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Introduction

Characteristically, an experiment involves a collection of treatment

canditions {{.e. treatment levels or treatment combinations), a

collection of experimental units, and an explicit plan for assigning
treatment conditions te units. For purposes of exposition, we can
divide experiments into those in which time plays an important role and
those Iin which 1t does not. Time may enter into the experimental plan
{n several ways. For example, 1) at some point during a sequence of
repeated measurements of the experimental unit a treatment condition
oay be introduced, as in trend analysis, 2) the experimental material

mav he successively exposed to several pre-specified treatmeut conditions

P
1

and measured after each, as when assessment of order or residual effects

is of interest, 3) treatment conditions may be administered to experimental
units over time in such a way that previous treatment conditions and
responses to them are used in determining the treatment conditions which
follow, DNote that in examples two and three treatment conditions are
administered over time, But in the second example the exact treatment
conditions are determined a priori, while in example three, they are
determined during the experiment as a function of accumulating data.

For convenience, we label the three examples as instances of repeated

measurement, serial, and sequential designs, respectively,

The present research 1s concerned with sequential experimentation.
Experimental designé which are sequential in nature require that the
experimenter consider both how the ensuing treatment conditions will be

changed or adjusted and how the process will be discontinued,
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1-2

i.e., a "Qtopping rule”., Sequential experiments can be differentiated
from one another by considering whether a formal or informzl procédure
is used when adjusting treatment conditions, whether the stopping rule
is formal or informal, whether or not more than one factor 18 used
(1.e. multifactor experiment employing several different treatments),
whether the independent variable or dependent variable is continuous
or discrete, and by considering the purpose of the procedures (e.g.
locating maxima). (For a general review and bibliography of recent
work on experimental design, including the topics dealt with here, see
Herzberg and Cox (1969). For a current review of the design of sequential
experiments, see Chermoff (1975). Wetherill (1975) provides a useful
introduction to the subject of our paper).)

Fxamples of applications of sequential designs are not plentiful
in the educational research literature. Meyer (1963) presents an
application of response surface methodology. This methodology 15 seen

as sequentlal in nature by Chermoff and by Wetherill, Response surface

designs are factorial in nature, employing several quantitative inqepen-

dent variables. The dependent variable is often assumed continuous
and a polynomial function of the independent variables., Purposes of
these designs include locating maxima or estimating parameters of the
polynomial. Decision rules which specify the "design points'" to use
in the next stage and when to stop the process tend to be informal.

In contrast to response surface methodology are stochastic
approximation techniques in which a single continuous independent
variable 1s investigated and where values of chat independent variable

are determined formally as a function both of the preceding values and

5
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the responses that were obtained when they were administered. A technique
due to Robbins and Monro (1951) is an example. Its purpose is to find

that value of the independent variable, say ©, such that the expected

value of the dependent variable given © 1is equal to some predetermined

constant.

Our research investigates two examples of the Robbins-Monro
process and three variant procedures which were motivated by it. Much
of the previous research in this area has bern focused on asymptotic
properties. Chernoff (1975) gives a brief and readable review of this
work. Of particular interest here 1s a paper by Hodges and l.ehmann
(1956) because it suggests assuming a linear relationship between the
independent and dependent variables and zlso assumes that the slope
parameter 1s known. While these two conditions would seldom be met in
practice, their theoretical and numerical results provide a basis of
comparison for empirical findings.

The Robbins-Monro procedure has been modified by some researchers
80 that two values of the independent variable are employed at each
step (e.g. see Venter (1967)). This procedure has certain advantages,
but only the case in which a single value of the independent variable
is used at each step is studied here:

Presently, we know of no application of Robbins-Monro procedures
in an educational experiment, However, the technique hazs been applied
to a measurement problem by Lord (1971a, 1971b). Those two papers
dealt with quantal responses, a subject not dealt with here. (For
this reason and because we did not want to define the values of the

independent variable a priori we have not considered the "Up and Down"

6




1-4

method of stochastic approximation.) The present avea of inveatigation
has aimilarities with sequential eatimation, but also aome important

differences. For the estimation problem only the "stopping rule"

need be considered, for no independent variable is manipulated.




