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Choosing Minimum Passing Scores by
Stochastic Approxithation Techniques

ABSTRACT

Often a written test is used as an inexpensive substitute

for a performance measure. A specified minimum performance level

or probability of successful performance can be translated into a

minimum passing score for the written test most efficiently by

measuring the performance of students whose written test scores

are near the desired cutoff score. Stochastic approximation

methods accomplish this purpose. The up-and-down method and

the Robbins-Monro process are presented, discussed, and comp4red.
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Written tests in education (and in other fields as well) are frequently

used to make decisions that require the persons tested to be divided into two

groups on the basis of their level of competence. In many cases the written

test serves as an inexpensive substitute for an expensive individual assess-

ment or performance test. For example, a school might want to determine which

students need instruction in basic reading skills. The school cannot afford

to have a group of experts assess the skills of each pupil individuall, but

the school can afford to have all the pupils take a written test. Those who

score below a certain level en the written test will be given the basic instruc-

tion. But how should the school determine that score level?

A similar problem often arises in the case of professional certification

and licensing examinations. Cost considerations rule out the possibility of

having each applicant take a full-scale performance test covering an adequate

sample of the tasks involved in the practice of the profession. Therefore

written tests are comnonly used. In this case, the setting of standards

for acceptable performance would seem to be a simple exercise of profes-

sional judgment by the licensing agency. However, the written test is

only an indirect measure of the skills to be tested. How can the agency's

experts translate their judgment of a minimum acceptable level of actual

performance into a minimum passing score for the written test?

These problems correspond closely to some common problems in biological

and industrial testing, and the techniques that have been developed for those

fields can be applied to education as well. For example: biologists frequently
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want to know how large a dose of a drug is required to produce an observable

effect on an animal. Individual animals vary in their response to the drug,

and either the drug or the animals may be too expensive for large-sample

tests. Engineers often need to know what level of an input variable in an

industrial process (possibly an amount of an expensive chemical) will pro-

duce a finished product of a specified flexibility, impact resistance, etc.

Samples of the product will vary even when the input is constant, and mea-

surements of the finished product can be quite expensive.

In general, the problem is to determine what level of input (written

test score) is necessary to produce a given response (performance), when

measurements of the response are difficult or expensive. While the

educator, unlike the biologist or the engineer, cannot control his input

directly, he can control it indirectly by first administering the written

test to a large and diverse sample of persons and then using these written

test scores as a basis for choosing those few perlons whose performance will

be individually assessed.

The class of techniques used to solve problems of this type is called

stochastic approximation, and the basic method, as applied to educational

testing, is as follows.

1. Select any person. Record his written test score and measure his

actual performance.

2. If the first person succeeds on the performance measure (if his

performance is abovethe minimum acceptable), choose next a person

with a somewhat lower written test score. If the first person fails

on the performance measure, choose next a person with a somewhat

higher written test score.

6



3. Repeat step 2, choosing the third person on the basis of the second

person's measured performance. Continue by choosing each person on

6he basis of the previous person's measured performance.

The advantage of this method of choosing persons for performance mea-

surement is that it does not spread these expensive measurements over the

full range of ability, but concentrates them in that portion of the range

where they are needed to determine a cutoff score. Therefore stochastic

approximation methods are not appropriate for de.'ermining the validity

of the written test, Validation requires a sample that is representative

of the population of interest, while the purpose of stochastic approxima-

tion is to produce a sample that is unrepresentative, in a way that is

particularly useful for determining a cutoff score.

Stochastic approximation techniques can be classified into two types,

according to the way in which the input is varied. In one type the input

is varied by fixed steps. After each observation, we move up one step

or down one step for our next observation. If the observation is a success

(the person succeeds on the performance measure) we move down (we try a

person with a written test score one step lower). If the observation is

a failure, we move up. This technique is called the "up-and-down method"

(Dixon and Mood, 1948). there are several variations of the up-and-down

method which are intended to make it either more flexible or more efficient;

some of these will be discussed later in this paper.

In the other type of stochastic approximation technique, the input is

varied by an amount that depends on the difference between the observed

performance and the minimum acceptable performance. For example, if the

first person succeeds on tie performance measure by a wide margin, we will

7
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move down fairly far on the written test scale to choose the second person.

