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Choosing Minimum Passing Scores by
Stochastic Approximacion Techniques

ABSTRACT

Often a wricten test 1s used as an Inexpensive subscituce
for a performance measure. A specified minimum performance level
or probabilicy of successful performance can be translated into a
minimum passing score for the written test most efficiently by
measuringh the performance of students whose wriccen tcesg scores
are near the desired cutoff score. Stochastic approximacion
methods accomplish this purpose. The up-and-down method and

the Robbins-Monro process are presented, discussed, and compared.
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Written tests in education (and in other fields as well) are frequently
used to make decisions that require the persons tested to be divided into two
groups on the basis of their level of competence. In many cases the written
test serves as an Inexpensive substitute for an expensive individual assess-
ment or performance test. For example, auschool might want to determine which
students need instruction in basic reading skills. The school cannot afford
to have a group of experts assess the skills of each pupil individually, but
the school can afford to have all the puplls take a written test. Those who
score below a certain level ¢n the written test will be given the basic instruc-

tion. But how should the school determine that score level?

A simflar problem often arises In the case of professional certification
and licensing examinations. d&st considerations rule out the possibility of
having each avplicant take & full-scale performance test covering an adeguate
sample of the tasks involved in the practice of the profession. Therefore
written tests are commonly used. In this case, the setting of standards
for acceptable performance would gseem to be a simple exercise of profes-
sional jJudgment by the licensing agency. However, the written test is
only an indirect measure of the skills to be tested. How can the agency's
experts translate their judgment of a minimum acceptable level of actual

performance into a minimum passing score for the written test?

These problems correspond closely to some common problems in biological
and industrial testing, and the techniques that have been developed for those

fields can be applied to education as well. For example; biologists frequently




want to know how large a dose of a drug is required to produce an observable
effect on an animal. Individual animals vary in their reaponse to the drug,
and either the drug or the animals may be too expensive for large-sample
tests. Engineers often need to know what level of an input variable in an
industrial process (possibly an amount of an expensive chemical} will pro-
duce a finished product of a specified flexibility, impact resistance, etc.
Samples of the product will vary even when the input 1s constant, and mea-

surements of the finished product can be quite expensive.

In general, the problem is to determine what level of input (written
test score) 1s necessary to produce a given response (performance), when
measurements of the response are difficult or expensive. While the
educator, unlike the biologist or the engineer, cannot control his input
directly, he can control it indirectly by first administering the written
test to a large and diverse sample of persons and then using these written
test scores ag a basis for choosing those few pergons whose performance will

be individually assessed.

The clasg of techniques used to solve problems of this type 1s called

stochastic approximation, and the basic method, as applied to educational

testing, 1s as follows.

1. Select any person. Record his written test score and measure his

actual performance.

2. If the first person succeeds on the performance measure (1f his
performarice is above 'the minimum acceptable}, choos; next a person
with a somewhat lower written test score, If the first person fails
on the performance measure, choose next a person with a somewhat

higher written test score.




3. Repeat step 2, choosing the third person on the bagis of the second
person’s measured performance. Continue by choosing each person on

e basis of the previous person's measured performance.

The advantage of this method of choosing persons for performance mea-
surement is that it does not spread thege expensive measurements over the
full range of ability, but concentrates them in that portion of the range
where they are needed to determine a2 cutcff score. Therefore gtochastic
approximation methods are not appropriate for determining the validity
of the written test. Validation requires a sample that is representative
of the population of interest, while the purpose of gtochastic approxima-

tion 1s to produce a sample that 1is unrepregentative, in a2 way that 1is

particularly useful for determining a cutoff score.

Stochastic approximation techniques can be classified into two types,
according to the way in which the input 1s varied. In one type the input
is varied by fixed steps. After each observation, we move up one step
or dovn one step for our next observation. If the cobservation 18 a success
(the person succeeds on the performance measure} we move down ‘we try a
person with a written test score one step lower). If the observation 1is
a failure, we move up. This technique is called the "up-and-down method”
{Dixon and Mood, 1948)., There are several variations of the up-and-down
method which are intended to make it elther more flexible or more efficient;

some of these will be discussed later in thisg paper.

