
DOCUMENT RESUME

ED 137 089 SE 022 182

AUTHOR Polin, Glenn N.
TITLE MACSYS: An Automated Curriculum System for Elementary

Mathematics.
INSTITUTION Illinois Univ., Urbana. Computer-Based Education

Lab.
SPONS AGENCY National Science Foundation, Washington, D.C.
REPORT NO CERI-R-X-48
PUB DATE Aug 76
GRANT USNSF-C-723
NOTE 46p.; Contains occasional light type

EDRS PRICE MF-$0.83 HC-$2.06 Plus Postage.
DESCRIPTOBS *Computer Assisted Instruction; *Currizulum;

*Elementary School Mathematics; Elementary Secondary
Education; Instruction; Mathematics Eeucation;
*Program Des :iptions

IDENTIFIERS *PLATO

ABSTRACT
Details are given of the Elementary Mathematics

Automated Curriculum System (MACSYS) used with fourth, fifth, and
sixth gradezs at six elementary schools. The iour decision-making
components of MACSYS are discussed, the structure of the sessions in
which the students interact with the computer is described, and the
structure of the curriculum is explained. Seven different attributes
of a leson are analyzed, and the process for determining eligible
lessons is described. (DT)

Documents acquired by ERIC include many informal unpublished

* materials not available from other sources. ERIC: makes every effort *
* to obtak. the best copy available. Kevertheless, items of marginal *
* reproducibility are often encountered and this affects the quality *
* of the mic:ofiche and hardcopy reproductions ERIC makes available *
* via the ERIC Document Reproduction Service (EDRS). EDRS is tot
* responsible for the quality of the original document. Reproductions *
* supplied by EDRS are the best that can be made from the origjnal. *
***********4-***

Computer-based Education

Research Laboratory

University of Illinois

1.0k.A.510.. 0)i:Cf Tr ,1P
ktt rE 1.17A.; ,4AS PE' E.

Bill Strutz
PLATO_Pkblications

:O,c;
.

4GPEC
F DuCAT

'; P.'
, pp,R1,41,,S1n.. 74 .

SCOPE OF INTEREST NOTICE

The ERIC Frscihty has assigned

this dockimont tor processing

to,

in Our judgement, tho doCuMent
j54150 O nterest to the clearing-
houses nOted 10 the right.Index-
Tog yhould reflect their specral

of view.

MACSYS:

6644.4.66 &&&&&&&&Lit AL L466646
LC c.a.l.6L4s.s.a.61.4.

Urbana Illinois

U S OEPARTME NT OF HEALTH.
EDUCATION W EL FAR E
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCE() EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN-
ATING. IT POINTS OF ViEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE-
SENT OFFICIAL NATIONAL INSTITUTE DF
EDUCATION POSITION OR POLICY

AN AUTOMATED CURRICULUM SYSTEM

FOR ELEMENTARY MATHEMATICS

CURL Report X-48

GLENN M. POLIN

AUGUST 1976-

MACSYS:

An Automated Curriculum SYstem

for Elementary Mathematics

by

Glenn M. Polin

August 1976

Computer-based Education Research Laboratory
University of Illinois at Urbana-Champaign

3

Copyright ED August 197

by Board of Trustees
University of Illinois

All rights reserved. No part of this book may be
reproduced in any form or by any means without per-
mission in writing from the author.

This manuscript was prepared with partial support
from the National Science Foundation (USNSF C-723)
and the University of Illinois at Urbana-Champaign.

ACKNOWLEDGEMENTS

Many of the ideas used in the design of MACSYS were originally

developed by Robert B. Davis, Project Director; I extend my thanks to

him.

Each member of our three curriculum teams:

Graphing: Donald Cohen
Gerald Glynn

Whole Numbers: Bonnie Anderson Seiler
Charles Weaver

Fractions: Sharon Dugdale
David Kibbey

has made substantial contributions to the design of the final product

and the many preliminary versions.

Additional thanks go to Bonnie Anderson Seiler, Allen Avner, Elaine

Avner, William Golden, Elisabeth Lyman, and Bruce SherWood, whose comments

on earlier drafts of this paper have improved it far beyond what I

could have done on my own.

For their assistance in the preparation of this paper, I owe many

thanks to Sibyl Pellum, typist, and Wayne Wilson, graphic artist. Thanks

are also due to Sheila Knisley and Roy Lipschutz for their assistance

in the preparation of the final publication.

Finally, I owe a special thanks to Keith Slaughter, who worked

with me on MACSYS from June 1974 until March 1976. Without his help,

I might new_lr have found the time to write this paper.

TABLE OF CONTENTS

I. Introduction 1

II. A Component Description of MACSYS 5

III. Structure of the Student Session 13

IV. Structure of the Curricula 17

V. Attributes 25

VI. The Determination of Eligible Lessons 39

VII. Summary 43

VIII. Notes 45

IX. References 47

6

1

I. INTRODUCTION

The developmental work of Risken and Webber (1974), begun in 1971,

and the subsequent introduction of router lessons to the PLATO system in

December 1973 have areatly enhanced the PLATO system's capability of

delivering a fully automated, fully exportable curriculum -- one which

does not require human intervention on a day-to-day, or even week-to-week

basis.

The PLATO Elementary Mathematics Group, one of several curriculum

projects at the Computer-be.sed Education Research Laboratory at the

University of Illinois where the PLATO system was developed, has been at

work since 1973 developing an Elementary Mathematics Automated Curriculum

System (MACSYS), designed for the unique participants and environment of

the teaching of elementary mathemo'ics.

In the 1975-76 school year, as part of a Nationcl Science Foundation

contract, MACSYS was in operation in thirteen classrooms in six elementary

schools in the Champaign-Urbana area. The typical classroom had four PLATO

terminals, usually located to one side of the room; the grades involved

were fourth, fifth, and sixth. Over 15,000 hours of session time were

recorded during that year. On an average school day, 250 students each

received a 30-minute session of mathematics instruction.

Robert B. Davis (1974) has described the scope of the two PLATO

elementary curriculum projects; it is my intention here to describe the

specific design of MACSYS, focusing on those aspects which differ most

radically from the rest of the curriculum projects on the college-oriented

PLATO system.

2

Some Introductory Concepts

'As it is commonly used on PLATO, the word "session" means the time

the student is on the computer system. If he is on for ten minutes, he

had a ten minute session; if he is on for an hour, he had an hour session.