But if the first person barely succeeds on the performance measure, we will

choose for the second observation a person with a written test score only

slightly lower than the first person's. The best known and most thoroughly

investigated of these techniques is the Robbins-Monro process (Robbins and

Monro, 1951). It would seem best suited to situations in-which the written

test has a large number of items, since it is based on the assumption that

the input variable is continuous.

The test user who has decided to use a stochastic approximation tech-

nique for choosing a minimum passing score finds himself confronted with

some specific problems and decisions:

1. Which stochastic approximation method should he use?

2. Hou large should the steps be?

3. How many persons should he select for the performance measure?

4. Given the data, how should he choose the minimum passing score?

5. What is the sampling variability of the minimum passing score chosen

in this manner? How good is it as an estimate of the "true" minimum

passing score -- the score he would choose if he could obtain written

test and performance scores for all persons in the population?

These questions are all interrelated. They have been answered in several

different ways and are still being investigated by mathematical statisticians.

The remainder of this paper is an attempt to present some of the answers in

a form that will be accesible and useful to educators with some knowledge

8
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of basic statistical concepts. Derivations and proofs will be omitted;

referencus will be provided for the reader who wishes to investigate the

subject more deeply.
1

Because stochastic approximation techniques were developed for situa-

tions other than educational and occupational testing, the more general

terms "input variable" and "response variable" will sometimes be used in

place of the terms "written test" and "performance measure", respectively.

Ln addition, the term "response curve" will be used to refer to the func-

tion that gives the expected performance score for any given written test

score.

The up-and-down method

The up-and-down method was devised for use with a dichotomous response

variable (performance measure). To use it with a continuous response variable

we must impose an artificial dichotomy. To do so, we specify a particular

performance level as the minimum acceptable. We then classify any perfor-

mance at or above that level as a success and any performance below that

level as a failure.

The up-and-down method also requires that the input variable (written

test score) scale be divided into discrete levels, or "steps". The basic

up-and-down rule directs us to move up one step on the input scale after a

failure, and down one step after a success. This will cause the written

test scores of the persons we select to center around the score that

corresponds to a fifty per cent probability of success on the performance

measure. (If we are interested in some other probability of success, we

1
A good starting point for such an investigation is the excellent review
by Scheber (1973).
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must use a variation of the method described later in this paper.)

Table 1 presents the notation we will use in describing statistical

procedures for the up-and-down method. Notice that if the performance

measure is continuous, the decision-maker must specify both the minimum

acceptable level of performance and the minimum acceptable probability

of achieving this level. For example, he night want to estimate the

written test score that correspondsgto an eighty per cent probability

of achieving a performance score cif 125 or better. In the notation of

)

Table 1, he would then specify y* = 125"and p = .80. Also notice that

when we specify a minium acceptable probability of success, we are

referring to the probability of success for the lowest-scoring person

;go will accept --one whose written test score is exactly equal to

the minimum passing score.

Estimating, the true minimum 2assing score

At least five distinct procedures have been recommended for estimating

the true minimum passing score. The estimates they yield tend to be close

to each other, as might be expected, but no two of the procedures yield the

exactly same estimate in all cases. Four of these procedures will be pre-

sented here for the basic up-and-down method vath p = .50; their adaptation

to variations of the method with p s .50 will be discussed later, in connec-

tion with those variations.
4

The procedure for estimating x* originally suggesred by Dixon and Mood

(1948) can be expressed as follows. If there have been more successes than

failures, take the mean written test score for all persons who failed the

performance measure and subtract half the step size. If there have been

10
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Table 1. Notation

x
i

written test score of the i th person selected for performance measurement.

yi observed performance of the i th person.

Y
i

random variable resulting from variation in performance between persons

with written test score x
i '

from instability of performance, and from

unreliability of performance measurement.

X
i

random variable resulting from the fact that the selection of person i

depends on the observed performance of person i 1.

y* minimum acceptable performance level (performance level required for

success).

minimum acceptable probability of success.

x* true minimum passing score : the written test score such that, in the

entire population of interest, Prob (Yit y* I X = x*) = p .

x
*

minimum passing score estimated from observed sample data.

X* random variable resulting from variability in the data used to estimate

1 1
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more failures than successes, take the mean written test score for those

persons who succeeded on the performance measure and add half the step

size.

