DOCUHENT RESUME

ED 137 317 95 ~ TH 005 90%

LUTHOR Burstein, Leigh

TITLE The Use of Data from Groups for Inferences About
Individuals in Educational Research. Techmnical Report
No. 7.

INSTITUOTION Vasquez Associates Ltd., Milwaukee, His.

SEONS AGENCY National Inst. of Bducation (DHEW), Washington,
Dic‘

PUB DATE Dec 75

CONTRACT NIE-C-74-0123

NOTE 190p.

EDRS PRICE MF-$0.83 HC-$10.03 Plus Postage.

DESCRIPTORS *Correlation; *Research Methodology; Sampling;
*Statistical Bias

IDENTIFIERS *Grouping (Statistical)

ABSTRACT

Grouping is a statistical procedure through which
members of the same group are considered as a single unit of
observation. There are methocdological and inferential problems
assac;ate& uith variaus graupiﬁg pra:eduzes iD vaziaus settings. This
the agalygls uses &ata that is g:euped over 11&1?1&&315 (for example,
school means). The paper identifies five research contexts in which
grouping is used, reviews the literature on grouping where only two
variables are considered, and proposes a method for clarifying the
problens involved in grouping. The method involves introduction of a
new variable, a "grouping variable," into the analysis procedure. The
grouping variable is essentially the value assigned to memhers of a
group takenm over all possible groups. The relationship of the
grouping variable to the variables of interest forms the basis for a
taxonomy of grouping situations which can then be assessed for
certain statistical gqualities. The paper discusses the 1lec and
statistical basis for the method, considers the method in a variety
of settings, and extends the logic to more complex cases. Empirical
exanmples are presented and considerations for future developments are
discussed. (JKS)

* Dccuments a:gu;:ed hy ER;C 1ncluﬂe many ;gfczﬂal unpuﬂllsheﬂ

#* materials not available from other sources. ERIC makes every effort
* to obtain the best copy available. Nevertheless, items of marginal
* reproducibility are often encountered and this affects the quality
* of the microfiche and hardcopy repraﬂuctlans ERIC makes available

* via the ERIC Document Reproduction Service (EDRS). EDRS is not

* responsible for the guality of the original document. Reproductions
# supplied by EDRS are the best that can be made from the original.

o6 oh e ot e o e e e ol o ok o o ofe ke o o e ok ok 2 ol o ok ok o s o oft oo o e o ok oo ok ok oo o o e o ade e o e e e ol o okoke o ok o e ook ke

A K K -‘H-‘




U5 DEPARTMENT OF HEALTH,
EDUCATION A WELFARE
NATIORAL INSTITUTE OF

THIS DOCUMEHNT HAS BEEN REFPRO-
DUCED EXACTLY A5 RECEIVED FROM
THE FERSON QR ORGAMIZATION ORIGIN-
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO MOT HECES5ARILY REFRE-
SEMTOEFICIAL MNATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

Consultants for research, evaluation, and management

_P. 0. Box 5630 2

Aruitoxt provided by Eic:

Milwaukee, Wisconsin 5321 ’l

EDUCATION e e .




The Use of Data From Groups for Inferences
Abour Individuals in Educational Research

Leigh Burstein
University of California
Los Afgeles

Technical Report No. 7
December, 1975

This research report here was pacrtially Eupperted by Naﬁlanal Institute
~of Education (Cnﬂgract #NIE-C-74-0123).

Vasquez Associates, Ltd.
1744 N. Farwell Ave,
Milwaukee, Wisconsin 53202




TABLE OF CONTENTS

ACKNOWLEDGEMENTS. . .+ & & v 4 v v v v v v e s e v e e v v e e .

LIST DF TABLES: = L] & = = * * . L] L H # = £ £ - = & L x 1] = = = =

LIST OF FIGURES . . . & . & 4 v 4 4 v o 6 s s v n e e e e e e u s

CHAPTER 1. IntroduCliom. . « « & 5 « + = & o o o # 2 s = &« + + .

Terminology. . - . . &+ « « « . « .« . B
Inferences Involving Change in the Unlts Qf Analy%15 .
Research Problems Invelving Change in Units. ... . . .
Problems to be Considered. . . . . . . . . . . . . . ..
Overwiew of Later Chapters . . . . . . . « v « 2 = + = + . .

CHAPTER Z. Review of the Literature on Grouping Observations . .

Behavioral Scientists' Perspectives on Grouping. . . . .
Econometric Perspectives on Grouping -- "Optimal Grouping"

CHAPTER 3. Estiimation of the Linear Regression Coefficient from

Grouped liata in the Single-Regressor Case . . . .

Terminology and-Notation . . . . . e s e e .
Regression Coefficients to be antraszed = s e s s 4w s s
The Bivariuste Case == Standard Medel , . . . . . . . . . .
A Structural Model for Determining the Effects of Groupiug .
Bias and Efficiency-as a Function of Taxonomic Category.

The Taxonomy as a Guide for Investigatiom. . . . . . . .

CHAFTER 4. Additional Considerations in the Single-Regressor

CA8E. + v & 4 & & s s s s e s e s s w s s e s e e e .

Distributional Factors « . + v v & « 4 v v « & 2 4 b . . .
Scales of Measurement -- Nominal Grouping Characteristies. .

CHAPTER 5. Prelimliary Notes on the Multivariate Case. . . . . .

Previous Work on the Multivariate Case . . e e e
The "Structural Equations" Approach wlth Two REgIL 1s0rE.
The Taxonomy for Two RegressorS. . « . = « « o o o « &

Implications of Findings . . . . . . . . . . . . . .

CHAVTER 6. Ewmpirical Lxamples with a Single Regressor. . . . . .

Desecription of Data. . . . . . ., . . . e e
Regression of Academic Self-Appraisal on Achlevemﬂnt
Regression of Achievement on Aptitude. . . . . . . . . .
Summary of Empirical Results . . . + . . . « « & & = « = »

iv

Page

. 1di

Lviii

s
T

et
-~

18
26

29

30
39
39

67

89

90

. 108

. 108
. 120
. 126
.. 132

133

. 134
. 142
. 157

163



TABLE OF CONTENTS (continued)

CHAPTER 7. Summary and Conclusions . . « . . - - -

Summary of Findings. . . . = = + « « + < « &
Suggestions for Further Investigation. . . . .

REFERENCES. . - =« « = s & + s & = = 5 3+ s s = = = =




Table

1.1

3.2

3.3

3.4

6.4

6.5

LIST OF TABLES

Research Problems Involving Data Aggregation. . . . .

Correlations of Illiteracy with Race and Illiteracy
with Nativity at Different Levels of Aggregation. . .

Indices of Precision of Estimates from Grouped Data
as a Function of Sarpling Procedure . . . . . . . . .

[3 145] and f3 14%; (Reducéd Forms in Bragkets) .

Variance—-Covariance Matrix for Variables in Equations
[3.17a] and [3.17B] (Reduced Forms in Brackets) . . .

Bias 8% in Estimating Standardized Regression
Coefficient va from Grouped Data as Function of

Group Size, standardized BEZ*X and standardized

BKZ e e e a1 et s e e st e e e e s e e e e e s

Alternative JSrouping Variables Based on the Same
Grouping Characteristic . . . . . « + + & & = = s &+ =

Efficiency of Alternative Ways of Grouping on the
Same Characteristic as a Function of Sample Size and
Number of Groups. . . . . . & & « = & =« & 2 2 &+ &+ .

Estimates of Regression Coefficients and Standard
Errors with Alternative Grouping Methods from the
Houthakker=Haldi Study. . . « « + + + ¢ « + 2 s « «

Presence of Bilas from Grouping as a Function of
Taxonomic Subcategory in the Two-Regressor Case . . .

Questions Included in Composite Self-Aprraisal of
Academic Abilities (SRAA) . . . « ¢ & = « & & « & =

Information on Grouping Variables . , . . . . . . . .
Heans, Standard Deviations, and Skewnéssrcgefficieuts
of Study Variables, and Zero~Order Correlations of
Each Variable with SRAA, ACH, and SAT . . . . .

to Pa hlblE Grauplng Vatiab]és, s r e s s e s s s s
Estimates from Grouped Data of Coefficients

Describing the Regression of SRAA.on ACH. .. . . . .

vi

Page

LW

22

338

58

76

114

131

135

137

138

145

149



6.7

6.8

6.10

LIST OF TABLES (continued)

Comparison of Estimates from Grouped Data Using
Different Criteria for Acceptable Bias in the
Regression of SRAAon ACH. . . . . . . . . . . ..

Weighted Composites from Grouped Estimates of 8
from the Regression of SRAA on ACH . . . . . ., 1%

Estimates of Parameters Relating SAT(X) and ACH(Y)

to Alternative Grouping Variables (Z). . . . . . .

Estimates from Grouped Data of Coefficients
Describing the Regression of ACH on SAT. . . . .

Comparison of Estimates from Grouped Data Using

Different Criteria for Acceptable Bias in the
Regression of ACHon SAT . . . . . . . . . . ...

vii

X



LIST OF FIGURES

Figure Page

3.1  Path Diagrams Corresponding to Categories
of the Taxonomy. . . . . v . v v v v v v v v 66

3.2  Aggregation Bias 6% (as defined by [3.311) as a
Function of Standardized BXZ and Group Size n

(with EYZ X fixed at .1) s e e s s e e e e e e e . 74

4.1 Path Diagram Incorporating Both Latent and Manlfest
Grouping Variables . . . . . « v « v o v v v o .. -« . . 102

4.2  Path Diagram for Aggregate Data Grouped hy AR 103

5.1  Path Diagrams for the Subcategories of the Taxonomy
in the Two-Regressor Case. . . . . . . . 4 v v o v v v . . 128-130

viidi




O

ERIC

Aruitoxt provided by Eic:

CUAPTER 1

INTRODUCTION

Problems of data aggregation have important implications for

educatienal research utilizing data from groups of individuals. This

,,,,,, "ehange in the units of
analysis" where relations among individuals are to be inferred from
grouped data. In Chapter 1 five research problems are discussed where
an investigator might attempt to translate properties and relations
from one level of grouping to another. A gageral strategy 1is described
for analyzing the conditions under which grouped data can be used for

inferences about individuals.

1. Terminol

og

Data aggregation denotes the replacement of a set of numbers by a

smaller set of numbers or "aggregates'. This term occurs repeatedly in
the literature of economics and econometrics; macroeconomic theory is
based mainly on aggregated measﬁremeﬁtsg

Whenever distinct measures are combined, aggregation is involved.
In a study of foods, products such as bananas and oranges can be
combined into the category "fruits'. A single aggregate index such as

indices for bananas and oranges. In an educational context, the mean
aptitude score attributed to a school is an aggregate of the scores of
its students.

Measurements can be aggregated within a person as well as between

persons. In observational studies, the observation period is usually

9
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divided into time intervals. Bchavior during a given time interval is
represented by either the total or average number of occurrences of the
behavier in that peried. Such a score is an aggregate of instantaneocus
observations.

Here, grouping of observations or, simply, grouping, will refer to

the aggregation of measurements over individuals (as distinct from
aggregation over time periods or commodities). More specifically,
grouping is the replacement of numbers representing observations on
individuals with a smaller set of numbers representing observations

aggregated over a group of the individuals. An example is the formation

pregation,

of school means from the achievement

IT. Inferences Involving Change in the Units of Analysis

Grouped data are common in the social sciences. Sociologists focus
on relations among collections of individuals. Educational researchers

ten use the classroom or school as the sampling unit and analyze

o]
H
¥

between-class and between-school relations. The study of grouped data

level at which the data are analyzed. If a study concerns the relation
between the academic and social psychological climates of the school,

the school-aggregated achievement and attitude indices are the data to

relate.

,,,,,

On the other hand, educational and psychological researchers are

m

usually concerned with relations among measurements on individuals.
The investipator may wish to determine the relation between student

aptitude and student achievement or between parents' education and

i0
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student aspirations. These measurements cannot always be examined at
the individual level, possibly because those data are not obtainable or
identifiable for each person, or perhaps because of high cost of analysis.

2stigators turn to data on groups to

N‘

Facing such problems, some inv
estimate regression and correlation coefficients at the individual level.
Their conclusions extend the results of the analyses at the group level
to the relatiens among individuals.

However, complications arise in translating properties and relations
from one level to another (Riley, 1964; Robinson, 1950; Scheuch, 1966;
Theil, 1954; Thorndike, 1934). These complications are discussed under
the general label "change in the units of analysis". Where this problem
arises, the 1nvest1gatar wishes to apply relations observed among units
at one level of aggregation to units at a different level (Blalock,

25, such

m

1964). The direction of inference car go toward larger aggrega
as states or nations, or toward smaller ones -- the smallest being the
single person,

Our génaern is with research where relations at the individual
level are of interest, but data are aggregated over individuals according
to some specifiable grouping rule.l The criterion for grouping can be
almost any characteristic of the individuals. Grouping can even be
random. The choice of greouping procedure is dictated by the data on
hand and the usefulness of a specific procedure for estimating indivi-

dual-level relations from these data.

ITerms such as "grouping procedure', "grouping method", ' ‘srouping rule",

"grouping technique", and "grouping strategy" will be used inter-
changeably in referring to the farmatian of groups. '"Grouping
characteristic" and "grouping criterion" will refer to the character-
istic(s) from which the group classifications are determined. The
actual classification scheme whlch assigns observations to gfcups W111
be called the "grouping variable"

11



III. Research Problems Involving Change in Units

We né}:t: describe five rescarch problems in which grouped
observations are used in estimating relations among measurements on
individuals. Missing observations, fallibly me§sufed variables,
economy of analysis, anonymously collected information, and ecological
inference all create problems Ehét data aggregation can alleviate to
sonme degree.

The degree of investigator control over the §ggfega£ion of data
is an important consideration. In certain contexts group membership
is determined in some natural way, e.g., school attended or census
tract. It is thus beyond the investigator's control except for the
exclusion of Simpliﬁg units and individuals (limited or no investigator
contrel). In other contexts the investigator can manipulate the |
formation of groups (completely or partially). There are generail)
more options for improving estimation in the latter contexts. In
Table lgi we indicate the degree of investigator ccatrol over the
formation of groups for each proublem. Why the methods of data
aggregation are used, how such methods are applied, and where they are
principally applied are also discussed.

A. Missing Observations

Missing data are to bte expected whenever an investigator collects
a large amount of information or uses a large number of subjects; .
Missing observations are particularly likely in longitudinal studies.
Thus, if student aghievgménﬁ is assessed on three occasions, a
particular student may miss one or more testing periods. The
investigator must then decide how to treat this hiatus in estimating

the relations among the tests, or the relations of the tests to other

ERIC

Aruitoxt provided by Eic:



;Egsearch Context

Eﬁﬂ@lﬁ@ﬂmﬁmmmMEHQWMm

‘Reasons for Data

ﬂ

Descrlptiaﬂ of Applicatian

5

Prlﬂcipal
__;__ Agpllcatian

Apgregation .

-! I, Camplete Investigatﬂr Control - Group membership. can be defined by an) :haraateristic in’ the data set

W

which is medsured for all ;ﬂdividuals

nISSIN

| 'OBSERVATIONS

- FALLIBLY MEASURED

VARIABLES

Tt

ECONOMY OF

ANALYSIS

Yissing observations on
primary varizbles for some
individuals inhibit

-~ confidence in analytical

:esultsg

Randum Errars af

'w;th 1ndepandent

varisbles attenuate

regression coefficients.

Budgetary constraints make
analysis of massive data

bases at the individual f-: o
level 1mpract1cal

ANDNYHDUSLY

- COLLECTED

INFORMATION

Data on cgrta;n p:imary,”"'

variables are collected
anonynously, making it

observations on primary

: variables at the 1ndividual
' lavel :

Bach nissing observation on

a prinary variable is replaced

by the mean response on that
variable ia some group to which

the individual belongs. -

 Different approaches-have been

suggested as part of the

general refinenent of statiSti—
~ cal procedures for handling
.”_errors-inwvariables problens.

“Data are collapsed fnto &

smaller number of units by
some grauping tule

g | méasured sinultaneously w1th each primary variable ' 

‘GharaztgiiStigs,measured |
- ,simultanEQuslyﬁﬁith,the: _
- anonymously collected i
impossible-to-natch—-——-—-—infornation can be uséd ta
. aggregate the data ’

Longtitudinal end -

eross-sectional -

analysis of survey
data,

- Statistical .
‘treatment of
measurement errors,

Analysis of éeﬁsus‘3 .
data and national,

reglonal, and state
SEhggl statistics

1, Partial Imrestigatnr Cﬁmtrol == Graup membershlp can be deimed by any chafactéristlc which has been

"Cnnfidential‘

© - student records and |
responses to
attitudinal |
~ questionnaires. .




Table 1.1, (continued), Research problems invaliéing data aggregation.

. ~ Reasons for Data i Principal
Research Context - Aggregation Description of Application Application

m.mm§ﬁwﬁwﬁm@“m®mmmﬁMmM@ﬁﬁMﬂE@md
analysis of data; group membership is direetly pertinent to the study of primary variables.

(E) ECOLOGICAL The sampling units of the Disaggregation efforts are knalysis of school
TNFERENCE - investigation constitute generally a necessary and classoon means
o "natural" aggregates of ~ precondition to reasonable where the school and
 individuals. inferénces at the individual the class are the
| level, sampling units;
data organized by
census tract or
demographic region.

16



vstiablés (school characteristics, "teacher characteristics, home
environment, etc.).

Many ;nvestigatars simply Srog from the data set.any individual whe
lacks information on any study variable. chever,dElashgff and Elashoff
(1971, p. 1) find that "taghniqugs such as case deletion which assume
that obsarvations are missing at random may be éxtrémely misleading. If
the probability ﬁ@dal goéerning the occurrence of missing data is complex,
the only adequate solution may be to find out what the missing gbserva% i
tions are".

Some investigators use the mear; of the” ;;:vef:all sample ‘c:f the mean
of saﬁe subgroup to which the individual belongs asraﬁ.estimaﬁe of the
missing Qbsatyations: This “replaﬁe;wi;xathaémegn? strategy is somewhat

akin to the adjustments made in factorial andlysis. of variance (ANOVA)

experiments where a missing observation (X,,,) 1s estimated by the

ijk

mean of the 1ijth céll""" (iij_).

The replace-with-the-mean sﬁfategy is a use of ‘aggregated data.

For example, Kline, Kent, and Davis (1971), investigating the political

instability of nations, replaced missing observations on stability and
literacy with means. These means Wwere estimated from subgroups of

nations grouped by variables measured on all nations (date of indepen-

dence, location, political modernization). So each nation with missing

data on stability is assigned the mean stability score estimated from

its subgroup on, say, date of independence.

The utility of replacing missing observations with group means

depends on the variables under study. The estimates generated are

functions of the properties of the grouping characteristics -- their
internal distributional properties and their relations with the study
O
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variables., A good estimate of the actual relations can be obtained be-
cause infcfmétian-%elgvant to the problem has been retained aﬁd informa-
tion loss therab?Jr&ducediijnmthe other hand, asnwith ca§éwde1etion, |
certain queéti@ﬁs remain. In faéﬁ, the treatment of the missing dataréén
be gsméligated as weli as_simplified by this particular grouping stratégy;
B. Fallibly Heésureé Variaﬁiesz | |
It is well %ngwn that estimates af_régréssian coefficients are at-

tenuated by random errors in the independént variables. Let Byx be

the regression coefficient where X 1is the observed independent variable
and let RXX' represent the reliability of the measurement of X, » the S

person's true score on the independent variable. The usual procedure is

to use BY%/RXK' faéhér thén‘ EYi to estimate Béxm ;

Madansky (1959) reviewed in detail the literature on the fitting of
straight linesvwhen both variables ara_subja;t‘t@ error. He discussed
several grouping teghniques that were proposed to han&lg prcblgms arising-
from an'imperfégtlj measured independent variable in fegraSSian analysis.
Methods developed by Wald (lééD) and Bartlett (1942) are perhaps tha |
most familiar.

Recently, Blalock (1964; 1970) has reconsidered the Wald-Bartlett
techniques and has advanced his own plan for using grouping witﬁ imper=
fectly measured variablegg,,ﬁa recommends that the investigator group
on an "i;stfumant", a variable which (1) affects the "true" indep&ndeht

variable, and (2) does not directly affect the dependent variable. The

SSSSS

relationships of interest are then estimated from the grouped observa-

tinns. -

Both the Wald-Bartlett and Blalock grouping techniques are based

on the principle that measurement errors tend to cancel out within

18
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groups if the grouping characteristic is highly related to the "true
values of the independent variable buﬁ ies uncorrelated ﬁith the
measurement errors. Under these conditions, the error portion of the
observed variance in the independent variable decreases when group
means are used, especially as the size of the groups becomes large.
Thus the reliable portion of the variation increases thﬁough grouping,
and the regression estimates are in part disattenuated.

The merits of the approaches suggested b; Wald, Bartlett, Blalock,
and others will not be debated here. However, their work suggests that
the gxcuﬁimg of observations may be one way to resélve certain
measurement difficulties. |
C. The Economy of Aﬁalysis

Grouping may be prescribed when there is an overabundance of

relevant data, and the budget for analysis is limited. For example,

Testing Program in relating minority status to achievement. The
analyst may choose to sample-disﬁriéts, or to carry out a between-
diéﬁtiééé'analysiff The latter analysis involves a change of units if
the iﬂvastigatﬂr'thenvééEéS'intgrptetaticns at the individual level.
ﬁc@g@metricians have already ééﬁeloped sound principles for

grouping where economy of analysis is the chief concern (Prais and

‘Aitchinson, 1954; Cramer, 1964). The resulting loss of efficiency has

been only a few percent in the cases economists typically examine.
- The successful use of aggregation in this context can be largely
attributed to the investigator's ability to choose the aggregating

variable. In most cases where econonty of analysis is the concern, the

investigator can choose which characteristic(s) will define the groups

19
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10

of students, be it sex, classroom, school, or some other measure. The

investigator can securc meaningful estimates from aggregated data by

--cheoosing a grouping characteristic whose relations with the study

variables best satisfy the conditions of efficient grcuping!
D. Anonymously Collected Information

It iz usually impossible to match data collected anonymously with
identified information on other variables on the same persons.  For
Exampie, student achievement cannot bé cém?aféd with attitude when
responses to the attituée questionnaires are anonymous. If, however,
with the attitude questionnaire, partial i&entifigation by group
membership can sgmegimes lead to accurate and efficient estimation of
the relations between attitudes and achievement (Barﬁﬁh, 1971; Fé{ge
and Watts, 1970; 1972). These estimates may be obtained from grouping
procedures similar to thésé used in contexts where the investigator has
complete ;an;réllover the choice of grouping procédufes For Examplé,
students can be grouped by county of,:e§i§epée; then the between—county
regression of student attitude on student achievement con be used as an
estinate of the individual-level regression. Or the student could be
asked to indicate the se;ond.lettér of his last name. What auxiliary
information is suitable depends on the study conditions, but a "good"

grouping technique has certain general properties. Once these

properties are known, the investigator can build "good" grouping

¥

characteristics into his study design.
E. Ecological Inference -- Aggregate Sampling Units
It is not uncommon to sample aggregates of individuals rather than

the individuals themselves. For example, every studernt.in a classroom

20
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can be studied rather than students selected individually from the

student body. S8cores can be obtained from student bodies of schools and

City, county, and census tract means can be the sampling units in
scci@lagical and economic studies? .

Inferences drawn from aggregate sampling unitz can lead to what has
- been called the "ecological fallacy" (Robinson, iESD)i The "ecological
fallacy" is the practice of inferring relations between éfoparties of
individuals from the relations ﬁf group data (Alker, 1969; Selvin, 1958).
Although sociologists and political scientists beginning with Robinson
have discussed "ecological inferénﬂéf; the writers in the edﬁeatiaﬁal
and psychological 1iéeratura havelbfﬁen overlooked the iésueiz

When sampling units are groups of individuals, between-group
analysis is logical even when the relatiéns among measurements on indi-

viduals are the primary concern. The investigator lacks control over

in other contexts. In many instances, he is unable to determine how the
ﬁequire& grouping @r@cedgrenéffegts the variation and zovariatian of the.
s;udy_vagiabiesf“mUnﬂér these conditions, the possibilitygﬁf iﬁfetring

relations at the individual level is limited. s
In any case, the sampling of groups can present a particularly

complex type of aggregation problem, since questions regarding sampling

20ddly enough, one of the first references to the inflationary effects
of estimating correlation coefficients from grouped data was by the
eminent psychologist E.L. Thorndike (1934). There appear to be no
further comments on the topic from educational and psychologiecal
researchers except the papers questioning the appropriateness of
estimating individual learning curves from grouping learning curves.
(e.g., Estes, 1956).

21
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bias arise in addition to concerns about level of inference. One
question may be whether the sampled classrooms (counties) are seﬁrgsen—
“fm”;ative of the classrooms (counties) in the universe to which one Wahts

to peneralize. The ihiéséigatcf must clearly understand the basis for
his inferences to the individual 1évei in order to be at all confident,
G:hérwise, it may be best to make inferences at the group level or to
examine the individuals within groups, or to do both.
F. Applicability of Grouping Scheme in Different Contexts

This investigatioh offers a géﬁéfal scheme for identifying the
consequences of grcuping. This scheme will enable an investigator to
choose the best grouping characteristics from a larger set when informa-
tion about interrelations of each grouping characteristic and the study
variables is known. Thus, our results are most applicable to problems
(A) through (D) wﬁere the investigator has at least partial control over
the aggregation procedure. The ordered grouping characteristics that
can occur in these contexts are also easier to handle since the deter-
mination éf the relations gf.ordered characteristics to the study
variables is straightforward.

The extré difficulties of grauping when some data are collected

anonymously [problem (D)] largely arise from the inability to group on

variable in a regression analysis, but this is not possible when
observations on independent and dependent variables cannot be linked.
The general scheme will offer suitable alternative procedures in this
;antéxt that approximate the optimal grouping method.

The problems of ecological inference [p?cblem (E)] are the most
complex because there is no choice of grouping procedure and also

22
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scale. Our-scheme offers little direct guidance on how to proceed in
this context, though it will usually indicate when inferences about
individual relations are out of the question. However, the conditions
necessary to detéfﬁine when such inferences are reasonable are unlikely
to occur unless the analysis can be carried out at the individual level.
If individual-level analyses are Pﬂssible, ecological inference is
usualiy unnecessary.

The analytical arguments will be restricted mainly to the
conditions prevailing when the investigator can choose among several
ordered grouping characteristics [problems (4) Ehrough (D). Our
hypothetical examples and empirical analyses will refer mainly to
prﬁblamé of economy of analysis [problem (C)] éﬁd of anonymously
collected information [problem (D)]. Application in other contexts

will be indicated where appropriate.

IV. Problems to be Considered

This inquiry focuses on how grouped data can be u§g§)far inferences
about individuals particularly in educational research.. The problems
diSEuSSEd in the previous saztiégraffirm the need fc; a clear undera
standing of this technique. We cannot specify the problems Exactiy
until the technical terminoclogy and notation are dévéiopéd, but we can
identify previously unsettled issues to bé considered. |

Regression and correlation coefficients calculated from groupe:s
data may be biased éstimataéicf the garréspénding individuai=lévall
relations. Robinson (1950) showed that the bias in such correlation
coefficients is strongly determined by the ratios of the bétweensgraﬁé
variation of the variables to their total variatigﬁg Other researchers

(Blalock, 1964: Feige and Watts, 1972; Hannan, 1970; 1971) have shown
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empirically that the bias in a regression coefficient depends on the
relation of the grouping characteristic to the inéépeﬁdent and dééendent
variables.

We propose to trace rationally how agpregation bias depends on the
interrelations among the variables of interest. Our struecturs, which
includes cases hitherto neglected, will be a taxonomy that contains thev
possible iﬁﬁé;rélations between the grouping fariables and the other
variables. 1In addition to presenting logical and empirical arguments,
as in previous studies, we éhall develop mathematiéal formalization for
bias, we shail also discuss efficiency and precision of regression
coefficients. Bias in correlation coefficients will be considered only
incidgntélly although a way of estimating zero-order correlations from
grouped data is also described.