Most college students work for fifty-minute sessions, the length of

a class period. Generally this fifty minute.. is Spent in no more than

two or three lessons, with the student finishing each lesson before going

on to the next.

A MACSYS session may be defined as "a structured sequence of lesson

segments lasting about thirty minutes." Each element of that definition

is explained below.

It is the session selector
1

, a principal 2rogram of MACSYS, which

controls each student's session and determines when it is over -- not the

classroom teacher, or a proctor, or the student. A student may sign in

and out of MACSYS several times during the course of one session; each

time he returns, he continues working wherever he left off in his current

session
2

. This is important because the sequence of lessons provided the

student is structured, i.e. different kinds of lessons occur at different

times during the thirty minutes. An example of this is that students may

only play games during the last.ten minutes of a session.

A Zesson segment is a piece or portion of a lesson. Lessons in MACSYS

are designed to be studied a piece at a time, not all at once. On the

average, a student sees seven lesson segments in a session; but sessions

containing from three to thirteen lesson segments are not unusual.

Further, most lessons do not have a prespecified number of portions

or segments. They rely instead on the student to decide when he has had

enough of this particular lesson for the time being. By pressing a

8

1.

designated key, the student may leave the lessOn he is in and choose a

different lesson to study. Thus the student defines the portions ofthe

lesson for himself. When a student chooses to do another segment of a

le-Sson he has started previously, MACSYS takes the responsibility for

reMembering where the student was and restarting him appropriately. Note

that while a student may decide he has temporarily had enough of a lesson,

he does not decide whether he is permanently finished with the lesson;

this decision belongs to another MACSYS program, the curriculum interface.

FinallY, I say that the session is about thirty minutes Zong.

Obviously, this is of deliberate design. Students are neve arbitrarily

interrupted while studying a lesson -- they either choose to leave, or

reach the end of the lesson or one of its segments. The lack of a more

precise session length
3
seems of minor concern compared to the anguish

generated in a student who has been unexpectedly interrupted in the middle

of a lesson.

We will now look at the components of MACSYS and see the way in which

they interact to determine each student session.

9

5

II. A COMPONENT DESCRIPTION OF MACSYS

There are four decision making components of MACSYS:

1. Curricula

2. Session Selector

3. Teachers

4. Student's

Components one and two make up the programmed, "automatic" part of

the system; components three and four are its human elements. Table 1

summarizes the type of decisions each element is responsible for.

Table 1. Decision Making in MACSYS

Components Type of Decisions

Curricula 1. Data bases contain invariant decisions, e.g.,
Lesson A must come before Lesson B.
2. Interfaces make student specific decisions, e.g.,
This student needs remedial Lesson C.

Session Selector 1. Determines the lessons the student is eligible
to see.

Teachers 1. Assign students to curricula.
2. May assign individual lessons to students.
3. May allow students to skip chapters or take an
advanced route through chapters.

Students 1. Choose the lessons they see from a list prepared
by the session selector.
2. May decide how much of each lesson they will study
at one time.

10

6

The Curricula

There are currently three curricula available as part of MACSYS:

Graphing (Cohen and Glynn, 1974), Whole Numbers (Seiler znd Weaver, 1976),

and Fractions (Dugdale and Kibbey, 1975). Of the over 15,000 hours of

session time recorded last school year, 12% of the time was spent in Graphing

lessons, 11% in Whole Number lessons, and 47% in Fractions lessons.

As seen from the outside, by the teacher, a curriculum is divided into

chapters. At the present time, the Graphing Curriculum has five chapters,

the Whole Numbers Curriculum has five chapters, and the Fractions Curriculum

has nine chapters. The chapters of a curriculum are arranged as a linaar

list, much the same as chaptets in a book. Each chapter covers a specific

topic in the curriculum and thus consists primarily of lessons on that topic;

however, other lessons are included in the chapter for readiness building,

review, and general enrichment.

Internally, each curriculum in MACSYS is seen to consist of the

following components:

1. A Data Base

2. Many Lessons

3. A Curriculum Interface

The Curriculum Data Base

The curriculum data base contains two kinds of information: information

about lessons in the curriculum and information about the chapters of the

curri'7ulum. The lesson information includes the information needed to

access a lesson, the title of the lesson, and its data requirements. The

chapter information includes the names of the lessons to be included in each

chapter, the attributes assigned to them, and their ordering in the chapter's

curriculum trees. The ideas of attributes and trees will be discussed in full

11

7

in later sections. All of the invariant curriculum decisions are contained

in the data base. An example of an inwl.riant decision is "Lesson A must

come befote Lesson B."

The Lessons

Lessons'provide instruction for the student and measure the performance

of the student'within the range of that instruction. A lesson which only

measures performance is called a "checkup." Lessons do not make curriculum

decisions on the basis of student performance; that is the job of the

curriculum interface.

A lesson in MACSYS is defined by a PLATO file name and a part number,

which distinguishes different lessons in the same file. Most often, lessons

within the same file are closely related and are sometimes just slight

variations of one another, e.g., the same lesson form with a different set

of problems. They are considered distinct lessons so that each may be

assigned its own attributes and its own place in the trees.

The Curriculum Interface

The curriculum interface is a program whose primary function is to make

the student specific curriculum decisions, those which can not be made in

advance. Each curriculum has a curriculum interface, written as part of

the job of designing the curriculum.

Looking at Figure 1, we see that after each lesson, the student stops

at the interface before returning to the session selector. During each

student's brief (and invisible) stay in the interface, the interface inter-

prets the unique performance measure of the immediately previous lesson and

other past lessons, and sends its decisions to the session selector. An

example of such a decision is "This student needs Lesson C," where Lesson C

may be a remedial lesson designed to counter a problem the student is having.

12

8

Because the interfaL.:. is not an obvious component of a curriculum,

one might well ask whether the lessons or the session selector could not

do the same job as well. The answer is that either cuuld do thA job, but

neither as well,.

While we have not yet discussed the session selector's many functions,

the fact that there are three independent curricula being run by a single

session selector should make most readers realize why these decisions could

not be put into the session selector. Each curriculum has changed and been

.improved many times since its first trial. We clearly could not have three

curriculum groups all trying to alter the same program.