A second estimation procedure was suggested by Brownlee, Hodges, and

Rosenblatt (1953). The procedure they rezommended is to disregard the first

run of successes or failures, except for the last observation in that run,

and average the written test scores of all the rest of the persons selected

(including that of the person whose performance would be measured next if

the procedure were continued). If the first k persons all succeed (or all

fail) and an additional n persons are selected, then the estimate of x* is

1
x

* n + 1 Z
i=k

Notice that only k + n 1 persons will actually have had their performance

measured. However, the (k + n)th person is considered to have been selected,

because his written test score will have been determined by the (k + n - 1)st

person's performance.

A third estimation procedure is Wetherill's "peaks-and-valleys" method,

suggested by Wetherill and Levitt (1965) and Wetherill (1975). A "peak"

is any failure preceded by a success; a "valley" is any success preceded by

a failure. The descriptive terms derive from the fact that a "peak" represents

a person vith a written test score higher than those of the persons selected

before and just after him; a "valley" is exactly the opposite. The

estimate of a* is simply the mean written test score for all the "peaks"

and "valleys".

A fourth estimation procedure is the use of the "Spearman-Karber estimate".

12



This procedure was originally devised before the introduction of stochastic

approximation techniques; its use in connection with the up-and-down method

was investigated by Tsotakawa (1967). The estinate is

A

*
1

min ijx igcx --2 d+dE(1 )

where x
min

is the lowest written test score among all persons actually mea-

A
sured with the performance measure, d is the step size,.p, is the proportion

of success at the jth written test score level, and the sum is over all the

different written test score levels at which persons were selected and mea-

sured for actual performance. For example, if the persois whose performance

was measured all had written test scores of 70, 80, 90, or 100, then xmin would

A
be 70 and d would be 10. To find the p we would compute the proportion of

successes at each of the four levels. An equivalent expression for this

estimate, which may sometimes be more convenient, is

A 1 A
x* -= - dE

max 2

Table 2 presents a set of hypothetical data illustrating the estimation

of x* by each of the four procedures. For this partic6lar set of data, the

Dixon-Hood estimate and the Spearman-Karber estimate yield the same result.

However, if the ninth person took the performance measure and succeeded,

the Dixon-Hood estimate would remain unchanged, while the Spearman-Karber

estimate would decrease from 51.67 to 50. (Brownlee's estimate would decrease

from 51.43 to 50, while Wetherill's would remain unchanged at 52.5.)

A fifth estimation procedure suggested by Dixon (1965) requires the

use of tables contained in his article and is not presented here.

13
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Table 2.

Person

Estimates of x* with the up-and-down method, for p = .50 (hypo-

thetical data).

Written test score Performance

1 70 S (success)

2 60 S

3 50 S

4 40 F (failure)

5 50 F

6 60 S

7 50

8 60

9 50 not measured

Dixon-Mood: 1 (40 + 50 + 50) + 1 (10) = 51.67
3 2

Brownlee:
1

(50 + 40 + 50 + 60 + 50 + 60 + 50) = 51.43
7

1
Wetherill: (40 + 60 + 50 + 60) = 52.5

4

2
Spearman-Karber: 40 - 5 + 10 (1 +

3
+ 0 + 0) = 51.67



Variance of the up-nd-down estimate

Procedures have been suggested for estimating the variance of X* based

on each of the four procedures discussed in the previous section. The tech-

nique suggested by Dixon and Mood (1940 for computing the variance of their

estimate requires some strong assumptions not likely to be satisfied

practical applications to educational testing: the response curve is

assumed to be a normal cumulative distribution function with known standard

deviation. (Brownlee, et al, 1953, pointed out that estimation of this

standard deviation from observed data would require very large samples for

reasonable precision.)

A procedure for estimating the variance of Brownlee's sample-average

estimate of x* was devised by Tsutakawa (1967). This procedure requires

us to identify the most frequently occurring written test score level. We

then divide the whole sequence of observations into subsequences, ending

each subsequence as soon as this most frequent level is reached and begin-

ning the next subsequence with the next person. Let tm be the number of

persons in the mth subsequence, and let Um be the sum of their written

test scores. Let s be the number of subsequences. Then we disregard the

first subsequence and estimate the variance of X* by

(U
m

- tmx*)

mis2

[ 1! tm

mu2 }

If there is more than one most frequent leiml (i.e., a tie), we estimate the

variance of X* separately for each of the most frequently occurring levels,

and average these estimates (Tsutakawa, personal communication, 1975).