Aggregation bias will be studied in both bivariate and multivariate
relationships. The effects of varying the number af—gr@ups and the
number of!observaticns per gicup will also be considered. The latter
work will indicate which properties of grouping are most sensitive to
sample size. The intent is to formulate strategies for minimizing

information loss when grouped data are used for individual inference.

V. Overview of Later Chapters

S

Earlier literature on estimating correlation and regression
- of the work cited is drawn from sociology and economics.

.In Chapter 3 we state formally what is known about estimating the
simple linear regression coefficient from grouped observations and
extend previous work. Alternative models are discussed. After

. 24
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extending the "structural equations" approach (Blalock, 1964; Hannan,

1970, 1971; 1972) by incorporating a function of the grouping
characteristic as a variable in the system, we present a tagcndmy:af

the relations between the 'grouping variazble" and the other study

variables. Formulas are then derived for the bias and efficiency of
1

variables from each taxonomic category. ‘Finally, we discuss the
imp'ications of the results for investigators using grouped data.

Other aspects of the single-regressor case are considered in
Chapter 4 with emphasis on within-variable factors such as the number
of groups and the number of cases per group. We élso describe an
alternative scheme for characterizing the grouping process which
complements the treatment in Chapter 3. The chapter closes with a
discussion of ways to examine the éffects of grouping on a nominal
characreristic.

In Chapter 5 we consider the case of two regressors and point

-toward--extension -to-any-number-of additional independent variables.

The literature specific to the multivariate case is reviewed, and the
taxonomic approach is applied to the two-regressor model.
An empirical demecnstration of effects in th single regressor

case is presented in Chapter 6. Information collected from incoming

freshmen at a large Midwestern university serves as the data base.

First, for a certain X,Y pair, the regression slope and its sample

variance are estimated from the ungrouped observations under a simple

[

linear model. hen one or another student characteristile is used to
group observations, and the Y-on-X regression slope ard its sample

variance are estimated from the grouped observations. The empirical

results are shown to conform to the conclusions derived analytically.
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The use of composites of estimates from different grouping prﬁcedurés

is described; this improves estimation in certain contexts.
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Chaﬁter 2

REVIEW OF THE LITERATURE
ON
GROUPING OF OBSERVATIONS
Historically, investigations of the effects of grouping on the
estimation of individual-level relations have followed two distinct

lines of inquiry. On the one hand, statisticians and behavioral

sclentists (mostly sociologists) have considéréé this question-whila
studying the ”e¢clcgical fallag?" (Robinson, 1950), the effects of
ﬁodifiable units (Yule and Kendall, 1950), ané the problems caused by
a "change in the units of snalysis“ (Blalock, 1964). ihésa investiga-
tlons share an interést in the circumstances under which the analysis
of grouped units inflates estimatgs of individual-~level relations.
Economists, on the other hand, ﬁave traditibpally‘treatéd grguﬁigg
as a legitimate strategy for reducing the cost of analysis. Their
mathematical formulations have indicated that,grauping simply reduces
the efficiency of regression estimates without intréduﬂiﬂg_any bias.
Thus, they have hunted for the most efficlent means of forming groups.
Prais and Aitchius@n (l?Sé)land Cramer (1964) represent this econometric
~ tradition.
In recent yearé, Ehevdistincti@nsrbetweeﬁ>the approaches hzve

" blurred as the methodologies of the behaviorial sciences and eco: smetrics

converged. Hannan (1970, 1971; 1972) and Féigé and Watts (lQ?Ej are
largely responsible for this convergence,!

Below, we review only the key preseatations from the two lines of

I

inquiry. Summaries of previous work in these areas have already appeared

Isee also Eﬁrsteiu (1974) and Hannan and Burstein (1974) .
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elsewhere.’ We reserve the detailed discussions of certain key
investigations for a later chapter. In Chapter 3 we examine work by
Prais and Aitchinson (1954), Cramer (1964), Blalock (1964), and Hannan

(1971; 1972) on the effects of grouping on the estimation of simple

linear regression coefficients. In Chapter 6 our study of the multi-
variate case is juxtaposed with reviews of work by Prais and Aitchinson

(1954), Haitovsky (1966), and Feige and Watts (1972).

I. Behavioral Scientists' Perspectives on Grouping

The earliest articles on the effects of grouping indicated that
correlation coefficients increase when the size of units (e.g., census
tracts) is increased. In 1934, Gehkle and Biehl showed how the
correlation of total number of male juvenile delinquents with median
‘monthly rental in Cleveland, Ohio changed from -.50Z as the city's 252
census tracts were successively grouped into larger regions. The
magnitude of the correlations increased steadily with the degree of

"aggregation:

NUMBER OF REGIONS

{in

252 200 _ 175 _ 150 _ 125 _ 100 50 2

CORRELATION -.502 =-.569 =.580 =~.606 -.662 -.667 =.6%5 =-.763

2ge1vin (1958), Scheuch (1966), Alker (1969), Allardt (1969), Cartwright
(1969), Shively (1969), and Iversen (1973) among others reviewed the
grouping literature in the behavioral sciences, focusing on Robinson's
(1950) work and related papers but offered litfle significant new
material. Among the above, only Selvin and Scheuch refer to related
studies by Gehlke and Biehl (1934), Thorndike (1939), and Yule and
Kendall (1950). Johnston (1971) reviews the econometric studies.
Hamnan's work (1970, 1971; 1972) combines a review of previous work
with contributions to the theory.

28



19

Thorndike (1939) demonstrated the problems assaﬁiated:wiﬁh the use
of grouped data in the course of. his investigation of the ﬁeterminants
of intelligence. He pointed out that the correlation between two traits
(X and Y) in m groups equals the correlation between the tfaifs for

the individuals composing the groups only uﬁdarn;égﬁ;sg,;ial cireum=_ . -

stances. He added that the latter correlation was usually much smaller.
Thorndike then constructed an illustration Qith intelligence
quotient as X , and the number of rooms per person as Y , and the
twelve districts of a city as units for aggregation. Within each
district he created a sample of X and Y wvalues such that within

districts rXY = 0 . When observations at the individual level wvwere

subsequently pooled éve: districts, Tey © .45 ; but the;beﬁwEEﬁsdistficts
correlation of X and Y averages was .90.

More than ten years passed before questions regarding inferences
from grouped éata reappeared. Yule and Kendallv(1§50) stated that if the
units of analysis were modifiable (e.g., characteristics of geographical
regions), the magnitude of alcorrelation depended on the unit chosen.

for the specified units chosen for the work" (Yule and Kendall, 1950,

p. 312). Furthermore, they concluded that ghenavé: units are grouped

andsgﬁfrélétiOﬁs are calculated from summary Eharéctgtistics of the

groups, such as averages, the correlations increase with the size of the

grouping. Conversely, coefficients decrease as the grouping becomes

finer. As vwe shall see, this generalization is now known to be

incorrect. | e B
_In addition to their citation of the Gehkle and Biehl example,

Yule and Kendall correlated the yields of wheat and potatoes from 48

29
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number of units by combining contiguous areas (forming 24, 12, 6, and 3

units). These groupings yielded correlations of .219, .296, .576, .765,
énd .990, respectively. .

Sociologists and political scientists dominated the literature
dealing with grouping for most of the next twenty years. The éarlg
sociological investigations typically focused upon bivariate félations
bétweenggualitative variables where the cbservations were grouped by
location (;.g., state), by social organization (e.g., school), or by
temporal occurrence (e.g., quarterly Etatistigé)i In%estigatgrs were
generally concerned ébaut the consequences of using such data to make
inferences about the ungrouped chervations. These analysts' problems
were amplified by their lack of control over the grouping process,

The article by Robinson (1950) on the "ecological fallacy
triggered one of the liveliest methodological éébates in.thc postvar
perioed" (Scheuch, 1966, p. 148). Alker (1969) described the surprise,
dismay, and fagé of users of ecological data that Robinson caused with
his démonétration that statistical associations for aggregated popula-
tions can differ in magnitude and even in sign from those for individuals.
Robinson advised a distinction between "individual correlations', which
he defined as a correlation between indivisible objects, and "ecological
correlations", where thegétatistical objects are defined as a group of
persons, He warned against treating ecologlcal correlations as if they
were individual correlations. Robinson considered it to be an
"ecological fallacy" to use data grouped by Eerﬁ%tqrial units as if
they were measurements on individuals.

The avowed purpose of Robinson's paper was to provide a mathemati-
cal formulation of the exact relation between ecological and individual

correlations and to show how that -elation reflected upon the practice
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of using ecological correlations as substitutes for individual correla-
tions.> liis analyses on race vs. illiterazy and race vs. ﬂativiﬁy (see
Table 2.1 below) are illustrative.

¥

Robinson's explanation can be summarized as follows:

i) The individual correlation depends upon the internal
\within-cell) frequencies of the within-areas contingency

tables, while the ecological correlation depends upon the

marginal frequencies of the within-areas contingency
tables. ;

ii) Since the within-group marginal frequencies from which the
ecological correlation is computed do not fix the internal
frequencies, which determine the individual correlation,
there need not be ény correspondence between the individual
and ecoclogieal correlations.

According to Robinson, the mathematical relation between individual

and ecological correlations can be written as

[2.1] rp = klr - Esz s
where
ky = 1/ngy
and
k, = ¥1 - q 2 Jl - nzlﬂx y -

In these equations, r is the correlation between X and Y for

all N persons; Ty is the "ecological' correlation, the weighted

correlation between m pairs of X and Y percentages which describe

measures on iﬂdiﬁldualé were not available.” Dthers, beginnlng w1th
Menzel (1950), pointed out that relations among the properties of
collectives can have their own inherent value. Questions regarding
appropriate units of analysis remain outside the domain of this
investigation. We are only interested in inferences about the
relations at the level of 1nd1vidu§if when the analysis is performed
on grouped data. 1 e
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Table 2.1. Correlations of illiteracy with race and illitéfagy with
nativity at different levels of aggregation®,

Value of r Value of
Description of Units (d1literacy and race) (illiteracy and nativity)

97,272,000 persons .203 .118
48 states ) 773 -.526

9 geographic regions . . 946 ’ -.619

4The correlations are Pearsonian fourfold correlations based on data
from the 1930 U.S. Census. The three attributes are all dichatomous
(literate vs. illiterate; Negro vs. Non-Negro; Native-born vs.
Foreign-bornj. '
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the subgroups in a fourfold table; and rw is the average of the m
within-group correlations between X and Y , each within-group

2 n2 . 16
X and ﬂY are the

correlation being weighted by group size. Also, n
correlation ratios (the ratio of the between-group variation to the
total variation) which measure the degree to which values of X and Y
cluster by group.

From equation [2.1], Robinson was able to deduce that the indivi-
dual and ecological correlations are equal only when

[2.2] Ty = ksr

where

w5 Thes
kg = —————a

Y Y )
¥l ny 1 Ny

However, since the minimum value of k3 is unity,® the individual and
ecological correlations can be equal only 1f the average within-group
correlation is larger than the individual carrelaéi@n_ This is counter
to experience; hence there is no reason to expect equivalence of the
eccl@gi:ai and individual correlations.

6In the unlikely case that either correlation ratio equals 1, the value
of k is undefined. Otherwise, for any two numbers a and b ,

1€ o B
~ /(1-a%) (1-b%)

1 - a2 - b2 + a?p? <1 - 2ab + a?b? (multiplying by the denominator and
: squaring both sides) '

< a? + b? - 2ab

o
[~

f]
M

< (a-b)?

and thus, since we can let a = Ny and b = Ny the minimum value

of ky is 1.
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Equation [2.1] also suggested to Robinson how the ecological
correlation depended upon the number of subgroups. He pointed out the
Zollowing effects of consolidating units:

1) The ecological correlation decreases as the groups become

more heterogenous since L increases directly with

increasing group size and the between-group proportion
of the variation equals 1 ~ r% .

id) The correlation ratios ﬁi and n% decrease as the

between-groups variation becomes smaller.

iii) Of the two éffeété,'the=ﬁhanges in the cgrrelaﬁién ratios
are considerably more impartaﬁﬁ than the chéﬁges in Ty
so that the numerical value of the ecological correlation
increases with increasing consolidation of units. B

After Robinson, the emphasis in studies qf the effects of grouping
shifted to a search for conditions under which the bias from grouping
can be minimized. Duncan and Davis (1953) developed an estiﬁata of the
size of the error when aggregated data are used to predict individu;l=
level relations. They Examiﬂcdisuccessive subdivisions of a territorial
unit (in their example, census tracts) and used the differences in the
ecalggiéai correlations that were obtained for the units of varying size
as the best estimate of the size of the ecological fallacy. They
concluded that "although different systems of territorial subdivision
give different results, ... the criterion for choice among these results
is clear. The individual correlation is approximated most closely by
the least maximum and the greatest minimum amongst the results from
several systems of territorial subdivision" (Duncan and Davis, 1953,
p_-666)g

Goodman (1953; lSSS)_progosed the use of ecological %égressicﬁ
coefficients, rather than ecological correlations, in any attempt to
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define the éizgumstaﬁges that reduce the prabléﬁs Robinson had identified.
Goodman's form of ecological regression is appropriate for variables
which are measured nominally or ordinally, and his method though requir-
ing some difficult assumptions, is more =fficient than the Duncan-Davis
method of setting bounds,

Briefly, his method is as follows. Let Y be the proportion of the
total population who are illiterate, X be the proportion of the total
population who are Negroes, p be the proportion of Negroes who are also
illiterate, and q be the proportion of Whites who are also illiterate.
Finally, let the groups represent samples from the population of X and

Y values. Then, if (a) population parameters p and q do not differ

from area to area an§ (b)Y E(Y) Xp + (1L = X)q =-- where X is as
defined above and E(Y) is the expected proportion of illiterate people
in an area -- the standard leastasqﬁgrés approach yields unbiased
estimates of p and q and thereby of the slope of the regression of

Y on X . Furthermore, if the values of Y are approximately normally
digtfibutéd with the same va?iance for each value of X , ali standard
fegrassiép_methcds also apply.

Thﬁs,:a;cardiﬁg to Goodman (1959, p. 614), the only assumption
necessary to justify his estimation prazedgres is that p and q '"must
be more or less Qénstant'for the different ecolugical areas in such a |
way that the standard linear regression model can be applied". His
estimates of the individual—iével parameters in the Robinson and Duncan-
Davis examples were a vast imp?évément over those from ecological
correlations or the Duncan-Davis bounds.

Blalock's examination of "change in the units of analysis' problems
was the first break from:the consideration of exclusively nominal and

ordinal variables. Blalock (1964) used a causal framework to examine
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empirically the effects of grouping strategies on the correlation
coefficient Tyy and the regression coefficients be and bKY . He
placed artificial restrictions om the grouping eriterion in order to
alter the variation among X and Y variables in specific ways: to
maximize variation in X , to maximize variation in Y y and to minimize
the effects of grouping on both variables (random gr@uping); thurthly,
areal units were grouped by preximity. - »

Blalock demonstrated that Tyy remained unchanged only under
random grouping. When Y was the dependent variable, both random
grouping and maximizing variation in X left the estimate of EYX
unchanged; but the variance of the slope estimate increased. However,
be was affected by maximizing variation in X . Thus, if one is to
infer individual-level relationships from aggregated data, individuals
have tc be grouped in such a way that their scores on the dependent

variable are related to group membership only indiréctly, through their

scores on the independent variable.

II. Econometric Perspectives on Grouping —- "Optimal Grouping"

Econometricians have traditionally followed an entirely separate
line of inquiry. The problems they have attempted to solve are those
caused by an overabundance of daﬁaig They consider the practical
problems facing an investigator who can choose among a variety of
grouping methods. Prais and Aitchinson (1954) and Cramer (1964) have
done basic work to be recounted in detail later. Here, we prcvidéronly
a short summary.

Within a general regression model, Prais and Aitchinson (1954) set
out to estimate the ragres§ién parameters SYX 3 raay BYXK for K

1 ]
regressors, and the variances of the estimators from the individual and
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grouped observations. Following classical least-squares procedures,
Véhey showed that, whatever the method of gréuping (a) the resulting
estimators are always unbiased, (b) the variances of the estimators
based on grouped data are aiways greater than those of the estimators
from the original observations, and (c) the efficiency of grouped
estimators is optimized by maximizing the between-groups variation in
the regressors.

For most of the 1950's and 60's, the Prais—-Aitchinsen results
defined the state of the econometric knowledge on the égpiﬂ. Cramer
(1964), following the Prais-Aitchinson approach, focused on strategies
for optimal grouping in the two-variable case without seriously
considering the p@ssibility of bias. He evaluated certain efficient
grouping prozeﬁurés under conditions common to economic survey analysis
and provided empirical examples on optimal grouping from the literature
on economics.

Haitovsky (1966; 1973) did not follow the Eath laid out by Prais-
Altchinson and Cramer. Insﬁéad; he studied alternative ways of
estimating multiple-regression coefficients when the data are in the
form of one-way classification tables for which tﬁéwcell frequencies of
the cross-classifications are not available. His most important
contribution is his empirical evidence that grouping on one regressor
can lead to biased estimators when the hypothesized model contains
multiple regressors. |

Recent work by Feige and Watts (1972) is even more definitive in
the multiple-regressor case. They considered the analytical consequences
of "paﬁiial aggregation' as a means of performiung individualslevel analy-
sis while preserving the confidentiality of data. Perhaps this new

substantive focus explains how they found differences between estimators
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of regression coefficienzs based on the individual and grouped data, a
result contrary to the findings of Prais and Aitchinson but in aéccfdanga
with Blalock's findings. They attributed the differences to one of three
sources: (i) specification bias (omission of regressors),
(1i) bias introduced by a grouping transformation that is not independent
of the disturbances, or (iii) sampling error introduced by the use of
less information in the grouped regression., They also provided new
criteria for judging the bias and efficiency of grouping methods. We
shall explore their work and Haitovsky's in more detail in Chapter 6.
Hannan (1970a, 1971§A1972) integrated the various approaches to the
aggregation problems discussed herein. His extension of Blalock's csusal
logic is particularl? pertinent to future application @f this technique
to the problems of grouping. The concluding remarks of Hannan's book
on aggregation (1971, pp. 116-1L7) identitied the areas where the

knowledge of grouping effects was - i: limited. He called for expanding

our understanding of the cousesucnces -of estimating individual-level .

relations from grouped data, thé oroblem of the piesent inquiry.
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CHAPTER 3

ESTIMATION OF THE LINEAR REGRESSiO' COEFFICIENT
FROM
GROUPED DATA IN TUE SINGLE-REGRESSOR CASE
Chapter 3 focuses on the substantive factors that determine the
effects of using grouped data to estimate the relations that exist in
data on individuals. For the time being, we consider a linear model
with a single regressor X leaving multivariate problems to Chapter 5.

As a point of departure, the methods employed by Prais and

cients from grouped data are presented. These methods represent the
general econometric approach to the effects of grouping of observations
prior to recent work by Haitovsky (1966) and by Feige and Watts (1972).
(S5ee Chapter 5 for further discussion of their work.) Potential problems
with the earlier econometric approach are cited. The approach of the
sociologists Blalock (1964) and Hannan (1970; 1971) is discussed as an
The remainder of the chapter is devoted to attempts to develop a
mathematical formulation that will account for the grouping effects
described by Blalock and Hannan. The concept of a "grouping variable"
is introduced to emphasize the‘réiations of the chosen grouping charac-

teristic to the variables of interest. The simple linear model is

I

replaced by a structure which incorporates an interval grouping variable
Z. A taxonomy is then. generated by considering possible linear rela-

tions of Z to the regressor X and of Z to the regressand Y after

adjusting for the relation of Z to X . Four categories result when

39
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Z is placed prior to X and Y in the model.

The bias and, where appropriate, the relative efficiency Qf-ggﬁima!
ting the regression coefficient (SYX) at the individual level from the
gorup means are examined for each taxonomic category. The results indi-
cate that grouping can yield either a biased or an unbiased estimatsrf
The model which incorporates the grouping variable is found to be better
suited for treating the problems of data aggregation than Ehé analytieal
methods of Prais-Aitchinson and Cramer. In particular, the altered
model leads to an explicit formulation af the expected bias éueltq
grouping by a variable having specified xela;ions to the X and Y

variables.

I. Terminclogy and Notation

Three types of variables are considered: dependent, independent,
and grauping.i A dependent variable, or regressand, is an "outcome" or
an "effect" in educational investigations. Only the case of a single
dependent variable (Y) will be treated.

The independent variables, or regressors, are thosé the investigator
studies as "causes'", "determiners", or "predictors" of the variation in
ﬁhe dependent variable. Where there are multiple independent varjables,

XCI), eaes X(k))} ‘denotes the k-dimensional vector representation

(q)

for the complete set, and X' refers to any one variable; q =1, ...,

X [=(

k . When there is only one independent variable, the superscript will
be dropped.

Typically, values of the independent variable are assumed to have

Tother writers make no formal use of a "grouping variable". Some speak
informally of "the method of grouping" [see, e.g., Prais and Aitchinson
(1954) and Cramer (1964)].
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less than Li+1';:tha lower bound of - the range fo gruup i+1.3

var:ables. Alternatlvely, a ﬁﬂﬂ*llﬂéar transformatlan can ba perfnrmed
on the categories of the ordinal grouping variable so that it can be
traatad as interval. .In this case each non-linear transformation yields
a different grouping varlable with dlfferent :Elaﬁicns to the other
studg variables.
31t is also possible to generate an interval g. uping variable from an
unordered grouping characteristic by appropriate scaling procedures
(e.g., scaling of father's Qccupatlgn) This option will be discussed
in Chapter 4. ‘
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groups can be formed.

Often, the grouping variable is distinct frcﬁlboch X and Y .
For example, observations can be grouped on "father's education",
"student's sex", or for that matter, "third letter in ctudcct‘c last
name". Indeed, the values of Z can be numbers assigned to persons at
rccdcm; in which case 2 4is unrelated to X and Y .

Our models will specify relations among X, Y, and Z, rather
than among X, Y, and the grouping characteristic. This is done

because observations are actually grouped on a partiéular Z and two -

‘grouping variables generated from“the same grouping characteristic can

. have dlffcfent relations to X and 'Y .
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A. The Structure Among the Variables

The relations of interest .are the structural relations of Y to

X . The rcgression equations represent the presumed underlying

structure among the variables. For a given X , there are three possi-

ble struézural models for the relation between X and Y : (a) X

determiﬁés Yo ib) Y determines X ,-(c} there is a rééipiécal
relation. (There may be other determiners of X 'éﬁﬁfsi denoted by
u . When necessary, a subscript is attached to u ﬁg iégntify ﬁhe
variable influenced.) The trivial case of no relation can be ignored.

This investigation concentrates on model {a), which can be

-represented by the path diagram

case, X determines Y . In a linear model, B is the coefficient

YX -
from the regression of Y on X . u, represents all the determiners
of Y that are linearly indeﬁéﬂéEﬁt of X . Hence Uy includes errors of .
measurement in Y , the effects on Y of variables other than X and

residuals due to any lack of fit of the linear model. Effects such as

‘are known as "disturbances" or 'disturbance terms". A disturbance

g

u, could be added prior to X , but this disturbance does not affect

X

the X-Y relation-of this model.

' The relation depicted in model (a) can be identified by the

"structural equation" Y = a + BoyX + uy - This equation specifies

that Y can be partitioned into a constant part, a common part due to

its linear relation to X , and a residual part, independent of X .
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‘defined by X and a facta; for the'residual.pa:t of Y A(thét is to’

: ééy; for Y+X ).

N amgng'_m :“gr0ups‘ on thé basis af their 'z values_ Thraughaut mast;:a‘z

' ThE indegendent variable X 1is not part;tioned. In factar—analytic

1.

- terms, two faccgrs can. Ee chnsen to. aggeunt far. X and E 5 a fagtar R

B! Notagicn

We bégiﬁ"ﬁitfi N perSQnS,xp':'l; N '.rhise t:an ’be divide_d‘

of this investig tio on, the ,“p"‘ is recoded as ij f@r clearar
i e . .

designation of gréup memberships. With the -ij ngtaﬁiﬂn,ﬂGfgup 1i%;7?-T

contains n, Ppersons, n, %x"?~+:ni %77;:>+ n % Nv?_‘jhgilabéls

ddentify the scores of the jth member .in the ith

xij, lij’ and . Zij,

group (i - ;i.,‘ﬁ 3i = l,-};ié-ﬁi);i

Falléﬁing a standard c@nvéﬂtian' X, Y, ., and_:ff_

- represent -

tha means far graup 'i;} fﬁﬁéet-'g"”

grand means and Xi-? Yl » and Zi P

the assumptions made in this invaétlgaticﬁ, ZijAE Ei; 5 Tﬁé disturb¥

=l
\m
S‘
=
-
-
U‘
mw.
o]
o
u‘
m
H

i-

ances uij have group means ' u (Latéf tl
disturbance terms v and w , to which the same conventiaﬁs apply ).

Throughout the analyses, population variances and vaarganges are

denoted by éi; E%; gy and so on. Also of interest are population
“xy? ‘:’x YZ Xz *

correlation coefficients
describing the fegressién of X on Z.. The partial regression =~~~ "

z» and o, and the coefficient, B,

coefficients EYX!Z and BYZﬁX

for partials, the effects of Ehakiafiable placed after the

are important later. In the notation. -

"-" A ave

been -controlled when considering thé}relazicn of Y to the other regressor.
Additional notation is needed when the sample of pefsansjis only
a subset of the population. For the total sample, a sum of squares or

sum of cross-products [deviated from the appfoprlaté mean(s)] is

identified by SST( ) . For exampleg SS (X) . d ﬂQtES the total sum



a5

of squared deviations of Ki from the grand mean:

3

m n,
Ss (X) = -2 (X
i=1 j=1

- X H2
ij Xii)
Similarly, SSB(E) represents the between-group sum of squares for

X:

‘SSB(X) =

0
" [l =]
N~ B

=

We shall use SSW(X) to denote a within~group sum of squares:

ix . -%, )2
1

B
ing e

85y (%) Loy T e

]
[

i=1 j

The sum of cross—products of X and Y will be denoted by "8(X,Y)
[6(X,¥) for between-group sum of cross-products]. V() and C(, )
denote the sampie variances and covariances -- the sum of séﬁates and

sum of cross-products divided by N-1 , respectively. The sample

values of correlation coefficients are represented by r., T

xy’ Txz» 30

C. Assumptions About Sampling

In the singls-regressor case, our analytical work is based on two

sets of assumptions about the sampling of observations. In the simpler

case, we take our sample of N persons to be the population of interest.
"The investigator can then determine B from the ungrouped observa-

YX

tions.

When observations are grouped on the basis of some Z , the

regression analysis’ performed on the group means ”Kii and - Y
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(weighted by group size ﬁi ) pgenerates the cgefilclent B§§ from -

“'the population of group means. -In this case, where the sample eéﬁals
the population, our central questions have to do with the adequacy o

B§§ as a substitute for B ; 1.e, what is the value of B§? - S

¥X

Alternatively, we may assume that tﬁe pérsaﬂs are a random sample
from the pOpulaEiDD with the constraints that the groups are an
exhaustive sample of the values of Z ,, and the sizes af the-gféugs‘in”_
éhe sample are directly prapgztionalitﬂ the sizés of the grguﬁs_iﬂ the*
papuiat;an These conditions amount to the 1mplicit aESumptiDn ﬁhét
we drav a prapcrtianata stratified sample with scrata defined by the
values of Z . HQWEVEI, we treat the observations as;if they are é
simple random sample from the papulatian.:

Under the 1atter sampling assumptlgn Csample # pcpulation), the

estimator of B, basad on tha ungrauped absetvat;ang is d31ared by

YX
EYX and its var;ance over a hypothetical population of independent

random samples is denoted by v(be),, The samplé estimator of Efﬁ
from the weighted group means is denoted by Bgz » and V(Bfi)'
represents its variance over samples.

The bias from using rauped data in this case is reflected in

the difference between the expected value of B§§ and ’BYX[E(Bgi) E

where expectation is over all i and j 1. Thé difference between

E§§ and EYX pfOV1dES an estima of the bias due to grouping.