In early implementations of MACSYS, the lessons performed the role the

interface now performs. Code was attached to the end of each lesson to

implement whatever student specific decisions needed to be made after that

lesson.

There were several disadvantages to this mode of operation. The primary

one was that the student specific decision making apparatus was spread out

in all the lessons of the curriculum; this compared unfavorably with the

ready accessibility of the invariant curriculum decisions in the data base.

It is qui'Le simple to understand the decision making in a chapter when it

is all in one place.and quite difficult when it is spread out in perhaps

forty lessons.

A secondary consideration was that we did not wish the lessons to

change. In many cases, lessons were written by authors now long departed

and no current membP'r of the staff was familiar with them. Changing any

part of a lesson, even code merely "attached" to the end of the lesson

always carries a significant risk. Ey using an interface, curriculum

decision making can often change without changing a single lesson.

13

9

SESSION SELECTOR
SIGN-IN ENTRANCE

PREPARE 1-'0R

STUDE:r..1

SESSION SELECTOR LESSON
INTERFACE ENTRANCE

PROCESS
INTERFACE

INSTRUCTIONS

STUDENT CHOICE

LEAVE,
CONTINUE, OR
WRITE A NOTE

CUr:RICULUM
DATA BASE

IEXECUTE
LESSON

DETERMINE 1 i
I STUDENTLESSONS

STUDENT IS "OH HISTORY IN
CURRICULUM

ELIGIBLE FOR
1
N

SIGN

NO
OFF

ALLOW STUC:- r
TO CHOOSE

FROM AMONG
ELIGIBLE
LESSONS

PREPARE
INFORMATION

I

FOR CHOSEN I
LESSON

TO
LESSON

Figure 1. Simplified System Flow Chart for MACSYS Students

c)
TO
OJRRICULUM
INTERFACE

CURRICULUM INTERFACE

EXECUTE
INTERFACE

14

TO
INTERFACE
ENTRANCE OF
SESSION
SELECTOR

10

The Session Selector

The primary responsibility of the session selector can be seen clearly

in Figure 1: to determine what lessons the student is eligible for.

This is a complex determination involving the student's personal history,

information from the curriculum data base, commands from the curriculum

interface, and decisions made by the teacher. This determination will be

the subject of much of the rest of the paper; still, Rome other session

selector tasks are worthy of note.

To free the classroom teacher from the necessity of policing the

terminals, the session selector allows each student only one session during

school hours, thus preventing the more aggressive children from monopolizing

the terminals. The teacher can, however) give any or all students extra

sessions; additionally, the teacher has the power to temporarily restrict

individuals or the entire class from using PLATO.

Since students generally do not finish lessons in one sitting, some

data must be saved to restart the student appropriately. Thft session

selector collects this data when a student returns from a lesson, stores

it while that student does other lessons, and returns the data to the

lesson when the student next studies it. Much of the data collected on a

student is collected by the session selector.

Finally, the session selector includes an error accouhting system,

used to detect and report errors in the lessons, the interfaces, and the

session selector itself.

The Teacher

Each classroom teacher must decide which curriculum or curricula to

assign to which students on which days of the week. This may be a single

decision, such as assigning all students to Fractions Monday through Friday,

15

11

or a series of individual decisions. An example of such individual

decisions might be to assi4n John to the Graphing Curriculum on Monday,

Wednesday, and Friday, to the Whole Numbers Curriculum on Tuesday, and to

the Fractions Curriculum on Thursday; and to assign Julie to Whole Numbers

Monday through Thursday and Fractions on Friday. Each student in the class

may be given a unique assignment, if desired.

Once the teacher has made the initial assignment of students to

curricula, the teacher is not required to irteract further. The elementary

school teacher is a busy person, one whose free moments are noticeably rare.

The collective experience of our group suggested that oux system would be

widely used only if it did not require teacher interaction on more than an

occasional basis.

While our sYstem does not require further teacher interaction, it does

encourage it. 7hr Imitial curriculum/student assignment may be changed at

any time, and extensive reporting to teachers on the subject of student

performance gives them a basis to make their decisions. Teachers may also

allow students to skip chapters of a curriculum, or take the alternate

(advanced) path through a chapter. In addition, teachers may assign indi-

vidual lessons to students where they see a need which the regular curriculum

is not fulfilling.

The Student

Wherever possible in MACSYS, students are given choices. They may

choose what name PLATO will call them; they choose which symbol will represent

them in a game; they often are allowed to choose the level of difficulty of

the problems theY see, and sometimes the problems themselves; and as stated

previousl, there are many opportunities for students to put off studying

one lesson and choose another.

16

1 2

The stulent chooses the lessons he sees; this is his Primary influence

on the specific content of his session. Look ing at Figure 1, we note

again that each time the student returns to the session selector, he is

presented with a list of lessons to choose from; sometimes as few as one

or as many aS eighteen, but most often six or eight. It is the procedure

by which the session selector determines the contents of that list that we

will now be concerned with,and we shall begin hlr defining the precise

structure of the student sesrion.

17

13

III. STRUCTURE OF THE STUDENT SESSION

Previous work by Robert B. Davis (1973) indicated that a mathematics

session for elementary school students should have a definite structure.

The les son material offered during the session should not get continually

harder,, building on itself, as a college lecture does. If the student

loses the thread of the material offered during such a session, he will

be lost from that point on, with resulting bad feelings about mathematics

and PLAT0.

Davis' work indicated that the session should start with something

faMiliar, The middle of the session should be concerned with the ongoing

neW material, and the end of the session should return to familiar things,

usually games. It is these ideas about session structure for classroom

mathematics which we have attempted to build into our session selector.

Within the thirty minutes of the session, the following divisions

exist-

I. Notes from the classroom teacher or PLATO staff to the
student

II. One lesson prescribed by the classroom teacher

III. Instruction in the assigned curriculum and chapter for
for that day (20 minutes)

IV. Student choice of games (8 minutes)

V. Optional note from the student about his PLATO session
(2 minutes)

Each
classroom teacher is responsible for the lessons his students

see in Sections II and III. Section II consists either of a single lesson,

or none at all. Section III may contain any number of lessons, as it is

18

1 4

possible for the student to spend his entire time in one lesson, just as

he has the opportunity to return to the session selector every few minutes

and choase a different lesson.