The Problem

Asaume that the experimenter'a goal 1a that the valua of § 
particular population mean is to be changed from ita present value,
§, to a different value, ¢. For example, a population of adulta may on
the average acore § = 100 on a particular atandardized reading teat
and the goal ia to increase that average to o = 116, The experimenter
has in mind a treatment variable (aay, number of houra of iIndividual
tutoring) which he knowa can affect the average reading acore, but the
exact nature of the relationship between reading acore and tutoring 1is
unknown. In other worda, the "end" 1a knowm, but not the specific
"means", and therefore, the appropriate value of the Independent variable,
or treatment condition, muat be found. More formally, the expected
value of the reading score ia a function of the independent variable,
E(y) = £(x}, and the experimenter wishea to determine that apecific value
of the independent variable, x = 8§, for which E(y} = a, or E(y(x = 9)) = o.
For present purposes it la assumed that if x >0 then E(y(x))} >ea, and if
x < 0 then E(y(x}) < a. Given this aituation the experimenter can select

an initial value X and thereafter choose the value of the independent

vgriable as X . 4 = xn - an(yn(xn)-— o). The a_.are aelected to have

several characteristica, the mosgt intuitively important of which 1s that

a 0 83 n— "at a suitable rate". One poaaible definition ia a = %.

If appropriate a_ are chosen, auch as i. Robbins and Monro (1951) proved

n-jo, xﬁ—ee. The experimenter, of course, must have some feel for the

8
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speed of convergence, and how this convergence is affected by the

choice of x,, the relationship between E(y(x)) and x, and the density

of y(x). He also must have some idea of when to stop the experimentation.
Most of the results in the literature to date, however, are asymptotic

in nature, with relatively little work being done on stopping rules
(Chernoff (1975) offers no citations, but see Farrell (1962)). The
literature, as it appears to us, provides little if any practical

guldance for the experimenter. ,

¥
-
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Methods
Initial results were obtalned with an interactive empirical approach
using computer simulation techniques on a time~shared CDC Cyber 74.

Many computer runs were made as the researchers sought to understand

the importance of the numerous parameters which can be considered. Following

this first phase of computer runs, during which all the values produced
from a single sequential experiment were often observed, more traditional
Monte Carlo experiments were performed, replicatihg the experiments a
number of times to obtain estimates of how the procedures operate
"in the long run"”. In summary, the approach used vombined both an inter-~
active search during which the researchers observed the behavior of
various functional relationships during a single replication and more
traditional "fixed" type of experiments in which a number of replications
of an experimental situvation were made to obtain stable estimators.

All pseudo random numbers were obtained from either NORMAL or
RAN3F which are a normal (N) random number generator and a uniform (U)
random number generator, respectively. One thousand random numbers
were generated per each call of these routines and following generation
they were Iimmediately permuted by an independent randomization procedure
using the program PERMUTE. All routlnes are maintained by the

University of Minnesota Computer Center.
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Design

The model for the random variable y was y = uy X + £, where

¥ o E{y(x)) = f(x) = 8 xo + lel + Bzxz + 83x3 and where ¢ is

Y.X 0

2

independently identically distributed either as N(0,0 x) or U(0,0, ).

2
Y. YeX

Following the interactive search in which many parametric epecifications
and stopping rules were studied, certain cholces of parameters and
rules were made for the more standard type of Monte Carlo investigation.

These included:

1, Four definitions of a . They were an -

T Fy
By 1s the first derivative of f{x) evaluated at 6, B is the usual slope

X n
estimator, and s = | z
1=

ilk, k= INT[B’%C]. where ¢ >0 and even,

] = max(1l, n-c + 1) and 2 = 1l 1f y(xn) < o, Or z -1 if y(xn) >a,

(INT means "integer part of.") For the procedure employing B,
1 1 k
an == for n < 20 and “~ otherwise. In the definition an -
ng

a "finite memory" is introduced into the approximation process, and

succesgively positive or negative values of‘Yn(xn) - o cause larger
adjustments xn +1 than 18 the case with the other definitions. Both

k N

8 and B are random variables and this results in a variant of the
Robbins-Monro procedure in that it assumes the a_ to be "a fixed sequence

of positive constants."”

11
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2, Two stopping rules. They wera

Rl1: Stop if n > 20 and if o contained in u to

Y.X YeX

(vhere “y.x - 5+ an) or n * 200.