The relative efficiency of bYX and Efi as estimators of BYX

is determined by comparing VCbSX) to MSE(B;;) , where

MSE(B==) = =) + [B(B-=) = Y12 . en B 1 B—— are
HSE(ESX) VCBYK) [L(BYX) SYX)] When bYK and BYX are

unbiased estimators of BYX and E§§ , respectively, HSE(B§§) = V(B§§

+ {E§§ - B X)E estimates  the mean squared error from estimating B X
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Aruitoxt provided by Eic:

Tabie-Sgl summarizes the alEerﬁativeLsampling procedures and the
measures of precision in estimating from grouped observations unéer
each procedure.

When the data represent arsubsémpie of the populatiﬁn, sampling
bias can contribute to the discrepancy between parameter estimates frcm
grouped and ungrouped data. Thus, we potentially confound grouping bias
wit% sampling bias. Treating a pragarticnaté stratified sample as 1if
it were a simple random sample also offers hazardé for - 1nterpretatlan.
Later, when we talk about bias due to grouping, we do not make the
distinction between sampling bias and grouping Eias. The combined
quantity is attributed to ﬁha; ye call grauping bias or discrepancy.t

The assumpt ion of exhaustive sampling of the values of Z causes
no spacialrprgblemsAwhan Z 1is an interval grouping variable based on

an interval grouping characteristic. However, whenevar the characteris-

[ns

ic is nominal, such as school or classroom, the géneraliéy of conclu-
sions are restricted by requiring exhaustive sampling. The investigator-
would like to generalize'béﬁcnd the classrooms he samples. In any case,
the classrooms sampled should at least be randcmly rap;eséntaﬁive of
Some populatlon of interest and lack of representativeness introduces

additional bias. This source of bias is also attributed to grouping

under the prescribed analytiéal procedures, -

“FElge and Watts (lS?é) add speclficatlan blas as a thlrd conqundlng

In fact, F21ge (persmﬂal cammunicatlan) balleves that what we Eall
grouping bias is actually specification bias arising from the:
omission of a relevant variable from the initial model. We do not
disagree with this interpretation. However, the generality of the
notion of spec1flcatlnn bias fails to capture the fact that an
investigator may be interested in estimating the simple linear

.. regression coefficient at the individual level, and his problem

arises mainly because he must analyze agﬁfegatcd data.
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Table 3.1, Tndices of precision of estiates From grouped data as & function afsampiiﬁg"pfatedurei |

Measure nf I’fecismn

Nature of Sanple Eﬁ;;ipti@n afSémplir_lgPracedu_rE - Discrepancy ,' Eff1c1er1t:y

Sample £ Population The sample of N persons constitutes | eﬁ B-= =B
the population,

Sample f Population -~ N persons are sanpled randonly from S | Ub,,)
' the population in such a way that d= Bﬁt - BYX Eff(g B) & =
all possible values for Z are ot
sampled in proportion to the sizes
of the groups in the population, =

aE(diSEprEﬁE}‘) = Blas
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IT. Regression Coefficients to be Contrasted

Between-groups regression coefficients can always be estimated from
grouped data. For example, assume that in an investigation of the

relation between achievement and income; students are grouped on the

income and student achievement at successive levels of fathers' education
and the group sizes n, become the data for the regression analysis.

The investigator can then calculate B§§ s the slope of the regression of

group means of achievement on means for income. This is an unbiased

estimate of Bfi .

However, the purpose of the investigation is to learn about the

ungrouped regfeésian coefficient BYX . Our question then is 'what is

the relation of Béx to B,. ?". That is, we want to know the conditions

he between-groups regression

(ad

under which the slope estimator (B; ) from

is an unbiased (or possibly just consistent) and efficient estimator of

the slope (BYK) from the regression of Y on X using the ungrouped

observations. The rest of this inquiry moves toward a statement of these
conditions.

III. The Bivariate Case —- Standard Model

We first ﬁresenﬁ a étgndard statistical model for the relation of
Y to X in the ungrouped observations and in the group means. A
discussion of tha.féimﬁlatian by Cramer (1964) follows®, with
digfgssians to call attention to important problems of application.

Section III.E., in particular, is devoted to the effects of violating

SWe concentrate here.on Cramer's bivariate regression analysis rather
than the multiple-regression work done by Prais and Aitchinson. The
latter will be discussed in more detail in Chapter 5.
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assumptlans on the Prals—Altchlnsaﬂ and Cramer canclus;ons.f Flnally,= SRR

. we discuss work by B;aigck (1964) aﬂd Haﬂnan (1979 1971 1972) wh;ch

deliﬁeates the Effegts.ofdgraup;ng in a more realistig_mamné? thanuthe

. Prais=-Aitchinson and Cramer treatments.. Thraughguﬁ’thiSESegLien éé‘:”

- deal with the case of subsample from the pépuléciéﬁ;hb

A. Regr3551on AﬂalySis of the Ungrgupad Dbsetvatlans
" When a sample of N pérsons, P ; 1,u,;i, H is drawn from ghe '

'pupuiatien, the relatign between YP aﬂ&;4i§ :iéjégscribed by Ehé

regression equation

(3.1 - Y's,a—n-s,,, +u . ' L
[] P P P .

where a ‘ S : i

[3.2] B... Es?- 7 o .

Dné set of assuﬁytions fcf this_modgl'(withérandém X ) is

Al. The th are random variablés distributeé independently of the
u_ .
P

A2, The up are ind3§andenﬁ rénééﬁ ﬁis;urbgégés with Egup}‘e
and V(u ) = aEA for all p .

In this case the 1east=sﬂuares estimator of B X from the sample

of judividual data is given by
x e Lo i ' N
C‘-(X » Y ) z

[3.3]  byy =~ V(L) - = 1

When [3.2] is substituted- for YP in [3.3] and the expectation

taken, we obtain (by summation over persons)
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3 7('3(!}{ ,u )
“YxX . V;;p)

1
™
+
=1

[3.4] E(bYX}

: s(x, -X)(u %‘Ti)r_
= Byy + Ej—P B ° e

X RICRES SL

Since the disturbances up and the regressor XP are assumed to be

independanr by Al, the second term is zero. So

) = By .

and b,. (s an unbiased estimator of B.., - (When the u_ are
X YX ‘ P

normally fistributed, bYX is also the maximum likelihood estimator.)

Uné~. assumplions Al and A2, the variance of be can be shown

to be (see, =.¢., Goldberger, 1964, p. 257)

I
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If the d§t§7s§tisfy the assumptions on the X_ and u, and the

sampling assumptions, then within the class of linear unbiased estima-
tors of the linear regression coefficient of Y on X, be is the

estimator with minimum variance (see, e.g., Goldberger, 1964, p. 269).
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B. Regression Estimation from Data on Groups

Double subscripts are needed for the sample observations when BYK

is estimated from data on groups. The "p" are recoded as "ij" (see

Section II:B.). Equation [3.1] becomes
[3.1] Y. = o+ By X, . +tu,,
ij ,
That is, 1ij (group- i , jth member) replaces p

We can retain the definitions of be‘ and V(ng) given by [3.3]

and [3.5], as no change in assumptions has been made about data at the -

individual level. Note, in particular,-that we have assumed sampling

of individuals as iijrrqnits,ﬁaﬂd not gagpling_gfﬁﬁi;ﬁand of j within

2

i.

In estimating the regression coefficient from group means, any

ordering of the groups is ignored. The within-group means, weig

the number of observations in the group (n.,) , replace the (Kij’gij)

pairs, and the regression equation relating the Xii to the ii- is

estimated. We shall hereafter refer to B§§ as the population value

of the least-squares coefficient predicting Yi- from X, » where the

: 3 4 = 1 = *
means are weighted in proportion to group gsize in the population. «

will denote the intercept in this equation.

The relation betweszn §i- and -iii is described by the regression

This equation has the same. form as [3.1] where now thergr@up means play

the role of "individuals". If the assumption about the uy g holds- for
the ungrouped observations, the anaiog@ussstatéments also hold for the
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grouped observations. (E.g., E(u i

We define

and T

where grcupbmeans have been weighted bj"ﬁﬁeir cgtraspgnaing n, . The

[3.7]

When [3.6]) is substituted  for i,_ in [3.7], and the‘expeﬂtatién

taken, we obtain

Since u,, and X, are independently distributed, the second term is

ii

Pl

zero, and Bgz is an unbiased estimator of B
" Under the assumptions Al and A2 , the variance of the grouped

estimator is
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[3.91  V(Bg

C. Bias and Efficiency of Eséﬁmaﬁiﬁg BYX from Grouped Observa-
tions ¥X
-Though B;ﬁ is.an unbiased estimator of B;i',.we,ate interested

in its adequacy as an estimator of BYK » the coefficient from the

ungrouped observations. If we let d = B?f - BYX represent the discre-

pancy in estimating BYK from B§§ , then the bias from grouping, 0 ,

A!!'
L=

can be written

[3.10] 8 = E(d) = E(Bzi = Byy)

Since E(bYX) = EYX , Wwe may also write

K) )

[3.11] | 0 = E(d) = E(B;i E‘by
According to [3.10], the bias -in estimating BYK from B== 1is
zero when the papulatiaﬁ value of the regression coefficient from

grouped data equals the population value of the coefficient from the
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ungrouped observations.

5 Furthermore, by [3.11], the bias ecan be
evaluated by comparing the grouped estimator B?i with the ungfau;ed
estimator b

We also want to evaluate the efficiency of estimator bYY relative
to estimator Bss in estimating the regression coefficient from un-
grouped data. For the time being, we shall take as our index of the

efficiency of the grouped estimator, the ratio of the mean-squared error

of bYX to the mean-squared error of Bgg

% in estimating BYX ; namely,

2 191 |, _ MSE(b,,)
[3.12) EfE(byy, Bgg) = Hééf§§§3'
V(b 0

V(B— ) + (Bzz - By )E

since bYX and B§§ are unbiased estimators of Byx and B3z
respectively.

When B§§ = SYX , the efficiency index [3.12] can be written as a

ratio of expectations involving the between-group and total sums of

squares of X by substitution from [3.5] and [3.9]:
V(b,.)
a1 ¥X
YX] XK V(Eii)
a2
E[ss (x)]
[ S (K)
1l
Elss ]
_ T(X) )
B 1
- Ll )
SSB(X)

From thc theorems on the components of varia nce, the total sum of
squares over all N observations can be decomposed in the following
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manner :
SST(i) SSB(XJ + SSW(XJ ,

(Total) (Between) (Within)

so that

0 < aq
5S,(X) < S8

Because all terms are non-negative,

1 o1 :
55, (%) = 85, (X) o

and £

Consequently, Eff(b -=) <1, and Bgz 1s generally less efficient

YX* “¥x
than bYK .

Furthermore, according to [3.13], a grouping procedure that maxi-

mizes the between-group sum of squares of the independent variable leads.

to more efficient estimates. That is, one prefers a procedure which

forms groups homogeneous in- X . . So, of those grouping procedures

that yield unbiased estimators of SYX_;xthé one wvhich maximizes
(minimizes) the between-group (within-group) sum of sqﬁarés of the in-
dependent variable vields the best estimates.

D. Differences from Cramer's Formulation

The analytical work of Cramer (1964) différé in two respects from
what has been done so far. First Cramer assumes that the xij are

&

Under the assumption of fixed X i3

, the sums of squares involving X

i3

are constants and the expressions for the variances of the estimators

can be simplified. That is when the X

57

15 are fixed and given, [3.5]



47

and [3.9] can be written as

and

1]

. u
VBg) = 55.) ,

respectively.

) Moreover, when = B , the efficiency of the grouped

B YX

estimator becomes

Il

Bzc)

58 (
Effgbzx’ ¥X T 85 (X))

This ﬁ% is the correlation ratio.

Here, again, we see that grouped estimators that maximize the

between—group variation in the X , 1.e, that maximize ns , yield

ij
the mostgeffigiént'estimatéfsgi Thus, conclusions about the efficiency

of estimation are not affected by whether Xij are assumed to be fixed
or random.

The other major differcnce in the Cramer formulation involves ﬁis
assumptions regarding the sampling of-abéarvations and the effects of

groupiﬁg on the population parameters to be estimated. According to

Cramer, the sample of N observations (X, ) are "from the outset

i j !Yij
abservati@ﬁé eaéh, ««+ The xij are

fixed and given, and the Yij are repeated samples defined by

divided dinto m gtaups of n,

[3.1] | ?ij ;,F f BYxxij + uij s [his equation (1)]

__ g



sis added). His assumptions about the disturbances u
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where o and EYK are unknown constants' (Cramer, 1964, p. 235, empha-
i3 are Equivaleaﬁ
to assumptions Al and A2 above.

Cramer further states that it follows from his equation (1) that

Y, =a+8..X +u, .
Yig o Bz i- : ui- -

That is, he assumes that the act of averaging observations within groups
does not alter the model assumed ﬁo Ea genéfating the observations aﬁd
thus does not affect the parameters that are to be Estimazed, Thus,
from his analysdis, we would conclude that “Bii- and VEYX as given by

our [3.3] and [3.7], respectively, are both unhiaéedvESt;mafés of BYK .

(This is also the conclusion reached by Cramer.)

=
fas

Section III.B., we state that the equation relating ﬁii to the

b

i

o

i!
L = # = -
[3.6] Y., =0 + Bs=X 4+ u. s
) % L , , ,
vhere parameters a and Bii may differ from the parameters a and
BYK for the ungrouped observations. This is an important distinction
that foreshadows our differing conclusions regarding possible bias from
grouping. 1In the next section we consider how Cramer's assumptions
caused him to overlook several plausible grouping procedures that can
result in biased estimation.
E. Implications of Assumptions for Equation [3.1]
Not all methods of grouping meet the conditions implied by

assumptions Al and ‘A2 ; neither Cramer nor Prais-Aitchinson notes

Py

this explicitly. For example, if the data of students from the school
districts of California are used to estimate the regression of student

achievement on parental income, it is plausible that the mean distur-
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bance will vary according to school district. This would mean that

ECug,1,3)
E(uij = E_é) = 0 , we are unable to simplify equations [3.4] and [3.8]

¥, , not necessarily zero or constant. But unless

il

P

wvhen Xij are random variables. That is, 1f the uij have a non-zero

expectation, bYK and B§§ are blased estimators of their respective

these conditions,.the disturbances can be described instead by the equa-
tion

Cov (Uij;uf[;j)lg o 8 s

where f is an N x N covariance matrix whose off-diagonal cells need
not be zero. The elements on the diagonal (variances) may vary accord-

ing to group (district) and the covariance within a group can be non-

: A . = <2 40
zero; that z ; = 0.
zero; that is, E(uij,uij,) g . £ 0 .

When heteroscedasticity and interdependence of disturbances are
present, least-squares estimators are still unbiased, but they no longer
have minimum mean-squared error (cf., Goldberger, 1964, pp. 231-243).
this problem can be overcome by transforming the observations so that
théy satisfy A2 and estimating the parameters from the transformed
data. For example, when heteroscedasticity is stxilctly a function of
differences in group size [that is, when S. = diag(nl, rees nm)] s
weighted leastzsquéres procedures using the grouped data perfarm‘thé
nazéssary adjustments: With more serious complications, as when Q
is unknown, eccname;figians1génerally place restrictions on { t@i
permit its estimation from the simple regression mgdéli

The viclation of aséumption A2 Eﬁrgugh covariation of regressor
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with disturbance has serious consequences for least-squares estimation

from grouped data. Covariation. between the Xij and the u, . can

[

occur when the regression model is misspecified through the omission of

a variable related to both X and Y . It must then operate through

the disturbance term. That is, though the regression coefficient BYX

from [3.1] is to be estimated, a better specification of the processes

at work is
*
+ u ,

Yig = ¢ oy ¥ ByexMyy Yy

where Wij is the variable "omitted" from [3.1]. Given the above

specification, the least-squares estimator of BYX from the single-

regressor model has .expectation

' B EYW*XbWK i

Bexew *

=
P
o
o
]

where wa is the sample regression coefficient of W on X (cf.
Theil, 1957).

The misspecification becomes a problem when EYK is estimated from

observations grouped on the omitted variable. By grouping on W (whic

is at least partially masked by the u in [3.1]), the assumption of

1
independence of regressor and disturbance is violated at the grouped

level since the W,, are related to both the X,, and the u . As
1] ij ij

a result, G(ii‘,z . from [3.7] is then a biased

estimator of BYX .
Finally, in the present example, the designation of a single

constant BYX and the assumptions for the model represent an over-
simplification even for the ungrouped observations. Our model does not
consider the possibility that the Y-on-X slopes differ because of

school district effects. If differential district effects are observed,

.6t
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the analyst might best examine his data in some multivariate way.

F. Grouping on the Dependent Variable -- Ideas of Blalock and
Hannan

Before moving to our own approach to estimation from grouped obser-
vations, we péint out arguments by Blalock (1964) and Hannan (1971; 1972)
that run counter to Cramer and Prais-Aitchinson. Both Blalock and
Hannan have argued that systematic groﬁ'i'g ethods can yield biased
estimators of regression coefficients.

Blalock (1964) based his objection to the "no bias" conclusions of
others that correlation coe ff ients are biased by grguping, and on the
relation of regression coefficients to the squared correlation coeffi-
cients. His reasoning was as follows:

1. Groupings which maximize variation in either X or Y

inflate the correlation:

2. Accordimg to Prais-Aitchinson and Cramer, grouping on X does

not blas the estimate of BYX

E(Bgg) = Elbyy) = Byy ‘
3. The squared correlation riy equals the product of the
regression coefficients be and bxg .
2 = %
Yy bY”bXE .

Similarly,

Ry BY},,B}(Y B

4, Given the above, it follows that grouping on X dinflates the
regression coefficient:

Bgy 2 Pxy :
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Blalock's éonclusicn from the above was that the regression coeffi-
cient is inflated when data are grouped on the dependent variable. This
apparvently contradicts arguments that estimates from grouped observations
are always unbiased.

Building on Blalock, Hannan (1972) provided a particularly apt
description of how bias can arise through grouping. He argued that bias
occurs when observations are grouped on the dependent variable Y . When
variation in Y 4is maximized by ranking observations by their Y values
and then grouping "adjacent'" observations, observations that have both
X ;alués and high u values will be placed in the higﬁest Y groups,
assuming BYX is positive. Similarly, observations with both low X

i

values and low u Galués ére placed in the groups lowest on Y . Thus,

longer be expccted to equal zero. Hannan stated that this correlation

between regfessorivariablé and the disturbance violated the assumptions

and was the result of a specification error magnified by grouping.

Since the model at the groﬁped*level is misspecified, the least-squares

estimators are no longer unbiased. |
Blalock's and Hannan's arguments are largely intuitive. In the

next section, we present a formal mathematical treatment which supports

the contentions of Blalock and Hannan.

IV. A Structural Model for Determining the Effects of Grouping

_ A systematic procedure is developed for examining the coﬁseguenées
of different metho: - of grouping observations. The procedure is an
extension of the 'structural equations' approach by Rlalock (1964) and
by Hannan (1971; 1972). First an interval grouping variable Z is

added to the model of [3.1]. In other words, the rule by which the
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individual observations are assigned to groups is treated as a random

variable which may be related to other variables in the Syszem,-_Lg

the grouping variable Z is related. to another variable, the structure

will specify that Z is prior to that variable. Tt does not matter

that +# may appear to be determined by, says X in the sense that X

would be logically or temporally prior to Z if the three=variable

model Y = f(X,Z) were under investigation. We visualize the grouping

process as one in which Z can "“select" or "force'" the observations
from the bivariate distribution of X and Y dinto groups. It is in
this sense that Z is prior to X and ¥6.

The equations for the modified structure are presented below for
both grouFEé and unéréuped cases. In addition, general formulas are
derived for both grouped and ungrouped coefficients, their estimators,
and their variances. Even though we are investigating "a single
regressor', we have here a three-variable system whefé; Y can be
regressed on X and Z .

Next we consider how the relations of the grouping variable to the

other variables affect the usefulness of Bii' as an estimator of SYX

Problems with regard to the scale and distribution of the variables are

set aside for the moment. A taxonomy will be set out such that grouping

rariable

from the modified structure fit into one of several mutually

exclusive categories defined by the relations of Z to X and Y ..

EO

®This interpretation of Z is in no sense arbitrary. The process of
grouping systematically has much in common with the notion of
selection. 1In fact, Liitjohann (personal communication) has suggested
that the grouping bias we discuss is essentially selection bias, the
result of a manipulated sampling of the observations of X and Y
because of their association with Z . Recent work by Goldbarger
(1972) on selection bias in evaluating treatment effects with non-

. random sampling also hints at the connection.

64



54

As later sections will demonstrate, the use of this taxonomic structure
enables the investigator to reject many potential grouping variébles by
examining their matrix éf.carrelaﬁians and partial correlations with
the main variables in the study.

A. Structure with Z prior to X and ¥~
The path diagram for the éﬁfﬁétufé when VZ isip;icr éa X and

Y is

In this diagram, v is the disturbance term representing all determin-
ers of X that are not linearly related to Z , and w is the distur-
bance term representing all determiners of Y that are not linearly

related to X or Z . SYX@Z’ B , and EXZ are the path regresgicn

YZ+X
coefficients.
The equations carrespénding to the structure with Z dincorporated

can be written

[3.14a) Y= o Byy Xt By, gtV

[3.14b) A+ By 2+ v .

s
]

We recall that B8 B , » and SKZ refer to regression parameters

YX-Z’i YZ+X

in 2 system with several variables. Even though we include the grouping
variable Z , this is:-an equation at the individual level; every person
has a Zp . w and v are disturbance terms with zero expected values
for all persons: w 1is assumed to be iﬁdgpéndent of X, Z , and v ;

and v 1is assumed to be independent of Z . We further assume that
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both disturbauce terms are homoscedastic (i.e., for any two persons,

2 =92 =92, 0% =02

Il
]

g d

ﬁ%) and independent. (This implies that

, 0) and o =0 .
WiWa Vivz

for any two persons, ©

Although we again write o for intercept term in [3.14a), its

value may differ from that in earlier equations. We let A represent
the intercept term in the second equation of the structural systenm.

Equation [3.14b] can be substituted into [3.l4a] to obtain a

single equation for the regression of Y on Z and v

)Z + B vd+w .

[3.15] Y X7

M

(ot Byyph) + (ByypByg + By

Equation [3.15] is actually a reparameterization of [3.1] where X has
been divided into two parts -- the part predictable from the grouping
variable Z and a residual part v . Equations like [3.15] are
generally called "reduced-form" equations. This means that [3.15] is
in a form that cannot be reduced further by substitﬁtiOﬂ of other
-equatians from the structural system., Later on, we use reduced-form
expressions to simplify our anélygical work.

In Table 3.2, expressions for the population variances and co-
variances of thé.vafiablés in equations [3.14a] and [3.14b] are
provided. The corresponding redueed=fc?m versions are enclosed in
brackets, |

The regression coefficient relating Y to X -- the ratio of

Ogy tO G% as given in Table 3.2 -- is equivalent to the coefficient

given by [3.1]. As can be seen, that ratio involves the three
regression coefficients (BEK*Z ’EYZ-X , and BXZ) and t?g variances

2 2, 2
g c= . and o°
Z v 2 v



Table 3:2! Covariance matrix for variables in equations [3.14a] and [3.14h] (Reduced forms in brackets).

Variable : Y i X A X

2200 2 ; z
I St s P bt

2 : + s az + szl

[(Byyy,oBer B X) vxe7%

YX27X2

_ 2
: Py

e
o)
Ny

e

F iy, f )0 4B o

PPz * PP By

2 2
v’z Py ¢

[

B

(K]
ot
[ |

[Gyyazbin * Bypx

=



gyfgubétituﬁicn.(cﬁ.thé tedﬁéédsfgrm:g#éfégsi§n§  -TébléfB;g);Fy

we’ get

[3.16) By = =

]
TR

The structuralrgquatians for the means of groupslwith-unifbrﬁ’.Z'

. can be written as

|
I
R
+.
TR
4
+
T
Ny
+
%1

[3.17a]

[3-l7b] X =2 +.BXZZ + v .
These equatiané are the same as [3 14a] and [3 léh] Eﬁcgpt ghaglgtgupedf
quantltles have baen substitutad fgr their ungroupgd cauntetpartsi In

addition to Eha intercepts, there are Stlll six paraméters,l:BYx Z ,{~v~:~';ﬁ

Ex g~ag , “02 , and 02 . Note tnat wa specify the same

B vy 3 O
Xz * 7z v w

YZeX * ne
zégtassién pafamate£5 as in‘EB,;é ]; Slnce‘averaging qbsgrvat;@ns
within groups does not aitéf'the mcdellunierliiﬁg tﬁetéeﬁéiatiaﬁ‘af:

" observations.  (I$i5 is analogous to Cramar s assumptlon dlsgﬁssed iﬁ
Section III.D though now we cparéte Qithra mcre;tmrgegply spécified_

" model.) . .

Tabkle 3.3 contains the-papulationﬁvalues fér the variances and
covariances of the variables in equations [3;1?3] and [é;i?b]; Thg

reduced forms are again enclosed in brackets.




Table 3.3, ovactance mrix for veriables i équatlﬂﬂs [3.17a] and [3,17b] (Reduced forms in brackets)

o2 L
R .U/ SRS v o

(8 js_f+s ,,,,, )

. _iz
- £ i
it G+BY}&ZYZXXZ W

12,
G AR VS G

+gw]

4

o
bopd®g * P

. B._

'

YXZXZ Z

e [l

2 1
Hopls P

0
Byt )

8BS
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By substitution of the reduced-form expressions from Table 3.3,

the fegr3551on coefficient relating Y to X

that between-group variances replace total variances. When our sample

discrepancy, or blas, 6 , can be found by substituting from [3.16] an

~= can be written as
Q==
( 1 . _¥X
[3.18] Sfi = g§
X
o2
= B + By, B .
YX-Z YZ-X"XZ 2
. 0=
: X
‘CDmpﬁring [3 16] and [3.18], we see that
—— k')

[3.18] for the appropriate terms in [3.10]:

YX

[3.19]

for)
I

—= the ratio of Eﬁii

XY

g§§ and _SYK differ in -

¥x T Fyx
2 o
- g g | L% ;
YZeX'Xz | 27 2 -
X X
C. Estimator of B ¥x from Individual Data
m
Under. the_mcdlfled structure, a 51m912 random sample of N( I
o ‘El
observations is draWﬁ from the trlvarlate dlstrlbutian £(X. j’Yij z
generated by [3,143] and [3.14b]. The sample regression estimator
ils given by o
m N, _ _
LR CHPER PR C A Y
[3.10] b, = 222 351 -
) YX m ni
I, - X )?
i=1 j=1 M
- Exy : *
= =27 B
Ix2 .

L%

P
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where x = Kijr— i__:_apdx y = Yij - Ti‘ are déviatian séares énd
summation is over all N persons.

Equation [3.26] is a double-scripted version of equationhf§g3]!
'Aﬁ expression for the expected value of bYX in terms of pafémeters of
the modified é;ructufe is found by éubstitu;iég [3;14;] for Yij: in

[3.20] (all variables in deviation form) and taking the expectation:

~r
i}
t=

]
=

1}
T
s
N
+‘
.
]
™~
>4
=

Ix?

(Zkg +
Equaﬁién [3.21] is in a form that cannot be simplified without
additional assumptions since, by [3.14b], ¥ and z may be related.
We can, however, examine the asymptotic properties of the expression
under the conditions that both Ixz and Ix2 exist and £x? is non-

zero. By the Strong Law of Large Numbers 7,

where plim denotes the probability limit ( lim ) of the enclosed
"H &+ o B

£

71 am indebted to Professor Julius Blum for pointing out that the
Strong Law of Large Numbers is useful in this situation.
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expressions. The right-hand side can be further simplified since

I-‘j‘ '
-
[N
=
[

» wz
I |
v
n
pﬂhiH

)- L EC,EX?E + vz)
Pltlm

2
L2° | plim Y2 = g g

= plim By =y~

(!
™
Q

since v_and 2z are independent.

Therefore,

)
[3.22] Pllﬂfﬁng) = EYXiz + EYZ-}:S}{Z 42 ) :
N . X

where, as expected, the rigEEEhand side of [3.22] is the same as the
right-hand side of [3.16].
"The variance of bYK under the modified structure can be written

[3.23] : V(EYX)

[
=
N p—
o

S = E { Lo Bygag * BYZ_XL(QV 2) i

Substituting [3.10] and [3.21] in [3.23].

