AUTHOR	Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.
TITLE	Metrics for Food Services.
ISSTITUTION	Ohio State Oniv., Columbus. Center for Vocational Education.
SPONS AGENCY	Bureau of Occupational and Adult Education (DHEM/OE), Washington, D.C.
POB DATE	76
COMTBACT	OEC-0-74-9335
NOTE	61p.; Por related documents see CE 009 736-790
EDRS PRICE	MF-\$0.83 HC-\$3.50 plus postage.
DESCRIPTORS	*Curriculun; *Food Service; Instructional Haterials;
	Learning Activities; Measurement Instruments; *Metric
	System; Recreation; Secondary Education; Teaching
	Techniques; *Vocational Education

ABSTRACT
Designed to meet the job-related metric measurement needs of food services students, this instructional package is one of three for the hospitality and recreation occupations cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know the occupational terminology, measurement terms, and tools currently in use. Each of the five units in this instructional package contains performance objectives, learning activities, and supporting information in the form of text, exercises, and tables. In addition, suggested teaching techniques are included. At the back of the package are objective-based evaluation items, a page of ansvers to the exercises and tests, a list of metric materials needed for the activities, references, and a list of suppliers. The material is designed to accommodate a variety of individual teaching and learning styles, e.g., independent study, small group, or whole-class activity. Exercises are intended to facilitate experiences with measurement instruments, tools, and devices used in this occupation and job-related tasks of estimating and measuring. Unit I, a general introduction to the metric system of measurement, provides informal, hands-on experiences fcr the students. This unit enables students to become familiar with the basic metric units, their syabols, and measurement instruments; and to develop a set of mental references for metric values. The metric system of notation also is explained. Unit 2 provides the metric terms which are used in this occupation and gives experience with occupational measurement tasks. Unit 3 focuses on job-related metric equivalents and their relationships. Unit 4 provides experience with recognizing and using metric instruments and tools in occupational measurenent tasks. It also provides experience in comparing metric and customary measurement instruments. Unit 5 is designed to give students practice in converting customary and metric measurements, a skill considered useful during the transition to metric in each occupation. (HD)

Documents acquireci by ERIC include many informal unpublished materials not available from other sources. ERIC makes every effort to obtain the best copy available. Nevertheless, items of marginal reproducibility are often encountered and this affects the quality of the microfiche and hardcopy reproductions ERIC makes available via the ERIC Document Reproduction Service (EDRS). EDRS is not responsible for the quality of the original document. Reproductions supplied by EDRS are the best that can be made from the original.

metrics for metrics for for metrics for metrics metrics for metrics for formetrics for metrics metrics for metrics for for metrics for metrics metrics for metrics for for mexics for metrics metrics for food services for mı or metrics metrii netrics for

TEACHING AND LEARNING THE METRIC SYSTEM

This metric instructional package was designed to meet job-related metric measurement needs of students. To use this package students should already know the occupational terminology, measurement terms, and tools currently in use. These materials were prepared with the help of experienced vocational teachers, reviewed by experts, tested in classrooms in different parts of the United States, and revised before distribution.

Each of the five units of instruction contains performance objectives, learning activities, and supporting information in the form of text, exercises, and tables. In addition, suggested teaching techniques are included. At the back of this package are objective-based evaluation items, a page of answers to the exercises and tests, a list of metric materials needed for the activities, references, and a list of suppliers.

Classroom experiences with this instructional package suggest the following teaching-learning strategies:

1. Let the first experiences be informal to make learning the metric system fun.
2. Students learn better when metric units are compared to familiar objects. Everyone should learn to "think metric." Comparing metric units to customary units can be confusing.
3. Students will learn quickly to estimate and measure in metric units by "doing."
4. Students should have experience with measuring activities before getting too much information.
5. Move through the units in an order which emphasizes the simplicity of the metric system (e.g., length to area to volume).
6. Teach one concept at a time to avoid overwhelming students with too much material.

Unit 1 is a general introduction to the metric system of measurement which provides informal, hands-on experiences for the students. This unit enables students to become familiar with the basic metric units, their symbols, and measurement instruments: and to develop a set of mental references for metric values. The metric system of notation also is explained.

Unit 2 provides the metric terms which are used in this occupation and gives experience with occupational measurement tasks.

Unit 3 focuses on job-related metric equivalents and their relation. ships.

Unit 4 provides experience with recognizing and using metric instruments and ools in occupational measurement tasks. It also provides experience in comparing metric and customary measurement instruments.

Unit 5 is designed to give students practice in converting customary and metric measurements. Students should learn to "think metric" and avoid comparing customary and metric units. However, skill with conversion tables will be useful during the transition to metric in each occupation.

Using These Instructional Materials

This package was designed to help students learn a core of knowledge about the metric system which they will use on the job. The exercises facilitate experiences with measurement instruments, tools, and devices used in this occupation and job-related tasks of estumating and measuring.

This instructional package also was designed to accommodate a variety of individual teaching and learning styles. Teachers are encour aged to adapt these materials to their own classes. For example, the information sheets may be given to students for self-study. References may be used as supplemental resources. Exercises may be used in inde: pendent study, small groups, or whole-class activities. All of the materials can be expanded by the teacher.

Gloria S Cooper
Joel H. Magisos
Editors

[^0]
UNIT
 1

SUGGESTED TEACIIING SEQUENCE

1. These introductory exercises may require two or three teaching periods for all five areas of measurement.
2. Exercises should be followed in the order given to best show the relationship between length, area, and volume.
3. Assemble the metric measuring devices (rules, tapes, scales, thermometers, and measuring containers) and objects to be measured.*
4. Set up the equipment at work stations for use by the whole class or as individualized resource activities.
5. Have the students estimate, measure, and record using Exercises 1 through 5.
6. Present information on notation and make Table 1 available.
7. Follow up with group discussion of activities.

- Other school departments may have devices which can be used Metric suppliers are listed in the reference section.

OBJECTIVES

The student will demonstrate these skills for the Linear, Area, Volume or Capacity, Mass, and Temperature Exercises, using the metric terms and measurement devices listed here.

SKILLS		EXERCISES				
		Linear $(\mathrm{pp} .3 .4)$	$\begin{gathered} \text { Ares } \\ \text { (pp. } 5 \cdot 6 \text {) } \end{gathered}$	Volume or Capacity (pp. 7-8)	$\begin{gathered} \text { Маیs } \\ (\mathrm{pp.9} \cdot 10) \end{gathered}$	Temperature (p. 11)
1 2 3	Recognize and use the unit and its symbol for: Select, use, and read the appropriate measuring instruments for: State or show a physical reference for:	millimetre (mm) centimetre (cm) metre (m)	square centimetre (cm^{2}) square metre (m^{2})	cubic centimetre (cm^{3}) cubic metre (m^{\prime}) litre (1) millilitre (mI)	gram (R) kilogram (kg)	degree Celsius ("C)
1	Estimate within 25 g of the actual measure	height, width, or length of objects	the area of a given surface	capacity of containers	the mass of objects in grams and kilograms	the temperature of the air or a liquid
	Read correctly	metre stick, metric tape measure, and metric rulers		measurements on graduated volume measur. ing devices	a kilogram scale and a gram scale	A Celsius thermometer

RULES OF NOTATION

1. Symbols are not capitalized unless the unit is a proper name (mm not MM).
2. Symbols are not followed by periods (m not m .).
3. Symbols are not followed by an s for plurals (25 g not 25 gs).
4. A space separates the numerals from the unit symbols (41 not 41).
5. Spaces, not commas, are used to separate large numbers into groups of three digits (45271 km not $45,271 \mathrm{~km}$).
6. A zero precedes the decimal point if the number is less than one (0.52 g not .52 g).
7. Litre and metre can be spelled either with an -re or -er ending.