The PLATO staff assigns the lesson material in Section IV, which is

known as "Game Slot"
4

to the students. Each student's game list is indi-

vidualized, containing within it a subset of games, common to all students,

and a few games specifically appropriate to whichever chapters of the

three curricula the student is currently working in. No restrictions are

placed on which lessons the student chooses in Game Slot, or how much or

little time he spends in each one.

In any particular session, Sections I, II, and V may or may not be

present. In general, the time remailliAg from one section (positive or

negative) is subtracted from the time allotted to the next section.

Within Section III, there are two slots. While it is not a hard and

fast rule, the first slot usually contains review and is short (five minutes

or less). The second slot, called "Main Slot," contains the material new

to the students.

Looking now at Davis' model,, see that the teacher prescription and

-

the review constitute the beginning, familiar material. The main slot of

Section III makes up the ongoing curriculum, and the session ends on a

familiar note with eight minutes of games.

The boundaries of Sections III and IV, and in fact of 11 the sections,

are not rigid. Section III may end early or late -- early if there are no

further lessons for the student to do (unlikely, but possible), or late if

the student progresses more slowly than expected or chooses to spend more

time than usual in a lesson. In addition, a student who has reached "Game

Slot" may continue working on his "Main Slot" instead, if he so chooses.

19

1 5

--

Thus while some sessions may deviate in particulars from the general

model, this deviation is almost always the result of student choice.

2 0

1 7

IV. STRUCTURE OF THE CURRICULA

Within each thirty minute session, ten minutes are devoted to games

assigned by the PLATO staff, a lesson assigned by the teacher, and notes

written by the student; it is the twenty minutes of Section III which are

devoted to the assigned curriculum. We may now begin to discuss the

structure of that curriculum and the way in which the student, session by

session, progresses through it.

A curriculum, to review briefly, is seen as consisting of chapters.

The student's classroom teacher assigns him to one or more curricula;

.11le works on each curriculum one chapter at a time. When he is finished

with one chapter of a curriculum, he starts the next chapter of that

curriculum. Chapters within a curriculum are arranged in linear order,

somewhat like chapters in a book.

Internally, a chapter is made up of one or more curriculum trees.

By convention, lessons in the first or primary tree of a chapter are the

lessons that all students who enter the chapter will see. The lessons in

the secondary trees are those which only some students will see;

it is the responsibility of the appropriate curriculum interface to

activate these lessons for a particular student if and when he needs them,

as determined by some data collected from a lesson.

Figure 2 shows a sample curriculum tree. Each node or circle in the

tree in Figure 2 represents a lesson. The relationship between lessons in

the tree is expressed as that of predecessors and successors. In verbal

terms, a successor of a lesson is one which comes after the lesson; a

predecessor obviously must precede the lesson. In graphical terms, any

21

1 8

Figure 2. A Curriculum Tree

two lessons in a chapter connected by a line with no other lessons between

them are in successor/predecessor relationship. The one on top is a pre-

decessor of the one below, and the one below is a successor of the one on

top. For example, in Figure 2, we say that Lesson F is the predecessor

of Lesson M, and that Lesson M is the successor of Lesson F. Lessons in

a curriculum tree may have more than one successor and/or predecessor,

e.g., Lesson P in Figure 2 which has predecessors I and j, and successors

T and U.

The Student's Position in a Chapter

How do we define the position of a student in a chapter? First, each

lesson in a chapter is always considered to be in one of two complementary

states for a given student at a given moment -- available or unavailable.

2 2

1 9

When deciding what lessons the student may choose from, the session selector

begins the process with the set of available lessons; the student is never

offered an unavailable lesson.

What then determines whether a lesson is available or unavailable?

When a student first enters a chapter, the successors of the start node of

the primary tree are made available to him (lessons A, B, C, and D in

Figure 2, if we assume that it is the primary tree of some chapter). All

other lessons are considered unavailable. A lesson further down the

curriculum tree becomes available only when each one of its predecessors

has either been satisfied or finished. Thus in Figure 2, lessons G and H

change from unavailable to available when Lesson A is either satisfied or

finished. Similarly, Lesson P changes from unavailable to available when

each one of lessons I and .7 is either satisfied or finished.

Satisfied and finished are two completion stages in the history of a

student's experience with a lesson. A Zesson is satisfied when the student

has attained the minimum requirement for proceeding past that Zesson in the

curriculum. An example of a minimum requirement we might use is "the

student has answered 70% of the lesson's problems correctly." If this were

the requirement for Lesson A in Figure 2 to be satisfied, then when the

student reached this level of proficiency in the lesson, the curriculum

interface would signal the session selector that Lesson A was satisfied.

The session selector would then note that all of the predecessors of

lessons G and H were either satisfied or finished, and it would therefore

make lessons G and H available.

When a student finishes a lesson, it means that not only is the

minimum curriculum requirement satisfied for that Zesson but, in addition,

the student has completed the lesson, and it should no Zonger be available

23

20

to him. An example of a finished criterion we might use is "90% of the

.lesson's problems must be answered correctly." When a student achieves

this performance level, the curriculum interface would notify-the Session

selector that Lesson A was finished. The session selector would then not

only make lessons G and H available, but would also make Lesson A unavailable.

Once a lesson is available to a student, it will become unavailable only

after it is finished.

In my example, the criterion for satisfied and finished are different,

with the satisfied criterion beingaess demanding. This is the most

common case, assuring that a student will make progress in the curriculum

even though he has not mastered a particular lesson. If the lesson has

the same criterion for satisfied and finished (which is equivalent to the

lack of a satisfied criterion), 'then the student will proceed in the

curriculum only when he has reached the finished criterion level. A lesson

may also be designed with a satisfied criterion and no finished criterion,

letting the student proceed in the curriculum while the lesson remains

available until the chapter ends.

To summarize, the history of a student with respect to any lesson in

the primary tree of a chapter (e.g., Lesson P in Figure 2) is as follows:

first, the student must satisfy the predecessors of Lesson P (lessons I

and J); at that point, Lesson P becomes available to the student, and may

begin to appear on his list of lesson choices. When the curriculum inter-

face detects that the student has met the requirements for finishing or

satisfying the lesson, it will inform the session selector; when the session

selertor marks Lesson P as satisfied or finished, the successors of Lesson P,

lessons T and U, will become available. If the.student has finished

Lesson P, it will become unavailable, and the student will no longer see it

on his choice list.