R2: Stop if n > 20 and, considering the last 20 values of z, 1if
Lz = 9, 10, or 11, and the number of "runs" is 9, 10, 11, 12, or 13, or
if n = 2G0.

3. Three sets. of BO’ Bl. Bz. B They were [100, .14142, 0, 0]

3.
(100, .34641, 0, 0], and [100, .12686, .0058512, -.000023767}.

4, Two conditional variances., They were 03 x “ 100 and 25,

1
Most "final" experiments were based on 500 replications. Based on these

replications, the mean and variance were computed for (xn - ) at

n = 30, 50, 100 steps and for both rules, Rl and R2, Additionally, for
both rules the mean and variance of the number of steps needed to stop

were also computed.
a = i was included in the experiment because it was suggested in

Robbins and Monro's original paper. Hodges and Lehmann provide results

on an o ;%— when the regression is in fact linear, and it has certain
1

optimal characteristics and therefore was included as a basis for

comparisons. In discussing the preceding work, Chermoff (1975) remarked

that "In the stochastic approximation case using sequences a = =, there

is no prior knowledge of 6 to insure that ¢ = B-l. However, as data

12
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accumulate one would hopefully obtain a satisfactory estimate of E

llz
providing the successive x are not too close to each other (p. 70).

We interpreted these comments to mean that when one hae "sufficient”

information one would egtimate Bl using the lesst squares estimator,
8. 1Initial rtesults demonstrated that the instability of B for small n

caugsed erratic adjustments and poor convergence. This lead to the

k
procedure a_ = L forn=1, . ., ., 19 and'Lr thereafter, The a_ = 2
n n 8 n n

procedure was developed during the interactive part of the present resvarch.
It seemed reasonable to specify an adjustment procedure which would make

larger adjustments if E(yn(xn)) - a were judged to be large, Coneidering
only the sign of yn(xn) - a and taking c = 4, for the patterns (+ + + +} or

(-~ - -}, ak = 16, for patterns like (+ - + + ) or (- - - +) ak -2,

and for patterns with two pluses and two minuses, sk = 1, This type of

adjustment assumes that the error distributions are symmetric so that

the probability of a plus at xn = 0 1is %. During the interactive phases

of this research, ¢ = 4 and ¢ = 10 were found to work well,
Stopping tule R1 employs the standard confidence interval for

estimating uY %" This seemed a reasonable approach to consgider, especially

when an ~'£r is employed. The confidence coefficient, p, vrsed was .60, Thie
nBg

value was chosen during the interactive phase on the basis of performance.

Stopping rule R2 comes from reasoning similar to that used in

developing the sk procedure., At xn - @, for symmetric error distributions

13




the sign of yn(xn) = 3 would be {ndependently distributed as & Berooulit

variable with parameter %. RZ sssentislly teste two hypotheses, one

concerning ''randosness’ and the other that the proportion of “pluses”

is
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ftcauiles of tha ruan are presented in Tables 1-8. ThHe mean and
varta-ce of the “ias {xn - 2), are reperted for the conditions studied as
2 tre wean and varlance of the hnunbcr of steps 20 stop” for R1 and
vyaTage scuares blas, {xn - 9)2 13 not reported, but 1t can be

cagl,T «rrainel v aquaring the average bias and adding thia to the

. 2 2
- - ol v s - - U - -
sxeda~ce of tha bias ({.e. E{xn 8) n(xn ) + {z(xn 8)) ).

etploving ;%7 was auperior to the other methods, but since
¥a

be &novn, results associated with 3] will be of greatest
12 ie clear from the results that generally,
“ed the poorest perfor=ance. In situstions vhere

ricr fnfersation 1w svallable about the relationship between

and Jependent vartiables, the resulta would lead us to

- E— wit* ¢ = 4. This typically does sa well ap Or better than

.- it 1s markedly better when there

{n 1 weak relationahly helveen the independent and dependent varisbles
ani a ponr wtart ie made (see columna 1 and 2 of Tables 1-7). In an

s r
wienpr o deternine the behavior of a_ v - when a "good start” 1s
e, the experizents reported in Table 8 with xl = ¢ wera carried out,

we bhelleve the procedure Jdi¢d reasonably well under these circumstances.