METRIC UNITS, SYMBOLS, AND REFERENTS

Quantity	Metric Unit	Symbol	Useful Referents
Length	millimetre	mm	Thickness of dime or paper clip wire
	centimetre	cm	Width of paper clip
	metre	m	Height of door about 2 m
	kilometre	km	12 -minute walking distance
Area	square centimetre	cm^{2}	Area of this space
	square metre	m^{2}	Area of card table top
	hectare	ha	Football field including sidelines and end zones
Volume and Capacity	millilitre	ml	Teaspoon is 5 ml
	litre	1	A little more than 1 quart
	cubic centimetre	cm^{3}	Volume of this container
	cubic metre	m^{3}	A little more than a cubic yard
Mas	milligram	mg	Apple seed about 10 mg . grain of salt. 1 mg
	gram	8	Nickel about 5 g
	kilogram *	h:	Weister's Collegrate Dictionary
	metric ton (1 000 kilograms)	t	Volkswagen Beetle

METRIC PREFIXES

Multiples and Submultiples	Prefixes	Symbols
$1000000=10^{6}$	mega (mĕg à	11
$1000=10^{3}$	kilo (kil ${ }^{\text {o }}$)	k
$100=10^{2}$	hecto (hĕk'tō)	h
$10=10^{1}$	deka (dĕk'a)	da
Base Unit $1=10^{0}$		
$0.1=10^{-1}$	deci (dess i)	d
$0.01=10^{-2}$	centi (sern'ti)	c
$0.001=10^{-3}$	milli (miliou)	m
$0.000001=10^{\text {-t }}$	micro (mi'kro)	μ

Table 1-b

LINEAR MEASUREMENT ACTIVITIES

Metre, Centimetre, Millimetre

I. THE METRE (m)
A. DEVEI.OP A FFELING FOR THE SIZE OF A METRE

1. Pick up one of the metre sticks and stand it up on the floor. Hold it in place with one hand. Walk around the stick. Now stand next to the stick. With your other hand, touch yourself where the top of the metre stick comes on you.

TH. II IS HOW HIGH A METRE IS!
2. Hold one arm out straight at shoulder height. Put the metre stick along this arm until the end hits the and of your fingers. Where is the other end of the metre stick? Touch yourself at that end.

TH.XT IS HOW LONG A METRRE IS:
3. Choose a partner to stand at your side. Move apart so that you can put one end of a metre stick on your partner's shoulder and the other end on your shoulder. Look at the space between you.

THAT IS THE WIDTH OF A METRE!

B. DEVELOP YOUR ABILITY TO ESTIMATE IN METRES

Now you will improve your ability to estimate in metres.
Remember where the length and ineight of a metre was on your body.

For each of the following items:
Estimate the size of the items and write your estimate in the ESTIMLATE column. Measure the size with your metre stick and write the answer in the MEASLREMENT column.

Decide how close your estimate was to the actual measure. If your estimate was within $25^{\circ} \%$ of the actual measure you are a "Metric Marvel."

Estimate	Measurement (m)
(m)	How Close Were You?

1. Height of door knob from floor.
2. Height of door.
3. Length of table.
4. Width of table.
5. Length of wall of this room.
6. Distance from you to wall.

II. THE CENTIMETRE (cm)

There are 100 centimetrec in one metre. If there are 4 metres and 3 centimetres, you write $403 \mathrm{~cm} / 1.4 \times 100 \mathrm{~cm})+3 \mathrm{~cm}=400 \mathrm{~cm}$ +3 cm .
A. DETELOP A FEELING FOR THE SIZE OF A CENTINETRE

1. Hold the metric ruler against the width of your thumbnail. How wide is it? \qquad cm
2. Measure your thumb from the first joint to the ead.
\qquad cm
3. L'se the metric ruler to find the width of your palm.
\qquad cm
4. Measure your index or pointing finger. How long is it?
\qquad cm
5. Measure your wrist with a tape measure. What is the distance around it? \qquad cm
6. L'se the tape measure to find your waist size. \qquad cm
B. DEvELOP YOL'R ABILITY TO ESTIMATE IN CENTMETRES

You are now ready to estimate in centimetres. For each of the following items, follow the procedures used for estimating in metres.

1. Length of a paper clip.
2. Diameter (width) of a coin.
3. Width of a postage stamp.
4. Length of a pencil.
5. Width of a sheet of paper.

THE CENTER FOR VOCATIONAL EDUCATION
,
III. THE MOLLMETRE (mm)

There are 10 millimetres in one centimetre When a measurement is 2 centimetres and 5 millimetres, you write $25 \mathrm{~mm}(12 \times 10 \mathrm{~mm})$ $+5 \mathrm{~mm}=20 \mathrm{~mm}+5 \mathrm{~mm}$]. There are 1000 mm in 1 m .
A. DEvELOP A FEFLING FOR THE SIZE OF . I MLLIMETRE

Using a ruler marked in millimetres, measure:

1. Thicknoss of a paper clip wire. _ mm
2. Thickness of your fingernail. $\quad \mathrm{mm}$
3. Width of your fingernail. $\quad \mathrm{mm}$
4. Diameter (width) of a coin. $\quad \mathrm{mm}$
5. Diameter (thickness) of your pencil. __ mm
6. Width of a postage stamp. $\quad \mathrm{mm}$
B. DEVELOP YOL'R ABILITY TO ESTIMLATE IN MLLIMETRES

You are now ready to estimate in millimetres. For each of the following items, follow the procedures used for estimating in metres.

Estimate	Measurement (mm)	How Close (mm)

1. Thickness of a nickel
2. Diameter (thick:ess) of a bolt.
3. Length of a bolt.
4. Width of a sheet of paper.
5. Thickness of a board or desk top.
6. Thickness of a button.

AREA MEASUREMENT ACTIVITIES

Square Centimetre，Square Metre

IIIEN YOO DESCRIBE THE AREK OF SOMETHING．YOU ARE S．JY゙NG HOW MANY SQでARESOF A GIVEN SIZE IT TAKFS TO （OUER THE SLRFA（＇E．

I．THE SQUARE CENTIMETRE $\left(\mathrm{cm}^{2}\right)$

A．DEVELOP A FEELING FOR A SQUARE CENTIMETRE
1．Take a clear plastic grid，or use the grid on page 6.
2．．Measure the length and width of one of these small squares with a centimetre ruler．

THAT IS ONE SQLARE CENTIMETRE！

3．Place your fingernail over the grid．About how many squares does it take to cover your fingernail？
\qquad cm^{2}
4．Place a coin over the grid．About how many squares does it take to cover the coin？ \qquad cm^{2}

5．Place a postage stamp over the grid．Avout how many squares does it take to cover the postage stamp？
\qquad
6．Place an envelope over the grid．About how many squares does it take to cover the envelope？
\qquad
7．Measure the length and width of the envelope in centi－ metres．Length \qquad cm ；width \qquad cm．
Multiply to find the area in square centimetres．
\qquad ＿cm x \qquad $\mathrm{cm}=$ \qquad cm^{2} ．How
close are the answers you have in 6．and in 7．？

B．DEVELOP YOUR ABILITY TO ESTIMATE IN SQUARE CENTIMETRES

You are now ready to develop your ability to estimate in square centimetres．

Remember the size of a square centimetre．For each of the following items，follow the procedures used for estimating in metres．

How Close
Estimate

$\left(\mathrm{cm}^{2}\right)$ | Measurement |
| :---: |
| $\left(\mathrm{cm}^{2}\right)$ |\quad Were You？

1．Index card．
2．Book cover．
3．Photograph．
4．Window pane or desk top．

II．THE SQUARE METRE（ m^{2} ）

A．DEVELOP A FEELING FOR A SQUARE METRE

1．Tape four metre sticks together to make a square which is one metre long and one metre wide．
2．Hold the square up with one side on the floor to see how big it is．
3．Place the square on the floor in a corner．Step back and look．See how much floor space it covers．
4．Place the square over a table top or desk to see how much space it covers．
5．Place the square against the bottom of a door．See how much of the door it covers．How many squares would it take to cover the door？ \qquad m^{2}
THIS IS HOW BIG A SQUARE METRE IS！

Exercise 2
（continued on next page）
B. DEVELOP YOUR ABILITY TO ESTIMATE IN SQUARE METRES

You are now ready to estimate in square metres. Follow the procedures used for estimating in metres.

1. Door.
2. Full sheet of newspaper.

3. Chalkboard or bulletin board.
4. Floor.
5. Wall.
6. Wall chart or poster.
7. Side of file cabinet.

											\mid

CENTIMETRE GRID

VOLUME MEASUREMENT A"TIVITIES

Cubic Centimetre, Litre. Millilitre, Cubic Metre

I. IHE ('TBIC (ENTIMETRE $\left(\mathrm{cm}^{\prime}\right)$

1. DEVELOP AFERLAN(FOR HHECLBLCCENHMETRE
2. Pick up a rolored plastic ruber. Vhature its length. height. and wath in cenometres.

3. Find the w! burn of a plate lite bos.
a. Place a ROW of cobers agamst the bottom of one side of the bos. How many cutere fit in the row? \qquad
h Place an ther ROW of cubes against an adjoining side of the bos. How many rows fit msde the box
to make obte layer of cubte? \qquad
How many "uhes in rach row"? \qquad
c How many rubes in the laver in the bottom of the hos: \qquad
4. Stand a RoW of cubes up agamet the side of the box. How many L.IYERS would fit in the hox? \qquad
How many "ube' in eath layer" \qquad
How many cubes fit in the box altengether? \qquad
[HE VOL. ME OF THE BOX K \qquad Cl'BIC
(ENTIMETRES.
d. Measure the length. Width, and hemght of the box in centimetres. Length \qquad (m) width \qquad cm ;
height \qquad (m . Vultiply theser numbers to find the volume in cuble centimetres.
\qquad (m x \qquad cm a \qquad $\mathrm{cm}=$ \qquad cm^{3}.
Are the answers the same in r.and d.?
B. DEVELOP YOLR ABILITY TO ESTIMIATE IN CLBIC CENTIMETRES

You are now ready to develop your ability to estimate in cubic centimetres.