+p,. (E2\ LI
YZ+X £x2 ng

Vibyy) = E{

12

o . sz'
_ -+ B == .
BYKZ ) EYZ-XE( 2) ?
Ix“, s

and, after substituting the deviation form of [3.1l4a] for ¥y ,
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By expanding the right-hand side and applying the assumptions that w

is independent of x and‘ z and E(w) =0 , [3.23] can be further

[x: ixz\ |2 [ Law \2
V) = BypxE| s - B( 25 0 +(iw) o
Ix? CIx</ | ix?

The last term in the above expression is equal to o E[EE-TET] by the

reduced to

same reasoning we used to derive VCb ) (Equatlon [3. 5]) in Segtion

I11.A. Also for the time being, we shall use the fact that - ;ﬁﬁ, is
' ‘ B Ix2

the expression for the least-squares estimator bzﬁ to simplify the

equation for the variance:
s ) 2 4 g2 ;_ﬂ_},; ! |
VCbYE' BYZ XVCb )+ o E[%ijlé] - .

It is'ﬂifficulteto simplify [3.23]-further because x is. a fune-
tion of both z and v under the most general canéitiansg Later, vwe
examine the V(bgg) under conditions where 2 is assumad to be unre-
lated to ¥ , to Y*X. , or to both. 1In these cases, the expression for
the variance of the estimator of BYX from ungrouped data can be

simplified.

D. Estimator from Grouped Data

The Y,, and X, , from the sample of N observations drawn from

13

[

% -
the trivariate distribution f(Xij, Yij’ Zij), are grouped on the\basis
of the values of Zij" Each observation is then replaced by thekgrcup

mean corresponding to its Eij value; that is, ii* replaces X,. and

ij replaces Y,, . In this treatment, Z,,k6 = Z, so that 3% = g2 |
i- ij 1) i- z VA

Furthermore, we assume that the group sizes in the sample -- the n_ 's
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are pfﬂpértignal to the group sizes in thé'paﬁulétiaﬁ}égfthat,biaé!hésp

' not been introduced through non-proportionate sampling from groups.
The equation for the sample fegrgssian coefficient Bfi can be

written as:,

i
\
I
i
|
\

[3.24]  Bgg

= Xy

where. lower-case letters denote deviations of group means from the grand
means of the sample and summation is over all N observations. Théﬁgh
written in a different manner, equation [3.24] is simply the double-

We now follow ghe same pfécadﬁ135 uéed in Segﬁian Iﬁ;ﬂ £6g.pﬁgtaﬁpéﬁf§
data in order to fiﬁd the expécted-yaluE gE7tEé'saﬁplg ésfimatar ftgi_gy
grﬁuﬁed data undéf the ﬁgdifiéﬂ sﬁfuctﬁrgfp Subétituﬁiﬁg thé.ﬂéﬁiatiQQ 
form of [3.14a] for §"iﬁ [3.2&] an& ﬁaking tbéféﬁgééﬁatian, we obtain

(3.25] E(Bog) = E(Ez)'

i
=

i
|

|

|

|

|

n

T

et

A

I~

+

e

e

™

A
T
e T e
R
.o : i
AN
1 ‘\M
%n|§m
N

e YX+Z = YZ X(ng)

since x and w (and X and w) are assumed to be independent and
E(w) = E(w) = 0.

By the same réasaning used to derive [3.22], it can be shown that

" asymptotically 2

o=
[3.26]  plim(Bg + 8, B 5] -

2 7 Byxez T PyzaxPxz 5
, - R
The right-hand side of [3.26] is the same as the right-hand side of [3.18].
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. b4

An expression for the variance of B§§ under the modified structure

is found in the same fashion as. V(be) +in [3.23]. 1t can bé sﬁawn,that-

[3 27].. V(Bgg) = ElBgg - E(B§EDIE

X

, | IXzZ R I T '
R P k2 | Y (55 ““E;§§g$

e 2|1
yz.xV(Bzg) T 0E 55, (x) o

I
T

(W]

where EE§ is the least-squares estimator from the regression of

on ¥ over all N persons.

The only differences between the eﬁuagians for géouped and ungrouped

coefficients ([3.16] and [3.18]), their sample estimators ([3.21] and

[3.25]; alse [3.22] “and [3.26] for the asymptotic expressians), and

sample variances ([3;23] and [3.27]) are that sums of squares and

variances of the group means of 2 and X feplage the sums of squaﬁeg
and variances of the cérrespandimg ungrouped observations. And, since
ﬁ% = G%’ and SSB(Z) = SS (Z) under the modified strugtgfé, the only
sébstamtive ehanges;invalVE,variatian of the independent variable.

b and B§§ havé been shown to be asymptotically unbilased estima-

YX

tors of EYK and EEE respectively, but the investigator wants to

estimate BYX from Sﬁi (when the sample equals the population) or from

B

Il
wal

In Section V.B we shall identify the conditions under which

Pl

= BEK and Bii is an unbiased estimator of BYX .

. E. A Taxonomy for Classifying Grouping Variables

B

A taxonomy for comparing grouping variables can be formed by setting
various combinations of EYZ*X and EXZ in [3.14a] and [3.14b] equal to

ategories of the taxonomy reflect different sets of con-

\ﬂ\

zero. The

straints on the relations of Z to Y and X . Four categories of

77



grouping variables can be distinguished:

I. Z is directly related to both X and 'Y*X (BYi-X # 0,

# 0)
II. Z 4is directly related to Y+*X but not to X CSYZEX # 0,

B, = 0) .

I1I. Z 4is directly related to X but'not to ¥+X (BYZiX = 0,

B,, # 0) .

Iv. Z 1s not related to either X or Y-; (BEZ*X = 0, BXZ % o) .

the taxonomy.

The categories of the taxonomy include all pcssibié linear rela-

rt

ions linking priat‘grguping #ériables to the regression of Y omn X .
Certain of these categories represent broader classes of variables. For
instance, any faﬁdam~grcu§ing procedure will satisfy the conditions for
Category IV. Groupir> on.the regressor X is a special case Gfbéazée

gory III. Most systematic grouping variables belong to Category I.

3

Grouping on the dependent variable Y dis a special case of Category I.

Any gr@upiﬁg variable can be uniquely categorized if the variances and

Under certain conditions discussed in Chapter 1, however, no un-

grouped estimate of o

X is available. To see this, suppose that data

on X and Z are collected anonymously on occasion 1 and data on ¥
and Z are collected on oggasian 2. Then GX ,-6¥ s SX s GKZ , and

gYZE can be estimated directly from the data. But there is no natural
way to pair X and Y scores, and Oyx and thus EYX cannot be

estimated directly. When this occurs, the investigator can estimate

BYZ and BXZ , but not -BYZ*X . He can often pguess whether BYZ-}I is
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non-zero, and by doing so can judge whether ézcuping by Z  will yield

unbiased and efficient estimates of B . In Chapter 6, we sﬁail

YZ:X
offer suggestions for grouping when Ovx

of Chapter 6). ’

is unknown (cf., Section II.C

V. Bias and Efficiency as a Function of

I?E?ﬁémi?,C§F3%S££

We examine how the relations specified for the'éaxcnamic categories
can affect the bias and efficiency of . the regression estimates from
grouped data; First, the general formulas fgﬁﬁbi§5 and effi;ién;y from
Section II1.C are developed for the mgaifiéd stfueﬁuie_ Tﬁan the

implications of this formulation are considered for each éa£égcry;
separately.
A. Bias and Efficiency Formulas

In Section IV.B, we presented the following expression for the

the population:

[3.19]

Ln)
]
T
] 1
I
I
o

1]
™
e
| =
oAl b
|

Lo} =]

P b D o T

| qQ
bl

Wen the data are a subsample from the population, the asympotic
expression for the bjias from grouping found by comparing plim(Efi)
(Equation [3.26]5xﬁi§h Plim(ng) (Equation [3.22]) 'has the same form

as [3.19]:

[3;28] plim(d) = plim(E;i) - ?11m(bYX)
6% ﬁz
. Z Z
= B B e o meee

YZ-X"XZ

=

bl e
o

2 ]

81



68
Alsé, comparing [3.25] with [3.21], the expectation of the differ-

ence between B?E and be is given by

W

[3.29] E(d) E(E§i) - BYX

E(B ) E(b ) =

it

Since 2., =2 ?

I
o]

F ﬂ‘
X1

I
™
"
&

-Similarly,
- ) Ivz

[
1
<
']

So [3.29] can be written as

261 I Ixz Ixz
3.29 E{d) = E/— — - ===
2:29) 5@ = by g5 2 zxz)

T 1 1 \]
= By, Bl (Zx2) _-—)
'YZ’X ( Ix< £x2 }

]
™
i
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P PPN SIS U N PR BRI S
= Byy.yBysB| (22 )( : _) + Byt (Lgv)( ” 77)

5.2 _ 532 2 _ yr2

: o Bl (re2yf BT = ExT AL L, e Zx7 - Ix®

EYZ'}{SXEE (Zz4) o, + BYZ*}{E (Zxz) - = .
LR“IX %2

= = - ko

With the exception of the last term, [3.29] now has the same form
and components as [3.19] and [3.28]. 1In each case, the bias term has

essentially the same straightforward interpretation if the between-group

and total variation of X are both non-zero. The grouping of observa-

tionsg leads to biased estimation if all three of the following conditions

hold:

(a) The grouping variable Z has a direct relation to

X (By, # 0) . I

.at

on to

m
[N

(b) The grouping variable Z has a direct r
YoX (Byy.y # O

(c¢). The ratio of the between-group varlation of Z to the
between-group variation of X does not equal the ratio of

the total variation of Z to the total variation of X .
Furthermore, since Z has been defined so that Zij = Eji , We can

rewrite [3.1%] and [3.28] as

' L oeray o ¢ , o] _X-"X - I
[3.%9 1 8 = E(d) *BYZ§RBXZﬁZ —Eggg=== (sample p@gplaglcn)

and

I
TRk
™
Q

—Sy—— (sample # population)

[3.28']  plim(d)

Thus, condition (c) can be restated as
(c') The between-group variation of X does not equal the total

variation of ‘X .
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Other things being equal, the magnitude of the bias from grouping
increases directly as the relation of Z to X or Y+X increases or
as the variation of X is reduced by grouping. These three conditions
are not independent; in the next section, we explore some ramifications
of their interrelation.

The formula for the efficiency of bYX relative to Bfi as an
estimator of EYX can be found by substituting from [3.19'], [3.23],
and [3.27] into [3.12]:

MSE(EYX)

[3.30] Ef£(b 2) = WEECigg)

SYX? Y}i

V(b )

V(B )+(s - Byyg)?

[
E 7. V(b )+D‘2E[§@]

. ) \ \
2 2
g, = g=
+|82, B2 o2 K—‘\
) YZ «X"XZ Z 2 2 f/

For certain categories, th%s complicatedvaxpféésion will simplify
greatly as Section V.C will show. -
| B. Examination of Bias for Each Category
Equations [3.19'], [3.28'] and [3.29] can now be used to examine
each category of groupiiig variables for bias. The taxonomic categories

are considered in order.
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1. Catepory I —— Z directly related to both X and Y-X .
(Byyux # 0 5 Byy 7 0).

Category I includes all grouping variables whigﬁ have direct
relations to both X and Y+X . An obvious example is that scholastic
aptitude (Z) may be related to achievement (Y) and to student academic
interests (X) .

A more complicated example occurs when two distinet classifica-
tions are made on the same achievement measure; for example, define Y
as the observed score on achievement and Z as the decile rank Gﬂ
achievement. Thus Z will most likely be a Category I varilable.

The broader classification for 2Z creates a measure whose correlation
with Y is other than 1.0 or 0 after X is partialled out. If
Y is 1inearly related to X , Z will also be related to X .

In general, the slope estimated from data grouped on Category I
variable is a biased estimate of BYX . The magnitude of this bias is
given exactly by [3.19'] for known values of EYZ-K s BXE s a% , and
G% and cén be approximated by .[3.28'] and [3.29] when the sample does
not equal the population.

Thus, when Z is a Category I variable, bias is given by the

general equations:

P | & = G 52
[3.19'] € = Byy.xPyz%

(sample = population)
2 2
- o=

7 7 . o ‘z o) 7:{ X ]
(3.28"] 6 =plin(d) = By, By 07



-~
(5]

(sample # population, N 2 =)

, R
[3.29] 8 = E(d) = B, _B..E (Zgz)(u)
' ; Ix2rx?

- Tl
+ By, . B (zzv_)(z"—zi:)
B . Ex2rx?

(sample # population)

Section V.A has already discussed the canditiqns under which bias

occurs. In Chapter 6 we shall gxamiﬁe the bias of the slope estimates

from several grouping variables by substitutimg amplrlcal estimates of

th

1

model parameters into equation [3.19'].
At this point, hovever, we can get some idea about the bias for
Cé;égary'I grouping by examining the bias in estimated caeffigiéﬁts
when .the variables from the ungrouped model have been standardized
before groupiﬁg.g - Assume that the xij 5 Eij s and _ Z are

standardized. Let m groups of equal size n ' be formed on discrete

‘LJ

values of Z s0 that Zij = Zi; . Under these conditions,
2 _ 2 -
(1) o, =05=1,

BThe practice of sgandafdlzlng the variables before graupimg serves
two useful purposes. First, it places the regression coefficients
on a uniform scale (0 to 1.0). Second, the coefficient:from the
regression of Y on X when both have unit variance aquals the
correlation between Y and X . This suggests a potentially
useful way to estimate zerasﬂrder correlation coefficients from
grouped data is to regress ¥ on X when the ungrouped variables
have been standardized.
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where n 1is the number ~observations per grour (held constant over

-]

groups) .

After substituting (1) and (4) in [3.19'], we obtain

&

[3.31] 8* = E(@@™) (n-1) (1-

B, B B,
vz xPxg |————R

(ﬁ*l}ﬁ%z + 1

where .d" denotes the diserepancy from estimating the regression coeffi-
clent for standardized observations from grouped data.

At this point we consider how the discrepancy varies according to

 the relations of Z to X and Y and according to the number of

groups formed. To do this we assume that there is a pool of grouping
variables, Z's , which have been standardized and have varying
TEla?iGﬁS to X and Y (potentially different EYZ!X and 5XZ ).
For simplicity we let the number of . groups formed by a given Z wvary
according to the chosen grouping variable, but we assume that equal
size groups are formed.
s Tiones 17 A . . et
In Figure 3.2, bias, 6 , is plotted against BXZ with BEEEK

fixed at .1 for selected values,of n , where N = nm is held
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constant. A comparable family of curves can be generated for any value

of B The curves are roughly symmetrical for small n and

become highly positively skewed for large n . This is as expected
since the groupings beccme coarser and less representative of the
ungraupaﬂlQESEfvaticns as n gets larger, for any set of fixed rela-
tions between Z and X and Y+X .

Table 3.4 indicates the bias -6* for several values of standard-
v7-% ° staﬁdanized SXZ , and n . An examination of the

tabled values leads to the following conclusions:

ized B

values of BYE'X and BXZ ’
0

with n (except EYZ-X = or BKZ 1.

bias increases

£

1) Tor any fixe

2) For fixed EXZ {(not 0 or 1) and n , bias increases with

BYZ?X -

3) ‘For fixed BYZ*X (not 0 or 1) and n , bias first increases

and then decreases as BXZ goes from 0 to 1.

Minimizing the direct relation of Z to Y+X and maximizing the

direct relation of Z to X is the safest way to reduce small bias.

¥ approaches its maximum rapidly even for small values of n .

Large n 1is less damaging when SXZ is large and BYZ-X is small,

though the necessary value éf sz increases rapidly with BYZ-X .

w1y Byy

500 and BYZﬂK = .2 , B

For n =500 and B

YZeX

1]

bias less than .1 . TFor n vz Wust be

- greater than .78 to achieve the same results.

The bias from Category I grouping can exceed 1 with large n

and SYZ-X = BXZ .

This should be a further warning against choosing
a grouping variable strongly rclated to Y-X and against concentrating
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Tuble 3.4 Bias 0% in estimating standardized regression coefficient

EYK from grouped data as a function of group size,
standardized By and standardized SX

YAD 4 A

8% — Magnitude of the Bias?

11

50

100

500

.037
.103
\132
.274
415
636
766

.914

.248
. 277
.288

.298

.035
.059
.065
.078
.083
.087
.089

.090

.330

.685

.038

.590

.915

.285

.150
.323
.375
.535
.620
.693
720

. 745

]

8 %

2

(n--1) (1-8;

Xz

)

Byz.xBxz

182 4 -
| (=D, + 1

.856
.992
1.108

1.152

.140
.236

.260

.33z

.348

.356
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observations in a [ew large groups. On the other hand, the relatively

small bias expected with small BYZ*X offers some hope for reasonable

estimates from data grouped by Category I variable.
2. Category 11 -- Z directly velated to Y:X but not to X

(8 #0, B8,, =0).

YZ-X Xz

Category II contains grouping variables Z which are related to

Y (Byo .y # 0) and are not related to X’(S g = 0) . Since B, =10,

the bias FB = E(d) = 0, as long as %2 £ 0 .

Thus estimates derived from data grouped by a Category II variable

are unblaséd unless there is no between-group variation im X . This

conclusion is not surpr ng. When Z 4is a Category II variable, we

are considering the standard model of equation [3.1] where the "other"
determiners reprecsented by u have been divided into two parts (Z and
v), both independent of X . Unbiased estimates are expected under
these conditivns.

It is possible to have no between-group variation in X for a
Category II variable. This occurs when the grouping variable lies in
the X,Y plane; iié" if R% X, Y =1, In this case Ix? =0 and

since BXZ = (0 , the'bias from grouping is indeterminate as can be

seen- by substitution into [3.19']:

Bl

2
- 2 X
Bys.xPxz2

el
I

Q
wiba | Q

02 - (0)

2l X )

(Q)Gz 2009 -
X

]

BEZ‘X

There is no simple way to consider further the magnitude of the bias.
There is some evidence based on simulation studies that bias estimates

fluctuate wildly in this special case. 91 —
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Catepory 1I variables are hard to find. HNone of the more than 200
pairs of paramcter estimates, B, ., and B, , from the empirical data
YZ:X XZ
discussed in Chapter 6 satisfactorily meet the conditions for Category
II grouping. Such variables could be constructed by grthogonalizatién;
but other categories of variables yield unbiased estimators with greater
efficiency. Henceforth, Category II will receive little attention.

3. Category III =~ Z dirécciy-related to X but not to Y'X

0, By, #0)

(B X2

YZeX
Category III includes variables which are related to Y only
through X . Systematic grouping on the independent variable falls in

this category. A Category III variable may be an explicit ordered
group distributions of X do not overlap. It is also posszible that a
Z from Category III involves some random component (v) which allows
the withiﬁ—group distributions of X to overlap. The presence or
absence of overlap is irrelevant in the determination of bias, but it
can affect efficianéy.

Since By,,y = 0 for Category III, equations [3.14a] and (3.17a]
reduce to

c oy +
@+ By X+ w

G
il

=1

YEQ‘FﬁE}:ﬁ“‘*

These equations are the same as t3.1] though the disturbance terms have
been relabeled. Thus for Category III grouping, the standard model and
our modified structure with the grouping variable incorporated are the

same, and estimate the same Byx
Ffom equations [3.19'], [3.28'], and [3.29'], it follows that when

Z is a Category III varil.uuvle,

. | 92
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E(Bgg) = E(b y) = Byy ’

’pllm(BYfi) = pllm(be) = EY}{ s

and

X from data grouped on a

var able Z which is relatéd to X but not to Y+X are unbiased for

Thus the iaast—squaras estimators of EY

any value of EYX .

The bias and efficiency resulting from grouping by a function of
X (Category III grouping) have been studied extensively, the most
prominent being the Prais and Aitchinson study (1954). (Most variables
systematically related to X do not strictly satisfy the condition
SYZ*X = 0 and thus exhibit some minimal bias.) Our coneclusions con-

firm those of earlier writers that Category III variables yield the

best estimates under a very general set of analysis situations. The .

Victz)ﬁ If such variables do exist in a study, the remaining decision
should focus on choice-among Category III variables, and, once a
variable is chosen, on the definition of the classes. These problems
are considered in Chapter 4 under the heading of within-category
factors.

4. Category IV —- Z not linearly related to X or Y-'X.

8 0, By, =0) . -

YZeX

Category 1V contains all variables whichvhave no linear relation
to either X or Y . A Category IV variable can be generated by
assigni;g numbers randomly to inéividualsg such as a student 1ID..
;'Gategary 1V grduping, alternatively called random grouping, generates
" random gfdﬁﬁé of (X,Y) observations.
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When B, ., =0 and £, =0, it follows that

and

Hence,

for any Category IV variable, and BTE is an unbiased estimator of

The interpretation of this result is straightforward. Estimating
B,, from the means of m randomly formed groups is statistically
from a sample of size m drawn randomly

equivalent to estimating By,

from the N observations or from the m -stratum meanec where the strata
L
have been randomly formed (Hansen, Hurwitz, and Madow, 1953). 1In either
case, the random process does not alter any pre-existing relations among
the variables. All variances and covariances among variables decrease
in proportion to the number of observations in a group for fixed group
size n for Category IV grouping. This proportionate reduction in
magnitude does not alter the estimate of the regression coefficient.
Category IV variables are not the best choice for grouping when
efficient estimates are desired because of the difficulty of obtaining
an adequate number of groups to overcomc the marked efficiency reduction

(see Section V.C.1.). 1In certain instances, however, Category IV

variables may be the only recourse for the investigator who has limited

information about other ways of forming groups.
C. Efficiency Considef;tians
Equation [3.12] defines éfficiency. Below we evaluate the effi-

ciency for each category of grouping variables.

194
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1. Category 1V
For Category IV variables, since 8 =0 and &, =0,

equation [3.11'] becomes

Ef£ (b y = — L

vx* PR
Several investigators have already éfavided simplified expressions

for the efficiency of random éfﬂupiﬂg under the assumption that the X

are fixed and given. An especially cogent derivation by Feige and

Watts (1972) is presented below, using.our terminology and notation.
Feige and Watts' derivation is based on the theory of sampling from

a finite population. The set of N observations is regatdeé as a pop-

ulation. If the observations are assigned randomly to m groups of

n, in each group, many groupings are PGSSib;E; The expectad within-

group sum of squares for the ith group is SST(X) {(nial)/(ﬂﬁl)]

Therefore, for Category IV grouping, the expectation of the total sum

of squared deviations from the group means (the within-group sum of

squares) is
i

=y
[«x]
]
P
kG
o
fo—
i
=
b =]

1]
~ =
oy
o
=3
>,
b
L
P
=
2
1 i
]
S

From the formula for the decomposition of the total sum of squares,

the expectation of the between-group sum of squares for Category IV

grouping can be written as

i,
I



E{ss, (X)] - B[8S (X)]

]

E[SSBCK)] 0

E[SST(X)[ s E[SS (X)] (gubstltutlﬁg from
} above)

If the X.. are fixed and given,

E{55 (X)] = SSB(E)

and

E[SST(X)] SST(X)

Also, in Section II1I.D, we showed that if, in addition, EYE iz an

.unbiased estimator of BYX , the efficjiency of grouping is given by

1 (X3
Eff(byysByg) = 55 X

-

Herce, by substitutien for SSB(X) » the efficiency of Category IV

grouping when the xij are fixed and given is equal to

Eff (b, =)

Yx? Y}x

- m-1

At best -- when there are m = (N/2) groups of two observations
each -- the efficiency of Category IV grouping is only about .5, under
the assumpticn that fha Xij‘ are fixed and given. However, the effi-
ciency of random grouping provides a standard to which we can compare
the efficiency of grouping in a systematic manner. Only those estimates
with efficiency greater than (m-1)/(N-1) offer an improvement over
random grouping.

2. Category IIT

Category II1 grouping can produce smali values of E[§§1?§y]
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because such groupings presunably assign observations to groups in part
on the basis of their X values. Since maximization of the batween-
~group sum of squares is a criterion for minimizing infor .ation loss
through grouping, we expect Category ILI grouping éa yield rélativgly;
efficient estimates.

Prais and Aitchinson (31954) and Cramer (1964) have examined the
efficiency of grouping on the indePEﬁéanﬁ variable under the assumption
that the Xij are fixed and given. While they discussed grouping in =
seemingly general way, their methods and conclusions are applicabla to
our Category III variables. Prais and Aitchinson presented a particu-
larly illuminating example. 7They let X take on the mn equally-
spaced values, Kif =1, ..., mn ., Then adjacent observations were
grouped inte m groups of equal size and each value of Xij was
T 2for %,. takes on the valuss

,ii & & bE =¥ = s;ii

[(2i-1)r + 1/2] where i =1, ..., m .

Bt
3
o
o]
e}
o]
L
O
L]
]

replaced by its group mean

§5,(X) = =

for the ungroupéd observations and

88, (X) = 17

for the grouped values. Whence,

In this special case of Category 111 grouping with fixed Xij s

then, | 97
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S X OYE
Ll
1
[For n<m, '?f&byv,Lé—} is also greater than (1 - =) .]
Fen 2
I

Thus the lecwer bound of the eificiency of grouping related to X under

these conditions depends only on m , the number of groups forme

o

Unfortunately, the distribution of observations seldom approaches this
special case. The conditions under which the efficiency of other
Category III variables approach this case arz discussed in Chapter 4.

3. Category II

In Category Il éfauping, Z and X are stochastically indepen-
5 :
dent. Category 11 variaé%es §haze thlsﬁprgperty {BXZ = 0) with
& = ,

Category IV variables. Since the efficiency’ 6f grouping is a function
only of the variaﬁicn of §; and X when the estimators are unbiased,
the efficiency of Category I1I grouping is the same as fgr Catopgory IV
grouping. That is, when SSB(X} # U , we expect Category II grouping
also to have efficiency on the order of fmal)/(Nél) , the ratic of the

number of groups to the number of observations. It appears that neither

Category II nor Category IV grouping yields estimators that approach the

4. Category 1

When Z is a Category I variable, both bias and variance of BYX
o 77 raffect the efficiency of €stimatieny T Thus™ equatlan [3% 12] ‘defines the

efficiency of grouping for this category of variables. 1In its simplest

form, the efficiency of Category I grouping is given by

V(by,)
[3.12] EFf(b,,,Bez) = ———— 212
YX*UYX V(g + "y
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If we again assume that the X,, are fized and given,

2
g2

SST(X)

V(B§§) * 550

L]

and thus [3.12] can be written a

M

0. /58,(X)

{3.32? Eff (b E?;?;) =

Yx? ~
2/55 (h)} + g2

7 S, (¥)
. x:r + 8335 {}L) 85,(%)

Mm

s

That is, the correlation ratio is an upper bound for the efficiency of

Category I grouping when the Xi' are fixed and given.

Cne implication of the above is that grouping by a Category I
variable is never more efficient than grouping by a Category III vari-
able with comparable SSB(X) - But since grouping randomly provides a
lower bound for the efficiency of grouping when E?E is an unbiased

estimator «f B » Category I grouping can be more efficient than

YX

random grouping when @ is small.

For example, assume that 50 equal-size groups of 20 are formed.

Let Bﬂ , F .3 SYZiX = .2 , and BXZ = .8 . Also, assume that
§ = % = d% = gZ =1 . Then, after solving for w in [3.14a) and
remembering that w . is unrelated to X and Z , we have

- 28, E

o2
W YX27YZ-X E?
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2(.5)(.2)(.8)
= 55 .

Also, from formula (4) on page 73,

]
S |

Hence

Ko 3

and
SSE(Xj = (999)(.658) = 657.34 .
From Table 3.4 we get the predicted bias for our chosen values of
- - . - . / w ; Eg .
ﬁ¥z_x(.2) R SKZC'S) and nf20j: o = .083 (o .007) .