2 4

21

We can therefore define a stuaent's position in a chapter by stating

what lessons are available to him; this is determined by knowing ehich

lessons the student has satisfied and which lessons he has finished.

Role of the Curriculum Interface

It is now possible to state more precisely what the role of the

curriculum interface is. There are five commands a curriculum interface

may send the session selector:

1. Declare any lesson in the chapter finished.

2. Declare any lesson in the chapter satisfied.

3. Make any secondary lesson in the chapter available.

4. Start any secondary tree of lessons in the chapter.

5. End the chapter.

Thus we may say that while the curriculum tree is concerned with the

order of the lessons in the chapter for all students, the curriculum inter-

face is concerned with the speed of each student's progress through those

lessons, and with providing any extra lessons a particular student might

need.

Why Use a Curriculum Tree

The quite natural question arises, "Why use trees to represent

curriculum?" The answer is that the tree is the natural generalization of

some commonly used ways of designing a curriculum.

One such common way is the straight line or linea:r curriculum; when

one lesson is finished, the student starts the next lesson. Another common

approach for college students is the choice list, where the student may

choose from all the lessons in the chapter, thus allowing him to decide the

order of lessons for himself. Both of these approaches are easily imple-

mented with a tree structure. Also, in either approach, lessons may be

2 5

22

left available for review by the student if they are declared to be satis-

fied instead of finished whenever the student completes them.

The curriculum tree, then, provides a very general way of defining

in what order the lessons of a chapter must be done. If very little order

is required, as in a choice list, the curriculum tree can express that.

If very strict order is required, the curriculum tree can also express that.

The curriculum tree is given additional flexibility by the notions of

satisfied and finished, allowing us to define one condition for going on

in the curriculum, and another condition for finishing a lesson.

The Curriculum Tree Is Not Enough

The curriculum tree, by itself, is not enough; it does not provide

enough data to properly control the student's pr:;gress through the curriculum.

A tree, for instance, does not contain any information about the relative

importance of lessons; one available lesson may be a checkup and the other

a review lesson, but using only the information in the curriculum tree,

they are indistinguishable.

There are other types of desirable curriculum control other than that

offered by the tree. One might want to allow a student to choose the same

lesson he just returned from or one might want to restrict students from

seeing a particular lesson more than once a session. A curriculum designer

might wish to specify that a particular sequence of lessons within a tree

should be continuous, i.e., uninterrupted by other lessons. Neither of

these are possible using only a tree.

To gain further control in specifying curriculum, each lesson must

carry some information about itself beyond the names of its predecessors

and successors. We call this information the attributes of a lesson.

Each lesson in a chapter is assigned values for seven attributes; these

26

23

attributes give the session selector the information it needs to implement

the additional kinds of control that the curriculum designer requires.

2 7

25

V. ATTRIBUTES

Seven attributes of a lesson are listed and grouped in Table 2.

Table 2. Attributes of a Lesson

Group I

Attribute:
Range :

Units :

Slot
1-2
none

Group II

Attribute: Time
Range : 0-15
Units : minutes

Group III Group IV

Attributes: Rank Attributes: Frequency
Priority Delay

Range : 0-15 Forced
Units : none Range

Units
:

:

0-15
sessions

Group I

Slot. Within the twenty minutes of Section III, tt.,:re are two internal

time divisions called slots. Zach of these slots is assigned a portion of

the twenty minutes, as part of the specification of the module. Each module

lesson is then assigned to one of these two slots and can only be offered

to the student within the assigned slot.

In this way, two groups of materials within the same module may be

isolated from each other, and delivered each within its own time slot during

the session. As was stated previously, our general usage of the slots is

for Slot I to offer review or repetitive practice lessons, and for Slot II

to consist of lessons which are new to the student.

2 8

26

When the term available is used, it should be taken for granted that

the lesson is only available or unavailable within its own slot. A lesson

is never considered outside its slot.

In one respect, Slot II is very different from Slot I. In Slot I,

the session selector offers the student only lessons from today's assigned

chapter in either Graphing, Whole Numbers, or Fractions. But in Slot II,

the session selector will add four alternative lesson choices to the

student's choice list from the other curricula. Bear in mind that the

Slot II choice lists, even with these additions, are composed primarily

of the assigned curriculum. If, for example, it is Friday and a student

is assigned to the Graphing Curriculum, then his Slot I choice lists will

consist entirely of Graphing lessons; however, his Slot II choice lists

will include two lessons each from the Fractions and Whole Numbers curricula,

in addition to whichever lessons would normally occur in the Slot II

Graphing CurricUlum. The alternative lessi-1 choices from Fractions and

Whole Numbers will be appropriate to whichever chapters the student is

.currently studying in those curricula.

As I have stated previously, the student is given a choice wherever

possible in MACSYS and this is the principal design goal which suggested

the device of alternative lesson choices. In this way, the teacher still

assigns curricula to the student, but the student has some capacity to

override that decision, by choosing the alternative lessons from the other

curricula. We are hopeful that this device of alternative lesson choices

contributes to skill maintenance in those curricula to which the student

is assigned infrequently, i.e., one or two days a week; however, there is

no empirical evidence to support that hope.

2 9

27

Group II

Time. The student session must last as close to thirty minutes as

possible. A session that is too short or too long is disruptive to the-

classroom routine. However, it is also disruptive to the student to

terminate his or her seision Abruptly.

The time attribute tells the session selector the expected time in

minutes for the average student to complete one segment of that lesson.

This estimate is further strengthened with the use of the student's own

time factor. The time factor is a ratio of two sums -- the sum of the

actual time in all activities the student has been in to the sum of the

estimated time for all those activities. hms a student who habitually

works slower than our estimates develops a time factor greater than one,

while a student who works faster develops a time factor smaller than one.

If the expected time for a lesson is eight minutes and the student has a

time factor of .75, the session selector nay offer that lesson to that

student only if the student has at least six minutes left in the current

slot or in the session.

This method of prediction is most useful where the segments of a

lesson are fixed and not subject to modification by the student or the

lesson environment. While this was true of lessons written early in the

term of the project, lessons have become increasingly less rigid, allowing

Students to exit at many points and making their own time checks to assure

that the student d.Des not run over the end of the session or a slot. For

these lessons, the time attribute is a minimum time, as opposed to an

expected time. Since the portion of these lessons the student studies is

no longer a fixed quantity against which we can measure our expectations,

the student's time factor for these lessons is defined as one.