Remember the size of a cubic centimetre. For each of the following items, use the procedures for estimating in metres.

How Close

$\underset{\left(\mathrm{cm}^{3}\right)}{\text { Estimate }}$| Measurement |
| :---: |
| $\left(\mathrm{cm}^{3}\right)$ | Were You?

1. Index card file
box.
2. Freezer container. \qquad —
3. Paper clip box.
4. Box of staples.
II. THE LITRE (1)
A. DEVELOP A FEELING FOR A LITRF.
5. Take a one litre beaker and fill if with water.
6. Pour the water into paper cups, filling each as full as you usually do. How many cups do you fill?

THAT IS HOW MUCH IS IN ONF LITRE:
3. Fill the litre container with rice.

THAT IS HOW MLCH IT TAKI心 TO FILL A ONE LITRE CONTTAINER!

B. DEVELOP YOL'R ABILITY TO ESTIMATE IN LITRES

You are now ready to develop your ability to estimate in litres. To write two and one-half litres, you write 2.5 l , or 2.5 litres. To write one-half litre, you write 0.5 l . or 0.5 litre. To write two and three-fourths litres, you write 2.751 , or 2.75 litres.

For each of the following items, use the procedures for estimating in metres.

Estimate	Measurement		
(1)	(1)		How Close
:---			
Were You?			

1. Medium-size freezer container.
2. Large freezer container.
3. Small freezer container.
4. Bottle or jug.
———— \qquad

III. THE MILLILITRE (ml)

There are 1000 millilitres in one litre. $1000 \mathrm{ml}=1$ litre. Half a litre is 500 millilitres, or 0.5 litre $=500 \mathrm{ml}$.
A. DETELOP A FEELING FOR A MILLILITRE

1. Examine a centimetre cube. Anything which holds $1 \mathrm{~cm}^{\prime}$ hold. 1 ml .
2. Fill a 1 millilitre measuring spoon with rice. Empty the spoon into your hand. Carefully pour the rice into a small pile on a sheet of paper.
THITT IS HOW MCH ONE MILLILITRE IS!
3 Fill the 5 ml spoon with rice. Pour the rice into another pile on the sheet of paper. THAT IS 5 MILLILITRES. OR ONE TEASPOON:
3. Fill the 15 ml spoon with rice. Pour the rice into a third pile on the paper. ThAT IS 15 MILLILITRES, OR ONE TABLESPOON!
B. DEVELOP YOL'R ABILITY TO ESTIMATE IN MILLILITRES

You are now ready to estimate in millilitres. Follow the procedures used for estimating metres.

How Close

1. Small juice can.
2. Paper cup or tea cup.
3. Soft drink can.
4. Bottle.

IV. THE CUBIC METRE $\left(\mathrm{m}^{3}\right)$

A. DEVFLOP A FEELING FOR A CLBIC METRE

1. Place a or , metre square on the floor next to the wall.
2. Measure a metre L'P the wall.
3. Picture a box that would fit into that space. THAT IS THE VOLL ME OF ONE CUBIC METRE!
B. DEVELOP YOLR ABILITY TO ESTIMATE IN ('LBIC METRES

For each of the following items. follow the estumating procedures used before.

1. Office desk.
2. File cabmet.
3. Small room

Exercise 3
THE CENTER FOR VOCATIONAL EDUCATION

MASS (WEIGHT) MEASUREMENT ACTIVITIES

Kilogram, Cram

The mass of an object is a measure of the amount of matter in the object. This amount is always the same unless you add or subtract some matter from the object. Weight is the term that most people use when they mean mass. The weight of an ohject is affected by gravity; the mass of an object is not. For example, the weight of a person on earth might he 120 pounds that same person's weight on the moon would be 20 pounds. This difference is because the pull of gravity on the moon :s less than the pull of gravity on earth. A person's mass on the earth and on the moon would be the same. The metric system does not measure weight-it measures mass. We will use the term mass here

The symbol for gram is g.
The symbol for kilogram is kg.
There are 1000 grams in one kilogram, or $1000 \mathrm{~g}=1 \mathrm{~kg}$.
Half a kilogram can be written as 500 g ,or $0 . \overline{\mathrm{z}} \mathrm{kg}$.
. I quarter of a kilogram can be written as 250 g ,or 0.25 kg .
Two and three-fourths kilograms is written as 2.75 kg .
I. TIIE KILOGRAM (kg)

DEAELOP A FEELING FOR THE MASS OF A KILOGRAM
Using a balance or scale, find the mass of the items on the table. Before you find the mass, notice how heavy the object "feels" and compare it to the reading on the scale or balance.

. Mass (kg)			
	1 kilogram box.		
2.	Textbook.		
3.	Bag of sugar.		
4.	Package of paper.		
5.	Your own mass.		
B.	DEVELOP YOUR ABILITY TO ESTIMATE IN KILOGRAMS		
	For the following items ESTIMATE the mass of the object in kilograms. then use the scale or balance to find the exact mass of the object. Write the exact mass in the MEASURENENT column. Determine how close your estimate is:		
	Estimate (kg)	Measurement (kg)	How Close Were You?
1.	Bag of rice.		
2.	Bag of nails.		
3.	Large purse or briefcase.		
4.	Another person.		
5.	A few books.		

1. 1 kilogram box.
2. Textbook.
3. Bag of sugar.
4. Package of paper.
5. Your own mass.

B. DEVELOP YOUR ABILITY TO ESTIMATE IN KILOGRAMS

For the following items ESTIMATE the mass of the object in kilograms. then use the scale or balance to find the exact mass of the object. Write the exact mass in the MEASUREMENT column. Determine how close your estimate is:

How Close
Estimate Measurement Were You?

1. Bag of rice.
2. Bag of nails.

Large purse or briefcase.
5. A few books.
II. THE GRAM (g)

A. DEVELOP A FEELING FOR A GR.M

1. Take a colored plastic cube. Hold it in your hand. Shake the cube in your palm as if shaking dice. Feel the pressure on your hand when the cube is in motion, then when it is not in motion.
THAT IS HOW HEAVY A GRAMIS!
2. Take a second cube and attach it to the first. Shake the cubes in first one hand and then the other hand; rest the cubes near the tips of your fingers, moving your hand up and down.
THAT IS THE MLASS OF TWO GRAMS!
3. Take five cubes in one hand and shake them around.

THAT IS THE MASS OF FIVE GRAMS!

B. DEVELOP YOUR ABILITY TO ESTIMATE IN GRAMS

You are now ready to improve your ability to estimate in grams. Remember how heavy the 1 gram cube is, how heavy the two gram cubes are, and how heavy the five gram cubes are. For each of the following items, follow the procedures used for estimating in kilograms.

How Close
Estimate Measurement Were You? (g)

1. Two thumbtacks.
2. Pencil.
3. Two-page letter and envelope.
4. Nickel.
5. Apple.
6. Package of margarine.

TEMPERATURE MEASUREMENT ACTIVITIES

Degree Celsius

I. DEGREE CELSIUS (${ }^{\circ} \mathrm{C}$)

Degree Celsius (${ }^{\circ} \mathrm{C}$) is the metric measure for temperature.
A. DEVELOP A FEELING FOR DEGREE CELSIUS

Take a Celsius thermometer. Look at the marks on it.

1. Find 0 degrees.

WATER FREEZES AT ZERO DEGREES CELSIUS $\left(0^{\circ} \mathrm{C}\right)$ WATER BOILS AT 100 DEGREES CELSIUS $\left(100^{\circ} \mathrm{C}\right)$
2. Find the temperature of the room. \qquad ${ }^{\circ} \mathrm{C}$. Is the room cool, warm, or about right?
3. Put some hot wa.er from the faucet into a container. Find the temperature. \qquad ${ }^{\circ} \mathrm{C}$. Dip your finger quickly in and out of the water. Is the water very hot, hot, or just warm?
4. Put some cold water in a container with a thermometer. Find the temperature. \qquad ${ }^{\circ} \mathrm{C}$. Dip your finger into the water. Is it cool, cold, or very cold?
5. Bend your arm with the inside of your elbow around the bottom of the thermometer. After about three minutes find the temperature. \qquad ${ }^{\circ} \mathrm{C}$. Your skin temperature is not as high as your body temperature.