15




5=2

If nore {nformation is available, one might profitably chooae one of
the procedures gtudied. Neither Rl nor R2 is uniformally better with
respect to biss and number of stepa to atop. There also appears to be

at lesst some Iinteraction with the definition of an, and this complicates

matters in a few Instances. Here we can only recommend that one make a

best guess about conditiona and use that stopping rule which would bpe

best.

o~
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Educational Significance

One potential area of application for stochastic approximation
19 thar of formative evaluation. Stochastic approximation can suggest
values of the indeperndent variable which would attain programmatic
goals, and this information could be fed to persons directly involved
in program development. Within the framework developed by Sanders and
Cunningham (1974), stochastic approximation could provide “external
information" for-“formative interim evaluation activities'., When a
summative evaluation is planned, perhaps using one of the more standard
experimental designs, design points can be chosen in the region suggested
through sequential experimentation, thereby increasing the likelihood
that the program will demonstrate 1ts effectiveness.

In general, stochastic approximation would appear to be a useful
technique in any area where individuals have a goal firmly in mind but
lack sufficient knowledge of the independent variable to design an
efficient, more traditional experiment. Education 1s goal oriented,
and information about how to achieve a goal 13 often more important than,
say, information about the exact nature of the relationship between an
independent and dependent variable. Stochastic approximation can provide
useful information about an independent variable, even when its defined
over a broad range-of values, while requiring relatively few subjects

for its implementation.

17




Table 1

Mean and Variance of the Bias (xn - 8) at 30 Steps Where X,

[2100,.14142,0,0]

e~ (0, 62
y

»

e~U(0, o2
Yy

<

[8

0rfre

[100,.34641,0,0]

2

e~N(0,o
YeX

)

2
~U (0
e~U( .cy.x)

[r100,.12686,.0058512,

-.000023767)

E~H(0,02 ) ‘EvU(O,cz
Y.x

-049

160.93

-013

27.138

.20

29.84

.-.96

12.85

= ?9

14.54

= 19

40.85

44.77

-008

6.81

.10

-053

-02'8

3.81

12.00

-61.11

8l.11

-90 ?3

27.65

-6.68

22.91

-61.27

18.89

-60.96

20.48

-9046

7.69

=6.36

5.59

1436.76

1385.58

~5.65

140.41

-2.36

188.85

-36.23

490.86

577.45

-5.172

65.93

-3010

50.68

-1.92

298,62

-3.58

452.01

.42

-019

-088

71.44

-098

96.15

N1/

18.46

100
sk
;—(c=10)

25

--10.85

835.47

-17.03

7164.57

-.81

110.47

.3?

378.17

-1.98

419.80

) 6?

24,05

~.75

25.86

-.10

24 .08

*For Tables 1~8 the upper number in each cell is the

is the varfance.’

18

mean and the

lower number
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Table 2

Mean and Variance of the Bias (xn - 8) at 50 Stepc Where x, = 4

1
| [60,81,82.831
{100, .14142,0,0) [100,.34641,0,0] [100,.12686,.0058512,
-.0000237671
2 2 " 2 2 2 2 2
a Uy.x € N(O’ay.x) 3 U(O,ay.x) e»N(O,ay.x) £~U(0,ay.x) e~N(0,ay.x) evU(O,ay.x)
030 .34 ol? 016 . -043 -058
' 100 i
“ L 93,84 109.69 15.75 18.35 7.21 8.67
ng!
9 018 020 008 008 -028 -025
25
23.66 27.54 3.94 4.59 1.96 2.25
-56.87 -56.83 -8.02 -7.69 . =5.04 -5.17
100
L 62.61 69.82 20.59 23.88 13.69 15.49
n -56.92 -56.61 -7.92 -8.04 -4,98 -4,.88
25 . i
16.49 17.82 5.44 5.88 3.12 3.67
~20.43 -22.29 -1.38 -1.51 -.63 —.67
100
) 1036.14 994.74 158.51 104.35 33.50 67.36
ng -20.56 -20.91 ~2.97 " -3.20 -1.47 -1.43
25 ‘
231.29 236.72 25.52 | - 18.06 12.84 13.58
-1048 "'1.99 007 -006 026 -034
100 '
k 157.02 262.19 39,42 50.39 25.33 33.99
g
(o=
n (c=4) .46 Z.47 27 a1 04 .07
25
40,04 58.47 9,83 13.56 6.11 8,22
. "7.93 -12.07 -.38 -1036 -012 -031
100
K 476.52 513.41 54,41 46.98 32.12 22,28
E-(c=10) _
n .33 -1.81 -.10 -.02 .20 .16
23 169,92 229.20 12.92 12.72 6.35 6.72