15



Wetherill and Lavitt (1965) suggest a procedure for estimating the

variance of Wetherill's peaks-and-valleys estimate which may be useful if

the sample size is not too small. They suggest averaging the peaks and

valleys in pairs, letting the first estimate of x* be the average of the

first peak and the first valley, the second estimate be the average of

the second peak and the second valley, and so on. The sample variance of

these individual estimates of x* divided by the number of individual esti-

mates, is an estimate of the variance of X*. If we let P
k
and V

k
represent

the kth peak,a0 valley, the formula for the estimated variance of X* is

(Pk Vk) 32
kr-.1 2

zi (n - 1)

The variance of the Spearman-Karber estimate was derived by Cornfield

and Mantel (1950, p. 208). The procedure they suggested for estimating it

can be described as follows. Let pj represent the proportion of successes

atthejthwrittenteatscorelevel,andletn.represent the nuMber of
3

persons observed at that level. Let d represent the step size. Then the

variance of X is estimated by

2 7". ij (1
d y

Li- nj - 1

where the sum is over all written test score levels from which persons were

actually measured for performance.

Choosin& the step size

The choice of step size in the up-and-down method represents a trade-off

between speed and precision. Larger step sizes lead more quickly to the portion

16



of the written test score range containing x*; smaller step sizes permit

more precise estimation of x*. The weaker the relationship between the

written test and the performance measure; the larger the step size needed;

and the less precise will be the resulting estimate. (Dixon and Mood, 1948;

Wetherill, 1963; Dixon, 1965; Davis, 1971). Brownlee, et al (1953) suggested

using large steps as long as only successes or only failures are observed;

then switchiig to small steps with the first change of performance. Wetherill

(1963, 1975) suggested a more general version of this method: use large steps

until soue specified number of changes of performance (runs of successes or

failures) have been observed: then compute X* and begin again at this input

(written test score) level, using smaller steps to produce a more precise

estimate.

Stopping rules for the up-and-down method

The choice of a stopping rule will often be dictated by economic,

rather than statistical coniiderations. The test user may have to specify

his sample size before beginning to collect performance data. However; in

inany cases it may be possible to let the number of observations depend on

the data, at least within limits. Brownlee, et al (1953) recommend taking

a specified number of observations beyond the initial run of successes or

failures. Wetherill and Levitt (1965) recommend stopping after a specified

number of runs of successes or failures (i.e., a specified number of "peaks"

and "valleys"). Another possibility is to compute the estimated variance

of the estimate after each observation (or after each run of successes or

failures). When this variance becomes less than a specified size, stop

takilw observations. The ideal method for choosing sample size would be

17



an application of decision theory, taking into account (at any stage of the

procedure) the costs of additional performance measurement and the benefits

of increased precision. However, the resulting computations might be cum-

bersome.

Variations of the up-and-down method for p # .50.

Since the basic up-and-down method leads to the selection of persons

with written test scores corresponding to a 50 per cent probability of suc-

cess on the performance measure, it is not well suited to estimating the

written test score corresponding to a probab'lity of success other than .50.

However, there are a number of variations of the method whiCh make it suitable--
for this more general situation. Derman (1957) suggested a probabilistic

method that can be described as follows. If p > 1/2, move up after any

failure, but after a success, move down with probability 1/(2p) and up

with probability (2p 1)/(2p). Thus, the higher the value of p, the less

the probability of moving down after a success. That is, the higher

probability of success we require, the mnre we will concentrate on persons

with high written test scores. Conversely, if p<1/2, move down after any

success, but after a failure, move up with probability 1/(2 - 2p) and down

with probability (1 - 2p)/(2 - 2p). The estimate of x* for Derman's procedure

is simply the written test score that occurs most ffiqUently (or, if there

are two or more such scores, their average).

Wetherill (1963, p. 35) suggested that Derman's probabilistic technique

would be "likely to produce some inefficiency in small samples," and discussed

some alternative variations of the up-and-down method. One variation which

he did not rtcommend vas the obvious device of moving up more than one step

18
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after a failure but down only one step after a success (for p >1/2; vice

versa for p< 1/2). His objections to this method were that it would lead

to substantially biased estimates of x* and that the written test scores

of persona selected would not be closely grouped around the true population

value of x* .