NORMAL BODY TEMPERATURE IS 37 DEGREES CELSIUS $\left(37^{\circ} \mathrm{C}\right)$.

A FEVER IS $39^{\circ} \mathrm{C}$.
A VERY HIGH FEVER IS $40^{\circ} \mathrm{C}$.
B. DEVELOP YOUR ABILITY TO ESTIMLATE IN DEGREES CELSIUS

For each item, ESTIMATE and write down how many degrees Celsius you think it is. Then measure and write the MEASUREMENT. See how close your estimates and actual measurements are.

How Close
Estimate Measurement Were You?

1. Mix some hot and cold water in a container. Dip your finger into the water.
2. Pour out some of the water. Add some hot water. Dip your finger quickly into the water.
3. Outdoor temperature.
4. Sunny window sill.
5. Mix of ice and water.
6. Temperature at floor.
7. Têmperature at ceiling.

UNIT

OBJFCTIVES

The student will recognize and use the metric terms, units, and symbols used in this occupation.

- Given a metric unit, state its use in this occupation.
- Given a measurement task in this occupation, select the appropriate metric unit and measurement tool.

stggested teaching sequence

1. Issemble metric measurement tools (rules. tapes, scales, thermometers, etc.) and objects related to this occupation.
2. Discuss with students how to read the tools.
3. Present and have students discuss Information Sheet 2 and Table 2.
4. Have students learn occupationally. related metric measurements by completing Exercises 6 and 7.
5. Test performance by using Section A of "'Testing Metric Abilities."

METRICS IN THIS OCCUPATION

Changeover to the metric system is under way. Large corporations are already using metric measurement to compete in the world market. The metric system has been used in various parts of industrial and scientific communities for years. Legislation, passed in 1975, authorizes an orderly transition to use of the metric system. As businesses and industries make this metric changeover, emphoyees will need to use metric measurement in job-related tasks.

Table 2 lists those metric terms which are most commonly used in this occupation. These terms are replacing the measurement units used currently. What kinds of jobrelated tasks use measurement? Think of the many different kinds of measurements you now make and use Table 2 to discuss the metric terms which replace them. See if you can add to the list of uses beside each metric term.

Metric Units for Food Service

Quantity	Unit	Symbol	Use
Length	millimetre	mm	Thickness of sliced meat.
	centimetre	cm	Dimensions of oven, pans, grill, storage areas, steamers, rolls; portion size (slice of roast beef, baked vegetable serving); utensil size, clothing size.
	metre	m	Dimensions of kitchen or large equipment; length of wrapping paper.
Area	square centimetre	cm^{2}	Work surfaces; equipment surfaces; storage areas; size of disposable containers and paper products.
	square metre	m^{2}	Floor area.
Volume/Capacity	millilitre	ml	Liquid and dry ingredients; cleaners, sanitizers; oils; fresh, frozen, canned, dehydrated foods; refrigeration and dry storage containers; size of disposable cups, bowls, and containers.
	litre	1	Cleaning equipment (bucket); preparation and serving bowls; size of disposable cups, bowls, and containers; refrigeration and dry storage containers; refrigerator or freezer size.*
	cubic metre	m^{3}	Storage space.
Mass	gram	g	Measuring, ordering, and receiving dry ingredients; fresh, frozen, canned, dehydrated foods, and supplies. Determining portion and product size (e.g., mass of pork chops, steaks, roasts, stew).
	metric ton	t	Ordering and receiving quantity purchases of dry ingredients; fresh, frozen, canned, dehydrated foods, and supplies.
Temperature	degree Celsius	${ }^{\mathbf{o}} \mathrm{C}$	Room, dry storage, temperatures of refrigerator, freezer, and hot holding container; equipment operating temperatures (e.g., oven, fryer, grill).
Dilutions	millilitres per litre	$\mathrm{ml} / 1$	Cleaners, sanitizers, mixing fruit juices.
	grams per litre	g/	Adding dry concentrates to liquids (cleaners or beverages).
Application Rates Dry or Granular Liquid	grams per square metre	$\mathrm{g} / \mathrm{m}^{2}$	Pesticides, cleaning powder.
	millilitres per square metre	$\mathrm{ml} / \mathrm{m}^{2}$	Pesticides, cleaning solutions.
Food Energy	kilojoulé	kJ	Measuring or stating the energy value of foods, energy requirements of people, energy content of diets (100 -calorie apple, about 400 kJ).
	megajoule	MJ	Calculating or reporting total daily, weekly, or annual intake.
	kilojoules per gram	kJ/g	Calculating sizes of portions and servings; counting food energy value intake; planning menus; making purchasing decisions.
	kilojoules per kilogram	kJ/kg	
	kilojoules per day	kJ/d	Energy content of diet or energy requirements ($2000 \cdot \mathrm{calorie}$ diet, about $8000 \mathrm{~kJ} / \mathrm{d}$).
	megajoules per day	MJ/d	

*Refrigerator or freezer capacity could be given in litres or cubic metres. A final decision has not been made by U.S. manufacturers. Obtain current information from the Association of Home Appliance Manufacturers, 20 North Wacker Drive, Chicago, IL 60606.

Table 2

TRYING OUT METRIC UNITS

To give you practice with metric units, first estimate the measurements of the items below. Write down your best guess next to the item. Then actually measure the item and write down your answers using the correct metric symbols. The more you practice, the easier it will be.

	Estimate	Actual
Length 1. Arm length		
2. Thickness of a piece of cake		
3. Your height		
4. Serving spoon		
5. Chef's knife		
6. Desk or table		
7. Length of work station		
8. Sheet pan		
9. Wrapping paper width		
Area 10. Desk top		
11. Work station		
12. Storage for china		
13. Dining room		
11. Roasting or baking pan		
Volume Capacity 15. Iced tea glass		

SERVING FOOD WITH METRICS

It is important to know what metric measurement to use. Show what measurement to use in the following situations.	
1. Mass of one tablespoon of sugar	
2. Capacity of a water glass	
3. Mass of a bag of flour	
4. Capacity of a large jug of liquid floor cleaner	
5. Oven temperature	
6. Table height	
7. Volume of a large bulk container of ice cream	
8. Mass of a pork chop	
9. Diameter of a pie	
10. Leugth of a roasting pan	
11. Size of a napkin	
12. Volume of a large jar of mayonnaise	
13. Application rate of liquid cleaner	
14. Diluting fruit juice concentrate	
15. Mixing liquid cleaner with water	
16. Determine the mass of a single portion of cut sirloin	
17. Food energy value of a serving of vegetables	

18.	Size of disposable cups	
19.	Length of roll of wrapping paper	
20.	Area of banquet room	
21.	Ordering soft drink concentrate	
22.	Thickness of sliced cheese	
23.	Thickness of a steak	
24.	Mass of a container of ice cream	
25.	Serving temperature of foods	

UNIT
 3

OBJECTIVE

The student will recognize and use metric equivalents.

- Given a metric unit, state an equivalent in a larger or smaller metric unit.

SUGGESTED TEACHING SEQUENCE

1. Make available the Information Sheets ($3-8$) and the associated Exercises (8-14), one at a time.
2. As soon as you have presented the Information, have the students complete each Exercise.
3. Check their answers on the page titled ANSWERS TO EXERCISES AND TEST.
4. Test performance by using Section B of "Testing Metric Abilities."

METRIC-METRIC EQUIVALENTS

Centimetres and Millimetres

Look at the picture of the nail next to the ruler. The nail is 57 mm long. This is $5 \mathrm{~cm}+7 \mathrm{~mm}$. There are 10 mm in each cm , so $1 \mathrm{~mm}=0.1 \mathrm{~cm}$ (one-tenth of a centimetre). This means that
$7 \mathrm{~mm}=0.7 \mathrm{~cm}$, so $57 \mathrm{~mm}=5 \mathrm{~cm}+7 \mathrm{~mm}$
$=5 \mathrm{~cm}+0.7 \mathrm{~cm}$
$=5.7 \mathrm{~cm}$. Therefore 57 mm is the same as 5.7 cm .
Now measure the paper clip. It is 34 mm . This is the same as $3 \mathrm{~cm}+$ \qquad mm. Since each millimetre is 0.1 cm (one-tenth of a centimetre), $4 \mathrm{~mm}=$ \qquad cm . So, the paper clip is $34 \mathrm{~mm}=3 \mathrm{~cm}+4 \mathrm{~mm}$
$=3 \mathrm{~cm}+0.4 \mathrm{~cm}$
$=3.4 \mathrm{~cm}$. This means that 34 mm is the same as 3.4 cm .