In the other type of stochastic approximation technique, the input is
varied by an amount that depends on the difference between the observed
performance and the minimum acceptable performance. For example, 1f the

first person succeeds on tle performance measure by 2 wide margin, we will
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move down fairly far on the written test scale to choose the second person.
4 But if the first person barely succeeds on the performancé mea;ure, we will
choose for the second observation a person with a written test score only
slightly lower than the first person’s. The best known and most thoroughly
investigated of these techniques is the Robbins-Monro process (Robbins and
Monro, 1951). It would seem best suited to situation; in which the written

test has a large number of items, since it is based on the assumption that

the input variable is continuous.

The test user who has decided to yse a stochastic approximation tech-
nique for choosing a minimum passing score finds himself confronted with

some specific problems and decisions:

- L]

1. Nhigﬂ stochastic approximation method should he use?

2. Hou large should the steps be?

3. How many persons should he sglect for the performance measure?
4, Given the data, how should he choose the minimum passing score?

5., What is the sampling variability of the minimum passing score chosen
in this manner? How good is it as an estimate of the "trye" minimum
(S

passing score -- the score he would choose if he could obtain written

test and performance scores for all persons in the population?

These questions are all interrelated, They have been answered in several
different ways and are still being investigated by mathematical statisticians.
The remainder of this paper is an attempt to present some of the answers in

a form that will be accessible and uyseful to educators with some knowledge
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of basic statistical concepts. Derivations and proofs will be omitted;
references will be provided for the reader who wishes to investigate the

subject more deeply.1

Because stochastic approximation techniques were developed for situa-
tions other than educational and occcupational testing,_the more general
terms "input variable" and "response variable" will sometimes be used in
place of the terms "written test'" and "performance measure”, respectively.
In addition, the term "response curve" will be used to refer to the func-
tion that gives the expected performance score for any given written test

SCore.

The up-and-down method

The up-and-down method was devised for use with a dichotomous response
variable (performance measure)}. To use it with a continuous response variable
we must Impose an artificial dichotomy. To do so, we specify a particular
performance level as the minimum acceptable., We ther classify any perfor-
mance at or above that level as a success and any performance below that

level as a fallure.

The up-and-down method also requires that the input variable (written
test score) scale be divided i&to discrete levels, or "steps". The basic
up-and-down rule directs us to move up one sStep on the Input scale after a
fallure, and down one step after a success, This will cause the written
test scores of the persons ye select to center around the score that
corresponds to a fifty per cent probablility of success on the performance

measure, (If we are Interested in some other probabllity of success, We

A good starting point for such an Investigation 1s the excellent review
by Scheber (1973}.




must use a variation of the method described later in this paper.}

Table 1 presents the notation we will use in describing statistical
procedures for the up-and-down method. Notice that 1f the performance
measure is continuous, the decision-maker must specify both the minimum
acceptable level of performance and the minimum acceptable probability
of achieving this level. For example, he might want to estimate the
written test score that corresponds to an eighty per cent probability
*of achieving a performance score éE‘IZS or better. In the notation of
Table 1, he would then specify y, = 125 anh p = .80. Also notice that
when we specify 2 minim'm acceptable probability of success, we are
referring to the probability of success for the lowest-scoring person

we will accept — one whose written test score 1s exactly equal to

the minimun passing score.

Estimating the true minimum passing score

At least five distinc: procedures have been recommended for estimating
the true minimum passing score. The estimates thev yleld tend to be close
to each other, as might be expected, but no two of the procedures yield the
exactly same estimate in all cases. Four of these procedures will be pre-
sented here for the basic up-and-down method with p = .50 their adaptation
to variations of the method with p # .50 will be discussed later, in connec-

tion with those wvariations.
4

The procedure for estimating x, originally suggesred by Dixon and Mood
(1948} can be expressed as follows. If there have been more successes than
failures, take the mean written test score for all pecsons who failed the

performance measure and subtract half the step size, If there ltave been

a
i
H
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Table 1. HNotatien

¥

written test score of the i th person selected for performance measurement.
observed performance of the 1 th person.

random variable resulting from variation in performance between persons

with written test score ¥y, from instability of performance, and from

unreliability of performance measurement.

random variable resulting from the fact that the selection of person i
depends on the observed performance of person 1 - 1.

minimum acceptable performance level (performance level required for
success}.

minimuym acceptable probability of success.

true minimum passing score : the written test score such that, in the

entire population of interest, Prob (Y&IE Y | X = x*) =p .
minimum passing score estimated from observed sample data.

random variable resulting from variability in the data used to estimate

x*o

11




more fallures than sSuccesses, take the mean written test score for those
persons who succeeded on the performance measure and add half the step

size.