Substituting the above in [3.321, we get

B'——i) — 7,3,5,5 e -
YX'TYX .55 + (.007)(657.34

Eff (b 3 (6.58)

(.107) (:658)

]

= .070 .
In comparison, the estimated efficiency from forming 50 groups of size

20 randomly is

=4
. ‘ m
-y

[

I
ot

Eff(b )

I

vx*B3%

A
{n}

W
w
kel

Pl o

Thus it is possible to impreove efficiency relative to random grouping
by grouping on a variable which yields small bias but is strongly rela-
ted to X . By similar reasoning, we conclude that in certain cases,

Category I grouping can yicld more efficient estimators than Category I1
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VI. The Taxonomy as A Guide for Investigation

The main jmplication from the above discussion is that the inves-
tigator should consider the relations of the alternative grouping
variables to the study variables before collecting his data, using such
prior knowledge as is available. This will enable him to collect
information on only those grouping variables that yield estimates hav-
ing the deéir&d prgpefﬁiegm

If the investigator demands an unbiased estimate éf SYX s then,
under the assumptions of the model, variables from Cétégariés 11, III,
and IV can be satisfaetory. While Category IV variables can always be
created, they are relatively inefficient. Category III variables can
be highly efficient, yielding large va;uesléf SSB(Ki;:“ThE gffieienay
of Category II1 gféuping is no better than that eof Category iV grouping
because observations are assigned to groups essentially randomly with
respect to X . Category ILI variables are clearly the best choice for
data aggregation.

Category I variables yield biased estimates though the bias can be
small with large £, and small 8

XZ YZ-X

. Category I estimators are
less efficient than Category III estimators but can be more efficient
than those from Category I£ or Category IV grouping. If small bias is
tolerable and Category III variables are hard to find, Category I
éfauping‘may ﬁawéévigébié;-w o -

Most of the discussion has assumed that an investigator has the
original obscrvations and can choose his own grouping procedure. Data
can be available in aggregated form only, however; e.g., when indivi-

dual data have been aggregated for economy of storage or for confiden~-
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iality. The grouping variables that generally appear under these
circumstances are geographic variables such as "state'" and “census
tract", and system delimiters such as "school" and "classroom". ' These
grouping variables are genarally related to X andv Y*X and hence
are Category I variables. Regression estimates determined under these

conditions should be interpreted cautiously.
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CHAPTER 4

ADDITIONAL CONSIDERATIONS IN THE SINGLE-REGRESSOR CASE

Until now, the discussion has concentrated on the effects of the
linear relatiecns of the grouping characteristic to the main variables
on Lhe precision of estimation from grouped observations. Other pro-
perties of the grouping characteristic - Ehgrnumber and size of the
groups it generates, its distribution, its scale of measurement -- need

to be examined. Here we describe how these within-variable properties

r factors affect the "utility" of a possible grouping variable.

o

Under the heading of properties of the distribution of observa-
tions, we consider the coarseness of grouping, the distribution of
observations among the groups, and the distribution of the values of
the independent variables both within and among the groups. These
factors can often be manipulated by the investigator to improve
estimation procedures.

Then, under the heading of scale of measurement, we discuss several
methods for handling nominall characteristics, such as school cen-

us tract. Such chavacteristics are of vital conecérn in recent educa-—

o
0

tional investigations (see Averch et al., 1972). We consider in detail

two related approaches to the problem. One approach [suggested by
Wiley (personal communication)] provides a general scheme for classify-

ing grouping variables on the basis of the scale (interval or -nominal)-

and the type of variable (fixed or random). The other approach employs

dummy ceding to generate dichotomous variables to represent the grouping

! The discussion also applies to ordinal characteristics which are not
transformed and treated as interval.
: 89
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characteristic. The investigator then examines how properties of the
dummy variables affect the proportion of variation accounted for in the
model. This discussion relies less on formal mathematics than the
preceding chapter. Howcver, our exposition is tied conceptually to
historical developments in the mathematics of scales of measurement and
distribution. For our part, we are attempting to elaborate how the
properties create distortions in Empificél investigarions of aggregated

data.

I. Distributional Factors

In Chapter 3 we indicated that alternative grouping variables can
be generated from a single grouping characteristiec. Each grouping
variable provides a unique classification of the individual observations.
Thus, if groups are formed on achievement quartiles, the "grouping
variable" is four-valued. There is one for ééch;iuartile; the finer
subdivision by percentiles, or by score poirts is ignored. How to sub-
divide the scale is often under the investigator's cantrci. This is
particularly true of characteristics that have quasi-continuous distri-
butions, e.g., “age" and ”;est score'. There may also be a choice in
subdividing a nominal grouping variable. Thus, race can be subdivided
into "Anglo' and "Non-Anglo" or into "Anglo", "Asian-American",
"American Indian'", and so on.

In this section we examine the within-variable factors that are

affected by thérmaniﬁﬁléﬁién éf théréiasé Eéﬁﬁéaéiés‘géhéméiveﬁ
grouping characteristic using as an example the variabi&s parental
income (X) and family expenditures on higher education (Y) .
Suppose that educational background is taken as the basis for
greuping. The investigator can choose the number of groups (classes) .
104
Q
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" yields a more efficient estimate' then Z(S) . With non-zero ¢

Ym" for educatioual backsround and the location of the elass boundaries.
Table 4.1 illustrates several possibilities for subdividing educational

background. 2(5) is a {ive-group classification and ;(19) and

are ten=-group breakdowns. With fixed m the number of cases

Zi(l@) t
per rroup and the skewmness of the distribution depends on the boundaries.
Sincé Ehgg:lassificatigns of educational background in Table 4.1
give-different SSB(K) , the efficiencies of the grouped estimators they

generate also differ. We cxplore these factors systematically below.

A. Coarseness of Grouping

In Chapter 3 we found that the coarseness of grouping, bvahiﬁh we
mean the number of groups formed (m)} for a fixed number of observa-
tions (N) , has important effects on both bias and efficiency of
gf,upingi According to equation [3.31], bias is inversely reclated to
m . In addition, the effictency of grouping increases with the number
of classes. This finding bas been supported through analyses of
empirical and hypothetical data by several investigators (Blalock, 1964
Cramer, 1964; Prais and Aitchinson, 1954).

The effect of m on efficiency has already been discussed in
connection with random grouping. The present discussion extends the
"coarseness" principle to the more general case where the grouping

variable is nonrandom. In our example, either Z(lD) or Zi(lD)

%7 , the

(10)

In other words, the within-group variation of income and educational

groups of 2 tend to be more homogencous than those of Z 5) .

2

background is smaller with the ten-group classification of educational
background than with the five-group classification. This means that the

corresponding between-group variation is larger with the total variation

105
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- Grouping Variables o
(5) (10) (10)
0-6 Years Hone 0~¢ Years
7-10 Years 1-2 Years 7-10 Years
Classes 11-HS Diploma 3-4 Years 11-HS Diploma
1-3 ¥Yrs. 5-6 Years 1-2 Yrs. Beyond HS
Describing Beyond HS
More than 3 7-8 Years 3-4 Yrs. Beyond HS
Beyond HS
Father's
\ 9-10 Years Bachelor's Degree
Education 11-12 Years | Work Beyond Bachelor's
13-14 Years | Master's Degree
15-16 Years | Work Beyond Masters
More than ﬁegree Beyond Masters
16 Years (PhD, MD, LLD, etc.)
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held congtant. So the ~orrelation ratic ﬂ% of edither Z

X (ioy °F

Z'(lD) is greater than that of 2(5} and the estimate more efficient.

Cramer's paper (1964, p. 241) provides a particularly illuminating
analysis of this topic. He considers the case wvhere the individual
observations are ordered accarding to their X values and the sample
range is divided into m equal intervals. The total sum of squares is
partitioned into between-groups and with£negfoups sums of squares, and
the components are divided by the total. After rearranging terms,
Cramer arrives at the efficiency equation: -

55, (X) 58 (X)
55,00 T 5,00

[4.1]

where SSWCX) is the pooled within-group sum of squares of the Xij .
Cramer then estimates SSTCX) and SSW(X) . For the sample of

original observations,

SST(X) = Ng= s

>

where s% is the population variance.
For his grouping method, the width of a.l class intervals is
uniform and equals

H]

where the sample range of X 1is expressed in terms of the population
standard error. Cramer then states that if the sample xij are

uniformly distributed within each class, the within-group variance,

WV(Xij) of each class is

S0 the pooled within-class variation is approximated by

- e ey = N fange(x)'z,?
4. : i Fpb g B ltall in Rl Skl L
[4.2] §5,,(X) 1,2[ = ] o?
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By substituting [4.2] into [4.1], we obtain the approximation

[4.3) S50 1 - renge(;®
55,00 12m2

Cramer points out that his approximation is justified for large XN

Il

and relatively small m because it depends on the replacement of random
variables by their expected values. He also emphasizes that his esti-
mate of the within-groups variation of X is an overestimate when the
distribution, and not a rectangle.

One can use values from the sampling distribution of Iaﬂéé 09
to provide efficiency estimates of various combinations of m and N ,
From Cramer, the expected values of range (X) with the sample sizes
100, 200, 500, and ;,GDD are 5¢D15, 5.492, 6.073, and 6.483, respec-
tively. Tatle 4.2 includes tﬁé efficiency of gfoﬁpiﬁg N observations
inte m equal-interval groups. The values are in agreement with a
similar table by C:g@ér (1964, p. 244).

Efficiency appea?s to be very high except with very small m .
the regression estimate from grouped data is high to reduce cost of
data processing.

Cramer describes a faifly repfesentative method of grouping in

economic studies. Unfortunately, his findings do not apply te

Category III grouping variables with unequal intervals nor do they ap-
ply to variables in other categories. Equal-interval grouping may not
be appropriate in many educational investigations. Thus we cannot

expect estimates as efficient as those depicted in Table 4.2,
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Table 4.2. Efficiency of alternative ways of grouping on the same
characteristiec as a function of sample size and number . . . __
of groups.

Sample Efficiéncy (S8(X)/SS(X))
Size E[range(X) ]* . Number of Groups
N m=2 m=4 m=5 - m=10 m=20 ~ m=25

100 5.015° | 0.476 0.869 0.916 0.979 0.995 0.997 |

200 T 5.492 0.372 0.843 0.899 0.974 0.994 0.996
500 ) %6.073 0.232 0.808 0.877 0.969 0.992 0.995

1000 6.483 - 0.123 0.781 0.860 0,965 0.991 0.99%%

*See page 93. "
[
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B. Distribution of Observations Among the Groups

_'“‘”KIEEv&iEEfiﬁﬁtiEﬁ"éf ébééfﬁgﬁiéﬁs;sﬁﬁﬁémiﬁé groups is of concern
only when there are some groups with very'f3§ observations and when the_
independent variable is imperfégély measured. In ﬁﬁé f§rmer case, some
grauﬁ means are unsﬁgble,raﬁd their instability féd;EéS thg»pré:ision
of the grouped estimate. ) s

‘A large number of ﬁbSéiﬁétiOﬂégééngrGup are needed to cancel out
the effects of Eandom errors of measurement on the independent variable
(Blalock, Carter, and Wells, 1971). In the example above, this can |
mean that Z(S)

within-group distribution of the income values and on the size of the

isrﬁatte§ for grouping than 'z(lQ) R dépending on ﬁha
Errcré.

It is not always easy Eé determine whether there afe‘eﬂough DbSéI?i
vations per group for adequate stability. Generally, grouping variables
with large skewness coefficients yield imprecise estimates. Howevér,
with other variables, graupsgwitb few observations are scattered along
the ﬁr scale. With these variables, the investigator must'rely on his
undarétanding of the nature of the graupimg characteristic and its_
relation to other study variables to avoid imprecise estimaﬁes.

C. Distribution of the independent Variable Within and Among
Groups

and Z' © in Table 4.1, the

Though m = 10 for both Z 2" (10)

(10)

two classifications yield equally efficient estimators only when

V(X[@(lg)l)ﬁ V(XIZ'(lD)) . The subdivisions of these tw§ classifica-

tions are not likely to result in equal between-group variances and the

I T S S I S L o= ar = 2 . 71 B
pooled within-group variation in' X for Z(lD} and Z (10) are

undoubtedly different. Thus the within-group distributions of X and

ns are affected by che placement of the

tio

butic
110

the overlap of these distri
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class boundaries, and, in turn, affect the efficiencics of grouping.

YEGéﬁJEEEﬂ§£EVaijéinﬁféistriBUEian of income and educational
backgrcund, it is possible to envision the properties of this distribu-
tion after classification. With Z(iD) the mean incomes and income
ranges ér& approximately the same for the "none" through '"7-8 years"
groups. Hence, the income distributions of the groups from Z(lD)

overlap a great deal. Individually, some of the groups contributed

~ little to.the between-groups variance. In fact, collapsing the five

lowest groups into a single "0-8 years" group does not greatly change

the between-groups riance. & : t ther lik 5ay, a oy s

the between-groups variance So Z(1Q) acts rather like, say, a 2(6)'
Z‘(lﬂ) » on the other hand, has wide intervals at the lower end, a

relatively uniform distribution of observations, and large variation in

group means. It forms homogeneous income groups by adding groups at the
upper end and collapsing similar (in income) groups at the lower emnd.

We suspect that 2' forms income groups which are more compact

(10)
(smaller within-group variation) and more distinct.(less overlap among

groups) than those from 2 If so, this combination is sufficient

(10) -
to ensure that the between-group variance in income will be greater with

Zi(lO) ; and its grouped estimator more efficient.
In general, classifications which yield small within-group varia-
tion in the independent variable are preferred. This type of classifi~-

cation decreases the pooled within-grcup viariation and thus increases

between-group variation.

independent variable operatr similarly. As the overlap among distribu-
tions decreases, grouping more closely resembles direct stratification

on X , which is optimally efficient.
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D. Summary
The Qithinavariable factors that affect estimation are inter-
éépeﬁdenﬁ énd;tend to consﬁféig}each other. Insofar as finer breakdowns
“increase the relation between the grouplng variable and the independent
ariable, information loss deg71nes and precision increases. _If the
characteristicsis judiciously chosen, Thé investigator can quickly

_arrive at a grou?ing which balances the competing factors and yields

estimates which suit his purposes.

1I. SgglegwcibﬁéfsurEment == Nominal Grguping Characterlstlﬂs

So far, we nave treated the grcuplng Eharacteristlc as if it has

at least an 1nterval scale and thus has specifiable linear relations
- . -

i

with the dEPEﬂdent and independent variables. The;next step is to
consider grouping characteristics that have nominal scales

characteristic are urgenz Ly needed in.educational research. Cross-

level inferences from aggregate sampling units such as schools occur

‘e

frequently; carefulAexamination of the consequences 1is needed. Unfor-

and some apply primarily to relations among unordered variablés

r(Géédrtna'n; 1959; Iversen, 1973).

case. We shall lﬂCDIPDratE the nominal grauplng characteristics into
the mcdel as we incorporated ordered characteristies. Two schemes for
ihccrparating the nominal grouping characteristic are discussed below.

Wiley (personal communication) actually offers a new conceptual scheme

for analyzing the gfguping process. The other approach, the creation of
= . .

multiple d;chotomles to~ represent the nominal characteristic, adapts a

112
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familiar econometric technigue.

A. Categorization by Scale and Type of Variaﬁle

Té this point we have considered only the manifést rélatiaﬁs of
grouping variables to the other study variéblegg Wé ﬁave not aﬁtempted 
to describe the latent forces that underly the grouping of observations.
When the manifest graupimg-chéragteristic,has a nominal scale, a more
Classification procedures suéh as latent structure analysis have been
discussed in this context. We caﬁsider here the implicatiaﬂs of a
procedure suggested by Wiley for aggregation problems.

l. The Classgificatien Matrix

Wiley's scheme for classifying grouping variables is a vaziégiégn
of the model repfeéadtéd by the structural eéuaticns [3g14§] and [3.14b]
and by the path diagrams in Figure 3.1. Additionally, hGWEVEr,‘cl) each

Z 1is now said to be either “"fixed" or a "random" variable, and (2) at-

tention is néw'paid to whether it has either a nominal or interval scale.

Before, a grouping variable was spoken of as random if the indivi-

E4 &

dual observations were randomly allotted to groups. Here, Z is
considered a random variable if the groups of Z are réndcmly sampled
from some broader population. Z thus aperateé‘like a random factor
in the analysis of vétiance_as opposed to a fixed factor. Randomness
is a property of the selection of groups, not of the assignment of
ébseivatians to the groups.

To clarify Wiley's scheme, consider the following hypothetical
data set. Suppose that data on the following grouping variables were
collected in an international study of the relation of home environment
to mathematics achievement: the sex of students, the nation, .the

classroom, the school, the school size, student mathematical aptitude,
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and the salary of the student'é math teacher.

We can classify each vaiiahle within & scale x type-of-variable
grid. The nominal vs. interval dichotomy is relatively straightferward.
In their present form, school size, math aptitude, énd”teacher salafy
are the variables with interval scales.

Classification by types of variable requires more thought. -It is'
likely that the classrooms in the study are important only 35'“r§prEs
as random samples from some la?géf pcpuiation of classrooms.

Examining each grouping variablg‘inrfgéﬁgém& manner leads to

c¢lassification matrix A:

Matrix-A i
FIXED RANDOM
NOMINAL Sex Classroom
Nation
School

School Size o .
INTERVAL | Mhth Aptitude
C ; Teacher Salary - -

2. .Manifest vs. Latent Grouping

Wiley argues that, in general, grouping chaﬁaet&ristics like ééhoéll/'>
and Elassra;éw%ta surrogates for some uﬁmgasufed variaﬁlés which have
inter%al scales. (Without loss of generality, we assume thézexis only
one uﬁmeasuréd variablie.) In atgér.wards, there exists some underlying
interval variable 2  which determines group membersﬁip whéﬂ observa-
tions are manifestly grouped by a nominal variable Z+ . In our present
example, this might mean that nation is reallyrarézgxy for, gay,‘natians
al commitment to education. Then grouping by nation would approximate

grouping by naticnal commitment to education (as measured on an interval

scale). o 114
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We can illustrate the interrelation of Z+ and 2 by incorpora-
ting both in the péth diagram. This model is presented iﬁyFigurE-Q;i;
When the data are grouped by Z+ » ¥igure 4.2 represents the aggfegate
path diagram éar:espénding to Figure 4.1. |

Given thesé path models, the investigation properly. focuses on the
conditions under which Yl + 7273 = ll +i12x3 + The question to be
answered is "Dées grouping by 2V affect 2®° in a way that will change
the relation of X to Y 7" Ifzéhe answer is yesgrthen_grouping by
nationzlity yields biased estimates.

z" cannot be directly measured. It iz a lateﬁi vafiable analogous
to the latent traits of factor analytic models. Hawévér; values of 2
can be estimated by D(Z+) » @ discriminant function describing the
differences in the classes of Z+‘ with respect to varlables potentially
influencing the grouping process.

In the exampie above, national commitment to education is the
latent variable represented by nation. Substantial auxiliafy informa-
tion, such as per pupil expenditures (W;) , educational expenditure as
a proportion of national GNP (W3) , and bropgrgign'of children enrolled
in school at, say, age 15 (W3) is needed to have a prayer that D(Z+)
generates good estimates of Z values. The equaticn representing

D(Nation) + &

National Commitment to Education

$1Wy + doWp + d3W3 + 6

where the ¢'s are the variab! weights in the discriminant function
and & represents unaccountable differences in national commitment.

6 must-approach zero if the grouped estimate is to be unbiased.
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” Z ~-- panifest (or measured) grouping variab}e-
Z - latent (or unmeasured) grouping variable
Y -~ dependent variable

X —- independent variable

vy W == disturbance terms for X and Y

Yg ~T structural parameter for relation

designated by corresponding arrows

: _ o
T == disturbance term for 2Z

Figure 4.1. Path diagram incorporating both latent and manifest
grouping variables. )
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This. 1s a minimum condition for maintaining consistent relations among

X,Y, and z" at the individual and group levels. Otherwise, the
influence of 6 , which has an effect on X and Y independent of

Z+ » will change between levels.
Returning to hypothetical data, we can conceivably estimate the
Zg's of the particular classrooms, schools, and nations. In fact, all
the nominal variables can be handled in tﬁis way. If so then the new
classification matrix would be
Matrix B
FIXED RANDOM
NOMINAL 4777 _ - ;,,_:, ji _ 747,,7ij .
:Séﬁéal Size D(Elassrécm)
Math Fitu School
minerose | BCh eituse D(echeod)
D(5ex)

3. Evaluation of the Wiley Classification Scheme

Acc rding to Wiley s s¢hema we can always generata an interval

grouping vaflabla if enaugh information is available‘r The investigator-

cannot translate his knowledge of the underlyiﬂg grouping variable inte

- an ordered function without resorting to classification procedures of

this sort.

At the same time, however, the search for an underlying grouping

choosing Z . Where

before only estimates of B8 BXZ+ » and EYZ+iX were neaded, we

Besides, we still have to determine

yx-zt

must now find the underlying 2
cptimaL class intervals (with respect to within-variable factors) for
D(Z+} after the variable haé been generated,

The benef are derived mainly from the

its frgm estimiting D(Z )’
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uncovering of the inherent causal patterns amOﬂg%the grouping variables

vhich affect the estimation of B . . If the investigator's efforts

are directed toward "purity" in aggregation and more acdcurate specifi-

sense, on the other hand, to .estimate Z solely for ;hé;purposa of
having an interval grouping variable.

The type-of-variable distinction rai%ea serious questions about
the process of grouping. If the classes of the grouping #ariabig are
fixed, then there is no change iﬁ the eongegtualizatian"af gngpipg ”M__“'

observations should be treated as a single or two-stage cluster sample

rather than as a siﬁple random sample for the purposes of grouping.

In cluster sampling, the selected clusters (individual classrgémsg for
example) are a simple random sample from *he Popﬁlation of clusters and
sampling within the clusters is also random.

The distinction between ;luster:apd simple random Sampling
apparently has not b;en made before in the context of gfaéPing; The
usual regression analyses starthégtg the assumption that tﬁa data-are
a simple random sample. We do not find fault with this éssumpticn for
the ungrbuped observations or for a fixed number of groups. The
sampling properties of the data become an issue only ziter grouping.
The question then arises as to wbether the ;laéses>a§ FZ can be con-
sidered a simple random sample since tﬁe classes becume the unité for
analysis. An unbiased estimate is impossible if the grc?ps themselves
are a non-random sample, whether the units are the original observa-
tions or the weighted group means. -

B. Dummy Cading
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nominal characteristics in their mcdels. This procedure is less

complex than Wiley's and may prove fruitful for our purpeses.

Equations [3.14a] and [3.14b], which incorporate the grouping

characteristic become

[4.3a) Y =o + B, , X+B, o Zo o+ ..
ZyseesZ o YZ X520 0,2 071

™
"
o
"

.
»
+

T

]

+

where the’ Z;y 1 =1, ..., m-1 ; are the dichotomous variables repre-

senting group membership, and the B, oy o , and

YZi X’Zl""’ziﬁl’gi+7"’"Zm=1

the Byy wz,...
i

,Ei_lgzi+l,..g,2m§l are the structural parameters in

the regressions with Y and X , respectively.

Then, if R%ix is the square rorrelation coefficient of X and
Y and 2 . and RZ , are the squared multiple
RY—xszl,.!;,zmil Rx,zl,g. Z 1 |
correlation coefficients from incorporating the dichotomous Tegressors
based on Z , then the direct strength of the relation of Y to 2  can
be estimated from the square root of the variatiom accounted for by
Z-X

incorporating the dummy variables. That is, we estimate Bf , from

“/R%-x,zl,},.,z_ - R%-x

m-1
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The relation of X to 2 (SXZ) can be estimated from

RZ |
¢/ X Elii!fjém!l .

Th;s estimation procedure requires some justification. The reason
for the use of the square root of the variation accounted for is to
have units comparable to the standardized regression gééffiﬁiéqts from
incorporating interval grouping variablés.= The "additional variation
accounted faF" notion embodied in our suggested estlﬁazar BYZ!X is an
atrempt to identify anj relationship between Y and Z's that is masked
in the simple linear model for ungrouped observations (Equation [3.1]).
The estimator suggested for sz provides an indication of the magnitude
of the relation between X :and i's (nx would also fulfill thks fune-
tion). In this way, we hope to make direct comparisons of the effects
of nominal grouping characteristics with the effects of interval charac-
teristics.  For this reason alone, the dummy coding strategy provides a
viable alternative to the ElS%SlflcathD procedures which necessitate a
search for the latent causes of group membership. 2

C. Summary

Neither Wiley's scheme nor the dummy coding appréach yields perfect

=

indices of the relatiZons of a nominal Z to X and Y , but both warrant
further consideration as alternatives to those previously proposed. They
at least provide a starting point for refining the “structural equations”

appreach in the nominal case.

EWEfES and Linn (1971) dlscuss the regreszion an31351s far "compositiomal
effects", which involves the incorporation of X. , rather than 2 in
the simple model. Using X instead of Z in'the modified structure
has the advantage of ensurl%g that the grauping mechanism is represented
by an ordered variable, regardless of the scale of tne grouping charac-
teristic. However, with multiple regressors, this strategy can become
cumbersome rapidly unless one incorporates, say, the values from the
best linear diseriminant funeticn (dlscrlmlﬂatlnﬂ among the Z wvalues

T T T onsthe ~basis-of &—function_of the X's S5till, the Werts-Linn method
, deserves more consideration than we have given it here.
Q . ‘ - 121 -
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CHAPTER 5

— i

PRELIMINARY NOTES ON THE MULTIVARIATE CASE

Our findi£g$ on tﬁe cffects of _grouping in the bivariate éése'aan‘-
be extended to the multijariaté_gaSE. Prgbiems éaused,by_;orral;;g§ }
regressors, however, can éégplicéte Ehéiinterpratatiaﬁ af,éfauéiﬁg -
effects, ThaseAprablems_aré_ggﬁsidered below. | -

We begin by réviewing’pr2viau$‘§ork on the muléivé}iagé‘césé;aru

considering papers by Prais and,Ai?EhinSOQ (1954);‘H§ita§ékf;(i966§

1973), and Feige and Watts (1972). To simplify our.own.developments,

we analyze ﬁhesthréefvariablg case where Y is regressed on just two .
iﬂdapendent variables, X and W . Thé_grﬁupingbﬁafiaﬁié‘fz-'éﬁtefs;=
as 2 fourth variable. The parameters to be Estimatéi are the

regression coefficients 5YX-W _and .BYW-X .+ The éggclusians are

The earlier taxonomy is expanded to consider the interrelation of

[

» X, W, and Z for a specific causal ordering of X and .W %
This taxonomy is used to investigate the bias in‘éstimating;théf”é) % . ol

regression coefficients.” ™

I. Ereviggsﬂﬁgfgrgn the Multivariate Case

grouping effects with multiple predictors has remained purely in the )

domain of the econometricians. Prais and Aitchinson (1954) séemiﬁglyrv
stood alone until Haitovsky (1966) suggested.that grouping can indeed
cause bias in the multivariate case. Feige and Watts (1972) --
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apparently unfamiliar with Haitovsky's work -- raised wmuch the same
question., Below we attempt to reconcile the conclusiens of Prais—
Aitchinson, Haitovsky, and Feige-Watts.

A. Transformation by a Grouping Matrix -- Prais and Aitchinson

Prais and Aitchinson (1954) derived formulas for grouped
estimation in the multivariate case. They employed matrix notation
throughout. |

Consider the usual postulated model for multiple linear regressiaﬁ;

[5.1] Y=X8+u ,

where g'j X, B, and u are matrices of orders N x 1, N x k,

k x 1, and N x 1, respectively, We assume that the rank of X is k
the number of regressors, where k 1is less than or equal to the number
of persons N .

An estimate of £ can be found by the principle of least-squares
.(LS) . The assumptions in the multivariate case are analogous to those:
of the model (equation 3.1). They are as follows:

Bl. The X are fixed or else the X are random variables with

~--joint distribution independent of u .

Tl
L]
<
—
=
st
I
fead
.
[y
=
—r
1]
——
o}
=

;; )EN , Where gﬁ is a kunews =watrix of

B4. is of rank Lk .

]

The principle of least-squarcs provides an estimator of B that
minimizes the sum of squares of deviations of Y and ¥ . This
estimator is given by
1

b dis an unbiased estimator of B . If the u are normally distfibuted;
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then b is also a maximum likelihood estimator (MLE) .

