Semejima C1976);
One of the major alms of the
the - University of Minneeote\;e to cnmhine the edventegee nf partial knewledge
scoring and adaptive testing. Bayroff et al. (1960) seem to be the only
researchers who have actually implemented an adaptive testing strategy using
non-dichotomous items. Essentially what they did was to branch an individual
according to the correctness of the alternative chosen. Although they used .
-a polychotomous item for the first item only, this can be readily extended
to include all items. Other branching rules are possible. Wood (1971) sug-
:gested that the- optimal branching rule will administer as the next item the
‘most discriminating of those items with a midpoint of adjacent categories

: closeet Ee the iﬂdivlduel § current eetimeted achievement Semejlme (1975)

a uniform dichotomieation end tailored diehotomieation ageinet the scores -
baeed on the polyehotomous responses. e

 Summary and Conclusibns

. Two. recent developments in test. theory hold promise for the improvement
‘of achievement test scores. .In combination, adapting the test to the- iﬁdi=
" vidual and simultaneously extracting more information from each response by
g'frecording partial knowledge should result in greater improveménts in._ achievement
. _test scores than elther taken alone. The use of non-dichotomous item fermete, R
- now made peeeible by the administration of achievement test items on interactive
;f,computere, should result in achievement tests which more: eecuretely measure .-
‘ whet a etudent has- 1eerﬂed as a-result of instruetion.g :

, Although the .use of polychotcmeue models in. the measurement of pertiel

- knowledge has been emphasized here, it is clear that these models have much:

. to offer in performance teeting as well. Fitepetrick and Morrison (1970)-

_.define a performance test as '"one in which some criterion situation is - o
vejmulazed to a much ‘greater degree than repteeented by the’ ueuaJ paper-and— T
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pencil test." Unlike paper-and-pencil tests, performance tests are relatively
expensive and it is this cost consideration that highlights the necessity

for extracting as much information as possible from a testee's set of re-
sponses. Polychotomous response models make this feasible. The use of
interactive computers also has much to offer in the area of performance testing,
for computerized test administration can make it possible to represent simulated
situations conveniently and economically. Additional savings are likely by
testing individuals only on those skills which match the individual's level

of training.

In short, it seems that coupling polychotomous response model theory with
interactive computer administration of tests is likely to result in more
accurate and, in the long run, more economical assessménts of aghievement and’
performance.

U‘l
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