Information Sheet 3

Now you try some.
a) $26 \mathrm{~mm}=$ \qquad cm
b) $583 \mathrm{~mm}=$ \qquad cm
c) $94 \mathrm{~mm}=$ \qquad cm
d) $680 \mathrm{~mm}=$ \qquad cm
e) $132 \mathrm{~mm}=$ \qquad cm
f) $802 \mathrm{~mm}=$ \qquad cm
g) 1400 mm \qquad cm
h) 2307 mm \qquad cm

Exercise 8

Metres, Centimetres, and Millimetres

There are 100 centimetres in one metre. Thus,

$$
\begin{aligned}
2 \mathrm{~m} & =2 \times 100 \mathrm{~cm}=200 \mathrm{~cm}, \\
3 \mathrm{~m} & =3 \times 100 \mathrm{~cm}=300 \mathrm{~cm}, \\
8 \mathrm{~m} & =8 \times 100 \mathrm{~cm}=800 \mathrm{~cm}, \\
36 \mathrm{~m} & =36 \times 100 \mathrm{~cm}=3600 \mathrm{~cm}
\end{aligned}
$$

There are 1000 millimetres in one metre, so

$$
\begin{aligned}
& 2 \mathrm{~m}=2 \times 1000 \mathrm{~mm}=2000 \mathrm{~mm} \\
& 3 \mathrm{~m}=3 \times 1000 \mathrm{~mm}=3000 \mathrm{~mm} \\
& 6 \mathrm{~m}=6 \times 1000 \mathrm{~mm}=6000 \mathrm{~mm}
\end{aligned}
$$

From your work with decimals you should know that
one-half of a metre can be written 0.5 m (five-tenths of a metre), one-fourth of a centimetre can be written 0.25 cm
(twenty-five hundredths of a centimetre).
This means that if you want to change three-fourths of a metre to millimetres, you would multiply by 1000 . So
$0.75 \mathrm{~m}=0.75 \times 1000 \mathrm{~mm}$
$=\frac{75}{100} \times 1000 \mathrm{~mm}$
$=75 \times \frac{1000}{100} \mathrm{~mm}$
$=75 \times 10 \mathrm{~mm}$
$=750 \mathrm{~mm}$ This means that $0.75 \mathrm{~m}=750 \mathrm{~mm}$
Information Sheet 4
Fill in the following chart.

metre \mathbf{m}	centimetre $\mathbf{c m}$	millimetre $\mathbf{m m}$
1	100	1000
2	200	
3		
9		
		5000
71		
0.8	80	
0.6	2.5	600
	639	118

Millilitres to Litres

There are 1000 millilitres in one litre. This means that
2000 millilitres is the same as 2 litres,
3000 ml is the same as $\mathbf{3}$ litres.
$\$ 000 \mathrm{ml}$ is the same as + litres.
12000 ml is the same as 12 litres.
Since there are 1000 millilitres in each litre, one way to change milli litres to litres is to divide by 1000 . For example,

And, as a final example,
$28000 \mathrm{ml}=\frac{28000}{1000}$ litres $=28$ litres.
What if something holds 500 ml ? How many litres is this? This is worked the same way.
$500 \mathrm{ml}=\frac{500}{1000}$ litre $=0.5$ litre (five-tenths of a litre). So 500 ml
is the same as one-half (0.5) of a litre.
Change 57 millilitres to litres.
$57 \mathrm{ml}=\frac{57}{1000}$ litre $=0.057$ litre (fifty \cdot seven thousandths of a
litre).

Information Sheet 5
Now you try some. Complete the following chart.

millilitres (ml)	litres (1)
3000	3
6000	8
11000	23
	0.3
300	0.9
700	0.47
250	
275	

Litres to Millilitres

What do you do if you need to change litres to millilitres? Remember, there are 1000 millilitres in one litre. or 1 litre $=1000 \mathrm{ml}$.

So,

2	htres = 2	$\times 1000 \mathrm{ml}$	(1)
7	litres $=$	$\times 1000 \mathrm{ml}$	7000 ml .
13	litres $=10$	$\times 1000 \mathrm{ml}$	000
	litre	$\times 1000 \mathrm{ml}$	650 n

Information Sheet 6
Now you try some. Complete the following chart.

litres 1	millilitres ml
8	8000
5	
46	32000
0.4	
0.53	
	180

Grams to Kilograms

There are 1000 grams in one kilogram. This means that
2000 grams is the same as 2 kilograms,
5000 g is the same as 5 kg ,
700 g is the same as 0.7 kg , and so on.

To change from grams to kilograms, you use the same procedure for changing from millilitres to litres.

Try the following ones.
Information Sheet 7

grams g	kilograms kg
4000	
9000	
23000	
300	8
275	

Kilograms to Grams

To change kilograms to grams, you multiply by 1000.

$$
\begin{array}{r}
1 \mathrm{~kg}=1 \quad \times 1000 \mathrm{~g}=1000 \mathrm{~g} \\
2.3 \mathrm{~kg}=23 \times 1000 \mathrm{~g}=23000 \mathrm{~g}, \\
0.75 \mathrm{~kg}=10.75 \times 1000 \mathrm{~g}=750 \mathrm{~g} .
\end{array}
$$

Information Sheet 8
Complete the following chart.

kilograms $\mathbf{k g}$	grams g
7	7000
11	
	25000
0.4	
0.63	
	175

Changing Units at Work

Some of the things you use in this occupation may be measured in different metric units. Practice changing each of the following to metric equivalents by completing these statements.
a) 500 cm of wrapping paper is m

\qquad
1
b) 150 ml of coffee is
c) 20 cm sauce pan is \qquad mm
d) 2500 g of sugar is mm
e) 0.24 litre of milk is kg
f) 0.4 kg of salt is ml
g) 0.5 litre concentrate is g
h) 2 m length of wrapping paper is mmmli) 500 g salt is- 500 g salt iskgj) 500 ml disposable cup is
\qquad
k) 5 cm baked roll is \qquad mm
l $) 2400 \mathrm{~mm}$ work table length is cm
m) 20 kg of dishwasher detergent is g
$\mathrm{n}) 5 \mathrm{~kg}$ of flour is

\qquad
g

4

OBJECTIVE

The student will recognize and use instruments, tools, and devices for measurement tasks in this occupation.

- Given metric and Customary tools, instrument, or devices, differentiate between metric and Customary.
- Given a measurement task, select and use an appropriate tool, instrument or device.
- Given a metric measurement task, judge the metric quantity within 25% and measure to the accuracy required.

SUGGESTED TEACHING SEQUENCE

1. Assemble metric and Customary measuring tools and devices (rules, scales, ${ }^{\circ} \mathrm{C}$ thermometer, measuring cups) in separate groups at learning stations.
2. Have students examine mėtric tools and instruments for distinguishing characteristics and compare them with Customary tools and instruments.
3. Have students verbally describe characteristics.
4. Present or make available Information Sheet 9 and Temperature Visual located on page 26 .
5. Mix metric and Customary tools or equipment at learning station. Give students Exercises 15 and 16.
6. Test performance by using Section C of "Testing Metric Abilitues."

SELECTING AND USING
 METRIC INSTRUMENTS, TOOLS AND DEVICES

Selecting an improper pan or misreading an oven thermostat can result in wasted food servings. For example, you can't put 1500 millilitres of milk into a quart pan. Setting the oven thermostat at $250^{\circ} \mathrm{C}$ instead of $250^{\circ} \mathrm{F}$ for roasting meats will result in drier meat and fewer portions to serve to customers. Here are some suggestions:

1. Find out in advance whether Customary or metric units, utensils, equipment are needed for a given task.
2. Examine the utensil or equipment before using it.
3. The metric system is a decimal system. Look for units marked off in whole numbers, tens or tenths, hundreds or hundredths.
4. Look for metric symbols on the utensils or equipment such as $\mathrm{m}, \mathrm{mm}, \mathrm{kg}, \mathrm{g}, \mathrm{ml}, \mathrm{l}$.
5. Look for decimal fractions (0.25) or decimal mixed fractions (2.50) rather than common fractions (3/8).
6. Some products may have a special metric symbol such as a block M to show they are metric.
7. Don't force whipbeaters, choppers or other parts of equipment which are not fitting properly.
8. Practice selecting and using utensils, instruments, and equipment.

Information Sheet 9

WHICH TOOLS FOR THE JOB?

Practice and prepare to demonstrate your ability to identify, select, and use metric-scaled tools and instruments for the tasks given below. You should be able to use the measurement tools to the appropriate precision of the tool, instrument, or task.