3 0

28

Group III

Rank. The rahk attribute allows the curriculum author to create

varying ranks or levels of importance within each chapter. The session

selector uses the following rule as part of its determination of which

lessons the student is eligible for:

If "n" is the lowest non-zero rank ofait lessons
available in this chapter, then only lessons of
rank "n" and rank zero may be offered to the student.
(Rank zero lessons are always' treated as if they were
of rank "n," the current lowest rank, whatever that
may be.)

The rule prevents the session selector, for example, from offering

the student.a rank seven lesson while a rank five lesson is available;

if "n" equals five, then the student may only be offered lessons of rank

five and rank zero. Thus the more important lesson, the rank five lesson,

will be done before the less important rank seven lesson.

priority. After the lowest non-zero rank is determined, the priority

values of the available lessons at that rank are considered. The routing

procedure algorithm will attempt to offer the lessons whose priority values

are lowest, as it does with rank, but these lessons must also pa.:7 some

situational tests. For example, the adjusted time attribute for each

lesson to be offered must be less than or equal to the remaining slot

and session time. Thus if the lowest priority value is "p" but no lessons

at priority value "p" pass the situational tests, then the routing pro-

cedure will examine the lessons at priority "p4-1." This process terminates

when a priority value.is found at which one or more lessons pass the above

tests. All lessons found at this priority are included in the student's

choice list.

3 1

29

Thus the priority attribute provides a suggestion of order preference

to the session selector, but not a command, as does rank. A priority seven

lesson (of rank "n") may be offered before a priority five lesson (of

rank "n") if the situational factors prevent the priority five lesson from

being offered. But while a rank seven and a rank five lesson are both

available to a student, the rank seven lesson will never be offered.

Priority values zero and one have special meaning. When the student's

choice list consists of priority one lessons, the session selector does not

append the alternative lesson choices from the other two curricula to the

choice list. If the list has priority zero, the student is given no choice

at all. The requirement that the lesson fit into the remaining slot time

is waived and the student is sent directly to the lesson.

Examples Using Rank and Priority

Figure 3 shows the same curriculum tree as pictured in Figure 2 with

the rank of each lesson shown in parentheses underneath the lesson. The

student who begins a chapter with this tree will start with Lesson C,

because it has rank one and the other available lessons have rank ten.

(One could imagine that Lesson C is a pretest for the chapter and thus

needs to be done first.)

When Lesson C is finished, lessons A, B, and D will be offered to the

student. The session selector does not distinguish among them because all

have rank ten. The student will continue to be offered lessons A, B, and D

until he finishes one of them, say B. When B is finished, lessons E and F

become available, and the choice list offered to the student will now only

contain E and F, since they are of rank five, the current lowest rank among

the available lessons.

3 2

When both E and F are finished, then lessons L and M will be offered

le student. Note that while the student will finish one of the two

>ns first, say E, the student may not begin Lesson L, Lesson E's

ssor, because it has rank six, which is greater than the rank five

le still available Lesson F. Only when both of the rank five lessons

finished will the rank six lessons be offered the student. By the same

oning.i-only when both rank six lessons (L and M) are finished will the

on choice list contain lessons R and S, as only then will rank seven

e lowest rank of the available lessons.

Figure 3. A Curriculum Tree with Rank Assignments

When the student finishes his rank seven lessons, his choice list

price again consist of lessons A and D, since ten is now the lowest

33

31

rank of any available lesson. If the student finishes Lesson A first, then

the surmessors of A, lessons G and H, will be added to the student's choice

list, which would then include lessons G, H, and D.

However, now suppose that the student finishes or satisfies Lesson D,

and the successors of D, lessons I, J, and K, become available. The student's

choice list will then contain only lessons I, J, and K since their rank is

four. As the stuient finishes or satisfies lessons I, J, and K, the succes-

sors of these lessons, also rank four lessons, will be added to the choice

list. Finally, when the student finishes lessons T, U, V, and all the other

rank four lessons, the remaining rank ten lessons, G and H, will return to

the choice list.

Some of the controls I have described above could be effected using

only predecessor/successor relationships. (Lesson C, the rank one lesson,

could simply be made a predecessor of lessons A, B, and D thus assuring

that it would be done first.) But a little examination will show that,

even within a single tree, rank gives the curriculum designer capabilities

that predecessor/successor relationships alone can not provide.

The most important usage of rank and priority, however, involves con-

trol over the order of the student's access to lessons when there i8 more

than one tree in the chapter. To review briefly, a chapter imntains one

or more curriculum trees. The first, by convention, contains the lessons

which all students will see; the secondary trees, when they are present,

contain the lessons that only some students will see, i.e., lessons

for students whc fail checkups, lessons for students for whom the regular

material is too casy -- in short, lessons which are only appropriate for

some students, as determined by their performance. These secondary trees

are not automatically "activated" like the primary tree when a student

3 4

32

enters a chapter; instead, they are activated only when the curriculum

interface tells the session selector to activate them.

It should be clear that, since each tree is unconnected to all others,

predecessor/successor relationships can not be used to control the order

of access to lessons in two or more active trees. However, by carefully

assigning values for rank to all lessons involved, the order of access can

be controlled.

MAIN TREE TREE 2

ATTRIBUTES

TREE 3

LESSON RANK PRIORITY

C 2 1

RL1 1 1

RL2 1 1

RL3 1 1

RL4 1 1

RL5 1 1

RL6 1

ALL OTHERS > 2

Figure 4. A Chapter Containing Two Remedial Trees

35

33

Figure 4 shows an example of a chapter containing three trees: a main

tree and two trees with remedial lessons. Students begin 1:1,3 chapter in

the main tree. At some later time, the student satisfies the predecessors

of Lesson C, a checkup, and it becomes available. The next time the

session selector offers lessons to the student, only Lesson C will appear

on the student's choice list, since it has rank two and all the other lessons

in the main tree have ranks greater than two.

If the student's performance in the checkup meets some standard, then

the curriculum interface will tell the routing procedure that the checkup

is finished. Otherwise, the curriculum interface will tell the routing

procedure to activate Tree 2.

Since Lesson RL1, the first lesson in Tree 2, has rank one, it will

now become the sole lesson on the student's choice list. When RL1 is

finished, the student will then have only RL2 to work on, and similarly

for RL3.