A second estimation procedure was suggested by Brownlee, Hodges, and
Rosenblatt (1953). The procedure they re:ommended is to disregard the first
run of successes or fallures, except for the last observation in that runm,
and average the written test scores of all the rest of the persons selected
(including that of the person whose performance would be measured next 1f
the procedure were continued). 1If the first k persons all succeed (or all

fail} and an additional n persons are selected, then the estimate of Xy is

e
*% " n+1 {2k %

Notice that only k + n - 1 persons will actually have had their performance
measured. However, the (k + n}th person 1is considered to have been gelected,
because his written test score will have been determined by the (k + n - 1)st

person's performance,

A third estimation procedure is Wetherill's 'peaks~and-valleys' method,
suggested by Wetherill and Levitt (1965) and Wetherill (1975). A "peak"
is any failure preceded by a success; a "valley' is any success preceded by
a failure. The descriptive terms derive from the fact that a "peak” represents
a person with 2 written test score higher than those of the persons selected
}ust before and just after him; a "valley" is exactly the opposite. The
estimate of X, is simply the mean written test score for all the "peaks”

and "valleys".

A fourth estimation procedure is the use of the "Spearman-Karber estimate".

12 |




This procedure was originally devised before the introduction of stochastic
approximation techniques; its use in connection with the up-and-down method
wag investigated by Tsitakawa (1967). The estimate is

A 1 A

*x = Xpin ~ E'd +d E:(l - pj)
where Roin is {he lowest written test score among all persons actuglly mea-

sured with the performance measure, d is the step size,,Bj is the proportion

of success at the jth written test score level, and the sum is over all the
different written test score levels at which persons were sgelected and mea-
sured for actual performance. For example, if the persoi s whose performance

was measured all had written test scores of 70, 80, 90, or 100, then X 4, would
be 70 and d would be 10. To find the ;5 we would compute the proportion of

successes at each of the four levels. An equivalent expression for this

estimate, which may sometimes be more convenient, is
A 1 A
X, = X +=d-d
* max 2 E: P3

Table 2 presents & set of hypothetical data illustrating the estimation

of x, by each of the four procedures. For this particular set of data, the

Dixon-Mood estimate and the Spearman-Karber estimate yield the same result.
However, if the ninth person took the performance measure and succeeded,

the Dixon-Mood estimate would remain unchanged, while the Spearman-Karber
estimate would decrease from 51.67 to 50, (Brownlee's estimate would decrease

from 51.43 to 50, while Wetherill's would remain unchanged at 52.5.)

A fifth estimation procedure suggested by Dixon (1965) requires the

use of tables contained in his article and is not presented here.

13
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Table 2. Estimates of x, with the up-and-down method, for p = .50 (hypo-

thetical data).

Person Written test score
1 70
2 60
3 50
4 40
5 50
6 60
7 " 50
8 60
9 50

Dixon-tood : % (40 + S0 + 50) + % (10) = 51.67
Brownlee: %-(50 + 40 + 50 + 60 + S50 + 60 + 50) = 51.43

Wetherill: % (40 + 60 + 50 + 60) = 52.5

2

Spearman-Karber: 40 -5+ 10 (1 + =+ 0 + 0) = 51.67

3

14

Performance
S (success)
8
8
F (failure)
F
8
F
8

not measured
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Variance of the up-and~down estimate

-
Procedures have been suggested for estimating the variance of X, based

on each of the four procedures discussed in the previous section. The tech-
nique suggested by Dixon and Mood (1948} for computing the variance of their
estimate requires some strong assumptions not likely to be satisfied wn
practical appiications to educational testing: the response curve is
assumed to be a normal cumulative distribution function with known standard
deviation. (Brownlee, et al, 1953, pointed out that estimation of this
standard deviation from observed data would require very large samples for

reasonable precision.}

A procedure for estimating the variance of Brownlee's sample-average
estimate of X; was devised by Tsutakawa (1967). This procedure requires
us to identify the most frequently occurring written test score level. We
then divide the whole sequence of observations into subsequences, ending
each subsequence as soon as this most frequent level 1s reached and begin-

ning the next subsequence with the next person. Let th be the number of
persons in the mth subsequence, and let Um be the sum of their written

test scores. Let $ be the number of subsequences. Then we disregard the

S
first subsequence and estimate the variance of X, by

s .2
z (Um - l:mx*)
m=2

I

m=2

1f there is more than one most frequent level (i.e., a tie), we estimate the

Fal
variance of X, separately for each of the most frequently occurring levels,

and average these estimates (Tsutakawa, personal communication, 1975}.