1. Mix 4 litres of iced tea.
2. Fill take-out order for $\mathbf{5}$ servings of cole slaw.
3. Calculate and prepare an amount of liquid cleaner for a kitchen the size of your classroom.
4. Check proper temperature in cold storage areas.
5. Measure and dilute soap powder for cleaning.
6. Prepare sauce for twenty-five 60 ml servings.
7. Compare the net mass of two No. 10 cans of peas.
8. Find the mass and volume of one ice cream scoopful of food.
9. Measure a classmate for size of a uniform.
10. Measure a 400 gram order of food for a customer.
11. Find the number of 10 cm by 10 cm servings you will be able to get from a steam table pan.
12. Check the proper temperature in the dining room area.

MEASURING UP IN FOOD SERVICE

For the tasks below, estimate the metric measurement to within 25% of actual measurement, and verify the estimation by measuring to the accuracy required.

	Estimate	Verify
1. Capacity of a juice glass		
2. Mass of an order of potato salad		
3. Volume of a container of milk		
4. Temperature of: a. Refrigeration storage area		
b. Dining room		
c. Dishwasher water		
5. Area of a dining room		
6. Amount of detergent required for dishwasher		
7. Mass of a single serving of meat		
8. Length of a counter		
9. Volume of a storage bin		
10. Spacing of table place settings		
11. Diameter of a large stock pot		
12. Area of a steam table		
13. Capacity of a sauce pan		
14. Length and width of a table cloth		
15. Area of wrapping paper for one sandwich		

OBJECTIVE

The student will recognize and use metric and Customary units interchangeably in ordering, selling, and using products and supplies in this occupation.

- Given a Customary (or metric) measurement, find the metric (or Customary) equivalent on a conversion table.
- Given a Customary unit, state the replacement unit.

SugGested teaching sequence

1. Assemble packages and containers of materials.
2. Present or make available Information Sheet 10 and Table 3.
3. Have students find approximate metricCustomary equivalents by using Exercise 17.
4. Test performance by using Section D of "Testing Metric Abilities."

METRIC-CUSTOMARY EQUIVALENTS

During the transition period there will be a need for finding equivalents between systems. Conversion tables list calculated equivalents between the two systems. When a close equivalent is needed, a conversion table can be used to find it. Follow these steps:

1. Determine which conversion table is needed.
2. Look up the known number in the appropriate column; if not listed, find numbers you can add together to make the total of the known number.
3. Read the equivalent(s) from the next column.

Table 3 on the next page gives an example of a metric-Customary conversion table which you can use for practice in finding approximate equivalents. Table 3 can be used with Exercise 17, Part 2 and Part 3.

Below is a table of metric-Customary equivalents which tells you what the metric replacements for Customary units are.* This table can be used with Exercise 17, Part 1 and Part 3. The symbol \approx means "nearly equal to."

$1 \mathrm{~cm} \approx 0.39$ inch	$1 \mathrm{inch} \approx 2.54 \mathrm{~cm}$	$1 \mathrm{ml} \approx 0.2 \mathrm{tsp}$	$1 \mathrm{tsp}=5 \mathrm{ml}$
$1 \mathrm{~m} \approx 3.28$ feet	1 foot $\approx 0.305 \mathrm{~m}$	$1 \mathrm{ml} \approx 0.07 \mathrm{tbsp}$	$1 \mathrm{tbsp}=15 \mathrm{ml}$
$1 \mathrm{~m} \approx 1.09$ yards	1 yard $\approx 0.91 \mathrm{~m}$	$11 \approx 33.8 \mathrm{fl} \mathrm{oz}$	$1 \mathrm{fl} \mathrm{oz}=29.6 \mathrm{ml}$
$1 \mathrm{~km}=0.62 \mathrm{mile}$	1 mile $\approx 1.61 \mathrm{~km}$	$11 \approx 4.2$ cups	1 cup $=237 \mathrm{ml}$
$1 \mathrm{~cm}^{2}=0.16 \mathrm{sq} \mathrm{in}$	$1 \mathrm{sq} \mathrm{in} \approx 6.5 \mathrm{~cm}^{2}$	$11 \approx 2.1 \mathrm{pts}$	$1 \mathrm{pt}=0.47$!
$1 \mathrm{~m}^{2}=10.8 \mathrm{sq} \mathrm{ft}$	$1 \mathrm{sq} \mathrm{ft} \approx 0.09 \mathrm{~m}^{2}$	$11 \approx 1.06 \mathrm{qt}$	$1 \mathrm{qt}=0.95 \mathrm{l}$
$1 \mathrm{~m}^{2}=1.2 \mathrm{sq} \mathrm{yd}$	$1 \mathrm{sq} \mathrm{yd} \approx 0.8 \mathrm{~m}^{2}$	$11 \approx 0.26 \mathrm{gal}$	$1 \mathrm{gal}=3.79 \mathrm{l}$
1 hectare $=2.5$ acres	1 acre ≈ 0.4 hectare	- $1 \mathrm{gram}=0.035 \mathrm{oz}$	$1 \mathrm{oz}=28.3 \mathrm{~g}$
$1 \mathrm{~cm}^{3} \approx 0.06 \mathrm{cu} \mathrm{in}$	$1 \mathrm{cu} \mathrm{in} \approx 16.4 \mathrm{~cm}^{3}$	$1 \mathrm{~kg} \approx 2.2 \mathrm{lb}$	$1 \mathrm{lb}=0.45 \mathrm{~kg}$
$1 \mathrm{~m}^{3}=35.3 \mathrm{cu} \mathrm{ft}$	$1 \mathrm{cu} \mathrm{ft} \approx 0.03 \mathrm{~m}^{3}$	1 metric ton $=2205 \mathrm{lb}$	$1 \mathrm{ton}=907.2 \mathrm{~kg}$
$1 \mathrm{~m}^{3}=1.3 \mathrm{cu} \mathrm{yd}$	$1 \mathrm{cu} \mathrm{yd} \approx 0.8 \mathrm{~m}^{3}$	$1 \mathrm{kPa}=0.145 \mathrm{psi}$	$1 \mathrm{psi} \approx 6.895 \mathrm{kPa}$

*Adapted from Let's. Measure Metric. A Teacher's Introduction to Metric Measurement. Division of Educational Redesign and Renewal, Ohio Department of Education, 65 S. Front Street, Columbus, OH 43215.1975.

CONVERSION TABLES

GRAM TO OUNCE						OUNCE TO GRAM				CULINARY MEASURES TO METRIC (APPROXIMATE)	
1	\%e.	8	о.	8	os.	0 os.	1	08.	8	Ounces (Aluid) M	Millitres
100	3.53	10	0.35	1	0.04	10	283	1	28	1/6 (1 tap.)	5
200	7.05	20	0.71	2	0.07	20	567	2	57	$1 / 2$ (1	30
300	10.58	30	1.06	3	0.11	30	850	3	85	$2(1 / 4 \mathrm{cup})$ 3	60 90
400	14.11	40	1.41	4	0.14	40	1134	4	113	4 (1/2 cup)	120
500	17.64	50	1.76	5	0.18	50	1417	5	142	5 6 (3/4 cup)	150 180
600	21.16	60	2.12	6	0.21	60	1701	6	170	$\begin{aligned} & 7 \\ & 8 \text { (1 cup) } \end{aligned}$	$\begin{aligned} & 210 \\ & 240 \end{aligned}$
700	24.70	70	2.47	7	0.25	70	1984	7	198	16 (2 cupe = 1 pint)	480
800	28.22	80	2.82	8	0.28	80	2268	8	227	24 (3 cups) 32 (4 cups $=1$ quart)	$\begin{aligned} & 720 \\ & 950(0.951) \end{aligned}$
900	31.75	90	3.17	9	0.32	90	2551	9	255	$\begin{aligned} & 64(8 \text { cups }=1 / 2 \text { gallon }) \\ & 128(16 \text { cups }=1 \text { gallon }) \end{aligned}$	$\begin{aligned} & 1920 \text { (1.91) } \\ & 3840 \text { (3.81) } \end{aligned}$
1000	35.27										