When RL3 (rank one) is finished, Lesson C (rank two), the checkup,

will again appear on the student's choice list. Once again, the student's

performance will determine whether the checkup is finished or whether

further remediation is required in the form of Tree 3. If so, the student

would then have the three lessons in Tree 3 (rank one) to choose among until

he had finished them,at which time Lesson C (rank two) would reappear alone

on the student's choice list. Obviously, this pattern could be repeated

with further trees. The only limitations here are on the number of trees

(nine) and the number of lessons in a chapter (45).

There are many variations possible on this basic scenario. Figure 5

shows a slightly, revised module, with the lessons in Tree 3 (PL1, PL2, and

PL3) assigned a rank of zero and a priority of five. The priority of all

36

34

other lessons in the chapter is also specified as five. In this case, if

the student still needed help after the Tree 2 remedial lessons, Lesson C

could declare itself finished and call for Tree 3, containing PL1, PL2,

and PL3, three practice lessons. Since these lessons have rank zero and

the same priority as the rest of the lessons in the chapter, they will be

included on all future choice lists, when situational factors permit. In

this way, the student may attempt to maintain the skills which he has

recently acquired. The student who passes the checkup the first time or

with a higher grade may not need the practice, and the interface will not

order the practice lessons for him.

MAIN TREE TREE 2

ATTRIBUTES

TREE 3

LESSON RANK PRIORITY

C 2 1

RL1 1

RL2 1 1

RL3 1 1

PL1 0 5

PL2 0 5

PLO 0 5

ALL OTHERS >2 5

Figure 5. A Chapter Containing One Remedial and One Practice Tree

3 7

35

Group IV

Frequency. The vast majority of lessons in our curricula are not

designed to be finished by the student in one sitting. Rather, they are

designed to be-seen a little at a time, over several sessions. Frequency

is defined as the number of sessions the student must wait between the

session he chooses a lesson and the next session the session selector

may offer that lesson to him. A frequency of three, for example, means

that on the third session after the student last chose the lesson, he will

be eligible to see it again. A frequency of zero means the lesson may

appear on the student's choice list immediately after he returns from it:

Note that a frequency of "n" does not guarantee that a student will

see a lesson every "n" sessions; howeVer, it is a guarantee that the student

will see the lesson no sooner than "n" sessions.

Delay. Just as one might desire a delay between repeated executions

of a lesson (and use frequency for this purpose), it is possible that one

might wish a minimum number of sessions to pass between the time a lesson's

predecessors are satisfied and the first session that that lesson may be

offered to the student. This is particularly useful where a lesson has only

one predecessor, and it is desired that the student not do the predecessor

and its successor in the same session (due to their similarity, perhaps).

Delay is therefore defined as the number of sessions between the session a

lesson's predecessot.s are satisfied and the first session the session se-

lector may offer this lesson to the student. A delay of zero indicates the

lesson may be offered immediately after the predecessors are satisfied. As

with frequency, the number of sessions specified is a minimum number,

guaranteeing that the student will see the lesson no sooner than the specified

number of sessions after the lesson's predecessors have been satisfied.

3 8

36

If a student is ineligible for a lesson due to its frequency or delay,

we say the student is waiting for the lesson.

Forced. Occasionally, a student will avoid choosing a lesson, even

when it is offered to him session after session. The reasons for this may

be justified from the student's point of view, bvt it is possible that this

avoidance, if allowed to continue, will prevent the student from making

progress in the curriculum.

The forced attribute tells the session selector if and when the lesson

should be forced on the student. It is defined as the number of sessions

the lesson may be offered to the student without being chosen before the

session selector forces the student to go the lesson. If a lesson has a

forced attribute equal to ten, then if the lesson has been_offered for ten

sessions and the student has not chosen it, the session selector will force

the student to go to it in his next session in that chapter. A value of

zero for this attribute means the lesson should never be forced.

"Forcing" a lesson is implemented by setting the lesson's priority

value to one until the lesson is chosen. The effect of this is to exclude

alternative lesson choices and lower priority lessons.from the student's

choices, thus forcing him to choose the lesson he has been avoiding. The

lesson also plays a part in this "forcing" by turning off the student's

normal prerogative to exit from the lesson at his discretion. Here, the

lesson will decide when the student has done enough, and then allow him

to leave.

A few general remarks can be made about all the Group IV attributes.

We have used sessions as the unit of these attributes. For the student

studying a single curriculum, the word sessions may be replaced by "days"

3 9

37

since generally students are only allowed one session per day. This sub-

stitution may make the uses of these attributes somewhat clearer to those

whose unit of teaching is a day.

The situation is not so simple for those students studying more than

one curriculum. Here, the sessions referred to are sessions in the current

chapter of a curriculum. Sessions which intervene in other curricula are

not included in the count of sessions. Because a student in several curricula

may be assigned to a curriculum from one to four days a week, the relationship

between sessions and days no longer holds.

4 0

39

VI. THE DETERMINATION OF ELIGIBLE LESSONS

Exactly how the session selector determines which lessons the student

is eligible for in Section III of the session can now be described. This

process may be conceptualized as occurring in four stages, although the

actual coding combines stages one and two into one pass, and stages three

and fourinto another. Each stage is described in a decision table, Tables

3, 4, 5, and 6. The stages receive a list of lessons as input. By their

decision rules, the stages eliminate some lessons from the list. The list

is then passed as input to the next stage. The process terminates if the

list is empty at the end of a stage. An empty list signals the session

selector to begin the next slot or section of the session.

The input to the first stage is the list of all lessons in the chapter.

Lessons are eliminated if they do not belong in the current slot, if their

predecessors are not done, or if they have already been finished. Please

refer to Table 3.

Table 3. Stage I Decision Table

Conditions Rules

1. Does the lesson belong in the current slot?

2. Are the lesson's predecessors satisfied or finished?

3. Is the lesson finished?

Actions

1. Include the lesson for next stage input.

Note: All lessons in the chapter are input to Stage I.

4 1

4 0

The second stage finds the lowest non-zero rank in its input list.

All lessons of this rank and all zero rank lessons are included for the

third stage input. Please refer to Table 4.