Wetherill (1963) did suggest two other variations of the up-and-down

method which he considered preferable to either of the two variations

described above. The first of these is as follows: After each observation

on the performance measure compare the proportion of successes at that level

Pj p, the required probability of success. If p > p, move

down;ifp.p,moveup;if P3 .=p, remain at that level.
3

v.

Wetherill's second suggested variation is one which he calls the "up-

and-down transformed response rule" (detherill ;id Levitt, 1965; Wetherill,

1975). This variation requires the experimenter to choose a rule such that

when the probability of success at a given level equals the desired prob-

ability (not necessarily .50), the probability of moving up is exactly

equal to,the probability of moving down. The rule is started anew after

each change of levels. For example, consider the rule: "Move up after any

failure; move down after two successes." This rule allows only three possible

sequences before changing levels. If pj is the true probability of success

at level j, the possible sequences, with their associated probabilities and

results, are the following:

Sequence Probability Result

SS Pj
2

move down

P
SF

(1 P )
move up

1 - P .
move up

19



For this rule, the probability of moving up equals the probability of

moving down when p
2
= .50; that is, when p = .71. Therefore this rule

would be appropriate for estimating x* when p = .71. One obvious limita-

tion of this variiion is that it offers the decision-maker a limited number

of different choices of p for which the rule is reasonably simple. However,

this limitation does not seem too severe in fields such as education, where

measuremett is not extremely precise. Table 3 lists up-and-down transformed

response rules corresponding to several different values of p.

For estimating x* by means of the up-and-down transformed response

rule, any of the four estimation procedures discussed previously would see'

to apply, with the following revisions: Instead of counting individual

,responwas, count sequences of responses at the same level. For "failure",

substitute "sequence leading to a move up"; for "success", sUbstitute

"sequence leading to a move down". For example, a "peak" in Wetherill's

peaks-and-valleys procedure would be redefined as any sequence leading to

a move down which was preceded by a sequence leading to a move up. In the

SpearmahAzrberestimate, p3 .would be the proportion of sequences at level j

which led to a move down, and so on.

The "multiple-sample up-and-down method" (Hsi, 1969) is a generalized

form of the up-and-down method. The rule can be stated as follows: At each

input level, take response measures on k persons. If s or fewer succeed,

move up. If r or more succeed, move down.' Otherwise remain at the same

input level. Of course, r must be greater than s. The basic up-and-down

method can be described in this form by the values k a 1; s 0 0; r = 1.

When the desired success probability is .50, the three values will be

20
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Table 3. Up-and-down transformed response rules for estimating writter

test scores corresponding to selected probabilities of succes.

k

.50

.60

.71

.79

.84

.87

.89

Move up after Move down after

F or 8FF SS or SFS

any F SS

any,F SSS

any F SSSS

any F USSS

any F SSSSSS

.40 FF or SFS S or FSS

.29 FF any S

.21 FFF any S

.16 FFFF any S

.13 FFFFF any S

.11 FFFFFF any S

21
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related by the expression r $ = k. For success probabilities greater than

.50, r + s > k; for success probabilities less than .50, r + s < k. The

estimate of x* is Brownlee's sample-average estimate.

The Robbins-Monro Process

The Robbins-Monro process was devised for use with a continuous response

variable (performance measure) and a continuous input variable (written test

score). It does got require the test user to dichotomize the response varia-

ble (the performance measure). For the continuous-response case, the test

user specifies the minimum acceptable performance in terms of an expecred

score on the performance measure. Let y* represent this expected performance

score.---The-minimum passing written_testscore_x*.is then"deiined by the

expression

e (Yi xi = x*) = y*

where y* is specified by the test user and the symbol e inditvtes the expec-

ted value.

Notice that it is possible to use the Robbins-Monro process with a

dichotomous response variable; in this case Y would be either 1 (for a

success) or 0 (for a failure) ant y* would be a specified probability of

success. However, in thisfcaie one of the special advantages of the process

is lost: the dependence of the step size on the size of the difference

- y*). Empirical results with artificial data indicate that the

Robbins-Monro proccas works well with a dichotomous response variable on3y

wten the desired success probability is close to .50 (Wetherill, 1963,

pp. 9-18).