Table 3

Mean and Variance of the Bias (xrl - 8) at 100 Steps Where x, = 4

[8y18,48,,8,]

{100, .14142,0,0) {100, .34641,0,0] {100, .12686,.0058512,
-.000023767]

2 2 2 2 2 2
evN(O,oy.x) E~U(Q,oy.x) evN(O,oy.x) evU(O,oY.x) evN(O,oY.x) evU(O,oy.x)

035 000 016 001 -.16 _02?

58.39 8.14 9.75 3.56 4.65

.01 .08 .00 -.11 '-.;6

14.63 2.44 .95

-51.46 -6.05

'57.95 15.68

-51.36 -6.28

14.56

_9093

308.16

-10.67

71.06

_1003

- 115.32

-027

28.79

_7097

299.75

-1061

113.45
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Table 4
Mean and Variance of the Biss {xn -~ 8) When

Stopped with Parsmetric Rule (R1l) Where x, = 4

[100, . 12686, . 0058512,
~.000023767]

(100, .14142,0,0] [100, .34641,0, 0]

2 2 2 2
avN{O,oy.x) evU(O,oy.x) evN(O,oY.x) evU(O,oy.

2 2
x) E"N(O,Oy x) e~U(0,0

y.x

-.70

237.97

.66

265.39

_017

.33

44.80

-1007

18.41

~1.09

21.33

=.25

60.46

.40
67.14

.16

_049

4.75

_05.5

61.09

-46.62

49.33

_4042

13.57

11.45

-46.76

12.53

-2. 60

1.38

924.61

1000.61

=2.70

44,00

‘5.16

112.84

~5.46

71.87

_068

-2.36

352.92

-40 32

460.81

-.89

91.96

_1020

110.92 .

498.27

-14.75

502.03

”1.88

129.16

-1079

114.31

-048

14.53

17.57

these cells sre based on 100 replications instead of 500.
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Table 5

Mean and Varlance of the Number of Steps
When Stopped with Parametric Rule (R1) Where X, = 4
[30,31,32,33]

[100, .12686,.0058512,
~.000023767]

[100,.14142,0,0] [100,.34641,0,0]

2 2 2 : 2
» 0
& N(O,UY. y.x) E"N(O’Uy.x) e~U{( ,Uy.x

)

2
evN(O,Uy.x)

2
E“-‘U(O,Uy.x) x) evU(0,0

20.18

2.37

20.21

1.79

20.13

1.30

20.18

1. 54

23.13

338.95

22.23

194.61

20.17

2.07

20.13

1.08

20.18

2.33

20.14

1.09

26.28

622.57

24.9%
464.60

196.44

627.30

198.24

309.76

87.64

7087.82

85.30

7003.51

92.26

7320.44

95.61

7372.14

200.00

0.00

200.00

0.00

191.49

1393.06

196.05

572.69

191.22

1416.44

194.62
*

622.76

89.66

5019.12

93.18

5523.06

28.76

788.86

30.11

1132.37

28.78

695.83

29.03

716.53

177.87

2849.49

178.80

2840.74

76.85

2214.93

82.71

2414.49

78.21

1589.28

80.39

1468.92

24.86

338.35

27.53

610.14

25.68

., 210.89

26.46

262.41

26.02

165.28

27.16

228.26

25.03

477.47

27.37

711.50

25.50

155.27

26.75

213.57

25.87

137.34

28.97

405.82

100
k

s
;!—(c=10) :

25

53.20

3807.48

65.79

5113.46

24.32

399.95

25.61

492.67

23.96

250.35

26.59

654.13

83.42

6015.15

111.00

6715.59

27.24

775.31

29.36

1136.49

27.01

777.34

26.12

646.42

* .
The estimatea in these cells are baaed on 100 replications instead of 500.
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Table 6
Mean and Variance of the Bias (xn - 8) When

Stopped with Nonparametric Rule (R2) Where X, = 4
[Boi Bl’ 82! 83]

[100,.12686, .0058512,
~.000023767]

[100,.14142,0,0] {100, .34641,0,0]

e~N(0, o?.'