The covariance matrix of the vector b is

=1

1]
T

[5.3] cov(b) = E[(b-8) (b-£) '] = c2(X'%)

and the residuals e =Y - Xb are linear functions of the disturbances
Prais and Aitchinson next introduced an m by N grouping
matrix G which maps the original observations into their appropriate
groups and weights each group by the number of observations included.
Thus G is a weighting matrix in which the weights are determined by
the number of observations in the various groups. The value in the ith
Tow ?f G 1is 1/rni for persons belonging to group i and O for
perséns not in group i . For example, with five observations divided

2) with the first, third, and fourth in the

1
i

into two groups (m
first group and the second and fifth in the other, the weighting matrix

Jis T

]

[}
<
o

—

M‘
Lo
o]

Note that _—

o
1]
I
it
o,

and ) 0]

That is, the diagonal elements of the inverse of Gg'i indicate the
number of observations per group.
The regression model for the grouped data then found by premulti-

plying [5.1] by G to get



Since G 1is a weighting matrix, it gives us means, i.e., GY = i s

GX = g , and Gu = So we obtain

L=}

[5.4] ¥ =

wal

X8 +

=]

By assuming that the number of groups formed, m , is greater than
cr equal to the number.af parameters estimated, it follows that -GX
is of rank k . Consequently, the assumptions B1-B4 apply to the
model [5.4] where
E(u) =0

and
V(W) = oiee’ .

e
[y
=

Under these conditions, the grouped estimator B for g :

[5.5) - (R 6eh) TR TR e 'Y

i
]

(X'B0) XY

vhere

H=c'(ee) e

]

For X fixed (or for X random, because of assumption Bl and-the fact
that E(Y) = X8 ),

B(B) = [0 X HIEQ)

#

(§'§§)sl§'ﬂxe-~'—- e

o

55 7!

The covariance matrix of B is given by

[5.6] cov(B) = o2[X' (g¢")'E)™!
_ 1

o2 (X'HX) ™
e
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Prais and Aitchinson concluded that "whatever the method of
grouping, the resulting estimators will always be unbiased" (1954, p. 1).
But this contradicts the results of Chapter 3 for grouping in the single
regressor case. The werk by Haitavgky (1966; 1973) and by Feige and
Watts (1972) and the new material in Sections IT and III of this chapter
iéentify limitations of théir formulation which led them into difficuley.

Prais and Aitchinson alsec provided éﬁ overall measure of the effi-
ciency of the method of grouping: A
e (x' 0 ™!

[5.7] : Eff(b,B) = ———————
== tf(gl}*;)!l

i

the ratio of the sum of the diagonal elements from the covariance matrix
of b to the corresponding sum from the covariang§ matrix of B . 1In
the single-regressor case with X fixed, their efficieney formula
simplifies to become the ratio of the between-group sum of squares to
the t@tal‘sgm of squares, the equivalent of Cramer's formula (see page

47). When there is no bias from grouping, this measure of éfficiency is

B. Estimates from Classification Data -- Haitoysky

Haitovsky (1966; 1973) called into question the conclusion of Prais
and Aitchinson. He demonstrated problems that arise when the regressor
data are in the fofm of one-vay classification tables, with frequencies

of the cross-classifications unknown. According to Haitovsky, grouping

ple regression coefficients in this situation.
Haitovsky analyzed data from a study by Houthakker and Haldi (n.d)
to illustrate his conclusions. In the Houthakker-Zlaldi study, automo-

bile purchases (Y) were regressed on iqdividual income (X). and
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initial automobile inventory (W) . Haitovsky grauﬁéd observations on
X and W separately as well as on the cross-clagsification of X
and W . His estimates for BYX-W and EYWSK are presented in
Table 5.1,

The estimates from the cross-classification were fairly accurate,
The single-variable classifications yielded estimates with hugh standard
errors. If 7 or 8 groups had been f@fmed-randomly, we would have
expected the standard errors to be evern larger.

Haitovsky failed to note an interesting trend in the data. When
the observations were grouped by one regréssor, say, X , its regression ’
was better estimated, in terms of smaller bias and

coefficient BYK-W

standard errors, than was the coefficient B8 of the other regressor.

WX
That is, grouping on a regressor affected the estimate of its coeffi-

cient less than it did the estimate of the coeffieients for other

variables.

As Hannan (1972) put it, Haitovsky's paper showed that "in the .-

multivariate model, grouping ﬁ§ some concrete criterion Whi;h
appro#imates grouping systematically by a subset of the regressors ...
can produce appreciable bias.”" (p. 33).. Hannan also pointed out that
the bias Haitovsky described is essentially specification bias. That
is, bias ‘arises through the failure to include all correlated regressor
variables in the data analysis.

According to Haitovsky and Hannan, unbiased estimates are obtain-
able if the investigator groups on all regressor variables jointly.
But with a large number of independent variables each having several

classifications, grouping on all jointly is impractical. Unless other
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Table 5.1.

114

Estimates of regression cocéfiicients and standard errors

with alternative grouping mathods from the Houthakker-Haldi

study®,

Number of Groups 8
Grouping Method - i

Ungrouped data 1218 758

Income (X)-x- 7 56 : . 747
Inventory (W) {.1203)

Income (X) only 7 .551
(1.6139)

Inventory (W) only 8 -.653
(2.5391)

¥

B

- 7&}{

(.0367)

(.0323)

.038
(1.9752)

.093
1572)

(.

L

®The numbers in parentheses are the estimated standard errors of the

corresponding estimates.
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I

with Hlannan's eonclusion

i

evidence is forthcoming, it is easy to -
that the analyst must have a good deal of confidence in the substantive
aspects of his model before concluding that any gfauping procedure is
C. Aggregating Data to Preserve Confidentiality -- Feige and Watts
Feige and Watts (1970; 1972) considered the feasibility of data
aggregation as a means of preserving the!;onfidentiaLity of. data.. They
developed statistics for evaluating the loss of information fréggg
grouping in this context. One measure indicates the degree'gf.divgrf,{
gence between estimates fgam grouped and ungrouped data, and the “other
indicates the loss of efficiency. Feige and Watts applied a variety of
grouping procedures to a large data set and assessed the resulting
parameter estimates.
According to Feige and Watts, differences between the ungrouped
and grouped estimators may be composed of (i) specification bias, (ii)
bias introduced by a grouping that is not independent of the disturbances,
or (iii) sampling error induced by the loss of information in grouping.
Their second source is most pertinent to our discussion since it sug-
gests that even when the regressors and disturbances are independent at
the individual level, bias can still result when the grouping matrix
G 1is not independent of the stochastic disturbance u (see p. 51-52).
When their description of bias from grouping is translated into
more familiar terminology, we fiﬁd that Feige and Watts actually
described the case previously discussed by Blalock (1964) and Hannan
(1970; 1971) where the regressand is the basis for group classifica-
tion. In this case, since Y is a linear function of u , grouping

on Y ensures that H and u are not independent when Y is the

= =

grouping characteristic and thus the estimate from the Y~on-X
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regression is biased (see pp.351-532) for a summary of Blalock's
reasoning).

The problem of gauging the magnitude of the divergence remains if
methods. The Feige-Watts measure of divergence is based on the differ-

ence between b and B . We summarize the Feige-Watts analysis below,

I

or generating the model at the group level. Relevant equations from
our discussion of Prais and Aitchinson are repeated for clarity.

Equation [5.1] with its accompanying assumptions is again the

basic model for the ungrouped observations. We have:

[5.2]

e
]
W~
et
—
-
[

“and .
[5.3] cov(b) = 6§(§‘§)E

A grouping matrix G transforms the raw data to a set of m rows;

RL.

the ith row contains the mean values of the variables for the ith group,

I.e., the matrix [Y,X] 41s replaced by

el

Recall that

1= ¢'(ge") e

= o]

Hence, the estimates of B and 'its covariance matrix from grouped data

can be written as

[5.5] B= (x'HO XY

[5.6] cov(8) = o2(x'HR) "

The divergence between grouped and ungrouped estimates of B8 ,
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has a zero mean and variance-covariance matrix equal to

cov[a] = 2[X'HOTF - 07N .

=Y - XB so that e'e is the sum of squated residuals

Let

ol

from the between-groups regression. Assume additionally that the

disturbances u are normally distributed. Then, according to Feige

and Watts, the quadratic forms
a0 - @0 am)

Q = ,
g

[l N

and

are distributed as x? with k and m-k degrees of freedom, respec~-
tively.
Feige and Watts claim that if the model is correctly specified

and H and u are independent,

- (Qq /)

[5.8] I' = T3§7f§fi7f .
is distributed as F with k and m-k degrees of freedom. Values
of T beyond the critiecal values of theifédistributian indicate dif--
ferences between estimators that cannot be attributed to sampling
error. They assuciate good grauﬁing methods with fnall T valées_

The Féiga=Watté efficiency criterion is similar to the one that

Prais and Aitchinson derived. (See Equation [5.7].) Feige and Watts

- remove the influence of the constant term, as no information is lost

in estimating this parameter. Their efficiency measure is

131



[5.9) Yo el T - 1,

where Lr[(§'§)ﬁl§'g§] is the sum of the diagenal elements of the’
matrix whose entries are the ratios of between-group sums of squares
and cross-products to total sums of squares and cross-products. Thué
Feige and Watts also recommended forming groups homogeneous with
respect to the iﬁdependené variables in the analysis to minimize loss
of efficiency. |

To illustrate their findings, Feige and Watts examined twenty

regression equations generated from income and dividend invormation

provided by 5,393 banks to the Federal Reserve System. The seven
grouping rules they used included a random procedure and geographic -
and financial asset indices. There were also three levels af-aggragakr

tion -- slight (3 observations per group), moderate CBD observations)

and drastic (lDD observations), Thus twenty@gné grouping methods were
possible for each equation although the:afticle Oﬁiy-diSEﬁSEEd a few.
Certain of the Feige-Watts equations were quite Séﬁsitivé to the
choice éf grouping %uleraﬂdllevel of aggregation. Therfépéftéﬂ' r
values ranged from .02 to 84.96. TFor one equation, all tﬁé T values
were significant at -the iGS level, while grouping produced na‘signifis
cant fesults for other equations. The efficiency indices ranged from "
iﬁBS to .689, with systematic gtoupi;éwsarviqg much bééter-tﬁaﬁ'random

grouping. In every case, sl;ghtlaggtegatian was superior to moderate

-0or drastic aggregation in terms of bias and efficiency. Thus a lafge’

number of groups again proved to be desirable.

between efficiency and bias. Random grouping is inefficient but un-

biased. Systematic grouping raises the likelihood of misspecification =
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and grouping bias, but improves efficiency.

It is worth noting that the test that Feige znd Watts propose for
instance. It may well be that the numerator and the denominator are
not indépamdenﬁ;aﬁ_ea:hAgtherr**?urthermﬁfé, there is an inherent asym-
metry in that the denominator is based solely on the aggregate residuals
whereas the numerator is a function of béﬁh ungrouped and aggregated
information.

The traditional F-test for differences in regression models takes

the form: o e, |
S any-any

(1=R1%) / (N=d fF)

wvhere

RZ = squared multiple correlation for the so-called "full"

medel (the more inclusive model)

squared multiple correlation for the "restricted" model

7,

d;R = degrees of freedom for the full and restricted
models, respectively
There is no recognizable standard for interpreting the comparison of
individual-level and aggregate regression models in this fashion.
Intuitively, however, it is appealing to associate the individual-=level
model with the "full" model above and the aggregate with the '"restricted".
If this interprectation is defensible, then the residual sum of
squares from the individual-level regression (¢'e , where e = Y - Xb)
would seem to be‘mére appropriate than Feige and Watts' choice for the
denominator. This is a problem worth exploring further, but it is
outside the domain of the present inquiry.
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IL. Thg”USErgg;uraLmEquagigns"Aﬁparoa;hfiur;heiiwngggdic:a; Case

The Haitovsky and Feige-Watts conclusions require elaboration since
neither presented a way to detect which subset of estimators is biased
by zrouping. Our analysis of the multiple-regressor case departs from
the previous work. First, we specify the order of all variables; the
grouping variable is treated as prior to other variables to which it
relates. Secondly, each regression goeffiéient is considered separate-
ly. This method, though more cumbersome than a matrix approach, enables
us to determine whether the relations of the grouping variable to the
regressors and regressand provide clues as to which subset of cstimates
will exhibit bias. If this Strétegy works, we will be able to state
general principles for determining which estimates are biased for any
number of regre essors-

We follow a procad. .e simils~ %o that used in Section IV of
Chapter B.Wiﬁh the Livariate case. A multiple-regféséion model with
two regressors ‘X and W) is modified by incorporation Z and by
spreifying the structurs among Y , X , W s and Z . This four=-
valiable structural model is then represented by simultaneous equations
describing the relations of vV o X, W, and 2 , of 'g to W and
Z , and of W -tg Z .

Formulas for B, .. and ¢ are presented in terms of the

YX-W TWeX
parameters of the structural equztions at both individual ard group
levels., The farmulss are appropriate for the case when the EamplL
Equals the population and under certain conditions for other sampllng

designs. Any diffe:. .nce betwaen coefficients from gfauged and un-

grouped data is once ..ore attributed to the effects of grouping.
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A. The Regression Equation with Two Regressors
The ecquation relating Y to X and VW is

1 = ) .L.X"’] ) BYW KIJ + 11 ,

o= xx%u " Pvwxw
YW T T a0 ”

X% = O

[+ ,G,z, = O 41
Svu% = vx’xuw

)72

and

[5.11b) B

_ i " 242 _
o o%% ~ (Oxy

i

Assumptions Bl-B4 still apply so that "u  is independent of ¥
and W . The object of the investigation is to estimate EYK*W and

BYW*K from équatign [5.10] using grouped data.

-B. Modified Structure with Z Incorporated

The next step is to constrain the model by Spééifying a structure
among Y., X , W, and Z . As before (see page 53), we treat Z as
prior to ¥ , X , and W . We alsc assume that .W is prior to X and
Y

The path diagram of the structure is

In the diagram, Ey is the disturbance term representing all determiners

~of *Y not linearly related to X, W, and Z ; epresents all

€x

determiners of X not 1ineat1y related to W and 2 ; and Ew prlEgEntS all

Elﬁl(;f‘ S 135 .




determiners of W not linearly related to Z . BYE@W s EYW-XZ s

R and B are path regression coefficients.

B B TXZWw T WZ

YZ-XW ' "XW-z *

The structure generates these simultaneous equations:

[5.12a] ¥ = ay + Byy X+ By * By ey o

]

[5.12b] X =aqa, + B, W+ sz E, .

X W-Z W X

[5.12¢] W

aw + BWZZ + EW .

Once again; SYX-WZ ’ EYW-XZ s EYZQXW s waiz s BXZ W and B __ are

s and a . are intercepts; and

regression parameters; W

%y » % €y

g, » and e are disturbance terms. €y 1s assumed independent of X ,

W, e, ,and g_. Ex is assumed independent of W , Z , and

is assumed independent of Z . We also assume that the disturbausssz

[y

W

Ew

terms are homoscedastic and independent, as in the single-regressor

case,
Besiées the intercepts, §héré are ten parametersﬁ ﬁé',-sgwg aéx;
62 , and the six r regression coefficients. Rewriting equations -
Y
[5.12a, b, ¢] in terms of these parameters, we have-

[5.13a] Y = a, + EYX*WE[BK + EXW—Z(EW + BWZZ + Ew) + sz_wz + Ex]

xz Oyt Bl +og) + BYZ s F ey

= ax + XW Z(a + B E + & ) + BXZ w + Ex s

[Py
i
=
Hu
o

¥
b

1

aw + BWZZ + Ew

]

E5.132)= W

Reduced-~form expressions for variances and covariance are

o2 = (B2 + g2 + 28 B, )ﬁ,

15 144 52
[5.14a]  of xi-zfz Xz XZ W XW-2Z~ Puz

+ B2 6% + o2 .,
XW-Z €y Ex _ -
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T e o

.
;"" L
B e S B 153
: 2 92 2 2 -~
[5.14b) o2 = B2 0% + 02
R €x
e : %' 2 2
[5.14e] 0yy = (Byy unbhu.sB0n + BYX*WZBKZ W
) . E
+ 2By uzByz s zng Brw ngxw-zswz
+ Bzw-xzéxz-wswz * EYz;stxz?w o
Bzz owxw o 7F wz)ﬁ + (EYE wzsxw 'z
) 2 yg2 g = 62 e
* Byyoxefawe2?% EYk wle. v o T
) W x . e
e = : 2 R
(5.1441 %ww = OByyouzPrzowbuz * Byx wzsxw zawz |
+ Bouexz®uz t Byzexu wz)j o B
L . &L 2
* ByyeuzBiuez + Byyexz)% C R
s 146l 6 = 2 . 2 . o2 :
[5.14e) oy = Cyypz®iz * PxzowPuz’z + Pryez® &y

The reduced-form equations and variance—-covariance expressions can’

be used to dEerE equatlans stating SYK W and S X in texms of the -
known parameters. By substitution and rearrangamant, we arrive at the
' desired equations:
I 0202 7
o Z Ew
5 = B B —_— e
[5-15a) Byy y = Byxenz * Byz.xuPxzow 62 4242 (52 o2+ gg )Uz
XZWZ WZ Z €
W X
and ~ . _
2 2
) “Bw;zﬁs}i Byz. WBKH -2
l = . 4+ B & — e ———
[5.15b] By v = Byyuxz Byzexn’z 62 5252 (Sg o2 1 o2 yo?
XZ:W Z EW Wz 2 EW"EK



C. ILquations Based on Grouped Observations
The éiﬁ”fians in Sections II.A and IL.B are applicable to the
population of ungrouped observations. There is a parallel set of equa-
. tions for the population of grouped observations.
The initial model for the regression.of Y on X and W can be

written

[5.16] ¥ = a + B‘Z’i-ﬁx + Sfﬁ‘}—{w + uY .

M

In [5.16], each term is the grouped counterpart of a term for equation

[5.10]. Bfi*ﬁ and Bfﬁ-i are the regression coefficients for the

grouped observations. Under certain conditions to be discussed below,

Pyxow T BgR. 20 Byyax < By

The simultaneous equations pertinent to grouped data are given by

vzoxw> t

™

X+ 8 B

LA

[3.17a) ¥ = oy + Byy.yy ;o

yy-xz¥ *

[5.17b] X =oa, + B, W+B, Z+eE, |,

]
|~
+
T
-l
-+
m |

[5.17¢) W

The regression coefficients are given by

22

Oz0g=
E

IilSa] B'-%r'—'i?- =g <+ B B. ) ¥
: E . ,D’EGf + (E
\ 4 EW

[l

2 2 . 2.
0= + o= o
WZ Z EW EX

s =

2

and

2
xz-wPxw ZSE,{

0
o
|
7
Q
I
[

2
| ) . ) i GEX -8

Thus the only difference between equations of the grouped and ungrouped
regression coefficients ([5.18a, b] compared with [5.15a, b]) is the
replacement of population variances by beéetween-group variances.
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D. DBias Formulas

Let be W and bEWQX be leaatesquares Estlmatéfs of B : and

BYW!X s respectively. Also, let Bii-ﬁ and ng X be least—-squares

estimators of BYX . and $i-% Under assumptions B1—R4,

) EGyy.) = Bygow » By = Bynux

and

) 3 E(b’-P T

YX-W ° WX

E(B=z B

I
™
T
[ 3

X W

That is, all four estimators are unbiased for their own gggff1c1ents.
But since the investigator is interested 4n relatlans at the individual

level, his estimates based on grouped data are biased unless

E—— =8 and Bz B

s ic -We add a subser;§5 to 8 to

YX+W YW-X YWX *

indicate the regressor under comnsideration; that is, Bw will denote

from grouped data and 6, will denote

the bias in estimating 3§ %

YW-X
the bias'fram’éstimating Byx.y * From equations [5.15a, b] and
[5.18a, b], we get

[5.19a] Ex = E(B-

o

Yz xwPxz w{— W — N K

I
™=

and




. These bias formulas

sor W .

grouping variable has no

=0) .

(Bygoxw

TI1I.

= .y

(8 8

I . I &
XZ-WWZ

BX‘ *Z XZ W WZ

B

"XWeZXZ-

)(G c 27,
*xfw -

2
W z°®

However, it is

z

The Taxonomy for Two Regressors

clear that there will be no bias so long as the |

direct relation to thé;dapendéﬁt variable

A taxonomy can be generated by setting various combination of

BYZ’XW and E

equal to zero.

categories of grauplng varlablas

¥
w zsxz-w
(2)

L7 0,

3)

xzew = 0

%)
Byzw = 0>

. -WZ

# 0).

B., = 0)."

Z directly related to

Bz 7 0.

Z direcély related to

WZ

T

B m,

This generates

Y

Y

/ dlréctly related to Y , X , and W

Z directly related to Y and X , but mnot to

and W , bu

, but not to

2 x 2% 2

(Bygoxw 7

t not to

X or W

(8

YZ-XW

— — - R - -
=L .2 . 2 2. 2 2 -2 2 2 2 2 -
[B,, 0,0 % + (B _o_ -+ o )o_ 1[B o o050=
XZ-W 2 EW WZ Z Ew Eg XZW Z EW




(5) Z directly related to X and W , but not to Y

By =0, B £0, 8. #0).

YZ-XW KZ W

(6 Z directly related to X , but not to Y or W

(s,,,*f =0, B #0, 8. =0).

YZXW Bxzew

(7) Z directly related to W , but not to Y or X

CByzoxy =00 Brpuy =05 8

(8) .Z ncF linearly related to Y , X or Z . (BYEQXW ’

By, .. =0, B

XZ2-W 0.

WZ
As the ralaticn‘af~rw to X can also:affect bias ﬁnder‘aertaiﬁ condi-
tions, it is useful to éubdivide eazh-category gn tﬁé-ba$£§ of whether -
waiz is non—;éra or not. TFigure 5.1 présents thg'éixééea path
diagram.»“

Table 5.2 éummafizes the results for bias in thé,twaséegrESSQI
case.. Greuping:by a variable frem'five.of>ﬁhe sixteén subcategories
biases the estimate of at least one regression 2oéf ient,  There are
obvious parallels with the single-regressor case. When there is no
direct relation of Z to Y , estimates are unbiased. However, when
the grguplﬁg vallable is directly related to both the depéﬂdamt varlablé.
and a regressor (Categories 2 and 3), the estimate of the coefficient

from the regressor is biased when the regressors are correlated. This

is analogous to Category I grouping in the bivariate case and the
results are the same.

The only result that is not analogous to the bivariate case occurs
when XW 7 # 0 and we estimate the coefficient of the prior regressor.

Under this condition, biased estimates BYW—X can result when 2Z

is directly related to Y and X even though 8. =0 .

Wz
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Wz~ Byyoxw T 05 Byyuy =05 By = 0,
#0

) Byguxw # 0 Byzoy =

(5) B,
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Figure 5.1.

Path diagrams for the subcategories of the taxonomy in

the two-regressor case.



>Iable 5.2. Presence nf biaa from g:auplng as a functicn gf taxgﬂcmic 1; 
: subcategary in the -two- regressaf case,

“Bias i dn

Caeff;gientsa

Category

#0 - #0
#0040

#0

W NN W W B BT W N N e
.
o
o

0
o 7 40
0 #0
o 0
0 0
¢ 0
8 0 0

#0 o f0

40 #0
' #0

#0

#0

#0

%o'
#0

R
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Iv. gypiiga:icné 5EyF;Qéigg§

Dui-taxcnomiﬁ approach clarifies certain questions raised by
eafliéf investigations of multiple regression. ﬁé have shown that bias
can result for only a sébset of regression cééfficiénts_ Inhfggt, the

conditions under which the estimator of a particular coefficient will

be biased can now be specified.

Much has been left unsaid about thé!practical consequences of

grouping in the multiple-regressor case. Bias in estimating at least

some coefficients is highly likely unless groups éf;rfqtmed randomly.

With non-random grouéing, the investigator may group ahva variable
which is priarfté all others. Otherwise, he iﬁtroduces bias in
estimating séme coefficients by grouping jointly on the dependent
variable and posterior regressors.

The ''structural equations" approach does. enable the investigator
to determine which estimators are biased, but the”procedu:esrgﬁiakiy
become cumbersome as more independenz variables are included. -More

work is needed to determine the utility of this approach, especially

:.when compared with the procedures developed by Feigé and Watts.




CHAPTER 6
EMPIRICAL EXAMPLES IN THE SINGLE-REGRESSOR CASE

50 faf we havélﬁgﬂsidEf&dméay§ of predicting how various grouping .
procedures affect the estimation of simple linear fegféééion QDEffiE |
cients. It seems appropriate atrthis point to demonstrate how well our
predictions conform to empiﬁical ?asultsi -Tﬁfafmaﬁion collected on
inc@miﬁg freshmen at a large Midwestern university serves as thé data
base for this investigation. Of 300 weasures of abilities;vattitudes,
and interests collected originally, approximately 20 will be used.
Persons with missimg'inforiaticn on any of .these vaiiaﬁles are drgpped”
from cansideratiéﬂ;

First we describe the relevant variables and the form in whicﬁ
tﬁéyAenter éha analysis. Next a éimy}e linear rggreésign model is
hypatﬁeEizéd; and the regression slope and its standard error are
estimated from the ungrouped observations.

The datayare then grouped. We vgry the relation of the grouping
variable to the éepéndéﬁt and independent variables, the number of

groups formed, and the distribution of observations among the groups.

(5]

stimates of the regression slope and its standard error are then

calculated from the grouped observations for each gr@uﬁiﬁg variable.

Chapter 3. 1Indices of efficiency are also presented. We then discuss
the potential utility of composite estimates, formed from the estimates

generated by different grouping characteristics, in making inferences

about the individual-level relations.
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I. Description of Data

incoming freshmén at a larga Mldwagtern unlversity were

All
adminlSEEfEd an achievement battery co sting of arithmetic, mathema=-

4 . - H

tics and reading comprehension subtests during their'éfiahtatign sessign"

prior to entering the university. On the last day of nrientatlgn, each

student was asked to complete inventories assessing his per Sanal hlsﬁary, o

"

hils integgsts, his expectations regardiﬁg-his university expafience, and
his opinions about selected sgéial and academic issuési In our example,
this information was latar-cgmbiéed with détaAfrDm admissiéns appliéatiaﬁs
and with scores from the Scholastic Aptitﬁdé Test (SAT). =

A.- [dentification of Variables

We focus on the relation éf achievement (X) :to self—app:aisé1=(Y) of
acasomin abilicies and of SAT(X) to achievemént:(Y)a Eaéhvstudént‘; total

score on the achievement test battery (ACH) represents hlS ach;eVEment

level. _Tﬁé indicator (SRAA) of sélf—ratad'academlz abilities is a

weightéd CQEpDSltE of respaﬁses to ten questians (Table 6.1) asking the
student to rate his abilities of his work in different agademlc areas.

components analy51s. The weights were relatively uniform except that

mathematics ability and scientific ability had small weights. Thus the

*
analysis leads us to equate students' preceptions of their academic
ability mainly with their verbal communications skills. T

Subérgupgrqf students were formed on the basis of their SAT, ACH and
SRAA scores. Students were éigssified into Suﬁgréups aéc rding to the
highest two _digits of their ACH scores (ACH2, 1D_gfaup5:i 31-39, 40-49,
cees llD—llQ;;lzD), of their SAT scores CSATZ 13 groups: éDDﬁAQQ— SDD;

599, ..., 1500-1599; 1600), and Gf their SRAA scores (SRAAE 5 groups:
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Table 6.1. Questions included in composite self- ppralsal of academlc
abllltles (SRAA). C .

Use the instructions below for answerzng quastlcns 1 through 4:

"Rate yourself on each of the fgllcw;ﬂg traits as you réallﬁ ﬁhiﬂk '.
you are when compared with the average student of your own age."

. S5cale: A. Lowest 10% . el
B, ~Below average N
j C. Average ]
D. .Above-average . =
5 E. Highest 10%

1. fAcacde mic ability
2. Mathematical ability

L

Self Eonfidéﬁéé'(intellezﬁual)»
Writing ability
Use the instructions Ealaw for answering questions 5 thfough 8:

"Rate yourself on how competent yau feei you are when campared _to
other freshmen at the university."