Table 4. Stage II Decision Table

Conditions Rules 1 2 3

Y

-

N

Y

N

N

1. Does the lesson's rank = "r"?

2. Does the lesson's rank = 0?

Actions

1. Include the lesson for next stage input. Y Y N

Note: Determine the lowest non-zero rank of the lessons in the input Zist,
and caZZ that "r."

The third stage removes lessons which can not be offered because the

student must wait for them, as a result of their frequency or delay. It

also eliminates lessons which PLATO staff have indicated are temporarily

not operational. Furthermore, a lesson will be eliminated if the student's

remaining session time is insufficient for presentation of that lesson.

Please refer to Table 5.

Table 5. Stage III Decision Table

Conditions Rules

1. Is the student waiting for that lesson?

2. Is the lesson inhibited by PLATO staff?

3. Is there enough session time left for the lesson?

Actions

1. Include the lesson for next stage input.

1 2 3 4

4 2

41

The fourth and final stage of the egorithm prunes the list by choosing

the lessons with the lowest priority value which can pass the following

tests. The student's expected time in a lesson must not exceed the time

left in the current slot. Also, the lesson must already be in the computer

memory or there must be room in memory5 for the lesson. (The slot time test

is skipped if the priority of the lesson is zero.) Please refer to Table 6.

Conditions

Table 6. Stage IV Decision Table

Rules 1 2 3 4

1. Is "p" = 0 ?

2. Is there enough slot time left for the lesson?

3. Is the lesson in memory OR is there room for
the lesson in memory?

Actions

1. Include the lesson as output from this stage.

Note: Find the lowest priority value of the lessons in the input lists calZ
that "p." Test the Stage IV conditions for each lesson of priority
"p." If the output list has a non-zero length, this stage terminates.
Otherwise, determine the next higher priority value, say "q," set "p"
to "q," and retest the Stage IV conditions. Continue testing higher
priority values until the output list is non-empty, or the list is
eqpty and there is no higher priority value in the input list.

At this point, the decision process is complete. The list of lessons and

their priority value is examined by the session selector. If the priority

value of the lessons is two or greater, the entire list is offered to the

student, along with the appropriate alternative lesson choices. If the

priority of the list is one, it is offered without alternative lesson choices.

If the priority of the list is zero, the student is sent without choice to

the first lesson in the list.

4 3

43

VII. SUMMARY

MACSYS is an automated curriculum system 6esigned to deliver curricular

material in accordance with the classroom teaher's wishes but without the

need for more than a single interaction on the part of the teacher. Instruc-

tion is delivered by MACSYS in thirty minute sessions which are structured

to provide familiar material at the start of the session, ongoing curriculum

in the middle, and games at the end.

MACSYS offers a choice of three curricula to the teacher: Graphing,

Whole MuMbers, and Fractions. A curriculum consists of a linear list of

chapters. A chapter contains one or more curriculum trees. Students pro-

gress down a curriculum tree by satisfying or finishing lessons, as deter-

mined by the curriculum interface on the basis of student performance.

A lesson becomes available to the student if he has satisfied or finished

all its predecessors. Students choose their lessons from among the available

lessons. Which available lessons the session selector offers to the student

depends primarily on the attributes of the availAble lessons.

An attribute is a characteristic of a lesson. Seven attributes enter

directly into the determination of which available lessons the student is

eligible for. These include the time the lesson is expected to take, the

slot of the session it belongs in, the rank and priority of the lesson,

the minimum frequency between lesson executions, the delay before initial

execution, and the maximum length of time a student may go without choosing

the lesson. 4 4

45

VIII. NOTES

1. For those familiar with the PLATO system, "session selector" is simply
the name we have given to our router lesson. For those unfamiliar with
PLATO and router lessons, the most important characteristic of's router
lesson is that students are sent there by PLATO when they sign in and
each time they leave an instructional lesson; this characteristic of
our session selector is shown in Figure 1.

2. The only exception to this rule is that an unfinished session from one
day does not carry over to another. The first sign-in on a new day
starts a new session.

3. Over 90% of all completed sessions end in 25 to 35 minutes.

4. Some confusion is certain to be introduced by the use of the word "game."
Most often what we call a game is simply a lesson cast in the form of a
game, i.e., with a game board, some kind of competition, and the element
of chance. Beneath this obvious form, each game is a lesson, carefully
designed around some mathematical idea or theme. It is worth remarking
that some lessons in "Main Slot" also use the game form, but we do not
consider these as games since they are introducing new material. Lessons
in "Game Slot" only include mathematical ideas that the student should
already know.

5. At the present time, the PLATO system does not have enough computer
memory to allow each student to study a different lesson at the same time.
Thus a shortage of memory sometimes occurs during peak usage periods, if
there is not enough "sharing" of lessons. The consideration of whether
there is enough memory space for a lesson is therefore a pragmatic one
and not an integral feature of the determination of eligible lessons.

In general, MACSYS components and instructional lessons use far more
computer resources than the suggested PLATO system maxima -- up to
twice as much computing time, nearly three times as many disk accesses,
and two to three times as much memory space. While these figures can
be reduced some through various optimizing procedures, the fact is
that the uses to which MACSYS puts PLATO are more complex than most of
its other educational uses. However, since not every user group uses
all of the resources it is entitled to all of the time, relatively
"expensive" uses such as MACSYS can be supported by the PLATO system,
which distributes resources according to need whenever possible.

4 5

47

IX. REFERENCES

Cohen, Donald and Gerald Glynn. "Description of Graphing Strand
Lessons." CERL Report, June 1974.

Davis, Robert B. "Mathematics Session Structure," Unpublished
manuscript, 1973.

Davis, Robert B. "Observing Children's Mathematical Behavior as
a Foundation for Curriculum Planning." The Journal of Children's
Mathematical Behavior, I (Winter, 1971-72), 7-60.

Davis, Robert B. "What Classroom Role Should the PLATO Computer
System Play?" AFIPS Conference Proceedings, XLIII, 1974, 169-173.

Dugdale, Sharon and David Kibbey. "The Fractions Curriculum:
PLATO Elementary School Mathematics Project." CERL Report,
March 1975.

Risken, John and Ed Webber. "A Computer-based Curriculum Management
System." Educational Technology, XIV (September 1974), 38-41.

Seiler, Bonnie Anderson and Charles S. Weaver. "Description of PLATO
Whole Number Arithmetic Lessons." CERL Report, July 1976.

4 6