2 2
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The Robbins-Monro process is defined by the following rule for changing

the input:

X
i+1

= Xi - di (Y
i

y
*

)

where the d
i
are a decreasing sequence of constants such that

Edi = oo and f di2<oo

These decreasing step coefficients cause the values of Xi to converge to

the true value of x * instead of bouncing back and forth around it as in

the up-and-down method. Therefore the estimate of x* after n observations

is simply X
n+1

, the written test score of the student who would be selected

next for performance measurement.

Robbins and Honro (1951) recommended choosing step coefficients

according to the sequence

di = C ; d2 ; d3 = 3 ; ; d = .
n n

This choice of coefficients can be justified intuitively as follows: at any

stage of the process we have a prior estimate, based on all the previous

observations, which we will revise on the basis of one additional observa-

tion. If this additional observation is the nth observation, it contains

1/n of the information we have obtained. The rest of the information is

contained in the prior estimate. Therefore we will weight the nth observa-

tion only l/n as heavily as we would if it 4ere our only piece of iuformation.

There remains the problem of choosing a value for C, the initial atep

coefficient. The optimal Choice of C depends on the slope of the response

curve; ideally, C should be the inverse of the slope at the point x* (Venter,

1967). However, since x* is unknown, this result is useful only in placing
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a lower limit on C, and then only if some prior information about the response

curve is available. The results of a simulation study by avis (1971) sug-

gest that it is better to have a value of C that is too lar3e than one that

is too small. If the response curve is a normal cumulative distriliution

function, a good value for C would be from two to foes times its standard

deviation. If the shape of the response curve is completely unknown, we

have little guidance in choosing C.

One way to guard against the choice of too small a valu: fox r is to

use the "delayed Robbins-Monro process" (Davis, 1971), in which the step

coefficients do not begin to decrease until there is a change of direction.

From then on, the process continues as an ordinary Robbins-Monro process.

For example, if the first three persons all have performance scores above

y* and the fourth scores below y* the step coefficients would be C, C, C,

C/2, C/3, ....

Since the Robbins-Monro process is ss iterative process that converges,

the test user may want to choose a stopping rule based on this convergence

property. For example, he may want to stop performance testing when a

specified number of estimates of x* all lie within a specified distance

of each other.

Variance of the Robbins-Monro estimate

Estimating the variance of Xn in the Robbins-Monro process is a complex

problem. There is an assymptotic result (Sacks, 1958) which states that as

the number of observations increases, the distribution of the random variable

(Xn+1 x*) converges to a normal distribution with mean zero and variance

2

a (2 ot- a)

-where 72 xs the conditional variance of X, given x = x* ;°( is the slope of

of the regression of Y on X at the point X IT x* ; and a is the inverse of the



first step coefficient. Venter (1967) has suggested techniques for estimating

cr 2 and otby using a variation of the basic Robbins-Monro process. His sug-

gested method involves taksag two observations at each step, with input values

above and below the most recent estimate of x* The distance between the two

input values decreases at each step, but at a slower rate than the decrease

in the step coefficients. This process has the additional advantage of con-

verging fastor than the basic Robbins-Monro process, but it is somewhat more

complicated to administer.

Farrell (1962) devised nonparametric confidence intervarprocedures for

both the Robbins-Monro process and the up-and-down method. However, these

procedures are mathematically complex and (like other nonparametric confidence

interval procedures) tend to produce very wide intervals (Fabian, personal

communication, 1975).

Which method to use?

Most cast users will probably find the up-and-down method (or a variation

of it) more practical than the Robbins-Monro process, for the reasons given

by Wetherill (1975):

Two difficulties arise in attempting to apply
the Robbins-Monro procedure to a practical
problem. Firstly, observations must oe taken
serially and a calculation performed in between
each one, which is not always convenient.
Secondly, it is nearly always impracticable
to stick to step sizes of C/N.

One limitation of the up-and-down mithod is its lack of flexibility

in estimating probabilities of success other than .50. The "up-and-down

transformed response" rule helps to impart sone of the needed flexibility,

25



41.4

-22-

but the researcher still must choose from a fairly small selection of success

probabilities. However, the choice of values given in Table 3 should be suf-

ficient for most applications in educational and occupational testing.
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