KILOGRAM TO POUND				POUND TO KILOGRAM				MILLILITRES TO FLUID OUNCES						FLUID OUNCES TO MILLILITRES					
kg	lb.	kg	lb.		kg	lb.	kg	ml	a. oz.	ml	0. 02.	ml	a. or.	a. 02.	ml	n. or.	ml	a. oz.	ml
10	22.0	1	2.2	10	4.5	1	0.5	100	3.4	10	. 3	1	. 03	10	295.7	1	29.6	. 10	3
20	44.1	2	4.4	20	9.1	2	0.9	200	6.8	20	. 7	2	. 07	20	591.5	2	59.2	. 2	6
30	66.1	3	6.6	30	13.6	3	1.4	300	10.1	30	1.0	3	. 10	30	887.2	3	88.7	. 3	9
40	88.2	4	8.8	40	18.1	4	1.8	400	13.5	40	1.4	4	. 14	40	1182.9	4	118.3	. 4	12
50	110.2	5	11.0	50	22.7	5	2.3	500	16.9	50	1.7	5	. 17	50	1478.7	5	147.9	. 5	15
60	132.3	6	13.2	60	27.2	6	2.7	600	20.3	60	2.0	6	. 20	60	1774.4	6	177.4	. 6	18
70	154.3	7	15.4	70	31.8	7	3.2	700	23.7	70	2.4	7	. 24	70	2070.2	7	207.0	. 7	21
80	176.4	8	17.6	80	36.3	8	3.6	800	27.1	80	2.7	8	. 27	80	2365.9	8	236.6	. 8	24
90	198.4	9	19.8	90	40.8	9	4.1	900	30.4	90	3.0	9	. 30	90	2661.6	9	266.2	. 9	27
100	220.5			100	45.4														
$\begin{aligned} & 5 \mathrm{ml}(4.9 \mathrm{ml})=1 \text { teaspoon } \\ & 15 \mathrm{ml}(14.8 \mathrm{ml})=1 \text { tableapoon } \end{aligned}$														$\begin{aligned} & 1 \text { tempoon }=5 \mathrm{ml}(4.9 \mathrm{ml}) \\ & 1 \text { tableppoon }=15 \mathrm{ml}(14.8 \mathrm{ml}) \end{aligned}$					

Table 3

ANY WAY YOU WANT IT

1. You are working in a food service operation as the assistant chef. With the change to metric measurement some of the things you order, sell or use are marked only in metric units. You will need to be familiar with appropriate Customary equivalents in order to communicate with customers and suppliers who use Customary units. To develop your skill use the Table on Information Sheet 10 and give the approximate metric quantity (both number and unit) for each of the following Customary quantities.

Customary Quantity	Metric Quantity
a $) 5$ lbs. of hamburger	
b) 4 qts. of hollandaise sauce	
c) $3 / 4$ in. thick pork chop	
d) 18 in. piano whip	
e) 10 lbs. of frozen egg yolks	
f $) 8$ tsp. of flavoring	
g) 5 oz. of sliced beef	
h) 16 oz. of cooked vegetable	
i) 2 in. by 2 in. petits fours	
j) 100 lbs. of flour	
k) 2 fl. oz. of cleaner	
l) 4 in. slice of cake	
m) 1 gal. of mayonnaise	
n) 1 pt. of vanilla	
o) 8 fl. oz. glass	

2. Use the conversion tables from Table 3 to convert the following:
a) 12 oz . \qquad $\stackrel{\mathrm{g}}{\mathrm{oz}}$
b) 30 g oz.
c) 16 fl . oz. \qquad ml
d) 2 lbs . \qquad kg

| e) 5 kg |
| :--- | :--- |
| f) $3 / 4 \mathrm{cup}$ |
| g) 180 ml |$\ldots \mathrm{lbs}$.

3. Complete the Requisition Form using the items listed. Convert the Customary quantities to metric before filling out the form. Complete all the information (Date, For, No., etc.).
Order the following food supplies:
a) Forty 10 lbs . package of frozen corn
b) One hundred 8 oz . sirloin steaks
c) Four 9 in . sauce pans
d) One 5 gal . can of liquid cleaner
e) Two 10 in. $x 4$ in. tube pans

REQUISITION		
For		
No.		
Deliver to		
QTY	UNIT	Date

SECTION A

1. One kilogram is about the mass of \mathbf{a} :
(A) nickel
(B) apple seed
[C] basketball
[D] Volkswagen "Beetle"
2. A square metre is about the area of:
|A| this sheet of paper
[B] a card table top
[C] a bedspread
(D) a postage stamp
3. Bulk order quantities of foodstuffs, such as meat and potatoes, are normally given in:
[A] metres
[B] litres
[C] kilograms
[D] kilolitres
4. Banquet room requirements would normally be made in terms of:
[A] square centimetres
[B] hectares
[C] cubic millimetres
[D] square metres
5. The correct way to write twenty grams is
[A| 20 gms
[B] 20 cm .
(C) 20 g
[D| 20 g
6. The correct way to write twelve thousand millimetres is:
(A] 12.000 mm .
[B] 12.000 mm
(C) 12000 mm
[D] 12000 mm

SECTION B

7. A 750 gram package of gelatin is the same as:
[A] 0.75 kilogram
[B] $\mathbf{7 5 0 0}$ kilograms
[C] 7.5 kilograms
[D] $\mathbf{7 5 0} 000$ kilograms
8. A table 200 centimetres long also has a length of:
[A] 4 metres
[B] 2 metres
[C] 2 kilometres
[D] 20 millimetres

SECTION C

9. For measuring grams you would use a:
[A] scale
[B] tape
[C] pressure gage
[D] measuring cup
10. For measuring centimetres you would use a:
[A] pressure gage
[B] tape
[C] scale
[D] measuring cup
11. Estimate the length of the line segment below:

Use this conversion table to
(A] 23 grams
(B) 6 centimetres
[C] 4!) millimetres
[D] 14 pascals
12. Estimate the length of the line segment below:
1
|A| 10 millimetres
[B] 4 centimetres
[C] 4 pascals
[D] 23 milligrams

SECTION D

13. The metric unit which replaces the dry ounce is:
[A] gram
[B] litre
[C] millimetre
[D] milligram
14. The metric unit which replaces the gallon is:
[A] gram
[B] kilolitre
[C] litre
[D] kilogram

Use this conversion table to
answer questions 15 and 16.

ml	fl. oz.	ml	fl. oz.	ml	fl. oz.
100	3.4	10	.3	1	.03
200	6.8	20	.7	2	.07
300	10.1	30	1.0	3	.10
400	13.5	40	1.4	4	.14
500	16.9	50	1.7	5	.17
600	20.3	60	2.0	6	.20
700	23.7	70	2.4	7	.24
800	27.1	80	2.7	8	.27
900	30.4	90	3.0	9	.30

15. The equivalent of $\mathbf{4 8 0} \mathbf{~ m l}$ is:
[A] 162 f. oz.
[B] $13.4 \mathrm{fl} . \mathrm{oz}$.
[C] $4.8 \mathrm{fl} . \mathrm{oz}$.
[D] 16.2 fl. oz.
16. The equivalent of 110 ml is:
[A] $3.7 \mathrm{fl} . \mathrm{oz}$.
[B] . $33 \mathrm{fl} . \mathrm{oz}$.
[C] $110 \mathrm{fl} . \mathrm{oz}$.
[D] $11.0 \mathrm{fl} . \mathrm{oz}$.

TESTING METRIC ABILITTIES

EXERCISES 1 THRU 6

The answers depend on the items used for the activities.

EXERCISE 7

Currently accepted metric units of measurement for each question are shown in Table 2. Standards in each occupation are being established now. so answers may vary.

EXERCLSE 8

a)	2.6 cm	e)	13.2 cm
b)	58.3 cm	f)	80.2 cm
c)	9.4 cm	g)	140.0 cm
d)	68.0 cm	h)	230.7 cm

EXERCISES 9 THRU 13

Tables are reproduced in total. Answers are in parentheses.

Exercise 9

metre m	centimetre cm	millimetre mm
1	100	1000
2	200	(2000)
3	(300)	(3000)
9	(900)	(9000)
(5)	(500)	5000
74	(7400)	(74000)
0.8	80	(800)
0.6	(60)	600
(0.025)	2.5	25
(0.148)	(14.8)	148
(6.39)	639	(6390)

Exercise 10

millilitres ml	litres l
3000	3
6000	(6)
(8000)	8
114000$)$	(14)
(23000)	23
300	0.3
700	(0.7)
(900)	0.9
250	(0.25)
(470)	0.47
275	(0.275)

Exercise 11

litres 1	millilitres ml
8	8000
5	(5000)
46	(46000)
(32)	32000
0.4	(400)
0.53	(530)
(0.48)	480

Exercise 12

grams \mathbf{g}	kilograms $\mathbf{k g}$
4000	4
9000	(9)
23000	(23)
(8000)	8
300	(0.3)
275	(0.275)

Exercise 13

kilograms kg	grams g
7	7000
11	(11000)
(25)	25000
0.4	(400)
0.63	(630)
(0.175)	175

Part 2.

a) 340 g
e) 11 lbs .
b) 1.06 oz .
f) 180 ml
c) 473.1 ml
g) 6.1 fl . oz.
d) 0.9 kg

Part 3.
a) 4.5 kg
d) 18.95 litres
b) 226.4 g
c) 22.86 cm
e) 25.4 cm x

Exercise 14
a) 5 m
h) 2000 mm
b) 0.15 litre
i) 0.5 kg
c) 200 mm
j) 0.5 litre
d) 2.5 kg
e) 240 ml
f) 400 g
k) 50 mm
g) 500 ml
m) 20000 g
n) 5000 g

EXERCISES 15 AND 16

The answers depend on the items used for the activities.