15
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Wetherill and Levitt (1965) suggest a procedure for estimating the
variance of Wetherill's peaks-and-valleys estimate which may be useful if
the sample gize is not too small. They suggest averaging the peaks and

valleys in pairs, letting the first estimate éf Xy be the average of the

first peak and the first valley, the second estimate be the average of
the second peak and the second valley, and so on. The sample variance of
these individual estimates of ¥, divided by the number of individual esti-

mates, is an estimate of the variance of X,. If we let Pk and Vk represent

the kth peak and valley, the formula for the estimated variance of X, is

Y2 -v) -3, )

p (n~ 1)

The variance of the Spearman-Karber estimate was derived by Cornfield

aund Mantel (1950, p. 208). The procedure they suggested for estimating it

can be described as follows. Let pj represent the proportion of successes
at the jth written test score level, and let nj represent the number of

persons observed at that level., Let d represent the step size. Then the

variance of X, is estimated by
ti, n, -1
1 3
where the sum is over a1l written test score levels from which persons were

actually measured for performance,

Choosing the step size

The choice of step size in the up-and-down pethod represents a trade-off

between speed and precision. Larger step sizes lead more quickly te the portion

16
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of the written test score range containing x,; smaller Step sizes permit
more precise estimation of Ky The weaker the relationship between the

written test and the performance measure, the larger the step size needed,

and the less precise will be the resulting estimate. (Dixon and Mood, 1948;
Wetherill, 1963; Dixon, 1965; Davis, 1971). Brownlee, et al (1953) suggested
using large steps as long as only successes or only fallures are obser&eg;
then switchi. g to small steps with the first change of performance. Wetherill
(1963, 1975) suggested a more general version of this method: use large steps
until some speclified number of changes of performance (runs of successes or

fallures) have been observed; then compute X, and begin again at this input

(written test score) level, using smaller steps to produce a more precise

estimate.

Stopping rules for the up-and-down method

The choice of a stopping rule will often be dictated by economic,
rather than statistical considerations. The test ugser may have to specify
his sample size before beginning to collect performance data. However, in
many cases it may be possible to let the number of observations depend on
the data, at least within limits., Brownlee, et al (1953) recommend taking
a specified number of observations beyond the initial run of successes or
failures., Wetherill and Levitt (1965) recommend stopping after a specified
nurber of runs of successes or fallures (l.e., a specified number of "peaks"
and 'valleys"). Another possibility is to compute the estimated variance
of the estimate after each observation (or after each run of successes or
failures). When this variance becomes less than a specified gize, stop

takin:: observations. The ideal method for chcosing sample size would be

3 17
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an application of decision theory, taking into account (ét any stage of the
procedure) the costs of additional performance measurement and the benefits
of Increased preciaion. However, the resulting computationa might be cum-

hersome.

Variations of the up-and-down method for p # .50.

Since the basic up-and-down method leads to the selection of persons
Witﬁ written test scores correaponding to a 50 per cent probability of suc-
cess on the performance meaaure, 1t 1a not well suited to estimating the
written test score corresponding to a probab’tlity of success other than .50.

However, there are a number of variations of the method which make 1t sultable

e ki . e e, P,

for this more general situation. Derman (1957) auggeated a probabilistic

method that can be described as follows. Xf p » 1/2, move up after any
failure, but after a success, move down with probability 1/{2p) and up
with probability (2p - 1)/(2p). Thua, the higher the value of p, the leas
the probability of moving down after a succeaa. That is, the higher
probability of success we require, the tnre we will concentrate on persons
with high written test scores. Conversely, 1f p<1/2, move down after any
success, but after a failure, move up with probability 1/(2 ~ 2p) and down

with probability (1 - 2p)/{2 - 2p). The estimate of x, for Derman's procedure

ia simply the written test score that occurs most frequently (or, 1f there

are two or more such scores, thelr average).