Scale: A. Laﬁgst 10%
B. Below average o ] -
C. Average )
D. Above average
E. Highest 10%

5. Overall scholarship

6. Scientific ability : oo
7. Reading skills

8. Intellectual self-confidence

9. Where do you think you are likely to rank with respect to grades
in.your freshman class while in college?

Scale:  A. Among the highest 10%
B. Above average’
C. About average
D. Below average
E. Among the lowest 10%

10. TForget for a moment how others grade your work. In general, what
is your own opinion as to how geod your academic work will be?

Scale: A. Excellent
B. Very good
C. About Average
D. Somewhat below average
E. Much below average . R —
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~2.99 to -2.00, =1.99 to -1.00, =0.99 to 0.99, 1.00 to 1.99; 2.00 to 2.99).
ACH2, SAT2, and SRAA2, then, were the grou variables -based on ACH, SAT;
and SRAA, respectively.
The remainiﬁg grouping variables were selected according to thé
following criteria: _
1. The variable has appeared frequently in studies of the relatlons
among academic self-appraisal, achievement, and aptltude (e. g.,"'
parental income, parental education, ;érents educational

aspirations for their children).

2. Alte:nativgly,Athe frequency distribution of the variable and
its pattern of zero-order correlations with ACH, SAT,~aﬁd:SRAA
suggested that it would be a suitéblé répréséntative éf a
particular taxonomic category (e;g, number of semeéters of
highnschggi physical sciences, student opinion about’ whether
collagé is worth the effort, and the last 2 dig;ts of the

studeﬂ 's identification number).

fﬁmbef

Table. 6.2 lists the groupiﬂg“ﬁggiablasg,ardered according to
of groups formed (except for the two "identifieation" varlables at the
téé which serve as zanﬁam numbers in our example).

B. Distributiéﬁal and Relational Préperties af Ehé fafiéblés

Table 6.3 lists for each study var;able the mean, standard deviation, .-
and Sk,wnésé co flCiEﬂt and zerciordar correlations with SRAA ACH, éﬂd~
SAT. Gﬂlﬁ the 2,676Wstugaﬂtg with complate infgrmation on all ?EfiablES‘

are used here and later.!

Iafter the bulk of the analyses was completed, it was dlchVEred that
there were mlSSlﬂg observations on the grouning chara:teristigs
CLIMP COLEFF, and QCJOB. In addition certain modifications were
made in the response categories of ANTDEG. 1In its original form,
ANTDEG formed nine groups. .In the results reporzed here, however,
students responding "Other (9)" were dropped, and students anticipating
any professional degree beyond the masters level (rgspnnses 5, 6, 7,
and 8) were collapsed into a single group numbered "5". The sizes of
- the subsamples defined by the acceptable responses to CLIMP, COLEFF,
QCJDE, and the modified ANTDEG.were 2,632, 2,669, 2,637, and 2, ,646,
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Table 6.2. Infeormation on grouping variables.

Number of Groups
Variakie After
Identification Description Aggregation

Ib2 Last 2 digits of student identificationm 100
ID1 Last digit of student identification . 16

HSGPA2 High school's report of student's grade 23
point average on a 4-point scale
(highest 2 digits)

SAT2 Highest 2 digits of Total score from the 13
Scholastic Aptitude Test

ACH2 Highest 2 digits of Total score from the 10
Achievement Battery : : -

PARINC Student's best estimate of 1970 parental : 10
income before taxes » :

secondary school

POPED Student's report of highest level of ' 6
formal education obtained by his father

ANTDEG Student's anticipated highest academic 5
degree

HSMATH Student's report of number of semesters 5
of high schoo’ mathematics

LY,

HSPHYS Student's report of number of semesters
of high school physical sciences

NOBOOK Student's report of number of books in ) 5
the home ' ‘

- PARASP "What is the highest level of education 5
that your parents hope you will complete?"

SRAAZ Highest digit and sign of composite 3
academic self~-opinion

CLIMP "My grades are mqﬁkedly hetter in courses 4
that I see I will need later." :

COLEFF "I often wonder if four years of college 4
will really be worth the effort."

QCJOB "I often wish that I were offered a good 4
job now so I wouldn't have to spend four .
years in college.
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Table 6.3.

Means, standard deviations, and skewness coefficien.s
study variables, and the zero-order correlations of each
variable with SRAA, ACH, and SAT.

of

Variable Standard Cerrelation with
Name Mean Deviation Skevness SRAA ACH SAT

SRAA
ACH

SAT

1.006
15.463
177.209

.223
-.364
.068

1.000
.529
574

1.000
.839

.574
.839
1.000

D2,
Il
HSGPA2
SAT2
ACH2
PARINC
REPGPA
POPED
ANTDEG
HSMATH
HSPHYS
NOBOOK
PARASP
SRAA2
CLIMP
COLEFF
QCJOB

.561

4.453
3.157

|y
L I ¥ P -

R

[

.235
.024
.308
.203
.987
-867
.332
.623
104
458
.005
.201 -
.695
.330

29.126
2.865
469
1.798.
1.572
2.289
1.284
1.418
.959
.879
.977
.978
.626
.689,
.821
.951
- .821

.003

.011
-.067

. 064
-.333
-.234

.232
-.321
~.687
-.260

.319
-.769
.523
.399
.304
-.209
.151

.019

-.033

.370

020
-.042
.535
.827
.983
.070
-.490
.139
.156
479
.318
.146
.066
476
147

.008
=.047
.488
.987
.827
.076
=.469
.157
.140
346
.257
.203
.087
+520




139

The variables basced oun the student's identification number (ID2 and

with the main variables are close to zero. They satisfactorily represent
Category IV (“random') graﬁpingg

In this sample, parental income (TARINC) is weakly related to
achievement, -aptitude, and academie self-ratings, with c@rfelatiené not
much larger than those from the Essentiaily random ID variables (POPED
and NOBOOK).

Anticipated highest dégree (ANTDEG) and parental aspirations (PARASFj
correlate moderately with each other. (.39), but do not correlate with
other grouping variables. Both correlate higher with SRAA than with ACH
and SAT, perhaps because of similar biases or sets in all student self-
report measures.

The grouping variables generated from ACH, SRAA, and éAT (acuz,
SRAAZ, and SAT2) and thg indicators of high sghcglﬂgradés (HSGPA2 and
REPGPA) have substantial correlations with thé main variables (ACH, SRAA,
and SAT). 1In general these correlations follow predictable patterns.
ACH2? correlates highest with ACH, next highest with SAT. SAT2 correlates
highest with SAT, next highest with ACH. SRAA2 correlates highest with
3RAA, and the order of its c@frela%%ans with SAT and ACH is the same as

for SRAA., HSGPAZ has stronger correlations with the two total test

of magnitude.

lrespcgtivelyg An examination of the means, standard deviations, and
intercorrelations of SRAA, ACH, and SAT for these subsamples did not’
indicate any consistent and important deviations from the estimates
based on the entire 2,676 observations. ;
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The predominance of four- and five-choice variables has the advan- -
tage of easy convertability to group classifications and the disadvantage
of low reliability. The substantive importance of these short scales
lies in the diversity Qf thaﬁr pa Ergé of té;%%latian with achievement,

&= o
aptitude, and academic self-rating. As w111 be shown subscquently,

= = n Ny . £ ; i PR i
reasonably precise” estimates of the relations at the individual level
can be obtained by grouping on some of these variables, while grouping

by others yields wildly misleading estimates.  Determining which

7
characteristics coincide with high precision in empirical data is

particularly important at this point in the study of grﬂﬁping effects.

C. Review of Factors Affecting Within-Category Precision
“".The mechanisms controlling the comparative pregisien of estimates
from di ff rent grouping cha:ééterlstlﬁ“ xithin a given category vary
accﬂfding‘t@xéatégery; The four key "forces" determining precision
within a taxonomic category are (1) the relative strengths of the
relations of the gfé@piﬂg Variable to the dependent and independent
variables, (2) the coarseness of the grouping, (3) the between-groups
variétian,in the independent variable for a given grouping charaéteristic,
and (4) the distributien of the individual observations among the groups.
We review briefly Ehéfﬁannef in which these forces operate, according to
the theory developed Eagiier;

1. Strgﬁgths of Rélations of Z to X and Y

The standardized regression coefficients best indicate the "
strength of relations within a given sample. An '#" is introduced

’There is no exact formula.for the precision" of estimation. Precise
estimates generally combine small bias (in our case, B§§ - bYX) with

small mean-squared error [MSE = (bias)g + SECBf:)E] . Whether bias

or meanﬁsquéred error is more important in deflnlng precision depends
on the purpose for which the estimate will be used.
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as a superscript for regression coefficients to denote that the

coefficients are standardized in this section. In Category III,

% ) , %*
to Y (small gYZ*X) and the strongest relation to X (large EXE)

yield the most precise estimates.
‘the influence is more complicated in Category I. In gcneral,

large EXZ and small BYZ-X lead to greater precision. More can be

said if we fix one parameter and vary the other, or consider the ratio
% *

of BYZ*X= to EXZ :

Lk o L 7 ek
{a) For fixed EXZ of any size, the smaller the value of BYZ*X s
the smaller the bias.
(b) For small (less than .2 but significantly different from zero) -
) * .
larger values of BXZV lead to smaller bias.

% % ) ] .
(c) Whenever B8 excaeds B for a Category I variable, a

?Z!X XZ
particularly poor estimate of EYX results from grouped
observations.
2, Coarseness
The coarseness of grouping, by which we mean the number of groups
formed (m) from a fixed number of observations (N) , largely def
termines the efficiency with a Category IV grouping characteristic.

The strength of relation of Category IV variables to the main variables

is inconsequential; hence, they.group observations in an essentially

random fashion, and the precision of their estimates is influenced
only by m .
Coarseness influences bias and efficiency in other categcries to

a lesser degree. If two variables Zl and ZZ have similar relations
X and Y (B, =By, Py By
to X and Y o , Beo v = By

, X2, XZZ s EZLVX :

) , the one with more
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groups is likely to yield estimates with smaller bias and higher
3. Between-Groups Variation in X

Large between-groups variance in the independent variable implies

small bias and high efficiency. With fixed values of m and relative-

% =%

YZe% y the grouping variable which

ly constant values of B
maximizes the between-groups variance of. X yields the most precise
estimate.

4. Distribution of Individual Observations Among the Groups

The mean of the dependent or independent variables in a group
with few observations is unstable. Such means can have a dispropor-
tionate impact on the estimates from grouped observations. Unpredic-
table variation of a few group means when m is small is pétentiaily
more damaging than the same vaviation among a large number of
observations at the individual level. At the group level, the only
observations are the means. Instability in any cell mean has a
greater impact on the precision of the parameter estimates than does
instability at the individual level. When the observations are not
evenly distributed among the groups, precision cau be affected.

The four forces do not act independently. It wakes little seanse

, . , o, *
to consider the impact of o and ignore the size of BXZ » OT to

z

Thus the investigator must keep in mind that the forces can interact.
In the discussion of the empirical data, we will only reluctantly at-

tribute a loss of precision to a single source.

IT. Regression of Academic Self-Appraisal on Achievement

As our First example, we regress academic self-appraisal (SRAA = Y)

’
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on achievement (ACH ZKX)_ Alternative models of the relation between ACH
and SRAA are certainly reasonable. However, we only wish to illustrate
the effects of grouping, and the chosen ordering is informative.

At the outset we standardize all variables. The procedure for
generating group eslimates and judging their precision are invariant with
regard to linear transformations of the variables. Once the observations
are standardized, the regression cgaffigiegt at the individual lévéi (the
_ s8tandardized fegfessiaﬁ coefficient) is an unbiased estimator of the

I Lk ¢ . ) ‘.
correlation coefficient; i.e., E(be) = BYX =p in the single regres=-

sor case. Thus we obtain estimates of »p when we regress Y on X .

YX 7
Under these circumstances, comparisons of B%i with biﬁ are checks on
the bias in estimating the individual-level car:élation coefficient from
grouped data. (At this point, we will drop the "%; denoting standardized
coefficients since all coefficients in the remainder of the chapter will
be géﬂéfatéd from data that were initially standardized.).

A. Regression Cagféicients from Ungrouped Data

According to the analysis of the 2,676 obéervatiSES, the equat.uu

relating to SRAA(Y) to ACH(X) is

SRAA = .529(ACH) .

That is, the slope of the regression is bYX = .529 ., fThe intercept is

essentially 0 since all vséiables were standardized.). Also,
and

R%-X = .281 (the squared multiple correlation coefficient).
In a study such as this, the investigator usually generalizes beyond

the 2,676 students included in the analysis. After all, these students

)
=

not even the entire freshmen class entering this university during
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the 1971-72 academic year.?® Apparently, our deletion of subjects did

leave a representative sample of the freshmen class.!

B. Categorization of Grouping Variables
To classify grouping variables (Z) into taxonomic categories
requires information beyond that in Table 6.3. Table 6.4 contains for

each Z , estimates of the regression coéfflglgnts (EYX‘Z’ BYZ*X"EYZ’

EKZ) and their standard errors (in parentheses below). An estimate of

the between-groups standard deviation, gi , of ACH for each of the

grouping variables is also given.
The taxonomy intrcduced in Chapter 3 categorizes on the basis of the

magnitude of BYZ*X and EXZ . Operationally, for initial categoriza-
tion, we require that BYZ-X

errors to be cunsidered significantly different from zero. This rather

and éXZ exceed 3 times their standard

LA

tringent criterion leads to the followiug category assignments

re ordered by the number of groups they

)

[Variables within categories
form (m) .]:

3A total of 5,230 students completed the questionnaires during orienta-
“tion of the 1971-72 academic year. Other students enrolled without
attending orientation or participating in the orientation tests and
survey. Students who did not begin Fall term were alsoc excluded from
the 5,230 total,

“An early computer run (carried out before SRAA was created and
before the subtests composing the achievement battery were combined
to obtain the total achievement score) based on the 4,241 freshmen
with reported SAT scores indicated that our students are like their
fellow classmates. The average student in our sample performed
slightly better on the SAT (1089 to 1054) , about the same on the
achievement battery (85 to 84) , and had the same high school grade
average, and reported a slightly higher parental income. The rela-
tionship between SAT and PARINC was somewhat stronger (0.109
compared to 0.076) for the 3,647 students with SAT scores who giso
reported their pavents' income than for the students in our sample.
Differences in means, standard deviations, and intercorrelatici& on
other characteristics were minor also.
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Parameter Estimates

YX-2 Byzex Byz  Byy  Tog

Variable Group Size
Name (m)

D2 100 529 . .008  .020 .019 .189

_ (.0164)" (.0164)  (.0193)  (,0193)

1Dl 10 | .s528 -.011 .  -.042 ~.033 .078
. |(.0164)  (.0164)  (.0193)  (.0193)

HSGPA2 23 463 .123 «535 .370 .552
’ (.0193) (.0193) - (.0163) (.0180)
SAT2 13 .194 .406 : .827 .566 .831
(.0282) (.0282) (-0109) (.0160)
ACH2 10 460 . .070 .983 .522 . 984
(.0896) (.0896) (.0035) (.0165)

PARINC 10 . .527 .028 .070 .064 .122
(.0164) (.0164) (.0193) (.0193)
REPGPA 7 403 -.258 -.490 -.455 .510
(.0182) (.0182) (.0169) (.0172)
POPED - 6 .519 .073 .139 .145 .150
. (.0165) (.0165) (.0192) (.0191)
ANTDEG 5 | .499 .186 .156 .264 .159
1¢.0162) (.0162) (.0191) (.0186)
HSMATH 5 .561 -.066 479 .202 489
(.0187) (.C187) (.0170) (.0189)
HSPHYS 5 .515 .046 ©.318 .209 .365
(.0173) (.0173) - (.0183)  (.0189)
NOBOOK 5 .511 .122 146 196 .148
(.0164) (.0164)  (.0191)  (.0190)
PARASP 5 520 .138 .066 172 .077
- (.0162) (.0162) (.0193) (.0190)
SRAA2 5 .139 .819 .476 .885 .481
' (.0099) (.0099) (.0170) (.0090)
CLIMP 4 .530 -.003 147 074 .163
(.0166) (.0166) (.0191) (.0193)

COLEFF 4 .513 121 .134 .189 .144
(.0164) (.0164) (.0192) (.0190)

QCJOB 4 .514 145 .105 .199 .113
(.0163) (.0163)  (.0192)  (.0190)

8A11 variables have been standardized prior. to grouping so that
= = = o = 31 e = -
Oy = 9% = 9z = Ls Byy = Pxy» 80d Byy = Py

“Numbers in parentheses are standard errors of the regression coefficients.
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ol 239860 Dyl < 906y p

Category I __Category 111

HSGPA2 HSMATH ACH2
. SAT2 NOBOOK .PARINC
> 3SE(B,,) ANTDEG PARASP HSPHYS
—nd e REPGPA COLEFF CLIMP
POPED QCJOB
© SRAA2

__Category IT | __Category 1V

(NONE) D2
’ ' inl

< BSECB

|8y | xz)

As we mentioned previously, no characteristics belong to Category
11, and the number falling in Category I is large. SRAA2 and ACH?
are special cases within Categories I and III. These,':espéctiveiy; are
the best approximations to what Blalock (1964) and Hannan (1970, l97l}

1972) have called "grouping on the de ependent variable" and

"grouping on
the independent variable".

C. Prediction of Bias from Grouping

A modification of thanﬁias formulas ([3.19'], [3!58'], [3.29],
[3.31]) from pages 63 and 64 can Eewﬁsed'tm predict thé bias fréﬁ
grouping for our empirical egamﬁles;- Rememberiﬁg that Oy % 9, = 05 =1,
our equation for estimating the bias from grouping on a particular 2

is giﬁen by

) ' o~ X
[5.1] = ByzuxBxz| 7™ | -

X . T
This approximation is particularly good when the sample either equals
the population or is very large. The small sample properties of 6
are less predictable when both BYZ-X and ‘sz are non-zero. We have -

~included academic self-appraisal in our example because this type of

data is often collected anonymously. If so, we cannot correlate ACH
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and SRAA at the individual level. The data collected in this study
were completely identified, and thus the results under constraints of
angﬁyﬁity can be compared with the results from completely identified
data.

As pointed out in Chaézer 1 [discussion of Problem (D)], one way
to handle anonymous data is Lo analyze relations at ﬁha group level,
For example, students can be asked to inéiaate their number of
semesters-of high school mathematics (HSMATH) when they gémpleteitha
‘attitude qqéstiannafies”énanymausly. SRAA and ACH scores can then
be grauééd according to students' HSMATH responses, and the regres-
sion of SRAA on ACH can be estimated from the weighted group means
of SRAA and ACH.. ----

directly

To be sure, we are still not able to estimate EYz—X

since Oy cannot be determined. Thus we cannot estimate grouping

bias 6 . But the estimate of BYZ -can be used in place of the

unobtainable estimate of BYZ-X in the equation for bias. This

substitution yields a function of the -estimated grouping bias.

b

|
]

[5.2]

/ = Bygfyz| T w2 |
' e X

In most cases, enough is known about the covariance of X and Y

to determine at least its sign. When B8 is positive (negative) and

YZ

sz and Oy have the same sign, BYZ provides an upper (lower) bound

for BYZ!X .  When SXZ and Oyy have opposite signs, B

R becomes
YZ

a lower (upper) bound. Thus, we expect small m values to occur with
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s

good estimators of BYK and large 7 <values with poor estimators.

Table 6.5 lists for each grouping variable, the predicted biases
(both é and ; ) in estimating the coefficient from the regression of
SRAA on ACH . Later, we shall compare these values with the )
observed biases resulting from grouping.

D. Estimates of Regressions from Different Grouping Methods

Two standards are applied for judgiﬁg the precision of estimating

B

vx from data grouped on a given 2 . First, estimates of bias and

efficiency from grouping on different variables are compared, both
within and between categories. These comparisons focus on the effects
of within-variable factors on precision and on the relative precision
of different categories of variables.

We also examine precision on an absolute scale; i.e., independent-
ly of the scaling of ACH and SRAA . To do this, we (a) compare
observed and predicted bias from grouping with twice the standard error
of igs estimate, SE(B?E ; and (b) examine indices of efficiency
generated from the ratio of the mean-squared error from ungrouped ﬁata
to the mean-squared error from a particular grouping. Since these
standard indices of efficiency tend to be small due to the coarseness
of grouping, we also compare the efficiency of a particular grouping
with the efficiency of forming an equal number of groups randomly
(m=1/N-1) .

1. Relative Precision by Category

Table 6.5 contains estimates of the regression coefficients,
their standard errors, ﬁhe observed and predicted grouping bias, and
estimates of the square roé; of the mean-squared error of each
graupiﬁg variable. The grouping variables are ordered within cate-
gories by the size of the observed bias éxgept for ACH2 and BSRAAZ ,
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Table 6.5. Estimates from grouped data of coefficients describing the
regression of SRAA on ACH.

Number

of Bias Predicted
Grouping Groups Bias ~ from . SE(BEE)E
Variable (m) TYX Observed ] i TUTYX

ip2 100 .558 .029 -004 .040 .0739 .0794
ipl * 10 442 -.087 .075 .225 .1831 .2027

Category III-

ACH2 10 . .531 .002  .002 142 | .o61s .0615

PARINC' 10 .558 .029 .130 «295 L1314 .1345
HSPHYS 5 .571 -042 .095 .433 .0915 .1294
CLIMP 5 .717 .188 - .016 -401 .3971 14382

Category ;Q
SRAA2 5 1.853 1.324 1,295 1,507 .0631 1.3255
HSMATH 5 414 | -,115 -.100 .307 .0248 .1176
SAT2 13 671 142 150 .210 .0670 1570
HSGPA2 23 .702 173 .150 451 .0287 .1753
’ .911 .382 440 .87 .1626 4152

917 | - .388 .360 .635 .0617 .3929

.805 .800 . 1.285 .1133 .8129

1.461 .932  .765  1.194 | .1160 .9392

1.631 [ 1.102 1.117 1.586 .2680 1.1341

| 1.324 1.188  1.630 .3703

1.946 1.417  1.519 - 2.048 1.5958

POPED
REPGPA
NOBOOK
COLEFF
ANTDEG
QCJOB

PARASP

e Y N -
1 w;_d‘
.
V]
s

n I~ 4
3 P‘
el
oy
Yoo
o
i
Tk
ol
I...M.

~~dl
fadt
(%]
o)
=t

8gstimates frém ungrouped data: bYX = ,529; SE(bYK) = ,0032.

o~ o 2 o 2
VMSE(Bgz) = f/(DBSERVED BIAS) 2 + [SE(B§§)]2

Cwith the exception of ACHZ and SRAA2 , variables within categories are
- ordered on the basis of observed bias.
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which are listed first in their respective categories.

In general, the estimates conform to our expectations though the
bias and mean-squared error (MSE)® are enormous for some Category I
variables. Category IV grouping yielded estimates with small bias.
In fact, only grouping on ACH2 (grouping on the independent variable)
givgs better precision (swmall bias and small mean-squared error) than

the estimate from ID2 . But it took ten times as many groups to
achieve this level of accuracy.

The bias from grouping by iDl , the other Category 1V variable,
is three times as large as the bias from grouping om 1ID2 . TIts
estimated MSE is more than six times larger than the -gééu’ffgm IDZ.
Category III grouping yields smaller hias than grouping by ID1L in
three out of four cases, the exception being CLIMP which forms less
than half as many groups. Certain Category L variables yielded esti-
mates wiéh smaller MSE's. ClEéfl?; random grouping should be avoided
unless many groups can be formed and no Category II variable is readily
available.

Three of four Category III variables yielded biggif satisfactory
estimates with swall MSE's. Ihe;éstimate from gfaﬁping on "ACH2 is
the most efficient of all estimates generated.

Only CLIMP among thgaCa;egéry IITI variables yielded an estimate
with considerable bias and large MSE . The ﬁegréssign coefficients in

VIable 6.4 suggest that CLIMP acts as a 5uppressaf when it enters the

model with ACH and SRAA . As mentioned earlier, the small number

SIn table .5, YMSE was used instead of MSE for possible compari-
son with SE(B§§) . In the discussion that follows vMSE and MSE
are interchangeable, 1
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ﬁf groups fafmad Ey CLIMP alég has dettiméntal effects on the preci-
sion éf its estimate, 7

Three Category I variables, HSMATH, SAT2, and HSGPA2 , yielded
precise estimates of EYX; felativé:tg the other Category I gr0upings.
All have substantially larger zero-order correlations with ACH than
with SRAA |, and their bétween—graupszstandard deviations of ACH are
large. B .

The remaining Category I variables, including SRAA2 , yield Estiﬁ
mates with large bias énd large MSE .. At the extrege (PARASP) -, Bfi
'is almost four times the ungrouped bYKEE and has a MSE 200 times the
MSE - of :bYX .

3 Blalock and Hannan have stated, grouping on the dependent vari-

'
w

able is disastrously biased. The unmeasured factors represented by the

disturbance térm in the initial linear model CEquatiGn [3.1]} aré‘ o -
confounded with the effects of the primary regressor to such a degree

~ that the relation of ACH to SRAA is unrecognizable. ; —

Fortunately, there are warning signals of poor estimation from

Category L gfaﬁﬁings even when anonymously collected data‘pfévent |
estimation of Oyx * 0f the eight Catéécry’i variables that yielded

the largest biases, all except REPGEA had highéﬁbzergeofﬁer’Qéfrala—

tions with SRAA than with :CH (i.e., Iy, > Ty,) - With SRAA2,

6 We must re-emphasize that the superiority of a particular grouping
variable is a function of the relation to be estimaced. When we
instead regress ACH on BSRAA , for which EYK = .812 , grouping by

ANTDEG' (Bgy = .851) and QCJOB (Bgz = .751) result in small bias
while grouping by HSPHYS (B§§ = 2.452)  and PARINC (B?i = 1.848)

result in larpge bias. The standard errors for ANTDEG and QCJORB
are also small for this regression. The question to be answered
determines the quality of a particular characteristic for grouping
purpcses. ' )
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ANTDEG, QCJDB,’ar PARASP as the grouping variable, BYZi? even becomes

larger than BXZ . Also, the worst Category I variables (ANTDEG, QC.JOR,

PARASP) create a small og and distribute their observations unevenly
among a few initial'grcups.7

2. Precision Independent of Scaling

There are no universal standards for judging what are acceptable
values for bias and mean-squared error, Iha purposes for which an esti-

- mate is to be used determine what is "suitably precise". However, we can

begin to set standards for acceptable bias and efficiency from grouping
which are invariant under scalar transformations of variables.

We suggest that the investigator compare the predicted bias (é)
from a given grouping with twice the standard error of its corresponding
estimate (Bsf)'. if g is larger than 2 Sﬁ(B§§) , drop the grouping
variable from coasid ation. Selection among the. remaining grouping var-

£

iables can be based on the size of 8 » on the efficiency of estimation,

or on some ot-=2r criteria (e.g., ease of call tion or number of groups).

To judge'éhe efficiency of a glVéﬂ estlmaté, the investigator can

-

MSE(b )/MSE(B—E) . Eff(b_,,B= - should -
it

calculate Effcb&x YX> (byy s Yi)

be as large as possible. Certalnly,:yarlabl s with efficiencies smaller

than the worst of the Category IV varia 1 s should be excluded. As
a further comparison, we suggest that the 1nves§1gatal calculated the

.) . This

ratio Eff(b X’B(m,random groups of equal size)

yx' B )/Eff(bY

ratio provides some indication of the gain over random grouping in
cach case.

7Ihe lowvest two groups of ANTDEG's five groups contain fewer than
100 observations. Eighty-six (86) per cent of the observations on
QCJOB are in two of its four categories. HNinety-seven (97} per
cent of PARASP's were either '"complete college" (4) or "obtain a
graduate or professional degrce" (5).
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1f we follow these guidelines in our example, we4ébtain the
results deplcted in Table 6.6. We have also cémparad the observed
bias to 2 SE(B§i) in the table. With the 2 SE(B§§§ as arcris
terion, all Category I variables are éxcludeﬂ, and all Category 11T
and ‘Category IV variables are retaineé, regardless of whether we
look at observed bias or g .