EXERCISE 17

Part 1.
a) 2.25 kg
i) 5.08 cm by
b) 3.8 litres
5.08 cm
c) 1.905 cm
j) 45 kg
d) 45.72 cm
k) 59.2 ml
e) 4.5 kg
l) 10.16 cm
f) 40 ml
m) 3.79 litres
g) 141.5 g
n) 0.47 litre
h) $\mathbf{4 5 2 . 8} \mathbf{g}$
o) 236.8 ml

TESTING METRIC ABILITIES

TEMPERATURE

Visual 1

SUGGESTED METRIC TOOLS AND DEVICES NEEDED TO COMPLETE MEASUREMENT TASKS IN EXERCISES 1 THROUGH 5
 (* Optional)

LINEAR

Metre Sticks
Rules, 30 cm
Measuring Tapes, 150 cm
${ }^{*}$ Height Measure
*Metre Tape, 10 m
*Trundle Wheel
*Area Measuring Grid

VOLUME/CAPACITY

*Nesting Measures, set of 5 , $50 \mathrm{ml} \cdot 1000 \mathrm{ml}$
Economy Beaker, set of 6, $50 \mathrm{ml} \cdot 1000 \mathrm{ml}$
Metric Spoon, set of 5, $1 \mathrm{ml} \cdot 25 \mathrm{ml}$
Dry Measure, set of 3, $50,125,250 \mathrm{ml}$
Plastic Litre Box
Centimetre Cubes

MASS
Bathroom Scale
*Kilogram Scale
*Platform Spring Scale 5 kg Capacity 10 kg Capacity
Balance Scale with 8-piece mass set
*Spring Scale, 6 kg Capacity

TEMPERATURE

Celsius Thermometer

SUGGESTED METRIC TOOLS AND DEVICES NEEDED TO COMPLETE OCCUPATIONAL MEASUREMENT TASKS

In this occupation the tools needed to complete Exercises 6, 15 , and 16 are indicated by " $\$$."
A. Assorted Metric Hardware-Hex nuts, washers, screws, cotter pins, etc.
B. Drill Bits-Individual bits or sets, 1 mm to 13 mm range
C. Vemier Caliper-Pocket slide type, 120 mm range
D. Micrometer-Outside micrometer caliper, $0 \mathbf{~ m m}$ to 25 mm range
E. Feeler Gage- $\mathbf{1 3}$ blades, $\mathbf{0 . 0 5} \mathrm{mm}$ to 1 mm range
F. Metre Tape- $\mathbf{5 0}$ or $\mathbf{1 0 0} \mathrm{m}$ tape
G. Thermometers-Special purpose types such as a clinical thermometer
H. 'Temperature Devices-Indicators used for ovens, freezing/ cooling systems, etc.
I. Tools-Metric open end or box wrench sets, socket sets, hex key sets
J. Weather Devices-Rain gage, barometer, humidity, wind velocity indicators
K. ${ }^{1}$ Pressure Gages-Tire pressure, air, oxygen, hydraulic, fuel, etc.
L. 'Velocity-Direct reading or vane type meter
M. Road Map-State and city road maps

* N. Containers-Buckets, plastic containers, etc., for mixing and storing liquids
O. Containers-Boxes, buckets, cans, etc., for mixing and storing dry ingredients

Most of the above items may be obtained from local industrial, hardware, and school suppliers. Also, check with your school district's math and science departments and/or local industries for loan of their metric measurement devices.
${ }^{1}$ Measuring devices currently are not available. Substitute devices (i.e., thermometer) may be used to complete the measurement task.

REFERENCES

Let's Measure Metric. A Teacher's Introduction to Metric Measurement. Division of Educational Redesign and Renewal, Ohio Department of Education, 65 S. Front Street, Columbus, OH 43215, 1975, 80 pages; $\$ 1.50$, must include check to state treasurer.
Activity-oriented introduction to the metric system designed for independent or group inservice education study. Introductory information about metric measurement; reproducible exercises apply metric concepts to common measurement situations; laboratory activities for individuals or groups. Templates for making metre tape, litre box, square centimetre grid.

Measuring with Meters. or. How to Weigh a Gold Brick with a Meter-Stick. Metrication Institute of America, P.O. Box 236, Northfield, IL 60093, 1974, 23 min ., 16 mm , sound, color; $\$ 310.00$ purchase, $\$ 31.00$ rental.

Film presents units for length, area, volume ano mas, relating each unit to many common objects. Sereen overprints show correct use of metric symbols and ease of metric calculations. Relationships amons metric measures of length, area, volume, and mass are illuatrated in intereating and unforgettable ways.

Metric Education, An Annotated Bibliography for Vocational, Technical and Adult Education. Product Utilization, The Center for Vocational Education, The Ohio State University, Columbus, OH 43210, 1974, 149 pages; $\mathbf{\$ 1 0 . 0 0}$.

Comprehensive bibliography of instructional materials, reference materials and resource list for secondary, poat secondary, teacher education, and adult basic education. Instructional materials indexed by 15 occupational clusters, types of materials, and educational level.

Metric Education, A Position Paper for Vocational, Technical and Adult Education. Product Utilization, The Center for Vocational Education, The Ohio State University, Columbus, OH 43210, 1975, 46 pages; $\$ 3.00$.

Paper for teachers, curriculum developers, and administrators in vocational, technical and adult education. Covers inues in metric education, the metric system, the impact of metrication on vocational and technical education, implications of metric instruction for adult basic education, and curriculum and instructional atrategies.

Metrics in Career Education. Lindbeck, John R., Charles A. Bennett Company, Inc., 809 W. Detweiller Drive, Peoria, IL 61614, 1975, 103 pages, \$3.60, paper; $\$ 2.70$ quantity school purchase.
Presents metric units and notation in a well-illustrated manner. Individual chapters on metrics in drafting, metalworking, woodworking, power and enerity, graphic arts, and home economics. Chapters followed by several learning activities for student use. Appendix includes conversion tables and charts.

Think Metric. Home Economics Extension, The Ohio State University, Cooperative Extension Service, 1787 Neil Avenue, Columbus, OH 43210, 1973, 31 slide (35 mm , color); 1 audio cascette; script 28 p.; $\mathbf{\$ 9 . 0 0}$.

Fifteen-minute sound slide kit to create awareness of metric system and dispel anxieties of consumers and homemakers. Presents brief history of measure ment and plan for U.S. conversion; relates metre, litre, gram to foot-pound system and to common consumer items; describes advantages of conversion. Includes script for leader.

Think Metric. Cooperative Extension Service, The Ohio State University, 1787 Neil Avenue, Columbus, $\mathbf{O H} 43210,1973$, Leader's Guide (6 p .); 2 pamphbets (4 p. and 4 p. fold-out); 2 charts ($21.5 \times 28 \mathrm{~cm}$ each); measuring tape (160 em); bumper aticker, $\mathbf{8 . 6 0}$.
Pecket of beaic materials for consumers and homemakers. Leader's guide with objectives, leseon outline, activities and problems for group use, and selected resource list. Includes pamphlet, chart, brochures from Ohio Department of Traneportation and National Bureau of Standards, and metric tape moacure. Guide can be used with Extendion Service's Think Metric sound slide kit.

METRIC SUPPLIERS

Dick Blick Company, P.O. Box 1267, Galesburg, IL, 61401
Instructional quality rules, tapes, metre sticks, cubes, height measures, trundle wheels, mesering cups and spoons, personal scales, gram/killogram scales, feeler and depth eages, beakers, thermometers, kita and other aids.

Ohaus Scale Corporation, 29 Hanover Road, Florham Park, NJ 07932
Inatructional quality and precision balances and acales, platic calipess and stackable gram cubes for beginnens.

INFORMATION SOURCES

American Home Economics Ascociation, 2010 Massachusetts Avenue, NW, Washington, DC 20036
Information on the metric system, reports and pamphlets. Name and addrees of metric contact person in moat states.

American National Metric Council, 1625 Masachusetts Avenue, N.W., Washington, D C 20036
Charta, posters, reports and pamphlets, Metric Reporter newaletter. National metric coordinating council representing induatry, government, education, proferaional and trade organizations.
National Bureau of Standards, Office of Information Activities, U.S. Department of Commerce, Wachington, D C 20234
Free and inexpenaive metric charts and publications, aloo lends filme and dieplays.

[^0]: This publication was developed pursuant to contract No OEC.0.74.9335 with the Bureau of Occupational and Adult Education. U S. Department of Health. Educa tion and Welfare However, the opinions expressed herein do not necessarily reflect the position or policy of the US. Office of Education and no official endorsement by the US Office of Education should be inferied