Wetherill (1963, p. 35) suggeated that Derman's probabiliatic technique

' and discussed

would be "likely to produce some Inefficiency in small samples,'
some alternative variations of the up~and-d6wn method. One variation which

he did not rmcommend ('as the obvious device of moving up mere than one step

18




after a failure but down only one Step after a success (for p»1/2; vice
versa for p< 1/2). WHis objections to this method were that it would lead

to substantially biased estimates of X, and that the written test scores

of persons selected would not be closely grouped around the true population

value of Ky o

Wetherill (1963) did suggest two other variations of the up-and-~down
method which he considered preferable to either of the two variations
described above. The first of these is as follows: After each observation
on the performance measure compare the proportion of successes at that level

(call it pj) with p, the required probability of success. If Py > P, move

—

L

down; if pj < p, move up; if pj = p, remain at that level.

Wetherill's second suggested variation is one which he calls the '‘up-
and-down transformed response rule™ (Wetherill and Levitt, 1965; Wetherill,
1975). This variation requires the experimenter to choose a rule such that
when the probability of success at a given level equals the desired prob-
ability {(not necessarily ?%%), the probability of moving up is exactly
equal to the probability of moving down. The rule is started anew after
each change of levels. For example, consider the rule: "Move up after any
failure; move down after two Successes.” This rule allows only three possible

sequences before changing levels. 1If pj is the true probability of success

at level j, the possible sequences, with their associated probabilities and

results, are the following:

Sequence Probability Result
2 u
55 pj move down
SF 1 - move up
Pyl - Py
F 1-p. move up
3

19
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For this rule, the probability of moving up equals the probability of

moving down when pj2 = ,50; that is, when pj = ,71. Therefore this rule
would be appropriate for estimating X, when p = .71. {ue obvious limita-

tion of this vari;%ion is that it offers the decision—maker a limited number
of different choices of p for which the rule is reasonably simple, However,
this limitation does not seem too severe in fields such as education, where
measuremert is not extremely precise. Table 3 lists up-and-down transformed

response ryules corresponding to several different values of p.

For estimating x, by means of the up-and-dowm transformed response

rule, any of the four estimation procedures discussed previously would seer
to apply, with the following revisions: Instead of counting individual
respons2s, count Sequences of responses at the same level. For "failure",
substitute ''sequence ieading to a move up"; for "success", substitute
"sequence leading to a move down". For example, a "peak” in wether@ll'a
peaks-and-valleys procedure would be redefined as any sequence leading to

a move down which was preceded by a sequence leading to a move up. In the

Spearman-Karber estimate, pj would be the proportion of sequences at level }

which led tv a move down, and so0o on.

The "multiple-sample up-and-down method” (Hsi, 1969) is a generalized
form of the up-and-down method. The rule can be stated as follows: At each
input level, take response measures on k persons. If s or fewer succeed,
move up. If r or more succeed, move down. Otherwise remain at the same
input level. (Of course, r must be greater than s. The basic up-and-down
method can be described in this form bY the values k = 1; s = 0; v = 1.

When the desired success probability is .50, the three values will be

20
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Table 3. Up-and-down transformed response rules for estimating writter

test scores corresponding to selected probabilities of success.

):3 Move up after Move down after
.50 . F . S

.60 F or SFF 8S or SFS
.71 any F SS

.79 any F 558

. B4 any F 5588

.87 any F SSSSS. e
.89 any F 558888

.40 FF or SF§ S or F§S
.29 FF any §

Hle FFF any S
167 - FFFF any §

.13 FFFFF any S

L1l FFFFFF any S
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related by the expression r + 8 = k. For success probabilities greater than
.50, r + s > k; for success probabilities less than .50, r + 8 < k. The

estimate of x, 1s Brownlee's sample-average estimate.

The Robbins-Monro Proucess

The Robbins-Monro process was devised for use with 2 continuocus response
variable (performance measure) and a continuous input variable (written test
score). It does not require the test yser to dichotomize the responmse varia-
ble {(the performance measure). For the continuocus-response case, the test
user specifies the minimum acceptable performance in terms of an expecved

score on the performance measure. Let y, represent this expected Performance

score.~-The- minimum passing written. test. score x,.is then .defired by the

expression

LATRTAEN

where ¥, 1s specified by the test user and the symbol E: indici-tes the expec-

ted value.

Notice that it is possible to use the Robbins-Monro process with a
dichotomous response variable; in this case Y would be either 1 {(for a

success) or 0 {for a failure) an: ¥, would be a specified probability of

success. However, in this:case one of the special advantages of the process
is lost: the dependence of the step size on the gize of the difference

(Y - y*). Empirical results with artificial data indicate that the
Robbins—Monre process works well with a dichotomous response variable only
when the desired success probability is close to .50 (Wetherill, 1963,

pp. 9-18).