In every case, efficiency is smail, but this cécﬁts because of
the sm§l; m values for almost every variable. If we!ccﬁpar& tge
efficiency of eégh systematié grouping with thai-éf groﬁping by .
ID1 , we can exclude the worst Categc:y 111 vafiable, which was
previously retained. Furthermore, there are marked iﬁgrovements

in efficiency relative to random grouping for all Category III /
groupings and for the best of Category I grouping variables. /

R —

The variables that remain after applying exclusion principles.

for both bias and efficiency yielded estimates with the smalle%%

biases and smallest MSE's overall. In*Segtion-E.IIgF, we |/

/

suggest how the investigator might combine his best éstimate§ when

he does not wish to select &fong them. ~~ : /

E. Predicted Bias vs. Observed Rias. - -

Despite the specification and measurement arréfégvcuf pred%ctions
(Table 6.5) as to bias stood up well. For every grouping whergxthe
abservaé gié% was greater than .2, g was gréatér than .2 . With the
exception of' PARINC , the predicted bias was less than .l whenever the
Qbservéd.bias waé less than .1 .

The prediction ﬁrcm g worked poorly only for 1ID1l amnd CLIMP .
In the case of 1ID1 , it is the sign reversal that troubles us and not
the size of the error. There seems to be no reasonable explanation for
the sign reversal other than théfuse of few groups with a random
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criteria for acceptable bias from the regression of SRAA

on ACH.

.. Compariscn of estimates from grouped data using different

Grouping
Variable

(m)

|Observed
" Bias]
; —— 7 =8y P
<2 SECBYX lﬁz SE(BYX;

Prcdigteda
Bias (8)|°

T
/!

,X,random Z

Y

- (m)”

Category I;;b

ACH2
PARINC
HSPHYS
CLIMP

HSGPA2

(10)] =

(100} .~

5y
( 13)
(23) [ e

+

- .018

.052

. .025
.007

-.020

.008

POPED ( 6) - -

REPGPA ( 7) - - .008 3.64
NOBOOK ( 5)| = -~ - . -004 2.67
GOLEFF - (_14)|" " =~y - - ..003 2.73

ANTIDEG
QCJOB

¢ 5
¢ &

.003
.002
.00z

PARASP ( 5) - -

a“+9'=aWi§hinibéﬁngsia£ acceptable bias
"-" = Qutsidé bounds of acceptable bias
- 8

bWiEh the exception of ACH2 and SRAA2, variables within categories
are ordered on the basie of observed bias (see Table 6.5).




grouping variable. In the previous section, we provided an explanatiaﬁ
“as to why estimates from CLIMP grouping might be disapﬁainting (its'
suppresgor relation with ’ACH and SRAA and its smaller ﬁUmber of
hvery value of ; proved'ta»bé%larger;thaﬂﬁihe observed Bias; The;
Category 111 and Category IV variables along with thevthree Catégéry If:
variables with the smallest bias yielded ﬁhé lowest values of - ;.;
F. Camppsites of Estimates from Multiple Grouping Vafiablesr
The above findings suggest that an investigatgrréag distinguish
those grouping characteristics which lead to réasenabiy'aggurate
estimates from those providing extremely misleading ones in eﬁéitical
studies similar to ours. Once this sépazaticn has beeﬁ accomplished,
the investlgata: can choose a characteristic with small gredlcged biasj
Better yet,-he can use the available 1nfarﬁatian about each characterlss
tic and t expected bias to form a welghtad composite of good g:cuped
estimates. For example, he caﬁlweight grouped eétimatgs iﬁ an_inverse
proportion to their predicted bias. Alternatively, he can give addition-
al weightﬁta the more stablé estimates.
Table 6.7 provides two examples of compésite extimates! In

A

Example (A), we assume knowledge of . Oyx So that © can be used. In

- ~

Example (B), Oyx ig treated as unknown, and thus th§ 7 values are
,sed to weight the estimates. In each example, fivé of the seven group-
ing variables with the smallest predicted bias a%é used. We Exélude

In2 és redundant with ID1 , ana because it forms many more groups than
any other variable. ACHZ is excluded on the grcunés that compositing
éoulﬂ be unnecessary if grouping on ACH2 were possible. Three sets of

weig ghts are determined: (1) in inverse proportion to the predicted bias,!

(2) inverse proportion to SE(B §§) and (3) in inverse proportion to the
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Table 6.7. Weighted Composites from grouped estimates of BYK from

the regression of SRAA on ACH.
Gréupinga B——b SE(Bes) |Predicted: Weight WElghL W21ght
Variable® YX X Bias (n° (2) (3)€

L

(A) Weiphts based on 6

CLIMP 717 L3971 .016 243 .130 162
1Dl 442 L1831 075 © . .207 - .195 202

" HISPHYS 5715 L0915 095 .195 222 217
HSMATH  © .414  .0248 .100 .192 .242 .232
PARINC 558 1314 130 174 .210 __ .188
Estimates y;elded by the weights - ;562f ’ ;iSElfﬁéff !5385

(B) - “Weights based on T

SAT2 671 .0670 .210 .213 .229 .236
D1 L4642 .1831 .225 .211 .224 .226
PARINC .558 .1314 .295 .199 .209 .202°
HSMATH . .414 .0248 .307 197 . L2462 ,226
CLIMP  ©  .717 3971 .401 _____ .180 126 .11l
Estimates yielded by the weights -- ,56Sf _SSSE ,Sjéf

%In both examples, the grouping variables are ordered. by the predicted
bias - (8 or 7). '

Tha‘B§§ were transformed to Fisher Z's before weighting and averaging.

b

,Tli&lghzt (1) = {[Z(Predicted bias (Z )] - [Predicted bias (Z.)1} /
4i[(Predicted bias (Z 1. *

.{Z[SE(B3=),] - E(Bee) 1/ 42[33(5 ) ]

d. . .
Weight _(2)" X1 TYXOd

EWeight (3) {[Weight (1) for Zi][WEight (2) for Zi]} / [EZ(numerator)].

£ . e
ef. by, = .529
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predicted bias and SE(B?i) . Sinéékabservatians were initially
standardized, the E§§ vere trancsformed to Fisher Z's before waighﬁing
and averaging.

The resulting weighted composites afe highly satisfactory. All
composites were within géé of bYX . Estimate A(2) equals the
estimates from grouping on the independent variable ACH2 . The remain-
ing :émposita estimates do nearly as weli, equaléd or exceeded éﬁly by
grouping on ACH2 , and in some cases, by grouping on .ID2 .and PARINC. -
Clearly, judiciaus waigh;ing'cf;grouped estimates can lead to precise es-

timation of the ungrouped regression coefficient.

III. ‘Rggressiqn,ofﬁAchigyameﬁgfgg,Ap;ituég

In our next exampie, we estimate the regression coefficient of
achievement test performance (ACH) on aptitude test performance (SAT).
Anonymity is not usually a problem in this case, but grouping could be

economical. Thus we assume that GYK is known and limit discussion to

the full-information situation.

This example will be considered in much less detail. Our primary
purpose in this second empiricai example is to illustrate that the
suitability of a grouping variable depends on its relations with the
mainrvariables. We again s;é;éérdized all variables p?ior to éﬁnduetiﬂg
the analysis.

A. Regression with Ungrouped Data

_—

The equation relating ACH(Y) 0 SAT(X) is

ACH = .839(SAT)

~
U
o
=
o
o

3
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© B. Categorization of Grouping Variables
’ i 5
Table 6.8 contains estimates for each grouping of the regression

cocificients (EYX-E’ EYZ-X’ EXZ’ and Efz) and their standaté errors..

L

The between-group standard deviaticngwﬁai‘, of SAT for the grouping

variable is also included.

EY s

Again, we required an estimate of either BEZ-X or EXZ to

exceed three times its standard error to be considered significantly
different from zero. The resulting categorization was as follows:

vz.x = 27 Py7.x Byg.x < 35EGy, )
- —Category IIT
HSGPA2 ANTDEG | SAT2 PARASP
B > 3SE(R.) ACH2 . HSMATH PARINC CLIMP
xz = 5B By, REPGPA HSPHYS " FATHED QCJOB

SRAA2 COLEFF NOBOOK

, __Category II ___Category IV
xz 35 Cyy) o 1

Categories of several variables in the ACH-on-SAT regression

differ from thair‘zaﬁeg@fies with respect to the SRAA-on-ACH regres-

sion. ACHZ , which now represents grouping on the dependent variable
rather than on the independent variable, moves from Category III to
Category I. _HSPHYS also moves due to its correlation with ACH . The

relative sizes of TYZV and rxi“'égéiﬁ;servé_égsuséfﬁimélues to poor

grouping variables since ry, is larger thanm Ty, in six of the eight

Category I groupings.

The number of variables in Category III is striking. Of the seven

Category III variables in the ACH-on=-S5AT regression, five were in

L

Category I in the regiessicn of SRAA on ACH . The correlations of
the Category III variables with ACH and SAT do not differ greatly
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~Table 6.8.

EsLimates of pdrameters relatlng SAT(X) and ACH(I) to
alternative grcﬂplné varlabies L

(Z)a

Variable

Name

Group Size.

Parameter'ESLimgtgé;;

(m)

B

BYZ K

in2

Inl
HSGPA2

SAT2

%

7

ACH2

PARINC

" REPGPA

POPED
ANTDEG
HSMATH
'HSPHYS
NOBOOK
PARASP
SRAA2
CLIMP

COLEFF

QCJOB

VrlDD
10
23
.l;,,hu,‘ -
;0

1o

L

Har

.839

(.0105)"
.839

Cotos)

.759
ne Ollé)

.884.
(.0662) "

.082°
. (.0061)

.838
(.0106)

.781
(.0117)

,838
(.0106)

-+ 834
(.OlOS)

.765

- (.0104)

.811
(.0107)

.844
(.0107)
.839
(.0106)
.811
(.0123)
.838
(.0107)
.835
(.0106)

.838
(70106)

;b> -

.Dlé

(.0105)

(.0105)

(.0116) -

.;T.o4z |
(.0662)

.916

« 0061) -

.006 -
( DIDE)

.124

« o17)

_(i01os)

.039

(.0106)

214
(.0104)
.109

- (.0107)

(-0107)
(.0106)

.054
(.0123)

.009
(.0107)

.039

(.0106)

.007
(. 0105)

.008 -

{'0193).
<.046

Ne 01933,,'

488

(.0169)
L..987
(.0031) -

. .827

(.0109) -
1,076 -

(.0193) .
~.468

(.0171)

.157

(.0191)
.140

- (.0192)

.346
(.0181)
,257
(.0187)
.203
(.0189)
. 087
(.0193)
.520
(.0165)

L 165..
(.0191)
114
(.0192)

.118
(.0192)

020
- (.0193)
(:0193)

©,535

(.0163)

.828

(.009) o
- .983  .835 .
(.0035) -
.070 -
(.0193)
S =.490

(.0169)

1,139
(.0192)
.156

(.0191)

480

(.0170)

.318
(.0183)

J146

(.0191)
- .066

{.0193)"

4760
(.0170)

.147
(.0191)

(.0192)

106
(. 0192;

.069°

5177

L4

498 ¢

1169
141
.349
294
~.204

.101

@A11 variables have baen standardized pr;ar to grouping so that

Oy = Oy

=g

z =1 Byy

XE

, and B

YZ

b
Numbers in parenthesis are the standard errors of the regression
coefficients.
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in magggfﬁﬂe though the correlation of each 2 with SAT 1is glgays
larger than its correlation with ACH . The shift of: SAT2 from
Category I to Category III was expected; it now represents gféupiﬁgugn
thé iﬁdapénd&nt variable. The réhaining-vafiéblés apparently enter
Category III in part because of the strong garrelatianabstﬁeen ACH
and SAT , which the model apportions to the independent variable SAT .
C. Estimates of Regressions from Different éfaupimg Methods
Table 6.9 contains estimated regression coefficients and other.
information. With a few minor exceptions, the results conform to our

expectations.

The precision of Category IV grouping again is strongly. relateﬂ tD
the number of grsup5; The aécuraéi (bias) and stability (MSE) of
grouping on iDE is exceeded only by grouping on the indapegéent
variable (SATZ) . Grouping on IDL yields a poarer estimate than
grouping on 1ID2 , on any Category III variable, and on half of the

-+..- Category I variables. ;

Category 111 grouping is clearly suparior Dverali to grouping on
variables from cther categories. Observed blas is SmallEf than
2 SE(B?i) fgr 5 of 7 Category III variables. -(Seg Table 6.10.) The
exceptions are QCJOB and NOBOOK - ‘which form few groups with an

uneven distribution of observations among the groups.

SRAA and COLEFF are the only Category I variables for which the ~

(B YX) . The estimates from the
other than SRAAZ , in addition to yielding large

observed bias falls within 2 SE

Category I variables

bias, are about a icient as grouping on 1ID1 .

The decision rules discussed in Section 6.I1.D are also uceful
with this example. If a variable is eli iminated when (a) IGI ESL(BEE)

or (b) EEff(B,;b) < Eff(B ;) 3b) , only NOBOOK among the Category III

Ipl’
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Table 6.9. Estinatea from grcupéd data Df ccefflcients descrlblng the
:egres%lan of ATl on SAT :

Number _ Bias
of Predicted
Grouping Groups - a Bias from

~Variable - (m) ¥X Observed ¢

CATEGORY IV

D2 . 100 . .832  -.007 003  .05%0 0594 | -
ID1 10 3 1.053  .214 029 .2168  .3036 |

CATEGORY 111°

SAT2 13 .838_ - .QDl-? S -.008 . ..0190 L0190

PARINC 10~ .817  -.022  .02L.  .0598 . - .0636
.876 - .036 .02  .0388 ..oszs :
877 .039  .038 .0685 0788
912 .073 054~ ° .0216 .0775
744 -.095 . -.059 . .0903 1310 ~
718 =121 -.174 .0372 .1266.

CLIMP
~ POPED
QCJOB
PARASP
NOBOOK

ACH2 10  1.168 -329 '.329 <0541 . .3338

SRAA2 5 . .899  .060 072 .0543 . .0809
.019 .180 176 .0418 .1848
.054  .213  .241 L1169 .2438
057~ .218  .219 © .0329 .2205
120 .281 271 .0607 2875

HSGPA2 23
ANTDEG

HSPHYS -

HSMATH

o= e e e

.396 .557 .531  .0478 .5590

a. e = .839: SE( =
Estimates from ungrouped data: bYK = ,839; S;(byx) = ,0105.

bWith the exception of ACHZ and SAT2, variables within categories are
ordered on the basis of observed bias.
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Table 6.10.

criteria for acceptable bias in the regression of ACH

162

Comparison of estimates. from grouped data using different

on SAT.

T |~ .
coping | 95z I'Ezzdl‘zz;?d Ry
Variable ' s ; o

(m <2 SE(B——)! < SE(BEE Eff(ng, H)!EEF(b K,randsm z< ))
. - . A - ] T - T
Category IV | |
ID2 (100) I 177 i 4.78
Ipl ( 10) + | + 034 | 10.00
) b l |
Category IIT I i )
SAT2  ( 13) + | o+ .553 . 122.89
PARINC ( 10) + [ .165 | 48.53
CLIMP ( 4) + | + .198 | 180.00
POPED ( 6) + | + 133 | 70.00
QCJOB  (  4) - | + 135 | 122.73
PARASP ( 5) + | + .080 | 53.33
NOBOOK ( 5) - ] - .083 | 55.33
I |
- ] - .031 | 9.12
( + ' + 300 | 86.67
( - I - .057 l 25.91
COLEFF ( 4) + | - .043 l 28,67
HSGPA2 ( 23) - l - 048 | 5.85
ANTDEG ( 5)- - | - .037 | 24,67
HSPHYS ( 5) - | - ©.026 I_: 17.33
HSMATH ( 55 - : - .019 l 12.67
— == ==  ——— ‘ 7'{ — 7,,7;57 =
8ny" = Within bounds of acceptable bias.
""" = Qutside bounds of acceptable bias.

bWiEh the exception of ACH2 and SATZ, variables within categories are
-ordered on the basis of observed bias. - (See table 6.9).
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variables is eliminated and &11 the Category I variables except SRAA2
are dropped. .

D. Predicted Bias vs. Obsefved Bias

The results of the predictions in the reg;essian of ACH on SAT
étg;as satisfactory as the results in the earlier example. The
prediction from ID1 grouping is again among the most errant. In

general, however, grouping characteristics which produce good estimates

s

‘can be selected on the basis of predicted bias, especially when the

standard errors of the grouped estimates are also taken into account.

IV. Summary of Empirical Results

We set out in Chapter 6 to demonstrate the utility of the grouping

concepts and methods developed in Chaptérs 3 and 4 under realistic

empirical conditions. The empirical evidence ~regarding the estimation -

éf g conformed to the predictions from the prineciple of incorpora-
ting the grouping characteristics as variables in the structural madél;
which, in turn, lead to the taxcﬂomic'eaéegorizatian of grouping
variables. The latter classification resulted in clusters of readily
identifiable "good" and 'bad" grouping variables under most aggregated
conditions. We further showed that if the investigator formed a
welghted composite of astimsﬁes from several gf his bést grouping
variables, his resulting estimate is invariably highly accurate.

Thus we demonstrated some effective strategies of estimating sim-

ple linear regression coefficients (and zero-order correlation

coefficients) when data aggregation is under the 1HVEStlgEEDT s control

and the grouping characteristics under consideration have at least an

interval scale To 4 certain degree, our results are generalizable to

naturally aggregated data where some degree of disaggregation is
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utilizing nominally scaled grouping

characteristics were discussed in Chapter IV, but the procedures

uggested for such variables were not demonstrated empirically.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

I. Summary of Findings

We have examined certain consequences of estimating regression -

coefficients at the level of individuals from aggregated data. In
Chapter 1, various research caﬁtexts iﬁ which such questions arise were
described and the main emphasis of our investigation was iﬁéﬁéifiéé%

In Chapter 2, we reviewed previous literature on graupiﬁgxiﬁ“tha
two-variable case. The literature on estimating both correlation
coefficients and regression coefficients was considered.

In Chapter 3 we discussed thé'vafious factors which affect the
estimation oﬁ the simple linear regression coefficient and zero-order
With one exception, it was assumed throughout that there were no
measurenent erfarg:in X . Though speaking in terms of '"structural
equation models' is somewhat awkwaré when there are only twc Y§§iéb1e5
involved, this term was used because the bivariate regression was
simply a special case of a multivariate structural model.

Ve first demonstrated that the estimate of BYK CB§§) from g:ogped'
data is unbiased if the assgmpticns regarding the disturbances in _the

imple model used by earlier investigators are satisfied. However, the

i

slope estimates from grouped data were shown to be less efficient thanm
the estimates from ungrouped data. This finding led to the criterion
of maximization of the between-groups variance (minimization of the

within-group variance) of the independent variable as an appropriate

method of judging the efficiency of alternative grouping gfgéédufeé.
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The investigation was then expanded to consider in greater detail
the concept of grouping by a "grouping variable". This logic suggested
that the criterion by which the individual observations are to be
grouped can be treated as a random variable which ma; be related to
other variables in the structural equation system. Furthermore, the

system specified that the grouping variable 2 , If related to another

variable, is prior to that variable. The alternative relations of the

grouping variable to the dependent and independent variables were then
used to generate a four-category taxonomy which included all grouping

variables satisfying a specific set of relational restrictions imposed

by that category.

The estimates from data grouped by Category I variables (Z related

to both Y+*X and K) waré found to biased. This apparent disagreement
between the simpie model and our alternative structure can be explained
by the misspecification of the simpfe model when the grouping variable
is directly related to baéﬁ dependent and independent variables.
Further examination of this phenomenon led to a recommendation that the
relation between the grouping variable and the dependent variable be
minimized. Erau?ing on Category I or Category II variables was
discouraged beaauéé such variables are dirgﬁtly felated‘ta Y-X , and
few variables can be expected to meet the necassary criteria that 2

be unrelated to X and £X2 be nonzero at the same time.

The relative efficiencies of variables from thé;différént}gatégorg

7 —

ies were also examined. It was determined that Cagggﬂrigiii grouping

variables (Z related to X but not to SE;XTg§ielﬂ the most efficient

25, -
P -

grouping procedures so long as_thete are variables with efficiencies

greater than Category-IV variables [whose efficienciss are on the order

of (m-1)/(N-1) where m is the number of groups and "N , the total
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number of observations.]. Tt was sugzested that for certain values of
BYZ*X and BXZ » Category I grouping, though slightly biased, can yield
more efficient estimates than either Category II or Category IV grouping.

We examined the possible causes of variations in the magnitude of
bias and the relative efficiency within categories of the taxonomy and
the special problems in grouping by nominal characteristics in Chapter 4.
The within-variable properties considered were (1) the coarseness of
grouping, (2) the distribution of observations among the groups, and
(3) the distribution of the independent variable within and among the
groups. As might be expected, the most efficient estiﬁaggs Weréwigunﬁ“ta
coincide with vafiablééithaévgénéréted a large numbEf-cf maximally dis=
crete and compact groups. |

We alsaiccnsideféd'ﬁ3yé”af”3pplyihg "structural equation" methods
scheme proposed by Wiley was discussed whareinﬂgrouping variables are
categorized by their scale (nominal or interval) and by whathér the groups
in the study are the entire population (fixed) or only a sample from the
population of interest (fand@m)a The n@mimal_éroupimé variable Z+ was
vi&wgé as a surrogate for an underlying grouping variable 2" has a
metfic. Though 7z~ is latent and unmeasurable, it can be estimated by

) - 1 A o + -
classification procedures describing group differences in 2Z' . Sampling

ing variable are unrepresentative of the population.

Dummy coding procedures used by economists were suggested as a way
to incorporate the nominal grouping characteristic in our models. Dummy
coding is less time-consuming and complex than Wiley's prgceddféi It
yields functions which can be compared dirééfly with the parameters

generated by ordered grouping characteristics.
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In Chapter 5, we described various procedures EO? ~analyzing the

effects of grouping.in the multivariate case.’ Dﬁgpafticular interest

was a statistic devalaped by Feige and- Hatts f1972) for assessing the
divergence Datween-gfﬂuped and ungrouped regraa$1an LOEflelEﬁtg, Also,

we showed that the results from the "structural equation" approach in

the two-regressor éaééigg%eéd-with the findings in the Single-regressor

case.  Extension-of the results from the "structural equations" approach”

A
FR
R F

to more than two regressors is straightforward. However, the analysis

5] : ) £

rapidly beaaﬁés%écmﬁlicated with additional regressors because of the

necessity to Speclfy the ‘structural relations among all variables in

the model (iﬂcludiﬁg:theﬁgragping variable). i "f I
Empificai;éiamplgs of grouping in éhe siﬂgleéregfessggrgasa were

presented in Chapter 6. In general, _the results conformed to our expec-
tatiéné:éid the pradiétians from the structural equations aéprééch wvere
reasconably aceurate; The use of weighted composites of estimates from
different grouping methods was demonstrated. These weighted composites
were recommended as a ?oséible means f estimating coefficients when in-
formation 6n certain primary variables ié‘gpllectad anonymously. -

When the within-category effects of theldifferent factors are com-

bined with our kﬁéwlédgéaéf the gateéaré and scgle differencesi several

principles evalve for selecting a grauping variable whlch mlnlmizeg blas

and maﬁlm“?es efflcléneg. A partial list of these prlnciples in the

singleitegreéspriéas' in cludes the rollow1ng
B HE s R g

= - . .

"A.- To obtain uﬁbiésgq estimates of- the’ linear regression coeffi-

" cient, choose a Z so that (in order of preference)
; At X L

1) z is related to X- but not to. Y-X (Category III),
2) zZ isﬁﬁéﬁ.relgtgd to either X. or, Y (Category IV),

“or 3) z is related to Y-X but-§Gt to X 'féétégory 11).

o - » ) K .
L Y ' B r
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Catege 111 variables are preferable bécausa-théy yield
generally cfficient estimators because the between-group
variation in the regressor is maximized.

B. Vhen biased éstimates are the only alternative, choose Z so
that
1) B8,, is as large as possible,

2) By,,.y 1is as small as .possible,

~ and

3) B,, is smaller than EX

[

i

4) the ratio 6E/d§ approaches as near as possible the ratio

1) m approaches N : or
2) average n 1ncreases when random measurement errors in X
are possible, but decreases otherwise; or

3) the correlation ratio ﬂ%

approaches unity; or
4) the pooled within=group varilance in the independent
variable becomes smaller; or
5) the degree of overlap among the within-group distributions
of the independent ;ériabla decreases.

There are obviously other intangibles that cannot be dealt with by
general principles. There iséalways the problem of degree of investi-
gator cancroi over the grouping process.  As stated Eatliéf, anonymous
collection of data on some primary varlables sc¢ “iousiy complicates
matters as does adding more regressors. We have tried to identify only
the strategic aspects of the process of determining the éffects of
g;@upiﬁé and have left to fﬁturé iﬁv&stigaticns-thé practical détaiis
of gﬁ;liaationié Proper application of Ehese_princi%les requirgs that

the investigator thoroughly understand the theoretical model in
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accur.

I1. Suggestions for Further Investigation

At a number of points, we have noted areas where the present state
of knowledge on the complicatijons due to data aggregation is weak and
further investigation is warranted. Here we indicate several of the

1. Nominal Grouping Characteristics -- In the introductory

of data aggrégétion are encountered. The discussion that
followed focused almost entirely on questions that arise in
two contexts [(C) economy of analysis and (D} anonymously
collected data]. Perhaps the most important question from

the perspective of educational researchers is how to determine

school [problem (E)]. Our treatment of nominal variables in -

Chapter 4 merely provides some suggestions about how this work

might proceed. Much more research is necessary toc determine

the special complications that arise in predicting the effects

of grouping on a nominal characteristic.

2. Missing Data and Measurement Errors -— The suggested utiliza-

tion of grouping in handling problems with missing data
[problem (A)] and measurement errors [problem (B)] requires
further elaboration and investigation.

3. Weighted Composites and Anonymously Collected Data -- The

description of the use of aggregated data to overcome compli-

cations with ancnymcusly collected data [problem (D)] and the
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subsequent example vhich used weighted composites of estimatas

frc™ grouped data to estinate z@efficienté represent a poten-
tially valuable new field for planned application of data
aggregation. More work is necessary to establish the general-
ity of the technique of estimating individual-level re;atians
from weighted composites of betwéen—gfaup coefficients.

Multivariate Models -- A more thorough investigation of the

effects of grouping in models with mulﬁip;é regressors is
highly d%%irablei The comparative utility of the "structural
equations'" approach and the procédures suggégted by Feige and
Watts needs to be investigu.ed. Additionally, hardly anything
is known about the optimal grouping method when the hypotheses
of interest posit some form of simultaneity cf causation in

nultivariate models.

developed here apply when the grouping variable is some time
intevval ("year", '"occasion") {ould be of value. The results
may provide new insight into the partitioning of observation

periods in classroom process studies.

Appropriate Model Specification =- We have purposely focused

on the conditions under which the estimates from grouped data
provide accurate or misleading information abaut‘relaticﬂs
among measurements on individuals. It is evident that the
principles governing aggregation bias are a subset of the
problems that appear in econometrics literature under the
heading of "speecification bias'. -Thg necessary interrelation
between specification bias and aggregation bias needs to be

elaborated and communicated to the educational research
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cCumnity, This elaboration would nocessarily dinclude warnings
about the potential hazards of accepting global measures of
association (e.g., indi#idualslevel correlations) as accurately
reflecting the actual processes in operation. When there exist
group-to—group differences on the primary variables, it is often
more appropriate to conduct within-group analyses or to include
additional variables that account for group differences in the
model. This latter kind of a specification problem suggests

the interface between the analysis of covariance procedures and
the analysis of grouping effects.

Multilevel Analysis -- In the literature on school effects,

investigators have begun to recognize that it may be necessary
to adjust for the lack of independence among students within
classrooms. Procedures-that combine within-class or within-

school analyses with analyses at a higher level of aggregation

deserve more attention.

This list is.by no means complete. Ilowever, it does accurately
reflect the concerns over data aggregation in educational research and

directions for further inquiry by educational resecarchers.
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