}.x

2 ¢ 2 2 2 -
e '~ P o 0
} E U(O,oy x) 3 N(O’Uy.x) 3 U(O,oy x) € N(O,oy x) e~ (0,0

2

-021

173.52

.05

179.81

-.01

29.40

.07

29.87

-094

-080

14.97

.00

44.00

.08

44.88

.00

7.34

.03

7.48

~054

-48.05

42,17

-50.04

51.09

=7.75

16.73

-8.02

25.63

-46.74

11.18

-46.54

12.08

-6.17

3.10

-7.01

4.97

-9.77

526.20

-14.57

631.61

-2.86

54.60

-3.25

84.38

”9.70

56.80

-11074

82.45

-2.53

8.40

-3.42

11.26

-046

249.88

-2.30

453.42

.33

-.20

106.10

-004

61.75

-050

.07

25.41

-8.11

391.91

-1073

64.64

.49

-012

16.19

Y.X




Table 7
Mean and Variance of the Number of Steps
When Stopped with Nonparametric Rule (R2) Where X - 4
[Boi Bl’ 82383]

f100,.12686,.0058512,
-.000023767]

(100, .14142,0,0] [100, .34641,0,0]

2 2
e~N(0,cy.x) e~U(0,cy.

2 2 2 2
x) 3 N(O’Uy.x) € U(O’cy.x) e~N(0,cy.x) e~U(0,0 _)

y.X

32.42

226.32

31.79

187.77

32.40

223.18

31.86

187.39

35.06

294.07

33.45
247.42

32.60

224.71

31.98

187.41

32.60

224.71

31.98

187.41

34.81

240.51

33.31

237.54

173.71

2234.70

136.65

3301.21

61.13

1369.02

50.38

917.82

60.90

1359.13

48.90

756.51

200,00

0.00

199.66

34.43

112.97

2832.98

84.67

1962.52

101.78

2279.99

79.81

1652.54

84.30

1188.04

70.84

999.99

51.21

1039.26

43.98

681.22

47.11

596.34

44.06

642.90

110. 54

1751.84

94.07

1258.61

66.81

718.70

57.02

614.92

59.28

536.85

53.61

471.00

39.48

365.17

36.76

341.61

31.71

203.34

30.31

156.66

30.70

191.41

30.02

172.76

36.85

239.20

36.51

297.97

35.16

310.12

31.93

171.47

31.08

140.91

- 30.98

162.65

58.92

994.45

54.05

745.88

39.62

431.32

36.75

358.61

35.52

307.83

35.71

340.59

64.06

1192.78

59.23

953.26

39.79

407.40

37.49

324.22

37.07

364.19

34.87

315.87
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Means and Variances Where x

Table 8

1

' 2
=0 and e»—N(O,oy.x 100}

Bias (xn~0)

at 30 steps

Bias (xn-e)

at 50 steps

Blias (xn~e)

at 100 ateps

Blas (xn~ﬁ)

when stopped
with R1

No. of steps

when stopped
with R1

Bias (xn-ﬁ)

when stopped
with R2

No. of steps

when stopped
with R2

[100,.14142,0,0]

[100,.34641,0,0]

1

1]
nBe

-049

.30

.84

.35

.75

-088

20.33

1.11

e 22

.67

32.59

222.70

.39

.78

23.82

80.88

33.11

289.16

.16

.1'4

20.30

1.07

32.57

219.56

.08

25.45

176.93

30.56

"203.33
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Footnotea
1T‘ne original plan was to have 500 replicationa for each aet of

conditiona, however, given the value of X uaed here, a = % converged

alowly and for aome conditiona the rule "atop if n = 200" waa uaed
for virtually every replication. We decided to uae only 100 replicationa

in theae inatancea, and thoae yuna are noted in the tablea.

2T‘ne "¢" in thia quote ia not defined in the aame way aa the "c”

k
in the definition of a -2 .

n