22
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The Robbins-Monro process is defined by the following rule for changing

the input:
X =X~y Oy =3
where the di are a decreasing sequence of constants such that
oo - 2
2,4, =00 and 31.d4,° ¢ o0

These decreasing step ccefficients cause the values of X, to converge to

i

the true value of Xy instead of bouncing back and forth around it as in
the up—and-down method. Therefore the estimate of X4 after n observations
is simply xh+1 , the written test score of the student who would be selected

next for performance measurement.

Robbins and Monro (1951) recommended choasing step coefficients

according to the sequence

d, = C; d =‘E'; d, = < 3 cese 3 d = ¢

1 2 2 3 3 ? *

This choice of coefficients can be justified intuitively as follows: at any
stage of the process we have a prior estimate, based on all the previous
observations, which we will revise on the basis of one additional observa-
tion. If this additional oYservation is the nth observation, 1t contains
1/n of the information we have obtained. The rest of the information is

contained in the prior estimate. Therefore we will welght the nth observa-

tion only 1/n as heavily as we would if it were our only piece of information.

There remains the problem of choosing a value for C, the initial step
coefficient. The optimal cholice of C depends on the slope of the response

curve; ideally, C should be the inverse of the slope at the point x, (Venter,

1967). However, since x, is unknown, this result 1s useful only in placing
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a8 lower limit on C, and then only if some pricor information about the response
curve is available. The results of a simulation study by avis (1971) sug-
gest that it is better to have a value of C thar is too larje than one that

is too small. If the response curve is a normal cumilative distribution

function, a good value for C would be from two to foue times its standard

deviation. If rhe shape of the response curve is completely unknown, we

have little guidance in choosing C.

One way to guard against the choice of too small & valul for © is to
use the "delayed Robbins-Monro process" (Davis, 1971), in which the step
coefficients do not begin to decrease until there is a change of direction.
From then on, the process continues &8s an ordinary Robbins-Monro process.
For example, if the first three persons all have performance scores above

¥y, and the fourth scores below ¥, the step coefficients would be C, C, C,

c/2, ¢/3, ....

Since rhe Robbins-Monro process is an iterative process rhat converges,
the test user may want to choose a stopping rule based on this convergence
property. For example, he may want to stop performance testing when a

specified number of estimates of x, all lie within a specified distance

of each other.

Variance of the Robbins-Monro estimate

Estimacving the variance of Xn in the Robbins-Monro process is a complex

problem. There is an assymptotic result (Sacks, 1958) which states that as
the number of ohservarions increases, the distribution of the random variable
vV n (Xn+1 - x*) converges ro a normal distribution with mean zero and variance

o2
a (200- 3)

2

where ¢ © is the conditional variance of ¥, given x = x, ; & is the slope of

of the regression of ¥ on X at the point X = x, ; and a is the inverse of the
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first step coefficient. Venter (1967} has suggested techniques for estimating
o2 and & by using a variation of the basic Robbins-Monro process. His sug-
gested method Involves taking two observations at each step, with input values

above and below the most recent estimate of Xy The distance between the two

input values decreases at each step, but at a slower rate than the decrease
in the step coefficionts. Thig process has the additfonal advantage of con-
verging faster than the basic Robbins-Monro process, but it is somewhat more

complicated to administer.

Farrell (1962) dEViQEd nonparametric confidencs interval procedures for
both the Robbins-Monro process and the up-and-down method. However, these
procedures are mathematically complex and (like other nonparametric confidence
interval procedures} tend to produce very wide intervals (Fabian, personal

communication, 1975).

Which method to use?

Host tast users will probably find the up-and-down method (or a variation
of it} more practical than the Robbins-Monro process, for the reasons given
by Wetherill (1975):

Two difficulties arise in arrempting to apply
the Robbins-Monro procedure to a practical
problem. Firstly, observations must oe taken
serially and a calculation performed in between
each one, which 1s not always convenient.

Secondly, 1t 1s nearly always impracticable
to stick to step sizes of C/N.

One limitation of the up-and-dowm method 1s its lack of flexibility
in estimating probabilities of success other than .50. The "up-and-dowm

transformed response” rule helpns to impart some of the needed flexibility,
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but the researcher still must choose from a fairly gmall selection of success
probabilities. However, the choice of values given in Table 3 should be suf-

ficient for most applications in educational and occupational testing.
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